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A decade after the Dennard scaling [DGY + 74], which argued that one could continue to decrease the transistor feature size and voltage while keeping the power density constant, has ended, Moore's law [START_REF] Moore | Cramming more components onto integrated circuits[END_REF] is also reaching its end. This law predicted that the number of transistors on an integrated circuit was doubling at a steady pace since 1965, bringing exponential increases to computing power. However, the end of scaling will not only have an effect on the processor but also on communications and storage. Over the last years, data is growing faster than Moore's law as illustrated in Figure 1.1, and the cost involved in developing new technology nodes is skyrocketing day after day. Not surprisingly, the increasing communication bandwidth entails more sophisticated protocols and higher speeds which require more processing power in the network nodes. Consequently, this will translate in increased power consumption up to the point where it becomes technically and economically unfeasible to further increase the communication bandwidth [DDBC + 19].

Power consumption has become a critical aspect in the evolution of High Performance Computing systems (HPC). Nowadays, modern supercomputers run on huge amounts of electrical power. For instance, the Top500 1 project report shows that supercomputer performance is approximately doubling every year, whilst power consumption is also rising. As of June 2020, the most powerful supercomputer Fugaku, number 1 of the Top500, is nowadays able to reach around 400 petaFLOPS (400 ˆ10 15 FLOPS) in terms of computation power. This equates to assembling tens of millions of laptops together against the 148.6 petaFLOPS of the predecessor supercomputer, Summit. At the same time, these supercomputers are in the top ten of the Green500 2 , with around 14.7 gigaFLOPS per 1 The Top500 is a statistical ranking showing the characteristics and performance of the 500 most powerful machines in the world (https://www.top500.org/). 2 The Green500 provides rankings of the most energy-efficient supercomputers in the world (https://www. Watt. However, energy consumption continues to increase; while the Summit computer has a consumption of 10 MW, Fugaku goes up to 28 MW. In brief, controlling the energy consumption of HPC platforms has become a necessity. It is not considered only as a way to control the cost but also as a step forward on the road towards exaflops.

From megascale to exascale computers...

As science tries to answer bigger and deeper questions, the need for more computational power continues to grow. To address this need, the current roadmap for HPC systems aims at reaching the exascale level, i.e. 10 18 FLOPS within the time frame 2023 -2024, allowing them to run hundreds of fine-grained scientific applications simultaneously on a huge number of computing nodes [CAL + 17]. Hence, the leap up to exascale computing will not only be a milestone in the history of computer science, but it will also bring the prospect of transforming progress in many areas, including energy, life sciences, material chemistry, national security, etc. Meanwhile, the challenges associated with exascale computing extend far beyond a certain floating-point throughput [VEL + 17]. Specifically, an exascale supercomputer is envisioned to comprise of on the order of 100, 000 interconnected servers or nodes in a target power envelope of « 20 MW. This target can be achieved only with a sufficient memory bandwidth to feed the massive compute throughput, a sufficient memory capacity to execute meaningful problem sizes, and with user intervention due to hardware or system faults limited to the order of a week or more on average. Let us 1. Introduction 3 state that there is a 7ˆgap in FLOPS per Watt between the current most energy-efficient supercomputers and the exascale target where in this latter each node is supposed to deliver more than 10 teraFLOPS with less than 200W.

... to Internet of Things devices

The internet of things (IoT) has risen in use and popularity since it was first introduced at the beginning of the 21 st century, pointing toward productive and exciting new directions for a whole generation of information devices [START_REF] Ben | Precision tuning and internet of things[END_REF]. The term IoT refers to a paradigm where physical objects such as sensors, actuators, home appliances and so forth, are connected to the internet. The expected number of IoT devices in the near future are estimated to be in billions and are continuously increasing in number [RBA + 21], e.g. this number will reach more than 75 billions by 2025 as depicted in Figure 1.2. Thus, these devices will produce a lot of electronic waste and will also consume a significant amount of energy in order to execute different tasks. This will eventually pose a challenge to reduce the energy consumption and will also demand for new ways of developing a green communication across the network. Indeed, many IoT devices require continuous power, and although the battery is an option, it is not always economical. Other devices are powered by an independent power supply like battery and energy harvesters, which provide limited energy [START_REF] Ben | Precision tuning of an accelerometerbased pedometer algorithm for iot devices[END_REF]. Thus, batteries require frequent changing and replacement caused by their short life cycle. In addition, the IoT device memory is used to store data, therefore, many memory accesses occur during the execution of the devices.

Nevertheless, IoT applications usually do not require very accurate results and, consequently, it is very feasible to lower the average precision of the computations to cope with memory and energy issues without affecting the efficiency of the devices.

Problem Statement

... and towards a new era of innovation.

To put in a nutshell, our previous discussion has showed that energy consumption has become a major problem in many fields as we live now in an energy-scarce world. To tackle this problem, designing scalable, reliable, and energy efficient applications remains a real challenge to explore. In other words, designers seeking to reduce the energy usage should be helped in choosing adequate protocols, services and the best implementations of their applications with regards to the targeted infrastructure.

For instance, to fulfill the 20 MW target needed for exascale supercomputers and to improve the performance of HPC systems, energy-efficient heterogeneous supercomputers need to be coupled with software stacks able to exploit a range of techniques to trade-off between power, performance, and other metrics of quality to achieve the desired goals without exceeding the power envelope. With this solution, we attain the objective of this work.

The goal of this thesis is to propose an approach that guides developers and designers to achieve the best compromise between power and performance to attain the necessary energy efficiency. This approach consists of using a reduced (or customized) precision number representations which has been widely recognized, in these recent years, as one of the promising tools in the designer's arsenal. This process, called precision tuning, can make it possible to save memory and, by way of consequence, it has a positive impact on the footprint of programs concerning energy consumption, bandwidth usage and computation time.

Problem Statement

In this dissertation, we are interested in presenting a new technique for precision tuning. Let us consider a program P computing some numerical result R, typically but not necessarily in the IEEE754 floating-point arithmetic [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF]. Precision tuning then consists of finding the smallest data types for all the variables and expressions of P such that the result R has some desired accuracy. This problem originates from two different facts. The first one is that many applications can tolerate some loss of quality during computation, as in the case of media processing (audio, video and image), data mining, machine learning, etc [START_REF] Cherubin | Tools for reduced precision computation: A survey[END_REF]. The second fact is that the mantissa bits of floating-point arithmetic data, for example, are often wasted (they represent only the irrelevant parts of the computational error) and yet have to be hauled and stored across the memory hierarchy. More precisely, developers without any extensive background in numerical accuracy and computer arithmetic, tend to use the highest precision available in hardware (usually FP64 double precision). Despite the fact that the results will be more accurate, this increases significantly the application run-time, bandwidth capacity and the memory and energy consumption of the system.

At this level, we present an important difference relating the terms precision and accuracy that are often confused, even though they have significantly different meanings. Here, we call precision a property of a number format that refers to the amount of information used to represent a number. Better or higher precision means more numbers can be represented, and also means a better resolution. Otherwise, the term accuracy denotes how close a floating-point computation comes to the real value [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF]: a bound on the absolute error |x ´p x| between the represented p

x value and the exact value x that we would have in the exact arithmetic. Therefore, the challenge is to use no more precision than needed wherever possible without compromising overall accuracy: using a too low precision for a given algorithm and data set leads to inaccurate results. Indeed, we aim in this thesis to apply mixed-precision tuning on the program formats [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF]. Contrarily to the uniform precision, we denote by mixed-precision tuning the fact of combining different precision for different variables in the same program, e.g. FP16, FP32, FP64, etc.

These last years, much attention has been paid to the precision tuning problem [CBB + 17, DHS18, GR18a, KSW + 19a, LHdSL13a, RNN + 13]. A common point to all the techniques cited previously is that they follow a trial-and-error strategy. Roughly speaking, one chooses a subset S of the variables of P, assigns to them smaller data types (e.g. FP32 instead of FP64 [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF]) and evaluates the accuracy of the tuned program P 1 . If the accuracy of the result returned by P 1 is satisfying then new variables are included in S or even smaller data types are assigned to certain variables already in S (e.g. FP16).

Otherwise, if the accuracy of the result of P 1 is not satisfying, then some variables are removed from S. This process is applied repeatedly, until a stable state is found. Existing techniques differ in their way to evaluate the accuracy of programs, done by dynamic analysis [GR18a, KSW + 19a, LHdSL13a, RNN + 13] or by static analysis [CBB + 17, DHS18] of P and P 1 . They may also differ in the algorithm used to define S, delta-debugging being the most widespread method [RNN + 13]. A notable exception is the FPTuner tool [CBB + 17] which relies on a local optimization procedure by solving quadratic problems for a given set of candidate data types. A more exhaustive state-of-the-art about precision tuning techniques will be presented in Chapter 3 of this dissertation. Anyway all these techniques suffer from the same combinatorial limitation: If P has n variables and if the method tries k different data types then the search space contains k n configurations. They scale neither in the number n of variables (even if heuristics such as delta-debugging [RNN + 13] or branch and bound [CBB + 17] reduce the search space at the price of optimality) or in the number k of data types which can be tried. In particular, bit-level precision tuning, which consists of finding the minimal number of bits needed for each variable to reach the desired accuracy, independently of a limited number k of data types, is not an option. So, the method introduced in this thesis for precision tuning of programs is radically different. Here, no trial-and-error method is employed. Instead, the accuracy of the arithmetic expressions assigned to variables is determined by semantic equations, in function of the accuracy of the operands. In practical terms, we propose a novel static technique based on a semantic modelling of the propagation of the numerical errors throughout the code. This results in generating a system of constraints whose minimal solution gives the best tuning of the program, furthermore, in polynomial-time. The key feature of our method is to find directly the minimal number of bits needed, known as bitlevel precision tuning, at each control point to get a certain accuracy on the results. Hence, it is not dependant of a certain number of data types (e.g. the IEEE754 formats [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF]) and its complexity does not increase as the number of data types increases.

Contributions

To address the precision tuning problem, we conduct in this thesis static analysis methods that contribute to a fast and efficient determination of the minimal precision on the inputs and the intermediary results of numerical programs. We summarize these contributions in the following subsections.

Contribution 1: Forward and Backward Error Analysis Paradigms

The first contribution of this thesis is to combine a forward and a backward error analysis which are two popular paradigms of error analysis, done by abstract interpretation. The forward analysis is classical. It examines how errors are magnified by each operation aiming to determine the accuracy on the results. Next, a user requirement is given denoting the final accuracy wanted on some control points of the outputs. This accuracy designs the number of significant bits required by the user on a variable of the program. By taking into consideration the user assertions and the results of the forward analysis, the backward analysis is a complementary approach that starts with the computed answer to determine the exact input that would produce it in order to satisfy the desired accuracy, independently of any computer arithmetic.

As could be expected, the forward and backward analysis can be handled iteratively to refine the results until a fixpoint is reached. Next, these forward and backward transfer functions are expressed as a set of linear constraints made of propositional logic formulas and relations between integer elements only. After, a Satisfiability Modulo Theories (SMT) solver is used repeatedly to find the existence of a solution with a certain weight expressing the number of significant bits of variables.

Contribution 2: Integer Linear Programming (ILP) Formulation

The second contribution is a relaxation of the first one. Here, we reduce the problem to an Integer Linear Problem (ILP) which can be optimally solved in one shot by a classical linear programming solver (LP) with no iteration. Concerning the number n of program variables, the method scales up to the solver limitations and the solutions are naturally found at the bit-level, making the number of data types which can be tried irrelevant. An important point is that the optimal solution to the continuous linear programming relaxation of our ILP is a vector of integers. As a consequence, we may use a linear programming solver among real numbers whose complexity is polynomial [START_REF] Schrijver | Theory of linear and integer programming[END_REF], contrarily to the linear solvers among integers whose complexity is NP-Hard [START_REF] Papadimitriou | On the complexity of integer programming[END_REF]. This makes our precision tuning method solvable in polynomial-time, contrarily to the existing exponential methods.

Contribution 3: Policy Iteration (PI) Optimization

The third contribution consists of implementing an optimization for the previous ILP method. The purpose of this new method is to handle carry bits by being less pessimistic on their propagation throughout arithmetic expressions. By doing so, we go one step further by introducing a second set of semantic equations. These new equations make it possible to tune even more the precision by being less pessimistic on the propagation of carries in arithmetic operations. However, the problem does not reduce any longer to an ILP problem (min and max operators are needed). Then we use policy iteration (PI) [CGG + 05] to find efficiently the solution. Moreover, we present an evaluation of the performance of the ILP and PI methods on several benchmarks from different domains.

Contribution 4: Automated Tool for Precision Tuning

The methods described in sections 1.3.1, 1.3.2 and 1.3.3 above have been implemented inside a tool for precision tuning [BMA19, BM19, BM20, ABM21, BM21a, BM21b] named POP, short for Precision OPtimizer. As a consequence, our tool contains two sub-tools: the first one corresponds to the forward and backward error analysis technique expressed as a set of constraints and solved by a SMT solver (the method described in Section 1.3.1). The second one corresponds to the ILP formulation which is solved by a LP solver and its optimization later using the PI method (the methods described in sections 1.3.2 and 1.3.3). The main hierarchy of our tool can be summarized in four basic steps:

• POP parses the program and generates its syntactic tree.

• While POP achieves only precision tuning, it uses a dynamic analysis which produces an under-approximation of the ranges of the variables for inputs taken randomly in user defined ranges.

• Based on a semantic modeling on the errors propagation, POP generates three variants of semantic equations. Each one refers to one of the contributions already presented.

• Once the semantic equations are generated, our tool calls two kinds of solvers: a SMT solver and a LP solver, to find an optimal solution to these equations. The solution corresponds to the minimal number of bits needed for each variable in the program.

Contribution 5: Precision Tuning and Internet of Things

To demonstrate the usefulness of our tool, we apply precision tuning on applications related to IoT because of the serious problems about the memory and energy consumption that are pervasive nowadays on the majority of IoT devices. In this context, we present in this 1.3. Contributions dissertation the measurements of performance of POP, in terms of quality of analysis and precision improvement, on two representative applications coming from the IoT field. The experiments are made by both versions of the tool. Also, we highlight a real comparison between the behaviours of these two versions on tuning these applications.

Contribution 6: Evaluation of POP Performance

Alongside the IoT field, we experiment the performance of our tool on several numerical programs coming from mathematical libraries or other application domains such as scientific computing, signal processing, physics, etc. The first experimentation concerns the contribution highlighted in Section 1.3.1. In particular, we compare two ways of optimizing programs in our tool throughout the definition of different cost functions given to the SMT solver. Second, we measure the run-time errors between the exact results given by an execution in multiple precision and the results of tuned programs by both versions of our tool. Third, we compare POP against prior state-of-the-art tools by taking into account several metrics of comparison. The last two experiments are detailed in the subsections hereafter.

Contribution 7: Generation of Multiple Precision Code

In the present contribution, we measure the error between the exact results given by an execution in multiple precision, using the MPFR library [FHL + 07], and the results of the optimized programs returned by POP. Next, this error is compared to the error threshold set by the user. We will show that the measured error is always less than the threshold given by the user for several benchmarks analyzed by our tool. This is a way of assessing experimentally the correctness of our tool.

Contribution 8: Comparison Against the State-of-the-Art Tools

The last contribution of our thesis is a detailed comparison between POP and the prior statethe-art tool Precimonious [RNN + 13]. Practically, the Precimonious tool will undergo a double comparison. Each one corresponds to a version of our tool POP. The experiments of this comparison are made on benchmarks coming from both tools and the results are evaluated in terms of analysis time, speed and the quality of tuning. Even though both tools use different techniques, we adjust the comparison criteria in order to make a closer comparison of the real behavior of these tools. Hence, we will demonstrate that the technique proposed in this thesis for precision tuning clearly encompasses the state-of-the-art techniques.

Organization of the Thesis

The remainder of this dissertation is divided into four parts, each subdivided into chapters as follows:

Part I: Background and Related Work This part is composed of chapters 2 and 3. Chapter 2 describes all relevant background knowledge, which is necessary to understand and follow the concepts that we use in this thesis. We start by presenting some basic concepts related to the finite-precision arithmetic. Next, we provide necessary notions on the static analysis by abstract interpretation method. Also, we introduce the PI method and the prior work that have already used this technique. We end up this chapter by discussing briefly the SMT and ILP theories and presenting the differences between SMT and LP solvers Chapter 3 deals with an exhaustive survey on the existent techniques and tools concerning precision tuning. Besides, we extend our survey to present tools for error analysis and code transformation.

Part II: A Static Precision Tuning Approach Based Constraints Generation

This part is organized in three chapters and tackles the static method for precision tuning proposed in this thesis. We recall that our approach is based on a semantic modelling of the propagation of the numerical errors throughout the program source. As a result, this analysis is expressed as a set of constraints whose minimal solution gives the best tuning of the program. In Chapter 4, we define the transfer functions for each element of our imperative language. Furthermore, we introduce an optimization of the carry bit function that can propagate throughout the programs. Once the transfer functions are defined, Chapter 5 deals with the different set of constraints generated by each method embodied in POP. The first set of constraints expresses the precision tuning problem as a set of first order logical propositions among relations between linear integer expressions solved by a SMT solver. The second set of constraints corresponds to a pure ILP solved in one breath by a LP solver. The third set of constraints optimizes the propagation of carries in the elementary operations and it can be solved using the PI method. Chapter 6 incorporates the main architecture of our tool for precision tuning and its different steps of implementation. Chapters 4, 5 and 6 are revised versions of the following articles: 

Part IV: Evaluation of the Tool Performance for Tuning Numerical Programs

The final part is devoted to the evaluation of performance of our tool. Chapter 8 describes the performance of the forward and backward error analysis method in several manners on our benchmarks whilst Chapter 9 incorporates the evaluation of the ILP and PI formulations. Also, we validate the efficiency of our approach on one of the oldest problem of modern physics, the N-body problem. Chapters 8 and 9 are revised versions of the following articles: A s we have mentioned in the general introduction, we are interested in the problem of determining the minimal precision on the inputs and intermediary results of numerical programs in order to get a desired accuracy on the outputs. Although our technique is independent of a particular computer arithmetic, this allows compilers to select the most appropriate formats, for example IEEE754 half (FP16), single (FP32), double (FP128) or quad (FP128) formats [ANS08, MBdD + 10] for each variable. It is then possible to save memory, reduce CPU usage and use less bandwidth for communications whenever distributed applications are concerned. Our approach is also easily generalizable to fixed-point arithmetic for which it is mandatory to determine the formats of the data, for example for FPGA implementations [START_REF] Gao | Numerical program optimization for high-level synthesis[END_REF].

Posters

Computer Arithmetic

In this chapter, we describe all relevant background, which is necessary to understand and follow the concepts that we use in our thesis. We will be brief in presenting some techniques whereas a complete study on the existing tools and approaches that address the precision tuning will be presented in Chapter 3. This chapter is organized as follows. We first review in Section 2.1 necessary background about finite-precision arithmetic which is an important building block for precision tuning, in particular, the IEEE754 Standard of floating-point arithmetic and the fixed-point arithmetic. We later highlight in Section 2.2 the static analysis by abstract interpretation method used to model the propagation of the errors across the programs. As our analysis will be expressed by two kinds of constraints, Section 2.3 presents basic notions about the Satisfiability Modulo Theories (SMT) solvers used to solve constraints made of propositional logic formulas and relations between affine expressions among integers, and Linear programming (LP) solvers used when we formulate the problem as an Integer Linear Programming problem (ILP). Section 2.4 concludes.

Computer Arithmetic

Representing and manipulating real numbers efficiently by computers is required in many fields of science, engineering, finance and more. There exists several representations for approximating real numbers. Out of these representations, we will focus in this section on the floating-point (FP) arithmetic, fixed-point arithmetic and interval arithmetic. Also, we present essential definitions helpful for understanding our technique of precision tuning.

Floating-Point Arithmetic

Currently, FP numbers are the most common representation used in numeric applications. Therefore, optimizing the use of FP formats is often a key to obtain high performance. In the following, we will focus on these formats, and in particular on the IEEE754 ones. We refer the reader to the Handbook of Floating-Point Arithmetic by Muller et al. [MBdD + 10] for a detailed and formal reference on the general subject of FP arithmetic. The IEEE754 Standard [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF] for FP arithmetic is a technical standard for FP computation created by the Institute of Electrical and Electronic Engineers (IEEE). The standard formalizes a binary FP number x in base (or radix) β, generally β = 2, as a triplet made of a sign, a mantissa and an exponent as shown in Equation (2.1), where s P {-1,1} is the sign, m represents the mantissa, m = d 0 .d 1 ...d p´1 , with the digits 0 ď d i ă β, 0 ď i ď p ´1, p is the precision (length of the mantissa) and the exponent e P [e min , e max ].

Normalized IEEE754 Binary Floating-Point

x = s.m.β e´p+1

(2.1)

The IEEE754 Standard specifies some particular values for p, e min and e max . Also, it defines binary formats (with β = 2) which are described in Table 2.1. Hence, the IEEE754 Standard distinguishes between normalized and denormalized numbers. Indeed, the normalization of a FP number ensuring d 0 ‰ 0 guarantees the uniqueness of its representation. For the lowest value of the exponent, denormalized numbers allow the first digits d 0 , ¨¨¨, d k with k ď p to be equal to zero. Doing so, denormalized numbers make underflow gradual [MBdD + 10]. The IEEE754 Standard defines also some special numbers 1 . All these numbers are summarized in Table 2.2 (in double precision). Moreover, the IEEE754 Standard defines four rounding modes for elementary operations among FP numbers which are: towards +8, towards ´8, towards zero and towards the nearest denoted by Ò +8 , Ò ´8, Ò 0 and Ò " , respectively.

x Exponent e Mantissa m x = 0 (if 

s = 0) x = ´0 (if s = 1) e = 0 m = 0 Normalized numbers x = ( ´1) s ˆ2e´1023 ˆ1.m 0 ă e ă 2047 any Denormalized numbers x = ( ´1) s ˆ2e´1022 ˆ0.m e = 0 m ‰ 0 x = +8 (if s = 0) x = ´8 (if s=0) e = 2047 m = 0 x = NaN (Not a Number) e = 2047 m ‰ 0

Round-off Errors

Any result of a finite precision computation is subject to rounding errors. Consequently, this result that appears to be reasonable may therefore contain errors, and it may be difficult to judge how large the error is. We show a simple example of round-off error below.

Example 2.1. If we have to compute the following operations on a typical calculator. First, 1 Let us note that this thesis does not tackle these kind of numbers and thus we omit most details on them.

18 2.1. Computer Arithmetic x = ? 2, then y = x2 and finally z = y ´2, i.e, the result should be z = ( ? 2) 2 ´2, which obviously is 0. The result reported by the calculator is

z = ´1.38032020120975 ˆ10 ´16 .
Let us note that when operands of arithmetic operations have themselves been subject to previous rounding, catastrophic loss of significant digits may happen and consequently the result may be completely false. While these errors are individually small, they propagate through a computation and can make its results meaningless [START_REF] Tom | The truth behind the Pentium bug: How often do the five empty cells in the Pentium's FPU lookup table spell miscalculation[END_REF][START_REF]Patriot missile defense: Software problem led to system failure at dhahran, saudi arabia[END_REF]. To estimate the round-off error of floating-point computations, many analysis techniques and tools have been proposed in the bibliography. We discuss these tools in Chapter 3 Section 3.1.

Verification using a Higher-Precision Arithmetic

We recall that our goal is to automatically compute the minimal number of bits needed for the variables and intermediary results of programs in order to accomplish the user requirement of accuracy. The most obvious and maybe the simplest way to validate that our output precision satisfy the user defined error constraints is to perform a comparison with the result of an equivalent computation performed with a higher precision arithmetic. Although the IEEE754 Standard specifies fixed formats only, several software tools exist for multipleprecision floating-point arithmetic, for example, MP [START_REF] Brent | A fortran multiple-precision arithmetic package[END_REF], GMP [START_REF] Granlund | GNU MP 6.0 Multiple Precision Arithmetic Library[END_REF], Pari-GP [BBB + 98], etc. For our comparisons, we are going to generate programs that use arbitrary-precision version with the GNU MPFR 2 library, short for Multiple Precision Floating-Point Routines [FHL + 07]. Chapters 8 and 9 highlight our experimentation with the MPFR library.

Fixed-Point Arithmetic

Our tool and technique are also generalisable to support fixed-point arithmetic. In fact, one limitation of the FP arithmetic is that it requires dedicated support, either in hardware or in software, and depending on the application, this support may be too costly. However, the fixed-point arithmetic is an alternative which can be implemented with integers only.

A fixed number of digits is assigned to the sign, integer and fractional parts of the number within the data type format. As integer data types can be signed or unsigned, the sign field can be omitted also in fixed-point numbers. This is the case of unsigned fixed-point numbers, which represent the absolute value of the real number defined in Equation (2.2). Note that the binary point in fixed-point representation and the number of bits of each part are fixed. Thus, the scale factor of the associated data is constant and the range of the values that can be represented does not change during the computation.

(´1) sign ˆinteger ¨f ractional (2.2)

Let us also mention that many implementations of the fixed-point arithmetic use a two's complement representation instead of Equation (2.2).

To be brief, Figure 2.1 presents the general representation of a number in fixed-point format composed of a sign bit s (the most significant bit) and b ´1 bits divided between the integer and the fractional parts. m and n represent the position of the radix point respectively to the most significant bit (MSB) and to the least significant bit (LSB). Let us mention that there exists tools [DYSD14, LHD + 10, MRS08] that apply the conversion from floating-point to fixed-point. Such methods offer the ability to tradeoff the algorithm exactness for a more efficient implementation, providing either analytic or profile-based methods to obtain tight bounds on the numerical precision of fixed-point implementations. Compared to these approaches, the strength of our method is to find directly the minimal number of bits needed at each control point to get a certain accuracy on the results. Consequently, applying our method directly in hardware implementation on FGPAs and for implementation on processors with no floating-point hardware units is a very feasible task to explore in the near future.

Interval Arithmetic

Traditionally, guaranteed computations have been performed with interval arithmetic. The term "interval arithmetic", also known as interval analysis was formalized by Ramon E. Moore in the 1960s [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] to bound rounding errors in mathematical computations. The theory of interval analysis emerged considering the computation of both the exact solution and the error term as a single entity, i .e. the interval.

In our thesis, we do not work only on scalar values but on intervals instead. An interval, denoted by [x], is supposed to be closed and bounded non-empty set as shown in Equation (2.3) where x and x are called lower and upper bounds respectively. We have:

[x] = [x, x] = ty P R|x ď y ď xu .
(2.3)

Those intervals are added, subtracted, multiplied, etc., in such a way that each computed interval [x, x] is guaranteed to contain the real value x of the corresponding variable in the exact computation which is being approximated. For example, if x and y are known to lie in the intervals

[x, x] = [2, 4] and [y, y] = [´3, 2], then the sum [x, x] + [y, y] = [2 ´3, 4 + 2] = [´1, 6] and the product [x, x] ˆ[y, y] = [4 ˆ(´3), 4 ˆ2] = [´12, 8].
A limitation of the interval arithmetic is that it introduces over-approximations for longer computations because it cannot track correlations between variables. For instance, if we compute x ´x with x P [x, x] = [2, 5], the result produces [2 ´5, 5 ´2] = [´3, +3] instead of [0, 0]. This loss of correlation was partially addressed by the affine arithmetic [START_REF] Henrique De Figueiredo | Affine arithmetic: Concepts and applications[END_REF].

In fact, affine forms [START_REF] Henrique De Figueiredo | Affine arithmetic: Concepts and applications[END_REF][START_REF] Khalil Ghorbal | The zonotope abstract domain taylor1+[END_REF], whose geometrical representation are zonotopes, are widely used in software verification [START_REF] Goubault | Asserting the precision of floating-point computations: A simple abstract interpreter[END_REF][START_REF] Goubault | Modular static analysis with zonotopes[END_REF] (more details will be provided in Chapter 3). Like other relational domains [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Miné | The octagon abstract domain[END_REF], they make it possible to obtain more precise results than the usual interval arithmetic by recording linear relations between variables.

Definitions and Properties

We remind the reader that our technique is independent of any of the particular computer arithmetic described in Section 2.1. In fact, we manipulate numbers for which we know the unit in the first place denoted by ufp, and the number of significant digits, denoted by nsb. We also assume that the constants occurring in the source codes are exact and we bound the errors introduced by the finite precision computations. In the following, we denote by ufp e (x) and nsb e (x) respectively the ufp and nsb of the error on a number x (note that nsb e (x) may be infinite in some cases). These functions are defined hereafter and a more intuitive presentation is given in Figure 2.2. Definition 2.1 (Unit in the First Place). The unit in the first place of a real number x, denoted by ufp(x), and possibly encoded up to some rounding mode by a floating-point or a fixed-point number is given in Equation (2.4). This function is independent of the representation of x:

ufp(x) = # minti P Z : 2 i+1 ą |x|u = tlog 2 (|x|)u if x ‰ 0, 0 if x = 0. (2.4)
Remark 2.1. We remark in Equation (2.4) that if x = 0 we have ufp(x) = 0. In fact, a less pessimistic formula would be ufp(x) = e min if it is defined or ufp(x) = ´8 if we assume that the range of exponents is unbound.

Definition 2.2 (Number of Significant Bits). Intuitively, nsb(x) is the number of significant bits of x. Let x the approximation of x in finite precision and let ε(x) = |x ´x| be the absolute error. Following Parker [START_REF] Parker | Monte carlo arithmetic: exploiting randomness in floatingpoint arithmetic[END_REF], if nsb(x) = k, for x = 0, then ε(x) ď 2 ufp(x)´k+1 .

(2.5)

In addition, if x = 0 then nsb(x) = 0. For example, if the exact binary value 1.0101 is approximated by either x = 1.010 or x = 1.011 then nsb(x) = 3.

Definition 2.3 (Unit in the Last Place). The unit in the last place of a number x denoted by ulp(x) is defined below in Equation (2.6). It depends on the unit in the first place ufp(x) and the number of significant bits nsb(x):

ulp(x) = ufp(x) ´nsb(x) + 1 .
(2.6) Definition 2.4 (Computation Errors). The number of significant bits of the computation error on x is denoted by nsb e (x). It is used to optimize the carry bit function denoted by ξ which can propagate throughout the computations. In order to compute this quantity, we need to compute the unit in the first place of the error on x which is given by

ufp e (x) = ufp(x) ´nsb(x) . (2.7)
We assume that there is no error on any constant c arising in programs, i.e. nsb e (c) = 0. Nevertheless, the nsb e of the results of elementary operations may be greater than 0. For instance, if we add two constants c 1 , c 2 in x such that ufp e (c 1 ) ě ufp e (c 2 ) then nsb e (x) = ufp e (c 1 ) ´(ufp e (c 2 ) ´nsb e (c 2 )) which corresponds to the nsb of the resulting error (see Figure 2.2). Therefore, we denote by ulp e (x) the unit in the last place of the computation error on x and it is defined by ulp e (x) = ufp e (x) ´nsb e (x) + 1 .

(2.8)

Let us note that these functions (equations (2.4), (2.6), (2.7) and (2.8)) will be used to describe the error propagation through the computations. This error modelling is performed by abstract interpretation which we highlight in the next section.

Static Analysis by Abstract Interpretation

Static program analysis aims at automatically determining whether a program satisfies some particular properties such as "the program never dereferences a null pointer", "the program never divides by zero", "the user-specified assertions are never violated", etc. Abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Cousot | Abstract interpretation frameworks[END_REF] provides the mathematical theory to design such analysis. It consists of a general theory for approximating the behavior of programs, developed by Patrick Cousot and Radhia Cousot in the late 1970s, as a unifying framework for static program analysis. Abstract interpretation gathers the concepts necessary to build an approximate static analysis.

Static Analysis by Abstract Interpretation

In the past decade, abstract interpretation-based static analyzers began to have an impact in real-world software development. This is the case, for instance, of the static analyzer Astrée [CCF + 05] which is used daily by industrial end-users in order to prove the absence of run-time errors in embedded synchronous C programs. We shed light on these tools later in Chapter 3.

In this section, we introduce the notions required by abstract interpretation, such as partial order, lattices but also the notion of fixpoint. Then, we define more precisely the concept of semantics of a program and abstract domains. Finally, we present mechanisms of acceleration of convergence such as the widening and narrowing before introducing the policy iteration technique which we will use in Chapter 9 to find a solution to our refined system of constraints.

A full description of the theory of abstract interpretation is available in [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] and in Miné's tutorial [START_REF] Miné | Tutorial on static inference of numeric invariants by abstract interpretation[END_REF].

Order Theory

In the following, we briefly recall well-known mathematical concepts in order to describe abstract interpretation as proposed in [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF][START_REF] Cousot | Abstract interpretation frameworks[END_REF]. First, we need to introduce standard definitions related to relations, partial order sets, lattices and functions.

Definition 2.5 (Relation).

A binary relation R between two sets A and B is a subset of the Cartesian product A ˆB. We often write x R y for (x, y) P R. We present hereafter some important properties which may hold for a binary relation R over a set S:

• @x P S : x R x (reflexivity),

• @x P S : (x R x) (irreflexivity),

• @x, y P S : x R y ñ y R x (symmetry),

• @x, y P S : x R y ^y R x ñ x = y (anti-symmetry),

• @x, y, z P S : x R y ^y R z ñ x R z (transitivity),

• @x, y P S : x R y _ y R x (totality). Definition 2.6 (Partial Order, Poset). A Partial order Ď on a set P is a relation Ď P P ˆP that is reflexive, anti-symmetric and transitive. A partial order set, or poset, (P,Ď) is a set P equipped by a partial order Ď.

For instance, for any set of elements S, the set of its parts, P (S) with the inclusion partial order Ď is a poset. A convenient way of representing a poset is by using a Hasse diagram. In such a diagram, elements of P are nodes organized such that the greater elements are higher whereas the edges represent the order relation between element. Example 2.2. Figure 2.3 depicts a Hasse diagram of (P (X), Ď) where X = ta, b, cu.

Definition 2.7 (Lower and Upper Bounds). Let (P,Ď) be a poset, and S Ď P. An element u P P is an upper bound of S if @s P S, s Ď u. The element u is the least upper bound, or join, of S , denoted by \S, if u Ď u 1 for each upper bound u 1 of S. Similarly, the element l P P is a lower bound of S if @s P S, u Ď s. The element l is the greatest lower bound, or meet, of S, denoted by [S, if l 1 Ď l for each lower bound l 1 of S.

Example 2.3. In the poset of Figure 2.3, ta, b, cu is an upper bound and H is a lower bound for all the other subsets. Since the elements ta, b, cu, ta, bu, ta, cu and tau are upper bounds of tau and tau is in relation with all of them then we deduce that tau is the least upper bound and the greatest lower bound at the same time.

Definition 2.8 (Chain and Complete Partial Order). Let (P,Ď) be a poset. A chain C = (x i ) iPN is a monotone sequence of elements of P: (

x 0 Ď x 1 Ď ¨¨¨Ď x n Ď x n´1 Ď ¨¨¨. A complete partial
t[a, b]|a, b P Z, a ď bu Y tKu, Ď, \, X) .
Here, the set of integers [a, b] is comprised between a and b with a ď b. The smallest element K represents the empty set H. The partial order is Ď and X is the greatest lower bound, as intervals are closed under intersection. However, they are not closed under set union, hence, the least upper bound can be defined as

[a, b] \ [a 1 , b 1 ] = [min(a, a 1 ), max(b, b 1 )], while Dx : x\ K=K \x = x. Indeed, [a, b] \ [a 1 , b 1 ] computes the smallest interval containing intervals [a, b] and [a 1 , b 1 ].
Definition 2.10 (Complete Lattice). A complete lattice (P, Ď, \, [, K, J) is a poset such that for any subset of P, possibly infinite, the least upper bound and the greatest lower bound are defined. Noting that in a complete lattice J and K always exist.

Example 2.5. The integer interval lattice of Example 2.4 is not a complete lattice as the infinite family of intervals t[0, i] | i ě 0u has no least upper bound. Definition 2.11 (Monotonic Function). Let (P 1 ,Ď 1 ) and (P 2 ,Ď 2 ) be two posets. A function f : P 1 Ñ P 2 is said to be monotonic if and only if:

@x, y P P 1 , x Ď 1 y ñ f (x) Ď 2 f (y) .
(2.9) Definition 2.12 (Continuous Function). Let (P 1 ,Ď 1 ) and (P 2 ,Ď 2 ) be two posets. A function f : P 1 Ñ P 2 is said to be continuous if it preserves existing least upper bounds of chains that is, for each chain C Ď P 1 , if \C exists then we have:

f (\C) = \t f (x)|x P Cu . (2.10)

Fixpoints

Once a language includes loops, the analysis needs to build a loop invariant, holding before entering the loop and after each iteration, upon re-entering the body. This invariant corresponds to a fixpoint. In the following, we recall the fundamental theorems due to Alfred Tarski [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF] and Stephen Cole Kleene [START_REF] Birkhoff | Lattice Theory[END_REF].

Definition 2.13 (Fixpoint Computation). Let (P, Ď, \, [) be a lattice and let F : P Ñ P.

An element

x P P is called a fixpoint of F if F(x) = x. Similarly, it is called a pre-fixpoint if x Ď F(x)
, and a post-fixpoint if F(x) Ď x. If there exists, the least fixpoint of F, denoted by lfp(F), is a fixpoint of F such that, for every fixpoint x P P of F, lfp(F) Ď x. The greatest fixpoint of F denoted by gfp(F) is defined similarly.

Theorem 2.1 (Tarski's Fixpoint Theorem). The set of fixpoints of a monotonic function F : P Ñ P over a complete lattice is also a complete lattice.

Proof. By Tarski in [START_REF] Tarski | A lattice-theoretical fixpoint theorem and its applications[END_REF].

In particular, Tarski's theorem implies that a monotonic function among a complete lattice has a least fixpoint lfp.

Theorem 2.2 (Kleene's Fixpoint Theorem). Let (P, Ď) be a CPO and let F : P Ñ P be a continuous function. Then F has a least fixpoint such that

lfp(F) = \tF i (K) | i P Nu .
(2.11)

Proof. Found in [START_REF] Cousot | Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis[END_REF]. 

void main () { int x = 0; // 1 while (x ă 100) { // 2 x = x + 1; // 3 } // 4 } x 1 = [0, 0] x 2 =] ´8, 99] X (x 1 Y x 3 ) x 3 = x 2 + [1, 1] x 4 = [100, +8[X(x 1 Y x 3 )

Concrete and Abstract Semantics

Abstract interpretation is a fundamental theory and a practical framework for the realistic approximation of the semantics of programs. This section explains how to ensure that an approximated semantics is correct according to a concrete semantics.

