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École doctorale IP Paris (ED-626)
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Abstract

All modern systems such as smart cards, smartphones and IoTs are based on embedded

electronic systems. To communicate with the outside world, these systems implement cryp-

tographic functions and manipulate sensitive data. Indeed, to guarantee the confidentiality,

authenticity and integrity of sensitive data, modern cryptographic algorithms offer robust primi-

tives based on very strong theoretical foundations. However, these same implementations can

leak information related to the sensitive data they handle, such as secret and private keys.

This information leak can be exploited by side-channel attacks or fault injections. For this

reason, cryptographic circuits should be certified, to be able to deploy them in real applications.

This step is necessary and very expensive when several iterations between the different ac-

tors are repeated. The main objective of this thesis is to improve the methods of pre-silicon

evaluation.

Better characterising the exploitable leakages by a potential attacker allows to define, before

manufacture of the final circuit, the expected level of security. To do this, we conduct an end-

to-end comparison between a virtual and a real analysis. We use some prototypes of circuits

implementing cryptographic functions for which we have, on the one hand, samples allowing

measurements of electromagnetic radiation, and on the other hand, design data enabling sim-

ulations to be carried out at digital level.

Thus, we can limit the differences related to the intrinsic behavior of the target on the one

hand, and identify the factors making these implementations vulnerable against certain attacks

on the other hand. Simulations are performed at the numerical level to best assess all informa-

tion related to the measurement of changes in power consumption. Once the leakage sources

have been identified, the simulation can be accelerated by limiting the assessment to the critical

parts only, and depending on the considered security level define by an attacke rmodel. These

evaluations cover the different design levels, namely, Register Transfert Level, Post-SYntheis,

Place & Route and Post-Layout.
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Résumé de la thèse en français

Chapitre 1 – Introduction

La protection de la vie privée demeure une question importante depuis des siècles, et la ca-

pacité à communiquer des informations sensibles joue un rôle fondamental dans la société.

La cryptographie antique se basait habituellement sur des permutations simples afin de dis-

simuler les messages envoyés, comme par exemple, les chiffrements de César et Vigenère.

Des techniques plus fiables ont été inventées ensuite, en adoptant des propriétés robustes afin

d’assurer un chiffrement quasi-parfait. Les premiers algorithmes de chiffrement modernes sont

principalement le DES, le Triple-DES et l’AES. Leur sécurité mathématique est fortement liée

à la longueur de la clé.

Lorsque deux personnes veulent chiffrer leurs communications sur un canal non sûr, ils

doivent au préalable générer une clé (symétrique) partagée. Ce mécanisme est assuré par

les protocoles asymétriques. Les algorithmes les plus utilisés actuellement sont basés sur

le problème de factorisation des grands nombres et le logarithme discret. Théoriquement,

ces algorithmes sont considérés comme sûrs et sécurisés. Les attaques mathématiques les

plus efficaces connues jusqu’à aujourd’hui ont une complexité exponentielles (au mieux sous-

exponentielles) en fonction de la taille de la clé. Néanmoins, sur les systèmes électroniques

embarqués, la robustesse mathématique ne suffit pas pour sécuriser les données sensibles.

Les attaques physiques sont considérées aujourd’hui comme une réelle menace contre les

implémentations cryptographiques, et elles ont déjà mis en échec certaines applications.

Pour protéger les données sensibles contre de telles attaques, il est nécessaire de met-

tre en œuvre des variantes robustes adaptées aux différents angles d’attaques offerts à un

attaquant potentiel. Pour les cibles distantes, une protection contre les attaques temporelles

suffit. Dans le cas des cibles accessibles physiquement (comme les cartes à puce), une couche

de protection supplémentaire est indispensable pour lutter contre les attaques exploitant la con-

sommation de courant. Le principe de base consiste à éliminer, ou à réduire la source de fuite,

en ajoutant du bruit pour rendre la corrélation avec le signal mesuré plus difficile, ou à insérer

des opérations fictives, ou à implémenter un schéma de masquage. Ce dernier est considéré

comme la contre-mesure la plus fiable, compte tenu de son efficacité théorique.
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Ce problème implique plus de contraintes pour les concepteurs qui doivent, non seulement

assurer le bon fonctionnement de l’application mais aussi, de garantir un niveau de sécurité

contre certains types d’attaques. Habituellement, le niveau de sécurité est relatif au nombre

d’observations nécessaires pour retrouver la clé secrète. Il est déterminé suite à une phase

d’évaluation, réalisée notamment par un laboratoire de certification. Cependant, si ce proces-

sus est réitéré plusieurs fois, le coût de fabrication peut augmenter très rapidement. Il est donc

nécessaire d’éliminer à un stade précoce de conception toutes les sources de vulnérabilités,

c’est ce que nous appelons ”évaluation pré-silicium”.

Cette évaluation vise à vérifier l’absence de vulnérabilités, soit par une analyse horizontale,

soit par une analyse verticale. Les fuites horizontales peuvent être détectées en comptant

simplement le nombre de cycles. Pour les fuites verticales, une estimation de la consommation

peut être effectuée à partir de l’activité du circuit, ainsi que de son état statique.

Contributions. Dans la première partie de cette thèse, nous avons mené une évaluation pré-

silicium sur différentes implémentations matérielles (protégées et non-protégées). Cette étude

vise à estimer le niveau de sécurité attendu sur une vraie cible (circuit réel). En effet, nous

avons montré que grâce à une approche basée sur des simulations numériques, des fuites

peuvent être détectées et caractérisées.Nous avons ensuite exploré un moyen plus efficace

et plus exhaustif, permettant de tester une implémentation masquée contre les vulnérabilités

induites par les changements transitoires des signaux (glitches). Nous avons profité dans

cette approche pour modéliser au mieux ce phénomène, et expliciter la forme de la fuite en-

gendrée. Ceci a permis d’expliquer l’inefficacité des modèles de fuites standards, et pourquoi

seule une attaque par profilage permet de l’exploiter. En effet, d’un point de vue concep-

tion, il est difficile de déduire la variable servant comme masque pour un signal donné. Par

conséquent, des failles peuvent être créées non seulement à cause d’un démasquage complet

non-intentionné, mais aussi à cause d’une combinaison de signaux ayant une faible entropie.

Ce type de vulnérabilité nécessite un nombre important de traces pour être exploité (même en

simulation), ce qui peut empêcher sa détection quand le nombre d’observations est relative-

ment faible.

Lorsque les phénomènes qui engendrent des fuites exploitables sont connus, une analyse

formelle peut être adoptée pour les détecter de façon fiable, et ainsi offrir un moyen de les

éviter. Néanmoins, cette analyse est limitée par le modèle adopté, et bride le spectre de

fuites détectables. Il est donc nécessaire de procéder à une évaluation empirique à différents

niveaux pour avoir plus de visibilité sur le comportement lié aux dispersions technologiques.

Plus particulièrement, rien ne garantit que la consommation des différentes portes logiques
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réalisant la même fonction booléenne soit identique. Des combinaisons de courant peuvent

s’effectuer entre les différents blocs combinatoires, et ainsi engendrer des fuites critiques.

Dans la deuxième partie de cette thèse, nous avons exploré les attaques actives et présenté

une étude sur les injections de fautes. L’implémentation cible est protégée par un schéma de

codes correcteurs d’erreurs. Après avoir synthétisé le design avec différentes options, le taux

de détection varie selon le critère d’optimisation. Comme toutes les contre-mesures basées

sur la redondance, le synthétiseur peut éliminer l’ensemble, ou une partie du bloc de détection,

ce qui rend le design vulnérable.

Dans le même contexte d’attaques actives, nous avons présenté une étude de sécurité

au niveau ”post-layout”, contre les attaques en ”micro-probing”. Nous avons proposé une

méthodologie complète et automatisable permettant d’évaluer une implémentation contre les

attaques en micro-probing. Elle permet d’estimer le niveau de sécurité en analysant l’accessibilité

des signaux sensibles par une station FIB.

Chapitre 2 – Analyse du pre-silicium vers du post-silicium

Dans ce chapitre, nous avons mené une étude comparative de sécurité entre une cible virtuelle

et une cible réelle face aux attaques physiques. Le but était d’étudier la disparité entre les

mesures réelles et les mesures issues de la simulation, réalisées sur une implémentation iden-

tique d’un Advanced Encryption Standard (AES) matériel synthétisé sur un FPGA. Le nombre

de traces nécessaires pour retrouver la clé secrète était relativement faible (≤ 2K). La même

implémentation est analysée dans plusieurs conditions de bruit, et nous avons montré que le

nombre de traces nécessaires pour retrouver la clé secrète peut être extrapolé à partir d’une

mesure de référence.

Nous notons que cette relation est indépendante du modèle de fuite utilisé. Le seul paramètre

pertinent est le niveau de bruit sur la nouvelle cible. Ce dernier ne dépend que de l’environnement

de mesure et de l’équipement utilisé. Sans contre-mesures significatives, la difficulté d’une at-

taque sur une cible réelle est déterminée par le bruit environnant et le niveau de rayonnement

électromagnétique de la puce. Les résultats sont illustrés avec une attaque par corrélation et

la métrique de variance interclasses normalisée.

Chapitre 3 – Analyse au niveau post-synthèse

Pour effectuer une analyse au niveau Post Synthesis (PS), nous avons synthétisé une implémentation

AES sur un FPGA Xilinx. Le but était de refléter le comportement du circuit en prenant en

compte les temps de propagation des portes logiques. Pour nous assurer que le synthétiseur
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n’avait pas introduit de vulnérabilités suite à l’optimisation du design, nous avons effectué cette

analyse en deux temps.

Dans la première expérience, nous avons retiré les informations de propagation de temps,

et l’analyse n’avait pas détecté de signaux vulnérables. En effet, nous avons forcé le synthétiseur

à conserver la hiérarchie du design, ainsi que les signaux internes de chaque module dans la

description Register Transfer Level (RTL). Les résultats d’analyse sur cette netlist étaient donc

similaires à ceux obtenus au niveau RTL. Dans la deuxième expérience, nous avons intégré les

temps de propagation à la simulation, et l’analyse avait identifié plusieurs signaux vulnérables

(une corrélation de 100%) avec le modèle de fuite prenant en compte la bonne hypothèse de

clé. En particulier, l’entrée de la fonction � SubByte � a été démasquée (pour un bref délai)

pendant le denier tour.

Pour corriger cette vulnérabilité, nous avons décidé de conserver le chiffré intermédiaire

masqué un tour de plus, et de procéder au démasquage une fois le calcul terminé. Suite à

ce correctif, l’analyse précédente n’avait pas détecté de vulnérabilité dans le design. En effet,

nous avons séparé le signal de masque des tours intermédiaires, du signal de masque du

dernier tour, et ainsi évité un démasquage probable (dû au retard) sur l’entré de la S-Box.

Pour rester rigoureux dans notre évaluation, nous avons entièrement supprimé cette phase

de démasquage. Ainsi, le chiffré renvoyé est masqué. Nous pouvons donc supposer qu’aucun

signal n’est démasqué en interne. En analysant chaque signal séparément, nous avons validé

la conformité de la netlist avec le schéma de masquage. Cependant, nous ne pouvons pas

affirmer ç ce stade que le design, dans son ensemble, ne présente pas de fuite du premier

ordre.

Pour pousser l’analyse encore plus loin, nous avons généré des traces de consomma-

tions basées sur des simulations numériques. Ces traces sont construites à partir de l’activité

du circuit (nombre de transitions) et de son état statique. En fait, cette combinaison permet

d’examiner les deux types de fuites, liées soit à la valeur soit à l’activité des signaux. En ef-

fectuant une analyse du premier ordre, nous avons pu détecter des pics de corrélation entre

les valeurs sensibles et les traces simulées. Une analyse par module nous a permis d’isoler

la fonction vulnérable (Substitution Box (S-box)), et ainsi de restreindre l’étude uniquement à

cette partie du design dans les analyses ultérieures.

Chapitre 4 – Analyse formelle d’une implémentation masquée au
niveau post-synthèse

Dans ce chapitre, nous avons étudié les fuites sur les schémas de masquage. Sur une de-

scription algorithmique, il est relativement simple de vérifier si chaque signal est masqué par
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une variable aléatoire. Au niveau matériel, cette propriété doit être vraie non seulement à

chaque cycle d’horloge (ou instruction), mais aussi lors des commutations des portes logiques

(calculs effectués en combinatoire). Malheureusement, en raison des retards induits par les

temps de propagation des portes combinatoires, des valeurs intermédiaires mélangeant les

états antérieurs et courants des signaux peuvent être calculés (glitches). Ce phénomène induit

ainsi des transitions extra-algorithmiques non contrôlées.

Plusieurs études ont montré que ces transitions peuvent dépendre de la valeur démasquée.

Les protections proposées pour lutter contre ce type de défauts tentent soit d’éviter ces tran-

sitions et d’assurer qu’aucune autre fuite ne se produise, soit en séparant les portes com-

binatoires manipulant les masques et les données masquées, soit en rajoutant des barrières

logiques (registres). Non seulement ces propositions sont assez contraignantes, mais la nature

de la fuite ainsi que la raison exacte de son apparition n’est pas complètement expliquée.

Nous avons proposé une nouvelle approche moins abstraite, qui consiste à vérifier que

toutes les configurations possibles, relatives aux retards, ne génèrent pas de fuites d’informations.

Nous profitons dans cette approche pour valider la sécurité de quelques netlists masquées, op-

timisées ( en nombre de portes et en nombre de cycle) par rapport aux schémas de masquages

résistants aux glitches, déjà présentés dans l’état de l’art. Nous présentons également des ex-

emples de netlists plus petites ne respectant pas systématiquement les principes de conception

résistants aux glitches couramment utilisés, mais nous essayons de masquer les transitions in-

troduisant des fuites, uniquement sur les parties critiques du calcul.

Nous avons validé la sécurité de nos implémentations à l’aide de simulations logiques dans

un premier temps, et sur des mesures réelles (des traces de rayonnement électromagnétique)

dans un second temps. Nous avons également illustré la régression progressive de la fuite,

suite à l’application des correctifs sur les parties du circuit identifiées comme vulnérables.

Chapitre 5 – Analyse d’une implémentation protégée contre les in-
jections de fautes

Les injections de fautes sont catégorisées parmi les attaques actives. Le but de l’attaquant

consiste à introduire une erreur pendant une opération bien choisie. Des techniques d’injection

moins contraignantes existent et elles sont généralement globales. On parle alors de pertur-

bation de l’alimentation, de l’horloge ou de température. Pour des injections plus précises,

nous pouvons citer par exemple les injections laser et électromagnétiques, qui nécessitent des

équipements plus sophistiqués. Dans le contexte pré-silicium, il est plus facile de reproduire

l’effet d’une faute sur un circuit. Cela permet de vérifier rapidement les protections contre ce

type d’attaques, ainsi que l’aspect fonctionnel d’une contre-mesure.
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Dans ce chapitre, nous avons étudié l’effet d’une injection de faute sur un bloc matériel AES-

128, implémentant une contre mesure basée sur les codes correcteurs d’erreurs qui consiste

à vérifier la parité de la matrice d’état. Pour vérifier que cette contre-mesure reste fonctionnelle

aux différent niveaux d’abstractions, nous avons synthétisé cette implémentation sur un FPGA

Xilinx Virtex-V au niveau PS et comme attendu, la détection était de 100%.

Dans un deuxième test, nous avons changé les options du synthétiseur, pour améliorer

les performances de l’implémentation et optimiser les calculs combinatoires. En conséquence,

toute la logique de vérification a été supprimée (elle est considérée comme un calcul redon-

dant). Ceci a empêché la détection des fautes injectées, et a rendu l’implémentation vulnérable.

Finalement, dans un troisième test, nous avons changé les options de synthétise pour

effectuer l’optimisation de façon incrémentale (donc en commençant par les chemins critiques).

Dans ce cas, uniquement la partie dépendante du chemin de données a été supprimée et par

conséquent, la détection était partielle.

Grâce à cette étude, nous avons montré que le processus de synthèse peut enlever complètement

ou partiellement une contre-mesure. Ainsi, la vérification doit être effectuée à chaque niveau

d’abstraction, pour éviter la propagation des vulnérabilités d’un niveau à l’autre.

Chapitre 6 – Évaluation contre les attaques par sondage

Les attaques par sondage sont considérées comme les plus puissantes. Le but est de s’infiltrer

à l’intérieur du circuit, créer des connexions avec les fils sensibles, et corréler les observations

avec un modèle hypothétique pour extraire les données sensibles. Les protections contre ce

genre d’attaques sont généralement basées sur l’insertion d’une couche de métal (shield) per-

mettant de détecter les intrusions de façon active. Le masquage est également considéré

comme un moyen algorithmique très efficace pour rendre ces attaques plus difficiles.

Dans cette étude, nous avons analysé l’efficacité d’un shield contre ce genre d’attaques, en

prenant en compte les différents paramètres pertinents, à savoir le ratio du Focused Ion Beams

(FIB), l’espacement et la largeur des fils qui composent le shield. Nous avons également pro-

posé des pistes afin de renforcer une telle protection. Sur un exemple de circuit concret, nous

avons pu montrer à travers une analyse pré-silicium, qu’une seule couche de shield n’apporte

pas de protection significative. Nous avons ajouté (virtuellement) une deuxième couche de

shield avec deux orientations différentes:

• Shield avec la même orientation, mais décalée par rapport au premier.

• Shield avec une orientation orthogonale par rapport au premier.
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Pour comparer ces deux propositions, nous avons calculé la meilleure surface exposée

dans les deux cas. Dans le premier cas, l’amélioration était négligeable, voire inexistante. La

largeur ainsi que la longueur des surfaces exposées sont de l’ordre de 780 nm et 15.8 µm

respectivement. En effet, la largeur est limitée par les caractéristiques du shield (dimension

des fils et leurs espacement).

En revanche, la deuxième solution offre plus de protection. Les surfaces possédant une

grande longueur au niveau M7 seront découpées lors de leurs projections au niveau M8 (de

façon orthogonale). En fait, le diamètre des trous qu’on pourrait creuser à partir de M8, aura

moins de 780 nm au niveau M7. En conséquence, la profondeur maximale atteignable sera

également limitée.

Grâce à cette procédure, nous pouvons déterminer les différents moyens permettant de

sécuriser une implémentation donnée contre les attaques par sondage. Par exemple, le routage

manuel des signaux trop exposés dans les premiers niveaux de métal, et la délocalisation de

certains signaux (non-sensibles) dans les zones creuses donnant accès aux signaux sensibles,

permet de limiter la surface exposée, et ainsi renforcer la sécurité du circuit.
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1.1 Context

Privacy has always been a milestone for centuries. Being able to communicate sensitive

information play a fundamental role in society. Modern cryptography is the result of an evo-

lutionary process across past generations of the art of text dissimulation. Starting from the

Caesar cipher and then Vigenere cipher, more reliable and robust techniques were invented

next. Properties were then formalised in order to ensure perfect secrecy. The first modern

encryption algorithms are particularly Data Encryption Standard (DES), Triple-DES [4] and Ad-

vanced Encryption Standard (AES) [5]. They are classified under the category of symmetric

block cipher using a secret key. There are other algorithms known as stream ciphers like RC5.

The idea behind the latter is to approach the perfect (proven secure) One-Time-Pad (OTP)

encryption.

However, when people want to exchange a secret key through an insecure network, they

have to use other reliable means beforehand in a secure way. This is the role of asymmetric

algorithms. The most currently used algorithms are Rivest Shamir Adleman (RSA) and El-

liptic Curve Cryptography (ECC). The first one is based on the factorization problem of large

numbers, while the second one is based on the Discrete Logarithm Problem (DLP). Theoret-

ically and mathematically, these algorithms are considered to be safe and secure. The most

1
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powerful and effective mathematical attacks known until today remain exponential, or at best

sub-exponential in terms of the scalar size in bits. On the other hand, the implementations

of these algorithms on embedded systems offer other angles of attack, either symmetric or

asymmetric algorithms. Amongst these attacks we find Side-Channel Attack (SCA).

1.2 Physical threats

Physical attacks or SCAs exploit the flaws generated during the execution of a cryptographic

program involving secret data. It can be divided into two classes:

• Passive attacks: they are non-invasive attacks that aim at observing and exploiting a

physical property of the device when running some cryptographic operation. The physical

property can be for instance the power consumption, Electromagnetic Emanation (EM),

the computation time, the sound vibration or the thermal activity.

• Active attacks: they interact with the device by altering its behaviour. Such abnormal

behaviour is obtained by tempering for instance with the clock or power supply of the sys-

tem, or by injecting optical or EM pulses. Such analyses require sophisticated platforms

and high skills to make the injection. A Focused Ion Beams (FIB) station can also be used

for circuit editing, and accessing internal signals.

Timing vulnerabilities were the first to be exploited against asymmetric algorithms. Then, they

have been extended to any type of implementation that shows variation in execution time. The

reason of the leakage may vary depending on the type of implementation or the runtime envi-

ronment. When the temporal variations depend on a sensitive value, a timing attack becomes

possible. Regarding power consumption or electromagnetic emanation, the range of attacks is

much wider. From a high-level point of view, those attacks can be divided into two categories:

horizontal attacks and vertical attacks. Horizontal attacks exploit one or few traces to break the

secret key, by exploiting either local and temporal information, or the pattern of power consump-

tion according to an intermediate sensitive value. On the other hand, vertical attacks exploit the

variation linked to the intermediate manipulated data. Several traces of power consumption are

necessary to carry out an attack and be able to recover the secret key.

1.3 Protection

To protect sensitive data against such attacks, it is required to implement more secure and

robust variants, depending on different angles of attack that are offered to a potential attacker.

For remote targets, it is sufficient to protect against timing attacks. For targets that can be

accessed physically (such as smart-cards), an additional layer of protection must be added to
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also cover horizontal and vertical attacks, besides of timing attacks. Several ways are available

to protect our application. The overall idea is to eliminate and reduce the source of exploitable

leakages, by adding (independent) noise to make the correlation with the signal more difficult,

insertion of dummy operations, randomizing the operations or implementing a masking scheme.

The latter is the most studied countermeasure, given its theoretical efficiency.

This implies more constraints for designers, who must not only ensure the proper func-

tioning of the device but also provide a security level against some kind of attacks. Usually,

the security level is based on the number of observations necessary to find the secret key.

This level is determined after an evaluation phase by a certification laboratory. On the other

hand, if this process is repeated several times, the manufacturing cost increases very quickly.

For this reason, a designer wants to eliminate at an early stage of conception, the source of

vulnerabilities as much as possible. This what we call pre-silicon evaluation.

1.4 Pre-silicon evaluation

To evaluate a device at an early stage of conception and avoid a waste of time and money, it is

necessary to have very effective evaluation tools. The evaluation should check that:

1. The protection specification is well respected and the countermeasures are well imple-

mented;

2. No vulnerability is observed according to a given number of observations.

The first point is more or less obvious to be respected by an experienced designer, and

can be verified by digital simulations. On the other hand, the second point is more difficult to

guarantee. Other leakages can arise due to an imperfection of the circuit modelling, which may

lead to a significant difference between the expected leakage and the one observable on real

targets.

1.4.1 Empirical evaluation

The best assessment of an SCA leakage is possible by a better modelling of the hardware de-

sign. In the context of integrated circuits, these modelling could be considered as the different

abstraction level of the corresponding target design, namely: Register Transfer Level (RTL),

Post Synthesis (PS), Place & Route (PR) and post-layout. To advance towards a real evalua-

tion, the power consumption traces can be estimated using either digital or electrical simulation.

For digital simulations, all levels of abstraction can be considered (RTL→ PR), to carry out an

exhaustive analysis. An example of a such progressive proceeding is outlined in chapter 3 and

4.
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The first step at RTL level could detect any algorithmic and coding leakages, and allows

designers to eliminate them at an early stage.

This evaluation includes the verification of all signals, and detects several types of vulnera-

bilities, either by horizontal or vertical analyses. Horizontal leakages can be detected by simply

counting the number of cycles for each operation. It allows among other things to detect timing

(local and global) and Simple Power Analysis (SPA) leakages. For vertical leakages, we can

estimate the activity of the circuit based on the switching signals and their static states. We

recall that by design, a CMOS gate consumes only when a change occurs on one of its in-

puts, which validates the toggle count model. These traces could be used to perform statistical

analyses, like Differential Power Analysis (DPA) to detect vertical leakages.

To get closer to a real circuit, a timing-annotation PS netlist can be considered instead. In

fact, new leakages could be identified at this stage. Combinatorial calculations mixing previous

and current values of signals can be carried out by the same gate, which can generate an extra

flaw.

At digital level, the estimated power consumption can be improved by considering each gate

separately, and by exploiting the information provided or extracted from an electrical simulation.

As a function of the input values, the power consumption of a gate is taken from a pre-defined

table. This gives a more precise estimation of the power consumption of the circuit.

1.4.2 Formal evaluation

It is worthy to consider that a simulation does not cover all possible instances of a given imple-

mentation. Depending on the adopted technology, behaviours favouring or preventing leakage

may occur, namely the ones generated because of propagation time. We can therefore use

stronger means and properties to verify the security criteria. A formal approach aiming to

model the impact of known physical phenomena may be more effective, and more reassuring

for a designer ignoring the final technology.

These kinds of evaluations are based on more or less strong security properties. In partic-

ular, when checking a masking scheme, the used model is generally based on probing attack.

