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making this joint degree possible and giving me some flexibility with regard
to administrative matters. In addition, I would like to thank Bert Pluymers
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introducing me to the industrial side of research.

Also, this research would not have been possible without financial support.
Firstly, the European Commission is gratefully acknowledged for their support
of the VIPER research project (GA No. 675441). Furthermore, this research
was partially supported by Flanders Make, the strategic research center for the
manufacturing industry.

Here, I would like to acknowledge the staff and professors of the VIPER project
as well as the fellows that went through this adventure with me: Fabrizio, Marc-
Antoine, Nassardin, Dario, Simone, Taoufik, Rita, Ravi, Safiullah, Giovanni and
Sepide. Thank you all, for making this project so much more interesting, for the
lively dinners, scientific presentations and exchange of ideas. I also would like
to address special thanks to Sepide, Taoufik and Ravi with whom I spent a lot
of time due to shared main/secondary universities within the project. Sepide,
thank you for always being present and ready to help. It was pleasure working
and collaborating with you. Best of luck for your defense! Taoufik, thanks for
the many conversations at Alma, the tour around Gent and the interesting
conversations on economics. Ravi, thanks for your undying enthusiasm! Your
ability to take a step back and approach difficult situations with humor is truly
inspiring!

I would like to thanks the regulars and organizers of the Happy Hours: Dionysios,
Matteo, Pavel, Philip, Nico, Sergio and Joschua. I drank more coke than beer
but it doesn’t mean I had less fun than any of you :) Also, Special thanks
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the meaning of life, your generous hospitality during my visit in Beijing and the
games of Go we played. Diane, for ensuring I stayed safe at the beginning of the
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Abstract

Noise pollution has been identified as a physiological stressor that impacts
both the physiological and psychological health of those exposed to it. This
recognition has motivated the imposition of stricter noise regulations which
justify the increasing importance of vibroacoustic performance in a broad
range of industries that includes the automotive, aerospace, building, and
home appliance industries. However, the need and demand for better acoustic
comfort often conflict with other design imperatives such as compactness, cost,
weight, or ecological targets. Notably, an easy way to increase the vibroacoustic
performance of a structure is to increase its mass which, because it requires the
use of more material, impacts all the aforementioned targets.

In the past decades, the technical challenges induced by higher vibroacoustics
standards have been answered by combining stiff, lightweight materials such as
aluminum with so-called “vibroacoustic packages” including viscoelastic and
poroelastic materials known for their respective abilities to dissipate vibration
and acoustic energy. Recently, periodic structures and metamaterials have
emerged as a possible, complementary way to achieve better vibroacoustic
performance as they often possess unconventional wave propagation properties
caused by their multi-scale nature. As a result, they have been the focus of
intensive research aimed at understanding their phenomenology and leveraging
it in novel vibroacoustic designs.

Three challenges to the realization of the aforementioned research program
are identified and constitute the main focus of this thesis. Firstly, the
computational cost associated with the modeling of metamaterial solutions.
Secondly, the absence of a well-established optimization framework for the
optimization of metamaterials that accounts for the specificities of the multi-
scale/spectral methods developed to model them. Lastly, the difficulty to
compare experimental results with numerical models as multiscale methods
predict indicators that are not easily measured or estimated (e.g. wavenumbers).
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vi ABSTRACT

To reduce the computational cost associated with the modeling of metamaterials,
two model order reduction schemes are developed. The first one concerns the
free and forced wave propagation in periodic media and combines mode-based
and wave-based reduction methods. The proposed scheme is compared to other
techniques presented in the literature and is shown to perform favorably. The
second method is based on a multiparameter moment matching technique and
is developed to speed up sound transmission loss computations in the shift cell
operator method. A reduction of CPU time by up to three orders of magnitude
is observed.

Regarding optimization, a framework for the unit-cell modeling of periodic
structures and metamaterials is developed. The proposed framework combines
semi-analytical derivatives of objectives functions computed through unit-cell
methods with a second-order optimization algorithm. The aforementioned
algorithm is an instance of sequential quadratic programming that combines
a line search method (used when the optimization function is locally convex)
and an ellipsoidal trust-region method. The proposed framework is applied to
model updating, sound transmission loss, and vibration-based problems and
produces effective solutions in all cases.

Concerning the experimental characterization of periodic media, a novel
wavenumber extraction method is developed. The proposed method requires
periodic sampling of the signal of interest to produce a convolution kernel that
describes its wavenumbers or k-space. In this work, the proposed method is
compared to other wavenumber extraction techniques presented in the literature
and outperforms them in terms of speed and accuracy.

Keywords:
Periodic structures, Metamaterials, Vibroacoustics, Model Order Reduction,
Optimization, Wavenumber extraction



Beknopte samenvatting

Geluidsoverlast is geïdentificeerd als een fysiologische stressfactor die zowel
de fysiologische als psychologische gezondheid van degenen die eraan worden
blootgesteld, beïnvloedt. Deze erkenning heeft de ontwikkeling van strengere
regelgeving en een toename van het belang van vibroakoestische prestaties
in een breed scala van industrieën gemotiveerd, waaronder de automobiel-
, lucht- en ruimtevaart-, bouw- en huishoudelijke apparaten. De behoefte
aan en de vraag naar beter akoestisch comfort zijn echter vaak in strijd met
andere ontwerpvereisten, zoals compactheid, kosten, gewicht of ecologische
doelstellingen. De meest gemakkelijke manier om de vibro-akoestische prestatie
van een constructie te verbeteren, is door de massa ervan te vergroten, wat,
omdat er meer materiaal nodig is, invloed heeft op alle bovengenoemde vereisten.

In de afgelopen decennia zijn de technische uitdagingen die werden veroorzaakt
door hogere vibroakoestische normen beantwoord door stijve, lichtgewicht mate-
rialen zoals aluminium te combineren met zogenaamde "vibro-akoestische add-
ons", waaronder visco-elastische en poro-elastische materialen die bekend staan
om hun respectievelijk vermogen om trillingen en akoestische energie af te voeren.
Onlangs zijn periodieke structuren en metamaterialen naar voren gekomen als
een mogelijke, complementaire manier om betere vibro-akoestische prestaties te
bereiken, aangezien ze vaak onconventionele golfvoortplantingseigenschappen
bezitten die worden veroorzaakt door hun multi-schaal karakter. Als gevolg
hiervan zijn ze de focus geweest van intensief onderzoek gericht op het begrijpen
van hun fenomenologie en het benutten ervan in nieuwe vibro-akoestische
structuren.

Drie uitdagingen voor de realisatie van het bovengenoemde onderzoekspro-
gramma worden geïdentificeerd en vormen de belangrijkste focus van dit
proefschrift. Ten eerste de computationele kosten die gepaard gaan met het
modelleren van metamateriaaloplossingen. Ten tweede, het ontbreken van een
goed ingeburgerd optimalisatiekader voor de optimalisatie van metamaterialen
dat rekening houdt met de specificiteit van de multischaal / spectrale methoden
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die zijn ontwikkeld om ze te modelleren. Ten slotte is het moeilijk om
experimentele resultaten te vergelijken met numerieke modellen gebaseerd
op deze multischallmethoden omdat de voorspelde grootheden niet gemakkelijk
gemeten of afgeschat kunnen worden (bv. golfgetallen).

Om de computationele kosten die gepaard gaan met het modelleren van
metamaterialen te verminderen, zijn twee modelreductieschema’s ontwikkeld.
De eerste beschouwt vrije en geforceerde golfvoortplanting in periodieke
structuren en golfgeleiders. Het voorgestelde schema wordt vergeleken met
andere technieken uit de literatuur en presteert erg goed. De tweede
methode is ontwikkeld om de evaluatie van geluidstransmissieverlies via
eenheidscelmodelleringstechnieken te versnellen en kan de vereiste CPU-tijd
met drie ordes van grootte verminderen.

Met betrekking tot optimalisatie wordt een raamwerk ontwikkeld voor
eenheidscelmodellering van periodieke structuren en metamaterialen. Het
voorgestelde raamwerk combineert semi-analytische afgeleiden van doelfuncties
berekend via eenheidscelmethoden met een tweede-orde optimalisatie-algoritme.
Dit algoritme is een voorbeeld van sequentiële kwadratische programmering die
een lijnzoekmethode combineert (gebruikt wanneer de optimalisatiefunctie lokaal
convex is) en een ellipsoïdale trustregio-methode. Het voorgestelde raamwerk
wordt toegepast op het identificeren van modelparameters, het optimaliseren
van geluidstransmissie en trillingsniveaus en levert in alle gevallen effectieve
oplossingen op.

Met betrekking tot de experimentele karakterisering van metamaterialen wordt
een nieuwe golfgetalextractiemethode ontwikkeld. De voorgestelde methode
vereist periodieke bemonstering van het signaal om een convolutiekernel te
produceren die de golfgetallen of k-ruimte beschrijft. In dit werk wordt de
voorgestelde methode vergeleken met andere golfgetal-extractietechnieken uit
de literatuur en overtreft deze in termen van snelheid en nauwkeurigheid.

Trefwoorden:
Periodieke structuren, Metamaterialen, Viabroakoestiek, Model Orde Reductie,
Optimalisatie, Golfgetalextractie



Résumé

De nombreuses études identifient la pollution sonore comme une source de
stresse physiologique et psychologique impactant négativement la santé de ceux
qui y sont exposés. Cette reconnaissance, relativement récente, de l’impact
des nuisances sonores a conduit à l’introduction de normes et réglementations
sonores de plus en plus strictes pour les industries aérospatiales, automobiles
et électroménagères. Cependant, ces nouvelles exigences en matière de confort
acoustique entrent souvent en conflit avec d’autres objectifs de conception
industriels tels que la compacité, le poids, la minimisation des coûts et de
l’impact écologique.

Traditionnellement, les défis techniques induits par les réglementations sonores
sont résolus par l’usage joint de matériaux légers et résistants (comme
l’aluminium) et de traitements vibroacoustiques s’appuyant sur les propriétés
dissipatives des matériaux viscoélastiques (pour dissiper l’énergie vibratoire)
et poroélastiques (pour la dissipation de l’énergie acoustique). Du fait de leur
nature multi-échelles et de leurs propriétés non conventionnelles en matière de
propagation des ondes, structures périodiques et métamatériaux sont depuis peu
considérés comme de nouvelles solutions techniques permettant l’amélioration
des performances vibroacoustiques sans trop impacter les autres objectifs de
conception. En tant que tels, ils sont l’objets de maintes recherches avec pour
objectifs la compréhension de leur phénoménologie et leur intégration dans le
milieu industriel.

Les thématiques abordées dans ce manuscrit correspondent à trois obstacles
majeurs à la réalisation du programme de recherche susmentionné. En premier
lieu, les coûts de calcul associés à la modélisation de structures périodiques
et de métamatériaux. Deuxièmement, l’absence d’un cadre conceptuel pour
l’optimisation systématique des métamatériaux. Un tel cadre se devant de
prendre en compte les spécificités des méthodes spectrales développées pour
leur étude. En dernier lieu, les difficultés liées à la comparaison de résultats
expérimentaux (e.g. champs de déplacement) à des résultats théoriques (e.g.

ix
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nombres d’ondes).

Deux méthodes de réduction sont développées en vue de réduire les coûts de
calculs associés à la modélisation de structures périodiques. La première vise
l’étude de la propagation des ondes dans lesdites structures. Elle combine des
méthodes de réductions fondées sur l’analyse modale, l’analyse ondulatoire
et la sous-structuration. La deuxième s’applique aux calculs de transmission
acoustique. Elle se fonde sur une extension des méthodes de sous-espaces de
Krylov à l’analyse multiparamétrique et permet de réduire la complexité du
problème de plusieurs ordres de grandeur.

Concernant l’optimisation des métamatériaux, un cadre conceptuel permettant
leur optimisation systématique via des méthodes numériques est développé. Ce
cadre combine une approche permettant d’obtenir les dérivées premières et
secondes des fonctions objectifs à un algorithme d’optimisation quadratique
successive. L’algorithme susmentionné marie une méthode de recherche linéaire
(utilisée quand la fonction objective est localement convexe) à un algorithme de
région de confiance ellipsoïdale (utilisée en présence de courbure négative). Le
cadre conceptuel décrit dans le présent manuscrit est appliqué à des problèmes
de caractérisation, de transmission acoustique, et d’optimisation vibratoire et
produit des solutions effectives dans chacun de ces cas.

Concernant la caractérisation expérimentale des milieux périodiques, une
nouvelle méthode pour l’extraction de nombres d’onde est développée. Ladite
méthode requière un échantillonnage périodique des signaux considérés, qu’elle
utilise pour produire un opérateur de convolution compacte qui décrit les
nombres d’ondes et/ou le k-space. Cette nouvelle technique est comparée à
d’autres méthodes de la littérature et les surpasse en termes de précision et de
rapidité.

Mots Clés :
Structures périodiques, Métamatériaux, Vibroacoustique, Réduction de Modèles,
Optimisation, Extraction de nombres d’onde
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Chapter 1

Introduction

1.1 General context

Noise pollution has been shown to impact both the physiological and
psychological health [179, 84, 149, 171] of those exposed to it and is recognized
as an important public health issue [35, 201]. This recognition is responsible
for the inception of stricter noise regulations and an increase in the importance
of vibroacoustic performance in a broad range of industries. This includes
the automotive, aerospace, railway, building construction and home appliance
industries. Unfortunately, the need for better vibroacoustic performance often
conflicts with other design imperatives such as compactness (low volume), cost,
weight (portability) which often impacts ecological targets via e.g. an increase in
fuel consumption. Thus began the search for lightweight, high stiffness and high
vibroacoustic performance solutions. Traditionally, these have been designed
by combining stiff and light materials (e.g. aluminum) with vibroacoustic
treatments including viscoelastic materials -that can convert vibration energy
into heat- or poroelastic materials - which are able to absorb sound waves. In
past decades, periodic structures and metamaterials have emerged as a potential
third complementary way to design such solutions. The following section gives
a brief overview of their scientific history and explains how/why they could
achieve such performance.

1
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1.2 Scientific context

This story starts with a result obtained in 1883 [76] by Gaston Floquet. The
result concerns the fundamental properties of first order linear differential
equations with periodic coefficients. These equations take the of the form:

ẋ = A(t)x (1.1)

with A(t) a periodic matrix function. At the time, the result was mostly
used to determine the Lyapunov stability [120] of dynamical systems’ limit
cycles such as Earth’s orbit around the Sun. Another breakthrough happened
in 1929 [24]. Floquet’s theory was extended by Bloch to the case of partial
differential equations as the latter was interested in solutions of the Schrödinger
equation for electrons in a periodic lattice of atoms (crystal). This lead to
the discovery of Bloch-waves and of the electronic band structures whose gaps
govern the electric properties of the corresponding materials. These were
crucial discoveries without which the semi-conductor industry as we know it
and all its applications would have not been possible. As is often the case for
physics and mathematics, concepts discovered in one branch can be reused in
another [199]. And so, Floquet-Bloch theory spread from the study of electronic
wavefunctions in periodic crystal lattices to the study of photonic crystals,
phononic crystals and more recently, periodic structures and metamaterials. In
all these domains, periodicity can be leveraged to produce unconventional wave
propagation features that enable applications such as wave guiding [99, 182, 153],
sound insulation [121, 56, 61], perfect absorption [70, 213, 114, 198], or vibration
attenuation [43, 181, 172]. Apart from their unconventional properties, periodic
media also present a significant advantage compared to other kinds of designs
used in order to achieve similar performance level. Indeed, from a computational
point of view, periodic media can be characterized, studied and designed via
manipulation of one (and only one) of their irreducible periods called a unit
cell (UC). While UCs with simple geometries and properties can be studied
analytically/semi-analytically via asymptotic homogenization methods [77, 33]
or with the plane wave expansion method [174] ,more complex cases require
the use of numerical tools. In the fields of vibroacoustics, this has lead to the
development of several wave based methods that only require a single UC in
order to study the corresponding medium. The Semi Analytical Finite Element
Method (SAFE or SAFEM) is one of them and can be traced back to the
early 1970’s [196]. The method was further developed during the 80’s [173, 53]
and enables the computation of dispersion curves, K-Spaces, transmission-
reflection coefficients and the forced response of homogeneous, layered and
helical waveguides [50, 3, 18, 184]. Despite its success, the SAFE is limited
to the study homogeneous waveguides and cannot deal with truly periodic
media. The first method to do so is the Wave Finite Element Method (WFEM).
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Developed by Mead in the 1970’s [139, 140, 141], the WFEM combines, classical
finite element modeling with Floquet-Bloch theory to model 1D and 2D periodic
Media. In the 1D case, the method has a range of application similar to that
of the SAFEM, though most of its many formulations suffer from numerical
issues [197, 10]. In the 2D case, the WFEM achieved mixed success. On
the one hand, the WFEM framework was extended by techniques enabling
the computation of the sound transmission loss (STL) through 1D and 2D
periodic media, on the other hand, the computation of dispersion curves is
limited to the main directions of periodicity of the media when using the 2D
WFEM. This last feature has prevented the computation of K-Spaces and
lead to the development of the Shift-Cell Operator Method (SCOM) [47] an
extension of the SAFEM to the case of periodic media. It is at that point, after
decades of methodological progress and phenomenological investigations that
the VIPER (VIbroacoustics of Periodic Media) project was launched. It was
a Marie-Curie innovative training network project aiming at consolidating the
research of previous decades while stimulating interactions and collaborations
between European universities by awarding grants tied to joint/dual doctorates
programs. There were to be 12 Early Stage Researchers (ESRs) spread among
5 European universities. Each ESR was assigned a topic corresponding, for the
most part, to a specific investigative path, e.g. "Periodic inclusions in PU foams",
"Periodic visco-elastic add-ons", "Industrial applications to aircrafts/launchers",...
or "Vibroacoustics and structural dynamics of periodic structures" which was
assigned to me. Given the massive ground covered by the topic I had to make
choices and focus on areas where I perceived methodological gaps.

1.3 Identified Challenges and Research Objectives

In this section, the methodological gaps I identified at start of my PhD are
highlighted and the corresponding research objectives formulated.

Speeding up computations within the WFEM framework.
The 1D WFEM enables the computation of the dispersion curves of periodic
media and the forced response of finite periodic structures via manipulations
of a single of their unit-cells. While there are not much alternatives for
the computation of dispersion curves, the forced responses of finite periodic
structures can in principle be computed by modeling such structures using
classical finite elements (FE). The question obviously becomes, which is faster?
For finite periodic structures containing a large number of UCs it is obvious that
the WFEM is more advantageous than the FEM as it restricts computational
operations to a single UCs (making it memory efficient) and its computational
time is the same regardless of the number of cell (making it computationally
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efficient). What about scenarios involving low to medium number of UCs then?
For these, it does not hold that the WFEM is faster than classical FE models
as the method requires two very computationally expensive steps. The first one
is the dynamic condensation of the interior degrees of freedom (dofs) of the UC
which may require as many "matrix-inversions" (per frequency) as the UC has
interface dofs. The second one is the computation of all the eigenvalues of a
matrix whose size is equal to the UC’s interface dof count. This last operation
is known to have a o

(
n3) complexity which is not very efficient. Meanwhile,

FE models usually produce highly sparse matrices and the computation of their
forced responses requires a single "matrix-inversion" (per frequency) which can
be carried out efficiently using iterative methods. Similar issues arise when
computing the diffuse field STL of periodic structures with the 2D spectral
methods (e.g. the WFEM or SCOM). In the 1D case, some reduced order
modeling strategies have been developed in the literature to address these issues.
They are however not applicable to every case (e.g. damping models) and still
had room for optimization. In the 2D case, it seems no method was developed
in order to speed up 2D STL computations within the WFEM or SCOM
frameworks. These observations led to the formulation of the first Research
Objective (RO) of this thesis. RO1: To develop efficient and widely
applicable reduced order modeling strategies for computations in the
1D WFEM framework and STL evaluations via spectral methods.

Optimized designs of periodic structures and metamaterials.
Many of the PhD thesis topics in the VIPER project dealt with phenomenological
investigations -such as " Periodic inclusions in auxetic media", "Multilayer
core topology - and once interesting concepts were to be found and partially
understood, producing optimized designs maximizing specific manifestations of
these concepts would be relevant for several reasons. Firstly they could help
increasing our understanding of such phenomena. Secondly, optimized designs
could be used either in demonstrators for scientific communication with the
broad public or in practical industrial applications. However, while some papers
can be found in the literature about the optimization of metamaterials and
periodic structures, optimization itself is often treated as a second thought,
the problems studied generally involve simplified 1D and 2D models, and the
objective functions used often focus on partially predictive variables which do
not tell a complete story. A good example of the last point is the spatial decay
of flexural waves which can be caused by energy dissipation mechanisms or
conservative Bragg/local resonance mechanisms which have different use cases
and interpretations. As a results of these observations, the following research
objective was formulated. RO2: To develop an efficient unified framework
for design and optimization via unit cell modeling techniques that
exploits the full predictive power of this class of methods.
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Characterization and comparison between theoretical dispersion
curves and experiments.
From a vibroacoustic standpoint, sensors are only able to measure displace-
ments/accelerations/velocities and sound pressure fields. This is problematic
for two reasons. Firstly, these fields are highly dependent on (possibly) hard
to characterize boundary conditions such that observed mismatch may not
be caused by a discrepancy between theoretical and the experimental media
themselves but by differences in the environments they operate in. The second
issue is related to the computational complexity of computing these fields
values. Indeed, while efficient formulations for computing the forced response
of 1D periodic media and waveguides exists there are none for 2D and higher
dimensions which makes direct computations difficult. Notably, these problems
can easily be bypassed by dispersion curves and k-space measurements as these
properties are inherent to periodic media and do not depend on boundary
condition. Moreover these can be efficiently computed using the previously
mentioned spectral methods. An exploration of the literature on this topic
showed that several accurate and robust "wavenumber extraction" methods
enabling the measurement of experimental dispersion curves existed for 1D
structures. In the 2D case however, existing methods suffered either from poor
accuracy or had computational complexities so great that they could not be
used in practical cases. From this vacuum, the following research objective was
derived. RO3: To develop efficient, accurate and robust wavenumber
extraction methods for 2D homogeneous and periodic structures.

1.4 Outline of the manuscript

The rest of this dissertation contains 6 chapters allowing to reach the
aforementioned research objectives.

Chapter 2 - Literature review and state of the art: This chapter gives
an overview of the numerical methods available for the modeling and study of
periodic structures and metamaterials. Particular attention is given to the 1D
WFEM framework as it plays a role in most of the following chapters. The
most popular methods for wavenumber extraction in a vibroacoustic context
are also described in details.

Chapter 3 - Model Order Reduction for 1D Unit Cell Modeling: In
this chapter, a model order reduction scheme developed during this thesis is
presented. The proposed scheme is benchmarked against previous reduced order
modeling strategies in the literature which are also described.
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Chapter 4 - Wave Based Optimization: In this chapter, a framework for the
optimization of 1D and 2D periodic structures is presented. Closed formulas for
first and second order derivatives of most quantities computed via the WFEM
framework are derived. Additionally, a second order optimization algorithm
combining line-search and a ellipsoidal trust-region methods is proposed in order
to fully exploit the obtained second order information.

Chapter 5 - Wavenumber Extraction: In this chapter a novel method for
1D and 2D wavenumber extraction is presented. The proposed method exploits
the 1D and 2D convolution frameworks in order to compute a kernel containing
all the information about wavenumbers/k-space. It is benchmarked against
other methods of the literature and validated on experimental cases.

Chapter 6 - A rational Krylov subspace method for sound transmis-
sions loss computation with the Shift Cell Method: In this chapter, a
method for sound transmission loss computations within the SCOM framework is
developed. The subspace spanned by the columns of the obtained fluid-structure
coupling matrices is shown to be independent of the wave’s incidence angles and
wavenumbers which enables the use of moment matching techniques to reduce
the structural part of the problem. The proposed modeling technique and model
order reduction schemes are validated by comparison to other methods of the
literature and their efficiency is illustrated on a complex application case.

Chapter 7 - Conclusion The last chapter of this manuscript summarizes the
main contributions of the thesis and gives recommendations for further research
tracks and directions.



Chapter 2

Literature review and state of
the art

2.1 Introduction

This chapter gives an overview of the numerical methods available for the
modeling and study of periodic structures and metamaterials. Particular
attention is given to the 1D WFEM framework as it plays a role in most of the
following chapters. The most popular methods for wavenumber extraction in a
vibroacoustic context are also described in details.

2.2 The 1D Wave Finite Element Method

The 1D wave finite element method (WFEM) is a numerical method that
combines the flexibility of the finite element method (FEM) with Floquet-Bloch
theory in order to compute the dispersion properties of a 1D periodic medium.
By using the FEM in this manner, the WFEM enables the computation of
the dispersion curves, waveshapes and forced response of periodic media of
arbitrary geometric complexity with little additional implementation efforts for
its practitioners. The method was first developed by Mead in the early 1970’s
[139, 140, 141, 142, 143], but other authors contributed to its formalization,
dissemination [145, 64], and to the improvement of its numerical properties
[197, 214, 89]. Along the years the 1D WFEM framework has been extended to
include circular periodicity [135, 17], polar periodicity [129] and helical structures

7
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[128, 178]. Stochastic extensions have also been derived [93, 27, 176]. In this
section, the most popular applications of the 1D direct WFEM are presented
using a unifying approach. The somewhat less popular inverse 1D WFEM is
also quickly discussed. In the previous sentence, the adjective "direct" refers to
the direct computation of the propagation constants when the driving frequency
is known, while the adjective "inverse" refers to the opposite setting where the
propagation constant is known and the corresponding frequencies remains to be
determined. This terminology was introduced as early as 1993 [217, 214] and
is likely a result of a transfer from optimal control theory as (numerical) wave
propagation with the WFEM is analogous to the Riccati equation of optimal
control [215] for which propagation constants are the natural unknowns. The
rest of the section is organized as follows. In subsection 2.2.1 a formalism for the
discretization of 1D infinite waveguides is presented. With the added assumption
of periodicity, an eigenvalue problem yielding the characteristics of free waves
propagating through the media is derived in subsection 2.2.2. Subsection 2.2.3
describes how the forced response of a finite 1D periodic waveguide may be
derived from the knowledge of free waves propagating in the corresponding
media while subsection 2.2.4 discusses how to derive the scattering properties of
coupling elements connecting several periodic waveguides. Lastly in subsection
2.2.4 the inverse formulation of the 1D WFEM is presented.

2.2.1 Discretization of an infite 1D medium

In this subsection, an explicit equation of motion is derived for an infinite
one-dimensional waveguide comprised of an infinite number of cells (Xk)k∈Z
indexed on Z, the set of all integers. Additionally, the assumption is made that
a finite element model is available for each cell Xk and that interface meshes
of successive UC are compatible such that direct assembly between them is
possible i.e. the right interface of the kth UC and the left interface of the
(k + 1)th have identical meshes and shape functions).

A partition of the degrees of freedom (dofs) is realized for each UC Xk according
to its topology (see Figure 2.1):

• The dofs of the left interface: U (k)
L ,

• The inner dofs of the UC: U (k)
I ,

• The dofs of the right interface: U (k)
R ,

• The combined dofs of the left and right interfaces: U (k)
B .
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Figure 2.1: Schematic representation and dofs partition of the kth cell of an
infinite 1D periodic medium.

This partition is also used for the mass matrix M (k), and the stiffness matrix
K(k) of each cell:

K(k) =

K
(k)
LL K

(k)
LI K

(k)
LR

K
(k)
IL K

(k)
II K

(k)
IR

K
(k)
RL K

(k)
RI K

(k)
RR

 ; M (k) =

M
(k)
LL M

(k)
LI M

(k)
LR

M
(k)
IL M

(k)
II M

(k)
IR

M
(k)
RL M

(k)
RI M

(k)
RR

 (2.1)

In case damping is present in the UC it is accounted for by considering that
the stiffness matrix is frequency-dependent, thus the equation of motion for the
kth cell takes the form:G

(k)
LL G

(k)
LI G

(k)
LR

G
(k)
IL G

(k)
II G

(k)
IR

G
(k)
RL G

(k)
RI G

(k)
RR


U

(k)
L

U
(k)
I

U
(k)
R

 =

F
(k)
L

F
(k)
I

F
(k)
R

 (2.2)

in the frequency domain, with G(k) = K(k) − ω2M (k) the dynamic stiffness
matrix of the UC. The inner dofs of each cell can be condensed by rewriting
the second line of equation (2.2):

U
(k)
I =

(
G

(k)
II

)−1 (
F

(k)
I −G(k

IL)U (k)
L −G(k)

IRU
(k)
R

)
(2.3)

This lead to the condensed equation of motion:G(k)
LL −GkLI

(
G

(k)
II

)−1
G

(k)
IL G

(k)
LR −GkLI

(
G

(k)
II

)−1
G

(k)
IR

G
(k)
RL −GkRI

(
G

(k)
II

)−1
G

(k)
IL G

(k)
RR −GkRI

(
G

(k)
II

)−1
G

(k)
IR

[U (k)
L

U
(k)
R

]
=

F (k)
L −GkLI

(
G

(k)
II

)−1
F

(k)
I

F
(k)
R −GkRI

(
G

(k)
II

)−1
F

(k)
I

 (2.4)
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, which can be used to define the condensed dynamic stiffness matrix D(k) and
the force delocalization operator Θ(k) of the kth, cell:(

D
(k)
LL D

(k)
LR

D
(k)
RL D

(k)
RR

)[
U

(k)
L

U
(k)
R

]
=
[
F

(k)
L −Θ(k)

LI F
(k)
I

F
(k)
R −Θ(k)

RIF
(k)
I

]
(2.5)

To form the 1D infinite medium, the cells can now be assembled which requires
enforcing the relations:

∀k ∈ Z, U (k−1)
R = U

(k)
L = Vk (2.6)

Finally, the condensed equation of motion for the full infinite 1D waveguide can
be written:

∀k ∈ Z, D(k−1)
RL Vk−1 +

(
D

(k−1)
RR +D

(k)
LL

)
Vk +D

(k)
LRVk+1 = Fk −Θ(k−1)

RI F
(k−1)
I −Θ(k)

LI F
(k)
I (2.7)

2.2.2 Free wave propagation in a 1D periodic medium

It is now assumed that every cell of the wave guide is identical such that
D(k) = D and Θ(k) = Θ for all values of k. Thus equation (2.7) is simplified to:

∀k ∈ Z, DRLVk−1 + (DRR +DLL)Vk +DLRVk+1 = Fk −ΘRIF
(k−1)
I −ΘLIF

(k)
I (2.8)

To solve for free wave propagation, the assumption is made that no external
forces are applied on the periodic medium. Moreover, the solutions sought should
take the form of Bloch-waves with propagation constants λ and waveshape ψ.

∃ψ ∈ Cn, ∃λ ∈ C∗, ∀k ∈ Z, Vk = λkψ (2.9)

By substituting this expression of Vk in equation (2.8), the signature eigenvalue
problem (EVP) of the 1D direct WFEM is derived [64, 143, 197, 10]:(

1
λp
DRL + (DRR +DLL) + λpDLR

)
ψp = 0 (2.10)

Because FEM matrices are symmetric in most cases, so is the dynamic stiffness
matrix D such that DRL = DT

LR, DLL = DT
LL and DRR = DT

RR. Thus, taking
the transpose equation (2.10) leads to:

ψTp

(
λpDRL + (DRR +DLL) + 1

λp
DLR

)
= 0 (2.11)

Which shows that ψTp is a left eigenvector of equation (2.10) for the eigenvalue
1
λp

. Therefore, the eigenvalues of (2.10) come in pairs
(
λp,

1
λp

)
corresponding to
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waves propagating in the positive (|λp| ≤ 1) and negative (|λp| ≥ 1) directions.
One way to solve the EVP (2.10) would be to change it into a quadratic EVP
and then linearize it [64, 143, 10]. The most practical way to solve this EVP
however, is to use a linearization that fully exploits its T-palindromic symmetry
[214, 89, 126]:[(

DRL −DLR DLL +DRR

−DLL −DRL DRL −DLR

)
− µp

(
0 −DLR

DRL 0

)][
Xp

Yp

]
= 0 (2.12)

The eigenvalues and eigenvectors of (2.10) are then obtained by applying the
following transformations [89]:

(
λp,

1
λp

)
=

µp +
√
µ2
p − 4

2 ,
µp −

√
µ2
p − 4

2


ψp = Xp + λpYp

φp = Xp + 1
λp
Yp

(2.13)

with ψp and φp the right eigenvectors of (2.10) for the eigenvalues λp and 1
λp

respectively.

2.2.3 Forced response of a finite 1D periodic waveguide

In this subsection, formulas enabling the computation of the Frequency Response
Function (FRF) of a finite 1D periodic waveguide comprised of N UCS are
presented. Alternative but equivalent formulas can also be found in the
literature [64, 143, 144]. First some notations are introduced: From now on,
we assume that the eigenvalues and eigenvectors are sorted so that (λ1, ..., λn)
are eigenvalues associated with waves propagating in the positive direction and
(λn+1, ..., λ2n) =

(
1
λ1
, ..., 1

λn

)
with waves propagating in the negative direction.

Two pairs of eigenvalues and eigenvector matrices are defined:

Λ = Λ+ =

λ1 0 0

0 . . . 0
0 0 λn

 , Ψ+ = [ψ1, ..., ψn]

Λ− =
(
Λ+)−1 =

λn+1 0 0

0 . . . 0
0 0 λ2n

 , Ψ− = [ψn+1, ..., ψ2n]

(2.14)
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Figure 2.2: An illustration of a periodic waveguide [145]

They correspond to positive and negative going waves and satisfy the following
relationships:DRLΨ+Λ−1 + (DRR +DLL) Ψ+ +DLRΨ+Λ = 0

DRLΨ−Λ + (DRR +DLL) Ψ− +DLRΨ−Λ−1 = 0
(2.15)

With these notations in place, the forced response of a finite waveguide can now
be considered. It is assumed that forces on the waveguides are only applied
at its extremities. The UCs are numbered from 1 to N . We note Uk−1 the
left interface displacement vector of the kth unit cell and Uk its right interface
displacement vector as indicated in Figure 2.2. First, the equation of motion of
the full assembled waveguide is derived:

∀k ∈ J1, N − 1K, DRLUk−1 + (DRR +DLL)Uk +DLRUk+1 = 0

DLLU0 +DRLU1 = F0

DRLUN−1 +DRRUN = FN

(2.16)

The displacement of the waveguide can be developed as a superposition of
positive (resp. negative) going waves originating at the left (resp. right)
interface of the waveguide:

∀k ∈ J0, NK, Uk = Ψ+Λkq+ + Ψ−ΛN−kq− (2.17)

With q+ and q− vectors containing the complex amplitudes of the positive
and negative going waves respectively. Because the matrices Ψ+, Ψ− and Λ
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satisfy equation (2.15), the equation of motion is automatically verified inside
the waveguide. Formulations for the forced response of the waveguide can then
be derived for various boundary conditions. For free-free boundary conditions
the following equation holds:[

F0
FN

]
=
(

DLLΨ+ +DLRΨ+Λ DLLΨ−ΛN +DRLΨ−ΛN−1

DRLΨ+ΛN−1 +DRRΨ+ΛN DRLΨ−Λ +DRRΨ−
)[

q+
q−

]
(2.18)

For imposed displacements equation (2.19) holds:[
U0
UN

]
=
(

Ψ+ Ψ−ΛN
Ψ+ΛN Ψ−

)[
q+
q−

]
(2.19)

And for mixed boundary conditions:[
F0
AUN

]
=
(
DLLΨ+ +DLRΨ+Λ DLLΨ−ΛN +DRLΨ−ΛN−1

AΨ+ΛN AΨ−
)[

q+
q−

]
(2.20)

where A is an invertible matrix chosen in order to mitigate the dimensional
contrast between the displacement vector UN and the force vector F0. A =
DLL +DRR is a good choice but it could also be chosen equal to the identity
matrix without facing major numerical issues in most cases. In all three cases the
values in any UC of the waveguide can be computed from the wave amplitudes
using equation (2.17). The main advantage of computing the frequency forced
response of a waveguide using the WFEM is that the computational cost is
independent of the number of UCs which makes it computationally efficient
when studying waveguides comprised of a large number of UCs.

