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Résumé

L’aspirateur d’une turbine hydraulique est un élément hydraulique divergent situé en aval de
la roue et dont le rôle est de convertir de façon efficace l’énergie cinétique résiduelle en sor-
tie de roue en pression, en augmentant ainsi la charge utile et la performance de la machine.
Puisque les pertes de charge dans les aspirateurs peuvent représenter une partie significative des
pertes totales, notamment dans le cas des turbines de basse chute de type bulbe, prédire avec
précision le comportement de l’écoulement dans ces éléments est important pour concevoir des
machines plus efficaces et compétitives. Dans ce contexte, les simulations numériques sont moins
chères que les campagnes expérimentales et donnent accès à une description plus détaillée de
l’écoulement dans l’aspirateur. Comparées aux simulations conventionnelles du type RANS, les
simulations de type LES permettent de reproduire plus fidèlement la dynamique complexe de
l’écoulement dans l’aspirateur (i.e. fortement turbulent, avec une haute gamme d’échelles de
mouvement, rotationnel et soumis à des gradients de pression adverses). Cependant, vu que le
comportement de l’écoulement dans l’aspirateur est très sensible aux conditions d’entrée imposées
et que les mesures expérimentales détaillées y sont difficiles à obtenir, l’enjeu principal pour ces
simulations reste la détermination économique et adéquate des champs moyens et fluctuants
en entrée du domaine de calcul. Ainsi, une approche innovante basée sur les techniques dites
"data-driven", telles que l’apprentissage automatique, est proposée. Son objectif est d’utiliser
toutes les informations disponibles sur l’écoulement en aval, ainsi qu’une base de données créée
a priori, afin de déterminer les conditions d’entrée partiellement ou totalement inconnues pour
une simulation numérique. Grâce à une extension artificielle positionnée en amont du domaine
de calcul, l’approche proposée permet de plus aux fluctuations turbulentes synthétiques injec-
tées en LES de se développer avant de pénétrer dans l’aspirateur. Dans un premier temps,
l’approche est appliquée au cas géométriquement simple mais dynamiquement complexe du dif-
fuseur conique d’ERCOFTAC. Comparés aux expériences et aux précédents travaux numériques,
les résultats obtenus avec l’approche proposée sont de très bonne qualité. L’approche est en-
suite appliquée au cas plus complexe de l’écoulement dans l’aspirateur d’une turbine bulbe. Les
résultats numériques sont considérablement améliorés par rapport aux résultats basés sur des
méthodes classiques. Finalement, une analyse détaillée des pertes de charge et des structures
tourbillonnaires dans l’aspirateur permettent de montrer l’impact majeur des conditions d’entrée
pour la conception d’aspirateurs plus efficaces.

Mots clefs : aspirateur de turbine bulbe, conditions d’entrée, turbulence synthétique, appren-
tissage automatique, simulation des grandes échelles, énergie hydroélectrique



Application of Artificial Neural Networks
to the study of hydraulic turbine draft
tubes

Abstract

The draft tube of a hydraulic turbine are divergent shaped equipment located downstream the
runner and responsible for efficiently converting the residual kinetic energy leaving the runner into
pressure, thus increasing the effective head and performance of the machine. As the head losses
inside a draft tube can represent an important portion of the total energy losses, especially in the
case of low head bulb turbines, it is essential to accurately predict the flow behaviour inside the
draft tube if more efficient and competitive hydraulic machines are to be designed. In this context,
numerical simulations are less expensive than experiments and give access to a more detailed
description of the flow inside the draft tube. Compared to conventional RANS simulations using
two-equation linear eddy-viscosity models, LES is more capable of capturing the complicated
flow dynamics inside the draft tube (i.e. highly turbulent flow, with a wide range of vortical
motions, swirling and subjected to an adverse pressure gradient). However, as the downstream
flow behaviour is highly influenced by the inlet conditions and since comprehensive experimental
measurements at the inlet of the draft tube are expensive, rarely available and often limited
to mean flow quantities measured at a single radial traverse, the real challenge for performing
these simulations consists in determining proper mean and fluctuating inlet boundary conditions.
Thus, a new approach based on data-driven techniques, such as machine learning, is proposed.
Its goal is to use any known information about the downstream flow along with a previously
generated database to reconstruct the unknown or incomplete inlet boundary conditions for a
numerical simulation. Thanks to an artificial upstream extension added to the original domain,
the proposed approach gives more space and time for the simple synthetic fluctuations being
injected in LES to develop before reaching the important portion of the computational domain.
First, the simple yet challenging case of the swirling flow inside the ERCOFTAC conical diffuser
is investigated. Compared to the experimental data and previous numerical works that used
ad hoc inlet boundary conditions, the obtained results are very good. Then, in the case of the
more complex flow inside a bulb turbine draft tube, the proposed approach yields better results
in both RANS and LES in comparison to the initial simulations using basic inlet boundary
conditions. Finally, a detailed analysis of the flow topology and head losses inside the draft tube
demonstrates the impact of proper inlet boundary conditions for the design of more efficient
draft tubes.

Keywords: bulb turbine draft tube, inlet boundary conditions, synthetic turbulence, machine
learning, large eddy simulation, hydroelectric power
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Hydropower is a well established technology and one of the most important renewable energy
sources. In this type of technology, the potential energy of the water coming from the water cycle
is used to rotate the runner of a hydraulic turbine and to generate electrical power for the grid. In
spite of the increasing participation of other energy sources such as wind and solar, hydropower
generation is growing and still represents almost 60% of the total renewable energy generation
and 17% of the total electrical energy production in the world [1]. China is by far the world’s
largest hydropower producer, with over 1.35 TWh produced in 2020, almost 3.5 times that
from the second place, Brazil. Nowadays, as viable large hydro sites are almost accomplished in
developed countries, the exploitation of low head sites has become more attractive. The problem
is that turbines which are better suited for operating at these conditions, notably bulb turbines,
are highly affected by the head losses inside their draft tube, a divergent shaped equipment
responsible for efficiently converting the residual kinetic energy leaving the runner into pressure
and increasing the turbine’s performance [61]. Therefore, being able to accurately predicting
the flow behaviour and head losses inside draft tubes is essential for the design of more efficient
and competitive low head turbines.

In their search for more competitive machines and improved efficiency, manufacturers have
adopted Computational Fluid Dynamics (CFD) in their design process due to its lower cost, flex-
ibility, and access to larger database than traditional experimental measurements. In this con-
text, this thesis is part of a collaboration between the hydraulic turbines manufacturer General
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Electric (GE) Renewable Energy and the Modélisation et Simulation de la Turbulence (MoST)
team at the Laboratoire des Écoulements Géophysiques et Industriels (LEGI). The goal being to
improve the numerical prediction of draft tube performances, this work is a continuation of the
multiple thesis presented in the past, but is particularly based on that from Wilhelm [160]. To
understand the main motivations and objectives of this thesis, as well as the discussions in the
following chapters, the basic aspects about hydropower generation are explained next.

1.1 General aspects of hydroelectric power plants

1.1.1 Arrangement of a hydroelectric power plant

Figure 1.1 shows the scheme of a hydroelectric power plant used to convert the energy of
a water flow into electricity. An accumulation dam is used to store the water in an upstream
reservoir, which then enters the hydropower plant through an intake and is directed to the
turbine through a conduit system (penstock). Inside these conduits, the water flow increases its
velocity and the potential energy of the water is converted into kinetic energy. Depending on
the turbine, a spiral case and a distributor directs the flow to the guide vanes, which varies the
opening angle of its blades to control the flow rate and direction of the water flow upstream the
runner. The runner recovers this hydraulic energy on the flow and converts it into mechanical
energy in the form of a rotating shaft, which is linked to an electric generator that will then
convert this mechanical energy into electrical energy. After the runner, the water flow passes
through a draft tube, where part of the residual kinetic energy of the flow is recovered, and then
it discharges into the tail race canal.

Figure 1.1: Diagram of a typical hydroelectric power plant. Source: adapted from
https://populationeducation.org/what-are-pros-and-cons-hydropower-and-tidal-energy/

1.1.2 Energy conversion

The water flow from the upper to the lower level in a hydroelectric power plant represents
a hydraulic power potential that can be exploited to generate mechanical power on the shafts
of turbines. The amount of power produced by the power plant is a function of the difference
between the water levels and the resulting water flow passing through its multiple elements (e.g.,
intake conduits, guide vanes, runner, draft tube etc.). This power is evaluated by the application
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of Bernoulli’s principle and the assessment of the head at multiple locations inside the power
plant. For instance, the head, given in meters (m), at location 0 is defined as:

H0 =
p0

ρg
+
V 2

0

2g
+ Z0 (1.1)

where ρ is the density of the water, g is the acceleration of gravity and p0, V0 and Z0 are,
respectively, the static pressure, mean velocity and altitude at station 0. The gross head is
defined as the difference between the head at the upstream reservoir (re) and downstream tail
water (tw) in a hydropower plant, i.e.,

Hg = Hre −Htw =

(
pre
ρg

+
V 2
re

2g
+ Zre

)
−
(
ptw
ρg

+
V 2
tw

2g
+ Ztw

)
(1.2)

However, considering that the static pressure upstream and downstream the hydropower
plant are equal to the atmospheric pressure, pre = ptw = patm, and that the free surface velocities
at these two locations are negligible compared to the velocities found inside the different elements
of the plant, i.e., Vre ≈ Vtw ≈ 0, the gross head, Hg, is given by the difference between the
upstream and downstream water level. Since the water flowing through the conduits from the
intake side of the turbine (i.e., upstream section 1 in Fig. 1.1) and from the draft tube outlet to
the tailwater (downstream section 2 in Fig. 1.1) generate some head losses, ∆Hloss, the effective
head, or net head, available for the turbine is given by:

Hn = Hg −∆Hloss (1.3)

which, assuming a steady and uniform flow at stations 1 and 2, can be rewritten as the difference
in head between these two stations, i.e.,

Hn = H1 −H2 =

(
p1

ρg
+
V 2

1

2g
+ Z1

)
−
(
p2

ρg
+
V 2

2

2g
+ Z2

)
(1.4)

Considering the available specific energy, or the net specific energy, in J/kg,

En = gHn = gH1 − gH2 (1.5)

the net power for the turbines in the power plant in Watt, Pn, is equal to the product between
this net specific energy and the mass flow passing through the turbine, that is:

Pn = ρQEn = ρgQHn (1.6)

where Q is the flow rate. However, part of this net power is lost due to multiple factors (e.g.,
head losses in the machine, friction, labyrinth leakage etc.) and the mechanical power available
at the shaft of the runner, also called internal power, Pi, is smaller than Pn. It can be evaluated
though from the torque, T , and the rotation speed, Ω, on the shaft:

Pi = ΩT (1.7)

The hydraulic efficiency, η, of the turbine is calculated as the ration between the mechanical
power and the net power, i.e.,

η =
Pi
Pn

(1.8)
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1.2 Overview of the draft tube

The water flow leaving the runner still has some residual velocity, and therefore kinetic energy,
associated with it, which represents a portion of the total energy available for the turbine that
was not converted into mechanical energy and electricity. The draft tube is a divergent shaped
equipment, positioned downstream the runner, that directs the water flow to the downstream
tail race canal and reduces the velocity of the flow leaving the runner in order to maximize
the internal power of the turbine. To understand how exactly this is accomplished, Wilhelm
[160] performed a very detailed analysis of the role of the draft tube in a hydraulic turbine. For
instance, starting from the equation for the internal power of the turbine, Eq. (1.7), even though
this is a mechanical power according to its definition, it can be written in terms of an internal
head, Hi, such that:

Pi = ρgQHi (1.9)

If ∆HA,B is the head loss between the inlet and outlet of the runner (respectively, sections
A and B in Fig. 1.2) and ∆Hrunner the losses within this region of the flow, the internal head,
Hi, can be written as:

Hi = ∆HA,B −∆Hrunner = (ZA − ZB) +
1

ρg
(pA − pB) +

1

2g
(V 2
A − V 2

B)−∆Hrunner (1.10)

Figure 1.2: Definitions of sections used to analyse the head losses inside the draft tube. Source: adapted from
https://populationeducation.org/what-are-pros-and-cons-hydropower-and-tidal-energy/

In this equation, ZA and ZB are fixed by the setup of the turbine, while VA, VB and the losses
∆runner are fixed by its operating condition and geometry. Moreover, as the static pressure at
the runner inlet, pA, is fixed by the head losses upstream the turbine, then the internal head
is only a function of the static pressure at the runner outlet, pB, and it can be increased by
reducing this pressure. However, pB, is a function of the head loss between the runner outlet,
HB and the surface of the tail water (Htw), where the static pressure is equal to the atmospheric
pressure, patm, and the velocity is negligible:

∆HB,tw = (ZB − Ztw)− 1

ρg
(pB − patm) +

1

2g
(V 2
b ) = ∆HB,2 + ∆H2,tw (1.11)

where ∆HB,2 is the head losses inside the draft tube and ∆H2,tw the head losses between the
outlet of the draft tube and the tail water. This latter can be considered as being equal to the
head losses in a sudden expansion with loss coefficient 1, i.e., ∆H2,tw = V 2

2 /2g. Thus, isolating
pB in Eq. (1.11) and replacing the obtained result in Eq. (1.10), given the following expression
for the internal head:

Hi = (ZA − Ztw) +
1

ρg
(pA − patm) +

1

2g
(V 2
A − V 2

2 )−∆Hrunner −∆HB,2 (1.12)
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Given that ZA, Ztw, pA, VA and ∆Hrunner are all fixed, it is clear that the internal head,
Hi, depends only on the velocity at the exit of the draft tube, V2, as well as its head losses,
∆HB,2. Conversely, if there was no draft tube downstream the runner’s outlet, then the head
losses ∆HB,tw could be considered as being equal to the head losses due to a sudden expansion
with a loss coefficient equal to 1, such that ∆HB,tw = V 2

B/2g, and the internal head, H∗i , would
be given by:

H∗i = (ZA − Ztw) +
1

ρg
(pA − patm) +

1

2g
(V 2
A − V 2

B)−∆HB,2 (1.13)

Therefore, the benefits of having a draft tube downstream the runner can be quantified by
the difference in internal heads:

Hi −H∗i =
1

2g
(V 2
B − V 2

2 )−∆HB,2 (1.14)

From this equation, it is clear that as long as its right-hand side is positive, the draft tube
actually increases the internal head of the hydraulic turbine. Assuming that the velocity of the
flow leaving the runner, VB, is fixed, than the velocity of the flow leaving the draft tube, V2,
should be reduced while limiting the head losses ∆HB,2. In addition to that, the maximum
value of the velocity V2 is limited by environmental constraints and fixed by the client of the
turbine manufacturer (GE). Therefore, the reason behind the divergent shape of the draft tube
is to increase the cross-section area and to reduce the velocity at its outlet for a given flow rate.
After applying Bernoulli’s principle to the flow inside the draft tube and assuming a constant
∆HB,2, a direct consequence of this velocity reduction is an increase in static pressure, meaning
that the draft tube acts like a diffuser and recovers part of the residual kinetic energy leaving the
runner in the form of static pressure. Indeed, one way to evaluate the draft tube’s performance
is to calculate the pressure recovery coefficient, χ, which measures the amount kinetic energy
that has been converted into static pressure and given by:

χ =
p2 − pB

1
2ρ
(
Q
AB

)2 (1.15)

where p2 and pB are, respectively, the average static pressure at the inlet and outlet of the draft
tube and AB is the area of the section B.

The velocity of the flow leaving the draft tube can be further reduced by increasing the area
ratio between its inlet and outlet cross-sections. This can be easily achieved either by increasing
its length or its divergence angle. However, while the former results in higher civil construction
costs, the latter could lead to the separation of the boundary layer. Similarly, if V2 is too much
reduced and the static pressure recovery is too important, the flow inside the draft tube can be
subjected to adverse pressure gradients which again can cause the boundary layer to detach from
the walls and increase the head losses, HB,2. Indeed, these losses are one of the most important
aspects in a draft tube and are given by the difference in total pressure between the draft tube’s
inlet and outlet, i.e.,

∆HB,2 =
1

ρg
(P t,B − P t,2) (1.16)

where P t is the average total pressure at a given section.

Accurately predicting these losses is crucial when designing a draft tube to optimize its
geometry and to evaluate the overall performance of the hydropower plant. However, the flow
dynamics inside a draft tube is very complex and determining these losses is a challenging task.
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For instance, the flow leaving the runner and entering the draft tube is particularly unsteady,
with important variations in the azimuthal direction (especially in the case of turbines with
small number of runner blades) and with multiple vortices forming downstream the runner and
guide vanes [5, 157, 84]. The flow inside the draft tube is highly turbulent, with a wide range of
vortical motions, including the formation of a large vortical structure in the centre of the draft
tube, called central vortex due to the interaction between the swirling flow and the central hub
and whose characteristics vary depending on the operating point of the draft tube, and that can
have negative effects on the overall performance of the hydraulic turbine [112, 72, 43]. Finally,
the divergent shape of the draft tube lead to important adverse pressure gradients which can
lead to the boundary layer separation from the walls and consequent increase of the head losses
and reduction of its hydraulic performance [65, 38].

1.3 Bulb turbines

1.3.1 Classification of hydraulic turbines

Depending on the application, different types of turbines can be utilized to generate electricity
from the variation of hydraulic head. In Fig. 1.3, the four main types of hydraulic turbines are
separated according to the head and the flow rate available at the hydropower plant. In addition
to that, the turbines are also separated into two main groups, according to the way the hydraulic
energy is converted into mechanical energy: impulse turbines and reaction turbines.

Figure 1.3: Types of hydraulic turbines separated the head and flow rate. Source: GE Renewable Energy

Impulse turbines, such as Pelton turbines, are employed at locations with a very significant
head but low flow rate. In this type of turbine, the potential energy of the water stored at the
upstream reservoir is completely converted into kinetic energy thanks to a series of nozzles, and
the resulting water jets are deflected after hitting the runner buckets. This variation in flow
direction is what allows the runner to convert the kinetic energy of the water jet into rotational
mechanical energy in the runner’s shaft.
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Reaction turbines can be applied in a wide range of head and flow rates, and comprise,
normally, Francis, Kaplan and Bulb turbines. Contrarily to impulse turbines, the runner is
completely submerged in a reaction turbine. As a result, there are two mechanisms responsible
for the conversion of the water flow energy into mechanical energy: (i) the pressure drop between
the inlet and outlet of the runner and (ii) the changes in direction of the flow caused by the blades
in the runner. Despite being based on the same energy conversion mechanisms, Francis turbines
are distinct from Kaplan and Bulb turbines as the flow enters the runner radially (perpendicular
to the axis of rotation) and leaves it axially (parallel to the axis of rotation), whereas in the other
two cases it enters and leaves axially. Moreover, their runner is composed by several blades and
are particularly suited. Kaplan turbines also have a vertical axis of rotation, but their runner is
composed by a limited number of blades, which are especially designed for low head operations
and high flow rates. In the case of very low heads (e.g., below 20 m), Bulb turbines are the most
adapted due to their horizontal axis and, similarly to Kaplan turbines, possibility of adjusting
the angle of the blades in both guide vanes and runner.

1.3.2 Description of a bulb turbine

In this thesis, we will investigate the turbulent flow inside a bulb turbine draft tube. These
turbines do not need large upstream reservoirs and, as previously mentioned, allow the exploita-
tion of low head high flow rates sites like rivers, hence their characterization as a run-of-the-river
turbine. Figure 1.4 shows the scheme of a bulb turbine. Compared to the scheme shown in
Fig. 1.1, these turbines are horizontally arranged and the draft tube downstream the runner
is straight, so no elbow is required to change the direction of the flow. Moreover, there is no
spiral case and distributor upstream the runner and the guide vanes. Its runner is characterized
by having only a few blades, between 3 and 5, whereas more common Francis turbines runners
have between 10 and 20. In general, a bulb turbine is very similar to a Kaplan turbine, except
for the horizontal disposition of its elements. This has a positive effect on the overall hydraulic
performance of the turbine, especially because of the absence of an elbow on the draft tube and
can reduce the construction costs for a given power output.

Figure 1.4: Scheme of a bulb turbine. Source: adapted from Brugière [14].

1.3.3 Characteristic curves

One of the main advantages of Kaplan and bulb turbines is the fact they are double regulated,
that is, it is possible to adjust the pitch of guide vanes and runner’s blades. This allows the
turbine to adapt to the water flow and therefore improve its performance over a wide range of
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operating conditions. For instance, an operating point of the turbine is characterized by the
opening angle of the guide vanes, γ (which controls the flow rate), a runner blade angle, α, and
a net head, Hn. A turbine is said to be operating on-cam when the combination of γ, α and Hn

is such that its power output is maximized. Conversely, a turbine is said to operating off-cam
when the combination of γ, α and Hn is not ideal.

To simplify the study of hydraulic turbines, it is common practice to use dimensionless
quantities to characterize their operating condition. For instance, the unit flow rate Q11 and
unit speed n11 can be defined as:

Q11 =
Q

D2
√
Hn

(1.17)

n11 =
nD√
Hn

(1.18)

where Q is the flow rate, D is the turbine diameter and n its rotational speed in rotations per
minute, rpm, and Hn the net head.

Figure 1.5 shows an example of the characteristic curves for the case of a double regulated
turbine. To generate the propeller curves of the turbine, Fig. 1.5a, the net head Hn and runner
blade angle α are fixed while the opening angle of the guide vanes γ is gradually increased,
which in turn modifies the flow rate and turbine efficiency. The best efficiency point in this
curve correspond to the on-cam point of the turbine at a given Hn and α. The combination of
the on-cam points at several flow configurations generate the performance hill chart shown in
Fig. 1.5b. In this chart, the iso-curves of efficiency η and runner blade angle α are plotted as a
function of the dimensionless quantities Q11 and n11. The best efficiency on-cam point in this
chart is called the best (or optimal) operating point.

(a) (b)

Figure 1.5: Characteristic curves of a bulb turbine. (a) propeller curve; (b) hill chart.

1.3.4 Velocity triangles

Indeed, to understand how the hydraulic energy of the flow is converted into mechanical
energy in a bulb turbine, we can analyse the velocity field upstream and downstream the runner.
From the application of Euler’s turbine equation, it is possible to associate the torque at the
runner shaft to a change in flow direction and, therefore, in the velocity triangles at these two
regions of the flow. For instance, considering a fluid particle moving at a velocity ~V with respect
to a fixed coordinate system and relative velocity ~W with respect to a coordinate system rotating
at the same angular speed Ω of the runner, then the blade rotational velocity, ~U , which is fixed,
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is given by the cross product ~U = ~Ω× ~r, where ~r is the position vector of the fluid particle, and
we can write then:

~V = ~W + ~U (1.19)

Using the equation above and analysing the flow passing through the runner at a constant
radius (i.e., function only of the axial position z and angular position θ), the velocity triangles
upstream and downstream the runner can be traced according to the operating condition of the
hydraulic turbine (on-cam and off-cam), as shown in Fig. 1.6.

(a) (b)

(c)

Figure 1.6: Velocity triangles for a bulb turbine operating at (a) the best efficiency point, (b) at partial load and
(c) at high load. In orange the runner, in purple the guide vanes. γ is the opening angle of the guide
vanes and α the runner blade angle. Source: adapted from Wilhelm [160].

In the velocity triangles shown in Fig. 1.6, Vθ is defined as the tangential velocity and Vz
is the axial velocity. At the best operating point, the tangential velocity of the flow leaving
the runner Vθ,2 is equal to zero and the flow entering the draft tube is mostly axial (except for
a small radial velocity component). At partial load, however, the opening angle of the guide
vanes γ is reduced compared to the best operating point and the tangential velocity of the flow
entering the runner, Vθ,1 is increased. As a result, the flow leaving the runner still conserves
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part of this tangential velocity and Vθ,2 ends up being greater than zero (the flow is rotating
at the same direction of the runner). Conversely, when the turbine is operating at a high load,
the opening angle γ is increased compared to the best operating point and Vθ,1 is reduced. As a
consequence, Vθ,2 is lower than zero and the flow entering the draft tube is counter-rotating with
respect to the runner. Notice, however, that in practice, the runners are designed to preserve a
small flow tangential velocity at its exit. This is important to improve the performance of the
draft tube as it prevents the boundary layer from separating from the walls due to the resulting
centrifugal force caused by the flow rotation [99].

1.3.5 Draft tube of a bulb turbine

As previously mentioned at the beginning of this section, one of the characteristics of a bulb
turbine is its straight draft tube, as it is shown in Fig. 1.7. Its cross-section area is constantly
increasing precisely to reduce the velocity of the water flow and thus recover part of the residual
kinetic energy leaving the runner. The initial portion of the draft tube has a conical shape
(therefore called the cone of the draft tube), which is followed by a transition region where this
circular shape gradually transitions into a rectangle (at the draft tube’s exit). The flow leaving
the bulb turbine runner is very complex and creates complicated flow dynamics inside the draft
tube. However, for the particular case of a bulb turbine, the head losses inside this element (as
discussed in Section 1.2) can represent an important portion of the total energy losses inside
the turbine. Therefore, it is crucial to accurately reproduce the flow inside a bulb turbine draft
tube (and any draft tube indeed), not only to correctly estimate the efficiency of the machine,
but especially to understand the phenomena responsible for these losses.

Figure 1.7: Scheme of a bulb turbine draft tube.

1.4 Motivation

1.4.1 Industrial perspective

In the early stages of designing a hydraulic turbine, the numerical simulations of its different
elements are very important. Indeed, they are faster to conduct and less expensive than exper-
imental campaigns, and allow for the comparison of multiple designs and operating conditions
of the turbine. Moreover, they give access to a more complete description of the flow inside
the turbine and allow a better understanding of the multiple physical phenomena taking place.
Preferably, these numerical simulations should not take a long time to perform, however, it is
imperative that the obtained results are very accurate, in particular the turbine efficiency. Since
the head losses inside the draft tube can have an important impact on the overall performance
of the hydraulic turbine, especially on those operating at low heads, it is crucial to numeri-
cally predict the flow behaviour inside these equipments. However, given the complexity of this
flow (e.g., unsteady, turbulent, swirling and subjected to adverse pressure gradients), accurate
simulations are challenging and therefore advanced numerical methods are needed.
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1.4.2 Academic perspective

The complexity of the flow considered in this thesis and the advanced numerical methods
used to simulate it represent an interesting study case in the academic point of view. For in-
stance, most of the discussions in this work are based on the results obtained with Large-Eddy
Simulations of the flow inside the draft tube performed in the flow solver YALES2 (more details
in Chapter 2). Despite the high computational cost associated with these approaches, this thesis
shows some of their benefits in comparison to simpler and less computationally expensive statis-
tical approaches, such as Reynolds Averaged Navier-Stokes (RANS) approaches. In addition to
that, another very important aspect of this thesis is the application of data-driven techniques,
such as Machine Learning, to determine proper inlet boundary conditions for a numerical simu-
lation. Indeed, not only this is a major challenge in the field of draft tube simulations due to the
complexity of the flow (see Section 3.1.2), but it is also a challenge for numerical simulations of
spatially developing flows in general (e.g., jets, mixing layers, wall-bounded flows etc.). Although
we concentrate on the flow inside a bulb turbine draft tube, the proposed approach to determine
proper inlet conditions is also applied to the canonical case of the swirling flow inside a conical
diffuser. In any case, this problem extends to many other academic and industrial applications.

1.4.3 Collaboration with General Electric Renewable Energy

The present thesis is inserted in the context of a long term collaboration between the hy-
draulic branch of General Electric in Grenoble and the MoST team at LEGI. This collaboration
started back in 2006 with the thesis of Duprat [36], who performed a numerical study of the draft
tube of a Francis turbine using Large-Eddy Simulations. The goal was primarily to reproduce
the complex flow inside the draft tube, but also to analyse a sudden drop in performance of
a rehabilitated hydraulic turbine close to its best efficiency point. While the comparison with
experimental results of Tridon [150] did not yield totally satisfactory results, one of the great
contributions of Duprat was the development of a wall model more adapted for the type of flows
observed inside draft tubes [37]. In 2015, Brugière [14] investigated the flow passing through the
distributor of a Francis turbine and inside a bulb turbine draft tube using numerical simulations.
In addition to LES, Brugière also utilized RANS simulations to study these flows. The goal was
to analyse the uncertainties associated with these simulations and therefore improve the reliabil-
ity of the obtained results. However, while the numerical results have shown a strong influence
of the imposed inlet boundary conditions, the uncertainties associated with these conditions
could not explain the differences with respect to the experimental measurements. In 2016, Wil-
helm [160] studied once again the problem of the flow inside a bulb turbine draft tube. Having
access to more experimental data, including Laser-Doppler Velocimetry (LDV) measurements,
the goal was to improve the prediction of numerical simulations and to investigate the head
losses inside the draft tube using unsteady RANS (URANS) simulations and LES. An equation
was developed to identify the different mechanisms responsible for these head losses [159] and,
conversely to Brugière [14], the axisymmetric inlet boundary conditions were replaced by a two-
dimensional boundary condition issued from a guide vane/runner RANS simulations. While the
proposed equation allowed to precisely locate the regions and mechanisms responsible for most
of the losses inside the draft tube, especially with LES, the comparisons with experimental data
was still not fully satisfactory. Indeed, in spite of the good agreement between numerical and
experimental velocity profiles, the boundary layer was still not well predicted. The results were
improved by modifying the wall roughness in the simulations, but Wilhelm [160] argued that
the boundary conditions should be better characterized to obtain better numerical predictions.
Recently, Doussot [33] investigated the dynamics of the inter-blade vortices using RANS, LES
and Scale-Adaptive Simulations (SAS) based on the thesis of Bouajila [11], who studied the
pressure frequency of different Francis runners operating at partial load.
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1.5 Objectives

The previous collaborations between GE and LEGI have shown the interest for improving
the numerical predictions of the flow inside hydraulic machines, in particular their draft tubes.
Indeed, as the head losses inside these elements can have a major impact on the overall per-
formance of the turbine, especially on those operating at low heads, it is crucial to accurately
determine the behaviour of the flow inside draft tubes. Based on Brugière’s [14] and Wilhelm’s
[160] theses, it is clear that one of the greatest challenges to simulate these type of flows consist
in imposing proper mean and fluctuating inlet boundary conditions for the simulations, partic-
ularly due to the complexity of the flow leaving the runner and entering the draft tube. Thus,
the objective of this thesis are twofold:

� To develop a method capable of determining the proper mean and fluctuating inlet bound-
ary conditions for draft tube numerical simulations. Indeed, starting from the results of
an experimental campaign conducted by GE, we show the influence of the inlet condi-
tions, particularly the turbulent field, on the evolution of the flow inside a draft tube.
Given the difficulty to gather this information experimentally, an innovative method to
generate proper mean and fluctuating inlet boundary conditions and based on data-driven
techniques, such as Machine Learning, is proposed. The performance of these methods is
investigated both in the simple case of a conical diffuser and in the complex bulb turbine
draft tube.

� To improve the numerical prediction of the flow inside the draft tube, particularly its head
losses. Given the importance of accurately predicting the head losses inside the draft tube,
especially in the case of low head turbines, a detailed analysis of these losses is performed to
ensure a good representation of the physics behind the mechanisms responsible for them.
In this regard, the head losses equation developed in Wilhelm et al. [159] is used and
applied to the numerical simulations of the draft tube.

1.6 Thesis outline

In this first chapter, the general concepts about hydraulic machines required for the good un-
derstanding of this thesis were presented. The basic aspects allowing hydroelectric power plants
to generate electricity from a water flow were discussed, as well as the importance of the draft
tube to improve its overall performance. The main characteristics of a bulb turbine, including
its draft tube, were explained and the motivation for this work was determined. Finally, after
contextualizing the present thesis as part of a continuous collaboration between GE Renewable
Energy and the MoST team at LEGI, its objectives were defined.

In the second chapter, the numerical methods used to model the turbulent flows investigated
in this thesis are presented. Starting with the governing equations of the flow, the physics behind
the turbulence and, in particular, its energetic characteristics are discussed. Then, the main
aspects of the two approaches utilized to model the turbulence effects on the investigated flows,
notably the statistical approach and the LES, are explained. Finally, the numerical methods
used to solve the system of discretized equations and the particular aspects related to this thesis
are exposed.

In the third chapter, the state of the art of draft tube numerical simulations is discussed.
For instance, the different methods used to model the turbulent flow inside this equipment
and the influence of the imposed mean and fluctuating inlet boundary conditions in this type of
simulation are examined. In addition, the methodology followed to validate the numerical results
is explained, including the description of the experimental setup used to obtain the experimental
measurements for two operating conditions.
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The initial numerical simulations of the draft tube are discussed in Chapter 4. The numerical
setup is explained, including the computational domain, mesh, and inlet boundary conditions
used for the simulations of the two operating conditions. The results obtained with both RANS
and LES are compared with the available experimental measurements and the influence of in-
jecting synthetic fluctuations in LES is investigated. While these fluctuations improved some
aspects of the numerical results, their unrealistic nature negatively impact the head losses evo-
lution inside the draft tube.

Given the unsatisfactory results obtained in Chapter 4, particularly due to inadequate inlet
boundary conditions for the numerical simulations, an innovative approach to determine these
conditions is proposed in Chapter 5. The approach is based on data-driven techniques, such as
Machine Learning, and a brief review of previous applications of these methods in the context
of draft tube simulations is given at the beginning of the chapter. After that, the basic concepts
about Machine Learning algorithms are quickly discussed and the strategy behind the proposed
approach is explained.

Given the high computational cost associated of the proposed Machine Learning strategy,
it is initially applied to a simpler flow configuration, as discussed in Chapter 6. The swirling
flow inside the ERCOFTAC conical diffuser studied by Clausen et al. [19] is investigated.
After defining the baseline numerical results using basic inlet boundary conditions (similarly
to the draft tube case), the proposed Machine Learning strategy is thoroughly applied to yield
proper mean and fluctuating inlet boundary conditions for RANS and LES computations. The
numerical results obtained with both baseline and optimized simulations are compared to the
experiments.

In Chapter 7, the problem of the turbulent flow inside a bulb turbine draft tube is revisited,
but this time the proposed Machine Learning strategy is applied to generate the proper inlet
boundary conditions for the computations. One of the operating conditions studied experimen-
tally is analysed and the numerical results obtained with the proposed approach are compared
to the experimental measurements and the reference simulations performed in Chapter 4. A
detailed head losses analysis is also conducted and the importance of imposing proper inlet
conditions highlighted.

Finally, in the last chapter of this thesis, the conclusions about this work are presented and
the perspectives for future works, especially in the context of the proposed Machine Learning
strategy, are described.
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2.1 Turbulent flows

2.1.1 Governing equations

In the domain of hydraulic machines, the considered flows are incompressible Newtonian
flows where the continuum hypothesis is valid. In this kind of flows, the mass-conservation of
continuity equation can be written, in index notation, as:

∂ui
∂xi

= 0 (2.1)

where ui is the velocity component at the direction xi. The implication of Eq. (2.1) is that
the velocity field is solenoidal or divergence-free. The spatio-temporal evolution of the velocity
~u(~x, t) and pressure p(~x, t) fields of the flow are determined by the Navier-Stokes equations,
based on the conservation of momentum, given as:

29
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∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ gi (2.2)

where t is the time, ρ is the density, ν is the kinematic viscosity and gi is the body force (e.g.,
gravity) component in the xi direction. The momentum equation is based on Newton’s second
law and relates the fluid particle acceleration to the surface and body forces acting on the fluid.
On left-hand side (l.h.s) of Eq. (2.2), in addition to the term defining the temporal evolution of
the velocity ui, there is also a term defining the advection of this velocity by the flow. On the
right-hand side (r.h.s.), the forces acting on the fluid particle are listed, respectively: the pressure
forces, the viscous forces responsible for diffusion of momentum and the gravity force. Due to
the non-linear term in Eq. (2.2), there is no analytical solution for the Navier-Stokes equations,
except for few very simple flow cases where they can be simplified. Most of the time, however,
an approximate solution requires the modelling of certain terms and is normally obtained via
the discretization (e.g., using finite volumes) and numerical resolution of these equations.

In Eq. (2.2), the diffusion term on the r.h.s. characterizes the viscous effects whereas the
inertia effects are characterized by the advection term on the l.h.s. The time scales for these
phenomena can be defined, respectively, as Tv ∼ L2/ν, which is the characteristic time for an
instability to be damped by the viscous effects over a distance L, and Ti ∼ L/U , which is the
time required for a fluid particle at a characteristic velocity U to travel a distance L due to
its inertia. The ratio of the viscous timescale Tv to the inertial time scales Ti is equal to a
dimensionless quantity called Reynolds number:

Re =
Tv
Ti

=
UL

ν
(2.3)

which characterizes the state of the flow. For instance, whenever the inertia effects are predom-
inant over the viscous effects, i.e.,Tv is large compared to Ti, the Reynolds number Re >> 1. In
this case, instabilities can develop inside the flow before being damped by the viscous effects and
complex tridimensional motions will appear in addition to the main flow movement. The flow
is then said to be in a turbulent regime. Conversely, if the viscous effects are predominant over
inertia effects, i.e.,Tv is small compared to Ti and Re << 1, instabilities will not have enough
time to develop within the flow and the flow is said to be in laminar regime. The system of
equations formed by Eqs. (2.1) and (2.2) govern the behaviour of a flow. Due to the length
and velocity scales involved in the domain of hydraulic machines, the considered flows are very
turbulent and unsteady, with significantly high Reynolds numbers (in the order of 106). Before
discussing the means used for modelling and studying these turbulent flows, some important
aspects of their physics are present below.

2.1.2 Turbulence physics

Turbulence is a widely studied physical phenomena, present in many practical applications,
either in nature or in the industry, but to which there is no rigorous definition. Rather, a
turbulent flow is characterized by some important properties like its unsteadiness, randomness,
and unpredictability. Indeed, even though Navier-Stokes equations are deterministic, they are
very sensitive to the initial conditions and small perturbations in these conditions can lead to
considerably different flow evolution. In addition to that, turbulent flows are also characterized
by a wide range of motions scales, which are created by the instabilities that were not dissipated
within the flow. Finally, as a consequence of these wide range of motions scales, turbulent flows
also have an increased mixing capacity compared to laminar flows where the perturbations are
damped by the effect of viscosity [85]. Figure 2.1 shows the evolution in time of the velocity
measured at a point inside a turbulent flow. In this figure, the instantaneous velocity signal
u(x, t) is constantly fluctuating around a mean value 〈u〉. Statistically, a turbulent flow can
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be described as the superposition of a mean field (deterministic) and a fluctuating field, which
is very sensitive to external perturbations [126]. The velocity and pressure fields can thus be
written as the combination of a mean and a fluctuating field, using what is called the Reynolds
decomposition:

ui(~x, t) = 〈ui〉(~x, t) + u′i(~x, t) (2.4)

p(~x, t) = 〈p〉(~x, t) + p(~x, t) (2.5)

Figure 2.1: Evolution in time of the velocity signal measured a point inside a turbulent flow.

where the 〈.〉 operator corresponds to the statistical mean of the variable and, by definition,
u′i(~x, t) = 0. Defining the mean kinetic energy per unit mass of the flow field as K = (1/2)〈u〉〈u〉,
applying the average operator 〈.〉 to the momentum equation (2.2) and multiplying the result
by (1/2)〈ui〉, yields the following equation for K:

∂K

∂t︸︷︷︸
I

+ 〈ui〉
∂K

∂xi︸ ︷︷ ︸
II

= 〈u′iu′j〉〈Sij〉
︸ ︷︷ ︸

III

− ∂

∂xj

(
〈ui〉〈u′iu′j〉+

1

ρ
〈p〉〈ui〉 − 2ν〈ui〉〈Sij〉

)

︸ ︷︷ ︸
IV

− 2ν〈Sij〉〈Sij〉
︸ ︷︷ ︸

V

(2.6)

where Sij = (1/2)(∂〈ui〉/∂xj + ∂〈uj〉∂xi) is the strain rate tensor of the mean field. Multiple
terms appear in this equation. Terms I and II correspond, respectively, to the variation in time
and advection of mean kinetic energy. Term III corresponds to the energy transfer between
the mean and fluctuating flows. Often negative, this term represents a sink for K and is most
usually represented by its opposite, P = −〈u′iu′j〉〈Sij〉, called turbulent kinetic energy production.
Term IV represents the diffusion of the mean kinetic energy and V is responsible for the viscous
dissipation of K, which is converted into heat. Similarly, the turbulent kinetic energy per unit
mass can be defined as:

k =
1

2
〈u′iu′i〉 (2.7)

and a similar equation to (2.6) can be written for k:

∂k

∂t︸︷︷︸
I

+ 〈ui〉
∂k

∂xi︸ ︷︷ ︸
II

= −〈u′iu′j〉〈Sij〉
︸ ︷︷ ︸

III

− ∂

∂xj

(
〈u′j

u′iu
′
i

2
〉+

1

ρ
〈p′u′i〉 − 2ν〈u′is′ij〉

)

︸ ︷︷ ︸
IV

− 2ν〈s′ijs′ij〉
︸ ︷︷ ︸

V

(2.8)
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where s′ij = (1/2)(∂u′i/∂xj + ∂u′j/∂xi) is the strain rate tensor of the fluctuating field. Similar
terms explaining the variation of k are found in Eq. (2.8). For instance, terms I corresponds
to the variation in time of the turbulent kinetic energy and term II to its advection by the
mean flow. The turbulent kinetic energy production, P , is recovered as term III. Term IV
corresponds to the turbulent kinetic energy diffusion. Finally, term V , which is equal to −ε or
ε = 2ν〈s′ijs′ij〉, represents the viscous dissipation of k that is converted into heat.

Equations (2.6) and (2.8) show that there is an energy transfer between the mean flow and
the turbulent flow. Moreover, they also show that the mean and turbulent kinetic energies
dissipate with time. These energy transfers are linked to the energy cascade first introduced
by Richardson in 1922 and later completed by Kolmogorov in 1941 [126] for the case of a fully
developed turbulent flow at a high Reynolds number. Turbulent production is responsible for
the generation of turbulent kinetic energy from the mean flow. This kinetic energy is mostly
contained in large flow scales and is characterized by an integral scale, lI , which is close to the
characteristic scale of the mean flow, Ls. As these scales do not feel the effect of fluid viscosity,
their energy is transferred to the smaller scales of the flow passing through a range of inertial
scales. The smallest turbulent scales are characterized by Kolmogorov’s length scale, lK . As
they are affected by the fluid viscosity, they are the ones responsible for the viscous dissipation
ε of turbulent kinetic energy, given by term V in Eq. (2.8). This energy cascade is usually
represented by the Kolmogorov spectrum, illustrated in Fig. 2.2. In this figure, the turbulence
is treated in a spectral form, where E(κ) is the turbulent kinetic energy spectrum and κ is
the wave number associated with a characteristic length l, such that κ = 2π/l. The energy is
transferred from the large scales following a κ−5/3 law up to the Kolmogorov scales, where it is
dissipated by the fluid viscosity.

Figure 2.2: Energy cascade at high Reynolds number. Source: adapted from Wilhelm [160]

2.2 Turbulence modelling

2.2.1 The need for modelling the turbulence

As pointed out in Section 2.1.1, the system of equations governing the turbulent flow be-
haviour is non-linear and there is no analytical solution for it. However, it is possible to obtain an
approximate solution by discretizing the Navier-Stokes equations over a mesh and then numer-
ically solving the system of discretized equations, in which is commonly named Computational
Fluid Dynamics (CFD). The complete resolution of these equations, i.e., without any modelling,
is called Direct Numerical Simulation (DNS). In this approach, higher-order numerical schemes
must be used to reduce the numerical errors when solving the system of discretized equations.
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Moreover, the time step and mesh size must be sufficiently small to capture the smallest of the
motion scales, that is, Kolmogorov’s scale lK . It can be shown that the ratio between the largest
turbulent scales (e.g., the integral scale) and Kolmogorov’s scale is proportional to Re3/4 [135].
Thus, the number of points in the mesh required to solve a tridimensional flow is in the order of
Re9/4. Considering that, typically, the Reynolds number in the case of a turbulent flow inside
a bulb turbine draft tube is in the order of 106, this implies that the mesh required to perform
a DNS of such a flow would have approximately 1013 elements. The time step can also be esti-
mated as being proportional to Re1/2, resulting in a final computational cost for a DNS in the
order of Re3. That is the reason this type of numerical simulation is only applicable to simple
flows configurations at low and moderate Reynolds number. In the case of more complex flows
at higher Reynolds numbers, it is necessary to model at least a portion of the turbulent flow.
In this thesis, two approaches are used: the statistical turbulence modelling, where all turbulent
scales are modelled, and the large-eddy simulations, where only a small portion of the turbulent
scales are modelled and all the rest is explicitly resolved.

2.2.2 Statistical turbulence modelling

The statistical turbulence modelling is based on the Reynolds Averaged Navier-Stokes (RANS)
equations explained in Section 2.1.2 and is the most frequently used approach to study turbulent
flows in engineering, particularly due its low computational cost. In this approach, the mean
flow field is explicitly solved while the effects of the turbulent flow on the mean field are modelled
by some statistical model.

Reynolds equations and Reynolds stress tensor modelling

The application of the Reynolds decomposition shown in Eqs. (2.4) and (2.5) to the Navier-
Stokes equations (2.1) and (2.2) results in the following Reynolds equations:

∂〈ui〉
∂xi

= 0 (2.9)

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂

∂xj

[(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
− 〈u′iu′j〉

]
+ gi (2.10)

Therefore, the goal with the RANS approach is to solve this system of equations to obtain
the mean velocity 〈~u〉(~x, t) and pressure 〈p〉(~x, t) fields. In the case of a statistically steady
flow, the statistical mean can be replaced by the time averaging and the resolved fields are
independent of time, i.e.,〈~u〉(~x) and 〈p〉(~x), reducing thus even further the computational cost
of the simulation. Nevertheless, it is possible to resolve the unsteady terms of the Reynolds
equations based on what is called the unsteady Reynolds Averaged Navier-Stokes (URANS).
This approach is particularly suited for turbulent flows where the macroscopic variations of the
flow are at a much lower frequency compared to the turbulent fluctuations [103].