Concrete Semantics

Verifying whether some property holds on a program requires explaining what the program actually does. This is what we call the semantics of the program. A language semantics, iteration 1: defined as a precise mathematical characterization of program executions, is generally not computable. Such semantics is called concrete semantics. Let us note that the correctness of the static analysis of the program is expressed with respect to the concrete semantics.

x 1 2 =] ´8, 99] X ([0, 0]Y K) = [0, 0] x 1 3 = [0, 0] + [1, 1] = [1, 1] x 1 4 = [100, +8[X([0, 0] Y [1, 1]) =K iteration 2: x 2 2 =] ´8, 99] X ([0, 0] Y [1, 1]) = [0, 1] x 2 3 = [0, 1] + [1, 1] = [1, 2] x 2 4 = [100, +8[X([0, 0] Y [1, 2]) =K iteration i + 1(i ă 100): x i+1 2 =] ´8, 99] X ([0, 0] Y [1, i]) = [0, i] x i+1 3 = [0, i] + [1, 1] = [1, i + 1] x i+1 4 = [100, +8[X([0, 0] Y [1, i]) =K
In fact, there are many mathematical models for describing the behavior of a program. They fall broadly into three categories: denotational, axiomatic, and operational. A denotational semantics formalizes the meaning of the language syntax through mathematical objects, called denotations. An axiomatic semantics establishes logical implications between assertions valid before a statement and assertions valid after it. The assertions are logical predicates describing the program states. An operational semantics closely describes the behavior of a construct execution through a transition system between the program states. Transitions can be defined as atomic execution steps (in small-step semantics), or inductively as sequences of computational steps (in big-step semantics). However, it would be wrong to view these three categories of semantics as in opposition of each other: they are equivalent and have each their uses. This thesis uses the operational semantics to prove the correctness concerning the soundness of our analysis. Chapter 4 describes the language of the input programs from which we generate semantic equations in order to determine the least precision needed for the program numerical values. The small-step operational semantics of our programs is highlighted in Chapter 5.

For an in-depth description and a comparison between these semantics, we refer the reader to The Formal Semantics of Programming Languages by Winskel [START_REF] Winskel | The Formal Semantics of Programming Languages: An Introduction[END_REF].

Abstract Semantics and Domains

The gist of abstract interpretation is to reason on an over-approximation of the semantics, also called abstract semantics. It is defined as an approximated characterization of programs executions and determined thanks to an abstract domain. An abstract domain approximates sets of invariants, so that they are representable and computable. The function that links each abstract state to the set of concrete states it represents is called the concretization of the domain. Similarly, the function that links each concrete state to the set of abstract states it represents is called the abstraction of the domain.

Broadly speaking, we distinguish two families of abstract domains:

1. Non-relational abstract domains which refer to domains where relations (comparisons) between variables are forgotten. This includes the sign domain, the constant and constant set domains, the interval domain and finally the congruence domain.

2. Relational abstract domains which are able to discover relationships between variables. We cite the polyhedra [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF], zonotopes [START_REF] Khalil Ghorbal | The zonotope abstract domain taylor1+[END_REF], the octagons [START_REF] Miné | The octagon abstract domain[END_REF] as relational domains.

For the sake of conciseness, we omit the details on these domains in this thesis. However, we refer the reader to [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Miné | The octagon abstract domain[END_REF] for a good survey. In the following, we present the principle definitions essential to establish the relationships between concrete and abstract worlds. Definition 2.14 (Abstract Domain). Let D be the set of elements to be abstracted. D is called concrete domain. An abstract domain over the set D is the pair (D 7 , γ) where • D 7 is an ordered set of elements called abstract elements,

• The concretization function γ : (D 7 , Ď 7 ) Ñ (D, Ď) is a monotonic function associating to each abstract element of D 7 a concrete element of D.

Example 2.7. The abstraction of the interval arithmetic that we have presented in Section 2.1.3 is considered as the most popular abstract domain. The interval domain abstracts the set of possible values of a variable v P Var, where Var is the set of variables, as an interval. It is denoted by D 7 = Var Ñ I 7 where I 7 denotes the set of intervals and the abstract values are either non-empty intervals with finite or infinite bounds, or K:

I 7 = t[a, b] : a, b P Z Y t´8u Y t+8u, a ď bu Y tKu .
(2.12)

The concretization function of the abstract domain of intervals given above is:

γ([a, b]) = tx P Z | a ď x ď bu γ(K) = H

Static Analysis by Abstract Interpretation

As defined in [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF], we assume additionally the existence of a monotonic function called abstraction function α : (D, Ď) Ñ (D 7 , Ď 7 ) that associates to each concrete element an abstract one such that (α, γ) forms a Galois connection: Definition 2.15 (Galois Connection). Let (D,Ď) and (D 7 ,Ď 7 ) be two posets. Let (D,Ď) be the concrete domain and let (D 7 ,Ď 7 ) be the abstract domain. A Galois connection denoted by (D, Ď) α Õ γ (D 7 , Ď 7 ), is a pair of monotonic functions α : D Ñ D 7 and γ : D 7 Ñ D such that:

@d P D, d 7 P D 7 : α(d) Ď 7 d 7 ðñ d Ď γ(d 7 ) .
(2.13)

Example 2.8. Following up on Example 2.7, in order to define the Galois connection, we present hereafter the abstraction function alongside the concretization function already defined. we have:

α(X) = $ & % K if X= H, [min X, max X] otherwise.
Let us note that an abstract semantics on an abstract domain can be defined through functions that over-approximate the concrete semantics of the language statements. Such functions are called transfer functions. We introduce the transfer functions of the language of our input programs in Chapter 4.

Widening and Narrowing

We have seen that the abstract interpretation theory has the objective of automatically proving properties of computer programs, by computing invariants that over-approximate the program behaviors [START_REF] Bouissou | Acceleration of the abstract fixpoint computation in numerical program analysis[END_REF]. These invariants are defined as the least fixpoint of a system of semantic equations and the most famous approach for computing it is Kleene fixpoint computation already defined in Theorem 2.2. However, these equations may require a large number of iterations to be solved. Especially when the abstract domain is infinite or simply disproportionate, the convergence may be extremely slow. Moreover, some abstract domains used in real-world analyzers do not have a complete lattice structure such as the affine forms [START_REF] Henrique De Figueiredo | Affine arithmetic: Concepts and applications[END_REF][START_REF] Khalil Ghorbal | The zonotope abstract domain taylor1+[END_REF]. To accelerate the convergence, Cousot and Cousot [START_REF] Cousot | Static determination of dynamic properties of recursive procedures[END_REF] have introduced the widening and narrowing mechanisms. The iteration mechanism starts from the least fixpoint of the abstract domain, then it performs a sequence of computations using the abstract transfer functions of the program. Widening operators are then used while computing the iterates to enforce or accelerate the convergence of increasing iteration sequences over abstract domains with infinite or very long strictly ascending chains, or even over finite but very large abstract domains. A widening operator is defined as follows: Definition 2.16 (Widening). Let (D,Ď) be a poset. A widening operator : (D ˆD) Ñ D is such that:

1. @x, y P D, we have x Ď x y and y Ď x y;

2. for all increasing chains x 0 Ď x 1 Ď . . . Ď x n Ď . . ., the increasing chain

y 0 = x 0 @n P N, y n+1 = y n x n+1
is ultimately stationary, Dl ě 0 : @j ě l : y j = y l .

Example 2.9. Taking again Example 2.7, the widening operator is defined by:

[a, b] [a 1 , b 1 ] = [c, d] with c = $ & % ´8 if a 1 ď a a otherwise et d = $ & % +8 if b ď b 1 b otherwise .
Narrowing helps to recover precision lost by widening steps. It is used to enforce or accelerate the convergence of decreasing iteration sequences. It is defined as follows:

Definition 2.17 (Narrowing). Let (D,Ď) be a poset. A narrowing operator : (D ˆD) Ñ D is such that:

1. for all element x, y P D, if x Ě y we have x Ě (x y) Ě y;

2. for all decreasing chains x 0 Ě x 1 Ě . . . Ě x n Ě . . ., the decreasing chain

y 0 = x 0 @n P N, y n+1 = y n x n+1
is ultimately stationary, Dl ě 0 : @j ě l : y j = y l .

Example 2.10. The narrowing operator on the interval domain of Example 2.7 is:

[a, b] [a 1 , b 1 ] = [c, d] with c = $ & % a 1 if a = ´8 a otherwise et d = $ & % b 1 if b = +8 b otherwise .
Example 2.11. Following up on Example 2.6. Instead of the iterations of Kleene, the fixpoint can be obtained in a faster way by using the classical widening and narrowing operators already defined. In practice, when the parameter of the least fixpoint solver is equal to 10, the iteration sequence using widenings and narrowings takes 12 iterations as shown in Figure 2.6.
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Widening steps:

x 10 2 = [0, 9] [0, 10] = [0, 8[ x 10 3 = [0, 8[+[1, 1] = [1, 8[ x 10 4 = [100, 8[X([0, 0] Y [1, 8[) = [100, 8[
Narrowing steps: 

x 11 2 = [0, 8[ [0, 99] = [0, 99] x 11 3 = [0, 99] + [1, 1] = [1, 100] x 11 4 = [100, 8[X([0, 0] Y [1, 100]) = [100, 100]

Policy Iteration

Since a decade, another approach was introduced in the static analysis community to perform over-approximation and to achieve better precision than widening-based tools, called policy iteration [AGG12a, CGG + 05, GGTZ07, RG15]. The idea of policy iteration was first introduced by Howard [START_REF] Howard | Dynamic Programming and Markov Processes[END_REF] to solve stochastic control problems with finite state and action space. Next, this method was extended to stochastic games by Hoffman and Karp [START_REF] Hoffman | On nonterminating stochastic games[END_REF]. Policy iterations basically perform iterations with two phases:

• Compute a policy, that is a locally simplified version of the fixpoint problem;

• Solve the policy with efficient tools specialized for this simpler problem.

Noting that these two phases are alternatively performed until a good result is reached. To compute the least fixpoints, two different approaches have been proposed: the min-policy iteration [AGG12a, CGG + 05] and the max-policy iteration [START_REF] Gawlitza | Precise fixpoint computation through strategy iteration[END_REF][START_REF] Gawlitza | Precise relational invariants through strategy iteration[END_REF]. To some extent, the min-policy iteration [START_REF] Adjé | Coupling policy iteration with semi-definite relaxation to compute accurate numerical invariants in static analysis[END_REF] can be seen as a very efficient narrowing, since they perform descending iterations from a post-fixpoint towards some fixpoint, working in a way similar to the Newton-Raphson numerical method [START_REF] Kendall E Atkinson | An introduction to numerical analysis[END_REF]. Iterations are not guaranteed to reach a fixpoint but can be stopped at any time leaving an over-approximation thereof. Moreover, convergence is usually fast. The max-policy iteration [START_REF] Martin | Computing relaxed abstract semantics w.r.t. quadratic zones precisely[END_REF] work in the opposite direction compared to min-policy iteration. They start from bottom and iterate computations of greatest fixpoints on a set of max-policies until a global fixpoint is reached. Unlike the previous approach, this terminates with a theoretically precise fixpoint, but the user has to wait until the end since intermediate results are not over-approximations of a fixpoint.

In the context of static analysis, the use of policy iteration, to compute the least fixpoint of a self-map F was introduced in [CGG + 05]. We state in Algorithm 1 a very general policy iteration algorithm. The first step is to describe F as the minimum (or the maximum) of a set Π of a simpler maps as shown in Equation (2.14) hereafter.

F = inf πPΠ f π (2.14)

Algorithm 1: Policy Iteration Algorithm in Static Analysis

Let k = 0, select π k P Π; while x ‰ F(x) do Compute the least fixpoint x k of (

f π k ) s. t. f π k (x k ) = x k ; Evaluate F(x k ); if F(x k ) = x k then return x k ; else Select π k+1 s. t. F(x k ) = f π k+1 (x k ); k = k + 1. end end
A policy (or strategy) is a selection of an element of Π . Next, the least fixpoint of this element is computed: the algorithm terminates if this fixpoint is a fixpoint of F, in other words x k = F(x k ). Otherwise, the algorithm iterates and a new strategy which reaches x k is selected. The algorithm correctness stems for the principle of selection property. In fact, the set of policy maps need to satisfy a selection property which ensures that the minimal fixpoint of the original system of equations is the minimum of the fixpoints of the policies. Definition 2.18 (Selection Property). Let Π be the set of policies, let (P, Ď, \, [, K, J) be a complete lattice and let F be a monotone self map. We say that F satisfies the selection property if:

@x P P, Dπ P Π s. t. F(x) = f π (x) .
In intervals (see [CGG + 05]), policies are of four types: ll, rr, lr and rl where l is for "left" and r for "right". For an intersection between two intervals I = [´a, b] and J = [´c, d], we associate the following policies:

• ll(I, J): we choose ´a as the lower bound and b as the upper bound,

• lr(I, J): we choose ´a as lower bound and d as upper bound,

• rl(I, J): we choose ´c as lower bound and b as upper bound,

• rr(I, J): we choose ´c as lower bound and d as upper bound.

Thus, the intersection of the two intervals I and J is given by the following formula: I X J = ll(I, J) X rr(I, J) X lr(I, J) X rl(I, J) .

(2.15)

Let us note that an important issue in the case of policy iteration algorithms in static analysis is the choice of the initial policy, since some choices may lead eventually to a fixpoint which is not minimal. Therefore, there is a number of heuristics that one might choose concerning

Solvers

the initial policy as mentioned in [CGG + 05]: if a finite constant bound appears in I or J, this bound is selected. Moreover, if a +8 upper bound or ´8 lower bound appears in I or J, then, this bound is not selected, unless no other choice is available (choices that give no information are avoided). In the case where the application of these rules is not enough to determine the initial policy, the bound arising from the left hand side term is selected, meaning that if I = [´a, 8[ then the initial policy of I X J = lr(I, J) which keeps the lower bound of I and the upper bound of J.

Example 2.12. Let us take again Example 2.6 of the program depicted in Figure 2.4. The heuristics for the initial policy are presented in the left hand side of Figure 2.7. The least fixpoint is reached after one Kleene iteration as we can observe in the right hand side of the figure. In our thesis, we will present a new policy iteration algorithm for the problem of precision tuning. In Chapter 5, we will show that finding the minimal solution (number of bits) to our system of constraints is equivalent to compute the least fixpoint of these equations. In particular, the policy iteration will be used as an optimization approach to solve a refined system of constraints. To compute the least fixpoint, we proceed similarly as in [START_REF] Gaubert | Static analysis by policy iteration on relational domains[END_REF] by using Linear Programming (LP) for computation. In the next section, we highlight the different methods that we use to solve the different systems of constraints generated by our tool.

x 1 = [0, 0] x 2 = ] ´8, 99]X(x 1 Y x 3 ) Ñ [min(x 1 Y x 3 ), 99] x 3 = x 2 + [1, 1] x 4 = [100, +8[X(x 1 Y x 3 ) Ñ [100, max(x 1 Y x 3 )] 1 iteration Ý ÝÝÝÝÝÝÝ Ñ x 1 = [0, 0] x 2 = [0, 99] x 3 = [1, 100] x 4 = [100, 100]

Solvers

Once the semantic equations are generated, they need to be solved. In our work, we are interested in two kinds of solvers: Satisfiability Modulo Theories (SMT) and Linear Programming (LP). Let us recall that our goal is not to present an exhaustive list of the existing solvers but to introduce the basic terminologies of these theories.

Satisfiability Modulo Theory

Satisfiability is one of the most fundamental of problems in theoretical computer science, namely the problem of determining whether a formula expressing a constraint has a solution [START_REF]Handbook of Satisfiability[END_REF]. In addition to static program analysis, constraint satisfaction problems arise in many other diverse areas notably software and hardware verification, puzzles such as Sudoku, type inference, test-case generation, graph problems, etc. Many of these problems can be encoded by Boolean formulas and solved using Boolean satisfiability (SAT) solvers, where the goal is to decide whether a formula over Boolean variables, formed using logical connectives, can be made "true" by choosing "true/false" values for its variables. Other problems are more naturally described in more richer logic for example first-order logic, including the theory of equalities and uninterpreted functions, array theory, bit-vector and floating-point arithmetic, difference logic, and linear and non-linear arithmetic. Such problems can be handled by solvers for theory satisfiability or Satisfiability Modulo Theories (SMT). It is well-known that SAT is considered as a NP-complete problem and that and certain classes of formulas accepted by SMT solvers belong to higher complexity classes or are even undecidable. This has not refrained researchers from looking for algorithms that, in practice, solve many relevant instances at reasonable cost [START_REF] Monniaux | A survey of satisfiability modulo theory[END_REF].

Principle In practice, SMT solvers (e.g., Z3 [dMB08]3 , MathSAT4 [START_REF] Cimatti | The mathsat5 smt solver[END_REF], CVC [BCD + 11]5 , etc.) combine the ability of SAT solvers to find solutions for complex propositional formulas with the ability of specialized theory solvers to find solutions to systems of constraints with respect to specific first order theories. A first-order formula may contain negations ( ), conjunctions (^), disjunctions (_) and quantifiers (D, @). If a formula is satisfiable, the SMT solver may provide a model of this satisfaction: an interpretation for the variable, function and predicate symbols that makes the formula "true". In the following, we present some definitions helpful to understand how SMT solvers work. Definition 2. 19 (Propositional Logic). A propositional formula φ can be a propositional variable p or a negation φ 0 , a conjunction φ 0 ^φ1 , a disjunction φ 0 _ φ 1 , or an implication φ 0 ñ φ 1 of smaller formulas φ 0 , φ 1 . A truth assignment M for a formula φ, denoted M | ù φ, maps the propositional variables in φ to tK, Ju. A given formula φ is satisfiable if there is a truth assignment M such that M | ù φ under the usual truth table interpretation of the connectives. If M | ù φ for every truth assignment M, then φ is valid. A propositional formula is either valid or its negation is satisfiable.

Example 2.13. @ x, y P R, the formula given hereafter has no solution:

(x ď 0 _ x + y ď 0) ^y ě 1 ^x ě 1 .

If we omit x ě 1 then the solutions include the values x = 0 and y = 1. 34 2.3. Solvers Definition 2.20 (Litteral). A literal is either a propositional variable p or its negation p. The negation of a literal p is p, and the negation of p is just p. A formula is a clause if it is the iterated disjunction of literals of the form l 1 _ ¨¨¨_ l n for literals l i , where 1 ď i ď n. A formula is in conjunctive normal form (CNF) if it is the iterated conjunction of clauses τ 1 ^¨¨¨^τ m for clauses τ i , where 1 ď i ď m.

SAT solving

The principles of modern SAT solving have their origin in the 1960 procedure of Davis and Putnam [START_REF] Davis | A computing procedure for quantification theory[END_REF], as simplified in 1962 by Davis, Logemann, and Loveland [START_REF] Davis | A machine program for theorem-proving[END_REF]. Hence, most of the SMT solvers follow the DPLL(T) architecture.

The first step in the Davis-Putnam-Logemann-Loveland (DPLL) procedure is to convert the formula to CNF by introducing new variables to label the subformulas. A formula can be converted to clausal form by introducing fresh variables for each compound subformula and adding suitable clauses, e.g., in converting p _ ( q ^r), we label q ^r as b and p _ b as a to obtain the clauses a, a _ p, a _ b, a _ p _ b, b _ q _ r, b _ q, b _ r. The DPLL algorithm tries to build a satisfying truth assignment using three main operations: decide, propagate and backtrack:

• The operation decide chooses an unassigned propositional variable and assigns it to "true" or "false".

• The operation propagate deduces the consequences of a partial truth assignment using deduction rules.

• The operation backtrack exists if there are conflicting clauses: given a partial truth assignment M and a clause C in the CNF formula φ such as all literals of C are assigned to false in M, then there is no way to extend M to a complete truth assignment M 1 that satisfies φ. We say this is a conflict, and then C is the conflicting clause. A conflict indicates that some of the earlier decisions cannot lead to a truth assignment that satisfies φ and the DPLL procedure must backtrack and try a different branch value. If a conflict is detected and there are no decisions to backtrack, then the formula φ is unsatisfiable (UNSAT).

We refer the reader to the Handbook of Satisfiability [START_REF]Handbook of Satisfiability[END_REF] by Biere et al. and the survey done in [START_REF] Monniaux | A survey of satisfiability modulo theory[END_REF] for further information.

Linear Programming

Optimization problems are concerned with the efficient use or allocation of limited resources to meet desired objectives. These problems are characterized by the large number of solutions that satisfy the basic conditions of each problem [START_REF] Saul | Linear Programming: Methods and Applications[END_REF].

Depending on an objective that is implied in the statement of the problem, a particular solution to the problem considered as the best one is selected. As an illustration, a manufacturing company must determine what combination of available resources will enable it to manufacture products in a way which not only satisfies its production schedule but also maximizes its profit. The basic conditions of this problem are the limitations of the available resources and the requirements of the production schedule. The objective of the problem, is the desire of a company to maximize the gain. Formally, a solution that satisfies all the constraints is called a feasible solution. Hence, a feasible solution that achieves the minimum value of the cost functional is said to be an optimal feasible solution.

To connect with our work, the optimal feasible solution is the minimal number of bits required for each variable of the input programs. (2. 16) where Z(λ) is the linear objective function, ř n j=1 a ij λ j = b i (@i P t1, ¨¨¨, mu) is the set of linear constraints, and a ij and c j are real coefficients. The linear constraints combined with a linear objective are called Linear Programs (LPs), and systems that solve them are called LP solvers. Note that if a constraint is not in the form of equality then we can add a non-negative variable, also called slack variable.

Integer Linear Programming (ILP) is a branch of LP that restricts all the variables of the model to be only integers. Similarly, the objective function in ILP problems is maximized or minimized subject to inequality and equality constraints and integrality restrictions on some or all of the integer variables. The computation of an optimal solution of an ILP is NP-hard; yet many large instances of such problems can be solved [START_REF] Chaudhuri | Analyzing and exploiting the structure of the constraints in the ilp approach to the scheduling problem[END_REF].

In our thesis, we will explain in Chapter 5 how to formulate the problem of determining the lowest precision on variables and intermediary values in programs as an ILP problem by reasoning on their unit in the first place (ufp) (see Equation 2.4) and the number of significant bits (nsb) (see Definition 2.2) which are integer quantities. Also, we will prove that the integer solution to this problem is computed in polynomial-time by a classical LP solver.

LP solving There are many available methods for solving LP problems that are widely used in practice. Namely, simplex method, interior point method [START_REF] Ii Dikin | Iterative solution of problems of linear and quadratic programming[END_REF] and ellipsoid method [START_REF] Shor | Cut-off method with space extension in convex programming problems[END_REF]. The one used in this thesis is the simplex method which was proposed by Dantzig
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in 1947 [START_REF] Dantzig | Linear programming and extensions[END_REF][START_REF] Dantzig | Origins of the Simplex Method[END_REF]. We distinguish two types of this algorithm: the primal Simplex and the dual Simplex. In our thesis, we are interested only in the primal simplex algorithm.

The simplex method has exponential-time complexity in the worst case, while both the interior point and ellipsoid algorithm are polynomial-time solvable. But in practice, the simplex algorithm is found be remarkably efficient and the run-time is often polynomial. Hence, it is widely used to solve LPs. The standard simplex algorithm contains two phases: the first phase looks for a feasible solution and the second searches the optimal one according to some criteria. This is made mathematically explicit by adding a linear objective function that is to be maximized. On the whole, the simplex method performs iteratively row operations on the simplex table. At each iteration, the method moves from a current basic feasible solution to another basic feasible solution which improves the objective function value. The method terminates when it cannot decrease the objective function value any more.

Difference between SMT solvers and LP solvers

As we have mentioned in Section 2.3.1, SMT solvers combine SAT reasoning with specialized theory solvers either to find a feasible solution to a set of constraints or to prove that no such solution exists. In the other hand, LP solvers come from the tradition of optimization, and are designed to find feasible solutions that are optimal with respect to some optimization function. Let us note that many LP solvers are available. We cite in particular, GLPK6 [Mak], LP_SOLVE7 [BEN04],

CLP 8 [LH03], SCIP9 [START_REF] Achterberg | Scip: solving constraint integer programs[END_REF] as open source solvers and CPLEX10 [Cpl09], Xpress11 [START_REF] Belotti | Algorithms for discrete nonlinear optimization in fico xpress[END_REF] and Gurobi12 [START_REF] Optimization | [END_REF] as commercial ones. Simplex-based LP solvers differ from SMT solvers in several important ways, including the following:

• LP solvers solve only conjunctions of constraints and thus they cannot handle arbitrary boolean combinations.

• LP solvers focus on both feasibility and optimization rather than just feasibility.

• LP solvers (generally) use floating-point rather than exact precision arithmetic internally.

Let us state that modern LP solvers incorporate highly sophisticated techniques, making them very efficient in practice [START_REF] King | Leveraging linear and mixed integer programming for SMT[END_REF]. The techniques used in LP solvers have been extended to the optimization problems where all or some of the variables are required to be integers (Integer Programming (IP) and Mixed Integer Programming (MIP)). For an exhaustive presentation of the LP problems, we refer the reader to Linear Programming: Methods and Applications by Gass [START_REF] Saul | Linear Programming: Methods and Applications[END_REF].

Summary

In this chapter, we have presented an essential background helpful for understanding our technique for precision tuning. To sum up, we have started by presenting the IEEE754 Standard of floating-point arithmetic and the fixed-point arithmetic. Second, we have underlined the abstract interpretation theory on which our precision tuning approach is based. Finally, we have presented the SMT and LP paradigms that we use further to find the minimal number of bits of each variable with respect to the user accuracy requirement to our precision tuning problem.

We continue our survey in the upcoming chapter by presenting a complete study on the older and the recent trends of precision tuning techniques. We will also examine their strengths and shortcomings when comparing with our method. A lthough users of High Performance Computing (HPC) are most interested in raw performance, both storage costs and power consumption have become critical concerns. This is due to several technological issues such as the power limitations of processors and the massive cost of communications which arise while executing applications on such architectures.

In recent years, precision tuning or customized precision to improve the performance metrics is emerging as a new trend to save the resources on the available processors, especially when new error-tolerant applications are considered [START_REF] Cherubin | Tools for reduced precision computation: A survey[END_REF]. By way of illustration, many applications can tolerate some loss in quality during computation, as in the case of media processing (audio, video and image), data mining, machine learning, etc. In addition, as almost all numerical computations are performed using floating-point operations to represent real numbers [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF], the precision of the related data types should be adapted in order to guarantee the desired overall rounding error and to strengthen the performance of programs. For instance, using FP32 single precision formats is often at least twice as fast as the FP64 double precision ones on most modern processors [BBD + 09]. Consequently, the natural question that arises is how to obtain the best precision/performance tradeoff by allocating some program variables in low precision (e.g. FP16 and FP32) and by using high precision (e.g. FP64 and FP128) selectively. Let us precise that precision tuning is not a simple task limited to changing the data type in the source code with the Find-and-Replace button of any text editor. It is a more complex technique which analyzes the semantics of the programs and presents several challenges both architectural and algorithmic. For this reason, various tools have been proposed to help developers select the most appropriate data representations. Such tools may integrate different approaches but their common goal is still to automatically or semi-automatically adapt an original code given in higher precision to the selected lower precision type.

In 2020, researchers from the Polytechnic University of Milan have presented a detailed survey on the existing state-of-the-art reduced-precision tools. Their survey has underlined the major advantages and drawbacks of the existing tools for precision tuning (our tool POP is newer than this survey) [START_REF] Cherubin | Tools for reduced precision computation: A survey[END_REF]. As a result, they have deduced that there exists very few tools in the state-of-the-art that process an efficient tuning of the programs. Meanwhile, the proposed tool for precision tuning in this thesis fills the majority of the gaps of the existing work. We point up the main features of POP in chapters 4 and 5.

The purpose of this chapter is to review the existing literature on techniques and tools concerning precision tuning. In addition, we extend our discussion to analysis, verification, and transformation tools. The motivation of this discussion is that some precision tuning tools are extended from tools for error estimation, program rewriting and program verification. What makes our review different from exiting ones such as the floating-point analysis research community FPBench who maintains an online survey located at their webpage 1 , and the survey done in [START_REF] Cherubin | Tools for reduced precision computation: A survey[END_REF], is that we go further by incorporating the most recent tools, at the time of writing this dissertation, and also examining the strengths and shortcomings of each tool in comparison to the newly developed tool in this thesis.

The remainder of this chapter is as follows. Section 3.1 discusses the state-of-theart tools for error analysis and verification. Section 3.2 presents the optimizing tools by code transformation. An exhaustive survey about the precision tuning tools is given in Section 3.3. Section 3.4 discusses recent work that combine analysis, optimization and precision tuning tools. Section 3.5 concludes the survey.

Analysis and Verification Tools

As we have previously mentioned in Chapter 2, one significant problem of floating-point arithmetic is the presence of round-off errors that can make a numerical computation notably different from the actual real arithmetic computation. To deal with this issue, various analysis techniques and tools to estimate the round-off error of floating-point computations have been proposed in the literature. Although their focus is not on precision tuning, we mainly describe in this section tools that were used later by precision tuning tools and we will be brief on the other analysis tools that are not intended for reducing the precision of the program variables.

After taking a closer look at the behaviour of each tool, we divide these tools into three categories: static analyzers based on abstract interpretation, general static analyzers, and dynamic analyzers.

Static Analyzers by Abstract Interpretation

Many tools use abstract interpretation and semantics based approaches for the problem of analyzing floating-point programs. Astrée [CCF + 05] is a commercial static analyzer tool2 that proves the absence of runtime errors and invalid concurrent behavior in safety-critical software written or generated in C or C++. Moreover, let us mention Fluctuat [START_REF] Goubault | Asserting the precision of floating-point computations: A simple abstract interpreter[END_REF] another commercial static analyzer based on abstract interpretation. This latter tool uses a zonotopic abstract domain [START_REF] Goubault | Static analysis of finite precision computations[END_REF] that is based on affine arithmetic [START_REF] Henrique De Figueiredo | Affine arithmetic: Concepts and applications[END_REF]. Fluctuat accepts as input a C (or ADA) program with annotations about input ranges and uncertainties, and produces bounds for the round-off error of the program expressions decomposed with respect to its provenance. It has been used to verify safety-critical
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embedded systems and it is available on their official webpage3 . More recently, researchers from the NIA 4 and NASA proposed the verification tool PRECiSA (Program Round-off Error Certifier via Static Analysis) [START_REF] Titolo | An abstract interpretation framework for the round-off error analysis of floatingpoint programs[END_REF]. It generates PVS 5 certificates that guarantee the correctness of the error bounds with respect to the floating-point IEEE754 Standard. Furthermore, given concrete ranges for the input variables of a program, the numerical estimations computed by PRECiSA are provably sound over-approximations of the possible round-off error that can occur in the program. The source code is available online at https://github.com/nasa/PRECiSA or via webpage6 . An updated version of PRECiSA was recently presented in [STF + 19].

General Static Analyzers

Prior work in static error analysis provides a foundation for rigorously determining what precision are required to meet error constraints for particular closed form equations. In this context, the Gappa tool [START_REF] Florent De Dinechin | Certifying the floating-point implementation of an elementary function using gappa[END_REF] computes enclosures for floating-point expressions via interval arithmetic. This enclosure method enables a quick computation of the bounds, but sometimes it may result in pessimistic error estimations. This tool7 also generates a proof of the results that can be checked in the Coq proof assistant 8 . Later, a framework called Real2Float [MCD17] was proposed. It aims at providing upper bounds on absolute round-off errors using semi-definite programming and sums of squares certificates. As in Gappa, the results can be checked using the Coq theorem prover. The source code of Real2Float is available at https://github.com/afd/real2float.

Additionally, a group at the University of Utah has proposed the FPTaylor tool [START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF]. This tool uses a method called Symbolic Taylor Expansions in order to estimate round-off errors of floating-point computations. It applies a global optimization technique to obtain tight bounds for round-off errors. Unlike dynamic tools, the precision allocation guarantees to meet the error target across all program inputs in an interval. Even so, FP-Taylor is not designed to be a tool for complete analysis of floating-point programs: conditionals and loops cannot be handled directly. Instead, it can be used as an external decision procedure for program verification tools such as [CKK + 12]. The source code of the tool is available at https://github.com/soarlab/FPTaylor. Later, they have extended their work by performing a broad comparison of many error bounding analyses to ensure the mixed-precision tuning technique in a tool called FPtuner [CBB + 17]. More highlights on this tool will be given in Section 3.3.

Other interesting static tools from the same group of the university of Utah are SATIRE [DBG + 20] and FPDetect [DKB + 20]. Not so far from the approach implemented in FPTaylor, SATIRE [DBG + 20] (Scalable Abstraction-guided Technique for Incremental Rigorous analysis of round-off Errors) [DBG + 20] sheds light on how scalability and bound-tightness can be attained through a combination of incremental analysis, abstraction, and judicious use of concrete and symbolic evaluation. It also supports scalable mixed-precision analysis and multi-output estimation of straight-line floating-point codes 9 . What distinguishes SATIRE from other tools is that its analysis scales to hundreds of thousands of operations(« 200K operators). The official repository is available at arnabd88/Satire. The second tool FPDetect [DKB + 20] performs analytical error analysis for stencil codes with a view to bound the maximum observable error and then attribute any violations of this bound to either bit-flips or polyhedral compilation errors.

Unfortunately, most of these static analysis tools do not address conditional-based programs. For this reason, we believe that integrating our methods with these tools seems a promising task to explore. In fact, in future work we like to extend loops in the SATIRE tool by means of the policy iteration (PI) technique that can help to compute fixpoints of loops with conditionals [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF]. More highlights on the policy iteration technique will be given in Chapter 5.

Dynamic Analyzers

Researchers have proposed probabilistic methodologies to calculate the error bounds with a certain degree of confidence. In this context, The CADNA library10 (Control of Accuracy and Debugging for Numerical Applications) [START_REF] Jézéquel | CADNA: a library for estimating round-off error propagation[END_REF] enables one to control the numerical quality of any scientific code written in Fortran, C or C++. It estimates round-off errors by replacing floating-point arithmetic with Discrete Stochastic Arithmetic (DSA) [START_REF] Vignes | Discrete stochastic arithmetic for validating results of numerical software[END_REF], essentially modeling error using randomized rounding (up or down) instead of round-to-nearest-even. Moreover, the Verificarlo [DdOCP16] and the Verrou [FL17] tools are based on probabilistic analysis. These two tools are based on Monte Carlo Arithmetic [START_REF] Parker | Monte carlo arithmetic: exploiting randomness in floatingpoint arithmetic[END_REF]. The Verificarlo tool, which source code available at github.com/verificarlo/verificarlo/tree/veritracer, instruments the LLVM-IR (intermediate representation) [START_REF] Lattner | LLVM: A compilation framework for lifelong program analysis & transformation[END_REF] of the program to substitute the IEEE754 floating-point arithmetic operations with equivalent instructions. However, the Verrou tool is based on the popular debugging tool Valgrind [START_REF] Nethercote | Valgrind: a framework for heavyweight dynamic binary instrumentation[END_REF] and it works at binary level. The equivalent source code is available online at github.com/edf-hpc/verrou.

Other tools rely on shadow value analysis. The main goal of SHVAL (SHadow Value Analysis Library) is to empirically measure the error due to the data types used in the program to represent the real values using a larger-precision data type as reference. More precisely, SHVAL is able to instrument the executable code of the application to be analyzed. By doing so, it can trace the evolution of the variables at run-time. In particular, this shadow execution is used as a reference to compare the result of the original program. The official repository of SHVAL is available at https://github.com/crafthpc/shval. 44

Rewriting-Based Optimization Tools

The list of dynamic analyzers expands to include the Herbgrind11 [START_REF] Sanchez-Stern | Finding root causes of floating point error[END_REF] tool, whose main strategy consists of inspecting floating-point operations and comparing them against a shadow execution based on the MPFR library [FHL + 07] to identify the point in the program where floating-point errors start to spread.

Recent work:

The recent dissertation work in [START_REF] Demeure | Compromis entre précision et performance dans le calcul haute performance[END_REF] proposes the Shaman library that uses operator overloading and error-free transformations to track numerical error through computations by replacing floating-point numbers with instrumented alternatives. Furthermore, the work done in [LJS + 21] proposes a two-phase analysis that combines different program analyses to conditionally verify the absence of special values and cancellation errors in numerical kernels in large programs. The objective of the first approach is to infer the ranges of the kernel inputs automatically. The second phase utilizes a slightly adapted existing static and sound round-off error analysis already implemented in their tool Daisy [DIN + 18] (detailed in Section 3.4) to verify the kernels.

The reader may have noticed our ambition to work on tools designed for error analysis, alongside our basic subject of precision tuning. Unfortunately, today's error analysis methods that are designed to span entire input ranges and produce tight error bounds are unable to handle expressions with more than a few hundred nodes (except for SATIRE [DBG + 20]). They also cannot handle complex loop structures with nested conditional expressions owing to their inability to arrive at tight-enough loop invariants. For all these reasons, we believe that integrating our methods mainly the policy iteration technique (PI) can help to cover these limitations.

Rewriting-Based Optimization Tools

The main insight of the optimizing tools by code transformations (or rewriting) is to improve the accuracy of the floating-point computations done in numerical codes. Unlike the vast literature available on the error estimation tools, the optimizing tools by rewriting are not numerous. More precisely, the state-of-the-art covers Xfp [DKMS13],

Herbie [START_REF] Panchekha | Automatically improving accuracy for floating point expressions[END_REF] and Salsa [START_REF] Damouche | Amélioration de la précision numérique de programmes basés sur l'arithmétique flottante par les méthodes de transformation automatique[END_REF].

In particular, Xfp [DKMS13] is a tool for fixed-point optimization. It selects the fixedpoint implementation which minimizes the rounding error with respect to the floatingpoint one. Based on code rewriting, Xfp first rewrites the input expression into one which is equivalent under a real-valued semantics, but one which has a smaller round-off error when implemented in finite precision and which does not increase the number of arithmetic operations. It relies on a genetic algorithm 12 to search the vast space of possible evaluation orders efficiently.

Herbie [START_REF] Panchekha | Automatically improving accuracy for floating point expressions[END_REF] is a dynamic tool which automatically improves the accuracy of floating-point expressions. Its heuristic search estimates and localizes rounding errors using sampled points (rather than static error analysis), applies a database of rules to generate improvements, takes series expansions, and combines improvements for different input regions. The official repository of Herbie is accessible at https://github.com/uwplse/ herbie.

Salsa is a static tool [START_REF] Damouche | Amélioration de la précision numérique de programmes basés sur l'arithmétique flottante par les méthodes de transformation automatique[END_REF] which was developed in a former dissertation work within the university of Perpignan (Laboratory of Mathematics and Physics) and it is a source-to-source optimizer written in Ocaml. Let us note that source-to-source optimization means that the tools emit the same programming language they accept as input. Based on abstract interpretation, Salsa features both intra-procedural and inter-procedural code rewriting optimizations for the C programming language.

Although these tools do not always provide precision tuning via precision allocation, combining the code rewriting and precision tuning could be a promising approach that can improve both the accuracy and speed of floating-point expressions. We shed light on this idea in Section 3.4.2.