2.2.4 Computation of transmission-reflection coefficients

In this section, formulas for the computation of the transmission-reflection of
waves amplitude through a coupling element are presented. For this case we
consider two different periodic waveguides and note D1 the condensed dynamic
stiffness matrix of the unit cell of the first periodic medium, D2 that of the
second periodic medium andDc that of the coupling element. Moreover, Ψ+, Ψ−
and Λ are used for waves propagating in the first waveguide while Φ+, Φ− and Γ
are used for waves propagating in the second one. To compute the transmission
and reflection coefficients, we use the formalism developed in subsection 2.2.1
for the discretization of an infinite waveguide with the assumption that all UCs
of the waveguide with indexes strictly inferior to zero are unit cells of the first
wave guide. The coupling element is the cell number 0 and all UCs with indexes
strictly superior to zero are that of the second waveguide. Mathematically this
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Figure 2.3: Illustration of the coupling of to semi-infinite periodic media coupled
by a scatterer

is expressed as: 
∀k,∈ Z, k < 0, D(k) = D1

∀k,∈ Z, k > 0, D(k) = D2

D(0) = Dc

(2.21)

and is represented in Figure 2.3. First, the assumption is made that no load is
applied on the waveguide. Thus the equilibrium of the full infinite waveguide
can be written as:

∀k ∈ Z, k < 0, D1
RLVk−1 +

(
D1
RR +D1

LL

)
Vk +D1

LRVk+1 = 0

∀k ∈ Z, k < 1, D2
RLVk−1 +

(
D2
RR +D2

LL

)
Vk +D2

LRVk+1 = 0

D1
RLV−1 +

(
D1
RR +Dc

LL

)
V0 +Dc

LRV1 = 0

Dc
RLV0 +

(
Dc
RR +D2

LL

)
V1 +D2

LRV2 = 0

(2.22)

In order to compute the transmission-reflection coefficients of waves going
through the coupling elements, kinematic assumptions need to be made. The
first one corresponds to the case of waves coming from k = −∞ getting
reflected and partially transmitted by and through the coupling element. This
is mathematically expressed as:

∀k,∈ Z, k ≤ 0, Vk = Ψ+Λkq+
1 + Ψ−Λ−kq−1

∀k,∈ Z, k > 0, Vk = Φ+Γk−1q+
2

q−1 = R11q
+
1

q+
2 = T21q

+
1

(2.23)
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Conversely, the opposite assumption can be made where waves are coming from
k = +∞ and are scattered at the coupling elements’ interfaces:

∀k,∈ Z, k ≤ 0, Vk = Ψ−Λ−kq−1

∀k,∈ Z, k > 0, Vk = Φ+Γk−1q+
2 + Φ−Γ1−kq−2

q+
2 = R22q

−
2

q−1 = T12q
−
2

(2.24)

In equations (2.23) and (2.24) q+
1 and q−1 (resp. q+

2 and q−2 ) are the wave
amplitude vectors for the positive and negative going waves in the first waveguide
(resp. second waveguide) while matrices R11, T21, R22 and T12 are reflection
and transmission matrices to be determined. This is achieved by substituting
the kinematic assumptions of equations (2.23) and (2.24) into the equation
(2.22). Two systems of equations involving a matrix S are obtained:

S =
(
S11 S12
S21 S22

)
=
(
D1
RLΨ−Λ +

(
D1
RR +Dc

LL

)
Ψ− Dc

LRΦ+

Dc
RLΨ−

(
Dc
RR +D2

LL

)
Φ+D2

LRΦ+Γ

)
(2.25)

(
S11 S12
S21 S22

)[
R11
T21

]
= −

[
D1
RLΨ+Λ−1 +

(
D1
RR +Dc

LL

)
Ψ+

Dc
RLΨ+

]
(2.26)

(
S11 S12
S21 S22

)[
T12
R22

]
= −

[
Dc
LRΦ−(

DC
RR +D2

LL

)
Φ− +D2

LRΦ−Γ−1

]
(2.27)

The presented formulation is equivalent to that of [145] that was subsequently
used in [58] to optimize damage detection in joints via a wave based methodology.
Noteworthy, in order to interpret the computed transmission-reflection coeffcient
correctly atention should be paid to the way the eigenvector constituting the
matrices Φ+, Φ−, and Ψ−, Φ+ are constantly normalized [145]. Additionally, it
is recommended to track the different wavemodes across the frequency range of
interest which can be done using a modal assurance criterion [124, 123, 117] on
the fully developed waveshapes of these modes (they include both interface and
the condensed inner dofs of the UC).

The inverse formulation of the 1D WFEM

In previous subsections, the considered waveguides were studied at a given
frequency and their dispersion properties (propagation constants, wave shapes,
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scattering) and forced response were computed at that specific frequency. This
is usually called the direct (formulation of the) WFEM. By contrast, one can
work at a fixed wavenumber, impose the corresponding Floquet-Bloch boundary
conditions and compute the eigenfrequencies and waveshapes corresponding
to this wavenumber [141]. This approach is not very popular in the 1D case
because damping is accounted for in terms of temporal decay via the the
imaginary part of the eigenfrequencies instead of via spatial decay in the real
part of the wavenumber. Nonetheless, the method proceeds as follows. One
chooses a wavenumber k. The corresponding propagation constant λ is obtained
using the length of the UC, L, via the formula λ = e−ikL. The corresponding
Floquet-Bloch boundary conditions are then applied to the UC:UR = λUL

FR = −λFR
(2.28)

These conditions can enforced using right and left projection matrices:

ΛR =

I 0
0 I
λ 0

 andΛL =
(
I 0 1

λ
0 I 0

)
(2.29)

The mass, stiffness and damping matrices of the UC are then projected which
leads to the wavenumber dependent mass, stiffness and damping matrices
presented in equation (2.30).

K(λ) = ΛLKΛR, M(λ) = ΛLMΛR, C(λ) = ΛLCΛR (2.30)

Eigenfrequencies and waveshapes can then be retrieved by solving the generalized
eigenvalue problem: (

K(λ) + sjC(λ) + s2
jM(λ)

)
ψj) = 0 (2.31)

which is analogous to complex modal analysis.

2.3 The 2D Wave Finite Element Method

With the many applications of the 1D WFEM and subsequent adaptation to
discrete symmetry groups, it wasn’t long before extensions to higher dimensions
were considered. A first formulation for the 2D WFEM was first published in
1973 [141] but it wasn’t until the 2000’s [125] that the method gained some
popularity. Despite this, the 2D WFEM has not been as successful as its
1D counterpart. This mostly, because a wave based formulation enabling the
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computation of the FRF of 2D finite periodic media from their dispersion
properties has eluded WFEM practitioners for years. Additionally, the direct
version of the method can only compute wave propagation features the main
directions of periodicity of a 2D (periodic) medium [125, 175]. While numerical
formulations have been derived to study the scattering and transmission
reflection phenomena for 2D periodic waveguides [95, 75, 44, 45, 147], these do
not have the same attention as their 1D equivalent [145] as they can only deal
with plane waves in infinite domains. Surprisingly, the inverse formulation of the
2D WFEM has seen more use. It is the standard method for the computation
of wave solutions along the irreducible Brillouin contour (IBC) [34, 134] which
is a procedure followed to track band-gaps and determine their lower and upper
frequencies. Additionally, the method has been used to numerically evaluate
the sound transmission loss (STL) of infinite [155, 42, 203, 57, 156] 2D periodic
media which by using wavenumber windowing techniques [161, 192] allow to
obtain good estimates for finite structures [204, 66]. The rest of the section is
structured as follows. Subsection 2.3.1 introduces some notations and quickly
presents the 2D direct WFEM. In Subsection 2.3.2 the inverse 2D WFEM is
presented and a brief overview on how it can be used in order to compute the
the STL of periodic structures is presented.

2.3.1 Direct formulation of the 2D WFEM

We consider the discretized UC of a 2D periodic medium. We note U its
displacement vector and M , K, C its mass, stiffness and damping matrices
respectively. The dofs of the UC are partitioned according to its spatial structure
as illustrated in Figure 2.4 and equation (2.32):

Figure 2.4: Schematic representation of the UC of a 2D periodic media
illustrating the corresponding dofs partition.
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U =
[
U1 U2 U3 U4 UL UR UB UT UI

]T (2.32)

The first step of the direct 2D WFEM consist in choosing a circular frequency
ω and forming the dynamic stiffness matrix G = K + iωC − ω2M of the UC
at that frequency. The inner degrees of freedom (dofs) of the UC are then
condensed according to equation (2.33) which yields the condensed dynamic
stiffness matrix D̃:

D̃ = GHH −GHIG−1
II GIH (2.33)

where the index H correspond to all the boundary dofs of the UC (indexes 1, 2,
3, 4, L, R, B and T ). As in subsection 2.2.1 the explicit assembly of the 2D
periodic structure can be realised. By rearranging the dynamic stiffness matrix
according to a process described in [28] one obtains the following equation of
motion for the full 2D periodic waveguide:

Fr,s =(D11 +D22 +D33 +D44)Vr,s + (D13 +D24)Vr,s+1 + (D12 +D34)Vr+1,s

+ (D31 +D42)Vr,s−1 + (D21 +D43)Vr−1,s

+D14Vr+1,s+1 +D23Vr−1,s+1 +D32Vr+1,s−1 +D41Vr−1,s−1
(2.34)

In equation (2.34), the indexes r and s indicate the position of the unit cell
inside the 2D periodic medium. The vectors V contain only the proper dofs of
the UC when it is assembled into the infinite medium:

Vr,s = [Ur,s1 , Ur,sL , Ur,sB ]T (2.35)

and the matrix D enlarging the condensed dynamic stiffness matrix D̃ of the UC
to include the proper displacement vectors of adjacent cells (the sub matrices
corresponding to theses added dofs are filled with 0s). One can than then look
for solutions of equations (2.34) corresponding to free Bloch-Waves. I.e.:∀(r, s) ∈ Z2, Fr,s = 0

∃ (λx, λy) ∈ C2, ∃V0 ∈ Cn, ∀(r, s) ∈ Z2, Vr,s = λrxλ
s
yV0

(2.36)

Which leads to the classical 2D WFEM formulation [141, 4, 125]:

0 =
[
(D11 +D22 +D33 +D44) + λy(D13 +D24) + λx(D12 +D34)

+ 1
λx

(D31 +D42) + 1
λy

(D21 +D43)

+λxλy +D14 + λy
λx
D23 + λx

λy
D32 + 1

λxλy
D41

]
Ψ

(2.37)
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Equation (2.37) is a bivariate eigenvalue problem thus one of the eigenvalues
must be fixed before it can be solved. Once that is done it can be recast
as a polynomial eigenvalue problem and subsequently solved yielding pairs
of propagation constants (λx, λy) that are linked to the wavenumbers of the
corresponding waves by the relation λx = e−ikxLx and λy = e−ikyLy with kx an
ky the the aforementioned wavenumbers and Lx and Ly the length of the UC
in the main directions of periodicity.

2.3.2 Inverse formulation of the 2D WFEM

Like in the 1D case, the 2D inverse WFEM starts by fixing the propagation
constants λx and λy and imposing the corresponding Floquet-Bloch conditions
for the displacements of the subcompnents of the UC (U1, U2, etc) and the
corresponding forces (f1, f2, etc):

U2 = λxU1, U3 = λyU1, U4 = λxλyq1, UR = λxUL, UT = λyUB (2.38)

f1 + f2

λx
+ f3

λy
+ f4

λxλy
= 0

fL + fR
λx

= 0

fB + fT
λy

= 0

(2.39)

which can be done by premultiplying the matrices of the UC by two projection
matrices PU and PF (see e.g. [141] [62]):

U = PU (kx, ky)Ur =



I 0 0 0
λxI 0 0 0
λyI 0 0 0
λxλyI 0 0 0

0 I 0 0
0 λxI 0 0
0 0 I 0
0 0 λyI 0
0 0 0 I




U1
UL
UB
UI

 (2.40)

PF (kx, ky) =


I 1

λx
I 1

λy
I 1

λxλy
I 0 0 0 0 0

0 0 0 0 I 1
λx
I 0 0 0

0 0 0 0 0 0 I 1
λy
I 0

0 0 0 0 0 0 0 0 I

 (2.41)
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A modified equation of motion whose validity is restrained to loads and
displacements satisfying the Floquet-Bloch conditions associated to the
wavenumber pair (kx, ky) is derived:[

K̃(kx, ky) + iωC̃(kx, ky)− ω2M̃(kx, ky)
]
Ur = D̃(kx, ky)Ur = PF (kx, ky)F

(2.42)
Where for a generic matrix A ∈Mn(C), the matrix Ã(kx, ky) is derived from
matrix A according to equation (2.43).

Ã(kx, ky) = PF (kx, ky)APU (kx, ky) (2.43)

Equation (2.42) can be used to compute the response of an infinite periodic
medium to a load with 2D Floquet-Bloch symmetry (such as a plane wave) or
to compute its band diagram when there is no load [134]:[

K̃(kx, ky) + iωrC̃(kx, ky)− ω2
rM̃(kx, ky)

]
ψr = 0 (2.44)

2.4 The semi analytical finite element method and
the shift-cell operator method

The Semi Analytical Finite Element Method (SAFE or SAFEM) can be traced
back to the early 1970’s [196] and was further developed during the 80’s [173, 53]
in order to compute the dispersion properties of homogeneous media. By
including wavenumbers in a modified FEM formulation, the SAFE allows the
modeling of dispersive phenomena with analytical (infinite) accuracy in their
directions of propagation. Thus the numerical discretization effects are limited
to the traverse modeling of the cross-section. Like the WFEM, The method
enables the computation of dispersion curves, K-Spaces, the transmission-
reflection coefficients of waves through scatterers and the forced response of
homogeneous, layered and helical waveguides [50, 3, 18, 184]. Originally the
SAFE was developed for structures that are homogeneous in their direction of
propagation as in this particular case it has better numerical properties than
the WFEM. More recently, the method was used to study wave propagation
through periodic media [47, 8, 7, 127]. In that setting, it is known as the
shift-cell operator method or shift-cell method (SCOM) and its main advantage
over the WFEM lies in the fact it enables the computation of dispersion curves
in any direction of propagation by solving a well behaved quadratic eigenvalue
problem [47] instead of the difficult to solve transcendental problem that would
be required to solve with the WFEM [125, 175]. Despite its complementary
with the WFEM, the SCOM is a far less popular method because it requires
extra non standard FEM-like matrices that are not included in most commercial



THE SEMI ANALYTICAL FINITE ELEMENT METHOD AND THE SHIFT-CELL OPERATOR METHOD 21

FEM packages. Therefore, the only ways to use it are to enter the corresponding
weak form equation in software like COMSOL or FreeFem++ or to implement
the whole formulation by hand in ones preferred programming language. Those
interested in the latter option should give a look to the FEM tutorial on
"What-When-How" (link). The rest of the section is organized as follows. In
subsection 2.4.1 the classical weak form for FEM corresponding to 3D linear
elasticity [152, 112, 218] is derived. Notations and concepts are introduced
that allow to easily show how the SAFE and the SCOM diverge from the
classical discretization techniques. Finally, the weak form for the SAFE/SCOM
is derived in Subsection 2.4.1.

2.4.1 A brief overview of the classical finite element method

We first consider the problem of linear elasticity for a displacement field u, a
volume load f and density ρ on a domain Ω with Neumann boundary conditions
at its boundary ∂Ω:

div(σ) + f = ρü onΩ

σ.~n = t0 on ∂Ω
(2.45)

The stress tensor σ is linked to the linear strain tensor ε by a forth order
symmetric tensor C representing Hooke’s law of elasticity as per equation (2.46)
in which Einstein’s notation is used:

σij = Cijklεkl (2.46)

Equation (2.46) is put in vector form by focusing on the 6 independent
components of the strain and stress tensors. The following notations are
introduced: εv = [ε11, ε22, ε33, 2ε23, 2ε13, 2ε12]T

σv = [σ11, σ22, σ33, σ23, σ13, σ12]T
(2.47)

Leading to the vector form of equation (2.46):

σv = Cmεv (2.48)

, with Cm a 6 by 6 symmetric matrix representing Hooke’s law. In order to
completely rewrite equation (2.45) in a FEM friendly way, two differential

http://what-when-how.com/category/the-finite-element-method/
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operators are introduced:

D =



∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0


and DT =


∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

 (2.49)

Because of their differential nature, these operators can only be used to left
multiply when doing matrix operations. It should also be noticed that:εv = Du

div(σ) = DTσv

(2.50)

The first part of equation (2.45) is then rewritten as:

DTCmDu+ f = ρü (2.51)

Introducing a vector test function w belonging to the relevant space S, the weak
form of equation (2.51) is derived:

∀w ∈ S,
∫∫∫

wTDTCmDu+
∫∫∫

wT f =
∫∫∫

wT ρü (2.52)

Integrating by part and using the boundary conditions, equation (2.53) is
derived:

∀w ∈ S,
∫∫∫

wT f +
∫∫

wT t0 =
∫∫∫

(Dw)TCmDu+
∫∫∫

wT ρü, (2.53)

with t0 defined in equation (2.45). Appropriate shape functions can then be
chosen for w and u leading to a FEM discretatization. In most cases the same
shape functions are used for w and u which leads to symmetric mass and stiffness
matrices. This is known as the Ritz–Galerkin method.

The SAFE and the SCOM

The Shift Cell Operator Method [47] was invented to compute the dispersion
curves of 2D periodic media in any direction, which was not possible using
the WFEM. The method works mostly like FEM with a simple difference: a
change of variables is operated in the displacement variable u and the equation
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of motion is rewritten for functions v and g such that:u(x, y, z, t) = v(x, y, z, t)e−i(kxx+kyy)

f(x, y, z, t) = g(x, y, z, t)e−i(kxx+kyy).
(2.54)

Equation (2.51) is then rewritten using v and g:(DT
xyCmDxyv + g)e−i(kxx+kyy) = ρve−i(kxx+kyy)

Dxy = D − ikxDx − ikyDy,
(2.55)

,with Dx and Dy matrices, and not differential operators, defined in equation
(2.56):

Dx =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 and Dy =


0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 (2.56)

They account for the fact that derivatives of the product of a function with an
exponential follow the pattern of equation (2.57):

∀q ∈ C1(R), ∂

∂x
(q(x)e−ikxx) =

(
∂

∂x
q(x)− ikxq(x)

)
e−ikxx (2.57)

Taking the weak form of equation (2.55), and integrating by part, equation
(2.58) is derived:∫∫∫

wT g +
∫∫

wT t0 e
i(kxx+kyy) =

∫∫∫
(Dw)TCmDv +

∫∫∫
wT ρv̈

+ k2
x

∫∫∫
(Dxw)TCmDxv

+ k2
y

∫∫∫
(Dyw)TCmDyv

+ kxky

∫∫∫
(Dxw)TCmDyv + (Dyw)TCmDxv

− ikx
∫∫∫

(Dw)TCmDxv − (Dxw)TCmDv

− iky
∫∫∫

(Dw)TCmDyv − (Dyw)TCmDv,
(2.58)
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which leads to the discretization described in equation (2.59).

(K + sC + s2M − ikxLx − ikyLy + k2
xHxx + k2

yHyy + kxkyHxy)U = F, (2.59)

where K, M , and C are the classical mass, stiffness and damping matrices. The
additional H and L matrices are respectively symmetric and antisymmetric and
account for modulation in equation (2.54). In order to compute the dispersion
characteristics of a medium using the SAFE/SCOM one must apply periodicity
boundary conditions to the corresponding UC. One could then choose a circular
frequency ω and a direction of propagation θ. By substituting kx and ky
by k cos θ and k sin θ the wave propagation properties of the medium in that
direction can then be computed. Another possibility is to fix the wavenumbers
kx and ky and solve for eigenfrequencies at which these wavenumbers are reached.
This is usually not done as the WFEM already allows for such computation
without requiring the extra L and H matrices.

2.5 Wavenumber extraction techniques

Wavenumber extraction, also known as wavenumber identification, has many
applications in various scientific fields such as magnetic resonance imaging,
Raman spectroscopy [110, 111] or the protection of power lines [91]. In the
context of structural dynamics and vibroacoustics, wavenumber extraction is
being used in imaging techniques for damage detection [162, 105, 205], to gain
insight into the wave propagation features of homogeneous and periodic media
[160, 187], or for the characterization [186] and model updating of structures
[210]. Herein, wavenumber extraction is defined as the determination of the
complex wavenumbers (1D case) or k-space (2D, 3D and N-D cases) that
characterize wave propagation inside a physical medium at a given frequency
from the displacement field of such a medium at the frequency of interest. It is
an inverse problem that has given raise to various methods in different fields.
This section discusses the most popular methods for wavenumber extraction
in a vibroacoustics context and is structured as follows. In subsection 2.5.1,
the Fourier transform is discussed as it is the easiest method to implement.
subsection 2.5.2 is dedicated to Mc Daniels method, a 1D wavenumber extraction
that relies on a nonlinear fit based on a general analytical expression for 1D
displacements fields. In subsections 2.5.4 and 2.5.5, the Inhomogenous Wave
Correlation (IWC) and the Inverse Wave Decomposition are presented.
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2.5.1 The Fourier transform

The Fourier transform (FT) is an integral transform that maps a function of
time (resp. space) into another function of frequency (resp. wavenumber). In
the 1D case, the Fourier transform is natively defined on L1(R) for the 1D
case (the space of Lebesgue summable functions from R to C) and the Fourier
transform f̂ of a function f ∈ L1(R) is obtained as follows:

∀k ∈ R, f̂(k) =
∫ +∞

−∞
e−ikxf(x)dx (2.60)

While it is only natively defined on L1, the Fourier transform can be extended to
L2 and beyond e.g. by continuity or duality. Equation (2.60) can be interpreted
as the decomposition of the function f in the continuous orthogonal basis formed
by complex exponential functions (function of the form f : x 7→ eikx), thus,
f̂(k) can be interpreted as the contribution of a plane wave of wavenumber k
to the function f . On paper, the FT seems perfect for wavenumber extraction
but there are three issues that hinder its application to practical cases.

The fist issue is related to orthogonality and signal length. Indeed, as can be
seen in equation (2.60) the FT only deals with functions defined on the full real
axis and thus is only defined for signals of infinite lengths as complex exponential
functions do not form an orthogonal basis on finite intervals. Attempts to deal
with finite signals introduce windowing which by convolution leads to leakage.

The second issue is related to sampling (a.k.a discrete signals). With the
advent of the digital era, signals are no longer processed in analog forms but in
digital ones. I.e. available signals are discrete and not continuous as they are
obtained by periodic sampling of continuous variables/functions. To account
for this one must use the Discrete Fourier Transform instead and the Fourier
transform which introduces aliasing (the inability to distinguish between certain
wavenumbers) by Nyquist–Shannon sampling theorem. The impact of sampling
can also be understood from a continuous framework by using Dirac Combs
which leads to the same conclusions.

The last issue is related to the very definition of the FT. Indeed, the FT only
involves real wavenumbers and thus does not (in itself) provides the means
to estimate the imaginary parts of wavenumbers that come e.g. with the
introduction of energy dissipation mechanisms in vibroacoustics.

Nonetheless, the FT can be an appropriate wavenumber extraction method
when all three of its downsides are properly mitigated. That is, (1) the signal
length contains a high number of wavelengths for the considered wavenumbers
in order to mitigate leakage. (2) The sampling period is small compared to the



26 LITERATURE REVIEW AND STATE OF THE ART

Figure 2.5: Displacement field of a composite plate and its 2D Fourier transform
[160]

considered wavelengths and an appropriate low-pass filter is used in order to
prevent issues related to aliasing. (3) The considered phenomena/signal involve
mostly-real wavenumbers such that the imaginary parts of wavenumbers can
be neglected. In such cases the Fourier transform can be used in order to gain
insight as is demonstrated in Figure 2.5 taken from the paper [160] by Ramzi
et al. in which the K-space of a composited plate is identified using the 2D
Fourier transform.

2.5.2 Mc Daniel’s method

Mc Daniel’s method [138] is a method for wavenumber extraction for 1D
homogeneous media that extracts the wavenumbers from a 1D displacement by
creating a nonlinear fit based on an analytical formula. Indeed, in the absence of
sources within the measurement zone, the displacement field f can be developed
into a sum of forward and backward going waves as described in equation (2.61):

f(x) =
∞∑
n=1

(
ane
−iknx + bne

iknx
)

(2.61)

In equation (2.61), kn is the nth wavenumber, an the complex amplitude of
the nth forward going wave and bn the complex amplitude of the nth backward
going wave. Though f is theoretically the sum of an infinite series, this series
can be truncated in all practical cases. In the original paper, Euler-Bernoulli
and Timoshenko beam theories are used in order to justify a truncation at
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n = 2 when dealing with beams. Good numerical results are obtained as
demonstrated in Figure 2.6 taken from the article. An implementation of this

Figure 2.6: Comparison of the actual wavenumber values to one estimated with
Mc Daniel’s method [138]

method limited to the Euleur-Bernoulli assumption is given in Appendix C.
Recently, Mc Daniels method was extended by Zhang et al. [210] in order to deal
with periodic structures. Based on Floquet-Bloch theory, the new expansion
uses the propagation constants λ = e−ikLx instead of the wavenumber k and
uses vector displacements for each UC:

Vj =
nc∑
n=1

αnψ
+
n λ

j
n + βnψ

−
n λ

N−j
n (2.62)

In equation (2.62) Vj is the vector of measurements carried out on the jth UC, λn
is the nth propagation constant, N is the total number of cells in the structure,
ψ+ and ψ− the projection of the nth forward and backward going waveshapes
at the measurements location. Lastly, αn and βn are the complex amplitudes
of the forward and backward going waves. This method has been used to
retrieve the propagation constants and waveshapes of periodic structures both
in numerical and experimental cases. An example of 3D waveshapes retrieved
via this method is presented in Figure 2.7 taken from [210].

2.5.3 The ESPRIT algorithm

ESPRIT, or Estimation of Signal Parameters via Rotational Invariance
Techniques is a method that was originally created for high resolution Direction
Of Arrival (DOA) and frequency estimations [163, 166, 165]. This is achieved
by decomposing the process signal f into a finite sum of plane waves for which
the wavenumbers kn are retrieved. The method has 1D and 2D versions which
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Figure 2.7: The real parts of the positive going (left) and negative going (right)
free wave components identified from noise-free data (dashed lines) and noisy
data (dot-dashed lines) and the exact free waves (solid lines); (a)–(c): wave
pairs 1 to 3. [210]

have been used in vibroacoustics under the respective names High Resolution
Wavenumber Analysis [131] (1D) and High Resolution Wavevector Analysis
[132] (2D) (HRWA for both). In the 1D case ESPRIT assumes the signals takes
the form:

f(x) =
nc∑
n=1

ane
−iknx (2.63)

and seeks to identify the value of the wavenumbers kn from the values f takes.
It achieves this by exploiting important algebraic properties of exponential
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functions and translation operators.

For all translation lengths L ∈ R, a corresponding operator OL is defined on
CR, the space of functions from R to C.

OL : CR → CR

f 7→ g, ∀x ∈ R, g(x) = f(x+ L)
(2.64)

As it happens, exponential functions g of the form g(x) = e−ikx are eigenvectors
for all operators OL for the eigenvalues λ = e−ikL which stems from the
multiplicative property of exponential functions. By choosing a length L such
that λn = e−iknL and λm = e−ikmL are different if n 6= m, one can estimate all
the wavenumbers kn of equation (2.63) in two key steps.

First, we introduce the Krylov subspace [104] E = span{OnL(f), n ∈ N} which
by construction is stable by OL. Using the aforementioned algebraic property of
exponential functions and the analytical expression of f , it can be shown that E
is spanned by the first nc (independent) Krylov vectors such that it is of finite
dimension (nc): E = span{OnL(f), n ∈ J0, nc − 1K}. Since E is both of finite
dimension and stable by OL the restriction of OL to E is an endomorphism
of finite dimension and can be represented on matrix form in any basis B of
E. The resulting matrix, M can be diagonalised and its eigenvalues are the
propagation constants λn = e−knL. The wavenumbers kn are then retrieved
by taking the logarithm of these eigenvalues. This process can be generalized
to 2D and more by simultaneously diagonalising translation operators in each
direction of the underlying space.

While the method described above works well, it does not account for the fact
that most signals are finite, discrete and usually contain some noise. Thus the
function f takes the form of a vector of length N corresponding to a periodic
sampling of period L. We also refer to this vector as f :

f = [f1, f2, ..., fN ]T = [f(x0 + L), f(x0 + 2L), ..., f(x0 +NL)]T (2.65)

To build a representation of the Krylov subspace E, the Hankel matrix H of
the vector f is built. 

f1 f2 ... fN−K
f2 f3 ... fN−K+1
... . . .

. . . ...
fK fK+1 . . . fN

 (2.66)

with the integer K usually chosen as
⌊
N
2
⌋
. In order to build a robust

representation of E a singular value decomposition (SVD) of H is carried
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out in order to separate the signal space form the noise space:

H = WDV ∗ (2.67)

with W and D orthogonal matrices and D a diagonal matrix with only positive
elements ordered by decreasing values. The columns of W are called the left
singular vectors and span the same subspace as the columns of H. To separate
the signal space from the noise space, one needs to only keep the first nc columns
of W thus creating the matrix Ws. Having built a robust representation of E in
the matrix Ws, the only task left is to build a representation of the translation
operator OL. This achieved by partitioning lines of Ws in three parts:

Ws =

W−Wm

W+

 (2.68)

with W− and W+ 1 by nc matrices and Wm a K − 2 by nc matrix. A matrix
representation M of the operator OL is then obtained by solving the the
following problem in the least square sense:[

Wm

W+

]
= M

[
W−
Wm

]
(2.69)

The propagation constants λn are then obtained by computing the eigenvalues
of M .

Finally, when the number of observable waves nc present in the signal is not
known in advance, an automatic estimation criterion called ESTER (ESTimation
or ERror) [12] was used in [132]. The idea is to build theWs matrix for different
values of nc the final number of waves is obtained by finding the value of nc
that minimizes the norm of the residual:∥∥∥∥[Wm(nc)

W+(nc)

]
−M(nc)

[
W−(nc)
Wm(nc)

]∥∥∥∥
2

(2.70)

corresponding to the representation M of OL.

The presented methodology easily extends to the 2D cases by diagonalizing
translation operators in both directions of sampling. Additionally, a basic
implementation of the ESPRIT algorithm for wavenumber extraction in beams
can be found in Appendix C and its performance is compared with the
wavenumber extraction method developed within this thesis in Chapter 5.

2.5.4 The Inhomogeneous Wave Correlation

The Inhomogenous Wave Correlation (IWC) is a wavenumber extraction
techniques that is based on a correlation criterion. It was first developed
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by Berthault et al [21]. The idea is as follows. Let S be a subset of Rn of finite
measure |S|. The standard Hermitian scalar product for two functions f and g
from S to C is defined as follows:

(f |g) = 1
|S|

∫
S

f∗(x)g(x)dx (2.71)

Accordingly, the norm of f (or any other function) is defined as:

‖f‖2 = (f |f) (2.72)

And the correlation between f and g is defined as:

corr(f, g) = | (f |g) |
‖f‖2 ‖g‖2

(2.73)

The set of wavevectors K is then defined as follows:

K = {krd, (d, kr) ∈ Sn × C} (2.74)

with Sn being the unit sphere of Rn. For all wavevectors k ∈ K the associated
plane wave function fk on S is then defined as follows:

fk(x) = e−i(x|k) (2.75)

with (|) the standard Hermitian product on Cn. The IWC function can then
be defined for a direction d, a wavenumber kr and a function f :

IWC(f, d, kr) = corr(f, fkrd) (2.76)

For a given function f , and direction d, the IWC carries out wavenumber
extraction by looking for the wavenumber kr that maximizes the IWC function.
The corresponding wavevector, krd is considered to be part of the k-space of
the function f .

Like the Fourier transform, the IWC suffers from the fact that for two
wavevectors (k1, k2) ∈ K2 such that k1 6= k2, the correlation function
corr(fk1 , fk2) is not necessarily equal to 0 due to both the finiteness of
the set S and the fact that the IWC accepts complex wavevectors. This
lack of orthogonality can lead to strong distortions in the estimates of the
wavenumbers/wavevector of the function f if the domain S is not big enough
compared to the characteristics wavelengths of f .

To try and tackle this issue variantes of the IWC that modify the family of
function fk have been developed [187, 185]. In [187] Van Belle et al, used a new
family of functions gk defined as follows

gk(x) = e−i|(d|x−x0)|kr (2.77)
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with k = krd, (d, kr) ∈ Sn × C and x0 ∈ Rn the position of the excitation
source. In [185], G. Tufano proposed a similar method for 2D flat structures
that is based on the Green function of an infinite isotropic Kirchhoff-Love plate.
Because isotropy is assumed, the method only retrieves one wavenumber kr
instead of a collection of wavevectors k. Consequently, the corresponding family
of functions is

hkr (x) = H
(1)
0 (kr ‖x− x0‖)−H(1)

0 (ikr ‖x− x0‖) (2.78)

with H(1)
0 being a Hankel function of the first kind.

Overall, the strength of IWC class of methods is its resistance to noise which
is practical when dealing with experimental data and its relative accuracy
when the characteristic wavelength of the function f is small compared to the
characteristic length of the domain S. On the other hand, because the method
is not exact (e.g. like Mc Daniel’s methods) it is unable to retrieve the extract
wavenumbers/k-space even when dealing with noiseless numerical data.

2.5.5 The Inverse Wave Decomposition

The Inverse Wave Decomposition [169] (IWD) is a 2D wavenumber extraction
method that was initially developed by Chardon et al. [40]. The method relies
on a fit of the displacement field by a sum of plane waves coming from different
directions:

f(x) =
N−1∑
n=0

αne
−i(dn|x)kn + βne

i(dn|x)kn . (2.79)

In equation (2.79), dn =
(
cos
(
nπ
N

)
, sin

(
nπ
N

))
is the unit vector indicating

the direction of the nth pair of forward and backward going waves, kn is
the wavenumber of that pair of waves and αn and βn their respective complex
amplitudes. Asymptotically, when N →∞ the IWD becomes close to (but is not
actually) exact for the Helmoltz equation and it remains a good approximation
for the dynamics of 2D plate-like structures. In spirit, it can be considered as the
2D successor of Mc Daniel’s method [138] though the formulation would need
some modifications in order to fully deserve the title. The main limitation of the
IWD is related to the fact that high values of N are required to obtain a good
estimates of the wavenumbers kn when the considered wavefield f correspond to
mid-high frequencies. Under such conditions, a nonlinear fit based on equation
(2.79) becomes practically infeasible.



Chapter 3

Model Order Reduction for
1D Unit Cell Modeling

Part of this Chapter has already been published as [32]:"R. Boukadia, C. Droz,
M. Ichchou, W. Desmet. A Bloch wave reduction scheme for ultrafast band
diagram and dynamic response computation in periodic structures, Finite
Elements In Analysis And Design, 148, 1-12, September 2018."

In this Chapter, a novel model order reduction scheme for the unit-cell modeling
of 1D wave propagation in periodic structures is presented. The proposed
method is developed to reduce the time required to compute the 1D dispersion
characteristics of periodic media or the forced response of finite periodic
structures and coupled waveguides. The proposed MOR scheme targets the
two most computationally expensive operations of the direct 1D WFEM: The
dynamic condensation of the inner degrees of freedom and the resolution of the
WFEM’s palindromic eigenvalue problem. For the former, an efficient approach
inspired by substructuring techniques is proposed. It uses the Craig-Bampton
MOR [49] to reduce the inner degrees of freedom of the UC. This technique was
first developed By Cotoni et al. in [48] where 2D wave propagation features
computed with the WFEM were used in order to feed Statistical Energy Analysis
(SEA) based models of complex structures and wavguides for which analytical
expressions of the modal density are not available. The method was later
rediscovered by Zhou et. al in [216] and another step was taken by Krattiger
et. al in [102] with the addition of an interface reduction (IR) in the context
of band diagram computations. That second reduction, however, had to be
carried out at every point of the irreducible Brillouin contour. In the author’s
words: "this means that IR must be applied at every k point, which limits the

33
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ability of IR to speed up band structure computations. For this reason, IR is
only recommended for situations where a reduced model size is desirable for
reasons other than directly speeding up band-structure computations". This issue
was finally addressed by the same authors in [103] in which the IR was made
wavenumber independent by forcing the mode-based projection basis to respects
the topological structure of the UC. In all these cases, the Craig-Bampton
MOR scheme was shown to have little impact on the model accuracy while
massively increasing its computational efficiency. Hence this scheme serves
as a foundation of the MOR strategy proposed in this chapter. In order to
speed up the resolutions of the WFEM’s palindromic eigenvalue problem, a
novel interface reduction technique is developed. The proposed method takes
inspiration from the work of Droz et al. [60, 62] where a sample of solutions
computed at the waves’ cut-on frequencies is used in order to project the
WFEM’s signature eigenvalue problem. While this interface reduction strategy
typically requires more time to produce a ROM than those presented in [102] and
[103] the reduced order models (ROMs) it produces are usually more compact
and more accurate than those generated with these methods as each added dof
corresponds to an exact solutions of the eigenvalue problem of interest. However,
the sampling strategy proposed in [60] uses an inefficient formulation of the direct
1D WFEM and is not guaranteed the capture all wave-related phenomena in
periodic structures as it was developed for homogeneous waveguides. The MOR
scheme proposed in this chapter overcome the limitations of previous methods
in the following ways. The Craig-Bampton MOR used in [48, 102, 216, 103]
is extended to the case of generalized and viscoelastic damping models which
were not addressed in previous studies. Additionally, a new sampling strategy
relying on the inverse formulation of the 1D WFEM is used in order to improve
the scheme of [60] and ensure complex wave phenomena in periodic waveguides
are captured.

The rest of the Chapter is organized as follows. In Section 3.1 a quick reminder
of the 1D WFEM workflow is given. The method of [216] is then presented in
Section 3.2 along with the proposed generalization of the method. In Section 3.3
the interface reduction scheme of [60] is detailed while the method developed
during this thesis is presented in Section 3.4. Numerical benchmarks are
proposed in Section 3.5 and Section 3.6 summarizes the main conclusions.
Lastly, basic Matlab codes for some of the methods presented can be found in
Appendix B.
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3.1 Reminder: Computing waveshapes and propa-
gation constants via the direct 1D WFEM

In this Chapter, we assume a discretized representation of the UC has been
obtained using e.g. the finite element method. The mass, stiffness and damping
matrices of the UC are referred to as K, M and C respectively. Additionally, a
partition of the UC’s dofs vector, U , is established according to the UC’s spatial
structure presented in Figure 3.1:

U =

ULUR
UI

 . (3.1)

The subscripts R, L and I are used for variables associated with the right, left

Figure 3.1: Dofs’ partition for the UC of a 1D periodic structure

and internal dofs of the UC, respectively. Additionally, the subscript B will be
used for quantities associated to all interface dofs i.e.:

UB =
[
UL
UR

]
. (3.2)

The dynamic stiffness matrix D of the UC at the circular frequency ω is then
formed: G = K + iωC − ω2M . In order to compute the propagation constants
and waveshapes of waves propagating at that frequency, the inner dofs of the
UC are condensed according to equation (3.3):

D = GBB −GBIG−1
II GIB , (3.3)

which requires the inversion of the matrix GII . This operation can be extremely
computationally expensive when the number of inner dofs nI of the UC is large.
Conversely, its computational time could be lowered greatly assuming nI can
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be reduced without degrading the model’s accuracy. This is the focus of Section
3.2.