Due to the non-linear advection term in the original Navier-Stokes equations, the term Rij =
−〈u′iu′j〉 appears in Eq. (2.10). This term, called Reynolds stress tensor, adds six unknowns to
the system of equations, which is no longer closed as a consequence. Physically, the Reynolds
stress tensor can be interpreted as an additional stress tensor that explains the influence of the
turbulent flow field onto the mean flow field. Looking at the kinetic energy equations (2.6)
and (2.8), the Reynolds stress tensor acts particularly on the mean turbulent kinetic energy
production P = −〈u′iu′j〉〈Sij〉. Indeed, the energy balance discussed in Section 2.1.2 shows that
the kinetic energy is transferred from the mean field to turbulent field. Therefore, the main
role of the turbulent fluctuations is to dissipate part of the kinetic energy of the mean flow field
through mean turbulent kinetic energy production, whereas the viscous stresses dissipate the



34 Chapter 2. Numerical methodology and turbulence modelling

mean kinetic energy through molecular viscosity. Based on that, Boussinesq [13] introduced the
concept of an eddy-viscosity, νt, on which most of the turbulence models are based. By this
hypothesis, the Reynolds stress tensor vary linearly with the mean strain rate tensor and can be
expressed as:

− 〈u′iu′j〉 = 2νt〈Sij〉 −
2

3
kδij (2.11)

where δij is the Kronecker delta and k is the turbulence kinetic energy defined in Section 2.1.2.
According to Boussinesq’s hypothesis, the six unknowns introduced by the Reynolds stress tensor
can be replaced by a single scalar variable, νt. As a result, the Reynolds equation (2.10) can be
rewritten as:

∂〈ui〉
∂t

+
∂〈ui〉〈uj〉
∂xj

= −1

ρ

∂〈p∗〉
∂xi

+
∂

∂xj

[
(ν + νt)

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)]
+ gi (2.12)

where 〈p∗〉 = 〈p〉+ (2/3)k is a modified pressure.

Conversely to the molecular viscosity, ν, the eddy-viscosity, νt is a flow property and not a
fluid property, meaning that it can vary with space and time, i.e.,νt(~x, t). A simple dimensional
analysis shows that νt is proportional to the product between a characteristic length lm and
velocity ut:

νt(~x, t) ∝ lmut (2.13)

Thus, to determine the unknown eddy-viscosity νt, it is necessary first to evaluate these two
scales for the considered flow. In general, the models based on the concept of an eddy-viscosity
will distinguish themselves by the number of additional equations required to evaluate lm and
ut, which usually varies between zero and three. More details about these eddy-viscosity models
can be found in the book of Pope [126], but in this thesis, we focus only on the most common
two-equation eddy-viscosity models. In these models, the characteristic velocity ut is usually
determined from the turbulence kinetic energy k, after assuming that ut ∝

√
k. Moreover,

Boussinesq’s hypothesis, shown in Eq. (2.11), is used to solve the turbulence kinetic energy
equation (2.8). Different models propose distinct ways of determining the mixing length, lm,
with the two most commonly used being the k-ε and k-ω.

The k-ε model

In the k-ε model [71, 81], the mixing length is assumed to be proportional to the turbulence
length scale introduced in Section 2.1.2, which in turn can be expressed as a function of the
characteristic velocity ut and a turbulence dissipation ε;

lm ∝ lt =
u3
t

ε
∝ k3/2

ε
(2.14)

Therefore, from the dimensional analysis Eq. (2.13) and the assumption that ut ∝
√
k, the

eddy-viscosity can be evaluated as:

νt(~x, t) = Cµ
k2

ε
(2.15)

where Cµ is a constant that should be determined. Thus, the k-ε turbulence model is based on
one equation for the turbulence kinetic energy k and another for the turbulence dissipation ε.
Thanks to its relatively good performances, simple implementation and numerical robustness,
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this model has been used in a wide range of applications, including to study the flow inside draft
tubes (as will be discussed in the next chapter). However, one of the main weaknesses of the
k-ε turbulence model is its lack of sensitivity to adverse pressure gradients and consequent poor
performance in predicting the flow near the walls. For instance, the model can overestimate the
shear stress in this region of flow and the boundary layer separation can be delayed or not even
take place [123]. Moreover, solving the transport equations for this turbulence model in the
viscous sub-layer can be difficult and requires the inclusion of additional terms in the ε equation
that can ultimately alter the model’s robustness [102].

The k-ω model

Wilcox [158] took another approach to determine the eddy-viscosity and proposed to solve
a transport equation for a turbulence characteristic frequency, ω, such that ω ∝ ε/k. Therefore,
the eddy-viscosity is given by:

νt(~x, t) =
k

ω
(2.16)

The advantage of Wilcox’s k-ω turbulence model is that, compared to k-ε, its near-wall
formulation is simpler and it yields better results in this region of the flow, especially in the
presence of adverse pressure gradients. However, it is also very sensitive to values of ω imposed
at the boundaries of the numerical domain and a slight variation can significantly alter the final
results of the simulation [102].

The k-ω SST model

Menter [102, 101] proposed to combine the good numerical performance of Wilcox’s k-ω
turbulence model in the near-wall region with the independence of Jones and Launder’s k-ε
turbulence model to the imposed boundary conditions away from the walls to create the k-ω
SST turbulence model. In this model, the transport equation for the dissipation ε is rewritten
in terms of ω such that ε ∝ ωk. A blending function F1, which smoothly transitions from
F1 = 1 near the walls to F1 = 0 away from them, is used to combine the two turbulence models.
For instance, Wilcox’s k-ω equations are multiplied by F1, whereas Jones and Launder’s k-ε
equations are multiplied by (1− F1), and they are both added together afterwards.

Two-equation linear eddy-viscosity models are based on the assumption of a balance between
turbulence kinetic energy production P and dissipation ε. However, in the cases where the
boundary layer is subjected to an adverse pressure gradient, the production can be larger than
dissipation leading to the overestimation of the Reynolds stress tensor and the eddy-viscosity. In
this context, Menter also proposed to improve the model’s performance over separation points
by considering the transport of Shear Stress Transport (SST). Bradshaw hypothesis considers
that, in a bidimensional boundary layer subjected to an adverse pressure gradient, the Reynolds
stresses are proportional to the turbulence kinetic energy k. Therefore, the eddy-viscosity can
be redefined as:

νt =
a1k

S
(2.17)

where a1 is a constant and S =
√

2〈Sij〉〈Sij〉. Based on that, Menter proposes to limit the
eddy-viscosity as follows:

νt =
a1k

max(a1ω, F2S)
(2.18)
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where F2 is a second blending function used to constraint the eddy-viscosity limitation describe
by Eq. (2.18) to the boundary layers. For instance, F2 = 1 on these regions of the flow and 0
outside, which results in the original Wilcox’s formulation for νt, Eq. (2.16). On the boundary
layers, where F2 = 1, if the turbulence kinetic energy production P becomes way larger than
the dissipation ε, then S > a1ω and Bradshaw’s formulation for νt, Eq. (2.17) is recovered.

Final considerations on linear eddy-viscosity models

Eddy-viscosity models can be particularly unsuited for the prediction of highly anisotropic
flows, such as rotating flows, since they are based on the hypothesis of an isotropic Reynolds
stress tensor. For instance, the turbulent production P does not take into account the influence
of streamlines rotation and curvature [142, 139]. Moreover, these models also generate excessive
turbulence energy in the vicinity of stagnations points [74]. Nevertheless, corrections for these
problems have been developed, particularly for the k-ω SST turbulence model, to render it more
sensitive to streamline curvature and limit turbulent production at stagnation points [3].

In addition to the aforementioned limitations, linear eddy-viscosity models have a multitude
of parameters that need to be calibrated prior to their implementation. Nevertheless, these
models have been successfully applied to a variety of flows and, due to their relatively low com-
putational cost and good numerical robustness, these methods are still widely used in industry.
In the case of this thesis, we use the k-ω SST turbulence model to perform steady RANS sim-
ulations of the investigated flows, especially due to its better performance to predict the flows
under strong adverse pressure gradients [123].

2.2.3 Large-Eddy Simulations

In addition to only having access to the information about the mean flow field, all the
turbulent scales in RANS simulations are modelled. This limits the analysis of the flow, especially
in the cases where it is important to have access to its fluctuating field information. Since the
computational cost to perform a DNS of the industrial flows considered in this thesis are still
prohibitive, one alternative to overcome the limitations observed in RANS consists in dividing
the flow according to its turbulent scales, using an approach called Large-Eddy Simulation (LES).
This approach is based on the fact that the large scales carry most of the energy in the flow but
are also more sensitive to the boundary conditions and the geometry of the numerical domain,
whereas small scales carry only a small portion of the energy of the flow and their behaviour
can be considered as universal [126]. Thus, instead of modelling all turbulent scales or explicitly
solving all of them, in LES, the large scales are resolved while the small dissipative scales are
modelled.

Filtered conservation equations

For LES, the resolved and modelled scales separation is achieved by applying a high-pass
filter to the Navier-Stokes equations (2.2). If G∆ is a low-pass filter of width ∆, the filtered
velocity field in the considered domain D is defined as:

ui(~x, t) =

�

D

ui(~y, t)G∆(~x− ~y)d~y = ui(~x, t) ∗G∆ (2.19)

where ∗ represents the convolution product. The component of the unsteady velocity field at
the xi direction, ui(~x, t), is decomposed in to two parts: one for the velocity associated with the
large motion scales of the flow (i.e., larger than ∆), ui(~x, t), and another associated with the
motion scales smaller than the filter width, u′′i (~x, t),
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ui(~x, t) = ui(~x, t) + u′′i (~x, t) (2.20)

The filter width, ∆, also called the cut-off scale, determines the minimal size of the motion
scales explicitly resolved. Details about different filtering approaches can be found in Sagaut
[135] and Pope [126], but the most commonly used is implicit filtering, where the filter width
∆ is determined by the local size of the grid used to discretize the numerical domain [57], as
illustrated in Fig. 2.3. Since the modelled scales in this approach are those smaller than the
grid, they are also called subgrid scales (SGS). Although the implicit filtering is essentially a
spatial operation, it also implies in an implicit temporal filtering since a characteristic timescale
is associated with a characteristic length scale [135]. Moreover, as the filter is a linear operator
that commutes with derivation, the Navier-Stokes equations (2.1) and (2.2) can be filtered to
obtain:

Figure 2.3: Spatial representation of the large (resolved) and small (modelled) motion scales in LES.
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Similarly to RANS, the filtering operator applied to the non-linear advection term in the
l.h.s. of Eq. (2.2) leads to the apparition of a new term, τij = uiuj − uiuj , which is called the
subgrid stress tensor and represents the influence of the small unresolved subgrid scales on the
large resolved scales in the flow. In the case of LES, it is this term which needs to be modelled.

Subgrid scales modelling

Similar to the turbulence viscosity approach in RANS, this energy transfer between large and
small turbulent scales of the flow can be modelled using Boussinesq’s hypothesis and a subgrid
scale viscosity, νsgs, i.e.,

τij = −2νsgs(~x, t)Sij +
1

3
τkkδij (2.23)

and the filtered momentum equation (2.22) can be rewritten as:
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where p∗ = p + 1
3τij is the modified pressure. The subgrid scale viscosity is evaluated based
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on the mixing length hypothesis, where its valued is proportional to the product between a
characteristic length and velocity. This length is taken as equal to the filter width, ∆, such that:

νsgs ∝ ∆u? (2.25)

Therefore, the SGS viscosity models distinguish themselves by the way the characteristics
velocity u? is calculated. In this thesis, two models are used. For instance, in the simple case
of the swirling flow inside a conical diffuser discussed in Chapter 6, the widely used Dynamic
Smagorinsky model [58, 88] is employed. This model is based on the original Smagorinsky’s
[137] approach and νsgs is given by:

νsgs = Cs∆
2|S| (2.26)

where |S| =
√

2SijSij and Cs is a constant that should be determined. In the case of the

Dynamic Smagorinsky model, this constant is dynamically evaluated to adjust the model’s
dissipation to the different regions of the flow, particularly near the walls.

In the case of LES computations of the more complex flow inside a bulb turbine draft tube,
the more advanced σ-model [114] is used. This model is an evolution of the WALE (Wall-
Adapting Local Eddy-viscosity) model introduced by Nicoud and Ducros [115] and is more
adapted to complex flows and geometries. For instance, the model yields a better behaviour
near solid boundaries and is more capable of handling solid rotation and pure shear. In the
σ-model, the subgrid scale viscosity is equal to:

νsgs = (Cσ∆)2Dσ (2.27)

where Cσ is a constant and Dσ is given by:

Dσ =
σ3(σ1 − σ2)(σ2 − σ3)

σ2
1

(2.28)

and σ1, σ2 and σ3 are the three singular values of the local velocity gradient tensor.

2.3 Numerical resolution of the governing equations

The mass and momentum equations presented up to this point of the chapter are analytical
and the system of partial differential equations (PDE) that they form need to be discretized
to obtain a system of algebraic equations that can be numerically solved. In this section, the
discretization methods and numerical schemes used to perform the simulations in this thesis are
briefly discussed.

2.3.1 Spatial discretization

The tridimensional space defining the numerical domain where the previous conservation
equations will be solved is discretized in a finite number small volumes, called elements, to form
a mesh. The vertices of these volumes are called the nodes and depending on the way these
nodes are connected, the mesh can be divided into two categories: structured or non-structured.

The nodes in a structured mesh are regularly connected and its topology and indexation are
relatively simple. In 3D, these meshes form hexahedral elements, which renders their utilization
in complex geometries particularly difficult and local refinement complicated. Nevertheless,
these meshes can limit the number of elements for a given geometry, especially in the case where
the flow has a preferred direction (e.g., near the walls). In these cases, the elements can be
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deformed to precisely capture the important gradients on the flow. While this may result in
highly anisotropic (deformed) low quality elements, this type of mesh are used in all RANS
simulations in this thesis, notably due to the good performance of the numerical algorithms
used for these simulations in this type of mesh.

In the case of the LES computations conducted in this thesis, higher-order numerical schemes
are used, and better quality meshes are required. Non-structured meshes are more flexible, can
be locally refined and usually produce higher quality elements in complex geometries compared
to structured meshes. In 3D, the elements in this type of mesh are tetrahedrons. The weakness
of non-structured meshes, though, is their higher computational cost, since the total number of
elements is normally more important than in the case of structured mesh.

2.3.2 Finite Volume Method

The system of partial differential equations governing the flow is discretized using the finite
volume method (FVM). One of the main advantages of this method is the fact the conservation
principles (mass and momentum) of the governing equations is maintained after their discretiza-
tion. The method is briefly explained in this section, but further details can be found in Ferziger
and Perić [45] and Moukalled et al. [105].

The first step in the FVM is to integrate the governing equations over the small volumes
(elements) created by the spatial discretization of the numerical domain. Volume integrals of the
convection and diffusion terms are transformed into surface integrals thanks to the application of
Green-Ostrogradski’s theorem. The different fluxes through each surface of the control volume
are then evaluated using spatial discretization schemes and a matrix system containing the
balance of the fluxes at each control volume is obtained. Notice that, in addition to the spatial
discretization, a temporal discretization scheme is also used in LES due to the unsteady nature
of the solution.

The control volumes created by the mesh can be either cell-centred or vertex-centred, de-
pending on their variable arrangement. Both flow solvers used in this thesis and discussed in
Section 2.3.3 uses vertex-centred control volumes, which is schematically shown in Fig. 2.4 for
a 2D mesh composed by triangular elements. In this case, these volumes are defined by the
segments connecting the centre of the mesh edges and the centre of the elements. Since the
centre of the control volume does not necessarily coincide with the node where the values are
actually stored, this can lead to some numerical errors, especially in the case of highly skewed
elements.

Figure 2.4: Scheme of a vertex-centred arrangement of a control volume in the mesh.
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2.3.3 Numerical schemes and flow solvers

RANS

All the steady RANS simulations in this thesis were performed in the commercial code AN-
SYS CFX 19.0, a general-purpose CFD software particularly suited for the numerical resolution
of the flow inside turbomachinery. It uses a coupled solver strategy, meaning that the system
of discrete equations for the three velocity components and pressure are solved simultaneously.
This strategy has the advantage of being more efficient, simple and robust, but it also requires
more storage capacity to store all the coefficients for the system of equations. Further details
about the different numerical schemes and the resolution of the system of equations in ANSYS
CFX can be found in its documentation [3], but, in general, it will solve a linearized system of
discrete equations of the form:

[A][φ] = [B] (2.29)

where [A] is the coefficient matrix, [φ] is the solution vector composed by the pressure and
different velocity components, and [B] is the vector associated with the r.h.s. This equation
is solved iteratively by starting from an approximate solution [φ]n, which is improved by a
correction vector [φ]′ to yield a better solution [φ]n+1 for the next iteration, such that [φ]n+1 =
[φ]n+[φ]′. The correction vector [φ]′ is evaluated from [A][φ]′ = [R]n, where [R]n = [B]− [A][φ]n

is the residual. This iterative process is repeated until the value of the residual [R]n associated
to [φ]n+1 is inferior to a predetermined value.

Multiple spatial discretization schemes for the advection term are available in CFX. For the
case of the steady RANS simulations conducted in this thesis, the high resolution scheme is used
[3]. In general, the integrated value of a scalar φ at an integration point, ip, is evaluated as
follows:

φip = φup + β∇φ ·∆~r (2.30)

where φup is the value at the upwind node, ∇φ is the gradient of φ on the element, and ~r is the
vector from this upwind node to ip. If β = 0, the scheme is decentred and of order 1 (upwind),
and if β = 1, the scheme is centred and of order 2. In the high resolution scheme, β (also
called blend factor) is evaluated in each node of the mesh and it can vary between 0 and 1. The
goal with this scheme is to use a value for β as close as possible to 1, while keeping the solution
bounded. For the two extra transport equations for k and ω required for the k-ω SST turbulence
model, a first order spatial discretization scheme is used.

LES

All the LES computations in this work were conducted using YALES2 [106], a multi-physics
and multiphase fluid flow solver able to dynamically adapt meshes with billions of elements
and particularly designed for High-Performance Computing (HPC) architectures and massively
parallel computations. While the code was mainly developed at CORIA in the beginning,
nowadays, many laboratories, including LEGI, use it and contribute to its constant improvement.

Conversely to ANSYS CFX, pressure and velocity are not simultaneously solved in YALES2.
Indeed, a projection method allowing to decompose the velocity field into an irrotational and a
solenoidal (divergence-free) part is used to solve the discrete Navier-Stokes equations. First, in
the prediction step, a fictitious velocity u∗ is determined from the velocity and pressure fields
at the previous iteration, respectively un and pn. Then, the pressure pn+1 can be determined
from this fictitious velocity and Poisson’s equation, obtained after taking the divergence of the
momentum equations (2.2) in the case of an incompressible fluid:
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∇2

(
pn+1

ρ

)
=
∇ · u∗

∆t
(2.31)

Finally, in the correction step, the velocity un+1 is evaluated from the pressure pn+1 and
the fictitious velocity u∗ to verify the incompressibility. Poisson’s equation 2.31 is solved us-
ing the Deflated Preconditioned Conjugate Gradient (DPCG) method, which details about its
implementation in YALES2 can be found in Malandain et al. [94].

A centred 4th order spatial discretization scheme is used, as well as a 4th order temporal
scheme adapted from the Runge-Kutta RK4 scheme called TFV4A [151]. To ensure the stability
of the numerical solution, the time ∆t has to be determined such that it is smaller than the time
required for a fluid particle at speed u to travel more than the distance of one mesh element of
size ∆x. This condition is represented by the Courant–Friedrichs–Lewy (CFL) condition,

CFL =
u∆t

∆x
< 1 (2.32)

In all LES computations performed in this thesis, CFL is always lower than 0.9.

2.3.4 Wall treatment

Predicting the near wall flow behaviour is crucial in wall bounded flows since it can have a
major impact on the overall dynamics of the flow. Due to the no-slip condition, the velocity
gradients normal to the walls in this region of the flow are notoriously important, especially in
the case of highly turbulent flows, i.e., at high Reynolds numbers, as is illustrated in Fig. 2.5. To
properly capture these important velocity gradients with the numerical simulations, the height
of the first element at walls must be sufficiently small. The problem is that this would increase
the computational cost associated with the simulation, since more elements would be necessary
o cover the whole surface of the wall.

Figure 2.5: Near-wall velocity profiles at (left) low Reynolds number and (right) high Reynolds number. Illus-
tration of the height of the first element at the wall to correctly capture the velocity gradient at this
region. Source: adapted from Wilhelm [160].

In the case of RANS, the dissipation due to the turbulence model is such that it is not
necessary to use higher order numerical schemes. As a result, highly deformed elements can be
used at the walls, reducing thus the height of the first element at the walls while covering its
whole surface area with a reasonably sized mesh. Conversely, in the case of LES, the dissipation
induced by the turbulence model is low and higher order numerical schemes (as the 4th used in
YALES2) are required to limit the numerical dissipation and to obtain a better solution. As a
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consequence, elements should have a good quality (e.g., low skewness, low growth rate) to keep
the numerical stable, and the computational cost of the simulation can be prohibitively high
due to the total number of elements in the mesh. To avoid having to explicitly resolve these
velocity gradients, one solution consists in model the near-wall flow behaviour with the aid of
some algebraic function or wall-law.

The near-wall flow behaviour can be described by some dimensionless quantities, notably
a distance, y+, and a velocity, u+. For the case of a boundary layer in equilibrium, i.e., not
subjected to adverse pressure gradients, these quantities are given by:

y+ =
uτy

ν
(2.33)

u+ =
U

uτ
(2.34)

where uτ =
√

(τw)/ρ is the friction velocity, τw is the wall-shear stress, y is the normal distance
to the wall and U is the mean velocity parallel to the wall. As illustrated in Fig. 2.6, it is
possible to establish a relation between y+ and u+ in the case of a turbulent boundary layer
not-subjected to adverse pressure gradients. Indeed, the boundary layer can be divided into
three main regions: (i) at y+ < 5, called the viscous sublayer, the viscous effects are more
important and the velocity profile varies linearly with the distance to the walls, i.e.,u+ = y+; (ii)
at y+ > 30, called log-law region, the inertial effects are more important and the velocity profile
follows a logarithmic law, u+ = C1 ln(y+) + C2 (where C1 and C2 are constants experimentally
determined); (iii) at 5 ≤ y+ ≤ 30, called buffer-layer, the flow behaviour transitions between the
two other regions. A wall-resolved numerical simulation requires the first node on the wall to
be positioned at y+ ≤ 1, otherwise the velocity gradients can be underestimated. Nevertheless,
based on this universal behaviour of the velocity profile near the walls shown in Fig. 2.6, it is
possible to evaluate τw even if y+ ≥ 1.

Figure 2.6: Mean velocity profile near the wall for a boundary layer in equilibrium. Source: adapted from Duprat
[36].

RANS

The steady RANS simulations using the k-ω SST turbulence model presented in this thesis
were all performed using the automatic wall-treatment available in ANSYS CFX [3]. This method



2.4. Turbulent inflow boundary conditions for LES 43

allows for the solver to automatically switch between the Wilcox’s k-ω near wall formulation if
the mesh is sufficiently fine (i.e., if y+ ≤ 2 according to CFX’s manual [3]) and a logarithmic
wall-function proposed by Launder and Spalding [81] if not. It should be noticed that, as
demonstrated by Payette [123] and Taheri [149] when studying the turbulent flow inside a conical
diffuser, the fact these wall-laws were developed based on the hypothesis of a boundary layer in
equilibrium can delay or even prevent the boundary layer separation, particularly in the cases
where y+ is high.

LES

Being able to model the flow behaviour near the walls is even more critical in LES than in
RANS, since the already higher computational cost of the simulation is affected by the total
number of elements in the mesh as well as their minimum size (which controls the maximum ∆t
of the simulation; see Eq. (2.32)). It is possible to use a wall-law to model the flow behaviour
near the walls in LES, through what is called Wall Model Large Eddy Simulation (WMLES). In
the case of all large-eddy simulations performed in this thesis, the wall-law proposed by Duprat
et al. [37] is used. This model is especially appropriate for draft tube (and diffuser) flows
as it takes into account the strong adverse pressure gradients which the boundary layers are
subjected to. If the near-wall mesh is sufficiently refined, the model will tend to a wall-resolved
LES. However, even if the first node is not positioned inside the viscous sublayer, the model can
evaluate the wall-shear stress.

2.4 Turbulent inflow boundary conditions for LES

As will be discussed in the following chapters, one of the main aspects of this thesis is the
imposition of proper inlet boundary conditions for the numerical simulation of the turbulent
flow inside a draft tube. Indeed, it is a well known fact that they can have a major impact
on the accuracy of the final results, but it is still challenging to specify proper inlet boundary
conditions in the case of spatially developing flows (e.g., jets, mixing layers, wall-bounded flows
etc.), in spite of the many advancements over the past few decades in this regard. In the case of
RANS, explained in Section 2.2.2, inlet boundary conditions are easier to prescribe and normally
consist in Reynolds average mean quantities, turbulent length scale(s) and Reynolds stresses.
However, in the case of more advanced DNS and LES, imposing only time-averaged quantities at
the inlet of a simulation means that the deterministic information about the inflow is definitely
lost and that the final numerical solution is possibly compromised. The problem is that high
resolution (spatially and temporally) flow information at the inlet plane of a simulation is rarely
available, particularly in complex industrial flow configurations, like the draft tube studied in this
thesis. Therefore, realistically determining the fluctuating quantities at this location is a major
challenge for LES and multiple solutions have been proposed along the years. Usually, these
solutions are normally classified into three groups [76, 135, 148, 161, 30]: synthetic turbulence,
precursor simulations and recycling methods.

2.4.1 Methods to generate turbulent inflow

Synthetic turbulence

Synthetic turbulence is possibly the most economical method to create the fluctuating inflow
field for LES and the main idea behind this method is to superimpose artificially generated
fluctuations to the mean inlet velocity field. The easiest way to achieve that is to generate
and superimpose a random noise (such as white-noise) with an amplitude determined by the
turbulent intensity level, however, since these random fluctuations completely lack spatial and
temporal correlations, they are instantly destroyed by the Navier-Stokes solver [2, 36]. For this
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reason, more advanced synthetic turbulence methods must include some way of reconstructing
these correlations and therefore preventing them from quickly vanishing, such as the Random
Flow Generation (RFG) method [138, 6, 23, 24], the Digital Filters (DF) method [79, 31], or
even the Synthetic-Eddy Method (SEM) [68, 69, 121, 125]. Despite their relatively low computa-
tional cost, the synthetic methods still depend on flow information that is often hard to obtain,
especially in complex flow configurations (e.g., Reynolds stresses components to determine tur-
bulence anisotropy) and, more importantly, systematically produce a transition region close to
their injection plane where the synthetic turbulent inflow is still developing, mostly because the
fluctuations are not completely turbulent in nature. The problem is that, if the injection plane
is close to the area of interest of the flow (i.e., the region we want to analyse), the decay of these
unrealistic fluctuations can affect the mean velocity field via the production term.

Precursor simulations

Precursor simulations, on the other hand, are particularly better in producing realistic fluc-
tuating inflow conditions, as they give more time and space for these fluctuations to develop
before reaching the important portion of the computational domain and rely on turbulent data
extracted from fully-developed regions of the flow. However, since these simulations are per-
formed in a separate numerical domain, which represents only a fraction of the main domain,
and are often launched before the main simulation, they require thus a considerable amount of
storage for the generated inflow data. Beside the obviously higher computational cost compared
to synthetic methods, the fact a precursor simulation is performed in a separate computational
domain means that no feedback information from the main domain is possible. As a result, this
approach is limited to very simple flow configurations, notably where the considered geometry
yields fully-developed mean flow in the streamwise direction [44, 146, 124, 136, 54].

Recycling methods

Finally, a way to overcome this limitation of precursor simulations, specially for the case
of spatially-developing boundary layers, consists in integrating the separate numerical domain
into the main domain and recycling the information extracted in a downstream station as inflow
conditions for the simulations. In this case, there is no more need for performing or storing
the results of a separate precursor simulation. However, as the mean flow is not parallel in
the case of spatially-developing boundary layers, the information extracted at the downstream
station needs to be rescaled before being used at the inlet. Lund et al. [90] proposed such
a rescaling technique that used different similarity laws for the inner and outer regions of the
boundary layer. This technique produced turbulent boundary layer flows with the expected
physical features, but still could lead to some transitional region near the inlet [70, 83] and
(similarly to synthetic methods). Moreover, it suffered from inherent flaws [121], such as the
need for injecting some kind of synthetic fluctuations to the inlet plane at the beginning of the
simulation (which can affect the final results) and spurious coupling in the computed solution
if the extraction station is not far enough from the inlet. Other techniques using forcing terms
have been developed to improve the control over the rescaling over the inlet plane [143], however,
these recycling methods are still restricted to very simple flow configurations.

Data-based methods

More recently, data-driven techniques (e.g., Machine Learning and adjoint methods), have
been used to generate synthetic turbulent inlet boundary conditions for DNS and LES [49,
153, 21, 77]. Instead of generating the synthetic fluctuations from basic equations and some
scaling and/or orthogonal transformations like in most of the synthetic turbulence methods, the
fluctuating field at the inlet of the computational domain is determined by a non-linear model
constructed from the data gathered after performing significantly large number of realizations
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of a turbulent flow. The computational cost associated with these approaches is particularly
high, since the amount of data required to create the non-linear model is not negligible. As a
result, their applications are still limited to very simple flow configurations, like in the case of
precursor simulations and recycling methods.

2.4.2 Turbulent inflow generation and injection in YALES2

The swirling turbulent flow inside hydraulic turbine draft tubes are indeed very complex
and precursor and/or recycling methods are not adequate for its numerical simulation [36, 149].
However, as will be discussed in Chapter 5, we do propose to use Machine Learning algorithms
to generate proper inlet boundary conditions, including the injection of synthetic fluctuations,
for our numerical simulations in both RANS and LES. The difference though is that, in the case
of LES, the incoming fluctuations are generated using a simple synthetic turbulence method
and the main role of Machine Learning is to properly adjust their properties (e.g., velocity and
length scales), in addition to those from the mean inlet velocity field. In YALES2, these synthetic
fluctuations are generated accordingly to the scheme shown in Fig. 2.7.

Figure 2.7: Scheme of the synthetic HIT filed generation and injection in YALES2.

Initially, the RFG method proposed by Smirnov [138] and based on the work of Kraichnan
[80] is used to generate a divergence-free spatial and temporal correlated homogeneous isotropic
turbulence (HIT) field of specified length scale le and velocity scale u′ in a cube of edge length
4le. These cubes are then replicated and positioned side-by-side until the injection plane (e.g.,
the inlet boundary) is fully covered by these synthetic fluctuations. They are then scaled by
a specified normalized turbulence kinetic energy profile, k/kmax, and finally injected into the
domain at a specified speed, Uinj. It should be noticed that the RFG method is capable of
introduce some anisotropy onto the synthetic fluctuations via a scaling and orthogonal trans-
formations of the generated flow field, a procedure later simplified by Batten et al. [6] using a
Cholesky decomposition of the Reynolds stress tensor. Nevertheless, determining the turbulence
anisotropy of the flow leaving the runner and entering the draft tube is very hard experimentally
and even numerically. Thus, the synthetic fluctuations injected in all LES computations in this
thesis are isotropic, despite this definitely being a strong assumption.

2.5 Head losses equation in the context of numerical simulations

Another important aspect of this thesis is the analysis of the head losses inside the draft tube,
since it determines the hydraulic performance of this equipment. Conversely to the experimental
head losses, which are limited to integral quantities (see Section 3.2.2), numerical simulations
give access to a more detailed information about the flow and the phenomena responsible for the
head losses. Thus, starting from the definition of the head H given by Eq. (1.1) and the mean
kinetic energy equation (2.6) derived from the Navier-Stokes equations for an incompressible
fluid (2.2), Wilhelm et al. [159] developed an expression for the head losses in the context
numerical simulations. In LES, this equation is given by:
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where the operator 〈a〉 corresponds to the time averaged value of a obtained from the flow
statistics and a corresponds to the filtered value of a. Integrals are evaluated over the surface
S and volume V of a control volume. Subscripts i and e, correspond, respectively, to the inlet
and exit planes of the considered domain. While the head losses equation can be identified in
the l.h.s. of Eq. (2.35), the r.h.s. contains the different mechanisms responsible for these losses.
For instance, terms I and II correspond to the diffusion of mean kinetic energy, term III to
the viscous dissipation mean kinetic energy, and terms IV and V to the modelled and resolved
production of turbulent kinetic energy, respectively. Conversely to LES, all turbulent scales are
modelled in RANS and, as a result, terms II and V are not available. In this case, the head
losses equation is given by:
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Similar equations have been used by MacIsaac et al. [93] and Cui et al. [22] to study the
total pressure losses inside gas turbines and, in all studies, including Wilhelm’s et al. [159], the
turbulent kinetic energy production (terms IV and V ) was the main mechanism responsible for
losses in a turbulent flow. However, since only the modelled production is available in RANS
due to the statistical nature of the numerical solution, the turbulence modelling has a more
considerable impact on the final head losses prediction in this type of simulations [159].
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3.1 State of the art of draft tube simulations

Given its importance in the overall hydraulic performance of a hydroelectric power plant,
many experimental studies have been conducted along the years to study the complex flow
behaviour inside draft tubes. Among them, we can mention the three Turbine-99 Workshops
[55, 17] organized at Lule̊a University in Sweden, the Flow Investigation in Draft Tube (FLINDT)
project [5], conducted at the EPFL in Switzerland, and both the AxialT [29] and BulbT [28]
consortiums created by the Laval University in Canada. These projects have contributed to
enhance the numerical simulations and create a strong knowledge base for the investigation of
draft tube flows. In this section, an overview of some of these numerical studies is given to
highlight its most important aspects.

3.1.1 Turbulence modelling

The flow inside a draft tube is very complex and difficult to simulate, in part, due to its highly
unsteady and turbulent nature, but also as a result of swirling and adverse pressure gradients to
which these flows are subjected. One of the first aspects to determine when performing numerical
simulations of the flow inside a draft tube is the method chosen to model the turbulence on the
flow. In industry, steady RANS simulations using two-equation linear eddy-viscosity turbulence
models are traditionally used especially due to their low computational cost. Considering the
machines operating close to their best efficiency point, the validity of two-equation turbulence
models have been studied many times. For instance, Cervantes and Engström [16] studied the
flow inside the Turbine-99 draft tube operating close the best efficiency point using RANS and
three different turbulence models: zero equation (algebraic), k-ε and k-ω SST. Pressure recovery

47
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and head losses predict by the three models were very similar, but only the two-equation models
predicted a flow separation at the hub. Similarly, Marjavaara et al. [97] also utilized RANS and
k-ε and k-ω SST turbulence models to study the same configuration and the results were again
very similar, although this time no turbulence method was considered as more appropriate due
to the lack of experimental data. More recently, Iovanel et al. [66] also used RANS and both
k-ε and k-ω SST turbulence models to investigate the velocity field inside the Porjus U9 draft
tube operating at the best efficiency point. The obtained results were all very similar, but the
k-ω SST turbulence model with the streamlines curvature correction [142, 139] mentioned in
Section 2.2.2 was slightly closer to the experiments. In spite of the similar results obtained with
the k-ε and k-ω SST turbulence models in the aforementioned numerical works, the latter model
is more adapted to flows subjected to adverse pressure gradients [104], like the ones found in
draft tubes. Moreover, when studying the swirling flow inside a conical diffuser, Payette [123]
demonstrated that the k-ε turbulence model tends to delay the boundary layer separation.

One of the problems with steady RANS simulations using two-equation linear eddy models
is that they are not capable of capturing the unsteadiness of the flow inside draft tubes. To
overcome these limitations, one solution is to use unsteady RANS (URANS) simulations. These
methods have the advantage of resolving a small part of the turbulent structures on the flow,
limiting thus the influence of the turbulence model. In the context of the FLINDT draft tube,
URANS has been used by Vu et al. [154] to study the performance of this draft tube and, more
recently, by Pasche et al. [122], who investigated the pressure fluctuations associated with the
part load vortex rope. An evolution of URANS, called Scale-Adaptive Simulations (SAS) [39],
is a hybrid method between URANS and LES based on the k-ω SST turbulence model, and has
also been used to investigate the flow inside draft tubes. For instance, Mulu et al. [107] used
RANS and the k-ε and k-ω SST turbulence models, as well as SAS to study the flow close to the
inlet of the Porjus U9 draft tube. All turbulence methods predict similar drat tube performance,
however, there was definitely an impact on the velocity field close to the inlet. Interestingly, in
comparison to the other turbulence methods, the SAS method was not as good at predicting
the phase-averaged velocity. A similar poor performance of the SAS was observed in Iovanel et
al. [67], who studied the pressure fluctuations inside the same Porjus U9 draft tube. While the
authors expected this method to be able to capture higher pressure fluctuations on the monitored
points, the numerical results obtained with SAS did not converge and the signal could not be
processed.

While URANS is less computationally demanding than more advanced turbulence methods,
such as LES, its results are still dependent on the chosen turbulence model [134] and the turbulent
structures produced by this approach can still be damped out [56]. Indeed, this is clearly shown
in the master’s thesis of Bélanger-Vincent [8], who performed Detached Eddy Simulations (DES)
of the flow inside a Francis turbine draft tube, but who also initially compared the results of
the central vortex rope with those predicted in RANS and URANS. While the vortex rope was
mostly inexistent in RANS and very damped out in URANS, its helicoidal shape was clearly
visible in DES. A very similar result was found in Foroutan and Yavuzkurt [48], who analysed
the vortex rope behaviour inside a simplified Francis turbine draft tube using URANS with
the k-ε and k-ω SST turbulence models, as well as DES. Given the superior description of the
flow achieved with DES and its lower computational cost compared to LES, as it consists in
a hybrid RANS/LES approach, it has been used in other numerical studies of the flow inside
draft tubes. For instance, Beaubien [7] investigated the causes for a sharp performance drop in
a draft tube close to its best efficiency point using URANS and DES. While the performance
results obtained with both approaches ended up being very similar, they did not agree very well
with the experimental data. Nevertheless, the resulting flow was much more detailed in DES.

The exact same draft tube studied in Beaubien [7] was initially investigated by Duprat [36]
using LES. The results were compared to the experimental work of Tridon [150] and the sharp
experimental performance drop was correctly recovered by the numerical simulations. However,
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the recirculation zone associated with this drop persisted in other operating conditions in the
numerical simulations, which was not the case with the experiments. Brugière [14] also used LES
to study the flow inside a draft tube. The results were compared with RANS and the available
experimental measurements. The goal was to investigate the uncertainty of the inlet profiles
used in the simulations. While the near-wall region of these profiles was identified as having
the most influence over the final results, they were not sufficient to explain the differences with
respect to the experimental data. Finally, Wilhelm [160] has also analysed the flow inside a bulb
turbine draft tube using LES, although URANS simulations were also performed to compare
with the experimental measurements. A head losses equation was developed and the accurate
description of the flow obtained with LES allowed for a precise determination of the mechanisms
responsible for the head losses inside the draft tube.

3.1.2 Inlet boundary conditions

Mean velocity profiles

In addition to modelling the complex nature of the turbulent flow inside the draft tube, it
is also crucial to define proper inlet boundary conditions for the numerical simulations. These
conditions usually consist in the specification of the three velocity components measured down-
stream the runner, at the inlet of the draft tube. Moreover, depending on the turbulence method
utilized, turbulent inlet boundary conditions must be imposed too to close the system of equa-
tions. However, the flow downstream the runner is complex (e.g., rotating, highly turbulent,
unsteady etc.) and comprehensive experimental measurements at this region are delicate to
perform and thus rarely available.

In industry, it is common to limit these measurements to mean flow quantities measured
at a single radial line positioned just downstream the runner and, in this case, the standard
approach to perform draft tube simulations consists in assuming a sufficiently high mixing of
the flow between the runner and the draft tube and consider axisymmetric inlet boundary con-
ditions. However, steady RANS simulations of draft tube flows using this approach showed an
important sensitivity to the imposed mean velocity profiles and turbulent parameters (e.g., tur-
bulence intensity and length scale) on the overall performance of the draft tube. For instance,
in the context of steady RANS k-ε simulations of the FLINDT draft tube, Mauri [98] studied
the influence of multiple inlet parameters (mean radial velocity profile, near wall velocity in-
terpolation, turbulent dissipation length scale etc.) onto the performance and flow behaviour
inside the draft tube. Among these parameters, the inlet mean radial profile had an important
impact on the results. A similar investigation was conducted by Cervantes and Engström [18]
in the context of the Turbine-99 draft tube. They used a method called factorial design to
investigate the influence of some unknown inlet conditions (in particular, the radial velocity
profile, turbulence length scale and wall-roughness) on the pressure recovery coefficient of the
draft tube. Once again, the radial velocity profile was found to have an important impact on the
downstream results. Payette [123] also demonstrated the importance of properly imposing this
velocity component when studying the swirling flow inside a conical diffuser using RANS and
the k-ω SST turbulence model. Recently, Brugière [14] performed a sensitivity analysis of the
mean inlet velocity profiles imposed at a RANS simulation of a bulb turbine draft tube using
k-ω SST turbulence model and showed that a correct characterization of these profiles near the
walls is very important.

Assuming axisymmetric inlet boundary conditions can be particularly unsuitable for turbines
with a few blades due to the fairly inhomogeneous flow just downstream the runner [119, 50,
157, 84]. Thus, another approach to determine the inlet conditions for a draft tube simulation
consists in conducting separate RANS simulations of one guide vane and one runner blade
passage, using periodic conditions and a stage interface [3] between the two, which applies a
circumferential averaging of all fluxes between the two sides of the boundary. This approach
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allows to recover a complete bidimensional inlet field that can be imposed at the inlet of the
draft tube. It was compared to the previously axisymmetric one in the work of Marjavaara
et al. [97] in the context of steady and unsteady RANS simulations of the Turbine-99 draft
tube. Overall, the results are very similar, though the pressure recovery coefficient was slightly
better predicted by the bidimensional inlet. Taheri [149] also compared these two approaches
when investigating the flow inside a bulb turbine using DES. While the mean profiles and
pressure recovery coefficient predicted by both methods were very similar, the bidimensional
inlet boundary conditions allowed for a better characterization of the turbulent structures inside
the draft tube. This was also observed in the case of LES, where the numerical simulations
of a bulb turbine draft tube conducted by Brugière [14] imposing axisymmetric inlet boundary
conditions did not show any signs of runner blade tip vortices along the external walls, whereas
they were very clear in the simulations conducted in Wilhelm [160], who imposed bidimensional
inlet conditions.

However, one problem with determining the inlet boundary conditions from a separate guide
vane and runner blade simulation is that the results are dependent on accurate descriptions of
runner blade geometries, which can have an important impact on the downstream flow behaviour
inside the draft tube [113, 156]. Moreover, in the case of double regulated low head turbines,
a proper description of the gaps between the runner blades and the hub and shroud walls is
crucial to properly capture the vortices being formed in this region of the flow [118, 120, 62, 155].
Furthermore, the interface between the two turbine elements can have an impact on the obtained
results [95, 64]. For instance, if the draft tube is coupled to the guide vanes and runner blades
steady RANS simulations, a second stage interface between the runner and draft tube has to
be used implying a circumferential averaging of the fluxes and an axisymmetric draft tube inlet
boundary condition. Conversely, if the draft tube is simulated separately from the runner, other
flow quantities (e.g., turbulence length scale, dissipation rate etc.) can still have an important
impact on the final results [25].

Turbulent quantities

RANS simulations using two-equation linear eddy viscosity turbulence models also require
the specification of turbulent inlet boundary conditions. In the case of draft tube simulations, it
is common to impose a combination of a turbulence intensity, It, and a turbulent length scale, lt.
The turbulence intensity is defined as the ratio between the root-mean-square of the turbulent
velocity fluctuations u′ and the mean velocity 〈u〉 (in the sense of Reynolds decomposition):

It(~x) =
u′(~x)

〈u〉(~x)
(3.1)

The turbulence intensity can be determined experimentally as long as the fluctuations are
measured. Conversely, the length scale, lt, represents the size of the most energetic eddies and is
not easy to measure experimentally. It is usually considered to be between 5% to 10% of the draft
tube inlet diameter [123, 160]. However, small variations in these values can have an important
influence on the downstream flow behaviour inside a draft tube simulated using RANS. This was
discussed in Mauri [98] and Cervantes and Engström [18], but was also observed in Payette [123]
and de Henau et al. [25]. In all these cases, modifying, for instance, the turbulent length scale
impacted the overall performance of the draft tube. Brugière [14], on the other hand, evaluated
the uncertainty of the velocity profiles inside a bulb turbine draft tube predicted using RANS
k-ω SST based on the uncertainty of the It and lt values. In that case, it was the length scale
which influenced the most the results. Unsteady draft tube flow simulations using DES also
require the specification of the turbulent inlet boundary conditions, though they are slightly
different from RANS and usually depends on the definition of a turbulent viscosity at the inlet
of the domain. Nevertheless, Bélanger-Vincent [8], who performed DES computations of the
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flow inside a Francis turbine draft tube, showed a strong sensitivity of the downstream flow
behaviour due to the imposed turbulent inlet conditions.

In the case of LES, however, turbulent inlet conditions are not required to solve the system
of discretized equations and previous studies simply did not inject any turbulent fluctuations
at the draft tube inlet. Instead, they would let the instabilities naturally appear relying on the
very unstable nature of the downstream swirling flow. For instance, a simple axisymmetric inlet
boundary condition without inlet turbulence has been used by Brugière [14] to simulate the
flow inside a bulb turbine draft tube in LES. Wilhelm et al. [159] used a separate guide vane
and runner RANS simulations to obtain a complete flow field description at the inlet of a draft
tube but also did not impose any turbulent inflow. On the other hand, Duprat [36] imposed
an axisymmetric mean velocity field at the inlet and a turbulent field issued from white-noise
fluctuations. However, these fluctuations are quickly destroyed by the flow solver due to their lack
of correlations [2]. To overcome these issue, Taheri [149] reconstructed part of the experimental
data obtained in Lemay et al. [84] using machine learning to impose a synthetic fluctuations
based on the method of Davidson and Bilsson [23] with proper anisotropy and spatio-temporal
scales in the case of a complete inlet flow field description for his DES computations of the flow
inside a bulb turbine draft tube. Nevertheless, compared to a simpler inlet conditions without
any synthetic turbulence injection, the impact of the proposed approach in the velocity profiles
and draft tube performance was very limited.

3.1.3 Final considerations about the numerical simulations

The discussion of these previous numerical works that investigated the flow inside draft tube
highlighted some important aspects which should be considered in our numerical simulations.
For instance, when performing steady RANS simulations using two-equation linear eddy viscosity
models of the bulb turbine draft tube considered in this thesis, the k-ω SST turbulence model
should be utilized. First, this model is more adequate for the prediction of flows subjected to
adverse pressure gradients. Second, they are also better than k-ε in predicting the boundary
layer behaviour, particularly because they do not show a tendency to delay flow separation in
this region of the domain. In the case of LES, all the numerical works that investigated the
flow inside a bulb turbine draft tube used the Dynamic Smagorinsky to model subgrid scale
viscosity. However, while this method will be used in the investigations of the conical diffuser
in Chapter 6, we decided to use the σ-model for our draft tube flow simulations, especially due
to its superior performance in more complex flows and geometries.

