
HAL Id: tel-03507274
https://theses.hal.science/tel-03507274

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning time-dependent data with the signature
transform

Adeline Fermanian

To cite this version:
Adeline Fermanian. Learning time-dependent data with the signature transform. Statistics [math.ST].
Sorbonne Université, 2021. English. �NNT : 2021SORUS224�. �tel-03507274�

https://theses.hal.science/tel-03507274
https://hal.archives-ouvertes.fr

Sorbonne Université
LPSM

École doctorale École Doctorale Sciences Mathématiques de Paris Centre

Unité de recherche Laboratoire de Probabilités, Statistique et Modélisation

Thèse présentée par Adeline Fermanian

Soutenue le 15 octobre 2021

En vue de l’obtention du grade de docteur de Sorbonne Université

Discipline Mathématiques appliquées

Spécialité Statistique

Learning time-dependent data with
the signature transform

Thèse dirigée par Gérard Biau directeur
Benoît Cadre co-directeur

Composition du jury

Rapporteurs Stéphane Chrétien professeur à l’Université Lyons 2
Josef Teichmann professeur à l’ETH Zürich

Examinateurs Claire Boyer mcf à Sorbonne Université
Marianne Clausel professeure à l’Université de Lorraine présidente du jury
Terry Lyons professeur à l’University of Oxford
Lorenzo Zambotti professeur à Sorbonne Université

Directeurs de thèse Gérard Biau professeur à Sorbonne Université
Benoît Cadre professeur à l’Université Rennes 2

This work was supported by the Paris Ile-de-France Region via the DIM Math Innov program.

À Papy Jacques,

We have to build the Republic of Heaven
where we are.

Philip Pullman

Un lieu qui n’est pas empreint de
féminité n’est pas fiable.

Ibn ’Arabi

Résumé ix

Learning time-dependent data with the signature transform
Résumé

Les applications modernes de l’intelligence artificielle amènent à travailler avec des données temporelles
multivariées de grande dimension qui posent de nombreux défis. Par une approche géométrique des flux
de données, la notion de signature, représentation d’un processus en un vecteur infini de ses intégrales
itérées, est un outil prometteur. Ses propriétés développées dans le cadre de la théorie des chemins
rugueux en font en effet un bon candidat pour jouer le rôle de features, ensuite injectées dans des
algorithmes d’apprentissage. Si la définition de la signature remonte aux travaux de Chen (1960), son
utilisation en apprentissage est récente et de nombreuses questions théoriques et méthodologiques restent
à explorer. Nous nous intéressons donc à l’utilisation de la signature pour développer des algorithmes
génériques et performants pour les données temporelles de grande dimension, ainsi que de leur fournir
des garanties théoriques. Ce but se déploie principalement dans deux directions : d’une part, développer
de nouveaux algorithmes prenant en entrée la signature des données, d’autre part utiliser la signature
comme un outil théorique pour étudier les algorithmes existants d’apprentissage profond, via la notion
récente de neural ordinary differential equation qui fait le lien entre apprentissage profond et équations
différentielles.

Mots clés : signatures, données temporelles, apprentissage séquentiel, réseaux de neurones récurrents

Abstract

Modern applications of artificial intelligence lead to high-dimensional multivariate temporal data that
pose many challenges. Through a geometric approach to data flows, the notion of signature, a repre-
sentation of a process as an infinite vector of its iterated integrals, is a promising tool. Its properties,
developed in the context of rough path theory, make it a good candidate to play the role of features,
then injected in learning algorithms. If the definition of the signature goes back to the work of Chen
(1960), its use in machine learning is recent. Many theoretical and methodological questions remain to
be explored. We are therefore interested in using the signature to develop generic and efficient algorithms
for high-dimensional temporal data, with theoretical guarantees. This goal is mainly deployed in two
directions: on the one hand, to develop new algorithms taking the signature of the data as input, and,
on the other hand, to use the signature as a theoretical tool to study existing deep learning algorithms,
via the recent notion of neural ordinary differential equation which makes the link between deep learning
and differential equations.

Keywords: signatures, temporal data, sequential learning, recurrent neural networks

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France

x Résumé

Table des matières

Résumé ix

Table des matières xi

1 Introduction 1
1.1 Preliminaries . 3

1.1.1 Paths of bounded variation . 3
1.1.2 Tensor spaces . 4
1.1.3 The signature of a path . 6

1.2 Properties of the signature . 9
1.2.1 Invariances and uniqueness . 9
1.2.2 Analytic properties . 12
1.2.3 The logsignature . 14

1.3 Contributions . 16
Signatures as a feature set . 16
Linear regression with signatures . 18
Signature kernel and RNN . 18
Signature inversion . 19
Outline of the manuscript . 19

Résumé détaillé . 21

2 Embedding and learning with signatures 25
2.1 Introduction . 26
2.2 A first glimpse of the signature method . 28

2.2.1 Definition and main properties . 28
2.2.2 Signature and machine learning . 33

2.3 Datasets . 37
2.4 The embedding . 39

2.4.1 Definition and review of potential embeddings 40
2.4.2 Results . 42
2.4.3 Running times . 46

2.5 Simulation study of autoregressive processes . 46
2.6 Signature domain and performance . 49

2.6.1 Comparison of local and global signature features 50
2.6.2 Performance of the signature . 51

2.7 Conclusion . 53

xi

xii Table des matières

3 A Generalised Signature Method for Multivariate Time Series Feature Ex-
traction 59
3.1 Introduction . 60
3.2 Context . 61

3.2.1 Background theory . 61
3.2.2 Related work . 63

3.3 The generalized signature method . 63
3.3.1 Augmentations . 64
3.3.2 Windows . 65
3.3.3 The signature and logsignature transforms 66
3.3.4 Rescaling . 66
3.3.5 Putting the pieces together . 66

3.4 Empirical study . 66
3.4.1 Methodology . 67
3.4.2 Results . 68
3.4.3 Further results . 69

3.5 The canonical signature pipeline . 69
3.5.1 Definition . 70
3.5.2 Performance . 70

3.6 Conclusion . 71

4 Linear functional regression with truncated signatures 75
4.1 Introduction . 76
4.2 Mathematical framework . 77

4.2.1 Functional linear regression . 77
4.2.2 The signature of a path . 78

4.3 The signature linear model . 82
4.3.1 Presentation of the model . 82
4.3.2 Estimating the truncation order . 83

4.4 Performance bounds . 84
4.5 Computational aspects . 86

4.5.1 The signature linear model algorithm . 86
4.5.2 A toy example . 88

4.6 Experiments . 90
4.6.1 Smooth paths . 90
4.6.2 Gaussian processes . 92

4.7 Real-world applications . 92
4.7.1 The Canadian Weather dataset . 92
4.7.2 Electricity consumption prediction . 93

4.8 Conclusion and perspectives . 94

5 Framing RNN as a kernel method: A neural ODE approach 101
5.1 Introduction . 101
5.2 Framing RNN as a kernel method . 104

5.2.1 From discrete to continuous time . 104
5.2.2 The signature . 105
5.2.3 From the CDE to the signature kernel 106

5.3 Generalization and regularization . 108
5.3.1 Generalization bounds . 108

Table des matières xiii

5.3.2 Regularization and stability . 110
5.4 Numerical illustrations . 111
5.5 Conclusion . 112

6 The insertion algorithm for signature inversion 117
6.1 Introduction . 117
6.2 Preliminaries . 118

6.2.1 Path of bounded variation . 118
6.2.2 Tensor space . 119
6.2.3 The signature of a path . 121

6.3 The insertion algorithm . 123
6.3.1 Theoretical guarantees . 123
6.3.2 Algorithm . 127

6.4 Experimental results . 130

Conclusion 133

A Supplementary material of Chapter 1 135
A.1 Proof of Proposition 1.2 . 135
A.2 Proof of Theorem 1.3 . 136
A.3 Proof of Proposition 1.4 . 136
A.4 Proof of Theorem 1.6 . 137
A.5 Proof of Lemma 1.7 . 137
A.6 Proof of Lemma 1.8 . 138
A.7 Proof of Proposition 1.10 . 138
A.8 Proof of Theorem 1.12 . 139
A.9 Proof of Theorem 1.13 . 139

B Supplementary material of Chapter 3 141
B.1 Augmentations . 141
B.2 Rescaling . 144
B.3 Implementation details . 144

B.3.1 General notes . 144
B.3.2 Analysis of variations of the signature method 145
B.3.3 The canonical signature pipeline . 146

B.4 Additional results . 147
B.4.1 Analysis of variations of the signature method 147
B.4.2 Complete results . 149
B.4.3 Canonical signature method . 149

C Supplementary material of Chapter 4 155
C.1 Proof of Theorem 4.4 . 155
C.2 Proof of Corollary 4.5 . 165

D Supplementary material of Chapter 5 169
D.1 Mathematical details . 169

D.1.1 Writing the GRU and LSTM in the neural ODE framework 170
D.1.2 Picard-Lindelöf theorem . 170
D.1.3 Operator norm . 172
D.1.4 Tensor Hilbert space . 172

xiv Table des matières

D.1.5 Bounding the derivatives of the logistic and hyperbolic tangent activations 174
D.1.6 Chen’s formula . 175

D.2 Proofs . 176
D.2.1 Proof of Proposition 5.1 . 176
D.2.2 Proof of Proposition 5.2 . 177
D.2.3 Proof of Proposition 5.3 . 178
D.2.4 Proof of Proposition 5.4 . 178
D.2.5 Proof of Proposition 5.5 . 180
D.2.6 Proof of Theorem 5.6 . 184
D.2.7 Proof of Theorem 5.7 . 185
D.2.8 Proof of Theorem 5.8 . 186

D.3 Differentiation with higher-order tensors . 188
D.3.1 Definition . 188
D.3.2 Computation rules . 189

D.4 Experimental details . 191

E Supplementary material of Chapter 6 195
E.1 Proof of Theorem 6.7 . 195
E.2 Proof of Theorem 6.8 . 201

Chapter 1

Introduction

Contents

1.1 Preliminaries 3
1.1.1 Paths of bounded variation . 3
1.1.2 Tensor spaces . 4
1.1.3 The signature of a path . 6

1.2 Properties of the signature 9
1.2.1 Invariances and uniqueness . 9
1.2.2 Analytic properties . 12
1.2.3 The logsignature . 14

1.3 Contributions 16
Signatures as a feature set . 16
Linear regression with signatures . 18
Signature kernel and RNN . 18
Signature inversion . 19
Outline of the manuscript . 19

Résumé détaillé 21

The goal of this thesis is to study the application of signatures to statistics and machine
learning. We are interested in data which have an intrinsic sequential or temporal nature, that
is, a natural ordering. In some cases, such data may be considered as continuous (random)
functions X from an interval [a, b] ⊂ R into Rd, where d ≥ 1. For example, X can be a time
series representing the price of a stock observed over some time. If several stocks are observed,
then X is a multivariate time series and takes its values in Rd with d > 1. Functional data also
fall within this setting, with typical datasets being spectrometric curves or temperature profiles.
In machine learning, the fields of speech recognition, character recognition, and natural language
processing also fit in this setting, where the interval [a, b] may again correspond to time but also
to position in a sentence. From now on, we refer to such data as paths X : [a, b] → Rd and
following the notation from stochastic analysis, we write Xt for X(t).

Given these paths X, we want to learn a certain output Y , function of X. For example, the
output Y can be a forecast of the future value of the series, another related scalar quantity, or a
label in the classification case. Learning Y from X brings up the question of the representation

1

2 CHAPTER 1. Introduction

of X. Indeed, most learning algorithms such as least-squares regression, decision trees, or neural
networks, take as input a vector. A natural choice for this vector is to sample the values of
X but there are other options such as using a Fourier representation of X, or, more generally,
expanding X on basis functions. We will see that signatures are yet another option.

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

x-coordinate

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

0.075

y
-c

o
or

d
in

at
e

(a) Sample 1

−0.15 −0.10 −0.05 0.00 0.05 0.10

x-coordinate

−0.150

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

y
-c

o
or

d
in

at
e

(b) Sample 2

Figure 1.1 – Two samples from the Character Trajectories dataset corresponding to the same
label “a”

Let us consider as an illustrative example the two samples from the Character Trajectories
dataset (Dua and Graff, 2017) shown in Figure 1.1. We are given the x and y coordinates of
a pen trajectory drawing the letter “a”. In Figure 1.2 we compare two possible representations
of these samples: in Figure 1.2a the x-coordinates of the two samples and in Figure 1.2b the
truncated signature (after a proper normalization). In a learning context, it would be desirable
that representations of two samples of the same class be close, which seems to be the case for
the signature, whereas they are further apart when looking at the x-coordinates. In terms of
Euclidean distances, the distance between the signatures (truncated at order 4) is 0.096 whereas
it is 1.0 for the sampled paths. In a nutshell, the signature captures the shape of the paths and
seems therefore to be a relevant data representation.

0 20 40 60 80 100 120 140

Time

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

x
-c

o
or

d
in

at
e

Sample 1

Sample 2

(a) x-coordinates as a function of time

0 5 10 15 20 25 30

Signature coefficient number

−0.05

0.00

0.05

0.10

0.15

S
ig

n
at

u
re

co
effi

ci
en

t
va

lu
e

Sample 1

Sample 2

(b) Normalized truncated signatures

Figure 1.2 – Two different representations of the samples from Figure 1.1

The signature was first defined for smooth paths by Chen in the 60s (Chen, 1957; 1958; 1977)

1.1. Preliminaries 3

and was rediscovered in the 90s in the context of rough path theory (Lyons, 1998; Lyons et al.,
2007; Friz and Victoir, 2010; Friz and Hairer, 2020), which is an important area of stochastic
analysis. From a differential equation point of view, the signature summarises the effect of a
path X on an output path Y when Y is “controlled” by X. More precisely, let F : Re → Re×d
be a vector field, and Y be the solution of the controlled differential equation (CDE)

dYt = F (Yt)dXt, Y0 = y0,

where F (Yt)dXt should be understood as a matrix multiplication. Then, Y is entirely defined
by the function F and the signature of X. In other words, Y depends on X only through its
signature. From a learning perspective, Y can be seen as a quantity to predict, for example the
translation of a speech, and F is now an unknown function that links the input X and the target
Y . The theory of (controlled) differential equation then tells us that Y will depend only on the
signature of X, making it a relevant representation or feature set for any algorithm that tries to
learn F .

During the last few years, the signature has been combined to machine learning algorithms,
achieving state-of-the-art performance in several domains such as character recognition (Yang
et al., 2016a), finance (Perez Arribas, 2018), medicine (Morrill et al., 2019), or human action
recognition (Yang et al., 2017). Several methodological works have accompanied these applied
achievements, bridging the gap between stochastic analysis and machine learning (Levin et al.,
2013; Király and Oberhauser, 2019; Liao et al., 2019; Kidger et al., 2019). However, many
questions remain open; we will contribute to answer some of them in this manuscript.

We first present the definition of signatures in Section 1.1, then move on to its main properties
in Section 1.2, and finally give an overview of our contributions in Section 1.3.

1.1 Preliminaries

To define signatures, we need two mathematical ingredients: integration along paths and
tensor spaces, which we both present now. In all the following, E is a Banach space of dimension
d equipped with a norm ‖ · ‖. Typically, it should be thought of as Rd.

1.1.1 Paths of bounded variation

Let X : [0, 1] → E be a continuous path. When E = Rd, we denote by (X1
t , . . . , X

d
t)> ∈ Rd

the different coordinates of X.

Definition 1.1 (Path of bounded variation). Let X : [0, 1]→ E be a continuous path. For any
p ≥ 1, [s, t] ⊂ [0, 1], the p-variation of X is defined by

‖X‖p-var;[s,t] =
(

sup
(t0,...,tk)∈Ds,t

k∑
i=1

‖Xti −Xti−1
‖p
)1/p

,

where Ds,t denotes the set of all finite partitions of [s, t], that is,

Ds,t =
{

(t0, . . . , tk) | k ≥ 0, s = t0 < t1 < · · · < tk−1 < tk = t
}
.

The path X is said to be of finite p-variation on [s, t] if its p-variation is finite.

In this manuscript, we restrict to the case p = 1 but it is worth keeping in mind that the
extension to less regular paths (i.e., p > 1) is an active area of research. When [s, t] = [0, 1],

4 CHAPTER 1. Introduction

we often write ‖X‖1-var instead of ‖X‖1-var;[0,1]. If ‖X‖1-var < ∞ we say that X is of bounded
variation and denote by BV (E) the set of paths of bounded variation. If X is continuously
differentiable and X ′ : [0, 1]→ Rd denotes its derivative, then

‖X‖1-var =

∫ 1

0

‖X ′t‖dt.

From a geometric point of view, ‖X‖1-var is the length of the path X. Note also that ‖ · ‖1-var
is a semi-norm (the 1-variation of a constant path being null) and that we can define a norm on
BV (E) by letting

‖X‖BV (E) = ‖X‖1-var + sup
t∈[0,1]

‖Xt‖.

This norm equips BV (E) with a Banach structure. Given a path of bounded variation, it is
possible to integrate along this path, which defines the Riemann-Stieljes integral.

Definition 1.2 (Riemann-Stieljes integral). Let X and Y be two paths from [0, 1] to R and
[s, t] ⊂ [0, 1]. For any n ≥ 0, let (t

(n)
0 , . . . , t

(n)
n) ∈ Ds,t be a partition of [s, t] of length n, such

that its mesh size converges to zero when n grows:

sup
1≤i≤n

|t(n)
i − t(n)

i−1| →n→∞ 0.

Let (s
(n)
1 , . . . , s

(n)
n) be a sequence such that, for any i ∈ {1, . . . , n}, s(n)

i ∈ [t
(n)
i−1, t

(n)
i]. Then, if the

sum
n∑
i=1

Y
s
(n)
i

(X
t
(n)
i
−X

t
(n)
i−1

)

converges to a limit I independent of the choice of partitions, we say that the Riemann-Stieljes
integral of Y against X exists, is equal to I, and denoted by I :=

∫ t
s
YudXu.

This definition generalizes to the case when X and Y are vector-valued by letting, if X,Y :
[0, 1]→ Rd, ∫ t

s

YudXu =

∫ t
s
Y 1
u dX

1
u

...∫ t
s
Y du dX

d
u

 .

It can be shown that if Y is continuous and X of bounded variation, then the Riemann-Stieljes
integral

∫ t
s
YudXu exists (see, e.g., Friz and Victoir, 2010, Proposition 2.2). This result has been

extended to the case when X has finite p-variation and Y finite q-variation with 1/p + 1/q > 1;
I is then called the Young integral (Young, 1936). From now on, all integrals will be taken as
Riemann-Stieljes integrals. Note that if X is continuously differentiable, then∫ t

s

YudXu :=

∫ t

s

YuX
′
udu,

where the last integral is the usual Riemann integral (extended to Rd).

1.1.2 Tensor spaces
We now introduce some definition and notation on tensor spaces. We refer the reader to

Purbhoo (2012) for supplementary details on tensor products and to Appendix A for proofs.

1.1. Preliminaries 5

Definition 1.3 (Tensor product of vector spaces). Let E and F be two vector spaces. A tensor
product of E and F , denoted by E⊗F , is a vector space with a bilinear map φ : E×F → E⊗F
such that for any basis e = (ei)i∈I of E and f = (fj)j∈J , then

φ(e× f) =
{
φ(ei, fj) | ei ∈ e, fj ∈ f

}
is a basis of E ⊗ F . For any x ∈ E and y ∈ F , φ(x, y) is denoted x ⊗ y and called the tensor
product of x and y.

It is known that such a product exists and is unique up to isomorphism. The nth tensor
power of a vector space E is defined as the order n tensor product of E with itself:

E⊗n :=

n︷ ︸︸ ︷
E ⊗ · · · ⊗ E .

By convention, E⊗0 = R. It may be useful to identify E⊗n with the space of homogeneous
non-commuting polynomials of degree n. Indeed, let (e1, . . . , ed) be a basis of E (assumed to be
finite-dimensional). Then, any element of E⊗n can be written as a sum∑

I=(i1,...,in)⊂{1,...,d}n
aIei1 ⊗ · · · ⊗ ein ,

which can be thought of as
∑
aIXi1 . . . Xin whereX1, . . . , Xn are non commuting indeterminates.

Note that, by construction, dim(E ⊗ F)= dim(E) × dim(F). Thus, if E = Rd, E⊗n is of
dimension dn. Then, we can also identify E⊗n with Rdn (for example, E⊗2 can be identified
with the space of d× d matrices).

Definition 1.4. We denote by T (E) the space of formal series of tensors of E, i.e.,

T (E) =
{

(a0, . . . , an, . . .) | ∀n ≥ 0, an ∈ E⊗n
}
,

and
TN (E) =

{
(a0, . . . , aN) | ∀n ∈ {0, . . . , N}, an ∈ E⊗n

}
,

the truncated tensor space up to order N .

We sometimes write elements of T (E) as formal sums: any a ∈ T (E) may be written as
a =

∑
n≥0 an. We endow T (E) with the following operations: for any a, b ∈ T (E), λ ∈ R,

a+ b = (a0 + b0, a1 + b1, . . . , an + bn, . . .)

λ · a = (λ · a0, λ · a1, . . . , λ · an, . . .)

a⊗ b = (c0, c1, . . . , cn, . . .), where cn =

n∑
k=0

ak ⊗ bn−k.

Then, the following proposition is clear from the definition.

Proposition 1.1. (T (E),+, ·,⊗) is a real non-commutative algebra with neutral element 1 :=
(1, 0, . . . , 0, . . .).

Definition 1.5. The canonical projection πN of an element of T (E) on the truncated tensor

6 CHAPTER 1. Introduction

space TN (E) is defined by

T (E)→ TN (E)

πN : (a0, . . . , aN , . . .) 7→ (a0, . . . , aN).

An element of T (E) is invertible if and only if a0 6= 0. Thus, the space

T̃ (E) = {a ∈ T (E) |π0(a) = 1}

is a group.

Proposition 1.2. (T̃ (E),⊗) is a Lie group, and for any a ∈ T̃ (E),

a−1 =
∑
k≥0

(1− a)⊗k.

The tensor powers of E may be endowed with an Euclidean scalar product and its associated
norm, defined as follows.

Definition 1.6. Let a, b ∈ E⊗n and (e1, . . . , ed) a basis of E. Then, if

a =
∑

I=(i1,...,in)⊂{1,...,d}n
aIei1 ⊗ · · · ⊗ ein , b =

∑
I=(i1,...,in)⊂{1,...,d}n

bIei1 ⊗ · · · ⊗ eik ,

the scalar product and norm on E⊗n are defined by

〈a, b〉E⊗n =
∑

I⊂{1,...,d}n
aIbI , ‖a‖2E⊗n =

∑
I⊂{1,...,d}n

(aI)2.

We can then endow T (E) with the following scalar product: for any a, b ∈ T (E),

〈a, b〉T (E) =
∑
k≥0

〈ak, bk〉E⊗k . (1.1)

The square-summable elements in T (E) form a Hilbert space for this scalar product.

1.1.3 The signature of a path

Definition 1.7. Let X ∈ BV (Rd). For any [s, t] ⊂ [0, 1], the signature of X on [s, t] is defined
by

S[s,t](X) = (1,X1
[s,t],X

2
[s,t], . . . ,X

n
[s,t], . . .) ∈ T (Rd),

where, for each integer n,

Xn
[s,t] =

∫
· · ·
∫

s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun ∈ (Rd)⊗n.

Before going any further, we introduce a series of notation.

• For any N ≥ 1, the signature truncated at order N is

SN (X) := (1,X1,X2, . . . ,XN) = πN
(
S(X)

)
.

1.1. Preliminaries 7

• The simplex in [s, t]n is denoted by

∆n;[s,t] = {(u1, . . . , un) ∈ [s, t]n | s < u1 < · · · < un < t}.

• For any multi-index (i1, . . . , in) ⊂ {1, . . . , d}n, the signature coefficient along (i1, . . . , in) is
denoted by

S
(i1,...,in)
[s,t] (X) =

∫
· · ·
∫

(u1,...,un)∈∆n;[s,t]

dXi1
u1
. . . dXin

un .

If (e1, . . . , ed) is the canonical basis of Rd, then

Xn
[s,t] =

∑
(i1,...,in)⊂{1,...,d}n

S
(i1,...,in)
[s,t] (X)ei1 ⊗ · · · ⊗ ein .

• When [s, t] = [0, 1] we omit the domain of integration and write for example S(X) instead
of S[s,t](X).

Remark 1.1. If X is of bounded p-variation with 1 < p < 2, then the signature is still well-
defined using the Young integral. If p ≥ 2, the iterated integrals are no longer uniquely defined.
This is where rough path theory comes into play to show their existence for various stochastic
processes (see, e.g., Le Jan and Qian, 2013, for the case of Brownian motion).

Xi

Xj

S(i,j)(X)

S(j,i)(X)

S(i)(X)

S(j)(X)

(a) Order 1 and 2 coefficients correspond to in-
crements and areas.

− +

S(i,j)(X)− S(j,i)(X)

Xi

Xj

(b) The Levy area corresponds to the signed
orange area.

Figure 1.3 – Geometric interpretation of signature coefficients

In short, the signature is an infinite vector in T (Rd) corresponding to the iterated integrals
of X against itself, on a simplex. It has a natural interpretation in terms of areas under the
path, as shown in Figure 1.3. The first order terms are just the increments of the path: for any
1 ≤ i ≤ d,

S(i)(X) = Xi
1 −Xi

0.

The second order terms correspond to areas under the curve delimited by each pair of coordinates
(Figure 1.3a). Moreover, the Levy area, which is the signed area between a curve and the chord
connecting its two endpoints (Figure 1.3b), can be recovered from these coefficients of order 2.
If Ai,j is the Levy area of the curve (Xi

t , X
j
t), then

Ai,j = S(i,j)(X)− S(j,i)(X).

This quantity corresponds exactly to the coefficient of order 2 of the logsignature, which will be

8 CHAPTER 1. Introduction

defined later.

Example 1.1 (Path in 2d). If d = 2, Xt = (X1
t , X

2
t), then (R2)⊗1 can be identified with R2 and

(R2)⊗2 with the space of 2× 2 matrices:

X1 =

∫ 1

0

dXt =

(∫ 1

0
dX1

u∫ 1

0
dX2

u

)
, X2 =

∫ 1

0

∫ u

0

dXv ⊗ dXu =

(∫ 1

0

∫ u
0
dX1

vdX
1
u

∫ 1

0

∫ u
0
dX1

vdX
2
u∫ 1

0

∫ u
0
dX2

vdX
1
u

∫ 1

0

∫ u
0
dX2

vdX
2
u

)
.

The coefficient of order 3, X3, can be seen as a 2× 2× 2 tensor, and so on.

Example 1.2 (Parametrized curve). Let X ∈ BV (R2) be a parametrized curve: for any t ∈ [0, 1],
Xt = (t, f(t)), where f : R→ R is a smooth function. Then,

S(1)(X) =

∫ 1

0

dX1
u =

∫ 1

0

du = 1

S(2)(X) =

∫ 1

0

dX2
u =

∫ 1

0

f ′(u)du = f(1)− f(0),

where f ′ denotes the derivative of f . Similarly, the signature coefficient along (1, 2) is

S(1,2)(X) =

∫ 1

0

∫ u

0

dX1
vdX

2
u =

∫ 1

0

(∫ u

0

dv
)
f ′(u)du =

∫ 1

0

uf ′(u)du = f(1)−
∫ 1

0

f(u)du,

and so on.

Example 1.3 (Linear path). If X : [0, 1] → Rd is a linear path, i.e., Xt = X0 + (X1 − X0)t,
then for any I = (i1, . . . , in) ∈ {1, . . . , d}n,

SI(X) =

∫
∆n

dXi1
u1
. . . dXin

un =

∫
∆n

(X1 −X0)i1 . . . (X1 −X0)indu1 . . . dun

=

n∏
j=1

(X1 −X0)ij
∫

∆n

du1 . . . dun =
1

n!

n∏
j=1

(X1 −X0)ij .

With tensor notation, we have Xn = (X1 −X0)⊗n.

Example 1.4 (Path in one dimension). In one dimension, the signature is directly related to
the moments of X. Indeed, let X : [0, 1] → R be a one-dimensional path. Then, for any k ≥ 0,
Xk ∈ R, and, for any t ∈ [0, 1],

Xn
[0,t] =

∫
∆n;[0,t]

dXu1 . . . dXun =
1

n!
(Xt −X0)n.

Therefore, if X is a time-continuous stochastic process of bounded variation, then

E
[
Xn

[0,t]

]
=

1

n!
E
[
(Xt −X0)n

]
.

The link between signatures and moments is also relevant in the general case. Indeed, signa-
tures can be thought of as moment-generating functions for stochastic processes. Recall that if

1.2. Properties of the signature 9

Z is a real random variable, then its moment-generating function, defined by

λ 7→ E[eλZ] =

∞∑
k=0

λk

k!
E[Zk],

characterizes the law of Z. Now take a stochastic process X of bounded variation, then Chevyrev
and Lyons (2016) construct a characteristic function for X asM 7→ E[M(S(X))], where, without
going into the details of its definition,M plays the role of λ. A corollary is that, provided E[S(X)]
is well-defined, then the law of X (and of S(X)) is entirely determined by E[S(X)]. In other
words, the signature is the equivalent of an exponential for vector-valued processes, and signature
coefficients of order k are the equivalent of moments.

1.2 Properties of the signature

Signatures have a number of good analytic and algebraic properties, which guarantee their
relevance in machine learning. We briefly present them here and refer to Appendix A for the
proofs.

1.2.1 Invariances and uniqueness
First, we present several algebraic properties that translate properties on paths into properties

on signatures. We proceed with a description of the loss of information resulting from taking the
signature and with a uniqueness result.

The first property, known as Chen’s identity, provides a formula to compute the signature
of a concatenation of paths, which is crucial for practical implementation. Let X : [s, t] → Rd
and Y : [t, u] → Rd be two paths. The concatenation of X and Y (see Figure 1.4) is the path
X ∗ Y : [s, u]→ Rd defined, for any v ∈ [s, u], by

(X ∗ Y)v =

{
Xv if v ∈ [s, t]

Xt + Yv − Yt if v ∈ [t, u].

0.0 0.2 0.4 0.6 0.8 1.0

Time t

1.00

1.05

1.10

1.15

1.20

1.25

X

1.0 1.2 1.4 1.6 1.8 2.0

Time t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time t

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

X ∗ Y

Figure 1.4 – Concatenation of paths

Theorem 1.3 (Chen’s identity). Let X : [s, t]→ Rd and Y : [t, u]→ Rd be two continuous paths
of bounded variation. Then

S[s,u](X ∗ Y) = S[s,t](X)⊗ S[t,u](Y).

10 CHAPTER 1. Introduction

A crucial consequence of Chen’s identity is that the signature of a piecewise linear path can
be easily computed.

Example 1.5. Let X : [0, 1]→ Rd be a piecewise linear path and let 0 = t0 < t1 < · · · < tk = 1
be a partition such that X is linear on each [tj−1, tj]. On each [tj−1, tj], X is a linear path so
S[tj−1,tj](X) can be obtained from Example 1.3. Then, by Chen’s identity,

S(X) = S[t0,t1](X)⊗ · · · ⊗ S[tk−1,tk](X).

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(a) X

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b)
←−
X

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Time t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(c) X ∗
←−
X is a tree-like path

Figure 1.5 – Time-reversal of a path

The next property shows that the inverse of the signature of a path is the signature of its
time-reversal (see Figures 1.5a and 1.5b).

Proposition 1.4 (Time-reversal). Let X ∈ BV (Rd) and let
←−
X be its time-reversal, defined, for

any t ∈ [0, 1], by
←−
X t = X1−t. Then,

S(X)⊗ S(
←−
X) = 1.

Given that the first element of the signature is 1, signatures are invertible elements in T (Rd).
Proposition 1.4 then tells us that S(X)−1 = S(

←−
X). We can rephrase Chen’s identity by saying

that the signature is a homomorphism from (BV (Rd), ∗) to the group (T̃ (Rd),⊗). In other words,
the signature maps properties of paths in BV (Rd) to algebraic properties in the group T̃ (Rd).

By definition it is clear that signatures are invariant by translation (take x ∈ R and Xt =
x+Xt, then dXt = dXt and X

n
= Xn). The next lemma gives their second invariance, namely

to reparametrizations.

Lemma 1.5 (Invariance under time reparametrisation). Let X ∈ BV (Rd), ψ : [0, 1]→ [0, 1] be
a reparametrisation (continuously differentiable non-decreasing surjection). Let X̃ ∈ BV (Rd) be
the reparametrization of X, that is, X̃t = Xψ(t) for any t ∈ [0, 1]. Then, for any [s, t] ⊂ [0, 1],

S[s,t](X̃) = S[ψ(s),ψ(t)](X).

This lemma is a direct consequence of the change of variable formula for Riemann-Stieljes
integral. From a learning perspective, this property is important since it amounts to saying
that the signature does not contain any information on the time parametrization. Depending on
the context, invariance under translation and reparametrization can be either an advantage or
a disadvantage. If these invariances are not needed, the notion of embedding or augmentation

1.2. Properties of the signature 11

provides a useful way to reincorporate information into the signature features. The idea is to
modify the path X before computing the signature, for example by adding new coordinates
and augmenting the dimension d. In particular, the signature of the time-augmented path
t 7→ Xt = (X>t , t)

> ∈ Rd+1 is not invariant under reparametrization of X.
We now investigate what it means for two paths to have the same signature. It is clear that

for two paths X and Y , S(X) = S(Y) does not imply that X = Y . Indeed, we have seen
that the signature is invariant by translation and reparametrization. Moreover, according to
Theorem 1.3 and Proposition 1.4, S(X ∗ ←−X) = 1 so the path X ∗ ←−X has the same signature as
a constant path. This path is actually an example of a tree-like path (Hambly and Lyons, 2010,
Definition 1.2)—see Figure 1.5c. Let X, Y , and Z be three paths, then X ∗ Y ∗ ←−Y ∗ ←−X and
X ∗Y ∗←−Y ∗Z ∗←−Z ∗←−X are other examples of tree-like paths: informally, they can be reduced to a
null path by cancelling the parts that retrace themselves. With translation and parametrization,
the notion of tree-like path encapsulates exactly the information lost when taking the signature.
In other words, signatures do not see the initial position of the path, its parametrization, and
its subpaths that are tree-like. Apart from these, the path can be entirely recovered from its
signature.

Definition 1.8 (Tree-like path). A path X : [0, 1]→ Rd is tree-like if there exists a continuous
function h : [0, 1]→ [0,+∞) such that h(0) = h(1) = 0 and such that for any s, t ∈ [0, 1], s ≤ t,

‖Xs −Xt‖ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

The function h is called a height function of X, and we say that X is a Lipschitz tree-like path
if h can be chosen of bounded variation.

Definition 1.9. Let X,Y ∈ BV (Rd), we say that X and Y are tree-like equivalent if X ∗ ←−Y is
a tree-like path, and denote this relation by X ∼ Y .

Example 1.6. A sufficient condition for a path not to be tree-like is to have one monotone coor-
dinate. Indeed, let X = (X1, . . . , Xd)> ∈ BV (Rd) be such that X1 is a non-constant increasing
function. By contradiction, assume that X is tree-like and let h be a height function. Then, for
any t ∈ [0, 1],

|X1
t −X1

0 | ≤ ‖Xt −X0‖ ≤ h(t).

Thus, h is an increasing function. But h(1) = h(0) = 0, and therefore, for any t ∈ [0, 1], h(t) = 0
and Xt = X0. X is therefore a constant path, which is a contradiction.

We can now state the uniqueness theorem of Hambly and Lyons (2010, Theorem 4).

Theorem 1.6. For any X,Y ∈ BV (Rd), then S(X) = 1 if and only if X is tree-like. Moreover,
S(X) = S(Y) if and only if X ∼ Y .

Note that, by Chen’s identity (Theorem 1.3), the second part of the theorem is a direct
consequence of the first. Extending this uniqueness result to less regular paths is an active area
of research (see, e.g., Le Jan and Qian, 2013; Boedihardjo and Geng, 2015; Boedihardjo et al.,
2016). We conclude by a lemma that gives a sufficient condition to have a unique signature.

Lemma 1.7. Let X ∈ BV (Rd) be a path with at least one strictly monotone coordinate. Then
S(X) determines X uniquely, up to reparametrizations and translations.

In a learning context, we can use an embedding with a monotone coordinate to ensure unique-
ness of signature features. For example, the time-augmented path X mentioned above has a
unique signature.

12 CHAPTER 1. Introduction

1.2.2 Analytic properties

We now turn to the analytic properties of the signature. First, the next lemma shows that
the signature is a solution of an “exponential” differential equation.

Lemma 1.8. Let X ∈ BV (Rd) and Y : [0, 1]→ TN (Rd). The controlled differential equation

dYt = πN (Yt ⊗ dXt), Y0 = (1, 0, . . . , 0),

has a unique solution. This solution is the signature of X truncated at order N , that is, the path
from [0, 1] to TN (Rd) defined by t 7→ SN[0,t](X).

An immediate consequence is that the truncated signatures seen as maps from BV (Rd) to
TN (Rd) are continuous.

Corollary 1.9. The truncated signature map πN ◦S : BV (Rd)→ TN (Rd) is continuous for any
N ≥ 0.

This corollary is crucial if one wants to quantify the distance between two paths by the
distance between their signatures: if two paths are close (in the bounded variation norm), then
their signatures are close (for the tensor norm). Moreover, we have an upper bound on the norm
of signature coefficients, which ensures that high-order coefficients are small.

Proposition 1.10. Let X ∈ BV (Rd). Then, for any n ≥ 0,

‖Xn‖(Rd)⊗n ≤
1

n!
‖X‖n1-var <∞

and
‖S(X)‖T (Rd) ≤ exp(‖X‖1-var) <∞.

This proposition is the main argument for truncating signatures when learning: from an
approximation point of view, if N is large, then SN (X) is close to S(X). Moreover, it guarantees
that the scalar product in T (Rd), defined by (1.1), is well-defined for signatures. This allows to
define the signature kernel:

K : BV (Rd)×BV (Rd)→ R
(X,Y) 7→ 〈S(X), S(Y)〉T (Rd). (1.2)

This opens a wide range of applications: any kernel-based algorithm can be extended to sequential
data using the signature kernel (Király and Oberhauser, 2019).

Furthermore, the signature naturally appears in the context of controlled differential equa-
tions, that is, differential equations of the form

dYt = F (Yt)dXt, Y0 = y0, (1.3)

where F : Re → Re×d is a vector field, X ∈ BV (Rd), Y ∈ BV (Re), and y0 ∈ Re. For illustrative
purposes, assume that F is a linear vector field. For any y ∈ Re, x ∈ Rd, F (y)x is linear both
in y and x and can therefore be rewritten as F (y)x = F (x)y, where F : Rd → Re×e is linear.

1.2. Properties of the signature 13

Then, Picard iterations yield

Yt = y0 +

∫ t

0

F (Yu)dXu = y0 +

∫ t

0

F (dXu)Yu

= y0 +

∫ t

0

F (dXu)
(
y0 +

∫ u

0

F (dXv)Yv

)
= y0 + F (

∫ t

0

dXu)y0 +

∫ t

0

∫ u

0

F (dXu)F (dXv)Yv

= y0 + F (X1
[0,t])y0 +

∫ t

0

∫ u

0

F (dXu)F (dXv)Yv.

We see that the signature of order 1 naturally appears. Further iteration brings up terms of
higher order. Let F

⊗n
: (Rd)⊗n → Re be defined by F

⊗n
(e1 ⊗ · · · ⊗ en) = F (e1) · · ·F (en), then

Yt = y0 + F (X1
[0,t])y0 +

∫ t

0

∫ u

0

F
⊗2

(dXu ⊗ dXv)Yv

= y0 + F (X1
[0,t])y0 + F

⊗2
(X2

[0,t])y0 + · · · =
∞∑
n=0

F
⊗n

(Xn
[0,t])y0, (1.4)

(convergence of the infinite sum is ensured by Proposition 1.10). We summarize this result in
the following proposition.

Proposition 1.11. Let F : Re → Re×d be a linear vector field, X ∈ BV (Rd), y0 ∈ Re and Y be
the solution of the CDE (1.3). Then, Yt is a linear function of S[0,t](X).

The proposition can be extended to smooth non-linear vector fields, but in this case conditions
on the norms of differentials of F must be added to ensure convergence of the approximation
(1.4). In addition to motivating the definition of the signature, we will see that this proposition
is very useful in a learning situation. Indeed, assume that Y is a target and X a predictor, if
the learning model can be approximated by (1.3), then Proposition 1.11 reduces the problem to
a linear model on the signature.

We proceed with the definition of the shuffle product, which endows the space of linear forms
on the signature with a structure of algebra. Then, by applying the Stone-Weierstrass theorem,
we obtain that this linear space is dense in the space of continuous functions of paths, which
provides a more general approximation theorem.

Definition 1.10 (Shuffle product). A permutation σ of {1, . . . , n+m} is called a (n,m)-shuffle
if σ−1(1) < · · · < σ−1(n) and σ−1(n+ 1) < · · · < σ−1(n+m).

Let I = (i1, . . . , in) and J = (j1, . . . , jm) be two multi-indices with i1, . . . , in, j1, . . . , jm ∈
{1, . . . , d}. Then, the shuffle product of I and J , denoted by I t J , is a finite set of multi-indices
of length n+m, defined by

I t J =
{

(rσ(1), . . . , rσ(n+m)) |σ ∈ Shuffles(n,m)
}
,

with (r1, . . . , rn, rn+1, . . . , rn+m) = (i1, . . . , in, j1, . . . , jm).

This amounts to shuffling the words I and J without changing the order of their letters.
Note that there are (m+n)!/n!m! elements in I t J and that the shuffle product is commutative
and associative.

14 CHAPTER 1. Introduction

Theorem 1.12 (Shuffle product identity). Let X ∈ BV (Rd) and two multi-indices I = (i1, . . . , in) ⊂
{1, . . . , d}n and J = (j1, . . . , jm) ⊂ {1, . . . , d}m. Then,

SI(X)SJ(X) =
∑

K∈ItJ
SK(X).

Example 1.7. Let I = (1) and J = (2), then Theorem 1.12 yields that

S(1)(X)S(2)(X) = S(1,2)(X) + S(2,1)(X).

Similarly, if I = (1) and J = (2, 3), then we obtain

S(1)(X)S(2,3)(X) = S(1,2,3)(X) + S(2,3,1)(X) + S(2,1,3)(X).

Theorem 1.13 (Linear approximations). Let D be a compact subset of BV (Rd) of paths that
are not tree-like equivalent. Let f : D → R be a continuous function. Then, for any ε > 0, there
exists a ∈ T (Rd) such that, for any X ∈ D,∣∣f(X)−

〈
a, S(X)

〉∣∣ ≤ ε.
This theorem is the core approximation result on signatures: any continuous regression func-

tion that maps an input path X to an output Y ∈ R can be approximated by a linear function
on signatures. While in Proposition 1.11, the coefficients of the linear approximation of Y are
explicit, Theorem 1.13 is only an existence result.

1.2.3 The logsignature

We conclude this section by presenting a related object, the logsignature, which also gives a
finer understanding of the subspace of T̃ (Rd) containing signatures. This subspace is actually
characterized by the shuffle product property, in the sense that any element of T (Rd) that satisfies
this property is the signature of a path with bounded variation. Moreover, it can be shown that
it is satisfied if and only if the logarithm of the element is a Lie formal series, which brings up
the notion of logsignature.

Definition 1.11. Let a ∈ T̃ (Rd). The element a is said to be group-like if for any multi-indices
I ⊂ {1, . . . , d}n, J ⊂ {1, . . . , d}m, then

aIaJ =
∑

K∈ItJ
aK ,

where a =
∑∞
n=0

∑
I=(i1,...,in)⊂{1,...,d}n a

Iei1 ⊗ · · · ⊗ ein . We denote by G(∗)(Rd) the space of
group-like elements of T̃ (Rd).

Theorem 1.12 states that signature are group-like elements of T̃ (Rd). In fact, all group-like
elements of T̃ (Rd) are signatures of some paths of bounded variation (Hambly and Lyons, 2010).

Proposition 1.14. Let N ≥ 0 and G(N)(Rd) = πN (G(∗)(Rd)). Every element of G(N)(Rd) is
the truncated signature of a path of bounded variation. In other words, G(N)(Rd) is the range of
the function

πN ◦ S : BV (Rd)→ TN (Rd).

1.2. Properties of the signature 15

Definition 1.12. The exponential in the tensor algebra is the function exp : T (Rd) → T̃ (Rd)
defined, for any a ∈ T (Rd), by

exp(a) =
∑
n≥0

a⊗n

n!
.

The logarithm is the function log : T̃ (Rd)→ T (Rd) defined, for any a ∈ T̃ (Rd), by

log(a) =
∑
n≥1

(−1)n

n
(1− a)

⊗n
.

Let T0(Rd) = {a ∈ T (Rd) |π0(a) = 0} be the subset of elements in T (Rd) whose first term
is 0. Then exp : T0(Rd) → T̃ (Rd) and log : T̃ (Rd) → T0(Rd) are inverses of each other. The
logsignature is then defined as the logarithm of the signature in the tensor algebra and denoted
by log(S(X)). For example, its terms of order 2 are equal to

log(S(X))(i,j) = S(i,j)(X)− S(j,i)(X),

which corresponds exactly to the Levy area of Figure 1.3b.

Example 1.8. We can rewrite Example 1.3 in a more compact form. If X is a linear path (i.e.,
Xt = X0 + (X1 −X0)t) then

S(X) = exp(X1 −X0), and log(S(X)) = X1 −X0.

Definition 1.13 (Lie formal series). We endow the tensor algebra with a Lie bracket : for any
a, b ∈ T (Rd), we let

[a, b] = a⊗ b− b⊗ a.
Then, if F1 and F2 are linear subspaces of T (Rd) we denote by [F1, F2] the linear span of all
elements [a, b] such that a ∈ F1 and b ∈ F2. Then, we define recursively L0 = 0, L1 = Rd,
L2 = [Rd, L1] = [Rd,Rd], L3 = [Rd, L2] = [Rd, [Rd,Rd]] and for any n > 0 Ln+1 = [Rd, Ln]. Ln
is a linear subspace of (Rd)⊗n and is called the space of homogeneous Lie polynomials of degree
n. The space of Lie formal series over Rd is defined by

L (Rd) = {` = (`0, `1, . . . , `n, . . .) | ∀n ≥ 0, `n ∈ Ln} ,

and its truncated counterpart by

L N (Rd) = {` = (`0, `1, . . . , `N) | ∀n ∈ {0, . . . , N}, `n ∈ Ln} .

The following theorem states that an element is group-like if and only if it is the exponential
of an element of L (Rd).

Theorem 1.15. For any a ∈ T̃ (Rd), a ∈ G(∗)(Rd)⇔ log(a) ∈ L (Rd).

Therefore, for any path X ∈ BV (Rd), log(S(X)) ∈ L (Rd). Note that several basis of L (Rd)
exist, the usual one being the Lyndon basis (Reizenstein, 2017). The dimension of L N (Rd) is
equal to

p(N) =
1

N

∑
q|N

µ
(N
q

)
dq,

where the sum is over all possible divisors q of N and µ is the Möbius function—see Reutenauer

16 CHAPTER 1. Introduction

(2003). Some values of p(N) are given in Table 1.1, compared to the dimension of the tensor
space TN (Rd).

Table 1.1 – Dimension of TN (Rd) and L N (Rd)

d = 2 d = 3 d = 6

TN (Rd) L N (Rd) TN (Rd) L N (Rd) TN (Rd) L N (Rd)

N = 1 2 2 3 3 6 6
N = 2 6 3 12 6 42 21
N = 5 62 14 363 80 9330 1960
N = 7 254 41 3279 508 335922 49685

Table 1.1 illustrates that the logsignature is particularly useful in a learning context to reduce
the dimension. Indeed, we have seen that signatures do not live in the whole space TN (Rd)
but in the much smaller space of group-like elements, G(N)(Rd). However, G(N)(Rd) is not a
vector space, so we typically represent signatures on a basis of T (N)(Rd), of size O(dN). On
the other hand, the logsignature lives in a Lie algebra, therefore in a vector space, of much
smaller dimension than T (N)(Rd). Given that there is an isomorphism between signatures and
logsignatures, using the logsignature as a feature set is a reasonable choice. Must properties of
the signature transfer to the logsignature. However, the linear approximation theorem (Theorem
1.13) is not true for logsignatures: there is a trade-off between having a compact representation
and good approximation properties.

1.3 Contributions

From a learning perspective, we have seen in the last section several properties of signatures
that make it a relevant feature set. First, we know exactly which information is lost when
summarizing a path by its signature (Theorem 1.6). Second, signatures linearize functions, in
the sense that continuous functions of paths can be approximated arbitrarily well by a linear
function on the signature (Theorem 1.13). Finally, signatures can be computed efficiently in
practice, with several libraries available in Python (Reizenstein and Graham, 2020; Kidger and
Lyons, 2020).

The general procedure can be summarized by the following pipeline:

Raw data→ Path→ Signatures→ Learning algorithm. (1.5)

This general pipeline can be adapted to the problem at hand, and raises many applied and
theoretical questions. We detail below our contributions to leveraging the theory of signatures
to statistics and machine learning.

Signatures as a feature set
The general procedure (1.5) is very flexible. First, from a raw input, there are many choices

of representation as a continuous path (of bounded variation). Next, from a path in BV (Rd),
signatures can be computed on any subinterval [s, t] ⊂ [0, 1]. Finally, the choice of algorithm
is open although slightly dependent on the type of signature features constructed. There is no
consensus in the literature on which option among these many choices performs best for practical
applications.

1.3. Contributions 17

Our first contribution is to investigate the choice of representation of the raw data as a
continuous path. Such a choice is called an embedding or an augmentation. We have seen for
example that it is possible to add the time as a new coordinate to the path, which removes the
parametrization invariance and ensures uniqueness of signatures (Lemmas 1.5 and 1.7). However
this is only one choice among others; some examples are shown in Figure 1.6.

(a) Linear path (b) Time path (c) Stroke path, version 1

Figure 1.6 – Different possible embeddings of a sample from the Quick, Draw! dataset (2017).
Each stroke is plotted with a different color.

We show in Chapter 2 that this choice drastically impacts the performance of the whole
methodology, independently of the dataset or the algorithm. In particular, the lead-lag and time
embeddings have a very good performance.

We continue in Chapter 3 with a systematic study of the different variations of signature
features used in the literature. In addition to the choice of augmentation, we compare the choice
between signatures and logsignatures, and the choice of the interval on which to compute signa-
tures. We perform an extensive empirical study on 26 datasets of time series classification and
show in particular that dyadic partitions perform very well, together with invariance-removing
augmentations. This leads us to the definition of a canonical signature pipeline, summarized in
Figure 1.7, which is shown to be a good domain-agnostic starting point for practitioners. We
show that this pipeline, combined with a random forest classifier, is competitive with state-of-
the-art algorithms for time series classification, including deep neural networks and ensemble
methods.

Input, x

O

Augmentations, φb ◦ φt
Add time & basepoint

Time

Basepoint

Window, W j

Hierarchical dyadic, with j optimised.

Transform, SN

Signature features, with N optimised.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

Stack

..
.

..
.

..
.

Black box
ML classifier

Figure 1.7 – Pictorial representation of the canonical signature pipeline. First, we apply the time
and basepoint augmentations to the input paths, and then we compute the signature features
over dyadic windows. These features can now be compiled together and fed into any standard
machine learning classifier.

18 CHAPTER 1. Introduction

Linear regression with signatures
We move on in Chapter 4 to the problem of estimation in a linear model on signatures.

Indeed, Theorem 1.13 motivates the definition of the following model. Let (X,Y) ∈ BV (Rd)×R
be a random sample, then we assume that there exists m∗ ∈ N, β∗m∗ ∈ R(dm

∗
−1)/(d−1), such that

E [Y |X] =
〈
β∗m∗ , S

m∗(X)
〉

and Var(Y |X) ≤ σ2 <∞.

There are two unknown quantities in this model: the truncation parameterm∗ and the coefficients
vector β∗m∗ . We define estimators of these two quantities, m̂ and β̂, and upper bound their rate
of convergence. Our main result is stated informally below, where n denotes the sample size.

Theorem 1.16. Let 0 < ρ < 1
2 . For any n ≥ n0,

P (m̂ 6= m∗) ≤ C1 exp
(
−C2n

1−2ρ
)
,

where n0, C1 and C2 are explicit constants. We then have

E
(〈
β̂m̂, S

m̂(X)
〉
−
〈
β∗m∗ , S

m∗(X)
〉)2

= O
(
n−1/2

)
.

We conclude by comparing this regression model to traditional functional linear models and
show that it performs better in high dimensions (that is, when d is large).

Signature kernel and RNN
Taking a slightly different perspective, in Chapter 5, we use signatures as a theoretical tool

for analyzing recurrent neural networks (RNN). The neural ODE paradigm, first formulated
for residual neural networks by Chen et al. (2018), shows that some networks can be seen as
discretizations of ordinary differential equations. More precisely, consider a recurrent neural
network of the form

hj+1 = hj +
1

T
f(hj , xj+1), h0 = 0,

where x = (x1, . . . , xT) ∈ (Rd)T is a sequential input, (h1, . . . , hT) ∈ (Re)T are the hidden states,
and f : Re → Re is an arbitratry smooth function. At each time step 1 ≤ j ≤ T , the output of
the network is zj = ψ(hj), where ψ is a linear function. Then, this network can be approximated
by the ordinary differential equation (ODE)

dHt = f(Ht, Xt)dt, H0 = h0.

By increasing the dimension of the problem, this ODE can be written as a CDE of the form
(1.3) and, with arguments similar to Proposition 1.11, we are able to show that the output of
the RNN hT can be rewritten as a linear function on the signature. This frames the RNN into
a reproducing kernel Hilbert space (RKHS) H associated to the signature kernel K defined by
(1.2). We have the following informal theorem.

Theorem 1.17. There exists a function ξα ∈H such that

|zT − ξα(x)| ≤ c

T
.

We have reduced the problem of learning the weights of a RNN to a linear problem on the
signature. This allows to derive generalization bounds, stability guarantees, and regularization

1.3. Contributions 19

strategies for RNN. Indeed, the RKHS H defines naturally a norm on networks, which can be
computed in practice and used for regularization. A small norm in the RKHS ensures stability
of the network. Indeed, if zT and z′T are the outputs associated to two inputs x and x′, we have

‖zT − z′T ‖ ≤
2c

T
+ ‖ξα(x)− ξα(x′)‖ ≤ 2c

T
+ ‖ξα‖H ‖S(X)− S(X

′
)‖T ,

where X and X
′
are two embeddings of the inputs x and x′, and T is a subspace of T (Rd).

Signature inversion
We conclude in Chapter 6 with contributions to the problem of inverting the signature. Given

Theorem 1.6, we can hope to reconstruct a path X from its signature S(X), up to translations,
reparametrizations, and tree-like pieces. We are interested in the insertion algorithm, first pro-
posed by Chang and Lyons (2019), which focuses on the inversion of signatures of piecewise linear
paths. We propose a slightly different version of this algorithm and provide a rate of convergence
for our version. We implement the algorithm in the open-source package Signatory (Kidger and
Lyons, 2020). The algorithm is based on the definition of a linear operator, the insertion operator
denoted by L n

p,X , p ∈ {1, . . . , n + 1}. Given a signature truncated at order n + 1, we recover
n+ 1 derivatives of X by solving the optimization problem

min
y∈Rd

‖L n
p,X(y)− (n+ 1)Xn+1‖. (1.6)

More precisely, let X : [0, 1] → Rd be a piecewise linear path and 0 = t0 < · · · < tM = 1 be the
minimal partition such thatX is linear on each [ti−1, ti]: there exists α1, . . . , αM , β1, . . . , βM ∈ Rd
such that

Xt = αi + βit, for t ∈ [ti−1, ti], i ∈ {1, . . . ,M}.
We have the following informal result, illustrated in Figure 1.8.

Theorem 1.18. For any 1 ≤ i ≤ M , n ≥ 0, and p = b(3ti+ti−1)(n+1)/4c, let y∗p,n be the solution
of (1.6). Then, there exists a strictly increasing sequence (kn)n≥0 such that y∗p,kn converges to
βi as n increases.

(a) n = 5 (b) n = 10 (c) n = 20

Figure 1.8 – Signature inversion of a sample of the class "8" from the Pendigits dataset

Outline of the manuscript
Each chapter is independent and self-contained. Therefore, the notation may vary from chap-

ter to chapter. The proofs are systematically given in the associated appendices. We summarize

20 CHAPTER 1. Introduction

the contents of the chapters below.

• Chapter 2 has been published in Computational Statistics and Data Analysis, volume 157.
• Chapter 3 is a joint work with James Morrill (University of Oxford), Patrick Kidger (Uni-
versity of Oxford), and Terry Lyons (University of Oxford). It has been submitted for
publication.

• Chapter 4 has been submitted for publication.
• Chapter 5 is a joint work with Pierre Marion (Sorbonne Université), Jean-Philippe Vert
(Google Research), and Gérard Biau (Sorbonne Université). It has been submitted for
publication.

• Chapter 6 is an ongoing joint work with Terry Lyons (University of Oxford).

Résumé détaillé 21

Résumé détaillé

Le but de cette thèse est d’étudier l’application des signatures aux statistiques et à l’appren-
tissage automatique. Nous nous intéressons aux données séquentielles ou temporelles, c’est-à-dire
qui possèdent un ordre. De telles données peuvent être considérées comme des fonctions (conti-
nues) X d’un intervalle [a, b] ⊂ R dans Rd, d ≥ 1. Par exemple, X peut être une série temporelle
représentant le prix d’une action observé pendant un certain intervalle de temps. Si plusieurs
actions sont observées, X est alors une série temporelle multivariée et est à valeurs dans Rd avec
d > 1. Les données fonctionnelles entrent également dans ce cadre, avec des jeux de données
classiques tels que des courbes spectrométriques ou des profils de température. En apprentissage
automatique, les domaines de la reconnaissance vocale, de la reconnaissance de caractères ou du
traitement du langage naturel s’inscrivent également dans ce cadre. Dans ce cas, l’intervalle [a, b]
peut correspondre au temps mais aussi à une position dans une phrase. Prenant un point de vue
géométrique, nous appelerons ce type de données des chemins X : [a, b]→ Rd.

Ayant des chemins X disponibles, nous voulons apprendre une certaine sortie Y , fonction
de X. Par exemple, la sortie Y peut être une prévision de la valeur future de la série, une
autre quantité scalaire liée, ou en classification un label. Apprendre Y à partir de X soulève la
question de la représentation de X. En effet, la plupart des algorithmes d’apprentissage, tels que
la régression des moindres carrés, les arbres de décision ou les réseaux de neurones, prennent
en entrée un vecteur. Un choix naturel pour ce vecteur est d’échantillonner les valeurs de X
mais il existe d’autres options comme l’utilisation d’une représentation de Fourier de X ou, plus
généralement, la projection de X sur une base de fonctions. Nous allons voir que les signatures
sont encore une autre option.

La signature a été définie pour la première fois par Chen dans les années 60 (Chen, 1957 ;
1958 ; 1977) et a été redécouverte dans les années 90 dans le contexte de la théorie des chemins
rugueux (Lyons, 1998 ; Lyons et al., 2007 ; Friz et Victoir, 2010 ; Friz et Hairer, 2020), domaine
important de l’analyse stochastique. Du point de vue des équations différentielles, la signature
résume l’effet d’un chemin X sur un chemin de sortie Y lorsque Y est “contrôlé” par X. Plus
précisément, si F : Re → Re×d est un champ de vecteurs, et Y est la solution de l’équation
différentielle contrôlée

dYt = F (Yt)dXt, Y0 = y0,

alors Y est entièrement défini par F et par la signature de X. En d’autres termes, Y ne dépend de
X qu’à travers sa signature. Dans une perspective d’apprentissage, Y peut être considéré comme
une quantité à prédire, par exemple la traduction d’un phrase, et F est maintenant une fonction
inconnue qui relie l’entrée X et la sortie Y . La théorie des équations différentielles nous dit alors
que Y ne dépendra que de la signature de X, ce qui en fait une représentation pertinente pour
tout algorithme qui tente d’apprendre F .

Au cours des dernières années, la signature a été combinée avec succès à des algorithmes d’ap-
prentissage automatique dans plusieurs domaines tels que la reconnaissance de caractères (Yang
et al., 2016a), la finance (Perez Arribas, 2018), la médecine (Morrill et al., 2019) ou la vision
assistée par ordinateur (Yang et al., 2017). Plusieurs travaux méthodologiques ont accompagné
ces applications, créant un pont entre l’analyse stochastique et l’apprentissage automatique (Le-
vin et al., 2013 ; Király et Oberhauser, 2019 ; Liao et al., 2019 ; Kidger et al., 2019). De manière
générale, on peut résumer l’utilisation de la signature en apprentissage par le schéma suivant :

Données brutes→ Chemin→ Signatures→ Algorithme d’apprentissage.

Cette méthodologie générale peut être adaptée au problème à résoudre, et soulève de nombreuses
questions statistiques et méthodologiques.

22 CHAPITRE 1. Introduction

Les signatures comme ensemble de features. La procédure générale ci-dessus est très
flexible. Tout d’abord, il existe de nombreux choix de représentation des données brutes en un
chemin continu. De plus, à partir d’un chemin, les signatures peuvent être calculées sur tout
sous-intervalle [s, t] ⊂ [0, 1] et enfin le choix de l’algorithme est libre. Il n’y a pas de consensus
dans la littérature sur quelles options sont les plus performantes en pratique. Nos premières
contributions ont tenté de répondre à cette question.