Once the condensed dynamic stiffness matrix has been computed the eigenvalue
problem (EVP) [64]:(

1
λp
DRL + (DRR +DLL) + λpDLR)

)
ψp = 0 (3.4)

yielding the propagation constants λp and waveshapes ψp must be solved. Again,
this can be computationally expensive depending on both the linearization
chosen to solve the EVP and the number of interface dofs nB as computational
complexity of solving this EVP scales with n3

B . Therefore, reducing the number
of interface dofs nB in a way such that all the "important" propagation constants
and waveshape can be retrieved would also enable high gains in computational
efficiency. Methods developed to reach this goal are presented in Sections 3.3
and 3.4.

3.2 Craig-Bampton Model Order Reduction for
dynamic condensation speed up

This Section details the method of [216] that uses the Craig-Bampton MOR in
order to speed up dynamic condensation computations in 1D UCM. To achieve
this, the UC’s boundary dofs are used as master degrees of freedom while the
internal dofs are targeted for reduction. The MOR scheme has two parameters:
A frequency fmax that describes the maximal frequency at which the ROM
should be valid and a frequency multiplier nf that controls the modal truncation
in the MOR process. As such, the structure of the projection basis P is the
following:

U =
[
UB
UI

]
=
(
IB 0
ΦC ΦD

)[
UB
UrI

]
= PUr. (3.5)

In equation (3.5), ΦC represents the static constraint modes of the Guyan
condensation [83] and is given by the equation:

ΦC = −K−1
II KIB . (3.6)

The matrix ΦD is a real matrix whose columns span the subspace of the
clamped interface modes of the UC’s whose frequency f is inferior to the
product nffmax. We assume that there are p such modes. In the original paper
[216], it is recommended to choose nf ≥ 3. Several cases are considered. When
there is no damping in the UC, or that it is represented via a Caughey damping
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matrix (i.e. a matrix that is diagonalized by the conservative modes of the
system) ΦD is obtained by computing the first few solutions of the eigenvalue
problem (3.7): (KII − ω2

kMII)φk = 0

ΦD = [φ1, ..., φp]
. (3.7)

Dealing with hysteretic damping is similar. If the structure is only slightly
damped, is comprised of only one material, or that all materials share the same
damping coefficient, the procedure of equation (3.7) still holds but <(KII) and
<(KIB) should be used instead of KII and KIB in equations (3.6) and (3.7).
When that is not the case, e.g. if the structure is comprised of two materials
with very different damping coefficients, the clamped interface modes should be
computed according to equation (3.8):(KII − ω2

kMII)φk = 0

ΦD = orth(<[φ1, ..., φp],=[φ1, ..., φp])
. (3.8)

Similarly, when dissipation is modeled using a generic C matrix, a quadratic
eigenvalue problem needs to be solved instead:(KII + skC + s2

kMII)φk = 0

ΦD = orth(<[φ1, ..., φp],=[φ1, ..., φp])
. (3.9)

Lastly, in case a complex viscoelastic model is used, the nonlinear eigenvalue
problem of equation (3.10) must be solved:(KII(sk) + s2

kMII)φk = 0

ΦD = orth(<[φ1, ..., φp],=[φ1, ..., φp])
, (3.10)

which can be done using an iterative method [116].

3.3 Wave Based Reduced Order Modeling

This section details the reduced order modeling strategy of [60] that was
developed in order to speed up the resolution of the frequency-dependent
palindromic eigenvalue problem of the 1D WFEM. This is achieved by projecting
that eigenvalue problem on a smaller subspace spanned by solutions of that
eigenvalue problem in a subset of well chosen frequencies. The real and imaginary
parts of the obtained eigenvectors are separated and the resulting collection of
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vectors is orthogonalized using a Gram–Schmidt orthogonalization process. We
start by considering the eigenvalue problem used by Droz et al. [60]:(
λkDLR(ω) + (DLL(ω) +DRR(ω)) + 1

λk
DRL(ω)

)
ψk(ω) = S(λk, ω)ψk = 0 (3.11)

In equation (3.11), D is the dynamic stiffness matrix of the UC at the circular
frequency ω. The equation describes a family of eigenvalue problems with a C∞
dependence in ω. Noteworthy, only a few nω (nω � nL) solutions corresponding
to propagating and slowly decaying waves, i.e |λk| ≈ 1, are of interest at a given
frequency. Hence one can expect all solutions of interest for a frequency band
[0, fmax] to approximately lie in a subspace of dimension nred � nL spanned by
the columns of a real orthogonal matrix Ψ. This justifies the reduced modeling
approach taken in [60]. Practically, the main question become: "How to quickly
determine a small but representative subset of frequencies that will be used to
build the snapshot matrix leading to Ψ ?". In the original paper, Droz et al.
make the assumption that wave-shapes remain relatively stable as the frequency
increases with most variations arising around the cut-on frequencies where
new wave types become propagative. Thus equation (3.11) only needs to be
solved at these cut-on frequencies in order to obtain a representative sample of
waveshapes. This idea is illustrated in Figure 3.2 taken form the original article.
Noteworthy, the base assumption of this sampling strategy comes from empirical

Figure 3.2: Illustration of the frequencies chosen to build the snapshot matrix

observations and mostly holds true for homogeneous waveguides -which were
the target of the paper- but could be problematic for periodic waveguides as
cut-off frequencies caused e.g. by band gaps and veering effects are possible
without the appearance of any new propagating wave. In the original paper,
Droz et al. compute all the cut-on frequencies ωl in the interval [0, ωmax] using
the inverse formulation of the 1D WFEM with the value k = 0, i.e. λ = 1.

(K(λ)− ω2
lM(λ))Xl. (3.12)
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Because only models with hysteretic damping are studied in [60], it is unclear
what strategy would be used if a damping matrix or frequency dependent
material properties were involved. Once the sampling frequencies have been
determined, their real parts are used to obtain ψk,l the snapshots (vectors) that
verify equation (3.13) used to build the matrix Ψ:S(λk,l,<(ωl))ψk,l = 0

λmin ≤ |λk,l| ≤ 1
. (3.13)

The snapshot matrix Ψ0 is then formed:

Ψ0 = [ψ1,1, ..., ψ1,q, ..., ψp,q], (3.14)

and the projection matrix Ψ is obtained by using the QR algorithm on the
vector collection [<(Ψ0),=(Ψ0)]. Once Ψ has been obtained, it is used to reduce
the eigenvalue problem (3.11). First, a Galerkin projection is carried out on
the sub-parts of the (condensed) dynamic stiffness matrix DLL, DLR, DRL and
DRR resulting in their reduced counterparts.

Dred
LL = ΨTDLLΨ

Dred
LR = ΨTDLRΨ

Dred
RR = ΨTDRRΨ

Dred
RL = ΨTDRLΨ

. (3.15)

Equation (3.11) is then rewritten in (3.16) using the reduced matrices and yields
reduced eigenvectors:

Sred(λ̃k, ω)ψ̃k = 0. (3.16)

Finally, the link between the reduced eigenvalue pairs (λ̃k, ψ̃k) and the solutions
of the original problem (λk, ψk) is given in equation (3.17):λ̃k ≈ λkΨψ̃k ≈ ψk

. (3.17)

While ingenious, the approach proposed in [60] has a number of flaws and
blind-spots. The proposed sampling strategy may fail once applied to periodic
structures or complex homogeneous waveguides as variation of waveshapes may
occur far from any cut-on frequency though this is usually unlikely. Additionally,
the chosen linearization of (3.11) is problematic as it requires working with
full matrices and obtaining all the eigenvalue-eigenvector pairs while only a
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small subset is of interest. Another issue has to do with the QR scheme used in
order to build the projection matrix from the snapshot matrix as it leads to
projection basis of sizes almost as big as the snapshot collection. Lastly, the
proposed projection of the eigenvalue problem happens at each frequency when
the (condensed) dynamic stiffness matrix is formed. This is unnecessary and
could be avoided by using Ψ to build the projection matrix for the interface
degrees of freedom. These issues are addressed in our proposed MOR strategy
presented in Section 3.4.

3.4 The proposed MOR strategy

In this Section, we describe a MOR scheme that combines ideas from [216]
and [60] and improves upon them. A first version of the resulting scheme was
published in [32]. The following modifications are brought to both methods.
First, the Craig-Bampton MOR is enhanced as described in section 3.2 in order
to deal with damping models of arbitrary complexities. Secondly, a different
sampling strategy and eigenvalue problem are used when building the snapshot
matrix. These changes ensure a more thorough sampling of the k-space but do
not result in a higher computation time. The orthogonalization algorithm used
to compute the projection matrix is changed from QR-based to SVD-based as
the latter enables finer control of the accuracy-dofs ratio. Lastly, the computed
projection matrix is used to reduce the UCs matrices instead of the WFEM’s
eigenvalue problem. This avoids performing a projection at each frequency.
Because the first step of this reduction process was already described in Section
3.2 this Section focuses on the interface reduction scheme and is structured as
follows. In Subsection 3.4.1 the modifications brought to the sampling strategy
of [60] are detailed while the construction of the reduced order model is described
in Subsection 3.4.2.

3.4.1 Modifications brought to the sampling strategy

The following targets are set for the new sampling strategy and resulting
projection basis. (1) As in [60], the basis should capture the propagative waves
accurately and (2) allow fast dispersion analysis of the 1D medium. (3) When
needed, a mechanism allowing to sample the least evanescent waves should
be available as these waves are needed in order to describe the dynamics of
waveguides near inputs/sources and edges.

To achieve (1) and (2), we estimate it is better to sample the K-Space using the
inverse approach instead of the direct one. This preference can be justified by
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the algebraic properties of the EVPs of both formulations. Indeed, the inverse
approach EVPs have real-symmetric or complex-Hermitian symmetries while
the direct approach’s EVPs have no symmetry to exploit from a practical point
of view. The inverse approach’s symmetries ensure eigenvectors are computed
accurately and efficiently. Moreover, because the inverse approach estimates
frequencies instead of propagation constants, iterative solvers can be used to
compute only the few eigenvalues and wave shapes of interest. In contrast, all of
the direct WFEM formulations suffer from numerical issues (see [197]) and only
Zhong’s formulation [214, 89] is compatible with the use of iterative solvers that
enable the computation of a subset of eigenvalues. However, that formulation
leads to an EVP where eigenvalues tend to be clustered (and they have
multiplicity of at least 2) which typically results in poor accuracy/convergence for
iterative eigenvalue solvers [136]. It is thus often necessary to increase the number
of Lanczos basis vectors used in order to ensure the convergence of eigenvalue-
eigenvector pairs which results in higher computation time and implementation
complexity compared to the inverse approach. Lastly, target (3) can also
be achieved using the inverse approach. Indeed, because its EVP estimates
wavemodes and their corresponding frequencies, a frequency truncation criterion
can be put in place to keep waves with eigenfrequencies up to nf times the
maximal frequency as is often done in mode-based MOR schemes.

Having decided to use the inverse approach to sample the k-space, it remains
to decide at what values of k (resp. λ) the k-space should be sampled. In order
to make this decision, preliminary information about the k-space’s topology is
necessary. It is therefore needed to evaluate: (1) The number of propagating
waves appearing in the bandwidth of interest and their cut-on frequencies. (2)
If waves reach aliasing, what their cut-off frequencies are in case band gaps
or Bragg aliasing are occurring. (3) The wavenumbers values at the maximal
frequency of interest. An illustration is shown in Figure 3.3 to describe the
combination of inverse and direct methods for retrieving these solutions. To
determine values of k for which the inverse approach will be used a sampling set
S0 is introduced and initialized with the value k0 = 0. In the first step of the
method the direct approach is used with Zhong’s formulation [214, 89] and an
iterative eigenvalue solver to retrieve the propagating values of k (resp. λ) at
the maximal frequency of interest fmax. The corresponding eigenvalue problem
is recalled in equation (3.18) and the corresponding values of k are depicted by
square markers on the vertical dashed line at fmax in Figure 3.3.[(

DRL −DLR DLL +DRR

−DLL −DRL DRL −DLR

)
−
(
λj + 1

λj

)(
0 −DLR

DRL 0

)][
Xj

T

Xj
B

]
(3.18)

These values of k (in the Figure, k1, k2 and k3) are then added to the sampling
set S0. To determine whether aliasing is reached in the frequency band of
interest, the inverse approach is used with with λ = −1 and the smallest
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Figure 3.3: Illustration of the K-Space sampling strategy for the proposed
scheme

eigenvalue ω0 is computed according to equation (3.19):[(
KLL(λ, ω0) KLI(λ, ω0)
KIL(λ, ω0) KII(λ, ω0)

)
− ω2

0

(
MLL(λ, ω0) MLI(λ, ω0)
MIL(λ, ω0) MII(λ, ω0)

)][
ψI

ψL

]
= 0 (3.19)

If it is within the frequency band of interest, i.e. if ω0 ≤ 2πfmax, the value
k = π

L is added to S0. This corresponds to the square markers on the horizontal
line in Figure 3.3. The parameter nk ∈ N∗ that governs the level of fineness of
the sampling is then used. The final sampling set S is then defined in equation
(3.20):

S =
{
p
ki
nk

, ki ∈ S0, p ∈ J1;nkK
}
. (3.20)

This new parameter nk ensures that each wave is sampled at least nk + 1 times
and minimizes the chance that wave conversion and veering phenomena are
missed. In Figure 3.3 this is illustrated for nk = 2 for k3 and k4 with the
horizontal dashed lines and pentagon markers are used for the corresponding
sampled solutions. Lastly, in case nf > 1 is chosen additional solutions beyond
fmax are retained. These are marked with blue starts in Figure 3.3.
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3.4.2 Construction of the reduced order model

The sampling set S being defined, the inverse approach is used with the
corresponding values of k (resp. λ) as in equation (3.21):[(

KLL(λ, ωj) KLI(λ, ωj)
KIL(λ, ωj) KII(λ, ωj)

)
− ω2

j

(
MLL(λ, ωj) MLI(λ, ωj)
MIL(λ, ωj) MII(λ, ωj)

)][
ψj

I(λ)
ψj

L(λ

]
= 0

(3.21)
The parameter nf that determines the frequency truncation criterion is
introduced. All partial eigenvectors ψjI(λ) associated to eigenfrequencies ωj
within the [0, 2πnffmax] range are normalized and put in the snapshot matrix
Q:

Q0 =
[
ψ1
I (λ1), ψ2

I (λ1), ....ψpI (λq)
]

Q = [<(Q0),=(Q0)]
. (3.22)

The local interface projection matrix PLR is obtained by performing a singular
value decomposition of Q:

Q = V AWH . (3.23)

With V and W complex unitary matrices whose columns are the left (resp.
right) singular vectors of Q and A a real positive diagonal matrix with singular
values σi ordered in decreasing order. Lets note σ =

∑
i σi the sum of all the

singular values of Q. The projection basis is then obtained by taking the first
few singular vectors of V . To define the absolute minimal number of vectors
that should be retained, the effective rank [164] of Q is computed:

∀i ∈ J1, nLK, pi = σi
σ

HQ = −
nL∑
i=1

pilog (pi)

erank(Q) = eHQ

. (3.24)

It is obtained by taking the exponential of the entropy of the distribution of
the singular values of Q as defined in equation (3.24). We also introduce a
precision criterion ε < 1 to be set by the user and we keep at least the nε first
left singular vectors of Q. The integer number nε is defined as the smallest
integer satisfying equation (3.25):

(σ −
∑nε
i=1 σi)
σ

≤ ε. (3.25)
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The final number of vectors kept is m = max(derank(Q)e , nε). In practice, a
choice of ε between 10−4 and 10−6 is recommended in order to obtain a good
ratio between accuracy and the number of vectors kept. At last, the local
interface projection matrix PLR is obtained by only keeping the first m columns
of V : V = [V1, V2, ...VnL ]

PLR = [V1, V2, ...Vm]
(3.26)

And the global projection matrix P is as follows in order to preserve the structure
of the UC dofs:ULUR

UI

 = P

UredL

UredR

UI

 =

PLR 0 0
0 PLR 0
0 0 InI

UredL

UredR

UI

 (3.27)

The reduced order UC matrices are the obtained via Galerkin projection, e.g.
Kred = PTKP , Mred = PTMP , etc.

3.5 Benchmarks and numerical examples

In this Section the efficiency of the proposed MOR scheme is assessed in term
of interface reduction by comparison with:

• A simple implementation of the WFEM using a quadratic linearization
thereby computing all waves. It is referred to as QWFEM.

• An iterative implementation of the standard WFEM using Zhong’s
formulation [214, 89] which will be noted as ZWFEM.

• A first version of the method of Droz et al. [60] referred to as Dro2014a
that received a small improvement with respect to the original formulation.
Specifically, Droz2014a is identical to the method of the original article
but the produced projection basis is used in order to reduce the UC
matrices thereby removing the need to project the eigenvalue problem at
each frequency.

• A second implementation of [60] referred to as Droz2014b where Zhong’s
formulation is used in order to carry out the sampling of the k-space.

Three classical criteria are used for the comparison. First, the time required
in order to produce a ROM. This indicator can be important when trying



BENCHMARKS AND NUMERICAL EXAMPLES 45

to speed up computation e.g. in order to optimize some design or negligible
in applications such as virtual sensing and digital twins in which the ROM
is only produced once and can be used until the end of life of its physical
counterpart. Another important factor when considering a reduction method is
its accuracy. Because many MOR techniques have parameters, the comparisons
should be done with parameters values within the range prescribed in the
literature. In case no "canonical settings" exists, the fine-tuning of the ROM
should be included in its computation time. The last metric of comparison,
is the speed of the derived ROMs whose relevance is obvious in the context
of reduced order modeling. Practically, the comparison of the aforementioned
modeling strategies is carried out on three structures from the literature. The
first one is a sandwich structure with aluminum skins and a rubber core that
was introduced in [60]. The second one is a locally resonant metamaterial taken
from [170] made of an aluminum beam with resonant PMMA add-ons. The
last one is a stiffened plate that was introduced in [32]. All computations are
performed on a Intel(R) Core(TM) i9-10980XE CPU at 3.00 GHz functioning
at stock settings.

3.5.1 Sandwich beam

In this subsection the first example from [60] is used in order to benchmark
the different modeling strategies. The model is comprised of three layers. The
top and bottom layers are 2 and 3 millimeters thick respectively, and are made
of steel. The middle layer is 20 millimeters thick and is made of rubber. The
cross-section of the sandwich is 40 millimeters. A global hysteretic damping of
one percent is applied to the structure. The cross-section of the sandwich is
modeled with Lagrange Q1 elements coded on Matlab. The mesh, however, was
generated using ANSYS APDL 2020 with elements 0.5 millimeters length in the
direction of propagation. The resulting model has 3744 dofs with 1872 dofs on
each interface. Its mesh is displayed in Figure 3.4 and the characteristics of all
layers of the cross-section are summed up in Table 3.1. The maximal frequency
of interest is fmax = 1000 Hz. The cut-off imaginary part for the methods
Droz2014a and Droz2014b is set to kc = 30 rad.m−1 which is the criterion used
for the post-processing of the dispersion curves. For the proposed method,
referred to as Boukadia2018, the settings are the following. The frequency
factor is set to nf = 1 such that only propagating waves are sampled and the
wavenumber sampling factor is set to nk = 3 which ensures each wave is sampled
at least 4 times. Finally, the SVD truncation criterion is set ε = 10−5. The
performance of each method is displayed in Table 3.2. The column "Reduction
time" indicates the time it takes to produce a reduced order model with a given
method while the column "WFEM time" indicates the time required to compute
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Figure 3.4: Cross-section discretization for the sandwich structure of [60]

Layer - Material Thickness Density Young Modulus Poisson Damping
(mm) (kg.m−3) (Pa) coefficient ratio

Top - Steel 2 7850 210×109 0.3 0.01
Middle - Rubber 20 950 1.5×106 0.48 0.01
Bottom - Steel 3 7850 210×109 0.3 0.01

Table 3.1: Material properties for the sandwich beam layer

the propagation constants and wavenumbers at one frequency using that method.
Computations for the ZWFEM were made computing the first 60 eigenvalue-
eigenvector pairs i.e. 30 wave types. The first thing that stands out is the gap
between the QWFEM and the ZWFEM as no reduction process is involved here.
The first one takes about 6 minutes to return a result while the other only needs
18 seconds. This showcases the importance of mastering Zhong’s formulation
for serious WFEM practitioners. This difference in performance is also reflected
in the gap between Droz2014a and Droz2014b as it takes them about 50 and
3 minutes respectively in order to produce the same ROM. When it comes to
comparing the different MOR schemes, our proposed method outperforms all
other implementations. It takes less than a minute to produce a ROM and the
produced ROM is also more compact leading to a lower compuation time than

Method Reduction time (s) Model size WFEM time (s)
QWFEM NA 3744 3.451 × 102

ZWFEM NA 3744 1.859 × 101

Droz2014a 3107.43 298 2.134 × 10−1

Droz2014b 168.96 298 2.134 × 10−1

Boukadia2018 44.35 166 3.890 × 10−2

Table 3.2: CPU time performance of the five methods
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the ROM produced by Droz2014.

Another important point of comparison for the two ROMs is accuracy. We
test this by computing the relative error between propagation constants and
waveshapes obtained via the ZWFEM and the those obtained with the Droz2014
and Boukadia2018 ROMs. The comparison is carried out for the first 12 most
propagative waves and the formulae used are the following:

err(λi) =
∣∣∣∣λi − λ̃iλi

∣∣∣∣ , (3.28)

with λi the ith propagation constant computed with the ZWFEM and λ̃i the ith
with a ROM. Similarly, the error for waveshapes is defined in equation (3.29):

err(ψi) = 1−
∣∣∣∣∣
(
ψi
∣∣ψ̃i)

‖ψi‖
∥∥ψ̃i∥∥

∣∣∣∣∣ . (3.29)

The results are displayed in Figure 3.5 As can be seen, both ROMs are very

Figure 3.5: Comparison of the accuracy of the ROMs from Droz2014 and
Boukadia2018 for the model of Droz2014

accurate but the ROM from Droz2014 performs better in that regard owing to
its bigger size and higher computation time. For practical applications however,
the extra accuracy from the Droz2014 ROM does not bring much added value
while the computation time is multiplied by 5. This illustrates the benefit of an
SVD based orthogonalization with a well chosen truncation criteria over a basic
QR based orthogonalization scheme.
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Figure 3.6: Dispersion curves of the sandwich beam obtained with Droz2014’s
reduction (Blue) and Boukadia2018’s reduction (Red)

Material Density Young Modulus Poisson Damping
(kg.m−3) (GPa) coefficient ratio

Aluminum 2690.2 68.07 0.325 0.0025
PMMA 1188.4 4.8 0.31 0.05

Table 3.3: Material properties of aluminum and PMMA in the model of [170]

The dispersion curves computed by both methods are given in Figure 3.6 to
emphasize this point.

3.5.2 Locally Resonant Metamaterial

In this subsection the locally resonant metamaterial UC studied in [170] is used
as a numerical example to asses the performance of the proposed model order
reduction scheme. The metamaterial is an aluminum beam with locally resonant
add-ons in PMMA. Hysteretic damping is used to model dissipation in both
materials. The cross-section of the beam is 2 millimeters thick and 3 centimeters
wide and the dimensions of the locally resonant add-on are given in Figure 3.7
taken from the original article. The material properties of aluminum and PMMA
are given in Table 3.3. The UC is modeled using quadratic Serendipity S2
elements coded in Matlab though the mesh was generated using ANSYS APDL
2020. There is total of 51570 dofs, 1878 of which are on the UC’s (left and right)
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Figure 3.7: Geometry and dimension of the UC from [170]. The dimensions are
given in millimeters

interfaces. The maximal frequency of interest is fmax = 1600Hz. Because
of the many internal dofs of the model, the inner dof reduction presented in
Section 3.2 is applied with nf = 4. The resulting ROM, ROM1, serves as
reference to evaluate the accuracy and performance of the other methods. As
with the previous example, ROM1 is ran with the QWFEM for a few frequencies
in order to form a good estimate of the average time it takes to obtain the
propagation constants and wave shapes at one frequency. ROM1 is then used
with the ZWFEM to compute 60 eigenvalue-eigenvector pairs (i.e., 30 wave
types) and the resulting waveshapes and propagation constants are used in
order to evaluate the accuracy of the following MOR schemes. ROM1 is further
reduced using the methods Droz2014a, Droz2014b with kc = 30 rad.m−1 and
the method Boukadia2018 with nf = 1, and nk = 3 and ε = 10−5. The results
in terms of CPU performance are presented in Table 3.4. The first thing to
notice is the efficiency of the inner dof reduction as these went from 49692 in
the full order model to 14 in the reduced order model. Moreover, creating this
ROM took only about a minute (67.16 seconds). As in the previous example,
the efficiency of Zhong’s formulation is also highlighted as the computation
time is divided by 40 when compared to the classical WFEM formulation. In
terms of reduction time, the methods Droz2014b and Boukadia2018 are both
pretty close as it takes them respectively 8 and 5 additional seconds to further
reduce (ROM1). The first method ends up with 50 interface dofs and the latter
with 38 due to the SVD-based orthogonalization which is why it is 1.6 time
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Method Reduction time (s) Model size WFEM time (s)
QWFEM (ROM1) 67.16 1892 3.867 × 101

ZWFEM (ROM1) 67.16 1892 0.8794 × 100

Droz2014a 67.16 + 124,28 64 2.069 × 10−3

Droz2014b 67.16 + 8.39 64 2.069 × 10−3

Boukadia2018 67.16 + 5.36 52 1.325 × 10−3

Table 3.4: CPU time performance of the five methods for the locally resonant
metamaterial of [170]

Figure 3.8: Comparison of the accuracy of the ROMs from Droz2014 and
Boukadia2018 for the model of [170]

faster. Naturally, this gain in dofs and computation time is compensated by a
slight loss in accuracy as is demonstrated in Figure 3.8. Th maximal relative
error for eigenvalues is around 10−5 for Boukadia2018 and 10−8 for Droz2014.
For eigenvectors, these values are around 10−8 and 10−11. Again, the extra
accuracy from Droz2014 is not relevant for most applications. This shows that
ε = 10−5 is a good truncation criterion to strike a balance between accuracy
and number of dofs. Finally, the dispersion curves obtained via both methods
are displayed in Figure 3.9. As expected, both the real and imaginary parts of
the wavenumber matches even inside Bragg and locally resonant bandgaps.
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Figure 3.9: Dispersion curves of the locally resonant metamaterial of [170]
obtained with Droz2014’s reduction (Blue) and Boukadia2018’s reduction (Red)

3.5.3 Doubly stiffened panel

In this subsection, the doubly stiffened panel studied in [32] is used as a numerical
example in order to asses the performance and accuracy of the proposed MOR
scheme. The considered waveguide is an aluminum plate of thickness e = 2mm
and width 40cm stiffened using rectangular beams of height h = 10mm and
width ls = 5mm. The spacing between the stiffeners is 10cm along the width
and 5cm along the propagation direction. An hysteric damping of η = 10−4

is introduced. The mesh of the finite element model of a periodic UC of the
structure is shown in Fig 3.10 and was obtained using ANSYS APDL 2020. The
elements however, were coded in Matlab and are Lagrange Q1 linear elements.
The original model has 47928 dofs 5154 of which are on its left and right interfaces.
Because of it’s high number of dofs, this model is first reduced using the method
presented in Section 3.2 with a frequency factor nf of 4. The resulting ROM,
ROM1, serves as a reference in order to evaluate the accuracy and performance
of the other methods. As with the other examples, ROM1 is ran with the
QWFEM for a few frequencies in order to form a good estimate of the time it
takes to compute the propagation constants and wave shapes at one frequency.
It is then used with the ZWFEM, computing 60 eigenvalue-eigenvector pairs
(i.e., 30 wave types) and the resulting waveshapes and propagation constants are
used in order to evaluate the accuracy of the following MOR schemes. ROM1 is
further reduced using the methods Droz2014a, Droz2014b with kc = 30 rad.m−1

and the method Boukadia2018 with nf = 1, and nk = 3 and ε = 10−5. The
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Figure 3.10: Cross-section discretization of the UC of the doubly stiffened plate
of [32]

Method Reduction time (s) Model size WFEM time (s)
QWFEM (ROM1) 69.15 5185 3.867 × 101

ZWFEM (ROM1) 69.15 5185 4.167 × 100

Droz2014a 69.15 + 523,28 419 2.470 × 10−1

Droz2014b 69.15 + 82.14 419 2.470 × 10−1

Boukadia2018 69.15 + 73.91 219 3.341 × 10−2

Table 3.5: CPU time performance of the five methods for the doubly stiffened
panel of [32]

results in terms of CPU performance are presented in Table 3.5. Again, the
efficiency of the inner dofs strategy is remarkable. These went from 42774
in the FOM to just 31 in ROM1. Without this reduction, it would not be
feasible to use the WFEM on this type of well meshed structures as the dynamic
condensation would be too time consuming. As in the previous examples our
proposed method produces a ROM much faster than the original formulation of
[60] and still slightly faster than the improved implementations benchmarked in
this Section. Similarly, the ROM produced is smaller with the proposed method
and a speed-up factor around 10 is observed compared to the other ROMs.
This because the WFEM’s computation time scales with the third power of the
number of interface dofs once the inner dofs have been reduced. An evaluation
of the accuracy for the eigenvalue-eigenvector pairs produced by both methods
is given in Figure 3.11. The maximal error for eigenvalues and eigenvectors
are around 10−4 and 10−5 for proposed strategy while the ROM of Dro2014
achieves near machine precision accuracy. Again, the extra accuracy does not
impact practical purposes as the dispersion curves obtained via both methods
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Figure 3.11: Comparison of the accuracy of the ROMs from Droz2014 and
Boukadia2018 for the model of [32]

Figure 3.12: Dispersion curves of the doubly stiffened panel of [32] obtained
with Droz2014’s reduction (Blue) and Boukadia2018’s reduction (Red)

are virtually indistinguishable (See Figure 3.12).
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3.6 Conclusions and perspectives

In this Chapter a novel model order reduction strategy for the unit cell modeling
of 1D periodic structures in the WFEM framework was presented. The proposed
strategy builds upon the inner dof reduction of [48, 102, 216] and the interface
reduction of [60, 62]. The main contributions of the Chapter can be summarized
as follows:

• The Craig-Bampton model order reduction scheme used in [216] was
expanded to tackle models including hysteretic and generalized damping
as well as frequency dependent material properties.

• A faster and more complete sampling strategy has been developed to
replace the one used in [60]. These simultaneous gains are achieved by
relying on the inverse WFEM formulation instead of the direct one as the
former is usually faster than the latter.

• A better control of the dofs/accuracy trade off is achieved in the proposed
interface reduction strategy by the use of an SVD based orthogonalization
scheme instead of QR-based one. This can result in much faster ROMs as
the complexity of the WFEM eigenvalue problem scales with the third
power of the number of interface dofs.

Further work on the topic of reduced order modeling should consider parametric
model order reduction (PMOR) which consists in reducing parameter dependent
models in such a way that they are accurate over a predefined range of parameters
values. A good review of the topic can be found in [20] where 3 families of
methods are considered ot extend projection-based MOR techniques to the
parametric case:

• A global projection basis for the whole parameters space. Early tests
indicate that this method may be suitable for inner dofs reduction but
may be undesirable for interface reduction. This is because the WFEM’s
complexity scales with the third power of the number of interface dofs. A
double in size increase would translate in a eight fold increase of in CPU
time as was observed in [29]. This issue could be mitigated by applying a
second reduction to the models generated by the PMOR scheme.

• Interpolating the projection basis [5]. Though the method produces
efficient ROMs, this method can be memory intensive, the interpolation
process itself can also computationally expensive and the projection
operation as to be realized a the model is evaluated with at a new
parameter value. To mitigate the second drawback, a method that seepds
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up the interpolation of the projection matrix in the tangential manifold
for proposed in [194, 195].

• Another possibility is to interpolate both the reduced order models and
their projection matrices [6]. Which avoids performing the projection
operation every time new parameter values are considered but adds a
second interpolation process. The trade-off between both operations
usually depends on both the dimension of the original model and that of
the projection basis.



Chapter 4

Wave Based Optimization

Part of this Chapter has already been published as [31]:"R.F. Boukadia, E.
Deckers, C. Claeys, M. Ichchou, W. Desmet. A wave-based optimization
framework for 1D and 2D periodic structures. Mechanical Systems And Signal
Processing, 139:106603, May 2020."

This Chapter presents an optimization framework for 1D and 2D periodic
media and waveguides that was developed during this thesis and published in
[31]. The proposed framework builds on top of the existing WFEM framework
and provides expressions for the first and second order derivatives of most
quantities that can be computed with the WFEM. In order to complement
these derivatives, a second order algorithm that combines a line search method
and an ellipsoidal trust-region approach [151] is developed. The former method
usually performs better in regions where the optimized function is convex while
the latter allows to quickly escape saddle-points and works better in regions
where negative curvature is present. The aforementioned developments and
choices are motivated in part by the noise levels [197] of the WFEM which make
it unsuitable for fast numerical differentiation techniques. The shortfalls of first
order optimization algorithms when dealing with saddle points [157, 54] and
their scaling issues caused by the lack of a natural metric in the optimization
space were also motivating factors. The latter issue in particular, is more serious
than may appear and is responsible for the development of numerous adaptive
learning rate strategies [118, 55] in the field of machine learning where second
order optimization techniques are rarely used [26]. Another motivating factor
is language specific and relates to the design of Matlab’s "fmincon" function
(general optimization function). Of the many algorithms it implements, only
the "interior-point" and "trust-region reflective" algorithms enable the use of

56
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second order information supplied by the user. As of now, the former algorithm
is not suitable for the proposed framework as it requires that the hessian is
passed via a separate function. In the WFEM framework, this leads to a loss of
efficiency because computing the hessian requires (at mminima) the computation
of the objective function and its gradient. While the "trust-region-reflective"
algorithm does not suffer from this issue, it tends to perform poorly in regions
where the objective function is convex. This likely due to a shrinking of the
trust-region radius in previous steps of the optimization process where negative
curvature was present. This issue is addressed by the algorithm developed
during this thesis which switches to a line search based on Newton’s method
when the objective function is locally convex. Another important issue justifying
the developments of this chapter is the quasi-exclusive focus of the unit cell
based optimization literature (e.g.[85, 7, 86]) on wavenumbers (associated to
bandgap depth) and eigenfrequencies (related with bandgap width). While
these dispersion characteristics are relatively easy to compute and interpret,
they do not give a complete picture as they neglect the effects that loads,
(finite) size and boundary conditions [202, 182, 153, 207] have on practical
applications. The possible results of such oversights are showcased in [170]
where the naive application of a metamaterial solutions leads to the appearance
of edge modes which decrease the effectiveness of the metamaterial design. The
optimization framework presented in this Chapter accounts for these potential
issues at the design stage as loads and boundary conditions can be included in
the optimization process. The rest of the Chapter is organized as follows. First,
Sections 4.1 and 4.2 present general and computationally efficient formulae for
the first and second order derivatives of generalized eigenvalue-eigenvector pairs
and for the solutions of linear systems. These formulae are then applied to the
1D direct WFEM and the 2D inverse WFEM in Sections 4.3 and 4.4. Numerical
examples illustrating the potential of the proposed framework are presented in
Section 4.6 while Section 4.7 summarizes the findings and conclusions of the
Chapter.

4.1 Derivatives for linear systems of equations

This section details the computation of first and second order derivatives for
solutions of parametric linear systems of equations. A parametric linear system
of the form of equation (4.1) is considered:

A(p)U(p) = F. (4.1)

In equation (4.1), p ∈ Rn is the vector of parameters. The solution of the
system, U(p), is obtained by inverting the matrix A(p) resulting in the simple
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expression is given in equation (4.2) where the dependency in p is dropped:

U = A−1F (4.2)

Most numerical algorithms used to compute U however, never directly form
the matrix A−1, rather, an appropriate decomposition of A (QR, LDL, etc.) is
performed according to its algebraic properties and the solutions of equation
(4.1) are computed on a vector by vector basis. In order to maximize the
efficiency of what follows, it is crucial to perform that decomposition only
once and store it in memory for all computations that follow. The first order
derivatives of U are obtained via simple differentiation:

∂A

∂pi
U +A

∂U

∂pi
= 0. (4.3)

Thus:
∂U

∂pi
= −A−1 ∂A

∂pi
U. (4.4)

The same can be done for the second order derivatives of U leading to the
expression of equation (4.5):

∂2U

∂pi∂pj
= −A−1

(
∂2A

∂pi∂pj
U + ∂A

∂pi

∂U

∂pj
+ ∂A

∂pj

∂U

∂pi

)
. (4.5)

Since A−1 is used in equations (4.2), (4.4) and (4.5), storing the matrix
decomposition of A enables the computation of the first of second order
derivatives of U at low extra cost. This is especially true when A is a large
FEM matrix. Apart from sensitivity analysis and some stochastic methods,
however, it is rare that vector derivatives are used directly. Rather one tends to
consider systems of the form of equation (4.6) where the vector U is used to
define a real scalar objective function f :{

A(p)U(p) = F
f(p) = U∗BU

. (4.6)

Here, we focus on the the case where f is quadratic as most objective functions
are either directly quadratic or are obtained by performing a sum, product or
some composition involving quadratic functions. Hence this is viewed as the
most useful case. In (4.6) the matrix B can be chosen Hermitian without loss
of generality thus this assumption will be made in the following developments.
First, the first order derivatives of f are introduced:

∂f

∂pi
= 2<

(
U∗B

∂U

∂pi

)
. (4.7)
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In equation (4.7), the derivatives of U can be replaced using equation (4.4):

∂f

∂pi
= 2<

(
−U∗BA−1 ∂A

∂pi
U

)
= 2<

(
(−U∗BA−1)

(
∂A

∂pi
U

))
. (4.8)

Equation (4.8) introduces the adjoint:

Adj = −U∗BA−1 = −(U∗B)A−1. (4.9)

It needs only to be computed once at the cost of one relatively cheap matrix-
vector inversion given the decomposition of A should be stored in memory.
Once this is done, all first order derivatives of f can be computed at the cost of
one matrix-vector multiplication and one vector-vector scalar product which
significantly lowers the computational cost of evaluating f ’s gradient. Similarly,
the second order derivatives of f are given by the expression of equation (4.10):

∂2f

∂pi∂pj
= 2<

(
U∗B

∂2U

∂pi∂pj
+ ∂U∗

∂pi
B
∂U

∂pj

)
. (4.10)

Using equations (4.5) and (4.9) this can rewritten as:

∂2f

∂pi∂pj
= 2<

(
Adj

(
∂2A

∂pi∂pj
U + ∂A

∂pi

∂U

∂pj
+ ∂A

∂pj

∂U

∂pi

)
+ ∂U∗

∂pi
B
∂U

∂pj

)
. (4.11)

Unlike equation (4.10), equation (4.11) does not involve ∂2U
∂pi∂pj

: This means
that the full hessian matrix of f can be computed at the cost of only (n+ 1)
matrix inversions instead of n(n+3)

2 + 1. However, since both equation (4.10)
and (4.11) require the first order derivatives of U it is not necessary to use
equations (4.8) and (4.9) to compute f ’s gradient as equation (4.7) is equally
fast under these conditions. That being said, using equation (4.8) never result
in a loss of computation time.