In addition to the turbulence modelling, the previous discussions shown that special atten-
tion should be given to the specification of the inlet boundary conditions, especially because
the obtained results can be strongly affected by them. For instance, while bidimensional mean
velocity fields had no significant effect on the main results of previous draft tubes simulations,
the characterization of these profiles, particularly near the walls, had a major impact on down-
stream flow behaviour. In the case of RANS k-ω SST simulations, standard turbulent inlet
boundary conditions can indeed yield satisfactory results. However, the influence of turbulent
inlet conditions in LES has not been particularly explored, mostly because it was previously
thought that they were not required in this type of simulations.

It is important to verify the quality of the numerical solutions. For instance, the modelling
and discretization errors must be identified and addressed prior to validate any of the results.
Considering that the two flow solvers used in this thesis, ANSYS CFX and YALES2, were already
validated and that the numerical methods used in both were shown to be sufficiently precise for
our applications, the spatial and temporal discretization of the solutions still need to be verified.
To ensure an adequate spatial resolution of the flows studies in this thesis, spatial discretization
analyses are conducted prior to the validation of the numerical results. For instance, in the case
of the bulb turbine draft tube, this step is thoroughly explained in Section 4.3. The temporal
resolution, on the other hand, particularly in the case of LES, was ensured by performing a
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series of simulations with the intent to first stabilize the flow inside the numerical domain and
only then accumulate the desired statistics. Therefore, in the case of the draft tube discussed
in Chapters 4 and 7, a fully converged solution is obtained after three runs of the numerical
simulation, each corresponding to approximately ten flow passages through the draft tube. An
initial run to stabilize the flow inside the domain is conducted and just then a second run is
performed to compute all the flow statics necessary for the automatic mesh adaptation (see
Section 4.3). Once the adaptation is finished, a third and final LES is performed to evaluate
the final flow statistics and results. Similarly, for the case of the conical diffuser investigated
in Chapter 6, in all LES cases, an initial simulation is run to stabilize the flow field within the
diffuser and only then a second simulation is run to accumulate the statistics used in the final
analysis of the flow during the equivalent of ten complete flow passages throughout the domain.

3.2 Experimental data for numerical simulations validation

To validate the numerical results obtained with the simulations in the following chapters,
these are compared with experimental measurements to verify the good representation of the
flow dynamics inside the computational domain. For the numerical simulations of the draft tube
flow conducted in the context of this thesis, these experimental measurements were carried out
by the engineers at GE Hydro, in France, and GE Global Research Center (GRC), in the United
States. Several measurements have been performed at two different operating conditions. Their
main characteristics are discussed in this section.

3.2.1 Experimental setup

The experimental setup of the draft tube studied in this work is schematically shown in Fig.
3.1. The geometry of the draft tube is similar to that investigated by Wilhelm et al. [159], but it
is attached to a closed loop where a constant air flow is forced through. Flow temperature and
humidity are controlled and the Reynolds number evaluated at the first measurement station
(R0, in Fig. 3.1) is around 1.5×106, which is similar to real draft tube configurations [123, 159].
Although the working fluid is not water, the flow is considered as incompressible since the
maximum Mach number is kept under 0.2. The key aspect of the current setup though is that,
conversely to real bulb turbines (see Section 1.3), the guide-vanes and runner were replaced by
a grid and a set of 34 fixed blades, shown in details in Fig. 3.2.

Figure 3.1: Scheme of the experimental setup used to study the flow inside a bulb turbine draft tube. In (red)
the radial traverses R0 to R5; (green) circumferential distribution of wall-mounted pressure taps, C1
to C5 and EX; (yellow) streamwise distribution of wall-mounted pressure taps, S1 to S3.



3.2. Experimental data for numerical simulations validation 53

Figure 3.2: Details of the grid and fixed blades used to generate the turbulent swirling flow for the draft tube.

As pointed out at the beginning of this chapter when discussing previous numerical works that
investigated the flow inside draft tubes, it is crucial to accurately determine the characteristics
of the flow at the inlet of the computational domain. Therefore, replacing the guide-vanes and
runner by a grid and a set of fixed blades allowed for a better control over the flow entering the
draft tube and to a better characterization of the simulations’ inlet boundary conditions. For
instance, the large number of blades decreased the variations in the azimuthal direction, which
is a real problem in the case of bulb turbines due to their reduced number of runner blades (as
previously mentioned in Section 3.1.2). The size and distribution of the holes in the grid shown
in Fig. 3.2 is used to control the total pressure profile at the inlet of the draft tube by allowing
or restricting the flow passage. However, they also generate a fairly homogeneous turbulent field
just behind the blades. These blades, on the other hand, divert the mean flow leaving the grid
and generate flow swirl for the draft tube, creating thus even more instabilities in the already
turbulent upstream flow. As a consequence, the turbulence at the inlet of the draft tube (station
R0) has an intensity (as defined in Eq. (3.1)) of approximately 5% with a wide range of motion
scales.

3.2.2 Experimental measurements

Mean velocity and static pressure profiles

Five-hole pressure probes measured the three components of the mean velocity profiles, as
well as the static pressure profiles inside the draft tube. These probes were positioned at the end
of radial traverses corresponding to stations R0 to R5 in Fig. 3.1. The profiles were measured
with respect to radial distance to the external walls of the draft tube, h, but in the following
chapters, this distance will be normalized by the maximum distance between the external wall
and the axis of the draft tube (or the internal wall, in the case of stations R0 and R1), hmax.
As the head losses inside the draft tube are greatly affected by the near-wall flow behaviour
[14, 160], special attention was given to this part of the flow during the experiences, particularly
to capture the boundary layer behaviour in this region. Indeed, this was a limitation of the
experimental data used by Wilhelm [160] to validate her numerical results.

One important aspect of these measurements is that, in the case of the first operating point,
OP1 (see Section 3.2.3), the results of two distinct experimental campaigns had to be combined
to obtain a profile extending from the external walls of the draft tube up to the centre of the
flow. Indeed, an initial experimental campaign, OP1(1), measured the mean velocity and static
pressure profiles close to the external walls, covering approximately 40% of hmax. While these
results were precise in terms of spatial discretization and description of the boundary layer, a
second campaign, OP1(2), was later conducted to measure the complete velocity and pressure
profiles (i.e., covering the whole length of hmax). However, as the results in OP1(2) were not
as precise as in OP1(1) and the boundary layer was not as accurately described, the profiles
obtained in both experimental campaigns were combined using OP1(1) as a reference. The
combination process consisted in shifting the profiles obtained in OP1(2) until their values close
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to the walls were consistent with OP1(1). As will be discussed in Chapter 4, most of the
combined profiles coherent with each other, but, particularly in the case of the mean tangential
velocity, some inconsistencies may have been caused by this combination process.

Turbulence kinetic energy profiles

In addition to the mean velocity and pressure profiles, hot-wire probes measured the turbu-
lence intensity, It, and mean velocity magnitude, 〈u〉, at the six radial traverses presents in the
experimental setup, i.e., stations R0 to R5. From these measurements, the turbulence kinetic
energy profile can be estimated assuming isotropic turbulence and the definition of turbulence
kinetic energy, k, and turbulence intensity, It, respectively Eqs. (2.7) and (3.1):

k(~x) =
3

2
〈u〉2(~x)I2

t (~x) (3.2)

Although the assumption of isotropic turbulence is not necessarily realistic, it allows us to
have an idea of the turbulence kinetic energy profiles inside the draft tube and to compare these
results with the experimental measurements at the respective locations.

Static pressure distribution at the walls

Wall mounted pressure taps measured the distribution of static pressure at the walls of the
draft tube. They were positioned either in the streamwise direction (stations S1 to S3), or cir-
cumferentially (stations C1 to C5 and EX). The importance of these measurements, particularly
the ones at stations S1 to S3, is that they give an indication about the pressure recover. More-
over, as these stations follow the geometry of the draft tube, it is possible to see its influence
on the static pressure distribution on the walls. Finally, since the last circumferential station,
EX, is positioned very close to the exit of the draft tube, it is used as a reference to evaluate
the experimental head losses.

Evaluation of the experimental head losses

The final experimental results used to validate the numerical simulations consist in the
experimental head losses inside the draft tube. The procedure followed to determine these losses
is explained in the Standard International Electrotechnical Commission (IEC) 60193 [145]. The
experimental head losses, henceforth called IEC losses, are measured between the inlet plane of
the draft tube (e.g., section R0 in Fig. 3.1) and another plane close to its exit, which in the case
of the experimental setup shown in Fig. 3.1, corresponds to section EX. They are given by the
following equation:
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(3.3)

In the equation above, the influence of gravity is considered negligible inside the drat tube.
The static and dynamic heads at the inlet plane of the draft tube are calculated from the
mean velocity and pressure profiles measured by the five-hole pressure probes at this location.
However, since such measurements are not available at the exit plane, EX, the static head at
this location is equal to the average static pressure measured by the wall-mounted pressure
taps, 〈pIEC〉 = 〈pEX〉. This means that the static pressure distribution inside the draft tube
in this plane is considered uniform and its value can be determined from the pressure at the
walls. In addition to that, the dynamic head is evaluated from the bulk velocity at this plane,
Q/AIEC , meaning that the mean flow is uniform and purely axial at the exit plane. Due to
these considerations about the static and dynamic heads at the exit plane of the draft tube,
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IEC losses can be different from the real head losses between the inlet and exit planes, which
is given by Eq. (3.4), below. Nevertheless, in an industrial perspective, the IEC losses is of
extreme importance as it defines the hydraulic performance of the draft tube and can be used
to compare the experimental and numerical results.

∆H =
1

Q

�

Sin

(〈p〉
ρg

+
1

2g
〈ui〉〈ui〉

)
〈uz〉dS −

1

Q

�

Sexit

(〈p〉
ρg

+
1

2g
〈ui〉〈ui〉

)
〈uz〉dS (3.4)

3.2.3 Operating points

The experimental measurements were conducted into two different operating conditions, OP1
and OP2. The holes in the upstream grid shown in Fig. 3.2 as well as the flow rate in the closed
loop to which the draft tube is attached were modified in each case, resulting in different inlet
conditions and flow behaviour inside the draft tube. For instance, Figure 3.3 compares the
results of the three mean velocity components and turbulence kinetic energy profiles measured
at the inlet of the draft tube (station R0) for each of these operating conditions. The results
are normalized by the average axial velocity measured at OP1, Vb,in,OP1, and the same location,
and their radial distribution is given in terms of the normalized distance to the external wall,
h/hmax. Notice that, since there is no guide-vanes or runner to control the flow at the inlet of
the draft tube, the velocity profile distribution is controlled by the disposition of the holes at
the upstream grid (see Fig. 3.2).

Figure 3.3: Mean velocity and turbulence kinetic energy profiles measured at the inlet of draft tube (station R0)
at both operating points, OP1 and OP2.

It is clear from Fig. 3.3 that the mean axial velocity, Vz, is higher in OP2 compared to
OP1, and its distribution is relatively different. For instance, in OP1, Vz is mostly constant
along the inlet radius, except for a small peak observed very close to the hub (the centre of the
flow, h/hmax = 1.0). In OP2, Vz values slowly increase towards the centre of the flow, to the
point where its values are almost 30% higher close to the hub compared to the external walls
(h/hmax = 0.0). Considering that the fluid density, ρ, is similar in both operating points, the
mass flow in OP2 is about 10% higher than in OP1.

Another important difference between the two operating conditions is the mean tangential
velocity profiles, Vu. Once again, their values are higher in OP2 compared to OP1 and, despite
a similar distribution, the peak value is closer to the external walls, h/hmax = 0.0, at the second
operating point. Defining the swirl number, Sw, as the ratio between the axial flux of angular
momentum and the axial flux of axial momentum multiplied by the radius, its value at the inlet
of the draft tube (station R0) is given by:
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Sw =
1

Rmax,R0 −Rmin,R0

�
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VzVurdS

�
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V 2
z dS

(3.5)

where Rmax,R0 and Rmin,R0 are, respectively, the maximum and minimum radius at station R0,
and SR0 its area. The Sw values are respectively Sw = 0.327 for OP1 and 0.344 for OP2.

The mean radial velocity profile, Vr, distribution is similar in both operating conditions, but
the values measured in OP2 are considerably more negative than in OP1. Finally, looking at the
turbulence kinetic energy profiles, the modification of the upstream grid and flow rate resulted
in higher values of k close to the external walls of the draft tube (between 0.0 ≤ h/hmax ≤ 0.5)
in OP1 compared to OP2.
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Reference simulations of the draft tube
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4.1 Introduction

In this chapter, the turbulent flow inside the draft tube shown in Section 3.2.1 is investi-
gated using the both RANS and LES turbulence methods. It starts with the definition of the
basic numerical domain and boundary conditions used in these initial simulations. The spatial
discretization of the numerical domain is verified and the results for the first operating point are
examined. Synthetic fluctuations are then injected in LES and the influence of the turbulent
inlet boundary conditions is discussed. A more detailed analysis of the head losses evolution
inside the draft tube is conducted and the problems with inadequate inlet boundary conditions
is explained. Finally, a similar analysis is performed for the second operating point, where the
same problems are observed.
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4.2 Numerical setup

4.2.1 Numerical domain

The numerical domain used in the reference RANS and LES computations of the draft tube
is show in Fig. 4.1. It consists in the draft tube portion of the experimental setup shown in
Fig. 3.1 followed by a straight extension downstream its exit. The inlet of the domain is defined
by the first measurement station, i.e., station R0, however, since this station is positioned right
downstream the set of 34 blades, a portion of the hub is still present within the numerical
domain. With respect to its outlet, while the air flow passing through the real experimental
setup discharges into a large cylindrical tank after a sudden expansion, simulating this complete
geometry is computationally expensive and not necessarily required. For instance, Mauri [98]
compared three downstream extension configurations (no extension, with a straight extension
and with a large cylindrical extension) while investigating the flow inside a Francis turbine draft
tube, Payette [123] investigated multiple downstream extension configurations in the context of
a simple conical diffuser [19], Wilhelm [160] compared the flow behaviour inside a bulb turbine
draft tube using either a straight extension or a large cylindrical extension and, more recently,
Véras [152] thoroughly investigated the influence of different downstream extension geometries
(e.g., a straight extension, a cylinder or an asymmetric box etc.) in the case of a bulb turbine. In
all cases, it was found that a simple straight extension was more computationally efficient than
simulating the whole downstream geometry and had a negligible influence on the flow inside
the draft tube. Moreover, it helped with both the convergence and stability of the numerical
solution, especially in the case where there is a recirculation at this location. Therefore, the
outlet of the numerical domain is positioned at the end of a straight extension downstream the
draft tube.

Figure 4.1: Numerical domain of the draft tube used in the reference RANS and LES computations.

4.2.2 Boundary conditions

As discussed in the description of the experimental setup used for this thesis (see Section
3.2.1), especial attention was given to the control and characterization of the flow at the inlet of
the draft tube. One major difference of the current configuration compared to real turbines and
previous numerical studies of draft tube flows is the replacement of the guide-vanes and runner
by a grid and a set of 34 fixed blades, which together generate the desired turbulent swirling flow
for the draft tube. The elevated number of blades used in the current experimental setup reduced
the flow variations in the azimuthal direction and, as a result, the generated inflow is closer to
an axisymmetric 2D distribution, allowing for better characterization of the simulations’ inlet
boundary conditions. Experimental mean axial, tangential and radial velocity profiles (Vz, Vu,
Vr, respectively), as well as the turbulence kinetic energy profile (k) measured at the inlet of the
numerical domain (station R0) are imposed as inlet conditions for these reference simulations.
These profiles are shown in Fig. 4.2 normalized by the average axial velocity at the inlet, Vb,in,
and as a function of the normalized height, h/hmax. For the moment, we consider only the first
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operating point, OP1. Their distribution over the inlet plane is considered as axisymmetric due
to the high number of blades used to generate the swirling flow entering the draft tube. RANS
simulations using the k-ω SST turbulence model require turbulent inlet boundary conditions
to close their system of equations. For that, the profiles of k estimated from the turbulence
intensity measurements at station R0 and shown in Fig. 4.2 are used. Moreover, a turbulence
length scale equal to 10% of the inlet channel height (i.e., the difference between the external
and internal radius of the draft tube) is assumed, as it is a typical value in this type of simulation
[123, 25, 160, 152]. In the case of LES, however, as turbulent inlet boundary conditions are not
required, these initial reference simulations are run imposing only the axisymmetric mean inlet
velocity profiles as boundary conditions. Indeed, this is the simplest and most commonly used
approach in draft tube flow computations using LES, since in this swirling flow, instabilities
would naturally develop inside the numerical domain [14, 160].

Figure 4.2: Mean velocity and turbulence kinetic energy profiles imposed at the inlet of the reference draft tube
simulations (station R0) at OP1.

Finally, an average static pressure equal to 0 is imposed at the outlet plane of all RANS
simulations, whereas, in LES, the solver imposes a velocity field which is normal to the outlet
plane, avoiding thus any recirculation at this location. At the walls of the numerical domains,
which are all fixed, a no-slip condition is imposed. Due to the high Reynolds number of the
flow being investigated, and the prohibitive computational cost associated with a wall-resolved
LES, the wall model proposed by Duprat et al. [37] and specifically developed to handle wall-
bounded flows subjected to adverse pressure gradients is applied to these simulations. In the
case of RANS, the automatic wall treatment implemented in ANSYS CFX is used (see Section
2.3.4).

4.3 Spatial discretization study

Prior to launch the reference draft tube simulations, a mesh convergence study is performed
to ensure that the numerical results are independent of their spatial discretization level. In
RANS, this discretization can have a major impact on the numerical errors associated with the
predicted mean flow gradients, whereas in LES, the discretization also determine which portion
of the turbulent scales of the flow are going to be explicitly resolved, as the filter width depends
on the local mesh size [86] (see Section 2.2.3).

4.3.1 RANS

A classic spatial discretization study was performed in RANS by manually and gradually
refining a block structured mesh of the reference numerical domain shown in Fig. 4.1. The
meshes were generated in ANSYS ICEM and refinement was applied in all directions of the
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geometry, e.g., radial, circumferential and longitudinal directions. Four meshes were considered,
as shown in details in Fig. 4.3. In Tab. 4.3, the main characteristics of these meshes are resumed.

(a) (b) (c) (d)

Figure 4.3: Detail of the four meshes used for the spatial discretization study in RANS. (a) M0; (b) M1; (c) M2;
(d) M3.

Table 4.1: Characteristics of the four meshes used for the spatial discretization study in RANS.

Mesh M0 M1 M2 M3

Number of elem. (×106) 0.49 0.96 2.19 3.01
Number of nodes (×106) 0.50 0.98 2.22 3.06
Maximum y+ 2.90 2.94 3.03 3.19

As shown in Tab. 4.1, special attention was given to the near wall mesh refinement since
the k-ω SST turbulence model implementation in ANSYS CFX requires y+ values below to 2
to ensure an adequate application of the automatic wall treatment and a good resolution of the
boundary layer flow [3]. Figure 4.4 shows the distribution of y+ at walls for the coarsest mesh,
M0.

Figure 4.4: Distribution of y+ on the coarsest reference RANS mesh, M0.

Comparisons of the mean axial and tangential velocity profiles inside the draft tube are
shown in Figs. 4.5, 4.6. Results are again normalized by the average axial velocity at the inlet,
Vb,in, and as a function of the normalized height, h/hmax. Overall, mean velocity results are very
similar and almost independent of the spatial discretization level of mesh. Still, small differences
can be seen between mesh M0 and the other three meshes, especially in the mean velocity profiles
at stations R2, R3 and R4. For instance, the coarser mesh consistently underestimates Vz and
Vu, and it is not sufficiently refined to correctly capture the mean tangential velocity peak at
h/hmax = 0.8 at station R2. Moreover, looking at the turbulence kinetic energy profiles, shown
in Fig. 4.7, M0 results are clearly overestimated in the three last stations compared to the other
meshes. In terms of head losses, however, convergence is only attained after the second mesh
refinement, i.e., with mesh M3, which predicted values are only 0.3% higher than those predicted
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with M4, against 1.5% and 3.0% with meshes M1 and M3, respectively. For these reasons, the
following draft tube simulations in this thesis using RANS and the k-ω SST turbulence model
are performed with mesh M3.

Figure 4.5: Normalized mean axial velocity profiles obtained with meshes M0 to M3 in RANS.

Figure 4.6: Normalized mean tangential velocity profiles obtained with meshes M0 to M3 in RANS.

Figure 4.7: Normalized turbulence kinetic energy profiles obtained with meshes M0 to M3 in RANS.

4.3.2 LES

Previous DES and Zonal LES computations of the flow inside draft tubes followed the same
classic procedure used in the previous RANS spatial discretization study and systematically
refined the mesh until the convergence of the numerical results was attained [8, 73, 149]. However,
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conversely to RANS, the spatial discretization of the numerical domain in LES affects not only
the mean flow gradients but also which portions of the turbulent flow are going to be modelled by
the sub-grid scale model and which portions are going to be explicitly resolved [86]. Moreover,
as the computational cost is considerably higher in this method, a global approach for the mesh
refinement is not ideal as it does not consider which portions of the flow are more important to
be refined. Therefore, determining what is a good spatial discretization in LES is considerably
more difficult than in RANS. Following the same procedure described in Wilhelm [160], the
mesh convergence study in LES was divided into two parts: first, we shall consider the near-wall
resolution of the draft tube and, then, the discretization of the internal flow.

Near-wall discretization

The first step in the spatial discretization study in LES consisted in analysing the effect of
the near-wall mesh discretization on the results. Due to the prohibitively high computational
cost associated with wall resolved LES, a few layers of prismatic elements was used to reduce
the overall mesh size and to keep reasonable y+ values at the walls. Conversely to Wilhelm
[160], each prismatic element was later converted into six tetrahedrons due to a requirement of
the Laplacian operator used for the projection step. One key element in the discretization of
the near-wall mesh was the aspect ratio of the first element at the walls, i.e., the ratio between
its length and height. While higher values of aspect ratio reduce the total number of elements
for a given y+, they also increase the skewness and therefore degrade the mesh quality and
computation performance. Wilhelm [160] used an aspect ratio of 30 in the cone of the draft
tube to obtain average y+ ≈ 10, but she did not have to convert the prismatic elements on the
walls into tetrahedrons. In our case, such high aspect ratio values would result in extremely
poor quality elements and potentially unstable numerical simulations. Thus, y+ values were
sacrificed in detriment of lower aspect ratios and better quality meshes in LES. Table 4.2 show
the main characteristics of the three near wall mesh refinements used in our spatial discretization
studies. Notice that for mesh M3, the aspect ratio had to be increased slightly, otherwise the
total number of elements in the mesh would be prohibitively high. Furthermore, the high y+

values justify the use of a wall-model, as explained in Section 4.2.2.

Table 4.2: Characteristics of the three meshes used for the near-wall spatial discretization study in LES.

Mesh M1 M2 M3

Number of elem. (×106) 6.63 13.5 23.0
Number of nodes (×106) 1.22 2.45 4.11
1st elem. Aspect Ratio 5 5 8
Maximum y+ 185 156 77
Average y+ 105 81 41

Mean axial and tangential velocity profiles obtained with the three meshes are shown in Figs.
4.8 and 4.9. The influence of the near-wall discretization on the mean velocity field is negligible
since the obtained profiles are very similar in this region of the flow. Although small differences
exist in the centre region of the flow, i.e., away from the walls, they can be due to the internal
discretization of the numerical domain, which will be discussed next. Anyway, these conclusions
are in accordance with Wilhelm [160], who performed LES of a similar draft tube configuration,
using the same wall-model, but with high quality fully tetra meshes of up to 1.4 billion elements
and y+ between 10 and 750. Indeed, despite the significant y+ values, the wall-model is still
able to correctly capture main flow because the boundary layer is subjected to a quasi constant
adverse pressure gradient inside the draft tube and flow swirl acts in the sense of stabilizing it,
which renders it less controlled by the wall friction compared to the classical boundary layer
over a flat plate. Given the considerably lower computational cost associated with the coarsest
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mesh, M1, all following LES computations in this thesis use this near-wall spatial discretization.

Figure 4.8: Normalized mean axial velocity profiles obtained with meshes M1 to M3 in LES.

Figure 4.9: Normalized mean tangential velocity profiles obtained with meshes M1 to M3 in LES.

Interior discretization and automatic mesh adaptation strategy

For the interior mesh, an automatic mesh adaptation procedure proposed by Benard et al.
[9] is used to efficiently discretize the domain. The goal of this procedure is twofold: first,
to guarantee an accurate resolution of the mean flow field and, second, to ensure that enough
turbulent scales motions are explicitly resolved. This automatic procedure is implemented in
YALES2 and generates a mesh refinement ratio field (i.e., the ratio between the original and the
refined mesh sizes), which is then used by MMG3D [32] to automatically refine the mesh based on
two different criteria. The first criterion, QC1, is based on the minimization and homogenization
of the discretization error of the mean velocity gradients in the solution, similar to what is done
in RANS. The error associated with the interpolation u∗ of velocity u on a mesh of size ∆ is
limited by a quantity QC1 and can be estimated by Eq. (4.1):

QC1 = ∆2 max
i=1,2,3

(∣∣∣∣∣
∂2u∗j
∂x2

i

∣∣∣∣∣

)
(4.1)

Since most SGS models are based on the assumption that the smallest scales are far from the
largest and most anisotropic scales of the flow, these small scales must be located in the inertial
range, where a universal behaviour for the scales transfer is expected. The second criterion,
QC2, ensures that enough turbulent scales are explicitly resolved to guarantee the validity of
the LES approach inside the domain. For the case of a fully developed turbulence with a classic
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Kolmogorov spectrum, it can be shown that enough scales are resolved if more than 80% of the
total turbulent kinetic energy is explicitly resolved [126]. Thus, QC2 is defined by Eq. (4.2),
where Esgs and ER are, respectively, the SGS and resolved total turbulent kinetic energy.

QC2 =
Esgs

Esgs + ER
6 0.2 (4.2)

The local mesh size, ∆, is directly found in the equation defining QC1, whereas it can be
estimated from the term Esgs in the equation defining QC2

1. These two criteria are evaluated
from the mean flow quantities in the LES solution, meaning that the flow must be statistically
converged before any adaptation being applied. Once these two criteria are determined all
over the numerical domain, a refinement ratio field is calculated and used to determine which
portions of the mesh should be refined (or coarsened) and by what amount. MMG3D then uses
this information to automatically generate a high quality tetra mesh which replaces the old not
adapted mesh. Brugière [14] and Wilhelm [160] used this same procedure to perform LES of the
flow inside a bulb turbine draft tube. However, while they controlled the adaptation process
by informing a desired number of elements in the adapted mesh, our implementation is slightly
different, and it is QC1 which is defined in the beginning of the adaptation. The final number
of elements in the adapted mesh is thus a consequence of this QC1.

MMG3D implementation’s in YALES2 generates high quality (i.e., mostly isotropic) tetra
meshes. Since QC1 is greatly affected by the important velocity gradients near the walls, any
prismatic layers of elements used to control y+ values and to keep the simulation at a reasonable
computational cost (even if converted into tetrahedrons, like the ones discussed in Section 4.3.2)
are destroyed by the adaptation process. As a consequence, prohibitively large meshes are
required otherwise y+ are too high and even the application of a wall model can be compromised.
For instance, in addition to a mesh containing a few layers of prismatic elements at the walls,
Wilhelm [160] also investigated fully tetra meshes in LES, which have been notably adapted
by the procedure described above. While the original mesh with prismatic layers had only 16
million elements and average y+ ≈ 10, the finest fully tetra mesh had 1.4 billion elements and an
average y+ of approximately 50. It is thus crucial for our simulations to preserve the prismatic
layers of elements discussed in the previous section, at the risk of having an extremely high
computational cost. A masking strategy schematically shown in Fig. 4.10 was therefore used in
the context our LES. It allowed for just the part of the mesh away from the walls, i.e., outside the
layers of prismatic elements, to be adapted during the adaptation process, whereas the region
close to the walls remained untouched.

Figure 4.10: Detail of the masking applied to the automatic mesh adaptation. In red, the masked region unable
to adapt; in blue, the region able to adapt.

With both masking and adaptation strategies in place, and starting with the not-adapted
version of the mesh M1 discussed in the previous section, three more meshes were generated by
changing the value of QC1. Table 4.3 resumes the main characteristics of the four meshes (one
not-adapted and three adapted), while Fig. 4.11 show the details of the adaptation in the cone

1For more details, see Bernard et al. [9].
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of the draft tube, just downstream the hub.

Table 4.3: Characteristics of the four meshes used for the interior spatial discretization study in LES.

Mesh M1 M1A M1B M1C

QC1 - 20 10 5
Number of elem. (×106) 6.63 10.6 12.6 17.6
Number of nodes (×106) 1.22 2.02 2.39 3.34

(a) (b) (c) (d)

Figure 4.11: Detail of the automatic mesh adaptation strategy near the hub of the draft tube. (a) M1 not adapted;
(b) M1A; (c) M1B; (d) M1C.

As expected, most of the adaptation occurs in the regions of high velocity gradients and
turbulence due to the two adaptation criteria. In the case of the draft tube flow, these regions
are mainly located near the walls and behind the hub, where a large vortical structure (central
vortex) is formed as a result of the interaction between the hub and the swirling flow entering the
draft tube [108]. To illustrate the impact of the automatic mesh adaptation on these structures,
Fig. 4.12 show the iso-surfaces of Q-criterion [86] inside the draft tube coloured by the vorticity
in the z-axis direction. While all four meshes are able to capture the large central vortex inside
the draft tube, smaller structures are observed around this vortex and close to the hub as the
mesh is refined and the flow resolution improved. These small structures interact with the large
vortical structure at the centre of the flow to the point where, in the most refined case, mesh
M1C, its helical shape is no longer easily identifiable downstream.

Of course, refining the mesh has an important impact on the final computational cost in LES,
which not necessarily translates into better results. Looking at the mean velocity field inside the
draft tube, Figs. 4.13 and 4.14 shown the mean axial and tangential velocity profiles obtained
with these three adapted meshes compared to the original not-adapted mesh M1. In spite of the
differences in terms of turbulent structures captured in each case, the impact of the automatic
mesh adaptation procedure on the mean flow is limited, especially in the case of axial velocity.
Still, Vz values predicted by the coarse not-adapted mesh in the centre of the flow at station
R5 are quite overestimated in comparison with to the other adapted meshes. In the case of Vu,
the original mesh M1 underestimated the values near the centre of the flow (h/hmax = 1.0) at
station R1. This result is amplified and the peak value of Vu at station R2 and h/hmax = 0.8
is clearly underestimated by the not-adapted mesh. This is expected and is a consequence of
the poor central vortex prediction in this case shown in Fig. 4.12. The adapted meshes are
clearly better in predicting this peak value, but at station R3, the coarsest of them, mesh M1A,
underestimated Vu between 0.6 ≤ h/hmax ≤ 0.8 in comparison with M1B and M1C. Indeed, it
does not seem necessary to use a refinement level equivalent to M1C since the results with M1B
are sufficiently close at a considerably lower computational cost. For this reason, the following
LES computations in this thesis are run using a near-wall mesh refinement equivalent to M1, but
an interior mesh discretization level equal to M1B. It should be emphasized, however, that the
different operating conditions will lead to different interior mesh refinement, as the adaptation
process is strongly dependent on the flow characteristics.
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(a) (b)

(c) (d)

Figure 4.12: Turbulent structures inside the draft tube visualized by iso-surfaces of Q-criterion and coloured by
their vorticity z. (a) M1 not adapted; (b) M1A; (c) M1B; (d) M1C.

Figure 4.13: Normalized mean axial velocity profiles obtained with meshes M1A to M1C in LES.

Figure 4.14: Normalized mean tangential velocity profiles obtained with meshes M1A to M1C in LES.
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4.4 Comparison with experimental data at OP1

4.4.1 Velocity and turbulence profiles

Figure 4.15 show the comparison of normalized mean axial velocity profiles at the five mea-
surement stations inside the numerical domain. At station R1, both reference RANS simulations
and LES predict very similar results, though Vz values are mostly overestimated compared to
the experiments between 0.1 ≤ h/hmax ≤ 0.8. Towards the centre of the flow (h/hmax = 1.0),
a rapid increase in the mean axial velocity values is observed in the experiments, which is by
the LES solution, though the peak values of Vz are still underestimated. Conversely, the RANS
simulation using the k-ω SST turbulence model does not predict this rapid increase, which is
compensated by slightly overestimated mean axial velocity values near h/hmax ≈ 0.0. At sta-
tions R2 and R3, the very low Vz values in the centre of the flow and associated with the large
central vortex shown in Fig. 4.12 are very well captured in LES, whereas in RANS they are
overestimated at R2 and underestimated at R3. Indeed, at station, RANS simulation using the
k-ω SST turbulence model underestimates the mean axial velocity in this region of the flow and
predict the start of a recirculation region (due to negative values of Vz), which extends until
the last measurement station, R5. This same superiority of LES in capturing the central vortex
behaviour was observed previously in Brugière [14] and Wilhelm [160] and is one of the reasons
simple steady and unsteady RANS simulations using two-equation linear eddy viscosity models
are unsuitable for the type of flow found inside a draft tube [134, 56]. Starting at station R2,
LES results consistently underestimates Vz near the external walls, i.e., close to h/hmax = 0.0,
indicating a faster thickening of the boundary layer compared to the experiments. In RANS,
this behaviour is not as pronounced as in LES, possibly due to the overestimation in this region
of the flow at station R1, but Vz are still underpredicted compared to the experiments. As a
consequence of the underestimated flow rate close to the walls, both numerical results overes-
timate the mean axial velocity values in the intermediate region of the flow. This is actually
seen since station S1, but as the central vortex grows wider, the difference between numerical
and experimental Vz values increase. For instance, at station R3, experimental measurements
show a small axial velocity peak near the walls and another one close to h/H = 0.6. Conversely,
numerical profiles show no mean axial velocity peak but rather a constant and overestimated Vz
value between 0.3 ≤ h/H ≤ 0.5.

Figure 4.15: Normalized mean axial velocity profiles for the reference simulations of the draft tube at OP1 using
RANS and LES.

The results for normalized mean tangential velocity profiles are shown in Fig. 4.16. Like in
the previous profiles, both turbulence methods yielded very similar results at station R1 and
agree quite well with the experimental data, except for the small variation at 0.8 ≤ h/hmax ≤ 0.9
which is not captured numerically, and the tangential velocity near the external walls (h/hmax =
0.0), which is very underestimated in both RANS and LES. At station R2, however, numerical
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results are mostly overestimated compared to the experiments, especially towards the centre of
the flow. At h/hmax = 0.8, both reference simulations predict a peak in the profile of Vu, which
is not seen experimentally. Indeed, experimental measurements even predict negative mean
tangential velocity values at h/hmax ≥ 0.9. While this indicate the presence of counter-rotating
vortex rope and is normally associated with turbines operating at high-load configurations [72],
it is possible that the corrections applied to the experimental data in OP1 (see Section 3.2.3) be
the real cause for this behaviour and the reason it is not captured by the numerical simulations.
By station R3, the mean tangential velocity peak is completely dissipated in RANS, whereas it
is still observed in LES at h/hmax = 0.7. Numerical results are also closer to the experimental
values, though the predicted Vu near the walls is very underestimated. This near-wall behaviour
is improved at station R4, but a small peak is predicted in LES, which is not observed in the
experiments neither in RANS. Finally, at station R5, Vu varies almost linearly from the walls
and towards the centre of the flow, however, LES results are overestimated compared to RANS
and experimental measurements.

Figure 4.16: Normalized mean tangential velocity profiles for the reference simulations of the draft tube at OP1
using RANS and LES.

Turbulence kinetic energy profiles are shown in Fig. 4.17. The results are normalized by the
square of the average axial velocity at the inlet of the domain, Vb,in. Experimental measurements
are limited to the near wall region because they were taken in only one of the two campaigns
that produced the results for OP1. RANS results using the k-ω SST turbulence model predict
quite well the turbulence kinetic energy level at the between stations R1 and R3, but ultimately
underestimate its values at the last two stations, R4 and R5. Conversely, LES results are mostly
underestimated at stations R1 and R2, which is expected since no turbulent inlet conditions are
being imposed at the domain. However, as flow instabilities naturally develop along the draft
tube, the turbulence kinetic energy results obtained between stations R3 and R5 are at the same
level of the experiments.

4.4.2 Static pressure profiles and distribution along the walls

Figure 4.18 show the results for the static pressure, Ps, profiles inside the draft tube. The
static pressure measured middle height (h/hmax = 0.5) at station R0, Ps,mid,R0, is used as
reference for the measurements. Furthermore, the results are also normalized by the dynamic
pressure evaluated from the average axial inlet velocity, i.e., qin = 0.5ρV 2

b,in. Overall, numerical
results are very similar at station R1 and seems at the good level compared to the experiments.
However, the static pressure peak near h/hmax = 0.0 is captured neither in RANS nor LES,
and the same goes for the depression towards h/hmax = 1.0. At station R2, LES results are
slightly underestimated between 0.0 ≤ h/hmax ≤ 0.7 compared to RANS and experiments. As
a consequence of the central vortex prediction, RANS consistently predicted the lowest static
pressure values right at the centre of the flow (h/H = 1.0). Conversely, the position of this



4.4. Comparison with experimental data at OP1 69

Figure 4.17: Normalized turbulence kinetic energy profiles for the reference simulations of the draft tube at OP1
using RANS and LES.

depression varies in LES depending on the station, going from h/H ≈ 0.9 at R2 to h/H ≈ 0.6
at R4. This behaviour is very similar to what has been measured during the experiences and
are a result of the divergent shape of central vortex rope (see Fig. 4.12). Nevertheless, the
magnitude of this depression is still underestimated numerically. Between stations R3 and R5,
both numerical results seem shifted with respect to the experiments, although LES follows the
experimental distribution of Ps compared to RANS.

Figure 4.18: Normalized static pressure profiles for the reference simulations of the draft tube at OP1 using RANS
and LES.

The static pressure evolution along the walls of the draft tube and measured at stations S1,
S2 and S3 are shown in Fig. 4.19. The static pressure at the first measurement point, located
at the same axial position of station R1, Ps,wall,R1, is used as a reference, and the results are
again normalized by the dynamic pressure qin. From the results, it is clear that most of the
static pressure recovery takes place in the cone of the draft tube, i.e., between 0.0 ≤ z/L ≤ 0.4.
Both reference simulations capture very well this behaviour, and the smaller pressure recovery
downstream the cone, although LES results are overestimated at station S2. It should be to
noticed how the geometry of the final portion of the draft tube modifies the static pressure
evolution along the walls, especially at stations S2 and S3. For instance, Ps,wall follows almost
a straight line between z/L = 0.4 and 1.0 in the case of station S1, whereas a small valley is
observed at z/L = 0.8 in station S2 and a peak at z/L ≈ 1.0 in station S3. Both RANS and
LES captured these small variations downstream the draft tube.

Finally, the static pressure distribution measured circumferentially at stations C1 to C5
and EX (see Fig. 3.1) on the draft tube are compared. Initially, the static pressure measured
middle height at station R0, Ps,mid,R0, is used as reference, however, as shown in Fig. 4.20, the
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Figure 4.19: Normalized streamwise static pressure evolution at the walls for the reference simulations of the draft
tube at OP1 using RANS and LES.

experimental and numerical results are systematically shifted with respect to each other. This
is possibly due to the fact that different probes have been used to measure the values of Ps on
the walls and Ps,mid,R0 during the experiments, respectively a wall-mounted pressure tap and a
five-hole pressure probe. A different reference pressure taken with the same type of probe is thus
chosen, notably the average static pressure on the walls measured at station C1, Ps,C1. Figure
4.21 shows the results obtained with this new reference pressure. While numerical results are
slightly overestimated between the circumferential stations C2 and C4, reference RANS result
agree quite well with the experimental at station C5, whereas LES overestimate Ps values.
Conversely, at station EX, LES results yield a very good match with the experimental while
RANS underestimate the static pressure at the walls.

Figure 4.20: Normalized circumferential static pressure distribution at the walls for the reference simulations of
the draft tube at OP1 using RANS and LES. Reference as the static pressure measured middle height
at station R0, Ps,mid,R0.

4.4.3 Head losses analysis

The importance of well predicting the static pressure evolution at the walls of the draft
tube, especially at the circumferential stations, is to evaluate the head losses inside the draft
tube according to the IEC standard [145], as explained in Section 3.2.2. Normally, these losses
are measured between the inlet and exit of the draft tube, stations R0 and EX, respectively.
By decomposing the total head losses, ∆Htot, into their static, ∆Hsta, and a dynamic, ∆Hdyn,
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Figure 4.21: Normalized circumferential static pressure distribution at the walls for the reference simulations of
the draft tube at OP1 using RANS and LES. Reference as the average static pressure on the walls
measured at station C1, Ps,C1.

heads, we have Eq. (3.3):

∆Htot = ∆Hsta + ∆Hdyn (4.3)

where, ∆Hsta is the difference between the mass flow averaged static pressure at the plane R0
and the average static pressure at walls at EX, i.e.,

∆Hsta =
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and ∆Hdyn is the difference between the mass flow averaged dynamic pressure at plane R0 and
the dynamic pressure calculated using the average axial velocity at the plane EX, i.e.,
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Experimental and numerical results are shown in Fig. 4.22. Since ∆Hdyn values are inde-
pendent of the case due to the axisymmetric mean velocity profiles imposed as inlet conditions,
differences in total head losses come exclusively from static head, which is negative due to the
increase in static pressure caused by the divergent shape of the draft tube [61, 99]. Although
the two turbulence methods yield similar results for ∆Hsta, experimental static head variation
is significantly lower and therefore the numerical ∆Htot values are greatly overestimated.

Figure 4.22: IEC losses between stations R0 and EX for the reference simulations of the draft tube at OP1 using
RANS and LES.
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This difference can be explained, however, by the static pressure shift between the five-
hole pressure probes and wall-mounted pressure taps, as discussed in Figs. 4.20 and 4.21. For
instance, while the former are used to evaluate the first element on the r.h.s. of Eq. (4.4), the
latter is used to evaluate the second element on the r.h.s. on this same equation. Thus, as
the experimental measurements coming from these probes are systematically shifted, ∆Hsta is
definitely impacted. To mitigate this issue, only the static pressure measurements coming from
the wall-mounted pressure taps are used to evaluate the static pressure evolution along the walls
using, keeping the consistency on the utilized data. Indeed, this is the same approach used to
create the graphs in Fig. 4.21, where Ps,C1 was used as reference static pressure for the rest of
the draft tube. As a result of this modification, the first element on the r.h.s. in Eq. (4.4) is
given by:

∆Hsta =
1

ρg
〈Ps,C1〉 −

1

ρg
〈Ps,EX〉 (4.6)

Accordingly, the first element on the r.h.s. in Eq. (4.5) is also measured at station R1 (same
axial position of C1), instead of R0, i.e.,
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The results with these modified equations are shown in Fig. 4.23. Small differences in the
velocity profiles at station R1 have an impact on the mass flow averaged dynamic pressure at
this location and therefore ∆Hdyn depends on the case. However, conversely to the previous
analysis, the numerical prediction of static head variation is much closer to the experimental
measurements, especially in the case of LES. These results are in accordance with the static
pressure results previously discussed and, as a consequence, total head losses, ∆Htot, is very
well predicted in LES, only 6% overestimated with respect to the experiments, whereas RANS
the results are 25% overestimated.

Figure 4.23: IEC losses between stations R1 and EX for the reference simulations of the draft tube at OP1 using
RANS and LES.

4.5 Influence of turbulent boundary conditions in LES

Despite the very encouraging head losses results obtained for the first operating point, OP1,
these values are based on integral quantities of the flow and do not properly reflect how these
head losses are occurring on the flow. Indeed, as well demonstrated in Wilhelm et al. [159],
the real head losses inside the draft tube are very dependent on internal distribution of both
velocity and static pressure fields. In this regard, the reference numerical simulations of the
draft tube at OP1 did not yield a very good match with the experimental data, especially in
the case of mean velocity profiles. For instance, the numerical results underestimated the mean
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axial velocity near the walls leading to overestimated Vz in the intermediate region of the flow.
Moreover, both reference RANS and LES solutions failed to predict the two mean axial velocity
peaks at stations R3 and R4 and consistently underestimated the static pressure, Ps, inside the
draft tube. In their computations of the flow inside a bulb turbine draft tube, Brugière [14]
and Wilhelm [160] also observed some discrepancies between numerical and experimental mean
velocity profiles close to the walls, in particular. Brugière [14] then analysed the uncertainty
of the inlet velocity profiles near the walls in RANS, but found that this was not sufficient to
explain the differences on the flow behaviour downstream. Wilhelm [160], on the other hand,
investigated the wall-roughness in LES and was able to partially improve the results. However,
in both cases, the mean velocity near the draft tube walls was overestimated compared to the
experiments, which is exactly the opposite of is observed in Figs. 4.15 and 4.16. Thus, increasing
the wall-roughness, like in Wilhelm [160], would just worsen the numerical results.

Another aspect of the inlet boundary conditions, particularly in LES, which has not been
investigated by Brugière [14] and Wilhelm [160], though, was the turbulence entering the domain.
For instance, as explained in Section 4.2.2, the standard approach used in both works was to
let the instabilities naturally develop within the draft tube, instead of imposing some sort of
fluctuating field at the inlet of the domain. Nevertheless, the results in Fig. 4.17 clearly show
that the turbulence kinetic energy predicted in the reference LES is quite underestimated in the
beginning of the draft tube. Moreover, the fast thickening of the boundary layer in the mean
axial velocity profiles shown in Fig. 4.15 indicate a lack of turbulence upstream the flow. The
problem of imposing turbulent inlet conditions is to generate and impose a proper fluctuating
field, as discussed in Section 2.4. Due to the very limited information about the turbulent flow at
the inlet of the numerical domain (station R0), which goes down to the profile of k, essentially, a
simple homogeneous isotropic synthetic turbulent field is generated in imposed in our LES of the
draft tube discussed above. The method to generate and inject this field in YALES2 is explained
in Section 2.4 and shown in Fig. 2.7, and depends on four inputs from the user: a normalized
turbulent kinetic energy distribution, an injection speed at the inlet of the domain, a velocity
scale, u′, and a length scale, le. While the normalized profile of k is obtained directly from the
experimental data, as shown in Figs. 4.2 and the injection speed is assumed to be equal to the
average axial velocity at the inlet, Vb,in, determining the correct characteristic velocity, u′, and
length, le, scales is far more complicated and several combinations are tested to investigate their
impact on the downstream flow behaviour. For instance, u′ varies between 0.1, 0.6 and 1.2 of
Vb,in, whereas le is either 0.2 or 0.4 of the inlet channel height, hmax,R0.