Tout d’abord, nous nous intéressons aux différentes représentations des données brutes en
chemin continu. Un tel choix est appelé embedding ou augmentation. Nous montrons dans le
chapitre 2 que ce choix a un impact considérable sur la performance de l’ensemble de la mé-
thodologie, indépendamment du type de données ou de l’algorithme. Nous poursuivons dans
le chapitre 3 par une étude systématique des différentes variations utilisées dans la littérature.
Nous réalisons une étude complète de la performance de ces variations sur 26 jeux de données de
classification de séries temporelles. Cette étude conduit à la définition d’un algorithme canonique
qui s’avère être un bon algorithme de référence pour utiliser en pratique les signatures. En effet,
cet algorithme est compétitif par rapport à l’état de l’art en classification de séries temporelles,
en particulier par rapport aux réseaux de neurones profonds et aux méthodes d’aggrégation.

Régression linéaire sur les signatures. Nous poursuivons dans le chapitre 4 par une étude
d’un modèle linéaire sur signatures. Les signatures étant un objet infini, il est nécessaire de les
tronquer à un certain ordre. Cet ordre de troncature contrôle la taille du modèle et est donc une
quantité cruciale à estimer. Nous proposons un estimateur de cet ordre de troncature, ainsi que du
vecteur de coefficients, avec des garanties théoriques. Nous concluons en comparant ce modèle de
régression aux modèles linéaires fonctionnels traditionnels et observons qu’il est particulièrement
performant en grande dimension.

Méthodes à noyaux, signatures et RNN. En adoptant une perspective légèrement diffé-
rente, nous utilisons dans le chapitre 5 les signatures comme outil théorique pour analyser les
réseaux de neurones récurrents (RNN). Le paradigme des neural ODE, formulé pour les réseaux
résiduels par Chen et al. (2018), montre que certains réseaux peuvent être considérés comme des
discrétisations d’équations différentielles ordinaires. En tirant parti des bonnes propriétés ana-
lytiques des signatures, nous montrons que la sortie d’un RNN peut alors être réécrite comme
une fonction dans un espace de Hilbert à noyau reproduisant (RKHS). Nous avons ainsi réécrit
le problème d’apprentissage d’un RNN comme une méthode à noyau, ce qui permet de dériver
des bornes de généralisation, des garanties de stabilité et des stratégies de régularisation.

Inversion de la signature. Nous concluons dans le chapitre 6 par une contribution au pro-
blème d’inversion de la signature. Nous nous intéressons à l’algorithme d’insertion, proposé pour
la première fois par Chang et Lyons (2019), qui se concentre sur l’inversion des signatures de
chemins linéaires par morceaux. Nous proposons une version légèrement différente de cet algo-
rithme et fournissons des garanties théoriques. Nous implémentons cet algorithme dans la librairie
open-source Signatory (Kidger et Lyons, 2020), basée sur Pytorch (Paszke et al., 2019).

Bibliography 23

Bibliography

Boedihardjo, H., and Geng, X. (2015). The uniqueness of signature problem in the non-markov
setting. Stochastic Processes and their Applications, 125, 4674–4701.

Boedihardjo, H., Geng, X., Lyons, T., and Yang, D. (2016). The signature of a rough path:
uniqueness. Advances in Mathematics, 293, 720–737.

Chang, J., and Lyons, T. (2019). Insertion algorithm for inverting the signature of a path.
arXiv:1907.08423.

Chen, K.-T. (1957). Integration of paths, geometric invariants and a generalized baker-hausdorff
formula. Annals of Mathematics, 163–178.

Chen, K.-T. (1958). Integration of paths—a faithful representation of paths by non-commutative
formal power series. Transactions of the American Mathematical Society, 89, 395–407.

Chen, K.-T. (1977). Iterated path integrals. Bulletin of the American Mathematical Society, 83,
831–879.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordi-
nary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett (Eds.), Advances in neural information processing sys-
tems (pp. 6572–6583). Curran Associates, Inc.

Chevyrev, I., and Lyons, T. (2016). Characteristic functions of measures on geometric rough
paths. The Annals of Probability, 44, 4049–4082.

Dua, D., and Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml
Friz, P. K., and Hairer, M. (2020). A course on rough paths. Springer.
Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:

theory and applications (Vol. 120). Cambridge University Press.
Google. (2017). The quick, draw! dataset. https://github.com/googlecreativelab/quickdraw-

dataset
Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation

and the reduced path group. The Annals of Mathematics, 171, 109–167.
Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep signature trans-

forms. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Eds.), Advances in neural information processing systems (pp. 3099–3109).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

Király, F. J., and Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Ma-
chine Learning Research, 20, 1–45.

Le Jan, Y., and Qian, Z. (2013). Stratonovich’s signatures of brownian motion determine brow-
nian sample paths. Probability Theory and Related Fields, 157, 209–223.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Liao, S., Lyons, T., Yang, W., and Ni, H. (2019). Learning stochastic differential equations using
RNN with log signature features. arXiv:1908.08286.

Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths
(Vol. 1908). Springer.

Lyons, T. J. (1998). Differential equations driven by rough signals. Revista Matemática Iberoamer-
icana, 14, 215–310.

http://archive.ics.uci.edu/ml
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

24 CHAPTER 1. Introduction

Morrill, J., Kormilitzin, A., Nevado-Holgado, A., Swaminathan, S., Howison, S., and Lyons, T.
(2019). The signature-based model for early detection of sepsis from electronic health
records in the intensive care unit. International Conference in Computing in Cardiology.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances
in neural information processing systems (pp. 8024–8035). Curran Associates, Inc.

Perez Arribas, I. (2018). Derivatives pricing using signature payoffs. arXiv:1809.09466.
Purbhoo, K. (2012). Notes on tensor products and the exterior algebra.
Reizenstein, J. (2017). Calculation of iterated-integral signatures and log signatures. arXiv:1712.02757.
Reizenstein, J., and Graham, B. (2020). Algorithm 1004: the iisignature library: efficient calcu-

lation of iterated-integral signatures and log signatures. ACM Transactions on Mathe-
matical Software.

Reutenauer, C. (2003). Free lie algebras. Handbook of algebra (pp. 887–903). Elsevier.
Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent

writer identification system. IEEE Intelligent Systems, 31, 45–53.
Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path

signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

Young, L. C. (1936). An inequality of the hölder type, connected with stieltjes integration. Acta
Mathematica, 67, 251.

Chapter 2

Embedding and learning with
signatures

Sequential and temporal data arise in many fields of research, such as quantitative finance,
medicine, or computer vision. A novel approach for sequential learning, called the signature
method and rooted in rough path theory, is considered. Its basic principle is to represent multi-
dimensional paths by a graded feature set of their iterated integrals, called the signature. This
approach relies critically on an embedding principle, which consists in representing discretely
sampled data as paths, i.e., functions from [0, 1] to Rd. After a survey of machine learning
methodologies for signatures, the influence of embeddings on prediction accuracy is investigated
with an in-depth study of three recent and challenging datasets. It is shown that a specific
embedding, called lead-lag, is systematically the strongest performer across all datasets and al-
gorithms considered. Moreover, an empirical study reveals that computing signatures over the
whole path domain does not lead to a loss of local information. It is concluded that, with a good
embedding, combining signatures with other simple algorithms achieves results competitive with
state-of-the-art, domain-specific approaches.

Contents

2.1 Introduction 26
2.2 A first glimpse of the signature method 28

2.2.1 Definition and main properties . 28
2.2.2 Signature and machine learning . 33

2.3 Datasets 37
2.4 The embedding 39

2.4.1 Definition and review of potential embeddings 40
2.4.2 Results . 42
2.4.3 Running times . 46

2.5 Simulation study of autoregressive processes 46
2.6 Signature domain and performance 49

2.6.1 Comparison of local and global signature features 50
2.6.2 Performance of the signature . 51

2.7 Conclusion 53

25

26 CHAPTER 2. Embedding and learning with signatures

2.1 Introduction

Sequential or temporal data are arising in many fields of research, due to an increase in stor-
age capacity and to the rise of machine learning techniques. An illustration of this vitality is
the recent relaunch of the Time Series Classification repository (Bagnall et al., 2018), with more
than a hundred new datasets. Sequential data are characterized by the fact that each sample
consists of an ordered array of values. The order need not correspond to time, for example,
text documents or DNA sequences have an intrinsic ordering, and are, therefore, considered as
sequential. Besides, when time is involved, several values can be recorded simultaneously, giving
rise to an ordered array of vectors, which is, in the field of time series, often referred to as multi-
dimensional time series. To name only a few domains, market evolution is described by financial
time series, and physiological variables (e.g., electrocardiograms, electroencephalograms) are
recorded simultaneously in medicine, yielding multidimensional time series. Finally, smartphone
and GPS sensors data, or character recognition problems, present both spatial and temporal
aspects. These high-dimensional datasets open up new theoretical and practical challenges, as
both algorithms and statistical methods need to be adapted to their sequential nature.

Different communities have addressed this problem. First, time series forecasting has been
an active area of research in statistics since the 1950s, resulting in several monographs, such
as Hamilton (1994), Box et al. (2015) and Shumway and Stoffer (2017), to which the reader
is referred for overviews of the domain. Time series are considered as realizations of various
stochastic processes, such as the famous ARIMA models. Much work in this field has been done
on parameter estimation and model selection. These models have been developed for univariate
time series but have been extended to the multivariate case (Lütkepohl, 2005), with the limitation
that they become more complicated and harder to fit.

More recently, the field of functional data analysis has extended traditional statistical meth-
ods, in particular regression and Principal Component Analysis, to functional inputs. Ramsay
and Silverman (2005) and Ferraty and Vieu (2006) provide introductions to the area. Kokoszka
et al. (2017) give an account of recent advances. In particular, longitudinal functional data anal-
ysis is concerned with the analysis of repeated observations, where each observation is a function
(Greven et al., 2011; Park and Staicu, 2015). The data arising from this setting may be consid-
ered as a set of vector-valued functions with correlated coordinates, each function corresponding
to one subject and each coordinate corresponding to one specific observation.

Although these various disciplines work with sequential data, their goals usually differ. Typ-
ically, time series analysis is concerned with predicting future values of one observed function,
whereas (longitudinal) functional data analysis usually collects several functions and is then
concerned with the prediction of another response variable. However, all these methods rely
on strong assumptions on the regularity of the data and need to be adapted to each specific
application. Therefore, modern datasets have highlighted their limitations: a lot of choices, in
basis functions or model parameters, need to be handcrafted and are valid only on a small-time
range. Moreover, these techniques struggle to model multidimensional series, in particular, to
incorporate information about interactions between various dimensions.

On the other side, time series classification has attracted the interest of the data mining
community. A broad range of algorithms have been developed, reviewed by Bagnall et al. (2017)
in the univariate case. Much attention has been paid to the development of similarity measures
adapted to temporal data, a popular baseline being the Dynamic Time Warping metric (Berndt
and Clifford, 1996), combined with a 1-nearest neighbor algorithm. Bagnall et al. (2017) state
that this baseline is beaten only by ensemble strategies, which combine different feature map-
pings. However, a great limitation of these methods is their complexity, as they have difficulty
handling large time series. Recently, deep learning seems to be a promising approach and solves

2.1. Introduction 27

some problems mentioned above. For example, Fawaz et al. (2019) claim that some architectures
perform systematically better than previous data mining algorithms. However, deep learning
methods are costly in memory and computing power, and often require a lot of training data.

The present article is concerned with a novel approach for sequential learning, called the
signature method, and coming from rough path theory. Its main idea is to summarize temporal
or sequential inputs by the graded feature set of their iterated integrals, the signature. In rough
path theory, functions are referred to as paths, to emphasize their geometrical aspects. Indeed,
the importance of iterated integrals had been noticed by geometers in the 60s, as presented in
the work of Chen (1958). It has been rediscovered by Lyons (1998) in the context of stochastic
analysis and controlled differential equations, and is at the heart of rough path theory. This
theory, of which Lyons et al. (2007) and Friz and Victoir (2010) give a recent account, focuses on
developing a new notion of paths to make sense of evolving irregular systems. Notably, Hairer
(2013) was awarded a Fields medal in 2014 for its solution to the Kardar-Parisi-Zhang equation
built with rough path theory. In this context, it has been shown that the signature provides an
accurate summary of a (smooth) path and allows to obtain arbitrarily good linear approximations
of continuous functions of paths. Therefore, to learn an output Y ∈ R, which is an unknown
function of a random path X : [0, 1] → Rd, rough path theory suggests that the signature is a
relevant tool to describe X.

The signature has recently received the attention of the machine learning community and
has achieved a series of successful applications. To cite some of them, Yang et al. (2016a) have
achieved state-of-the-art results for handwriting recognition with a recurrent neural network
combined with signature features. Graham (2013) used the same approach for character recog-
nition, and Gyurkó et al. (2014) coupled Lasso with signature features for financial data streams
classification. Kormilitzin et al. (2016) investigated its use for the detection of bipolar disorders,
and Yang et al. (2017) for human action recognition. For introductions to the signature method
in machine learning, the reader is referred to the work of Levin et al. (2013) and to Chevyrev
and Kormilitzin (2016b).

However, despite many promising empirical successes, a lot of questions remain open, both
practical and theoretical. In particular, to compute signatures, it is necessary to embed discretely
sampled data points into paths. While authors use different approaches, this embedding is only
mentioned in some articles, and rarely discussed. Thus, the purpose of this paper is to take a
step forward in understanding how signature features should be constructed for machine learning
tasks, with a special focus on the embedding step. The article is organized as follows.

(i) In Section 2.2, a brief exposition of the signature definition and properties is given, along
with a survey of different approaches undertaken in the literature to combine signatures
with machine learning algorithms. Datasets used throughout the paper are also presented
in Section 2.3.

(ii) In Section 2.4, potential embeddings are reviewed and their predictive performance is com-
pared with an empirical study on 3 real-world datasets. This study indicates that the
embedding is a step as crucial as the algorithm choice since it can drastically impact accu-
racy results. In particular, we find that the lead-lag embedding systematically outperforms
other embeddings, consistently over different datasets and algorithms. This finding is re-
inforced by a simulation study with autoregressive processes in Section 2.5.

(iii) In Section 2.6 the choice of signature domain is investigated. Signatures can be computed
on any sub-interval of the path definition domain, and it is natural to wonder whether some
local information is lost when signatures of the whole path are computed. The section ends
by showing that, with a good embedding, the signature combined with a simple algorithm,
such as a random forest classifier, obtains results comparable to state-of-the-art approaches

28 CHAPTER 2. Embedding and learning with signatures

in different application areas, while remaining a generic approach and computationally
simple.

(iv) In Section 2.7 some open questions for future work are discussed.

These empirical results are based on three recent datasets, in different fields of application.
One is a univariate sound recording dataset, called Urban Sound (Salamon et al., 2014), whereas
the others are multivariate. One has been made available by Google (2017), and consists of
drawing trajectories, while the other is made up of 12 channels recorded from smartphone sensors
(Malekzadeh et al., 2018). They are each of a different nature and present a variety of lengths,
noise levels, and dimensions. In this way, generic and domain-agnostic results are obtained. The
code is available at https://github.com/afermanian/embedding_with_signatures.

2.2 A first glimpse of the signature method

2.2.1 Definition and main properties

In this subsection, the notion of signature is introduced and some of its important properties
are reviewed. The reader is referred to Lyons et al. (2007) or Friz and Victoir (2010) for a
more involved mathematical treatment with proofs. Throughout the article, the basic objects
are paths, that is, functions from [0, 1]→ Rd, where d ∈ N∗. The main assumption is that these
paths are of bounded variation, i.e., they have finite length.

Definition 2.1. Let

X : [0, 1] −→ Rd

t 7−→ (X1
t , . . . , X

d
t).

The total variation of X is defined by

‖X‖1−var = sup
D

∑
ti∈D
‖Xti −Xti−1

‖,

where the supremum is taken over all finite partitions

D =
{

(t0, . . . , tk) | k ≥ 1, 0 = t0 < t1 < · · · < tk−1 < tk = 1
}

of [0, 1], and ‖ · ‖ denotes the Euclidean norm on Rd. The path X is said to be of bounded
variation if its total variation is finite.

The set of bounded variation paths is exactly the set of functions whose first derivatives
exist almost everywhere. Being of bounded variation is therefore not a particularly restrictive
assumption. It contains, for example, all Lipschitz functions. In particular, if X is continuously
differentiable, and Ẋ denotes its first derivative with respect to t, then

‖X‖1−var =

∫ 1

0

‖Ẋt‖dt.

The assumption of bounded variation allows us to define Riemann-Stieljes integrals along
paths. An exposition of this integration theory is not given here, but the interested reader is
referred to Lyons et al. (2007). From now on, it is assumed that the integral of a continuous

https://github.com/afermanian/embedding_with_signatures

2.2. A first glimpse of the signature method 29

path Y : [0, 1] → Rd against a path of bounded variation X : [0, 1] → Rd is well-defined on any
[s, t] ⊂ [0, 1], and denoted by

∫ t

s

YudXu =

∫ t
s
Y 1
u dX

1
u

...∫ t
s
Y du dX

d
u

 ∈ Rd,

where X = (X1, . . . , Xd), and Y = (Y 1, . . . , Y d). When X is continuously differentiable, this
integral is equal to the standard Riemann integral, that is,∫ t

s

YudXu =

∫ t

s

YuẊudu.

As an example, assume that X is linear, i.e.,

Xt = (X1
t , . . . , X

d
t) = (a1 + b1t, . . . , ad + bdt), 0 ≤ t ≤ 1, (2.1)

where a1, . . . , ad, b1, . . . bd ∈ R. Then

∫ t

s

dXu =

∫ t

s

Ẋudu =

∫ t
s
b1du
...∫ t

s
bddu

 =

b1(t− s)
...

bd(t− s)

 .

The formula above is useful since in practice only integrals of linear paths are computed, as
discussed later in this subsection. It is now possible to define the signature.

Definition 2.2. Let X : [0, 1]→ Rd be a path of bounded variation, I = (i1, . . . , ik) ⊂ {1, . . . d}k,
k ∈ N∗, be a multi-index of length k, and [s, t] ⊂ [0, 1] be an interval. The signature coefficient
of X corresponding to the index I on [s, t] is defined by

SI(X)[s,t] =

∫
· · ·
∫

s≤u1<···<uk≤t

dXi1
u1
. . . dXik

uk
=

∫ t

s

(∫ t

u1

(∫ t

u2

. . .

∫ t

uk−1

dXik
uk

)
dXi2

u2

)
dXi1

u1
. (2.2)

SI(X)[s,t] is then said to be a signature coefficient of order k.

The signature of X is the sequence containing all signature coefficients, i.e.,

S(X)[s,t] =
(
1, S(1)(X)[s,t], . . . , S

(d)(X)[s,t], S
(1,1)(X)[s,t], . . . , S

(i1,...,ik)(X)[s,t], . . .
)
.

The signature of X truncated at order K, denoted by SK(X), is the sequence containing all
signature coefficients of order lower than or equal to K, that is

SK(X)[s,t] =
(
1, S(1)(X)[s,t], S

(2)(X)[s,t], . . . , S

K︷ ︸︸ ︷
(d, . . . , d)(X)[s,t]

)
.

For simplicity, when [s, t] = [0, 1], the interval is omitted in the notations, and, e.g., SK(X) is
written instead of SK(X)[0,1].

From these definitions, it follows that the linear interpolation of a (multivariate) time series
observed on a finite time horizon will be of bounded variation, and therefore that its signature is
well defined. Note that this procedure of mapping a discrete time series into a continuous path

30 CHAPTER 2. Embedding and learning with signatures

is called an embedding, and linear interpolation is only one embedding among others, which will
be studied in Section 2.4. For example, Brownian motion is not of bounded variation but is
instead of finite p-variation for any p > 2. However, its signature can still be defined with Itô or
Stratonovitch integrals.

Before giving an explicit calculation of signatures, some comments are in order. First, it is
worth noting that, for a path in Rd, there are dk coefficients of order k. The signature truncated
at order K is therefore a vector of dimension

K∑
k=0

dk =
dK+1 − 1

d− 1
if d 6= 1, (2.3)

and K + 1 if d = 1. Unless otherwise stated, it is assumed that d 6= 1, as this is in practice
usually the case. Thus, the size of SK(X) increases exponentially with K, and polynomially with
d—some typical values are presented in Table 2.1.

d = 2 d = 3 d = 6

K = 1 2 3 6
K = 2 6 12 42
K = 5 62 363 9330
K = 7 254 3279 335922

Table 2.1 – Typical sizes of SK(X) for different values of K and d, where X : [0, 1]→ Rd.

Moreover, the set of coefficients of order k can be seen as an element of the kth tensor product
of Rd with itself, denoted by (Rd)⊗k. For example, the d coefficients of order 1 can be written
as a vector, and the d2 coefficients of order 2 as a matrix:S

(1)(X)
...

S(d)(X)

 ∈ Rd,

S
(1,1)(X) . . . S(1,d)(X)

...
...

S(d,1)(X) . . . S(d,d)(X)

 ∈ Rd×d ≈ (Rd)⊗2.

Similarly, coefficients of order 3 can be written as a tensor of order 3, and so on. Then, S(X)
can be seen as an element of the tensor algebra

R⊕ Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · · .

This structure of the tensor algebra will not be used in the present article but is used to derive
properties of the signature (Lyons, 1998; Friz and Victoir, 2010; Hambly and Lyons, 2010).

It should be noted that due to the ordering in the integration domain in (2.2), the signature
coefficients are not symmetric. For example, S(1,2)(X) is not the same as S(2,1)(X). Finally,
Chevyrev and Kormilitzin (2016b) show how, under certain assumptions, empirical statistical
moments can be explicitly recovered from signature coefficients. Typically, the empirical mean
can be recovered from signature coefficients of order 1, the variance from coefficients of order 2,
and so on. Therefore, the larger the truncation order, the more detailed the information encoded
in the signature.

As a toy example, consider the linear path (2.1) again, and assume for simplicity that d = 2:

Xt =

(
X1
t

X2
t

)
=

(
a1 + b1t
a2 + b2t

)
.

2.2. A first glimpse of the signature method 31

Then, for any [s, t] ⊂ [0, 1] the signature coefficients of order 1 are

S(1)(X)[s,t] =

∫ t

s

dX1
u = b1(t− s) and S(2)(X)[s,t] =

∫ t

s

dX2
u = b2(t− s).

The first coefficient of order 2 is

S(1,1)(X)[s,t] =

∫ t

s

∫ t

u1

dX1
u2
dX1

u1
=

∫ t

s

∫ t

u1

b21du2du1 = b21

∫ t

s

(t− u1)du1 =
b21(t− s)2

2
.

Similarly,

S(1,2)(X)[s,t] = S(2,1)(X) =
b1b2(t− s)2

2
and S(2,2)(X)[s,t] =

b22(t− s)2

2
.

For any index I = (i1, . . . , ik) ⊂ {1, 2}k, it is easily obtained that

S(i1,...,ik)(X)[s,t] =

∫
· · ·
∫

s≤u1<···<uk≤t

dXi1
u1
. . . dXik

uk
=
bi1 . . . bik(t− s)k

k!
. (2.4)

A crucial feature of the signature is that it encodes geometric properties of the path. Indeed,
coefficients of order 2 correspond to some areas outlined by the path, as shown in Figure 2.1.
For higher orders of truncation, the signature contains information about the joint evolution of
tuples of coordinates (Yang et al., 2017). Furthermore, the signature possesses several properties
that make it a good statistical summary of paths, as shown in the next four propositions.

Figure 2.1 – Geometric interpretation of signature coefficients.

Proposition 2.1. Let X : [0, 1]→ Rd be a path of bounded variation, and ψ : [0, 1]→ [0, 1] be a
non-decreasing surjection. Then, if X̃t = Xψ(t) is the reparametrization of X under ψ,

S(X̃) = S(X).

32 CHAPTER 2. Embedding and learning with signatures

This proposition is a consequence of the properties of integrals and bounded variation paths
(Friz and Victoir, 2010, Proposition 7.10). In other words, the signature of a path is the same up
to any reasonable time change. There is, therefore, no information about the path parametriza-
tion in signature coefficients. However, when relevant for the application, it is possible to include
this information by adding the time parametrization as a coordinate of the path. This procedure
plays a decisive role in the construction of time embeddings, which will be thoroughly discussed
in Section 2.4.

A second important property is a condition ensuring the uniqueness of signatures.

Proposition 2.2. If X has at least one monotone coordinate, then S(X) determines X uniquely
up to translations.

It should be noticed that having a monotone coordinate is a sufficient condition, but a nec-
essary one can be found in Hambly and Lyons (2010), together with a proof of this proposition.
The principal significance of this result is that it provides a practical procedure to guarantee
signature uniqueness: it is sufficient to add a monotone coordinate to the path X. For example,
the time embedding mentioned above will satisfy this condition.

This result does not provide a practical procedure to reconstruct a path from its signature.
However, this is an active area of research (Chang et al., 2017; Lyons and Xu, 2017; Lyons and
Xu, 2018). In particular, (Lyons and Xu, 2017) derive an explicit expression of rectilinear paths,
defined in Section 2.4.1, in terms of their signatures; and (Lyons and Xu, 2018) construct, from
the signature of a C1 path, a sequence of piecewise linear approximations converging to the initial
path.

The next proposition reveals that the signature linearizes functions of X. We refer the reader
to Király and Oberhauser (2019, Theorem 1) for a proof.

Proposition 2.3. Let D be a compact subset of the space of bounded variation paths from [0, 1]
to Rd and such that for any X ∈ D, X0 = 0 and X has at least one monotone coordinate. Let
f : D → R be continuous. Then, for every ε > 0, there exists N ∈ N, w ∈ RN , such that, for
any X ∈ D, ∣∣f(X)− 〈w, S(X)〉

∣∣ ≤ ε,
where 〈·, ·〉 denotes the Euclidean scalar product on RN .

This proposition is a consequence of the Stone-Weierstrass theorem. The classical Weierstrass
approximation theorem states that every real-valued continuous function on a closed interval can
be uniformly approximated by a polynomial function. Similarly, this theorem states that any real-
valued continuous function on a compact subset D of bounded variation paths can be uniformly
approximated by a linear form on the signature. Linear forms on the signature can, therefore,
be thought of as the equivalent of polynomial functions for paths.

Chen’s theorem (Chen, 1958) now provides a formula to compute recursively the signature of
a concatenation of paths. LetX : [s, t]→ Rd and Y : [t, u]→ Rd be two paths, 0 ≤ s < t < u ≤ 1.
Then, the concatenation of X and Y , denoted by X ∗ Y , is defined as the path from [s, u] to Rd
such that, for any v ∈ [s, u],

(X ∗ Y)v =

{
Xv if v ∈ [s, t],

Xt + Yv − Yt if v ∈ [t, u].

Proposition 2.4 (Chen). Let X : [s, t] → Rd and Y : [t, u] → Rd be two paths with bounded

2.2. A first glimpse of the signature method 33

variation. Then, for any multi-index (i1, . . . , ik) ⊂ {1, . . . , d}k,

S(i1,...,ik)(X ∗ Y) =

k∑
`=0

S(i1,...,i`)(X) · S(i`+1,...,ik)(Y). (2.5)

This proposition is an immediate consequence of the linearity property of integrals (Lyons
et al., 2007, Theorem 2.9). However, it is essential for the explicit calculation of signatures.
Indeed, in practice, X is observed at a finite number of times and becomes by interpolation a
continuous piecewise linear path. To compute its signature, it is then sufficient to iterate the
following two steps:

1. Compute with equation (2.4) the signature of a linear section of the path.

2. Concatenate it to the other pieces with Chen’s formula (2.5).

This procedure is implemented in the Python library iisignature (Reizenstein and Graham,
2020). Thus, for a sample consisting of ` points in Rd, if the path formed by their linear
interpolation is considered, the computation of the path signature truncated at level K takes
O(`dK) operations. The complexity is therefore linear in the number of sampled points but
exponential in the truncation order K. Notice that the size of the signature vector is also
exponential in the truncation order K, as shown in Table 2.1. Therefore, in applications, K has
to remain small, typically of the order less than 10.

We conclude this section by giving some insights into the behavior of the expected value
of the signature. Let (Ω,F ,P) be a probability space and X a Rd-valued stochastic process
defined on [0, 1]. Chevyrev and Lyons (2016) have shown that, under some assumptions, E[S(X)]
characterizes the law of X. In other words, if X and Y are two stochastic processes such that
E[S(X)] = E[S(Y)], then X and Y have the same distribution. The assumptions of this result
have been relaxed by Chevyrev and Oberhauser (2018), who only need to assume that the
signature is well-defined to prove a similar result for a particular renormalization of the signature.
It is instructive to compare this property to the case of random variables. Indeed, recall that if
X is a real-valued random variable, then its moment-generating function, defined by t 7→ E[etX]
characterizes the law of X. Now if X is a stochastic process, its expected signature has the
same property and should, therefore, be thought of as a generalization of the moment-generating
function of a process. This interpretation of the signature is particularly clear in the case where
d = 1: let X : [0, 1] 7→ R, then

E[S(X)] =
(

1,E[X1 −X0],
E[(X1 −X0)2]

2!
, . . . ,

E[(X1 −X0)k]

k!
, . . .

)
,

and the signature corresponds exactly to an infinite sequence of the moments of the path.

2.2.2 Signature and machine learning

Now that the signature and its properties have been presented, we focus on its use in machine
learning. In a statistical context, our goal is to understand the relationship between a random
input path X : [0, 1]→ Rd and a random output Y ∈ R. In a classical setting, we would be given
a set of independent and identically distributed (i.i.d.) observations

{
(X1, Y1), . . . , (Xn, Yn)

}
,

drawn from (X,Y). However, in applications, a realization Xi is observed only at a discrete
set of times 0 ≤ t1 < · · · < t`i ≤ 1, `i ∈ N∗. Therefore, we are given an i.i.d. sample

34 CHAPTER 2. Embedding and learning with signatures

{
(x1, Y1), . . . , (xn, Yn)

}
, where xi takes the form of a matrix:

xi =

x
1
i,1 . . . x1

i,`i
...

...
xdi,1 . . . xdi,`i

 ∈ Rd×`i . (2.6)

In this notation, xki,j denotes the kth coordinate of the ith sample observed at time tj .
It is worth clarifying the terminology used and how it relates to other disciplines. In time

series analysis, xi would be a time series evolving in Rd and observed at `i time points. The
output Y would be a future step of the time series, for example, if d = 1 then Yi = x1

i,`i+1.
If d = 1, then xi is a univariate time series, whereas if d > 1, then it is called a multidimen-
sional, multivariate, vector-valued or multiple time series. The parameter `i would be the series
length or the time horizon. If all time series have the same length `, then notation simplifies
as xi ∈ Rd×`. On the other hand, in functional data analysis, Xi would be called functional
data, a functional observation, or a curve, Yi would be a scalar response, and `i would be the
number of measurements. If this functional data was longitudinal, each xki,· would be a functional
observation or a profile of the subject i, and d would be the number of repeated measurements.
Finally, in time series classification, xi is a time series and Yi the label of its class. Borrowing
from the machine learning vocabulary, we will also refer to xi as the raw data or the input data,
and to Yi as the output or the response.

The assumption that Yi is a real number excludes several situations from our study. For
example, the goal of functional longitudinal data analysis is usually the prediction of the next
functional profile, which does not fall within our setting. Similarly, prediction of functional
responses, which are a topic of interest in functional data analysis, or of multiple time points in
time series analysis, are not considered.

Finally, it is worth noting the dependence of the length `i on i. In other words, each obser-
vation may have a different length. The signature dimension being independent of the number
of sampled points, representing time series by their signature naturally handles inputs of vari-
ous lengths, whereas traditional methods often require them to be normalized to a fixed length.
Moreover, no assumption is made on the sampling intervals t1, . . . , t`i , which can therefore be
irregularly spaced and vary from one sample to another. To sum up, the signature method is ap-
propriate for learning with discretely sampled multidimensional time series, possibly of different
lengths and irregularly sampled.

As an example, consider the Google dataset Quick, Draw! (Google, 2017). It consists of the
pen trajectories of millions of drawings, divided into 340 classes. Some examples are shown in
Figure 2.2. In this case, the yi are discrete labels of the drawing’s class, and the xi are matrices
of pen coordinates. In this example, d = 2 and pi varies for each drawing but is typically in the
order of a few dozen points.

As discussed in the introduction, to use signature features, one needs to embed the obser-
vations xi into paths of bounded variation Xi : [0, 1] → Rd. This step, which also consists of
adding other coordinates, such as time, will be thoroughly discussed in Section 2.4. Assume for
the moment that a set of embeddings Xi, 1 ≤ i ≤ n, are given. When an embedding has been
chosen, one can compute signature features truncated at a certain order K and use them in
combination with a learning algorithm. The choice of K corresponds to a classical bias-variance
tradeoff: the larger K, the larger the feature set. Therefore, it should be selected in a data-driven
way, for example with cross-validation. The procedure can be summarized as follows:

Raw data → Embedding→ Signature features→ Algorithm.

2.2. A first glimpse of the signature method 35

Figure 2.2 – 9 drawings from the Quick, Draw! dataset

The literature on the combination of signature features with learning algorithms can be
divided into three groups. These groups correspond to the nature of the algorithm’s input: it is
either a vector, a sequence, or an image. In the context of deep learning, this division matches
the different classes of neural network architectures: feedforward, recurrent and convolutional
networks. The latter only deals with input paths in R2, with applications such as characters or
handwriting recognition.

The first approach is to compute the signature of X on its whole domain, that is, on [0, 1]. In
this way, the time-dependent input X is mapped into a time-independent finite set of coefficients,
that is then fed into a predictive algorithm, typically a feedforward neural network. Any time-
independent additional covariates may be added to this feature set. This strategy is implemented
by Yang et al. (2017) for skeleton-based human action recognition. From a sequence of human
joints’ positions, the authors construct a high dimensional vector of signature coefficients, which
is then the input of a small dense network. Gyurkó et al. (2014) and Lyons et al. (2014) also
apply this method to financial time series, combining it with Lasso and ordinary least squares
regression.

A second family of methods consists in describing the input path by a sequence of signature
coefficients. There are several variants of this approach, but the one of Wilson-Nunn et al.
(2018) is presented here in detail for its simplicity and representativeness. To create a signature
sequence, the time interval [0, 1] is divided into a dyadic partition

0 ≤ 2−q < · · · < j2−q < · · · < (2q − 1)2−q ≤ 1, (2.7)

where q ∈ N. By computing the signature truncated at order K on every dyadic interval
[j2−q, (j + 1)2−q], 0 ≤ j < 2q, a sequence of 2q signature vectors is obtained, each of dimension
(dK+1 − 1)/(d− 1). This sequence is typically fed into a recurrent network, as illustrated in
Figure 2.3. In this case, the whole approach boils down to transforming the original sequential
data into another sequence of signature coefficients. Such a procedure may be surprising, as the
original data could have been itself the input of a recurrent network, instead of being mapped
into a new signature sequence. However, Lai et al. (2017), Liu et al. (2017) and Wilson-Nunn
et al. (2018) show the superiority of this type of approach for several tasks such as writer and

36 CHAPTER 2. Embedding and learning with signatures

Figure 2.3 – Signature and recurrent neural network.

forgeries recognition.

Figure 2.4 – Signature and convolutional neural network.

Finally, a third group of authors has taken these ideas further and created images of signature
coefficients. Their rationale is to mix the temporal and pictorial aspects of the data. Indeed,
assuming that the input path is a trajectory in R2, it can be turned into an image by forgetting
its temporal aspect and setting the pixel values to 1 along the trajectory, and 0 elsewhere. Then,
starting from this representation, a bunch of images is created, such that each image corresponds
to a signature coefficient, as shown in Figure 2.4. This can be done in various ways. However, the
general idea is to consider a sliding window following the path and to set the pixel value at the
center of the window to be equal to the signature coefficient computed over the window. If the

2.3. Datasets 37

signature is truncated at order K, this yields 2K+1 − 1 sparse grey pictures, which can then be
the input of a convolutional neural network. Graham (2013) and Yang et al. (2015), 2016a have
obtained significant accuracy improvements for character recognition and writer identification
with this approach.

To sum up, the signature may be used in various ways, and for different applications. Several
points of view coexist, and none of them has shown to be systematically better. In particular, on
the one hand, signatures may be used to remove temporal aspects and to reduce the dimension of
the problem, whereas, on the other hand, they may do the opposite and increase the dimension of
the algorithm’s input. Moreover, they are combined with various learning algorithms and it may
be hard to distinguish the properties of the signature from those of the algorithms. Nevertheless,
all these methods assume that discrete data points have been embedded into actual continuous
paths. As will be seen in Section 2.4, the choice of path is crucial. Therefore, we describe in the
next section the datasets used throughout the article to understand their underlying structure
and find suitable embeddings.

2.3 Datasets

The datasets used in this article have been chosen to cover a broad range of applications
while being recent and challenging in various ways. Moreover, they present a variety of sampling
frequencies and dimensions. They illustrate therefore different potential embeddings.

First, the Quick, Draw! dataset (Google, 2017), which was already discussed in Section 2.2.2,
and illustrated in Figure 2.2, is a public Google dataset. It consists of 50 million drawings, each
drawing being a sequence of time-stamped pen stroke trajectories, divided into 340 categories.
It takes approximately 7 gigabytes of hard disk space and is, therefore, a particularly large
dataset. To compute the signature of every sample, it would thus be necessary to design a specific
architecture, which cannot be implemented on a standard laptop computer. However, the goal
of this study is not to achieve the best possible performance, but to understand embedding
properties. Moreover, the experiments should be easily reproducible without requiring much
computational ressources. Therefore, only a subset of the data is used: 68 000 training samples
in Sections 2.4.2 and 2.6.1, 12 million in Section 2.6.2.

Let us describe more precisely the data format. When an object is drawn, two pieces of
information are recorded: pen positions, sampled at different times, and pen jumps. Therefore,
one drawing consists of a set of strokes, one stroke being a segment of the drawing between two
pen jumps, represented with different colors in Figure 2.2. As each stroke can be of different
length, if `i,s is the number of points in the sth stroke of drawing number i, and if this drawing
has Si strokes, then one drawing consists of Si tables of sizes 2 × `i,1, . . . , 2 × `i,Si , where the
factor 2 corresponds to the plane R2. For example, in Figure 2.2, the windmill drawing has
Si = 5 strokes: the first stroke is the blue one with 3 points (`i,1 = 3), the second one the
orange with `i,2 = 5 points, and so on. The data has been preprocessed by Google, resulting in
the so-called “simplified drawing files”. The reader is referred to Google (2017) for a complete
description of the preprocessing steps. Finally, each sample i can be encoded under the following
compact form:

xi =

x1
i,1 . . . x1

i,`i,1
. . . x1

i,`i,1+···+`i,Si−1+1 . . . x1
i,`i,1+···+`i,Si

x2
i,1 . . . x2

i,`i,1
. . . x2

i,`i,1+···+`i,Si−1+1 . . . x2
i,`i,1+···+`i,Si

1 . . . 1 . . . Si . . . Si

 ∈ R3×`i , (2.8)

where (x1
i,j , x

2
i,j) are the coordinates of the jth point of the drawing number i, and there is a pen

38 CHAPTER 2. Embedding and learning with signatures

jump when the last row of xi increases by 1. As in (2.6), `i = `i,1 + · · ·+ `i,Si denotes the total
number of points of drawing i.

Figure 2.5 – 5 samples from the Urban sound dataset

The second dataset is the Urban Sound dataset (Salamon et al., 2014). It consists of sound
recordings, divided into 10 classes: car horn, dog barking, air conditioner, children playing,
drilling, engine idling, gunshot, jackhammer, siren, and street music. It contains both mono
and stereo recordings, so some samples take values in R, and some in R2. By averaging the
two channels of stereo sounds, the data has been normalized to mono recordings, so that each
sample is a one-dimensional time series: xi ∈ R1×`i . This yields a collection of 5 435 time series
of various lengths. On average, they are sampled at approximately 170 000 points, which makes
them long time series, typically hard to model along the whole time range. Figure 2.5 depicts
some examples of these noisy time series.

Finally, the MotionSense dataset is composed of smartphone sensory data generated by ac-
celerometer and gyroscope sensors (Malekzadeh et al., 2018). This data has been recorded while
some participants performed an activity among walking upstairs and downstairs, walking, jog-
ging, sitting, and standing. In total, there are 10 classes and 360 recordings, which correspond
to 24 participants performing 15 different trials. During each trial, 12 variables are measured:
3 directions for attitude, gravity, user acceleration, and rotation rate, respectively. Information
about the participants is provided but we focus on the task of recognizing the activity performed
from the multidimensional time series formed by sensors data. In Figure 2.6, three samples are
shown, and, for each of them, curves of different colors correspond to the various quantities
measured by sensors. Therefore, every sample can be written as xi ∈ R12×`i . It is clear from
Figure 2.6 that these series are noisy and highly dimensional. They are shorter than the Urban
Sound’s ones, with an average of approximately 4 000 time steps.

Finally, for all datasets, the response Y is a class label, that is Y ∈ {1, . . . , C}, where C is the
number of classes. Table 2.2 summarizes some characteristics of these three datasets. As each
sample may have a different length, the data average length is recorded, defined by ` = 1

n

∑n
i=1 `i.

These datasets illustrate the diversity of problems in sequential learning, where time appears in

2.4. The embedding 39

Figure 2.6 – 3 samples from the Motion sense dataset

different ways.

Quick, Draw! Urban Sound Motion Sense

Number of classes C 340 10 6
Dimension d 2 1 12
Average length ` 44 171 135 3 924
Training set size n 68 000 4 435 300
Validation set size nval 6 800 500 30
Test set size ntest 6 800 500 30

Table 2.2 – Datasets summary

2.4 The embedding

In practice, a matrix of observations xi ∈ Rd×`i is given, written in (2.6), where columns
correspond to points in Rd sampled at times 0 ≤ t1 < · · · < t`i ≤ 1. As explained in Section
2.2.2, the goal is to construct a continuous path Xi : [0, 1]→ Rd from the matrix xi. Therefore,
an interpolation method needs to be chosen, but, to ensure some properties such as signature
uniqueness (Proposition 2.2), new coordinates may be added to the path, which increases the di-
mension d of the embedding space. When not hidden, the embedding is generally only mentioned
in the literature, without in-depth discussions. Therefore, the purpose is not only to compare
embeddings’ performance, but also to give a first systematic survey of their use in the context of
learning with signatures.

40 CHAPTER 2. Embedding and learning with signatures

2.4.1 Definition and review of potential embeddings

First, different embeddings are reviewed while adapting them to the Quick, Draw! dataset
for illustrative purposes. The extension to other datasets follows immediately. All embeddings
considered here are continuous piecewise linear, but their difference lies in the way this inter-
polation is performed. From a computational point of view, signatures of continuous piecewise
linear paths can be computed with the library iisignature, as mentioned in Subsection 2.2.1.
From now on, consider a sample x ∈ R3×p, which can be written as the matrix (2.8) where the
index i has been removed to simplify notations.

Linear path A first natural choice is to interpolate data points linearly, that is to connect each
consecutive points by a straight line. Note that for the Quick Draw! data, information about pen
jumps is then lost. Thus, for a particular sample, if ` positions of the pen [(x1

1, x
2
1), . . . , (x1

` , x
2
`)]

are given, the piecewise linear path X : [0, 1] → R2 is defined as the path equal to (x1
j , x

2
j)

at tj , where 0 = t1 < t2 < · · · < t` = 1 is a partition of [0, 1] into ` points. This yields a
two-dimensional continuous path with coordinates (X1

t , X
2
t). This path, represented in Figure

2.7a, is the most often used in the literature, for example by Graham (2013), Lai et al. (2017),
or Yang et al. (2016a).

(a) Linear path. (b) Rectilinear path. (c) Time path.

(d) Stroke path, version 1. (e) Stroke path, version 2. (f) Stroke path, version 3.

Figure 2.7 – Different embeddings of a Quick, Draw! sample. Each stroke is plotted with a
different color only for the sake of illustration.

Rectilinear path Another interpolation method is often used in the literature (Chevyrev and
Kormilitzin, 2016b; Kormilitzin et al., 2016) and referred to as an “axis path" or “rectilinear
path”. It is also piecewise linear but each linear section is parallel to an axis. In other words,
to move from one point (x1

j , x
2
j) to another point (x1

j+1, x
2
j+1), a first linear segment goes from

(x1
j , x

2
j) to (x1

j+1, x
2
j), parallel to the x-axis, and a second segment from (x1

j+1, x
2
j) to (x1

j+1, x
2
j+1),

2.4. The embedding 41

parallel to the y-axis. This path is depicted in Figure 2.7b. A crucial aspect of this path is that
there exists a simple way to reconstruct it from its signature features (Lyons and Xu, 2017).
Note that for unidimensional data, such as the Urban Sound dataset, the linear and rectilinear
interpolations are identical.

Time path The third approach builds upon the linear path and enriches it by adding a mono-
tone coordinate. This ensures the uniqueness of the signature, as stated in Proposition 2.2. It
usually corresponds to adding the time parametrization as a coordinate of the path, as is done
by Yang et al. (2017). Therefore, if t 7→ (X1

t , X
2
t) is the linear path described above, which is

piecewise linear, the time embedding is the 3-dimensional path t 7→ (X1
t , X

2
t , t), shown in Figure

2.7c.

Lead-lag path Introduced by Chevyrev and Kormilitzin (2016b) and Flint et al. (2016), the
lead-lag transformation has been applied by, e.g., Gyurkó et al. (2014), Lyons et al. (2014),
Kormilitzin et al. (2016), , and Yang et al. (2017). Building on the time path, the idea is to add
lagged versions of the coordinates X1 and X2 as new dimensions. Let ` be the length of the
input path, and 0 = t1 < t2 < · · · < t` < t`+1 = 1 be a partition of [0, 1] into `+ 1 points. Then
the lead-lag path with lag 1 is defined by

X : [0, 1]→ R5

t 7→ (X1
t , X

2
t , t,X

3
t , X

4
t).

In this definition, X1 and X2 are a linear interpolation of the sequence[
(x1

1, x
2
1), . . . , (x1

` , x
2
`), (x

1
` , x

2
`)
]
,

in which the last point is repeated twice, and

X3
t =

{
0 if t < t1

X1
t−t1 otherwise

, X4
t =

{
0 if t < t1

X2
t−t1 otherwise

. (2.9)

This yields a 5-dimensional path such that the last two coordinates are delayed copies of the
first two, with a delay of t1. The process can be iterated, creating a path in R7 with two lags
t 7→ (X1

t , X
2
t , t,X

3
t , X

4
t , X

5
t , X

6
t), where X1 and X2 are linear interpolations of the data with the

last point repeated three times, X3 and X4 are defined by (2.9), and

X5
t =

{
0 if t < t2

X1
t−t2 otherwise

, X6
t =

{
0 if t < t2

X2
t−t2 otherwise

.

In this way, the lead-lag path can naturally be defined for any lag in N∗. This path is highly
dimensional (in R7 for a lag of 2) and cannot be represented easily. Therefore, Figure 2.8 shows
some coordinates against time, namely X1, X3, and X5.

Stroke path For the Quick, Draw! data, extra information about pen jumps is provided. In
the context of Arabic handwriting recognition, Wilson-Nunn et al. (2018) have introduced the
idea of encoding information about jumps into a new coordinate. In essence, the approach is to
use a 3-dimensional path in which the last dimension corresponds to strokes, in a similar way to
the encoding of matrix (2.8). This procedure can be deployed in various ways and we restrict
our attention to three of them.

42 CHAPTER 2. Embedding and learning with signatures

Figure 2.8 – X1
t (red), X3

t (green), and X5
t (blue), coordinates of the lead-lag embedding with

lag 2 against t, for t ∈ [0, 1].

The first approach uses the description of a drawing as given in (2.8). Recall that, in this
matrix, the stroke categorical variable is initialized to 1, and increased by 1 each time a different
stroke begins. The idea is then to linearly interpolate the columns of the matrix, considered
as points in R3. As can be seen in Figure 2.7d, each stroke is then represented in a different
horizontal plane. This procedure looks like the most natural way to encode jumps information,
and from now on is called “version 1" of the stroke path.

A related approach is considered by Wilson-Nunn et al. (2018). It is represented in Figure
2.7e and subsequently called “version 2". Here, each stroke is indexed by odd integers, that is
the first stroke is indexed by 1, the second by 3,..., and the kth by 2k − 1. Two intermediary
points are added between each stroke, indexed by even integers. For example, if (x1

`1
, x2
`1
, 1) is

the last point of the first stroke, and (x1
`1+1, x

2
`1+1, 3) is the first point of the second stroke, the

points (x1
`1
, x2
`1
, 2) and (x1

`1+1, x
2
`1+1, 2) are added to the path and linearly interpolated. This is

represented in Figure 2.7e. The only difference with the previous path is how the path moves
from one plane to another one. Instead of doing a straight line, it moves in two steps: one in
a horizontal plane and another one parallel to the vertical axis. With this embedding and a
recurrent network, Wilson-Nunn et al. (2018) have achieved a significant decrease in the error
rate of Arabic characters recognition.

Finally, for comparison purposes, a strictly monotone coordinate is also considered. It has
jumps of 1 when a new stroke begins, and otherwise grows linearly inside one stroke, such that it
has increased by 1 between the beginning and the end of the stroke. In this definition, the goal
is to check whether having a strictly monotone coordinate increases accuracy, while in the two
previous versions the stroke coordinate is piecewise constant. This embedding can be seen as a
mix between time and stroke paths and could inherit the good properties of both. The resulting
path is called “version 3" and shown in Figure 2.7f.

To conclude, there exists a broad range of embeddings, living in spaces of various dimen-
sions. They lead to different signature features, which therefore do not have the same statistical
properties. The embedding choice will prove to have a significant influence on accuracy.

2.4.2 Results
In this subsection, the results of our study on embedding performance are presented. To this

end, the first approach described in Section 2.2.2 is implemented. Starting from the raw data, it
is first embedded into a continuous path, then its truncated signature is computed and used as
input for a learning algorithm. The embeddings described in the previous section are used. Note

2.4. The embedding 43

that the lead-lag path is taken with lag 1, but other lags will be discussed in Section 2.6.2. Each
feature is normalized by the absolute value of its maximum so that all input values lie in [−1, 1].
The findings should be independent of the data and the underlying statistical model so a range
of different algorithms is used. Their hyperparameters have been set to their default values,
without trying to optimize them for each dataset. Indeed, the goal is not to select the best
algorithm or to achieve a particularly good accuracy, but rather to compare the performance
of different embeddings. The classification metric to assess prediction quality is the accuracy
score. Denoting by (y1, . . . , yntest) the test set’s labels, and (ŷ1, . . . , ŷntest) the predicted labels,
this score is defined by

Acctest =
1

ntest

ntest∑
i=1

1ŷi=yi . (2.10)

The four following algorithms have been used throughout the study.

• Following Yang et al. (2017), a dense network with one hidden layer composed of 64 units
with linear activation functions is first considered. A softmax output layer and the categor-
ical cross-entropy loss are used, which yields a linear model equivalent to logistic regression.
This architecture is a sensible choice, since Proposition 2.3 states that linear functions of
the signature approximate arbitrarily well any continuous function of the input path. The
Python library keras (Chollet et al., 2015), with TensorFlow backend, is used. The net-
work is regularized by adding a dropout layer after the input layer, with a rate of 0.5.
Optimization is done with stochastic gradient descent with an initial learning rate of 1.
It is reduced by 2 when no improvement is seen on a validation set during 10 consecutive
epochs. The maximal number of epochs is set to 200 and the mini-batch size to 128.

• Furthermore, the performance of a random forest classifier with 50 trees, implemented
in scikit-learn (Pedregosa et al., 2011), is tested. It is a nonlinear very popular method
initially proposed by Breiman (2001).

• The XGBoost algorithm, introduced by Chen and Guestrin (2016), and implemented in the
Python package xgboost, is also used. It is a state-of-the-art gradient boosting technique,
building upon the work of (Friedman, 2001). The maximum number of iterations is set
to 100 and early stopping with a patience of 5 is used to prevent overfitting and speed up
training. The maximum depth of a tree is set to 3 and the minimum loss reduction to make
a split to 0.5.

• Finally, a nearest neighbor classifier is run with a default value of 5 neighbors. This
method is known to suffer from the curse of dimensionality, so it is of interest to see how
the signature truncation order affects its performance.

For each of the algorithms described above and each dataset of Section 2.3 (Quick, Draw!, Urban
Sound, and Motion Sense), the following steps are repeated:

1. Split the data into training, validation, and test sets, as described in Table 2.2.

2. Choose an embedding and transform samples xi into continuous paths Xi : [0, 1]→ Rd.
3. For k = 1, . . . ,K:

(a) Compute Sk(Xi), the signature truncated at order k, for every sample i. This results
in training, validation and test sets of the form{

Sk(X1), . . . , Sk(Xn)
}
,

where Sk(Xi) ∈ R
dk+1−1
d−1 if d > 1, and Rk if d = 1.

44 CHAPTER 2. Embedding and learning with signatures

(b) Fit the algorithm on the training data. Validation data is used when the algorithm
chosen is the linear neural network or XGboost, to adapt the learning rate and to
implement early stopping, respectively.

(c) Compute the accuracy, defined by (2.10), on the test set.
The maximal value considered for the truncation order, denoted by K, is fixed so that the
number of features are computationally reasonable. The meaning of “reasonable” depends on
each dataset, as they have a different number of samples and classes. For Quick, Draw!, we will
consider up to 105 samples, for Urban Sound 104 and for Motion Sense 5× 105.

For a path X in Rd, the number of features is equal to (dk+1 − 1)/(d − 1) if d > 1, and to
k if d = 1 (see Table 2.1 for some values). Therefore, the number of features depends on the
dimension d of the embedding and the truncation order k. But d is different depending on the
dataset and the embedding. Thus, to compare the quality of different embeddings, the accuracy
score is plotted against the log number of features, which yields one curve per embedding, where
each point corresponds to a different truncation order k. One embedding curve being above the
others means that, at equal input size, this embedding performs better.

Figure 2.9 – Quick, Draw! dataset: prediction accuracy on the test set, for different algorithms
and embeddings.

The results of this procedure are plotted in Figures 2.9, 2.10 and 2.11, which correspond
respectively to the Quick, Draw!, Urban Sound and Motion Sense datasets. A first observation
is that some embeddings, namely the time and lead-lag, seem consistently better, whatever the
algorithm and the data used. It suggests that this performance is due to the intrinsic theoretical
properties of signatures and embeddings, not to domain-specific characteristics. It is particularly
remarkable as the dimension of input streams is different from one dataset to another.

The linear and rectilinear embeddings (red and pink curves), which are often used in the
literature, appear to give the worst results. These two interpolation methods do not differ much
in their results, although the linear path seems to be slightly better. Moreover, it seems that

2.4. The embedding 45

Figure 2.10 – Urban Sound dataset: prediction accuracy on the test set, for different algorithms
and embeddings.

the smaller the dimension d, the worse their performance. Indeed, the linear embedding is
especially bad for the Urban Sound dataset, which is unidimensional, whilst the difference is less
pronounced for the Motion Sense dataset, which has values in R12. This bad performance can
be explained by the fact that there is no guarantee that the signature transformation is unique
when using the linear or rectilinear embeddings. Therefore, two different paths can have the
same signature, without necessarily corresponding to the same class.

On the other hand, the best embedding is the lead-lag path (green curve), followed closely by
the time path (brown curve). The difference between these two embeddings is again most impor-
tant for the Urban Sound dataset. For the Quick, Draw! data, stroke paths have intermediate
results, better than the linear path but still worse than the time and lead-lag paths. Yet stroke
paths are the only embeddings in which new information, about pen jumps, is included. It is
surprising how little impact this information seems to have on prediction accuracy. Note that in
all of these cases, the uniqueness of the signature is ensured so it cannot explain the performance
differences.

Good performance of the lead-lag path has already been noticed in the literature. However,
up to our knowledge, there are few theoretical results. Still, Flint et al. (2016) have considered a
discretely sampled input path X, assumed to be a continuous semimartingale, and have studied
convergence results of its associated lead-lag path, called Hoff process, when sampling frequency
increases. Thus, a lot of questions remain open concerning the statistical performance of the
time and lead-lag embeddings, with, to our knowledge, no theoretical result in classification or
regression frameworks.

To conclude this section, the take-home message is that using the lead-lag embedding seems
to be the best choice, regardless of the data and algorithm used. It does not cost much computa-
tionally and can drastically improve prediction accuracy. Moreover, the linear and stroke paths
yield surprisingly poor results, despite their frequent use in the literature.

46 CHAPTER 2. Embedding and learning with signatures

Figure 2.11 – Motion Sense dataset: prediction accuracy on the test set, for different algorithms
and embeddings.

2.4.3 Running times

To conclude this study on embeddings, this section presents some results on the computational
complexity of the different embeddings and truncation order. In Figure 2.12, the running times for
computing signature features and fitting a random forest are shown as functions of the truncation
order for various embeddings. The experiments were run on 32 Intel Xeon E5-4660 cores and
parallelized with the multiprocessing Python package. The most expensive embedding is the
lead-lag, which is not surprising as it doubles the path dimension. Moreover, increasing the
truncation order increases exponentially the running time. For Quick, Draw! the running time
is of the order of 10-100 seconds, for Motion Sense of the order of 100 seconds and for Urban
Sound around 1000 seconds. This is directly linked to the length of the series: the longer the
series, the more expensive it is to compute signatures.

In Figure 2.13 is presented the number of input features for each combination of embedding
and truncation order. This is proportional to the memory needed to run each experiment.
As given by equation (2.3), it is clear that the storage cost increases exponentially with the
truncation order, which is the main limitation of the signature method.

2.5 Simulation study of autoregressive processes

In order to confirm the previous findings on the performance of the lead-lag embedding, we
undertake a simulation study with autoregressive processes. This study will also provide insights
on the sensitivity of the method to some hyperparameters such as the lag and the signature
truncation order. We place ourselves in a regression setting, that is we consider n realizations of

2.5. Simulation study of autoregressive processes 47

Figure 2.12 – Running time (in seconds) to compute signature features and fit a random forest
classifier for various embeddings, as a function of the truncation order.

Figure 2.13 – Number of features of various embeddings as a function of the truncation order.

an AR(p) process Zt, observed on ` = 100 time points, and defined by

Zt = φ1Zt−1 + · · ·+ φpZt−p + εt, 1 ≤ t ≤ `, (2.11)

where εt is a gaussian random variable with mean 0 and variance 1. Some examples are shown in
Figure 2.14. Our goal is to predict the next time step, that is y = Z`+1, with a linear regression
and signature features. The input data is therefore a set {(x1, y1), . . . , (xn, yn)}, where each xi

is one realization of an AR(p) process:

xi =
(
Zi,1, . . . , Zi,`

)
∈ R`×1,

and yi = Zi,`+1, where Zi,· follows (2.11).
First, Figure 2.15 shows the results of the same study on the embeddings performance as

in Section 2.4 for different AR(1) processes. The parameter φ1 is equal to −0.9, −1 and 0.5,
in order to obtain both stationary and nonstationary models. The performance of the different
embeddings is plotted against a range of truncation orders. The metric is the L2 error on a test
set, which is defined by

S =
1

ntest

ntest∑
i=1

(yi − ŷi)2,

48 CHAPTER 2. Embedding and learning with signatures

(a) AR(1): φ1 = −0.9
(b) AR(3): φ1 = φ2 = 0, φ3 =
−0.9

(c) AR(8): φ1 = · · · = φ7 =
0, φ8 = −0.9

Figure 2.14 – Sample paths of an AR(p) process.

Figure 2.15 – Logarithm of the test error for different embeddings and truncation orders for
prediction of an AR(1) process. The left panel corresponds to φ1 = −0.9, the middle one to
φ1 = −1 and the right one to φ1 = 0.5.

with the same notations as (2.10). Contrary to Figures 2.9, 2.10 and 2.11 which use as metric
the accuracy, the smaller S the better the prediction. It is clear in Figure 2.15 that the time and
lead-lag embeddings have the smallest errors, confirming the findings of the previous section on
real-world datasets. Moreover, the figures are very similar for stationary or nonstationary series,
and different strength of time dependence. This shows the generality of the signature method,
which does not require strong assumptions on the law of the underlying process.

A natural question is whether the lag parameter is linked to the dependence in the time series.
To tackle this issue, Figure 2.16 shows a boxplot of the L2 error as a function of the lag for 3
different values of p. The parameters of model (2.11) are set to the following values: for p = 1,
φ1 = −0.9; for p = 3, φ1 = φ2 = 0 and φ3 = −0.9; for p = 8, φ1 = · · · = φ7 = 0 and φ8 = −0.9.
For each lag, the best truncation order is selected with a validation set, that is the truncation
order is chosen to be the one achieving the lowest error on a validation set. The procedure is
then evaluated on another test set. This procedure is iterated 20 times to obtain estimates of
the variability of the error. Figure 2.16 shows that when p increases, the best lag increases. For
p = 1, all lags seem to achieve similar errors, for p = 3, there is an error jump between a lag
of 1 and a lag of 2, and for p = 8 the error decreases towards the best lag of 6. This is strong
evidence of the link between the time dependence and the lag parameter.

Finally, Figures 2.17 and 2.18 investigate the link between the prediction error, the sample
size and the truncation order of the signature for an AR(3) process with the same parameters as

2.6. Signature domain and performance 49

Figure 2.16 – Error boxplots of the L2 error as a function of the lag of the embedding, for different
AR processes.

Figure 2.17 – Error boxplot for different sample sizes.

before. We choose a lead-lag embedding with a lag of 2, as suggested by Figure 2.16. For each
sample size and truncation order, the model is fitted and evaluated 20 times. In Figure 2.17, the
truncation order is chosen as the minimizer of the error on a validation set. Then, a boxplot of
the errors is plotted as a function of the sample size. Both the error and its variance decrease
fast when the sample size increases.

