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Abstract

A large portion of the information contained in next-generation sequencing data is
potentially lost through classical bioinformatics analysis. Both the mapping of
sequencing reads to a genome or transcriptome and filtering results to focus on
known gene regions eliminate useful information. This is especially true in cancer
studies where patient transcriptomes or genomes may vary from their references.
We created a novel approach that makes use of recent advances in genetic
algorithms, neural networks and feature selection to comprehensively explore
massive volumes of sequencing data to classify samples without these biases. Our
approach, called GECKO for GEnetic Classification using k-mer Optimisation
maximizes the sequencing information used when trying to explain the difference
between 2 or more samples. Our algorithm has been effective at classifying data
from large-scale cancer studies using mRNA-seq, circulating DNA or whole-genome
resequencing.

iIMOKA (interactive multi-objective k-mer analysis) is a software that enables the
comprehensive analysis of sequencing data from large cohorts to generate robust
classification models or explore specific genetic elements associated with disease
aetiology. IMOKA uses a fast and accurate feature reduction step that combines a
Naive Bayes classifier augmented by an adaptive entropy filter and a graph-based
filter to rapidly reduce the search space. By using a flexible file format and distributed
indexing, IMOKA can easily integrate data from multiple experiments and also
reduces disk space requirements and identifies changes in transcript levels and
single nucleotide variants.

Our software could be run on a desktop computer and enable scientists and
clinicians to discover novel informative sequences in their own NGS data.

Accurate quantification and detection of intron retention levels require specialized
software. Building on our previous software, we have created a suite of tools:
IRFinder-S, to analyse and explore intron retention events in multiple samples.
Specifically, IRFinder-S allows a better identification of true intron retention events
using a convolutional neural network, allows the sharing of intron retention results
between labs, integrates a dynamic database to explore and contrast available
samples and provides a tested method to detect differential levels of intron retention.



Résumeé

Introduction
Dans ce résumé en frangais sont inclus les principaux concepts de chacun des
paragraphes de cette thése.

L'ARN : une macromolécule polyvalente avec un réle clé dans le systéme
cellulaire

Epissage d'ARNm

Dans les génomes eucaryotes, l'information pour produire une protéine spécifique
n'est pas continue mais divisée en segments, appelés exons, divisés par des régions
non codantes ou ne codant pas pour cette protéine, les introns.

La rétention d'intron (IR) se produit lorsque des séquences qui sont habituellement
épissées sont maintenues dans le transcrit mature.

L'IR n'est pas simplement le résultat d'un mauvais épissage, mais il a été rapporté
qu'il est omniprésent et susceptible d'affecter plus de 80 % de tous les génes codant
pour les protéines, contribuant a la régulation du transcriptome et jouant un réle non
seulement dans les maladies, mais aussi dans les processus physiologiques. .
Habituellement, les isoformes IR (IRI) contiennent des codons de terminaison
prématurés qui déclenchent leur dégradation rapide par la voie NMD. Dans certains
cas, au cours de la spermatogeneése, par exemple, le transcrit IRl peut étre retenu
dans le noyau ou le cytoplasme et étre soumis a un épissage supplémentaire en
réponse a des stimuli, montrant une demi-vie plus longue que les transcrits
correctement épissés. Enfin, I'IRI peut également échapper a la NMD et subir une
traduction, produisant des isoformes protéiques alternatives, généralement
tronquées et nocives pour la cellule.

Réseaux de régulation des génes

Chaque cellule d'un méme individu contient une copie du méme génome, appelé
génotype, mais elles peuvent se différencier en plusieurs types cellulaires aux
formes, dimensions, fonctions et propriétés trés différentes, appelés phénotypes.
Ce qui détermine le phénotype de chaque cellule est non seulement son génotype,
constant dans chaque cellule, mais aussi le milieu environnant et, surtout, son
interaction entre les produits du génome et I'environnement.

Cette interaction affecte la fagon dont le génome est utilisé dans chaque cellule,
quels transcrits d'ARN sont exprimés, quand et combien, générant différents
modeles dans un réseau de régulation génique complexe

En raison de le contréle de la qualité de la transcription et des étapes de régulation,
la quantité de transcrits ne correspond pas toujours a la quantité de la protéine
correspondante, mais les informations recueillies a partir des données d'expression
de I'ARN-seq sont parfois suffisantes pour déduire des modéles informatiques des



parties des réseaux de régulation génique sous-jacents pour reproduire son
comportement dans des environnements controlés.

Plutét que de tenter de décrire les interactions entre les éléments connus du réseau,
au cours des derniéres années, les approches d'apprentissage automatique et
d'apprentissage profond se sont massivement développées: des modéles de boite
noire sont entrainés pour prédire des phénotypes spécifiques a I'aide de données de
grande dimension. Ces méthodes peuvent utiliser différents types de
caracteéristiques d'entrée, telles que l'expression des genes, la méthylation de I'ADN,
les modifications des histones et le génotype, en les considérant individuellement ou
en combinaison a partir de grandes cohortes de patients.

Quantification de I'ARN : une rupture technologique

Séquencgage de premiére génération

Egalement connue sous le nom de séquencage de Sanger, la méthode qui
permettait de déterminer la séquence de longs fragments de toute molécule d'ADN a
été publiée en 1975 et affinée au cours des années suivantes.

L'application de cette technologie s'étend de I'assemblage de novo du génome,
comme le projet du génome humain (HGP) dont la premiére ébauche a été publiée
en 2001, a la biologie évolutive, pour déterminer la phylogénie des organismes ou
I'évolution des génes, en passant par les applications cliniques, comme la détection
de pathogénes ou les tests de mutations génomiques dans les pathologies
congeénitales, ou encore a l'identification médico-légale et aux tests de paternité,
grace aux empreintes génétiques.

Séquencgage de deuxiéme génération

La réduction des colts et I'augmentation de I'accessibilité ont permis d'appliquer les
NGS dans un large éventail de domaines : le reséquengage du génome, c'est-a-dire
la lecture de séquences cartographiques sur un génome de référence pour identifier
des variantes génétiques ; les tests prénataux non invasifs, la classification
moléculaire du cancer et le diagnostic des maladies mendéliennes ne sont que
quelques exemples des nombreuses applications cliniques qui sont devenues des
routines réalisables dans les hopitaux.

Plusieurs méthodes ont été dérivées de I'ADN-seq standard pour quantifier
différentes molécules et événements. Un exemple est le séquencage de I'ARN qui,
en utilisant la transcriptase inverse et des protocoles dédiés, a presque
complétement remplacé la technologie des puces a ADN pour la quantification de
I'expression génique.

Séquencgage de troisieme génération

Deux décennies de travail et d'avancées technologiques ont été nécessaires pour un
premier prototype fonctionnel de nanopore et a la fondation en 2005 de la société
Oxford Nanopore Technology ( ONT ).

L'ONT utilise une différence de tension appliquée aux bains d'électrolytes de chaque
c6té d'une membrane isolée pour produire un courant ionique.



La précision de I'ONT était inférieure a 60 % lors de sa premiére introduction, mais
les améliorations du base calling au cours des derniéres années ont permis des
valeurs de 85 % en 2018 et jusqu'a 98,3 % en 2021 et promettant 99 % avec la
version chimique Q20+.

Si I'entreprise britannique atteint cet objectif impensable d’ici quelques années, la
technologie des nanopores aura toutes les caractéristiques pour remplacer I'lllumina
dominant sur le marché mondial et plus encore : I'absence d'étape d'imagerie permet
la production d'appareils moins chers et plus petits, avec I'appareil MinlON étant
aussi gros qu'un smartphone et cottant 1000 dollars ; la longueur de lecture peut
aller de lecture courte a ultra-longue (plus de 2Mb d'ADN et plus de 20Kb d'ARN) ; il
permet une analyse en temps réel et la préparation de la bibliothéque est rapide, ne
nécessitant que dix minutes, et standardisée, grace a un dispositif automatisé qui
augmente la reproductibilité des expériences.

Nanostring nCounter: quantification directe d'ARN

Une technologie émergente qui permet la quantification directe de molécules d'ARN
a l'aide d'un protocole simple et rapide est Nanostring Technologies nCounter. La
société Nanostring, fondée en 2003 et installée a Seattle, propose une technique
efficace en termes de colt et de temps pour quantifier des ensembles de séquences
spécifiques.

Cette plate-forme automatisée hybride les marqueurs moléculaires fluorescents
directement a des séquences d'acides nucléiques spécifiques, permettant la mesure
non amplifiée de jusqu'a 800 cibles dans un échantillon et de multiplexer jusqu'a 96
échantillons dans le méme cycle.

Analyse des données RNA-seq

Conception expérimentale

A l'instar d'autres expériences scientifiques, le RNA-seq nécessite une préparation
minutieuse des données qui doivent étre générées ou collectées. Une étude peut
étre exploratoire, avec I'objectif de découvrir de futures taches de recherche, ou
formelle, avec une hypothése a tester.

L'application standard des données RNA-seq est I'étude de I'expression différentielle
(DE) des génes et, moins fréquemment, des transcrits.

Différentes applications nécessitent différentes dimensions d'échantillon : si nous
voulons, par exemple, associer un SNP a un phénotype particulier, nous devons
appliquer des tailles d'échantillon d'étude d'association pangénomique (GWAS),
avec un minimum de 100 échantillons jusqu'a plus de 2000.

Pour ce qui concerne la profondeur, puisque plus de 80 % des lectures sont
attribuées aux 10 % de génes les plus exprimés et qu’augmenter le nombre de
lectures n'augmente que marginalement la couverture des génes faiblement
exprimeés, surtout au-dela des 10 millions de lectures, il vaut mieux utiliser le budget
pour avoir plus de réplicats plutét que peu d'échantillons avec un séquencage
profond.



Enfin, lorsque I'expérience doit étre exécutée en plusieurs lots, il est important de
répartir équitablement les conditions entre les lots. Le traitement de groupes
d'échantillons a des jours différents, a I'aide de différentes machines et par différents
opérateurs peut refléter de faibles écarts entre les lots qui peuvent étre interprétés a
tort comme des signaux biologiques.

Alignement de lecture ARN-seq

Pour quantifier I'abondance de la molécule d'ARN au niveau du transcrit, en
considérant chaque isoforme comme une entité indépendante, ou au niveau du
géne, ou l'expression d'un gene est la somme de I'expression de ses isoformes, il
est nécessaire d'aligner les lectures a un génome ou transcriptome de référence.
La cartographie des lectures sur un génome de référence présente le principal défi
pour aligner correctement une lecture qui comprend une jonction d'épissage (SJ).

Quantification au niveau des génes et des transcrits

Indispensable pour la plupart des analyses en aval, I'évaluation de I'abondance des
genes et des transcrits se caractérise egalement par une longue liste d'outils qui
atteignent le méme objectif en utilisant différentes stratégies et avec des
performances différentes.

HTSeq, featureCounts, I'option intégrée a I'outil STAR et d'autres outils comptent
directement les fragments chevauchant les caractéristiques du géne apres I'étape
d'alignement, différant les uns des autres par la fagon dont ils gérent certaines
situations, comme les alignements multiples fragmentés, les fragments qui
correspondent a plusieurs caractéristiques et des fragments s'alignant partiellement
sur une caractéristique. Cette approche est limitée par des changements dans la
composition des exons qui n'ont pas d'impact direct sur le nombre de lectures au
niveau des génes, tels que la capacité d'un méme géne a produire différentes
isoformes.

Pour surmonter ces obstacles, la quantification au niveau du transcrit est de plus en
plus utilisée, méme pour estimer I'expression au niveau du géne avec de meilleures
performances sur 'analyse en aval. Il convient de mentionner que, contrairement
aux transcrits, le géne n'est pas une entité physique mais une abstraction utile
n'ayant pas de cible claire pour la quantification.

Des approches récentes utilisent des pseudo-alignements de k-mers pour accélérer
le processus, contourner I'étape d'alignement et produire une estimation précise.
Enfin, les outils classiques de quantification des génes et des transcrits ne prennent
pas en compte les éléments répétitifs et transposables. Des logiciels dédiés, comme
TEtranscripts, télescope et SalmonTE, abordent ce probléme, en appliquant des
approches similaires a celles utilisées pour les génes classiques aux familles
d'éléments transposables.

Signatures d'épissage alternatif
L'abondance des transcrits et des génes ne sont pas les seules caracteéristiques
quantifiables qui peuvent étre déduites du séquencage de I'ARN : le pourcentage de



I'épissage (PSI) est utilisé dans les études d'épissage pour quantifier la fréquence
d'inclusion d'exons spécifiques.

Parmi les événements d'épissage alternatifs possibles, la rétention d'intron (IR)
nécessite des ajustements supplémentaires afin d'étre correctement quantifiée.
Sans une approche appropriée, des sites d'épissage donneurs ou accepteurs
alternatifs non annotés et des transcrits qui se chevauchent pourraient conduire a
des événements mal classés. De plus, les introns enrichis en séquences de faible
complexité et répétitives peuvent restreindre la cartographie unique des données de
séquencgage.

Analyse différentielle

La plupart des modéles expérimentaux visent a identifier les différences d'expression
entre deux ou plusieurs conditions, I'une utilisée comme contrdle et I'autre comme
cible. Avec cet objectif, I'analyse d'expression différentielle (DE) formule et teste une
hypothese statistique pour chaque caractéristique dans les échantillons.
Habituellement, seul un nombre limité de réplicats est disponible (3 a 5 réplicats par
condition) et, combiné au grand nombre de fonctionnalités testées simultanément, la
puissance statistique réalisable serait trés faible sans stratégies dédiées mises en
ceuvre et affinées au cours des années par la communauté statistique.

La plupart de ces approches, telles que le limma-voom largement utilisé, ont été
initialement développées pour les données de microarrays et dans un second temps
adaptées au séquencage d'ARN.

Approches basées sur les k-mers

Quantifier I'abondance de transcrits connus ou d'événements d'épissage n'est pas le
seul moyen d'obtenir des caractéristiques significatives : compter les occurrences de
sous-chaines de longueur k, appelées k-mers, dans les données brutes de
séquencage est une autre approche largement utilisée dans différents domaines,
tels que la métagénomique, I’ assemblages de novo et la phylogénie.

Ce type de représentation a I'avantage d'étre sans référence, puisque le
dénombrement des occurrences de k-mers est indépendant de tout génome,
transcriptome ou annotation de référence.

L'inconvénient est qu'il est trés redondant et avec une grande dimensionnalité.

La procédure de comptage, bien que simple, présente des défis de calcul pour ce
qui concerne les exigences de temps et d'espace.

Une fois les comptes k-mers obtenus, une approche courante consiste a créer des
graphes de Bruijn (dB), un graphe direct représentant les k-mers en tant que
sommets et le chevauchement entre eux en tant qu'arétes.

L'application de la théorie des graphes aux graphes k-mer de de Bruijn est 'une des
clés du succes de cette méthodologie : cette représentation est gérée efficacement
par la machine et il existe un grand nombre d'algorithmes pour rechercher, parcourir,
trouver des chemins et représenter ses propriétés.



Identification des événements IR

Huit ans aprés la publication de la premiére version d'IRFinder, avec plus de 400
citations cumulées, le logiciel est une référence pour l'analyse IR.

Les raisons de son succeés résident non seulement dans la qualité de I'analyse mais
aussi dans l'implémentation de bout en bout qui prend en charge tous les aspects de
I'analyse des données brutes, y compris la génération de référence du du logiciel
d'alignement STAR, le découpage de I'adaptateur et les procédures d'analyse
différentielle.

Les aspects de la convivialité du logiciel ont été améliorés au cours de ces années,
également grace aux commentaires des utilisateurs qui ont aidé a résoudre
différents bugs. Néanmoins, il reste encore quelques aspects qui nécessitent un
effort supplémentaire: le séquencgage a lecture longue prend de plus en plus
d'importance, en particulier dans les études impliquant la structure des transcrits. Le
pipeline est calibré autour d'un séquencage a lecture courte, non seulement pour ce
qui concerne le type d'aligneur mais aussi pour les hypothéses qui sont posées pour
le calcul de I'IRratio.

Malgré les stratégies utilisées pour masquer les régions chevauchant des régions
difficiles a aligner et des caractéristiques connues, telles que des exons
supplémentaires et des ARN non codants, il existe une proportion considérable
d'événements IR faussement positifs qui peuvent étre discriminés par inspection
visuelle sur un navigateur génomique.

La base de données IR, IRbase, construite en 2017 a partir de 2000 échantillons
humains est obsoléte et ne permet pas a l'utilisateur de visualiser et de comparer
facilement ses propres données avec celles incluses dans la base de données.
L'approche IR différentielle n'a pas été validée dans les travaux antérieurs et
nécessite la connaissance du logiciel R.

Au cours de ma derniere année de doctorat, j'ai travaillé avec mon collegue Sylvain
Barrier pour améliorer IRFinder, en me concentrant non seulement sur les quatre
points décrits précédemment, mais également en améliorant I'aspect de la
convivialité et de la vitesse qui ont conduit a son succes.

Approches alternatives pour I'analyse des données RNA-seq

Des méthodes telles que DE-kupl, KOVER et HAWK ont démontré qu'il n'est pas
nécessaire d'intégrer les informations dans un format compréhensible et
interprétable par 'homme, tel que des génes ou des transcriptions, pour comparer
les informations contenues dans les données de séquengage. Les k-mers nous
permettent de comparer des groupes d'échantillons de maniére agnostique, sans
biais induit par aucune séquence de référence ou annotation, ce qui conduit a des
résultats hautement reproductibles : les décomptes de k-mers ne changeront pas,
tandis que notre connaissance de la composition du génome de référence s'améliore
chaque année. De plus, les k-mers permettent la comparaison de petites fractions
de la molécule d'ARN, évitant la perte d'informations dérivées de I'agrégation de



plusieurs lectures sous une seule caractéristique, c'est-a-dire un géne, un transcrit
ou une jonction d'épissage.

Enfin, en utilisant un nombre suffisamment important d'échantillons, il serait possible
d'associer des variations, telles que le SNP ou les indels, a une population
spécifique, de la méme maniére que les études d'association pangénomique
(GWAS).

GECKO est un algorithme génétique pour classer et explorer les données de
séquencage a haut débit

GEnetic Classification using k-mer Optimization, GECKO, est la premiére méthode
permettant d’identifier des groupes de k-mers capables de classer deux ou plusieurs
groupes d'échantillons dans I'étude de grandes cohortes.

La méthode, décrite en détail dans l'article présenté ultérieurement dans le
manuscrit, montre qu'il est possible d'identifier des groupes de k-mers qui, seuls ou
en synergie, sont capables de classer différents groupes de patients, avec une
meilleure performance en ce qui concerne le nombre de génes. L'approche a été
testée sur différents types de données de séquencage, tels que les données de
séquencage de miARN, d'/ARNm et de bisulfite.

Brievement, GECKO prend des séquences brutes en entrée et utilise Jellyfish2 pour
compter 'abondance des k-mers dans chaque échantillon. Il assemble ensuite une
matrice de k-mers, ou chaque ligne est un k-mer et chaque colonne est un
échantillon.

La derniére étape du prétraitement consiste a filtrer des k-mers considérés comme
non informatifs, bruités et redondants.

Enfin, GECKO implémente un algorithme génétique adaptatif, un algorithme
d'optimisation métaheuristique efficace, pour sélectionner des sous-ensembles de
K-mers qui maximisent la précision de la classification des groupes d'échantillons a
I'aide d'un classificateur de vecteur de support linéaire (LinSVC).

iIMOKA : logiciel basé sur k-mer pour analyser de grandes collections de
données de séquencgage

iIMOKA, Interactive Multi Objective k-mer Analysis, a d'abord été pensé comme un
filtre pour sélectionner les k-mers informatifs : la plupart des k-mers sélectionnés par
GECKO ont pu individuellement classer avec une assez bonne précision les
échantillons dans les groupes respectifs, méme a I'aide d'une procédure de
validation croisée. A l'instar de GECKO, les détails de I'algorithme sont décrits dans
I'article présenté ultérieurement dans le manuscrit, y compris une référence sur
quatre ensembles de données dans lesquels les k-mers extraits par IMOKA sont
comparés aux valeurs PSlI, a I'expression des génes et des transcriptions en tant
que caractéristiques de classification selon un modéle de forét aléatoire.
Brievement, le logiciel peut prendre en entrée a la fois des fichiers de séquencage,
tels que fastq ou bam, ou des identifiants de lien externe, http, ftp ou SRR, en
téléchargeant les données requises avant le début de I'analyse.



A l'aide de KMC3, iIMOKA extrait le décompte des k-mers triés de chaque échantillon
et les convertit en fichiers binaires. Un fichier JSON contient les métadonnées des
échantillons appartenant a I'analyse, comprenant pour chaque échantillon : le nom,
I'étiquette du groupe, I'emplacement du fichier binaire et la somme totale des
comptages des k-mers, utilisés pour normaliser les données .

La premiére étape de réduction considére un k-mer a la fois et, a I'aide d'un
classificateur bayésien, estime la précision de la caractéristique permettant de
classer les échantillons dans les groupes respectifs. Cette étape est par défaut
couplée a un filtre d'entropie adaptatif qui accélére le processus en supprimant trés
peu d'éléments réellement informatifs.

Enfin, une procédure d'agrégation regroupe les k-mers en fonction de leur séquence,
en construisant des graphes de de Bruijn et de leur pertinence biologique, en
cartographiant les séquences générées a partir des graphes sur un génome de
référence et en utilisant une annotation de référence pour attribuer des «
événements » aux k-mers les plus informatifs de dans chaque groupe.

Surtout, le logiciel est couplé a une interface utilisateur graphique (GUI) qui permet
d'exécuter en local ou sur un cluster distant toutes les étapes de I'algorithme.
L'utilisateur peut également explorer le résultat final de I'étape d'agrégation sous
forme de tableau interactif, visualiser I'alignement des k-mers sur un génome de
référence avec une version javascript du navigateur de génome IGV, générer des
cartes auto-organisatrices et des classificateurs basés sur des foréts aléatoires.

Conclusion

Les trois dernieres décennies ont été marquées par des avanceées technologiques
incroyables, tant du point de vue biotechnologique que informatique.

Pour les suivre, nous avons adapté IRFinder pour prendre en charge les séquences
de troisiéme génération et utiliser de nouvelles méthodologies, le réseau de
neurones convolutifs, pour affiner et améliorer ses résultats. De plus, nous avons
proposé IRBase, une plateforme ou les utilisateurs peuvent non seulement visualiser
leurs données mais aussi les comparer avec celles partagées par d'autres
utilisateurs.

La possibilité de séquencer a faible colt et haute fidélité de larges cohortes de
personnes donne Il'opportunité d'approfondir nos connaissances sur les mécanismes
sous-jacents aux pathologies et de générer des modeles pour prédire les réponses
aux médicaments, aux traitements et aux modifications environnementales.

En introduction, nous avons vu comment les approches classiques, basées sur la
cartographie a un génome de référence et utilisant des annotations de référence,
présentent de nombreux niveaux de variabilité induits par les différentes versions
des références et des logiciels utilisés. De plus, une grande partie des informations
sont généralement rejetées car elles ne correspondent pas aux caractéristiques
considérées dans I'étude. Nous avons montré comment les approches basees sur
les k-mers peuvent étre une représentation optimale et agnostique des données de
séquencage, utiles pour identifier des biomarqueurs pouvant étre appliqués a des
fins cliniques et de recherche. Dans cette optique, nous avons mis en place IMOKA,
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un logiciel capable de sélectionner efficacement un groupe de k-mers avec une
faible redondance d'informations et une grande capacité de discrimination des
phénotypes en analyse au sein d'une cohorte de trés grands échantillons.
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As a result of the collaboration with three laboratories in our institute, two other
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learning transfer approach uncovers novel basal-like breast cancer prognostic
markers amongst alternative splice variants. BMC Biol 19, 70 (2021).
https://doi-org.insb.bib.cnrs.fr/10.1186/s12915-021-01002-7

2. PickPocket: Pocket binding prediction for specific ligands family using neural
networks. Benjamin Thomas VIART, Claudio Lorenzi, Maria Moriel-Carretero,
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3. Giuseppa Grasso, Takuma Higuchi, Victor Mac, Jérédme Barbier, Marion
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The softwares developed during the thesis are available at the following GitHub
repositories:

1. https://github.com/RitchieLablGH/GECKO ( partial partecipation )

2. https://github.com/Ritchiel ablGH/IMOKA

3. https://github.com/LucoLab/Villemin_2020 ( shared project )

4. https://github.com/RitchieLablGH/IRFinder
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Preamble

With this manuscript, | wish not only to give a general overview of my past three
years of passionate work but also to convey a progressive view of why researchers
all over the world cooperate every day to advance the knowledge about ourselves
and the world around us. The acceptance of risks and failures in everyday
challenges, the constant curiosity and the awareness that every piece of certainties
that we have can be questioned thanks to technological advances are the keys for
success in this field, together with a bit of luck.

We'll explore biological events essential for life, shaped by evolution in hundreds of
thousands of years. We'll analyse machinery built to quantify those events that would
have been considered sci-fi products by our grandfathers. Finally, | will introduce my
work that aims in part to use the data generated by those instruments using
well-corroborated methods to identify fine regulatory elements in complex systems
and in part to change perspective on how we use this huge amount of information.
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Introduction

RNA: a versatile macromolecule with a key role in the cellular
system

Ribonucleic acid (RNA) is one of the two main classes of nucleic acids together with
deoxyribonucleic acid (DNA), two polynucleotide chains that carry all the information
required to orchestrate the organization of the cell.

RNA is synthesized by the RNA polymerases in complexes that use a DNA segment
as a template and involves a wide network of regulators.

Although the existence of such molecules had been known since 1869, more than a
century was required to reveal their chemical composition*®, their role °7, their
structures?®, and only in 1977° we were able to read the information carried by those
molecules using techniques that we’ll describe in detail in the following chapter.
Furthermore, despite the first draft of full human genome assembly being available
for 20 years'", our knowledge about the complex mechanism underlying the
generation of a multicellular organism from a single omnipotent cell and the effect of
small genomic variations on such organisms is still limited.

The analysis of RNA and protein behaviour in response to genomic alteration can be
the key for further understanding since those molecules are the effectors that use the
information to act in the cellular environment.

Figure 1: Schematic representation of the central dogma of molecular biology

According to the central dogma of molecular biology formulated by Crick in 195723,
the information to produce a protein is encoded as a four-letter alphabet sequence in
the nucleus, it’s transcribed into RNA molecules (messenger RNA, mRNA) that have
the role to export the information from the nucleus compartment to the cytosol, the
liquid matrix surrounding the organelles, where it is translated into a twenty letter
alphabet amino acid sequence.

Figure 1 shows a schematic version of this process, from the transcription of the
precursor mMRNA molecule, pre-mRNA, its maturation through splicing, 5’ capping,
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polyadenylation and formation of the messenger ribonucleoprotein particle (MRNP),
the export in the cytoplasm and its final translation in a polypeptide chain, that will
fold in a functional protein. In sixty years from the formulation of the first version of
this dogma, we discover that this process is part of a complex network made of
effectors and regulators that interact to ensure the survival and the reproduction not
only of the single cell but of the whole organism of which the cell is part of.

In this system, the role of RNA molecules goes far beyond the mere carrier of
information from DNA to protein: they can have catalytic, structural and regulatory
functions™.

Within the following paragraphs, we’ll focus our attention on the RNA regulatory
strategies that take place in eukaryotic cells focusing our attention on the underlying
informational flow.
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MRNA splicing

In eukaryotic genomes the information to produce a specific protein is not continuous
but split into segments, called exons, divided by non-coding regions or not coding for
that protein, the introns.

The spliceosome is a ribonucleoprotein complex in which five small nuclear RNAs
(snRNAs), approximately 300 proteins and magnesium ions cooperate to remove the
introns from the pre-mRNA molecule in a two-step transesterification reaction .
Donor, acceptor and branch sites are cis-acting elements necessary for the
recognition of the splice boundaries by the splicecosome and are located respectively
at the 5’, 3’ and 20-50 nucleotides upstream the 3’ end of the intron .

A
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' ' +
DNA Exon o= @ 7 Bon
L"GG G“GC?BE Egcgﬁtg;ccgg CCCCCCCC?C‘q;
5'ss BP PY 3'ss

released intron lariat
4 2'0H
Pre-mRNA Exon —@— Exon —l Exon |3'OH Exon vy

A

" Exon Exon Spliced product
1% step of splicing 2" step of splicing

Figure 2: Precursor messenger RNA (pre-mRNA) splicing. A) Exons are represented by boxes and introns by
lines. The most conserved nucleotides at the 5 splice site (5'ss), branch point (BP), polypyrimidine tract (PY),
and 3’ splice site (3'ss) are indicated. B) The two transesterification reactions that result in the excision of
introns from pre-mRNA are represented.

From Int. J. Mol. Sci. 2020, 21(4), 1329; https://doi.org/10.3390/ijms21041329

The process is highly dynamic and not deterministic: the sites are not always
recognised by the spliceosome with the same efficiency. This flexibility leads to the
inclusion and exclusion of different portions in different mature mRNA isoforms, and,
as consequence, the possible formation of a variety of different proteins from the
same gene, increasing the genetic diversity. This phenomenon, called alternative
splicing (AS), gives plasticity to the transcriptome playing a key role during cell
development and differentiation'”. AS is finely regulated by cis-acting elements,
trans-acting factors, transcription and chromatin structure, whose combinatorial
effect determines the final outcome 8% .
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Figure 3: Representation of seven alternative splicing configurations. Boxes represent exons
and lines represent introns.

From Bhadra, M., Howell, P., Dutta, S. et al. Alternative splicing in aging and longevity. Hum
Genet 139, 357-369 (2020). https://doi-org.insb.bib.cnrs.fr/10.1007/s00439-019-02094-6

AS can occur in different locations (Figure 3), but not all of their combinations result
in a functional protein. The mature transcripts undergo degradation if specialized
surveillance systems detect abnormalities in the mRNA sequence, such as the
nonsense-mediated decay (NMD) and the non-stop decay (NSD)**2".

The NMD is mediated by proteins associated with the exon-exon junction (EJ
Complex, EJC) and the ribosome.

During the first round of translation, the ribosome removes the EJC but, in case of a
premature stop codon, the ribosome is released before reaching the last EJC. The
translation termination recruits additional factors that, in the case of residual EJC on
the mRNA, trigger the degradation of the mRNA by the exosome complex. Similarly,
the NSD occurs when the ribosome stalls at the poly-A, discharging the ribosome
and redirecting the mRNA to degradation.

Those abnormalities are more frequent in transcripts containing introns.

Intron retention (IR) occurs when sequences that are usually spliced out are
maintained in the mature transcript.

IR is not simply the outcome of mis-splicing but has been reported to be ubiquitous
and likely to affect over 80% of all protein-coding genes ?>%3, contributing to the
transcriptome regulation > and having a role not only in diseases 2>, but also in
physiological processes 22°,
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Figure 4: An overview of the IR mechanism. A) Fully spliced isoforms are sent out of the nucleus for
translation. B) the IRIs are degraded by the NMD pathway. C) the IRIs are detained in the nucleus, and in
response to stimuli these IRIs can undergo further splicing to remove the retained intron, before being exported
out of nucleus for translation D) In the case of cytoplasmic splicing, IRIs are shuttled to the cytoplasm for
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E) IRIs escape from the NMD pathway and are translated into protein isoforms, which are often truncated and
may lose domains; the alternative protein isoforms may include extra domains formed by the amino acid
sequences translated from retained introns.

From: Zheng J-T, Lin C-X, Fang Z-Y and Li H-D (2020) Intron Retention as a Mode for RNA-Seq Data Analysis.
Front. Genet. 11:586. doi: 10.3389/fgene.2020.00586

Usually, IR isoforms (IRI) contain premature termination codons that trigger their
rapid degradation by the NMD pathway. In some cases, during spermatogenesis, for
example, IRl transcript can be retained in the nucleus or cytoplasm and be subject to
further splicing in response to stimuli, showing a longer half-life than properly spliced
transcripts®. Finally, IRI can also escape NMD and undergo translation, producing
alternative protein isoforms, usually truncated and harmful to the cell®'3,

Although this type of gene regulation requires the formation of the mature RNA and
its degradation, therefore inefficient under the energetical point of view respect the
downregulation at the transcription level, it's more specific compared to transcription
factors, whose action covers a wide panel of genes. Since the energetic cost at the
transcription level is much lower than the one at the protein level** and the speed of
translation is much higher than the transcription one*, the generation of a reservoir
of IRI transcripts allows to have an energetically efficient and fast way to produce
proteins in response to external stimuli.

In the next paragraph, we’ll focus our attention on the gene regulatory network,
which is the complex system where proteins, DNA and RNA molecules interact to
ensure the survival of the living organism.
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Gene regulatory networks

Cooperation is strength and complex multicellular organisms are the perfect
incarnation of this concept. Unicellular organisms are self-sufficient cells able to
provide all the functions needed for the survival and reproduction of their species.

In multicellular organisms each cell depends on the activity of each other, generating
complex systems having emergent properties.

Each cell of the same individual contains a copy of the same genome, called
genotype, but they can differentiate in several cell types with very different shapes,
dimensions, functions and properties, called phenotypes.

What determines the phenotype of each cell cannot be only its genotype, constant in
each cell, but also the surrounding environment and, more importantly, by the
interaction between the genome products and the environment.

This interaction affects how the genome is used in each cell, which RNA transcripts
are expressed, when and how much, generating different patterns in a complex gene
regulatory network?.

In such a network the abundances of each transcript and protein have to be finely
tuned by pathways characterized by regulatory intercommunicating loops.
Traditionally, the transcriptional pattern is modulated at two interconnected levels: a
first level having transcription factors (TF) that bind enhancer elements and recruit
cofactors and RNA polymerase Il to target genes ¥, and a second at the epigenetic
level that involves chromatin, its regulators and the DNA methylation®. As we saw in
the previous paragraph, however, there are additional control levels that influence
the network: RNA-binding proteins and non-coding RNAs, such as miRNA*® and
siRNA*, regulate the mRNA processing*'~3, transport and degradation *+°.
Furthermore, protein translation and degradation are finely regulated, the first at the
levels of initiation, elongation, localization and ribosome composition*®¢, the second
with the ubiquitin-proteasome system*°. Finally, the phenotype arises from the
protein’s activity, their composition, influenced also by post-translational
modifications and their interaction with other proteins and biomolecules®®>'.

Genome Transcriptome Proteome Phenotype
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Figure 5: From genotype to phenotype: the processes at different steps in the gene
regulatory pathway that confer regulatory control are indicated at the bottom.

From Buccitelli, C., Selbach, M. mRNAs, proteins and the emerging principles of
gene expression control. Nat Rev Genet 21, 630-644 (2020).
https://doi-org.insb.bib.cnrs.fr/10.1038/s41576-020-0258-4
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Mammals contain thousands of cell types, each with a specific transcriptome and
proteome pattern where the alteration of a single key component can cause
diseases. For example, the oncogenic transcription factor TAL-1, overexpressed in
almost half of T cell lymphoblastic leukaemia cases, forms an interconnected
autoregulatory loop with several key TF partners®?. Alteration of the information
content is a source of intraspecies variability, but if a mutation disrupts the balance of
the regulatory network it can cause developmental deficiencies, like missense
mutations in the RNA polymerase Il Mediator subunit MED12 that cause intellectual
disability and multiple congenital anomalies®.

Because of transcript control quality and regulation steps, the quantifiable amount of
a transcript doesn’t always correspond to the amount of the corresponding
protein®***, but the information gathered from RNA-seq expression data is
sometimes sufficient to infer computational models of portions of the underneath
gene regulatory networks to reproduce its behaviour in controlled environments. The
reaction kinetics in those models can be described using mathematical models, such
as sets of coupled ordinary or stochastic differential equations °>*¢ | boolean and
bayesian networks. The strengths and the weakness of those methods are
accurately described in the review of M. Banf *’, where the author highlights the
importance of those methods in prescreening in silico the potential interactions,
limiting the extent of experimentation needed. However, the high complexity of the
gene regulatory network, its interaction with other cellular pathways and the
difficulties to correctly quantify all its components at the same time are the main
obstacles for the creation of a complete descriptive computational model, especially
when the models are based uniquely on expression data and not integrated with
consistent, large-scale multiple data types.

Rather than attempt to describe the interactions between the known elements of the
network, in the last few years machine learning and deep learning approaches are
flourishing: black-box models are trained to predict specific phenotypes using
high-dimensional data®®*°. Those methods can use different types of input features,
such as gene expression, DNA methylation, histone modifications and genotype,
either considering these individually or in combination from large cohorts of patients
60-63

The main challenges of this approach are to gather data correctly annotated and
having a dimension and composition such that it can be a representative sample of
the population in analysis. Projects like the human phenotype ontology® aim to
standardize the medical annotation of the biological data to facilitate the integration
of data from different sources. For what concerns the data availability, large projects
like The Cancer Genome Atlas (TCGA)®, the Personal Genome Project® and the
Human Protein Atlas®’ gives access to large collections of standardized omic data,
but still small compared to the huge amount of data generated by hospitals and
research centers every year. Ethical and legal issues are intrinsically linked with
patient data: is it safe to share patient data? To which extent an individual is aware of
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the risk and benefit of sharing his medical record and biological data? Is it possible to
efficiently anonymize those types of data without a drastic loss of information?

An international effort of the bureaucratic bodies is required to face those questions,
together with the instauration of clear and efficient communication between the
scientific community and the general population to raise the interest about the
possible benefits and problems that this type of data sharing could bring in everyday
life.
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RNA quantification: a technological breakthrough

Technological advances allow novel definitions of basic concepts, such as the one of
life: “Life is an organized matter that provides genetic information metabolism”
given by Tetz in 2019. The author defines genetic information metabolism as
“functioning, reproduction, and creation of genes and their distribution among the
living and non-living carriers of genetic information”.

Many definitions of life have been given throughout history, some of which focus the
attention more on the physical properties, as in Schrodinger’s book “What is Life?"%,
and some on the biological properties, like the notorious seven pillars of life’.

In 1944, before the discovery of the DNA as the carrier of information”!, Schrodinger
defined life as a partially closed environment that, thanks to the genetic information
stored in an "aperiodic crystal" under the form of covalent chemical bonds, can
maintain a low internal entropy increasing the environmental one.

Fifty-eight years later, Koshland proposed seven principles that define any living
system. The genetic information, called the program, is the first pillar and is defined
as the organized way to handle the system components and their interactions.

Most of those evergreen definitions emerged from the enthusiasm led by the
possibility to study, analyse and quantify different biological properties, but the
content of information is a characteristic present in all of them, even when its
physical carrier was still unknown.

In the case of Tetz’s definition of life, the trigger is the high throughput sequencing
technology that allows to easily read the genetic information, opening the gates for
its decryption.

In the following paragraphs, we’ll go through three generations of sequencing
technologies that had an impact not only in the research field but also in everyday
life. Despite several detailed reviews written by the main characters that contribute to
this fascinating journey’*”, it's important to remember the milestones that drove us
where we are.
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First-generation sequencing

The story of sequencing flows in the opposite direction with respect to the flow of
information: the first biological sequence decipher was the amino acid sequence of
the insulin protein in 195174, followed in 1965 by the first RNA sequence (alanine
tRNA), which required five people working three years with one gram of pure
material isolated from 140 kg of yeast to determine 76 nucleotides’.

The processes to sequence those two classes of molecules were similar:
fragmentation of the polymer followed by separation by chromatography and
electrophoresis, then deciphering of the individual fragments by sequential
exonuclease digestion and finally the sequence was deduced from overlaps.

