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This dissertation reports computational accounts of resolving word-level polysemy in a lesser-studied language-Korean. Postpositions, which are characterized as multiple form-function mapping and thus polysemous in nature, pose a challenge to automatic analysis and model performance in identifying their functions. In this project, I enhance the existing word-level embedding classification models (Positive Pointwise Mutual Information and Singular Value Decomposition; Skip-Gram and Negative Sampling) with the consideration of context window, and introduce a sentence-level embedding classification model (Bidirectional Encoder Representations from Transformers (BERT)) under the scheme of Distributional Semantic Modeling. I then develop two visualization systems that show (i) relationships of the postpositions and their co-occurring words for word-level embedding models, and (ii) clusters between sentences for the sentence-level embedding model. These visualization systems have an advantage to better understand how these classification models classify the intended functions of these postpositions. Results show that, whereas the performance of the word-level embedding models is modulated by the size of training corpora containing specific functions of the postpositions, the sentence-level embedding model performs v in a stable way (i.e., less affected by the corpus size) and simulates how humans recognize the polysemy involving Korean adverbial postpositions more appropriately than the word-level embedding models do.

Contents

. Background of beginning this project I assume that a relationship of words (represented as probabilistic information) is one core construct in understanding how language works. This assumption has led me to explore the relationship obtained from small-or large-scale corpora empirically in two major directions. One is to develop an automatic classification system, that classifies language input into appropriate categories, combined with machine learning algorithms. The other is to create a visualization system that intuitively demonstrates the relationship between words or sentences. The two directions of my research stand on statistical inferences and probabilistic approaches to language.

The reason I chose the polysemy of Korean adverbial postposition as the topic of this dissertation began with a dissatisfaction that I had as I was working on many collaborative research projects. These covered various linguistic inquiries in a lesser-studied language-Korean. I found that during the data processing, a lot of NLP-based studies removed Korean adverbial postpositions as stop words, which are filtered out and not used. The reason for this being that the word-level polysemy of Korean adverbial postpositions creates problems making the results difficult to interpret (e.g., Bae and Lee,

, Lee et al., ). However, unlike other languages, postpositions play a very important role in Korean (e.g., Ahn,[START_REF]attr("transform[END_REF]Hong,[START_REF]attr("transform[END_REF]Jeong,,Lee,[START_REF]attr("transform[END_REF]Nam,,Park,,Song,). Moreover, they have a great influence on the interpretation of the results that are obtained from NLPbased analysis (e.g., Bae et al., , Shin et al., ). Due to their importance, previous studies have worked on resolving the polysemy of Korean adverbial postpositions by applying computational approaches (e.g., Cho and and Bidirectional Encoder Representations from Transformer (BERT;Devlin et al.,[START_REF]attr("transform[END_REF]. However, among these, BERT shows the best performance in many tasks such as translation, classification, and question-answering (Devlin et al.,[START_REF]attr("transform[END_REF]Tang et al.,). Due to this, I chose BERT as the sentencelevel embedding model for the classification task to identify the intended function of a postposition in a sentence.

.

Visualization system

Previous NLP-based research on polysemy resolution has an issue in that they focused on enhancing the model performance to classify the functions of postpositions and they did not try to explore the relationships around postpositions (e.g., Kim et al.,6,,Kim and Ock,6). As stated previously, BERT achieved superior performance in many tasks (e.g., Dai and Le,,Peters et al.,[START_REF]attr("transform[END_REF]Radford et al.,[START_REF]attr("transform[END_REF]. However, it is somewhat unclear how BERT deals with the polysemy resolution (e.g., Clark et al.,,Coenen et al.,,Devlin et al.,[START_REF]attr("transform[END_REF]Tang et al.,). Improving the performance of classification models is undoubtedly important, but it is also important to see how the relationship between postposition and co-occurring words changes with the particular function of postposition and how the model recognizes the intended function of postpositions in the sentence.

To remedy these issues, I propose two visualization systems of the respective (chosen) models. These visualization systems have the advantage of helping to identify relationships between words and to show changes in the relationships based on the contexts where these words manifest. Moreover, these systems can help the general audience understand (i.e., how . . OUTLINE OF THE DISSERTATION model works, how the relationships between words/sentences changes) through an informative display of outcomes from each model (e.g., Coenen et al.,,Mun and Lee,6,Mun et al.,).

.

Outline of the Dissertation

This dissertation is organized as follows: Chapter provides a review of previous studies on the three adverbial postpositions: -ey, -eyse, and -(u)lo, which occur frequently in language use. This chapter also discusses the issues in previous studies, which focused mostly on improving the classification accuracy and did not pay attention to the environment around postposi- Chapter 2

NLP reaserch on adverbial postpositions in Korean:

-

ey, -eyse, and -(u)lo

Korean, a Subject-Object-Verb language, is agglutinative in that multiple postpositions or affixes with dedicated forms and meanings are attached to the stem of nominals or predicates. A postposition is a function word providing grammatical information to words it is attached (Sohn, ). Korean postpositions are divided into two categories. One category includes grammatical case markers such as nominative -i/ka, accusative -(l)ul, and possessive -uy, indicating syntactic relationships between content words. The other category consists of semantic postpositions that express adverbial functions, indicating specific functions such as locational and instrumental.

Many of the semantic postpositions are polysemous due to their many-tomany mapping of form and function, which accompanies functional ambiguity. This chapter summarizes three adverbial postpositions, -ey, -eyse, and -(u)lo, which occur frequently in language use and thus frequently explored in . Previous research on polysemy of -ey, -eyse,

and -(u)lo

.

. -ey

The Standard-Korean dictionary ( ) defines the adverbial postpositioney as a postposition that gives the preceding word the function of the location. Based on this definition, the primary function of -ey is location. However, this definition is too broad and not accurate or specific enough to capture all the essential functions of -ey. Based on this reason, previous research has investigated the functions of -ey in two lines. One line of research is concerned with various functions of -ey obtained through the semantic relationship between it and its noun or predicate (e.g., Ahn,[START_REF]attr("transform[END_REF]Hong,[START_REF]attr("transform[END_REF]Lee,[START_REF]attr("transform[END_REF]. Another line explores the basic functions of -ey (e.g., Jung, 88, Lee,[START_REF]attr("transform[END_REF]. Some researchers also propose their own claims for the types of functions involving -ey. For example, Cho and Kim ( 6) classified types.

Nam (

) argued that the relationship between a (pro-)noun and a predicate combined with a postposition is important to determine its function, which yielded . In a more practical perspective, Song ( ) suggested the main function as an indication of a location or movement of a physical target. He also explained that extending the function could be interpreted as scope, situation, criteria, time, goal, method, and reason. Together, there is no clear consensus as to the precise number/type of functions involving -ey.

To determine the number of functions of each postposition, this dissertation puts special emphasis on eight major functions of -ey, which are frequently attested in the Sejong dictionary. These are also commonly mentioned in the previous studies, with location and goal occupying the majority of the occurrences. Of the functions of -ey defined by the Sejong project (Table . ), I selected the eight most frequent as the main one of -ey. Note that, although I classify the functions into designated types, each one is rather flexible due to the difficulty in creating standard definitions of individual functions that everyone agrees with (Kang and Park, ).

CHAPTER . NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:

-EY, -EYSE, AND -(U)LO object reaches. In the following sentence (i.e., this sentence is extracted from the file V-naylyekkochita in the Sejong Electronic Dictionary), -ey is playing the same role as to in English. Effector (EFF) is a function that indicates that the preceding word influences the theme to act or change when an event occurs. In the following sentence (i.e., this sentence is extracted from the file V-kentultayta in the Sejong Electronic Dictionary), -ey is playing the same role as by in English. kentultay-n-ta. sway-PRS-DECL

'The doors all sway by the strong wind.' Criterion (CRT) is a function that indicates that the preceding word is the standard for quantitative classification of the specific property of the theme. In the following sentence (i.e., this sentence is extracted from the file V-nakchalhata in the Sejong Electronic Dictionary), -ey is playing the same role as for in English. Theme (THM) is a function that makes the preceding word as an entity that directly receives the action of the verb. In the following sentence (i.e., this sentence is extracted from the file V-hekicita in the Sejong Electronic Dictionary), -ey is playing the same role as for in English. hekicye-iss-ta. hungry-DECL 'All modern people are hungry for true knowledge.' Instrument (INS) is a function that indicates the preceding word engages in an action or a process as a tool. In the following sentence (i.e., this sentence is extracted from the file V-nokita in the Sejong Electronic Dictionary), -ey is playing the same role as in in English. iss-ess-ta. be-PST-DECL 'The young boy was using the fire to warm his hands.'

Agent (AGT) is a function that makes the preceding word as an entity that intentionally carries out the action of the verb. In the following sentence (i.e., this sentence is extracted from the file V-cecitoyta in the Sejong Electronic Dictionary), -ey is playing the same role as by in English. cecitoy-ess-ta. stop-PST-DECL

'By going out to the street was stopped by the police.'

Final state (FNS) is a function that allows the preceding word to present the current state. In the following sentence (i.e., this sentence is extracted from the file V-chwuchenhata in the Sejong Electronic Dictionary), -ey is playing the same role as as in English. . .

-eyse

The Standard-Korean dictionary ( ) defines the adverbial postpositioneyse as a postposition indicating that the preceding word is a location where an action is being made. -eyse has fewer functions than the other two postpositions -ey and -(u)lo (Choo and Kwak,[START_REF]attr("transform[END_REF]. However, the frequency of its use is equally high compared to that of the others (e.g., Cho and Kim,6,Song,). Researchers generally agree with the primary function as the location which engages in departure of action (e.g., Cho and Kim,6,Park et al.,,Song,) and the Sejong corpus also demonstrates the same tendency. As Table . shows, the two functions (source and location) are overwhelmingly more frequent than the others. This dissertation follows this skewedness in frequency, focusing on these two functions. Therefore, -eyse has only two functions, source ( ) and location ( ). Source (SRC) is a function that indicates the origin of an action, the point at which the action is initiated. In the following sentence (i.e., this sentence is extracted from the file V-ppopaollita in the Sejong Electronic Dictionary), -eyse is playing the same role as from in English. ppopaolli-n-ta. pull-DECL 'Miners pull oil from the sea.'

The definition of the location (LOC) is the same as described for -ey (location). In the following sentence (i.e., this sentence is extracted from the file V-thayenata in the Sejong Electronic Dictionary), -eyse is playing the same role as in in English. . .

-(u)lo

The Standard-Korean dictionary ( ) defines the adverbial postposition -(u)lo as a postposition indicating the direction of movement, stating that the key concept to understanding the functions of -(u)lo involves direction. However, it is somewhat vague to pinpoint the essential and typical functions by using this concept. In fact, this postposition has a variety of functions, and many researchers have proposed different viewpoints on this issue. To illustrate, Park ( ) claimed that the central function is instrumental, and that there are more functions, such as path, direction, point of direction, time, state change, qualification, material, cause, and manner. In contrast, Jeong ( ) puts the directional function at the center of the various ones and explained the relationship between the core function and the extended ones.

The classification in the Sejong project (Table . ) is somewhat different from these two studies, stating that there are six major functions of -(u)lo, with the top three (final state; instrumental; directional) occupying more than 8 per cent of the entire use. Because the Sejong corpus is widely used in studies on Korean (e.g., Kang and Park, , Kim et al., , Park and Cha, , Shin et al., ), and this dissertation also employs this corpus for investigation, I follow the classification it provides. The definition of the final state (FNS) is the same as described above [START_REF]attr("transform[END_REF]. In the following sentence (i.e., this sentence is extracted from the file Vchopingtoyta in the Sejong Electronic Dictionary), -(u)lo is playing the same role as as in English. chopingtoy-ess-ta. invite-PST-DECL 'He was invited as a representative lecturer.'

The definition of instrument (INS) is the same as described above (6). In the following sentence (i.e., this sentence is extracted from the file V-kamkita in the Sejong Electronic Dictionary), -(u)lo is playing the same role as with in The definition of effector (EFF) is the same as described above ( ). In the following sentence (i.e., this sentence is extracted from the file V-koylowehata in the Sejong Electronic Dictionary), -(u)lo is playing the same role as due to in English. isssupni-ta. be-DECL 'The patient is suffering greatly due to stomach cancer.'

The definition of criterion (CRT) is the same as described above ( ). In the following sentence (i.e., this sentence is extracted from the file V-paychatoyta in the Sejong Electronic Dictionary), -(u)lo is playing the same role as at in English. paycha.toy-ess-ta. arrange-PST-DECL 'It was arranged at appropriate time intervals.'

The definition of LOC is the same as described above ( ). In the following sentence (i.e., this sentence is extracted from the file V-apsonghata in the Sejong Electronic Dictionary), -(u)lo is playing the same role as to in English. .

Previous NLP research on adverbial postpositions

Studies on word-level polysemy in Korean have focused mainly on categorizing different meanings/functions of polysemous words for the essential interpretation of linguistic phenomena (e.g., Ahn,[START_REF]attr("transform[END_REF]Hong,[START_REF]attr("transform[END_REF]Lee,[START_REF]attr("transform[END_REF]Maeng,6). Researchers working on computational linguistics in Korean follow this trend and develop systems that automatically classify and recognize these multiple meanings/functions involving the words in order to deal with linguistic items in an easier and more efficient way (e.g., Bae and Lee,

, Kang and Park, , Kim et al., , Kim and Ock, ). Previous studies on automatic classification of functions involving Korean adverbial postpositions have employed two methods according to the types of information used: exclusive use of case frames in dictionaries, and heavy use of probabilistic information about grammatical relations from existing corpora.

. . Use of case frames in dictionaries only

The first method concerns the application of case frames (i.e., semantic relationships between words in a sentence), which are pre-defined and stored in a separate document, to a dictionary (i.e., a document that explains case frames that described manually according to the meanings of the words).

Table . presents a summary of studies on automatic classification by using case frames in dictionaries only. ) created UPropBank, a case frame dictionary, based on the standard Korean dictionary and established a semantic role labeling system by using the frequency of words and case frames. To determine the functions of postpositions, , out of 6 , sentences were used as a training set and the remaining 6, sentences were used as a test set for measuring model performance. The performance was measured in four ways: (i) using case frames only, (ii) using case frames and information of particles, (iii) using case frames and information about particles and predicates, and (iv) using case frames and information about particles and predicates but excluding preceding predicates. The results showed that, when only case frames were used, the accuracy rate was . 8, which is a high accuracy rate compared to other methods. ). However, creating accurate/appropriate case frames for this case frame-based method consumes considerable resources and time. This method also has the problem that only the information described in the case frame dictionary is applicable to automatic processing, which leads a model to achieve a low coverage rate for the data (e.g., Kang and Park,,Kim and Ock,,Park and Kim,[START_REF]attr("transform[END_REF].

This refers to how much the data is explained by the model.

. . PREVIOUS NLP RESEARCH ON ADVERBIAL POSTPOSITIONS

. .

Use of probabilistic information from existing corpora

The other method, using probabilistic information about grammatical rela- In the case of ( 8), the i/JKS, -(u)lo/JKB, and ppophy/VV used in the case frame are all attested, and the word order is the same as what the case frame represents, thus is applied reliably. In contrast, in ( ), the elements are attested in the sentence, but the word order does not match, thus impossible to apply. For this reason, if only case frame information is used in a model, sentences that do not follow the precise characteristics of the case frames cannot be processed. However, a probabilistic information-based model can be applied even though a mismatch arises between the model and the data with respect to key information (e.g., Bae et al., , Shin et al., ). This probabilistic information-based method thus achieves a higher rate of coverage than the case frame-based method (e.g., Bae and Lee, , Lee et al., ). Table . presents a summary of studies on automatic classification of functions involving postpositions by using probabilistic information. 

Shin et al. (

) proposed an alternative method that complemented shortcomings of both methods by using case frames in dictionaries and probabilistic information together. In the study, they used the case frame information first in order to determine the functions of postpositions; and if the input sentence was not applicable to use, they then employed the SVM algorithm. The result showed . when both methods were applied together, rather than only one or the other.

Although a few more studies used both methods in a hybrid manner to determine the functions of postpositions (e.g., Kim et al.,6,,Kim and Ock,6), they generally failed to address polysemy under linguistic perspectives, ignoring important questions such as how postpositions relate to the co-occurring words. One reason for this limitation is that previous research often lacked clear motivation that connected computational techniques and investigation of language phenomena, which made it harder to apply their approaches to addressing linguistic inquiries.

.

Issues of NLP research on polysemy resolution

Previous research has attempted to identify functions of postpositions using grammatical/semantic relationships between the postpositions and their neighbors in a sentence. However, they focused mostly on improving the accuracy of classifying the functions and did not pay attention to the environment around postpositions, such as co-occurring words, which generate a cluster centering around the postposition. From a linguistic perspective, a relationship of interlinked clusters of words is undoubtedly a valuable language resource because it shows how polysemy is interpreted through them.

In this regard, the distributional semantic models (DSMs; Baroni et al., ),

which argue that a word meaning is closely tied to a context that is created by a group of neighborhood words, draws attention to the computational understanding in human language (e.g., Bullinaria and Levy, , Turney and Pantel, ).

In computational linguistics, the DSMs are generally used to investigate the meaning of a word in a sentence (see explanation in Chapter ). They convert contextual information obtained through the words surrounding a target word into vectors (see explanation in Chapter ). Based on this information, various computational techniques can be applied to these vectors in order to measure the semantic similarity of the word (e.g., Clark, , Erk, , Turney and Pantel, ). The model represents each word as a dimensional vector of the number of occurrence and the vectors close to each other appear to be semantically relevant (Levy et al., ). In addition, by visualizing the relationship of clusters representing the embedded words, we can intuitively identify the relationships of words.

Based on the DSMs, previous studies have been conducted to identify the meaning of words and their relationships with the surrounding words (e.g., Desagulier,,Hilpert,6,Li et al.,).

Hilpert ( 6) is one representative study in this respect. He conducted a diachronic corpus-based study of the English modal auxiliary may, focusing on changes in its collocational preferences during the past years, and displayed a visualization of embedded word cluster. The point of this paper was the argument that constructional views need to consider the mutual associations between modal auxiliaries and the lexical elements with which they occur. In the study, -million-word samples of the Corpus of Contemporary American English (COCA; Davies,[START_REF]attr("transform[END_REF] were used as a corpus and the distribution of verbs that occur frequently with may was visualized over time applying word embeddings (Positive Pointwise Mutual Information; Church and Hanks,[START_REF]attr("transform[END_REF]. Results showed that say and see were important verbs in the period of 8 s-86 s, but their importance flattened out as time elapsed. It also showed that the use of depend, exist, involve, enable, and indicate was expanding and increasing over time. His research suggests that DSMs allow us to see changes of the relationship between one word and the co-occurring words by way of changes of clusters that these words produce.

However, some crucial questions about the DSMs remain unanswered. (Finkelstein et al., ) and SimLex- (Hill et al., ). The word vectors were evaluated by ranking the pairs according to their cosine similarities and by calculating the correlation (Spearman's) with the ratings of humans. For Analogy, the correct answer data were divided into semantic and grammatical phrases, such as MSR's analogy dataset (Mikolov et al., c) and Google's analogy dataset (Mikolov et al., b). The accuracy of the correct answer was measured by using the match between queries recorded in the analogy datasets and answers obtained by each model. By paying more attention to the environment between postpositions and surrounding words, DSMs (Baroni et al., ) are drawing attention to the computational understanding in human language, which allows us to obtain a cluster of interlinked words. However, they have two crucial aspects to consider: choice of word embedding models and context window sizes.

In this dissertation, I adopt the idea that DSMs provide clusters between the target word and the co-occurring words, and use this idea to identify en- ). Among the various methods, the DSMs have drawn the attention of many researchers who aim at understanding word meaning (e.g., Baroni et al., , Bullinaria and Levy, ). This is because the results generated through DSMs can be used to understand and visualize how the target word is interpreted and how its meaning changes based on the co-occurring words (e.g., Hilpert,6,Li et al.,).

. Distributional Semantic Models

The distributional hypothesis (Firth, , Harris, ) which is the idea behind the DSMs states that a word meaning is closely related to the context created by a group of neighboring words (Baroni et al., ). In its actual application, the DSMs convert contextual information that is obtained through the words surrounding a target word into vectors. They then apply machine learning algorithms to these vectors in order to measure the seman- The following sections outline each technique, with an emphasis on how it works and is applied to this dissertation.

.

Count-based model

The count-based model learns vocabulary based on a corpus and models each word by counting the number of times each word appears (Bullinaria and Levy, ). The most fundamental task for this model is to convert corpus data into vectors, using several ways such as a word-word co-occurrence matrix (e.g., Davies,,Hilpert,6) and a term-document matrix (e.g., Salton, , Turney and Pantel, ). Researchers choose the particular way of vectorizing according to the purpose of their study (Jurafsky and Martin, ). For example, a word-word co-occurrence matrix is used to see the relationship between words, while a term-document matrix is used to see the relationship between documents (Jurafsky and Martin, ). This dissertation utilizes a word-word co-occurrence matrix to check the relation between postposition and its co-occurring words. Each cell records the number of times the row (target) word and the column (context) word co-occur in the above context. In the case of -(u)lo, it has a value of one with each word, except ./SF with a value of three (because both occur in each sentence).

A word-word co-occurrence matrix is generally used in combination with a context window, that is, a range of words surrounding a target word affecting the determination of the characteristics of the word (Lison and Kutuzov, ). Consider the same corpus with the context window size as one, counting one word to the left and one word to the right of the target word.

This shows the number of times (in the training sentences) that the column word occurs in a one-word window around the row word (Jurafsky and Mar- 6), with approximately million-word tokens of movie and TV subtitles. They showed that the performance of word embedding using only the words on the left of the target word was worse than that of using words on both sides. For the Gigaword corpus, it also showed that using words on the right performed as well as using both sides, perform-CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION ing only one percentage point less than using both sides. Based on these studies, I used words on both sides of the target word when using context window size in word embedding.

. . Positive Pointwise Mutual Information

Each cell of a word-word co-occurrence matrix represents the number of times two words occurred at the same time, but the number of occurrences may not serve as a good feature to present the relationship of two words.

For example, consider the co-occurrence between the postposition -(u)lo and ./SF in the previous example. They are both used in all the sentences, so the matrix in Table . shows that ./SF is highly related to -(u)lo due to the high frequency of ./SF although it is not related to -(u)lo.

PPMI (Church and Hanks,[START_REF]attr("transform[END_REF] deals with this issue effectively by weighing the association between two words in the search of the co-occurrence of these words in a corpus (Jurafsky and Martin, ). To understand how PPMI works, we first need to look at Pointwise Mutual Information (PMI: We can calculate the PMI score between the two words as follows: The PMI values range from negative to positive. However, if the corpus size is not large enough, the negative PMI value is less reliable and cannot be used. Furthermore, studies on the meaning of words do not use negative PMI because it does not express the meaning of the target word (Jurafsky and Martin, ). For this reason, it is more common to use Positive PMI (PPMI), which replaces all the negative PMI values with zero. But this method has the disadvantage of losing information that can be obtained from negative PMI (e.g., Church and Hanks,[START_REF]attr("transform[END_REF]Dagan et al.,,Niwa and Nitta,).

P (w = -(u)

. . Singular Value Decomposition

Using PPMI as a weighting function for a word-word co-occurrence matrix is known to yield genuine co-occurrence relations of two words by suppressing unreasonable relationships between words. However, there still remain issues such as the size of a co-occurrence matrix. For example, suppose that the corpus size continues to increase. The column and row of a wordword co-occurrence matrix will then increase respectively (i.e., dimensions increase in proportion to the number of words). Handling multi-dimension data then requires more computational capacities and resources, rendering this line of research as challenge.

As a remedy for this issue, SVD (Eckart and Young,6) was devised by reducing the dimensions of a co-occurrence matrix while maintaining the information of the matrix (e.g., Bullinaria and Levy,,,Hachey et al.,6,Landauer et al.,[START_REF]attr("transform[END_REF]Levy and Goldberg,,Schütze,). This is formalized as in ( . ) where A is an m by n rectangular matrix, U is an m by m orthogonal matrix composed of the left singular vector of A, Σ is an m by n diagonal matrix, and V is an n by n orthogonal matrix composed of the right singular vector of A.

A = U ΣV T ( . )
The column vectors belonging to the matrix U and V are singular vectors and are orthogonal to each other.

U = u 1 u 2 . . . u m V = v 1 v 2 . . . v n U T U = I V T V = I
The singular vectors of the matrix Σ are all greater than or equal to zero.