On the other hand, Figure 2.18 shows error boxplots as a function of the truncation order
K, for various sample sizes. When the sample size is large enough, typically larger than 200, a
bias-variance tradeoff can be observed: the error first decreases with the truncation order until
a minimum is reached and then the error and its variance increase fast because the number of
covariates is too large compared to the number of observations. It is interesting to see that the
best truncation order increases when the sample size increases but stabilizes at K = 4. Moreover,
the error variance is very large for a sample size of 10 but stays reasonably small for larger sample
sizes.

2.6 Signature domain and performance

50 CHAPTER 2. Embedding and learning with signatures

Figure 2.18 – Average error for different truncation orders and sample sizes.

2.6.1 Comparison of local and global signature features
As discussed in Section 2.2.2, several authors do not compute signatures on the whole time

interval but use instead a partition of [0, 1]. The rationale for this division is to describe the
path by a sequence of truncated signatures, rather than one signature computed over the whole
domain. Therefore, it is not surprising that this approach is typically used in combination with
recurrent neural networks. In this section, it is investigated whether signatures computed on a
sub-interval contain some local information not present in signatures of the whole path. To this
end, following Wilson-Nunn et al. (2018), a dyadic partition of [0, 1] is considered, and defined
by (2.7):

0 ≤ 2−q < · · · < j2−q < · · · < (2q − 1)2−q ≤ 1, 0 < j ≤ 2q

where q is the dyadic order. For different values of q, signature coefficients are computed on each
interval

[
(j−1)2−q, j2−q

]
of the dyadic partition. Therefore, for each input path Xi, a collection

of signature vectors is obtained, which is then stacked into one large vector. This vector is then
the input of a learning algorithm, and the prediction accuracy curves of different dyadic orders
are compared. The time embedding with the linear neural network described in Section 2.4.2 is
used. This process is summarized below.

1. Split the data into training, validation and test sets.
2. For q = 0, . . . , Q, and k = 1, . . . ,K:

(i) For j = 1, . . . , 2q, compute the signature truncated at order k on
[
(j − 1)2−q, j2−q

]
,

denoted by
Sk(Xi)[(j−1)2−q,j2−q],

where Xi is the time embedding of sample xi. Repeat this over all training samples.
(ii) For each training sample Xi, concatenate all signature vectors and obtain one vector

S̃k(Xi) containing all Sk(Xi)[(j−1)2−q,j2−q], for j = 1, . . . , 2q. This yields a dataset{
S̃k(X1), . . . , S̃k(Xn)

}
.

2.6. Signature domain and performance 51

(iii) Fit a linear neural network with this data as features.
(iv) Compute accuracy on the test set.

Figure 2.19 – Test accuracy for different dyadic partitions of the path.

The results of this procedure are shown in Figure 2.19. First, it is clear that a dyadic order
of 0, which corresponds to computing the signature on the whole interval [0, 1], yields the best
results. Indeed, the curve is always above the others for the Quick, Draw! and Motion Sense
datasets. This is less obvious for the Urban Sound dataset, as the curve q = 0 is really close to
the one corresponding to a dyadic order of 1. However, it still achieves a better result for most
truncation orders k. This difference between datasets can be linked to their length: it seems
that the longer the series, the better the accuracy of thin dyadic partitions. Indeed, high dyadic
orders perform best for the Urban Sound dataset, which has an average of 170 000 sampled time
points (see Table 2.2), whereas it is clear that each new dyadic split decreases accuracy for the
Quick, Draw! data, which has an average of 44 sampled points.

In a nutshell, little local information seems to be lost when the signature of the whole path
is computed. However, it may be worth considering partitions of the path for long streams.

2.6.2 Performance of the signature
The message of previous sections is that the lead-lag embedding is the most appropriate in

a learning context and that signatures should be computed over the whole path domain. As a
natural continuation, the effect of the algorithm is now examined more closely and the prediction
scores are compared to the literature. It turns out that the signature combined with a lead-lag
embedding has an excellent representation power, to the extent that it achieves prediction scores
close to state-of-the-art methods, without using any domain-specific knowledge.

Before starting the comparison, it is worth pointing out that the lead-lag embedding has a
hyperparameter that has not yet be tuned, which is the number of lags. It is now selected with
the same approach as in previous sections: for each lag, the test accuracy is plotted against the
number of features for various truncation orders. The lag which gives a curve above the others
is selected. Figure 2.20 highlights that curves overlap for the Motion Sense and Urban sound
cases, therefore, when there is a doubt on which curve is above, the smallest lag is picked. For
the Quick, Draw! and Motion Sense datasets, the best lag is then 1, whereas it is 5 for the Urban
Sound dataset.

Finally, the truncation order is selected with a validation set: the truncation order achieving
the highest accuracy on a validation set is picked. In general, the truncation order and the
number of lags could also be selected with cross-validation.

52 CHAPTER 2. Embedding and learning with signatures

Figure 2.20 – Test accuracy for different lags.

The Motion Sense and Urban Sound datasets do not require a lot of computational resources,
as they have a reasonable size (a few hundred samples for Motion Sense and thousand for Ur-
ban Sound—see Table 2.2) and a small number of classes. On the other hand, the Quick,
Draw! recognition task, which is comprised of 340 classes, is more involved and requires an elab-
orate algorithm as well as a significant number of training samples. Therefore, more data will be
used than in the previous sections: 12 185 600 training samples and 87 040 validation samples.

For the Quick, Draw! dataset, our results are compared to a Kaggle competition (Kaggle.com,
2018). In this competition, 1 316 teams competed for a prize of 25 000$. State-of-the-art deep
convolutional networks, such as MobileNet or ResNet, trained with several millions of samples,
were among the best competitors. Teams on the podium used ensembles of such networks.
These winning methods require a lot of computing resources and are specific to images. The
metric used in the competition was the mean average precision, defined as follows. Denoting by
{y1, . . . , yntest} the test set labels, three ranked predictions are made for each sample, denoted
by {

(ŷ1
1 , ŷ

2
1 , ŷ

3
1), . . . , (ŷ1

ntest
, ŷ2
ntest

, ŷ3
ntest

)
}
,

where ŷ1
i is the class with the largest probability, ŷ2

i the second largest, and so on. Then, the
mean average precision at rank 3 is defined by

MAP3 =
1

ntest

ntest∑
i=1

3∑
j=1

1{ŷji = yi}
j

.

Mean average precision is computed by the competition platform on 91% of a test set of 112 200
samples. The small neural network used in Section 2.4.2 is enhanced by using ReLU activation
functions and adding three hidden layers with 256 nodes. The network is trained during 300
epochs with an Adam optimizer. At each epoch, it is trained on 609 280 samples randomly
selected among the 12 185 600 training samples. The best team obtains aMAP3 of 95% whereas
this small network combined with signature features truncated at order 6 already achieves 54%.
The winners use an ensemble of several dozens of deep neural networks, trained on 49 million
samples. This kind of architectures requires considerably more computational capacities than
ours.

For the Urban Sound dataset, state-of-the-art results are obtained by Ye et al. (2017). The
authors combine feature extraction with a mixture of expert models and achieve 77.36 % accuracy,
defined by (2.10). The feature extraction step is specific to sound data and is based on several
ingredients, such as whitened spectrogram, dictionary learning, soft-thresholding, recurrence

2.7. Conclusion 53

quantification analysis, and so on. These crafting operations make use of a lot of domain-specific
knowledge and cannot be extended easily to other applications. On the other hand, it is clear
from Figure 2.10 that a random forest classifier performs well with signature features. Therefore,
its hyperparameters are tuned with a lead-lag embedding, a lag of 5, and a signature truncated
at order 5. An accuracy of 70 % is obtained with 460 trees with a maximum depth of 30 and in
which 500 random features are considered at each split.

Finally, Malekzadeh et al. (2019) tackle the problem of mobile sensor data anonymization.
They build a deep neural network architecture that preserves user privacy but still detects the
activity performed. The architecture is built on autoencoders combined with a multi-objective
loss function. There is a trade-off between activity recognition and privacy but good activity
recognition results are achieved. Performance of the classifier of Malekzadeh et al. (2019) is
measured with the average F1 score, defined as follows. Assume there are C different classes,
and denote by (y1, . . . , yntest) the test labels, and by (ŷ1, . . . , ŷntest) the predicted ones. Then,
the F1 score is defined by

F1 =
1

C

C∑
c=1

2 · Precisionc · Recallc
Precisionc + Recallc

,

where

Precisionc =

∑n
i=1 1{ŷi = yi = c}∑n

i=1 1{ŷi = c} and Recallc =

∑n
i=1 1{ŷi = yi = c}∑n

i=1 1{yi = c} .

Malekzadeh et al. (2019) report an average F1 score above 92%, while the signature truncated at
order 3 and combined with a XGBoost classifier achieves a F1 score of 93.5%. These two scores
are close, but the signature approach is computationally much less demanding.

Despite not being tuned to a specific application, the combination signature + generic al-
gorithm achieves results close to the state-of-the-art in several domains, while requiring few
computing resources and no domain-specific knowledge. Indeed, it takes approximately 52 sec-
onds to compute the signature at order 3 of 68 000 Quick, Draw! samples on one core of a laptop,
which results in 0.0008 second per sample. Besides, signature computations can be parallelized,
making the approach scalable to big datasets. Lastly, the signature method achieves its best re-
sults for the high dimensional Motion Sense dataset, which suggests that it is especially relevant
for multidimensional streams.

2.7 Conclusion

The signature method is a generic way of creating a feature set for sequential data and has
recently caught the machine learning community’s attention. Indeed, it yields results competitive
with state-of-the-art methods, while being generic, computationally efficient, and able to handle
multidimensional series. One of its appealing properties is that it captures geometric properties
of the process underlying the data and does not depend on a specific basis. In this paper, its
use in a learning context, and several of its successful applications have been reviewed. The use
of signatures relies on representing discretely sampled data as continuous paths, a mechanism
called embedding. In the literature, authors use various embeddings, without any systematic
comparison. We have compared different common embeddings and concluded that the lead-lag
seems to be systematically better, whatever the algorithm or dataset used. Moreover, we have
pointed out that the signature of the whole path appears to contain as much information as the
signature of subpaths, therefore encoding both global and local properties of the input stream.

Our study is a first step towards understanding how signature features can be used in statis-
tics, and a lot of issues remain open, both practical and theoretical. First, it would be of great

54 CHAPTER 2. Embedding and learning with signatures

interest to understand the theoretical statistical properties of embeddings, in particular, to ex-
plain the good performance of the lead-lag path. Moreover, in Section 2.2.2, we have seen that
signature features may be combined with feedforward, recurrent, or convolutional neural net-
works. For each of these architectures, the point of view on signature features is different: they
are considered respectively as a vector, a temporal process, or an image. A more detailed under-
standing of these representations would be valuable. Finally, it could be worth investigating the
robustness of the signature method when the truncation order becomes large. Indeed, Figures
2.9, 2.11, and 2.10 suggest that the signature may be robust to dimension: the accuracy curves
do not decrease when the number of features becomes large, even when a nearest neighbor al-
gorithm is used with more than a hundred thousand features. This phenomenon may deserve a
more in-depth study.

Bibliography 55

Bibliography

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E.
(2018). The uea multivariate time series classification archive, 2018. arXiv:1811.00075.

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The great time series clas-
sification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31, 606–660.

Berndt, D. J., and Clifford, J. (1996). Finding patterns in time series: a dynamic programming
approach. Advances in knowledge discovery and data mining (pp. 229–248). American
Association for Artificial Intelligence.

Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series analysis:
forecasting and control. 5th edition. Wiley.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Chang, J., Duffield, N., Ni, H., and Xu, W. (2017). Signature inversion for monotone paths.

Electronic Communications in Probability, 22, 1–11.
Chen, K.-T. (1958). Integration of paths—a faithful representation of paths by non-commutative

formal power series. Transactions of the American Mathematical Society, 89, 395–407.
Chen, T., and Guestrin, C. (2016). XGBoost: a scalable tree boosting system. Proceedings of the

22nd International Conference on Knowledge Discovery and Data Mining, 785–794.
Chevyrev, I., and Kormilitzin, A. (2016b). A primer on the signature method in machine learning.

arXiv:1603.03788.
Chevyrev, I., and Lyons, T. (2016). Characteristic functions of measures on geometric rough

paths. The Annals of Probability, 44, 4049–4082.
Chevyrev, I., and Oberhauser, H. (2018). Signature moments to characterize laws of stochastic

processes. arXiv:1810.10971.
Chollet, F. et al. (2015). Keras. https://keras.io
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019). Deep learning for

time series classification: a review. Data Mining and Knowledge Discovery, 33, 917–963.
Ferraty, F., and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice.

Springer.
Flint, G., Hambly, B., and Lyons, T. (2016). Discretely sampled signals and the rough Hoff

process. Stochastic Processes and their Applications, 126, 2593–2614.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals

of Statistics, 29, 1189–1232.
Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:

theory and applications (Vol. 120). Cambridge University Press.
Google. (2017). The quick, draw! dataset. https://github.com/googlecreativelab/quickdraw-

dataset
Graham, B. (2013). Sparse arrays of signatures for online character recognition. arXiv:1308.0371.
Greven, S., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Longitudinal functional princi-

pal component analysis. Recent advances in functional data analysis and related topics
(pp. 149–154). Springer.

Gyurkó, L. G., Lyons, T., Kontkowski, M., and Field, J. (2014). Extracting information from the
signature of a financial data stream. arXiv:1307.7244.

Hairer, M. (2013). Solving the KPZ equation. The Annals of Mathematics, 178, 559–664.
Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation

and the reduced path group. The Annals of Mathematics, 171, 109–167.
Hamilton, J. D. (1994). Time series analysis. Princeton University Press.

https://keras.io
https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset

56 CHAPTER 2. Embedding and learning with signatures

Kaggle.com. (2018). Quick, draw! doodle recognition challenge. https://www.kaggle.com/c/
quickdraw-doodle-recognition

Király, F. J., and Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Ma-
chine Learning Research, 20, 1–45.

Kokoszka, P., Oja, H., Park, B., and Sangalli, L. (2017). Special issue on functional data analysis.
Econometrics and statistics, 1, 99–100.

Kormilitzin, A., Saunders, K., Harrison, P., Geddes, J., and Lyons, T. (2016). Application of the
signature method to pattern recognition in the cequel clinical trial. arXiv:1606.02074.

Lai, S., Jin, L., and Yang, W. (2017). Online signature verification using recurrent neural net-
work and length-normalized path signature descriptor. Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 1, 400–405.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Liu, M., Jin, L., and Xie, Z. (2017). Ps-lstm: capturing essential sequential online information
with path signature and lstm for writer identification. Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 1, 664–669.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.
Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths

(Vol. 1908). Springer.
Lyons, T., Ni, H., and Oberhauser, H. (2014). A feature set for streams and an application to

high-frequency financial tick data. Proceedings of the 2014 International Conference on
Big Data Science and Computing, 5.

Lyons, T., and Xu, W. (2018). Inverting the signature of a path. Journal of the European Math-
ematical Society, 20, 1655–1687.

Lyons, T. J. (1998). Differential equations driven by rough signals. Revista Matemática Iberoamer-
icana, 14, 215–310.

Lyons, T. J., and Xu, W. (2017). Hyperbolic development and inversion of signature. Journal of
Functional Analysis, 272, 2933–2955.

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H. (2018). Protecting sensory data
against sensitive inferences. Proceedings of the 2018 Workshop on Privacy by Design in
Distributed Systems, 1–6.

Malekzadeh, M., Clegg, R. G., Cavallaro, A., and Haddadi, H. (2019). Mobile sensor data
anonymization. Proceedings of the 2019 International Conference on Internet-of-Things
Design and Implementation, 49–58.

Park, S. Y., and Staicu, A.-M. (2015). Longitudinal functional data analysis. Stat, 4, 212–226.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Ramsay, J. O., and Silverman, B. W. (2005). Functional data analysis. 2nd edition. Springer.
Reizenstein, J., and Graham, B. (2020). Algorithm 1004: the iisignature library: efficient calcu-

lation of iterated-integral signatures and log signatures. ACM Transactions on Mathe-
matical Software.

Salamon, J., Jacoby, C., and Bello, J. P. (2014). A dataset and taxonomy for urban sound
research. Proceedings of the 2014 International Conference on Multimedia, 1041–1044.

Shumway, R. H., and Stoffer, D. S. (2017). Time series analysis and its applications: with r
examples. Springer.

https://www.kaggle.com/c/quickdraw-doodle-recognition
https://www.kaggle.com/c/quickdraw-doodle-recognition

Bibliography 57

Wilson-Nunn, D., Lyons, T., Papavasiliou, A., and Ni, H. (2018). A path signature approach to
online arabic handwriting recognition. Proceedings of the 2nd International Workshop
on Arabic and Derived Script Analysis and Recognition (ASAR), 135–139.

Yang, W., Jin, L., and Liu, M. (2015). Chinese character-level writer identification using path
signature feature, dropstroke and deep cnn. Proceedings of the 13th International Con-
ference on Document Analysis and Recognition (ICDAR), 546–550.

Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31, 45–53.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

Ye, J., Kobayashi, T., and Murakawa, M. (2017). Urban sound event classification based on local
and global features aggregation. Applied Acoustics, 117, 246–256.

58 CHAPTER 2. Embedding and learning with signatures

Chapter 3

A Generalised Signature Method for
Multivariate Time Series Feature
Extraction

The ‘signature method’ refers to a collection of feature extraction techniques for multivariate
time series, derived from the theory of controlled differential equations. There is a great deal
of flexibility as to how this method can be applied. On the one hand this flexibility allows the
method to be tailored to specific problems, but on the other hand can make precise application
challenging. This paper makes two contributions. First, the variations on the signature method
are unified into a general approach, the generalised signature method, of which previous variations
are special cases. A primary aim of this unifying framework is to make the signature method
more accessible to any machine learning practitioner, whereas it is now mostly used by specialists.
Second, and within this framework, we derive a canonical collection of choices that provide a
domain-agnostic starting point. We derive these choices as a result of an extensive empirical
study on 26 datasets, and go on to show competitive performance against current benchmarks
for multivariate time series classification. Finally, to ease practical application, we make our
techniques available as part of the open source sktime project.

Contents

3.1 Introduction 60
3.2 Context 61

3.2.1 Background theory . 61
3.2.2 Related work . 63

3.3 The generalized signature method 63
3.3.1 Augmentations . 64
3.3.2 Windows . 65
3.3.3 The signature and logsignature transforms 66
3.3.4 Rescaling . 66
3.3.5 Putting the pieces together . 66

3.4 Empirical study 66
3.4.1 Methodology . 67
3.4.2 Results . 68

59

60 CHAPTER 3. A Generalised Signature Method

3.4.3 Further results . 69
3.5 The canonical signature pipeline 69

3.5.1 Definition . 70
3.5.2 Performance . 70

3.6 Conclusion 71

3.1 Introduction

A multivariate time series is obtained by observing d quantities evolving with time, which
can be written as an array x = (x1, . . . , xn), where n is the length of the series, and xi ∈ Rd
for each i ∈ {1, . . . , n}. These data are common in various fields (finance, health, energy...)
and offer several specific challenges: they are often highly dimensional, as both the number of
channels d and the length of the series n may be large, the values xi are correlated, and the
different channels may interact. Finally, the inputs may be of different length and the data may
be irregularly sampled.

One approach is to construct models that directly accept some of these issues; for example
recurrent neural networks handle correlated inputs with varying lengths. A second option is to
use feature extraction techniques, which normalise the data so that other techniques may then be
applied. Methods such as the shapelet transform Ye and Keogh (2009), Grabocka et al. (2014),
and Kidger et al. (2020b), Gaussian process adapters Li and Marlin (2016), Futoma et al. (2017),
and Moor et al. (2020), and in particular the signature method Levin et al. (2013), all fit into
this category.

The approach taken by the signature method, coming from rough path theory (Lyons et al.,
2007; Friz and Victoir, 2010), is to interpret a multivariate time series as a discretisation of
an underlying continuous path. The signature transform, also known as the path signature or
signature, can then be applied, which produces a vector of real-valued features that are known
to characterise the path.

Benefits of the signature method include: a high degree of flexibility, making it possible to
customise the method to specific datasets; strong theoretical guarantees; an interpretable feature
set; ease of handling irregularly sampled and/or partially observed data; and it being well-defined
for some highly irregular processes such as ARMA, Gaussian processes or even Brownian motion.
Also, signature features do not need to learned, which can make them particularly effective on
(but not limited to) low sample datasets.

The flexibility of the signature method has made it possible to be tailored to specific ap-
plications and achieve state-of-the-art performance in wide range of problem domains, such as
handwriting recognition (Wilson-Nunn et al., 2018; Yang et al., 2016b), action recognition Yang
et al. (2016a), Yang et al. (2017), and medical time series prediction tasks (Morrill et al., 2019;
Morrill et al., 2020c). However, this flexibility comes at the cost of additional complexity in the
model search space.

To the best of our knowledge, no comprehensive studies exist that collate and combine the
most common method variations found in the literature and assemble them under a common
mathematical framework. Additionally, no baseline signature model has ever been tested against
other time series classification baselines. Our goal will be to address both of these issues, alongside
the development of an open source implementation, so as to make the methods more accessible
to a wider audience.

Contributions We introduce a generalised signature method that contains the many existing
variations as special cases. In doing so we are able to understand their conceptual groupings into

3.2. Context 61

what we term augmentations, windows, transforms and rescalings. This involves a comprehensive
review of the existing variations across the literature. By understanding their commonality,
we are then able to combine different variations, and propose new options that fit into this
framework.

We go on to examine which choices within this framework are most important to success by
performing an extensive empirical study across 26 datasets. To the best of our knowledge this is
the first study of this type.

In doing so, we are then able to produce a canonical signature pipeline. This represents a
domain agnostic starting point that may then be adapted for the task at hand. We show that the
performance of this canonical pipeline is comparable to current state-of-the-art classifiers for mul-
tivariate time series classification, including deep recurrent and convolutional neural networks.
This has led to the implementation of this generalised approach in the open source [redacted]
package.

3.2 Context

3.2.1 Background theory
We begin with a few mathematical definitions necessary throughout the article.

Definition 3.1. Let d ∈ N, we denote the space of time series over Rd as

S(Rd) = {(x1, . . . , xn) |xi ∈ Rd, n ∈ N, n ≥ 1}.

If d = 1, then x is a univariate time series, whereas if d > 1, x is a multivariate time series.
Given x = (x1, . . . , xn) ∈ S(Rd), n is called the length of x and d its dimension or number of
channels. We assume that in addition to the array of values x ∈ S(Rd), we have access to a
vector of increasing time stamps t = (t1, . . . , tn). If the data is regularly sampled, then t can be
set to t = (1, . . . , n), which will often be the case.

We consider a dataset to be a collection of such samples. Note that the time stamps t for each
sample may be different, and the sample lengths n can vary. That is, we accept varying length
and irregular sampling without modification. We are now in a position to define the signature
of a time series.

Definition 3.2. Let x ∈ S(Rd) and t = (t1, . . . , tn) its associated timestamps. Let X =
(X1

t , . . . , X
d
t)t∈[t1,tn] be a piecewise linear interpolation of x such that for any i ∈ {1, . . . , n},

Xti = xi. Then the depth-N signature transform of x is the vector defined by

SigN (x) =
(
{S(x)(i)}di=1, {S(x)(i,j)}di,j=1, . . . , {S(x)(i1,...,iN)}di1,...,iN=1

)
∈ R

dN+1−1
d−1

where for any (i1, . . . , ik) ∈ {1, . . . , d}k,

S(x)(i1,...,ik) =

∫
· · ·
∫

t1≤u1<···<uk≤tn

dXi1
u1
. . . dXik

uk
∈ R.

While this definition may seem somewhat technical, there are several intuitions that can be
made with regard to the signature features. We present a geometric interpretation of the first
two levels of the signature and log-signature in Figure 3.1. The depth-1 terms, S(x)(i), equate to
the displacement of the path over the interval in the ith coordinate, denoted by ∆Xi in Figure
3.1. The depth-2 terms, S(x)(i,j), have interpretations in areas generated over the interval.

62 CHAPTER 3. A Generalised Signature Method

Signature

X1

X2

S(1,2)

S(2,1)

∆X1

∆X2

∆X1

∆X2A−
A+

Log-signature

X1

X2

Figure 3.1 – Geometric depiction of the depth-2 signature and log-signature. The depth-1 term
of both transforms equate to the displacements of the path over the interval in each coordinate,
these being ∆X1,2. Left: The signature. Depth-2 terms S(1,2), S(2,1) correspond to the areas
of the blue and orange regions respectively. Right: The log-signature. Only one depth-2 term
which is given by the signed area A+ −A−. This is known as the Lévy area of the path.

From a statistical point of view, the signature can be thought of as the equivalent of a moment-
generating function for time series. Let Z be a random variable, then the moment-generating
function of Z is the function

t 7→ E[etz] =

∞∑
k=0

tk

k!
E[Zk]

and, if well-defined, it characterizes the distribution of Z. Assume that X is a random time series
(that is a stochastic process), its signature now has the same properties as a moment-generating
function: the powers of Z are replaced by integrals of products of coordinates and Chevyrev and
Lyons (2016) show that the expected signature characterizes the law of X.

Moreover, we have the following two properties that make the signature a good feature set in
a machine-learning context—precise statements may be found in Kidger et al. (2019, Appendix
A).

Uniqueness Hambly and Lyons (2010) show that under mild assumptions, the full collection of
features Sig(x) = limN→∞ SigN (x) uniquely determines x up to translations and reparametriza-
tions.

Universal nonlinearity Linear functionals on the signature are dense in the set of functions
on x. Suppose we wish to learn the function f that maps data x to labels y, the universal
nonlinearity property states that, under some assumptions, for any ε > 0, there exists a linear
function L such that

‖f(x)− L
(
Sig(x)

)
‖ ≤ ε. (3.1)

Note that contrary to Fourier or wavelet basis, signatures provide a natural basis for functions
of the time series rather than for the time series itself—(3.1) concerns f(x) and not x. In the
context of time series classification this shift of perspective is particularly well-suited since the
object of interest is not the time series itself but its link to a label.

From a computational point of view, computing the depth-N signature of a time series x ∈
S(Rd) of length n has a complexity of O(ndN), which can be done with high performance software
(Reizenstein and Graham, 2020; Kidger and Lyons, 2020). The size of the depth-N signature is
(dN+1 − 1)/(d − 1) so the memory cost is independent of the series length n, which is a huge

3.3. The generalized signature method 63

advantage when dealing with high frequency time series. Note that small values of N already
show a good performance—for example N = 3 in the baseline algorithm—so the exponential
dependence on N is not a huge computational bottleneck.

Logsignature transform The signature contains some redundant information: for example
we can see in the left panel of Figure 3.1 that the sum of the blue and orange areas is equal to
the product of displacements ∆X1∆X2:

S(x)(1,2) + S(x)(2,1) = S(x)(1)S(x)(2).

The logsignature transform is essentially the signature with these redundancies removed. For
example, the logsignature encodes the blue and orange areas from the left panel with the orange
signed area in the right panel. However, the logsignature does not have a universal nonlinearity
property such as (3.1). We refer the reader to Morrill et al. (2020b) or Liao et al. (2019, Section
2) for a precise definition of the logsignature.

A pedagogical introduction to the background theory of signatures is Lyons et al. (2007),
whilst a comprehensive textbook is Friz and Victoir (2010). For introductions to the signature
method, we recommend Kidger et al. (2019, Appendix A) and Chevyrev and Kormilitzin (2016a).

3.2.2 Related work

The signature transform has been used in a wide range of applications in machine learning
predictive tasks. For example, as mentioned in the introduction, the signature has been used as
a feature extraction layer in classifiers for both Arabic (Wilson-Nunn et al., 2018) and Chinese
(Yang et al., 2016b) handwriting recognition. Similarly, it was successfully used in human action
recognition by Li et al. (2017), Yang et al. (2017), and Liao et al. (2019) and in the medical
domain as part of the top performing model at the Physionet 2019 challenge for prediction of
sepsis (Reyna et al., 2020; Morrill et al., 2019; Morrill et al., 2020c). Other applications involve
finance (Lyons et al., 2014; Perez Arribas, 2018), mental health (Kormilitzin et al., 2017; Arribas
et al., 2018), and emotion recognition (Wang et al., 2019; Wang et al., 2020).

In almost all these applications, the method has been utilised in different ways. Many authors
consider transformations of the input time series before application of the signature (Levin et al.,
2013; Flint et al., 2016; Lyons and Oberhauser, 2017; Yang et al., 2017; Liao et al., 2019; Kidger
and Lyons, 2020; Wu et al., 2021). People have also explored different windows over which the
signature transform should be taken, so as to extract information over different scales (Yang
et al., 2017; Kidger et al., 2019). Additionally a choice must be made between the signature and
logsignature transforms, as must choices for the scaling of the terms in the signature (Chevyrev
and Kormilitzin, 2016a; Lai et al., 2017).

The differences between some of these choice have been shown by Fermanian (2021) to signif-
icantly impact the performance of the methodology. However this study used a small collection
of datasets and considered only some of the most common variations that exist in the literature.
There is therefore a need for a comprehensive study and unification of all these different choices.

3.3 The generalized signature method

In this section we collate the modifications to the signature transform that have been proposed
in signature literature to date. We will show that each can be categorised into one of the following
groups:

64 CHAPTER 3. A Generalised Signature Method

• Augmentations These describe the transformation of a time series into one or more
new series, in order to return different information in the signature features and deal with
dimensionality issues.

• Windows Splitting the time series over different subsequences (or windows), so that
signatures may be applied locally.

• Transform The choice between the signature or the logsignature transform.

• Rescaling Ways of normalising the terms in the signature.

We then go on to show that these groupings can themselves be synergised into a single mathe-
matical framework that we term the generalised signature method. For clarity, we will begin by
discussing each of these individually, and then afterwards show how they may be combined.

As before, assume that we observe some collection of sequences x ∈ S(Rd) with timestamps
t ∈ S(R).

3.3.1 Augmentations

We define an augmentation to be a transform of an initial sequence x ∈ S(Rd) into one or
several new sequences. Augmentations have several different uses:

1. Remove the signature invariance to translation and/or reparametrization.
2. Lower the dimension d of the time series, so that higher orders of the signature are

reachable—recall that the depth-N signature is of size O(dN).
3. Preprocess the time series prior to the signature map so that information is more easily

extracted.

For some e, p ∈ N, we define an augmentation as a map

φ : S(Rd)→ S(Re)p.

There are many pre-signature operations which have been proposed in the literature, and which
we categorise as augmentations. We refer the reader to Appendix B.1 for full details of the many
such operations proposed in the literature, but will focus on several important examples here.

Let us give some examples in the first group of sensitivity-inducing augmentations. For any
vector of increasing timestamps t, we call time augmentation (Levin et al., 2013) the operation
φt : S(Rd) 7→ S(Rd+1) defined by

φt(x) =
(
(t1, x1), . . . , (tn, xn)

)
. (3.2)

This transformation, which basically consists in adding the timestamps as an extra coordinate,
has two key properties: it guarantees the uniqueness of the signature (Hambly and Lyons, 2010)
and it adds information about the parametrization of the time series.

Another example is the basepoint augmentation (Kidger and Lyons, 2020), which is the map
φb : S(Rd) 7→ S(Rd) defined by

φb(x) = (0, x1, . . . , xn), (3.3)

which simply adds a zero at the beginning of the time series—note that this zero could also be put
at the end. This transformation makes the signature sensitive to translations of the time series.
The invisibility-reset transformation (Yang et al., 2017; Wu et al., 2021) also adds translation
sensitivity, but does so by increasing the dimension.

In the second group of augmentations for dimensionality reduction, we consider random
projections (Lyons and Oberhauser, 2017), which consist in applying multiple random linear

3.3. The generalized signature method 65

maps to the time series, or coordinate projections, which project along (multiple subsets of) the
coordinate axes.

In the third group, the lead-lag augmentation (Chevyrev and Kormilitzin, 2016a; Flint et al.,
2016; Yang et al., 2017) captures the quadratic variation by transforming the time series to

φ(x) =
(
(x1, x1), (x2, x1), (x2, x2), (x3, x2), (x3, x3), . . . , (xn, xn)

)
∈ S(R2d).

Another important example of this kind of augmentation are the stream preserving neural net-
works of Kidger et al. (2019), who learn a map φ from the data. They map a time series in Rd
to another series in Re by setting φ to some neural network, typically either convolutional or
recurrent. We extend this idea by defining the multi-headed stream preserving augmentation,
which simply consists in stacking p such transformations. To our knowledge, this is the first time
that such learned augmentations are compared to ‘handcrafted’ ones such as time, basepoint and
lead-lag augmentations.

Importantly, these various augmentations may be combined together. For example, in order
to add sensitivity to both parametrization and translation, the time and basepoint augmentations
may be combined: first apply the time augmentation, which gives a sequence φt(x) ∈ S(Rd+1),
and then the basepoint augmentation, which yields

φb ◦ φt(x) =
(
(0, 0), (t1, x1), . . . , (tn, xn)

)
. (3.4)

3.3.2 Windows

The second step is to choose a windowing operation. Much like the window functions used
with a short time Fourier transform, this localises the signature computation to extract informa-
tion over particular time intervals.

We define a window to be a map

W : S(Re)→ S(Re)w,

for some w ∈ N. In short, W maps a time series in Re into w new time series in the same space.
The simplest possible window is the global window, defined by

W (x) = (x), (3.5)

which outputs the time series itself. To get finer-scale information, we consider three other types
of windows: sliding, expanding and hierarchical dyadic windows. For x = (x1, . . . , xn) ∈ S(Re)
and 1 ≤ i ≤ j ≤ n, let xi:j = (xi, . . . , xj) ∈ S(Re) be a subsequence of x. Then, a sliding window
of length ` and step l is defined by

W (x) = (x1:`,xl+1:l+`,x2l+1:2l+`, . . .),

and an expanding window of initial length ` and step l by

W (x) = (x1:`,x1:l+`,x1:2l+`, . . .).

The expanding window produces time series of increasing length, and is analogous to the history
processes of stochastic analysis whereas the sliding window produces time series of fixed length
but shifted in time.

Finally we consider a hierarchical dyadic window, which captures information at different
scales. Let q ∈ N be fixed and assume for simplicity that 2q−1 divides n. Then, the hierarchical

66 CHAPTER 3. A Generalised Signature Method

dyadic window of depth q consists of q sliding windows W 1, . . . ,W q, where W i has length and
step both equal to n2−(i−1). This yields w = 2q−1 time series of length n, n/2, n/4, . . . , n/2q−1.
The larger the value of q, the finer the scale on which the information is extracted. If the other
window functions are analogous to the short time Fourier transform, then hierarchical dyadic
windows are analogous to the multi-scale nature of wavelets.

3.3.3 The signature and logsignature transforms

Central to the signature methodology is of course the signature transform itself. Two choices
must be made; whether to use the signature or logsignature transform, and what depth to calcu-
late the transform to—that is, what depth N in Definition 3.2 to use. Choosing a logsignature
lowers the feature vector dimension at the cost of loosing linear approximation properties. There
is no consensus on which one should be favored for a machine learning task.

3.3.4 Rescaling

The depth-k term in the signature is of size O(1/k!). Typically, rescaling these terms to O(1)
will aid in subsequent learning procedures. To this end, we can apply pre-signature scaling
whereby we scale the path before signature computation, or post-signature where we scale the
signature terms themselves. Specifics on how this is done in practice are given in Appendix B.2.

3.3.5 Putting the pieces together

Let φ : S(Rd) → S(Re)p be the final augmentation function, φ : x 7→
(
φ1(x), . . . , φp(x)

)
,

which can be a composition of augmentations such as (3.4). Let W : S(Re)→ S(Re)w, W : x 7→(
W 1(x), . . . ,Ww(x)

)
, be the window map, such that W j(x) ∈ S(Re) for any 1 ≤ j ≤ w. Let SN

represent either the signature or logsignature transform of depth N . Let ρpre and ρpost represent
the different types of features rescaling. Then given an input x ∈ S(Rd), the general framework
for extracting signature features is given by the collection of

zi,j = (ρpost ◦ SN ◦ ρpre ◦W j ◦ φi)(x) (3.6)

over all i ∈ {1, . . . , p}, j ∈ {1, . . . , w}. We refer to the procedure of computing x 7→ (zi,j) as the
generalised signature method.

This final procedure is a little involved, but is simply a combination of different elementary
operations used to impact the final feature set. The overall procedure now offers a degree of
flexibility and generality which has, to our knowledge, never been achieved for signature methods.

The collection of features (zi,j) may then be fed into any later machine learning algorithm,
which will depend on the application. In general, the zi,j will be stacked together and considered
as a vector. However, if one wants to use a sequential algorithm such as a recurrent network, it
is possible to turn the features zi,j into a sequence by choosing a sliding or expanding window.
Indeed, these windows induce an ordering in the features: the terms zi,1 will correspond to the
first values of x, the terms zi,2 to the following values, and so on.

3.4 Empirical study

We perform a first-of-its-kind empirical study across 26 datasets to determine the most im-
portant aspects of this framework.

3.4. Empirical study 67

3.4.1 Methodology

Datasets The datasets used are the Human Activities and Postural Transitions dataset pro-
vided by Reyes-Ortiz et al. (2016), the Speech Commands dataset provided by Warden (2018),
and 24 datasets from the UEA time series classification archive, provided by Bagnall et al. (2018).
A few datasets from the UEA archive were excluded due to their high number of channels re-
sulting in too large a computational burden.

Baseline We begin by defining a single baseline procedure, representing a simple and straight-
forward collection of choices for the generalised signature method. This baseline is to take the
augmentation φ as appending time as defined by (3.2), W as the global window defined by (3.5),
have the transform be a signature transform of depth 3, and to use pre-signature scaling of the
path. This means that the input features are the collection

z = Sig3 ◦ ρpre ◦ φt(x).

Individual variations With respect to this baseline procedure, we then consider, in turn, the
groups described in Section 3.3. These were augmentations, windows, transform, and rescaling.
For each group we modify the baseline by implementing each option in the group one-by-one.
Each such variation defines a particular form of the generalised signature method as in (3.6).
Example variations are to switch to using a logsignature transform of depth 5, or to use a sliding
window instead of a global window. We discuss the precise variations below.

Models On top of every variation, we then consider four different models: logistic regression,
random forest, Gated Recurrent Unit (GRU) (Cho et al., 2014), and a residual Convolutional
Neural Network (CNN) (He et al., 2016). We test nearly every combination of dataset, varia-
tion of the generalised signature method, and model. Different datasets and variations produce
different numbers of features zi,j , so to reduce the computational burden we omit those cases
for which the number of features is greater than 105. Of the 9984 total combinations of dataset,
variation, and model, this leaves out 1415 combinations. See Appendix B.3.2 for a break down
of the omitted combinations by different cases.

Analysis We define the performance of a variation on a dataset as the best performance across
the four models considered, to reflect the fact that different models are better suited for different
problems. We then follow the methodology of Demšar (2006), Benavoli et al. (2016), and Ruiz
et al. (2020) to compare the variations across the multiple datasets. We first perform a Friedman
test to reject the null hypothesis that all methods are equivalent. If it is rejected, we perform
pairwise Wilcoxon signed-rank tests to form cliques of not-significant methods, and use critical
difference plots to visualize the performance of each signature method.

A critical difference plot shows the different variations ordered by their average rank: for
example, in Figure 3.2, the best variation is “Time + Basepoint” with an average rank of 2.5.
Then, a thick line indicates that the Wilcoxon test between variations inside the clique is not
rejected at significance threshold of 5%, subject to Bonferroni’s multiple testing correction. In
Figure 3.2 there are two groups of significantly different variations: one with “Basepoint” and
“None” and one with all other variations.

We refer the reader to Appendix B.3 for further details on the methodology, such as precise
architectural choices, learning rates, and so on.

68 CHAPTER 3. A Generalised Signature Method

3.4.2 Results

Due to the large number of variations and datasets considered, we present only the critical
difference plots in the main paper. See Appendix B.4 for all the tables of the underlying numerical
values.

Figure 3.2 – Performance of invariance-removing augmentations.

Augmentations We split the augmentations into two categories. The first category consists
of those augmentations which remove the signature’s invariance to translation (basepoint aug-
mentation, invisibility-reset augmentation) or reparameterisation (time augmentation). We see
in Figure 3.2 that augmenting with time, and either basepoint or invisibility-reset, are both typi-
cally important. This is expected; in general a problem need not be invariant to either translation
or reparametersiation.

Figure 3.3 – Performance of other augmentations.

The second category consists of those augmentations which either seek to reduce dimen-
sionality or introduce additional information. We see in Figure 3.3 that most augmentations
actually do not help matters, except for lead-lag which usually represents a good choice. We
posit that the best augmentation is likely to be dataset dependent, so we break this down by
dataset characteristics in Table B.5.

Table 3.1 – Average ranks for different augmentations by data type. Lower is better. CP (2)
stands for coordinate projections with pairs and LP for Learnt projections.

Augmentation

Data type None Lead-lag CP (2) LP MHSP

EEG 4.88 4.83 3.13 2.75 2.75
HAR 2.25 1.78 3.50 6.50 6.50
MOTION 2.63 1.75 4.50 7.33 5.00
OTHER 2.88 3.92 2.63 6.00 5.21

3.5. The canonical signature pipeline 69

Here we indeed see that there is generally a better choice than doing nothing at all, but
that this better choice is dependent on some characteristic of the dataset. For example, learnt
projections and multi-headed stream preserving transformations do substantially better on EEG
datasets, while lead-lag is better for human action and motion recognition.

Figure 3.4 – Performance of different windows.

Windows We consider the possibility of global, sliding, expanding, and dyadic windows. The
results are shown in Figure 3.4. We see that the dyadic and expanding windows are significantly
better than sliding and global windows. The poor performance of sliding windows is a little
surprising, but tallies with the observations of Fermanian (2021). This is an important finding,
as global and sliding windows tend to be commonly used with signature methods.

Signature versus logsignature transforms We consider the signature and logsignature
transforms with depths ranging from 1 to 6. As higher depths always produce more information,
we define the performance of the (log)signature transform as the best performance across all
depths. With this metric, the signature transform is significantly better than the logsignature
transform, with a p-value of 0.01 for the Wilcoxon signed-rank test.

The key results To conclude, these results show that invariance-removing transformations
such as time and basepoint augmentations should a priori be used, that the lead-lag performs
well but not significantly better than no additional augmentation, and that the hierarchical dyadic
window performs significantly better than the sliding and global ones. The poor performance
of deep learning approaches for augmentation is also notable and an additional motivation for
this work: although slightly technical, the augmentations tailored to the signature transform are
a significant addition in a machine learning pipeline and cannot be easily replaced by neural
networks.

3.4.3 Further results

See Appendix B.4 for further results, in particular on the running times, the different types of
rescaling, augmentations broken down by dataset characteristics, an additional study on signature
depth, and the precise numerical results for each individual test considered here.

3.5 The canonical signature pipeline

In this section we define the canonical signature pipeline. Using the results from Section 3.4
we evaluate the top performing options over all the datasets so as to provide a domain-agnostic
starting point for any dataset, from which other variations can be easily explored. We show that

70 CHAPTER 3. A Generalised Signature Method

this pipeline shows competitive performance against traditional benchmarks and even against
deep neural networks.

3.5.1 Definition

Input, x

O

Augmentations, φb ◦ φt
Add time & basepoint

Time

Basepoint

Window, W j

Hierarchical dyadic, with j optimised.

Transform, SN

Signature features, with N optimised.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.

Stack

..
.

..
.

..
.

Black box
ML classifier

Figure 3.5 – Pictorial representation of the canonical signature pipeline. First, we apply the time
and basepoint augmentations to the input paths, then we compute the signature features over
dyadic windows, and finally compute the signature features over each dyadic window. These
features can now be compiled together and fed into any standard machine learning classifier.

In a nutshell, the pipeline consists in applying the basepoint and time augmentations, a
hierarchical dyadic window and a signature transform, which can be written as a particular case
of (3.6) as follows. Let W be a hierarchical dyadic window of depth q, φt and φb be the time
and basepoint augmentations, then the canonical signature pipeline may be written as

zj = SN ◦W j ◦ φb ◦ φt(x), j ∈ {1, . . . , 2q − 1}. (3.7)

We give a graphical depiction of this in Figure 3.5. Signature and window depths (N , q) must be
optimised for the problem (typically via cross-validation). We note that this canonical method
may be adapted to the problem at hand in two ways: if the problem is known to be parametriza-
tion invariant, as is the case for example for characters recognition, then the time augmentation
should not be applied. Moreover, if the problem is translation-invariant, then the basepoint
augmentation is not applied. We emphasise that this pipeline does not represent a best option
for every application, but is meant to represent a compromise between broad applicability, ease
of implementation, computational cost, and good performance.

3.5.2 Performance

We validate the performance of the pipeline against the 26 datasets in the multivariate UEA
archive 1. To our knowledge, the most recent benchmarks for the UEA archive are the results
from Ruiz et al. (2020). We compare their results to the canonical signature pipeline with a
random forest classifier—see Appendix B.3.3 for more details.

The benchmarks include variants on classical Dynamic Time Wrapping (DTWI, DTWD and
DTWA); an ensemble of univariate classifiers, HIVE COTE (Bagnall et al., 2020), known to
be highly perfromant in the univariate case; a random shapelet forest (Karlsson et al., 2016),
denoted gRSF, and a bag of words based algorithm, MUSE (Schäfer and Leser, 2017); two deep
learning methods, TapNet (Wang et al., 2017) and MLCN (Karim et al., 2019). The MLCN

1. This is not to be confused with the UCR archive which is a collection of 128 univariate datasets.

3.6. Conclusion 71

architecture combines long short term memory layers (LSTM) and convolutional layers while
TapNet combines 3 blocks: random projections on the different dimensions, convolutional layers
and a final attention block to compare candidate time series representations.

Figure 3.6 – Performance on UEA datasets.

Figure 3.6 shows the critical difference plot of this comparison. The signature pipeline is in
the first clique, that is the group of classifiers that achieve the best accuracy while not being
significantly different from one another. The two algorithms with a better rank than the signature
pipeline are MUSE and HIVE-COTE. It is worth noting that MUSE is very memory intensive—
Ruiz et al. (2020) report that it could not finish on 5 of the 26 UEA datasets on a computer
with 500GB of memory—whilst HIVE-COTE is an ensemble of several sub-classifiers, and thus
has very high training and inference costs. On the other hand, all experiments for the canonical
signature pipeline were completed with no memory errors on a computer with less memory, and
are significantly faster to run than HIVE-COTE—see Appendix B.4.

The canonical signature pipeline is meant to be a sensible starting point from which the user
can propose additional variations following the structure defined in (3.6), but as a standalone
classifier this pipeline performs comparably to state-of-the-art classifiers, on the UEA data, whilst
being less computationally demanding.

3.6 Conclusion

We introduce a generalised signature method as a framework to capture recently proposed
variations on the signature method. We go on to perform a first-of-its-kind extensive empirical
investigation as to which elements of this framework are most important for performance in a
domain-independent setting. In particular, we highlight the performance of hierarchical dyadic
windows and signature-tailored augmentations such as lead-lag, time and basepoint. As a result,
we are able to present a canonical signature pipeline that represents a best-practices domain-
agnostic starting point, which shows competitive performance against state-of-the-art classifiers
for multivariate time series classification.

72 CHAPTER 3. A Generalised Signature Method

Bibliography

Arribas, I. P., Goodwin, G. M., Geddes, J. R., Lyons, T., and Saunders, K. E. (2018). A signature-
based machine learning model for distinguishing bipolar disorder and borderline person-
ality disorder. Translational psychiatry, 8, 1–7.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E.
(2018). The uea multivariate time series classification archive, 2018. arXiv:1811.00075.

Bagnall, A. J., Flynn, M., Large, J., Lines, J., and Middlehurst, M. (2020). A tale of two toolkits,
report the third: on the usage and performance of hive-cote v1.0. arXiv:2004.06069.

Benavoli, A., Corani, G., and Mangili, F. (2016). Should we really use post-hoc tests based on
mean-ranks? Journal of Machine Learning Research, 17, 152–161.

Chevyrev, I., and Kormilitzin, A. (2016a). A primer on the signature method in machine learning.
arXiv:1603.03788.

Chevyrev, I., and Lyons, T. (2016). Characteristic functions of measures on geometric rough
paths. The Annals of Probability, 44, 4049–4082.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation. Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, 1724–1734.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Ma-
chine Learning Research, 7, 1–30.

Fermanian, A. (2021). Embedding and learning with signatures. Computational Statistics & Data
Analysis, 157, 107148.

Flint, G., Hambly, B., and Lyons, T. (2016). Discretely sampled signals and the rough Hoff
process. Stochastic Processes and their Applications, 126, 2593–2614.

Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:
theory and applications (Vol. 120). Cambridge University Press.

Futoma, J., Hariharan, S., and Heller, K. (2017). Learning to detect sepsis with a multitask
Gaussian process RNN classifier. Proceedings of the 34th International Conference on
Machine Learning, 70, 1174–1182.

Grabocka, J., Schilling, N., Wistuba, M., and Schmidt-Thieme, L. (2014). Learning time-series
shapelets. Proceedings of the 20th International Conference on Knowledge Discovery and
Data Mining, 392–401.

Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation
and the reduced path group. The Annals of Mathematics, 171, 109–167.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
770–778.

Karim, F., Majumdar, S., Darabi, H., and Harford, S. (2019). Multivariate lstm-fcns for time
series classification. Neural Networks, 116, 237–245.

Karlsson, I., Papapetrou, P., and Boström, H. (2016). Generalized random shapelet forests. Data
Mining and Knowledge Discovery, 30, 1053–1085.

Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep signature trans-
forms. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Eds.), Advances in neural information processing systems (pp. 3099–3109).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Bibliography 73

Kidger, P., Morrill, J., and Lyons, T. (2020b). Generalised Interpretable Shapelets for Irregular
Time Series. arXiv:2005.13948.

Kormilitzin, A., Saunders, K. E., Harrison, P. J., Geddes, J. R., and Lyons, T. (2017). Detecting
early signs of depressive and manic episodes in patients with bipolar disorder using the
signature-based model. arXiv:1708.01206.

Lai, S., Jin, L., and Yang, W. (2017). Online signature verification using recurrent neural net-
work and length-normalized path signature descriptor. Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 1, 400–405.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Li, C., Zhang, X., and Jin, L. (2017). LPSNet: a novel log path signature feature based hand ges-
ture recognition framework. 2017 IEEE International Conference on Computer Vision
Workshop, 631–639.

Li, S. C.-X., and Marlin, B. M. (2016). A scalable end-to-end Gaussian process adapter for irreg-
ularly sampled time series classification. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett (Eds.), Advances in neural information processing systems (pp. 1804–
1812). Curran Associates, Inc.

Liao, S., Lyons, T., Yang, W., and Ni, H. (2019). Learning stochastic differential equations using
RNN with log signature features. arXiv:1908.08286.

Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths
(Vol. 1908). Springer.

Lyons, T., Ni, H., and Oberhauser, H. (2014). A feature set for streams and an application to
high-frequency financial tick data. Proceedings of the 2014 International Conference on
Big Data Science and Computing, 5.

Lyons, T., and Oberhauser, H. (2017). Sketching the order of events. arXiv:1708.09708.
Moor, M., Horn, M., Bock, C., Borgwardt, K., and Rieck, B. (2020). Path Imputation Strategies

for Signature Models. arXiv:2005.12359.
Morrill, J., Kormilitzin, A., Nevado-Holgado, A., Swaminathan, S., Howison, S., and Lyons, T.

(2019). The signature-based model for early detection of sepsis from electronic health
records in the intensive care unit. International Conference in Computing in Cardiology.

Morrill, J., Salvi, C., Kidger, P., Foster, J., and Lyons, T. (2020b). Neural rough differential
equations for long time series. arXiv:2009.08295.

Morrill, J. H., Kormilitzin, A., Nevado-Holgado, A. J., Swaminathan, S., Howison, S. D., and
Lyons, T. J. (2020c). Utilization of the signature method to identify the early onset
of sepsis from multivariate physiological time series in critical care monitoring. Critical
Care Medicine, 48, e976–e981.

Perez Arribas, I. (2018). Derivatives pricing using signature payoffs. arXiv:1809.09466.
Reizenstein, J., and Graham, B. (2020). Algorithm 1004: the iisignature library: efficient calcu-

lation of iterated-integral signatures and log signatures. ACM Transactions on Mathe-
matical Software.

Reyes-Ortiz, J.-L., Oneto, L., Samá, A., Parra, X., and Anguita, D. (2016). Transition-aware
human activity recognition using smartphones. Neurocomputing, 171, 754–767.

Reyna, M. A., Josef, C. S., Jeter, R., Shashikumar, S. P., Westover, M. B., Nemati, S., Clif-
ford, G. D., and Sharma, A. (2020). Early prediction of sepsis from clinical data: the
physionet/computing in cardiology challenge 2019. Critical Care Medicine, 48, 210–217.

Ruiz, A. P., Flynn, M., and Bagnall, A. (2020). Benchmarking multivariate time series classifi-
cation algorithms. arXiv:2007.13156.

Schäfer, P., and Leser, U. (2017). Fast and accurate time series classification with weasel. Pro-
ceedings of the 2017 Conference on Information and Knowledge Management, 637–646.

74 CHAPTER 3. A Generalised Signature Method

Wang, B., Liakata, M., Ni, H., Lyons, T., Nevado-Holgado, A. J., and Saunders, K. (2019). A
path signature approach for speech emotion recognition. Interspeech 2019, 1661–1665.

Wang, B., Wu, Y., Taylor, N., Lyons, T., Liakata, M., Nevado-Holgado, A. J., and Saunders,
K. E. (2020). Learning to detect bipolar disorder and borderline personality disorder
with language and speech in non-clinical interviews, 437–441.

Wang, Z., Yan, W., and Oates, T. (2017). Time series classification from scratch with deep neural
networks: a strong baseline. Proceedings of the 2017 International Joint Conference on
Neural Networks (IJCNN), 1578–1585.

Warden, P. (2018). Speech commands: a dataset for limited-vocabulary speech recognition.
arXiv:1804.03209.

Wilson-Nunn, D., Lyons, T., Papavasiliou, A., and Ni, H. (2018). A path signature approach to
online arabic handwriting recognition. Proceedings of the 2nd International Workshop
on Arabic and Derived Script Analysis and Recognition (ASAR), 135–139.

Wu, Y., Ni, H., Lyons, T. J., and Hudson, R. L. (2021). Signature features with the visibility
transformation. 2020 25th International Conference on Pattern Recognition (ICPR),
4665–4672.

Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31, 45–53.

Yang, W., Jin, L., Tao, D., Xie, Z., and Feng, Z. (2016b). Dropsample: a new training method to
enhance deep convolutional neural networks for large-scale unconstrained handwritten
chinese character recognition. Pattern Recognition, 58, 190–203.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

Ye, L., and Keogh, E. (2009). Time series shapelets: a new primitive for data mining. Proceedings
of the 15th International Conference on Knowledge Discovery and Data Mining, 947–
956.

Chapter 4

Linear functional regression with
truncated signatures

We place ourselves in a functional regression setting and propose a novel methodology for
regressing a real output on vector-valued functional covariates. This methodology is based on
the notion of signature, which is a representation of a function as an infinite series of its iterated
integrals. The signature depends crucially on a truncation parameter for which an estimator is
provided, together with theoretical guarantees. An empirical study on both simulated and real-
world datasets shows that the resulting methodology is competitive with traditional functional
linear models, in particular when the functional covariates take their values in a high dimensional
space.

Contents

4.1 Introduction 76
4.2 Mathematical framework 77

4.2.1 Functional linear regression . 77
4.2.2 The signature of a path . 78

4.3 The signature linear model 82
4.3.1 Presentation of the model . 82
4.3.2 Estimating the truncation order . 83

4.4 Performance bounds 84
4.5 Computational aspects 86

4.5.1 The signature linear model algorithm 86
4.5.2 A toy example . 88

4.6 Experiments 90
4.6.1 Smooth paths . 90
4.6.2 Gaussian processes . 92

4.7 Real-world applications 92
4.7.1 The Canadian Weather dataset . 92
4.7.2 Electricity consumption prediction 93

4.8 Conclusion and perspectives 94

75

76 CHAPTER 4. Linear functional regression with truncated signatures

4.1 Introduction

In a classical regression setting, a real output Y is described by a finite number of predic-
tors. A typical example would be to model the price of a house as a linear function of several
characteristics such as surface area, number of rooms, location, and so on. These predictors are
typically encoded as a vector in Rp, p ∈ N∗. However, some applications do not fall within this
setting. For example, in medicine, a classical task consists in predicting the state of a patient
(for example, ill or not) from the recording of several physiological variables over some time.
The input data is then a function of time and not a vector. Similarly, sound recognition or stock
market prediction tasks both consist of learning from time series, possibly multidimensional.
Then, a natural idea is to extend the linear model to this more general setting, where one wants
to predict from a functional input, of the form X : [0, 1]→ Rd, d ≥ 1.

This casts our problem into the field of functional data analysis and more specifically within
the framework of functional linear regression (Ramsay and Dalzell, 1991; Marx and Eilers, 1999).
This rich domain has undergone considerable developments in recent decades, as illustrated by
the monographs of Ramsay and Silverman (2005) and Ferraty and Vieu (2006), and the review
by Morris (2015). One of the core principles of functional data analysis is to represent input
functions on a set of basis functions, for example, splines, wavelets, or the Fourier basis. Another
approach also consists in extracting relevant handcrafted features, depending on the field of
application. For example, Benzeghiba et al. (2007) and Turaga et al. (2008) provide overviews
of learning methods specific to speech and human action recognition, respectively.

In this article, we build on the work of Levin et al. (2013) and explore a novel approach
to linear functional regression, called the signature linear model. Its main strength is that it
is naturally adapted to vector-valued functions, which is not the case of most of the methods
previously mentioned. Its principle is to represent a function by its signature, defined as an
infinite series of its iterated integrals. Signatures date back from the 60s when Chen (1958)
showed that a smooth path can be faithfully represented by its iterated integrals and it has
been at the center of rough path theory in the 90s (Lyons et al., 2007; Friz and Victoir, 2010).
Rough path theory has seen extraordinary developments in recent times, and, in particular, has
gained attention from the machine learning community. Indeed, signatures combined with (deep)
learning algorithms have been successfully applied in various fields, such as characters recognition
(Yang et al., 2015; 2016a; Lai et al., 2017; Liu et al., 2017), human action recognition (Li et al.,
2017; Yang et al., 2017), speech emotion recognition (Wang et al., 2019), medicine (Arribas
et al., 2018; Moore et al., 2019; Morrill et al., 2019; Morrill et al., 2020c), or finance (Arribas
et al., 2020). We refer the reader to Chevyrev and Kormilitzin (2016b) for an introduction to
signatures in machine learning, and to Fermanian (2021) for a more recent overview.

We stress again that the main advantage of the signature approach is that it can handle
multidimensional input functions, that is, functions X : [0, 1] → Rd where d ≥ 2, whereas
traditional methods were designed for real-valued functions. Many modern datasets come in this
form with a large dimension d. Moreover, the signature method requires little assumptions on the
regularity of X and encodes nonlinear geometric information, that is, gives rise to interpretable
regression coefficients. Finally, it is theoretically grounded by good approximation properties:
any continuous function can be approximated arbitrarily well by a linear function of the truncated
signature (Király and Oberhauser, 2019).

Since any continuous function of X can be approximated by a linear function on its truncated
signature, the estimation of a regression function boils down to the estimation of the coefficients
in this scalar product. The truncation order of the signature is therefore a crucial parameter as
it controls the complexity of the model. Thus, in our quest for a linear model on the signature,
one of the main purposes of our article will be to estimate this parameter. With an estimator

4.2. Mathematical framework 77

of the truncation order at hand, the methodology is complete and the signature linear model
can be applied to both simulated and real-world data, demonstrating its good performance for
practical applications. To summarize, our document is organized as follows.

(i) First, in Section 4.2, we set the mathematical framework of functional regression and recall
the definition of the signature and its main properties.

(ii) Then, in Section 4.3, we introduce our model, called ‘signature linear model’, and define
estimators of its parameters. Their rates of convergence are given in Section 4.4.

(iii) Finally, Section 4.5 is devoted to the practical implementation of the signature linear model.
We conclude by demonstrating its performance on simulated data in Section 4.6 and on
real-world data in Section 4.7.

For the sake of clarity, the proofs of the mathematical results are postponed to Appendix C.1
and C.2. The code is completely reproducible and available at https://github.com/afermanian/
signature-regression.

4.2 Mathematical framework

4.2.1 Functional linear regression

We place ourselves in a functional linear regression setting with scalar responses: we are given
a dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}, where the pairs (Xi, Yi) are independent and identically
distributed copies of a random couple (X,Y), where X is a (random) function, X : [0, 1]→ Rd,
d ∈ N, and Y a real random variable. For example, for the Canadian Weather dataset (Ramsay
and Silverman, 2005), each sample corresponds to a location in Canada, the predictor Xi is the
curve of the daily temperature at this location averaged from 1960 to 1994, and the response Yi
is the average total annual precipitation over the same period—see Figure 4.1. Our goal is to
approximate the regression function f(X) = E[Y |X] by a parametrized linear function fθ and
to build an estimator of θ.