The first successful sequencing of a DNA molecule was published in 1968 by We
and Kaiser: they measured the incorporation of radiolabeled nucleotides by
Escherichia Coli Polymerase in reactions that extended the 3’ end to fill in the
complementary cohesive end sequences of a phage lambda DNA of only 12
nucleotides’®"8.

The cohesive portion was necessary for the polymerase to start the synthesis of the
complementary strand.

Copying the lactose-repressor binding site of E.Coli into RNA allowed its sequencing
by Gilbert and Maxam: 24 bases in two years’®.

Thanks to the discovery of type Il restriction enzymes by H.Smith®®#' it was possible
to generate short fragments from large molecules of DNA having ends that could
function as primers, starting points for the polymerase reaction.

Also known as Sanger sequencing, the method that allowed the determination of the
sequence of long fragments of any DNA molecule was published in 1975 and
fine-tuned in the following years®828°,

Sanger’s method involves four extensions of a labelled primer by DNA polymerase,
each with trace amounts of one chain-terminating dideoxynucleotides (dNTPs), to
produce fragments of different lengths. The sizes of fragments present in each
base-specific reaction were measured by electrophoresis on polyacrylamide slab
gels, which enabled the separation of the DNA fragments by size with single-base
resolution. The gels, with one lane per base, were put onto X-ray film, producing a
ladder image from which the sequence could be read off immediately, going up the
four lanes by size to infer the order of bases.

Notably, Maxam and Gilbert developed during the same period a similar method that,
instead of dNTPs, took a terminally labelled DNA restriction fragment and, in four
reactions, used chemicals to create base-specific partial cleavages®®.

The application of Sanger sequencing was dominant and it was enhanced when
Messing and collaborators published a method for cloning into the single-stranded
phage M13%°, the shotgun sequencing: any fragment of DNA can be inserted into a
specific location in the phage genome ( bacterial artificial chromosomes, BAC),
allowing primers designed on the known vector sequence to amplify the insert.
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Figure 6: representation of Sanger sequencing. The reaction uses normal
deoxynucleoside triphosphates (dNTPs) and modified dideoxynucleoside
triphosphates (ddNTPs) for strand elongation. The ddNTPs are chemically altered
with a fluorescent label and with a chemical group that inhibits phosphodiester bond
formation, causing DNA polymerase to stop DNA extension whenever a ddNTP is
incorporated. The resulting DNA fragments are subjected to capillary
electrophoresis, where the fragments flow through a gel-like matrix at different
speeds according to their size. Each of the four modified ddNTPs carries a distinct
fluorescent label. The emitted fluorescence signal from each excited fluorescent dye
determines the identity of the nucleotide in the original DNA template.

By 1987, the company Applied Biosystems developed automated
fluorescence-based Sanger sequencing machines, shown in figure 6, able to

generate around 1,000 bases per day®’, a number that reached 10 million bases per

day by 2001 in a small number of academic genome centres thanks to additional
technical improvements.

The application of this technology span from de novo genome assembly, such as the

human genome project (HGP) of which the first draft was published in 2001'",
evolutionary biology, to determine organism phylogenies or the evolution of

genes®®®! clinical, as the detection of pathogens or testing for genomic mutations in
congenital pathologies® %, to forensic identification and paternity testing, thanks to

DNA fingerprinting®-".
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Second-generation sequencing

By 2004, Sanger automated instruments allowed to sequence 600-700 bp at cost of
1 dollar per read, but the technology reached a plateau in its evolution since
additional improvements had little or marginal effects’. Luckily, several groups
throughout the 80s and 90s explored alternative sequencing methods and, after the
HGP, those efforts paid off: next-generation sequencing (NGS) methods were
becoming more and more competitive and were destined to take over the Sanger
sequencing.

Also known as high throughput sequencing, the common denominator between
those novel methods are the multiplexing and the sequence by synthesis (SBS)
strategies.

Multiplexing replaced the one tube per reaction approach: a complex library of DNA
templates is densely immobilized onto a chemically treated surface, with all
templates accessible to a single reagent volume, allowing large numbers of libraries,
that could be created also from different samples, to be pooled and sequenced
simultaneously during a single sequencing run.

This step could be coupled by in vitro amplification: the most famous is the bridge
amplification, a process that amplifies a complex template library with primers
immobilized on a surface, such that copies of each template remain tightly
clustered®®"%°_ Other techniques that allow to amplify in vitro the input DNA are
clonal PCR in emulsion, such that copies of each template are immobilized on
beads'*"'%2, and rolling circle amplification in solution to generate clonal
‘nanoballs™®, followed in both cases by arraying on a surface for sequencing.
Finally, the SBS evolved in three main strategies:

1. The first system available was the pyrosequencing, used by the Roche 454
instruments, which consists in the detection of the light generated by a firefly
luciferase, that use as substrate the pyrophosphate released by the
incorporation of each dNTP, in a discrete step-wise manner'®. This
technology is no longer being maintained since 2013. A similar approach
detects the incorporation of hydrogen ions released during the polymerization
of DNA, used by lon Torrent.

2. A second approach uses the specificity of DNA ligases to attach fluorescent
oligonucleotides to templates in a sequence-dependent manner, used by
SOLID?. This approach generates reads shorter than the competitor’s and has
issues with palindromic regions™%.

3. The approach that became dominant since 2015 is Solexa that consists in a
stepwise, polymerase-mediated incorporation of fluorescently labelled dNTPs.
The development of engineered polymerase, reversibly terminating and
reversibly fluorescent dNTPs are the keys that allow the incorporation of a
single nucleotide in each cycle. After that the fluorescent colours are detected
by imaging, the blocking and fluorescent groups are removed to set up the
next extension'""1%8,
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Figure 7: llumina sequencing workflow.
From https://www.illumina.com/

B. Cluster Amplification

D. Alignment and Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
. AGATGGTATTG
Reads GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

AGATGGTATTGCAATTTGACAT

iligned to a reference sequence with bioinformatics
yftwa After alignment, differences between the reference
jenome and the newly sequenced reads can be identified

Unlike Sanger sequencing, where Applied Biosystems had the monopoly, NGS
technologies gave birth to several companies, competing in terms of cost, accuracy
and read length. Few examples are the 454 and Solexa technologies, acquired
respectively by Roche and lllumina; Agencourt (Applied Biosystems); SOLID (ABI);
Helicos (Quake), Complete Genomics (Drmanac) and lon Torrent (Rothberg).
Those companies invested large capitals in several different approaches, allowing a
fast growth of the field and a democratization of the sequencing capacity: individual
laboratories could instantly access a vast catalogue of new methods, results,

genomes and services.

Between 2007 and 2012, the raw per-base cost decreased by four orders of
magnitude’®, keeping an accuracy of over 99.9%, though the length of each read is

still shorter than Sanger sequencing.

In comparison with the first sentence of the paragraph, a single graduate student can
generate over a billion independent reads, roughly a terabase of sequence, on one
instrument for a few thousand dollars in a couple of days.
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Reduction in costs and increased accessibility allowed NGS to be applied in a wide
spectrum of fields: genome resequencing, i.e. mapping sequence reads to a
reference genome to identify genetic variants; non-invasive prenatal testing, cancer
molecular classification and Mendelian disease diagnosis are just a few examples of
the many clinical applications that became feasible routines in hospitals.
Furthermore, de novo assemblies increased vastly, thanks to new assembly
algorithms based on de Bruijn graphs that partially overcome the length issue'%':
with NGS many short reads generated from repetitive elements have only a single or
no base difference, leading to ambiguous connections in the assembly. Instead of
finding overlaps between reads, the EULER assembler "° was the first to use a
different representation of the data: the de Bruijn graphs. The method is organized
around words of k nucleotides, the k-mers, and the reads are mapped as paths
through the graph. This data structure naturally handles the high redundancy without
affecting the number of nodes: each repeat is present only once in the graph with
explicit links to the different start and end points.

Several methods have been derived from the standard DNA-seq to quantify different
molecules and events. Some examples are the RNA sequencing that, making use of
the reverse transcriptase and dedicated protocols, replaced almost completely the
microarray technology for gene expression quantification and allowed researchers to
unveil the RNA world that we took into consideration in the previous chapter''?; the
ChlP-Seq, a method used to quantify the protein-DNA interactions''®; the Bisulfite
sequencing, that used to determine the DNA methylation patterns''4; and the since
cell RNA-seq, one of the many adaptations of the RNA-seq technique that allows to
sequence the sparse transcriptome of individual cells.

An important approach is the paired-end sequencing that allows to sequence both
ends of a single biological fragment, generating more accurate read alignment and
the ability to detect insertion-deletion (indel) variants™”.

Third-generation sequencing

The second-generation sequencing has two important limitations: the short length of
the reads, reaching nowadays a maximum of 300 bp'"'®, and the PCR amplification
step. The first issue has repercussions on de novo assemblies of repetitive regions
and on the determination of the single-molecule RNA isoforms, the second add time
and complexity in the library preparation, loss of information, such as the lack of
information about eventual nucleotide modifications, and the introduction of copying
errors and sequence-dependent biases.

Due to those limitations, only recently the telomere to telomere (T-2-T) consortium
was able to complete the assembly of the full human genome, including the
constitutive heterochromatin regions, thanks to the combination of lllumina
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sequencing and a new generation of sequencing technology: third-generation
sequencing'" 8,

A parallel research field, started back in the 1980s, aimed to sequence single
molecules in real-time (SMRT) and gave birth to two promising approaches: PacBio
and Nanopore sequencing.

Initiated by Webb and Craighead and developed by Korlach, Turner and Pacific
Bioscience, PacBio is the first approach capturing sequence information during the
replication process of a single DNA molecule and was released in 20111120,

The template is a closed, single-stranded circular DNA that is loaded into a chip
divided into a sequencing unit, the zero-mode waveguide (ZMW), a hole less than
half the wavelength of light that provides the smallest available volume for light
detection. In each ZMW, a single engineered polymerase is immobilized at the
bottom and can bind to the circular DNA to start the replication. Four different
fluorescent-labelled nucleotides are incorporated by the polymerase, generating
distinct emission spectrums that are recorded in a temporal sequence, the
continuous long read (CLR). A base-calling software analyses the CLR and
estimates the sequence based on the light-pulse spectrum.

Each strand can be sequenced multiple times, allowing the generation of multiple
subreads, whose consensus increases the accuracy of the technique, going from a
median error of 11% for a single pass to 1% with four passes and 0.1% with
nine'?''22_ The errors consist of more indels than mismatch and are distributed
randomly, a factor that allows reducing efficiently the error rate increasing the CLR
depth.

Base-calling can also detect nucleotide modifications, such as N8-methyladenine (m®
A) and n*-methylcytosine (m*C), analyzing the kinetic variation from the light-pulse of
the temporal sequence'®.

PacBio’s read length is limited by the longevity of the polymerase: with chemistry v3
released in 2018, the average RL is 30 kbp, spanning from 250bp to 50 kbp.
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Figure 8: A) PacBio’s SMRT cell, a chip containing 150’000 sequencing unit ZMW; B) the SMRT bell,
a single-stranded circular DNA created by ligating hairpin adaptors to both ends of a target dsDNA; C)
ZMW cell where the four fluorescent-labelled nucleotides are incorporated by the polymerase,
generating distinct emission spectrums.

Adapted from: Rhoads A, Au KF. PacBio Sequencing and Its Applications. Genomics Proteomics
Bioinformatics. 2015 Oct;13(5):278-89. doi: 10.1016/j.gpb.2015.08.002. Epub 2015 Nov 2. PMID:
26542840; PMCID: PMC4678779.

A simple but revolutionary idea, hypothesized in the 1980s, is at the basis of the
second methodology: considering a hole through which water is streaming, the
passage of a body, let’s say a tennis ball, modifies the flux of water in a different way
a bowling ball would do. Detecting and decrypting the changes of the flux can tell the
dimensions of the object that obstructed the channel, being able to discriminate
between a bowling or a tennis ball. Similarly, but in a much smaller dimension,
detecting the patterns in the flow of ions generated when an ssDNA passes through
a narrow channel can be deciphered into the sequence of nucleotides that compose
the polymer'?*. Two decades of work and technological advancement were required
to move from this idea to the first successful nanopore prototype and the foundation
in 2005 of the company Oxford Nanopore Technology ( ONT ).

ONT uses a voltage difference applied across electrolyte baths on either side of an
insulated membrane to produce an ion current.

The current streams through a single channel protein, in the first chemistry versions
Mycobacterium smegmatis porin A (MspA), pulling the DNA through the nanopore in
a linear, head-to-tail fashion by electrophoresis. The passage would be too fast to be
detectable, that’'s why another protein, called enzyme motor, acts as a molecular
stop, preventing the DNA from travelling any further through the nanopore'412°,
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The signal detected is then analysed using bonito'?, a base caller that uses methods
widely used in speech recognition problems ( in particular a recurrent neural network
(RNN) model trained using connectionist temporal classification (CTC) and
conditional random field (CRF) ) to decode the electric signal into a sequence of
nucleotides.

ONT accuracy was less than 60%'#"'8 when first introduced, but the base caller
improvements over recent years allowed values of 85% in 2018 '*° and up to 98.3%
in 2021 and promising a 99% with the chemistry version Q20+ "3%131,

If the British company accomplishes this goal, unthinkable a couple of years ago,
nanopore technology would have all the characteristics to replace the dominant
lllumina in the global market and more: the lack of an imaging step allows the
production of cheaper and smaller devices, with the MinlON device being as big as a
smartphone and costing 1000 dollars; the read length can go from short to ultra-long
read ( more than 2Mb DNA and more than 20Kb RNA'32'33): it allows real-time
analysis'*'% and the library preparation is quick, requiring only ten minutes, and
standardized, thanks to an automated device that increase the reproducibility of the
experiments; RNA molecules can be directly sequenced without needs of any cDNA
intermediates, reducing the time, costs and introductions of errors.

Nanostring nCounter: direct RNA quantification

Sequence technologies are fundamental in research, but for clinical application most
of the time it’s sufficient to know the abundance of specific subsets of sequences,
representing features like genes, specific isoforms, splicing junctions, chimeric
transcripts and SNP.

An emerging technology that allows the direct quantification of RNA molecules using
a simple and fast protocol is Nanostring Technologies nCounter'®. The company
Nanostring, founded in 2003 and settled in Seattle, offers a cost and time efficient
technique to quantify specific sets of sequences™’.

This automated platform hybridizes fluorescent barcodes directly to specific nucleic
acid sequences, allowing for the non amplified measurement of up to 800 targets
within one sample and to multiplex up to 96 samples in the same run'.
Nanostring’s nCounter has been used within different clinical and research
applications, such as assays to predict recurrence for gastric cancer after surgery'®,
subtype molecular classification of diffuse large B-cell lymphoma'®, the identification
of known oncogenic fusion genes in lung cancer' and many others™'-"%,

The robustness, sensibility and high reproducibility of this technology outdo
microarrays, the most similar technology available, which are often expensive and
lack flexibility and reproducibility when evaluating low-quality RNA samples, such as
those from formalin-fixed paraffin embedded'.
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Figure 9: Nanostring nCounter principles: two probes, designed to target a specific nucleic acid, are ligated respectively to a unique reporter tag
and an universal capture tag. A single run can contain up to 800 different probes analysing up to 96 samples.

From: Bobée, Victor, (2017). Détermination moléculaire des sous-types de lymphomes B diffus 4 grandes cellules par un classifieur de type
retrotranscription multiplex ligation-dependent probe amplification.
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RNA-seq data analysis

In the previous chapters, we considered the biological aspects of the information
represented in the RNA-seq data and the evolution of the technologies that allow its
extraction into a series of four-letter strings. Now, we’ll focus on the common
approaches used to exploit this information, starting from the experimental design,
moving to read mapping, transcript quantification and concluding with differential
gene analysis. Finally, we’ll overview existing reference-free approaches that
extrapolate and analyse the information using k-mers.

Experimental design

Similarly to other scientific experiments, RNA-seq requires a careful design of the
data that has to be generated or collected. A study may be exploratory, with the
objective of discovering future research tasks, or formal, with a hypothesis to test.
An important factor to consider is whether the data comes from experiments, where
the researcher has control of the variables in the study, or ex post facto, where the
investigator cannot manipulate the variables, such as clinical data.

The sampling design must consider heterogeneous samples, representative of the
population in analysis, and balance between case and control, randomizing the
experimental units to treatment in order to reduce confounding factors.

Budget is one of the most limiting factors and it's determined by the number of
samples processed and the number of reads generated for each of them, also called
sequencing depth.

Tools like “Scotty”'*¢, “RNAseqPS""*", “PROPER”'*® and “ssizeRNA"'*° estimates the
optimal sample size required to achieve the desired statistical power and, although
most of them diverge significantly in the results', can help the scientist in this
crucial step.

The standard application for RNA-seq data is differential expression (DE) study of
genes and, less frequently, of transcripts. In any experimental design, selecting the
appropriate number of biological replicates is a trade-off between cost and precision.
A misconception is that three replicates are enough in a DE study: Schurch et al.
show that to identify differentially expressed genes having a low fold change it's
necessary to have at least six replicates per condition and that using only three
replicates per condition most of the DE analysis tools found only 20-40% of the
significant DE genes ',

Different applications require different sample dimensions: if we want, for example, to
associate SNP to a particular phenotype, we need to apply genome-wide association
study (GWAS) sample sizes, with a minimum of 100 samples up to more than
20002,

For what concerns the depth, since more than 80% of the reads are attributed to the
10% most expressed genes and increasing the number of reads only marginally
increases the coverage of lowly expressed genes, especially over the 10 million
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reads'?, it’s better to use the budget to have more replicates rather than few
samples with deep sequencing.

Finally, when the experiment has to be run in multiple batches, it's important to
equally distribute the conditions between the batches. Processing groups of samples
on different days, using different machines and by different operators can reflect on
small variances between the batches that can be misinterpreted as biological
signals.

RNA-seq read alignment

The final output of any sequencer is generally a FASTQ file, in which a read is
represented by four parts'®*: the first is the header, starting with a ‘@’ character and
including a unique ID attributed to the read, useful especially in paired-end
sequencing to identify the two mates; the second part contains the raw sequence,
usually encoded using the standard IUPAC single letter codes for DNA and RNA; the
third part, starting with a ‘+’ character, can contain additional description but is
usually empty. Finally, the last part encodes the quality values for each nucleotide.
Since v1.8 lllumina sequencers use the same quality score as the Sanger and
PacBio sequencer: the Phred quality score ( Quhread ), that is the -log,, of the
probability that the corresponding base call is incorrect.

Millions to billions of short cDNA reads contain information about what RNA
molecules are in the original sample, their abundance and sequences. This
information is randomly scattered across the reads: subsequential reads in the
FASTQ file can represent completely different RNA molecules.

To quantify the abundance of the RNA-molecule at the transcript level, considering
each isoform as an independent entity, or at the gene level, where the expression of
a gene is the sum of the expression of its isoforms, it's necessary to align the reads
to a reference genome or transcriptome.

In organisms for which only a de novo transcriptome is available, or it's much better
characterized than the reference genome, unspliced alignment is a feasible solution.
Mapping on a reference transcriptome, however, induces a high degree of
multi-mapping since different isoforms can share the same intron and isn’t flexible
enough to deal with novel splicing or expression patterns. Pseudo-alignment and fast
mapping to transcriptome is part of the strategy used by recent transcript abundance
estimators and we’ll focus on this subject in the next chapter.

Mapping the reads to a reference genome presents the main challenge to correctly
align the read that includes a splice junction (SJ). Bowtie'*®, STAR*®, HISTAT'" and
GMAP'® are the most famous of a long list of splice-aware aligners that use known
or empirically deduced SJ sites to guide the alignment. Each software uses a
different approach, resulting not only in different performances in terms of time but
also in terms of the final result, adding a layer of variability to the experiment.
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Once mapped, the reads are stored in dedicated files, such as BAM, the binary and
compressed version of the SAM format ( Sequence Alignment Map ), and CRAM, a
reference-based storage format promoted by EBI from 40 to 50% smaller than the
BAM one™®.

The problem of the lack of an international standard is being addressed by the
moving picture expert group (MPEG), mostly known for the audio and video coding,
who released the first version of the MPEG-G in 2019 proposing a new file format:
“The standard will offer high levels of compression, approximately 100 times
compared to raw data, i.e. more than one order of magnitude than possible with
currently used formats. Furthermore, the MPEG-G standard will provide new
functionalities such as native support for selective access, data protection
mechanisms, flexible storage and streaming capabilities. This will enable various
new applications scenarios, such as real-time streaming of data from a sequencing
machine to remote analysis centres during the sequencing and alignment
processes.”'®°

Gene and transcript level quantification

Essential for most of the downstream analysis, assessing the gene and transcript
level abundances is also characterized by a long list of tools that achieve the same
goal using different strategies and with different performances.

HTSeq, featureCounts, the built-in STAR option and other tools count directly the
fragment overlapping the gene features after the mapping step, differing one from
the other by the way they handle certain conditions, like multi mapping fragments,
fragments that map to multiple features and fragments mapping partially in the
feature. This approach is limited by changes in the composition of the exons that do
not directly impact the gene-level read count, such as isoform switching.

To overcome those obstacles, transcript-level quantification is getting more and more
used, even to estimate the gene-level expression with better performances on the
downstream analysis™". It's worth mentioning that, in contrast with the transcripts,
the gene is not a physical entity but it's a useful abstraction having no clear target for
quantification.

Methods like RSEM'®? and Cufflinks'®® define a generative model of RNA-seq reads
and use such a model to infer the transcript abundance, assigning in a probabilistic
way the ambiguous fragments to the different isoforms. Recent approaches make
use of pseudo-alignments of k-mers to speed up the process, bypass the alignment
step and produce an accurate estimation 1416,

The pseudo alignment procedure uses the reference transcriptome in the form of the
de Bruijn graph to assign a read to a set of transcripts without alignment.
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In particular, Kallisto uses the transcriptome in the form of de Bruijn graph to assign
through expectation-maximization (EM) algorithm the read to the transcript from
which most likely was generated'®®.

Another widely used k-mer based tool is Salmon'®’: it first builds a sample-specific
bias model to correct effects like fragment GC-content bias; after that, it uses a
lightweight mapping procedure called quasi-mapping, similar to pseudo alignment in
the use of the transcriptome and k-mers.

This strategy, proposed by Srivastava A. et al with RapMap '®® was first applied to
Sailfish'®, has the same outcomes as the transcriptome pseudo alignment using a
different data structure'®®,

Easy to use, fast, with low computational requirements and high performances in
terms of speed and disk usage, the mapping-free k-mer based approaches have
become popular for assessing transcript and gene-level abundance, gaining the top
tiers of the most recent benchmark studies '"*'72,

Finally, traditional gene and transcript quantification tools don’t consider repetitive
and transposable elements. Dedicated softwares, like TEtranscripts'’?, telescope'™
and SalmonTE, address this problem, applying similar approaches like the ones
used for classical genes to transposable element families.

Alternative splicing signatures

Transcript and gene abundances are not the only quantifiable features that can be
inferred from RNA-sequencing: the percentage of the splice in (PSI) is used in
splicing studies to quantify the frequency of inclusion of specific exons.

Tools like MISO'"®, rMATS""® and Whippet'”” compute one PSI value for each exon
using the following formula:

_ a+b
PSI = 100 X —=—-

Where a and b represent the reads overlapping the splice junctions that support the
inclusion of the alternative exon to downstream and upstream constitutive exons and
c represents the ones that support the exclusion.
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Figure 10: Representation of a cassette exon alternatively spliced, in red, and the constitutive exons, in blue. A) splices junctions used for the PSI
evaluation in rMATS, MISO and Whippet. B) splices junctions used for the PSI evaluation in PSl-sigma.

PSI-Sigma uses a different PSI value:
PSI = 100 x —2

sigma nCS+ E C,5,

Where S; and S;are the splice-junction reads of all isoforms in the region between
two constitutive exons C, and C,, generating multiple PSI in case an exon is used by
different isoforms™’®.

MAJIQ'"® quantifies the PSI values for each isoform as well, using a combination of
read rate modelling, Bayesian PSI modelling and bootstrapping.

Finally, SUPPA2® yses the transcript abundances to infer the PSI and delta PSI
(APSI, difference in PSI between two conditions). This approach, though fast,
produces suboptimal results'’®.

All the aforementioned methods can be applied to second and third generation
sequencing since they take as input FASTA, FASTQ or BAM file formats, but only
PSI-Sigma was tested using long reads'”® showing a more complete and precise
transcriptome profile.

Among the possible alternative splicing events, intron retention (IR) requires
additional adjustments in order to be correctly quantified: MAJIQ, for example, filters
the events having consecutive windows across the intron lower than a user definable
threshold; PSI-Sigma estimates the abundance of the IR isoform counting the
number of intronic reads crossing the first, 25th, 50th, 75th and 99th percentile

positions of an intron. Without a proper approach, unannotated alternative donor or
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acceptor splicing sites and overlapping transcripts could lead to misclassified events.
Furthermore, introns that are enriched in low-complexity and repetitive sequences
may restrict the unique mapping of sequencing data".

IRFinder, the first software dedicated to IR analysis, addressed this problem

proposing a new metric, the IRratio, defined as:
I

a

IRratio = T3E,

Where: |, is the intronic abundance, estimated as the median depth of the intron
excluding low mappability regions and regions overlapping with other features; E, is
the abundance of the flanking exon, estimated as the maximum number of reads that
map the 5’ or the 3’ flanking exon splice site?'82,

In 2015, Bai et al developed IRcall, a ranking strategy, and IRClassifier, a random
forest classifier, to detect IR events'®®. The first generates a joint score for IR events,
based on intron read counts, flanking exon read counts and splice junctions. The
latter uses 21 features extracted from other IR detection methods ( IRFinder, MATS
and ExpressionPlot) to build a Random Forest classifier to predict IR events.

Finally, iREAD'®* uses the Shannon entropy'® to quantify the uniformity of the
distribution of reads across the intron and considers only introns that don’t overlap
with any other feature. Due to the lack of experimentally validated intron retention
events dataset availability, IREAD authors compared their tool with IRFinder using
simulated reads. In this benchmark, IRFinder achieved a precision of 0.73, IREAD of
0.99 and similar time performances. However, few considerations are due to
contextualize those results:

1. IREAD excludes all the introns overlapping known IR events or any other
features, considering so far a much smaller set of events, meanwhile IRFinder
includes the known IR events and masks the intronic annotations, such as
miRNA and antisense transcripts. In the evaluation of the metric, the authors
considered the same number of events to evaluate the performances of the
two software, using the minimum number of hits found in the two methods. In
the IREAD manuscripts, it's not specified which method outputs the limiting
number of events, but for the aforementioned reasons, lots of IRFinder
positive results have not been taken into consideration.

2. The results are further biased by the criteria chosen to generate IR events in
the simulated RNA-seq data, which are the same criteria iIREAD uses to
identify IR events. For example, an intron is considered retained if it has at
least 10 reads and one junction read that spans the exon-intron junction,
regardless of the length of the intron and the number of exon-exon splice
junctions, factors considered in IRFinder. Furthermore, IR events in isoforms
having known intron retention are not considered as IR by their gold standard
sets and iREAD algorithm but are generated anyway, increasing the number
of events considered false positive in IRFinder’s results.

3. The simulated data doesn’t take into account the possible presence of intronic
reads originated by unannotated intronic transcripts, which might affect the
global performances of the softwares.

38



4. The speed comparison is biased: the authors use a machine with 20 cores
and don’t specify that IRFinder is a single-core process, while iREAD can
multithread the process, leading to unfair comparison. Finally, IRFinder is
optimized to have a low RAM footprint, an aspect that has not been
considered in the benchmark.

Differential analysis

Most of the experimental designs aim to identify differences in expression between
two or more conditions, one used as control and the other as a target. With this
objective, differential expression (DE) analysis formulates and tests a statistical
hypothesis for each feature across the samples.

Usually, only a limited number of replicates are available ( 3-5 replicates per
condition) and, combined with the large number of features that are tested
simultaneously, the achievable statistical power would be very small without
dedicated strategies implemented and refined during the years by the statistical
community. Most of those approaches, such as the widely used limma-voom'®, were
initially developed for microarray data and in a second place adapted to
RNA-sequencing.

The general workflow includes:

1. Preprocessing: encompasses the filtering of uninformative features, such as
lowly expressed genes. Bourgon et al. showed that filtering independent of
the test statistic achieves a higher detection power'®’. To facilitate
across-sample comparison, the counts have to be directly normalized or, in
software like DESeq2'®, scaling factors have to be computed to accompany
the analysis. In addition, few highly expressed genes can drive the sampling
of fragments, leading to inaccurate scaling measures. Calculating
sample-wise size factor can in part overcome this issue: this procedure
consists in generating a pseudo-reference sample, derived from the averages
of each gene across all the samples in the study; for each sample, compute
the ratio between the sample gene count and the pseudo-reference one and
use the median value as size factor, by which the raw count is divided to
obtain the normalized values. It can be considered a robust global fold change
between the current sample and an ideal reference sample, derived from all
the samples'1%,

2. Statistical model specification and estimation of its parameters: due to
the small sample size with respect to the number of features, DE tools mainly
implement parametric methods. The variability in gene expression across
technical replicates follows a Poisson distribution'®®, for which the variance is
equal to the mean:
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E(Yﬂ) =K, = Var(Yﬁ)

Where Yﬂ is the observed count for class i and feature f and uﬂits mean.

The biological replication introduces additional variability between the
samples, approximately following an extension of the Poisson distribution: the
gamma-Poisson ( or negative binomial NB ) distribution, that presents an
additional dispersion parameter and a quadratic mean-variance relationship:

2
Var(Yﬁ) = uﬁ + cpfu fi
Where <pfis the dispersion associated with the feature f. The limited number of
samples is again a problem for a reliable estimation of e Different

approaches have been developed to solve this issue, whose details go
beyond the scope of this introduction’. Finally, the generalized linear model
(GLM) framework, an extension of classical linear models to non-Gaussian
responses, allows the inclusion of multiple treatments or covariates to the
study'2. The NB GLM model can be formulated as:

log(n,) =, =Xp. + log(s)
Where nﬂis the linear predictor, Xl,is the design matrix, Bf represents the
regression parameters and siis the normalization scaling factor. Bf can be

fitted using standard GLMs algorithms and the estimated dispersion values ®,

. Statistical inference: for each feature, fitted the GLM, it's now the time to test
the null hypothesis H, that there is no DE between conditions, generally that
the log-fold-change (LFC) is zero, against the alternative hypothesis H, that
the LFC # 0. The LFC can be represented as L, a single regression
parameter (vector) or a linear combination of parameters (matrix) in the GLM
framework as:

HyiLFC = LB =0

There are several tests available for GLM, such as the likelihood ratio tests
(LRTs), implemented in edgeR'?, that compare the likelihood of a full model
with the likelihood of a reduced model, where one or some of the parameters
are constrained according to Hy. DESeq2, besides LRTs, implements also the
Wald test, a faster approach that achieves approximately the same results as
the LRT"®® | assuming a symmetric likelihood distribution and asserting the
significance of the relation between the independent variable and the outcome
within the logistic model.

. Adjustment for multiple testing: to avoid excess false positives, the
p-values obtained from the statistical inference must be corrected for multiple
testing. Family wise error rate corrections, such as the Bonferroni correction,
are usually too stringent for DE analysis, where a small proportion of false
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positive (FP) can be tolerated to obtain a large number of true positive (TP).
The false discovery rate (FDR) controlling procedure is widely used to control
the expected fraction of false positives in the detected set of features. One
example is the Benjamini-Hochberg (BH) procedure'*'%%, which has become
a common practice in high-dimensional data analysis thanks to its simplicity
and solid theoretical justification, accepted from both frequentist and Bayesian
perspectives'®. The BH adjusted p-value, p?¥, is computed ranking in
ascending order the p-values and applying the following formula:

adj pl_xm

o
where p;is the p-value of the j" test and m is the total number of tests.

Though this pipeline is optimized for gene DE analysis, it can also support transcript
level DE analysis to detect differential transcript expression (DTE).

Another type of analysis considers the change in the relative abundance of the
isoform for a specific gene, called differential transcript usage (DTU), and of the
individual exons, called differential exon usage (DEU).

Tools like DEXSeq'¥”, DRIMSeq'®® and BayesDRIMSeq'®® are specialized in this type
of analysis, adopting different strategies whose description goes beyond the scope
of this introduction.

To discover alternative splicing events between conditions, the difference of the PSIs
between is used.

rMATS""® uses likelihood ratio tests (LRTs), the same used in DGE analysis, while
SUPPA2'® test is based on comparing the observed difference in PSls across
conditions to the empirical cumulative density function of the within-replicates
differences of PSls of splice junctions from similarly expressed transcripts.

Finally, the differential IR analysis in IRFinder is performed using an Audic and
Claverie Test?®, in case of a single replicate for each condition, or a GLM model,
using a wrapper of DESeq2, fitted with the intron and exon abundances of each
sample.

K-mer based approaches

Quantifying the abundance of known transcripts or splicing events is not the only
way to obtain meaningful features: counting the k-mers occurrences in the raw
sequencing data is another approach widely used in different fields, such as
metagenomics, de novo assemblies and phylogeny.

This kind of representation has the advantages of being reference-free since to
count the k-mers occurrences is independent of any reference genome,
transcriptome or annotation.
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The drawback is that it's highly redundant and with high dimensionality: each
transcript of length L will generate L-k+1 k-mers and, globally, there are 4* possible
combinations of the four nucleotides in a string of length k.

The length of the k-mers is chosen according to the dimension and complexity of the
genome of interest: the bigger and more complex the reference is, the longer the
k-mer needs to be in order to have a sufficiently high fraction of uniquely mapping
K-mers.

Computationally, values close to a multiple of 8 ( the number of bits in a byte ) are
efficient values to be represented in binary form, where for example A can be
represented as 00, Cas 01, Gas 10and T as 11.

Odd numbers are preferred to avoid reverse palindromic sequences: the central
nucleotide won’t ever be complementary of itself. Additionally, some tools use the
final bit to represent the original strand of the k-mer. Altogether, a common formula to
select the k-mer size is:

k=@8xd) -1

Where d is an integer arbitrarily chosen to have a good tradeoff between the k-mer
precision, representing the proportion of k-mers mapping uniquely on a reference
genome, and the tractable number of possible combinations. In human studies, for
example, d is set to 4, resulting in a k equal to 31.

To compare organisms with smaller genomes, dedicated tools like KITSUNE can be
used to determine the optimal k2°'-202,

For genomic applications, “canonical” k-mer representation is usually used to reduce
the total number of k-mers and have a unique representation of the DNA sequence.
The term canonical indicates the aggregation of the counts of a k-mer and its reverse
complementary to one of the two comings first using a relation order, generally the
lexicographic one?®,

The counting procedure, though simple, presents computational challenges for what
concerns the time and space requirements. A recent benchmark of S.C. Manekar 2%
compared ten famous k-mer counters, where KMC3, DSK and Gerbil showed the
best performances. Among the three, DSK?* is optimal in case of low RAM
availability, thanks to its algorithm design that subdivide efficiently hash tables into
multiple files on the hard disk; Gerbil*® is optimal in case a GPU is available, being
the only one supporting this type of processor able to massively parallelize
procedures; finally, KMC32%°" presents the best tradeoff between time and resources,
it's stable and offers a convenient C++ library.

Once obtained the k-mer counts, a common approach is to create de Bruijn graphs
(dBG), a direct graph representing the k-mers as vertices and the overlap of length
k-1 between them as edges. A compressed representation of the dBG, the cDBG, is
obtained by merging two adjacent simple nodes, which means nodes linked to at
most two other nodes?®.

The application of graph theory to de Bruijn k-mer graphs is one of the keys to the
success of this methodology: this representation is efficiently handled by the
machine and there are a large number of algorithms for searching, traversing, finding
paths and representing its properties. It's important to mention that most of the k-mer
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dBGs are not complete but just subgraphs since not all the 4% possible vertices are
represented and therefore not all the dBG properties and algorithms can be applied.
Due to the high dimensionality of these graphs, k-mer representation is mostly used
for small genome assemblies and comparisons?%*2"3,

For example, kover?'2' implements a rule-based machine learning approach to
identify k-mers of bacterial genomes that can be used as biomarkers for antibiotic
resistance. CLARK?'® and KrakenUniqg?'" are two tools able to classify metagenomes
using unique k-mers found in different taxa.

In RNA sequencing experiments, k-mers are used not only to estimate the transcript
abundances, such as with the already mentioned kallisto'®, but also to perform
specific tasks, such as the HLA ( Human Leukocyte Antigen ) alleles profile?'®, detect
virus RNA in plants sequencing data®'®, detect targeted and de novo variants?°®220-223
, motif identification®?*, identify fusion, noncoding and novel transcripts?*2% and

de novo transcriptome assembly %',

For what concerns the differential analysis, there are few methods available that use
k-mers to identify biological markers: KISSPLICE?®, HAWK?2¢22° gand DE-kup!®.
KISSPLICE is a software initially designed to find alternative splicing events from
RNA-seq data, but which also outputs indels and SNPs. Those events correspond to
recognisable patterns, called bubbles, in a de Bruijn graph.
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Figure 11: Part of non-compressed (a ;) and compressed (a, b, ¢) de Bruijn graphs (k = 5). Each node contains a word (upper text of each node)
and its reverse complement (lower text of each node). In the uncompressed graph, the word is a k-mer. Encircled nodes are switching with
respect lo red paths {pointed out by red arrows). (a ,, a) Bubble due to a substitution (red letter). Starting from the forward strand in the leftmost
(switching) node would generate the sequences CATCT A CGCAG (upper path) and CATCT C CGCAG (lower path). (b) Bubble due to the
skipped exon GCTCG (blue sequence). This bubble is generated by the sequences CATCT ACGCA and CATCT GCTCG ACGCA. (c) Bubble due
to an inexact tandem repeat. This bubble is generated by the sequences CATCT TAGGA and CATCT CATCA TAGGA, where CATCT CATCA is
an inexact tandem repeat.

From: Sacomoto GA, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot MF, Peterlongo P, Lacroix V. KISSPLICE: de-novo calling alternative
splicing events from RNA-seq data. BMC Bioinformatics. 2012 Apr 19;13 Suppl 6(Suppl 6):55. doi: 10.1186/1471-2105-13-56-55. PMID:
22537044; PMCID: PMC3358658.

KissDE?*' performs a likelihood ratio test on the abundance of the alleles found using
KissSplice and mapped to a reference genome using BLAT to identify
condition-specific SNP.

Hitting association with k-mers, HAWK, is a method that aims to identify k-mers with
counts that are statistically significant between two phenotypes in whole-genome
sequencing reads, applying GWAS techniques such as the correction for population
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stratification and other confounders. The approach consists in counting the k-mers in
each sample using Jellyfish?®, test the differential expression using a Poisson
distribution based likelihood ratio test, correcting for confounders and finally merging
the k-mer using ABySS, a notorious assembler for short reads. In contrast with other
genomic classification tools, HAWK uses k-mer counts and differential expression
analysis, therefore it could be applied to RNA-seq data with the appropriate
modifications in the assembly of the k-mers.