4.2 Derivatives of Simple Eigenvalues and Eigen-
vectors

This section is dedicated to the evaluation of the first and second order derivatives
of simple eigenvalues and eigenvectors (multiplicity of 1) of general nonlinear
eigenvalue problems. It generalizes and extends the works of Nelson et al. [150],
Tang et al. [183] and Friswell et al. [80] where formulae for the first order
derivatives of linear and quadratic eigenvalue problems where presented. In the
context of this Chapter, knowing how to efficiently derive first and second order
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derivatives of eigenvalue problems is necessary as the direct and inverse WFEM
formulations rely on the solutions of such problems in all of their applications.
We start by introducing a few notations that will be used throughout this
section.

• U/Ui: Right eigenvector.

• V/Vi: Left eigenvector.

• λ/λi: Eigenvalue, propagation constant.

• p ∈ Rm: vector of parameters.

• pi: The ith component of p.

• X+: Moore-Penrose inverse of the matrix X.

Let n be a positive integer superior or equal to 1. We define a generalized
eigenvalue problem of order n in equation (4.12): X : C→Mn(C)

λ 7→ X(λ)
Sol = {λ ∈ C, det(X(λ)) = 0}

. (4.12)

For each λ in Sol left and right eigenvectors can be defined. They are non-trivial
solutions of equation (4.13):

X(λ)U = 0 = V TX(λ). (4.13)

For a given λ in Sol, the dimension of Ker(X(λ)) is at least one. Herein,
the assumption that Ker(X(λ)) (the kernel of X(λ)) is always of dimension
1 is made. In this case left and right eigenvectors can be simply chosen as
all possible choices differ only by a scalar multiplication. Having defined a
generalized eigenvalue problem, a parametric generalized eigenvalue problem
can now be introduced. The difference is that the matrix function X now also
depends on a parameter vector p ∈ Rm hence the eigenvalues λ and eigenvectors
U and V become function of p. Assuming the matrix X is an analytic function of
(λ, p), derivatives of eigenvalues and eigenvectors with respect to the parameters
pi can be computed.

In order to simplify expressions we define the total derivative with respect to
the scalar parameter pk in equation (4.14):

dX

dpk
= ∂X

∂pk
+ ∂λ

∂pk

∂X

∂λ
. (4.14)
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4.2.1 First order derivatives

The first order derivative of an eigenvalue λi and its eigenvectors Ui and Vi can
now be defined. First we notice that the following relationships hold:

∀p ∈ Rm, X(λi(p), p)Ui(p) = 0 = V Ti (p)X(λi(p), p). (4.15)

Differentiating equation (4.15) with respect to pk we get:

dX

dpk
Ui +X

∂Ui
∂pk

= 0. (4.16)

Taking advantage of the fact that V Ti X = 0, premuliplying equation (4.15) by
V Ti yields:

V Ti
dX

dpk
Ui = 0. (4.17)

This scalar equation can be developed using equation (4.14) leading to equation
(4.18):

∂λi
∂pk

(
V Ti

∂X

∂λ
Ui

)
= −

(
V Ti

∂X

∂pk
Ui

)
. (4.18)

thus obtaining an expression for the first order derivatives of the eigenvalue
λi. Now that ∂λi

∂pk
is known, all the terms of equation (4.14) can be evaluated

enabling the computation of the eigenvectors derivatives:

∂Ui
∂pk

= −X+ dX

dpk
Ui. (4.19)

Since the matrix X is singular, there would be infinitely many solutions to
equation (4.19) if the Moore-Penrose inverse was not used. This corresponds to
a choice of normalized rectified eigenvectors satisfying

(
dUi
dpk

∣∣∣Ui) = 0. This
condition can be enforced without making any particular hypothesis (see
Appendix D for more details). In practice, equation (4.19) is solved by computing
the Complete Orthogonal Decomposition [88] (COD) of the matrixX and storing
it for the computation of all eigenvector derivatives.

4.2.2 Second order derivatives

It is assumed that the first order derivatives of eigenvalues and eigenvectors
have been computed and stored in memory as well as the relevant matrix
decompositions. In order to find expressions for the second order derivatives of
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eigenvalues and eigenvectors, equation (4.13) is differentiated two times which
leads to:

d2X

dpkdpl
U + dX

dpk

∂U

∂pl
+ dX

dpl

∂U

∂pk
+X

∂2U

∂pk∂pl
= 0. (4.20)

Since V TX = 0, premultiplying by V T yields:

V T
(

d2X

dpkdpl
U + dX

dpk

∂U

∂pl
+ dX

dpl

∂U

∂pk

)
= 0. (4.21)

The term d2X
dpkdpl

can be developed leading to the expression for the second order
derivatives of λ:

d2λ

∂pk∂pl

(
V T

∂X

∂λ
U

)
=− V T

[(
∂2X

∂pl∂pk
+ ∂λ

∂pl

∂2X

∂λ∂pk
+ ∂λ

∂pk

∂2X

∂λ∂pl
+ ∂λ

∂pk

∂λ

∂pl

∂2X

∂λ2

)
U

+
(
dX

dpk

dU

dpl
+ dX

dpl

dU

dpk

)] .

(4.22)
The value of d2λ

∂pk∂pl
being known, the matrix d2X

dpkdpl
can be evaluated such that

the second order derivatives of the eigenvector is obtained:

∂2U

∂pl∂pk
= −X+

(
d2X

dpkdpl
U + dX

dpk

∂U

∂pl
+ dX

dpl

∂U

∂pk

)
−<

(
∂U

∂pl

∣∣∣∣ ∂U∂pk
)
U. (4.23)

More details about the origins of equation (4.23) are provided in Appendix D.

4.3 Derivatives for the direct 1D WFEM

In this Section, expressions for the derivatives of propagation constants,
waveshapes and forced responses computed using the 1D WFEM are derived.
The proposed formulae enable the computation of the gradient and hessian
matrix of most objective functions at relatively low computational cost. These
derivatives can then be used with first or second order algorithms in order
to perform optimization in a unit cell modeling framework. The Section is
organized in order to mirror the workflow of the 1D WFEM. Notations and a
quick recap of the 1D WFEM framework are introduced in Subsection 4.3.1.
The expression for the derivatives of the condensed dynamic stiffness matrix are
then developed in Subsection 4.3.2. Finally, by applying the results of Section
4.2 to the WFEM framework, the derivatives of the propagation constants and
waveshapes are derived in Subsection 4.3.3.
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4.3.1 Recaps

The mass matrix M , stiffness matrix K and damping matrix C of a periodic
structure’s UC are considered. A partition of its degrees of freedom U is
established according to the UC’s spatial structure (see Figure 4.1):

U =

ULUI
UR

 . (4.24)

The subscripts R, L and I are used for variables associated with the right, left

Figure 4.1: Dofs’ partition for the UC of a 1D periodic structure

and internal dofs of the UC, respectively. Additionally, the subscript B will be
used for quantities associated to all interface dofs. The first step in the direct
formulation of the 1D WFEM is to compute the dynamic stiffness matrix G for
a given circular frequency ω:

G = K + iωC − ω2M. (4.25)

The internal dofs of the UC are then condensed out in order to form the
condensed dynamic stiffness matrix D:

D = GBB −GBIG−1
II GIB . (4.26)

Applying Floquet-Bloch boundary conditions UR = λUL (displacement), FR =
−λFL (load) leads to the eigenvalue problem [197]:(

λDLR + (DLL +DRR) + 1
λ
DRL

)
ψ = 0. (4.27)

The propagation constant λ is related to the wavenumber kx via the relation
λ = e−ikxLx , Lx being the length of the UC in the direction of propagation. The
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eigenvalue problem (4.27) yields the waveshapes ψk and propagation constants
λk of free waves in the periodic medium at the circular frequency ω. It should be
noted that the propagation constants come in pairs

(
λk,

1
λk

)
with eigenvectors(

ψ+
k , ψ

−
k

)
that correspond to waves traveling in the positive and negative

direction. For passive structures, direction of propagation and direction of decay
coincide, therefore, positive going waves correspond to |λ| ≤ 1 and negative
going waves to |λ| ≥ 1. In case λ ≈ 1, positive going wave have a positive
powerflow and negative going waves a negative one [92]. For active structures,
waves should be sorted according to their direction of decay to solve equation
(4.28) hence the proposed sorting method may still be used. Once propagation
constants and waveshapes are properly sorted, it is possible to compute the
forced response of a finite waveguide comprised of N UCs by relating the waves’
amplitudes to the excitations and boundary conditions. The specific case of
Clamped-Free boundary conditions is detailed in equation (4.28) as it is used
in Section 4.6 but similar formulae are available for other types of boundary
conditions [145, 143, 64]:(

Ψ+ Ψ−ΛN
DRLΨ+ΛN−1 +DRRΨ+ΛN DRLΨ−Λ +DRRΨ−

)[
q+

q−

]
=
[
V0
FN

]
. (4.28)

In equation (4.28), q+ and q− are the vectors of the positive and negative
going waves’ amplitudes. V0 is the imposed displacement at the left side of
the waweguide while FN is the force applied at its right side. Ψ+ is an n by n
matrix whose columns are the eigenvectors Ψ+

k corresponding to positive going
waves. Likewise, Ψ− is formed with the eigenvectors Ψ−k of the negative going
waves. Λ is a diagonal matrix with the positive propagation constants λk on
the diagonal. The displacement of the ith section of the waveguide is given by
equation (4.29):

Vi = Ψ+Λiq+ + Ψ−ΛN−iq−. (4.29)

4.3.2 Derivatives of the condensed dynamic stiffness matrix

In order to optimize a UC to obtain a desired behavior, some properties
of the UC are parametrized. The vector of these m parameters is noted
p = (p1, ..., pm) ∈ Rm. It follows that the mass, stiffness and damping matrix,
M(p), K(p), C(p) are functions of the parameter vector p. Assuming the first
and second order derivatives of the matrices with respect to p are available, the
derivatives of all the quantities derived in Subsection 4.3.1 can be computed. For
a given circular frequency ω the first order derivatives of the dynamic stiffness
matrix are:

∂G

∂pk
= ∂K

∂pk
+ iω

∂C

∂pk
− ω2 ∂M

∂pk
. (4.30)
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Likewise, the second order derivatives of the dynamic stiffness matrix are:

∂2G

∂pk∂pl
= ∂2K

∂pk∂pl
+ iω

∂2C

∂pk∂pl
− ω2 ∂2M

∂pk∂pl
. (4.31)

Using equation (4.26), the derivatives of the condensed dynamic stiffness matrix
are derived:

∂D

∂pk
=∂GBB

∂pk
+GBIG

−1
II

∂GII
∂pk

G−1
II GIB

− ∂GBI
∂pk

G−1
II GIB −GBIG

−1
II

∂GIB
∂pk

.

(4.32)

Taking advantage of the fact that G and D are symmetric matrices this can be
rewritten as:

∂D

∂pk
= ∂GBB

∂pk
+ ΘT

IB

∂GII
∂pk

ΘIB − 2sym
(

ΘT
IB

∂GIB
∂pk

)
. (4.33)

With: 
ΘIB = G−1

II GIB

sym(A) = 1
2
(
A+AT

) (4.34)

Equation (4.33) is much more compact than equation (4.32). It also highlights
an efficient way to compute all the first order derivatives of D. Indeed, one
only needs to compute ΘIB once during the dynamic condensation such that
all first order derivatives of D are evaluated without further matrix inversion or
decomposition.

Closed expressions for the second order derivatives of D are now derived:

∂2D

∂pk∂pl
=∂2GBB
∂pk∂pl

− 2sym
[
∂ΘT

IB

∂pl

(
∂GII
∂pk

ΘIB −
∂GIB
∂pk

)
−ΘT

IB

∂2GIB
∂pk∂pl

]

+ ΘT
IB

∂2GII
∂pk∂pl

ΘIB

.

(4.35)
With:

∂ΘIB

∂pl
= G−1

II

(
−∂GII

∂pl
ΘIB + ∂GIB

∂pl

)
. (4.36)

Using equations (4.35) and (4.36), one needs to "invert" GII m times in order
to compute all second order derivatives of D. Consequently, keeping the LU
decomposition of GII the first time it is computed can further reduce the
computation time of the derivatives’ evaluation.
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4.3.3 Derivatives of propagation constants and wave shapes

The hardest part of this Subsection was already taken care of in Section 4.2.
As such we only need to adapt the results presented there to the case of one of
the WFEM formulation. Here, the palindromic version is chosen which leads to
equation (4.37):

X(λ, p) = λDLR(p) + (DLL(p) +DRR(p)) + 1
λ
DRL(p). (4.37)

Consequently the formulae of Section 4.2 can be applied by filling in the
corsponding matrices in the expressions:

∂X(λ, p)
∂pk

= λ
∂DLR

∂pk
+
(
∂DRR

∂pk
+ ∂DLL

∂pk

)
+ 1
λ

∂DRL

∂pk

∂X(λ, p)
∂λ

= DLR −
1
λ2DRL

dX(λ, p)
dpk

= ∂X(λ, p)
∂pk

+ ∂λ

∂pk

∂X(λ, p)
∂λ

∂2X(λ, p)
∂λ2 = 2

λ3DRL

∂2X(λ, p)
∂λ∂pk

= ∂DLR

∂pk
− 1
λ2
∂DRL

∂pk

∂2X(λ, p)
∂pk∂pl

= λ
∂DLR

∂pk∂pl
+
(
∂DRR

∂pk∂pl
+ ∂DLL

∂pk∂pl

)
+ 1
λ

∂2DRL

∂pk∂pl

d2X(λ, p)
dpkdpl

=∂2X(λ, p)
∂pk∂pl

+ ∂λ

∂pl

∂2X(λ, p)
∂λ∂pk

+ ∂λ

∂pk

∂2X(λ, p)
∂λ∂pl

+ ∂2λ

∂pk∂pl

∂X(λ, p)
∂λ

+ ∂λ

∂pk

∂λ

∂pl

∂2X(λ, p)
∂λ2

(4.38)

It should also be noted that the parametric eigenvalue problem (4.37) is T-
palindromic [36]. This means the eigenvalues come in pairs

(
λi,

1
λi

)
and that

the right eigenvector for λi, ψi, is the left eigenvector for 1
λi
. Conversely,

the right eigenvector for 1
λi
, φi, is the left eigenvector for λi. Thanks to this

feature, computing the left eigenvectors of (4.37) is not required to evaluate
the derivatives. Taking this into account and using the formulae of section 4.2
expressions for the first order derivatives of the propagation constants and wave
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shapes are given in equations (4.39) and (4.40):

∂λi
∂pk

= −
φTi

[
λi
∂DLR
∂pk

+
(
∂DRR
∂pk

+ ∂DLL
∂pk

)
+ 1

λi
∂DRL
∂pk

]
ψi

φTi

(
DLR − 1

λ2
i
DRL

)
ψi

. (4.39)

∂ψi
∂pk

= −X+(λi, p)
[(

∂λi
∂pk

DLR + λi
∂DLR

∂pk

)
+
(
∂DRR

∂pk
+ ∂DLL

∂pk

)
...

+
(
− ∂λi
∂pk

1
λ2
i

DRL + 1
λi

∂DRL

∂pk

)]
ψi

. (4.40)

Similarly, for the second order derivatives, equations (4.22) and (4.23) are used
with the expressions given in equation (4.38):

d2λi
∂pk∂pl

(
φTi

∂X

∂λ
ψi

)
= −φTi

[(
∂2X

∂pl∂pk
+ ∂λ

∂pl

∂2X

∂λ∂pk
+ ∂λ

∂pk

∂2X

∂λ∂pl
+ ∂λ

∂pk

∂λ

∂pl

∂2X

∂λ2

)
ψi

+
(
dX

dpk

∂ψi
∂pl

+ dX

dpl

∂ψi
∂pk

)] .

(4.41)

∂2ψi
∂pl∂pk

=−X+
(

d2X

dpkdpl
ψi + dX

dpk

∂ψi

∂pl
+ dX

dpl

∂ψi
∂pk

)

−<
(
∂Ψi

∂pl

∣∣∣∣∂ψi∂pk

)
ψi

. (4.42)

4.4 Derivatives in the 2D inverse WFEM framework

In this section formulae for the derivatives of quantities computed through the
2D inverse WFEM are made explicit. The direct 2D WFEM is not considered
for two reasons. Firstly, the derived equations would be almost identical to
those of section 4.3. Secondly, the general formalism for any type of eigenvalue
problem was already covered in 4.2. Lastly, the direct 2D WFEM formulation
is not very popular as it cannot compute K-Spaces. For this last application,
the shift-cell operator method [47] is usually preferred. The rest of the section
is structured as follows.
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Figure 4.2: Dofs’ partition of a 2D UC

4.4.1 Recaps 2D inverse WFEM

We now consider a 2D unit-cell. Its stiffness, mass and damping matrix
respectively refereed to as K, M and C. The UC’s displacement vector is
referred to as U . The dofs of the UC are partitioned according to its spatial
structure as illustrated in Figure 4.2 and equation (4.43).

U =
[
U1 U2 U3 U4 UL UR UB UT UI

]T
. (4.43)

The numbers of dofs in U1, U2, U3 and U4 are identical and noted n1. Likewise,
the number of dofs in UL and UR is noted nL. For UB and UT nB is used while
nI is used for UI . The inverse form of the 2D WFEM proceeds by choosing two
wavenumbers (kx, ky) and enforcing the corresponding Floquet-Bloch boundary
conditions on the UC:

U2 = λxU1, U3 = λyU1, U4 = λxλyq1, UR = λxUL, UT = λyUB (4.44)

f1 + f2

λx
+ f3

λy
+ f4

λxλy
= 0

fL + fR
λx

= 0

fB + fT
λy

= 0

(4.45)

With λx and λy the propagation constants in the x and y direction. They are
related to the wavenumbers (kx, ky) in the periodic medium via the side lengths
of the UC, Lx and Ly, by equation (4.46):

λx = e−ikxLx , λy = e−ikyLy . (4.46)
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The Floquet-Bloch boundary conditions are enforced using two projection
matrices PU and PF (see [62]):

U = PU (kx, ky)Ur =



In1 0 0 0
λxIn1 0 0 0
λyIn1 0 0 0
λxλyIn1 0 0 0

0 InL 0 0
0 λxInL 0 0
0 0 InB 0
0 0 λyInB 0
0 0 0 InI




U1
UL
UB
UI

 . (4.47)

PF (kx, ky) =


I 1

λx
In1

1
λy
In1

1
λxλy

In1 0 0 0 0 0
0 0 0 0 InL

1
λx
InL 0 0 0

0 0 0 0 0 0 InB
1
λy
InB 0

0 0 0 0 0 0 0 0 InI

 .

(4.48)
By enforcing these relations a modified equation of the dynamics whose validity
is restrained to loads and displacements satisfying the Floquet-Bloch conditions
associated to the wavenumber pair (kx, ky) is derived:[

K(kx, ky) + iωC(kx, ky)− ω2M(kx, ky)
]
Ur = D(kx, ky)Ur = Fr. (4.49)

For a generic matrix A ∈Mn(C), the matrix A(kx, ky) is derived from matrix
A according to equation (4.50).

A(kx, ky) = PF (kk, ky)APU (kx, ky). (4.50)

Equation (4.49) can be used to compute the response of an infinite periodic
medium to a load with 2D Floquet-Bloch symmetry (such as a plane wave) or
to compute its band diagram when there is no load [134]:[

K(kx, ky) + iωrC(kx, ky)− ω2
rM(kx, ky)

]
ψr = 0. (4.51)

4.4.2 Derivatives for eigenfrequencies, wave shapes and forced
response

We now assume that a parametric UC model is available. The vector of these
m parameters is noted p = (p1, ..., pm) ∈ Rm. It follows that the mass, stiffness
and damping matrix, respectively M(p), K(p) and C(p), are functions of the
parameter vector p. It is also assumed that the first and second order derivatives
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of these matrices with respect to p are available. Under these assumptions, the
derivatives for equations (4.49) and (4.51) can be computed.

Starting with equation (4.49) the first and second order derivatives of the
modified dynamic stiffness matrix are given in equation (4.52):

∂D(kx, ky)
∂pk

= PF (kx, ky)
(
∂K

∂pk
+ iω

∂C

∂pk
− ω2 ∂M

∂pk

)
PU (kx, ky)

∂2D(kx, ky)
∂pk∂pl

= PF (kx, ky)
(

∂2K

∂pk∂pl
+ iω

∂2C

∂pk∂pl
− ω2 ∂2M

∂pk∂pl

)
PU (kx, ky)

(4.52)
These expressions can be straightforwardly substituted in the equations of
Section 4.1 in order to compute the derivatives of the dynamic response Ur or
that of an objective function based on it.

The same can be done of the derivatives of eigenfrequencies and waveshapes
working with kx and ky as fixed we have:

X(ω, p) = K(kx, ky, p) + iωC(kx, ky, p)− ω2M(kx, ky, p). (4.53)

The relevant expressions for matrix derivatives as then defined in equation (4.54)
where the dependence in p is omitted for the matrices K(kx, ky), M(kx, ky) and
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C(kx, ky) in order to keep the expressions shorter.

∂X(ω, p)
∂pk

= ∂K(kx, ky)
∂pk

+ iωr
∂C(kx, ky)

∂pk
− ω2

r

∂M(kx, ky)
∂pk

∂X(ω, p)
∂ω

= iC(kx, ky)− 2ωM(kx, ky)

dX(ω, p)
dpk

= ∂D(kx, ky, ω)
∂pk

+ ∂ω

∂pk

∂D(kx, ky, ω)
∂ω

∂2X(ω, p)
∂ω2 = −2M(kx, ky)

∂2X(ω, p)
∂ω∂pk

= i
∂C(kx, ky)

∂pk
− 2ωM(kx, ky)

∂pk

∂2X(ω, p)
∂pk∂pl

= ∂2K(kx, ky)
∂pk∂pl

+ iω
∂2C(kx, ky)
∂pk∂pl

− ω2 ∂
2M(kx, ky)
∂pk∂pl

d2X(ω, p)
dpkdpl

=∂2X(ω, p)
∂pk∂pl

+ ∂ω

∂pl

∂X(ω, p)
∂ω∂pk

+ ∂ω

∂pk

∂X(ω, p)
∂ω∂pl

+ ∂2ω

∂pk∂pl

∂X(ω, p)
∂ω

+ ∂ω

∂pk

∂ω

∂pl

∂2X(ω, p)
∂ω2

(4.54)
The expressions of equation (4.54) can be directly substituted in the formulae
derived in Section 4.2 in order to evaluate the derivatives of eigenfrequencies
and wave-shapes. Noteworthy, it is usually the case that the eigenvalue problem
(4.51) is solved with both wavenumbers kx and ky being real. In that case,

1
λx

= λx, 1
λy

= λy thus PF = P ∗U thus, all matrices of the eigenvalue problem
are Hermitian. The eigenvalues come in pairs (ωr,−ωr) with eigenvectors
(ψr, φr). Additionally, ψr is the left eigenvector for −ωr, therefore only the
right eigenvectors of need to be computed.

4.5 Second Order Optimization Algorithm

This Section describes the second order optimization strategy used in the
examples of Section 4.6. The proposed strategy is developed to account for
two characteristics of the direct 1D WFEM and some properties of Matlab’s
"fmincon" function (general purpose optimization function). Firstly, obtaining
accurate derivatives by numerical differentiation is difficult due to the low
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numerical accuracy of the WFEM as compared to usual FEM modeling [197].
Secondly, computing the response of a waveguide is relatively cheap because
all computations are done based on a single UC. It follows that semi-analytical
gradients and Hessians of C2 objective functions can be computed at an
acceptable cost. Regarding "fmincon", only two of its algorithms accept user
supplied hessians, the "interior-point" algorithm and "trust-region-reflective"
algorithm. In order to use the former, a function computing the hessian
matrix must be passed as an additional argument. This is problematic
because in the WFEM framework, the computation of derivatives requires
the computation of the objective function thus separating the two leads to
redundant computations. The "trust-region-reflective" algorithm does not suffer
from this issue as gradient and hessian can be passed as auxiliary outputs of the
objective function. However, it suffered from poor convergence speed in regions
of positive curvature when performing tests on the example of 4.6.1. For these
reasons, an algorithm that combines both line search and trust region methods
was developed. The ellipsoidal trust-region approach [54, 157] is based on a
transformation of the local Hessian matrix of the objective function and ensures
that the algorithm quickly escapes saddle points in regions of negative curvature.
The line search method, on the other hand, performs better in neighborhoods
where the optimized function is convex. Because of these exotic features, the
proposed algorithm had to be implemented in Matlab. It is an instance of
sequential quadratic programming (SQP) [151, Chapter 18] thus possesses all
the convergence properties of that class of algorithms.

An objective function f and the vector of optimization variables p ∈ Rm are
introduced. The variables may be subject to ne linear equality constraints:

∀i ∈ J1, neK , Ei(p) = 0. (4.55)

And nc convex inequality constraints:

∀j ∈ J1, ncK , Cj(p) ≤ 0. (4.56)

For a starting point p0, the function’s value f(p0), the gradient ∇f(p0) and
the Hessian ∇2f(p0) are computed. A surrogate function f̃ approximating f
around p0 is introduced:

f(p) ≈ f̃(p) = f(p0) +∇f(p0) (p− p0) + 1
2 (p− p0)T ∇2f(p0) (p− p0) . (4.57)

If the Hessian is positive definite, a line search method is used [151, Chapter 3].
First, the search direction ν is computed:

ν = argmin
{
f̃(p0 + ν), Ei(p) = 0, Cj(p) ≤ 0

}
. (4.58)



SECOND ORDER OPTIMIZATION ALGORITHM 73

Equation (4.58) can be solved using the interior point method [151, Chapter 19]
or analytically when there are no constraints. Once the search ν is computed,
f is minimized in the corresponding direction:

αm = argmin {f(p0 + αν), α ∈ [0, 1]} . (4.59)

Defining the next iteration:

p1 = p0 + αmν (4.60)

When the Hessian is not positive definite, a trust region method [151, 54, 157,
115] is used. First, the matrix

∣∣∇2f(p0)
∣∣ is defined. This matrix is obtained

by keeping the eigenvectors of ∇2f(p0) and taking the absolute value of all its
eigenvalues. A supplementary constraint is then introduced:

T (p) = (p− p0)T
∣∣∇2f(p0)

∣∣ (p− p0)−R2
0 ≤ 0. (4.61)

The next iteration is defined as:

p1 = argmin
{
f̃(p), T (p) ≤ 0, Ei(p) = 0, Cj(p) ≤ 0

}
. (4.62)

The trust region’s radius Ri is updated at each iteration to make sure that the
surrogate function can be trusted. In practice it is adjusted so that decreases
or increases in the objective function are correctly predicted by the surrogate
model:

∀p ∈ Rn, T (p) ≤ 0, f(p)− f(p0)
f̃(p)− f̃(p0)

>
1
4 . (4.63)

Guidelines and algorithms about how to update the trust region radius Ri at
each iteration can be found in [151, Chapter 4]. Summarized, the optimization
algorithm consists of the following steps:

1. Select an initial point p0.

2. Compute: f(p0), ∇f(p0) and ∇2f(p0).

3. Assume:
f(p) ≈ f̃(p) = f(p0) +∇f(p0) (p− p0) + 1

2 (p− p0)T ∇2f(p0) (p− p0)

4.a. If ∇2f(p0) > 0 use line search with Newton-like direction ν:

- Find an approximate minimizer αm of: {f(p0 + αν), α ∈ [0, 1]}.
- Define p1 = p0 + αmν.

4.b. Else, a trust region method is used to take the step:

- Define p1 = argmin
{
f̃(p), T (p) ≤ 0, Ei(p) = 0, Cj(p) ≤ 0

}
.
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5. Iterate steps 2 to 4 until convergence.

A mixed criterion combining change in function value and 1st order optimality,
is used to defined convergence. At least one of the conditions of equation (4.64)
needs to be fulfilled for convergence to be achieved:‖∇̂f(p0)‖ ≤ ε1

|pk − pk+1| ≤ ε2
(4.64)

In equation (4.64), ∇̂ is the effective gradient that accounts for equality
constraints and active inequality constraint. ε1 is the first order optimality
tolerance and ε2 is the step size tolerance. These two parameters should be
set by the user. Lastly, it should be noted that the proposed algorithm can
still be used when the equality constraints Ei are not linear or the inequality
constraints Cj non-convex. In that case, step 4.b. should be used whether the
matrix ∇2f(p0) is positive or not as line search methods are not valid for this
type of optimization problems.

4.6 Numerical Examples

In this Section, the algorithm of Section 4.5 is used in the WFEM framework
with derivatives computed according to Section 4.3 and 4.4. Additionally, the
complexity of the proposed examples is limited to avoid introducing (parametric)
reduced order modeling considerations or shape optimization formalism. First,
the proposed method is used in an FRF-based parameter identification procedure.
This serves as a proof of concept and a validation of the implementation. The
method is subsequently used to optimize the vibro-acoustic performance of a
resonant metabeam. Finally, the optimization of the transmission loss of a
metapanel in the coincidence region is considered.

4.6.1 FRF based parameter identification

In this Subsection, the optimization algorithm and analytical derivatives
formulation developed in the previous sections are used in a parameter
identification scheme to validate their implementation. A 0.5 meter long beam
with a 1cm by 3cm rectangular cross-section and unknown material properties
is considered. Assuming a Poisson’s ratio of 0.3, the cross section of a beam
with unitary density ρ and unitary Young’s modulus E is modeled with 108
SOLID 185 elements in ANSYS APDL 17.0 to serve as the basis for a parametric
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Figure 4.3: Unit cell for the cross-section of the beam (1cm by 3cm by 0.556mm)

model. The corresponding UC is shown in Figure 4.3. The mass matrix M0
and stiffness matrix K0 are used in a model for which the density, the real part
and the imaginary part of the Young’s modulus are the parameters as specified
in equation (4.65). 

K(p) = (Er + iEi)K0

M(p) = ρM0

p =

ErEi
ρ


(4.65)

Clamped-Free boundary conditions are used and a unit force of 1N is applied
at the free end of the beam. The direct forced response is computed on the
10Hz-1000Hz frequency range for material parameters values corresponding
roughly to those of aluminum and given in Table 4.1.

Material Density Young Modulus Poisson Damping
(kg.m−3) (GPa) coefficient ratio

Aluminum 2700 69 0.3 0.03

Table 4.1: Reference material properties for the numerical model updating
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Figure 4.4: Comparison of the direct forced responses for the reference values
and their initial estimates

The response, X0(ω), is used to build an error function f that evaluates the
difference between the reference and a response obtained using a material
property vector p.

f(p) =
∫ ω+

ω−

(log(|X0(ω)|)− log(|X(ω, p)|))2
dω (4.66)

In equation (4.66) the logarithm ensures that the objective function is sensitive
to the information available on the full frequency range. Without this precaution,
modal frequencies would dominate the error evaluation as these are where most
of the signal’s energy is located. The optimization process is started with
material properties ρ = 13000kg.m−3, Er = 90.109Pa and Ei = 1, 08.109Pa.
The first order optimality tolerance, ε1, is set to 10−3 and the step size tolerance,
ε2, to 10−6. Additionally, all material properties are constrained to be positive
during the optimization process. The difference between the reference forced
response and that obtained with the initial guess of the material properties is
showcased in Figure 4.4 while Figure 4.5 shows the parameter values at each
step of the optimization along with the value of the objective function. Looking
at the optimization path of the real part of the Young’s modulus, iterations 1
and 7 particularly stand out as the value of the real part of the Young’s modulus
becomes very low. To investigate this, the forced responses for iterations 1, 7, 9
and 11 are displayed in Figure 4.6. From iterations 1 to 10 the values of the
material properties are adjusted so that the average logarithmic values of the
forced response match that of the reference case. This explains the very high
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Figure 4.5: Evolution of the material properties’ estimates and of the objective
function
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78 WAVE BASED OPTIMIZATION

values for the imaginary part of the Young’s modulus and the low values for
its real part. Once the mean values approximately correspond, the estimated
material properties evolve so that the modal features of the parametric model
start matching that of the reference as evidenced from the forced response for
iteration 11. Ultimately, the optimization algorithm converges to the reference
values of the material properties with a relative error of 3.7 × 10−8 for the
Young’s modulus, 8.1× 10−4 for the hysteretic loss factor and 8.5× 10−8 for
the density despite the initial guess being quite off. Incidentally, this example
motivated the development of optimization algorithm presented in Section 4.5.

4.6.2 Optimization of a resonant metabeam

In this subsection, the wave-based methodology is applied to the optimization of
the mean square velocity of a 1m long aluminum beam with a square section of
side length 1cm and Clamped-Free boundary conditions. The beam is modeled
using Euler-Bernoulli elements and is subjected to a 1N force applied on its free
side. The resonant add-on is modeled by introducing an additional degree of
freedom corresponding to the mass and linked to the corresponding out of plane
dof of the bare structure via a spring element. The optimization variables are
the mass, stiffness and damping parameters of the periodic resonant add-ons
used to treat the host structure. The length of the UC is decided beforehand
and fixed to 5cm, hence the beam contains 20 UCs. The variables of the vector
of parameters are subsequently introduced:

• The added mass to the UC m (cannot be negative and shall not exceed
20% of the host structure’s).

• The stiffness of the spring k (cannot be negative).

• The hystertic damping loss facor of the spring η ∈[0 , 0.1].

• The position of the resonator in the UC (should be between 5mm and
4.5cm). The corresponding optimization variable β is normalized to be in
the [0 ,1] interval.

Thus the vector of parameters is given in equation (4.67) while Figure 4.7
provides a schematic representation of the beam and its parameters:

p =
[
k η m β

]T (4.67)

The objective function takes the form:
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Figure 4.7: Schematic representation of the metabeam and its parameters

f(p) =
∫ ω+

ω−

1
N

N∑
i=1

ω2 |Xi(p, ω)|2 dω (4.68)

Where Xi(p, ω) is the frequency forced response of the ith section of the
waveguide for a unitary load on the free side and N is the number of UCs.
From a geometric point of view, moving the resonator e.g. to the right can be
accomplished by lengthening the elements to its left and shortening the elements
to its right by an equal amount. Therefore, the computation of derivatives
with respect to β involves the matrix derivatives of Euler-Bernoulli elements
with respect to their length. However, when evaluating models with different
resonator positions, elements are not lengthened resp. shortened as it would
lead to high length ratios between elements when the resonator approaches
one of the UC’s end. Instead, for a given resonator position, a mesh size is
decided according to the shortest distance between the resonator and the UC’s
ends and re-meshing occurs at each iteration. For the optimization, the 5th
mode of the bare structure around 712Hz is targeted as shown in Figure 4.8.
The frequency band of optimization, 648Hz-919Hz, is defined by the two anti-
resonances surrounding the 5th mode in the direct forced response of the bare
structure. The second order optimization algorithm described in Section 4.5 is
applied for a random starting point p0. The first order optimality tolerance ε1
and the step size tolerance ε2 are set respectively to 10−5 and 10−6. In Figure
4.8, the direct forced response for the bare structure, the starting point of the
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optimization, and the optimum are shown. Additionally, the response at section
1 (near the clamped side) is presented for the starting point and the optimum
so that the stopband behavior can be evaluated in both cases. The value of
the optimization variables at each iteration can be observed in Figure 4.9 while
Figure 4.10 shows the evolution of the objective function. Unsurprisingly,
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Figure 4.8: Response of the bare structure (direct), starting point (direct and
far field) and optimum (direct and far field). The vertical dashed lines indicate
the frequency band of optimization

maximizing the added mass and loss factor results in optimal performances.
However, having the tuned resonance frequency on the targeted mode or at
the center of the targeted frequency band does not. Similarly, the resonator’s
position in the UC is not a neutral parameter. These observations cannot be
predicted from simple dispersion analysis and highlight the need to account for
boundary conditions, finiteness and source location properties during the design
phase.