Precision Tuning Tools

The last few years have seen a wealth of precision tuning tools as depicted in Figure 3.1. In this section, we discuss the strengths and shortcomings of each tool. Besides, the originality of POP will be cleared up by showing to what extent it can fill many gaps of the state-of-the-art work. After taking a closer look on the behaviour of each tool, we deduce the following classification:

• Static analysis tools: that extract additional knowledge from the program source code without executing it with input data.

• Dynamic analysis tools: that involve the profiling of the target application to extract pieces of information by running the original version of the program. Let us mention that the majority of the tools of this category are based on a trial-and-error strategy: they deduce knowledge on the program from the effects of the changes they apply during the precision allocation. On this basis, this category can be classified into:

-Search algorithm-based tools: that implement search algorithms to explore the space of possible data types more efficiently.

-GPU applications-based tools: that operate on GPU kernels by using programming languages such as OpenCL or CUDA.

-Other dynamic tools: other general tools based on dynamic analysis using different algorithms.
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Static Analysis Tools

Rosa [DK17] is a source-to-source compiler which takes as input a real-valued program with error specifications and synthesizes code over an appropriate floating-point (FP32, FP64, FP128, and an extended format with 256 bit width) or fixed-point data type (8, 16, 32 bit) which fulfills the specification. Rosa operates on a subset of the Scala programming language. In particular, the programmer writes the program in a real-valued specification language and makes numerical errors explicit in pre-and post-conditions. It is then up to Rosa to determine an appropriate data type which fulfills the specification and to generate the corresponding code. In addition, the common point between Rosa and the first version of POP13 is that both internally exploit the Z3 SMT solver [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF] to process the precision constraints derived from the program accuracy specifications. Also, Rosa handles conditional statements soundly but it assigns only uniform preicision to the variables of their programs. The source code of Rosa is available online at https: //github.com/malyzajko/rosa. Based on the Symbolic Taylor Expansion embodied in the FPTaylor [SJRG15] tool already described in Section 3.1.2, FPTuner [CBB + 17] exposes a user-defined threshold for the amount of type casts that the tool may insert into the code. Let us state that the approach deployed by FPTuner is close to the one we will present in our thesis, especially in the constraint generation step. However, it relies on a local optimization procedure by solving quadratic problems for a given set of candidate data types. Contrarily to POP , FPTuner is limited to straight-line programs. Unfortunately, it also requires a certain user skill for choosing which mixed-precision variants are more efficient and is thus not fully automated. Furthermore, its tuning time can be prohibitively large whereas we will show that the method embodied in our tool POP is more fast and efficient even in the case of large codes.

FPTuner is available online at github.com/soarlab/FPTaylor.

In the context of precision tuning tool-chains, the TAFFO tool (Tuning Assistant for

Floating-point to Fixed-point Optimization) [CCC + 20] is a LLVM-based tool-chain [LA04],
which is packaged as a set of plugins for the Clang compiler 14 . Its strategy is to collect statically annotations from the source code and it converts them into LLVM-IR metadata with the goal to replace floating-point operations with fixed-point operations to the extent possible. TAFFO is based on affine arithmetic [START_REF] Stolfi | An introduction to affine arithmetic[END_REF]. This analysis is used to project on the output the error introduced by each fixed-point instruction. The advantage of TAFFO is that it supports both C and C++ programs and it can be provided as a plugin for LLVM which are feasible to be extended in POP in future work. In contrast to TAFFO, POP is able to return solutions at bit-level suitable for the IEEE754 floating-point arithmetic, the fixed-point arithmetic and the MPFR library for non-standard precision. TAFFO is available online at https://github.com/HEAPLab/TAFFO.

Dynamic Analysis Tools

A considerable share of precision tuning tools are based on dynamic analysis. The main insight of these techniques is to lower the precision of the values in the program and observe the error on the output of a testing run. Consequently, their majority apply a trial-and-error paradigm to precision tuning. We distinguish tools which are based on search algorithms, tools oriented for GPU kernels and other general dynamic tools.

Search Algorithm-Based Tools

The first precision tuning reference tool based on search algorithm is the Precimonious tool [RNN + 13]. Noting that Precimonious is the tool that interest us the most and we will present further in chapters 8 and 9 a full comparison on several benchmarks from both tools. For this reason, the next paragraph highlights the study of the Precimonious tool and its several extensions. The source code of Precimonious that we have installed to make our comparisons is available online at https://github.com/corvette-berkeley/precimonious.

Tool study: the Precimonious tool Precimonious [RNN + 13] is a dynamic automated search-based tool that leverages the LLVM framework to tweak variable declarations to build and prototype mixed-precision configurations within a given error threshold.

Precimonious is based on the delta-debugging algorithm search [START_REF] Zeller | Simplifying and isolating failureinducing input[END_REF] which guarantees to find a local 1-minimum if one exists. A configuration is said to be 1-minimal if lowering any additional variable (or function call) leads to a configuration that produces an inaccurate result, or is not faster than the original program. The delta-debugging algorithm has been originally conceived in the context of software testing for identifying the smallest failing test case. The input ingredients of this algorithm are the following:

• A list ∆ of variables to be tuned as well as a list ∆ 1 of all other variables of the program with their constant precision assignments. • An error function which bounds the round-off error of a given precision assignment.

• A cost function approximating the expected performance.

• An error bound ε max to be satisfied.

The output of this algorithm is a precision assignment for variables in the set ∆. Let us note that the algorithm exhibits an O(n log n) average complexity and an O(n 2 ) worst case complexity, where n is the number of elements to be tuned. Now, we explain the principle of the delta-debugging algorithm in the following example.

Example 3.1. As an illustration, we take the example depicted in Figure 3.2. In this example, we consider the case where variables can be in FP32 single precision and FP64 double precision. First of all, the delta-debugging algorithm starts by assigning all variables in ∆ to the highest precision available, i.e. FP64. Next, it uses the error function to check whether the round-off error is below the error bound ε max . If it is not, then the optimisation is unsuccessful. Otherwise, the algorithm tries to lower all variables in ∆ by assigning them to FP32 single precision. As before, it computes the maximum round-off error. If it is below ε max , the search stops as single precision is sufficient. If the error check does not succeed, the algorithm splits the change set ∆ into almost equal size subsets which are pairwise disjoint. In our example, two equally sized lists ∆ 1 and ∆ 2 are obtained and then the algorithm recurses on each separately. When recursing on ∆ 1 , the new list of variables to lower becomes ∆ new = ∆ 1 and the list of constant variables becomes ∆ 1 new = ∆ 1 + ∆ 2 . The case for recursing on ∆ 2 is symmetric. Once a type assignment satisfies the error bound ε max , the recursion stops. Since several valid type assignments can be found, a cost function is used to select the one with lowest cost. Let us mention that the algorithm is generalized to several precision by first running it with the highest two precision. In the second iteration, the variables which have remained in the highest precision become constant and move to ∆ 1 . The optimization is then performed on the new ∆ considering the second and third highest precision. While this algorithm helps in speeding up the search, this can still lead to a high number of builds and runs of the program.

Despite the fact that Precimonious can handle any program, including programs with loops, it presents several gaps. Unlike POP which optimizes all the variables of the program, Precimonious optimizes only the precision of declared variables. It uses external description files (JSON or XML) to declare which variables in the source code should be explored and which data types have to be investigated. Moreover, it estimates round-off errors by dynamically evaluating the program on several random inputs. By doing so, we can deduce that its approach is not sound and also in general inefficient, because of the large number of program executions needed for a reasonably confident error bound. Comparing to POP which takes several seconds per benchmark (not exceeding few minutes for large ones), Precimonious uses dynamic evaluation to estimate the expected running time. However, this approach is not entirely reliable as running times can vary substantially between runs. Last of all, Precimonious does not use any knowledge on the structure of the program to identify potential variables of interest. This latter limitation has made the subject of several work which extended Precimonious in several manners.

Blame Analysis [RNM + 16] is a dynamic technique which aims at reducing the space of variables of Precimonious. It performs shadow execution to identify variables that are numerically insensitive and which can consequently be excluded from the search space before tuning. The analysis finds a set of variables that can be in single precision, while the rest of the variables are in double precision. However, the output configurations may or may not improve performance, so to use the analysis in practice one must perform runs of the program to determine which configurations actually improve performance. The source code of Blame Analysis can be found at https://github.com/ corvette-berkeley/shadow-execution.

Another dynamic tool sharing some objectives and methodologies of Precimonious is called PROMISE15 (PRecision OptiMISE) [GJP + 19]. It is written in Python and it relies on the CADNA software [START_REF] Jézéquel | CADNA: a library for estimating round-off error propagation[END_REF] to implement the Discrete Stochastic Arithmetic (DSA) verification in C, C++, and Fortran program source code. PROMISE automatically modifies the precision of variables taking into account an accuracy requirement on the computed result. Based on the delta-debugging search algorithm which reduces the search space of the possible variables to be converted, it provides a subset of the program variables which can be converted from FP64 to FP32 only. Meanwhile, PROMISE is able to tune programs only in FP32 single precision and it remains a time-intensive tool.

HiFPTuner [START_REF] Guo | Exploiting community structure for floating-point precision tuning[END_REF] is another extension of the Precimonious tool which uses a hierarchical search approach. It combines a static analysis to create the hierarchical structure in order to minimize the number of type cast operations whereas the dynamic profiling highlights the hottest dependencies. A major limitation is that HiFPtuner's configurations are dependent on the tuning inputs, and no accuracy guarantee is provided for untested
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inputs. Besides, It can be used to tune medium-sized programs only. HiFPtuner is available online at https://github.com/ucd-plse/HiFPTuner. Similar search-based tools CRAFT(Configurable Run-time Analysis for Floating-point Tuning) [START_REF] Michael | Automatically adapting programs for mixed-precision floating-point computation[END_REF][START_REF] Michael | Dynamic floating-point cancellation detection[END_REF] is a framework that performs an automated search of a program's instruction space, determining the level of precision necessary in the result of each instruction to pass a user-provided verification routine assuming all other operations are done in high precision such as FP64 double precision. CRAFT relies on the wellestablished Dyninst binary analysis toolkit 16 to provide instrumented and mixed precision code. The original implementation of the CRAFT framework known as a binary mode version, relies on binary instrumentation and considers the whole program as its scope. Recently, its newer version is able to process the source code of the program and focus only on user-defined variables known as the variable mode version. Like Precimonious, CRAFT uses external description files (JSON or XML) to declare the variables and the data types to explore. While it uses heuristics to sample a fraction of the search space, it can be very time consuming even for very small programs. CRAFT source code is available at github.com/crafthpc/craft. Finally, a tool called fpPrecisionTuning [HMWA17] performs a search over the mixed-precision search space using a user-given error bound, but this tool uses MPFR [FHL + 07] and source code modification to simulate non-standard precision. The source code of is available at github.com/minhhn2910/fpPrecisionTuning.

In summary, all the search-based approaches used for identifying valid mixed-precision configurations are time-intensive. In addition, their approaches does not scale with the number of possible number representations that can be used. Furthermore, discontinuities in the program can trick a greedy algorithm 17 into a local optimum, which may be considerably distant from the global optimum.

GPU Applications-Based Tools

Angerd et al. [START_REF] Angerd | A framework for automated and controlled floating-point accuracy reduction in graphics applications on gpus[END_REF] have described a framework for precision tuning for GPU applications. They investigate an approximation of floating-point values in computer graphics kernels using three different low-precision formats: the IEEE754 formats (specifically FP16 and FP32), the mantissa truncation in which the data types are obtained by truncating mantissa bits from the basic IEEE754 formats, and finally a dynamically selected exponent and mantissa width, which are data types with variable bit width but constant ratio between the number of mantissa bits and that of exponent bits. Angerd et al. [START_REF] Angerd | A framework for automated and controlled floating-point accuracy reduction in graphics applications on gpus[END_REF] extend LLVM with the custom defined data types and transparently converts the floating-point values. While these custom defined data types are not guaranteed to be supported by the target hardware, the proposed approach entails wrapping every memory access instruction to unpack and to pack the data from and to such data types. Consequently, this work is particularly pertinent 16 https://github.com/dyninst/dyninst 17 A greedy algorithm always takes the best immediate, or local, solution while finding an answer.

for architectures where the cache and the memory size are critical, e.g. HPC accelerators. Although the main focus of this framework operates on hardware-heterogeneity-aware programming languages, such as OpenCL, they process the whole computational kernel and do not satisfy any user accuracy requirement on the output.

Not too far from this work concept, the work described by Nobre et al. [NRB + 18] presents a LARA-based approach [CCC + 12] for precision-tuning. It takes an OpenCL kernel as input and it generates and evaluates multiple versions of the input kernel. Those versions exploit mixed-precision data types to achieve performance improvements over the original kernel, while they satisfy a user-defined constraint on the quality of the output. A similar work proposed by Rojek [START_REF] Rojek | Machine learning method for energy reduction by utilizing dynamic mixed precision on gpu-based supercomputers[END_REF] presents a machine-learning based method for the dynamic selection of the precision level for GPU computation. It implements a modified version of the random forest algorithm to decide whether a variable type should be in FP32 or FP64 floating-point (no other data types are considered). Broadly speaking, the tools proposed by Nobre et al. [NRB + 18] and by Rojek [START_REF] Rojek | Machine learning method for energy reduction by utilizing dynamic mixed precision on gpu-based supercomputers[END_REF] operate on GPU kernels by using OpenCL/CUDA programming languages whereas Angerd et al. [START_REF] Angerd | A framework for automated and controlled floating-point accuracy reduction in graphics applications on gpus[END_REF] propose a GPUoriented approach while working within the intermediate representation of the compiler.

Other tools perform a static data flow analysis with a dynamic profiling on the source code. In this setting, AMPT-GA [KSW + 19b] is a tool oriented to GPU applications which combines static analysis for casting-aware performance modeling with dynamic analysis for enforcing precision constraints. Particularly, it performs a profile run of the application to identify the hottest computational kernels which may especially benefit from the precision reduction and a static analysis that only aims at identifying strongly connected variables in the dependency graph to attempt to assign the same data type to group of variables instead of acting on single variables.

GPUMixer [START_REF] Laguna | Gpumixer: Performance-driven floating-point tuning for GPU scientific applications[END_REF] is one more tool designed for GPU kernels. This tool accepts CUDA kernels as input in the form of NVVM-IR intermediate representation 18 , which can be generated by the clang compiler front-end, and replaces the FP64 floating-point operations with FP32. It decides whether to apply the conversion to a code region or not depending on a tunable metric, which is based on the ratio between the number of affected arithmetic instructions and the number of type cast instructions. However, the tool is limited by the fact that the NVIDIA CUDA C programming guide does not specify the cost of all GPU operations.

Other Notable Dynamic Tools

Autoscaler for C [KKS00] is a source-to-source compiler that complies with the ANSI C programming language. Its purpose is to convert every variable to fixed-point by using a data size which guarantees the absence of overflow. It performs an exploratory run over the original floating-point code to obtain an estimation of the dynamic range for each variable. This range estimation analysis is built upon the Stanford University 52
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Intermediate Format (SUIF) compiler system [WFW + 94]. Since the input and output of this translator are ANSI C compliant programs, it can be used for any fixed-point Digital Signal Processors (DSP) that supports ANSI C compiler. Another work not particularly different from the one implemented in [START_REF] Kum | Autoscaler for c: an optimizing floating-point to integer c program converter for fixed-point digital signal processors[END_REF] is described in [CAL + 17]. The proposed method automates the floating-to-fixed point conversion by re-targeting the existing sourceto-source compiler GeCos framework (Generic Compiler Suite) 19 , designed for use with hardware implementations, to produce code suitable for execution in HPC environments.

ADAPT [MLO + 18] (Algorithmic Differentiation Applied to Precision Tuning) uses the reverse mode of algorithmic differentiation [START_REF] Naumann | The Art of Differentiating Computer Programs -An Introduction to Algorithmic Differentiation[END_REF] to determine how much precision is needed in a program inputs and intermediate results in order to achieve a desired accuracy in its output, converting this information into precision recommendations. As the algorithmic differentiation approach views a computer program as a composition of a sequence of arithmetic operations, ADAPT uses this data to capture the propagation of errors through the data flow graph of the computation. It performs aggregation and analysis on this data along with the original computation to determine the floating-point sensitivity of all the variables and operations in the program. Although the fact that ADAPT considers only IEEE754-compliant formats, it provides mixed-precision recommendations that satisfy a specified error threshold without requiring any search-based strategies. The official repository of ADAPT is available at github.com/llnl/adapt-fp. Later, ADAPT alongside CRAFT [LHdSL13b, LHS13] and another tool called Typeforge20 have been incorporated in a framework named FloatSmith [START_REF] Michael | Tool integration for source-level mixed precision[END_REF]. Broadly speaking, ADAPT provides the dynamic analysis of the code, CRAFT looks for the best precision tuning configuration, and Typeforge implements the source-to-source conversion for C/C++ code. FloatSmith is available online at github.com/crafthpc/floatsmith. AMP [SKNS13, NAL + 14] (Automated Mixed Precision) is a profile-driven tool that profiles applications to measure undesirable numerical behavior at the floating-point operation level. AMP takes a single precision application as input and its output is a mixedprecision application in which precision have been chosen to improve accuracy. The limitation of this tool is that it accepts only applications in which all operations are at the minimum precision. Otherwise, they should downgrade all the operations in higher precision (e.g. double precision) to single precision before applying their profiling. Indeed, although AMP monitor and locate numerical faults, it is infeasible to trace and quantify error propagation through every computational sequence of operations. STOKE [SSA14] is a general stochastic optimization and program synthesis tool to handle floating-point computation. Beginning from floating-point binaries produced either by a production compiler or written by hand, the tool 21 shows that through repeated application of random transformations it is possible to produce high performance optimizations that are specialized both to the range of live-inputs of a code sequence and the desired precision of its live-outputs.

More recently, a tool called PyFloaT [BII + 20] has presented a methodology for tuning the precision of full fledged scientific applications written using multiple programming languages: Python, C++, CUDA and Fortran. It uses an instruction-centric analysis that uses call stack information and temporal locality to address the large scale of HPC scientific programs. The tool is available at https://github.com/hbrunie/PyFloT.

We end up the list of the precision dynamic tools by the approach proposed by Yesil et al. [START_REF] Yesil | Toward dynamic precision scaling[END_REF] which is based on a proof concept for DPS (Dynamic Precision Scaling). The purpose of DPS is to run the program on reduced precision floating-point functional units whenever the data can tolerate the degradation, and to dynamically switch to the original floating-point data types when there is the need to preserve the accuracy. Moreover, we cite FloPoCo [START_REF] De | Designing custom arithmetic data paths with flopoco[END_REF] an open source C++ framework at http://flopoco.gforge.inria.fr/. It is a framework written in C++ that generates VHDL code to design custom arithmetic data path of floating-point cores. Also, it generates a synthetizable hardware description according to the parameters specified via C++ code.

The most challenging aspects of the precision tuning tools described in this section are outlined in Table 3.2. In particular, we report the implementation features of each tool such as:

• Input language: corresponds to the language supported by the tool (C, C++, CUDA, LLVM-IR, etc.) POP handles its own imperative language that we highlight in Chapter 4.

• Output language: corresponds to the language returned by the tool after finishing the tuning. We denote by "description" the tools that returns either files (JSON or XML) incorporating the reduced data types (if any) to the declared variables as done in Precimonious [RNN + 13] and CRAFT [START_REF] Michael | Automatically adapting programs for mixed-precision floating-point computation[END_REF][START_REF] Michael | Dynamic floating-point cancellation detection[END_REF] or precision recommendations for variables that their data types should be optimized so as in ADAPT [MLO + 18] and other tools.

• Supported data types: corresponds to the formats considered by each tool. For instance, "fixed" denotes the capability to deal with fixed-point representations, "IEE754" denotes generally the FP32, FP64 and FP128 floating-point formats. "custom" denotes the user-defined data types which are not guaranteed to be supported by a target hardware. Let us recall that our tool POP produces precision at bit-level. The advantage that we have in comparison with other tools is that with the returned number of bits, we are able to represent numbers in any computer arithmetic as well as with libraries implementing arbitrary precision arithmetic such as MPFR [FHL + 07].

• Framework: corresponds to the architectures or bases each tool is built upon. For example, ADAPT [MLO + 18] depends on CoDiPack (Code Differentiation Package)
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which is s a tool for gradient evaluation in computer programs 22 . FPTuner [CBB + 17] depends on Gurobi v6.5 23 which is a commercial optimization solver for linear programming (LP). The dash symbol "-" means that the tool is not based on any framework.

• Type of analysis: which are generally divided into static or dynamic analysis.

• Licence: corresponds to the rights under which each tool is released. For instance, 

ADAPT [MLO + 18] is

Combining Tools

The automated tools that we have discussed are typically complementary, each focusing on a distinct aspect of numerical reliability: error analysis tools, rewriting-based optimization and mixed-precision tuning. As a result, users will need to compose several to meet their development needs. In this section, we illustrate the benefits of composing complementary floating-point tools to achieve results neither tool provides in isolation. Our study reports two sorts of combining tools: combining tools for analysis and optimization and combining tools for rewriting and tuning.

Combining Tools for Analysis and Optimization

The first work that was interested in the combinations of tools is undoubtedly the Daisy tool [ID17, DIN + 18, DHS18, DV19]. It provides in a single tool the main building blocks for accuracy analysis of floating-point and fixed-point computations which have emerged from recent related work. In particular, Daisy extends the approach implemented in Rosa [DK17] by integrating the rewriting capabilities of Xfp [START_REF] Darulova | Synthesis of fixed-point programs[END_REF]. Additionally, it improves with respect to Rosa [DK17] by using a different SMT solver, dReal [START_REF] Gao | dreal: An SMT solver for nonlinear theories over the reals[END_REF] instead of Z3. Daisy integrates several techniques for sound analysis and optimization of finite-precision computations such as:

• Static dataflow analysis for finite-precision round-off error [START_REF] Darulova | Sound compilation of reals[END_REF].

• FPTaylor's optimization-based absolute error analysis [START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF].

• Support for mixed-precision and transcendental functions [START_REF] Darulova | Trustworthy numerical computation in scala[END_REF].

• Rewriting optimization [START_REF] Darulova | Synthesis of fixed-point programs[END_REF].

• Interfaces to several SMT solvers (instead of the Z3 SMT solver [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF] The authors of Daisy and Herbie have worked together to combine their tools in [START_REF] Becker | Combining tools for optimization and analysis of floating-point computations[END_REF]. While Herbie optimizes the accuracy of straight-line floating-point expression, it employs a dynamic round-off error analysis and thus cannot provide sound guarantees on the results. Consequently, its combination with Daisy can help to check whether its unsound optimizations improved the worst-case round-off error or not. Meanwhile, this method do not handle loops and conditionals yet. This combination of tools is implemented as a script in the FPBench repository https://github.com/FPBench/FPBench.

Combining Tools for Rewriting and Tuning

The combining tools that interest us the most and may have a direct impact on our work are certainly those which combine mixed-precision tuning and rewriting. We recall that the main insight of rewriting techniques is to search through different evaluation orders to find one which minimizes the round-off error at no additional run-time cost. The mixedprecision tuning techniques aim to choose the smallest data type which still provides sufficient accuracy in order to save valuable resources like time, memory or energy. In this context, Anton is the first fully automated tool [START_REF] Darulova | Sound mixed-precision optimization with rewriting[END_REF] that combined these two techniques in one single tool. The rewriting step is inspired from the xfp tool [START_REF] Darulova | Synthesis of fixed-point programs[END_REF]. For the mixed-precision tuning step, Anton uses a variation of the delta-debugging algorithm used by Precimonious [RNN + 13]. It starts with all variables in the highest available precision and attempts to lower variables in a systematic way until it finds that no further lowering is possible while still satisfying the given error bound. Although Anton tried to reduce its search space by using a static sound error analysis as well as a static performance cost function, the technique is limited to rather small programs that can be verified statically.

Another study to find an efficient precision with a better accuracy of variables of programs was presented in [START_REF] Damouche | Mixed precision tuning with salsa[END_REF]. It consists of the former work of Martel [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] combined with the Salsa optimizing tool [START_REF] Damouche | Amélioration de la précision numérique de programmes basés sur l'arithmétique flottante par les méthodes de transformation automatique[END_REF]. The principle of this study is to apply the forward and backward error analysis by abstract interpretation approach [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] to compute the least floating-point formats on the benchmarks of Salsa. Similarly to the Anton [DHS18] tool, their rewriting technique is performed before the mixed-precision tuning. Their results showed that the precision of the programs has been minimized by an average factor of 60% and also by optimizing the precision and the accuracy, an improvement of the execution time was also observed.

Only a few months ago, the developers of the optimizing tool Herbie have introduced the Pherbie tool [SFN + 21], short for Pareto Herbie 24 . The originality of this new tool is that it performs precision tuning and rewriting at the same time. Also, it adapts and extends techniques from Herbie to automatically generate a set of candidate implementations, and derive a Pareto-optimal accuracy versus speed trade-off, for a given floating-point expression. Pherbie implements precision tuning by introducing rewrites that cast candidate sub-expressions to different precision. As Herbie only considers implementations over a single uniform precision, Pherbie provides multi-precision implementations e.g. instead of a single sqrt operator, it provides sqrt f loat32 , sqrt f loat64 , sqrt posit16 , etc. Unlike our work, the analysis time of this tool can be exponential in the case of large programs containing a lot of expressions to rewrite which results in many new candidate implementations to manage and many calls to the Herbie tool.

Summary

We reviewed in this chapter research work related to the precision tuning tools. We have extended our review to the analysis and optimizing tools by code transformations. By and large, existing methods for precision tuning suffer from several limitations. As we have described in this chapter, the major drawback of the static analysis tools is fundamentally their incapacity to tune large codes with conditionals and loops. Nevertheless, a large amount of the dynamic tools follow a trial-and-error strategy by reducing the precision of arbitrary chosen variables and executing or analyzing statically the program to see the new accuracy. Besides, these tools are time and memory consuming.

In our thesis, we propose a new tool radically different from what have been presented before. POP implements a static analysis method relying on a modeling of the propagation of the errors throughout the code. Besides, we went further in the implementation task by integrating two variants of this method, each variant corresponds to a version of POP. The upcoming chapters 4 and 5 introduces these methods whereas Chapter 6 outlines the steps of construction POP. I n our review of the state of the art, we showed that the major limitation of the existing techniques is to use a trial-and-error approach, while they differ in the way of evaluating the accuracy of programs and reducing the exponential search space. The objective of this chapter is to introduce a new method for precision tuning, radically different from the state-of-the-art techniques and which belongs to the family of tools based on static analysis.

Part II

A Static Precision

Our approach is based on a semantic modelling of the propagation of the numerical errors throughout the program source. This yields a system of constraints whose minimal solution gives the best tuning of the program. Based on a static analysis approach, we formulate the problem of precision tuning with two different methods. Each method expresses differently the set of constraints generated by our tool POP and consequently describes a contribution of this thesis. In this chapter, we note the first method as SMTbased method and Integer Linear Problem method or ILP-based method for the second one. These notations will be used all along this dissertation.

The SMT-based method combines a forward and a backward error analysis which are two popular paradigms of error analysis. The forward analysis is classical and it examines how errors are magnified by each operation in the program in order to determine the accuracy on the results. Next, a user accuracy requirement is given denoting the number of significant bits (nsb, see Definition 2.2) wanted at some control points for the outputs. By taking into consideration the user assertions and the results of the forward analysis, the backward analysis is a complementary approach that starts with the computed answer to determine the exact precision on the inputs with respect to the desired accuracy. As could be expected, the forward and backward analysis can be handled iteratively to refine the results until a fixpoint is reached. Finally, these forward and backward transfer functions are expressed as a set of linear constraints made of propositional logic formulas and relations between integer elements only, checked by a SMT solver [START_REF] De | Satisfiability modulo theories: Introduction and applications[END_REF]. The generation of constraints will be highlighted in Chapter 5. As a result, the tuned program is guaranteed to use variables of lower precision with a lower number of bits than the original program. This approach is implemented in the first version of our tool which is introduced further in Chapter 6. We note that the idea of the SMT-based method was first introduced by Martel in [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF].

The ILP-based method presents a relaxation of the system of constraints generated by the SMT-based method. It comes from the idea of changing the SMT-solver in order to solve the problem of precision tuning more efficiently. The originality of this technique is to generate an Integer Linear Problem (ILP) from the program source code. Basically, this is done by reasoning on the most significant bit (ufp given in Equation (2.4)) and the number of significant bits of the values which are integer quantities. The integer solution to this problem, computed in polynomial-time by a classical linear programming solver, gives the optimal data types at the bit-level. We note that the ILP-based method relies on the same transfer functions (concrete semantics) defined in the present chapter. The only difference is that we apply a one-way analysis, mainly the backward analysis. With this approach we refine the number of constraints and variables generated. The ILP-based method is also embodied in our tool POP which will be described later in Chapter 6, while a detailed comparison between the two methods will be presented in Chapter 9. The main contributions of this chapter are:

• First, we define the transfer functions for the operations of the source program.

What sets our tool apart from Martel's work is the extension of our language to the trigonometric functions, the square root function alongside to the four elementary operations for which we give the correctness proofs. As another extension of our tool, we accept programs with arrays and matrices.

• Second, we refine the carry bit function that can occur throughout the program computations. Before this thesis, previous methods [START_REF] Muller | On the definition of ulp(x)[END_REF][START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] were too conservative in their analysis by assuming that a carry bit can be propagated at each operation of the program. Consequently, this function becomes very costly in large codes that perform a lot of computations and therefore the errors would be considerable. In this work, we define a more precise carry bit function in order to refine the obtained data types. This step is considered as a major contribution of our analysis.

We must admit that this chapter is extremely theoretical containing precise technical definitions in order to describe the forward and backward transfer functions. The remainder of this chapter is organized as follows. Section 4.1 introduces the imperative language of our input programs. We define in Section 4.2 the forward and backward transfer functions for the arithmetic expressions, and, in Section 4.3, the elementary functions. Section 4.4 reports the proposed optimization on the carry bit that can occurs through the program computations. Finally, Section 4.5 concludes.

The content of this chapter is a revised version of the article [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] published at the 7 th International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS) in 2019.

Language and Overview

In this section, we describe the language of the input programs from which we generate semantic equations in order to determine the least precision needed for the numerical values of programs. Let us state that POP handles loops, conditionals and arrays in contrast to the existing static tools for precision tuning already highlighted in Chapter 3. Now, we move to an overview of how we perform the tuning of a program written using the grammar of Figure 4.1. First of all, we assign to each control point two kinds of integer parameters: the ufp of the values and three integer variables corresponding to the forward, the backward and the final accuracies, denoted respectively by nsb F ( ), nsb B ( ) and nsb( ), so that the inequality in Equation (4.1) is always verified. Hence, we notice that in the forward mode, the accuracy decreases contrarily to the backward mode when we strengthen the post-conditions (accuracy increases).

= c#p | x | e 1 1 d e 2 2 | math(e 1 ) | sqrt(e 1 ) Cmd Q c : c ::= c 1 1 ; c 2 2 | x = e 1 | while b 0 do c 1 1 | if b 0 then c 1 1 else c 2 | create_vector(v, s) | create_matrix(m, r, c) | require_nsb(x, n)
0 ď nsb B ( ) ď nsb( ) ď nsb F ( ) (4.1)
Remark 4.1. We must precise that Equation (4.1) is added only to the global system of constraints of the SMT-based method in which we combine a forward and a backward error analysis. We recall to the reader that when we formulate the problem as an ILP, we rather apply a one-way analysis instead of the forward and backward ones and consequently we will assign at each control point only the integer variable nsb. More details will be given in Chapter 5. Some points can be highlighted about this example. For instance, the variables a and x are initialized respectively to the values 1.0 and 0.0, annotated with their control points thanks to the following annotations a 1 = 1.0 0 and x 5 = 0.0 4 in the center part of Listing 4.1. As well, we have the statement require_nsb(x,20) 28 which informs the tool that the user wants to get on variable x only 20 significant bits. We remind the reader that we consider that a result has n significants if the relative error between the exact and approximated results is less than 2 ´n. As a consequence, the minimal precision needed for the inputs and intermediary results satisfying the user assertion is given on the right hand side of Listing 4.1. Since, in this example, 20 bits only are required for x, the result of the addition x + a also needs 20 accurate bits only. By combining this information with the result of the forward analysis, it is then possible to lower the number of bits needed for one of the operands. The tuned program is depicted in the right hand side of Listing 4.1.

In the sequel, we present the transfer functions of the different statements of our language that allow us to obtain the new optimized data types.

Arithmetic Expressions

In this section we refine the computations of the forward and backward transfer functions for the cases of the addition and the multiplication done in [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF]. The novelty of this work is that we are more precise in the propagation of the carry bits. We also present the forward and backward transfer functions for the subtraction and the division operations as well as for the trigonometric functions and the square root function. These functions are defined using the quantities ufp, ulp, nsb, nsb e and ulp e already defined in Chapter 2. Next, these functions will be formalized as a set of constraints made of propositional logic formulas and affine expressions among integers. We remind that our technique is independent of a particular computer arithmetic. In fact, we manipulate numbers for which we know the unit in the first place (ufp), thanks to a range determination performed by dynamic analysis on the variables of our programs, and the number of significant digits (nsb) of the result which is given by the user of our tool.

Forward Analysis

We introduce the forward transfer functions corresponding to the addition Ý Ñ ' , subtraction Ý Ñ a , multiplication Ý Ñ b and division Ý Ñ c of two numbers x and y. Each operation between these numbers whose result is the number z have respectively two parameters nsb(x), nsb e (x), nsb(y), nsb e (y), nsb(z) and nsb e (z). We recall that the parameters nsb(x), nsb(y) and nsb(z) denote the number of significant bits for x, y and z respectively. For nsb e (x), nsb e (y) and nsb e (z), we denote by these parameters the number of significant bits of the computation errors on x and y and their result z respectively (definitions previously detailed in Chapter 2). All these parameters will allow us to add a carry bit only when necessary (details are given in Section 4.4).

In addition, in distinction to [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF], we take into consideration in our analysis the truncation errors in order to be more precise through the computations due to the rounding of the operations [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF]. We denote the truncation errors by ε + , ε ´, ε ˆand ε ˜for the addition, the subtraction, the multiplication and the division operations respectively. These errors depend on the precision of the operations. For example, if we perform an addition in the FP64 double precision, we obtain that ε + ď 2 ´53 . The truncation error is defined hereafter in Definition 4.1.

Definition 4.1 (Truncation Error

). Let us consider the addition of two numbers x and y whose result of addition is z. As in the IEEE754 standard, the truncation error ε + for the rounding mode towards the nearest Ò " is given by ε + ď 2 1 2 ulp(z) . Thus, we deduce from Equation (2.6) that ulp(z) = ufp(z) ´prec(+) + 1 where prec(+) presents the precision of the operator + given as shown:

ε + ď 2 ufp(z)´prec(+) . (4.2)
Now, we move to define the forward transfer functions for the addition, subtraction, multiplication and division respectively in definitions 4.2, 4.3, 4.4 and 4.5. Definition 4.2 (Forward Addition). Let x and y be two numbers whose result of addition is z. The forward addition Ý Ñ ' is given as shown in Equation (4.3).

Ý Ñ ' (x, y) = z where nsb(z) = ufp(x + y) ´ufp(2 ufp(x)´nsb(x)+1 + 2 ufp(y)´nsb(y)+1 + 2 ufp(z)´prec(+) ) . Intuitively, nsb(z) is the number of bits between ufp(z) and ufp e (z). Since ufp(z) = ufp(x + y) and ufp e (z) = ufp(2 ufp(x)´nsb(x)+1 + 2 ufp(y)´nsb(y)+1 + 2 ufp(z)´prec(+) ), we obtain Equation (4.3). In the forward addition case, we have 2 ufp(x) ď x ă 2 ufp(x)+1 and 2 ufp(y) ď y ă 2 ufp(y)+1 and the truncation error ε + ď 2 ufp(z)´prec(+) . Thus, we assume that the total error on z given by ε z + is computed as

ε z + = ε x + ε y + ε + .
Example 4.2. Let x = 3.0, y = 1.0 and z the result of their addition. We assume that these variables are in FP64 double precision before analysis and that require_nsb(z,23). The result of the forward addition has nsb F = 54 bits at bit-level since Ý Ñ ' (3.0|53|, 1.0|53|) = 4.0|54|. Ý Ñ a (x, y) = z where nsb(z) = ufp(x ´y) ´ufp(2 ufp(x)´nsb(x)+1 ´2ufp(y)´nsb(y)+1 ´2ufp(z)´prec(´) ) . +2 ufp(y)+1 ¨2ufp(x)´nsb(x)+1 + 2 ufp(x)´nsb(x)+1 ¨2ufp(y)´nsb(y)+1 + 2 ufp(z)´prec(ˆ) ) . (4.5)

We assume that the error ε z ˆof the multiplication of two numbers x and y whose result is z is ε z ˆ= y . ε x + x . ε y + ε x . ε y + ε ˆwhere ε ˆis the truncation error for the multiplication and is equal to ε ˆď 2 ufp(z)´prec(ˆ) (for the rounding mode towards Ò " ) and where prec(ˆ) represents the precision of the operator ˆ. So, the error ε z ˆcan be bounded as shown in Equation (4.6). We have: 2 ufp(x) ď x ă 2 ufp(x)+1 and 2 ufp(y) ď y ă 2 ufp(y)+1 and consequently, ε z ˆă 2 ufp(x)+1 ¨2ufp(y)´nsb(y)+1 + 2 ufp(y)+1 ¨2ufp(x)´nsb(x)+1 + 2 ufp(x)´nsb(x)+1 2ufp(y)´nsb(y)+1

+ 2 ufp(z)´prec(ˆ) thus, ε z ˆă 2 ufp(x)+ufp(y)´nsb(y)+2 + 2 ufp(x)+ufp(y)´nsb(x)+2 + 2 ufp(x)+ufp(y)´nsb(x)´nsb(y)+2 +2 ufp(z)´prec(ˆ) .

Since ufp(x) + ufp(y) ´nsb(x) ´nsb(y) + 2 ă ufp(x) + ufp(y) ´nsb(y) + 2 and ufp(x) + ufp(y) ´nsb(x) ´nsb(y) + 2 ă ufp(x) + ufp(y) ´nsb(x) + 2, we may get rid of the penultimate term of the former equation and finally we obtain ε z ˆă 2 ufp(x)+ufp(y)´nsb(y)+2 + 2 ufp(x)+ufp(y)´nsb(x)+2 + 2 ufp(z)´prec(ˆ) .