Finally, DE-kupl is the first tool to compare k-mer abundances across two groups of
human replicates, removing k-mers represented in the reference transcriptome and
the ones considered noise due to low expression to identify differentially expressed
events that are not represented in existing transcript catalogues. Each k-mer is then
tested using either a t-test or DESeq2, reducing the set of k-mers to only the ones
considered differentially expressed between the two groups of samples. Finally,
overlapping k-mers are merged in sequences that can be mapped on a reference
genome to identify its biological meaning, such as differential splicing,
polyadenylation, lincRNA, allele-specific expression, repeats and IR.

Importantly, in DE-kupl publication it is shown that in RNA-seq the sequence
diversity from the reference genome and transcriptome is much bigger than in WGS,
suggesting the existence of a significant amount of biological information n RNA-seq
that cannot be accessed using reference-based approaches.

GENCODE :0.16%
GENCODE
bl

GENCODERANA-Seq:
0.15%

RNA-Seq

GRCh38

Figure 12: The diversity of non-reference k-mers is greater for RNA-seq than for WGS.
Intersection of k-mers between GENCODE transcripts, the human genome (GRCh38),
RNA-seq, and WGS data. RNA-seq and WGS data originate from the same lymphoblastoid cell
line (HCC1395).

From Audoux J, Philippe N, Chikhi R, Salson M, Gallopin M, Gabriel M, Le Coz J, Drouineau E,
Commes T, Gautheret D. DE-kupl: exhaustive capture of biclogical variation in RNA-seq data
through k-mer decomposition. Genome Biol. 2017 Dec 28;18(1).243. doi:
10.1186/513059-017-1372-2. PMID: 29284518; PMCID: PMC5747171.

Concluding, k-mers have a large potential as biomarkers: they are agnostic since
their extraction from the raw data is independent of any reference genome or
annotation; they are interpretable, since they can be mapped to a reference genome
to derive the underlying biological meaning, and they can be aggregated by
overlapping their sequence, reducing the big issue of redundancy. Furthermore, the
specificity of the sequence allows the application of k-mers as biomarkers for clinical
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applications, using counting sequencing such as Nanostring nCounter described in
the previous chapter.

|dentification of IR events

Eight years after the publication of the first version of IRFinder'?, with more than 400
cumulative citations, the software is a reference for IR analysis.

The reasons for its success reside not only in the quality of the analysis but also in
the end-to-end implementation that takes care of all the aspects of the analysis of
raw data, including the STAR mapper reference generation, adapter trimming and
differential analysis procedures.

The aspects of usability of the software had been improved during those years, also
thanks to users feedback that helped to solve different bugs. Nevertheless, there are
still a few aspects that require additional effort:

1. Long read sequencing is gaining more and more importance, especially in
studies involving transcript structure. The pipeline is calibrated around
short-read sequencing, not only for what concerns the type of aligner but also
for the assumptions that are postulated computing the IRratio.

2. Despite the strategies used to mask regions overlapping low mappability
regions and known features, such as additional exons and non-coding RNAs,
there is a considerable portion of false-positive IR events that can be
discriminated by visual inspection on a genome browser.

3. The IR database, IRbase, built in 2017 from 2000 human samples is outdated
and doesn’t allow the user to easily visualize and compare his own data with
the ones included in the database.

4. The differential IR approach was not validated in previous works and requires
knowledge of the software R.

During my last year of PhD, | worked with my colleague Sylvain Barrier to improve
IRFinder, focusing not only on the four points described before but also enhancing
the aspect of usability and speed that lead to its success.

The result of our work is IRFinder-S?, a suite of tools including a second version of
IRFinder and a completely revised version of IRBase, described in the paper below.
My contribution to this work comprehends: the design of each new component,
enriched by frequent and useful discussions with S.B. and W.R.; the implementation
of the new component with the exclusion of the CNN model, trained, tested and
optimized by S.B.

The CNN Model

Convolutional Neural Networks (CNNs) are a special case of Artificial Neural
Networks (ANNSs) in which the connections have been arranged in a way that
produces a convolution operation, hence their name. A detailed explanation of this
important field can be found in the book Deep Learning®?.
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Convolutional neural networks have a special type of layer, the convolutional layer,
where the convolution is produced. Intuitively, a convolution consists of matching a
pattern present in the kernel across all possible positions in the image. In this sense,
matching is an element-wise multiplication between the kernel and each possible
position in the image. The element-wise product of each position is then summed to
generate an output value, as shown in Figure 13.

Input Kernel Output

Fig. 13: lllustration of a discrete convolution between an 2D input image and a 2D convolution kernel.
From: hitp://www.theses.fr/l2020GRALM043

The output of the convolution of the image with a kernel is called a feature map, and
each value of this matrix is obtained by taking the image values within a window,
having the same shape as the kernel, and multiplying them element-wise with the
kernel. These are then summed to obtain a single value. The window of image
values is then moved by a certain amount, the kernel stride, and the element-wise
multiplication and summation are repeated. Each of the values in the output feature
maps represents the absence or the presence of the filter’s pattern inside the image.
The whole point with CNNs is to find "features" allowing them to represent objects by
learning them directly from data, instead of hand-crafting or manually selecting them.
This is done by updating the weights (kernels in the image context) in an iterative
manner such that these updates help minimize an error measuring function. The
adopted solutions to this problem are two well-known algorithms: gradient descent®*
and error backpropagation?*.

Usually, a pooling layer is added after the convolutional one: the aim is to replace the
output at a certain location with a summary statistic, usually the maximum, of nearby
outputs. This makes the representation invariant to small translations of the input
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and therefore allows the detection of the presence of a feature more than its precise
location. Replacing a region with a summary, this layer also improves the
computational and memory efficiency of the model, reducing the number of inputs in
the next layer.

In IRFinder-S we trained a CNN model using image-like vectors generated during
the main process of IRFinder where the BAM file is processed to estimate the
IRratio. Those vectors contain the information of the potential retained introns,
including 15 nucleotides of the flanking exons, in a one-dimensional array with two
channels. The only dimension represents the genomic position, the first channel
represents the number of reads that cover the related position and the second the
number of reads that are spliced.

Considering only introns having an IR ratio higher than 0.05, therefore presenting a
considerable level of intron retention, the goal of the model is to classify introns that
are truly retained from the ones that aren’t.

To determine the ground truth, if an intron is truly retained or not, we use long reads
and we filter the introns whose coverage isn’t sufficient to have a good degree of
confidence about their retention state.

The evaluation of the model performances requires a cross-validation procedure
where the dataset is divided into n equal partitions. n models are trained using the
data from n-1 partitions and tested on the remaining one.

This process allows us to estimate the performances of the model on unseen data.
Finally, to evaluate if the model could be generalized on different biological sources,
we tested the model trained on a whole dataset using two external cohorts, one
generated using the same cell line in a different differentiation state and a second
one generated using a different cell line.
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Abstract

Accurate quantification and detection of intron retention levels require specialized
software. Building on our previous software, we create a suite of tools called
IRFinder-S, to analyze and explore intron retention events in multiple samples.
Specifically, IRFinder-S allows a better identification of true intron retention events
using a convolutional neural network, allows the sharing of intron retention results
between labs, integrates a dynamic database to explore and contrast available
samples, and provides a tested method to detect differential levels of intron
retention.

Keywords: Intron retention, Splicing efficiency, RNA sequencing

Background

Intron retention (IR) occurs when an intron is transcribed into pre-mRNA and re-
mains in the final mRNA. It is a type of alternative splicing that is gaining increased
interest in human health and disease research. Originally described in plants and vi-
ruses, IR has now been shown to be a common form of alternative splicing in mamma-
lian systems with a major impact on normal biology and disease [1-7]. However,
detecting IR events poses several specific difficulties. Introns are highly heterogeneous
genomic regions, both in length and sequence features. In mammals, IR levels are gen-
erally low and thereby subject to incomplete coverage and higher count overdispersion.
As a result, software that is not specifically tuned for IR detection generally performs
poorly and databases that provide transcript isoform sequences fail to list many IR
events [4, 8].

We previously published a method called IRFinder, an algorithm for detecting and
quantifying IR events, that is frequently used as a benchmark for IR detection and
quantification [8—12]. This software and its associated database have been critical in
the detection and interpretation of IR events in numerous studies [13-19]. However,
building on 4 years of user feedback, it is apparent that IRFinder is lacking features
that would enable bench scientists to more reliably identify actionable IR events, share
IR data, and dynamically analyze changes in IR levels between multiple samples. We
have implemented a suite of features in a new version of our software called IRFinder-

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain perrission directly from the copyright
helder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.07. The Creative Commons Public Domain
Dedication waiver (http/creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.
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S. Specifically, we have (1) created a dynamic database that allows users to perform a
meta-analysis, contrast IR from multiple samples, and view IR in an internal browser;
(2) created an infrastructure allowing users to share IR detection results from their own
samples; (3) implemented a convolutional neural network that analyzes genomic coor-
dinates, as a genome browser would display, and pinpoints IR events that are most
likely candidates for further wet-lab analysis; (4) implemented IR detection from third-
generation long sequencing technologies; and (5) implemented and tested differential
analysis of IR levels between samples.

Results and discussion

IRBase enables the visualization and contrast of IR events as well as data sharing

It is essential to visualize and contrast specific intron retention events detected by com-
putational approaches before spending resources on their experimental validation. This
allows users to understand the transcriptional context of a predicted IR event but also
to assess whether the event is common to other cell types or specific to their experi-
ment of interest. We therefore created a web application that allows users to upload
their own data, decide whether to keep them private, or share them with other users
and visualize the results in a javascript version of the IGV genome browser. We
propose two types of tracks to visualize the IR events: a bar mode, showing the ratio
values like a BedGraph and an IRFinder track to visualize the abundances of the flank-
ing regions, the number of reads spliced and intron read depth (Fig. 1A and Add-
itional file 1: Fig. S1). These views can integrate results from publicly available datasets
and shared data from other users (Fig. 1B). Currently, IRbase accepts results from hg38
and ENSEMBL annotation and contains 935 cell lines (downloaded from https://por-
tals.broadinstitute.org/ccle). This database is fully integrated within the IRFinder detec-
tion tool; users who have predicted IR events using our software are prompted to
upload and share their results. By facilitating the upload process and allowing easy inte-
gration using flexible labelling of experiments using user-defined tags, we ensure that
the database can grow steadily. The database is accessible for meta-analyses across tis-
sue types and conditions and allows users to contrast multiple experiments in one

interface.

IRFinder-S integrates long read detection of IR

Third-generation sequencing technologies, especially direct RNA sequencing, represent
a unique opportunity for the detection, characterization, and validation of IR. Because
these technologies are capable of sequencing individual RNA molecules from start to
end, they can elucidate the full structure of transcripts with retained introns. As a con-
sequence, long reads can be considered as a means of validating IR predictions obtained
from SR data. The increased availability of long reads facilitates the study of splicing
structure, including a more reliable identification of IR events. IRFinder-S proposes a
dedicated version of the algorithm for long-read sequencing (Fig. 2 and Materials and
Methods). In this long-read mode, we make multiple adjustments to the algorithm to
account for the specificities of long-read data but also to account for the fact that these
reads will often serve as the validation of IR and thus the default parameters are more

stringent. Firstly, the mapping algorithm STAR is replaced by Minimap2 [20], a

Page 2 of 13
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Fig. 1 IRbase 2.0 is a web application that allows users to visualize and share IRFinder results. A IGV view of
three replicates of MCF10a-Snail-ER cells without tamoxifen treatment (T0, in red), after 1 day of treatment
(T1, in green) and after 7 days (T7, in blue) using the new IRFinder track type. The BED graph track style of
the same locus is represented in Additional file 1: Fig. S1. B Boxplot showing the IRratio in the nine user
provided samples and in 55 breast cancer cell lines, 29 primary tumors, and 26 metastasis, currently publicly

available in IRbase

specialized aligner for long reads providing competitive alignment accuracy and
low computational requirements. Secondly, because long-reads have a higher
error rate that often leads to slight imprecision in the definition of exonic bound-
aries (Fig. 2B), we allow by default up to three nucleotide jitter in exonic bound-
aries when calculating correctly spliced introns (parameter -j). Thirdly, we only
consider the minimum read depth rather than the median when considering
retained intron abundance. These modifications allow us to use more long reads
when measuring IR levels and also filter out reads for which IR calls would be
uncertain (Fig. 2C).

Page 3 of 13
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Fig. 2 IRratio estimation for long reads. A Main changes in the pipeline between short reads (left) and long
reads (right). A; = intron abundance and A. = exon abundance. In short reads, A; is estimated as the median
value of the intron depth; in long reads, we use the minimum intron depth. The exon abundance in short
reads is estimated as the maximum value between the number of reads spliced at the 5' or 3' of the intron;
in long reads, it is the number of reads that are spliced in 5" and 3", Red crosses indicate regions that will
be excluded from further analysis either due to other overlapping transcripts (left cross) or low mappability
regions (right cross). Green lines indicate intronic abundance (A4;). B Example of poor alignment to exonic
borders due to sequencing errors that creates a jitter effect on the mapping of long reads around the
splice junctions. Without jitter (option -j 0), the software identifies only 110 SpliceLeft reads, 0 SpliceRight,
and 0 ExactSplice. With the jitter aption (- 3), it identifies 183 Spliceleft reads, 210 SpliceRight reads, and 69
ExactSplice. Having an intron abundance (Aj) of 4 and using the ExactSplice as Ae, the IRratio in the first
case is 1 and it raise the LowCover waming; in the second case, the IRratio is 0.055, raising the
Minorlsoform warning due to the imbalance between the ExactSplice and the max(SplicelLeft, SpliceRight)”
€ Example of alternative 3" end that is considered as intron retention by the standard method (IRratio=0.40,
due to the reads in the red box that do not extend fully between the two exons) and not by the long read
mode (IRratio=0, due to the absence of reads covering the green and red boxes)

Convolutional neural networks enable users to pinpoint actionable IR events

Feedback from the users of our first version of IRFinder confirmed that visual inspec-
tion of IR events was a crucial step in selecting candidates. Specific patterns that an
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expert could detect in a genome browser increased the likelihood of selecting good can-
didates. Features such as the regularity of intronic coverage, the presence of well-
defined exons, and other features contributed to the review of IRFinder candidates.
However, this process is time-consuming and variable from user to user. Thus, we tried
to reproduce this expert viewing by using a deep-learning approach that would detect
these patterns from a dataset of high-quality IR events. To this end, we trained a con-
volutional neural network (CNN) using high confidence retained introns confirmed by
long reads as ground truth. This CNN filter is directly integrated into IRFinder, and it
works by transforming coverage data into visual arrays that are submitted to the CNN
(Fig. 3A). To test this approach, we used an inducible cell reprogramming system based
on human MCFI0A cells that recapitulates the epithelial-mesenchymal transition
(EMT, Materials and Methods) for which we had access to both short- and long-read
RNA-seq data (Fig. 3B). In this system, MCF10a cells stably express the EMT-inducing
transcription factor Snail fused to the estrogen receptor. Upon treatment with tamoxi-
fen, the first changes in alternative splicing can be observed as soon as 24h, while a
complete cell reprogramming is reached upon 7 days of treatment. We thus used as a
training set three biological replicates of untreated epithelial cells and three replicates
treated for 1 day with tamoxifen, which corresponds to the first day of the EMT transi-
tion. As a first external validation set, we used three biological replicates of cells treated
for 7 days with tamoxifen, corresponding to the fully induced mesenchymal-like state.
This division aims to validate the model on new IR events that are likely to emerge in
the mesenchymal-like state and therefore never seen by the model in the training data-
set. As a second external validation set, we used long-read data of GM12878 B-
Lymphocite cell lines, provided by the nanopore consortium [21]. Because there was no
short read (SR) dataset provided with this experiment, we used the GM12878 Illumina
data from an earlier ENCODE study, processing the data as described in our previous
study [22]. We considered IR events detected in both short reads and long-reads as
bonafide IR events to measure true positives (Material and Methods). We trained the
model to recognize the true positive introns from the false positive ones in a 10-fold
cross-validation procedure. We then evaluated our model on a biologically distinct
dataset where the cells had fully transitioned to their mesenchymal-like state. On this
independent test set, it achieved a sensitivity of 0.90 and a specificity of 0.88, with a bal-
anced accuracy of 0.89 (Fig. 3B, right). We then evaluated our model on a different cell
line, GM12878, where the model achieved a sensitivity of 0.81, specificity of 0.83, and a
balanced accuracy of 0.82.

We then benchmarked IRFinder-S against iREAD [12], a recent software dedicated to
the analysis of intron retention, MAJIQ [23], a software designed for the analysis of al-
ternative splicing events that adjust the PSI value of retained intron, and Whippet [24],
another software that uses fastq files to compute PSI values. These software were se-
lected based on their popularity but also on whether they could output a measure of
retained versus spliced out introns. The results are shown in Table 1 and Add-
itional file 1: Fig. S2. It is worth noting that Whippet excludes a high number of introns
prior to their quantification steps since it builds its reference based only on known
retained introns and would thus be unable to detect rare or unannotated IR events.
iREAD excludes all the introns overlapping with other features. For IRFinder, we ex-

cluded the introns reporting any warnings. IRFinder-S achieves the best overall
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The long reads are used to determine the IR ground truth. Bottom: the architecture of the CNN model. B
Training and evaluation of the model using the external datasets; the ground truth is determined using the
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performance, excludes the least introns before analysis, and thanks to the CNN it does
not require the user to set a threshold on IR ratio. To benchmark execution time, we
ran a single sample (the third replicate of the EM test sample) on a single core.
IRFinder-S processed a single BAM in 20 min, MAJIQ 31 min, and iREAD 50. Whippet
took 194 min to process a sample; however, Whippet starts from FASTQ files instead
of already aligned BAM files, for which the alignment takes 120 min using STAR on a
single core. Interestingly, when we add the CNN on top of the other benchmarked al-
gorithms, it reduces the number of false positive introns, at the expense of a small
number of true positives (Additional file 1: Fig. S3) making the CNN a valuable ap-
proach for our algorithm but also for other approaches. An example of an intron cor-
rectly filtered out by the CNN is presented in Additional file 1: Fig. S4.

Inspection of examples where the CNN was mistaken reveal that the same mistakes
would probably have been made by visual examination by an expert; the false positives
generally present a homogenous coverage across the intron (Additional file 1: Fig. S5A
top right) and false negatives seem to present unevenly covered intronic regions
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Table 1 Table representing the results of the benchmark on the EMT test dataset (A) and on the
GM12878 test dataset (B) using a threshold for the PSI values and IR ratios of 0.10

Method Excl. TP TN FP FN TPR TNR PPV Acc. FDR
A. EMT test results
IRFinder 25989 695 95198 428 138 0.83 0399 062 098 038
IRFinder-S 25989 673 35515 m 160 081 1.00 0.86 0.99 0.14
iREAD 28221 18 33994 86 129 0.12 1.00 017 0.99 083
Whippet 59822 443 1978 87 118 079 056 0.84 052 0.16
MAJIQ 30179 388 29572 1951 358 052 054 017 0.3 0.83
B. GM12878 test results
IRFinder 30943 1228 50720 729 185 087 059 063 098 037
IRFinder-S 30943 1077 51123 326 336 0.76 0399 0.77 0.99 0.23
iREAD 37905 71 45501 179 149 032 1.00 028 0.99 0.72
Whippet 80125 772 2459 347 102 0.88 083 069 0.38 0.31
MAJIQ 50932 826 30626 917 504 062 057 047 096 053

Excl intron excluded, TP true positive, TN true negative, FP false positive, FN false negative, TPR true positive rate
(sensitivity), TNR true negative rate (specificity), PPV positive predicted value (precision), Acc. accuracy, FDR false
discovery rate

(Additional file 1: Fig. S5A bottom left). Finally, the performance of our CNN may be
underestimated because the misclassified IR events are generally borderline with IRra-
tios close to the threshold of 0.1, and mislabeled introns, due to incongruences between
long- and short-read resolution (Additional file 1: Fig. S5B).

Implementation and validation of differential IR analysis

In our first version of IRFinder, we suggested methods to analyze differential IR (DIR)
using either standalone scripts written in a different coding language or a procedure re-
quiring the user to have extensive knowledge of data transformation and statistical lan-
guages such as R. In IRFinder-S, we include IRFinder Diff, an integrated method that
allows end to end analysis using either the density-based approach, DESeq2 [25], or the
PSI-based approach, SUPPA2 [26] adapted for IR ratios (Material and methods). The
output can be used in SUPPA2 downstream analysis for clustering analysis for example.
Our choice of algorithms was based on the popularity of these two approaches for the
analysis of transcriptomic data. We now wanted to test if they were suitable for the de-
tection of differential IR.

In order to corroborate and compare DESeq2 and SUPPA2 as methods to identify
differentially retained introns, we used the aforementioned EMT system (Materials and
methods). We compared three replicates of EMT-induced MCF10a cells (mesenchy-
mal-like state) and three untreated control replicates (epithelial state) to detect differ-
entially retained introns between the mesenchymal and epithelial states (Fig. 4A). Using
standard settings for both algorithms (BH adjusted p value < 0.05 for both, absolute FC
> 1.5 for DESeq2 and delta ratio = 0.1 for SUPPA2), we found that DESeq2 identified
148 differentially retained introns and SUPPA2 found 46 (Additional file 2: Table S1
and Additional file 3: Table S2). 31 differential IR events were common between the
two. In both cases, introns were considered if at least one sample had IRratio > 0.05.
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Fig. 4 Differential Intron retention validation between stages of EMT differentiation. A EMT is induced in
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supplementary file 1. € Scatter plot showing the [Rratios of the introns called as differentially retained by
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We selected 12 introns called as differentially retained and that were suitable for
clean primer design in that they did not overlap with other exons or have any known
alternative donor or acceptor sites. The selected introns were the following: four in-
trons, in the genes CIORF74, GTPBP2, PNRC1, and NR4A1 called by both methods;
six introns, in the genes EFNA1, CD44, CTNND1, CLL20, and NCOA?7, called only by
DEseq2; and 3 introns, in the genes PKMYTI1, GBA2, and PLCGI, called only by
SUPPA2. Figure 4B shows the delta [Rratios between epithelial and mesenchymal repli-
cates as computed by IRFinder and the ones obtained by qPCR validations. Of the 12
tested introns, 7 were confirmed using RT-qPCR. The comparison between IRFinder-S
and RT-qPCR results showed that both approaches display comparable changes
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between epithelial and mesenchymal IR ratios, However, we observed that DESeq2
identifies more DIR events in samples with an average lower IRratio (Fig. 4C). This
may be explained by the fact that events with low intronic coverage produce highly
variable IR ratio values. As a consequence the ratio values may be highly variable within
replicates and methods such as SUPPA2 which make use of replicate variability to de-
termine uncertainty may not produce statistically significant scores. As such, DESeq2 is
chosen as the default with SUPPA?2 available if required.

Conclusion

Until recently, IR detection ran parallel with the analysis of other splicing events with-
out taking into account inherent difficulties in measuring intronic expression. As a re-
sult, IR has been systematically underestimated. Despite the recent development of
specialized software for detecting IR, the measurement of IR levels has been problem-
atic. Here, we introduce IRFinder-S to overcome major obstacles in IR detection and
exploration. These include a database to explore IR in numerous tissue types and share
IRFinder results, the addition of a CNN filter to drastically reduce the false-positive rate
of IR detection, the inclusion of an experimentally validated approach to detect differ-
ential IR, and the ability to analyze long-read sequencing data. In addition, IRFinder-S
overcomes many issues unveiled in the last 4 years thanks to community feedback, such
as the possibility to give pre-computed low mappability areas, whose creation step takes
most of the time during the reference creation, the possibility to link pre-existing STAR
reference folders, and a detailed help divided by run modes. Finally, Docker and Singu-
larity images including all the dependencies required to run IRFinder on any Linux dis-
tribution are available in dockerhub (cloxd/irfinder:2.0) and in GitHub (https://
github.com/RitchieLabIGH/IRFinder).

Methods

IRbase 2.0

The new version of IRbase consists in a frontend, implemented with Angular 10, a
mySQL database containing the basic information about each sample submitted and
the introns having IRratio higher than 0.05, warning different than “LowCover” and a
tag-based aggregation system that allows fast queries to obtain statistics on large num-
ber of samples.

The backend is implemented in node express version 4.17.1. We generated two novel
tracks to show IRFinder results (IRFinder-IR-[non]dir.txt files) directly on igv.js, one
displaying the IRratio as bedgraph and one that combines the additional information
included in the file allowing the representation in detail of the flanking exons, the
spliced reads, and the intron depths, as shown in Fig. 1.

The user authentication is managed by Google’s service firebase and is necessary in
order to upload new samples. Currently, IRbase requires results from hg38 with
ENSEMBL reference.

Measuring intron retention in long reads
In order to adapt the IRratio computation in long read, we adapted the estimation of

intron and exon abundance keeping unchanged the formula:
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Intronic abundance

IRratio =
( Intronic abundance + exonic abundance )

A visual representation of the main changes is shown in Fig. 2. The intron abundance
in long reads is evaluated as the minimum coverage in the intron instead of the median,
offering a more stringent but reliable IRratio. The exon abundance in long reads is esti-
mated as the exact number of reads spliced between the acceptor and the donor site,
rather than the highest number of reads spliced between donor and acceptor sites. Fi-
nally, in order to take into account the long reads” higher error rate, the count of the
splits is considered not only for the exact split nucleotide annotated but also the three
flanking positions.

This alternative version is used by default in IRFinder long mode and is triggerable
by the “-1” flag argument using IRFinder BAM.

Convolutional neural networks

The network was trained on the epithelial datasets labeled TO and T1 (days 0 and 1 of
treatment) and validated on the mesenchymal dataset T7, described in our previous
work [22] and having biological samples sequenced with both unstranded short and
stranded long-read technologies. We use IRFinder to analyze the raw data, and for each
pair of data belonging to a sample, we selected the introns with IRratio above 0.05 and
no warnings in short reads, as putative IR candidates. We then used the long reads as
ground truth of the corresponding intron: we labeled as true positive IR, the introns
with no warning, depth (intron abundance + exon abundance) of 25, and IRratio above
0.1 and as false positive IR, the introns with 50 depth and IRratio of 0. Our rationale is
that it is easier to assert the existence of IR events than to assert their absence; thus, we
pushed the required depth for negative events to 50 to increase their likelihood of being
true negatives.

To allow the model to use directional and non-directional libraries and to reduce
mislabeled events, we considered only the introns having a congruent label between the
directional and non-directional long reads IRFinder results. Due to the scarcity of FP,
we included in the training set also true negative introns having IRratio higher than
0.01 in the SR to ensure a balanced dataset.

Benchmark

To compare IRFinder’s results with the output of iREAD [12], Whippet [24] (v1.6.1)
and MAJIQ [23] (Build v2.1-c3da3ce), we used the reference genome hg38 and
ENSEMBL v100 annotation, generating the required reference files for each software.
We paired the results of each method with the introns of the ground truth determined
from the long reads in the test datasets as described in the previous chapter.

We used two arbitrary thresholds, 0.05 and 0.10, for the PSI values of Whippet and
IRFinder’s IRratio to classify the introns in IR and non-IR. For what concerns MAJIQ,
we considered as no IR the introns without a PSI value adjusted for intron retention
and the introns having an adjusted PSI value lower than the two arbitrary thresholds.
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Differential intron retention

The DESeq2 constructor is used to fit a GLM based on the intronic abundance
(intron depth column) and the exonic abundance (the maximum between LeftS-
plice and RightSplice) to test the fold change of IR between two conditions.

The SUPPA2 wrapper uses IRratio values instead of percent splice in (PSI) values,
both spanning from 0 to 1, and the exon abundance instead of transcript per million
(TPM) values, considering so far the expression of the exons surrounding each intron
rather than the average transcript expression.

In both cases, the user can decide to remove introns with warnings (by de-
fault, introns with LowCover in at least one sample are removed) and to set a
threshold on the minimum IRratio that at least one sample has to meet (by
default 0.05).

The command line interface offers a simple tool to use DESeq2 or SUPPA2 on two
or more sets of samples, requiring only the location of the IRFinder result files
IRFinder-IR-[non]dir.txt. In case of more than two sets, all the pairwise comparisons
are reported in the output folder.

Cell line culture

Non-transformed human female breast epithelial cells (MCF10a cells) were cultured at
37°C and 5% CO, in DMEM/F12 (Sigma) supplemented with 5% horse serum (Ther-
moFisher), 10 ng/ml EGF (Sigma), 10 pg/ml insulin (Sigma), 0.1 pg/ml cholera toxin
(Sigma), 0.5 pg/ml hydrocortisone (Sigma), 1% L-glutamine (Sigma), and 1% penicillin/
streptomycin (Sigma; culture medium). Cells were kept in high confluency (approx.
70%) in order to maintain their epithelial character and passed every 2-3 days by tryp-
sinization (0.25% Trypsin (Sigma) for 15-20 min).

Epithelial-mesenchymal transition (EMT)

MCF10a-Snail-ER cells were used as cellular model for EMT. In this model, EMT is in-
duced by addition of exogenous 4-hydroxy-tamoxifen to the cells, which changes Snail-
ER conformation and can thus be translocated to the nucleus for silencing of key epi-
thelial markers and expression of mesenchymal genes within 24 h. Prior to induction,
850,000 cells were seeded in 15-cm culture plates and grown in 17-ml culture medium
for approximately 24 h. Twelve hours before tamoxifen treatment, the cells were syn-
chronized by exchanging the medium to serum free medium (culture medium without
horse serum). Cells were incubated for 6 days in culture medium with 100 nM 4-
hydroxy-tamoxifen (Sigma). Controls were performed by adding equivalent volumes of

methanol.

Primer design

We selected IR events by visual inspection, selecting introns without neither
antisense transcript nor known exon in each sample and without excessive noise
in the intron body. Two sets of primers were designed for each intron, one pair

overlapping the exon-exon junction and one covering the intron-exon junction.
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RT-gPCR

RT-qPCRs were performed in biological triplicates. RNA was extracted from cells using
QIAshredder (Qiagen, 79656) and Gene]ET RNA purification kit (Thermo Scientific,
#K0732) following the manufacturers’ instructions. 500 ng of the total RNA was DNase
treated (Promega, M6101) and reverse-transcribed using oligo(dT) primers (Transcrip-
tor First Strand cDNA Synthesis kit, Roche 04897030001).

For each biological replicate, qPCRs were performed in technical duplicates using
Bio-Rad CFX-96 Real-Time PCR System and iTaq Universal SYBR green Super-mix
(Bio-Rad #1725121). For each intron of interest, two primer pairs were designed that
includes the exon-exon (of the flanking exons) and an intron-exon junction,

respectively.
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Alternative approaches for the RNA-seq data
analysis

Methods like DE-kupl, KOVER and HAWK demonstrated that embedding the
information in a human-understandable and interpretable format such as genes or
transcripts is not necessary to compare the information contained in sequencing
data. k-mers allow us to compare groups of samples in an agnostic way, unbiased by
any reference sequence or annotation, leading to highly reproducible results: the
K-mer counts won’t change in the feature but our knowledge about the composition
of the reference genome improves every year. Furthermore, k-mers allow the
comparison of small fractions of the RNA molecule, avoiding the loss of information
derived from aggregating multiple reads under a single feature, that is gene,
transcript or splice junction.

Finally, using a large enough number of samples, it would be possible to associate
variations, such as SNP or indels, to a specific population, similarly to genome-wide
association studies (GWAS).

The two following paragraphs present the work of my team on two different
algorithms designed to identify k-mers able to classify two or more distinct groups of
samples in large cohorts of samples.

GECKO is a genetic algorithm to classify and explore high
throughput sequencing data

GEnetic Classification using k-mer Optimization, GECKO, is the first method that
aims to identify groups of k-mers able to classify two or more groups of samples in
large cohort studies.

The method, described in detail in the paper included below, shows that It's possible
to identify groups of k-mers that, alone or in synergy, can classify different groups of
patients, with a better performance with respect to gene counts. The approach has
been tested on different sequencing data types, such as miRNA, mRNA and bisulfite
sequencing data.

In brief, GECKO takes in input raw sequences and uses Jellyfish2 to count the k-mer
abundances in each sample. It then assembles a k-mer matrix, where each row is a
K-mer and each column is a sample.

The last step of the preprocessing consists of the filtering of the k-mers considered
uninformative, noisy and redundant.
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Finally, GECKO implements an adaptive genetic algorithm, an efficient metaheuristic
optimization algorithm, to select subsets of k-mers that maximize the accuracy in
classifying the sample groups using a linear support vector classifier (LinSVC).

| joined the lab when GECKO was almost finished and | contributed by implementing
the step to reduce the redundancy, the optional step to filter the k-mers based on the
ANOVA f-test and by fixing some bugs.

Some crucial issues of working with k-mers on large datasets emerged:

1 - The unfiltered k-mer matrix is sparse and can easily occupy one terabyte of
space on a disk in a study with one thousand samples, even in binary form.
Furthermore, its fixed structure requires the user to allocate one matrix for each
experiment.

2 - Despite the redundancy reduction step, the final output presents several k-mers
mapping to the same biological entity. Though the information content is similar, it
might be different enough to escape the symmetric uncertainty based filter.

3 - The process is nondeterministic: running several times the genetic algorithm,
different subsets of k-mers are selected and there is not a clear procedure to select a
robust group of k-mers.

For what concerns the implementation, the use of Nextflow to coordinate different
scripts written in different languages ( C++, Perl and Python ) makes not only the
maintenance of the software challenging, but also requires an advanced user for the
installation and usage.
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Comparative analysis of high throughput sequencing data between multiple conditions often
involves mapping of sequencing reads to a reference and downstream bicinformatics ana-
lyses. Both of these steps may introduce heavy bias and potential data loss. This is especially
true in studies where patient transcriptomes or genomes may vary from their references,
such as in cancer. Here we describe a novel approach and associated software that makes
use of advances in genetic algorithms and feature selection to comprehensively explore
massive volumes of sequencing data to classify and discover new sequences of interest
without a mapping step and without intensive use of specialized bicinformatics pipelines.
We demonstrate that our approach called GECKO for GEnetic Classification using k-mer
Optimization is effective at classifying and extracting meaningful sequences from multiple
types of sequencing approaches including mRNA, microRNA, and DNA methylome data.
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probe-based technology and more recently high throughput

sequencing (HTS), have considerably advanced knowledge
of disease etiology and classification! . The recent promotion
of HTS across a wide spectrum of diseases has generated a
wealth of data that measure gene expression and transcript
diversity but also explore its putative genetic and epigenetic
regulators. Still, despite more than a decade of development,
computational analysis and integration of these data presents
a major challenge. Each type of HTS experiment is compart-
mentalized to a set of computational pipelines and statistical
approaches that often require a full-time bioinformatics
specialist, In addition, most of these pipelines rely on a reference
genome or transcriptome and thus cannot inherently account for
the diversity in non-reference transcripts or individual varia-
tions®. To remove the requirement of a reference, recent meth-
odologies use k-mer representation; they directly compare the
counts of nucleotide sequences of length k between samples®,
These approaches have been successful at detecting novel tran-
scripts but only on a very small subset of RNA sequencing
data’ and would be impossible to implement for the classification
of large patient cohorts using the entire transcriptome. In the
field of metagenomics, numerous algorithms have been developed
to discover unique k-mers or k-mer signatures to classify
organisms®’. However, these were developed for organisms with
smaller genomes that do not have billions of different k-mers.
In addition, they were designed for inter-species studies where
unique k-mers can be attributed to the genomes of different
taxonomic identities.

Exploring a large set of k-mers to classify samples can be
framed as a global optimization problem for which many
recent approaches have been published and compared®. Amongst
these is a class of nature-inspired algorithms termed Genetic
Algorithm which are based on the processes of mutation,
crossing over and natural selection. These have appealing
properties that could apply to the exploration of a large set of
k-mers. They have low memory requirements because they
explore only part of the data at each stage and they can
produce multiple solutions that fit well with biological inter-
pretation of data. However, despite these properties, genetic
algorithms are rarely used to optimize problems with relatively
small sample sizes and such a large number of parameters, in
this case billions of k-mers.

We have created a novel approach and associated software
called GECKO for genetic classification using k-mer optimization
that is especially designed for HTS data. GECKO is based
on k-mer decomposition coupled with an adaptive genetic algo-
rithm that explores HTS data from two or more input conditions,
This algorithm searches for groups of k-mers that, combined
together are highly informative; they are able to classify the
input categories with high accuracy. Because GECKO uses k-mer
counts, it can theoretically be applied to any type of HTS
experiment and does not rely on a reference genome or tran-
scriptome. Here, we successfully apply GECKO to a variety
of biological problems and sequencing data. These include
microRNA (miRNA) sequencing to classify normal blood cells,
mRNA sequencing to classify subtypes of breast cancer and
to predict response to chemotherapy, and bisulfite sequencing
(BS-seq) on normal versus chronic lymphocytic leukemia (CLL)
samples. Regardless of the type of data, GECKO finds small,
accurate signatures that classify these samples and could thus
be used as diagnostic and prognostic markers. In addition,
by visualizing how the genetic algorithm evolves to find solutions,
GECKO can be used to explore novel sequences or groups of
functionally related sequences associated with normal biology
and disease.

S tudies of variation in gene expression, initially through

Results
GECKO is designed around two main steps; these are a k-mer
matrix preparation step and an adaptive genetic algorithm
(Fig. 1).

The k-mer matrix preparation, uses an input sequencing file
(.bam or fastq) to create a matrix of k-mer counts; that is
the number of times a sequence of length k appears in each
sample (k=30 by default). This matrix is filtered for k-mers
with low counts and non-informative or redundant k-mers (see
the section “Methods™). Then, during the second step an adaptive
genetic algorithm will explore the matrix to discover combina-
tions of k-mers that can accurately classify input samples. The
adaptive genetic algorithm starts by creating thousands of digital
individuals; these are groups of randomly selected k-mers. The set
of individuals is called a population. This population will then
go through phases of mutation, where individuals replace one
of their k-mers with another randomly selected k-mer; a phase
of crossing-over where individuals exchange a portion of their
k-mers with each other and selection, where individuals that do
not classify the input samples well enough will be removed from
the population and replaced. Mutation allows GECKO to explore
local solutions similar to the individual to be mutated; crossing-
over, allows GECKO to explore a broader set of solutions and
reduces the chances of getting stuck in a local minimum (see the
section “Methods”). Each cycle of mutation, crossing-over, and
selection is called a generation. By default, GECKO will iterate
through 20,000 generations or stop when the number of new
solutions discovered throughout generations slows down (see
stopping criteria in the section “Methods”). This algorithm is
called adaptive because the mutation and crossing-over rates
depend on how well individuals in the population perform.
Individuals that perform well have lower rates to prevent them
from changing drastically and thus enabling them to converge

Input data (fastq or bam)
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Fig. 1 Overview of the GECKO algorithm. Input fastg or bam files from two
or more conditions are transformed into a matrix of k-mer counts across all
samples. The k-mers for which the counts are below a noise threshold or
that do not vary across samples are removed (red dots on the right of the k-
mer matrix). The adaptive genetic algorithm randomly selects groups of k-
mers from the k-mer matrix to form individuals. These individuals will go
through rounds of mutation, crossing-over and selection to discover
individuals capable of classifying the input samples with high accuracy
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faster to a solution; individuals that do not perform well will
have higher rates to enable wider exploration of solutions.

In the analyses presented in this study and by default in the
software, GECKO’s performance is systematically tested on 1/6th
of the data that is randomly selected and set aside before running
the algorithm (see the section “Methods™). This test set allows us
to evaluate the accuracy and overfitting for each run; it measures
whether the algorithm fits too closely to the training set and thus
will not correctly predict future input samples. GECKO is thus
run on the remaining 5/6th of the data with cross-validation at
each generation of the algorithm.

