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Résumé

Introduction

Dans ce résumé en français sont inclus les principaux concepts de chacun des paragraphes de cette thèse.

L'ARN : une macromolécule polyvalente avec un rôle clé dans le système cellulaire

Épissage d'ARNm

Dans les génomes eucaryotes, l'information pour produire une protéine spécifique n'est pas continue mais divisée en segments, appelés exons, divisés par des régions non codantes ou ne codant pas pour cette protéine, les introns. La rétention d'intron (IR) se produit lorsque des séquences qui sont habituellement épissées sont maintenues dans le transcrit mature. L'IR n'est pas simplement le résultat d'un mauvais épissage, mais il a été rapporté qu'il est omniprésent et susceptible d'affecter plus de 80 % de tous les gènes codant pour les protéines, contribuant à la régulation du transcriptome et jouant un rôle non seulement dans les maladies, mais aussi dans les processus physiologiques. . Habituellement, les isoformes IR (IRI) contiennent des codons de terminaison prématurés qui déclenchent leur dégradation rapide par la voie NMD. Dans certains cas, au cours de la spermatogenèse, par exemple, le transcrit IRI peut être retenu dans le noyau ou le cytoplasme et être soumis à un épissage supplémentaire en réponse à des stimuli, montrant une demi-vie plus longue que les transcrits correctement épissés. Enfin, l'IRI peut également échapper à la NMD et subir une traduction, produisant des isoformes protéiques alternatives, généralement tronquées et nocives pour la cellule. parties des réseaux de régulation génique sous-jacents pour reproduire son comportement dans des environnements contrôlés. Plutôt que de tenter de décrire les interactions entre les éléments connus du réseau, au cours des dernières années, les approches d'apprentissage automatique et d'apprentissage profond se sont massivement développées: des modèles de boîte noire sont entraînés pour prédire des phénotypes spécifiques à l'aide de données de grande dimension. Ces méthodes peuvent utiliser différents types de caractéristiques d'entrée, telles que l'expression des gènes, la méthylation de l'ADN, les modifications des histones et le génotype, en les considérant individuellement ou en combinaison à partir de grandes cohortes de patients.

Quantification de l'ARN : une rupture technologique

Séquençage de première génération Également connue sous le nom de séquençage de Sanger, la méthode qui permettait de déterminer la séquence de longs fragments de toute molécule d'ADN a été publiée en 1975 et affinée au cours des années suivantes. L'application de cette technologie s'étend de l'assemblage de novo du génome, comme le projet du génome humain (HGP) dont la première ébauche a été publiée en 2001, à la biologie évolutive, pour déterminer la phylogénie des organismes ou l'évolution des gènes, en passant par les applications cliniques, comme la détection de pathogènes ou les tests de mutations génomiques dans les pathologies congénitales, ou encore à l'identification médico-légale et aux tests de paternité, grâce aux empreintes génétiques.

Séquençage de deuxième génération

La réduction des coûts et l'augmentation de l'accessibilité ont permis d'appliquer les NGS dans un large éventail de domaines : le reséquençage du génome, c'est-à-dire la lecture de séquences cartographiques sur un génome de référence pour identifier des variantes génétiques ; les tests prénataux non invasifs, la classification moléculaire du cancer et le diagnostic des maladies mendéliennes ne sont que quelques exemples des nombreuses applications cliniques qui sont devenues des routines réalisables dans les hôpitaux. Plusieurs méthodes ont été dérivées de l'ADN-seq standard pour quantifier différentes molécules et événements. Un exemple est le séquençage de l'ARN qui, en utilisant la transcriptase inverse et des protocoles dédiés, a presque complètement remplacé la technologie des puces à ADN pour la quantification de l'expression génique.

Séquençage de troisième génération

Deux décennies de travail et d'avancées technologiques ont été nécessaires pour un premier prototype fonctionnel de nanopore et à la fondation en 2005 de la société Oxford Nanopore Technology ( ONT ). L'ONT utilise une différence de tension appliquée aux bains d'électrolytes de chaque côté d'une membrane isolée pour produire un courant ionique.

La précision de l'ONT était inférieure à 60 % lors de sa première introduction, mais les améliorations du base calling au cours des dernières années ont permis des valeurs de 85 % en 2018 et jusqu'à 98,3 % en 2021 et promettant 99 % avec la version chimique Q20+. Si l'entreprise britannique atteint cet objectif impensable d'ici quelques années, la technologie des nanopores aura toutes les caractéristiques pour remplacer l'Illumina dominant sur le marché mondial et plus encore : l'absence d'étape d'imagerie permet la production d'appareils moins chers et plus petits, avec l'appareil MinION étant aussi gros qu'un smartphone et coûtant 1000 dollars ; la longueur de lecture peut aller de lecture courte à ultra-longue (plus de 2Mb d'ADN et plus de 20Kb d'ARN) ; il permet une analyse en temps réel et la préparation de la bibliothèque est rapide, ne nécessitant que dix minutes, et standardisée, grâce à un dispositif automatisé qui augmente la reproductibilité des expériences.

Nanostring nCounter: quantification directe d'ARN

Une technologie émergente qui permet la quantification directe de molécules d'ARN à l'aide d'un protocole simple et rapide est Nanostring Technologies nCounter. La société Nanostring, fondée en 2003 et installée à Seattle, propose une technique efficace en termes de coût et de temps pour quantifier des ensembles de séquences spécifiques. Cette plate-forme automatisée hybride les marqueurs moléculaires fluorescents directement à des séquences d'acides nucléiques spécifiques, permettant la mesure non amplifiée de jusqu'à 800 cibles dans un échantillon et de multiplexer jusqu'à 96 échantillons dans le même cycle.

Analyse des données RNA-seq

Conception expérimentale À l'instar d'autres expériences scientifiques, le RNA-seq nécessite une préparation minutieuse des données qui doivent être générées ou collectées. Une étude peut être exploratoire, avec l'objectif de découvrir de futures tâches de recherche, ou formelle, avec une hypothèse à tester. L'application standard des données RNA-seq est l'étude de l'expression différentielle (DE) des gènes et, moins fréquemment, des transcrits. Différentes applications nécessitent différentes dimensions d'échantillon : si nous voulons, par exemple, associer un SNP à un phénotype particulier, nous devons appliquer des tailles d'échantillon d'étude d'association pangénomique (GWAS), avec un minimum de 100 échantillons jusqu'à plus de 2000. Pour ce qui concerne la profondeur, puisque plus de 80 % des lectures sont attribuées aux 10 % de gènes les plus exprimés et qu'augmenter le nombre de lectures n'augmente que marginalement la couverture des gènes faiblement exprimés, surtout au-delà des 10 millions de lectures, il vaut mieux utiliser le budget pour avoir plus de réplicats plutôt que peu d'échantillons avec un séquençage profond.

Enfin, lorsque l'expérience doit être exécutée en plusieurs lots, il est important de répartir équitablement les conditions entre les lots. Le traitement de groupes d'échantillons à des jours différents, à l'aide de différentes machines et par différents opérateurs peut refléter de faibles écarts entre les lots qui peuvent être interprétés à tort comme des signaux biologiques.

Alignement de lecture ARN-seq

Pour quantifier l'abondance de la molécule d'ARN au niveau du transcrit, en considérant chaque isoforme comme une entité indépendante, ou au niveau du gène, où l'expression d'un gène est la somme de l'expression de ses isoformes, il est nécessaire d'aligner les lectures à un génome ou transcriptome de référence. La cartographie des lectures sur un génome de référence présente le principal défi pour aligner correctement une lecture qui comprend une jonction d'épissage (SJ).

Quantification au niveau des gènes et des transcrits

Indispensable pour la plupart des analyses en aval, l'évaluation de l'abondance des gènes et des transcrits se caractérise également par une longue liste d'outils qui atteignent le même objectif en utilisant différentes stratégies et avec des performances différentes. HTSeq, featureCounts, l'option intégrée à l'outil STAR et d'autres outils comptent directement les fragments chevauchant les caractéristiques du gène après l'étape d'alignement, différant les uns des autres par la façon dont ils gèrent certaines situations, comme les alignements multiples fragmentés, les fragments qui correspondent à plusieurs caractéristiques et des fragments s'alignant partiellement sur une caractéristique. Cette approche est limitée par des changements dans la composition des exons qui n'ont pas d'impact direct sur le nombre de lectures au niveau des gènes, tels que la capacité d'un même gène à produire différentes isoformes. Pour surmonter ces obstacles, la quantification au niveau du transcrit est de plus en plus utilisée, même pour estimer l'expression au niveau du gène avec de meilleures performances sur l'analyse en aval. Il convient de mentionner que, contrairement aux transcrits, le gène n'est pas une entité physique mais une abstraction utile n'ayant pas de cible claire pour la quantification. Des approches récentes utilisent des pseudo-alignements de κ-mers pour accélérer le processus, contourner l'étape d'alignement et produire une estimation précise. Enfin, les outils classiques de quantification des gènes et des transcrits ne prennent pas en compte les éléments répétitifs et transposables. Des logiciels dédiés, comme TEtranscripts, télescope et SalmonTE, abordent ce problème, en appliquant des approches similaires à celles utilisées pour les gènes classiques aux familles d'éléments transposables.

Signatures d'épissage alternatif

L'abondance des transcrits et des gènes ne sont pas les seules caractéristiques quantifiables qui peuvent être déduites du séquençage de l'ARN : le pourcentage de l'épissage (PSI) est utilisé dans les études d'épissage pour quantifier la fréquence d'inclusion d'exons spécifiques. Parmi les événements d'épissage alternatifs possibles, la rétention d'intron (IR) nécessite des ajustements supplémentaires afin d'être correctement quantifiée. Sans une approche appropriée, des sites d'épissage donneurs ou accepteurs alternatifs non annotés et des transcrits qui se chevauchent pourraient conduire à des événements mal classés. De plus, les introns enrichis en séquences de faible complexité et répétitives peuvent restreindre la cartographie unique des données de séquençage.

Analyse différentielle

La plupart des modèles expérimentaux visent à identifier les différences d'expression entre deux ou plusieurs conditions, l'une utilisée comme contrôle et l'autre comme cible. Avec cet objectif, l'analyse d'expression différentielle (DE) formule et teste une hypothèse statistique pour chaque caractéristique dans les échantillons. Habituellement, seul un nombre limité de réplicats est disponible (3 à 5 réplicats par condition) et, combiné au grand nombre de fonctionnalités testées simultanément, la puissance statistique réalisable serait très faible sans stratégies dédiées mises en oeuvre et affinées au cours des années par la communauté statistique. La plupart de ces approches, telles que le limma-voom largement utilisé, ont été initialement développées pour les données de microarrays et dans un second temps adaptées au séquençage d'ARN.

Approches basées sur les κ-mers

Quantifier l'abondance de transcrits connus ou d'événements d'épissage n'est pas le seul moyen d'obtenir des caractéristiques significatives : compter les occurrences de sous-chaînes de longueur k, appelées κ-mers, dans les données brutes de séquençage est une autre approche largement utilisée dans différents domaines, tels que la métagénomique, l' assemblages de novo et la phylogénie. Ce type de représentation a l'avantage d'être sans référence, puisque le dénombrement des occurrences de κ-mers est indépendant de tout génome, transcriptome ou annotation de référence. L'inconvénient est qu'il est très redondant et avec une grande dimensionnalité. La procédure de comptage, bien que simple, présente des défis de calcul pour ce qui concerne les exigences de temps et d'espace. Une fois les comptes κ-mers obtenus, une approche courante consiste à créer des graphes de Bruijn (dB), un graphe direct représentant les κ-mers en tant que sommets et le chevauchement entre eux en tant qu'arêtes. L'application de la théorie des graphes aux graphes κ-mer de de Bruijn est l'une des clés du succès de cette méthodologie : cette représentation est gérée efficacement par la machine et il existe un grand nombre d'algorithmes pour rechercher, parcourir, trouver des chemins et représenter ses propriétés.