Figure 4.1 – 5 samples from the Canadian Weather dataset

https://github.com/afermanian/signature-regression
https://github.com/afermanian/signature-regression

78 CHAPTER 4. Linear functional regression with truncated signatures

In the univariate case, that is when d = 1, the classical functional linear model (Frank and
Friedman, 1993; Hastie and Mallows, 1993) writes

Y = α+

∫ 1

0

X(t)β(t)dt+ ε, (4.1)

where α ∈ R, β : [0, 1] → R and ε is a random noise. The functional coefficients β and the
functional covariates Xi are then expanded on basis functions:

β(t) =

K∑
k=1

bkφk(t), Xi(t) =

K∑
k=1

cikφk(t), (4.2)

where φ1, . . . , φK are a set of real-valued basis functions (for example the monomials 1, t, t2, . . . , tK

or the Fourier basis). Equation (4.1) can then be rewritten in terms of the ciks and bks, which
brings the problem back to the well-known multivariate linear regression setting. Different ap-
proaches can then be used in terms of choice of basis functions and regularization (see Ramsay
and Silverman, 2005, Chapter 15). Note that another common approach is functional principal
components regression (Cardot et al., 1999; Brunel et al., 2016). The idea is to perform a func-
tional principal components analysis (fPCA) on X, which gives a representation of X as a sum
of K orthonormal principal components, and to use these as basis functions φks.

We can see that in both cases, the functional nature of the problem is dealt with by projecting
the functions X on a smaller linear space, spanned by basis functions. This basis expansion
is not straightforward to extend to the vector-valued case, that is when d > 1, the common
approach being to expand each coordinate of X independently. This amounts to assuming that
there are no interactions between coordinates, which is a strong assumption and not an efficient
representation when the coordinates are highly correlated. Moreover, to our knowledge, the only
theoretical results in the vector-valued case are found in the domain of longitudinal data analysis
(Greven et al., 2011; Park and Staicu, 2015). In this case, the different coordinates are assumed
to be repeated measurements of a quantity of interest on a patient and each coordinate is given
a parametric model, in the same spirit as ANOVA models. These parametric models do not
apply in the general case when the coordinates may correspond to different quantities such as
the evolution of different stocks or the x-y-z coordinates of a pen trajectory.

The signature approach removes the need to make such assumptions: the focus moves from
finding a functional model for X to finding a basis for functions of X. In other words, instead of
using a basis of functions, we use a basis of functions of functions. In a regression setting, this
shift of perspective is particularly adequate since the object of interest is the regression function
f(X) and not X itself. The whole approach is based on the signature transformation, which
takes as input a function X and outputs an infinite vector of coefficients known to characterize
X under some smoothness assumptions. In particular, there are no assumptions on the structure
of dependance in the different coordinates of X. In other words, the signature is naturally
adapted to the vector-valued case.

Before we delve into the signature linear model, we gently introduce the notion of signature
and review some of its important properties.

4.2.2 The signature of a path

We give here a brief presentation of signatures but the reader is referred to Lyons et al. (2007)
or Friz and Victoir (2010) for a more involved mathematical treatment with proofs. To follow
the vocabulary from rough path theory, we will often call the functional covariate X : [0, 1]→ Rd

4.2. Mathematical framework 79

a path. Our basic assumption is that X is of bounded variation, i.e., it has finite length.

Definition 4.1. Let

X : [0, 1] −→ Rd

t 7−→ (X1
t , . . . , X

d
t).

The total variation of X is defined by

‖X‖TV = sup
I

∑
(t0,...,tk)∈I

‖Xti −Xti−1‖,

where the supremum is taken over all finite subdivisions of [0, 1], and ‖ · ‖ denotes the Euclidean
norm on Rd. The set of paths of bounded variation is then defined by

BV (Rd) =
{
X : [0, 1]→ Rd | ‖X‖TV <∞

}
.

We recall that BV (Rd) endowed with the norm

‖X‖BV (Rd) = ‖X‖TV + sup
t∈[0,1]

‖Xt‖

is a Banach space. We stress that the basis functions traditionnaly used in functional data
analysis are of bounded variation so the assumption that X ∈ BV (Rd) is much less restrictive
than assuming an expansion such as (4.2). This assumption allows to define Riemann-Stieljes
integrals along paths, which puts us in a position to define the signature.

Definition 4.2. Let X ∈ BV (Rd) and I = (i1, . . . , ik) ⊂ {1, . . . d}k, k ≥ 1, be a multi-index of
length k. The signature coefficient of X along the index I on [0, 1] is defined by

SI(X) =

∫
· · ·
∫

0≤u1<···<uk≤1

dXi1
u1
. . . dXik

uk
. (4.3)

SI(X) is then said to be a signature coefficient of order k.

The signature of X is the sequence containing all signature coefficients, i.e.,

S(X) =
(
1, S(1)(X), . . . , S(d)(X), S(1,1)(X), S(1,2)(X), . . . , S(i1,...,ik)(X), . . .

)
.

The signature of X truncated at order m, denoted by Sm(X), is the sequence containing all
signature coefficients of order lower than or equal to m, that is

Sm(X) =
(
1, S(1)(X), S(2)(X), . . . , S

length m︷ ︸︸ ︷
(d, . . . , d)(X)

)
.

Note that the assumption that X ∈ BV (Rd) may be relaxed: the signature may still be
defined when the Riemann-Stieljes integrals are not well-defined. For example, the signature
of the Brownian motion may be defined with Itô or Stratonovitch integrals. Integrating paths
that are not of bounded variation is actually one of the motivations behind the definition of the
signature in rough path theory.

A crucial feature of the signature is that it encodes the geometric properties of the path, as
shown in Figure 4.2. Indeed, coefficients of order 1 correspond to the increments of the path

80 CHAPTER 4. Linear functional regression with truncated signatures

Xi

Xj

S(i,j)(X)

S(j,i)(X)

S(i)(X)

S(j)(X)

Figure 4.2 – Geometric interpretation of the signature coefficients. The terms S(i)(X) and
S(j)(X) are the increments of the coordinates i and j respectively. The terms S(i,j)andS(j,i)

correspond to the areas of the blue and orange regions respectively.

in each coordinate and the coefficients of order 2 correspond to areas outlined by the path.
For higher orders of truncation, the signature contains information about the joint evolution of
tuples of coordinates. Moreover, it is clear from its definition as an integral that the signature
is independent of the time parametrization (2010, Proposition 7.10) and that it is invariant by
translation. Therefore, the signature looks at functions as purely geometric objects, without any
information about sampling frequency, speed, or travel time, hence the terminology of ‘paths’.

Note that the definition can be extended to paths defined on any interval [s, t] ⊂ R by
changing the integration bounds in (4.3). We can see that there are dk signature coefficients of
order k. The signature truncated at order m is therefore a vector of dimension sd(m), where

sd(m) =

m∑
k=0

dk =
dm+1 − 1

d− 1
if d ≥ 2,

and sd(m) = m + 1 if d = 1. Thus, provided d ≥ 2, the size of Sm(X) increases exponentially
with m and polynomially with d—some typical values are presented in Table 4.1.

Table 4.1 – Typical values of sd(m).

d = 2 d = 3 d = 6

m = 1 2 3 6
m = 2 6 12 42
m = 5 62 363 9330
m = 7 254 3279 335922

The set of coefficients of order k can be seen as an element of the kth tensor product of Rd
with itself, denoted by (Rd)⊗k. For example, the d coefficients of order 1 can be written as a
vector, and the d2 coefficients of order 2 as a matrix, i.e.,S

(1)(X)
...

S(d)(X)

 ∈ Rd,

S
(1,1)(X) . . . S(1,d)(X)

...
...

S(d,1)(X) . . . S(d,d)(X)

 ∈ Rd×d ≈ (Rd)⊗2.

4.2. Mathematical framework 81

Similarly, coefficients of order 3 can be written as a tensor of order 3, and so on. Then, S(X)
can be seen as an element of the tensor algebra

R⊕ Rd ⊕ (Rd)⊗2 ⊕ · · · ⊕ (Rd)⊗k ⊕ · · · .

Although not fundamental in the present paper, this structure of tensor algebra turns out to be
useful to derive properties of the signature (Lyons et al., 2007; Friz and Victoir, 2010).

Let us give two examples of paths and of their signatures.

Example 4.1. Let X be a parametrized curve: for any t ∈ [0, 1], Xt = (t, f(t)), where f : R→ R
is a smooth function. Then,

S(1)(X) =

∫ 1

0

dX1
t =

∫ 1

0

dt = 1

S(2)(X) =

∫ 1

0

dX2
t =

∫ 1

0

f ′(t)dt = f(1)− f(0),

where f ′ denotes the derivative of f . Similarly, the signature coefficient along (1, 2) is

S(1,2)(X) =

∫ 1

0

∫ t

0

dX1
udX

2
t =

∫ 1

0

(∫ t

0

du
)
f ′(t)dt =

∫ 1

0

tf ′(t)dt

= f(1)−
∫ 1

0

f(t)dt,

and so on.

Example 4.2. Let X be a d-dimensional linear path:

Xt =

X
1
t
...
Xd
t

 =

a1 + b1t
...

ad + bdt

 .

Then, for any index I = (i1, . . . , ik) ⊂ {1, . . . , d}k, the signature coefficient along I is

S(i1,...,ik)(X) =

∫
· · ·
∫

0≤u1<···<uk≤1

dXi1
u1
. . . dXik

uk
=
bi1 . . . bik

k!
. (4.4)

It is clear here that the signature is invariant by translation: S(X) depends only on the slope of
X and not on the initial position (a1, . . . , ad).

We now recall a series of properties of the signature that motivate the definition of the
signature linear model. A first important property provides a criterion for the uniqueness of
signatures.

Proposition 4.1. Assume that X ∈ BV (Rd) contains at least one monotone coordinate, then
S(X) characterizes X up to translations and reparametrizations.

This is a sufficient condition, a necessary one has been derived by Hambly and Lyons (2010)
and is based on the construction of an equivalence relation between paths, called tree-like equiv-
alence. For any path X ∈ BV (Rd), the time-augmented path X̃t = (Xt, t) ∈ BV (Rd+1) satisfies
the assumption of Proposition 4.1, which ensures signature uniqueness. Enriching the path with

82 CHAPTER 4. Linear functional regression with truncated signatures

new dimensions is actually a classic part of the learning process when signatures are used, and
is discussed by Fermanian (2021) and Morrill et al. (2020a). We will always use this time-
augmentation transformation before computing signatures.

The next proposition states that the signature linearizes functions of X and is the core
motivation of the signature linear model. We refer the reader to Király and Oberhauser (2019),
Theorem 1, for a proof in a similar setting.

Proposition 4.2. Let D ⊂ BV (Rd) be a compact set of paths that have at least one monotone
coordinate and such that, for any X ∈ D, X0 = 0. Let f : D → R be continuous. Then, for
every ε > 0, there exists m∗ ∈ N, β∗ ∈ Rsd(m∗), such that, for any X ∈ D,∣∣f(X)− 〈β∗, Sm∗(X)〉

∣∣ ≤ ε,
where 〈·, ·〉 denotes the Euclidean scalar product on Rsd(m∗).

This proposition is a consequence of the Stone-Weierstrass theorem. The classical Weierstrass
approximation theorem states that every real-valued continuous function on a closed interval
can be uniformly approximated by a polynomial function. Linear forms on the signature can,
therefore, be thought of as the equivalent of polynomial functions for paths.

Finally, the following bound on the norm of the truncated signature allows us to control the
rate of decay of signature coefficients of high order—see Lyons (2014, Lemma 5.1) for a proof.

Proposition 4.3. Let X : [0, 1]→ Rd be a path in BV (Rd). Then, for any m ≥ 0,

‖Sm(X)‖ ≤
m∑
k=0

‖X‖kTV
k!

≤ e‖X‖TV .

4.3 The signature linear model

4.3.1 Presentation of the model
We are now in a position to present the signature linear model. Recall that our goal is

to model the relationship between a real random variable Y ∈ R and a random input path
X ∈ BV (Rd). Without loss of generality, we now assume that d ≥ 2 (if d = 1, considering
the time-augmented path brings us back to the case d = 2). Proposition 4.2 states that linear
functions of the signature are dense in the set of continuous functions on a compact subset of
BV (Rd), which says in essence that it is reasonable to model a continuous function of X as a
linear function of its signature truncated at some order. This justifies the following model that
was first introduced in a slightly different form by Levin et al. (2013). We assume that there
exists m ∈ N, β∗m ∈ Rsd(m), such that

E [Y |X] =
〈
β∗m, S

m(X)
〉

and Var(Y |X) ≤ σ2 <∞. (4.5)

We consider throughout the article the smallest m∗ ∈ N such that there exists β∗m∗ ∈ Rsd(m∗)

satisfying
E [Y |X] =

〈
β∗m∗ , S

m∗(X)
〉
.

In other words, we assume a regression model, where the regression function is a linear form on
the signature. Moreover, it can be noticed that, since the first term of signatures is always equal
to 1, this regression model contains an intercept. Therefore, when m∗ = 0, (4.5) is a constant
model. Finally, it should be pointed out that there are two unknown quantities in model (4.5):

4.3. The signature linear model 83

m∗ and β∗m∗ . The parameter m∗ is the truncation order of the signature of X and controls the
model size, whereas β∗m∗ is the vector of regression coefficients, whose size sd(m∗) depends on
m∗.

It is instructive to compare this model to the functional model (4.1). We can see that much
less assumptions on X are needed: it is only assumed to be of finite variation, whereas in (4.1)
it has to be expanded on basis functions. Moreover, our model is directly adapted to the vector-
valued case. Finally, it depends directly on a finite vector β∗m∗ , whereas (4.1) is written in terms
of a function β, which must itself be written on basis functions. Note that the choice of basis need
to be adapted to each particular application, whereas the signature linear model only depends
on two parameters. In a nutshell, it is a more general model with less hyperparameters.

The signature truncation order m∗ is a key quantity in this model and influences the rest
of the study. Indeed, it controls the number of coefficients and therefore the computational
feasibility of the whole method. However, it is in general little discussed in the literature and
small values are picked arbitrarily. For example, Liu et al. (2017) consider values of m up to
2, Yang et al. (2015) up to 3, Arribas et al. (2018) and Lai et al. (2017) up to 4, Yang et al.
(2016a) up to 5 , and Yang et al. (2017) up to 8. Thus, one of our main objectives is to establish
a rigorous procedure to estimate m∗, and, to this end, we define a consistent estimator of m∗.
As we will see later, a simple estimator of β∗m∗ , and therefore of the regression function, is then
also obtained.

4.3.2 Estimating the truncation order

Let
Dn = {(X1, Y1), . . . , (Xn, Yn)}

be i.i.d. observations drawn according to the law of (X,Y). We use the approach of penalized
empirical risk minimization. For the moment, let us fix a certain truncation order m ∈ N, and
let α > 0 denote a fixed positive number. Then, the ball in Rsd(m) of radius α centered at 0 is
denoted by

Bm,α =
{
β ∈ Rsd(m) | ‖β‖ ≤ α

}
,

where ‖·‖ stands for the Euclidean norm, whatever the dimension. By a slight abuse of notation,
the sequence (Bm,α)m∈N can be seen as a nested sequence of balls, i.e.,

B0,α ⊂ B1,α ⊂ · · · ⊂ Bm,α ⊂ Bm+1,α ⊂ · · · .

From now on, we will only consider coefficients within these balls. Therefore, we assume that
the true coefficient β∗m∗ lies within such a ball, i.e., we make the assumption:

(Hα) β∗m∗ ∈ Bm∗,α.
On the one hand, for a fixed truncation order m, the theoretical risk is defined by

Rm(β) = E
(
Y −

〈
β, Sm(X)

〉)2
.

The minimal theoretical risk for a certain truncation order m, denoted by L(m) is then

L(m) = inf
β∈Bm,α

Rm(β) = Rm(β∗m),

where β∗m ∈ argmin β∈Bm,αRm(β) (note that the existence of β∗m is ensured by convexity of the
problem). Since the sets (Bm,α)m∈N are nested, L is a decreasing function of m. Its minimum is

84 CHAPTER 4. Linear functional regression with truncated signatures

attained at m = m∗, and, provided m ≥ m∗, L(m) is then constant and equal to

R(β∗m∗) = E
(
Y −

〈
β∗m∗ , S

m∗(X)
〉)2

= E
(
Var(Y |X)

)
≤ σ2.

On the other hand, the empirical risk with signature truncated at order m is defined by

R̂m,n(β) =
1

n

n∑
i=1

(
Yi −

〈
β, Sm(Xi)

〉)2
,

where β ∈ Bm,α. The minimum of R̂m,n over Bm,α is denoted by L̂n(m) and defined as

L̂n(m) = min
β∈Bm,α

R̂m,n(β) = R̂m,n(β̂m),

where β̂m denotes a point in Bm,α where the minimum is attained. Note that β 7→ R̂m,n(β) is
a convex function so β̂m exists. We point out that minimizing R̂m,n over Bm,α is equivalent to
performing a Ridge regression with a certain regularization parameter which depends on α.

In short, for a fixed truncation order m, a Ridge regression gives the best parameter β̂m to
model Y as a linear form on the signature of X truncated at order m. Recall that our goal
is to find a truncation order m̂ close to the true one m∗. Since the (Bm,α)m∈N are nested, the
sequence (L̂n(m))m∈N decreases withm. Indeed, increasingm makes the set of parameters larger
and therefore decreases the empirical risk. An estimator of m∗ can then be defined by a trade-off
between this decreasing empirical risk and an increasing function that penalizes the number of
coefficients:

m̂ = min
(
argmin
m∈N

(
L̂n(m) + penn(m)

))
,

where penn(m) is an increasing function ofm that will be defined in Theorem 4.4. If the minimum
of L̂n + penn is reached by several values, we choose for m̂ the smallest one. The procedure is
illustrated in Figure 4.3 with the Canadian Weather dataset.

Now that we have an estimate of m∗, which is a key ingredient in establishing the whole
process of the expected signature method, and before presenting the whole procedure, we justify
the estimator by some theoretical results in the next section.

4.4 Performance bounds

In this section, we show that it is possible to calibrate a penalization that ensures exponential
convergence of m̂ to m∗. The proof is given in Appendix C.1. In addition to (Hα), we need the
following assumption:

(HK) there exists KY > 0 and KX > 0 such that almost surely |Y | ≤ KY and ‖X‖TV ≤ KX .
In a nutshell, (HK) says that the trajectories have a length uniformly bounded by KX , which is
in practice a reasonable assumption. We shall also use the constant K, defined by

K = 2(KY + αeKX)eKX . (4.6)

The main result of the section is the following.

Theorem 4.4. Let Kpen > 0, 0 < ρ < 1
2 , and

penn(m) = Kpenn
−ρ√sd(m). (4.7)

4.4. Performance bounds 85

Figure 4.3 – The functions m 7→ L̂n(m) (blue curve), m 7→ penn(m) (orange curve) and m 7→
L̂n(m) + penn(m) (green curve) in the case of the Canadian Weather dataset. The estimator m̂
is chosen to be the minimize of the green curve: m̂ = 5.

Let n0 be the smallest integer satisfying

(n0)ρ̃ ≥(432Kα
√
π +Kpen)

(2
√
sd(m∗ + 1)

L(m∗ − 1)− σ2
+

√
2sd(m∗ + 1)

Kpen
√
dm∗+1

)
, (4.8)

where ρ̃ = min(ρ, 1
2 − ρ). Then, under the assumptions (Hα) and (HK), for any n ≥ n0,

P (m̂ 6= m∗) ≤ C1 exp
(
−C2n

1−2ρ
)
,

where the constants C1 and C2 are defined by

C1 = 74
∑
m>0

e−C3sd(m) + 148m∗, (4.9)

where

C3 =
K2

pend
m∗+1

128sd(m∗ + 1)(72K2α2 +K2
Y)
,

and

C2 =
1

16(1152K2α2 +K2
Y)

min
(K2

pend
m∗+1

8sd(m∗ + 1)
, L(m∗ − 1)− σ2

)
. (4.10)

This theorem provides a non-asymptotic bound on the convergence of m̂. It implies the
almost sure convergence of m̂ to m∗. We can note that the penalty decreases slowly with n
(more slowly than a square-root) and, if d ≥ 2, increases with m exponentially, i.e., as dm/2. The
penalty includes an arbitrary constant Kpen. Its value that minimizes n0 is

K∗pen =

√
(L(m∗ − 1)− σ2)432

√
παK

dm∗+1
,

86 CHAPTER 4. Linear functional regression with truncated signatures

and, in practice, it is calibrated with the slope heuristics method of Birgé and Massart (2007),
described in Section 4.5. The proof of Theorem 4.4 is based on chaining tail inequalities that
bound uniformly the tails of the risk. We refer the reader to Appendix C.1 for a detailed proof.

To give some insights into this estimator it is interesting to look at the behavior of the
constants when different quantities vary.

• If the dimension of the path d gets large, dm
∗+1 ∼ sd(m

∗ + 1) so the constants C1 and
C2 stay of the same order (provided that the risk L(m∗ − 1) stays constant). Therefore,
the quality of the bound does not change in high dimensions. However, the constant n0

increases at the rate of O(dm
∗/2ρ̃): we neeed exponentially more data when d grows.

• If the true truncation parameter m∗ increases, the same phenomenon is observed except
that C1 increases linearly: C2 and C3 stay of the same order, C1 ∼ 148m∗, and n0 increases
at the rate of O(dm

∗/2ρ̃). It is not surprising: when m∗ increases, the size of the coefficient
β∗m∗ increases and therefore more data are needed to estimate it.

• If α increases, n0 and C1 increase while C2 decreases. In other words, more data is needed
and the quality of the estimator deteriorates. Indeed, when α gets larger, the parameter
spaces Bm,α gets larger for any m so estimation is harder.

• The last quantity of interest is L(m∗ − 1)− σ2 ≤ L(m∗ − 1)− L(m∗), which measures the
difference of risk between a smaller model and the model truncated at m∗. By definition, it
is a strictly positive quantity. When it gets close to zero, it means that a model truncated
at m∗ − 1 is almost as good as a model truncated at m∗. We can see that when this
difference decreases, n0 increases and C2 decreases: it is harder to find that a truncation
order of m∗ is better than m∗ − 1, therefore the estimator m̂ deteriorates.

With an estimator of m̂ at hand, one can simply choose to estimate β∗m∗ by β̂m̂, which gives
an estimator of the regression function in model (4.5). As a by-product of Theorem 4.4, we then
get the following bound.

Corollary 4.5.

E
(〈
β̂m̂, S

m̂(X)
〉
−
〈
β∗m∗ , S

m∗(X)
〉)2

= O
(
n−1/2

)
.

This rate of convergence in O(n−1/2) is similar to the ones usually obtained for functional
linear models when d = 1, except that much less assumptions are needed on the path X. Indeed,
the rates obtained on the regression function usually depend on regularity assumptions on X and
β in (4.1). For example, it can depend on the Fourier coefficients of X (Hall, Horowitz, et al.,
2007), on the number of Lipschitz-continuous derivatives of β (Cardot et al., 2003), or on the
periodicity of X (Li and Hsing, 2007).

The proof is given in Appendix C.2. We have now all the ingredients necessary to implement
this signature linear model. Before looking at its performance on real-world datasets, we present
in the next section the complete methodology.

4.5 Computational aspects

4.5.1 The signature linear model algorithm

Computing the signature A first step towards practical application is to be able to compute
signatures efficiently. Typically, the input data consists of arrays of sampled values of X. We
choose to interpolate the sampled points linearly, and therefore our problem reduces to computing
signatures of piecewise linear paths. To this end, equation (4.4) gives the signature of a linear

4.5. Computational aspects 87

path and Chen’s theorem (Chen, 1958), stated below, provides a formula to compute recursively
the signature of a concatenation of paths.

Let X : [s, t]→ Rd and Y : [t, u]→ Rd be two paths, 0 ≤ s < t < u ≤ 1, the concatenation of
X and Y , denoted by X ∗Y , is defined as the path from [s, u] to Rd such that, for any v ∈ [s, u],

(X ∗ Y)v =

{
Xv if v ∈ [s, t],

Xt + Yv − Yt if v ∈ [t, u].

Proposition 4.6 (Chen). Let X : [s, t] → Rd and Y : [t, u] → Rd be two paths with bounded
variation. Then, for any multi-index (i1, . . . , ik) ⊂ {1, . . . , d}k,

S(i1,...,ik)(X ∗ Y) =

k∑
`=0

S(i1,...,i`)(X) · S(i`+1,...,ik)(Y). (4.11)

This proposition is an immediate consequence of the linearity property of integrals (Lyons
et al., 2007, Theorem 2.9). Therefore, to compute the signature of a piecewise linear path, it is
sufficient to iterate the following two steps:

1. Compute with equation (4.4) the signature of a linear section of the path.
2. Concatenate it to the other pieces with Chen’s formula (4.11).
This procedure is implemented in the Python library iisignature (Reizenstein and Graham,

2020). Thus, for a sample consisting of p points in Rd, if we consider the path formed by their
linear interpolation, the computation of the path signature truncated at level m takes O(pdm)
operations. The complexity is therefore linear in the number of sampled points but exponential
in the truncation order m.

Algorithme 1 : Pseudo-code for the signature linear model.
Data : {(x1, Y1), . . . , (xn, Yn)}
Result : Estimators m̂ and β̂m̂

1 Interpolate linearly the columns of xi so as to have a set of continuous piecewise linear
paths Xi : [0, 1]→ Rd, 1 ≤ i ≤ n. Add a time dimension, i.e., consider the path
X̃i : [0, 1]→ Rd+1, where X̃j

i = Xj
i for 1 ≤ j ≤ d, and Xd+1

i,t = t, t ∈ [0, 1].
2 Select the Ridge regularization parameter λ by cross validation on the regression model

with
{
S1(X̃1), . . . , S1(X̃n)

}
as predictors.

3 for m = 1, . . . ,M do
4 Compute signatures truncated at level m:

{
Sm(X̃1), . . . , Sm(X̃n)

}
.

5 Fit a Ridge regression on the pairs
{

(Sm(X̃1), Y1), . . . , (Sm(X̃n, Yn)
}
. Compute its

squared loss L̂n(m).

6 Compute the penalization penn(m) = Kpen

√
sd(m)

nρ .

7 Choose m̂ = argmin
0≤m≤M

(
L̂n(m) + penn(m)

)
.

8 Compute β̂m̂ by fitting a Ridge regression on
{

(Sm̂(X̃1), Y1), . . . , (Sm̂(X̃n, Yn)
}
.

Procedure In practice, we are given a dataset {(x1, Y1), . . . , (xn, Yn)}, where, for any 1 ≤ i ≤
n, Yi ∈ R and xi ∈ Rd×pi . The columns of the matrix xi correspond to values of a process Xi

88 CHAPTER 4. Linear functional regression with truncated signatures

in Rd sampled at pi different times. We fix M ∈ N such that, for any m ≥ M , the function
m 7→ L̂n(m) + penn(m) is strictly increasing and apply the procedure described in Algorithm 1.

Note that in the first step of Algorithm 1 there exist other choices for the embedding of the
matrix xi into a continuous path X̃i (Fermanian, 2021). The parameter ρ is set to 0.4. The
constant Kpen is calibrated with the so-called slope heuristics method, first proposed by Birgé
and Massart (2007).

4.5.2 A toy example

This section is devoted to illustrating the different steps of Algorithm 1 and the convergence
of the estimator m̂ with simulated data. It will be implemented on real data in Section 4.7. We
first simulate a dataset {(x1, Y1), . . . , (xn, Yn)} following the signature model (4.5).

For any 1 ≤ i ≤ n, let Xi : [0, 1]→ Rd, Xi,t = (X1
i,t, . . . , X

d
i,t) be defined by

Xk
i,t = αki,1 + 10αki,2 sin

(2πt

αki,3

)
+ 10(t− αki,4)3, 1 ≤ k ≤ d, (4.12)

where the parameters αki,`, 1 ≤ ` ≤ 4 are sampled uniformly on [0, 1]. Let (t0, t1, . . . , tp−1) be a
regular partition of [0, 1] of length p, the matrix of the path values

xi = (xki,j)1≤k≤d
1≤j≤p

∈ Rd×p

is then a discretization of Xi on [0, 1]: xki,j = Xk
i,tj

. It will cause no confusion to use the same
notation xi to denote the matrix of values of Xi on the partition (t0, . . . , tp−1) and their piecewise
linear interpolation. Figure 4.4 shows one sample xi with p = 100 and d = 5.

Figure 4.4 – One sample Xi from model (4.12) with d = 5.

For any m∗ ∈ N, the output Yi is now defined as Yi = 〈β, Sm∗(xi)〉+εi, where εi is a uniform
random variable on [−100, 100] and β is given by

βj =
1

1000
uj , 1 ≤ j ≤ sd(m∗),

where uj is sampled uniformly on [0, 1]. Then, m∗ is estimated with the procedure described

4.5. Computational aspects 89

in Algorithm 1 for different sample sizes n. To select the constant Kpen, we use the dimension
jump method, that is we plot m̂ as a function of Kpen, find the value of Kpen that corresponds
to the first big jump of m̂ and fix Kpen to be equal to twice this value. For a recent account of
the theory of slope heuristics, we refer the reader to the review by Arlot (2019). For example,
for m∗ = 5 and d = 2, plotting m̂ against Kpen yields Figure 4.5. In this case, Kpen is selected
at 20.

Figure 4.5 – Selection of Kpen with the slope heuristics method.

Figure 4.6 – Histogram of m̂ as a function of n over 20 iterations. The functional predictors X
are simulated following (4.12) and the response Y follows the linear model on signatures with
m∗ = 5. The hyperparameters are ρ = 0.4 and Kpen = 20.

We fix d = 2 and m∗ = 5 and, for different sample sizes n, we iterate the whole process 20
times. In Figure 4.6, a histogram of the values taken by m̂ is plotted against n. We can see that
when n increases, the estimator converges to the true value m∗ = 5. For n = 500 we always pick
m̂ = 5 over the 20 iterations.

90 CHAPTER 4. Linear functional regression with truncated signatures

4.6 Experiments

Now that we have a complete procedure at hand, we demonstrate in this section its perfor-
mance compared to canonical approaches in functional data analysis. We show in particular that
it performs better in high dimension, that is when d is large.

Throughout the section, since the focus is now on the performance of the signature linear
model and to simplify the computations, we select m̂ via cross-validation. We compare our
model to the functional linear model with basis functions presented in Section 4.2.1 and to the
functional principal component regression (fPCR). We take for φ1, . . . , φK the B-sline and Fourier
basis such as defined in Ramsay and Silverman (2005). Then, the approach consists in projecting
the function X : [0, 1]→ Rd onto the φis, coordinate by coordinate, and the output Y is assumed
to be linear on the coefficients of X in this basis. The number K of basis functions is selected
via cross-validation (with a minimum of 4 and maximum of 14 for Fourier and B-splines, and a
minimum of 1 and maximum of 6 for the fPCR). For the fPCR, we first smooth the functional
covariates with 7 B-splines. This procedure is implemented with the Python package scikit-fda
(Ramos-Carreño et al., 2019).

4.6.1 Smooth paths

Our goal is to see the influence of the dimension d on the quality of the different models: the
signature linear model and the 3 linear functional models. To this end, we simulate some paths
following model (4.12) and try to predict the average or maximal value of the path at the next
time step. More precisely, let (t0, t1, . . . , tp) be a partition of [0, 1] of length p+1, then we sample
Xi following (4.12) and let

xi = (Xi,t0 , . . . , Xi,tp−1
) ∈ Rd×p,

Y
(mean)
i =

1

d

d∑
k=1

Xk
i,tp ,

Y
(max)
i = max

1≤k≤d
Xk
i,tp .

For both models (mean and max), we let d vary on a grid from 1 to 11, simulate some train
and test data, and assess the performance of the model with the mean squared error (MSE) on
the test set. We iterate the procedure 20 times, which gives, for each model (signature, Fourier,
B-spline, and fPCR), a boxplot of errors, shown in Figure 4.7.

It is first clear that for the mean response (left panel), when d increases, the signature gets
better relatively to the 3 other models. The behavior of the performance in the right panel, where
we try to predict the maximum value of the path accross the dimensions, is also interesting.
When d increases this task gets harder since there are more dimensions along which to take the
maximum, however the performance of the signature model stays approximately the same. On
the contrary, the B-spline and Fourier basis errors increase steadily with d, while the performance
of fPCR is bell-shaped: the error increases for d up to 3 and then decreases.

In this model, the different dimensions of the path were sampled independently from each
other, which favors the traditional models with basis functions. We therefore perform the same
study with paths X which have dependent dimensions, to see if the signature model is better
in this case. The paths are very close to the ones in the previous study, the only difference lies
in the generation of the parameters αki,` in (4.12). For each sample 1 ≤ i ≤ n, we sample four
parameters (αi,1, αi,2, αi,3, αi,4) uniformly on [0, 1] and for each coordinate k ∈ {1, . . . , d}, we

4.6. Experiments 91

Figure 4.7 – Test MSE for the signature linear model, functional regression with B-Spline and
Fourier basis functions, and functional Principal Component Regression (fPCR). The data follows
(4.12) and Y is the mean (left panel) or maximum (right panel) response at the next time step.

sample a new parameter ak uniformly in [0, 1]. Then, we let αki,` = ak × αi,`, 1 ≤ ` ≤ 4. Each
coordinate Xk

i is then equal to (4.12) with these new parameters. In this way, the different
coordinates of each sample Xi share the parameters αi,`, which are randomly multiplied by ak.
One such sample is plotted in Figure 4.8, which can be compared to Figure 4.4, and a boxplot
of the test MSE is shown in Figure 4.9.

Figure 4.8 – One sample X from the dependent model with d = 5

If we compare Figures 4.7 and 4.9, we can see that the signature is slightly better in the
dependent case. For example, in the mean response case (left panel in Figure 4.9), the signature
is better than B-splines from d = 5 whereas it is better in the independent case (left panel in
Figure 4.7) from d = 7. For the max response model, the variance of the error decreases in the
dependent case for signatures, as would be expected (the maximum coordinate is more stable
when d increases when the dimensions are correlated), whereas it does not for the Fourier and

92 CHAPTER 4. Linear functional regression with truncated signatures

Figure 4.9 – Test MSE for the signature linear model, functional regression with B-Spline and
Fourier basis functions, and functional Principal Component Regression (fPCR). The data follows
(4.12) with dependent coordinate parameters and Y is the mean (left panel) or maximum (right
panel) response at the next time step.

B-spline models. In other words, the signature model is more stable with regards to the structure
in the data. Note also that the performance of the fPCR is similar (and slightly better for the
max response) to the signature model, emphasizing the relevance of the signature model as a
benchmark model since it performs as well and sometimes better than the most commonly used
model.

4.6.2 Gaussian processes

We conclude this simulation study with more complex paths: Gaussian processes. Let d ≥ 1,
1 ≤ i ≤ n, we define the path Xi = (X1

t , . . . , X
d
t)t∈[0,1] by

Xk
i,t = αki t+ ξki,t, 1 ≤ k ≤ d, t ∈ [0, 1], (4.13)

where αki is sampled uniformly in [−3, 3] and ξki is a Gaussian process with exponential covariance
matrix (with length-scale 1). The response is the norm of the trend slope: Yi = ‖αi‖. Figure
4.10 shows a realization of Xi with d = 5.

We vary the dimension d on the same grid as before and iterate the whole procedure 20 times,
which gives the results in Figure 4.11. We can see that for these more complicated paths, the
signature is better than the 3 other models even for d = 1 and that the difference in performance
with B-spline and Fourier basis increases with d.

4.7 Real-world applications

4.7.1 The Canadian Weather dataset

We close this study by implementing the signature linear model on real-world datasets. First,
we consider the Canadian Weather dataset, presented in Section 4.2.1. We split the data into a

4.7. Real-world applications 93

Figure 4.10 – One sample X from the Gaussian process model (4.13) with d = 5

training set and a test set (of size 23 and 12 respectively).
We implement the signature linear model as presented in Algorithm 1, which we compare to

the same algorithms as before. We compute the MSE on 20 random train/test splits. Note that
the constant Kpen is kept the same on all train/test splits (since it has to be manually selected
via the slope heuristics method). The results of this procedure are shown in Figure 4.12. We see
that for this particular application, the signature has a similar but slightly worse performance
than the 3 other functional linear models. This is not surprising since this is the perfect setting
for basis functions: the curves are smooth and unidimensional. However, it is worth noting
that signatures do not perform badly in this setting. Moreover, this simple example allows us
to discuss further the interpretation of the regression coefficients β̂m̂, plotted as a heatmap in
Figure 4.13.

The first row corresponds to the intercept, the second row to the coefficients against S(1)(X)
and S(2)(X), the third row to the order 2 signature coefficients, and so on. A first thing to
notice is that the coefficients get more sparse when they correspond to higher order signatures:
almost all coefficients in the last row are equal to zero, whereas in the row corresponding to the
order 2 half of them are significantly not null. Moreover, recall that the second coordinate of the
path is equal to the time, so the coefficients corresponding to the indices (2), (2, 2), . . . , (2, 2, 2, 2)
should not be significant, which is indeed the case—these are the last coefficient of each row.
Moreover, we see that S(1,2)(X) and S(2,1)(X) have coefficients almost equal but opposite to
each other: this means that the quantity of interest is the difference S(1,2)(X)−S(2,1)(X), which
is exactly the quantity known in stochastic analysis as the Levy area, depicted in Figure 4.14.
We can conclude from this analysis that the total annual precipitations depend strongly on the
area of the temperature curves, that is, the total temperature over the year. However, since some
coefficients of order higher than 2 are not null, the relationship is slightly more complicated: the
shape of the temperature profile also influences the total precipitations.

4.7.2 Electricity consumption prediction

We conclude these experiments with a study of the UCI dataset ‘ElectricityLoadDiagrams20112014’
(Dua and Graff, 2017), later called Electricity Loads. It consists of the electricity consumption
of 370 clients, recorded every 15min from 2011 to 2014. We average the data to obtain hourly
data and focus on the following task: given the electricity consumption of a subset of clients over

94 CHAPTER 4. Linear functional regression with truncated signatures

Figure 4.11 – Test MSE for the signature linear model, functional regression with B-Spline and
Fourier basis functions, and functional Principal Component Regression (fPCR). The input time
series are gaussian processes with a random linear trend, as defined by (4.13), and the reponse
is the norm of the trend slope.

a week, we want to predict the consumption peak of the following week, that is, the maximal
hourly consumption summed over all clients. We vary the number of clients observed, which
allows us to do a similar analysis as in Section 4.6: each data point is a path in Rd, where d is
the number of clients observed. Such a sample with d = 5 is shown in Figure 4.15.

Note that when the number of clients d increases, we should expect the error to decrease
because we just add new information in the data and the response remains unchanged. Figure
4.16 shows a boxplot of the test MSE over 20 random train/test splits of the data, for the four
models considered. We can see that for d up to 5 all models perform similarly, then for d = 10
the variance of the Fourier and B-spline models increases and for d larger than 10 their errors
increase a lot, whereas the error of the signature method and fPCR continue to decrease with a
rather fixed variance. This confirms what has been observed on simulated data: the signature
linear model is robust to dimension and performs similarly or better than traditional functional
linear models.

4.8 Conclusion and perspectives

In this paper, we have provided a complete and ready-to-use methodology to implement the
signature linear model. This led us to define a consistent estimator of the signature truncation
order. We show on both simulated and real-world datasets that this model performs at least
as well as traditional functional linear models, and is particularly relevant for vector-valued
functions in high dimensions.

The signature is a flexible representation tool for multidimensional time series and can be
used in various contexts. This study is just a first step towards understanding how it should be
used in a statistical setting and there are a lot of potential extensions. For example, Figure 4.13
suggests that the vector of coefficients on the signature is sparse. Studying different sparsifying

4.8. Conclusion and perspectives 95

Figure 4.12 – Test MSE over 20 train/test splits for the Canadian Weather datasets for four
different linear models: the signature linear model, functional regression with B-Spline and
Fourier basis functions, and functional Principal Component Regression (fPCR).

procedures for signatures would be a valuable extension of our results. Another interesting
topic would be to investigate statistical models with the logsignature transform, which is a more
compact representation of the signature. The main difference is that the logsignature does not
possess linear approximation properties such as Proposition 4.2 and therefore requires to depart
from a linear model.

96 CHAPTER 4. Linear functional regression with truncated signatures

Figure 4.13 – Heatmap of coefficients up to order 4 obtained for the Canadian weather dataset
signature regression. The vertical axis represents the order of the coefficients: on top the coeffi-
cient of order 0, then the two coefficients of order 1, then the four coefficients of order 2, and so
on.

− +

S(i,j)(X)− S(j,i)(X)

Xi

Xj

Figure 4.14 – The quantity S(i,j)(X) − S(j,i)(X) corresponds to the sum of the signed orange
areas, which is also known as the Levy area.

4.8. Conclusion and perspectives 97

Figure 4.15 – One sample from the Electricity Loads dataset, where we observe the hourly energy
consumption of 5 clients over a week.

Figure 4.16 – Test MSE over 20 random train/test splits for four different linear models: the
signature linear model, functional regression with B-Spline and Fourier basis functions, and
functional Principal Component Regression (fPCR).

98 CHAPTER 4. Linear functional regression with truncated signatures

Bibliography

Arlot, S. (2019). Minimal penalties and the slope heuristics: a survey. Journal de la Société
Française de Statistique, 160, 1–106.

Arribas, I. P., Goodwin, G. M., Geddes, J. R., Lyons, T., and Saunders, K. E. (2018). A signature-
based machine learning model for distinguishing bipolar disorder and borderline person-
ality disorder. Translational psychiatry, 8, 1–7.

Arribas, I. P., Salvi, C., and Szpruch, L. (2020). Sig-SDEs model for quantitative finance.
arXiv:2006.00218.

Benzeghiba, M., De Mori, R., Deroo, O., Dupont, S., Erbes, T., Jouvet, D., Fissore, L., Laface, P.,
Mertins, A., Ris, C., et al. (2007). Automatic speech recognition and speech variability:
a review. Speech communication, 49, 763–786.

Birgé, L., and Massart, P. (2007). Minimal penalties for gaussian model selection. Probability
Theory and Related Fields, 138, 33–73.

Brunel, É., Mas, A., and Roche, A. (2016). Non-asymptotic adaptive prediction in functional
linear models. Journal of Multivariate Analysis, 143, 208–232.

Cardot, H., Ferraty, F., and Sarda, P. (1999). Functional linear model. Statistics & Probability
Letters, 45 (1), 11–22.

Cardot, H., Ferraty, F., and Sarda, P. (2003). Spline estimators for the functional linear model.
Statistica Sinica, 571–591.

Chen, K.-T. (1958). Integration of paths—a faithful representation of paths by non-commutative
formal power series. Transactions of the American Mathematical Society, 89, 395–407.

Chevyrev, I., and Kormilitzin, A. (2016b). A primer on the signature method in machine learning.
arXiv:1603.03788.

Dua, D., and Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml
Fermanian, A. (2021). Embedding and learning with signatures. Computational Statistics & Data

Analysis, 157, 107148.
Ferraty, F., and Vieu, P. (2006). Nonparametric functional data analysis: theory and practice.

Springer.
Frank, L. E., and Friedman, J. H. (1993). A statistical view of some chemometrics regression

tools. Technometrics, 35, 109–135.
Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:

theory and applications (Vol. 120). Cambridge University Press.
Greven, S., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Longitudinal functional princi-

pal component analysis. Recent advances in functional data analysis and related topics
(pp. 149–154). Springer.

Hall, P., Horowitz, J. L. et al. (2007). Methodology and convergence rates for functional linear
regression. The Annals of Statistics, 35, 70–91.

Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation
and the reduced path group. The Annals of Mathematics, 171, 109–167.

Hastie, T., and Mallows, C. (1993). [a statistical view of some chemometrics regression tools]:
discussion. Technometrics, 35, 140–143.

Király, F. J., and Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Ma-
chine Learning Research, 20, 1–45.

Lai, S., Jin, L., and Yang, W. (2017). Online signature verification using recurrent neural net-
work and length-normalized path signature descriptor. Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 1, 400–405.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

http://archive.ics.uci.edu/ml

Bibliography 99

Li, C., Zhang, X., and Jin, L. (2017). LPSNet: a novel log path signature feature based hand ges-
ture recognition framework. 2017 IEEE International Conference on Computer Vision
Workshop, 631–639.

Li, Y., and Hsing, T. (2007). On rates of convergence in functional linear regression. Journal of
Multivariate Analysis, 98, 1782–1804.

Liu, M., Jin, L., and Xie, Z. (2017). Ps-lstm: capturing essential sequential online information
with path signature and lstm for writer identification. Proceedings of the 14th IAPR
International Conference on Document Analysis and Recognition (ICDAR), 1, 664–669.

Lyons, T. (2014). Rough paths, signatures and the modelling of functions on streams. arXiv:1405.4537.
Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths

(Vol. 1908). Springer.
Marx, B. D., and Eilers, P. H. (1999). Generalized linear regression on sampled signals and

curves: a P-spline approach. Technometrics, 41, 1–13.
Moore, P., Lyons, T., and Gallacher, J. (2019). Using path signatures to predict a diagnosis of

Alzheimer’s disease. PloS ONE, 14.
Morrill, J., Fermanian, A., Kidger, P., and Lyons, T. (2020a). A generalised signature method

for multivariate time series feature extraction. arXiv:2006.00873.
Morrill, J., Kormilitzin, A., Nevado-Holgado, A., Swaminathan, S., Howison, S., and Lyons, T.

(2019). The signature-based model for early detection of sepsis from electronic health
records in the intensive care unit. International Conference in Computing in Cardiology.

Morrill, J. H., Kormilitzin, A., Nevado-Holgado, A. J., Swaminathan, S., Howison, S. D., and
Lyons, T. J. (2020c). Utilization of the signature method to identify the early onset
of sepsis from multivariate physiological time series in critical care monitoring. Critical
Care Medicine, 48, e976–e981.

Morris, J. S. (2015). Functional regression. Annual Review of Statistics and Its Application, 2,
321–359.

Park, S. Y., and Staicu, A.-M. (2015). Longitudinal functional data analysis. Stat, 4, 212–226.
Ramos-Carreño, C., Torrecilla, J. L., and Suárez, A. (2019). Scikit-fda: a python package for

functional data analysis. 3rd International Workshop on Advances in Functional Data
Analysis, 5.

Ramsay, J. O., and Dalzell, C. (1991). Some tools for functional data analysis. Journal of the
Royal Statistical Society. Series B (Methodological), 53, 539–561.

Ramsay, J. O., and Silverman, B. W. (2005). Functional data analysis. 2nd edition. Springer.
Reizenstein, J., and Graham, B. (2020). Algorithm 1004: the iisignature library: efficient calcu-

lation of iterated-integral signatures and log signatures. ACM Transactions on Mathe-
matical Software.

Turaga, P., Chellappa, R., Subrahmanian, V. S., and Udrea, O. (2008). Machine recognition
of human activities: a survey. IEEE Transactions on Circuits and Systems for Video
technology, 18, 1473–1488.

Wang, B., Liakata, M., Ni, H., Lyons, T., Nevado-Holgado, A. J., and Saunders, K. (2019). A
path signature approach for speech emotion recognition. Interspeech 2019, 1661–1665.

Yang, W., Jin, L., and Liu, M. (2015). Chinese character-level writer identification using path
signature feature, dropstroke and deep cnn. Proceedings of the 13th International Con-
ference on Document Analysis and Recognition (ICDAR), 546–550.

Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31, 45–53.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

100 CHAPTER 4. Linear functional regression with truncated signatures

Chapter 5

Framing RNN as a kernel method:
A neural ODE approach

Building on the interpretation of a recurrent neural network (RNN) as a continuous-time
neural differential equation, we show, under appropriate conditions, that the solution of a RNN
can be viewed as a linear function of a specific feature set of the input sequence, known as the
signature. This connection allows us to frame a RNN as a kernel method in a suitable reproducing
kernel Hilbert space. As a consequence, we obtain theoretical guarantees on generalization and
stability for a large class of recurrent networks. Our results are illustrated on simulated datasets.

Contents

5.1 Introduction 101
5.2 Framing RNN as a kernel method 104

5.2.1 From discrete to continuous time . 104
5.2.2 The signature . 105
5.2.3 From the CDE to the signature kernel 106

5.3 Generalization and regularization 108
5.3.1 Generalization bounds . 108
5.3.2 Regularization and stability . 110

5.4 Numerical illustrations 111
5.5 Conclusion 112

5.1 Introduction

Recurrent neural networks (RNN) are among the most successful methods for modeling se-
quential data. They have achieved state-of-the-art results in difficult problems such as natural
language processing (e.g., Mikolov et al., 2010; Collobert et al., 2011) or speech recognition (e.g.,
Hinton et al., 2012; Graves et al., 2013). This class of neural networks has a natural interpre-
tation in terms of (discretization of) ordinary differential equations (ODE), which casts them
in the field of neural ODE (Chen et al., 2018). This observation has led to the development of

101

102 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

continuous-depth models for handling irregularly-sampled time-series data, including the ODE-
RNN model (Rubanova et al., 2019), GRU-ODE-Bayes (De Brouwer et al., 2019), or neural CDE
models (Kidger et al., 2020a; Morrill et al., 2020b). In addition, the time-continuous interpreta-
tion of RNN allows to leverage the rich theory of differential equations to develop new recurrent
architectures (Chang et al., 2019; Herrera et al., 2021; Erichson et al., 2021), which are better
at learning long-term dependencies.

On the other hand, the development of kernel methods for deep learning offers theoretical
insights on the functions learned by the networks (Cho and Saul, 2009; Belkin et al., 2018; Jacot
et al., 2018). Here, the general principle consists in defining a reproducing kernel Hilbert space
(RKHS)—that is, a function class H —, which is rich enough to describe the architectures of
networks. A good example is the construction of Bietti and Mairal (2017), 2019, who exhibit
a RKHS for convolutional neural networks. This kernel perspective has several advantages.
First, by separating the representation of the data from the learning process, it allows to study
invariances of the representations learned by the network. Next, by reducing the learning problem
to a linear one in H , generalization bounds can be more easily obtained. Finally, the Hilbert
structure of H provides a natural metric on neural networks, which can be used for example for
regularization (Bietti et al., 2019).

Contributions. By taking advantage of the neural ODE paradigm for RNN, we show that
RNN are, in the continuous-time limit, linear predictors over a specific space associated with
the signature of the input sequence (Levin et al., 2013). The signature transform, first defined
by Chen (1958) and central in rough path theory (Lyons et al., 2007; Friz and Victoir, 2010),
summarizes sequential inputs by a graded feature set of their iterated integrals. Its natural envi-
ronment is a tensor space that can be endowed with a RKHS structure (Király and Oberhauser,
2019). We exhibit general conditions under which classical recurrent architectures such as feed-
forward RNN, Gated Recurrent Units (GRU, Cho et al., 2014), or Long Short-Term Memory
networks (LSTM, Hochreiter and Schmidhuber, 1997), can be framed as a kernel method in this
RKHS. This enables us to provide generalization bounds for RNN as well as stability guarantees
via regularization. The theory is illustrated with some experimental results.

Related works. The neural ODE paradigm was first formulated by Chen et al. (2018) for
residual neural networks. It was then extended to RNN in several articles, with a focus on
handling irregularly sampled data (Rubanova et al., 2019; Kidger et al., 2020a) and learning
long-term dependencies (Chang et al., 2019). The signature transform has recently received
the attention of the machine learning community (Levin et al., 2013; Kidger et al., 2019; Liao
et al., 2019; Toth and Oberhauser, 2020; Fermanian, 2021) and, combined with deep neural
networks, has achieved state-of-the-art performance for several applications (Yang et al., 2016a;
Yang et al., 2017; Perez Arribas, 2018; Wang et al., 2019; Morrill et al., 2020c). Király and
Oberhauser (2019) use the signature transform to define kernels for sequential data and develop
fast computational methods. The connection between continuous-time RNN and signatures has
been pointed out by Lim (2021) for a specific model of stochastic RNN. Deriving generalization
bounds for RNN is an active research area (Zhang et al., 2018; Akpinar et al., 2019; Tu et al.,
2019). By leveraging the theory of differential equations, our approach encompasses a large class
of RNN models, ranging from feedforward RNN to LSTM. This is in contrast with most existing
generalization bounds, which are architecture-dependent. Close to our point of view is the work
of Bietti and Mairal (2017) for convolutional neural networks.

Mathematical context. We place ourselves in a supervised learning setting. The input data is
a sample of n i.i.d. vector-valued sequences {x(1), . . . ,x(n)}, where x(i) = (x

(i)
1 , . . . , x

(i)
T) ∈ (Rd)T ,

5.1. Introduction 103

T ≥ 1. The outputs of the learning problem can be either labels (classification setting) or
sequences (sequence-to-sequence setting). Even if we only observe discrete sequences, each x(i)

is mathematically considered as a regular discretization of a continuous-time process X(i) ∈
BV ([0, 1],Rd), where BV ([0, 1],Rd) is the space of continuous functions from [0, 1] to Rd of finite
total variation. Informally, the total variation of a process corresponds to its length. Formally,
for any [s, t] ⊂ [0, 1], the total variation of a process X ∈ BV ([0, 1],Rd) on [s, t] is defined by

‖X‖TV ;[s,t] = sup
(t0,...,tk)∈Ds,t

k∑
j=1

‖Xtj −Xtj−1‖,

where Ds,t denotes the set of all finite partitions of [s, t] and ‖ · ‖ the Euclidean norm. We
therefore have that x(i)

j = X
(i)
j/T , 1 ≤ j ≤ T , where X(i)

t := X(i)(t). We make two assumptions
on the processes X(i). First, they all begin at zero, and second, their lengths are bounded by
L ∈ (0, 1). These assumptions are not too restrictive, since they amount to data translation and
normalization, common in practice. Accordingly, we denote by X the subspace of BV ([0, 1],Rd)
defined by

X =
{
X ∈ BV ([0, 1],Rd) |X0 = 0 and ‖X‖TV ;[0,1] ≤ L

}
and assume therefore that X(1), . . . , X(n) are i.i.d. according to some X ∈ X . The norm on all
spaces Rm, m ≥ 1, is always the Euclidean one. Observe that assuming that X ∈ X implies
that, for any t ∈ [0, 1], ‖Xt‖ = ‖Xt −X0‖ ≤ ‖X‖TV ;[0,1] ≤ L.

Recurrent neural networks. Classical RNN are defined by a sequence of hidden states
h1, . . . , hT ∈ Re, where, for x = (x1, . . . , xT) a generic data sample,

hj+1 = f(hj , xj+1), h0 = 0.

At each time step 1 ≤ j ≤ T , the output of the network is zj = ψ(hj), where ψ is a linear
function. In the present article, we rather consider the following residual version, which is a
natural adaptation of classical RNN in the neural ODE framework (see, e.g., Yue et al., 2018):

hj+1 = hj +
1

T
f(hj , xj+1), h0 = 0. (5.1)

The simplest choice for the function f is the feedforward model, say fRNN, defined by

fRNN(h, x) = σ(Uh+ V x+ b), (5.2)

where σ is an activation function, U ∈ Re×e and V ∈ Re×d are weight matrices, and b ∈ Re is the
bias. The function fRNN, equipped with a smooth activation σ (such as the logistic or hyperbolic
tangent functions), will be our leading example throughout the paper. However, the GRU and
LSTM models can also be rewritten under the form (5.1), as shown in Appendix D.1.1. Thus,
model (5.1) is flexible enough to encompass most recurrent networks used in practice.

Overview. Section 5.2 is devoted to framing RNN as linear functions in a suitable RKHS.
We start by embedding iteration (5.1) into a continuous-time model, which takes the form of a
controlled differential equation (CDE). This allows, after introducing the signature transform,
to define the appropriate RKHS, and, in turn, to show that model (5.1) boils down, in the
continuous-time limit, to a linear problem on the signature. This framework is used in Section
5.3 to derive generalization bounds and stability guarantees. We conclude with some experiments

104 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

in Section 5.4. All proofs are postponed to the supplementary material.

5.2 Framing RNN as a kernel method

Roadmap. First, we quantify the difference between the discrete recurrent network (5.1) and
its continuous-time counterpart (Proposition 5.1). Then, we rewrite the corresponding ODE as
a CDE (Proposition 5.2). Under appropriate conditions, Proposition 5.4 shows that the solution
of this equation is a linear function of the signature of the driving process. Importantly, these
assumptions are valid for a feedforward RNN, as stated by Proposition 5.5. We conclude in
Theorem 5.6.

5.2.1 From discrete to continuous time

Recall that h0, . . . , hT denote the hidden states of the RNN (5.1), and let H : [0, 1]→ Re be
the solution of the ODE

dHt = f(Ht, Xt)dt, H0 = h0. (5.3)

By bounding the difference between Hj/T and hj , the following proposition shows how to pass
from discrete to continuous time, provided f satisfies the following assumption:

(A1) The function f is Lipschitz continuous in h and x, with Lipschitz constants Kh and Kx.
We let Kf = max(Kh,Kx).

Proposition 5.1. Assume that (A1) is verified. Then there exists a unique solution H to (5.3)
and, for any 0 ≤ j ≤ T ,

‖Hj/T − hj‖ ≤
c1
T
,

where c1 = Kfe
Kf
(
L+ sup

‖h‖≤M,‖x‖≤L
‖f(h, x)‖eKf

)
and M = sup

‖x‖≤L
‖f(h0, x)‖eKf . Moreover, for

any t ∈ [0, 1], ‖Ht‖ ≤M .

Then, following Kidger et al. (2020a), we show that the ODE (5.3) can be rewritten under
the form of a CDE. At the cost of increasing the dimension of the hidden state from e to e+ d,
this allows us to reframe model (5.3) as a linear model in dX, in the sense that X has been
moved ‘outside’ of f .

Proposition 5.2. Assume that (A1) is verified. Let H : [0, 1] → Re be the solution of (5.3),
and let X̄ : [0, 1]→ Rd+1 be the time-augmented process X̄t = (X>t ,

1−L
2 t)>. Then there exists a

tensor field F : Rē → Rē×d̄, ē = e + d, d̄ = d + 1, such that if H̄ : [0, 1] → Rē is the solution of
the CDE

dH̄t = F(H̄t)dX̄t, H̄0 = (H>0 , X
>
0)>, (5.4)

then its first e coordinates are equal to H.

Equation (5.4) can be better understood by the following equivalent integral equation:

H̄t = H̄0 +

∫ t

0

F(H̄u)dX̄u,

5.2. Framing RNN as a kernel method 105

where the integral should be understood as Riemann-Stieljes integral (Friz and Victoir, 2010,
Section I.2). Thus, the output of the RNN can be approximated by the solution of the CDE
(5.4), and, according to Proposition 5.1, the approximation error is O(1/T).

Example 5.1. Consider fRNN as in (5.2). If σ is Lipschitz continuous with constant Kσ, then,
for any h1, h2 ∈ Re, x1, x2 ∈ Rd,

‖fRNN(h1, x1)− fRNN(h2, x1)‖ = ‖σ(Uh1 + V x1 + b)− σ(Uh2 + V x1 + b)‖
≤ Kσ‖U‖op‖h1 − h2‖,

where ‖·‖op denotes the operator norm—see Appendix D.1.3. Similarly, ‖f(h1, x1)−f(h1, x2)‖ ≤
Kσ‖V ‖op‖x1 − x2‖. Thus, assumption (A1) is satisfied. The tensor field FRNN of Proposition
5.2 corresponding to this network is defined for any h̄ ∈ Rē by

FRNN(h̄) =

(
0e×d 2

1−Lσ(Wh̄+ b)

Id×d 0d×1

)
, where W =

(
U V

)
∈ Re×ē. (5.5)

5.2.2 The signature
An essential ingredient towards our construction is the signature of a continuous-time pro-

cess, which we briefly present here. We refer to Chevyrev and Kormilitzin (2016a) for a gentle
introduction and to Lyons et al. (2007) and Levin et al. (2013) for details.

Tensor Hilbert spaces. We denote by (Rd)⊗k the kth tensor power of Rd with itself, which is
a Hilbert space of dimension dk. The key space to define the signature and, in turn, our RKHS,
consists in infinite square-summable sequences of tensors of increasing order:

T =
{
a = (a0, . . . , ak, . . .)

∣∣∣ ak ∈ (Rd)⊗k,
∞∑
k=0

‖ak‖2(Rd)⊗k <∞
}
. (5.6)

Endowed with the scalar product 〈a, b〉T :=
∑∞
k=0〈ak, bk〉(Rd)⊗k , T is a Hilbert space, as shown

in Appendix D.1.4.

Definition 5.1. Let X ∈ BV ([0, 1],Rd). For any t ∈ [0, 1], the signature of X on [0, t] is defined
by S[0,t](X) = (1,X1

[0,t], . . . ,X
k
[0,t], . . .), where, for each k ≥ 1,

Xk[0,t] = k!

∫
· · ·
∫

0≤u1<···<uk≤t

dXu1 ⊗ · · · ⊗ dXuk ∈ (Rd)⊗k.

Although this definition is technical, the signature should simply be thought of as a feature
map that embeds a bounded variation process into an infinite-dimensional tensor space. The
signature has several good properties that make it a relevant tool for machine learning (e.g., 2013;
Chevyrev and Kormilitzin, 2016a; Fermanian, 2021). In particular, under certain assumptions,
S(X) characterizes X up to translations and reparameterizations, and has good approximation
properties. We also highlight that fast libraries exist for computing the signature (Reizenstein
and Graham, 2020; Kidger and Lyons, 2020).

The expert reader is warned that this definition differs from the usual one by the normalization
of Xk[0,t] by k!, which is more adapted to our context. When the signature is taken on the
whole interval [0, 1], we simply write S(X) and Xk. In the sequel, for any index (i1, . . . , ik) ⊂
{1, . . . , d}k, S(i1,...,ik)

[0,t] (X) denotes the term associated with the coordinates (i1, . . . , ik) of Xk[0,t].

106 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

Example 5.2. Let X be the d-dimensional linear path defined by Xt = (a1 + b1t, . . . , ad + bdt)
>,

ai, bi ∈ R. Then S(i1,...,ik)(X) = bi1 · · · bik and Xk = b⊗k.

The next proposition, which ensures that S[0,t](X̄) ∈ T , is an important step.