4.5.1 Velocity and turbulence profiles

The turbulence kinetic energy profiles inside the draft tube predicted in LES with/without
the synthetic turbulence injection is shown in Fig. 4.24. Compared to the previous reference
simulations, the cases with u′ = 0.1Vb,in still underestimate k at station R1, but are much closer
to the experimental measurements between 0.1 ≤ h/hmax ≤ 0.4. Conversely, stronger synthetic
fluctuations overestimate k values at station R1 but are closer to the correct level at station
R2, which can be explained by the quick dissipation of the synthetic fluctuations close to their
injection plane. Indeed, a very good agreement is found between the LES case with u′ = 0.6Vb,in
and le = 0.2hmax,R0 and the experimental data at this station. Further downstream, at station
R3, all numerical results predict similar levels of turbulence close to the walls, including the
reference case without synthetic turbulence injection. Interestingly, at station R4 and especially
R5, the most turbulent cases, with u′ = 0.6Vb,in and u′ = 1.2Vb,in, underestimate k near the
walls, which can be explained by the different mean velocity gradients in this region of the flow.

The effect of the synthetic turbulence injection on the mean axial velocity profiles is shown
in Fig. 4.25. Overall, the weakest injected fluctuations, i.e., u′ = 0.1Vb,in, has no effect on
the distribution of Vz inside the draft tube, in spite of the slightly modified turbulence kinetic
energy profiles shown in Fig. 4.24. Conversely, in the case with u′ = 0.6Vb,in and 1.2Vb,in, the
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Figure 4.24: Normalized turbulence kinetic energy profiles for the reference simulations of the draft tube at OP1
using LES with/without synthetic fluctuations.

boundary layer prediction is improved as the mean axial velocity values are increased in this
region of the flow (h/hmax = 0.0). As a consequence of the increased flow rate near the walls, Vz
is reduced in the intermediate region of the flow between stations R2 and R4, which brings the
results closer to the experimental measurements. Finally, increasing the characteristic length
scale, le, improves the results at station R5, but increases the dissipation of the central vortex,
which compromises the numerical prediction between stations R2 and R4.

Figure 4.25: Normalized mean axial velocity profiles for the reference simulations of the draft tube at OP1 using
LES with/without synthetic fluctuations.

4.5.2 Static pressure profiles and distribution along the walls

In addition to the velocity field, injecting synthetic fluctuations in LES also impacted the
static pressure distribution inside the draft tube. This can be seen on Fig. 4.26, which shows
the normalized static pressure profiles. At station R1, the cases with u′ = 1.2Vb,in are slightly
shifted with respect to the LES cases, and the static pressure peak near h/hmax = 0.0 is captured
by the case with le = 0.4hmax,R0. Between stations R2 and R5, however, Ps is overestimated
by the cases with u′ = 1.2Vb,in. Conversely, with u′ = 0.6Vb,in, the numerical results agree very
well with the experimental data, although a larger le dissipates too much the central vortex and
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the position of the low pressure region is not well predicted. Finally, similarly to the previous
results, weak synthetic fluctuations, i.e., u′ = 0.1Vb,in does not affect the results compared to
the reference case without turbulence injection.

Figure 4.26: Normalized static pressure profiles for the reference simulations of the draft tube at OP1 using LES
with/without synthetic fluctuations.

Comparing the streamwise evolution of normalized static pressure at the walls in LES, shown
in Fig. 4.27, it is clear that injecting synthetic fluctuations increases Ps on the walls and
overestimates its values compared to the experiments. The variation is small, though, and this
behaviour is more pronounced between 0.2 ≤ z/L ≤ 0.75, especially at station S1. Pressure
recovery in this region of the flow is therefore modified by the synthetic fluctuations, but close
to the exit of the draft tube, z/L = 1.0, results are almost independent of the turbulence level,
indicating that the overall performance of the draft tube is not so affected. Similarly, as shown
in Fig. 4.28, the circumferential static pressure distribution is also shifted by the injection of
synthetic fluctuations in LES. Like in the previous streamwise results, Ps increase as the injected
turbulence gets stronger, especially between stations C2 and C5. At the station close to the exit
of the draft tube, EX, differences between the cases with/without synthetic turbulence injection
are small, and the results agree very well with the experimental data.

4.5.3 Head losses analysis

Figure 4.29 compares the IEC losses inside the draft tube using the modified Eqs. (4.6) and
(4.7). The cases with synthetic turbulence injection are grouped by the length scale to facilitate
the analysis. Starting with the smallest le, equal to 0.2hmax,R0, the impact of the injected
synthetic fluctuations is small, although ∆Htot values are still improved as u′ increases. For
instance, the 6% difference between experimental and numerical total head losses obtained with
the reference LES without turbulence injection, is down to 1.8% in the case with u′ = 0.6Vb,in
and 0.6% in the case with u′ = 1.2Vb,in. This improvement is due to a better prediction of the
variation in dynamic head, which is ultimately controlled by the mean velocity profiles at station
R1. Interestingly, looking at the results for Vz at this location (see Fig. 4.25), injecting moderate
and strong synthetic fluctuations dissipates the peak near h/hmax = 0.9 and overestimates the
mean axial velocity near h/hmax = 0.0. In the cases with le = 0.4hmax,R0, however, the impact of
u′ is more pronounced and ∆Htot is underestimated in the cases with u′ = 0.6Vb,in and 1.2Vb,in.
This is a consequence of important variations of ∆Hsta and ∆Hdyn in these cases.

The problem with the IEC losses is that they do not take into account the distribution of
velocity and static pressure profiles in the exit of the draft tube, and therefore they can differ
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Figure 4.27: Normalized streamwise static pressure evolution at the walls for the reference simulations of the draft
tube at OP1 using LES with/without synthetic fluctuations.

Figure 4.28: Normalized circumferential static pressure distribution at the walls for the reference simulations of
the draft tube at OP1 using LES with/without synthetic fluctuations. Reference as the average static
pressure on the walls measured at station C1, Ps,C1.

from the real head losses. Starting from the same total head losses decomposition shown in Eq.
(4.3), the real static and dynamic head variations inside the draft tube can be evaluated as the
difference in mass flow averaged Hsta and Hdyn at the inlet and a given downstream plane, i.e.,
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Figure 4.29: IEC losses between stations R1 and EX for the reference simulations of the draft tube at OP1 using
LES with/without synthetic fluctuations.

By varying the position of the downstream cross-section, it is possible to evaluate the evolu-
tion of total head losses inside the draft tube, as shown in Fig. 4.30. The results are normalized
by the total head losses between the inlet and outlet of the draft tube in the reference LES case
without turbulence injection, ∆HREF. LES . Since the experimental data is limited to measure-
ments at radial traverses at a few stations, it is not possible to evaluate the real head losses
in this case. Nevertheless, it is clear from that figure that, despite the very similar IEC losses
shown previously, real head losses vary significantly depending on the synthetic turbulence level.
In the cases without synthetic turbulence, evolution of ∆Htot is similar to what has been found
in Wilhelm [160], with most of the head losses occurring in the first half of the draft tube.
However, what is interesting on the curves shown in Fig. 4.30, is the evolution of ∆Htot in the
beginning of the draft tube, i.e., between 0.0 ≤ h/hmax ≤ 0.2. As the incoming fluctuations
become stronger (e.g., cases with u′ = 0.6Vb,in and 1.2Vb,in), negative values of total head losses
are found. This behaviour is not expected and indicate that the total mean kinetic energy of
the flow, increases close to the inlet of the numerical domain, before gradually reducing further
downstream. As explained in Section 2.4, the injected synthetic fluctuations are not necessarily
correlated (temporal and spatially) with the mean flow and, as a result, a transition region
is expected close to their injection plane. Indeed, within this transition region, the incoming
fluctuations will adapt and develop, and it is possible that part of the energy contained in these
turbulent structures be transferred to the mean flow via the production term, affecting thus the
head losses.

To further understand the synthetic turbulence transition issue and the cause behind this
unexpected head losses behaviour close to the inlet of the numerical domain, we can look at
the turbulent structures being injected in this region of the flow. Figure 4.31 shows them using
iso-surfaces of Q-criterion coloured by the vorticity in the z-axis direction. As expected, in
the reference LES case without synthetic turbulence injection, there are no turbulent structures
visible at the inlet plane, which will develop at the walls and further downstream in the centre
of flow due to large vortex in this region. Conversely, a few structures are seen in the case
with u′ = 0.1Vb,in, but as demonstrated by the previous results, they are not strong enough to
significantly modify the downstream behaviour of the flow. Increasing u′ to 0.6Vb,in or 1.2Vb,in has
an important effect and many turbulent structures are seen at the inlet of the domain. However,
as the synthetic fluctuations get stronger, a rapid variation in vorticity values is observed close
their injection plane, indicating thus that they need to adjust to the mean flow entering the
draft tube.

The effect of the transition region due to unrealistic synthetic fluctuations is also observed in
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Figure 4.30: Real head losses evolution for the reference simulations of the draft tube at OP1 using LES with-
/without synthetic fluctuations.

the distribution of resolved turbulent kinetic energy production, term V in Eq. (2.35), shown in
Fig. 4.32. In the reference case without turbulence injection or with weak synthetic fluctuations
(i.e., u′ = 0.1Vb,in), resolved production is mostly zero close to the inlet of the draft tube, except
at the walls and downstream the hub, where some turbulence is generated as a result of flow
shear and the central vortex. In the cases with stronger synthetic turbulence injection, turbulent
production is clearly affected by the incoming fluctuations. Like the vorticity in the previous
figure, there is a rapid variation of term V close to the inlet of the domain, associated with the
decay and adjustment of the unrealistic turbulence being injected. Indeed, depending on the
case, negative values of turbulent kinetic energy production are observed in this region of the
flow, which means that there is an inverse energy transfer from the turbulent flow field to the
mean flow field. As the resolved turbulent kinetic energy production term is the most important
source of head losses inside a draft tube [159], it is clear that the synthetic fluctuations are the
main cause for the unrealistic behaviour of real ∆Htot in Fig. 4.30.

4.6 Comparison with experimental data at OP2

Before exploring the issue with negative values of head losses caused by the decay of unrealis-
tic synthetic fluctuations, the second operating point tested during the experimental campaign,
OP2, is investigated in this section. The same numerical setup in the previous RANS and LES
computations is used, except for the inlet profiles, which are now given by the curves shown in
Fig. 4.33. In the case of LES, synthetic fluctuations are once again injected into the reference
numerical domain to examine their influence on the velocity and pressure fields, as well as in
the head losses evolution inside the draft tube. The same three levels of velocity scale, u′, and
length scale, le, are tested. Since most results are somehow normalized by the average axial
velocity at the inlet of the draft tube, Vb,in, it should be noticed that this value is about 10%
higher in OP2 compared to OP1.

4.6.1 Velocity and turbulence profiles

The normalized axial velocity profiles for the second operating point are shown in Fig. 4.34.
Both reference RANS simulations and the LES without synthetic turbulence injection yield
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(a) (b)

(c) (d)

(e) (f)

Figure 4.31: Turbulent structures inside the draft tube visualized by iso-surfaces of Q-criterion and coloured by
their vorticity z. (a) REF. LES (OP1, no turb.); (b) REF. LES (OP1, u′ = 0.1Vb,in, le = 0.2hmax,R0);
(c) REF. LES (OP1, u′ = 0.6Vb,in, le = 0.2hmax,R0); (d) REF. LES (OP1, u′ = 0.6Vb,in, le =
0.4hmax,R0); (e) REF. LES (OP1, u′ = 1.2Vb,in, le = 0.2hmax,R0); (f) REF. LES (OP1, u′ = 1.2Vb,in,
le = 0.4hmax,R0).
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(a) (b) (c)

(d) (e) (f)

Figure 4.32: Distribution of resolved turbulent kinetic energy production, term V in Eq. (2.35), close to the inlet of
the draft tube. (a) REF. LES (OP1, no turb.); (b) REF. LES (OP1, u′ = 0.1Vb,in, le = 0.2hmax,R0);
(c) REF. LES (OP1, u′ = 0.6Vb,in, le = 0.2hmax,R0); (d) REF. LES (OP1, u′ = 0.6Vb,in, le =
0.4hmax,R0); (e) REF. LES (OP1, u′ = 1.2Vb,in, le = 0.2hmax,R0); (f) REF. LES (OP1, u′ = 1.2Vb,in,
le = 0.4hmax,R0).
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Figure 4.33: Mean velocity and turbulence kinetic energy profiles imposed at the inlet of the reference draft tube
simulations (station R0) at OP2.

very similar results at station R1. Agreement with the experimental data near the external
walls (h/hmax = 0.0) is good, but, in spit of the proximity of station R1 to the domain’s inlet
(station R0), the numerical results are overestimated towards the centre of the flow (h/hmax =
1.0). Between stations R2 and R4, the influence of the central vortex formed downstream
the hub is once again observed as mean axial velocity values are very low near h/hmax =
1.0. Like in OP1, RANS results using the k-ω SST turbulence model are overestimated in
this region of the flow, whereas a very good agreement is found in the case of LES. Near the
walls, however, both turbulence solutions underestimate Vz and the boundary layer is not well
predicted. As a result, the mean axial velocity values in the intermediate region of the flow
(0.2 ≤ h/hmax ≤ 0.8) are overestimated to compensate for the reduced mass flow elsewhere. At
stations R4 and R5, RANS simulation predicts negative values of Vz near the walls (h/hmax ≈
0.0), indicating a recirculation and consequent boundary layer separation in this region of the
draft tube. Conversely, this behaviour is not observed in LES neither in the experimental
measurements at these stations. Indeed, at stations R3 and R4, i.e., where the draft tube
transitions from a circular to a squared shaped cross-section, a strong mean axial velocity peak
is visible in the experiments, but no numerical simulation is able to capture it. Similarly to
the first operating point, injecting synthetic fluctuations improves LES results. For instance, as
the velocity length scale, u′, increases, the boundary layer is better predicted between stations
R2 and R5. Consequently, the values of Vz in the intermediate region of the flow are also
reduced and are now closer to the experiments. At station R1, however, a mean axial velocity
peak is observed near the external walls of the draft tube in the cases with u′ = 1.2Vb,in. In
addition to the velocity scale, the length scale of injected synthetic fluctuations, le, also affects
the downstream flow behaviour. For instance, le = 0.4hmax,R0 flattens the mean axial velocity
profile at station R5 and improves the LES results at this location. However, it also increases
the dissipation of the central vortex and Vz values near h/hmax = 1.0 are overestimated between
stations R2 and R4 in the case with u′ = 1.2Vb,in. For those reasons, the turbulent LES case
with u′ = 0.6Vb,in and le = 0.4hmax,R0 seems a good compromise to yield satisfactory results.

Figure 4.35 shows the normalized tangential velocity profiles inside the draft tube. At sta-
tion R1, numerical results are very different from experimental measurements. For instance,
instead of a peak value near the external walls of the draft tube (h/hmax = 0.0), experimen-
tal measurements predict a strong peak near the centre of the flow (h/hmax = 1.0). Due to
its proximity with the inlet plane (station R0), it seems very improbable that such a different
profile is recovered at station R1, especially because the results for OP2 have been obtained
from a single experimental campaign, unlike OP1. Another simulation with an inverted (with
respect to h/H) inlet mean tangential velocity profile has been performed, but the results did
not improve. At stations R3 and R4, experimental measurements predict a strong reduction in
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Figure 4.34: Normalized mean axial velocity profiles for the reference simulations of the draft tube at OP2 using
RANS and LES with/without synthetic fluctuations.

Vu close to h/hmax = 0.9 whereas numerical results predict a peak in this region of the flow.
Moreover, after slowly decrease towards the walls, experimental Vu profiles indicate the presence
of a counter-rotating flow near the walls of the draft tube (due to the negative values of Vu),
while numerical results predict a rather constant and positive Vu between 0.0 ≤ h/H ≤ 0.8.
At station R2, the experimental and numerical distribution of mean tangential velocity profiles
are similar and follows the same behaviour observed numerically at stations R3 and R4. For
instance, there is a peak close to the centre of the flow, at h/hmax = 0.9, which is well cap-
tured in RANS and in LES, depending on the synthetic turbulence levels. In the case without
turbulence injection or weak synthetic fluctuations (u′ = 0.1Vb,in), the peak is overestimated
compared to the experiments. This is slightly improved by increasing u′, but if le is also too
large, the peak ends up being underestimated (e.g.,u′ = 1.2Vb,in and le = 0.4hmax,R0). Between
0.0 ≤ h/hmax ≤ 0.8, experimental values are underestimated compared to numerical simula-
tions. Nevertheless, looking only at the distribution of Vu in this region of the flow, the reference
LES case without turbulence injection predicts a secondary peak near h/hmax = 0.2 followed by
a rapid decrease until h/hmax = 0.1. This is not observed in the experiments neither in the other
numerical simulations. Indeed, injecting moderate and strong synthetic fluctuations leads to a
secondary peak very close to h/hmax = 0.0. Finally, at station R5, experimental measurements
present two mean tangential velocity peaks, at h/hmax = 0.0 and h/hmax = 0.8, respectively.
The reference RANS simulation using the k-ω SST turbulence model overestimates Vu all along
this station, whereas LES is able to correctly capture the experimental profile behaviour. Indeed,
the two peaks are already observed in the LES results at stations R3 and R4. Moreover, like
the profiles at station R2, increasing the synthetic fluctuations intensity improves the numerical
results.

Figure 4.36 shows the turbulence kinetic energy profiles normalized by the square of the
average axial velocity at the inlet, V 2

b,in. Conversely to the first operating point, OP1, turbulence
measurements in OP2 are not limited to the region close to the walls at the radial stations inside
the draft tube (i.e., R1 to R5). In RANS, the imposed turbulent inlet boundary conditions
yield a good match with the experimental measurements between stations R1 and R4. At the
last stations, however, k values are mostly underestimated. In the reference LES case with
no synthetic turbulence injection, turbulence kinetic energy profile is mostly underestimated
compared to the experiments at stations R1 and R2, and partially underestimated at station
R3 (at h/hmax ≤ 0.1 and between 0.4 ≤ h/hmax ≤ 0.8). At station R4, numerical results
agree well with the experimental data, but end up slightly overestimated at station R5 between
0.0 ≤ h/hmax ≤ 0.5. Injecting weak synthetic fluctuations, with u′ = 0.1Vb,in, slightly improves
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Figure 4.35: Normalized mean tangential velocity profiles for the reference simulations of the draft tube at OP2
using RANS and LES with/without synthetic fluctuations.

the profiles of k at stations R1 and R2, but they remain underestimated compared to the
experiments. However, since these weak synthetic fluctuations quickly decay inside the draft
tube, the turbulence kinetic energy profiles predicted in LES without turbulence injection and
with synthetic turbulence with u′ = 0.1Vb,in are identical between stations R3 and R5. Increasing
u′ to 0.6Vb,in and 1.2Vb,in results in more intense injected fluctuations and overestimated values
of k at stations R1 and R2. Further downstream, between stations R3 and R5, the cases with
u′ = 0.6Vb,in agree well with the experimental measurements. Interestingly, like in OP1, the cases
with the most intense synthetic fluctuations, i.e., u′ = 1.2Vb,in, underestimate the turbulence
kinetic energy profiles at the last measurement station, R5.

Figure 4.36: Normalized turbulence kinetic profiles for the reference simulations of the draft tube at OP2 using
RANS and LES with/without synthetic fluctuations.

4.6.2 Static pressure profiles and distribution along the walls

Following in the analysis of the flow inside the draft tube operating at OP2, the static pressure
profiles are shown in Fig. 4.37. Like in OP1, the static pressure measured in the middle height
at station R0 is used as a reference and the results are normalized by the dynamic pressure
qin. Overall, the results of the reference RANS and LES without turbulence injection are very
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similar and underestimated compared to the experimental measurements. However, Ps values
near h/hmax = 1.0 are considerably lower in LES between stations R1 and R4, in spite of the good
prediction of the mean velocity profiles in this region of the flow. Injecting synthetic fluctuations
in LES improved the static pressure results. For instance, as u′ increased and the injected
fluctuations intensified, the profiles of Ps move towards the experimental measurements. While
in the first operating point, u′ = 0.6Vb,in yielded the best results compared to the experiments,
in OP2, it is the case with u′ = 1.2Vb,in and le = 0.2hmax,R0 which delivers the best agreement
between stations R2 and R5. Nevertheless, all simulations underestimate Ps between 0.0 ≤
h/hmax ≤ 0.8 at station R1.

Figure 4.37: Normalized static pressure profiles for the reference simulations of the draft tube at OP2 using RANS
and LES with/without synthetic fluctuations.

The evolution of normalized static pressure along the draft tube walls in the streamwise
direction for the second operating point is shown in Fig. 4.38. Conversely to OP1, the reference
RANS simulations using the k-ω SST turbulence model and the LES without turbulence injection
underestimate the pressure recovery at the beginning of the draft tube, which compromise the
downstream results. However, while RANS predicts a very small pressure recovery downstream
the draft tube cone, i.e., z/L ≥ 0.4, similar to what has been measured during the experiments,
the reference LES case with no synthetic fluctuations predicts a relatively important pressure
recovery at z/L ≥ 0.5. Like in the first operating point, OP1, injecting a synthetic turbulence
field reduced the pressure recovery at the final portion of the draft tube but increased it inside the
cone. As a result, Ps values evolution along the walls are closer to the experiments, particularly
in the LES case with u′ = 1.2Vb,in and le = 0.4hmax,R0 at stations S1 and S3. At station S2, in
spite of the good agreement between 0.0 ≤ z/L ≤ 0.6, LES results at the end of the draft tube
are overestimated with respect to the experiments.

Figure 4.39 compares the normalized circumferential distribution of static pressure at the
draft tube walls. Like in OP1, there is a shift between static pressure values measured by the
wall-mounted pressure taps and the five-hole pressure probes, which is why the average static
pressure at circumferential station C1, Ps,C1, is used a reference. Overall, the results follow the
same trend observed in Fig. 4.38, which is expected given that they are measured at similar
locations. At station C2 (z/L = 0.2), RANS simulation using the k-ω SST turbulence model
predicts higher Ps values at the walls compared to the reference LES case without turbulence
injection or with synthetic weak fluctuations, i.e., u′ = 0.1Vb,in. At station C3 (z/L = 0.4), the
three numerical results are very similar, but RANS predicts a slower increase in static pressure
at the walls towards the exit of the draft tube, i.e., between stations C4 and EX. Compared to
the experiments, the results are all underestimated, which is in agreement with the observations
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Figure 4.38: Normalized streamwise static pressure evolution at the walls for the reference simulations of the draft
tube at OP2 using RANS and LES with/without synthetic fluctuations.

in the previous analyses. The increased pressure recovery after injecting moderate and strong
synthetic fluctuations in LES improves the circumferential Ps distribution at the draft tube
walls. However, conversely to the results at stations S1 to S3, it is the cases with u′ = 0.6Vb,in
and le = 0.4hmax,R0, and u′ = 1.2Vb,in and le = 0.2hmax,R0 which yield the best agreement
with the experimental measurements. The case with u′ = 1.2Vb,in and le = 0.4hmax,R0 mostly
overestimates the static pressure at the walls, except in the last station, EX.

Figure 4.39: Normalized circumferential static pressure distribution at the walls for the reference simulations of
the draft tube at OP2 using RANS and LES with/without synthetic fluctuations. Reference as the
average static pressure on the walls measured at station C1, Ps,C1.

4.6.3 Head losses analysis

The first approach to evaluate the IEC losses inside the draft tube for its second operating
point used the modified ∆Hsta and ∆Hdyn calculated between stations R1 and EX, and defined
in Eqs. (4.6) and (4.7). The results are shown in Fig. 4.40 and LES cases with turbulence



86 Chapter 4. Reference simulations of the draft tube

injection are separated by the length scale of the synthetic fluctuations, le. Total head losses
predicted in RANS are considerably higher compared to experiments and LES results, which
can be explained by the poor prediction of ∆Hsta with this turbulence model. In LES, injecting
synthetic fluctuations reduced the total head losses inside the draft tube and numerical results got
closer to the experimental ∆Htot values as u′ and le increased. While ∆Hdyn is slightly affected
by the synthetic turbulence parameters, it is ∆Hsta which is mostly affected by the turbulent
inflow. In the cases with u′ = 0.6Vb,in and 1.2Vb,in, the static head variation agree very well
with the experiments. However, the numerical values of ∆Hdyn are systematically overestimated
with respect to the experimental measurements, which can explain the overestimation of ∆Htot

in these cases. Indeed, this problem can be traced back to the underestimated mean axial and
unreliable mean tangential experimental velocity profiles at station R1 shown in Figs. 4.34 and
4.35. Therefore, the modified ∆Hdyn equation used to evaluate the IEC losses are not suitable
for the analysis of OP2.

Figure 4.40: IEC losses between stations R1 and EX for the reference simulations of the draft tube at OP2 using
RANS and LES with/without synthetic fluctuations.

To circumvent this issue with the dynamic head at station R1, we decided to use the original
Eq. (4.5) to evaluate ∆Hdyn, while the modified Eq. (4.6) is used to evaluate ∆Hsta. Although
the different components of the total head losses are not measured between the same two loca-
tions inside the draft tube, the experimental measurements used in their evaluation are more
reliable. The results with this approach are shown in Fig. 4.41. As expected, ∆Hdyn values
are independent of the case, since they are based on the mean axial velocity profiles at station
R0 (the inlet of the computational domain), which are imposed in the numerical simulations,
and the flow rate at station EX, which is fixed. Therefore, differences in ∆Htot are due to the
static head, ∆Hsta, which are determined by the circumferential static pressure distribution at
stations C1 and EX. In RANS, the total head losses are 51% overestimated compared to the
experiments, which is expected given the poor pressure recovery prediction obtained by this tur-
bulence method. The reference LES without turbulence injection improves these results but still
overestimates ∆Htot by approximately 23%. At le = 0.2hmax,R0, it is the case with u′ = 1.2Vb,in
that yields the best ∆Htot results compared to the experiments, only 9% over its value. How-
ever, at le = 0.4hmax,R0, both u′ = 0.6Vb,in and u′ = 1.2Vb,in cases yield similar results. The
former overestimates the experimental total head losses inside the draft tube by 3.5%, whereas
the latter underestimates it by 3.8%.

The normalized real head losses evolution inside the draft tube for the reference LES cases
are show in Fig. 4.42. Similar to the first operating point, the real ∆Htot values vary significantly
depending on the synthetic turbulence levels, much more than what has been observed with the
IEC losses (see Fig. 4.41). In addition to that, the same problem of negative values of total
head losses are observed in the beginning of the draft tube in the cases with u′ = 0.6Vb,in and
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Figure 4.41: IEC losses between stations R0/C1 and EX for the reference simulations of the draft tube at OP2
using RANS and LES with/without synthetic fluctuations.

u′ = 1.2Vb,in, indicating an unexpected increase in the total energy in this region of the flow.

Figure 4.42: Real head losses evolution for the reference simulations of the draft tube at OP2 using LES with-
/without synthetic fluctuations.

Figure 4.43 shows the turbulent structures, identified by the Q-criterion, inside the draft
tube and close to its inlet for the second operating point, OP2. The topology of the flow,
especially the central vortex, is slightly different from OP1 (see Fig. 4.31). For instance, instead
of a helical vortex that gradually increase in diameter downstream the draft tube, the central
vortex in OP2 is narrower and remains like this throughout the draft tube. Injecting synthetic
fluctuations to the inlet of the computational domain has a similar effect, though. While no
turbulent structures are observed in inlet plane of the reference LES case without turbulence
injection, they are numerous in the cases with u′ = 0.6Vb,in and u′ = 1.2Vb,in. This unrealistic
turbulent inflow has to transition, i.e., adapt and adjust to the surrounding flow, right after
entering the draft tube. This can be visualized by the rapid variation in vorticity values close
to the synthetic fluctuations’ injection plane, particularly in the cases u′ = 1.2Vb,in.

As explained in the case of OP1, this unrealistic turbulence transitioning process affects the
energy balance of the flow, in particular the resolved turbulent kinetic energy production, term
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(a) (b)

(c) (d)

(e) (f)

Figure 4.43: Turbulent structures inside the draft tube visualized by iso-surfaces of Q-criterion and coloured by
their vorticity z. (a) REF. LES (OP2, no turb.); (b) REF. LES (OP2, u′ = 0.1Vb,in, le = 0.2hmax,R0);
(c) REF. LES (OP2, u′ = 0.6Vb,in, le = 0.2hmax,R0); (d) REF. LES (OP2, u′ = 0.6Vb,in, le =
0.4hmax,R0); (e) REF. LES (OP2, u′ = 1.2Vb,in, le = 0.2hmax,R0); (f) REF. LES (OP2, u′ = 1.2Vb,in,
le = 0.4hmax,R0).
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V in Eq. (2.35), close to the inlet of the numerical domain, which can explain the negative values
of real head losses, ∆Htot, observed in Fig. 4.42. The distribution of resolved turbulent kinetic
energy production in the reference simulations of the second operating point is shown Fig. 4.44.
As expected, in the cases without synthetic turbulence injection or with weak fluctuations, i.e.,
u′ = 0.1Vb,in, term V is mostly zero close to the inlet of the draft tube, except on the walls,
where turbulence is constantly being generated by the flow shear. In the cases with u′ = 0.6Vb,in
and u′ = 1.2Vb,in, a transition region is clearly visible close to the inlet of the numerical domain.
More importantly, a few zones of strong negative values of resolved turbulent kinetic energy
production are also observed. These negative values are associated with an inverse energy
transfer from the turbulent flow to the mean flow, confirming thus our initial suspicion that the
decay of the synthetic fluctuations unrealistically increased the total energy of the flow close to
the inlet of the draft tube.

(a) (b) (c)

(d) (e) (f)

Figure 4.44: Distribution of resolved turbulent kinetic energy production, term V in Eq. (2.35), close to the inlet of
the draft tube. (a) REF. LES (OP2, no turb.); (b) REF. LES (OP2, u′ = 0.1Vb,in, le = 0.2hmax,R0);
(c) REF. LES (OP2, u′ = 0.6Vb,in, le = 0.2hmax,R0); (d) REF. LES (OP2, u′ = 0.6Vb,in, le =
0.4hmax,R0); (e) REF. LES (OP2, u′ = 1.2Vb,in, le = 0.2hmax,R0); (f) REF. LES (OP2, u′ = 1.2Vb,in,
le = 0.4hmax,R0).
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5.1 Introduction

The results obtained in the previous chapter demonstrate the importance of imposing proper
inlet boundary conditions in the numerical simulation of draft tube flow. For instance, neither
RANS nor LES turbulence method was capable of providing satisfactory results using commonly
used inlet conditions. In LES, injecting simple synthetic fluctuations into the draft tube domain
had a positive effect and the numerical mean velocity and static pressure field were improved
in comparison with the experimental data. As a consequence, the prediction of IEC losses was
also enhanced. However, since generating a proper fluctuating field for LES is not a trivial task,
the unrealistic nature of the injected synthetic fluctuations creates a transitional region close to
their injection plane that, ultimately, affects the energy balance of the flow and compromises
any real head losses and efficiency analysis of the draft tube. As the complexity of the flow
leaving the runner (or the set of 34 fixed blades, in our case) renders it particularly difficult to
obtain accurate and extensive experimental measurements at the inlet of the draft tube, the real
challenge to perform such simulations consists thus in determining proper mean and fluctuating
inlet boundary conditions based on limited and potentially unreliable experimental data. In this
chapter, we propose an approach based on Machine Learning algorithms and Artificial Neural
Networks (ANN) to solve the inverse problem of determining the optimal inlet conditions for a
numerical simulation based on the downstream flow information. Before detailing the proposed
approach in Section 5.4, though, previous works in the context of draft tube optimization are
discussed Section 5.2 to understand the types of problems and optimization algorithms that have
been employed in the past, and, in Section 5.3, some basic concepts of Machine Learning are
explained to facilitate the comprehension of the method applied in the following chapters.
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5.2 Optimization in the context of draft tubes

Given its importance to the overall performance of the machine, multiple numerical works
investigated ways of optimizing the flow inside hydraulic turbine draft tubes. Eisinger and
Ruprecht [40] compared improve the shape of a simple conical diffuser, a circular draft tube
proposed in the GAMM Workshop [141] and a typical low head draft tube for vertical-axis
turbines. The goal was to maximize the static pressure recovery coefficient between its inlet and
outlet while only a few geometrical parameters were allowed to vary during the optimization (the
area ratio of different cross-sections inside the draft tube). Numerical simulations of the flow
inside the draft tube were carried using RANS simulations and the k-ε turbulence model [81].
The performance of three optimization algorithms was compared and, while all of them were able
to improve the pressure recovery in the three draft tubes, the evolutionary method presented
a more robust behaviour. The same conclusion was obtained by Puente et al. [127] after
performing a very similar analysis of the typical low-head draft tube investigated in Eisinger
and Ruprecht [40], but this time using CFX and an interactive optimization solution called
iSIGHT. Marjavaara et al. [96], on the other hand, compared two surrogate models (polynomial
Response Surfaces and Radial Basis Neural Networks) used in conjunction with evolutionary
algorithms to maximize the static pressure recovery coefficient of a draft tube operating at two
different conditions. The investigated geometry consisted in a simplified version of the Turbine-
99 draft tube [55], which contained its inlet cone followed by a straight extension. Only four
design parameters, which controlled the cross-sectional shape at different axial positions of the
simplified draft tube, were allowed to vary. Once again, numerical simulations were carried using
RANS simulations and the k-ε turbulence model. The proposed optimization framework using
surrogate models reduced the computational costs compared to solely utilizing an evolutionary
algorithm and the hydraulic performance of the simplified draft tube was increased in both
operating conditions. The static pressure recovery coefficient and evolutionary algorithms were
used by Fares et al. [42] to optimize the shape and performance of a simple conical diffuser and
a real hydraulic turbine draft tube. The difference to the previous works, however, is that both
diffuser and draft tube shapes were parametrized using Bézier curves [15], instead of the just a
few geometrical parameters.

Draft tube shape optimizations algorithms are not limited to a single objective function
though, and Nakamura and Kurosawa [110] used the total head loss between across the runner
and draft tube a Francis turbine, as well as the height of the latter, to optimize the shape of
both components using evolutionary algorithms. Approximately 30 design parameters were used
to define the geometry runner, whereas for the draft tube, this number was approximately 50.
RANS simulations are performed using the k-ε turbulence model and the overall performance
of the turbine was greatly improved by the proposed multi-objective optimization algorithm.
However, the computational cost was extremely high as Nakamura and Kurosawa [110] had to
run almost three thousand simulations of the runner and four thousand of the draft tube. Lyutov
et al. [91] conduct a very similar analysis of a different Francis turbine runner and draft tube, but
the simulations were coupled and both geometries varied simultaneously during the optimization
process. The overall performance of turbine over a wide range of operating conditions was
improved and the total number of simulations required to reach an optimal solution was greatly
reduced compared to Nakamura and Kurosawa [110] (only 720, to be precise). However, it
should be noticed that the amount of parameters being optimized was also smaller, with only
24 for the runner and 20 for the draft tube. More recently, Demirel et al. [26] used both
the static pressure recovery coefficient and the total head losses across a draft tube as objective
functions for its multi-objective optimization algorithms. Like in Marjavaara et al. [96], different
surrogate models used in conjunction with evolutionary algorithms have been compared and
the hydraulic performance of the draft tube was considerably increased at the end, however,
geometrical parameters were very limited though, as only 5 design variables were allowed to vary
during the optimization process. McNabb et al. [100] also investigated the use of evolutionary
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algorithms in the draft tube shape optimization based on multi-objective functions, however,
very recently, Fleischli et al. [47] revisited their draft tube optimization problem to compare the
performance of the gradient-free evolutionary algorithm with a gradient based adjoint method.
As already pointed out in the work of Eisinger and Ruprecht [40], the advantage of gradient based
methods is that they are more computationally efficient than evolutionary algorithms, requiring
significantly less numerical simulations to achieve an optimal solution. For instance, Fleischli et
al. [47] performed 300 numerical simulations to attain an optimal draft tube design using adjoint
methods, whereas the evolutionary algorithm using only 47 geometrical parameters required
approximately 2500 simulations. However, in spite of this reduced number of simulations, the
adjoint method was only 30% less demanding in terms of calculation time. Indeed, in addition to
the flow solver, an adjoint solver must be directly integrated into the CFD code, which increases
the computational cost per simulation and renders the general application of these methods
more complex.

While all the aforementioned works modified the shape of the draft tube to optimize its
hydraulic performance at a given operating condition, other works focused on optimizing the
inlet velocity profiles for a given draft tube geometry. For instance, Galván et al. [52, 53]
proposed an optimization methodology for maximizing the performance of the Turbine-99 draft
tube [55] as a function of the inlet velocity profile. An evolutionary algorithm was implemented
using iSIGHT and three different objective functions were considered: the normalized head
losses inside the draft tube, the normalized static pressure recovery measured at the walls and
the area averaged static pressure recovery measured at the inlet and outlet planes. Steady
RANS simulations were conducted using the k-ε turbulence model and comparisons were made
with respect to the best operating point of the machine. An important aspect of the work,
however, was the parametrization of the imposed inlet profiles. Since the total amount of design
parameters can have an important impact on the final number of optimization iterations, it was
essential to simplify the description of these profiles. This was achieved by the swirling flow
model described in Susan-Resiga et al. [147], which produced realistic inlet velocity profiles
while reducing the overall number of design parameters to only 8. Still, approximately 3000
optimization iterations were required to obtain a converged optimal solution. Galván et al.
[51] also used a similar approach to study the inlet velocity profiles at a simplified conical
diffuser. Although the results were once again very promising, even in that rather simple flow
configuration, the number of numerical simulations required to obtain an optimized solution was
close to 1000.

It is clear from the previous discussions that evolutionary algorithms are the preferred method
to optimize the performance of hydraulic turbine draft tubes. However, although they are ro-
bust and have been successfully applied to different flow configurations and types of problems,
one common issue with this method is the relatively high computational cost given the small
number of design parameters utilized in the optimization. Indeed, while all the numerical sim-
ulations discussed previously were performed in less computationally demanding RANS using
two-equation linear eddy viscosity models, our goal is to optimize the inlet conditions for both
steady RANS and LES of the draft tube. Moreover, as will be discussed in Chapters 6 and 7,
our optimized inlet profiles are not simplified as in Galván et al. [52, 53, 51] and the number of
design parameters surpasses the 200. Gradient based adjoint methods, on the other hand, are
more computationally efficient and could obtain optimal solution with much less numerical sim-
ulations, as has been demonstrated in Fleischli et al. [47]. However, implementing such methods
is not trivial as they need to be directly integrated to the CFD code. To solve the problem with
proper inlet boundary conditions for the numerical simulations of a draft tube flow, a different
approach, based on Machine Learning and Artificial Neural Networks, is therefore proposed in
this thesis.
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5.3 Introduction to Machine Learning algorithms

The term Machine Learning, which is just a branch of Artificial Intelligence (AI), is very
broad and normally associated with the design of algorithms and techniques that enable com-
puters to learn by identifying and extracting patterns from raw data. Before discussing the
proposed approach, the basic aspects of Machine Learning algorithms are explained in this sec-
tion. However, although the field of Machine Learning is indeed extremely prolific and numerous
sources exist, most of the discussions were taken from Goodfellow et al. [60] and Nilsen [116].

5.3.1 Learning algorithms for regression

The Machine Learning algorithms is a technique that allows computer programs to learn some
class of task executed with a given performance from experience. Many tasks can be solved by
Machine Learning algorithms, such as classification, transcription, translation, anomaly detec-
tion etc. As the goal of the proposed approach is to determine the correct inlet profiles (a
sequence of numerical values) from the ensemble of experimental measurements (another se-
quence of numerical values), as will be explained in Section 5.4, the main task of our Machine
Learning algorithm consists in a non-linear regression, where the computer program must pre-
dict a numerical value given some input. For the actual learning process can take place, it is
essential to evaluate the ability of the algorithm in realizing such a task, i.e., its performance.
The model’s accuracy is a common way of doing that, and it measures the proportion of ex-
amples for which the model produces the correct output. However, this is not well suited for
regression problems as the error between the actual and predicted values should be continuous
to determine the magnitude of the mistakes. In this case, a different metric should be used to
take this effect into account. Finally, the kind of experience the Machine Learning algorithm
will be allowed to have during learning can be broadly divided into two categories: unsupervised,
when the hidden patterns in a given dataset are discovered without human intervention, and
supervised, when each an example in a dataset is associated with a label or target, that is, when
the algorithm learns the patterns from a set of inputs and outputs.

As will be explained in Section 5.4, the proposed approach is designed to learn the correlations
between downstream flow field and upstream inlet boundary conditions in a supervised manner.
In the case of a linear regression, this involves observing many examples of a vector x ∈ Rn
and an associated value y ∈ R, then learning to predict y from x, normally by estimating the
probability of y given x, i.e., p(y|x). If ŷ is the value of y predicted by the model, the output of
a linear regression can be written as:

ŷ = w · x + b (5.1)

where w ∈ Rn is a vector of parameters, also called weights, that determine how each feature
xi affects the prediction ŷ, while the intercept term b, often called bias, is used to affine the
transformation. The task in the aforementioned Machine Learning algorithm can thus be defined
as: to predict y from x by outputting ŷ = w · x + b.

The relation in Eq. (5.1) can be represented in the form of a perceptron [131], a type of
artificial neuron and one of the building blocks of more complex Artificial Neural Networks. A
scheme is shown in Fig. 5.1, and it is possible to identify the features xi being multiplied by
the respective weights wi and then summed with the bias b in a neuron to output a prediction
ŷ after being modified by an activation function f .

Given the simplicity of a single perceptron, its applications are limited to linear regression
and classification problems. For more complicated tasks, such as non-linear regression prob-
lems, more complex feedforward neural networks, composed by multiple interconnected artificial
neurons should be used. The term feedforward means that the information flows from the in-
puts x, through the intermediate neural network to finally produce an output ŷ. A Multilayer
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Figure 5.1: Representation of a single perceptron.

Perceptron (MLP) is one example of a feedforward neural network and is composed by a series
perceptrons grouped in what is called layers. A scheme of a MLP is shown in Fig. 5.2 and, in
addition to the input and output layers, a series of intermediate layers, also called hidden layers,
are seen in the in between. In the application of the proposed Machine Learning approach to
determine proper inlet boundary conditions discussed in Chapters 6 and 7, the ANN are mostly
composed by MLP.

Figure 5.2: Representation of a Multilayer Perceptron.

5.3.2 Activation functions

In the scheme of the perceptron shown in Fig. 5.1, if the value of ŷ is exactly equal to
the weighted sum

∑
wixi + b, it is said that the activation function or transfer function f of

the neuron in Fig. 5.1 is linear, and a perceptron composed only by this type of neuron is no
different from a linear regression model. In the original conception of a perceptron, however,
Rosenblatt [131] proposed to determine the neuron’s output by whether the weighted sum is
lower or greater than a threshold value:

ŷ =

{
0 if w · x + b ≤ threshold

1 if w · x + b > threshold
(5.2)

The threshold value is a priori and in this case, the neuron is said to have a binary step
activation function. While a perceptron with this type of activation function is different from
a linear regression model, it is obvious that it is only suited for classification tasks. A neural
network composed by multiple perceptrons that use non-linear activation functions is capable of
learning more complex tasks, therefore, many works in the field of Machine Learning have been
conduct with the goal of determining better activation functions. One of the earliest and most
commonly used is called sigmoid function or logistic function and is defined as:

σ(z) =
1

1 + e−z
(5.3)
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which, in the context of the single perceptron shown in Fig. 5.1 and equation Eq. (5.1),
z = w · x + b and the predicted value ŷ is equal to:

ŷ =
1

1 + exp[− (w · x + b)]
(5.4)

Compared to a binary step, the sigmoid activation function yields similar results but, since
its derivative is different from zero, weights can be updated during the backpropagation step (see
Section 5.3.3) and the learning process can take place. Moreover, its derivative is not constant
and the output value varies non-linearly depending on the inputs, distinguishing a perceptron
with this activation function from a simple linear regression. The problem with sigmoid, in
addition to limiting the outputs to [0, 1], however, is that its derivative value tends to zero
when the inputs are large, as shown in Fig. 5.3. This problem is called vanishing gradients
and, much like in the case of a binary step, it prevents the weights for being updated during
backpropagation and therefore no learning will occur.

Figure 5.3: Comparison of the response of different activation functions.

The Rectified Linear Unit (ReLU) activation function [109], one of the most popular activa-
tion functions for Machine Learning [129], overcomes these problems and outperforms sigmoid
and hyperbolic tangent functions in the training of deep neural networks [59, 82]. In the case of
the perceptron shown in Fig. 5.1, its output, ŷ, using ReLU as an activation function is given
by Eq. (5.5), which is a mix of binary step and linear activation functions. As shown in Fig.
5.3, the derivative of ReLU does not converge to zero, and therefore it does not suffer from the
problem with vanishing gradients saw with sigmoid functions. However, if the weighted sum
values are negative, the derivative is indeed constant and equal to zero, which prevents learning
during the backpropagation step.

ŷ =

{
0 if w · x + b < 0

w · x + b if w · x + b ≥ 0
(5.5)

Some modifications have been proposed to improve this behaviour of ReLU activation func-
tions, such as Leaky ReLUs [92], which allows the values of ŷ to slowly decrease whenever
w · x + b < 0. In the case of the ANN used in Chapters 6 and 7, we use Exponential Linear
Unit (ELU) activation functions [20]. They are similar to Leaky ReLUs, however, instead of
linearly varying on the negative side of the activation function, the output value, ŷ, is given by
Eq. (5.6). Although ELU is slower to compute than ReLU due to the exponential function,
it has no problems with zero valued derivatives and the learning process can continue during
backpropagation since the weights, w, are still updated even if the weighted sum values are
negative.
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ŷ =

{
a[exp (w · x + b)− 1] if w · x + b < 0

w · x + b if w · x + b ≥ 0
(5.6)

5.3.3 Learning: forward pass, cost function and backpropagation

During the learning process of the Machine Learning algorithm, information is passed in two
directions over the neural network: forward and backward. The goal is to repeatedly adjust the
weights w and biases b, so the predicted values ŷ are as close as possible of their true values
y. Thus, in the forward pass, the input vector x is fed into the network and the output ŷ is
evaluated after successive multiplications and additions by the weights, biases, and activation
functions in the neurons. Mathematically, this can be written as:

ŷ = f(WLfL−1(WL−1 · · · f1(W1x + b1) · · ·+ bL−1) + bL) (5.7)

where L is the number of layers, f l is the activation function at layer l, W l = wljk are the

weights between layers l − 1 and l, where wljk is the weight for the connection from the k-th

neuron in layer l− 1 to the j-th neuron in layer l, and bl = blj is the bias vector at layer l, where

blj is the bias added to the j-th neuron in layer l. Note that for the first forward pass over the
neural network, an initial value has to be prescribed for weights and biases. In the case of the
ANN discussed in Chapters 6 and 7, weights are initialized using independent Gaussian random
variable, normalized to have mean 0 and standard deviation 1, whereas biases are set equal to
zero.