This model allows an attacker to place probes on the internal signals of the circuit. If the secret

cannot be reconstructed from the values observed with these probe, thus the circuit is consid-

ered to be secure. When the masking is based on d shares, we speak about masking at order

d, and security at d.

Indeed, although some schemes are proved secure at the algorithmic level, a first order

leakage is identified on synthesised and time-annotated netlists. This leakage is exploitable on

real targets, and can only be observed when taking into account the propagation time in the

logic gates for instance.
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1.5 Objectives

The main objective of the thesis is to improve pre-silicon evaluation methods. A better char-

acterization of the leakages that can be exploited by an attacker, allows us to estimate the

expected level of security before manufacturing the final circuit. For this purpose, we conduct

an end-to-end comparison between virtual and real analyses.

In the first part, we focus on the characterization of the side-channel leakage at pre-silicon

and post-silicon levels (RTL and PS), based on the same unprotected hardware designs, and

by considering different Signal to Noise Ratio (SNR) levels. In the same way, we show an evalu-

ation of a protected implementation, which aims to identify the different sources of non-obvious

leakages. This may be present at the design level, namely those caused by the propagation

times and glitches. We thus, propose a method to study this last phenomenon, and the different

existing ways that allows us to prevent such vulnerabilities, by relying on thorough characteri-

zation and a formal evaluation.

In the second part, we focus on active attacks, namely, fault injection and micro-probing

attack. For fault injection, we have implemented a compact protected version of AES, as pre-

sented in the state of the art. We have studied which impact the synthesis could have on such

an implementation, which presents a certain computational redundancy to guarantee the data

integrity.

Finally, we present an end-to-end methodology allowing to quantify the difficulty of a probing

attack using a FIB. To estimate the security level, we take into account the layout of the design

and the performance of the FIB.
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2.1 Modern cryptography

2.1.1 Symmetric cryptography

To encrypt sensitive data or a communication between two entities, the AES algorithm is the

most widely used in the world [5]. It was designed in 1997 during the National Institute of

Standards and Technology (NIST) competition, to standardize an alternative algorithm to DES,

and Triple-DES.

AES is based on three basic functions, which are executed a given number of timeN (10, 12

or 14) depending on the key size, as presented in fig. 2.1. At each round, the state (presented

as a 4× 4-byte matrix) is updated with the following sub-functions:

• AddRoundKey: The state is xored with a secret key-round derived from the master key;

• SubBytes: It is a bijective byte substitution function, applied to each byte of the state.

• ShiftRows: The row i is rotated by i position(s) to the left;

7
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Figure 2.1: AES block diagram for encryption and decryption.

• MixColumns: The state matrix is multiplied by a constant matrix, where each byte is

considered as an element of the Galois field GF256.

The different round keys are derived from the master key, using a specific process based on

permutation and the SubBytes function. Moreover, SubBytes is used to ensure the confusion

property, ShiftRows and MixColumns are used to ensure the diffusion property. Both prop-

erties are fundamental for a symmetric encryption algorithm to be secure [6]. The decryption

process is performed using the inverse of each sub-function in the reverse order. To encrypt a

long stream of data, AES is applied to each block of 128 bits using a specific chaining mode,

such as: Electronic Code Book (ECB), Cipher-Block Chaining (CBC), Cipher Feedback (CFB)

and so on.

2.1.2 Asymmetric cryptography

To ensure a key exchange between two remote entities communicating trough a non-trusted

channel, it is necessary to use a protocol based on asymmetric algorithms. These algorithms

work with two keys. A private key kept secret that is used to decrypt data, and a public key

used by the other users, who want to communicate with the owner of the private key. The two

algorithms used in the current applications are RSA and ECC.
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RSA is based on the big number factorisation problem. By choosing two prime numbers p

and q (≥ 2048 bits), two keys are constructed as follows:

• (N, e) (public) with N = pq and e chosen small (ex: 17 or 65537);

• (p, q, d) (private) such that d× e = 1mod(p− 1)(q − 1).

To encrypt a message m, the sender computes c = memodN . To decrypt c, the receiver com-

putes m = cdmodN . Besides, in the case of a signature, RSA can be seen as a DLP (knowing

the signature s = md of a known message m, find d). Thus, key exchange protocols like Diffie-

Hellman can also be used [7]. Key exchange and digital signature can also be designed based

on ECC [8].

2.2 Physical attacks

2.2.1 Timing attack

Timing attack is the object of the first known SCA in the state of the art [9]. The exploit involves a

basic implementation of RSA. The overall execution time of a modular exponentiation depends

on the key and on the input message.

Figure 2.2: Principle of timing attack. The timing distribution is computed for each key hypoth-
esis.

A measurement of the execution time variation allows an attacker to find the value of the

secret key recursively (fig. 2.2). Applications using RSA usually implement an alternative ver-

sion based on Chinese Reminder Theorem (CRT). Thus, the modular exponentiation can be

speeded-up by a factor of four (×4). Attacks targeting this version are also presented in [10, 11].

A cryptographic implementation is vulnerable to a timing attack when variations in the ex-

ecution time depend on sensitive data. These variations can be a consequence of either the

implementation or the hardware behaviour. More commonly, this vulnerability is present at al-

gorithmic description level. It is characterised by a non-constant time functions or instructions,

such as big-number multiplication, modular inversion or different processing based on sensitive

values, such as conditional branching. The latter can be qualified as micro-architectural vulner-

ability. It is the cause of the latency when loading data, either from the main memory or from

the cache memory. A timing attack targeting an AES implementation is presented in [12]. The
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targeted implementation is in fact constant time from algorithmic view point , but the execution

time variations are due to the cache access latency, which varies according to whether the data

are present or not in the cache memory.

2.2.2 Horizontal attack

Horizontal attacks exploit local characteristics of the side-channel trace, based either on tem-

poral or vertical information. One of the simplest attack is the one targeting a non-regular

asymmetric implementation of RSA (square-and-multiply) or an ECC (double-and-add) [13].

We recall that these implementations scan the scalar (on binary form) and perform one or two

operations depending on the value of the current bit (one operation for ’0’, two operations for

’1’). On a such implementation, one trace is enough to recover the exponent or the secret

scalar (see fig. 2.3). When the current bit is ’0’, only the square operation is executed, but when

it is equal to ’1’, both square and multiplication operations are executed.

Figure 2.3: Key recovery of an ECC double-and-add implementation (from [1]).

Besides, on asymmetric implementations, dealing with large integers induces many con-

straints when trying to make the execution of each elementary operation completely constant-

time. Thus, even on regular versions (like Montgomery ladder), some attacks exist. These

attacks characterise the pattern of the power consumption according to a given deterministic

or probabilistic criterion. They aim for example at characterising the number of (extra)-modular

reductions [14], or characterising the modular multiplication of the intermediate hypothetical

value, such as doubling-attack [15] or big-mac attack [16].

2.2.3 Differential power attack

DPA is the most addressed and studied in the state-of-the-art existing attacks. It exploits the

variation of the power consumption in terms of the processed data at a given time [17, 18].

Indeed, an electronic component does not consume the same amount of energy when per-

forming the same operation on different data. When sensitive data are processed, the power
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consumption may give an image of the sensitive information to an external attacker. Based on

some assumptions, the attacker can extract the secret key of a cryptographic implementation.

We should also note that the power consumption of an electronic device depends on the

number of transitions inside the logic gates. Thus, DPA can be mounted by making some

hypotheses about the processed data, that involve the secret key [19].

Figure 2.4: All steps for a DPA. The traces can be filtered in presence of noise before performing
the attack.

The global workflow of a DPA is presented in fig. 2.4. The attacker starts by acquiring

traces of power consumption or EM emanation on the target device. After preforming some

filtering and denoising steps, a statistical analysis is applied to extract the secret key. There are

two important concepts at this step: The leakage model and the distinguisher, which we detail

below.

2.2.3.1 Distinguisher & leakage model

When a device processes a data X, the power consumption P can be modelled as a combi-

nation of a deterministic component, function of the manipulated value ϕ(X), and a random

component which models an independent noise N :

P = ϕ(X) +N (2.1)

Definition 1 (Leakage model). A leakage model is a theoretical prediction function that esti-

mates an equivalent image of the power consumption given an intermediate value.

The most known and used leakage models in the state-of-the-art existing attacks are gen-

erally based on the Hamming Weight (HW), Hamming Distance (HD), mono-bit and multi-bit
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models. Those leakage models can be generalised by:

ϕ(x) =
n−1∑
i=0

ωixi (2.2)

where ωi ∈ [0, 1], and x =
∑n−1

i=0 2ixi is either an intermediate value or the result of some

combined intermediate data (HD case). More sophisticated leakage models can be built with

a posterior knowledge of the target. This function involves the value of the secret key. To

distinguish the right key from the wrong ones, we use a statistical metric which is known as a

distinguisher.

Definition 2 (Distinguisher). A distinguisher D is a statistical metric that allows distinguishing

the secret key using the observations. We note also D̂ an empirical estimator of D based on n

observations.

According to definition 2, the secret key can be extracted by maximising the distinguisher

value over the set of key hypotheses:

k∗ = argmax
k

(D̂(k))

which gives the most probable key hypothesis.

The distinguisher measures the level of similarity between the leakage model (specific to a

target node and characterised by a key hypothesis) and the side-channel leakage. There are

several more or less efficient distinguishers depending on the situation (noise level, number of

traces, etc.).

One of the most powerful distinguishers is the correlation, and known as Correlation Power

Analysis (CPA) [19]. CPA is very efficient when the side-channel trace is linear according to

the leakage model and the noise is Gaussian [20]. Linear Regression Analysis (LRA) is the

generalized version of the correlation in the multi-dimensional case, when considering each bit

separately. When the nature of the leakage is not usual (such as HW), other distinguishers can

be used, such as Mutual Information Analysis (MIA) [21, 22] or Kolmogorov-Smirnov Analysis

(KSA) [23]. They compare the distributions between the leakage model and the side-channel

traces, without making any assumption about their forms.

An extensive comparison between these distinguishers is presented in [24]. They showed

in which case MIA takes advantage from CPA (when the leakage model diverges from the

practical measurements), and the different factors that influence the success of the attack,

such as noise, and the nature of the leakage signal.

We show in fig. 2.5 two curves representing the average of the power consumption for two

different HW of the processed value. In this case, the average allows an attacker to distinguish
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Figure 2.5: Power consumption in the HW model. The different classes can be distinguished
with the average of consumption for each class.

the different classes and thus, by exploiting this variation (inter-class) she can extract the as-

sociated sensitive value. We can also see that, if the noise envelope is larger (the standard

deviation of the noise), it becomes more difficult to separate each class, and therefore the at-

tack becomes more difficult and will require more traces. The higher the noise is, the more

difficult the attack is.

A relation between these two parameters can be established using the SNR.

Definition 3 (Signal to Noise Ratio). The SNR is defined as the signal (S) variance divided by

the noise (N ) variance:

SNR =
V[S]
V[N ]

To illustrate this relationship, we simulate traces based on eq. (2.2), using random mes-

sages m and a fixed (secret) key k∗. The signal part (ϕ) is calculated as the HW of the AES

Substitution Box (S-box) output, and the noise N follows a centered Gaussian distribution.

Thus, we have:

P = HW (S-BOX(k∗ ⊕m)) +N

To measure the efficiency of a given analysis, we use the SR metric.

Definition 4 (Success Rate). The SR for a given number of observations n, relative to a distin-

guisher D is defined as:

SR(n) = P(D̂n(k∗) > D̂n(k)k 6=k∗)

where D̂n is the estimated value of the distinguisher based on n observations. This metric

measures the probability of finding the secret key with a given number of traces.

For different values of the SNR, we plot in fig. 2.6, the curves of the SR, based on the result

of CPA. To estimate theoretically the SR, several proposals are already being considered in the
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Figure 2.6: CPA based Success Rate (SR) for different values of the SNR.

state of the art. The first one is described in [25]. Subsequently, other models are proposed,

such as [26, 27, 28]. In [26], Rivain has established a way to approximate the SR of a first order

SCA, by analysing the distribution of the distinguisher scores. For this purpose, he defined

a comparison vector (Ck), and the distinguisher is evaluated for the right key and the wrong

keys (Ck = D(k∗) − D(k)). When a Gaussian leakage model is assumed, the comparison

vector follows a multi-variate Gaussian distribution, which allows us to estimate the SR of the

attack. He validates this metric on simulated traces, on both CPA and profiled attack. In [28],

Lomné et al. extended this approach to high-order SCA on masked implementation. With the

same method, they defined the SR of a CPA and profiled SCA, according to the multiplicative

combining technique of samples. They validate their estimations on simulated traces and EM

traces up to order four (4thO-SCA). This methodology is also described in [29]. In [30], the

authors made an in-depth study of these different approaches, and exposed a good comparison

between these different estimators.

In practice, the SR depends on the performance of the considered distinguisher. The latter,

in turn, depends on the leakage model used. The SR can be estimated by repeating the

attack several times for a fixed number of observations. For the same signal quality and the

same leakage model, it may vary depending on the used distinguisher. An in-depth study of

diverse distinguishers is presented in [31]. They also derived an SR metric based on a success

exponent.

From fig. 2.6, we can notice that the required number of traces to recover the secret key is

roughly inversely proportional to the SNR. To estimate the SR of CPA, we have repeated the

attack 100 times with different traces.
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(a) (b)

Figure 2.7: Confusion coefficients of the first bit of the AES S-box. (a) Confusion matrix for all
keys. (b) Confusion coefficient for the key 0x00.

In [27], the authors have established a success rate estimation metric as a multi-variate

Gaussian distribution, which takes into account different parameters involved in a DPA, namely

the quality of the signal and the targeted function properties. The latter is known as the confu-

sion coefficient:

Definition 5 (Confusion Coefficient). The confusion coefficient κ of a function f : k 7→ f(k)

is defined as: κ = P(f(ki) 6= f(kj)). It is the probability that two random (different) keys give

different outputs.

In an equivalent way, the collision coefficient ξ which is the complementary of the confusion

coefficient can be defined as: ξ = 1− κ.

If we consider the AES S-box as a target function, the confusion coefficients of the first bit

output is plotted in fig. 2.7. The result for all possible keys is shown in the confusion matrix (see

fig. 2.7a). Each pixel of the image gives the portion of messages that leads to the same output

bit for two keys ki and kj . We intentionally set the diagonal to 50% (instead of 0%) for more

clarity. We can easily identify the symmetry of the matrix following the diagonal. In fig. 2.7b,

we plotted the first line of the matrix, which corresponds to the key 0x00. The minimum value is

0.4375, which means that at least one wrong key gives 56% of collisions. In the same way, we

can compute the confusion coefficient for any output bit, or a specific processing on the output

of the targeted function, such as the HW [27, 30].

Another metric that can be used also for the same purpose is the rank filter [32]. It gives the

rank of the specified key after processing n traces. The attack is successful when the right key



16 CHAPTER 2. RELATED WORKS

is ranked first.

These concepts are reused in chapter 3 to demonstrate the sense and the value of a pre-

silicon evaluation towards an EM one. To this end, we study the convergence of different

metrics, such as Normalized Inter-Class Variance (NICV) and SR in different scenarios, with

different value of SNR.

2.2.3.2 Profiling based analysis

In some cases, the leakage model is very difficult to predict. As we have seen previously,

we cannot exclude the case where each bit of the processed value does not consume the

same amount of energy, so the weights ωi are difficult to estimate directly. A regression-based

analysis (LRA) could be used to avoid such unforeseen issues. On the other hand, when

the side-channel leakage is not of the same form as eq. (2.2) (for example a combination of

a xor of some bits), it becomes more difficult to predict. Profiling-based attacks are a very

effective way to overcome these kinds of constraints. A more general version of this type of

analysis is known as Template attacks [33, 34]. The idea is to characterise the leakage on a

clone device for different key hypotheses, and use this database to attack the target device.

Generally, the leakage is characterised by its average and its co-variance matrix using a multi-

dimensional Gaussian distribution. The distinguisher is then based on the maximum likelihood.

This analysis can be divided in two main stages:

1. Profiling phase:

• the attacker collects a large number of leakage traces on a clone device with different

(known) keys k ∈ K;

• for each key hypothesis k, the attacker computes the averageMk and the co-variance

matrix Ck of n points of interest.

2. Extraction phase:

• Using one or few traces {Ti} from the target device, the attacker computes the most

likely class from the built templates, based on the n-dimensional multi-variate Gaus-

sian distribution.

Pr(Ti) =
1√

2π
n
2 |Ck|

exp(−1

2
(Ti −Mk)

′C−1k (Ti −Mk)).

• The extraction of the most probable key k∗ may be achieved using the maximum

likelihood:

k∗ = argmax
k∈K

{∏
i

Pr(k|Ti)

}
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Another simpler variant of template analysis is based only on the average of the side-

channel trace, and it does not require a clone device. It is enough to characterise the leak-

age on a small part of a redundant computation (for example only one S-box of the AES),

and to attack the rest of the computations using the correlation as a distinguisher for example

[35, 36, 37]. This analysis is known as Collision-Correlation Power Analysis (CCA).

As Prouff et al. have demonstrated in [38], when the leakage model is equal to the con-

ditional mean according to the sensitive value (E[L|Z = z]), the correlation is optimal under

the Gaussian assumption. This last finding was used in [39, 40] as a leakage detection metric

known as NICV.

In [41], Oswald and Mangard presented different Template attacks on masked software

implementations. They showed that when taking the mask value into account in the profiling

stage, the attack is more efficient. Only fifteen (15) traces are required to recover the right

secret key.

In chapter 4 and chapter 5, we use such sophisticated distinguishers and techniques to

characterise and exploit the SCA leakage. We also compare their effectiveness against a

standard attack; using a distinguisher combined with a leakage model.

2.3 Countermeasure against physical attacks

There are many ways to protect cryptographic implementations against SCA. The main idea

is to make the observations uncorrelated from the sensitive data. Adding some (uncorrelated)

noise will also help to reinforce the countermeasure. The lower the signal quality is, the more

difficult the attack is. In the following, we present some countermeasures that have been most

discussed in the state of the art. In general, there are purely algorithmic versions, which induce

a partial or a complete modification and re-designing of the implementation such as masking

and blinding. Other countermeasures are based on empirical techniques aiming at re-ordering

the computations, by randomly permuting some instructions or by inserting fake operations.

2.3.1 Hiding

Hiding countermeasure consists generally of randomizing the internal operations of the algo-

rithm, when the order of execution does not matter, as suggested in [42, 43]. In the case of sym-

metric algorithms, the execution of the different steps can be exchanged. Moreover, the pro-

cessing of each sub-data of the current state can be done in a completely random manner. This

allows to reduce the SNR and thus, makes the attack more difficult. In the case of AES block

encryption, randomization can be applied at function level between SubBytes and ShiftRows,

and internal state level by randomizing the processing of each byte forAddRoundKey, SubBytes,
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ShiftRows, and at column level for MixColumns. This countermeasure is generally combined

with more powerful ones such as masking (see section 2.3.2).

For Hardware implementations, the logic gates can be re-designed to make the power con-

sumption independent from the processed data. It is based on Dual-rail logic (DRL) gates

[44, 45], which consist on a complementary logic that switches only once whatever the per-

formed computation. This countermeasure can also be combined with algorithmic ones (like

masking) to increase the resistance [46]. However, a significant area overhead is quickly

reached.

2.3.2 Masking

The most common countermeasure discussed in the state of the art is masking [47, 48, 49].

It aims at protecting the cryptographic implementation against vertical attacks. As a reminder,

vertical attacks assume constant consumption for the same input data. It therefore, becomes

obvious that if the inputs of the operations targeted by a DPA are random, the leakage model

will no longer match the physical leakage. The principle of masking consists in dividing the

secret into several shares, and performing the equivalent calculation by manipulating only the

shares. This ”sharing” depends on the structure of the algorithm. In an algebraic Boolean

structure, a Boolean masking is preferred, in a multiplicative group, a multiplicative masking

(aka blinding) is used.

Boolean masking of an AES implementation is considered in chapter 4 and chapter 5, to

evaluate the robustness of such countermeasure, but also to identify other flaws due to either

a mis-integration or glitches.

2.3.2.1 Boolean masking

An intermediate secret data X can be written as:

X =
n⊕
i=1

Xi (2.3)

and each share Xi is used by a function ϕi. According to the hypothesis of eq. (2.1), the power

consumption P of the device becomes:

P =
n∑
i=1

ϕi(Xi) +N

As a result, the correlation in the broadest sense cannot be established between P and

ϕ(X). The level of protection d is related to the number of used shares, and it is generally lower

(d ≤ n).
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Figure 2.8: 2nd order CPA based SR for SNR = 0.5.

To break a protected implementation with a masking at order d, we need to use High Order

DPA (HO-DPA). Therefore, a first order masking (d = 1) can be broken using a second order

DPA, but it requires more observations (exponential with the order) to recover the secret key

compared with an unprotected one [47, 50]. In the particular case, when the masked data

and the mask are manipulated at the same time (case of parallel hardware implementation for

example), the second order analysis can be performed using the second order moment of the

traces:

P 2 = ϕ1(X1)
2 + ϕ2(X2)

2 +N2

+ 2× ϕ1(X1)×N + 2× ϕ2(X2)×N

+ 2× ϕ1(X1)× ϕ(X2)

The relevant term is 2 ∗ ϕ1(X1) ∗ ϕ2(X2), which combines both shares of the secret (mul-

tiplicative combining). All other terms can be considered as noise, because they cannot be

predicted by the attacker.

To get an idea of the advantage of masking, we simulated traces in the same way as for

the unprotected case. The number of required traces to recover the key has greatly increased.

We deduce a factor of 640 between the non-masked (fig. 2.6) and the masked version (fig. 2.8)

when the SNR is equal to 0.5 = V[2×ϕ1(X1)×ϕ2(X2)]
V [N ] in both case.
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2.3.2.2 Multiplicative masking

Multiplicative masking is generally used in a multiplicative group, such as the case of RSA.

We recall that RSA is based on a private key (d, p, q), and a public key (N = pq, e), with

e× d = 1 mod φ(N), and φ is the Euler function. It is much easier to use multiplicative masking

in this kind of structure. For example, in the case of a modular exponentiation (md mod N ), the

input message m can be multiplied by a random r (m′ = m × r). This makes the intermediate

values impossible to predict by an external attacker. The unmasking can be done by multiplying

the final result by re.

Some proposals have also been suggested to mask the AES S-box. As it is composed of

two parts, the first being an inversion in the field F256, the second is an affine transformation.

Therefore, in the inversion stage, it is possible to multiply the input by a random value r ∈ F256,

perform the inversion which will be masked by r−1 and then transform into Boolean masking

for the affine part, as described in [51]. Unlike RSA, multiplicative masking of the AES S-box

is vulnerable to a first-order DPA as mentioned by the authors in [51] and in [52]. Indeed, the

value 0 is never masked, and therefore allows an attacker to distinguish the zero-input value of

the S-box, and finally recover the secret key. To bypass this problem, several suggestions have

been discussed and aims to replace the zero-input value with another one [53].

Recently in [54], the authors described a way to deal with the zero-input problem. They

use the fact that the zero-input value and the unit-input value are their own inverse. Thus, they

replace the zero-input value by one, and compute a δ function in a shared way, which is used to

patch the final result. The value of δ is added in the conversion step, from Boolean to multiplica-

tive masking. They also give experiment results based on 200 millions simulated traces, and 50

millions EM traces acquired from a Field Programmable Gates Array (FPGA). This implemen-

tation should also (and designed to) prevent the problem related to glitches encountered in a

pure Boolean masking schemes.

2.3.3 Boolean masking in presence of glitches

The problem related to glitches is mainly critical when implementing and designing non-linear

functions. Indeed, linear functions only need to process the different shares independently

to perform the equivalent computation. On the other hand, a non-linear realization (masked

AND gate for example) must combine several shares of the same variable. In the case of the

multiplier of [2], the two shares (a and m) of the same variable are joined on the same XOR

gate that computes i3 (see fig. 2.9).

As [55] has mentioned, the number of transitions at this gate is correlated to the sensitive

value (x = a⊕m).
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Figure 2.9: Masked AND gate of [2].

2.3.3.1 Canright masked S-box

Canright proposed in [56] a very compact implementation of the AES S-box. The proposed

implementation uses the sub-field of GF28 (also called “tower field”) for the S-box computation,

as previously presented in [57]. He showed that his version is about 20% smaller than the initial

version of the state of the art [58]. In a second paper [59], on the topic of AES S-box, Canright

proposed a protected version as a countermeasure against SCA. The countermeasure is based

on a first-order masking [60]. He showed how to compute the non-linear (GF28 inverter) part of

the S-box in a masked manner.

Figure 2.10: Canright masked inversion of GF256 elements [59] and analysed in [36].

Theoretically, such a countermeasure should be robust, at least assuming the gates eval-
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uate in the adequate order, i.e., only once all inputs have arrived (RTL case). In [36], the

author targeted an AES implementation that instantiates this masked version of the S-box. He

managed with first-order analysis to retrieve the secret key. He also found that the number of

needed traces is only increased by a factor of six (×6) compared to a non-protected imple-

mentation, which is not enough from this kind of countermeasure. An earlier study on other

masked S-box has already been studied in [61, 62]. The results confirmed the existence of a

leakage in the non-linear sub-functions of the S-box. A dependency between the total number

of transitions and the clear (unmasked) value has been clearly substantiated. He showed that

this leakage was due to the absorbed transitions by the second XOR gate of the multiplier. We

can notice that at this gate, the calculation involves both shares of the same variable (a,m). In

the following, we present two fundamental state-of-the-art approaches to fix this problem.