Classifying miRNA sequencing data of blood cells. We first
tested GECKO’s performance on a miRNA expression data of
seven types of blood cells sorted from 43 healthy patients for a
total of 413 samples’. We ran GECKO on this dataset using 20-
mers (k-mer size of 20; miRNAs generally vary in size from 20 to
23) to find a set of k-mers that could correctly classify the seven
blood-cell types.

After 6000 generations (15h on 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage) GECKO discovered an individual composed
of only three k-mers (ACCCGTAGAACCGACCTTGC, CCCCA
GGTGTGATTCTGATA, AGTGCATGACAGAACTTGGG) that
could distinguish the groups with 0.96 accuracy (Fig. 2a, b and
Supplementary Data 1 and 2).

In the initial study, the authors described a signature of 136
cell-type-specific miRNAs, These 136 miRNAs could classify
the groups with 0.97 accuracy. Thus, we found a much smaller
signature that could classify the seven blood-cell types with
similar accuracy without the use of a miRNA-dedicated
bioinformatics pipeline,

We then aligned the three k-mers discovered by GECKO to a
database of known miRNAs'®, Two of these mapped perfectly
to miRNAs 152-3p and 99b-5p, which were annotated in the
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original study as specific to NK cells and T helper cells,
respectively. The third mapped to miRNA 361-3p which was
not found to be specific to any of the seven cell types and was
thus ignored in the initial study. Separately, the first two k-mers
could classify one cell-type each and the third would have been
overlooked. Together these three k-mers classify all seven groups
with high accuracy because of their contrasting expression
between each cell types (Fig. 2c).

Classifying breast cancer subtypes using mRNA sequencing
data. Breast cancer is a heterogeneous disease in regards to
response to treatment and its transcriptional background.
Defining the subtypes luminal A (LumA), luminal B (LumB),
HER2-enriched (HER2) and basal-like are crucial for prognosis
and predicting outcome of breast cancer. These subtypes were
initially defined through unsupervised clustering of gene expres-
sion and are currently identified using a standard qPCR assay
of 50 genes called the PAM50!1:12, To assess whether GECKO
could identify k-mers that classify breast cancer subtypes, we used
a dataset of 1087 mRNA-Seq breast cancer samples from the
Cancer Genome Atlas Pan-Gyn cohort'? (patients per class: Basal
175, Her2 73, LumA 513, LumB 185). We ran GECKO for 20,000
generations (75h on 15 cores; see Supplementary Table 1 for
parameters and Supplementary Fig. 1 for runtimes and memory
usage) and extracted the highest scoring individual at its term
(Supplementary Table 2). We then tested how well these k-mers
classified the four cancer subtypes compared to PAMS0 expres-
sion values calculated as transcript per million (TPM). Both the k-
mer counts and PAMS50 TPMs were trained using a linear support
vector machine (see the section “Methods”™) with identical
training data and evaluated on the same test set. The 10 k-mers
had higher accuracy rates compared to the PAM50 on all four
classes (Fig. 3 and Table 1).

We then further inspected the 10 k-mers discovered by
GECKO by mapping them to the human genome. We found
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Fig. 2 GECKO can accurately classify miRNA data from seven types of blood cells using three k-mers. a GECKO output showing the separation of the seven
blood-cell types at each generation (G) of GECKO analysis using t-SNE visualization applied to k-mer counts. b GECKO output showing the accuracy of
separation for the training and test set across 6000 generations. ¢ variance stabilized counts of the three miRNAs that correspond to the three k-mers
discovered by GECKO across the seven blood-cell types (n= 43 biologically independent donors)
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that four of the k-mers mapped to genes from the PAMS50 list
(FOXCI, ESRI1, KRT14, KRT17). Three others mapped to genes
NISCH, TPX2, and ATEF3, the first of which is linked to breast
cancer aggressiveness'* and the two latter both affect cell viability
in breast cancer cells'!5, The three last k-mers mapped to three
genes KLHL6, KANSL2, and PHF10 shown to be involved in
tumorigenesis but not in breast cancer' 618 Of the 10 k-mers,
3 map to coding regions and 7 map to 3’ untranslated regions for
which multiple isoforms exist. k-mer counting can thus integrate
alternative transcription to classify mRNA-Seq samples.

Classifying response to chemotherapy of triple negative breast
cancer on small sample sizes of mRNA-Seq. We then tested
GECKO on a dataset with more heterogeneous cell populations
and smaller sample sizes. We used a cohort of triple-negative
breast cancer patients, an aggressive, heterogeneous subtype of
breast cancer with poor outcomes. This cohort taken from the
Breast Cancer Genome Guided Therapy (BEAUTY) study!'®:0

10 K-mers PAMS0

@ Basal
Her2

® LumB

LumA ! s
‘ @ "
" . "

Fig. 3 GECKO discovers 10 30-mers that classify breast cancer subtypes.
Comparison of breast cancer subtype classification using the frequency of
k-mers discovered by GECKQ and the transcript per million values of the
PAMSO0 gene. Panels show the t-SNE separation of the four classes

was divided into 19 patients that had a complete response to
chemotherapy and 20 patients that did not. In such cases of small
sample size and high heterogeneity, we recommend using
GECKO's voting mode (Fig. 4a).

This mode compensates for bias that may be introduced when
splitting a small number of samples between training and test
datasets and may thus accentuate batch effects. The voting
mode will run 10 instances of the genetic algorithm for 10,000
generations. At their term, it will select k-mers from the top
individuals across the 10 instances and run a final genetic
algorithm on this subset of k-mers for another 10,000 generations.
Running multiple genetic algorithms and aggregating their results
prevents overfitting on a specific split of the data between the
training and test set. In addition, the voting mode introduces
Gaussian noise by default into the data to further prevent
overfitting. This option is recommended for experiments with
<30 samples per condition.

Using the voting mode (83 h using 15 cores; see Supplementary
Table 1 for parameters and Supplementary Fig. 1 for runtimes
and memory usage), we found an individual that was able to
classify patients with 0.93 accuracy (Fig. 4b) with only five k-mers
of length 30 (Supplementary Table 3). As expected three of these
k-mers mapped to genes that had clear roles in resistance to
chemotherapy; JAK3 is involved in chemotherapy resistance in
triple-negative breast cancer®, BOP! reduces chemotherapy
resistance’! and VTCNT is associated with poor clinical outcomes
in numerous cancers including breast cancer??.

Classifying BS-seq data. We then wanted to see if GECKO could
accurately classify samples using epigenetic sequencing data, such
as BS-seq generated to investigate DNA methylation. BS-seq
requires extensive bioinformatics processing to discover changes

transcript per million values of the PAM50 gene set

Classification with GECKO k-mers

Table 1 Confusion matrices of breast cancer subtype classification using the frequency of k-mers discovered by GECKO and the

Classification with PAM50 TPM values

Predicted class Basal 97.7 22 0 0
Her2 2 875 6.2 42
LumA 1.5 1.5 923 4.6
LumB 0 3.4 18.8 778
Basal Her2 LumA LumB
True class

Predicted class Basal 86 5.2 55 33
Her2 153 60.6 36 20.6
LumA 153 22 88.1 8.6
LumB 59 15.4 36.5 422
Basal Her2 LumA LumB
True class
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Fig. 4 GECKO voting mode for small sample sizes. a GECKQO's voting mode will run 10 separate genetic algorithms with added Gaussian noise. The best
solutions of these runs will be fed into a final genetic algorithm to produce a final solution. b GECKO output showing the t-SNE separation of patients with
complete response to chemotherapy from those that did not using five k-mers from the winning individual. Triangles correspond to the test dataset that

was excluded from GECKO training can thus be used to estimate overfitting
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in methylation and thus, a method that could directly classify BS-
seq samples could be of great interest. To test GECKO on BS-seq
we downloaded raw sequencing files from a study on methylome
diversity in 104 primary CLLs samples compared with 26 normal
B cell samples”*. Although global hypomethylation has been well
described in cancer, these alterations are highly variable between
CLL samples” and thus present a challenge for classification.

We ran GECKO for 20,000 generations (39 h; see Supplemen-
tary Table 1 for parameters and Supplementary Fig. 1 for
runtimes and memory usage) and found a winning individual
that was able to classify normal from CLL samples with an
accuracy of 1 using 20 k-mers (Fig. 5a; Supplementary Table 4).
In addition to this final classification, GECKO plots the evolution
of winning organisms across the 20,000 generations (Fig. 5b).
This graph can be used to identify individual k-mers that are
essential for classification and thus worth investigating. Here we
found three k-mers that were most frequently used by winning
individuals for classification (Supplementary Table 5).

We verified the methylation status of the loci where these k-
mer sequences were mapped using the Bismark software’* and
found that all three of them displayed dramatic changes in DNA
methylation between normal and CLL samples (Fig. 5c). Inter-
estingly the two k-mers that were finally selected after 20,000
generations, K107977 and K90528 overlapped binding sites for
CTCF and GATA3, both of which are affected by DNA
methylation status?>26, K107977 overlaps a CTCF-binding site
for the ATP6VIG1 gene”, which codes for a proton pump
responsible for acidification of the cell, a hallmark of cancer
promotion. K90528 overlaps a GATA3-binding site for the
SULF2 gene that has already been identified as a diagnostic and
prognostic marker in multiple cancers?®-3",

Discussion

HTS data analysis often requires extensive data transformations
through tailored bioinformatics pipelines to organize the
sequences in a manner that is coherent with our understanding of
biology. Mapping to a reference, using ad hoc statistical thresh-
olds and grouping sequences by functional elements, such as
transcripts are common steps in most bioinformatics pipelines.
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We designed GECKO with the aim of creating a classifier that
could explore HTS data without a reference genome or tran-
scriptome and without the need of bioinformatics pipelines
dedicated to a specific library preparation or technology. The
approach we describe here can in theory explore any type of
sequencing data. Because GECKO considers groups of k-mers for
classification, it can make use of co-dependencies between
sequences to find smaller and more accurate classifiers. Thus,
GECKO is capable of better classification than the commonly
used approach that consists of selecting genes for which the
expression is statistically significant between conditions to build a
classifier (Supplementary Fig. 2). In the miRNA analysis of blood
cells for example, one of the k-mers that participated in making
an excellent classifier was not statistically significant by itself and
would have been overlooked.

Using k-mer counts removes the requirement of a mapping step
and makes GECKO applicable to numerous types of sequencing
experiments, In addition, we found that using k-mers instead of
other metrics, such as fragments per kilobase million (FPKM) or
read counts resulted in higher predictive power even when run
with the same genetic algorithm (Supplementary Fig 3). This can
be explained by the fact that k-mers can measure changes in
transcription, isoform abundance, and sequence simultaneously.
‘When applied to bisulfite converted data, each epigenetic change
can potentially lead to the appearance of a novel k-mer in samples
where the modification is present. These sample-specific k-mers
allow GECKO to make very efficient classifications and to pin-
point the exact location of the modification.

Unlike regression analysis our approach provides multiple
solutions (Supplementary Fig, 4). For research purposes this
allows us to investigate why different groups of solutions work
well together, explore co-dependencies between sequences and
functional pathways that allow a good separation of input sam-
ples. In a clinical setting, providing multiple good solutions allows
more flexibility for selecting diagnostic or prognostic targets.
Importantly, the k-mers used for classification are not biased
towards higher expressed genes (Supplementary Fig, 5) and
mostly map to unique locations in the genome or transcriptome
(Supplementary Fig. 6). Thus, GECKO can make use of unique
transcriptional elements across a large spectrum of expression.

c B Methylated bases

B Non-methylated bases
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Fig. 5 GECKO can accurately classify normal and CLL patients using k-mers from bisulfite sequencing data. a GECKQ output showing the t-SNE separation
of CLL and normal samples using 20 k-mers from the winning individual. b GECKO output of K-mer exploration across 20,000 generations; k-mers that are
frequently found in winning organisms are displayed as horizontal lines across generations; dots represent k-mers that were selected in one generation but
eliminated in the following generation often due to a decrease in fitness of the model. € IGV screenshots showing the methylation status of normal and CLL
samples of regions corresponding to three most frequently used k-mers in winning organisms determined by the Bismark software
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GECKO's ability to work across multiple types of data without
the need of dedicated bioinformatics tools could make it
invaluable for cross-platform large-scale analyses but also for
individual researchers and clinicians who would be able to
compare HTS data between cohorts of patients with no bioin-
formatics training, It is worth noting that the longest and com-
putationally intensive part of our procedure is obtaining the k-
mer matrix. This step need be performed only once per dataset
however and providing a k-mer matrix for online datasets along
with sequencing files could result in widespread use of non-biased
approaches such as GECKO. In addition, k-mer-based approa-
ches, such as GECKO have the advantage of being portable; k-mer
sequences will not change with new versions of the genome.

Methods

Data preparation. The k-mer decomposition into a matrix of k-mer counts is
performed using Jellyfish 2*'. This step can be preceded by a filtering of sequencing
adaptors by Trim Galore (bioinformatics.babraham ac.uk/projects/trim_galore/) if
the user selects this option in GECKO. GECKO will then eliminate k-mers for
which the count is below a noise threshold, k-mers that are uninformative for the
given study and k-mers that are redundant (i.e. that share the same information as
another k-mer).

The noise threshold is determined empirically from the input samples and is
calculated for each separate run of GECKO. To do this, we count the number of
times a k-mer count appears in one sample with null values in all other
samples from the same group for the same k-mer. Starting at a k-mer count of 1, we
search how many times the value 1 appears for a k-mer in one sample with 0 in
every other sample for the same k-mer. We then iterate this process for k-mer
counts 2, 3, etc. When this frequency drops dramatically as determined by the
slope of frequency counts (determined by calculating the derivative at each point),
we consider that we are above background and set the threshold as the k-mer
count just before the greatest inflection of the slope (Supplementary Fig. 7).

To determine uninformative k-mers, that is k-mers that do not vary across
input samples, we first discretize the k-mer counts using a chi-square statistic
that determines the minimum number of discrete intervals with minimum loss
of class attribute interdependence’. This algorithm is unsupervised and
determines the existence and number of separate levels in continuous data. If
there are no clear categories, the discretization will output a vector of 1's,
Following this discretization, if there is not a minimum of 10% of samples with a
different level, then this k-mer is considered uninformative. By default, this
minimum number is set at 10% of the size of the input condition with the least
replicates. For example, if the condition with the least replicates has 30 samples,
then at least three samples must have a different discretized level to the other
samples.

To eliminate redundant k-mers we use symmetric uncertainty (SU) between
pairs of k-mers. Instead of comparing each k-mer to all other k-mers, we first split
the k-mers into buckets of equal size and perform pairwise comparisons within a
bucket. To determine which k-mers will be bucketed together, we calculate the sum
of their counts across samples. k-rners with a similar sum across samples are put
together; k-mers within a bucket have a higher chance of being redundant than if
they were randomly bucketed. When all k-mers within buckets have been
compared and redundant k-mers filtered, this process of bucketing by sum and
filtering is repeated. This process of bucketing the k-mers by sum lead to 10 times
faster filtering process on smaller samples and larger gains with larger matrices.

The SU between two k-mers A and B is given by the formula:

SU(A, B) = 2 ((H(A) + H(B) — H(A, B)) + (H(A) + H(B))]

where H(A) and H(B) are the entropies of the two k- mers along the samples and H
(A, B} is the entropy of the combined k-mer counts A and B along the samples.
The Entropy is given by the formula:

H(A) = — i Mi/N'log2(Mi/N)

where G is the total number of k-mer frequencies given by the discretization step,
Mi is the number of samples at the given discretization level N is the total number
of samples. In our analysis, we empirically set the limit of SU at 0.7, above which
two k-mers were considered as redundant.

GECKO keeps a record of all k-mers eliminated due to redundancy along with
the ID of the k-mer that caused it to be eliminated. Thus, when the genetic
algorithm finds a solution, GECKO can provide all the redundant k-mers that
would have provided a similar solution.

All code for the data preparation was implemented in C++.

The adaptive genetic algorithm. The algorithm begins by splitting the input data
into a training and test set. The test set is created by randomly selecting a number
of samples from each input category. By default the number of samples selected is

6

1/6th of the category with the smallest amount of samples. The test set is

used to establish a final test score that will have no impact on the genetic algo-
rithm’s evolution but allows us to estimate how well GECKO performs on a
given dataset.

Training: At each generation of the AG, all individuals are scored based on their
ability to classify the input samples using a machine learning algorithm. In this
study, the algorithm used was a Linear Support Vector Classification (LinSVC).
This method combines excellent results on smalls datasets and unbalanced groups
with a good generalization potential, for a small computational resource cost.
LinSVC is implemented in GECKO via the Scikit-learn package®*. GECKO can also
be used with a random forest model or neural networks, however these have higher
computational costs and require dedicated hardware to be implemented within
reasonable time-frames.

To calculate the fitness score of an individual at each generation we
randomly split up the training set into two. 2/3 of the training set becomes the
inner training set and the remaining 1/3 becomes the inner test set. We contrast
the inner test set, which is used to score individuals at each generation of the
adaptive genetic algorithm with the test set which is not used to train the adaptive
genetic algorithm but instead is used to estimate the performance of our model.
The inner split on the training data is random and is performed five times. The
score of each individual is an average of these five iterations trained on the inner
training sets and tested on the inner test sets. This rotation of the training data
avoids sample batch effect biases at each generation.

Natural selection: After testing the fitness of each individual of our population
we delete individuals with lower fitness scores. By default, this is 30% of the
population. We call this process natural selection,

We sort the individuals by ascending rank and then apply the following
probabilistic rule:

P —value = aX + 3

where X is the individual rank and the following conditions are satisfied:

N
ZP —value =1
w

N/2
N _ P—value N
P — value 2 P — value

where @, § are scalar values, N is the size of the population, and
p_ valueaudP i\r(r‘ilue are, respectively, the probability for the individual rank N
and rank N/2 to be deleted.

Mutation and crossing over rates: GECKO makes use of three different types of
Genetic Algorithm. These adapt the mutation and cross-over probabilities
depending on the homogeneity and the performances of the population in order to
converge faster and more accurately.

The three algorithms are:

A simple adaptative genetic algorithm®. This algorithm has a fixed factor for
individuals for which the fitness is inferior to the average and a decreasing
linear function for the better performing half of individuals.

Another improved adaptive genetic algorithm”> that, similar to the simple
adaptive genetic algorithm, has a crossover probability fixed above the average
fitness, but uses exponential instead of the linear function for fitness values
below the average.

An improved adaptive genetic algorithm’® that models the probabilities with
two linear functions, with a breakpoint for the individuals that have a fitness
equal to the average fitness.

We recommend using the last model as it shows better exploration and higher
convergence rates for the kind of data used for GECKOQ. This approach aims to
maintain the population’s diversity while protecting good individuals from
modifications. The mutation and cross-over probabilities are decreased when the
individual’s fitness is high compared to the average and increased if it is low.
Similarly, the probabilities are decreased when the population is heterogeneous and
increased when the population is homogeneous to favor exploration of novel
solutions. These probabilities are modeled by two linear functions depending on
whether the individual is above the average fitness of the population or below it and
is given by the formula below.
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Here fis the individual's fitness, f,,, is the fitness of the population’s worst
individual, fuvg is the population’s average fitness and fix is the fitness of the
population’s best individual. k1 is the rate applied when f=f,,, k2 when f=f.,
and k3 when f=f ...

Stopping criteria: By default, GECKO will run for an input number of
generations. The user may however choose to make use of a stopping criteria that
will stop the algorithm prematurely. The stopping criteria is checked after at least
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5000 generations of the genetic algorithm. At this moment, the number of
occurrences of each k-mer in the population is calculated across bins of 500
generations from the start of the algorithm to the current generation. The top 1% of
most frequent k-mers in each bin are selected. We then estimate the difference in k-
mer compaosition between the current bin and all previous ones using a Hamming
distance. This distance measures the quantity of highest scoring k-mers that are
changing across generations. When the slope of Hamming distance across
generations drops below 1%, the stopping criteria is triggered.

Adding Gaussian noise: The user may add Gaussian noise to the model to
prevent overfitting. The characteristics of this noise are determined for each k-mer
separately. They are a mean of 0 and a standard deviation equal to the standard
deviation of the k-mer in the training set. The user can modify the level of noise by
changing noisefactor which multiplies the standard deviation by the input value.
This noise is generated at each training of machine-learning model and for each
individual

tSNE visualization: t-SNE plots are generated using scikit-learn with the default
parameters but initialization with PCA. This initialization option allows for better
reproducibility of t-SNE graphs. Below is the corresponding command-line:
manifold TSNE (n_components = 2, init = ‘pca’, random_state = 0, perplexity =
30.0, early_exaggeration = 120, learning_rate = 200.0, n_iter = 1000,
n_iter_without_progress = 300).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available from NCBI Gene Expression
Omnibus under the accession numbers GSE100467 and GSE5888%; the Cancer Genome
Atlas under the Pan-Gyn cohort name; the database of Genotypes and Phenotypes under
the accession numbers phs000435.¥2,p1 and phs001050.v1.pl but restrictions apply to
the availability of these data, which were used under license for the current study, and so
are not publicly available, Data are however available by submitting a request to these
repositories.
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IMOKA: k-mer based software to analyze large collections of
sequencing data

iIMOKA, interactive Multi Objective k-mer Analysis, was initially thought as a filter to
select the informative k-mers: most of the k-mers selected by GECKO were able
individually to classify with relatively good accuracy the samples in the respective
groups, even using a cross-validation procedure. As for GECKO, the details of the
algorithm are described in the paper below, including a benchmark on four datasets
in which the k-mers extracted by iIMOKA are compared to PSI values, gene and
transcript expression as classifying features in a Random Forest classifier model.

In brief, the software can take as input both sequencing files, such as fastq or bam,
or external link, HTTP, FTP or SRR ids, downloading the required data before the
beginning of the analysis.

Using KMC3, iIMOKA extracts the sorted k-mer counts from each sample and
converts them into binary files. A JSON file contains the metadata of the samples
belonging to the analysis, including for each sample: the name, the label of the
group, the location of the binary file and the total sum of the k-mer counts, used to
normalize the data.

The first step of reduction considers one k-mer at the time and, using a Bayes
Classifier, estimates the accuracy of the feature to classify the samples in the
respective groups. This step is by default coupled to an adaptive entropy filter that
speeds up the process discarding few truly informative features.

Finally, an aggregation procedure groups the k-mers based on their sequence,
building de Bruijn graphs, and their biological relevance, mapping the sequences
generated from the graphs on a reference genome and using a reference annotation
to assign “events” to the most informative k-mers in each group.

Importantly, the software is coupled with a graphical user interface (GUI) that allows
running in local or on a remote cluster all the steps of the algorithm. The user can
also explore the final output of the aggregation step as an interactive table, visualize
the k-mers mapping on a reference genome with a javascript version of IGV genome
browser, generate self-organizing maps and Random forest classifiers.

The key novelties of IMOKA are represented by:

1. The scalability: the k-mer matrix is generated on the flight by combining the
K-mer counts of each sample, stored independently in sorted binary files. No
matter how many samples there are in input, IMOKA adapts to the
user-defined RAM limits and is going to keep in memory only a small buffer
for each column, allowing it to run the first step of the algorithm with few
resources. This representation is compact since the “zero” values are
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represented by the absence of a determined k-mer in a sample, solving the
issue of sparsity. Furthermore, thanks to its flexible structure, the same
sample can be used in different studies. Currently, the aggregation step
doesn’t consider the available memory and it could require a large amount of
RAM in case of numerous k-mers in input.

2. The reduction step is based on a machine learning procedure and not on a
statistical test. This method, though slower with respect to the differential
expression analysis, used for example in DE-kupl, is robust to outliers and
scales efficiently with the number of samples.

3. The aggregation step reduces the redundancy based not only on the
sequence but also on its biological meaning. Furthermore, the software
assigns different types of events, such as mutations, indel, splice, alternative
splice and DE based on the information obtained by the alignment and the
gene annotations.

4. Finally, the GUI is an uncommon feature for bioinformatics tools and it's useful
to interactively explore the results, visualizing not only the individual k-mers
but also the context in which it resides.

A dedicated k-mer structure

The selection of a performant and compacted data structure to store and access the
k-mer sequences and abundances must be aware of the application and the context
required by the software.

The literature offers detailed reviews about techniques to store and query a set of
k-mers®* and large collections of sequencing data sets?.

Designing iIMOKA we were looking for a data structure able to dynamically generate
a k-mer matrix, to store efficiently the sample’s k-mer counts and to load only small
portions of the files in order to handle large datasets on virtually any architecture.
We implemented a prefix-suffix structure similar to the one used as database format
in the first version of the k-mer counter software KMC?*". Rather than using two files (
.kmc_pre and .kmc_suf ), we store both the prefix and suffix information in the same
binary file. The prefix data contains, for each prefix:

- The binary encoded DNA symbols ( A=00, C =01, G =10, T=11) of p stored
as char values.

- The position in the suffix array that corresponds to the first suffix associated
with the p, stored as uint64. To know the range of the suffixes of p is therefore
sufficient to retrieve the position of the first suffix of p+17.

Similarly, the suffix data contains the binary encoded DNA symbols of the suffixes
and the related counts, stored as uint32.

The length of the prefix is chosen according to the total number of k-mers present in
the dataset, following a formula adapted by A. Mancheron in ?*® and described in the
article.

This type of data structure allows loading small buffers of suffix and prefix data at the
time.
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Furthermore, prefixes and suffixes are sorted lexicographically, which allows
generating the k-mer matrix dynamically using an n-way merge algorithm:
1. Each sample’s database loads a buffer of prefixes and suffixes.
2. Apointer is associated with the first k-mer in each database.
3. A copy of the k-mer associated with the pointers is stored in a sorted set S.
4. A pop operation retrieves the lexicographically smallest k-mer from S, k,,
which will correspond to the current row of the k-mer matrix.
5. For each sample m, if the pointer corresponds to k,, the count of k,,is
assigned to m in the current row and the pointer moves one position forward,

updating S, otherwise the count of k,, is 0.

6. Repeat from 4 until all the databases are empty, refilling the buffers when

needed.

Step 1 kﬂ'VGH k1 ’V1 I ka’V3|1 kﬁ’vﬁﬁ kB'VBH kQ'VQH
k1'v1|2 k2’V2|2 ka’V3|2 k5’V5|2 kB‘V8|2 kQ‘V9|2
k-mer matrix row ko""ma k1,v1l3 k2=V2|3 ka""’4|3 ks""5|a k?""ﬂa

k-mer DB1 DB2 DB3 DB4
ka‘v:ﬂd k4’v-4|4 kﬁ’vﬁ|4 k?’v?|4 kB‘V3|4 kg'vgltl
Steps 2-4 ./m KoVor | KioVaja | KaiVapa | KeVar | KaiVapr | KoV,
k2'\"'2|2 k3’v3|2 k5’v5|2 kB’Vﬂle k9'V9|2
I(‘l'\"'1|3 k2""2|3 k4’V4|3 k5""'5|3 k?'v7|3
k4'v4|4 kﬁ’vﬁl-‘l- k?’v?|4 kB’VSH kQ'VQH-
RN Ko Vopy | KoVopq | KaoVayy | KeVepr | KeoVe | KoVgs
ks k, Ky m KiVia | KoV | K3V | KoV | KaiVapo | KoiVgp

k-mer matrix row

SRR KoVoia | KiVas | Koo | KaVags | Ksi Ve | KoVas

k-mer DB1 DB2 DB3 DB4
Ko | Von 0 Vo 0 il KaVaia | KaVaia | KoVer | KrVaia | KoV | KoVers

Figure 14: schematic representation of the dynamic k-mer matrix creation. k_is the k-mer n™ in

lexicographical order; v is the count value of the n'" k-mer in the database (DB) m; The red arrow

represent a pop operation, the blue arrows represent an update operation on the sorted set S. The green
boxes represent the current k-mer in each database, the orange one the consumed data.

Finally, to allow a multithreading generation of the matrix it's possible to generate it
starting from any k-mer k,: using a binary search, each database can be initialized to

k, or, if absent, to the closest k-mer following k.

Graphs based data structures, such as de Bruijn graphs, offer great querying
performances and allow to quickly query for k-mers in the neighbour nodes but we
didn’t consider them since the reduction step of IMOKA doesn’t require a
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navigational data structure since each feature is considered independently from the
others.

Most of the recent k-mer counting tools, such as Jellyfish?** or KMC3%%", use Hash
Tables (HT) or Bloom Filter (BF) to store the k-mer counts.

Though optimal for querying and modification operations, those data structures don’t
store the k-mers in sorted order and require loading the full index in memory or
performing frequent disk reading operations compared to the prefix-suffix structure
aforementioned to produce a k-mer matrix.
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Abstract

iIMOKA (interactive muli<objective kmer analysis) is a software that enables comprehensive
analysis of sequencing date from large ahorts o generate robust classification madels o
explore spedfic genetic elements associated with disease eticlogy. iMOKA uses a fast and
accurate feature reduction step that combines a Naive Bayes dassifier augmented by an
adaptive entropy fiker and a graphrbased filter to rapidly reduce the search space. By using
2 fledble file format and distributed indexing, iIMOKA can easily integrate daw from muliple
experiments and also raduces disk space requirements and identifies changes in transcript
levels and single nuclectide variants. iMOKA is available at htps//githubcom/

Ritchiel ablGHAMOCKA and Zznodo httpsy/doiorg/10.5281 /zencdo 4008947,

Keywords: k-mer, NGS analysis, Personalized medicine, Bicinformatics software, Data
reduction, Maching learning

Background

Studies of variation in gene expression have considerably advanced knowledge of dis-
ease eticlogy and classification [1-3]. To capitalize on genomic data generated from
numerous clinical studies, recent initiatives have aggregated high-throughput sequen-
cing (HTS) experiments from multiple cohorts that mensure gene expression, RNA
isoform usage, and genome variation, For example, the Genomic Data Commons pro-
gram controls access to over 84,000 cases [4]. Still, despite these efforts to aggregate
and provide data from multiple studies, their computational analysis and integration
presents a major challenge; each type of HTS data requires specific bioinformatics
pipelines that need to be implemented by a bicinformatics specialist. In addition, most
of these approaches require reference genomes or transcriptomes and thus cannot in-
herently account for the diversity in non-reference transcripts or individual variations
[5]. To alleviate the requirement of a reference, recent methodologies use k-mer repre-
sentation; they directly compare the counts of nucleotide sequences of length & be-
tween samples [6]. These &mer based approaches have been core to the field of
metagenomics, where they are used to discover unique k-mers or k-mer signatures to
dlagsify organisms [7, 8]. However, when trandated to mammalian genomes, k-mer

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribiution 40 International License, which
permits use, sharing, adaptation, distribution and reproducticn in any medium or format, as long a you give appropriate credit to
the original authorfs) and the source, provide a link to the Creative Commons licence and indicate if changes were made, The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated othenwise:
ina credi; line o the material, If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permissicn directly from the cogyright
holder, To view a copy of this licence visit http/Areativecommonsorg/licensesty/40, The Creative Commons Puldic Domain
Dedication waiver (hitp/creativecommonsorg/publicdomain/zen/1.0¢) applies 1o the data made available in this article, unless
ctherwise stated in a credit line to the data.
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representation results in a k-mer count matrix with as many columns as there are sam-
ples and as many rows as there are k-mers, generally billions. Exploring such large
matrices to find biologically relevant k-mers ig intractable unless the analysis focuses
only on a very small subset of the sequencing data [5] or by using metaheuristics that
provide partial solutions [9].

Here we present iMOKA (interactive multi-objective k-mer analysis), a novel ap-
proach and software that allows non-specialists to make use of k-mers to explore large
amounts of mammalian sequencing data. This approach is agnostic of the type of se-
quencing data used, is not biased towards annotated genetic elements, and can analyze
transcript levels and single nuclectide variations in one pass. Importantdy, iMOKA is
interactive; it allows the user to import and merge samples from different studies and
tailor their exploration of k-mers to specific genomic elements of interest such as sphi-
cing events, mutations, or global gene expression. We tested iIMOKA on four clinical
datasets: the classification of breast cancer subtypes and respeonse to chemotherapy of
breast, ovarian cancer, and diffuse large B cell lymphoma (DLBCL), We find that
iMOKA found features that are more accurate than clagsical bicinformatics approaches,
takes up less space, uses less memory, has faster runtimes, and can be run on a com-
puter cluster or on a laptop.

Results

IMOKA design

iMOKA imports sequencing files in FAST(Q, FASTA, BAM format, or SRR identifiers
via its user interface, It then counts the occurrences of all sequences of given length &
{default 31} [9] using the KMC3 software [10] in each sample (Fig. 1}. It then extracts
labels from the sequencing metadata so that the user can define groups they wish to
compare, Importantly, each sample is stored as a sorted vector of k-mer counts in a
dedicated binary file using a custom prefix-guffix structure that dragtically reduces the
disk space requirements ("Methods” section). For each sample, a JSON file is created
that contains metadata and a rescaling factor for k-mer count normalization that allows
the user to remove or add samples without having to recalculate an entire k-mer
matrix, It then uses our feature reduction step that combines a Bayes classifier aug-
mented by an adaptive entropy filter to rapidly remove non-relevant k-mers (Fig, $1).
The aim of this filter is to evaluate each k-mer individually by combining the accuracy
of the Bayes classifier with the speed of calculating Shannon’s entropy. This evaluation
is performed using a Monte Carlo cross validation with a high number of iterations
and an early break ("Methods” section) that efficiently reduces overfitting and generates
predictions that overcome baich effects. In order to reduce the number of features eval-
uated, the entropy filter works simultaneously and, learning from the entropies of the
k-mers that successfully passed the accuracy filter, discards k-mers with low entropy.
Following this filtering, k-mers for which the sequences overlap are assembled into
graph structures. These are used to aggregate the k-mers that are likely to have been
generated from the same biological sequence and are used to eliminate false positive k-
mers that are mainly singletons (1 k-mer} or very short branches in the graph structure.
Bifurcations or bubbles in these graphs generally arise from the existence of multiple
sequence isoforms that differ by point mutations or alternative splicing events [11]. By
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Fig. 1 Ovendew of the IMOKA algorithm, The software accepts sequencing reads in FASTQ, FASTA, BAM fomats, o
SRR idertifiers. The kmer count in each file is calculated and stored using a dedicated file fomnat. kmers are then
filtered using an Entropy boosted Bayes fiter with Monte Carlo cross validation to obtain the kmers that are able to
dassify the input samples, These are combined into graphs and annotated using GMAP or another user-cefined
digner, The fina list of highly informative k-mers can be explored using the graphical interface to create chssification

mockls, inspect individual &-mers, and deted: sample outliers wsing self organizing maps

combining this graph assembly with the relatively permissive Bayesian filter, we are able
to generate a list of informative &-mers in a manner that is fast and accurate.

iMOKA allows the user to align the &-mer graphs to a reference genome to annotate
them with known genomic features such as known RNA transcripts, point mutations,
or mRNA splicing events, iIMOKA. provides a random forest clasgsifier that uses filtered
f-mer graphs as features (Supplementary methods) and provides the user with a
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classification model and a sorted list of k-mer graphs that were most used in the tree
models and that are thus of higher interest (Fig. 1}, The user may even build classifica-
tion models based solely on specific genomic features such as point mutations or gene
expression for example, Finally, iMOKA uses self-organizing map clustering on the k-
mer graphs to enable users to identify subgroups or outliers amongst their input
samples.

Benchmarking datasets and algorithms

iMOKA uses a k-mer based analysis to detect sequence features and create classifi-
cation models from large cohorts of mammalian RNA sequencing data. To test its
performance, we selected four studies that were distinct in their data structures,
classification objectives, and sizes. The first was a non-binary dassification of 1038
patients aiming to define 4 subtypes of breast cancer which were luminal A
{LumA), luminal B (LumB), HER2-enriched (HER2), and basal-like. The second
was a cohort of 240 ovarian cancer patients where the objective was to predict re-
sponse to chemotherapy. The third was a smaller cohort of 118 breast cancer pa-
tients where the objective was also to predict response to chemotherapy. The last
was an even smaller cohort of 17 DLBCL patients divided according to their re-
sponsiveness to the chemotherapy.

In our benchmark, we included methods based on four different types of features
which were k-mer counts, percentage-spliced-in (PSI), transcripts per kilobase million
{TPM)}, and sequencing counts. The two latter were measured and tested across anne-
tated genes and transcripts separately. The algorithms we benchmarked were DESeq2
[12], edgeR [13], and limmaVoom [14] for TPM and sequencing counts; iMOKA for k-
mer counts; and Whippet [15] for altermative splice site usage. We excluded four other
k-mer based methods HAWK [16], KOVER [17], Kissplice [11], and GECKO [9] be-
cause they were respectively impossible to run on such big datasets due to segmenta-
tion fault errors, were unable to find k-mers that coukd clagsify the input samples or,
for the last two methods, were killed after 2 weeks of runtime on our computer cluster.

In our benchmark, we compared the list of features output by each algorithm by
uging them in a random forest clagsifier and determining their out of bag scores (COB
score}. The out of bag score tests how well each classifier performs without having to
set aside a portion of the data specifically as a test set. It is as relinble as using a test set
[18, 19] without having to set aside part of the data. We chose the random forest classi-
fier because it is a non-parametric approach and because the importance of each input
featute i3 ensy to evaluate.

Finally, for the largest dataset, the molecular clagsification of breast cancer, we per-
formed a 5-fold crogs validation of the entire IMOKA procedure and all other bench-
marked algorithms, using 4/5 of the dataset for data reduction and creation of a
random forest model and 1/5 of the dataset as the test set.

Classliflcatlon of breast cancer subtypes

Breast cancer i3 a transcriptionally heterogeneous disense with multiple subtypes that
determine prognosis, treatment, and patient outcome. Although breast cancer classifi-
cation is constantly being updated, a broadly accepted stratification defines four groups
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which are luminal A (LumA), luminal B (LumB), HER2-enriched (HER2), and basal-
like [20]. We benchmarked iIMOKA on a dataset of 1038 mRNA-Seq breast cancer
samples from the Cancer Genome Atlas (TCGA} Pan-Gyn cohort [21] (patients per
clags; basal 190, Her2 82, LumA 559, LumB 207) and tested how well the outputs of
each approach could accurately predict the four classes. We found that the list of -
mers output by iMOKA (Additional file 1, Fig. 55} was above all other methods in their
ability to clagsify the four types of breast cancer (Fig, 2a). The worst performing fen-
tures were the splice site usage statistics given by Whippet. This could be expected be-
cause the breast cancer stratifications were originally created using pene expression
profiles, not splicing events.
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Fig. 2 iIMOKA accumtely predicts breast cancer subtypes. a The features output by all benchmarked
approaches are evaluated for their capacity to classify breast cancer subtypes using Random forest’s oob
score plotted as a function of the number of the best features output by each approach, b Screenshot of
the iIMOKA output with each k-mer sequence, their rank in the classification of breast cancer subtypes, and
where these sequences map to on the genome, ¢ Screenshot of the IMOKA display showing k-mer counts
of the 3 highest ranking k-mers across the 4 subtypes. d Gene ontology of the genes overlapping the k-

| mers selected by iIMOKA
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We additionally performed a 5-fold cross validation of the entire iIMOKA procedure
and all other benchmarked algorithms including feature reduction and model gener-
ation, The accuracies of the final models (Fig. 52} show a consistent behavior to the
oob scores in Fig, 2a,

iMOKA identified 3002 k-mers overlapping different types of events {Table 51 and
Additional file 1}. Using iMOKA’s interface, we were able to explore the genes to which
these k-mers mapped (Fig, 2b), As expected, within the best ranking k-mers, iIMOKA
found overlaps with genes that have been extensively linked to breast cancer subtypes
and are already used in the clinic such as estrogen receptor 1 (ESR1} [22], Forkhead
Box Al (FOXA1} [23], Forkhead Box C1 {FOXC1} [24], xenopus kinesin-like protein 2
{TPX2} [25], and Melanophilin (MLPH) [26]. By clicking on the k-mer sequence in the
iMOKA interface, we can visualize the representation of each k-mer in the 4 classes
(Fig. 2c}. The top three k-mers, whose gene expression is shown in Fig, 83, have repre-
sentation profiles that clearly explain iIMOKA's high classification accuracy with a small
number of k-mers,

It is worth noting that IMOKA picked up 120 potential alternative splicing events,
Amongst these were 4 extensively studied splicing isoforms (MYQ6, TPD52, 1IQCG,
and ACOX2} [27] identified to be amongst the 5 most important isoforms differentially
expressed between ER+HER2- and ER-HER2 primary breast tumors (Fig, 54),

Finally, we used DAVID [28] to perform a functional annotation of the genes overlap-
ping the k-mer selected by iMOKA. The gene list is strongly enriched for breast
cancer-associated genes and of genes associated with the function commonly dysregu-
lated in cancer cells, such as cell cycle, cell division, and motility (Fig., 2d and
Additional file 4).