Identification des événements IR

Huit ans après la publication de la première version d'IRFinder, avec plus de 400 citations cumulées, le logiciel est une référence pour l'analyse IR. Les raisons de son succès résident non seulement dans la qualité de l'analyse mais aussi dans l'implémentation de bout en bout qui prend en charge tous les aspects de l'analyse des données brutes, y compris la génération de référence du du logiciel d'alignement STAR, le découpage de l'adaptateur et les procédures d'analyse différentielle. Les aspects de la convivialité du logiciel ont été améliorés au cours de ces années, également grâce aux commentaires des utilisateurs qui ont aidé à résoudre différents bugs. Néanmoins, il reste encore quelques aspects qui nécessitent un effort supplémentaire: le séquençage à lecture longue prend de plus en plus d'importance, en particulier dans les études impliquant la structure des transcrits. Le pipeline est calibré autour d'un séquençage à lecture courte, non seulement pour ce qui concerne le type d'aligneur mais aussi pour les hypothèses qui sont posées pour le calcul de l'IRratio. Malgré les stratégies utilisées pour masquer les régions chevauchant des régions difficiles à aligner et des caractéristiques connues, telles que des exons supplémentaires et des ARN non codants, il existe une proportion considérable d'événements IR faussement positifs qui peuvent être discriminés par inspection visuelle sur un navigateur génomique. La base de données IR, IRbase, construite en 2017 à partir de 2000 échantillons humains est obsolète et ne permet pas à l'utilisateur de visualiser et de comparer facilement ses propres données avec celles incluses dans la base de données. L'approche IR différentielle n'a pas été validée dans les travaux antérieurs et nécessite la connaissance du logiciel R. Au cours de ma dernière année de doctorat, j'ai travaillé avec mon collègue Sylvain Barrier pour améliorer IRFinder, en me concentrant non seulement sur les quatre points décrits précédemment, mais également en améliorant l'aspect de la convivialité et de la vitesse qui ont conduit à son succès.

Approches alternatives pour l'analyse des données RNA-seq

Des méthodes telles que DE-kupl, KOVER et HAWK ont démontré qu'il n'est pas nécessaire d'intégrer les informations dans un format compréhensible et interprétable par l'homme, tel que des gènes ou des transcriptions, pour comparer les informations contenues dans les données de séquençage. Les κ-mers nous permettent de comparer des groupes d'échantillons de manière agnostique, sans biais induit par aucune séquence de référence ou annotation, ce qui conduit à des résultats hautement reproductibles : les décomptes de κ-mers ne changeront pas, tandis que notre connaissance de la composition du génome de référence s'améliore chaque année. De plus, les κ-mers permettent la comparaison de petites fractions de la molécule d'ARN, évitant la perte d'informations dérivées de l'agrégation de plusieurs lectures sous une seule caractéristique, c'est-à-dire un gène, un transcrit ou une jonction d'épissage. Enfin, en utilisant un nombre suffisamment important d'échantillons, il serait possible d'associer des variations, telles que le SNP ou les indels, à une population spécifique, de la même manière que les études d'association pangénomique (GWAS).

GECKO est un algorithme génétique pour classer et explorer les données de séquençage à haut débit GEnetic Classification using κ-mer Optimization, GECKO, est la première méthode permettant d'identifier des groupes de κ-mers capables de classer deux ou plusieurs groupes d'échantillons dans l'étude de grandes cohortes. La méthode, décrite en détail dans l'article présenté ultérieurement dans le manuscrit, montre qu'il est possible d'identifier des groupes de κ-mers qui, seuls ou en synergie, sont capables de classer différents groupes de patients, avec une meilleure performance en ce qui concerne le nombre de gènes. L'approche a été testée sur différents types de données de séquençage, tels que les données de séquençage de miARN, d'ARNm et de bisulfite. Brièvement, GECKO prend des séquences brutes en entrée et utilise Jellyfish2 pour compter l'abondance des κ-mers dans chaque échantillon. Il assemble ensuite une matrice de κ-mers, où chaque ligne est un κ-mer et chaque colonne est un échantillon. La dernière étape du prétraitement consiste à filtrer des κ-mers considérés comme non informatifs, bruités et redondants. Enfin, GECKO implémente un algorithme génétique adaptatif, un algorithme d'optimisation métaheuristique efficace, pour sélectionner des sous-ensembles de κ-mers qui maximisent la précision de la classification des groupes d'échantillons à l'aide d'un classificateur de vecteur de support linéaire (LinSVC).

iMOKA : logiciel basé sur κ-mer pour analyser de grandes collections de données de séquençage iMOKA, Interactive Multi Objective κ-mer Analysis, a d'abord été pensé comme un filtre pour sélectionner les κ-mers informatifs : la plupart des κ-mers sélectionnés par GECKO ont pu individuellement classer avec une assez bonne précision les échantillons dans les groupes respectifs, même à l'aide d'une procédure de validation croisée. À l'instar de GECKO, les détails de l'algorithme sont décrits dans l'article présenté ultérieurement dans le manuscrit, y compris une référence sur quatre ensembles de données dans lesquels les κ-mers extraits par iMOKA sont comparés aux valeurs PSI, à l'expression des gènes et des transcriptions en tant que caractéristiques de classification selon un modèle de forêt aléatoire. Brièvement, le logiciel peut prendre en entrée à la fois des fichiers de séquençage, tels que fastq ou bam, ou des identifiants de lien externe, http, ftp ou SRR, en téléchargeant les données requises avant le début de l'analyse. À l'aide de KMC3, iMOKA extrait le décompte des κ-mers triés de chaque échantillon et les convertit en fichiers binaires. Un fichier JSON contient les métadonnées des échantillons appartenant à l'analyse, comprenant pour chaque échantillon : le nom, l'étiquette du groupe, l'emplacement du fichier binaire et la somme totale des comptages des κ-mers, utilisés pour normaliser les données . La première étape de réduction considère un κ-mer à la fois et, à l'aide d'un classificateur bayésien, estime la précision de la caractéristique permettant de classer les échantillons dans les groupes respectifs. Cette étape est par défaut couplée à un filtre d'entropie adaptatif qui accélère le processus en supprimant très peu d'éléments réellement informatifs. Enfin, une procédure d'agrégation regroupe les κ-mers en fonction de leur séquence, en construisant des graphes de de Bruijn et de leur pertinence biologique, en cartographiant les séquences générées à partir des graphes sur un génome de référence et en utilisant une annotation de référence pour attribuer des « événements » aux κ-mers les plus informatifs de dans chaque groupe. Surtout, le logiciel est couplé à une interface utilisateur graphique (GUI) qui permet d'exécuter en local ou sur un cluster distant toutes les étapes de l'algorithme. L'utilisateur peut également explorer le résultat final de l'étape d'agrégation sous forme de tableau interactif, visualiser l'alignement des κ-mers sur un génome de référence avec une version javascript du navigateur de génome IGV, générer des cartes auto-organisatrices et des classificateurs basés sur des forêts aléatoires.

Conclusion

Les trois dernières décennies ont été marquées par des avancées technologiques incroyables, tant du point de vue biotechnologique que informatique. Pour les suivre, nous avons adapté IRFinder pour prendre en charge les séquences de troisième génération et utiliser de nouvelles méthodologies, le réseau de neurones convolutifs, pour affiner et améliorer ses résultats. De plus, nous avons proposé IRBase, une plateforme où les utilisateurs peuvent non seulement visualiser leurs données mais aussi les comparer avec celles partagées par d'autres utilisateurs. La possibilité de séquencer à faible coût et haute fidélité de larges cohortes de personnes donne l'opportunité d'approfondir nos connaissances sur les mécanismes sous-jacents aux pathologies et de générer des modèles pour prédire les réponses aux médicaments, aux traitements et aux modifications environnementales. En introduction, nous avons vu comment les approches classiques, basées sur la cartographie à un génome de référence et utilisant des annotations de référence, présentent de nombreux niveaux de variabilité induits par les différentes versions des références et des logiciels utilisés. De plus, une grande partie des informations sont généralement rejetées car elles ne correspondent pas aux caractéristiques considérées dans l'étude. Nous avons montré comment les approches basées sur les κ-mers peuvent être une représentation optimale et agnostique des données de séquençage, utiles pour identifier des biomarqueurs pouvant être appliqués à des fins cliniques et de recherche. Dans cette optique, nous avons mis en place iMOKA, un logiciel capable de sélectionner efficacement un groupe de κ-mers avec une faible redondance d'informations et une grande capacité de discrimination des phénotypes en analyse au sein d'une cohorte de très grands échantillons.

Publications

The results of the work done during the realization of this thesis are included in the main text of this thesis. Three articles had been published in two different peer-reviewed scientific journals [1][2][3] .

Preamble

With this manuscript, I wish not only to give a general overview of my past three years of passionate work but also to convey a progressive view of why researchers all over the world cooperate every day to advance the knowledge about ourselves and the world around us. The acceptance of risks and failures in everyday challenges, the constant curiosity and the awareness that every piece of certainties that we have can be questioned thanks to technological advances are the keys for success in this field, together with a bit of luck. We'll explore biological events essential for life, shaped by evolution in hundreds of thousands of years. We'll analyse machinery built to quantify those events that would have been considered sci-fi products by our grandfathers. Finally, I will introduce my work that aims in part to use the data generated by those instruments using well-corroborated methods to identify fine regulatory elements in complex systems and in part to change perspective on how we use this huge amount of information.

Introduction

RNA: a versatile macromolecule with a key role in the cellular system Ribonucleic acid (RNA) is one of the two main classes of nucleic acids together with deoxyribonucleic acid (DNA), two polynucleotide chains that carry all the information required to orchestrate the organization of the cell. RNA is synthesized by the RNA polymerases in complexes that use a DNA segment as a template and involves a wide network of regulators. Although the existence of such molecules had been known since 1869, more than a century was required to reveal their chemical composition [START_REF] Dahm | Discovering DNA: Friedrich Miescher and the early years of nucleic acid research[END_REF]5 , their role [START_REF] Lederberg | The transformation of genetics by DNA: an anniversary celebration of Avery, MacLeod and McCarty (1944)[END_REF][START_REF] Miescher | Uberdie Chemische Zusammen-setzung der Eiterzellen[END_REF] , their structures [START_REF] Watson | Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid[END_REF] , and only in 1977 [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF] we were able to read the information carried by those molecules using techniques that we'll describe in detail in the following chapter. Furthermore, despite the first draft of full human genome assembly being available for 20 years [START_REF] Venter | The Sequence of the Human Genome[END_REF][START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF] , our knowledge about the complex mechanism underlying the generation of a multicellular organism from a single omnipotent cell and the effect of small genomic variations on such organisms is still limited. The analysis of RNA and protein behaviour in response to genomic alteration can be the key for further understanding since those molecules are the effectors that use the information to act in the cellular environment.

According to the central dogma of molecular biology formulated by Crick in 1957 [START_REF] Crick | On protein synthesis[END_REF][START_REF] Cobb | 60 years ago, Francis Crick changed the logic of biology[END_REF] , the information to produce a protein is encoded as a four-letter alphabet sequence in the nucleus, it's transcribed into RNA molecules (messenger RNA, mRNA) that have the role to export the information from the nucleus compartment to the cytosol, the liquid matrix surrounding the organelles, where it is translated into a twenty letter alphabet amino acid sequence.

Figure 1 shows a schematic version of this process, from the transcription of the precursor mRNA molecule, pre-mRNA, its maturation through splicing, 5' capping, polyadenylation and formation of the messenger ribonucleoprotein particle (mRNP), the export in the cytoplasm and its final translation in a polypeptide chain, that will fold in a functional protein. In sixty years from the formulation of the first version of this dogma, we discover that this process is part of a complex network made of effectors and regulators that interact to ensure the survival and the reproduction not only of the single cell but of the whole organism of which the cell is part of. In this system, the role of RNA molecules goes far beyond the mere carrier of information from DNA to protein: they can have catalytic, structural and regulatory functions [START_REF] Serganov | Ribozymes, riboswitches and beyond: regulation of gene expression without proteins[END_REF] . Within the following paragraphs, we'll focus our attention on the RNA regulatory strategies that take place in eukaryotic cells focusing our attention on the underlying informational flow.

mRNA splicing

In eukaryotic genomes the information to produce a specific protein is not continuous but split into segments, called exons, divided by non-coding regions or not coding for that protein, the introns. The spliceosome is a ribonucleoprotein complex in which five small nuclear RNAs (snRNAs), approximately 300 proteins and magnesium ions cooperate to remove the introns from the pre-mRNA molecule in a two-step transesterification reaction [START_REF] Nilsen | The spliceosome: the most complex macromolecular machine in the cell?[END_REF] . Donor, acceptor and branch sites are cis-acting elements necessary for the recognition of the splice boundaries by the spliceosome and are located respectively at the 5', 3' and 20-50 nucleotides upstream the 3' end of the intron [START_REF] House | Regulation of Alternative Splicing: More than Just the ABCs *[END_REF] .