2.3.3.2 Threshold implementation

In [63, 64], Nikova et al. have proposed a way to implement a non-linear function secure at first

order even in presence of glitches. It is based on three main properties:

• Non-Completeness: It is the most important property of Threshold Implementation (TI). It

assumes that each gate does not process all shares of the same variable. In other words,

each gate should be independent at least from one share.

• Uniformity: The distribution of the shares is uniform.

• Correctness: The sum of the result should be the expected one.

The authors demonstrated that if those three properties are verified, then the circuit will be

secure against glitches. They also proposed a first order secure multiplier based on a sharing

of order 3, and a GF16 inverter based on a sharing of order 5. Both verify the non-completeness

property. The TI masked AND between x =
⊕3

i=1 ai and y =
⊕3

i=1 bi can be computed as

follows:

f1 = a2 ∗ b2 ⊕ a2 ∗ b3 ⊕ a3 ∗ b2

f2 = a3 ∗ b3 ⊕ a1 ∗ b3 ⊕ a3 ∗ b1

f3 = a1 ∗ b1 ⊕ a1 ∗ b2 ⊕ a2 ∗ b1

x ∗ y = f1 ⊕ f2 ⊕ f2

We can notice that each expression fi is free from ai and bi.

Based on these principles, Moradi et al. in [65] have implemented a full AES S-box. It

is divided into four phases with four levels of registers. To ensure the global uniformity, the

registers behind the multipliers are remasked, with fresh random. This allows to reduce the

combinatorial complexity, while satisfying the three conditions of TI for each block. A more
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compact version of about 30% with lower latency was then presented in [66]. It computes the

result in two cycles instead of four. However, the number of input shares is four, and the output

shares is three.

In addition, there are other approaches which aim to completely avoid glitches [67]. The

principle was to activate the combinatorial computation recursively, once all signals are arrived,

and thus avoid the propagation of non-necessary transitions. The proposals which aim to

equalize the delay of arrival of the signals does not allow to eliminate the leakage, but to reduce

it only for instance [68].

In [69], the authors extended the TI notion to high order masking. They also presented

a 1st, 2nd and 3rd TI implementation of a small S-boxes. To be able to check the TI prop-

erties on hardware implementations, [70] presented an automated tool which takes an RTL

design as input, generates a netlist with Design Compiler (Synopsis), and checks the differ-

ent TI properties up to order three (d = 3). The tool is open-source and available on github:

https://github.com/vmarribas/VerMFi.

2.3.3.3 Domain oriented masking

The Domain Oriented Masking (DOM) [71] comes with a very similar approach as TI, which

consists in separating each mask domain, and optimizing the number of necessary registers

and fresh random. The proposed multiplier needs two registers and one fresh random. The

computation is performed in three main steps:

• Calculation: This step is similar to the first stage of AND between shares as [51].

• Resharing: In this stage the output of each AND gate is registered and remasked with

a new fresh random. Thus, the result will be uniform and independent from the other

shares.

• Integration (or compression): This step consists in reducing the number of shares from

four to two.

The author in [71] has shown a full implementation of the AES S-box. It is composed of

four stage of registers, that stops glitches at the output of each multiplier. This version was 40%

smaller than the one presented in [65] and 13% smaller than [66].

S-Box Area (GE) Latency (Cycle) Fresh random (bits)
Moradi et al. [65] 4244 4 48
Bilgin et al. [66] 3003 2 44
Gross et al. [71] 2600 4 28

Table 2.1: Comparison of some glitch-resistant state-of-the-art implementation of the AES S-
box.

https://github.com/vmarribas/VerMFi
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We show in table 2.1, some state-of-the-art existing implementations of the AES S-box that

resist to glitches.

As we can see, there are some similarities between DOM approach and TI. In [72], Reparaz

et al. have described the similarities between the different implementations, and how the

scheme of [73] can transformed to a secure version against glitches as TI, by pointing out

the critical parts that should be treated carefully.

We address this topic more deeply in chapter 5. We explore different ways to secure masked

gates, and how to build more compact and secure functions even in presence of glitches.

2.4 High-order DPA

The idea behind high-order attacks is to combine multiple time samples, where the masks and

the masked data are manipulated [74]. In the case of a first order Boolean masking, the second

order DPA can be performed on the absolute difference of the traces. This attack was initially

described in the mono-bit-HW power consumption model [75]. For a bit of the mask m, and a

bit of the masked data a, the secret bit value x can be computed also by: x = |a−m|.

If the two instants t1 and t2 correspond to the moment when m and a are manipulated

with a respective power consumption Pm and Pa then, the consumption of the secret can be

inferred from: Px = |Pm − Pa|. It is shown in [76] that this attack is very effective against

software implementation on smart-cards. This analysis was also extended to multi-bit-HW

power consumption model. Indeed, even when m and a are multi-bit variables, HW (x) still

correlated to |HW (a)−HW (m)|. Similarly, in [77] the authors presented an attack on parallel

hardware masked implementation. They showed that the variance of the leakage depends on

the secret key.

In [38], Prouff et al. analysed the different possible combinations of the leaking points,

namely, the absolute difference and the multiplicative one, and thus deduced the optimal way

in each case. They also explained the relationship between the two leakage models when

the noise is high. In [50], the authors presented a study about the influence of noise in the

case of a multiplicative and arithmetic combining of leaking points. They also studied the case

where t1 = t2 (the masked data and the mask are manipulated at the same time), where

the computation of the second order moment is equivalent to a multiplicative combining when

t1 6= t2.
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2.5 Evaluation methods

2.5.1 Probing model

To evaluate the security of an implementation against SCA, in particular, the masked imple-

mentation, [73] introduced the notion of private circuit. This approach is based on the d-probing

model. In this model, the attacker is allowed to place d probes and record the value of d wires.

If the secret cannot be found with these d probes, the circuit is considered secure at order d.

In the same paper, the authors have built secure gadgets (with respect to this model) like the

non-linear operation AND secure at any order d. It is an extension of the first proposition of a

the masked AND of [2].

Figure 2.11: Illustration of probing attack model on a circuit. Probing two signals to see if their
distribution is in dependent from the secret.

As shown in fig. 2.11, the circuit is secure at order d = 2, only if all combinations of two

signals are independent from the secret. This first approach is purely algorithmic, and does

not wrap all the physical parameters that can induce SCA leakage. In particular, the leakage

linked to the power consumption or EM radiation is more correlated with transitions than with

the value of the manipulated data.

As already mentioned, in [55], the authors pinpointed a first order leakage in the masked

AND gate of [2], which is supposed to be 1-probing secure according to [73]. In fact, this

leakage is due to extra-algorithmic transitions (or glitches).
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2.5.2 Formal verification methods

2.5.2.1 Software implementation

The verification of software implementations is done at instruction level, either at source code

level or at assembly (ASM) level. Two models are generally adopted:

• Model in term of value;

• Model in term of transition.

The leakage detection aims to identify dependency with any secret value. In [78], the au-

thors presented a method allowing to mask at compile time a software implementation at the

first order, by tagging the different types of the entries as public or secret. They show exam-

ples on an AES implementation, where the instructions involving the key are masked, either

by adding instructions or by recomputing tables like the S-box. In its initial version, the tool

assumes that the instructions are independent and therefore, does not take into account the

distance leakage model (or transition). It is based on a specific language, and the designer is

asked to add some specific instructions for the compiler.

In [79], the author presented a tool (named Sleuth) capable of dealing directly with Low-

Level Virtual Machine (LLVM) code. The evaluator should also specify public and secret vari-

ables as well as a leakage model. The tool tracks and checks if all variables are masked and

independent from the specified leakage model. It detects the two types of leakages, either

linked to the value or to the transition. There is other versions of masking verification tool like

[80], which supports more advanced verification, like the uniform distribution of variables, and

high order masking schemes.

2.5.2.2 Hardware implementation

The main difference between a hardware and a software implementation is the possibility of

parallelising the calculations and carrying out several (algorithmic) instructions within the same

cycle. In addition to the different constraints encountered when evaluating a software imple-

mentation, the verification of a hardware should ensure that all intermediate calculations per-

formed in the same cycle are independent from the secret values, including extra-algorithmic

transitions, such as glitches.

Concerning formal security analysis in presence of glitches, there are few studies. In 2017,

Bertoni et al. presented in [81] a methodology to analyse the combinatorial part of a masked

circuit. They adopted the concept of transient signals and described an empirical and exhaus-

tive way to evaluate non-linear functions against any type of transitions. To track the origin of

the vulnerability, they use a pair referencing the transition and the variable that induces the
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transition. Thus, any transition which reveals sensitive data could be detected. They also pre-

sented an example on masked Keccak function at order two (n = 2), and showed how to avoid

glitch leakages by designing a sharing at order (n = 3), by adopting the TI principles.

Figure 2.12: Part of masked Keccak. A vulnerability is detected when the transition (0110 →
0001) is seen by the last XOR once.

A part of the masked Keccak multiplier at order n = 2 is presented in fig. 2.12. The shared

value is rk = ak ⊕ bk. By evaluating all possible transitions, a leakage is detected when the

inputs change from (0, 1, 1, 0) to (0, 0, 0, 1) (respectively for (ai, bi+2, ai+1, ai+2)). This leakage is

visible only if the last XOR evaluates the impact of this transitions arriving from the AND gates

at (almost) the same time. Hence the activity at the output will depend on ri+2 = bi+2 ⊕ bi+2

which is the unshared secret value.

In 2018, Bloem et al. introduced in [82] a formal method to analyse a masked circuit at

any order (d ≥ 2). They used the Fourier coefficients of the XOR and AND gates, and then,

deduced a fast way to propagate the leakage created at the output of each gate. Therefore, it

allows checking whether each signal satisfies the property of d-probing secure. This method

relies on three main principles:

• Labelling Each signal is tagged according to the public and secret values involved in its

calculation;

• Propagation The output signal is tagged according to the non-zero Fourier coefficient for

each variable;

• Verification This step checks if each signal (and the circuit) is secured at order d.

The propagation rules are derived from the Fourier transform. The labels with a non-zero

coefficient are the only ones which are propagated.

In the case of stable signals, the rule of each gate is applied as it is. For the transient

signals, to take glitches into account, the authors unified the propagation rules for the XOR

and AND gates. Ultimately, this method covers (by overestimating) the leakage that could be

generated by a glitch. An example is shown in fig. 2.13. The first one (fig. 2.13a), shows the
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(a) (b)

Figure 2.13: Propagation of labels for a small circuit [60]. (a) only stable signals, (b) with
transient signals.

propagation of labels without considering glitches, while the second one (fig. 2.13b), where

the transient labels are shown in red, are related to the potential leakage that may be created

because of glitches. The secret variable s is shown in a single label (in black), without being

protected by any mask, thus the circuit is not secure. When registers are inserted, the transient

labels are reset to the set of stable ones.

Figure 2.14: Propagation of stable signals and transient signals for a XOR gate. The transient
labels are reset to the stable signal after a register (FF) [60].

As shown in fig. 2.14 for a simple example on a XOR gate, the transient labels are stopped,

as expected when inserting a register (FF). To achieve the verification phase, a SAT solver is

used. The authors demonstrated in some small circuits the effectiveness of this methodology,

like masked AND gates of [2], TI and DOM. However, we notice that for a relatively big circuit

like AES S-box, the tool takes a long time (≈ 10h). A recent version of the same approach is

extended in [83].

In 2019, Barthe et al. in [84] proposed a new approach combining more generalized

properties than the classical d-probing model, namely Non-Interference (NI) and Strong Non-

Interference (SNI) [85]. Their tool was particularly much more efficient in terms of analysis time

compared to [82], and allows a very fast analysis of relatively complex design (like masked AES

S-box at order 1 in few minutes). The tool takes as input a synthesized netlist (with yosis - an
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open-source synthesis tool). The input netlist should then be annotated to specify the secret

and the public variables. Based on a symbolic execution of each instruction, the tool builds a

simplified image of the leakage and deduces if each signal is protected or not. They show a

simple example on the DOM multiplier, as presented in table 2.2.

Table 2.2: Symbolic execution of the DOM instructions. The leakage is built using the shares of
each signal [84]. (a) secure version of DOM multiplier. (b) modified version of DOM multiplier.

Instruction Leakage
t0 ← b[1]× a[0] {b[1], a[0]}
r ←$ {0, 1} { r }
t0 ← t0 + r {b[1], a[0], r}
t2 ←ff t1 {r}

t3 ← b[1]× a[1] {b[1], a[1]}
c[1]← t3 + t2 {b[1], a[1],r}
t4 ← b[0]× a[1] {b[0], a[1]}
t5 ← t4 + r {b[0], a[1], r}
t6 ←ff t5 {r}

t7 ← b[0]× a[0] {b[0], a[0]}
c[0]← t7 + t6 {b[0], a[0], r}

(a)

Instruction Leakage
t0 ← b[1]× a[0] {b[1], a[0]}
r ←$ {0, 1} { r }
t0 ← t0 + r {b[1], a[0], r}
t2 ←ff t1 {r}

t3 ← b[1]× a[1] {b[1], a[1]}
c[1]← t3 + t2 {b[1], a[1],r}
t4 ← b[0]× a[1] {b[0], a[1]}
t5 ← t4 + r {b[0], a[1], r}

– –
t6 ← b[0]× a[0] {b[0], a[0]}
c[0]← t5 + t6 {b[0], a[0], a[1], r}

(b)

As we can see, the DOM multiplier is secure even in presence of glitches as shown in the

expression of the leakage in table 2.2a. In the modified version of table 2.2b, a vulnerability is

detected when a register is removed. Both shares (a[0], a[1]) of the variable “a” are involved in

the expression of the symbolic leakage. We notice that this observation is also equivalent and

linked to TI principle. For high order evaluation, they provide a large set of masked implemen-

tations and a comparison with the tool of [82].

We make a comparison of the implementation issued from those approaches in chapter 5,

where we propose a different way to model glitches and verify that each transition is inde-

pendent from the secret, without involving too strong notions, that may lead to more complex

design, unlike NI and SNI properties that may be too strong as mentioned in [83].

2.5.3 Pre-silicon security verification

To get closer to a real circuit, several studies aim to simulate traces of power consumption,

either with a digital [86, 87, 88] or electrical simulator [68], or by rewriting the algorithm to esti-

mate a side-channel leakage [89, 90]. In the following, we detail the different stages of design

of an integrated circuit (IC), and the contribution of each level from a side-channel analysis

point of view. An IC has a long-life cycle before being packaged into the end-user product. The

part of lifecycle happening before circuit fabrication is called pre-silicon stage.
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The starting point is the specification of the IC design. It is a document that describes the

entire structure of the design and its pseudo code. From that point, a security checking can

start. In fact, a static analysis of the code can be performed to detect potential nodes (con-

ditional branching, unprotected registers, etc.) that can be exploited by a timing or differential

analysis. Then, according to the classical design flow, all conception levels can be considered

from the security viewpoint:

• RTL Level or behavioural level that is very important in detecting the major part of security

vulnerabilities in the design. In fact, it allows detecting the leakage based on the common

models that can be built directly from the knowledge of the target algorithm. Moreover,

it allows an easy validation of most leakage models set after having properly reviewed

the code. The RTL level is not dependent on the technology target which allows a more

generic evaluation.

• PS Level or netlist level that regards the state of the code after synthesis (i.e. PS netlist).

It allows the detection of specific leakages related directly either to a bad automatic syn-

thesis due to bad simplifications and optimizations; or to a bad implemented combina-

torial countermeasure like masking. Moreover, this level is mapped to the technology

and provides timing information regarding delays propagation with the design gates. It is

noteworthy that those delays might be behind glitches-based leakage.

• PR level that regards the state of the design after place and routing process (i.e. PR

netlist). It allows the detection of leakages behind a bad routing. It is mapped to the

technology and represents the almost final image of the design. It provides timing details

regarding delays propagation within the routing of the design instances.

• Post Layout level that is the final image of the design when integrated within the chip

just before its fabrication by the foundry. It is a 3D representation taking into account the

different metal layers of the chip. In term of pre-silicon security evaluation, an FIB analysis

can be performed to evaluate the robustness against probing attacks.

In the context of secure implementations, the RTL should be more faithful to the algorithmic

description of the countermeasure. Hence, the designer may check the functionality aspect of

the countermeasures. When the implementation is mapped to a given technology, some other

parameters should be taken into account, such as the propagation time in logic gates. In fact,

the input and the output signals are not synchronised. When many gates are in cascade, it will

generate a lot of glitches. The effect of such phenomena should be evaluated at an early stage

of the design lifecycle, before the fabrication of the final circuit.
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2.6 SCA & performance issue

When a side-channel evaluation has to be performed with a very high number of traces, the

question of performance becomes paramount. The naive calculation of a CPA for example, be-

comes very greedy in RAM memory. There is a way to do the equivalent computation iteratively,

or to reduce the number of traces with light pre-processing without losing essential information.

As the power consumption is supposed to be the same when the device manipulates identi-

cal data, one can perform a classification pre-processing with respect to, either the sensitive

value (S-box output at the first round), or the equivalent value under the bijection assumption

(ciphertext or plaintext).

The author in [91] describes how optimizations can be made on the CPA and LRA distin-

guishers. It classifies the leakage traces before any relevant computation. This approach is

based on two sound hypotheses:

• The device leaks the same power when manipulating the same data;

• The same public cryptographic parameter leads to the same sensitive value.

Indeed, the classification is made on either the plaintext bytes or the ciphertext bytes, hence

only 256 traces are handled. As the key is supposed fixed, the input (resp. the output) of the

S-box at the first round (resp. last round) are identical, when the plaintext or the ciphertext is

the same. The result of the analysis is still equivalent, or even more efficient, namely for the

LRA.

However, this optimisation cannot be performed when the leakage model depends on more

than one state, like the HD model at the last round. To allow the same optimization, the traces

should be classified on two different bytes. It leads to 65536 classes, which is relatively huge.

To bypass this problem, the classification should be made on the leakage model output. Thus,

we keep only 256 traces, which is the cardinal of the possible input bytes. This optimisation has

been detailed in [92]. This issue is taken into account when analysing the side-channel traces

issued from our implementations, analysed in chapter 4 and chapter 5.

2.7 Fault analyses

The objective of fault injection is to disrupt the electronic device with physical means, to corrupt

the calculations and try to deduce sensitive information. In this context, the attacker exploits

the faulty data and the correct data to break the key using a Differential Fault Analysis (DFA).
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2.7.1 Fault model

The injections of faults can be performed by disturbing the power supply, the clock, laser or EM

pulse [93]. The impact of an injection varies depending on the source. The injections on the

power supply or the clock have rather a global effect. The whole circuit will be affected by this

kind of disturbance. Laser injections are the most precise in terms of locality, space and time.

With a spot size that can reach a precision of a micrometre, it is possible to target SRAM cells

of 65 nm technology, to perform bit-flipping, bit-set or bit-freeze.

The fault models are derived from the expected impact depending on the type of injection.

Global effect attacks like voltage disturbance and clock glitches have an overall impact on the

circuit, and all (or much of) the computation can be altered. For local attacks, like laser, the

impact can be modelled on a small area of the circuit, either by a random modification, a freeze

or a set of the signal value.

Depending on the algorithm, the number, the precision and the locality of the faults may

differ. This is linked to the DFA methods. We detail this relationship in the following sections.

2.7.2 DFA on asymmetric algorithms

Since the publication of Bellcore attack in [94] by Boneh’ DeMillo and Lipton on an RSA-CRT,

researches have been multiplied to explore several models of faults on different implementa-

tions. In the RSA-CRT version, a single injection in one modular exponentiation is enough to

find the secret key. When S and S′ are respectively the correct and the faulted signature, a

secret factor p of the RSA modulus N can be retrieved using the Greatest Common Divisor

(GCD). Thus, we have: p = gcd(N,S − S′).

As one (and only one) modular exponentiation is faulted (suppose that is the one mod q),

we get S′ mod q 6= S mod q and S′ mod p = S′p. Thus, the difference S′ − S is a multiple of p.

For other implementations like ECC many faults should be injected to recover the key.

2.7.3 DFA on symmetric algorithms

For symmetric algorithms such as DES and AES, several methods have been proposed to

detail the way to exploit cipher errors at the last round. In [95], Biham and Shamir described a

way to extract a DES key. They showed that the secret key can be recovered with less than 200

faulted ciphertexts.

Giraud presented in [96] an alternative way to attack an AES key, which was more compli-

cated than DES because of the strong diffusion-confusion property of the AES. First, he de-

scribed an attack based on a single bit error. By analysing the distribution of the resulted faults,
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the attacker can extract the right key byte with less than five (5) observations. For a 128-bits

key size, the whole key can consequently be retrieved with less than 50 faulty ciphertexts.

This attack needs to inject a signal fault on each byte of the state register, which leads

to sixteen different positions. When attacking the round 9, we need to inject fault only at four

different positions. Because of the diffusion property of MixColumns, one faulted byte at round i

will lead to four faults at round i+1. Hence, less positions are required to retrieve the secret key

[96, 97, 98]. When an error e is injected to the state M9 (input of the last round), the equation

of the error satisfies:

e = sbox−1(C ⊕K10)⊕ sbox−1(D ⊕K10)

= sbox−1(sbox(M9))⊕ sbox−1(sbox(M9 ⊕ e))

where C and D are the correct and faulted ciphertext respectively, and K10 is the last round

key. When performing a DFA, the predicted eK based on the key hypothesis K satisfies:

eK = sbox−1(sbox(M9)⊕K10 ⊕K)⊕ sbox−1(sbox(M9 ⊕ e)⊕K10 ⊕K)

When the right key hypothesis is guessed, the distribution of eK will be the same as e. For a

non-uniform injected error, the right key can be extracted with very few faulty ciphertexts. In

fact, when K 6= K10, the distribution of eK is almost uniform (if we exclude the distribution of

the zero value).

(a) (b)

Figure 2.15: Error distribution of the error for different key hypotheses. (a) wrong key hypothe-
sis. (b) Right key hypothesis.

An example of the distribution of the error is shown in fig. 2.15. For a wrong key hypothesis

(fig. 2.15a), the distribution of the error ek is almost uniform (except for value zero). For the

right key (fig. 2.15b), the distribution of ek is uniform over its support, but not over the integers

{0, · · · , |C| − 1}, which makes it distinguishable from the wrong-key-error distributions.

We note that when the injected errors have no effect (e = 0), it will result on a non-faulted

ciphertext (D ⊕ C = 0). This event arrives with probability 1
|e| = P(D ⊕ C = 0). When the

injected error is different from zero, we have:

D ⊕ C = x 6= 0
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and

P(D ⊕ C = x|e 6= 0) =
1− 1

|e|

|C| − 1

As an example if the faulted bits are {7, 6, 3, 0}, thus |e| = 16, which gives P(D ⊕ C =

0) = 6.25%, and P(D ⊕ C 6= 0) ≈ 0.37%, which matches the values of the histograms given in

fig. 2.15.

This kind of DFA is presented and intensely studied in [99] and known as Non-Uniform Error

Value Analysis (NUEVA). This condition is very relaxed compared with a single-bit fault injection

model.

In [100], the authors resumed the different existing techniques that an attacker can use for

EM injection to induce fault on a circuit. They also give some details about faulting analog and

digital logic, by the mean of harmonic or EM pulses respectively.

In chapter 6, we study a protected implementation against fault injection at pre-silicon level.

We see how the synthesis phase can impact the result of the error detection rate, using some

DFA metrics.

2.8 FIB for probing

The micro-probing attack can be performed in practice using a FIB station. The attacker may

target buses to read the memory content, or combinatorial signals to read an intermediate

sensitive values. There are two major countermeasures used to protect against this kind of

attack.

The first one consists on implementing a masking scheme, where the attacker needs to

combine d wires to retrieve the secret [73]. The principle is to share the secret into several

parts, so the attacker must probe more signals to be able to reconstruct the secret, which

makes the attack more difficult.

The second one is based on an active shield [101]. It is integrated into the chip itself

on metal layers. The goal is to detect any physical intrusion by activating an alarm, when a

shield wire is cut (cf. fig. 2.16). The orange path activates the alarm, and the intrusion is

detected (because the milled hole had cut a shield wire) where the blue path does not detect

the intrusion, as it is milled with a high aspect ratio FIB, which prevents a complete cut of the

shield wire.

This approach is a race between the precision of the FIB (or performance) and the charac-

teristics of the shield. The most important parameters for the latter are; the wire width and the

spacing. The denser it is, the more efficient the shield is to detect intrusions.

The FIB performance depends on several parameters. From an attacker’s perspective, it is

the resolution of the spot that is decisive. It depends on the technology of the FIB, the voltage
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Figure 2.16: Probing a protected design with an active shield (from [3]).

and the current limits. With the size and the shape of the spot, we can model the hole as a cone

[102], hence the ratio of the FIB, which is also the ratio between the diameter and the depth of

the hole.

Several experiments have shown that for holes with a diameter higher than 100 nm, a ratio

of 10 can be achieved. For diameters lesser than 100 nm, the ratio decreases to 1, and even at

lower levels [103]. This decrease is due to the shape of the hole. When the diameter is small,

it becomes difficult for the extracted particles from the sample to come out. Therefore, it would

be more difficult to increase the depth without increasing the diameter [103]. To enhance the

ratio, Helium ion (He+) beam can be used instead of Gallium ion beam (Ga+), which gives a

high resolution to the ion beam.