IMOKA Identifles events assoclated with the response to treatment In ovarlan cancer
patients

Qur second benchmark wag performed on a dataset of high-grade serous ovarian
cancers taken from the TCGA OV cohort [29]. We included patients having an
annotated [30] response to a first-line treatment to the combination platinum and
taxane chemotherapy (patients per class: 174 responsive, 66 non-responsive),
iMOKA identified 138 k-mers with individual accuracy between 65 and 75% (Table
S1 and Additional file 2). Again, the k-mers found by iIMOKA gave the most ac-
curate oob scores for response to chemotherapy (Fig. 3a). The gain compared to
other methods it much higher than for the previous breast cancer classification,
This can be expliined by the fact that most of the methods we benchmark against
only make uge of gene or transcript expression or splicing sites, Breast cancer
stratification is mainly based on gene expression, and therefore, these methods
compare well with iIMOKA, However, in the case of response to chemotherapy in
ovarian cancer, iIMOKA is able to also make use of single nucleotide variants
(SNVs} and splice site usage to make its predictions (Fig. 3b}). Via the IMOKA
interface, we can visualize the SNVs with the highest feature importance. Thus, we
can observe that iMOKA detected a known nonsense mutation (SNP id:
r310794537) in the alpha-i-iduronidase (IDUA) gene. IDUA is responsible for the
degradation of the mucopolysaccharides, heparan sulfate, and dermatan sulfate
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Fig. 3 iIMOKA accurately predicts response to chemotherapy in ovarian cancer. a The features output by all
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IDUA SNV detected by IMOKA. d Gene ontology of the genes overlapped by the k-mers found by iIMOKA

which modulate anglogenesis, cell invasion, metastagis, and inflammation [26] and
importantly are ligand receptors for polynuclear platinum anticancer agents [27]. In
agreement with this, the gene ontology (Fig. 3d) analysis shows a functional enrich-
ment of small molecule binding proteing,

IMOKA Identifles events assoclated with the response to necadjuvant chemotherapy In
breast cancer patlents

The third test dataset was taken from the Breast Cancer Genome Guided Therapy
(BEAUTY} study [31] and consisted of patients with all 4 types of breast cancer for
which we tested the response to neoadjuvant chemotherapy with paclitaxel and anthra-
cycline. This allowed us to test the binary classification of more heterogeneous cell
populations on gmaller sample sizes: 36 patients that had a complete response to
chemotherapy and 82 that did not. It is worth noting that this dataset presented a
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significant batch effect, detected using the R package DASC [32], associated with the
load date of the samples (Fig. 55}, Despite this, iMOKA identified 1248 k-mers with an
individual accuracy between 70 and 83.8% (Table S1 and Additional file 3). Again, the
k-mers discovered by iMOKA give the highest ooh scores for the responge to chemo-

therapy (Fig. 4a).

QOur methed can identify multiple events on the same gene that are useful for classifi-
cation. For example, as shown in Fig, 4b for the highest scored k-mers overlapping the
gene TBCIDY, iMOKA discovers that the gene as a whele ig differentially expressed be-
tween conditions but also discovers alternatively expressed introns (Fig. 4¢) that were

(2020) 21:261

confirmed as being a retained intron using a dedicated algorithm, IRFinder [33].
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The gene ontology analysis of the genes overlapping the k-mers selected by iIMOKA
reveals a strong relationship with microtubules and <ilia, components influenced by
paclitaxel [34, 35], an anti-microtubule agent of the taxane family used as part of the
therapy on all the patients in the study. Although the study included heterogeneous
cancer types and an unbalanced dataset, iMOKA was able to detect features useful for
classification.

IMOKA Identify DE genes assaclated with DLBCL chemaresistance

In the last dataset, we tested iMOKA in a frequent scenaric where differential represen-
tation of transcripts is assessed in a very small cochort To this end, we considered 17
DLBCL patients [36], 10 responsive to an anthracycline-based regimen R-CHOP (ritux-
imab, cyclophosphamide, doxorubicin, vincristine, and prednisone) and 7 non-
responsive. The RNA-seq used for this dataset is targeted, making it impossible to
evaluate the PSI values, so only the abundance of the genes and transcripts were con-
sidered in the benchmark (Fig. 5 and Fig. §7). iMOKA identified 1928 k-mers having an
individual accuracy over 80% and five with 100% accuracy. They corresponded to the
genes AKT1, BTBD9, ZBTB45, ZBTB17, and BHLHE4). Amongst those, AKT1 is
known to play a role in DLBCL chemosensitivity [37] but was not detected as differen-
tially expressed in the original publication [36],

This study highlights ancther advantage of using k-mers; they are agnostic to tran-
script annotation, For example, the k-mer overlapping ZBTB17, a gene involved in B
cell development and differentiation [38], is located on the splicing site at position
chr1:15,947,123-15,948,295 and is part of Refieq transcript NM_0012428384. However,
this transcript was not annotated in the GENCODE annctation (Fig. 5b} and thus not
detected by salmon,

IMOKA runtimes and disk space
iMOKA was designed to be scalable; the user can control the number of threads
used and the dedicated RAM, allowing the software to run not only on HPC clus-
ters, but also on a laptop. In Fig, 6, we report the times to analyze three experi-
ments described in the previous sections on a computer with 8-cores and 32 GiB
of RAM. Importantly, the higher the number of samples in the cohort, the bigger
iMOKA’s gains are.

iMOKA’s most intensive tagk is the generation of informative k-mers, where a large
amount of data is filtered and aggregated, while the other benchmarked approaches
handle data that are already filtered (reads are already mapped to annotated regions).
Finally, most methods that calculate differential expression are designed for relatively
small coharts and do not scale well in memory with large cohorts: DESeq2 and edgeR
for example required additional RAM in order to analyze the differential expressed
transcripts in the TCGA BRCA (TCGA. BC} analysis (61 GiB and 46 GiB, respectively)
(Fig. 6).

Discussion
Recent efforts to aggregate and annotate patient HTS data should facilitate our under-
standing of health tmjectories through multiple molecular mechanisms. In theory,
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combining gene expression, isoform usage and single nucleotide variation should allow
for more nuanced stratification and prediction of disense etiology. However, HTS data
analysis often requires extensive data transformations that are often performed with lit-
tle transverse coherence; each type of analysis produces lists of features that pass a

BEAUTY Breast cancer, 118 samples

TCGA Owarian cancer, 240 samples

TCGA Breast cancer, 1038 samples
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Fig, 6 iIMOKA is faster and scales better with large cohorts, Comparison of the running times between the
henchmarked methods, Solid bars represent the time dedicated 1o the generation of the features (transcript
abundance, PSl evaluation, and k+mer count), and the lighter bars represent the time dedicated to the

L analysis of the features (differential expression, differential splicing, and the machine leaming-based filters)
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given test and these are then analyzed separately. Mapping to a reference, using ad hoc
statistical thresholds for each type of analysis, and grouping sequences by functional el-
ements are common steps in bicinformatics pipelines that may not reflect the complex
interaction between each of the processes that make up an individual’s transcriptome,

We designed iIMOKA with the aim of analyzing HTS data in the reverse manner;
we wished to first discover all sequences that were informative, group them ac-
cording tc how well they could dagsify the input samples, and then break them
down into the different components of gene expression, isoform representation,
and SNV presence. In doing 50, we created a classifier that could explore HTS data
without a reference genome or transcriptome and without the need of dedicated
bioinformatics pipelines for each type of transcriptional event,

Using k-mer counts removes the requirement of a mapping step and allows
iMOKA to explore and combine multiple transcriptional events to make more ac-
curate predictions and to explore all these events simultaneously without having to
apply multiple pipelines. k-mers can meagure changes in transcription, isoform
abundance, and sequence simultanecusly and were thus able to create better pre-
dictive models than other metrics such as transcripts per million (TPM)}, read
counts, or splice site usage.

By creating a reliable, cross-platform user interface, iMOKA allows non-specialists to
leverage the predictive power of our approach in a manner that is fast and accurate. In
addition, iMOKA uses a flexible data structure that allows the easy integration of new
samples and uses only a fraction of the disk space required for stocking compressed se-
quencing files, In addition, X-mer based approaches such as iIMOKA have the advantage
of being portable; k-mer sequences will not change with new vergions of the genome,
This is crucial for the integration of omics data with other dlinical data such as imaging
or patient file records.

Methods

Preprocessing

The input data can be given as SRR identifier, BAM, FASTA, ar FASTQ files. In the
first and second cases, the corresponding FASTQ files are automatically generated
uging sra-tools” fastq-dump [39] and SAMtools [40], respectively, If the data is stranded
paired end sequencing, the user can reverse complement cne or both the files using
SegKit [41]. In order to assert the quality of the FASTQ files, the user can use FAST
QC [42] by adding the flag “~".

For ¢ach sample, KMC3 [9] is used to count the k-mers of the length chosen by the
user (default k¥ =31). Its output is converted into a sorted hinary file optimized for the
following steps of iIMOKA and a JSON file containing the metadata information.

The binary file is divided into two parts: a suffix portion, containing the nucleotidic
gequence and the relative count, and a prefix pottion, which containg the prefixes and
the positions of the respective suffixes.

The length of the prefix is defined using the following formula, an adaptation from
[43]:

2 =0.5 x log,(£) - 0.5 x log, (log, (£))
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where p is the prefix size and ¢ is the total number of different &-mers for the current
sample,

Matrlx generation

The input to the feature reduction step is a JSON file containing the name, group, and
localization of the sorted binary k-mer count file of each sample in the analysis. The
JSON file also stores the sum of all the k-mer counts that will he used as a
normalization factor:

RF
Ng—nyFj

where

Ny is the normalized count of the fth k-mer of the sample

Cy is the raw count of the ith k-mer of the sample ;

T; is the sum of the counts of all the k-mers of the sample j

RF is a rescaling factor, used to increase the value of all the normalized values and
aveid computational problems related to precision. By default, RF = 1e9

Each thrend starts the creation of the matrix and the reduction step in parallel, using
an OpenMP [44] implementation, at a different point of the matrix according to the
number of threads available using the following formula:

4 _1
Ky = T X ¢

where

T ig the total number of threads available

K; is the first k-mer analyzed by the thread ¢ (from 0 to T excluded) considering all
the possible ordered combination from 0 to 4%

& i3 the length of the k-mers (default 31)

The last k-mer analyzed by each thread is K, , — 1. For example, with 2 threads
{T =2} and k = 31, the first k-mers for each threads will be:
4t

2
431 1

X0 =0=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Ky =

1= x 1 = 2305843009213693952
= GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Finally, the buffer size reserved for each sample is dependent on the number of paral-
lel processes, the number of total samples, and the available memeory reserved:

_ RAMumn
blﬁ_axNxT
where
Buff is the length of the buffer

RAM, 1 Is the available RAM in GiB, defined by the user using the environmental
vatiable ‘IMOKA MAX MEM GB”
N is the number of samples in the matrix
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T is the total number of threads available
a is a factor representing the GiB occupied by 1000 k-mers, approximated to 0.011

Bayeslan classlfler k-mer accuracy assessment

The accuracy of each k-mer is calculated using the NaiveBayesClassifier method imple-
mented in the library mipack [45]. For each k-mer, the samples are randomly divided
into test and training sets, with an equal number of samples for each group scaled to
the smallest cne:

Fliegt = round(nm*pm)
Fltrain = Mmin — Ptest

where:

Amin 15 the dimension of the smallest group

Areg: AN Ay, are respectively the dimension of the test and training sets

Prest 18 the test fraction, 0.25 by default

Using one feature (k-mer count) x,, at a time, the NaiveBayesClassifier class computes
for each label y;:

p(x =xv¥ = y})
PY =y)

Given that we use a pairwise comparison with a constant number of training samples
amongst the labels, all the Ny, have the same probability

1
P(Y = =P|Y= =—
( ¥ ( JU+1) Nibes
The label prediction of a sample i based on the k~-mer count &, is then given by:
¥ = argmax(P(Y = y))

The accuracy of the k-mer & is computed considering only the samples part of the
test sets

acc, = i x 100
Prest

where

accy is the accuracy of the k-mer &

T is the number of correct labels assigned in the test set

Because the accuracies depend on the random division of the training and test sets,
we uge a Monte Carlo cross validation [46] with a given number of iterations { < argu-
ment, default 100}, This cross validation can be ended by a conditional break that is
triggered when the standard error acress iterations drops beneath a given threshold ( -s
argument, default 0.5).

The k-mers that achieve an accuracy higher than the accuracy threshold (-a argu-
ment, default 65} in at least one of the pairwise comparisons are saved in a text file,
along with the accuracy values.
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Entropy fllter booster
In order to speed up the process of accuracy estimation, we introduced an additional
filter baged on the Shannon entropy [47] of the counts of each k-mer that runs in paral-
lel to the Bayesian filter (BF).

For a given k-mer k and its counts in the different samples Cy = {crg, Chas . Cin)> We
compute its entropy value Hy as follows:

H, = _E;of’d x log,(f )

__
Tu= > ot

The filter uses an adaptive threshold, Hy,, tuned according to the lowest en-
tropy detected in the previous batch of k-mers that passed the accuracy filter
{H pin)-

Initially Hy, =0, 50 all the k-mers in the first batch are evaluated by the BF and the
lowest entropy is saved as M, During the analysis, Hy,. is updated when more than
E, (initially equal to 30) passes the BF. The first assignment is always:

Hite = Hinin — (Hmin X @1 x 2)
Subsequently:

IF(Hihe > Hoin — (Hom X @1))

Hie = Hontn — (Fooin X @1)

ELSE:

Hyy = Hein + (Hein X @2)

The adjustment parameters @;» @, ensure that the new threshold is not set too close
to the minimum Hy,,.

The number of k-mers required to update the threshold (E,,} increnses by 30 at
each update in order to reduce the number of computations and reduce the fluctu-
ations of the threshold. Figure S1 shows the entropy in function of the BF esti-
mated accuracy of a sample of k-mers from the previously defined datasets
showing that the number of k-mer would have been rejected by the entropy filter
but would have had an accuracy higher than 60% are rare and that the adaptive
thresheld is able to find a mild cutoff that can save more than 50% of the compu-
tation, like in TCGA BC, or can let the BF evaluate most of the k-mers in cage of
difficult datagets, like in BEAUTY,

k-mer graph generation

The k-mers that successfully passed the reduction are used as nodes in a graph, A
link between two nodes is created if they overlap by a minimum number of nucle-
otides defined by parameter w (default =1). This parameter can be increased if the
user notices multiple small sequences in the final result, caused usually by k-mers
with accuracy close to the given threshold arguments -T and -t, respectively the
minimum accuracy required to congider a k-mer in the graph construction and the
minimum accuracy required to generate a sequence from a graph.
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iMOKA then prunes short bifurcations in the graph where there is only one nede fol-
lowing the bifurcation. If there are multiple sequential bifurcations, then the branch
with the lowest accuracy is removed.

The accutacy values are then rescaled from 0 to 100 for each pairwise compari-
son in order to normalize the accuracy values and favor the features that are able
to classify pairs of classes that are more difficult to separate.

Since each bifurcation could cortespond to a biological event such as a point
mutation or splicing isoform, each separate path that results from a bifurcation will
be kept as a separate sequence for downstream analysis using a depth-first graph
traversal approach. When the traversal meets a bifurcation, the branch having the
most gimilar accuracies values to the bifurcating node is kept in the current se-
quence and others will generate new sequences, Furthermore, to maintain the con-
text of the bifurcations, three k-mers preceding the bifurcation are added to each
of those new sequences.

Graph mapplng and annotation
The sequences generated from the graphs can be aligned to a reference genome.
Currently, iMOKA supports any aligner that provides an output in SAM or pslx
format and uses the information given in the JSON configuration file “mappet-con-
fig" (-m argument) to align and to retrieve the annotation file, in GTF format. In
this manuscript, we used gmap v. 2019-05-12 with the human genome GRCh38
and the GENCODE annctation v29, excluding from the file the entries with the
trangeript type “retained_intron”,

Once the k-mer graphs are aligned, IMOKA identifies the following “alignment derived fea-
tures” (ADF):

— Mutations, ingertions, deletions, and dlipping are identified by the letters "M", ",
"D" and “8," respectively, in the alignment’s CIGAR string,

— Alternative splice sites are identified when a k-mer graph is split across exons.

— Differential expression (DE) is identified if 50% (set by parameter d) of an
annotated transcript is covered by the k-mer graphs, Since regions with
sequence variations not associated with the classes generate holes in the graphs
reducing the portion of the transcripts that generate useful k-mers, a higher
threshold might result in classifying DE event as general “gene” event, that is,
the best k-mer in a gene,

— Alternative intronic events are identified if 50% (set by patameter d) of an
annotated intron is covered by the k-mer graphs,

— Intergenic events are identified if the k&-mer graph maps to the gencme but not to
any annctated transcript,

— Unmapped or multimapped events are created for thoge k-mer graphs that have no
mapping or map to multiple sites,

iMOKA will preserve one k-mer per event, the one with the highest accuracy score.
Table §2 contains the list of events with a detailed description.
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IMOKA Implementation

The feature reduction component of iMOKA is implemented in C++ using the follow-
ing libraries: MLpack [45], armadillo [48], cephes [49], cxxopts [50], and nlohmann/
json [51]. The self-organizing map and the random forest are implemented in python 3
using the following libraries: numpy [52], pandas [53], sklearn [54], and SimpSOM [55].
The whole software is included in a ready-to-use Docker and Singularity [56] image
and is released under the Open Source CeCILL license,

Benchmark

Transctipt abundance was computed using Salmon [57] version 1,1.0 using the index built
on the reference transcriptome GENCODE v29 (hg38). The PSI values were computed
uging Whippet [15] version v0,104, We processed the sampleg in parallel in 4 processes
allowing 2 threads and a maximum of 8 GiB of RAM each, The differential expression
analysis was performed between each pair of classes in R v3.6.3 using the parameters and
functions described in a recent benchmark [58] for the methods DESeq2 [12], edgeR [13],
and immaVoom [14]. Significantly different PSI values between two subsets were de-
tected using whippet-delta.jl, included in the Whippet package.

Random Forest classifler feature selection and oob score comparison
In order to compare the same number of features extracted by each pipeline, we used the
sklearn methad SelectFromMaodel to select 20 features using a decision tree clagsifier
{DTC)} trained with all the samples and all the features in order to identify twenty features
that, in combination, can be good classifiers. Using an increasing number of features, from
2 to 20, we trained multiple RandomForestClassifier to retrieve the out of the box scores.
We also performed a 5-fold crass validation of the largest and better characterized
datagset, TCGA BRCA, to evaluate the accuracy of a model on unseen data. For each
fold, we performed the feature reduction using only the training in each method. The
final list of features is reduced similarly as for the cob score determination and the bal-
anced accuracy score is estimated for the test set.
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Conclusions

The last three decades were marked by incredible technological advancements, both
from the biotechnological and computational points of view.

To keep up with them, we adapted IRFinder to support the third-generation
sequences and use new methodologies, the convolutional neural network, to refine
and improve its results. Furthermore, we proposed IRBase, a platform where users
can not only visualize their data but also compare them with the ones shared by
other users.

The possibility to sequence at low cost and high fidelity large cohorts of people gives
the opportunity to increase our knowledge about the mechanisms underlying
pathologies and generate models to predict the responses to drugs, treatments and
environmental modification.

In the introduction, we saw how classical approaches, based on mapping to a
reference genome and using reference annotations, present lots of levels of
variability caused by different versions of the references and softwares used.
Additionally, a large portion of the information is usually discarded because it doesn’t
fit with the features considered in the study.

We showed how k-mer based approaches can be an optimal and agnostic
representation of sequencing data, useful to identify biomarkers that can be applied
for clinical and research purposes.

In this optic, we implemented IMOKA, a software that can efficiently select a group of
K-mers with a low redundancy of information and high capacity in discrimination of
the phenotypes in analysis within a large cohort of samples.

Bioinformatics is a young field and its identity is still shaping, trying to find its place in
the middle between statistics, informatics and biology.

The technological advancements we saw taking place in the last few decades are
causing a revolutionary shift from hypothesis-driven to data-driven science, requiring
wet-lab researchers to spend more time in front of a computer to analyse and
understand the data they produced.

Bioinformatics classes are given in most of the university biological science courses,
forming the next generation of researchers in the usage of the basic tools and
resources currently available.

Developing user-friendly, maintainable and powerful platforms is therefore the
direction that not only lots of private companies are taking, such as Geneious and
QIAGEN CLC Genomics Workbench, but also the open-source community, of which
Galaxy is the most successful example.

Additionally, more and more pure bioinformatics laboratories are rising in the
research centres that use publicly available data to perform novel analyses and
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develop new algorithms, supported by classical wet labs only for the validation of the
findings.

Unfortunately, this shift is not affecting the way data is stored and distributed.

For companies such as Google, Amazon and Microsoft, it's enough to accept the
general conditions with a single click to have access to any user data: e-mails,
browsing history, what colour was the t-shirt we bought three years ago and our
exact location every minute we keep our phone in our pocket.

They use that information to feed you with “the best advertisement for you”, to
influence your opinion on social media and to direct your next vote?*®, in the most
efficient way possible. They can store and share within their platforms this huge
amount of information, legally and in the name of profit.

On the other side, we have fragmented national health systems that don't take care
of how or where the clinical data are stored, leaving the burden to the individual
hospitals.

In my opinion, creating an international platform for data storage is the next big but
necessary challenge the scientific community has to face to fully exploit the potential
of the new sequencing technologies.

Such a platform should use light and standard data format, a complete and flexible
ontology and ensure the privacy of the information, allowing certified laboratories to
access in agreement with detailed rules of conduct.

An interesting report from NIH?*° predicts that sequencing and analysing the whole
human genome of patients will become a routine procedure for any research lab by
2030, that transcriptome and epigenetic analysis will be routinely incorporated into
predictive models and that “an individual’s complete genome sequence along with
informative annotations will, if desired, be securely and readily accessible on their
smartphone.”

Those forecasts need a large and international effort to generate new tools able to
generate, store and analyse such data using fast, efficient, robust and privacy-aware
procedures.

K-mer based algorithms have all the prerequisites to not only offer a compressed
representation of the data but also to analyse large cohorts of samples to identify
biomarkers useful for personalized medicine.

Future works should focus on the generation of k-mer based algorithms for the
efficient and lossless compression of raw sequencing data, their anonymization and
application to new biological questions using different types of data.

For example, a recent study?' used compressed k-mer groups, a set of k-mers
having similar counts across the samples, to cluster single cells in scRNA-seq data,
a task usually performed using gene counts.

Another interesting field of application for k-mers using human whole-genome
sequencing analysis are genome-wide association studies, identification of
mutational events in cancer, copy number variations analysis and the identification of
translocation events.

Improving the interpretability of the k-mers results would allow more and more
researchers to accept k-mer based softwares as part of standard analysis.
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Afile format based on k-mers able to store both the abundance and the order of the
k-mers in a compressed, lossless and efficient way would take over the current
standard BAM and CRAM files, especially if paired to a genome browser able to
quickly reproduce a visualization of this information on a reference genome.

Finally, IRFinder-S is just one of the several examples of how artificial intelligence
methodologies and large cohorts of data can help in solving biological related
problems where classical approaches struggle to face.

The methodology used to train the CNN model of IRFinder can be, with the proper
adaptations, extended to identify other types of alternative splicing events, new
transcripts and other transcriptomics related elements, such as promoter upstream
transcripts, in a reference-free manner.

To achieve this goal, a finely annotated training set is necessary in order to correctly
train the model, together with a fast and efficient implementation of a genome-wise
features generator.

Third generation sequencing data would facilitate the task because they are more
likely to give the information concerning the full structure of the transcripts isoforms.
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Annexes

A cell-to-patient machine learning transfer approach uncovers
novel basal-like breast cancer prognostic markers amongst
alternative splice variants

During my last year of PhD, | contributed to the revision of the following paper. The
main contributions before the revisions were the discussions about an effective
strategy to apply to effectively transfer the information from cell line data to patients.
During the revisions, my main contributions were the cleaning of the code and the
implementation of the mixed feature model.
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Abstract

Background: Breast cancer is amongst the 10 first causes of death in women worldwide. Around 20% of patients are
misdiagnosed leading to early metastasis, resistance to treatment and relapse. Many clinical and gene expression
profiles have been successfully used to classify breast turnours into 5 major types with different prognosis and
sensitivity to specific treatments. Unfortunately, these profiles have failed to subclassify breast tumours into more
subtypes to improve diagnostics and survival rate. Alternative splicing is emerging as a new source of highly specific
biomarkers to classify tumours in different grades. Taking advantage of extensive public transcriptomics datasets in
breast cancer cell lines (CCLE) and breast cancer tumours (TCGA), we have addressed the capacity of alternative splice
variants to subclassify highly aggressive breast cancers.

Results: Transcriptomics analysis of alternative splicing events between luminal, basal A and basal B breast cancer cell
lines identified a unique splicing signature for a subtype of tumours, the basal B, whose classification is not in use in
the clinic yet. Basal B cell lines, in contrast with luminal and basal A, are highly metastatic and express epithelial-to-
mesenchymal (EMT) markers, which are hallmarks of cell invasion and resistance to drugs. By developing a semi-
supervised machine learning approach, we transferred the molecular knowledge gained from these cell lines into
patients to subclassify basal-like triple negative tumours into basal A- and basal B-like categories. Changes in splicing of
25 alternative exons, intimately related to EMT and cell invasion such as ENAH, CD44 and CTNND1, were sufficient to
identify the basal-like patients with the worst prognosis. Moreover, patients expressing this basal B-specific splicing
signature also expressed newly identified biomarkers of metastasis-initiating cells, like CD36, supporting a more invasive
phenotype for this basal B-like breast cancer subtype.
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Conclusions: Using a novel machine learning approach, we have identified an EMT-related splicing signature capable
of subclassifying the most aggressive type of breast cancer, which are basal-like triple negative tumours. This proof-of-
concept demonstrates that the biological knowledge acquired from cell lines can be transferred to patients data for
further clinical investigation. More studies, particularly in 3D culture and organoids, will increase the accuracy of this
transfer of knowledge, which will open new perspectives into the development of novel therapeutic strategies and the
further identification of specific biomarkers for drug resistance and cancer relapse.

Keywords: Alternative splicing, Breast Cancer, Survival, Basal-like, Epithelial-to-mesenchymal transition, Machine

learning classification

Background

Breast cancer is a heterogenous disease with multiple mo-
lecular drivers and disrupted regulatory pathways [1, 2].
The development of large-scale genomics and transcripto-
mics methods has increased the capacity to identify
clinically-relevant tumour subtypes with distinct molecu-
lar signatures. These can be used for a better choice of
treatment and/or prediction of potential metastasis which
can improve survival outcome [3, 4]. However, patients
are still facing a high percentage of misdiagnosis in which
undetected early metastasis and/or inappropriate choice
of treatment can lead to deadly complications with the use
of unnecessary severe chemotherapies or the apparition of
drug resistance and subsequent tumour relapse [5]. Cur-
rently, breast cancer is classified into five major categories
(normal-like, [uminal A, luminal B, Her2-positive and
basal-like) based on expression of three receptors:
oestrogen and progesterone hormonal receptors (ER and
PR) and the epidermal growth factor receptor ERBB2
(Her2). Basal-like are the most aggressive, and difficult to
treat, type of breast cancer tumour. They are usually nega-
tive for the three receptors, and thus called triple negative
breast cancer (INBC), which represents 10-20% of all
breast cancers. These tumours are usually found in youn-
ger patients with a larger size and higher probability of
lymph node infiltration and metastasis [2, 6]. Furthermore,
the absence of all three receptors reduces the number of
targeted therapeutic strategies to be used, leaving nonspe-
cific chemotherapy as the standard treatment of choice,
which soon leads to dose-limiting side-effects, resistance
to treatment and finally clinical relapse in less than 5 years
[6]. A better understanding of the molecular differences in
between these tumour categories will improve the choice
of treatment and detection of early metastasis, which will
significantly impact patient’s outcome. There have been
many attempts to identify novel therapeutic targets and/or
prognostic biomarkers to better subclassify breast cancer
tumours [7]. Over 170 independent breast cancer suscep-
tibility genomic variants have been identified. Many of
which have been associated with a specific tumour cat-
egory, such as ER positiveness or Her2 amplification.
However, no clear subcategories exist despite tumour

heterogeneity and differences in clinical response to treat-
ment and tumour relapse within the same category [8—
10]. Interestingly, alternative splicing is an emerging
source of new biomarkers and therapeutic targets in can-
cer [11-15].

The alternative processing of mRNA precursors enables
one gene to produce multiple protein isoforms with differ-
ent functions, increasing protein diversity and the capacity
of a cell to adapt to new environments. An increasing
number of splice variants, and their respective splicing
regulators, have been shown to confer a selective advan-
tage to tumour cells. For instance, the splicing regulators
RBMS5, 6 and 10 favour tumour cell proliferation and col-
ony formation by regulating the alternative splicing of the
membrane-bound protein NUMB [16]. Post-translational
activation of the splicing factor SRSF1 (also known as
ASF[SF2) confers resistance to apoptosis by inducing in-
clusion of the anti-apoptotic splice variant in a network of
functionally related genes, such as Bel-X and Mcli [17].
Regulation of VEGF splicing is detrimental for stimulation
of angiogenesis [18]. A change in the alternative splicing
of the pyruvate kinase pre-mRNA can switch tumour cells
metabolism to adapt to the increased proliferation [19,
20]. Finally, a list of well-known alternatively spliced vari-
ants related to cell adhesion (CTNND1, CD44) and cyto-
skeleton organisation {(ENAH, FLNB) is responsible for
the acquisition of migratory and invasive phenotypes ne-
cessary for distal metastasis [13, 21-24]. The existence of
functionally relevant cancer-specific isoforms is therefore
a promising new source of highly specific and less toxic
therapeutic targets for the development of isoform-
specific antibodies and/or splice-switching antisense oligo-
nucleotides [25, 26].

By taking advantage of an extensive transcriptomics and
anti-tumour compound screening information publicly
available in cancer cell lines from the Cancer Cell Line
Encyclopedia (CCLE) [27], we identified a splicing signa-
ture that can stratify basal breast cancer cell lines into two
well-known subtypes, basal A and basal B. In contrast to
basal-like breast cancer patients, basal breast cancer cell
lines are divided into two subgroups, basal A and basal B,
depending on the expression profile of a subset of basal
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{cytokeratins, integrins), stem cell (CD44, CD24) and mes-
enchymal markers (Vimentin, fibronectin, MSN, TGFBR2,
collagens, proteases) [28—30]. Basal B cell lines are mostly
triple negative breast cancer cells that express classical
mesenchymal and stem cell markers characteristic of the
epithelial-to-mesenchymal transition (EMT), a biological
process in which epithelial cells acquire mesenchymal fea-
tures that are advantageous for the cancer cell, such as in-
creased cell motility to invade distal organs in metastasis,
resistance to apoptosis, refractory responses to chemo-
therapy and immunotherapy, and acquisition of stem cell-
like properties like in cancer stem cells [31, 32]. In con-
cordance, basal B cells are morphologically less differenti-
ated, with a mesenchymal-like shape, and a more invasive
phenotype in culture assays than basal A and Iuminal cells
[28, 33, 34]. We aimed to transfer this basal A/basal B
splicing classification into the clinic by using a semi-
supervised machine learning approach. We successfully
clagsified 40% of basal-like breast cancer patients (75/188)
from the Cancer Genome Atlas (TCGA) [35] as basal B-
like based on a unique 25 spliced gene signature charac-
teristic of cells undergoing EMT. In this signature, we
found well-known markers of malignancy, such as ENAH
EMT splice variant that promotes lung metastasis [36] or
CSF1 variant which promotes macrophage infiltration and
distal metastasis [37], together with new promising spli-
cing candidates of tumour progression and invasiveness
(PLOD2, CTNND1, SPAG9). Finally, expression of this
basal B signature was sufficient to identify triple negative
breast cancer tumours with poor survival, highlighting the
prognostic value of the newly identified splicing bio-
markers to subclassify one of the most heterogenous and
difficult to treat type of breast cancer. More studies
in cell lines, particularly regarding resistance to treat-
ment and cell invasion will be essential to refine this
splicing signature in view of orienting treatment or
predicting metastasis sites.

In conclusion, by adapting a machine learning ap-
proach, we were able to transfer the molecular know-
ledge obtained in experimental cell lines to identify
novel biomarkers of poor prognosis and metastasis
amongst triple negative breast cancers in patients. Fur-
thermore, the study of the regulatory pathway involved
in this specific splicing signature pointed to RBM47 as
one of the splicing regulators responsible for the basal
B-specific splicing signature, and for which differential
expression levels also correlate with distinct prognostic
values, turning this splicing factor a promising novel
therapeutic target. Further clinical and functional valid-
ation of the 25 splicing events proposed in our basal B-
specific splicing signature will open new perspectives in
the understanding of triple negative breast cancers and
the improvement of currently available therapeutic strat-
egies and survival outcome.
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Results

A distinctive basal B-like breast cancer splicing signature
Data mining of large-scale genomics and transcriptomics
datasets in breast cancer cell lines are a promising
source of novel biomarker and therapeutic targets [23,
38, 39]. We sought to leverage the wealth of transcripto-
mics and functional data available in cancer cell lines to
better understand different profiles of breast cancer.
Hierarchical clustering of changes in alternative splicing
of cassette exons and gene expression profile of 80
breast cancer cell lines from two extensive and comple-
mentary projects (Additional file 2: Table S1) revealed
basal B cell lines as a distinctive group of cells with an
expression and splicing profile significantly different
from basal A and luminal cancer cells (Additional file 1:
Fig. S1). To identify the transcriptional signature charac-
teristic of basal B cells, we repeated the hierarchical clus-
tering in just basal A and basal B cell lines to merge all
the differentially expressed and spliced transcripts re-
sponsible for the segregation of basal B cell lines (Fig. 1}.
We found 635 genes and 217 spliced isoforms with sig-
nificantly different levels between basal A and basal B
cells (Fig. la, b). In line with published tissue-specific
and EMT transcriptomics analyses [40-42], most of the
genes differentially spliced were not affected at the ex-
pression level, suggesting that two different subsets of
genes, and thus regulatory layers, are responsible for the
basal B phenotype (Fig. 1c). Gene set enrichment ana-
lysis (GSEA) [43] between basal B and basal A cells con-
firmed the EMT and stem cell-like phenotype
characteristic of basal B cell lines (Fig. 2a, b), which was
supported with a higher CD44+/CD24— stem cell score
(Fig. 2e) [28-30]. DAVID gene ontology analysis of
differentially expressed and spliced genes also underlined
biological terms that are hallmarks of EMT and cell in-
vasiveness, such as cell-cell junction (Fig. 2d} [44]. How-
ever differentially expressed genes were also enriched in
their own unique terms, related to extracellular vesicles/
plasma membrane organisation. Whilst differentially
spliced genes were specifically enriched in terms related
to GTPase activity, cytoskeletal protein and cadherin
binding, which reinforces the existence of two comple-
mentary regulatory pathways (Fig. 2d). Finally, another
malignant characteristic acquired by cancer cells under-
going EMT is resistance to chemotherapy, which often
leads to clinical relapse. Gene set enrichment analysis
found upregulation of genes resistant to the Epidermal
Growth Factor Receptor (EGFR) inhibitor Gefitinib
(Fig. 2c), which is an alternative to hormonal therapy in
Her2+ breast cancer tumours, but is not efficient in
triple negative tumours [45]. Available drug assays from
the Genome Drug Sensitivity in Cancer portal (GDSC)
[46] confirmed the need of a higher concentration
(IC50) of Gefitinib, and other EGFR inhibitors (Erlotinib,
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Sapitinib), to have the same deleterious effect on basal B
compared to basal A cancer cells (Fig. 2f). Basal B cell
lines also showed a significant resistance to well-known
inhibitors of the cell cycle (irinotecan, taselisib, 5-

fluorouracil), drug inducers of cell death (AZD5582,
AZD5991) and other receptor tyrosine kinase inhibitors,
such as savolitinib which inhibits ¢-MET to reduce
tumour persistence and metastasis [47].
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In summary, we have identified two distinct transcrip-
tional and splicing signatures, specific of basal B cell
lines, that underline an EMT phenotype with molecular
characteristics related to cell invasion, stemness and re-
sistance to chemotherapy. We next sought to investigate
whether this basal B-specific splicing signature could
also be used to subclassify basal-like/triple negative
breast cancer patients.

A semi-supervised machine learning approach to
subclassify basal-like breast cancer patients

As a first and simple approach, we performed a hier-
archical clustering followed by a k-means clustering (k =
2 for “A-like” and “B-like”) of the 188 patients, anno-
tated as basal-like in The Cancer Genome Atlas Program
(TCGA), using the 635 differentially expressed or 217
differentially spliced cassette exons characteristic of basal
B cell lines (Additional file 1: Fig. S2a,b). Using such
method, patients were forced to classify in one of the
two groups based on differences in gene expression or
splicing patterns. Since basal B cell lines show more in-
vasive, cancer stem cell-like phenotypes, we assessed
whether these aggressive characteristics were translated
to the “B-like” patient group through differences in dis-
ease specific survival (DSS) rates. Kaplan-Meier analysis
of DSS did not show significant differences between the
two subgroups of basal-like patients (Additional file 1:
Fig. S2¢,d). However, we did observe a tendency for “B-
like” patients to have a poor survival compared to “A-
like” when just looking at differences in splicing,
contrary to expression levels (p value = 0.09 vs 0.57, re-
spectively—Additional file 1: Fig, S2¢,d).