The process is highly dynamic and not deterministic: the sites are not always recognised by the spliceosome with the same efficiency. This flexibility leads to the inclusion and exclusion of different portions in different mature mRNA isoforms, and, as consequence, the possible formation of a variety of different proteins from the same gene, increasing the genetic diversity. This phenomenon, called alternative splicing (AS), gives plasticity to the transcriptome playing a key role during cell development and differentiation [START_REF] Baralle | Alternative splicing as a regulator of development and tissue identity[END_REF] . AS is finely regulated by cis-acting elements, trans-acting factors, transcription and chromatin structure, whose combinatorial effect determines the final outcome [START_REF] Nilsen | Expansion of the eukaryotic proteome by alternative splicing[END_REF][START_REF] Wang | Mechanism of alternative splicing and its regulation (Review)[END_REF] .

AS can occur in different locations (Figure 3), but not all of their combinations result in a functional protein. The mature transcripts undergo degradation if specialized surveillance systems detect abnormalities in the mRNA sequence, such as the nonsense-mediated decay (NMD) and the non-stop decay (NSD) [START_REF] Chang | The Nonsense-Mediated Decay RNA Surveillance Pathway[END_REF][START_REF] Venkataraman | Non-stop mRNA decay: a special attribute of trans-translation mediated ribosome rescue[END_REF] . The NMD is mediated by proteins associated with the exon-exon junction (EJ Complex, EJC) and the ribosome. During the first round of translation, the ribosome removes the EJC but, in case of a premature stop codon, the ribosome is released before reaching the last EJC. The translation termination recruits additional factors that, in the case of residual EJC on the mRNA, trigger the degradation of the mRNA by the exosome complex. Similarly, the NSD occurs when the ribosome stalls at the poly-A, discharging the ribosome and redirecting the mRNA to degradation. Those abnormalities are more frequent in transcripts containing introns. Intron retention (IR) occurs when sequences that are usually spliced out are maintained in the mature transcript. IR is not simply the outcome of mis-splicing but has been reported to be ubiquitous and likely to affect over 80% of all protein-coding genes [START_REF] Middleton | IRFinder: assessing the impact of intron retention on mammalian gene expression[END_REF][START_REF] Wong | Intron retention in mRNA: No longer nonsense[END_REF] , contributing to the transcriptome regulation [START_REF] Braunschweig | Widespread intron retention in mammals functionally tunes transcriptomes[END_REF] and having a role not only in diseases [START_REF] Inoue | Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition[END_REF][START_REF] Zhang | Comprehensive characterization of alternative splicing in renal cell carcinoma[END_REF][START_REF] Tyzack | Aberrant cytoplasmic intron retention is a blueprint for RNA binding protein mislocalization in amyotrophic lateral sclerosis[END_REF] , but also in physiological processes [START_REF] Ullrich | Dynamic changes in intron retention are tightly associated with regulation of splicing factors and proliferative activity during B-cell development[END_REF][START_REF] Yeom | Tracking pre-mRNA maturation across subcellular compartments identifies developmental gene regulation through intron retention and nuclear anchoring[END_REF] .

Usually, IR isoforms (IRI) contain premature termination codons that trigger their rapid degradation by the NMD pathway. In some cases, during spermatogenesis, for example, IRI transcript can be retained in the nucleus or cytoplasm and be subject to further splicing in response to stimuli, showing a longer half-life than properly spliced transcripts [START_REF] Naro | An Orchestrated Intron Retention Program in Meiosis Controls Timely Usage of Transcripts during Germ Cell Differentiation[END_REF] . Finally, IRI can also escape NMD and undergo translation, producing alternative protein isoforms, usually truncated and harmful to the cell [START_REF] Brady | Transcriptome analysis of hypoxic cancer cells uncovers intron retention in EIF2B5 as a mechanism to inhibit translation[END_REF][START_REF] Kanagasabai | Alternative RNA Processing of Topoisomerase IIα in Etoposide-Resistant Human Leukemia K562 Cells: Intron Retention Results in a Novel C-Terminal Truncated 90-kDa Isoform[END_REF][START_REF] Uzor | Autoregulation of the human splice factor kinase CLK1 through exon skipping and intron retention[END_REF] . Although this type of gene regulation requires the formation of the mature RNA and its degradation, therefore inefficient under the energetical point of view respect the downregulation at the transcription level, it's more specific compared to transcription factors, whose action covers a wide panel of genes. Since the energetic cost at the transcription level is much lower than the one at the protein level [START_REF] Lynch | The bioenergetic costs of a gene[END_REF] and the speed of translation is much higher than the transcription one [START_REF] Buccitelli | mRNAs, proteins and the emerging principles of gene expression control[END_REF] , the generation of a reservoir of IRI transcripts allows to have an energetically efficient and fast way to produce proteins in response to external stimuli. In the next paragraph, we'll focus our attention on the gene regulatory network, which is the complex system where proteins, DNA and RNA molecules interact to ensure the survival of the living organism.

Gene regulatory networks

Cooperation is strength and complex multicellular organisms are the perfect incarnation of this concept. Unicellular organisms are self-sufficient cells able to provide all the functions needed for the survival and reproduction of their species. In multicellular organisms each cell depends on the activity of each other, generating complex systems having emergent properties. Each cell of the same individual contains a copy of the same genome, called genotype, but they can differentiate in several cell types with very different shapes, dimensions, functions and properties, called phenotypes. What determines the phenotype of each cell cannot be only its genotype, constant in each cell, but also the surrounding environment and, more importantly, by the interaction between the genome products and the environment. This interaction affects how the genome is used in each cell, which RNA transcripts are expressed, when and how much, generating different patterns in a complex gene regulatory network [START_REF] Davidson | Gene regulatory networks[END_REF] . In such a network the abundances of each transcript and protein have to be finely tuned by pathways characterized by regulatory intercommunicating loops. Traditionally, the transcriptional pattern is modulated at two interconnected levels: a first level having transcription factors (TF) that bind enhancer elements and recruit cofactors and RNA polymerase II to target genes [START_REF] Lelli | Disentangling the many layers of eukaryotic transcriptional regulation[END_REF] , and a second at the epigenetic level that involves chromatin, its regulators and the DNA methylation [START_REF] Alajem | DNA methylation patterns expose variations in enhancer-chromatin modifications during embryonic stem cell differentiation[END_REF] . As we saw in the previous paragraph, however, there are additional control levels that influence the network: RNA-binding proteins and non-coding RNAs, such as miRNA [START_REF] Cannell | How do microRNAs regulate gene expression?[END_REF] and siRNA [START_REF] Carthew | Origins and Mechanisms of miRNAs and siRNAs[END_REF] , regulate the mRNA processing [START_REF] Meyer | The dynamic epitranscriptome: N6-methyladenosine and gene expression control[END_REF][START_REF] Geula | Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[END_REF][START_REF] Su | A-to-I and C-to-U editing within transfer RNAs[END_REF] , transport and degradation [START_REF] Hentze | A brave new world of RNA-binding proteins[END_REF][START_REF] Bentley | Coupling mRNA processing with transcription in time and space[END_REF] . Furthermore, protein translation and degradation are finely regulated, the first at the levels of initiation, elongation, localization and ribosome composition [START_REF] Tahmasebi | Translation deregulation in human disease[END_REF][START_REF] Teixeira | Translational Control during Developmental Transitions[END_REF][START_REF] Emmott | Ribosome Stoichiometry: From Form to Function[END_REF] , the second with the ubiquitin-proteasome system [START_REF] Schwartz | Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology[END_REF] . Finally, the phenotype arises from the protein's activity, their composition, influenced also by post-translational modifications and their interaction with other proteins and biomolecules [START_REF] Mann | Proteomic analysis of post-translational modifications[END_REF][START_REF] Ryan | High-resolution network biology: connecting sequence with function[END_REF] .

Mammals contain thousands of cell types, each with a specific transcriptome and proteome pattern where the alteration of a single key component can cause diseases. For example, the oncogenic transcription factor TAL-1, overexpressed in almost half of T cell lymphoblastic leukaemia cases, forms an interconnected autoregulatory loop with several key TF partners [START_REF] Sanda | Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia[END_REF] . Alteration of the information content is a source of intraspecies variability, but if a mutation disrupts the balance of the regulatory network it can cause developmental deficiencies, like missense mutations in the RNA polymerase II Mediator subunit MED12 that cause intellectual disability and multiple congenital anomalies [START_REF] Zhou | MED12 mutations link intellectual disability syndromes with dysregulated GLI3-dependent Sonic Hedgehog signaling[END_REF] .

Because of transcript control quality and regulation steps, the quantifiable amount of a transcript doesn't always correspond to the amount of the corresponding protein [START_REF] Buccitelli | mRNAs, proteins and the emerging principles of gene expression control[END_REF][START_REF] Lee | Transcriptional Regulation and Its Misregulation in Disease[END_REF] , but the information gathered from RNA-seq expression data is sometimes sufficient to infer computational models of portions of the underneath gene regulatory networks to reproduce its behaviour in controlled environments. The reaction kinetics in those models can be described using mathematical models, such as sets of coupled ordinary or stochastic differential equations [START_REF] Zhu | Studying genetic regulatory networks at the molecular level: Delayed reaction stochastic models[END_REF][START_REF] Batt | Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli[END_REF] , boolean and bayesian networks. The strengths and the weakness of those methods are accurately described in the review of M. Banf [START_REF] Banf | Computational inference of gene regulatory networks: Approaches, limitations and opportunities[END_REF] , where the author highlights the importance of those methods in prescreening in silico the potential interactions, limiting the extent of experimentation needed. However, the high complexity of the gene regulatory network, its interaction with other cellular pathways and the difficulties to correctly quantify all its components at the same time are the main obstacles for the creation of a complete descriptive computational model, especially when the models are based uniquely on expression data and not integrated with consistent, large-scale multiple data types. Rather than attempt to describe the interactions between the known elements of the network, in the last few years machine learning and deep learning approaches are flourishing: black-box models are trained to predict specific phenotypes using high-dimensional data [START_REF] Milanez-Almeida | Cancer prognosis with shallow tumor RNA sequencing[END_REF][START_REF] Alimadadi | Machine learning-based classification and diagnosis of clinical cardiomyopathies[END_REF] . Those methods can use different types of input features, such as gene expression, DNA methylation, histone modifications and genotype, either considering these individually or in combination from large cohorts of patients 60-63 .

The main challenges of this approach are to gather data correctly annotated and having a dimension and composition such that it can be a representative sample of the population in analysis. Projects like the human phenotype ontology [START_REF] Köhler | The Human Phenotype Ontology in 2021[END_REF] aim to standardize the medical annotation of the biological data to facilitate the integration of data from different sources. For what concerns the data availability, large projects like The Cancer Genome Atlas (TCGA) 65 , the Personal Genome Project 66 and the Human Protein Atlas 67 gives access to large collections of standardized omic data, but still small compared to the huge amount of data generated by hospitals and research centers every year. Ethical and legal issues are intrinsically linked with patient data: is it safe to share patient data? To which extent an individual is aware of the risk and benefit of sharing his medical record and biological data? Is it possible to efficiently anonymize those types of data without a drastic loss of information? An international effort of the bureaucratic bodies is required to face those questions, together with the instauration of clear and efficient communication between the scientific community and the general population to raise the interest about the possible benefits and problems that this type of data sharing could bring in everyday life.

RNA quantification: a technological breakthrough

Technological advances allow novel definitions of basic concepts, such as the one of life: "Life is an organized matter that provides genetic information metabolism" [START_REF] Tetz | A new biological definition of life. 6. 69. Schrödinger, E. What is Life? The Physical Aspect of the Living Cell[END_REF] given by Tetz in 2019. The author defines genetic information metabolism as "functioning, reproduction, and creation of genes and their distribution among the living and non-living carriers of genetic information".