(4.6) Remark 4.2. If we assume that our analysis can make underflow in the multiplication between two numbers x and y whose result is z, which means that z = 0 while x ‰ 0 and y ‰ 0 then we can use the the truncation error ε ˆdefined in Equation (4.7) and thus Definition 4.4 remains valid. For the division x y , the approach consists in computing the reciprocal of the divisor y (with rounding to nearest) where no loss of precision is considered as shown in Equation (4.8). After, we proceed by multiplying the obtained result y 1 by x (same principle as in Equation (4.5)). The reason why no round-off is done in the inverse operation is that we consider, as in the IEEE754 Standard, that the division only performs one round-off error. This latter is taken into account in the multiplication and we wish to avoid a double rounding.

ε ˆď # 2 ufp(z)´prec(ˆ) if x ˆy ‰ 0, 2 ufp(z) otherwise. ( 4 

Backward Analysis

In the following we introduce the backward transfer functions Ð Ý ' , Ð Ý a , Ð Ý b and Ð Ý c respectively for the addition, subtraction, multiplication and division. These functions take advantage of the results of the forward analysis and the accuracy requirement on the results. By combining these two data, it is then possible to lower the number of bits needed for one of the operands. In the sequel, we consider that the operand x is unknown where the result z and the operand y are known. The backward functions for the proposed elementary operations are given by the following definitions. Definition 4.6 (Backward Addition). The backward transfer function for addition Ð Ý ' between two numbers x and y whose result is z is given by Equation (4.9).

Ð Ý ' (z, y) = (z ´y) with nsb(x) = ufp(z ´y) ´ufp(2 ufp(z)´nsb(z)+1 ´2ufp(y)´nsb(y)+1 ´2ufp(x)´prec(+) ) . To obtain Equation (4.9), we assumed that x is unknown while the result z is known. As mentioned earlier, the error of the result and the operand errors can be bounded by ε z ă 2 ufp(z)´nsb(z)+1 and that ε y ă 2 ufp(y)´nsb(y)+1 . Finally, we compute the number of significant bits nsb(x) of the operand x with respect to the user accuracy requirement and the forward analysis result. Now, we take again Example 4.2. We have two data available: the forward accuracy of the result z given as nsb F (z) = 54 bits and the user accuracy requirement on z given by nsb = 23 bits. By combining these two knowledge, we obtain that Ð Ý ' (4.0|23|, 1.0|53|) = 3.0|25|.

Definition 4.7 (Backward Subtraction). The backward transfer function for subtraction Ð Ý a between two numbers x and y whose result is z is given by Equation (4.10).

Ð Ý a (z, y) = (z + y) with nsb(x) = ufp(z + y) ´ufp(2 ufp(z)´nsb(z)+1 + 2 ufp(y)´nsb(y)+1 +2 ufp(x)´prec(´) ) .

(4.10)

We know that the round-off errors are bounded as ε z ă 2 ufp(z)´nsb(z)+1 and ε y ă 2 ufp(y)´nsb(y)+1 and the truncation error ε ´ď 2 ufp(x)´prec(´) where prec(´) denotes the precision of the operator ´. Consequently, the total error on z is ε z ´= ε x ´εy ´ε´. In the case of multiplication, we know that Ð Ý b (z, y) = (z ˜y) with nsb(x) = ufp(z ỹ) ´ufp(ε z ˆ) and where the truncation error ε ˆď 2 ufp(x)´prec(ˆ) and thus the error ε z îs bounded as it is shown in Equation ( 4 In case of division, we assume that the dividend x is unknown where the quotient z and the divisor y are known. Equation (4.12) shows that the backward division is equal to the forward multiplication between z and y as defined in Equation (4.5).

Elementary Functions

The elementary functions such as the natural logarithm, the exponential functions and the hyperbolic and trigonometric functions are not included in any arithmetic Standard when compared to the square root function which is included in the IEEE754 Standard. For this reason, each implementation of these functions has its own accuracy which we have to know in order to model the propagation of errors in our forward and backward analysis. To cope with this limitation, we consider that each elementary function introduces a loss of precision of ϕ bits, where ϕ P N is a parameter of the analysis. For instance, we define in equations (4.13) and (4.14) the forward and backward transfer functions for the sine function. which means that nsb(3.0) ě nsb(sin) + ϕ.

For the remaining functions: cos, tan, arcsin, arccos, arctan, log and exp, we proceed with the same manner as for the sine function by assuming that ϕ bits can be lost through computations. Currently, we have a new idea to handle these elementary functions. In practice, we will reverse the problem by assuming that the parameter ϕ is another unknown of our system of constraints. In other words, the number of bits to lose will be computed in function to the user accuracy requirement on the outputs of the program.

Remark 4.3. The principle of analysis for the trigonometric function will remain the same when we translate the precision tuning problem into an integer linear programming problem in Chapter 5.

In the sequel, we present in equations (4.15) and (4.16) the forward and backward transfer functions for square root function. Definition 4.12 (Forward Square Root). Let x and z two numbers and let prec( a ) the precision of the operation. The forward transfer function for the square root of x is denoted by Ý Ñ ?

x and is given by x of a number x is given by

Ý Ñ ? x = z where nsb(z) = ufp(z) ´ufp(2 ufp(x)´nsb(x)+1 + 2 ufp(z)´prec( ? ) ) . ( 4 
Ð Ý ? z = x where nsb(x) = ufp(z 2 ) ´ufp(2 ufp(z 2 )´nsb(z)+1 ´2ufp(x)´prec( ? ) ) . (4.16)
Obviously, our static analysis does not work only on scalar values but on intervals instead. As described in [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF], we abstract sets of values by intervals. An element i 7 P I nsb corresponds to i 7 = [ f , f ] nsb and is defined by two numbers and a number of significant bits nsb.

I nsb Q [ f , f ] nsb = t f ď f ď f u .
(4.17)

In addition, we write

I = Ť nsb P N I nsb . The operations Ý Ñ ' 7 , Ð Ý ' 7 , Ý Ñ a 7 , Ð Ý a 7 , Ý Ñ b 7 , Ð Ý b 7 , Ý Ñ c 7 and Ð Ý c 7 among values of I nsb are already defined in [Mar17] in function of Ý Ñ ' , Ð Ý ' , Ý Ñ a , Ð Ý a , Ý Ñ b , Ð Ý b , Ý Ñ c
and Ð Ý c already defined in this chapter. We refer the reader to [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] for a full description and details.

In the next section, we introduce the function which computes the carry bit that can occur throughout a program operations.

Carry Bit Function

A definition of the carry bit function denoted by ξ is given in this section. By this definition, we attempt to be more efficient in the way we propagate errors across the arithmetic operations than in previous work [START_REF] Muller | On the definition of ulp(x)[END_REF][START_REF] Martel | Floating-point format inference in mixed-precision[END_REF].

In practice, during an operation between two numbers x and y, a carry bit can be propagated through the operation. Proposition 4.1, already presented and proved in [START_REF] Muller | On the definition of ulp(x)[END_REF], is considered as correct but pessimistic (too large over-approximation) due to the fact that adding an extra bit specially for cases we should not to, becomes very costly if we perform many computations. Proposition 4.1 (Over-approximated Carry Bit). Let x and y two numbers and let z be the result of their addition. We have in the worst case a carry bit that can occur through this operation.

ufp(z) ď max(ufp(x), ufp(y)) + 1 .

(4.18)

In Martel's work [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF], a new carry bit function ξ was presented in order to refine Equation (4.18). His method compares the unit in the first place of the operands of the operation and adds an extra bit only if they are equal, in other words, when the two numbers are aligned. While this optimization is correct but it misses precision. The methodical difference between the former definition and our new definition of function ξ depicted in Figure 4.3 is that we take into consideration the unit in the first places as well as the unit in the last places of the two errors of the operands and we add an extra bit only if we are certain that the ulp e (defined in Equation (2.8)) of one of the operands is lesser than the ufp e (defined in Equation (2.7)) of the other operand or conversely.

In this dissertation and specially in Chapter 5 we will prove that our new definition improves significantly the accuracy of the static analysis by being less pessimistic. We must precise that the basic contribution of the ILP-based method relies on this definition of ξ function. We will show in the next chapter a detailed comparison between the over-approximated and the optimized carry bit functions and how this function has an effect on the linearity of the constraints and on the new data types returned by the analysis.

Summary

The contribution of this chapter revolves around the forward and backward transfer functions. The information collected by our analysis allows us to compute the minimal number of bits needed for the variables and intermediary results of programs in order to fulfill the requirements specified by the user. Indeed, we have extended this methodology to other language structures in particular loops 1 , conditions, arrays, elementary functions and other arithmetic expressions. Besides, we have considered that a range determination is performed by dynamic analysis on the variables of our programs and that no overflow arises during our analysis.

In the next chapter we will express our analysis as a set of constraints. The first set of constraints is made of first order predicates and affine integer relations only, even if the analyzed programs contain non-linear computations. These constraints are fully based on the presented transfer functions. Finally, these constraints can be easily checked by a SMT solver.

The second set of constraints is different from the one generated by the SMT-based method. The precision tuning will be expressed as an ILP formulation. The transfer functions remain valid but in only the backward analysis. The new ILP-based method will be easier to solve in an efficient way. 1 The commands will be discussed in Chapter 5 W e introduce in the present chapter the constraints generated by our tool to determine the precision of the variables and intermediary values of the input programs. In fact, the transfer functions defined in the previous chapter are not translated directly into constraints because the resulting system would be too difficult to solve: it contains floating-point numbers and non-linear constraints. To cope with this limitation, we propose in this chapter two constraint systems. The first set of constraints corresponds to the SMT-based method. It is made of first order predicates and affine integer relations only, even if the analyzed programs contain non-linear computations (e.g. min and max functions). As a consequence, these constraints are easy to solve by a SMT solver repeatedly to find the existence of a solution with a certain weight expressing the number of significant bits (nsb) of variables. Chapters 7 and 8 evaluate this method implemented in our tool POP on several benchmarks.

As we have mentioned, our goal is to make our analysis simpler in order to make solvers work efficiently. For this reason, the second set of constraints reduces the precision tuning problem into an Integer Linear Programming (ILP) problem. By reasoning on the number of significant bits of the variables of the programs and knowing the weight of their most significant bit thanks to a range analysis performed before the tuning phase, we are able to reduce the precision tuning problem to an ILP which can be optimally solved in one shot by a classical linear programming (LP) solver (no iteration). An important point is that the optimal solution to the continuous linear programming relaxation of our ILP is a vector of integers, as demonstrated in Section 5.3.2. By consequence, we may use a linear solver among real numbers whose complexity is polynomial [START_REF] Schrijver | Theory of linear and integer programming[END_REF] (contrarily to the linear solvers among integers whose complexity is NP-hard [START_REF] Papadimitriou | On the complexity of integer programming[END_REF]). This makes our ILP-based method solvable in polynomial-time, contrarily to the existing exponential methods and the SMT-based method. Next, we go one step further by introducing a second set of semantic equations. These new equations make it possible to tune even more the precision by being less pessimistic on the propagation of carries in arithmetic operations. However, the problem does not reduce any longer to an ILP problem (min and max operators are needed). Then we use the policy iteration (PI) technique [CGG + 05] to find efficiently the solution.

The remainder of this chapter is organized as follows. Section 5.1 presents the constraints for the SMT-based method. Section 5.2 deals with the ILP-based method and the policy iteration method for an optimized carry bit propagation. The proofs of correctness are reported in Section 5.3, while Section 5.4 concludes. This work is mostly based on the articles published respectively at the 7 th International Workshop on Formal Techniques for Safety-Critical Systems (FTSCS) in 2019 [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] (Section 5.1) and the 28 th Static Analysis Symposium (SAS) in 2021 [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF] (Section 5.2).

SMT-Based Method Constraint Generation

In this section, we introduce the constraints generated by our tool for the SMT-based method. In our analysis, we assume that a range analysis is performed before the accuracy analysis and that a bounding interval is given for each variable and each value at any control point of the input programs. For the sake of clarity, we insist on the fact that our tool achieves precision tuning only. The inputs are the program and the ranges of the variables of the program. Those ranges are understood as intervals. This range inference is completely external to our tool and has to be performed by an invariant generator or an analyzer. Nevertheless, our tool POP offers a dynamic analysis which produces an under-approximation under the form of intervals. Static analyzers with sophisticated abstract domains could be used instead such as [CCF + 05]. In particular the efficiency of our techniques for loops depends on the precision of the range analysis for loops. Using a static analyzer to determine ranges of the variables shall be left to future work.

Let us also mention that, in order to avoid cumbersome notations, the constraints 5. Generation of Constraints for Bit-Level Tuning 77 introduced hereafter assume that the programs handle scalar values instead of the intervals given by the range analysis. A generalization to intervals is introduced in [Mar17] for a comparable set of constraints. In the sequel, we start explaining the constraints for the forward operations. We are interested in proving the constraints for the addition and the multiplication. The principle remains the same for all the other arithmetic expressions.

Forward Analysis

Forward addition If we have the following addition z = x + y then the total error is equal to ε z + = ε x + ε y + ε + . Now, in order to apply Definition 4.14, we will decompose the total error ε z + into two errors:

• Round-off error ε xy = ε x + ε y given by ufp(ε xy ) ă max(ufp(x) ´nsb(x) + 1, ufp(y) ´nsb(y) + 1) + ξ(ufp(x) ´nsb e (x) + 1, ufp(y) ´nsb(y)) , (5.1) 
• Truncation error already defined in Equation (4.2).

By adding these two errors, we obtain that ufp(ε z + ) ă max ufp(x) ´nsb(x) + 1, ufp(y) ´nsb(y) + 1, ufp(z) ´σ+ +ξ(ufp e (x) ´nsb e (x) + 1, ufp(y) ´nsb(y)) .

(5.2)

Note that, since we assume that a range analysis has been performed before the accuracy analysis, ufp(x + y), ufp(x) and ufp(y) are known at constraint generation time. Consequently, we conclude from Equations (5.2) that the number of significant bits nsb(z) can be bounded as shown in Equation (5.3). nsb(z) = ufp(x + y) ´max ufp(x) ´nsb(x) + 1, ufp(y) ´nsb(y) + 1, ufp(z) ´σ+ ´ξ(ufp e (x) ´nsb e (x) + 1, ufp(y) ´nsb(y)) .

(5.3)

Now, what remains to be done is to determine nsb e (z) of the addition. This is why, we need to compute ulp( z + ) as shown in Definition (5.1).

Definition 5.1 (Unit in

The Last Place of an Addition Operation). Let x, y and z three numbers such that z = x + y . Let ε z + the total error of the addition. We define ulp(ε z + ) as the smallest ulp between the two operand errors ulp(ε x ) and ulp(ε y ). This definition is given below in Equation (5.4).

ulp(ε z + ) = min ulp(ε x ), ulp(ε y ) .

(5.4)

Forward multiplication

We proceed by describing the constraint generated for the multiplication. Let us take again Equation (4.6). We proceed as we did in the case of addition by decomposing the total error ε ˆinto the round-off error ε xy = ε x + ε y and the truncation error ε ˆ.

We have the round-off error ε xy can be bounded by (5.5)

Then the total error ε z ˆmay be bound by ufp(ε z ˆ) ď max ufp(x) ´nsb(x) + 1, ufp(y) ´nsb(y) + 1, ufp(z) ´σ+ +ξ(ufp(x) ´nsb e (x) + 1, ufp(y) ´nsb(y)) .

(5.6)

By assuming that ufp(x ˆy), ufp(x), ufp(y) and ufp(z) are known at constraint generation time thanks to a range analysis, we present the number of significant bits on z in Equation (5.7). (5.7)

Note that, by reasoning on the exponents of the values, the constraints resulting from a multiplication operation become linear. Next, like we have done in Equation (5.4) we define the unit in the last place of ε z ˆin Definition (5.2). Definition 5.2 (Unit in the Last Place of a Multiplication Operation). Let x, y and z three numbers such that z = x ˆy . Let ε z ˆthe total error of the multiplication. Thus, we define ulp(ε z ˆ) as

ulp(ε z ˆ) = ulp( x ) + ulp( y ) .
(5.8)

Backward Analysis

By reasoning in the same way, we linearize the computations for the backward addition and multiplication operations.

Backward addition

We consider now the backward transfer functions, depending on Equation (4.9) for the addition case. We know that nsb(x) = ufp(z ´y) ´ufp(ε z ´εy ´ε+ ). So, we can over-approximate ε z thanks to the relations ε z ă 2 ufp(z)´nsb(z)+1 , ε y ě 0 and ε + ě 0 and consequently nsb(x) = ufp(z ´y) ´ufp(z) + nsb(z) .

(5.9)

we explain the constraint of nsb( ) and it will be equivalent for the other bound nsb( ).

We have the precision nsb( 13 ) which is equal to the number of bits between the ufp( 13 ) and the maximum precision of one of the two operands which are also computed as the difference of their ufp and their precision respectively. While we have nsb F ( 13 ) = 53, then by applying Equation (5.2) we obtain that

ε( 13 ) ď max max (ufp(1.0) ´nsb F ( 11 ), ufp(1.0) ´nsb F ( 12 )) + ξ, ufp( 13 ) ´σ+ + ξ .
After taking a closer look at the SMT-based method, we have remarked that these constraints can be formulated in a simpler way making it possible to use an optimizing solver which returns the solution in polynomial-time, instead of the non-optimizing SMT solver coupled to a binary search used to solve the previous constraints. For all these reasons, we present the ILP-based method in the next section.

ILP-Based Method Constraint Generation

In this section, we detail the ILP-based method. Also, we show the nature of constraints obtained when using a pure ILP with an over-approximated carry bit and the more complex PI formulation which optimizes the carry bits that propagate throughout computations.

Pure ILP Formulation

In this section, we show that we are able to reduce the problem of determining the lowest precision on variables and intermediary values in programs to an ILP by reasoning on their unit in the first place (ufp) and the number of significant bits (nsb).

In contrast to the SMT-based method, we assign to each control point a unique integer variable nsb( ) (instead of three variables as shown in Equation (4.1) corresponding to the nsb of the arithmetic expression. Note that nsb( ) is determined by solving the ILP problem generated by the rules of Figure 5.1. We remind the reader that the constraints introduced hereafter handle only scalar values.

Let us now focus on the rules of Figure 5.1. These rules are designed for the grammar already presented in Figure 4.1. We have : Id Ñ Id ˆLab an environment which relates each identifier x to its last assignment x : Assuming that x := e 1 is the last assignment of x, the environment maps x to x . Then, E [e] generates the set of constraints for an expression e P Expr in the environment .

In the sequel, we formally define these constraints for each element of our language. No constraint is generated for a constant c#p as mentioned in Rule (CONST) of Figure 5.1. For Rule (ID) of a variable x , we require that the nsb at control point is less than its nsb in the last assignment of x given in (x). For a binary operator d P {+, -, ˆ, ˜}, we first generate the set of constraints E [e 1 1 ] and E [e 2 2 ] for the operands at control points 1 and 2 . Considering Rule (ADD), the result of the addition of two numbers is stored in control point . Recall that a range determination is performed before the accuracy analysis, ufp( ), ufp( 1 ) and ufp( 2 ) are known at constraint generation time.
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E [c#p ] = H (CONST) E [x ] = nsb( (x)) ě nsb( ) ( (ID) E [e 1 1 + e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ] Y tnsb( 1 ) ě nsb( ) + ufp( 1 ) ´ufp( ) + ξ( )( 1 , 2 ), nsb( 2 ) ě nsb( ) + ufp( 2 ) ´ufp( ) + ξ( )( 1 , 2 )u (ADD) E [e 1 1 ´ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ] Y tnsb( 1 ) ě nsb( ) + ufp( 1 ) ´ufp( ) + ξ( )( 1 , 2 ), nsb( 2 ) ě nsb( ) + ufp( 2 ) ´ufp( ) + ξ( )( 1 , 2 )u (SUB) E [e 1 1 ˆ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ] Y tnsb( 1 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1, nsb( 2 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1u (MULT) E [e 1 1 ˜ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ] Y tnsb( 1 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1, nsb( 2 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1u (DIV) E a e 1 = E [e 1 1 ] Y nsb( 1 ) ě nsb( ) ( (SQRT) 
E φ e 1 = E [e 1 1 ] Y nsb( 1 ) ě nsb( ) + ϕ ( with φ P tsin, cos, tan, log, . . .u (MATH)

C x:= e 1 = C, [x Þ Ñ ] where C = E [e 1 1 ] Y tnsb( 1 ) ě nsb( )u (ASSIGN) C c 1 1 ;c 2 2 = C 1 Y C 2 , 2
where

C 1 , 1 = C c 1 1 and C 2 , 2 = C c 2 2 1 (SEQ) C[if e 0 then c 1 else c 2 ] = (C 1 Y C 2 Y C 3 , 1 )
where ˇˇˇˇˇ@ x P Id,

1 (x) = , (C 1 , 1 ) = C[c 1 1 ] , (C 2 , 2 ) = C[c 2 2 ] , C 3 = Ť xPId tnsb( 1 (x)) ě nsb( ), nsb( 2 (x)) ě nsb( )u (COND) C[while e 0 do c 1 ] = (C 1 Y C 2 , 1 )
where ˇˇˇˇˇ@ x P Id, In the present ILP of Figure 5.1, we over-approximate the function ξ by ξ( )( 1 , 2 ) = 1 for all , 1 and 2 . To wrap up, for the addition (Rule (ADD)), we have the nsb( ) = ufp( ) ´ufp e ( ). More precisely, let us consider the addition c 1 1 + c 2 2 and let us assume that prec( ) denotes the precision of this operation. The error ε( ) is bound by ε(c

1 (x) = , (C 1 , 1 ) = C[c 1 1 ] 1 C 2 = Ť xPId tnsb( (x)) ě nsb( ), nsb( 1 (x)) ě nsb( )u (WHILE) C[require_nsb(x, p) ] = nsb( (x)) ě p ( (REQ) ξ( )( 1 , 2 ) = 1
1 1 + c 2 2 ) ď ε(c 1 1 ) + ε(c 2 2 ) + 2 ufp(c 1 +c 2 )´prec( )
and

ufp e ( ) = max ufp( 1 ) ´nsb( 1 ), ufp( 2 ) ´nsb( 2 ), ufp(l) ´prec( ) + ξ( )( 1 , 2 ) .
(5.12)

Since nsb( ) ď prec( ), we may get rid of the last term in Equation (5.12) and the two constraints generated for Rule (ADD) are derived from Equation (5.13).

nsb( ) ď ufp(

) ´max ufp( 1 ) ´nsb( 1 ), ufp( 2 ) ´nsb( 2 ) ´ξ( )( 1 , 2 ) (5.13)
Rule (SUB) for the subtraction is obtained similarly to the addition case. For Rule (MULT) of multiplication (and in the same manner Rule(DIV)), the reasoning mimics the one of the addition. Let c 1 and c 2 be two numbers and c the result of their product, c = c 1 1 ˆ c 2 2 . We denote by ε(c 1 ), ε(c 2 ) and ε(c) the errors on c 1 , c 2 and c, respectively. The error ε(c) of this multiplication is ε(c) = c 1 ¨ε(c 2 ) + c 2 ¨ε(c 1 ) + ε(c 1 ) ¨ε(c 2 ). These numbers are bounded by

2 ufp(c 1 ) ď c 1 ď 2 ufp(c 1 )+1 and 2 ufp(c 1 )´nsb(c 1 ) ď ε(c 1 ) ď 2 ufp(c 1 )´nsb(c 1 )+1 2 ufp(c 2 ) ď c 2 ď 2 ufp(c 2 )+1 and 2 ufp(c 2 )´nsb(c 2 ) ď ε(c 2 ) ď 2 ufp(c 2 )´nsb(c 2 )+1 2 ufp(c 1 )+ufp(c 2 )´nsb(c 2 ) + 2 ufp(c 2 )+ufp(c 1 )´nsb(c 1 ) ď ε(c) ď 2 ufp(c)´nsb(c)+1
+2 ufp(c 1 )+ufp(c 2 )´nsb(c 1 )´nsb(c 2 )

(5.14)

We get rid of the last term 2 ufp(c 1 )+ufp(c 2 )´nsb(c 1 )´nsb(c 2 ) of the error ε(c) which is strictly less than the former two ones. By assuming that ufp(c 1 + c 2 ) = ufp(c) and by reasoning on the exponents, we obtain the equations of Rule (MULT):

nsb( 1 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1 and nsb( 2 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1 .
For the elementary functions such as logarithm, exponential, the hyperbolic and trigonometric functions gathered in Rule (MATH), the principle remains the same as for the SMT-based method. We consider that each elementary function introduces a loss of precision of ϕ bits, where ϕ P N is a parameter of the analysis.

The rules of commands are rather classical, we use control points to distinguish many assignments of the same variable and also to implement joins in conditions and loops. Given a command c and an environment , C[c] returns a pair (C, 1 ) made of a set C of constraints and of a new environment 1 . The function C is defined by induction on the structure of commands in figures 5.1 and 5.2. For conditionals, we generate the constraints for the then and else branches plus additional constraints to join the results of both branches. Currently, we do not take care of the guards. As a result, we analyze both the then and else branches of the if statement without reducing the range of the variables and consequently their ufp. This is correct but it is a source of imprecision. Let us mention that we do not address the problem that can arise on the variables of the guard expressions when we reduce their precision. Consequently, the range of the variables More precisely, let F be a map from a complete lattice L to itself (Equation (2.14)). The classical policy iteration solves F(x) = x by generating a sequence (x k ) k such that f π k (x k ) = x k and x k+1 ă x k . We denoted the set Π by the set of policies and by f π a policy map (associated to π). We recall that the set of policy maps has to satisfy the selection property meaning that for all x P L, there exists π P Π such that F(x) = f π (x) (see Definition 2.18). This is exactly the same as for each x P L, the minimization problem Min πPΠ f π (x) has an optimal solution. If Π is finite and F is order-preserving, policy iteration converge in finite time to a fixpoint of F. The number of iterations is bounded from above by the number of policies. Indeed, a policy cannot be selected twice in the running of the algorithm. This is implied by the fact that the smallest fixpoint of a policy map is computed.

In our thesis, we adapt policy iteration to the problem of precision tuning. The function F here is constructed from inequalities depicted in Figure 5.1 and Figure 5.2. We thus have naturally constraints of the form F(x) ď x. We will give details about the construction of F at Proposition 5.1. Consequently, we are interested in solving: Let ξ : Lab Ñ t0, 1u. We write S 1 ξ the system of inequalities depicted in Figure 5.1 and S 2 ξ the system of inequalities presented at Figure 5.2. Note that the final system of inequalities is S ξ = S 1 ξ Y S 2 ξ meaning that we add new constraints to S 1 ξ . If the system S 1 ξ is used alone, ξ is the constant function equal to 1. Otherwise, ξ is defined by the formula at the end of Figure 5.2. Proposition 5.1. The following results hold:

1. Let ξ the constant function equal to 1. The system S 1 ξ can be rewritten as tnsb P N Lab : F(nsb) ď (nsb)u where F maps R Lab to itself, F(N Lab ) Ď (N Lab ) and has coordinates which are the maximum of a finite family of affine order-preserving functions.

2. Let ξ the function such that ξ( ) equals the function of Figure 5.2. The system S ξ can be rewritten as t(nsb, nsb e ) P N Lab ˆNLab : F(nsb, nsb e ) ď (nsb, nsb e )u where F maps R Lab ˆRLab to itself, F(N Lab ˆNLab ) Ď (N Lab ˆNLab ) and all its coordinates are the min-max of a finite family of affine functions.

Proof. We only give details about the system S 1 ξ (Figure 5.1). By induction on the rules. We write L = t P Lab : F is constructed u. This set is used in the proof to construct F inductively. For Rule (CONST), there is nothing to do. For Rule (ID), if the label 1 = ρ(x) P L then we define F 1 (nsb) = max(F 1 (nsb), nsb( )). Otherwise, F 1 (nsb) = nsb( ). As nsb Þ Ñ nsb( ) is order-preserving and the maximum of one affine function, F 1 is the maximum of a finite family of order-preserving affine functions since max preserves order-preservation. For rules (ADD), (SUB), (MULT), (DIV), (MATH) and (ASSIGN), by induction, it suffices to focus on the new set of inequalities. If 1 P L, we define F 1 as the max with old definition and RHS(nsb) i.e. F 1 (nsb) = max(RHS(nsb), F 1 (nsb)) where RHS(nsb) is the right-hand side part of the new inequality. If 1 R L, we define F 1 (nsb) = RHS(nsb). In the latter rules, RHS(nsb) are order-preserving affine functions. It follows that F 1 is the maximum of a finite family of order-preserving affine functions. The result follows by induction for Rule (SEQ). Rules (COND) and (WHILE) are treated as rules (ADD), (SUB), (MULT), (DIV), (MATH) and (ASSIGN), by induction and the consideration of the new set of inequalities. Rule (REQ) constructs F ρ(x) either as the constant function equal to p at label ρ(x) or the maximum of the old definition of F ρ(x) and p if ρ(x) P L.

Note that, in the first case, F does not map from R Lab ˆRLab to itself. It is easy to extend F as a map from R Lab ˆRLab to itself without affecting its intrinsic behaviour. From Proposition 5.1, when S ξ is used, we can write F as F = min πPΠ f π , where f π is the maximum of a finite family of affine functions and thus used a modified policy iteration algorithm. The set of policies here is a map π : Lab Þ Ñ t0, 1u. A choice is thus a vector of 0 or 1. A policy map f π is a function N Lab to itself such that the coordinates are f π ( ). If the coordinate f π ( ) depends on ξ then ξ( ) = π( ). Otherwise, the function is the maximum of affine functions and a choice is not required. Algorithm 2 depicts a modified policy iteration algorithm to solve our problem of precision tuning.

Corollary 5.1. Any feasible solution of Problem (5.18) satisfies our ILP constraints of Figure 5.1 (or Figure 5.2 if ξ is not fixed to 1).

Algorithm 2: Non-monotone Policy Iteration Algorithm

Result: An over-approximation of an optimal solution of Equation (5.18) Let k := 0, S := +8; Choose π 0 P Π; Select an optimal solution of (nsb ) is an optimal solution. We conclude that ř PLab nsb k+1 ( ) ď ř PLab nsb k ( ) and the algorithm terminates if the equality holds or continues as the criterion strictly decreases. Finally, from the strict decrease, a policy cannot be selected twice without terminating the algorithm. In conclusion, the number of iterations is smaller than the number of policies. Figure 5.2 displays the new rules that we add to the global system of constraints in which the only difference is to activate the optimized function ξ instead of its over-approximation in Figure 5.1. As mentioned in Definition 4.14 and Lemma 4.1, to compute the ulp of the errors on the operands, we need to estimate the number of bits of the error nsb e for each operand on which all the rules of Figure 5.2 are based. By applying this reasoning, the problem do not remain an ILP any longer.

Let us concentrate on the rules of Figure 5.2. The function E 1 [e] generates the new set of constraints for an expression e P Expr in the environment . For Rule (CONST 1 ), the number of significant bits of the error nsb e = 0 whereas we impose that the nsb e of a variable x at control point is less than the last assignment of nsb e in (x) as shown in Rule (ID 1 ) of Figure 5.2. Considering Rule (ADD 1 ), we start by generating the new set of constraints E 1 [e 1 1 ] and E 1 [e 2 2 ] on the operands at control points 1 and 2 . Then, we require that nsb e ( ) ě nsb e ( 1 ) and nsb e ( ) ě nsb e ( 2 ) where the result of the addition is stored at control point . Additionally, nsb e ( ) is computed as shown:

nsb e ( ) ě max ufp( 1 ) ´nsb( 1 ) ufp( 2 ) ´nsb( 2 ) ´min ufp( 1 ) ´nsb( 1 ) ´nsb e ( 1 ) ufp( 2 ) ´nsb( 2 ) ´nsb e ( 2 ) + ξ( )( 1 , 2 ) . (5.19)
By breaking the min and max operators, we obtain the constraints on nsb e ( ) of Rule (ADD 1 ). For the subtraction, the constraints generated are similar to the addition case. Considering now Rule (MULT 1 ), as we have defined in Section 5.2.1,

ε(c) = c 1 ¨ε(c 2 ) + c 2 ε(c 1 ) + ε(c 1 ) ¨ε(c 2 ) where c = c 1 1 ˆ c 2 2
. By reasoning on ulp e , we bound ε(c) by ε(c) ď 2 ufp(c 1 ) ¨2ufp(c 2 )´nsb(c 2 )´nsb e (c 2 )+1 + 2 ufp(c 2 ) ¨2ufp(c 1 )´nsb(c 1 )´nsb e (c 1 )+1 +2 ufp(c 2 )+ufp(c 1 )´nsb(c 1 )´nsb(c 2 )´nsb e (c 1 )´nsb e (c 2 )+2 .

By selecting the smallest term ufp(c 2 ) + ufp(c 1 ) ´nsb(c 1 ) ´nsb(c 2 ) ´nsb e (c 1 ) ´nsb e (c 2 ) + 2, we obtain that nsb e ( ) ě max

ufp( 1 ) + ufp( 2 ) ´nsb( 1 ) ufp( 1 ) + ufp( 2 ) ´nsb( 2 ) ´ufp( 1 ) + ufp( 2 ) ´nsb( 1 )ń sb( 2 ) ´nsb e ( 1 ) ´nsb e ( 2 ) + 2 . E 1 [c#p ] = nsb e ( ) = 0 ( (CONST 1 ) E 1 [x ] = nsb e ( (x)) ě nsb e ( ) ( (ID 1 ) E 1 [e 1 1 + e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (ADD 1 ) Y $ ' & ' % nsb e ( ) ě nsb e ( 1 ), nsb e ( ) ě nsb e ( 2 ), nsb e ( ) ě ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb( 1 ) + nsb e ( 2 ) + ξ( )( 1 , 2 ), nsb e ( ) ě ufp( 2 ) ´ufp( 1 ) + nsb( 1 ) ´nsb( 2 ) + nsb e ( 1 ) + ξ( )( 1 , 2 ) , / . / - E 1 [e 1 1 ´ e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (SUB 1 ) Y $ ' & ' % nsb e ( ) ě nsb e ( 1 ), nsb e ( ) ě nsb e ( 2 ), nsb e ( ) ě ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb( 1 ) + nsb e ( 2 ) + ξ( )( 1 , 2 ), nsb e ( ) ě ufp( 2 ) ´ufp( 1 ) + nsb( 1 ) ´nsb( 2 ) + nsb e ( 1 ) + ξ( )( 1 , 2 ) , / . / - E 1 [e 1 1 ˆ e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (MULT 1 ) Y ! nsb e ( ) ě nsb( 1 ) + nsb e ( 1 ) + nsb e ( 2 ) ´2, nsb e ( ) ě nsb( 2 ) + nsb e ( 2 ) + nsb e ( 1 ) ´2 ) E 1 [e 1 1 ˜ e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (DIV 1 ) Y ! nsb e ( ) ě nsb( 1 ) + nsb e ( 1 ) + nsb e ( 2 ) ´2, nsb e ( ) ě nsb( 2 ) + nsb e ( 2 ) + nsb e ( 1 ) ´2 ) E 1 a e 1 = E 1 [e 1 1 ] Y nsb e ( ) ě nsb e ( 1 ) ( (SQRT 1 ) E 1 φ e 1 = E 1 [e 1 1 ]
Y nsb e ( ) ě +8

( with φ P tsin, cos, tan, log, . . .u (MATH 1 )

C 1 x:= e 1 = C, [x Þ Ñ ] where C = E 1 [e 1 1 ] Y tnsb e ( 1 ) ě nsb e ( )u (ASSIGN 1 ) C 1 c 1 1 ;c 2 2 = C 1 Y C 2 , 2 with C 1 , 1 = C 1 c 1 1 and C 2 , 2 = C 1 c 2 2 1 (SEQ 1 ) C 1 [if e 0 then c 1 else c 2 ] = (C 1 Y C 2 Y C 3 , 1 )
where ˇˇˇˇˇ@ x P Id,

1 (x) = , (C 1 , 1 ) = C 1 [c 1 1 ] , (C 2 , 2 ) = C 1 [c 2 2 ] , C 3 = Ť xPId tnsb e ( 1 (x)) ě nsb e ( ), nsb e ( 2 (x)) ě nsb e ( )u (COND 1 ) C 1 [while e 0 do c 1 ] = (C 1 Y C 2 , 1 )
where ˇˇˇˇˇ@ x P Id, Finally, by simplifying the equation above we found the constraints of Rule (MULT 1 ) in Figure 5.2 (same for Rule (DIV 1 )). For Rule (SQRT 1 ), we generate the constraints on the expression E 1 [e 1 1 ] and we require that nsb e of the result stored at control point is greater than the nsb e of the expression a control point 1 . For Rule (MATH 1 ) , we assume that nsb e ( ) is unbounded.

1 (x) = , (C 1 , 1 ) = C 1 [c 1 1 ] 1 C 2 = Ť xPId tnsb e ( (x)) ě nsb e ( ), nsb e ( 1 (x)) ě nsb e ( )u (WHILE 1 ) C 1 [require_nsb(x, p) ] = H (REQ 1 ) ξ( )(
Concerning the commands, we define the set C 1 [c] which has the same function as C defined in Figure 5.1. The reasoning on the commands also remains similar except that this time we reason on the number of bits of the errors nsb e . The only difference is in Rule (REQ 1 ) where the set of constraints is empty. Let us recall that the constraints of Figure 5.2 are added to the former constraints of Figure 5.1 and are sent to a linear solver. We highlight the resolution of constraints in the next chapter. Now, let us take again the pendulum program of Listing 5.1. By analyzing Line 5 of our program, we have to add the following set of constraints C 2 of Equation (5.20), along with the former set C 1 of Equation (5.17). In fact, policy iteration makes it possible to break the min in the ξ( 23 )( 17 , 22 ) function by choosing the max between ufp( 22) ´ufp( 17) ńsb( 

Correctness

(x) = c#p xx , y ÝÑ xc #p, y c = c 1 d c 2 , p = ufp(c) ´ufp e c #p xc 1 1 #p 1 d c 2 2 #p 2 ,

Soundness of the Constraint System

Let " denote the syntactic equivalence and let e P Expr be an expression. We write Const(e ) the set of constants occurring in the expression e . For example, Const(18.0 1 ˆ 2 x 3 + 4 12.0 5 ˆ 6 y 7 + 8 z 9 ) = t18.0 1 , 12.0 5 u. Also, we denote by τ : Lab Ñ N a function mapping the labels of an expression to a nsb. The notation τ | ù E [e ] means that τ is the minimal solution to the ILP E [e ] . We write K the empty environment (dom( K ) = H).

The small-step operational semantics of our language is displayed in Figure 5.3. It is standard, the only originality being to indicate explicitly the nsb of constants. For the result of an elementary operation, this nsb is computed in function of the nsb of the operands. Lemma 5.1 asses the soundness of the constraints for one step of the semantics. Proof. By case examination of the rules of Figure 5.1. Hereafter, we focus on the most interesting case of addition of two constants. Recall that ufp e ( ) = ufp( ) ´nsb( ) for any control point . Assuming that e " c 1 1 + c 2 2 then by following the reduction rule of Figure 5.3, we have e Ñ c #p with p = ufp(c) ´ufp e c . On the other side, by following the set of constraints of Rule (ADD) in Figure 5.

