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ÉCOLE DOCTORALE MATHEMATIQUES ET STIC (MSTIC, E.D. 532)

THÈSE
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DOMAINE DE RECHERCHE : SIGNAL, IMAGE, ET AUTOMATIQUE (CNU 61)
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J-K. HAO Université d’Angers Rapporteur
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Abstract

Image segmentation is the process of partitioning an image into smaller non-overlapped and
meaningful regions based in part on some homogeneity characteristics. Many high-level processing
tasks such as feature extraction, object recognition and medical diagnosis depend heavily on the
quality of solutions. In medical image analysis, images usually contain some artifacts such as noise,
image volume and bias field effects due to various factors, for instance, environment and acquisition
devices, and have complex structures. Therefore, image segmentation remains a difficult task even if
various techniques and methods of different accuracy and degree of complexity have been introduced
in the literature. Several approaches, such as fuzzy clustering, region-based active contour and Markov
random field, have been found that can produce promising results; however, still many key open issues
remain to be investigated. Up to now, there is no gold standard method and segmentation procedures
still need a significant amount of expert intervention to achieve acceptable performance.

Metaheuristics are high-level procedures designed to solve optimization problems by the pro-
cess of searching acceptable suboptimal solutions to a particular problem of interest. This family of
algorithms is generally applied to problems for which there is no satisfactory algorithm able to solve
them effectively. Therefore, they are widely used to solve complex problems and have proven to be
successful in many fields of application with varying degrees of success. Considering the image seg-
mentation problem as one of the optimization problems solved by metaheuristics, image segmentation
has attracted many researchers in recent years. In many successful applications, it can be seen that the
traditional approaches for image segmentation have been combined with metaheuristics in different
perspectives in order to improve their performance.

Bearing those in mind, we propose in this work three image segmentation methods for magnetic
resonance (MR) brain images based on mono-objective, multi-objective and hybrid metaheuristic
optimization techniques. In each method, first, the basic model for the image segmentation problem
is extended to incorporate more image information (spatial or spectral) such that more and better
characteristics in segmented image can be achieved. Then, metaheuristic algorithms are adapted or
developed to take place in optimization step. The proposed methods were evaluated on both simulated
MR images and real MR images and compared with a set of recent methods in the literature. The
obtained results show clearly the efficiency of the proposed approaches.

Keywords: Image segmentation, fuzzy clustering, region-based active contour, Markov random field,
metaheuristics, multi-objective optimization, hybrid metaheuristic, MRI.
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Résumé

La segmentation d’image est le processus de partitionnement d’une image en régions plus
petites, non superposées et de taille significative, reposant en partie sur certaines caractéristiques
d’homogénéité. De nombreuses tâches de traitement de haut niveau, telles que l’extraction de car-
actéristiques, la reconnaissance d’objets et le diagnostic médical, dépendent fortement de la qualité
de la segmentation. En analyse d’images médicales, les images contiennent généralement des artefacts
tels que le bruit, l’effet de volume d’image et l’effet de champ de polarisation dus à divers facteurs,
comme l’environnement et les dispositifs d’acquisition; en outre, ces images possèdent des structures
complexes. Par conséquent, la segmentation des images reste une tâche difficile, même si diverses
techniques et méthodes de précision et de complexité diverses ont été proposées dans la littérature.
Plusieurs approches, telles que le regroupement flou des pixels de l’image, les contours actifs basés basés
régions, ainsi que les champs aléatoires de Markov, peuvent produire des résultats prometteurs. Cepen-
dant, de nombreuses questions restent à ce jour en attente de réponse. Jusqu’à maintenant, il n’existe
pas de méthode de référence et les procédures de segmentation nécessitent toujours l’intervention d’un
nombre important d’experts pour améliorer les performances.

Les métaheuristiques sont des procédures de haut niveau conçues pour résoudre les problèmes
d’optimisation en cherchant des solutions sous-optimales acceptables à un problème complexe donné.
Les métaheuristiques sont généralement appliquées à des problèmes pour lesquels il n’existe pas
d’algorithme satisfaisant capable de les résoudre de manière efficace. Par conséquent, elles sont large-
ment utilisées pour résoudre des problèmes complexes et elles ont fait leurs preuves dans de nombreux
domaines d’application, avec plus ou moins de succès. Ces dernières années, de nombreux chercheurs
se sont intéressés à la segmentation d’images en la considérant comme un problème d’optimisation,
que l’on peut résoudre de manière approchée au moyen des métaheuristiques. Dans de nombreuses
applications, les approches traditionnelles de la segmentation d’images ont été ainsi combinées avec
des métaheuristiques, afin d’améliorer leurs performances.

Poursuivant cet objectif, nous proposons dans ce travail trois méthodes de segmentation dédiées
aux images cérébrales par résonance magnétique (IRM), basées sur des techniques d’optimisation
mono-objectif, multi-objectif et hybride, mettant en oeuvre des. Pour chaque méthode, le modèle de
base du problème de segmentation d’image est d’abord étendu en incorporant davantage d’informations
(de nature spatiale ou spectrale): de manière à obtenir des résultats de segmentation pertinents,
qui conservent les caractéristiques initiales des images d’entrée. Ensuite, des algorithmes à base de
métaheuristiques sont développés ou adaptés, afin de conduire la phase d’optimisation. Les méthodes
proposées ont été évaluées à la fois sur des images IRM simulées et sur des images IRM réelles, en
les comparant avec un ensemble de méthodes récentes de la littérature. Les résultats confirment sans
ambigüıté la pertinence et l’efficacité des méthodes développées.

Mots-clés: Segmentation d’images, classification floue, contours actifs basés régions, champs aléatoires
de Markov, métaheuristiques, optimisation multi-objectif, métaheuristiques hybrides, MRI.
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Introduction générale

La segmentation d’images est le processus de partitionnement d’une image en zones ou régions
connexes significatives, au sens d’un critère quantitatif donné, tel que le niveau de gris, la couleur,
la texture ou une combinaison de ces derniers. Deux caractéristiques essentielles de la segmentation
d’image sont l’homogénéité d’une région et la discontinuité marquant les régions adjacentes disjointes.
En imagerie médicale, la segmentation revêt une importance considérable pour fournir des informa-
tions non invasives sur les structures du corps humain. Du point de vue de ce champ d’application,
le besoin d’une segmentation robuste et précise des images médicales constitue une étape importante
pour une large gamme de problèmes, notamment l’identification des organes du corps, à des fins de
mise au point d’atlas de patients, d’étiquetage rapide en tomodensitométrie à rayons X, ou d’analyse
d’informations issues de l’imagerie par résonance magnétique (IRM). D’autres applications médicales
concernent l’imagerie cérébrale (pour guider les procédures d’intervention), l’analyse des poumons et
des voies respiratoires environnantes (pour surveiller et traiter les maladies pulmonaires), la distinc-
tion des vaisseaux, des valves et des cavités dans les images de l’appareil cardiovasculaire (afin de
quantifier l’étendue de la maladie), ou encore la segmentation des polypes observés en coloscopie par
tomodensitométrie (afin de guider les procédures de traitement). La liste des applications potentielles
peut à l’évidence être encore plus longue, compte tenu de la variété des problèmes traités.

Cependant, la segmentation des images médicales se heurte à de nombreux défis, qui doivent être
surmontés, pour obtenir des résultats fiables et exploitables en milieu clinique. Le principal défi est que
les différentes parties anatomiques du corps humain présentent des variations significatives de forme et
d’apparence, causées par une multitude de facteurs: (1) bruits et artefacts des capteurs (inhérents à leur
principe physique ou au processus de formation de l’image); (2) diversité morphologique des patients
et variété de leurs mouvements (respiration, cycle cardiaque, circulation sanguine et cérébrospinale,
péristaltisme et déglutition, et bien sûr les mouvements volontaires); (3) pathologie, chirurgie et agents
de contraste (l’apparence des images sous différentes phases de contraste est variable); (4) balayage
partiel et champ de vision; et (5) tissus mous (frontières floues entre les organes internes). Un autre défi
réside dans la précision des traitements, la robustesse et les exigences en vitesse de calcul, découlant
d’applications réelles en milieu clinique.

La résolution des problèmes de segmentation des images médicales a longtemps été considérée
comme un problème fondamental, qui demeure une pierre d’achoppement de la recherche en analyse
d’images médicales. Les premiers travaux dans ce domaine ont débuté il y a plusieurs décennies; ils
ont souvent consisté à adapter à des problèmes d’imagerie médicale des techniques développées dans
la vision par ordinateur et la reconnaissance de formes. Cependant, au cours des vingt dernières
années, des chercheurs spécialisés dans l’analyse d’images médicales ont pu identifier de nombreux
problèmes spécifiques à ce domaine en général, et à la segmentation d’images médicales en particulier.
Les difficultés rencontrées incluent notamment la nature déformable des structures ou des régions sous-
jacentes à segmenter, la variation statistique naturelle de ces structures ou des régions elles-mêmes,
les paramètres qui pourraient en être dérivés, ainsi que le problème singulier de la segmentation des
images médicales, qui implique souvent la connaissance de plusieurs structures, régions ou informations
contextuelles, inhérentes aux images traitées.

Au fil du temps, de nombreuses techniques de segmentation, décrites dans la littérature, ont été
développées. De manière générale, aucune technique de segmentation n’est universelle pour fonctionner
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correctement avec toutes les applications, et diverses approches de la précision, de la rapidité et du
degré de complexité ont été explorées, pour différents problèmes pratiques. Leur catégorisation est
souvent basée sur des objectifs et aspects spécifiques du traitement des données impliquées. Parmi ces
approches, il y a celles qui considèrent le problème de segmentation des images comme un problème
d’optimisation, où la segmentation désirée minimise ou maximise une ou plusieurs fonctions d’énergie
(ou de coût) définies pour le problème particulier. La résolution du problème d’optimisation, grâce aux
métaheuristiques, a intéressé de nombreux chercheurs ces dernières années. Une métaheuristique est
une procédure de haut niveau, conçue pour résoudre des problèmes d’optimisation réputés difficiles.
En effet, les métaheuristiques sont en général conçues pour résoudre des problèmes complexes, pour
lesquels il n’existe pas d’algorithmes spécifiques capables de les résoudre de manière satisfaisante.
Divers algorithmes ont été proposés pour résoudre de cette façon le problème de la segmentation
d’images. Ces algorithmes ont été expérimentés dans de nombreuses applications, avec des degrés
divers de réussite, et de nombreuses questions restent à ce jour en attente de réponse. En particulier,
les questions encore ouvertes sont: (1) comment construire des fonctions objectifs optimisées, reflétant
de manière satisfaisante les caractéristiques des images traitées?; (2) quel est l’algorithme efficace pour
trouver le meilleur résultat, les fonctions objectifs étant généralement non-convexes, par nature non
uniques, et susceptibles de comporter de nombreux minimums locaux?

Grâce au développement rapide des technologies d’imagerie, il est désormais possible d’explorer
de manière non invasive des organes in vivo du corps humain. En particulier, pour explorer l’anatomie
du cerveau et étudier son fonctionnement. Dans le diagnostic des troubles cérébraux, l’IRM est
couramment utilisée: cette technique peut fournir une grande quantité de données, avec un niveau
de qualité de plus en plus élevé. Cependant, les images d’IRM du cerveau contiennent encore des
artefacts, dus au bruit, la résolution spatiale (taille du plus petit détail détectable) et des biais liés à
divers facteurs, tels que l’environnement et les dispositifs d’acquisition; en outre, ces images peuvent
avoir des structures complexes. Leur analyse constitue une tâche fastidieuse et complexe pour les
cliniciens. De ce fait, il existe un grand besoin de méthodes capables d’interpréter les données d’IRM
avec précision. Pour contribuer à ce domaine, nous proposons dans cette thèse trois méthodes de
segmentation dédiées aux images d’IRM du cerveau.

Cette thèse a été préparée au sein du Laboratoire Images, Signaux et Systèmes Intelligents
(LiSSi, E.A. 3956) de l’Université Paris-Est-Créteil (UPEC). Le travail de recherche a été réalisé sous
la direction du professeur Patrick SIARRY et du Dr. Hamouche OULHADJ, tous deux membres per-
manents du groupe SIMO (Signal, Image et Optimisation) du LiSSi, qui s’intéresse au développement
du traitement d’image et des techniques d’optimisation.

Objectifs de l’étude et contributions majeures

L’objectif principal de ce travail de recherche est de développer de nouvelles méthodes de seg-
mentation d’images, de grande précision et dédiées spécifiquement aux images d’IRM du cerveau, en
s’appuyant sur la mise en oeuvre d’algorithmes robustes à base de métaheuristiques d’optimisation.
Nous nous attachons à démontrer l’efficacité des méthodes développées en les confrontant à un ensem-
ble de techniques de segmentation concurrentes, disponibles dans la littérature.

Les objectifs de base de ce travail sont les suivants:

• Proposer de nouvelles solutions de segmentation d’images, en exploitant de nouvelles informa-
tions (de nature spatiale ou spectrale) dans les images à traiter.

• Adapter ou développer des algorithmes s’appuyant sur des métaheuristiques d’optimisation,
dédiés aux images d’IRM du cerveau, de manière à permettre une interprétation plus précise et
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plus fiable des résultats.

• Pour chaque méthode, analyser qualitativement et quantitativement les résultats produits, en
impliquant des bases de données standard de la littérature, afin de mieux évaluer leur perfor-
mance et leur portée.

• Confronter les méthodes proposées à un ensemble de méthodes de segmentation concurrentes, afin
de démontrer leur capacité à surmonter, tout au moins partiellement, les limites des approches
existantes.

Les principales contributions de cette thèse peuvent être résumées par les points qui suivent:

• Dans le cadre de l’optimisation mono-objectif, nous avons développé une nouvelle méthode de
segmentation des images d’IRM du cerveau, en mettant en oeuvre un algorithme d’optimisation
par essaims de particules (PSO) et une approche de regroupement des pixels de l’image (clus-
tering, en anglais) par le biais du concept d’entropie floue. La méthode que nous avons mise au
point surpasse un ensemble de méthodes récentes de la littérature. L’algorithme proposé a été
validé en impliquant à la fois des images simulées d’IRM du cerveau et des images réelles.

• Dans le cadre de l’optimisation multi-objectif, nous avons mis au point une nouvelle méthode de
segmentation, qui exploite simultanément deux critères complémentaires, à savoir la compacité
et la séparation. Cette méthode de segmentation est organisée autour d’un clustering à noyau à
base d’entropie floue (avec une information spatiale locale et une correction de biais) et un poids
d’énergie adaptatif combiné au modèle Global Energy Fit. En outre, une nouvelle variante de
PSO multi-objectif a été développée pour déterminer l’estimateur optimal. La méthode proposée
a été également validée sur la base, à la fois, d’images simulées d’IRM du cerveau et d’images
réelles.

• Enfin, en matière d’hybridation de métaheuristiques, une nouvelle méthode de segmentation a été
élaborée, en combinant une variante du modèle des champs aléatoires de Markov cachés et une
nouvelle métaheuristique hybride. Celle-ci combine deux autres métaheuristiques classiques, qui
sont PSO et Cuckoo Search. La méthode proposée est validée en impliquant des images simulées
d’IRM du cerveau et des images réelles. L’étude expérimentale a montré que notre approche
produit des résultats plus rapides, avec une segmentation de meilleure qualité.

Organisation de la thèse

La thèse est structurée en quatre chapitres. L’objectif du premier chapitre est d’introduire les
concepts exploités dans nos travaux de recherche; chacun des chapitres suivants détaille les méthodes
que nous avons développées et leur validation expérimentale. L’organisation générale et le contenu de
ces différents chapitres sont donnés dans la suite de ce rapport.

Le chapitre 1 traite de la description formelle du problème de segmentation des images d’IRM
du cerveau, dans le cadre général d’une approche reposant sur l’optimisation. Nous présentons en
outre un état de l’art des métaheuristiques d’optimisation existantes, des approches de segmentation
d’image couramment utilisées, ainsi que de leurs améliorations au moyen de métaheuristiques.

Le chapitre 2 expose notre première contribution, qui concerne l’amélioration de la classification
floue pour la segmentation des images d’IRM du cerveau, à l’aide de métaheuristiques d’optimisation.
Nous améliorons d’abord la fonction de coût, reposant sur le modèle de classification à base du concept
d’entropie floue, puis nous développons une variante de PSO, pour déterminer l’estimateur optimal.
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Le chapitre 3 décrit une extension de la première contribution à une approche d’optimisation
multi-objectif, qui exploite un critère complémentaire, à savoir un contour actif basé-région. Les deux
critères sont optimisés simultanément, au moyen d’un algorithme impliquant un PSO multi-objectif
amélioré. Ainsi, deux caractéristiques indépendantes, qui sont la compacité et la séparation, sont
prises en considération dans le processus de segmentation des images.

Le chapitre 4 est consacré à une amélioration ultime, obtenue en exploitant les résultats de la
contribution précédente et une nouvelle variante du modèle des champs aléatoires de Markov cachés.
Une métaheuristique hybride est mise en oeuvre dans l’étape d’optimisation.

Enfin, ce rapport de thèse se termine par une conclusion générale, dans laquelle nous récapitulons
nos contributions et nous proposons des perspectives de développement du présent travail, compte tenu
des résultats actuels obtenus.
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General introduction

Image segmentation is the process of partitioning an image space into non-overlapped meaning-
ful homogeneous regions or objects, according to given quantitative criteria: gray level, color, texture
or combination of them. Two main properties that segmentation methods are usually based on are:
the homogeneity of a region and the discontinuities characterising adjacent disjoint regions. In medi-
cal imaging, segmentation is of considerable importance in providing non-invasive information about
human body structures. From this application field standpoint, the need for robust and accurate
medical image segmentation is an important step for a wide range of problems. They could be: (1)
the identification of the body organs for use in the development of patient atlases for rapid labelling
of X-ray Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) derived information;
(2) finding brain neuroanatomy for guiding interventional procedures; (3) parsing out the lungs and
surrounding airways to monitor and treat lung disease; or (4) isolating vessels, valves and chambers
in the cardiovascular system for quantifying the extent of disease and polyp segmentation from CT
colonoscopies to guide treatment procedures. This list is obviously much longer, and includes problems
from a variety of imaging scales to visualizing and capturing the signature of individual cells.

However, medical image segmentation confronts several challenges to obtain results that can be
used in clinical applications. The main challenge is that the different anatomical parts of the human
body exhibit significant shape and appearance variations caused by a multitude of factors: (1) sensor
noise/artifact (inherent to its own physical sensor, image formation process, modality and imaging
configuration); (2) diversity of patients and variety of their movements (build forms; motions from
respiration, cardiac cycle, blood and cerebrospinal fluid flow, peristalsis and swallowing, and voluntary
movement); (3) pathology, surgery, and contrast agents (image appearances under different contrast
phases are different); (4) partial scan and field of view; and (5) soft tissue (weak boundary between
internal organs). Another challenge lies in stringent accuracy, robustness and speed requirements
arising from real clinical applications.

Solving the problems of medical image segmentation has long been thought of as a basic touch-
stone of research in medical image analysis. The early work in this area, that began several decades
ago, often consisted of adapting techniques and strategies developed in the computer vision and pattern
recognition communities to problems in medical imaging. However, over the past 20 years, researchers
dedicated to working specifically in the area of medical image analysis have been able to articulate
and identify many of the issues specific to this field in general, and medical image segmentation in
particular. Difficulties to overcome include noting the deformable nature of the underlying structures
or regions to be segmented, the natural statistical variation of these structures or regions themselves
and any parameters that might be derived from them, as well as the singular problem of the segmenta-
tion of medical images, which often involves the knowledge of several structures, regions or contextual
information inherent to the processed images.

Throughout the years, many segmentation techniques have been developed and reported in
the literature. Generally, no segmentation technique works well for all the applications, and various
approaches of different accuracy, speed, and degree of complexity have been explored for different
practical problems. Their categorization is often based on goals and specific aspects of data processing
involved. Among those, the approach which considers the image segmentation problem as one of
the optimization problems, where the desired segmentation minimizes or maximizes one or some
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energy (or cost) functions defined by the particular application. Solving the optimization problem,
using metaheuristics, has attracted many researchers in recent years. Metaheuristics are high-level
procedures designed to solve optimization problems by the process of searching acceptable suboptimal
solutions to a particular problem of interest. This family of algorithms is generally applied to problems
for which there is no satisfactory algorithm able to solve them effectively. Even though various
techniques and methods for the image segmentation problem have been proposed and proven to be
successful in many applications with different degrees of success, many key open issues still remain
to be investigated. Such issues might be, for instance, the following problems: (1) how to construct
objective functions being optimized that reflect satisfactory characteristics of segmented results; (2)
what is the efficient algorithm for finding the optimal estimator since the objective functions are
generally non-convex, non-unique in nature, and may have several local minimum points.

Thanks to the rapid development of imaging technologies, now living organs and organisms of
human body can be explored non-invasively. Among those, to analyse and explore brain anatomy and
function in diagnosis of brain disorders, MRI is commonly used since it can provide a large amount
of data with an increasingly high level of quality. However, brain MR images still contain some
artifacts such as noise, image volume effect and bias field effect due to various factors, for instance,
the environment and the acquisition devices and have complex structures. Analysing of these images
becomes a tedious and complex task for clinicians; therefore, there is a great need for methods that
process with the interpretation of the data with high accuracy. To alleviate these difficulties, in the
present research work, we propose three segmentation methods for brain MR images.

This thesis was prepared within the Laboratoire Images, Signaux et Systèmes Intelligents (LiSSi,
E.A. 3956) from the Université Paris-Est Créteil (UPEC). This research work has been proposed and
carried out under the supervision of Professor Patrick SIARRY and co-supervised by Dr. Hamouche
OULHADJ in the SIMO group (Signal, Image and Optimization) of LiSSi. This team is interested in
the development of both image processing and optimization techniques.

Studied objectives and major contributions

The core objective of this work is to create new variants of image segmentation methods for
brain MR images with high accuracy, thanks to the contributions of metaheuristics. To verify the
effectiveness of the methods developed, we compared them with a set of recent segmentation techniques
available in the literature.

The basic objectives pursued by this research work are:

• To propose new variants of image segmentation criteria (energy or cost functions) that better
reflect the characteristics of the input images by incorporating additional information (spatial
or spectral) in the segmentation process.

• To adapt or develop segmentation algorithms based on optimization metaheuristics, and dedi-
cated to MR images of the brain, with more reliable results, easier to analyze and interpret.

• To examine both qualitatively and quantitatively the segmented results, using the standard
databases of the literature to better evaluate the scope and the performance of the methods
developed.

• To confront the proposed methods with a set of competing segmentation methods of the literature
to demonstrate their ability to overcome, at least partially, the limitations of existing approaches.

The major contributions of the thesis can be summarized as follows.



7

• In mono-objective metaheuristic optimization approach, a new segmentation method for brain
MR images using improved Particle Swarm Optimization (PSO) and a new variant of fuzzy
entropy clustering model is proposed. The performance is found better than a set of recent
methods in the literature. The proposed algorithm is validated by using both simulated and real
brain MR images.

• In multi-objective metaheuristic optimization approach, a new segmentation method that simul-
taneously optimizes two complementary properties, namely compactness and separation, in the
segmentation process, is proposed. The two criteria are based on kernelized fuzzy entropy clus-
tering with local spatial information and bias correction, and adaptive energy weight combined
with global and local fitting energy active contour model. In addition, a new variant of multi-
objective particle swarm optimization algorithm is proposed for finding the optimal estimator.
The proposed method is also validated by using both simulated and real brain MR images.

• In hybrid metaheuristic approach, a new segmentation method, that combines a new variant of
hidden Markov random field model and a novel hybrid metaheuristic method, is proposed. The
hybrid metaheuristic algorithm developed is based on two well-known metaheuristic algorithms,
namely PSO and Cuckoo search. The proposed method is validated by using both simulated
and real brain MR images. Experiments show that faster and better segmented results can be
obtained.

Thesis organization

The thesis is structured into four chapters. The first chapter is devoted to information in support
of this research. The next chapters explain in detail each of the proposed methods. We detail below
the general organization of these chapters:

Chapter 1 deals with the formal description of the problem of segmentation, brain MR image
segmentation, in the optimization-based framework. Furthermore, a bibliographic study is presented
in which there are various metaheuristic optimization techniques, major segmentation approaches
commonly used as well as their improvements by combination with metaheuristics.

Chapter 2 presents our first contribution, which is the improvement of fuzzy clustering approach
for brain MR image segmentation, using optimization metaheuristics. Particularly, first, fuzzy entropy
clustering model is improved and considered as the cost function, then an improved PSO is adapted
to find the optimal estimator.

Chapter 3 describes an extension of the first contribution to a multi-objective optimization
approach, where a complementary criterion, that implements a region-based active contour, is intro-
duced. Both segmentation criteria are simultaneously optimized by using an improved multi-objective
particle swarm optimization algorithm such that two independent characteristics in segmented results,
namely compactness and separation, can be achieved.

Chapter 4 is dedicated to a further enhancement of the segmentation, using the results of the
second contribution and a new variant of hidden Markov random ?eld model. Hybrid metaheuristic
approach is used in the optimization step.

Finally, the thesis ends with a general conclusion, in which we summarize our contributions and
propose perspectives, taking into account the current results obtained.
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Chapter I

State of the art: image segmentation
and optimization metaheuristics

I.1 Introduction

Image segmentation is the process of partitioning an image space into non-overlapped meaning-
ful homogeneous regions or objects, according to given quantitative criteria: gray level, color, texture
or combination of them. For medical image analysis, the success of an image analysis system depends
heavily on the quality of the segmentation process. Among different medical image modalities such
as X-ray, Ultrasound (US), Computed Tomography (CT) and Positron Emission Tomography (PET),
Magnetic Resonance Imaging (MRI) has become a leading technique, widely used for imaging human
soft tissue anatomy. Its applications are extended over all parts of the human body, and it presents the
most common method of human brain exam. However, the existence of noise, low contrast, intensity
non-uniformity, and the complexity of objects’ structure are critical obstacles that stand in the way
of achieving an ideal segmentation system. Over the past decades, several approaches have been pro-
posed to obtain desirable segmentation results. A class of rather promising approaches reformulates
the problem of image segmentation into an optimization problem, such as energy minimization or
maximum-a-posteriori estimation, mainly because of: (1) rigorous and formal mathematical formu-
lation; (2) availability of mathematical tools for optimization; (3) capability to incorporate several
criteria as terms in the objective function; (4) ability to examine the relative performance of different
solutions; and (5) availability of quantitative metrics to measure the extent by which a method satis-
fies different criteria [Nosrati and Hamarneh, 2016]. Since the energy fitting functions, which contain
a large amount of information or image characteristics, are non-convex, non-unique in nature and
may have several local minimum points, using optimization metaheuristic techniques is a promising
approach to solve efficiently the problem.

In this chapter, we present the basic information of MRI technique in Section I.2. Then, the
formulation of the image segmentation problem is given in Section I.3. Without claiming completeness,
we provide the major concepts related to optimization metaheuristics in Section I.4. In Section I.5,
different methods for the image segmentation problem, as well as their improvements by combination
with optimization metaheuristics, are described. Finally, Section I.6 presents a conclusion summarizing
what we wish to develop to achieve a more efficient segmentation.

I.2 Magnetic resonance imaging

I.2.1 MRI principles

The principles of magnetic resonance (MR) imaging is based on the absorption and emission of
energy in the radio frequency range of the electromagnetic spectrum. The basic objective is to map
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the spatial location and associated properties of specific nuclei or protons present in the object being
imaged.

In the human body, hydrogen atoms, which have a fundamental property of odd atomic weight
and/or odd atomic numbers with the possession of an angular moment called spin, contain a MR
signal. These protons carry an electric charge and spins around their axes. The charged protons
create a magnetic field around them and thus they act as tiny magnets, possessing both an angular
moment and a magnetic moment. The magnetic moment is proportional to the spin angular moment
and is related through a constant, called gyro-magnetic ratio, a quantum property of the proton. The
relationship is given by:

m = ξJ (I.1)

where m and J are the magnetic moment and the spin angular moment, respectively; and ξ is gyro-
magnetic ratio defined in MHz/T .

The atomic numbers have their orientations corresponding to energy levels with or without
the present of an external magnetic field. Without an external magnetic field, the direction of the
magnetic moments of the spinning protons is completely random. In contrast, if an external magnetic
field exists, the magnetic moments of nuclei result in a nuclear paramagnetic polarization with specific
orientations (either aligned along the external magnetic field or against the field) and energy levels as
characterized by their spin quantum number.

Using the principle of classical mechanics, the torque generated by the interaction of the magnetic
moments and the external magnetic field is equal to the rate of change of angular momentum, which
is given by:

d
−→
J

dt
= m×

−→
H 0 = m×H0

−→
k (I.2)

where H0 is the strength of the external magnetic field and
−→
k is the unit vector along the z-direction.

The solutions of Eqs. (I.1) and (I.2) lead to an important relationship that provides the angular
frequency, ω0:

ω0 = ξH0 (I.3)

The relationship provided in Eq. (I.3) is known as the Larmor equation. From this equation, we
can state that the possession frequency, ω0, depends on the type of nuclei (determined by ξ) and the
intensity of the external magnetic field (H0). This frequency is the frequency at which the protons can
receive the Radio Frequency (RF) energy to change their states for exhibiting magnetic resonance.
The energy is provided by a RF electromagnetic coil that transmits an oscillating RF wave at the
Larmor frequency to cause nuclear excitation. After the RF pulse is turn off, the excited nuclei go
through a relaxation phase emitting the absorbed energy at the same Larmor frequency that can be
detected as an electrical signal, called the Free Induction Decay (FID). FID is the basic signal that
is used to create MR images and can be acquired through the same RF coil tuned at the Larmor
frequency.

Assuming that N is the total number of spinning nuclei in the object being imaged, a stationary

magnetization vector
−→
Ms can be defined as follows:

−→
Ms =

N∑
i=1

−→mi (I.4)

with the stationary magnetization vector,
−→
Ms, and a rotating magnetization vector,

−→
Mr defined



State of the art: image segmentation and optimization metaheuristics 10

as follows:

−→
Ms = Mx

−→
i + My

−→
j + Mz

−→
k (I.5)

−→
Mr = M′x

−→
i ′ + M′y

−→
j ′ + M′z

−→
k ′

the relationship between them can be expressed as follows:

d
−→
Ms

dt
=
∂
−→
Mr

∂t
+ ω ×

−→
Mr (I.6)

where ω is the angular frequency at which the transverse plane rotates. The rate of change in the net
stationary magnetization vector can be described as follows (Bloch equation):

d
−→
Ms

dt
= ξ
−→
Ms ×

−→
H (I.7)

where
−→
H is the net effective magnetic field. Considering the total respond of the spin system in the

presence of an external magnetic field along with the RF pulse for nuclei excitation followed by the
nuclear relaxation phase, the change of the net magnetization vector can be expressed as follows:

d
−→
Ms

dt
= ξ
−→
Ms ×

−→
H −

(
Mz
−→
i −My

−→
j

T2

)
− (Mz −M0

z)
−→
k

T1
(I.8)

where M0
z is the net magnetization vector in thermal equilibrium in the presence of H0. T1 and T2

are the longitudinal (spin-lattice) and the transverse (spin-spin) relaxation times, respectively. The
magnetic flux φ(t) through the RF coil can be given as follows:

φ(t) =

∫
object

−→
H(s)

−→
Ms(s, t)ds (I.9)

where s is a spatial location vector in the spinning nuclei system. Using the Faraday’s law of elec-
tromagnetic induction, the voltage, v(t), induced in the RF coil is the raw MR signal, which can be
expressed as follows:

v(t) = −∂φ(t)

∂t
= − ∂

∂t

∫
object

−→
H(s)

−→
Ms(s, t)ds (I.10)

The realization of spatial location, s, is responsible to create a MR image that maps the magnetic
resonance response of the spinning nuclei available in that location. At last, generating MR signal is
obtained through encoding techniques.