In fact, it was not surprising that the transcript-level
and splicing signatures did not translate directly from
simplistic cell culture models to much more complex
tumour patients with specific cell micro-environments
and differences in cell heterogeneity. However, because
the patients showed clear “A-like” and “B-like” signa-
tures, we sought to develop a machine learning approach
that would allow us to transfer part of the molecular and
phenotypic observations found in cell-lines to patient
data. Transfer learning is a recent research methodology
that focuses on storing the knowledge gained when solv-
ing a problem, to apply it to a different, but related, one.
Because we wanted to ensure that the newly developed
cell-to-patient transfer learning algorithm could create
interpretable models, we used a decision tree-based ap-
proach called Random Forest. In this cell-to-patient ran-
dom forest classification method, we started by
classifying basal A or basal B cell-lines based on their
splicing and/or expression profile (Fig. 3a and Add-
itional file 1: Figs. $3-84). Then, once the model was
trained on cell-lines, we would start integrating patient
data gradually into the model. This was done iteratively
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by integrating at each round of classification the patients
best predicted to be basal A-like and basal B-like, so
their added informative value could be used back to
train the system and improve the next round of classifi-
cation (Fig. 3a). With this semi-supervised approach, the
probability of assigning a patient to a specific subgroup
evolves and improves at each round based on the up-
dated information obtained from the best predicted pa-
tients, reaching at the end a stable population with the
labels ‘basal A-like’, ‘basal B-like’ or ‘unclassified’ deter-
mined by the algorithm after 10-12 rounds (Fig. 3b,c
and Additional file 1: Figs. S3b,c-S4b,c). Thanks to the
gradual addition of patients at each round of training,
there is a progressive increase, or decrease, in the feature
importance of the splicing variants used to classify pa-
tients (Fig. 3d and Additional file 1: Figs. $3d-S4d). Out
of the 188 basal-like patients, 75 were classified as basal
B-like, 88 as basal A-like and 25 could not be classified
based on their splicing signature. Using only expression
levels, there was a slight biased towards the basal A-like
phenotype, with 56 patients classified as basal B-like, 122
as basal A-like and 10 unclassified (Additicnal file 1: Fig.
$3b-c). Combining differentially spliced and expressed
features seemed to be the most performant classifier
with 84 patients as basal B-like, 100 as basal A-like and
just 4 unclassified (Additional file 1: Fig. S4b-c). Taken
together, depending on the features used (splicing pat-
terns, expression levels or both), patients were differently
classified in basal A-like or basal B-like.

An EMT-related basal B-specific splicing signature that
marks poor prognosis

To address which classifier translates the best to patients
the invasive, EMT-like and drug-resistant basal B pheno-
type found in cancer cells, we calculated the 5-year sur-
vival rate for each group of basal A-like and basal B-like
issued from the three types of classification. Only basal
B-like patients classified based on splicing levels had a
poor prognosis compared to basal A-like patients (log-
rank test p = 0.0067, HR = 4.87; 95% IC: [1.37-17.28] in
Kaplan-Meier analysis and univariate Cox regression)
(Fig. 3e). Basal B-like patients subclassified based on
gene expression levels, or gene expression and splicing
features, did not show significant differences in disease
survival rate (Additional file 1: Fig.S3e-4e), suggesting
that splicing biomarkers might be more informative to
further subclassify basal-like patients based on prognosis.
We thus decided to focus on the role of alternative spli-
cing in identify triple negative basal-like breast cancer
with poor prognosis.

To extract the most informative splicing features from
the cell-to-patient transfer learning classifier, we used
the Boruta feature selection method [48]. This allowed
us to select the key splicing events responsible for the

126



Villemin et al. BMC Biology

(2021} 19:70

Page 7 of 19

(==l

. |

Labelled Cancer
Cell Lines :

*
i

Lk
t

Basal B

O
v
7SN

Basal A

Patients :

Unlabelled

[f] Basal Adike

Basal B-like

. N

113)-

Rounds of Patients Integration

P o.oui

Probability of each patient to
be classified as basal B-like

o

0.10

Feature Importance

0.00

Bt
= 11111131488
ARBU L
et 1
ity e CTNND1a

2 CTNND1b

Rounds

Fig. 3 (See legend on next page)

C

Number of Patients Added

5=
50~
25

0-

Percent Survival

1 2 3 4 5 8 7

W B-like
W Alike

g 9 1 1 12

Rounds

Disease Specific Survival

Group: =~ B-LIKE -+ A-LIKE

p =0.0067
HR = 4.87[1.37-17.28]
0 1 2 3 4 5
Years

127



Villemin et al. BMC Biology (2021} 19:70

Page 8 of 19

(See figure on previous page.)

p value (P) discriminating the two groups are shown

Fig. 3 A Random Forest Classifier using knowledge transfer from cell lines to patients. a. Workflow scheme: a random forest (RF) model is built
using cell lines labelled as basal B (red) or basal A (blue). It is then run iteratively, integrating at each round patients whose probability to be
classified in one group or the other is amongst the ten highest. The classifier stops when no more patients can be classified. b Probability of a
basalike patient to be classified as basal B-like, basal A-ike or unclassified over each round, Yellow lines indicate thresholds used to classify a
patient as basal B-like (> 0.6) or basal A-like (<0.4). ¢ Bar plot of the number of patients added at each round. Patients with the highest
probability to be classified are sequentially incorporated to the input cell lines in order to create a new classifier for the next round of integration.
d Evolution of the feature importance at each round of iterative training. In red are the 10 splicing variants (features) most informative at the
beginning of the transfer learning process. In blue are the 10 splicing variants most informative at the end. Only two exons remained informative
from the beginning to the end (in blue and red). The name of the top 10 final most informative spliced genes are written in blue and in
sequential order. e Kaplan-Meier plots of disease specific survival in basal A-like (blue) and basal B-like patients (red). Hazard ratio (HR) and logrank

basal A/B classification without the need to predefine ar-
bitrary thresholds (Fig. 4a). OQut of the 217 differentially
spliced exons between basal A/B cell lines, just 25 were
needed to subclassify breast cancer patients in basal A
or basal B-like tumours (Fig. 4a and Additional file 3:
Table §2). Sashimi plots representing the splicing pat-
terns of some of these basal B-specific splicing events,
such as the well-known splicing biomarker of cancer
metastasis ENAH [26] and the newly identified splicing
biomarkers PLOD2, SPAGY and KIF13a, validated the
observed changes in splicing between basal A and basal
B-like patients (Fig. 4b-c and Additional file 1: Fig. S5a-
b). Moreover, the changes in percentage of spliced-in
(PSI) of the 25 basal B-specific splicing events between
the two subtypes of basal-like patients correlated with
the observed splicing changes between basal A/B cell
lines (Additional file 1: Fig. S5¢-d), further supporting
the transfer of knowledge from the laboratory to the
clinic, Finally, in the absence of publicly available RNA-
seq data on a second cohort of basal-like breast cancer
patients, we took advantage of three independent se-
quencing projects on breast cancer cell lines, different
from the ones used for the training of the semi-
supervised classifier (Additional file 2: Table S1). Distri-
bution of 52 independent breast cancer cell lines showed
a 93% accuracy in the spatial segregation (t-SNE) of
basal A from basal B cells based on the splicing pattern
of the 25 newly identified splicing events (Fig. 4d). Just
three cell lines were misclassified as basal A (HCC38,
SUM102 and MDA-MB-157). It is worth noting that
one of these, HCC38, was also labelled as basal A in the
DepMap portal (www.depmap.org), which validated our
methodology and the specificity of the splicing signature
towards a basal B-like phenotype.

Consistent with basal B cell lines being more mesen-
chymal, differences in the alternative splicing of these 25
basal B-specific splicing events in four different cellular
models of EMT, coming from different cell types and
methods of EMT induction [49-52], successfully clus-
tered epithelial cells from mesenchymal with a pattern
of splicing equivalent to basal A and basal B-like pa-
tients, respectively (Fig. 4e). Of note, another 25 gene-

based EMT-like splicing signature characteristic of lu-
minal breast cancer tumours has also been identified
capable of subclassifying mesenchymal-like breast cancer
tumours with poor prognosis [38]. Consistent with a
more luminal-specific signature, despite both marking
EMT phenotypes, not more than six splicing events were
found in common between the two splicing signatures
(ATP5C1, CTNND1, KIF13a, PLOD2, SEC3la and
SPAGY), which further supports the specificity of our
newly identified splicing signature for basal-like triple
negative breast cancer. Finally, using one of the first
established molecular subtypes of triple negative breast
cancer tumours based on gene expression, which is the
Lehman classification [53], we found that basal B-like
patients are mostly found in the categories associated
with mesenchymal stem-like (MSL) and immunomodu-
latory (IM) subtypes (Fig. 5a), which goes in line with a
gene set enrichment of terms related to inflammatory re-
sponses and hallmark of EMT (Fig. 5b).

When looking at the expression of well-known basal
and EMT biomarkers in the two subpopulations of basal
A/B-like patients, we found that basal A-like patients ex-
press classical basal/epithelial markers, such as E-
cadherin, EPCAM and cytokeratin KRT5/KRT6/KRT14,
together with ERBB3 and TOB1 which are markers of
more differentiated, non-invasive cells [2]. On the other
hand, basal B-like patients express classical EMT/mesen-
chymal markers such as Fibronectin, the EMT inducers
Twist and Slug, and the Zinc-finger transcriptional regula-
tors Zebl and Zeb2 which have recently been shown to
confer stemness properties that can increase the plasticity
and invasive capacity of the tumour cells [54] (Fig. 5¢, d).
In line with a more aggressive, invasive phenotype, basal
B-like patients express cytoskeletal (MSN, FN1) and extra-
cellular matrix signalling proteins (TGFB1, TGFBR2,
FBN1, AXL), collagens (COL3A1, COL6A3) and proteases
(MMP2, TIMP1, CTSC, PLAU, SERPINE1/2, PLAT),
which are necessary for cell’s migration and dissemination
to distal organs during metastasis [2]. Finally, basal B-like
patients overexpress a recently identified new marker of
metastasis-initiating cells, the fatty acid receptor CD36
[20]. Clinically, the presence of CD36-positive cells has
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Fig. 4 The basal B-specific splicing signature is associated to EMT features. a Heatmap of the Percentage Spliced-In (PSl) values of the 25 cassette
exons most informative to classify TCGA basal-like patients into basal B-like (red) or basal A-like (blue). Claudin low tumours are highlighted in
green. b, ¢ Sashimi plots displaying ENAH and PLOD2 splicing patterns in randomly selected patients classified as basal A-like and basal B-like.

d Changes in altemative splicing of these 25 basal B-specific splicing events is sufficient to properly cluster 55 basal breast cancer cell lines from 3
unrelated sequencing projects into basal B and basal A using t-SNE. Of note, three basal B cell lines, HCC38, MDA-MB-157 and SUM102 were
rnisclassified as Basal A cell lines (red dots). Although HCC38 has also been classified as Basal A in the DepMap portal (www.depmap.org).

e Heatmap of the PSI values of the 25 basal B-specific splicing signature in public RNA-seq datasets from four different EMT projects. Basal B-like
events have the same splicing pattems as EMT-induced cells
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been correlated with a lower survival rate in many carcin-
omas, including breast cancer, and inhibition of CD36 im-
pairs metastasis in breast cancer-derived tumours, turning
this receptor into an important biomarker of tumour cell
dissemination and a potential new target to reduce cell in-
vasion. The fact that basal B-like tumour cells co-express
this metastasis-initiating marker further strengthens the
aggressive nature of this tumour subclass and the clinical
relevance of the basal B-specific splicing signature in
tumour progression and relapse.

Overall, we have identified a novel splicing signature,
specific of triple negative breast cancer tumours, that
marks patients with the poorest prognosis. This basal B-
like splicing signature is responsible of a stem-like, EMT
phenotype that favours tumour growth, invasion of distal
organs and increased drug resistance, which eventually
leads to tumour relapse and metastasis. Interestingly,
some of the genes differentially expressed in these basal
B-like patients are well-known markers of metastasis-
initiating cells, such as the alternatively spliced CTNN
D1 and PLOD2 genes or the fatty acid receptor CD36,
turning these biomarkers into promising new targets for
innovative therapies, such as the use of splicing specific
antibodies [6, 26].

A metastasis-related common regulatory pathway for the
basal B-specific splicing signature

Hierarchical clustering of basal A and B cell lines based
on the differential expression of RNA-binding proteins
highlighted six RNA regulators, ESRP1, ESRP2, RBM47,
TMEMS63A, KRR1 and RBMS3 (Fig. 6a) (Kruskal-Wallis
P <107%), Interestingly, ESRP1/2 and RBMA47 are signifi-
cantly less expressed in basal B-like than basal A-like pa-
tients {Fig. 6b), consistently with the known inhibitory
effect of these three splicing regulators in EMT progres-
sion and metastasis [52, 55, 56]. Available transcripto-
mics data in ESRP1/2 and RBM47 lung carcinoma NCI-
H358-depleted cells [52] and RBM47 overexpressing
breast cancer metastatic MDA-MB-231 cells [57]
showed that 19 of the 25 splicing events responsible for
the newly identified basal B-specific splicing signature
could potentially be regulated by ESRP1/2 and/or
RBM47 in breast cancer cells (Fig. 6¢, d). Importantly, in
the cell types analysed, ESRP1/2 and RBM47 induce the
epithelial, basal A-like splicing phenotype, suggesting a
potential tumour suppressor effect for these splicing reg-
ulators (Figs. 6e—g, 4e and Additional file 1: S5¢-d). Con-
sistently with this observation, low expression of RBM47
in basal-like breast cancer patients was associated with
poor overall survival (log-rank test p=0.031, HR = 3.36,
95% IC:[1.05-10.79] Fig. 6h, i), which supports previous
experimental evidence of a role for RBM47 in supressing
breast cancer metastasis and progression [56]. In fact,
RBM47-dependent basal B-specific splicing events were
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found to be functionally interconnected by physical and/
or genetic interactions, which points to the existence of
a common basal B-specific regulatory network associated
with tumour malignancy (Additional file 1: Fig. S6a). In
support, most of RBM47-dependent basal B-specific spli-
cing events play well-known roles in cell-cell adhesion
(CTNND1) [58], cytoskeleton organisation (ENAH, SLK,
FENBP1}) [59, 60], endocytosis (KIF13A, DNM2) [61] and
association with the extracellular matrix (PLOD2) [62],
which are all key processes for gaining the cell motility
and invasiveness necessary in tumour metastasis (54—
58). Of note, expression of just one of these basal B-
specific splice variants, which are CTNND1, ENAH and
PLOD?2, is sufficient to lower the disease-specific survival
rate of basal B-like breast cancer patients compared to
basal A-like {Additional file 1: Fig. S6b-g). These splicing
events could turn into promising new therapeutic strat-
egies aiming at specific key regulatory genes instead of a
pleiotropic splicing regulator that could have unsus-
pected secondary effects.

In summary, by taking advantage of extensive large-
scale transcriptomics data from breast cancer cell lines
and patients, we identified the first splicing signature
capable of subclassifying basal-like tumours based on
their aggressiveness and drug resistance. Importantly,
novel splicing biomarkers of poor prognesis were identi-
fied that should be further studied in more functional
assays to test their capacity to inhibit tumour invasion
and metastasis. Results from these assays will open new
perspectives in the development of improved target ther-
apies and more accurate diagnostic profiles to identify
the basal-like triple negative breast cancer patients with
a higher chance of relapse.

Discussion

Cancer-specific dysregulation of alternative splicing is a
promising source of cancer biomarkers and therapeutic
targets to improve diagnostics and thus overall survival
rate [63]. An increasing number of mutations at core
spliceosome components, such as S3FB1 and U2AFI, or
upregulation of specific splicing factors, such as SRSF1
and other members of the SR protein family, which are
now considered oncogenes, have been intimately linked
to tumour progression and malignancy [64]. Further-
more, an increasing number of alternatively spliced
events, like CD44, ENAH, CTNNDI1 and FLNB, have
been shown to impact cell invasion and metastasis on
their own, making them promising new targets for more
specific therapeutic strategies compared to the inhibition
of splicing regulators [22, 23, 65, 66]. Effectively, splicing
regulators are not only responsible for the regulation of
splicing of a subset of genes, but they are also respon-
sible for other RNA related functions such as translation,
mRNA export and nonsense-mediated mRNA decay [56,
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64], which can have numerous downstream deleterious
effects when inhibited in a targeted therapy. By specific-
ally targeting a key downstream splicing event, as in
splicing-specific immunotherapy, a more cancer-specific
and direct impact on the cell phenotype might be
achieved (134, 135).

Large scale public molecular data sets on genomics
(copy number and mutation), epigenomics, transcripto-
mics, proteomics, in vitro and in vivo cell invasiveness
and response to anti-tumour compounds in a large
number of patients (11,000 patients across 33 different
tumour types from the Genome Cancer Atlas) and
human-derived cell lines (1000 cancer cell lines across
36 tumour types from the Broad Institute’s Cancer Cell
Line Encyclopedia) has become an extraordinary toolbox
to identify novel prognostic markers of early metastasis

and/or resistance to specific drugs, which are the two
major reasons for clinical relapse and low survival rate
[67—-69]. Unfortunately, the translatability of these pre-
clinical findings is often limited since culture cells are
not representative of the variety of individuals nor the
biological reality of the tumour’s multicellular environ-
ment, Yet, culture procedures are improving with the
creation of organoids, and machine learning approaches
combined with large-scale data mining are bypassing
some of these important caveats. This is the case of our
cell-to-patient random forest classifier approach, in
which the addition at each round of selection of novel
informative features, based on the patients classified in
previous rounds, allows an algorithm to make use of the
information learned from cell lines. Thanks to this ap-
proach, we were able to identify the first splicing
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signature, composed of 25 alternatively spliced exons,
capable of subclassifying basal-like breast cancer patients
into two subtypes with different prognoses: basal A- and
basal B-like.

Actually, this newly identified basal B-like gplicing sig-
nature underlined a stem cell-like EMT signature, with
hallmarks of cell invasiveness and drug resistance. Five
of these 25 alternatively spliced genes are well-known to
play a role in cancer (ARHGEF11, CD44, CTNNDI,
ENAH, MBNLL) [70-72]. Six have been indirectly linked
to tumour malignancy and are thus new splicing targets
to study (CAST, CSF1, PLOD2, SLK, SPAGY, TSC2) [60,
62, 73-76]. The rest are completely unknown for their
splicing role in cancer, even though changes in expres-
sion of some of them have been shown to play a role in
tumour progression, chemosensitivity and metastasis
without specifically addressing which splice variant
(ATP5C1, BNIP2, FAT1, FNBP1, SEC31A, ANXAS6,
DNM1, DNM2) [61, 77]. Of special interest are ARHG
EF11 and CTNNDI splice variants. Both proteins are in-
volved in cell-cell adhesion and the basal B-specific
splice variants promote cell migration and invasiveness
in several cancer types, such as breast cancer (13,54,74,
67). Moreover, depletion of ARHGEF11 in basal breast
cancer cells is sufficient to alter cell morphology, which
suppresses the cancer cell growth and survival in vitre
and in vivo [71]. On the other hand, the existence of an
isoform-specific antibody for CTNND1 pro-invasive
splice variants turns this splicing candidate as a valuable
new target to reduce tumour metastasis [78]. ENAH and
CD44 are amongst the most studied splicing events
impacting cancer and are well-known biomarkers of
poor prognosis. ENAH’s inhibition decreases metastasis
by slowing down tumour progression and reducing cell
invasion and intravasation [79-81]. Whilst the change to
basal B splicing signature of CD44, a transmembrane
protein that maintains tissue structure, is sufficient to
drive an EMT and to increase cell invasion and plasticity
by promoting stem cell characteristics [22, 82]. Interest-
ingly, MBNL1 splicing regulation has also been involved
in pluripotent stem cell differentiation [83] and cell via-
bility via inhibition of DNA damage response [84].
Promising new splice variants with a potential link with
cancer are CSF1, PLOD2, SLK, SPAG9Y and TSC2. CSF1
is a macrophage marker which splice variant could cor-
relate with infiltration of tumour-promoting macro-
phages [73, 85]. Changes in the alternative splicing of
the procollagen-lysine PLOD2, which catalyses the de-
position and cross-link of collagens in the extracellular
matrix, have been intimately linked to EMT progression
and cervical, breast, lung, colon and rectal cancer prog-
nosis [40, 86]. Its inhibition reduced proliferation, migra-
tion and invasion of cancer cells, while its
overexpression promoted cancer stem cell properties
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and resistance to drugs [62, 87]. SLK was identified as a
prognostic biomarker in several cancers and is necessary
for the induction of cell migration and invasion during
EMT [60, 72, 88]. SPAGY is a scaffold protein that orga-
nises mitogen-activated protein kinases and has been as-
sociated with invasion in several types of tumours and
prognosis (75, 89, 90]. Finally, TSC2 basal B-specific
splicing isoform cannot be phosphorylated by AKT,
which leads to a continuously activated mTOR pathway
and oncogenic autophagy [74]. More functional studies
on the impact of each of these cassette exons splice vari-
ants in cancer will increase our knowledge on tumour
progression and metastasis with the long term goal of
improving diagnostics and treatment. Of note, other
types of splicing events, different from the studied cas-
sette exons, have also been shown to play important
roles in tumorigenesis, such as alternative splice sites
and intron retention [91-93]. It is necessary to extend
this type of approaches to all types of splicing events
and validate them using independent cohorts of patients.
The increase of accessible sequencing data in primary
tumours will thus be essential to continue with this type
of approaches.

Finally, it is interesting to note that these 25 alterna-
tively spliced exons are basically dependent on three
well-known splicing regulators, ESRP1/2 and RBM47,
which are intimately linked to EMT and metastasis.
ESRP1 is the major regulator of a newly identified
epithelial-specific splicing signature [52]. Its expression
in cancer cells promotes tumour growth and a
mesenchymal-to-epithelial transition which are essential
for the formation of new tumours at distal organs during
metastasis [94, 95]. RBM47 is a newly identified splicing
regulator of EMT that has also been associated with me-
tastasis [56, 96, 97]. Through integrative analysis of clin-
ical breast cancer gene expression datasets, cell line
models and mutation data from cancer genome rese-
quencing studies, RBM47 was identified as a suppressor
of breast cancer progression and metastasis. It was found
mutated in patients with brain metastasis and its expres-
sion was necessary to inhibit brain and lung metastatic
progression in vivo [56]. Interestingly, despite regulating
just 9/25 splicing events of the basal B-specific splicing
signature, low expression of RBM47, and not ESRPI1,
correlated with a poor prognosis and lower survival rate
in basal-like breast cancer patients, which increases the
interest to design new therapies targeting this splicing
regulator.

In fact, this basal B-specific splicing signature has
highlighted a subpopulation of basal-like triple negative
breast cancer patients differentially expressing several
hallmarks of invasive, EMT-like aggressive cancer, such
as the newly identified biomarker of metastasis CD36
[20]. CD36 is a fatty receptor expressed in metastasis-
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initiating cells. Neutralising antibodies that block CD36
completely inhibited the formation of metastasis in
orthotopic mouse models of human oral cancer, and
CD36 inhibition impaired metastasis in human melan-
oma and breast cancer-derived tumours. Interestingly,
the fatty acid-binding protein 7 (FABP7) correlates with
a higher incidence of brain metastasis and lower survival
rate in breast cancer patients, which all together points
to a potential connection between fatty acid metabolism
and metastasis in our subclass of basal-like breast cancer
patients [98]. Furthermore, cells expressing our newly
identified basal B-specific splicing signature also showed
resistance to several EGFR inhibiting drugs. Therapies
targeting EGFR have variable and unpredictable re-
sponses in breast cancer [99]. By better subclassifying
sensitive from resistant tumour cells, diagnoses could be
improved, which will impact the choice of treatment and
thus the chances of tumour relapse. Extensive drug
screening of cells derived from basal B-like patients
combined with machine learning strategies to transfer
the splicing knowledge obtained will certainly improve
the identification of much more suitable treatments for
triple-negative breast cancer cells and reduce tumour re-
lapse, thus improving the survival rate.

Conclusion

Taking advantage of extensive available experimental
data in breast cancer cell lines, we performed a
knowledge transfer to clinical data to identify the first
splicing signature capable of subcategorizing the most
aggressive and difficult to treat type of breast cancer,
which is basal-like triple negative breast cancer. Based
on the pattern of splicing of 25 splicing biomarkers,
we could identify two new subclasses of clinically
relevant basal-like tumours, basal A and basal B-like,
with different sensitivity to drugs and capacity to in-
vade distal organs, which has a direct impact on
prognosis. We propose that by testing all basal-like
patients with this novel signature, patients with in-
creased chances of creating early metastasis or
tumour relapse could be closely monitored to im-
prove their chances of survival. Similarly, by correlat-
ing alternative splicing patterns with drug resistance
in cancer cell lines, or even cancer cells isolated from
patients, more specific splicing biomarkers could be
identified for the most adequate and personalised
choice of treatment, which is one of the major chal-
lenges in triple negative breast cancer. Finally, the
newly identified basal B-specific splice variants under-
line a stem cell-like, highly invasive EMT phenotype,
with increased drug resistance, that could be used as
novel therapeutic targets to reduce cancer metastasis
and relapse, opening new perspectives into the
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development of improved and more specific treat-
ments for triple negative breast cancer tumours.

Methods

RNA-seq transcriptomics analysis: gene expression and
alternative splicing

RNA-seq reads were aligned to the human genome
(GRCh38, primary assembly) using STAR [100] version
2.5.2b with standard parameters. Gencode v25 (derivated
from Ensembl v85) was used for all analysis requiring
annotation.

TPMCalculator [101] (v0.0.1) was used to compute
transcripts per million (TPM) values and obtain read
counts. Q parameter was set to 255 to keep only unique
mapped reads and ExonTPM value was used to consider
only reads mapped to exons.

Whippet-quant from Whippet software (v10.4) was
used to compute Percentage Spliced-In {PSI) values for
splicing analysis. Conjointly to Kruskal-Wallis testing,
the output from Whippet-quant was further filtered to
include only events for which the sum of inclusion
counts {IC) and skipping counts (SC) was greater or
equal to 10 for both sets of samples. Whippet-delta was
used to compute differential splicing (deltaPsi) and prob-
ability that there is some change in splicing between
conditions. Two heuristic filters were applied on splicing
events as advised in whippet documentation; |deltaPsi| >
0.1 and P(|deltaPsi| > 0.0) > = 95% were considered reli-
able parameters to filter biologically relevant AS events.

When necessary, Biobambam2 [102] (v 2.0.87) was
used to transform bam files into fastq in order to be
processed by Whippet.

Gene ontology (GO) analysis was done using the DAVID
(v 6.8) [103] functional annotation tool (https://david.
ncifcrf.gov/home.jsp) using Benjamini-Hochberg adjusted P
value cutoff of 0.05 to define a term as enriched. Go terms
enrichment was restricted to GOTERM BP-FAT,
GOTERM MF-FAT, and GOTERM CC-FAT, KEGG_
PATHWAY and REACTOME _PATHWAY.

Gene Set Enrichment Analysis (GSEA v20.0.5) was car-
ried out on the GenePattern [104] web platform using
phenotype for permutation type and 1000 for the number
of permutations to execute. FDR cutoff of 25% for poten-
tial true positive finding was used as documented in the
GSEA user guide. Read counts were previcusly normalised
using DESeq2 [105] (v 1.10.1) on the same Platform.

R version 3.6.2 was used all along this study excepted
for GSEA.

All heatmaps were done online using Morpheus
https://software.broadinstitute.org/morpheus/. ~ Values
were adjusted by Z-score. (subtract mean and divide by
standard deviation). Hierarchical clustering was done in
Morpheus. We selected “Metric One minus Pearson cor-
relation” as a measure of distance between pairs of
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observation and “Average” as the linkage method. The
clusters were done using rows and columns together.
Columns were grouped by cancer subtypes.

Sashimi plots to look cassette exons events were done
using ggsashimi tool [106].

Machine learning and feature selection

First, we construct a classifier to distinguish basal B/A
cell lines using a Random Forest with 1000 trees. After,
we applied this model to the TCGA patients. Based on
Gini impurity, we computed the class prebability to pre-
dict patient labelled as B-like or A-like. Then, mixing
initial cell lines with a subset of patients classified with
the more reliability {the ones picked up with higher class
probability not passing below a threshold of P =0.6), we
create a new model. Each addition of patients is called a
round, during which a new model is created, giving new
predictions (probabilities) for the remaining patients, By
limiting the number of new patients added at each
round (10 x n_current round) (Fig. 3¢ and Add-
itional file 1: Figs. S3c-4c), the model can gradually learn
from the patient data and avoid overfitting. With such
conditions, we can observe a gradual shifting in feature
importance from the ones informative to classify cell
lines to the ones informative to classify patients and cell
lines (Fig. 3d and Additional file 1: Figs. S3d-4d). The al-
gorithm stops when it can no longer incorporate the pa-
tients into one or the other group given the cutoff of
P=0.6. ML analyse was done with Python 3.7.3 based
on scikit-learn version 0.21.2.

To select the more efficient features that were able to
separate B-like from A-like patients, we used Boruta
package (0.3) implemented in python. We ran it 10
times with different random states, on the 217 features
related to splicing and kept the ones that were present
at least 7 times on 10. We ended with 25 AS features.
Considering only these 25 AS features, we applied TSNE
function from manifold package (with perplexity = 20) to
3 other datasets of basal cell lines (# =56) to check the
features were sufficient to distinguish spatially these cell
lines according to their labels.

For the classification using only differentially expressed
genes (Additional file 1: Fig. S3) or a mix of differentially
spliced and expressed features (Additional file 1: Fig.
S4), we applied the same strategy using the information
from the 635 differentially expressed genes and the 217
differentially spliced exons scaling independently the
values from the cell lines and patients with sklearn’s
StandardScaler. We also had to reduce the probability
threshold to 0.55 in the mixed model.

Breast cancer annotation
Basal B and A cells were labelled according to literature:
Neve et al. [28], Kao et al. [33], Marcotte et al. [107], Dai
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et al. [108]. PAM50 intrinsic subtype was retrieved from
https://www.cell.com/cancer-cell/fulltext/S1535-6108(1
8)30119-3 [109].

Claudin Low status was defined with script down-
loaded from https://github.com/clfougner/ClaudinLow/
blob/master/Code/TCGA.r [110] using dataset from
http://download.cbioportal.org/brca_tcga_pan_can_
atlas_2018.tar.gz [111, 112].

Survival analysis

Log-rank tests were performed using the functions surv
and survfit from R package (survival v3.1.8). A different
survival was considered significative if log rank test p
value was < 0.05. Coxph function was also used for uni-
variate Cox regression analysis in order to compute Haz-
ard Ratio and 95% Interval of confidence. Kaplan-Meier
curve was plotted using function ggsurvplot from R
package survminer (0.4.6). Plots were truncated at 5
vears, but the analyses were conducted using all of the
data. All endpoints used for survival analysis in this
study were retrieved from this study [113].

Statistics
Wilcoxon rank-sum test was used to assess statistical
significance within boxplots.

They were noted. P<0.05 (), P<0.01 {s+), and P<
0.001 (s++), P<0.0001 (ssss).

Kruskal-Wallis test was used to keep differential fea-
tures for expression (TPM values) or splicing (PSI
values) when Luminal, basal A and B cell lines were
compared and displayed in heatmap figures. A threshold
of p value <10-5 was used to filter out potential false
positive and reduce the number of features in order to
apply hierarchical clustering. This threshold was adapted
depending on the number of samples in the comparison.
For RNA binding proteins, a higher cut off of p <10-9
was used because 5 projects were pulled together.
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PickPocket: Pocket binding prediction for specific ligand
families using neural networks.

During the last three years | helped Benjamin Viart in the implementation of
PickPocket, focusing especially on the implementation in Python of the feature
extraction process and the ML approaches.

Though promising, the method performances are not yet satisfying enough and the
project needs more time and effort to be concluded.
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Pocket binding prediction for ligand families

Abstract

Most of the protein biological functions occur through contacts with
other proteins or ligands. The residues that constitute the contact surface of
a ligand-binding pocket are usually located far away within its sequence.
Therefore, the identification of such motifs is more challenging than the
linear protein domains. To discover new binding sites, we developed a tool

called PickPocket that focuses on a small set of user-defined ligands and
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PickPocket: Pocket binding prediction for specific
ligand families using neural networks.

uses neural networks to train a ligand-binding prediction model. We tested
PickPocket on fatty acid-like ligands due to their structural similarities and
their under-representation in the ligand-pocket binding literature.

Our results show that for fatty acid-like molecules, pocket descriptors
and secondary structures are enough to obtain predictions with
accuracy >90% using a dataset of 1740 manually curated ligand-binding
pockets. The trained model could also successfully predict the ligand-
binding pockets using unseen structural data of two recently reported fatty
acid-binding proteins. We think that the PickPocket tool can help to
discover new protein functions by investigating the binding sites of specific
ligand families. The source code and all datasets contained in this work are

freely available at https://github.com/benjaminviart/PickPocket .

Author Summary :

Most of the protein biological functions are defined by its interactions
with other proteins or ligands. The cavity of the protein structure that
receives a ligand, also called a pocket, is made of residues that are usually

located far away within its sequence. Therefore understanding the
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PickPocket: Pocket binding prediction for specific
ligand families using neural networks.

complementarity of pocket and ligand is a real challenge. To discover new
binding sites, we developed a tool called PickPocket that focuses on a
small set of user-defined ligands to train a prediction model. Our results
show that for fatty acid-like molecules, pocket descriptors ( such as volume,
shape, hydrophobicity... } and secondary structures are enough to obtain
predictions with accuracy >90% using a dataset of 1740 manually curated
ligand-binding pockets. The trained model could also successfully predict
the ligand-binding pockets using unseen structural data of two recently
reported fatty acid-binding proteins. We think that the PickPocket tool can
help to discover new protein functions by investigating the binding sites of

specific ligand families.

Introduction :

One of the main tasks of bioinformatics is to associate biological roles
to proteins using the always increasing biological data (1,2). To predict the
function of a protein based on its sequence, computational methods look
for sequence patterns in biclogical databases of known and already

annotated proteins. Homology search (3,4), motif search (5) and functional
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PickPocket: Pocket binding prediction for specific
ligand families using neural networks.

domain search (6,7) are the most common methods, among the many
available tools. Other strategies exploit different data types, such as gene
expression (8) or even a combinatorial approach (9,10).

Most of the protein biological functions occur through interactions with
other proteins or ligands {11). The residues making the protein contact
surface and cavity shape are often located far away within the protein
sequence. Therefore, the identification of such motifs is more difficult.
Fortunately, the quantity of protein structures and models available in the
Protein Data Bank (PDB) archive (12) has increased rapidly (13), providing
abundant data for structural analyses. The study of ligands and cavities or
pockets to which they bind is of particular interest, especially for drug
discovery.

Different algorithms exist to compute the structure of ligand-binding
pockets and to predict binding sites using geometric criteria, such as
SURFNET (14), APROPOS (15), Q-SiteFinder (16), LIGSITEcsc (17),
ConCavity (17,18), fpocket (19),DEPTH (20) or PDBinder {21) among
others. Artificial intelligence also has been useful in this field with the

development of algorithms for convolutional neural networks, such as
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FRSite (22), DeepSite (23) and DeepDrug3D (24) or of tools based on the
random forest algorithm, such as P2ZRank (25).

With the progressive increase in structure availability, the need to
store and compare ligand-binding pocket data has led to the creation of
dedicated databases, such as the Computed Atlas of Surface Topography
of proteins (CASTp) (26,27) and the PoSSuM database (28). The collection
of all pockets present in a single organism is called a pocketome and has
its dedicated database: Pocketome (29). The extensive knowledge of all
the pocket structures and their comparison are valuable for drug designers.
For special needs, the tool PocketPipe can be used to analyze the
pocketome of a single organism (30). Recently, comparative analyses of
binding sites have gained momentum due to their capacity to reveal ligand-
binding similarities among proteins, regardless of their evolution (31,32). As
different proteins can evolve to bind to the same ligand type (33) the
accurate classification of binding sites has become an important tool for
designing drugs and predicting their possible side effects through unwanted

binding (34,35).
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One limitation of the available tools is that they are tailored for drug
design or for the analysis of large pockets, thus excluding the possibility of
executing other tasks, such as determining the specific ligand-pocket
binding complementarity. Yet, to discover new binding sites, the reverse
approach needs to be possible: to focus on a small set of specific ligands
and to take into account their molecular and structural specificity.

In this work, we developed a tool called PickPocket to generate a
dataset of pockets that interact with a specific user-defined ligand family.
The workflow consists of different R (36) and python (36,37) programs
organized using bash scripts. From the pocket dataset, we computed a
descriptive matrix of all pockets that contains structural information on the
cavity and the residue secondary structure. Then, we trained a neural
network multilayer perceptron (38) to predict whether a cavity is a ‘true’
pocket (i.e. can interact with ligands of the family under study) or a ‘false’
pocket.

To test PickPocket, we decided to use fatty acid-like ligands due to
their structural similarities and their under-representation in the ligand-

pocket binding literature (39). The source code and all datasets contained
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in this work are freely available at

https://qgithub.com/benjaminviart/PickPocket.

Results :

The input data for the PickPocket tool consisted of 42 fatty acid-like ligands
(Supplementary Information Table 1 : Detail of ligands used as input for
PickPocket ), 301 structures containing one of the selected ligands and 242
structures containing no ligand. For each pocket, a descriptive matrix is
computed that gathers 21 features including structural information of the
cavity as well as secondary structure (Table 1). In order to ensure the
quality of the training data, the pockets labels were manually checked using
pymol (40). A few mis-annotations were detected and corrected. The final
training matrix contained 339 ligand-binding (true) pockets and 1401 empty

ones (false).

Table 1 : Descriptors used to train the predictive model

147



bioRxiv preprint doi: htips://doi.org/10.1101/2020.04.15.042655; this version posted April 15, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

PickPocket: Pocket binding prediction for specific
ligand families using neural networks.

Pocket score

Druggability score

Number of vertices

Mean radius of alpha sphere

Mean alpha sphere solvent accessibility
Mean B factor

Hydrophobicity score

Polarity score

Volume score

Real volume

Charge score

Local hydrophobic density score
Number of apolar alphaspheres
Proportion of apolar alpha sphere
Solvent accessible surface
Number of alpha helices

Number of coils

Number of strands

Number of turns

Number of bridges

Number of 310 helices

We obtained the best results using a neural network multilayer

perceptron classifier with an architecture of (15, 10, 5). To avoid overfitting,

we trained the model using a 5-fold cross-validation. Furthermore, in order

to reduce problems associated with unbalanced classes, we downsampled

the largest groups according to the smallest one. The model displayed an

Area Under the Curve (AUC) of 97.2% (ROC curve in Figure 1). The model

accuracy was 93.4%.
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Figure 1: ROC curve for pocket prediction after 5-fold cross-

validation. The Area Under the Curve (AUC) of the best model was 97.2%.

To demonstrate that PickPocket can predict ligand binding en unseen
data, we selected the two most recent (at the time of writing) human protein
structures containing fatty acid(s) from the PDB archive: perdeuterated
human myelin protein P2 (PDBID=6S2M), which contains two possible fatty
acids in the same pocket (vaccenic acid and palmitic acid), and human
angiopoietin-like 4 (PDBID=6U1U), which contains palmitic acid. Pockets

with a score 20.5 were considered positive and were colored in red, the

others were in random colors. For both structures, PickPocket correctly
identified the fatty acid binding cavity. Careful analysis of the 6S2M
structure showed that the cavity fatty acid occupied two pockets (red and
blue in Figure 2A). The red pocket, which is the deep part inside the protein

and contained the carboxyl part, had a score of 0.78. The blue pocket,
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which is at the opening of the cavity and contained the fatty acid tail, had a
score of 0.03. The fatty acid-binding cavities were large and, as illustrated
in this case, fpocket tended to consider them as more than one pocket. As
both pockets corresponded to the same cavity and the red pocket had a

score well-above the threshold, we considered that PickPocket discovered
the fatty acid-binding cavity of the structure. For 6U1U (Figure 2B), the red

pocket, corresponding to the palmitic acid cavity, received a score of 0.69.