4.6.3 Optimization of a multi-resonant metabeam

Given the vibration attenuation obtained in subsection 4.6.2 the case of multi
resonant systems is investigated to see if it is possible to target several modes
simultaneously without increasing the percentage of added mass. A 15 cm long
UC with 3 resonators is considered. The resonator’s positions are fixed at 4.5 cm
of their respective 5 cm long sub-UCs. The length of the beam is also extended
to 1.5 m as to be a multiple of the 15 cm long triple UC and Clamped-Free
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Figure 4.9: Evolution of the resonator’s tuned frequency, mass, damping ratio
and position
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Figure 4.10: Evolution of the objective function

boundary conditions are used. The targeted frequency band, 188Hz-408Hz is
defined by the anti-resonances surrounding the 4th and 5th modes of the host
structure. As in the previous case, the added mass of each resonator is limited
to 20% of that of the host structure in its sub UC. The damping loss factors
are also limited to 10%. The vector of material properties is given in equation
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(4.69):
p =

[
k1 η1 m1 k2 η2 m2 k3 η3 m3

]T (4.69)

Likewise, the objective function is still that of equation (4.68):

f(p) =
∫ ω+

ω−

1
N

N∑
i=1

ω2 |Xi(p, ω)|2 dω

The starting point of the optimization is chosen randomly with the additional
constraint that all three resonators have identical material properties to see
if this still holds for the optimum and during the optimization process. The
values of the convergence criteria are set to 10−4 for the first order optimality
tolerance and 10−7 for the step size tolerance. In Figure 4.11, the direct forced
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Figure 4.11: Response of the bare structure (direct), starting point (direct and
far field) and optimum (direct and far field). The vertical dashed lines indicate
the frequency band of optimization

response for the bare structure, the starting point of the optimization, and the
optimum are shown. Additionally, the response at section 1 (near the clamped
side) is presented for the starting point and the optimum so that the stopband
behavior can be evaluated in both cases. The values of the resonators’ attributes
at each iteration can be observed in Figure 4.12 along with that of the objective
function. The optimum is not really surprising. The added mass and damping
loss factor of all resonators reached the maximal allowed values and the tuned
resonance frequencies are spread over the optimization zone in order to cover
the maximum area.
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Figure 4.12: Evolution of the objective function and all three resonators’
properties

4.6.4 Optimization of the diffuse field transmission loss of a
resonant metapanel

In this subsection, the 2D WFEM framework is used in conjunction with
the method developed by Christen et al. [42] to evaluate and optimize the
transmission loss through a metapanel. The general lines of the transmission
loss computation are discussed in subsection 4.6.4 in order to introduce the
objective function. Then, the modeling of the panel, its parameters and the
optimization results are subsequently discussed in subsection 4.6.4.

Transmission loss through a weakly periodic structure

Two semi-infinite acoustic domains separated by a periodic structure filling
the space region −h ≤ z ≤ 0 are considered. An incident acoustic field is
present in the half space z ≤ −h which, by fluid structure coupling, leads to
a structural response X, a reflected acoustic field and a transmitted acoustic
field. The transmission loss is defined as the ratio between the intensity of
the incident field and that of the transmitted one. In 2016, Christen et al.
introduced a method based on the 2D WFEM to compute the transmission loss
through homogeneous multi-layer panels [42]. The method can be extended to
periodic structures assuming that the dimensions of the UC are smaller than all
acoustic wavelengths considered and that the structural response to a spatially
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harmonic load is approximately spatially harmonic. That is, the UC must be
subwavelength and the structure weakly periodic. First, the transmission loss for
an incident acoustic plane wave at circular frequency ω, acoustic wavenumber
k0 and incidence angles (θ, φ) is considered. Using the complex notation, the
plane wave has the form:{

Pinc = Pie
−ikzze−ikyye−ikxx

kz = k0 cosφ, ky = k0 sin θ sinφ, kx = k0 cos θ sinφ (4.70)

Its transmission loss, τ(ω, θ, φ), can be computed by linking the structural
displacement to the transmitted and reflected acoustic pressures. Indeed, the
continuity of the normal velocity should hold at the two fluid-structure interfaces:

∂v

∂t
= −∇P

ρair
(4.71)

In equation (4.71) P is the pressure on the fluid domain, v is the particle velocity
and ρair is the density of the air. Taking both the spatial and temporal Fourier
transforms this equation can be written on both fluid-structure interfaces:

Pr = Pi −
iρairω

2

kz
X− (4.72)

Pt = iρairω
2

kz
X+ (4.73)

with X− the out of plane structural displacement at the incident side and
X+ the out of plane displacement at the transmission side. The reflected and
transmitted pressure fields take the form:{

Pref = Pre
ikzze−ikyye−ikxx

Ptra = Pte
−ikzze−ikyye−ikxx

(4.74)

Following the logic of subsection 4.4.1, the complete structural response X can
be evaluated by solving:(

D(kx, ky) +A+(kz) +A−(kz)
)
X = 2Fi (4.75)

In equation (4.75), Fi is the force vector associated to the incident pressure field
while A+(kz) and A−(kz) integrate the parts of the reflected and transmitted
pressure fields that scale linearly with the structural displacement. The factor
2 comes from the fact that the reflected pressure is derived from both the
displacement and the incident pressure. Once the structural displacement is
known, the quadratic amplitude of transmitted pressure field can be evaluated:

|Pt|2 = ρairω
2

Nkz
X∗+X+ (4.76)
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With X+ the structural displacement at the interface and N the dimension of
X+. The transmission loss τ(ω, θ, φ) is then defined as:

τ(ω, θ, φ) = |Pt|
2

|Pi|2
(4.77)

The diffuse transmission loss at the circular frequency ω can then be obtained
as:

τd(ω) =
∫ 2π

0
∫ π

2
0 τ(ω, θ, φ) sin θ cos θ dθ dφ∫ 2π
0
∫ π

2
0 sin θ cos θ dθ dφ

(4.78)

while the global diffuse field transmission loss on the frequency range [ω−, ω+]
is defined by:

τg(ω−, ω+) =
∫ 2π

0
∫ π

2
0
∫ ω+
ω− τ(ω, θ, φ) sin θ cos θ dθ dφ dω∫ 2π

0
∫ π

2
0
∫ ω+
ω− sin θ cos θ dθ dφ dω

(4.79)

Finally, while the present section maintained the distinction between X+ and
X− (in accordance to [42]) these vectors are equal in subsection 4.6.4 because
shell elements are used to model the metapanel.

Numerical modeling and results

The method described in subsection 4.6.4 is applied to a metapanel. The bare
panel is 4 mm thick and mass spring systems are added to it periodically. The
UC is chosen to be 1cm by 1cm which guarantees that the subwavelength
condition is respected. The host structure’s UC is modeled in Ansys APDL 17.0
with elements SHELL181. Its mesh is shown in Figure 4.13. The additional
dof of the mass is connected to the central node of the UC and the parameters
of the model are the added mass, the stiffness of the spring and the hysteretic
damping. The mass is constrained so that it does not exceed 10% of the host
structure’s mass while the damping is limited to 10%. The parameter vector is:

p =

 kη
m

 (4.80)

The aim of the optimization is to mitigate the decrease of transmission loss in
the 1900-6000 Hz frequency range caused by the structural-acoustic coincidence
(see Figure 4.14) hence the objective function is:

f(p) =
∫ 2π

0
∫ π

2
0
∫ ω+
ω− τ(ω, θ, φ, p) sin θ cos θ dθ dφ dω∫ 2π

0
∫ π

2
0
∫ ω+
ω− sin θ cos θ dθ dφ dω

(4.81)
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Figure 4.13: Unit Cell of the host structure

where τ(ω, θ, φ, p) is the transmission loss for an incident acoustic wave at circular
frequency ω and angles (θ, φ) and parameter vector p. This function satisfies the
conditions of Section 4.1 (see equation (4.77)), therefore the additional cost of
computing its derivatives is low. The optimization is carried out starting from
a random point in the design space with stopping criteria values set to 10−16

for the first order optimality tolerance and 10−7 for the minimal step size. A
comparison between the TL of the bare structure and that of the optimal design
is given in Figure 4.14. Additionally, Figure 4.15 shows the optimization path
of the resonators attributes as well as the value of the objective function. As
expected, maximizing the TL requires to maximize both the mass and damping
of the resonator and the optimal tuned frequency is close to that of the minimal
TL for the bare structure. The optimum is reached in a few iterations despite
the starting point being far from the optimal values, proving the efficiency of
the optimization methodology.

4.7 Conclusions and perspectives

In this chapter, first and second order derivatives were derived for the 1D and 2D
WFEM via an intrusive methodology. Additionally, a second order optimization
algorithm based on the sequential quadratic programming paradigm [25] was
proposed to exploit the derivatives to their fullest. The proposed algorithm
combines an ellipsoidal trust-region method [157, 54, 115] with a line search
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method when appropriate. When it is not, the algorithm reduces to the
ellipsoidal trust-region method. Combined, both contributions form a framework
for the optimization of 1D and 2D periodic structures. In the 1D case, the size of
the waveguide, the boundary conditions and eventual loads can all be taken into
account during the optimization process. In the 2D case, only infinite structures
are considered but the load’s characteristics can still be accounted for. This is
demonstrated in the numerical examples in which the proposed methodology
is used to successfully optimize the vibro-acoustic performances of metabeams
under clamped-free boundary conditions and the diffuse field transmission loss
of a metapanel. The proposed methodology accounts for both strong and weak
points of the WFEM. Namely, the decoupling of the computation cost from the
size of the waveguide and the lower accuracy of the WFEM as compared to FEM
modeling. It is versatile and can be used in a wide range of applications including
parameter identification, homogenization, model updating, design optimization
and potentially damage detection. Further technical developments will focus
on the incorporation of model order reduction in the proposed framework
and its extension to other UCM techniques such as the shift cell operator
method. The former could prove challenging because rigorously, the derivatives
of all projection matrices are required to ensure the accuracy of the gradient
and Hessian matrix of objective functions [11]. Applications with complex
cases including 3D geometric parameters and topology optimization [191, 71]
will also be considered, they may require to recast some of proposed formula
for eigenvalue and eigenvector derivatives within adjoint and adjoint-adjoint
frameworks [81, 94] in order to quickly provide low dimensional approximation of
the hessian matrix that could be used with conjugate gradient methods [180, 46].
Similar ideas were proposed in [193, 158] for deep learning and aerodynamic
shape optimization respectively.



Chapter 5

Wavenumber Extraction

Part of this chapter has been submitted as: "R.F. Boukadia, C. Claeys, C. Droz,
M. Ichchou, W. Desmet, E: Deckers. An INverse COnvolution MEthod for
wavenumber extraction (INCOME): formulations and applications. Journal of
Sound and Vibration, Manuscript in revision, 2021."

Wavenumber extraction is a process by which a displacement field in a N-
dimensional medium is converted to a finite collection of (N-1) dimensional
manifolds that contains information about plane wave propagation in that
media. It is an inverse problem. This chapter deals with the cases N = 1
and N = 2. For N = 1 one seeks to extract a finite set of wavenumbers that
characterize wave propagation inside the medium which in essence boils down
to performing an inverse WFEM. In the case N = 2 one wants to know a finite
collection of continuous wavenumbers functions parametrized by their direction
of propagation given by the angle θ. That is, k = fi(θ). An ideal outcome
of this process is illustrated in Figure 5.1. Obviously, wavenumber extraction
shares links with both the Fourier and Laplace transforms but differs from them
in a crucial way. That is both the aforementioned transformations produce
a single N-dimensional output (in either R or C) when fed an N-dimensional
input while wavenumber extraction leads to several (N-1)-dimensional outputs
giving the "sharpness" observed in Figure 5.1 with contrast to the blur usually
obtained when using the Laplace or Fourier transforms (see e.g. Figure 2.5).
In practice this blur is problematic because it prevents a precise evaluation of
both the phase velocity and spatial attenuation of waves traveling in a given
direction inside the media.

In order to tackle this issue many wave extraction methods have been developed
and the most important were presented in the state of the art (Chapter 2.5). In

89
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Figure 5.1: Illustration of the output of an ideal wavenumber extraction process
in the 2D case

the one-dimensional case, Mc Daniel type of methods have been quite successful
[137, 138, 210]. These methods leverage the general analytical expression that
describes the displacement field in a 1D homogeneous or periodic medium to
perform a nonlinear fit of the measured displacement field. The downside of
this class of methods is that they rely on nonlinear non-convex optimization
problems, thus issues regarding the presence of multiple local minima can arise.
On the other hand, these methods typically have a very low sensitivity to noise
and are able to deal with scattered measurements. Another interesting category
of methods for 1D wavenumber extraction is the class of ’linear methods’,
mamely, the Prony series method [108, 97, 38, 96] and the ESPRIT algorithm
[163, 131, 132]. Both methods need periodic sampling of the input data and only
require the solving of well posed linear systems in order to correctly estimate
the wavenumbers. The advantage of this class of methods is that it relies on
solving linear problems and thus avoid issues related to non-convex optimization.
On the other hand, periodic sampling of the wave-field is required and the
Prony series method in particular is very noise sensitive. Though attempts
to extend these methods to the 2D case were made [96, 132], they produce a
finite, scattered set of wavenumbers pairs and thus do not meet the proposed
definition of the wavenumber extraction process.

At this point, two class of methods have been proposed in the literature to
properly deal with 2D wavenumber extraction: (1) The Inhomogenous Wave
Correlation [21, 187, 186, 130] (IWC) that works by maximizing the correlation
function between a measured displacement field and a parametric function that
depends on a wavenumber and (2) the Inverse Wave Decomposition [40] (IWD)
that generalizes Mc Daniel’s method to the 2D case by proposing a fit for the
displacement field. Both methods however have issues. Because it is based
on a correlation function, the IWC only works well when many wavelengths
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are present in the measured displacement field making it unsuitable at low
frequencies. Also, it never returns an exact value for the wavenumber even
when given noiseless data. The IWD on the other suffers from the opposite
problem. Because it fits the displacement field with a continuous (integral)
sum of plane waves it has to retrieve a high number of wave amplitudes
and wavenumbers (when the structure studied is not isotropic) such that
the associated optimization problem becomes practically unsolvable at higher
frequencies outside of the modal regime where few plane waves are needed in
order to obtain a good fit.

Inspired by the success of the linear class of methods in the 1D case and the
gaps present regarding the methods available for 2D wavenumber extraction
we propose a method belonging to the former category that works in the 2D
case and manages to encode the full k-space in a single convolution kernel
determined by solving a linear problem system formed using a periodic sampling
of the displacement field. The proposed method is named INCOME (INverse
COnvolution MEthod) and is presented in details in Sections 5.1, 5.2 and 5.3.
Its performance is assessed and compared to other methods of the literature in
Section 5.4. In Section 5.5, INCOME is used on experimental test cases while
Section 5.6 summarizes the main conclusions and perspectives for INCOME.

5.1 The 1D inverse convolution method

In this section, the 1D version of the proposed method is presented. First,
the case of a single exponential function is studied in subsection 5.1.1: the
associated recurrence relationship and its associated convolution equivalent are
derived. In subsection 5.1.2 the signal studied is the sum of an exponential
function and another one with the opposite wavenumber. This central symmetry
in the wavenumber domain induces a palindromic symmetry in the convolution
operator the proposed method seeks to estimate. The number of effective
parameters estimated is thus brought back to one. The general case with many
waves and their reflections is considered in subsection 5.1.3 and a regularization
technique taking advantage of the palindromic symmetry is derived in subsection
5.1.4. That technique improves the accuracy of the propagation constant’s
estimates and enforces the relevant wavenumber symmetries. Lastly, a method
to predetermine the number of independent exponential functions present in
the signal is described in subsection 5.1.5.
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5.1.1 Main Principle

In this subsection the principle behind the proposed methodology is presented
by considering the propagation of a single plane wave on a finite 1D domain.
The size of the domain is Lmax and it is assumed to occupy the space region
x ∈ [0, Lmax]. The displacement field is represented by a function U of the
form:

U(x) = Ae−ikx. (5.1)

In equation (5.1), k is a complex wavenumber and A is the complex wave
amplitude. Both are unknown but the aim is only to retrieve k. To that end,
the wavefield U is sampled at N points xn periodically spaced with distance L
as per equation (5.2): xn = x0 + nL

Un = U(xn) + εn
. (5.2)

In equation (5.2), xn is the abscissa of the nth measurement point while εn is
the measurement error on the nth point. In case there is no error, the sequence
(Un)n∈J1,NK is a geometric sequence with common ratio λ = e−ikL also called
propagation constant. The propagation constant can be computed by taking
the ratio of any two successive measurements as in equation (5.3):

λ = Un+1

Un
. (5.3)

The wavenumber k can then be retrieved:

k = i

L
ln(λ). (5.4)

In most cases however, the measurements are not perfect, hence only an estimate
of the propagation constant can be computed. The most intuitive way to do
so is to average the ratios of consecutive terms of the sequence as in equation
(5.5):

λ̂1 = 1
N − 1

(
N−1∑
n=1

Un+1

Un

)
. (5.5)

Equation (5.5) leverages all the measurements to form a robust estimate
of the propagation constant. However, it cannot be generalized in case
several propagation constants must be retrieved from one set of measurements.
Consequently, an estimate using a method easier to generalize is derived. When
no error is present in the measurements, the sequence (Un)n∈J1,NK satisfies:

∀n ∈ J1, N − 1K, Un+1 − λUn = 0. (5.6)
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To form an estimate using this relationship it is helpful to see it as a convolution
product between two sequences. First, the convolution product of two infinite
sequences is defined. For two infinite sequences (gn)n∈Z and (hn)n∈Z their
convolution product (en)n∈Z is defined in equation (5.7):

e = g ∗ h = h ∗ g

en =
∞∑

l=−∞
gn−lhl

. (5.7)

This paradigm can be extended to finite sequences. Considering two finite
sequences (gn)n∈J1,NK and (hn)n∈J1,MK such that M ≤ N their convolution
product (en)n∈J1,N+1−MK is defined by:

e = g ∗ h = h ∗ g

en =
M∑
l=1

gn+M−lhl

. (5.8)

In this context, equation (5.6) can be rewritten as U ∗ (1,−λ) = 0, therefore a
good estimate of λ can be found by least square optimization:

(α, β) = argmin {‖ U ∗ (a, b) ‖2, ‖ (a, b) ‖2= 1}

λ̂ = −β
α

. (5.9)

The first part of equation (5.9) seeks to find a two term sequence that
produces a new sequence of minimal norm when convoluted with the discretized
displacement field. The constraint ‖ (a, b) ‖2= 1 is imposed because the norm
of the product scales linearly with that of each sequence involved. Therefore,
making comparisons at equal norms is necessary. This means α cannot be
chosen equal to 1 hence λ̂ is defined by the ratio of β and α.

Finally, a practical implementation of equation (5.9) is proposed. By identifying
a finite sequence of n terms with the corresponding vector in CN the convolution
product can be put in matrix form. For a sequence (Un)n∈J1,NK the matrix
Ci(U) is defined as per equation (5.10):

Ci(U) =


Ui Ui−1 . . . U1
Ui+1 Ui . . . U2
...

...
...

...
UN UN−1 . . . UN+1−i

 (5.10)
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With this notation the convolution product of equation (5.9) can be rewritten:

U ∗ (a, b) = C2(U)
[
a
b

]
=


U2 U1
U3 U2
...

...
UN−1 UN−2
UN UN−1


[
a
b

]
(5.11)

The system of equation (5.9) can be rewritten as:
[
α
β

]
= argmin

{
x∗C∗2 (U)C2(U)x, ‖x‖2

2 = 1
}

λ̂ = −β
α

(5.12)

This can be solved by computing the eigenvalues and eigenvectors of a
Hermitian positive matrix. α and β are the first and second components
of the eigenvector of D2(U) = C∗2 (U)C2(U) associated to its smallest eigenvalue
(see Courant–Fischer–Weyl min-max theorem).

5.1.2 Reflected Wave

In most cases, the wave field is not as simple as a single plane wave propagating
in one direction. Due to the boundaries of the finite domain a reflected wave
field with the opposite wavenumber should also be present. In that case, the
displacement field takes the form:

U(x) = Ae−ikx +Beikx (5.13)

Consequently, the general form for (Un)n∈J1,NK the sequence of measurements
is: Un = Aλn +Bλ−n + εn

λ = e−ikL
(5.14)

Because the sequence is the sum of two geometric sequences, its characteristic
polynomial is:

PU = (X − λ)
(
X − 1

λ

)
= X2 −

(
λ+ 1

λ

)
X + 1 (5.15)

Noting µ = λ + 1
λ the recurrence relationship for the sequence U in case the

error is null is derived:

∀n ∈ J1, N − 2K, Un+2 − µUn+1 + Un = 0 (5.16)
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Or, in a better way:

∀n ∈ J1, N − 2K, (Un+2 + Un)− µUn+1 = 0 (5.17)

Equations (5.16) and (5.17) can also be understood as convolution product
between a symmetric three term long sequence and the displacement field. An
estimate µ̂ of µ can be obtained by solving the least square problem of equation
(5.18) :

(α, β, α) = argmin {‖ U ∗ (a, b, c) ‖2, ‖ (a, b, c) ‖2= 1, c = a}

µ̂ = −β
α

(5.18)

Estimates for the pair of propagation constants are then obtained as:(
λ̂,

1
λ̂

)
=
(
µ̂+

√
µ̂2 − 4
2 ,

µ̂−
√
µ̂2 − 4
2

)
(5.19)

In equation (5.20) the convolution product is put in matrix form similarly to
equation (5.11):

U ∗ (a, b, a) = H1(U)
[
a
b

]
=


U3 + U1 U2
U4 + U2 U3

...
...

UN−1 + UN−3 UN−2
UN + UN−2 UN−1


[
a
b

]
(5.20)

Equation (5.21) introduces a new matrix A1:

A1 =
(

2 0
0 1

)
(5.21)

which accounts for the fact that:

‖ (a, b, a) ‖2
2=
[
a
b

]∗
A1

[
a
b

]
(5.22)

The system of equation (5.18) is then rewritten in the form of equation (5.23):
[
α
β

]
= argmin {x∗H∗1 (U)H1(U)x, x∗A1x = 1}

µ̂ = −β
α

(5.23)

A solution can be obtained by finding the eigenvector associated to the smallest
eigenvalue of the generalized eigenvalue problem:

(H∗1 (U)H1(U))x = ρA1x (5.24)
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5.1.3 General 1D formulation

Now, the general case is considered. The displacement field is comprised of
multiple plane waves and their reflections. It takes the form:

U(x) =
nw∑
p=1

Ape
−ikpx +Bpe

ikpx (5.25)

Consequently, the general form for (Un)n∈J1,NK the sequence of measurements
is: 

Un =
nw∑
p=1

(
Apλ

n
p +Bpλ

−n
p

)
+ εn

∀p ∈ J1, nwK, λp = e−ikpL

(5.26)

Since it is a sum of geometric sequences, its characteristic polynomial is:

PU =
nw∏
p=1

(X − λp)
(
X − 1

λp

)
(5.27)

Because the propagation constants come in pairs
(
λp,

1
λp

)
, PU is a palindromic

polynomial of even degree. This means it is of the form:
PU =

2nw∑
p=0

apX
p

∀p ∈ J0, 2nwK, a2nw−p = ap

(5.28)

Therefore PU can be rewritten as:

PU = anwX
nw +

nw−1∑
p=0

ap(Xp +X2nw−p) (5.29)

The corresponding recurrence relationship for the sequence U is then:

∀n ∈ J1, N − 2nwK, anwUn+nw +
nw−1∑
p=0

ap(Un+p + Un+2nw−p) = 0 (5.30)

As in the previous two cases, an estimate of the coefficients ap is obtained
by solving a least square problem. This least square problem comes from
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understanding equation (5.30) as a convolution product. Two matrix families
are introduced. First the family Anw :

Anw =


2 0 . . . 0
0 2 . . . 0
... . . . 2

...
0 . . . . . . 1

 (5.31)

For all natural integers Anw is an (nw + 1) × (nw + 1) diagonal matrix. The
first nw diagonal terms are equal to 2 while the last one is equal to 1. Like
for A1 introduced in equation (5.21) this can be understood as weighing in the
least-squares problem introduced to account for the fact that most coefficients
appear two times in the recurrence relationship of equation (5.30). The second
family of matrices to be introduced is the family Hnw(U) that represents the
matrix form of the convolution product of a symmetric sequence of 2nw + 1
terms with the sequence of measurements:

Hnw(U) =


U2nw+1 + U1 U2nw + U2 . . . Unw+2 + Unw Unw+1
U2nw+2 + U2 U2nw+1 + U3 . . . Unw+3 + Unw+1 Unw+2

...
... . . .

...
...

UN−1 + UN−2nw−1 UN−2 + UN−2nw . . . UN−nw + UN−nw−2 UN−nw−1
UN + UN−2nw UN−1 + UN−2nw+1 . . . UN−nw+1 + UN−nw−1 UN−nw


(5.32)

Finally, by finding the smallest eigenvalue of (5.33), the coefficients of the PU
are given by the associated eigenvector.

(H∗nw(U)Hnw(U))x = ρAnwx (5.33)

The propagation constants’ estimates are then obtained by finding the roots of
the polynomial PU .

5.1.4 Palindromic transform

Due to numerical issues the solutions of PU (X) = 0 may violate the relationship
between the pairs of propagation constants

(
λ, 1

λ

)
. To prevent this, a

transformation of PU is performed. First, a rational fraction Q is introduced in
equation (5.34):

Q(X) = PU (X)
Xnw

= anw +
nw−1∑
p=0

ap(Xnw−p +Xp−nw) (5.34)

The change of variables Y = X + 1
X is then performed for Q. This yields a

polynomial R of degree nw whose roots are µi =
(
λi + 1

λi

)
. After finding the
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roots µi of R, the pairs of propagation constants are obtained using equation
(5.35) : (

λi,
1
λi

)
=
(
µi +

√
µ2
i − 4

2 ,
µi −

√
µ2
i − 4

2

)
(5.35)

This process is similar to the transformation of quadratic palindromic eigenvalue
problems that appear in optimal control theory and for the 1D WFEM [214].

5.1.5 Number of waves

Before determining what the propagation constants and wavenumbers are, it is
necessary to know how many waves are present in the wavefield. That number
may be known a priori using known physical or numerical properties of the
phenomenon generating the signal. When that is not the case, that number may
be determined by using a stability diagram as in [210] but an alternative method
is proposed here. Indeed, the number of waves nw can be determined by looking
at the rank of the matrix Hn(U). As long as nw ≤ n the rank of Hn(U) is equal
to nw. Practically, the rank of the matrix Hn(U) is determined by looking
at its singular values, as the rank is equal to the number of non-zero singular
values. Because of numerical precision and experimental error, singular values
below a certain threshold should be considered null. Procedures for appropriate
truncation critera can be found in [164, 73]. In general the truncation value St
should at least verify St ≥ max(αSmax, Smaxnr ) with α the numerical precision,
nr the signal to noise ratio and Smax the lagerst singular value of Hn(U).

5.2 The 2D inverse convolution method

This section deals with the 2D version of INCOME. In subsection 5.2.1 the
2D version of INCOME is intuitively derived using the convolution framework
and partially justified by comparison to the 2D Wave Finite Element Method.
Finally, subsection 5.3 details how to extract the proper K-Space corresponding
to a given convolution operator.

5.2.1 General version of the 2D case

The 1D version of the proposed method works by finding a (symmetric)
convolution kernel that results in a null sequence when multiplied with a
sequence of (periodically spaced) measurements. An intuitive way to extend
the method to the 2D case would be to search for a 2D symmetric convolution
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kernel that would do the same with a 2D sequence of measurements. This
introduces two issues. Firstly, is it possible to mathematically justify this
approach? Secondly, what would be the size of such a convolution kernel and
which among the many forms of 2D symmetry should it have? Both questions
are partially answered when looking at the 2D (WFEM) when written as the
explicit assembly of a 2D periodic medium from identical unit cells [28, 4]:

Fr,s =(D11 +D22 +D33 +D44)Ψr,s + (D13 +D24)Ψr,s+1 + (D12 +D34)Ψr+1,s

+ (D31 +D42)Ψr,s−1 + (D21 +D43)Ψr−1,s

+D14Ψr+1,s+1 +D23Ψr−1,s+1 +D32Ψr+1,s−1 +D41Ψr−1,s−1
(5.36)

In equation (5.36), setting all external forces Fr,s to zero and applying the
Floquet-Bloch theorem leads to the the classical form of the 2D WFEM. Another
way of approaching equation (5.36) is to consider it as a convolution product
between a 2D sequence of vectors (representing structural displacements) and a
2D sequence of matrices (representing the partial differential equation governing
the periodic medium). When no forces are present, this convolution product
should result in a null sequence. This validates the general concept proposed
to extend the present method to the 2D case and specifies the size, shape and
level of symmetry of the generic 2D convolution kernel, S, used for the retrieval
of a single wave. A representation of this kernel is provided in equation (5.37)
by using tables:

S1,3 S2,3 S3,3
S1,2 S2,2 S3,2
S1,1 S2,1 S3,1

=
e c d
b a b
d c e

(5.37)

The symmetries of equation (5.37) mimic those of equation (5.36) and can also
be linked to the Hermitian symmetry of the k-space:

∀(i, j) ∈ J1, 4K2, Dij = DT
ji (5.38)

Assuming only one wave type is present in a sequence of 2D (periodically spaced)
perfect measurements (Ui,j)(i,j)∈J1,NK×J1,MK, there exists a 2D convolution
operator S in the form of equation (5.37) such that:

V = U ∗ S = 0 (5.39)

Or, in a explicit form:

∀(p, q) ∈ J1, N − 3K2, Vp,q =
∑

(i,j)∈J1,3K2

Si,jUp+3−i,q+3−j = 0 (5.40)

Similarly to the 1D case, it is possible to capture more waves by taking the
convolution product of several single wave operators. For two waves, the general
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form is as follows:

R = S1∗S2 =

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

m j g i l
k e c d h
f b a b f
h d c e k
l i g j m

(5.41)

The coefficients of the 2D convolution kernels can be determined via linear
least-squares optimization that results in an eigenvalue problem. The process is
similar to the 1D case and is detailed for the generic one wave kernel. First,
the matrix J1(U) is introduced in equation (5.42):

J1(U)) =



U2,2 U3,2 + U1,2 U2,3 + U2,1 U3,3 + U1,1 U3,1 + U1,3
U3,2 U4,2 + U2,2 U3,3 + U3,1 U4,3 + U2,1 U4,1 + U4,3
...

...
...

...
...

Ui,j Ui+1,j + Ui−1,j Ui,j+1 + Ui,j−1 Ui+1,j+1 + Ui−1,j−1 Ui+1,j−1 + Ui−1,j+1
...

...
...

...
...

UN−1,M−1 UN,M−1 + UN−2,M−1 UN−1,M + UN−1,M−2 UN,M + UN−2,M−2 UN,M−2 + UN−2,M


(5.42)

The matrix B1 representing the norm of the 2D convolution sequence S as a
function of the coefficients vector is then introduced:

B1 =


1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

 (5.43)

Finally, the vector of convolution coefficients [a, b, c, d, e]T can be obtained by
solving the Hermitian eigenvalue problem:

(J∗1 (U)J1(U))x = ρB1x (5.44)

The coefficients’ vector is the eigenvector for the smallest eigenvalue ρ of equation
(5.44). This process can easily be generalized to the 2 waves convolution kernel.

5.2.2 Extracting wavenumbers and k-space

This subsection describes how wavenumbers and k-space can be extracted from
the knowledge of the convolution kernel of the sequence. The process can be
compared to wavenumbers computations in the 2D WFEM framework. Let Lx
and Ly be the step size between measurements in the x and y direction on the
grid and S the convolution kernel determined in the previous part. A pair of
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wavenumbers (kx, ky) and its associated pair of propagation constants (λx, λy)
are introduced. They are linked by the relation:λx = e−ikxLx

λy = e−ikyLy
(5.45)

We introduce the infinite 2D sequence V (kx, ky) corresponding to the sampling
of the displacement field of a plane wave with wavenumbers (kx, ky) on the
regular grid.

∀(n,m) ∈ Z2, Vn,m = λnxλ
m
y (5.46)

The pair of wavenumbers (kx, ky) is said to be part of the extended K-Space
Ke if and only if V (kx, ky) ∗ S = 0. In case S is the generic one wave kernel of
equation (5.37), this condition is explicitly developed:

a+ b

(
λx + 1

λx

)
+ c

(
λy + 1

λy

)
+ d

(
λx
λy

+ λy
λx

)
+ e

(
λxλy + 1

λxλy

)
= 0

(5.47)
Equation (5.47) can be understood as scalar form of the direct 2D WFEM. As
such, it shares the same features. Namely, it can be reduced to a polynomial if
either λx or λy (resp. kx or ky) is fixed. Solution for the other variable will be
found and the pairs will belong to the extended K-space Ke. However these
solutions do not have much meaning as it is likely their directions of propagation
and directions of decay do not coincide. Forcing this to happen leads to the
definition of the proper K-Space Kp. A pair of wavenumbers (kx, ky) belongs
to Kp if and only if:

∃k ∈ C, ∃θ ∈ R, kx = k cos(θ), ky = k sin(θ), V (kx, ky) ∗ S = 0 (5.48)

With that supplementary constraint the direction of propagation and decay
are forced to coincide with each other and are given by the angle θ. In case
θ = 0mod π2 , solving equation (5.47) reduces to finding the roots of a palindromic
polynomial as in the 1D case. To solve for other angles a continuation method
is used whereby the angle θ is the parameter. The proper K-Space Kp can then
be retrieved.

5.3 Experimental considerations

This section details some considerations related to the use of INCOME within
an experimental (noisy) context. In subsection 5.3.1 a modification is brought to
the formulation that enables to weigh the convolution residuals. Formulas based
on coherence data are proposed for the weights and a two step estimation that
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discards the worst data is proposed. The proposed enhancements help improve
the accuracy of INCOME when measurements are noisy, the measurement grid
is distorted or when there are sources in the measurement area. In subsection
5.3.2 several alternative forms of 2D convolution kernels are proposed. These
forms enable a reduction of the number of parameters to estimate by accounting
for additional wave propagation symmetries and by drawing analogies with
Finite-Difference modeling. When appropriately used, these should also help
improve the accuracy of INCOME.

5.3.1 Weighted residuals and two step estimates

In section we assume that periodic sampling of a wave field has been achieved
using e.g. a laser vibrometer. In that case, not only the displacement U but
also the coherence C should be available. We start by considering a 1D case
with only one wave and its reflection. The sequence of measurements is thus
(Un)n∈J1,NK and the corresponding coherence data is similarly referred to as
(Cn)n∈J1,NK. The original formulation of INCOME works by minimizing the
coefficients (a, b) ∈ C2 that minimize the norm of the residual sequence R
defined as the convolution product between U and (a, b, a):R = U ∗ (a, b, a)

∀i ∈ J1, N − 2K, Ri = a (Ui+2 + Ui) + bUi+1

(5.49)

The norm of the sequence R being defined as:

‖ R ‖2
2=
∑
|Ri|2 (5.50)

While this works well in ideal cases with little noise present and no source
in the measurement area, this behaviour could be problematic when these
conditions are not met. Firstly, |Ri|, scales with the norm of the displacements
Ui, Ui+1, Ui+2 which means that at equal relative error points with higher
displacement amplitude have a higher influence on the obtained convolution
kernel. In case the excitation source is present on the measurement area, this
would results in the points having the most influence being ones that violate
the free-wave assumption embedded inside INCOME. A second problem with
equation (5.50) is that it does not exploit the presence of the coherence data
and treats all measurements as if they are equally accurate. Both problems
can be dealt with by introducing weights wi for the residual creating a new
sequence S such that:

∀i ∈ J1, N − 2K, Si = wiRi (5.51)
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In matrix form this can be recast as S = WR with W a diagonal matrix
containing the weights as diagonal elements:

S1
S2
...

SN−2

 =


w1 0 . . . 0
0 w2 . . . 0
... . . .

. . . ...
0 . . . . . . wN−2




R1
R2
...

RN−2

 (5.52)

The optimization problem should then be changed to minimizing the norm of S
instead of that of R which practically is done by working Hw

1 (U) = WH1(U)
instead of H1(U) in equation (5.24).

We now propose a first family of weights, (wen)n∈J1,N−2K, that ensures that
residuals no longer scale with the magnitude of the local displacements:

wei = 1√
|Ui|2 + |Ui+1|2 + |Ui+2|2

(5.53)

It should be used when the excitation source (e.g. a shaker) is inside the
measurement field. A second family of weights, (wcn)n∈J1,N−2K, that exploits
the coherence data is also proposed:

wci =

√
Ci+1

Ci|Ui|+ Ci+2|Ui+2|
|Ui|+ |Ui+2|

(5.54)

The formula of equation (5.54) is derived by taking the geometric mean of a
confidence indicator created for each term of the matrix H1(U). Indeed the
residual Ri is defined as:

∀i ∈ J1, N − 2K, Ri = a (Ui+2 + Ui) + bUi+1 (5.55)

Since a multiplies (Ui+2 + Ui) and b Ui+1. It is necessary to asses how much
certainty we have about both terms. For the term Ui+1, its coherence Ci+1 is
directly used as a proxy for that level of certainty (with 1 meaning absolute
certainty and 0 complete uncertainty). For the other term (Ui+2 + Ui) and b
Ui+1 things are not as straightforward as it is obtained as a sum. We therefore
chose a weighted average between the coherences of its two terms. The weights
of this average are chosen as the respective amplitudes of each term (|Ui| and
|Ui+2|). This choice reflects the fact that if Ui+2 � Ui, the accuracy of Ui+2 +Ui
would only depend solely on the accuracy of Ui (and conversely if the situation
were to be reversed). This explains the appearance of the term Ci|Ui|+Ci+2|Ui+2|

|Ui|+|Ui+2|
in equation (5.54). The square root comes from taking the geometric average
of both the confidence indicators used for both Ui+1 and (Ui+2 + Ui).
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In order to take advantage of both categories of weights, we and wc, a two step
estimation process for the optimal coefficients (a, b) is proposed. A first pair
of coefficients (a1, b1) is determined by using INCOME with the we weights.
The corresponding weighted residual sequence S = W e(U ∗ (a1, b1, a1)) is
then computed. The worst ten percent of the data is then filtered out when
determining the second estimates. This is done by introducing a new sequence
(δn)n∈J1,N−2K such that: δi = 1 if |Si| ≤ Smax

δi = 0 if |Si| > Smax
(5.56)

With Smax the 90th percentile of the absolute values of S. The second estimate
is then formed by using INCOME with the weights (wei δi)i∈J1,N−2K. Though
the proposed weighing and two step estimation strategies were discussed for the
simplest formulation of INCOME, they can be easily extended to the general
1D case and to the various 2D scenarios.