2.8.1 FIB - Brief description

FIB is a scientific instrument, widely used in the semiconductor and integrated circuit domains.

It consists of a focused beam of ions accelerated to a certain energy ranging from 1 k to 50 k

electro-volts (eV), with a current between of few pico to some nano Amperes. The liquid usually

used is Gallium (Ga), but we can also find sources of Helium, allowing a better resolution. The

ions are extracted from the liquid using a high electric field.

Like an electron microscope, FIB can be used for high-resolution imaging up to 5 nm, using

a low current (a few pA), or for milling with a higher current on the order of some nano Amperes.

The voltage and the current are controlled by two apertures placed in series (shown in green in
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fig. 2.17). By keeping the second aperture constant, the current can be varied by adapting the

first one, thus only a portion of the projected ions passes through.

Figure 2.17: Different components of the ion beam column.

The ion beam is focused with the help of electrostatic lenses to a small point, which gives

the resolution of the beam, known as spot size. A FIB station is equipped also by an electron

microscope for a better and non-destructive visualization of the sample, and a gas injection

column to clean the surface during milling process. The performance of a FIB is determined by

the following parameters:

• Ion Beam it depends on the voltage V , the current I and the aperture of the ion column;

• Electron Beam used for imaging.

Those two parameters determine the resolution and the performance of the FIB station

[104, 105]. For example, at 30 kV and 1 pA, the resolution of the ion beam, or the spot size

may reach 7 nm. The distribution of the ions follows a Gaussian Probability Density Function

(PDF) [106]. It is the main factor involved in the milling process to access sensitive signals

[107].

The authors in [102] provide a mathematical model for the ion beam profile and different

equations to estimate the diameter, the depth and the dwell time. It is also important to mention

that the smaller the diameter is, the lower the sputtering yield is. This can be explained by the

fact that among the sputtered particles, some of them are redeposited on the substrate, which

leads to a lower hole ratio [108].
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The milling step can be enhanced to achieve a higher aspect ratio as presented in [109],

by activating the Electron Beam (EB) to reduce the Coulomb interaction, and fix to a very low

current the ion beam. In [110], the authors show different techniques to achieve a high aspect

ratio and sub-micro diameter holes. By fixing the dwell time to 0.1 ms and the current at 48 pA,

they achieved an absolute depth of 1.8 µm with a relative diameter less than 300 nm, which

gives a ratio of six (RFIB = depth
diameter = 6).

2.8.2 Micro-probing attack

A micro-probing attack consists of several stages; reverse engineering, pads creation (connec-

tions) and the extraction of the secret.

Reverse Engineering The reverse engineering is the most difficult and constraining step to

perform. It consists on exploring the circuit using a clone device and trying to build a 3D-image

of the layout, or a specific part of the circuit.

This step allows the attacker to identify sensitive signals and those which allow an optimal

secret key extraction, with a low number of observations and low number of probes.

Pad Creation This phase is carried out on the target device, and based on the previous step

to create connections with the sensitive signals, without altering the functions of the circuit.

Key Extraction Once the connections are completed, the attacker can run the target and

record the signal values. The attacker will then be able to eliminate some of the key hypotheses,

which do not match the observed values from the sensitive signal.

Examples of attacks on a micro-controller are described in [111]. In [112], the authors

presented also the different means allowing to extract an AES-128 key, with lesser number of

probes, and to determine the number of observations necessary in various scenarios.

In [113], the authors described the theoretical complexity of a probing attack on some known

algorithms, such as DES, RSA and RC-5. They also showed that the number of observations

required is very low. To retrieve 6 key bits of DES, only six encryptions are required.

This topic is addressed in chapter 7. Based on the different characteristic of a FIB, and

the different parameter involved in a probing attack. We propose a full and an automated

methodology to evaluate protected implementation with a shield against probing attack. Not

only this approach is demonstrated on an existing state-of-the-art implementation of AES, but

we show how the security of such a design can be enhanced. Our recommendations agree

with the expected results and the pre-existing studies on this topic.
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Passive attack and countermeasures
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Pre-silicon to Post-silicon Analysis
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3.1 Introduction

According to the criteria of security evaluation against side-channel attacks, the number of

observations needed to break an implementation is the most important parameter. Indeed, for

the same implementation, the number of observations can vary from one target to another. This

is linked, among other things, to the quality of the acquired signal, the tools used to exploit the

leakages, but also the nature of the targeted operation.

The power consumption is usually estimated as a combination of the number of changes

in the circuit, and a current leakage (when the circuit is in a stable state). The latter is often

defined as a static leakage. The purpose of this chapter is to show, from a high-level point

of view, how a link can be established between a virtual target and a real target of the same

implementation. Starting from a simple knowledge of the real target, we will extrapolate and

determine the number of observations needed to find the secret key of an AES implementation.

To answer this question, we need to define some basic concepts to allow us to derive a metric

of quantification of the number of traces needed and thus, the security level.

41
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3.2 Leakage and security level

To determine the security level of a cryptographic implementation against side-channel attacks,

the SR metric is usually used as already presented in section 2.2.3. This metric gives the

probability of finding the secret key, for a given number of traces. It can be translated as the

probability of distinguishing the right k∗, among all possible keys K [26, 27, 30, 31]. This

probability is generally related to a distinguisher, and can be estimated empirically.

In real acquisition (like EM), we cannot actually define directly which part is the signal and

which part is the noise. It can only be estimated using the total variance, conditional average

and variance. In case of vertical analysis, an attacker tries to measure how the amplitude of

the traces (Y ) varies in terms of some intermediate value (X). In this case, we can estimate for

some X = x, the signal part Sx as: Ŝx = E[Y |X = x], and the noise part B as: B̂x = V[Y |X =

x], thus we get:

ˆSNR =
Vx[Ŝx]
Ex[B̂x]

As explained above, the determining factor for a SCA is the SNR. In the following, we

present a comparative study between a virtual and real analysis, based on power consumption

traces, and the CPA. To do so, we use the success rate metric described in [25]. The author

gave a formulation using the correlation value ρr, to estimate the number of needed traces Nr

to find the secret key:

Nr = 3 + 8

(
Z1−α

ln(1+ρr1−ρr )

)2

(3.1)

where Z1−α is the quantile at (1 − α) probability of the centred Gaussian distribution. This

result was derived from the Fisher Z-transformation of the Pearson correlation coefficient. Be-

sides, ρr refers to the correlation between the leakage model M and the leakage traces L. We

can divide the leakage trace into two parts, the signal S and the noise B: L = S + B. The

noise B is generally considered to be independent from the manipulated data (ρ(B,M) = 0).

By rewriting the correlation between L and M we get:

ρ(M, L) = ρ(M, S +N) =
ρ(M, S)√
1 + 1

SNR

(3.2)

we can identify the correlation of the signal S with the leakage model M , and the SNR.

According to our definitions, the leakage detection metrics presented in [39], known as NICV,

verifies:

NICV =
1

1 + 1
SNR
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In the following section, we will verify these estimations on virtual and EM traces, by con-

sidering different levels of SNR.

3.3 End-to-end security evaluation

3.3.1 Experimental observations

To perform our experiments, we have synthesised a hardware AES-256 on a SmartFusion2

FPGA for EM measurements, and we generated virtual traces using digital simulations at RTL.

In both experiments, we summarised the evolution of the CPA and SNR. We used the rank

filter metric to compare the effective number of needed traces to recover the right key and the

extrapolated one from eq. (3.1).

Figure 3.1: Power traces. Left: virtual trace, right: EM measurement.

In fig. 3.1 we show an example of real EM and virtual trace. Using 10,000 traces in both

experiments, we have performed a CPA to obtain, on one hand the value (good approximation)

of ρr and on the other hand, the number of required traces to recover the secret key. The result

is shown in fig. 3.2.

The leakage model is based on the HD at the last round. We target 8 bits at a time, and we

use the ciphertext bytes {ci}i=0,...,15 to recover the key byte ki. The leakage model is computed

in two steps:

• For a key hypothesis ki, compute: r = S-Box−1(ci ⊕ ki)
• Compute M(ki), the HD between r and cShiftRow(i).

The best key hypothesis k∗i is recovered by:

k∗i = argmax
ki

(ρ(L,M(ki))
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Figure 3.2: CPA using 10,000 traces Left: Virtual trace, Right: Real EM measurement

From eq. (3.1) we deduce the average (Av.) of the theoretical number of required traces

and the effective one over all bytes. We give also the maximal and minimal bounds of Nr found

over bytes (denoted Max. and Min.). We chose α = 0.5% (so Z1−α = 99.5%).

From table 3.1, we realise that the estimated number of virtual traces Nr is the closest to the

Table 3.1: Experimental and theoretical number of traces

Campaign Nr Required traces (SR)
Min. Max. Av.

Virtual-Probing 310 430 355 420
Virtual-Power 1350 2642 2105 2200

Real-Probing EM 500 1040 730 1100

true number of required traces.

Firstly, in the virtual case we distinguish:

• Probing only sensitive signals. This is equivalent to a power acquisition where we focus

our analysis only on the signals that involve sensitive data. So, we expect the attack to

be fast;

• Probing all the design. This is equivalent to a power acquisition where the whole design

is taken into account. Clearly, we need more traces to recover the secret key due to the

accumulated noise.

For both probing methods, Nr gives a maximal bound that is close to the real number of

traces. In the real acquisition, we have probed the most leaking decoupling capacitors.

In fig. 3.3, we can see that the CPA converges approximately (for most of bytes) after a

threshold of 600 traces in the virtual case and about 1300 traces for the real one.

After processing 600 traces (on average) of the virtual traces (resp. 1300 of real EM), the

key is recovered with success probability of 99%. This corresponds to the threshold of CPA

convergence (see fig. 3.4 and fig. 3.5).
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Figure 3.3: CPA convergence, (a) virtual trace, (b) real EM measurement

Figure 3.4: SR convergence of virtual traces: (a) SR of the 8 first bytes, (b): the average of the
SR over all bytes

Figure 3.5: SR convergence of EM traces: (a) SR of the 8 first bytes, (b): the average of the
SR over all bytes

We note that, when we tried to use the HW leakage model at the last round (using only

the result of the S-box−1), the attack was unsuccessful in the case of EM traces, and only few

bytes are recovered on the virtual case. This is due to the imperfection of this leakage model

regarding the power consumption, which depends as explained in section 2.5 on the number of

switching bits (signals), rather than the manipulated value.

We see in the next section an example of how to map and predict the results between two
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experiments, independently from the setup platform and the used metric.

3.3.2 From virtual to real SCA

In the case of virtual traces, we have only the algorithmic noise, so the theoretical SNR (SNRTheoretical)

can be computed as follows:

SNRtheoretical =
Asize

128−Asize
=

1

15

Where Asize is the number of bits targeted during the analysis, which is 8 in our case. From

eq. (3.2) we can replace the value of ρr in eq. (3.1) using eq. (3.2).

In order to find a way to compare the complexity of the attack between two scenarios, we

can build a metric F that extracts the number of traces from the value of SNR. We can replace

in eq. (3.1) the value of ρr defined by eq. (3.2), and assuming that the measured information

(signal part) is the same in the virtual case and real case (EM) (ρms = ρ(M,S)), we will obtain

the following relation:

F (s) =
β

ln

(
1+ ρms√

1+1
s

1− ρms√
1+1

s

)2 (3.3)

where s = SNRtheoretical
SNRReal

and β is a normalisation factor such that F (1) = 1. eq. (3.3) gives

(approximately) the relation between the number of traces in two different conditions of the

same implementation. In fig. 3.6, we plot this function in the range [1, 7] to cover the rate of

our experiments (the estimated real SNR is close to 0.035), and fixed the value of ρms to 0.95

which is computed from the virtual traces using SNRtheoretical and the empirical correlation

coefficient.

For example, we have:

• The SNR is close to 0.035 in the case of real acquisition

• s =
1
15

0.035 = 1.905

• The image of F gives 1.64

thus, we get a ratio of 1.64 between virtual and real traces.

Table 3.2: Estimated number of traces based on SNR

Campaign Average at 99% Average at 90% Using F
Virtual-Power 2200 1900 1940

Real EM 1200 900 985
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Figure 3.6: The mapping function between SNR and number of required traces comparing with
the theoretical one.

In table 3.2 we have summarised the different results obtained over the three campaigns.

The third column is calculated by: 600 ∗ Fs, where Fs is the image of F at the considered SNR

level, and 600 being the convergence threshold of the CPA for traces of the Virtual-1 campaign,

used as a reference to calculate the third column.

3.4 Discussion

As already mentioned in section 2.2.3, several studies have been able to estimate the success

rate of a DPA on a cryptographic target. Those metrics are used to substantiate the level of

security that an implementation might have, and the request for encompassing reliable coun-

termeasures, when an attacker has a physical and a privileged access to the target.

Despite the fact that these metrics justify these two essential points, the projection of the

security level (number of traces) on a real target remains a fundamental question, because

these metrics do not take into account the true instance of the implementation, and a more

generic model is usually assumed (such as the non-distinction between measurement noise

and algorithmic noise).

With a posterior knowledge of the hardware behaviour, we established closer and more ac-

curate estimation, with more realistic conditions of an attack scenario, such as measurement

and algorithmic noise. The latter is characterized by digital simulation, which exhibits the be-

havioural aspect of the circuit, and allows to estimate its overall activity, thus deduce the intrinsic

noise of the implementation.
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3.5 Conclusion

In this study, we verified a theoretical prediction in presence of relatively low noise ( SNR≥ 1%).

The number of traces needed to find the secret key is relatively low (≤ 2K). When the same

implementation is analysed under several noise conditions, a link can be established through

the function F given by eq. (3.3). We should note that this function is now independent from the

used leakage model. The only thing that matters is the noise level on the new target. The latter

depends only on the measuring environment and the equipment used to mark the difference

between a real and pre-silicon analysis. Without significant countermeasures, the difficulty of

an attack on a real target is determined by the surrounding noise and radiation level of the

chip. The aim of this approach was to present methods for checking the resistance of a circuit

in a pre-silicon context. Such an approach will help developers to properly integrate security

functions into a system instantiating cryptographic primitives. Countermeasures have been

developed against SCA, and the level of leakage has decreased significantly. Nevertheless,

the desired security level must be reached with regard to other physical phenomena, such as

leakages detected on masked implementations due to glitches.
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4.1 Introduction

To counter SCA, several countermeasures were widely studied in the state-of-the-art. They

aim to make the measurable physical leakage independent from the manipulated data. There

are several techniques to protect a given algorithm. Depending on the structure and the nature

of the considered implementation, some transformations can be adopted more or less eas-

ily. The best known techniques rely on masking and shuffling. Masking is the most common

studied countermeasure in the state-of-the-art. It consists of performing equivalent calculation

by dividing the variable into several shares [47, 48]. This should prevent SCA from revealing

sensitive information from power consumption traces. Theoretically, such a countermeasure

is considered very reliable. According to the probing-based evaluation model [73], it becomes

impossible to find the secret by recording a single signal or variable, when well implemented.

In addition to the algorithmic considerations to ensure the security of the implementation,

the design life cycle of the circuit can alter some features, and thus it induces tragic simplifica-

tions. As a result of this process, vulnerabilities may appear. For example, some signals may

be unmasked, because of a series of optimizations performed by the synthesizer. To avoid this

type of unfortunate situations, it is necessary to ensure that at each design step, the circuit
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complies with the expected security properties. In particular, at each level of design step, it is

necessary to check that all signals remain well masked and independent from the secret data.

This is quite feasible with the help of digital simulations. Each signal can be processed

separately and then, by analyzing its distribution, we can deduce if it is independent from the

sensitive data. Dependency detection metrics such as correlation, variance analysis or mutual

information, can be applied to each signal. If a bias is detected, then the signal will be tagged

as vulnerable. We can perform these steps iteratively, in order to detect vulnerabilities on each

design step. This allows a full integration into a concrete development environment.

4.2 Analysis of a masked implementation

In the following, we look in more details into an AES implementation with a masked S-box

(described in section 2.3.3.1). Based on a pre-silicon analysis, we identify the different source

of leakages, propose a fix and reiterate the analysis. This assessment covers the most relevant

design step of synthesis to prohibit the propagation of any algorithmic leakage.

Notations To illustrate the results of the analysis more clearly we define:

• K: the set of possible keys

• C: the set of possible ciphertexts

• S: the set of signals in the target design

• T : the set of power traces

We start in section 4.2.1 with RTL analyses to verify the countermeasure at the algorithmic

level, and that all signals are correctly masked, at least when they are evaluated in a proper

order. Then, in section 4.2.2 we present the same analysis on timing-annotated netlist, synthe-

sised on FPGA.

4.2.1 RTL analyses

The purpose of the RTL analyses is to verify that the implementation at the algorithmic level

respects the expected properties. To do so, we carry out a simulation campaign with a fixed key

and random messages. For the detection metric, we use the Pearson correlation. The leakage

model M corresponds to the input of the S-box at the last round, therefore, it is calculated as

follows:

M : (K, C) 7→ C,
(k, c) 7→ S-box−1(c⊕ k), (4.1)
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Each signal s ∈ S is then correlated with each bit of y = S-box−1(c⊕ k) = (y7, · · · , y0):

∀(k, c, i) ∈ (K, C, [0; 7]),
ρ(yi, s)

(4.2)

If a given signal is unmasked, the correlation will equal 1. We should note that s is a binary-

temporal signal. The correlation is calculated between yi and each time sample of s. In the

case of RTL, those samples correspond to the clock edge.

(a) Unmasked implementation. (b) Masked implementation.

Figure 4.1: CPA result for an unprotected and protected implementation at RTL level.

To illustrate the result of this analysis, fig. 4.1 shows a comparison between the correlation

coefficient of masked and non-masked implementations. For the masked version, the score

for the right key remains drowned in noise and indistinguishable from the wrong keys. The

curve shows the results of all signals at all time samples. For each time sample, we have

concatenated the active signals. This allows us to affirm that this implementation is correctly

designed at the algorithmic level (RTL). We can therefore conclude that this design has no

unmasked data compared with an unmasked version.

As already mentioned in section 2.2.3, the number of traces needed to distinguish the secret

key depends only on the confusion coefficient of the S-box (which is about κ = 56%). In

fact, this coefficient gives (on average) the number of key candidates to eliminate at each new

observation. If for each new observation we eliminate 56% of remaining keys, then the right key

is retrieved after n measurements, such that:

256 ∗ (κ)n ≤ 1 =⇒ n ≥ 10

However, these observations should be made with different messages. In our experience, we

have acquired 50 traces to get a significant correlation peak, compared with the noise level, as

we can see in fig. 4.1. In fact, when the implementation is not protected, the correlation will be

equal to 1. Increasing the number of traces allows to reduce the level of correlation with the

wrong keys until reaching a negligible level.
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Even though this analysis shows that the implementation is secure at RTL – which is a

necessary condition – it is not sufficient to state that its corresponding implantation on a specific

technology will keep the same expected security properties.

For this reason, performing analysis on back-annotated netlist is of utmost importance in this

context, in order to have a more reliable characterisation of the design robustness. Hereafter,

the obtained results on this abstraction level are exposed and detailed.

4.2.2 PS analyses

To perform analyses at PS level, we generate a netlist for a Xilinx FPGA. The aim is to reflect

the behaviour of the circuit concerning the propagation times of logic gates, as explained in

section 2.5.3.

4.2.2.1 Mis-integration

To check that the synthesis does not make any simplification that could create a vulnerability,

we perform this analysis in two steps. The first step consists in analyzing the netlist without

the timing constraints. We force the synthesizer to keep the hierarchy of the design, as well

as the internal signals of each module in the description language (Verilog source code). The

results are therefore similar to those obtained with RTL simulation. Indeed, in this experience,

the results do not indicate any vulnerable signals.

In the second step, when the propagation time information is added to the simulation, the

analysis identifies many vulnerable signals, with a significant correlation with the leakage model

for the correct key hypothesis. At first glance, this seems to be implausible, and it requires a

great deal of investigation to track the source and the reason of this leakage.

(a) S-box input (b) S-box output

Figure 4.2: CPA result on vulnerable signals. The score of the right key (black) is clearly
distinguishable.
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We computed the correlation on one input and one output signal of the S-box. The results

are illustrated in fig. 4.2. The right key shows a very significant peak (plotted in black), compared

to the result of bad key hypotheses (plotted in gray).

In listing 4.1 we have pinpointed the leaking code that caused the leakage. The signal

demask takes the value that allows unmasking the final ciphertext only at the last round, which

is not supposed to be vulnerable.

Listing 4.1: Vulnerable code
unmask <= demaks when round = x ”B” else ( others => ' 0 ' ) ;
demasked round value <= round value xor unmask ;

Figure 4.3: Simplified block diagram of the masked AES top module. The vulnerable signal is
indicated in red color. The created leakage will be propagated through the next combinatorial
functions.

The block diagram of the data-path of the implementation is illustrated in fig. 4.3. This block

diagram is annotated with the correct signal name. Due to the delay caused by the propagation

time, the signal connected to the register (round value) still has the previous value (i.e. the

masked S-box input S′9 ). As a consequence, when the signal round reaches 11 (0xB), the

signal connected to the S-box module will be automatically unmasked (for a short period of

time), as illustrated in fig. 4.4 based on a time-annotated PS simulation. As we can see, the
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signal demasked round value s is updated several times. The leakage is induced on the first

transition.

Figure 4.4: Post synthesis simulation illustrating how an unmasked value can be computed due
to the propagation time.

Figure 4.5: Diagram illustrating how an unmasked value can be computed due propagation
time.

We illustrate more clearly in fig. 4.5 this leakage. We can observe how the previous value

of the state register (round value) is xored with the previous value of the mask, resulting an

unmasked value through the signal demasked round value s.

4.2.2.2 Correct integration

To fix this vulnerability, the mask signal of the intermediate rounds, and the mask signal of

the last round has to be separated. To be more rigorous in our evaluation, we decide to
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completely remove the demasking phase at the last round. Thus, the returned cipher is

in fact masked. Since we place ourselves in a white-box evaluation, we can reconstruct the

correct cipher knowing the mask. At this point, we can assume that no data can be unmasked

internally.

In listing 4.2 we give a way to fix this vulnerability. The mask allowing to unmask the final

state is “shift row mask i”. This signal does not allow to unmask the intermediate round values.

Listing 4.2: Fixed code
demasked round value s <= round value ;
c ipher <= demasked round value s xor s h i f t r o w m a s k i

when round = 0xB
else demasked round value s ;

The mask of the intermediate rounds is actually “mc shift row mask i” which is the output

of MixColumns computed as:

mc shift row mask i =MixColumns(shift row mask i)

(a) S-box input (b) S-box output

Figure 4.6: CPA result on a vulnerable signal. The right key is not distinguishable.

Based on a signal level analysis as performed previously, we are able to confirm that no

signal takes the sensitive value defined in eq. 4.1. The result of the CPA on the same signal

previously identified as vulnerable in fig. 4.2 do not show any peak for the right key hypothesis,

as shown in fig. 4.6. This analysis confirms that no signal takes an unmasked value, but does

not show whether the design does not have any signal that is dependent on a secret value, or

in other words, secure against a first-order analysis.

To go further in our analysis, we generate traces of the power consumption using digital

simulations. These traces are constructed by considering the activity of the circuit (transitions)

and the static state [114, 115, 116, 117]. This allows to detect the two kinds of leakages that

are either related to the value of signals or to the activity. These results will be presented in the

next section.
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4.2.3 High-level leakage assessment

To check that the whole activity is not correlated with the sensitive value defined in eq. 4.2,

we first perform a CPA using the HW, HD and mono-bit leakage model at the last round, by

predicting the S-box input.

None of these attacks allow to distinguish the right key, and no significant peak is observable

up to 25,000 traces. To check that no other leakages are present, we performed a more generic

detection analysis with the NICV using the ciphertext. On a properly protected implementation,

we expect a single peak corresponding to the ciphertext itself (after unmasking). However, in

our analysis we identify two leaking points at two different rounds (10 and 9).

Figure 4.7: Superimposed NICV and a raw trace. A leakage is detected at round 9 and 10
identified by the red points. The NICV is scaled and shifted for clarity.

In fig. 4.7, we superimpose the result of the NICV and a simulated trace. We can notice two

leaking points. The last one corresponds to the ciphertext, and the previous one corresponds

to the state at round 9, which is therefore vulnerable. In the next sub-section, we will analyse

the leakage with more sophisticated distinguisher, that does not make any assumption about

the nature of the leakage, but it extract it from the power traces themselves.

4.2.4 Leakage exploitation - Collision attack

Collision attacks can be considered as profiling attacks, but without a clone device. As ex-

plained in section 2.2.3.2, the attacker can build the leakage model from traces of power con-

sumption, by making a hypothesis on a small part of the key, (8 bits in this case). Besides,

it assumes that all the S-boxes consume in the same way (i.e., the consumption of sboxi is

equivalent to the consumption of sboxj in average). Here, we mean by sboxi, the sub-circuit

block that takes as input the byte i ∈ {0, · · · , 15} of the state.
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Firstly, we present an analysis on the simulated traces at PS level, and verify that the attack

works well. Secondly, we follow with the real traces (EM). And finally, we mix the two campaigns

(simulated and EM) for a simple comparison.