From the output of the forward pass, it is possible to evaluate the performance of the current
network in realizing the task of the predicting the true value y. In the case of non-linear regression
problems, this can be achieved by calculating the Mean Squared Error (MSE) between the
model’s prediction ŷ and the true value y, which for a dataset comprising m training examples,
is given by:

MSEtrain =
1

m

m∑

i

(ŷtrain − ytrain)2 (5.8)

The next step in the learning process consists in performing a backpropagation [133] to
understand how the loss function varies with small changes in weights and biases, i.e., to com-
pute the partial derivatives ∂C/∂wljk and ∂C/∂blj , where C is the value of the loss function
(e.g.,MSEtrain). While these individual derivatives (gradients) can be calculated using the chain
rule, the goal with backpropagation is to efficiently compute the gradients vector associated
with layer l and denoted by δl, which can in turn be used to evaluate ∂C/∂wljk and ∂C/∂blj .

Based on these values, an optimization algorithm can be used to update the weights and
biases to reduce the value of the loss function, that is, to improve the output prediction ŷ. Among
the many types of optimization algorithms used in Machine Learning, Ruder [132] lists the most
commonly used based on gradient descent. Depending on the amount of data used to evaluate
the gradients of the loss function, standard gradient descent algorithms can be divided into three
categories: batch gradient descent, mini-batch gradient descent and stochastic gradient descent
(SGD). The first case uses the whole training set to evaluate the gradients, while a fixed portion
of the training set in the second and a single training example is used in the third. In any case,
the weights and biases are updated according to Eqs. (5.9) and (5.10):

wnewjk = woldjk − ηl
∂C

∂wjk
(5.9)
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bnewj = boldj − ηl
∂C

∂bj
(5.10)

where ηl is the learning rate, which is fixed and must be defined a priori. The performance of
SGD algorithms can be improved by adding some momentum [128] and Nesterov accelerated
gradient (NAG) [111] to the update vectors in Eqs. (5.9) and (5.10). However, unlike more
advanced optimization algorithms [35, 162, 78, 34] the fixed learning rate is a limiting factor as
it does not distinguish frequent and infrequent parameters (weights and biases). In the neural
networks discussed in Chapters 6 and 7, we utilize an optimization algorithm called NAdam
[34], which combines NAG with Adam [78].

5.3.4 Generalization: underfitting, overfitting and regularization

An important aspect of Machine Learning algorithms is generalization, which measures the
ability of the trained ANN model to perform well on previously unobserved data. For instance,
during the training step described in the previous section, the ANN model is exposed to what
is called a training set, which contains all the information (i.e., inputs and outputs) used to
minimize the training error, i.e., the loss function, via successive adjustments of the model’s
weights and biases. While this is similar to a traditional optimization problem, Machine Learning
algorithms are different because the generalization error, i.e., the expected value of the error on
a new input, should also be low. This generalization error of a trained ANN model is typically
estimated by measuring its performance on a validation set, i.e., a separate set of examples
collected independently of the training set. For instance, in the cases discussed in Chapters 6
and 7, the generated databases are divided into a training and a validation sets, which are then
used to evaluate the trained model’s generalization capacity.

Indeed, the main challenges in Machine Learning are twofold: underfitting and overfitting.
The first occurs when the model is not able to obtain sufficiently low training errors on a
given database, while the second occurs when the gap between training and validation errors
is too large, i.e., when the model does not generalize very well. The model’s capacity is what
controls whether it will tend to underfit or overfit, and a Machine Learning algorithm will
normally perform better when this capacity is appropriate for the complexity of the problem
it needs to solve and the amount of data available for training. Regularization is one way of
controlling a model’s capacity, particularly to avoid overfitting, and consists in modifying the
Machine Learning algorithm to reduce the generalization error but not the training error. Simple
regularization methods, like L1 and L2 regularization, consist in adding to the loss function a cost
associated with having large weights, however, in the ANN models discussed in Chapters 6 and
7, a more effective and commonly used regularization called dropout [144] is used. It consists
in randomly and temporarily dropping out (i.e., removing) some nodes of a layer, effectively
deactivating its incoming and outgoing connections, as shown in Fig. 5.4. The dropout rate
controls the amount of nodes affected by the dropout in a layer.

5.4 Machine Learning strategy

Based the Machine Learning algorithms discussed in the previous section, an approach is
proposed in this thesis to overcome the issues with imposing basic inlet boundary conditions in
the numerical simulations of the draft tube. Since the final goal of the simulations is to match
as closely as possible the available experimental information inside the numerical domain, the
task to be solved by the proposed approach consists in using any known information about the
flow (e.g., experimental mean velocity, turbulence, and static pressure profiles), along with an
appropriate database of numerical simulations to determine which boundary conditions should
be imposed at its inlet plane, so the downstream flow behaviour is in good correspondence with
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(a) (b)

Figure 5.4: Schematic visualization of a dropout in an ANN. (a) standard Neural Network; (b) after applying
dropout.

the experimental measurements. The Machine Learning strategy proposed in this thesis is shown
schematically in Fig. 5.5 and it can be divided into three main steps:

Figure 5.5: Scheme of the proposed Machine Learning strategy to determine optimal inlet boundary conditions
for a numerical simulation.

1. Creating the database: in the first step of the proposed strategy, multiple numerical simu-
lations are run to create an appropriate database which will be used to train an ANN. The
numerical setup (computational domain, boundary conditions, turbulence model, wall-
model etc.) of each simulation in this database must be identical to that from the case
we want to optimize, except for a different set of inlet boundary conditions. For instance,
in the case of RANS simulations of the bulb turbine draft tube discussed in Chapter 4 of
this thesis, different Vz, Vu, Vr and k, as well a different turbulence characteristic length
scales would be imposed at the inlet of each simulation. In the case of LES, the turbulence
kinetic energy profile would be replaced by a normalized profile of k (see Fig. 2.7) and,
instead of a single turbulence characteristic length scale, the two parameters required to
define the synthetic fluctuations, a velocity, and a length scales (u′ and le, respectively),
would be varied in each simulation. As a result, any difference on the downstream flow
field behaviour is exclusively due to the inlet boundary conditions and the ANN can be
trained to establish a mapping between the two.

2. Training the ANN: the second step in the proposed Machine Learning strategy consists
in training the ANN, i.e., creating a non-linear regression model that will correlate ANN
inputs and outputs, using the database generated in the previous step. Inputs correspond
to the downstream flow field results obtained from the database (e.g., mean velocity, tur-
bulence kinetic energy and static pressure profiles etc.) whereas outputs consist in the
set of inlet boundary conditions applied to each simulation of the database. Thus, the
trained ANN model should be able to determine which set of inlet conditions is required
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to yield a given downstream flow field behaviour. As it is going to be discussed in the
next two chapters, the complexity of the flow and, eventually, the quality of the available
experimental data play an important role in the amount and type of data used to train
the ANN.

3. Predicting the optimal inlet boundary conditions: finally, once the ANN is successfully
trained and the non-linear regression model is created, the third and final step in the
proposed Machine Learning strategy consists in informing the ANN of the actual down-
stream flow results we want our numerical simulations to match (e.g., the experimental
measurements) and, in return, it shall output the corresponding inlet boundary conditions
required to obtain such a flow.

As will be discussed in the following chapters, the computational cost associated with Step
1 in the proposed Machine Learning strategy is not negligible since creating comprehensive
databases may involve performing hundreds of numerical simulations. However, for the amount
of parameters optimized (over 200) and the type of problems to be solved (i.e., the inverse prob-
lem in RANS and LES), the computational cost is considered inferior to previous optimization
algorithms used in the context of draft tubes. Moreover, conversely to evolutionary algorithms
and adjoint methods, the numerical simulations performed to create the database are not aimed
to resolve a single task but rather to cover a large solution space (e.g., operating conditions and
flow conditions), meaning that they can be reused to solve many types of problems. It should be
noticed, however, that the proposed approach has some limitations, especially in terms of what
can be used as inputs and outputs for the ANN. For instance, if the goal is to reproduce the
experimental results inside the draft tube discussed in Chapter 4, ANN’s inputs would be limited
by what has been measured (both in terms of location and data type) during the experimental
campaigns. Thus, even though numerical simulations give access to comprehensive information
about the flow field inside the computational domain, we could not use, for example, the mean
velocity field measured at station EX as an input because this quantity has not been measured
this far downstream inside the draft tube. Similarly, we could not use any individual component
of the Reynolds stress tensor as an input because it has not been measured anywhere on the
flow. Conversely, ANN’s outputs are not limited by the experimental data, but by the param-
eters that were modified during the creation of the database, meaning that it is not possible to
optimize a quantity that was not varied when creating the database. Otherwise, the proposed
approach is relatively flexible and can be easily applied to different types of problems and flow
configurations.
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Test case: swirling flow inside conical
diffuser
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6.1 Introduction

As discussed in the previous chapter, the proposed Machine Learning strategy has a signif-
icant computational cost, particularly associated with the generation of the database used to
train the ANN model. Moreover, due to its innovative nature, many important aspects of this
strategy are not fully known a priori and must be investigated (e.g., the size of the database,
the structure of the data used as inputs and outputs for the ANN, the architecture for the
ANN etc.). Thus, before applying the proposed Machine Learning strategy to the complex and
computationally demanding draft tube flow, a simpler case of the swirling flow inside a conical
diffuser is examined in this chapter. This particular flow has been used many times in the past
as a validation case for the numerical approaches in other studies due to its similar character-
istics to draft tube flows (e.g., unsteady, swirling and subjected to adverse pressure gradients),
especially those from bulb turbines. Despite its simplicity, the delicate balance between core
flow recirculation and boundary layer separation renders accurate numerical simulations of this
flow a real challenge to perform, while its relatively low computational cost and high sensitiv-
ity to inlet boundary conditions (which are only partially known) makes of the swirling flow
inside the conical diffuser the ideal case to apply and explore the proposed Machine Learning
strategy. The goal with this chapter is, therefore, to acquire some knowledge in this simpler
yet challenging flow case and to use this knowledge in the more complex and computationally
expensive draft tube configuration studied in Chapter 4. First, the characteristics of the con-
ical diffuser are presented and the previous numerical works that investigated it are discussed.

101
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Then, steady RANS and LES computations are performed using standard approaches to define
both inlet boundary conditions and numerical domain in order to establish a baseline to which
the proposed Machine Learning strategy can be compared to. Finally, the proposed strategy is
thoroughly applied, first in RANS and then in LES, to different configurations of the test case
and the obtained results are compared with the reference simulations and experiments.

6.2 Flow configuration

The test case chosen to explore the Machine Learning strategy consists in the swirling flow
inside a conical diffuser experimentally studied by Clausen et al. [19] and which is part of the
classic European Research Community On Flow Turbulence And Combustion (ERCOFTAC)
database (Case 60: Swirling Boundary Layer in Conical Diffuser). As shown by the scheme in
Fig. 6.1, the diffuser was 510mm long, had an inlet diameter of D0 = 260mm and a 20◦ opening
angle. A constant air flow, with kinematic viscosity ν = 1.5×10−5m2/s, was forced through the
diffuser and discharged into the atmosphere at a flow rate Q = 0.616m3/s, which corresponds
to an average axial velocity at the inlet, Ub = 11.6m/s and a Reynolds number, Re, equal to
2× 105.

Figure 6.1: Scheme of the conical diffuser studied by Clausen et al. [19].

Flow swirl was generated by a 400mm rotating cylinder (including a honeycomb screen)
positioned 100mm upstream the diffuser. The corresponding swirl number, Sw, given by Eq.
(6.1) and defined as the ratio between the axial flux of angular momentum and the axial flux
of axial momentum multiplied by the radius was taken equal to 0.295. It was finely adjusted,
so the flow remains attached to the diffuser walls and, at the same time, no recirculation was
created in its core.

Sw =

R�

0

r2 |Uθ|Uzdr

R

R�

0

rU2
z dr

(6.1)

Measurements are taken with respect to two coordinate system in the conical diffuser, as
shown in Fig. 6.1. Inside the upstream swirl generator, Uz is the mean axial velocity of the
flow, Ur is the mean radial velocity and Uθ is the mean circumferential velocity. However,
inside the cone, Clausen et al. [19] used a local coordinate system composed by an x-axis and
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y-axis, respectively parallel and normal to the walls, to measure the velocity profiles. In this
coordinate system, Ux is the mean velocity component parallel to the walls (streamwise) and
Uy is the mean velocity component perpendicular to the walls (normal). Notice that the mean
circumferential velocity component is the same in both coordinate systems and that Ux and Uz,
as well as Uy and Ur, are equivalent at the first measurement station, S1. The mean velocity
profiles were measured using hot-wires at eight traverses perpendicular to the walls, shown as
stations S1 to S8 in Fig. 6.1. The positioning of the traverses is accurate to 0.01mm, whereas the
estimated error in the mean velocities is approximately 2%. Both mean streamwise (Ux and Uz)
and circumferential (Uθ) velocity components were measured by Clausen et al. [19] during the
experiments, but the mean velocity normal to the walls Uy as well as the mean radial velocity
Ur components were not measured due to some technical difficulties. The six components of the
Reynolds stresses were also measured at the same eight traverses, though they were limited to
the region very close to the walls and their accuracy was estimated in 10%. Nevertheless, it is
possible to determine the turbulence kinetic energy, k, from these measurements using Eq.(6.2):

k =
1

2

(
u′

2
r + u′

2
θ + u′

2
z

)
(6.2)

Finally, in addition to the mean velocity and turbulence kinetic energy profiles, the evolution
of static pressure at the walls was also measured in the form of the pressure coefficient, Cp, defined
by (6.3), where Pw is the static pressure at the wall, Patm is the atmospheric pressure and ρ is
the density of the air.

Cp =
Pwall − Patm

0.5ρU2
b

(6.3)

6.3 Previous numerical studies of the case

The first numerical work to study the swirling flow inside the ERCOFTAC conical diffuser
was conducted by Armfield et al. [4] in 1990. The performance of the standard k-ε and Algebraic
Reynolds Stress (ASM) turbulence models were compared in a numerical domain that started
at the second measurement station, S2 (see Fig. 6.1) and that was simplified by considering
the flow as axisymmetric. A two-layer wall function was used, and inlet boundary conditions
consisted in experimental Ux, Uθ and k profiles at S2. However, as Ur is unknown from the
experiments, it was assumed to be equal to zero. The dissipation rate, ε, was also adjusted so
the correct axial variation of k at the centre of the diffuser. At the end, both turbulence models
yielded similar results and mean velocity and turbulence kinetic energy profiles agreed quite well
with experiments.

A slightly modified version of the numerical domain studied in Armfield et al. [4] was investi-
gated during an ERCOFTAC Workshop held in Karlsruhe in 1995 [130]. The numerical domain
started at the first measurement station, S1 (instead of S2), but the flow was still considered
as axisymmetric. Inlet boundary conditions came from the experimental mean velocity and
turbulence measurements at this station, but, in their contribution to this workshop, Vu and
Shyy argued that considering Ur = 0 at the inlet was not realistic as station S1 was too close
to the divergence section of the diffuser. Therefore, they estimated this velocity component by
moving the inlet section and extending the domain 100mm further upstream, imposing the same
boundary conditions (including Ur = 0), performing a preliminary flow analysis for the conical
diffuser and recover Ur at the original inlet position, station S1. Multiple turbulence models,
such as Reynolds Stress Models (RSM), ASM, k-ε and k-ω, were tested during the Workshop
and, when required, the dissipation rate, ε, was determined similarly to Armfield et al. [4]. In
general, the results obtained during the workshop did not agree very well with the experimental
data, especially because mean axial velocity profiles were systematically underestimated near
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the walls and overestimated at the centre region of the diffuser.

A few years later, in 2002, Mauri [98] investigated a 3D version of the numerical domain pro-
posed in the ERCOFTAC Workshop held in Karlsruhe [130] to validate his numerical methods
for the simulations of the FLINDT draft tube [5]. Steady RANS simulations using the standard
k-ε turbulence model coupled with wall functions were conducted with inlet boundary conditions
coming from the experimental measurements at station S1. Ur at the inlet was considered equal
to zero once again, but the major difference this time was the turbulence kinetic energy consid-
ered as 5% of the total energy, and the dissipation rate, considered as ε = k3/2/0.04D0. Overall,
the results did not agree with experimental measurements as the mean streamwise velocity peaks
near the walls were underpredicted near the walls, leading thus to an overestimation of this ve-
locity component at the centre of the diffuser. Moreover, due to the fairly arbitrary turbulent
boundary condition imposed at the inlet, k values were very overpredicted at the initial portion
of the draft tube and underpredicted at closer to its exit.

In 2006, Gyllenram and Nilsson [63] performed Very Large-Eddy Simulations (VLES) of
the flow inside the conical diffuser using the k-ω turbulence model. To deal with the problem
of unknown Ur, the numerical domain was extended upstream to include the cylindrical swirl
generator shown in Fig. 6.1. The radial velocity component was considered equal to zero at
this new inlet position, and the axial and circumferential velocity profiles were accordingly
adjusted by a polynomial equation. Turbulent intensity was taken equal to 10% and the system
of equations was closed by a turbulent length scale, le = 3.2mm, which corresponds to the size
of a cell in the rotating honeycomb screen. However, the obtained results were very dependent
on both the turbulence model and grid refinement. Moreover, in spite of limited comparisons
with experimental data, Ux values were systematically underpredicted near the walls. Indeed,
the boundary layer even detached from the walls in some cases.

Bounous [12] conducted an extensive study of the test case in the context of the Turboma-
chinery Working Group in the Third OpenFOAM Workshop organized in 2008 [117]. Simulations
were conducted in RANS using both k-ε and k-ω SST turbulence models. Aside from the nu-
merical domains studied in original ERCOFTAC Workshop [130] and in Gyllenram and Nilsson
[63], another configuration containing a straight upstream and downstream extensions was inves-
tigated by Bounous [12]. Amongst the two turbulence models and other numerical parameters,
many inlet boundary conditions were investigated in his study, although Ur was always set equal
to zero at the inlet. Most of his simulations ended up underestimating Ux near the walls and,
as a result, overestimating it at the centre of the diffuser. However, a relatively good agreement
with the experimental data was obtained when using the extended numerical domain, turbulent
inlet boundary conditions proposed in Gyllenram and Nilsson [63], a constant inlet mean axial
velocity and a linearly varying inlet mean circumferential velocity.

Still in 2008, Payette [123] also conducted an extensive study of the ERCOFTAC conical
diffuser using steady RANS, again as a mean of validating his numerical methodology for some
draft tube flow simulations. Initial computations of the flow inside the numerical domain without
upstream extension proved the k-ω SST turbulence model to be very susceptible to boundary
layer separation inside the conical diffuser, conversely to previous simulations using the k-ε tur-
bulence model. Indeed, Payette [123] argued that these early simulations were actually affected
by the model’s tendency to delay flow separation and that the problem with the k-ω SST simula-
tions was caused by the specification of Ur = 0 at the inlet of the numerical domain (station S1).
A separate simulation of the conical diffuser with a 500mm upstream extension was then per-
formed to determine the correct level of Ur at this location, very similarly to what was proposed
by Vu and Shyy in their contribution to the original ERCOFTAC Workshop [130]. Conversely
to these authors though, the radial velocity profile recovered by Payette [123] along with the
experimental Uz and Uθ and the turbulent inlet boundary conditions proposed by Armfield [4],
yielded very good (arguably the best) results for the conical diffuser numerical domain without
upstream extension.
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A few years later, in 2010, again in the context of draft tube flow numerical simulations,
Bélanger-Vincent [8] performed RANS, URANS, DES and Delayed DES (DDES) computations
of the swirling flow inside the conical diffuser. The numerical domain had an upstream and
downstream straight extensions (similarly to Bounous [12]) precisely to avoid some problems
with proper inlet boundary conditions as discussed in Payette [123]. Ur was set equal to zero
and the rest of the inlet boundary conditions came from Bounous [12], i.e., a constant mean
axial velocity profile, a linearly varying circumferential velocity and, in the case of RANS and
URANS, the turbulent inlet boundary conditions as proposed in Gyllenram and Nilsson [63].
Both turbulence models yielded identical results but underpredicted Ux and Uθ values near the
walls. DES also did not predict very well the flow behaviour inside the conical diffuser and
results were extremely sensitive to turbulent inlet conditions. Only DDES using the k-ω SST
turbulence resulted in a good prediction of the mean streamwise velocity field inside the diffuser,
although it depended on some ad hoc blending function to control the boundary layer separation
at the walls.

A very similar investigation was conducted by Taheri [149], but instead of k-ω SST, he
used Spalart-Allmaras turbulence model. Conversely to Bélanger-Vincent [8], though, Taheri
[149] was not to obtain good DDES results. In addition to the extended numerical domain,
Taheri [149] also investigated the numerical domain starting at station S1 and applied the exact
same procedure discussed in Payette [123] to determine the optimal Ur profile at this location.
However, his URANS simulations using Spalart-Allmaras turbulence model were once again in
disagreement with the experimental data. The problem was that the flow behaviour inside the
conical diffuser was very sensitive to small variations in the mean velocity profiles caused by the
upstream extension and to the imposed turbulent inlet boundary conditions, which are more
complex to define in DDES than in RANS.

Duprat [36] used the swirling flow inside the conical diffuser to investigate three synthetic
turbulence techniques for his LES of a draft tube flow. The first technique consisted in in-
troducing an extension upstream the diffuser and map the turbulent field at a downstream
cross-section back into the inlet of the numerical domain. Despite adding a forcing term to
ensure the appropriate flow rate and swirl number at the station S1, the correct mean velocity
profiles distribution was not recovered, and the obtained results were very poor in comparison
with the experiments. Thus, changing to a numerical domain starting at station S1 and imposing
the experimental Ux and Uθ profiles measured at this location, the second and simplest tech-
nique explored by Duprat [36] consisted in introducing a white-noise random component to the
mean inlet velocity field. However, as previously explained in Section 2.4 and actually observed
by Duprat [36], the synthetic fluctuations generated with this method completely lack spatial
and temporal correlations and, as a result, they are instantly destroyed by the Navier-Stokes
solver, mostly dissipating close to the inlet of the domain. Finally, the third and last technique
consisted in injecting the fluctuations issued from a separate precursor pipe flow simulation. The
results were indeed improved compared to the simple white-noise case, but performing precursor
simulations of more complex flows, such as draft tubes, is computationally expensive and the
application of this technique is thus very limited. Moreover, these fluctuations would still create
a transition region within the numerical domain, which potentially affects the energy balance of
the flow (see the discussion of the draft tube in Chapter 4).

Based on these discussions, it is clear how important it is to impose proper inlet boundary
conditions in the case of the swirling flow inside the ERCOFTAC conical diffuser. Moreover,
in spite of the many efforts conducted along the years to correctly determining some unknown
quantities for this case, particularly the mean radial velocity component, Ur, the proposed
solutions do not work in multiple turbulence methods and/or rely on actually simulating the
flow upstream the conical diffuser, which is simply not applicable in the case of a real draft
tube due to the complexity of the flow coming from the guide-vanes and runner. Finally, while
RANS and DES simulations are already quite sensitive to turbulent inlet conditions, LES adds
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another difficulty due to the complexity of generating appropriate synthetic fluctuations, with
proper intensity, characteristic length scale and the right anisotropy. Therefore, being able to
determining a method capable of imposing proper inlet boundary conditions for the swirling
flow inside the conical diffuser and that is applicable to multiple turbulence methods and flow
configurations is indeed very relevant and a good benchmark for the proposed Machine Learning
strategy discussed in Chapter 5.

6.4 Basic inlet boundary conditions

Before applying the proposed Machine Learning strategy to determine the inlet boundary
conditions for the conical diffuser, it is necessary to establish a baseline to which its perfor-
mance can be compared. The simplest approach to simulate this flow consists in following the
recommendations given for the first ERCOFTAC Workshop [130] that studied this case. The
numerical domain is shortened with respect to the original configuration shown in Fig. 6.1 since
the upstream swirl generator is not considered and the available experimental data at the first
measurement station is used as inlet conditions for the computations. As a result, this simplified
approach has been used in many works that investigated this test case [98, 12, 117, 123, 36, 149].

6.4.1 Numerical setup

The numerical domains considered for the reference simulations are shown in Fig. 6.2. For
the steady RANS simulations using the k-ω SST turbulence model, the flow statistical axisym-
metry is assumed to restrict to 2D computations and therefore reduce the overall computational
cost. Conversely, in LES, the complete 3D geometry of the diffuser has to be considered. In
both cases, the domain consists in the conical diffuser, including a very short cylindrical exten-
sion upstream the cone. The inlet of the domain corresponds to the first measurement station,
S1, whereas the outlet is positioned at the end of a 500mm straight extension downstream the
diffuser exit. In the original configuration, the flow discharges directly to the atmosphere after
passing through the diffuser, however, the downstream straight extension helps with the conver-
gence and stability of the numerical solution without interfering with the flow behaviour inside
the cone [123]. A classical mesh convergence study was conducted in RANS where different
levels of refinement for a block structured hexahedral mesh were tested to guarantee that results
were indeed independent of the spatial discretization. The final mesh had approximately 6×103

elements and y+ ≈ 1. In the case of LES, an automatic two-criteria based mesh adaptation
[9] was used in the spatial discretization study of the domain and the final mesh was composed
by 3.3 × 106 tetrahedral elements. Moreover, like in the draft tube case, 4 layers of prismatic
elements of aspect ratio equal to 4 were positioned at the walls to reduce the maximum y+ to
approximately 20 and to keep the simulation at a reasonable computational cost.

(a) (b)

Figure 6.2: Numerical domains for reference simulations using (a) RANS and (b) LES.

Following the previous draft tube simulations in this thesis, the commercial flow solver AN-
SYS CFX is used to perform the steady RANS simulations using the k-ω SST turbulence model
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[101], as it has been shown to be the most appropriate for this particular flow [123]. Due to
the swirling nature of the flow, two corrections are applied to the production term in the k and
ω transport equations, one to limit its values at stagnation points [74] and another to render
it more sensitive to the effect of streamline curvature and system rotation [139]. The high res-
olution scheme of ANSYS CFX [3] is used for the advection term and a first order scheme is
used for the two extra k and ω transport equations. LES are once again performed in YALES2
using its incompressible fractional step-solver, finite-volume formulation and 4th order space and
time numerical schemes. The Dynamic Smagorinsky turbulence model [58] is used to model the
SGS effects on the flow and time steps are evaluated so CFL is always smaller than 0.9 in the
whole numerical domain. In all LES cases, an initial simulation is performed to stabilize the
flow field within the diffuser and only then a second simulation is run during the equivalent of
ten complete flow passages throughout the domain to accumulate the statistics used in the final
analysis of the flow.

6.4.2 Boundary conditions

As the inlet of the numerical domain corresponds to the first measurement station, S1, inlet
boundary conditions consist in the experimental mean velocity and turbulence kinetic energy
profiles measured at this location. These profiles are shown in Fig. 6.3 as a function of the
normalized distance to the walls, y/ymax, where y is the normal distance to the walls, ymax is
the maximum distance between the walls and the centreline of the diffuser at the ith section, and
y/ymax = 1 correspond to the axis of the conical diffuser. Their distribution over the inlet plane
is considered as axisymmetric, similarly to the previous draft tube simulations conducted in this
thesis. Mean velocity profiles are interpolated from the experimental data and an extra point is
added to ensure that the velocity is actually zero at the walls. Since Ur was not measured during
the original experiments conducted by Clausen et al. [19], it is set equal to zero at the inlet,
which is indeed in accordance with most of the simulations conducted in the aforementioned
ERCOFTAC Workshop that studied this case [130].

Figure 6.3: Mean velocity and turbulence kinetic energy profiles imposed at the inlet of the reference ERCOFTAC
conical diffuser simulations.

For the RANS simulations using the k-ω SST turbulence model, turbulent inlet conditions
are necessary to close the system of equations. The turbulence kinetic energy profiles obtained
from the Reynolds stresses measurements can be used in this regard, however, since these mea-
surements are limited to the region very close to the walls, between y/ymax = 0.03 and 0.15, as
shown in Fig. 6.3, k is assumed to vary linearly between k = 0 at the walls and its value at the
first experimental point (at y/ymax ≈ 0.03). Moreover, an exponential regression curve [123]
given by Eq. (6.4) is used to complete the profile between y/ymax = 0.15 and 1.0:
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k = e29.2(r/rmax)−28.3 (6.4)

Finally, an equation for the dissipation rate, ε, given by Eq. (6.5) is used to close the system
of equations. This equation was first proposed by Armfield [4] and Cµ = 0.09 is the classical
constant of the k-ε and k-ω models and D0 is the diameter of the diffuser inlet. Most of the
studies in the original ERCOFTAC Workshop [130] used a similar approach, but Payette [123]
also used Eq. (6.5) to obtain his best results for the swirling flow inside the conical diffuser.

ε =
C

3/4
µ k3/2

0.01D0
(6.5)

In the case of LES, as no turbulent inlet boundary conditions are necessarily required and
since we want to avoid the use of ad hoc solutions specific to the test case, two simple approaches
are considered: no inlet turbulence or a homogeneous isotropic synthetic turbulent field at the
inlet plane. The same synthetic turbulence generation scheme employed for the case of the draft
tube case studied in Chapter 4 and available in YALES2 (see Chapter 2, Section 2.4) is used.
The normalized turbulence kinetic energy profile follows the same construction applied in RANS,
i.e., a linear variation between y/ymax = 0 and 0.03, and Eq. (6.4) for the rest of the profile,
whereas the injection speed, U , is assumed to be equal to the average axial velocity at the inlet,
Ub = 11.6m/s. The synthetic turbulence length scale, le, is considered as being equal to 10% of
the inlet diameter D0, or 26mm, which corresponds to a classical characteristics turbulent length
scale for pipe flows or channel flows, whereas the velocity scale, u′, is approximately 0.82mm,
or 7% of the average axial velocity, Ub, and is estimated from Eq. (6.6) and the maximum
experimental value of k assuming isotropic turbulence:

u′ =

√
3

2
kmax (6.6)

Finally, an average static pressure equal to 0 is applied at the outlet of the numerical domain
and no-slip condition is imposed at the walls. Following the previous draft tube simulations
conducted in this thesis, an automatic wall treatment [3] is used in RANS k-ω SST simulations
and the wall model proposed by Duprat et al. [37] is used in LES.

6.4.3 Comparison with experimental data

Figure 6.4 shows the comparison between the mean streamwise velocity profiles obtained by
the numerical RANS and LES simulations of the reference conical diffuser configuration and the
experimental measurements conducted by Clausen et al. [19]. Both turbulence models yield
very similar results up to station S4 and are in relatively good agreement with the experimental
data. At station S5, the k-ω SST turbulence model slightly underestimates Ux values close to
the walls (y/ymax = 0.0) and, as a consequence, overestimates its values towards the centre of
the flow (y/ymax = 1.0). Between stations S6 and S8, this behaviour is amplified and results in
a boundary layer separation between stations S5 and S6, which is indeed confirmed by negative
Ux values in vicinity of the walls. This separation was already observed in Payette [123] and
is symptomatic of RANS simulations using the k-ω SST turbulence model and with zero inlet
radial velocity. Conversely, LES results show no signs of separation and the near-wall behaviour
of the flow inside the diffuser is well captured in both cases, i.e., with or without inlet turbulence.
Nevertheless, Ux values are still overestimated in the centre of the diffuser, especially between
stations S5 and S8. This is due to the poor prediction of the streamwise velocity peak, which
is both underestimated and further away from the walls compared to the experimental data. In
any case, injecting synthetic fluctuations had little effect on the profiles of Ux.
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Figure 6.4: Comparisons of mean streamwise velocity profiles inside the conical diffuser for the reference simula-
tions using RANS and LES.

The comparisons between mean circumferential velocity profiles obtained by the RANS and
LES numerical simulations and the experiments conducted by Clausen et al. [19] are shown in
Fig. 6.5. LES results match very well the experimental measurements, in spite of the discrep-
ancies for Ux previously discussed. Moreover, injecting synthetic fluctuations had a negligible
effect on Uθ profiles. RANS results, on the other hand, yield very similar results to LES up
to station S4, but the boundary layer separation also interfered with the mean circumferential
velocity profiles within the conical diffuser. Starting at station S6, the near wall peak of Uθ
moves away from the walls and this velocity component is greatly overestimated towards the
centre of the flow.

The turbulence kinetic energy profiles inside the diffuser for these reference simulations are
shown in Fig. 6.6. Starting with the RANS k-ω SST results, the turbulent inlet boundary
conditions are good at predicting the k values until station S4. At station S5, the turbulence
kinetic energy peak is slightly underestimated compared to the experiments, though it is at the
correct level at station S6. However, between stations S6 and S8, this peak moves away from
the walls and its maximum numerical value is greatly overestimated at station S8, coinciding
with the flow separation predicted by the k-ω SST turbulence model. In the case of LES, as
expected, turbulence kinetic energy is equal to zero at the inlet of the numerical domain (station
S1) in the case without synthetic fluctuations. In the case with imposed synthetic fluctuations,
the profile of k matches the experimental data at station S1. However, as a result of flow shear
at the walls and unrealistic turbulence decay close to the inlet of the numerical domain, both
LES cases (with/without turbulent inflow) present very similar results by station S2. Indeed,
their values are largely overestimated in comparison to the experimental measurements between
stations S3 and S5, and slowly decrease until finally match the experimental results at stations
S7 and S8. Another problem with these results is that, although the near-wall peak is well
predicted, its profiles is wider in LES than in the experiments. Finally, it should be noticed that
the inlet turbulence measured in the experiment is anisotropic. Indeed, both 〈u′ru′θ〉 and 〈u′ru′z〉
components exhibit negative values near the wall due to the radial variations of the circumferen-
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tial and of the axial mean velocity respectively. In the case of the LES with turbulence injection
at the inlet, we have checked that these correlations are zero at station S1 due to the isotropic
nature of the synthetic fluctuations.

Figure 6.5: Comparison between mean circumferential velocity profiles inside the conical diffuser obtained exper-
imentally by Clausen et al. [19] and the reference RANS k-ω SST and LES simulations.

6.5 Application of the proposed Machine Learning strategy

Similarly to the reference draft tube simulations discussed in Chapter 4, these results demon-
strate that basic inlet conditions are not capable of providing satisfactory results for the simple
case of the swirling flow inside the conical diffuser. Indeed, as pointed out in Section 6.3, this
problem has been observed in previous numerical studies of this case and the main cause for
these discrepancies comes from inadequate inlet boundary conditions, particularly the unknown
Ur velocity component which is assumed to be zero. In LES, another key issue is the ability
to generate and inject proper synthetic fluctuations into the simulation, with the right intensity
and the right characteristic length scale and the right anisotropy. To circumvent these prob-
lems, the proposed Machine Learning strategy introduced in Chapter 5 is applied to the present
ERCOFTAC conical diffuser case. The goal is to determine the optimal conditions that should
be imposed at the inlet of the numerical domain (e.g., station S1) so the recovered downstream
flow is in good correspondence with the experimental measurements by Clausen et al. [19]. In
the following sections, a thorough application of this strategy will be presented and, at the end,
the results compared to the previous reference simulations.

6.5.1 Step 1: Numerical setup and database generation

The first step in the proposed Machine Learning strategy is to create a database containing
the results of multiple simulations of the case we want the inlet conditions to be optimized
for. Prior to launch any of these simulations, it is necessary to define the numerical domain
that is going to be used. In RANS, the reference domain starting at station S1 and shown in
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Figure 6.6: Comparison between turbulence kinetic energy profiles inside the conical diffuser obtained experimen-
tally by Clausen et al. [19] and the reference RANS k-ω SST and LES simulations.

Fig. 6.2 can be employed since only mean quantities need to be prescribed and therefore no
artificial upstream inlet extension are required to allow fluctuations correlations to build up.
However, similarly to previous numerical works that simulated the upstream swirl generator
[63, 12, 123, 8, 149], such an extension may improve the prediction of missing flow quantities
like Ur. Conversely, in the case of LES, it will be shown that the upstream extension is important
as it gives the incoming synthetic fluctuations the space and time required for them to develop
before entering the diffuser.

To determine the length of the upstream extension, a first approach would be to it equal
to the length of the swirl generator shown in Fig. 6.1, i.e., 500mm, as in several previous
authors [63, 12, 123, 8, 149]. However, it is essential for the success of the proposed Machine
Learning strategy that the downstream flow behaviour be dependent on the boundary conditions
imposed at the inlet of this extension. A real concern for the case of the swirling flow inside
the conical diffuser is that if the upstream extension is too long, the turbulence generated at
the walls due to flow shear becomes the dominant effect on the downstream flow. Therefore,
a parametric study has been conducted to evaluate the sensitivity of the downstream kinetic
energy to the upstream synthetic turbulence parameters, specifically u′ and le, using the two
different extended numerical domains shown in Fig. 6.7, with upstream extension lengths equal
to 500mm and 250mm.

In the parametric study, the velocity scale, u′, is varied between 1.5% ≤ u′ ≤ 15% of the
average axial velocity at the inlet, Ub, whereas the length scale, le, is varied between 2% ≤ le ≤
40% of the extension diameter, D0. Mean velocity and turbulence kinetic energy profiles are
held constant during the simulations. The results for the evolution of k between the inlet of the
extended domains (station IN) and the first measurement station, S1, are shown in Fig. 6.8. It
is clear that for the longer extension, with 500mm, the values of k in the vicinity of the walls
at station S1 do not depend on the imposed u′ and le. Indeed, the lines defining the minimum
and maximum values of k overlap at the walls nearby station −200. Moreover, the numerical
results at station S1 are always overestimated compared to the experiments. Conversely, the
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(a) (b)

Figure 6.7: Numerical domains with upstream extension used for the parametric study in LES. (a) 500mm long
extension; (b) 250mm long extension.

results for the turbulence kinetic energy profiles at station S1 obtained with the shorter 250mm
extension are still dependent on the upstream inlet boundary conditions and, more importantly,
experimental values are within the solution space of the parametric study. Thus, the proposed
Machine Learning strategy is applied to the shorter extended numerical domain in LES. In
RANS, in addition to the reference numerical domain discussed in Section 6.4, the proposed
strategy is also applied to a simplified version of this shorter domain shown in Fig. 6.9

Another important aspect of the proposed Machine Learning strategy explained in Chapter 5
is that each simulation in the database is run with a different set of inlet boundary conditions. In
RANS, these conditions are defined by four different profiles: three mean velocity components,
Uz,Uθ and Ur, and one turbulence kinetic energy profile, k. The dissipation rate, ε, is not
optimized and is defined by Eq. (6.5), as in the reference simulations. In the case of LES,
the two synthetic turbulence parameters varied in the previous parametric study, notably u′

and le, are also required to completely define the inlet boundary conditions for the simulation.
One key aspect of these inlet boundary conditions is that they are able to cover a sufficiently
large solution space, so the final ANN have enough information to deliver good solutions. Thus,
each inlet profile for each simulation in the database was automatically generated by a Python
script using B-splines [15] and a Sobol quasirandom sequence [140]. At the end, 1700 different
sets of inlet boundary conditions have been generated and their mean, minimum and maximum
distributions are shown in Fig. 6.10 compared to the experimental values measured at station
S1.

With both numerical domain and sets of inlet boundary conditions well-defined, the sim-
ulations to create the database for the proposed Machine Learning strategy can be launched.
In RANS, two databases containing 800 simulations each were created: one for the reference
numerical domain without upstream extension and another for the domain with a 250mm long
upstream extension (see Fig. 6.9). The computational cost per simulation in each case is very
low, especially due to the simplified geometry (e.g., axisymmetric), and a simulation running
in 12 CPU cores takes approximately a minute to complete. In addition to that, a typical
RANS solution in the database occupies 4 Mb (megabytes), meaning that each database takes
approximately 3.2 Gb (gigabytes) of storage. In LES, a single database for the case with a short
upstream extension (see Fig. 6.7b) was created, but it is smaller and contains the results of
only 450 simulations in total. The built-in tool called Y2 Workflow is used to automatically
launch and post-process the simulations in YALES2, ensuring statistically converged solutions
with minimum user interference. A typical LES computation in the database takes 400 CPUh
to run (140 CPUh for the stabilization step and 260 CPUh for the flow statistics accumulation)
and occupies 3.4 Gb. Therefore, the creation of the LES database required approximately 180
000 CPUh and 1.7 Tb (terabytes) of storage space. While these numbers refer to the databases
containing the complete LES and RANS numerical solutions, these results are post-processed at
the end of each simulation and all flow field information measured at the eight stations inside
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(a)

(b)

Figure 6.8: Evolution of turbulence kinetic energy profiles inside the upstream extension during parametric studies
in LES. (a) 500mm long extension; (b) 250mm long extension.

Figure 6.9: Simplified numerical domain with 250mm long upstream extension used in RANS.
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Figure 6.10: Distribution of the mean velocity and turbulence kinetic energy profiles generated for the proposed
Machine Learning strategy.

the diffuser is stored along with the set of inlet boundary conditions that generated them. These
profiles take only a few Mb of storage space and, as will be discussed in the following section,
that is the only information required to create the ANN model.

6.5.2 Step 2: ANN architecture and training

Once the database is created, the second step in the proposed Machine Learning strategy
consists in determining the non-linear model that will correlate the downstream flow field be-
haviour and the imposed inlet boundary conditions. This is achieved by training an Artificial
Neural Network, ANN, specifically designed to learn these correlations in a supervised manner,
i.e., by looking at examples of both inputs and outputs in the flow [60]. First, it is necessary to
define the structure of the data used as inputs and outputs for the ANN. As already discussed
in the presentation of the proposed Machine Learning strategy, inputs for the ANN are limited
by the experimental data. In the case of the ERCOFTAC conical diffuser studied by Clausen
et al. [19], this means that only mean streamwise and circumferential velocity profiles, as well
as turbulence kinetic energy profiles at the eight stations inside the diffuser can be used in as
inputs. However, since pre-processing these profiles can improve the training and performance
of the ANN, each one of them is scaled by dividing their absolute values by their respective area
averaged value at each section, i.e.,

φ∗ =
φ

1

Ssec

�

Ssec

φdA

(6.7)

where φ∗ is the scaled variable (e.g., U∗x , U∗θ and k∗) and Ssec is the cross-section area. While
this scaling regards each case in the database separately, a second pre-processing step, called
normalization, is also applied to the ensemble of the inputs vectors [60], X, so:

X′ =
X− µ
σ

(6.8)

where µ and σ are a vector containing, respectively, the mean and the standard deviation of
each variable. The goal of this second pre-processing step is to set the mean of the input vectors
equal to 0 and its standard deviation equal to 1.

Outputs, on the other hand, are not limited by the experimental data, but by what was
varied during the creation of the database. Indeed, since the goal of the proposed strategy is to
determine the inlet boundary conditions, outputs consists in sets of inlet boundary conditions
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imposed at each simulation of the database. In the case of RANS, this would correspond to
the four inlet profiles (Uz, Uθ, Ur and k) and, in LES, we add the synthetic turbulence length
and velocity scales (respectively, le and u′). Each profile was composed by 50 points, unevenly
distributed along the inlet radius. For instance, points density is higher closer to the walls,
where velocity and turbulence kinetic energy profiles gradients are more important. Finally, like
the inputs, these profiles are also normalized before training.

With both inputs and outputs defined, the next step is to determine the architecture of the
network, i.e., how the different layers will connect and what are the hyperparameters used in
each one (e.g., the number of layers and its sizes, the activation functions, optimizer, learning
rate etc.). Determining these different parameters is an optimization process by itself [10, 89,
46, 41], but in the context of this thesis, all of them have been determined manually. The final
architecture of the ANN used in the optimization of the inlet boundary conditions for the three
conical diffuser configurations considered in this chapter is shown in Fig. 6.11. The ANN consists
in four or six MLP, one for each output, designed to learn in a supervised manner and composed
only by fully-connected layers (FC). A concatenation layer is also used to concatenate the scaled
and absolute inputs. Exponential Linear Units (ELU) activation functions [20] are used as,
conversely to simpler and more commonly used Rectified Linear Units (ReLU) [109, 59], they
can handle negative outputs, which turned to be important in our model. At the end of each fully-
connected layer, a dropout rate of 50% is applied to reduce overfitting and improve the model’s
performance [144]. Moreover, as the problem being solved consists in a non-linear regression,
the loss function is equal to the MSE between the training (true) set, Y, and predictions, Ŷ,

MSE =
1

m

m∑

i

(
Ŷ −Y

)2
(6.9)

Figure 6.11: Scheme of the ANN architecture used to obtain optimized inlet boundary conditions for the conical
diffuser case.

Finally, the machine learning algorithm is implemented in Python 3.7 using Tensorflow 2.1
and training is conducted for 5000 epochs using NAdam optimizer [34]. The results of these
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trainings are discussed in Appendix A. In all three configurations investigated (two RANS and
one LES), 400 cases from the database are used for training and 10% of it is used as validation
for the model. The results from all stations are used as inputs for the ANN, except for station
S2. At this location, the mean streamwise velocity profile seems underestimated with respect
to the rest of the diffuser, which could potentially impact the performance of the ANN model.
Moreover, since station S1 corresponds the inlet of the numerical domain without upstream
extension, it is also not used in this particular case.

6.5.3 Step 3: Predicted inlet boundary conditions and results

RANS k-ω SST with/without upstream extension

Once training is finished, the last step in the proposed Machine Learning strategy consists
in feeding the experimental data of the ERCOFTAC conical diffuser back into the trained ANN
model and, as a result, it gives the optimized inlet boundary conditions for the numerical sim-
ulations. Starting with the numerical domain with upstream extension (see Fig. 6.9) simulated
in RANS using the k-ω SST turbulence model, this case represents some previous attempts to
recover the missing mean radial velocity profile at station S1 [63, 12, 123, 8, 149]. The boundary
conditions imposed at the inlet of the upstream extension (station IN) and predicted by the
proposed Machine Learning strategy is shown in Fig. 6.12. Experimental measurements are also
shown in the figure for comparison, but it should be noticed that they are measured at station
S1.

Figure 6.12: Inlet boundary conditions predicted by the Machine Learning strategy at station IN for the ANN-
RANS simulation of the case with upstream extension, compared with the experimental measurements
at station S1.