I.2.2 Effecting factors on MR signal

There are several factors that affect the MR signal acquisition causing artifacts or degradation in
the reconstructed image. These factors include noise, field inhomogeneities, flow of nuclei and change
in resonance parameters due to chemical shifts within the object.

• Noise: various sources, which include many external causes in the patient (Brownian motion of
ions in bodily fluids), transmission system and environmental factors (medical devices located
anywhere in the MR procedure room), can influence on MR signal. They result in several types
of noise such as Gaussian, Poisson, blurred, speckle and salt-and-pepper noise existing in MR
image [Kumar and Nachamai, 2012].
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• Magnetic field inhomogeneities: field inhomogeneities and gradient fields also cause a direct
dephasing effect to the transverse relaxation process [Simmons et al., 1994].

• Magnetic susceptibility: the presence of other substances in the imaging medium is another
factor influencing the relaxation times.

• Chemical shifts: the presence of a molecular or chemical environment, which can change the
magnetic characteristics influence on the protons, can cause a deviation in the Larmor frequency
of spinning protons.

Though there are some artifacts existing in MR image, MRI technique has some excellent char-
acteristics such as high soft tissue contrast, non-invasive character, high partial resolution and easy
slice selection in any orientation. As a result, it is used for many applications such as Alzheimer
disease, Parkinson or Parkinson related syndrome, congenital brain malformations or perinatal brain
damage, post-traumatic syndrome, etc.

Note that, among three types of MR images, named T1-weighted, T2-weighted and Photon
Density (PD), T1-weighted MR images are used for the validation purpose in this study. The main
reason is that T1-weighted images offer the highest contrast between the brain soft tissues.

I.3 Formulation of the image segmentation problem

Formally, the segmentation of an image can be reduced to an optimization problem, which can
be stated as follows. Given a feature image F and an uniformity criterion Γ, define predicate:

P (F) = True, if ∃ε 3 |Γ(i, j)− ε| < ξ,∀(i, j) ∈ F (I.11)

Partition image into C subsets Y = (Ωi)C such that

• Completeness: F = ∪Ci=1Ωi

• Disjointness: Ωi ∩ Ωj = � for i 6= j

• Satisfiability: P (Ωi) = True, ∀i

• Segmentability: P (Ωi ∪ Ωj) = False,∀i 6= j

We also observe that the uniqueness of the segmentation is not guaranteed by these four condi-
tions, because the segmentation results depend not only on the information contained in the image, but
also the method used to process that information. Generally, to reduce the problem of non uniqueness
of the solution, the segmentation problem is regularized by an optimization constraint of a function
H, characterizing the quality of a good segmentation. As a result, a fifth condition is added [Capelle
et al., 2003]:

H(F,Y∗) = min
Y∈ΩY

/ max
Y∈ΩY

H(F,Y) (I.12)

where H is a function and ΩY is the set of possible partitions.

It is clear that such condition (I.12) does not entirely solve the problem of uniqueness of segmen-
tation. There are still cases where several segmentations can have the same optimal value [Sulaiman
et al., 2014]. Hence, to obtain an acceptable segmentation of the image, several criteria need to be
satisfied, such as compactness, separation, and non-overlapping. In other words, there is no single and
sufficient criterion for optimally segmenting all images.
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There are two major approaches for formulating the image segmentation problem as an energy
optimization problem: regularization and Bayes’ theorem. In the regularization approach, an energy
function, JR : Y −→ <, usually consists of several objectives that are divided into two main categories:
regularization terms, Ri : Y −→ <, and data terms, Di : Y −→ <. The regularization terms
correspond to priors on the space of feasible solutions and penalize any deviation from the enforced
prior such as shape, length, etc. The data terms measure the strength with which a pixel should be
associated with a specific label/segment. These objectives can be derived as:

JR(F,Y) = λ
∑
i

Ri(Y) + η
∑
i

Di(F,Y) (I.13)

where λ and η are constants that balance the contribution/importance of the regularization term and
the data term in the problem.

The image segmentation problem is then formulated as follows:

Y∗ = argmin
Y∈ΩY

/ argmax
Y∈ΩY

JR(F,Y) (I.14)

An optimization-based image segmentation problem can also be formulated as a maximization
problem using Bayes’ theorem.

Y∗ = argmax
Y∈ΩY

P (Y|F) = argmax
Y∈ΩY

P (F|Y)P (Y) (I.15)

where P (Y|F) is the posteriori probability that defines the degree of belief in Y given the evidence F.
P (F|Y) is the image likelihood measuring the probability of the evidence in F given the segmentation
Y, and P (Y) is the priori probability that indicates the initial (prior to observing F) degree of belief
in Y. For more details, we refer the reader to Section IV.2.1

Thus, the image segmentation problem can be mathematically formulated in different ways de-
pending on the approach and image information used. Generally, the objective functions are complex,
non-convex, non-unique in nature and may have several local minimum points. Consequently, two
major problems have arisen: (1) How to obtain appropriate models as well as to benefit image infor-
mation for the problem? (2) What is the efficient algorithm for finding the optimal estimator to avoid
stagnation at local minima? These problems will be partially solved in this study.

I.4 Optimization metaheuristics

Optimization can exist in almost every aspects of life including engineering, industry, business
or even social science. Metaheuristics are widely recognized as efficient approaches for optimization
problems of such areas. Because of simplicity and robustness of produced results, a great interest
has been devoted to metaheuristics. In what follows, first, we present a short introduction related to
optimization metaheuristics; then, we briefly describe the major areas of study in this field.

I.4.1 Metaheuristic algorithms

Metaheuristics are generally applied to problems for which there is no satisfactory problem-
specific algorithm to solve them. In order to find desirable solutions, for the multi-population meta-
heuristics, the optimization process begins with the creation of an initial group of random solutions
(population) that satisfy the restriction of the problem to be solved. Then, the set containing all the
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solutions is iteratively evaluated by one or more target functions associated with the problem and
one iterates over generations to minimize or maximize the objective(s). These iterations run until the
solution found meets some pre-defined criteria. This final solution (near optimal solution) is said to
be an ”optimal” solution and the system reaches a converged state [Hussain et al., 2018]. Note that,
though this procedure is quite simple, finding solutions for real-life problems requires considering and
addressing several issues, from which the most important are: local optimal avoidance, computational
cost of function evaluation, constraints handling, multiplicity of objective functions, and uncertainties.

Basically, to search for an optimal solution of a given problem, a metaheuristic algorithm can
be formulated as:

min
X∈ΩX

/ max
X∈ΩX

Q(X), X = (x1, . . . , xC) ∈ <C (I.16)

where X is the design vector that encodes C decision variables of the problem, usually, a design vector
is also called candidate solution. ΩX is the feasible search space or solution space limited by the lower
and upper bounds.

A metaheuristic will be successful on a given optimization problem if it can provide a balance
between two cornerstones features: the exploration and the exploitation (also referred to as diversi-
fication and intensification, respectively). Exploration is the ability to expand search in wide spread
domain to explore unvisited areas such that parts of search space with high-quality solutions are iden-
tified. Exploitation, via accumulated search experience, is important to intensify the search in some
promising areas. The main differences among the existing metaheuristics concern the particular way
in which they try to achieve this balance [Birattari et al., 2001]. Some promising approaches, which
can be used to maintain the trade-off balance, are: parameter tuning, population size control, and
diversity maintenance through deterministic, adaptive, and self-adaptive techniques.

Almost all metaheuristics share the following characteristics: they are nature-inspired (based on
principles of physics, biology or ethology); they make use of stochastic elements (random variables);
they do not use the gradient or Hessian matrix of the objective function; existing several parameters
need to be configured to the problem at hand [BoussäıD et al., 2013]. The classification of metaheuris-
tics can be performed with respect to different aspects concerning the search path they follow, the use
of memory, the kind of neighbourhood exploration used or the number of solutions maintained during
iterations. For a formal classification of metaheuristics, we refer the reader to [Talbi, 2009].

In order to analyse the performance of metaheuristic algorithms, researchers have commonly
used benchmark test functions such as those used in [Héliodore et al., 2017]. Then, some validation
criteria such as best, worst, mean and standard deviation of objective function values obtained over
specific number of runs are used to make a comparison. For specific engineering problems, which
are also solved by using metaheuristics (for instance the image segmentation problem), the quality of
the final solution is evaluated by using validation criteria in those domains (such as Dice coefficient,
Hausdorff distance, etc.).

The idea of solving optimization problems through heuristic approaches was envisioned more
than forty years ago when Operations Research was in its infancy during World War II. The formal kick
off of metaheuristic research took place when initial metaheuristic methods like Simulated Annealing
and Tabu Search were introduced in 1980s. However, the boom of this field of research was witnessed
in 1990s after the wider applications of Genetic algorithms (GA), Ant colony optimization (ACO) and
Particle swarm optimization (PSO). Despite the success of metaheuristic methods on diversified areas
of science, engineering and technology, there remains a sufficient gap that needs to be filled in order
to reach maturity level as compared to other established fields of research.

Now that the above description has already established preliminary knowledge about meta-
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heuristics, the upcoming sections explore more about some attractive categories of metaheuristics.

I.4.2 Single-solution based metaheuristics

Single-solution based metaheuristics, also called trajectory methods, are based on the evolution
of a single solution during the search process. Typically, these methods start with a single initial
solution and move away from it, describing a trajectory in the search space. Usually, basic single-
solution based algorithms are more exploitation oriented. Many methods in this category can be
found in the literature; however, in this section we present two common ones used not only in image
segmentation but also in other applications, named Simulated Annealing (SA) and Tabu search (TS).

I.4.2.1 Simulated annealing

Simulated annealing (SA) is a stochastic optimization technique, first introduced by Kirkpatrick
[Kirkpatrick et al., 1983] and independently by Cerny [Černỳ, 1985]. SA is inspired by the annealing
technique in which high temperature metal if cooled at an appropriate cooling rate will reach an
absolute minimum energy state related to complete atomic ordering of metal. If the high temperature
metal is cooled at a fast rate, the atoms will reach a sub-optimal energy state. The hypothesis of
this method is that: system energy at higher temperature (T ) is allowed to move uphill as well as
downhill, but as temperature (T ) goes down gradually, the energy is allowed to move downhill only.
Thus, evolution of states is sensitive to coarser energy variation when (T ) is large and to finer variation
when (T ) is small.

Transposing the process of annealing to the optimization process is based on the following
analogies: the objective function to be optimized is similar to the energy of a material, and the
temperature is represented by a controllable parameter defining the cooling scheme.

The algorithm begins with selecting an initial solution and later generating a new state, randomly
generating a new solution (X′ = X +4X) in the neighbourhood of the current solution (X); this is
called a neighbour solution. This new state is evaluated and compared with the previous solution in
terms of fitness value (f). If the solution of the new state is better than the previous one, it is accepted;

but if it is not, it is accepted with a probability, P (T, fX′ , fX) = exp(− fX′−fX
T ). The temperature (T )

is gradually decreased during the search process. By repeatedly following this Metropolis rule of
acceptance, a sequence of solutions is generated, which constitutes a Markov chain (in the sense that
each solution depends on only that one which immediately precedes it). With this formalism in place,
it is possible to show that, when the chain is of infinite length, the system can reach (in practice, can
approach) an equilibrium point at the temperature considered. The process is terminated when the
system is ”solidified” (either the temperature has reached zero or no more moves causing an increase
in energy have been accepted).

It is clear that, at high temperature, exp(− fX′−fX
T ) is close to 1, and therefore the majority

of the moves are accepted and the algorithm becomes equivalent to a simple random walk in the
configuration space. However, at low temperature, exp(− fX′−fX

T ) is close to 0, and therefore the
majority of the moves that increase the energy are rejected. At an intermediate temperature, the
algorithm intermittently allows transformations that degrade the objective function: hence it leaves a
chance for the system to be pulled out of a local minimum.

Note that the cooling schedule for T is critical to the efficiency of SA. If T is reduced too rapidly,
a premature convergence to a local minimum may occur. In contrast, if it is too slow, the algorithm
is very slow to converge. Given a ”sufficiently large” number of iterations at each temperature, SA
is proved to converge almost surely to the global optimum [Hajek, 1988]. The Simulated Annealing
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method is presented in Algorithm I.1.

Algorithm I.1: The general SA algorithm

Initialization: Initialize randomly a solution X for the system to be optimized; initialize the
temperature T

Results : The optimal solution X∗

k ← 1
repeat

1 Apply random perturbations to the state: X′ ← (X +4X)
2 Evaluate changes in the energy: 4fX ← (fX′ − fX)
3 if 4fX < 0 then

3.1 Keep the new state: X← X′

else

3.2 Accept the new state with probability: P (T, fX′ , fX) = exp(− fX′−fX
T )

4 Decrease T : T ← (T −4T )
5 k ← k + 1

until termination conditions are met

SA has been successfully applied to many engineering problems [Chibante, 2010], though it has
been found too slow to converge to the global optimum. For the image segmentation problem, several
works [Cook et al., 1996, Liu et al., 2007, Aguilera et al., 2012, Zhang et al., 2016b] have been found
in the literature. To accelerate SA search, some variants of SA have been proposed, and we refer the
reader to [Suman and Kumar, 2006, Gendreau et al., 2018] for more details.

I.4.2.2 Tabu search

Tabu search (TS) is also a single-solution based metaheuristic, which was formalized in 1986 by
Glover [Glover, 1986]. Originally, the method was developed for very large combinatorial optimization
and was later extended to continuous optimization [Cvijović and Klinowski, 1995]. Tabu search uses
a set of strategies and learned information to mimic human insights for problem-solving.

Essentially, TS is a greedy local search (also known as hill-climbing) method that explores the
solution space beyond local optimality and adopts a memory structure that imitates human behaviour,
and uses past experiences to improve decision-making.

In TS, a neighbourhood structure is introduced to the solution space A(X) in the following
way: Each solution X ∈ A(X) has an associated set N (X) ⊂ A(X), with X /∈ N (X), called the
neighbourhood of X. N (X) is defined as the set of all X′ ∈ A(X) that can be obtained directly
from X by a modification called a move m(X,X′) from X to X′. The number of solutions in a
neighbourhood may be very large and the quality of these solutions may vary a lot. Usually, the sizes
of neighbourhoods are much larger than can be evaluated by the algorithm, and thus only the most
attractive part of a neighbourhood is actually explored.

In order to guide the search process in an intelligent manner, TS procedure incorporates a
flexible memory structure as its essential component. Various types of memory structures can be used
to remember specific properties of the trajectory through the search space that the algorithm has
undertaken. The memory structure, D, is formally defined using so-called tabu lists: Ti, i ∈ {1, . . . , p}
with lengths Li, i ∈ {1, . . . , p}, and D = T1 ∪ · · · ∪ Tp. The main role of this structure in TS is to
prevent cycling back to some previously generated solutions and to diversify the search process, i.e.
induce the search of new subregions of the solution space A(X). However, the disadvantage of the use
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of a tabu list is that a forbidden attribute may be part of an attractive solution of a neighbourhood
that has not been visited so far. To cope with this problem, an aspiration criterion, involving a set of
rules, is used to override tabu restrictions (if the aspiration criterion is satisfied, the move is allowed).
A typical aspiration criterion is to keep a solution that is better than the best solution found so far.

It should be noted that the length of the tabu list controls the memory of the search pro-
cess. If the length of the list is low, the search will concentrate on small areas of the search space
(intensification). On the contrary, a high length forces the search process to explore larger regions
(diversification), because it forbids revisiting a higher number of solutions.

The TS procedure starts from an initial feasible solution and at each step moves from the
current solution to the best one in its neighbourhood, trying to reach an optimal solution. At step
(k), a subset N ′(X(k)) of the modified neighbourhood N (X(k),D), which is defined according to D, is
constructed and the best solution in N ′(X(k)) is chosen as the next solution X(k+1) (even if it brings
no improvement in terms of fitness value). Then, this solution X(k+1) will replace the previous one X∗

(the best solution discovered in the neighbourhood so far) if it is found to be better in terms of fitness
value. At the end of the step (k), the memory structure D and the aspiration criterion are updated,
preparing for next iteration (k+ 1). If the stopping criteria are met, the TS algorithm terminates and
the best solution found is returned. The TS procedure can be expressed in the most general way as
in Algorithm I.2:

Algorithm I.2: The general TS algorithm

Initialization: Generate an initial solution X(0); create the memory structure D
Results : The optimal solution X∗

k ← 1
repeat

1 Define N (X(k),D) and evaluate fitness values, fN (X(k),D)

2 Generate a set N ′(X(k)) as a subset of N (X(k),D)

3 Determine X(k+1) by optimizing the objective function over N ′(X(k))
4 if fX(k+1) better than fX∗ then

4.1 X∗ ← X(k+1)

5 Update the memory structure D, and the aspiration criteria
6 k ← k + 1

until the stopping criteria are satisfied

The stopping criteria can have the following forms. First, the TS procedure is terminated if the
number of consecutive iterations, performed without any improvement of the currently best objective
function value, is greater than a specified number. Second, if the optimal fitness value of the objective
function is known in advance, then the process can be interrupted as soon as this value is reached.

TS has been applied to many optimization problems: vehicle routing [Toth and Vigo, 2003],
continuous optimization [Battiti and Tecchiolli, 1996, Chelouah and Siarry, 2000], multi-criteria opti-
mization [Jaeggi et al., 2008], stochastic programming [Løkketangen and Woodruff, 1996] and real-time
decision problems [Gendreau et al., 2006]. For the image segmentation problem, several works [Jiang
and Yang, 2002, Nanda et al., 2004, Jiang et al., 2015] have been found in the literature. A good
review of the method is provided in [Gendreau, 2003], and we refer the reader to it for more details.



State of the art: image segmentation and optimization metaheuristics 17

I.4.3 Population-based metaheuristics

Population-based metaheuristics deal with a set of solutions rather than with a single solution.
In this section, we present the most studied population-based methods related to Evolutionary Compu-
tation (EC) and Swarm Intelligence (SI). EC algorithms are inspired by Darwin’s evolutionary theory,
where a population of individuals is modified through recombination and mutation operators. SI is a
branch of biologically inspired algorithms which is focused on the collective behaviour of swarms in
order to develop metaheuristics which mimic the swarm’s problem solution abilities.

I.4.3.1 Evolutionary computation

From a conventional point of view, an EC method is an algorithm that simulates at some level
of abstraction a biological, natural or social system. Evolutionary computation (EC) [Eiben et al.,
2003, Simon, 2013] methods are derivative-free procedures, which do not require that the objective
function must be two-times differentiable or uni-modal. Therefore, EC methods as global optimization
algorithms can deal with non-convex, non-linear, and multimodal problems subject to linear or non-
linear constraints with continuous or discrete decision variables. Despite the existing differences in
these methods, they all share a common underlying idea of simulating the evolution of individual
structures via processes of evolutionary operators (selection, recombination, mutation). The general
scheme of an evolutionary algorithm can be given in Algorithm I.3 in a pseudocode form.

Algorithm I.3: The general scheme of an evolutionary algorithm

Initialization: Initialize the population X = {X1, . . . ,XP } randomly; evaluate their fitness
values

Results : The optimal solution X∗

k ← 1
repeat

1 Select parents
2 Recombine pairs of parents
3 Mutate a few individuals
4 Evaluate new individuals
5 Select individuals for the next generation
6 k ← k + 1

until the stopping criteria are satisfied

EC methods do not require hypotheses on the optimization problem nor any kind of prior knowl-
edge on the objective function. They obtain knowledge about the structure of an optimization problem
by utilizing information obtained from the possible solutions (i.e., candidate solutions) evaluated in
the past. This knowledge is used to construct new candidate solutions which are likely to have a better
quality. Figure I.1 presents a graphical representation of a basic cycle of an EC method.

In order to solve an optimization problem by using evolutionary computation method, a popula-
tion X = {X1, . . . ,XP } with P candidate solutions (individuals) evolves from the initial point (k = 1)
to a total number of iterations, Niter. In its initial point, the algorithm begins by initializing the set
of P candidate solutions with values that are randomly and uniformly distributed between the pre-
specified lower (xmin) and upper (xmax) limits. In each iteration, a set of evolutionary operators are
applied over the population X(k) to build the new population X(k+1). The quality of each candidate

solution X
(k)
i is evaluated by using an objective function representing the fitness value, f

X
(k)
i

. During

the evolution process, the best candidate solution X∗ seen so far is preserved since it represents the
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best available solution.

No Yes

Figure I.1: The basic cycle of an EC method

Over the years, Evolutionary algorithms have been applied with a good measure of success to
many areas such as combinatorial optimization problems [Blum and Roli, 2003], constrained optimiza-
tion problems [Coello, 2002], Data mining and Knowledge discovery [Freitas, 2003], etc. For the image
segmentation problem, many works have been also proposed [Bhandarkar and Zhang, 1999, Ho and
Lee, 2003, Talbi et al., 2007, Maulik, 2009, Bhandari et al., 2015]. For more details, valuable sources
for current issues, algorithms, and existing systems in this area are presented in [Coello et al., 2007,
Zhou et al., 2011].

I.4.3.2 Swarm intelligence

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for solving optimiza-
tion problems that takes inspiration from the collective intelligence behaviour of self-organized and
decentralized systems, e.g., artificial groups of simple agents. The members of a swarm must be active,
dynamic and simple (with no or very little inherent knowledge of the surroundings). The algorithms
in the class of swarm intelligence primarily consist of two phases, namely the variation phase and the
selection phase. These phases are responsible for maintaining the balance between exploration and
exploitation and forcing the entire swarm, i.e., the set of potential solutions, to update their positions.
While the variation phase explores different areas of the search space, the selection phase works for
the exploitation of the previous experiences [Bansal et al., 2019].

A group of homogeneous agents exhibits the swarm intelligence if and only if it follows two con-
ditions: self-organization and division of labour. According to Bonabeau et al. [Bonabeau et al., 1999],
self-organization is categorized into four strategies: positive feedback, negative feedback, fluctuations
and multiple interactions. While positive feedback is revealed to the input system to promote forma-
tion of appropriate structures (provides diversity), negative feedback balances the positive feedback
and provides stabilization to the collective pattern (refers to exploitation). Fluctuations meanwhile
provide new situations in the process and help to get rid of stagnation. Multiple interactions improve
the overall intelligence of the swarm by sharing information among individuals within their searching
area. The second condition, division of labour, is defined as the simultaneous execution of various
simple and feasible tasks by individuals. This division allows the swarm to be capable of handling
changed conditions in the search space.
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In this section, we briefly present the most notable swarm intelligence techniques for obtaining
approximate solutions to optimization problems: Ant colony optimization (ACO), Particle swarm
optimization (PSO) and Cuckoo search (CS). These optimization methods will be explained below.

Ant colony optimization

Ant colony optimization (ACO) was introduced by M. Dorigo and colleagues [Dorigo, 1992,
Drigo, 1996] for the solution of hard combinatorial optimization problems. ACO is inspired from
the way how the ant colonies find the shortest route between the food source and their nest. When
searching for food, these ants initially explore the area surrounding their nest by performing a ran-
domized walk. Along their path between food and nest, ants deposit a chemical pheromone trail
on the ground that guides other ants to the food source [Blum, 2005]. During the return trip, the
quantity of pheromone that an ant leaves on the ground may depend on the quantity and quality
of the food. After some time, the shortest path presents a higher concentration of pheromones, and
therefore attracts more ants. Ant system [Drigo, 1996] exploited this characteristic of real ant colonies
to build solutions for an optimization problem and exchange information on their quality through a
communication scheme that is reminiscent of the one adopted by real ants.

ACO involves solution construction on a graph. Many ants travel through the solution space
adding solution components to partial solutions until they reach a complete solution. The selection of
the components depends on the pheromone content of the paths and a heuristic evaluation [Dorigo and
Birattari, 2010]. At each step of construction, the mth ant selects the next node using a probabilistic
action selection rule, which dictates the probability at which the mth ant will choose to go from the
current node (i) to next node (j). At the kth generation (or iteration), the probability is defined as
follows:

pmij (k) =


[τij(k)]α[ηij ]

β∑
l∈Nm

i
[τil(k)]α[ηil]β

, if j ∈ Nm
i

0, otherwise
(I.17)

where τij is the pheromone content of the arc from node (i) to node (j), Nm
i is the set of nodes that

remain to be visited by the mth ant positioned at node (i) to make the solution feasible. ηij is the
heuristic information for going from node (i) to node (j). The heuristic information is a measure of
the cost of extending the current partial solution. The constants α and β represent the influence of
pheromone content and heuristic, respectively.

Once a solution is built, it is evaluated and amount of pheromone is relatively deposited to the
quality of the solution. The ants deposit pheromone on the arcs they visited as follows:

τij(k + 1) = τij(k) +

P∑
m=1

∆τmij (k) (I.18)

where ∆τmij is the amount of pheromone ant m will add to the arc going from node (i) to node (j),
and P is the total number of ants. The amount of pheromone added is defined by:

∆τmij (k) =

{
Q

Lm(k) , if arc is in the path of ant m

0, otherwise
(I.19)

where Q is a constant and Lm(k) is the total cost of the path solution (the penalized objective function
value for ant m) at the kth iteration. All arcs in the same path will have the same cost value.
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Once all ants of the colony have completed the construction of their solution, pheromone evap-
oration, which provides an effective strategy to avoid rapid convergence to local optima and to favour
the exploration of new regions of the search space, is performed as follows:

τij(k + 1) = (1− ρ)τij(k) + ρτij(0) (I.20)

where ρ ∈ (0, 1) is a pheromone decay parameter. The basic ACO algorithm can be summarized as in
Algorithm I.4.

Algorithm I.4: The ACO algorithm

Initialization: Initialize the pheromone matrix T = [τij ] and the number of ants P ; and set:
X∗ ← Null

Results : The optimal solution, X∗

k ← 1
repeat

1 Initialize the set of solutions obtained by ants
/* Solution construction */

2 for each ant do
2.1 Choose next node by applying the state transition rule given by Eq. (I.17)
2.2 Update pheromone on ant’s path
2.3 Build solution by the selected items
2.4 Evaluate solution and update the best one, X∗

/* Update pheromones */

3 Update and evaporate the pheromone matrix, T , according to solutions and X∗

4 k ← k + 1

until the stopping criteria are satisfied

ACO has several advantages including offering positive feedback resulting in rapid solution
finding, and having distributed computation which avoids premature convergence. However, ACO has
some drawbacks such as slower convergence compared with other heuristic-based methods and lack of
a centralized processor to guide it towards good solutions. Even though the convergence is frequently
obtained, the time for convergence is uncertain. In addition, ACO shows its poor performance within
problems with large search spaces [Selvi and Umarani, 2010].

Over the years, a number of ACO variants, which share the same characteristic idea, have
been created with the aim to improve overall performance and many successful applications are now
available [Mohan and Baskaran, 2012]. For the image segmentation problem, many works [Ouadfel
and Batouche, 2003, Malisia and Tizhoosh, 2006, Wang et al., 2006, Han and Shi, 2007a, Huang et al.,
2008, Lü et al., 2015, Rogai et al., 2016, Khorram and Yazdi, 2019] are available in the literature.

Particle swarm optimization

Particle swarm optimization (PSO) was initially introduced in 1995 by James Kennedy and
Russell Eberhart as a global optimization technique [Kennedy and Eberhart, 1995]. The initial intent
of the particle swarm concept was to graphically simulate the graceful and unpredictable choreography
of a bird flock, with the aim of discovering patterns that govern the ability of birds to fly synchronously,
and to suddenly change direction with a regrouping in an optimal formation.

In PSO algorithm, each particle is a candidate solution to the problem, and is represented by a
velocity, a location in the search space and has a memory which helps it in remembering its previous
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best solution. To find the best solution, PSO simply adjusts the moving vector of each particle
according to its personal best, pBest (cognition aspect) and the global best, gBest (social aspect)
positions of particles in the entire swarm at each iteration. A detailed description of PSO algorithm
is given in Section II.2.2 and Section IV.3.2.

PSO has been successfully applied to many applications [Poli, 2008, Parsopoulos and Vrahatis,
2010], such as power systems [AlRashidi and El-Hawary, 2008, Del Valle et al., 2008], networkings
[Kulkarni and Venayagamoorthy, 2010, Elbes et al., 2019], data clustering [Rana et al., 2011, Alam
et al., 2014, Esmin et al., 2015]. For the image segmentation problem, many works have been also
found in the literature [Omran et al., 2005, Li and Li, 2008, Ghamisi et al., 2013, Li et al., 2015, Pham
et al., 2018, Tan et al., 2019]. However, there are some issues associated with PSO, which are: the
stagnation in some points in the search space, inability to change the value of one or more decision
variables, poor performance in case of a small swarm or large number of dimensions, and sensitivity to
the rotation of the search space [Du and Swamy, 2016]. Therefore, a great effort has been deployed to
get rid of these drawbacks, and then the performance of PSO is improved. For more details, readers
are referred to [Banks et al., 2007, 2008, Zhang et al., 2015a] for a comprehensive review.

Cuckoo search

The Cuckoo search (CS) algorithm is one of the latest metaheuristic approaches introduced by
Yang and Deb in 2009 [Yang and Deb, 2009]. This algorithm is inspired by the behaviour of cuckoo
species, such as brood parasites, in combination of the Levy flight behaviour of some birds and fruit
flies. CS employs three basic rules or operations in its implementation. First, each cuckoo is only
allowed to lay one egg in each iteration, and the nest is chosen randomly by the cuckoo to lay its egg
in. Second, the eggs and nests with high quality are carried forward to the next generation. Finally,
the number of available host nests is fixed and the egg laid by a cuckoo is discovered by a host bird
using a probability of pa ∈ [0, 1]. In other words, the host can choose whether to throw the egg away
or abandon the nest and build a new nest completely.

The main merits of the CS over other optimization algorithms are as follows: the number of
parameters needed to be configured in the initial search is very little, and the inexperienced user can
easily interact with it. CS has the strength points of TS in exploitation through random walk and of
EC in exploration through Levy flights. It is an efficient metaheuristic algorithm that balances between
the local search strategy (exploitation) and the whole space (exploration) [Roy and Chaudhuri, 2013].
However, CS also comprises several limitations such as low performance of local search, easily trapping
into local optimum and lack of diversity of the local search and global search [Nguyen et al., 2018a].
A detailed description of CS algorithm is given in Section IV.3.1.

Cuckoo search has been applied in many areas of optimization and computational intelligence
with promising efficiency. Comprehensive reviews about developments and applications of CS can be
found in [Fister Jr et al., 2013, Shehab et al., 2017, Chiroma et al., 2017]. For the image segmentation
problem, several works have been found in the literature [Agrawal et al., 2013, Bhandari et al., 2014,
Ilunga-Mbuyamba et al., 2016, Suresh and Lal, 2016, Wang et al., 2018, Sumathi et al., 2018].