Many definitions of life have been given throughout history, some of which focus the attention more on the physical properties, as in Schrodinger's book "What is Life?" 69 , and some on the biological properties, like the notorious seven pillars of life [START_REF] Koshland | The Seven Pillars of Life[END_REF] . In 1944, before the discovery of the DNA as the carrier of information [START_REF] Hershey | INDEPENDENT FUNCTIONS OF VIRAL PROTEIN AND NUCLEIC ACID IN GROWTH OF BACTERIOPHAGE[END_REF] , Schrodinger defined life as a partially closed environment that, thanks to the genetic information stored in an "aperiodic crystal" under the form of covalent chemical bonds, can maintain a low internal entropy increasing the environmental one. Fifty-eight years later, Koshland proposed seven principles that define any living system. The genetic information, called the program, is the first pillar and is defined as the organized way to handle the system components and their interactions. Most of those evergreen definitions emerged from the enthusiasm led by the possibility to study, analyse and quantify different biological properties, but the content of information is a characteristic present in all of them, even when its physical carrier was still unknown. In the case of Tetz's definition of life, the trigger is the high throughput sequencing technology that allows to easily read the genetic information, opening the gates for its decryption. In the following paragraphs, we'll go through three generations of sequencing technologies that had an impact not only in the research field but also in everyday life. Despite several detailed reviews written by the main characters that contribute to this fascinating journey [START_REF] Hutchison | DNA sequencing: bench to bedside and beyond †[END_REF][START_REF] Shendure | DNA sequencing at 40: past, present and future[END_REF] , it's important to remember the milestones that drove us where we are.

First-generation sequencing

The story of sequencing flows in the opposite direction with respect to the flow of information: the first biological sequence decipher was the amino acid sequence of the insulin protein in 1951 [START_REF] Sanger | The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates[END_REF] , followed in 1965 by the first RNA sequence (alanine tRNA), which required five people working three years with one gram of pure material isolated from 140 kg of yeast to determine 76 nucleotides [START_REF] Holley | STRUCTURE OF A RIBONUCLEIC ACID[END_REF] . The processes to sequence those two classes of molecules were similar: fragmentation of the polymer followed by separation by chromatography and electrophoresis, then deciphering of the individual fragments by sequential exonuclease digestion and finally the sequence was deduced from overlaps. The first successful sequencing of a DNA molecule was published in 1968 by We and Kaiser: they measured the incorporation of radiolabeled nucleotides by Escherichia Coli Polymerase in reactions that extended the 3' end to fill in the complementary cohesive end sequences of a phage lambda DNA of only 12 nucleotides [START_REF] Kaiser | Structure and function of DNA cohesive ends[END_REF][START_REF] Wu | Structure and base sequence in the cohesive ends of bacteriophage lambda DNA[END_REF][START_REF] Jou | Nucleotide Sequence of the Gene Coding for the Bacteriophage MS2 Coat Protein[END_REF] . The cohesive portion was necessary for the polymerase to start the synthesis of the complementary strand.

Copying the lactose-repressor binding site of E.Coli into RNA allowed its sequencing by Gilbert and Maxam: 24 bases in two years [START_REF] Gilbert | The Nucleotide Sequence of the lac Operator[END_REF] . Thanks to the discovery of type II restriction enzymes by H.Smith [START_REF] Kelly | A restriction enzyme from Hemophilus influenzae[END_REF][START_REF] Middleton | Specific fragments of phi X174 deoxyribonucleic acid produced by a restriction enzyme from Haemophilus aegyptius, endonuclease Z[END_REF] , it was possible to generate short fragments from large molecules of DNA having ends that could function as primers, starting points for the polymerase reaction. Also known as Sanger sequencing, the method that allowed the determination of the sequence of long fragments of any DNA molecule was published in 1975 and fine-tuned in the following years [START_REF] Sanger | DNA sequencing with chain-terminating inhibitors[END_REF][START_REF] Sanger | A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase[END_REF][START_REF] Sanger | The Croonian Lecture, 1975. Nucleotide sequences in DNA[END_REF][START_REF] Sanger | Nucleotide sequence of bacteriophage phi X174 DNA[END_REF][START_REF] Heidecker | A versatile primer for DNA sequencing in the M13mp2 cloning system[END_REF] .

Sanger's method involves four extensions of a labelled primer by DNA polymerase, each with trace amounts of one chain-terminating dideoxynucleotides (dNTPs), to produce fragments of different lengths. The sizes of fragments present in each base-specific reaction were measured by electrophoresis on polyacrylamide slab gels, which enabled the separation of the DNA fragments by size with single-base resolution. The gels, with one lane per base, were put onto X-ray film, producing a ladder image from which the sequence could be read off immediately, going up the four lanes by size to infer the order of bases. Notably, Maxam and Gilbert developed during the same period a similar method that, instead of dNTPs, took a terminally labelled DNA restriction fragment and, in four reactions, used chemicals to create base-specific partial cleavages [START_REF] Maxam | A new method for sequencing DNA[END_REF] . The application of Sanger sequencing was dominant and it was enhanced when Messing and collaborators published a method for cloning into the single-stranded phage M13 [START_REF] Heidecker | A versatile primer for DNA sequencing in the M13mp2 cloning system[END_REF] , the shotgun sequencing: any fragment of DNA can be inserted into a specific location in the phage genome ( bacterial artificial chromosomes, BAC), allowing primers designed on the known vector sequence to amplify the insert. By 1987, the company Applied Biosystems developed automated fluorescence-based Sanger sequencing machines, shown in figure 6, able to generate around 1,000 bases per day [START_REF] Smith | Fluorescence detection in automated DNA sequence analysis[END_REF] , a number that reached 10 million bases per day by 2001 in a small number of academic genome centres thanks to additional technical improvements. The application of this technology span from de novo genome assembly, such as the human genome project (HGP) of which the first draft was published in 2001 [START_REF] Venter | The Sequence of the Human Genome[END_REF][START_REF] Lander | Initial sequencing and analysis of the human genome[END_REF] , evolutionary biology, to determine organism phylogenies or the evolution of genes [START_REF] Albariño | Arenavirus phylogeny: a new insight[END_REF][START_REF] Ibrahim | The phylogeny of the genus Yersinia based on 16S rDNA sequences[END_REF][START_REF] Pollock | A case for evolutionary genomics and the comprehensive examination of sequence biodiversity[END_REF][START_REF] Doyle | Evolution of genes and taxa: a primer[END_REF] , clinical, as the detection of pathogens or testing for genomic mutations in congenital pathologies [START_REF] Wildin | Clinical utility of direct mutation testing for congenital nephrogenic diabetes insipidus in families[END_REF][START_REF] Kolbert | Ribosomal DNA sequencing as a tool for identification of bacterial pathogens[END_REF][START_REF] Rossetti | Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications[END_REF] , to forensic identification and paternity testing, thanks to DNA fingerprinting [START_REF] Van Daal | DNA profiling in forensic science and parentage testing[END_REF][START_REF] Boonsaeng | DNA fingerprinting and forensic medicine[END_REF][START_REF] Debenham | DNA fingerprinting[END_REF] .

Second-generation sequencing

By 2004, Sanger automated instruments allowed to sequence 600-700 bp at cost of 1 dollar per read, but the technology reached a plateau in its evolution since additional improvements had little or marginal effects [START_REF] Shendure | DNA sequencing at 40: past, present and future[END_REF] . Luckily, several groups throughout the 80s and 90s explored alternative sequencing methods and, after the HGP, those efforts paid off: next-generation sequencing (NGS) methods were becoming more and more competitive and were destined to take over the Sanger sequencing. Also known as high throughput sequencing, the common denominator between those novel methods are the multiplexing and the sequence by synthesis (SBS) strategies. Multiplexing replaced the one tube per reaction approach: a complex library of DNA templates is densely immobilized onto a chemically treated surface, with all templates accessible to a single reagent volume, allowing large numbers of libraries, that could be created also from different samples, to be pooled and sequenced simultaneously during a single sequencing run. This step could be coupled by in vitro amplification: the most famous is the bridge amplification, a process that amplifies a complex template library with primers immobilized on a surface, such that copies of each template remain tightly clustered [START_REF] Adams | Method for performing amplification of nucleic acid with two primers bound to a single solid support[END_REF][START_REF] Chetverina | Cloning of RNA molecules in vitro[END_REF][100] . Other techniques that allow to amplify in vitro the input DNA are clonal PCR in emulsion, such that copies of each template are immobilized on beads 101,102 , and rolling circle amplification in solution to generate clonal 'nanoballs' 103 , followed in both cases by arraying on a surface for sequencing. Finally, the SBS evolved in three main strategies:

1. The first system available was the pyrosequencing, used by the Roche 454 instruments, which consists in the detection of the light generated by a firefly luciferase, that use as substrate the pyrophosphate released by the incorporation of each dNTP, in a discrete step-wise manner 104 . This technology is no longer being maintained since 2013. A similar approach detects the incorporation of hydrogen ions released during the polymerization of DNA, used by Ion Torrent. 2. A second approach uses the specificity of DNA ligases to attach fluorescent oligonucleotides to templates in a sequence-dependent manner, used by SOLiD [START_REF] Watson | Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid[END_REF] . This approach generates reads shorter than the competitor's and has issues with palindromic regions 106 . 3. The approach that became dominant since 2015 is Solexa that consists in a stepwise, polymerase-mediated incorporation of fluorescently labelled dNTPs. In comparison with the first sentence of the paragraph, a single graduate student can generate over a billion independent reads, roughly a terabase of sequence, on one instrument for a few thousand dollars in a couple of days.

Reduction in costs and increased accessibility allowed NGS to be applied in a wide spectrum of fields: genome resequencing, i.e. mapping sequence reads to a reference genome to identify genetic variants; non-invasive prenatal testing, cancer molecular classification and Mendelian disease diagnosis are just a few examples of the many clinical applications that became feasible routines in hospitals. Furthermore, de novo assemblies increased vastly, thanks to new assembly algorithms based on de Bruijn graphs that partially overcome the length issue 110,111 : with NGS many short reads generated from repetitive elements have only a single or no base difference, leading to ambiguous connections in the assembly. Instead of finding overlaps between reads, the EULER assembler 110 was the first to use a different representation of the data: the de Bruijn graphs. The method is organized around words of k nucleotides, the κ-mers, and the reads are mapped as paths through the graph. This data structure naturally handles the high redundancy without affecting the number of nodes: each repeat is present only once in the graph with explicit links to the different start and end points.

Several methods have been derived from the standard DNA-seq to quantify different molecules and events. Some examples are the RNA sequencing that, making use of the reverse transcriptase and dedicated protocols, replaced almost completely the microarray technology for gene expression quantification and allowed researchers to unveil the RNA world that we took into consideration in the previous chapter 112 ; the ChIP-Seq, a method used to quantify the protein-DNA interactions 113 ; the Bisulfite sequencing, that used to determine the DNA methylation patterns 114 ; and the since cell RNA-seq, one of the many adaptations of the RNA-seq technique that allows to sequence the sparse transcriptome of individual cells. An important approach is the paired-end sequencing that allows to sequence both ends of a single biological fragment, generating more accurate read alignment and the ability to detect insertion-deletion (indel) variants 115 .

Third-generation sequencing

The second-generation sequencing has two important limitations: the short length of the reads, reaching nowadays a maximum of 300 bp 116 , and the PCR amplification step. The first issue has repercussions on de novo assemblies of repetitive regions and on the determination of the single-molecule RNA isoforms, the second add time and complexity in the library preparation, loss of information, such as the lack of information about eventual nucleotide modifications, and the introduction of copying errors and sequence-dependent biases. Due to those limitations, only recently the telomere to telomere (T-2-T) consortium was able to complete the assembly of the full human genome, including the constitutive heterochromatin regions, thanks to the combination of Illumina sequencing and a new generation of sequencing technology: third-generation sequencing 117,118 . A parallel research field, started back in the 1980s, aimed to sequence single molecules in real-time (SMRT) and gave birth to two promising approaches: PacBio and Nanopore sequencing. Initiated by Webb and Craighead and developed by Korlach, Turner and Pacific Bioscience, PacBio is the first approach capturing sequence information during the replication process of a single DNA molecule and was released in 2011 119,120 .