Mean velocity profiles predicted by the ANN model are similar to the experimental mea-
surements at station S1, although the Uz distribution is flatter in the centre region of the flow
(y/ymax = 1.0). Conversely, turbulence kinetic energy values are significantly lower at the walls
but larger in the centre compared to the experiments. However, these adjustments are essential
to recover the correct flow behaviour at station S1 and further downstream. For instance, previ-
ous attempts to simulate an extended conical diffuser domain failed because they underestimated
Uz and Uθ at the walls at station S1 [12, 8, 149]. Considering the evolution of the mean axial
velocity profile along the upstream extension, there are two opposite effects acting on it that
must be taken into account by the ANN model: (i) the flow shear at the walls, which reduces
Uz at the walls and, therefore, increases its values in the centre region, due to continuity; and
(ii) flow swirl, which forces the flow towards the walls, increasing thus Uz values at this region
and reducing it in the centre.

To evaluate the ability of the proposed Machine Learning strategy to correctly account for
both effects and to match the experimental data at station S1 and inside the conical diffuser,
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the profiles at station S1 are shown in Fig. 6.13. Moreover, to demonstrate the importance of
the upstream extension, in addition to the extended case, the proposed strategy has also been
applied to the reference domain shown in Fig. 6.2a. In this case, the predicted inlet boundary
conditions are directly imposed at station S1. Both ANN-RANS results are compared with the
experimental data measured at the same location and the standard inlet conditions used in the
reference RANS case discussed in Section 6.4.

Figure 6.13: Comparison of experimental and numerical mean velocity and turbulence profiles at station S1 using
the RANS and the Machine Learning strategy.

Overall, the predicted profiles agree very well with the experiments. In the case without
upstream extension, the predicted mean axial velocity profiles, Uz, are very similar to the ex-
perimental measurements at station S1, whereas the mean circumferential velocity profile, Uθ,
is overestimated close to the walls (y/ymax ≈ 0.0) and slightly underestimated in the interme-
diate region of the flow (0.5 ≤ y/ymax ≤ 0.8). The turbulence kinetic energy profiles, k, is also
very similar to the experiments near the walls, but it is overestimated towards the centre of
the flow. Conversely, in the extended numerical domain case, the peak value of Uz is slightly
overestimated and is located slightly further away from the walls, at y/ymax ≈ 0.2 instead of
0.1, whereas the mean circumferential velocity profile agrees very well with the experimental
measurements. Turbulence kinetic energy profile is also different in this case, as the peak is
now closer to the walls and has a higher value, however, k is still overestimated towards the
centre of flow. It should be noticed though that experimental measurements are not available
between y/ymax ≈ 0.15 and 1.0, which greatly restricts the amount of information the ANN has
about the flow to infer good values of k in this region. Still, compared to previous works that
imposed turbulent inlet boundary conditions based only on integral quantities [98, 123] (e.g.,
turbulence intensity and characteristic length scale), the proposed Machine Learning strategy
predicts k profiles that are much closer to the experimental data at station S1. Indeed, for the
case of the draft tube flow studied in this thesis, being able to deal with partial data can be
a good characteristic of the proposed strategy, as experimental data in this case is harder to
gather and potentially more unreliable. However, the real contribution of the proposed strategy
is to obtain a more adequate mean radial velocity inlet profile at station S1, which is unknown
from the original measurements in Clausen et al. [19]. It is clear from Fig. 6.13 that this ve-
locity component is considerably smaller than the other two. However, as Ur profiles predicted
by both ANN-RANS are positive, this means that the flow is being forced towards the walls
at station S1, helping it to stay attached throughout the diffuser. Moreover, as explained in
Payette [123], to impose an r varying profile of Ur at the inlet is equivalent to specify the rate of
longitudinal variation of the axial velocity, Uz, at the inlet. This can be understood by looking
at the continuity equation in cylindrical coordinates, Eq. 6.10:
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Since the flow is axisymmetric, ∂/∂θ = 0. Therefore, imposing a profile of Ur implies that
1
r
∂rUr
∂r 6= 0 and sets an axial evolution for Uz due to the term ∂Uz

∂z . However, the distribution of
this radial velocity profile is also important, as it will, for instance, define the regions where the
axial flow is accelerated and/or slowed down. This is illustrated by Fig. 6.14 which compares the
inlet radial velocity profile at station S1 obtained by the proposed Machine Learning strategy
and by the separate simulation of the swirl generator upstream the conical diffuser performed
in Payette [123]. All profiles predict an accelerated axial flow close the walls and slowed down
towards the centre due to the change in the sign of 1

r
∂rUr
∂r , but the position of the peak is

better captured in the case with upstream extension, which is explained by the effect of the
circumferential velocity profile imposed at station IN.

Figure 6.14: Comparison between the radial velocity profile at S1 obtained by the proposed Machine Learning
strategy and the separate simulation in Payette [123].

Looking at the flow behaviour inside the conical diffuser, Fig. 6.15 compares the evolution
of mean streamwise velocity profiles obtained with the proposed Machine Learning strategy, the
reference RANS simulations discussed in Section 6.4 and the best result in Payette [123] using ad
hoc solution and k-ω SST turbulence model. The proposed strategy has a great impact on the
flow behaviour downstream the diffuser, especially due to the more appropriate radial velocity
profile at station S1. For instance, the boundary layer is much better predicted in comparison to
the reference simulations and stays attached to the walls throughout the diffuser. However, in
the case with upstream extension, the slightly overestimated and higher peak of Ux at station S1
leads to a small difference in the prediction of the streamwise velocity peak further downstream
compared to the case without extension and confirming thus the sensitivity of the test case to
the boundary conditions at the inlet of the diffuser. Still, the magnitude and position of this
velocity peak agrees very well with the experimental data, except for the last two stations, where
it is slightly overestimated. In any case, the proposed Machine Learning strategy was able to
properly adjust the upstream inlet conditions (imposed at station IN) to match the downstream
flow field, which is its main goal. Moreover, compared to the best RANS solution obtained
in Payette [123] using the k-ω SST turbulence model, the ANN-RANS profiles are very close,
though they are not as good at capturing the small variations in Ux near the centre of the flow.

Figure 6.16 shows the results for mean circumferential velocity profiles. The results are
much improved with respect to the reference simulations discussed in Section 6.4 and agree very
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Figure 6.15: Comparisons of experimental and numerical mean streamwise velocity profiles inside the diffuser
using RANS and the proposed strategy.

well with the experimental data and the best solution obtained in Payette [123]. In spite of
overestimated Uθ values near the walls at station S1 in the case without upstream extension,
the numerical results obtained with the proposed strategy agree well with the experimental
measurements in this region along the diffuser. However, the slight underestimation between
0.5 ≤ y/ymax ≤ 0.8 at the inlet of the domain (station S1) causes the circumferential velocity
profile to be underestimated in the centre region of the flow compared to other cases.

The results for turbulence kinetic energy profiles are shown in Fig. 6.17. In the case without
upstream extension, despite being overestimated between 0.1 ≤ y/ymax ≤ 0.2 at station S1,
the values of k slowly decrease and a very good agreement with the experimental data is found
at station S4. However, while the maximum experimental value of turbulence kinetic energy
is constant and ≈ 2m2/s2 between stations S5 and S7 and is accompanied by a very slow
displacement towards the centre of the diffuser followed by a strong decrease at station S8,
numerical results keep reducing until the end of the diffuser and are quite underestimated at these
last four stations. This is consistent though with previous studies that investigated the swirling
flow inside the conical diffuser using two-equation linear eddy viscosity models [4, 98, 12, 123].
In this regard, steady RANS simulations using RSM predicted better turbulence kinetic energy
profiles near the walls [4, 130]. However, due to the limited information about k inside the
conical diffuser, is hard to determine how big its near-wall peak is the inlet of the numerical
domain without upstream extension. Indeed, one characteristic of the extended domain results
mentioned previously and shown in Fig. 6.13 is the higher peak value of k at this location.

One of the strengths of the proposed Machine Learning strategy compared to the ad hoc
solution proposed in Payette [123] and many other previously discussed methods to determine
proper inlet boundary conditions for the case of the swirling flow inside the conical diffuser
and any other flow configuration, is that it relies only on the known experimental data to
automatically reconstruct the inlet boundary conditions for a numerical simulation. Still, these
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Figure 6.16: Comparisons of experimental and numerical mean circumferential velocity profiles inside the diffuser
using RANS and the proposed strategy.

data do varies between cases, and it is important that the methodology can handle more or
less information. In the case of the conical diffuser investigated in this chapter and particularly
discussed using RANS above, seven out of eight measurement stations have been used to train
the ANN. However, to evaluate the proposed Machine Learning strategy performance when less
information is available, two stations (in particular S1 and S8) have been used to train another
ANN for the extended RANS case just discussed. The results for mean streamwise velocity
profiles are shown in Fig. 6.18 and they are compared with the previous ANN-RANS case with
upstream extension. Overall, the ANN-RANS case trained with only two stations yields similar
results to the one trained with seven downstream stations. Although the conical diffuser is far
simpler than the draft tube studied in Chapter 4 of this thesis (constant opening angle, no centre
flow recirculation or vortex rope, free flow outlet etc.), it is nevertheless a very challenging case
and the fact the proposed Machine Learning strategy can still deliver good results with few
stations is promising. Otherwise, at least it demonstrates the potential of the proposed Machine
Learning strategy to be applied to cases with very limited experimental information.

LES with upstream extension

Following the application of proposed Machine Learning strategy in RANS, the next where
it has been investigated consists in the numerical domain with upstream extension shown in Fig.
6.7b using LES. Conversely to the previous cases, the goal now is to reconstruct proper mean
and fluctuating boundary conditions at the inlet of the extended numerical domain (station IN)
so the downstream flow behaviour is as close as possible to the experiments. The challenge,
however, is the considerably higher computational cost to generate a proper LES database for
the ANN. Therefore, one possible solution to circumvent these costs would consist in using the
inlet profiles predicted by the ANN-RANS procedure to initiate the LES simulation. However,
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Figure 6.17: Comparisons of experimental and numerical turbulence kinetic energy profiles inside the diffuser using
RANS and the Machine Learning strategy.

not only this does not solve the problem of determining the correct le and u′ values for the
injected synthetic turbulence at the inlet section (station IN), but also the inlet profiles issued
from the ANN model takes into account all different errors (e.g., turbulence modelling, numerics
etc.) which are distinct in RANS and LES. This is seen in Fig. 6.19, which compares the mean
streamwise velocity profiles inside the conical diffuser obtained with both RANS and LES in the
extended numerical domain and using the inlet conditions predicted by the ANN-RANS shown
in Fig. 6.12. For the synthetic fluctuations, the velocity and length scales have been defined
from generally used values [98, 123], i.e., 0.1Ub and 0.1D0, respectively. It is clear from Fig.
6.19 that the LES results are degraded with respect to the ANN-RANS, especially downstream
station S4. This confirms that the database should reflect as much as possible the numerical
case we want to optimize. In the case of the draft tube discussed in Chapter 4, this is definitely
a disadvantage of the proposed strategy since the computational costs associated with LES (and
even RANS) of that case are significant.

After training the ANN with the LES database discussed in Step 2 of this application and
feeding the experimental data back to the trained model, the predicted inlet boundary conditions
imposed at station IN are shown in Fig. 6.20. These profiles are compared to the equivalent
extended RANS configuration discussed in the previous section and shown in Fig. 6.9. The
various profiles predicted by both ANN-RANS and ANN-LES are noticeably different, specially
near the walls. This confirms the previous assumption that the ANN procedure must include
the multiple sources of errors (e.g., turbulence modelling, numerics etc.) into its predictions
and therefore the final inlet profiles are specifically adapted to a given simulation, i.e., RANS
or LES. The optimal parameters defining the injected synthetic fluctuations are, in addition to
the normalized turbulence kinetic energy profile shown in Fig. 6.20, equal to u′ = 0.551m/s,
or ≈ 0.05Ub, and le = 0.042m, or ≈ 0.16D0. Interestingly, these values are not far from the
generally used values used earlier.
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Figure 6.18: Comparisons of experimental and numerical mean streamwise velocity profiles inside the diffuser
using RANS and different amount of stations for the ANN.

Figure 6.19: Comparisons of experimental and numerical mean streamwise velocity profiles inside the diffuser
using the inlet boundary conditions predicted by the proposed strategy with a RANS database in
LES and the proposed strategy.
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Figure 6.20: Inlet boundary conditions predicted by the proposed Machine Learning strategy at station IN using
LES and the proposed strategy, compared with the experimental measurements at station S1.

Compared to the ANN-RANS case with upstream extension, the mean velocity profiles pre-
dicted in LES at station IN present some slight differences. For instance, Uz varies almost
linearly after a rapid increase at the walls until it reaches its maximum value at y/ymax ≈ 0.2.
Moreover, while k values predicted in RANS are larger at the centre of the diffuser compared to
its values at the walls, the normalized turbulence kinetic energy profile predicted in LES shows a
single peak near the walls and decreases smoothly towards the centre. However, as in the RANS
cases discussed in the previous section, the importance of these adjustments is to recover a good
flow behaviour at station S1 and further downstream in the diffuser. This is initially shown in
Fig. 6.21, which compares the mean velocity and turbulence kinetic energy profiles at the first
measurement station, S1. Both mean axial and circumferential velocity profiles obtained by the
ANN-LES agrees very well with the experimental measurements at this location. Although the
mean radial velocity is not available from the experiments, the results are similar to what has
been found in previously by the ANN-RANS and Payette [123]. Finally, the turbulence kinetic
energy level near the walls is similar to the experiments, but the peak is considerably higher
than in RANS.

Figure 6.21: Comparison of experimental and numerical velocity and turbulence profiles at station S1 using the
LES and the proposed strategy.

The evolution of the mean streamwise velocity profiles shown in Fig. 6.22. It is clear that
the ANN-LES and the proposed Machine Learning strategy yields much better results compared
to the reference LES cases discussed in Section 6.4. Even though the Ux values are slightly
overpredicted at the walls, as if the boundary layer is more attached than it should be, the
magnitude and position of the mean streamwise velocity peak is very close to the experimental



124 Chapter 6. Test case: swirling flow inside conical diffuser

measurements. Indeed, while this peak value was notably overestimated in the previous ANN-
RANS simulations, especially at stations S7 and S8 (see Fig. 6.15), ANN-LES results agree very
well with the experiments at these locations. Interestingly, the correct levels of mean streamwise
velocity at the centre of the flow is also obtained along the diffuser, except for stations S7 and
S8, where they are slightly overpredicted.

Figure 6.22: Comparisons of experimental and numerical mean streamwise velocity profiles inside the diffuser
using LES and the proposed strategy.

The mean circumferential velocity profiles inside the conical diffuser are shown in Fig. 6.23.
Similarly to the ANN-RANS cases and even the reference LES, numerical results obtained with
the proposed Machine Learning strategy agree very well with the experiments, despite the over-
estimated Uθ values near the walls at station S1. Conversely to the previous simulations though,
the correct level of mean circumferential velocity is recovered right to the walls between sta-
tions S2 and S4. However, a side effect is an overestimation of this velocity component in this
region of the flow between stations S5 and S7. At station S8, ANN-LES results are slightly
underestimated compared to the experimental measurements and the reference LES.

Figure 6.24 shows the turbulence kinetic energy profiles inside the conical diffuser. The pa-
rameters defining the synthetic fluctuations injected in the ANN-LES case yielded good levels
of k compared to the experiments, with a strong peak near the walls and almost no turbulence
towards the centre of the flow. However, conversely to the two reference LES cases, the turbu-
lence kinetic energy is overestimated at stations S2 and S3, but is closer to the measurements
of Clausen et al. [19] at stations S4 and S5. Between stations S6 and S8, the magnitude of the
peak is underestimated, but the rest of the profile agree quite well with the experimental data.
It should be noticed that, compared to previously discussed RANS simulations, y+ values in
LES are considerably higher, which could explain the strong peak of k near the walls. However,
as the Machine Learning strategy required a significant number of simulations to be applied,
computational cost is definitely a limiting factor, which is why increasing the near-wall mesh
resolution to lower maximum y+ values below 20 was not attempted.

As explained at the previous sections, the main reason to add an upstream extension in our
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Figure 6.23: Comparisons of experimental and numerical mean circumferential velocity profiles inside the diffuser
using LES and the proposed strategy.

Figure 6.24: Comparisons of experimental and numerical turbulence kinetic energy profiles inside the diffuser using
LES and the proposed strategy.
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LES is to give the incoming synthetic fluctuations enough space and time for them to develop
into more realistic turbulence before reaching the important portion of the numerical domain.
Indeed, while easy to generate, one of the problems of the imposed synthetic fluctuations in this
thesis is that they are isotropic, meaning that their correlations at the injection plane is equal
to zero, which is not always necessarily the case. This is shown in Fig. 6.25, which compares the
〈u′ru′θ〉 and 〈u′ru′z〉 correlations at station S1 of the conical diffuser. As expected though, in the
ANN-LES case with upstream extension, these correlations are build-up upstream station S1
and by the time they reach this station, their values are in good agreement with the experimental
measurements. It should be noticed, however, that regarding the turbulence characteristics at
the inlet of the diffuser, the ERCOFTAC case is much more simple than the draft tube studied
in this thesis. Nevertheless, as we will discuss in the following chapter, the artificial upstream
extension is still as important in the draft tube.

Figure 6.25: Comparisons of experimental and numerical Reynolds stresses profiles at station S1 using LES and
the proposed strategy.

Another way to visualize the impact caused by the upstream extension on the flow consists in
looking at the turbulent structures inside the conical diffuser. Figure 6.26 shows these structures
using iso-surfaces of Q-criterion [86] coloured by the vorticity magnitude in the z-axis direction.
In the reference case without synthetic fluctuations injection (see Fig. 6.26a), turbulent struc-
tures are not visible at the inlet plane, but they quickly develop at the walls as a result of flow
shear in this region. Adding synthetic fluctuations to this reference case (see Fig. 6.26b) causes
the turbulent structures to being seen from the beginning of the computational domain, but they
are isotropic and still need to develop into more realistic turbulence downstream the diffuser,
similarly to the results obtained in Duprat [36] and the draft tube case discussed in Chapter
4. However, in the ANN-LES case with an upstream extension (see Fig. 6.26c), the synthetic
turbulence injected at station IN develop inside the extension and, by the time it arrives at
station S1, it is more realistic. For instance, well-defined coherent structures can be observed at
the beginning of the domain and consists in relatively long vortices aligned with the mean flow
direction due to the centrifugal instabilities at the upstream extension.

Finally, as mentioned in the Section 6.2, Clausen et al. [19] also measured the static pressure
evolution along the diffuser walls in the form of a pressure coefficient, Cp, defined in Eq. (6.3).
These results are important as they give an indication of the pressure recovery inside the diffuser.
Figure 6.27 shows the curves obtained for the three LES cases (two reference and one ANN-LES)
in comparison with the experimental values. It should be noticed that the static pressure at
station S8 is used as reference instead of the atmospheric pressure in the original Cp equation.
Since the static pressure at the walls is greatly affected by the velocity distribution in this region
of the flow, ANN-LES results are clearly improved with respect to the reference simulations



6.5. Application of the proposed Machine Learning strategy 127

using standard inlet boundary conditions.

(a) (b)

(c)

Figure 6.26: Turbulent structures inside the conical diffuser visualized by iso-surfaces of Q-criterion and coloured
by their vorticity z. (a) reference LES w/o upstream extension and w/o synthetic fluctuations; (b)
reference LES w/o upstream extension and w/ synthetic fluctuations; (c) ANN-LES w/ upstream
extension and w/ synthetic fluctuations.

Figure 6.27: Comparisons of experimental and numerical Cp evolution using LES and the proposed strategy.
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7.1 Introduction

After the successful application of the proposed Machine Learning strategy to the canonical
case of the swirling flow inside a conical diffuser, in the present chapter, we revisit the bulb
turbine draft tube previously discussed in Chapter 4, but, this time, applying the same strategy
to determine proper inlet boundary conditions for simulating its flow. As explained in the
previous test case, the ANN can have some difficulties finding physical inlet boundary conditions
for a simulation if the experimental data is unreliable. For this reason, the application to the draft
tube case is limited to the second operating point, OP2, since the experimental data for OP1
have some inconsistencies (see Chapter 4). The application of the proposed Machine Learning
strategy is once again divided into its three main steps, which are thoroughly explained in this
chapter. In the first step, the numerical setup of the simulations used to create the database is
explained. Overall, it is almost identical to that used in the reference simulations, except for the
addition of an artificial extension upstream the real inlet of the draft tube (station R0) to give
the incoming synthetic fluctuations more time and space for them to develop before reaching
the important portion of the flow. RANS simulations are performed in ANSYS CFX using the
k-ω SST turbulence model and the automatic near wall treatment, whereas LES are conducted
in YALES2 using the σ-model to account for the SGS effects on the flow and Duprat’s et al. [37]
wall-model. In the second step, the architecture of the ANN used to determine the correlations
between downstream flow behaviour and upstream inlet conditions, as well as the structure of
its inputs/outputs are discussed. Finally, in the third and last step, the results obtained with
the proposed Machine Learning strategy are presented and compared with the reference RANS
and LES results from Chapter 4. A detailed head losses analysis is also conducted to show the
importance of imposing proper inlet boundary conditions when evaluating a draft tube flow.

129
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7.2 Step 1: Numerical setup and database generation

Similarly to the swirling flow inside the conical diffuser investigated in the precedent chapter,
the first step in the application of the proposed Machine Learning strategy to the draft tube
case explored in Chapter 4 consists in determining the numerical domain that is going to be
used in our database computations. As discussed in Sections 4.5.3 and 4.6.3, injecting synthetic
fluctuations directly at the inlet of the draft tube (station R0 in Figs. 3.1 and 4.1) have a
positive effect on the downstream flow behaviour inside the draft tube but negatively impact its
energy balance and head losses analysis. Thus, the key aspect of this new domain is the artificial
upstream extension that gives these unrealistic fluctuations enough time and space for them to
develop before reaching the real inlet plane (station R0). However, conversely to the previous test
case, determining the length of this upstream extension is not obvious. For instance, in addition
to the more complex downstream flow being generated by the set of 34 fixed blades, grid, and
hub in the draft tube, turbulence measurements at the first station inside the diffuser studied
by Clausen et al. [19] was relatively low and mostly concentrated at the walls, whereas in the
case of the draft tube flow studied in this thesis, turbulence levels are significantly high all over
its inlet plane (station R0), which means that the synthetic fluctuations take potentially longer
(spatially and temporally) to develop. Therefore, based on the maximum distance in which the
∆H values were still decreasing and thus behaving unexpectedly in Figs. 4.30 and 4.42, which
corresponds to 0.2L in the cases where u′ = 1.2Vb,in and le = 0.2hmax,R0, a simple straight
extension was added upstream the reference numerical domain of the draft tube, as shown in
Fig. 7.1. Again, this extension is not required in RANS, as the problem with unrealistic synthetic
fluctuations decay is not present in this turbulence method. Nevertheless, the extended domain
is used because, similarly to the conical diffuser, RANS is a relatively inexpensive benchmark to
test some proposed Machine Learning strategy aspects before passing to more computationally
demanding LES. It should be noticed, however, that the numerical domain in RANS is not
simplified as the draft tube geometry is not axisymmetric.

Figure 7.1: Extended numerical domain of the draft tube used in the application of the proposed Machine Learning
strategy.

In addition to the numerical domain, it is also necessary to define the different sets of
boundary conditions that should be imposed at the inlet of the upstream extension (station
IN) in each simulation of the database. In both RANS and LES, four profiles are required to
define these inlet conditions, notably the three mean velocity profiles (Vz, Vu and Vr) and one
turbulence kinetic energy profile (k), which is normalized in LES. These profiles were generated
by a Python script, similar to the one used in the ERCOFTAC case, using splines [15] and a
Sobol quasiradom sequence [140]. At the end, 800 different sets of inlet boundary conditions have
been generated, and their distributions are shown in Fig. 7.2. It should be noticed, however,
that the distribution of these profiles is not the same as in the previous conical diffuser case
because the downstream flow characteristics are notably different in both cases. Like in the
previous case, experimental values measured at station R0 are shown for comparison, but the
generated profiles are supposed to be imposed at the inlet of the upstream extension, station
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IN.

Figure 7.2: Distribution of mean velocity and turbulence kinetic energy profiles generated for the proposed Ma-
chine Learning strategy.

The parameters defining the incoming synthetic fluctuations characteristics (le and u′) also
needed to be determined prior to launch the simulation in the database. Like in the case
of the swirling flow inside a conical diffuser, it is important that the downstream results be
dependent on the imposed inlet boundary conditions. However, the decay of these synthetic
fluctuations is greatly affected by these values and a parametric study is therefore necessary to
evaluate the sensitivity of the downstream turbulence kinetic energy profile to them. Using the
above extended numerical domain and keeping the four inlet profiles constant, the length scale
was varied between 0.1hmax,R0 ≤ le ≤ 1.0hmax,R0, whereas the velocity scale varied between
0.1Vb,in ≤ u′ ≤ 1.0Vb,in. The results of this study are shown in Fig. 7.3 and it is clear that
the turbulence kinetic energy profiles at station R0 are indeed dependent on the inlet boundary
conditions. More importantly, the experimental values at this location are within the solution
space of the parametric study. Conversely to the previous conical diffuser investigated in Chapter
6, the characteristic length scale of the imposed turbulence is also optimized by the proposed
Machine Learning strategy in RANS. Thus, a similar study was carried out to determine its
range, which was defined as 0.05hmax,R0 and 0.20hmax,R0.

Figure 7.3: Evolution of turbulence kinetic energy profiles inside the upstream extension during the parametric
study in LES.

With both numerical domain and sets of inlet boundary conditions defined, the simulations
required to create the databases for the ANN could be launched. Each database, for both RANS
and LES, were composed by 500 simulations. While the computational cost per simulation can
vary depending on the imposed inlet conditions, a typical RANS solution of the flow inside the
extended draft tube takes 60 CPUh to finish and 850 Mb (megabyte) of storage space. Thus,
to run all 500 cases in the RANS database, approximately 30 000 CPUh and 425 Gb (gigabyte)
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of storage were required. In the case of LES, simulations for the database were automatically
launched and managed by a specific tool available in YALES2 to ensure that all steps required to
obtain a statistically converged solution, including the mesh adaptation, were properly executed
with minimum user intervention. The typical computational cost to perform the four steps
required to obtain a converged LES solution (i.e., flow stabilization, flow statistics accumulation,
mesh adaptation and final flow statistics accumulation) is around 6 200 CPUh, meaning that
approximately 3 100 000 CPUh were required to run all 500 simulations. The storage space take
by each LES varies depending on the final number of elements after the mesh adaptation step,
but, together, the four numerical solutions occupy approximately 32 Gb of storage. This means
that 16 Tb (terabytes) would be required for the complete LES database, however, this is raw
data and not everything is useful in the long term, particularly the solutions other than the final
flow statistics accumulation. As a result, only 4 Tb of data need to be stored. Post-processing in
both RANS and LES was performed at the end of each simulation and all flow field information
measured at all stations inside the draft tube were stored along with the corresponding set of
inlet boundary conditions used to generate them. Similarly to the ERCOFTAC case, only these
profiles (which occupy only a few megabytes) are treated by the ANN.

7.3 Step 2: ANN architecture and training

The second step in the proposed Machine Learning strategy consists in determining the
non-linear model that correlates the downstream flow field behaviour with the upstream inlet
boundary conditions. Again, an ANN specifically designed to learn these correlations in a
supervised manner is used, however, compared to the test case discussed in the previous chapter,
the draft tube has more experimental data that could be used as inputs for ANN. For instance, in
addition to the mean axial (streamwise) and tangential (circumferential) velocity profiles, mean
radial velocity and static pressure profiles are also available this time. Moreover, turbulence
kinetic energy profiles are measured all the way up to the centre of the flow, instead of being
limited to the boundary layer. However, while the reliability of this data was not a real issue
in the conical diffuser, it definitely is in the case of the bulb turbine draft tube studied in this
thesis 1. Using this unreliable data could pose a problem for the ANN as no physical solution
would exist for such an unphysical flow field. As a result, inputs had to be carefully selected
this time, and they consisted only in mean axial and tangential velocity profiles, as well as
turbulence kinetic energy and static pressure profiles, measured at stations R0, R2 and R5,
for the second operating point tested during the experimental campaign, OP2. The data at
stations R1, R3 and R4 are notably problematic at this operating condition, especially the
mean tangential velocity profiles, which seems inverted at R1 and particularly different from the
numerical results at R3 and R4 (see Fig. 4.35). It should be emphasized, however, that the
proposed methodology has indeed been tested with the experimental data from OP1, but the
results were mostly unsatisfactory and no converged inlet boundary conditions were obtained.
Nevertheless, the strategy’s relative success in the case of the swirling flow inside a conical
diffuser and the draft tube flow operating at OP2 (as will be shown in the following section),
indicates that the problem is possibly linked to the experimental data at OP1.

Similarly to the test case, inputs are pre-processed as it improves the training and perfor-
mance of the proposed Machine Learning strategy. Mean axial velocity and turbulence kinetic
energy profiles are scaled by dividing their absolute values by the respective bulk velocity at
each section, i.e.,

1This problem has been discussed in Chapter 4, especially for OP1, but also for OP2, where it was argued
that some of the experimental data is possibly unreliable and therefore should be analysed with caution (e.g., see
Figs. 4.15, 4.16, 4.34, 4.35.
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where φ∗ is the scaled variable (i.e., V ∗z , k∗) and Vz,sec is the mean axial velocity profile at a
given station. Conversely, due to some problems with the magnitude of the experimental mean
tangential velocity values, these profiles are scaled differently, where they are divided by the
specific angular momentum and multiplied by the respective cross-section area:
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Finally, the ensemble of inputs vectors, X, which includes the static pressure profiles, are
also normalized according to Eq. (6.8):

X′ =
X− µ
σ

Outputs consist in the sets of inlet boundary conditions for each simulation of the database.
In addition to the three mean velocity and turbulence kinetic energy profiles (Vz, Vu, Vr and k),
the turbulence characteristics length scale was also varied in RANS using the k-ω SST turbulence
model, while both length and velocity scales (le and u′, respectively) were varied in LES. Each
profile is composed by 70 points unevenly distributed along the inlet radius, following the same
trend of the test case, where points density is higher close to the walls due to the more important
velocity and turbulence kinetic energy gradients in this region. Finally, these profiles are also
normalized, like the inputs.

Initially, the same network architecture used in the ERCOFTAC has been tested to predict
the optimal inlet boundary conditions in the case of the draft tube. However, due to the
complexity of the flow, the amount and type of experimental data, as well as its reliability, made
that the obtained results were unsatisfactory, and a new ANN architecture had to be determined.
The final network architecture used for the draft tube case is shown in Fig. 7.4 and, much like
the previous test case, it was manually defined. In contrast to the scaled and absolute values
used in the ERCOFTAC neural network (see Fig. 6.11), only scaled values are used as inputs for
the ANN, except for the static pressure, Ps. Moreover, in addition to the five or six MLP used
for each output of the ANN, a couple of separate fully-connected layers is added to the ANN,
which are concatenated to the output of each MLP. In terms of activation functions, though,
ELUs [20] are used once again due to their ability to handle negative values and a dropout rate
of 50% is applied to reduce overfitting and improve the model’s performance [144]. Moreover,
the loss function is still the MSE between the training (true) set and predictions, given by Eq.
(6.9).

The Machine Learning algorithm is implemented in Python 3.7 using Tensorflow 2.1. NAdam
[34] is used as optimizer and training is conducted for 2000 epochs. The results of these trainings
are discussed in Appendix A. All 500 cases from the database are used for training but 20% (i.e.,
100 cases) is used for validating the model. As mentioned before, only the results at stations
R0, R2 and R5 are used as inputs for the ANN.

7.4 Step 3: Predicted inlet boundary conditions and results

After finishing the training of the ANN and feeding the experimental data back into the
trained model, the four inlet profiles predicted by the proposed Machine Learning strategy at
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station IN for both RANS and LES of the extended draft tube domain are shown in Fig. 7.5. For
comparison, the experimental profiles measured at station R0 are also shown in this figure. It
should be noticed that the turbulence kinetic energy profile is normalized in LES (i.e., kmax ≤ 1)
due to the way synthetic fluctuations are generated in YALES2 (see Section 2.4 and Fig. 2.7).
In addition to these profiles, the ANN also predicted an optimal turbulence length scale equal
to 0.13hmax,R0 to close the system of equations in RANS using the k-ω SST turbulence model,
and le = 0.21hmax,R0 and u′ = 0.37Vb,in for the injected synthetic fluctuations in LES.

Figure 7.4: Scheme of the ANN architecture used to obtain the optimized inlet boundary conditions for the draft
tube case.

Figure 7.5: Normalized inlet boundary conditions predicted by the proposed Machine Learning strategy at station
IN for both ANN-RANS and ANN-LES.

Compared to the ERCOFTAC case, mean axial and tangential velocity profiles are more
complexes, especially due to the presence of a central hub in the draft tube, which adds another
wall that must be taken into account by the ANN model. For instance, despite the being
subjected to the same two opposite effects inside the upstream extension (see Section 6.5.3),
the ANN has to compensate the axial velocity being reduced at both extremities of the inlet
profile. Moreover, mean tangential velocity distribution is not as simple as a solid body rotation,
although it gradually reduces from the external (h/hmax ≈ 0.0) to the internal (h/hmax ≈ 1.0)
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region of the flow. As a result, two peaks are observed in the Vz profiles, particularly close to
the walls, whereas a single peak can be observed in Vu close the hub (h/hmax ≈ 1.0). Conversely
to the conical diffuser though, mean radial velocity and turbulence kinetic energy profiles are
mostly constant along the draft tube radius.

Overall, the inlet profiles predicted at station IN are similar to the experimental data mea-
sured at station R0. These small differences correspond indeed to the adjustments done by the
proposed Machine Learning strategy and are essential for recovering the correct flow behaviour
downstream the draft tube. This is illustrated in Fig. 7.6, which compares the numerical and
experimental profiles measured at station R0. Starting with the mean axial velocity profile, the
aforementioned peaks predicted at the inlet of the upstream extension (station IN) and close to
the walls (h/hmax = 0.0 and h/hmax = 1.0) are mostly dissipated within the upstream extension.
As a result, a very good agreement is found between the ANN results and the experimental mea-
surements at station R0. The most noticeable difference is between 0.8 ≤ h/hmax ≤ 0.9 where
the ANN-RANS underestimate the values of Vz compared to the experiments while the ANN-LES
overestimate it. The predicted mean tangential velocity profiles are also close to the experiments
at station R0, although the peak near h/hmax ≈ 1.0 is only captured by the ANN-RANS. Inter-
estingly, both ANN models yield very similar Vu profiles at station IN, LES results being even
overestimated with respect to RANS at this region of the flow, i.e., h/hmax ≈ 1.0. However, as
the flow in each case evolves differently inside the upstream extension (e.g., due to turbulence
modelling, numerics etc.), downstream profiles end up being relatively different. Looking at
the predicted mean radial velocity profiles, they are both much closer to zero compared to the
experiments. While this velocity component is particularly difficult to measure and therefore
experimental data unreliability is a plausible explanation, the influence due to the upstream
blades and grid in the real draft tube configuration (see Fig. 3.1) can simply not be captured
by the ANN in the extended domain (see Fig. 7.1), at least not with the current axisymmetric
inlet boundary conditions. Finally, the distribution of both turbulence kinetic energy profiles are
similar to the experimental measurements, but its values are mostly underestimated in the case
of ANN-RANS and overestimated in the case of ANN-LES. It should be noticed, however, that
the goal of the proposed Machine Learning strategy is not to perfectly match the numerical and
experimental profiles at every station inside the draft tube. Rather, its main goal is to obtain
the best correspondence with the experimental data all over the flow.

Figure 7.6: Experimental and numerical normalized mean velocity and turbulence kinetic energy profiles at station
R0 using the proposed Machine Learning strategy.

7.4.1 Velocity and turbulence profiles

The downstream evolution of the normalized mean axial velocity profiles inside the draft
tube is shown in Fig. 7.7. In addition to experiments, the results obtained with the proposed
Machine Learning strategy are compared to both reference RANS and LES without synthetic
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turbulence injection (i.e., the standard approach to draft tube simulations), as well as the overall
best LES with synthetic fluctuations injection, case with u′ = 0.6Vb,in and le = 0.4hmax,R0.
Starting with RANS using the k-ω SST turbulence model, Vz profiles are significantly improved
by the proposed strategy. For instance, Vz values are closer to the experimental measurements
at station R1 as they are increased near the external walls of the draft tube (h/hmax = 0.0) and
slightly reduced towards the centre of the flow. This extra speed and energy in the boundary
layer also result in a very good agreement between the ANN-RANS and experimental data at
station R2. Indeed, even the central vortex behaviour at this station is better captured in the
ANN-RANS, though still not as well as in reference LES. At stations R3 and R4, the influence
of the turbulence model is more noticeable and the ANN-RANS does not capture either the
near-wall or the central vortex behaviours very well. However, the slight increase in Vz values
near h/hmax = 0.0 greatly improves the numerical results in the intermediate region of the flow,
between 0.2 ≤ h/hmax ≤ 0.8. Finally, a similar trend is observed at station R5, though the
ANN-RANS predicts no boundary layer separation, in accordance with the experiments and
conversely to the reference RANS simulations. In LES, the mean axial velocity values near
h/hmax = 0.0 at station R1 predicted by the proposed strategy are also improved compared
to the experiments and the reference simulations. As a result, the boundary layer behaviour
(h/hmax ≈ 0.0) is better captured at stations R2. The low Vz values at the central vortex
is again well predicted in LES, but the enhanced boundary layer brings the ANN-LES results
closer to the experimental measurements at the intermediate region of the flow. At stations R3
and R4, agreement with experimental data is very good, except for the high Vz values between
0.0 ≤ h/hmax ≤ 0.2 at station R4, which is simply not captured numerically. At station R5, the
small increase in boundary layer speed also reflects in the centre of the flow where ANN-LES
results are closer to the experiments, though the relatively flat Vz profile is not recovered.

Figure 7.7: Normalized mean axial velocity profiles inside the draft tube predicted by the reference simulations of
the draft tube at OP2 and the proposed strategy.

The normalized mean tangential velocity profiles are shown in Fig. 7.8. As previously
discussed, experimental measurements at stations R1, R3 and R4 and noticeably different from
the numerical results, which can be due to unreliable data at these three stations. Nevertheless,
looking at the distribution of numerical profiles at station R1, they are all very similar, except for
the peak near the hub (h/hmax=1.0), which is not captured by the ANN-LES. This is expected,
however, since this same peak was not even captured at station R0, as shown in Fig. 7.6. Its
impact on the downstream Vu profiles, however, is limited as ANN-LES results at stations R2
and R5 follows very well the experimental data. It should be noticed that, although the values of
Vu near 0.0 ≤ h/H ≤ 0.8 at station R2 are smaller than what has been experimentally measured,
this is in consonance with the reference numerical results, especially the LES with moderate and
strong synthetic fluctuations (i.e., u′ = 0.6Vb,in and u′ = 1.2Vb,in). In RANS, both reference and
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ANN-RANS simulations yield very similar results, which is expected given the good agreement
with experimental measurements at station R0.

Figure 7.8: Normalized mean tangential velocity profiles inside the draft tube predicted by the reference simula-
tions of the draft tube at OP2 and the proposed strategy.

While similar mean velocity results have been obtained previously using the reference nu-
merical domain after injecting synthetic fluctuations in LES, those results depended on very
strong synthetic fluctuations, which then affected the near wall mean velocity profile and, more
importantly, the energy balance of the flow (see discussions in Chapter 4). With the proposed
strategy and upstream extension, in addition to a more realistic turbulent inflow, the mean ve-
locity profiles are also optimized at the real inlet of the draft tube (station R0). As pointed out
by Brugière [14], these inlet profile distributions, especially near the walls, have a major impact
on the downstream flow behaviour. Indeed, looking at the normalized turbulence kinetic energy
profiles, shown in Fig. 7.9, the ANN-RANS results are only slightly underestimated with re-
spect to the reference simulations at stations R1 and R2, but still close to the experimental data.
Between R3 and R5, ANN-RANS results are underestimated, but the different velocity profiles
(and thus gradients) lead to distinct k distributions near the walls (h/hmax = 0.0) compared
to the reference simulations. Conversely, ANN-LES results are overestimated with respect to
experiments at station R1, though not as much as the previous best LES case with turbulence
injection discussed in Chapter 4 (i.e., the case where u′ = 0.6Vb,in and le = 0.4hmax,R0), but
agree well with the experimental measurements at R2. Between stations R3 and R5, ANN-LES
results are slightly underestimated compared to the experiments and the best reference LES.

Figure 7.9: Normalized turbulence kinetic energy profiles inside the draft tube predicted by the reference simula-
tions of the draft tube at OP2 and the proposed strategy.
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7.4.2 Static pressure profiles and distribution along the walls

One of the most important contributions of the proposed Machine Learning strategy and
upstream extension is observed in the static pressure evolution inside the draft tube, as illustrated
by the normalized static pressure profiles shown in Fig. 7.10. These profiles are important as they
indicate how efficiently is the draft tube converting the dynamic pressure into static pressure.
Both ANN-RANS and ANN-LES results are shifted with respect to the reference simulations
and agree very well with the experimental measurements at all stations. In LES, although this
was also observed in reference LES cases with synthetic turbulence injection, though none of
them captured the correct static pressure distribution near the walls at station R1 (see also Fig.
4.37). Indeed, this is just one indication of how imposing unrealistic synthetic fluctuations can
affect the mean flow and therefore any analysis of the draft tube.

Figure 7.10: Normalized static pressure profiles inside the draft tube predicted by the reference simulations of the
draft tube at OP2 and the proposed strategy.

In addition to the normalized static pressure profiles, the evolution of static pressure at the
walls is also improved by the proposed Machine Learning strategy and upstream extension. Fig-
ure 7.11 shows these results measured circumferentially along the draft tube. Again, results are
normalized by the dynamic pressure, qin, and the average static pressure at the walls measured
at station C1 is used as reference. As expected, both ANN-RANS and ANN-LES distributions
are shifted with respect to the reference simulations and a very good agreement with the ex-
perimental data is found between stations C2 and C5. At station EX, however, ANN-RANS
results no better than the reference LES without turbulence injection and static pressure values
are underestimated with respect to the experiments. Conversely, ANN-LES results match the
experimental points almost perfectly at station EX. This is important, as it shows that between
stations C1 and EX, i.e., the inlet and outlet of the draft tube, static pressure evolution at the
walls (and even inside the domain considering the profiles at Fig. 7.10) is very well predicted by
the ANN-LES.

To further demonstrate the capacity of the proposed Machine Learning strategy and up-
stream extension to correctly predict the static pressure in the draft tube, Fig. 7.12 shows the
evolution of Ps at the walls in the streamwise direction, i.e., at stations S1, S2 and S3. Starting
with RANS simulations using the k-ω SST turbulence model, ANN results are again shifted with
respect to the reference case, which increases the pressure recovery at the beginning of the draft
tube and brings numerical results closer to experimental measurements. Downstream the cone
of the draft tube (z/L ≥ 0.4), however, pressure recovery is not as important as it should be and
static pressure values at the walls predicted by the ANN-RANS are slightly underestimated with
respect to experiments at stations S1 and S3. In LES, in addition to shifting the static pressure
values up with respect to the reference case without turbulence injection, the pressure recovery
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Figure 7.11: Normalized circumferential static pressure distribution at the walls for the reference simulations of
the draft tube at OP2 and the proposed strategy. Reference as the average static pressure on the
walls measured at station C1, Ps,C1.

downstream the cone of the draft tube is also modified in the ANN-LES case. At stations S1 and
S3, numerical results match the experimental data very well all along its length and even the
small variation between 0.75 ≤ z/L ≤ 1.0 is captured at S3. Notice that the best reference LES
case with synthetic turbulence injection underestimates the pressure recovery at the beginning
of the draft tube and consistently underestimates Ps at the walls compared to the experiments.

Figure 7.12: Normalized streamwise static pressure evolution at the walls for the reference simulations of the draft
tube at OP2 and the proposed strategy.

7.4.3 Head losses analysis

The enhanced velocity and pressure field characterization obtained with the proposed Ma-
chine Learning strategy and the extended draft tube domain reflects, obviously, on its head
losses. As discussed in Section 4.6.3, a few adaptations have to be made to the IEC losses
equation to evaluate its experimental values in OP2, mostly due to unreliable mean velocity
profiles at station R1 (which impacts the dynamic head) and a shift between five-hole pressure
probes and wall-taps static pressure measurements (which impacts the static head). Therefore,
the variation in total head inside the draft tube, ∆Htot, is given by Eq. (4.3):
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∆Htot = ∆Hsta + ∆Hdyn

where the variation in static head, ∆Hsta, is given in Eq. (4.6):
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From these equations, it is possible then to evaluate the total head losses inside the draft
tube, shown in Fig. 7.13. Overall, the variation in dynamic head, ∆Hdyn, is very similar in all
cases, which is expected given the very good agreement between numerical and experimental
mean velocity profiles at station R0. Conversely, variation in static head, ∆Hsta, and conse-
quently total head losses, ∆Htot, are very dependent on the case. For instance, reference RANS
simulations yield the worst results compared to the experiments, consequence of the poor pre-
diction of static pressure evolution inside the draft tube in this case. The proposed Machine
Learning strategy and the upstream extension considerably improves ∆Hsta and ∆Htot values
in RANS. Indeed, ANN-RANS results are comparable to the reference LES simulations without
turbulence injection, and total head losses are 25% overestimated compared to the experiments,
against more than 50% in the reference RANS case. On the other hand, ANN-LES results are
even better, as ∆Hsta is very well predicted and total head losses, ∆Htot are only 6% over-
estimated compared to the experiments. Although this is slightly above the 3.5% of the best
reference LES with synthetic turbulence injection, this is solely due to ∆Hdyn and the velocity
profiles at station R0. Nevertheless, even though important, the IEC losses are quite limited
and do not reflect the real head losses inside the draft tube.

Figure 7.13: IEC losses between stations R0/C1 and EX predicted by the reference simulations and the proposed
strategy.