The singular vector σ k , the kth diagonal element of the matrix Σ, is equal to the value taken by the square root at the kth eigenvalue of the matrix AA T .

σ k = λ k
This below describes more detail about the SVD formula defined in ( . ).

A = U ΣV T = u 1 u 2 . . . u m              √ λ 1 0 . . . 0 0 √ λ 2 . . . 0 . . . . . . . . . . . . 0 0 . . . √ λ k                           v 1 v 2 . . . v n             
To illustrate the calculation process, suppose a by square matrix as in Table . . 

A =     4 0 3 5    
First of all, a diagonal matrix, Σ can be calculated as shown below:

AA T =     4 0 3 5         4 3 0 5     =     16 12 12 34     AA T -λI =     16 -λ 12 12 34 -λ     ((16 -λ) * (34 -λ)) -(12 * 12) = 0 (λ 2 -50λ + 400) = 0 (λ -40) * (λ -10) = 0 . . COUNT-BASED MODEL
The resulting calculated eigenvalues are λ 1 ,λ 2 = , and singular val-

ues are σ 1 , σ 2 = √ 40, √ 10.
Then, the following Σ can be obtained through the given eigenvalues and singular values.

Σ =     √ 40 0 0 √ 10    
The next step is to calculate V.

If λ 1 = 40,     16 -λ 12 12 34 -λ         u 1 u 2     =     0 0         -24 12 12 -6         u 1 u 2     =     0 0     -12u 1 + 6u 2 = 0 u 1 , u 2 = 1, 2 X 1 =     1 2     CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION If λ 1 = 10,     16 -λ 12 12 34 -λ         u 1 u 2     =     0 0         6 12 12 24         u 1 u 2     =     0 0     18u 1 + 36u 2 = 0 u 1 , u 2 = -2, 1 X 2 =     -2 1    
Then, the following V can be obtained through the given X 1 , X 2 .

V = X 1 X 2 =     1 -2 2 1    
The final step is to calculate U using the previously calculated values.

Σ =     √ 40 0 3 √ 10     , V =     1 -2 2 1     , V V T =     1 -2 2 1         1 2 -2 1     =     5 0 0 5     A = U ΣV T AV = U ΣV T V = U Σ5 1 5 AV Σ -1 = U U = 1 5     4 0 3 5         1 -2 2 1     =     0.1581 0 0 0.3162     U =     0.1264 -0.5059 0.4111 -0.6957    
By applying the values of U, Σ and V, the following results can be obtained:

A =     0.1264 -0.5059 0.4111 -0.6957         √ 40 0 3 √ 10         1 2 -2 1     =     4 0 3 5    
The above calculation process represents the general formula for SVD.

To reduce the dimension, this technique selects the number of dimensions K, as shown in Figure . . For example, in the above calculation process, the results of the calculation by setting K as one is as follows:

A =     0.1264 0.4111     * √ 40 * 1 2 =     0.7994 1.5988 2.6 5.2    
In addition, reduction of the number of dimensions in the data from two to one produces the following values:

. . COUNT-BASED MODEL

ReducedA = U + (V T ) T =     0.1264 0.4111     +     1 2     =     1.1264 2.4111    
This reduction often leads to losing some information about the data, but the approximation of A is still calculated.

For this reason, SVD is generally used to analyze a large-sized corpus.

However, there still remain concerns about the loss of information due to dimension reduction (Hachey et al.,6) .

Prediction-based model

The prediction-based model is another way to obtain dense vectors such as SVD. This model is based on probability information about the meaning between words and is efficient in conducting tasks such as word similarity (e.g., Mikolov et al., a,b). Similar to the count-based model, converting contexts into vectors is a priority for the prediction-based model. A representative study is Mikolov et al. ( b) which introduced Word Vec. Generally, the one-hot encoding method is used for this model (Mikolov et al., a,b).

. . The one-hot encoding

The one-hot encoding is a method that uses and to represent a unique index for each word (Ammar et al.,6) Each word has its own encoding value as an independent vector. However, one-hot encoding does not present similarity between the words through the given vectors (Ammar et al.,6). For instance, the words in Table .   are expressed in eight dimensions, and if these words are expressed in a two-dimensional chart, each word is represented by . degrees (i.e., degrees divided by eight). Because mathematically the position of each word can be obtained by dividing the angle of the two-dimensional space by the number of multi-dimensional spaces. As in Figure . , the distance between each word is same as each other and every word vector is orthogonal with CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION the degrees. For this reason, the similarity such as cosine and Euclidean cannot be calculated with the vector of words obtained by one-hot encoding.

Instead, it can be calculated by applying the embedding models such as SVD and Word Vec, which converts the word into dense vectors. .

. PREDICTION-BASED MODEL

|V | * 1dim = X (c-m) , . . . , X (c-1) , X (c+1) , . . . , X (c+m) Second, in the process toward the input layer to the hidden layer, the onehot vector used as the input is multiplied with the input word matrix composed of random numbers. X c±m is the one-hot vector of the surrounding words in the range of the context window from the target word and V |V | * N is the input word matrix which is randomly generated.

X c±m * V |V | * N = v c±m
Third, the hidden layer calculates the average of the results of the second process.

v = v c-m , . . . , v c+m 2m
Fourth, in the process from the hidden layer to the output layer, the results of the third process are multiplied with the output word matrix composed of random numbers.

z = v * U N * |V |
Fifth, the probability is calculated in the output layer, using the softmax function to represent the results obtained in the fourth process as probabil-CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION ities.

ŷ = sof tmax(z)
The formula for the softmax function is as shown below:

sof tmax = P i = e zi k j=1 e zj for i = 1, 2, . . . , k
Suppose the number of classes entered into input is k. The softmax estimates probabilities for each class by entering the total classes. This means that the sum of the probability values of total classes is one (Mikolov et al., b).

Finally, an error between the one-hot vector of the target word, y and ŷ obtained from the output layer, is measured by cross-entropy function. In this process, the cross-entropy function as shown below is used.

cross-entropy = H(P, Q) = -ΣP (x) * log Q (x)
For example, suppose the correct answer (P ) with two categories is 1 0 .

Q is calculated to approximate P , and if the calculation result is 0 1 , the loss becomes an infinite value as shown below:

P (x) * log Q (x) = -1 0     log 0 log 1     = -(-∞ + 0) = ∞
If the calculated Q matches the correct P , the loss is zero as shown below:

P (x) * log Q (x) = -1 0     log 1 log 0     = -(-0 + 0) = 0
If the cross-entropy value between the ŷ calculated in the CBOW model and the one-hot vector value of the target word is , then the value of v in the hidden layer is used as the dimension value of target word. Suppose that we predict -(u)lo/JKB, 0 1 0 0 0 using the word pang_ /NNG, 1 0 0 0 0 from the given sentence. Then the X of the context word entered in the input layer should be 1 0 0 0 0 , and the Y in the output CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION layer should be 0 1 0 0 0 . If the input word matrix is

                 1 0 0 1 1 1 0 1 1 1                 
, through the process of going from the input layer to the hidden layer, then the estimated v c in the hidden layer is as follows:

v c = 1 0 0 0 0                  1 0 0 1 1 1 0 1 1 1                  = 1 0
After that, if the output word matrix is

    0 3 0 0 0 1 1 2 1 1    
, moving from the hidden layer to the output layer, then the estimated z is obtained as follows:

z = 1 0 *     0 3 0 0 0 1 1 2 1 1     = 0 3 0 0 0
The z is then expressed as probabilities using the softmax formula and the cross-entropy value between Y and Ŷ is calculated to see whether the . . PREDICTION-BASED MODEL value is zero or not.

Ŷ = sof tmax(z) = 0 1 0 0 0

-P (x) * log Q (x) = -0 1 0 0 0                  log 0 log 1 log 0 log 0 log 0                  = -(0 + 0 + 0 + 0 + 0) = 0
If the calculated cross-entropy value is , then the v c of the hidden layer is used as a two-dimensional vector for target word, -(u)lo/JKB.

The prediction-based models such as CBOW and SGNS, unlike countbased models, can embed words without information on how often the words appear.

. . Skip-Gram and Negative Sampling

In contrast to CBOW, Skip-gram is an algorithm that predicts context words using the target word. However, similar to CBOW, Skip-gram uses one-hot vector as input and output. The framework (using one word to predict three words) is shown in Figure . . |V | * 1dim = X Second, in the process from the input layer to the hidden layer, the input of the target word is multiplied with the input word matrix composed of random numbers.

X c * V |V | * N = v c
Third, moving from the hidden layer to the output layer, the results of the second process are multiplied with the output word matrix composed of random numbers.

z = v c * U N * |V |
Forth, the probability is calculated in the output layer using the softmax function.

Ŷ = sof tmax(z)
Finally, an error is measured between Y (the one-hot vector of the context words), and Ŷ (obtained from the output layer) by using cross-entropy.

In order to further improve the performance of the Skip-gram model, The prediction-based model embedded each word based on probability information about the meaning between words. To represent each word independently, one-hot encoding method is used, using and to represent a unique index for each word (Ammar et al.,6).

As a representative of the model, there is Word Vec which includes CBOW and SGNS. Since Word Vec contains two different algorithms, many comparative studies have been conducted on the two (e.g., Mikolov et al., a, Pennington et al., , Yogatama et al., ). As a result, many have reported that SGNS performs better than CBOW.

Based on the previous studies that employ PPMI with SVD as a count- .

Corpus . . Sejong corpus: General description

I use the representative corpus data in Korean known as the Sejong corpus (Kim et al.,6,combined with the detailed dictionary). The corpus was created by the st Century Sejong Project, a ten-year-long project that was launched in 8. This project aimed to provide large-scale Korean corpora of both written and spoken genres (Shin,[START_REF]attr("transform[END_REF]. It is composed of six subparts: (i) creation of primary/special corpora, (ii) creation of electronic dictionaries of predicates and their case frames that describe semantic relationships between words in a sentence, (iii) distribution of computer-aided information about Korean, (iv) standardization of technical terminologies, (v) support for non-standard characters, and (vi) management of information about Korean (Shin,[START_REF]attr("transform[END_REF].

Among the sub-parts described above, I used the primary corpus to make This type of information can reduce the ambiguity that may happen in model learning.

The electronic dictionary (written in an XML format) describes a frame, which shows the semantic relationships between words in a sentence. It is composed of two types of sub-dictionaries. One is a basic dictionary with 8 grammatical categories, small dictionaries about non-grammatical categories such as idiomatic expression and special words, and 6 , 6 specifics describing information of individual words such as part of speech, meaning,

and brief examples of when it comes to use. The other is an additional dictionary, which is an elaboration of parts of the basic dictionary, with ,866 more specifics added. The dictionary provides case frames as combinations of postpositions and predicates (Figure . ).

The Sejong electronic dictionary consists of , frames involving , 8 

. . Composition of a corpus with respect to the three adverbial postpositions

For exploratory purposes, I analyzed the corpus in order to see how many sentences contained the three target postpositions -ey, -eyse, and -(u)lo.

Through Java environment, I confirmed the sentences one by one and sort out the sentences containing these postpositions. The results showed a total of 6 8, sentences with the postpositions ( , 8 instances of -ey, , instances of -eyse, and , instances of -(u)lo). These postpositions (i.e., -ey, -eyse, and -(u)lo) were ranked as the most frequent ones used out of adverbial postpositions in the corpus. Regarding the functions of these postpositions (see Section . ), the number of functions diverges according to the postposition types, as shown in Table . . 

. . Creation of a hand-coded corpus

To see the relationship between postpositions and their surrounding words, I needed a corpus with the intended functions of postpositions tagged in each sentence. However, the current corpus data does not code the functions of postpositions directly. Therefore, I annotated the corpus manually with the help of three native speakers of Korean. Among the three, one was an instructor who teaches Korean to children and the other two were Ph.D. candidates in linguistics. They managed all the details of the corpus annotation, from the development of the annotation manual to the manual annotation of the intended function of postposition in each sentence.

Regarding the process of creating a hand-coded corpus, I extracted sen- In this hand-coded corpus, the order of frequency of the functions for each postposition differed from the Sejong dictionary. For example, LOC, GOL, and EFF were the most frequent functions of -ey in the Sejong dictionary, but LOC, CRT, and THM were used the most in the hand-coded corpus.

For -eyse, the LOC occupied a larger proportion than the SRC. For -(u)lo, the functions occupied in the order of FNS, INS, and DIR in the Sejong dictionary. And although the same functions were found to be most frequent in the hand-coded corpus, they occurred in a different order: FNS, DIR, and INS.

These results do not pose a problem in conducting this dissertation, but this means that the functions used most frequently in the dictionary are different from the ones in the actual corpus.

. . CORPUS

. . Training and test sets

Every instance of the hand-coded corpus was lemmatized and POS-tagged before the actual data processing stage. Using the corpus for this task requires the functions of each postposition to be marked overtly with the form of each postposition (e.g., 에/JKB_CRT). Therefore, I tagged the functions of the postpositions manually. 

. . Similarity-based estimation

Based on the word-level embeddings generated by the first algorithm, the .

Visualization: PostEmbedding

The relationship between words embedded in multiple dimensions through DSMs is difficult to identify at first glance because it is composed of a complex matrix. However, reducing the multi-dimensional embedding matrix into a two-dimension one and visualizing it makes the identification of the relation more recognizable (Mun and Lee,6). For example, Hilpert ( 6 For these reasons, I also use visualization to express and interpret the results in this dissertation.

. . t-SNE and the cosine similarity

The visualization system aims to see the relationship between the postpo- However, these results do not seem to be correct intuitively because the twodimensional plot produces three groups of words by similarity: one group of two words (pang_ /NNG, -(u)lo/JKB), another of two words (ta/EF, ./SF), and one of one word (ka/VV). With this in mind, (c), using t-SNE, represents proper relationships between the words in the plot. Here, the words that are close to each other in a two-dimensional plot are also close in the onedimensional plot, and likewise the words that are far remain far. This is because t-SNE used both dissimilar and similar data points simultaneously (Maaten and Hinton,[START_REF]attr("transform[END_REF]. Considering the accuracy of this method in representing word relations, I employ t-SNE for the task of dimension reduction. 

Similarity = cos(θ) = A * B A B = n i-1 A i * B i n i=1 (A i ) 2 * n i=1 (B i ) 2 ( . )
By using the cosine similarity formula, which words are related to each function of the postpositions can be seen. In this dissertation, I design and develop a visualization system to better interpret the changes of the relationship between a postposition and its co-occurring words intuitively.

. . Tasks and design objectives

Visualization can support evaluating result by exploring data and drawing meaningful interpretations from the data efficiently (Mun et al., ). Hence, I design my visualization system by specifying tasks and objectives as follows:

Task : Visually represent different clusters using the embedding models, the context window sizes, and the postposition types.

Design Objective: Design options for users to select the embedding models, the context window sizes, and the postposition types.

Task : Identify the real corpus data used for training and the details of each word in the cluster (e.g., part-of-speech, frequency of occurrence, word meaning).

Design Objective: Add separate pop-up views to represent the aforementioned information about the cluster when the user moves the cursor over the circle (i.e., each word).

Task : Identify the relation between the functions of postpositions and the nearest words.

Design Objective: Add the similarity scores calculated by the cosine similarity formula in the system so that users can more accurately identify the similarity between the postposition and its co-occurring words.

. . System development

Considering the tasks and design objectives, I developed a visualization system (available at: PostEmbedding) that helps to interpret the clusters between the postpositions and their surrounding words intuitively . The system was developed through Java, JavaScript, HTML, and CSS environments. The development process of the visualization consists of three parts: (i) data pro-More details of PostEmbedding is available at: https://github.com/seongminmun/VisualSystem/tree/master/Major/PostEmbedding CHAPTER . METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS cessing, (ii) front-end, and (iii) back-end.

For the data processing, I transformed the obtained t-SNE outcomes in CSV format which is the delimited text file using the comma to separate values, into JSON format (i.e, the standard text-based format for representing structured data based on JavaScript object syntax). In this part, I generated three types of data through Java programming while adapting JSONObject and JSONArray. The first data contains t-SNE outcomes that I obtained from the similarity-based estimation algorithm. This data is connected with the distributional semantic map of the visualization system to show the clusters between word embeddings (see Figure . In the front-end part of the visualization, I used Bootstrap in order to design interface components of the visualization system. Moreover, I used Media queries from CSS. This makes the visualization system modify the size of the interface automatically depending on a device's general type that is currently used by the user. The second step was a similarity-based estimation (Dagan et al., ) to make a classification model based on word-level embeddings. In order to adapt this concept, the training set and the test set were revised differently.

The training set was tagged with the intended function of the postpositions (e.g., 에/JKB_CRT) and the testing set was not (e.g., 에/JKB). I designed an algorithm for the classification model adapted from the similarity-based estimation which used the relationship between postposition and co-occurring words.

After training the model, I made a visualization system to interpret the relationship for each word-level embedding easily. The resulting system has several options to use and can identify each word-level embedding reduced as a two-dimensional plot using t-SNE. It also shows the user more details of each word in the word-level embeddings.

In conclusion, I made the word-level embeddings by employing PPMI-SVD and SGNS. Then, based on these embeddings, I developed a classification model by using the concept of similarity-based estimation. I then developed a visualization system to see the word-level embeddings interactively to check the changes of the clusters between each function of postpositions and the co-occurring words.

Chapter 5

Results: word-level embeddings

This • Hypothesis : The accuracy of the classification should be inversely proportionate to the number of functions of a postposition.

Co-existence of multiple (and related) functions of one form (i.e., polysemy) involving a postposition renders the recognition and use of the postposition ambiguous (e.g., Choo and Kwak,[START_REF]attr("transform[END_REF]. Given this fact, I predicted that the more functions a postposition has, the lower the accuracy the classification models would demonstrate.

• Hypothesis : The accuracy of the classification should be higher in smaller window sizes. as LOC, the model accuracy would be higher than .8 . Statistical analysis of pairwise comparisons (Table . ) further showed that the performance in -eyse was significantly better than that of the other two postpositions. In contrast, the accuracy of -ey and -(u)lo were statistically the same. 

SGNS (prediction-based)

Similar to the PPMI-SVD model, -eyse outperformed the other two postpositions in the SGNS model, as Figure . shows. This happened because of the same reason as with the PPMI-SVD model (i.e., -eyse has only two functions with LOC occupying a majority of the total corpus size). . ) shows that the accuracy levels of all the postpositions were different. . For AGT, the window size of one produced an accuracy of .6 , but as the window size increased, the variation of accuracy was huge, with the highest accuracy at . . 

-(u)lo

The 

. . Correlation between corpus size and classification accuracy

As shown in Sections . 

-ey

Of the eight functions of -ey, LOC and CRT accounted for the largest portion of the total corpus. As shown in 

-eyse

The occurrence of LOC accounted for more than 8 % of the total corpus. As shown in Table . , the overall accuracy has a strong positive correlation with LOC and a negative correlation with SRC for both models. This convergence of results across the two models may be due to an overwhelmingly larger number of LOC than SRC in the corpus, which increased word types 

-(u)lo

Of the six functions of -(u)lo, FNS and DIR accounted for the largest portion of the total corpus. As presented in Table . , the PPMI-SVD model showed that the mean accuracy of the model and of each function were highly correlated with FNS and DIR. On the other hand, the other functions showed negative correlation values because they accounted for the smaller portion of the corpus size. However, the result showed no clear tendency in the correlation between the corpus size and the overall accuracy of each function in the SGNS model. This is possibly due to the same reason as -ey, which was operated based on type frequency rather than token frequency. Overall, the PPMI-SVD model was affected by the corpus size more than the SGNS model. The performance of the PPMI-SVD model was similar to accuracy patterns of the functions occupying the larger portion of each postposition. This is because, the word-word matrix was used in the process of converting words to vectors, so it was sensitive to the token frequency (Jurafsky and Martin, ). On the other hand, one-hot encoding was used for the SGNS model in the same process, so it relied on the type frequency (Mikolov et al., a).

. Visualization system: clusters and co-occurring words

The visualization system aimed to identify the word-level embeddings interactively in order to see the changes of the clusters between each function of the postpositions and the co-occurring words. In this section, I provide findings of the visualization that I developed. I recommend seeing these findings while demonstrating the visualization system together (available at: PostEmbedding).

. . Changes of clusters by environments (model and window size)

The visualization system showed word clusters through distributional semantic maps. To statistically explore changes of the clusters by model and window size, I performed a series of cluster analysis. This allows exploratory data analysis in which observations are divided into groups that share common characteristics (Romersburg,[START_REF]attr("transform[END_REF]. Among the many kinds of cluster analyses such as Hierarchical clustering (Sibson, ), K-means clustering (MacQueen, 6 ), and Density-based clustering (Sander et al.,[START_REF]attr("transform[END_REF], I used the Density-based clustering for analysis. This is due to the advantage it has of generating groups based on the density of the distribution data that allows us to discover groups of arbitrary shape as well as to distinguish noise (Sander et al.,[START_REF]attr("transform[END_REF]. For the cluster analysis, I used the dbscan package (Hahsler et al., ) through R (R version .6. ; R Core Team, ). I then created density maps for each distributional map to see the optimal number of groups by dbscan. In contrast, the SGNS model (Figures . -. ), the outcomes of the density cluster result showed that all distributional semantic maps were gathered as one group. Moreover, the words seem to be widely distributed, regardless of word frequency. When -ey was used as LOC, the most frequent word was iss-'to exist'/VV ( 6 instances). For CRT, elkwul-'face'/NNG ( instances) was frequently used. In the case of THM, the most frequently used word was kukes-'that or it'/NP ( CHAPTER . RESULTS: WORD-LEVEL EMBEDDINGS instances). Considering that this word is often used as placeholder for theme (Choo and Kwak,[START_REF]attr("transform[END_REF], the close association between -ey and kukes-'that or it'/NP is reasonable. For GOL, the verb takase-'come close'/VV ( instances) related to the motion was included in the list of co-occurring words, and chengnyen-'young boy'/NNG was most used among the other words. Two words showed high similarity but showed a low co-occurrence frequency.

This is due to two words only appeared when -ey was used as GOL. 

-(u)lo

For -(u)lo, the highest classification accuracy was obtained when the PPMI-SVD model used with the window size of nine. Figure . shows the result that the words that appear frequently in the entire corpus are at the center. 

. . Interim summary of visualization results

The visualization system responded interactively to the options (e.g., model types, postposition types, window sizes) and showed the corresponding results. I expected that the visualization could answer Hypothesis (see Section . )-the relationships and their co-occurring words should vary depending on the environments of word-level embedding. To my surprise, the PPMI-SVD model showed that words with high frequency were located in the center of each cluster without much change, and the SGNS model showed that the words seem widely distributed without little influence of word frequency.

CHAPTER . RESULTS: WORD-LEVEL EMBEDDINGS However, cluster analysis showed that the two models did not differ significantly from each other because the density clusters were gathered into one or two clusters in the end. Regarding the co-occurring words in each function of the postpositions, the outcomes can be divided into the following types:

(i) words with high similarity but low frequency of co-occurrence, and (ii)

words with high similarity and also a high frequency of co-occurrence. The first group were words that appeared only when they were used as a particular function. Conversely, the second group were words that had a strong connection in language use regardless of which functions a postposition was used.

.

Discussion of the Chapter

In Third, the cluster was not changed much by the environments of wordlevel embedding. In the PPMI-SVD model, the words used most frequently in the corpus were located in the center of the cluster; in the SGNS model, in contrast, the words were distributed rather evenly, regardless of word frequency. This was because the PPMI-SVD model was based on token frequency and the SGNS model was based on type frequency. However, cluster analysis showed that there was no clear difference between the two models because all of the density clusters for each distributional semantic map were gathered as one or two groups in the end. In addition, I found that there were two types of word group. First, words that appeared only when they were used as a particular function. Second, words that had a strong connection in language use regardless of which functions a postposition was used.

However, they did not change much depending on the environments of wordlevel embedding ( models * postpositions * window sizes), which is not consistent with Hypothesis (see Section . ).

Despite these findings, the two models that I tested in this chapter have serious limitations. The model performance is unsatisfactory considering previous studies on the classification of the postpositions on which I focused (Bae et al.,,Kim and Ock,6,Shin et al.,). They reported a level of accuracy ranging from .88 (Kang and Park, ) to .6 (Bae et al., ). In contrast, the average level for my models was .

. Fur-thermore, the model appears to perform well only when the target functions occur very frequently in the data, which is not how I aimed to deal with polysemy resolution. It is due to the technical nature of word-level embedding, which distinguishes words occurring in the entire corpus using only the morphological information and the window size, and which uses words without considering their possible different effects on determining the meaning of a particular postposition. This is because the traditional word-level embedding models are static-a single vector is assigned to each word (Ethayarajh, , Liu et al., a).