The template is a closed, single-stranded circular DNA that is loaded into a chip divided into a sequencing unit, the zero-mode waveguide (ZMW), a hole less than half the wavelength of light that provides the smallest available volume for light detection. In each ZMW, a single engineered polymerase is immobilized at the bottom and can bind to the circular DNA to start the replication. Four different fluorescent-labelled nucleotides are incorporated by the polymerase, generating distinct emission spectrums that are recorded in a temporal sequence, the continuous long read (CLR). A base-calling software analyses the CLR and estimates the sequence based on the light-pulse spectrum. Each strand can be sequenced multiple times, allowing the generation of multiple subreads, whose consensus increases the accuracy of the technique, going from a median error of 11% for a single pass to 1% with four passes and 0.1% with nine 121,122 . The errors consist of more indels than mismatch and are distributed randomly, a factor that allows reducing efficiently the error rate increasing the CLR depth.

Base-calling can also detect nucleotide modifications, such as N [START_REF] Lederberg | The transformation of genetics by DNA: an anniversary celebration of Avery, MacLeod and McCarty (1944)[END_REF] -methyladenine (m 6 A) and n [START_REF] Dahm | Discovering DNA: Friedrich Miescher and the early years of nucleic acid research[END_REF] -methylcytosine (m 4 C), analyzing the kinetic variation from the light-pulse of the temporal sequence 123 . PacBio's read length is limited by the longevity of the polymerase: with chemistry v3 released in 2018, the average RL is 30 kbp, spanning from 250bp to 50 kbp.

A simple but revolutionary idea, hypothesized in the 1980s, is at the basis of the second methodology: considering a hole through which water is streaming, the passage of a body, let's say a tennis ball, modifies the flux of water in a different way a bowling ball would do. Detecting and decrypting the changes of the flux can tell the dimensions of the object that obstructed the channel, being able to discriminate between a bowling or a tennis ball. Similarly, but in a much smaller dimension, detecting the patterns in the flow of ions generated when an ssDNA passes through a narrow channel can be deciphered into the sequence of nucleotides that compose the polymer 124 . Two decades of work and technological advancement were required to move from this idea to the first successful nanopore prototype and the foundation in 2005 of the company Oxford Nanopore Technology ( ONT ).

ONT uses a voltage difference applied across electrolyte baths on either side of an insulated membrane to produce an ion current.

The current streams through a single channel protein, in the first chemistry versions Mycobacterium smegmatis porin A (MspA), pulling the DNA through the nanopore in a linear, head-to-tail fashion by electrophoresis. The passage would be too fast to be detectable, that's why another protein, called enzyme motor, acts as a molecular stop, preventing the DNA from travelling any further through the nanopore 124,125 .

The signal detected is then analysed using bonito 126 , a base caller that uses methods widely used in speech recognition problems ( in particular a recurrent neural network (RNN) model trained using connectionist temporal classification (CTC) and conditional random field (CRF) ) to decode the electric signal into a sequence of nucleotides.

ONT accuracy was less than 60% 127,128 when first introduced, but the base caller improvements over recent years allowed values of 85% in 2018 129 and up to 98.3% in 2021 and promising a 99% with the chemistry version Q20+ 130,131 .

If the British company accomplishes this goal, unthinkable a couple of years ago, nanopore technology would have all the characteristics to replace the dominant Illumina in the global market and more: the lack of an imaging step allows the production of cheaper and smaller devices, with the MinION device being as big as a smartphone and costing 1000 dollars; the read length can go from short to ultra-long read ( more than 2Mb DNA and more than 20Kb RNA 132,133 ); it allows real-time analysis 134,135 and the library preparation is quick, requiring only ten minutes, and standardized, thanks to an automated device that increase the reproducibility of the experiments; RNA molecules can be directly sequenced without needs of any cDNA intermediates, reducing the time, costs and introductions of errors.

Nanostring nCounter: direct RNA quantification

Sequence technologies are fundamental in research, but for clinical application most of the time it's sufficient to know the abundance of specific subsets of sequences, representing features like genes, specific isoforms, splicing junctions, chimeric transcripts and SNP.

An emerging technology that allows the direct quantification of RNA molecules using a simple and fast protocol is Nanostring Technologies nCounter 136 . The company Nanostring, founded in 2003 and settled in Seattle, offers a cost and time efficient technique to quantify specific sets of sequences 137 . This automated platform hybridizes fluorescent barcodes directly to specific nucleic acid sequences, allowing for the non amplified measurement of up to 800 targets within one sample and to multiplex up to 96 samples in the same run 136 . Nanostring's nCounter has been used within different clinical and research applications, such as assays to predict recurrence for gastric cancer after surgery 138 , subtype molecular classification of diffuse large B-cell lymphoma 139 , the identification of known oncogenic fusion genes in lung cancer 140 and many others [141][142][143][144] . The robustness, sensibility and high reproducibility of this technology outdo microarrays, the most similar technology available, which are often expensive and lack flexibility and reproducibility when evaluating low-quality RNA samples, such as those from formalin-fixed paraffin embedded 145 .

RNA-seq data analysis

In the previous chapters, we considered the biological aspects of the information represented in the RNA-seq data and the evolution of the technologies that allow its extraction into a series of four-letter strings. Now, we'll focus on the common approaches used to exploit this information, starting from the experimental design, moving to read mapping, transcript quantification and concluding with differential gene analysis. Finally, we'll overview existing reference-free approaches that extrapolate and analyse the information using κ-mers.

Experimental design

Similarly to other scientific experiments, RNA-seq requires a careful design of the data that has to be generated or collected. A study may be exploratory, with the objective of discovering future research tasks, or formal, with a hypothesis to test. An important factor to consider is whether the data comes from experiments, where the researcher has control of the variables in the study, or ex post facto, where the investigator cannot manipulate the variables, such as clinical data.

The sampling design must consider heterogeneous samples, representative of the population in analysis, and balance between case and control, randomizing the experimental units to treatment in order to reduce confounding factors.

Budget is one of the most limiting factors and it's determined by the number of samples processed and the number of reads generated for each of them, also called sequencing depth. Tools like "Scotty" 146 , "RNAseqPS" 147 , "PROPER" 148 and "ssizeRNA" 149 estimates the optimal sample size required to achieve the desired statistical power and, although most of them diverge significantly in the results 150 , can help the scientist in this crucial step.

The standard application for RNA-seq data is differential expression (DE) study of genes and, less frequently, of transcripts. In any experimental design, selecting the appropriate number of biological replicates is a trade-off between cost and precision. A misconception is that three replicates are enough in a DE study: Schurch et al.

show that to identify differentially expressed genes having a low fold change it's necessary to have at least six replicates per condition and that using only three replicates per condition most of the DE analysis tools found only 20-40% of the significant DE genes 151 . Different applications require different sample dimensions: if we want, for example, to associate SNP to a particular phenotype, we need to apply genome-wide association study (GWAS) sample sizes, with a minimum of 100 samples up to more than 2000 152 .

For what concerns the depth, since more than 80% of the reads are attributed to the 10% most expressed genes and increasing the number of reads only marginally increases the coverage of lowly expressed genes, especially over the 10 million reads 153 , it's better to use the budget to have more replicates rather than few samples with deep sequencing. Finally, when the experiment has to be run in multiple batches, it's important to equally distribute the conditions between the batches. Processing groups of samples on different days, using different machines and by different operators can reflect on small variances between the batches that can be misinterpreted as biological signals.

RNA-seq read alignment

The final output of any sequencer is generally a FASTQ file, in which a read is represented by four parts 154 : the first is the header, starting with a '@' character and including a unique ID attributed to the read, useful especially in paired-end sequencing to identify the two mates; the second part contains the raw sequence, usually encoded using the standard IUPAC single letter codes for DNA and RNA; the third part, starting with a '+' character, can contain additional description but is usually empty. Finally, the last part encodes the quality values for each nucleotide. Since v1.8 Illumina sequencers use the same quality score as the Sanger and PacBio sequencer: the Phred quality score ( Q phread ), that is the -log 10 of the probability that the corresponding base call is incorrect. Millions to billions of short cDNA reads contain information about what RNA molecules are in the original sample, their abundance and sequences. This information is randomly scattered across the reads: subsequential reads in the FASTQ file can represent completely different RNA molecules.

To quantify the abundance of the RNA-molecule at the transcript level, considering each isoform as an independent entity, or at the gene level, where the expression of a gene is the sum of the expression of its isoforms, it's necessary to align the reads to a reference genome or transcriptome.

In organisms for which only a de novo transcriptome is available, or it's much better characterized than the reference genome, unspliced alignment is a feasible solution.

Mapping on a reference transcriptome, however, induces a high degree of multi-mapping since different isoforms can share the same intron and isn't flexible enough to deal with novel splicing or expression patterns. Pseudo-alignment and fast mapping to transcriptome is part of the strategy used by recent transcript abundance estimators and we'll focus on this subject in the next chapter.

Mapping the reads to a reference genome presents the main challenge to correctly align the read that includes a splice junction (SJ). Bowtie 155 , STAR 156 , HISTAT 157 and GMAP 158 are the most famous of a long list of splice-aware aligners that use known or empirically deduced SJ sites to guide the alignment. Each software uses a different approach, resulting not only in different performances in terms of time but also in terms of the final result, adding a layer of variability to the experiment.

Once mapped, the reads are stored in dedicated files, such as BAM, the binary and compressed version of the SAM format ( Sequence Alignment Map ), and CRAM, a reference-based storage format promoted by EBI from 40 to 50% smaller than the BAM one 159 . The problem of the lack of an international standard is being addressed by the moving picture expert group (MPEG), mostly known for the audio and video coding, who released the first version of the MPEG-G in 2019 proposing a new file format: "The standard will offer high levels of compression, approximately 100 times compared to raw data, i.e. more than one order of magnitude than possible with currently used formats. Furthermore, the MPEG-G standard will provide new functionalities such as native support for selective access, data protection mechanisms, flexible storage and streaming capabilities. This will enable various new applications scenarios, such as real-time streaming of data from a sequencing machine to remote analysis centres during the sequencing and alignment processes." 160

Gene and transcript level quantification

Essential for most of the downstream analysis, assessing the gene and transcript level abundances is also characterized by a long list of tools that achieve the same goal using different strategies and with different performances. HTSeq, featureCounts, the built-in STAR option and other tools count directly the fragment overlapping the gene features after the mapping step, differing one from the other by the way they handle certain conditions, like multi mapping fragments, fragments that map to multiple features and fragments mapping partially in the feature. This approach is limited by changes in the composition of the exons that do not directly impact the gene-level read count, such as isoform switching.

To overcome those obstacles, transcript-level quantification is getting more and more used, even to estimate the gene-level expression with better performances on the downstream analysis 161 . It's worth mentioning that, in contrast with the transcripts, the gene is not a physical entity but it's a useful abstraction having no clear target for quantification. Methods like RSEM 162 and Cufflinks 163 define a generative model of RNA-seq reads and use such a model to infer the transcript abundance, assigning in a probabilistic way the ambiguous fragments to the different isoforms. Recent approaches make use of pseudo-alignments of κ-mers to speed up the process, bypass the alignment step and produce an accurate estimation 164,165 . The pseudo alignment procedure uses the reference transcriptome in the form of the de Bruijn graph to assign a read to a set of transcripts without alignment.

In particular, Kallisto uses the transcriptome in the form of de Bruijn graph to assign through expectation-maximization (EM) algorithm the read to the transcript from which most likely was generated 166 . Another widely used κ-mer based tool is Salmon 167 : it first builds a sample-specific bias model to correct effects like fragment GC-content bias; after that, it uses a lightweight mapping procedure called quasi-mapping, similar to pseudo alignment in the use of the transcriptome and κ-mers. This strategy, proposed by Srivastava A. et al with RapMap 168 was first applied to Sailfish 169 , has the same outcomes as the transcriptome pseudo alignment using a different data structure 168 . Easy to use, fast, with low computational requirements and high performances in terms of speed and disk usage, the mapping-free κ-mer based approaches have become popular for assessing transcript and gene-level abundance, gaining the top tiers of the most recent benchmark studies [170][171][172] . Finally, traditional gene and transcript quantification tools don't consider repetitive and transposable elements. Dedicated softwares, like TEtranscripts 173 , telescope 174 and SalmonTE, address this problem, applying similar approaches like the ones used for classical genes to transposable element families.