4.2.4.1 Simulated traces

Using the simulated traces at PS level, we compute the expectation of the power consumption

of one S-box. For each value x ∈ {0, ..., 2n − 1} (where n = 8 in our case) of the ciphertext

byte, we compute the leakage template L(x) as:

L(x) = E[T i∗ |x] (4.3)

where i∗ is the instant where the S-box is computed. We have performed the CPA using L as

a leakage model.

Figure 4.8: Result of the CPA using leakage model given by eq. 4.3. All key bytes are recovered.

Using only 25,000 traces, we are able to recover all bytes of the secret key (cf. Figure 4.8).

Actually, this attack is equivalent to collision attack described in [36], where the leakage model

is learned from the observations.
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We note that to calculate the templates L(x), we used the byte 15. This is the reason why

it has a better correlation compared with the other bytes.

4.2.4.2 EM traces

In order to make a complete analysis of our target, we implemented the fixed design on

SAKURA-G FPGA board, and we acquired one million EM traces. First, we evaluate the ro-

bustness of this implementation against CPA, using standard leakage models (HW, HD and

mono-bit). All the leakage models that we have tested, targeting the input of the S-box have

failed to recover the correct key. We can conclude that the leakage is not correlated directly (lin-

early) with the sensitive data (at least based on 1,000,000 traces). Thus, we have constructed

a new leakage model based on the EM traces, as in eq. 4.3.

Figure 4.9: Raw trace superimposed with the NICV. Two leaking rounds are identified.

As in the case of simulated traces, we use the NICV to locate the leaking points. The result

is shown in fig. 4.9. We also notice a leakage at round 10, and a second leakage on round 9.

The latter is used to perform a correlation attack.

Using this leakage model, all bytes are successfully recovered. We have also used the

leakage model extracted from the simulated traces, and the result was very similar. In fig. 4.10,

we show an example of the CPA based on both leakage models, fig. 4.10a shows the result

based on the leakage model extracted from the EM traces, and fig. 4.10b shows the result

using the leakage model extracted from the simulated traces. The results are very similar and

allow to recover the right secret key.

This observation shows that the simulated activity of the circuit based on the toggle count

is correlated with the EM measurements. This shows that the activity of the simulated circuit is
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(a) (b)

Figure 4.10: CPA result based on leakage model of eq. 4.3. The right key hypothesis is clearly
distinguishable. (a) The leakage model is extracted from EM traces. (b) The leakage model is
extracted from the simulated traces.

very close to that observed on the real one. As the design does not present any leakage in the

absence of propagation time information, we can deduce that this vulnerability is linked to the

extra-transitions (glitches), that are not required for the correct functioning of the circuit.

4.3 Discussion

In this work we presented an automated approach that can be integrated into EDA tools in order

to perform security analysis at an early stage in the design and development environment.

As such, it enables a secure-design approach where security requirements can be tracked

and verified at each step of the design, following an interactive verification workflow from low

abstraction level (signals and registers) to high abstraction level.

Unlike most of state-of-the-art proposed frameworks described in section 2.5, it also enables

an exhaustive coverage of each and every step of the computation, including critical steps such

as final unmasking and mask refreshing. In particular, the emphasis has been put on the

assessment of the glitch induced vulnerabilities due to propagation delays in logic gates.

This observation puts forward the necessity of evaluating systematically the design against

glitch vulnerabilities. This aspect will be addressed further in chapter 5 where we explain and

detail an approach for formal evaluation methodology against glitches.

4.4 Conclusion

In this work we have presented an end-to-end analysis of a protected implementation with

masking scheme. This study allowed us to detect several more or less obvious sources of
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leakages. Designers are generally able to implement a masking scheme that conforms to the

specification and the security properties at the behavioural level. Unfortunately, this is not

enough to ensure the security of such a scheme against physical attacks. In particular, the

propagation time in the logical gates prevents the sequential processing of the data. Indeed,

this induces extra non-expected and non-essential calculations for the final result, but generates

many leakages exploitable by an SCA. We have seen in the first example how a sensitive value

of an AES encryption is in clear because of signal delays. From SCA point of view, this leakage

is trivial, but for a designer, this computation is more difficult to predict and anticipate. This first

example can be considered as a mis-integration, independent from the used S-box block.

In a second example, where the design does not present a trivial leakage at signal level,

we did call for a higher level analysis. This analysis is based on an estimation of the power

consumption (or activity) of the circuit and the leakage detection metric NICV. The latter makes

it possible to identify all types of leakages; linear or non-linear, without leakage model unlike

the classical CPA. After identifying the potential leakage samples, we build a leakage model

extracted from the (simulated) power consumption traces. It allowed us to find the secret key.

The same analysis could be reproduced on EM traces. A correspondence between numerical

and real activity was also highlighted.

It is important to mention that the leakage shown in the first example does not depend

on the used S-box, but on how the countermeasure is integrated. The reason of the second

leakage has not been clarified at this point. We only know that the activity induced due to

transitions (glitches) is correlated with the sensitive data. In the next chapter, we will study in

depth the impact of propagation time on the circuit activity, and the reason why a first order

leakage occurs.
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5.1 Introduction

Masking scheme ensure that sensitive variables are randomized. At hardware level, this prop-

erty must hold true not only at each clock edge, but also during the signals propagation inside

the combinatorial logic. Owing to the race of signals inside the combinatorial gates, intermedi-

ate values mixing previous and current states of signals may be computed. This phenomenon

is termed “glitching”, and it has the negative property that those transitions depend on the

sensitive (secret) value.

State-of-the-art protections against glitches either attempt to remove them to the point that

no further leakage occurs through glitches, or to separate the combinatorial gates dealing with

the masks and the masked data. Those two strategies ensure the absence of sensitive leak-

ages thought glitches by a (conservative) design methodology [63, 67, 71].

In the present chapter, we will show that these methodologies are overkill. First, we for-

malize an algorithm to verify the absence of leakage despite glitches in arbitrary netlists. This

algorithm checks that for all possible glitches configurations no sensitive information is leaked.

61
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Then, we leverage this algorithm to validate the security of masked netlists which are

optimized (with respect to gate count) compared to state-of-the-art glitch-resistant masking

schemes. We exhibit examples of netlists smaller than state-of-the-art that do not follow the

design principles of the state-of-the-art resistant logic styles. Tools have been proposed to

check styles, and obviously, they report a leakage warning on our optimized designs, but we

show that those are false positives: Our methodology allows for exact verification in such a way

that it does not check for sufficient condition, but it does check that each transition is properly

“masked”.

5.2 Preliminaries

In the following we assume that an attacker is able to predict a sensitive intermediate value,

which depends on n secret key bits (n ≤ 8 or n ≤ 16). In the case of AES, usually n is set

to 8. To check the resistance of recent masked implementations against glitches, the authors

characterise the power model based on the S-box input, then they use collision attacks to the

key recovery step [118, 65, 66].

5.2.1 Notations

• We denote by (⊕) and (∗) the XOR and AND operations on Boolean variables (lower-

case) or vectors (uppercase) respectively.

• To indicate the inputs (A,M) of a gate output S that implements a Boolean function f , we

use functional notations S = f(A,M).

• A delayed value of a signal is indicated by apostrophes (S′).

• When the intermediate value depends only on some (delayed) signals, it will be indicated

on its arguments, (for example: S′ = f(A′,M ′)).

• In general, we use X for the secret data, M indicates the masks and A the masked data

A = X ⊕M .

• We suppose also that the masks are uniformly distributed and cannot be guessed by an

attacker.

• The expression of an output gate S can be expressed either with the tuple (A,M) or

(X,M). To distinguish both, we index the latter with X. Thus, we have:

S = fX(X,M) = f(X ⊕M,M) = f(A,M).

The evaluation of a given design will use both notations (or expressions) to determine which

variable is leaking, and where the vulnerability is located.
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5.2.2 Concepts

A formal based approach can be adopted to analyse the netlist by checking that all signals are

independent from the secret data:

• For each gate output, deduce the corresponding Boolean expression f from the netlist;

• Use some criterion of independence to ensure that fX is independent from the secret

variable X. This criterion can be based on a full formal representation like in [82, 84],

or on an exhaustive evaluation of the conditional probabilities P(fX |X). This probability

must be the same whatever the value taken by X.

In terms of value, this is enough to ensure that each signal is independent from the secret.

However, in terms of transitions this is not sufficient. The vulnerabilities introduced by glitches

are directly related to the leakage introduced by transitions within the same cycle. In our context

we consider two sources of exploitable vulnerabilities:

• Value based vulnerability: when a signal value is not independent from the secret value.

• Transition based vulnerability: when the activity (or transitions) of the signal depends on

the secret.

To check the first vulnerability, the authors in [119] presented a relation between the Walsh

Transform (WT) and the statistical dependency of a Boolean function with its variables. In the

following, A = (a0, · · · , an−1),M = (m0, · · · ,mn−1), X = (x0, · · · , xn−1) are binary vectors,

with A = X ⊕M .

Definition 6 (WT (from [119])). Let f be a Boolean function:

X = (x0, . . . , xn−1) 7→ f(X), GFn2 7→ GF2.

The Walsh Transform F =WT (f) of f is defined as:

GFn2 7→ Z, F :W = (w0, · · · , wn−1) 7→
∑

X∈GFn2

f(X)(−1)W ·X

where

W ·X =
n−1⊕
i=0

wi ∗ xi

is the standard scalar product.

Theorem 1 (Correlation immunity [119]). The Boolean combining function f for n binary vari-

ables is mth-order correlation immune, where 1 ≤ m ≤ n iff its Walsh transform F satisfies:

∀W ∈ GFn2 , 1 ≤ HW (W ) ≤ m, F (W ) = 0.
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Corollary 1. A function fX is independent from X, if it is independent from each subset of the

involved secret variables. In general, if fX is expressed as:

fX(x0, . . . , xn−1,m0, . . . ,mn−1)

then, fX is independent from X iff :

∀W ∈ GF 2n
2 , FX(W ) = 0 , where wn = . . . = w2n−1 = 0.

Definition 7 (Security with respect to value). A Boolean function f(A,M) is secure in terms of

value if it is independent from X = A⊕M (i.e it satisfies corollary 1).

This gives a spectral equivalent version to check if any Boolean function is statistically de-

pendent on any set of secret variables. For example, if there exists W = (1, 1, 0, · · · , 0) such

that F (W ) 6= 0 then f depends on (x0, x1). Nevertheless, theorem 1 cannot be used directly to

check if a given function is secure in terms of transitions. To take transitions into account, we

need to consider two successive states of a signal.

Definition 8 (Transition leakage). We define the transition leakage as the distance between

two successive values of a function f by DδA,δM (f,A,M) for some δA, δM ∈ GFn2 :

DδA,δM (f,A,M) = f(A⊕ δA,M ⊕ δM )⊕ f(A,M)

This distance is characterized by δ = (δA, δM ), which is a bit-vector such that the bits at one

indicate the delayed signals. The delayed variables are then, A′ = A⊕ δA and M ′ =M ⊕ δM .

5.3 Formalization of netlist static analysis

In the following we give some examples to introduce our security verification methodology.

Mainly we apply the notions described previously to analyse non-linear functions in presence

of glitches. In section 5.3.1, we analyse the impact of a glitch at the netlist inputs, and in

section 5.3.2, we extend this approach to netlist logic and give a complete formal model that

proves security in presence of glitches. Finally, in section 5.3.7, we give a simple masked AND

gate based on this methodology.

5.3.1 Motivating examples

Example 1. Let X = (x0, x1, x2), M = (m0,m1,m2) and A = X ⊕M , and f defined as:

f(A,M) = (m2 ⊕ a0 ∗m1) ⊕ a1 ∗m0
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which is a part of the masked AND gate described in [2]. We can easily check that f is

uniformly distributed in terms of value and independent from X (i.e P(f = 1|X) = 1
2 ).

However, in the case of a transition when δA = (0, 1, 0) and δM = (0, 1, 0), we get:

DδA,δM (f,A,M) = a0 ⊕m0 = x0

which depends on X. Thus, this implementation is vulnerable in terms of transition, and may

leak in presence of glitches. Besides, it leaks x0 only if the timing characteristics of the de-

vice are such that the couple (a1,m1) arrives later than other signals, and that the transitions

(a1,m1) → (a′1,m
′
1) arrive almost at the same time at the inputs of the last XOR gate (red

color).

Another interesting case is when δA = (1, 1, 0) and δM = (1, 1, 0):

DδA,δM (f,A,M) = x0 ⊕ x1.

In this case, the leakage is not correlated to the HW of X. This is in fact the general form of

the leakage created by glitches when the multi-linear polynomial of the gate is of degree 2. In

this configuration, it results in the WT of the function f that FX(W ) 6= 0 for W = (1, 1, 0, · · · , 0).
The same holds actually for the traces of power consumption (see section 5.5).

Example 2. Here we consider another case that involves also both shares of the same variable.

We have: X = (x0, x1, x2, x3), M = (m0,m1,m2,m3), A = X ⊕M , and:

f(A,M) = a0 ∗ (m1 ⊕m2)⊕ a1 ∗ (m0 ⊕m3).

By analyzing all the possible transitions ∀ δA, δM ∈ GF 4
2 , we have always fX independent from

X. We can see that if both (m1,m2) (or (m0,m3)) change, f do not change, so the number of

transitions to compute can be reduced. The relevant value of f ′ are:

f(A⊕ δA,M ⊕ δM ) = (a0 ⊕ δ0) ∗ (m1 ⊕m2 ⊕ δ1)⊕ (a1 ⊕ δ2) ∗ (m0 ⊕m3 ⊕ δ3)

with δi ∈ GF2, and δ0 = δa0 , δ2 = δa1 , δ1 = δm1 ⊕ δm2 , δ3 = δm0 ⊕ δm3 .

If δA = (0, 1, 0, 0) and δM = (0, 1, 0, 0) then:

DδA,δM (f,A,M) = x0 ⊕m3

which is uniform and independent from X. We can deduce that this is secure even in presence

of glitches, but according to [82, 84] this function is not secure, because f uses all shares of

the secret variables x0 and x1.
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5.3.2 Formal model - Glitch-extension

In a combinatorial block, a glitch can be generated because of a single transition (without a

glitch) on a single signal. Indeed, when the output of the block is driven by several gates which

take the same input signal, the final output can be impacted several times. To take into account

this behaviour, we introduce the notion of transient input.

Definition 9 (Transient input). The transient input (Ã, M̃) of a function f is the set of all vari-

ables that comes from different combinatorial paths. Thus, the copies of same variable at

different places are considered independently. We denote also by f̃ the transient expression of

f . Thus, we have: f̃(Ã, M̃) = f(A,M).

To understand clearly this notion, it is more appropriate to use the notation based on trees

expression, namely the prefix traversal.

Definition 10 (Prefix traversal). A prefix representation is the expression produced when plac-

ing the operator first and the two operands next.

In example 2, f can be expressed as:

f(A,M) = ⊕(∗(a0,⊕(m1,m2)), ∗(a1,⊕(m0,m3))) (5.1)

The advantage of this notation lies in the fact that it preserves the structure of the function

instantiation in the physical logic gates of the circuit. For instance, eq. 5.1 can be instantiated

equivalently by:

f(A,M) = ⊕(⊕(∗(a0,m1), ∗(a0,m2)),⊕(∗(a1,m0), ∗(a1,m3)))

which gives different leakage results when considering glitches. More precisely, each leaf of the

tree is considered independently in the case of transitions, thus different δ could be associated

to the same variable.

Proposition 1 (Security with respect to transition (Glitch-Extended Security)). Let f be the

expression of the signal S, and Ã, M̃ ∈ GF ñ2 the transient input variables of S.

S is secure against glitches iff for any δa, δm ∈ GF ñ2 :

Dδa,δm(f̃)(Ã, M̃)

is statistically independent from X = A⊕M .

Proof. In fact, Dδa,δm(f̃)(Ã, M̃) is a Boolean function therefore, theorem 1 and corollary 1 apply

directly.
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(a)
(b)

Figure 5.1: Different ways to implement f of example 2. Transient inputs for each
gate are shown in blue: in (a) (Ã, M̃) = ((a0, a1), (m0,m1,m2,m3)), (b) (Ã, M̃) =
((a0, a0, a1, a1), (m0,m1,m2,m3)). For each input we associate different delay (δ).

In fig. 5.1, we show the two different ways to implement f introduced in example 2. In the

first case (a), f is not leaking X. In the second case (b), f may leak X. The reason is that, the

variable a0 (resp. a1) may impact the function f differently (at two different time samples).

5.3.3 Leakage detection algorithm

Algorithm 1 scans the netlist (input S) and first checks whether each node is masked, and then

tests whether it is vulnerable to glitches. If a configuration yields an unbalanced distribution,

then the algorithm returns the corresponding δ and the leaking signal. The internal functions

work as follows:

• get transient inputs: returns the inputs of each gate as instantiated in the design (defini-

tion 9).

• get masked variables: returns the masked variables of the input gate.

• get masks variables: returns the masks variables of the input gate.

If no transition depends on the sensitive variable X, then algorithm 1 returns “Secure”.

We insist that this verification methodology is agnostic in the actual quantitative delays

within the netlist, because we abstract away the glitching source as an anticipated evaluation

anywhere in the netlist. Our threat model is that the netlist is known, represented as a tree of

gates, and is immutable. The attacker can well probe a node to artificially load it exaggeratedly

(in an adversarial view to create a long delay path), but cannot alter the netlist by cutting wires

or disabling gates.

We show in table 5.1 a comparison of our approach with other existing formal analysis meth-

ods. In the following sub-section we will build a masked AND gate secured against glitches,
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Algorithm 1: Security Verification Against Glitches
Input: S: The design, A: List of masked variables, M : List of mask variables
Output: “Secure” or first leaking signal

1 for s ∈ S do // For each signal s in the netlist

2 transient inputs of s← get transient inputs(s)
3 n← ‖transient inputs of s‖
4 Ms ← get masks variables(transient input of s,M)
5 As ← get masked variables(transient input of s,A)
6 X ← As ⊕Ms

7 f ← s(inputs of s)
8 fX ← f(X ⊕Ms,Ms)
9 value distribution← P(fX |X) // Security in terms of value

10 if value distribution is not balanced then
11 return s // First order leaking signal s in terms of value

12 for δ ∈ GFn2 do // Security in terms of transition

13 f ′ ← s(transient inputs of s⊕ δ)
14 T ← f ⊕ f ′ // T is the transition

15 TX ← T (X ⊕Ms,Ms)
16 distribution← P(TX |X)
17 if distribution is not balanced then
18 return s, δ // s being the leaking signal, and δ indicating the

delayed signal

19 return “Secure”

Table 5.1: Comparison with state-of-the-art formal analysis methods

Analysis method Leakage lo-
cation

Value leak-
age model

Exact tran-
sient leakage

Formal leakage
expression

Barthe et al. [84] 3 3 7 7

Bloem et al. [82] 3 3 7 7

This work 3 3 3 3

based on the previous observation made in section 5.3.2. This version does not have a ma-

jor advantage over TI, but we will use the same principle for more concrete cases where the

difference is more significant in terms of area (section 5.4).

5.3.4 Analysis of the masked AND gate

The shared output of the AND gate needs to combine the different shares of each variable. In

the following we show how a leakage is created on more realistic examples. Let’s consider the

classical multiplier presented in [2] and shown in Figure 5.2. To compute the shared result of
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Figure 5.2: Masked AND gates. (a)[2] leaking signals are in red color, (b) First order secure
DOM AND [71].

x ∗ y, we compute the AND result between each independent shares:

s1 = a ∗ b, s2 = b ∗m, s3 = a ∗ n, s4 = m ∗ n (5.2)

It is easy to check that:

x ∗ y = s1 ⊕ s2 ⊕ s3 ⊕ s4 (5.3)

A new fresh random z is required to mask the output, and the result is computed in the

following order:

((z ⊕ s4)⊕ s3)⊕ s2)⊕ s1) = x ∗ y ⊕ z

which is secure at the algorithmic level, because each intermediate result is independent from

(x, y).

The order of summation is clearly important. If we compute:

s = s1 ⊕ s2 = a ∗ b⊕ a ∗ n = a ∗ (b⊕ n) = a ∗ y (5.4)

we have P(s|y) 6= P(s) (in other words, the distribution of s is not independent from y). In fact,

any computation of (si ⊕ sj) with i 6= j will depend on x or y.

5.3.5 Masked AND with propagation time

Even if we consider the circuit at gate level, the result si⊕sj is never computed. To explain why

a leakage is created, we should consider the case where a signal is delayed. For example, if



70 CHAPTER 5. FORMAL ANALYSIS OF A MASKED IMPLEMENTATION

m arrives with some delay, the circuit will compute the intermediate result R′ = R(a, b,m′, n, z)

with m′, and then update with m. Formally we have:

R′ = ((z ⊕ s′4)⊕ s3)⊕ s′2)⊕ s1)

R = ((z ⊕ s4)⊕ s3)⊕ s2)⊕ s1)

In terms of each intermediate value, the dependency with the secret do not hold. However, in

terms of transition (R′ → R), which can be modelled as R′ ⊕R we get:

R′ ⊕R = s4 ⊕ s′4 ⊕ s2 ⊕ s′2
= m′ ∗ n⊕m ∗ n⊕m′ ∗ b⊕m ∗ b

= (m′ ⊕m) ∗ n⊕ (m′ ⊕m) ∗ b = b⊕ n

= y

(5.5)

As m is delayed (and we suppose that it changes, δm = 1), we have: m ⊕m′ = 1. Thus, we

deduce that the leakage (in terms of transition) gives exactly y.

We can consider other scenarios and deduce the formal expression of the leakage in terms

of x or y. For example, if n is delayed then, the leakage will give x. We note that the leakage

can be modelled as in eq. (5.5) only if we suppose that the transitions s′2 → s2 and s′4 → s4

arrive almost at the same time (within the propagation time of the corresponding XOR gate).

In [55], this was referred as the absorbed transitions. As we can see in the formal expressions

of the intermediate results, the two shares of y (b and n) were multiplied by m. Thus, if m is

delayed, the circuit will leak exactly (n ⊕ b = y).We illustrate in fig. 5.2 the masked AND gate

of [2], presented in section 2.3.3 and the DOM version from [71]. The leaking signals {i1, i2, i3}

are highlighted in red color.

Unfortunately, it is not the only way for this multiplier to leak. If we suppose that all signals

{a, b, n,m, z} arrive at the same time, the multiplier may still leak. Let’s consider the intermedi-

ate signal i3 that compute: i3 = (z ⊕ s4)⊕ s3). In the case where i3 is evaluated twice with the

same value Z, the transition will depend on y if the new values of s3 and s4 affects the signal i3

at the same time.

In fact, the transition i3(a′, n′, z) → i3(a, n, z) ≡ i′3 ⊕ i3 is not balanced in terms of y (we have,

P(i′3 ⊕ i3|y = 0) = 1
3). We can deduce that the new fresh random z has no protection effect

against transitions. In general, the summation of si ⊕ sj leaks in terms of value, but also in

terms of transition.
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5.3.6 Securing the masked AND gate

In the first case, the cause of the leakage was the delay of the signal that is multiplied by both

shares of the same secret. The impact of the generated glitches is seen from the gate that

manipulates both shares. In this case, the circuit leaks in 50% of the time (P(m⊕m′ = 1) = 1
2 ).

The second leakage is related to the structure of the function itself. We have mentioned before,

that any summation of si ⊕ sj will leak the secret data (in terms of value and also in terms of

transition). The value of each signal ik can be written as:

ik(sk, sk−1, ik−2) = sk ⊕ sk−1 ⊕ ik−2

If ik is evaluated twice with the same value ik−2 and the transition (s′k, s
′
k−1) → (sk, sk−1) is

seen almost at the same time by ik, the leakage will be equivalent to the case where sk ⊕ sk−1
is computed separately. In this case, the circuit leaks less than the first case, as more inputs

should be changed (at least two inputs should change i.e. 25%).

The masked AND gate can be secured with different ways:

• Keeping four shares for the output results [120]: This will increase exponentially the num-

ber of needed gates in a concrete circuits. In [63], the author proposed the (TI) structure

based on three shares to make a first order secure multiplier.

• Insertion of delay elements: This should prevent the evaluation of each XOR gate with

two new si and sj at the same time. If the circuit evaluates the result for each si se-

quentially, each transition will be independent from x and y, and the circuit will be secure

against first order analysis. This is relatively easier than equalizing the time arrival of

signals. An evaluation of this countermeasure is exposed in appendix A.1 on simulated

traces at PS level.

• Insertion of registers: Even after registering the signal si we should not sum them directly

for the same reason mentioned in section 5.3.6. Thus, we need to remask each registers

with a new random values zi for each si, then it can be securely summed and the output

mask will be:

z =
4⊕
i=1

zi

However, this requires a lot of fresh random bits. The DOM approach allows the usage

of only one new fresh random to remask only two signals si, but the output masks cannot

be controlled as it involves different shares of the inputs.
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5.3.7 Our glitch-resistant masked AND gate

In this sub-section, we will present another way to secure the masked AND gate. This is based

on the results of the preliminary study given in section 5.3.

Let ai = xi ⊕ mi and bi = yi ⊕ ni for i ∈ {0, 1}. In table 5.2, we give the different steps

Table 5.2: Masked implementation of AND gate. zi are fresh random. Left: we have x0 ∗ y0 =
i4 ⊕ z0; Right: we have x0 ∗ y0 = T1 ⊕ T2 ⊕ T3.