To overcome these problems, I employed Bidirectional Encoder Representations from Transformer (BERT) (Devlin et al.,[START_REF]attr("transform[END_REF] for the classification of the functions of the postpositions. BERT produces contextual embeddings, and this characteristic may help us to create a better classification system for postpositions. A recent trend to handle this task is called contextualized word embedding, which converts all words into each vector by considering the context (e.g., position, a form of the word) in which they appear. .

Summary of the Chapter

In this chapter, I provided the findings of the classification models and visual inspections, starting from my hypothesis on the research questions.

First, Section . . showed that the classification accuracy is inversely proportionate to the number of functions of a postposition. Second, Section . . showed that high classification accuracy was not obtained in smaller window sizes, but rather in larger window sizes. This section also showed that the overall classification accuracy is similar to the curve of the functions that accounts for a large portion of the total corpus size. Finally, Section .

showed that the clusters and the co-occurring words of each function of the postpositions was not very different based on the environments of wordlevel embedding ( models * postpositions * window sizes).

However, despite these findings, two limitations have been found because of the technical nature of word-level embedding, that a single vector is assigned to each word. One was that the model performance was lower than the accuracy reported by the other studies, and the other was that it was high only if the target functions occupy a large portion of each postposition in the corpus data. To address these limitations, I decided to use BERT, which is a contextualized word embedding model with the best performance. The technical description and application of BERT will be discussed in the next chapter.

Chapter 6

BERT for polysemy resolution

The outcomes of the two word-level embedding models (PPMI-SVD and SGNS) revealed issues with model performance-accuracy seemed to be affected by the corpus size of each function of the postpositions. This is because word-level embedding converts a word into a single vector based on its morphological form. To overcome this limitation, I employ Bidirectional Encoder

Representations from Transformer (BERT) (Devlin et al.,[START_REF]attr("transform[END_REF], a state-ofthe-art technique, for the same task but is sensitive to the context in which words appear (e.g., Ethayarajh, , Liu et al., a). This chapter reviews BERT as a classification model and provides methodological details on how it handles the polysemy of the three adverbial postpositions in Korean.

How BERT was born

BERT was developed as a response to the downsides of previous models ).

However, one major issue with the RNN model is that it has to represent all the information in a fixed-length context vector even if a word is not relevant to the target context. This can lead the RNN model to be incapable 

Characteristics of BERT

BERT has a set of pre-trained language representations obtained by generalpurpose, large-scale corpora. This applies increasingly to downstream NLP tasks such as language translation, sentence classification, and question answering (e.g., Devlin et al.,[START_REF]attr("transform[END_REF]Tang et al.,). The model architecture of BERT is based on Transformer, with some changes in the input unit and the specific tasks for model training. Just as the word-level embedding puts em-6. . CHARACTERISTICS OF BERT phasis on vectorizing, so also does BERT, commonly through the WordPiece tokenization (Devlin et al.,[START_REF]attr("transform[END_REF].

. WordPiece tokenization

The WordPiece tokenization, proposed by Schuster and Nakajima ( ),

works on the basis of bi-gram pairs. Basically, the WordPiece tokenization token which replaces only one word in the particular sentences (e.g., pang

[Mask] ka-n ##ta.), (ii) % include a random word which replaces only one word in the particular sentences (e.g., pang ##eyse ka-n ##ta.), and (iii) the remaining % are unchanged. The aim of the MLM task is to predict the masked words correctly by using the given unmasked words. The other training method is NSP, with the aim of predicting whether or not a sentence that follows is the correct one in the original document. This method assumes that an acontextual sentence will be disconnected from the sentence of interest. As shown in Figure 6. , in order to conduct the NSP training, the second sentence of a sentence pair changes such that a half of the second becomes a random one (i.e., NotNext), and the other half is intact (i.e., IsNext). BERT then proceeds to the training by classifying whether or not the next sentence is an actual sentence. 

Effectiveness of BERT

Summary of the Chapter

The performance of the two word-level embedding models (PPMI-SVD and SGNS) showed an unsatisfactory level of performance in polysemy resolution. This is due to the technical nature of these models; they are static in that a single vector is assigned to each word (Ethayarajh, , Liu et al., a).

As a remedy to this issue, I employ Bidirectional Encoder Representations from Transformer (BERT) (Devlin et al.,[START_REF]attr("transform[END_REF], which considers neighborhood information about a polysemous word on the basis of the context in which they appear. BERT was developed as a response to improving the downside of previous language models such as the recurrent neural network model, attention model, self-attention model, multi-head self-attention model, and

Transformer.

There are many natural-network models such as ELMo (Peters et al.,[START_REF]attr("transform[END_REF],

GPT (Radford et al.,[START_REF]attr("transform[END_REF], and BERT (Devlin et al.,[START_REF]attr("transform[END_REF]. However, BERT showed the best performance out of all the models introduced so far (e.g., Clark et al., , Lin et al., , Liu et al., a, Loureiro and Jorge, , Wiedemann et al., ). Inspired by these results, I decided to use BERT for the classification of the functions of the postpositions in this dissertation.

Chapter 7

Methodological set-up: BERT

The previous chapter has shown that the performance of the two word-level embedding models (PPMI-SVD and SGNS) was modulated by the size of training corpora containing specific functions of the Korean adverbial postpositions (see Chapter ). In addition, previous models showed unsatisfactory classification accuracy compared to the previous studies. To handle these issues, I use BERT (Devlin et al.,[START_REF]attr("transform[END_REF] to classify the functions of these postpositions. Unlike word embedding models that assign a single vector to each word type, BERT considers not only word form but also its context information-word vectors that are sensitive to the context in which they appear (e.g., Ethayarajh, , Liu et al., a).

This chapter introduces methodological details of BERT, with the three specific research questions as follows:

• 

. . BERT fine-tuning by using BertForSequenceClassification

In order to start the training, two steps were necessary before working on the main training algorithm (i.e., input embedding and parameter setting).

First, the input data are transformed into three embedding types: token, segment, and position (Devlin et al.,[START_REF]attr("transform[END_REF]. Suppose the sentence involving the postposition -(u)lo with a function of DIR (Direction) as in ( ).

( ) 방으로

pang-ulo room-DIR 간다.

ka-n-ta. go-PRS-DECL '(I am) going to the room.' Figure . illustrates the three embedding types of BERT from the sentence ( ). At the first step of input embedding, I set the maximum number of tokens in one sentence to 8 for the optimal and efficient model training process. For the token embedding, KoBertTokenizer is used to tokenize the sentences in the data. For the position embedding, the tokens generated through the KoBertTokenizer are converted into numeric values that indicate a unique index of the tokens in the vocabulary of KoBERT. In this process, the maximum number of tokens in one sentence was designated as 8.

For the segment embedding, the number of tokens of each sentence is converted into 8 numeric values using (i.e., did not exist) and (i.e., existed).

If the number of tokens in the sentence were more than 8, the rest are automatically eliminated from the sentence in this process. In addition, to use BERT as classification model, I extracted the labels of the data separately.

The information including three types of embeddings and labels extracted CHAPTER . METHODOLOGICAL SET-UP: BERT from the data is transformed as tensors, which reduces data size and thus, makes BERT-related data processing faster. .

Visualization: PostBERT

BERT is known to achieve a state-of-the-art accuracy when it is fine-tuned for supervised tasks (e.g., Dai and Le,,Peters et al.,[START_REF]attr("transform[END_REF]Radford et al.,[START_REF]attr("transform[END_REF]. However, it is not fully understood why this is so (e. .

. Tasks and design objectives

With the advantages of visualization (see Section . 

. . System development

Considering the tasks and design objectives, I designed a visualization system (available at: PostBERT) to see how my BERT model classifies the functions of these postpositions in each epoch . The visualization system was developed in Java, JavaScript, HTML, and CSS environments. The process of More details of PostBERT is available at: https://github.com/seongminmun/VisualSystem/tree/master/Major/PostBERT development was divided into three parts: (i) data processing, (ii) front-end, and (iii) back-end. Each part of the process is similar to the previous visualization system (see Section . . ), but the data processing part is different.

In data processing, I created four types of data using Java programming.

The first data contains t-SNE outcomes that I obtained from the BERT classification. This data is connected with the distributional map for sentencelevel embeddings to show the clusters between sentences. The second data includes raw sentences of the test set that represents each sentence in the distributional map. This data is merged with the first data to show details of each sentence such as an index of the selected sentence, the intended function used in the sentence, and the original sentence. The third data contains various information about the model performance: overall accuracy, by-function accuracy, and loss rates in the classification task by epoch. This data is used in the multi-line charts of the visualization system. The final data includes the results from the density-based cluster in order to show the number of clusters produced by the BERT model. This data is connected with the bar chart for density cluster. After the data processing, these JSON data were stored in the database.

For the front-end and back-end part of the visualization, I used several frameworks such as Bootstrap, Media queries, D .js, and jQuery in order to make visualization system more interactivly (see more details of the frontend and back-end part in Section . . ).

. . Interface of visualization system

For the interface of the visualization system, I propose three views to efficiently explore how BERT recognizes the word-level polysemy of the Korean adverbial postpositions. Each view presents the different outcomes related to BERT: sentence-level embedding, accuracy loss with respect to its performance, and results of density cluster (see Section 8. ). .

Summary of the Chapter

The performance of the two word-level embedding models (PPMI-SVD and SGNS) resulted in an issue that the accuracy rate was modulated by the size • Hypothesis : The accuracy of the classification should be inversely proportionate to the number of functions of a postposition.

The word-level embedding models that I investigated (see Chapter )

showed that there was an inverse relationship between the classification accuracy and the number of functions. Given this finding, I predicted that the classification models will be influenced by the number of functions that a postposition has.

• Hypothesis : The accuracy of the classification should vary depending on the corpus size of each function.

The previous results of word-level embedding models showed that the classification accuracy is affected by the corpus size of the functions that account for a larger portion of the total corpus size. I thus predicted that this should also influence the accuracy of BERT.

• Hypothesis : The accuracy of the classification should be higher in larger epochs.

The previous studies that investigate various inquiries on language by using BERT recommended setting the epoch size small (e.g. The performance of the BERT classification model for -ey varied depending on its function, as shown in Figure 8. and Table 8. . The average classification accuracy was the highest in LOC ( .

) and the lowest in AGT ( . ); the other functions yielded accuracy ranging from . to . 6.

The results revealed three trends. First, the functions CRT and LOC maintained high accuracy epoch after epoch. Second, four functions, GOL, EFF, FNS, and THM, showed an increase in accuracy as the epoch proceeded.

The degree of increase was the largest in FNS ( %), followed by THM (6 %), then EFF (6 %), and finally GOL ( %). Surprisingly, among these four func- 

. Correlation between corpus size and classification accuracy

The word-level embedding models (PPMI-SVD and SGNS) have shown that the classification accuracy of the functions that account for a larger portion of the total corpus size affects the accuracy of the model for each postposition (Section . . ). Hence, I conducted the same correlation analysis by postposition to see if the same phenomenon also occurred with BERT.

For this task, the Pearson Correlation was used to calculate the correlation score between the mean accuracy of the BERT model and of each function for these postpositions.

-ey

Among the eight functions of -ey, LOC and CRT occur most frequently in the corpus data. However, as shown in Table 8. , in the BERT model, the mean accuracy of the model and that of each function had no correlation for these functions. I also found a high correlation with the functions that accounted for a smaller portion of the total corpus size. These results are contrary to those in the word-level embedding model and can be interpreted that the classification accuracy of the BERT model was affected less by the corpus size of each function of -ey. 

-eyse

LOC accounts for more than 8 % of the occurrences in the total corpus. However, as shown in Table 8.6, the overall accuracy has more correlation with SRC than LOC. This indicates that the BERT model was not strongly affected by the corpus size. 

-(u)lo

Of the six functions of -(u)lo, FNS and DIR account for the largest portion of occurrence in the total corpus. However, as presented in Table 8. , the correlation score was the highest in EFF ( . 8 ), which has the smallest portion, and the lowest in DIR ( ) which has the second largest portion. This result is consistent with the results shown by -ey and -eyse. This further indicates that the BERT model was not strongly affected by the corpus size. Contrary to the results of the word-level embedding models, the BERT model was not particularly affected by the corpus size. This is because the BERT model assigns each word to a vector that is sensitive to the context in which it appears. This is a major difference from the traditional word-level embedding models. In addition, the BERT model operates on the basis of the pre-trained model, which means that it already has enough information on the target language.

8.

Visualization system: clusters of sentence-level embeddings BERT classified the sentences into three groups. The first was a group of sentences gathered around the LOC. Most of the functions for -ey contained in the sentences were LOC, however, at the bottom of this group, there were a number of sentences that functioned as GOL. The second was a group of sentences including THM, FNS, and EFF. In a density cluster, the three functions are shown to be one group, but in visualization, each is divided into an individual group. The final was a group of sentences gathered around CRT, which was recognized as its own group since the epoch was one. BERT classified the sentences into five groups. GOL was divided from the LOC group and created a separate group. However, AGT and INS, which account for a smaller portion of the total corpus size, did make an individual group. This indicates that AGT and INS are very hard to be understood as distinguishable functions of -ey, even for BERT.

.

-eyse Figure 8. shows how many clusters were created as the epochs progressed.

When the epoch was one, the number of clusters was one. However, when 

. Interim summary of visualization results

The visualization system interactively showed the results by the options (e.g., postposition types, epochs) and showed the relation between sentences. Us- 

ing

Discussion of the Chapter

In this chapter, I described the model performance in the classification of the functions of the postpositions -ey, -eyse, and -(u)lo. Below are the three major findings that could answer the research questions.

First, the higher classification accuracy was obtained when the postposition has a fewer number of functions. The previous word-level embedding 8. ). Considering that the BERT model assigned each word to a vector based on the context information and operated on the basis of the pre-trained model, it had much more information on the attested language than the word-level embedding models. For this reason, it was able to recognize the functions of each postposition with less influence of corpus size on model performance.

In addition, it considers much more contextualized information (i.e., token embeddings, segment embeddings, and position embeddings) than word-level embedding models, which use only the morphological information of the word. This can also be a reason why BERT was less affected by the corpus size.

Third, as the epoch (i.e., learning) progressed, BERT could recognize the functions of each postposition, even when the functions account for a smaller portion of the entire corpus. This finding is contrary to the results shown by word-level embedding models but is consistent with Hypothesis (see Section 8. ). One crucial issue of word-level embedding models was that the accuracy was low for the classification of the functions that account for a smaller portion of the total corpus size. However, when the epoch was progressed, BERT could recognize the differences between the functions. This finding further supports the idea that by using sufficient epochs, the BERT model can identify functions at a satisfactory level, even though they occur relatively infrequently. However, despite this advantage with regards to the data size, the BERT model still seems to be subject to the extremely lowfrequent items and/or the semantic closeness between the items, limiting its performance in the given task to some extent.

In addition to the result of BERT, the model also showed high classification accuracy. The average classification accuracy for -ey, -eyse and -(u)lo were around .8 , . 8 8, and .8 , respectively. This is a very high classification accuracy, considering that for the same tasks, previous studies reported the average accuracy ranging from .88 (Kang and Park, ) to .6 (Bae et al., ) and the word-level embedding model used in this dissertation showed the average classification accuracy of .

. Overall, the BERT model solved the problems shown by the word-level embedding models in a task to identify the functions of each postposition. Furthermore, I found that the BERT model was more suitable for the task of classifying the functions of the postposition resulting in a very high classification accuracy.

. SUMMARY OF THE CHAPTER

Summary of the Chapter

In this chapter, I reported the findings of the classification models and visual inspections, starting from my hypotheses on the research questions.

From the results of model performance and visualization, I found three major findings. First, the BERT model is affected by the number of functions that the postposition has. However, the gaps of model performance between each postposition are smaller than word-level embedding models. Second, the classification accuracy of the BERT model was less affected by the corpus size, which is different from the performance of the word-level embedding models. Third, when the epoch progressed, the BERT model could recognize more functions of the postposition, including the one that account for a smaller portion of the corpus size. Moreover, the BERT model showed higher classification accuracy than previous studies including the word-level embedding models used for the same task in this dissertation.

In the following chapter, I will discuss the interpretations of the three word embedding models with regards to the research questions (see Chapter and Chapter ).

Chapter 9

Discussion

This chapter discusses the interpretations of the findings of the word-level embedding models (see Chapter ), and sentence-level embedding model (see Chapter 8), in relation to the research questions (see Chapter and Chapter ). In addition, it also discusses the advantages and limitations of each model for resolving word-level polysemy of Korean adverbial postpositions.

. Interpretations of word-level embedding models: PPMI-SVD and SGNS

The research questions in Chapter are re-stated as follows:

• .

. The number of functions in each postposition

For first research question, I made a hypothesis with respect to the number of functions in each postposition as below:

• Hypothesis: The accuracy of the classification should be inversely proportionate to the number of functions of a postposition.

In previous studies focusing on the same three adverbial postpositions, it was reported that the multiple functions of one postposition delivers recognition and ambiguous usage (e.g., Choo and Kwak,[START_REF]attr("transform[END_REF]Sohn,). As I further explored the relationships between corpus size and classification accuracy by conducting a correlation analysis by postposition. This is because a phenomenon was found, that the average model performance was similar to the accuracy patterns of the functions that occupy a larger portion of the total corpus size. As a result of my investigation, I found that this was true for two word-level embedding models. For instance, as shown in Table . (i.e., correlation between two models and each function for -ey), the mean accuracy of the two models were highly correlated to the mean accuracy of the two most frequent functions, LOC (e.g., PPMI-SVD: . 8 ; SGNS: . ) and CRT (e.g., PPMI-SVD: . ; SGNS: .8 ). With regard to the relationship between the corpus size and model performance, previous research has reported that the PPMI-SVD model used the word-word matrix in the process of converting words to vectors, and therefore, was sensitive to the token frequency (Jurafsky and Martin, ). Furthermore, the SGNS model used one-hot encoding for the same process, and therefore relied on the type frequency (Mikolov et al., a). Considering that both the token frequency and the type frequency are sensitive to the corpus size (e.g., Jurafsky and Martin, , Mikolov et al., a), it can be implied that both word-level embedding models are affected by corpus size.

CHAPTER . DISCUSSION

. . The role of context window size

The second research question was represented as a hypothesis regarding the role of the context window size as below:

• Hypothesis: The accuracy of the classification should be higher in smaller window sizes.

The context window size is a range of words surrounding a target word, which affects the determination of the characteristics of the word (Lison and Kutuzov, ). Previous studies have shown that the smaller windows To statistically investigate the changes, I conducted a series of cluster analysis by using density-based clustering (Sander et al.,[START_REF]attr("transform[END_REF]. As a result of this exploration, I found that the cluster was not changed much by the environments of word-level embedding models. The density clusters of the two models were gathered into one or two clusters in the end. However, there were a few different points between the two models. For example, in the PPMI-SVD model, the words that were used most frequently in the corpus were located in the center of the cluster. On the other hand, in the CHAPTER . DISCUSSION SGNS model, the words were distributed rather evenly, regardless of word frequency. This was because the PPMI-SVD model worked based on the token frequency and the SGNS model worked based on type frequency (e.g., Jurafsky and Martin, , Mikolov et al., a).

In addition, I investigated the relationships between each postposition and their surrounding words by using a visualization system. Through this, I found that there were two different types of relationships between the particular postposition and its co-occurring words. First, there was a word group that appeared only when the postposition was used as a specific function.

The words in this group did not appear when this postposition was used as another function. For example, when the postposition -ey was used with the function THM (i.e., theme), it was found in Figure . that there was a strong relationship between it and kwanha/VV based on the cosine similarity of .

. To see more detail about this finding, I further explored the raw corpus. I found that kwanha/VV appeared four times in total across the corpus.

Moreover, kwanha/VV only appeared when -ey was used with the function THM (i.e., theme), as shown in Figure . . 

. . Overall discussion of two word-level embedding models: PPMI-SVD and SGNS

In the above sections, I described the interpretations of the findings with respect to the classification models and visualization systems, starting from the hypotheses on three research questions. Through the investigation of these hypotheses, I found three major findings.

First, the fewer functions the postposition had, the higher the classification accuracy was obtained (see Section . . ). Second, the PPMI-SVD model obtained high classification accuracy at a larger window size (see Section . . ). Third, the cluster was not changed much by the environments of wordlevel embedding (see Section . . ).

Despite the implications of previous word-level embedding models, the two models have remained limited and have showed unsatisfactory classification performances (e.g., PPMI-SVD: -ey ( . ), -eyse ( . ), -(u)lo ( . 6 ); SGNS: -ey ( . ), -eyse ( .6 ), -(u)lo ( . 68)). Moreover, they performed well only when the target functions occurred very frequently in the data. This is because of the technical nature of word-level embedding, which converts a word into a single vector by using only its morphological information (e.g., Ethayarajh, , Liu et al., a).

To overcome these problems, I employed the Bidirectional Encoder Representations from Transformer (BERT) (Devlin et al.,[START_REF]attr("transform[END_REF] to classify the functions of the postpositions, which converts all of the words into different vectors considering contextual information. In the following sections, I present some discussion with respect to the findings of the BERT model. .

. The number of functions in each postposition

Regarding the first research question, I made a hypothesis with respect to the number of functions as below:

• Hypothesis: The accuracy of the classification should be inversely proportionate to the number of functions of a postposition.

As described in section . . , the word-level embedding models showed that there was an inverse relation between the classification accuracy and the number of functions. In addition, I found that the average model performance was similar to the accuracy patterns of the functions that occupy a larger proportion of the total corpus size. Considering this, I predicted that the classification accuracy of the BERT model would be influenced by the 

. . The relationship between corpus size of each function and model performance

The second research question was expressed as a hypothesis regarding the relationship between the corpus size of each function and model performance as below:

• Hypothesis: The accuracy of the classification should vary depending on the corpus size of each function.

The results of two models showed that the classification accuracy is affected by the corpus size of the functions that account for a larger proportion of the total corpus size. I thus assumed that the model performance of BERT I found that the BERT model was not particularly affected by the corpus size, which is contrary to the results of the word-level embedding models. For example, as shown in Table 8. (i.e., a correlation between BERT and each function for -ey), the mean accuracy of the BERT model was not similar to that of LOC (-. 8) and CRT ( . ). In addition, I found that the mean accuracy was highly correlated to that of THM ( . 8) and FNS ( . ), which are the functions that account for a smaller portion of the total corpus size.

There are two reasons to support the fact that the BERT model performs better than the word-level embedding models for resolving word-level polysemy of Korean adverbial postpositions. First, it assigned each word to a vector on the basis of the context information, even if the form of the words is the same as each other. Second, it was able to recognize the functions of each postposition, with less influence of corpus size on model performance. This is due to the BERT model operating on the basis of the pre-trained model, which means that it had enough information on the attested language. words: the words that appeared frequently in the total corpus and the words that only appeared when the postposition used as a specific function.

Despite these findings, there were two issues with the performance of the two word-level embedding models. First, the models appeared to perform well only when the target functions occurred very frequently in the data, which means that the accuracy seemed to be affected by the corpus size of each function. Second, the model performance of my models was lower than of the models proposed in the previous studies for the same classification task. This is because of the technical nature of word-level embedding-they are static in that a single vector is assigned to each word.

Finally, to overcome these limitations, I applied BERT to transform all of the words into different vectors, while considering their contextual informa- .

Implications of findings

Despite the limitations, this dissertation has two major implications. typologically different from English. Thus, I turned my attention to Korean, an under-studied language in this regard, with a special focus on the relation between the three different embedding models and the word-level polysemy of adverbial postpositions. As a result, I found that the sentence-level embedding model, which assigned different vectors to all of the words, performed better in interpreting the functions of postposition than the word-level embedding models, which assigned a single vector to each word, regardless of context. Considering that previous research is skewed toward major Indo-European languages such as English, the attempt of this dissertation has a contribution to the methodological generalizability by applying computational account to a lesser-studied language such as Korean.

.