I.4.4 Multi-objective metaheuristics

Many sectors of industry (mechanics, chemistry, telecommunication, environment, transport,
etc.) are concerned with complex problems of large dimensions that must be optimized. These
optimization problems are seldom mono-objective; on the contrary, they frequently have several con-
tradictory criteria or objectives that must be satisfied simultaneously. Multi-objective optimization
(MOO) is a discipline centered on the resolution of these kinds of problems. For them, instead of
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seeking for a single solution, we seek for a set of non-dominated solutions representing the compro-
mise solutions between different conflicting objectives [Talbi, 2009], called the Pareto optimal set. A
solution that belongs to this set is said to be a Pareto optimum and, when the solutions of this set are
plotted in the objective space, they are collectively known as the Pareto front. A short description of
MOO is illustrated in Section III.2.2.

Furthermore, many real-world multi-objective optimization problems (MOPs) typically need
computationally expensive methods for computing the objective functions and constraints. In this
context, deterministic techniques are generally not applicable, which leads therefore to using approx-
imate methods [Gendreau et al., 2010]. Among them, metaheuristics are nowadays used extensively
to deal with MOPs.

Algorithm I.5: The general scheme of a basic MOO evolutionary algorithm

Initialization: Initialize population and controlling parameters; evaluate fitness values of all
individuals; build an initial Pareto set approximation

Results : Pareto set approximation
k ← 1
repeat

1 Evolve the population using evolutionary operators (crossover, mutation, and selection)
to generate a new population

2 Evaluate the individuals of the created population in terms of fitness value
3 Build a new Pareto set approximation using dominance concept
4 Maintain non-dominated solutions (external archives, crowding distance, adaptive grid,

density estimation, ranking relations,...)
5 k ← k + 1

until the stopping criteria are satisfied

The success of a MOO metaheuristic algorithm depends mainly on the definition of some is-
sues: (1) solution representation; (2) choice of objective function; and (3) design of the operators
[Mukhopadhyay et al., 2015]. To assess its performance, three items are interesting to measure: (1)
the number of elements of the Pareto optimal set found; (2) the distance of the Pareto front produced
by the algorithm with respect to the theoretical Pareto front (assuming we know it); and (3) the
spread of solutions found [Coello et al., 2006]. The main steps of a basic MOO evolutionary algorithm
can be summarized as in Algorithm I.5.

Over the years, many methods have been proposed including both evolutionary approaches,
MOEAs, (mostly) and non-evolutionary approaches [Talbi et al., 2012]. The most popular techniques
include: SPEA2 [Zitzler et al., 2001], PAES [Knowles and Corne, 2000], NSGA-II [Deb et al., 2002],
MOEA/D [Zhang and Li, 2007], MOPSO [Coello and Lechuga, 2002], AMOSA [Bandyopadhyay et al.,
2008]. An excellent repository ((http://delta.cs.cinvestav.mx/~ccoello/EMOO/)) in which the-
state-of-the-art MOO algorithms can be found is available for research community. Nowadays, many
MOO metaheuristic algorithms have been successfully used in different areas, for instance, scheduling,
data mining, circuits and communications, control systems and robotics, manufacturing, and image
processing [Zhou et al., 2011]. For the image segmentation problem, several works have been also
found in the literature [Mukhopadhyay and Maulik, 2011, Saha and Bandyopadhyay, 2011, Zhang
et al., 2016a, Zhao et al., 2015, Benaichouche et al., 2016, Pham et al., 2019b].

(http://delta.cs.cinvestav.mx/~ccoello/EMOO/)


State of the art: image segmentation and optimization metaheuristics 23

I.4.5 Hybrid metaheuristics

Recently, quite an impressive number of algorithms have been reported that do not purely
follow the paradigm of a single traditional metaheuristic. On the contrary, they combine various
algorithmic components, often originating from algorithms of various research areas on optimization.
These approaches are commonly referred to as hybrid metaheuristics. The main motivation behind the
hybridization of different algorithms is to exploit the complementary character of different optimization
strategies, while simultaneously trying to minimize any substantial disadvantages. It is mostly due
to the no free lunch theorems [Wolpert et al., 1997] that there cannot exist a general optimization
strategy which is globally better than any other. In fact, to solve a problem at hand most effectively,
one almost always needs a specialized algorithm that includes several mechanisms.

All the existing metaheuristics share some ideas and differ among each other by certain charac-
teristic key components; making a toolbox of these components, from which we can pick in the design
of an optimization algorithm (hybrid algorithm), is the most appropriate approach tailored to the
specific characteristics of one problem at hand [Raidl, 2006]. Unfortunately, developing an effective
hybrid approach is in general a difficult task which requires expertise from different areas of optimiza-
tion. Moreover, the literature shows that it is non-trivial to generalize, because the hybridization of
algorithms might work well for specific problems, but it might perform poorly for others.

The work on hybrid algorithms is relatively recent and can be subdivided into two different
categories: collaborative hybrids and integrative hybrids [Ting et al., 2015]. In collaborative hybrids,
two or more algorithms are combined in manner of running either in sequential or parallel. On the
other hand, in integrative hybrids, one algorithm is regarded as a subordinate, embedded in a master
metaheuristic. Good resources for studying on hybrid metaheuristics can be found in [Blum et al.,
2008, Talbi et al., 2013, Blum and Raidl, 2016].

It should be noted that though hybrid approach offers a great advantage of increasing the
diversity in a population and hence enhancing the search capability of the developed algorithm, there
are some drawbacks. First, the hybridization process usually creates extra components, and hence the
complexity of the hybrid method is increased. Second, the developed algorithm usually uses a higher
number of (internal or implicit) iterations. In addition, most hybrid algorithms require an increasing
number of tuning parameters, and due to its complicated structure, a hybrid algorithm is harder to
be analysed.

However, in reality, hybrid algorithms have been proved successful in solving a wide range of ap-
plications, such as power systems [Katsigiannis et al., 2012, Peres et al., 2018], scheduling [Behnamian
et al., 2009], telecommunications [Shankar et al., 2016, Kaur and Mahajan, 2018], data clustering
[Garćıa et al., 2014], image processing [Hoseini and Shayesteh, 2013, de Paiva et al., 2016], and many
others. For the image segmentation problem, some interesting works can be found in the literature
[Siddhartha Bhattacharyya, 2016, Djemame and Batouche, 2018, Oliva et al., 2019, Ramadas and
Abraham, 2019, Ewees et al., 2018, Jia et al., 2019].

I.5 Image segmentation using optimization metaheuristics

In the past few decades, various segmentation techniques of different accuracy and degree of
complexity have been developed and reported in the literature. In this section, we present the main ap-
proaches commonly used and their improvements using optimization metaheuristics. For each method,
first, an overview of how to implement it is provided, from which its capacities, advantages and disad-
vantages are highlighted. Then, the improvements made by optimization metaheuristics are pointed
out.
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I.5.1 Thresholding

Thresholding is the simplest image segmentation method. In essence, the method uses the
intensity histogram to select threshold values, τ , that are intended to separate classes in the image
histogram. The segmentation is then achieved by grouping all pixels between thresholds into one class.

For thresholding purpose, the pixels of a gray image F = (f1, f2, . . . , fN ) having N pixels with
L gray levels L = {0, 1, . . . , L− 1}, are classified into C regions: {Ω1, . . . ,ΩC} using a set of (C − 1)
thresholds τ = {τ1, . . . , τC−1} such that τ1 < τ2 < · · · < τC−1. For convenience, we assume two
extreme thresholds τ0 = fmin and τC = fmax, where fmin and fmax are the lower and higher gray
level in the image, respectively. A pixel with gray level fj is assigned to region Ωi if τi−1 < fj < τi,
i = {1, 2, . . . , C}.

The thresholding problem consists in selecting the set of thresholds τ ∗ which optimizes an
objective function J (F, τ ), such that:

τ ∗ = argmin
τ∈L

/ argmax
τ∈L

J (F, τ ) (I.21)

Segmentation methods based on thresholding can be divided into parametric and nonparametric
[Sezgin and Sankur, 2004]. Parametric approaches estimate the parameters of a probability density
function to describe each class (assuming that the intensity distribution of each class obeys a given
distribution). In contrast, non-parametric approaches use criteria such as class variance, entropy, and
error rate to find the best thresholds. These criteria, which commonly include: Otsu criterion [Otsu,
1979], Kapur entropy [Kapur et al., 1985], Tsallis entropy [Tsallis, 1988, De Albuquerque et al., 2004],
Renyi entropy [Sahoo et al., 1997] and cross entropy [Li and Lee, 1993], are optimized to find the
optimal threshold values, providing robust and accurate methods.

Thresholding is a fast and computationally efficient method. It works well in cases where there
is a large variation in the intensity between the pixel values [Hiralal and Menon, 2016]. However, the
method does not take into account the spatial characteristics of an image (neighbourhood information);
as a result, it is sensitive to noise and intensity in-homogeneities. In low-contrast images, thresholding
techniques tend to produce scattered groups of pixels rather than connected regions and require
connectivity algorithms as a post-processing step. In general, this approach is not suitable for textured
images because the perceptual qualities of this type of image is based on higher order interactions
between image elements or objects in the scene.

In both parametric and non-parametric approaches, the image segmentation problem typically
leads to an optimization problem (Eq. (I.21)) of which solution is computationally expensive and
time-consuming. For solving such problem, while enumerative search methods are sensitive to initial
values of thresholds, may converge to a local optimum, and deteriorate their performance with the
complexity of the problem related to the number of thresholds, the metaheuristic techniques are able
to escape from local optima with a reasonable time. As a result, these techniques are preferred in
finding the optimal thresholds.

Over the years, many methods have been proposed to use optimization metaheuristics for the
thresholding problem. Single-solution based metaheuristic approach was used in [Karasulu and Ko-
rukoglu, 2011, Jiang et al., 2012, 2015]. Population-based metaheuristic approach was used in [Ham-
mouche et al., 2008, Zhang et al., 2014, Manikandan et al., 2014, Bhandari, 2018, Raj et al., 2019,
Khorram and Yazdi, 2019, Qin et al., 2019, Borjigin and Sahoo, 2019, Suresh and Lal, 2016, Pare
et al., 2017, Bhakat and Periannan, 2019]. Multi-objective metaheuristics were used in [Nakib et al.,
2007, 2010, Yin and Wu, 2017, Sarkar et al., 2017, El Aziz et al., 2018, Elaziz et al., 2019]. Hybrid
metaheuristics were used in [Zahara et al., 2005, Fan and Lin, 2007, Sun et al., 2016, Mlakar et al.,
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2016, Dehshibi et al., 2017, Lang and Jia, 2019, Agrawal et al., 2020].

I.5.2 Region-based methods

In this kind of image segmentation methods, the images are split into a different number of
regions that are constructed by dissociating or associating their neighbour pixels based on predefined
criteria of similarities [Freixenet et al., 2002, Cufi et al., 2003]. Specifically, the neighbouring pixels
inside a region have the same characteristics (gray level, shape, texture and/or colour), and they are
dissimilar with the pixels of other regions. There are several region-based segmentation techniques
that have been introduced in the literature [Pavlidis and Liow, 1990, Chen et al., 1991, Beucher and
Meyer, 1993]. In this section, we consider two popular methods, namely region growing and region
split and merge.

I.5.2.1 Region growing

Region growing [Zucker, 1976] is one of the simplest and most popular algorithms for region-
based segmentation. The algorithm starts by choosing or automatically generating a starting point
called seed pixel. Then, the region grows by adding similar neighbouring pixels according to a certain
homogeneity criterion, increasing step by step the size of the region. So, the homogeneity criterion
has the function of deciding whether a pixel belongs to the growing region or not. The region growing
methods can be classified into two categories: Seeded Region Growing (SRG) [Adams and Bischof,
1994] and Unseeded Region Growing (UsRG) [Lin et al., 2000].

The advantage of region growing is that it is capable of correctly segmenting regions that have
similar properties and generating connected regions. Some researchers have proved that the region
growing is an effective approach with less computation effort than other non-region-based methods for
segmenting MR images of brain tumors, especially for the homogeneous tissues and regions. However,
the drawbacks of these techniques are its sensitivity to noise and a requirement for manual interaction
to obtain the seed point which has the largest effect on the quality of the segmented image. In the
presence of noise, segmented regions are disconnected or have holes. In addition, if the seed point and
homogeneity criterion are not properly defined, the growing region can leak out and merge with the
regions that do not belong to the object of interest.

Note that, region growing is not often used alone but within a set of image processing operations,
particularly for the delineation of small, simple structures such as tumours and lesions.

I.5.2.2 Region split and merge

Typically, split and merge techniques [Horowitz, 1974] consist of two basic steps. First, the
whole image is considered as one region. If this region does not satisfy a homogeneity criterion that
usually takes into account edge and intensity characteristics, the region is split into four quadrants
(subregions) and each quadrant is tested in the same way; this process is recursively repeated until
every square region created in this way contains homogeneous pixels. However, such process of splitting
is not sufficient for image segmentation since it limits the segmented shapes. Therefore, in the second
step, all adjacent regions with similar attributes may be merged by using other (or the same) criteria.
This process (splitting and merging) is continued recursively so that no further splits or merges are
possible.

The main advantages of this method are: (1) the image could be split progressively according
to our demanded resolution because the number of splitting levels can be determined beforehand;
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(2) choosing criteria for splitting and merging is flexible. However, the method may produce blocky
segments or more regions (over-segmentation) by splitting [Sharma et al., 2012]. Though the method
could be improved by splitting in higher level, the trade off is that the computation time will arise.
In addition, it can fail to provide a unique solution [Cheevasuvit et al., 1986].

To deal with the limitations of region-based methods, the metaheuristic algorithms can be used
to improve their performance. For instance, several works can be found in the literature [Yang et al.,
2008, Mirghasemi et al., 2013, Zanaty and Ghiduk, 2013, Al-Faris et al., 2014, Preetha et al., 2015,
Manousakas et al., 1998].

I.5.3 Clustering

Clustering is a process of organizing the objects into groups based on their attributes. A cluster
is a collection of objects which are similar between them and are dissimilar to the objects belonging
to other clusters. Given a vector of N measurements describing each feature pixel or group of feature
pixels (i.e., region) in an image, a similarity of the measurement vectors and their clustering in the
N -dimensional measurement space implies similarity of the corresponding pixels or pixel groups. In
other words, clustering in measurement space can be considered as an indicator of similarity of image
regions and may be used for segmentation purposes. Thus, clustering can be defined as the process of
identifying groups of similar image primitives in terms of image segmentation [Puzicha et al., 1999].

Clustering techniques can be classified into supervised clustering (requires the interaction of an
expert to guide and verify if the separation of the data is correct) and the unsupervised clustering
(decides the clustering criteria by itself). A variety of clustering techniques have been introduced to
solve the image segmentation problem such as Hierarchical clustering [Johnson, 1967], Partitional clus-
tering [Jin and Han, 2010b], K-means clustering [MacQueen et al., 1967], Fuzzy clustering (developed
by Dunn in 1973 [Dunn, 1973] and improved by Bezdek in 1981 [Bezdek, 1981]) and Expectation-
maximization [Jin and Han, 2010a]. Among those, Fuzzy C-means (FCM) introduced by Bezdek
[Bezdek, 1981] is one of the most popular methods that is widely used in the literature.

I.5.3.1 Fuzzy C-means clustering

In essence, FCM tries to minimize the intra-cluster variation through iterations. The unlabelled
pixels are assigned to the nearest clusters basing on their distances to the cluster centroids, then the
cluster centroid is updated and the pixels are re-assigned. The algorithm ends until all the pixels
have fixed labels. Let F = (f1, f2, . . . , fN ) denote an image with N pixels to be partitioned into C
clusters, where fj represents multispectral (features) data. The algorithm is an iterative optimization
that minimizes the cost function defined as follows:

JFCM (F,C,U) =

C∑
i=1

N∑
j=1

upijDij (I.22)

where p controls the fuzziness degree of clustering. Particularly, it indicates that how much the clusters
can overlap with each other. The bigger the value of the p is, the more the clusters overlap with each
other. uij is fuzzy membership of data fj to cluster with center ci, and Dij is distance between data
fj and center of the cluster ci. The membership values U = (uij)C×N comply with the following
conditions:

U ∈
{
uij ∈ [0, 1]

∣∣∣∣ ∑C

i=1
uij = 1, ∀j and 0 <

∑N

j=1
uij , ∀i

}
(I.23)
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Since FCM is an iterative process, the membership function and center of each cluster are
obtained as follows:

uij =

[∑C

r=1

(
Dij

Drj

) 1
p−1

]−1

(I.24)

ci =

∑N
j=1 u

p
ijfj∑N

j=1 u
p
ij

(I.25)

The FCM algorithm iteratively optimizes JFCM by evaluating Eqs. (I.24) and (I.25) until stop-
ping criteria are satisfied. The procedure of the FCM algorithm for the image segmentation problem
can be summarised as the pseudo code shown in Algorithm I.6. Once a membership value uij for
class i is assigned to a pixel j, a defuzzification process takes place so as to convert the partition matrix
U to a crisp partition. Commonly, the maximum membership procedure method, which assigns the
pixel j to the cluster i with the highest membership, is adopted as follows:

Ωi = argmax {uij} ,with i = 1, 2, · · · , C (I.26)

Algorithm I.6: The FCM algorithm

Initialization: Read the input image; fix the number of clusters, C; randomly initialize
U = (uij)C×N satisfying Eq. (I.23); set termination criterion ε, maximum
number of iterations Niter and the parameter p; compute the cluster centers
C = (ci)C using U and Eq. (I.25)

Results : Cluster centroids C and membership matrix U
k ← 1
repeat

1 Calculate similarity between cluster centers and image elements, D = (Dij)C×N
2 Update the partition matrix U = (uij)C×N using Eq. (I.24)
3 Update the cluster centers C = (ci)C using Eq. (I.25)
4 k ← k + 1

until (max {|Unew −Uold|} < ε) or (k > Niter)

The main advantages of using fuzzy clustering for the image segmentation problem are robust
characteristics for ambiguity. However, the two major drawbacks of these methods are: (1) the
sensitivity to noise and INU artifact, since no local spatial information in the image is considered; (2)
the high vulnerability of the algorithms to trapping into local minima, depending on the choice of the
initial clustering centroids.

To deal with such problems, many works, which improve either the objective function or search-
ing method or both, have been proposed. For instance, to overcome the first problem, some interesting
works with different directions (adding feature information of the neighbourhood pixels into the ob-
jective function or into a similarity measure between cluster centers and image elements, transferring
non-linear problem to linear problem, using effective metric for measuring similarity, etc) are [Ahmed
et al., 2002, Zhang and Chen, 2004, Chuang et al., 2006, Krinidis and Chatzis, 2010, Chen et al., 2011,
Adhikari et al., 2015, Verma et al., 2016, Lei et al., 2018, Singh and Bala, 2019, Memon et al., 2019]. To
address the second problem, the metaheuristic optimization algorithms have been introduced. Many
works in this category can be found in the literature [Han and Shi, 2007b, Izakian and Abraham, 2011,
Ding and Fu, 2015, Maulik and Saha, 2010, Indrajit Saha and Plewczynski, 2011, Chaoshun Li and
Xiao, 2012, Alsmadi, 2014, Silva Filho et al., 2015, Pham et al., 2018, Zhao and Fan, 2019].
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I.5.4 Deformable models

Deformable model is defined as surfaces or curves in image domain, which are influenced by the
internal and external forces in deformation of the image. In the process of deformation, an internal
force is to maintain the smoothness and same features of the curves, whereas external forces are
defined such that the model is attracted towards an object or other features of interest within the
image. Deformable models extract elements with similar structure and integrate the boundaries to be
consistent and produce coherent structures.

There are basically two main types of deformable models: parametric/explicit and geomet-
ric/implicit. The former represents curves and surfaces explicitly in their parametric forms during
deformation, allowing direct interaction with the model and leading to a compact representation for
implementation. On the other hand, the later handles topological changes naturally since these mod-
els are based on the theory of curve evolution [Adalsteinsson and Sethian, 1995], and they represent
curves and surfaces implicitly, as a level set of a higher-dimensional scalar function.

I.5.4.1 Parametric deformable models

Parametric deformable models which are well-known as snakes, explicit deformable models and
active contour models, were first introduced by Kass et al. [Michael Kass and Terzopoulos, 1988].
Starting from an initial closed configuration representing a rough approximation of the shape to be
segmented, the deformation procedure is driven by the minimization of an energy function until the
deformable model coincides with the object boundary. Let s ∈ [0, 1] be the parametric domain and
v(s) be a representation of the contour, then the energy of v(s) is given by:

JPDM (v) = α

∫ 1

0

∣∣∣∣∂v

∂s

∣∣∣∣2 ds+ β

∫ 1

0

∣∣∣∣∂2v

∂s2

∣∣∣∣2 ds︸ ︷︷ ︸
interal energy

+

∫ 1

0
P(v)ds︸ ︷︷ ︸

external energy

(I.27)

where P(v) denotes a scalar potential function defined in the image plane; α, and β are the sys-
tem’s parameters, which dictate the simulated physical characteristics of the contour; α controls the
”tension” of the contour (more or less resistant to stretching); β controls its ”rigidity” (more or less
resistant to bending).

The main advantages of these models are their ability to directly generate closed parametric
curves or surfaces and their incorporation of a smoothness constraint. In addition, the external forces
act in a quite intuitive manner and they can be adapted to track dynamic objects. However, the basic
method also presents some limitations, namely the sensitivity to local minima, the dependency on
initialization, the absence of prior shape knowledge and impossibility of managing topological changes
[Mesejo and Cagnoni, 2016].

I.5.4.2 Geometric deformable models

Geometric deformable models [Malladi and Vemuri, 1995, Caselles, 1995] are based on the curve
evolution theory [Sapiro and Tannenbaum, 1993] and the level set method [Sethian, 1999]. Since the
evolution of curves and surfaces do not depend on the particular way the curve has been parameterized,
the evolving curves can be represented implicitly as a level set of a higher dimensional function.
Amongst geometric models, the level set method is one of the most popular methods relying on an
evolving closed surface defined by a moving interface which expands outwards until it reaches the
desired boundary.
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Given an interface Γ(t) that is characterized by a Lipschitz continuous function:
φ(t,x) > 0, for x inside Γ(t)

φ(t,x) < 0, for x outside Γ(t)

φ(t,x) = 0, for x on Γ(t)

(I.28)

where φ(t,x) is a level set function at time t. The evolution of φ is commonly described by the
following differential equation:

∂φ

∂t
+ V |5φ| = 0 (I.29)

where V is the speed function normal to the curve, which can depend on position, time or geometry
of the interface, and 5 is the spatial gradient operator. Importantly, V describes the local movement
of the contour and is analogue to the energy function used in parametric deformable models.

One of the main advantages of the level set-based methods is the natural ability of a single
surface to seemingly split apart and merge without losing its identity. However, there are also two
main disadvantages, namely computationally demanding and requiring considerable design effort to
construct appropriate velocity functions, V, for adapting the level set function.

To partially solve problems mentioned above, metaheuristics have been involved. Many works
can be found in the literature. For instance, in parametric approach, they can be used to set the initial
location of the snakes and the appropriate number of control points [Mobahi et al., 2006, Chih-Yu Hsu
and Chen, 2008], to search the best set of values for the parameters that control the evolution of the
active contour model [Caselles, 2000, Teixeira et al., 2008], to evolve each control point of the model
and search for best location in a given search space [MacEachern and Manku, 1998, Covavisaruch
and Tanatipanond, 1999, Tang et al., 2007]. In geometric approach, metaheuristics have been used to
initialize the contour and/or extract the prior information which is to be used by the level set method
[Xiao et al., 2006, Mesejo et al., 2015] or to directly guide the optimization process avoiding local
minima [Kan et al., 2007, Ghosh et al., 2010, Law et al., 2008].

I.5.5 Markov random field models

Digital images consisting of pixels and being defined on a bounded 2-D lattice have two impor-
tant attributes. First, pixel intensities of a nearly homogenous object will follow a certain distribution,
called the conditional intensity distribution of the pixel intensities. Second, the pixels close together
or lying in a neighbourhood will tend to have similar intensity values, known as contextual informa-
tion. Markov random field (MRF) modelling itself is not a segmentation method but a statistical
model which can be used within segmentation methods. MRFs model spatial interactions between
neighbouring or nearby pixels. Combining MRFs with the conditional intensity distribution under a
Bayesian framework, we can estimate the true intensities of the image much more accurately than
those based on only the information derived from the image intensities. A detailed description of
MRFs framework for the image segmentation problem is given in Section IV.2.

There are two main advantages of using MRF models for the image segmentation problem
[Huawu Deng and Clausi, 2005]: (1) the spatial relationship can be seamlessly integrated into a
segmentation procedure through contextual constraints of neighbouring pixels; (2) different types of
image features can be utilized in the MRF-based segmentation model via the Bayesian framework.
However, there are still several problems which limit its performance [Kato et al., 1999, Marroquin
et al., 2002]: (1) How to provide reasonably good initial values for mean and variance of each class
(assuming that the classes are represented by Gaussian distributions)?; (2) What is the efficient
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algorithm for finding the optimal estimator to avoid the convergence to the first encountered minimum
when including spatial coherence assumptions?; (3) The basic model is inaccurate in nature.

To address the aforementioned problems, there are many approaches in which metaheuristics
have been used. For instance, for the first problem, metaheuristics have been used to find the initial-
ization of MRFs [Cuadra et al., 2005, T Krishnan et al., 2016]. In order to seek the global extremum
solution in the optimization step, several works in which metaheuristics are used as searching engines
can be found [Yousefi et al., 2012, Ben George et al., 2015, Guerrout et al., 2017]. For the last prob-
lem, which is a key in image segmentation, two main directions have been exploited. While one is
to achieve a proper balance between the two components [Deng and Clausi, 2004, Huawu Deng and
Clausi, 2005] in the standard model [Li, 2001], the other is to use spatial context or neighbourhood
information efficiently [Yang et al., 2015, Ahmadvand et al., 2017, Chen et al., 2017a].

I.5.6 Hybrid techniques

Since the selection of the most appropriate technique for a given application is often a difficult
task, a combination of several techniques may be necessary to obtain the segmentation goal. There-
fore, hybrid or combined segmentation methods have been used extensively in different segmentation
applications [Li et al., 2011a, Ortiz et al., 2013, Abdel-Maksoud et al., 2015, Gupta et al., 2015]. The
main idea is to combine different complementary segmentation methods into a hybrid approach to
avoid many of the disadvantages of each method alone and improve segmentation accuracy.

However, the traditional segmentation methods commonly share the same drawbacks such as the
dependency on the initialization and a high possibility of being trapped into local minima, that they
cannot deal with by themselves. As a result, metaheuristics are a good approach for such problems.
Several works in this direction can be found in the literature [Kaur et al., 2012, Al-Faris et al., 2014,
Mekhmoukh and Mokrani, 2015].

Note that, combining different segmentation methods often leads to increased complexity. This
induces a higher computational time and a higher number of different parameters that need to be
tuned for specific application. Therefore, designing a hybrid segmentation method should be done
carefully.

I.6 Conclusion

In this chapter, we presented the basic information of MRI technique as well as the formulation
of the image segmentation problem. In addition, the main metaheuristics and segmentation methods
were also provided. In each category, we have cited several works in which metaheuristics have been
taken into account to improve the segmentation performance. Besides, current limitations of the
segmentation methods have been pointed out, from which we can have a clear view to go further.
Even though there is a growing number of works in this field, using metaheuristics for solving the
image segmentation problem has been proven to be successful. By considering the limitations and
taking advantages of current works, we propose in the following chapters some methods that are
contributions in this area.
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Chapter II

Mono-objective optimization metaheuris-
tic approach for image segmentation us-
ing fuzzy entropy clustering

II.1 Introduction

In this chapter, we present a new method based on fuzzy entropy clustering (FEC) for segmen-
tation of brain magnetic resonance (MR) images. Because of simplicity and applicability, the FEC
algorithm is widely used in medical image segmentation. The FEC method is stand on the principles of
fuzzy logic and entropy theory, which are not only able to tolerate inaccurate, incomplete or uncertain
information but also save information in the original image. However, there are two major problems
associated with this method, which are: (1) the sensitivity to noise and intensity non-uniformity (INU)
artifact and (2) the trapping into local minima and dependency on initial clustering centroids. The
method we propose in this chapter makes it possible to overcome these drawbacks.

This chapter is organized as follows. In Section II.2, we present the related works on which
the proposed method is based. Section II.3 introduces the proposed method: segmentation of brain
MR images using particle swarm optimization (PSO) with a novel objective function based on fuzzy
entropy clustering. Evaluation of the proposed method and comparison with other methods in the
literature are shown in Section II.4. Finally, in Section II.5, we conclude with some thoughts on the
strengths of the presented method and shortcomings to improve to go further in the results.

II.2 Related works

II.2.1 Image segmentation using fuzzy entropy clustering

The fuzzy entropy clustering (FEC) algorithm proposed by Tran and Wagner [Tran and Wagner,
2000] is an alternative generalization of hard C-means (HCM) clustering algorithm. The objective of
this method is finding both the centers of classes and the degrees of data belonging to different classes.
For a given feature image F = (f1, f2, . . . , fN ) with N pixels, where fj represents a feature of the jth

pixel, the algorithm allows partitioning of the image, by minimizing an objective function with respect
to a partition matrix U = (uij)C×N and a set of C cluster prototypes C = (ci)C with (1 < C < N).
The standard FEC objective function is given as follows:

JFEC (F,C,U) =

C∑
i=1

N∑
j=1

uijd
2 (fj , ci)︸ ︷︷ ︸

shape and size

+
1

n

C∑
i=1

N∑
j=1

uij log (uij)︸ ︷︷ ︸
degree of non-membership

(II.1)
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It should satisfy the following conditions:

U ∈
{
uij ∈ [0, 1]

∣∣∣∣ ∑C

i=1
uij = 1, ∀j and 0 <

∑N

j=1
uij , ∀i

}
(II.2)

where fj is the feature of the jth pixel in the image which can be intensity value or gray value; d2 (fj , ci)
is the Euclidean distance between the feature fj and the cluster center ci, and 1/n denotes the degree
of fuzzy entropy.