Vulnerable masked AND [2] Our secure masked AND
s1 ← a0 ∗ b0 s1 ← (n0 ⊕ z0)
s2 ← a0 ∗ n0 s2 ← (m0 ⊕ z1)
s3 ← b0 ∗m0 s3 ← a0 ∗ s1
s4 ← m0 ∗ n0 s4 ← b0 ∗ s2
i1 ← z ⊕ s1 i1 ← b0 ⊕ z0
i2 ← i1 ⊕ s2 i2 ← a ∗ i1
i3 ← i2 ⊕ s3 i3 ← b ∗ z1
i4 ← i3 ⊕ s4 T1 ← s2 ⊕ s4

T2 ← i2 ⊕ i3
T3 ← m0 ∗ n0

for implementing the masked AND gate. The left one is not secure. The right one satisfies

our security model against glitches, and also in terms of value. To check that, let’s consider a

non-linear function f , defined as:

f(A,B,M,N,Z) = ⊕(∗(a0,⊕(n0, z0)), ∗(b0,⊕(m0, z1))). (5.6)

We can see that both shares of the secret (x0, y0) are manipulated by f . We have seen in

section 5.3.2 that f is secure according to algorithm 1. Particularly, as a case of comparison

with the classical masked AND gate when:

(a0, b0,m0, n0)→ (a0 ⊕ 1, b0 ⊕ 1,m0 ⊕ 1, n0 ⊕ 1)

we have:

(i′1)→ (i1) ≡ x0 ⊕ y0

and for f in eq. 5.6 we get (with f0 = a0 ∗ (n0 ⊕ z0) and f1 = b0 ∗ (m0 ⊕ z1)):

(f ′0 ⊕ f ′1)→ (f0 ⊕ f1) ≡ x0 ⊕ y0 ⊕m1 ⊕ n1,

which is not vulnerable. Whatever the considered transition, either the result depends only on

one share of (x0, y0), or it is remasked by n1 or m1. In other words, each transition is masked

at least with one mask ni or mi.
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Thus, TI Non-completeness Property (TINC) is not necessary. Based on this result, we can

implement a masked AND gate (without any resharing of the inputs) using two fresh random

z0 and z1 (we can reuse masks of other variables to reduce the usage of randomness):

T1 = a0 ∗ (n0 ⊕ z0)⊕ b0 ∗ (m0 ⊕ z1),
T2 = a0 ∗ (b0 ⊕ z0)⊕ b ∗ z1,
T3 = m0 ∗ n0

(5.7)

The output result is x0∗y0 = T1⊕T2⊕T3. Incidentally, we can see that T1 satisfies proposition 1

(cf. example 2), T2 and that T3 satisfy the TINC property.

5.4 Practical case: masked inversion in GF24

We now design a complete implementation of a GF24 inverter, based on the Canright version

of the AES S-box masked at first-order. In section 5.5, we give the full implementation of our

S-box, integrating our GF24 inverter. In the same section, we compare our formal results with

the results of digital simulation at RTL and PS levels.

For the sake of clarity, we focus our analysis on the GF24 inverter. The results can be

transposed to the operations performed in GF28 inverter. Based on the simulation results and

the formal expression of each signal, we will explain how the leakage is created, propose a

possible fix, and constantly check the security of the design until no leakage is reported.

5.4.1 Canright AES S-Box

As already presented in section 2.3.3, Canright proposed an optimized instance of the AES S-

box [121] based on standard CMOS gatesXOR, NOR andNAND. The inversion is computed

based on the Tower Field representation of the element of GF28 . The inversion of an element

in GF28 can be reduced to one inversion in GF24 , some multiplications and additions in GF24

and GF22 .

This implementation takes the masked input, the input mask, and the output mask, 8 bits

each. We can find symmetry in the operations performed in GF24 inside the GF28 inverter, and

those performed in GF22 inside the GF24 inverter. Thus, the GF24 inverter takes, 3 inputs of 4

bits (masked input, input mask and output mask).
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5.4.2 Formal based evaluation of Canright inverter

If we explicitly write the expression of the inputs of csa gate, as illustrated in fig. 5.3, we get (for

one bit, namely bit number 1):

an1 = (a1 ∗ n1)⊕ ((a0 ⊕ a1) ∗ (n0 ⊕ n1))

mb1 = (m1 ∗ b1)⊕ ((m0 ⊕m1) ∗ (b0 ⊕ b1))

cst1 = a1 ⊕ b1 ⊕ a1 ∗ b1 ⊕ (a1 ⊕ a0) ∗ (b1 ⊕ b0)⊕N3

csa1 = cst1 ⊕ an1,

csb1 = csa1 ⊕mb1

where N3 is a fresh mask (one bit of the output mask). These equations are also represented

as a netlist in fig. 5.3.

Figure 5.3: Masked circuit computing csb1. The leaking signals (red color) are csa1 and csb1.

The order of summation is also important, if an1 and mb1 are summed together, the result

will depend on X:

an1 ⊕mb1 = (x2 ∗ n0 ⊕ x2 ∗ n1 ⊕ x3 ∗ n0)

⊕ (x0 ∗m0 ⊕ x0 ∗m1 ⊕ x1 ∗m0) = Sab

Obviously, P(Sab|X) 6= P(Sab), particularly for X = 0, we have Sab = 0 with probability 1. Now,

let us consider the case where all signals are summed in the right order. For example, the

signal csa (csa = cst⊕ an). For the first bit, we have:

csa1 = a0 ∗ (b0 ⊕ b1)⊕ a1 ∗ b0 ⊕ a1 ⊕ b1 ⊕ a1 ∗ n0 ⊕ a0 ∗ (n0 ⊕ n1))⊕N3.
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In terms of value, the result is protected (at least) by the fresh mask N3. However, in terms

of transition in presence of propagation time, a0 can arrive with some delay and the transition

(csa′1 → csa1) will depend on X and leak (x0 ⊕ x1), according to algorithm 1 when δa0 = 1:

csa′1 ⊕ csa1 = (a′0 ⊕ a0) ∗ (b0 ⊕ b1 ⊕ n0 ⊕ n1)

= (a′0 ⊕ a0) ∗ (x0 ⊕ x1)

= x0 ⊕ x1

This depends on x0 and x1, hence the Canright design is not secure. Note however, that this

leakage model is not a conventional. Only a though analysis and dedicated attacks can exploit

this kind of leakage, such as collision or template. Actual exploitation of this first-order flaw is

detailed in section 5.5.1.

5.4.3 Our GF24 inverter - Compact and provably secure

As we have seen previously, to secure this implementation against glitches, it is necessary to

redesign mainly the non-linear functions. In the following, we show how the inversion can be

achieved within only one cycle. Then, using the observation of eq. 5.7, we reduce the number

of needed registers (FF).

5.4.3.1 Inversion in GF24

First, we express the equations of the inverse y = (y0, . . . , y3) of any element x = (x0, . . . , x3) ∈

GF 4
2 ' GF24 :

y0 = x1 ∗ x2 ∗ x3 ⊕ x0 ∗ x2 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2

y1 = x0 ∗ x2 ∗ x3 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2 ⊕ x3

y2 = x0 ∗ x1 ∗ x3 ⊕ x0 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x0

y3 = x0 ∗ x1 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x1 ⊕ x0

The masked result can be deduced by replacing xi by ai ⊕mi. For the first bit y0 we get:

y0 = S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 ⊕ S7 ⊕ S8 (5.8)
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with,

S1 = a2 ∗ a3 ∗ a1 ⊕ a2 ∗ a0 ⊕ a3 ∗ a1,

S2 = a2 ∗ a3 ∗m1 ⊕ a2 ∗m0 ⊕ a3 ∗m0

S3 = a2 ∗ a1 ∗m3 ⊕ a0 ∗m3 ⊕ a2,

S4 = a2 ∗m3 ∗m1 ⊕ a3 ∗m1

S5 = a3 ∗ a1 ∗m2 ⊕ a0 ∗m2,

S6 = a3 ∗m2 ∗m1 ⊕ a3 ∗ a0 ⊕m2

S7 = a1 ∗m2 ∗m3 ⊕ a1 ∗m3 ⊕m3 ∗m0,

S8 = m2 ∗m3 ∗m1 ⊕m2 ∗m0 ⊕m3 ∗m1

We can see that each result Si respects the TINC. Moreover, as each monomial of degree 3

cannot be combined with any other monomial of degree 3, the minimal number of shares that

respect TINC will be 8. To achieve the inversion in one cycle, 8 FFs and 8 fresh random are

needed to remask each Si. We note that each yi can be expressed in the same way as eq. 5.8.

See appendix A.2 for more details about the complete masked GF16 inverter.

We describe in the following, how those equations can be compressed with fewer registers.

5.4.3.2 Reducing the number of registers

To reduce the number of needed FFs, we need to optimize the masked computation of mono-

mials of degree 3. For y0 we have:

x1 ∗ x2 ∗ x3 = (a1 ⊕m1) ∗ x2 ∗ x3

a1 ∗ x2 ∗ x3 = a1 ∗ (a2 ∗ a3 ⊕ a2 ∗m3 ⊕ a3 ∗m2 ⊕m2 ∗m3)

= a1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))

⊕ a1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1)⊕ a1 ∗m2 ∗m3.

The same thing holds for m1. Thus, we reduce the number of needed FFs to 6. Finally, the

masked computation of the LSB of the inverse in GF16 is implemented as:

y0 = S1 ⊕ S2 ⊕ S3 ⊕ S4 ⊕ S5 ⊕ S6 (5.9)
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with,

S1 = a1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))

S2 = m1 ∗ (a2 ∗ (m3 ⊕ z0)⊕ a3 ∗ (m2 ⊕ z1))

S3 = a1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1 ⊕ a3)⊕ a0 ∗ (a2 ⊕ a3)⊕ a2

S4 = m1 ∗ (a2 ∗ (a3 ⊕ z0)⊕ a3 ∗ z1 ⊕ a3)⊕m0 ∗ (a2 ⊕ a3)

S5 = a1 ∗ (m2 ∗m3 ⊕m3)⊕ a0 ∗ (m2 ⊕m3)

S6 = m1 ∗ (m2 ∗m3 ⊕m3)⊕m0 ∗ (m2 ⊕m3)⊕m2

Note that each signal Si satisfies corollary 1 and proposition 1 and hence, algorithm 1 returns

“Secure” for each Si (but S1 and S2 do not satisfy TINC). To ensure a secure compression, each

Si needs to be remasked with a fresh mask and stored into a register (Siff ← Si⊕ zj). At most,

8 new fresh masks are needed. For each bit yi, the positions of the masks zj can be changed

such that the output mask of each bit would be different. The number of possible output masks

is: (86) = 28.

Figure 5.4: First (a) and second (b) order CPA on S1 of eq. 5.9. The right key correlation is not
distinguishable

In fig. 5.4 we show the result of the first and second order CPA based on simulated traces

at PS level. The results of the first order confirm that the secret key is indistinguishable (see

eq. 5.10). Besides, even the second order CPA is not effective for instance. The reason is that

there is no configuration (a couple (δa, δm)) where a given mask {mi} can leak alone (in terms

of transition). If the expression of the leakage involves one mask mi it also involves one mask

zi. Thus, the combination of the leakage cannot depend on xi because of the extra fresh mask

zi.

The architecture of a one-bit inversion is shown in fig. 5.5. Each Si is remasked with a

new fresh mask before registration (green registers M-FF). We have proven by netlist traversal
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Figure 5.5: Our new design of one bitGF24 inversion - Formally proven to resist against glitches.

algorithm (algorithm 1) that each signal in the design verifies corollary 1 for security in terms of

value, and proposition 1 for security in terms of transitions (glitches).

We synthesized the GF24 inversion, using the Cadence GSCLIB045 standard cell demon-

stration library, without any timing constraint. The comparison metric is the Gate Equivalent

(GE) relative to the NAND2X1 cell of the library.

Table 5.3: GF24 inverter - Comparing areas (GE)

Implementation
Area (GE)

#Cycles
First-order security

Logic Sequential Value Glitch
Canright Simple [122] 153 0 0 3 7

DOM [71] 358 144 2 3 3

TI [66] * 618 / 1 3 3

This work (eq. 5.9) 296 127 1 3 3

*: The given logic area includes sequential logic.

The reference design is a part of the simple Canright from [122]. As shown in table 5.3, the

combinational area roughly double, and 30% of more area is added for the registers. Compared

with the DOM version (without pipeline), our version is 19% smaller. The TI implementation

from [66] takes much more area. The number of GE which is taken from the publication is not

issued from the same library, but it still bigger than DOM and our version.
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To test the robustness of our design, we will perform an empirical evaluation based on digital

simulation, and EM traces acquired on an FPGA target.

5.5 Actual exploitation of vulnerable netlists

In the following, we demonstrate attacks on netlists which have been demonstrated to contain

vulnerabilities. First, in section 5.5.1, we show an attack based on virtual (simulated) traces as

describe in 2.5.3. Second, in section 5.5.2 and section 5.5.2.2, we demonstrate attacks based

on measured EM traces on FPGA.

5.5.1 SCA evaluation of Canright inverter - Digital simulation

Firstly, we have analysed the Canright RTL code based on digital simulation. We have con-

firmed that all intermediate results are correctly masked and independent from the secret data.

Secondly, the same analysis was performed on a synthesized netlist using a SAKURA-G FPGA

target (without timing), and no leakage has been reported. Once again, all combinatorial sig-

nals are independent from the secret data, and the synthesizer did not make any optimisation

that may unmask the secret data. This is consistent with our constraints: we have forced

the synthesizer to keep all intermediate signals and the hierarchy of each module, using the

attribute “keep”.

Finally, when we added the timing information to the netlist, the tool has reported several

leaking signals. For instance, the first level was at the compression step of the multipliers

outputs, similarly to the case of the classical multiplier. The first reported leakage in the design

was the signal csa (see fig. 5.3) as already discussed in subsection 5.4.2. This signal is the

result of a XOR of the output of two non-linear functions that deal with some identical shared

data.

Based on the simulation results, we were able to explicitly specify the timing information on

the Standard Delay Format (SDF) file. To determine the reason for this leakage we therefore

removed all the timing information excepted those of a0. As expected from the study presented

in section 5.4.1, the leakage was correlated to (x0 ⊕ x1). In fig. 5.6 we show the result of the

CPA using the leakage model returning (x0 ⊕ x1), the red curve shows the result of the right

key. We get the same result based on CCA.

The leakage model L is computed for any key hypothesis K and the (known) output C ∈
GF 4

2 as follows:

X = (c⊕K)−1 ∈ GF 4
2

L(C,K) = x0 ⊕ x1.
(5.10)
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Figure 5.6: CPA on csa1 activity. Only 75 traces are sufficient to recover the secret key

We recall that, by convention, the inverse of 0 is mapped to 0 itself. This leakage is created only

if the change induced by a0 would impact the gate csa at the same time (within the propagation

time of the XOR LUT).

5.5.2 SCA evaluation of Canright inverter - EM Acquisition

To complete the analysis on a real target, we present different results based on EM measure-

ment. We implemented different versions of the GF16 inverter; with and without registers as

presented in section 5.4.3.

First, we give an EM analysis only on small design involving two GF16 inverters. Then we

analyse the full AES S-box. To mark the difference between a leakage characterized by the

HW of the manipulated data, we applied the WT function to the EM traces.

(a) HW leakage model case (b) Glitches leakage case

Figure 5.7: WT applied to EM traces. Basis = HW (W ).

The results are displayed in fig. 5.7. In fig. 5.7a, the amplitude of the leakage is more

significant when the weight of the base is equal to one (∃! wi 6= 0). This kind of traces can be
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exploited by a HW leakage model (unmasked implementation). On the other hand, when the

leakage is due to glitches, the amplitude of all the bases is almost equivalent. So the leakage

is in fact a mixture of bits, like the one identified in section 5.3.

5.5.2.1 Small substitution function

To perform a real evaluation with a best characterisation of the leakage, we implemented a

small substitution function that we note Sbox′ using two GF16 inverters, hence, we get a small

block encryption, that we note AES′.

Figure 5.8: Masked design of S-box’.

The design of the masked S-box’ is illustrated in fig. 5.8. The unmasked computation of this

substitution function is given by:

Sbox′(x7, · · · , x0) = ((x7, · · · , x3)−1, (x3, · · · , x0)−1)

To have a more precise quantification of the leakage, we have implemented three masked

versions of the GF16 inverter, which are supposed to have different levels of leakages:

Figure 5.9: Different implementations of the GF16 inverter. Only one-bit output is shown. The
leaking signals are highlighted in red. Green FFs are remasked with fresh random.
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• AES′0: no register in the GF16 inverter presented in fig. 5.9-(a) (the analysis is shown in

fig. 5.10a). The design is leaking.

• AES′1: only 3 registers are used instead of 6, we register only (Si + Si+1)i=0,2,4 as pre-

sented in fig. 5.9b. The leakage is still visible (fig. 5.10b).

• AES′2: implementation of section 5.4.3 fig. 5.9c. Please, refer to eq. 5.9 for more under-

standing. No leakage detected (fig. 5.10c).

(a) 200,000 traces (b) 600,000 traces (c) 1,000,000 traces

Figure 5.10: NICV based on an unmasked intermediate state of AES’

The results of the NICV between the sensitive value (the unmasked output of the S-box’)

and the EM traces are presented in fig. 5.10. We can notice that AES′1 is less vulnerable

than AES′0, and AES′2 does not present any visible leakage (using 1,000,000 traces). When

inserting registers with fresh masks, the leakage is progressively removed. We note also that

the leakage created by the first level of the XOR gates is stopped. The outputs of the registers

are independent, thus no more leakage is created in the second stage of compression.

We implemented in Verilog our novel Boolean equations for the inversion in GF24 . The nets

not to be simplified have been constrained to be kept in the netlist, using the keep attribute.

Otherwise, we let the synthesizer (Cadence Encounter) optimize the netlist by merging common

sub-expressions. The resulting netlist is displayed in fig. 5.11. We have verified formally that

each node fulfils the requirements of corollary 1 and proposition 1. The combinational gates

are as usual, and rectangle symbols represent the 24 DFFs.

5.5.2.2 AES S-Box

For the full AES implementation, we have added registers at the output of each GF16 multiplier

in the S-box design (see figure fig. 5.13). The implementation without registers is shown to be

very leaky. So, we have used only the two last versions of the inverter for the full AES:

• AES1: only 3 registers are used instead of 6, we register only Si + Si+1

• AES2: use 6 registers as for AES’. The full masked S-box is illustrated in fig. 5.13.
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Figure 5.11: Masked GF24 inverter synthesis result. The synthesizer did not optimize the de-
sign. All signals are correctly kept.
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(a) AES1 using 1,000,000 traces (b) AES2: using 1,200,000 traces

Figure 5.12: NICV based on an unmasked intermediate state of AES

The results of the NICV for both implementations are presented in fig. 5.12. The result

of the first implementation AES′1 is given in fig. 5.10. The leakage is comparable to the one

identified in fig. 5.10b, and 10 times smaller than AES′1, because of the extra activity (noise) of

the rest of the AES S-box. The last implementation (AES2) does not present any leakage using

1,200,000 traces, which is consistent with the result obtained on the AES′2 implementation.
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Figure 5.13: AES S-box scheme using our secure GF24 inverter

The whole design of our S-box is presented in fig. 5.13. The names of the signals are the

same as the original implementation given in [122]. The input signals are as follows:

• A = (a3, a2, a1, a0, b3, b2, b1, b0): 8-bits masked input
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• M = (m3,m2,m1,m0, n3, n2, n1, n0): 8-bits input mask

• N : 8-bits output mask

• Z = (N, z1, · · · , z18): 26-bits fresh random including N

Also, we can notice that the stage 1 and 3 are identical to stage 1 and stage 4 of the DOM S-box.

As the different output bits of the inverter GF16 are xored together at the GF16 multipliers level,

we masked the 24 FFs with different masks to avoid any transition resulting from a delayed

register output with an identical mask. Indeed, we need 18 bits of fresh random bits (Z =

(N, z1, · · · , z18)).

5.6 Conclusion

In this chapter we have evaluated the security of hardware masked implementations against

SCA vulnerabilities in presence of glitches. We have detailed the form of the leakage and

exposed the different ways to prevent information leakage.

Namely, we presented an algorithm to check exactly for leakage in terms of values and tran-

sitions in masked netlists. It is subsequently possible to design more compact and optimized

functions. Indeed, our algorithm allows to check the security of netlists implementing logic us-

ing gadgets which are less constrained and more compact than the conservative methodology

required by TI or DOM.

We have given more understanding about the leakage on masked non-linear gates based

on an in-depth analysis in terms of transition based power consumption. Thus, we have iden-

tified the critical parts on the non-linear gates that should be treated carefully. In addition to

a formal security proof, our results are argued based on empirical verification on simulated

synthesised netlist and EM traces, as it was expected from the formal analysis in presence of

propagation time.
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Chapter 6

Fault Injection Analyses Assisted by
Simulation
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6.1 Introduction

To perform a Fault Injection Analysis (FIA), an adversary needs to induce errors into the target

device. Using some tampering means, which can be accomplished in several ways, is exten-

sively discussed in literature [123]. In general, tampering means or fault injection techniques

are classified into two broad categories, i.e., global and local. Global fault injections [124] are,

often, low-cost techniques which create disturbances on global parameters like voltage, clock

or temperature. The resultant faults are more or less random in nature, and the adversary

might need several injections to find required faults. On the other hand, local techniques (e.g.,

clock glitch, optical/electromagnetic injections, body bias injection [125]) are more accurate in

terms of fault location and model. However, this precision comes at the expense of costly and

bespoke1 equipment. The kind of injected fault can be defined as fault model which has two

important parameters, namely location and impact. Location means the spatial and temporal

location of fault injection during the execution of target algorithm. Depending on the type and

precision of the technique, the impact can be at bit level, set of bits (variable) or completely

random. Coming to the impact of fault, it is the effect on the target data. Commonly known

1In Common Criteria parlance.

89



90 CHAPTER 6. FAULT INJECTION ANALYSES ASSISTED BY SIMULATION

fault injection impacts on target data can cause stuck-at, bit-flip, random-byte, or uniformly

distributed random value.

6.2 Fault model

6.2.1 Clock-glitch injection

The principle of the Clock-Glitch injection consists in precisely modifying the period of one

or more clock cycles of the target design during the execution. When the modified clock pe-

riod is much shorter than what is expected in the normal clock, it shall create setup violation

faults [126]. In a case of cryptographic implementations, these faults can be exploited to retrieve

the secret key.

Since the modification of the clock frequency at RTL level is meaningless, we can perform

clock glitch injections only with back-annotated gate-level descriptions (i.e., at post-synthesis

level or at place and route level). To this end, we synthesized an AES core using an ASIC

65nm CMOS technology and used nominal PVT (Process, Voltage, Temperature) conditions

for timing information extractions. After that, we have configured the fault model to perform

a clock glitch on a specific cycle during PS simulations taking into account the gate and wire

delays (e.g., SDF file). The configuration consists in defining some parameters needed to set

the stimuli for simulations and the clock glitch parameters, in particular, the cycle target and the

glitch duration. In our case, the main configuration was as follows:

• Target cycle: last round of the AES execution;

• Glitches duration: from 4 ns to 7 ns with steps of 100 ps;

• Number of simulations: 310.

Figure 6.1 shows a cartographic view of the effects of clock glitches in terms of erroneous bits

observed in the final output. Based on such information, the evaluator can easily identify the

minimal glitch duration that would lead to a final output error for a given cycle.

Simulation results can be used to apply a set of DFA, which exploit differences between

correct and faulty outputs to recover the key, such those presented in section 2.7. One example

is the NUEVA metric [99] which measures the uniformity of error values injected before the

last S-box operation in order to find the key. Another example is the AES-128 DFA using

Giraud metric [127]: This fault analysis requires single-bit faults at the input of the last S-box

operation. As shown in Fig. 6.2, the key is recovered entirely with only 126 simulations, using

DFA of Giraud. A few more simulations are required to perform the full analysis with the NUEVA

technique.
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Figure 6.1: Erroneous bits according to the glitch duration.

Figure 6.2: Analysis of clock-glitch injection results using DFA AES-128 Giraud metric.

6.2.2 Laser injection

Laser fault injection falls into optical fault injection methods which consist in exposing the device

to an intense light for a brief period of time. The injection can be performed either through the

front-side or the backside of the target chip [128, 129, 130]. Laser attacks can be used to

inject faults characterized by high locality and timing accuracy. The laser injections can be

modelled not only at gate-level but also at functional level (i.e., RTL) by configuring parameters

such as the fault type (e.g., permanent/transient), the fault model (e.g., bit-flip, bit-set, bit-reset,

stuck-at-0/1), the fault location (e.g., wires, registers) and the fault time.

In this experiment, we have performed our analysis at RTL level with the following configu-
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ration:

• Fault time: last round cycle of the AES execution

• Fault location: inputs of the S-box module

• Fault model: bit-flip model

• Number of simulations: 100

Figure 6.3 illustrates the results of the analyses completed using DFA metrics already pre-

sented in the previous section. We can see that all key bytes are broken using only few simu-

lations, in this case 10 with the DFA based on Giraud metric.

Figure 6.3: Analysis of laser injection results using DFA AES-128 Giraud metric.