1 we have E [e ] = tnsb( 1 ) ě nsb( ) + ufp( 1 ) ´ufp( ) + ξ( )( 1 , 2 ), nsb( 2 ) ě nsb( ) + ufp( 2 ) ´ufp( ) + ξ( )( 1 , 2 )u. These constraints can be written as nsb( ) ď ufp( ) ´ufp( 1 ) + nsb( 1 ) ´ξ( )( 1 , 2 ) nsb( ) ď ufp( ) ´ufp( 2 ) + nsb( 2 ) ´ξ( )( 1 , 2 )
and may themselves be rewritten as in Equation (5.13), i.e.

nsb( ) ď ufp( ) ´max ufp( 1 ) ´nsb( 1 ), ufp( 2 ) ´nsb( 2 ) ´ξ( )( 1 , 2 ) .
Since, obviously, ufp(c) = ufp( ) and since the solver finds the minimal solution to the ILP problem, it remains to show that

ufp e ( ) = max ufp( 1 ) ´nsb( 1 ), ufp( 2 ) ´nsb( 2 ), ufp( ) ´prec( ) + ξ( )( 1 , 2 )
which corresponds to the assertion of Equation(2.7). Consequently, nsb( ) = p as required, for this case, in Figure 5.3. Theorem 5.1. Given an expression e Ñ e 1 . If e Ñ ˚e1 and if τ | ù E [e ] K , then @ c c #p P Const(e 1 ) we have p = τ( c ).

ILP Nature of the Problem

In this section, we give insights about the complexity of the problem. The computation relies on ILP which is known to belong to the class of NP-hard problems. A lower bound of the optimal value in a minimization problem can be furnished by the continuous linear programming relaxation. This relaxation is obtained by removing the integrity constraint. Recall that a (classical) linear program can be solved in polynomial-time. Then, we can solve our problem in polynomial-time if we can show that the continuous linear programming relaxation of our ILP has an unique optimal solution with integer coordinates. Proposition 5.3 presents a situation where a linear program has a unique optimal solution which is a vector of integers. Indeed, as ϕ is strictly monotone then ϕ(u) ă ϕ(x) for all x P [0, +8) d s.t. G(x) ď x and x ‰ u. The optimal solution is thus u. If u = 0, the result holds. Now suppose that 0 ă u, then 0 ď G(0). Let M := ty P N d | y ď G(y), y ď uu. Then 0 P M and we write v := sup M. As M is a complete lattice s.t. G(M) Ď M, from Theorem 2.1 (Tarski), v satisfies G(v) = v and v ď u. Moreover, v P N d and v ď u. Again, from Theorem 2.1, u is the smallest fixpoint of G, it coincides with v. Then u P N d . Theorem 5.2. Assume that the system S of inequalities depicted in Figure 5.1 has a solution. The smallest amount of memory ř PLab nsb( ) for S can be computed in polynomial-time by linear programming.

Proof. The function ř

PLab nsb( ) is strictly monotone and stable on integers. From the first statement of Proposition 5.1, the system of constraints is of the form F(nsb) ď nsb where F is order-preserving and stable on integers. By assumption, there exists a vector of integers nsb s.t. F(nsb) ď nsb. We conclude from Proposition 5.3.

For the system of Figure 5.2, in practice, we get integer solutions to the continuous linear programming relaxation of our ILP of Equation (5.18). However, because of the lack of monotonicity of the functions for rules (ADD) and (SUB) of Figure 5.1, we cannot exploit Proposition 5.3 to prove the polynomial-time solvability.

Summary

Summary

We have presented in this chapter a new technique for precision tuning, clearly different from the existing ones. Instead of changing more or less randomly the data types of the numerical variables and running the programs to see what happens, we propose a semantic modelling of the propagation of the numerical errors throughout the code. This yields a system of constraints whose minimal solution gives the best tuning of the program. Two variants of constraints have been proposed:

• The first one corresponds to the SMT-based method.

• The second one corresponds to ILP-based method which are divided into two systems: a pure ILP for the over-approximation of the carry bit function and a refined constraints which optimizes the propagation of carries in the elementary operations and which can be solved using the policy iteration method (PI).

Proofs of correctness concerning the soundness of the analysis and the integer nature of the solutions have been presented. Compared to other approaches, the strength of our method is to find directly the minimal number of bits needed at each control point to get a certain accuracy on the results. Consequently, it is not dependant of a certain number of data types (e.g. the IEEE754 formats) and its complexity does not increase as the number of data types increases. The information provided may also be used to generate computations in the fixed-point arithmetic with an accuracy guaranty on the results. Concerning scalability, we generate a linear number of constraints and variables in the size of the analyzed program. The only limitation is the size of the problem accepted by the solver. We dedicate the next chapter for introducing our tool for precision tuning.

Chapter

The POP Tool I n this chapter, we present POP, short for Precision OPtimizer, the tool implemented during this thesis to assist precision tuning. In 2019, we have published the first version of POP [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] based on the SMT-based method. We note this version POP(SMT). In 2021, we have implemented the ILP-based method in POP [ABM21] as a replacement of the first method. We call this second version POP(ILP). As a result, POP integrates these two sub-tools as depicted in Figure 6.1.

Notation: if we do not specify the method, we use the notation POP by default. We recall that POP(SMT) and POP(ILP) do not generate the same constraints but the technique remains the same. It is just the formulation of the problem which differs from one method to another. The remainder of this chapter is as follows. Section 6.1 presents generalities of the POP tool. Section 6.2 gives an overview of POP(SMT), while Section 6.3 highlights the steps of analysis by POP(ILP). The summary is given in Section 6.4. 

Generalities

Generalities

POP has been developed in JAVA. The different elements of the imperative language presented in Figure 4.1 are represented as packages gathering the different classes of their definitions. We illustrate the main tool hierarchy as follows:

• Parser: To parse the input source codes, POP uses the ANTLR tool v4.7.1 (ANother Tool for Language Recognition) 1 . From a grammar, ANTLR generates a parser that can build parse trees and also generates a listener interface (or visitor) that makes it easy to respond to the recognition of phrases of interest [START_REF] Parr | The Definitive ANTLR 4 Reference[END_REF].

• Range determination: It consists in launching the execution of the program a certain number of times in order to determine dynamically the range of variables. More precisely, what we use in the tuning is the ufp of the values of the program. So we are sensible to the order of magnitude of the ranges but not to the exact values. For example, we will obtain the same tuning with the ranges [3. • Constraints generation: It is the basis of our static approach for precision tuning. We recall that two kinds of system of constraints are generated. The first system models the numerical errors propagation for the SMT-based method presented in Chapter 5 Section 5.1. The second system of constraints is generated for the ILP-based method in POP(ILP) introduced in Chapter 5 Section 5.2 . These two methods are based on the same transfer functions already discussed in Chapter 4.

• Constraints resolution: To find a solution for the constraints, the SMT-based method calls an SMT solver. Generally, SMT solvers combine SAT reasoning with specialized theory solvers either to find a feasible solution to a set of constraints or to prove that no such solution exists. The ILP-based method uses an LP solver to solve the constraints. The LP solvers come from the tradition of optimization, and are designed to find feasible solutions that are optimal with respect to some optimization function.

We remind the reader that the difference between SMT solvers and LP solvers were discussed in Chapter 2 Section 2.3.

• Code generation: As output, POP generates an optimized version of the input source program annotated with the new nsb at each control point. We recall that our technique is independent of a particular computer arithmetic and the optimized formats are given in bit-level. However if we want these precision in the IEEE754 mode, the nsb obtained at bit-level is approximated by the upper number of bits corresponding to a IEEE754 format. For example, if a variable x has nsb(x) = 18 bits, then x is tuned to the FP32 single precision. Besides, POP is able to generate a python MPFR [FHL + 07] version of the input program. The interest of the MPFR codes is to measure the difference between the two programs (high precision assimilable to exact precision e.g. 500 bits and tuned) and to plot the curve of the difference in function of the theoretical error given by the user.

POP(SMT)

Outline

Figure 6.2 gives an architectural overview of POP(SMT) tool. To find a solution for our constraints, POP(SMT) calls the Z3 SMT solver2 . In practice, Z3 is a state-of-the art theorem prover from Microsoft Research. It is targeted at solving problems that arise in software verification and software analysis [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF]. Consequently, it integrates support for a variety of theories. However, it is a low level tool that is often used as a component in the context of other tools that require solving logical formulas. In addition, the solutions returned by Z3 are not unique. In order to refine the solutions obtained in term of optimality, we add to our global system of constraints an additional constraint related to a cost function denoted by φ. We use the same definition in [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF]. The purpose of a cost function φ(c) of a given program c is to compute the sum of the accuracies (nsb) of all the variables 96 6.2. POP(SMT)

and the intermediary values collected in each label of the arithmetic expressions as it is shown in Equation (6.1):

φ(c) = ÿ xPId, PLab nsb(x ) + ÿ PLab nsb( ) . (6.1)
Next, POP(SMT) searches the smallest integer P such that our system of constraints admits a solution. Consequently, we start the binary search with P P [0,53 ˆn] where all the values are in double precision and where n is the number of terms in Equation (6.1). While a solution is found for a given value of P, a new iteration of the binary search is run with a smaller value of P. When the solver fails for some P, a new iteration of the binary search is run with a larger P and we continue this process until convergence.

Concerning the complexity of the analysis performed by POP(SMT), in practice, the analysis is carried out by the SMT solver which solves the constraints. The number of variables and constraints is linear in the size of the program and consequently the complexity to analyze a program of size n is equivalent to that of solving a system of n constraints in our language of constraints.

We must admit that the cost functions that we use become more complex when dealing with arrays and then we consider that all elements have the same precision as in almost the programming languages. In order to compute the total number of bits, we have to multiply the precision by the number of elements. In addition, we have to do this process only once for each array instead of several times for each use of arrays. This implied to modify significantly the tool compared to what we had implemented for the other simple variables. 

ANLTR4 framework parser

Benchmarks

We evaluate POP(SMT) on several programs coming from different fields such as the GNU scientific library (GSL)3 and the IoT domain. The benchmarks of POP(SMT) are the following:

• Rotation program [BMA19]: a rotation matrix-vector multiplication program.

• Matrix determinant program [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF]: computes the determinant det(M) of 3 ˆ3 matrices.

• Accelerometer program [START_REF] Ben | Precision tuning and internet of things[END_REF]: measures the angle of inclination of an object. This program comes from the IoT field and will be highlighted in Chapter 7.

• Pedometer program: [START_REF] Ben | Precision tuning of an accelerometerbased pedometer algorithm for iot devices[END_REF] counts the number of footsteps. This program derives also from the IoT field and will be detailed in Chapter 7.

• Arclength program: was first introduced in [START_REF] Bailey | Resolving numerical anomalies in scientific computation[END_REF] in which the task is to estimate the arc length of a given function.

• Simpson method: which corresponds to an implementation of the widely used Simpson's rule for integration in numerical analysis [START_REF] Marshall | Algorithm 145: Adaptive numerical integration by simpson's rule[END_REF].

Chapters 7 and 8 presents a full evaluation of the performance of POP(SMT). The rotation and matrix determinant programs are highlighted in the next section.

First Results

We present in this section two simple examples which consist in a rotation matrix-vector multiplication and the computation of the determinant of 3 ˆ3 matrices and we present in Figure 6.3 some measures of the efficiency of our analysis on these two examples.

Example 1: Rotation Matrix-Vector Multiplication

Our first example consists in a rotation matrix R which is used in the rotation of vectors and tensors while the coordinate system remains fixed. For instance, we want to rotate a vector around the z axis by angle θ. The rotation matrix and the rotated column vectors are given by:

   cosθ ´sinθ 0 sinθ cosθ 0 0 0 1       x y z    =    x 1 y 1 z 1    .
We aim from this experimentation to compute the performance of POP(SMT) from different angles of rotation π 3 , π [´100.0, ´10.0, 1000.0], E = [1.0, 2.0, 500.0] and F = [1.0, 500.0, 10000.0] and for nsb = 10, 15, 20, 25, 30 and 35 bits. This example generates 858 constraints and 642 variables which are very manageable by the Z3 solver. Initially starting with 10335 bits for the original program (only variables in double precision), Figure 6.3c shows that the improvement in the number of bits needed to realize the user requirements ranges from 38% to 87% which confirms the usefulness of our analysis. Also, we can observe in Figure 6.3e that the majority of variables fits in single precision format for an nsb ď 35 bits and that no double precision variables are noticed for vectors A, B, C, D and E for an nsb = 15 bits. For this example, we found that the variation of the angles of rotation do not have impact on the number of double precision variables after analysis that is why we choose only the angle π 4 in Figure 6.3e and by modifying the magnitude of the vectors at every turn. Besides, POP(SMT) assigns zeros to the accuracies of the variables that are not used by the program.

Example 2: Determinant of 3 ˆ3 Matrices

Our second example computes the determinant det(M) of a 3 ˆ3 matrices M1, M2 and M3 as shown:

M =    a b c d e f g h i    Ñ det(M) = (a.e.i + d.h.c + g.b. f ) ´(g.e.c + a.h. f + d.b.i) .
The matrices coefficients belong to multiple magnitude ranges: M1 = . With 686 number of variables and 993 generated constraints, POP(SMT) finds the minimal precision of the inputs and intermediary results for this example in less than 0.3 seconds as it is observed in Figure 6.3b. This time concerns the resolution of the system of constraints and the calls of the Z3 SMT solver done by binary search for different requirements of accuracy.

Hence, the final number of bits of the transformed program compared to 9964 initial bits is considerable as shown in Figure 6.3d. Finally, we notice that our analysis succeeded in turning off almost the double precision variables to a fairly rounded single precision ones for nsb ď 20 bits.

POP(ILP)

Outline

We recall that in the most recent version of POP, the idea is to use no longer the nonoptimizing Z3 SMT solver coupled to a binary search. By that means, we reduce the precision tuning problem to an ILP which can be optimally solved in one breath by a classical linear programming solver. In practice, We use the GLPK v4.65 solver [Mak] (GNU

POP(ILP)

Linear Programming Kit). GLPK4 is a set of algorithms for solving different problems ranging from linear programming (LP) to integer linear programming (ILP). The outline of POP(ILP) is depicted in Figure 6 

Benchmarks

As in POP(SMT), we will evaluate the performance of POP(ILP) on several examples. We will use the POP(SMT) benchmarks already presented in Section 6.2.2 in order to compare the results of precision tuning by the two tools. In addition, we experiment POP(ILP) on new benchmarks coming from the FPBench5 community. FPBench develops standards for describing floating-point benchmarks and for measuring their accuracy [DMP + 16]. Here, we shed light on the new benchmarks of POP(ILP).

• The N-body problem [START_REF] Demeure | Compromis entre précision et performance dans le calcul haute performance[END_REF]: models the simulation of a dynamical system describing the orbits of planets in the solar system interacting with each other gravitationally. This application will be highlighted in Chapter 9 Section 9.3.

• Pendulum program [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF]: models the movement of a simple pendulum without damping. We recall that this program was introduced in Chapter 5.

• Newton-Raphson method [START_REF] Kendall E Atkinson | An introduction to numerical analysis[END_REF]: is a numerical method used to compute the successive approximations of the zeros of a real-valued function.

• Odometry [START_REF] Damouche | Improving the numerical accuracy of programs by automatic transformation[END_REF]: an example taken from robotics which concerns the computation of the position(x,y) of a two wheeled robot by odometry.

• PID Controller [START_REF] Damouche | Transformation of a PID controller for numerical accuracy[END_REF]: is a widely used algorithm in embedded and critical systems e.g. aeronautic and avionic systems. The main feature of this program is to keep a physical parameter m at a specific value known as the setpoint(C). In other words, it tries to correct a measure by maintaining it at a defined value.

• Runge Kutta method [START_REF] Kendall E Atkinson | An introduction to numerical analysis[END_REF]: is an effective and widely used method for solving the initial-value problems of differential equations.

• The trapezoidal rule [START_REF] Kendall E Atkinson | An introduction to numerical analysis[END_REF]: a well known algorithm in numerical analysis which approximates the definite integral

ż b a f (x) dx.
Chapter 9 reports the results of precision tuning of POP(ILP) for these benchmarks.

Summary

In this chapter, we introduced our tool POP. We presented its architecture, its inputs including the source programs, its parameters and its outputs. In addition, we illustrated the algorithm followed by POP to lower the precision of the numerical programs. Two variants of POP were presented. POP(SMT) which implements the SMT-based method and POP(ILP) which implements the ILP-based method.

We dedicate the rest of this dissertation to present our experimental results. In the next chapter, we present the results of experimenting POP(SMT) in a new application domain, IoT. Besides, chapters 8 and 9 are devoted for the evaluation of performance for both POP(SMT) and POP(ILP) in term of analysis time, quality of solutions and efficiency as well as for comparing the two variants of POP and the state-of-the-art tools. P recision tuning already has applications in many domains and, in the present chapter, we show its usefulness for IoT applications. In practice, IoT is considered as one of the most evolving technologies. It impacts almost every aspect of life in the modern world. One thing that prevents this technology from reaching its full potential is the too high memory and energy consumption of IoT devices [START_REF] Kim | An analysis of energy consumption under various memory mappings for fram-based IoT devices[END_REF]. An aspect of this problem is the numerical computations performed by IoT devices which are generally carried out in higher precision than needed, by lack of techniques to tune this precision in function of the actual needs of the application. More precisely, IoT devices are powered by an independent power supply like battery and energy harvester, which provide limited energy. Consequently, batteries require changing and replacement due to their short lifetime. Also, the memory of the IoT devices is used to store data and performance tasks, therefore, consistent memory access occurs during the operations of the IoT device. Thus, the energy savings associated with memory access reduce the average power consumption of IoT devices.

Part III

Internet of Things: A Field of Interest

Nevertheless, IoT applications usually do not require very accurate results and, consequently, it is very feasible to lower the average precision of the computations to cope with memory and energy issues without affecting the efficiency of the devices and that is why we believe it possible and promising to adapt the precision tuning technique 7.1. Tilt Angle Detection by an Accelerometer to these kind of applications.

In this chapter, we focus on experimenting POP(SMT) on two representative examples coming from the IoT field and finding a trade-off between precision and energy. Guided by industrial demands [IMN17], we take as example the code of an accelerometer to convert pressure into movement. Secondly, we evaluate POP(SMT) on a significantly more complex example, an accelerometer-based pedometer for embedded applications [START_REF] Morris | Recofit: Using a wearable sensor to find, recognize, and count repetitive exercises[END_REF]. We ran the experiments of the present chapter on an Intel Core i5-4200U 1.6GHz Windows machine with 6 GB RAM.

The remainder of this chapter is organized as follows. Section 7.1 presents the results of tuning the tilt angle detection application by an accelerometer. Section 7.2 evaluates POP(SMT) on a more complex example, an accelerometer-based pedometer for embedded applications. Finally, Section 7.3 concludes. This work is based on the articles published respectively at the IEEE International Conference on Internet of Things, Embedded Systems and Communications (IINTEC) in 2019 [START_REF] Ben | Precision tuning and internet of things[END_REF] and the IEEE International Conference on Internet of Things and Intelligence System (IoTaIS) in 2020 [START_REF] Ben | Precision tuning of an accelerometerbased pedometer algorithm for iot devices[END_REF].

Notation: we recall that the numerical results of this chapter belong to the first implementation of our tool POP already called POP(SMT). Once the ILP-based method has been implemented in POP(ILP), we re-analyzed these examples with this technique. The results will be highlighted in Chapter 9.

Tilt Angle Detection by an Accelerometer

To study the usefulness of POP(SMT), we choose to experiment our analysis on an example that measures an inclination angle with an accelerometer. An accelerometer is a sensor capable of measuring, in three dimensions, the linear accelerations of an object as well as vibrations [START_REF] Ben | Precision tuning and internet of things[END_REF]. In practice, there are accelerometers in many everyday objects use, such as smartphones, cars, sports watches and other devices. For instance, the accelerometer of a phone is able to give you the orientation of the phone but also, as indicated by its name, the acceleration undergone by the phone. Furthermore, an accelerometer usually breaks down into two parts: a mechanical part which is responsible for detecting the accelerations of a mass contained in the device and an electronic part having for mission to interpret this signal. In this context, we have analyzed an application that describes how often accelerometers are used to measure a tilt of an object. Tilt detection is a simple application of an accelerometer where a change in angular position of the system in any direction is detected and indicated the corresponding angle scaled from microcontroller output and in order to have more accurate measurements of tilt in the x and y planes, we therefore need a 3 axis accelerometer as represented in Figure 7.1.

We aim from the accelerometer experimentation to measure the usefulness of our analysis and how POP(SMT) is capable to optimize the precision of the program variables. For this example, POP(SMT) generates 1179 variables and 1767 constraints which are very manageable by the Z3 solver. Indeed, it takes only 0.64 seconds to POP(SMT) to achieve the analysis, including constraints generation and the calls to Z3. Assuming that all the variables of the original program are in double precision, POP(SMT) succeeded in turning off variables into FP16 (half precision) and FP32 (single precision) as shown in the top side of Figure 7.2. For example, for nsb = 20 bits, the percentage of variables tuned into FP32 is large compared to the variables tuned in FP16: 93.13% for single precision and only 5.88% for half precision. Also, for an nsb ą 22 bits, POP(SMT) manages correctly the precision tuning approach by finding a single and double precision compromise.

As we show in the bottom of Figure 7.2, for nsb = 30 bits and nsb = 32 bits, the mixedprecision between single and double is obtained. Also, we can say that for an nsb = 24 bits there is as much single as double precision variables. Moreover, we notice that for an nsb = 36 bits all the variables remain in double precision and thus finding the minimal precision is only possible for accuracies lesser than 36 bits.

The top of Figure 7.3 describes the improvement of the number of bits compared to the original program. In fact, the original program starts with 15105 bits at bit-level, where all the variables are in double precision, and after POP(SMT) analysis we found that the improvement compared to the initial number of bits, ranges from 39% to 84% for an nsb starting from 12 to 36 bits which confirms the efficiency of our analysis.

As the subject of saving memory is challenging to us, in the bottom of Figure 7.3 we measure the memory used in Bytes by the program variables according to the precision requests. Initially, the memory size of the accelerometer program is equivalent to 816 Bytes and we measure in this experiment the size of the memory with each precision inserted. The bottom side of Figure 7.3 depicts that the memory used increases when we increase the accuracy requirements. For example, the program starts with 230 Bytes for an nsb = 12 bits and reaches nearly 816 Bytes for an nsb = 32 bits.

In addition, an important observation on the behavior of POP(SMT) is that it assigns 

Accelerometer-Based Pedometer Algorithm

In the previous section, we showed the usefulness of our analysis on an accelerometer code which can be used to measure the static angle of tilt or inclination. Here, we evaluate POP(SMT) on a significantly more complex example, a pedometer that implements a step counting algorithm.

The step counter calculates the steps from the x, y and z axis of the accelerometer example, depending on which acceleration axis change is the largest one. The steps of the pedome- ter algorithm and the experimental results of our method are illustrated in Section 7.2.1.

Precision Tuning and

Step Counting Algorithm for Embedded Applications

A pedometer is a small device that counts the number of footsteps [START_REF] Ahola | Pedometer for running activity using accelerometer sensors on the wrist[END_REF]. It is also called a footstep counter. Some pedometers also perform a few additionally tunable computations to detect how far a person walked in miles or how many calories have been burned [START_REF] Zhao | Full-featured pedometer design realized with 3-axis digital accelerometer[END_REF]. The present pedometer algorithm uses an accelerometer similar to the one that we have already described in Section 7.1 to count the number of footsteps.

Since the pedometer program is complex in its structures, containing nested loops, arrays and conditions, there are several stages in footstep detection [START_REF] Libby | A simple method for reliable footstep detection on embedded sensor platforms[END_REF] as summarized in Figure 7.4. We outline each of these as following:

Extract 3D Vector The algorithm, at the first stage, takes the magnitude of the entire acceleration vector i.e. a x 2 + y 2 + z 2 , where x, y, and z are the outputs of the accelerometer along the three axis. FIR low-pass filter Sometimes, the pedometer vibrates very quickly or very slowly for a reason other than walking or running. The step counter will also take it as a footstep and this invalid information must be discarded. So, the second step consists of removing the noise and extracting the specific signal corresponding to walking. A simple solution is to use a low-pass filter that keeps only frequencies related to walking and removes the rest [START_REF] Ahola | Pedometer for running activity using accelerometer sensors on the wrist[END_REF]. In practice, a low-pass filter is a circuit that modifies, reshapes or rejects any unwanted high frequencies of an electrical signal and accepts or transmits only the signal desired by the circuit designer. For instance, if a regular walking pace is under two steps a second, equivalent to 2 Hz, then all frequencies above this value may be removed by the filter and all other activities such as running or bicycling cannot be detected.

Autocorrelation to find the signal periodicity The autocorrelation function is the core of the step counter algorithm [START_REF] Morris | Recofit: Using a wearable sensor to find, recognize, and count repetitive exercises[END_REF]. It can be used to find the periodicity of a noisy signal in the time domain. Briefly speaking, we call a periodicity a pattern belonging inside a time series and which is repeated at regular time intervals. So, the autocorrelation function correlates the elements to others of the same series which are separated by a determined time interval.

Footstep detection using derivative

In this step, the algorithm computes the derivative and finds the first zero crossing from positive to negative (or negative to positive), which corresponds to the first positive peak in the autocorrelation. Finally, by counting the number of times the derivative function has changed from positive to negative, the number of steps occurred is detected.

POP(SMT) is annotated with assertions indicating which accuracy the user wants for the variables of interest. The main variables used in our example are the following. First, num_Tuples denotes the width of the window used to seek autocorrelation (400 tuples (x, y, z) in our example). In Section 7.2.2, we make vary the size of the window, as well as the accuracy requirements, and see its impact on the performance of POP(SMT). Next, mag_sqrt holds the magnitude of data x, y and z. The annotation require_nsb(mag_sqrt, 23) indicates to POP(SMT)that all the values stored in this variable must have an accuracy of 23 bits corresponding to a single precision number rounded to the nearest (nsb = 23 bits). At the output of the FIR low-pass filter, the signal is given in variable l p f . After computing and removing the mean, the autocorrelation is applied and the results are holden in autocorr_bu f f . Finally, the algorithm calculates the derivative and stores it in the deriv variable. Noting that all theses variables are in double precision before the start of POP(SMT) analysis. After the explanation of the different steps of the footstep counter algorithm given to POP(SMT), we measure in the next section the usefulness of our precision tuning analysis.

Experimental Evaluation of the Pedometer Program

The main results of running POP(SMT) on the footstep counter algorithm for the data set of [START_REF] Morris | Recofit: Using a wearable sensor to find, recognize, and count repetitive exercises[END_REF] are presented in figures 7.5, 7.6, 7.7 and 7.8 which correspond respectively to:

1. The measurement of performance of POP(SMT) in terms of precision improvement compared to the original program. The total number of bits is obtained by adding the number of bits needed to store all the variables and intermediary results at all the control points. In the original program, it is equal to 53 times the number of control points, 53 being the size of mantissas in double precision (FP64).

2. The analysis time of the program in seconds.

3. The optimisation in term of number of bits for different intervals around the x, y and z average values.

4. The mixed-precision configurations obtained after POP(SMT) analysis in terms of number of variables and operations that we may tune into IEEE754 double (FP64), simple (FP32), half (FP16) and mini-float precision (FP8). Of the eight accuracy requirements given to POP(SMT) (from 8 to 32 bits of accuracy by step of 4), the improvement compared to the initial number of bits in the original pedometer code is considerable. As shown in the top of Figure 7.5, the improvement varies between 64% for nsb = 28 bits to 79% for nsb = 12 bits. In addition, let us note that POP(SMT) remains all variables in double precision for an nsb = 32 bits and so no mixed-precision tuning is achieved beyond this accuracy for this example. Likewise, these results are confirmed in the bottom of Figure 7.5. Initially starting with 364905 bits at bit-level in the 7. Precision Tuning and Internet of Things 113 original pedometer program, the total number of bits is optimized for more than 50% for a nsb = 28 bits giving a new total of 132797 bits at bit-level. Clearly, the various measurements of POP(SMT) execution time illustrated in Figure 7.6 are reasonable and only take a few minutes for the whole pedometer code with a window of 400 data sets. Accordingly to Figure 7.6, we observe that the execution time increases when modifying the size of the accelerometer data set (or in other words, the size of the window used in the autocorrelation stage). Indeed, we observe that almost all of POP(SMT) execution time is spent in calls to Z3.

For windows of 160, 280 and 360 for x, y and z, the Z3 solver takes more to solve the constraints even though the execution time to find the new formats for the program variables of interest remains practical in our working environment. In addition, POP(SMT) (same for POP(ILP)) being a static analysis tool admitting sets for its inputs, Figure 7.7 shows how POP(SMT) behaves if there is no scalar inputs but intervals. In practice, we have taken intervals around average values for x, y and z so as to be based on a set of executions instead of a single one. The histograms of Figure 7.7 show that POP(SMT) succeeded in optimizing the initial number of bits for the original pedometer code, starting with 238977 bits at bit-level, for nsb ą 36 bits while for the case of the scalar values of the bottom of Figure 7.5 there were no precision tuning beyond an accuracy of 32 bits.

Assuming that in the original pedometer code, all the variables are in double precision, POP(SMT) succeeded in turning off variables into half and float precision as shown in Figure 7.8 and other variables remain in double precision for some accuracy assertions. The various diagrams of Figure 7.8 show the percentage of variables, after POP(SMT) analysis, in FP8, FP16, FP32 and FP64. To mention a few, 23% of variables are tuned to FP32 while the majority remains in FP64 for nsb = 16 bits. Also, 50% of the program variables are turned off in single precision for an nsb = 28 bits although 48% still in double precision and no variables tuned to FP8 mini-float precision. We present in Listing 7.2 the new mixed-precision formats of three steps of the footstep detection algorithm already detailed in Figure 7.4 which are: the low pass filter, remove of the mean and the autocorrelation function after POP(SMT) analysis. The left hand side of Listing 7.2 shows the original code for these functions where all the variables are in double precision and on the right hand side of Listing 7.2, we annotate the code with the new optimized formats for a given accuracy of nsb = 20 bits for each function output.

Summary

Summary

In this chapter we experimented POP(SMT), our static tuning assistant for mixed-precision, in a new domain of application IoT because the type of problem of energy consumption and memory are widespread in this area. Firstly, we have experimented POP(SMT) on the example of an accelerometer which can be used to measure the static angle of tilt or inclination. The results discussed show that our tool succeeded in computing the accuracy needed for each variable and intermediary results. We believe also that the new formats obtained by POP(SMT) can be very helpful at the system design level, to dimension the hardware. More precisely, these results allow the architect to choose which compromise he wants between accuracy and memory consumption, which is a key point for the performance of IoT devices in particular. Secondly, We have evaluated POP(SMT) on a pedometer program that implements a step counting algorithm for embedded applications. This example is significantly more complex than the accelerometer program which can be used as input of the present pedometer. Our results show that the static approach embodied in POP(SMT) manages correctly the mixed precision tuning which is confirmed by the different formats of program variables obtained after the analysis. It is also noticeable that POP(SMT) execution time remains very short, even for complex codes like the code of the pedometer.

In the future, we aim to go further in this domain application by applying our method to a real program integrated in an IoT device to measure physically the gain in memory and energy.

Finally, the reader may rightfully remark that the results in the present chapter were obtained before the implementation of the ILP-based method in POP(ILP). In Chapter 8, we will clearly show that for the accelerometer and pedometer programs, POP(ILP) do well and saves more bits and analysis time than POP(SMT). • First, we improve the efficiency of POP(SMT) by experimenting with several cost functions in order to optimize the solutions returned by the Z3 SMT solver. At the same time, we compare the performance of our tool for each of these functions on different programs coming from scientific computing, signal processing and the IoT domain.

• Second, we measure for each tuned program the error between the exact results given by an execution in multiple precision and the results of the programs optimized by POP(SMT). To do so, we have used the Multiple-Precision Binary Floating-Point Library With Correct Rounding MPFR [FHL + 07]. Finally, the measured error is compared to the user required accuracy already defined by the quantity nsb.

• Third, we provide a detailed comparison of POP(SMT) against the prior state-of-the-art tool Precimonious [RNN + 13] in terms of analysis time, speed and the quality of the mixed-precision tuning. We remind the reader that a detailed presentation of the Precimonious tool was discussed in Chapter 3 Section 3.3.2. Even though both tools use different techniques, we have adjusted the comparison criteria in order to make a closer comparison of the real behavior of these tools (more details presented in Section 8.3 of the present Chapter).

For the experimental setup, we ran these experiments on an Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM. Concerning Precimonious, we used the version published at [RNN + 13]1 .

The remainder of this chapter is organized as follows. We start with experimenting POP(SMT) with different cost functions in Section 8.1. Section 8.2 reports and discusses the generation of MPFR codes by our tool. Section 8.3 presents a complete description of the comparison between POP(SMT) and the prior state-of-the-art Precimonious, before concluding in Section 8.4

The content of this chapter is mostly based on the article published at the 4 th IEEE International Conference on Information and Computer Technologies (ICICT) in 2021 [START_REF] Ben | An evaluation of POP performance for tuning numerical programs in floating-point arithmetic[END_REF].

Different Cost Functions for the Z3 SMT Solver

In this experiment, we aim at evaluating two kinds of cost functions and compare the mixed-precision obtained in the tuned programs for each of these functions. Recall that POP(SMT) generates a set of constraints made of propositional logic formulas and affine expressions among integers already presented in [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] and calls the Z3 SMT solver in order to obtain a solution.

However, the solutions returned are not optimal due to the fact that Z3 is a SMT solver and not an optimizer. To cover this limitation, we add to our global system of constraints, as we have shown in Chapter 6, an additional constraint related to a cost function φ. The aim of the first cost function φ(c) (defined in Equation (6.1) is to compute the sum of the accuracies accd(x ) of all the variables plus the accuracies accd( ) at each control point of the arithmetic expressions. Then we ask Z3 to find a solution of a given weight. This operation is done repeatedly in a binary search.

In the next section, we define a second cost function and we compare the quality of the mixed-precision data formats obtained in the tuned programs by both functions.

Assigned Variables vs. All Control Points Cost Functions

The purpose of the second cost function given by φ 1 (c) in Equation (8.1), is to optimize φ(c) by only considering the sum of accuracies for the variables assigned in the program and to no longer count accuracies for the different control points as indicated in Equation (6.1). Equation (8.1) hereafter highlights the optimized cost function φ 1 (c). Proposition 8.1 (Cost Function for Assigned Variables). Let Id and Lab denote respectively the sets of identifiers and labels of the program. Let accd(x ) be a variable of the constraint system corresponding to the accuracy of a variable x P Id at a control point P Lab and let nsb( ) be the accuracy of the operation done at control point . Then φ 1 (c) is defined by

φ 1 (c) = ÿ xPId, PLab nsb(x ) . ( 8.1) 
After adding the additional cost function constraint that we are interested to use in the global system of constraints, POP(SMT) searches the smallest integer P = φ(c) or P = φ 1 (c) such that our system of constraints admits a solution. Consequently, we start the binary search with P P [0,112 ˆn] where all the values are in long double precision (binary128) and where n is the number of terms in Equation (6.1) or Equation (8.1) (depending on the function we add in our system of constraints). When a solution is found for a given value of P, a new iteration of the binary search is run with a smaller value of P. When the solver fails for some P, a new iteration of the binary search is run with a larger P and we continue this process until convergence. We recall that the cost functions are simplified when we deal with arrays.

Numerical Results

Figure 8.1 shows the results of mixed-precision tuning obtained by POP(SMT) on several programs. The low pass filter program and the derivative function are parts of the pedometer program that counts the number of footsteps whose algorithm contains several steps [START_REF] Ben | Precision tuning of an accelerometerbased pedometer algorithm for iot devices[END_REF] highlighted in Chapter 7. We recall that these last two programs are coming from the IoT field [START_REF] Morris | Recofit: Using a wearable sensor to find, recognize, and count repetitive exercises[END_REF]. The arclength and the simpson programs were already presented in Chapter 6. The results are perceived by experimenting two cost functions to our global system of constraints in order to optimize the solutions returned by the Z3 solver.

Of the six accuracy requirements given to POP(SMT) for the four input programs, from a nsb = 12 bits to nsb = 38 bits, POP(SMT) succeeded in turning off variables into FP8 mini-float precision, FP16 half precision, FP32 single precision, FP64 double precision and FP128 long double precision as shown in the top and the bottom of Figure 8.1 for the two cost functions φ(c) and φ 1 (c) respectively.

Besides, the top of Figure 8.1 shows that for the low pass filter program, 16% of variables are tuned to FP8 mini-float precision, 37% are tuned to FP16 half precision and nearly 50% of variables are turned off in FP64 double precision for nsb = 12 bits. Although, for the same program, the majority of variables are transformed to FP64 for nsb = 38 bits. For the arclength program and for the different user accuracies, a large amount of variables are tuned to FP64 double precision starting with 62% for nsb = 12 bits until 98% for nsb = 38 bits. For the simpson program, we observe improvements but in less proportions than for the other examples. For the program implementing the derivative function of the pedometer code, we observe that the largest part of variables are transformed to FP32 single precision and FP8 mini-float precision compared with the few amount of variables tuned to double precision especially for accuracies of 30 and 38 bits.

The main results of running POP(SMT) with the new cost function φ 1 are illustrated in the bottom side of Figure 8.1. By comparing the results with the old cost function, we perceive the difference of the mixed-precision tuning results returned by POP(SMT). For the low pass filter program, we have more variables turned into FP8 mini-float precision with nearly 59% for almost every user accuracy requirements, compared to the number of variables in FP64 double precision obtained with the cost function illustrated in the top of Figure 8.1.

Furthermore, the majority of variables in program arclength are transformed into FP64 double precision, going up to 100% for nsb = 38 bits. Finally, for the derivative program, the percentage of variables in FP8 mini-float precision is greater than in FP32 single precision reaching a percentage of 70% for all user accuracies. We bring the reader's attention to the fact that the second cost function φ 1 (c), which is a strict relaxation of φ(c), corresponds to what Precimonious actually optimizes. It is then fairer to use it in our comparisons in Section 8.3. In addition, all the original programs showed above are in FP128 long-double precision before POP(SMT) analysis for reasons of comparison with the Precimonious tool.

MPFR Code Generation

In this experiment, we seek to generate a MPFR code to create a program that gives an exact result by assuming that the original program is computed with a precision of 300 bits. After, the same code will be generated with the optimized precision returned by POP(SMT). The goal of this experiment is to measure the difference between the two programs and to plot the curve of the difference in function of the theoretical error which is the worst accepted error required by the user, for example this error is equal to 2 ´22 for nsb = 23 bits.