Proposition 5.3. Let X ∈ X and X̄t = (X>t ,
1−L

2 t)> as in Proposition 5.2. Then, for any
t ∈ [0, 1], ‖S[0,t](X̄)‖T ≤ 2(1− L)−1.

The signature kernel. By taking advantage of the structure of Hilbert space of T , it is
natural to introduce the following kernel:

K : X ×X → R
(X,Y) 7→ 〈S(X̄), S(Ȳ)〉T ,

which is well defined according to Proposition 5.3. We refer to Király and Oberhauser (2019) for
a general presentation of kernel methods with signatures and to Salvi et al. (2020) for a kernel
trick. The RKHS associated with K is the space of functions

H =
{
ξα : X → R | ξα(X) = 〈α, S(X̄)〉T , α ∈ T

}
, (5.7)

with scalar product 〈ξα, ξβ〉H = 〈α, β〉T (see, e.g., Schölkopf and Smola, 2002).

5.2.3 From the CDE to the signature kernel

An important property of signatures is that the solution of the CDE (5.4) can be written,
under certain assumptions, as a linear function of the signature of the driving process X. This
operation can be thought of as a Taylor expansion for CDE. More precisely, let us rewrite (5.4)
as

dHt = F(Ht)dXt =

d∑
i=1

F i(Ht)dX
i
t , (5.8)

where Xt = (X1
t , . . . , X

d
t)>, F : Re → Re×d, and F i : Re → Re are the columns of F—to avoid

heavy notation, we momentarily write e, d, H, and X instead of ē, d̄, H̄, and X̄. Throughout, the
bold notation is used to distinguish tensor fields and vector fields. We recall that a vector field
F : Re → Re or a tensor field F : Re → Re×d are said to be smooth if each of their coordinates
is C∞.

Definition 5.2. Let F,G : Re → Re be smooth vector fields and denote by J(·) the Jacobian
matrix. Their differential product is the smooth vector field F ? G : Re → Re defined, for any
h ∈ Re, by

(F ? G)(h) =

e∑
j=1

∂G

∂hj
(h)Fj(h) = J(G)(h)F (h).

In differential geometry, F ? G is simply denoted by FG. Since the ? operation is not
associative, we take the convention that it is evaluated from right to left, i.e., F 1 ? F 2 ? F 3 :=
F 1 ? (F 2 ? F 3).

Taylor expansion. Let H be the solution of (5.8), where F is assumed to be smooth. We
now show that H can be written as a linear function of the signature of X, which is the crucial

5.2. Framing RNN as a kernel method 107

step to embed the RNN in the RKHS H . The step-N Taylor expansion of H (Friz and Victoir,
2008) is defined by

HN
t = H0 +

N∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H0).

Throughout, we let
Λk(F) = sup

‖h‖≤M,1≤i1,...,ik≤d
‖F i1 ? · · · ? F ik(h)‖.

Example 5.3. Let F = FRNN defined by (5.5) with an identity activation. Then, for any h̄ ∈ Rē,
1 ≤ i ≤ d+ 1, F iRNN(h̄) = Wih̄+ bi, where bi is the (i+ d)th vector of the canonical basis of Rē,
and

Wi = 0ē×ē, Wd+1 =

(
2

1−LW
0d×ē

)
, and bd+1 =

(
2

1−Lb
0d

)
.

The vector fields F iRNN are then affine, J(F iRNN) = Wi, and the iterated star products have a
simple expression: for any 1 ≤ i1, . . . , ik ≤ d, F i1RNN ? · · · ? F ikRNN(h̄) = Wik · · ·Wi2(Wi1 h̄+ bi1).

The next proposition shows that the step-N Taylor expansion HN is a good approximation
of H.

Proposition 5.4. Assume that the tensor field F is smooth. Then, for any t ∈ [0, 1],

‖Ht −HN
t ‖ ≤

dN+1

(N + 1)!
ΛN+1(F). (5.9)

Thus, provided that ΛN (F) is not too large, the right-hand side of (5.9) converges to zero,
hence

Ht = H0 +

∞∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H0).

We conclude from the above representation that the solution H of (5.8) is in fact a linear function
of the signature of X. A natural concern is to know whether the upper bound of Proposition 5.4
vanishes with N for standard architectures. This property is encapsulated in the following more
general assumption:

(A2) The tensor field F is smooth and
∞∑
k=0

(dk
k!

Λk(F)
)2

<∞.

Clearly, if (A2) is verified, then the right-hand side of (5.9) converges to 0. The next proposition
states formally the conditions under which (A2) is verified for FRNN. It is further illustrated in
Figure 5.1, which shows that the convergence is fast with two common activation functions. We
let ‖σ‖∞ = sup‖h‖≤M,‖x‖≤L ‖σ(Uh+ V x+ b)‖ and ‖σ(k)‖∞ = sup‖h‖≤M,‖x‖≤L ‖σ(k)(Uh+ V x+
b)‖.

Proposition 5.5. Let FRNN be defined by (5.5). If σ is the identity function, then (A2) is
satisfied. In the general case, (A2) holds if σ is smooth and there exists a > 0 such that, for any
k ≥ 0,

‖σ(k)‖∞ ≤ ak+1k! and ‖W‖F <
1− L
8a2d

, (5.10)

108 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

where ‖ · ‖F is the Frobenius norm. Moreover, ΛN (FRNN) ≤
√

2a
(

8a2‖W‖F
1−L

)N−1

N ! .

The proof of Proposition 5.5, based on the manipulation of higher-order derivatives of tensor
fields, is highly non-trivial. We highlight that the conditions on σ are mild and verified for
common smooth activations. For example, they are verified for the logistic function (with a = 2)
and for the hyperbolic tangent function (with a = 4)—see Appendix D.1.5. The second inequality
of (5.10) puts a constraint on the norm of the weights, and can be regarded as a radius of
convergence for the Taylor expansion.

Putting everything together. We now have all the elements at hand to embed the RNN into
the RKHS H . To fix the idea, we assume in this paragraph that we are in a ±1 classification
setting. In other words, given an input sequence x, we are interested in the final output zT =
ψ(hT) ∈ R, where hT is the solution of (5.1). The predicted class is 1(zT > 0).

By Propositions 5.1 and 5.2, zT is approximated by the first e coordinates of the solution
of the CDE (5.4), which outputs a Re+d-valued process H̄. According to Proposition 5.4, H̄
is a linear function of the signature of the time-augmented process X̄. Thus, on top of H̄, it
remains to successively apply the projection Proj on the e first coordinates followed by the linear
function ψ to obtain an element of the RKHS H . This mechanism is summarized in the following
theorem.

Theorem 5.6. Assume that (A1) and (A2) are verified. Then there exists a function ξα ∈ H
such that

|zT − ξα(X)| ≤ ‖ψ‖op
c1
T
, (5.11)

where ξα(X) = 〈α, S(X̄)〉T and X̄t = (X>t ,
1−L

2 t)>. We have α = (αk)∞k=0, where each αk ∈
(Rd)⊗k is defined by

α
(i1,...,ik)
k =

1

k!
ψ ◦ Proj

(
F i1 ? · · · ? F ik(H̄0)

)
.

Moreover, ‖α‖2T ≤ ‖ψ‖2op
∑∞
k=0

(
dk

k! Λk(F)
)2

.

We conclude that in the continuous-time limit, the output of the network can be interpreted
as a scalar product between the signature of the (time-augmented) process X̄ and an element
of T . This interpretation is important for at least two reasons: (i) it facilitates the analysis
of generalization of RNN by leveraging the theory of kernel methods, and (ii) it provides new
insights on regularization strategies to make RNN more robust. These points will be explored
in the next section. Finally, we stress that the approach works for a large class of RNN, such
as GRU and LSTM. The derivation of conditions (A1) and (A2) beyond the feedforward RNN
is left for future work.

5.3 Generalization and regularization

5.3.1 Generalization bounds

Learning procedure. A first consequence of framing a RNN as a kernel method is that it
gives natural generalization bounds under mild assumptions. In the learning setup, we are
given an i.i.d. sample of n random pairs of observations (x(i),y(i)) ∈ (Rd)T × Y , where x(i) =

(x
(i)
1 , . . . , x

(i)
T). We distinguish the binary classification problem, where Y = {−1, 1}, from the

sequential prediction problem, where Y = (Rp)T and y(i) = (y
(i)
1 , . . . , y

(i)
T). The RNN is assumed

5.3. Generalization and regularization 109

to be parameterized by θ ∈ Θ ⊂ Rq, where Θ is a compact set. To clarify the notation, we use
a θ subscript whenever a quantity depends on θ (e.g., fθ for f , etc.). In line with Section 5.2, it
is assumed that the tensor field Fθ associated with fθ satisfies (A1) and (A2), keeping in mind
that Proposition 5.5 guarantees that these requirements are fulfilled by a feedforward recurrent
network with a smooth activation function.

Let gθ : (Rd)T → Y denote the output of the recurrent network. The parameter θ is fitted by
empirical risk minimization using a loss function ` : Y ×Y → R+. The theoretical and empirical
risks are respectively defined, for any θ ∈ Θ, by

R(θ) = E[`(y, gθ(x))] and R̂n(θ) =
1

n

n∑
i=1

`
(
y(i), gθ(x

(i))
)
,

where the expectation E is evaluated with respect to the distribution of the generic random
pair (x,y). We let θ̂n ∈ argmin θ∈ΘR̂n(θ) and aim at upper bounding P(y 6= gθ̂n(x)) in the
classification regime (Theorem 5.7) and R(θ̂n) in the sequential regime (Theorem 5.8). To reach
this goal, our strategy is to approximate the RNN by its continuous version and then use the
RKHS machinery of Section 5.2.

Binary classification. In this context, the network outputs a real number gθ(x) = ψ(hT) ∈
R and the predicted class is 1(zT > 0). The loss ` : R × R → R+ is assumed to satisfy
the assumptions of Bartlett and Mendelson (2002, Theorem 7), that is, for any y ∈ {−1, 1},
`(y, gθ(x)) = φ(ygθ(x)), where φ(u) ≥ 1(u ≤ 0), φ(0) = 0, and φ is Lipschitz-continuous with
constant K`. For example, the cross-entropy loss satisfies such assumptions. We let ξαθ ∈ H
be the function of Theorem 5.6 that approximates the RNN with parameter θ. Thus, zT ≈
ξαθ (X̄) = 〈αθ, S(X̄)〉T , up to a O(1/T) term.

Theorem 5.7. Assume that for all θ ∈ Θ, (A1) and (A2) are verified. Assume, in addition,
that there exists a constant B > 0 such that for any θ ∈ Θ, ‖ξαθ‖H ≤ B. Then with probability
at least 1− δ,

P
(
y 6= gθ̂n(x)

)
≤ R̂n(θ̂n) +

c2
T

+
16K`B

(1− L)
√
n

+
2BK`

1− L

√
log(1/δ)

2n
, (5.12)

where c2 = K` supθ

(
‖ψ‖opKfθe

Kfθ
(
L+ ‖fθ‖∞eKfθ

))
.

Close to our result are the bounds obtained by Zhang et al. (2018), Tu et al. (2019), and
Chen et al. (2020). The main difference is that the term in 1/T does not usually appear, since
it comes from the continuous viewpoint on RNN, whereas the speed in 1/

√
n is more classical.

The take-home message is that the detour by continuous-time neural ODE provides a theoretical
framework adapted to RNN, at the modest price of an additional O(1/T) term. Moreover, we
note that the bound (5.12) is ‘simple’ and holds under mild conditions for a large class of RNN.
More precisely, for any recurrent network of the form (5.1), provided (A1) and (A2) are satisfied,
then (5.12) is valid with constants c2 and B depending on the architecture. Such constants are
given below in the example of a feedforward RNN.

Example 5.4. Take a feedforward RNN with logistic activation, and Θ = {(W, b, ψ) | ‖W‖F ≤
KW < (1 − L)/32d, ‖b‖ ≤ Kb, ‖ψ‖op ≤ Kψ}. Then, Proposition 5.5 states that (A2) is satisfied

110 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

and, with Theorem 5.6, ensures that

sup
θ∈Θ
‖ξαθ‖H ≤

√
2Kψ(1− L)

1− L− 32dKW
:= B, Kfθ = max(‖U‖op, ‖V ‖op), and ‖fθ‖∞ = 1.

Sequence-to-sequence learning. We conclude by showing how to extend both the RKHS em-
bedding of Theorem 5.6 and the generalization bound of Theorem 5.7 to the setting of sequence-
to-sequence learning. In this case, the output of the network is a sequence

gθ(x) = (z1, . . . , zT) ∈ (Rp)T .

An immediate extension of Theorem 5.6 ensures that there exist p elements α1,θ, . . . , αp,θ ∈ T
such that, for any 1 ≤ j ≤ T ,∥∥zj − (〈α1,θ, S[0,j/T](X̄)〉T , . . . , 〈αp,θ, S[0,j/T](X̄)〉T

)>∥∥ ≤ ‖ψ‖op c1
T
. (5.13)

The properties of the signature guarantee that S[0,j/T](X) = S(X̃[j]) where X̃[j] is the process
equal to X̄ on [0, j/T] and then constant on [j/T , 1]—see Appendix D.1.6. With this trick, we
have, for any 1 ≤ ` ≤ p, 〈α`,θ, S[0,j/T](X̄)〉T = 〈α`,θ, S(X̃[j])〉T , so that we are back in H .
Observe that the only difference with (5.11) is that we consider vector-valued sequential outputs,
which requires to introduce the process X̃[j], but that the rationale is exactly the same.

We let ` : (Rp)T × (Rp)T → R+ be the L2 distance, that is, for any y = (y1, . . . , yT),
y′ = (y′1, . . . , y

′
T), `(y,y′) = 1

T

∑T
j=1 ‖yj − y′j‖2. It is assumed that y takes its values in a

compact subset of Rq, i.e., there exists Ky > 0 such that ‖yj‖ ≤ Ky.

Theorem 5.8. Assume that for all θ ∈ Θ, (A1) and (A2) are verified. Assume, in addition,
that there exists a constant B > 0 such that for any 1 ≤ ` ≤ p, θ ∈ Θ, ‖ξα`,θ‖H ≤ B . Then
with probability at least 1− δ,

R(θ̂n) ≤ R̂n(θ̂n) +
c3
T

+
8pc4B(1− L)−1

√
n

+

√
2c5 log(1/δ)

n
, (5.14)

where c3 = sup
θ

(
c1,θ + ‖ψ‖op‖fθ‖∞

)
+ 2
√
pB(1 − L)−1 + 2Ky, c4 = B(1 − L)−1 + Ky, and

c5 = 4pB(1− L)−1c4 +K2
y .

5.3.2 Regularization and stability

In addition to providing a sound theoretical framework, framing deep learning in a RKHS
provides a natural norm, which can be used for regularization, as shown for example in the
context of convolutional neural networks by Bietti et al. (2019). This regularization ensures
stability of predictions, which is crucial in particular in a small sample regime or in the presence
of adversarial examples (Gao et al., 2018; Ko et al., 2019). In our binary classification setting,
for any inputs x,x′ ∈ (Rd)T , by the Cauchy-Schwartz inequality, we have

‖zT − z′T ‖ ≤ 2‖ψ‖op‖
c1
T

+ ‖ξαθ (X̄)− ξαθ (X̄ ′)‖ ≤ 2‖ψ‖op‖
c1
T

+ ‖ξαθ‖H ‖S(X̄)− S(X̄ ′)‖T .

If x and x′ are close, so are their associated continuous processes X and X ′ (which can be approx-
imated for example by taking a piecewise linear interpolation), and so are their signatures. The
term ‖S(X̄)− S(X̄ ′)‖T is therefore small (Friz and Victoir, 2010, Proposition 7.66). Therefore,

5.4. Numerical illustrations 111

when T is large, we see that the magnitude of ‖ξαθ‖H determines how close the predictions are.
A natural training strategy to ensure stable predictions, for the types of networks covered in the
present article, is then to penalize the problem by minimizing the loss R̂n(θ) + λ‖ξαθ‖2H . From
a computational point of view, it is possible to compute the norm in H , up to a truncation at
N of the Taylor expansion, which we know by Proposition 5.4 to be reasonable. It remains that
computing this norm is a non-trivial task, and implementing smart surrogates is an interesting
problem for the future.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Step N

10−5

10−4

10−3

10−2

10−1

E
rr

or

Activation

sigmoid

tanh

(a) Error on a logarithmic scale as a function
of N

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Frobenius norm of the weights

10−8

10−7

10−6

10−5

10−4

10−3

E
rr

or
fo

r
N

=
5

(b) Error as a function of the norm of the
weights

Figure 5.1 – Approximation of the RNN ODE by the step-N Taylor expansion

5.4 Numerical illustrations

This section is here for illustration purposes. Our objective is not to achieve competitive
performance, but rather to illustrate the theoretical results. We refer to Appendix D.4 for
implementation details.

Convergence of the Taylor expansion towards the solution of the ODE. We illustrate
Proposition 5.4 on a toy example. The process X is a 2-dimensional spiral, and we take feed-
forward RNN with 2 hidden units. Repeating this procedure with 103 uniform random weight
initializations, we observe in Figure 5.1a that the signature approximation converges exponen-
tially fast in N . As seen in Figure 5.1b, the rate of convergence depends in particular on the
norm of the weight matrices, as predicted by Proposition 5.5. However, condition (5.10) seems to
be over-restrictive, since convergence happens even for weights with norm larger than the bound
(we have 1/(8a2d) ' 0.01 here).

Adversarial robustness. We illustrate the penalization proposed in Section 5.3.2 on a toy task
that consists in classifying the rotation direction of 2-dimensional spirals. We take a feedforward
RNN with 32 hidden units and hyperbolic tangent activation. It is trained on 50 examples,
with and without penalization, for 200 epochs. Once trained, the RNN is tested on adversarial
examples, generated with the projected gradient descent algorithm with Frobenius norm (Madry
et al., 2018), which modifies test examples to maximize the error while staying in a ball of radius
ε. We observe in Figure 5.2 that adding the penalization seems to make the network more stable.

112 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.4

0.5

0.6

0.7

0.8

0.9

A
d

ve
rs

ar
ia

l
ac

cu
ra

cy

RNN

Penalized RNN

Figure 5.2 – Adversarial accuracy as a function of the adversarial perturbation ε

Comparison of the trained networks. The evolution of the Frobenius norm of the weights
‖W‖F and the RKHS norm ‖ξαθ‖H during training is shown in Figure 5.3. This points out that
the penalization, which forces the RNN to keep a small norm in H , leads indeed to learning
different weights than the non-penalized RNN. The results also suggest that the Frobenius and
RKHS norms are decoupled, since both networks have Frobenius norms of similar magnitude but
very different RKHS norms. The figures show one random run, but we observe similar qualitative
behavior on others.

0 25 50 75 100 125 150 175 200

Epoch

5

10

15

20

25

30

F
ro

b
en

iu
s

n
or

m
of

th
e

w
ei

gh
ts

RNN

Penalized RNN

0 25 50 75 100 125 150 175 200

Epoch

10−3

10−1

101

103

R
K

H
S

n
or

m
(N

=
3)

RNN

Penalized RNN

Figure 5.3 – Evolution of the Frobenius norm of the weights and of the RKHS norm during
training

5.5 Conclusion

By bringing together the theory of neural ODE, the signature transform, and kernel methods,
we have shown that a recurrent network can be framed in the continuous-time limit as a linear
function in a well-chosen RKHS. In addition to giving theoretical insights on the function learned
by the network and providing generalization guarantees, this framing suggests regularization
strategies to obtain more robust RNN. We have only scratched the surface of the potentialities
of leveraging this theory to practical applications, which is a subject of its own and will be tackled
in future work.

Bibliography 113

Bibliography

Akpinar, N.-J., Kratzwald, B., and Feuerriegel, S. (2019). Sample complexity bounds for recurrent
neural networks with application to combinatorial graph problems. arXiv:1901.10289.

Bartlett, P. L., and Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3, 463–482.

Belkin, M., Ma, S., and Mandal, S. (2018). To understand deep learning we need to understand
kernel learning. In J. Dy and A. Krause (Eds.), Proceedings of the 35th international
conference on machine learning (pp. 541–549). PMLR.

Bietti, A., and Mairal, J. (2017). Invariance and stability of deep convolutional representations.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett (Eds.), Advances in neural information processing systems (pp. 6210–6220).
Curran Associates, Inc.

Bietti, A., and Mairal, J. (2019). Group invariance, stability to deformations, and complexity of
deep convolutional representations. Journal of Machine Learning Research, 20, 1–49.

Bietti, A., Mialon, G., Chen, D., and Mairal, J. (2019). A kernel perspective for regularizing deep
neural networks. In K. Chaudhuri and R. Salakhutdinov (Eds.), Proceedings of the 36th
international conference on machine learning (pp. 664–674).

Chang, B., Chen, M., Haber, E., and Chi, E. H. (2019). AntisymmetricRNN: A dynamical system
view on recurrent neural networks. International Conference on Learning Representa-
tions.

Chen, K.-T. (1958). Integration of paths—a faithful representation of paths by non-commutative
formal power series. Transactions of the American Mathematical Society, 89, 395–407.

Chen, M., Li, X., and Zhao, T. (2020). On generalization bounds of a family of recurrent neu-
ral networks. In S. Chiappa and R. Calandra (Eds.), Proceedings of the twenty third
international conference on artificial intelligence and statistics (pp. 1233–1243).

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordi-
nary differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett (Eds.), Advances in neural information processing sys-
tems (pp. 6572–6583). Curran Associates, Inc.

Chevyrev, I., and Kormilitzin, A. (2016a). A primer on the signature method in machine learning.
arXiv:1603.03788.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and
Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for sta-
tistical machine translation. Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, 1724–1734.

Cho, Y., and Saul, L. (2009). Kernel methods for deep learning. In Y. Bengio, D. Schuurmans, J.
Lafferty, C. Williams, and A. Culotta (Eds.), Advances in neural information processing
systems (pp. 342–350). Curran Associates, Inc.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12,
2493–2537.

De Brouwer, E., Simm, J., Arany, A., and Moreau, Y. (2019). GRU-ODE-Bayes: Continuous
modeling of sporadically-observed time series. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in neural information
processing systems (pp. 7379–7390). Curran Associates, Inc.

Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L., and Mahoney, M. W. (2021). Lips-
chitz recurrent neural networks. International Conference on Learning Representations.

114 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

Fermanian, A. (2021). Embedding and learning with signatures. Computational Statistics & Data
Analysis, 157, 107148.

Friz, P., and Victoir, N. (2008). Euler estimates for rough differential equations. Journal of
Differential Equations, 244, 388–412.

Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:
theory and applications (Vol. 120). Cambridge University Press.

Gao, J., Lanchantin, J., Soffa, M. L., and Qi, Y. (2018). Black-box generation of adversarial text
sequences to evade deep learning classifiers. 2018 IEEE Security and Privacy Workshops,
50–56.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep recurrent
neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, 6645–6649.

Herrera, C., Krach, F., and Teichmann, J. (2021). Neural jump ordinary differential equations:
consistent continuous-time prediction and filtering. International Conference on Learn-
ing Representations.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T. N., et al. (2012). Deep neural networks for acoustic modeling
in speech recognition: the shared views of four research groups. IEEE Signal Processing
Magazine, 29, 82–97.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9,
1735–1780.

Jacot, A., Gabriel, F., and Hongler, C. (2018). Neural tangent kernel: convergence and gener-
alization in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett (Eds.), Advances in neural information processing systems
(pp. 8580–8589). Curran Associates, Inc.

Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep signature trans-
forms. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Eds.), Advances in neural information processing systems (pp. 3099–3109).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

Kidger, P., Morrill, J., Foster, J., and Lyons, T. (2020a). Neural controlled differential equations
for irregular time series. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H.
Lin (Eds.), Advances in neural information processing systems (pp. 6696–6707). Curran
Associates, Inc.

Király, F. J., and Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Ma-
chine Learning Research, 20, 1–45.

Ko, C.-Y., Lyu, Z., Weng, L., Daniel, L., Wong, N., and Lin, D. (2019). POPQORN: Quantifying
robustness of recurrent neural networks. In K. Chaudhuri and R. Salakhutdinov (Eds.),
Proceedings of the 36th international conference on machine learning (pp. 3468–3477).

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Liao, S., Lyons, T., Yang, W., and Ni, H. (2019). Learning stochastic differential equations using
RNN with log signature features. arXiv:1908.08286.

Lim, S. H. (2021). Understanding recurrent neural networks using nonequilibrium response the-
ory. Journal of Machine Learning Research, 22, 1–48.

Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths
(Vol. 1908). Springer.

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Bibliography 115

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018). Towards deep learning
models resistant to adversarial attacks. International Conference on Learning Represen-
tations.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent neu-
ral network based language model. Proceedings of the 11th Annual Conference of the
International Speech Communication Association, 2, 1045–1048.

Morrill, J., Salvi, C., Kidger, P., Foster, J., and Lyons, T. (2020b). Neural rough differential
equations for long time series. arXiv:2009.08295.

Morrill, J. H., Kormilitzin, A., Nevado-Holgado, A. J., Swaminathan, S., Howison, S. D., and
Lyons, T. J. (2020c). Utilization of the signature method to identify the early onset
of sepsis from multivariate physiological time series in critical care monitoring. Critical
Care Medicine, 48, e976–e981.

Perez Arribas, I. (2018). Derivatives pricing using signature payoffs. arXiv:1809.09466.
Reizenstein, J., and Graham, B. (2020). Algorithm 1004: the iisignature library: efficient calcu-

lation of iterated-integral signatures and log signatures. ACM Transactions on Mathe-
matical Software.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K. (2019). Latent ordinary differential equations
for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances in neural information processing
systems (pp. 5320–5330). Curran Associates, Inc.

Salvi, C., Cass, T., Foster, J., Lyons, T., and Yang, W. (2020). The signature kernel is the
solution of a goursat pde. arXiv:2006.14794.

Schölkopf, B., and Smola, A. J. (2002). Learning with kernels: support vector machines, regular-
ization, optimization, and beyond. MIT press.

Toth, C., and Oberhauser, H. (2020). Bayesian learning from sequential data using Gaussian
processes with signature covariances. In H. Daumé III and A. Singh (Eds.), Proceedings
of the 37th international conference on machine learning (pp. 9548–9560). PMLR.

Tu, Z., He, F., and Tao, D. (2019). Understanding generalization in recurrent neural networks.
International Conference on Learning Representations.

Wang, B., Liakata, M., Ni, H., Lyons, T., Nevado-Holgado, A. J., and Saunders, K. (2019). A
path signature approach for speech emotion recognition. Interspeech 2019, 1661–1665.

Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31, 45–53.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

Yue, B., Fu, J., and Liang, J. (2018). Residual recurrent neural networks for learning sequential
representations. Information, 9, 56.

Zhang, J., Lei, Q., and Dhillon, I. (2018). Stabilizing gradients for deep neural networks via
efficient SVD parameterization. In J. Dy and A. Krause (Eds.), Proceedings of the 35th
international conference on machine learning (pp. 5806–5814). PMLR.

116 CHAPTER 5. Framing RNN as a kernel method: A neural ODE approach

Chapter 6

The insertion algorithm for
signature inversion

The signature is a representation of a path as an infinite sequence of its iterated integrals. Un-
der some assumptions, the signature characterizes the path, up to translation and reparametriza-
tion. Therefore, a crucial question of interest is the development of efficient algorithms to invert
the signature, that is, reconstruct the path from the information of its (truncated) signature. In
this article, we study the insertion algorithm, originally introduced by Chang and Lyons (2019),
from both a theoretical and practical point of view. After a description of our version of this
algorithm, we give its rate of convergence for piecewise linear paths. This is accompanied by
an implementation of this algorithm in Pytorch. This algorithm is parallelized, meaning that it
is very efficient at inverting a batch of signatures simultaneously. Its performance is illustrated
with both real-world and simulated examples.

Contents

6.1 Introduction 117
6.2 Preliminaries 118

6.2.1 Path of bounded variation . 118
6.2.2 Tensor space . 119
6.2.3 The signature of a path . 121

6.3 The insertion algorithm 123
6.3.1 Theoretical guarantees . 123
6.3.2 Algorithm . 127

6.4 Experimental results 130

6.1 Introduction

To any multivariate path, that is, a smooth function X : [0, 1]→ Rd, d ≥ 1, one can associate
its signature, denoted by S(X), which is a representation of X as an infinite sequence of tensors
of iterated integrals. The signature was first introduced by Chen (1957), then was at the heart
of rough path theory (Lyons et al., 2007; Friz and Victoir, 2010), and is now extensively used in
machine learning (Levin et al., 2013; Chevyrev and Kormilitzin, 2016a; Király and Oberhauser,

117

118 CHAPTER 6. The insertion algorithm for signature inversion

2019; Kidger et al., 2019; Fermanian, 2021; Liao et al., 2019; Toth and Oberhauser, 2020). The
combination of the signature transform and machine learning algorithms has been sucessfully
applied in various domaines such as character recognition (Yang et al., 2016a; Wilson-Nunn
et al., 2018), finance (Lyons et al., 2014; Perez Arribas, 2018), human action recognition (Yang
et al., 2017; Li et al., 2017), medicine (Morrill et al., 2019; Morrill et al., 2020c), and emotion
recognition (Wang et al., 2019).

The signature is a faithful representation of a path as a geometric object: up to translations,
reparametrizations, and “tree-like” pieces—sections of a path where it retraces itself backward,
see Hambly and Lyons (2010)—the signature characterizes the path. A natural question is
therefore to design fast algorithms that can invert the signature, that is, reconstruct X from the
information in S(X). This question has been an active area of research, with several results in
the last years. To cite only a few, Lyons and Xu (2017) provide a procedure for piecewise linear
paths, Lyons and Xu (2018) for C1 paths and Chang et al. (2017) for monotone paths. To our
knowledge, the most recent and fastest algorithm is the insertion algorithm, first proposed by
Chang and Lyons (2019), which is our object of study.

The insertion algorithm focuses on piecewise linear paths: given the signature of a piecewise
linear path truncated at order n, this algorithm reconstructs a piecewise linear path of n pieces.
In this article, we present a new version of this insertion algorithm, give its rate of convergence,
and provide its implementation in the PyTorch (Paszke et al., 2019) framework. This imple-
mentation is now part of the package Signatory (Kidger and Lyons, 2020). We also perform
a study of the computational cost of the algorithm. Our main goal is to make this algorithm
available to a large audience, in particular to the machine learning community. Having a fast
inversion algorithm with theoretical guarantees opens several new applications to signatures: se-
quential data generation with Generative Adversarial Networks (GANs), time series smoothing,
or compression, to name only a few.

The article is organized as follows.

(i) Section 6.2 gives some preliminaries on signatures and tensors.

(ii) Section 6.3 describes the insertion algorithm and gives the main theorems.

(iii) Section 6.4 gives some examples of signature inversion and a study of running times.

The proofs are given in Appendix E.

6.2 Preliminaries

We introduce in this section the mathematical setting together with some notations used
throughout the paper. In all the following, we assume that Rd is equipped with the Euclidean
norm, denoted by ‖ · ‖. We refer the reader to Friz and Victoir (2010), Chapter 1, and Lyons
et al. (2007) for further details on signatures and tensors.

6.2.1 Path of bounded variation

Definition 6.1 (Path of bounded variation). Let X : [0, 1]→ Rd be a continuous path. For any
[u, v] ⊂ [0, 1], the total variation of X on [u, v] is defined by

‖X‖TV ;[u,v] = sup
(u1,...,un)∈Du,v

n∑
i=1

‖Xui −Xui−1
‖,

6.2. Preliminaries 119

where Du,v denotes the set of all finite partitions of [u, v], that is,

Du,v =
{

(u0, . . . , un)|n ≥ 0, u = u0 ≤ u1 ≤ · · · ≤ un−1 ≤ un = v
}
.

The path X is said to be of bounded variation on [u, v] if its total variation is finite. We denote
by BV (Rd) the set of continuous paths of bounded variation on [0, 1] with values in Rd.

When [u, v] = [0, 1], we often write ‖X‖TV instead of ‖X‖TV ;[0,1].

Example 6.1. Let X : [0, 1] → Rd be a continuous piecewise linear path, and 0 = t0 < t1 <
· · · < tM−1 < tM = 1 denote the minimal partition such that X is linear on each [ti−1, ti]: there
exists α1, . . . , αM , β1, . . . , βM ∈ Rd such that

Xt = αi + βit, for t ∈ [ti−1, ti], i ∈ {1, . . . ,M}.

Then,

‖X‖TV =

M∑
i=1

‖βi‖(ti−1 − ti).

6.2.2 Tensor space

Let E and F be two real vector spaces, we denote by E⊗F their tensor product. It is also a
vector space, and, if (ei)i∈I , (fj)j∈J , are basis of E and F respectively, then (ei ⊗ fj)i∈I,j∈J is a
basis of E⊗F . In the finite-dimensional case, if dim(E) = d, dim(F) = e, then dim(E⊗F) = de.
By convention, E⊗0 = R. We refer the reader to Purbhoo (2012) for more details on tensor
products.

The nth tensor power of a vector space E is defined as the order n tensor product of E with
itself:

E⊗n =

n︷ ︸︸ ︷
E ⊗ · · · ⊗ E .

When E is of finite dimension, if (e1, . . . , ed) is a basis of E, any element a of E⊗n can be written
as

a =
∑

I=(i1,...,in)∈{1,...,d}n
aIei1 ⊗ · · · ⊗ ein , aI ∈ R.

The space E⊗n is then of dimension dn, which means that we can identify E⊗n with Rdn . In
particular, E⊗2 can be identified with the space of d× d matrices.

We now restrict to the Euclidean case E = Rd, where Rd is endowed with its canonical basis,
denoted throughout the article by (e1, . . . , ed). We wish to endow the tensor spaces (Rd)⊗n,
n ≥ 0, with norms inherited from the Euclidean norm on Rd. These norms should behave “well”
with the tensor product, which is summarized by the notion of admissible norms. Before giving
their definition, we introduce the notion of permutations on (Rd)⊗n.

Definition 6.2. Let σ be a permutation of {1, . . . , n}, that is, a bijective function σ : {1, . . . , n} →
{1, . . . , n}. Then, for any a ∈ (Rd)⊗n,

a =
∑

(i1,...,in)∈{1,...,d}n
a(i1,...,in)ei1 ⊗ · · · ⊗ ein ,

120 CHAPTER 6. The insertion algorithm for signature inversion

σ(a) is defined by

σ(a) =
∑

(i1,...,in)∈{1,...,d}n
a(i1,...,in)eiσ(1)

⊗ · · · ⊗ eiσ(n)
.

Example 6.2. Let n = 2 and σ : {1, 2} → {1, 2} be the function that switches 1 and 2: σ(1) = 2
and σ(2) = 1. Then, any a ∈ (R2)⊗2 may be written as

a = a(1,1)e1 ⊗ e1 + a(1,2)e1 ⊗ e2 + a(2,1)e2 ⊗ e1 + a(2,2)e2 ⊗ e2,

and

σ(a) = a(1,1)e2 ⊗ e2 + a(1,2)e2 ⊗ e1 + a(2,1)e1 ⊗ e2 + a(2,2)e1 ⊗ e1.

Definition 6.3 (Admissible norms). Assume that for each n, (Rd)⊗n is endowed with a norm.
Then, one says that these norms are admissible if

(i) For any n ≥ 1, for any permutation σ of elements of a ∈ (Rd)⊗n, then

‖σ(a)‖ = ‖a‖.

(ii) For any n,m ≥ 1, a ∈ (Rd)⊗n, b ∈ (Rd)⊗m,

‖a⊗ b‖ = ‖a‖‖b‖.

Remark 6.1. For simplicity, we write “(Rd)⊗n is equipped with an admissible tensor norm”
instead of “For each n, (Rd)⊗n is equipped with a tensor norm, and these norms are admissible”.
We also refer to “an admissible norm” instead of “a set of admissible tensor norms”.

There exists several admissible norms. The most natural is the Euclidean tensor norm, defined
as follows. Let a, b ∈ (Rd)⊗n, then

〈a, b〉 =
∑

I∈{1,...,d}n
aIbI , and ‖a‖ =

(∑
I∈{1,...,d}n

a2
I

)1/2

.

It is straightforward to show that this norm is admissible. Another important admissible norm
is the projective norm, which is the largest possible admissible norm. Indeed, let ‖ · ‖ be any
admissible norm and write an element a ∈ (Rd)⊗n as

a =

k∑
i=1

a1,i ⊗ · · · ⊗ an,i, a1,i, . . . , an,i ∈ Rd. (6.1)

Note that such a representation always exist since we can take the aj,i as basis elements. Then,
if we want (ii) in Definition 6.3 to be satisfied, by the triangle inequality, we must have

‖a‖ ≤
k∑
i=1

‖a1,i‖ · · · ‖an,i‖.

6.2. Preliminaries 121

Since this is true for any representation of the form (6.1), we must therefore have

‖a‖ ≤ inf
{ k∑
i=1

‖a1,i‖ · · · ‖an,i‖ | a =

k∑
i=1

a1,i ⊗ · · · ⊗ an,i, k ≥ 1
}
.

The right hand side is exactly the projective norm, denoted by ‖ · ‖π:

‖a‖π = inf
{ k∑
i=1

‖a1,i‖ · · · ‖an,i‖ | a =

k∑
i=1

a1,i ⊗ · · · ⊗ an,i, k ≥ 1
}
. (6.2)

It is easily shown that ‖ · ‖π is a norm and is admissible.
From now on, we assume that the tensor powers of Rd have been equipped with admissible

norms. Finally, we define the tensor algebra as the formal sum of tensor powers.

Definition 6.4. We denote by T (Rd) the space of formal series of tensors of Rd, i.e.,

T (Rd) =
{

(a0, . . . , ak, . . .) | ∀k ≥ 0, ak ∈ (Rd)⊗k
}
,

and
Tn(Rd) =

{
(a0, . . . , an) | ∀k ∈ {0, . . . , n}, ak ∈ (Rd)⊗k

}
the truncated tensor space up to order n.

6.2.3 The signature of a path
We are now in a position to define the signature and provide some elementary examples.

Definition 6.5. Let X ∈ BV (Rd). The signature of X is defined by

S(X) = (1,X1,X2, . . . ,Xn, . . .) ∈ T (Rd),

where, for each integer n,

Xn =

∫
· · ·
∫

0≤u1≤···≤un≤1

dXu1
⊗ · · · ⊗ dXun ∈ (Rd)⊗n.

Note that the integrals should be understood as Riemann-Stieljes integrals.

Example 6.3. If d = 2, Xt = (X1
t , X

2
t), (R2)⊗n can be identified with R2n and the signatures

of order 1 and 2 are equal to

X1 =

∫ 1

0

dXt =

∫ 1

0
dX1

t∫ 1

0
dX2

t

X2 =

∫ 1

0

∫ t

0

dXs ⊗ dXt =

∫ 1

0

∫ t
0
dX1

sdX
1
t

∫ 1

0

∫ t
0
dX1

sdX
2
t∫ 1

0

∫ t
0
dX2

sdX
1
t

∫ 1

0

∫ t
0
dX2

sdX
2
t

 .

We introduce a series of notations.
• For any n ≥ 0, the truncated signature of order n is denoted by

Sn(X) = (1,X1, . . . ,Xn).

122 CHAPTER 6. The insertion algorithm for signature inversion

• For any u < v, the simplex in [u, v]n is denoted by

∆n;[u,v] = {(u1, . . . , un) ∈ [u, v]n|u ≤ u1 ≤ · · · ≤ un ≤ v}. (6.3)

When [u, v] = [0, 1], we simply write ∆n.
• For a multi-index I = (i1, . . . , in) ∈ {1, . . . , d}n, the coefficient of Xn corresponding to this
multi-index is

SI(X) =

∫
(u1,...,un)∈∆n

dXi1
u1
. . . dXin

un ,

where Xt = (X1
t , . . . , X

d
t)>, t ∈ [0, 1]. We can then rewrite the signature of order n as

Xn =
∑

I∈{1,...,d}n
SI(X)ei1 ⊗ · · · ⊗ ein .

• We will sometimes consider the signature of a path restricted to a specific interval [u, v] ⊂
[0, 1]; its signature is then denoted by S[u,v](X) (respectively Xn

[u,v], and so on).

The signature is an element of T (Rd) and the truncated signature Sn(X) is in Tn(Rd). We
now give two examples of paths for which we can directly compute the signature: linear and
univariate paths.

Example 6.4 (Linear path). Let X : [0, 1]→ Rd be a linear path, i.e., Xt = α+ βt, α, β ∈ Rd,
for any t ∈ [0, 1]. Then, for any n ≥ 0, u, v ∈ [0, 1] such that u < v,

Xn
[u,v] =

∫
∆n;[u,v]

dXu1
⊗ · · · ⊗ dXun

=

∫
∆n;[u,v]

(βdu1)⊗ · · · ⊗ (βdun) = β⊗n
∫

∆n;[u,v]

du1 . . . dun = β⊗n
(v − u)n

n!
. (6.4)

We now recall several properties of signatures that are useful to understand the insertion
algorithm. We refer the reader to Lyons et al. (2007), Chapter 2, for their proofs.

Proposition 6.1.
(i) Let X ∈ BV (Rd), u, v, w ∈ [0, 1] such that u < v < w. Then

Xn
[u,w] =

n∑
k=0

Xk
[u,v] ⊗Xn−k

[v,w].

(ii) Let X ∈ BV (Rd), ψ : [0, 1]→ [0, 1] be a reparametrisation (non-decreasing surjection), and
let X̃t = Xψ(t) for any t ∈ [0, 1]. Then, S(X̃) = S(X).

The first part of Proposition 6.1 is known as Chen’s identity. It gives a procedure to compute
signatures of piecewise linear paths: given the explicit formula for the signature of a linear path
in Example 6.4, Chen’s formula gives the signature of a concatenation of two linear sections.
Iterating this procedure enables to compute the signature of any piecewise linear path. This is
the basis of the available software in Python such as iisignature and Signatory.

Since we are interested in reconstructing a path from its signature, we need to discuss what
it means for two paths to have the same signature. It is clear from their definition that signa-
tures are invariant by translation, and Proposition 6.1, (ii), states that they are invariant by
reparametrizations. The right notion to encapsulate how the signatures characterize paths is the
notion of tree-like equivalence, introduced by Hambly and Lyons (2010) and defined as follows.

6.3. The insertion algorithm 123

Definition 6.6 (Tree-like equivalence).
• A path X ∈ BV (Rd) is tree-like if there exists a continuous function h : [0, 1] → [0,+∞)
such that h(0) = h(1) = 0 and such that for any s, t ∈ [0, 1], s ≤ t,

‖Xs −Xt‖ ≤ h(s) + h(t)− 2 inf
u∈[s,t]

h(u).

• Let X,Y ∈ BV (Rd), we say that X and Y are tree-like equivalent if X ∗ ←−Y is a tree-like
path, and denote this relation by X ∼ Y .

Informally, a tree-like path is a path that retraces itself backward. We can now state the
uniqueness theorem of Hambly and Lyons (2010, Theorem 4).

Theorem 6.2. For any X,Y ∈ BV (Rd), then S(X) = S(Y) if and only if X ∼ Y . Moreover,
for any X ∈ BV (Rd), there exists a unique path of minimal length in its equivalence class,
denoted by X and called the reduced path.

This theorem can be summarized as follows: the signature loses the information of the initial
position of the path, of the time parametrization, and of any tree-like piece. For example, the two
paths of Figure 6.1 have the same signature: the orange part is a tree-like piece and is therefore
“not seen” by the signature.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

X1
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

X
2 t

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

X1
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

X
2 t

Figure 6.1 – Path with a tree-like piece, plotted in orange (left) and the same path where the
tree-like piece has been removed (right). These two paths have the same signature.

Finally, we give below an upper bound on the size of signature coefficients.

Proposition 6.3. Let X ∈ BV (Rd), u, v ∈ [0, 1] such that u < v. For any admissible tensor
norm and n ≥ 0,

‖Xn
[u,v]‖ ≤

‖X‖nTV ;[u,v]

n!
.

6.3 The insertion algorithm

6.3.1 Theoretical guarantees
We are now in a position to describe the insertion algorithm and our theoretical setting. We

assume that we are given a piecewise linear path X : [0, 1]→ Rd as defined in Example 6.1. We

124 CHAPTER 6. The insertion algorithm for signature inversion

denote by
0 = t0 < t1 < · · · < tM−1 < tM = 1

the minimal partition such thatX is linear on each [ti−1, ti]: there exists α1, . . . , αM , β1, . . . , βM ∈
Rd such that

Xt = αi + βit, for t ∈ [ti−1, ti], i ∈ {1, . . . ,M}. (6.5)

We assume that X is the reduced path in its equivalence class, for the tree-like equivalence (see
Theorem 6.2). This amounts to assuming that the angle between any two consecutive linear
segments is not equal to zero. More precisely, for any i ∈ {1, . . . ,M − 1}, we denote by ωi the
angle between the linear segments [ti−1, ti] and [ti, ti+1], defined by

ωi = Arccos
(〈βi, βi+1〉
‖βi‖‖βi+1‖

)
∈ [0, π[,

where 〈·, ·, 〉 denotes the Euclidean scalar product, and Arccos the arccosine function. Note that
ωi ∈ [0, π[because we have taken a minimal partition. Then, we make the assumption

(A1) ω = min
i∈{1,...,M}

ωi > 0. (6.6)

Assumption (A1) implies that the signature ofX characterizesX up to translation and reparametriza-
tion. The invariance by translation amounts to saying that we cannot recover α0 from S(X). By
continuity of X, the αis for i ∈ {1, . . . ,M} are entirely determined by α0, β1, . . . , βM . Therefore,
the only information we hope to recover is the information on the slopes βis, up to reparametriza-
tions of the path. Given this invariance, we can choose a specific parametrization of X. Let `
denote the length of X, ` = ‖X‖TV , then we define the reparametrization

φ : [0, 1]→ [0, 1]

t 7→ ‖X‖TV ;[0,t]

`
.

The function φ is strictly increasing and continuous piecewise linear. Indeed, if t ∈ [ti−1, ti[, then

φ(t) = `−1
i−1∑
k=1

‖βk‖(tk − tk−1) + `−1‖βi‖(t− ti−1).

The path Xt = Xφ−1(t) is therefore a reparametrization of X, and S(X) = S(X). More precisely,
X is linear by part on the partition 0 = u0 < u1 < · · · < uM = 1, where

ui = `−1
i∑

k=1

‖βk‖(tk − tk−1).

For any i ∈ {1, . . . ,M}, u ∈ [ui−1, ui[, we have

φ−1(u) =
`

‖βi‖
(u− ui−1) + ti−1,

and
Xu = αi + βiφ

−1(u) = αi +
`

‖βi‖
βi(u− ui) + βiti−1.

6.3. The insertion algorithm 125

The path X is therefore piecewise linear and its slopes have a constant norm, equal to `. We see
that recovering X up to translations and reparametrizations amounts to recovering the direction
of each linear segment up to its norm, that is, β1/‖β1‖, . . . , βM/‖βM‖.

From now on, we therefore assume that X is piecewise linear on a partition t0 = 0 < t1 <
· · · < tM = 1 and that ‖βi‖ = ` for any i ∈ {1, . . . ,M}:

(A2) ∀i ∈ {1, . . . ,M}, ‖βi‖ = `.

The general idea of the algorithm is the following. Signatures of order n and n+ 1 are linked
through the insertion of the derivatives of the path into a tensor product that is then integrated.
Therefore, retrieving the derivative of the path boils down to finding a vector in Rd such that,
once inserted into the tensor product of the signature of order n, it will minimize the distance
between this modified signature and the signature of order n+ 1. This problem can be written
as a linear minimization problem, which can be solved very efficiently. Solving this problem
allows to retrieve the derivatives of the path on different intervals and to reconstruct the path
by integration.

The first ingredient of the algorithm is the insertion map, which is a linear map defined as a
tensor product between a vector y ∈ Rd and the signature of X of order n along the dimension
p.

Definition 6.7. Let n ≥ 1, p ∈ {1, . . . , n+ 1}, and X ∈ BV (Rd). The insertion map is denoted
by L n

p,X : Rd → (Rd)⊗(n+1) and defined, for any y ∈ Rd, by

L n
p,X(y) =

∫
(u1,...,un)∈∆n

dXu1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ dXup ⊗ · · · ⊗ dXun ∈ (Rd)⊗n+1.

A first observation is that this map is linear, depends only on the signature of X truncated
at order n, and is Lipschitz continuous for any admissible tensor norm (see Definition 6.3).

Proposition 6.4. Let X ∈ BV (Rd). Then, for any n ≥ 1, p ∈ {1, . . . , n + 1}, L n
p,X is linear,

Lipschitz-continuous, and its Lipschitz constant is ‖Xn‖.
Proof. The linearity is a direct consequence of the linearity of the tensor product. Let y, z ∈ Rd,
then

‖L n
p,X(y)−L n

p,X(z)‖ =
∥∥∫

∆n

dXu1 ⊗ · · · ⊗ dXup−1 ⊗ (y − z)⊗ dXup ⊗ · · · ⊗ dXun

∥∥
=
∥∥∫

∆n

dXu1 ⊗ · · · ⊗ dXun ⊗ (y − z)
∥∥ (by Definition 6.3, (i))

=
∥∥∫

∆n

dXu1
⊗ · · · ⊗ dXun

∥∥‖y − z‖ (by Definition 6.3, (ii))

= ‖Xn‖‖y − z‖. (6.7)

The idea of the insertion algorithm is to minimize the following quantity

min
y∈Rd
‖L n

p,X(y)− (n+ 1)Xn+1‖. (6.8)

If p is well-chosen, that is, p/n+1 ∈ [ti−1, ti[far enough from the limits of the interval (see Figure
E.2), then we can show that the minimizer of (6.8) is close to βi, which is stated in the next

126 CHAPTER 6. The insertion algorithm for signature inversion

theorem.

Theorem 6.5. Let X be a piecewise linear path as defined by (6.5), following assumptions (A1)
and (A2). Let

K(ω) = log
(2

1− cos(|ω|/2)

)
, and n1 = b4e2(M−1)K(ω)c, (6.9)

where ω is defined by (6.6). For any 1 ≤ i ≤M , n ≥ max(n1, 2/(ti−ti−1)), and p = b(3ti+ti−1)(n+1)/4c,
let

y∗p,n ∈ arg min
y∈Rd

‖L n
p,X(y)− (n+ 1)Xn+1‖. (6.10)

Then there exists kn ∈ [n− n3/4, n+ n3/4] such that

‖y∗p,kn − βi‖ ≤ 4`e(M−1)K(ω)
(1√

kn + 1

√
1− (ti − ti−1)

ti − ti−1
+ 4 exp

(
− kn

16
(ti − ti−1)2

))
.

Given that the intervals [n − n3/4, n + n3/4] go rightward and that their width grows slower
than n, we have the immediate corollary

Corollary 6.6. There exists a strictly increasing subsequence (kn)n≥n1
such that y∗p,kn converges

to βi as n increases.

The proof of Theorem 6.5 relies on two results which we state below. We postpone their
proofs to Appendix E.

Theorem 6.7. Let X be a piecewise linear path as defined by (6.5), following assumptions (A1)
and (A2). If 1 ≤ i ≤M , n ≥ 2/(ti−ti−1) and p = b(3ti+ti−1)(n+1)/4c, then

‖L n
p,X(βi)− (n+ 1)Xn+1‖ ≤ `n+1

n!

(1√
n+ 1

√
1− (ti − ti−1)

ti − ti−1
+ 4 exp

(
− n

16
(ti − ti−1)2

))
.

Theorem 6.8. Let X be a piecewise linear path as defined by (6.5), following assumptions (A1)
and (A2). For any n > n1 (n1 being defined by (6.9)), there exists kn ∈ [n− n3/4, n+ n3/4] such
that

‖Xkn‖π ≥ `kn
e−(M−1)K(ω)

2kn!
,

where ‖ · ‖π is the projective tensor norm defined by (6.2).

With these two results at hand, the proof of Theorem 6.5 is straightforward.

Proof of Theorem 6.5. The identity (6.7) is true for any admissible norm so it is true in particular
for the projective norm. It gives, for any n ≥ 0,

‖L n
p,X(y∗p,n)−L n

p,X(βi)‖π = ‖Xn‖π ‖y∗p,n − βi‖.

On the one hand, Theorem 6.8 gives the existence of kn ∈ [n− n3/4, n+ n3/4] such that

‖Xkn‖π ≥ `kn
e−(M−1)K(ω)

2kn!
.

6.3. The insertion algorithm 127

On the other hand, Theorem 6.7 (which is true for any tensor norm) yields

‖L kn
p,X(βi)− (kn + 1) Xkn+1‖π ≤

`kn+1

kn!

(1√
kn + 1

√
1− (ti − ti−1)

ti − ti−1
+ 4 exp

(
− kn

16
(ti− ti−1)2

))
,

and, by definition of y∗p,n,

‖L kn
p,X(y∗p,kn)− (kn + 1) Xkn+1‖ ≤ ‖L kn

p,X(βi)− (kn + 1) Xkn+1‖.

Combining these inequalities, we obtain

‖y∗p,kn − βi‖ =
1

‖Xkn‖π
‖L kn

p,X(y∗p,kn)−L kn
p,X(βi)‖

≤ 1

‖Xkn‖π
(
‖L kn

p,X(y∗p,kn)− (kn + 1) Xkn+1‖+ ‖(kn + 1) Xkn+1 −L kn
p,X(βi)‖

)
≤ 2

‖Xkn‖π
‖(kn + 1) Xkn+1 −L kn

p,X(βi)‖

≤ 4`e(M−1)K(ω)
(1√

kn + 1

√
1− (ti − ti−1)

ti − ti−1
+ 4 exp

(
− kn

16
(ti − ti−1)2

))
.

6.3.2 Algorithm

The last step necessary to have a complete algorithm is to solve (6.10). Let Ap ∈ Rdn+1×d

denote the matrix representing the linear application L n
p,X(·) in the canonical basis of Rd, where

we identify (Rd)⊗n+1 with Rdn+1

. Then, for any y ∈ Rd, L n
p,X(y) = Apy. Recall that the singular

values of a linear operator A are the square roots of the eigenvalues of the operator A>A. The
following lemma tells us the form of the singular values of L n

p,X , which is a crucial step to find
an explicit solution of (6.10).

Lemma 6.9. For any p ∈ {1, . . . , n+ 1}, all the singular values of Ap are identical and equal to
‖Xn‖.
Proof. Let e1, . . . , ed denote the canonical basis of Rd. Then, each column of Ap corresponds to
L n
p,X(ej). By definition, for any index (i1, . . . , in+1) ∈ {1, . . . , d}n+1,

(L n
p,X(ej))i1,...,in+1

=

{
S(i1,...,ip−1,ip+1,...,in+1) if ip = j,

0 otherwise.

Therefore, each row of Ap, indexed by a tuple (i1, . . . , in+1), contains only one non-zero element:
the one in the column j = ip. Let ai1,...,in+1,j denote the element in column j corresponding to
the row (i1, . . . , in+1). Then, for any q, r ∈ {1, . . . , d},

(A>p Ap)q,r =
∑

(i1,...,in+1)∈{1,...,d}n+1

ai1,...,in+1,q ai1,...,in+1,r

=

d∑
ip=1

∑
(i1,...,ip−1,ip+1,...,in+1)∈{1,...,d}n

ai1,...,in+1,q ai1,...,in+1,r

128 CHAPTER 6. The insertion algorithm for signature inversion

For both ai1,...,in+1,q and ai1,...,in+1,r to be non-zero, q and r must both be equal to ip. Therefore,
A>p Ap is diagonal. Then, the terms corresponding to ip = q = r are non-zero and equal to

(A>p Ap)q,q =
∑

(i1,...,ip−1,ip+1,in+1)∈{1,...,d}n
(S(i1,...,ip−1,ip+1,...,in+1))2 = ‖Xn‖2.

Therefore, all diagonal entries of A>p Ap are equal to ‖Xn‖2. By definition, the singular values of
Ap are therefore all equal to ‖Xn‖.

It is then immediate to compute the solution to (6.10).

Proposition 6.10. For any p ∈ {1, . . . , n+ 1}, Problem (6.10) has a unique solution, equal to

y∗p,n =
A>p X

n+1

‖Xn‖2 .

Proof. We can rewrite (6.10) as

y∗p,n ∈ arg min
y∈Rd

‖L n
p,X(y)− (n+ 1)Xn+1‖2.

This is exactly the same minimization problem than in least-squars regression. It is then well
known that

y∗p,n = (A>p Ap)
−1A>p X

n+1

By Lemma 6.9, A>p Ap = ‖Xn‖2Id, and

y∗p,n =
A>p X

n+1

‖Xn‖2 .

Algorithme 2 : Insertion algorithm
Data : n: truncation order of the signature; Sn(X): signature truncated at order n; d:

dimension of the underlying path; X0: starting point of the path.
Result : X̃ = (X0, X̃1/n, . . . , X̃1) ∈ R(n+1)×d: array of the n+ 1 positions in Rd of the

reconstructed path.
1 Extract Xn and Xn−1, the terms of order n and n− 1 of Sn(X).
2 X̃0 = X0

3 for p ∈ {1, . . . , n} do
4 Compute Ap, the matrix representing the linear map L n−1

p,X (·), function of Xn−1.

5 y∗p,n =
A>p Xn

‖Xn−1‖2 ,

6 X̃p/n = X̃p−1/n +
y∗p,n
n .

Algorithm 2 summarizes the insertion algorithm. Given a signature of order n, we solve (6.10)
for any p varying in {1, . . . , n}. Then, we reconstruct a continuous piecewise linear path having

6.3. The insertion algorithm 129

a slope of y∗p,n on [(p−1)/n, p/n]. This algorithm is very cheap computationally: inside the loop,
the most expensive operation is the matrix multiplication A>p Xn.

It is straightforward to parallelize this algorithm so that it takes as input a batch of signatures,
that is, an array I ∈ RN×(dn+1−1)/(d−1), and outputs a tensor of multiple paths O ∈ RN×(n+1)×d.
We refer the reader to the code included in the Signatory package (Kidger and Lyons, 2020) for
more details. All operations in Algorithm 2 can indeed be performed on tensors of size N × · · ·
instead of matrices.

(a) n = 5 (b) n = 10 (c) n = 20

Figure 6.2 – Signature inversion of a half circle

(a) n = 5 (b) n = 10 (c) n = 15

Figure 6.3 – Signature inversion of a spiral in 3d.

(a) n = 5 (b) n = 10 (c) n = 20

Figure 6.4 – Signature inversion of a sample of the class "5" from the Pendigits dataset

130 CHAPTER 6. The insertion algorithm for signature inversion

(a) n = 5 (b) n = 10 (c) n = 20

Figure 6.5 – Signature inversion of a sample of the class "8" from the Pendigits dataset

6.4 Experimental results

Examples of inversion To conclude, from a signature truncated at order n, we are able to
reconstruct n positions of the path with basic linear algebra tools. We show in Figures 6.2, 6.3,
6.4, and 6.5 some examples of reconstruction for paths in 2 and 3 dimensions. Figures 6.2 and
6.3 are simulations of a half circle and a spiral, while Figures 6.4 and 6.5 are two samples of the
Pendigits dataset from the UCI Machine Learning Repository (Dua and Graff, 2017). We can
see that in all the figures, for n = 20 the path reconstructed is smooth and close to the original
path.

2 4 6 8 10 12 14

Signature depth n

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

R
u

n
n

in
g

ti
m

e

(a) Run time when n varies.

2 3 4 5 6 7 8 9 10

Dimension d

0.0024

0.0026

0.0028

0.0030

0.0032

0.0034

0.0036

0.0038

R
u

n
n

in
g

ti
m

e
(s

)

(b) Run time when d varies

0 10 20 30 40 50

Batch size

0.008

0.010

0.012

0.014

0.016

0.018

R
u

n
n

in
g

ti
m

e
(s

)

(c) Run time when N varies

Figure 6.6 – Running time in seconds to invert the signature of several paths, when we let some
hyperparameters vary: the depth of the signature n, the dimension of the path d, and the number
of signatures that are inverted.

Running times We present in Figure 6.6 the running time of Algorithm 2 when we let several
hyperparameters vary. The paths are randomly generated as piecewise linear paths withM = 10
pieces, where the ending point of each linear part is generated uniformly at random in [0, 1]d.
The experiments were run on a standard laptop computer.

In Figure 6.6a, we invert one path in dimension d = 2 for different values of n. In Figure
6.6b, we set n = 4 and let d vary. In Figure 6.6c, we set n = 10 and d = 2, and let the number
of paths N vary. We can see that when n increases, the running time increases exponentially,
while the dependence to the dimension d is polynomial, and the dependence to the number of
paths N is linear. Overall, we can invert 50 signatures of depth 10 in approximately 0.02s.

Bibliography 131

Bibliography

Chang, J., Duffield, N., Ni, H., and Xu, W. (2017). Signature inversion for monotone paths.
Electronic Communications in Probability, 22, 1–11.

Chang, J., and Lyons, T. (2019). Insertion algorithm for inverting the signature of a path.
arXiv:1907.08423.

Chen, K.-T. (1957). Integration of paths, geometric invariants and a generalized baker-hausdorff
formula. Annals of Mathematics, 163–178.

Chevyrev, I., and Kormilitzin, A. (2016a). A primer on the signature method in machine learning.
arXiv:1603.03788.

Dua, D., and Graff, C. (2017). UCI machine learning repository. http://archive.ics.uci.edu/ml
Fermanian, A. (2021). Embedding and learning with signatures. Computational Statistics & Data

Analysis, 157, 107148.
Friz, P. K., and Victoir, N. B. (2010). Multidimensional stochastic processes as rough paths:

theory and applications (Vol. 120). Cambridge University Press.
Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation

and the reduced path group. The Annals of Mathematics, 171, 109–167.
Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep signature trans-

forms. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Eds.), Advances in neural information processing systems (pp. 3099–3109).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

Király, F. J., and Oberhauser, H. (2019). Kernels for sequentially ordered data. Journal of Ma-
chine Learning Research, 20, 1–45.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Li, C., Zhang, X., and Jin, L. (2017). LPSNet: a novel log path signature feature based hand ges-
ture recognition framework. 2017 IEEE International Conference on Computer Vision
Workshop, 631–639.