5.3.2 Alternative shapes for 2D convolution kernels

In this subsection, the use of alternative convolution kernels is discussed. The
aim here is to make the 2D version of INCOME more robust by limiting the
number of parameters to be estimated. This can be done in tow ways. Firstly, by
accounting for 2D wave propagation symmetries in the formulation. Secondly
by drawing analogy with finite difference stencils (see [109]) and INCOME
convolution kernels, new convolution kernels can be proposed for specific type
of structures.

General 2D convolution kernels derived for different symmetries

In this section we propose 2D convolution kernels that go beyond equations
(5.37) and (5.41) that only account for the most general central symmetry of
the K-Space. We start with different convolution kernels accounting for one
wave type. For "orthotropic" wave propagation, e.g. corresponding to elliptic
differential equations, equation (5.57) is proposed:

S1,3 S2,3 S3,3
S1,2 S2,2 S3,2
S1,1 S2,1 S3,1

=
d c d
b a b
d c d

(5.57)
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While the for isotropic wave propagation cases such as the Helmholtz equation
(5.58) is appropriate:

S1,3 S2,3 S3,3
S1,2 S2,2 S3,2
S1,1 S2,1 S3,1

=
c b c
b a b
c b c

(5.58)

In both equations (5.57) and (5.58) symmetries mirroring those of the k-space
are introduced in the convolution kernel in order to reduce the number of
independent coefficients to be estimated. This strategy can be extended for the
case of multiple waves by taking the product of several one-wave convolution
kernels. In the case of 2-waves convolution kernels the following form is proposed
for "orthotropic" wave propagation:

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

i g f g i
h d c d h
e b a b e
h d c d h
i g f g i

(5.59)

While wave propagation in highly symmetric media (not necessarily isotopic)
can be captured by the kernel of equation (5.60)

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

f e d e f
e c b c e
d b a b d
e c b c e
f e d e f

(5.60)

Convolution kernels derived by analogy with finite difference methods

In this paragraph, simplified convolution kernels for 2D wave propagation are
proposed. These kernels are derived by taking inspiration from finite difference
schemes [109] on regular grids that have been successfully used to model acoustic
waves and the vibration of plates [72, 100, 148, 209, 52]. By using second order
accurate central differences, the following convolution kernel is obtained for the
Helmholtz equation:

S1,3 S2,3 S3,3
S1,2 S2,2 S3,2
S1,1 S2,1 S3,1

=
0 b 0
b a b
0 b 0

(5.61)
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For wave propagation in thin isotropic thin plates satisfying Kirchhoff–Love
plate theory assumptions (5.62) can be used:

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

0 0 b 0 0
0 2b −8b 2b 0
b −8b a −8b b
0 2b −8b 2b 0
0 0 b 0 0

(5.62)

While wave propagation in highly symmetric plate type structures (e.g. sandwich
structures with regular hexagonal cores) can be dealt with using the kernel of
equation (5.63):

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

0 0 d 0 0
0 c b c 0
d b a b d
0 c b c 0
0 0 d 0 0

(5.63)

Finally, for orthotropic plate type structure (e.g. some composite plates and
sandwich structures) this stencil is recommended:

R1,5 R2,5 R3,5 R4,5 R5,5
R1,4 R2,4 R3,4 R4,4 R5,4
R1,3 R2,3 R3,3 R4,3 R5,3
R1,2 R2,2 R3,2 R4,2 R5,2
R1,1 R2,1 R3,1 R4,1 R5,1

=

0 0 f 0 0
0 d c d 0
e b a b e
0 d c d 0
0 0 f 0 0

(5.64)

Naturally, it would be possible to produce more complex stencils/convolution
kernels using higher order accuracy schemes but the proposed stencils should
be sufficient for most NVH-related applications.

5.3.3 Using data from different origins

This subsection describes how to increase the accuracy of INCOME based
wavenumber extraction by using data from different sources. This is based on
the fact that joint estimations can be obtained by concatenation of the modified
Hankel matrix that is characteristic of INCOME (see equations (5.20), (5.32)
and (5.42)). This matrix will be noted as H(U) irrespective of the number
waves of that one try to estimate or whether one is dealing with a 1D or 2D
problem.

In case one were to perform several measurements on the same structure or a
different structure leading to, e.g., three sequences of measurements U , V and
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W one can perform a joint wavenumber extraction using all the data available
by concatenating all three matrices:

H =

H(U)
H(V )
H(W )

 (5.65)

This leads to the matrix H of equation (5.65) which can then be used as any
of its three constituents in order to determine the coefficients of a palindromic
polynomial.

Another more subtle possibility for data augmentation concerns the case where
measurements are carried out on a given frequency band. In that case the
measurement sequence U is a smooth function of the circular frequency ω and
we note it U(ω). For a frequency ω0 we have:

U(ω0 + δω) = U(ω0) + δω
dU

dω
(ω0) + o(δω) (5.66)

That is as long as δω is small, U(ω0) and U(ω0 + δω) should be almost identical
thus one should be able to use them in order to improve the quality of the
estimates of the wavenumbers/K-Space at the frequency ω0 as outlined in
equation (5.65). It should also be noted that the first order effects related to
the term δω

dU
dω (ω0) will not introduce bias in the final results as long as one

samples symmetrically around ω0, e.g. (U(ω0 − δω), U(ω0), U(ω0 + δω)). Thus,
bias should only appear due to second (and higher even orders) effects. By
ensuring δω is small enough one can safely augment their data set and the
accuracy of the final wavenumber estimates.

5.4 Numerical validation and benchmarks

In this section we benchmark INCOME, the ESPRIT algorithm and the IWC
on a 1D case. Next the performance of INCOME and the IWC are compared
on two 2D cases. All the cases treated are numerical and noiseless, hence, this
is mostly a test of the ability of these methods to retrieve exact or quasi-exact
wavenumber estimates under perfect conditions. Experimental validations are
carried out in section 5.5.

5.4.1 Analytical Euler-Bernoulli Beam

In this subsection, INCOME, the ESPRIT algorithm and the IWC are used in
order to retrieve the dispersion curves of a cantilever Euler-Bernoulli beam of
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length L loaded at its end. The system of equations verified by the deflection
of the beam f(ω, x) is given in equation (5.67):

EI
∂4f

∂x4 − ω
2µf = 0

f(ω, 0) = 0, ∂f

∂x
(ω, 0) = 0

∂2f

∂x2 (ω,L) = 0, −EI ∂
3f

∂x3 (ω,L) = F

(5.67)

This enables analytical computation of the forced response and the dispersion
relationship:

k4 = µ

EI
ω2 (5.68)

The dispersion relation of equation (5.68) describes two pairs of waves. For each
pair one wave propagates in the positive direction while the other propagates in
the opposite direction. Additionally, one of these pairs corresponds to strongly
evanescent waves which are barely observable. For this application, the values
of F , µ and L are set to 1 while the product EI is set to 1 + 0.08i. Additionally,
the signal sampling period dl is chosen equal to L

100 = 0.01, hence, there are 101
samples. The three aforementioned wavenumber extraction methods are applied
to the displacement fields of equation (5.67) and the obtained wavenumbers
are compared to the analytical solutions of equation (5.68) in Figure 5.2. To
get a better view of the error introduced by each of the methods compared to
the analytical solution the relative error is presented for both propagating and
evanescent waves in the case of INCOME and of the ESPRIT algorithm while
only the error for the propagative wave is displayed in the case of the IWC as it
only returns one wavenumber. As expected, both INCOME and the ESPRIT
algorithm achieve close to numerical precision accuracy while the IWC do not
get below 10% relative error in the proposed frequency range. This is because
both INCOME and the ESPRIT algorithm are exact methods for the 1D case
while the IWC is an approximation and only works well at higher frequencies
where the number of wavelengths present in the displacement field is high and
that it is almost monochromatic.

5.4.2 Helmholtz Equation

In this subsection, the 2D INCOME, the IWD and the IWC are applied to a
solution of the 2D Helmholtz equation with the aim of retrieving its parameter
k. The equation and its parameter are defined in equation (5.69):

∇2f + k2f = 0 (5.69)
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Figure 5.2: Comparison of the wavenumbers obtained with INCOME, the
ESPRIT algorithm and the IWC for an Euleur-Bernoulli beam
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Figure 5.4: Randomly generated solution of the Helmholtz equation

To generate a valid random solution of equation (5.69) punctual sources of
random amplitudes, phases and positions are generated outside of the domain
of interest. The solution within the domain is then computed analytically since
the Green’s function of the equation is known and given in equation (5.70):

G(x, y) = i

4H
(1)
0

(
k
√
x2 + y2

)
(5.70)

Where H(1)
0 is a Hankel function of the first kind. In view of applying INCOME,

the value of k is chosen equal to 30. The sampling domain is a 1 by 1 square
centered around the origin and the sampling period dl is chosen equal to 0.02 in
both directions hence the sampling grid is 51 by 51 square grid. A realization
of this process is presented in Figure 5.4. Given the additional symmetries of
the Helmholtz equation, the INCOME is used with a convolution kernel S of
the form of equation (5.71).

S1,3 S2,3 S3,3
S1,2 S2,2 S3,2
S1,1 S2,1 S3,1

=
c b c
b a b
c b c

(5.71)

The general accuracy and computation time for INCOME, IWC (in the x
direction) and the IWD with 15 wave propagation directions are compared
in Table 5.1. It can be seen that INCOME is both the fastest and the most
accurate method for this case. The IWC also performs pretty well and generally
achieves accuracy comparable to that of the IWD while only requiring a fraction
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Method INCOME IWD IWC
Relative error [-] 5, 63 × 10−8 1, 25 × 10−3 2.34 × 10−3

Computation time (s) 1, 48 × 10−3 18.1 9.51 × 10−2

Table 5.1: Accuracy and CPU of wavenumber retrieval for INCOME, the IWD
and the IWD

of its CPU time. Noteworthy, convergence is not guaranteed for either the
IWC and IWD as they rely on nonlinear optimization. In particular, for the
IWC, accuracy may drop significantly for some of the wavefields generated if
the random wave front are mostly parallel to the x axis while the IWD is more
consistent in the final error obtained. On the other, for the IWD, it is not
guaranteed that increasing the number of plane waves in the field decomposition
will result in higher accuracy estimates while it certainly will increase the CPU
time. This issue exemplify why the IWC has been more popular than the IWD
despite the latter being generally more robust and accurate. The codes and
functions used to perform these comparison are available in Appendix C.

5.4.3 Orthotropic Plate

In this subsection, the 2D INCOME, and the IWC are applied to the
displacement field of a strongly orthotropic thin plate whose material properties
correspond to a laminate studied in [211]. The reason why the IWD is not
compared is because it does not not seem to converge in a reasonable CPU time
which is likely due to its high number of parameters and the fact that they have
different dimensions. The considered plate has length of 0.5m a width of 0.5m
and a thickness of 5mm. Its material properties are given in Tables 5.2, 5.3 and
5.4. In order to obtain the (frequency dependent) displacement field on which
INCOME and the IWC are used, the plate is modeled in ANSYS APDL 17.0
using SHELL181 elements which are based on Mindlin-Reissner plate theory.
The mesh is chosen to be a regular 101 by 101 grid. Once the mass and stiffness
matrices are extracted, an hysteretic damping η of 5% is added to the model.

Property Density Ex Ey Ez

Value 7850 kg.m−3 2.1 GPa 21 GPa 210 GPa

Table 5.2: Density and Young Moduli of the studied plate

First the frequency forced response of the plate with free boundary conditions
for a point force excitation at the top right corner is computed on the [0, 600]
Hz frequency range. The dispersion curves in the main sampling directions
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Property Gxy Gyz Gxz η

Value 3.033 Gpa 30.33 Gpa 2.625 GPa 0.05

Table 5.3: Shear Moduli of the studied plate

Property νxy νyz νxz
Value 0.095 0.095 0.03

Table 5.4: Poisson’s ratios of the plate material

are extracted using both the 2D INCOME and the IWC. Additionally, the
corresponding curves are computed using the Shift-Cell Operator Method [47]
with 5 Lagrange Q1 elements in the thickness of the plate. The results from all
three methods are compared in Figure 5.5. As can be seen, there is excellent
agreement between INCOME and the Shift-Cell Operator method for both the
real and imaginary parts of the wavenumber, while the IWC only provides a
qualitative approximation of the wavenumber’s real part. As a second step, the
k-space at 600 Hz is computed with all three methods for the propagating waves.
The k-spaces obtained with INCOME and the Shift-Cell Operator method are
compared in Figure 5.6. As can be seen in Figure 5.6, the K-Spaces obtained
via the Shift-Cell Operator method and INCOME are indistinguishable. The
IWC on the other hand, fails to produces a coherent K-space as shown in Figure
5.7. The failure of both IWC and the IWD to provide accurate wavenumber
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Figure 5.6: Comparison of the K-Spaces at 600 Hz obtained via INCOME and
the Shift Cell Operator method

Figure 5.7: K-Space at 600 Hz computed with the IWC

and k-space estimates demonstrates the potential of the proposed method.

5.5 Experimental applications

In Section 5.4, INCOME was benchmarked against the IWC and the IWD
in noiseless, numerical cases. In all three proposed examples, INCOME
outperformed the other two methods. Nonetheless, the introduction of
experimental issues such as, an imperfectly periodic sampling grid, measurement
noise and the presence of sources within the sampled displacement field. These
doubts are put to rest in this section which is organized as follows. In Subsection
5.5.1 INCOME is applied to a 1D aluminum beam with constrained viscoelastic
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Figure 5.8: Experimental setup for the aluminum beam with a constrained
viscoelastic layer

layer. It is subsequently applied to a locally resonant metamaterial that was
previously studied in [187] in subsection 5.5.2 and to a rubber panel in Subsection
5.5.3.

5.5.1 Beam with constrained viscoelastic layer

Herein we consider an aluminum beam with an uncharacterized viscoeslastic
layer. Clamped-Free boundary conditions are applied to the beam. It is excited
with a shaker and the displacement field in the 0-5kHz regions is measured with
a laser Doppler vibrometer. The beam is 11 cm long and 89 equally spaced
measurement points are used. The experimental setup is shown in Figure 5.8.
Since there is no reference, 4 methods are used in order to extract the dispersion
curves. Mc Daniel’s method with the Euler-Bernoulli hypothesis, INCOME, the
IWC and the ESPRIT algorithm. The retrieved dispersion curves are shown in
Figure 5.9. As expected, good agreement for both the real and imaginary parts
of the wavenumber is obtained between INCOME, the ESPRIT algorithm and
Mc Daniel methods while the IWC only manages to roughly approximate the
real part of the wavenumber. In terms of robustness, the IWC performs the best
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Figure 5.9: Experimental dispersion curves of the aluminum beam retrieved with
the ESPRIT algorithm (blue) INCOME (red), the Mc Daniel method(black)
and the IWC (magenta).

as it has low point to point variance. It is followed by the IWC, INCOME and
finally, the ESPRIT algorithm which is only slightly edged out by INCOME.
For practical purpose however, the robustness of the IWC is irrelevant in the
present case as it does not provide accurate results.
While there are no references, it would stand to reason that the Mc Daniel’s
method is the most accurate (here) as it relies on an exact expression of an
ideal displacement field that is fitted on to the experimental data. Convergence
is ensured using analytically derived gradients and Hessian matrix as well as
the proposed optimization algorithm of Chapter 4 with a continuation method
between frequencies. Taking Mc Daniel’s method as the reference, INCOME
and the ESPRIT algorithm achieve similar levels of accuracy though INCOME
is slightly more accurate. Lastly the IWC performs last in this department.
In terms of required computation time INCOME, the ESPRIT algorithm and
the IWC manage to complete the wave number extraction of the full 6375
considered frequencies in a matter of seconds, while a few minutes are required
for Mc Daniel’s method.

The present results demonstrate that INCOME can be used in a 1D wavenumber
extraction context even though other methods perform equally well or better
depending on the evaluation criteria used. The advantages of both INCOME
and the ESPRIT algorithm in such a context is that unlike methods based
on nonlinear optimization, they do not require a ’well chosen’ starting point
in order to ensure convergence/the accuracy of the final results. They are



116 WAVENUMBER EXTRACTION

Figure 5.10: Geometry of the locally resonant add-ons. Dimensions in mm

also considerably faster. In practice, they can also be used to provide a
sensible starting point for nonlinear methods when a single displacement field
is considered.

5.5.2 2D Locally resonant metamaterial

In this subsection INCOME is employed in order to retrieve the dispersion curves
of a locally resonant metamaterial comprised of a 1mm thick host aluminum
plate with locally resonant PMMA adds-on. The add-ons are placed on a
square grid. The resulting periodic pattern is such that an irreducible unit
cell is of dimensions 3 cm by 3 cm. The Young’s moduli, Poisson’s ratios,
density and hysteretic damping of both aluminum and PMMA are given in
Table 5.5. Additionally, the dimensions of the locally resonant add-ons are

Material Young’s modulus Poisson’s ratio Density Damping
Aluminum 69 GPa 0.33 2697 kg.m−3 2.8× 10−3

PMMA 4.85 GPa 0.31 1188 kg.m−3 5× 10−2

Table 5.5: Material parameters for the host structure (aluminum) and the
resonant add-ons (PMMA)

given in Figure 5.10 taken from the original paper [187]. In order to measure
the dispersion curves, A 60 cm by 60 cm panel comprised of 20 by 20 UCs
is excited with a shaker. ’Free-Free’ boundary conditions are approximated
by suspending the panel as shown in Figure 5.11. The resulting displacement
field is measured using a laser Doppler vibrometer on a regular 41 by 41 grid.
The measurement spacing is 1.5 cm in both directions and is equal to half the
length/width of UC. As can be seen, the shaker is exciting the panel in the
middle of the measurement field thus the underlying assumption of INCOME
and the IWD are violated. In order to compensate for this, INCOME is



EXPERIMENTAL APPLICATIONS 117

Figure 5.11: Experimental setup for the locally resonant metamaterial

used with most of the enhancements presented in section 5.3. Specifically, the
two step estimation strategy with coherence based residual weighting is used.
Additionally, the simplified convolution kernel of equation (5.64) is used as the
considered metamaterial is a plate-type structure. Finally, the cross-frequency
data enrichment described in Subsection 5.3.3 is performed with a centered 3
Hz window. The retrieved dispersion curves and k-spaces are compared to those
obtained numerically using the Shift-Cell Operator method with the nominal
material property values.
As can be observed in Figure 5.12, there is good agreement between the

retrieved and theoretical dispersion curves. Nonetheless, a few differences are
present. Firstly, the extrema of the real and imaginary parts are shifted in
frequency which suggests that the resonance frequency of the add-ons may
have been underestimated. This could be due to deviation in terms of material
properties or related to the manufacturing process (e.g.geometric tolerances).
The second noticeable difference is that peak spatial attenuation is consistently
higher in the numerical dispersion curves which could be explained by an
underestimation of the damping or by variability effects (all physical resonant
add-ons are slightly different).

Lastly the k-space at 1150 Hz where flexural waves can propagate in the x
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Figure 5.12: Comparison of the experimental and theoretical dispersion curves
in the x (top) and y (bottom) directions.

Figure 5.13: Comparison of the k-spaces at 1150 Hz obtained using INCOME
on experimental data and the shift-cell operator method

direction but not in the ’y’ direction (partial band gap) is obtained using both
INCOME and and the shift cell operator method. Logically, the differences
observed in the dispersion curves persist as there is less attenuation in the
experimental k-space and that the wavenumber values are also different.
Additionally, the experimental k-space appears to be less directive than the
theoretical one.
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5.5.3 Rubber Panel

In this subsection, INCOME is applied to a rubber panel of unknown material
properties in order to identify its dispersion characteristics. The panel is 49.2
cm long by 49.2 cm wide and 6.5 mm thick. In order to measure its dispersion
curves the panel is excited with a shaker and the displacement field is measured
with a laser Doppler vibrometer on a regular 48 by 48 grid square grid with a
1cm spacing. ’Free-Free’ boundary conditions are approximated by suspending
the panel as shown in Figure 5.14.

Figure 5.14: Experimental setup for the rubber panel

As can be seen in Figure 5.14, the shaker is exciting the panel in the middle
of the measurement field thus the underlying assumption of INCOME and
the IWD are violated. In order to compensate for this, INCOME is used
with most of the enhancements presented in section 5.3. Specifically, the
two step estimation strategy with coherence based residual weighting is used.
Additionally, the simplified convolution kernel of equation (5.63) is used as the
considered structure is an homogeneous plate. Finally, the cross-frequency data
enrichment described in Subsection 5.3.3 is performed with a centered 2 Hz
window. The retrieved dispersion curves are presented in Figure 5.15. They
appear relatively smooth and will be used to estimates the frequency dependent
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Figure 5.15: Dispersion curves of the rubber panel retrieved with INCOME

material properties of the rubber sample by combining Kirchhoff–Love plate
theory with a parametric viscoelastic model in a curve fitting algorithm.

5.6 Conclusions and perspectives

In this chapter, a method for one-dimensional and two-dimensional wavenumber
extraction is presented. Based on a convolution framework, the method requires
periodic sampling of the signal of interest to produce a convolution kernel that
describes its wavenumbers, or K-Space. The core of INCOME is very similar
to the Prony series method but takes advantage of a convolution framework
to encode wave propagation symmetries and reach the 2D case. The main
conclusions and contributions of the chapter can be summarised as follows:

• The INCOME method relies on solving small linear problems and is
exact in both 1D and 2D cases. The wording "exact" refers here to
the propagation scheme adopted for the inverse algorithm. Precisely,
a given propagation model is fitted to the input data with consistency.
The INCOME method is also mathematically robust and its numerical
implementation easy to handle.

• In the 2D case, all properties of the K-Space are retrieved together in a
coherent manner and INCOME was shown to successfully identify the
wave heading (directivity) and the spatial attenuation. This is the most
advantageous property of INCOME and it is achieved by making periodic
sampling of the input mandatory.
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• The proposed method draws inspiration from the WFEM framework
[125, 143, 82, 16, 67, 92], and can be considered an inverse WFEM
approach. The periodicity requirement for INCOME and the use of
recurrence relationships make the formulation comprehensive for WFEM
practitioners. The literature belonging to the WFEM being rich, one
could expect bridges to be created between the direct WFEM and the
INCOME.

Finally, the accuracy of the proposed method was demonstrated in both 1D and
2D scenarios and it was shown to be sufficiently noise resistant to compete with
the most robust methods of the literature when the structure studied allow for
their use. Several perspectives are identified for the method:

• Damage detection and source detection. Specifically, the analogy
developed in equation (5.36) suggest that the residual obtained by taking
the convolution product of the identified kernel with the experimental
displacement field should reveal the presence of singularities (damage,
excitation source) in the measured displacement field. The relevance of
this idea is further reinforced in section 5.3.2 where the use of convolution
kernels based on finite difference approximation was suggested. This
introduces parallels between INCOME and the Force Analysis Technique
[113, 2, 65] (FAT). A technique that leverage finite difference models of
structures with experimental data in order to detect input forces.

• The aforementioned similarities between INCOME and the FAT suggest
that most data prepossessing techniques developed for the FAT can be
carried over to INCOME and increase its robustness.

• K-spaces obtained via INCOME could also be used with plate and
sandwich structures theories to predict the sound transmission loss of
samples from purely structural measurements [208]. Finiteness effects
could be accounted for via wavenumber windowing techniques [161, 192]
or more accurately by SEA-like energy methods [212].

• Another interesting perspective would be to apply INCOME to the
computations of "all complex dispersion curves" for which wavenumbers
and frequencies can be simultaneously complex [79]. In order to estimates
such dispersion characteristic with INCOME the classical processing
of time domain data should be modified such that a discrete Laplace
transform is used instead of a discrete Fourier transform. For the former
transform to yield accurate results, special attention should be paid to
the excitation method and properties (e.g. hammer, shaker, etc) which
in turn would impact the way the displacement fields are measured (e.g.
accelerometers, laser vibrometer, high-speed camera, etc...).
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• Lastly, because INCOME can provide accurate wavenumber estimates at
very low CPU time. The method could be used to speed up potentially
more robust but computationally expensive methods based on non-linear
fits of the displacement field. Developing an improved version of the IWD
[40, 169] could make sense in such a context.



Chapter 6

A rational Krylov subspace
method for sound
transmissions loss
computation with the Shift
Cell Method

Part of this Chapter has been published as [30]: "R.F. Boukadia, E. Deckers,
C. Claeys, M. Ichchou, W. Desmet. A rational Krylov subspace method for
the unit cell modeling of 2D infinite periodic media. In: Proceedings of ISMA
2020 - International Conference on Noise and Vibration Engineering and USD
2020 - International Conference on Uncertainty in Structural Dynamics, pages
1915-1924 ,Leuven, Belgium, September 2020."

In this chapter a novel model order reduction technique for diffuse field sound
transmission loss (STL) evaluation within the Shift-Cell Operator Method
(SCOM) framework is presented. Firstly, a method for the computation of
the STL in the SCOM framework is derived by adapting the Hybrid-WFEM
method [203, 57] to the SCOM framework. This development is motivated by
the fact that incident plane waves can be made to look like constant pressure
fields in the SCOM framework which enables the use of a moment matching
based model order reduction (MOR) scheme to reduce the structural part of
the sound transmission problem. While both MOR schemes [102, 216, 62, 103]

123
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and methods for STL computations [42, 155, 203, 57, 156] have been developed
within the WFEM framework, the available MOR techniques were created
for the computation of free-waves and rely on simple mode-based projection
methods which generally are less accurate than their moment-matching based
counterparts [119, 101, 22]. This difference in accuracy comes from the fact
that moment-matching based reduction techniques include information about
loads and coupling directly in their formulations while modal methods are
more suited to obtain a general idea of the response for any load and will only
represent the system accurately near its poles. Unfortunately, plane-wave with
different wavenumbers/incidence angles do not look the same within the WFEM
framework. Therefore, a moment matching based MOR scheme would not be
efficient in that context which justifies the proposed modeling strategy. The
rest of the chapter is organized has follows. In Section 6.1 a quick reminder of
the SCOM’s properties is given and the adaptation of the Hybrid-WFEM to the
SCOM framework is also described. In Section 6.2 a multiparameter moment-
matching process for computations in the SCOM framework is presented and
a MOR scheme exploiting this technique is detailed. Numerical examples are
presented in Section 6.3. The proposed modeling strategy is first validated
on a simple homogeneous plate, its potential is subsequently illustrated on a
complex locally resonant waveguide. Finally Section 6.4 summarizes the main
conclusions.

6.1 Hybrid coupling with the shift cell operator
method

In this section, the new method for STL computations in the SCOM framework
is presented. First, a small reminder of the SCOM’s basic properties is given in
Subsection 6.1.1 which facilitates the introduction of the fluid-structure coupling
described in Subsection 6.1.2.

6.1.1 Reminder: Basic properties of the shift-cell method

This subsection presents some of the basic properties of the shift-cell operator
method, some of which were described in Section 2.4. In order to keep things
simple, a 1D modeling scenario is presented though the reasoning easily extends
to 2D and 3D cases.

The shift cell operator method uses a modified FEM formulation in which the
displacement field is modulated by plane a wave. That is, a normal FE model
solves a partial differential equation involving a function f of a spatial variable x
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and a time variable t, the shift-cell method allows to solve the partial differential
equation from a function g such that:

f(x, t) = e−ikxg(x, t), (6.1)

for any complex wavenumber k. Contrary to what one may think, the matrices
resulting form this discretization do not have a complicated dependency in k.
Instead the discretized equations of motion take the following form in the 1D
case:

(K − ikL+ k2H)U + C
dU

dt
+M

d2U

dt2
= F. (6.2)

With K, M and C the classical FEM stiffness, mass and damping matrices
and L and H additional matrices that encode the wavenumber modulation.
An important change however happens in the load vector F as it has to be
computed by applying an inverse modulation to the load distribution i.e. if l(x)
is used for a normal FE discretization then p(x) = l(x)eikx must be used for
the shift cell discretization. Noteworthy, choosing k = 0 renders the shift-cell
discretization identical to classical FEM. Another interesting property is the
following: Assuming one wants to compute the response to a load distribution
of the form l(x) = l0e

−ik0x then one could equal k to k0 and the vector of
forces F would be computed for a load distribution p(x) = l(x)eikx = l0. The
load now look likes a constant force but its spatial oscillations are accounted
for by a polynomial dependence in k0 carried by the matrices L and H. This
second property is leveraged in the rest of the chapter to make the coupling
matrices between acoustic plane waves and a structure modeled using the shift
cell operator method (quasi) wavenumber invariant. This invariance in turn
enables the use of the multiparameter moment matching algorithm described in
Section 6.2.

6.1.2 Sound transmission loss computation with shift cell
method

This subsection describes how to modify the Hybrid-WFEM method [203, 57]
and apply it to the Shift-Cell Operator Method framework to compute the
sound transmission loss of a periodic structure excited by an incident plane
wave. The idea is to couple an infinite 2D periodic structure occupying the
region space 0 ≤ z ≤ h to two semi-infinite acoustic domains corresponding to
the regions of space z < 0 and z > h. An incident acoustic field pi is present
in the half-space z < 0 which by fluid-structure coupling leads to a structural
response, a reflected pressure field pr, and a transmitted field pt in the half-space
z > h. In order to simplify the equations, the assumption that the structure
considered is weakly periodic is made. This means higher order modes in the
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reflected and transmitted pressure fields caused by periodic diffraction can be
ignored. Thus, the acoustic fields in both half spaces take the respective forms:p− = pie

−i(kxx+kyy+kzz) + pre
−i(kxx+kyy−kzz)

p+ = pte
−i(kxx+kyy+kzz)

(6.3)

The fluid-structure coupling equations are given in equation (6.4) and are valid
on Γ−, the z = 0 plane and Γ+, the z = h plane:

1
ρf

∂p

∂n
+ ∂2u

∂t2
.~n = 0

σ.~n+ p~n = 0

(6.4)

In equation (6.4), ρf is the fluid’s density, u the structural displacement, σ the
stress tensor, p the fluid’s pressure and ~n, the outward normal of the solid. The
first line of the equation expresses the continuity of the normal acceleration
while the second lines specifies how the fluid’s pressure acts as a force on the
solid (Neumann boundary condition). As such, the first equation gives rise to
two matrices Kff and Mfs while the second equation only gives rise to a single
coupling matrix Ksf and can be interpreted as a boundary condition. The weak
form corresponding to each matrix when discretized for the Shift-Cell-Operator
Method are given in equation (6.5):

Kff ↔
1
ρf

∫∫
w∗f

∂p

∂n
ei(kxx+ky)

Mfs ↔
∫∫

w∗f
∂2v

∂t2
.~n

Ksf ↔
∫∫

(ws~n)pei(kxx+kyy)

(6.5)

The shape functions for v and the usual FEM shape functions are identical to
the test functions ws while the shape functions for the pressure p are chosen
according to equation (6.3). Finally the test functions wf are chosen as the
product of the pressure shape functions with ei(kxx+kyy). With these choices, the
terms in ei(kxx+ky) vanish from both the pressure and s the solid shape functions
such that the matrices depend only of kz. Specifically, Mfs scales with eikzz0

(z0 being the z coordinate of the interface) and Ksf with e−ikzz0 . Additionally,
Ksf = MH

fs with the H exponent indicating the Hermitian transpose. Because
of these properties, the subspace spanned by the columns of Kfs is independent
of the wavenumbers kx, ky and kz. This property still holds when higher order
acoustics modes are added to the transmitted and reflected fields. The coupled
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system can now be considered and takes the following form (in the frequency
domain): [

Dss Ksf

−ω2Msf Kff

] [
U
p

]
=
[

0
Fp

]
(6.6)

With U the vector of structural displacements, p the vector of pressure
displacements (plane wave coefficients) and Dss the dynamic stiffness matrix of
the structure in the SCOM framework (see Section 2.4):

Dss = K + iωC − ω2M − ikxLx − ikyLy + k2
xHxx + k2

yHyy + kxkyHxy (6.7)

The transmission loss τ(kx, ky, kz, ω) is computed by applying periodic boundary
conditions on the structural part of equation (6.6) and imposing the value of the
incident pressure pi. After solving the system the transmission loss is obtained:

τ(kx, ky, kz, ω) = |pt|
2

|pi|2
(6.8)

The diffuse field transmission loss τd(ω) can be computed by averaging the
transmission loss τ(kx, ky, kz, ω) for acoustic wave coming from all incident
directions. The detailed process can be found in [42, 155, 31] and was detailed
in subsection 4.6.4

6.2 Model Order Reduction Scheme

This section details the model order reduction scheme used in section 6.3. First,
the multiparameter moment matching method underlying the proposed MOR
scheme is described in subsection 6.2.1. The full algorithm of the proposed
MOR scheme is then detailed in subsection 6.2.2.

6.2.1 Multiparameter moment matching

The proposed MOR method is based on the moment matching concept which
seeks to match the transfer function of the full order model (FOM) by replicating
the first terms of its power series around an expansion point (see equation
(6.10)). Herein, this method is applied to the structural part of the Hybrid-
Shift-Cell modeling of the transmission reflection problem and can be considered
a particular case of the technique presented in [68]. The starting point is the
discretized equation of motion obtained via the shift-cell operator method:

(K + sC + s2M − ikxLx − ikyLy + k2
xHxx + k2

yHyy + kxkyHxy)U = F (6.9)
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In equation (6.9) s is the Laplace variable for the time domain, kx and ky
are the wavenumbers of the shift-cell operator method, U is the structural
displacement matrix and F a matrix whose columns span the subspace of inputs.
A development of U into a multiparameter series is realized at the (0, 0, 0)
expansion point:

U =
∑

(p,q,r)∈N3

Up,q,rk
p
xk
q
ys
r (6.10)

In order to compute the moments Up,q,r a recurrence relationship is established
between them. First, equation (6.9) is rewritten in a more practical form:

[In+K−1(sC+s2M−ikxLx−ikyLy+k2
xHxx+k2

yHyy+kxkyHxy)]U = (K−1F )
(6.11)

Finally, by replacing U with the series of equation (6.10), the following recurrence
relationship is obtained for its moments:

Up,q,r = K−1(iLxUp−1,q,r + iLyUp,q−1,r − CUp,q,r−1

−HxxUp−2,q,r −HyyUp,q−2,r −MUp,q,r−2 −HxyUp−1,q−1,r)
(6.12)

with the initial condition:
U0,0,0 = K−1F. (6.13)

This makes it possible to match the moments of U in a classical manner. Because
of the multiple parameters, the number of moments of order n, moments for
which p+ q + r = n, is equal to:

m0 = (n+ 1)(n+ 2)
2 , (6.14)

while the number of moments of orders inferior or equal to n is:

m1 = n3 + 6n2 + 11n+ 6
6 (6.15)

Thus, the growth is polynomial which is acceptable. However, matching the
moments of U as per equation (6.12) may not be numerically stable as the
moments of the system are computed explicitly without any orthogonalisation
process [69]. An implicit and stable moment matching process is proposed in
[19] but it would change the vector growth rate from O(n3) to O(7n). As such,
its computational cost becomes prohibitive before instabilities appear in the
proposed algorithm. It should also be noted that the above method can be
applied to compute moments around another expansion point (k0

x, k
0
y, s0) by

replacing (kx, ky, s) with (k0
x + kx, k

0
y + ky, s0 + s). Hence, numerical stability

issues can also be mitigated by working with multiple expansion points.
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6.2.2 MOR strategy

The proposed MOR strategy works by producing a projection basis P ∈ Cn
that spans the subspace of the moments of the displacement matrix at one or
several expansion points. From the matrix P the ROM’s matrices and reduced
loads are produced via Galerkin projection:

Kr = PHKP

Cr = PHCP

Mr = PHMP

Lrx = PHLxP

Lry = PHLyP

Hr
xx = PHHxxP

Hr
xy = PHHxyP

Hr
yy = PHHyyP

Fr = PHF

(6.16)

The assessment of the quality of the ROM is done via residuals as defined in
equation (6.17) which avoids the direct computation of the FOM response:

Ur = (Kr + sCr + s2Mr − ikxLrx − ikyLry + k2
xH

r
xx + k2

yH
r
yy + kxkyH

r
xy)−1(Fr)

Fa = (K + sC + s2M − ikxLx − ikyLy + k2
xHxx + k2

yHyy + kxkyHxy)(PUr)

res(kx, ky, s) = ‖Fa − F‖
‖F‖

(6.17)
The proposed algorithm iteratively produces ROMs of higher dimensions by
increasing the number of moments matched and expansion points until a ROM
of sufficient quality is generated. In practice, this is achieved if the residuals
of all points of a validation set V0 are below a threshold ε. Both V0 and ε
must be supplied by the user in addition to a decay rate α < 1. The details
of when and where new expansion points are generated are the following. At
each iteration, the expansion order at all expansion points is increased. Then, a
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ROM is produced and an error criterion rj is computed as per equation (6.18):

rja = 1
|V0|

∑
p∈V0

res(p)

rjm = max{res(p), p ∈ V0}

rj =
√
rjmr

j
a

(6.18)

If rj ≥ αrj−1 a new expansion point is created at the point of maximal residual.
Otherwise, the iterative process continues normally with increasing the order of
active expansion points. The algorithm stops when rjm ≤ ε.

6.3 Numerical Results

In this section, the proposed modeling technique and model order reduction
scheme are applied to two examples. First, the proposed modeling strategy is
compared to the Hybrid-WFEM method and validated in subsection 6.3.1. It is
then applied to the full 3D FEM modeling of a doubly stiffened panel previously
studied in [78, 33] via asymptotic homogenisation. The computation in this
chapter are carried out with the speed of sound in the air c0 set to 342.21 m.s−1

and the density of air ρ0 set to 1.2041kg.m−3.