Alternative splicing signatures

Transcript and gene abundances are not the only quantifiable features that can be inferred from RNA-sequencing: the percentage of the splice in (PSI) is used in splicing studies to quantify the frequency of inclusion of specific exons. Tools like MISO 175 , rMATS 176 and Whippet 177 compute one PSI value for each exon using the following formula:

𝑃𝑆𝐼 = 100 × 𝑎+𝑏 𝑎+𝑏+2𝑐
Where a and b represent the reads overlapping the splice junctions that support the inclusion of the alternative exon to downstream and upstream constitutive exons and c represents the ones that support the exclusion. Where S i and S j are the splice-junction reads of all isoforms in the region between two constitutive exons C 1 and C 2 , generating multiple PSI in case an exon is used by different isoforms 178 . MAJIQ 179 quantifies the PSI values for each isoform as well, using a combination of read rate modelling, Bayesian PSI modelling and bootstrapping. Finally, SUPPA2 180 uses the transcript abundances to infer the PSI and delta PSI (ΔPSI, difference in PSI between two conditions). This approach, though fast, produces suboptimal results 178 . All the aforementioned methods can be applied to second and third generation sequencing since they take as input FASTA, FASTQ or BAM file formats, but only PSI-Sigma was tested using long reads 178 showing a more complete and precise transcriptome profile. Among the possible alternative splicing events, intron retention (IR) requires additional adjustments in order to be correctly quantified: MAJIQ, for example, filters the events having consecutive windows across the intron lower than a user definable threshold; PSI-Sigma estimates the abundance of the IR isoform counting the number of intronic reads crossing the first, 25th, 50th, 75th and 99th percentile positions of an intron. Without a proper approach, unannotated alternative donor or acceptor splicing sites and overlapping transcripts could lead to misclassified events. Furthermore, introns that are enriched in low-complexity and repetitive sequences may restrict the unique mapping of sequencing data 181 . IRFinder, the first software dedicated to IR analysis, addressed this problem proposing a new metric, the IRratio, defined as:

𝐼𝑅𝑟𝑎𝑡𝑖𝑜 = 𝐼 𝑎 𝐼 𝑎 +𝐸 𝑎
Where: I a is the intronic abundance, estimated as the median depth of the intron excluding low mappability regions and regions overlapping with other features; E a is the abundance of the flanking exon, estimated as the maximum number of reads that map the 5' or the 3' flanking exon splice site [START_REF] Middleton | IRFinder: assessing the impact of intron retention on mammalian gene expression[END_REF]182 Finally, iREAD 184 uses the Shannon entropy 185 to quantify the uniformity of the distribution of reads across the intron and considers only introns that don't overlap with any other feature. Due to the lack of experimentally validated intron retention events dataset availability, iREAD authors compared their tool with IRFinder using simulated reads. In this benchmark, IRFinder achieved a precision of 0.73, iREAD of 0.99 and similar time performances. However, few considerations are due to contextualize those results:

1. iREAD excludes all the introns overlapping known IR events or any other features, considering so far a much smaller set of events, meanwhile IRFinder includes the known IR events and masks the intronic annotations, such as miRNA and antisense transcripts. In the evaluation of the metric, the authors considered the same number of events to evaluate the performances of the two software, using the minimum number of hits found in the two methods. In the iREAD manuscripts, it's not specified which method outputs the limiting number of events, but for the aforementioned reasons, lots of IRFinder positive results have not been taken into consideration. 2. The results are further biased by the criteria chosen to generate IR events in the simulated RNA-seq data, which are the same criteria iREAD uses to identify IR events. For example, an intron is considered retained if it has at least 10 reads and one junction read that spans the exon-intron junction, regardless of the length of the intron and the number of exon-exon splice junctions, factors considered in IRFinder. Furthermore, IR events in isoforms having known intron retention are not considered as IR by their gold standard sets and iREAD algorithm but are generated anyway, increasing the number of events considered false positive in IRFinder's results. 3. The simulated data doesn't take into account the possible presence of intronic reads originated by unannotated intronic transcripts, which might affect the global performances of the softwares.

4. The speed comparison is biased: the authors use a machine with 20 cores and don't specify that IRFinder is a single-core process, while iREAD can multithread the process, leading to unfair comparison. Finally, IRFinder is optimized to have a low RAM footprint, an aspect that has not been considered in the benchmark.

Differential analysis

Most of the experimental designs aim to identify differences in expression between two or more conditions, one used as control and the other as a target. With this objective, differential expression (DE) analysis formulates and tests a statistical hypothesis for each feature across the samples. Usually, only a limited number of replicates are available ( 3-5 replicates per condition) and, combined with the large number of features that are tested simultaneously, the achievable statistical power would be very small without dedicated strategies implemented and refined during the years by the statistical community. Most of those approaches, such as the widely used limma-voom 186 , were initially developed for microarray data and in a second place adapted to RNA-sequencing.

The general workflow includes: 1. Preprocessing: encompasses the filtering of uninformative features, such as lowly expressed genes. Bourgon et al. showed that filtering independent of the test statistic achieves a higher detection power 187 . To facilitate across-sample comparison, the counts have to be directly normalized or, in software like DESeq2 188 , scaling factors have to be computed to accompany the analysis. In addition, few highly expressed genes can drive the sampling of fragments, leading to inaccurate scaling measures. Calculating sample-wise size factor can in part overcome this issue: this procedure consists in generating a pseudo-reference sample, derived from the averages of each gene across all the samples in the study; for each sample, compute the ratio between the sample gene count and the pseudo-reference one and use the median value as size factor, by which the raw count is divided to obtain the normalized values. It can be considered a robust global fold change between the current sample and an ideal reference sample, derived from all the samples 189,190 . 2. Statistical model specification and estimation of its parameters: due to the small sample size with respect to the number of features, DE tools mainly implement parametric methods. The variability in gene expression across technical replicates follows a Poisson distribution 189 , for which the variance is equal to the mean:

𝐸(𝑌 𝑓𝑖 ) = µ 𝑓𝑖 = 𝑉𝑎𝑟(𝑌 𝑓𝑖 )
Where is the observed count for class i and feature f and its mean. 𝑌 𝑓𝑖 µ 𝑓𝑖 The biological replication introduces additional variability between the samples, approximately following an extension of the Poisson distribution: the gamma-Poisson ( or negative binomial NB ) distribution, that presents an additional dispersion parameter and a quadratic mean-variance relationship:

𝑌 𝑓𝑖 ∼ 𝑁𝐵(µ 𝑓𝑖 , φ 𝑓 ) 𝑉𝑎𝑟(𝑌 𝑓𝑖 ) = µ 𝑓𝑖 + φ 𝑓 µ 2 𝑓𝑖
Where is the dispersion associated with the feature f. The limited number of φ 𝑓 samples is again a problem for a reliable estimation of . Different φ 𝑓 approaches have been developed to solve this issue, whose details go beyond the scope of this introduction 191 . Finally, the generalized linear model (GLM) framework, an extension of classical linear models to non-Gaussian responses, allows the inclusion of multiple treatments or covariates to the study 192 . The NB GLM model can be formulated as:

𝑙𝑜𝑔(µ 𝑓𝑖 ) = η 𝑓𝑖 = 𝑋 𝑖 β 𝑓 + 𝑙𝑜𝑔(𝑠 𝑖 )
Where is the linear predictor, is the design matrix, represents the η the null hypothesis H 0 that there is no DE between conditions, generally that the log-fold-change (LFC) is zero, against the alternative hypothesis H 1 that the . The LFC can be represented as L, a single regression 𝐿𝐹𝐶 ≠ 0 parameter (vector) or a linear combination of parameters (matrix) in the GLM framework as: 𝐻 0 : 𝐿𝐹𝐶 = 𝐿β 𝑓 = 0 There are several tests available for GLM, such as the likelihood ratio tests (LRTs), implemented in edgeR 193 , that compare the likelihood of a full model with the likelihood of a reduced model, where one or some of the parameters are constrained according to H 0 . DESeq2, besides LRTs, implements also the Wald test, a faster approach that achieves approximately the same results as the LRT 188 , assuming a symmetric likelihood distribution and asserting the significance of the relation between the independent variable and the outcome within the logistic model. 4. Adjustment for multiple testing: to avoid excess false positives, the p-values obtained from the statistical inference must be corrected for multiple testing. Family wise error rate corrections, such as the Bonferroni correction, are usually too stringent for DE analysis, where a small proportion of false positive (FP) can be tolerated to obtain a large number of true positive (TP).

The false discovery rate (FDR) controlling procedure is widely used to control the expected fraction of false positives in the detected set of features. One example is the Benjamini-Hochberg (BH) procedure 194,195 , which has become a common practice in high-dimensional data analysis thanks to its simplicity and solid theoretical justification, accepted from both frequentist and Bayesian perspectives 196 . The BH adjusted p-value, p adj , is computed ranking in ascending order the p-values and applying the following formula:

𝑝 𝑎𝑑𝑗 𝑗 = 𝑝 𝑗 ×𝑚 𝑗
where p j is the p-value of the j th test and m is the total number of tests.

Though this pipeline is optimized for gene DE analysis, it can also support transcript level DE analysis to detect differential transcript expression (DTE).

Another type of analysis considers the change in the relative abundance of the isoform for a specific gene, called differential transcript usage (DTU), and of the individual exons, called differential exon usage (DEU). Tools like DEXSeq 197 , DRIMSeq 198 and BayesDRIMSeq 199 are specialized in this type of analysis, adopting different strategies whose description goes beyond the scope of this introduction.

To discover alternative splicing events between conditions, the difference of the PSIs between is used. rMATS 176 uses likelihood ratio tests (LRTs), the same used in DGE analysis, while SUPPA2 180 test is based on comparing the observed difference in PSIs across conditions to the empirical cumulative density function of the within-replicates differences of PSIs of splice junctions from similarly expressed transcripts. Finally, the differential IR analysis in IRFinder is performed using an Audic and Claverie Test 200 , in case of a single replicate for each condition, or a GLM model, using a wrapper of DESeq2, fitted with the intron and exon abundances of each sample.

κ-mer based approaches

Quantifying the abundance of known transcripts or splicing events is not the only way to obtain meaningful features: counting the κ-mers occurrences in the raw sequencing data is another approach widely used in different fields, such as metagenomics, de novo assemblies and phylogeny. This kind of representation has the advantages of being reference-free since to count the κ-mers occurrences is independent of any reference genome, transcriptome or annotation.

The drawback is that it's highly redundant and with high dimensionality: each transcript of length L will generate L-k+1 κ-mers and, globally, there are 4 k possible combinations of the four nucleotides in a string of length k.

The length of the κ-mers is chosen according to the dimension and complexity of the genome of interest: the bigger and more complex the reference is, the longer the κ-mer needs to be in order to have a sufficiently high fraction of uniquely mapping κ-mers.

Computationally, values close to a multiple of 8 ( the number of bits in a byte ) are efficient values to be represented in binary form, where for example A can be represented as 00, C as 01, G as 10 and T as 11.

Odd numbers are preferred to avoid reverse palindromic sequences: the central nucleotide won't ever be complementary of itself. Additionally, some tools use the final bit to represent the original strand of the κ-mer. Altogether, a common formula to select the κ-mer size is:

𝑘 = (8 × 𝑑) -1
Where d is an integer arbitrarily chosen to have a good tradeoff between the κ-mer precision, representing the proportion of κ-mers mapping uniquely on a reference genome, and the tractable number of possible combinations. In human studies, for example, d is set to 4, resulting in a k equal to 31.

To compare organisms with smaller genomes, dedicated tools like KITSUNE can be used to determine the optimal k 201,202 . For genomic applications, "canonical" κ-mer representation is usually used to reduce the total number of κ-mers and have a unique representation of the DNA sequence.