The experiment shown in Figure 8.2 examines the difference between the exact results computed with MPFR and the results returned by POP(SMT). Following this, we compare the difference with the worst error required by the user for different nsb values: 12, 17, 23, 27, 30 and 38 bits. Consequently, each program in this experiment corresponds to two curves and we can see in Figure 8.2 that the actual error measured is always less than the theoretical user error defined as β ´nsb+1 where β = 2. The curves of Figure 8.2 validate that POP(SMT) satisfies the user defined error constraints for the input programs: arclength, simpson and low pass filter. Also, we can see that the actual error for each program is always less than the theoretical error given by the user. For nsb = 17 bits and nsb = 23 bits, the curves of the arclength program can intersect but it always remain below the worst error tolerated by the user which are 2 ´16 and 2 ´22 respectively for these requirements. As an important observation, we remark that the measured errors are very close to the theoretical errors which is considered as a desirable property. In other cases, if the measured error were far smaller than the theoretical error this would probably mean that we use too many bits and consequently that the our method of precision tuning would be suboptimal.

Comparison between POP(SMT) and Precimonious

Comparison between POP(SMT) and Precimonious

Experimental Setup

The main goal of this experimental evaluation is to compare our tool versus the dynamicsearch based tool Precimonious [RNN + 13]. Therefore, we evaluate POP(SMT) on two numerical programs used as benchmarks for precision tuning in Precimonious: the simpson and arclength programs. In addition, we evaluate Precimonious on three programs used as benchmarks for POP(SMT) which are the rotation program already highlighted in Chapter 6 Section 6.2.2, the accelerometer program and the pedometer program presented in Chapter 7.

The number of lines of code (LOCs) for each of the five programs differs from one tool to another because of the different instructions linked to the error constraints that 8. Evaluation of POP(SMT) Performance 125 each tool adds. The differences between POP(SMT) and Precimonious are highlighted in Table 8.1. Since the tools implement two different techniques, we have adjusted some criteria including the number of variables that we optimize so that the comparison is as close as possible to the real behaviors of the two tools. This is done as follows: • POP(SMT) optimizes more variables than Precimonious. Consequently, for the sake of comparison, in the following we only consider the variables optimized by Precimonious to estimate the quality of the optimization. Let us note that by doing this adjustment, we disadvantage POP(SMT).

• For POP(SMT), the initial precision of the input programs is a parameter. This parameter was set to double precision in all the previous experiments in which we do not need to compare with other tools. To fit with Precimonious features in the comparisons, POP(SMT) initial precision is set to long double precision.

• Precimonious creates a search space for all variables which precision needs to be tuned [RNN + 13] in FP32, FP64 or FP128 precision. According to POP(SMT), we take into account the variables that arise in the computation of the resulted variable on which the user requires a precision constraint and tunes their precision into FP8 and FP16 alongside the FP32, FP64 and FP128 precision. We do know that the FP8 minifloat precision is rarely used but our tool is able to find this format without additional cost nor to increase the complexity which depends on the number of formats. In contrast, Precimonious is not able to have this format without additional cost.

• In Precimonious, the user accuracy requirement is formulated as an error threshold.

In practice, the error threshold represents the number of accuracy digits. For instance, the result is required to be correct up to 10 digits for an error threshold of 10 ´10 . Let us note that the error thresholds are expressed in base 2 in POP(SMT) and POP(ILP) and in base 10 in Precimonious.

In this section, for the relevance of comparisons, all the thresholds are expressed in base 10. In practice, POP(SMT) will use the base 2 threshold immediately lower than the required base 10 threshold.

In Table 8.2, we show the number of variables optimized for each program by both tools, while in tables 8.3 and 8.4 we present the number of variables tuned to FP8, FP16, FP32, FP64 and FP128 for error thresholds of 10 

POP(SMT) vs. Precimonious Comparison Results

Table 8.3 and Table 8.4 show the results of the mixed-precision tuning for the five programs by both tools and for different error thresholds. We measure the running analysis time in seconds taken by the tools to find the new precision inferred in the optimized programs.

In addition, we estimate the time by Z3 in POP(SMT) to solve the constraints. After the tools analysis, we compute the number of variables tuned into FP8, FP16, FP32, FP64 and those remained in FP128 and we present the total number of bits in the optimized programs. We denote by "S" the number of function prototypes which can be tuned to a lower precision. The dash symbol "-" denotes that a tool does not find any solution (configuration of types) that satisfies the user accuracy constraint. We show in bold the number of variables turned to FP8 and FP16 by POP(SMT) where Precimonious is only capable to tune the variables precision to FP32 and FP64 only.

For the running time measured for both tools, we can observe in Table 8.3 that the analysis are running faster with our tool for the different benchmarks and for error thresholds of 10 ´6 and 10 ´4. However, POP(SMT) takes longer time to find the optimized precision for the pedometer program compared with Precimonious. By looking at the Z3 time spent to resolve the constraints, we can deduce that our tool consumes almost the entire time of analysis making calls to the Z3 solver. Globally, it remains fast and does not exceed a few minutes with only 4 minutes are spent to solve the constraints of the pedometer code for an error threshold of 10 ´6.

Compared to Precimonious, POP(SMT) succeeds to tune two more programs. The reader may have remarked that by entering the accelerometer program as input to Precimonious, no valid configuration was found for this example with the different error thresholds inserted. In addition, Precimonious failed to tune the pedometer program for any error 8.3 lists the final optimized precision obtained in the form of FP8, FP16, FP32, FP64 and FP128 and counts the number of bits in "#Bits Optimized" of the tuned programs. Recall that "S" is the number of function calls to switch to lower precision. We took the same definition used in [RNN + 13]. For example, a function whose prototype is tuned from double -> double to float -> float is counted as one switch in "S".

Moreover, we can observe from tables 8.3 and 8.4 that POP(SMT) is capable to optimize variables into FP8 and FP16 (see bold numbers under POP(SMT) "#FP8" and "#FP16") in addition to FP32, FP64 and FP128 which are the only three configurations inputs associated to each variable of the search space of Precimonious. By way of illustration, 13 variables of a total of 27 are tuned to FP8, 9 variables are optimized to FP16 and the rest are tuned to FP32 for the rotation program. We precise that the parameter "#Bits Optimized" is obtained by the sum of multiplying each variable by its precision. We remark that POP(SMT) succeeded in tuning 4 of 5 programs with less number of bits optimized than Precimonious, except for the arclength program.

At the same time, Precimonious do well for an error threshold of 10 ´10 for the arclength, simpsons and rotation programs as depicted in Table 8.4. We obtain in this experiment that the tuned arclength program by Precimonious uses less bits than our tool for the four given error thresholds.

Summary

In this chapter, a detailed evaluation of the efficiency of POP(SMT) has been discussed. First, we have tested two different cost functions to POP(SMT) global system of constraints in order to optimize the solutions returned by Z3 solver. With this experiment, we have shown that this aspect can influence the total number of bits optimized in the tuned programs when using a function instead of the other. Second, we have measured the error between the exact results given by an execution in multiple precision and the results of optimized programs by POP(SMT) and we found that the measured error curve is always below the theoretical error required by the user.

As we consider that comparing our work to the existing state-of-the-art techniques is a tremendous challenge to examine, we have evaluated the performance of POP(SMT) by presenting a comparison against the Precimonious tool in terms of analysis time, speed and the quality of the solutions returned. We have demonstrated that the results achieved by POP(SMT) are promising. Hence, POP(SMT) was faster in the analysis time for the majority of the programs tested. In addition, we deduced that the POP(SMT) tool returned better mixed-precision results for different user accuracy requirements where the variables are tuned into FP8, FP16, FP32, FP64 and FP128 precision. A fter taking a closer look on how the precision tuning problem can be formulated as an ILP problem in Chapter 5, we evaluate in the present chapter the performance of POP(ILP) on several numerical programs coming from mathematical libraries and other application domains such as IoT and physics. Also, we present a full comparison between the behaviour of POP(ILP) against the first version POP(SMT) and the state-ofthe-art Precimonious [RNN + 13] and we show that our results encompass the results of state-of-the-art tools. Second, we demonstrate the efficiency of POP(ILP) to tune the classical gravitational N-body problem by considering five bodies that interact under gravitational force from one another, subject to Newton's laws of motion. Results on the effect of POP(ILP) in term of mixed-precision tuning of the N-body example are discussed in this chapter. For the experimental setup of this chapter, we ran these experiments on an Intel Core i5-8350U CPU cadenced at 1.7GHz on a Linux machine with 8 GB RAM.

The remainder of this chapter is organized as follows. Section 9.1 shows that POP(ILP) 9.1. Numerical Results for the ILP-based Method exhibits very good results when tuning a new variety of benchmarks. Section 9.2 reports the results of the comparison between POP(ILP), POP(SMT) and Precimonious. We end up in Section 9.3 by explaining the precision tuning of the N-body problem before concluding in Section 9.4. This work is a part of contribution that was published at the 28 th Static Analysis Symposium (SAS) in 2021 [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF] and the article [START_REF] Ben | A study of the floating-point tuning behaviour on the n-body problem[END_REF] published and presented at the 21 st International Conference on Computational Science and Applications (ICCSA) in 2021.

Numerical Results for the ILP-based Method

We evaluate in this section the performance of POP(ILP) on the benchmarks of POP(SMT) already presented in Chapter 6 Section 6.2.2 and on new benchmarks such as the N-body problem, the pendulum program, the Newton-Raphson method, the odometry program, the PID Controller program, the Runge Kutta method and the trapezoidal rule program. These programs were defined in Chapter 6 Section 6.3.2.

The experiments shown in Table 9.1 present the tuning results produced by POP(ILP) for each error threshold 10 ´4, 10 ´6, 10 ´8 and 10 ´10 . This is for compatibility with Precimonious which uses decimal thresholds. Technically, we translate these error thresholds into nsb. In Table 9.1, we represent by "TH" the error threshold given by the user. "BL" is the percentage of optimization at bit-level. "IEEE" denotes the percentage of optimized variables in IEEE754 formats (e.g. FP16, FP32 etc.) In IEEE mode, we recall that the nsb obtained at bit-level is approximated by the upper number of bits corresponding to a IEEE754 format. "ILPtime" is the total analysis time of POP(ILP) in the case of ILP formulation. We have also "PI-time" to represent the time passed by POP(ILP) to find the right policy and to resolve the precision tuning problem. "H", "S", "D" and "LD" denote respectively the number of variables obtained in, half, single, double and long-double precision when using the policy iteration (PI) formulation that clearly displays better results.

Let us focus on the first "TH", "BL", "IEEE" and "ILP-time" columns of Table 9.1. We compute the improvements compared to the case where all variables are in double precision before tuning. For the arclength program, the optimization reaches 61% at bit-level while it achieves 43% in the IEEE mode (100% is the percentage of all variables initially in double precision, 121 variables for the original arclength program that used 7744 bits). This is obtained in only 0.9 second by applying the ILP formulation. When we refine the solution by applying the policy iteration method (from the sixth column), POP(ILP) attains 62% at bit-level and 45% for the IEEE mode. Although POP(ILP) needs more analysis time to find and iterate between policies, the time of analysis remain negligible, not exceeding 1.5 seconds. For a total of 121 variables for the arclength original program, POP(ILP) succeeds in tuning 8 variables to half precision (H), 88 variables tuned to single precision (S) whereas 25 variables remain in double precision (D) for an error threshold of 10 ´4. We remark that our second method displays better results also for the other user error thresholds. For the simpson, accelerometer, rotation and lowPassFilter, the improvement is also more important when using the PI technique than when using the ILP formulation. For instance, for an error threshold of 10 ´6 for the simpson program, only one variable passes to half precision, 27 variables turn to single precision while 21 variables remain in double precision with 56% of percentage of total number of bits at bit-level using the policy iteration method. Concerning the 2-Body and the pendulum codes, the two techniques return the same percentage at bit-level and IEEE mode for the majority of error thresholds except for the pendulum program where POP(ILP) reaches 34% at bit-level when using the PI method for a threshold of 10 ´10 . Now, we stress on the negative percentages that we obtain in Table 9.1, especially for the arclength program with 10 ´10 and 10 ´12 for the columns IEEE, the lowPassFilter program for errors of 10 ´8, 10 ´10 and 10 ´12 and finally for the 2-Body for almost all the error thresholds. In fact, POP(ILP) is able to return new formats for any threshold required by the user without additional cost nor by increasing the complexity even if it fails to have a significant improvement on the program output. To be specific, taking again the arclength program, for an error of 10 ´12 , POP(ILP) fulfills this requirement by informing the user that this precision is achievable only if 10 variables passes to the long double precision (LD) which is more than the original program whose variables are all in double precision. By doing so, the percentage of IEEE formats for both ILP and PI formulations reaches ´17% and ´8%, respectively. Same reasoning is adopted for the lowPassFilter which spends more time, nearly 12 seconds, with the policy iteration technique to find the optimized formats (total of 841 variables). Also, the number of variables of the former program reaches 583 variables that are correctly optimized according to the different error thresholds. For instance, 2-Body program, for an error threshold of 10 ´8, the percentage of optimization attains ´7% at bit-level. Note that in these cases, other tools like Precimonious [RNN + 13] fail to propose formats.

Let us move to analyze the new benchmarks of POP(ILP) and start with the Newton-Raphson program. For this program, POP(ILP) succeeded to tune 7 variables to single precision (S) for an error threshold of 10 ´6 with the ILP method whereas there is no more optimization obtained when using the PI technique that optimizes the carry bits. For the remaining programs: odometry, PID, Runge-Kutta and Trapeze, the results of precision tuning are satisfactory. A common behaviour between these programs is that for an error threshold lesser than 10 ´8, all the variables of these programs are tuned into double precision (D) in a maximum analysis time that does not exceed 2.67 seconds so as to the Runge-Kutta program.

POP(ILP) vs. the Prior State-of-the-Art Techniques

In the following experiment, we display the comparison between POP(ILP), the former version of POP that uses the Z3 SMT solver coupled to binary search to find the optimal 134 9.2. POP(ILP) vs. the Prior State-of-the-Art Techniques 9.2. The goal of this comparison is to identify the tool that finds more precise data formats for the original programs analyzed as rapidly as possible. We remind the reader that we have adjusted some criteria including the number of variables that we optimize so that the comparison is as close as possible to the real behaviors of the two tools. These adjustments were clearly revealed in Chapter 8.

We recall that POP(ILP) combines both ILP and PI formulations. As long as the reader is not warned by switching to the more precise PI method, ILP mode is activated by default. The results of the mixed-precision tuning are shown for the arclength, simpson, rotation and accelerometer programs, as depicted in Table 9.2. Let us state that some examples used in Precimonious benchmarks [RNN + 13] cannot be analyzed as-is by POP (in its two versions) for implementation reasons such as the calls to external libraries or the use of syntactic forms not yet implemented in our tool. Conversely, let us also mention that Precimonious fails to tune (zero improvement) some examples handled by POP(ILP) and POP(SMT), e.g. the lowPassFilter program.

In Table 9.2, we indicate in bold the tool that exhibits better results for each error threshold and each program. Starting with the arclength program, POP(ILP) displays better results than the other tools by optimizing 28 variables. For an error threshold of 10 ´4, 2464 bits are saved by POP(ILP) in 1.8 seconds while POP(SMT) saved only 1488 bits in more time (11 seconds). Precimonious were the slowest tool on this example with more than 2 minutes with 576 bits for only 9 variables optimized. For the simpson program, POP(ILP) do also better than both other tools. However, for the rotation program, POP(ILP) saves more bits than the other tools only for an error of 10 ´4 while Precimonious do well for this program for the rest of error thresholds. One possible explanation for this behavior is that POP(ILP) (same for POP(SMT)) is at a disadvantage by considering only the variables optimized by Precimonious when we adjust the comparison criteria.

Finally, Precimonious fails to tune the accelerometer program (0 variables) at the time that POP(ILP) do faster with only 1 second to save much more bits than POP(SMT) for any given error threshold.

Precision Tuning of the N-Body Problem

In the present section, we validate the efficiency of our approach on one of the oldest problem of modern physics, the N-body problem [START_REF] Gardarsson | Some theoretical and numerical aspects of the n-body problem[END_REF]. An N-body simulation numerically approximates the evolution of a system of bodies that interact with one another through some type of physical forces, where N presents the number of bodies in the system (N = 5). We note that the N-body program has been excerpted (not fully) from [START_REF] Demeure | Compromis entre précision et performance dans le calcul haute performance[END_REF]. The program implements a second order differential equation which needs to be solved to get a location of the bodies for a given timevalue. By varying the required accuracy by the user, we show experimentally that POP(ILP) succeeds in tuning the N-body program (original program » 330 LOCs). As a result, the transformed program is guaranteed to use variables of lower precision with a minimal number of bits than the original one. Prior work on the precision of N-body simulations have been carried out for a long time [START_REF] Makino | Performance evaluation and tuning of GRAPE-6 -towards 40 "real" tflops[END_REF]. Compared to other experiments carried out with POP(SMT) [BM19, BM20], the N-body example presents new difficulties, mainly more complex computations and a wide range of values with different magnitudes. The different experimental evaluations presented for the N-body problem are the following. First, we measure the distance between the exact position of the bodies, Jupiter, Saturn, Uranus and Neptune by assuming that the Sun position is fixed, computed with 500 bits and the position computed with nsb bits where nsb = 11, 18, 24, 34, 43 and 53 bits. These distances are given for each body with different time of simulation: 10 and 30 years. Second, we demonstrate on this example the ability of POP(ILP) to generate a MPFR code with the new data types returned by our tool. Furthermore, we measure the global analysis time taken by POP(ILP) and the execution time of the MPFR generated code and we prove that POP(ILP) returns solutions in a few seconds. We note that the global analysis time includes the time of the program evaluation, the range analysis determination, the constraint generation and the resolution by the solver. As depicted in Figure 9.1, we aim at modelling the simulation of a dynamical system describing the orbits of planets in the solar system interacting with each other gravitationally. We note that to for the sake of clarity of the graphic, Figure 9.1 uses different simulation times for each body.

Precision Tuning of the N-Body Problem

We present, in Listing 9.1, excerpts of code that measure the distance between the two planets Jupiter and Saturn. We assume that each body has its own mass (e.g. massJupiter, massSaturn), position (e.g. [xJupiter, yJupiter, zJupiter], [xSaturn, ySaturn, zSaturn]) and velocity (e.g. [vxJupiter, vyJupiter, zyJupiter], [vxSaturn, vySaturn, vzSaturn]). Moreover, we assume that all the variables, before POP(ILP) analysis, are in double precision and we recall that a range determination is performed by dynamic analysis on the program variables. POP(ILP) assigns to each node of the program's syntactic tree a unique control point as mentioned in the left hand side corner of Listing 9.1. The statements require_nsb(xJupiter,11) 2710 and require_nsb(xSaturn,11) 2716 on the last two lines of the code inform the system that POP(ILP) user wants to have 11 accurate binary digits (nsb) on variables xJupiter and xSaturn at their control points 2710 and 2716 , respectively. We recall that a result has nsb significants if the relative error between the exact and approximated results is less than 2 ´nsb+1 . Consider the program of the right hand side of Listing 9.1. We display the POP(ILP) output N-body program coupled with the generated data types. For nsb = 11 bits on variables xJupiter and xSaturn, POP(ILP) tunes successfully a large part of the variables of the program (number of constraints solved by GLPK » 3160 with 2468 variables). For instance, the result of the measured distance between Jupiter and Saturn, on line 22 of the right hand side of Listing 9.1, is computed with 44 bits at bit-level. Note that the full code contains other nsb requirements for the other bodies. The nsb given in the right hand side of Listing 9.1 are greater than the nsb required on the final results since they have been skewed to ensure the precision of the whole code at any iteration. Let us also mention that even if the computed nsb do not correspond to IEEE74 formats [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF], one may either take the IEEE754 format immediately above the computed nsb or choose a multiple precision library such as MPFR or POSIT [UFdD19] (we will discuss more about this point later in this chapter).

Experimental Study

The key feature of our ILP approach, is to generate a set of constraints for each statement of our program. In other words, the accuracy of the arithmetic expressions assigned to variables is determined by semantic equations, in function of the accuracy of the operands.

Integer Linear Problem Formulation with Pessimistic Carry Bit Propagation

In order to explain the obtained data types of our N-body program already illustrated in the right hand corner of Listing 9.1, we present the system of constraints that corresponds to a pure ILP formulation as shown in Equation (9.1). For the sake of conciseness, we will focus on lines 22 to 24 that measure the distance between the Jupiter and Saturn bodies (tuned program in the right hand corner of Listing 9.1). To make it easier to follow our reasoning, we rewrite hereafter the statement under discussion annotated with the control points. For this statement, POP(ILP) generates 17 constraints in global as shown in system C 1 of Equation (9.1). We assign to each control point (here 771 to 787) the integer variable nsb which are determined by solving the system C 1 . To discuss some of them, the first two constraints of Equation (9.1) are relative to the nsb of the additions stored at control points 780 and 786 respectively. The numbers computed corresponds to the ufp of the variable values e.g. ufp( 780 ) = ´1. The following constraints that compute respectively nsb( 774 ), nsb( 779 ) and nsb( 785 ) are generated for the multiplication. The constraint nsb( 787 ) ě nsb( 788 ) is for the square root function. Moreover, the constraint generated for nsb( 771 ) is relative to variable dx (same reasoning for variables dy and dz on their control points). Note that POP(ILP) generates such constraints for all the statements of the N-body program.

The last five constraints of system C 1 correspond to the constant carry bit function ξ. For instance, the constraint ξ( 780 )( 774 , 779 ) ě 1 indicates the over-approximation of the carry bit propagation in the ILP approach on the result of the addition stored at control point 780 . Finally, for nsb = 11 bits as displayed in Listing 9.1, POP(ILP) calls the GLPK solver and consequently finds the least precision needed for all the N-body problem variables as we can observe hereafter. We note that is the total number of bits of the whole program after POP(ILP) optimization is 14636 bits at bit-level:

distance|44| = sqrt( dx|46| ˚|46|dx|46| + |45|dy|45| ˚|45|dy|45| +|44|dz|35| ˚|35|dz|35|);
Policy Iteration to Refine Carry Bit Propagation With the PI method, we propose an optimization to use a more precise ξ function. Accordingly, when we model this optimization, the problem will not remain an ILP any longer, with min and max operators that arise, as shown in the refined system of constraints C 2 of Equation (9.2). Thus, we use the policy iteration method [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF] to find an optimal solution as we have explained in Chapter 5. Equation (9.2) displays the new constraints that we add to the global system of constraints C 1 . The purpose of these new constraints is to estimate the integer quantity nsb e that helps to compute the new optimized ξ function already defined in Equation (4.19).

In practice, policy iteration makes it possible to break the min and the max in the ξ( By comparing with the formats already presented with the ILP method, it is obvious the gain of precision that we obtain on each variable and operation of this statement. With the PI method, the total number of bits of the optimized N-body program is » 14335 at bit-level forming a gain of more than 300 bits compared to the pure ILP formulation. In term of complexity, for both ILP and PI methods, POP(ILP) generates a linear number of constraints and variables in the size of the analyzed program and finds the best tuning of the variables in polynomial-time.

Distance between the Exact and the Computed Positions of the Bodies

We ran our precision tuning analysis on the N-body problem with different nsb requirements on the program variables: 11, 18, 24, 34, 43 and 53 bits. This shows the ability of POP(ILP) to tune programs in function of the IEEE754 formats (11,[START_REF]for ( lag =0 , lag < numAutoCorrLags , lag ++)[END_REF]53) [START_REF]ANSI/IEEE. IEEE Standard for Binary Floating-point Arithmetic[END_REF] as well as for arbitrary word length which can be encoded using libraries such as MPFR or POSIT [START_REF] Gustafson | Beating floating point at its own game: Posit arithmetic[END_REF]. We test the efficiency of POP(ILP) analysis in several ways. The experiments shown in Table 9.3 seek to measure the distances between the exact position of each of the bodies of our planetary system and the position computed with nsb = 11, 18, 24, 34, 43 and 53 bits. The distances presented in Table 9.3 are given for a single position on the planets which follow the orbits previously presented in Figure 9.1. The positions are taken after 10 and 30 years of simulation time.

More precisely, for this experimentation, we generate the N-body program with all computations done with 500 bits by assuming that this gives the exact solution, and we also generate by the same manner an MPFR code with the optimized data types returned by POP(ILP). For example, as we can observe in Table 9.3: Distances between the exact position (computed with 500 bits) and the position computed with n bits. Distances given for each body after 10 and 30 years of simulation. Followed by POP(ILP) analysis time and the execution time of the MPFR generated code.

measured for Jupiter is of the order of 10 ´4 for 10 years of simulation which confirms the usefulness of our analysis: desirable results that respects the user nsb requirement where the worst error is of 2 ´11 for nsb = 11 bits. The results are also satisfactory for the remaining planets. For a simulation of 10 and 30 years, the run-time spent to measure the distances reaches maximally 2 minutes 59 seconds for an nsb = 53. Concerning the POP(ILP) time, our analysis took as little as 25 seconds for nsb = 11 bits to find that we can lower the precision of the majority of variables of the N-body program for a simulation time of 10 years and does not exceed 41 seconds for a simulation time of 30 years for nsb = 24 bits . With this speed, we believe that for large codes POP(ILP) achieves its best tuning in a minimal time. version of the N-body program on the position of the planets at the end of the simulation.

The MPFR code is annotated with the optimized formats returned by POP(ILP) after analysis for nsb = 18 bits. In the future, we plan to also generate code for libraries based on the POSIT number system1 .

We end the experiments by focusing on the curves of Figure 9.2. For this experiment, we plot the distance between the exact and the computed position for each body at each instant of the simulation. This extends the results of Table 9.3 to all instants and not to specific ones. Consequently, we deduce from these observations that the measured error is controlled for the different planets at each iteration of the simulation. 

Summary

As first contribution of this Chapter, we evaluated POP(ILP) on several numerical programs.

In addition, we provided a detailed comparison of POP(ILP) against the previous version POP(SMT) [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] and the prior state-of-the-art tool Precimonious [RNN + 13] in terms of analysis time, speed and the quality of the mixed-precision tuning. With this contribution, we validate the performance of our tool POP(ILP) and we believe its efficiency in tuning more larger codes with more complex structures.

In the second contribution, we have also shown that POP(ILP) is able to tune the N-body program according to different number of significant bits required by the user. The results presented are promising in term of the analysis technique, speed and efficiency. The only limitation we can face is the size of the problem accepted by the solver. Besides, we have also shown that POP(ILP) is able to generate code for multiple precision libraries, MPFR in practice, and we plan to integrate POSIT libraries in the near future.

To conclude, in chapters 7, 8 and 9, the two implementations of POP have been evaluated. The new ILP approach proposed has exhibited more interesting results on the mixedprecision tuning of the programs. Consequently, we are considering several directions for our future work. The first one includes handling Deep Neural Network's (DNNs) for which saving resources is essential. Also, code synthesis for the fixed-point arithmetic and assigning the same precision to pieces of code are perspectives we aim at explore at short term. T he work presented in this thesis addressed the problem of precision tuning which is emerging as a new trend in HPC, especially when new error-tolerant applications are considered, to improve performance metrics such as computation latency and power consumption. This work has led to the development of POP which is an automated tool for precision tuning. Based on static analysis, POP computes the minimal number of bits needed at bit-level for the variables and the intermediary results of programs in order to accomplish the user requirement of accuracy. In this chapter, we summarize the different techniques used by POP in order to obtain a fast and efficient bit-level precision tuning. Additionally, we will discuss the prospects of this thesis and suggest various research directions for future work, notably in short and long-term, that would leverage our results.

Chapter
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(ufp) and the number of significant bits (nsb) of the values which are integer quantities. The optimal solution computed by a classical LP solver (we use GLPK [Mak] in practice) gives the optimized data types that satisfy the user accuracy requirement in a polynomial-time. Consequently, our tuning is not dependant of any particular computer arithmetic. However, we must say that we have over-approximated the carry bit propagation throughout the computations in the ILP formulation.

The third contribution consists of introducing a second set of semantic equations which make it possible to tune even more the precision by being less pessimistic on the propagation of carries in arithmetic operations. By doing so, the problem does not reduce any longer to an ILP problem. Then we used the policy iteration (PI) method to find efficiently the solution.

In Chapter 6, we described the fourth contribution of this thesis. It consists of the implementation of the SMT-based method and ILP-based method in POP. We started by presenting the stages of implementation and the different architectures of POP(SMT) and POP(ILP). As well, we have introduced the different benchmarks that we used to evaluate the performance of each version of the tool.

In Chapter 7, we experimented POP(SMT) on two examples coming from the IoT field. The first example is an accelerometer which can be used to measure the static angle of tilt or inclination. Our experimental results showed that POP(SMT) succeeded in computing the accuracy needed for each variable and intermediary results of the accelerometer program. For instance, we measured an improvement ranging from 65 % to 84 % for an accuracy lesser than 23 bits. The second example consists of the pedometer program that implements a step counting algorithm for embedded applications. This example is significantly more complex than the accelerometer one. Our results showed that POP(SMT) succeeded in tuning the majority of variables. For instance, we measured an improvement ranging from 64 % to 79 % for an accuracy lesser than 32 bits. In addition, POP(SMT) managed correctly the mixed-precision tuning which is confirmed by the different formats of program variables obtained after the analysis. It is also noticeable that POP(SMT) execution time remain very short, even for complex programs like the code of the pedometer. Thus, we believe that the results discussed in this chapter can be very helpful at system design level, to dimension the hardware. It will help the architect to choose which compromise he wants between accuracy and memory consumption, which is a key point for the performance of IoT devices in particular. Chapters 8 and 9 deal with the evaluation of the performance of POP(SMT) and POP(ILP) in several manners.

In Chapter 8, we provided a detailed comparison of POP(SMT) over the prior state-ofthe-art tool Precimonious [RNN + 13] in terms of analysis time, speed and the quality of the solution. The experimental results showed that POP(SMT) succeeded to tune more programs than Precimonious. In addition, we deduced that our tool returned better mixed-precision results for different user accuracy requirements where the variables are tuned into FP8, FP16, 10.2. Short-Term Perspectives FP32, FP64 and FP128 precision. The second experimentation in this chapter concerned the use of two different cost functions to POP(SMT) global system of constraints in order to optimize the solutions returned by the Z3 solver. Next, we compared the performance of our tool for each of these functions on different programs coming from scientific computing, signal processing or IoT. The results have shown that this can influence the total number of bits optimized in the tuned programs by obtaining different optimized precision when using a function instead of the other. Moreover, we measured the error between the exact results given by an execution in multiple precision (using MPFR [FHL + 07]) and the results of optimized programs by POP(SMT) and we found that the measured error curves are always below the theoretical errors required by the user for the different benchmarks.

In Chapter 9, we evaluated the performance of POP(ILP) on new benchmarks and we compared the mixed-precision tuning obtained when activating the pure ILP method and the optimizing PI method. Second, we presented a full comparison between the behaviour of POP(ILP) [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF][START_REF] Ben | A study of the floating-point tuning behaviour on the n-body problem[END_REF] against the first version POP(SMT) [BMA19, BM19, BM20, BM21a] and Precimonious [RNN + 13] and we showed that our results encompass the results of these tools. Finally, we demonstrated the efficiency of POP(ILP) to tune the classical gravitational N-body problem (« 400 LOCs) according to different number of significant bit required by the user. The results presented are promising in term of the analysis technique, speed and efficiency.

Short-Term Perspectives

In this section, we present the short-term perspectives of our thesis. These perspectives are related to the internal behaviour and functionality of POP. We mentioned many perspectives throughout our presentation of the contributions and their implications. The objective of this section is to develop these perspectives and aggregate them.

Scalability of POP

Concerning scalability, POP generates a linear number of constraints and variables in the size of the analyzed program. The only limitation is the size of the problem accepted by the solver. In future work, our objective is to address the scalability issue by at least two ideas. The first idea consists of studying how to tune a program partitioned into several parts such that the same precision is used for all the statements of the same part (e.g. an arithmetic expression, a line of code, a function, a loop, etc.) This will significantly reduce the size of our constraint systems and make the tuning scale up. In addition, concerning big arrays, we will study how to incorporate lossy compression techniques such as ZFP [FDH + 20] or SZ [START_REF] Di | Fast error-bounded lossy HPC data compression with SZ[END_REF] and how to determine the compression rate using our tuning tool POP.

The second idea consists of exploring commercial LP solvers that are less limited in the size of the ILP problem (so as the GLPK solver [Mak] used in this thesis) such as CPLEX [START_REF]V12. 1: User's manual for cplex[END_REF] and Gurobi [START_REF] Optimization | [END_REF]. With this solution, we may expect that even if the
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ILP problem generated from the code source is large then the solver is able to return an optimal solution in a short time.

Extension of POP

In this future work, we manage to extend our software by following two directions. We recall that we have simplified the implementation of POP by considering that a range determination is performed by dynamic analysis on the variables of our programs and that no overflow arises during our analysis. From this time on, our first extension consists of adopting static analyzers with sophisticated abstract domains in order to infer safe ranges on our variables. Consequently, two possibilities of this extension are under study. The first one is to implement a new static analyzer from scratch. The implementation of this idea will probably take more time, but maybe we will overcome the shortcomings of the error analysis tools that we have already studied in Chapter 3. The second possibility is more relevant. It consists of using one of the today's error analysis method that is designed to span entire input ranges and produce tight error bounds. We come back on this point later in Section 10.3.1.

The second extension of POP is related to the language of programs. Currently, our tool handles programs with loops, arrays, matrices, conditionals, arithmetic expressions, trigonometric functions, square root function, etc. Honestly, we found some difficulties when we compared POP to other state-of-the-art tools and specially Precimonious [RNN + 13]. One of these difficulties is the incapability of our tool to analyze some benchmarks of these tools that contain calls to external libraries or use of syntactic forms that we have not yet implemented. As a result, the comparison is no longer feasible. For these reasons, we will extend the POP language to deal with other structures such as functions. In fact, functions are also easy to manage since only one type per argument and returned value need, in general, to be inferred.

License

The current version of POP is stable whilst its licence is still proprietary. We plan to distribute POP online with some open source license within 1 to 2 months. Initially, the distribution will perhaps be done by taking into account the new extensions seen in sections 10.2.1 and 10.2.2.

Handling of Loops

Scalable error analysis is central to improve the precision tuning process. In this context, we are starting an international collaboration with the team of the university of Utah that developed the SATIRE [DBG + 20] and FPDetect [DKB + 20] tools (presented in Chapter 3). The SATIRE tool conducts error analysis for expressions containing over 4 million operator nodes situated in a straight-line program block. The FPDetect tool can perform analytical error analysis for stencil codes with a view to bound the maximum observable error. In particular, the SATIRE and FPDetect tools typically take an HPC application, computing on each point of a grid some mathematical function using a stencil. In order to bound the accuracy on the results, formal expressions describing the propagation of errors throughout the computations are used. This is possible because no loop is present in the code. Otherwise, the results could depend on the computation of the fixpoint for programs with several execution paths and one would have to take the worst case for soundness reasons. In loops, this would make the fixpoint computation difficult to compute efficiently. Unfortunately, both tools can conduct this error analysis only for straightline codes without conditionals or loops. As policy iteration exhibits very good results in practice when used in static analysis [AGG12b, BSC12, CGG + 05, RG15, ABM21], we aim at using in this collaboration, this technique to develop loop-level error analysis in order to obtain tight loop fixpoints.

Fixed-Point Code synthesis

Fixed-point representations are an important resource in application development whenever the need to overcome computational resource limitations emerges [CCC + 20]. Such representations are principally employed in embedded applications. Additionally, they are also exploited as a mean to data size tuning for HPC tasks. Our ambition from this work is to adapt our precision tuning tool to generate code in the fixed-point arithmetic. In practice, the information provided by POP may be used to generate computations in the fixed-point arithmetic with an accuracy guaranty on the results. What makes this future direction achievable in the short term is the ability of POP to find the optimal precision needed at bit-level. As we have translated the precision given in bit-level into the floating-point arithmetic, our efforts will then focus on exploiting the fixed-point numerical representation by considering the fact that some architectures are more suited to fixed-point computations than others. The case studies for this point will belong to embedded and IoT applications.

Applications

While POP has been successfully evaluated on different benchmarks coming from various domains, it has not yet been tested on codes of similar sizes to what tools like SATIRE [DBG + 20] can handle. Our efforts currently focus on porting the benefits of precision tuning to new classes of applications. Hence, it is important to have a suite of benchmarks spanning multiple application domains. To start with, we would like to analyze larger programs containing several complex structures such as nested loops, conditionals and big arrays. Also, we can start by the FPBench community which proposes on their webpage1 more than 130 benchmarks from different sources (FPTaylor [START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF], Herbie [PSWT15], Rosa [START_REF] Darulova | Towards a compiler for reals[END_REF] and Salsa [START_REF] Damouche | Amélioration de la précision numérique de programmes basés sur l'arithmétique flottante par les méthodes de transformation automatique[END_REF]) covering a variety of application domains.

Nevertheless, we would like to strengthen the collaborations inside the LAMPS lab-oratory since it links several multidisciplinary axes such as contact and fluid mechanic, statistical physics, optimization, etc. This will allow us to enlarge the catalog of benchmarks of POP. Furthermore, these collaborations may help us to brainstorm on new case studies that may address other interesting issues.

Long-Term Perspectives

After presenting the short-term perspectives of our thesis, we present in this section, the professional project that we want to acquire in the next short years. These projects are based on the miscellaneous prerequisites and the background that we learned during this thesis.

Combining Frameworks

In the literature review of Chapter 3, we have discussed automated tools based on error analysis methods, rewriting-based optimization and mixed-precision tuning. Also, we have shown that combining these tools will help users to meet their development needs. In this work, we are interested in combining our tool for precision tuning POP with other tools performing error analysis and code transformation tasks. Several tools are already inspiring us such as Daisy [DV19], Anton [DHS18] and more recently Pherbie (available at https://herbie.uwplse.org).

As part of our collaboration with the university of Utah, we plan to use their static error analysis tools such as FPTaylor [START_REF] Solovyev | Rigorous estimation of floating-point round-off errors with symbolic taylor expansions[END_REF], SATIRE [DBG + 20] and FPDetect [DKB + 20] instead of the dynamic range determination performed by our tool. Also, commercial tools including Astrée [CCF + 05] and Fluctuat [START_REF] Goubault | Asserting the precision of floating-point computations: A simple abstract interpreter[END_REF] are worth a try. Likewise, we believe that coupling code rewriting and precision tuning could be a promising approach that can improve both the accuracy and speed of floating-point expressions. Therefore, combining POP with the optimizing tool Salsa [Dam16] will help us to obtain a best compromise between precision and accuracy of the program variables.