6.3 Fault detection on protected implementation

The attacks based on malicious injection of faults can degrade seriously the security of a cryp-

tosystem. Faults injected into the cryptographic modules during the encryption (or decryption)

operation will very likely result in a number of errors in the encrypted/decrypted data. Such

faults must be detected before their spread to avoid the transmission and use of incorrect data.

Fault detection techniques represent, therefore, a possible countermeasure against fault in-

jection attacks and a desirable property for preventing malicious attacks, aimed at extracting

sensitive information from the device, like the secret key.

6.3.1 AES-EDC implementation

For the AES block cipher, two main approaches have been proposed for achieving fault detec-

tion. The first one is based on temporal or spatial redundancy; in temporal redundancy, the
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same hardware is used to repeat the same process twice using the same input data. This tech-

nique uses minimum hardware overhead. Yet, it entails time overhead. In spatial redundancy,

two copies of the hardware are used concurrently to perform the same computation on the

same data. After each computation, the results are compared and any difference is reported

as a fault. The advantage of this technique is that it can detect all kinds of faults. However, it

requires an important hardware overhead.

The second approach is concurrent error detection using Error Detecting Code (EDC). It

employs circuit-level coding techniques, e.g, parity schemes, modular redundancy, etc., to pro-

duce and verify results after each computation.

From a security point of view, designers have to verify the effectiveness of a given imple-

mented countermeasure and be sure that it prevents against fault analysis. Remark that all

countermeasures detect faults only to some extent (e.g., up to a certain order, that is to say, up

to a certain bit-wise multiplicity).

For this purpose, we present our results based on the countermeasure presented by Bertoni

et al. [131] which targets the datapath of the AES encryption module. This countermeasure

uses a 4 × 4 parity matrix. Each bit corresponds to one byte of the state, and at each round

the matrix is predicted and then can be compared with the computed one from the state. This

countermeasure can detect all odd errors and some even errors. The hardware overhead is less

than many other countermeasures (e.g., [132]) where a computation redundancy is required (2

times overhead).

We designed an AES-128 encryption module implementing this countermeasure for the

datapath (see fig. 6.4). The control unit is also protected by computing the parity of the rounds

counter.

In this implementation we can distinguish two fault detection blocks:

• The first (1) is used to check the integrity of the register. If a fault is injected into the

register, then the comparison between its current parity and the predicted one (16-bit

register) returns a non-zero result (assuming the number of flipped bits within the same

byte is odd).

• The second (2) is used to check the integrity of the intermediate calculations.

Different scenario of injection are illustrated in figure fig. 6.5, we restricted the detection to

the output of the S-box, but it is equivalent to check the parity at the MixColumn output as in

the whole design fig. 6.4.

The functions of fig. 6.4 are:

• SBOXWITHPARITY: The 128-bit output corresponds to the standard output of the AES

S-box function. The 16-bits output corresponds to the parity of the 128-bits output. This
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Figure 6.4: Datapath of the AES parity check implementation against fault injection.

Figure 6.5: Datapath of the AES S-box parity check against fault injection. When flipping one
bit of the state register (F1) it will be detected in the first block (D1). When flipping the S-box
output (F2) it will be detected in the second block (D2).

step is calculated using a look-up table containing 256 × 9 bits; 8-bits for the standard

output, and one parity bit;

• SHIFTROWBITS: Applies a rotation to the parity bits to align them correctly according to

the SHIFTROW output;
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• MIXCOLUMNSBITS: Predicts the parity of the output of MIXCOLUMNS. In addition to the

parity matrix, this step requires some bit of the output of SHIFTROW to predict the parity

of MIXCOLUMNS;

• PARITY: compute the parity of each byte of the 128-bits state.

6.3.2 Design evaluation

We have performed several simulation-based fault injection campaigns at RTL level in order to

evaluate the fault coverage of the proposed parity-based EDC scheme. One hundred thousand

injections are performed, where plaintexts and keys are selected randomly. The fault model is

a single bit-flip at the last round of the encryption operation. The obtained results show that the

detection rate is equal to 100% as shown in [131]. Then, we launched the logic synthesis on

a Virtex-V Xilinx FPGA as technology target in order to perform the same fault injection cam-

paigns but at Post-synthesis level (PS) (i.e., the post-map netlist is used during simulations).

As expected, the detection rate is equal to 100%.

6.3.2.1 Analysis with synthesis optimization

We re-synthesized the same RTL code but with different logic synthesis options to optimize the

logic and to improve timing and design performances. As a matter of fact, the Xilinx Synthesis

Technology (XST) synthesis tool allows designers to configure several options and properties

that are taken into account during the synthesis process. These options target possible opti-

mizations for area, speed or power consumption.

An extract from the Xilinx synthesis settings dialog box is shown in Figure 6.6. In our

case, we activate some options to optimize the design such as the −logic opt option which

optimizes timing-critical connections through restructuring and resynthesizing, followed by in-

cremental placement and incremental timing analysis. Previous injection campaigns are per-

formed based on the obtained netlist. However, results are not the same because the detection

rate decreases from 100% to 18.75%. More precisely, only faults injected on the AES control

unit are detected. All faults into the datapath are no longer detected due the synthesis tool

optimizations. The resulting architecture of the synthesis phase is shown in fig. 6.7.

The countermeasure logic on the datapath was completely removed after the logical syn-

thesis to optimize the design for area by reducing the total amount of logic used for design

implementation. With obviously less gates, an equivalent functionality is obtained, albeit with a

lesser security. Indeed, the S-box is left unprotected, simply because the synthesizer has been

smart enough to eliminate some combinational schemes considered to be equivalent. Func-

tionally speaking, there is no alteration. However, from a security standpoint, the complete

S-box transformation is left unprotected.
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Figure 6.6: Extract from the XST synthesis options for Xilinx FPGAs.
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Figure 6.7: Total simplification of fault detection logic upon synthesis.

For the optimization prevention of signal B in fig. 6.7, we use the DONT TOUCH attribute.

This attribute prevents optimizations where signals are either optimized or absorbed into logic

blocks. It instructs the synthesis tool to keep the so tagged signal, and that signal is placed
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in the netlist. Logic synthesis and fault injections are remade with the same options used

during the previous experimentation. Results indicate that the detection rate increases from

18.75% to 56.43%. Indeed, the synthesis tool has partially simplified the fault detection logic

as shown in fig. 6.8 by eliminating the combinational block producing C signal. Consequently,

only faults injected on the state register are detected, which opens a large door for successful

fault injection attacks within the combinational logic.
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Figure 6.8: Partial simplification of fault detection logic upon synthesis.

Table 6.1: Fault detection rate for RTL and post-synthesis levels.

PS PS PS
Level RTL (default options) -logic opt = true -logic opt = true

-xor collapsing = true DONT TOUCH attribute
Detection rate 100% 100% 18.75% 56.43%

Table 6.1 summarizes the fault detection rate according to the analysed level. We can con-

clude that the protection can be removed altogether during logical synthesis, thereby causing a

security regression. This kind of mis-integration may happen in real case, where designers do

not check the security evolution of their design at each stage of synthesis. Therefore, robust-

ness of hardware cryptographic modules against fault injection attacks should be evaluated at

each abstraction level in the design conception flow.

Another reason for designer’s attention to be deflected from security is the requirements

for testability. Clearly, in fig. 6.8(a), the alarm signal is not testable. Indeed, it is consistently
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equal to ‘0’. Therefore, in a view to achieve DFT (Design For Test) requirements, some test

logic to address independently the registers driving signals A, B & C, shall be added. But in

the meantime, the designer might shift its focus so conscientiously that he might forget about

the need for setting DONT TOUCH attributes. Hence the need for an automated verification as an

independent third-party verification tool.

6.4 Conclusion

FIA are serious threats to cryptographic algorithms [123]. Countermeasures have been de-

veloped against such attacks. Still, it is non-obvious how to implement such protections at

source-code level. There are many options to configure the synthesis tools. Hence exploring

their combinatorics is exponential. In practice, users select a few options. Some options can

lead to total or partial simplification of the countermeasure. Using a simulation-based method-

ology, we manage to detect such alterations, and we quantify the amount of degradation. In

addition, we precisely pinpoint the residual leakage samples.

We also emphasized the need to verify the functioning of the countermeasures at each

stage of the design. Indeed, some parts can be simplified and thus, compromise the imple-

mented protections and the security of the device.
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7.1 Introduction

Probing attack is considered to be one of the most powerful attack used to break the security

and extract confidential information from an embedded system. This attack requires different

bespoke equipment and expertise. However, there is no methodology to evaluate theoretically

the security level of a design or circuit against this threat. It can be only realised by a real and

certified evaluation laboratory. For the design house, this evaluation can be expensive in term

of time and resources.

In this chapter, we introduce an innovative methodology that can be applied to evaluate the

probing attack on any design at simulation level. Our method helps to extract the sensitive sig-

nals of a design, emulate different Focused Ions Beam technologies used for probing attacks,

and evaluate the accessibility level of each signal. It can be used to evaluate precisely any

probing attack on the target design at simulation level, hence reducing the cost and time to

market of the design. This methodology can be applied for both ASIC and FPGA technology.

A use-case on an AES-128 shows the efficiency of our methodology. It also helps to evaluate

the efficiency of the active shield used as a countermeasure against probing attack.

99
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Outlines. We give an end-to-end methodology to evaluate a circuit against front-side FIB

probing attacks. Based on a full pre-silicon model of the circuit, we give an automated evalua-

tion of sensitive signal identification, location and complexity access given a FIB configuration.

Our main contributions are:

• Automatic identification of sensitive signals;

• Improved method for exposed area detection [133];

• An adapted metric for evaluating the security in term of exposed area.

The sensitive signal identification is based on NICV metric [39], that we apply to each signal

individually, using the critical parameters of the implementation. Only a few knowledge of the

target IP is required, which allows testing third-party IPs, since the layout file description (Library

Exchange Format (LEF) and Design Exchange Format (DEF) files) are provided.

In section 7.4, we describe the different step of our methodology about sensitive signal

identification, location and evaluation against probing attacks. In section 7.5, we give some

results on protected implementation using a shield, and we discuss how the security can be

improved by inserting new (virtual) shield.

7.2 Probing model

As already explained in section 2.5.1, in the probing model scenario, the attacker is allowed to

probe d signals [73]. It is said to be secure at order d if no information about the secret can be

learned up to d probes. If we consider a powerful attacker who can record a given signal of the

circuit, the number of needed measurements to recover the key depends on the function that

computes this value [113].

For example, if we probe the value of the AddRoundKey output, we can recover only one

bit of the secret key. The attacker needs to probe each bit to recover the whole key (which is

very complex and time consuming). The best way to minimise the number of measurements is

to probe a non-linear function [113]. In the case of AES or DES, we probe the S-box output (or

the input if we target the last round) [112].

7.3 FIB for probing attack

To achieve a real probing attack, a FIB workstation is required. The attacker need to follow

three main steps, as already described in section 2.8.2. The complexity of the probing attack

depends on many parameters. Mainly, the step of reverse engineering is the most complex

one. The attacker should identify each block and the vulnerable signals of the implementation
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[134]. This process is highly dependent on the performance of the workstation. We refer the

reader to section 2.8.2 for more details.

In [133, 3], the authors described a methodology allowing to analyse a hardware imple-

mentation protected by an active shield against probing attack. They showed on a protected

implementation with an active shield, the optimal ratio necessary to bypass the shield, or con-

versely, deduce the ratio for which the shield remains effective. Their methodology aims to find

the exposed areas, by excluding the zones where other wires cross the image of the target wire

on the layer above.

Our approach is similar but complementary in the sense that we are looking for all exposed

areas according to a maximum authorized angle (by the FIB or by the attacker), which thus

allows us to take into account exposed area with an angle. With this method, more exposed

area can be identified.

7.4 Methodology of FIB for probing

As described in the previous section, FIB probing is an advanced, complex and extremely

expensive attack. Therefore, there are just few entities that can realize a FIB testing on their

circuits. For this reason, we propose a new methodology to simulate the FIB attack at an early

stage of the design life cycle. With this methodology, the designer can simulate and correct

all vulnerabilities that can be exploited by the attacker using a FIB. The new methodology is

composed of the following steps that we detail in the sequel:

1. Sensitive signals identification

2. Sensitive signals location

3. Exposed signals

The global workflow of our approach is presented in fig. 7.1. In term of FIB attack, we can

address three main types; by-pass attack, re-routing attack and disable shield attack.

When an implementation is protected by a shield, the easiest way for an attacker is to avoid

cutting its wires, which is the first attack (by-pass attack). The last two attacks require more

effort on the attacker side. They require more investigation for the reverse engineering step, and

the routing of certain wires. This increase the attack time and its complexity. In the following,

we address only the by-pass attack, which do not require circuit edition.

7.4.1 Sensitive signals identification

The FIB allows probing and monitoring the internal signals of the circuit during its operation.

With the retrieved data, the attacker can recover the sensitive information hidden inside the
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Figure 7.1: Global workflow for probing evaluation threats

circuit. The question is which signal the attacker needs to probe. In a complex circuit, with

thousands of internal signals, he cannot probe them all. For this purpose, the first step of our

methodology consists in creating a method to select a group of sensitive signals that could be

interesting for a FIB attack. The workflow of our method is the following:

• Tag the critical parameters

• Create the testbench

• Launch the logic simulation

• Create the simulated traces

• Analysis

The first step of our method consists in tagging the critical parameters. In this step, the

designer needs to define all critical parameters that he wants to protect against the FIB attack.

For example, they could be the value of the secret key, plaintext or masks of cryptographic IPs.

The second step takes the critical parameters to create an appropriate testbench. A test pro-

cess is added to randomize these parameters. It is used to evaluate the propagation of these

values into the design.

The third step consists in launching the simulation of the new testbench using a digital simula-

tor. During the simulation, all internal signals states are stored and used for the evaluation.

In the fourth step, we use the simulation results to generate the activities traces of each signal.

At the end, we use the NICV as a metric for the evaluation. This metric allows detecting the

dependency of each simulated signal with the sensitive parameters which are defined above

by the designer. This metric is applied for each internal signal and each sensitive parameter.
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At the end, we obtain the NICV coefficient of each signal for each time sample. Then, we can

apply a threshold to select the signals where the NICV is greater than this selected threshold.

It means that these signals are correlated with the sensitive values that the designer wants to

protect. Hence, by probing these signals, an attacker can retrieve these sensitive values. At

the end, a list of sensitive signals for each sensitive value is obtained.

7.4.2 Sensitive signal location

Once the sensitive signals are identified, we need to know if these signals are accessible.

First, we need to identify the physical location of these signals in the layout. It is done using

a layout parser. This parser is able to analyse all kind of layout (ASIC or FPGA design) and

extract the location of each physical segment of the signals. It will allow identifying how many

segment a specific signal (or net) has, on which metal they are located and their corresponding

coordinates. The procedure of this parser is the following:

1. Take the layout file as input;

2. Find the information related to the technology (number of metal layers, wires width, Vias

etc.);

3. Parse the name of all wires used by the devices (including the power wires);

4. For each wire, retrieve the following information:

• The different segments;

• The metal layer related to each segment;

• Different Vias of the layer;

• The metal layers related to each Via.

At the end of the parsing step, we get the whole information of each wire. All this informa-

tion will be stored in a database. Then, a customized program is used to select the desired

signal and show all this information. It gives the information of both sensitive and non-sensitive

wires (signals). The information of non-sensitive wires is also important. It will help us to deter-

mine the real sensitive areas for probing attack. More details about the sensitive areas will be

presented in the next section.

7.4.3 FIB probing model

A FIB is composed of different components that allow scanning and milling specimens. An

electronic microscopy is used to scan the surface of the sample, and an ion beam for milling

and lamellae preparation. In the case of milling, a flow of ions are emitted with specific current

I (5 nA; 30 nA)), accelerated at a specific voltage U (5 kV ; 30 kV ), and focused into a point of

the sample. The ions hit the surface of the target and weaken the focused zone and tear atoms
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from the sample. The depth and the diameter of the left hole depend on the Dwell time (fixed

time at single point), the beam current and the voltage. Another factor which depends on the

sputtered yield is the incidence angle to the surface. Experiments show that the maximum yield

is reached when the angle is between 65
◦

and 85
◦
. The spot size of the beam is obviously the

most important parameters which define the FIB resolution. The best knows resolution is about

5 nm [104].

The purpose of probing attack is to be able to access to some sensitive signals of the

circuits. To access these signals, we need to identify an appropriate area, that optimizes the

milling step. This can be defined as the dimension of the cone that we must make to achieve

that, and decide if a such cone is feasible with a given FIB.

7.4.4 FIB access methodology

In the circuit layout, we have different layers that contains the targeted signal. For a given

signal at position X = (x, y, z) (or a list of positions of wires), we try to access this signal

without damaging the circuit (or with minimal damage). We describe our method applied to

a wire, which can be seen as a list of positions at different layers. The principal idea of this

method is a bottom-up process, which is based on two principle steps:

• Projection: The wire will be projected recursively to the layers above;

• Delimitation: This step consists in eliminating the region that is crossed with other wires,

or select the one that has the less number of wires (minimal damage).

We start from the wire position and give the area from where it can be accessed. Note that in

this method, we assume that all wires have either 0
◦

or 90
◦

with respect to the X axis.

In algorithm 2, we give the projection and delimitation steps that give us the list of all areas

allowing to access any sensitive wire.

7.4.4.1 Projection

A wire can be seen as a list of positions in a given layer. Here, we describe the whole process

for one segment of the wire (for the whole wire, we apply the same method for each segment).

The normal projection of the wire gives its image at the top layer, and by varying the projection

angle θ from [0, θmax] along x and y axes from the normal angle, we get a rectangular image

which represents the zone from where the targeted wire can be reached from the layer above.

If the segment is determined by two positions (x0, y0) and (x0, y1) (here we suppose that is

vertical), then the boundaries of the rectangle can be computed as follows:

r = z × tan(θmax)

R = {(x0 − r, y0 − r), (x0 − r, y0 + r), (x0 + r, y1 + r), (x0 + r, y1 + r)}
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Algorithm 2: Projection and delimitation process
Input: Design: (LEF, DEF files) , Signal target: S
Output: Accessibility paths

1 Segments← shape(S)
2 for segment ∈ Segments do // For each segment in Segments

3 current layer ← get layer index(segment)
4 layer above← current layer + 1
5 height← Design.get distance between layers(current layer, layer above)
6 rectangle← first projection(segment, height) // Projection

7 wires at layer above← Design.get wires at layer(layer above)
8 sub rectangles = rectangles.split(wires at layer above) // Delimitation

9 new sub rectangles = empty list()
10 for r ∈ sub rectangles do
11 current layer ← layer above
12 layer above← current layer + 1
13 height← Design.get distance between layers(current layer, layer above)
14 r.update projection angles(segment)
15 r.project up(height) // Projection

16 wires at layer above← Design.get wires at layer(layer above)
new sub rectangles.add(r.split(wires at layer above))

17 sub rectangles = new sub rectangles
18 while layer above < top layer do
19 goto step 9

20 return sub rectangles

where z is the distance between metal layers. It depends on the level of the metal layer and the

used technology.

Figure 7.2: First projection of a sensitive wire to the top layer.
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The whole area allows accessing the target wire by different angled holes. Figure 7.2 shows

the projection phase of a wire located at layerM1. The image of the projection gives a rectangle

at layer M2. We consider that, from any point from this rectangle, the sensitive signal can be

accessed by the FIB.

The rectangle may be crossed by some signals located at layer M2. Thus, it should be

divided into smaller sub-rectangles. This is the second step of our method and will be detailed

in the next section.

7.4.4.2 Delimitation

The purpose of the delimitation step is to check if the projected rectangle is crossed by some

wires in the layer above. For each wire, we need to split and delimit the area to form other

sub-rectangles, thus we obtain a new list of independent areas. Once the delimitation is done

as illustrated in fig. 7.2, and the list of rectangles are determined, we can project them again to

the layer above, and so on, to reach the first layout.

In this step, we can eliminate the region where the diameter of the hole exceeds the size of

the area (we cannot mill through this area without completely cutting a wire).

Figure 7.3: The projected area is crossed by one wire. It will be divided into small rectangles.

The projection angle has to be determined by the limits of the targeted wire, and the maxi-

mum realisable angle. We illustrate in fig. 7.4 the process of the projection of each area. Each

rectangle becomes independent, and the accessibility of the signal should be determined by

the projection path. In fact, many rectangles can be projected to some zone and make a bigger

area, but this should not be considered as a contiguous one. The angles of projection for each

sub-rectangle should take into a account its location.

The angles of projection also depend on their location. For each rectangle, this angle is

determined by either its maximal value (θmax = θ∗), or the extremities of the targeted wire

and the rectangle location, as illustrated in fig. 7.4 in green. Therefore, each area has its own

projection angle computed after its creation.
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Figure 7.4: Cross-section of projected sensitive wire to the top layers: The projection angle θ is
adapted following each situation.

7.4.4.3 FIB model

Once the phase of projection and delimitation are done, one needs to see how much is difficult

to access the sensitive wire. This basically depends on two parameters; the surface of the

access path and the performance of the FIB. Obviously, the larger the surface is, the easier

the access is. So as a priority, we will sort all the available access paths according to their

surfaces. It allows us to find the optimal set-up to access the sensitive wire. Once this phase is

completed, we can estimate the setting of the FIB as well as the complexity of milling (or milling

time).

Figure 7.5: Illustration of the FIB model for milling.

Depending on the best found area, we can determine the shape and the volume of the

optimal cone that allows to access the sensitive wire and thus, fix the voltage and the current
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of the ions beam. With this information we can estimate the time needed to make the hole.

7.5 Study-case on AES

To demonstrate the reliability of our methodology on a concrete case. We apply our method to

evaluate an ASIC circuit, implementing an AES protected with an active shield.

7.5.1 Target IP

The circuit is composed of different IPs including AES, a Physical Unclonable Function (PUF),

Digital sensors and also an active shield used to protect the circuit against probing attacks.

(a) (b)

Figure 7.6: The circuit used for the evaluation: (a) Logic part of different IPs, (b) Shield mesh
located at top-most metal layer [101].

An overview of this design is presented in fig. 7.6. It is composed of 8 IPs, particularly, an

active shield, an AES, a PUF and two digital sensors. The active shield (described in [101]) is

composed of three parts:

• ALICE (transmitter), which embeds a SIMON block cipher to generate 128 random bits.

• BOB (receiver), which also embeds a SIMON block cipher.

• Shield mesh (Figure 7.6 (b), which is composed of n lines on the last metal layer. It

is used as a communication channel between ALICE and BOB, and achieves the anti-

tamper protection of the integrated circuit located below it, with a 128 bits comparator.
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This design uses the CMOS 65 nm technology from STMicroelectronics. The core size is

560 µm × 560 µm. The shield mesh is composed of 640 parallel lines with 0.4 µm width and

0.4 µm spacing.

7.5.2 Sensitive signal location

To identify the sensitive signals, we run a leakage detection analysis with the NICV as described

in section 7.4.1, using the intermediate value computed by the S-box. There are 9448 signals

(wires) at all in the AES block (without counting logic gates). After the analysis, we have only

256 sensitive signals, which correspond to the output of the S-box, and the input of MixColumns,

as detailed in table 7.1.

Table 7.1: Result of parsing and sensitive signal identification.

Block #Signals #Sensitive signals
AES 9448 256

S-box 6511 128
MixColumns 268 128

Therefore, it is those signals that are vulnerable against a probing attack. We note that the

ShiftRow block is not present in the design, as it is just a wiring of the S-box output into the

input of MixColumns.

7.5.3 FIB-probing evaluation

We have selected the output of the S-box. This signal is routed over layers M3, M4 and M5. To

compare the FIB attack with an implementation without shield, we consider only the metals at

levels lower than 6. For the performance of the FIB, we have fixed the ratio to 5 (RFIB = 5). The

criticality of a probing attack can be measured by the number of exposed areas, their surfaces

and the angle to the target wire. The larger the angle is (compared to the normal angle), the

greater the relative hole depth becomes. Thus, more time will be needed to complete the hole.

To heuristically estimate the difficulty of the FIB attack, we have defined a metric taking the

different parameters into account, namely the surface of each exposed area and its relative

depth. The bigger the area is, the easier the attack is. Moreover, the bigger the angle (or the

depth) is, the more the attack is difficult. Hence, this heuristic I can be calculated as follows:

Ii = Ri
Di

I = maxIi{Ii}
(7.1)
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where Ri are the exposed rectangles surfaces, and Di is the relative depth from Ri to the

sensitive signal. This latter is computed from the center of the rectangle. The larger I is, the

easier the probing attack is.

Table 7.2: Results for different angles. For each angle we show the number of exposed areas
and the value of I (µm) (eq. (7.1)).

Implementation
θmax π

3
π
4

π
6

w/t shield 143 (23.784) 39 (21.632) 16 (13.543)
w shield (M7) 525 (2.101) 142 (1.643) 61 (1.635)

We reported in table 7.2, the number of exposed area for different realisable angles. These

angles can be chosen by the evaluator relatively to the capacity of the FIB station. The tar-

geted segment of the sensitive signal is the one at level M3. We can see that the number of

exposed areas is higher at M7, because each exposed area at M6 will further be divided at

M7 according to the shield wires, but the surfaces are smaller. The indicator I is significantly

lower when considering M7 (as expected). This shows that the attack becomes difficult at M7,

but still feasible with the chosen ratio in this case (RFIB = 5). The exposed areas that do not

verify the FIB ratio are ignored. Furthermore, for bigger angles the indicator is bigger, because

more susceptible (larger) areas can be found, with a relative low depth.