The term canonical indicates the aggregation of the counts of a κ-mer and its reverse complementary to one of the two comings first using a relation order, generally the lexicographic one 203 . The counting procedure, though simple, presents computational challenges for what concerns the time and space requirements. A recent benchmark of S.C. Manekar 204 compared ten famous κ-mer counters, where KMC3, DSK and Gerbil showed the best performances. Among the three, DSK 205 is optimal in case of low RAM availability, thanks to its algorithm design that subdivide efficiently hash tables into multiple files on the hard disk; Gerbil 206 is optimal in case a GPU is available, being the only one supporting this type of processor able to massively parallelize procedures; finally, KMC3 207 presents the best tradeoff between time and resources, it's stable and offers a convenient C++ library. Once obtained the κ-mer counts, a common approach is to create de Bruijn graphs (dBG), a direct graph representing the κ-mers as vertices and the overlap of length κ-1 between them as edges. A compressed representation of the dBG, the cDBG, is obtained by merging two adjacent simple nodes, which means nodes linked to at most two other nodes 208 .

The application of graph theory to de Bruijn κ-mer graphs is one of the keys to the success of this methodology: this representation is efficiently handled by the machine and there are a large number of algorithms for searching, traversing, finding paths and representing its properties. It's important to mention that most of the κ-mer dBGs are not complete but just subgraphs since not all the 4 κ possible vertices are represented and therefore not all the dBG properties and algorithms can be applied. Due to the high dimensionality of these graphs, κ-mer representation is mostly used for small genome assemblies and comparisons [209][210][211][212][213] . For example, kover 214,215 implements a rule-based machine learning approach to identify κ-mers of bacterial genomes that can be used as biomarkers for antibiotic resistance. CLARK 216 and KrakenUniq 217 are two tools able to classify metagenomes using unique κ-mers found in different taxa.

In RNA sequencing experiments, κ-mers are used not only to estimate the transcript abundances, such as with the already mentioned kallisto 166 , but also to perform specific tasks, such as the HLA ( Human Leukocyte Antigen ) alleles profile 218 , detect virus RNA in plants sequencing data 219 , detect targeted and de novo variants 208,[220][221][222][223] , motif identification 224 , identify fusion, noncoding and novel transcripts 225,226 and de novo transcriptome assembly 227 .

For what concerns the differential analysis, there are few methods available that use κ-mers to identify biological markers: KISSPLICE 208 , HAWK 228,229 and DE-kupl 230 . KISSPLICE is a software initially designed to find alternative splicing events from RNA-seq data, but which also outputs indels and SNPs. Those events correspond to recognisable patterns, called bubbles, in a de Bruijn graph.

KissDE 231 performs a likelihood ratio test on the abundance of the alleles found using KissSplice and mapped to a reference genome using BLAT to identify condition-specific SNP.

Hitting association with κ-mers, HAWK, is a method that aims to identify κ-mers with counts that are statistically significant between two phenotypes in whole-genome sequencing reads, applying GWAS techniques such as the correction for population stratification and other confounders. The approach consists in counting the κ-mers in each sample using Jellyfish 203 , test the differential expression using a Poisson distribution based likelihood ratio test, correcting for confounders and finally merging the κ-mer using ABySS, a notorious assembler for short reads. In contrast with other genomic classification tools, HAWK uses κ-mer counts and differential expression analysis, therefore it could be applied to RNA-seq data with the appropriate modifications in the assembly of the κ-mers.

Finally, DE-kupl is the first tool to compare κ-mer abundances across two groups of human replicates, removing κ-mers represented in the reference transcriptome and the ones considered noise due to low expression to identify differentially expressed events that are not represented in existing transcript catalogues. Each κ-mer is then tested using either a t-test or DESeq2, reducing the set of κ-mers to only the ones considered differentially expressed between the two groups of samples. Finally, overlapping κ-mers are merged in sequences that can be mapped on a reference genome to identify its biological meaning, such as differential splicing, polyadenylation, lincRNA, allele-specific expression, repeats and IR. Importantly, in DE-kupl publication it is shown that in RNA-seq the sequence diversity from the reference genome and transcriptome is much bigger than in WGS, suggesting the existence of a significant amount of biological information n RNA-seq that cannot be accessed using reference-based approaches.

Concluding, κ-mers have a large potential as biomarkers: they are agnostic since their extraction from the raw data is independent of any reference genome or annotation; they are interpretable, since they can be mapped to a reference genome to derive the underlying biological meaning, and they can be aggregated by overlapping their sequence, reducing the big issue of redundancy. Furthermore, the specificity of the sequence allows the application of κ-mers as biomarkers for clinical applications, using counting sequencing such as Nanostring nCounter described in the previous chapter.

Identification of IR events

Eight years after the publication of the first version of IRFinder 182 , with more than 400 cumulative citations, the software is a reference for IR analysis.

The reasons for its success reside not only in the quality of the analysis but also in the end-to-end implementation that takes care of all the aspects of the analysis of raw data, including the STAR mapper reference generation, adapter trimming and differential analysis procedures.

The aspects of usability of the software had been improved during those years, also thanks to users feedback that helped to solve different bugs. Nevertheless, there are still a few aspects that require additional effort:

1. Long read sequencing is gaining more and more importance, especially in studies involving transcript structure. The pipeline is calibrated around short-read sequencing, not only for what concerns the type of aligner but also for the assumptions that are postulated computing the IRratio. 2. Despite the strategies used to mask regions overlapping low mappability regions and known features, such as additional exons and non-coding RNAs, there is a considerable portion of false-positive IR events that can be discriminated by visual inspection on a genome browser. 3. The IR database, IRbase, built in 2017 from 2000 human samples is outdated and doesn't allow the user to easily visualize and compare his own data with the ones included in the database. 4. The differential IR approach was not validated in previous works and requires knowledge of the software R. During my last year of PhD, I worked with my colleague Sylvain Barrier to improve IRFinder, focusing not only on the four points described before but also enhancing the aspect of usability and speed that lead to its success. The result of our work is IRFinder-S 3 , a suite of tools including a second version of IRFinder and a completely revised version of IRBase, described in the paper below. My contribution to this work comprehends: the design of each new component, enriched by frequent and useful discussions with S.B. and W.R.; the implementation of the new component with the exclusion of the CNN model, trained, tested and optimized by S.B.

The CNN Model

Convolutional Neural Networks (CNNs) are a special case of Artificial Neural Networks (ANNs) in which the connections have been arranged in a way that produces a convolution operation, hence their name. A detailed explanation of this important field can be found in the book Deep Learning 232 .

Convolutional neural networks have a special type of layer, the convolutional layer, where the convolution is produced. Intuitively, a convolution consists of matching a pattern present in the kernel across all possible positions in the image. In this sense, matching is an element-wise multiplication between the kernel and each possible position in the image. The element-wise product of each position is then summed to generate an output value, as shown in Figure 13.

The output of the convolution of the image with a kernel is called a feature map, and each value of this matrix is obtained by taking the image values within a window, having the same shape as the kernel, and multiplying them element-wise with the kernel. These are then summed to obtain a single value. The window of image values is then moved by a certain amount, the kernel stride, and the element-wise multiplication and summation are repeated. Each of the values in the output feature maps represents the absence or the presence of the filter's pattern inside the image. The whole point with CNNs is to find "features" allowing them to represent objects by learning them directly from data, instead of hand-crafting or manually selecting them. This is done by updating the weights (kernels in the image context) in an iterative manner such that these updates help minimize an error measuring function. The adopted solutions to this problem are two well-known algorithms: gradient descent 233 and error backpropagation 234 . Usually, a pooling layer is added after the convolutional one: the aim is to replace the output at a certain location with a summary statistic, usually the maximum, of nearby outputs. This makes the representation invariant to small translations of the input and therefore allows the detection of the presence of a feature more than its precise location. Replacing a region with a summary, this layer also improves the computational and memory efficiency of the model, reducing the number of inputs in the next layer. In IRFinder-S we trained a CNN model using image-like vectors generated during the main process of IRFinder where the BAM file is processed to estimate the IRratio. Those vectors contain the information of the potential retained introns, including 15 nucleotides of the flanking exons, in a one-dimensional array with two channels. The only dimension represents the genomic position, the first channel represents the number of reads that cover the related position and the second the number of reads that are spliced. Considering only introns having an IR ratio higher than 0.05, therefore presenting a considerable level of intron retention, the goal of the model is to classify introns that are truly retained from the ones that aren't. To determine the ground truth, if an intron is truly retained or not, we use long reads and we filter the introns whose coverage isn't sufficient to have a good degree of confidence about their retention state. The evaluation of the model performances requires a cross-validation procedure where the dataset is divided into n equal partitions. n models are trained using the data from n-1 partitions and tested on the remaining one. This process allows us to estimate the performances of the model on unseen data. Finally, to evaluate if the model could be generalized on different biological sources, we tested the model trained on a whole dataset using two external cohorts, one generated using the same cell line in a different differentiation state and a second one generated using a different cell line.

IRFinder-S: a comprehensive suite to discover and explore intron retention Alternative approaches for the RNA-seq data analysis Methods like DE-kupl, KOVER and HAWK demonstrated that embedding the information in a human-understandable and interpretable format such as genes or transcripts is not necessary to compare the information contained in sequencing data. κ-mers allow us to compare groups of samples in an agnostic way, unbiased by any reference sequence or annotation, leading to highly reproducible results: the κ-mer counts won't change in the feature but our knowledge about the composition of the reference genome improves every year. Furthermore, κ-mers allow the comparison of small fractions of the RNA molecule, avoiding the loss of information derived from aggregating multiple reads under a single feature, that is gene, transcript or splice junction. Finally, using a large enough number of samples, it would be possible to associate variations, such as SNP or indels, to a specific population, similarly to genome-wide association studies (GWAS). The two following paragraphs present the work of my team on two different algorithms designed to identify κ-mers able to classify two or more distinct groups of samples in large cohorts of samples.

GECKO is a genetic algorithm to classify and explore high throughput sequencing data GEnetic Classification using κ-mer Optimization, GECKO, is the first method that aims to identify groups of κ-mers able to classify two or more groups of samples in large cohort studies. The method, described in detail in the paper included below, shows that It's possible to identify groups of κ-mers that, alone or in synergy, can classify different groups of patients, with a better performance with respect to gene counts. The approach has been tested on different sequencing data types, such as miRNA, mRNA and bisulfite sequencing data.

In brief, GECKO takes in input raw sequences and uses Jellyfish2 to count the κ-mer abundances in each sample. It then assembles a κ-mer matrix, where each row is a κ-mer and each column is a sample. The last step of the preprocessing consists of the filtering of the κ-mers considered uninformative, noisy and redundant.

Finally, GECKO implements an adaptive genetic algorithm, an efficient metaheuristic optimization algorithm, to select subsets of κ-mers that maximize the accuracy in classifying the sample groups using a linear support vector classifier (LinSVC). I joined the lab when GECKO was almost finished and I contributed by implementing the step to reduce the redundancy, the optional step to filter the κ-mers based on the ANOVA f-test and by fixing some bugs. Some crucial issues of working with κ-mers on large datasets emerged: 1 -The unfiltered κ-mer matrix is sparse and can easily occupy one terabyte of space on a disk in a study with one thousand samples, even in binary form. Furthermore, its fixed structure requires the user to allocate one matrix for each experiment. 2 -Despite the redundancy reduction step, the final output presents several κ-mers mapping to the same biological entity. Though the information content is similar, it might be different enough to escape the symmetric uncertainty based filter. 3 -The process is nondeterministic: running several times the genetic algorithm, different subsets of κ-mers are selected and there is not a clear procedure to select a robust group of κ-mers.

For what concerns the implementation, the use of Nextflow to coordinate different scripts written in different languages ( C++, Perl and Python ) makes not only the maintenance of the software challenging, but also requires an advanced user for the installation and usage.

iMOKA: κ-mer based software to analyze large collections of sequencing data iMOKA, interactive Multi Objective κ-mer Analysis, was initially thought as a filter to select the informative κ-mers: most of the κ-mers selected by GECKO were able individually to classify with relatively good accuracy the samples in the respective groups, even using a cross-validation procedure. As for GECKO, the details of the algorithm are described in the paper below, including a benchmark on four datasets in which the κ-mers extracted by iMOKA are compared to PSI values, gene and transcript expression as classifying features in a Random Forest classifier model.