Since uij and ci cannot be determined simultaneously, optimizing the objective function Eq.
(II.1) under the constraints Eq. (II.1) is an ill-posed problem. In order to solve this constrained
problem, first, the problem is transformed into an unconstrained problem by using the Lagrange
multipliers, then the Picard iteration is applied. Particularly, the FEC objective function, JFEC, is
iteratively minimized by using the following update equations:

uij =

{∑C

r=1

{
exp[d2 (fj , ci)− d2 (fj , cr)]

}n}−1

(II.3)

ci =

∑N
j=1 uijfj∑N
j=1 uij

(II.4)

When the algorithm has converged, a defuzzification process takes place so as to convert the
partition matrix U to a crisp partition. Commonly, the maximum membership procedure method,
which assigns the jth pixel to the ith region, Ωi, with the highest membership, is adopted as follows:

Ωi = argmax {uij} ,with i = 1, 2, · · · , C (II.5)

The procedure of the FEC algorithm can be described as the pseudo code shown in Algorithm
II.1

Algorithm II.1: The FEC algorithm

Initialization: Read the input image; fix the number C of cluster centers; randomly initialize
U = (uij)C×N satisfying Eq. (II.2); set termination criterion ε, maximum
number of iterations Niter and the parameter n; compute the cluster centers
C = (ci)C using U and Eq. (II.4)

Results : Cluster centroids C and membership matrix U
k ← 1
repeat

1 Update the partition matrix U = (uij)C×N using Eq. (II.3)
2 Update the cluster centers C = (ci)C using Eq. (II.4)
3 k ← k + 1

until (max {|Unew −Uold|} < ε) or (k > Niter)

Note that, in the objective function, JFEC, while the first term on the right-hand side is the sum-
of-squared-errors function controlling the shape and size of the clusters, the second term expresses the
average degree of non-membership of members. Minimizing JFEC means simultaneously minimizing
the dispersion within clusters and maximizing the degree of membership of members. However, this
energy function is non-convex, non-unique in nature and may have several local minimum points,
hence optimizing it by using the gradient descent technique faces the problem of getting stuck in local
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minima. In addition, JFEC does not take into account any local spatial and bias information, and
the metric is the Euclidean distance d2 (fj , ci). This metric assumes that each feature of data points
is equally important, independent from others, and belonging to a cluster with spherical shape. This
assumption may not be always satisfied in real applications, especially in medical images. Furthermore,
the parameter 1/n, which controls the influence of the degree of fuzzy entropy, needs to be carefully
chosen. If 1/n is relatively small, the FEC clustering reduces to HCM clustering. In contrast, if 1/n
is large enough, uij in Eq. (II.3) tends towards 1/C, it means we only obtain a single cluster.

II.2.2 Low-discrepancy sequence initialized particle swarm optimization

Particle swarm optimization (PSO) is a population-based stochastic optimization technique re-
garded as a global search strategy, originally introduced by Kennedy and Eberhart [Kennedy and
Eberhart, 1995]. In the PSO algorithm, each member of the population, called particle, represents a
potential solution to the optimization problem; and the population, called swarm, is evolved through
successive iterations. The quality of a candidate solution is evaluated by the fitness value, associated
with each particle. Each particle in the swarm with size of P , denoted by i, has a position vector
Xi = (xir)C , a velocity vector Vi = (vir)C , its own best position pBest found so far, and interacts
with neighbouring particles through the best position gBest discovered in the neighbourhood so far.
At the kth iteration, each particle is moved according to equations (II.6) and (II.7):

V
(k+1)
i = w(k)V

(k)
i + c1r1

[
pBest(k) −X

(k)
i

]
+ c2r2

[
gBest(k) −X

(k)
i

]
(II.6)

X
(k+1)
i = X

(k)
i + V

(k+1)
i (II.7)

where c1 and c2 are acceleration coefficients that scale the influence of the cognitive and social com-
ponents; r1 and r2 are two random values, uniformly distributed in [0, 1]; and w(k) is inertia weight
at the kth iteration. The higher w(k) is, the higher the possibility of searching in the global solution
space is, and the smaller w(k) is, the higher the possibility of searching in the local solution space is.

There are two basic criteria for assessing performance of the PSO algorithm, named the conver-
gence speed and the ability to find global optima. To optimize both criteria, keeping balance between
global exploration and local exploitation is crucial. From Eqs. (II.6) and (II.7), it is clear that the
performance depends not only on the controlling parameters {w(k), c1, c2}, but also on the size and
structure of the neighbourhood.

In this work, the population initialization and the tuning of parameters {w(k), c1, c2} are adopted
from the low-discrepancy sequence initialized particle swarm optimization (LHNPSO) algorithm de-
signed by Yang et al. [Yang et al., 2015]. Particularly, the initial population of particles is generated
by using the Halton sequence to cover the search space effectively, {c1, c2} are set to constants, equal
to 2, and the inertia weight is updated as follows:

w(k) = wmax − (wmax − wmin) · ( k

Niter
)

1
π2 (II.8)

where [wmin, wmax] is a range of the inertia weight, with wmin = 0.4 and wmax = 0.9. k and Niter

are the iteration numbers starting from iteration one and a maximum number of allowable iterations,
respectively.

This law of variation of w(k) increases the exploration of the search space in the beginning stage
of iterations of the algorithm, and the exploitation of the best solutions found so far towards the end of
the algorithm. This constitutes a reasonable balance between the phases of exploration of the search
space and the phases of exploitation of the solutions.
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Note that, current research [Harrison et al., 2016] reported that this variant outperformed the
other variants of PSO with two main advantages, namely, (1) a faster converging process with more
accurate final solution and (2) an easy implementation.

The procedure of the LHNPSO algorithm is summarized in Algorithm II.2:

Algorithm II.2: The LHNPSO algorithm

Initialization: Set maximum number of iterations Niter; initialize particles using the Halton
sequence; set c1, c2 and the range [wmin, wmax]; determine pBest and gBest.

Results : The optimal solution gBest
k ← 1
repeat

/* Flight particles */

1 Update the inertia weight w(k) according to Eq. (II.8)
2 Update Xi and Vi according to Eqs. (II.6) and (II.7)

/* Evaluate solutions */

3 Evaluate fitness values, f
4 Update pBest and gBest
5 k ← k + 1

until the stopping criteria are met

II.3 Proposed method

The proposed segmentation method for MR images is introduced based on three advanced con-
cepts:

1. An appropriate image model is applied by considering both noise and intensity non-uniformity
(INU) artifact.

2. Kernel method is used for measuring the similarity to overcome problems of complex structure
and non-spherical shape tissues, which are common in MR images.

3. The LHNPSO algorithm is utilised to solve the segmentation problem with a novel objective
function.

These three concepts are detailed in the following sections.

II.3.1 Image model

Different models of MR image formation have been proposed in the literature, depending on

how the true image
(
f tj

)
N

, the intensity inhomogeneity field (bj)N , and the noise (nj)N interact

[Vovk et al., 2007]. In this work, the most common model of MR image formation, which assumes
that the noise is approximated by Gaussian probability distribution and is independent of the intensity
inhomogeneity field [Pham and Prince, 1999], is used. In addition, the bias field is typically modelled
as a low-frequency multiplicative field. Accordingly, the acquired image (fj)N is obtained as:

(fj)N =
(
f tj
)
N

(bj)N + (nj)N (II.9)
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where fj is the measured intensity of the jth MRI pixel; f tj is the true intensity value; bj is the
unknown smoothly varying bias field caused by imperfections of imaging devices, particularly, due to
the magnetic field, nj is an additive zero-mean Gaussian noise with relatively small variance at the jth

pixel, and N is the number of pixels in the MR image. As an example, Figure II.1 shows an example
of estimated bias field and noise when segmenting a simulated MR image with characteristics of 9%
noise and 40% INU (slice 80 from the brainWeb dataset). Thus, the accurate segmentation of a MR
image involves an accurate estimation of the unknown bias field (bj)N and removal of both this bias
field and noise from the measured MR signal.

Figure II.1: An example of estimating intensity non-uniformity and noise for a simulated MR image:
(a) original image; (b) bias field estimation; (c) noise estimation; (d) segmentation result; (e) ground
truth.

II.3.2 Kernel method for similarity measurement

Recently, ”kernel method” has been widely applied to fuzzy clustering, which is referred to
as kernel-based fuzzy clustering [Graves and Pedrycz, 2010]. The essence of the kernel method is
to perform a non-linear transformation Φ : XP → H, where XP is an input data space with a low
dimension and H is a high dimensional feature space. With this transformation, the structure of input
data points, which may be inadequate for the analysis in the original space, but can be now analysed
in space H. More specifically, in the segmentation of brain MR images, input images which have
complex structure, non-spherical shape tissues, can more likely be linearly segmented in the feature
space according to the well-known Cover’s theorem [Cover, 1965].

It is well known that every linear algorithm that uses inner products can be easily extended to
a non-linear version through the kernels that satisfy the Mercer’s conditions [Muller et al., 2001]. A
kernel in the feature space calculating the inner product can be represented as function K below:

K (fj , ci) = 〈Φ (fj) ,Φ (ci)〉 (II.10)

where fj and ci are a feature of jth pixel and an ith cluster center in the image, respectively;
〈Φ (fj) ,Φ (ci)〉 denotes the inner product operation. In this approach, Gaussian kernel is adopted
as:

K(fj , ci) = 〈Φ(fj),Φ(ci)〉 = exp

(
−‖fj − ci‖

2

σ2

)
(II.11)

where σ2 is a Gaussian kernel parameter.

It is worth to note that the performance of kernel-based fuzzy clustering depends greatly on the
selection of kernel parameter [Graves and Pedrycz, 2010]. Particularly, if σ2 is small enough, K (·, ·)
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is close to zero, it means that any two mapped data samples are approximately orthogonal with no
similarity. On the other hand, if σ2 is relatively large, K (·, ·) is approximately one, which means the
samples are roughly overlapped. Both situations make data clustering infeasible. Despite the fact
that some works have attempted to provide an optimal value of the parameter [Wang et al., 2003],
the estimation of σ2 remains as an open problem [Liao and Zhang, 2011]. Hence, in this work σ2 is
estimated by generalizing the result of Yang and Tsai’s work [Yang and Tsai, 2008], which is defined
as follows:

σ2 =
λ

N

N∑
j=1

∥∥fj − f∥∥2
, with f =

N∑
j=1

fj (II.12)

where f is the mean intensity value of the entire image, and λ is a constant defined by experiments.

Without explicitly using the transformation Φ, the Euclidean distance d2 (fj , ci) = ‖fj − ci‖2,
which measures the similarity between two data samples {fj , ci}, can be executed by substitution of
‖Φ(fj)− Φ(ci)‖2 in the feature space. It is defined by using kernel function K as below:

‖Φ(fj)− Φ(ci)‖2 = K(fj , fj) +K(ci, ci)− 2K(fj , ci)

= 2

[
1− exp

(
−‖fj − ci‖

2

σ2

)]
(II.13)

II.3.3 A novel image segmentation model based on fuzzy entropy clustering and
kernel method

Let Ω be the image domain, and assume that the true image
(
f tj

)
N

is segmented into C dis-

joint regions, {Ω1,Ω2, · · · ,ΩC}, with distinct cluster centers, {c1, c2, · · · , cC}, respectively, where
Ω = ∪Ci=1Ωi and Ωi ∩ Ωj = � for i 6= j. Similarly, the segmentation of the acquired image (fj)N
totally includes C segments which have cluster centers {m1,m2, · · · ,mC}. Then, in view of the image
model in Eq. (II.9) and because of (bj)N varying slowly, the acquired image (fj)N can be approximated
as follows:

fj ≈ (mi + nj) ≈ (cibj + nj) for fj ∈ Ωi (II.14)

For the objective function, JFEC (F,C,U) in Eq. (II.1), considering bias field estimation (bj)N ,
the modified objective function could be given as follows:

JFECB (F,C,U,B) =

C∑
i=1

N∑
j=1

uijd
2 (fj , cibj)︸ ︷︷ ︸

shape and size

+
1

n

C∑
i=1

N∑
j=1

uij log (uij)︸ ︷︷ ︸
degree of non-membership

(II.15)

Incorporating this criterion with a novel local spatial constraint term
∑C

i=1

∑N
j=1 uijd

2
(
f j , cibj

)
,

then kernelizing it through the newly induced distance measure substitution (II.13), a new objective
function for image clustering segmentation is obtained as follows:
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JKFECSB (F,C,U,B) =

C∑
i=1

N∑
j=1

uij [1−K(fj , cibj)]︸ ︷︷ ︸
shape and size

+
1

n

C∑
i=1

N∑
j=1

uij log (uij)︸ ︷︷ ︸
degree of non-membership

+ η
C∑
i=1

N∑
j=1

uij
[
1−K(f j , cibj)

]
︸ ︷︷ ︸

artifact in-sensitiveness and detail preservation

(II.16)

where the constraints in Eq. (II.2) should be satisfied.

In this new objective function (II.16), the first term is actually a transformation of the first term
in Eq. (II.1) thanks to the kernel substitution trick. The third term is the local spatial constraint term,
in which the parameter η controls the effect of the penalty. In essence, this term, equivalently, aims
at guaranteeing noise and INU artifact in-sensitiveness, and image detail preservation. The median of
the neighbours within a window of size 3 × 3 around the jth pixel is used to represent f j , which can
be computed in advance. In addition, in this work, the bias field estimation of B = (bj)N based on Li
et al.’s work [Li et al., 2014] is computed by using partition matrix U = (uij)C×N and cluster centers
C = (ci)C as follows:

B =

 C∑
i=1

G× F
N∑
j=1

ciuij

−1G×GT
N∑
j=1

c2
iuij

T G (II.17)

where G = (g1, g2, . . . , gH)T is a set of basic functions. It is known that theoretically, any function
can be approximated by a linear combination of a set of basis functions up to arbitrary accuracy
[Powell, 1981], given a sufficient large number of basis functions. In this implementation, 2D orthog-
onal polynomials are used, specifically the Legendre polynomials [Kim and Park, 1998], as the basis
functions.

Furthermore, considering the segmentation of brain MR images as an optimization problem,
minimizing JKFECSB means that the optimal regions (Ω̂i)C , with cluster centers (ĉi)C and the bias
field (b̂j)N , are simultaneously accomplished. By using the Lagrange multiplier method, the necessary
conditions for the minimization of the JKFECSB with the constraints in in Eq. (II.2) can be found.
Specifically, taking the first derivatives of the JKFECSB with respect to uij and ci, and zeroing them
respectively, the two necessary but not sufficient conditions for JKFECSB to be a local optimal solution
will be obtained as follows:

u−1
ij =

C∑
r=1

exp
{
n
[
(1−K(fj , cibj)) + η

(
1−K(f j , cibj)

)]}
exp

{
n
[
(1−K(fj , crbj)) + η

(
1−K(f j , crbj)

)]} (II.18)

ci =

∑N
j=1 uij

[
fjK(fj , cibj) + ηf jK(f j , crbj)

]∑N
j=1 bjuij

[
K(fj , cibj) + ηK(f j , crbj)

] (II.19)

Thus, the proposed objective function JKFECSB deals with some limits of the original one by
including local spatial information, bias correction, and deploying kernel-induced distance. However,
Eqs. (II.18) and (II.19) are only necessary conditions for minimizing the objective function JKFECSB;
as a result, the obtained clustering solutions may be local optima if the gradient descent technique
is applied. To overcome this drawback, the metaheuristic optimization-based approach is used, as
explained in Section II.3.4 below.
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II.3.4 A new method for segmentation of brain MR images

To solve the segmentation problem by optimizing the objective function described in Eq. (II.16)
efficiently, the LHNPSO algorithm and guidances given by Eqs. (II.18) and (II.19) are used. With
this approach, not only trapping into local minima can be avoided but also faster convergence and
more accurate solutions can be achieved. Particularly, while the LHNPSO algorithm, which is a
global optimization method, can provide global optimal solution, the new objective function guides
the search process faster and more precisely. As such, a new MR image segmentation algorithm, called
PSO-KFECSB algorithm, is proposed. The details of this algorithm are provided in the next section.

II.3.4.1 Particle representations

Applying the LHNPSO algorithm to optimize the proposed objective function, JKFECSB, cluster
prototypes, C = (ci)C , are chosen to be optimization variables and encoded as the positions of particles.
For P particles or solutions, there are in total (C · P ) optimization variables that need to be encoded.
The position of the ith particle can be described as: Xi = (xi1, xi2, . . . , xiC). Here, xij (j = 1, · · · , C)
represents the jth cluster center among C centers of the ith solution. In this way, the cluster centers
are encoded in position vector Xi and then C can be obtained by decoding Xi.

II.3.4.2 Fitness function

After decoding Xi to obtain cluster centers C and calculating fuzzy partition matrix U according
to Eq. (II.18), the value of the fitness function, fi, corresponding to the ith particle, is calculated by
evaluating JKFECSB according to Eq. (II.16).

fi = JKFECSB (F,Xi,Ui,Bi) (II.20)

The minimization of fi is the same as the minimization of the objective function, JKFECSB, which
leads to an optimal partitioning of the MR image.

II.3.4.3 The PSO-KFECSB algorithm

The proposed PSO-KFECSB algorithm takes advantages of both the excellent feature of LH-
NPSO algorithm in optimizing the objective function of kernelized fuzzy entropy clustering with spatial
information and bias correction, and the guidances provided by the gradient method in speeding up
convergence.

To make sure that all particles are moving within the search space and avoiding divergent
behavior, their positions and velocities are limited as follows:

v
(k)
ij =


+ rand () · vmax, if v

(k)
ij > vmax

− rand () · vmax, if v
(k)
ij < −vmax

+ v
(k)
ij , otherwise

(II.21)

x
(k)
ij =

{
1
2 · rand () · (xmax − xmin) , if (x

(k)
ij < xmin) or (x

(k)
ij > xmax)

x
(k)
ij , otherwise

(II.22)

where vmax is the largest allowable step size in any dimension; and {xmin, xmax} are the bounds of
the search space in each dimension. In image clustering, commonly, vmax is set to 1 and {xmin, xmax}
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Algorithm II.3: The PSO-KFECSB algorithm

Initialization: Read the input image; initialize all parameters for the LHNPSO algorithm:
{c1, c2, P, . . .}, the objective function, and generate particles using the Halton
sequence; randomly set up U satisfying Eq. (II.2) and set B = 1; determine
pBest and gBest

Results : The cluster centers C (gBest) and the partition matrix U
k ← 1
repeat

/* Flight particles */

1 Update the inertia weight w using Eq. (II.8)
2 Update the positions Xi and the velocities Vi using Eqs. (II.6) and (II.7)
3 Map Xi and Vi into search space using Eqs. (II.21) and (II.22)

/* Evaluate solutions */

4 for each particle (or solution) do
4.1 Calculate kernel distance K using Eq. (II.11)
4.2 Update the partition matrix U using Eq. (II.18)
4.3 Evaluate the fitness value fi using Eq. (II.20)

5 Update the pBest and gBest, and B
6 k ← k + 1

until the stopping criteria are met

are the minimum and maximum of the feature (intensity or gray value) of the image. Putting all of
the above issues together, the PSO-KFECSB algorithm is described in Algorithm II.3.

In this work, the number of non-significant improvements of the partition matrix (Nnon−imp)
and the maximum number of iterations (Niter) are used as the stopping criteria of the algorithm.

Particularly, if (max
{∣∣∣UgBest

new −UgBest
old

∣∣∣} < ε) is completed Nnon−imp times or the condition (k >

Niter) is reached, the algorithm is immediately stopped.

II.4 Experimental results

In this section, the performance of the proposed algorithm is evaluated both qualitatively and
quantitatively. In the comparative study, the algorithm is confronted with four well-known pixel-
based classification methods and one region-based method in the literature: the standard fuzzy entropy
clustering (FEC) [Tran and Wagner, 2000], the second version of fuzzy c-means with spatial constraints
based on kernel-induced distance (KFCMS2) proposed by Chen and Zhang [Chen and Zhang, 2004], the
fuzzy local information c-means (FLICM) [Krinidis and Chatzis, 2010], the conditional spatial fuzzy
c-means (csFCM) [Adhikari et al., 2015], and the multiplicative intrinsic component optimization
(MICO) [Li et al., 2014].

All of the algorithms are implemented in MATLAB 2014b and executed with a computer with
Intel Core i3 1.5 GHz CPU, 4GB RAM using Microsoft Windows 7.

II.4.1 Experimental setup

To perform experiments, the parameters of the proposed algorithm are set as follows: population
size P = 40, maximum number of allowable iterations Niter = 100, number of non-significant improve-
ments Nnon−imp = 5, and termination criteria parameter ε = 0.0001. Note that, the kernel parameter
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σ2 in Gaussian kernel has a very important effect on the performances of kernel-based algorithms.
However, how to choose an appropriate value is still an open problem. In this work, we adopt the
”trial-and-error” technique and set the parameter λ in Eq. (II.12) to compute σ2 equal to 1/9. We
also found that for a range of λ around 1/9 (e.g. from 1/12 to 1/6), there appears no apparent changes
in results. Thus, we use this constant value in all experimental evaluations of the proposed algorithm.
All of the other parameters for the other algorithms are set to the default values.

II.4.2 Datasets

The MR images used in this study include both T1-weighted simulated and real 2D brain MR
images. For simulated MR images, they are downloaded from a well-known database: the brainWeb
from a McConnell Brain Imaging Center [Kwan et al., 1999], which can be reached in (https://

brainweb.bic.mni.mcgill.ca/brainweb/). This dataset includes six different noise levels (eg. from
0 to 9%), and two different INU levels: 20%, and 40%, and five different slice thicknesses. Images with
size of 181 × 217 and thickness of 1 mm are used in this work. On the other hand, real MR images
are taken in the 20-normal MR brain data sets, which contain manual segmentation by an expert
technician, provided by the Center for Morphometric Analysis at Massachusetts General Hospital. The
data sets are available at (http://www.nitrc.org/projects/ibsr/). Images with characteristics of
size 135× 142 and 1.171751 mm thickness, are used in our experiments.

II.4.3 Performance measures

Since the ground truth images are available in the datasets, for quantitatively comparing the
performance, two criteria are involved, which are the Jaccard index (JAC) [Jaccard, 1912] and the
Hausdorff distance (HD) [Beauchemin et al., 1998]. Current research [Taha and Hanbury, 2015] reports
that they are appropriate metrics for the evaluation of different segmentation methods when there exist
outliers with or without small segments, complex boundaries as well as low densities in the image.
These metrics are defined below.

II.4.3.1 Jaccard index

The Jaccard index is an overlap-based metric which directly compares a segmented image (Fs)
with a ground truth image (Ft) by measuring similarity between them. A higher value indicates
a better result. Given an input image with N pixels F = (f1, f2, . . . , fN ), and its two partitions,
Fs = (Fs1, Fs2, · · · , FsN ) (the segmented image) and Ft = (ft1, ft2, · · · , ftN ) (the ground truth image),
there are four common cardinalities that reflect the overlap between the two partitions, namely the
true positives (TP), the false positives (FP), the true negatives (TN), and the false negatives (FN).
Then, the Jaccard index is defined as follows:

JAC (Fs,Ft) =
TP

TP + FP + FN
(II.23)

II.4.3.2 Hausdorff distance

The Hausdorff distance is a distance-based metric which measures the dissimilarity between the
segmented image (Fs) and the ground truth image (Ft). A lower value indicates a better result. This
is also a widely used metric, defined as follows:

HD (Fs,Ft) = max {h (Fs,Ft) , h (Ft,Fs)} (II.24)

(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(http://www.nitrc.org/projects/ibsr/)
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where h (Fs,Ft) is called the directed Hausdorff distance given by:

h (Fs,Ft) = max
fsi∈Fs

min
fti∈Ft

‖fsi − fti‖ (II.25)

where ‖fsi − fti‖ is the Euclidean distance between the intensity values of the fsi pixel and the fti

pixel in the segmented and ground truth images, respectively.

II.4.4 Parameters setting

There are two parameters n and η of the fitness function fi, which have significant influence on
the partition matrix U = (uij)C×N and the cluster prototypes C = (ci)C , according to Eqs. (II.18) and
(II.19), and thereby effecting the final segmentation results. To determine these parameter values, a
3-step procedure has been carried out. First, estimating performance in terms of Jaccard index (JAC),
according to Eq. (II.23), of the proposed algorithm is done by fixing η and modifying n. Then, the
same evaluation of the algorithm is estimated by fixing n and modifying η. Finally, a set of (n, η)
values in their ranges which have strong effects on the performance is examined so that the nearly
optimal (n, η) values can be found. Note that the (n, η) values cannot be high because the membership
degree uij and the cluster centers ci in Eqs. (II.18) and (II.19) are the exponential functions of these
parameters, and high values of these parameters will lead to uij , ci becoming sensitive to the noise.
Hence, in our work, the ranges of (n, η) values are set to [1, 20].
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Figure II.2: Performance of the PSO-KFECSB algorithm in terms of Jaccard index by fixing η and
modifying n
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Spatial constraint parameter (η)
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Figure II.3: Performance of the PSO-KFECSB algorithm in terms of Jaccard index by fixing n and
modifying η

Table II.1: Performance of the PSO-KFECSB algorithm in terms of Jaccard index with different
simulated MR images and different (n, η) values

(n, η)
Z planes with 7% noise and 20% INU

Average
50 55 60 65 70 75 80 85 90 95

(4, 1) 0.8440 0.7855 0.7964 0.9089 0.9061 0.9030 0.9039 0.9115 0.9215 0.9291 0.8810
(17, 1) 0.8900 0.8790 0.9140 0.9118 0.9079 0.9043 0.9062 0.9127 0.9224 0.9302 0.9078
(6, 2) 0.8922 0.8813 0.9162 0.9145 0.9120 0.9093 0.9086 0.9149 0.9234 0.9316 0.9104
(10, 2) 0.8933 0.9016 0.9165 0.9142 0.9119 0.9091 0.9086 0.9151 0.9233 0.9316 0.9125

(10, 2.5)* 0.8933 0.9035 0.9173 0.9141 0.9117 0.9089 0.9088 0.9150 0.9223 0.9317 0.9126
(10, 3) 0.8926 0.9040 0.9160 0.9134 0.9116 0.9082 0.9090 0.9143 0.9222 0.9315 0.9123
(17, 3) 0.8927 0.9041 0.9164 0.9131 0.9112 0.9084 0.9090 0.9143 0.9222 0.9314 0.9123
(4, 6) 0.8896 0.8973 0.9141 0.9108 0.9098 0.9065 0.9067 0.9123 0.9203 0.9300 0.9098
(17, 6) 0.8894 0.9024 0.9142 0.9114 0.9097 0.9064 0.9064 0.9121 0.9206 0.9297 0.9102
(20, 6) 0.8916 0.8963 0.9146 0.9112 0.9099 0.9063 0.9067 0.9121 0.9206 0.9298 0.9099

*The values on gray background indicate the best performance.

Figure II.2 illustrates the performance of the PSO-KFECSB algorithm in terms of Jaccard index
by fixing η and modifying n. From the figure, it is obvious that the PSO-KFECSB algorithm provides
superior results using η = 2 and η = 3. In addition, the results also indicate that the performance is
quite constant when modifying n in the interval [6, 18].

Figure II.3 illustrates the performance of the PSO-KFECSB algorithm in terms of Jaccard index
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by fixing n and modifying η. It confirms more properly that the PSO-KFECSB algorithm provides
superior results when η value is in the interval [2, 3] and changing n in the interval [6, 18] has a minor
effect.

Table II.1 gives the average Jaccard index scores of the proposed algorithm on different simulated
MR images with different (n, η) values which are selected from the conclusions of two steps above.
Note that each provided result is the average of 10 independent program runs throughout the paper. It
is clearly illustrated that the PSO-KFECSB algorithm with the values of (10, 2.5) for the parameters
provides better performance than the others. Therefore, the subsequent experiments are performed
by using n = 10 and η = 2.5.

II.4.5 Results on simulated MR images

In this section, simulated MR brain images from the brainWeb are used for the purpose of
performance evaluation. The experiment is conducted on a data set of 30 images. These images
having characteristics of Mobility T1-weighted, slice thickness 1mm, with three different levels of noise
(5%, 7%, 9%), and two different levels of non-uniformity (20%, 40%), are segmented into 4 regions:
background, cerebral spinal fluid (CSF), gray matter (GM), and white matter (WM).

Figure II.4: Qualitative results of segmentation of simulated brain MR image (slice 90) with 9%
noise and 40% INU provided by the different algorithms:(a) original image; (b) ground truth; (c)
FEC results; (d) KFCMS2 results; (e) FLICM results; (f) MICO results; (g) csFCM results; (h)
PSO-KFECSB results.

Figure II.4 shows the qualitative results of the segmentation of T1-weighted image (slice 90)
with 9% noise and 40% INU by the different competing algorithms. This figure reveals that though
the KFCMS2, FLICM and the proposed PSO-KFECSB algorithm, yield positive outcomes, those
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from the proposed algorithm are the best ones, particularly, the GM segment. Figure II.5 shows
the qualitative results of the segmentation of 7 T1-weighted images (slices 55, 60, 65, 70, 75, 80 and
85) with 7% noise and 20% inhomogeneity. It can be seen that the proposed algorithm achieves an
impressive performance when segmenting simulated brain MR images. To obtain the results, the
PSO-KFECSB algorithm spends approximately 300 seconds to converge. Thus, it can be concluded
that our proposed algorithm qualitatively provides satisfactory results with better performance than
the other algorithms.

Table II.2: Average values of the total segmented results in terms of Jaccard index and Hausdorff
distance on T1-weighted brain MR images using different algorithms.

INU Noise Metrics FEC KFCMS2 FLICM MICO csFCM Proposed

20%

5%
JAC 0.9096 0.9192 0.9081 0.7402 0.9183 0.9267*

HD 057.00 061.20 065.20 082.20 043.80 058.80

7%
JAC 0.8739 0.9087 0.9020 0.7114 0.8902 0.9145
HD 123.00 049.60 064.20 121.60 095.00 038.00

9%
JAC 0.8308 0.8962 0.8937 0.6710 0.8476 0.9004
HD 122.20 055.00 067.40 127.20 118.60 037.60

40%

5%
JAC 0.8949 0.9040 0.8878 0.7439 0.9017 0.9290
HD 082.00 067.60 069.20 083.00 082.00 040.20

7%
JAC 0.8604 0.8908 0.8812 0.7174 0.8735 0.9170
HD 108.20 061.40 063.00 109.20 098.40 054.00

9%
JAC 0.8154 0.8778 0.8738 0.6877 0.8365 0.9004
HD 114.00 055.20 060.80 125.40 114.20 044.40

*The values in bold indicate the best performance.

In order to compare more clearly the performance of different segmentation algorithms, the
quantitative evaluation is considered. Tables II.2 - II.4 show the average values of Jaccard index and
Hausdorff distance metrics of six competing algorithms: FEC, KFCMS2, FLICM, MICO, csFCM, and
the proposed PSO-KFECSB. Table II.2, which summarizes the average values of the overall results of
the segmentation, is a striking illustration of the fact that the PSO-KFECSB algorithm significantly
outperforms the existing techniques. In addition, as can be seen from Table II.3, when segmenting
images with various added noise levels in the images (the same INU artifact level), the proposed method
generally gives the best scores, except for CSF segmenting scores in terms of Hausdorff distance.
Similarly, when segmenting images with different levels of INU artifact in the images (the same added
noise level), the data from Table II.4 demonstrate that our proposed method performs more efficiently
on simulated brain MR images compared to the others. Thus, the proposed algorithm provides more
accurate and stable segmentation results compared to its competitors.

II.4.6 Results on real MR images

We have also examined the performance of the proposed method on real MR brain images. The
number of tissue regions in the segmentation is set to three, which corresponds to the cerebrospinal
fluid (CSF), gray matter (GM), and white matter (WM). The background pixels are ignored in the
computation.
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Table II.3: Average values on T1-weighted brain MR images with the same level of INU artifact and
different levels of noise using different algorithms.