Fig 2. Prediction details for the recently published structures 652M
(A) and 6U1U (B). Each set of colored balls represents a pocket. Only the
relevant parts of the structure are shown here. Some parts of the protein
were set transparent to facilitate the visualization, and some negative
pockets distant from the fatty acid were hidden to help visibility. The red
pockets are correctly predicted, while the blue pocket, which corresponds

to the palmitic acid tail, was incorrectly categorized as false.

Table 2 : Prediction results
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Structure Pocket color Prediction Score
6S2M(A) RED 0.78
6S2M(A) BLUE 0.03
6S2M(A) WHITE 0.18
6S2M(A) YELLOW 0.2
6S2M(A) PURPLE 0.04
BU1U(B) RED 0.69
6U1U(B) YELLOW 0.0
BUTU(B) PURPLE 0.0
6U1U(B) LIGHT GREEN 0.19
8U1U(B) GREEN 0.0

Prediction scores for the pockets of structure 6S2M and 6U1U. Score >0.5

are considered positives and colored green. Color corresponds to Figure 2.

Complete prediction results can be found in supplementary information ( SI

Table 2 : Full prediction results for 6S2M and 6U1U PDB structures).
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Discussion and perspectives

Thanks to the increased availability of structural data and the
improvement of protein 3D modeling, new pocket-based methodologies
can now be developed to help protein function discovery. Our results show
that combining pocket descriptors and the residue secondary structure is
sufficient to train a model and to predict the pockets for specific ligand
families with high accuracy, including when using unseen data. We believe
that careful analysis of protein ligand families and their corresponding
binding pockets coupled with the high prediction capacity of neural
networks is the way forward to close the gap between protein sequences
and their functions. PickPocket aims to simplify the procedure for building a
ligand family dataset and train a model to recognize the corresponding
cavity. The ligand selection and the corresponding structure still need to be
done manually, but these steps are made easier by the PDB ligand
research tool. Other databases, such as PoSSuM (28), may be used to

create the dataset.
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PickPocket automatic labelling of ‘true’ and ‘false’ pockets is very
fast, but still needs manual checking because sometimes it makes
mistakes when pockets are very close to each other. The training data
quality is extremely important for good predictions. Therefore, we strongly
recommend users to manually check the generated dataset. Looking in
detail at the results for the 6S2M structure, fpocket considered that it had
two different pockets because the fatty acid binding cavity is very deep and
narrow. This can be corrected by changing the alpha-sphere radius or the
maximum distance between pockets. One of the challenges we faced was
to tune the fpocket parameters in order to have a big enough pocket size
without merging different cavities. PickPocket easy tuning of these
parameters allows users to adapt the input to the ligand specificity.

In order to cluster ligand protein complexes, Deepdrug3D and FRsite
use an atom-based voxelization. This step also allows generating a
compatible input for convolutional neural networks. On the other hand, our
methodology uses matrix properties that are faster to generate, but contain
less information. We also chose to use the fpocket software, although

DeepSite is more accurate against the sc-PDB database of binding sites
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(40). However, fpocket is fast, and pocket descriptors data is easily
retrieved from output files.

PickPocket can help to discover new protein functions by
investigating the binding sites of a specific ligand family. The results we
obtained prove that for fatty acid-like molecules, pocket descriptors and
secondary structure are enough to obtain predictions with >90% accuracy.
Thanks to its high prediction accuracy, PickPocket can be used as a tool

for in silico screens, and should boost novel research.

Material and Methods

PickPocket methodology can be divided into five steps (Figure 3).
First a selection of ligands and structure, second the combination of fpocket
and Stride to generate the descriptive matrice of the pockets, third the
selection of ‘true’ pocket ( pocket that binds the selected ligands), fourth
training the desired model and last computing the prediction on the full PDB

pocket dataset.
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To select a set of fatty acid-like ligands present in the PDB we used
the ligand search tool. We selected ligands having this SMILES
‘CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(0)=0" as superstructure and a
molecular weight superior to 100.0 g/mol.

This resulted in a list of mostly fatty acids and other molecules composed
of aliphatic chains including some with alcohols.From the structures
containing our ligands we only selected the one with human proteins,
resolved using X-ray technique and excluding DNA and RNA molecules. A
representative subset at 70% sequence identity was then used as the
input. A set of random structures, using the same criteria { human, X-ray,
redundancy), not containing any of the previously selected ligands was
used as negative data. All pockets were computed using fpocket (19) and
all secondary structure information with STRIDE (41).

The ‘true’ pockets containing ligands were identified using euclidean
distance. For each pocket in each structure, if any voronoi vertices from a
pocket and any ligand atom distance is inferior or equal to 1 angstrom, then
the pockets are labelled as ‘true’. All other pockets in the PDB file are by

default categorized as ‘false’.
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To train the predictive model PickPocket offers the possibility to use
random forest, support vector machine algorithms or neural networks
implemented in Python. The neural network is configured to test multiple
architectures and automatically select the model with the best accuracy.
The Python program included the following libraries: scikit-learn(41), numpy
(42) and pandas (43).

Once the desired model it can be saved and used to make
predictions on unseen data. A file containing all the Protein Data Bank
pockets ( all pockets from all structures ) can be found in the data attached

to the software.

Figure 3 : methodology workflow. Five steps of the PickPocket

methodology for specific ligands binding prediction.
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ABSTRACT

MicroRNAs (miRNAs) are predicted to regulate the
expression of >60% of mammalian genes and play
fundamental roles in most biological processes.
Deregulation of miRNA expression is a hallmark of
most cancers and further investigation of mech-
anisms controlling miRNA biogenesis is needed.
The double stranded RNA-binding protein, NF90 has
been shown to act as a competitor of Microproces-
sor for a limited number of primary miRNAs (pri-
miRNAs). Here, we show that NF90 has a more
widespread effect on pri-miRNA biogenesis than pre-
viously thought. Genome-wide approaches revealed
that NF90 is associated with the stem region of 38
pri-miRNAs, in a manner that is largely exclusive of
Microprocessor. Following loss of NF90, 22 NF90-
bound pri-miRNAs showed increased abundance of
mature miRNA products. NF90-targeted pri-miRNAs
are highly stable, having a lower free energy and
fewer mismatches compared to all pri-miRNAs. Muta-
tions leading to less stable structures reduced NF90
binding while increasing pri-miRNA stability led to
acquisition of NF90 association, as determined by
RNA electrophoretic mobility shift assay (EMSA).
NF90-bound and downregulated pri-miRNAs are em-
bedded in introns of host genes and expression of
several host genes is concomitantly reduced. These
data suggest that NF90 controls the processing of a
subset of highly stable, intronic miRNAs.

INTRODUCTION

MicroRNAs (miRNAs) are short non-coding RNAs that
negatively regulate the expression of a large proportion

of cellular mRNAs, thus affecting a multitude of cel-
lular and developmental pathways (1,2). The canonical
miRNA biogenesis pathway involves two sequential pro-
cessing events catalysed by RNase III enzymes. In the nu-
cleus, the microprocessor complex, comprising the RNase
ITI enzyme Drosha, the double-stranded RNA-binding pro-
tein, DGCRS and additional proteins carries out the first
processing event, which results in the production of pre-
cursor miRNAs (pre-miRNAs) (3,4). These are exported to
the cytoplasm, where a second processing event is carried
out by another RNase III enzyme, DICER, leading to the
production of miRNA duplexes. The duplexes are loaded
into the RISC complex and the release of the ‘passenger’
strands leads to the formation of mature miRNAs and ma-
ture RISC complexes (5).

Due to the central role of miRNAs in the control of gene
expression, their levels must be tightly controlled. Indeed,
deregulation of miRNA expression is associated with aber-
rant gene expression and leads to human disease (6-9). Con-
sequently, miRNA biogenesis is tightly regulated at mul-
tiple steps, both transcriptional and post-transcriptional.
Increasing evidence suggests that RNA binding proteins
(RBPs) act as post-transcriptional regulators of miRNA
processing. Many RBPs modulate the processing efficiency
of Microprocessor, either positively or negatively, by bind-
ing to regions of the pri-miRNA. A number of RBPs have
been shown to bind the terminal loop, which can cither fa-
cilitate or inhibit cropping by Microprocessor. For exam-
ple, LIN28B binds the terminal loop of pri-let-7, which pre-
vents its processing by Microprocessor (10). Binding of hn-
RNP Al to the terminal loop has been shown to exert ei-
ther positive or negative effects on Microprocessor activ-
ity, depending on the pri-miRNA target. It promotes crop-
ping of pri-miR-18A while it inhibits processing of pri-let-
7. KSRP is another terminal loop-binding RBP that facil-
itates Microprocessor cleavage of several pri-miRNA tar-
gets, including pri-let-7 where it acts as a competitor of hn-
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RNP Al (11,12). Several other RBPs, including SMAD,
TPD-43, SRSF1 and RBFOX, have been shown to bind
pri-miRNA terminal loops to influence Microprocessor ac-
tivity (see (13) for review). In most cases, they have been
shown to bind specific pri-miRNAs, such as pri-let-7, or a
limited subset of pri-miRNAs, To date, only NF90/NF45
heterodimer and ADARI.2 have been shown to bind the
double stranded stem region of pri-miRNAs (14-17). Both
factors negatively affect Microprocessor activity. Indeed,
NF90 has been shown to bind double stranded RNA in a
mode similar to that of ADAR2 (18). Like terminal loop
binding RBPs, binding of NF90/NF45 or ADAR1,2 has
thus far been demonstrated for a very limited number of pri-
miRNAs. NF90 has been shown to associate with pri-miR-
7-1, pri-let-7A and pri-miR-3173 in human cells (14,15,19).

We have previously shown that NF90 associates with pri-
miR-3173, which is located in the first intron of Dicer pre-
mRNA (19). Binding of NF90 prevented cropping of pri-
miR-3173 by Microprocessor and promoted splicing of the
intron, thereby facilitating expression of DICER. By mod-
ulating DICER expression, NF90 was found to be an inde-
pendent prognostic marker of ovarian carcinoma progres-
sion (19). Levels of NF90 are known to be elevated in hep-
atocellular carcinoma (HCC) and the effect of NF90 on
processing of pri-miR-7-1 contributes to cellular prolifera-
tion in HCC models (14,20). Here, we have used genome-
wide approaches to identify pri-miRNAs that are associ-
ated with and modulated by NF90 in HepG2 model of
HCC. We identified 38 pri-miRNAs that are associated with
NF90, in a manner that is for the most part exclusive of
Microprocessor. Of these, 22 showed increased abundance
of mature miRNAs products upon loss of NF90. NF90-
targeted pri-miRNAs appear to be highly stable, having a
lower free energy and fewer mismatches compared to all
pri-miRNAs. Destabilization of the structures by mutation
reduced NF90 association as determined by RNA EMSA.
Of the 22 NF90-modulated pri-miRNAs, 20 are embedded
exclusively in introns of host genes. Transcriptomic analy-
sis revealed that the expression of the host gene is concomi-
tantly downregulated for several, including an oncogene im-
plicated in metastasis of hepatocellular carcinoma, TTAM2.
These data suggest that NF90 controls the processing of a
subset of intronic miRNAs, which in some cases affects the
expression of the host gene.

MATERIALS AND METHODS
Cell culture

Human HepG2 cell line was grown in Dulbecco’s mod-
ified Eagle’s medium—high glucose (Sigma-Aldrich®,
D6429) supplemented with 10% fetal bovine serum (PAN
Biotech, 8500-P131704), 1% penicillin-streptomicin (v/v)
(Sigma Aldrich®, P4333) and 1% L-glutamine (v/v) (Sigma
Aldrich®, G7513). Human HEK-293T cells were grown
in Dulbecco’s modified Eagle’s high glucose medium with
HEPES (Sigma-Aldrich®, D6171) supplemented with 10%
fetal bovine serum, 1% penicillin—streptomicin and 1% L-
glutamine. Cells were cultured at 37°C in a humidified at-
mosphere containing 5% CO;. To perform small RNA-seq
and RNA-seq, HepG2 were seeded at 1.5 x 10° cells in six-

Nucleic Acids Research, 2020, Vol. 48, No. 12 6875

well plates the day of siRNA transfection while HEK-293T
were seeded at 6 x 10° cells in six-well plates.

To perform RNA Immunoprecipitation, HepG2 were
seeded at 8 x 10 cells in 100 mM culture dishes the day
of siRNA transfection.

Transfection of small interfering RNAs

Double-stranded RNA oligonucleotides used for RNAi
were purchased from Eurofins MWG Operon or Integrated
DNA Technologies. Sequences of small interfering RNAs
(siRNAs) used in this study have been described previously
(19) and are shown in Supplementary Table S1.

HepG2 or HEK-293T cells were transfected with siRNA
(30 nM final concentration) using INTERFERin® siRNA
transfection reagent (Polyplus Transfection) according to
the manufacturer’s instructions. To perform small RNA-seq
and RNA-seq, two rounds of transfection were performed.
The first transfection was carried out the day of seeding; on
the fourth day cells were passaged and a second round of
transfection was performed. Cells were collected for RNA
extraction or protein purification ~65 h after the second
transfection. To perform RNA Immunoprecipitation, one
round of siRNA transfection was carried out, as explained,
the day of seeding. Cells were collected ~65 h after siRNA
transfection.

Immunoblot

HepG2 were lysed using RIPA buffer (50 mM Tris-HCl pH
7.5, 150 mM NaCl, 1% NP40, 0.5% Sodium Deoxycholate,
0.1% SDS, Halt™ Phosphatase Inhibitor Cocktail (Thermo
Fisher Scientific)). Protein extracts (30 g for NDUFSS, 50
pg for TTAM2 and 5 pg for all other proteins) were im-
munoblotted using the indicated primary antibodies (Sup-
plementary Table S2) and anti-mouse, anti-rabbit or anti-
rat IgG-linked HRP secondary antibodies (GE Healthcare)
followed by ECL (Advansta).

Small RNA-seq and RNA-seq

Total RNA was extracted using TRIzol (Thermo Fisher Sci-
entific) according to the manufacturer’s instructions. Small
RNA-seq (single end, 50 bp) was carried out by BGI Ge-
nomic Services (HepG?2) or Fasteris (HEK-293T) in tripli-
cate samples. Raw data were processed using the Subread
package (version 1.6.0) as previously described (21) and the
reference annotation was obtained from miRBase release
22.1 database (22). Statistical analysis was performed us-
ing DESeq?2 (version 2.11.40.2). RNA-seq (paired-end, 125
bp) was carried out by BGI Genomic Services in triplicates.
Raw data were processed using HISAT2 (version 2.1.0) and
featureCounts (version 1.6.3), statistical analysis was per-
formed using DESeq2. Reference annotation was obtained
from ENSEMBL (GRCh38.96).

RT-qPCR, modified 5" RLM RACE and RNA EMSA

Total RNA was extracted from HepG?2 cells using TRIzol
reagent (Thermo Fisher Scientific) and RNA was treated
with DNAse I (Promega) according to the manufacturer’s
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instructions. RNA was used for RT-PCR and modified 5
RLM-RACE as described previously (19).

For RT-qPCR, RT was performed using TaqMan'™
Reverse Transcription Reagent or TagMan™ Advanced
miRNA cDNA Synthesis Kit (Thermo Fisher). qPCRs
were performed using GoTaq® Probe qPCR Master
Mix (Promega) or TagMan® Fast Advanced Master Mix
(Thermo Fisher).

Modified 5 RLM RACE was performed according to the
manufacturer’s instructions (FirstChoice™ RLM-RACE
kit, ThermoFisher Scientific). In order to detect premature
miRNAs, the step using calf intestine alkaline phosphatase
was omitted. Sequences of the primers used for PCR ampli-
fication are shown in Supplementary Table S3.

RNA EMSA was performed as described previously
(15) using recombinant NF90 and recombinant DGCRS
dsRBDs (amino acids 484-773) in at least three replicates.
The pri-miRNA probes were amplified by PCR using the
primers shown in Supplementary Table S3. Sequences of
mutant pri-miRNAs are shown in Supplementary Table S4.

RNA immunoprepicipation (RIP)

RIP was performed as previously described (23). HepG2
were seeded in 100 mm culture dishes and transfected with
siRNAs the day of seeding as aforementioned. Cells were
harvested ~65 h after the treatment and lysed for 15 min
in RIP buffer (20 mM HEPES, pH 7.5, 150 mM NaCl,
2.5 mM MgCly,e6H,0, 250 mM sucrose, 0.05% (v/v) NP-
40 and 0.5% (v/v) Triton X-100) containing 20 U ml~!
of RNasin (Promega), 1 mM DTT, 0.1 mM PMSF and
EDTA-free protease and phosphatase inhibitor. After cen-
trifugation, lysates were incubated for 4 h at 4°C with 2 pg
of antibodies recognizing NF90, Drosha and IgG control
and then incubated for 1 h at 4°C with Dynabeads™ Protein
A (ThermoFisher Scientific). After incubation, beads were
washed five times with RIP buffer for 5min at 4°Cand RNA
was extracted as previously explained. RNA was treated
with DNAse I (Promega) and RT was performed using Su-
perScript™ I Reverse Transcriptase (ThermoFisher Scien-
tific) according to the manufacturer’s instructions. cDNA
was treated with RNAse H (ThermoFisher Scientific) and
the san%gles were used to perform qPCRs using QuantiTect
SYBR® Green PCR Kit (Qiagen) according to the manu-
facturer’s instructions.

Splicing analysis

Splicing analyses were carried out as previously described
(19). HepG2 were seeded in six-well plates and transfected
with siRNAs, as aforementioned. Approximately 65 h after
the second transfection, RNA was extracted using TRIzol
reagent (ThermoFisher Scientific) and treated with DNAse
I (Promega) according to the manufacturer’s instructions.
RT was performed using SuperScript™ IIT Reverse Tran-
scriptase (ThermoFisher Scientific) and cDNA was treated
with RNAse H (ThermoFisher Scientific). qPCRs were per-
formed using QuantiTect SYBR® Green PCR Kit (Qia-
gen) using primers overlapping exon—intron boundaries to
detect unspliced pre-mRNAs or primers amplifying exon-
exon boundaries to detect the spliced mRNA.

Bioinformatic analyses

Enhanced UV crosslinking followed by immunoprecipi-
tation (eCLIP) data for NF90, DGCR8 and DROSHA
obtained in HepG2 cells by Nussbacher and Yeo (24)
were retrieved from the NCBI database (NF90 eCLIP:
ENCSR786TSC; DGCRS8 ¢CLIP: ENCSRO061SZV;
DROSHA eCLIP: ENCSR834YLD). Peaks were filtered
based on Fold Change (FC > 1.5) and P-value (Bonferroni-
Adj P-val < 0.05). Distribution of ¢CLIP reads along the
miRNAs was evaluated using deeptools software (version
3.1.3). Bigwig files from different replicates were merged
using bigWigMerge v2. The base pair probability at each
position of miRNA hairpins was calculated using RNAfold
software (version 2.4.7).

Free energy analysis was performed using RNAfold soft-
ware, version 2.4.7. Statistical analysis was performed using
R (version 3.5.1).

Validated targets of the double positive miR NAs were ex-
tracted from MirTarBase database, release 7.0 (25). Gene
ontology was performed on the expressed validated target
using DAVID Functional Annotation Tool database ver-
sion 6.8 (https://david.nciferf.gov) (26). Motif search was
performed using MEME (version 5.0.5).

RESULTS
NF90 affects the abundance of a subset of human miRNAs

To determine the effect of NF90 on the abundance of miR-
NAs, we performed small RNA-seq of biological triplicate
samples obtained from HepG2 cells that had been trans-
fected with a non-targeting control siRNA (siScr) or an
siRNA targeting NF90 (siNF90) (Figure 1A, top panel).
Of 1917 miRNA precursors annotated in miRBase, 1105,
which corresponds to 1661 mature Sp and 3p miRNA prod-
ucts, were found to be expressed in HepG?2 cells. Following
loss of NF90, differential expression analysis (fold change
> 1.5 or <0.667; AdjP-value < 0.05) showed that 268 ma-
ture miRNAs, corresponding to 212 precursor miRNAs,
were upregulated while 149, corresponding to 126 precur-
sor miRNAs, were downregulated (Figure 1B). The number
of upregulated and downregulated miRNAs in HepG2 cells
after loss of NF90 is summarized in Figure 1C. MiRNAs
that have previously been shown to be repressed by NF90,
miR-7-1 (14) and miR3173 (19), were found to be upregu-
lated in HepG2 cells following loss of NF90 (Figure 1B, red
dots).

The effect of NF90 on the abundance of miRNAs ob-
served by miRNA profiling were validated by RT-qPCR
analysis of selected miRNAs, miR-3173-3p, miR-186-5p,
miR-1273¢ and miR-3189-3p, from biological triplicate
samples. The results obtained confirmed the effects ob-
served by miRNA profiling (Figure 1B, D). In addition,
RNA was extracted from cells transfected with an indepen-
dent non-targeting siRNA (Scr#2) and an NF90-targeting
siRNA (NF90#2) that has been described previously (19)
(Figure 1A, lower panel). Quantification of miRNAs 3173-
3p, -186-5p, -1273¢c and -3189-3p in biological triplicate
samples (Figure 1D, lower panels) showed similar results to
those obtained in Figure 1D upper panel, and also validated
the results obtained by small RNA-seq. While we cannot
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Figure 1. NF90 modulates the expression level of a subset of miRNAs in HepG2 cells. (A) Extracts of HepG?2 cells transfected with non-targeting control
siRNAs (Scr, Scr#2) or siRNA targeting NF90 (NF90, NF90#2) as indicated were analyzed by immunoblot using the antibodies indicated. (B) Total RNA
extracted from cells transfected with siScr or siNF90 were analyzed by small RNA-seq. Results are shown as log, fold change versus —logo P-value. (C)
Table summarizing the number of mature miRNAs and pri-miRNAs modulated in HepG2 cell line upon loss of NF90, according to small-RNA seq. (D)
Total RNA extracted from cells described in (A) were analyzed by Taqman RT-qPCR as indicated. Results were normalized by those obtained for U6
abundance in the same samples. ND indicates ‘not detected’. Data represent mean + SEM obtained from three independent experiments (***P < 0.001,
independent Student’s 7 test).
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exclude the possibility that a proportion of the small RNA-
seq results could be due to off-target effects of the siRNAs,
since only a single control and NF90-targeting siRNA were
used, validation of a subset of the results using additional
control and NF90-targeting siRNA suggests that the data
are, to some extent, robust.

To evaluate whether the effect of NF90 on miRNA abun-
dance might be cell type specific, we performed small RNA-
seq in biological triplicate in HEK-293T cells transfected
with control or NF90-targeting siRNA (Supplementary
Figure S1A). Of 1917 annotated miRNA precursors, 1121,
corresponding to 1647 mature miR NAs, were expressed in
HEK-293T. Differential expression analysis (fold change >
1.5 or < 0.667; AdjP-value < 0.05) revealed that 278 ma-
ture miRNAs, corresponding to 217 miRNA precursors,
were upregulated following loss of NF90 while 84 mature
miRNAs, corresponding to 77 precursors, were downregu-
lated (Supplementary Figures S1B, C). Comparing upregu-
lated miRNAs in the two cell types, we found 139 miRNAs
that were upregulated in both cell lines after NF90 knock-
down (Supplementary Figure S1D). This represents >65%
of miRNAs upregulated in HepG2 and 64% of those up-
regulated in HEK-293T. Thus, NF90 appears to regulate a
common subset of miRNAs.

NF90 associates with a subset of pri-miRNAs

To determine which of the miRNAs upregulated upon loss
of NF90 (Figure 1B) are direct targets of NF90, that is, pri-
miRNAs that are bound by NF90, we took advantage of
enhanced UV crosslinking followed by immunoprecipita-
tion (eCLIP) dataset obtained in HepG?2 cells (24). Analysis
of HepG2 eCLIP data revealed 38 pri-miRNAs for which
e¢CLIP peaks overlapped annotated pri-miRNA localiza-
tions +/— 25 nt of flanking region (FC = 1.5 and Bonferroni
AdjP < 0.05), as depicted in Figure 2A and Supplementary
Table S5. Pri-miR-3173 and pri-miR-7-1 were among the 38
NF90-associated pri-miRNAs (Figure 2A, red dots).

‘We next analysed eCLIP read coverage across the pri-
miRNA hairpin £200 bp for the 38 NF90-associated miR-
NAs compared to all pri-miRNAs (Figure 2B). As ex-
pected, analysis of all pri-miRNAs did not show significant
read coverage for NF90 association. In contrast, NF90-
associated miRNAs showed highest read coverage over
the region having the strongest base pair probability and
therefore likely corresponding to the double stranded pri-
miRNA stem (Figure 2B). The region corresponding to
the terminal loop, which has a low base pair probability,
was not significantly bound by NF90. Interestingly, NFO0
also appeared to bind to the pri-miRNA flanking region.
Browser shots showing NF90 association with pri-miR-7-
1, pri-miR-186 and pri-miR-1273¢ by eCLIP are shown in
Supplementary Figure S2A.

To validate NF90 association with pri-miRNAs iden-
tified by eCLIP analysis (Figure 2A), we performed
RNA EMSA using pri-miR-186, pri-miR-3173, pri-miR-
1273c and pri-miR-3189 as radiolabeled probes together
with recombinant NF90 (Supplementary Figure S2B), as
described previously for pri-miR-7-1 and pri-miR-3173
(14,19). RNA EMSA, performed in triplicate, confirmed
NF90 association with pri-miR-186, pri-miR-3173, pri-

miR-1273¢ and pri-miR-3189 (Figure 2C and Supplemen-
tary Figure S2C). Similarly, RNA EMSA confirmed that
NF90 was not highly associated with pri-miR-200a, as indi-
cated by eCLIP (Figure 2C). NF90 association with the pri-
miRNAs identified by eCLIP analysis was also validated for
several endogenous pri-miRNAs by performing RNA im-
munoprecipitation (RIP). RIP confirmed the association of
NF90 with region proximal to the endogenous pri-miRNA
(Figure 2D and Supplementary Figure S2D), while nega-
tive controls, pri-miR-200a and DALRD3, were not signifi-
cantly associated with NF90. In contrast, pri-miR-200a was
significantly bound by Drosha (Figure 2D and Supplemen-
tary Figure S2D). While not all NF90-bound pri-miRNAs
identified by eCLIP have been tested, RIP analysis con-
firmed the association with NF90 in vivo for at least several.

Previous studies have indicated that NF90 may act as a
competitor of Microprocessor for binding to pri-miRNAs
(13-15,19). We therefore analysed eCLIP data for DGCRS8
and Drosha performed in HepG2 cells (24). Association of
DGCR8 was detected at 203 pri-miRNAs, while 147 pri-
miRNAs were positive for Drosha binding (Figure 3A). Not
surprisingly, there was a significant overlap between pri-
miRNAs that were bound by both subunits of Micropro-
cessor (Figure 3A). Indeed, 125 pri-miRNAs were associ-
ated with both factors, which represents approximately 60%
and 85% of pri-miRNAs positive for DGCRS8 and Drosha,
respectively. Interestingly, only 10 pri-miRNAs bound by
NF90 overlapped with those bound by either DGCRS or
Drosha, which represents approximately 24% overlap with
DGCRS and 13% overlap with Drosha (Figure 3A). This
result indicates that NF90-associated pri-miRNAs are not
highly associated with Microprocessor. Analysis of eCLIP
reads showed association of DGCRS8 with both apical and
stem regions of pri-miRNAs (Figure 3B), as expected (27).

We further analysed eCLIP read coverage over the pri-
miRNAs that were found to be associated with both NF90
and DGCR8. While the profile for DGCRS8 was similar to
that for all DGCRS positive pri-miRNAs (compare Figure
3C, top panel to Figure 3B), the profile for NF90 read cov-
erage was somewhat different to that for all NF90-positive
pri-miRNAs (compare Figure 3C, lower panel, to Figure
2B). Interestingly, for pri-miRNAs that are bound by both
DGCRS8 and NF90, the profiles appear to be complemen-
tary (Figure 3C, compare top and lower panels). Plot pro-
files of DROSHA and DGCR8 ¢CLIP data suggest that pri-
miRNAs common with NF90 (shown with red dots) are not
among the most enriched for Microprocessor binding (Fig-
ure 3D and Supplementary Figure S3).

To further explore the competition between NF90 and
the Microprocessor for the binding of pri-miRNAs, we per-
formed RNA EMSA on pri-miR-3189 and pri-miR-1273¢
using recombinant NF90 and the dSRNA-binding domains
of DGCRS8 (Supplementary Figures S2B and S4A). Upon
addition of rNF90, a shift corresponding to the formation
of NF90-pri-miRNA complex and a reduction in the in-
tensity of the band corresponding to DGCRS8-pri-miRNA
complex could be detected (Figure 4A). These results indi-
cate that NF90 competes with Microprocessor for binding
to certain pri-miRNAs, at least in vitro. Further analysis will
be required to determine whether this competition also oc-
curs in vivo.
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Figure 2. NF90 is associated with a subset of pri-miRNAs in HepG2 cells. (A) Dot plot representation of eCLIP data showing the 38 pri-miRNAs sig-
nificantly associated with NF90 in HepG2 cells. Graph shows log?2 fold change versus —logio P-value. (B) Distribution of NF90 eCLIP reads along the
region £200 bp of NF90-associated pri-miRNAs (blue) or all miRNAs (green) and base pair probability of NF90-associated hairpins (red). (C) RNA
EMSA performed using recombinant NF90 was probed with radiolabelled pri-miRNAs as indicated. rNF90-pri-miRNA complexes are indicated on the
figure. (D) RIP analysis of HepG2 cells transfected with NF90 targeting siRNA or a non-targeting control (Scr), as indicated using anti-NF90, anti-Drosha
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Detected”. NS indicates ‘Not Significant’. Data represent mean + SEM obtained from 3 independent experiments (*P < 0.05, **P < 0.01, independent
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NF90.

We next tested whether loss of NF90/NF45 or
Drosha/DGCRS8 complexes could affect the binding
of the complexes to endogenous pri-miRNAs in vivo.
We performed RIP of NF90, Drosha or I1gG control after
downregulation of either NF90/NF45 or Drosha/DGCRS.
Drosha association with the region surrounding the target
pri-miRNAs was significantly enhanced after downregula-
tion of NF90/NF45, while NF90 association was signifi-
cantly enhanced after downregulation of Drosha/DGCRS
only for pri-miR-1273c (Figure 4B and Supplementary
Figure S4B). This could be explained considering that
these miRNAs are already poorly bound by the Micropro-
cessor. To test this hypothesis, we analysed the association
of NF90 to two pri-miRNAs poorly bound by NF90,
pri-miR-200a and pri-miR-425. Notably, NF90 association
with these miRNAs was significantly increased after loss
of Drosha/DGCR8 complex (Supplementary Figure
S4C). On the other hand, downregulation of NFO0/NF45
complex did not significantly affect the association of pri-

miR-200a and pri-miR-425 with Drosha (Supplementary
Figure S4C), possibly because these miRNAs are poorly
bound by NF90/NF45 under control conditions. Taken
together, these results suggest that target pri-miRNAs
may have binding preferences for either NF90/NF45 or
Microprocessor under wild-type conditions, but that the
relative abundance of these complexes can also influence
the observed binding to specific pri-miRNAs.

Pri-miRNAs that are bound and downregulated by NF90 are
highly stable

‘We next asked whether NF90 association with pri-miRNAs
might affect their cropping by Microprocessor. If so, loss
of NF90 would be predicted to increase the abundance
of the mature miRNA products, as observed previously
(14,15,19). MiRNA profiling revealed that of the 38 NF90-
associated pri-miRNAs, 22 showed an increase in mature
miRNA products, representing more than 57% of NF90-
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associated pri-miRNAs, while only two were decreased
(Supplementary Tables S6 and S7). Thus, we identified a
subset of 22 pri-miRNAs that are bound by NF90 and
whose abundance is increased following loss of NF90,
which we named ‘double-positive’ pri-miRNAs. Both pri-
miR-7-1 and pri-miR-3173 were identified within the dou-
ble positive subset. Thus, NF90 downregulates the expres-
sion of most of its target pri-miR NAs.

Gene ontology of validated mRNA targets of double pos-
itive miRNAs revealed an implication particularly in cancer
and infection by viruses, such as Epstein Barr Virus (EBV),
hepatitis B virus (HBV), and human T lymphoma virus
type 1 (HTLV1), as well as viral carcinogenesis (Supplemen-
tary Figure S5). This result is interesting given that NF90
translocates from the nucleus to the cytoplasm following vi-
ral infection of cells (28). Thus, viral infection could result
in the coordinated processing of the NF90-modulated sub-
set of pri-miRNAs, whose target mRNAs are implicated in
viral replication. Interestingly, several miRNAs upregulated
following loss of NF90 in this study have been shown to tar-
get RNAs expressed by influenza A virus subtypes. For in-
stance, miR-3682 is involved in viral replication by targeting
the NS gene of pHIN1 and H3N2 subtypes (29). Similarly,
miR-4753 and miR-3145, which target PS and PB1 genes of
H5N1 and H3N2 subtypes, are overexpressed in response to
viral infection and inhibit viral transcription and replication
(30).

We wondered whether pri-miRNAs that are associated
with NF90 and downregulated upon its loss might share a
common characteristic that would make them targets for
NF90 binding. A MEME search did not reveal a simple
binding motif common to the 22 pri-miRNA sequences.
Compared to all human pri-miRNAs, the subset of 22
double-positive pri-miRNAs did not show any significant
difference in their overall length (mean = 82.5 nt compared
to 81.88 nt) or in the size of the terminal loop (mean = 7.87
nt compared to 7.92 nt) (Figure 5A). In contrast, however,
the minimal stretch containing a mismatch <1 nt was signif-
icantly longer for double-positive pri-miRNAs compared to
all pri-miRNAs, with a mean of 27.68 nt for double-positive
pri-miRNAs compared to 21.11 nt for all pri-miRNAs (Fig-
ure 5A). This analysis suggests that double-positive pri-
miRNAs might be more stable, having a longer duplex and
less bulges compared to all human pri-miRNAs, To fur-
ther investigate this possibility, we compared the free energy
of the 22 double-positive pri-miRNAs compared to all pri-
miRNAs. The 22 double-positive pri-miRNAs had a lower
free energy (mean = —42.26) compared to all pri-miRNAs
(mean = —38.19), as shown in Figure 5B. Taken together,
these data suggest that double positive pri-miRNAs are
more stable and have less mismatches than all pri-miRNAs.
Predicted folding of double-positive pri-miRNA sequences
also revealed highly stable structures with very few bulges,
compared to pri-miR-200a, which is not highly associated
with NF90 (Supplementary Figure S6A).

To test the idea that NF90 can bind to pri-miRNAs that
have a stable structure with few bulges, we designed mu-
tations within NF90-binding pri-miRNAs predicted to re-
duce stability and form bulge-like regions that might dis-
rupt NF90 association. For each of the NF90-associated
pri-miRNAs tested, we designed two mutant structures that

A
Feature All pri- Double positive
(nt) miRNAs pri-miRNAs
Length 81.88 825
Terminal loop size 7.92 7.87
Longest duplex 21.11 27.68

0.04

0.03

Density

0.02

0.01

0

-100 -75 -50 -25 (4]

Free energy (kcal/mol}

Figure 5. NF90 associates with a subset of highly stable pri-miRNAs. (A)
Structural characteristics of all human pri-miRNAs and NF90 double pos-
itive pri-miRNAs. (B) Graph showing the free energy of all pri-miRNAs
(grey) and NF90 double positive pri-miRNAs (red).

would be less stable than wild-type structures. (Figure 6A).
WT and mutated pri-miRNAs were tested for NF90 associ-
ation by RNA EMSA. As shown in Figure 6B and Supple-
mentary Figure S6B, mutation of pri-miR-3173 or pri-miR-
186 to less stable structures diminished NF90 binding. On
the other hand, mutation of pri-miR-200a to a more sta-
ble structure enhanced NF90 binding. These data suggest
that NF90 shows a preference for association with stable
pri-miRNA hairpin structures having few bulge regions.
We then wondered whether pri-miRNAs whose mature
products increased following loss of NF90, but were not
considered eCLIP-positive using the applied cut-offs, might
share the characteristics identified for double-positive pri-
miRNAs. We therefore calculated the longest duplex length,
allowing a mismatch of 1 nt, for the group of 181 upregu-
lated but eCLIP negative pri-miRNAs, and 124 downregu-
lated pri-miRNAs, as well as for those falling outside these
groups (other) (Figure 7A). Interestingly, pri-miRNAs up-
regulated after loss of NF90 and eCLIP negative have a
significantly longer duplex than all pri-miRNAs or other
pri-miRNAs. Indeed, the duplex length is similar to that
observed for the double positive group. In contrast, pri-
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Figure 6. Modification of pri-miRNA structure alters NF90 binding. (A) Representations of wt or mutant pri-miRNAs sequences, as indicated. (B) RNA
EMSA performed using recombinant NF90 and probed with radiolabelled pri-miRNAs as indicated. rNF90-pri-miRNA complexes are indicated on the

figure. Relative band intensities (normalized to signal for wt) are shown below.

miRNAs downregulated upon loss of NF90 have a shorter
duplex compared to all pri-miRNAs or other pri-miRNAs.
We then calculated the mean free energy for the upregu-
lated, eCLIP-negative group and the downregulated group
of pri-miRNAs (Figure 7B). Similarly, when compared to
all pri-miRNAs, the upregulated, eCLIP-negative group of
pri-miRNAs had a significantly lower free energy. Free en-
ergy of the downregulated group was similar to that of
all pri-miRNAs. In contrast, terminal loop size was com-
parable between the two groups; 7.86 nt (downregulated
group) compared with 8.64 nt (upregulated eCLIP-negative
group). Of note, total pri-miRNA length was higher for the
upregulated eCLIP-negative group (87.01 nt) compared to
the downregulated group (77.79 nt). These analyses sug-
gest that upregulated, eCLIP-negative pri-miRNAs share
some characteristics with double-positive pri-miRNAs. It is
feasible that some NF90-associated pri-miRNAs were not
detected by eCLIP analysis or did not pass the selection
criteria used to identify eCLIP-positive pri-miRNAs. To
test this idea, we selected two pri-miRNAs, pri-miR-4755
and pri-miR-4766, from the upregulated, eCLIP-negative
group whose structure corresponds to the defined criteria
for NF90 association, that is, having low free energy and
few mismatches (Supplementary Figure S7A). NF90 bind-
ing to the pri-miRNAs was tested by RNA EMSA (Figure
7C and Supplementary Figure S7B). Indeed, both pri-miR-

4755 and pri-miR-4766 were found to be significantly asso-
ciated with NF90.