In brief, the software can take as input both sequencing files, such as fastq or bam, or external link, HTTP, FTP or SRR ids, downloading the required data before the beginning of the analysis. Using KMC3, iMOKA extracts the sorted κ-mer counts from each sample and converts them into binary files. A JSON file contains the metadata of the samples belonging to the analysis, including for each sample: the name, the label of the group, the location of the binary file and the total sum of the κ-mer counts, used to normalize the data. The first step of reduction considers one κ-mer at the time and, using a Bayes Classifier, estimates the accuracy of the feature to classify the samples in the respective groups. This step is by default coupled to an adaptive entropy filter that speeds up the process discarding few truly informative features. Finally, an aggregation procedure groups the κ-mers based on their sequence, building de Bruijn graphs, and their biological relevance, mapping the sequences generated from the graphs on a reference genome and using a reference annotation to assign "events" to the most informative κ-mers in each group.

Importantly, the software is coupled with a graphical user interface (GUI) that allows running in local or on a remote cluster all the steps of the algorithm. The user can also explore the final output of the aggregation step as an interactive table, visualize the κ-mers mapping on a reference genome with a javascript version of IGV genome browser, generate self-organizing maps and Random forest classifiers.

The key novelties of iMOKA are represented by:

1. The scalability: the κ-mer matrix is generated on the flight by combining the κ-mer counts of each sample, stored independently in sorted binary files. No matter how many samples there are in input, iMOKA adapts to the user-defined RAM limits and is going to keep in memory only a small buffer for each column, allowing it to run the first step of the algorithm with few resources. This representation is compact since the "zero" values are represented by the absence of a determined κ-mer in a sample, solving the issue of sparsity. Furthermore, thanks to its flexible structure, the same sample can be used in different studies. Currently, the aggregation step doesn't consider the available memory and it could require a large amount of RAM in case of numerous κ-mers in input. 2. The reduction step is based on a machine learning procedure and not on a statistical test. This method, though slower with respect to the differential expression analysis, used for example in DE-kupl, is robust to outliers and scales efficiently with the number of samples. 3. The aggregation step reduces the redundancy based not only on the sequence but also on its biological meaning. Furthermore, the software assigns different types of events, such as mutations, indel, splice, alternative splice and DE based on the information obtained by the alignment and the gene annotations. 4. Finally, the GUI is an uncommon feature for bioinformatics tools and it's useful to interactively explore the results, visualizing not only the individual κ-mers but also the context in which it resides.

A dedicated k-mer structure

The selection of a performant and compacted data structure to store and access the k-mer sequences and abundances must be aware of the application and the context required by the software. The literature offers detailed reviews about techniques to store and query a set of k-mers 235 and large collections of sequencing data sets 236 . Designing iMOKA we were looking for a data structure able to dynamically generate a k-mer matrix, to store efficiently the sample's k-mer counts and to load only small portions of the files in order to handle large datasets on virtually any architecture. We implemented a prefix-suffix structure similar to the one used as database format in the first version of the k-mer counter software KMC 237 . Rather than using two files ( .kmc_pre and .kmc_suf ), we store both the prefix and suffix information in the same binary file. The prefix data contains, for each prefix:

-The binary encoded DNA symbols ( A=00, C = 01, G = 10, T=11 ) of p stored as char values. -The position in the suffix array that corresponds to the first suffix associated with the p, stored as uint64. To know the range of the suffixes of p is therefore sufficient to retrieve the position of the first suffix of p+1. Similarly, the suffix data contains the binary encoded DNA symbols of the suffixes and the related counts, stored as uint32. The length of the prefix is chosen according to the total number of k-mers present in the dataset, following a formula adapted by A. Mancheron in 238 and described in the article. This type of data structure allows loading small buffers of suffix and prefix data at the time.

Furthermore, prefixes and suffixes are sorted lexicographically, which allows generating the k-mer matrix dynamically using an n-way merge algorithm:

1. Each sample's database loads a buffer of prefixes and suffixes. 2. A pointer is associated with the first k-mer in each database.

3. A copy of the k-mer associated with the pointers is stored in a sorted set S. 4. A pop operation retrieves the lexicographically smallest k-mer from S, k n , which will correspond to the current row of the k-mer matrix. 5. For each sample m, if the pointer corresponds to k n , the count of k n is assigned to m in the current row and the pointer moves one position forward, updating S, otherwise the count of k n is 0. 6. Repeat from 4 until all the databases are empty, refilling the buffers when needed.

Finally, to allow a multithreading generation of the matrix it's possible to generate it starting from any k-mer k n : using a binary search, each database can be initialized to k n or, if absent, to the closest k-mer following k n . Graphs based data structures, such as de Bruijn graphs, offer great querying performances and allow to quickly query for k-mers in the neighbour nodes but we didn't consider them since the reduction step of iMOKA doesn't require a navigational data structure since each feature is considered independently from the others.

Most of the recent k-mer counting tools, such as Jellyfish 203 or KMC3 207 , use Hash Tables (HT) or Bloom Filter (BF) to store the k-mer counts. Though optimal for querying and modification operations, those data structures don't store the k-mers in sorted order and require loading the full index in memory or performing frequent disk reading operations compared to the prefix-suffix structure aforementioned to produce a k-mer matrix.

Conclusions

The last three decades were marked by incredible technological advancements, both from the biotechnological and computational points of view.

To keep up with them, we adapted IRFinder to support the third-generation sequences and use new methodologies, the convolutional neural network, to refine and improve its results. Furthermore, we proposed IRBase, a platform where users can not only visualize their data but also compare them with the ones shared by other users.

The possibility to sequence at low cost and high fidelity large cohorts of people gives the opportunity to increase our knowledge about the mechanisms underlying pathologies and generate models to predict the responses to drugs, treatments and environmental modification.

In the introduction, we saw how classical approaches, based on mapping to a reference genome and using reference annotations, present lots of levels of variability caused by different versions of the references and softwares used. Additionally, a large portion of the information is usually discarded because it doesn't fit with the features considered in the study. We showed how κ-mer based approaches can be an optimal and agnostic representation of sequencing data, useful to identify biomarkers that can be applied for clinical and research purposes.

In this optic, we implemented iMOKA, a software that can efficiently select a group of κ-mers with a low redundancy of information and high capacity in discrimination of the phenotypes in analysis within a large cohort of samples.

Bioinformatics is a young field and its identity is still shaping, trying to find its place in the middle between statistics, informatics and biology.

The technological advancements we saw taking place in the last few decades are causing a revolutionary shift from hypothesis-driven to data-driven science, requiring wet-lab researchers to spend more time in front of a computer to analyse and understand the data they produced. Bioinformatics classes are given in most of the university biological science courses, forming the next generation of researchers in the usage of the basic tools and resources currently available. Developing user-friendly, maintainable and powerful platforms is therefore the direction that not only lots of private companies are taking, such as Geneious and QIAGEN CLC Genomics Workbench, but also the open-source community, of which Galaxy is the most successful example. Additionally, more and more pure bioinformatics laboratories are rising in the research centres that use publicly available data to perform novel analyses and develop new algorithms, supported by classical wet labs only for the validation of the findings.

Unfortunately, this shift is not affecting the way data is stored and distributed.

For companies such as Google, Amazon and Microsoft, it's enough to accept the general conditions with a single click to have access to any user data: e-mails, browsing history, what colour was the t-shirt we bought three years ago and our exact location every minute we keep our phone in our pocket. They use that information to feed you with "the best advertisement for you", to influence your opinion on social media and to direct your next vote 239 , in the most efficient way possible. They can store and share within their platforms this huge amount of information, legally and in the name of profit.

On the other side, we have fragmented national health systems that don't take care of how or where the clinical data are stored, leaving the burden to the individual hospitals.

In my opinion, creating an international platform for data storage is the next big but necessary challenge the scientific community has to face to fully exploit the potential of the new sequencing technologies. Such a platform should use light and standard data format, a complete and flexible ontology and ensure the privacy of the information, allowing certified laboratories to access in agreement with detailed rules of conduct. An interesting report from NIH 240 predicts that sequencing and analysing the whole human genome of patients will become a routine procedure for any research lab by 2030, that transcriptome and epigenetic analysis will be routinely incorporated into predictive models and that "an individual's complete genome sequence along with informative annotations will, if desired, be securely and readily accessible on their smartphone." Those forecasts need a large and international effort to generate new tools able to generate, store and analyse such data using fast, efficient, robust and privacy-aware procedures. κ-mer based algorithms have all the prerequisites to not only offer a compressed representation of the data but also to analyse large cohorts of samples to identify biomarkers useful for personalized medicine. Future works should focus on the generation of κ-mer based algorithms for the efficient and lossless compression of raw sequencing data, their anonymization and application to new biological questions using different types of data.

For example, a recent study 241 used compressed k-mer groups, a set of k-mers having similar counts across the samples, to cluster single cells in scRNA-seq data, a task usually performed using gene counts. Another interesting field of application for k-mers using human whole-genome sequencing analysis are genome-wide association studies, identification of mutational events in cancer, copy number variations analysis and the identification of translocation events. Improving the interpretability of the k-mers results would allow more and more researchers to accept k-mer based softwares as part of standard analysis.

A file format based on k-mers able to store both the abundance and the order of the k-mers in a compressed, lossless and efficient way would take over the current standard BAM and CRAM files, especially if paired to a genome browser able to quickly reproduce a visualization of this information on a reference genome. Finally, IRFinder-S is just one of the several examples of how artificial intelligence methodologies and large cohorts of data can help in solving biological related problems where classical approaches struggle to face. The methodology used to train the CNN model of IRFinder can be, with the proper adaptations, extended to identify other types of alternative splicing events, new transcripts and other transcriptomics related elements, such as promoter upstream transcripts, in a reference-free manner.

To achieve this goal, a finely annotated training set is necessary in order to correctly train the model, together with a fast and efficient implementation of a genome-wise features generator. Third generation sequencing data would facilitate the task because they are more likely to give the information concerning the full structure of the transcripts isoforms.

Translesion DNA synthesis-driven mutagenesis in very early embryogenesis of fast cleaving embryos

During my second and third year of PhD I helped E.L.F. to analyse the WGS data for her project. The paper is currently under revision in Nucleic Acid Research.

  The development of engineered polymerase, reversibly terminating and reversibly fluorescent dNTPs are the keys that allow the incorporation of a single nucleotide in each cycle. After that the fluorescent colours are detected by imaging, the blocking and fluorescent groups are removed to set up the next extension107,108 . Unlike Sanger sequencing, where Applied Biosystems had the monopoly, NGS technologies gave birth to several companies, competing in terms of cost, accuracy and read length. Few examples are the 454 and Solexa technologies, acquired respectively by Roche and Illumina; Agencourt (Applied Biosystems); SOLiD (ABI); Helicos (Quake), Complete Genomics(Drmanac) and Ion Torrent (Rothberg). Those companies invested large capitals in several different approaches, allowing a fast growth of the field and a democratization of the sequencing capacity: individual laboratories could instantly access a vast catalogue of new methods, results, genomes and services. Between 2007 and 2012, the raw per-base cost decreased by four orders of magnitude 109 , keeping an accuracy of over 99.9%, though the length of each read is still shorter than Sanger sequencing.
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  . In 2015, Bai et al developed IRcall, a ranking strategy, and IRClassifier, a random forest classifier, to detect IR events 183 . The first generates a joint score for IR events, based on intron read counts, flanking exon read counts and splice junctions. The latter uses 21 features extracted from other IR detection methods ( IRFinder, MATS and ExpressionPlot) to build a Random Forest classifier to predict IR events.
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Annexes

A cell-to-patient machine learning transfer approach uncovers novel basal-like breast cancer prognostic markers amongst alternative splice variants During my last year of PhD, I contributed to the revision of the following paper. The main contributions before the revisions were the discussions about an effective strategy to apply to effectively transfer the information from cell line data to patients. During the revisions, my main contributions were the cleaning of the code and the implementation of the mixed feature model.

PickPocket: Pocket binding prediction for specific ligand families using neural networks.

During the last three years I helped Benjamin Viart in the implementation of PickPocket, focusing especially on the implementation in Python of the feature extraction process and the ML approaches. Though promising, the method performances are not yet satisfying enough and the project needs more time and effort to be concluded.