Regions INU Metrics FEC KFCMS2 FLICM MICO csFCM proposed

CSF
20%

JAC 0.9655 0.9706 0.9644 0.9661 0.9662 0.9727*

HD 173.00 185.20 247.27 211.00 165.47 189.33

40%
JAC 0.9578 0.9672 0.9605 0.9668 0.9600 0.9735
HD 194.27 183.80 251.53 171.1 193.93 192.20

GM
20%

JAC 0.8550 0.8905 0.8847 0.8075 0.8645 0.8965
HD 107.47 094.00 097.60 120.80 103.07 089.40

40%
JAC 0.8238 0.8669 0.8583 0.8068 0.8371 0.8992
HD 121.73 089.67 096.67 123.47 116.27 086.07

WM
20%

JAC 0.8929 0.9288 0.9276 0.8401 0.9043 0.9332
HD 130.13 062.93 081.60 184.40 109.40 062.80

40%
JAC 0.8669 0.9074 0.9038 0.8390 0.8819 0.9349
HD 144.87 076.73 103.80 183.60 122.07 071.20

*The values in bold indicate the best performance.

Table II.4: Average values on T1-weighted brain MR images with the same level of noise and different
INU artifact using different algorithms.

Regions Noise Metrics FEC KFCMS2 FLICM MICO csFCM Proposed

CSF

5%
JAC 0.9736 0.9731 0.9652 0.9765 0.9748 0.9780*

HD 148.80 186.70 263.80 162.50 176.80 198.40

7%
JAC 0.9660 0.9699 0.9629 0.9686 0.9686 0.9736
HD 190.70 181.90 261.00 193.40 143.60 196.00

9%
JAC 0.9454 0.9637 0.9593 0.9544 0.9459 0.9678
HD 211.40 184.90 223.40 217.30 218.70 177.90

GM

5%
JAC 0.8743 0.8914 0.8788 0.8451 0.8847 0.9138
HD 106.20 093.70 098.70 106.10 093.20 088.70

7%
JAC 0.8450 0.8806 0.8731 0.8121 0.8614 0.8991
HD 118.20 089.10 095.20 128.50 110.90 089.00

9%
JAC 0.8257 0.8860 0.8863 0.7835 0.8345 0.9003
HD 119.40 092.70 097.50 131.80 124.90 085.20

WM

5%
JAC 0.9078 0.9280 0.9214 0.8708 0.9185 0.9466
HD 105.10 071.00 090.20 173.30 067.40 062.70

7%
JAC 0.8831 0.9193 0.9169 0.8430 0.8997 0.9350
HD 161.50 073.10 096.60 188.40 119.90 056.30

9%
JAC 0.8489 0.9070 0.9088 0.8049 0.8610 0.9207
HD 145.90 065.40 091.30 190.30 159.90 082.00

*The values in bold indicate the best performance.
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Figure II.5: Qualitative results of segmentation of simulated brain MR images (slice 55, 60, 65, 70,
75, 80, and 85) with 9% noise and 40% INU provided by the proposed algorithm versus the ground
truth images: (a) original images; (b) ground truth images; (c) segmentation results; (d) CSFs; (e)
GMs; (f) WMs.
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Figure II.6: Qualitative results of segmentation of real brain MR image (Z plane 25 in the 4th

volume) provided by the different algorithms:(a) original image; (b) ground truth; (c) FEC results;
(d) KFCMS2 results; (e) FLICM results; (f) MICO results; (g) csFCM results; (h) PSO-KFECSB
results.

Figure II.6 shows the qualitative results of the segmentation of T1-weighted image (Z plane
25) by the competing algorithms. Through a careful look at the results presented in this figure, it
can be seen that our proposed algorithm provides superior results as compared to other five different
algorithms. Among the rest, even though the MICO algorithm produces a satisfactory WM segment,
the other results (CSF and GM segments) from this algorithm are not acceptable.

Table II.5: Average values in terms of Jaccard index and Hausdorff distance using real brain MR
images

Regions Metrics FEC KFCMS2 FLICM MICO csFCM Proposed

CSF
JAC 0.9756 0.9777 0.9758 0.9480 0.9756 0.9835*

HD 1635.8 1827.2 1776.0 1821.0 1636.0 1627.2

GM
JAC 0.7449 0.7460 0.7361 0.7593 0.7476 0.7985
HD 187.80 186.60 184.80 182.60 187.20 181.60

WM
JAC 0.7539 0.7570 0.7529 0.8011 0.7590 0.8160
HD 147.80 169.60 175.60 119.00 166.20 082.20

Total
JAC 0.8610 0.8654 0.8736 0.8911 0.8615 0.9019
HD 076.40 079.80 091.60 054.60 079.00 046.80

*The values in bold indicate the best performance.
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Figure II.7 shows qualitative results of the segmentation of 5 normal T1-weighted images (Z
planes 25, 27, 30, 35, and 37 in the 4th volume) by the PSO-KFECSB algorithm. This figure reveals
that the proposed algorithm accomplishes appropriately the segmentation of real brain MR images.
It may be worth mentioning here that though the KFCMS2 and FLICM algorithms work quite well
on simulated brain MR images, as shown in Fig. II.4, these algorithms provide unsatisfactory results
on real MRI brain images. On the other hand, the PSO-KFECSB algorithm does well in both cases.

Figure II.7: Qualitative results of segmentation of real brain MR images (Z planes 25, 27, 30, 35,
37 in the 4th volume) provided by the PSO-KFECSB algorithm versus the ground truth images: (a)
original images; (b) ground truth images; (c) segmentation results; (d) CSFs; (e) GMs; (f) WMs.

Table II.5 shows the average values of the Jaccard index and the Hausdorff distance metrics using
real brain MR images (Z planes 25, 27, 30, 35, and 37 in the 4th volume) for six competing algorithms:
FEC, KFCMS2, FLICM, MICO, csFCM, and the proposed PSO-KFECSB. Note that to archive the
results, the PSO-KFECSB algorithm spends around 150 seconds to converge. These results show that
the PSO-KFECSB algorithm outperforms the FEC, KFCMS2, FLICM, MICO, csFCM algorithms for
segmenting the images. Again, the results presented here show the efficiency of the PSO-KFECSB
algorithm and also demonstrate its superiority over its competitors.
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II.5 Conclusion

In this chapter, a new clustering method, which takes both advantages of improved PSO algo-
rithm, LHNPSO algorithm, and kernelized fuzzy entropy clustering with spatial information and bias
correction, called PSO-KFECSB algorithm, is presented. This method is used to segment brain MR
images. There are three major improvements, which have been done here. First, kernel method has
been applied to measure the similarity between data points (intensity of pixels) such that the problem
of complex structure of brain MR images can be overcome. Second, a novel objective function, which
takes into account both spatial information and bias field existing in input image, has been proposed.
Finally, the LHNPSO algorithm is used to deal with the problem of getting stuck in local minima.
Therefore, the two major drawbacks of fuzzy clustering algorithms, which are the sensitivity to noise
and INU artifact and the trapping of the solution into local minima, have been partially overcome;
thereby providing superior segmentation results. The proposed algorithm has been tested on both
simulated and real brain MR images. The experiments are examined qualitatively as well as quanti-
tatively, using the Jaccard index and the Hausdorff distance. The experimental results show that the
proposed algorithm is more effective in comparison with five powerful states of the art methods in the
literature. Particularly, on the one hand, the visual segmentation results of proposed algorithm show
more compact and with less artifacts than its competitors; on the other hand, the quantitative results
of analysing segmentation also prove the outstanding of PSO-KKFECSB algorithm compared to its
competitors. However, when high level of noise along with INU artifact are added into MRI data, the
performance of the PSO-KFECSB algorithm may decrease. In addition, only one criterion JKFECSB

is used to guide the solution-searching process, which may lead to the situation where the solution is a
global optimum specific to the criterion used, but may not be the best optimum for the segmentation.
To produce better segmentation results, we propose to use multi-objective optimization approach in
which the complementary strengths of other criteria can be exploited. This new method is presented
in detail in the next chapter.

Note that the research reported in this chapter gave rise to our publications [Pham et al., 2017a,b,
2018].
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Chapter III

Multi-objective optimization metaheuris-
tic approach for image segmentation us-
ing fuzzy entropy clustering and region-
based active contour

III.1 Introduction

In the previous chapter, we proposed an improvement of fuzzy entropy clustering (FEC) for
segmentation of brain magnetic resonance (MR) images. Despite good results obtained, we noticed
that segmentation errors still remain. In order to further improve performance, we propose in this
chapter to add a novel segmentation criterion based on region-based active contour. Both criteria are
optimized simultaneously in multi-objective optimization approach via an improved multi-objective
particle swarm optimization algorithm. From that, a decision maker is used to select the best trade-off
solution among the solutions of the Pareto front. As a result, higher accurate image segmentation,
with two independent characteristics, named compactness and separation, that are derived from the
fuzzy entropy clustering and the region-based active contour approaches, can be achieved.

This chapter is organized as follows. In Section III.2, we present the background information on
which the proposed method is based. Section III.3 introduces the proposed method: segmentation of
brain MR images using multi-objective optimization approach. Evaluation and comparison with a set
recent methods in the literature are shown in Section III.4. The results of the comparative evaluation
are described and discussed in Section III.5. Finally, conclusion is drawn in Section III.6.

III.2 Multi-objective optimization approach for image segmentation

In this section, we present different aspects of multi-objective optimization approach for the
image segmentation problem. The details are described in the following sections.

III.2.1 Problem formulation and proposed solution

In the previous chapter, the model of MR image formation described in Eq. (II.9) is based
on assumptions, that intensity inhomogeneity varies slowly over the entire image domain; otherwise,
the intensity would be constant for the same tissue type. Besides, the intensity inhomogeneity is
in multiplicative type since it is consistent with the inhomogeneous sensitivity of the reception coil.
Noise in the image is approximated by Gaussian probability distribution and is independent of the
intensity inhomogeneity field. To model the input image more accurately, we use the same approach
proposed by Huang and Zeng [Huang and Zeng, 2015], who assume that there is a difference between
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the measured image and the traditionally approximated models in the local region. The difference is
also independent of the intensity inhomogeneity and noise. Accordingly, an acquired MR image can
be modelled as:

(fj)N =
(
f t
j

)
N

(bj)N + (dj)N + (nj)N (III.1)

where fj is the measured intensity of the jth MR pixel; f t
j is the true intensity value approximated

by a constant ct
i for all pixels in the ith tissue; bj is the unknown smoothly varying bias field, dj is

the local difference between the measured image and the traditionally approximated model, nj is an
additive zero-mean Gaussian noise with relatively small variance at the jth pixel, and N is the number
of pixels in the MR image.

Considering an input image modelled by Eq. (III.1) as a decomposition of four components:
(f t
j )N , (bj)N , (dj)N , and (nj)N , we formulate the image segmentation problem as a multi-objective

optimization (MOO) problem and a decision-making process of finding optimal values of these compo-
nents with a view of an image as a function Γ : Ω→ < on a continuous domain Ω. The MOO approach
to the problem is motivated by seeking two important properties in segmented images: compactness
and separation, from two complementary approaches named fuzzy entropy clustering and region-based
active contour. It is well known that fuzzy entropy clustering is to reduce the variation or scattering
of the data within a particular tissue (compactness), and region-based active contour attempts to
isolate the clusters/regions from each other (separation). Note that, the local spatial information and
bias correction are also considered to deal with noise and INU artifact. After a set of non-dominated
Pareto optimal solutions is produced, a decision maker will take place to find the best trade-off solution
between the two characteristics.

III.2.2 Multi-objective optimization

From a mathematical viewpoint, a general MOO problem can be formulated as follows:

minimize: Q(x) = (q1(x), q2(x), . . . , qm(x))T

subject to

{
gj(x) ≥ 0, j = 1, · · · , J
hk(x) = 0, k = 1, · · · ,K (III.2)

where J andK are the numbers of inequality and equality constraints, respectively. x = (x1, x2, . . . , xL)
is a L-dimensional candidate solution in search space Ω. The mapping function ∆ : Ω → <m defines
m objective functions (qi(x), i = 1, ...,m) and <m is called the objective space.

The solving of a MOO problem relies on a crucial concept, which is that of dominance. A
decision vector xp = (xp1, xp2, . . . , xpL) is said to strictly dominate another decision vector xr =
(xr1, xr2, . . . , xrL), denoted by xp ≺ xr. If the following conditions are met, one can say that xp
dominates xr or xp is better than xr:

∀i : qi(xp) ≤ qi(xr) and ∃j : qj(xp) < qj(xr) (III.3)

where i = 1, ...,m; j = 1, ...,m. In MOO, when a solution is not dominated by any others, it is
referred to as a Pareto optimal solution. The latter is said to be non-dominated, and the set of all
non-dominated solutions forms the Pareto front of optimal solutions, a consequence of not being able
to minimize or maximize all the objective functions simultaneously.

Note that, in simultaneous multi-objective optimization of criteria, it is possible that a conflict
appears. It is more often that one criterion cannot be improved without damaging at least one other.
In addition, it is rare to be in a situation where a single solution x̂ represents the optimal solution
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for all objective functions. In the literature, there are several approaches for solving multi-objective
optimization problems [Deb, 2001]. In this work, we will benefit from the optimization metaheuristic
approach by using multi-objective particle swarm optimization (MOPSO) described in the next section.

III.2.3 Multi-objective particle swarm optimization algorithm

In order to solve multi-objective optimization problems, the original PSO algorithm needs to
be adapted. In terms of multi-objective optimization, each particle can have several non-dominant
pBest. The swarm can also have several non-dominant gBest. As a result, extending PSO to MOO
problems raises three fundamental questions [Reyes-Sierra and Coello, 2006]:

(i1) How to select the pBest for each particle and the gBest for the swarm to give preference to
non-dominated solutions ?

(i2) How to retain the non-dominated solutions found during the search process so that the solutions
are non-dominated with respect to all the past populations, not only to the current one ?

(i3) How to maintain diversity in the swarm in order to avoid convergence towards a single solution
?

Algorithm III.1: The improved MOPSO algorithm

Initialization: Set the maximum number of iterations Niter; set {w, c1, c2}; initialize
population P ; determine pBest and gBest and store them in external archives
pA(t) and gA(t), respectively; generate hypercubes as coordinate systems

Results : Report results in the gA(t)
k ← 1
repeat

/* Flight particles */

1 Update the flight parameters using Eq. (III.4)
2 Update Xi and Vi according to Eqs. (II.6) and (II.7)
3 Do mutation as detailed in [Sierra and Coello, 2005]
4 Check boundary conditions for both Xi and Vi

/* Evaluate and maintain solutions */

5 for each particle (or solution) do
Evaluate fitness values {q1(Xi), q2(Xi), . . . , qm(Xi)}

6 Determine the pBest using the strategy described in Section III.2.3.2
7 Determine the gBest using the strategy described in Section III.2.3.3
8 Update and store non-dominated solutions in pA(t) and gA(t)
9 Maintain gA(t) using crowding distance technique

10 Update the contents in the hypercubes as detailed in [Sierra and Coello, 2005]
11 k ← k + 1

until the stopping criteria are met

In this work, the algorithm proposed by Sierra and Coello [Sierra and Coello, 2005] is considered
as a basic MOPSO algorithm to develop for solving the image segmentation problem. To deal with the
questions mentioned above, we utilize the state of the art in MOPSO developments, particularly in the
selection of pBest, gBest, and updating flight parameters (w, c1, and c2). As a result, the convergence



Multi-objective optimization metaheuristic approach 53

speed is increased and the diversity of non-dominated solutions is maintained. The procedure of
developed MOPSO algorithm is summarized in Algorithm III.1.

Note that, the crowding distance is calculated by using the procedure proposed by Kalyanmoy
Deb et al. [Deb et al., 2002], which is described in Algorithm III.2.

Algorithm III.2: Crowding distance procedure

1 Procedure crowdingDist()
Inputs : The non-dominated solutions with size l in the gA(t)
Output: The distance corresponded to each solution, Dist
/* Initialization */

2 for each particle (or solution i) do
3 Dist[i]← 0

/* Calculation */

4 for each objective (m) do
5 Sort fitness values
6 Dist[1]←∞ and Dist[l]←∞
7 for i = 2 to (l − 1) do

8 Dist[i]← Dist[i] +
[
gA(i+1)m−gA(i−1)m

qmaxm −qminm

]

Here, gA(i)m refers to the mth fitness value of the ith individual in the global archive gA(t)
and parameters qmaxm and qminm are the maximum and minimum values of the mth objective function,
respectively.

Furthermore, the hypercubes in this work are currently built using an adaptive grid [Knowles
and Corne, 2000]. At each iteration, the objective space is divided using a grid so that the crowding
of the solutions is measured using the crowding distance in the objective space within the grid. As
a result, solutions at the highly populated cells can be removed or replaced to reduce computational
overhead and overcome the problem of size limitation of the storing archives.

III.2.3.1 Flight parameter mechanism

To have a better global exploration of the search space, most of existing works on MOPSO show
that (w, c1) parameters should be large and c2 should be small at the beginning stage of iterations.
Then, towards the end of the algorithm, to promote a better local exploitation, (w, c1) parameters
should be small and c2 should be large. Hence, the law of updating flight parameters (w, c1, and c2)
in this work is adopted from Zhang et al.’s work [Zhang et al., 2017], in which the w is fixed (equal to
0.4) and the (c1, c2) are modified as follows:

c
(k)
1 = 2.5− 2. (k/Niter) , c

(k)
2 = 0.5 + 2. (k/Niter) (III.4)

where k and Niter are, respectively, the iteration number starting from 1 and maximum number of
allowable iterations.

III.2.3.2 Personal best selection mechanism

In this work, the ”Diversity” strategy proposed by Branke and Mostaghim [Branke and Mostaghim,
2006] is used because of its improvement ability in maintaining diversity for MOPSO algorithm. Par-
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ticularly, the pBest is stored in a personal archive and updated in each generation. Among all the
pBest solutions visited in the past, the one which has the largest minimum crowding distance to any
others, is selected. In other words, one selects the most isolated solution from the others as the current
pBest to force the particle to explore the regions which are far from those in the population.

Figure III.1: Qualitative segmentation results obtained from the proposed strategy and the original
one using T1-weighted brain MR images: (a) input images; (b) results using the proposed strategy;
(c) results using the roulette wheel selection strategy.

Table III.1: The average values in terms of DICE coefficient obtained when doing simulated MR
image segmentation by using different strategies for selecting the gBest.

Strategies
Slices

Average
75 85 95 105 115

The original 0.9425 0.9410 0.9583 0.9684 0.9688 0.9558
Proposed 0.9459 0.9479 0.9610 0.9725 0.9714 0.9597

*The value in bold indicates the best performance.

III.2.3.3 Global best selection mechanism

The selection of gBest is adapted from the leader selection strategy of whole process proposed
by Gong et al. [Gong et al., 2017], which makes MOPSO algorithm avoid trapping in a local optimum
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by considering the distribution of the Pareto set. gBest is selected among the leftmost, rightmost, and
middle solutions in the current Pareto front with certain selection probability (higher for the middle
one, and smaller for the others). Specifically, the middle solution is selected among all current Pareto
solutions with the minimum qi.

qi =

√√√√ m∑
j=1

q2
ij (III.5)

where m is the number of objective functions. qij is the fitness value of the jth objective function of

the ith solution after normalization. Obviously, the middle particle is a good trade-off solution of all
objective functions.

Note that, for the problem with two fitness functions, the middle solution, actually, is the closest
one to the ideal solution which simultaneously has minimum fitness value.

To examine the impact and efficiency of this mechanism, we did a comparison with the original
one (applying roulette wheel selection to choose one hypercube among those having more than one
particle, then, randomly selecting a particle in the hypercube and considering it as the gBest) in the
MOPSO algorithm proposed by Coello et al [Sierra and Coello, 2005] in terms of DICE coefficient.
The two mechanisms were tested on simulated MR images (slices 75, 85, 95, 105, 115 with 9% noise
and 40% INU artifact downloaded from the brainWeb). From Table III.1 and Figure III.1, it can be
seen that the proposed strategy generally provides better segmentation results, which are about 0.39%
in terms of DICE coefficient in average.

III.2.4 Decision making

When a set of trade-off solutions is obtained, a decision point needs to be chosen to proceed
further. Consequently, we are facing a multi-criteria decision making (MCDM) problem. Fortunately,
there are several methods which have been proposed in the literature for this non-trivial task [Padhye
and Deb, 2011, Wang and Rangaiah, 2017]. These methods can be divided into two main classes:
requiring prior information from users and without requiring any information from users.

Non-dominated solutions
Dominated solutions

hypercube

0 1

1

Selected solution
Reference 

point

Pareto front

Figure III.2: L2-metric method for selecting final solution in a Pareto front.
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In this work, we use a distance-based technique, called L2-metric method, proposed by Padhye et
al. [Padhye and Deb, 2011]. This is a straightforward method to select one solution out of many non-
dominated solutions without requiring any information from users. Specifically, first, each objective
is normalized within [0, 1]. Then, the ideal point (solution) is constructed, which is origin in case of
normalized space, and taken as the reference point (Figure III.2). Euclidean distance (L2) of each point
in the non-dominated set is calculated from the reference point and the one which has the smallest
Euclidean distance will be chosen.

III.3 Proposed method

This section describes the proposed image segmentation method, which is based on the improved
MOPSO algorithm with two criteria and the L2-metric method used to choose the best solution on
the Pareto front. The first criterion is that of the improved fuzzy entropy clustering (JKFECSB),
which has been illustrated in Section II.3.3 in the previous chapter. Minimizing JKFECSB leads to a
more compact segmentation result. The second criterion takes advantages of the region-based active
contours such that a higher separation between regions in segmented images can be achieved. Both
criteria are optimized simultaneously using the improved MOPSO algorithm. The result is a set of
distributed segmentation solutions in which one cannot be estimated as better compared to the others.
To choose the final solution, the L2-metric method is used as a decision-making process based on the
sorting of the solutions in the Pareto set. This method is presented in detail below.

III.3.1 Particle representation

In this work, the particles are made up of real numbers which represent the coordinates of the
cluster/region centers in the range of pixel values in the image. For P solutions with C distinct centers,
there are in total (P × C) optimization variables that need to be encoded. For instance, the position
of ith solution in the population is encoded as: Xi = (xi1, xi2, . . . , xiC). Here, xir (r = 1, · · · , C)
represents the rth cluster centers among C centers of the ith solution. In this way, the estimated
cluster centers, C = (cr)C , are obtained by decoding Xi.

III.3.2 Segmentation criteria

The performance of a segmentation algorithm critically depends upon the criteria it tries to
optimize simultaneously. We propose to jointly optimize two independent criteria to obtain both the
complementary properties of segmented images: compactness and separation. In addition, the local
spatial information and bias correction are also considered to deal with noise and INU artifact existing
in input images.

III.3.2.1 Criterion based on fuzzy entropy clustering

The first objective function is the kernelized fuzzy entropy clustering with local spatial infor-
mation and bias correction, JKFECSB. Note that, brain MR images may be corrupted by different
artifacts. Therefore, a pixel at the boundary of two or more regions can easily induce classification
errors under the grayness ambiguity or geometric blur that reduces the sharpness of the objects con-
tours in the image. By using the fuzzy concept to consider each pixel belonging to several regions
with different degrees, we can manage and overcome these difficulties more efficiently. This criterion
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is calculated using the following equations (for more details, refer to Section II.3.3):

K(fj , ci) = exp

(
−‖fj − ci‖

2

σ2

)
(III.6)

u−1
ij =

C∑
r=1

exp
{
n
[(

1−K(fj , cib
fe
j )
)

+ η
(

1−K(f j , cib
fe
j )
)]}

exp
{
n
[(

1−K(fj , crb
fe
j )
)

+ η
(

1−K(f j , crb
fe
j )
)]} (III.7)

Bfe =

 C∑
i=1

G× F
N∑
j=1

ciuij

−1G×GT
N∑
j=1

c2
iuij

T G (III.8)

JKFECSB

(
F,C,U,Bfe

)
=

C∑
i=1

N∑
j=1

uij

[
1−K(fj , cib

fe
j )
]

︸ ︷︷ ︸
shape and size

+
1

n

C∑
i=1

N∑
j=1

uij log (uij)︸ ︷︷ ︸
degree of non-membership

+ η

C∑
i=1

N∑
j=1

uij

[
1−K(f j , cib

fe
j )
]

︸ ︷︷ ︸
artifact in-sensitiveness and detail preservation

(III.9)

The objective function, JKFECSB, described in Eq. (III.9) should satisfy the following conditions:

U ∈
{
uij ∈ [0, 1]

∣∣∣∣ ∑C

i=1
uij = 1, ∀j and 0 <

∑N

j=1
uij , ∀i

}
(III.10)

III.3.2.2 A novel criterion based on region-based active contour

The second objective function is the adaptive energy weight combined with global and local
fitting energy active contour models, JAWGLAC. As there are more than two regions in a single slice
in MR brain images, hence, we focus on the multiphase approach (3 or 4 regions) in this work.

Chan and Vese proposed a multiphase model (MC-V) [Vese and Chan, 2002], called global fitting
energy (GFE), which is used to extract 2n objects with n level set functions. For C = 4 phases, let
Φ = (φ1, φ2) be a vector level set function, and Θ = (Θ1,Θ2) be a set of closed curves expressed by
the zero level set functions φi. {Θ1 : φ1 = 0} ∪ {Θ2 : φ2 = 0} partitions an image into four regions
Ω = (Ω1,Ω2,Ω3,Ω4), where the image domain Ω = ∪Ci=1Ωi and Ωi∩Ωj = � for i 6= j, with their mean
values C = (ci)C . In the level set framework [Sethian, 1999], for the given image F(x) with point
x ∈ Ω, the energy functional of Φ can be formulated as:

J GFE (F,Φ,C) =
C∑
i=1

λi

∫
Ω
|F(x)− ci|2Mi(Φ(x))dx+ νL(Φ) (III.11)

where λi is a positive constant which defines the weight of a term in the energy functional. ν is
a positive constant fixed empirically. Mi(Φ) is the membership function representing the region
Ωi: M1(Φ) = Hε(φ1).Hε(φ2),M2(Φ) = Hε(φ1).(1 − Hε(φ2)),M3(Φ) = (1 − Hε(φ1)).Hε(φ2), and
M4(Φ) = (1−Hε(φ1)).(1−Hε(φ2)), where Hε(s) = 1

2(1 + 2
πarctan( sε )) with a positive constant ε, is a
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smooth version of Heaviside function. L(Φ) is a regularization term that computes the arc length of
the zero level set contours of Φ and serves to smooth them during evolution, defined as follows:

L(Φ) =

∫
Ω
|∇Hε(φ1(x))|dx+

∫
Ω
|∇Hε(φ2(x))|dx (III.12)

By minimizing Eq. (III.11) with respect to Φ and C, the segmented image is obtained as follows:

Fs =

C∑
i=1

ciMi(Φ) (III.13)

Li et al. [Li et al., 2018] pointed out that the energy weight parameters (λi) in the energy
functional (III.11) are important and impact on the segmentation accuracy, especially when the areas
of the objects and background are significantly different. They argue that each object should have
the same contribution to the energy functional (III.11) and it would not be dependent on the others.
Hence, to cope with this problem, the authors proposed adaptive energy weight functions to configure
(λi) as illustrated below:

λ
(k)
i =

size(F)

Area(Ω
(k)
i )

=
N

Area(Ω
(k)
i )

, with Area(Ω
(k)
i ) =

∫
Ω
Mi(Φ

(k)(x))dx (III.14)

where λ
(k)
i , Area(Ω

(k)
i ), and Φ(k)(x) are the energy weight, the area, and level set functions in the kth

iteration of the ith region, respectively.

It is clear that the energy functional (III.11) does not take into account local partial information
and thus is unable to deal with INU artifact. Inspired from the work of Li et al. [Li et al., 2011b],
Huang and Zeng [Huang and Zeng, 2015] proposed the model which is better in approximating the
measured image and simultaneously solves the problem of intensity inhomogeneity by incorporating
the local difference information between the acquired image and Li et al.’s estimate. The model based
on local partial information of the image (called local fitting energy (LFE)) is given by:

J LFE (F,Φ,C,Bac,D) = νL(Φ) + µP(Φ)

+

∫
Ω

( C∑
i=1

βi

∫
Ω
Kσ(y − x)|F(x)− bac(y)ci − d(y)|2Mi(Φ(x))dx

)
dy

(III.15)

where C = (ci)C , Bac =
(
bacj

)
N

, and D = (dj)N are the set of C mean intensity values, the bias field

estimation and the local difference, respectively. βi is a positive constant which defines the weight
of different terms in the local energy functional. Kσ(y − x) is a Gaussian kernel function (viewed as
the weight at point y in local region of x) with a window of size (4w + 1) × (4w + 1) and standard
deviation σ, which is larger than w. µ is a positive constant fixed empirically. P(Φ) is a regularization
term proposed by Li et al. [Li et al., 2005] to eliminate the re-initialization step, which is defined as
follows:

P(Φ) =
1

2

∫
Ω

(|∇φ1(x)| − 1)2dx+
1

2

∫
Ω

(|∇φ2(x)| − 1)2dx (III.16)

Minimizing Eq. (III.15) with respect to Φ, C, Bac, and D, the segmented image is obtained by
using Eq. (III.13)
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By using local partial information, the work of Huang and Zeng is able to provide desirable
segmentation results even in the presence of INU artifact. However, to some extent, the model is
sensitive to initialization and hard to handle with the presence of noise. To solve this issue, several
works [Liu et al., 2013, Zhao et al., 2017] have been proposed by using the approach that consists
in combining the global and local fitting energy functions. While the global information is used
to improve the robustness with respect to noise and initialization (sometimes, it also maintains the
boundary details [Wang et al., 2010]), the local information is considered to deal with INU artifact
occurred in the given image. However, even most of the previous works assume that the energy weights
associated with each region are fixed (equal to 1), this is not true as pointed out by Li et al. [Li et al.,
2018]. Moreover, tuning simultaneously several parameters in the combining models is a tedious work.

In this work, with the same approach, which uses both the global and local fitting energy
functions, we propose a novel region-based active contour model with adaptive weights described as
follows:

JAWGLAC (F,Φ,C,Bac,D) = ω.
C∑
i=1

λi

∫
Ω
|F(x)− ci|2Mi(Φ(x))dx︸ ︷︷ ︸

The global fitting energy (GFE)

+ R(Φ)︸ ︷︷ ︸
regularization and arc length

+ (1− ω).

∫
Ω

( C∑
i=1

βi

∫
Ω
Kσ(y − x)|F(x)− bac(y)ci − d(y)|2Mi(Φ(x))dx

)
dy︸ ︷︷ ︸

The local fitting energy (LFE)

(III.17)

where ω = ( 1
2π )2.(1− hmean) is a constant defined by the input image, which controls the influence of

the GFE force and LFE force. Here, hmean is the average of the local entropy with window of size 9×9
centered on each pixel in the whole image, which reflects the degree of the intensity inhomogeneity
[Zhao et al., 2017]. It is clear from the energy functional (III.17) that, when the presence of INU
artifact (hmean) in the given image is higher, the LFE force will be increased to deal with it. R(Φ) =
νL(Φ)+µP(Φ) is the combination of the regularization term and arc length term. The energy weight
parameters (λi, βi) are adaptively adjusted as follows:

λ
(k)
i = ρ.

min{Area(Ω
(k)
i )}

Area(Ω
(k)
i )

(III.18)

β
(k)
i = ζ.