. IMPLICATIONS OF FINDINGS

Second, this dissertation proposes two interactive visualization systems that help to identify the relationships between words or sentences and to

show changes of the clusters by the environments (i.e., models, postpositions, window sizes, and epochs). Although the word-level and sentencelevel embedding models have frequently been used in recent studies, it is very hard to understand how these embedding models interpret word-level polysemy. The first visualization system aimed to explore word-level embedding results. This makes us see the clusters of the postpositions and their co-occurring words in order to understand how the relationships of words changed based on the functions of each postposition. I found that there were two different types of co-occurring words related to each function: (i) words that appeared only when the postposition was used as a particular function and (ii) words that had a strong connection in language use regardless of which functions a postposition was used. However, the clusters of words were not changed much by the environments of word-level embedding. The (and yet, informative) display of language data, the attempt of this dissertation has a particular contribution for future studies. .postposition + "/t-SNE/" + self.postposition + "_tSNE_" + str( j) + ".csv") TSNE_dic = {} typenum = 0 for typeeach in indx2tok:
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.attr("font-family", "Open Sans") .attr("font-size", "20px") .attr("fill", "#666666") } firstdrawdata(); d3.selectAll("#op_postposition").on("change", op_function_change); d3.selectAll("#container_leftmiddle").on("change", drawall); d3.selectAll("#container_leftbottom").on("change", drawall); En plus de ces modèles traditionnels de vecteur de mot, des études récentes ont proposé un modèle de vecteur de mot contextualisé qui prend en compte les informations de voisinage d'un mot polysémique sur la base des séquences de mots autour du mot cible. Divers modèles ont été proposés pour cette tâche, tels que les Embeddings de Language Models (e.g., Peters et al.,[START_REF]attr("transform[END_REF] .

Les précédentes recherches en NLP sur les postpositions adverbiales

Les études sur la polysémie du niveau des mots en Coréen se sont principalement concentrées sur la catégorisation des différentes significations/fonctions des mots polysémiques pour l'interprétation essentielle des phénomènes linguistiques (e.g., Ahn,[START_REF]attr("transform[END_REF]Hong,[START_REF]attr("transform[END_REF]Lee,[START_REF]attr("transform[END_REF]Maeng,6) .

Système de visualisation : clusters et mots co-occurrents

Le système de visualisation visait à identifier des vecteurs au niveau du mot de manière interactive afin de voir les changements des clusters entre chaque fonction des postpositions et les mots co-significatifs.

Pour explorer statistiquement les changements des clusters par modèle et par taille de Window, j'ai effectué une série d'analyses de cluster en utilisant le clustering basé sur la densité (Sander et al.,[START_REF]attr("transform[END_REF].

Les résultats de la visualisation ont montré que les mots les plus fréquemment utilisés dans le corpus ont été placés au centre du cluster pour le modèle PPMI-SVD. C'est parce qu'il fonctionnait sur la base de la fréquence des jetons. En revanche, le modèle SGNS était basé sur la fréquence de type, et les mots ont été distribués sur toutes les tailles de Window, indépendamment de la fréquence des jetons. Toutefois, l'analyse des grappes a montré que les cartes sémantiques de distribution pour chaque modèle n'étaient pas tellement différentes en ce qui concerne le produit final du regroupement (produisant un ou deux groupes pour chaque modèle, ce qui indique que les grappes créées ne différaient pas significativement les unes des autres par environnement.

En outre, grâce à cette visualisation, j'ai découvert qu'il existait deux types de relations différentes entre la postposition particulière et ses mots co-occurrents : (i) les mots présentant une forte similarité mais une faible fréquence de co-occurrence, et (ii) les mots présentant une forte similarité et également une fréquence de co-occurrence élevée.

.

Question des modèles du vecteur au niveau du mot

Malgré ces résultats, les deux modèles que j'ai testés dans cette section présentent de sérieuses limitations. La performance des modèles est insatisfaisante au regard des études précédentes sur la classification des postpositions sur lesquelles je me suis concentré (e.g., Bae et al.,,Kim and Ock,6,Shin et al.,). Ils ont rapporté un niveau de précision allant de .88 (Kang and Park, ) à .6 (Bae et al., ). En revanche, le niveau moyen pour mes modèles était de .

. En outre, le modèle semble bien fonctionner uniquement lorsque les fonctions cibles apparaissent très fréquemment dans les données, ce qui n'est pas la façon dont je visais à traiter la résolution de la polysémie. Cela est dû à la nature technique de le vecteur du niveau du mot, qui distingue les mots présents dans l'ensemble du corpus en utilisant uniquement les informations morphologiques et la taille du Window, et qui utilise les mots sans tenir compte de leurs éventuels effets différents sur la détermination de la signification d'une postposition particulière. En effet, les modèles du vecteur au niveau du mot traditionnels sont statiques-un vecteur unique est attribué à chaque mot (e.g., Ethayarajh, , Liu et al., a).

Pour surmonter ces problèmes, j'ai employé BERT (Devlin et al.,[START_REF]attr("transform[END_REF] Ces résultats ont été introduits dans le système de visualisation .

. Le code complet de la formation du BERT que j'ai développé est disponible sur le site : BERT .

Visualisation : PostBERT

Afin de voir comment le BERT comprend la polysémie du niveau des mots de chaque postposition, j'ai conçu un système de visualisation avec des environnements JavaScript, HTML et CSS, en utilisant l'ensemble de test sous la distribution bidimensionnelle (disponible sur le site : PostBERT) . Pour l'interface du système, j'ai créé trois zones pour la démonstration des performances du modèle : une carte de distribution pour les vecteurs au niveau de la phrase, des graphiques de précision/perte relatifs au modèle, et des graphiques pour le density-based clustering.

6 Résultats : Vecteur au niveau de la phrase .

Implications des résultats

Malgré ces limites, cette thèse a deux implications majeures.

Premièrement, il fournit les moyens possibles et les limites de l'application de trois modèles de vecteur différents pour la tâche d'identification de la fonction prévue des postpositions adverbiales Coréennes.

De nombreuses études ont été réalisées sur l'interprétation de la polysémie au niveau du mot dans les principales langues indo-européennes en utilisant des modèles de vecteur au niveau du mot ou des modèles de vecteur du niveau des phrases dans le cadre de la modélisation sémantique distributive.

Bien que de nombreuses recherches aient été menées sur l'anglais à ce sujet, très peu d'études ont porté sur l'interprétation de la polysémie dans une langue typologiquement différente de l'anglais. J'ai donc porté mon attention sur le Coréen, une langue peu explorée à cet égard, en me concentrant sur la 
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tions.

  Chapter provides an overview of the algorithms of how to calculate and apply the word-level embedding classification models (Positive Pointwise Mutual Information and Singular Value Decomposition; Skip-Gram and Negative Sampling) with the consideration of the context window. Chapter introduces three parts in relation to the use of the word-level embedding classification models: (i) methodological details, (ii) a hand-coded corpus, which tagged intended functions of postpositions manually, and (iii) design of visualization. Chapter reports on the results of the word-level embedding classification models and the visualization in relation to the three research questions, and the issues of the models. Chapter 6 provides the history of how BERT was born and an overview of the algorithms of how to calculate and apply it. Chapter introduces the methodological details of the sentence-level embedding classification models and design of the BERT-based visualization. Chapter 8 reports on the results of the models and the visualization by using BERT in relation to the two research questions. Chapter provides the overall discussion of this dissertation. Finally, Chapter provides the conclusions of this dissertation and suggestions for future works.

'

  The knife thrown by Chelswu stuck to the ground.'

  . . PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

  recommended Pakk as an assistant.'

''

  The wire wound around with the connection wire.' Direction (DIR) is a function to indicate the direction of the point at which the preceding word is directed. In the following sentence (i.e., this sentence is extracted from the file V-talanata in the Sejong Electronic Dictionary), -(u)lo is playing the same role as into in English. The criminal fled into a dark alley.'

.

  . PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(

'

  The police transport the suspect to the prosecution.'CHAPTER . NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:-EY, -EYSE, AND -(U)LO

  CHAPTER . NLP REASERCH ON ADVERBIAL POSTPOSITIONS IN KOREAN:-EY, -EYSE, AND -(U)LO Park and Cha ( ) conducted a similar study by combining various methods such as case frames, information of nouns and predicates, and information of clusters. Unlike Kim and Ock ( ), they found that the accuracy for semantic role labeling was the highest (at the rate of . ) when all the information was considered. The results of the two studies differed because the corpus used in the study by Kim and Ock ( ) and the one used by Park and Cha ( ) were different. In addition, the information used in the studies differed. Kim and Ock ( ) used information such as case frames, particles, predicates, whereas Park and Cha ( ) used case frames, nouns, predicates, clusters in their studies was different. This line of research has shown high accuracy in determining the functions of postpositions, with the advantage that the semantic-functional characteristics of these being determined by calculating the similarities between grammatical structures and case frames being defined manually by the researchers (e.g., Kim and Ock, , Park and Cha,

.

  postpositions inKorean, -ey, -eyse, and -(u)lo have been studied actively because of the frequency of use in the language and the various functions of each postposition. In this dissertation, the specific functions of these postpositions are based on the Sejong dictionary. For -ey, there are eight functions, with LOC and GOL occurring most frequently. For -eyse, there are two major functions, SRC and LOC. And for -(u)lo, there are six major functions, with FNS, INS, and DIR occupying the majority of the occurrences.The NLP studies on automatic classification of functions involving these postpositions are divided into two approaches: exclusive use of case frames in dictionaries, and major use of probabilistic information about grammatical relations from existing corpora. Recently, studies have been proposed that have increased the performance of automatic classification by merging these two types of approaches and classifying the functions of adverbial postpositions. However, these studies only cared about the accuracy of classification and did not pay attention to the environment between postpositions and surrounding words, which generates a cluster centering around the postposition.

  lo/JKB, c = ka/VV) (-(u)lo/JKB, ka/VV) = log 2 0.4 (0.571 * 0.667) = 0.07038933

  Figure . : Original SVD and SVD to reduce dimension

Figure . :

 . Figure . : Visualization of results through the one-hot encoding

Figure

  Figure . illustrates the framework of CBOW, which uses three-word information (i.e., one context word immediately left of the target word, the other immediately right) to predict one word.

Figure

  Figure . : A framework of the CBOW model

Figure

  Figure . : A framework of the Skip-gram model

  based model and SGNS as a prediction-based model, I also implement two DSMs models: a combination of PPMI and SVD (Turney and Pantel, ) as a count-based model, and SGNS (Mikolov et al., a) as a prediction-based model, with the manipulation of context window size from one to . of classifying the functions of postpositions is undoubtedly important, however, revealing the precise environments around postpositions for particular classification is also crucial. In particular through the window of a cluster of interlinked words because it shows how polysemy resolution is situated in that cluster. In this regard, DSMs draw attention to the computational understanding of human language (see Chapter ). In order to identify the changes of relationships between postpositions and their co-occurring words, I implement a combination of PPMI and SVD Turney and Pantel ( ) as a representative model of the count-based account, and SGNS Mikolov et al. ( a) as a representative model of the predictionbased account, with manipulation of context window from one to . This chapter outlines the methodological details of this task, with three specific research questions in mind. • Research question : How does the number of functions a postposition has, affect classification performance for each word-level embedding model? • Research question : What is the role of the context window in the classification performance of each word-level embedding model? • Research question : How does the cluster of postpositions and their co-occurring words change as the environments of word-level embedding change?

Figure . :

 . Figure . : Example of the semantically tagged corpus

Figure . :

 . Figure . : Example of a case frame in the Sejong electronic dictionary

  Figure . illustrates the format of instances used for model training and testing.

Figure . :

 . Figure . : Example sentences used in model training (-ey, CRT)

Figure . :

 . Figure . : The process of the k-fold cross-validation technique

  second algorithm was developed to classify the intended function of postpositions used in the test set. This was done by calculating similarity-based estimation (Dagan et al., ); classifying the meaning of the target word that was never used in the training sets by using calculated similarity scores between words. This is a classic method considering the recent development of word embedding research (e.g., Auger and Barrière, 8, Hazem and Morin, , Kazama et al., , Zhitomirsky-Geffet and Dagan, ), but it enhances classification performance through similarity scores indicating the relationship between words are used to determine the meaning of the target word (Zhitomirsky-Geffet and Dagan, ). It can also be used to estimate the meaning of the target word even it has more than one meaning. A similarity-based estimation is proposed by Dagan et al. ( ) for the first time. They discussed how to estimate the meaning of a target word that does not occur in the training data. They proposed a method by obtaining information about the words around the target word in order to estimate the intended meaning of target word. Figure . shows how they did so.

Figure . :

 . Figure . : The similarity-based estimation as an average on similar pairs (Dagan et al., , p. 6 )

Figure . 6 :

 6 Figure .6: The training sets and test set used in this dissertation (-eyse)

Figure . :

 . Figure . : The classification model process adapted from Dagan et al. ( ): a case of -(u)lo

  ) performed a diachronic corpus-based study of the English modal auxiliary may, focusing on changes in its collocational preferences over the past years. He visualized the relationship of the embedded words by reducing the dimensions to two and the changes in the relation between words over time through density maps. Based on the visualization results, he was able to easily and accurately identify the relation between words that varied over time. Desagulier ( ) selected four English adverbs, rather, quite, pretty, and fairly, and conducted a study to identify the conceptual contents they presumably share. In his work, he used two-dimensional visualizations and interpreted the relationship of words located around the four adverbs at a glance and accurately. By using visualization techniques, at least three types of information are identified easily: (i) the degree of similarity across words through their locational distance, (ii) changes of word relations according to change of environments, and (iii) designated word properties by way of colors and sizes.

  sitions and their surrounding words in the hand-coded corpora. Rather than employing the 6 word-level embeddings above ( models * postpositions * folds * window sizes), 6 word-level embeddings per postposition were used ( models * postpositions * window sizes). In order to express the word-level embeddings of DSMs involving the multi-dimensional matrix into the two-dimensional visualization, dimension reduction techniques should be employed. Various techniques have been suggested such as the t-distributed Stochastic Neighbor Embedding (t-SNE; Maaten and Hinton, 8techniques that reduce high-level dimensions to low-level dimensions differ from each other according to what kind of data points they focused on during the reduction process (Maaten and Hinton, 8). For instance, conventional dimensional reduction techniques such as PCA and MDS are linear techniques that concentrate on maintaining low-dimensional representations of similar data points, thus performed well to express similar data points (e.g., Hotelling, , Torgerson, ). However, they have a disadvantage wherein they lose the information of dissimilar data points because they do not focus on maintaining low-dimensional representations of dissimilar data points. In contrast, the t-SNE technique considers whether variables are (dis-)similar simultaneously, and thus having the advantage over the other techniques due to its higher accuracy (Maaten and Hinton, 8). CHAPTER . METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS For example, Figure .8 shows whether t-SNE takes into account both the similar and dissimilar data points in the process of reducing a two-dimensional plot to a one-dimensional plot. (a) represents the process where a twodimensional plot is transformed into a one-dimensional plot relative to the xaxis. This way produces one group of three words (pang_ /NNG, -(u)lo/JKB, ka/VV) and the another of two words (ta/EF, ./SF). (b) shows the process where the same two-dimensional plot is transformed into a one-dimensional plot relative to the y-axis. This treatment generates one group of three words (ka/VV, ta/EF, ./SF) and another group of two words (pang_ /NNG, -(u)lo/JKB).

Figure . 8 :

 8 Figure .8: Reducing a two-dimensional plot to a one-dimensional plot using the t-SNE

  (b)). The second data includes raw sentences involving each function of postpositions. This data is connected with the concordance table view (see Figure .

  (c)). The third data contains the similarity information between each postposition and cooccurring words. This data is used in the Force-directed graph view and the Nearest words view (see Figure. (d)). After the data processing, these JSON data were stored in the database which is connected with the visualization system.

Finally

  , in the back-end part of the visualization, I used D .js to create interactive visualization in the browser. By using D .js, I manipulated the elements of a webpage such as SVG, or Canvas elements according to the contents of the data set. Moreover, I used jQuery in order to make several CHAPTER . METHODOLOGICAL SET-UP: PPMI-SVD AND SGNS In Figure . , ( ) shows the overall composition of the developed visualization system. (a) provides menus to select the postpositions, the models, and the window sizes to check word-level embeddings results. It also allows users to adjust the color and size of the circle representing each word, to turn on and off the text above the circle, and to highlight the circle according to the selected parts of speeches. (b) shows a distributional semantic map of the word-level embeddings reduced to two dimensions using t-SNE. (c) shows the hand-coded corpus actually used in the selected postposition for each function. (d) allows users to choose particular functions of the postpositions and check the information about surrounding words relative to the function. The developed system shows changes of the relationship between one word and the co-occurring words using the changes of clusters that are generated by combinations of these words. . Summary of the Chapter I made a hand-coded corpus based on the Sejong corpus (Kim et al., 6, combined with the detailed dictionary). Because it does not indicate the functions of postpositions directly onto the postpositions themselves. After annotating the corpus manually, I obtained the total , sentences for -ey, ,8 sentences for -eyse, and , 8 sentences for -(u)lo. The hand-coded corpus of each postposition were used in the model training process. Model training was divided into two steps. The first step was the wordlevel embeddings to check the relationship of words. For this, I used a combination of PPMI and SVD (Turney and Pantel, ) as a count-based model and SGNS (Mikolov et al., a) as a prediction-based model, with manipulation of context window from one to ten. The -fold cross-validation technique (Salton, ) was used to evaluate the model by dividing the original corpus into equal size subsamples. Through this step, I obtained 6 embeddings ( models * postpositions * folds * window sizes) to see the clusters between postpositions and their co-occurring words.

  chapter provides results of the classification models that I developed, starting from my hypothesis on the research questions (see Chapter ) to by-model and by-postposition accuracy levels of each model. • Research question : How does the number of functions a postposition has affect classification performance for each word-level embedding model? • Research question : What is the role of the context window in the classification performance of each word-level embedding model? • Research question : How does the cluster of postpositions and their co-occurring words change as the environments of word-level embedding change? . Hypotheses Hypotheses were made according to the three research questions regarding the accuracy levels of my classification models and the changes of clusters CHAPTER . RESULTS: WORD-LEVEL EMBEDDINGS involving the three Korean adverbial postpositions (-ey, -eyse, and -(u)lo) and their surrounding words.

  Figure . presents the classification accuracy of the PPMI-SVD model adjusting the context window sizes of each postposition.

Figure . :

 . Figure . : Classification accuracy by window size for the PPMI-SVD model

Figure . :

 . Figure . : Classification accuracy by window size for the SGNS model

  Figure . shows the classification accuracy of each model for -ey. The PPMI-SVD model outperformed the SGNS model, with the classification accuracy levels being around . and . , respectively. The mean accuracy levels of the two models were also significantly different from each other (t = . , p < . from a two-sample t-test). They showed different tendencies in terms of context window. The PPMI-SVD model achieved better classification accuracy as the context window size increased, whereas the SGNS model demonstrated low classification accuracy, regardless of context window sizes.

Figure

  Figure . : By-window-size accuracy for the two models: -ey

Figure

  Figure . : By-function accuracy curve for the SGNS model: -ey Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final state; GOL = goal; INS = instrument; LOC = location; THM = theme

  Figure .6 shows the classification accuracy of each model for -eyse. The average levels for the PPMI-SVD model and the SGNS model were around . and .6 , respectively. As shown in Figure .6, the PPMI-SVD model and the SGNS model demonstrate a similar trend in which the accuracy of each model increased as the context window size increased. Statistical analysis of pairwise comparisons showed that there was no difference in the overall classification accuracy of these two models (t = . , p = . 6 from a two-sample t-test).

Figure . 6 :

 6 Figure .6: By-window-size accuracy for the two models: -eyse

Figure

  Figure . : By-function accuracy curve for the PPMI-SVD model: -eyse Note. Abbreviation: LOC = location; SRC = source

  ten. In contrast, SRC reached an accuracy of . 88 at the window size of one, but it decreased as the window size increased. The overall trend of accuracy change was similar to that of LOC. This was because the occurrence of LOC in the corpus accounted for a larger portion.

Figure . 8 :

 8 Figure .8: By-function accuracy curve for the SGNS model: -eyse Note. Abbreviation: LOC = location; SRC = source

  average classification accuracy levels of -(u)lo for the PPMI-SVD model and the SGNS model were around . 6 and . 68, respectively. As shows in Figure . , the PPMI-SVD model outperformed the SGNS model, and the mean accuracy levels of the two models were significantly different from each other (t = . 8, p < . from a two-sample t-test).

Figure

  Figure . : By-window-size accuracy for the two models: -(u)lo

Figure

  Figure . : By-function accuracy curve for the PPMI-SVD model: -(u)lo Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final state; INS = instrument; LOC = location

FNS ( . 8 )

 8 ; the other functions performed accuracy ranging from . to .6 . The change of accuracy for all the functions seemed stable.

Figure

  Figure . : By-function accuracy curve for the SGNS model: -(u)lo Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final state; INS = instrument; LOC = location

  . and . . , the model performance was similar to the accuracy patterns of the functions of each postposition occurring the most in the corpus data. This implies that the classification accuracy may be affected by the corpus size of each function. To further explore possible relationships between the size of training corpora and the models' by-function classification accuracy, I conducted a correlation analysis by postposition. For this task, I calculated the Pearson Correlation between the mean accuracy of each model and of each function for these postpositions per context window size.

Figures

  Figures . -. present the bar chart for the number of grouping results obtained from the density cluster for each postposition per window size, together with a distributional semantic map where the postposition showed the best classification accuracy. In the PPMI-SVD model (Figures

Figure . :

 . Figure . : Bar chart of density cluster result and distributional semantic map for -ey (PPMI-SVD). Red in graph = the size of window showing the highest accuracy.

Figure . :

 . Figure . : Bar chart of density cluster result and distributional semantic map for -eyse (PPMI-SVD). Red in graph = the size of window showing the highest accuracy.

Figure . :

 . Figure . : Bar chart of density cluster result and distributional semantic map for -(u)lo (PPMI-SVD). Red in graph = the size of window showing the highest accuracy.

Figure . :

 . Figure . : Bar chart of the density cluster result and distributional semantic map for -ey (SGNS). Red in graph = the size of window showing the highest accuracy.

Figure . 6 :

 6 Figure . 6: Bar chart of the density cluster result and distributional semantic map for -eyse (SGNS). Red in graph = the size of window showing the highest accuracy.

Figure . :Figure . 8

 .8 Figure . : Bar chart of the density cluster result and distributional semantic map for -(u)lo (SGNS). Red in graph = the size of window showing the highest accuracy.

Figure . 8 :

 8 Figure . 8: Distributional semantic map for -ey (PPMI-SVD; window size of nine)

Figure

  Figure . : By-function co-occurring words for -ey: LOC, CRT, THM, and GOL Note. Abbreviation: JKB = adverbial postposition; MAG = general adverb; NNG = common noun; NP = pronoun; VV = verb

Figure

  Figure . : By-function co-occurring words for -ey: FNS, EFF, INS, and AGT Note. Abbreviation: JKB = adverbial postposition; MAJ =conjunctive adverb; NNB = bound noun; NNG = common noun; NNP = proper noun; VV = verb

Figure . :

 . Figure . : Distributional semantic map for -eyse (PPMI-SVD; window size of eight)

Figure

  Figure . : By-function co-occurring words for -eyse: LOC and SRC Note. Abbreviation: JKB = adverbial postposition; MAG = general adverb; MAJ = conjunctive adverb; NNG = common noun; NP = pronoun; VV = verb

Figure . :

 . Figure . : Distributional semantic map for -(u)lo (PPMI-SVD; window size of nine)

Figure

  Figure . : By-function co-occurring words for -(u)lo: FNS, EFF, INS, and CRT Note. Abbreviation: JKB = adverbial postposition; NNB = bound noun; NNG = common noun; NNP = proper noun; NP = pronoun; VV = verb

Figure

  Figure . : By-function co-occurring words for -(u)lo: LOC and EFF Note. Abbreviation: JKB = adverbial postposition; NNG = common noun; NNP = proper noun; VV = verb

  this chapter, I reported model performance of the count-based model (PPMI-SVD) and the probability-based model (SGNS) in the classification of the functions of the postpositions -ey, -eyse, and -(u)lo. There were three major findings. First, the fewer dedicated functions the postposition has, the higher the classification accuracy was. Considering that the three postpositions have different numbers of functions (e.g., two for -eyse, six for -(u)lo, and eight for -ey), there was an inverse relation between the classification accuracy and the number of functions in a postposition, as in Hypothesis (see Section . ). Second, contrary to Hypothesis (see Section . ), the PPMI-SVD model obtained high classification accuracy at a larger window size. The SGNS model showed low classification accuracy, regardless of window size in the case of -ey and -(u)lo and high classification accuracy at a larger window size in -eyse. Considering that smaller context windows work better for syntactic tasks and larger context windows contribute more to semantic tasks (e.g., Jurafsky and Martin, , Levy et al., ), our model may have performed more semantically than structurally.

  for NLP tasks. Recurrent Neural Network (RNN) models (e.g.,Mikolov et al., ), for example, utilize information about prior cells in the neural network in a circular manner, both by updating the current hidden state based on the information about the prior cell and by updating the posterior cell based on the information about the current hidden state. This process is known as one strength in addressing context information that indicates the correct meaning by extracting hidden state from the sequential combination of words (e.g.,Mikolov et al., , , Sundermeyer et al., ).Suppose the following sentence involving the postposition -(u)lo with a function of DIR (Direction) as in ( ). ( ) pang_ /NNG -(u)lo/JKB ka/VV n-ta/EF ./SF pang-ulo room-DIR ka-n-ta. go-PRS-DECL '(I am) going to the room.' An RNN model (Figure 6. ) uses the information about the pang_ /NNG (prior cell) to update information about -(u)lo/JKB (current hidden state) and ka/VV (posterior cell) with -(u)lo/JKB (current hidden state). Two weights (W xh , W hh ) and one bias value (b) are used to calculate information about the current hidden state. First of all, the weight W xh and the input of each word are multiplied by each other. When the prior cell comes in, the weight W hh and the prior cell are multiplied by each other. Next, these two values and b are added to each other and are represented as the current hidden state. Second, the hyperbolic tangent (an activation function) is used to calculate the output of the current hidden state. This function is advantageous for resolving the Vanishing Gradient Problem, namely the issue that the gradient disappears in the process of backpropagation (e.g., Bengio et al., ). The tangent function is used to calculate the output value of the current hidden state and 6. . HOW BERT WAS BORN then it is used to update information about the next hidden state. Finally, the output value from the last hidden state is converted into a context vector of the inputted context, and its probability is calculated by using the softmax function (see Chapter ). W xh , W hh , and b are modified gradually, in a way that minimizes the difference (i.e., an error) between a prediction and an outcome by backpropagation.