6.3.1 Validation Case

In this subsection, both the new hybrid variant and the proposed MOR scheme
are applied to a 3mm thick homogeneous aluminum plate and compared to
the classical Hybrid-WFEM modeling. All numerical methods, including the
WFEM and the Shift-Cell Operator Method, are implemented on Matlab. The
UC of the plate is modeled using classical 3D Lagrange Q1 elements with 10
perfectly cubic elements in the thickness of the plate. For the MOR scheme the
frequency range [0Hz, 10000Hz] is considered with a maximal residual value
ε chosen equal to 10−4. After application of the periodic or Floquet-Bloch
boundary conditions the original model has 32dofs. Using the proposed MOR
scheme a 4 dofs model is obtained. For the diffuse field computations, 3000
polar angles are used with only 1 azimuthal angle owing to the fact that the
critical frequency is within the frequency range of interest and that the structure
is isotropic. The diffuse field transmission loss obtained via both methods are
presented in Figure 6.1. Both methods are in perfect agreement which validates
the implementation of the Hybrid Shift-Cell and the proposed MOR scheme.
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Figure 6.1: Diffuse field transmission loss of the aluminum plate

6.3.2 Doubly stiffened plate

In this subsection, the novel Hybrid-Shift-Cell modeling of Section 6.1 is
combined to the MOR scheme of Section 6.2 to analyse a doubly stiffened
panel. The panel was first introduced in [78, 33] and studied via asymptotic
homogenization because of the high material property contrast between its
stiffeners (Aluminum) and base panel (Perspex/PPMA) given in Table 6.1.
This contrast leads to the appearance of full and partial resonant band-gaps for

Material Density Young Modulus Poisson Damping
(kg.m−3) (GPa) coefficient ratio

Aluminum 2700 69 0.3 0.0025
Perspex 1200 3 0.37 0.05

Table 6.1: Material properties of aluminum and Perspex in the model of [33]

flexural and torsional waves generated by local modes of the stiffened structure.
For our study, the main reason this case is considered is the fact that while the
structure possesses resonant band-gaps, the resonant part of the structure is also
its radiating part. As such, its sound insulation properties should be non trivial.
For the diffuse field computations, 500 polar angles are used with 9 azimuthal
angles (since the structure is highly symmetric). Both the Shift-Cell Operator
Method and of the Hybrid coupling are implemented on Matlab with standard
3D quadratic Serendipity Elements. The mesh of the structural part is presented
in Figure 6.2 and the corresponding full order model (FOM) consists of 57915
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dofs. The proposed MOR scheme is applied to the FOM for with maximal

Figure 6.2: Mesh of the unit cell of the doubly stiffened panel. Aluminum is
purple and Perspex is green

residual ε of 10−3 on the [0Hz, 1000Hz] frequency range. More precisely, the
set for which we want the ROM to be accurate is:

V =
{

(ω, kx, ky) ∈ [0, 2πfmax]R2, k2
x + k2

y ≤
ω2

c2
0

}
(6.19)

with fmax = 1000 Hz. The corresponding, discrete validation set V0 used
in the MOR scheme to evaluate the accuracy of the ROM is obtained by
generating 71000 random points of via uniform statistical distribution on V.
The performance of the proposed MOR strategy is detailed in Table 6.2. Using

Model Reduction time (s) Model size matrix inversion time (s)
FOM NA 57915 2.56 × 101

ROM 8087 364 7.68 × 10−3

Table 6.2: Performance of the proposed model order scheme

the proposed MOR, a reduced order model of 364 dofs is produced using 3
expansion points. This reduction brings the time required for a matrix-vector
inversion from 25 seconds to 7 milliseconds. The time required to produce the
ROM however is of about 2 hours. This is not a major problem because 4.5
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millions matrix inversions are required in order to compute the diffuse field STL
of the structure every 1 Hertz. These computations would take more than 5
months using the FOM but were performed in 9 hours using the ROM. The
resulting diffuse field transmission loss and absorption are presented in Figure
6.3. Unexpectedly, the multiple STL peaks do coincide with the predicted
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Figure 6.3: Transmission loss and absorption of the doubly stiffened panel

resonance frequencies at 170, 470 and 921 Hz [33]. This shows that the STL of
the structure does increase inside the resonant band-gaps despite the fact that
it is the radiating part of the structure that is supposed to resonate. However,
the STL peaks are followed by STL minima at which absorption levels are
rather high given the respective damping of PMMA and Perspex. This might be
explained by the conjunction of the resonance mechanism with the dissipative
properties of Perspex, effectively focusing vibration energy in the disspative
part of the structure.

6.4 Conclusions and perspectives

In this chapter a reduced order modeling strategy was presented for diffuse
field STL computations in the SCOM framework was presented. The main
contributions of the Chapter are the following:
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• A novel method enabling the evaluation of the sound transmission loss
in the SCOM framework was developed by adapting the Hybrid-WFEM
[203, 57] method.

• A model order reduction scheme based on a moment-matching technique
was developed and was shown to result in substantial reduction in
computation time.

Though results obtained are promising the proposed MOR scheme could still
be improved. The main possible areas of improvement are listed below:

• The method used to compute the moments in subsection 6.2.1 is not
numerically stable [69, 19] which may lead to the production of reduced
order models of suboptimal size [122]. This issue could be addressed
by developing orthogonlization algorithms for the computation taking
inspiration from the work done in [122] on the second order Arnoldi
algorithm [14, 13] and the work of Slone et al. [177, 168, 167] on the
asymptotic waveform evaluation [159, 41, 39].

• Similarly, the algorithm 6.2.2 was proposed as a first try but is not
necessarily optimal. Many different schemes can be found in the literature
even for single parameter systems [190, 206, 154].



Chapter 7

Conclusions and perspectives

The vibroacousctics of periodic structures and metamaterials is a rich topic
that has been the focus of many PhD thesis and several research projects in
the past decades. Among those were the Marie Curie Initial Training Network
VIPER project (GA 675441) and the DENORMS cost action (CA 15125) both
of which have recently ended. For both projects, consolidating the research
surrounding periodic structures and metamaterials and sparking collaborations
within the scientific community were important goals which to a large extent
have been fulfilled. As an Early Stage Researcher of the VIPER project, my
assigned research topic was "Vibroacoustics and structural dynamics of periodic
structures". In principle, this topic covered most of the research space defined
by the VIbroacoustics of PERiodic media project. A project which involved
11 other PhD students, all of them having very specific research topics (e.g.
"Periodic viscoelastic add-ons"). In that context, I decided to orient my work
toward methodological aspects and design tool as these could be useful in most
practical and phenomenological aspects of the project while not being tied to
any of them. My areas of choice were optimization, model order reduction
and characterization which are now part of this manuscript’s title. Section 7.1
details my contributions to these areas of research while Section 7.2 discusses
possible follow-ups to the work done during this thesis and research directions
related to its broader theme.
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7.1 Main contributions of the thesis

The main contributions of the work produced during this PhD are summarized
bellow:

In Chapter 3 a novel model order reduction strategy for the unit cell modeling
of 1D periodic structures in the WFEM framework was presented and compared
to the previous methods of the literature. The proposed strategy builds upon
the inner dof reduction of [48, 102, 216] and the interface reduction of [60, 62].
The main contributions of the Chapter can be summarized as follows:

• The Craig-Bampton model order reduction scheme used in [216] was
expanded to tackle models including hysteretic and generalized damping
as well as frequency dependent material properties.

• A faster and more complete sampling strategy has been developed to
replace the one used in [60]. These simultaneous gains are achieved by
relying on the inverse WFEM formulation instead of the direct one as the
former is usually faster than the latter.

• A better control of the dofs/accuracy trade off is achieved in the proposed
interface reduction strategy by the use of an SVD based orthogonalization
scheme instead of QR-based one. This can result in much faster ROMs as
the complexity of the WFEM eigenvalue problem scales with the third
power of the number of interface dofs.

In Chapter 4, a framework for the unit cell based optimization of periodic
structures and waveguides was presented and applied to several numerical
examples. The main contributions of chapter are summarized below:

• Firstly, efficient formulae for first and second order derivatives of most
quantities that can be computed in the WFEM framework were derived
using an intrusive methodology.

• A second order optimization algorithm based on the sequential quadratic
programming paradigm [25] was proposed to exploit the aforementioned
derivatives to their fullest. The proposed algorithm combines an ellipsoidal
trust-region method [157, 54, 115] with a line search method used when
the objective function is convex. This combination, solves issues related to
step length, variable scaling, and saddle points that are encountered when
using first order optimization techniques. It also address the sometime
slow convergence of trust-regions methods when switching from regions of
mixed curvatures to ones where the objective function is convex.
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• The optimization framework obtained by combining the aforementioned
contributions allows for the modeling of loads and boundary conditions
during the optimization process which are important when considering
applications whith finite metamaterials [202, 182, 153, 207, 170].

In Chapter 5, a novel methodology for one-dimensional and two-dimensional
wavenumber extraction was presented. Based on a convolution framework, the
proposed method requires periodic sampling of the signal of interest to produce
a convolution kernel that describes its wavenumbers, or K-Space. The core
of INCOME is similar to the Prony series method but takes advantage of a
convolution framework to encode wave propagation symmetries and reach the
2D case. The accuracy of INCOME was demonstrated in both 1D and 2D
scenarios and it was shown to be sufficiently noise resistant to compete with
the most robust methods of the literature when the structures studied allow for
their use. The contributions of Chapter 5 can be summarized as follows:

• The INCOME method relies on solving small linear problems and is
exact in both 1D and 2D cases. The wording "exact" refers here to
the propagation scheme adopted for the inverse algorithm. Precisely,
a given propagation model is fitted to the input data with consistency.
The INCOME method is also mathematically robust and its numerical
implementation easy to handle.

• In the 2D case, all properties of the K-Space are retrieved together in a
coherent manner and INCOME was shown to successfully identify the
wave heading (directivity) and the spatial attenuation. This is the most
advantageous property of INCOME and it is achieved by making periodic
sampling of the input mandatory.

• The proposed method draws inspiration from the WFEM framework
[125, 143, 82, 16, 67, 92], and can be considered an inverse WFEM
approach. The periodicity requirement for INCOME and the use of
recurrence relationships make the formulation comprehensive for WFEM
practitioners. The literature belonging to the WFEM being rich, one
could expect bridges to be created between the direct WFEM and the
INCOME.

In Chapter 6, a new reduced order modeling strategy for diffuse field sound
transmission loss computations in the Shift Cell Operator Method framework
was presented and validated. The main contributions of the chapter are the
following:

• A novel method enabling the evaluation of the sound transmission loss in
the Shift-Cell Operator Method framework was developed by adapting the
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Hybrid-WFEM [203, 57] method. The main advantage of this formulation
is that the structural loads corresponding to acoustic plane waves appear
wavenumber invariant.

• Using the aforementioned invariance as a starting point, a multiparamter
moment matching process whereby the forced wavenumbers and frequency
are the parameters was derived. It was subsequently combined with a
rational Krylov subspace method to produce a new model order reduction
scheme. The proposed reduced order modeling strategy was validated on
a simple example and applied to a complex 3D metaplate model where a
speed up by three orders of magnitude was demonstrated.

7.2 Future work and perspectives

The work presented during this thesis has many direct and indirect follow-ups
that can be conceptualized at different time scales and levels of details. Some
of them are presented bellow:

From a short term perspective, the model order reduction strategy developed
in Chapter 3 could be extended to cover parametric models [15, 51, 68, 20]
allowing both material properties and geometry to vary. The resulting technique
could be used in conjunction with the framework developed in Chapter 4 in
order to produce optimal designs.
The optimization algorithm proposed in Chapter 4 could be improved by using
a low dimensional representation of the hessian matrix when the objective
function has many parameters. A practical implementation of this program
could be realized by adapting conjugate gradient methods [180, 46] while using
an adjoint-adjoint framework [81, 94] for the computation of second order
derivatives. This would avoid forming the full hessian matrix and enable fast
second order shape optimization.
Regarding Chapter 5, the follow-ups are straightforwards. The similarities
between INCOME and the Force Analysis Technique [113, 2, 65] should be
leveraged. This would allow an easy extension of the method to source and
damage detection. The preprocessing techniques used for the Force Analysis
Technique should also be used to increase the robustness of INCOME. This is
in fact already a work in progress. INCOME could also provide a good starting
point for wavenumber extraction techniques relying on nonlinear least square
fits such as Mc Daniel’s method or an extended IWD method. This is of interest
because such methods tends to be more robust than their linear counterparts.
Lastly, wavenumber extraction in axisymmetric and curved media could also be
considered.
Similarly, the methods developed in Chapter 6 could be extended to
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axisymmetric structures by using a cylindrical coordinates based FEM/SCOM
formulation [63, 87] and Bessel/Hankel functions to represent the acoustic
field. Also, improvements to the numerical stability of the proposed
multiparameter moment matching process could be made by developing a
proper orthogonalization strategy for the computation of the moments. The
work of Slone et al, with the asymptotic waveform evaluation should serve as
an example [177, 168, 167].

From a top level perspective, most numerical tools enabling the study and
designs of linear deterministic periodic structures and metamaterials have
been developed and disseminated thus a shift in research priorities towards
aspects related to manufacturing, characterization, industrial applications
and maintenance is expected. Regarding the last domain, damage detection
strategies exploiting insights gained through a wave propagation prism (see e.g.
[59]) seem to be a promising area of research. The development of such strategies
could be accelerated by the time domain friendly model order reduction scheme
for dynamical systems containing periodic sub components as the power of (real
time) virtual sensing [188, 106, 107] could be leveraged to track changes in the
scattering properties of sub-components of these systems and possibly detect
the apparition of defects as well as their types and severity.
As previously implied, the development of numerical design tools for periodic
media is still lacking in two areas. The first one concerns the development
of numerical methods for the study of nonlinear wave-propagation in periodic
structures and vibroacoustic systems. Some work has been done semi-
analytically (e.g. via homogenization methods) or analytically [98, 90, 1, 9]
but attempts at creating a nonlinear WFEM have so far been limited to its
inverse formulation and only in basic cases [37]. Similarly, wave propagation in
random (statistically periodic) media has not yet been studied efficiently through
numerical approaches. On the other hand many analytical developments have
been made [189, 200, 146] since the topic is of importance in theoretical physics
[74, 23, 133]. In both cases, the use of perturbation theory within the existing
numerical frameworks should provide first insights.





Appendix A

General Codes

In this chapter general purpose matlab function codes are given

A.1 Normalizing all columns of a matrix

1 function [ M2 ] = normalize_columns( M )
2 N = sqrt(sum(abs((M.^2))));
3 N(N==0)=1;
4 M2=bsxfun(@rdivide,M,N);
5 end

A.2 Create a sparse diagonal matrix from a vector

1 function [ diag ] = sparsediag( vec )
2 %sparsediag Build a sparse diagonal matrix form a vector
3 t=length(vec);
4 diag=spdiags(vec(:),0,t,t);
5 end

A.3 QR-based Orthogonalization

141
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1 function [P] = Gram_Schmidtt_Orthogonalization(M)
2 %Gram_Schmidtt_Orthogonalization Applies the Gram=Schmidtt process to M
3 % This function returns a projection basis obtained by appying a stable
4 % Gram=Schmidtt algorithm orthogonalization algorithm with 2=step
5 % orthogonalization and a deflation tolerenace This function is mainly
6 % used to produce orthogonal projection basis
7
8 [n,m]=size(M);
9 P=zeros(n,m);

10 nvect=0;
11 epsilon=1.490116119384766e=08;
12 reorth_tol=0.707106781186548;
13 M=normalize_columns(M);
14
15
16 for i=1:m
17 v=M(:,i);
18 %Stable Ortohogonalization (vector by vector. See https://en.wikipedia

.org/wiki/Gram%E2%80%93Schmidt_process
19 for j=1:nvect
20 v=v= P(:,j)*(P(:,j)'*v);
21 end
22 nv=norm(v);
23
24 %The vector is either added, re=orthogonalized or rejected
25 if(nv>=reorth_tol) %the vector is really far from the current subspace
26 v=v/nv;
27 nvect=nvect+1;
28 P(:,nvect)=v;
29
30 elseif(reorth_tol>nv)&&(nv>epsilon)%the vector is close from the

currect subspace but acceptably far.
31 %reothogonalization
32 for j=1:nvect
33 v=v=P(:,j)*(P(:,j)'*v);
34 end
35 v=v/norm(v);
36 nvect=nvect+1;
37 P(:,nvect)=v;
38 else% the vector is too close to the current subsapce we don't add it
39 %do nothing
40 end
41 end
42 P=P(:,1:nvect);
43
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44
45 end

A.4 SVD-based Orthogonalization

1 function [P] = SVD_Orthogonalization(M,epsilon)
2 %SVD_Orthogonalization Retruns an orthogonal matrix that approximateely
3 %sapns the same subsapce as M
4 % The quality of the apporximation is controled by epsilon values

between
5 % 10^=4 and 10^=6 arerecommened
6 [P,S,~]=svd(M,'econ');
7 S=diag(S);
8 rank=max(epsilon_rank(S,epsilon),ceil(effective_rank(S)));
9 P=P(:,1:rank);

10 end
11
12 function [ rank ] = epsilon_rank( S , epsilon)
13 %rank_percent Compute the singular values that needs to be kept.
14 % The estimation is basd on the sum of the ignored singular values

against the global sumation
15 sigma=0;
16 T=sum(S);
17 i=0;
18
19 while((T=sigma)/T>epsilon)
20 i=i+1;
21 sigma=sigma+S(i);
22 end
23 rank=i;
24
25 end
26
27 function [ erank ] = effective_rank( S )
28 %effective_rank : Computes the effective rank of a matrix from it's

singular values vector S
29 % See: O. Roy and M. Vetterli, 'The effective rank: A measure of
30 % effective dimensionality, '2007 15th European Signal Processing
31 % Conference, Poznan, 2007, pp. 606=610.
32 p=S/sum(S);
33 dist==p.*log(p);
34 erank=exp(sum(dist));
35 end
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A.5 Solving a quadratic eigenvalue problem

1 function [ V,D ] = quadeigs( A0,A1,A2,nval)
2 %quadeigs Solve a general quadratic eigenvalue problem with no regards for
3 %its structure.
4 [p,q]=size(A0);
5 if(issparse(A0))
6 O=sparse(p,q);
7 I=norm(A0(:))*speye(p,q)/sqrt(q);
8 else
9 O=zeros(p,q);

10 I=norm(A0(:))*eye(q)/sqrt(q);
11 end
12 A=[A0,O;O,=I];
13 B==[A1,A2;I,O];
14 %solving the eigenvalue problem
15 [V,D]=eigs(A,B,2*nval,'sm');
16 V=V(1:p,1:(2*nval));
17 D=diag(D);
18 end

A.6 Solving a Hermitian quadratic eigenvalue prob-
lem

1 function [ V,D ] = quad_hermitian_eigs( K,C,M,nval)
2 %quad_hermitian_eigs : Solve qudratique hermitian eigen value problem
3 %conserving the hermetian structure through second companion form of the
4 %quadratic eigenvalue problem.
5 [p,q]=size(K);
6 if(issparse(K))
7 O=sparse(p,q);
8 else
9 O=zeros(p,q);

10 end
11 A=[=K, O ; O M];
12 B=[C, M ; M, O];
13 %Solving the eigenvalue problem
14 [V,D]=eigs(A,B,2*nval,'sm');
15 V=V(1:p,1:(2*naval));
16 D=diag(D);
17 end
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1D WFEM Code Snippets

In this chapter, Matlab code snippets related to the 1D WFEM are proposed.
These codes are not optimized or fully general and are meant as a starting point
for new WFEM user to build from.

B.1 Classical 1D WFEM implementation

1 function [Lambda,PHI] = WFEM1D_Classic( K,M,C,QL,QR,QI,omega)
2 %WFEM1D_Classic Classical 1D WFEM formulation
3 % Classical 1D WFEM formulation with the linearization of: Fan, Y., Zhou

, C. W., Laine, J. P., Ichchou, M. & Li, L. Model reduction schemes
for the wave and finite element method using the free modes of a unit
cell.

4 % Comput. Struct. 197, 42=57 (2018).
5
6 %Step 1 building the (condensed) dynamic stiffness matrix
7 if(isempty(QI))% if no internal degress of freedom no condensation
8 D=K+1i*omega*C=(omega^2)*M;
9

10 else% condense the inner dofs
11 G=K+1i*omega*C=(omega^2)*M;
12
13 Qm=[QL,QR];%master dofs
14 Qs=QI;%slave dofs
15
16 Gmm=G(Qm,Qm);
17 Gms=G(Qm,Qs);
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18 Gsm=G(Qs,Qm);
19 Gss=G(Qs,Qs);
20 D=Gmm=full(Gms/Gss)*Gsm;
21 end
22
23 % Step2 setting up the eigenvalue problem of Zhong's formulation
24 DLL=D(QL,QL);
25 DLR=D(QL,QR);
26 DRL=D(QR,QL);
27 DRR=D(QR,QR);
28
29 A0=DRL;
30 A1=DLL+DRR;
31 A2=DLR;
32
33 [PHI,Lambda] = quadeig(A0,A1,A2);
34 end
35
36 function [ V,D ] = quadeig( A0,A1,A2 )
37 %quadeig Solve the quadratique eigen value Problem
38
39 [p,q]=size(A0);
40 O=zeros(p,q);
41 I=norm(A0(:))*eye(q)/sqrt(q);
42 A=[A0,O;O,=I];
43 B==[A1,A2;I,O];
44
45 [V,D]=eig(A,B);
46 V=V(1:p,1:(2*q));
47 D=diag(D);
48 end

B.2 Zhong’s formulation with an iterative solver

1 function [Lambda,PHI] = WFEM1D_Zhong( K,M,C,QL,QR,QI,omega,nwaves)
2 %WFEM1D_Zhong 1D WFEM formulation compatible with an iterative solver.
3 % WFEM with a structure preservinf linearization coming from control
4 % theory often refered to as Zhong's method. It is assumed that the
5 % matrices dofs have been reordered in the QL,QR,QI order with matching
6 % dofs ordering for QL and QR.
7 % For theoretical details see: Huang, T.=M., Lin, W.=W. & Qian, J.
8 % Structure=Preserving Algorithms for Palindromic Quadratic Eigenvalue
9 % Problems Arising from Vibration of Fast Trains. SIAM J. Matrix Anal.
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10 % Appl. 30, 1566=1592 (2009).
11
12 %Step 1 building the (condensed) dynamic stiffness matrix
13 if(isempty(QI))% if no internal degress of freedom no condensation
14 D=K+1i*omega*C=(omega^2)*M;
15
16 else% condense the inner dofs
17 G=K+1i*omega*C=(omega^2)*M;
18
19 Qm=[QL,QR];%master dofs
20 Qs=QI;%slave dofs
21
22 Gmm=G(Qm,Qm);
23 Gms=G(Qm,Qs);
24 Gsm=G(Qs,Qm);
25 Gss=G(Qs,Qs);
26 D=Gmm=full(Gms/Gss)*Gsm;
27 end
28
29 % Step2 setting up the eigenvalue problem of Zhong's formulation
30 DLL=D(QL,QL);
31 DLR=D(QL,QR);
32 DRL=D(QR,QL);
33 DRR=D(QR,QR);
34
35 A=DRL=DLR;
36 B=DLL+DRR;
37 n=length(A);
38 if (issparse(A))%if the orginal matrices are sparse we ensure the asmbled

matrix are too.
39 O=sparse(n,n);
40 else
41 O=zeros(n,n);
42 end
43
44 P=[A,B;=B,A];
45 Q=[O,=DRL;DLR,O];
46
47 opts.p = 5*nwaves+2;%Handpicked number of Lanczos basis vectors. This

seems to work most of the time unlike matlabs defaults
48 [Z,Nu]=eigs(P,Q,2*nwaves,'sm',opts);% Nu= (lamdbda + 1/lambda)
49
50 %Step 3 Post processing of the eignvalues and eignevectors to match the
51 %orginal palyndromic eignevalue problem.
52
53 Nu=diag(Nu);
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54 [~,perm]=sort(abs(Nu),'ascend');
55 Nu=Nu(perm);
56 Nu(abs(Nu)==Inf)=Inf;
57 Nu(abs(Nu)<eps)=0;
58 Z=normalize_columns(Z(:,perm));
59
60 % Since all eigenvalues come in pair we average the value for each pair.
61 pair1=2*(1:nwaves);
62 pair2=pair1=1;
63
64 % Split back each double value into the corresponding 2 propagation
65 % constants
66 Nu=(Nu(pair1)+Nu(pair2))/2;
67 indexNuInf=(abs(Nu)==Inf);
68 Lambda1=(Nu+sqrt(Nu.^2=4))/2;
69 Lambda1(indexNuInf)=0;
70
71 Lambda2=(Nu=sqrt(Nu.^2=4))/2;
72 Lambda2(indexNuInf)=Inf;
73
74 %Separating the eigenvector pairs
75 Z1=Z(:,pair1);
76 Z2=Z(:,pair2);
77
78
79 %Post processing of the eigenvalues and eigenvectors
80 t=1:n;
81 b=n+(1:n);
82
83 %First group of eigenvalues/eigenvectors
84 I=ones(1,nwaves);;
85 I=sparsediag(I);
86 L2=sparsediag(Lambda2);
87
88 PHI1=Z1(t,:)*I + Z1(b,:)*L2;
89 PHI1=normalize_columns(PHI1);
90
91 %Second group of eigenvalues/eigenvectors
92 I=ones(1,nwaves);;
93 I=sparsediag(I);
94 L1=sparsediag(Lambda1);
95
96 PHI2=Z2(t,:)*I + Z2(b,:)*L1;
97 PHI2=normalize_columns(PHI2);
98
99 PHI=[PHI1,PHI2];
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100 Lambda=[Lambda1,Lambda2];
101 end

B.3 An improved version of the MOR scheme of
Droz et al

1 function [Kred,Mred,Cred,QL_red,QR_red,QI2,PROJ_LR] = MOR_Droz2014(K,M,C,
QL,QR,QI,L,fmax,n_cutonfind,maxImk)

2 %MOR_DROZ2014 An implementation of a MOR technique for 1D UC analysis
3 % This function implements the paper: 'A reduced formulation for the
4 % free=wave propagation analysis in composite structuress'
5 % https://doi.org/10.1016/j.compstruct.2014.03.017
6
7 %QL: lesft interface dofs vector
8 %QR: right interface dofs vector
9 %QI inner dofs vector

10 %L length of the structure in thedirection of proppagation
11
12 %Step 1: Determine the cut on frequencies.
13 cut_on_frequencies=get_cut_on_frequencies(K,M,QL,QR,QI,fmax,n_cutonfind);
14 lmin=exp(=L*maxImk);
15 nc=length(cut_on_frequencies);
16 nwaves=(nc+8)*2;% some overdimensioning because the number of propagating

waves can varry =====> bangaps
17 n=length(QR);
18
19 %Step 2: Use the WFEM Method to build the snapshot matrix
20 Phi_Collection=zeros(n,nwaves*nc);
21 count=0;
22 for i=1:nc
23 omega=2*pi*cut_on_frequencies(i);
24 [lambdas, phi] = WFEM_1D_Zhong(K,M,C,QL,QR,QI,omega,nwaves);
25 index=find((abs(lambdas)>=lmin)&(abs(lambdas)<=1));
26 ni=length(index);
27 Phi_Collection(:,(count+1):(count+ni))=phi(:,index);
28 count=count+ni;
29 end
30 Phi_Collection=Phi_Collection(:,1:count);
31
32 %Step 3: Creation of the local interface projection basis via a QR like
33 %algorithm
34 Phi_Collection=[real(Phi_Collection),imag(Phi_Collection)];
35 Proj=Gram_Schmidtt_Orthogonalization(Phi_Collection);
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36
37 % Building the reduced order model
38
39 %Size of different matrices
40 nbKeep=size(Proj,2);
41 sizePhi=size(Proj,1);
42 sizeQI=length(QI);
43
44 %Dof structure for the reduced UC
45 QL_red=1:nbKeep;
46 QR_red=(nbKeep+1):(2*nbKeep);
47 QI2=(2*nbKeep+1):(2*nbKeep+sizeQI);
48
49 % Building the Final projection matrix
50 PROJ_LR=zeros(2*sizePhi+sizeQI,2*nbKeep+sizeQI);
51 PROJ_LR(GeoMesh.QL,QL_red)=Proj;
52 PROJ_LR(GeoMesh.QR,QR_red)=Proj;
53 PROJ_LR(QI,QI2)=eye(sizeQI);
54
55 %Obtaineing the reduced order matrices
56 Kred=symetrize(PROJ_LR.'*K*PROJ_LR);
57 Mred=symetrize(PROJ_LR.'*M*PROJ_LR);
58 Cred=symetrize(PROJ_LR.'*C*PROJ_LR);
59
60 end
61 %% Auxiliary functions
62 function [cut_on_frequencies]= get_cut_on_frequencies(K,M,QL,QR,QI,fmax,

n_cutonfind)
63
64 QL0=[QL,QI];
65 QR_tild=QL;
66 QL_tild=1:length(QL0);
67 QR0=QR;
68
69
70 n=length(QL_tild);
71 if(issparse(K))
72 KLambda=spalloc(n,n,nnz(K));
73 MLambda=spalloc(n,n,nnz(M));
74 else
75 KLambda=zeros(n);
76 MLambda=zeros(n);
77 end
78
79 %Applying Floquet=Bloch Boundary conditions for \lambda=1 i.e. k=0
80 KLambda(QR_tild,QL_tild)=KLambda(QR_tild,QL_tild)+ K(QR0,QL0);
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81 KLambda(QL_tild,QL_tild)=KLambda(QL_tild,QL_tild)+ K(QL0,QL0);
82 KLambda(QR_tild,QR_tild)=KLambda(QR_tild,QR_tild)+ K(QR0,QR0);
83 KLambda(QL_tild,QR_tild)=KLambda(QL_tild,QR_tild)+ K(QL0,QR0);
84
85 KLambda=symetrize(KLambda);
86
87 MLambda(QR_tild,QL_tild)=MLambda(QR_tild,QL_tild)+ M(QR0,QL0);
88 MLambda(QL_tild,QL_tild)=MLambda(QL_tild,QL_tild)+ M(QL0,QL0);
89 MLambda(QR_tild,QR_tild)=MLambda(QR_tild,QR_tild)+ M(QR0,QR0);
90 MLambda(QL_tild,QR_tild)=MLambda(QL_tild,QR_tild)+ M(QL0,QR0);
91
92 MLambda=symetrize(MLambda);
93 Omega2=eigs(KLambda,MLambda,n_cutonfind,'sm');
94 cut_on_frequencies=sqrt(Omega2)/(2*pi);
95
96 %Filtering unwatned frequencies & cleabning the array
97 cut_on_frequencies=real(cut_on_frequencies);% we keep only the real part
98 cut_on_frequencies(cut_on_frequencies<10)=0; % we put back to zero rthe

frequencies that should be there
99 cut_on_frequencies=unique(cut_on_frequencies);%values apearing multiple

times are put back to one appearance.
100 cut_on_frequencies=cut_on_frequencies(cut_on_frequencies<=fmax);%

frequencies higher than fmax are removed because we are not intrested
in them

101 end

B.4 Basic Craig-Bampton MOR scheme implemen-
tation for inner dofs reduction

1 function [ Kred, Mred,QI_red,Proj] =Craig_Bampton_MOR( K,M,QL,QR,QI,fmax,
nf,nval)

2 %Craig_Bampton_MOR Craig Bampton MOR for 1D unit cell modeling
3
4
5 %K is the stiffness matrix it can be complex (hysteretic damping)
6 %M is the mass matrix. It should be real
7 %QL vector of the left interface dofs indexes
8 %QR vector of the righ interface dofs indexes
9 %QI vector of the innder dofs indexes.

10 %It is assumeed that the matrices has been reordered such that [QL,QR,QI]
is equal to 1:n with n the total number of dofs of the UC's matrices

11
12 %Check on the frequency sampling factor. It should be higher than 2
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13 if (nf<2)
14 nf=2;
15 end
16
17 %Extracting the relavant submatrices
18 Qbd=[QL,QR];%vector of all the boundary degrees of freedom
19 kii=K(QI,QI);
20 mii=M(QI,QI);
21 kib=K(QI,Qbd);
22
23 % Compuation of the clamped interface modes
24 [Vec,Omega2]=eigs(kii,mii,nval,'sm');
25
26 %Sorting of the eigenfrequency and modeshapes
27 [Omega2,index]=sort(diag(Omega2));
28 Freqs=sqrt(Omega2)/2/pi;
29 Vec=Vec(:,index);
30
31 if(isreal(kii))%no hysteretic damping the eigenvectors are real
32 Vec=normalize_columns(Vec);
33 else% hysteretic damping is present. A real basis for the mode shpas

subspaces is built
34 Vec=Gram_Schmidtt_Orthogonalization([real(Vec),imag(Vec)]);
35 end
36
37 %Selection of teh mode shapes corresponding to freqeuncies higher than nf*

famx
38 index_keep= abs(Freqs)<nf*fmax;
39 PhiISele=Vec(:,index_keep);
40 nb_modes=size(PhiISele,2);
41
42 %Computation of clamped static modes
43 PhiBd==full(real(kii)\real(kib));
44
45 %Building of the projection matrix
46 Proj=[eye(nddl_bound) zeros(nddl_bound,nb_modes);
47 PhiBd PhiISele];
48
49 %Projection of the mass and stifness matrices
50 Kred=Proj.'*K*Proj;
51 Mred=Proj.'*M*Proj;
52
53 %Building the index of interior modes for the reduced model
54 ndofs_boundaries=length(Qbd);
55 QI_red=(ndofs_boundaries+1):(ndofs_boundaries+nb_modes);
56 end



Appendix C

Wavenumber extraction code
snippets

C.1 The 1D ESPRIT algorithm

In this section, an implementation of the 1D ESPRIT algorithm [163] assuming
the number of waves is known is implemented in Matlab.

1 function [K] = ESPRIT_HRWA(Y,Order)
2 %ESPRIT_HRWA Applies the ESPRIT algorithm to 1D Wavenumber extraction
3 % See:
4 % P. Margerit, A. Lebee, J. F. Caron, and X. Boutillon, 'High

Resolution Wavenumber Analysis (HRWA) for the mechanical
characterisation of viscoelastic beams',

5 % J. Sound Vib., vol. 433, pp. 198=211, 2018.
6
7 N=length(Y);
8 k=floor(N/2);
9 R=N=k;

10
11 H=zeros(R,k);
12 index=1:R;
13
14 for i=1:k
15 H(:,i)=Y(index);
16 index=index+1;
17 end
18 [W,~,~]=svd(H,'econ');

153
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19
20
21 I=speye(R=1,R=1);
22 O=sparse(R=1,1);
23 A1=[I,O];
24 A2=[O,I];
25
26 Wp=W(:,1:Order);
27 Wp1=A1*Wp;
28 Wp2=A2*Wp;
29
30 F=lsqminnorm(Wp1,Wp2);
31
32 Lambda=eig(F);
33 K=1i*log(Lambda);
34
35 end

C.2 A modified 1D ESPRIT algorithm

In this section a version of the 1D ESPRIT algorithm modified in order to
account for the forward-backward 1D wave propagation symmetry is presented.