Liao, S., Lyons, T., Yang, W., and Ni, H. (2019). Learning stochastic differential equations using
RNN with log signature features. arXiv:1908.08286.

Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths
(Vol. 1908). Springer.

Lyons, T., Ni, H., and Oberhauser, H. (2014). A feature set for streams and an application to
high-frequency financial tick data. Proceedings of the 2014 International Conference on
Big Data Science and Computing, 5.

Lyons, T., and Xu, W. (2018). Inverting the signature of a path. Journal of the European Math-
ematical Society, 20, 1655–1687.

Lyons, T. J., and Xu, W. (2017). Hyperbolic development and inversion of signature. Journal of
Functional Analysis, 272, 2933–2955.

Morrill, J., Kormilitzin, A., Nevado-Holgado, A., Swaminathan, S., Howison, S., and Lyons, T.
(2019). The signature-based model for early detection of sepsis from electronic health
records in the intensive care unit. International Conference in Computing in Cardiology.

Morrill, J. H., Kormilitzin, A., Nevado-Holgado, A. J., Swaminathan, S., Howison, S. D., and
Lyons, T. J. (2020c). Utilization of the signature method to identify the early onset
of sepsis from multivariate physiological time series in critical care monitoring. Critical
Care Medicine, 48, e976–e981.

http://archive.ics.uci.edu/ml
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

132 CHAPTER 6. The insertion algorithm for signature inversion

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances
in neural information processing systems (pp. 8024–8035). Curran Associates, Inc.

Perez Arribas, I. (2018). Derivatives pricing using signature payoffs. arXiv:1809.09466.
Purbhoo, K. (2012). Notes on tensor products and the exterior algebra.
Toth, C., and Oberhauser, H. (2020). Bayesian learning from sequential data using Gaussian

processes with signature covariances. In H. Daumé III and A. Singh (Eds.), Proceedings
of the 37th international conference on machine learning (pp. 9548–9560). PMLR.

Wang, B., Liakata, M., Ni, H., Lyons, T., Nevado-Holgado, A. J., and Saunders, K. (2019). A
path signature approach for speech emotion recognition. Interspeech 2019, 1661–1665.

Wilson-Nunn, D., Lyons, T., Papavasiliou, A., and Ni, H. (2018). A path signature approach to
online arabic handwriting recognition. Proceedings of the 2nd International Workshop
on Arabic and Derived Script Analysis and Recognition (ASAR), 135–139.

Yang, W., Jin, L., and Liu, M. (2016a). DeepWriterID: An end-to-end online text-independent
writer identification system. IEEE Intelligent Systems, 31, 45–53.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

Conclusion

In this thesis, we have presented several contributions in the growing field of learning with
signatures. First, we have shown in Chapter 2 that the choice of embedding, that is, the way
discretely sampled data is modeled as a continuous path, is a critical factor. Indeed, this choice
impacts drastically the performance of the whole method, regardless of the algorithm subse-
quently used. We pursue this study in Chapter 3 by an extensive study of the different existing
variations of signature features. This study enables us to identify a generic algorithm that shows
competitive performance for time series classification. We go on in Chapter 4 by studying the
estimation problem in a signature linear regression setting. The crucial parameter in this context
is the choice of truncation of the signature. We define an estimator of this truncation parameter,
give its rate of convergence, and show that the resulting model is competitive with classical func-
tional regression models with basis expansions such as Fourier or splines. In Chapter 5, we take
a slightly different perspective and use the signature kernel to study recurrent neural networks
(RNN). We show that RNN can be rewritten, in the continuous-time limit, as a kernel method on
signatures. This approach leads to the derivation of generalization bounds valid for a large class
of RNN and new regularization techniques. We conclude in Chapter 6 by contributions to the
problem of inverting the signature with the insertion algorithm. We propose a modification of
this algorithm, provide an implementation in a Python package, and show theoretical guarantees.

These contributions are only the first steps in a field where much remains to be discovered, and
open up several questions. A first research direction would be to address the problem of the high
dimension of truncated signatures—recall that for a path in Rd, the size of the signature truncated
at order n is of magnitude dn. The exponential dependence on the truncation parameter n forces
it to remain small in practical applications. It seems reasonable to think that specific treatment
of this dimension issue could improve existing algorithms. We can think of different approaches
to this dimension issue, detailed below.

On the one hand, logsignatures provide a lower-dimensional representation of signatures but
do not inherit all their good properties, in particular the linear approximation property (Theorem
1.13). A study of the statistical properties of logsignatures would be valuable, for example with
tools from topological data analysis or algebraic statistics. On the other hand, a natural approach
to dealing with high dimension problems is to use sparsity, which can be deployed in different
directions. First, a lasso-type model could improve the signature linear model of Chapter 4. The
proper choice of an L1 tensor norm in this context is an open question; both an empirical and
theoretical analysis would be valuable to make progress on this issue. An extension of the group
lasso, exploiting the tensor structure of the signature, seems a reasonable direction.

The question of sparsity may also be addressed outside the supervised learning context.
More specifically, it would be interesting to study how one should induce sparsity on signatures
so that not too much information is lost. Figure 6.7 shows the result of a naive approach
to this problem: we have computed the signature of order 10 of a half-circle, set to zero the
smallest coefficients of the signature, and inverted this sparse signature. We can see in Figure

133

134 Conclusion

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

original path

reconstructed path

reconstructed path with sparsity

(a) Largest 66% coefficients are kept

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0.00

0.05

0.10

0.15

0.20

0.25

0.30

original path

reconstructed path

reconstructed path with sparsity

(b) Largest 39% coefficients are kept

Figure 6.7 – Inversion of the signature truncated at order n = 10 of a half circle, with the
complete signature (orange curves) or with a sparse signatures, where the smallest coefficients
are set to zero (green curves)

6.7a that when keeping only 66% of the signature coefficients, we get the same reconstruction
as with the full set of coefficients. In Figure 6.7b we keep 39% of the coefficients and the
reconstruction is much worse. A lot remains to be explored in this direction: how can we exploit
the algebraic properties of signatures, for example, the shuffle product identity (Theorem 1.12)
in the sparsifying mechanism? Should we favor some orders, for example, the smallest? Can
we derive theoretical guarantees on the reconstructed signal, in the same spirit as compressed
sensing results in the area of signal processing?

On the other hand, several extensions to the analysis of RNN performed in Chapter 5 are
worth mentioning. First, leveraging this theoretical work to practical applications would be a
valuable extension. Moreover, the neural ODE point of view on neural networks is not restricted
to recurrent neural networks. In particular, using our tools of controlled differential equations
and signatures to the analysis of deep residual networks seems particularly relevant. In this case,
the weights between each layer are allowed to differ. In the continuous limit, an object of interest
is then a path in the space of weights. This may allow us to study empirically the regularity
and the geometry of the network weights, but also to analyze generalization properties of deep
residual networks—-which achieve state-of-the-art performance in computer vision.

Finally, applications of the insertion algorithm of Chapter 6 have yet to be explored. For
example, its use for trend estimation seems very promising: given a potentially high-frequency
irregularly sampled multivariate time series, this algorithm is an efficient way to reconstruct its
trend based on its signature, with very few assumptions on the structure of the time series. It
would also be valuable to refine this algorithm, which suffers from the fact that a signature of
order n is needed to reconstruct n points (in other words, dn coefficients are needed to output
nd values). Using sparse signatures as mentioned above would be a potential direction.

Appendix A

Supplementary material
of Chapter 1

Contents

A.1 Proof of Proposition 1.2 135
A.2 Proof of Theorem 1.3 136
A.3 Proof of Proposition 1.4 136
A.4 Proof of Theorem 1.6 137
A.5 Proof of Lemma 1.7 137
A.6 Proof of Lemma 1.8 138
A.7 Proof of Proposition 1.10 138
A.8 Proof of Theorem 1.12 139
A.9 Proof of Theorem 1.13 139

A.1 Proof of Proposition 1.2

Let N > 0 and consider the projection at order N of a⊗∑n≥0(1− a)⊗n. We have

πN

(
a⊗

∑
n≥0

(1− a)⊗n
)

= πN

(
a⊗

N∑
n=0

(1− a)⊗n + a⊗
∑

n≥N+1

(1− a)⊗n
)

= πN

(
a⊗

N∑
n=0

(1− a)⊗n
)
,

since the second term contains only elements of order at least N + 1. Moreover,

a⊗
N∑
n=0

(1− a)⊗n =
(
1− (1− a)

)
⊗

N∑
n=0

(1− a)⊗n =

N∑
n=0

(1− a)⊗n −
N∑
n=0

(1− a)⊗n+1

= 1− (1− a)⊗N+1.

135

136 APPENDIX A. Supplementary material of Chapter 1

Therefore,

πN
(
a⊗

N∑
n=0

(1− a)⊗n
)

= 1.

This is true for any N and similar calculations give the same result for
∑
n≥0(1 − a)⊗n ⊗ a.

Therefore, ∑
n≥0

(1− a)⊗n ⊗ a = a⊗
∑
n≥0

(1− a)⊗n = 1.

T̃ ((E)) is an affine subspace of T ((E)) so it is a smooth manifold. The operations ⊗ and −1

being smooth maps (they are polynomials in the coordinates), we conclude that T̃ ((E)) is a Lie
group.

A.2 Proof of Theorem 1.3

Let Z = X ∗ Y : [s, u]→ Rd. The Nth order term of its signature is

ZN =

∫
· · ·
∫

s<u1<···<uN<u

dZu1
⊗ · · · ⊗ dZuN

=

N∑
n=0

∫
· · ·
∫

s<u1<···<un<t<un+1<···<uN<u

dZu1
⊗ · · · ⊗ dZuN

=

N∑
n=0

(∫
· · ·
∫

s<u1<···<un<t

dXu1 ⊗ · · · ⊗ dXun

)
⊗
(∫

· · ·
∫

t<un+1<···<uN<u

dYun+1 ⊗ · · · ⊗ dYuN
)

=

N∑
n=0

Xn ⊗YN−n.

Therefore, S[s,u](Z) = S[s,t](X)⊗ S[t,u](Y).

A.3 Proof of Proposition 1.4

The proof is based on Lemma 1.8. Let Z = X ∗ ←−X and V a Banach space. Denote by
L (E, V) the space of linear functions from E to V . Then, for any function f : V → L (E, V),
if Y : [0, 1]→ V is the solution of

dYt = f(Yt)dXt, Y0 = ξ, Y1 = η,

then
←−
Y is solution of

dYt = f(Yt)d
←−
X t, Y0 = η, Y1 = ξ.

Therefore, any solution of
dYt = f(Yt)dZt, Y0 = ξ

satisfies Y2 = ξ. Take f equal to the function of Lemma 1.8, then both 1 and SN (Z)[0,t] are
solutions. By uniqueness, for any N ≥ 0, SN (Z)[0,t] = 1 and S(Z) = S(X)⊗ S(

←−
X) = 1.

A.4. Proof of Theorem 1.6 137

A.4 Proof of Theorem 1.6

We refer the reader to Hambly and Lyons (2010) for a proof of the first part of the theorem.
The second part is a direct consequence of Chen’s identity 1.3 and Proposition 1.4. We know
that

S(X ∗←−Y) = S(X)⊗ S(
←−
Y) = S(X)⊗ S(Y)−1.

Therefore,

S(X) = S(Y)⇔ S(X)⊗ S(Y)−1 = 1⇔ S(X ∗←−Y) = 1⇔ X ∗←−Y is tree-like ⇔ X ∼ Y.

A.5 Proof of Lemma 1.7

By Theorem 1.6, it is clear that ∼ is an equivalence relation. Then, Hambly and Lyons
(2010) show that there exists a unique element of minimal length in each equivalence class. It is
therefore sufficient to show that if X has a strictly monotone coordinate, then it is this element
of minimal length, which is then entirely determined by its signature.

Let Y ∈ BV (Rd) be a path of minimal length in the equivalence class of X, we show that Y
is equal to X up to a reparametrization. Let

Z = X ∗←−Y : [0, 2]→ Rd.

By definition Z is tree-like and we denote by h a height function for Z. With the same argument
as in Example 1.6, h is strictly increasing on [0, 1]. We next show that Y being of minimal length
implies that h is strictly decreasing on [1, 2].

By contradiction, if it was not the case, there would exist an interval [s, t] ⊂ [1, 2] such that
h(s) = h(t), h(u) ≤ h(s), ∀u ∈ [s, t], and h has a unique minimum on [s, t]. Consider the function
h̃ : u 7→ h(s)− h(u). It satisfies h̃(s) = h̃(t) = 0, h̃(u) ≥ 0 on [s, t] and for any [u, v] ⊂ [s, t],

‖Zv − Zu‖ ≤ h̃(u) + h̃(v)− 2 inf
w∈[u,v]

h̃(w).

To prove this inequality, let m denote the point in [s, t] where h is minimal, we have to treat the
cases v ≤ m, u < m < v, and m ≤ u separately. Let us assume that v ≤ m, then,

inf
w∈[u,v]

h(w) = h(v), and inf
w∈[u,v]

h̃(w) = h(s)− h(u),

so

‖Zv − Zu‖ ≤ h(u) + h(v)− 2 inf
w∈[u,v]

h(w) ≤ h(u)− h(v)

≤
(
h(s)− h(u)

)
+
(
h(s)− h(v)

)
− 2
(
h(s)− h(u)

)
≤ h̃(u) + h̃(v)− 2 inf

w∈[u,v]
h̃(w).

The other cases are treated in a similar way. We conclude that h̃ is a height function for Z|[s,t],
which implies that Z|[s,t] is tree-like and its signature is 1. Therefore, removing this portion of
the path would not change the signature. This would yield a path with strictly shorter length in
the equivalence class of X, which contradicts the minimality of the length of Y . So h is strictly

138 APPENDIX A. Supplementary material of Chapter 1

decreasing on [1, 2]. Let

h1 : [0, 1]→ [0, h(1)], h1 = h|[0,1], and h2 : [1, 2]→ [h(1), 0], h2 = h|[1,2].

We have shown that h1 and h2 are continuous isomorphisms. The function σ = h−1
2 ◦h1 : [0, 1]→

[1, 2] is then also a continuous isomorphism. Moreover, we have σ(0) = h−1
2 (h(0)) = h−1

2 (0) = 2,
and σ(1) = h−1

2 (h(1)) = 1, so σ is strictly decreasing, and it satisfies h(s) = h(σ(s)) for any
s ∈ [0, 1]. Then, for any s ∈ [0, 1]:

‖Zs − Zσ(s)‖ ≤ h(s) + h(σ(s))− 2 inf
t∈[σ(s),s]

h(t) = 2h(s)− 2h(s) = 0,

which implies that for any s ∈ [0, 1], Zs = Zσ(s) ⇔ Xs = Y2−σ(s). We conclude that Y is equal
to X up to a reparametrization.

A.6 Proof of Lemma 1.8

Existence and uniqueness are a consequence of Picard-Lindelöf theorem (Lyons et al., 2007,
Theorem 1.3). It only remains to check that the truncated signature is indeed a solution. For
any n ≥ 0, t ∈ [0, 1],

Xn
[0,t] =

∫
· · ·
∫

0<u1<···<un<t

dXu1
⊗ · · · ⊗ dXun

=

∫ t

0

(∫
· · ·
∫

0<u1<···<un−1<un

dXu1 ⊗ · · · ⊗ dXun−1

)
⊗ dXun =

∫ t

0

Xn−1
[0,u] ⊗ dXu.

Thus,

SN (X)[0,t] = (1,X1, . . . ,XN) = 1 +

∫ t

0

πN (SN (X)[0,u] ⊗ dXu).

A.7 Proof of Proposition 1.10

By the triangle inequality,

‖Xn‖(Rd)⊗n =
∥∥∥∫

∆n

Xu1 ⊗ · · · ⊗Xun

∥∥∥
(Rd)⊗n

≤
∫

∆n

‖dXu1 ⊗ · · · ⊗ dXun‖(Rd)⊗n

Moreover, classical properties of tensor norms (Ryan, 2002) yield

‖dXu1
⊗ · · · ⊗ dXun‖(Rd)⊗n = ‖dXu1

‖ . . . ‖dXun‖ .

Therefore, by partitioning [0, 1]n by the n! possible reorderings of the variables u1, . . . , un, we
have∫

∆n

‖dXu1 ⊗ · · · ⊗ dXun‖(Rd)⊗n ≤
∫

∆n

‖dXu1‖ . . . ‖dXun‖ =
1

n!

∫
· · ·
∫

u1,...,un∈[0,1]

‖dXu1‖ . . . ‖dXun‖ .

A.8. Proof of Theorem 1.12 139

This gives

‖Xn‖(Rd)⊗n ≤
1

n!

∫
· · ·
∫

u1,··· ,un∈[0,1]

‖dXu1‖ · · · ‖dXun‖ =
1

n!

(∫
u∈[0,1]

‖dXu‖
)n

=
1

n!
‖X‖n1-var.

Finally, we have

‖S(X)‖T (Rd) =

√
1 +

∑
n≥0

‖Xn‖2
(Rd)⊗n

≤ 1 +
∑
n≥0

‖Xn‖(Rd)⊗n

≤ 1 +
∑
n≥0

1

n!
‖X‖n1-var = exp(‖X‖1-var).

A.8 Proof of Theorem 1.12

The result comes by partitioning the integration domain. Indeed, we have

SI(X)SJ(X) =

∫
· · ·
∫

0<u1<···<un<1

dXi1
u1
. . . dXin

un

∫
· · ·
∫

0<t1<···<tm<1

dXj1
t1 . . . dX

jm
um

=
∑

σ∈Shuffles(n,m)

∫
· · ·
∫

0<v1<···<vn+m<1

dX
rσ(1)
v1 . . . dX

rσ(n+m)
vn+m

=
∑

K∈ItJ
SK(X),

with (r1, . . . , rn+m) = (i1, . . . , in, j1, . . . , jm).

A.9 Proof of Theorem 1.13

This is a consequence of Stone-Weierstrass theorem. Indeed, let us consider the space

A = Span
{
fI : X 7→ 〈eI , S(X)〉T (Rd) |n ≥ 0, I ⊂ {1, . . . , d}n

}
.

A is a linear subspace of the set of continuous functions from D to R, denoted by C (D,R).
Endowed with the shuffle product, Theorem 1.12 ensures that it is also a sub-algebra. To apply
Stone-Weierstrass theorem we must check that it contains a non-zero constant function and that
it separates points. The first condition is met because the first term of the signature is one:
〈e0, S(X)〉T (Rd) = 1.

The second condition is met by Theorem 1.6. Let X,Y ∈ D,X 6= Y . By assumption, X and
Y are not tree-like equivalent, and therefore S(X) 6= S(Y), which means that at least one of
their coordinates differ. By taking the corresponding basis there exists a function f in A such
that f(X) 6= f(Y). By Stone-Weitherstrass theorem, we conclude that A is dense in C (D,R),
which proves the theorem.

140 APPENDIX A. Supplementary material of Chapter 1

Bibliography

Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation
and the reduced path group. The Annals of Mathematics, 171, 109–167.

Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths
(Vol. 1908). Springer.

Ryan, R. A. (2002). Introduction to tensor products of banach spaces (Vol. 73). Springer.

Appendix B

Supplementary material
of Chapter 3

Contents

B.1 Augmentations 141
B.2 Rescaling 144
B.3 Implementation details 144

B.3.1 General notes . 144
B.3.2 Analysis of variations of the signature method 145
B.3.3 The canonical signature pipeline . 146

B.4 Additional results 147
B.4.1 Analysis of variations of the signature method 147
B.4.2 Complete results . 149
B.4.3 Canonical signature method . 149

B.1 Augmentations

We recall that an augmentation is a map

φ : S(Rd)→ S(Re)p

We give below the precise definition of the different augmentations considered in the study,
which are summarized in Table B.1. These augmentations were not typically introduced using
such language, so this serves as a reference for how the existing literature may be interpreted
through the generalised signature method.

Throughout the section, we consider a sequence x = (x1, . . . , xn) ∈ S(Rd) and timestamps
t = (t1, . . . , tn) ∈ S(R). We recall that if x is regularly sampled then t is usually set to
t = (1, . . . , n).

Time augmentation We recall the definition of the time augmentation:

φ(x) =
(
(t1, x1), . . . , (tn, xn)

)
∈ S(Rd+1).

141

142 APPENDIX B. Supplementary material of Chapter 3

It ensures uniqueness of the signature transformation and removes the parametrization invariance
(Levin et al., 2013).

Invisibility-reset augmentation First introduced by Yang et al. (2017), the invisibility-reset
augmentation consists in adding a coordinate to the sequence x that is constant equal to 1 but
drops to 0 at the last time step, i.e.,

φ(x) =
(
(1, x1), . . . , (1, xn−1), (1, xn), (0, xn), (0, 0)

)
∈ S(Rd+1).

This augmentation adds information on the initial position of the path, which is otherwise not
included in the signature as it is a translation-invariant map.

Basepoint augmentation Introduced by Kidger and Lyons (2020), the basepoint augmenta-
tion has the same goal as the invisibility-reset augmentation: removing the translation-invariant
property of the signature. It simply adds the point 0 at the beginning of the sequence:

φ(x) = (0, x1, . . . , xn) ∈ S(Rd).

The main difference compared to the invisibility-reset augmentation is that the signature of
x is contained in the signature of the invisibility-reset augmented path, whereas it is not in
the signature of the basepoint augmented path. The price paid is that the invisibility-reset
augmentation introduces redundancy into the signature, and is more computationally expensive
due to the additional channel. (Recall that the signature method scales as O(dN), where d is
the input channels and N is the depth of the (log)signature.)

Lead-lag augmentation The lead-lag augmentation, introduced by Chevyrev and Kormilitzin
(2016a) and Flint et al. (2016) has been used in several applications (see for example Lyons et al.
(2014), Kormilitzin et al. (2016), and Yang et al. (2017)). It adds lagged copies of the path as
new coordinates. This then explicitly captures the quadratic variation of the underlying process
(Flint et al., 2016). As many different lags as desired may be added. If there is a single lag of a
single timestep, then this corresponds to

φ(x) = ((x1, x1), (x2, x1), (x2, x2), . . . , (xn, xn)) ∈ S(R2d).

Coordinate projections For multidimensional streams, one may want to compute the sig-
nature of a subset of coordinates individually, rather than the signature of the whole stream;
doing so restricts the interaction considered by the signature to just those between the projected
coordinates. Let x1, . . . ,xd ∈ S(R) denote the different coordinates of x ∈ S(Rd).

Then we define the singleton coordinate projection as

φ(x) =
(
(t,x1), (t,x2), . . . , (t,xd)

)
∈ S(R2)d,

whilst considering all possible pairs of coordinates yields the augmentation

φ(x) =
(
(t,x1,x2), (t,x1,x3), . . . , (t,xd,xd−1)

)
∈ S(R3)d(d−1),

and all possible triples yields the augmentation

φ(x) =
(
(t,x1,x1,x2), (t,x1,x1,x3), . . . , (t,xd,xd,xd−1)

)
∈ S(R4)d(d2−1).

B.1. Augmentations 143

Table B.1 – Summary of the different augmentations

e p Property

Fixed augmentations

None d 1
Time d+ 1 1 sensitivity to parametrization,

uniqueness of the signature map
Invisibility-reset d+ 1 1 sensitivity to translation
Basepoint d 1 sensitivity to translation
Lead-lag 2d 1 information about quadratic

variation,
uniqueness of the signature map

Coordinates projection dimensionality reduction
with singletons 2 d
with pairs 3 d(d− 1)
with triplets 4 d(d2 − 1)

Random projections e p dimensionality reduction

Learnt augmentations

Learnt projections e p data-dependent and linear
Stream-preserving neural network e 1 data-dependent
Multi-headed stream-preserving NN e p data-dependent

The decision to always include a time dimension is a somewhat arbitrary one, and it may
alternatively be excluded if desired. (This is done so as to make sense of singleton coordinate
projections; otherwise the result is a collection of univariate time series, for which the signature
extracts only the increment due to the tree-like equivalence property.)

Random projections When the dimension of the input path is very large, Lyons and Ober-
hauser (2017) have proposed to project it into a smaller space by taking multiple random projec-
tions. Let e < d and let Ai : Rd → Re be random affine transformations indexed by i ∈ {1, . . . , p}.
Then φ is defined as

φ(x) = ((A1x1, . . . , A1xn), . . . , (Apx1, . . . , Apxn)) ∈ S(Re)p.

Learnt projections Rather than taking random projections, Liao et al. (2019) learn it from
the data. This takes exactly the same form as the random projections, except that the Ai are
learnt.

Stream-preserving neural network Kidger et al. (2019) introduce arbitrary learnt sequence-
to-sequences maps prior to the signature transform, and refer to such maps, when parameterised
as neural networks, as stream-preserving neural networks. For example these may be standard
convolutional or recurrent architectures. In general this may be any learnt transformation

φ : S(Rd)→ S(Re).

Multi-headed stream-preserving neural network A straightforward extension of stream-
preserving neural networks is to use multiple such networks, so as to avoid a potential bottleneck

144 APPENDIX B. Supplementary material of Chapter 3

through the single signature map that it is eventually used in. Letting φ1, . . . , φp be p different
stream-preserving neural networks, then this gives an augmentation

φ(x) = (φ1(x), . . . , φp(x)) ∈ (S(Re))p.

B.2 Rescaling

The signature transform can be written as a sequence of tensors, indexed by k ∈ {1, . . . , N}.
The k-th term is of size O(1/k!), as it is computed by an integral over a k-dimensional simplex.
It is typical that rescaling these terms to be O(1) will aid subsequent learning procedures.

One option is to simply multiply the k-th term by k!, which we call post-signature scaling.
However, it is possible that the previous option may suffer from numerical stability issues.

Thus we also explore the performance of an option, called pre-signature scaling, which may
alleviate this, which is to multiply the input x by some scaling factor α ∈ R. Then the k-th
term will be of size O(α

k
/k!), and so by taking α = (N !)1/N the N -th term in the signature will

be O(1); the trade-off is that Stirling’s approximation then shows that the N/2-th term will be
of size O(2N/2).

B.3 Implementation details

B.3.1 General notes
Code All the code for this project is available at https://github.com/jambo6/generalised-
signature-method.

Libraries The machine learning framework used was PyTorch (Paszke et al., 2019) version
1.3.1. Signatures and logsignatures were computed using the Signatory library (Kidger and
Lyons, 2020) version 1.1.6. Scikit-learn (Pedregosa et al., 2011) version 0.22.1 was used for the
logistic regression and random forest models. The experiments were tracked using the Sacred
framework (Greff et al., 2017) version 0.8.1.

Normalisation Every dataset was normalised so that each channel has mean zero and unit
variance.

Architectures Two different GRU models were used on every dataset; a ‘small’ one with 32
hidden channels and 2 layers, and a ‘large’ one with 256 hidden channels and 3 layers.

Likewise, two different Residual CNN models were considered. The ‘small’ one used 6 blocks,
each composed of batch normalisation, ReLU activation, convolution with 32 filters and kernel
size 4, batch normalisation, ReLU activation, and a final convolution with 32 filters and kernel
size 4, so that there are also 32 channels along the ‘residual path’. A final two-hidden-layer
neural network with 256 neurons was placed on the output. The ‘large’ is similar, except that it
used 128 filters in both the blocks and the residual path, had 8 blocks, used a kernel size of 8,
and the final neural network had 1024 neurons.

The logistic regression was performed three times with different amounts of L2 regularisa-
tion, with scaling hyperparameters of 0.01, 0.2 and 1; for every experiment the regularization
hyperparameter achieving the best accuracy on the test set was used.

The random forest used the default Scikit-learn implementation with a maximum depth of 6
and 100 trees.

https://github.com/jambo6/generalised-signature-method
https://github.com/jambo6/generalised-signature-method

B.3. Implementation details 145

Optimiser The GRU and CNN were optimised using Adam (Kingma and Ba, 2015). The
learning rate was 0.01 for the GRU, and 0.001 for the residual CNN. The small models were
trained for a maximum of 500 epochs; the large models were trained for a maximum of 1000
epochs. The learning rate was decreased by a factor of 10 if validation loss did not improve over
a plateau of 10 epochs. Early stopping was used if the validation loss did not improve for 30
epochs. After training the parameters were always rolled back to those that demonstrated the
best validation loss over the course of training. The batch size used varied by dataset; in each it
was taken to be the power of two that meant that the number of batches per epoch was closest
to 40.

Computing infrastructure Experiments were run on an Amazon AWS G3 Instance (g3.16xlarge)
equipped with 4 Tesla M60s, parallelized using GNUParallel (Tange, 2011).

B.3.2 Analysis of variations of the signature method

Splits The UEA archive comes with a pre-defined train-test split, which we respect. We take
an 80%/20% train/validation split in the training data, stratified by class label. For the Hu-
man Activities and Postural Transitions dataset, we take a 60%/15%/25% train/validation/test
split from the whole dataset. For the Speech Commands dataset, we take a 68%/17%/15%
train/validation/test split from the whole dataset. (These somewhat odd choices corresponding
to taking either 25% or 15% of the dataset as test, and then splitting the remaining 80%/20%
between train and validation.) These train/validation splits are only used for the training of the
GRU and CNN classifiers.

Combinations In total we tested 8569 different combinations.
The variations tested are divided into groups. The first group consists of the sensitivity-

adding augmentations, namely time, basepoint and invisibility-reset. Relative to the baseline
model, we test every possible combination of these. (Including using none of them.)

The second group consists of those other augmentations, namely the lead-lag, singleton coor-
dinate projection, pair coordinate projection, triplet coordinate projection, random projections,
learnt projections, and multi-headed stream preserving neural networks, and finally also the case
of no additional augmentation.

For the random projections, we consider four possibilities, with e ∈ {3, 6} and p ∈ {2, 5}, all
relative to the baseline model.

For no additional augmentation, lead-lag, coordinate projections, learnt projections, and the
multi-headed stream preserving neural networks, we compose them with the time, time+basepoint
and time+invisibility-reset augmentations (the clear best three from the first group), all relative
to the baseline model.

For the learnt projections, we consider four different possibilities corresponding to e ∈ {3, 6}
and p ∈ {2, 5}; together with the time/time+basepoint/time+invisibility-reset cases this yields
a total of twelve possibilities.

For the multi-headed stream-preserving neural networks, we again consider four different
possibilities corresponding to e ∈ {3, 6} and p ∈ {2, 5}, for a total of twelve possible augmentation
strategies. In each the neural network operates elementwise, so as to map one sequence to
another, and is given by a feedforward neural network of three hidden layers separated by ReLU
activation functions. When e = 3 the hidden layers have 16 neurons each, and when e = 6 they
have 32 neurons each.

For both the learnt projections and multi-headed stream-preserving neural networks, training
these requires backpropagating through the model, so these were only considered for the GRU

146 APPENDIX B. Supplementary material of Chapter 3

Table B.2 – Summary of the number of combinations considered and omitted.

Variations # Variations # Classifiers # Omitted # Total
Combinations Combinations

Basic augmentations
6 6 54 936(Figure 3.2)

Other augmentations (Figure 3.3)
Lead-lag/ None 3 6 100/27 468
Coordinates projection

3 6 12/12/54 468(1)/(2)/(3)
Random projections 4 6 32 624
Learnt projections / MHSP 12 4 348/176 1248

Windows (Figure 3.4) 8 6 227 1248

Signature/
12 6 361 1872Logsignature transform

Rescalings (Figure B.2) 3 6 12 468

Total 1415 9984

and residual CNN model. (The logistic regression model would in principle be possible as well,
except that we ended up implementing this through Scikit-learn rather than PyTorch.)

We note that there are a great many possible ways of doing stream preserving neural net-
works, of which these are a small fraction. Their relatively weak performance here may likely be
improved upon with greater tuning on an individual task, or the selection of better final models
than were considered here.

The third group consisted of the different windows. Recall that the baseline model used
a global window; we then consider varying this to two possible sliding windows, two possible
expanding windows, and three possible dyadic windows. The two possible sliding/expanding
windows are chosen so that either 5 or 20 windows are applied across the full length of the
dataset. The three possible dyadic windows are depths 2, 3, 4. Thus in total there are 8 possible
window combinations we consider.

The fourth group consists of rescaling options, namely no rescaling, pre-signature rescaling,
and post-signature rescaling.

Omissions For the empirical study on the variations on the signature method, we excluded
those UEA datasets with a dimension d over 60, so as to reduce the computational cost. This
results removes 6 of the 30 datasets from the study, namely DuckDuckGeese, FaceDetection,
Heartbeat, InsectWingbeat, MotorImagery, and PEMS-SF. These were nonetheless used in the
demonstration of performance of the canonical signature method in Figure 3.6. Furthermore
those combinations of dataset/variation/model which produced more than 105 signature features
were omitted, to keep the computation managable. See Table B.2.

B.3.3 The canonical signature pipeline

For each dataset, we implement the following steps. First, the sequences are augmented with
time and basepoint augmentations. Then, we consider every combination of signature depth in
{1, 2, 3, 4, 5, 6} and hierarchical dyadic window depth in {2, 3, 4}. For each of these choices, we
perform a randomized grid search on a random forest classifier to optimize its number of trees

B.4. Additional results 147

Table B.3 – Average run time (in seconds) for various experiments. mean (std), averaged over
all UEA datasets.

Classifier

CNN GRU Logistic Random
regression forest

Time augment & Global window 69.8 (98.0) 22.2 (31.8) 2.67 (7.09) 2.23 (4.84)(Baseline)

Augmentation

None 48.1 (63.5) 16.8 (33.6) 3.55 (9.91) 66.3 (321)
Lead-lag 48.58 (69.99) 15.2 (18.1) 5.76 (11.7) 3.35 (6.04)
Coordinates projection (1) 32.8 (31.49) 13.4 (17.8) 1.37 (4.2) 12.2 (59.3)
Coordinates projection (2) 41.5 (51.4) 22.6 (62.3) 3.01 (8.54) 42.3 (203)
Coordinates projection (3) 41.3 (39.9) 19.1 (24.5) 5.41 (9.76) 6.3 (14.1)
Random projection 62.2 (70.1) 21.1 (31.2) 0.86 (1.25) 1.4 (2.47)
Learnt projection 917 (1288) 752 (972) – –
Multi-headed stream-preserving 1051 (1677) 1758 (4442) – –

Window

Sliding 90.6 (120) 79.4 (175) 10.1 (27.4) 6.4 (16.0)
Expanding 102 (133) 68.7 (115) 9.98 (27.2) 7.17 (19.0)
Dyadic 725 (868) 56.9 (65.1) 12.5 (33.2) 7.59 (18.3)

and maximal depth parameters. We test 20 combinations randomly sampled from the following
grids:

n_trees = [50, 100, 500, 1000],

max_depth = [2, 4, 6, 8, 12, 16, 24, 32, 45, 60, 80,None].

Note that a maximal depth set to ‘None’ means that the trees are expanded until all leaves
contain exactly one sample. Finally, we choose the combination of signature and hierarchical
dyadic window depths which maximise the out-of-bag score.

B.4 Additional results

B.4.1 Analysis of variations of the signature method
Running time To get a sense of the cost of each augmentation or window, we present the
run times of each augmentation/model combination, and each window/model combination. (The
times for varying between signature and logsignature, and between different rescalings, are largely
insignificant.) See Table B.3.

The run times are averaged over every UEA dataset. As the datasets are of very different
sizes this thus represents quite a crude statistic, and in particular produces very large variances,
so these are most meaningful simply with respect to each other.

Sensitivity-inducing augmentations broken down by dataset type Table B.4 shows the
average rank of each of the first group of augmentations (that add sensitivity to certain kinds of

148 APPENDIX B. Supplementary material of Chapter 3

Table B.4 – Average ranks for different augmentations by type of data. Lower is better.

Augmentation

Data type None Time Basepoint Invisibility-reset Time + Time +
Basepoint Invisibility-reset

EEG 3.88 3.50 4.00 2.00 4.00 3.63
HAR 5.00 2.95 4.85 3.65 2.00 2.55
MOTION 5.25 2.75 5.75 3.88 1.50 1.88
OTHER 4.43 3.31 4.88 3.19 2.87 2.31

perturbation) by dataset type, where the types are taken from Bagnall et al. (2018). (This may
be regarded as a companion to Table B.5.)

It is interesting to note that for EEG data, it seems better not to consider the time aug-
mentation, whereas it is the case for other applications. In particular the combination of time
and basepoint augmentations achieve the best ranks for human action and motion recognition
(HAR and MOTION in Table B.4). Recognizing an action may not be translation-invariant nor
invariant by time reparametrization.

Table B.5 – Average ranks for different augmentations by dataset characteristics. Lower is better.

Augmentation

None Lead-lag Coordinates projection Random Learnt MHSP(1) (2) (3) Projection Projection

Data type

EEG 4.88 4.83 6.50 3.13 5.67 4.38 2.75 2.75
HAR 2.25 1.78 7.20 3.50 2.90 4.75 6.50 6.50
MOTION 2.63 1.75 7.00 4.50 2.13 5.00 7.33 5.00
OTHER 2.88 3.92 5.44 2.63 3.29 4.69 6.00 5.21

Series length

<50 3.20 2.20 7.40 3.20 2.70 5.10 7.00 5.20
50-100 2.20 1.33 6.00 4.10 2.75 6.20 4.80 5.10
100-500 2.28 2.57 7.28 3.50 2.63 4.17 6.63 5.33
>500 4.00 4.00 5.28 2.64 4.57 4.07 4.40 5.60

Dimension d

2 4.67 3.5 6.33 4.33 4.0 2.83 6.67 3.67
3-5 2.5 2.21 6.36 3.43 3.14 4.64 6.67 6.83
6-8 3.25 2.5 6.94 3.0 3.56 5.0 5.29 6.0
>8 2.25 3.75 6.31 3.19 2.5 5.19 5.29 4.19

Other augmentations broken down by dataset characteristichs Table B.5presents the
average ranks of the other augmentations borken down by some characteristics of the datasets.

Here we see that there is generally a better choice than doing nothing at all, but that this
better choice. For example on long or high-dimensional datasets, coordinate projections often
perform well, whilst multi-headed stream preserving transformations do substantially better on
EEG datasets. Lead-lag remains a strong choice in many cases.

B.4. Additional results 149

Depth study on the signature transform In the main text we focused on the difference
between the signature and logsignature transforms, and stated that larger depths must be chosen
by a bias-variance tradeoff. Here we consider varying the depth together with the choice of
signature or logsignature, and taking the best transform for each depth. See Figure B.1. We see
that larger depths do indeed generally correspond to increased performance, up to a point. The
optimal depth will depend on the complexity of the task, as the number of features increases
exponentially with the depth.

Figure B.1 – Critical differences plot for the depth study on the UEA datasets.

Rescaling critical difference diagram In Figure B.2, we see that pre-signature rescaling
performs significantly worse than the other two options and that no significant difference between
post-rescaling and no rescaling is found.

Figure B.2 – Performance of different rescalings

B.4.2 Complete results
We present in Tables B.6, B.7, B.8, B.9, B.10 and B.11 the performance of the different

signature variations on each dataset. The tables were obtained by maximizing the test accuracy
of the signature method over the different classifiers considered. Recall that some values are
omitted due to the large number of signature features that would be obtained.

B.4.3 Canonical signature method
In Table B.12 we give the full results for our canonical signature method on all UEA datasets,

together with the results of Ruiz et al. (2020) used in Figure 3.6.
Finally, we give in Table B.13 the hyperparameters that were selected for each dataset in the

signature pipeline model.

150 APPENDIX B. Supplementary material of Chapter 3

Table B.6 – Accuracy of sensitivity-inducing augmentations per dataset

Augmentation

Dataset None Time Basepoint Invisibility-reset Time + Time +
Basepoint Invisibility-reset

ArticularyWordRecognition 96.0 96.3 95.7 96.3 97.7 97.0
AtrialFibrillation 46.7 46.7 40.0 33.3 40.0 40.0
BasicMotions 100.0 100.0 100.0 100.0 100.0 100.0
CharacterTrajectories 88.3 93.2 86.4 88.7 93.8 93.7
Cricket 91.7 94.4 94.4 97.2 97.2 95.8
ERing 80.0 92.6 77.4 89.6 91.9 92.2
EigenWorms 72.5 79.4 74.8 76.3 87.0 81.7
Epilepsy 84.8 89.9 91.3 91.3 97.1 94.9
EthanolConcentration 27.8 29.3 33.5 41.8 34.6 41.4
FingerMovements 55.0 52.0 57.0 58.0 55.0 56.0
HandMovementDirection 29.7 33.8 32.4 33.8 36.5 32.4
Handwriting 21.9 30.8 23.6 24.6 30.6 28.7
JapaneseVowels 85.4 85.1 97.3 98.1 97.3 98.1
LSST 42.0 47.4 44.0 44.4 50.9 48.7
Libras 72.8 84.4 65.0 75.0 80.0 77.2
NATOPS 81.7 88.3 79.4 79.4 91.1 92.2
PenDigits 91.1 97.1 88.3 93.1 96.8 97.1
PhonemeSpectra 4.7 8.2 4.3 5.7 10.0 8.1
RacketSports 78.9 80.3 78.9 82.9 82.9 81.6
SelfRegulationSCP1 81.6 83.3 76.8 84.0 75.4 85.0
SelfRegulationSCP2 57.2 56.7 56.1 56.7 56.1 55.0
SpokenArabicDigits 82.5 85.5 80.5 88.0 85.1 90.1
StandWalkJump 60.0 46.7 40.0 46.7 40.0 46.7
UWaveGestureLibrary 84.1 87.5 79.7 82.8 87.5 83.4
Human Activity 73.0 76.6 92.3 92.2 93.0 93.8
Speech Commands 71.4 75.9 74.7 74.9 79.7 79.5

Average rank 4.69 3.12 4.87 3.29 2.5 2.54

Table B.7 – Accuracy of other augmentations per dataset

Augmentation

Dataset None Lead-lag Coordinates projection Random Learnt MHSP(1) (2) (3) projection projection

ArticularyWordRecognition 97.7 96.3 83.3 95.7 97.0 95.3 73.7 80.3
AtrialFibrillation 46.7 40.0 53.3 53.3 46.7 66.7 46.7 53.3
BasicMotions 100.0 100.0 80.0 100.0 100.0 100.0 97.5 87.5
CharacterTrajectories 93.8 95.3 43.9 93.2 93.8 93.3 89.6 91.1
Cricket 97.2 98.6 90.3 97.2 95.8 88.9 69.4 56.9
ERing 92.6 94.8 79.3 89.3 91.9 74.4 62.2 61.1
EigenWorms 87.0 87.8 50.4 84.0 89.3 78.6 – –
Epilepsy 97.1 97.1 55.8 95.7 95.7 81.9 67.4 65.9
EthanolConcentration 41.4 39.9 42.2 43.3 42.2 30.4 32.3 30.0
FingerMovements 56.0 – 59.0 58.0 – 55.0 60.0 65.0
HandMovementDirection 36.5 31.1 31.1 40.5 37.8 37.8 33.8 44.6
Handwriting 30.8 33.5 11.3 27.8 30.0 21.6 12.6 13.2
JapaneseVowels 98.1 97.6 94.1 97.8 97.6 84.1 95.4 95.9
LSST 50.9 55.6 43.5 51.7 52.8 43.7 34.4 39.8
Libras 84.4 86.7 47.8 83.9 85.0 86.7 73.3 81.1
NATOPS 92.2 – 33.3 90.6 91.1 85.6 83.9 81.7
PenDigits 97.1 98.3 60.2 96.8 97.2 96.7 96.5 97.4
PhonemeSpectra 10.0 – 4.5 9.4 10.6 8.9 7.2 7.7
RacketSports 82.9 82.2 53.3 85.5 84.2 75.7 73.7 75.0
SelfRegulationSCP1 85.0 86.0 61.8 85.0 84.0 81.6 86.7 84.6
SelfRegulationSCP2 56.7 57.2 55.6 58.9 55.6 60.6 59.4 57.8
SpokenArabicDigits 90.1 96.6 58.5 86.0 90.0 83.0 88.0 86.0
StandWalkJump 46.7 40.0 40.0 53.3 40.0 53.3 – –
UWaveGestureLibrary 87.5 88.8 50.6 85.6 87.5 86.2 74.1 75.6
Human Activity 93.8 93.6 75.8 93.2 93.6 69.2 91.3 91.5
Speech Commands 79.7 – 14.9 77.1 – 70.2 – 76.1

Average ranks 2.9 2.77 6.52 3.33 3.23 4.71 5.83 5.31

B.4. Additional results 151

Table B.8 – Accuracy of windows per dataset

Window

Dataset Global Sliding Expanding Dyadic

ArticularyWordRecognition 96.3 89.3 99.0 99.0
AtrialFibrillation 46.7 46.7 46.7 60.0
BasicMotions 100.0 100.0 100.0 100.0
CharacterTrajectories 93.2 94.6 96.9 97.1
Cricket 97.2 93.1 97.2 95.8
ERing 90.7 88.5 91.9 94.8
EigenWorms 80.2 74.8 78.6 76.3
Epilepsy 89.9 92.8 92.0 94.2
EthanolConcentration 30.4 38.8 30.0 35.7
FingerMovements 50.0 – – –
HandMovementDirection 33.8 33.8 36.5 33.8
Handwriting 30.1 21.5 30.2 27.2
JapaneseVowels 85.1 76.5 88.1 89.2
LSST 47.8 43.1 48.3 46.6
Libras 83.3 85.6 91.1 90.0
NATOPS 93.3 84.4 90.6 –
PenDigits 95.8 – – 97.6
PhonemeSpectra 8.6 9.2 9.6 10.4
RacketSports 82.2 80.3 84.2 88.2
SelfRegulationSCP1 82.6 87.4 84.0 86.7
SelfRegulationSCP2 56.7 60.6 54.4 56.1
SpokenArabicDigits 85.5 91.5 93.7 96.6
StandWalkJump 46.7 53.3 46.7 53.3
UWaveGestureLibrary 86.6 79.4 89.1 89.7
Human Activity 76.1 73.0 80.4 81.7
Speech Commands 75.9 76.5 82.3 83.0

Average ranks 2.83 3.04 2.17 1.73

Table B.9 – Accuracy of signature and logsignature transforms per dataset.

Transform

Dataset Signature Logsignature

ArticularyWordRecognition 97.7 97.3
AtrialFibrillation 60.0 53.3
BasicMotions 100.0 100.0
CharacterTrajectories 93.8 93.8
Cricket 100.0 100.0
ERing 90.0 89.3
EigenWorms 79.4 81.7
Epilepsy 93.5 91.3
EthanolConcentration 31.9 30.0
FingerMovements 59.0 56.0
HandMovementDirection 40.5 40.5
Handwriting 35.3 24.5
JapaneseVowels 85.9 86.8
LSST 52.0 46.4
Libras 90.6 87.8
NATOPS 89.4 91.7
PenDigits 97.8 97.5
PhonemeSpectra 8.9 7.6
RacketSports 85.5 84.9
SelfRegulationSCP1 84.0 83.3
SelfRegulationSCP2 57.2 56.1
SpokenArabicDigits 87.5 85.8
StandWalkJump 53.3 53.3
UWaveGestureLibrary 90.0 86.9
Human Activity 78.7 78.3
Speech Commands 75.9 76.3

Average ranks 1.25 1.75

152 APPENDIX B. Supplementary material of Chapter 3

Table B.10 – Accuracy of rescaling choices per dataset

Rescaling

Dataset None Post Pre

ArticularyWordRecognition 97.3 97.0 97.7
AtrialFibrillation 53.3 53.3 46.7
BasicMotions 100.0 100.0 100.0
CharacterTrajectories 94.6 94.6 94.6
Cricket 98.6 97.2 97.2
ERing 93.7 93.7 93.0
EigenWorms 80.9 80.9 79.4
Epilepsy 92.0 92.0 91.3
EthanolConcentration 31.2 31.6 30.0
FingerMovements 54.0 54.0 50.0
HandMovementDirection 35.1 32.4 29.7
Handwriting 36.6 36.4 37.1
JapaneseVowels 87.3 85.9 85.7
LSST 55.8 55.6 55.4
Libras 85.0 86.1 84.4
NATOPS 92.8 92.8 91.7
PenDigits 96.6 96.7 96.7
PhonemeSpectra 8.0 8.1 8.2
RacketSports 84.2 84.2 83.6
SelfRegulationSCP1 79.5 83.3 84.6
SelfRegulationSCP2 56.1 57.2 56.7
SpokenArabicDigits 90.5 90.5 90.2
StandWalkJump 46.7 53.3 46.7
UWaveGestureLibrary 87.5 87.2 87.2
Human Activity 85.0 84.6 85.1
Speech Commands 77.0 75.7 75.9

Average ranks 1.73 1.92 2.35

Table B.11 – Accuracy of (log)signature depth per dataset.

Depth

Dataset 1 2 3 4 5 6

ArticularyWordRecognition 83.3 96.0 97.3 97.7 95.3 –
AtrialFibrillation 40.0 40.0 60.0 33.3 40.0 53.3
BasicMotions 70.0 100.0 100.0 100.0 100.0 92.5
CharacterTrajectories 42.3 88.0 93.2 93.8 92.9 93.8
Cricket 30.6 93.1 97.2 98.6 100.0 –
ERing 77.0 89.6 90.0 89.3 88.9 84.8
EigenWorms 46.6 81.7 79.4 79.4 – –
Epilepsy 50.7 78.3 89.9 93.5 93.5 93.5
EthanolConcentration 25.5 30.8 30.0 31.2 31.9 27.4
FingerMovements 57.0 58.0 59.0 – – –
HandMovementDirection 40.5 36.5 37.8 39.2 32.4 –
Handwriting 7.3 22.4 32.4 33.3 35.3 32.7
JapaneseVowels 78.9 85.9 86.8 84.3 81.4 –
LSST 40.9 45.6 47.6 50.6 52.0 44.7
Libras 51.7 77.2 85.0 87.8 88.9 90.6
NATOPS 35.0 86.7 91.7 – – –
PenDigits 60.0 90.4 96.9 97.7 97.4 97.8
PhonemeSpectra 4.1 7.6 8.9 – – –
RacketSports 44.1 77.0 78.9 84.9 85.5 82.2
SelfRegulationSCP1 53.6 80.2 84.0 83.3 81.9 –
SelfRegulationSCP2 56.1 55.0 56.7 54.4 57.2 –
SpokenArabicDigits 52.1 85.8 85.5 87.5 – –
StandWalkJump 46.7 46.7 46.7 46.7 53.3 46.7
UWaveGestureLibrary 49.4 83.1 86.6 87.8 90.0 88.1
Human Activity 47.7 78.3 76.0 78.7 78.6 –
Speech Commands 14.8 69.6 76.3 – – –

Average ranks 4.73 3.44 2.62 2.48 2.38 3.04

B.4. Additional results 153

Classification method

Dataset DTWD DTWA DTWI HIVE MLCN MUSE TapNet gRSF Signature
COTE Pipeline

AWR 98.7 98.7 98.0 99.0 95.7 99.3 95.7 98.3 97.7
AtrialFibrillation 20.0 26.7 26.7 13.3 33.3 40.0 20.0 26.7 46.7
BasicMotions 97.5 100.0 100.0 100.0 87.5 100.0 100.0 100.0 100.0
Cricket 100.0 100.0 98.6 98.6 91.7 98.6 100.0 98.6 95.8
Epilepsy 96.4 97.8 97.8 100.0 73.2 99.3 95.7 97.8 95.7
EConcentration 32.3 31.6 30.4 79.1 37.3 47.5 30.8 34.6 43.3
ERing 91.5 92.6 91.9 97.0 94.1 97.4 90.4 95.2 94.8
FaceDetection 52.9 52.8 51.3 65.6 55.5 63.1 60.3 54.8 61.4
FingerMovements 53.0 51.0 52.0 55.0 58.0 55.0 47.0 58.0 52.0
HMD 18.9 20.3 29.7 44.6 52.7 36.5 33.8 41.9 20.3
Handwriting 60.7 60.7 50.9 48.2 30.9 52.2 28.1 37.5 37.9
Heartbeat 71.7 69.3 65.9 72.2 38.0 71.2 79.0 76.1 69.8
Libras 87.2 88.3 89.4 90.0 85.0 89.4 87.8 69.4 93.9
LSST 55.1 56.7 57.5 57.5 52.8 64.0 51.3 58.8 56.9
NATOPS 88.3 88.3 85.0 88.9 90.0 90.6 81.1 84.4 92.2
PenDigits 97.7 97.7 93.9 93.4 97.9 96.7 85.6 93.5 97.4
Racketsports 80.3 84.2 84.2 88.8 84.2 92.8 87.5 88.2 90.8
SCP1 77.5 78.5 76.5 85.3 90.8 69.6 93.5 82.3 78.8
SCP2 53.9 52.2 53.3 46.1 50.6 52.8 48.3 51.7 50.6
StandWalkJump 20.0 33.3 33.3 33.3 40.0 26.7 13.3 33.3 46.7
UWGL 90.3 90.0 86.9 89.1 85.9 93.1 90.0 89.7 90.9

Average Ranks 5.6 5.2 5.9 4.0 5.6 3.2 6.4 4.8 4.3

Table B.12 – Results of the signature canonical pipeline along with a selection of classifiers from
Ruiz et al. (2020) (including the top performing MUSE algorithm) with a Random Forest for
the UEA archive.

Signature hyperparmeters RF hyperparameters Other

Dataset Depth Dyadic depth Max depth Num estimators Training time (s)

ArticularyWordRecognition 2 2 45 500 60.3
AtrialFibrillation 1 2 None 50 35.9
BasicMotions 2 2 24 100 19.3
CharacterTrajectories 4 2 80 500 181.4
Cricket 2 4 6 500 249.0
DuckDuckGeese 1 2 16 100 140.9
ERing 2 3 8 1000 16.7
EigenWorms 3 3 12 100 250.1
Epilepsy 2 3 8 1000 42.8
EthanolConcentration 2 4 24 1000 454.2
FaceDetection 1 4 8 1000 1816.2
FingerMovements 1 2 4 100 30.8
HandMovementDirection 2 2 None 50 66.3
Handwriting 6 2 32 1000 280.3
Heartbeat 1 4 None 50 45.1
InsectWingbeat 1 3 45 1000 5367.5
JapaneseVowels 2 3 6 1000 95.4
LSST 4 2 60 1000 1590.5
Libras 6 2 None 100 28.4
MotorImagery 1 3 24 50 347.1
NATOPS 2 3 32 1000 37.8
PEMS-SF 1 3 80 1000 252.3
PenDigits 3 2 80 1000 302.3
PhonemeSpectra 2 4 45 1000 2188.7
RacketSports 3 2 None 500 13.9
SelfRegulationSCP1 3 2 None 100 186.6
SelfRegulationSCP2 3 2 6 50 138.1
SpokenArabicDigits 2 3 45 1000 1204.0
StandWalkJump 1 3 2 50 101.5
UWaveGestureLibrary 2 2 60 500 21.8

Table B.13 – Hyperparameters used for each dataset in the signature pipeline model.

154 APPENDIX B. Supplementary material of Chapter 3

Bibliography

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and Keogh, E.
(2018). The uea multivariate time series classification archive, 2018. arXiv:1811.00075.

Chevyrev, I., and Kormilitzin, A. (2016a). A primer on the signature method in machine learning.
arXiv:1603.03788.

Flint, G., Hambly, B., and Lyons, T. (2016). Discretely sampled signals and the rough Hoff
process. Stochastic Processes and their Applications, 126, 2593–2614.

Greff, K., Klein, A., Chovanec, M., Hutter, F., and Schmidhuber, J. (2017). The sacred infras-
tructure for computational research. In K. Huff, D. Lippa, D. Niederhut, and M. Pacer
(Eds.), Proceedings of the 16th python in science conference (pp. 49–56).

Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep signature trans-
forms. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Eds.), Advances in neural information processing systems (pp. 3099–3109).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

Kingma, D. P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations.

Kormilitzin, A., Saunders, K., Harrison, P., Geddes, J., and Lyons, T. (2016). Application of the
signature method to pattern recognition in the cequel clinical trial. arXiv:1606.02074.

Levin, D., Lyons, T., and Ni, H. (2013). Learning from the past, predicting the statistics for the
future, learning an evolving system. arXiv:1309.0260.

Liao, S., Lyons, T., Yang, W., and Ni, H. (2019). Learning stochastic differential equations using
RNN with log signature features. arXiv:1908.08286.

Lyons, T., Ni, H., and Oberhauser, H. (2014). A feature set for streams and an application to
high-frequency financial tick data. Proceedings of the 2014 International Conference on
Big Data Science and Computing, 5.

Lyons, T., and Oberhauser, H. (2017). Sketching the order of events. arXiv:1708.09708.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances
in neural information processing systems (pp. 8024–8035). Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,
Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12, 2825–2830.

Ruiz, A. P., Flynn, M., and Bagnall, A. (2020). Benchmarking multivariate time series classifi-
cation algorithms. arXiv:2007.13156.

Tange, O. (2011). Gnu parallel - the command-line power tool. The USENIX Magazine, 36, 42–
47.

Yang, W., Lyons, T., Ni, H., Schmid, C., Jin, L., and Chang, J. (2017). Developing the path
signature methodology and its application to landmark-based human action recognition.
arXiv:1707.03993.

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

Appendix C

Supplementary material of
Chapter 4

Contents

C.1 Proof of Theorem 4.4 155
C.2 Proof of Corollary 4.5 165

C.1 Proof of Theorem 4.4

This section is devoted to the proof of Theorem 4.4. We will use extensively results from
van Handel (2014). The next two lemmas first show that it is sufficient to obtain a uniform tail
bound on the risk to control the convergence of m̂.

Lemma C.1. For any m ∈ N,∣∣L̂n(m)− L(m)
∣∣ ≤ sup

β∈Bm,α

∣∣R̂m,n(β)−Rm(β)
∣∣.

Proof. Introducing R̂m,n(β∗m) yields

L̂n(m)− L(m) = R̂m,n(β̂m)−Rm(β∗m) = R̂m,n(β̂m)− R̂m,n(β∗m) + R̂m,n(β∗m)−Rm(β∗m).

Since β̂m minimises R̂m,n over Bm,α, R̂m,n(β̂m)− R̂m,n(β∗m) ≤ 0, which gives

L̂n(m)− L(m) ≤ R̂m,n(β∗m)−Rm(β∗m) ≤ sup
β∈Bm,α

|R̂m,n(β)−Rm(β)|.

In the same manner,
L(m)− L̂n(m) ≤ sup

β∈Bm,α
|R̂m,n(β)−Rm(β)|,

which proves the lemma.

155

156 APPENDIX C. Supplementary material of Chapter 4

Lemma C.2. For any m > m∗,

P(m̂ = m) ≤ P
(
2 sup
β∈Bm,α

|R̂m,n(β)−R(β)| ≥ penn(m)− penn(m∗)
)
.

Proof. For any m ∈ N,

P(m̂ = m) ≤ P
(
L̂n(m) + penn(m) ≤ L̂n(m∗) + penn(m∗)

)
= P

(
L̂n(m∗)− L̂n(m) ≥ penn(m)− penn(m∗)

)
.

Recall that, by the definition of the model (4.5), m 7→ L(m) is a decreasing function and that
its minimum is attained at m = m∗. Therefore, for any m ∈ N, L(m∗) ≤ L(m), and Lemma C.1
yields

L̂n(m∗)− L̂n(m) = L̂n(m∗)− L(m∗) + L(m∗)− L(m) + L(m)− L̂n(m)

≤ L̂n(m∗)− L(m∗) + L(m)− L̂n(m)

≤ supβ∈Bm∗,α |R̂m,n(β)−Rm(β)|+ supβ∈Bm,α |R̂m,n(β)−Rm(β)|.

For m > m∗, Bm∗,α ⊂ Bm,α, which gives

L̂n(m∗)− L̂n(m) ≤ 2supβ∈Bm,α |R̂m,n(β)−Rm(β)|,

and the proof is complete.

From now on, we denote by Zm,n the centered empirical risk for signatures truncated at m:
for any β ∈ Bm,α,

Zm,n(β) = R̂m,n(β)−Rm(β) =
1

n

n∑
i=1

(
Yi −

〈
β, Sm(Xi)

〉)2 − E
(
Y −

〈
β, Sm(X)

〉)2
.

We will now derive a uniform tail bound on Zm,n(β), which is the main result needed to prove
Theorem 4.4. In a nutshell, we show that (Zm,n(β))β∈Bm,α is a subgaussian process for some
appropriate distance, and then use a chaining tail inequality (2014, Theorem 5.29) on Zm,n.

Lemma C.3. Under the assumptions (Hα) and (HK), for anym ∈ N, the process (Zm,n(β))β∈Bm,α
is subgaussian for the distance

D(β, γ) =
K√
n
‖β − γ‖, (C.1)

where the constant K is defined by (4.6).

Proof. By definition, it is clear that EZm,n(β) = 0 for any β ∈ Bm,α. Let `(X,Y) : Bm,α → R be
given by

`(X,Y)(β) =
(
Y −

〈
β, Sm(X)

〉)2
.

C.1. Proof of Theorem 4.4 157

We first prove that `(X,Y) is K-Lipschitz. For any β, γ ∈ Bm,α,

|`(X,Y)(β)− `(X,Y)(γ)| =
∣∣(Y − 〈β, Sm(X)

〉)2 − (Y − 〈γ, Sm(X)
〉)2∣∣

≤ 2 max
(∣∣Y − 〈β, Sm(X)

〉∣∣, ∣∣Y − 〈γ, Sm(X)
〉∣∣)× ∣∣〈β − γ, Sm(X)

〉∣∣
(because |a2 − b2| ≤ 2 max(|a|, |b|)|a− b|)
≤ 2 max

(∣∣Y − 〈β, Sm(X)
〉∣∣, ∣∣Y − 〈γ, Sm(X)

〉∣∣)× ∥∥Sm(X)
∥∥ ‖β − γ‖

(by the Cauchy-Schwartz inequality).