Indeed, the original motivation for the artificial upstream extension and the proposed Ma-
chine Learning strategy was to correct the unphysical real total head losses evolution inside the
draft tube in the reference LES with synthetic turbulence injection, as shown in Sections 4.5.3
and 4.6.3, for two different operating points. Conversely to the IEC losses, the real head losses
are evaluated from the mass flow averaged evolution of static and dynamic heads in multiple
cross-sections in the domain. For instance, the static head variation is given by Eq. (4.8):
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∆Hsta =
1

Q

�

SIN

〈Ps〉
ρg
〈uz〉dS −

1

Q

�

Ssec

〈Ps〉
ρg
〈uz〉dS

and the dynamic head variation is given by Eq. (4.9):
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By varying the position of the downstream cross-section and using these two last equations, as
well as Eq. 4.3, it is possible to plot real head losses evolution inside the draft tube. Although
these analyses are restricted to the numerical results, which is important to compare is the
∆Htot evolution predicted by the ANN-LES and the reference LES cases with/without synthetic
fluctuations injection. As shown in Fig. 7.14, the issues with negative head losses are not seen
in the case with an upstream extension and the proposed Machine Learning strategy. Indeed,
∆Htot values in ANN-LES evolve similarly to the reference LES without synthetic fluctuations
injection between 0.0 ≤ z/L ≤ 0.2, whereas further downstream its evolution is close to the
reference LES with moderate turbulence injection, i.e., u′ = 0.6Vb,in. It should be noticed that,
in spite of the relatively low u′ values in the ANN-LES case, turbulence kinetic energy levels at
station R1 are similar to the reference LES with moderate synthetic turbulence whereas mean
velocity profiles are better than the reference LES with strong synthetic turbulence, both of
which led to negative ∆Htot.

Figure 7.14: Real head losses evolution predicted by the reference simulations and the proposed strategy in LES.

To understand how the proposed Machine Learning strategy and upstream extension are able
to improve the results of velocity and pressure fields inside the draft tube without negatively
impacting its head losses, we compare the turbulent structures close to the inlet of the reference
and extended numerical domains, as shown in Fig. 7.15. As a result of the synthetic fluctuations
being injected at the inlet of the upstream extension (station IN), turbulent structures are seen
at the real inlet of the draft tube (station R0), similarly to the reference LES with synthetic
fluctuations injection. However, conversely to these cases, the upstream extension gives the
incoming turbulence more time and space for it to develop before reaching the draft tube,
impacting thus on the flow behaviour further downstream. For instance, it is hard to identify



142 Chapter 7. Application to the bulb turbine draft tube case

any turbulent structure aligned with the mean flow in the reference cases with u′ = 0.6Vb,in
and u′ = 1.2Vb,in close to the draft tube inlet. Moreover, many of these structures are quickly
dissipated within the cone of the draft tube. The ANN-LES case, however, in spite of the low
u′ value, predicts relatively large turbulent structures at station R0. Indeed, most of these
structures at R0 are not dissipated as quickly as before and, looking at the region close to the
central vortex, many of them are actually aligned with the mean flow field. More importantly,
the strong variation in vorticity values associated with the adaptation and transition of the
incoming synthetic fluctuations is now limited to the upstream extension, conversely to the
reference LES.

(a) (b)

(c) (d)

Figure 7.15: Turbulent structures inside the draft tube visualized by iso-surfaces of Q-criterion and coloured by
their vorticity z. (a) REF. LES (OP2, no turb.); (b) REF. LES (OP2, u′ = 0.6Vb,in, le = 0.4hmax,R0);
(c) REF. LES (OP2, u′ = 1.2Vb,in, le = 0.2hmax,R0); (d) ANN LES, (OP2, u′ = 0.37Vb,in, le =
0.21hmax,R0).

Indeed, adding the upstream extension is crucial for the improved head losses evolution inside
the draft tube, especially if we look at the resolved turbulent kinetic energy production, term V
in Eq. (2.35). Figure 7.16 its distribution for the same four cases discussed above and, conversely
to the reference LES cases with synthetic fluctuation injection, the strongly negative region near
the inlet of the domain associated with the decay of the unrealistic synthetic turbulence is now
far upstream station R0, therefore not interfering as much in the energy balance of the flow
inside the draft tube. In the ANN-LES case, turbulent kinetic energy production seems well
established at station R0 and there are no rapid variations close to the inlet of the draft tube,
which is not the case with the reference simulations where synthetic fluctuations have been
injected.

In addition to the upstream extension, the proposed Machine Learning strategy also adjusts
the inlet boundary conditions (e.g., mean velocity profiles and synthetic turbulence parameters)
to recover the correct downstream flow behaviour. Conversely to other numerical works that
investigated the flow inside a bulb turbine draft tube [14, 149, 160], the current approach is
able to circumvent some problems related with unknown and/or partially known inlet boundary
conditions and its superiority is confirmed, for instance, by the very good agreement obtained
with the numerous experimental measurements discussed previously. This is clearly seen in
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RANS, where the proposed strategy significantly improved the numerical results using the k-ω
SST turbulence model, even though the problems with synthetic fluctuations are exclusive to
LES. These differences in the downstream flow field have an important impact on the head losses
distributions inside the draft tube, especially the turbulent kinetic energy production, terms IV
and V in Eq. (2.35). This is important because, as demonstrated in Wilhelm et al. [159],
the distribution of these terms on the flow indicates the regions where head losses are more
important and therefore that could be enhanced during the turbine design.

(a) (b) (c)

(d)

Figure 7.16: Distribution of resolved turbulent kinetic energy production, term V in Eq. (2.35), close to the inlet of
the draft tube. (a) REF. LES (OP2, no turb.); (b) REF. LES (OP2, u′ = 0.6Vb,in, le = 0.4hmax,R0);
(c) REF. LES (OP2, u′ = 1.2Vb,in, le = 0.2hmax,R0); (d) ANN LES, (OP2, u′ = 0.37Vb,in, le =
0.21hmax,R0).

Figure 7.17 shows the distribution of modelled turbulent kinetic energy production, term IV
in Eq. (2.35) inside the draft tube in both RANS cases. Overall, the results are very similar
to what has been found in Wilhelm et al. [159], with two distinct regions of strong turbulent
production: near the walls and in the centre region of the flow. The latter can be explained by
the presence of a large vortex rope which is formed due to the interaction between flow swirl
and the central hub. As the mean velocity gradients in this region of the flow are very similar in
both RANS cases, modelled production is almost identical. Conversely, mean velocity gradients
on the walls are quite different and so is the modelled turbulent kinetic energy production
in this region of the flow. For instance, the more important mean velocity gradients in the
reference RANS case leads a significant higher production near the walls, which can explain why
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this case overestimated the head losses inside the draft tube by twice as much as the ANN-
RANS. More importantly, the improved flow field characterization achieved with the proposed
Machine Learning strategy considerably reduced the importance of the turbulent kinetic energy
production near the walls in detriment of the central vortex region.

(a)

(b)

Figure 7.17: Distribution of modelled turbulent kinetic energy production, term IV in Eq. (2.35), inside the draft
tube using RANS and k-ω turbulence model. (a) REF. RANS k-ω SST; (b) ANN RANS k-ω SST.

In the case of LES, turbulent kinetic energy production is divided in a modelled and resolved
terms in Eq. (2.35), respectively terms IV and V . Due to the nature of the LES solution,
modelled production in LES is considerably lower than resolved production. This has been
demonstrated in Wilhelm et al. [159] and that is what makes of LES superior to RANS, since
it is much less susceptible to turbulence modelling errors. In our case, the mesh adaptation
process further reduced the modelled production as it ensures that at least 80% of the turbulent
kinetic energy is actually resolved in LES. Finally, this is also confirmed by the distributions of
modelled and resolved turbulent kinetic energy production inside the draft tube shown in Figs.
7.18 and 7.19 in the reference LES case without synthetic fluctuations injection and ANN-LES.

Analysing the modelled turbulent kinetic energy production distribution shown in Fig. 7.18,
both reference and ANN LES cases predict high values in the centre of the flow, where a large
central vortex is formed. This is a particularly turbulent region in the draft tube, with very
important velocity gradients and where turbulent viscosity is high. The extension of these high
values of modelled production goes slightly further downstream in the reference LES case, which
can be explained by the lack of flow mixing upstream the draft tube. Indeed, modelled production
values are nearly zero at the initial portion of the numerical domain in this case, especially far
from both internal and external walls. In the ANN-LES case, the incoming fluctuations results
in a fairly turbulent flow from the beginning of the draft tube. As a consequence, modelled
production is low but far from zero away from the walls, and the central vortex is dissipated
slightly faster due to the enhanced mixing. Another difference of the ANN-LES case to the
reference LES without synthetic fluctuations is in the near-wall region of the flow, where the
latter predicts a relatively high modelled turbulent kinetic energy production. The distribution
of resolved turbulent kinetic energy production inside the draft tube, shown in Fig. 7.19, is
similar to its modelled counterpart. For instance, both cases predict relatively high values near
the centre of the flow due to the large vortex in this region. Moreover, in the case of the reference
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LES without turbulence injection, almost no turbulent kinetic energy production is observed in
a large portion of the draft tube. However, compared to the modelled production, the difference
in turbulent kinetic energy production near the walls is considerably higher, which is expected
given the very different mean velocity gradients in both reference and ANN LES cases.

(a)

(b)

Figure 7.18: Distribution of modelled turbulent kinetic energy production, term IV in Eq. (2.35), inside the draft
tube using LES. (a) REF. LES (no turb.); (b) ANN LES, u′ = 0.37Vb,in, le = 0.21hmax,R0.

(a)

(b)

Figure 7.19: Distribution of resolved turbulent kinetic energy production, term V in Eq. (2.35), inside the draft
tube using LES. (a) REF. LES (no turb.); (b) ANN LES, u′ = 0.37Vb,in, le = 0.21hmax,R0.

In terms of head losses, the IEC losses results shown in Fig. 7.13 indicated that the reference
RANS and LES cases overestimated the head losses inside the draft tube compared to their
respective ANN cases and experimental measurements. A similar trend was then observed in
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LES when tracing the real head evolution shown in Fig. 7.14. However, from these results,
we could also determine that reference LES case predicted considerably more head losses in
the final portion of the draft tube, as ∆Htot values were very similar until approximately 0.2L.
Thanks to the head losses equation developed in Wilhelm et al. [159] and the access to extensive
flow information provided by numerical simulations, particularly LES, the figures above just
corroborate these previous head losses results, and we can identify the excess in turbulent kinetic
energy production on the walls as the main source of head losses inside the draft tube and the
main cause for the overestimation in the first place. However, such a precise analysis depended
on accurate numerical results, which, in the case of the flow inside the current draft tube, was
only possible after the development of a completely new approach to determine proper mean
and fluctuating inlet boundary conditions for its numerical simulations.



Chapter 8

Conclusion and perspectives

Numerical simulations of the flow inside a bulb turbine draft tube have been conducted in
this thesis. This flow is particularly challenging to simulate since it is highly unsteady, turbulent,
with a wide range of motion scales, swirling and subjected to adverse pressure gradients. Two
turbulence methods were used to model the turbulence on the flow: RANS using the k-ω SST
turbulence model, and LES, using the σ SGS model. The main aspect of the simulations
investigated in this work consisted in analysing the influence of the imposed inlet boundary
conditions. For instance, accurate and comprehensive measurements of the flow at the inlet of
the draft tube are often difficult to obtain, but the downstream flow behaviour is very sensitive to
them. Therefore, a first objective in this thesis was to develop a method capable of determining
proper mean and fluctuating inlet boundary conditions for these simulations. The proposed
method was based on Machine Learning algorithms and its performance was initially verified in
the simpler case of conical diffuser. This method is then used to improve the prediction of the
flow inside the draft tube and, in particular, its head losses.

8.1 Summary of main results

The analysis of the flow inside the draft tube started with basic numerical simulations us-
ing standard approaches to simulate this type of problem. However, these simulations quickly
evolved as the initial results were unsatisfactory and the injected synthetic fluctuations lead to
an unexpected behaviour of the real head losses. A new approach to determine proper inlet
boundary conditions for a numerical simulation was then developed and applied first to a simple
test case and only then to the draft tube flow studied initially. The main conclusions of these
results are presented in this section.

8.1.1 Reference simulations of the draft tube

Starting from the experimental campaign conducted by GE, the initial RANS and LES com-
putations of the flow inside the draft tube were performed using basic inlet boundary conditions.
In particular, the experimental mean velocity profiles measured at the inlet of the draft tube
were imposed assuming an axisymmetric distribution. In addition to that, the turbulence kinetic
energy profile and a commonly used value of length scale were used to define the turbulent inlet
conditions in RANS, whereas in LES, only the mean velocity profiles are imposed initially.

The analysis started with the first operating point, OP1. After some adjustments to the
equation, the IEC losses predicted in LES were very close to the experimental measurements.
Indeed, these results were much better than RANS, in particular, due to the good prediction
of the static pressure evolution at the walls. However, the static pressure profiles inside the
draft tube were underestimated by both turbulence methods and, even though LES was able to
capture the influence of the central vortex on the mean velocity field, both methods failed to
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predict the correct boundary layer behaviour.

One of the issues observed in the LES was the underestimation of turbulence kinetic energy
profiles closer to the inlet of the numerical domain. Although this was expected, given that
only the mean velocity profiles were imposed at the inlet, the influence of these fluctuating
inlet conditions was investigated to improve the mean velocity and static pressure profiles inside
the draft tube. Simple synthetic fluctuations were first injected in the LES computations of
the draft tube and depending on their intensity, positive effects were observed in the numerical
results. For instance, the turbulence kinetic energy profiles were closer to the experiments and
the boundary layer behaviour was improved. Moreover, the static pressure profiles were shifted
towards the experimental measurements.

Injecting synthetic fluctuations in LES also improved the IEC losses predictions. However,
as these losses are limited to integral values of the flow, the real head losses evolution inside
the draft tube was also evaluated. The results showed negative head losses close to the inlet of
the draft tube, an unexpected behaviour that indicated an increase in the total mean kinetic
energy of the flow. This problem was linked to the unrealistic nature of the injected synthetic
fluctuations. Moreover, a detailed analysis of the head losses mechanisms in this region of the
flow allowed us to identify the resolved turbulent production as the main cause of these negative
values.

In addition to OP1, the second operating condition tested experimentally, OP2, was also
investigated using basic inlet boundary conditions, with/without synthetic fluctuations injection
in LES. Similarly to the first case, the LES results were better in capturing the influence of the
central vortex on the mean velocity profiles inside the draft tube. Moreover, the boundary layer
behaviour was significantly improved by the synthetic fluctuations in LES. Conversely to OP1
though, IEC losses were not well predicted in RANS and in the LES case without synthetic
fluctuations, but were much improved by their injection. However, as the real head losses
evolution showed again an unphysical behaviour close to the inlet of the draft tube, it was clear
that imposing basic inlet boundary conditions would not yield satisfactory numerical results.

8.1.2 Proposed Machine Learning strategy applied to a simple test case

An innovative approach to determine proper mean and fluctuating inlet boundary conditions
for a numerical simulation is proposed in Chapter 5. It is based on Machine Learning algorithms
and its goal is to use any downstream information about the flow to determine the proper inlet
boundary conditions. Due to its high computational (associated with the generation of an
adequate database) the problem of the swirling flow inside the ERCOFTAC conical diffuser was
first investigated to understand some aspects of the proposed approach before passing to the
more complex and computationally demanding draft tube case. The flow physics inside the
conical diffuser is also very similar of a bulb turbine draft tube, in particular, there is a delicate
balance between boundary layer septation and core flow recirculation which is very difficult to
reproduce numerically. Moreover, while the flow is very sensitive to the imposed inlet boundary
conditions, these are not completely known from the experiments.

Like in the initial draft tube simulations, basic inlet boundary conditions were utilized to
define baseline results using RANS and LES. The results confirmed the previous numerical works
that investigated this flow and the boundary layer in RANS using the k-ω SST turbulence model
separated from the walls due to an inadequate inlet radial velocity profile. In LES, the problem
was more complex due to the difficulty to generate proper synthetic fluctuations.

The three steps required in the proposed approach, notably the creation of a database,
training of a specifically designed ANN and the determination of the optimized inlet bound-
ary conditions were thoroughly explained. In the case of RANS, two numerical domains were
investigated: with and without an upstream extension. In both cases, the proposed strategy
was able to predict proper inlet boundary conditions, especially the mean radial velocity com-
ponent. Inside the diffuser, the evolution of mean streamwise and tangential velocity profiles
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was comparable to the experiments and the best previous RANS simulations that used ad hoc
solutions to determine proper inlet conditions. In LES, an upstream extension was added to
the numerical domain to give the incoming synthetic fluctuations more space and time for them
to develop before reaching the inlet of the conical diffuser. Nevertheless, the proposed Machine
Learning strategy was able to automatically adjust the upstream inlet boundary conditions in
order to match the downstream flow behaviour. In addition to the mean velocity profiles inside
the conical diffuser, the turbulence kinetic energy profiles and the turbulence correlations were
also improved by the proposed approach.

8.1.3 Proposed Machine Learning strategy applied to the draft tube case

After the promising results obtained in the canonical case of the swirling flow inside the ER-
COFTAC conical diffuser, we revisited the draft tube flow investigated in Chapter 4 and applied
the proposed Machine Learning strategy to determine the proper inlet boundary conditions for
these simulations. The three main steps of the proposed approach were once again thoroughly
explained. To overcome the issues with the unrealistic synthetic fluctuations decay, an artificial
extension was added upstream the draft tube computational domain. Due to some inconsisten-
cies with the experimental data in OP1, only the second operating point was investigated and
the architecture of the neural network had to be modified.

The proposed Machine Learning strategy was able to adjust the mean velocity profiles and
turbulent inlet conditions at the inlet of the upstream extension to obtain a good correspondence
between the numerical and experimental data inside the draft tube. For instance, in LES, the
better characterization of the mean axial velocity profiles near the external walls at the inlet
of the draft tube improved the boundary layer behaviour. In RANS, however, the results were
clearly limited by the turbulence method. The static pressure profiles and evolution along
the walls were shifted compared to the reference simulations and a very good match with the
experimental measurements was found, especially in LES. As a consequence, the error in IEC
losses prediction were reduced by half in RANS and, in the case of LES, they ended up being very
close to the experimental measurements and as good as the best reference case with synthetic
turbulence injection.

However, the motivation for the development of the proposed Machine Learning approach
was to correct the negative values of real head losses evolution inside the draft tube in LES. In
this regard, the artificial upstream extension gave the necessary space and time for the synthetic
fluctuations to develop before reaching the draft tube. As a result, the real head losses evolution
were improved by the proposed strategy. A detailed analysis of the turbulent kinetic energy
production inside the draft tube, its main head losses mechanism, also allowed us to evaluate
the impact of imposing proper inlet boundary conditions on the performance analysis. For
instance, a strong reduction of the head losses was found near the external walls in the cases
with proper inlet conditions. Indeed, most of the losses were concentrated in the central region
of the flow (at the central vortex). This is a very important observation since it could change
the analysis of which parts of the draft tube are more important to be optimized in order to
improve its overall performance.

8.2 Future directions

Given the multiple aspects of the results presented in this thesis and briefly discussed in the
previous section, three suggestions of future directions are given below.

8.2.1 Draft tube simulations

Starting with the numerical simulations of draft tubes, the results in the previous chapters
just confirmed the importance of accurately determining and imposing the inlet boundary condi-
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tions for these simulations. This is in agreement with previous observations [7, 149, 14, 160], but
it is clear that the fluctuating field at the inlet of the draft tube is also very important to define.
Therefore, one obvious future direction for this thesis is to keep improving the characterization
of the inlet boundary conditions for the draft tube.

8.2.2 Proposed Machine Learning strategy

Although the geometry of the draft tube investigated in this thesis was already investigated
in previous works [159, 160] and is similar to that found in a real bulb turbine, the elements
generating the turbulent swirling flow at its inlet was considerably simplified for the current
study. For instance, the generated inlet boundary conditions were more controlled in comparison
to a real turbine and the flow was particularly uniform in the azimuthal direction. Since this
behaviour is not necessarily equal to that found downstream a turbine runner [5, 157, 84],
one first aspect of the proposed Machine Learning strategy that could be investigated is its
applicability to more representative draft tube flow configurations. However, as the amount of
experimental data required to feed the trained ANN model can be significantly lower than that
from the draft tube investigated in this thesis, a second aspect of the proposed Machine Learning
strategy that could be investigated is the possibility to train a model with a limited amount of
data while still being able to yield good inlet boundary conditions predictions. Similar to that,
given the high computational cost associated with the generation of the numerical database to
train the ANN, one last aspect of the proposed strategy that could be explored is the reduction
of the amount of numerical simulations in the database. For that, one could consider modifying
the architecture of the current ANN (which was manually determined), performing a sensitive
analysis to understand which inlet profiles control the most the downstream flow behaviour, or
improving the inlet profiles automatic generation method to enhance their representativeness of
a desired solution space.

8.2.3 Other applications of data-driven techniques

While we used machine learning algorithms to determine the proper inlet boundary con-
ditions for the numerical simulations of the draft tube and conical diffuser, this is only one
technique among many others that could have been applied. As explained in Chapter 5, previ-
ous numerical works that investigated draft tubes preferred adjoint methods and evolutionary
algorithms as optimization techniques, which could be adapted to our problem and their perfor-
mance compared against our proposed strategy. In addition to that, the inverse could also be
done. For instance, the reason behind choosing machine learning algorithms was its relatively
easy implementation and flexibility. Therefore, one possible continuation of this thesis would be
to explore other problems using a similar approach such as the optimization of the inlet profile
based on the hydraulic performance of the draft tube [52, 53, 51], which could potentially use
the same databases already generated. In parallel with that, the proposed Machine Learning
strategy could be adapted to optimize the shape of the runner blades, similarly to what have
been done in previous works [27, 75, 87]. Finally, one last application our proposed Machine
Learning strategy is the optimization of the draft tube geometry, something that has been in-
vestigated multiple times in the past but is still very computationally demanding with the use
of adjoint methods and evolutionary algorithms [40, 127, 96, 42, 110, 91, 26, 100, 47].
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ANN training performance

As discussed in Section 5.3, the learning process can only take place during training if
we are able to measure the performance of the ANN in realizing the desired task. Similarly
to a traditional optimization problem, this is achieved by calculating the value of some loss
function. In the case of the problem discussed in the present work, the desired task consists in
performing a non-linear regression since our goal is to determine the numerical values of the inlet
profiles/parameters based on the numerical values of the downstream profiles. Therefore, the
loss function used to evaluate the ANN performance is the Mean Squared Error (MSE) between
the model’s prediction ŷ and the true value y. For the case of a dataset comprising m training
examples, the MSE is given by Eq. (5.8):

MSE =
1

m

m∑

i

(ŷ − y)2

Based on this value, the weights and biases of the ANN are adjusted by an optimization
algorithm after the backpropagation step to improve the model’s prediction, i.e., to reduce the
loss function. However, since one important characteristic of machine learning is that the trained
ANN should perform well on the observed dataset as well as on previously unobserved data, i.e.,
since the trained ANN should be able to generalize, this loss function is typically evaluated into
two datasets: a training and a validation datasets. The former contains the data that is observed
by the ANN and is used during training to adjust its weights and biases. Conversely, the latter
dataset contains unobserved data (i.e., data to which the ANN had no access to during training)
that is used to evaluate the model’s generalization capability.

As mentioned in Chapters 6 and 7, the databases used to train the multiple ANN discussed
in the present work were divided into two, respectively a training and a validation dataset. For
instance, from the 400 cases used to train the ANN in each conical diffuser problem, 10% of
it (i.e., 40 cases) was used for validation (see Chapter 6). In the draft tube cases, 20% of the
500 cases (i.e., 100 cases) were used for validation (see Chapter 7). The evolution of the loss
function MSE in each of these datasets during the training of the LES neural networks are
discussed below.

A.1 ERCOFTAC conical diffuser

Figure A.1 shows the evolution of the loss function, MSE, for each of the four inlet profiles
(Uz, Uθ, Ur and k) in the ANN LES case of the conical diffuser studied in Chapter 6. As
expected, the value of MSE for both training and validation datasets continuously decrease as
the ANN is trained, i.e., as the number of epochs increase and its weights and biases are adjusted.
However, in the case of the validation dataset, the MSE quickly reaches a minimum value in all
four cases. Continuing to train the ANN after this point increases the gap between the training
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and validation MSE, meaning that the model is overfitting, and its generalization capabilities
are possibly compromised.

Figure A.1: Evolution of the training and validation loss function for each inlet profile in the ERCOFTAC conical
diffuser case.

This overfitting behaviour can be improved by adding some regularization to the ANN, such
as L1, L2 and dropout [144]. Indeed, this is done in all ANN discussed in Chapters 6 and 7,
notably by using dropout. One difficulty though consists in the different MSE level attained
by each inlet profile shown in Fig. A.1. For instance, both Uz and Uθ present similar MSE
evolutions, and by the end of the 5000 epochs performed to train the ANN, the training MSE
in both cases is approximately 2 × 10−3, with the validation MSE being close to the training
one. Conversely, the training MSE for the radial velocity profile, Ur, is considerably higher
at the end of the 5000 epochs, at approximately 5 × 10−2, but the validation MSE is further
apart in this case. Looking at the turbulence kinetic energy profile, k, this difference between
training and validation MSE is even more noticeable. Thus, adjusting the dropout rate for the
different MLP that form the ANN is not straightforward, as each profile requires different levels
of regularization.

Another difficulty of reducing the overfitting of the current ANN model is the impact that
each inlet profile has on the downstream flow behaviour. For instance, it is easier for the ANN
model to determine the correct mean axial velocity profile at the inlet as it is related to the flow
rate (and, thus, Ux magnitude) inside the diffuser. Similarly, the mean tangential velocity profile
at the inlet is related to the swirling level of the downstream flow, and controls in some sense
the boundary layer inside the conical diffuser. However, as pointed out in Chapter 6, the proper
mean radial velocity profile at the inlet of the diffuser is crucial to capture the correct behaviour
of the boundary layer, in particular, to avoid that it detaches from the walls. Nevertheless, the
sensitivity of the downstream flow bahaviour to its actual values seems to be less important as
a significant variation on this profile still yields very good downstream results. Indeed, this is
shown by the comparison of Ur at station S0 in Fig. 6.14 and the subsequent discussions. A
similar analysis can also be performed for the turbulence kinetic energy profile, k, which was
measured only very close to the walls.

It is important to note that both mean axial and tangential velocity profiles have been
measured by Clausen et al. [19] and are used to train the ANN, whereas the mean radial velocity
profile is not known anywhere on the conical diffuser, and the ANN has to infer its value at the
inlet from other profiles. This, in addition to the weaker influence on the downstream flow, can
explain the higher MSE values in this particular profile.

A.2 Bulb turbine draft tube

The MSE evolution for the ANN LES draft case studied in Chapter 7 is shown in Fig.
A.2. The training MSE behaviour is very similar to what has been previously observed in the
ERCOFTAC conical diffuser, showing once again the importance of this test case. However,
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compared to the previous case, the validation MSE is considerably higher in the draft tube
ANN and overfitting more important. While it is not easy to determine the exact reason behind
this result, the higher complexity of the flow renders it more difficult for the ANN to generalize,
at the same time that the access to the downstream profiles at fewer stations reduces the amount
of information it has access during training. Nevertheless, similarly to the ERCOFTAC conical
diffuser, mean axial and tangential velocity profiles yielded smaller validation MSE compared to
mean radial and turbulence kinetic energy profiles.

Figure A.2: Evolution of the training and validation loss function for each inlet profile in the draft tube case.

Despite overfitting shown in Figs. A.1 and A.2, the results obtained by the ANN LES
discussed in Chapters 6 and 7 show that the trained models are still able to predict proper inlet
boundary conditions for the simulation. Indeed, limiting the analysis to the MSE evolution can
be misleading and, in the case of the proposed Machine Learning strategy, we systematically
checked if the results of the trained model.
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A new approach to determine proper mean and fluctuating inlet boundary conditions is proposed. It is based on data
driven techniques, i.e. machine learning approach, and its goal is to use any known information about the downstream
flow to reconstruct the unknown or incomplete inlet boundary conditions for a numerical simulation. The European
Research Community On Flow, Turbulence And Combustion (ERCOFTAC) test case of the swirling flow inside a
conical diffuser is investigated. Despite its relatively simple geometry, it constitutes a very challenging test case for
numerical simulations due to incomplete experimental data and to the delicate balance between core flow recirculation
and boundary layer separation. Simulations are performed using both Reynolds Averaged Navier-Stokes (RANS)
and Large-Eddy Simulations (LES) turbulence methods. The mean velocity and turbulence kinetic energy profiles
obtained with the machine learning approach in RANS are found to be in very good agreement with the experimental
measurements and the numerical predictions are greatly improved as compared to the previous results using basic inlet
boundary conditions. They are indeed comparable to the best previous RANS using empirical ad hoc inlet conditions
to accurately simulate the downstream flow. In LES, in addition to the mean velocity profiles, the machine learning
approach also allows to properly reconstruct the fluctuating part of the turbulent field. In particular, the methodology
allows to circumvent the lack of turbulent correlations associated with classical inlet synthetic turbulence.

I. INTRODUCTION

It is well known that inlet boundary conditions can have
a major impact on the results and accuracy of a numerical
simulation. Despite many advancements over the past few
decades regarding the computational methods, it is still a
challenge to specify proper inlet boundary conditions in the
case of spatially developing turbulent flows (e.g., jets, mix-
ing layers, wall-bounded flows etc.). For Reynolds Averaged
Navier-Stokes (RANS) simulations, inlet boundary conditions
are easier to prescribe and normally consist in Reynolds aver-
age mean quantities, turbulent length scale(s) and Reynolds
stresses. However, in the case of more advanced Direct
Numerical Simulations (DNS) and Large-Eddy Simulations
(LES), imposing only time-averaged quantities at the inlet of
a simulation means that the deterministic information about
the inflow is definitely lost and that the final numerical solu-
tion is possibly compromised. However, since high resolution
(spatially and temporally) flow information at the inlet plane
of a simulation is rarely available, realistically determining the
fluctuating quantities at this location is a major challenge for
LES. Nevertheless, multiple solutions for this problem have
been proposed along the years and can normally be classi-
fied in three groups1–5: synthetic turbulence, precursor simu-
lations and recycling methods.

Synthetic turbulence is usually the most economical
method to create the fluctuating inflow field for LES and the
main idea behind this method is to superimpose artificially

a)Electronic mail: pedro.veras@univ-grenoble-alpes.fr

generated fluctuations to the mean inlet velocity field. The
easiest way to achieve that is to generate and superimpose a
random noise (such as white-noise) with an amplitude deter-
mined by the turbulent intensity level, however, since these
random fluctuations completely lack spatial and temporal cor-
relations, they are instantly destroyed by the Navier-Stokes
solver6. For this reason, more advanced synthetic turbulence
methods must include some way of reconstructing these cor-
relations and therefore preventing them from quickly vanish-
ing. One of the earliest approaches was proposed by Lee et
al.7, who applied an inverse discrete Fourier transform to gen-
erate synthetic fluctuations with a specified power spectrum
and random phase. Later, based on the work of Kraichnan8

and starting with an isotropic turbulent velocity field gen-
erated using random Fourier modes, Smirnov et al.9 pro-
posed the Random Flow Generation (RFG) method, which
applied some scaling and orthogonal transformations to gen-
erate anisotropic and divergence-free synthetic fluctuations,
with prescribed length and time scales, and a required energy
spectrum. Batten et al.10 simplified this method to introduce a
Cholesky-decomposition-based scaling to specify a Reynolds
stress tensor for the fluctuations and Davidson11,12 introduced
nonzero temporal correlation to the fluctuations generated at
consecutive time-steps by applying an asymmetric time fil-
ter. In a different approach, Klein et al.13 and later di Mare
et al.14 used digital linear nonrecursive filters to establish a
Gaussian two-point correlation function in random fluctua-
tions, which featured the required multidimensional space-
time correlations and could conform to a prescribed Reynolds
stress tensor. Jarrin et al.15,16, on the other hand, proposed
a Synthetic Eddy Method (SEM) based on the superposition
of coherent structures with random signs and positions which
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are constantly convected through the inlet plane. A specific
shape function is assigned to each eddy in this methodology to
define its spatial and temporal characteristics, and turbulence
anisotropy can be enforced via a Cholesky-decomposition of
the Reynolds stress tensor. Some modifications to the shape
functions have been proposed to improve SEM performance
in wall-bounded flows17 and to render its generated synthetic
fluctuations divergence-free18. Finally, Druault et al.19 used
Proper-Orthogonal Decomposition (POD) analysis of exper-
imental hot-wire rake measurements to generate a synthetic
turbulent inflow.

Despite their relatively low computational cost, the syn-
thetic methods still depend on flow information that is of-
ten hard to obtain, especially in complex flow configurations
(e.g., Reynolds stresses components to determine turbulence
anisotropy) and, more importantly, systematically produce a
transition region close to their injection plane where the syn-
thetic turbulent inflow is still developing, mostly because the
fluctuations are not completely turbulent in nature. The prob-
lem is that, if the injection plane is close to the area of in-
terest of the flow (i.e., the region we want to analyze), the
decay of these unrealistic fluctuations can affect the mean ve-
locity field via the production term. In this context, precur-
sor simulations are much better in producing realistic fluctu-
ating inflow conditions, as they give enough time and space
for these fluctuations to develop and rely on actual turbu-
lent data extracted from a fully-developed region of the flow.
These simulations are performed in a separate numerical do-
main, which represents only a fraction of the main domain,
and are often launched before the main simulation, requiring
thus a significative amount of storage for the generated inflow
data. Beside the obviously higher computational cost com-
pared to synthetic methods, the fact a precursor simulation
is performed in a separate computational domain means that
no feedback information from the main domain is possible,
which limits the application of this method to very simple flow
configurations, notably those where the considered geometry
yields fully-developed mean flow in the streamwise direction,
such as channel flows20,21 or pipe flows22–24.

Finally, a way to overcome this limitation of precursor sim-
ulations, specially for the case of spatially-developing bound-
ary layers, consists in integrating the separate numerical do-
main into the main domain and recycling the information ex-
tracted in a downstream station as inflow conditions for the
simulations. In this case, there is no more need for perform-
ing or storing the results of a separate precursor simulation.
One problem though with this method is that, in the case of
spatially-developing boundary layers, the mean flow is not
parallel and the information extracted at the downstream sta-
tion needs to be rescaled before being used at the inlet. Lund
et al.25 proposed such a rescaling technique that used different
similarity laws for the inner and outer regions of the boundary
layer. While this technique produced turbulent boundary layer
flows with the expected physical features, it can still lead to
some transitional region near the inlet26,27 and (similar to syn-
thetic methods) and it suffered from inherent flaws17, such as
the need for the inlet plane to have some kind of synthetic fluc-
tuations added at the beginning of the simulation (which can

interfere with the final results) and spurious coupling in the
computed solution if the extraction station is not far enough
from the inlet. Moreover, although some techniques using
forcing terms have been developed to improve the control over
the rescaling over the inlet plane28, these recycling method are
still restricted to very simple flow configurations.

The present paper focuses on a way to properly generate
turbulent inlet conditions for the swirling flow inside a conical
diffuser. This flow has been extensively studied by Clausen
et al.29 in their laboratory experiment and constitutes one
of the test cases of the European Research Community On
Flow, Turbulence And Combustion (ERCOFTAC) database.
As shown by Duprat30, this test case constitutes a good ex-
ample of a flow configuration where most of the previously
described inlet generation techniques are not adequate. In this
flow (explained in more details in section II), a constant air
flow is forced into a long rotating cylinder (including a hon-
eycomb screen) which generates a swirling flow at the inlet of
a simple long conical diffuser. The particularity of this flow
is that the swirl is finely adjusted both to prevent the spatially
developing boundary layer to separate from the diffuser walls
and to avoid core flow recirculation. The boundary layer in-
side the diffuser is indeed subjected to an adverse pressure
gradient while the flow swirl has a positive effect in stabiliz-
ing it31. This test case has been the subject of many numerical
investigations since, despite its geometrical simplicity, it ex-
hibits some of the main characteristics of the complex turbu-
lent flow within hydraulic turbine draft tubes (turbulent, un-
steady, swirling, divergent etc.)32.

Duprat30 performed one of the few LES studies of the ER-
COFTAC conical diffuser. He was interested particularly on
the influence of turbulent inlet conditions in LES, and inves-
tigated the three previously described methods. For instance,
starting with a numerical domain containing the conical dif-
fuser and the upstream swirl generator, Duprat30 recycled the
flow information extracted at a downstream station back to
the inlet of the domain and, at the same time, a forcing term
ensured the correct flow rate and swirl number downstream.
The problem was that both the flow rate and the swirl num-
ber are evaluated as velocity integral and different profiles can
lead to correct values. A shorter upstream domain starting at
the first measurement station was used for the investigation of
the last two methods. Using both a white noise and the re-
sults of a precursor pipe flow simulation to obtain the inflow
fluctuations, Duprat30 improved the results compared to the
recycling method but the mean velocity profiles still did not
compare very well with the experiments.

One may think that RANS computations of this test case
are easier to perform since, in principle, only mean quantities
have to be prescribed at the inlet. However, due to some tech-
nical difficulties, the radial velocity component was not mea-
sured by Clausen et al.29. Therefore, early RANS simulations
by Armfield et al.33 and Mauri34, using the k-ε turbulence
model35 along with wall functions, set this velocity compo-
nent equal to zero at the first measurement station (inlet of the
numerical domain) but the results were not correct as the tur-
bulence model delayed flow separation. In their contribution
to the original ERCOFTAC Workshop that numerically inves-
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tigated this flow, Vu and Shyy36 showed that the radial ve-
locity should not be zero at the first measurement station due
to its proximity to the divergent section of the diffuser. They
used an upstream extension in order to recover this component
but the obtained velocity profiles downstream in the diffuser
were still not satisfactory as compared to the experimental
data. In the context of a OpenFOAM Workshop37, Bounous38

conducted an extensive investigation of the swirling flow in-
side the conical diffuser using both k-ε and k-ω SST39 tur-
bulence models. Bounous38 confirmed the high sensitivity of
the results to the proper prescription of the inlet radial veloc-
ity profile. He thus simulated the upstream cylinder and ad-
justed the mean inlet profiles to obtain improved results. The
best results in RANS for this flow configuration, though, were
obtained by Payette40 using the k-ω SST turbulence model.
He also simulated the flow in the upstream cylinder, but this
time only to recover the radial velocity profile at the first mea-
surement station. He then imposed this profile along with the
experimental axial and circumferential velocity profiles at the
inlet of a second numerical domain starting at the first mea-
surement station.

Both Bounous38 and Payette40 furthermore found their re-
sults to be very sensitive to the turbulent inlet conditions. To
obtain their best results, the former used the turbulent inlet
conditions proposed in Gyllenram et al.41 while the latter re-
constructed the turbulent kinetic energy profile from the in-
complete experimental data and used the expression proposed
by Armfield et al.33 to obtain the turbulent kinetic energy dis-
sipation rate ε . Payette40 results will be used in the present
article as a reference case to test our own computations.

It is important to note that the best tuned inlet conditions for
RANS do not necessarily yield good results when more ad-
vanced unsteady techniques are employed. Indeed, Bélanger-
Vincent42 and Taheri43 tried to reproduce Bounous38 and
Payette40 results using hybrid turbulence methods, particu-
larly Detached Eddy Simulations (DES) and Delayed De-
tached Eddy Simulations (DDES). The results obtained by
both authors were extremely sensitive to the turbulent inlet
conditions, which are very different from RANS due to the
different nature of the turbulence model and unsatisfactory
compared with the experimental data. Moreover, as pointed
out by Duprat30 and Taheri43, an approach like the one pro-
posed by Payette40 is not applicable to more complex flow
configurations, such as hydraulic turbines draft tubes, as the
guide-vanes and runner blades are positioned just upstream
the diffuser and generate a highly inhomogeneous and turbu-
lent inflow for the draft tube.

Based on these discussions, it is clear that whenever the
inlet boundary conditions for a numerical simulation are un-
known or only partially known, simplistic assumptions for
reconstructing the missing information are often insufficient
to yield satisfactory results, except for very simple flow con-
figurations. Moreover, while more elaborate approaches can
sometimes improve the numerical results, they cannot be
generalized to any turbulence model and flow configuration.
Therefore, the real challenge consists in defining a method
capable of determining the appropriate mean and fluctuating
fields that should be imposed at the inlet of a numerical do-

main and that is applicable to multiple turbulence models and,
more importantly, to multiple flow configurations.

In this paper, a new approach to determine proper mean and
fluctuating inlet boundary conditions for a numerical simula-
tion based on data driven techniques, such as machine learn-
ing, is proposed and applied to the case of the swirling flow
inside a conical diffuser using both RANS and LES turbulence
methods. Its goal is to use any known information about the
downstream flow along with a previously generated database
to reconstruct unknown or incomplete inlet boundary condi-
tions for the simulation, so the downstream flow field is cor-
rectly recovered. In the case of LES, an artificial upstream ex-
tension used in conjunction with this approach can also give
the space and time required for synthetic fluctuations to de-
velop before reaching the important portion of the numerical
domain. Despite the high computational cost associated with
the generation of an appropriate database to train an Artificial
Neural Network (ANN), the application of data-driven tech-
niques in the field of CFD is growing, and recent applications
have investigated its use for the generation of turbulent in-
let conditions in DNS and LES, but all in the case of simple
channel flows44–46. In the context of RANS simulations of
the ERCOFTAC conical diffuser and hydraulic turbines draft
tubes, optimization methods based on data-driven techniques
have also been used, but normally as a way to improve their
hydraulic performances47–52.

The paper is organized as follows. It starts with a detailed
explanation of our test case (Section II) corresponding to the
swirling flow inside a conical diffuser experimentally inves-
tigated by Clausen et al.29. After discussing the choice of
turbulence models and the numerical tools used to perform
our simulations (Section III), we present our reference results
based on standard approaches to define both the numerical do-
main and inlet boundary conditions (Section IV). Section V
discusses the three main steps of the proposed Machine Learn-
ing strategy. Finally, a thorough application of this strategy
to the test case is presented in Section VI and the results are
compared to the reference simulations.

II. FLOW CONFIGURATION

The test case chosen for the current study is part of the
classic ERCOFTAC database (Case 60) and consists in the
swirling flow inside a conical diffuser experimentally studied
by Clausen et al.29. Figure 1 shows a scheme of the diffuser,
which is 510 mm long, has an inlet diameter D0 = 260 mm
and a 20◦ opening angle. A constant air flow, with kinematic
viscosity ν = 1.5× 10−5 m2/s, was forced through the dif-
fuser and discharged into to the atmosphere at a constant flow
rate Q = 0.616 m3/s, which corresponds to an average axial
velocity at the inlet Ub = 11.6 m/s and a Reynolds number
Re≈ 2×105.

A 400 mm long rotating cylinder (including a honeycomb
screen) positioned 100 mm upstream the diffuser inlet gener-
ated flow swirl. The corresponding swirl number, Sw, defined
as the ratio between the axial flux of angular momentum and
the axial flux of axial momentum multiplied by the radius, is
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FIG. 1: Scheme of the diffuser studied by Clausen et al.29.

given by Eq. (1) and was taken equal to 0.295. It was adjusted
so the flow remains attached to the diffuser walls and, at the
same time, no recirculation was created in its core.

Sw =

∫ R
0 |Uθ |Uzdr
∫ R

0 U2
z dr

(1)

As shown in Fig. 1, there are two coordinate system used in
the conical diffuser. Inside the upstream swirl generator, Uz is
the mean axial velocity of the flow, Ur is the mean radial ve-
locity and Uθ is the mean circumferential velocity. However,
inside the cone, Clausen et al.29 measured the velocity profiles
using a local coordinate system with an axis parallel (x) and
another normal (y) to the walls. In this coordinate system, Ux
is the mean velocity component parallel to the walls (stream-
wise) and Uy is the mean velocity component perpendicular to
the walls (normal). The mean circumferential velocity com-
ponent is the same in both coordinate systems. It should be
noticed, though, that Ux and Uz are equivalent at the first mea-
surement station, S1, as well as Uy and Ur.

Mean velocity profiles were measured using hot-wires at
the eight traverses perpendicular to the walls (stations S1 to S8
shown in Fig. 1). The positioning of these traverses was accu-
rate to 0.01 mm and the estimated error in the mean velocities
was approximately 2%. Both mean streamwise (Ux and Uz)
and circumferential (Uθ ) velocity components were measured
in the experiments, but, due to some technical difficulties, the
mean velocity normal to the walls Uy as well as the mean ra-
dial velocity Ur components were not measured by Clausen
et al.29. The six components of Reynolds stresses were also
measured at the same eight traverses, but they were limited to
the region very close to the walls and their accuracy was es-
timated in 10%. Nevertheless, it is possible to determine the
turbulence kinetic energy, k, from these measurements using
Eq. 2:

k =
1
2

(
u′2r +u′2θ +u′2z

)
(2)

Despite its simplicity, simulating this flow is challenging
due to its delicate balance between core flow recirculation and
boundary layer separation. Moreover, inflow conditions at the

diffuser inlet are not completely defined since the radial ve-
locity component, Ur, was not measured and turbulence mea-
surements are quite limited.

Finally, in addition to the mean velocity and turbulence pro-
files, the evolution of static pressure is key in the analysis of
any flow passing through diffuser, as its main purpose is to ef-
ficiently convert the dynamic pressure into static pressure. In
this regard, Clausen et al.29 also measured the static pressure
at the walls in the form of a coefficient of pressure, given by:

Cp =
Pwall−Patm

0.5ρU2
b

(3)

where Pwall is the pressure at the walls, Patm is the atmospheric
pressure and ρ is the density of the air.

III. TURBULENCE MODELLING

A. Steady RANS simulations

Early numerical studies of the flow inside the ERCOFTAC
conical diffuser performed steady RANS simulations used
two-equations linear eddy-viscosity turbulence models33,34,36.
Only mean properties (in the sense of Reynolds decomposi-
tion) of the flow are resolved in this approach and the effects
of turbulence are modelled by an eddy viscosity νt , which is
evaluated by two extra transport equations. Their low compu-
tational cost and relative numerical robustness is an advantage
when it comes to the application of data-driven techniques,
which is the reason they are also used in this present work.
The commercial flow solver ANSYS CFX is used to perform
these calculations and the k-ω SST turbulence model39 is cho-
sen since it has been shown to be one of the most suitable for
this particular flow40. Two corrections are applied to the pro-
duction term in the k and ω transport equations: one to limit
its value at stagnation points53 and another to render it sensi-
tive to the effect of streamline curvature and system rotation54.
Regarding the numeric of the solution, the high resolution
scheme55 of ANSYS CFX is used for the spatial discretization
of the advection term. In this scheme, a blend factor limits its
order between a first order upwind scheme and a second order
central scheme while keeping the solution bounded. Finally,
a first order spatial discretization scheme is used for the two
extra transport equations for k and ω .