Applications to Neural Networks (NNs)

Given how research directions can evolve, we are leaving the possibility of work on Deep Neural Networks (DNNs) precision tuning open. Most of today's numerical computations are performed using floating-point data operations for representing real numbers. The precision of the related data types should be adapted in order to guarantee a desired overall rounding error and to strengthen the performance of programs. In the context of DNNs, this adaptation lies to two different techniques. First, as DNNs become larger and more complex, recent work has shown that they can be compressed and different strategies have been introduced such as weight pruning, low-rank factorization or quantization [JGM + 20]. Second, the precision tuning technique is important for several applications from a wide variety of domains and, more recently, for NNs [START_REF] Ioualalen | Neural network precision tuning[END_REF]. Intuitively, tuning the precision of a NN can be reduced to an ILP approach formulation as follows:

Long-Term Perspectives

• We can deduce the number of significant digits of the result of some operation z = x ˚y from the (integer) weight of the most significant bit and the number of significant digits of the operands x and y.

• The most significant bits of the manipulated values may be computed by a prior static analysis. The number of significant digits of the inputs are known, it corresponds to the precision of the inputs.

• The number of significant digits of the outputs is also known, it corresponds to a requirement imposed by the user on the desired accuracy of the results.

Gathering all these points, one may build an ILP problem which unknowns are the (integer) numbers of significant of the intermediary computations. For example, let us consider the code snippet on the left hand side of Figure 10.1, corresponding to a dot product similar to what NNs compute. As shown in the right hand side of Figure 10.1, POP computes at each point of this program the pair |m, s| where m is the weight of the most significant bits and s the number of significants such that these numbers satisfy the accuracy requirement that y has 18 significant bits at the end of the computation. This research direction aims at developing a similar approach for DNN compression. In other words, the work planned for this perspective is twofold:

1 w 1 = 0.1; 2 w 2 = 2.3; 3 x 1 = 0.4; 4 x 2 = 0.6; 5 y = w 1 ˆx1 + w 2 ˆx2 ; 6 require_nsb(y, 18); 1 w |´4,17| 1 = 0.1 |´4,17| ; 2 w |1,17| 2 = 2.3 |1,17| ; 3 x |´2,16| 1 = 0.4 |´2,16| ; 4 x |´1,17| 2 = 0.6 |´1,17| ; 5 y |0,18| = w |´4,17| 1 
ˆ|´3,18| x |´2,16| 1 6 + |0,17| w |1,17| 2 
• Theoretical: reduction of compression techniques to an ILP problem and integration with precision tuning techniques for DNNs. In particular, we aim at applying this approach to weight pruning and quantization compression techniques.

• Practical: development of a tool based on the former theoretical framework. This tool will solve ILP problems combining constraints for compression and precision tuning.

GPU Oriented Approach

Nowadays, GPUs have been extensively used to accelerate scientific applications from a variety of domains [LWSB19, KSW + 19b, GB20]: computational fluid dynamics, astronomy and astrophysics, climate modeling, numerical analysis, neural networks, to name a few. As HPC scientific applications increasingly rely on GPU accelerators to perform floatingpoint arithmetic, tools to extract the maximum performance out of floating-point intensive computations are also becoming increasingly important. In recent NVIDIA GPUs, for example, the throughput of single precision floating-point operations is twice that of double precision operations. In this research axis, we seek to extend POP to tune floating-point mixed-precision scientific applications on GPUs. Unlike existing tools, our objective is to provide application-level guidance on precision level for entire GPU applications rather than localized kernels, functions, or instructions.

Final Words

At the end of this thesis, we believe that our work contributes effectively in developing the upcoming methods for precision tuning and helps in designing adequate tools that fill the gaps of the existing ones. We may say that our work also opens many perspectives for both researchers and tool makers. We summarize in Table 10.1 these perspectives.

Analyse Statique pour le Réglage de la Précision Numérique

calculateurs modernes fonctionnent avec d'énormes quantités d'énergie électrique. Par exemple, le rapport du projet des Top500 1 montre que les performances des supercalculateurs doublent approximativement chaque année, tandis que la consommation d'énergie augmente également. En juin 2020, le supercalculateur le plus puissant Fugaku, numéro 1 du Top500, est aujourd'hui capable d'atteindre environ 400 pétaFLOPS (400 ˆ10 15 FLOPS) en terme de puissance de calcul. Cela équivaut à assembler des dizaines de millions d'ordinateurs portables contre les 148, 6 pétaFLOPS du supercalculateur prédécesseur, Summit. Dans le même temps, ces super-calculateurs sont dans le top dix du Green500 2 , avec environ 14, 7 gigaFLOPS par watt. Cependant, la consommation d'énergie continue d'augmenter ; alors que l'ordinateur Summit a une consommation de 10 MW, Fugaku monte à 28 MW. En résumé, maîtriser la consommation énergétique des plateformes HPC est devenu une nécessité. Il est considéré non seulement comme un moyen de contrôler les coûts mais aussi comme un pas en avant sur la voie des exaflops. Pour résumer, notre discussion a montré que la consommation d'énergie est devenue un problème majeur dans de nombreux domaines car nous vivons maintenant dans un monde où l'énergie est rare. Pour s'attaquer à ce problème, la conception d'applications évolutives, fiables et économes en énergie reste un véritable défi à explorer. En d'autres termes, les concepteurs cherchant à réduire la consommation d'énergie doivent être aidés dans le choix des protocoles, des services adéquats et des meilleures implémentations de leurs applications par rapport à l'infrastructure ciblée.

Objectif de cette Thèse

L'objectif de cette thèse est de proposer une approche qui guide les développeurs et les concepteurs pour atteindre le meilleur compromis entre la puissance et la performance pour atteindre l'efficacité énergétique nécessaire. Cette approche consiste à utiliser des représentations numériques à précision réduite (ou personnalisée) qui a été largement reconnue, ces dernières années, comme l'un des outils prometteurs dans l'arsenal du concepteur. Ce procédé, également appelé precision tuning (réglage de la précision), peut permettre d'économiser de la mémoire et, par voie de conséquence, il a un impact positif sur l'empreinte des programmes concernant la consommation d'énergie, l'utilisation de la bande passante et le temps de calcul.

Pour répondre au problème de réglage de la précision, nous menons dans cette thèse des méthodes d'analyse statique qui contribuent à une détermination rapide et efficace de la précision minimale sur les entrées et les résultats intermédiaires des programmes numériques. Ces méthodes ont été intégrées dans notre outil appelé POP. Dans ce chapitre, nous présentons un résumé étendu de la thèse. Il est, du fait de sa taille réduite, 1 LeTop500 est un classement statistique montrant les caractéristiques et les performances des 500 machines les plus puissantes au monde (https://www.top500.org/).

2 Le Green500 fournit des classements des super-calculateurs les plus économes en énergie au monde (https://www.top500.org/lists/green500/). Unit in the First Place Le poids du bit le plus fort d'un nombre réel x (éventuellement codé jusqu'à un certain mode d'arrondi par un nombre à virgule flottante ou un nombre à virgule fixe) est donné par l'équation (11.1). Cette fonction est indépendante de la représentation de x. 

ufp(x) = # minti P Z : 2 i+1 ą |x|u = tlog 2 (|x|)u if x ‰ 0, 0 if x = 0. ( 11 

Génération des Contraintes par Analyse Statique

Nous avons présenté dans cette thèse huit contributions pour le problème de réglage de précision. Nous avons commencé cette thèse en introduisant les différents concepts liés au développement de POP. La première partie était lié à la norme IEEE754 [ANS08] et à l'arithmétique à virgule fixe utilisées pour représenter les nombres réels. Aussi, nous avons mis en évidence la technique d'analyse statique avec une description concise de la théorie de l'interprétation abstraite. Nous avons aussi présenté la méthode d'itérations sur les politiques [CGG + 05] et son utilisation dans le cadre de l'analyse statique. De plus, nous avons exposé les théories SMT et ILP exploitées par notre outil POP.

Dans l'état de l'art, nous avons discuté les outils et les approches qui ont été proposés dans la littérature pour traiter le problème de réglage de précision. L'originalité de cette enquête est que nous avons étendu notre étude à d'autres outils d'analyse de précision numérique, de transformation de code ainsi que pour leurs combinaisons. Nous nous sommes également concentrés sur les différences entre les approches proposées dans la bibliographie et notre propre approche intégrée dans POP. En conclusion, nous avons clairement montré que notre approche repose sur un paradigme différent de celui qui a été déjà présenté dans la littérature.

Analyse en Avant et en Arrière

La méthode d'analyse des erreurs en avant et en arrière est considérée comme la première contribution de cette thèse [START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF]. Cette méthode, appelée la méthode basée sur SMT 3 a été implémentée dans une version de POP appelée POP(SMT). En fait, l'analyse en avant examine comment les erreurs sont amplifiées par chaque opération, visant à déterminer la précision des résultats. L'analyse en arrière prend en entrée l'exigence de précision donnée par l'utilisateur et les résultats de l'analyse en avant afin de déterminer la précision des entrées et des résultats intermédiaires. Ensuite, cette analyse a été exprimée sous la forme d'un ensemble de contraintes linéaires facilement vérifiées par un solveur SMT tel que Z3 [START_REF] Mendonça De Moura | Z3: an efficient SMT solver[END_REF]. La première originalité de la méthode basée sur SMT par rapport aux travaux de 162
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Martel [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] est la richesse du langage manipulé par POP. Il accepte des programmes avec les quatre fonctions élémentaires de base, les fonctions trigonométriques, les commandes, les boucles, les tableaux, les matrices et la fonction racine carrée. La seconde originalité est que POP réexamine la propagation du bit de retenue (voir la Figure 11.2) qui peut intervenir tout au long des calculs du programme. Plus précisément, nous avons souligné qu'il est crucial de modifier cette définition afin d'améliorer la précision de notre analyse.

Programmation Linéaire en Nombres Entiers (ILP)

La méthode basée sur SMT, que nous avons évoqué dans la Section 11.2.1, nous a permis de proposer une nouvelle forme du problème de réglage de précision. L'idée vient de plusieurs limitations que nous avons découvert lors de l'utilisation du solveur non-optimisant Z3 spécialement en termes de complexité et de temps d'analyse. En conséquence, nous avons proposé la méthode basée sur ILP qui traduit le problème de réglage de précision en problème de programmation linéaire en nombres entiers généré à partir du code source du programme. La formulation ILP est la deuxième contribution de cette thèse [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF]. Cela se fait en raisonnant sur le poids du bit le plus fort (ufp) et le nombre de bits significatifs (nsb) des valeurs qui sont des quantités entières. Dans la Figure 11.4, nous montrons le système de contraintes que POP génère en utilisant la méthode basée ILP.

Les règles de cette figure sont basées sur notre grammaire déjà présentée dans la Figure 11.3. On a : Id Ñ Id ˆLab est un environnement qui relie chaque identifiant x à sa dernière affectation x . En supposant que x := e 1 est la dernière affectation de x, l'environnement relie x à x . Ensuite, E [e] génère l'ensemble des contraintes pour une expression e P Expr dans l'environnement . Dans la suite, nous définissons formellement ces contraintes pour chaque élément de notre langage. Aucune contrainte n'est générée pour une constante c#p comme mentionné dans la règle (CONST) de la Figure 11.4. Pour la règle (ID) d'une variable x , nous exigeons que le nsb au point de contrôle soit inférieur à son nsb dans la dernière affectation de x donné en (x). Pour un opérateur binaire d P {+, -, ˆ, ˜}, nous générons d'abord l'ensemble de contraintes E [e 1 1 ] et E [e 2 2 ] pour les opérandes aux points de contrôle 1 et 2 . Compte tenu de la règle (ADD), le résultat de l'addition de deux nombres est stocké dans le point de contrôle . Rappelons qu'une analyse dynamique pour la détermination de intervalles des valeurs est effectuée avant l'analyse de précision et donc ufp( ), ufp( 1 ) et ufp( 2 ) sont connus au moment de la génération des contraintes. Les règles (SUB) pour la soustraction, (MULT) pour la multiplication et Rule(DIV)) pour la division sont obtenues de manière similaire au cas de l'addition.

Pour les fonctions élémentaires telles que logarithme, exponentielle, les fonctions hyperboliques et trigonométriques regroupées dans Rule (MATH), nous considèrons que chaque fonction élémentaire introduit une perte de précision de ϕ bits, où ϕ P N est un paramètre de l'analyse.

Les règles de commandes sont assez classiques, on utilise des points de contrôle pour distinguer de nombreuses affectations d'une même variable et aussi pour implémenter Finalement, la solution optimale calculée par un solveur de programmation linéaire (LP) classique (nous utilisons GLPK [Mak] en pratique) donne les types de données optimisés qui satisfont l'exigence de précision de l'utilisateur et en plus, dans un temps polynomial. Par conséquent, notre réglage ne dépend d'aucune arithmétique particulière. Cependant, nous devons dire que nous avons sur-approximé la propagation du bit de retenue tout au long des calculs dans cette formulation ILP.

Itération sur les Politiques (PI)

La troisième contribution consiste à introduire un deuxième jeu d'équations sémantiques qui permettent d'affiner encore plus la précision en étant moins pessimiste sur la propagation des bits de retenues dans les opérations arithmétiques. Par conséquent, le problème ne se réduit plus à un problème ILP. Ensuite, nous avons utilisé la méthode d'itération sur les politiques pour trouver plus efficacement la solution. Nous montrons dans la Figure 11.5 les nouvelles règles que nous ajoutons au système global de contraintes dans lequel la seule différence est d'activer la fonction optimisée ξ au lieu de sa sur-approximation que nous avons évoqué dans la Figure 11.4. Pour calculer l'ulp des erreurs sur les opérandes, nous devons estimer le nombre de bits de l'erreur nsb e pour chaque opérande sur lequel sont basées toutes les règles de la Figure 11.5.

En suivant cette méthode, la fonction E 1 [e] génére le nouvel ensemble de contraintes pour une expression e P Expr dans l'environnement . Pour la règle (CONST 1 ), le nombre de bits significatifs de l'erreur nsb e = 0 alors que nous imposons que le nsb e d'une variable x au point de contrôle est inférieur à la dernière affectation de nsb e dans (x) comme indiqué dans la règle (ID 1 ) de la Figure 11.5. En considérant la règle (ADD 1 ), nous commençons par générer le nouvel ensemble de contraintes E 1 [e 1 1 ] et E 1 [e 2 2 ] sur les opérandes aux points de contrôle 1 et 2 . Ensuite, nous avons besoin de nsb e ( ) ě nsb e ( 1 ) et nsb e ( ) ě nsb e ( 2 ) où le résultat de l'addition est stocké au point de contrôle .

Pour la règle (SQRT 1 ), nous générons les contraintes sur l'expression E 1 [e 1 1 ] et nous demandons que nsb e du résultat stocké au point de contrôle est supérieur au nsb e de l'expression au point de contrôle 1 . Pour la règle (MATH • Parser : Pour analyser les codes sources d'entrée, POP utilise l'outil ANTLR v4.7.1 (ANother Tool for Language Recognition) 4 . A partir d'une grammaire, ANTLR est capable de générer un analyseur qui peut construire les arbres syntaxiques des programmes.

• Analyse dynamique pour les valeurs des variables : Elle consiste à lancer l'exécution du programme un certain nombre de fois afin de déterminer dynamiquement les intervalles de variables. Plus précisément, ce que nous utilisons dans le réglage est la quantité ufp des valeurs des variables du programme.

• Génération de contraintes : C'est la base de notre approche statique pour le réglage de précision numérique. Nous rappellons que deux types de système de contraintes sont générés. Le premier système modélise la propagation des erreurs numériques pour la méthode basée sur SMT dans POP(SMT). Le deuxième système de contraintes est généré pour la méthode basée sur ILP dans POP(ILP). Ces deux méthodes sont basées sur les mêmes fonctions de transfert.

• Résolution des contraintes : Pour trouver une solution aux contraintes, la méthode basée sur SMT appelle un solveur SMT. Généralement, les solveurs SMT combinent le raisonnement SAT avec des solveurs théoriques spécialisés soit pour trouver une solution réalisable à un ensemble de contraintes, soit pour prouver qu'une telle solution n'existe pas. La méthode basée sur ILP utilise un solveur LP pour résoudre les contraintes. Les solveurs LP proviennent de la tradition de l'optimisation et sont conçus pour trouver des solutions réalisables qui sont optimales par rapport à une fonction d'optimisation.

• Génération du code : À la fin de l' where ˇˇˇˇˇ@ x P Id, 1 (x) = , (C 1 , 1 ) = C 1 [c 

Réglage de la Précision et Internet des Objets (IoT)

Le réglage de précision a déjà des applications dans de nombreux domaines et, dans cette section, nous résumons son utilité pour les applications IoT. Nous nous sommes concentrés sur l'expérimentation de POP(SMT) sur deux exemples représentatifs issus du domaine de l'IoT et sur la recherche d'un compromis entre la précision et l'énergie. Guidés par des demandes industrielles [START_REF] Ioualalen | An overview of numalis software suite for reliable numerical computation[END_REF], nous avons pris comme exemple le code d'un accéléromètre pour convertir la pression en mouvement. Deuxièmement, nous avons évalué POP(SMT) sur un exemple nettement plus complexe, un podomètre basé sur un accéléromètre pour les applications embarqués [START_REF] Morris | Recofit: Using a wearable sensor to find, recognize, and count repetitive exercises[END_REF].

Détection d'angle d'inclinaison par un accéléromètre

Un accéléromètre est un capteur capable de mesurer, en trois dimensions, les accélérations linéaires d'un objet ainsi que les vibrations [START_REF] Ben | Precision tuning and internet of things[END_REF]. En pratique, il existe des accéléromètres dans de nombreux objets du quotidien, tels que les smartphones, les voitures, les montres de sport et autres appareils. Par exemple, l'accéléromètre d'un téléphone est capable de vous donner l'orientation du téléphone mais aussi, comme son nom l'indique, l'accélération subie par le téléphone. Nous visons à partir de l'expérimentation de l'accéléromètre pour mesurer l'utilité de notre analyse et comment POP(SMT) est capable d'optimiser la précision des variables du programme. Pour cet exemple, POP(SMT) génère 1179 variables et 1767 contraintes qui sont très gérables par le solveur Z3. En effet, il ne faut que 0.64 secondes à POP(SMT) pour réaliser l'analyse de la précision, y compris le temps pour la génération des contraintes et les appels au solveur Z3. En supposant que toutes les variables du programme original (avant analyse) sont en double précision (FP64), POP(SMT) a réussi à optimiser les précisions des variables en FP16 (half précision) et FP32 (simple précision) comme indiqué dans la partie supérieure de la Figure 11.7. Par exemple, pour nsb = 20 bits, le pourcentage des variables passées en FP32 est important par rapport aux variables passées en FP16 : 93, 13% 11. Analyse Statique pour le Réglage de la Précision Numérique 169 pour la simple précision et seulement 5, 88% pour la half précision (FP16). Aussi, pour nsb ą 22 bits, POP(SMT) gère correctement l'approche statique de réglage de précision en trouvant un compromis entre les variables passéees en simple et en double précision.

Comme nous le montrons dans la partie inférieure de la Figure 11.7, pour nsb = 30 bits et nsb = 32 bits, la précision mixte entre la FP32 et FP64 est obtenue. Aussi, nous pouvons dire que, pour nsb = 24 bits, il y a autant de variables en FP32 que en FP64. De plus, nous remarquons que pour un nsb = 36 bits toutes les variables restent en FP64 et donc trouver la précision minimale n'est possible que pour des précisions inférieures à 36 bits pour cet exemple.

Évaluation expérimentale du programme du podomètre

Le deuxième exemple consiste à analyser le code d'un podomètre qui implémente un algorithme de comptage de pas pour les applications embarqués. Cet exemple est nettement plus complexe que celui de l'accéléromètre en termes des lignes des codes et des structures utilisées. Dans l'expérimentation ci-dessous, nous changeons la taille des fenêtres de 160, 280 et 360 pour les variables x, y et z dont leurs valeurs sont donnéés par un accéleromètre. En effet, nous avons remarqué que le solveur Z3 prend plus de temps pour résoudre les contraintes même si le temps d'exécution pour trouver les nouveaux formats pour les variables du programme reste court. De plus, POP(SMT) (pareil que pour POP(ILP)) étant un outil d'analyse statique admettant des intervalles pour ses entrées, la Figure 11.8 montre comment POP(SMT) se comporte s'il n'y a pas des variables scalaires mais des intervalles. En pratique, nous avons pris des intervalles autour des valeurs moyennes de x, y et z afin de nous baser sur un ensemble d'exécutions au lieu d'une seule. Les histogrammes de la figure 11.8 montrent que POP(SMT) a réussi à optimiser le nombre initial de bits pour le code du podomètre original, en commençant par 238977 bits en nombre total des bits, pour une précision égale à 36 bits. renvoyées par le solveur Z3. Ensuite, nous avons comparé les performances de chacune de ces fonctions sur différents programmes issus du calcul scientifique, du traitement du signal ou de l'IoT. Les résultats ont montré que cela peut influencer le nombre total de bits optimisés dans les programmes optimisés en obtenant différentes précisions lors de l'utilisation d'une fonction de coût au lieu d'une autre. La troisième expérimentation, nous avons mesuré l'erreur entre les résultats exacts donnés par une exécution en précision multiple (en utilisant MPFR [FHL + 07]) et les résultats de programmes optimisés par POP(SMT) et POP(ILP) et nous avons trouvé que les courbes d'erreurs mesurées sont toujours inférieures aux erreurs théoriques demandées par l'utilisateur pour les différents benchmarks.

Résultats Expérimentaux

Dans ce qui suit, nous allons montrer les évaluations que pour la version POP(ILP) qui est la version courrante de notre outil.

Comparaison avec l'Outil Precimonious

Le tableau 11.1 montre une comparaison entre la version de POP(ILP) combinant les formulations ILP et PI. Les résultats du réglage de précision mixte sont affichés pour les programmes arclength, simpson, rotation et accelerometer. Il faut mentionner que certains exemples utilisés par Precimonious [RNN + 13] ne peuvent pas être analysés par POP(ILP) pour plusieurs raisons (appels à des bibliothèques externes ou utilisation de formes syntaxiques non encore implémentées dans notre outil). Réciproquement, Precimonious ne réussit pas à optimiser certains exemples gérés par POP(ILP), par exemple le programme lowPassFilter.

Puisque POP (dans ses deux versions) et Precimonious mettent en oeuvre deux techniques différentes, nous avons ajusté les critères de comparaison suivant plusieurs aspects. Tout d'abord, nous mentionnons que POP optimise beaucoup plus de variables que Precimonious. Bien que cela désavantage notre outil, nous ne considérons dans les expériences de Table 11.1 que les variables optimisées par Precimonious pour estimer la qualité de l'optimisation. Deuxièmement, notons que les seuils d'erreur s'expriment en base 2 pour POP et en base 10 pour Precimonious. Pour la pertinence des comparaisons, tous les seuils d'erreurs sont exprimés en base 10 dans cette expérimentation.

Dans le tableau 11.1, nous indiquons en gras l'outil qui présente les meilleurs résultats pour chaque seuil d'erreur et chaque programme. À partir du programme arclength, POP(ILP) affiche de meilleurs résultats que les autres outils en optimisant 28 variables. Pour un seuil d'erreur de 10 ´4, 2464 bits sont économisés par POP(ILP) en 1.8 secondes alors que POP(SMT) n'a économisé que 1488 bits en plus de temps (11 secondes). Precimonious était l'outil le plus lent sur cet exemple avec plus de 2 minutes en économisant que 576 bits pour seulement 9 de variables optimisées. Pour le programme simpson, POP(ILP) fait également mieux que les deux autres outils. Cependant, pour le programme rotation, POP(ILP) n'économise plus de bits que pour une erreur de 10 ´4 tandis que Precimonious économise plus de bits pour ce programme pour le reste des seuils d'erreur. Enfin, Precimonious ne réussit pas à optimiser le programme accelerometer (0 variables) au moment où POP(ILP) économise beaucoup plus de bits en seulement une seule seconde.

Génération du Code de Précision Multiple

Dans cette contribution, nous avons effectué notre analyse de réglage de précision sur le problème à N-corps [START_REF] Ben | A study of the floating-point tuning behaviour on the n-body problem[END_REF] (N=5) avec différents exigences de précision sur les variables du programme : 11, 18, 24, 34, 43 et 53 bits. Pour cela, nous avons testé l'efficacité de POP(ILP) en plusieurs manières. Pour cette expérimentation, nous avons généré le programme N-corps avec tous les calculs effectués sur 500 bits (en supposant que cela donne la solution exacte) et un code MPFR [FHL + 07] avec les types de données optimisés renvoyés par POP(ILP). Par exemple, comme on peut l'observer dans la 

Synthèse de l'Existant

Les travaux présentés dans cette thèse ont abordé le problème du réglage de précision qui émerge comme une nouvelle tendance en HPC, en particulier, lorsque de nouvelles applications tolérantes aux erreurs sont envisagées, pour améliorer les mesures de performances telles que la consommation d'énergie et de la mémoire. Ce travail a conduit au développement de POP qui est un logiciel automatisé pour le réglage de la précision numérique.

Basée sur une analyse statique, POP calcule le nombre minimal de bits nécessaires pour les variables et les résultats intermédiaires des programmes afin d'accomplir l'exigence de précision de l'utilisateur. Nous avons résumé dans ce chapitre les différentes techniques utilisées par POP5 afin d'obtenir un réglage de précision rapide et efficace.

En guise de perspectives, nous envisageons de suivre diverses pistes de recherche pour des futurs travaux, notamment à court et à long terme, qui permettront de valoriser nos résultats. La première perspective concerne la scalabilité de notre outil POP qui génère un nombre de contraintes et de variables linéaire à la taille du programme analysé. Cependant, la seule limitation affronté est la taille du problème accepté par le solveur. Dans les travaux futurs, notre objectif est d'aborder le problème de scalabilité par au moins deux idées. La première idée consiste à étudier comment la même précision soit utilisée pour toutes les instructions d'une même partie du programme (par exemple : une expression arithmétique, une ligne de code, une fonction, une boucle, etc.). Cela réduira considérablement la taille de nos systèmes de contraintes. De plus, concernant les grands tableaux, nous étudierons comment incorporer des techniques de compression avec perte telles que la technique ZFP [FDH + 20] et comment déterminer le taux de compression à l'aide de notre outil POP. La seconde idée consiste à explorer des solveurs LP commerciaux qui ne se limitent pas à la taille du problème ILP (comme le solveur GLPK [Mak] utilisé dans cette thèse) tels que CPLEX [START_REF]V12. 1: User's manual for cplex[END_REF] et Gurobi [START_REF] Optimization | [END_REF]. Avec cette solution, nous sommes sûrs que même si le problème ILP généré à partir du code source est important, le solveur est capable de renvoyer une solution optimale dans un peu de temps.

Nous nous intéressons aussi à court terme à étendre POP en adoptant un analyseur statique avec des domaines abstraits sophistiqués pour inférer des intervalles sûres sur les variables. L'idée consiste à utiliser l'une des méthodes d'analyse d'erreur actuelles tels que l'outil SATIRE [DBG + 20] et FPDetect [DKB + 20]. La seconde extension de POP sera liée au langage des programmes. Actuellement, notre outil analyse des programmes avec des boucles, des tableaux, des matrices, des conditions, des expressions arithmétiques, des fonctions trigonométriques, la fonction racine carrée, etc. Cependant, nous avons rencontré quelques difficultés lorsque nous avons comparé POP à d'autres outils comme Precimonious [RNN + 13]. L'une de ces difficultés est l'incapacité de notre outil à analyser certains exemples qui contiennent des appels à des bibliothèques externes ou qui utilisent des formes syntaxiques que nous n'avons pas encore implémentées. Pour pallier à ce problème, nous allons étendre le langage du POP pour traiter d'autres structures telles que les fonctions à titre d'exemple.

De plus, nos efforts se concentrent actuellement sur l'évaluation de notre logiciel dans des domaines d'application différents. Nous pouvons commencer par la communauté FPBench qui propose sur leur page web6 plus de 130 de benchmarks couvrant une variété de domaines. Néanmoins, nous souhaitons renforcer les collaborations au sein du laboratoire LAMPS puisqu'il relie plusieurs axes multidisciplinaires tels que la mécanique des contacts et des fluides, la physique statistique, l'optimisation, etc. Ces collaborations peuvent nous aider à réfléchir à des nouvelles études de cas qui pourraient aborder d'autres problèmes intéressants. À long terme, nous nous intéressons à générer du code pour l'arithmétique à virgule fixe grâce aux informations fournies par POP qui garantissent la précision souhaitée par l'utilisateur sur les résultats. Une autre direction sera la possibilité d'appliquer nos méthodes pour optimiser la précision des réseaux de neurones.
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 11 Figure 1.1: The validity of Moore's law until 2020 (photo credits from https://www.ncbi.nlm.nih. gov/books/NBK321721/).
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 12 Figure 1.2: IoT connected devices from 2015 to 2025 (in billions) (photo credits from [MPN + 19]).
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 21 Figure 2.1: Fixed-point representation of a signed number.
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 22 Figure 2.2: Schematic representation of ufp, nsb and ulp for values and errors.
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 23 Figure 2.3: Hasse diagram for the partial order set of (P (a, b, c), Ď).
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 24 Figure 2.4: A simple integer loop and its semantic equations.
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 25 Figure 2.5: Kleene's iterations of the program of Figure 2.4.
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 26 Figure 2.6: Widening and narrowing steps of the example of Figure 2.4 .
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 27 Figure 2.7: Policy iteration method on the program of Figure 2.4.
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 21 Linear Programming Problem). A Linear Programming problem (LP) is the problem of minimizing (or maximizing) a linear function subject to a finite number of linear constraints. Given variables λ = [λ 1 , ¨¨¨, λ n ] T , an LP problem in standard form can be given as shown minimize (or maximize) Z(λ) = λ j = b i @i P t1, ¨¨¨, mu and λ ě 0 .
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 31 Figure 3.1: Summary of the precision tuning tools.
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 32 Figure 3.2: Illustration of the delta-debugging algorithm.
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 4 Figure 4.1 defines the simple imperative language in which our input programs are written. We denote by Id the set of identifiers and by Lab the set of control points of the program used to assign to each element e P Expr and c P Cmd a unique control point P Lab (an example is given in Listing 4.1). In Figure4.1, in c#p, p indicates the initial number of significant bits of the constant c in the source code. The declaration of vectors is expressed by the statement create_vector(v,s) , while s denotes the size of the vector v. The declaration of a matrix m is expressed by the statement create_matrix(m,r,c) , while r and c denote respectively the number of rows and columns of the matrix. Next, the statement require_nsb(x,n) indicates the minimal number of significant bits n that a variable x must have at a control point (nsb(x) = n). The rest of the grammar is standard.
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 41 Figure 4.1: Language of input programs.
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 41 Let us consider the simple C program of Listing 4.1. In this example, we suppose that all variables are in double precision before analysis (FP64). The original program is depicted in the left hand side of Listing 4.1.
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 41 A simple example to show the nature of constraints generated. Left: source program. Center: program annotated with labels. Right: source program with inferred accuracies.
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 42 Figure 4.2: Example of forward addition: 3.0|53| + 1.0|53| = 4.0|54|.
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 4 2 illustrates this example. Definition 4.3 (Forward Subtraction). Let x and y two numbers whose result of subtraction is z. The forward subtraction Ý Ñ a is given as shown in Equation (4.4).
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 444 Again, Equation (4.4) is obtained by computing nsb(z) = ufp(z) ´ufp e (z). The same technique is also employed in equations (4.5) and (4.8). Forward Multiplication). Let us assume a multiplication between two numbers x and y whose result is z. The forward multiplication Ý Ñ b is given as shown in Equation (4.5):Ý Ñ b (x, y) = z where nsb(z) = ufp(x ˆy) ´ufp(2 ufp(x)+1 ¨2ufp(y)´nsb(y)+1

. 7 )Definition 4 . 5 (

 745 Example 4.3. Let x = 4.0, y = 1.0 and let z the result of their multiplication. By assuming that the variables are in double precision before analysis, we obtain Ý Ñ b (4.0|53|, 1.0|53|) = 4.0|53|. Thus, nsb F (z) = 53.4.2. Arithmetic Expressions Forward Division). The forward division Ý Ñ c between two numbers x and ywhose result is z is given below as shown in Equation (4.8). Ý Ñ c (x, y) = z = Ý Ñ b (x, y 1 ) with y 1 = y ´1, nsb(y 1 ) = nsb(y) and nsb e (y 1 ) = nsb e (y).
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 48 Backward Multiplication). Let us assume the multiplication of two numbers x and y and the result is z. The backward transfer function for multiplication Ð Ý b is given in Equation (4.11). Ð Ý b (z, y) = (z ˜y) with nsb(x) = ufp(z ˜y)ú fp 2 ufp(y)+1 ¨2ufp(z)´nsb(z)+1 ´2ufp(z)+1 ¨2ufp(y)´nsb(y)+1 2 ufp(y)+1 ¨(2 ufp(y)+1 + 2 ufp(y)´nsb(y)+1 ) ´2ufp(x)´prec(ˆ) .

  .11). Let us go back to Example 4.3. After the forward analysis, we found that nsb F (z) = 53. If we have require_nsb(z,23), we can obtain the following accuracy Ð Ý b (4.0|23|, 1.0|53|) = 4.0|25|. Definition 4.9 (Backward Division). The backward transfer function for division Ð Ý c between two numbers x and y whose result is z is shown in Equation (4.12). Ð Ý c (z, y) = Ý Ñ b (z, y) (4.12)
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 444 10 (Forward Sine Function ). Let Ý Ñ sin(x) denotes the forward transfer function for the sine function. Let ϕ P N denotes the number of bits to lose, given by the user. Then, we have:Ý Ñ sin(x) = z where nsb(z) = nsb(x) ´ϕ . (4.13) 4.3. Elementary Functions Definition 4.11 (Backward Sine Function). Let Ð Ý sin(x) denotes the backward transfer function for the sine function and let ϕ P N the number of bits to lose. Then, we have: Ð Ý sin(z) = x where nsb(x) = nsb(z) + ϕ . (4.14) Let x = 3.0, ϕ = 9 and let require_nsb(sin(x),26). By applying equation (4.13) and (4.14) we obtain that Ý Ñ sin(x) = sin(3.0|35|)|26| .

. 15 )

 15 Definition 4.13 (Backward Square Root). Let x and z two numbers and let prec the precision of the operation. The backward transfer function denoted by Ð Ý ?
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 101 Figure 10.1: Left: Initial program. Right: Annotations after precision tuning with POP.
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 1 Number of Significant Bits Intuitivement, nsb(x) est le nombre de bits significatifs de x. Soit x l'approximation de x en précision finie et soit ε(x) = |x ´x| l'erreur absolue. D'après Parker[START_REF] Parker | Monte carlo arithmetic: exploiting randomness in floatingpoint arithmetic[END_REF], si nsb(x) = k, pour x = 0, alors :ε(x) ď 2 ufp(x)´k+1 . (11.2) De plus, si x = 0 alors nsb(x) = 0. Par exemple, si la valeur binaire exacte 1.0101 est approximée par x = 1.010 ou x = 1, 011 alors nsb(x) = 3. Unit in the Last Place Le poids du bit le moins fort ulp d'un nombre x est défini par : ulp(x) = ufp(x) ´nsb(x) + 1 . (11.3)
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 113 FIGURE 11.3 : Langage des programmes de POP.

  des jointures dans des conditions et des boucles. Étant donné une commande c et un environnement , C[c] renvoie un couple (C, 1 ) constitué d'un ensemble C de contraintes et d'un nouvel environnement 1 . La fonction C est définie par induction sur la structure des commandes dans les figures 11.4 et 11.5. Pour les conditions, nous générons les contraintes pour les branches then et else ainsi que des contraintes supplémentaires pour joindre les résultats des deux branches. Pour les boucles, nous relions le nombre de bits significatifs à la fin du body au nsb des mêmes variables et au début de la boucle.

e 1 = E [e 1 1 ]E φ e 1 = E [e 1 1 ]= C 1 Y 1 ( 1 FIGURE 11 . 4 :

 1111111114 FIGURE 11.4 : Contraintes ILP avec une propagation pessimiste du bits de retenues ξ = 1.

(C 1 c 1 1 ;c 2 2 = C 1 Y2 1 (SEQ 1 )C 1 [(COND 1 )C 1 [

 12111111 with φ P tsin, cos, tan, log, . . .u (MATH 1 )C 1 x:= e 1 = C, [x Þ Ñ ] where C = E 1 [e 1 1 ] Y tnsb e ( 1 ) ě nsb e ( )u (ASSIGN 1 ) C 2 , 2 with C 1 , 1 = C 1 c 1 1 and C 2 , 2 = C 1 c 2 if e 0 then c 1 else c 2 ] = (C 1 Y C 2 Y C 3 , 1 )where ˇˇˇˇˇ@ x P Id,1 (x) = , (C 1 , 1 ) = C 1 [c 1 1 ] , (C 2 , 2 ) = C 1 [c 2 2 ] , C 3 = Ť xPId tnsb e ( 1 (x)) ě nsb e ( ), nsb e ( 2 (x)) ě nsb e ( )u while e 0 do c 1 ] = (C 1 Y C 2 , 1 )
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 117 FIGURE 11.7 : Efficacité de POP(SMT) sur l'application de l'accéléromètre. En haut : le pourcentage de FP16 et FP32 pour différentes assertions de pécision de l'utilisateur. En bas : Le pourcentage des variables en FP32 et FP64 pour nsb = 24, 28, 30, 32 et 36 bits.
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 41 Évaluation des Performances de POP(SMT) et POP(ILP) Tout d'abord, nous avons évalué les performances de POP avec ces deux versions POP(SMT) and POP(ILP) suivant différentes manières. Dans un premier temps, nous avons comparé les deux versions POP(SMT) et POP(ILP) avec l'outil de l'état de l'art Precimonious [RNN + 13] en termes du temps d'analyse, de rapidité et de qualité des solutions. Les résultats expérimentaux ont montré que POP(SMT) et POP(ILP) réussissaient à régler plus de programmes que Precimonious [RNN + 13]. Pour la majorité des programmes évalués, nous allons montrer que notre outil renvoit de meilleurs résultats en précision mixte pour les différentes exigences de précision des utilisateurs. La deuxième expérimentation concernait l'utilisation de deux fonctions de coût différentes au système global de contraintes de la version POP(SMT) afin d'optimiser les solutions 11Number of Bits for Different Ranges of x, y and z 20% range around x, y and z central values 30% range around x, y and z central values 40% range around x, y and z central values 60% range around x, y and z central values 80% range around x, y and z central values
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 118 FIGURE 11.8 : Optimisation du nombre total des bits par POP(SMT) pour différents intervalles utilisées pour les variables x, y et z.
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 5 Synthèse de l'Existant

  This part is made only of Chapter 7. It deals with experimenting our tool in a new application domain, namely for IoT. We present the different experimental results in terms of precision improvement, execution time, optimization in term of number of bits and mixed-precision configurations obtained after analysis, for two representative examples of this field. This chapter is a revised version of the following articles: • Dorra Ben Khalifa and Matthieu Martel. Precision Tuning of an Accelerometer-Based Pedometer Algorithm for IoT Devices. In the IEEE International Conference on Internet of Things and Intelligence System, IoTaIS'20. • Dorra Ben Khalifa and Matthieu Martel. Precision Tuning and Internet of Things. In the IEEE International Conference on Internet of Things, Embedded Systems and Communications, IINTEC'19.