Moreover, by the triangle inequality and Cauchy-Schwartz inequality,∣∣Y − 〈β, Sm(X)
〉∣∣ ≤ |Y |+ ∥∥Sm(X)

∥∥‖β‖ ≤ KY + α
∥∥Sm(X)

∥∥,
and, by Proposition 4.3, ∥∥Sm(X)

∥∥ ≤ e‖X‖TV ≤ eKX .
Consequently,

∣∣Y − 〈β, Sm(X)
〉∣∣ ≤ KY + αeKX , and∣∣`(X,Y)(β)− `(X,Y)(γ)

∣∣ ≤ 2
(
KY + αeKX

)
eKX‖β − γ‖ = K‖β − γ‖.

Therefore, by Hoeffding’s lemma (2014, Lemma 3.6), `(X,Y)(β) − `(X,Y)(γ) is a subgaussian
random variable with variance proxy K2‖β − γ‖2, which gives, for λ ≥ 0,

E exp

(
λ
(
`(X,Y)(β)− `(X,Y)(γ)− E

(
`(X,Y)(β)− `(X,Y)(γ)

)))
≤ exp

(
λ2K2 ‖β − γ‖2

2

)
.

From this, it follows that

Eeλ
(
Zm,n(β)−Zm,n(γ)

)
= E exp

(
λ

n

n∑
i=1

`(Xi,Yi)(β)− `(Xi,Yi)(γ)− E
(
`(Xi,Yi)(β)− `(Xi,Yi)(γ)

))

=

n∏
i=1

E exp

(
λ

n

(
`(Xi,Yi)(β)− `(Xi,Yi)(γ)− E

(
`(Xi,Yi)(β)− `(Xi,Yi)(γ)

)))

≤ exp
(λ2K2 ‖β − γ‖2

2n

)
= exp

(λ2D(β, γ)2

2

)
,

where D(β, γ) = K‖β−γ‖√
n

, which completes the proof.

We can now derive a maximal tail inequality for Zm,n(β).

Proposition C.4. Under the assumptions (Hα) and (HK), for any m ∈ N, x > 0, β0 ∈ Bm,α,

P
(

sup
β∈Bm,α

Zm,n(β) ≥ 108
√
πKα

√
sd(m)

n
+ Zm,n(β0) + x

)
≤ 36 exp

(
− x2n

144K2α2

)
,

where the constant K is defined by (4.6).

Proof. By Lemma C.3, Zm,n is a subgaussian process for D, defined by (C.1). So, we may apply

158 APPENDIX C. Supplementary material of Chapter 4

Theorem 5.29 of van Handel (2014) to Zm,n on the metric space (Bm,α, D):

P
(

sup
β∈Bm,α

Zm,n(β)− Zm,n(β0) ≥ 36

∫ ∞
0

√
log(N(ε,Bm,α, D))dε+ x

)
≤ 36 exp

(
− x2n

36× 4K2α2

)
,

where N(ε,Bm,α, D) is the ε-covering number of Bm,α with respect to D, and where we use that

diam(Bm,α) =
2Kα√
n
.

Moreover, N(ε,Bm,α, D) = N(
√
n
K ε,Bm,α, ‖ · ‖) , and so, by Lemma 5.13 of van Handel (2014),

N(ε,Bm,α, D) ≤
(

3Kα√
nε

)sd(m)

if ε <
Kα√
n
,

and
N(ε,Bm,α, D) = 1 otherwise.

Therefore,∫ ∞
0

√
log(N(ε,Bm,α, D))dε =

∫ Kα√
n

0

√
log(N(ε,Bm,α, D))dε

≤
∫ Kα√

n

0

√
sd(m) log

(
3Kα√
nε

)
dε

≤ 3Kα

√
sd(m)

n

∫ ∞
0

2x2 exp
(
−x2

)
dx = 3Kα

√
sd(m)

n

√
π, (C.2)

where in the second inequality we use the change of variable x =

√
log
(

2Kα√
nε

)
.

Since P(m̂ 6= m∗) = P(m̂ > m∗) + P(m̂ < m∗), we divide the proof into two cases. Let us
first consider m > m∗ in the next proposition.

Proposition C.5. Let 0 < ρ < 1
2 , and penn(m) be defined by (4.7):

penn(m) = Kpenn
−ρ√sd(m).

Let n1 be the smallest integer satisfying

n1 ≥
(

432
√
πKα

√
sd(m∗ + 1)

Kpen(
√
sd(m∗ + 1)−

√
sd(m∗))

)1/(1
2−ρ)

. (C.3)

Then, under the assumptions (Hα) and (HK), for any m > m∗, n ≥ n1,

P (m̂ = m) ≤ 74 exp
(
− C3(n1−2ρ + sd(m))

)
,

C.1. Proof of Theorem 4.4 159

where the constant C3 is defined by

C3 =
K2

pend
m∗+1

128sd(m∗ + 1)(72K2α2 +K2
Y)
.

Proof. Let

um,n =
1

2

(
penn(m)− penn(m∗)

)
=
Kpen

2
n−ρ

(√
sd(m)−

√
sd(m∗)

)
.

As m 7→ penn(m) is increasing in m, it is clear that um,n > 0 for any m > m∗. From Lemma
C.2, we see that

P (m̂ = m) ≤ P
(

sup
β∈Bm,α

|Zm,n(β)| > um,n

)
= P

(
sup

β∈Bm,α
Zm,n(β) > um,n

)
+ P

(
sup

β∈Bm,α
(−Zm,n(β)) > um,n

)
.

We focus on the first term of the inequality, the second can be handled in the same way since
Proposition C.4 also holds when Zm,n(β) is replaced by −Zm,n(β). Let β0 be a fixed point in
Bm,α that will be chosen later, we have

P
(

sup
β∈Bm,α

Zm,n(β) > um,n

)
= P

(
sup

β∈Bm,α
Zm,n(β) > um,n, Zm,n(β0) ≤ um,n

2

)
+ P

(
sup

β∈Bm,α
Zm,n(β) > um,n, Zm,n(β0) >

um,n
2

)
≤ P

(
sup

β∈Bm,α
Zm,n(β) >

um,n
2

+ Zm,n(β0)
)

+ P
(
Zm,n(β0) >

um,n
2

)
. (C.4)

We treat each term separately. The first one is handled by Proposition C.4. To this end, we

need to ensure that um,n
2 − 108Kα

√
πsd(m)

n is positive. By definition,

um,n
2
− 108Kα

√
πsd(m)

n
=
Kpen

2
n−ρ

(√
sd(m)−

√
sd(m∗)

)
− 108Kα

√
πsd(m)

n

=
√
sd(m)n−ρ

Kpen

2

(
1−

√
sd(m∗)
sd(m)

− 2× 108
√
πKα

Kpen
nρ−

1
2

)
.

≥
√
sd(m)n−ρ

Kpen

2

(
1−

√
sd(m∗)

sd(m∗ + 1)
− 216

√
πKα

Kpen
nρ−

1
2

)
.

Let n1 ∈ N be such that

1−
√

sd(m∗)
sd(m∗ + 1)

− 216
√
πKα

Kpen
n
ρ− 1

2
1 >

1

2

(
1−

√
sd(m∗)

sd(m∗ + 1)

)

⇔ n1 >

(
432
√
πKα

√
sd(m∗ + 1)

Kpen(
√
sd(m∗ + 1)−

√
sd(m∗))

)1/(1
2−ρ)

,

160 APPENDIX C. Supplementary material of Chapter 4

then, for any n ≥ n1,

um,n
2
− 108Kα

√
πsd(m)

n
≥
√
sd(m)n−ρ

Kpen

4

(
1−

√
sd(m∗)

sd(m∗ + 1)

)
> 0.

Hence, Proposition C.4 applied to x =
um,n

2 − 108
√
πKα

√
sd(m)
n now shows that, for n ≥ n1,

P
(

sup
β∈Bm,α

Zm,n(β) >
um,n

2
+ Zm,n(β0)

)
≤ 36 exp

(
− n

144K2α2

(
um,n

2
− 108Kα

√
πsd(m)

n

)2)
≤ 36 exp

(
− sd(m)n1−2ρK2

pen

144K2α2 × 16

(
1−

√
sd(m∗)

sd(m∗ + 1)

)2)
= 36 exp

(
− κ1sd(m)n1−2ρ

)
, (C.5)

where

κ1 =
K2

pen

2304K2α2

(
1−

√
sd(m∗)

sd(m∗ + 1)

)2

.

We now turn to the second term of (C.4). Since∣∣Y − 〈β0, S
m(X)〉

∣∣2 ≤ (KY + ‖β0‖eKX
)2 a.s. ,

Hoeffding’s inequality yields, for n ≥ n1,

P
(
Zm,n(β0) >

um,n
2

)
≤ exp

(
− nu2

m,n

8
(
KY + ‖β0‖eKX

)2)

= exp

(
−
n1−2ρK2

pen

(√
sd(m)−

√
sd(m∗)

)2

32
(
KY + ‖β0‖eKX

)2)

≤ exp

(
− n1−2ρK2

pensd(m)

32
(
KY + ‖β0‖eKX

)2(1−
√

sd(m∗)
sd(m∗ + 1)

)2)
= exp

(
−κ2n

1−2ρsd(m)
)
, (C.6)

where

κ2 =
K2

pen

32
(
KY + ‖β0‖eKX

)2(1−
√

sd(m∗)
sd(m∗ + 1)

)2

.

Combining (C.5) with (C.6), we obtain

P
(

sup
β∈Bm,α

Zm,n(β) > um,n

)
≤ 36 exp

(
− κ1n

1−2ρsd(m)
)

+ exp
(
− κ2n

1−2ρsd(m)
)

≤ 37 exp
(
− κ3n

1−2ρsd(m)
)
≤ 37 exp

(
− κ3

2

(
n1−2ρ + sd(m)

))
,

C.1. Proof of Theorem 4.4 161

where κ3 = min(κ1, κ2). The same proof works for the process (−Zm,n(β)), and consequently

P (m̂ = m) ≤ 2× 37 exp
(
− κ3

2

(
n1−2ρ + sd(m)

))
.

We are left with the task of choosing an optimal β0. Since

κ3 = min(κ1, κ2) =
K2

pen

32

(
1−

√
sd(m∗)

sd(m∗ + 1)

)2

min

(
1

72K2α2
,

1(
KY + ‖β0‖eKX

)2),
it is clear that κ3 is maximal at β0 = 0, which yields

κ3 =
K2

pen

32

(
1−

√
sd(m∗)

sd(m∗ + 1)

)2

min

(
1

72K2α2
,

1

K2
Y

)
.

Noting that

√
sd(m∗ + 1)−

√
sd(m∗) =

√
dm∗+1 + sd(m∗)−

√
sd(m∗) ≥

√
dm∗+1

2
,

where we have used the fact that for a, b ≥ 0,
√
a+
√
b ≥
√

2
√
a+ b, letting

C3 =
1

2
× K2

pend
m∗+1

64sd(m∗ + 1)(72K2α2 +K2
Y)

completes the proof.

To treat the case m < m∗, we need a rate of convergence of L̂n. This can be obtained with
arguments similar to the previous proof.

Proposition C.6. For any ε > 0, m ∈ N, let n2 ∈ N be the smallest integer such that

n2 ≥
4322K2πα2sd(m)

ε2
. (C.7)

Then, for any n ≥ n2,

P
(∣∣L̂n(m)− L(m)

∣∣ > ε
)
≤ 74 exp

(
− C4nε

2
)
,

where the constant C4 is defined by

C4 =
1

2(1152K2α2 +K2
Y)
. (C.8)

Proof. By Lemma C.1,

P
(
|L̂n(m)− L(m)| > ε

)
≤ P

(
sup

β∈Bm,α
|Zm,n(β)| > ε

)
= P

(
sup

β∈Bm,α
Zm,n(β) > ε

)
+ P

(
sup

β∈Bm,α
(−Zm,n(β)) > ε

)
.

162 APPENDIX C. Supplementary material of Chapter 4

Let us fix β0 ∈ Bm,α, we can now proceed as in Proposition C.5. Since, for n ≥ n2,

ε

2
− 108Kα

√
πsd(m)

n
>
ε

4
> 0,

Hoeffing’s inequality and Proposition C.4 show that

P
(

sup
β∈Bm,α

Zm,n(β) > ε
)
≤ P

(
sup

β∈Bm,α
Zm,n(β) >

ε

2
+ Zm,n(β0)

)
+ P

(
Zm,n(β0) >

ε

2

)
≤ 36 exp

(
− n

144K2α2

(ε
2
− 108Kα

√
πsd(m)

n

)2
)

+ exp

(
− nε2

2
(
KY + ‖β0‖eKX

)2)
≤ 36 exp

(
− nε2

2304K2α2

)
+ exp

(
− nε2

2
(
KY + ‖β0‖eKX

)2)
≤ 37 exp

(
−κ4nε

2
)
,

where
κ4 = min

(
1

2304K2α2
,

1

2
(
KY + ‖β0‖eKX

)2).
The same analysis can be done to (−Zm,n(β)), and so

P
(
|L̂n(m)− L(m)| > ε

)
≤ 74 exp

(
−κ4nε

2
)
.

Moreover, taking β0 = 0 gives

κ4 = min

(
1

2304K2α2
,

1

2
(
KY + ‖β0‖eKX

)2
)
≥ 1

2(1152K2α2 +K2
Y)

= C4,

which completes the proof.

This allows us to treat the case m < m∗.

Proposition C.7. Let 0 < ρ < 1
2 and penn(m) be defined by (4.7). Let n3 be the smallest

integer satisfying

n3 ≥
(

2
√
sd(m∗)

L(m∗ − 1)− σ2

(
432Kα

√
π +Kpen

))1/ρ

. (C.9)

Then, under the assumptions (Hα) and (HK), for any m < m∗, n ≥ n3,

P (m̂ = m) ≤ 148 exp
(
− nC4

4

(
L(m)− L(m∗)− penn(m∗) + penn(m)

)2)
,

where the constant C4 is defined by (C.8).

C.1. Proof of Theorem 4.4 163

Proof. This is a consequence of Proposition C.6. For any m < m∗,

P(m̂ = m) ≤ P
(
L̂n(m)− L̂n(m∗) ≤ penn(m∗)− penn(m)

)
= P

(
L̂n(m∗)− L(m∗) + L(m)− L̂n(m) ≥ L(m)− L(m∗)−

(
penn(m∗)− penn(m)

))
≤ P

(∣∣L̂n(m)− L(m)
∣∣ ≥ 1

2

(
L(m)− L(m∗)− penn(m∗) + penn(m)

))
+ P

(∣∣L̂n(m∗)− L(m∗)
∣∣ ≥ 1

2

(
L(m)− L(m∗)− penn(m∗) + penn(m)

))
.

In order to apply Proposition C.6, we first need to ensure that L(m) − L(m∗) − penn(m∗) +
penn(m) is strictly positive. Recall that m 7→ L(m) is a decreasing function, minimal at m = m∗

and then bounded by σ2. Recall also that m 7→ penn(m) is strictly increasing. This gives, for
m < m∗:

L(m)− L(m∗)− penn(m∗) + penn(m) > L(m∗ − 1)− σ2 −Kpenn
−ρ√sd(m∗).

This implies that it is enough that

L(m∗ − 1)− σ2 −Kpenn
−ρ√sd(m∗) > 1

2
(L(m∗ − 1)− σ2) (C.10)

to ensure that L(m)− L(m∗)− penn(m∗) + penn(m) > 0. This yields a first condition on n3:

n3 ≥
(

2Kpen
√
sd(m∗)

L(m∗ − 1)− σ2

) 1
ρ

. (C.11)

However, to apply Proposition C.6, we also need n3 to satisfy (C.7) , which writes

n3 ≥
4322K2πα2sd(m)

(L(m)− L(m∗)− penn(m∗) + penn(m))2
.

If n3 satisfies (C.11), we can bound the right-hand side uniformly in m:

4322K2πα2sd(m)(
L(m)− L(m∗)− penn(m∗) + penn(m)

)2 ≤ 4× 4322K2πα2sd(m
∗)

(L(m∗ − 1)− σ2)2

=

(
2× 432Kα

√
πsd(m∗)

L(m∗ − 1)− σ2

)2

.

We can assume that this quantity is larger than 1, as otherwise the condition on n3 will be
trivially satisfied. Then, as ρ < 1

2 , it is enough for n3 to satisfy

n3 ≥ max

(
2Kpen

√
sd(m∗)

L(m∗ − 1)− σ2
,

2× 432Kα
√
πsd(m∗)

L(m∗ − 1)− σ2

)1/ρ

,

or in a more compact form that

n3 ≥
(

2(Kpen + 432Kα
√
π)
√
sd(m∗)

L(m∗ − 1)− σ2

)1/ρ

.

164 APPENDIX C. Supplementary material of Chapter 4

We conclude by applying Proposition C.6 to both terms with

ε =
1

2

(
L(m)− L(m∗)− penn(m∗)− penn(m)

)
.

We are now in a position to prove Theorem 4.4.

Proof of Theorem 4.4. The result is a consequence of Propositions C.5 and C.7. For this, we first
need to ensure that the conditions on n (C.3) and (C.9) are satisfied. Thus, we need to bound

M = max

((
2
√
sd(m∗)

L(m∗ − 1)− σ2

(
432Kα

√
π +Kpen

))1/ρ

,

(
432
√
πKα

√
sd(m∗ + 1)

Kpen(
√
sd(m∗ + 1)−

√
sd(m∗))

)1/(1
2−ρ)

)
.

If ρ̃ = min(ρ, 1
2 − ρ), then

M ≤
(

(432Kα
√
π +Kpen)

√
sd(m∗ + 1)×

max

(
2

L(m∗ − 1)− σ2
,

1

Kpen
(√

sd(m∗ + 1)−
√
sd(m∗)

)))1/ρ̃

≤
(

(432Kα
√
π +Kpen)

√
sd(m∗ + 1)

(2

L(m∗ − 1)− σ2
+

√
2

Kpen
√
dm∗+1

))1/ρ̃

.

Therefore, condition (4.8) implies that (C.3) and (C.9) are satisfied. Splitting the probability
P (m̂ 6= m∗) into two terms now gives

P (m̂ 6= m∗) = P (m̂ > m∗) + P (m̂ < m∗) ≤
∑
m>m∗

P (m̂ = m) +
∑
m<m∗

P (m̂ = m) .

On the one hand, Theorem C.5 shows that, for n ≥ n0,∑
m>m∗

P (m̂ = m) ≤ 74e−C3n
1−2ρ ∑

m>m∗

e−C3sd(m),

and, on the other hand, Proposition C.7 gives

∑
m<m∗

P (m̂ = m) ≤ 148

m∗−1∑
m=0

exp
(
− C4

4
n
(
L(m)− L(m∗)− penn(m∗) + penn(m)

))
≤ 148m∗ exp

(
− C4

8
n(L(m∗ − 1)− σ2)

)
,

where we have used that for n ≥ n0, (C.10) is true. Letting

κ5 = min
(
C3,

C4(L(m∗ − 1)− σ2)

8

)

C.2. Proof of Corollary 4.5 165

yields

P (m̂ 6= m∗) ≤ 74e−κ5n
1−2ρ ∑

m>0

e−C3sd(m) + 148m∗e−κ5n ≤ C1e
−κ5n

1−2ρ

,

where
C1 = 74

∑
m>0

e−C3sd(m) + 148m∗.

To complete the proof, it remains to find a lower bound on κ5:

κ5 = min
(
C3,

C4(L(m∗ − 1)− σ2)

8

)
= min

(
K2

pend
m∗+1

128sd(m∗ + 1)(72K2α2 +K2
Y)
,

L(m∗ − 1)− σ2

16(1152K2α2 +K2
Y)

)
≥ 1

16(1152K2α2 +K2
Y)

min
(K2

pend
m∗+1

8sd(m∗ + 1)
, L(m∗ − 1)− σ2

)
= C2.

C.2 Proof of Corollary 4.5

First, let us note that

E
(
〈β̂m̂, Sm̂(X)〉 − 〈β∗m∗ , Sm

∗
(X)〉

)2
= E

(
Rm̂(β̂m̂)

)
−Rm∗(β∗m∗).

Moreover, we have a.s.

Rm̂(β̂m̂)−Rm∗(β∗m∗)
= Rm̂(β̂m̂)−Rm̂(β∗m̂) +Rm̂(β∗m̂)−Rm∗(β∗m∗)
= Rm̂(β̂m̂)− R̂m̂,n(β̂m̂) + R̂m̂,n(β̂m̂)− R̂m̂,n(β∗m̂)

+ R̂m̂,n(β∗m̂)−Rm̂(β∗m̂) +Rm̂(β∗m̂)−Rm∗(β∗m∗)
≤ Rm̂(β̂m̂)− R̂m̂,n(β̂m̂) + R̂m̂,n(β∗m̂)−Rm̂(β∗m̂) +Rm̂(β∗m̂)−Rm∗(β∗m∗)
≤ 2 sup

β∈Bm̂,α
|R̂m̂,n(β)−Rm̂(β)|+Rm̂(β∗m̂)−Rm∗(β∗m∗)

We decompose the proof into two lemmas.

Lemma C.8.
E
(

sup
β∈Bm̂,α

|R̂m̂,n(β)−Rm̂(β)|
)

= O
(1√

n

)
.

Proof. From Corollary 5.25 of van Handel (2014) and (C.2), for any m ∈ N,

E
(

sup
β∈Bm,α

|R̂m,n(β)−Rm(β)|
)
≤ 12

∫ ∞
0

√
log(N(Bm,α, D, ε))

= 36Kα
√
sd(m)

√
π

n
,

166 APPENDIX C. Supplementary material of Chapter 4

where N(Bm,α, D, ε) is the ε-covering number of Bm,α with respect to the distance D, defined
by (C.1). This gives, for m = m̂,

E
(

sup
β∈Bm̂,α

|R̂m̂,n(β)−Rm̂(β)|
)
≤ 36Kα

√
π

n
E
(√

sd(m̂)
)
.

To compute this expectation, Proposition C.5 yields

E
(√

sd(m̂)
)

=
∑
m≤m∗

√
sd(m)P(m̂ = m) +

∑
m>m∗

√
sd(m)P(m̂ = m)

≤ (m∗ + 1)
√
sd(m∗) +

∑
m>m∗

√
sd(m)74 exp

(
− C3(n1−2ρ + sd(m))

)
≤ (m∗ + 1)

√
sd(m∗) + e−C3n

1−2ρ ∑
m>m∗

√
sd(m)74 exp

(
− C3sd(m)

)
= O(1),

which completes the proof.

Lemma C.9.
E
(
Rm̂(β∗m̂)−Rm∗(β∗m∗)

)
= O(e−C2n

1−2ρ

),

where the constant C2 is defined by (4.10).

Proof. Since, for any m ∈ N,

〈β∗m, Sm(X)〉2 ≤ ‖β∗k‖22‖Sm(X)‖22 ≤ α2eKX ,

it follows that

E
(
Rm̂(β∗m̂)−Rm∗(β∗m∗)

)
= E

((
Y − 〈β∗m̂, Sm̂(X)〉

)2 − (Y − 〈β∗m∗ , Sm∗(X)〉
)2)

= E
((
〈β∗m∗ , Sm

∗
(X)〉+ ε− 〈β∗m̂, Sm̂(X)〉

)2 − ε2
)

= E
((
〈β∗m∗ , Sm

∗
(X)〉 − 〈β∗m̂, Sm̂(X)〉

)2)
≤ 2α2eKXP(m̂ 6= m∗).

By Theorem 4.4, this yields

E
(
Rm̂(β∗m̂)−Rm∗(β∗m∗)

)
≤ 2α2eKXC1e

−C2n
1−2ρ

= O(e−C2n
1−2ρ

),

where C1 and C2 are defined by (4.9) and (4.10).

Combining these lemmas, we conclude that

E
(
〈β̂m̂, Sm̂(X)〉 − 〈β∗m∗ , Sm

∗
(X)〉

)2
= O

(1√
n

)
+O(e−C2n

1−2ρ

) = O
(1√

n

)
.

Bibliography 167

Bibliography

van Handel, R. (2014). Probability in high dimension (tech. rep.). Princeton University.

168 APPENDIX C. Supplementary material of Chapter 4

Appendix D

Supplementary material
of Chapter 5

Contents

D.1 Mathematical details 169
D.1.1 Writing the GRU and LSTM in the neural ODE framework 170
D.1.2 Picard-Lindelöf theorem . 170
D.1.3 Operator norm . 172
D.1.4 Tensor Hilbert space . 172
D.1.5 Bounding the derivatives of the logistic and hyperbolic tangent acti-

vations . 174
D.1.6 Chen’s formula . 175

D.2 Proofs 176
D.2.1 Proof of Proposition 5.1 . 176
D.2.2 Proof of Proposition 5.2 . 177
D.2.3 Proof of Proposition 5.3 . 178
D.2.4 Proof of Proposition 5.4 . 178
D.2.5 Proof of Proposition 5.5 . 180
D.2.6 Proof of Theorem 5.6 . 184
D.2.7 Proof of Theorem 5.7 . 185
D.2.8 Proof of Theorem 5.8 . 186

D.3 Differentiation with higher-order tensors 188
D.3.1 Definition . 188
D.3.2 Computation rules . 189

D.4 Experimental details 191

D.1 Mathematical details

169

170 APPENDIX D. Supplementary material of Chapter 5

D.1.1 Writing the GRU and LSTM in the neural ODE framework
GRU. Recall that the equations of a GRU take the following form: for any 1 ≤ j ≤ T ,

rj+1 = σ(Wrxj+1 + br + Urhj)

zj+1 = σ(Wzxj+1 + bz + Uzhj)

nj+1 = tanh
(
Wnxj+1 + bn + rj+1 ∗ (Unhj + cn)

)
hj+1 = (1− zj+1) ∗ hj + zj+1 ∗ nj+1,

where σ is the logistic activation, tanh the hyperbolic tangent, ∗ the Hadamard product, rj the
reset gate vector, zj the update gate vector, Wr, Ur, Wz, Uz, Wn, Un weight matrices, and br,
bz, bn, cn biases. Since rj+1, zj+1, and nj+1 depend only on xj+1 and hj , it is clear that these
equations can be rewritten in the form

hj+1 = hj + f(hj , xj+1).

We then obtain equation (5.1) by normalizing f by 1/T .

LSTM. The LSTM networks are defined, for any 1 ≤ j ≤ T , by

ij+1 = σ(Wixj+1 + bi + Uihj)

fj+1 = σ(Wfxj+1 + bf + Ufhj)

gj+1 = tanh(Wgxj+1 + bg + Ughj)

oj+1 = σ(Woxj+1 + bo + Uohj)

cj+1 = fj+1 ∗ cj + ij+1 ∗ gj+1

hj+1 = oj+1 ∗ tanh(cj+1),

where σ is the logistic activation, tanh the hyperbolic tangent, ∗ the Hadamard product, ij the
input gate, fj the forget gate, gj the cell gate, oj the output gate, cj the cell state, Wi, Ui, Wf ,
Uf , Wg, Ug Wo, Uo weight matrices, and bi, bf , bg, bo biases. Since ij+1, fj+1, gj+1, oj+1 depend
only on xj+1 and hj , these equations can be rewritten in the form

hj+1 = f1(hj , xj+1, cj+1)

cj+1 = f2(hj , xj+1, cj).

Let h̃j = (h>j , c
>
j)> be the hidden state defined by stacking the hidden and cell state. Then,

clearly, h̃ follows an equation of the form

h̃j+1 = f(h̃j , xj+1).

We obtain (5.1) by subtracting h̃j and normalizing by 1/T .

D.1.2 Picard-Lindelöf theorem
Consider a CDE of the form (5.8). We recall the Picard-Lindelöf theorem as given by Lyons

et al. (2007, Theorem 1.3), and provide a proof for the sake of completeness.

Theorem D.1 (Picard-Lindelöf theorem). Assume that X ∈ BV ([0, 1],Rd) and that F is
Lipschitz-continuous with constant KF. Then, for any H0 ∈ Re, the differential equation (5.8)

D.1. Mathematical details 171

admits a unique solution H : [0, 1]→ Re.

Proof. Let C ([s, t]),Re) be the set of continuous functions from [s, t] to Re. For any [s, t] ⊂ [0, 1],
ζ ∈ Re, let Ψ be the function

Ψ : C ([s, t]),Re)→ C ([s, t],Re)

Y 7→
(
v 7→ ζ +

∫ v

s

F(Yu)dXu

)
.

For any Y, Y ′ ∈ C ([s, t]),Re), v ∈ [s, t],

‖Ψ(Y)v −Ψ(Y ′)v‖ ≤
∫ v

s

∥∥(F(Yu)− F(Y ′u)
)
dXu

∥∥
≤
∫ v

s

‖F(Yu)− F(Y ′u)‖op‖dXu‖

≤
∫ v

s

KF‖Yu − Y ′u‖‖dXu‖

≤ KF‖Y − Y ′‖∞
∫ v

s

‖dXu‖

≤ KF‖Y − Y ′‖∞‖X‖TV ;[s,t].

This shows that the function Ψ is Lipschitz-continuous on C ([s, t]),Re) endowed with the supre-
mum norm, with Lipschitz constant KF‖X‖TV ;[s,t]. Clearly, the function t 7→ ‖X‖TV ;[0,t] is
non-decreasing and uniformly continuous on the compact interval [0, 1]. Therefore, for any ε > 0,
there exists δ > 0 such that

|t− s| < δ ⇒
∣∣‖X‖TV ;[0,t] − ‖X‖TV ;[0,s]

∣∣ < ε.

Take ε = 1/KF. Then on any interval [s, t] of length smaller than δ, one has ‖X‖TV ;[s,t] =
‖X‖TV ;[0,t] − ‖X‖TV ;[0,s] < 1/KF, so that the function Ψ is a contraction. By the Banach fixed-
point theorem, for any initial value ζ, Ψ has a unique fixed point. Hence, there exists a solution
to (5.8) on any interval of length δ with any initial condition. To obtain a solution on [0, 1] it is
sufficient to concatenate these solutions.

A corollary of this theorem is a Picard-Lindelöf theorem for initial value problems of the form

dHt = f(Ht, Xt)dt, H0 = ζ, (D.1)

where f : Re × Rd → Re, ζ ∈ Re.

Corollary D.2. Assume that f is Lipschitz continuous in its first variable. Then, for any
ζ ∈ Re, the initial value problem (D.1) admits a unique solution.

Proof. Let fX : (h, t) 7→ f(h,Xt). Then the solution of (D.1) is solution of the differential
equation

dHt = fX(Ht, t)dt.

Let d = 1, ē = e+ 1, and F be the vector field defined by

F : h 7→
(
fX(h1:e, he+1)

1

)
,

172 APPENDIX D. Supplementary material of Chapter 5

where h1:e denotes the projection of h on its first e coordinates. Then, since fX is Lipschitz, so
is the vector field F. Theorem D.1 therefore applies to the differential equation

dHt = F(Ht)dt, H0 = (ζ>, 0)>.

Projecting this differential equation on the last coordinate gives dHe+1
t = dt, that is, He+1

t = t.
Projecting on the first e coordinates exactly provides equation (D.1), which therefore has a
unique solution, equal to H1:e.

D.1.3 Operator norm
Definition D.1. Let (E, ‖·‖E) and (F, ‖·‖F) be two normed vector spaces and let f ∈ L (E,F),
where L (E,F) is the space of linear functions from E to F . The operator norm of f is defined
by

‖f‖op = sup
u∈E,‖u‖E=1

‖f(u)‖F .

Equipped with this norm, L (E,F) is a normed vector space.

This definition is valid when f is represented by a matrix.

D.1.4 Tensor Hilbert space
Let us first briefly recall some elements on tensor spaces. If e1, . . . , ed is the canonical basis of

Rd, then (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d is a basis of (Rd)⊗k. Any element a ∈ (Rd)⊗k can therefore
be written as

a =
∑

1≤i1,...,ik≤d
a(i1,...,ik)ei1 ⊗ · · · ⊗ eik ,

where a(i1,...,ik) ∈ R. The tensor space (Rd)⊗k is a Hilbert space of dimension dk, with scalar
product

〈a, b〉(Rd)⊗k =
∑

1≤i1,...,ik≤d
a(i1,...,ik)b(i1,...,ik)

and associated norm ‖ · ‖(Rd)⊗k .
We now consider the space T defined by (5.6). The sum, multiplication by a scalar, and scalar

product on T are defined as follows: for any a = (a0, . . . , ak, . . .) ∈ T , b = (b0, . . . , bk, . . .) ∈ T ,
λ ∈ R,

a+ λb = (a0 + λb0, . . . , ak + λbk, . . .) and 〈a, b〉T =

∞∑
k=0

〈ak, bk〉(Rd)⊗k ,

with the convention (Rd)⊗0 = R.

Proposition D.3. (T ,+, ·, 〈·, ·〉T) is a Hilbert space.

Proof. By the Cauchy-Schwartz inequality, 〈·, ·〉T is well-defined: for any a, b ∈ T ,

|〈a, b〉T | ≤
∞∑
k=0

|〈ak, bk〉(Rd)⊗k | ≤
∞∑
k=0

‖ak‖(Rd)⊗k‖bk‖(Rd)⊗k

≤
(∞∑
k=0

‖ak‖2(Rd)⊗k

)1/2(∞∑
k=0

‖bk‖2(Rd)⊗k

)1/2

<∞.

D.1. Mathematical details 173

Moreover, T is a vector space: for any a, b ∈ T , λ ∈ R, since

a+ λb = (a0 + λb0, . . . , ak + λbk, . . .),

and
∞∑
k=0

‖ak + λbk‖2(Rd)⊗k =

∞∑
k=0

‖ak‖2(Rd)⊗k + λ2
∞∑
k=0

‖bk‖2(Rd)⊗k

+ 2λ

∞∑
k=0

〈ak, bk〉(Rd)⊗k

≤
∞∑
k=0

‖ak‖2(Rd)⊗k + λ2
∞∑
k=0

‖bk‖2(Rd)⊗k + 2λ〈a, b〉T <∞,

we see that a+ λb ∈ T . The operation 〈·, ·〉T is also bilinear, symmetric, and positive definite:

〈a, a〉T = 0⇔
∞∑
k=0

‖ak‖2(Rd)⊗k = 0⇔ ∀k ∈ N, ‖ak‖2(Rd)⊗k = 0⇔ ∀k ∈ N, ak = 0⇔ a = 0.

Therefore 〈·, ·〉T is an inner product on T . Finally, let (a(n))n∈N be a Cauchy sequence in T .
Then, for any n,m ≥ 0,

‖a(n) − a(m)‖2T =

∞∑
k=0

‖a(n)
k − a(m)

k ‖2(Rd)⊗k ,

so for any k ∈ N, the sequence (a
(n)
k)n∈N is Cauchy in (Rd)⊗k. Since (Rd)⊗k is a Hilbert space,

(a
(n)
k)n∈N converges to a limit a(∞)

k ∈ (Rd)⊗k. Let a(∞) = (a
(∞)
0 , . . . , a

(∞)
k , . . .). To finish the

proof, we need to show that a(∞) ∈ T and that a(n) converges to a(∞) in T . First, note that
there exists a constant B > 0 such that for any n ∈ N,

‖a(n)‖T ≤ B.

To see this, observe that for ε > 0, there exists N ∈ N such that for any n ≥ N , ‖a(n)−a(N)‖T <
ε, and so ‖a(n)‖T ≤ ε + ‖a(N)‖T . Take B = max(‖a(1)‖T , . . . , ‖a(N)‖T , ε + ‖a(N)‖T). Then,
for any K ∈ N,

K∑
k=0

‖a(n)
k ‖2(Rd)⊗k ≤ ‖a(n)‖T ≤ B.

Letting K → ∞, we obtain that ‖a(∞)‖T ≤ B, and therefore a(∞) ∈ T . Finally, let ε > 0 and
let N ∈ N be such that for any n,m ≥ N , ‖a(n) − a(m)‖T < ε. Clearly, for any K ∈ N,

K∑
k=0

‖a(n)
k − a(m)

k ‖2(Rd)⊗k < ε2.

174 APPENDIX D. Supplementary material of Chapter 5

Letting m→∞ leads to

K∑
k=1

‖a(n)
k − a(∞)

k ‖2(Rd)⊗k < ε2,

and letting K →∞ gives

‖a(n) − a(∞)‖T < ε,

which completes the proof.

D.1.5 Bounding the derivatives of the logistic and hyperbolic tangent
activations

Lemma D.4. Let σ be the logistic function defined, for any x ∈ R, by σ(x) = 1/(1+e−x). Then,
for any n ≥ 0,

‖σ(n)‖∞ ≤ 2n−1n! .

Proof. For any x ∈ R, one has (Minai and Williams, 1993, Theorem 2)

σ(n)(x) =

n+1∑
k=1

(−1)k−1(k − 1)!

{
n+ 1

k

}
σ(x)k,

where
{
n
k

}
stands for the Stirling number of the second kind (see, e.g., Riordan, 1958). Let

un =

n+1∑
k=1

(k − 1)!

{
n+ 1

k

}

for n ≥ 1 and u0 = 1. Since 0 ≤ σ(x) ≤ 1, it is clear that |σ(n)(x)| ≤ un. Using the fact that the
Stirling numbers satisfy the recurrence relation{

n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
,

valid for all 0 ≤ k ≤ n, we have

un =

n∑
k=1

(k − 1)!
(
k

{
n

k

}
+

{
n

k − 1

})
+ n! =

n∑
k=1

k!

{
n

k

}
+

n−1∑
k=0

k!

{
n

k

}
+ n! = 2

n∑
k=1

k!

{
n

k

}
(since

{
n
0

}
= 0)

≤ 2n

n∑
k=1

(k − 1)!

{
n

k

}
= 2nun−1.

Thus, by induction, un ≤ 2n−1n!, from which the claim follows.

Lemma D.5. Let tanh be the hyperbolic tangent function. Then, for any n ≥ 0,

‖tanh(n)‖∞ ≤ 4nn! .

D.1. Mathematical details 175

Proof. Let σ be the logistic function. Straightforward calculations yield the equality, valid for
any x ∈ R,

tanh(x) = 2σ(2x)− 1.

But, for any n ≥ 1,
tanh(n)(x) = 2n+1σ(n)(2x),

and thus, by Lemma D.4,

‖tanh(n)‖∞ ≤ 2n+1‖σ(n)‖∞ ≤ 4nn! .

The inequality is also true for n = 0 since ‖tanh‖∞ ≤ 1.

D.1.6 Chen’s formula
First, note that it is straightforward to extend the definition of the signature to any interval

[s, t] ⊂ [0, 1]. The next proposition, known as Chen’s formula (Lyons et al., 2007, Theorem
2.9), tells us that the signature can be computed iteratively as tensor products of signatures on
subintervals.

Proposition D.6. Let X ∈ BV ([s, t],Rd) and u ∈ (s, t). Then

S[s,t](X) = S[s,u](X)⊗ S[u,t](X).

Next, it is clear that the signature of a constant path is equal to 1 = (1, 0, . . . , 0, . . .) which
is the null element in T . Indeed, let Y ∈ BV ([s, t],Rd) be a constant path. Then, for any k ≥ 1,

Yk[s,t] = k!

∫
· · ·
∫

s≤u1<···<uk≤t

dYu1
⊗ · · · ⊗ dYuk = k!

∫
· · ·
∫

s≤u1<···<uk≤t

0⊗ · · · ⊗ 0 = 0.

Now let X ∈ BV ([0, 1],Rd) and consider the path X̃[j] equal to the time-augmented path X̄
on [0, j/T] and then constant on [j/T , 1]—see Figure D.1. We have by Proposition D.6

S[0,1](X̃[j]) = S[0,j/T](X̃[j])⊗ S[j/T ,1](X̃[j]) = S[0,j/T](X̄)⊗ 1 = S[0,j/T](X̄).

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.3

0.4

0.5

0.6

0.7

0.8 X

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X

X̃[1]

X̃[2]

X̃[j]

Figure D.1 – Example of a path X ∈ BV ([0, 1],R) (left) and its corresponding paths X̃[j], plotted
against time, for different values of j ∈ {1, . . . , T} (right)

176 APPENDIX D. Supplementary material of Chapter 5

D.2 Proofs

D.2.1 Proof of Proposition 5.1

According to Assumption (A1), for any h1, h2 ∈ Re, x1, x2 ∈ Rd, one has

‖f(h1, x1)− f(h2, x1)‖ ≤ Kf‖h1 − h2‖ and ‖f(h1, x1)− f(h1, x2)‖ ≤ Kf‖x1 − x2‖.

Under assumption (A1), by Corollary D.2, the initial value problem (5.3) admits a unique solution
H. Let us first show that for any t ∈ [0, 1], Ht is bounded independently of X. For any t ∈ [0, 1],

‖Ht −H0‖ =
∥∥∥∫ t

0

f(Hu, Xu)du
∥∥∥ ≤ ∫ t

0

‖f(Hu, Xu)‖du

=

∫ t

0

‖f(Hu, Xu)− f(H0, Xu) + f(H0, Xu)‖du

≤
∫ t

0

‖f(Hu, Xu)− f(H0, Xu)‖+

∫ t

0

‖f(H0, Xu)‖du

≤ Kf

∫ t

0

‖Hu −H0‖du+ t sup
‖x‖≤L

‖f(H0, x)‖.

Applying Grönwall’s inequality to the function t 7→ ‖Ht −H0‖ yields

‖Ht −H0‖ ≤ t sup
‖x‖≤L

‖f(H0, x)‖ exp
(∫ t

0

Kfdu
)
≤ sup
‖x‖≤L

‖f(H0, x)‖eKf := M.

Given that H0 = h0 = 0, we conclude that ‖Ht‖ ≤M .

Next, let
‖f‖∞ = sup

‖x‖≤L,‖h‖≤M
f(h, x).

By similar arguments, for any [s, t] ⊂ [0, 1], Grönwall’s inequality applied to the function t 7→
‖Ht −Hs‖ yields

‖Ht −Hs‖ ≤ (t− s)‖f‖∞eKf .
Therefore, for any partition (t0, . . . , tk) of [s, t],

k∑
i=1

‖Hti −Hti−1
‖ ≤ ‖f‖∞eKf

k∑
i=1

(ti − ti−1) ≤ ‖f‖∞eKf (t− s),

and, taking the supremum over all partitions of [s, t], ‖H‖TV ;[s,t] ≤ ‖f‖∞eKf (t − s). In other
words, H is of bounded variation on any interval [s, t] ⊂ [0, 1]. Let (t0, . . . , tT) denote the regular
partition of [0, 1] with tj = j/T . For any 1 ≤ j ≤ T , we have

‖Htj − hj‖ =
∥∥Htj−1

+

∫ tj

tj−1

f(Hu, Xu)du− hj−1 −
1

T
f(hj−1, xj)

∥∥
≤ ‖Htj−1

− hj−1‖+

∫ tj

tj−1

∥∥f(Hu, Xu)− f(hj−1, xj)
∥∥du.

D.2. Proofs 177

Writing∥∥f(Hu, Xu)− f(hj−1, xj)
∥∥ =

∥∥f(Hu, Xu)− f(Hu, xj) + f(Hu, xj)− f(hj−1, xj)
∥∥

≤
∥∥f(Hu, Xu)− f(Hu, xj)

∥∥+
∥∥f(Hu, xj)− f(hj−1, xj)

∥∥
≤ Kf

∥∥Xu − xj
∥∥+Kf

∥∥Hu − hj−1

∥∥,
we obtain

‖Htj − hj‖ ≤ ‖Htj−1
− hj−1‖+Kf

∫ tj

tj−1

‖Hu − hj−1‖du+Kf

∫ tj

tj−1

‖Xu − xj‖du

≤ ‖Htj−1
− hj−1‖+Kf

∫ tj

tj−1

(
‖Hu −Htj−1

‖+ ‖Htj−1
− hj−1‖

)
du

+
Kf

T
‖X‖TV ;[tj−1,tj]

≤
(
1 +

Kf

T

)
‖Htj−1

− hj−1‖+
Kf

T

(
‖H‖TV ;[tj−1,tj] + ‖X‖TV ;[tj−1,tj]

)
.

By induction, we are led to

‖Htj − hj‖ ≤
Kf

T

j−1∑
k=0

(
1 +

Kf

T

)k(
‖H‖TV ;[tk,tk+1] + ‖X‖TV ;[tk,tk+1]

)
≤ Kf

T

(
1 +

Kf

T

)T (
‖X‖TV ;[0,1] + ‖H‖TV ;[0,1]

)
≤ Kfe

Kf

T

(
L+ ‖f‖∞eKf

)
,

which concludes the proof.

D.2.2 Proof of Proposition 5.2

Let h̄ ∈ Rē and let h̄i:j = (h̄i, . . . , h̄j) be its projection on a subset of coordinates. It is
sufficient to take F defined by

F(h̄) =

(
0e×d 2

1−Lf(h̄1:e, h̄e+1:e+d)

Id×d 0d×1

)
,

where Id×d denotes the identity matrix and 0·×· the matrix full of zeros. The function H̄ is then
solution of

dH̄t =

(
0e×d 2

1−Lf(H̄1:e
t , H̄e+1:e+d

t)

Id×d 0d×1

)(
dXt

1−L
2 dt

)
.

Note that under assumption (A1), the tensor field F satisfies the assumptions of the Picard-
Lindelöf theorem (Theorem D.1) so that H̄ is well-defined. The projection of this equation on
the last d coordinates gives

dH̄e+1:e+d
t = dXt, H̄e+1:e+d

0 = X0,

178 APPENDIX D. Supplementary material of Chapter 5

and therefore H̄e+1:e+d
t = Xt. The projection on the first e coordinates gives

dH̄1:e
t =

2

1− Lf(H̄1:e
t , Xt)

1− L
2

dt = f(H̄1:e
t , Xt)dt, H̄1:e

0 = h0,

which is exactly (5.3).

D.2.3 Proof of Proposition 5.3
According to Lyons (2014, Lemma 5.1), one has

‖X̄k[0,t]‖(Rd)⊗k ≤ ‖X̄‖kTV ;[0,t].

Let (t0, . . . , tk) be a partition of [0, t]. Then

k∑
j=1

‖X̄tj − X̄tj−1‖ =

k∑
j=1

√
‖Xtj −Xtj−1‖2 +

(1− L
2

)2

(tj − tj−1)2

≤
k∑
j=1

‖Xtj −Xtj−1
‖+

1− L
2

k∑
j=1

(tj − tj−1)

=

k∑
j=1

‖Xtj −Xtj−1‖+
1− L

2
t.

Taking the supremum over any partition of [0, t] we obtain

‖X̄‖TV ;[0,t] ≤ ‖X‖TV ;[0,t] +
1− L

2
t ≤ L+

1− L
2

=
1 + L

2
< 1,

and thus ‖X̄k[0,t]‖(Rd)⊗k ≤
(

1+L
2

)k
. It is then clear that

‖S[0,t](X̄)‖T =
(∞∑
k=0

‖X̄k[0,t]‖2(Rd)⊗k

)1/2

≤
∞∑
k=0

‖X̄k[0,t]‖(Rd)⊗k ≤
∞∑
k=0

(1 + L

2

)k
= 2(1− L)−1.

D.2.4 Proof of Proposition 5.4
We first recall the fundamental theorem of calculus for line integrals (also known as gradient

theorem).

Theorem D.7. Let g : Re → R be a continuously differentiable function, and let γ : [a, b]→ Re
be a smooth curve in Re. Then ∫ b

a

∇g(γt)dγt = g(γb)− g(γa),

where ∇g denotes the gradient of g.

The identity above immediately generalizes to a function g : Re → Re:∫ b

a

J(g)(γt)dγt = g(γb)− g(γa),

D.2. Proofs 179

where J(g) ∈ Re×e is the Jacobian matrix of g. Let us apply Theorem D.7 to the vector field F i
between 0 and t, with γ = H. We have

F i(Ht)− F i(H0) =

∫ t

0

J(F i)(Hu)dHu =

∫ t

0

J(F i)(Hu)

d∑
j=1

F j(Hu)dXu

=

d∑
j=1

∫ t

0

J(F i)(Hu)F j(Hu)dXu =

d∑
j=1

∫ t

0

F j ? F i(Hu)dXu.

Iterating this procedure (N − 1) times for the vector fields F 1, . . . , F d yields

Ht = H0 +

d∑
i=1

∫ t

0

F i(Hu)dXi
u

= H0 +

d∑
i=1

∫ t

0

F i(H0)dXi
u +

d∑
i=1

∫ t

0

d∑
j=1

∫ u

0

F j ? F i(Hv)dX
j
vdX

i
u

= H0 +

d∑
i=1

F i(H0)S(i)(X)[0,t] +
∑

1≤i,j≤d

∫
0≤v≤u≤t

F j ? F i(Hv)dX
j
vdX

i
u

= · · ·

= H0 +

N∑
k=1

∑
1≤i1,...,ik≤d

F i1 ? · · · ? F ik(H0)
1

k!
S

(i1,...,ik)
[0,t] (X)

+
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

F i1 ? · · · ? F iN+1(Hu1
)dXi1

u1
· · · dXiN+1

uN+1
,

where ∆N ;[0,t] := {(u1, · · · , uN) ∈ [0, t]N | 0 ≤ u1 < · · · < uN ≤ t} is the simplex in [0, t]N . The
first (N + 1) terms equal HN

t . Hence,

‖Ht −HN
t ‖

=
∥∥∥ ∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

F i1 ? · · · ? F iN+1(Hu1
)dXi1

u1
· · · dXiN+1

uN+1

∥∥∥
≤

∑
1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

‖F i1 ? · · · ? F iN+1(Hu1)‖|dXi1
u1
| · · · |dXiN+1

uN+1
|

≤
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

sup
1≤i1,...,iN+1≤d,‖h‖≤M

‖F i1 ? · · · ? F iN+1(h)‖|dXi1
u1
| · · · |dXiN+1

uN+1
|

≤ ΛN+1(F)
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

|dXi1
u1
| · · · |dXiN+1

uN+1
|.

180 APPENDIX D. Supplementary material of Chapter 5

Thus,

‖Ht −HN
t ‖ ≤ ΛN+1(F)

∑
1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

|dXi1
u1
| · · · |dXiN+1

uN+1
|

≤ ΛN+1(F)
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

‖dXu1
‖ · · · ‖dXuN+1

‖

= ΛN+1(F)
dN+1

(N + 1)!

∫
[0,t]N+1

‖dXu1
‖ · · · ‖dXuN+1

‖

= ΛN+1(F)
dN+1

(N + 1)!

(∫ t

0

‖dXu‖
)N+1

= ΛN+1(F)
dN+1

(N + 1)!
‖X‖N+1

TV ;[0,t] ≤ ΛN+1(F)
dN+1

(N + 1)!
.

D.2.5 Proof of Proposition 5.5

For simplicity of notation, since the context is clear, we now use the notation ‖ · ‖ instead of
‖ · ‖(Re)⊗k . According to Proposition 5.1, the solution H̄ of (5.4) verifies ‖H̄t‖ ≤ M + L := M̄ .
We therefore place ourselves in the ball BM̄ . Recall that for any 1 ≤ i1, . . . , iN ≤ d, h̄ ∈ BM̄ ,

F i1 ? · · · ? F iN (h̄) = J(F i2 ? · · · ? F iN)(h̄)F i1(h̄). (D.2)

Linear case. We start with the proof of the linear case before moving on to the general case.
When σ is chosen to be the identity function, each F iRNN is an affine vector field, in the sense
that F iRNN(h̄) = Wih̄ + bi, where Wi = 0ē×ē, bi is the i + dth vector of the canonical basis of
Re+d, and

Wd+1 =

(
2

1−LW
0d×ē

)
and bd+1 =

(
2

1−Lb
0d

)
.

Since J(F iRNN) = Wi, we have, for any h̄ ∈ Re+d and any 1 ≤ i1, . . . , ik ≤ d,

F i1RNN ? · · · ? F ikRNN(h̄) = Wik · · ·Wi2(Wi1 h̄+ bi1).

Thus, for any h̄ ∈ BM̄ ,

‖F i1RNN ? · · · ? F ikRNN(h̄)‖ ≤ ‖Wik‖op · · · ‖Wi2‖op(‖Wi1‖opM̄ + ‖bi1‖).

For i 6= d+ 1, ‖Wi1‖op = 0, and so

Λk(FRNN) ≤ C‖Wd+1‖k−1
op ,

with C = ‖Wd+1‖opM̄ + max(1, 2(1− L)−1‖b‖). Therefore,
∞∑
k=1

dk

k!
Λk(FRNN) ≤ Cd

∞∑
k=0

1

k!

(
2d(1− L)−1‖W‖op

)k−1
<∞.

General case. In the general case, the proof is two-fold. First, we upper bound (D.2) by a
function of the norms of higher-order Jacobians of F i1 , . . . , F iN . We then apply this bound to
the specific case F = FRNN. We refer to Appendix D.3 for details on higher-order derivatives in

D.2. Proofs 181

tensor spaces. Let F : Re → Re be a smooth vector field. If F (h) = (F1(h), . . . , Fe(h))>, each
of its coordinates Fi is a function from Re to R, C∞ with respect to all its input variables. We
define the derivative of order k of F as the tensor field

Jk(F) : Re → (Re)⊗k+1

h 7→ Jk(F)(h),

where

Jk(F)(h) =
∑

1≤j,i1,...,ik≤e

∂kFj(h)

∂hi1 . . . ∂hik
ej ⊗ ei1 ⊗ · · · ⊗ eik .

We take the convention J0(F) = F , and note that J(F) = J1(F) is the Jacobian matrix, and
that Jk(Jk

′
(F)) = Jk+k′(F).

Lemma D.8. Let A1, . . . , Ak : Re → Re be smooth vector fields. Then, for any h ∈ Re∥∥Ak ? · · · ? A1(h)
∥∥ ≤ ∑

n1+···+nk=k−1

C(k;n1, . . . , nk)‖Jn1(A1)(h)‖ · · · ‖Jnk(Ak)(h)‖,

where C(k;n1, . . . , nk) is defined by the following recurrence on k: C(1; 0) = 1 and for any
n1, . . . , nk+1 ≥ 0,

C(k + 1;n1, . . . , nk+1) =

k∑
`=1

C(k;n1, . . . , n` − 1, . . . , nk) if nk+1 = 0, (D.3)

C(k + 1;n1, . . . , nk+1) = 0 otherwise.

Proof. We refer to Appendix D.3 for the definitions of the tensor dot product � and tensor
permutations, as well as for computation rules involving these operations. We show in fact by
induction a stronger result, namely that there exist tensor permutations πp such that

Ak ? · · · ? A1(h) =
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

πp
[
Jn1(A1)(h)� · · · � Jnk(Ak)(h)

]
. (D.4)

Note that we do not make explicit the permutations nor the axes of the tensor dot operations since
we are only interested in bounding the norm of the iterated star products. Also, for simplicity,
we denote all permutations by π, even though they may change from line to line.

We proceed by induction on k. For k = 1, the formula is clear. Assume that the formula is
true at order k. Then

J(Ak ? · · · ? A1)

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

J
[
πp[J

n1(A1) � · · · � Jnk(Ak)]
]

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

πp

[
J [Jn1(A1) � · · · � Jnk(Ak)]

]

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

k∑
`=1

πp ◦ π`
[
Jn1(A1) �

· · · � Jn`+1(A`)� · · · � Jnk(Ak)
]
.

182 APPENDIX D. Supplementary material of Chapter 5

In the inner sum, we introduce the change of variable pi = ni for i 6= ` and p` = n` + 1. This
yields

J(Ak ? · · · ? A1)

=
∑

p1+···+pk=k

k∑
`=1

∑
1≤p≤C(k;p1,...,p`−1,...,pk)

πp ◦ π`
[
Jn1(A1) �

· · · � Jn`+1(A`)� · · · � Jnk(Ak)
]

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq

[
Jn1(A1)� · · · � Jpk(Ak)

]
,

where in the last sum the only non-zero term is for pk+1 = 0. To conclude the induction, it
remains to note that

Ak+1 ? · · · ? A1 = J(Ak ? · · · ? A1)�Ak+1 = J(Ak ? · · · ? A1)� J0(Ak+1).

Hence,

Ak+1 ? · · · ? A1

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq
[
Jn1(A1)� · · · � Jpk(Ak)

]
� Jpk+1(Ak+1)

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq
[
Jn1(A1)� · · · � Jpk(Ak)� Jpk+1(Ak+1)

]
.

The result is then a consequence of (D.4) and of Lemma D.11.

We now restrict ourselves to the case F = FRNN as defined by (5.5) and give an upper bound
on the higher-order derivatives of the tensor fields F i1 , . . . , F iN .

Lemma D.9. For any i ∈ {1, . . . , d+ 1}, h̄ ∈ BM̄ , for any k ≥ 0,

‖Jk(F iRNN)(h̄)‖ ≤
(2

1− L‖W‖F
)k
‖σ(k)‖∞.

Proof. For any 1 ≤ i ≤ d, F iRNN(h̄) is constant, so Jk(F 1
RNN) = · · · = Jk(F dRNN) = 0. For

i = d+ 1, we have, for any 1 ≤ j ≤ e,

∂kF d+1
RNN,j(h̄)

∂h̄i1 . . . ∂h̄ik
=
(2

1− L
)k
Wji1 · · ·Wjikσ

(k)(Wj·h̄+ b),

where Wj· denotes the jth row of W and for e+ 1 ≤ j ≤ ē, F d+1
j = 0. Therefore,

‖Jk(F d+1
RNN)(h̄)‖2 ≤

(2

1− L
)2k ∑

1≤j,i1,...,ik≤e
|Wji1 · · ·Wjikσ

(k)(Wj·h̄+ b)|2

=
(2

1− L
)2k

‖σ(k)‖2∞
∑
j

(∑
i

|Wji|2
)k

≤
(2

1− L
)2k

‖σ(k)‖2∞‖W‖2kF .

D.2. Proofs 183

We are now in a position to conclude the proof using condition (5.10). By Lemma D.8 and
D.9, for any 1 ≤ i1, . . . , iN ≤ d+ 1,∥∥F i1RNN ? · · · ? F iNRNN(h̄)

∥∥
≤

∑
n1+···+nN=N−1

C(N ;nN , . . . , n1)‖JnN (F iNRNN)(h̄)‖ · · · ‖Jn1(F i1RNN)(h̄)‖

≤
(2

1− L‖W‖F
)N−1 ∑

n1+···+nN=N−1

C(N ;nN , . . . , n1)an1+1n1! · · · anN+1nN !

≤ a
(2

1− La
2‖W‖F

)N−1 ∑
n1+···+nN=N−1

C(N ;nN , . . . , n1)n1! · · ·nN ! .

Assume for the moment that C(N ;nN , . . . , n1) is smaller than the multinomial coefficient
(

N
nN ,...,n1

)
.

Then, using the fact that there are
(
n+k−1
k−1

)
weak compositions of n in k parts and Stirling’s ap-

proximation, we have

ΛN (F) ≤ a
(2

1− La
2‖W‖F

)N−1

N !× Card
(
{n1 + · · ·+ nN = N − 1}

)
≤ a

(2

1− La
2‖W‖F

)N−1

N !

(
2N − 2

N − 1

)
≤ a

2

(2

1− La
2‖W‖F

)N−1

N !

(
2N

N

)
≤ a
√

2e

π

(8

1− La
2‖W‖F

)N−1 N !√
N
.

Hence, provided ‖W‖F < (1−L)/8a2d,

∞∑
k=1

dk

k!
Λk(F) ≤ ad

√
2e

π

∞∑
k=1

(8da2‖W‖F
1− L

)k−1 1√
k
<∞,

and (A2) is verified.
To conclude the proof, it remains to prove the following lemma.

Lemma D.10. For any k ≥ 1 and n1, . . . , nk ≥ 0, C(k;n1, . . . , nk) ≤
(

k−1
n1,...,nk

)
.

Proof. The proof is done by induction, by comparing the recurrence formula (D.3) with the
following recurrence formula for multinomial coefficients:(

k

n1, . . . , nk+1

)
=

k+1∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk+1

)
.

More precisely, for k = 1, C(1; 0) = 1 ≤
(

0
0

)
= 1 and C(1; 1) = 0 ≤

(
0
1

)
= 0. Assume

that the formula is true at order k. Then, at order k + 1, there are two cases. If nk+1 6= 0,

184 APPENDIX D. Supplementary material of Chapter 5

C(k + 1;n1, . . . , nk+1) = 0, and the result is clear. On the other hand, if nk+1 = 0,

C(k + 1;n1, . . . , nk, 0) =

k∑
`=1

C(k;n1, . . . , n` − 1, . . . , nk)

≤
k∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk

)

≤
k+1∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk+1

)
≤
(

k

n1, . . . , nk+1

)
.

D.2.6 Proof of Theorem 5.6

First, Propositions 5.1 and 5.2 state that if H̄ is the solution of (5.4) and Proj denotes the
projection on the first e coordinates, then∣∣zT − ψ(Proj(H̄1)

)∣∣ =
∣∣ψ(hT)− ψ

(
Proj(H̄1])

)∣∣ ≤ ‖ψ‖op∥∥hT − Proj(H̄1)
∥∥ ≤ ‖ψ‖op c1

T
.