Figure 6 .

 6 Figure 6. : Workflow of the RNN model adapted from Heo ([START_REF]attr("transform[END_REF] 

  of processing sentences longer than those in the training corpus. Cho et al. ( ) revealed this aspect, by showing that the performance of the basic RNN model indeed decreases rapidly as the length of input sentences increases. To address this issue, Bahdanau et al. ( ) proposed an attention mechanism that generates a dynamic context vector from all the hidden states. As stated above, the RNN model uses only the fixed-length output value of the last hidden state as a context vector for classification. In contrast, the attention model uses all the hidden state values and an attention weight of each hidden state when generating a context vector. This aspect leads to better performance in classification (e.g., Bahdanau et al.have the same example sentence ( ) here. The workflow of extracting the context vector from it through the attention model is shown in Figure 6. . The basic structure of the attention model is the same as the RNN model. However, instead of generating the context vector from the last hidden state, the attention model uses fully connected (FC) layers, which means that all former layers are connected with the next ones to calculate the score for each hidden state. These values are then converted to probability scores through the softmax function. The probability score of each word becomes an attention weight, indicating which words should be focused on generating the context vector. Finally, the dynamic context vector is obtained from the calculation that summed the values obtained by multiplying the hidden state of each word (y) and each attention weight (s).

Figure 6 .

 6 Figure 6. : Workflow of the attention model adapted from Heo ([START_REF]attr("transform[END_REF] 

Figure 6 .

 6 Figure 6. : Calculation process of the self-attention model

Figure 6 .

 6 Figure 6. : Workflow of the multi-head self-attention model (an encoder layer)

  Figure 6.6: Segmentation: Splitting word segments into syllables

Figure 6 .

 6 Figure 6. : Workflow of the WordPiece tokenization

  Figure 6.8 illustrates the three embedding types of BERT from the sentences (( ), ( )). For the input, it uses the two sentences as a single input. The sentences are split by marking [CLS] ('classification' indicating the start of a sentence) at the beginning of the first and [SEP] ('separation' indicating the end of a sentence) at the end of each sentence. Next, BERT makes tokens for input by using WordPiece tokenization, which extracts frequently attested bi-gram pairs, and utilizes these pairs as tokens. For the token embedding, each token extracted through the WordPiece tokenization is represented as an embedding value of each token. For the segment embedding, the tokens in the first sentence are expressed as A and the ones in the second sentence as B. For the position embedding, BERT indicates the position number of each token in the input.

Figure 6 . 8 :

 68 Figure 6.8: Three embedding types for BERT adapted from Devlin et al. ( 8)

  Figure 6. : Workflow of the Masked Language Model (MLM)

CHAPTER 6 .

 6 Figure 6. : Workflow of the Next Sentence Prediction (NSP)

  Research question : How does the number of functions involving a postposition affect the model performance of BERT? • Research question : How the asymmetric proportions of the functions in each postposition affect the model performance? CHAPTER . METHODOLOGICAL SET-UP: BERT • Research question : How does the BERT model classify sentences for each postposition based on function as the epoch proceeds? . Corpus I use the same hand-coded corpus that was used for the word-level embedding models (Section . . ), with some changes in the data considering how BERT works. First, BERT uses raw sentences to indicate the beginning and end of a sentence with [CLS] ('classification'; indicating the start of a sentence) before a sentence and [SEP] ('separation'; indicating the end of a sentence) after a sentence. Second, BERT expresses the function of the postpositions used in the sentence in a separate column, which is different from word-level embedding models that used lemmatized and POS-tagged sentences for training. Figure . illustrates the format of the data frame used for the BERT training and testing.

Figure . :

 . Figure . : Example sentences used in the BERT training (-ey, CRT)

Figure . :

 . Figure . : Input embeddings for the BERT classification model

  g., Clark et al., , Coenen et al., ). Clark et al. ( ) investigated this matter by analyzing the attention mechanisms of the pre-trained BERT model. In their study, they used attention maps to see how the BERT's attention heads exhibit patterns by such changes as delimiter tokens, positional offsets. They found that these attention heads attended to the direct objects of verbs, determiners of nouns, and objects of prepositions with remarkably high accuracy. Coenen et al. ( ) addressed this matter by visualizing the sentence-level representations of the BERT model. They investigated how BERT recognizes word meanings through the visualization of the sentence-level embeddings (Figure . ), and found that it could distinguish the different meanings of the word 'die' in several contexts. This means that BERT recognized the exact intended meaning of 'die' in each context.

Figure . :

 . Figure . : The visualization of the sentence-level embeddings for the word 'die' in different contexts (adapted from Coenen et al. ())

  ) and inspiration from the work by Coenen et al. ( ), I designed a BERT-based visualization system by specifying tasks and objectives as follows: Task : Visually represent different clusters by the epochs (i.e., learning step) of the postposition types. Design Objective: Design options for users to select each postposition on the left side of the visualization system. Also create a play button and slider at the bottom of the main visualization view in order to see the changes of clusters by epoch. Task : Identify the details of each sentence in the cluster (e.g., the index number of a sentence, the intended function of postposition in the sentence, the raw sentence, the POS-tagged sentence). Design Objective: Add pop-up views on the upper side of the main visualization view in order to provide the details of each sentence when the user moves the cursor over the circle (i.e., each sentence). Task : Represent the various information about the model performance, such as overall accuracy, by-function accuracy, and loss rates. Design Objective: Create two multi-line bar charts on the right side of visualization to see the change of the aforementioned model performance. Task : Express the result of density clusters in each epoch, such as plots of density cluster and number of clusters. Design Objective: Provide a bar chart at the bottom right side of the visualization system in order to present the number of clusters produced in each epoch. Also create a density cluster view at the bottom left of the system to present the clustering results according to the selected epoch.

Figure . :

 . Figure . : The visualization system: the overall interface ( ) and the main view ( )

  of training corpora containing specific functions of the postpositions. As a remedy this, I employed Bidirectional Encoder Representations from Transformer (BERT)(Devlin et al.,[START_REF]attr("transform[END_REF] to classify the functions of the postpositions. Due to how the BERT model works, to develop a classification model, I made an algorithm for training by using a hand-coded corpus in a slightly different manner. After training the model, I developed a visualization system to see how BERT classifies the function of the postpositions in each epoch and how the accuracy rate varies by each function by using -dimensional distribution data of the testing set. The visualization system has several options to use and can identify each sentence-level embedding by using a reduced two-dimensional t-SNE plot. It also shows the user more information about the model performance (i.e., overall accuracy, by-function accuracy, and loss rates) and the results of density clustering. In conclusion, I developed a classification model by using BERT. I then developed a visualization system to see how the BERT model classifies the functions of the postpositions in each epoch. The following chapter will explain the findings of the BERT classification model and BERT-based visualization system. model understand word-level polysemy of the three Korean adverbial postpositions (-ey, -eyse, and -(u)lo).

Figure 8 .

 8 Figure 8. shows the classification accuracy of the BERT model by epoch and by postposition.

Figure 8 .

 8 Figure 8. : Classification accuracy by epoch and by postposition

Figure 8 .

 8 Figure 8. shows the classification accuracy in the BERT model for -ey. It was .68 in epoch one and increased to .8 in epoch , indicating that it increased as the epoch progressed. The highest accuracy was recorded in epoch 8 ( .8 ) and the lowest in epoch one ( .68 ).

Figure 8 .

 8 Figure 8. : By-epoch accuracy for the BERT model: -ey

  tions, FNS showed an accuracy of in epoch one but increased to . in epoch . Third, INS and AGT achieved low accuracy without improvement (around . ).

Figure 8 .

 8 Figure 8. : By-function accuracy curve for the BERT model: -ey Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final state; GOL = goal; INS = instrument; LOC = location; THM = theme

Figure 8 .

 8 Figure 8. shows the classification accuracy in the BERT model for -eyse. It was .86 in epoch one and increased to . 6 in epoch , indicating that it increased as the epoch progressed.

Figure 8 .

 8 Figure 8. : By-epoch accuracy for the BERT model: -eyse

Figure 8 .

 8 Figure 8. : By-function accuracy curve for the BERT model: -eyse Note. Abbreviation: LOC = location; SRC = source

  8. . MODEL PERFORMANCE: CLASSIFICATION increased as the epoch progressed. The accuracy was the highest in epoch ( .8 ) and the lowest in epoch one ( .).

Figure 8 .

 8 Figure 8.6: By-epoch accuracy for the BERT model: -(u)lo

CHAPTER 8 .

 8 Figure 8. : By-function accuracy curve for the BERT model: -(u)lo Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final state; INS = instrument; LOC = location

  Figure 8.8 shows how many clusters were generated as the epoch progressed. When the epoch was one, all of the sentences were divided into two groups. However, as the epoch progressed, the sentences were divided into three in epoch seven, four in epoch , and five in epoch . The details of the sentence-level embedding outcomes for -ey of these epochs are shown in the following Figures (Figure 8. to 8. ).

Figure 8 . 8 :

 88 Figure 8.8: Number of density clusters in each epoch: -ey

Figure 8 .

 8 Figure 8. : The distributional map for -ey in epoch one 8

Figure 8 .

 8 Figure 8. : The distributional map for -ey in epoch seven

Figure 8 .

 8 Figure 8. shows the results of -ey when the epoch increased to .

  the epoch was nine, there were two clusters. The details of the sentencelevel embedding outcomes at these epochs are shown in the following Figures (Figure 8. and 8. ).

Figure 8 .Figure 8 .

 88 Figure 8. : Number of density clusters in each epoch: -eyse

  Figure 8. : The distributional map for -eyse in epoch one

Figure 8 .Figure 8 .

 88 Figure 8. : The distributional map for -eyse in epoch nine

Figure 8 . 6 :Figure 8 .

 868 Figure 8. 6: Number of density clusters in each epoch: -(u)lo

Figure 8 .

 8 Figure 8. : The distributional map for -(u)lo in epoch one

8 .

 8 . VISUALIZATION SYSTEM: CLUSTERS OF SENTENCE-LEVEL EMBEDDINGS In this case, CRT was distinguished from the other functions since epoch four. This can be the reason to explain why the classification accuracy of CRT increased gradually from epoch one ( . 6) to four ( . ).

Figure 8 . 8 :Figure 8 .

 888 Figure 8. 8: The distributional map for -(u)lo in epoch four

  Figure 8. : The distributional map for -(u)lo in epoch

  Figure 8. : The distributional map for -(u)lo in epoch 6

  Figure 8. , LOC could not form a designated cluster in the end. Many of the instances ( out of ) belonged to the DIR group. This is because of the low frequency of LOC in the data and the semantic closeness between DIR and LOC-they are both related to a location and are often difficult to distinguish one from the other.

8 .

 8 . DISCUSSION OF THE CHAPTER models have shown that the different numbers of functions (e.g., two for -eyse, six for -(u)lo, and eight for -ey) affect the classification accuracy. Similar to these models, BERT also showed that the classification accuracy is affected by the number of functions that the postposition has. The average accuracy was .8 in -ey, .8 8 in -eyse, and .8 in -(u)lo. Nevertheless, considering that the word-level embedding models have shown large differences of model performance between each postposition (e.g., PPMI-SVD: -ey ( . ), -eyse ( . ), -(u)lo ( . 6 ); SGNS: -ey ( . ), -eyse ( .6 ), -(u)lo ( . 68)), it can be interpreted that the BERT model is less affected by the number of functions that the postposition has.Second, the BERT model was not influenced by the corpus size of each function that a postposition has, which is the opposite of the results shown by word-level embedding models and the second Hypothesis (see Section

  Research question : How does the number of functions a postposition has, affect classification performance for each word-level embedding model? • Research question : What is the role of the context window in the classification performance of each word-level embedding model? • Research question : How does the cluster of postpositions and their co-occurring words change as the environments of word-level embedding change?

  stated in Chapter , the three postpositions have different numbers of functions (e.g., two for -eyse, six for -(u)lo, and eight for -ey). Based on this fact, I predicted that if the postposition has more functions, the classification models would produce lower accuracy. This prediction was investigated in Chapter by exploring the classification performance of word-level embedding models with each postposition.The results proved the prediction to be true as there was an inverse relation between the classification accuracy and the number of functions of each postposition. For instance, the PPMI-SVD model showed that the classification accuracy was the highest in -eyse ( .) and the lowest in -ey ( . ); -(u)lo showed classification accuracy of . 6 . Similar to the PPMI-SVD model, -eyse outperformed the other postpositions (e.g., -ey ( . ), -eyse ( .6 ), -(u)lo ( . 68)) in the SGNS model, which is consistent with the Hypothesis.

  work better for syntactic representation and the larger windows contribute more to semantic representation (e.g., Jurafsky and Martin, , Levy et al., ). Moreover, they have shown the advantage of smaller window size in addressing word-level polysemy (e.g., Bullinaria and Levy, , Levy and Goldberg, ). I thus predicted that the two word-level embedding models will perform better in smaller context window sizes. This prediction was investigated in Chapter by manipulating the context window size of wordlevel embedding models. I found that the two word-level embedding models had performances that varied from each other. For instance, the PPMI-SVD model obtained high classification accuracy at larger window sizes. However, the SGNS model obtained low classification accuracy, regardless of the window size in the case of -ey and -(u)lo, but high classification accuracy for -eyse at larger window sizes. These results were contrary my hypothesis. Considering that the larger windows contribute more to semantic representation (e.g., Jurafsky and Martin, , Levy et al., ), two word-level embedding models may perform more semantically than syntactically. Based on the third research question, I made a hypothesis about the changes in the relationship between the postpositions and their co-occurring words as follow: • Hypothesis (on hyperparameters): The clusters and their co-occurring words should vary depending on the environments of word-level embedding ( models * postpositions * window sizes). Previous studies have shown different embedding results depending on the models, window sizes, or corpus used in the study based on their purpose (this fact, I assumed that the two wordlevel embedding models would show different embedding results based on the environments ( models * postpositions * window sizes). This assumption was explored in Chapter by developing a visualization system to see the changes in the relationship between the postpositions and their cooccurring words by the environments of the word-level embedding models.

  Figure . : Example of kwanha/VV in the raw corpus Note. Abbreviation: ETM = Adnominal Changing Ending; JKB = adverbial postposition; JKG = Genitive Case Marker; MAG = general adverb; NNG = common noun; NNP = Proper Noun; NP = pronoun; NR = Numeral; THM = Theme; VV = verb; XSN = A Noun Derivational Suffix

.

  with respect to the BERT model in Chapter are restated as follows: • Research question : How does the number of functions involving a postposition affect the model performance of BERT? • Research question : How the asymmetric proportions of the functions in each postposition affect the model performance? • Research question : How does the BERT model classify sentences for each postposition based on function as the epoch proceeds?

  of a postposition. This prediction was investigated in Chapter 8 by exploring the classification performance of the BERT model by each postposition. I found that there was an inverse relationship between the classification accuracy and the number of functions that each postposition has. For instance, the average classification accuracy was .8 for -ey, .8 8 for -eyse, and .8 for -(u)lo. Considering the different number of functions (e.g., two for -eyse, six for -(u)lo, and eight for -ey), it can be interpreted that the number of functions affected the classification performance of the BERT model. However, unlike the word-level embedding models that showed large gaps of model performance between each postposition (e.g., PPMI-SVD: -ey ( . ), -eyse ( . ), -(u)lo ( . 6 ); SGNS: -ey ( . ), -eyse ( .6 ), -(u)lo ( . 68)), the BERT model was less affected.

.

  . INTERPRETATIONS OF SENTENCE-LEVEL EMBEDDING MODEL: BERT would be similar to the accuracy patterns of these functions. This assumption was investigated in Chapter 8 by conducting a correlation between the mean accuracy of the BERT model and of each function of the three postpositions.

Figure 8 .

 8 Figure 8. (e.g., the distributional map for -(u)lo in epoch 6), LOC could not form a designated cluster in the end. Many of the LOC instances ( out of ) belonged to the DIR group. This is due to the semantic closeness between DIR and LOC, which means that they are often difficult to distinguish one from the other.

.

  Figure . : Example of an error extracted from the file V-aphciluta in the Sejong Electronic Dictionary

First, it provides

  the possible ways and limitations of applying three different embedding models for the task of identifying the intended function of Korean adverbial postpositions. There were many previous studies on interpreting word-level polysemy of major Indo-European languages by employing existing word-level embedding models (Positive Pointwise Mutual Information and Singular Value Decomposition; Skip-Gram and Negative Sampling) or sentence-level embedding model (Bidirectional Encoder Representations from Transformers (BERT)) under the scheme of Distributional Semantic Modeling. Despite a good amount of research on English for this issue, very few studies have investigated polysemy interpretation of language

  second visualization system was developed to show how the sentence-level embedding model (i.e., BERT) recognizes the polysemy involving the postpositions. I found that the BERT model could identify the intended functions of postposition when the epoch progressed, with less sensitivity to data size. In addition, if the functions of each postposition have a semantic closeness to each other, the low-frequency function is contained within the high-frequency function. Considering that the visualization system could help understand the computational outcomes more easily and clearly through an intuitive

Figure

  Figure A. : Algorithm of the similarity-based estimation

  for function in functionEy: word = self.postposition_ko + "/JKB" + "_" + function from numpy import dot from numpy.linalg import norm import numpy as np def cos_sim(A, B): return dot(A, B) / (norm(A) * norm(B)) target = np.array(TSNE_dic[word]) outDir = "../../Data/Output/PPMI_SVD/" + self.postposition + "/Similarity/" = str(indx2tok[tsnenum]) + "," + str(normal_sim) 6 f.write(data + "\n") tsnenum = tsnenum + 1 f.close() elif self.postposition == "Lo": for function in functionLo: word = self.postposition_ko + "/JKB" + "_" + function from numpy import dot from numpy.linalg import norm import numpy as np def cos_sim(A, B): return dot(A, B) / (norm(A) * norm(B)) target = np.array(TSNE_dic[word]) outDir = "../../Data/Output/SGNS/" + self. postposition + "/Similarity/" + self. postposition + "_" + function + " _Similarity_" + str( j) + ".csv" print('Found GPU at: {}'.format(device_name)) else: raise SystemError('GPU device not found') import torch # If there's a GPU available... if torch.cuda.is_available(): # Tell PyTorch to use the GPU. device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda .device_count()) print('We will use the GPU:', torch.cuda. get_device_name(0)) # If not... else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") !pip install transformers # Mount Google Drive to this Notebook instance. from google.colab import drive drive.mount('/content/drive') import tensorflow as tf import torch from transformers import BertTokenizer from transformers import BertForSequenceClassification, AdamW, BertConfig from transformers import get_linear_schedule_with_warmup from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler from keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split import pandas as pd import numpy as np import random import time import datetime fileDir = "drive/My Drive/BERT/SM/KoBERT/Postposition/ Data/test_"+self.postposition+".csv" fr = open(fileDir, 'r') contents= fr.readlines() fr.close() test = pd.DataFrame(columns=('index', 'Label'sentence = infos[2].replace("\n","") 68 test.loc[i] = [index, label, sentence] labels_re.append(label) labels = labels_re tokenizer = KoBertTokenizer.from_pretrained('monologg/ kobert') tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences] MAX_LEN = 128 input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts] input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") attention_masks = [] for seq in input_ids: seq_mask = [float(i>0) for i in seq] attention_masks.append(seq_mask) train_inputs, validation_inputs, train_labels, validation_labels = train_test_split(input_ids, labels,random_state=2018,test_size=0.1) train_masks, validation_masks, _, _ = train_test_split( attention_masks,input_ids,random_state=2018, test_size=0.1) train_inputs = torch.tensor(train_inputs) train_labels = torch.tensor(train_labels) train_masks = torch.tensor(train_masks) validation_inputs = torch.tensor(validation_inputs) validation_labels = torch.tensor(validation_labels) validation_masks = torch.tensor(validation_masks) APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL "[CLS] " + str(sentence) + " [SEP]" for sentence in sentences] labels = test['Label'].values labels_re = [] for label in labels: labels_re.append(label) tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts] input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") attention_masks = [] for seq in input_ids: seq_mask = [float(i>0) for i in seq] attention_masks.append(seq_mask) test_inputs = torch.tensor(input_ids) test_labels = torch.tensor(labels) test_masks = torch.tensor(attention_masks) def INS_flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() i in range(0,len(pred_flat)): for i in range(0,len(pred_flat)): if (pred_flat[i] == labels_flat[i]) and ( Epoch {:} / {:} ========'. format(epoch_i + 1, epochs)) print('Training...') t0 = time.time() total_loss = 0 model.train() for step, batch in enumerate(train_dataloader): if step % 500 == 0 and not step == 0: elapsed = format_time(time.time() -t0) print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len( train_dataloader), elapsed)) batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch outputs = model(b_input_ids, Average training loss: {0:.2f}".format (avg_train_loss)) print(" Training epcoh took: {:}".format( format_time(time.time() -t0))) for batch in test_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch with torch.no_grad(test_input_mask.append(input_mask_arr) test_labels.append(int(b_labels)) test_input_ids = torch.tensor(test_input_ids) test_input_mask = torch.tensor(test_input_mask) test_labels = test_labels test_input_ids = test_input_ids.to(device) test_input_mask = test_input_mask.to(device) .DataFrame(sentence_array) from sklearn.manifold import TSNE labels_flat = labels.flatten() match_num = 0 func_num = 0 for i in range(0,len(pred_flat)): if (pred_flat[i] == labels_flat[i]) and ( i in range(0,len(pred_flat)): if (pred_flat[i] == labels_flat[i]) and ( for batch in test_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch APPENDIX C. CODE FOR THE SENTENCE-LEVEL EMBEDDING MODEL with torch.no_grad(): outputs = model(b_input_ids, Validation took: {:}".format( format_time(time.time() -t0))) print("") print(" Detail accuracy ")print(" SRC_Accuracy: {0:.2f}".format( SRC_eval_accuracy/SRC_nb_eval_steps)) print(" LOC_Accuracy: {0:.2f}".format( for step, batch in enumerate(test_data):6 batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch input_ids_arr = [] input_mask_arr = [] 6 for i in range(0,len(b_input_ids)): 8 input_ids_arr.append(int(b_input_ids[i])) input_mask_arr.append(int(b_input_mask[i])) test_input_ids.append(input_ids_arr) test_input_mask.append(input_mask_arr) test_labels.append(int(b_labels)) test_input_ids = torch.tensor(test_input_ids) 6 test_input_mask = torch.tensor(test_input_mask) test_labels = test_labels 8 test_input_ids = test_input_ids.to(device) test_input_mask = test_input_mask.to(device) sklearn.manifold import TSNE tsne = TSNE(n_components=2, random_state=0) tsne_obj= tsne.fit_transform(initial_df) tsne_df = pd.DataFrame({'X':tsne_obj[:,0],'Y': tsne_obj[:,1],'Label':test_labels}) import numpy as np import pandas as pd from plotnine import * print("") print(" Network visualization ") print(ggplot(tsne_df, aes(x='X', y='Y')) + geom_point(aes(colour = 'Label'))) print("") print("Training complete!") print("") print("Final result is below!") 6 print(final_info) 8 elif self.postposition == "Lo": def flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten() labels_flat = labels.flatten() return np.sum(pred_flat == labels_flat) / len( labels_flat) def FNS_flat_accuracy(preds, labels): pred_flat = np.argmax(preds, axis=1).flatten(i in range(0,len(pred_flat)): if (pred_flat[i] == labels_flat[i]) and ( match_num / func_num for epoch_i in range(0, epochs): step, batch in enumerate(train_dataloader): 8 if step % 500 == 0 and not step == 0: elapsed = format_time(time.time() -t0) 8 print(' Batch {:>5,} of {:>5,}. Elapsed: {:}.'.format(step, len( train_dataloader), elapsed)) batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch outputs = model(b_input_ids, test_dataloader: batch = tuple(t.to(device) for t in batch) b_input_ids, b_input_mask, b_labels = batch with torch.no_grad(): outputs = model(b_input_ids,
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  localisation L'analyse statistique des comparaisons en couple (Tableau ) a également montré que la performance en -eyse était significativement meilleure que celle des deux autres postpositions. En revanche, l'exactitude de -ey et -(u)lo étaient statistiquement les mêmes. Tableau -Comparaison statistique de chaque postposition (PPMI-SVD) : t-test à deux Note. *** < . Comme le montrent les Tableaux (Tableaux -), pour la relation entre la taille du Window de contexte et les performances du modèle PPMI-SVD, j'ai constaté que la précision du modèle PPMI-SVD augmentait avec la taille du Window de contexte. En outre, j'ai constaté que la performance des modèles de fonctions pour chaque postposition variait. La précision moyenne de classification de chaque fonction pour -ey est la plus élevée en LOC ( .6 ) et la plus faible en INS ( . 8) ; pour -eyse, elle est la plus élevée en LOC ( .8 8) et la plus faible en SRC ( . ) ; pour -(u)lo, elle est la plus élevée en DIR ( . ) et la plus faible en LOC ( . ) (Tableaux -). Si l'on considère que LOC pour -ey, LOC pour -eyse et DIR pour -(u)lo représentent la plus grande partie du corpus entier que les autres fonctions (voir Tableau ), on peut indiquer que la performance du modèle PPMI-SVD a été affectée par la taille du corpus de chaque fonction.. . SGNSComme pour le modèle PPMI-SVD, -eyse a surclassé les deux autres postpositions dans le modèle SGNS, comme le montrent les Tableaux (Tableaux 6-8