(a) (b)

Figure 7.7: Best area for milling. The sensitive signal is presented at layer M3. The path of the
hole is presented as small (gray) ellipses. (a) front side section, (b) left side section

For a signal taking the output of the S-box, we illustrate in fig. 7.7 the best exposed area

for the attacker to mil. Interestingly, at this position, there is no much signals at layer M6. This

allows us to get larger exposed areas when running algorithm 2. As we can see, the hole could

have an ellipsis shape (0.800µm × 12.8µm). As there is no wire at layer M6, the hole can be

extended further (if needed) along the shield wire direction and thus, allow making a deeper
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hole. As we can see in this evaluation, the shield did not provide significant protection. We

note an improvement in the difficulty of the attack in the case where no shield is added, but the

attack remains feasible and it is only the depth of the hole which increases, without making its

realization impossible with the chosen ratio.

7.5.4 Security improvements

To see possible improvements, we can imagine adding a second layer of a shield (M8). We

consider two ways for that:

1. A second parallel shield, but with an offset relatively to M7.

2. A second orthogonal shield with respect to M7.

We then calculate the score I to find the best area in both cases. We find that in case (1),

there is a very negligible (or even no) improvement. We always get rectangles with a very large

length, around 15.8µm and a width of 0.800 µm. The latter is limited by the characteristics of

the shield (wire width and spacing). The second solution offers more protections. Surfaces with

a very large width at M7 level are forced to be divided when projected to M8. All holes that

can be milled from M8 must be restricted to a diameter less than 800 µm at M7. By limiting the

diameter, the depth that could be reached is restricted.

Table 7.3: Evaluation with a second shield M8. For each angle we show the value of I(µm)
(eq. (7.1)).

M8
θmax π

3
π
4

π
6

Parallel with offset (1) 2.174 1.452 1.421
Orthogonal (2) 0.214 0.196 0.198

As expected, we can deduce from the value reported in table 7.3, that a second shield with

an orthogonal orientation relatively to M7 is more efficient. Besides, with the same chosen

ratio (RFIB = 5), the signal shown in fig. 7.7 cannot be accessed. As the highest diameter that

we can achieve at layer M7 is less than 0.8 µm, the ratio of the FIB should be higher than 9 to

be able to access that signal.

In fig. 7.8, we show the improvement of the security level estimated by eq.(7.1) when there

is no shield, after the insertion of two parallel shields and then, after the insertion of two or-

thogonal shields. The results show that the security level increases more significantly with two

orthogonal shields.

With this procedure, we can determine the available ways to secure a given implementation

against probing attacks. For example, manual re-routing of excessively exposed signals to
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(a) With and without shield. (b) With parallel and orthogonal shields.

Figure 7.8: I score with different shield configuration.

lower levels makes these attacks more difficult as demonstrated in the last test, but still, we can

also move other signals (not necessarily sensitive ones) in empty areas above the sensitive

signals, which force the size of the exposed areas to be reduced.

7.5.5 Discussion

In [133], the authors described a methodology to evaluate a shield against probing attack. They

demonstrate on some state-of-the-art implementations the effectiveness of their approach. Fol-

lowing the same idea, we built a new complementary approach, with additional features, to

model a more powerful attacker, not only with a very high ratio, but also one who can achieve

more complex holes.

In our approach, the exposed areas are delimited according to the presence of wires at

each metal layer, by considering a maximum angle allowed to an attacker. This allows us to

track all the possible attack paths, and to determine the contribution of the shield on each zone

of our implementation. Besides, no interaction is required with the routing tool, and it is fully

autonomous. This provides us a way to perform a fact evaluation of custom countermeasures

without (re-)running the whole routing process.

We demonstrate our approach on a real implementation of an AES protected with one

shield, and we evaluate the different ways that may improve the security of the device. Our

results are equivalent to the results exposed in [3], in the sense that it recommends orthogonal

shields to – provide more and – enhance security against probing attack.
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7.6 Conclusion

In this study we have presented an end-to-end methodology, allowing to evaluate a hardware

implementation against a probing attack. The selection of sensitive signals is performed au-

tomatically, with minimal configuration (random or fixed input). We have shown an example

of an attack on an implementation protected by an active shield, considering the parameters

of a typical FIB. This later can be adapted to model a more powerful attacker, being able to

make smaller holes at higher depth as shown in the state-of-the-art with different techniques.

By analysing the possible angles of attack identified exhaustively, the designer can choose to

modify the routing in the optimal way according to the performance of a given FIB, such as

re-routing over lower metal layers, moving some signals to empty areas, or inserting a second

layer of a shield. Besides, our framework is autonomous, and no interaction is required with the

routing tool, thus he designer can test some countermeasures and re-routing without launching

the full routing process, and estimate the security gains more in advance.
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8.1 Conclusion

Side-channel attacks remain a permanent threat against embedded systems, thus reliable pro-

tections should be implemented and must be minutely evaluated. In this thesis, we have studied

different possible ways to allow better assessment against such threats. We studied in the first

part the possibility of carrying out an evaluation to validate a security level on an unprotected

and protected hardware implementation. This approach makes it possible to estimate in ad-

vance the expected security level on a real circuit. Indeed, thanks to this approach based on

digital simulations, more or less obvious leakages can be avoided, and this by going beyond

the algorithmic specifications of a countermeasure. It should be noted that others flaws can

arise not only because of a mis-integration, but also because of the runtime environment itself,

as demonstrated in chapter 4.

We then explore an efficient and more exhaustive way to test a masked implementation

against vulnerabilities induced by glitches. We took advantage in this approach to setup a bet-

ter model of this phenomenon, and to explain the form of the generated leakage by giving its

potential equation and a spectral characterisation that can be applied also to real acquisitions.

This allows us to explain why standard leakage models are ineffective, and why a prior charac-

terization is required to be able to exploit this kind of flaw. With this better understanding of the
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leakage, we were able to design more compact and robust functions against first-order attacks,

thing that we have validate on simulated traces and real EM traces. From a design point of

view, it is not always easy to know how a signal is protected by a given mask. Therefore, vul-

nerabilities can be induced not only because of an unintentional complete unmasking, but also

because of a combination of signals that depends on some sensitive value with a low bias. This

kind of vulnerabilities requires a large number of traces to be able to characterise it and then

exploit it, even in simulation mode where the SNR is very high. This may prevent its detection

when the number of observations is relatively low.

When the phenomena causing exploitable leakages are known, a formal analysis is a very

powerful tool that allows their detection. Besides, it offers in the mean time a way to correct

and avoid them. However, such an approach is limited by the adopted models, which limits

the spectrum of detectable leakages at this level. It is still necessary to make an empirical

assessment at different design life step, to have more visibility on the behavior linked to the

technological dispersion. In fact, there are no guarantees that the power consumption will be

equivalent for the logic gates which perform the same Boolean function. In addition, current

combining can be generated between the different combinatorial blocks, and thus, generates

a leakage dependent on a sensitive value [135]. Certainly, this kind of behaviour is not very

significant and very hard to detect with measurement probes, which justifies the enhanced

security level compared to an unprotected implementation, but it is still something that should

be considered in some case. In the second part, we explored active attacks such fault injection

and micro-probing attacks.

Firstly, we presented a study about fault injection on a protected hardware implementation

with a scheme based on error-detecting code. After synthesis with different options, the de-

tection results vary depending on the optimization criterion. Like all countermeasure based on

redundancy, the synthesizer can remove all or small part of the detection block. This, once

again justifies the necessity of verifying countermeasures at each design stage, and the advan-

tage of a pre-silicon analysis based on digital simulations. Some fault attacks cannot however

be modelled at digital level, such as power glitch, which require a high-level model

Secondly, the vulnerability detection at the post-layout level is essential to check the physical

attacks by micro-probing. We have therefore proposed a complete and automated methodology

to assess an implementation against micro-probing attack. We mixed side-channel techniques

to detect the vulnerable signals and a geometrical concept to analyze their accessibility. The

detection of vulnerable signals is based on the NICV metric, but it can be done with other

metrics like T-test or other distinguishers. For the signal location step, we proposed a bottom-

up process that allows to explore all possible attack paths. It takes into account the FIB ratio
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and the maximal angle of the hole. This approach offers a way to estimate the security level by

analyzing the accessibility of sensitive signals by a given FIB station.

8.2 Perspectives

Modelling an attacker is the most important thing to evaluate an implementation against SCA.

It allows us to predict, according to known phenomena, the expected leakage from a target

device. Nevertheless, there may be others unknown phenomena that may be risky for certain

countermeasure. As already mentioned, technological dispersion is very difficult to control

or even impossible, so it would be very interesting to setup models taking into account such

phenomena in a relatively reliable way and to project the results on a real target. It may help to

see the criticality of this parameter in terms of SCA threat, and detect more vulnerabilities, but

also pushes designers and researches to propose more robust countermeasures that support

such modelling.

Our formal study about glitches offers a more realistic way to model such phenomena. On

the other hand, it is only verified at order d = 1, which leaves its extension to high order (d ≥ 2)

as another focus of research worth to explore. In particular, we should explore the complexity

of this approach compared to that already existing. As the verification and the design of a

secure circuit are two very linked fights, we hope that for a such more reliable approach, we

could design more compact circuits while respecting and keeping the expected security level,

as demonstrated on the AES S-box.

Formal analysis is also limited to purely software or hardware implementations. However,

there are many hybrid implementations mixing software code on one hand for the control in-

structions, and other hardware blocks to speed up calculations on the other hand. Designing

a formal analysis tool capable of dealing with such implementations could be more difficult, in

particular when tracking sensitive variables from the software layer to the hardware layer. More

instrumentation of the code may be necessary to allow this kind of analyses.

On the other hand, thanks to digital simulation, this remains quite feasible when the de-

scription of the implementation is available, and the number of traces is high with respect to the

security level. With a progressive approach (RTL, PS and PR), we can detect and correct vul-

nerabilities very efficiently. In addition to vertical leakages, software implementation can suffer

from timing vulnerabilities, which can be detected only when executing the application, and can

weaken the effectiveness of a countermeasure, but also offers a simpler path of attack.

In the context of active attacks, such as fault injections and FIB, where the attacker model is

stronger, several areas of research could be considered. For the moment, we only support func-

tional injection tests, which do not take into account routing. Our injections are consequently
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limited to the internal – explicitly selected – signal modification. A possible improvement would

be to take into account the circuit layout, and thus be able to test spatial injection, to test, other

mode of injection (such as EM), and other hardware countermeasures (such as digital sensors).

The pre-silicon evaluation against FIB probing attacks is a very recent field, and the pub-

lications on this topic are very limited. It would be therefore interesting to move forward on

models supporting more routing options and thus, check more exotic countermeasures such

as the insertion of a shield (or even combinatorial wires) only on certain parts of the circuit,

or alternatively, coerce the routing tool to place the sensitive signals (or hardware block) be-

low the shield meshes. This will facilitate protecting third-party hardware IPs, without a deeper

knowledge about the implementation.
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Appendix A

In this appendix, we give more analyses on the masked GF16 inverter. In appendix A.1, we

address the delay insertion countermeasure suggested in chapter 5. We verify the implemen-

tation against first and second order DPA. We show that this implementation resits to first order

attack.

In appendix A.2, we detail the equations of the masked GF16 inverter, and we make explicit

the masked computation of each bit. We study some vulnerabilities, severs, but not too obvious,

that can be avoided by designers in appendix A.3.

A.1 Evaluation of delay insertion countermeasure

We have already clarified in section 5.4.2 the leakage created by glitches in the function illus-

trated by fig. 5.3, which is the result of the absorbed transitions by the XOR gate. If each

transition is evaluated independently, the leakage will be independent from the secret, as it only

amplifies the activity created by the input (masked) signals.

It is possible to insert delay elements to carefully make sure that one of the two signal

arrives before the other, and accordingly, avoid the leakage at csb1 (caused by csa1 and mb1).

The transition caused by the change of a0 at cst1 and an1 are mutually dependent. The joint

distribution of the transitions is not independent from X (the combined activity will allow an

attacker to recover the secret key). Actually, we can consider this analysis as a second order

one, as it combines different time samples. The glitch caused by an1 may leak ({ni}) and the

glitch caused by cst1 may leak ({bi}). Obviously, both combined together will leak (x0 ⊕ x1).

Regarding probing attack, only one probe is necessary to recover the secret, but this needs

to combine two observations at two different time samples (multi-variate probing attack). It is

worthy to consider also this analysis as a second order one even in the probing model, as the

exploitation of this kind of leakage from a passive attacker point of view requires a second order

analysis.
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Figure A.1: First (a) and second (b) order CPA on csb1 activity after delay insertion based
countermeasure.

In fig. A.1 we show the result of the CPA on the signal csb1 when a delay element is inserted

on the signals cst1 and an1. The leakages caused by an1, mb1 and cst1 are separated in time

and each Point of Event (PoE) will depend only on one of the three signals.

Unfortunately, this countermeasure is very complicated to extend more: a flaw should also

be avoided at the next non-linear function (GF2 multiplier by (m0 ⊕ m1)) that uses the signal

csb1. Moreover, if we want to conserve the structure of the design, the signal csb1 should be

registered, and the output of the next non-linear layer should also be registered. This leads to

a latency of two cycles at least.

A.2 Masked inversion in GF16

In the following, we detail the different steps to consider in order to implement the full GF16

inverter, secure against glitches as explored in appendix A.2.

The inversion of an element x ∈ GF16 can be computed as the following:

y0 = x1 ∗ x2 ∗ x3 ⊕ x0 ∗ x2 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2
y1 = x0 ∗ x2 ∗ x3 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2 ⊕ x3
y2 = x0 ∗ x1 ∗ x3 ⊕ x0 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x0
y3 = x0 ∗ x1 ∗ x2 ⊕ x1 ∗ x2 ⊕ x1 ∗ x3 ⊕ x1 ⊕ x0

(A.1)

To get a first order Boolean sharing, we should replace each xi by ai ⊕mi, hence:

y0 = x1 ∗ x2 ∗ x3 ⊕ x0 ∗ x2 ⊕ x0 ∗ x3 ⊕ x1 ∗ x3 ⊕ x2
= x1 ∗ (x2 ∗ x3 ⊕ x3)⊕ x0 ∗ x2 ⊕ x0 ∗ x3 ⊕ x2
= (a1 ⊕m1) ∗ (a2 ⊕m2) ∗ (a3 ⊕m3)
⊕ (a0 ⊕m0) ∗ (a2 ⊕m2)⊕ (a0 ⊕m0) ∗ (a3 ⊕m3)
⊕ (a1 ⊕m1) ∗ (a3 ⊕m3)⊕ (a2 ⊕m2)

(A.2)
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We can follow the TINC property to build a secure version against glitches as shown in

section 5.4.3, thus:

x1 ∗ x2 ∗ x3 = (a1 ⊕m1) ∗ (a2 ⊕m2) ∗ (a3 ⊕m3)
= a1 ∗ (a2 ∗ a3 ⊕ a2 ∗m3 ⊕m2 ∗ a3 ⊕m2 ∗m3)
⊕ m1 ∗ (a2 ∗ a3 ⊕ a2 ∗m3 ⊕m2 ∗ a3 ⊕m2 ∗m3)
= a1 ∗ a2 ∗ a3
⊕ a1 ∗ a2 ∗m3

⊕ a1 ∗m2 ∗ a3
⊕ a1 ∗m2 ∗m3

⊕ m1 ∗ a2 ∗ a3
⊕ m1 ∗ a2 ∗m3

⊕ m1 ∗m2 ∗ a3
⊕ m1 ∗m2 ∗m3

(A.3)

For each aligned term we can add the shared version of each term given in eq. A.2, such

that it still respects TINC. By introducing new fresh random bits, we can reduce the number of

total shares as shown in section 5.4.2. Therefore, the terms (a3 ∗m2, a2 ∗m3) can be merged

into one signal as:

a3 ∗ (m2 ⊕ Z0)⊕ (m3 ⊕ Z1) (A.4)

which will reduce the number of terms from 8 to 6 (it holds for both a1 and m1).

In table A.1, we give the full design of the glitch-resistant inversion for any element of GF16.

Each yi verify:

yi =

5⊕
j=0

Yij

We remind that the intermediate results Yij must be xored (and then registered) with an inde-

pendent fresh random Zk, before the compression step that allows to reduce the number of

shares from 6 to 2. When integrated into the AES S-box, the fresh random Zi used for each yi

should be different and independent.

A.3 Uniformity and mask reuse

Another question that one could ask about Boolean masking concerns the distribution of the

intermediate value of the signals, and in which case are we allowed to reuse the masks between

cycles? For that, let’s consider the gadget illustrated in figure A.2.

The circuit performs the following calculation (x = a⊕m, y = b⊕ n):
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Table A.1: Glitch-resistant masked inverter of any element x = (a⊕m) ∈ GF16.

Y00 = a1 ∗ (a2 ∗ (m3 ⊕ Z1)⊕ a3 ∗ (m2 ⊕ Z2))
y0 Y01 = a1 ∗ (a2 ∗ a3 ⊕ a2 ∗ Z1 ⊕ a3 ∗ Z2)⊕ a0 ∗ a2 ⊕ a0 ∗ a3 ⊕ a1 ∗ a3 ⊕ a2

Y02 = a1 ∗m2 ∗m3 ⊕ a0 ∗m2 ⊕ a1 ∗m3 ⊕ a0 ∗m3

Y03 = m1 ∗ (a2 ∗ (m3 ⊕ Z1)⊕ a3 ∗ (m2 ⊕ Z2))
Y04 = m1 ∗ (a2 ∗ a3 ⊕ a2 ∗ Z1 ⊕ a3 ∗ Z2)⊕m0 ∗ a2 ⊕m0 ∗ a3 ⊕m1 ∗ a3
Y05 = m1 ∗m2 ∗m3 ⊕m0 ∗m2 ⊕m0 ∗m3 ⊕m1 ∗m3 ⊕m2

Y10 = a3 ∗ (a0 ∗ (m2 ⊕ Z1)⊕ a2 ∗ (m0 ⊕ Z2))
Y11 = a3 ∗ (a2 ∗ a0 ⊕ a0 ∗ Z1 ⊕ a2 ∗ Z2 ⊕ a0 ⊕ a1)⊕ a3

y1 Y12 = a3 ∗ (m0 ∗m2 ⊕m0 ⊕m1)⊕m2

Y13 = m3 ∗ (a0 ∗ (m2 ⊕ Z1)⊕ a2 ∗ (m0 ⊕ Z2))
Y14 = m3 ∗ (a2 ∗ a0 ⊕ a0 ∗ Z1 ⊕ a2 ∗ Z2 ⊕ a0 ⊕ a1)⊕ a2
Y15 = m3 ∗ (m0 ∗m2 ⊕m0 ⊕m1)⊕m3

Y20 = a3 ∗ (a0 ∗ (m1 ⊕ Z1)⊕ a1 ∗ (m0 ⊕ Z2))
Y21 = a3 ∗ (a0 ∗ Z1 ⊕ a1 ∗ Z2 ⊕ a0 ∗ a1 ⊕ a1)⊕ a2 ∗ (a0 ⊕ a1)⊕ a0

y2 Y22 = a3 ∗ (m0 ∗m1 ⊕m1)⊕ a2 ∗ (m0 ⊕m1)
Y23 = m3 ∗ (a0 ∗ (m1 ⊕ Z1)⊕ a1 ∗ (m0 ⊕ Z2))
Y24 = m3 ∗ (a0 ∗ Z1 ⊕ a1 ∗ Z2 ⊕ a0 ∗ a1 ⊕ a1)⊕m2 ∗ (a0 ⊕ a1)
Y25 = m3 ∗ (m0 ∗m1 ⊕m1)⊕m2 ∗ (m0 ⊕m1)⊕m0

Y30 = a1 ∗ (a0 ∗ (m2 ⊕ Z1)⊕ a2 ∗ (m0 ⊕ Z2))
Y31 = a1 ∗ (a2 ∗ a0 ⊕ a0 ∗ Z1 ⊕ a2 ∗ Z2 ⊕ a2 ⊕ a3)⊕ a1

y3 Y32 = a1 ∗ (m0 ∗m2 ⊕m2 ⊕m3)
Y33 = m1 ∗ (a0 ∗ (m2 ⊕ Z1)⊕ a2 ∗ (m0 ⊕ Z2))
Y34 = m1 ∗ (a2 ∗ a0 ⊕ a0 ∗ Z1 ⊕ a2 ∗ Z2 ⊕ a2 ⊕ a3)⊕m1 ⊕ a0
Y35 = m1 ∗ (m0 ∗m2 ⊕m2 ⊕m3)⊕m0

Figure A.2: Vulnerable circuit against glitches. The inserted registered do not prevent the
leakage. To secure this circuit the register s1 should be moved (as shown with the dashed
lines).

s1 = a ∗ n⊕ Z0

s2 = b ∗m⊕ Z0

s = (s1 ⊕ Z1)⊕ s2
= a ∗ n⊕ b ∗m⊕ Z1

(A.5)
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In terms of value, the signal S is protected by Z1. Despite s1 and s2 being registered before

their reduction on s, the circuit can leak information dependent on (x, y). Indeed, if we consider

the transition s→ s′ (for the same z1), we have:

s⊕ s′ = a ∗ n⊕ b ∗m⊕ a′ ∗ n′ ⊕ b′ ∗m′
= x ∗ n⊕ y ∗m⊕ a′ ∗ n′ ⊕ b′ ∗m′ (A.6)

which depends on (x, y). The first reason is that, the term (a ∗ n⊕ b ∗m) depends on (x, y),

and its distribution is not uniform. The second is that, the term (a′ ∗n′⊕ b′ ∗m′) acts as a mask,

but its distribution is not uniform (although it is assumed to be unknown to an attacker). This

is equivalent to protecting sensitive variable with a non-uniform mask. To fix this vulnerability,

the registering stage should be performed after resharing by Z1. In this case, Z0 is not required

any more.

Figure A.3: Secure version of circuit fig. A.2. In this case, the fresh random Z1 should be
updated at each cycle.

This version is presented in fig. A.3. Another solution is to use different fresh random to

reshare s1 and s2. In a practical case, this issue should be prevented at the last multiplier of

the S-box. When considering the secure version presented in fig. A.3, the circuit leaks (x, y) if

Z1 is reused between two cycles. The reason of the leakage is the same as the one given in

eq. A.6, as Z1 will be simplified and the term (a′ ∗ n′ ⊕ b′ ∗m′) is not uniform.

Those two cases are very likely to happen in a real circuit when the intermediate value is

not obvious to the designer, or when reusing some randomness to enhance the performance

of the design. We should also notice that this kind of leakage is not very significant compared

with a non-masked implementation. As the sensitive information (x, y) is revealed only in some

cases (when it takes the zero-value (0, 0)), more observations are needed to see a significant

peak when performing a T-test or an NICV analyses.
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Titre : Évaluation pré-silicium des circuits sécurisés face aux attaques par canal auxiliaire

Mots clés : attaques par canaux auxiliaires; contremesures; évaluation pré-silicium.

Résumé : Les systèmes embarqués sont constam-
ment menacés par diverses attaques, notamment
les attaques side-channel. Pour garantir un certain
niveau de sécurité, les implémentations cryptogra-
phiques doivent valider des tests d’évaluation recom-
mandés par les standards de certifications, et ainsi
répondre aux besoins du marché. Pour cette raison,
il est nécessaire d’implémenter des contremesures
fiables pour contrer ce type d’attaques. Néanmoins,
une fois ces contremesures implémentées, les tests
de vérification et de validation peuvent s’avérer très
coûteux en temps et en argent. Ainsi, minimiser le
nombre d’allers-retours, entre l’étape de conception

et l’étape d’évaluation est primordial. Nous allons
explorer une classe très large d’attaques existantes
(passives et actives), et proposer des méthodes
d’évaluations au niveau pré-silicium, permettant d’un
côté, de détecter les différents types de fuites qu’un
attaquant donné pourrait exploiter, et de l’autre, ex-
poser des techniques de protection permettant de
contrer ces attaques, tout en respectant l’aspect per-
formance et taille en silicium. Nous nous basons dans
nos analyses sur des méthodes formelles et empi-
riques, pour tracer l’impact de chaque vulnérabilité sur
les différents niveaux d’abstraction du circuit, et ainsi
proposer des contremesures optimales.
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Abstract : Embedded systems are constantly threa-
tened by various attacks, including side-channel at-
tacks. To guarantee a certain level of security, cryp-
tographic implementations must validate evaluation
tests recommended by the certification standards,
and thus meet the market needs. For this reason, it
is necessary to implement reliable countermeasures
to counter this type of attacks. However, once these
countermeasures are implemented, verification and
validation tests can be very costly in terms of time
and money. Thus, optimizing the lifecycle of the circuit,
between the design stage and the evaluation stage is

paramount. We will explore a very broad class of exis-
ting attacks (passive and active), and propose me-
thods of pre-silicon level assessments, allowing on the
one hand, to detect the different types of leakages that
a given attacker can exploit, and on the other hand,
expose different techniques to counter these attacks,
while respecting the performance and area aspect.
In our analyses, we apply formal and empirical me-
thods to track the impact of each vulnerability on the
different abstraction levels of the circuit, and thus pro-
pose optimal countermeasures.
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