Area(Ω
(k)
i )

min{Area(Ω
(k)
i )}

, with i = 1, · · · , C. (III.19)

where (ρ, ζ) are scale parameters determined by experiments and Area(Ω
(k)
i ) is defined as in Eq.

(III.14).

With the definition of the energy weight parameters as in Eqs. (III.18) and (III.19), it is obvious

that each object fairly contributes in the energy functional (controlled by λ
(k)
i ) in the whole image.

On the other hand, in local area the difference among regions is enhanced (controlled by β
(k)
i ). Hence,

in this way, by minimizing Eq. (III.17), we can obtain a better result of image segmentation.

Using the gradient descent method, the solution of (Φ,C,Bac,D) when we minimize Eq. (III.17)
with respect to each of its variables, given the others in previous iteration, is achieved as follows.

For fixed Φ,Bac, and D, the optimal C = (ci)C that minimizes (III.17), is given by:

ci =
ω.λi

∫
Ω F(x)Mi(Φ)dx+ (1− ω).βi

∫
Ω(Kσ ∗Bac)(F(x)−D)Mi(Φ)dx

ω.λi
∫

ΩMi(Φ)dx+ (1− ω).βi
∫

Ω(Kσ ∗ (Bac)2)Mi(Φ)dx
(III.20)
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Keeping C,Bac, and D fixed, and minimizing the energy functional JAWGLAC in (III.17) with
respect to Φ, we can deduce the associated Euler-Lagrange equations for Φ. By introducing an
artificial time variable t ≥ 0, the gradient flow equation for updating Φ is as follows:

∂φ
(k)
l

∂t
= −

L∑
i=1

∂Mi(Φ
(k))

∂φ
(k)
l

.e
(k)
i + ν.δε(φ

(k)
l )div

(
∇φ(k)

l

|∇φ(k)
l |

)
+ µ.

(
∇2φ

(k)
l − div

∇φ(k)
l

|∇φ(k)
l |

)
(III.21)

φ
(k+1)
l = φ

(k)
l +4t

∂φ
(k)
l

∂t
(III.22)

with the initial and Neumann boundary, conditions are defined by:

φl(x, 0) = φ
(0)
l (x), x ∈ Ω (III.23)

∂φ
(k)
l

∂n
= 0, x ∈ ∂Ω (III.24)

where l = 1, 2, and φ
(0)
l (x) is the initial level set lth function. n denotes the exterior normal to the

boundary ∂Ω. 4t is time step. δε(φ
(k)
l ) is the Dirac delta function, which is the derivative of Hε(φ

(k)
l ):

δε(s) = Hε’(s) = 1
π

ε
ε2+s2

. And, e
(k)
i is a function defined as follows:

e
(k)
i = (1− ω)

∫
Ω
β

(k)
i Kσ(y − x)|F(x)− bac(y)xc

i − d(y)|2dy + ωλ
(k)
i |F(x)− xc

i |2 (III.25)

Similarly, we obtain the optimal B and D as follows:

Bac =

Kσ ∗ ((F−D).
C∑
i=1

ci.Mi(Φ))

Kσ ∗
C∑
i=1

(ci)2.Mi(Φ)

(III.26)

D =

Kσ ∗
C∑
i=1

(F− ci.B)Mi(Φ)

Kσ ∗
C∑
i=1

Mi(Φ)

(III.27)

where ‘ ∗ ’ is the convolution operator.

Figure III.3: Segmentation results of a simulated MR brain image by different objective functions:
(a) the original; (b) ground truth; (c) result with the energy functional (III.11); (d) result with the
energy functional (III.15); (e) result with the energy functional (III.17)
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To verify the effectiveness of the proposed model (III.17), we segment MR images using the PSO-
based framework proposed by Mandal et al. [Mandal et al., 2014], that we extended for multiphase
case with the same termination conditions introduced in [Wang et al., 2010], for three fitness functions:
(III.11), (III.15), and (III.17), with default settings as in the literature. As a simple example, Figure
III.3 shows the segmentation results for the different fitness functions when segmenting T1-weighted
image (slice 97 from the brainWeb dataset) with noise level of 9% and intensity inhomogeneity of 40%.
It is clear that when using the energy functional (III.17) as a fitness function of the image segmentation
problem, we can obtain superior results compared to the counterparts.

III.3.3 Optimum search process

In this section, the improved MOPSO algorithm illustrated in Section III.2.3 is used as a search-
ing engine to find a set of Pareto solutions by minimizing the two fitness functions, JKFECSB and
JAWGLAC. The MOO framework for the image segmentation problem is summarized in Algorithm
III.3.

In the initialization, the population (Xi)P is generated randomly. Each individual Xi =
(xi1, xi2, . . . , xiC) is a C-dimension decision vector (with C = 3 or 4), where C is the number of
cluster centroids. And then, the initial level set function associated with the solution Φ(0) is config-
ured through a succession of steps. First, the elements of the decision vector are sorted in ascending
order, (x′i1, x

′
i2, . . . , x

′
i4). Next, the Φ(0) is determined as explained bellow

If the number of regions is three (C = 3), where M1(Φ) = Hε(φ1).Hε(φ2), M2(Φ) = Hε(φ1).(1−
Hε(φ2)), and M3(Φ) = 1−Hε(φ1), the Φ(0) are initialized as:

φ
(0)
1 = α.sign(F > x′i1) and φ

(0)
2 = α.sign(F > x′i2) (III.28)

If the number of regions is four (C = 4), the Φ(0) are initialized as:

φ
(0)
1 = α.sign(F < x′i3) and φ

(0)
2 = α.sign((F > x′i2) ∪ (F < x′i4)) (III.29)

where α is a constant, set equal to 2, and F is the input image.

To make sure that all particles are moving within the search space, the boundary conditions for
their velocities and positions (Vi, Xi) are limited as follows:

v
(k)
ij =


vmax, if v

(k)
ij > vmax

vmin, if v
(k)
ij < vmin

+ v
(k)
ij , otherwise

(III.30)

x
(k)
ij =


xmax, if x

(k)
ij > xmax

xmin, if x
(k)
ij < xmin

+ x
(k)
ij , otherwise

(III.31)

where vmin and vmax are the smallest and largest allowable step sizes in any dimension (vmin =
−vmax = −1 is set in this paper); and {xmin, xmax} are the bounds of the search space in each
dimension. Actually, they are the minimum and maximum of the intensity value of the input image.

Furthermore, to provide a flexible choice for the user and a resource for further post-processing
stage, maintaining the external archive gA(t), where are stored the non-dominated solutions, includes
both output information for fuzzy entropy clustering (U, Bfe) and region-based active contour (Φ,
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Bac) methods. However, in this work we get segmented images by using the output of fuzzy entropy
clustering method. In addition, the terminating condition in Algorithm III.3 is the maximum number
of iterations. When (k > Niter) is reached, the algorithm is immediately stopped.

Algorithm III.3: MOPSO-based image segmentation algorithm

Initialization: Read input image and determine the range of search space [xmin, xmax]; set
the number of regions: C; set the maximum number of iterations Niter;

initialize population: (Xi)P ; initialize level set functions: (φ
(0)
1 , φ

(0)
2 ); initialize

flight parameters: {w, c1, c2}; set parameters for the two fitness functions
(JKFECSB and JAWGLAC); calculate fitness values; determine pBest, gBest
and store them in two external archives pA(t) and gA(t), respectively;
generate hypercubes as coordinate systems

Results : A set of non-dominated solutions in the gA(t)
k ← 1
repeat

1 for each particle (say Xi) do
/* Flight particles */

1.1 Update flight parameters {w, c1, c2} using Eq. (III.4)
1.2 Update Xi and Vi according to Eqs. (II.6) and (II.7)
1.3 Generate new particle (say X′

i) by using mutation operators
1.4 Check boundary conditions in search space for X′

i and V′
i

/* Evaluate solution (X′
i) in terms of fitness values */

1.5 Evaluate fitness value for JKFECSB as following steps:
1.5.1 Calculate kernel distance K by using Eq. (III.6)
1.5.2 Update the partition matrix U by using Eq. (III.7)

1.5.3 Estimate the bias correction Bfe by using Eq. (III.7)
1.5.4 Evaluate the fitness value by using Eq. (III.9)

1.6 Evaluate fitness value for JAWGLAC according to following steps:
1.6.1 Evolve the level set functions Φ by using Eq. (III.22)
1.6.2 Update energy weights (λi, βi) by using Eqs. (III.18) and (III.19)
1.6.3 Estimate the bias correction Bac by using Eq. (III.26)
1.6.4 Estimate the difference D by using Eq. (III.27)
1.6.5 Evaluate the fitness value by using Eq. (III.17)

/* Maintain non-dominated solutions */

2 Update pBest and gBest using the the proposed strategies descibed in Section III.2.3.2
and Section III.2.3.3

3 Maintain gA(t) using crowding distance technique
4 Update the contents in the hypercubes
5 k ← k + 1

until the stopping criteria are met

III.3.4 Solution selection

After getting a Pareto set from the multi-objective optimization algorithm, the L2-metric method
will take place to select the final solution. Note that, the reference point (the ideal solution) is the
intersection point of lines passing through the top right and bottom left solutions of the Pareto front.
Euclidean distance (L2) from each point in non-dominated set to the ideal point is calculated as
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follows:

L2 =
√
wfe.norm(JKFECSB)2 + wac.norm(JAWGLAC)2 (III.32)

where wfe and wac define the importance of the two objective functions. These constants are set equal
to 1 in all experiments.

The whole algorithm for the image segmentation problem is illustrated in Figure III.4.
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Yes

Normalize
and determine ideal 
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The best “trade-off” 
solution

Decision making MOPSO based image segmentation

Segmented images

Total CSF WMGM

Figure III.4: Block diagram of the proposed method
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III.4 Experimental results

In this section, we empirically evaluate the performance of the proposed method. Particularly,
the aim is to address the possibility of the proposed algorithm to effectively improve the perfor-
mance in segmentation of MR brain images. To validate the effectiveness of our framework, the
results are examined both qualitatively and quantitatively, and compared with those obtained from
six state-of-the-art algorithms and a PSO based algorithm with the second objective function (III.17),
called PSO-AWGLAC algorithm. They are current variants of FCM, named adaptively regularized
kernel-based fuzzy C-means clustering (ARKFCM) [Elazab et al., 2015] and FCM algorithm based on
morphological reconstruction and membership filtering (FRFCM) [Lei et al., 2018], the multiplicative
intrinsic component optimization (MICO) [Li et al., 2014] and the well-known region-based level set
method, called LIC [Li et al., 2011b]. Additionally, the metaheuristic multilevel threshold with Markov
random field (PSO-MRF) [T Krishnan et al., 2016] and our PSO-KFECSB algorithm [Pham et al.,
2018], are used.

All algorithms are implemented in MATLAB 2014b and executed with a computer with
Intel Core i7 1.8 GHz CPU, 8GB RAM using Microsoft Windows 10.

III.4.1 Experimental setup

To perform experiments, the parameters of the proposed algorithm are set as follows: population
size P = 30, external archive of non-dominated solutions size Nr = 30, number of grids per dimen-
sion Ng = 10, maximum number of iterations Niter = 200 (180 for real MR images), and selection
probabilities for the leftmost, rightmost, and middle solutions: 15%, 15%, and 70%, respectively. For
the first fitness function (III.9), JKFECSB, the values of n, η, and λ are 10, 2.5, and 1/9 [Pham et al.,
2018], respectively. For the second fitness function (III.17), JAWGLAC, unless otherwise specified, we
set ε = 3, σ = 5, α = 2,4t = 1, and µ = 1, as common values in the literature. Note that, due to the
nature of active contour models, the weighting coefficients ν, ρ, and ζ are differently set for each type
of image. The effect of the arc length parameter ν was useful and briefly discussed in [Li et al., 2008,
Lankton and Tannenbaum, 2008]. In addition, depending on the level of noise and INU artifact, one
can increase the value of ρ (for high level of intensity inhomogeneity), or ζ (for high level of noise),
and vice versa. The algorithms’ parameters setting is specified in Table III.2.

III.4.2 Datasets

The MR images used in this study include both T1-weighted simulated and real 2D brain MR
images. For simulated MR images, they are downloaded from a well-known database: the brainWeb
from a McConnell Brain Imaging Center [Kwan et al., 1999], which can be reached in (https://

brainweb.bic.mni.mcgill.ca/brainweb/). Images with size of 181 × 217 and thickness of 1 mm
are used in this work. On the other hand, real images are taken in the 20 normal MR brain data
sets provided by the Center for Morphometric Analysis at Massachusetts General Hospital, which are
available at (http://www.nitrc.org/projects/ibsr/). Images with characteristics of size 135×142
and 1.171751 mm thickness, are used in our experiments.

Note that several image modalities used in medical imaging, such as Roentgen rays (X-Rays),
Magnetic Resonance Imaging (MRI), Ultrasound (US), Computed Tomography (CT) and Positron
Emission Tomography (PET), each with its own advantages and disadvantages, have appeared over
the years. This study focused on images produced by structural imaging techniques and satisfied
assumptions mentioned in Section III.2.1. As a result, images produced by the other techniques,

(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(http://www.nitrc.org/projects/ibsr/)
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Table III.2: Parameters setting used for the compared algorithms

Algorithms Parameters setting

ARKFCM
number of clusters 4 (or 3 for real MR images), window size of 3 × 3 pixels, maximum number of
iterations t = 100, median filter, and ε = 0.001.

FRFCM
number of clusters 4 (or 3 for real MR images), window size of 3×3 pixels, square structuring element
of size 3 × 3, maximum number of iterations t = 100, minimum amount of improvement η = 0.001,
and exponent for the partition matrix m = 2.

MICO
multiphase L = 3, 15 polynomials of the first four orders as the basis functions, maximum number
of iterations t = 15, exponent for the partition matrix q = 1, and minimum amount of improvement
ε = 0.001.

LIC

multiphase L = 3, the convolution kernel is constructed as a 17 × 17 mask (scale parameter σ = 4),
the time step ∆t = 0.1, µ = 1, weight of length term ν = 0.001 ∗ 2552, ε = 3 for Heaviside function,
number of inner iterations Niter = 10, and number of outer iterations Nouter = 100.

PSO-MRF number of clusters 4, number of EM iterations and MAP iterations: Nem = 3 and Nmap = 3.

PSO-KFECSB

number of clusters 4 (or 3 for real MR images), the kernel parameter λ = 1/9, the population size
P = 40, constraints of the velocities [−1, 1], maximum number of iterations Niter = 100, termination
criteria parameter ε = 0.0001, the number of non-significant improvements Nnon−imp = 5, and model
parameters n = 10, η = 2.5.

PSO-AWGLAC

number of clusters 4 (or 3 for real MR images), the population size P = 40, constraints of the velocities
[−1, 1], maximum number of iterations Niter = 100, the number of non-significant improvements
Nnon−imp = 5, the time step ∆t = 0.1, µ = 1, weight of length term ν = 0.003 ∗ 2552, ε = 3, Gaussian
parameter σ = 4, and scale parameters (ρ, ζ) are (1/1.9, 1.9) (or (1/0.9, 0.9) for real MR images).

functional imaging [Foster et al., 2014], such as PET, may not be suitable for our method.

III.4.3 Performance measures

Since the ground truth images are available in the datasets, for comparing quantitatively the
performance, five performance measures are considered, which are: the Dice Similarity Coefficient
(DICE), the Hausdorff distance (HD), the Jaccard index (JAC), the Accuracy (AC) and the Sensitivity
(SI) [Taha and Hanbury, 2015]. While JAC and HD are presented in Section II.4.3, the remain ones
are defined below.

III.4.3.1 Dice coefficient

The Dice coefficient [Dice, 1945] (DICE) is an overlap-based metric which directly compares
a segmented image (Fs) with a ground truth image (Ft) by measuring similarity between them.
This metric is one of the most used measures in validating medical volume segmentations. Given
an input image with N pixels F = (f1, f2, . . . , fN ), and its two partitions, Fs = (Fs1, Fs2, · · · , FsN )
(the segmented image) and Ft = (ft1, ft2, · · · , ftN ) (the ground truth image), there are four common
cardinalities that reflect the overlap between the two partitions, namely the true positives (TP), the
false positives (FP), the true negatives (TN), and the false negatives(FN). Then, the pair-wise overlap
of the repeated segmentations is calculated using the DICE, which is defined by:

DICE (Fs,Ft) =
2.|Fs

⋂
Ft|

|Fs|+ |Ft|
=

2.TP

2.TP + FP + FN
(III.33)

From Eqs. (II.23) and (III.33), we can see that: DICE = 2.JAC/(1 + JAC) and
JAC = DICE/(2 - DICE) for any input. That means that both metrics measure the same aspects
and provide the same system ranking.
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III.4.3.2 Accuracy

This criterion determines how much the segmentation algorithm results match with the ground
truth. It is defined as below:

AC (Fs,Ft) =
TP + TN

TP + TN + FP + FN
(III.34)

III.4.3.3 Sensitivity

This criterion indicates true positivity and it is the probability that a pixel in segmented image
belongs to a particular region. Definition of the criterion is given below:

SI (Fs,Ft) =
TP

TP + FN
(III.35)

III.4.4 Results on simulated MR images

In this section, simulated MR brain images from the brainWeb are used for the purpose of
performance evaluation. Each image is segmented into four regions: cerebrospinal fluid (CSF), gray
matter (GM), white matter (WM), and the background. The rest of parameters is a set of the weighting
coefficients (ν = 0.00015 ∗ 2552, ρ = 9, and ζ = 0.1).

To establish the performance of the proposed algorithm with respect to noise and INU artifact,
experiments have been performed by considering images containing high level of noise and intensity
inhomogeneity. Particularly, those are T1-weighted images with 9% noise and 40% INU artifact.

Figure III.5: Qualitative segmentation results of a simulated brain MR image provided by the
competing algorithms: (a) the original; (b) ground truth images; (c) ARKFCM results; (d) FRFCM
results; (e) MICO results; (f) LIC results; (g) PSO-MRF results; (h) PSO-KFECSB results; (i) PSO-
AWGLAC results; (j) proposed method results.
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Figure III.5 shows the qualitative results of the segmentation of a T1-weighted image (slice 80)
provided by the competing algorithms. This figure reveals that though the PSO-KFECSB, FRFCM
and the proposed algorithm, among the existing methods, yield positive outcomes, those from the
multi-objective approach are the best ones, preserving the correct details of the image in specific.
Figure III.6 shows the qualitative results of the segmentation of five T1-weighted images (slices: 75,
80, 85, 95, 105, 115). In spite of artifact existence, it can be seen that the proposed algorithm achieves
a high performance when segmenting simulated MR brain images. Hence, it can be concluded that
our proposed algorithm provides qualitatively satisfactory results.

Table III.3: Average values in terms of five criteria (DICE, HD, JAC, AC, SI) on simulated brain
MR images using the competing algorithms.

Methods Regions
Performance Criteria

DICE HD JAC AC SI

ARKFCM

CSF 0.9242 202.3333 0.8714 0.8770 0.9407
GM 0.8842 126.5000 0.7993 0.8389 0.8722
WM 0.9451 108.3333 0.8963 0.9251 0.9299
Total 0.9062 080.5000 0.8373 0.9322 0.8932

FRFCM

CSF 0.9776 479.8333 0.9563 0.9607 0.9741
GM 0.9241 124.6667 0.8589 0.8974 0.9289
WM 0.9493 210.1667 0.9038 0.9324 0.9495
Total 0.9415 081.0000 0.8901 0.9582 0.9402

MICO

CSF 0.9792 184.5000 0.9593 0.9638 0.9826*

GM 0.8828 180.1667 0.7904 0.8392 0.8723
WM 0.9041 187.6667 0.8250 0.8729 0.9135
Total 0.9187 162.5000 0.8502 0.9420 0.9227

LIC

CSF 0.9828 195.1667 0.9661 0.9697 0.9748
GM 0.8875 172.6667 0.7983 0.8443 0.8658
WM 0.9018 182.6667 0.8214 0.8728 0.9324
Total 0.9201 151.6667 0.8529 0.9428 0.9161

PSO-MRF

CSF 0.9658 214.0000 0.9350 0.9403 0.9800
GM 0.9163 145.8333 0.8460 0.8863 0.9092
WM 0.9425 136.8333 0.8915 0.9231 0.9409
Total 0.9242 122.0000 0.8601 0.9438 0.9346

PSO-KFECSB

CSF 0.9797 224.0000 0.9634 0.9635 0.9691
GM 0.9414 114.0000 0.8924 0.9203 0.9424
WM 0.9641 078.1667 0.9308 0.9522 0.9694
Total 0.9543 064.6667 0.9171 0.9664 0.9544

PSO-AWGLAC

CSF 0.9545 380.1667 0.9141 0.9157 0.9161
GM 0.9112 180.1667 0.8384 0.8762 0.9068
WM 0.9360 204.5000 0.8819 0.9159 0.9571
Total 0.9147 167.0000 0.8442 0.9351 0.8826

Proposed

CSF 0.9819 234.5000 0.9645 0.9678 0.9719
GM 0.9412 105.5000 0.8890 0.9208 0.9467
WM 0.9654 076.0000 0.9331 0.9539 0.9704
Total 0.9575 053.3333 0.9187 0.9695 0.9551

*The values in bold indicate the best performance.

Table III.3 shows the average values of five metrics of eight competing algorithms: ARKFCM,
FRFCM, MICO, LIC, PSO-MRF, PSO-KFECSB, PSO-AWGLAC, and the proposed algorithm. As
can be seen from the table, when segmenting images with high levels of noise and INU artifact, the
proposed method generally gives the best scores. Even though the scores for CSF are not the best, its
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values are comparable to the best one.

Figure III.6: Qualitative segmentation results of simulated brain MR images (slices 75, 85, 95, 105,
115) provided by the proposed algorithm versus the ground truth images: (a) the original; (b) ground
truth images; (c) segmented results; (d) CSFs; (e) GMs; (f) WMs.

Figure III.7: Average values in terms of DICE coefficient on simulated brain MR images (slices 75,
80, 85, 95, 105, 115) using the competing algorithms.
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Furthermore, Figures III.7 and III.8 show the values of Dice coefficient (DICE) and Hausdorff
distance (HD) in range of the obtained values for total segmented image using eight competing algo-
rithms, respectively. It can be seen that our method performs better than the other ones for simulated
brain MRI segmentation. Thus, the proposed algorithm provides more accurate and stable segmenta-
tion results than its competitors when dealing with noise and intensity inhomogeneity problems.

Figure III.8: Average values in terms of HD distance on simulated brain MR images (slices 75, 80,
85, 95, 105, 115) using the competing algorithms.

III.4.5 Results on real MR images

Figure III.9: Qualitative segmentation results of a real brain MR image (Z plane 34 in the 4th volume)
provided by the competing algorithms:(a) the original; (b) ground truth images; (c) ARKFCM results;
(d) FRFCM results; (e) MICO results; (f) LIC results; (g) PSO-MRF results; (h) PSO-KFECSB
results; (i) PSO-AWGLAC results; (j) proposed method results.

We have also examined the ability of the proposed method when segmenting real MR images
from Internet Brain Segmentation Repository (IBSR) database (the 20 normal T1-weighted MR brain
images in the 4th volume). Each image is segmented into three regions: cerebrospinal fluid (CSF),
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gray matter (GM) and white matter (WM). The background pixels are ignored in the computation.
The rest of parameters is a set of the weighting coefficients (ν = 0.003 ∗ 2552, ρ = 0.4, and ζ = 1.65).

Figure III.10: Qualitative segmentation results of real brain MR images (Z planes 24, 28, 32, 36,
40 in the 4th volume) by the proposed algorithm versus the ground truth images: (a) the original; (b)
ground truth images; (c) segmented results; (d) CSFs; (e) GMs; (f) WMs.

Figure III.9 shows the qualitative results of the segmentation by the competing algorithms. Tak-
ing a look at the results in this figure, it is clear that our proposed algorithm provides superior results,
compared to others. Even though the PSO-KFECSB, PSO-AWGLAC, MICO, and LIC algorithms
can provide a reasonable WM segmentation, they have difficulty to cope with smooth transient areas
in the image. Figure III.10 shows qualitative results of the segmentation of five images (Z planes 24,
28, 32, 36, and 40) provided by the proposed algorithm. This figure shows that the proposed method
has identified the tissues of the real brain MR images reasonably well.

Table III.4 shows the average values of five metrics when segmenting real MR brain images
(Z planes 24, 28, 32, 34, 36, and 40) by the competing algorithms. These results show that the
proposed method outperforms the ARKFCM, FRFCM, MICO, LIC, PSO-MRF, PSO-KFECSB, and
PSO-AWGLAC algorithms. In addition, Figure III.11 and III.12 show the values of Dice coefficient
(DICE) and Hausdorff distance (HD), respectively, in range of the obtained values for total segmented
image using eight competing algorithms. Again, the results presented here show the efficiency of the
proposed approach and also demonstrate its superiority over its competitors.
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Table III.4: Average values in terms of five criteria (DICE, HD, JAC, AC, SI) on real MR brain
images using the competing algorithms.

Methods Regions
Performance Criteria

DICE HD JAC AC SI

ARKFCM

CSF 0.9574 1878.5000 0.9206 0.9221 0.9938
GM 0.8496 0166.6667 0.7425 0.7879 0.8059
WM 0.8915 0315.1667 0.8077 0.8437 0.9122
Total 0.9387 0059.6667 0.8888 0.9467 0.9510

FRFCM

CSF 0.9921 1877.8333 0.9843 0.9845 0.9904
GM 0.8594 0156.6667 0.7559 0.8008 0.8094
WM 0.8646 0175.0000 0.7649 0.8114 0.9228
Total 0.9383 0098.3333 0.8865 0.9446 0.9378

MICO

CSF 0.9715 1977.0000 0.9447 0.9457 0.9974*

GM 0.8709 0143.1667 0.7721 0.8160 0.8163
WM 0.9014 0129.3333 0.8217 0.8586 0.9429
Total 0.9454 0049.1667 0.8978 0.9508 0.9549

LIC

CSF 0.9936 1745.5000 0.9878 0.9884 0.9931
GM 0.8760 0147.3333 0.7805 0.8215 0.8159
WM 0.8775 0143.5000 0.7837 0.8300 0.9456
Total 0.9442 0069.3333 0.8953 0.9488 0.9403

PSO-MRF

CSF 0.9147 2011.6667 0.8431 0.8460 0.9970
GM 0.8216 0177.6667 0.6986 0.7450 0.7669
WM 0.9026 0423.0000 0.8254 0.8550 0.8991
Total 0.9376 0046.8333 0.8843 0.9449 0.9586

PSO-KFECSB

CSF 0.9932 1873.1667 0.9865 0.9867 0.9927
GM 0.8902 0146.0000 0.8027 0.8453 0.8428
WM 0.8982 0121.1667 0.8161 0.8557 0.9519
Total 0.9499 0050.3333 0.9054 0.9542 0.9504

PSO-AWGLAC

CSF 0.9931 2011.6667 0.9857 0.9862 0.9915
GM 0.8853 0147.8333 0.7961 0.8411 0.8397
WM 0.8938 0168.1667 0.8086 0.8476 0.9486
Total 0.9485 0059.1667 0.9025 0.9526 0.9495

Proposed

CSF 0.9931 1873.1667 0.9863 0.9865 0.9931
GM 0.8996 0145.1667 0.8181 0.8609 0.8620
WM 0.9103 0119.1667 0.8362 0.8713 0.9530
Total 0.9540 0048.1667 0.9126 0.9580 0.9560

*The bold numerical values indicate the best performance.

III.5 Discussion

III.5.1 Effects of skull-stripped removal

Skull stripping is crucial to study neuroimaging data. Several existing techniques, such as Brain
Extraction Tool (BET), Brain Surface Extractor (BSE), ANALYZE 4.0 (The Biomedical Imaging
Resource at Mayo Clinic, Rochester, MN) and modified Region Growing tool (mRG), have been
proposed to remove the skull and the background region from MRI [Lee et al., 2003]. In this work,
we have also developed a skull stripping algorithm (Figure III.13), which is based on brain anatomy
and image intensity, to examine the segmentation ability of the proposed method. The algorithm is
demonstrated as follows. First, the histogram of a given image is calculated, from which a proper
threshold is selected to get a binary image. Then, imfill operation is used to clean the binary image.
By utilizing the solidity property and using morphological operations, the skull and brain regions are
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identified. Finally, the skull-stripped image is obtained by masking the original image with the brain
region mask above.

Figure III.11: Average values in terms of DICE coefficient on real brain MR images (slices 24, 28,
32, 34, 36, and 40) using the competing algorithms.

Figure III.12: Average values in terms of HD distance on real MR brain images (slices 24, 28, 32,
34, 36, and 40) using different algorithms.

Figure III.13: Skull stripping procedure.

By using this skull stripping algorithm, we are able to obtain skull-stripped images from original
images with skull. From that, the proposed method can be evaluated on both types of brain MRI
image. Figure III.14 shows an example of segmentation results when applying the proposed method
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to segment both types of MRI brain images (slice 80 in the brainWeb dataset with 9% noise and 40%
INU artifact). It should be noted that the proposed method provides better qualitative segmentation
results in case of the skull-stripped image. To clarify this issue, three different unsupervised criteria:
Levine Nazif, Rosenberger Type I and Borsotti Q [Chabrier et al., 2006], were used for a quantitative
performance evaluation. Table III.5 also demonstrates that better segmentation results can be achieved
with input image without skull.

Figure III.14: Qualitative segmentation results by using the proposed method with both T1-weighted
skull brain image and skull-stripped brain image: (a) input images; (b) segmentation results; (c) CSFs;
(d) GMs; (e) WMs.

Table III.5: Quantitative segmentation results in terms of unsupervised criteria of the proposed
method on slice 80 in simulated MR image dataset.

Types of images
Unsupervised criteria

Levine Nazif Rosenberger Type I Borsotti Q

With skull 0.5643 0.5728 0.0504
Without skull 0.5911 0.6010 0.0448

*The values in bold indicate the best performance.

III.5.2 Parameter settings

There are two constant parameters (ρ, ζ) which control the effect of the GFE force and LFE force
in the second objective function, JAWGLAC. These scale weights directly determine the accuracy of the
proposed model, hence they indirectly define the quality of the proposed method. However, as pointed
out in Section III.3.2.2, when the intensity inhomogeneity in the input image is severe, such as for real
MR images in the IBSR database, the correctness of the proposed region-based active contour model
relies on the LFE force. In such case, we should choose a higher value for (ζ); otherwise, the GFE
force may cause the deformable curves falling into fake edges. For images with minor inhomogeneity
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and high level of noise, such as simulated MR images examined in Section III.4.4, the influence of the
GFE force in the model should be increased. In this situation, we can use a smaller value for (ζ) and
a higher value for (ρ). In the experiment, we need to select appropriate values for (ρ, ζ) according to
the degree of INU artifact and noise existing in input images.

III.5.3 Computational analysis

Table III.6: Mean ± standard deviation of time cost of the proposed algorithm.