  localisation Pourtant, contrairement aux résultats du modèle PPMI-SVD, l'analyse statistique des comparaisons en couple (Tableau ) montre que les niveaux d'exactitude de tous les postpositions étaient différents. En ce qui concerne le rôle de la taille du Window contextuelle dans le modèle SGNS, contrairement aux résultats du modèle PPMI-SVD, le taux de changement de la précision par postpositions semble stable, sauf pour -eyse, sans changement significatif lorsque la taille du Window augmente. Toutefois, comme le montre le Tableau , pour -eyse, le modèle SGNS présente une tendance similaire à celle du modèle Tableau -Comparaison statistique de chaque postposition (SGNS) : t-test à Note. *** < . PPMI-SVD, à savoir que la précision de chaque modèle augmente avec la taille du Window contextuelle. De plus, comme pour le modèle PPMI-SVD, la performance du modèle SGNS varie également en fonction des fonctions de chaque postposition. La précision de classification moyenne de chaque fonction pour -ey est la plus élevée pour AGT ( .8 8) et la plus faible pour CRT ( . 8 ) ; pour -eyse, elle est la plus élevée pour LOC ( .6 ) et la plus faible pour SRC ( .6 ) ; pour -(u)lo, elle est la plus élevée pour DIR ( . ) et la plus faible pour FNS ( . 8) (Tableaux 6-8). Comme dans le cas du modèle PPMI-SVD, on peut également constater que la performance du modèle SGNS est affectée par la taille du corpus de chaque fonction.

  pour la classification des fonctions des postpositions. BERT produit des vecteurs contextuels, et cette caractéristique peut nous aider à créer un meilleur système de classification des postpositions. Une tendance récente pour traiter cette tâche est appelée vecteur contextuel du mot, qui convertit tous les mots dans chaque vecteur en considérant le contexte (e.g., la position, une forme du mot) dans lequel ils apparaissent. Divers modèles ont été proposés, tels que Embeddings from Language Models (ELMo ;Peters et al.,[START_REF]attr("transform[END_REF] et Generative Pre-Training (GPT ; Radford et al., 8), mais BERT montre la meilleure performance parmi tous les modèles présentés jusqu'à présent. Par conséquent, j'ai appliqué BERT à mon modèle de classification afin d'améliorer les performances du modèle. Mise en place méthodologique : BERT . Corpus J'ai prétraité les données en tenant compte du fonctionnement du BERT (j'ai utilisé le modèle original du BERT pour cette tâche). Tout d'abord, j'ai ajouté [CLS] ('classification' ; indiquant le début d'une phrase) avant une phrase et [SEP] ('séparation' ; indiquant la fin d'une phrase) après une phrase pour indiquer où la phrase commence et se termine. Ces indicateurs ont permis au modèle BERT de reconnaître une limite de phrase dans un texte, permettant au modèle d'apprendre le sens des mots en tenant compte des variations inter-sententielles. Ensuite, j'ai créé une colonne séparée ('Label') pour indiquer la fonction prévue de chaque postposition dans chaque phrase. J'ai par la suite divisé le corpus en deux sous-ensembles, l'un avec % du corpus pour l'entraînement et l'autre avec les % restants pour les tests. . Formation du modèle J'ai défini les paramètres liés à l'entraînement de BERT tels que batch size ( ), epoch ( ), seed ( ), epsilon ( . 8), et learning rate ( . ), comme conseillé par McCormick ( ). J'ai ensuite employé un modèle linguistique pré-entraîné afin d'obtenir une grande précision des résultats ; à cette fin, j'ai utilisé un modèle BERT coréen (KoBERT ; Jeon et al., ). Ensuite, l'entraînement du modèle s'est déroulé comme suit. Tout d'abord, j'ai chargé KoBERT par le biais de la fonction BertForSequenceClassification de Transformers (Wolf et al., ). Deuxièmement, j'ai affiné le modèle pré-entraîné en utilisant l'ensemble d'entraînement, en vue de réduire les valeurs de perte et de mettre à jour le taux d'apprentissage pour une meilleure précision de classification du modèle. Troisièmement, j'ai chargé l'ensemble de test pour évaluer si le modèle affiné a reconnu avec succès les fonctions prévues de chaque postposition dans chaque phrase. Dans cette partie, les taux de précision pour chaque fonction et le taux de précision total ont été calculés en comparant la fonction prévue de chaque postposition dans chaque phrase test avec la fonction classée de chaque postposition via le modèle BERT. Enfin, j'ai employé t-SNE pour la réduction de la dimension des vecteurs de classification de la postposition par chaque epoch. En outre, pour confirmer statistiquement les changements des résultats de vecteur du niveau des phrases pour chaque epoch, j'ai effectué un density-based clustering.

localisation

  Pour explorer statistiquement la classification par postpositions/epochs, j'ai effectué un t-test à deux échantillons. Comme le montre le Tableau , la performance du modèle pour -eyse est significativement meilleure que pour les deux autres postpositions. Compte tenu du nombre différent de fonctions (e.g., deux pour -eyse, six pour -(u)lo, et huit pour -ey), ce résultat indique une relation inverse entre la précision de la classification et le nombre de fonctions que chaque postposition manifeste. Tableau -Comparaison statistique de chaque postposition (BERT) : t-test à Note. *** < . De plus, la précision moyenne de classification de chaque fonction pour -ey est la plus élevée pour LOC ( . ) et la plus faible pour AGT ( . ) ; pour -eyse, elle est la plus élevée pour LOC ( . 8) et la plus faible pour SRC ( . ) ; pour -(u)lo, elle est la plus élevée pour DIR ( . 8) et la plus faible pour LOC ( . 6) (Tableaux -). Quant aux occurrences des fonctions individuelles par postposition, LOC pour -ey, LOC pour -eyse, et DIR pour -(u)lo représentent la plus grande partie du corpus entier que les autres fonctions (voir Tableau ). Ce résultat indique donc que la performance du modèle a été affectée par les proportions asymétriques des fonctions composant l'utilisation de chaque postposition.6. Système de visualisation : clusters du vecteur au niveau de la phraseLe système de visualisation a montré que le modèle était capable de reconnaître les fonctions de chaque postposition au fur et à mesure de la progression de l'epoch. Pour -ey, toutes les phrases étaient divisées en deux groupes lorsque l'epoch était la première, mais au fur et à mesure que l'epoch progressait, les phrases étaient divisées en trois à l'epoch , quatre à l'epoch et cinq à l'epoch . Pour -eyse, le nombre de groupes était de un lorsque l'epoch était la première, et il y avait deux groupes lorsque l'epoch était la neuvième. Pour -(u)lo, le nombre de clusters a augmenté, passant de un (Epoch ) à trois (Epoch ), cinq (Epoch ), et six (Epoch 6). En particulier, pour -(u)lo, j'ai fait deux découvertes intéressantes. Tout d'abord, à l'epoch , un groupe de fonctions EFF (fonctions dont les occurrences sont peu fréquentes dans les données) est apparu. Ce résultat indique que l'ORET peut identifier des fonctions à un niveau satisfaisant, même si elles sont relativement peu fréquentes, à condition que le nombre d'epochs fournies soit suffisant. Deuxièmement, il est intéressant de noter que LOC n'a pas pu former un groupe désigné au final. En mettant en évidence et en zoomant sur les instances individuelles de LOC, j'ai constaté que de nombreuses instances de LOC ( sur ) appartenaient au groupe DIR. Cela est dû à (i) la faible fréquence des LOC dans les données et (ii) la proximité sémantique entre DIR et LOC-ils se rapportent à un lieu et sont souvent difficiles à distinguer les uns des autres. Ce résultat indique que l'identification des fonctions est encore limitée par les complications mentionnées ci-dessus. Conclusion . Résumé des principaux résultats Cette étude s'est déroulée en trois étapes : tout d'abord, j'ai identifié les fonctions spécifiques de chaque postposition en me basant sur le système de classification développé par le projet Sejong et sur les études déjà effectuées sur les postpositions adverbiales Coréennes. La postposition -ey a huit fonctions majeures, avec 'localisation' et 'but' qui occupent la majorité des occurrences. -eyse a deux fonctions, 'source' et 'localisation', et est utilisé beaucoup plus fréquemment que les autres. -(u)lo a six fonctions, dont les trois principales, 'état final', 'instrument' et 'direction', occupent plus de 8 % de l'utilisation totale. Ensuite, j'ai créé les modèles de classification/visualisation, l'un en utilisant une combinaison de PPMI et SVD comme modèle basé sur le nombre et l'autre en utilisant SGNS comme modèle basé sur la prédiction avec la base de l'estimation basée sur la similarité. En général, j'ai constaté que, si une postposition avait moins de fonctions, le modèle de classification obtenait une précision de classification élevée. Le modèle PPMI-SVD a atteint une grande précision de classification lorsque la taille du Window était grande, ce qui indique que pour la meilleure performance de classification, il a utilisé les caractéristiques sémantiques des grandes tailles de Window plus que les caractéristiques syntaxiques. En revanche, le modèle SGNS a montré une faible précision de classification, quelle que soit la taille des Windows. Par ailleurs, j'ai constaté que le modèle PPMI-SVD était plus affecté par la taille du corpus que le modèle SGNS. Cela s'explique par le fait que le modèle PPMI-SVD est sensible à la fréquence des tokens des mots, alors que le modèle SGNS est sensible à la fréquence des types de mots. À travers la visualisation, j'ai trouvé que (i) les clusters n'ont pas changé considérablement par les environnements des vecteurs du niveau du mot, et (ii) il y avait les deux types de mots co-occurrents : les mots qui apparaissaient fréquemment dans le corpus total et les mots qui apparaissaient seulement quand la postposition était utilisée comme une fonction spécifique. Finalement, j'ai appliqué BERT pour transformer tous les mots en différents vecteurs, tout en considérant leurs informations contextuelles pour la même tâche de classification. Pour la tâche de classification, le modèle BERT a obtenu une grande précision de classification : .8 pour -ey, .8 8 pour -eyse, .8 pour -(u)lo. Ce résultat était supérieur aux performances des modèles des études précédentes et des modèles de vecteur du niveau du mot que j'ai utilisés. En outre, j'ai constaté que le modèle BERT n'était pas particulièrement influencé par la taille du corpus de chaque fonction, contrairement au résultat montré par les modèles de vecteur au niveau du mot. Les raisons en sont que le modèle BERT a attribué à chaque mot un vecteur basé sur les informations contextuelles et a fonctionné sur la base du modèle pré-entraîné avec une grande quantité de données de corpus. A travers la visualisation, j'ai constaté que le modèle BERT pouvait reconnaître les fonctions de chaque postposition au fur et à mesure que l'epoch (i.e., l'apprentissage) progressait, même si les fonctions occupaient une plus petite partie de la taille totale du corpus. Ceci était également contradictoire avec les résultats des modèles traditionnels de vecteur au niveau du mot, qui sont connus pour être considérablement affectés par la taille du corpus. Cela indique que le modèle BERT peut identifier des fonctions relativement peu fréquentes à un niveau satisfaisant grâce à un nombre suffisant d'epochs. D'ailleurs, cela suggère qu'il est capable de simuler la façon dont les humains interprètent la polysémie impliquant les postpositions adverbiales Coréennes de façon plus appropriée que les modèles de vecteur au niveau du mot..Limites et travaux futursMalgré ces résultats, cette thèse reste limitée. Je reconnais certaines limites de ce projet comme suit. Avant tout, je me suis concentré uniquement sur trois différentes postpositions adverbiales Coréennes qui ont une polysémie du niveau des mots. Cependant, selon la description statistique du dictionnaire Standard-Korean ( ), il existe 6 postpositions en langue Coréenne. Dans cette optique, les résultats obtenus à partir des trois postpositions étudiées dans cette thèse ne sont pas suffisants pour généraliser toutes les postpositions de la langue Coréenne. Par conséquent, à l'avenir, j'améliorerais cette étude pour couvrir davantage de postpositions qui ont des degrés de polysémie similaires à ceux de -ey, -eyse, et -(u)lo. Deuxièmement, j'ai utilisé trois modèles de vecteur (PPMI-SVD, SGNS et BERT) pour la tâche de classification dans cette thèse. Cependant, compte tenu du fait que d'autres modèles de vecteur du mot contextualisés ont été publiés après BERT, tels que le Generation Pre-trained Transformer (GPT-; Brown et al., ) ou le Robustly Optimized BERT Pretraining Approach (RoBERTa ; Liu et al., b), il est nécessaire de les utiliser afin d'assurer la généralisabilité méthodologique et d'attester des méthodes de calcul récentes en Coréen, une langue typologiquement différente des principales langues indo-européennes.

  relation entre les trois différents modèles de vecteur et la polysémie au niveau du mot des postpositions adverbiales. Considérant que les recherches antérieures sont orientées vers les principales langues indoeuropéennes telles que l'anglais, la tentative de cette thèse contribue à la généralisation méthodologique en appliquant le calcul à une langue moins étudiée comme le Coréen.En deuxième lieu, cette thèse propose deux systèmes de visualisation interactifs qui aident à identifier les relations entre les mots ou les phrases et à montrer les changements des groupes en fonction des environnements (i.e., les modèles, les postpositions, la taille des Windows et les epochs). Bien que les modèles de vecteur au niveau du mot et des phrases aient été fréquemment utilisés dans les études récentes, il est très difficile de comprendre comment ces modèles de vecteur interprètent la polysémie au niveau du mot. Le premier système de visualisation visait à explorer les résultats du vecteur au niveau du mot. Cela nous permet de voir les groupes de postpositions et leurs mots co-occurrents afin de comprendre comment les relations entre les mots ont changé en fonction des fonctions de chaque postposition. Le deuxième système de visualisation a été développé pour montrer comment le modèle de vecteur au niveau de la phrase (i.e., BERT) reconnaît la polysémie impliquant les postpositions. Considérant que le système de visualisation pourrait aider à comprendre les résultats de calcul plus facilement et plus clairement grâce à un affichage intuitif (et aussi informatif) des données linguistiques, l'essai de cette thèse a une contribution particulière pour les études futures.

  

  

  

  

  

  

  

  

Table . :

 . Functions of -ey and its frequency in Sejong dictionary (adapted from Sejong Electronic Dictionary)

		Function		Abbreviation	Use
	Location		LOC		, 8
	Goal		GOL		66
	Effector		EFF	
	Criterion		CRT	
	Theme		THM		8
	Instrument		INS	
	Agent		AGT	
	Final State		FNS	
	Experiencer		EXP	
	Source		SRC	
	Mental Agent	MAG	
	Companion		COM	
	Content		CNT	
	Purpose		PUR	
	( )	-ey as LOC (location)	
		그는	온종일	서재에	파묻혀	지낸다.
		ku-nun	oncongil	secay-ey	phamwuthye	cinay-n-ta.
		He-TOP	all day	study room-LOC	bury in	be-PRS-DECL
		'He is buried in his study room all day.'

Location (LOC) is a function that represents the spatial place where an event occurs. In the following sentence (i.e. this sentence is extracted from the file V-phamwuthita in the Sejong Electronic Dictionary), -ey is playing the same role as in in English.

Goal (GOL) is a function that indicates the preceding word is where the . . PREVIOUS RESEARCH ON POLYSEMY OF -EY, -EYSE, AND -(U)LO

Table . :

 . Functions of -eyse and its frequency in Sejong dictionary (adapted from Sejong Electronic Dictionary)

	Function	Abbreviation	Use
	Source	SRC	8
	Location	LOC	
	Agent	AGT	6
	Goal	GOL	
	Theme	THM	
	Criterion	CRT	
	Direction	DIR	
	Final State	FNS	

Table . :

 . Functions of -(u)lo and its frequency in Sejong dictionary (adapted from Sejong Electronic Dictionary)

	Function	Abbreviation	Use
	Final State	FNS	8
	Instrument	INS	6
	Direction	DIR	
	Effector	EFF	8
	Criterion	CRT	
	Location	LOC	
	Content	CNT	6
	Source	SRC	
	Theme	THM	
	Experiencer	EXP	
	Agent	AGT	

Table . :

 . Summary of previous studies on automatic classification of meanings/functions involving Korean adverbial postpositions by using case frames in dictionaries only

		Study		Corpus type		Data size	Accuracy
	Bae et al. (	) Korean	Prop-	,	sentences	.6
				Bank		
	Jo et al. (	) Korean	Prop-	,	sentences	.8
				Bank		
	Kang and Park	Sejong corpus	8, 88 ecel	.88
	(	)		and Kadokawa	
				synonyms		
	Kim and Ock	UPropBank	6 ,	sen-	.
	(	)				tences
	Park and Kim	School textbook	,	sentences	.8
	(	8)		(elementary and	
				middle)		
	Park and Cha	Sejong corpus	,	sen-	.
	(	)				tences
		Kim and Ock (			

Table . :

 . List of studies on automatic classification of meanings/functions involving Korean adverbial postpositions by using probabilistic information from existing corpora

		Lee et al. (	) employed an SVM to propose a semantic role labelling
		system. In the study, , 6 sentences were used for learning and 86 sen-
	Study tences were used for test, which obtained an accuracy of . for classifica-Corpus Data Case Probabilistic Accuracy
		type tion. Bae and Lee ( size	frame? ) proposed a method using Bidirectional Long Short-method?
	Bae and Lee ( Term Memory models, Recurrent Neural Networks and Conditional Random ) Korean Prop-,88 sen-No Yes (Bidirectional Long Short-Term . 8
		Bank Field as probabilistic method. In this study, several types of information were tences Memory model
		and Recurrent Neural Network) used for learning, such as a predicate, the target word, words before and after
	Bae et al.	Korean	,88		No	Yes (Structural	.
	(	)	Prop-	sen-			Support Vector
			Bank	tences		Machine and
							Feed-Forward
							Neural Network)
	Kim et al.	Sejong	,		Yes	Yes (Self-training	.8
	(	)	corpus	sen-			algorithm)
				tences	
	Kim et al.	Sejong	8, 8	Yes	Yes	.88
	(	6)	corpus	sen-			(Bootstrapping
				tences		algorithm)
	Kim and	UPropBank	, 66	Yes	Yes (Conditional	.8
	Ock		and	sen-			Random Fields
	(	6)	UWordMap	tences		Model)
	Lee et al.	Korean	,88		No	Yes (Structural	.
	(	)	Prop-	sen-			Support Vector
			Bank	tences		Machine)
	Shin et al.	Sejong	Unclear	Yes	Yes (Support	.
	(	)	corpus	( ,			Vector Machine)
				files)		

the target word, and Part-Of-Speech information. The result showed an accuracy of . 8 in classifying functions of postpositions. Overall, probabilitybased methods achieved a high level of accuracy and coverage rate. Nevertheless, this accuracy is often affected by data size and/or genre(s).

Table . :

 . 

							./SF
	pang_ /NNG					. . .	
	pakk/NNG					. . .	
	aph/NNG					. . .	
	-(u)lo/JKB					. . .	
	. . .	. . .	. . .	. . .	. . .	. . .	. . .
	./SF					. . .	
	Note. Columns and rows are labeled by words.			

Word-word co-occurrence matrix pang_ /NNG pakk/NNG aph/NNG -(u)lo/JKB . . .

Table . :

 . Word-word co-occurrence matrix with a context window size as one

							./SF
	pang_ /NNG					. . .	
	pakk/NNG					. . .	
	aph/NNG					. . .	
	-(u)lo/JKB					. . .	
	. . .	. . .	. . .	. . .	. . .	. . .	. . .
	./SF					. . .	
	Note. Columns and rows are labeled by words.			
	Word embedding in consideration of context window size generally cal-
	culates co-occurrence with the words located on both sides of the target
	word (Lison and Kutuzov,	). Lison and Kutuzov (	) presented a sys-

pang_ /NNG pakk/NNG aph/NNG -(u)lo/JKB . . . tematic analysis of the context window to understand its exact role for word embedding. Employing SGNS as an embedding model, they used two English language corpora: Gigaword v (Parker et al., ), with approximately fourbillion-word tokens of newswire, and the English version of OpenSubtitles (Lison and Tiedemann,

Table . :

 . Frequency table from -(u)lo/JKB and ka/VV

	-(u)lo/JKB	¬ [-(u)lo/JKB]	count(w)
	ka/VV		6
	¬ [ka/VV]		
	count(w)		
	Note. ¬ stands for 'not'		

Table . :

 . Frequency table (SVD) In this table, the co-occurrence frequency of aph/NNG and -(u)lo/JKB is four, -(u)lo/JKB and -(u)lo/JKB is zero, aph/NNG and ka/VV is three, ka/VV and -(u)lo/JKB is five. The table is then represented by the matrix below:

	aph/NNG	-(u)lo/JKB
	-(u)lo/JKB	
	ka/VV	

. . Continuous Bag Of Words

  

	. . PREDICTION-BASED MODEL CHAPTER . PPMI-SVD AND SGNS FOR POLYSEMY RESOLUTION
	representations. In this table, two words (-(u)lo/JKB, ka/VV) are used to predict pang_ /NNG,
	We start from CBOW. For instance, suppose the following sentence as in and three words (pang_ /NNG, ka/VV, n-ta/EF) are used to predict -(u)lo/JKB.
	(6).	
	(6)	pang_ /NNG -(u)lo/JKB ka/VV n-ta/EF ./SF
		pang-ulo	ka-n-ta.
		room-DIR	go-PRS-DECL
		'(I am) going to the room.'
	CBOW uses the surrounding words such as pang_ /NNG, ka/VV, n-ta/EF,
	./SF to predict the target word -(u)lo/JKB. The word being predicted is called
	the target word and the words being used for prediction are called the con-
	text word. A context window is used to determine the number of surrounding
	words to be used to predict the target word. If the window size is m, the num-
	ber of context words used to predict the target word is m (Mikolov et al.,
	a,b).
	For example, if the context window size is , information about the target
	word and the context words for the sentence (6) is represented as in Table
	.6.	
		Word Vec is not a single algorithm but a combination of two techniques: Table .6: Target word and context words in CBOW
	continuous bag of words (CBOW, i.e., predicting the target word from bag-Target word Encoding Context words
	of-words contexts; Mikolov et al., pang_ /NNG [ , , , , ] [ , , , , ],[ , , , , ] b) and skip-gram and negative sam--(u)lo/JKB [ , , , , ] [ , , , , ],[ , , , , ],[ , , , , ]
	pling (SGNS, i.e., predicting context words given the target word; Mikolov ka/VV [ , , , , ] [ , , , , ],[ , , , , ],[ , , , , ],[ , , , , ]
	et al., n-ta/EF	a). Both of these are neural networks using the relation between [ , , , , ] [ , , , , ],[ , , , , ],[ , , , , ]
	./SF	the target word and co-occurring words and learning weights of word vector [ , , , , ] [ , , , , ],[ , , , , ]

Table .