For any 1 ≤ k ≤ N , we let Dk(H̄0) : (Rd)⊗k → Re be the linear function defined by

Dk(H̄0)(ei1 ⊗ · · · ⊗ eik) = F i1 ? · · · ? F ik(H̄0), (D.5)

where e1, . . . , ed denotes the canonical basis of Rd̄. Then, under assumptions (A1) and (A2), if
X̄k denotes the signature of order k of the path X̄t = (X>t ,

1−L
2 t)>, according to Propositions

5.4 and 5.5,

H̄1 = H̄0 +

∞∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H̄0) =

∞∑
k=1

1

k!
Dk(H̄0)(Xk[0,t]),

and

ψ ◦ Proj(H̄1) = ψ ◦ Proj
(∞∑
k=0

1

k!
Dk(H̄0)(X̄k)

)
=
∞∑
k=0

1

k!
ψ ◦ Proj

(
Dk(H̄0)(X̄k)

)
,

by linearity of ψ and Proj. Since the maps Dk(H̄0) : (Rd)⊗k → Re are linear, the above equality
takes the form

ψ ◦ Proj(H̄1) =

∞∑
k=0

〈αk, X̄k〉(Rd)⊗k , (D.6)

where αk ∈ (Rd)⊗k is the coefficient of the linear map 1
k!ψ ◦Proj◦Dk(H̄0) in the canonical basis.

Let α = (α0, . . . , αk, . . .). Under assumption (A2),

∞∑
k=0

‖αk‖2(Rd)⊗k ≤
∞∑
k=0

∑
1≤i1,...,ik≤d

(1

k!

)2

‖ψ‖2op‖F i1 ? · · · ? F ik(H̄0)‖2

≤ ‖ψ‖2op
∞∑
k=0

∑
1≤i1,...,ik≤d

(1

k!

)2

Λk(F)2 ≤ ‖ψ‖2op
∞∑
k=0

(dk
k!

Λk(F)
)2

<∞.

D.2. Proofs 185

This shows that α ∈ T , and therefore, using (D.6), we conclude

‖zT − 〈α, S(X̄)〉T ‖ ≤ ‖ψ‖op
c1
T
.

D.2.7 Proof of Theorem 5.7

Let
G =

{
gθ : (Rd)T → R | gθ(x) = zT , θ ∈ Θ

}
be the function class of (discrete) RNN and

S =
{
ξαθ : X → R | ξαθ (X) = 〈αθ, S(X̄)〉T , θ ∈ Θ

}
,

be the class of their RKHS embeddings, where αθ is defined by (D.6). For any θ ∈ Θ, we let

RG (θ) = E[`(y, gθ(x))], and RS (θ) = E[`(y, ξαθ (X̄))],

and denote by R̂n,G and R̂n,S the corresponding empirical risks. We also let θ∗G , θ
∗
S , θ̂n,G , and

θ̂n,S be the corresponding minimizers. We have

P
(
y 6= gθ̂n,G (x)

)
− R̂n,G (θ̂n,G)

≤ E
[
`(y, gθ̂n,G (x))

]
− R̂n,G (θ̂n,G)

= RG (θ̂n,G)− R̂n,G (θ̂n,G)

= RG (θ̂n,G)−RS (θ̂n,G) + RS (θ̂n,G)− R̂n,S (θ̂n,G) + R̂n,S (θ̂n,G)− R̂n,G (θ̂n,G)

≤ sup
θ
|RG (θ)−RS (θ)|+ sup

θ
|RS (θ)− R̂n,S (θ)|+ sup

θ
|R̂n,G (θ)− R̂n,S (θ)|.

Using Theorem 5.6, we have

sup
θ
|RG (θ)−RS (θ)| = sup

θ

∣∣E[`(y, gθ(x))− `(y, ξαθ (X̄))
]∣∣

≤ sup
θ
E
[
|φ(ygθ(x))− φ(yξαθ (X̄))|

]
≤ sup

θ
E
[
K`|y| × |gθ(x)− ξαθ (X̄)|

]
≤ K` sup

θ
(‖ψ‖opc1,θ)

1

T
:=

c2
2T

,

where c1,θ = Kfθe
Kfθ
(
L + ‖fθ‖∞eKfθ

)
(the infinite norm ‖fθ‖∞ is taken on the balls BL and

BM). One proves with similar arguments that

sup
θ
|R̂n,G (θ)− R̂n,S (θ)| ≤ c2

2T
.

Under the assumption of the theorem, there exists a ball B ⊂H of radius B such that S ⊂ B.
This yields

sup
θ
|RS (θ)− R̂n,S (θ)| ≤ sup

α∈T ,‖α‖T ≤B
|RB(α)− R̂n,B(α)|,

186 APPENDIX D. Supplementary material of Chapter 5

where

RB(α) = E[`(Y, ξα(X̄))] and R̂n,B(α) =
1

n

n∑
i=1

`(Y (i), ξα(X̄)).

We now have reached a familiar situation where the supremum is over a ball in a RKHS. It is
known (see, e.g., Bartlett and Mendelson, 2002, Theorem 8) that with probability at least 1− δ,

sup
α∈T ,‖α‖T ≤B

|RB(α)− R̂n,B(α)| ≤ 4K`ERadn(B) + 2BK`(1− L)−1

√
log(1/δ)

2n
,

where Radn(B) denotes the Rademacher complexity of B. Observe that we have used the fact
that the loss is bounded by K`B(1 − L)−1 since, for any ξα ∈ B, by the Cauchy-Schwartz
inequality,

`(y, ξα(X̄)) = φ(y〈α, S(X̄)〉T) ≤ K`|y〈α, S(X̄)〉T | ≤ K`‖α‖T ‖S(X̄)‖T ≤ 2K`B(1− L)−1.

Finally, the proof follows by noting that Rademacher complexity of B is bounded by

Radn(B) ≤ 2B

n

√√√√ n∑
i=1

K(X(i), X(i)) =
2B

n

√√√√ n∑
i=1

‖S(X̄(i))‖2T ≤
4B(1− L)−1

√
n

.

D.2.8 Proof of Theorem 5.8

Let
G =

{
gθ : (Rd)T → (Rp)T | gθ(x) =

(
z1, . . . , zT

)
, θ ∈ Θ

}
be the function class of discrete RNN in a sequential setting. Let

S =
{

Γθ : X → (Rp)T |Γθ(X) =
(
Ξθ(X̃[1]), . . . ,Ξθ(X̃[T])

)}
,

be the class of their RKHS embeddings, where X̃[j] is the path equal to X on [0, j/T] and then
constant on [j/T , 1] (see Figure D.1). For any X ∈X ,

Ξθ(a) =

〈α1,θ, S(X̄)〉T
...

〈αp,θ, S(X̄)〉T

 =

ξα1,θ
(X)
...

ξαp,θ (X)

 ∈ Rp,

where (α1,θ, . . . , αp,θ)
> ∈ (T)p are the coefficients of the linear maps 1

k!ψ ◦ Proj ◦ Dk(H̄0) :
(Rd)⊗k → Rp, k ≥ 0, in the canonical basis, where Dk is defined by (D.5).

We start the proof as in Theorem 5.7, until we obtain

RG (θ̂n,G)− R̂n,G (θ̂n,G) ≤ sup
θ
|RG (θ)−RS (θ)|+ sup

θ
|RS (θ)− R̂n,S (θ)|

+ sup
θ
|R̂n,G (θ)− R̂n,S (θ)|.

D.2. Proofs 187

By definition of the loss, for any θ ∈ Θ,

|RG (θ)−RS (θ)| =
∣∣∣E[`(y, gθ(x)

)
− `
(
y,Γθ(X)

)]∣∣∣
≤ E

[∣∣ 1

T

T∑
j=1

(
‖yj − zj‖2 − ‖yj − Ξθ(X̃[j])‖2

)∣∣]

≤ E
[1

T

T∑
j=1

∣∣〈zj + Ξθ(X̃[j])− 2yj , zj − Ξθ(X̃[j])
〉∣∣]

≤ E
[1

T

T∑
j=1

‖zj + Ξθ(X̃[j])− 2yj‖ × ‖zj − Ξθ(X̃[j])‖
]

(by the Cauchy-Schwartz inequality).

According to inequality (5.13), one has

‖zj − Ξθ(X̃[j])‖ ≤ ‖ψ‖op
c1,θ
T
,

where c1,θ = Kfθe
Kfθ
(
L+ ‖fθ‖∞eKfθ

)
. Moreover,

∥∥Ξθ(X̃[j])
∥∥2

=

p∑
`=1

∣∣〈α`,θ, S(X̃[j])〉T
∣∣2 ≤ p∑

`=1

‖α`,θ‖2T ‖S(X̃[j])‖2T ≤ pB2
(
2(1− L)−1

)2
,

since ‖S(X̃[j])‖T = ‖S[0,j/T](X̄)‖T ≤ ‖S(X̄)‖T . This yields

‖zj + Ξθ(X̃[j])− 2yj‖ ≤ ‖zj‖+ ‖Ξθ(X̃[j])‖+ 2‖yj‖
≤ ‖ψ‖op‖fθ‖∞ + 2

√
pB(1− L)−1 + 2Ky.

Finally,

sup
θ
|RG (θ)−RS (θ)| ≤ c3

2T
,

where c3 = sup
θ

(
c1,θ+‖ψ‖op‖fθ‖∞

)
+2
√
pB(1−L)−1 +2Ky. One proves with similar arguments

that
sup
θ
|R̂n,G (θ)− R̂n,S (θ)| ≤ c3

2T
.

We now turn to the term sup
θ
|RS (θ)− R̂n,S (θ)|. We have

RS (θ)− R̂n,S (θ)

= E[`(y,Γθ(X))]− 1

n

n∑
i=1

`(y(i),Γθ(X
(i)))

=
1

T

T∑
j=1

(
E[‖yj − Ξθ(X̃[j])]‖2 −

1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
)
.

188 APPENDIX D. Supplementary material of Chapter 5

Therefore,

sup
θ
|RS (θ)− R̂n,S (θ)| ≤ 1

T

T∑
j=1

sup
θ

∣∣∣E[‖yj − Ξθ(X̃[j])]‖2 −
1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
∣∣∣.

Note that for a fixed j, the pairs (X̃
(i)
[j] , y

(i)
j) are i.i.d. Under the assumptions of the theorem,

there exists a ball B ⊂H such that for any 1 ≤ ` ≤ p, θ ∈ Θ, ξα`,θ ∈ B . We denote by Bp the
sum of p such spaces, that is,

Bp =
{
fα : X → Rp | fα(X) = (fα1(X), . . . , fαp(X))>, fα` ∈ B

}
.

Clearly, Ξθ ∈ Bp, and it follows that

sup
θ

∣∣∣E[‖yj − Ξθ(X̃[j])]‖2 −
1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
∣∣∣

≤ sup
fα∈Bp

∣∣∣E[‖yj − fα(X̃[j])‖2
]
− 1

n

n∑
i=1

‖y(i)
j − fα(X̃

(i)
[j])‖2

∣∣∣.
We have once again reached a familiar situation, which can be dealt with by an easy extension
of Bartlett and Mendelson (2002, Theorem 12). For any fα ∈ Bp, let φ̃ ◦ fα : X ×Rp : (X, y) 7→
‖y − fα(X)‖2 − ‖y‖2. Then, φ̃ ◦ fα is upper bounded by

|φ̃ ◦ fα(X, y)| =
∣∣‖y − fα(X)‖2 − ‖y‖2

∣∣ ≤ ‖fα(X)‖
(
‖fα(X)‖+ 2‖y‖

)
≤ 2
√
pB(1− L)−1(2

√
pB(1− L)−1 + 2Ky)

≤ 4pB(1− L)−1(B(1− L)−1 +Ky).

Let c4 = B(1−L)−1 +Ky and c5 = 4pB(1−L)−1c4 +K2
y . Then with probability at least 1− δ,

sup
fα∈Bp

∣∣∣E[‖yj − fα(X̃[j])‖
]
− 1

n

n∑
i=1

‖y(i)
j − fα(X̃

(i)
[j])‖

∣∣∣ ≤ Radn(φ̃ ◦Bp) +

√
2c5 log(1/δ)

n
,

where φ̃ ◦Bp =
{

(X, y) 7→ φ̃ ◦ fα(X, y)|fα ∈ Bp

}
. Elementary computations on Rademacher

complexities yield

Radn(φ̃ ◦Bp) ≤ 2pc4Radn(B) ≤ 8pc4B(1− L)−1

√
n

,

which concludes the proof.

D.3 Differentiation with higher-order tensors

D.3.1 Definition

We define the generalization of matrix product between square tensors of order k and `.

Definition D.2. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`, p ∈ {1, . . . , k}, q ∈ {1, . . . , `}. Then the tensor

D.3. Differentiation with higher-order tensors 189

dot product along (p, q), denoted by a�p,q b ∈ (Re)⊗(k+`−2), is defined by

(a�p,q b)(i1,...,ik−1,j1,...,j`−1) =

e∑
j=1

a(i1,...,ip−1,j,ip,...,ik−1)b(j1,...,jq−1,j,jq,...,j`−1).

This operation just consists in computing a ⊗ b, and then summing the pth coordinate of a
with the qth coordinate of b. The � operator is not associative. To simplify notation, we take
the convention that it is evaluated from left to right, that is, we write a� b� c for (a� b)� c.

Definition D.3. Let a ∈ (Re)⊗k. For a given permutation π of {1, . . . , k}, we denote by π(a)
the permuted tensor in (Re)⊗k such that

π(a)(i1,...,ik) = a(iΠ(1),...,iΠ(k)).

Example D.1. If A is a matrix, then AT = π(A), with π defined by π(1) = 2, π(2) = 1.

D.3.2 Computation rules

We need to obtain two computation rules for the tensor dot product: bounding the norm
(Lemma D.11) and differentiating (Lemma D.12).

Lemma D.11. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`. Then, for all p, q,

‖a�p,q b‖(Re)⊗k+`−2d ≤ ‖a‖(Re)⊗k‖b‖(Re)⊗` .

Proof. By the Cauchy-Schwartz inequality,

‖a�p,q b‖2(Re)⊗k+`−2

=
∑

1≤i1,...,ik−1,j1,...,j`−1≤e
(a�p,q b)2

(i1,...,ik−1,j1,...,j`−1)

=
∑

1≤i1,...,ik−1,j1,...,j`−1≤e

(∑
1≤j≤e

a(i1,...,ip−1,j,ip,...,ik−1)b(j1,...,jq−1,j,jq,...,j`−1)

)2

≤
∑

i1,...,ik−1,j1,...,j`−1

(∑
j

a2
(i1,...,ip−1,j,ip,...,ik−1)

)(∑
j

b2(j1,...,jq−1,j,jq,...,j`−1)

)
≤

∑
i1,...,ik−1,j

a2
(i1,...,ip−1,j,ip,...,ik−1)

∑
j1,...,j`−1,j

b2(j1,...,jq−1,j,jq,...,j`−1)

≤ ‖a‖2(Re)⊗k‖b‖2(Re)⊗` .

Lemma D.12. Let A : Re → (Re)⊗k, B : Re → (Re)⊗` be smooth vector fields, p ∈ {1, . . . , k},
q ∈ {1, . . . , `}. Let A �p,q B : Re → (Re)⊗k+`−2 be defined by A �p,q B(h) = A(h) �p,q B(h).
Then there exists a permutation π such that

J(A�p,q B) = π(J(A)�p,q B) +A�p,q J(B).

190 APPENDIX D. Supplementary material of Chapter 5

Proof. The left-hand side takes the form

(J(A�p,q B))i1,...,ik−1,j1,...,j`−1,m =
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq,...,j`−1)

+A(i1,...,ip−1,j,ip,...,ik−1)
∂B

∂hm (j1,...,jq−1,j,jq,...,j`−1)

]
.

The first term of the right-hand side writes

(J(A)�p,q B)i1,...,ik−1,m,j1,...,j`−1
=
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq,...,j`−1)

]
,

and the second one

(A�p,q J(B))i1,...,ik−1,j1,...,j`−1,m =
∑
j

[
A(i1,...,ip−1,j,ip,...,ik−1)

∂B

∂hm (j1,...,jq−1,j,jq,...,j`−1)

]
.

Let us introduce the permutation π which keeps the first (k − 1) axes unmoved, and rotates the
remaining ` ones such that the last axis ends up in kth position. Then

π(J(A)�p,q B)i1,...,ik−1,j1,...,j`−1,m =
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq,...,j`−1)

]
.

Hence J(A�p,q B) = π(J(A)�p,q B) +A�p,q J(B), which concludes the proof.

The following two lemmas show how to compose the Jacobian and the tensor dot operations
with permutations. Their proofs follow elementary operations and are therefore omitted.

Lemma D.13. Let A : Re → (Re)⊗k and π a permutation of {1, . . . , k}. Then there exists a
permutation π̃ of {1, . . . , k + 1} such that

J(π(A)) = π̃(J(A)).

Lemma D.14. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`, p ∈ {1, . . . , k}, q ∈ {1, . . . , `}, π a permutation of
{1, . . . , k}. Then there exists p̃ ∈ {1, . . . , k}, q̃ ∈ {1, . . . , `}, and a permutation π̃ of {1, . . . , k +
`− 2} such that

π(a)�p,q b = π̃(a�p̃,q̃ b).

The following result is a generalization of Lemma D.12 to the case of a dot product of several
tensors.

Lemma D.15. For ` ∈ {1, . . . , k}, n` ∈ N, let A` : Re → (Re)⊗n` be smooth tensor fields. For
any (p`)1≤`≤k−1 and (q`)1≤`≤k−1 such that p` ∈ {1, . . . , n`}, q` ∈ {1, . . . , n`+1}, there exist k
permutations (π`)1≤`≤k such that

J(A1 �p1,q1 A2 �p2,q2 · · · �pk−1,qk−1
Ak) =

k∑
`=1

π` [A1 �A2 � · · · � J(A`)� · · · �Ak] ,

where the dot products of the right-hand side are along some axes that are not specify for sim-
plicity.

D.4. Experimental details 191

Proof. The proof is done by induction on k. The formula for k = 1 is straightforward. Assume
that the formula is true at order k. As before, we do not specify indexes for tensor dot products
as we are only interested in their existence. By Lemma D.14, we have

J(A1 � · · · �Ak+1)

= J((A1 � · · · �Ak)�Ak+1)

= π(J(A1 � · · · �Ak)�Ak+1) +A1 � · · · �Ak � J(Ak+1)

= π

[
k∑
`=1

π` [A1 �A2 � · · · � J(A`)� · · · �Ak]�Ak+1

]
+A1 � · · · �Ak � J(Ak+1)

= π

[
k∑
`=1

π̃` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1]

]
+A1 � · · · �Ak � J(Ak+1)

=

k∑
`=1

π̂` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1] +A1 � · · · �Ak � J(Ak+1)

(where π̂ = π ◦ π̃)

=

k+1∑
`=1

π̂` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1] .

D.4 Experimental details

All the code to reproduce the experiments is available on GitHub at https://github.com/
afermanian/rnn-kernel. Our experiments are based on the PyTorch (Paszke et al., 2019) frame-
work. When not specified, the default parameters of PyTorch are used.

Convergence of the Taylor expansion. For Figure 5.1, 103 random RNN with 2 hidden
units are generated, with the default weight initialization. The activation is either the logis-
tic or the hyperbolic tangent. In Figure 5.1b, only the results with the logistic activation
are plotted. The process X is taken as a 2-dimensional spiral. The reference solution to the
ODE (5.3) is computed with a numerical integration method from SciPy (Virtanen et al., 2020,
scipy.integrate.solve_ivp with the ‘LSODA’ method). The signature in the step-N Taylor
expansion is computed with the package Signatory (Kidger and Lyons, 2020).

The step-N Taylor expansion requires computing higher-order derivatives of tensor fields (up
to order N). This is a highly non-trivial task since standard deep learning frameworks are op-
timized for first-order differentiation only. We refer to, for example, Kelly et al. (2020), for a
discussion on higher-order differentiation in the context of a deep learning framework. To com-
pute it efficiently, we manually implement forward-mode higher-order automatic differentiation
for the operations needed in our context (described in Appendix D.3). A more efficient and
general approach is left for future work. Our code is optimized for GPU.

Penalization on a toy example. For Figure 5.2, the RNN is taken with 32 hidden units
and hyperbolic tangent activation. The data are 50 examples of spirals, sampled at 100 points
and labeled ±1 according to their rotation direction. We do not use batching and the loss is
taken as the cross entropy. It is trained for 200 epochs with Adam (Kingma and Ba, 2015)

https://github.com/afermanian/rnn-kernel
https://github.com/afermanian/rnn-kernel

192 APPENDIX D. Supplementary material of Chapter 5

with an initial learning rate of 0.1. The learning rate is divided by 2 every 40 epochs. For
the penalized RNN, the RKHS norm is truncated at N = 3 and the regularization parameter
is selected at λ = 0.1. Earlier experiments show that this order of magnitude is sensible. We
do not perform hyperparameter optimization since our goal is not to achieve high performance.
The initial hidden state h0 is learned (for simplicity of presentation, our theoretical results were
written with h0 = 0 but they extend to this case). The accuracy is computed on a test set of size
1000. We generate adversarial examples using 50 steps of projected gradient descent (following
Bietti et al., 2019). The whole methodology (data generation + training) is repeated 20 times.
The average training time on a Tesla V100 GPU for the RNN is 8.5 seconds and for the penalized
RNN 12 seconds.

Figure 5.3 is obtained by selecting randomly one run among the 20 of Figure 5.2.

Libraries. We use PyTorch (Paszke et al., 2019) as our overall framework, Signatory (Kidger
and Lyons, 2020) to compute the signatures, and SciPy (Virtanen et al., 2020) for ODE integra-
tion. We use Sacred (Greff et al., 2017) for experiment management. The links and licences for
the assets are given in the following table:

Name Homepage link License

PyTorch GitHub repository BSD-style License
Sacred GitHub repository MIT License
SciPy GitHub repository BSD 3-Clause "New" or "Revised" License

Signatory GitHub repository Apache License 2.0

Table D.1 – Links and licences of the libraries

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/IDSIA/sacred
https://github.com/IDSIA/sacred/blob/master/LICENSE.txt
https://github.com/scipy/scipy
https://github.com/scipy/scipy/blob/master/LICENSE.txt
https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory/blob/master/LICENSE

Bibliography 193

Bibliography

Bartlett, P. L., and Mendelson, S. (2002). Rademacher and Gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3, 463–482.

Bietti, A., Mialon, G., Chen, D., and Mairal, J. (2019). A kernel perspective for regularizing deep
neural networks. In K. Chaudhuri and R. Salakhutdinov (Eds.), Proceedings of the 36th
international conference on machine learning (pp. 664–674).

Greff, K., Klein, A., Chovanec, M., Hutter, F., and Schmidhuber, J. (2017). The sacred infras-
tructure for computational research. In K. Huff, D. Lippa, D. Niederhut, and M. Pacer
(Eds.), Proceedings of the 16th python in science conference (pp. 49–56).

Kelly, J., Bettencourt, J., Johnson, M. J., and Duvenaud, D. K. (2020). Learning differential
equations that are easy to solve. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (Eds.), Advances in neural information processing systems (pp. 4370–4380).
Curran Associates, Inc.

Kidger, P., and Lyons, T. (2020). Signatory: differentiable computations of the signature and
logsignature transforms, on both CPU and GPU. arXiv:2001.00706. https ://github.
com/patrick-kidger/signatory

Kingma, D. P., and Ba, J. (2015). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations.

Lyons, T. (2014). Rough paths, signatures and the modelling of functions on streams. arXiv:1405.4537.
Lyons, T., Caruana, M., and Lévy, T. (2007). Differential equations driven by rough paths

(Vol. 1908). Springer.
Minai, A. A., and Williams, R. D. (1993). On the derivatives of the sigmoid. Neural Networks,

6, 845–853.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala, S. (2019). Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Advances
in neural information processing systems (pp. 8024–8035). Curran Associates, Inc.

Riordan, J. (1958). An introduction to combinatorial analysis. John Wiley & Sons.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J.,
Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., . . . SciPy
1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17, 261–272.

https://github.com/patrick-kidger/signatory
https://github.com/patrick-kidger/signatory

194 APPENDIX D. Supplementary material of Chapter 5

Appendix E

Supplementary material of
Chapter 6

Contents

E.1 Proof of Theorem 6.7 195
E.2 Proof of Theorem 6.8 201

E.1 Proof of Theorem 6.7

Before beginning the proof, we prove a relation similar to Chen’s relation (Proposition 6.1,
(i)) for the insertion operator. First, for any n ≥ 1, p ∈ {1, . . . , n + 1}, X ∈ BV (Rd), the
insertion operator restricted to an interval [s, t] ⊂ [0, 1] is defined by

L n
p,X;[s,t](y) =

∫
(u1,...,un)∈∆n;[s,t]

dXu1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ dXup ⊗ · · · ⊗ dXun .

Lemma E.1. Let n ≥ 1, p ∈ {1, . . . , n+ 1}, X ∈ BV (Rd), u, v, w ∈ [0, 1] such that u < v < w.
Then,

L n
p,X,[u,w](y) =

p−1∑
k=0

Xk
[u,v] ⊗L n−k

p−k,X;[v,w](y) +

n∑
k=p

L k
p,X;[u,v](y)⊗Xn−k

[v,w].

Proof. This formula is obtained by splitting the integration domain in two parts, with a running
index k corresponding to the number of integration variables in each part of the interval:

L n
p,X;[u,w](y) =

∫
· · ·
∫

u≤u1≤···≤un≤w

dXu1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ · · · ⊗ dXun

=

n∑
k=0

∫
· · ·
∫

u≤u1≤···≤uk≤v≤uk+1≤···≤un≤w

dXu1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ · · · ⊗ dXun

=

n∑
k=0

∫
(u1,...,uk)∈∆k;[u,v]

∫
(uk+1,...,un)∈∆n−k;[v,w]

dXu1 ⊗ · · · ⊗ dXup−1 ⊗ y ⊗ · · · ⊗ dXun .

195

196 APPENDIX E. Supplementary material of Chapter 6

To simplify this expression, we need to separate the cases when k ≤ p − 1 from the cases when
k > p, which gives

L n
p,X;[u,w](y)

=

p−1∑
k=0

∫
(u1,...,uk)∈∆k;[u,v]

∫
(uk+1,...,un)∈∆n−k;[v,w]

dXu1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ · · · ⊗ dXun

+

n∑
k=p

∫
(u1,...,uk)∈∆k;[u,v]

∫
(uk+1,...,un)∈∆n−k;[v,w]

dXu1 ⊗ · · · ⊗ dXup−1 ⊗ y ⊗ · · · ⊗ dXun

=

p−1∑
k=0

(∫
(u1,...,uk)∈∆k;[u,v]

dXu1
⊗ · · · ⊗ dXuk

)
⊗
(∫

(uk+1,...,un)∈∆n−k;[v,w]

dXuk+1
⊗ · · · ⊗ dXup−1

⊗ y ⊗ · · · ⊗ dXun

)
+

n∑
k=p

(∫
(u1,...,uk)∈∆k;[u,v]

dXu1 ⊗ · · · ⊗ dXup−1 ⊗ y ⊗ · · · ⊗ dXuk

)
⊗
(∫

(uk+1,...,un)∈∆n−k;[v,w]

dXuk+1
⊗ · · · ⊗ dXun

)
=

p−1∑
k=0

Xk
[u,v] ⊗L n−k

p−k,X;[v,w](y) +

n∑
k=p

L k
p,X;[u,v](y)⊗Xn−k

[v,w].

The first step of the proof is to use the two Chen’s relations (Proposition 6.1, (i), and Lemma
E.1) to split both the signatureXn+1 and the insertion operator L n

p,X(y) on the intervals [0, ti−1],
[ti−1, ti], and [ti, 1]. Concerning signatures, a straightforward extension of Proposition 6.1 yields

Xn+1 =
∑

n1+n2+n3=n+1
0≤n1,n2,n3≤n+1

Xn1

[0,ti−1] ⊗Xn2

[ti−1,ti]
⊗Xn3

[ti,1]. (E.1)

Concerning the insertion operator, it is necessary to split the sum depending on the location of
p, in a similar way to the proof of Lemma E.1. Let S denotes the set

S =
{

(n1, n2, n3) ∈ {0, . . . , n+ 1}|n1 + n2 + n3 = n+ 1
}
.

For a fixed p ∈ {1, . . . , n+ 1}, we use the following partition, illustrated in Figure E.1:

S =
{

(n1, n2, n3) ∈ S |n1 ≥ p
}
∪
{

(n1, n2, n3) ∈ S |n1 < p, n1 + n2 ≥ p
}

∪
{

(n1, n2, n3) ∈ S |n1 + n2 < p
}
.

E.1. Proof of Theorem 6.7 197

0 n1 + n2 + n3 = n+ 1pn1 n1 + n2{
(n1, n2, n3) ∈ S |n1 + n2 < p

}

0 n1 + n2 + n3 = n+ 1pn1 n1 + n2{
(n1, n2, n3) ∈ S |n1 < p, n1 + n2 ≥ p

}

0 1 n1 + n2 + n3 = n+ 1p n1 n1 + n2{
(n1, n2, n3) ∈ S |n1 ≥ p

}

Figure E.1 – Partition of S .

We then obtain

L n
p,X(y) =

∑
(n1,n2,n3)∈S

p≤n1

L n1−1
p,X;[0,ti−1](y)⊗Xn2

[ti−1,ti]
⊗Xn3

[ti,1]

+
∑

(n1,n2,n3)∈S
n1<p≤n1+n2

Xn1

[0,ti−1] ⊗L n2−1
p−n1,X;[ti−1,ti]

(y)⊗Xn3

[ti,1]

+
∑

(n1,n2,n3)∈S
n1+n2<p

Xn1

[0,ti−1] ⊗Xn2

[ti−1,ti]
⊗L n3−1

p−n1−n2,X;[ti,1](y)

=

n∑
k=p−1

L k
p,X;[0,ti−1](y)⊗Xn−k

[ti−1,1] +
∑

(n1,n2,n3)∈S
n1<p≤n1+n2

Xn1

[0,ti−1] ⊗L n2−1
p−n1,X;[ti−1,ti]

(y)⊗Xn3

[ti,1]

+

p−1∑
k=0

Xk
[0,ti]
⊗L n−k

p−k,X;[ti,1](y). (E.2)

Using the same decomposition on (E.1), we have

Xn+1 =

n∑
k=p−1

Xk+1
[0,ti−1] ⊗Xn+1−k

[ti−1,1] +
∑

(n1,n2,n3)∈S
n1<p≤n1+n2

Xn1

[0,ti−1] ⊗Xn2

[ti−1,ti]
⊗Xn3

[ti,1]

+

p−1∑
k=0

Xk
[0,ti]
⊗Xn+1−k

[ti,1] . (E.3)

198 APPENDIX E. Supplementary material of Chapter 6

It follows that

n!(L n
p,X(βi)− (n+ 1)Xn+1)

= n!
(
L n
p,X(βi)− (n+ 1)Xn+1

)
= n!

n∑
k=p−1

(L k
p,X;[0,ti−1](βi)− (n+ 1)Xk+1

[0,ti−1])⊗Xn−k
[ti−1,1]

+ n!
∑

(n1,n2,n3)∈S
n1<p≤n1+n2

Xn1

[0,ti−1] ⊗ (L n2−1
p−n1,X;[ti−1,ti]

(βi)− (n+ 1)Xn2

[ti−1,ti]
)⊗Xn3

[ti,1]

+ n!

p−1∑
k=0

Xk
[0,ti]
⊗ (L n−k

p−k,X;[ti,1](βi)− (n+ 1)Xn+1−k
[ti,1])

:= A1 +A2 +A3, (E.4)

where we denote by A1 (respectively A2 and A3) the first (respectively second and third) sum.
We now bound A1, A2, and A3 separately. Note that, by Proposition 6.3,

‖L n
p,X;[s,t](y)‖ = ‖Xn‖ · ‖y‖ ≤

‖X‖nTV ;[s,t]

n!
‖y‖.

This yields, together with the triangle inequality,

‖A1‖ =
∥∥∥n!

n∑
k=p−1

(L k
p,X;[0,ti−1](βi)− (n+ 1)Xk+1

[0,ti−1])⊗Xn−k
[ti−1,1]

∥∥∥
≤ n!

n∑
k=p−1

∥∥L k
p,X;[0,ti−1](βi)

∥∥∥∥Xn−k
[ti−1,1]

∥∥+ (n+ 1)!

n∑
k=p−1

∥∥Xk+1
[0,ti−1]

∥∥∥∥Xn−k
[ti−1,1]

∥∥
≤ n!

n∑
k=p−1

‖βi‖
‖X‖kTV ;[0,ti−1]

k!

‖X‖n−kTV ;[ti−1,1]

(n− k)!
+ (n+ 1)!

n∑
k=p−1

‖X‖k+1
TV ;[0,ti−1]

(k + 1)!

‖X‖n−kTV ;[ti−1,1]

(n− k)!
.

Recall that our choice of parametrization of X ensures that for any j ∈ {1, . . . ,M}, ‖βj‖ = `,
and therefore

‖X‖TV ;[0,ti−1] =

i−1∑
j=1

‖βj‖(tj − tj−1) = `

i−1∑
j=1

(tj − tj−1) = `ti−1.

Similarly, ‖X‖TV ;[ti−1,1] = `(1− ti−1). It follows that

‖A1‖ ≤ `n+1
n∑

k=p−1

(
n

k

)
tki−1(1− ti−1)n−k + `n+1

n+1∑
k=p

(
n+ 1

k

)
tki−1(1− ti−1)n+1−k. (E.5)

Bounding A3 in a similar way, we obtain

‖A3‖ ≤ `n+1

p−1∑
k=0

(
n

k

)
tki (1− ti)n−k + `n+1

p−1∑
k=0

(
n+ 1

k

)
tki (1− ti)n+1−k. (E.6)

E.1. Proof of Theorem 6.7 199

We now turn to the term A2. We have

‖A2‖ =
∥∥∥n!

∑
(n1,n2,n3)∈S
n1<p≤n1+n2

Xn1

[0,ti−1] ⊗ (L n2−1
p−n1,X;[ti−1,ti]

(βi)− (n+ 1)Xn2

[ti−1,ti]
)⊗Xn3

[ti,1]

∥∥∥
≤ n!

∑
(n1,n2,n3)∈S
n1<p≤n1+n2

∥∥Xn1

[0,ti−1]

∥∥∥∥L n2−1
p−n1,X;[ti−1,ti]

(βi)− (n+ 1)Xn2

[ti−1,ti]

∥∥∥∥Xn3

[ti,1]

∥∥
≤ n!

∑
(n1,n2,n3)∈S

tn1
i−1`

n1

n1!
‖L n2−1

p−n1,X;[ti−1,ti]
(βi)− (n+ 1)Xn2

[ti−1,ti]
‖ (1− ti)n3`n3

n3!
.

Since X is linear on [ti−1, ti],

Xn2

[ti−1,ti]
=

(ti − ti−1)n2

n2!
β⊗n2
i , L n2−1

p−n1,X;[ti−1,ti]
(βi) =

(ti − ti−1)n2−1

(n2 − 1)!
β⊗n2
i .

From this, we have

‖L n2−1
p−n1,X;[ti−1,ti]

(βi)− (n+ 1)Xn2

[ti−1,ti]
‖ =

∥∥∥ (ti − ti−1)n2−1

(n2 − 1)!
β⊗n2
i − (n+ 1)(ti − ti−1)n2

n2!
β⊗n2
i

∥∥∥
=

(ti − ti−1)n2

n2!

∣∣∣ n2

ti − ti−1
− (n+ 1)

∣∣∣‖β⊗n2
i ‖

=
(ti − ti−1)n2`n2

n2!

∣∣∣ n2

ti − ti−1
− (n+ 1)

∣∣∣,
and

‖A2‖ ≤ n!
∑

(n1,n2,n3)∈S

tn1
i−1`

n1

n1!

(ti − ti−1)n2`n2

n2!

∣∣∣ n2

ti − ti−1
− (n+ 1)

∣∣∣ (1− ti)n3`n3

n3!

= `n+1
∑

(n1,n2,n3)∈S

(n+ 1)!

n1!n2!n3!
tn1
i−1(ti − ti−1)n2(1− ti)n3

∣∣∣ n2

(n+ 1)(ti − ti−1)
− 1
∣∣∣

= `n+1
n+1∑
k=0

(
1

k!

(k∑
n1=0

k!

n1!(k − n1)!
tn1
i−1(1− ti)k−n1

)
× (n+ 1)!

(n+ 1− k)!
(ti − ti−1)n+1−k

∣∣∣ n+ 1− k
(n+ 1)(ti − ti−1)

− 1
∣∣∣)

= `n+1
n+1∑
k=0

(n+ 1)!

k!(n+ 1− k)!
(1− (ti − ti−1))k(ti − ti−1)n+1−k

∣∣∣ n+ 1− k
(n+ 1)(ti − ti−1)

− 1
∣∣∣

= `n+1
n+1∑
k=0

(
n+ 1

k

)
(1− (ti − ti−1))n+1−k(ti − ti−1)k

∣∣∣ k

(n+ 1)(ti − ti−1)
− 1
∣∣∣. (E.7)

The right hand sides of (E.5), (E.6), and (E.7) correspond to probability mass functions of
binomial random variables. Indeed, let

Y1,n ∼ Binomial(n, ti−1), Y2,n ∼ Binomial(n, ti − ti−1), and Z3,n ∼ Binomial(n, ti).

200 APPENDIX E. Supplementary material of Chapter 6

Then, we have

‖A1‖ ≤ `n+1
(
P(Y1,n ≥ p− 1) + P(Y1,n+1 ≥ p)

)
,

‖A3‖ ≤ `n+1
(
P(Y3,n ≤ p− 1) + P(Y3,n+1 ≤ p− 1)

)
,

‖A2‖ ≤ `n+1E
[∣∣∣ Y2,n+1

(n+ 1)(ti − ti−1)
− 1
∣∣∣].

First, since E[Y2,n+1] = (n+1)(ti− ti−1), and Var(Y2,n+1) = (n+1)(ti− ti−1)(1− (ti− ti−1)),
by Hölder’s inequality,

E
[∣∣∣ Y2,n+1

(n+ 1)(ti − ti−1)
− 1
∣∣∣] =

1

(n+ 1)(ti − ti−1)
E
[
|Z1,n+1 − EZ1,n+1|

]
≤ 1

(n+ 1)(ti − ti−1)
E
[
|Z1,n+1 − EZ1,n+1|2

]1/2
≤ 1

(n+ 1)(ti − ti−1)

√
(n+ 1)(ti − ti−1)(1− (ti − ti−1))

≤ 1√
n+ 1

√
1− (ti − ti−1)

ti − ti−1
.

The other terms decay exponentially fast if p is well chosen. We give the details for the bound
on ‖A1‖ below but the one on ‖A3‖ is treated in the same way. First, we have

‖A1‖ ≤ `n+1
(
P(Y1,n ≥ p− 1) + P(Y1,n+1 ≥ p)

)
,

≤ `n+1
(
P(Y1,n − EY1,n ≥ p− 1− nti−1) + P(Y1,n+1 − EY1,n+1 ≥ p− (n+ 1)ti−1)

)
.

ti−1 titi+ti−1

2
ti+3ti−1

4
3ti+ti−1

4

p
n+1

p−1
n+1

1/(n+1)

(ti−ti−1)/2(ti−ti−1)/4 (ti−ti−1)/4

Figure E.2 – Illustration on the choice of p.

Recall that p is chosen as p = b(n+1)(3ti+ti−1)/4c. Then, if n ≥ 2/(ti−ti−1), we have

ti + 3ti−1

4
≤ p

n+ 1
<

3ti + ti−1

4

This is summarized in Figure E.2. In particular, we have

p− (n+ 1)ti−1 = (n+ 1)
(p

n+ 1
− ti−1

)
≥ (n+ 1)

(ti + 3ti−1

4
− ti−1

)
= (n+ 1)

ti − ti−1

4
> 0,

E.2. Proof of Theorem 6.8 201

and

p− 1− nti−1 = n
(p

n+ 1
− ti−1 +

p

n+ 1
− p− 1

n

)
≥ n

(ti − ti−1

4
+
n+ 1− p
n(n+ 1)

)
> n

ti − ti−1

4
> 0.

By Hoeffding’s inequality, we obtain

‖A1‖ ≤ `n+1
(
P(Y1,n − EY1,n ≥ p− 1− nti−1) + P(Y1,n+1 − EY1,n+1 ≥ p− (n+ 1)ti−1)

)
≤ `n+1

(
exp

(
− n

(p− 1

n
− ti−1

)2)
+ exp

(
− (n+ 1)

(p

n+ 1
− ti−1

)2))
≤ `n+1

(
exp

(
− n(ti − ti−1)2

16

)
+ exp

(
− (n+ 1)(ti − ti−1)2

16

))
≤ 2`n+1 exp

(
− n(ti − ti−1)2

16

)
.

With similar arguments, we obtain

‖A3‖ ≤ 2`n+1 exp
(
− n(ti − ti−1)2

16

)
.

Combining these inequalities, we obtain finally

‖L n
p,X(βi)− (n+ 1)Xn+1‖ ≤ `n+1

n!

(1√
n+ 1

√
1− (ti − ti−1)

ti − ti−1
+ 4 exp

(
− n(ti − ti−1)2

16

))
= O

(`n+1

n!
√
n+ 1

)
.

E.2 Proof of Theorem 6.8

The proof is based on several ingredients of Hambly and Lyons (2010). Their core idea is to
move the path to a hyperbolic space, which is called the “development” of the path. First, note
that if Y ∈ BV (Rd) is defined by Yt = Xt/`, then ‖Y ‖TV ;[0,1] = 1, and

Yn =

∫
(u1,...,un)∈∆n

dYu1
⊗ · · · ⊗ dYun =

∫
(u1,...,un)∈∆n

1

`
dXu1

⊗ · · · ⊗ 1

`
dXun =

1

`n
Xn.

Without loss of generality, we therefore restrict ourselves to the case ` = 1, and the lower bound
obtained will have to be multiplied by `n to go back to the general case.

We begin the proof with a series of definitions.

Definition E.1. The hyperboloid model is the subspace of Rd+1 defined by

H = {y ∈ Rd+1|B(y, y) = −1},

where, for any x, y ∈ Rd+1,

B(x, y) =

d∑
i=1

xiyi − xd+1yd+1. (E.8)

202 APPENDIX E. Supplementary material of Chapter 6

This hyperbolic space has several well-known good properties (Cannon et al., 1997; Paupert,
2016; Loustau, 2020). The main one is that the hyperbolic distance between two points y, z ∈ H,
denoted by d, can be easily computed as

d(y, z) = arcosh(−B(y, z)).

Then, we define the space of bounded linear operators between vector spaces and their associated
operator norm.

Definition E.2. The set of bounded linear operators between two normed vector spaces (E,
‖ · ‖E) and (F, ‖ · ‖F) is denoted by L (E,F). Equipped with the operator norm, defined for any
f ∈ L (E,F) by

‖f‖L (E,F) = sup
x∈E,‖x‖E=1

‖f(x)‖F ,

it is itself a normed vector space.

We will use bounded linear maps on Rd equipped with the Euclidean norm, and regard
linear maps as matrix multiplication. Therefore, we will denote fx instead of f(x) for function
evaluation. In particular, for any y ∈ Rd, let F : Rd → L (Rd+1,Rd+1) be defined by

Fy =

0 · · · 0 y1

...
...

...
0 · · · 0 yd
y1 . . . yd 0

 .

Lemma E.2. F is a bounded linear map and its operator norm is ‖F‖L (Rd,L (Rd+1,Rd+1)) = 1.

Proof. For any y ∈ Rd, z ∈ Rd+1, we first have

Fyz =

0 · · · 0 y1

...
...

...
0 · · · 0 yd
y1 . . . yd 0

 z1

...
zd+1

 =

y1 zd+1

...
yd zd+1∑d
i=1 yi zi

 .

Then,

‖Fyz‖2 = z2
d+1

d∑
i=1

y2
i +

(d∑
i=1

yizi
)2

≤ z2
d+1‖y‖2 + ‖y‖2

d∑
i=1

z2
i (by the Cauchy-Schwartz inequality)

≤ ‖y‖2‖z‖2.

This yields

‖Fy‖L (Rd+1,Rd+1) = sup
z∈Rd+1,‖z‖=1

‖Fyz‖ ≤ sup
z∈Rd+1,‖z‖=1

‖y‖‖z‖ = ‖y‖.

Moreover the inequality becomes an equality when z = ed+1 (where (e1, . . . , ed+1) is the canonical

E.2. Proof of Theorem 6.8 203

basis of Rd+1), so

‖Fy‖L (Rd+1,Rd+1) = ‖y‖, (E.9)

and
‖F‖L (Rd,L (Rd+1,Rd+1)) = sup

y∈Rd,‖y‖=1

‖Fy‖L (Rd+1,Rd+1) = sup
y∈Rd,‖y‖=1

‖y‖ = 1.

We are now in a position to define the development of a path X ∈ BV (Rd) to the hyperbolic
space. Let t ∈ [0, 1] and Γt : Rd+1 → Rd+1 be defined as follows. For any y ∈ Rd+1, Γty is the
solution at time t of the controlled differential equation

dYt = F (dXt)Yt, Y0 = y. (E.10)

Lemma E.3. For any t ∈ [0, 1], Γt is a (well-defined) linear map preserving the function B: for
any y, ỹ ∈ Rd+1,

B(Γty,Γtỹ) = B(y, ỹ).

Proof. Equation (E.10) is a linear controlled differential equation and by Picard’s theorem, for
any y ∈ Rd, it has a unique solution. Therefore Γt is well-defined. Moreover, it is clearly a linear
operator: if y, ỹ ∈ Rd, and Yt = Γty, Ỹt = Γtỹ, then Yt + Ỹt follows equation (E.10) with initial
point y + ỹ, so by uniqueness of the solution Γt(y + ỹ) = Γty + Γtỹ.

The differential equation (E.10) may also be rewritten as a differential equation on Γ, which
can be thought of as a (d+ 1)× (d+ 1) matrix:

dΓt = F (dXt)Γt, Γ0 = Id+1, (E.11)

where Id+1 is the identity matrix. Now let y0 = (0, . . . , 0, 1)> ∈ Rd+1. The development of X in
H is defined as the path Y : [0, 1] → H, Yt = Γty0. Since B(y0, y0) = −1, then y0 ∈ H and by
Lemma E.3 Yt ∈ H for any t ∈ [0, 1]. So equation (E.11) maps a path X in Rd into a new path
Y in H, in a way that preserves a number of properties of the path X:

• Any linear piece of X is mapped to a geodesic in H. So if X satisfies (6.5), then Y is
geodesic on each [ti−1, ti], and d(Yti , Yti−1

) = ‖βi‖(ti − ti−1) = ‖Xti −Xti−1
‖.

• Γ preserves the angles between linear segments. If 2ω is the angle between the linear pieces
[Xti−1

, Xti] and [Xti , Xti+1
], then the angle between the geodesics [Yti−1

, Yti] and [Yti , Yti+1
]

is also equal to 2ω.

Now we state two results from Hambly and Lyons (2010) that are the key ingredients of our
proof.

Lemma E.4.

(i) Let Y : [0, 1]→ H be a continuous path, geodesic on the intervals [ti−1, ti], where 0 = t0 <
t1 < · · · < tM = 1 is a partition of [0, 1]. If 2Ω is the smallest angle between two geodesic
segments and each geodesic segment has length at least K(Ω) (defined by (6.9)), then

0 ≤
M∑
i=1

d(Yti−1 , Yti)− d(y0, YtM) ≤ (M − 1)K(Ω).

204 APPENDIX E. Supplementary material of Chapter 6

(ii) Let SO(B) denote the group of (d+1)×(d+1) matrices with positive determinant preserving
the isometry B: if G ∈ SO(B), then for any x, y ∈ Rd+1, B(Gx,Gy) = B(x, y). Then, for
any G ∈ SO(B),

‖G‖L (Rd+1,Rd+1) ≥ ed(y0,Gy0),

where y0 = (0, . . . , 0, 1)> ∈ Rd+1.

Proof. We refer the reader to Lemma 3.7 and Proposition 3.13 of Hambly and Lyons (2010) for
proofs.

We now have all the ingredients necessary to prove Theorem 6.8. Without loss of generality,
we can assume that X has a total variation of 1. Let α be any strictly positive real number, we
define the renormalized path Xα = αX and its corresponding hyperbolic developments Γα and
Y α. Let D be the length of the shortest linear segment of X, and let assume that α > K(Ω)/D.
Then, Y α satisfies the hypothesis of (i) in Lemma E.4, and we have

0 ≤
M∑
i=1

d(Y αti−1
, Y αti)− d(y0, Y

α
1) ≤ (M − 1)K(Ω).

Since X is linear on each segment [ti−1, ti], d(Y αti−1
, Y αti) = ‖Xα

ti −Xα
ti−1
‖, and

M∑
i=1

d(Y αti−1
, Y αti) =

M∑
i=1

‖Xti −Xti−1
‖ = α,

therefore
d(y0, Y

α
1) = d(y0,Γ

α
1 y0) ≥ α− (M − 1)K(Ω).

Now lemma E.4 yields

‖Γα1 ‖L (Rd+1,Rd+1) ≥ ed(y0,Γ
α
1 y0) ≥ eα−(M−1)K(Ω). (E.12)

By definition of Γ as the solution to the linear controlled differential equation (E.11), we can
actually write Γ as a linear function of the signature of X:

Γα1 = Id+1 +

∫ 1

0

F (dXα
t)Γt

= Id+1 +

∫ 1

0

F (dXα
t)
(
Id+1 +

∫ t

0

F (dXα
s)Γs

)
= Id+1 +

∫ 1

0

F (dXα
t) +

∫ 1

0

∫ t

0

F (dXα
t)F (dXα

s)Γs

=

Iterating this procedure gives

Γα1 = Id+1 +

∞∑
k=1

∫
∆k

F (dXα
t1) . . . F (dXα

tk
). (E.13)

Using tensor notations, we denote by F⊗k the linear map F⊗k : (Rd)⊗k → L (Rd+1,Rd+1) which,

E.2. Proof of Theorem 6.8 205

to any tensor u =
∑`
j=1 u1,j ⊗ · · · ⊗ uk,j associates

F⊗k(u) =
∑̀
j=1

F (u1,j) · · ·F (uk,j).

Note that we then have

‖F⊗k(u)‖L (Rd+1,Rd+1) ≤
p∑
j=1

‖F (u1,j) · · ·F (uk,j)‖L (Rd+1,Rd+1)

≤
p∑
j=1

‖F (u1,j)‖L (Rd+1,Rd+1) · · · ‖F (uk,j)‖L (Rd+1,Rd+1)

(because the operator norm is sub-multiplicative)

≤
p∑
j=1

‖u1,j‖ . . . ‖uk,j‖.

Taking the infimum over any representation of u yields ‖F⊗k(u)‖L (Rd+1,Rd+1) ≤ ‖u‖π. Note that
this is not true for any tensor norm. Then, (E.13) becomes

Γα1 = Id+1 +

∞∑
k=1

F⊗k
(∫

∆k

dXα
t1 ⊗ · · · ⊗ dXα

tk

)
= Id+1 +

∞∑
k=1

αkF⊗k
(∫

∆k

dXt1 ⊗ · · · ⊗ dXtk

)
= Id+1 +

∞∑
k=1

αkF⊗k(Xk).

Endowing (Rd)⊗k with the projective norm yields

‖Γα1 ‖L (Rd+1,Rd+1) ≤ ‖Id+1‖L (Rd+1,Rd+1) +
∥∥∥ ∞∑
k=1

αkF⊗k(Xk)
∥∥∥

L (Rd+1,Rd+1)

≤ 1 +

∞∑
k=1

αk
∥∥F⊗k(Xk)

∥∥
L (Rd+1,Rd+1)

≤ 1 +

∞∑
k=1

αk‖Xk‖π

Note that, by Proposition 6.3, the right hand side is a converging series so (E.13) is well-defined.
Let, for any k ≥ 1, bk = k!‖Xk‖π, and b0 = 1. Note that since we have taken X of norm 1,
bk ≤ 1. Combining the last inequality with (E.12) gives

e−(M−1)K(Ω) ≤ e−α
∞∑
k=0

αk

k!
bk. (E.14)

206 APPENDIX E. Supplementary material of Chapter 6

The last step in our proof is to show that there exists infinitely many k such that bk ≥
e−(M−1)K(Ω)

/2. To this end, let us take α a non-zero integer, denoted by n, and Z ∼ Poisson(n)
a random variable following a Poisson distribution with parameter α. The right-hand-side of
(E.14) is then exactly E[bZ]. Let us show that

P
(
bZ ≥

1

2
e−(M−1)K(Ω) and Z ∈ Jn

)
> 0.

where Jn denotes the interval [n− n3/4, n+ n3/4]. It follows that there exists k ∈ Jn such that
bk ≥ 1

2e
−(M−1)K(Ω) (otherwise the probability above would be zero). Since for any k ≥ 0, bk ≤ 1,

we have

e−(M−1)K(Ω) ≤ E[bZ] = E[bZ1bZ≥ 1
2 e
−(M−1)K(Ω)] + E[bZ1bZ< 1

2 e
−(M−1)K(Ω)]

≤ P(bZ ≥
1

2
e−(M−1)K(Ω)) +

1

2
e−(M−1)K(Ω),

which yields

P(bZ ≥
1

2
e−(M−1)K(Ω)) ≥ 1

2
e−(M−1)K(Ω) > 0.

Moreover, by Chebyshev’s inequality,

P(bZ /∈ Jn) = P(|Z − n| > n3/4) ≤ 1√
n
.

Let n0 be the smallest integer such that n0 > 4e2(M−1)K(Ω). Then, for any n ≥ n0,

P
(
bZ ≥

1

2
e−(M−1)K(Ω) and Z ∈ Jn

)
≥ P(bZ ≥

1

2
e−(M−1)K(Ω))− P(bZ /∈ Jn)

≥ 1

2
e−(M−1)K(Ω) − 1√

n

≥ 1

2
e−(M−1)K(Ω) − 1√

n0
> 0.

We conclude that for any n > n0, there exists kn ∈ Jn such that bkn ≥ 2−1e−(M−1)K(Ω), that is,

‖Xkn‖π ≥
e−(M−1)K(Ω)

2kn!
.

Bibliography 207

Bibliography

Cannon, J. W., Floyd, W. J., Kenyon, R., Parry, W. R., et al. (1997). Hyperbolic geometry.
Flavors of geometry, 31, 59–115.

Hambly, B., and Lyons, T. (2010). Uniqueness for the signature of a path of bounded variation
and the reduced path group. The Annals of Mathematics, 171, 109–167.

Loustau, B. (2020). Hyperbolic geometry. arXiv:2003.11180.
Paupert, J. (2016). Introduction to hyperbolic geometry.

208 APPENDIX E. Supplementary material of Chapter 6

Learning time-dependent data with the signature transform
Résumé

Les applications modernes de l’intelligence artificielle amènent à travailler avec des données temporelles
multivariées de grande dimension qui posent de nombreux défis. Par une approche géométrique des flux
de données, la notion de signature, représentation d’un processus en un vecteur infini de ses intégrales
itérées, est un outil prometteur. Ses propriétés développées dans le cadre de la théorie des chemins
rugueux en font en effet un bon candidat pour jouer le rôle de features, ensuite injectées dans des
algorithmes d’apprentissage. Si la définition de la signature remonte aux travaux de Chen (1960), son
utilisation en apprentissage est récente et de nombreuses questions théoriques et méthodologiques restent
à explorer. Nous nous intéressons donc à l’utilisation de la signature pour développer des algorithmes
génériques et performants pour les données temporelles de grande dimension, ainsi que de leur fournir
des garanties théoriques. Ce but se déploie principalement dans deux directions : d’une part, développer
de nouveaux algorithmes prenant en entrée la signature des données, d’autre part utiliser la signature
comme un outil théorique pour étudier les algorithmes existants d’apprentissage profond, via la notion
récente de neural ordinary differential equation qui fait le lien entre apprentissage profond et équations
différentielles.

Mots clés : signatures, données temporelles, apprentissage séquentiel, réseaux de neurones récurrents

Abstract

Modern applications of artificial intelligence lead to high-dimensional multivariate temporal data that
pose many challenges. Through a geometric approach to data flows, the notion of signature, a repre-
sentation of a process as an infinite vector of its iterated integrals, is a promising tool. Its properties,
developed in the context of rough path theory, make it a good candidate to play the role of features,
then injected in learning algorithms. If the definition of the signature goes back to the work of Chen
(1960), its use in machine learning is recent. Many theoretical and methodological questions remain to
be explored. We are therefore interested in using the signature to develop generic and efficient algorithms
for high-dimensional temporal data, with theoretical guarantees. This goal is mainly deployed in two
directions: on the one hand, to develop new algorithms taking the signature of the data as input, and,
on the other hand, to use the signature as a theoretical tool to study existing deep learning algorithms,
via the recent notion of neural ordinary differential equation which makes the link between deep learning
and differential equations.

Keywords: signatures, temporal data, sequential learning, recurrent neural networks

Laboratoire de Probabilités, Statistique et Modélisation
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France

	Résumé
	Table des matières
	1 Introduction
	1.1 Preliminaries
	1.1.1 Paths of bounded variation
	1.1.2 Tensor spaces
	1.1.3 The signature of a path

	1.2 Properties of the signature
	1.2.1 Invariances and uniqueness
	1.2.2 Analytic properties
	1.2.3 The logsignature

	1.3 Contributions
	Signatures as a feature set
	Linear regression with signatures
	Signature kernel and RNN
	Signature inversion
	Outline of the manuscript

	Résumé détaillé

	2 Embedding and learning with signatures
	2.1 Introduction
	2.2 A first glimpse of the signature method
	2.2.1 Definition and main properties
	2.2.2 Signature and machine learning

	2.3 Datasets
	2.4 The embedding
	2.4.1 Definition and review of potential embeddings
	2.4.2 Results
	2.4.3 Running times

	2.5 Simulation study of autoregressive processes
	2.6 Signature domain and performance
	2.6.1 Comparison of local and global signature features
	2.6.2 Performance of the signature

	2.7 Conclusion

	3 A Generalised Signature Method for Multivariate Time Series Feature Extraction
	3.1 Introduction
	3.2 Context
	3.2.1 Background theory
	3.2.2 Related work

	3.3 The generalized signature method
	3.3.1 Augmentations
	3.3.2 Windows
	3.3.3 The signature and logsignature transforms
	3.3.4 Rescaling
	3.3.5 Putting the pieces together

	3.4 Empirical study
	3.4.1 Methodology
	3.4.2 Results
	3.4.3 Further results

	3.5 The canonical signature pipeline
	3.5.1 Definition
	3.5.2 Performance

	3.6 Conclusion

	4 Linear functional regression with truncated signatures
	4.1 Introduction
	4.2 Mathematical framework
	4.2.1 Functional linear regression
	4.2.2 The signature of a path

	4.3 The signature linear model
	4.3.1 Presentation of the model
	4.3.2 Estimating the truncation order

	4.4 Performance bounds
	4.5 Computational aspects
	4.5.1 The signature linear model algorithm
	4.5.2 A toy example

	4.6 Experiments
	4.6.1 Smooth paths
	4.6.2 Gaussian processes

	4.7 Real-world applications
	4.7.1 The Canadian Weather dataset
	4.7.2 Electricity consumption prediction

	4.8 Conclusion and perspectives

	5 Framing RNN as a kernel method: A neural ODE approach
	5.1 Introduction
	5.2 Framing RNN as a kernel method
	5.2.1 From discrete to continuous time
	5.2.2 The signature
	5.2.3 From the CDE to the signature kernel

	5.3 Generalization and regularization
	5.3.1 Generalization bounds
	5.3.2 Regularization and stability

	5.4 Numerical illustrations
	5.5 Conclusion

	6 The insertion algorithm for signature inversion
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Path of bounded variation
	6.2.2 Tensor space
	6.2.3 The signature of a path

	6.3 The insertion algorithm
	6.3.1 Theoretical guarantees
	6.3.2 Algorithm

	6.4 Experimental results

	Conclusion
	A Supplementary material of Chapter 1
	A.1 Proof of Proposition 1.2
	A.2 Proof of Theorem 1.3
	A.3 Proof of Proposition 1.4
	A.4 Proof of Theorem 1.6
	A.5 Proof of Lemma 1.7
	A.6 Proof of Lemma 1.8
	A.7 Proof of Proposition 1.10
	A.8 Proof of Theorem 1.12
	A.9 Proof of Theorem 1.13

	B Supplementary material of Chapter 3
	B.1 Augmentations
	B.2 Rescaling
	B.3 Implementation details
	B.3.1 General notes
	B.3.2 Analysis of variations of the signature method
	B.3.3 The canonical signature pipeline

	B.4 Additional results
	B.4.1 Analysis of variations of the signature method
	B.4.2 Complete results
	B.4.3 Canonical signature method

	C Supplementary material of Chapter 4
	C.1 Proof of Theorem 4.4
	C.2 Proof of Corollary 4.5

	D Supplementary material of Chapter 5
	D.1 Mathematical details
	D.1.1 Writing the GRU and LSTM in the neural ODE framework
	D.1.2 Picard-Lindelöf theorem
	D.1.3 Operator norm
	D.1.4 Tensor Hilbert space
	D.1.5 Bounding the derivatives of the logistic and hyperbolic tangent activations
	D.1.6 Chen's formula

	D.2 Proofs
	D.2.1 Proof of Proposition 5.1
	D.2.2 Proof of Proposition 5.2
	D.2.3 Proof of Proposition 5.3
	D.2.4 Proof of Proposition 5.4
	D.2.5 Proof of Proposition 5.5
	D.2.6 Proof of Theorem 5.6
	D.2.7 Proof of Theorem 5.7
	D.2.8 Proof of Theorem 5.8

	D.3 Differentiation with higher-order tensors
	D.3.1 Definition
	D.3.2 Computation rules

	D.4 Experimental details

	E Supplementary material of Chapter 6
	E.1 Proof of Theorem 6.7
	E.2 Proof of Theorem 6.8