Dimension Dataset Number of images Image size Time/iteration (s)

2D
brainWeb 10 181 x 217 4.76± 0.15

IBSR 10 135 x 142 2.12± 0.06

The proposed method benefits both advantages of fuzzy entropy clustering and region-based
active contour approaches to satisfy multiple requirements of image segmentation problem. In addi-
tion, using multi-objective particle swarm optimization algorithm to avoid the dependence on initial
labelling is also taken into account. To analyse the computational cost of the proposed algorithm,
we calculated the running time when segmenting brain MR images. Both simulated and real brain
MR image datasets are involved in experiments. Since the eventual computational cost will be the
multiplication of cost for each iteration and the number of iterations for convergence, the average time
cost of each iteration is recorded. The mean and standard deviation of the time cost of our algorithm
(Intel Core i7 1.8 GHz CPU, 8GB RAM and MATLAB 2014b) are listed in Table III.6.

III.6 Conclusion

In this chapter, we have proposed a new method, which is based on multi-objective optimization
metaheuristic approach, for the segmentation of MR brain images. In the proposed method, an
improved MOPSO algorithm, which takes advantages of the states-of-the-art developments in multi-
objective clustering by using MOPSO engine, is used to optimize two independent and complementary
properties (compactness and separation) in segmented images. While the compactness is characterized
by the first fitness function, called kernelized fuzzy entropy clustering with local spatial information
and bias correction, the second property is represented by a novel region-based active contour model,
called adaptive energy weight global and local fitting energy active contour model. The result of the
optimization process is a set of Pareto-optimal solutions. By using the L2-metric method, the best
trade-off solution is found and considered as the final result. In this way, the major drawbacks in fuzzy
clustering and active contour methods (such as sensitivity to noise and INU artifact, possibility to be
trapped into the first local minimum they encounter when using the gradient descent search method),
have been partially solved. Therefore, the algorithm can produce better segmentation results. To
confirm the effectiveness of the proposed method, it has been examined on both simulated and real
MR images, then compared to six recent segmentation methods in the literature. The experimental
results show that our method can produce better segmentation results and is more robust against
high levels of noise and INU artifact contained in input images. In particular, not only the visual
segmentation is more accurate than others but also the quantitative results of segmentation show the
better scores compared to the counterparts. However, when segmenting images with high level of noise
and severely inhomogeneous intensity such as real MR brain images in the IBSR dataset, the proposed
method still shows its limitations. To improve the accuracy of segmentation results, we propose to use
hybrid metaheuristic optimization approach in which another segmentation criterion will be further
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optimized. In such way, not only more information in the input image can be utilised, but also other
properties in segmented images can be achieved. This new method is presented in detail in the next
chapter.

Note that the research reported in this chapter gave rise to our publication [Pham et al., 2019b].
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Chapter IV

Hybrid metaheuristic for image segmen-
tation using Markov random field

IV.1 Introduction

In this chapter, we present a new segmentation method combining a new Hidden Markov Random
Field (HMRF) model and a novel hybrid metaheuristic method based on Cuckoo search (CS) and
Particle swarm optimization (PSO) algorithms. Even though the method proposed in the previous
chapter can produce promising segmentation results, its performance still shows some limitations,
especially when being applied to segment complex brain MR images as in the IBSR database. To
improve the quality of segmented images, hence, an additional criterion based on Markov random
field (MRF) model for the image segmentation problem is optimized by using a hybrid metaheuristic.
Particularly, in the new segmentation criterion, not only local spatial interactions between pixels in the
input image is taken into account, but also balancing energy contributions of each segmented region
is addressed. Furthermore, the hybrid metaheuristic, which takes into account the advantages of both
developed CS and PSO algorithms, is designed such that fast and accurate solutions can be obtained.
As a result, two major problems of the MRF approach: (1) the inaccuracy of the basic model in nature;
(2) the trapping into the first encountered minimum when including spatial coherence assumptions
and dependency on initially segmented image, can be solved, and thus better segmentation results can
be achieved.

This chapter is organized as follows. The general theory and development used in this work for
MR image segmentation using the MRF models are presented in Section IV.2. The hybrid metaheuris-
tic based on CS and PSO to enhance the searching ability and the quality of solutions is presented
in Section IV.3. The description of the proposed method, using the developed MRF model and the
hybrid optimization algorithm, is given in Section IV.4. Experimental results and discussions are given
in Section IV.5. Finally, we reach a conclusion in Section IV.6.

IV.2 MRF-based segmentation model

In the literature, Hidden Markov Random Field (HMRF) models, a generalization of Hidden
Markov Model (HMM), are widely used as a probabilistic robust-to-noise approach to model the
joint probability distribution of the image pixels in terms of local spatial interactions [Geman and
Geman, 1987]. Many methods based on HMRF have been proposed for brain MR segmentation
[Marroquin et al., 2002, Guerrout et al., 2016, Ahmadvand et al., 2017]. The main idea underlying
the segmentation process in this approach is that the image to segment (the observed image) and
the segmented image (the hidden image) are considered as MRF. The segmented image is computed
sequentially according to the MAP (Maximum A Posteriori) criterion, it leads to the minimization
of an energy function [Zhang et al., 2001]. There are two main advantages when using the MRF



Hybrid metaheuristic optimization approach 77

models for image segmentation [Huawu Deng and Clausi, 2005]: (1) The spatial relationship can be
seamlessly integrated into a segmentation procedure through contextual constraints of neighbouring
pixels; (2) Different types of image features can be utilized in the MRF-based segmentation model via
the Bayesian framework. However, the basic model is inaccurate in nature. As a result, unexpected
artifacts appear in segmentation results. This section describes a novel MRF model to deal with this
problem.

IV.2.1 Image segmentation problem in Bayesian framework

Let Ω = {s = (i, j)|1 6 i 6 H, 1 6 j 6W} be the set of image lattice sites, where H and W
are the image height and width in pixels. In the two-dimensional image lattice Ω, the pixel values
I = {Is|s ∈ Ω} are a realization of random variables Ir = {Ir

s|s ∈ Ω}.

The segmentation problem can be expressed in the Bayesian framework. Let us denote the
observed image extracted from a random image Ir = I by Fr = F, where Fr and F are a random
variable and its instance, respectively. YΩ = Y stands for a segmented image based on the vector
Fr = F, with the set of all possible configurations on Ω, ΩY. For the gray image, F takes its values
in the space EF = {0, . . . , 255} and Y takes its values in the discrete space EY = {1, . . . , C}, where C
is the number of classes or homogeneous regions in the image.

According to the Bayes rule, the segmentation problem is formulated as follows:

P
(
YΩ = Y | Fr = F

)
=
P
(
Fr = F | YΩ = Y

)
P
(
YΩ = Y

)
P (Fr = F)

(IV.1)

where P
(
YΩ = Y | Fr = F

)
is the posteriori probability of YΩ = Y conditioned on Fr = F.

P
(
Fr = F | YΩ = Y

)
denotes the probability distribution of Fr = F conditioned on YΩ = Y, which

is referred to as the feature modelling component. P
(
YΩ = Y

)
is a priori probability of YΩ = Y

that describes the label distribution of a segmented result. In the literature, P
(
YΩ = Y

)
is referred

to as the region labelling component. P (Fr = F) is the probability distribution of Fr = F.

Segmentation of an image can be considered as seeking the best realization Y∗ by maximizing the
probability P

(
YΩ = Y | Fr = F

)
, that is the Maximum a posteriori (MAP) estimate. As Fr = F is

known, P (Fr = F) does not vary with respect to any solution YΩ = Y and hence can be disregarded.

Y∗ = argmax
Y∈ΩY

{
P
(
YΩ = Y | Fr = F

)}
= argmax

Y∈ΩY

{
P
(
Fr = F | YΩ = Y

)
P
(
YΩ = Y

)} (IV.2)

We assume that each component of Fr = F be independent on the other components with
respect to YΩ = Y (conditional independence). Then, with M components in the feature vector
F = {fm | m = 1, . . . ,M}, P

(
Fr = F | YΩ = Y

)
is transformed into:

P
(
Fr = F | YΩ = Y

)
=

M∏
m=1

[
P
(
fm | YΩ = Y

)]
(IV.3)

where P
(
fm | YΩ = Y

)
is the probability distribution of the extracted data component fm condi-

tioned on the segmented image YΩ = Y.

From Eqs. (IV.2) and (IV.3), the image segmentation problem becomes:

Y∗ = argmax
Y∈ΩY

{
M∏
m=1

[
P
(
fm | YΩ = Y

)]
P
(
YΩ = Y

)}
(IV.4)
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Now, depending on how to model the feature modelling component and the region labelling
component, we can get exact formulas for the image segmentation problem as described in the following
sections.

IV.2.2 Intensity distribution model

The form of P
(
fm | YΩ = Y

)
may be different depending on the features used. We assume

that the distribution of all feature data is a Gaussian function with different means µmi and standard
deviations σmi . That is:

P
(
fms | YΩ

s = i
)

=
1√

2π(σmi )2
exp

[
−(fms − µmi )2

2(σmi )2

]
= exp

[
−(fms − µmi )2

2(σmi )2
− log(

√
2π(σmi )2)

] (IV.5)

where µmi and σmi are the mean and standard deviation for the ith class in the mth feature component.

Figure IV.1: An example of fitting Gaussian distribution to a simulated brain MR image: (a) slice
101 (up) and the truth (down); (b) histograms of tissues based on the truth.

The feature modelling component, which is the product of all P
(
fms | YΩ

s = i
)
, has the form:

P
(
Fr = F | YΩ = Y

)
= exp

− ∑
s,YΩ

s =i

M∑
m=1

[
(fms − µmi )2

2(σmi )2
+ log(

√
2π(σmi )2)

] (IV.6)

In this work, for the task of partitioning brain MR images, the intensity feature is used as the
only image feature to extract different tissues (M = 1). Eq. (IV.6) can be rewritten as follows:

P
(
Fr = F | YΩ = Y

)
= exp

−
C∑
i=1

∑
s∈Ωi

[
(fs − µi)2

2σ2
i

+ log(
√

2πσ2
i )

] (IV.7)
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where µi and σi are the mean and standard deviation in terms of intensity for the ith region, Ωi, of
the image. They are defined as follows:

µi =
1

|Ωi|
∑
s∈Ωi

fs

σi =

√
1

|Ωi|
∑
s∈Ωi

(fs − µi)2

Ωi =
{
s|YΩ

s = i
}

(IV.8)

As an example, Figure IV.1 shows how the Gaussian distribution fits in with the brain MR
image. It is clear that after doing bias correction, the Gaussian distribution fits really well, hence it
can be used to approximate different classes effectively.

IV.2.3 Spatial distribution model

The other term in Eq. (IV.4) is P
(
YΩ = Y

)
, which describes the prior knowledge about the

spatial distribution of brain tissues in the image. For a given tissue class, one can consider the prior
probability unchanged over the image. Other authors suppose that the prior probability is varying at
a given location, depending on the tissues found at the neighbouring locations. This can be done by
using a MRF to model spatial interactions among tissue classes [Zhang, 1992].

Definition 4.1 A random field YΩ is a MRF with respect to the neighbourhood system N =
{Ns, s ∈ Ω}, if and only if:

P
(
YΩ = Y

)
> 0, ∀Y ∈ ΩY (IV.9)

and
P
(
YΩ = Ys | YΩ = Yt, t 6= s

)
= P

(
YΩ = Ys | YΩ = Yt, t ∈ Ns

)
(IV.10)

According to the Hammersley-Clifford theorem [Besag, 1974], a MRF can be equivalently char-
acterized by a Gibbs distribution:

P
(
YΩ = Y

)
= Z−1 exp {−U(Y, β)} (IV.11)

where Z is a normalizing constant and U(Y, β) is the energy function. β is a positive constant that
controls the size of partitioning or interaction between the sites.

Note that, the normalization factor of the Gibbs distribution is theoretically well-defined as
follows:

Z(U) =
∑
Y

exp {−U(Y, β)} (IV.12)

where the sum runs over all possible configurations of Y, which is usually unknown [Geman and
Geman, 1987]. Hence, Z is said to be computationally intractable.

On the other hand, the choice of the energy function U(Y, β) is arbitrary and there are several
definitions of it in the framework of image segmentation [Yang et al., 2014, Ahmadvand et al., 2017].
Using the multi-level logistic (MLL) model, a general expression of the energy function for pairwise
interactions can be formulated by:

U(Y, β) =
∑
∀s∈Ω

V1 (Ys) + β
∑

t∈Ns,t6=s
V2 (Ys,Yt)

 (IV.13)
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where V1(Ys) is an external field that weights the relative importance of the different classes present
in the image. This is usually unknown, hence, V1(Ys) = 0 is used. V2(Ys,Yt) models the interactions
between neighbours. Figure IV.2 illustrates the second-order neighbourhood system with all possible
pairwise cliques.

Figure IV.2: The second-order neighbourhood system with all two-points cliques.

Here, we define V2(Ys,Yt) as follows:

V2(Ys,Yt) =

{
−(exp (−|Is − It|) + 1

2)× 1
d(s,t) , if Ys = Yt

+( 2
2−exp(−|Is−It|) −

1
2)× 1

d(s,t) , otherwise
(IV.14)

where |Is− It| and d(s, t) are the absolute difference of intensities and the Euclidean distance between
the center pixel and one of its eight neighbours (Ns = 8), respectively.

From Eqs. (IV.11), (IV.13) and (IV.14), we can see that a pixel is classified like the majority
of its neighbours. The more neighbours that have the same label as the center pixel, the more the
P
(
YΩ = Y

)
is increased. In addition, the proposed clique potential V2(Ys,Yt) involves the intensity

information of the image, which makes the prior segmentation probability P
(
YΩ = Y

)
adaptive to

the local intensity. Particularly, if two pixels have the same label, the probability will be increased
when the difference of intensity is small. In contrast, if two pixels have different labels, the probability
will be increased when the difference of intensity is large.

IV.2.4 A novel MRF-based image segmentation model

From Eqs. (IV.1), (IV.7), (IV.11) and (IV.13), we obtain:

P
(
YΩ = Y | Fr = F

)
= Z ′ exp (−Ψ (Y,F)) (IV.15)

where Z ′ is a constant and Ψ (Y,F) is defined as follows:

Ψ (Y,F) =

C∑
i=1

∑
s∈Ωi

(fs − µi)2

2σ2
i

+ log(
√

2πσ2
i ) + β

∑
t∈Ns,t6=s

V2(Ys,Yt)

 (IV.16)

Thus, maximizing the probability P
(
YΩ = Y | Fr = F

)
is equivalent to minimizing the function

Ψ (Y,F). For that, we seek the segmentation result Y∗ as follows:

Y∗ = argmin
Y∈ΩY

{Ψ (Y,F)} (IV.17)
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The energy function Ψ (Y,F) is then derived:

Ψ (Y,F) =
C∑
i=1

λ(i)
∑
s∈Ωi

(fs − µi)2

2σ2
i

+ log(
√

2πσ2
i ) + β

∑
t∈Ns,t6=s

V2(Ys,Yt)


=

C∑
i=1

λ(i)JMRF(i)

(IV.18)

where JMRF(i) is the energy of the ith region. λ(i) is a weighting parameter corresponding to the ith

region, which determines how much the region contributes to the entire energy.

In general, the energy weight parameter λ(i) in the energy function Ψ (Y,F) is set to be 1.0
for all classes. However, the energy functional is affected by the energy weight parameters, which
could reduce the segmentation accuracy. It is clear that JMRF(i) is related to the number of pixels in
associated region Ωi. Hence, it could be said that the energy term JMRF(i) is positively correlated with
the associated area of Ωi. As a result, the convergence of the energy functional would be controlled
by the larger regions (GM and WM) and the smaller regions (CSF) would be covered.

To overcome this problem, adaptive weight functions are proposed to configure λ(i) and adjust
the contribution of each region. The weight functions are set as follows:

λ(i) = 0.5
min{Area(Ω

(k)
i )}

Area(Ω
(k)
i )

(IV.19)

where Area(Ω
(k)
i ) is the number of pixels in the kth iteration of the ith region.

Furthermore, we can always compute Y through µ = (µ1, . . . , µC) by classifying fs into the
nearest mean µj i.e. Ys = j if the nearest mean to fs is µj . Thus, with the same approach as in
[Guerrout et al., 2018], we seek for µ∗ instead of Y∗. Then, the image segmentation problem becomes:

µ∗ = argmin
µ∈Ωµ

{Ψ (µ)} (IV.20)

where Ψ (µ) is defined:

Ψ (µ) =

C∑
i=1

λ(i)
∑
s∈Ωi


(fs − µi)2

2σ2
i

+ log(
√

2πσ2
i )︸ ︷︷ ︸

feature modelling

+β
∑

t∈Ns,t6=s
V2(Ys,Yt)︸ ︷︷ ︸

region modelling

 (IV.21)

where V2(Ys,Yt) and λ(i) are defined in Eqs. (IV.14) and (IV.19), respectively.

Figure IV.3: Segmentation results of a simulated brain MR image associated with different config-
urations of λ(i): (a) original image; (b) result with Opt 1; (c) result with Opt 2; (d) result with Opt
3; (e) result with Opt 4; (f) result with the proposed strategy; (g) ground truth.
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Table IV.1: DICE coefficient obtained from segmenting a simulated MR image (slice 87, with 9%
noise and 40% INU, from the BrainWeb) by using different strategies for selecting weight parameters.

Metric Regions

Configurations of {λ(1), . . . , λ(C)} , C = 4

Opt 1 Opt 2 Opt 3 Opt 4 Proposed

{1,0.5,0.5,0.5} {1,1,0.5,0.5} {1,1,1,0.5} {1,1,1,1} adaptive

DICE

CSF 0.9827 0.9838 0.9831 0.9845 0.9853

GM 0.9371 0.9361 0.9381 0.9372 0.9418

WM 0.9601 0.9591 0.9589 0.9591 0.9654

*The values in bold indicate the best performance.

To examine the impact and efficiency of the adaptive weighting parameters on MRF-based
segmentation model, we have conducted some experiments on simulated MR images with different
configurations of {λ(1), . . . , λ(C)}. Here, the simulated MR images, which are taken from the brain-
Web, have characteristics of 9% noise and 40% intensity non-uniformity. The images are segmented
into four regions (C = 4): background, CSF, GM and WM corresponding to (i = 1, . . . , C), respec-
tively. In addition, to analyse the performance quantitatively, DICE coefficient is used as an evaluating
criterion. As an example, Table IV.1 and Figure IV.3 show quantitative and qualitative results when
segmenting a simulated brain MR image (slice 87, with 9% noise and 40% INU) with different con-
figurations of weighting parameters (other settings are the same for all experiments). It can be seen
that the proposed strategy provides better segmentation results than the competing ones.

Figure IV.4: Segmentation results of a real brain MR image by using different clique potential
functions: (a) original image; (b) ground truth; (c) result with Potts model; (d) result with the
proposed model.

Table IV.2: DICE coefficient obtained from segmenting a real MR image by using different clique
potential models.

Metric Models of clique potential function
Regions

CSF GM WM

DICE
Potts model 0.9920 0.9269 0.9441

Proposed 0.9924 0.9335 0.9532
*The values in bold indicate the best performance.
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Furthermore, the influence of the proposed clique potential model (IV.14) is also examined. To
do this, we have conducted some experiments on real MR images using two models: Potts model
[Guerrout et al., 2018] and the proposed one. As an example, Table IV.2 and Figure IV.4 show
quantitative and qualitative results when segmenting a real brain MR image (slice 34 in the 20-normal
brain MR data sets, from the IBSR repository) for the two models (other settings are the same for
all experiments). It can be seen that the proposed approach leads to a higher quality of segmentation
results.

IV.3 Hybrid metaheuristic

To solve the image segmentation problem by using optimization techniques with the objective
function given in Eq. (IV.21), several approaches can be used such as direct search methods [Guerrout
et al., 2016] or metaheuristic algorithms [Yousefi et al., 2012]. Here, we exploit the second approach to
cope with the second problem mentioned in Section IV.1 by introducing a new hybrid metaheuristic
which benefits advantages of both the two well-known algorithms, named CS and PSO. The proposed
algorithm is described below.

IV.3.1 An improved Cuckoo search algorithm

The Cuckoo Search (CS) algorithm, which is a population-based stochastic global search algo-
rithm, is based on two behaviours of birds: the breeding behaviour of some cuckoo species and the
Levy flight behaviour of some bird species [Yang and Deb, 2009]. Using CS has two main advantages:
(1) The number of parameters which have to be configured in the initial search is very small; (2) The
inexperienced user can easily interact with it. However, it is common to find that CS shows relatively
slow convergence speed and low search accuracy because of the loss of diversity in the population
[Abed-alguni and Alkhateeb, 2017].

There are three rules that idealize behaviour of cuckoos in order to become appropriate for
implementation as an optimization tool: (1) Each cuckoo lays one egg at a time and dumps it in a
randomly chosen nest; (2) The best nests with high-quality of eggs will be carried further to the next
generation; (3) The number of available host nests is fixed, and the egg laid by a cuckoo is discovered
by the host bird with a probability of pa ∈ [0, 1]. In this case, the host bird can either get rid of the
egg or simply abandon the nest and build a completely new nest.

Basically, in the CS algorithm, each egg in a nest corresponds to a potential solution and each
Cuckoo’s egg corresponds to a new solution. The CS algorithm attempts to iteratively improve the
candidate solutions (eggs in the nests) by replacing them with better generated solutions (Cuckoo’s
eggs) based on the fitness values. The algorithm consists of two different phases: a global Levy
flight random walk (exploration) and a local random walk (exploitation), which are controlled by the
switching parameter pa, from which the population is updated during the whole process.

In the first phase, the global Levy flight random walk is used to generate new solutions around
the best nest, gBest, in the current generation. Assuming that, the CS algorithm processes with
a population of P eggs, X = {X1, . . . ,XP }, where each egg is composed of C decision variables,
Xi = {xi1, . . . , xiC}. The step with the Levy flight is calculated based on Mantegna’s algorithm
[Mantegna, 1994], as below:

stepsize
(k)
i = 0.05× uk

|vk|
1
α

×
(
X

(k)
i − gBest

)
(IV.22)

where X
(k)
i is the ith egg of the population in the kth iteration. In our work, α is set to 1.5. u and v are
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Algorithm IV.1: The ICS algorithm

Initialization: Randomly initialize a population X of P host nests Xi; determine gBest (the
global best nest)

Results : The optimal solution gBest
k ← 1
repeat

/* Exploration phase */

1 for each nest do
1.1 Generate a cuckoo (say Xi) randomly by Levy flights, Eq. (IV.24)
1.2 Evaluate the fitness value, fi
1.3 Randomly choose a nest among P (say Xj)
1.4 if fi is better than fj then

1.4.1 Replace nest Xj by the new one, Xi

else
1.4.2 Create a cuckoo (say X′i) by using Eq. (IV.25)
1.4.3 Replace nest Xj if an improvement is found

/* Exploitation phase */

2 Abandon a fraction pa of worse nests and build new ones, Eq. (IV.27)
3 Update the gBest nest and pass to the next generation
4 k ← k + 1

until the stopping criteria are met

normally distributed stochastic variables, u ∼ N
(
0, σ2

u

)
and v ∼ N

(
0, σ2

v

)
. The standard deviation of

the random matrix generated is defined as:

σu (α) =

Γ (1 + α) sin
(
πα
2

)
Γ
(

(1+α)
2

)
α2

(α−1)
2

 1
α

and σv = 1 (IV.23)

where Γ corresponds to the standard gamma function.

Then, the new egg, X
(k+1)
i , can be obtained by the following equation:

X
(k+1)
i = X

(k)
i + stepsize

(k)
i × randn[C] (IV.24)

where randn[C] represents random scalars drawn from the standard normal distribution.

In order to improve the global exploration abilities within a relatively small number of gener-
ations by discovering more untouched areas in the search space (enhance the diversity), we propose
to add a further step of generating new eggs if the better ones cannot be found. Particularly, if a
generated egg is not better than the old one in terms of fitness value, a Differential Evolution (DE)

scheme proposed by Mohamed et al. [Mohamed et al., 2019], is used to lay another egg, X
′(k+1)
i . The

scheme is expressed as follows:

X
′(k+1)
i = X(k)

r + Fm ×
(
X

(k)
best −X

(k)
worst

)
(IV.25)

where X
(k)
best and X

(k)
worst are the best and the worst solutions in terms of fitness value in the current

population. X
(k)
r is a solution which has a rank of its fitness value in range of [round(εP ), P −
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round(εP )] with ε ∈ (0, 0.5). In our work, ε is set to 0.15 and Fm is generated uniformly between
(0.1,1).

Using this scheme, there are two main benefits, which can be observed. First, the target vector
is attracted towards good solutions, since it will always follow the same direction of the better ones.
Second, the direction of the worst solution is avoided, which will force the direction of the search
process towards the promising regions in the search space.

In the second phase, CS continues to generate new eggs in terms of biased/selective random
walk. By considering the probability of cuckoos of being discovered, a crossover operator is used to
construct a new egg as follows:

X
′′(k+1)
i =

{
X

(k)
i + Fc ×

(
X

(k)
r1 −X

(k)
r2

)
, if rand[0, 1] > pa

X
(k)
i , otherwise

(IV.26)

where r1 and r2 are mutually different random integers; Fc denotes the scaling factor which is a
uniformly distributed random number in the interval [0, 1].

Actually, the operator, Xk
jump = X

(k)
i + Fc ×

(
X

(k)
r1 −X

(k)
r2

)
, aims to create a jump to avoid

the local trap. However, if X
(k)
r1 and X

(k)
r2 are relatively close to each other, it is unable to explore

any new prospective zone. To overcome this problem, in this work, instead of using Xk
jump = X

(k)
i +

Fc ×
(
X

(k)
r1 −X

(k)
r2

)
, we deploy an operator proposed by Nguyen et al. [Nguyen et al., 2018b], which

is defined as follows:

Xk
jump =

X
(k)
i + Fc ×

(
X

(k)
r1 −X

(k)
r2

)
, if FDRi > 10−3

X
(k)
i + Fc ×

[
(X

(k)
r1 −X

(k)
r2 ) + (X

(k)
r3 −X

(k)
r4 )
]
, otherwise

(IV.27)

where r1, r2, r3 and r4 are mutually different random integers; FDRi is the fitness difference ratio
(FDR) of the ith solution in the current population, which is defined as follows:

FDRi =

∣∣∣∣ fi − fgBest
fgBest

∣∣∣∣ (IV.28)

where fi and fgBest are the fitness values of the ith solution and the best solution found so far, respec-
tively.

Furthermore, to increase the exploration of the search space in the beginning stage and the
exploitation of the best solutions found so far towards the end of the algorithm, pa is updated as
follows:

p(k)
a = pamax − (pamax − pamin) · (k/Niter) (IV.29)

where p
(k)
a is the switching parameter pa at the kth iteration; [pamin , pamax ] is the range of pa, with

pamin = 0.01 and pamax = 0.5; Niter is the maximum number of allowable iterations.

Finally, by using the greedy strategy, the next generation solution is created. At the end of each
iteration process, the best solution obtained so far is updated. The procedures of improved Cuckoo
search (ICS) algorithm can be described as the pseudo code shown in Algorithm IV.1

IV.3.2 An improved particle swarm optimization algorithm

The particle swarm optimization (PSO) algorithm is also a population-based stochastic opti-
mization algorithm and regarded as a global search strategy. This algorithm is inspired from the
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cooperation and communication of a swarm of birds [Eberhart and Kennedy, 1995]. Due to the simple
representation and relatively low number of adjustable parameters, PSO has become one of the most
popular choices and is efficiently applicable to optimization problems [Zhang et al., 2015b]. However,
the major drawback of the PSO is that it may be trapped into a local optimal solution region.

In PSO, each individual (called particle), which represents a potential solution to the optimiza-
tion, of a given population (called swarm), is updated according to its own experience and that of its
neighbours. The quality of a candidate solution is evaluated by the fitness value associated with it.
Let us consider a swarm of P particles, where each particle has a position vector, Xi = {xi1, . . . , xiC},
a velocity vector, Vi = {vi1, . . . , viC}, its own best position pBest found so far, and interacts with
neighbouring particles via the best position gBest discovered in the neighbourhood so far. At iteration
kth in the search process, particles are moved according to the following equations:

V
(k+1)
i = w(k)V

(k)
i + c1r1

[
pBest(k) −X

(k)
i

]
+ c2r2

[
gBest(k) −X

(k)
i

]
(IV.30)

X
(k+1)
i = X

(k)
i + V

(k+1)
i (IV.31)

where r1 and r2 are random variables, uniformly distributed in [0, 1] to provide stochastic weighting
of the different components participating in the velocity. c1 and c2 are acceleration coefficients that
scale the influence of the cognitive and social components, respectively, and w is an inertia weight.
In addition, the flying velocity is limited to a reasonable range [vmin, vmax]. In this work, vmin =
−vmax = −3 is set to constrain particle movement.

In order to improve the performance of the PSO algorithm, in this work, we use the same
approach as in [Chen et al., 2017b] that creates a high diversity population to provide a good guidance
for particles. As a result, the problem of premature convergence can be partially avoided and the
exploitation ability of the algorithm can be improved. Here, we employ a differential mutation scheme
proposed by Mohamed [Mohamed, 2018] for this purpose. The scheme is expressed as follows:

X
(k+1)
i = X

(k)
i + Fp1 ×

(
X

(k)
best −X

(k)
better

)
+ Fp2 ×

(
X

(k)
best −X

(k)
worst

)
+ Fp3 ×

(
X

(k)
better −X

(k)
worst

) (IV.32)

where X
(k)
best , X

(k)
better and X

(k)
worst are the tournament best, better and worst three randomly selected

particles in the current population, respectively. Fp1 , Fp2 and Fp3 are the mutation factors generated

independently from a uniform distribution in (0, 1). And, X
(k)
i is a convex combination vector of the

triangle, which is defined as follows:

X
(k)
i = δ1X

(k)
best + δ2X

(k)
better + δ3X

(k)
worst (IV.33)

where the real weights δi, (i = 1, 2, 3) are given by δi = pi/
∑3

i=1 pi. Here, p1, p2 and p3 are set
representatively to 1, rand(0.75, 1) and rand(p2, 1), in which rand(a, b) returns a real number between
a and b.

From Eqs. (IV.32) and (IV.33), it can be observed that there are two main benefits. First, the
landscape of different sub-regions around the best vectors can be explored by forming many different
sizes and shapes of triangles through the optimization process. Second, the global solution can be

easily reached if all vectors follow the direction of the best vectors since the convex combination X
(k)
i

consists of the best vector with higher weight.

Furthermore, to have a reasonable balance between exploration and exploitation during the
optimization process (increase exploration ability in the beginning stage and increase exploitation
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Algorithm IV.2: The IPSO algorithm

Initialization: Initialize randomly a population X of size P ; set up the flight control
parameters: {c1, c2} and w; determine pBest and gBest

Results : The optimal solution gBest
k ← 1
repeat

/* Provide new population with high diversity */

1 for each particle (say Xi) do
1.1 Generate a new particle (say X′i) using Eqs. (IV.32) and (IV.33)
1.2 Evaluate fitness value, f′i
1.3 if f′i is better then

Replace Xi by the new one, X ′i

/* Flight particles by using PSO operators */

2 Update the inertia weight w using Eq. (IV.34)
3 for each particle (say Xj) do

3.1 Update the velocity Vj using Eq. (IV.30)
3.2 Update the position Xj using Eq. (IV.31)

/* Evaluate solutions */

4 Evaluate fitness values, f
5 Update the pBest and the gBest
6 k ← k + 1

until the stopping criteria are met

towards the end), here, a parameter control strategy proposed by Yang et al. [Yang et al., 2015] is
used. In the strategy, c1 = c2 = 2 and the inertia weight, w, updating scheme is expressed as follows:

w(k) = wmax − (wmax − wmin) · (k/Niter)
1
π2 (IV.34)

where w(k) is the inertia weight at the kth iteration. [wmin, wmax] is the range of inertia weight, with
wmin = 0.4 and wmax = 0.9. The procedures of improved PSO algorithm can be described as the
pseudo code shown in Algorithm IV.2.