 . 

		: By-function frequency list of -ey, -eyse, and -(u)lo
	-ey		-eyse		-(u)lo	
	Function	Frequency Function	Frequency Function	Frequency
	LOC	, 8	SRC	8	FNS	8
	GOL	66	LOC		INS	6
	EFF				DIR	
	CRT				EFF	8
	THM	8			CRT	
	INS				LOC	
	AGT					
	FNS					
	-ey has 8 functions (see Section . . ), with LOC and having most occur-
	rences. -eyse has only two functions, SRC and LOC (see Section . . ). -(u)lo
	has six functions (see Section . . ), with the top three functions (FNS, INS,
	and DIR) having more than 8 per cent of the occurrences.	

Table . :

 . By-function frequency list of -ey, -eyse, and -(u)lo in cross-validated corpus

	-ey		-eyse		-(u)lo	
	Function	Frequency Function	Frequency Function	Frequency
	LOC	, 8	LOC	, 6	FNS	,68
	CRT	, 6	SRC	6	DIR	,
	THM	8			INS	
	GOL				CRT	
	FNS	6			LOC	8
	EFF	8			EFF	88
	INS	6				
	AGT					
	Total	,	Total	,8	Total	, 8

Table . :

 . Statistical comparison of each postposition (PPMI-SVD): Twosample t-test

	Comparison	|t|	p	
	-ey vs. -eyse	6. 8	< .	***
	-ey vs. -(u)lo	. 8	.	

-eyse vs. -(u)lo . < . *** Note. *** < .

Table . :

 . Statistical comparison of each postposition (SGNS): Two-sample t-test

	Comparison	|t|	p	
	-ey vs. -eyse	.8	< .	***
	-ey vs. -(u)lo	8.	< .	***
	-eyse vs. -(u)lo	.	< .	***
	Note. *** < .			

CHAPTER . RESULTS: WORD-LEVEL EMBEDDINGS

Table . :

 . 

	. . MODEL PERFORMANCE: CLASSIFICATION				
	The classification accuracy of -ey for the SGNS model varied by the types
	of functions, as presented in Figure . and Table . . The mean of classifica-
	tion accuracy was the highest in AGT ( .8 8) and the lowest in CRT ( . 8 );
	the other functions performed accuracy ranging from .	to .6 6. The
	rate of change in accuracy by functions for this postposition seemed stable,
	except for AGT and INS, with no significant change as the window size in-
	creased. INS showed an accuracy of .	in the window size of one, but its
	accuracy dropped in the window size of two to .			
	Window size	AGT	CRT	Classification accuracy EFF FNS GOL INS	LOC	THM
		.6	.	.	. 8	.	.	. 6 .
		.6	. 8	. 8	. 8	.6	.	. 8	.
		.	. 8	. 8	.	. 6	.	.6	.
		.	. 88	.	. 6	. 8	. 8	. 6	. 8
		.	. 6	.	.	.	. 6	. 8	.
		.	. 8	.	. 6	.	. 8	. 6	. 8

By-function accuracy for the PPMI-SVD model: -ey

Table . :

 . 

	Window size	AGT	CRT	Classification accuracy EFF FNS GOL INS	LOC	THM
		.6	.	. 8	. 6	.6	.	.	.
		.	.	. 8	. 6	.6	.	. 66	.
		.	.	.6 6	.	.6	.	. 6	.
		.8	.	.6	. 8	.	.	.	. 8
		.8	.	.6	.	. 6	.	. 8	. 86
		.	.	. 8	. 8	. 6	. 8	.	.

By-function accuracy for the SGNS model: -ey

Table . :

 . By-function accuracy for the PPMI-SVD model: -eyse

	Window size	LOC	Classification accuracy SRC
		.6	.6 8
		.6	.68
		.8 6	. 6
		.	.
		. 8	. 6
		.	. 6

Similar to the PPMI-SVD model, LOC performed better than SRC in the SGNS model.

Figure .8 and Table .6 

show that LOC had an accuracy of .

in the window size of one and increased to . in the window size of

Table .

 . 

		Overall, the PPMI-SVD and SGNS models showed similar results to each
	other, i.e., LOC showed a low accuracy in the smaller window size, but in-
	creased as the window size increased. In contrast, the accuracy of SRC
	reached high accuracy in the smaller window size, but decreased as the win-
	dow size increased. Considering that the smaller windows work better for
	syntactic representation and the larger for semantic (e.g., Jurafsky and Mar-
	tin,	, Levy et al.,	), LOC may perform more semantically than syn-
	tactically, and vice versa for SRC.
		Window size	LOC	Classification accuracy SRC
			.	. 88
			. 8	.8
			. 6	.
			.88	.
			. 8	.
			.	. 6

6: By-function accuracy for the SGNS model: -eyse

Table . :

 . 

	The classification accuracy of the SGNS model for -(u)lo also varied by
	the types of functions, as presented in Figure . and Table .8. The mean
	of classification accuracy was the highest for DIR ( .	) and the lowest for
	Window size	CRT	DIR	Classification accuracy EFF FNS	INS	LOC
		.	.	. 6	.	.	.
		.	.	. 6	.	. 8	.
		. 6	.8	. 8	.	. 8	.
		.	.8	.	.	. 8	.
		. 6	.8	. 8	. 6	.	.
		.	.8	. 8	.	.	.

By-function accuracy for the PPMI-SVD model: -(u)lo

Table . 8

 . : By-function accuracy for the SGNS model: -(u)lo

	Window size	CRT	DIR	Classification accuracy EFF FNS	INS	LOC
		.	. 6	.	.	.	.
		.	.8	. 8	.	.	.
		. 68	.	.66	.	.	.
		.	.	.	. 8	.	. 8
		. 6	.688	.	. 6	.	.
		.	.6	.	. 6	.	.

Table . :

 . Correlation between the accuracy of each model and of each function for -ey by window size

	functions yielded negative correlation values (except for EFF) because they
	accounted for a small portion of the total corpus size. On the other hand,
	the SGNS model did not seem to demonstrate any meaningful correlation
	between the corpus size and the model performance. One possible reason
	for this difference is that the SGNS model was not based on token frequency
	but on type frequency.		
	Function	Corpus size	Correlation PPMI-SVD	SGNS
	LOC	, 8	. 8	.
	CRT	, 6	.	.8
	THM	8	-.68	. 6
	GOL		-.8	.66
	FNS	6	-. 6	-.
	EFF	8	.	.
	INS	6	-.	-.
	AGT		-.	.6
	Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final
	state; GOL = goal; INS = instrument; LOC = location; THM = theme	

Table . , the mean accuracy of the PPMI-SVD model correlated highly with that of LOC and CRT. In contrast, the rest of

Table . :

 . Correlation between the accuracy of each model and of each function for -eyse by window size

	. . MODEL PERFORMANCE: CLASSIFICATION		
	as well.			
	Function	Corpus size	Correlation PPMI-SVD	SGNS
	LOC	, 6	. 8	. 8
	SRC	6	-.	-.
	Note. Abbreviation: LOC = location; SRC = source	

Table . :

 . Correlation between the accuracy of each model and of each function for -(u)lo by window size

	Function	Corpus size	Correlation PPMI-SVD	SGNS
	FNS	,68	.	-.
	DIR	,	.	.
	INS		-.	. 6
	CRT		-.86	. 6
	LOC	8	-.	-. 6
	EFF	88	-.	-.6
	Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final
	state; INS = instrument; LOC = location		

Classification 8. . Overall accuracy by the BERT model

  

	8. . MODEL PERFORMANCE: CLASSIFICATION	
	8.	Model performance:	
					, Reimers and
		Gurevych,	, Reimers et al.,	, Sun et al.,	, Warstadt and Bowman,
		). However, they did not explain clearly explain why the epoch should
		be set as a small size. Contrarily, I predicted that the classification accuracy
		will improve as the epoch increases, considering that epoch is the number
		of learning steps.	

Table 8

 8 

. ) further showed that the model performance in -eyse was significantly better than in the other two postpositions. CHAPTER 8. RESULTS: SENTENCE-LEVEL EMBEDDING

Table 8 .

 8 : Statistical comparison of each postposition: Two-sample t-test

	Comparison	|t|	p	
	-ey vs. -eyse	. 88	< .	***
	-ey vs. -(u)lo	.	.	
	-eyse vs. -(u)lo	8.	< .	***
	Note. *** < .			

Table 8 .

 8 

	Epoch	AGT	CRT	Classification accuracy EFF FNS GOL INS	LOC	THM
			.8 6			.		.	. 8
			.	.	. 8	.	.	.	.688
		. 6	.8	.	.	. 86	. 6	. 6	. 6
		. 6	.	. 8	.	. 8	. 6	. 8	. 8
		. 6	.8	. 8	. 6	. 6	.	.	. 68
		. 6	.	.	. 8	.	.	.	.68

: By-function accuracy for the BERT model: -ey

Table 8 .

 8 

	Epoch	LOC	Classification accuracy	SRC
		. 8		.
		.		.
		.		.6
		.		. 6
		. 6		.
		. 6		. 8
	-(u)lo			

: By-function accuracy for the BERT model: -eyse Figure 8.6 shows the classification accuracy in the BERT model for -(u)lo. It was . in epoch one and increased to .8 in epoch , indicating that it

Table 8

 8 

	. . The aver-

size, this result may be interpreted that BERT could recognize the less occurring functions as the epoch (i.e., learning) progressed.

Table 8 .

 8 

	Epoch	CRT	DIR	Classification accuracy EFF FNS	INS	LOC
		. 6	.		. 6	.
		.8	. 8	. 6	.	.8	.
		.6	.	.	.8 8	.	.
		. 8	.	.	.8	.	.
		.6	.	. 6	.8	.	.
		.6	.	.	.8 6	.	.

: By-function accuracy for the BERT model: -(u)lo

Table 8 .

 8 : Correlation between the accuracy of the BERT model and of each function for -ey by epoch

	Function	Corpus size	Correlation
	LOC	, 8	-. 8
	CRT	, 6	.
	THM	8	. 8
	GOL		.6
	FNS	6	.
	EFF	8	.
	INS	6	. 6
	AGT		.
	Note. Abbreviation: AGT = agent; CRT = criterion; EFF = effector; FNS = final
	state; GOL = goal; INS = instrument; LOC = location; THM = theme

Table 8 .

 8 6: Correlation between the accuracy of the BERT model and of each function for -eyse by epoch

	Function	Corpus size	Correlation
	LOC	, 6	. 8
	SRC	6	.
	Note. Abbreviation: LOC = location; SRC = source	

Table 8 .

 8 : Correlation between the accuracy of the BERT model and of each function for -(u)lo by epoch

	Function	Corpus size	Correlation
	FNS	,68	.
	DIR	,	.
	INS		.
	CRT		.
	LOC	8	.
	EFF	88	. 8
	Note. Abbreviation: CRT = criterion; DIR = direction; EFF = effector; FNS = final
	state; INS = instrument; LOC = location	

  , une question se pose quant à la manière dont un locuteur comprend la fonction de -ey en tant que LOC, compte tenu de ces diverses fonctions. Considérant que la signification d'un mot est étroitement liée à un contexte qui est créé par un groupe de mots voisins (DSMs ; Harris, ), cette question peut être résolue à travers le réseau de mots qui représente la relation entre les mots. Sur la base de ce concept, plusieurs études ont cherché à saisir et à distinguer les différentes significations/fonctions des postpositions coréennes en appliquant des approches informatiques (e.g., Bae et al., , , Kim and Ock, 6, Lee et al., , Shin et al., ). Toutefois, les études antérieures ne se sont concentrées que sur l'amélioration des performances des modèles et n'ont pas essayé de comprendre comment ces modèles de classification classent les fonctions prévues de ces postpositions.Face à ce constat, je cherche, dans le cadre de cette thèse de doctorat, à appliquer des approches informatiques pour résoudre les problèmes que pose à la polysémie de ces postpositions au niveau du mot.

		Myung-chul Shin, Yong-hun Lee, Mi-young Kim, You-jin Chung, and Jong-
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	function == function_name[1]) { return function_color[1] } else if (d.function == function_name[2]) { return function_color[2] } else if (d.function == function_name[3]) { return function_color[3] } else if (d.function == function_name[4]) { return function_color[4] } else if (d.function == function_name[5]) { return function_color[5] 6 } else if (d.function == function_name[6]) { return function_color[6] } else if (d.function == function_name[7]) { return function_color[7] } else if (d.function == function_name[8]) { 66 return function_color[8] } else if (d.function == function_name[9]) { 68 return function_color[9] } }) .attr("stroke", "black") .attr("stroke-width", "1px") .attr("opacity", function (d) { return d.opacity_value }) .style("cursor", "help") .on("mouseover", function (d) { 6 } 6 }); 6 }) 6 .on("mouseenter", function (d) { 6 6 div_inner.transition() 6 .duration(200) 6 8 .style("opacity", 0.85); 6 div_inner.html("<strong>Selected sentence</strong><br/><h5> Index : "+d.index + "<h5/><h5>Function : " + d.function + "<h5/><h5>Sentence : " + d.sentence+ "<h5/><h5>SentencePOS : " + d.sentence_pos+ "<h5/>") .style("left", "20px") 6 .style("top", sectionHeight*0.07+"px"); }) .on("mouseleave", function () { div_inner.transition() .duration(500) 6 .style("opacity", 0); 6 }) 8 circle.transition() .duration(2000) 6 .attr("cx", function (d) { return xScale(d.X) }) .attr("cy", function (d) { return yScale(d.Y) 6 }) jong electronic dictionary. Korea Information Science Society, pages 6, . R. Sibson. SLINK: An optimally efficient algorithm for the single-link clus--ter method. The Computer Journal, 6( ): -, . ISSN -6 . doi: 10.1093/comjnl/16.1.30. URL https://doi.org/10.1093/ comjnl/16.1.30. Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng, and Christopher D. Man-ning. Parsing natural scenes and natural language with recursive neu-ral networks. In Lise Getoor and Tobias Scheffer, editors, ICML, pages -6. Omnipress, . URL http://dblp.uni-trier.de/db/ conf/icml/icml2011.html#SocherLNM11. Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), volume 6 , page 6 . Citeseer, . Ho-Min Sohn. The korean language. Cambridge University Press, Cambridge, UK, . Dae-heon Song. A study on the adverbial case particles of '-ey' and '-eyse' for korean language education. The Association of Korean Education, : conf/emnlp/emnlp2015.html#TangQL15. Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-specific knowledge from BERT into simple neural networks. CoRR, abs/ . 6, . URL http://arxiv.org/abs/1903. 12136. W.S. Torgerson. Multidimensional scaling i: Theory and method. Psychome-trika, : --, . Peter D. Turney. A uniform approach to analogies, synonyms, antonyms, and associations. In Proceedings of the nd International Conference on Computational Linguistics (Coling 8), pages -, Manchester, UK, Introduction La polysémie, qui est un type d'ambiguïté, se produit lorsqu'une forme exprime des significations/fonctions multiples mais pourtant liées (Glynn and Robinson, ). Ce type de relation se retrouve également en coréen, une langue de la forme Sujet-Objet-Verbe avec une marquage explicite des cas par le biais d'une postposition dédiée (i.e., un morphème lié qui ajoute une signification grammaticale à un mot contenu où il est attaché ; Sohn, ). Une postposition coréenne implique normalement de nombreuses correspon-dances entre la forme et la fonction, et est de ce fait polysémique (Choo and Kwak, 8). Par exemple, une postposition adverbiale -ey, l'une des postpositions étudiées dans cette thèse, est interprétée comme ayant huit fonctions majeures : localisation (LOC), but (GOL), effecteur (EFF), critère (CRT), thème (THM), instrument (INS), agent (AGT), et état final (FNS) (Shin, 8). Supposons que la phrase suivante implique la postposition -ey comme fonction de LOC (localisation) tel que dans ( ). Les locuteurs natifs du coréen (ou une personne ayant une bonne connaissance du coréen) peuvent facilement comprendre la fonction prévue de -ey. ( ) 지붕 cipung Toit 위에 wi-ey le dessus-구멍이 kwumeng-i trou-났다. na-ss-ta. Il y a--« Il y a un trou sur le dessus du toit. » postpositions, j'implémente des systèmes de visualisation qui montrent les vecteurs des mots et des phrases pour chaque modèle. Contexte . Les modèles sémantiques distributionnels (DSMs) L'idée fondamentale des DSMs repose sur le fait que la signification d'un mot est étroitement liée au contexte qui est créé par un groupe de mots voisins (Bullinaria and Levy, , Turney and Pantel, ). Cette idée découle des premiers travaux en linguistique théorique de Harris ( ) et Firth ( ). Harris , , Lee et al., , Mun and Shin, , Shin et al., ). Dans son application réelle, les DSMs convertissent en vecteurs les informations contextuelles obte-nues grâce aux mots situés autour d'un mot cible. Ils appliquent ensuite des algorithmes d'apprentissage automatique à ces vecteurs afin de mesurer la similarité sémantique de mot (e.g., Clark, , Erk, , Turney and Pantel, ). Les DSMs sont composés de deux types de modèles de vecteur de mot. Le pre-mier est un modèle basé sur le comptage (e.g., Singular Value Decomposition (SVD) : Eckart and Young, 6) qui est sensible à la fréquence des tokens (Jurafsky and Martin, ). Le second est un modèle basé sur la prédiction (e.g., Skip-Gram and Negative Sampling (SGNS) : Mikolov et al., ) qui s'appuie sur la fréquence des types (Mikolov et al., ). Les études antérieures ont montré que ces modèles de vecteur de mot ont l'avantage de représenter la relation entre les mots (e.g., Bae et al., , Lee et al., À cet égardDe plus, afin de mieux comprendre comment ces modèles de classification classent les fonctions des , Shin et al., ).
	6	d3.select(this) .attr("r", 3) -8 , 8.	.

(

) affirme que les mots qui apparaissent dans des contextes similaires ont tendance à avoir des significations similaires, tandis que Firth ( ) affirme que l'on connaît un mot par son context. Par exemple, maison et appartement apparaissent fréquemment avec des mots de contexte comme loyer, chambre, vente, etc., ce qui prouve aux modèles informatiques que maison et appartement peuvent être similaires l'un à l'autre. Il est important de noter que de nombreuses études ont signalé la force des modèles sémantiques distributionnels pour résoudre la polysémie du niveau des mots (e.g., Bae et al.

Polysémie dans les postpositions adverbiales coréennes

  Le coréen, qui est la langue qui nous intéresse dans cette thèse, est une langue Sujet-Objet-Verbe avec le marquage explicite des cas par le biais d'une postposition-un morphème lié qui ajoute des fonc-Les études précédentes ont examiné les fonctions de -ey et ont proposé leurs propres affirmations concernant les types de fonctions impliquant -ey. Par exemple,Cho and Kim ( 6) ont classé types.

	tions grammaticales à un mot de contenu où il est attaché (Sohn,	). Les postpositions coréennes
	sont divisées en deux catégories : (i) grammaticale, indiquant les relations syntaxiques entre les mots
	du contenu et (ii) sémantique, indiquant les fonctions spécifiques selon le contexte de la phrase par-
	ticulière (Sohn,	). Plus précisément, les postpositions adverbiales (classées comme postposition
	sémantique) sont polysémiques en raison de leur correspondance multiple entre forme et fonction, qui
	s'accompagne d'une ambiguïté fonctionnelle (Choo and Kwak,	8). Parmi les diverses postpositions
	adverbiales, dans cette thèse, je me restreins à trois postpositions adverbiales : -ey, -eyse et -(u)lo, qui
	sont fréquemment utilisées en coréen et donc souvent documentées dans les études précédentes (e.g.,
	Cho and Kim,	6, Jeong,	, Nam,	, Park,	, Song,	).
		. . -ey			
		. .	-eyse			
	-eyse a moins de fonctions que les deux autres postpositions -ey et -(u)lo (Choo and Kwak,	8). Cepen-
	dant, la fréquence de son utilisation est également élevée par rapport à celle des autres (e.g., Cho and
	Kim,	6, Song,	). Les chercheurs s'accordent généralement sur la fonction primaire comme étant
	le lieu qui s'engage dans le départ de l'action (e.g., Cho and Kim,	6, Park et al.,	, Song,	)
	et le corpus Sejong démontre également la même tendance. Les deux fonctions (source et lieu) sont
	majoritairement plus fréquentes que les autres.
		. .	-(u)lo			
	Les études antérieures ont examiné les fonctions de -(u)lo et ont proposé différents points de vue sur
	le nombre de fonctions pour -(u)lo. À titre d'exemple, Park (	) affirme que la fonction centrale est
	, le Generative Pre-Training instrumentale et qu'il existe neuf autres fonctions, telles que le chemin, la direction, le point de direction,
	(e.g., Radford et al., le temps, le changement d'état, la qualification, le matériel, la cause et la manière. En revanche, Jeong 8), et les Bidirectional Encoder Representations of Transformer (BERT ; Devlin et al.,
	(	8). Parmi ces modèles, BERT montre les meilleures performances dans de nombreuses tâches telles ) place la fonction directionnelle au centre des différentes fonctions et explique la relation entre la
	que la traduction, la classification et la réponse à des questions (e.g., Devlin et al., fonction centrale et les fonctions étendues.	8, Tang et al.,	).
		La classification du projet Sejong est quelque peu différente de ces deux études, puisqu'elle indique

Sur la base de ces antécédents, j'utilise dans cette thèse une une combinaison de Positive Pointwise Mutual Information (PPMI ;

Church and Hanks,[START_REF]attr("transform[END_REF] 

et de la Singular Value Decomposition (SVD ; Eckart and Young, 6) comme modèle basé sur le nombre, et du Skip-Gram and Negative Sampling (SGNS ; Mikolov et al., ) comme modèle basé sur la prédiction pour les modèles traditionnels de vecteur des mots. En outre, j'ai choisi BERT comme modèle de vecteur de motint contextualisés pour la tâche de classification visant à identifier la fonction prévue d'une postposition dans une phrase. . La Nam ( ) a affirmé que la relation entre un (pro-)nom et un prédicat combiné avec une postposition est importante pour déterminer sa fonction, ce qui a donné types de postposition. Afin de déterminer le nombre de fonctions de cette postposition, cette thèse met particulièrement l'accent sur huit fonctions majeures de -ey : localisation, but, effecteur, critère, thème, instrument, agent, et état final, qui sont fréquemment attestées dans le corpus Sejong, le corpus représentatif du Coréen. qu'il existe six fonctions majeures de -(u)lo : état final, instrument, direction, effecteur, critère, et localisation, avec les trois principales (état final ; instrument ; direction) occupant plus de 8 % de l'utilisation totale. Car le corpus Sejong est largement utilisé dans les études sur le Coréen (e.g., Kang and Park, , Kim et al., , Park and Cha, , Shin et al., ).