1 function [K] = ESPRIT_HRWA_R(Y,Order)
2 %ESPRIT_HRWA_R Applies the ESPRIT algorithm to 1D Wavenumber extraction
3 %with a few personal modification
4 % See:
5 % P. Margerit, A. Lebee, J. F. Caron, and X. Boutillon, 'High

Resolution Wavenumber Analysis (HRWA) for the mechanical
characterisation of viscoelastic beams',

6 % J. Sound Vib., vol. 433, pp. 198=211, 2018.
7 % Modifiacations:
8 % 1) Space symetrization by introducing f(=t) when building the

invariant space
9

10 N=length(Y);
11 k=floor(N/2);
12 R=N=k;
13 Y2=Y(N:=1:1);
14
15 H=zeros(R,2*k);
16 index=1:R;
17
18 for i=1:k
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19 H(:,2*i=1)=Y(index);
20 H(:,2*i)=Y2(index);
21 index=index+1;
22 end
23 [W,~,~]=svd(H,'econ');
24
25
26 I=speye(R=1,R=1);
27 O=sparse(R=1,1);
28 A1=[I,O];
29 A2=[O,I];
30
31 Wp=W(:,1:Order);
32 Wp1=A1*Wp;
33 Wp2=A2*Wp;
34 F=lsqminnorm(Wp1,Wp2);
35
36 Lambda=eig(F);
37 K=1i*log(Lambda);
38 end

C.3 A basic implementation of the 1D IWC

1 function [k,fval,exitflag] = IWC_1D(x,y,kr0,ki0)
2 %IWC 1D Summary of this function goes here
3 % Detailed explanation goes here
4 y=y/norm(y);
5 a = [];
6 b = [];
7 Aeq = [];
8 beq = [];
9 lb = [];

10 ub = [];
11 nonlcon = [];
12 options = optimoptions('fmincon','FunctionTolerance',10^=8,'

OptimalityTolerance',10^=8,'MaxIterations',10^6,'
MaxFunctionEvaluations',10^9,'Display','off');

13 x0=[kr0,ki0];
14 f=@(p)f0(x,y,p(1),p(2));
15 [kf,fval,exitflag]= fmincon(f,x0,a,b,Aeq,beq,lb,ub,nonlcon,options);
16 k=kf(1)+1i*kf(2);
17 end
18 function err=f0(x,y,kr,ki)
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19 exp_fun=exp(=1i*(kr+1i*ki)*x);
20 exp_fun=exp_fun/norm(exp_fun);
21 err==abs(exp_fun'*y)^2;
22 end

C.4 A basic implementation of the 2D IWC

1 function [k,fval,exitflag] = IWC_2D(theta,x,y,z,kr0,ki0)
2 %IWC_2D Summary of this function goes here
3 % Detailed explanation goes here
4 z=z/norm(z);
5 a = [];
6 b = [];
7 Aeq = [];
8 beq = [];
9 lb = [];

10 ub = [];
11 nonlcon = [];
12 options = optimoptions('fmincon','FunctionTolerance',10^=8,'

OptimalityTolerance',10^=8,'MaxIterations',10^6,'
MaxFunctionEvaluations',10^9,'Display','off');

13 x0=[kr0,ki0];
14 f=@(p)f0(x,y,z,theta,p(1),p(2));
15 [k,fval,exitflag]= fmincon(f,x0,a,b,Aeq,beq,lb,ub,nonlcon,options);
16 k=k(1)+1i*k(2);
17 end
18 function err=f0(x,y,z,theta,kr,ki)
19 exp_fun=exp(=1i*(kr+1i*ki)*(x*cos(theta)+y*sin(theta)));
20 exp_fun=exp_fun/norm(exp_fun);
21 err==abs(exp_fun'*z);
22 end

C.5 A basic implementation of the IWD

1 function [k,Amplitudespr,Amplitudespi,Amplitudesnr,Amplitudesni,fval,
exitflag] = IWD_H1W(XY,Z,Directions,k0,Amplitudespr0,Amplitudespi0,
Amplitudesnr0,Amplitudesni0)

2 %IWD_H1W : Inverse Wave decomposition used for wavenumber extraction
3
4 n=length(Amplitudespr0);
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5
6 Z=Z/norm(Z);
7 a = [];
8 b = [];
9 Aeq = [];

10 beq = [];options = optimoptions('fmincon','FunctionTolerance',10^=8,'
OptimalityTolerance',10^=8,'MaxIterations',10^6,'
MaxFunctionEvaluations',10^9,'Display','off');

11 lb = [];
12 ub = [];
13 nonlcon = [];
14 options = optimoptions('fmincon','FunctionTolerance',10^=8,'

OptimalityTolerance',10^=8,'MaxIterations',10^6,'
MaxFunctionEvaluations',10^9,'Display','off');

15 p0=[real(k0),imag(k0),Amplitudespr0,Amplitudespi0,Amplitudesnr0,
Amplitudesni0];

16
17 i1=3:(n+2);
18 i2=n+i1;
19 i3=n+i2;
20 i4=n+i3;
21 f=@(p)f0(XY,Z,Directions,p(1),p(2),p(i1),p(i2),p(i3),p(i4),n);
22
23 [p,fval,exitflag]= fmincon(f,p0,a,b,Aeq,beq,lb,ub,nonlcon,options);
24 k=p(1)+1i*p(2);
25
26 Amplitudespr=p(i1);
27 Amplitudespi=p(i2);
28 Amplitudesnr=p(i3);
29 Amplitudesni=p(i4);
30 end
31
32 function err=f0(XY,Z,Directions,kr,ki,Amplitudespr,Amplitudespi,

Amplitudesnr,Amplitudesni,n)
33
34 k=ones(1,n)*(kr+1i*ki);
35
36 x=XY*Directions;
37 u=exp(=1i*k.*x);
38 v=exp(1i*k.*x);
39
40 Amplitudesp=Amplitudespr(:).'+1i*Amplitudespi(:).';
41 Amplitudesn=Amplitudesnr(:).'+1i*Amplitudesni(:).';
42 Uapp=sum(u.*Amplitudesp + v.*Amplitudesn,2);
43 Uapp=Uapp/norm(Uapp);
44 err==abs(Uapp'*Z)^2;
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45 end

C.6 A 1D INCOME code for 2 wavetypes

1 function [K,coeffs] = WaveNumberExtraction1D2W(X,n)
2 %WaveNumberExtraction1D2W Summary of this function goes here
3 % Detailed explanation goes here
4 s=length(X);
5 ind=(2*n+1):(s=2*n);
6
7 %Creation of the three columns of teh modified Hankel Matrix
8 X0=X(ind);
9 X1=X(ind+n)+X(ind=n);

10 X2=X(ind+2*n)+X(ind=2*n);
11
12 %Assembly of the modified hankel matrix
13 R=[X0(:),X1(:),X2(:)];
14
15 %Obtention of the convolution kernel's coefficients
16 coeffs=SVD(R);
17
18 %Determining the propagation constants using the palindromic

transformation
19 Pcoeffs=[coeffs(3),coeffs(2),coeffs(1)=2*coeffs(3)];
20 Eta=roots(Pcoeffs);
21 Lambda=[(Eta+sqrt(Eta.^2=4))/2;(Eta=sqrt(Eta.^2=4))/2];
22
23 %The pseudo wavenumber is obtained by taking the logarithm it need to be
24 %divided by the sampling length in order to be a true wavenumber
25 K=1i*log(Lambda)/n;
26 end
27
28
29 function [coeffs]=SVD(H)
30 W=diag([1,2,2]);
31 [V,D]=eig(H'*H,W);
32 D=diag(D);
33 [~,ind]=sort(D);
34 coeffs=V(:,ind(1));
35 end
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C.7 The Mc Daniel method for Euler-Bernoulli
beams

1 function [err,gradient,hessian] = errFunctionBernoulli(y,x,L,kr1,ki1,apr1,
api1,anr1,ani1,apr2,api2,anr2,ani2)

2 %UNTITLED3 Summary of this function goes here)
3 %errFunction2Waves Summary of this function goes here
4 % Detailed explanation goes here
5 if (nargout==1)
6 xm=L=x;
7 u1=exp(=1i*(kr1+1i*ki1)*x);
8 u2=exp(=1i*(ki1=1i*kr1)*x);
9 v1=exp(=1i*(kr1+1i*ki1)*xm);

10 v2=exp(=1i*(ki1=1i*kr1)*xm);
11 f=(apr1+1i*api1)*u1 +(anr1+1i*ani1)*v1 +(apr2+1i*api2)*u2 +(anr2+1i*

ani2)*v2;
12 diff=f=y;
13 err=diff'*diff;
14
15 elseif (nargout==2)
16 xm=L=x;
17 u1=exp(=1i*(kr1+1i*ki1)*x);
18 u2=exp(=1i*(ki1=1i*kr1)*x);
19 v1=exp(=1i*(kr1+1i*ki1)*xm);
20 v2=exp(=1i*(ki1=1i*kr1)*xm);
21 f=(apr1+1i*api1)*u1 +(anr1+1i*ani1)*v1 +(apr2+1i*api2)*u2 +(anr2+1i*

ani2)*v2;
22 diff=f=y;
23 err=diff'*diff;
24 %calcul du gradient
25
26 gradient=zeros(10,1);
27 %Onde 1
28 df_dkr1= =1i*(apr1+1i*api1)*x.*u1 =1i*(anr1+1i*ani1)*xm.*v1 =(apr2+1i

*api2)*x.*u2 =(anr2+1i*ani2)*xm.*v2;
29 df_dki1= (apr1+1i*api1)*x.*u1 +(anr1+1i*ani1)*xm.*v1 =1i*(apr2+1i*

api2)*x.*u2 =1i*(anr2+1i*ani2)*xm.*v2;
30 df_dapr1= u1;
31 df_dapi1= 1i*u1;
32 df_danr1= v1;
33 df_dani1= 1i*v1;
34 %Onde 2
35 df_dapr2= u2;
36 df_dapi2= 1i*u2;
37 df_danr2= v2;
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38 df_dani2= 1i*v2;
39
40 gradient(1)=2*real(df_dkr1'*diff);
41 gradient(2)=2*real(df_dki1'*diff);
42 gradient(3)=2*real(df_dapr1'*diff);
43 gradient(4)=2*real(df_dapi1'*diff);
44 gradient(5)=2*real(df_danr1'*diff);
45 gradient(6)=2*real(df_dani1'*diff);
46 gradient(7)=2*real(df_dapr2'*diff);
47 gradient(8)=2*real(df_dapi2'*diff);
48 gradient(9)=2*real(df_danr2'*diff);
49 gradient(10)=2*real(df_dani2'*diff);
50 elseif (nargout==3)
51 xm=L=x;
52 u1=exp(=1i*(kr1+1i*ki1)*x);
53 u2=exp(=1i*(ki1=1i*kr1)*x);
54 v1=exp(=1i*(kr1+1i*ki1)*xm);
55 v2=exp(=1i*(ki1=1i*kr1)*xm);
56 f=(apr1+1i*api1)*u1 +(anr1+1i*ani1)*v1 +(apr2+1i*api2)*u2 +(anr2+1i*

ani2)*v2;
57 diff=f=y;
58 err=diff'*diff;
59 %calcul du gradient
60
61 gradient=zeros(10,1);
62 %Onde 1
63 df_dkr1= =1i*(apr1+1i*api1)*x.*u1 =1i*(anr1+1i*ani1)*xm.*v1 =(apr2+1i

*api2)*x.*u2 =(anr2+1i*ani2)*xm.*v2;
64 df_dki1= (apr1+1i*api1)*x.*u1 +(anr1+1i*ani1)*xm.*v1 =1i*(apr2+1i*

api2)*x.*u2 =1i*(anr2+1i*ani2)*xm.*v2;
65 df_dapr1= u1;
66 df_dapi1= 1i*u1;
67 df_danr1= v1;
68 df_dani1= 1i*v1;
69 %Onde 2
70 df_dapr2= u2;
71 df_dapi2= 1i*u2;
72 df_danr2= v2;
73 df_dani2= 1i*v2;
74
75 gradient(1)=2*real(df_dkr1'*diff);
76 gradient(2)=2*real(df_dki1'*diff);
77 gradient(3)=2*real(df_dapr1'*diff);
78 gradient(4)=2*real(df_dapi1'*diff);
79 gradient(5)=2*real(df_danr1'*diff);
80 gradient(6)=2*real(df_dani1'*diff);
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81 gradient(7)=2*real(df_dapr2'*diff);
82 gradient(8)=2*real(df_dapi2'*diff);
83 gradient(9)=2*real(df_danr2'*diff);
84 gradient(10)=2*real(df_dani2'*diff);
85
86
87 % Hessian
88 hessian=zeros(10,10);
89 x2=x.^2;
90 xm2=xm.^2;
91
92 %Premiere Onde
93 %kr1
94 d2f_dkr_dkr= =(apr1+1i*api1)*x2.*u1 =(anr1+1i*ani1)*xm2.*v1 + (apr2

+1i*api2)*x2.*u2 + (anr2+1i*ani2)*xm2.*v2;
95 d2f_dkr_dki==1i*(apr1+1i*api1)*x2.*u1 =1i*(anr1+1i*ani1)*xm2.*v1 +1i*(

apr2+1i*api2)*x2.*u2 +1i*(anr2+1i*ani2)*xm2.*v2;
96 d2f_dkr_dapr1= =1i*x.*u1;
97 d2f_dkr_dapi1= 1*x.*u1;
98 d2f_dkr_danr1= =1i*xm.*v1;
99 d2f_dkr_dani1= 1*xm.*v1;

100 %premiere onde ki1
101 d2f_dki_dki= (apr1+1i*api1)*x2.*u1 + (anr1+1i*ani1)*xm2.*v1 = (apr2+1i

*api2)*x2.*u2 = (anr2+1i*ani2)*xm2.*v2;
102 d2f_dki_dapr1= x.*u1;
103 d2f_dki_dapi1= 1i*x.*u1;
104 d2f_dki_danr1= xm.*v1;
105 d2f_dki_dani1= 1i*xm.*v1;
106 %Deuxieme Onde
107 %kr2
108 d2f_dkr_dapr2= =x.*u2;
109 d2f_dkr_dapi2= =1i*x.*u2;
110 d2f_dkr_danr2= =xm.*v2;
111 d2f_dkr_dani2= =1i*xm.*v2;
112 %ki2
113 d2f_dki_dapr2= =1i*x.*u2;
114 d2f_dki_dapi2= x.*u2;
115 d2f_dki_danr2= =1i*xm.*v2;
116 d2f_dki_dani2= xm.*v2;
117
118 %Hessienne
119 %Ligne 1
120 hessian(1,1)=2*real(diff'*d2f_dkr_dkr + df_dkr1'*df_dkr1);
121 hessian(1,2)=2*real(diff'*d2f_dkr_dki + df_dki1'*df_dkr1);
122 hessian(1,3)=2*real(diff'*d2f_dkr_dapr1 + df_dapr1'*df_dkr1);
123 hessian(1,4)=2*real(diff'*d2f_dkr_dapi1 + df_dapi1'*df_dkr1);
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124 hessian(1,5)=2*real(diff'*d2f_dkr_danr1 + df_danr1'*df_dkr1);
125 hessian(1,6)=2*real(diff'*d2f_dkr_dani1 + df_dani1'*df_dkr1);
126 hessian(1,7)=2*real(diff'*d2f_dkr_dapr2 + df_dapr2'*df_dkr1);
127 hessian(1,8)=2*real(diff'*d2f_dkr_dapi2 + df_dapi2'*df_dkr1);
128 hessian(1,9)=2*real(diff'*d2f_dkr_danr2 + df_danr2'*df_dkr1);
129 hessian(1,10)=2*real(diff'*d2f_dkr_dani2 + df_dani2'*df_dkr1);
130 %Ligne 2
131 hessian(2,2)=2*real(diff'*d2f_dki_dki + df_dki1'*df_dki1);
132 hessian(2,3)=2*real(diff'*d2f_dki_dapr1 + df_dapr1'*df_dki1);
133 hessian(2,4)=2*real(diff'*d2f_dki_dapi1 + df_dapi1'*df_dki1);
134 hessian(2,5)=2*real(diff'*d2f_dki_danr1 + df_danr1'*df_dki1);
135 hessian(2,6)=2*real(diff'*d2f_dki_dani1 + df_dani1'*df_dki1);
136 hessian(2,7)=2*real(diff'*d2f_dki_dapr2 + df_dapr2'*df_dki1);
137 hessian(2,8)=2*real(diff'*d2f_dki_dapi2 + df_dapi2'*df_dki1);
138 hessian(2,9)=2*real(diff'*d2f_dki_danr2 + df_danr2'*df_dki1);
139 hessian(2,10)=2*real(diff'*d2f_dki_dani2 + df_dani2'*df_dki1);
140 %Ligne 3
141 hessian(3,3)=2*real(df_dapr1'*df_dapr1);
142 hessian(3,4)=2*real(df_dapi1'*df_dapr1);
143 hessian(3,5)=2*real(df_danr1'*df_dapr1);
144 hessian(3,6)=2*real(df_dani1'*df_dapr1);
145 hessian(3,7)=2*real(df_dapr2'*df_dapr1);
146 hessian(3,8)=2*real(df_dapi2'*df_dapr1);
147 hessian(3,9)=2*real(df_danr2'*df_dapr1);
148 hessian(3,10)=2*real(df_dani2'*df_dapr1);
149 %Ligne 4
150 hessian(4,4)=2*real(df_dapi1'*df_dapi1);
151 hessian(4,5)=2*real(df_danr1'*df_dapi1);
152 hessian(4,6)=2*real(df_dani1'*df_dapi1);
153 hessian(4,7)=2*real(df_dapr2'*df_dapi1);
154 hessian(4,8)=2*real(df_dapi2'*df_dapi1);
155 hessian(4,9)=2*real(df_danr2'*df_dapi1);
156 hessian(4,10)=2*real(df_dani2'*df_dapi1);
157 %Ligne 5
158 hessian(5,5)=2*real(df_danr1'*df_danr1);
159 hessian(5,6)=2*real(df_dani1'*df_danr1);
160 hessian(5,7)=2*real(df_dapr2'*df_danr1);
161 hessian(5,8)=2*real(df_dapi2'*df_danr1);
162 hessian(5,9)=2*real(df_danr2'*df_danr1);
163 hessian(5,10)=2*real(df_dani2'*df_danr1);
164 %Ligne 6
165 hessian(6,6)=2*real(df_dani1'*df_dani1);
166 hessian(6,7)=2*real(df_dapr2'*df_dani1);
167 hessian(6,8)=2*real(df_dapi2'*df_dani1);
168 hessian(6,9)=2*real(df_danr2'*df_dani1);
169 hessian(6,10)=2*real(df_dani2'*df_dani1);
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170 %Ligne 7
171 hessian(7,7)=2*real(df_dapr2'*df_dapr2);
172 hessian(7,8)=2*real(df_dapi2'*df_dapr2);
173 hessian(7,9)=2*real(df_danr2'*df_dapr2);
174 hessian(7,10)=2*real(df_dani2'*df_dapr2);
175 %Linge 8
176 hessian(8,8)=2*real(df_dapi2'*df_dapi2);
177 hessian(8,9)=2*real(df_danr2'*df_dapi2);
178 hessian(8,10)=2*real(df_dani2'*df_dapi2);
179 %Ligne 9
180 hessian(9,9)=2*real(df_danr2'*df_danr2);
181 hessian(9,10)=2*real(df_dani2'*df_danr2);
182 %Ligne 10
183 hessian(10,10)=2*real(df_danr2'*df_danr2);
184
185 %Symetrisation
186 hessian=hessian+hessian'=diag(diag(hessian));
187
188 end

C.8 A 2D INCOME code for quasi-isotropic wave
propagation with 1 wavetype

1 function [K,coeffs] = WaveNumberExtraction2DHighSymmetry1W(X,nxy)
2 %WaveNumberExtraction2DHighSymmetry1W Summary of this function goes here
3 % Detailed explanation goes here
4 [n,m]=size(X);
5 indX0=(nxy+1):(n=nxy);
6 indY0=(nxy+1):(m=nxy);
7
8 %Creation of the three columns of teh modified Hankel Matrix
9 XV=X(indX0=nxy,indY0)+X(indX0+nxy,indY0)+X(indX0,indY0=nxy)+X(indX0,indY0+

nxy);
10 XD=X(indX0=nxy,indY0=nxy)+X(indX0+nxy,indY0+nxy)+X(indX0=nxy,indY0+nxy)+X(

indX0+nxy,indY0=nxy);
11 X0=X(indX0,indY0);
12
13 %Assembly of the modified hankel matrix
14 R=[XV(:),XD(:),X0(:)];
15
16 %Obtention of the convolution kernel's coefficients
17 coeffs=SVD(R);
18
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19 %Determining the propagation constant in the x/y derection (they are
identical since this case has high symetry)

20 Eta==(coeffs(3)+2*coeffs(1))/(2*coeffs(2)+coeffs(1));
21 Lambda=[(Eta+sqrt(Eta.^2=4))/2;(Eta=sqrt(Eta.^2=4))/2];
22
23 %The pseudo wavenumber is obtained by taking the logarithm it need to be
24 %divided by the sampling length in order to be a true wavenumber
25 K=1i*log(Lambda)/nxy;
26 end
27
28 function [coeffs]=SVD(H)
29 W=diag([4,4,1]);
30 [V,D]=eig(H'*H,W);
31 D=diag(D);
32 [~,ind]=sort(D);
33 coeffs=V(:,ind(1));
34 end

C.9 Palindromic Transform

In this section an implementation of the palindromic transform of subsection
5.1.4. It produces a matrix M of size n+ 1 such that:

p2n
p2n−1

...
pn

 =


M1,1 M1,2 . . . M1,n+1
M2,1 M2,2 . . . M2,n+1
...

... . . . ...
Mn+1,1 Mn+1,2 . . . Mn+1,n+1



rn
rn−1
...
r0

 (C.1)

With pi the ith coefficient of the palindromic polynomial P and rj the jth
coefficient of its reduced polynomial R.

1 function [M]=palindromic_transform_matrix(maxOrder)
2 M=zeros(maxOrder+1);
3
4 for orderc=0:maxOrder
5 i=maxOrder+1=orderc;
6 Nsteps=0;
7 ordercoeff=orderc;
8 while ordercoeff>=0
9 j=maxOrder+1=ordercoeff;

10 M(j,i)=nchoosek(orderc,Nsteps);
11 ordercoeff=ordercoeff=2;
12 Nsteps=Nsteps+1;
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13 end
14 end
15
16 end

C.10 Comparison of the accuracy of different
methods for an analytical Euler-Bernoulli
beam

1 %% Euler=Bernoulli beam
2 clear all
3 clc
4 np=101;%number of measurement points
5 nf=1000;
6 nfp=50;
7 EI=1+0.08*1i;%value of EI
8 mu=1;%Value of mu lineic mass
9 L=1;%Length of the beam

10 alpha=sqrt(mu/EI);%k=alpha*sqrt(omega);
11 x=linspace(0,L,np);%cordinate of measurement points
12 mf=0.1;%maximal frequcueny
13 Mf=50;%minimal frequcueny
14 frequency=linspace(mf,Mf,nf);
15 frequencyp=linspace(mf,Mf,nfp);
16 F=1;%Force applied on the beam
17 dl=L/(np=1);
18
19 %% Computing the frequency forced response of the beam
20 Y=zeros(nf,np);
21 k_analytic=zeros(nf,4);
22 for i=1:nf
23 k=alpha*sqrt(2*pi*frequency(i));%wavenumber as a function of frequency
24 kv=[1i*k,=k,=1i*k,k];
25 k_analytic(i,:)=fliplr(kv);
26 %Determine wave amplitude form boundary conditions
27 M=zeros(4);
28 M(1,:)=1;
29 M(2,:)=kv;
30 M(3,:)=exp(kv*L).*kv.^2;
31 M(4,:)=exp(kv*L).*kv.^3;
32 V=[0;0;0;=F/EI];
33 A=M\V;
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34 %Build the displacement vector for the ith frequency
35 for j=1:4
36 Y(i,:)=Y(i,:)+A(j)*exp(kv(j)*x);
37 end
38 end
39 %% Wavenumber extraction
40 K_income=zeros(nf,4);
41 K_esprit=zeros(nf,4);
42 k_iwc=zeros(nf,1);
43 for i=1:nf
44 Y0=Y(i,:);
45 K_income(i,:)=WaveNumberExtraction1D2W(Y0,10)/dl;
46 K_esprit(i,:)=ESPRIT_HRWA(Y0,4)/dl;
47 k_iwc(i)=IWC_1D(x(:),Y0(:),real(k_iwc(i)),imag(k_iwc(i)));
48 if (i<nf)
49 k_iwc(i+1)=k_iwc(i);
50 end
51 end
52 k_iwc==k_iwc;
53 %%
54 K_income= wavetracking(K_income,frequency,0);
55 K_esprit= wavetracking(K_esprit,frequency,0);
56
57 coherence=(K_income'*k_analytic);
58 [~,ind]=max(real(coherence));
59 k_income=K_income(:,ind);
60
61 coherence=(K_esprit'*k_analytic);
62 [~,ind]=max(real(coherence));
63 k_esprit=K_esprit(:,ind);
64
65 indp=1:30:nf;
66 figure(1)
67 subplot(1,2,1)
68 h(1:2)=plot(frequency,real(k_income(:,[1,2])),'b=','LineWidth',4);
69 hold on
70 h(3:4)=plot(frequency,real(k_esprit(:,[1,2])),'r==','LineWidth',4);
71 h(5)=plot(frequency,real(k_iwc),'k=.','LineWidth',4);
72 h(6:7)=plot(frequency(indp),real(k_analytic(indp,[1,2])),'k.','MarkerSize'

,30);
73 title('Real part of the wavenumber')
74 xlim([mf,Mf])
75 xlabel('Frequency (Hz)')
76 ylabel('Wavenumber (rad.m^{=1})')
77 lgd = legend(h([1,3,5,6]),'INCOME','ESPRIT','IWC','Analytical');
78 lgd.Location='northwest';
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79
80
81 subplot(1,2,2)
82 g(1:2)=plot(frequency,imag(k_income(:,[1,2])),'b=','LineWidth',4);
83 hold on
84 g(3:4)=plot(frequency,imag(k_esprit(:,[1,2])),'r==','LineWidth',4);
85 g(5)=plot(frequency,imag(k_iwc),'k=.','LineWidth',4);
86 g(6:7)=plot(frequency(indp),imag(k_analytic(indp,[1,2])),'k.','MarkerSize'

,30);
87 title('Imaginary part of the wavenumber')
88 xlim([mf,Mf])
89 xlabel('Frequency (Hz)')
90 ylabel('Wavenumber (rad.m^{=1})')
91 lgd = legend(g([1,3,5,6]),'INCOME','ESPRIT','IWC','Analytical');
92 lgd.Location='southwest';
93
94
95 figure(2)
96 win(1:2)=semilogy(frequency,abs((k_income(:,[1,2])=k_analytic(:,[1,2]))./

k_analytic(:,[1,2])),'b=');
97 hold on
98 win(3:4)=semilogy(frequency,abs((k_esprit(:,[1,2])=k_analytic(:,[1,2]))./

k_analytic(:,[1,2])),'r==');
99 win(5)=semilogy(frequency,abs((k_iwc=k_analytic(:,1))./k_analytic(:,1)),'k

=.');
100 xlabel('Frequency (Hz)')
101 ylabel('Relative error [=]')
102 title('Error as a function of frequency')
103 xlim([mf,Mf])
104 lgd = legend(win([1,3,5]),'INCOME','ESPRIT','IWC');
105
106 %%
107 function Kt= wavetracking(K,f,fc)
108 n=size(K,1)=1;
109
110 for i=1:n
111 iref=i;
112 while(abs((K(iref,1)=K(iref,2))/K(iref,1))<0.03)
113 iref=iref=1;
114 end
115 Ki=K(iref,:);
116 Kip=perms(K(i+1,:));
117
118 if(f(i)<fc)
119 R=sum(abs(real(Kip=Ki)).^2,2);
120 else
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121 R=sum(abs(Kip=Ki).^2,2);
122 end
123 [~,ind]=min(R);
124 K(i+1,:)=Kip(ind(1),:);
125 end
126 Kt=K;
127 end

C.11 Comparison of the accuracy of different
methods for the Helmholtz equation

1 %% Wavenumber etxratcion for Helmoltz Equation
2 clear all
3 clc
4 addpath('..\')
5 %% Definition of the domain of sampling
6 np=51;
7 dl=1/(np=1);
8 X=linspace(=0.5,0.5,np);
9 Y=linspace(=0.5,0.5,np);

10 [X,Y]=meshgrid(X,Y);
11 %% Coordinates and amplitudes of the sources (phase will be random in the

simulation)
12 ns=30;
13 Rs=0.9+3*rand(1,ns);%distance of the source from the origin
14 Ts=2*pi*rand(1,ns); %polar andgles of the sources in poolar cordiante
15
16 As=exp(2*1i*pi*rand(1,ns)).*rand(1,ns)/4; %Random amplitudes and phases of

the sources
17 Xs=Rs.*cos(Ts);% abcissas of the sources
18 Ys=Rs.*sin(Ts);% ordinates of the sources
19 %% Detarministic field
20 k=30;% wavenumber value in the Helmoltz equation
21 Zd=zeros(np,np);
22 for i=1:ns
23 Ri=sqrt((X=Xs(i)).^2+(Y=Ys(i)).^2);
24 Zd=Zd+As(i)*besselh(0,k*Ri);
25 end
26 %% Ploting the deterministic field
27 figure(1)
28 surf(X,Y,real(Zd));
29 title('Real part of the wavefield');
30 shading interp
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31 axis equal
32 xlabel('X coordinates (m)')
33 ylabel('Y coordinates (m)')
34 view(2)
35 %colormap hot
36 %% Application of INCOME to 2D wavenumber extraction deterministic case
37 tic
38 k1=WaveNumberExtraction2DHighSymmetry1W(Zd,1);
39 t_income=toc;
40 k1=k1/dl;
41 res_income=min(abs((k+k1)/k));
42 noise_level=0.1;
43 %% Application of the IWD
44 na=15;
45 angles=pi*(0:(na=1))/na;
46 Directions=zeros(2,na);
47 for i=1:na
48 Directions(:,i)=[cos(angles(i));sin(angles(i))];
49 end
50 XY=[X(:),Y(:)];
51 Amplitudespr0=(rand(1,na)=0.5)*rand(1);
52 Amplitudesnr0=(rand(1,na)=0.5)*rand(1);
53 Amplitudespi0=(rand(1,na)=0.5)*rand(1);
54 Amplitudesni0=(rand(1,na)=0.5)*rand(1);
55 tic
56 [k_iwd,~,~,~,~,fval,exitflag] = IWD_H1W(XY,Zd(:),Directions,0,

Amplitudespr0,Amplitudespi0,Amplitudesnr0,Amplitudesni0);
57 t_iwd=toc;
58 res_iwd=min(abs(k_iwd=k),abs(k_iwd+k))/k;
59 %% Application of the IWC
60 tic
61 [k_iwc,fval,exitflag] = IWC_2D(0,X(:),Y(:),Zd(:),0,0);
62 t_iwc=toc;
63 res_iwc=min(abs(k_iwc+k),abs(k_iwc=k))/k;





Appendix D

Some Proofs and analytical
formulas

D.1 Coherent system of derivatives for eigenvalues
and eigenvectors

The aim of this subsection is to determines how equation of the form:

XA = B (D.1)

Should be solved in the context of eigenvector derivatives computations. Indeed,
equations (B.5) and (B.9) can be used to evaluate the derivatives of the
eigenvector. However, because the matrix function is singular when λ is an
eigenvalue, an infinite number of solutions exists. This subsection shows that
solving according to equation (D.2) produces a coherent set of derivatives.

(
Ui(p)

∣∣∣∣∂Ui(p)∂pk

)
= 0

(
Ui(p)

∣∣∣∣∂2Ui(p)
∂pk∂pl

)
= −<

((
∂Ui(p)
∂pk

∣∣∣∣∂Ui(p)∂pl

)) (D.2)

In what follows, it is assumed that the derivatives are computed for p = 0
and that they are C2 functions of the eigenvalue λi and the eigenvectors Ui.
We start by normalizing the eigenvector function. That is, we use 1

‖Ui(p)‖Ui(p)
instead of Ui(p). Since eigenvectors are defined up to a multiplicative constant

171
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this function is still ane eigenvector function. Moreover it is also C2 since Ui
cannot be equal to zero (eigenvectors are non-trivial solutions). In what follows
we still note this new function Ui(p).

∀p ∈ Rm, ‖Ui(p)‖ = 1 (D.3)

Tatking the first order derivative of equation (D.3) yields

∀p ∈ Rm, <
(
∂Ui

∂pk

∣∣∣∣Ui) = <
(
Ui

∣∣∣∣∂Ui∂pk

)
= 0 (D.4)

Considering the second order derivatives leads to:

∀p ∈ Rm, <
(
Ui(p)

∣∣∣∣∂2Ui(p)
∂pk∂pl

)
= −<

(
∂Ui(p)
∂pk

∣∣∣∣∂Ui(p)∂pl

)
(D.5)

Equations (D.4) and (D.5) are only true for the imaginary parts because the ( | )
is an hermitian inner product. Therefore we still have to show that the imaginary
part of the concerned inner products can be chosen equal to 0. Equation (D.4)
can be rewritten for p = 0 as:

∂Ui
∂pk

(0) = jαkUi(0) +Qk (D.6)

With
∀k ∈ J1,mK, αk ∈ R, (Ui(0)|Qk) = 0, j2 = −1 (D.7)

The eigenvector function R defined by equation (D.8) is considered:

∀p,∈ Rm, Ri(p) = Ui(p)e−j(α|p) (D.8)

The function R is also a normalized eigenvector function since
∣∣e−j(α|p)

∣∣ = 1
hence, it satisfies equations (D.4) and (D.5). Taking the first order derivatives
of R leads to:

∂Ri
∂pk

=
(
∂Ui
∂pk
− jαkUi

)
e−j(α|p) (D.9)

Therefore: 

R(0) = Ui(0)e−j(α|0) = Ui(0)

∂Ri
∂pk

(0) = Qke
−j(α|0) = Qk

Hence,

(
R(0)

∣∣∣∣∂Ri∂pk
(0)
)

= 0

(D.10)
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The first condition of equation (D.2) is verified by the eigenvector function Ri
but not necessarily the second one. It follows that:

∂2Ri
∂pk∂pl

(0) = (βk,l + jγk,l)Ui(0) +Wk,l

∀(k, l) ∈ J1,mK2, (βk,l, γk,l) ∈ R2, (Ri(0)|Wk,l) = 0
(D.11)

It should be noted that by Schwartz theorem βk,l = βl,k. The same holds true
for γk,l and Wk,l. The m by m matrix H is defined such that Hk,l = γk,l

2 . H is
real symmetric. We can now define the normalized eigenvector function S by:

∀p ∈ Rm, Si(p) = Ri(p)e−jp
THp (D.12)

Let (νk)k∈J1,mK be the canonical basis of Rm. We have:

Si(p) = Ri(p)e−jp
THp

∂Si
∂pk

=
(
∂Ri
∂pk
− 2j

(
νTk Hp

)
Ri

)
e−jp

THp

∂2Si
∂pl∂pk

=
[
−2j

(
νTl Hp

)(∂Ri
∂pk
− 2j

(
νTk Hp

)
Ri

)
...

+
(
∂2Ri
∂pl∂pk

− 2j
(
νTk Hνl

)
Ri − 2j

(
νTk Hp

) ∂Ri
∂pl

)]
e−jp

THp

(D.13)
Evaluating these expressions at p = 0 yields:

Si(0) = Ri(0)

∂2Si
∂pk

(0) = ∂Ri
∂pk

(0)

∂2Si
∂pl∂pk

(0) = ∂2Ri
∂pl∂pk

(0)− 2jHk,lRi(0) = βk,lRi(0) +Wk,l

(D.14)

Hence the eigenvector function Si satisfies all the conditions of equation
(D.2). This proves that the formulas produce a coherent system of eigenvector
derivatives.
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D.2 Derivatives of the wave stiffness matrix

This section details computation of the derivatives of the wave stiffness matrix
in equations: 

W11 = Ψ+

W12 = Ψ−ΛN

W21 = DRLΨ+ΛN−1 +DRRΨ+ΛN

W22 = DRLΨ−Λ +DRRΨ−

(D.15)

The derivatives ofW11 are trivial but that of the other submatrices are developed:

∂W12

∂pk
= ∂Ψ−

∂pk
ΛN +NΨ− ∂Λ

∂pk
ΛN−1 (D.16)

∂2W12

∂pk∂pl
= ∂2Ψ+

∂pk∂pl
ΛN +N

(
∂Ψ−
∂pk

∂Λ
∂pl

+ ∂Ψ−
∂pl

∂Λ
∂pk

+ Ψ+ ∂2Λ
∂pk∂pl

)
ΛN−1

+N(N − 1)Ψ− ∂Λ
∂pk

∂Λ
∂pl

ΛN−2

(D.17)

∂W21

∂pk
=
(
∂DRL

∂pk
Ψ+ +DRL

∂Ψ+

∂pk

)
ΛN−1 + (N − 1)DRLΨ+ ∂Λ

∂pk
ΛN−2

+
(
∂DRR

∂pk
Ψ+ +DRR

∂Ψ+

∂pk

)
ΛN +NDRRΨ+ ∂Λ

∂pk
ΛN

(D.18)
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∂2W21

∂pk∂pl
=
(
∂2DRL

∂pk∂pl
Ψ+ + ∂DRL

∂pk

∂Ψ+
∂pl

+ ∂DRL

∂pl

∂Ψ+
∂pk

+DRL
∂2Ψ+

∂pk∂pl

)
ΛN−1

+ (N − 1)
[(

∂DRL

∂pk
Ψ+ +DRL

∂Ψ+

∂pk

)
∂Λ
∂pl

+
(
∂DRL

∂pl
Ψ+ +DRL

∂Ψ+

∂pl

)
∂Λ
∂pk

+DRLΨ ∂2Λ
∂pk∂pl

]
ΛN−2

+ (N − 1)(N − 2)DRLΨ+ ∂Λ
∂pk

∂Λ
∂pl

ΛN−3

+
(
∂2DRR

∂pk∂pl
Ψ+ + ∂DRR

∂pk

∂Ψ+
∂pl

+ ∂DRR

∂pl

∂Ψ+
∂pk

+DRR
∂2Ψ+

∂pk∂pl

)
ΛN

+N

[(
∂DRR

∂pk
Ψ+ +DRR

∂Ψ+

∂pk

)
∂Λ
∂pl

+
(
∂DRR

∂pl
Ψ+ +DRR

∂Ψ+

∂pl

)
∂Λ
∂pk

+DRRΨ ∂2Λ
∂pk∂pl

]
ΛN−1

+N(N − 1)DRRΨ+ ∂Λ
∂pk

∂Λ
∂pl

ΛN−2

(D.19)
∂W22

∂pk
=
(
∂DRL

∂pk
Ψ− +DRL

∂Ψ
∂pk

)
Λ +DRLΨ− ∂Λ

∂pk
+ ∂DRR

∂pk
Ψ− +DRR

∂Ψ−
∂pk

(D.20)

∂2W22

∂pk∂pl
=
(
∂2DRL

∂pk∂pl
Ψ− + ∂DRL

∂pk

∂Ψ−
∂pl

+ ∂DRL

∂pl

∂Ψ−
∂pk

+DRL
∂2Ψ−
∂pk∂pl

)
Λ

+
(
∂DRL

∂pk
Ψ− +DRL

∂Ψ−
∂pk

)
∂Λ
∂pl

+
(
∂DRL

∂pl
Ψ− +DRL

∂Ψ−
∂pl

)
∂Λ
∂pk

+DRLΨ− ∂2Λ
∂pk∂pl

+ ∂2DRR

∂pk∂pl
Ψ− + ∂DRR

∂pk

∂Ψ−
∂pl

+ ∂DRR

∂pl

∂Ψ−
∂pk
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∂2Ψ−
∂pk∂pl

(D.21)

D.3 Derivatives of the displacement field

∂Vi
∂pk

=∂Ψ+

∂pk
Λiq+ + iΨ+ ∂Λ

∂pk
Λi−1q+ + Ψ+Λi ∂q

+

∂pk
+ ∂Ψ−

∂pk
ΛN−iq−

+ (N − i)Ψ− ∂Λ
∂pk

ΛN−i−1q− + Ψ−ΛN−i ∂q
−

∂pk

(D.22)
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∂2Vi
∂pk∂pl

=∂2Ψ+

∂pk
Λiq+ + Ψ+Λi ∂

2q+

∂pk∂pl
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