IV.3.3 Proposed hybrid metaheuristic

There are no theoretical or experimental guarantees that any optimization algorithm can avoid
getting stuck in suboptimal solutions. In order to increase the accuracy of the results and decrease
the likelihood of trapping into local solution regions, the common approach consists in hybridizing or
combining different techniques [Fister Jr et al., 2013, Sengupta et al., 2018].

In this work, an effective hybrid optimization algorithm, called hybrid ICS/IPSO, is proposed
based on the strategies described above. The proposed algorithm is built based on two main steps. The
first step is used for finding different promising regions in the search space by using both the improved
CS and improved PSO algorithms. The second step is used for selecting and updating solutions by
maintaining the merits of both algorithms. Hence, we can achieve fast convergence and partially avoid
the problem of getting stuck in suboptimal solutions. These two steps are repeated alternately until
the termination criteria are satisfied. The main procedure of hybrid ICS/IPSO is given in Algorithm
IV.3.

There are several works, which hybridize CS and PSO algorithms [Wang et al., 2015, Bouyer and
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Hatamlou, 2018], for solving the global optimization problem. However, the proposed algorithm has
its own specific characteristics, which make it different from others used in the literature. First, both
CS and PSO algorithms are improved to explore more untouched areas in the search space. Second,
since the ICS and IPSO are independently operated during the optimization process, the merits of
both are maintained. Third, by using a simple effective mechanism of selection, potential solutions
not only follow the direction of the best one, but also avoid the direction of the worst. In addition,
sharing solutions can help both ICS and IPSO algorithms to compensate for their weaknesses.

Algorithm IV.3: The hybrid ICS/IPSO algorithm

Initialization: Initialize randomly a population X and two external archives: pAic and pAip,
of size P ; set up parameters for both ICS and IPSO algorithms; evaluate the
population with both ICS and IPSO algorithms to determine gBestic,
pBestip, gBestip and gBest

Results : The optimal solution gBest
k ← 1
repeat

/* ICS phase, operating on X */

1 for each potential solution in X (say Xi) do
Perform from step (1.1) to step (1.4.3) in Algorithm IV.1

2 Perform step (2) in Algorithm IV.1
3 Sort and store new solutions in pAic

/* IPSO phase, operating on X */

4 Perform from step (1) to step (4) in Algorithm IV.2
5 Update pBestip, sort and store new solutions in pAip

/* Selection phase */

6 Determine the current best by:

argmin
Xj∈(pAic∪pAip)

f(Xj) or argmax
Xj∈(pAic∪pAip)

f(Xj)

7 Update gBest, then assign: (gBestic ← gBest) and (gBestip ← gBest)
8 Update X by selecting the best half of solutions in pAic and pAip
9 k ← k + 1

until the stopping criteria are met

Figure IV.5: Segmentation results of a simulated brain MR image produced by different algorithms:
(a) original image; (b) result with ICS algorithm; (c) result with IPSO algorithm; (d) result with
hybrid ICS/IPSO algorithm; (e) ground truth.

To examine the efficiency of the proposed algorithm, we conducted some experiments by applying
it to solve the MR image segmentation problem. Here, the fitness value is calculated by using Eq.
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Figure IV.6: Convergence characteristics of segmenting a simulated brain MR image using ICS,
IPSO and Hybrid ICS/IPSO algorithms.

(IV.21). The simulated MR images from the brainWeb, which have characteristics of 9% noise and
40% intensity non-uniformity, are used. To evaluate the segmentation results quantitatively, we use
DICE coefficient as a metric.

As an example, Figure. IV.6 depicts the convergence process of the objective function values
when segmenting a simulated brain MR image (slice 95). As shown in this figure, it is obvious that the
proposed algorithm can converge to the optimal solution more rapidly and accurately than the other
algorithms. In addition, Figure. IV.5 and Table IV.3 also reveal that better segmentation results can
be achieved when using the proposed algorithm.

Table IV.3: DICE coefficients obtained from segmenting a simulated MR image by using different
algorithms.

Metric Regions
Algorithms

Improved CS Improved PSO Hybrid ICS/IPSO

DICE

CSF 0.9875 0.9875 0.9875

GM 0.9524 0.9513 0.9525

WM 0.9685 0.9669 0.9692
*The values in bold indicate the best performance.

IV.4 Proposed method

This section describes the proposed brain MR segmentation method, which is based on the
proposed MRF-based segmentation model and the hybrid metaheuristic algorithm (hybrid ICS/IPSO).
The fitness function is calculated by using Eq. (IV.21). To obtain the segmented images after achieving
the optimal mean intensity of each region, two different steps need to be done: (1) Labelling each pixel
in the image by classifying it to the nearest mean; (2) Filtering the labelled image by using Median
filter with the structure of [3×3]. The details of this algorithm are illustrated in the following sections.
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IV.4.1 Solution representation

In this study, the potential solutions are made up of real numbers, which are nests in the ICS
or positions in the IPSO. The potential solutions represent the mean intensities of various regions in
the image. For P solutions with C distinct elements, there are in total (P.C) optimization variables
that need to be encoded. For example, in the population X = {X1, . . . ,XP }, the ith potential solution
can be described as: Xi = {xi1, . . . , xiC}, where xij (with j = 1, . . . , C) represents the jth mean
intensity of the jth region. In this way, the mean intensity of each region, µ = {µ1, . . . , µC}, can be
obtained by decoding Xi.

IV.4.2 Segmentation criterion

In this research, the value of the fitness function, fi, corresponding to the ith solution, is calculated
by evaluating Ψ (Xi) according to Eq. (IV.21).

fi = Ψ (Xi) (IV.35)

Algorithm IV.4: The ICS/IPSO-based image segmentation algorithm

Initialization: Read the input image; set the number of regions C; set maximum number of
allowable iterations Niter; do bias correction and initialize population X;
initialize parameters for ICS, IPSO and MRF-based segmentation model
(β = 0.95); determine gBestic, pBestip, gBestip and gBest; initialize two
external archives: pAgBest and pACJV .

Results : The optimal region centers, (µ∗ = gBest∗)
for (t = 1; t ≤ T ; t = t+ 1) do

/* Hybrid ICS/IPSO algorithm phase */

1 repeat
/* Computing the fitness values by using Eq. (IV.35) */

/* argmin is used in step (6) */

Perform from step (1) to step (8) in Algorithm IV.3

until the stopping criteria are met
/* Get solution corresponding to each value of β */

2 Store gBest in pAgBest
3 Calculate CJV criterion using Eq. (IV.36) and store it in pACJV

/* Increase β with step size of 0.1 */

4 β = β + 0.1× t
5 Get the optimal region centers by:

gBest∗ = argmin
gBest∈pAgBest

{pACJV (gBest)}

The minimization of fi is the same as the minimization of the objective function, Ψ (Xi), which
can lead to an optimal partitioning of the MR image.

IV.4.3 Optimal search process

The hybrid ICS/IPSO algorithm described in Section IV.3.3 is used as a searching engine to do
the optimization step in the MRF segmentation approach. By taking advantages of both the proposed
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MRF-based segmentation model and the hybrid ICS/IPSO algorithm, the optimal solution for the
MR image segmentation problem can be found. The framework for the problem is summarized in
Algorithm IV.4.

Note that, we assume that initialization and bias correction of segmented images are well estab-
lished by using results from the previous chapters (from the PSO-KFECSB algorithm (Algortihm
II.3) or the MOPSO-based algorithm (Algortihm III.3)). Particularly, a good approximation so-
lution, called starting point, needs to be provided such that the proposed algorithm can converge
quickly and be able to obtain the global optimal solution. Here, we use the results produced by the
MOPSO-based algorithm. The main reason is that the MOPSO-based method provides a set of solu-
tions instead of one solution only. As a result, we can have a flexible choice for setting up the starting
point of the proposed algorithm. In addition, the coefficient of joint variation (CJV ) between WM
and GM regions [Chua et al., 2009], which is a well-known criterion to evaluate bias field correction
methods, is used as a metric to determine the point. From that, the initial population is created by
randomly generating solutions around it.

The CJV is defined as follows:

CJV =
σ(GM) + σ(WM)

|µ(GM)− µ(WM)|
(IV.36)

where σ(.) and µ(.) denote the standard deviation and the mean intensity. A smaller CJV value
corresponds to the better performance.

As an example, Figure. IV.7 shows the bias correction and the initial labelling image (CJV =
0.4501;µ∗0 = (0.4502, 86.0597, 114.1679)) selected by using CJV criterion (slice 24 in the 20-normal
brain MR datasets). As can be seen in the figure, the results are satisfactory for the initial conditions.

Figure IV.7: Initialization and bias correction of a real brain MR image by using the MOPSO-based
method: (a) original image; (b) bias field; (c) bias correction image; (d) initial labelling image; (e)
ground truth.

In addition, to ensure that all solutions are moving within the search space and avoiding divergent
behaviour, the boundary conditions for the ith potential solution are limited as follows:

x
(k)
ij =


xmax, if x

(k)
ij > xmax

xmin, if x
(k)
ij < xmin

+x
(k)
ij , otherwise

(IV.37)

v
(k)
ij =


vmax, if v

(k)
ij > vmax

vmin, if v
(k)
ij < vmin

+v
(k)
ij , otherwise

(IV.38)
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where vmin and vmax are the smallest and largest allowable step sizes in any dimension (vmin =
−vmax = −3 is set in this paper); and {xmin, xmax} are the bounds of the search space in each
dimension. Actually, they are the minimum and maximum of the intensity of the input image.

Furthermore, to stop the phase of hybrid ICS/IPSO algorithm efficiently, two criteria are set:
the maximum number of the allowable iterations and the maximum number of non-significant improve-
ments of the fitness value, fgBest. Particularly, if (k > Niter) is reached or (|fgBest,new − fgBest,old| <
10−4) is completed (0.1×Niter) times, this phase is immediately stopped.

Finally, to get rid of the problem of selecting parameter β, which is described in Section IV.5.1,
we use CJV criterion to estimate the quality of solutions [Xie et al., 2015] so that the final solution
can be found. The whole algorithm for the image segmentation problem is illustrated in Figure IV.8.

IV.5 Results and discussions

In this section, we empirically evaluate the performance of the proposed method. Both qualita-
tive and quantitative evaluations are involved in this study.

IV.5.1 Experimental setup

To validate the effectiveness, the performance metric values of the proposed method have been
evaluated and compared with four state-of-the-art algorithms in the literature. These algorithms are:
FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) [Lei et al.,
2018], the multiplicative intrinsic component optimization (MICO) [Li et al., 2014], the integrating
metaheuristic multilevel threshold with Markov random field (PSO-MRF) [T Krishnan et al., 2016] and
the MOPSO-based method (iMOPSO) [Pham et al., 2019b]. The parameter settings of the competing
algorithms are specified in Table IV.4.

To perform experiments, the parameters of the proposed algorithm are set as follows: population
size P = 30, maximum number of allowable iterations Niter = 100. Note that, the parameter β in
Eq. (IV.21), which controls the balance between two components: feature modelling and region
labelling, has an important effect on the performance of the algorithm. Particularly, it tunes the
degree of homogeneity of each region in the segmented image. If β makes the feature modelling
component dominant (small value of β), spatial relationship information will be ignored. On the other
hand, if β makes the region labelling component dominant (large value of β), the values of estimated
solutions may deviate considerably and the segmented result is not consistent (excessive smoothing
of boundaries may occur). Unfortunately, there is no closed-form definition for β as the normalizing
constant Z(U) is intractable (Eqs. (IV.12), (IV.13) and (IV.14)). In addition, different input images
can have different spatial organizations. However, from experiments we found that β ∈ [0.95, 1.45]
can produce satisfactory results in most cases. Hence, in this work, β is determined empirically as
proposed in [Besag, 1986] by gradually increasing its value, from 0.95 to 1.45 with step of 0.1 (T = 5),
through the algorithm loops. All the other parameters are set as in the previous Sections.

All algorithms are implemented in MATLAB 2014b and executed with a computer with
Intel Core i7 1.8 GHz CPU, 8GB RAM using Microsoft Windows 10.

IV.5.2 Datasets

The MR images used in this study include both T1-weighted simulated and real 2D brain MR
images. For simulated MR images, they are downloaded from a well-known database: the brainWeb
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Figure IV.8: Block diagram of the proposed method.
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Table IV.4: Parameter settings of the competing algorithms.

Algorithms Parameter settings

FRFCM
number of clusters 4 (or 3 for real MR images), window size of 3×3 pixels, square structuring element
of size 3 × 3, maximum number of iterations t = 100, minimum amount of improvement η = 0.001,
and exponent for the partition matrix m = 2.

MICO
multiphase L = 3, 15 polynomials of the first four orders as the basis functions, maximum number
of iterations t = 15, exponent for the partition matrix q = 1, and minimum amount of improvement
ε = 0.001.

PSO-MRF number of clusters 4, number of EM iterations and MAP iterations: Nem = 3 and Nmap = 3.

iMOPSO

P = 30, Nr = 30, Ng = 10, Niter = 200 (180 for real MR images). The values of (n, η, and
λ) are 10, 2.5, and 1/9. ε = 3, σ = 5, α = 2,4t = 1, and µ = 1, are set as common values.
ν = 0.00015 ∗ 2552, ρ = 9 and ζ = 0.1 for simulated MR images and ν = 0.003 ∗ 2552, ρ = 0.4, and
ζ = 1.65 for real MR images.

from a McConnell Brain Imaging Center [Kwan et al., 1999], which can be reached in (https://

brainweb.bic.mni.mcgill.ca/brainweb/). This dataset includes different noise levels: from 0 to
9%, and different INU levels: 0, 20%, and 40%, and five different slice thicknesses. Images with size of
181× 217 and thickness of 1 mm are used in this work. On the other hand, real MR images are taken
in the 20-normal brain MR data sets, which contain manual segmentation by an expert technician,
provided by the Center for Morphometric Analysis at Massachusetts General Hospital. The data
sets are available at (http://www.nitrc.org/projects/ibsr/). Images with characteristics of size
135× 142 and 1.171751 mm thickness, are used in our experiments.

IV.5.3 Performance measures

Since the ground truth images are available in the datasets, for quantitatively comparing the
performance, three criteria are involved, which are the Dice Similarity Coefficient (DICE), the Haus-
dorff distance (HD), and the Accuracy (AC). These metrics are presented in details in the previous
chapters (Section II.4.3 and Section III.4.3).

IV.5.4 Results on simulated MR images

In this section, simulated brain MR images from the brainWeb are used for the purpose of perfor-
mance evaluation. The experiment is conducted on a set of 9 images (slices: 85, 87, 89, 91, 93, 95, 97,
99 and 101) representing the ”worst case” (low contrast and relatively large spatial inhomogeneities);
the images have the characteristics of 9% noise and 40% INU artifact. Each image is segmented into
four classes: cerebrospinal fluid (CSF), gray matter (GM), white matter (WM) and the background.

Figure IV.9 shows the qualitative results of the segmentation of a T1-weighted image (slice 101)
provided by the considered algorithms. This figure reveals that though the MOPSO-based method and
the proposed algorithm produce better results among those, the proposed method reserves the best in
details of the image. Figure IV.10 shows the qualitative results of the segmentation of 8 T1-weighted
images (slices: 85, 87, 89, 91, 93, 95, 97, and 99) produced by the proposed algorithm. In spite of
existing artifact, as can be seen from the figure, the segmented images are almost close to the ground
reference data, hence, our method achieves a high performance when segmenting brain MR images.
Thus, it can be concluded that the proposed method qualitatively provides satisfactory results.

In order to compare more clearly the performance of the considered methods, quantitative
evaluation is also taken into account. Two supervised metrics, named DICE and AC, are involved.
Note that a higher value indicates a better correspondence to the ground-truth. Figure IV.11, IV.12

(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(https://brainweb.bic.mni.mcgill.ca/brainweb/)
(http://www.nitrc.org/projects/ibsr/)
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Figure IV.9: Qualitative segmentation results of a simulated brain MR image provided by the
considered algorithms: (a) original image; (b) ground truth; (c) FRFCM results; (d) MICO results;
(e) PSO-MRF results; (f) iMOPSO results; (g) the proposed method results.

Table IV.5: Mean and standard deviation of DICE and AC results for the considered algorithms
calculated over the set of 9 simulated brain MR images from the brainWeb.

Methods Metrics

Regions

CSF GM WM

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

FRFCM
DICE 0.9791 0.0019 0.9333 0.0081 0.9532 0.0047

AC 0.9635 0.0033 0.9073 0.0081 0.9395 0.0067

MICO
DICE 0.9815 0.0022 0.8896 0.0073 0.9040 0.0049

AC 0.9679 0.0036 0.8444 0.0072 0.8772 0.0061

PSO-MRF
DICE 0.9790 0.0031 0.9219 0.0102 0.9451 0.0050

AC 0.9639 0.0053 0.8905 0.0107 0.9288 0.0072

iMOPSO
DICE 0.9847 0.0015 0.9436 0.0060 0.9633 0.0023

AC 0.9739 0.0028 0.9222 0.0062 0.9530 0.0035

Proposed
DICE 0.9865 0.0015 0.9469 0.0071 0.9661 0.0033

AC 0.9764 0.0026 0.9261 0.0074 0.9566 0.0045

*The values in bold indicate the best performance.
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Figure IV.10: Qualitative segmentation results of simulated brain MR images provided by the
proposed algorithm versus the ground truth images: (a) original images; (b) ground truth images; (c)
segmentation results; (d) CSFs; (e) GMs; (f) WMs.
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Figure IV.11: Dice coefficient and accuracy associated with CSF tissue for the competing segmen-
tation algorithms on different simulated brain MR scans with 9% noise and 40% INU artifact from
the brainWeb datasets: (a) DICE; (b) AC.

Figure IV.12: Dice coefficient and accuracy associated with GM tissue for the competing segmenta-
tion algorithms on different simulated brain MR scans with 9% noise and 40% INU artifact from the
brainWeb datasets: (a) DICE; (b) AC.

Figure IV.13: Dice coefficient and accuracy associated with WM tissue for different segmentation
algorithms on the competing simulated brain MR scans with 9% noise and 40% INU artifact from the
brainWeb datasets: (a) DICE; (b) AC.
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and IV.13 show the comparison results. The results are summarized in Table IV.5.

As can be seen from the figures and table, the proposed method generally gives the best scores.
Even though the MOPSO-based method provides a little more consistent GM and WM results, the
proposed method achieves better performance. This confirms that the proposed method performs
more efficiently on simulated brain MR images compared to its competitors.

IV.5.5 Results on real MR images

We have also examined the performance of our method on real brain MR images. The experiment
is conducted on a set of 9 images in the 20-normal T1-weighted real brain MR dataset (slices: 24, 26,
28, 30, 32, 34, 36, 38 and 40). It has been used in a variety of volumetric studies in the literature as
it contains varying levels of difficulty, with the worst scans consisting of low contrast and relatively
large spatial inhomogeneities. The number of regions in the segmentation process is set to three:
cerebrospinal fluid (CSF), gray matter (GM), white matter (WM). The background pixels are ignored
in the computation.

Figure IV.14: Qualitative segmentation results of a real brain MR image provided by the considered
algorithms:(a) original image; (b) ground truth; (c) FRFCM results; (d) MICO results; (e) PSO-MRF
results; (f) iMOPSO results; (g) the proposed method results.

Figure IV.14 shows the qualitative results of the segmentation of a T1-weighted image (slice 30)
provided by the considered algorithms. This figure reveals that the proposed method provides superior
results. It may be worth mentioning here that though the MOPSO-based method is comparable with
the proposed method on simulated MR images, the current method achieves much higher performance
on real brain MR images. Figure IV.15 shows the qualitative results of the segmentation of 8 T1-
weighted images. As can be seen from this figure, the proposed method provides an appropriate
segmentation of real brain MR images.
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To evaluate quantitatively the segmentation of the selected images, in this experiment, the
surface distance-based metric, Hausdorff distance, is also calculated along with DICE and AC. Figure
IV.16, IV.17 and IV.18 show the comparison results. The results are summarized in Table IV.6.
From the figures and the table, it can be seen that the proposed method outperforms its competitors.
Again, the results presented here confirm the efficiency of the proposed method and demonstrate its
superiority over the others.

Figure IV.15: Qualitative segmentation results of real brain MR images provided by the proposed
algorithm versus the ground truth images: (a) original images; (b) ground truth images; (c) segmen-
tation results; (d) CSFs; (e) GMs; (f) WMs.
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Figure IV.16: Dice coefficient associated with GM and WM tissues for the competing segmentation
algorithms on different real brain MR scans: (a) GM; (b) WM.

Figure IV.17: Accuracy associated with GM and WM tissues for the competing segmentation
algorithms on different real brain MR scans: (a) GM; (b) WM.

Figure IV.18: Hausdorff distance associated with GM and WM tissues for the competing segmen-
tation algorithms on different real brain MR scans: (a) GM; (b) WM.
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Table IV.6: Mean and standard deviation of DICE, AC and HD results for the considered algorithms
calculated over the set of 9 real brain MR images from the IBSR repository.

Regions Metrics Statistic
Methods

FRFCM MICO PSO-MRF iMOPSO Proposed

GM

DICE
Mean 0.8581 0.8713 0.8205 0.8921 0.9184

Std. Dev. 0.0423 0.0228 0.0355 0.0288 0.0240

AC
Mean 0.7990 0.8169 0.7432 0.8462 0.8909

Std. Dev. 0.0583 0.0294 0.0449 0.0376 0.0306

HD
Mean 199.00 188.00 198.89 191.11 184.89

Std. Dev. 205.61 208.77 152.50 211.38 207.96

WM

DICE
Mean 0.8640 0.9014 0.9023 0.9132 0.9352

Std. Dev. 0.0491 0.0270 0.0438 0.0298 0.0253

AC
Mean 0.8105 0.8587 0.8547 0.8755 0.9044

Std. Dev. 0.0563 0.0323 0.0582 0.0322 0.0298

HD
Mean 157.56 126.89 400.00 111.56 093.00

Std. Dev. 078.46 055.27 244.74 072.10 066.90

*The values in bold indicate the best performance.

IV.5.6 Computational analysis

The proposed method benefits advantages of both the Markov random field based model and
the hybrid metaheuristic algorithm to satisfy requirements of image segmentation problem. However,
to solve the problem of selecting appropriate value of β, the core of the proposed method has to be
repeated several times (T ), hence the total time required to end increases in proportion to (T ). To
analyse the computational complexity of the proposed algorithm, we calculated the running time when
segmenting brain MR images. Both simulated and real brain MR image datasets are involved in our
experiments. Since the eventual computational cost will be the multiplication of cost for each for-loop
iteration and the number of for-loop iterations (see Algorithm IV.4), the average time cost of each
for-loop iteration is recorded. The mean and standard deviation of the time cost (Intel Core i7 1.8
GHz CPU, 8GB RAM and MATLAB 2014b) are listed in Table IV.7.

Table IV.7: Mean ± standard deviation of time cost for each for-loop iteration.

Dimension Datasets Number of images Image size Time/loop (s)

2D
BrainWeb 9 181 x 217 302.72± 45.06

IBSR 9 135 x 142 90.46± 15.43
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IV.6 Conclusion

In this chapter, a new method, which takes advantages of the hidden Markov random field
approach and searching ability of a hybrid metaheuristic, has been proposed for the segmentation
of brain MR images. To achieve satisfactory segmentation results, first, a novel Markov random
field model is derived. By using an adaptive weight mechanism and a new potential function, not
only balancing contributions of components in the optimization process is achieved but also both
spatial and spectral information are utilized to deal with artifacts existing in images. Secondly, a new
hybrid metaheuristic optimization algorithm, which is based on two well-known algorithms, Cuckoo
search (CS) and Particle swarm optimization (PSO), is also proposed. These two algorithms cooperate
together by working on the same population in a parallel way and with a solution selection mechanism.
Therefore, this operating scenario can produce better results in terms of quality in a shorter time.
Furthermore, to enhance the efficiency of searching solutions, the results from the previous work (the
MOPSO-based method) are utilized to provide a starting point for generating initial population. To
confirm the effectiveness of the proposed method, it has been examined on both simulated and real
MR images, then compared to four recent segmentation methods in the literature. The experimental
results show that our method can produce better segmentation results and is able to handle high levels
of noise and INU artifact contained in input images. In particular, both qualitative and quantitative
results of segmentation show the better performance compared to the competing algorithms. However,
in this method, the computational cost is high because of the problem of selecting appropriate value
of the parameter β.

Note that the research reported in this chapter gave rise to our publication [Pham et al., 2019a]
and a paper under submission [Pham et al., 2019c].
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Conclusions and future work

General conclusion

This thesis addresses the problem of automatic segmentation of brain magnetic resonance (MR)
images. The objective of the project is to develop new methods combining classical segmentation
methods with metaheuristics in order to achieve the desired segmentation performance. This work is
stimulated by the following observations: (1) the energy/cost functions of the classical segmentation
methods are incorrect in nature since brain MR images usually contain some artifacts such as noise
and bias field effect and have complex structures; (2) the need for efficient optimization algorithms is
to avoid trapping into local minima since the objective functions are generally non-convex, non-unique
in nature and may have several local minimum points; (3) metaheuristics are excellent tools to solve
complex problems without having to deeply adapt to each of problem. Therefore, this work attempts
to devise and develop brain MR image segmentation methods using metaheuristics that would augment
the automatic vision system and thus will facilitate the clinical experts for more accurate diagnosis.

The first proposed method is directed towards developing an unsupervised image segmentation
algorithm based on fuzzy clustering approach. The main advantage of using the fuzzy clustering
approach for the image segmentation problem lies in its robustness for handling uncertain data, such
as region boundaries of cerebral MRI images, which can not be defined in a clear and precise manner.
However, two major drawbacks of these methods remain to be overcome: (1) the sensitivity to noise and
INU artifact, since no local spatial information in the image is considered; (2) the high vulnerability
of the algorithms to trapping into local minima, dependence on the choice of the initial clustering
centroids. To overcome these defects, we have developed a new method that has a new cost function
taking into account both spatial information and bias field correction, and adapts an improved PSO
algorithm to avoid trapping into local minima and dependence on the initialization. The algorithm is
found to provide better segmented results compared to a set of recent methods in the literature both
qualitatively and quantitatively. However, when high level of noise along with INU artifact is added
into MRI data, the performance of the proposed algorithm may decrease.

The second method is an extension of the previous one, since no single criterion is sufficient for
dealing with the different properties of the images. In other words, the use of a single objective is
only dedicated to exploring a subset of search space and cannot model all the geometric properties
of segmentation solution. Hence, we have introduced an additional criterion based on region-based
active contour. These two criteria are simultaneously optimized in a multi-objective metaheuristic
optimization framework, using a new variant of the MOPSO algorithm. As the output is a set of
solutions in which no solution is better than another, we choose the best trade-off solution using a
distance-based technique called L2-metric method. The experimental results show that the proposed
method can produce better segmented results, which confirm its robustness against high levels of noise
and INU artifact contained in input images compared to a set of recent segmentation methods in the
literature. However, when segmenting images with severely inhomogeneous intensity such as real MR
brain images in the Internet Brain Segmentation Repository (IBSR) dataset, the proposed method
still shows its limitations.

To further improve the quality of segmented images, a third method is proposed. In this method,
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an additional criterion, which is based on MRF model for the image segmentation problem, is devel-
oped and optimized using a hybrid metaheuristic algorithm. The new model not only takes into
account spatial and spectral features of the input image but also balances energy contributions of
each segmented region. The hybrid metaheuristic algorithm, which takes into account the advantages
of both developed Cuckoo search and particle swarm optimization algorithms, is designed such that
fast and accurate solutions can be obtained. To confirm the effectiveness of this method, it has been
examined on both simulated and real MR images, then compared to four recent segmentation methods
in the literature. The experimental results show that our method can produce better segmentation
results and is able to handle high levels of noise and INU artifact contained in input images.

Future work

Although the provided methodologies and results within this dissertation are quite good and
constitute a set of powerful tools for image segmentation, it is necessary to mention their perspectives.
Here, we briefly describe some interesting research topics that should be further investigated and
addressed:

• This work is mainly focused on images produced by structural imaging techniques, MRI modality
in particular. It could be interesting to extend the proposed methods to other modalities used
in medical imaging, such as Roentgen rays (X-Rays), Ultrasound (US), Computed Tomography
(CT) and Positron Emission Tomography (PET).

• In addition, from this work, it can be seen that the more segmentation criteria are optimized, the
more and better characteristics of segmented images can be achieved. But how? And in which
way? So, it is suggested to go further by examining the performance of combinations of the cost
functions from other approaches as well as the capability of other metaheuristic algorithms in
order to improve the performance.

• In terms of the correctness of the image segmentation models, optimizing their control param-
eters could be studied. In addition, incorporating various types of prior information such as
appearance prior, shape prior, topological prior, boundary information, etc, into the image seg-
mentation models could be further explored.

• Using different kinds of techniques for post-processing steps in order to improve the overall
performance of the proposed methods should be also exploited. Correcting (detecting and re-
classifying) potentially misclassified pixels is usually more convenient and simpler than designing
a complex method.

• Finally, it would also be interesting to extend the methods for segmentation of a sequence of
images, in the context of optimization in dynamic environments, by taking into account the
evolution of the objective function over time.
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Glossary

clique A clique of a graph G is a fully connected subgraph of G, in which every
vertex is a neighbour of all others.

clustering Grouping together image regions or pixels into larger homogeneous re-
gions sharing some property.

compactness A scale, translation and rotation invariant descriptor based on the ratio
perimeter2

area .

entropy A measure of the average information content of a random variable X.

feature A numerical property generally used in a classifier.
fuzzy logic A form of logic that allows a range of possibilities between true and

false.

gray scale image A monochrome image in which pixels typically represents brightness val-
ues ranging from a minimum value (Vmin) to a maximum value (Vmax).

ground truth It is the true value, or the most accurate value achievable, of the output
of a specific instrument under analysis.

intensity histogram A data structure that records the number of pixels of each intensity
value.

kernel function The function in some sense quantifies the similarity of inputs x and y.

labeling problem Given a set S of image structures and a set of labels L, the labeling
problem is the question of how to assign a label l ∈ L for each image
structure s ∈ S.

level set The set of data points x that satisfy a given equation of the form:
f(x) = c.

Pareto front Pareto font denotes a set of solutions, none of which performs better
than another on all objectives.

posteriori probability The probability p(s|e) that some situation s holds after some evidence
e has been observed.

priori probability The probability p(s) corresponding to the probability of the situation s
before the observation of any evidence.

segmentation problem The problem of dividing a data set into parts according to a given set
of rules.

separability It refers to whether the data is capable of being split into distinct sub-
classes.

under-segmentation This occurs when one or more segmented regions form the union of
many desired regions.
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