Mise en place méthodologique : PPMI-SVD et SGNS . Corpus . . Création du corpus annoté

  Malgré de nombreuses recherches sur la postposition adverbiale en Coréen, elles se sont surtout concentrées sur l'amélioration de la précision de la classification des fonctions et n'ont pas prêté attention à l'environnement des postpositions, comme les mots co-occurrents, qui génèrent un cluster centré autour de la postposition. D'un point de vue linguistique, une relation de groupes de mots liés entre eux est sans aucun doute une ressource linguistique précieuse car elle montre comment la polysémie est interprétée à travers eux. À cet égard, les modèles sémantiques distributionnels (DSMs ;Baroni et al., ), qui soutiennent que la signification d'un mot est étroitement liée à un contexte créé par un groupe de mots voisins, attirent l'attention sur la compréhension informatique dans le langage humain (Bullina-En outre, pour mieux comprendre comment ces modèles de classification reconnaissent les fonctions prévues des postpositions, ce projet met en oeuvre des systèmes de visualisation qui montrent les relations des mots et des phrases pour chaque modèle.Dans cette thèse, j'utilise le corpus de données représentatif du Coréen connu sous le nom de corpus Sejong(Kim et al., 6). Cependant, le corpus Sejong ne code pas directement l'information sur les fonctions des postpositions dans chaque phrase (ce qui est nécessaire pour l'entraînement du modèle). qui aurait pu interférer avec les performances de mon modèle. Si une phrase contient plus d'une postposition, y compris les trois postpositions sur lesquelles je me suis attardé, elles deviennent moins indépendantes les unes des autres. Cela signifie que les performances du modèle de chaque postposition seront affectées les unes par les autres. Ce processus de réduction a donné lieu à un total de , phrases, dont , 6 phrases pour -ey, , 8 phrases pour -eyse et 8, 6 phrases pour

	Formation du modèle			
	Pour le modèle de classification, j'ai employé PPMI-SVD (Turney and Pantel,	) et SGNS (Mikolov
	et al.,	) sur la base de l'estimation basée sur la similarité (Dagan et al.,	) pour le dressage du
	modèle, en suivant un modèle sémantique distributionnel (DSM ; Baroni et al.,	. Les cher-). L'entraînement du
	cheurs travaillant sur la linguistique informatique en Coréen suivent cette tendance et développent des systèmes qui classifient et reconnaissent automatiquement ces multiples significations/fonctions im-pliquant les mots afin de traiter les outils linguistiques d'une manière plus facile et plus efficace (e.g., Bae -(u)lo. J'extrais ensuite , modèle se compose de deux parties : (i) vecteur au niveau des mots pour vérifier la relation entre les phrases au hasard pour chaque postposition afin de conserver un nombre mots, et (ii) l'estimation basée sur la similarité (Dagan et al., ) pour déterminer les fonctions prévues égal de phrases pour chacune d'entre elles. de la postposition utilisée dans l'ensemble de test.
	and Lee,		, Kang and Park,	, Kim and Ock,	, Lee et al.,	, Shin et al.,	). Par exemple,
	Lee et al. ( Dans cette étude, ) ont employé un SVM pour proposer un système d'étiquetage des rôles sémantiques. 6 phrases ont été utilisées pour l'apprentissage et 86 phrases ont été utilisées Tableau -Liste de fréquence des sous-fonctions de -ey, -eyse, et -(u)lo dans le corpus validé par croi-sement . . Des
	pour le test, ce qui a permis d'obtenir une précision de . pour la classification. -ey -eyse	-(u)lo
	Fonction	Fréquence	Fonction	Fréquence	Fonction	Fréquence
	LOC		, 8	LOC	, 6	FNS	,68
	CRT		, 6	SRC	6	DIR	,
	THM		8			INS
	GOL					CRT
	FNS		6			LOC	8
	EFF		8			EFF	88
	INS		6			
	AGT					
	Total		,	Total	,8	Total	, 8
	ney and Pantel, Les données du corpus final sont ensuite codées à la main par les trois locuteurs natifs du coréen, en ) et Skip-Gram and Negative Sampling (SGNS ; Mikolov et al., )-ainsi que sur des
	vecteurs du niveau de la phrase-le Bidirectional Encoder Representations of Transformers (BERT ; Devlin suivant les fonctions des différentes postpositions. La fiabilité inter-juges des données a été mesurée
	et al., avec le Fleiss's Kappa (Landis and Koch, pour -eyse, et . . . Création des ensembles de formation et de test ). Les résultats sont un score de . 8 pour -ey, . 8 Chaque instance du corpus annoté a été lemmatisée et marquée par l'étiquetage morpho-syntaxiquement (aussi appelé étiquetage grammatical, POS tagging (part-of-speech tagging) en anglais) avant l'étape de traitement des données proprement dite. L'utilisation du corpus pour cette tâche exige que les fonc-8). Par conséquent, j'annote le corpus manuellement avec l'aide de trois locuteurs natifs du Coréen. Parmi tions de chaque postposition soient marquées ouvertement avec la forme de chaque postposition (e.g.,
	les trois, l'un était un professeur qui enseigne le coréen aux enfants et les deux autres étaient des 에/JKB_CRT). Par conséquent, je marque les fonctions des postpositions manuellement.
	candidats au doctorat en linguistique. Ils ont géré tous les détails de l'annotation du corpus, depuis le Les données pour la formation et le test doivent être indépendantes les unes des autres. Ainsi, je
	développement du manuel d'annotation jusqu'à l'annotation manuelle de la fonction prévue de la post-divise le corpus en deux sous-ensembles, l'un avec % du corpus pour la formation et les % restants
	position dans chaque phrase.			

ria and Levy, , Turney and Pantel, ). Dans cette thèse, j'adopte l'idée que les DSMs fournissent des clusters entre le mot cible et les mots co-occurrents. Sur la base de ces DSM, j'améliore les approches précédentes de cette tâche en créant des modèles de classification basés sur des vecteur du niveau du mot-Positive Pointwise Mutual Information et Singular Value Decomposition (PPMI-SVD ; Tur-En ce qui concerne le processus de création d'un corpus codé à la main, j'extrais les phrases n'ayant qu'une seule postposition et un seul prédicat. Bien que cette manipulation ait permis d'omettre de nombreuses phrases déjà extraites du corpus original, elle a été bénéfique pour contrôler tout facteur de confusion supplémentaire pour -(u)lo, qui sont considérés comme 'presque parfaits' selon l'échelle de Kappa. Je décide ensuite d'exclure les phrases qui ont provoqué un désaccord entre les annotateurs humains (c'est-à-dire 8 phrases pour -ey, phrases pour -eyse, et phrases pour -(u)lo). Après lequel, j'obtiens les données du corpus final pour chaque postposition. Cela a donné , phrases pour -ey, ,8 phrases pour -eyse, et , 8 phrases pour -(u)lo. Le Tableau présente la liste détaillée des fréquences par fonction des trois types de postpositions . pour les tests. Afin d'obtenir un résultat normalisé de chaque modèle, j'utilise la technique de validation croisée à k blocs (Salton, ), qui évalue le modèle en partitionnant le corpus original en k souséchantillons de taille égale. Je fixe la valeur de k à et je répète la validation croisée fois, avec chacun des sous-échantillons utilisés exactement une fois comme le jeu de test.

. Le corpus codé à la main est disponible à l'adresse suivante : https://github.com/seongmin-mun/Corpora/tree/master/APIK .

vecteurs au niveau des mots : PPMI-SVD et SGNS Le

  flux général pour des vecteurs au niveau du mot est le suivant. Tout d'abord, le modèle crée une liste de mots qui existent dans les ensembles de formation obtenus par la technique de validation croisée à blocs. Deuxièmement, sur la base de la liste de mots, une matrice de co-occurrence mot-mot (pour le modèle basé sur le comptage) et des vecteurs à un coup (pour le modèle basé sur la prédiction) sont générés. Troisièmement, le modèle produit des vecteurs au niveau du mot en utilisant PPMI-SVD et SGNS. Le premier algorithme des vecteurs au niveau du mot a été développé dans un environnement Python. par le premier algorithme et calcule la similarité entre les postpositions et les mots environnants. Deuxièmement, l'algorithme charge un jeu de test et établit la liste des mots qu'il contient. Troisièmement, l'algorithme compare la liste de mots utilisée dans l'ensemble de test à celle utilisée dans l'ensemble d'apprentissage et génère une liste de mots qui sont partagés entre eux. Quatrièmement, l'algorithme calcule le score moyen entre chaque fonction des postpositions et une liste de mots qui sont partagés entre eux. Enfin, l'algorithme détermine la fonction des postpositions utilisée dans le jeu de test avec la moyenne la plus élevée . Afin d'interpréter intuitivement les clusters entre les postpositions et les mots qui les entourent, j'ai développé un système de visualisation (disponible sur le site : PostEmbedding). Dans le but d'exprimer . Le code complet des modèles des vecteurs au niveau du mot que j'ai développés sont disponible sur le site : PPMI-SVD et SGNS les vecteurs au niveau du mot des DSM dans la visualisation bidimensionnelle, j'ai utilisé le t-distributed Stochastic Neighbor Embedding (t-SNE ; Maaten and Hinton, 8) pour la réduction de la dimension des vecteurs au niveau du mot. Ces résultats ont été introduits dans le système de visualisation. Le système a été développé à l'aide des environnements JavaScript, HTML et CSS .

	. .	Estimation basée sur la similarité	
	Sur la base des vecteurs au niveau du mot généré par le premier algorithme, le second algorithme a été
	développé pour classifier la fonction prévue des postpositions utilisées dans l'ensemble de test. Ceci a
	été fait en calculant l'estimation basée sur la similarité (Dagan et al.,	) : classer le sens du mot cible
	qui n'a jamais été utilisé dans les ensembles d'entraînement en utilisant les scores de similarité calculés
	entre les mots. Dans cette thèse, j'ai utilisé la formule de similarité en cosinus pour calculer le score de
	similarité entre une postposition et ses mots co-occurrents.	
	L'algorithme pour l'estimation basée sur la similarité se déroule comme suit. Tout d'abord, l'algorithme
	charge un total de 6 vecteurs au niveau du mot ( modèles * postpositions *	plis *	tailles de
	Window) générés . Visualisation : PostEmbedding	

Linalg du package scipy a été utilisé pour la formation du modèle PPMI-SVD. Word Vec, du package gensim, a été utilisé pour la formation du modèle SGNS. Les vecteurs au niveau des mots générés par chaque modèle avaient dimensions, chacune d'entre elles étant stockée dans une base de données.

Un total de 6 vecteurs a été réalisé par cet algorithme ( modèles * postpositions * plis * tailles de Window).

Résultats :

les vecteurs au niveau du mot . Performance du modèle : Classification . . PPMI-SVD Les

  Tableaux suivants (Tableaux -) montrent la précision de classification du modèle PPMI-SVD pour chaque postposition. Les résultats montrent que le modèle est plus performant pour -eyse que pour les deux autres postpositions (-ey et -(u)lo). La précision moyenne de classification pour -ey, -eyse et -(u)lo Abréviation : LOC= localisation ; SRC= source Tableau -Précision par fonction pour le modèle PPMI-SVD : -(u)lo Abréviation : CRT= critère ; DIR= direction ; EFF= effecteur ; FNS= état final ; INS= instrument ; LOC=

	est d'environ . taille du Window Moyenne Note. Abréviation : AGT= agent ; CRT= critère ; EFF= effecteur ; FNS= état final ; GOL= but ; INS= instrument ; , . et . 6 respectivement. Tableau -Précision par fonction pour le modèle PPMI-SVD : -ey Précision de classification Overall AGT CRT EFF FNS GOL INS LOC THM . .6 . . . 8 . . . 6 . . .6 . 8 . 8 . 8 .6 . . 8 . . . . 8 . 8 . . 6 . .6 . . . . 88 . . 6 . 8 . 8 . 6 . 8 .6 . . 6 . . . . 6 . 8 . .6 . . 8 . . 6 . . 8 . 6 . 8 . . 8 . . . . 8 . 8 .6 . LOC= localisation ; THM= thème Tableau -Précision par fonction pour le modèle PPMI-SVD : -eyse taille du Window Précision de classification Overall LOC SRC .6 .6 .6 8 .6 8 .6 .68 .8 .8 6 . 6 .8 . . .8 . 8 . 6 .8 6 . . 6 Moyenne . .8 8 . Précision de classification Overall CRT DIR EFF FNS INS LOC . 8 . . . 6 . . . . . . . 6 . . 8 . . . 6 .8 . 8 . . 8 . .6 8 . .8 . . . 8 . .6 8 . 6 .8 . 8 . 6 . . .6 . .8 . 8 . . . Moyenne . 6 . . . . 8 . . Note. taille du Window Note.

  ). Cela s'est produit pour la même raison que pour le modèle PPMI-SVD (i.e., -eyse n'a que deux fonctions avec LOC qui occupent la majorité de la taille totale du corpus). La précision moyenne de classification pour -ey, -eyse et -(u)lo est d'environ . Abréviation : AGT= agent ; CRT= critère ; EFF= effecteur ; FNS= état final ; GOL= but ; INS= instrument ; LOC= localisation ; THM= thème Tableau -Précision par fonction pour le modèle SGNS : -eyse Abréviation : CRT= critère ; DIR= direction ; EFF= effecteur ; FNS= état final ; INS= instrument ; LOC=

		Tableau 6 -Précision par fonction pour le modèle SGNS : -ey		
	taille du Window	Overall AGT	Précision de classification CRT EFF FNS GOL	INS	LOC	THM
		.	.6	.	. 8	. 6	.6	.	.	.
		.	.	.	. 8	. 6	.6	.	. 66	.
		.	.	.	.6 6	.	.6	.	. 6	.
		.	.8	.	.6	. 8	.	.	.	. 8
		. 88	.8	.	.6	.	. 6	.	. 8	. 86
		. 8	.	.	. 8	. 8	. 6	. 8	.	.
	Moyenne	.	.8 8	. 8	.	.	.6 6	. 8	. 6	.
	Note. taille du Window		Overall	Précision de classification LOC			SRC
			.			.			. 88
			.6			. 8			.8
			.			. 6			.	
			.8			.88			.	
			.8			. 8			.	
			.8			.			. 6
	Moyenne		.6			.6			.6
	Note. Abréviation : LOC= localisation ; SRC= source						
		Tableau 8 -Précision par fonction pour le modèle SGNS : -(u)lo		
	taille du Window	Overall	CRT	Précision de classification DIR EFF	FNS	INS	LOC
		.	.	. 6		.	.	.	.	
		. 6	.	.8		. 8	.	.	.	
		.	. 68	.		.66	.	.	.	
		. 6	.	.		.	. 8	.	. 8
		. 8	. 6	.688	.	. 6	.	.	
		.	.	.6		.	. 6	.	.	
	Moyenne	. 68	.	.		.6	. 8	.	.	
	Note.									
									, .6 et
	. 68 respectivement.								

6. Performance du modèle : Classification Les

  tableaux suivants (Tableaux -) montrent la précision de classification du modèle BERT pour chaque postposition. Les résultats montrent que le modèle BERT a mieux fonctionné pour -eyse, qui n'a que deux fonctions (SRC et LOC), que pour les deux autres postpositions (-ey et -(u)lo). La précision moyenne de classification pour -ey, -eyse et -(u)lo est d'environ .8 , .8 8 et .8 respectivement. Il s'agit d'un niveau de précision satisfaisant si l'on considère que les études précédentes sur la classification des postpositions ont rapporté un niveau de précision allant de .6 (Bae et al., Abréviation : AGT= agent ; CRT= critère ; EFF= effecteur ; FNS= état final ; GOL= but ; INS= instrument ; LOC= localisation ; THM= thème . Plus de détails sur le PostEmbedding sont disponibles sur le site : PostBERT Tableau -Précision par fonction pour le modèle BERT : -eyse Note. Abréviation : CRT= critère ; DIR= direction ; EFF= effecteur ; FNS= état final ; INS= instrument ; LOC=

	and Ock, Epoch Moyenne Moyenne Note. Abréviation : LOC= localisation ; SRC= source 6). Tableau -Précision par fonction pour le modèle BERT : -ey Précision de classification Overall AGT CRT EFF FNS GOL INS .68 .8 6 . .8 . . . 8 . . .8 . 6 .8 . . . 86 . 6 .8 . 6 . . 8 . . 8 . 6 .8 6 . 6 .8 . 8 . 6 . 6 . .8 . 6 . . . 8 . . .8 . . . . . 8 . 6 Précision de classification Overall LOC .86 . 8 . . .8 8 . .8 6 . . . 6 . 6 . 6 .8 8 . 8 Tableau -Précision par fonction pour le modèle BERT : -(u)lo Epoch Précision de classification Overall CRT DIR EFF FNS INS . . 6 . . 6 . .8 .8 . 8 . 6 . .8 .8 .6 . . .8 8 . .8 6 . 8 . . .8 . .8 .6 . . 6 .8 . .8 .6 . . .8 6 . Note. Epoch Moyenne .8 . . 8 . 8 .8 . 6	) à .8 (Kim LOC THM . . 8 . .688 . 6 . 6 . 8 . 8 . . 68 . .68 . . SRC . . .6 . 6 . . 8 . LOC . . . . . . 6

Available at: https://www.korean.go.kr

An ecel is defined as a white-space-based unit serving as the minimal unit of sentential components.

pred_flat = np.argmax(preds, axis=1).flatten()

.attr("text-anchor", "middle") .text(d => d+" epoch" );

} else if (d.function == function_name[7]) { return function_color[7]8 } else if (d.function == function_name[START_REF]attr("transform[END_REF]) { return function_color[START_REF]attr("transform[END_REF] 
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List of abbreviations

The following abbreviations are used to label the linguistic terms employed in this dissertation. I follow the Leipzig glossing rules for the most abbreviations used in linguistic glosses. In addition, for the POS tags used in this functions through JavaScript more easily.

. . Interface of visualization system

For the interface of the visualization system, I propose three views to effectively explore the relationships between each postposition and co-occurring words. 

Hypotheses

Hypotheses were made with respect to the three research questions about my classification models and the visualization results that showed how BERT

Algorithms of this dissertation

The following Figures (A. -A. ) are the algorithms that I used in this dissertation. for typeeach in indx2tok:

typenum = typenum + 1 functionEy = ["LOC", "GOL", "EFF", "CRT", "THM", "

INS", "AGT", "FNS"] functionEyse = ["SRC", "LOC"] functionLo = ["FNS", "INS", "DIR", "EFF", "CRT", "

LOC"] if self.postposition == "Ey": print(" GOL_Accuracy: {0:.2f}".format( GOL_eval_accuracy/GOL_nb_eval_steps)) print(" EFF_Accuracy: {0:.2f}".format( EFF_eval_accuracy/EFF_nb_eval_steps)) print(" CRT_Accuracy: {0:.2f}".format( CRT_eval_accuracy/CRT_nb_eval_steps)) print(" LOC_Accuracy: {0:.2f}".format( LOC_eval_accuracy/LOC_nb_eval_steps)) print(" AGT_Accuracy: {0:.2f}".format( AGT_eval_accuracy/AGT_nb_eval_steps)) print(" THM_Accuracy: {0:.2f}".format( The following script is the code that I used to develop the first visualization system (i.e., PostEmbedding).

Listing D. : JavaScript code for developing PostEmbedding for(var i = 0 ; i < typeslist.length; i++){ var color = "" -webkit-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4); -moz-box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4); box-shadow: 4px 4px 10px rgba(0, 0, 0, 0.4); pointer-events: none; <p id="left_option">Select function</p> <div id="container_leftmiddle"> </div> </div> <div id="left_bottom"> <p id="left_option">Select sentence</p> 6 <div id="container_leftbottom"> </div> </div> <div id="left_bottom_bottom"> <p id="left_option">Density cluster</p> 66 </div> 68 </div> <div id="section"> <div id="section_top"> <p id="section_top_p">t-SNE visualization of BERT sentence classification</p> </div> <div id="section_bottom"> <p id="section_bottom_p">Current epoch</p> <div id="section_bottom_left"> <button id="play-button">Play</button> </div> <div id="section_bottom_right"> </div> </div> 8 </div> <div id="right"> <div id="right_top"> <p id="right_option">Overall accuracy & Loss

</p>
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} var right_bottom_width = $("#right_bottom").width()

.append("svg")

.attr("width", right_bottom_width*0.95)

.attr("height", (right_bottom_height*0.95))

svgright_bottom.append("rect")

.attr("class", "svgright_rect")

.attr("x", right_bottom_width * 0.05)

.attr("y", 0)

.attr("width", right_bottom_width*0.9)

.attr("height",(right_bottom_height*0.75))

.attr ("rx", 6) .attr("ry", 6)

.attr("fill", "white")

.attr('stroke', '#C2C1C1')

.attr('stroke-width', '2')

var epoch_right_bottom = ["0", "10", "20", "30", "40", "50"]

for (var k = 0; k < 6; k++) { svgright_bottom.append("text").text (epoch_right_bottom[k]).

attr("x", (((right_bottom_width * 0.82) *0.205) * k) + ( right_bottom_width * 0.085)).attr("y", right_bottom_height *0.69).attr("text-anchor", "middle").attr("font-family", "

Open Sans").attr("font-size", "21px").attr("fill", "#C2C1C1 ") } svgright_bottom.append("line").attr("x1", right_bottom_width * 0.05).attr("y1", right_bottom_height*0.6).attr("x2", right_bottom_width * 0.95).attr("y2", right_bottom_height *0.6).attr("stroke-width", "2px").attr("stroke", "#C2C1C1")

.style("stroke-dasharray", ("3, 3"))

for (var k = 0; k < 6; k++) { svgright_bottom.append("line").attr("x1", ((right_bottom_width * 0.1651) * k) + (right_bottom_width * 0.065)).attr("y1", right_bottom_height*0.01).attr("x2", ((right_bottom_width * 0.1651) * k) + (right_bottom_width * 0.065)).attr("y2", right_bottom_height*0.75).attr("stroke-width", "2px").attr( APPENDIX E. CODE FOR THE SECOND VISUALIZATION SYSTEM (I.E., POSTBERT)

"stroke", "#C2C1C1").style("stroke-dasharray", ("3, 3"))

} var SB_width = $("#section_bottom_right").width()

.append("svg")

.attr("width", SB_width) .attr("height", SB_height); .domain ([1, 49])

.range([0, SB_width*0.9])

.clamp(true);

var slider = SB_svg.append("g") .attr("class", "slider") const handle = slider.insert("circle", ".track-overlay")

6

.attr("class", "handle")

6

.attr("r", 9); 6 6 d3.select(window)

6

.on("keydown", keydowned); 

CB_leftmiddle'><svg width='12' height='12' ><rect width= '11' height='11' rx='2' class='legendrect' style='fill:"+ color+";opacity:0.9;'/></svg> "+list[i]+" ("+name[i]+","+ name_kr[i]+")</label></br>"); } } else if (post === "eyse"){ for(var i = 0 ; i < list.length; i++){ var color = ""

CB_leftmiddle'><svg width='12' height='12'><rect width='11' height='11' rx='2' class='legendrect' style='fill:"+color+ ";opacity:0.9;'/></svg> "+list[i]+" ("+name[i]+","+name_kr[ i]+")</label></br>"); } } else if (post === "(u)lo"){ for(var i = 0 ; i < list.length; i++){ var color = "" .data(final_data).enter()

.append('path')

.attr ('class','righttoppath') .attr('fill', 'none')

.attr ('stroke', d => d.color) .attr('stroke-width', 2)

.datum (d => d.history) .attr ('d', line) .attr("opacity",0.7); svgright_top.selectAll() .style ('display', 'block') .style('right', right_top_width*0.07+"px")

.style('top', right_top_height*0.28+"px")

.style('opacity',0.7)

.selectAll()

.data(final_data).enter()

.append('div')

.style ('color', d => d.color) . .data(final_data).enter()

.append('path')

.attr ('class','rightmiddlepath') .attr ('fill', 'none') .attr ('stroke', d => d.color) .attr('stroke-width', 2)

. .attr("stroke", "black")

.attr("stroke-width", "1px")

.attr("opacity", 1)

.attr("fill","#FF0000") })

.on("mouseout", function (d) {

d3.select(this)

.attr("stroke", "black")

.attr("stroke-width", "1px" 

for(var q = 0; q < functionarray.length ; q++){

LeftsvgSection.selectAll(".PNG").remove();

var imgs = LeftsvgSection.append("image")

.attr("class", "PNG")

.attr("xlink:href", "https://seongmin-mun.github.io/ VisualSystem/Major/PostBERT.ko/images/densityClusterPNG_r/" .attr("x", LeftsectionWidth*0.05)

.attr("y", 0)

.attr('width', LeftsectionWidth*0.9)

.attr('height', LeftsectionWidth*0.9); .attr("stroke", "black") .attr("stroke-width", "1px")

8 .attr("opacity", 1) .attr("fill","#FF0000") }) .on("mouseout", function (d) { d3.select(this)

.attr("stroke", "black")

.attr("stroke-width", "1px")

. 66 .attr("stroke", "black") .attr("stroke-width", "1px") .attr("opacity", function (d) { return d.opacity_value })

.style("cursor", "help")

.on("mouseover", function (d) { d3.select(this)

.attr("stroke", "black") .attr("stroke-width", "1px")

6

.attr("opacity", 1) .attr("fill","#FF0000") }) .on("mouseout", function (d) { d3.select(this)

6 .attr("stroke", "black")

6

.attr("stroke-width", "1px")