B. Large-Eddy Simulations (LES)

The problem with steady RANS using two-equation linear
eddy-viscosity models is that they are inherently unable to
capture flow unsteadiness56 and to correctly predict turbulent
production in the case of a draft tube despite the aforemen-
tioned corrections57. More advanced turbulence models, such
as LES, can overcome these problems and obtain a better de-
scription of this type of flow32. Therefore, we also investigate
the ERCOFTAC conical diffuser using LES. In this approach,
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instead of modelling all turbulent scales of the flow, most of
them are resolved and only those smaller than a certain fil-
ter width (normally the grid spacing) are modelled58. LES
computations are performed with YALES2 incompressible
fractional-step solver59 using finite-volume formulation and
precise 4th order space centred and time numerical schemes.
Sub-grid scales (SGS) effects on the flow are modelled by the
Dynamic Smagorinsky turbulence model60 and time steps are
evaluated so CFL number is smaller than 0.9 in the whole nu-
merical domain. In all LES cases, an initial simulation is run
to stabilize the flow field within the diffuser and only then a
second simulation is run to accumulate the statistics used in
the final analysis of the flow during the equivalent of ten com-
plete flow passages throughout the domain.

IV. BASIC INLET BOUNDARY CONDITIONS

The simplest approach to simulate the swirling flow inside
the conical diffuser follows the proposition given for the orig-
inal ERCOFTAC Workshop36. The swirl generator upstream
the diffuser is not simulated and the upstream numerical do-
main is thus shortened. Available experimental data at the first
upstream station are utilized as inlet conditions for the compu-
tations. As a result, many numerical works used this approach
in their reference simulations of the test case30,34,37,38,40,43.

A. Numerical domain

The numerical domains for these reference simulations are
shown in Fig. 2. In the case of steady RANS simulations,
the statistical flow axisymmetry is utilized to restrict to 2D
computations. Conversely, in LES, the full 3D geometry of
the diffuser has to be considered. In both cases, the computa-
tional domain consists in the conical diffuser and a very short
cylindrical extension upstream of the diffuser. The inlet of
this domain thus corresponds to the first measurement station,
S1. The outlet is positioned at the end of a 500 mm long
straight extension downstream the diffuser exit, which helps
with the convergence and stability of the numerical solution
without interfering with the flow inside the cone40. Different
levels of refinement for a block structured hexahedral mesh
are tested in RANS to guarantee that results are independent
of the spatial discretization. The final mesh has approximately
6× 103 elements and y+ ≈ 1. In the case of LES, an auto-
matic two-criteria based mesh adaptation61 is used in the spa-
tial discretization study of the domain and the final mesh is
composed by 3.3× 106 tetrahedral elements. It also contains
4 layers of prismatic elements of aspect ratio equal to 4 at the
walls to reduce the maximum y+ to approximately 20 and to
keep the simulation at a reasonable computational cost.

B. Boundary conditions

As the inlet of the numerical domain corresponds to the first
measurement station, S1, the experimental mean velocity and

(a) (b)

FIG. 2: Numerical domains used in reference simulations.
(a) RANS; (b) LES.

turbulence kinetic energy profiles measured at this location
are imposed as inlet boundary conditions. These profiles are
shown in Fig. 3 as a function of the normalized distance to the
walls, y/Hi, where y is the normal distance to the walls, Hi is
the maximum distance between the walls and the centreline of
the diffuser at the ith section, and y/Hi = 1 correspond to the
axis of the conical diffuser. Their distribution over the inlet
plane is considered as axisymmetric. Mean axial and circum-
ferential velocity profiles are interpolated from experimental
data. We emphasize that, since the radial velocity component
was not measured in the original experiments29, Ur is set equal
to zero at the inlet.

FIG. 3: Mean velocity and turbulence kinetic energy profiles
measured by Clausen et al.29 at station S1 and imposed as

inlet conditions for the reference simulations.

Turbulent inlet boundary conditions are required in the case
of RANS simulations using the k-ω SST and the profiles
of turbulence kinetic energy, k, obtained from the Reynolds
stresses measurements are used in this regard. As these mea-
surements are limited to the region close to the walls (y/Hi ≈
0.03 and 0.15), k is assumed to vary linearly between k = 0
at the walls and its value at the first experimental point (at
y/Hi ≈ 0.03). Moreover, an exponential regression curve40

given by Eq. 4 is used to complete the profile. Finally, an
equation33 for the dissipation rate, ε , given by Eq. 5, is used
to close the system of equations.

k = e29.2(r/Hi)−28.3 (4)

ε =
C3/4

µ k3/2

0.01D0
(5)

where Cµ = 0.09 is the classical constant of the k-ε and k-ω
models and D0 is the diameter of the diffuser inlet.
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In the case of LES, we want to avoid the use of ad hoc meth-
ods specific to the swirling diffuser flow to generate the inlet
turbulent conditions. We therefore choose the two simplest
conditions: no inlet turbulence or an homogeneous isotropic
synthetic turbulent field at the inlet plane. One may indeed
be tempted to impose rudimentary inlet turbulent conditions
since the swirling flow inside a straight or diverging duct is
known to be more easily unstable due to centrifugal instabil-
ity and to adverse pressure gradient effects.

In YALES2, the scheme to generate and inject isotropic
synthetic fluctuations is shown in Fig. 4. Initially, a
divergence-free spatial and temporal correlated homogeneous
isotropic turbulence (HIT) field of specified length scale le and
velocity scale u′ is generated, following the RFG method9, in
cubes of edge length equal to 4le. Then, multiples copies of
this HIT field are positioned side by side until the entire sur-
face of the injection plane is covered by the synthetic fluc-
tuations. Next, these fluctuations are scaled by an specified
normalized turbulence kinetic energy profile, k/kmax, and fi-
nally advected (injected) into the domain at a specified speed
U .

FIG. 4: Scheme of the synthetic HIT field generation and
injection in YALES2.

Regarding the LES of the swirling flow inside the con-
ical diffuser, the normalized turbulence kinetic energy pro-
file follows the same construction proposed for the RANS
simulations, i.e., linear k variation between the walls and
y/Hi ≈ 0.03, and Eq. (4) for the rest of the inlet. The in-
jection speed, U , is assumed to be equal to the average axial
velocity at the inlet, Ub = 11.6 m/s. The synthetic turbulence
length scale, le, is considered as being equal to 10% of the
inlet diameter, D0, or 26 mm, which correspond to a classical
characteristic turbulent length scale for pipe flows or channel
flows. The velocity scale, u′, is approximately to 0.82 m/s,
or 7% of the average axial velocity, Ub, and is estimated from
Eq. (6):

u′ =

√
3
2

kmax (6)

Finally, an average static pressure equal to 0 is applied to
the outlet of the numerical domains and no-slip conditions are
imposed at the walls. In the case of RANS simulations using
the k-ω SST turbulence model, the automatic wall treatment55

present in ANSYS CFX is used. This model can automat-
ically switch from a logarithmic wall-function to a low-Re
near wall formulation if the mesh is sufficiently refined. In

the case of LES, an appropriate wall-model designed for deal-
ing with boundary layer flows subjected to adverse pressure
gradients62 is used. The main characteristics of the three ref-
erence simulations of the flow inside the conical diffuser are
resumed in Tab. I.

C. Results

Comparisons between the mean streamwise velocity pro-
files obtained by the reference RANS and LES numerical sim-
ulations and the experimental measurements of the flow at the
various downstream measurement stations are shown in Fig.
5. Both turbulence models yield very similar results and agree
quite well with the experimental data until station S4. At sta-
tion S5, the k-ω SST turbulence slightly underestimates Ux
near the walls and, as a consequence, overestimates this ve-
locity component towards the center of the flow (y/Hi = 1).
This behaviour is amplified between S6 and S8 and results in
boundary layer separation between stations S5 and S6 as tes-
tified by negative Ux values in the wall vicinity. As previously
stated, this unphysical separation is symptomatic of RANS
computations using the k-ω SST turbulence model and with
zero inlet radial velocity40. Conversely, LES results do not
show any signs of separation and the near wall behaviour of
the diffuser is well captured in both cases, i.e. with or without
inlet turbulence. Nevertheless, the mean streamwise velocity
values at the center of the flow are still overestimated between
S5 and S8. This is due to the poor prediction of the streamwise
velocity peak, which is both underestimated and further away
from the walls compared to experimental data. We can remark
that the injection of synthetic turbulence fluctuations seems to
had little effect on the mean streamwise velocity profiles

FIG. 5: Comparisons of mean streamwise velocity profiles
for the reference simulations using RANS and LES.

Figure 6 shows the comparisons between numerical and ex-
perimental mean circumferential velocity profiles. LES pre-
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TABLE I: Characteristics of the reference RANS and LES computations of the swirling flow inside the conical diffuser.

Case Turbulence method Numerical domain Inlet conditions

Ref. RANS RANS k-ω SST Fig. 2a
Uz and Uθ from experiments, Ur = 0

k from Eq. (4) and ε from Eq. (5)

Ref. LES LES Fig. 2b
Uz and Uθ from experiments, Ur = 0

No turbulence injection

Ref. LES w/ HIT LES Fig. 2b
Uz and Uθ from experiments, Ur = 0

u′ from Eq. (6) and le = 0.1D0

dictions are very good compared to experiments, despite the
discrepancies previously noted for Ux. Similarly to the Ux
component, inlet turbulence injection has almost no effects on
Uθ profile. RANS results are very similar to LES until station
S4. After that, the boundary layer separation also affects the
mean circumferential velocity profiles. Starting at S6, the near
wall peak of Uθ moves away from the walls and this velocity
component is greatly overestimated towards the center of the
flow.

FIG. 6: Comparisons of mean circumferential velocity
profiles for the reference simulations using RANS and LES.

The turbulence kinetic energy profiles for these reference
simulations are shown in Fig. 7. For the RANS simulation,
due to the imposed turbulent inlet boundary conditions, the
results agree very well with the experiments until station S4.
The peak value of k is slightly underestimated at station S5
and it is at the correct level at station S6. However, as a re-
sults of the flow separation, this peak is overestimated and is
at a higher y/Hi position compared to the experiments at sta-
tions S7 and S8. In the LES case, as expected, k at the inlet of
the numerical domain (station S1) is equal to zero in the case
without turbulence. With imposed synthetic fluctuations, the

k profile matches the experimental data in S1. Further down-
stream, the turbulence kinetic energy quickly increases due to
the instability associated with the swirl and by the increased
shear at the wall. Furthermore, with a simple HIT injection,
the synthetic fluctuations are not completely realistic and are
damped as one moves downstream. As a result, both LES
cases with or without inlet turbulence exhibit very similar k
distributions of k at station S2 and further downstream. Their
values are largely overestimated with respect to the experi-
mental measurements at stations S3, S4, and S5 and slowly
decrease to finally reach the correct level at stations S7 and
S8. On may also notice that, although the location of the tur-
bulence kinetic energy maximum is well predicted, the near
wall energy peak is wider in LES than in the experiments.

FIG. 7: Comparisons of turbulence kinetic energy profiles for
the reference simulations using RANS and LES.

It is important to emphasize that the inlet turbulence mea-
sured in the experiment is anisotropic. Indeed, both 〈u′ru′θ 〉
and 〈u′ru′z〉 components exhibit negative values near the wall
due to the radial variations of the circumferential and of the
axial mean velocity respectively. In the case of the LES with
turbulence injection at the inlet, we have checked that these
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correlations are zero at station S1 due to the isotropic nature
of the synthetic fluctuations. We will show in the next sections
that this lack of correlation is responsible for the overestima-
tion of the turbulent kinetic energy maximum (see Fig. 26).

V. OPTIMAL INLET BOUNDARY CONDITIONS BASED
ON MACHINE LEARNING

A. Motivation

The previous simulations demonstrate that basic inlet con-
ditions are not capable of providing satisfactory results even
for the simple case of the swirling flow in a conical diffuser.
As pointed out in the introduction, previous numerical studies
showed that the main problem comes from the inadequacy of
the inlet boundary conditions and, in particular, the ignorance
of Ur velocity component which is assumed to be zero. For
LES, a key issue is also to be able to generate proper inlet
turbulent fluctuations with the right intensity, the right charac-
teristic length scale and the right anisotropy characteristics.

In the present approach, we want to determine the optimal
conditions at the inlet of the numerical domain (e.g. station
S1) allowing to recover a downstream flow in good correspon-
dence with experimental measurements. For this purpose, any
known experimental information about the downstream flow
along with a previously generated numerical database are uti-
lized to construct the inlet boundary conditions.

B. Machine Learning strategy

Machine learning algorithms can and have been used to
solve a variety of problems, such as classification problems,
regression, transcription, translation etc.63. As previously
stated, the goal of the proposed machine learning strategy is
to use any known downstream flow experimental data (e.g.,
mean velocity and turbulence profiles) to determine the op-
timal upstream inlet boundary conditions. For this purpose,
we shall train an Artificial Neural Network (ANN) to solve a
non-linear regression problem, where the learning algorithm
is asked to output a function f : Rm→ Rn. A schematic view
of the complete strategy is shown in Fig. 8 and it can be di-
vided into three main steps:

1. Creating the database: the first step consists in run-
ning multiple simulations to create a database which
will be used to train our ANN. All numerical param-
eters (computational domain, boundary conditions, tur-
bulence model etc.) are identical to those from the case
we want to optimize, except for a different set of in-
let boundary conditions. For instance, in the case of
RANS simulations of the conical diffuser, different Ux,
Uθ , Ur and k profiles would be used in each simula-
tion. In LES, the parameters required to define the syn-
thetic fluctuations would also vary. As a result, any dif-
ferences on the downstream flow field behaviour in the

FIG. 8: Scheme of the proposed Machine Learning strategy
to determine optimal inlet boundary conditions for a

numerical simulation.

simulations exclusively derive from the inlet boundary
conditions.

2. Training the ANN: once the database is created, the sec-
ond step consists in training the ANN, i.e. creating a
non-linear regression model that will correlate ANN in-
puts with outputs. In our case, the inputs are the down-
stream flow results obtained from the database (e.g.,
mean velocity profiles, turbulence kinetic energy pro-
files etc.) while outputs consist in the inlet boundary
conditions applied to each simulation of the database.
In the case of the swirling flow inside the conical dif-
fuser, despite having the access to flow measurements at
eight stations, we will show in Section VI that we can
successfully train an ANN with far less inputs. How-
ever, the amount of data required to train the ANN is
case dependent and the ERCOFTAC conical diffuser
represents a simple flow configuration.

3. Predicting optimal inlet BCs: finally, once the ANN is
trained and the model is created, the last step consists in
informing to the ANN the actual downstream flow re-
sults we want our numerical simulations to match (e.g.,
the experimental measurements) and, in return, it will
output the corresponding optimal inlet boundary condi-
tions for the simulation.

It should be noticed, however, that the proposed approach
has some limitations, especially in terms of what can be used
as inputs and outputs for the ANN. For instance, if we want
our optimized numerical simulation to reproduce the experi-
mental results at the same eight measurement stations inside
the ERCOFTAC conical diffuser, we could not use the mean
radial velocity component as an input because its measure-
ments are not available from the experiments. Its outputs,
however, are not limited by the experimental data, but by the
parameters we varied during our database simulations. There-
fore, we can not optimize a quantity that was not varied when
creating the database. Otherwise, the proposed approach is
relatively flexible and can be easily applied to different types
of problems.
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VI. APPLICATION TO THE ERCOFTAC CONICAL
DIFFUSER CASE

A. Step 1: Numerical setup and database generation

The first step in the proposed Machine Learning strategy
consists in creating a database containing the results of multi-
ple simulations of the configuration we want the inlet condi-
tions to be optimized for. Prior to launch any of these simu-
lations, it is necessary to define the numerical domain that is
going to be used. In RANS, the reference domain (see Fig.
2a) starting at station S1 can be employed since only mean
quantities need to be prescribed and it is therefore not com-
pulsory to have an artificial inlet domain allowing the fluctu-
ations correlations to build up. As it will be shown below,
an upstream extension may however permit to improve the
prediction of missing quantities like the Ur component. Con-
versely, in LES, the addition of an upstream extension greatly
improved the results.

The choice of the upstream extension length then needs to
be settled. A first choice would be to take a length equal to
the swirl generator upstream the conical diffuser (i.e. 500 mm
long) as several previous authors30,38,40–43. However, it is also
essential for the success of the proposed Machine Learning
strategy that the downstream flow behaviour be dependent on
the boundary conditions at the inlet extension. In the case of
the swirling flow inside the conical diffuser, a real concern is
that, if the upstream extension is too long, the turbulence gen-
erated at the walls due to flow shear becomes the dominant
effect on the downstream flow behaviour. Therefore, using
the two numerical domains shown in Fig. 9, with an upstream
extension length of 500 mm and 250 mm, a parametric study
was conducted in LES to evaluate the sensitivity of the down-
stream turbulence kinetic energy to the upstream synthetic tur-
bulence parameters, specifically the length scale le and the ve-
locity scale u′. The former is varied between 2% ≤ le ≤ 40%
of the extension diameter, D0, and the later is varied between
1.5%≤ u′ ≤ 15% of the average axial velocity at the inlet, Ub.
The results for the evolution of turbulence kinetic energy pro-
file between the inlet of the upstream extension, IN, and the
first measurement station S1 are shown in Fig. 10.

(a) (b)

FIG. 9: Numerical domains with upstream extension used in
LES. (a) 500 mm long extension; (b) 250 mm long extension.

Looking at the results for the 500 mm long upstream exten-
sion, Fig. 10a, it is clear that the values of k near the walls, i.e.
y/Hi ≤ 0.1, and at station S1 do not depend on the imposed
inlet boundary conditions. In fact, the lines defining the min-

(a)

(b)

FIG. 10: Evolution of turbulence kinetic energy profiles
inside the upstream extension during parametric studies in

LES. (a) 500 mm long extension; (b) 250 mm long extension.

imum and maximum values of k overlap at the walls around
station −200 and numerical results at S1 are always overesti-
mated with respect to experiments. In the case of the shorter
domain, with a 250 mm long upstream extension, Fig. 10b,
results for turbulence kinetic energy at station S1 are still de-
pendent on the upstream inlet boundary conditions and, more
importantly, experimental values are within the solution space
of the parametric study. For this reason, the proposed Machine
Learning strategy is applied to this shorter numerical domain
in LES. In the case of RANS, although this upstream exten-
sion is not necessary, the proposed Machine Learning strategy
is also applied to a simplified axisymmetric version of this
shorter domain, shown in Fig. 11.

FIG. 11: Simplified numerical domain with 250 mm long
upstream extension used in RANS.

Another important aspect of the first step of the proposed
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Machine Learning strategy is to define the sets of inlet bound-
ary conditions that will be used in each simulation of the
database. In the case of RANS, these conditions are defined
by four different profiles, the three mean velocity components
(Ux, Uθ and Ur) and the turbulence kinetic energy profile k.
The dissipation rate, ε , is not optimized and is still defined by
Eq. 5. In the case of LES, the two synthetic turbulence pa-
rameters varied in the previous parametric study are also re-
quired to completely define the inlet boundary conditions for
the simulation. In any case, each inlet profile in the database
is automatically generated by a Python script and defined by
a B-spline64, which is a generalization of Bézier curves and
a simple method to create complex smooth curves based on a
set parameters, particularly: a knots vector, the B-spline de-
gree and a set of coefficients. The knots vector determines
the radial position of each point in the final inlet profile(s),
which, in our case, corresponds to a simple geometric distri-
bution from y/Hi = 0.01 to y/Hi = 1.0. The B-spline degree
is determined empirically and varies depending on the inlet
profile (i.e. Uz, Uθ , Ur and k). For instance, it is equal to 2
in the case of Uz and either 2, 3 or 4 in the case of k. The
set of coefficients determines the shape of the final profile and
so, to efficiently cover a wide range of inlet conditions, these
coefficients are distributed according to a Sobol quasirandom
sequence65. However, given that some of generated profiles
are not physically correct, a final step in the process of gener-
ating the set of inlet boundary conditions consists in filtering
out those profiles that do not follow some simple rules, e.g.:
a positive mean axial velocity gradient at the walls, zero Uθ
values at the center line, positive k profiles etc. In total, ap-
proximately 1700 different sets of inlet boundary conditions
have been generated and Fig. 12 shows their distributions and
average values compared to the experimental data at S1.

FIG. 12: Distribution of the mean velocity and turbulence
kinetic energy profiles generated for the proposed Machine

Learning strategy.

With both numerical domain and sets of inlet boundary con-
ditions well defined, the simulations to create the database for
the proposed Machine Learning strategy could be launched.
In RANS, two databases containing the results of 800 sim-
ulations each were created: one for the reference domain
(without upstream extension) and another for the simplified
extended domain (with 250 mm long extension). In LES, a
single database for the case with a short upstream extension
(see Fig. 10b) was created, but it is smaller and contains 450
simulations in total. In both cases, post-processing is done at

the end of each simulation and all flow field information mea-
sured at the eight stations inside the diffuser are stored along
with the set of inlet boundary conditions that generated them.

B. Step 2: ANN architecture and training

Once the database created, the second step in the proposed
Machine Learning strategy consists in determining the non-
linear model that will correlate the downstream flow field
behaviour and upstream inlet boundary conditions. This is
achieved by training an Artificial Neural Network (ANN)
specifically designed to learn these correlations in a super-
vised manner, i.e., by looking at examples of both inputs and
outputs in the flow63. First of all, it is necessary to define the
data structure of these inputs and outputs for the ANN. In the
case of swirling flow inside the conical diffuser, inputs con-
sists in the mean axial and circumferential velocity profiles,
as well as turbulence kinetic energy profiles, measured at the
stations inside the diffuser. To handle the differences in nu-
merical and experimental data format (i.e. array length), a
simple linear interpolation is performed. However, since pre-
processing these profiles can improve the training and perfor-
mance of the ANN, each of these profiles is scaled by divid-
ing its absolute value by their respective area averaged value
at each section, i.e.:

φ ∗ =
φ

1
Asec

∫∫
Asec

φdA
(7)

where φ ∗ is the scaled variable (e.g., U∗x , U∗θ and k∗) and Asec
is the cross-section area. While this scaling regards each pro-
file separately, a second pre-processing called normalization
is also applied to the ensemble of the inputs vectors63, X, so:

X′ =
X−µ

σ
(8)

where µ and σ are vectors containing, respectively, the mean
and the standard deviation of each variable.

Outputs, on the other hand, consists in the sets of in-
let boundary conditions imposed at each simulation of the
database. In the case of RANS, this would be the four in-
let profiles (Ux, Uθ , Ur and k) and, in LES, we add the two
parameters required to define the synthetic turbulence field at
the inlet (le and u′). Each profile is composed by 50 points un-
evenly distributed along the inlet radius. For instance, points
density is higher closer to the walls where velocity and tur-
bulence kinetic energy profiles gradients are more important.
Finally, like the inputs, these profiles are also normalized be-
fore training.

After defining both inputs and outputs data structure, the
last step before training is to determine the architecture of the
ANN, i.e., how the different layers will connect and what are
the hyperparameters used (e.g., the number of layers and its
sizes, the activation functions, optimizer, learning rate etc.).
Determining these different parameters is an optimization pro-
cess by itself66–69 and in the context of this paper all of them
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have been determined manually. The final architecture of the
ANN used in the optimization of the inlet boundary condi-
tions for the three conical diffuser configurations considered
is shown in Fig. 13.

FIG. 13: Scheme of the ANN architecture used to obtain
optimized inlet boundary conditions for the conical diffuser

case.

The ANN consists in four or six Multi-Layer Perceptron
(MLP), one for each output, designed to learn in a super-
vised manner and composed mostly by fully-connected lay-
ers, FC. In this type of layer, every unit in one layer is con-
nected to every unit in the other layer, therefore its name fully-
connected. A concatenation layer is also used to concatenate
the inputs coming from both absolute and scaled inputs. Ex-
ponential Linear Units70 (ELU) are used as activation func-
tions because, differently from simpler and more commonly
used ReLU71,72, they can handle negative outputs. At the end
of each fully-connected layer, a dropout rate of 50% is applied
to reduce overfitting and improve the model’s performance73.
Due to the nature of the problem (i.e., a non-linear regression),
the loss function is equal to the Mean-Squared Error (MSE)
between the training (true) set, Ytrue, and predictions, Ypred,

MSE =
1
N

N

∑
i

(
Ytrue−Ypred)2

i (9)

Finally, the machine learning algorithm is implemented in
Python 3.7 using Tensorflow 2.1 and training is conducted for
5000 epochs using NAdam as optimizer74. In all three con-
figurations investigated (two RANS and one LES), 400 cases
from their respective databases are used for training and 10%
it (i.e., 40 cases) is used as validation for the model. The re-
sults from all stations are used as inputs for the ANN, except
for station S2. At this location, experimental mean stream-
wise velocity profile seems underestimated with respect to the

rest of the diffuser, which could potentially affect the ANN
model prediction. Moreover, since station S1 corresponds to
the inlet of the numerical domain without upstream extension,
it is also not used in this particular case.

C. Step 3: Predicted inlet boundary conditions and results

After finishing the training, the final step in the proposed
Machine Learning strategy consists in feeding the experimen-
tal data of the ERCOFTAC conical diffuser back into the
trained ANN model and, as a result, it provides the optimized
inlet boundary conditions for the numerical simulation. As
explained in Step 1, the proposed strategy has been applied
to three different configurations of the conical diffuser, which
are resumed in Tab. II.

1. RANS with and without upstream extension

We start with the numerical domain with upstream exten-
sion (see Fig. 11) simulated in RANS using the k-ω SST tur-
bulence model. Although the upstream extension is not as
essential in RANS as it is in LES, this case represents some
of the previous attempts to recover the missing Ur profile at
station S1 of the conical diffuser case38,40–43 in RANS. Fig.
14 shows the inlet (IN station) boundary conditions predicted
by the Machine Learning strategy.

FIG. 14: Inlet boundary conditions predicted by the Machine
Learning strategy at station IN for the ANN-RANS

simulation of the case with upstream extension.

In this figure, the three mean velocity profiles are similar
to the experimental measurements at station S1, although the
axial velocity profile is flatter in the center region of the flow.
Turbulence kinetic energy values, on the other hand, are sig-
nificantly lower at the walls but larger in the center. These
adjustments are important to recover the correct velocity and
turbulence kinetic energy distributions at station S1 and fur-
ther downstream. Previous attempts to adjust the inlet bound-
ary conditions for the extended conical diffuser configuration
indeed failed because they underestimated Uz and Uθ at the
wall38,42,43 at station S1. In the case of mean axial velocity
profiles, there are two opposite effects acting inside the up-
stream extension: (i) the flow shear at the walls, which re-
duces Uz at the walls and, therefore, increases its values at the
center; and (ii) the flow swirl, which forces the flow towards
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TABLE II: Characteristics of the ANN RANS and ANN LES computations of the swirling flow inside the conical diffuser.

Case Turbulence method Numerical domain Inlet conditions

ANN-RANS not extended RANS k-ω SST Fig. 2(a)
Uz, Uθ , Ur and k from ANN

ε from Eq. (5)

ANN-RANS extended RANS k-ω SST Fig. 11
Uz, Uθ , Ur and k from ANN

ε from Eq. (5)

ANN-LES LES Fig. 9(b) Uz, Uθ , Ur, k, u′ and le
from ANN

the walls, increasing thus Uz values at this region and reducing
it at the center. The proposed Machine Learning strategy has
thus the ability to correctly account for both effects to match
the experimental data at station S1 and inside the conical dif-
fuser.

To demonstrate the importance of the upstream extension,
an ANN-RANS simulation without upstream extension is al-
though performed. In that case, the inlet station is the S1 sta-
tion (see Fig. 2a) instead of the IN station and the simulation
is directly initiated with the mean velocity and k profiles pre-
dicted by the Machine Learning strategy. Fig. 15 shows the
various profiles at S1 station for the two ANN-RANS cases,
i.e. with and without upstream extension. The numerical pro-
files are compared with the experimental data when available.
To demonstrate the added value of the ANN strategy, ANN
results are also compared with the reference RANS case of
Section IV.

FIG. 15: Comparison of experimental and numerical mean
velocity and turbulence profiles at station S1 using the RANS

and the Machine Learning strategy.

Overall, the predicted profiles agree very well with the ex-
periments. In the case without upstream extension, the pre-
dicted Uz values are very similar to the experimental measure-
ments at S1 in the case without upstream extension whereas
the mean circumferential velocity profile, Uθ , is overestimated
near the wall (y/Hi ≈ 0) and slightly underestimated between
0.5 ≤ y/Hi ≤ 0.8. The turbulence kinetic energy profile, k,
is also very similar to experiments close to the walls, but is
overestimated towards the center of the flow. Conversely in
the case with upstream extension, Uθ agrees well with the ex-
perimental data but the maximum value of Uz near the walls is
slightly overestimated and is located at a slightly higher posi-

tion (y/Hi ≈ 0.2 instead of 0.1). Compared to the case with-
out upstream extension, the peak of turbulence kinetic energy
profile is now closer to the walls and at a higher value, how-
ever, this profile is still overestimated towards the center of the
flow. Notice though that there is no experimental data avail-
able between y/Hi ≈ 0.15 and 1.0 to inform the ANN about
the expected values of k in this region. Moreover, as com-
pared to previous attempts to impose turbulent inlet boundary
conditions based only on integral quantities34,40 (e.g., turbu-
lence intensity and characteristic length scale), the profile of
k predicted by the proposed ML strategy leads to a much bet-
ter agreement with the experimental measurements at station
S1. The real contribution though of the proposed strategy is
to obtain a more adequate mean radial velocity inlet profile
at S1. Even if it is much smaller than the other two velocity
components, both predicted radial velocity profiles are posi-
tive and therefore forces the flow towards the walls, helping it
to stay attached throughout the diffuser. Moreover, as pointed
out by Payette40, to impose a r varying profile of Ur at the in-
let is equivalent to specify the rate of longitudinal variation of
the axial velocity, Uz, at the inlet. This can be understood by
looking at the continuity equation in cylindrical coordinates,
Eq. 10:

∂Uz

∂ z
+

1
r

∂Uθ
∂θ

+
1
r

∂ rUr

∂ r
= 0 (10)

Since the flow is axisymmetric, ∂/∂θ = 0. Therefore, im-
posing a profile of Ur implies that 1

r
∂ rUr

∂ r 6= 0 and sets an axial
evolution for Uz due to the term ∂Uz

∂ z . However, the distribution
of this radial velocity profile is also important, as it will, for
instance, define the regions where the axial flow is accelerated
and/or slowed down. This is illustrated by Fig. 16 which com-
pares the inlet radial velocity profile at station S1 obtained by
the proposed Machine Learning strategy and by the separate
simulation of the swirl generator upstream the conical diffuser
performed in Payette40. All profiles predict an accelerated ax-
ial flow close to the walls and slowed down towards the center
due to the change in the sign of 1

r
∂ rUr

∂ r , but the position of the
peak is better captured in the case with upstream extension,
which is explained by the effect of the circumferential veloc-
ity profile imposed at station IN.

Looking at the flow behaviour inside the conical diffuser,
Fig. 17 shows the results of mean streamwise velocity pro-
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FIG. 16: Mean radial velocity profiles at station S1 predicted
by the proposed Machine Learning strategy and the separate

swirl generator simulation in Payette40.

files obtained with the ANN-RANS approach in comparison
with the basic RANS case of Section IV and the ad hoc solu-
tion proposed in Payette40. The impact of the ML strategy on
the flow behaviour downstream is noticeable. For instance, as
a result of the more appropriate radial velocity profile imposed
at station S1, the boundary layer is much better predicted com-
pared to the basic simulations and the flow remains attached
to the walls throughout the diffuser. In the case with upstream
extension, though, the slightly overestimated and higher Ux
peak at station S1 leads to a small difference in the prediction
of the streamwise velocity peak compared to the case without
upstream extension. The position and magnitude of this veloc-
ity peak agree very well with the experimental data, except for
the last two stations, where it is overestimated. ANN-RANS
profiles also agree very well with the best solution obtained
in Payette40 using RANS and k-ω SST turbulence model, al-
though he managed to better capture the small variations in
the center of the flow.

FIG. 17: Comparisons of experimental and numerical mean
streamwise velocity profiles inside the diffuser using RANS

and the proposed strategy.

Figure 18 shows the results for mean circumferential ve-
locity profiles. Overall, the results agree very well with the
experimental data and the best solution obtained in Payette40,
and are much improved compared to the basic RANS simu-
lations discussed in Section IV. In spite of Uθ values near
the walls at station S1 being overestimated in the case without
upstream extension and underestimated in the case with up-
stream extension, the numerical results obtained with the Ma-
chine Learning strategy agree well with the experimental data
in this region along the diffuser. However, the slight underes-
timation between 0.5 ≤ y/Hi ≤ 0.8 at the inlet of the domain
without upstream extension (S1 station) causes the circumfer-
ential velocity profile to be underestimated in the center region
of the flow compared to the other cases.

FIG. 18: Comparisons of experimental and numerical mean
circumferential velocity profiles inside the diffuser using

RANS and the proposed strategy.

The results for turbulence kinetic energy profiles are shown
in Fig. 19. In the case without upstream extension, k values
are overestimated between y/Hi = 0.1 and 0.2 at station S1,
but they slowly decrease and a very good agreement is found
at S4. However, while the experimental measurements predict
a constant peak value of k ≈ 2 m2/s2 between S5 and S7 fol-
lowed by a very slow displacement of this peak towards the
duct center and a strong decrease at S8, the numerical results
keep reducing until the end of the diffuser and are quite under-
estimated at the last four stations. This is consistent though
with previous studies that investigated this flow using two-
equation linear eddy viscosity models33,34,38,40.

Conversely to the ad hoc solution proposed in Payette40

and many other methods discussed in the introduction to de-
termine proper inlet boundary conditions for the case of the
swirling flow inside the conical diffuser and any other flow
configuration, one key aspect of the proposed Machine Learn-
ing strategy is that it relies only on the known downstream
experimental information to automatically construct the op-
timized inlet conditions. While the results at seven out of
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FIG. 19: Comparisons of experimental and numerical
turbulence kinetic energy profiles inside the diffuser using

RANS and the Machine Learning strategy.

the eight measurement stations have been used in the previous
discussions, we also investigated the Machine Learning strat-
egy performance using a limited number of stations to train
the ANN model. Figure 20 compares the streamwise veloc-
ity profiles of the previous ANN RANS case with upstream
extension against an identical configuration but only trained
with the two stations S1 and S8.

FIG. 20: Comparisons of experimental and numerical mean
streamwise velocity profiles inside the diffuser using RANS

and different amount of stations for the ANN.

The results obtained with the two approaches with a dif-
ferent number of stations are still close and both exhibit a

good agreement with the experimental data. It is important
to remark that the relative simplicity of the present diffuser
(constant opening angle, free flow outlet) renders the use of a
limited amount of experimental data to trained the ANN par-
ticularly favourable. This may not be the case for more com-
plex geometries, but is nevertheless promising since it demon-
strates the potential of the proposed Machine Learning strat-
egy to be applied to cases with very limited experimental in-
formation.

2. LES with upstream extension

The next configuration to which the Machine Learning
strategy has been applied consists in the numerical domain
with upstream extension shown in Fig. 9b using LES. The
goal is then to construct proper flow characteristics (mean and
fluctuating) in the inlet section IN in order to match as closely
as possible the available experimental information in the S1
section as well as in the following sections.

As compared to RANS, the LES approach requires a con-
siderably higher computational cost to generate a proper LES
database for the Machine Learning strategy. Therefore, one
be tempted to use the inlet profiles predicted by the ANN-
RANS procedure to initiate the LES simulation. First, this
does not solve the problem of defining the correct le and u′

for the inlet (IN section) synthetic turbulence. Second, the in-
let profiles issued from the ANN procedure take into account
all the model errors and numerical errors which are distinct in
the RANS and in the LES cases. This is clearly demonstrated
on Fig. 21 which displays the mean axial velocity profiles
given by the ANN-RANS (with extension) described in Sec-
tion VI. These are compared with the LES profiles issued
from a LES with the ANN-RANS inlet mean profiles shown
on Fig. 14 imposed at the IN section. For the synthetic turbu-
lence length and velocity scales, le and u′, we choose gener-
ally used values40, i.e. 10%Ub and 10%D0, respectively. Fig.
21 clearly shows that the LES results thus obtained exhibit a
degraded quality as compared to the ANN-RANS ones spe-
cially downstream of S4 station. Therefore, it is essential that
the simulations in the database reflect as much as possible the
numerical case we want to optimize.

After training the ANN with a LES database consisting
of 400 cases and feeding the experimental data back to the
trained model, the predicted inlet boundary conditions of the
IN section are shown in Fig. 22. The profiles are compared to
the equivalent RANS configuration discussed in the previous
section (see Fig. 11). The various inlet profiles predicted by
the ANN-LES et ANN-RANS approaches are noticeably dif-
ferent, specially their near wall behaviour. This clearly shows
that the ANN procedure includes both the numerical errors
and the modelling errors to construct the inlet profiles adapted
to a specific simulation, i.e. RANS or LES. The injected syn-
thetic fluctuations are still isotropic and generated according
to the scheme presented in Fig. 4 using the turbulence kinetic
energy profile to set its radial distribution. Due to the addi-
tional parameters required to define the upstream synthetic
turbulence, the ANN strategy also determined the optimal u′
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FIG. 21: Comparisons of experimental and numerical mean
streamwise velocity profiles inside the diffuser using the inlet
boundary conditions predicted by the proposed strategy with

a RANS database in LES and the proposed strategy.

and le at the IN section. It is found u′ = 0.551 m/s, or ≈ 5%
of Ub, and le = 0.042 m, or ≈ 16% of D0.

FIG. 22: Inlet boundary conditions predicted by the proposed
Machine Learning strategy at station IN using LES and the

proposed strategy.

Compared to the previous ANN-RANS case with upstream
extension, the predicted optimal mean velocity profiles in LES
are slightly different. For instance, after a rapid increase at the
walls, Uz varies almost linearly before reaching its maximum
value at around y/Hi = 0.2. Moreover, while optimal k val-
ues predicted in RANS are large at the center compared to its
values at the walls, the normalized turbulence kinetic energy
predicted in LES presents a single peak at the wall. More
importantly though is the impact of these adjustments right
upstream the conical diffuser, at station S1. As shown in Fig.
23, the mean axial velocity agrees very well with the experi-
mental measurements at this location and the same can be said
for the mean circumferential velocity, Uθ . The radial velocity
profile is once again similar to what has been found previously
in RANS and in Payette40, and the turbulence kinetic energy
profile is at the correct level near the walls.

The downstream evolution of the mean streamwise velocity

FIG. 23: Comparison of experimental and numerical velocity
and turbulence profiles at station S1 using the LES and the

proposed strategy.

shown on Fig. 24 demonstrates that the ANN-LES approach
yields much better results than the basic LES approach de-
scribed in Section IV without extension, zero radial velocity
and zero turbulence at the inlet. We have also checked that the
results are significantly improved as compared with the pre-
vious works attempting to adjust the upstream inlet boundary
conditions in LES30. The streamwise velocity is slightly over-
predicted at the walls, but its peak position and magnitude are
very close to the experimental measurements. While previ-
ous ANN-RANS simulations overestimated the value of the
mean streamwise velocity peak at the last two measurement
stations (S7 and S8, see Fig. 17), LES results agree very well
with the experiments. Moreover, the correct levels of mean
streamwise velocity at the center of the flow is also obtained
along the diffuser, except for stations S7 and S8, where they
are slightly overpredicted.

FIG. 24: Comparisons of experimental and numerical mean
streamwise velocity profiles inside the diffuser using LES

and the proposed strategy.

Figure 25 shows the results for mean circumferential veloc-
ity profiles inside the conical diffuser. Once again, the numer-
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ical results agree very well with the experimental data in spite
of the slight overestimated values of Uθ near the walls at sta-
tion S1. Between stations S2 and S4, the correct level of mean
circumferential velocity is found right to the walls.

FIG. 25: Comparisons of experimental and numerical mean
circumferential velocity profiles inside the diffuser using

LES and the proposed strategy.

Turbulence kinetic energy profiles are shown in Fig. 26.
The turbulent characteristics determined by the ANN proce-
dure at the inlet of numerical domain (station IN) allow to
obtain turbulence levels and distribution very similar to exper-
imental measurements, with a strong peak near the wall and
almost no turbulence towards the center of the flow. However,
contrary to the two basic reference cases, k is overestimated
at S2 and S3 but is closer to the experimental values at S4
and S5. Between S6 and S8, although the numerical results of
the predicted extended case agree quite well with experimen-
tal measurements close to y/Hi = 0.2, their maximum values
near the wall are underpredicted. It should be noticed that,
compared to previously discussed RANS simulations, y+ val-
ues in LES are significantly higher and the appropriate wall-
model used in these simulations62 is not particularly built to
properly predict the RMS velocity components in the vicinity
of the wall, which could explain the strong peak of k near the
walls. However, as the Machine Learning strategy required a
large number of simulations to be applied, the computational
cost was a limiting factor. We are presently investigating the
possibility to train the ANN with a reduced database involving
a smaller number of LES simulations but with an improved
wall resolution.

The main reason to add an upstream extension though is
to give the incoming synthetic fluctuations enough space and
time for them to develop into more realistic turbulence before
reaching the conical diffuser. Figure 27 show the evolution
of 〈u′ru′θ 〉 and 〈u′ru′z〉 correlations at station S1 of the conical
diffuser. As expected, in the case without upstream extension,
since the injected synthetic turbulence field is isotropic, cor-

FIG. 26: Comparisons of experimental and numerical
turbulence kinetic energy profiles inside the diffuser using

LES and the proposed strategy.

relations are zero at the inlet of the domain (station S1). Con-
versely, in the ANN-LES case with upstream extension, these
correlations are allowed to build up and a very good agree-
ment with the experimental values of 〈u′ru′θ 〉 is recovered at
station S1. Numerical results for 〈u′ru′z〉 exhibit the same trend
as the corresponding experimental profile but with a larger ab-
solute value of the near wall peak.

FIG. 27: Comparisons of experimental and numerical
Reynolds stresses profiles at station S1 using LES and the

proposed strategy.

Another way of visualizing the differences for the inlet tur-
bulent fluctuations between the three different LES (the two
basics and the ANN) consists in investigating the turbulent
structures inside the conical diffuser. Figure 28 shows these
structures using iso-surfaces of Q-criterion58 coloured by the
vorticity magnitude. In the reference case, if synthetic fluc-
tuations are added in the section S1 (see Fig. 28a), turbulent
structures can be seen from the beginning of the numerical
domain, but they still need to develop into more realistic tur-
bulence downstream in the diffuser. In the case of ANN-LES



17

(see Fig. 28b), the synthetic turbulence injected at the inlet
(section IN) of the upstream extension is more realistic when
it arrives at the section S1. Well defined coherent structures
can thus be observed at the beginning of the domain and con-
sist of vortices aligned with the mean flow direction due to
centrifugal instabilities at the upstream extension.

(a)

(b)

FIG. 28: Turbulent structures inside the conical diffuser
visualized by iso-surfaces of Q = 25000 s−2 and coloured by
their vorticity in the z-axis direction. (a) LES w/o upstream

extension and w/ synthetic fluctuations; (b) LES w/ upstream
extension and w/ synthetic fluctuations.

Finally, Fig. 29 shows the evolution of the coefficient of
pressure Cp along the walls of the conical diffuser. Notice
that the static pressure at station S8 is used as reference in-
stead of the atmospheric pressure in Eq. (3). As the static
pressure on the walls is greatly affected by the near wall veloc-
ity distribution, numerical results obtained with the Machine
Learning strategy are clearly improved compared to the basic
simulations. As discussed by Payette40, this constitutes an im-
portant result since the Cp is closely related to the hydraulic
performance of the diffuser (i.e. how efficiently it converts the
dynamic pressure into static pressure).

VII. CONCLUSION

A new approach to determine proper mean and fluctuat-
ing inlet boundary conditions for a numerical simulation is
proposed and discussed. It is based on machine learning
and its goal is to use any known downstream data about the

FIG. 29: Comparisons of experimental and numerical Cp
evolution using LES and the proposed strategy.

flow to determine the optimal upstream inlet boundary condi-
tions. The proposed approach is applied to the test case of the
swirling flow inside a conical diffuser using both RANS k-ω
SST and LES turbulence models. Despite its geometric sim-
plicity, the delicate balance between core flow recirculation
and boundary layer separation renders numerical simulations
of this case very sensitive to inlet conditions and constitutes a
real challenge.

Previous works as well as our simulations showed that the
main difficulty in RANS consists in determining the radial
velocity distribution at the inlet of the diffuser, which is not
known from experiments. In LES, the difficulty is even higher
since it is compulsory to generate and inject proper synthetic
fluctuations into the numerical domain. One of the solutions
consists in the addition of an artificial extension upstream of
the original numerical domain to give these fluctuations the
space and time required to develop before reaching the dif-
fuser. However, the inlet conditions need to be empirically
adjusted and, as previous simplistic methods fail to match the
downstream flow behaviour, a more sophisticated approach is
here developed based on machine learning.

The machine learning approach is applied to three different
configurations and the results are considerably improved with
respect to the reference case with simplistic inlet conditions.
In RANS, the optimized inlet conditions keep the boundary
layer attached to the walls throughout the diffuser and allow
to recover the correct level of streamwise velocity at the cen-
ter of the flow. Moreover, circumferential velocity profiles and
turbulence kinetic energy evolution are also better predicted.
In LES, the proposed machine learning strategy is able to sig-
nificantly improve the prediction of the streamwise velocity
peak and its distribution in the diffuser core. Moreover, the
circumferential velocity and turbulence kinetic energy profiles
exhibit a very good agreement with the experiments. The im-
pact of the upstream extension on the turbulent structures at
the inlet of the diffuser is also noticeable. The correct turbu-
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lent correlations are thus created upstream and a more realis-
tic turbulence flow field is recovered downstream. Finally, the
prediction of the pressure coefficient evolution at the wall is
greatly improved by the application of the proposed strategy,
which has an important impact on the analysis of the hydraulic
performance of the diffuser.

The numerical results obtained with the proposed Ma-
chine Learning strategy could be further improved by adding
more simulations into the database used to than the ANN
model. However, since the computational cost would be di-
rectly affected by the additional numerical simulations, a on-
going investigation consists in enhancing the performance of
the model by increasing the comprehensiveness of a reduced
database. Nevertheless, despite its relatively high computa-
tional cost, one advantage of the proposed machine learning
strategy is that it can be generalized to different flow config-
urations and types of problems. For many industrial applica-
tions, the proper prescription of the inlet flow characteristics
is often impossible to obtain without expensive extra compu-
tations. Although the present study is here devoted to a simple
flow geometry, it is currently applied to the reconstruction of
mean and fluctuating turbulent fields in complex geometries of
industrial interest using adequately chosen downstream mea-
surements.
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