• Dorra Ben Khalifa, Matthieu Martel and Assalé Adjé. POP: A Tuning Assistant for Mixed-Precision Floating-Point Computations. In the 7th International Workshop on Formal Techniques for Safety-Critical Systems, FTSCS'19, Revised Selected Papers. • Assalé Adjé, Dorra Ben Khalifa and Matthieu Martel. Fast and Efficient Bit-Level Precision Tuning. In the 28th Static Analysis Symposium, SAS'21. 1.5. List of Published Work Part III: Internet of Things: A Field of Interest
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  licensed under the GNU General Public License v3.0, FPTuner [CBB + 17] is a free software released under the Massachusetts Institute of Technology (MIT) license and HiFPTuner [GR18b] is under the Berkeley Software Distribution License.

  Let us note that Daisy is able to provide a mixed precision solution that considers both floating-point and fixed-point data making it generally applicable to both scientific computing and embedded applications. Unlike POP which is able to tune programs with expressions, loops, conditionals and even arrays, Daisy does not address conditional-based programs. The source code of Daisy is available open-source at https://github.com/ malyzajko/daisy.
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	Proof. Let	ř	
	k := k + 1 and goto 3;	
	else		
	Return S and nsb k .	
	end		
	Proposition 5.2 (Algorithm correctness). The sequence (	ř	PLab nsb k ( )) 0ďkďK generated by
	Algorithm 2 satisfies the following properties:	
	1. K ă +8 i.e. the sequence is of finite length,	
	2. Each term of the sequence furnishes a feasible solution for Problem (5.18),
	3.		

k , nsb e k ) the integer linear program: Min # ÿ PLab nsb( ) : f π k (nsb, nsb e ) ď (nsb, nsb e ), nsb P N Lab , nsb e P N Lab + ; if ř PLab nsb k ( ) ă S then S := ř PLab nsb k ( );

ř PLab nsb k+1 ( ) ă ř PLab nsb k ( ) if k ă K ´1 and ř PLab nsb K ( ) = ř PLab nsb K´1 ( ),

4. The number k is smaller than the number of policies.

  1 , 2 ) = min max ufp( 2 ) ´ufp( 1 ) + nsb( 1 ) ´nsb( 2 ) ´nsb e (

2 ), 0 , max ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb(

1

) ´nsb e ( 1 ), 0 , 1 Figure 5.2: Constraints solved by PI with min and max carry bit formulation.

Table 8 .

 8 

	Property	POP(SMT)	Precimonious
	Kind of analysis	Forward and backward static	Dynamic analysis by delta-
		analysis	debugging search
	Output	Optimized formats given by	Type configurations rely on
		Z3 (number of bits)	inputs tested only
	Mixed-precision	FP8, FP16, FP32, FP64, FPxx	FP32 and FP64
	Accuracy	number of significant bits of	Error threshold (10 ´4, 10 ´6,
	requirement	the result	10 ´8, . . .)
	Accepted language Arrays, expressions, condi-	C program input
		tions, loops, . . .	

1: Differences between POP(SMT) and Precimonious.

Table 8 . 2 :

 82 ´4, 10 ´6, 10 ´8 and 10 ´10 . Number of optimized variables by both tools for each program.

	Program	POP(SMT)	Precimonious
	arclength	25	9
	simpson	10	10
	rotation	27	27
	accelerometer	19	0
	pedometer	31	10

Table 9 . 1 :

 91 Precision tuning results for POP(ILP) for the ILP and PI methods.9. Fast and Efficient Bit-Level Precision Tuning with POP(ILP)135 solution[START_REF] Ben Khalifa | POP: A tuning assistant for mixed-precision floating-point computations[END_REF] and the prior state-of the-art Precimonious [RNN + 13] as demonstrated in Table

Table 9 . 2 :

 92 Comparison between POP(ILP), POP(SMT) and Precimonious: number of bits saved by the tool and time in seconds for analyzing the programs.

	Program	Tool		#Bits saved -Time in seconds	
			Threshold 10 ´4	Threshold 10 ´6 960b. -2.4s.
		Precimonious (0)	-	-	-	-

  143 < 146 t_max 145 ) { 19 dx 757 = xJupiter 753 -756 xSaturn 755 ; 20 dy 763 = yJupiter 759 -762 ySaturn 761 ; 21 dz 769 = zJupiter 765 -768 zSaturn 767 ; 22 distance 788 = sqrt ( dx 771 * 774 dx 773 23 + 780 dy 776 * 779 dy 778 + 786 dz 782 24 * 785 dz 784 ) 787 ; 25 mag 800 = dt 790 / 799 distance 792 * 795 26 distance 794 * 798 distance 797 ; 27 vxJupiter 812 = vxJupiter 802 -811 28 dx 804 * 807 massSaturn 806 * 810 mag 809 ;

	1 days_per_year 11 = 365.24 10 ; 2 dt 13 = 0.01 12 ; 3 t 15 = 0.0 14 ; 4 t_max 17 = 1000.0 16 ; 5 [...] 6 xJupiter 39 = 4.8414316 38 ; 7 vxJupiter 48 = 0.0016600767 44 8 * 47 days_per_year 46 ; 9 massJupiter 63 = 9.5479196 E -4 59 10 * 62 solar_mass 61 ; 11 xSaturn 65 = 8.343367 64 ; 12 [...] 13 vxSaturn 74 = -0.002767425 70 14 * 73 days_per_year 72 ; 15 massSaturn 89 = 2.8588597 E -4 85 16 * 88 solar_mass 87 ; 17 [...] 18 while ( t 29 [...] 30 vxSaturn 848 = vxSaturn 838 + 847 dx 840 31 * 843 massJupiter 842 * 846 mag 845 ; 32 [...] 33 xJupiter 2602 = xJupiter 2595 + 2601 34 dt 2597 * 2600 vxJupiter 2599 ; 35 xSaturn 2683 = xSaturn 2676 + 2682 dt 2678 36 * 2681 vxSaturn 2680 ; 37 [...] 38 t 2707 = t 2703 + 2706 dt 2705 ;} ; 39 require_nsb(xJupiter, 11) 2710 ; 40 require_nsb(xSaturn, 11) 2716 ; 41 [...]	1 days_per_year |56| = 365.24|56|; 2 dt|56| = 0.01|56|; 3 t|54| = 0.0|54|; 4 t_max|53| = 1000.0|53|; 5 [...] 6 xJupiter|59| = 4.8414316|59|; 7 vxJupiter|61| = 0.0016600767|61| 8 *|61| days_per_year |61|; 9 massJupiter|55| = 9.5479196 E -4|55| 10 *|55| solar_mass|55|; 11 xSaturn|58| = 8.343367|58|; 12 [...] 13 vxSaturn|61| = -0.002767425|61| 14 *|61| days_per_year |61|; 15 massSaturn|53| = 2.8588597 E -4|53| 16 *|53| solar_mass|53|; 17 [...] 18 while ( t < t_max ) { 19 dx|46| = xJupiter|46| -|46| xSaturn|47|; 20 dy|45| = yJupiter|45| -|45| ySaturn|46|; 21 dz|44| = zJupiter|44| -|44| zSaturn|45|; 22 distance|44| = sqrt ( dx|46| *|46| 23 dx|46| +|45| dy|45| *|45| 24 dy|45| +|44| dz|35| *|35| dz|35|)|44|; 25 mag|44| = dt|44| /|44| distance|44| *|44| 26 distance|44| *|44| distance|44|; 27 vxJupiter|58| = vxJupiter|59| -|58| 28 dx|41| *|41| massSaturn|41| *|41| mag|41|; 29 [...] 30 vxSaturn|59| = vxSaturn|60| +|59| 31 dx|43| *|43| massJupiter|43| *|43| mag|43| ; 32 [...] 33 xJupiter|53| = xJupiter|54| +|53| 34 dt|47| *|47| vxJupiter|47|; 35 xSaturn|53| = xSaturn|54| +|53| 36 dt|46| *|46| vxSaturn|46|; 37 [...] 38 t|53| = t|54| +|53| dt|38|;}; 39 require_nsb(xJupiter, 11); 40 require_nsb(xSaturn, 11); 41 [...]
	Listing 9.1: Left: source program annotated with labels. Right: program with POP generated data
	types with ILP formulation.	

  780 ) ( 774 , 779 ) and ξ( 786 )( 780 , 785 ) functions of the two additions as shown in Equation (9.2). -Next, it becomes possible to solve the corresponding ILP. If no fixpoint is reached, POP(ILP) iterates until a solution is found. By applying this optimization, the new data types of the statement of lines 22 to 24 in Listing 9.1 are given as follows:

	(9.2)
	distance|41| = sqrt( dx|42| ˚|42|dx|42| + |42|dy|42| ˚|42|dy|42|
	+|41|dz|31| ˚|31|dz|31|);

  Table 9.3, for nsb = 11, the distance

	nsb	11	18	24	34	43	53
			Simulation time: 10 years		
	Jupiter	5.542 ¨10 ´4	1.650 ¨10 ´6	1.577 ¨10 ´7	4.998 ¨10 ´10	5.077 ¨10 ´10	5.076 ¨10 ´10
	Saturn	1.571 ¨10 ´3	2.111 ¨10 ´5	1.326 ¨10 ´7	4.427 ¨10 ´10	3.119 ¨10 ´10	3.117 ¨10 ´10
	Uranus	2.952 ¨10 ´3	2.364 ¨10 ´5	1.140 ¨10 ´7	3.072 ¨10 ´10	7.212 ¨10 ´11	7.236 ¨10 ´11
	Neptune	2.360 ¨10 ´3	3.807 ¨10 ´5	2.206 ¨10 ´7	5.578 ¨10 ´10	1.751 ¨10 ´10	1.757 ¨10 ´10
	Runtime	2'59	2'52	2'57	2'56	3'10	2'59
	POP(ILP) Time	25"	22"	22"	24"	23"	24"
			Simulation time: 30 years		
	Jupiter	7.851 ¨10 ´4	1.282 ¨10 ´5	3.194 ¨10 ´8	1.066 ¨10 ´8	1.064 ¨10 ´8	1.064 ¨10 ´8
	Saturn	3.009 ¨10 ´3	1.934 ¨10 ´5	2.694 ¨10 ´7	1.7477 ¨10 ´8	1.777 ¨10 ´8	1.777 ¨10 ´8
	Uranus	6.839 ¨10 ´4	6.132 ¨10 ´5	8.901 ¨10 ´7	5.105 ¨10 ´10	1.464 ¨10 ´10	1.457 ¨10 ´10
	Neptune	2.971 ¨10 ´3	2.0227 ¨10 ´5	2.469 ¨10 ´7	3.869 ¨10 ´10	4.775 ¨10 ´10	4.779 ¨10 ´10
	Runtime	2'39	2'45	2'43	2'56	2'48	2'40
	POP(ILP) Time	38"	39"	41"	37"	37"	37"

Notions Préliminaires et Langage de l'Outil POP 11.1.1 Notions Préliminaires Notre

  11. Analyse Statique pour le Réglage de la Précision Numérique 159 nécessairement moins complet que le manuscrit anglophone. Néanmoins, nous avons préservé l'introduction, la conclusion et les contributions clefs des différentes parties pour le lecteur francophone intéressé. technique de réglage de précision est indépendante d'une arithmétique particulière (par exemple IEEE754 [ANS08] et POSIT [CGG + 05]). En fait, nous manipulons des nombres dont nous connaissons leur ufp (unit in the first place) et le nombre de chiffres significatifs nsb (number of significant bits). Nous supposons aussi que les constantes produisant dans les codes sources de notre logiciel POP sont exactes et que nous bornons les erreurs introduites par les calculs en précision finie. Ensuite, nous désignons par ufp e (x) et nsb e (x) , les ufp et nsb de l'erreur sur x . Ces fonctions sont définies ci-après et une présentation plus intuitive est donnée dans la Figure 11.1. Représentation de ufp, nsb et ulp des nombres et des erreurs.

	11.1 ufp	ulp	ufp e	ulp e
	nsb		nsb e	
	FIGURE 11.1 :			

  11.1. Notions Préliminaires et Langage de l'Outil POPErreurs de Calculs Nous définissons le poids du bit le plus fort de l'erreur sur x par ufp e (x) = ufp(x) ´nsb(x). Le nombre de bits significatifs de l'erreur sur x est noté nsb e (x). Il est utilisé pour optimiser la fonction du bit de retenue ξ définie ci-après. Comme mentionné précédemment, nous supposons qu'il n'y a pas d'erreur sur une constante c apparaissant dans les programmes, c'est-à-dire nsb e (c) = 0. Néanmoins, les nsb e des résultats des opérations élémentaires peuvent être supérieurs à 0. De plus, le poids du bit le moins fort de l'erreur sur x est noté par ulp e (x) et par conséquent, ulp e (x) = ufp e (x) ´nsb e (x) + 1.Bit de RetenueLors d'une opération entre deux nombres c 1 et c 2 , un bit de retenue peut se propager à travers l'opération. Nous modélisons le bit de retenue par une fonction notée ξ calculée comme suit : Si l' ulp de l'un des deux opérandes c 1 ou c 2 est supérieur à ufp de l'autre opérande (ou inversement) alors c 1 et c 2 ne sont pas alignés et ξ = 0 (sinon ξ = 1). Figure 11.2 illustre le principe de la fonction ξ. Représentation de la fonction ξ du bit de retenue. Dans cette section, nous décrivons le langage des programmes d'entrée de notre logiciel POP à partir duquel nous générons des équations sémantiques afin de déterminer la précision nécessaire pour les valeurs numériques du programme. La Figure 11.3 définit le langage impératif simple dans lequel nos programmes d'entrée sont écrits. On note Id l'ensemble des identifiants et Lab l'ensemble des points de contrôle du programme comme moyen d'affecter à chaque élément e P Expr et c P Cmd un unique point de contrôle P Lab. Par exemple, dans c#p, p indique la précision initiale de la constante c dans le code source. La déclaration des vecteurs est exprimée par l'instruction create_vector(v,s) , tandis que s désigne la taille du vecteur v. Ensuite, l'instruction 11. Analyse Statique pour le Réglage de la Précision Numérique 161 require_nsb(x,n) indique le nombre minimal de bits significatifs n qu'une variable x doit avoir à un point de contrôle (nsb(x) = n). Le reste de la grammaire est standard.

	ulp e	ξ = 0
	ufp e	
	+	
	=	
	ulp e	ξ = 1
	ufp e	
	+	
	=	
	1 carry bit	
	FIGURE 11.2 : 11.1.2 Langage Impératif	

  1 ) , nous supposons que nsb e ( ) n'a pas de borne supérieure. Concernant les commandes, nous définissons l'ensemble C 1 [c] qui a la même fonction que C défini dans la Figure 11.4. Le raisonnement sur les commandes reste également similaire sauf que cette fois nous raisonnons sur le nombre de bits des erreurs nsb e . La seule 164 11.2. Génération des Contraintes par Analyse StatiqueE [c#p ] = H (CONST) E [x ] = nsb( (x)) ě nsb( ) ) ě nsb( ) + ufp( 1 ) ´ufp( ) + ξ( )( 1 , 2 ), nsb( 2 ) ě nsb( ) + ufp( 2 ) ´ufp( ) + ξ( )( 1 , 2 )u ) ě nsb( ) + ufp( 1 ) ´ufp( ) + ξ( )( 1 , 2 ), nsb( 2 ) ě nsb( ) + ufp( 2 ) ´ufp( ) + ξ( )( 1 , 2 )u ) ě nsb( ) + ξ( )( 1 , 2 ) ´1, nsb( 2 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1u ) ě nsb( ) + ξ( )( 1 , 2 ) ´1, nsb( 2 ) ě nsb( ) + ξ( )( 1 , 2 ) ´1u

	(	(ID)
	E [e 1 1 + e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ]	
	Y tnsb( 1 (ADD)
	E [e 1 1 ´ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ]	
	Y tnsb( 1 (SUB)
	E [e 1 1 ˆ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ]	
	Y tnsb( 1 (MULT)
	E [e 1 1 ˜ e 2 2 ] = E [e 1 1 ] Y E [e 2 2 ]	
	Y	
	tnsb( 1	

  analyse, POP génère une version optimisée du programme source d'entrée annotée avec les nouveaux nsb à chaque point de contrôle. Nous rappelons que notre technique est indépendante d'une arithmétique particulière 166 11.3. L'outil POP E1 [c#p ] = nsb e ( ) = 0 ( (CONST 1 ) E 1 [x ] = nsb e ( (x)) ě nsb e ( ) nsb e ( ) ě nsb e ( 1 ), nsb e ( ) ě nsb e ( 2 ), nsb e ( ) ě ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb( 1 ) + nsb e ( 2 ) + ξ( )( 1 , 2 ), nsb e ( ) ě ufp( 2 ) ´ufp( 1 ) + nsb( 1 ) ´nsb( 2 ) + nsb e ( 1 ) + ξ( )( 1 , 2 ) nsb e ( ) ě nsb e ( 1 ), nsb e ( ) ě nsb e ( 2 ), nsb e ( ) ě ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb( 1 ) + nsb e ( 2 ) + ξ( )( 1 , 2 ), nsb e ( ) ě ufp( 2 ) ´ufp( 1 ) + nsb( 1 ) ´nsb( 2 ) + nsb e ( 1 ) + ξ( )( 1 , 2 ) E 1 [e 1 1 ] Y E 1 [e 2 2 ] (MULT 1 ) Y ! nsb e ( ) ě nsb( 1 ) + nsb e ( 1 ) + nsb e ( 2 ) ´2, nsb e ( ) ě nsb( 2 ) + nsb e ( 2 ) + nsb e ( 1 ) ´2 ) E 1 [e 1 1 ˜ e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (DIV 1 ) Y ! nsb e ( )ě nsb( 1 ) + nsb e ( 1 ) + nsb e ( 2 ) ´2, nsb e ( ) ě nsb( 2 ) + nsb e ( 2 ) + nsb e ( 1 )

				(	(ID 1 )
			E 1 [e 1 1 + e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (ADD 1 )
				Y
	$				,
	'				/
	&				.
	'				/
	%				-
			E 1 [e 1 1 ´ e 2 2 ] = E 1 [e 1 1 ] Y E 1 [e 2 2 ] (SUB 1 )
				Y
	$				,
	'				/
	&				.
	'				/
	%				-
		E 1 [e 1 1 ˆ e 2 2 ] = ´2 )
	E 1	a	e 1	= E 1 [e 1

1 ] Y nsb e ( ) ě nsb e ( 1 )

( (SQRT 1 ) E 1 φ e 1 = E 1 [e 1 1 ] Y nsb e ( ) ě +8

  ( (x)) ě nsb e ( ), nsb e ( 1 (x)) ě nsb e ( )u(WHILE 1 ) C 1 [require_nsb(x, p) ] = H (REQ 1 ) ξ( )( 1 , 2 ) = min max ufp( 2 ) ´ufp( 1 ) + nsb(1 ) ´nsb( 2 ) ´nsb e ( 2 ), 0 , max ufp( 1 ) ´ufp( 2 ) + nsb( 2 ) ´nsb( 1 ) ´nsb e ( 1 ), 0 , 1 FIGURE 11.5 : Contraintes de la méthode d'itératon sur les politiques avec une nouvelle formulation du bit de retenue. que les formats optimisés sont donnés en nombre de bits (bit-level). Cependant, si nous voulons ces précisions en mode IEEE754, le nsb obtenue en nombre de bits est approximé par le nombre supérieur de bits correspondant à un format IEEE754. Par exemple, si nsb(x) = 18 bits, alors x est réglé sur la simple précision FP32. De plus, POP est capable de générer une version python MPFR [FHL + 07] du programme d'entrée. Le but à partir des codes MPFR est de mesurer la différence entre les deux programmes (original et optimisé) et de tracer la courbe de la différence en fonction de l'erreur théorique donnée par l'utilisateur.

		Generate constraints Z3	Generate constraints ILP	Generate constraints PI
		POP(SMT)	
		1 1 ] 1	
	C 2 =	Ť	

xPId tnsb e POP: Precision OPtimizer FIGURE 11.6 : L'architecture de notre outil POP.

et

Table 11

 11 

	.2, pour

TABLE 11 .2 :

 11 Distances entre la position exacte (calculée avec 500 bits) et la position calculée avec n bits. Distances données pour chaque corps après 10 et 30 ans de simulation. Suivi du temps d'analyse de POP(ILP) et du temps d'exécution du code généré par MPFR. nsb = 11 bits, la distance mesurée pour Jupiter est de l'ordre de 10 ´4 pour 10 années de simulation ce qui confirme l'utilité de notre analyse : résultats souhaitables qui respectent l'exigence de précision donnée par l'utilisateur (nsb) où la pire erreur est de 2 ´11 pour nsb = 11 bits. Les résultats sont également satisfaisants pour les planètes restantes. Pour une simulation de 10 et 30 ans, le temps d'exécution passé à mesurer les distances atteint au maximum 2 minutes 59 secondes pour un nsb = 53 bits. Concernant le temps d'analyse, POP(ILP) a pris aussi peu que 25 secondes pour pour trouver les nouveaux types de données pour la majorité des variables du programme pour un temps de simulation de 10 années et ne dépasse pas 41 secondes pour 30 années de simulation (nsb = 24) bits . Avec cette rapidité d'analyse, nous pensons que pour les gros codes, POP(ILP) atteint son meilleur réglage en un temps minimal. Nous présentons, dans la Figure11.1, des extraits de code qui mesurent la distance entre les deux planètes Jupiter et Saturne ; Le code donné dans la partie gauche de la figure illustre le programme annoté par les différents points de contrôle. Le programme après les analyses de précision par POP(ILP) est donné dans la partie droite de la même figure. 1 days_per_year 11 = 365.24 10 ; 2 dt = 0.01 12 ; 3 t = 0.0 14 ; 4 t_max 17 = 1000.0 16 ; 5 [...] 6 xJupiter 39 = 4.8414316 38 ; 7 vxJupiter 48 = 0.0016600767 44 8 * days_per_year 46 ; 9 massJupiter 63 = 9.5479196 E -4 59 10 * solar_mass 61 ; 11 xSaturn 65 = 8.343367 64 ; 12 [...] 13 vxSaturn 74 = -0.002767425 70 14 * days_per_year 72 ; 15 massSaturn 89 = 2.8588597 E -4 85 16 * solar_mass 87 ; 17 [...] 18 while ( t 143 < 146 t_max 145 ) { 19 dx 757 = xJupiter 753 -756 xSaturn 755 ; 20 dy 763 = yJupiter 759 -762 ySaturn 761 ; 21 dz 769 = zJupiter 765 -768 zSaturn 767 ; 22 distance 788 = sqrt ( dx 771 * 774 dx 773 23 + 780 dy 776 * 779 dy 778 + 786 dz 782 24 * 785 dz 784 ) 787 ; 25 mag 800 = dt 790 / 799 distance 792 * 795 26 distance 794 * 798 distance 797 ; 27 vxJupiter 812 = vxJupiter 802 -811 28 dx 804 * 807 massSaturn 806 * 810 mag 809 ; 29 [...] 30 vxSaturn 848 = vxSaturn 838 + 847 dx 840 31 * 843 massJupiter 842 * 846 mag 845 ; 32 [...] 33 xJupiter 2602 = xJupiter 2595 + 2601 34 dt 2597 * 2600 vxJupiter 2599 ; 35 xSaturn 2683 = xSaturn 2676 + 2682 dt 2678 36 * 2681 vxSaturn 2680 ;

	37	[...]
	38	t 2707 = t 2703 + 2706 dt 2705 ;} ;
	39 require_nsb(xJupiter, 11) 2710 ;
	40 require_nsb(xSaturn, 11) 2716 ;
	41	[...]

]

Listing 11.1 : Gauche : programme source annoté avec les labels. Droite : Programme optimisé généré par POP(ILP).
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POP was initially based on an SMT-based method. Chapters 4, 5 and 6 highlight the tool.
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Typeforge is a tool for type refactoring in C/C++ programs. It enables users to transform the type of any variables or operations. It guarantees the syntactic and semantic correctness of the generated code.
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) ´nsb(22) ´nsb e ( 17 ) and 0, the max between ufp( 17 ) ´ufp(22) + nsb(22) ńsb(17) ´nsb e ( 22 ) and 0, and the constant 1. Next, it becomes possible to solve the corresponding ILP. If no fixpoint is reached, our tool iterates until a solution is found. By applying this optimization, the new formats are presented in Line 5 of the bottom right corner of Figure5.1:
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POP n'est pas encore publiquement distribué. Nous comptons de le distribuer au bout de quelques mois.
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Simple C program:

1 a = 1.0; 2 i = 1.0; 3 x = 0.0; 4 while ( i < 10.0) { 5 a = a + 1.0; 6 x = x + a ; 7 i = i + 1.0; 8 } ; 9 require_nsb(x, 20);

Program with labels:

1 a 1 = 1.0 0 ; 2 i 3 = 1.0 2 ; 3 x 5 = 0.0 4 ; 4 while ( i 7 < 9 10.0 8 ) { 5 a 14 = a 11 + 13 1.0 12 ; 6 x 20 = x 16 + 19 a 18 ; 7 i 25 = i 22 + 24 1.0 23 ; 8 } 26 ; 9 require_nsb(x, 20) 28 ;

Program annotated with precision:

1 a|19| = 1.0|19|; 2 i = 1.0; 3 x|20| = 0.0|20|; 4 while ( i <10.0) { 5 a|20| = a|19| +|20| 1.0 |20|; 6 x|20| = x|20| +|20| a|20| ; 7 i = i + 1.0; 8 }; 9 require_nsb(x, 20); Backward multiplication From Equation (4.11), we know that 2 ufp(z) ď z ă 2 ufp(z)+1 , 2 ufp(y) ď y ă 2 ufp(y)+1 and ε z ˆă 2 ufp(z)´nsb(z)+1 , ε y ă 2 ufp(y)´nsb(y)+1 which implies that y.ε z ˆ´z.ε y ă 2 ufp(z)+ufp(y)´nsb(z)+2 ´2ufp(y)+ufp(z)´nsb(y)+2 and that 1 y ¨(y + ε y ) ă 2 ´2ufp(y) .

Consequently, ε z ˆď 2 ´2ufp(y) ¨(2 ufp(z)+ufp(y)´nsb(z)+2 ´2ufp(y)+ufp(z)´nsb(y)+2 ) ´2ufp(x)´σ ď 2 ufp(z)´ufp(y)´nsb(z)+1 ´2ufp(z)´ufp(y)´nsb(y)+1 ´2ufp(x)´σ

and finally, nsb(x) = ufp(z ˜y) ´max(ufp(c) ´ufp(y) ´nsb(z) + 1, ufp(z) ´ufp(y) ´nsb(y) + 1, ufp(x) ´σˆ) .

(5.10)

Note that POP does not generate constraints only for arithmetic expressions but also for commands and arrays. The rules of commands are classical [START_REF] Nielson | Principles of Program Analysis[END_REF], we use control points to distinguish many assignments of the same variable and also to implement joins in conditions and loops. A complete presentation of the commands will be provided in Section 5.2.

Example 5.1. In this example we show how to generate constraints for Example 4.1 depicted in Listing 4.1 of Chapter 4. The constraint system with control points 0 to 28 , is made of constraints for the whole program including the while loop, assignments, additions and the counter. These numbers of variables and constraints are linear in the size of the program. Although the number of constraints generated is linear, it is too large to be fully displayed hereafter. Equation (5.11) shows some constraints without taking into account the while loop and by taking into consideration the operations of assignments a := 1.0 , i = 1.0 and x = 0.0 and only one more complex operation a := a + 1.0. Basically, the constraints of Equation (5.11) require that the forward accuracy at points 0 , 2 , 4 and 12 is 53 bits (e.g. FP64 double precision). Next, the forward accuracy of a 1 is equal to 53 (nsb F ( 0 ) = 53) which is the precision of the value affected and it works the same for its backward accuracy. The constraints of the second line of our system works similarly. As our approach is also generalisable for intervals, we have nsb( ) and nsb( ) respectively for the lower and upper bound of the number of significant bits nsb of the result. To be brief, can change and this can affect the choice of the branch then or else to explore. Work in [START_REF] Chaudhuri | Continuity analysis of programs[END_REF] has addressed this kind of problem.

For loops, we relate the number of significant bits at the end of the body to the nsb of the same variables and the beginning of the loop. More precisely, our tool manages correctly the loops because a range analysis on the variable values has been performed before the tuning phase. However, performing a precise range analysis for loops is not a simple task and this can explain why the majority of the state-of-the-art static tools do not handle loops. g = 9.81; l = 0.5; y1 = 0.785398; y2 = 0.785398; h = 0.1; t = 0.0; while (t <10.0) { y1new = y1 + y2 * h ; aux1 = sin ( y1 ) ; aux2 = aux1 * h * g / l ; y2new = y2 -aux2 ; t = t + h ; 10 y1 = y1new ; y2 = y2new ; 11 }; 12 require_nsb(y2, 20); l � g 1 = 9.81 0 ; l 3 = 0.5 2 ; y1 5 = 0.785398 4 ; y2 7 = 0.785398 6 ; h 9 = 0.1 8 ; t 11 = 0.0 10 ; while ( t 13 < 15 10.0 Example 5.2. A motivating example to better explain our method is given by the code snippet of Listing 5.1. In this example, we aim at modeling the movement of a simple pendulum without damping. Let l = 0.5 m be the length of this pendulum, m = 1 kg its mass and g = 9.81 m ¨s´2 Newton's gravitational constant. We denote by θ the tilt angle in radians as shown in Listing 5.1 (initially θ = π 4 ). The Equation describing the movement of the pendulum is given in Equation (5.15). m ¨l ¨d2 θ dt 2 = ´m ¨g ¨sin θ (5.15) Equation ( 5.15) being a second order differential equation. We need to transform it into a system of two first order differential equations for resolution. We obtain y 1 = θ and y 2 = dθ dt .

ILP-Based Method Constraint Generation

By applying Euler's method to these last equations, we obtain Equation (5.16) implemented in Listing 5.1.

Before analysis, we suppose that all variables of the source program in the top left corner of Figure 5.1 are in FP64 double precision and that a range determination is performed by dynamic analysis on the program variables. The minimal precision needed for the inputs and intermediary results satisfying the user assertion is observed on the bottom right corner of Listing 5.1. For instance, in Line 5 of this code, y1new|20| means that the variable needs 20 significant bits at this point. Similarly, y1 and y2 need 21 bits each and the addition requires 20 bits. Let us take for example Line 5 of the pendulum program to analyze. By applying Rule (ASSIGN), Rule (ADD) and Rule (MULT) of Figure 5.1, we generate seven constraints as shown in Equation (5.17).

The first two constraints are for the addition. As mentioned previously, the ufp are computed by a prior range analysis. Then, at constraint generation time, they are constants. For our example, ufp( 17 ) = ´1. This quantity occurs in the first constraints. The next two constraints are for the multiplication. The fifth constraint nsb( 23 ) ě nsb( 24) is for the assignment and the last two constraints are for the constant functions ξ( 23 )( 17 , 22 ) and ξ( 22 )( 19 , 21 ), respectively for the addition and multiplication. For a user requirement of 20 bits on the variable y2, our tool succeeds in tuning the majority of variables of the pendulum program into FP32 single precision with a total number of bits at bit-level equivalent to 274 (originally the program used 689 bits). As a result, the new mixed precision formats obtained for Line 5 under discussion are: y1new|20|=y1|21| +|20| y2|22| ˆ|22| h|22|;

Policy Iteration for Optimized Carry Bit Propagation

The policy iteration algorithm discussed in Chapter 2 Section 2.2.5, is used to solve nonlinear fixpoint equations when the function is written as the infimum of functions for which a fixpoint can be easily computed. The infimum formulation makes the function not being differentiable in the classical sense. The one proposed in [CGG + 05] to solve smallest fixpoint equations in static analysis requires the fact that the function is order-preserving to ensure the decrease of the intermediate solutions provided by the algorithm. In this thesis, because of the nature of the semantics, we propose a policy iteration algorithm for a non order-preserving function.

y1new|20|=y1|21| +|20| y2|21| ˆ|22| h|21|;

By comparing the formats obtained with the pure ILP formulation, a gain of precision of 1 bit is observed on variables y2 and h (total of 272 bits at bit level for the optimized program). Indeed, we believe that the PI method exhibits better results if we analyze large codes with a lot of operations which has to compute with some tens of nsb. In this case, adding one bit is far from being negligible. Chapter 9 confirms these results on several benchmarks (with more than 400 LOCs).

Correctness

In this section, we present proofs of correctness concerning the soundness of the analysis (Section 5.3.1) and the integer nature of the solutions (Section 5.3.2).

Part IV

Evaluation of POP Performance for Tuning Numerical Programs 

Summary of Contributions

We presented in this thesis eight contributions for the precision tuning problem. In Chapter 2, we started this dissertation by introducing a brief theoretical underpinnings of the different concepts related to the development of POP. The background was related to finite-precision standards to represent real numbers. Also, we highlighted the static analysis technique with a concise description of the abstract interpretation theory. Nevertheless, we outlined the PI method and its previous introduction in the context of static analysis. We closed the chapter by presenting the SMT and ILP theories exploited by our tool POP.

In Chapter 3, we discussed the tools and the approaches that have been proposed in the literature to deal with the precision tuning problem. The originality of this survey is that we extended our study to other tools for numerical accuracy analysis, code transformation as well as for their combinations (e.g. Daisy [ID17, DIN + 18, DHS18, DV19], Anton [DHS18], etc.) We also focused on the differences between the approaches proposed in the bibliography and our own approach. Conclusively, we clearly showed that our approach relies on a very different paradigm avoiding the usual trial-and-error one.

In Chapter 4, we formulated the problem of precision tuning with two different methods: the SMT-based method, implemented in a version of POP called POP(SMT) and the ILPbased method implemented in a version called POP(ILP). Consequently, each version of the POP tool expresses differently the set of constraints generated. We started the chapter by defining the transfer functions of the elements of POP language input programs. The SMT-based method combines a forward and a backward error analysis. This method is considered as the first contribution of this thesis. In fact, the forward analysis examines how errors are magnified by each operation, aiming to determine the accuracy of the results. The backward analysis takes as input the user requirement of accuracy and the results of the forward analysis in order to determine the precision of the inputs and intermediary results. Next, this analysis has been expressed as a set of linear constraints easily checked by a SMT solver. The details about the constraints generation were provided in Chapter 5. The first originality of the SMT-based method in comparison with Martel's work [START_REF] Martel | Floating-point format inference in mixed-precision[END_REF] is the richness of the language handled by POP. It accepts programs with the four basic elementary functions, the trigonometric functions, commands, loops, arrays, matrices and the square root function. The second originality is the reexamination of the carry bit function that can occur throughout the program computations. More precisely, we underlined that it is crucial to modify this definition in order to improve the precision of our analysis.

The SMT-based method has permitted us to propose another new form of the precision tuning problem. The idea comes from several limitations that we have figured out when using the non-optimizing solver Z3 specially in term of complexity and analysis time. As a consequence, we proposed the ILP-based method which translates the precision tuning problem as ILP problem generated from the program source code. The ILP formulation is the second contribution of this thesis. This is done by reasoning on the most significant bit 

Abstract

Although users of High Performance Computing (HPC) are most interested in raw performance, both storage costs and power consumption have become critical concerns. This is due to several technological issues such as the power limitation of processors and the massive cost of communications which arise when executing applications on such architectures. In recent years, the use of precision tuning to improve the performance metrics is emerging as a new trend to save the resources on the available processors. In this thesis, we introduce a new technique for precision tuning radically different from the existing ones. The main idea of our approach is based on a semantic modelling of the propagation of the numerical errors throughout the program source. This yields a system of constraints whose minimal solution gives the best tuning of the program. Based on a static analysis approach, we formulate the problem of precision tuning with two different methods. The first method combines a forward and a backward error analysis which are two popular paradigms of error analysis. Next, our analysis is expressed as a set of linear constraints, made of propositional logic formulas and relations between integer elements only, checked by a SMT solver. The second method consists of generating an Integer Linear Problem (ILP) from the program. Basically, this is done by reasoning on the most significant bit and the number of significant bits of the values which are integer quantities. The integer solution to this problem, computed in polynomial time by a classical linear programming solver, gives the optimal data types at bit-level. A finer set of semantic equations is also proposed which does not reduce directly to an ILP problem. So, we use the policy iteration technique to find a solution. Both methods have been implemented in a tool named, POP. We provide in this thesis a detailed evaluation of the performance of POP on several benchmarks coming from various application domains such as embedded systems, Internet of Things (IoT), physics, etc. Also, we show that our results of precision tuning encompass the results of the state-of-the-art tools in several manners. Keywords: Computer arithmetic, numerical accuracy, static analysis, constraint generation, SMT solver, LP solver, policy iteration.

Résumé

Bien que les utilisateurs de calcul haute performance (HPC) soient plus intéressés par les performances brutes, les coûts de stockage et la consommation d'énergie sont devenus des préoccupations importantes. Ces dernières années, l'utilisation du réglage de la précision pour améliorer les métriques de performance est devenu une nouvelle tendance pour économiser les ressources sur les processeurs disponibles. Ce processus est appelé réglage de précision (precision tuning). Dans cette thèse, nous introduisons une nouvelle technique de réglage de précision radicalement différente de celles existantes. Notre approche est basée sur une modélisation sémantique de la propagation des erreurs numériques à travers le programme. Cela génère un système de contraintes dont la solution minimale donne le meilleur réglage de précision du programme. En se basant sur une approche d'analyse statique, nous formulons le problème du réglage de précision avec deux méthodes différentes. La première méthode combine une analyse d'erreurs en avant et en arrière. Ensuite, nos analyses sont exprimées sous la forme d'un ensemble de contraintes linéaires vérifiées par un solveur SMT. La deuxième méthode consiste à générer un problème de programmation linéaire en nombres entiers (ILP) à partir du code source du programme. Cela se fait en raisonnant sur le bit de poids fort et le nombre de bits significatifs des valeurs des variables. La solution entière à ce problème, calculée en temps polynomial par un solveur de programmation linéaire classique, donne une optimisation des types de données en nombre de bits. Un ensemble plus fin d'équations sémantiques est également proposé dans cette thèse. Il utilise la méthode d'itération sur les politiques pour trouver les nouvelles précisions. Les deux méthodes ont été implémentées dans un outil appelé, POP. Nous proposons dans cette thèse une évaluation détaillée des performances de POP sur plusieurs exemples couvrant divers domaines d'application tels que les systèmes embarqués, l'Internet des objets (IoT), la physique, etc. De plus, nous proposons une comparaison détaillée entre POP et les outils de l'état de l'art.

Mots clefs : Arithmétique des ordinateurs, précision numérique, analyse statique, génération des contraintes, solveur SMT, solveur LP, itération sur les politiques.