NF90 modulates the expression of a subset of genes hosting
NF90-associated pri-miRNAs

Approximately 70% of human miRNAs are located in
an intron of a host gene. Out of 22 double-positive pri-
miRNAs, 20 are exclusively intronic. Two double-positive
pri-miRNAs are found in either the 3 UTR or an intron
depending on transcript usage (Supplementary Table S6).
To determine whether loss of NF90 also affected the ex-
pression or splicing efficiency of the host genes, we per-
formed RNA-seq in HepG2 cells transfected with con-
trol siRNA or siRNA targeting NF90. Loss of NF90 sig-
nificantly diminished expression of three genes containing
NF90-associated pri-miRNA; growth differentiation fac-
tor 15 (GDF15) hosting pri-miR-3189, 1-acylglycerol-3-
phosphate O-acyltransferase 5 (AGPATS) hosting pri-miR-
4659a and zinc finger RAN-binding domain containing
two (ZRANB2) hosting pri-miR-186 (Figure 8A). Fur-
thermore, the splicing efficiency of introns containing pri-
miRNAs downregulated by loss of NF90 was determined
by RT-PCR for several targets (Figure 8B). Splicing ef-
ficiency was diminished for three pre-mRNAs containing
NF90-associated pri-miRNAs: T-cell lymphoma invasion
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RACE. Forward and reverse primers used, and the predicted sizes of the PCR products are indicated.
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and metastasis 2 (TIAM2), hosting pri-miR-1273c, Zinc
Finger RNA binding protein (ZFR), hosting pri-miR-579,
and DICER], hosting pri-miR-3173 (Figure 8B). Interest-
ingly, the splicing defect was detected for the intron contain-
ing the pri-miRNA but not for another intron within the
same transcript (Figure 8B). In contrast, no significant ef-
fect was observed for NDUFS8, which hosts pri-miR-7113
and pri-miR-4691 that are not bound by NF90 and whose
abundance are not affected by NF90 (Figure 8B).

The expression of these genes was analysed by western
blot of extracts obtained from HepG?2 cells transfected with
control (Scr and Scr#2) and NF90-targeting (NF90 and
NF90#2) siRNAs. All genes tested showed diminished ex-
pression upon loss of NF90, except NDUFSS that showed
no significant difference in expression (Figure 8C). Thus,
NF90 modulates the expression of certain pri-miRNA host
genes, including TTAM2, a known oncogene and metastasis
factor in HCC (31,32).

Finally, to determine whether loss of gene expression
correlated with increased pri-miRNA cropping following
knock down of NF90, we performed modified RLM-
5 RACE as described previously (19), using extracts of
cells transfected with control (Scr and Scr#2) and NF90-
targeting (NF90 and NF90#2) siRNAs. Indeed, RLM
RACE analysis showed enhanced cleavage of the intronic
region of ZRANB2 hosting pri-miR-186 and GDF15 host-
ing pri-miR-3189 in extracts of NF90 knock down cells
compared to controls (Figure 8D). This analysis indicates
that loss of NF90 enhances transcript cleavage in the vicin-
ity of the hosted pri-miRNA.

DISCUSSION

We and others have previously shown that NF90 can inhibit
the processing of certain miRNA precursors (14,15,19).
However, it was unclear how widespread the impact of
NF90 might be on human miRNA biogenesis. Here, we
have used genome-wide approaches to address the effect
of NF90 on the miRNA pool in HepG2 HCC cells. Our
data indicate that NF90 modulates the processing of a spe-
cific subset of miRNA precursors. NF90 is associated with
at least 38 human pri-miRNAs, as indicated by analysis
of eCLIP data obtained by Nussbacher and Yeo (24). Of
these, 22 showed increased abundance of mature miRNA
products following knock-down of NF90. Thus, associa-
tion of NF90 with a pri-miRNA is likely to influence its
fate. Most NF90-associated pri-miRNAs did not overlap
with those bound by either DGCRS8 or Drosha. More-
over, results obtained by RNA-EMSA support the idea
that NFO0 and Microprocessor may compete for the bind-
ing of the subset of pri-miRNAs, at least in vitro. Further
analysis will be required to determine whether the com-
petition also occurs in vivo. Of note, RIP analysis showed
that loss of NF90/NF45 complex led to increased bind-
ing of Drosha at pri-miRNAs that were highly bound by
NF90 in control conditions. Conversely, loss of Micropro-
cessor increased binding by NF90 to pri-miRNAs that were
not highly bound by NF90 in wild-type cells. Interestingly,
for those pri-miRNAs that were bound by both NF90 and
DGCRS, the binding profiles of the two factors were largely

complementary. Furthermore, while the binding profile of
DGCRS8 was not noticeably different for this group com-
pared to all pri-miRNAs bound by DGCRS, the binding
profile of NF90 differed somewhat for this group compared
to all pri-miRNAs bound by NF90. This could suggest that
NF90 and DGCRS8 might bind simultaneously to the pri-
miRNA, and that the binding of DGCR8 may alter the
binding mode of NF90 for such pri-miRNAs.

Since NF90 is a highly abundant and ubiquitously ex-
pressed protein, it might be expected that NF90-associated
pri-miRNAs would be poorly processed in most cells. In-
deed, the mature miRNA products of NF90 bound pri-
miRNAs are very poorly expressed, or not expressed at all
in control cells. They become readily detectable only upon
loss of NF90. An exception is pri-miR-7-1, although inter-
estingly, this miRNA shows tissue specific expression, being
highly expressed only in brain and pancreas (33).

Our data suggests that pri-miRNAs upregulated after
loss of NF90 share a common structure that might facili-
tate NF90 association with the stem region. This finding is
consistent with a previous report showing structure-based
recognition of adenovirus-expressed VA1 RNA by NF90
(34). Extensive mutational analysis of VA1 association with
NF90 showed no specificity for nucleotide sequence but
rather the requirement for a minihelix structure within the
stem region. The pri-miRNAs identified in this study also
exhibit a minihelix-like structure that appears to be nec-
essary for NF90 binding. Indeed, RNA EMSA showed
that NF90 association with pri-miR-3173 and pri-miR-186
could be diminished by introducing destabilizing mutations,
while NF90 association could be acquired by increasing the
stability of the stem region, as for pri-miR-200a.

Interestingly, our data predict that the subset of NF90-
associated pri-miRNAs may extend beyond those detected
by eCLIP analysis. Using the characteristics determined
from the eCLIP-positive, upregulated pri-miRNA group,
that is duplex length and free energy, we found that pri-
miRNAs whose mature products were upregulated follow-
ing loss of NF90 but were not positive by eCLIP analy-
sis shared the same characteristics as the double positive
group. The length of the duplex region and the free energy
of the structure was comparable to that of double positive
pri-miRNAs. RNA EMSA confirmed the predicted associ-
ation with NF90 for two of these pri-miRNAs. Interestingly,
both groups were significantly different to all pri-miRNAs
or those that are unaffected by NF90 (other). Thus, it ap-
pears that the high specificity of eCLIP revealed a subset of
pri-miRNAs that share a common structure. When this in-
formation was used to interrogate the group of pri-miRNAs
who share the same biological response to loss of NF90,
that is, upregulation of their mature products, we observed
that both groups share the same characteristics. We pre-
dict that a certain number of the upregulated group likely
do bind to NF90 but may escape detection by eCLIP. For
example, as noted above, many of the pri-miRNAs are ex-
pressed at extremely low levels in control cells, which could
make their association with NF90 difficult to detect.

Interestingly, pri-miR-7-1 processing has been shown to
be influenced by another RBP, HuR, which recruits MSI2
to the terminal loop. Binding of HuR /MSI2 was found to
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stabilize the stem region and led to diminished processing
by microprocessor (35). It would be interesting to determine
whether binding of HuR /MSI2 to pri-miR-7-1 might facili-
tate NF90 binding to the stem region, and compete with mi-
croprocessor. Similarly, it would be interesting to determine
whether HuR /MSI2 can bind the terminal loop of other
NF90-modulated pri-miRNAs in addition to pri-miR-7-1.
NF90 may cooperate with other RBPs, such as HuR /MSI2
to control the processing of a subset of pri-miRNAs.

Another feature that the subset of NF90-modulated pri-
miRNAs share is their restriction to human or primate lin-
eages. Again, pri-miR-7-1 is an exception, being highly con-
served throughout evolution. Thus, given that the subset of
NF90-modulated pri-miRNAs are young and almost per-
fect hairpins, it is tempting to speculate that this group may
have originated through recent insertion of repeat elements
in the genome.

Interestingly, GO analysis of validated mRNA targets of
the mature miRNAs showed significant enrichment for in-
fection by viruses such as Epstein Barr Virus (EBV), hep-
atitis B virus (HBV) and human T lymphoma virus type 1
(HTLV1) and in viral carcinogenesis. Indeed, viral infection
of cells induces translocation of NF90 from the nucleus to
the cytoplasm (28). Thus, it is conceivable that pathological
conditions such as viral infection could result in the coor-
dinated processing of the NF90-modulated subset of pri-
miRNAs, which target mRNAs important for viral replica-
tion.

Finally, transcriptomic analysis showed that association
of NF90 with pri-miRNAs may diminish the expression of
certain host genes, as described previously (19). Among the
pri-miRNA-hosting transcripts that are downregulated af-
ter loss of NF90, two are noteworthy. The expression of
TIAM2, hosting pri-miR-1273C, is down-regulated upon
loss of NF90. TTAM2 is a known oncogene and metastasis
factor in HCC (31,32). Levels of NF90 are elevated in HCC
(14,20) and it would be interesting to determine whether
NF90-dependent modulation of TIAM2 might contribute
to pathogenesis. Loss of NF90 also diminished expres-
sion of growth differentiation factor 15 (GDF15), hosting
pri-miR-3189. GDF15 is expressed and secreted by a lim-
ited number of tissues, including liver. When complexed
with its receptor, GFRAL, in brain and CNS, GDF15 su-
presses appetite (see (36) for review). Cancer patients ex-
press high circulating levels of GDF135, which contributes
to anorexia/cachexia. On the other hand, enhancement of
GDF15 expression is a promising therapeutic strategy in the
treatment of obesity. It would be interesting to determine
whether high levels of NF90 in HCC may have a role in
promoting expression of GDF15 from liver cells in cancer
patients.

In summary, we have identified a subset of human pri-
miRNAs that are bound by NF90. Analysis indicates that
this subset shares a similar structure that appears to be fa-
vorable for NF90 binding. These data extend our knowl-
edge of how processing of pri-miRNAs can be modulated
by RBPs. This may be beneficial for understanding pertur-
bations of miRNA levels in pathological conditions and
could also open up novel treatment strategies using nanoth-
erapeutics.
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Abstract

In early embryogenesis of fast cleaving embryos DNA synthesis is short and surveillance
mechanisms preserving genome integrity are inefficient implying the possible generation of
mutations. We have analyzed mutagenesis in Xenopus lgevis and Drosophila melanogaster
early embryos. We report the occurrence of a high mutation rate in Xenopus and show that it
is dependent upon the translesion DNA synthesis (TLS) master regulator Rad18. Unexpectedly,
we observed a homology-directed repair contribution of Rad18 in reducing the mutation load.
Genetic invalidation of TLS in the pre-blastoderm Drosophila embryo resulted in reduction of
both the hatching rate and Single Nucleotide Variations on specific chromosome regions in
adult flies. Altogether, these findings indicate that during very early Xenopus and Drosophila
embryos TLS strongly contributes to the high mutation rate. This may constitute a previously
unforeseen source of genetic diversity contributing to the polymorphisms of each individual
with implications for genome evolution and species adaptation.

Keywords: Xenopus, Drosophila, ubiquitin, nucleus, chromatin, PCNA
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Materials and Methods

Experiments with Xenopus were performed in accordance with current institutional and
national regulations approved by the Minister of Research under supervision of the
Departmental Direction of Population Protection (DDPP). Xenopus embryos were prepared by
in vitro fertilization as previously described (10). Two-cell stage embryos were microinjected
in the animal pole using a Nanoject auto oocyte injector under a stereomicroscope (2
injections of 9 nLt in one blastomer). Each embryo was injected with 12 ng (pre-MBT) or 72
ng (post-MBT) of supercoiled plasmid, undamaged or irradiated with 200 J/m? of UV-C with a
UV-Stratalinker, and/or 5 ng of RAD18 mRNAs. Embryos were collected at 16- or 32-cell stage,
according to Nieuwkoop and Faber normal tables, snap frozen in liquid nitrogen and stored at
-80 °C.

Drosophila melanogaster stocks were maintained and experiments were performed following
standard procedures on standard cornmeal-yeast medium, inside a thermostatic room at 25
°C with alternating light and dark for an equal amount of hours per day. The following stocks
were from Bloomington Drosophifa Stock Center : dPolnExc2.15 (#57341), OreRmE (#25211).
The latter was homogeneized through serial individual backcrosses for nine generations.
dPoin*? was a kind gift of Benjamin Loppin (23). Balancer stocks were from our laboratory.
Quantifications of hatching rates (eggs to larvae) were determined as previously described
(24). Hatch rate is the ratio of hatched eggs to total eggs laid expressed as a percentage. Two
hundred or more embryos were scored twice per genotype. In addition, hatching of adult flies
was estimated by calculating the percentage of larvae (counted 2-2,5 days after fertilization)
developed to mature flies (counted 10 days after fertilization).

Plasmid DNAs

lacZ-containing plasmid (pEL1) was abtained by subcloning the lac operon from pBluescript
into the Spel-Kpnl restriction sites of pRU1103 vector, which contains full-length lacZ. pELL
was transformed and amplified in E. coli and purified using a standard protocol (QIAGEN) at a
temperature lower or equal to 12 °C to obtain a near 100 % supercoiled DNA, as previously
described (25). This procedure greatly minimizes DNA damage and background mutations.
pCS2-MLH1 plasmid was obtained by subcloning human MLH1 cDNA from pCEPSMLH1 {72)),
into the BamHI-Xhol restriction sites of pCS2 vector. Rad18 wild-type, C28F and C207F mutant
plasmids were previously described (10). The Rad18%%8F¢2%7 dguble mutant was generated by
standard site-directed mutagenesis from the Rad18%%%F mutant plasmid.

In vitro transcription

mMRNA synthesis was performed with mMESSAGE mMACHINE kit SP6® (AM1340,
Thermofisher). mMRNAs were recovered by phenol-chloroform extraction and isopropanol
precipitation. Following centrifugation and ethanol wash, mRNAs were dissolved in 20 uL™ of
RNase-free water. mRNAs quality was checked by formaldehyde gel electrophoresis.
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Xenopus embryos and eggs protein extracts

An average of 20 embryos were lysed in Xb buffer (5 uL? of buffer per embryo; 100 mM KCl,
0.1 mM CaClz, 1 mM MgClz, 50 mM sucrose, 10 mM HEPES pH 7.7) supplemented with
cytochalasin (10 pg mL?), phosphatases (PhosSTOP 1X,) and proteases inhibitors (5 ug mL?
Leupeptin, Pepstatin A and Aprotinin). After 10 min centrifugation at maximum speed in a
benchtop centrifuge at 4 °C, cytoplasmic fraction was recovered, neutralized in an equal
volume of Laemmli buffer 2X and boiled at 95 °C for 5 min. Embryos lysates were loaded on
precast gradient gels (4-12 %, NUPAGE, Invitrogen). Gels were transferred to a nitrocellulose
membrane for western blotting and incubated with the indicated antibodies. Interphasic
Xenopus egg extracts were prepared and used as previously described (10).

Ribonucleotide incorporation assay

Upon thawing, Xenopus eggs extracts were supplemented with cycloheximide (250 ug mL?)
and an energy regeneration system (1 mM ATP, 2 mM MgCl;, 10 mM creatine kinase, 10 mM
creatine phosphate). M13mp18 ssDNA was added as a template for DNA replication at the
indicated concentrations in presence of a-3?PdCTP (3000Ci mmol?, Perkin Elmer). At the
indicated time points half of the samples were neutralized in 10 mM EDTA, 0,5 % SDS, 200 ug
mL* Proteinase K and incubated at 52 ° C for 1 hour. Samples were treated with 0.3 M NaOH
at 55°C for 2 hours to digest incorporated ribonucleotides in the plasmid and loaded on 5M
urea 8% acrylamide gel TBE 0,5 X urea after formamide denaturation at 55 °C for 3 minutes.
After migration, the gel was exposed to autoradiography.

Plasmid DNA isolation from embryos

Frozen embryos were crushed in STOP MIX supplemented with fresh Proteinase K (600 ug uL
1), Embryos were homogenized with a tip in this solution while thawing. Immediately after,
proteins digestion at 37 °C for 1 hour, total DNA was extracted as described above by phenol-
chlorophorm extraction and ethanol precipitation. Recovered DNA was digested with Dpnl to
destroy unreplicated plasmids and subsequently purified with QIAGEN gel extraction kit.

Somatic A6 cell culture

A6 epithelial cells were grown in modified Leibowitz L-15 medium containing 20 % sterile
distilled water, 10 % foetal bovine serum and 100 U/ml penicillin/streptomycin at 25°C. A
subcultivation ratio of 1:3 was employed. Cells were detached after a single wash with PBS by
incubation with 0.25 % trypsin 0,03 % EDTA for 4 minutes at 37 °C. The day prior to
transfection, 3 X 10 € cells were seeded in 10 cm2 dishes. One day later, cells were transfected
with 60 L Lipofectamine 2000 (Thermo Fisher Scientific) and 24 g of plasmid following the
manufacturer’s recommendations.
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Plasmid recovery from A6 cells

Cells were harvested by trypsinization and centrifugation 48 hours post transfection. After
washing cell pellet with PBS, cells were crushed in lysis buffer (10 mM Tris pH 8,0; 100 mM
NaCl; 10 mM EDTA pH 8,0; 0,5 % SDS) supplemented with fresh Proteinase K (600 pg pL?) by
means of a tip (500 uL? per sample). Immediately after protein digestion at 37 °C, SDS was
precipitated by adding half volume of saturated (6M) NaCl to each tube and centrifugation at
4°C for 10 minutes at 5000 rpm after 10 minutes incubation on ice. Total DNA was extracted
from the supernatant as described above by phenol-chlorophorm extraction and ethanol
precipitation. Recovered DNA was digested with Dpnl restriction enzyme (NEB) to destroy
unreplicated plasmids and subsequently purified with QIAGEN gel extraction kit.

White/blue colonies selection and mutation frequency

DNA extracted from embryos was transformed in electrocompetent indicator bacteria
(MBM?7070 strain bearing an amber mutation in the /acZ gene) for white/blue screening and
plated on selective petri dishes (40 ug mL™ Xgal,; 200 pM IPTG). Over one thousand colonies
were scored at least for each condition in each replicate. Plasmid DNA was isolated from
mutant clones using a standard protocol (QIAGEN). After paired-end Sanger sequencing,
polymorphisms were filtered for sequencing quality > 30 and analyzed on both strands using
Geneious or Snapgene softwares. Mutation rates were estimated from the proportion of blue
colonies observed (Po). Before calculating the proportion of blue colonies observed (Po), the
basal percentage of white colonies prior to microinjection was subtracted from the
percentage of white colonies in each experimental condition. The observed Po was substituted
for Pg to obtain the mutation rate (p) using the following formula: p=-In(Pg) and normalized to
the number of cell cycles before embryo collection.

Antibodies

The following antibodies were used: Gapdh (ab9484, Abcam); Pcna™® Lys 164 (13439, Cell
Signaling Technology); PCNA (PC10, Sigma); XIRad18 (10); SMAUG (27); Tubulin (DM1A,
Sigma), MIhl (ab14206 Abcam). The PC10 antibody cross-reacts with Drosophila
melanogaster PCNA (28).

DAP! staining of Drosophila embryos

Embryos collection (0-2 hours unless otherwise indicated) was carried out using standard
techniques (29). Embryos were dechorionated in 50% bleach and fixed by shaking in a mixture
of PFA 4% in PBS and heptane (1:1) for 30 minutes and the aqueous layer containing
formaldehyde was removed. Embryos were devitellinised upon washing in methanol-heptane
mixture (1:1) and conserved in methanol at -20 °C overnight and for up to a week. Embryos

188



bioRxiv preﬁrint doi: https://dai.org/10.1101/2020.11.28.401471; this version posted June 15, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

were rehydrated by sequential incubations of 10 minutes in Ethanol/PBS-T 7:3 (1X PBS + 0.1%
Triton X-100), Ethanol/PBS-T 3:7 and PBS-T. Embryos were incubated for 30 minutes at room
temperature in DAPI-PBS-T (1g mL) in the dark and rinsed three times in PBS-T. The third
wash was performed overnight with mild shaking on a wheel in the dark at 4 °C. Samples were
mounted in coverslips using Vectashield. Images were acquired with a Zeiss Axiovert Apotome
microscope at 5X using Coolsnap HQ CDD camera (Photometrics) and processed using Omero
5.2.0 software. P-values were obtained using a two-tailed, unpaired Student's t-test.

Drosophila embryo protein lysates preparation

60 females and 10 males were incubated together inside embryo’s collectors with embryo
dishes for a certain number of hours according to the desired stage of embryos to be
harvested. Collected embryos were gently rinsed off the medium with embryo collection
buffer (Triton X-100 0,03 %; NaCl 68 mM). Embryos were removed from the medium using a
brush and poured into a sieve (Falcon Cell Strainer 40 UM Nylon 352340). Harvested embryos
were washed again and collected in a fresh tube (up to 50 uL™ of embryos corresponding to
100 embryos). Laemmli 2X was added in ratio 1:1 in comparison to harvested volume and
embryos were lysed by means of a pestle. After boiling embryo’s mush at 95 °C for 5 min,
chorion residues were removed by centrifugation with a benchtop centrifuge (max speed) at
room temperature. Protein concentration was estimated by Amido Black staining using BSA
of known concentration as a reference.

Genomic DNA extraction from single flies for Next Generation lllumina Sequencing.

Each fly was crushed with a pestle in a 1,5 mL? tube containing 170 pL of extraction buffer
(Tris-HC! pH 8.0; 50mM; EDTA 50mM; SDS 1 %). Proteinase K (555 pg pL'!) was added once the
tissues had been completely grinded. After incubating 15 min at room temperature, cellular
debris was removed twice by potassium acetate addition (0,83 M) and centrifugation with a
bench-top centrifuge (max speed) at 4 °C for 10 min. DNA was isolated by double
phenol/chloroform/isoamyl alcohol (25:24:1) extraction and ethanol precipitation overnight
at -20 °C with glycogen (20 ug) followed by centrifugation at 4 °C. Precipitated DNA was
washed with cold ethanol 70 %, dried at room temperature for 30 min and dissolved in water.
The quality of extracted DNA (about 150 ng) was verified by agarose gel electrophoresis.

lllumina Next Generation Sequencing

Two genomic DNA samples per condition (extracted from single heterozygous dpoinXc215/+

males either dPoln maternally-depleted or maternally-provided, see text ) were sequenced by
lllumina NGS. After library construction and shotgun, whole Drosophila genomes were paired-
end sequenced and assembled as previously described {(30). Data were filtered for Genotype
Quality > 35 and Depth > 10 before sequences alignment against the Drosophila reference
genome (Flybase release 6). Variant calling was done using Freebayes software version 0.9.20.
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Genotype ratio was not changed from recommended settings. Alignment was performed with
BWA version 0.7.12-r1039. Variant calling was performed using Freebayes version 0.9.20 and
then annotated with Ensembl VEP version 82. SNVs and Indels were then separated for
downstream analyses. The threshold generally is above 33% to call an allele variant from the
reference.

Statistics

Statistical analysis was performed using the Prism software (version 8). Means were compared
using analysis of one-way ANOVA. Post-hoc tests were performed with a two-tailed unpaired
Student’s t test unless otherwise specified. Stars indicate significant differences * P< 0.05, **
P< 0.01, *** P <0.001, **** P <0.0001, “ns” denotes non-significant statistical test.

Results
High mutagenesis rate in the pre-MBT Xenopus embryo

We employed a classical /acZ-based reporter assay to measure mutagenesis in pre-MBT
Xenopus laevis embryos. In this experimental procedure, a plasmid containing the whole 3 kb
lacZ gene is microinjected in in vitro fertilized Xenopus embryos at the 2-cell stage (Figure 1A)
and development is allowed to continue until before MBT (16-cell stage). Upon injection,
plasmid DNAs form minichromosomes and replicate as episomes once per cell cycle with no
sequence specificity (31, 32). Total DNA is then extracted, purified and plasmid DNA is
recovered in E. coli by transformation, since only plasmid DNA can transform bacteria (see
Materials and Methods). Bacteria are plated on a chromogenic substrate (X-gal) to screen
colonies for white or blue color. Wild-type lacZ produces active B-galactosidase which stains
colonies in blue in the presence of X-gal and IPTG, while mutations generated in the /acZ gene
that affect f-galactosidase activity will leave colonies colorless (white) or pale blue. A pre-MBT
dose of supercoiled plasmid DNA (12 ng/embryo, Supplementary Figure S1A) was used in most
of the experiments as previously described (6).

Recovery of the lacZ-containing plasmid DNA isolated from pre-MBT embryos into E.
coli, generated white colonies with a frequency of 0,5 %, compared to the non-injected
plasmid (pre-injection, Figure 1B) or to the same plasmid transfected into Xenopus somatic
cells (Supplementary Figure S1E). Accordingly, mutation rate was calculated by normalization
to the number of cell cycles (see Materials and Methods) and estimated to be in the order of
1023 (Figure 1C, lacZ). Importantly, the mutation rate dropped to a background level when
embryos were injected with a post-MBT amount of plasmid DNA, a situation that increases
the N/C ratio and induces a cell cycle delay {6). Analysis of mutations by DNA sequencing
revealed the presence of both single nucleotides variations (SNVs) and unexpectedly large
deletions ranging from 100 bp to 1,5 kb (Figure 1D and Supplementary Figure S1B). Mutations
inspection on the lacZ gene showed that they are generally widespread over the entire
sequence with no hotspots (Supplementary Figure S1B). Analysis of the mutation spectrum
shows that most SNVs detected were C>A and C>T changes (Figure 1D). Another frequent
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signature was G>A transitions and T>A transversions, as well as nucleotides insertions and
deletions. This mutation spectrum is close to that reported for TLS Pols on undamaged
templates (14), in particular Poln and Polk (33, 34), although C>T transitions are also thought
to be due to spontaneous deamination of 5-methyl cytosine to thymine.

The high frequency of base substitution and deletion prompted us to test the
contribution of the mismatch repair system in the mutagenesis rate. For this, we
overexpressed either wild-type or a catalytically inactive mutant (N38H) of MIh1, a critical
MMR component (10). We co-injected the lacZ-containing plasmid together with in vitro-
transcribed MLH1 mRNAs to act as dominant negative by antagonizing the function of the
endogenous protein (Figure 1E). While expression of MIh1WT only slightly increased the
mutation rate, this latter was increased 2-fold upon expression of the MIh1N38H catalytically-
inactive mutant (Figure 1E-G) suggesting that the MMR is functional and contributes to
restrain mutagenesis. Altogether, these results show that the mutation spectrum observed in
pre-MBT Xenopus embryos is similar to that expected for TLS Pols and that mutagenesis is
restrained by the MMR system, suggesting that TLS Pols may actively contribute to
mutagenesis in very early embryogenesis.

Rad18-dependent mutagenesis in the early Xenopus embryas

We have previously shown that in the pre-MBT Xenopus embryo TLS may be constitutively
primed at replication forks in absence of external DNA damage (10). To determine the possible
contribution of TLS to the mutagenesis in Xenopus embryos, we made use of a Rad18 TLS-
deficient mutant in a dominant negative assay as done for MIh1 (Figure 2A). Mutagenesis was
analyzed as described in the previous paragraph. Expression of the TLS-deficient Rad18¢28F
mutant strongly reduced both the frequency of white colonies and the mutagenesis rate of
about 100-fold compared to injection of either Rad18W" or lacZ alone (Figure 2B-C). In
contrast, Rad18"™ overexpression did not alter the mutagenesis rate compared to embryos
injected with JacZ plasmid only, although it generated a different mutational spectrum,
consisting of T>A transversions, C and G insertions, and remarkably no large deletions (Figure
2E and Supplementary Figure S2A). T>A transversions were reported to be significantly
decreased in mice bearing the pcng®6® mutation that cannot support PCNA™ (35),
suggesting that this signature is Rad18 TLS activity-dependent. Compared to Rad18%T, the
residual mutagenesis observed in embryos injected with the Rad18“%F mutant showed a
drastically reduced frequency of T>A transversion as well as C and T insertions, a TLS Poln and
Polk signature, suggesting that these mutations are PCNA™Ub-dependent, while the frequency
of T>C transitions increased. These latter mutations are consistent with a Rev1 signature, a
TLS Pol that can also be recruited independently of PCNA™Y® (36, 37).

We also tested the effect of expressing the homology-directed repair (HDR)-deficient,
TLS-proficient, Rad18“°”F mutant, which is predicted to behave as Rad18Y" (Figure 2A).
Unexpectedly, however, expression of this mutant increased the number of white colonies of
2-fold compared to Rad18%" or JacZ alone, and the mutagenesis rate increased accordingly
(Figure 2B-C) notwithstanding a similar expression level (Figure 2D). Compared to Rad18%T,
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expression of the Rad18°7F mutant produced a reduction in both T>A transversions (Figure
2E) and generated large deletions (Supplementary Figure S2C and see below). The significant
increase in single nucleotide substitutions generated by this mutant is consistent with the
occurrence of unproofed mutations generated by its TLS activity. As expected, expression of
the Rad18C%8FC07F double mutant produced a mutation burden similar to that of the TLS-
deficient Rad18%%8F mutant, strongly suggesting that the mutagenesis restricted by the Rad18
HDR activity is TLS-dependent. Expression of this mutant increased G>A transitions and also
produced large deletions (Figure 2E and Supplementary Figure S2D). In parallel, we analyzed
mutagenesis when TLS is normally activated by UV irradiation and observed a very modest
increase. The mutation spectrum was similar to that of the —UV condition and showed an
increase in T insertions, as expected, which corresponds to TLS Poln and Polx mutational
signature (33)(Figure 2E and Supplementary Figure S1C-D), as well as disappearance of C>G
transversions and reduction of C>T transitions. The modest increase in UV-induced
mutagenesis is expected if TLS is constitutively activated, and is consistent with an error-free
bypass of UV lesions by TLS Poln. Interestingly, no large deletions were detected
(Supplementary Figure S1C and see discussion). Collectively, these results show that
mutagenesis in the pre-MBT Xenopus embryo is Rad18-dependent and that, unexpectedly,
the extent of TLS-dependent mutagenesis is alleviated by the error-free Rad18-dependent
HDR activity.

Reduced hatching rate in dpo/n maternally-deprived flies

In the aim to assess whether TLS-dependent mutagenesis is a general feature of fast cleaving
embryos, and to obtain genetic evidence for this process, we turned to Drosophila
melanogaster, a more genetically amenable system compared to allotetraploid Xenopus. First,
we wished to establish whether developmental regulation of PCNA™ also occurs during
Drosophila embryogenesis. Similar to Xenopus, Drosophila early development occurs through
a rapid and synchronous series of embryonic cleavages before activation of zygotic
transcription (MBT, Figure 3A)(38). Total protein extracts were prepared from Drosophila
embryos before and after MBT and both total PCNA and PCNA™® |evels were analyzed by
western blot with specific antibodies (see Materials and Methods and Supplementary Figure
S3A). Figure 3B-C shows that similar to what previously observed in Xenopus (10), PCNA™ js
detectable in pre-MBT Drosophila embryos (0-2 hours) and declines at later stages (3-5 hours,
post-MBT). The developmental stage where a decline in PCNA™" is observed coincided with
that of Smaug, a8 mRNA polyadenylation factor destabilized just after MBT (39). We could not
probe Rad18 expression since a Drosophila ortholog could not be faund, neither by sequence
homology, nor by structure-specific alignments (Busseau, Lo Furno, Bourbon, and Maiorano,
unpublished). Altogether, these observations suggest that in pre-MBT Drosophila embryos
TLS may be constitutively primed. In line with this conclusion, previous observations have
shown that Drosophila Poln (dPoln) is highly expressed in pre-MBT embryos, localizes into
interphase nuclei, similar to what previously observed in Xenopus (10), while dpoln mutant
embryos are sensitive to UV-irradiation (40).
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Introduction

Very early embryogenesis of fast cleaving embryos is characterized by unusually contracted
cell cycles, made of a periodic and synchronous succession of DNA synthesis (S-phase) and
mitosis with virtually absent gap phases. S-phase length is dramatically short (15 minutes in
Xenopus and only 4 minutes in Drosophila) and feedback mechanisms controlling genome
integrity (checkpoints) are largely repressed, as there is no time to slow down the cell cycle
(1) for review, and references therein). These include the ATR-dependent checkpoint that
monitors replication fork progression (2)for review). This checkpoint is activated close to the
midblastula transition (MBT) in concomitance with activation of zygotic transcription (3-5).
Experiments in Xenopus have shown that checkpoint activation is sensitive to the DNA-to-
cytoplasmic (N/C) ratio, since it can be triggered by artificially increasing the amount of DNA
in the embryo over a threshold level, a situation that mimics the increase in DNA content
reached close to the MBT (6). Previous observations in Caenorhabditis elegans (7-3) and more
recently in Xenopus laevis (10) have implicated the translesion DNA synthesis (TLS) branch of
DNA damage tolerance in silencing the DNA damage checkpoint. In Xenopus cleavage-stage
embryos, constitutive recruitment of at least one Y-family TLS polymerase (Pol m) onto
replication forks, driven by the TLS master regulator Rad18 (E3) ubiquitin ligase, minimizes
replication fork stalling in front of UV lesions thereby limiting ssDNA production which is
essential for replication checkpoint activation (10-13). This configuration is lost prior to MBT
following a developmentally-regulated decline of Rad18 abundance (10).

TLS Pols have the unigue capacity to replicate damaged DNA thanks to a catalytic site
more open than that of replicative polymerases which can accommodate damaged bases.
Because TLS Pols cannot discriminate the insertion of the correct nucleotide and lack
proofreading activity, they can be highly mutagenic especially on undamaged templates
(14)for review). Recruitment of Y-family TLS pols (1, m, x and Revl) requires
monoubiquitination of the replication fork-associated protein PCNA (PCNA™®) by Rad18 (E3)
and Rad6 (E2) ubiquitin ligases complex (15, 16). Aside from its TLS function, Rad18 is also
implicated in error-free homology-directed DNA repair (HDR) in response to both double
strand breaks (DSBs) and interstrand cross-links (17—21) . These functions are separable and
lie in distinct domains of the Rad18 protein. The Rad18 TLS activity is confined to its ring finger
domain (22), while the HDR activity mainly depends upon its zinc finger and ubiquitin binding
domain (17, 18). We have previously shown that in early Xenopus embryos PCNA is
constitutively monoubiguitinated, irrespective of the presence of DNA damage (10). Whether
TLS is active during the early embryonic cleavage stages is currently unclear. Previous work in
C. elegans has shown that mutations in some TLS Pols do not influence global mutagenesis
although a poln and polx double mutant accumulate DNA deletions (9). In this work, we
provide evidence for TLS-dependent mutagenesis in early Xenopus and Drosophila embryos
and show that in Xenopus, both Rad18 HDR activity and the mismatch repair system (MMR)
alleviate mutagenesis, thus reducing the mutation load.
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chromosomes revealed a significant SNV depletion on chromosome 3 of maternally-depleted
flies compared to maternally provided flies (Supplementary Figure S4A-B and Figure 5C), in
particular within a cluster of Responder (Rsp) satellite DNA repeat within the pericentromeric
heterochromatin of chromosome 3L (Figure 5D). The SNVs difference in this region accounts
for 100-fold decrease in the mutagenesis rate in the maternally-depleted flies compared to
the maternally-provided flies, consistent with an error-prone activity of dPoln. A difference
was also observed in the pericentromeric region of the right part of the same chromosome
(3R) including a shift far from the centromere in the maternally-depleted flies (Figure 5D),
while no gross variations were observed on other chromosomes, except some significant
variations on chromosome 4, X and Y (Supplementary Figure S4D-F). Analysis of the mutation
spectrum on chromosomes 3R and 3L (Figure 5C) revealed a predominant reduction of C>T,
T>C transitions and T>A transversions. This is in line with the observation that unlike yeast and
humans, dPoln misincorporates G opposite T template leading to T>C transitions (45).

Because approximately two third of the genes located on 3L pericentromeric
heterochromatin are required for developmental viability and/or adult fertility (46) we
evaluated the predicted effects of mutations in either maternally-depleted or maternally-
provided adults by attributing variant effect predictor (VEP) score to each variation. VEP score
determines the effect of variants (SNVs, insertions, deletions, CNVs or structural variants) on
genes, transcripts, and protein sequence, as well as regulatory regions. In both maternally-
depleted and maternally-provided flies genomes, the majority of variants present a modifier
score more enriched in the maternally-depleted mutant on the pericentromeric region of
chromosome 3L and 3R (Supplementary Figure S5A). Most variants in this category affect
intron splicing or noncoding regions (intergenic variants, Supplementary Figure S5A-B).
However, once the VEP score modifier removed, the most recurrent SNVs presented a
moderate score or a low score, (Figure 5C-D). Scoring the consequences of these variants
shows that they lead to missense mutations in coding genes in the maternally-deprived
mutant. This category of variants changes the genetic code, which may potentially alter the
function of a protein.

Taken altogether, these data show that dpoln maternally-depleted adults are
characterized by decreased mutations on specific chromosomes regions that may depend
upon dPoln for efficient replication during the very fast cleavage stages and containing genes
important from embryos viability (46).

Discussion
High mutagenesis in the very early Xenopus embryo

In this work, we have provided evidence for the occurrence of a surprisingly high mutation
rate in the very early, pre-MBT Xenopus embryo. Mutation rate was estimated to be in the
range of 10° and corresponds to 0.8 mutations per cell cycle, a value very close to that
observed in the human germline (0.4-1.2) (47) but slightly lower than that estimated for pre-
implantation human embryos (2.8) (48). This mutation rate, which is within the range
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observed for Y-family TLS Pols, was greatly reduced upon expression of either the TLS-deficient
Rad18%%®F or the Rad18%%FC207F mytant. The corresponding mutation spectrum is also
consistent with the mutagenesis spectrum of TLS Pols on undamaged DNA templates.
Collectively, these findings indicate that in pre-MBT Xenopus embryos TLS strongly contributes
to the observed mutagenesis.

The residual mutations ohserved in the Rad18“F mytant includes C>T transitions and
C>A transversions. These mutations, that were recently reported to be also predominant in
early human embryos (48), can be a consequence of either ribonucleotides incorporation or
generated as a result of cytosine deamination into uracil, which is then turned into a thymine
upon replication. The concentration of ribonucleotides exceeds of about 1000-fold that of
deoxyribonucleotides, and we have observed a high level of ribonucleotides incorporation
during DNA synthesis in Xenopus egg extracts that depends upon the DNA-to-cytoplasmic ratio
(Supplementary Figure S2E). This may depend upon TLS activity, in line with evidence
demonstrating ribonucleotides incorporation in vitro by human Poln (49, 50). Because
ribonucleotides slow down DNA replication, constitutive TLS activation facilitates their bypass,
a strategy that the Xenopus embryos may have evolved to cope with a highly contracted cell
cycle. Notwithstanding, it cannot be excluded that these mutations might be also a
consequence of unproofed errors of replicative DNA Pols.

Unexpectedly, we have also observed large deletions in the lacZ gene recovered from
pre-MBT embryos. These rearrangements are unlikely to be an artifact of the plasmid assay,
since they were not detected neither in plasmids isolated from embryos co-injected with
Rad18"T, nor from UV-irradiated embryos. In this respect, genomic deletions have been
observed in the S subgenome of adult Xenopus laevis (51) as well as in Drosophila
melanogaster (52), suggesting that such genomic rearrangements might be generated
naturally during evolution in these organisms. Although Y-family TLS Pols can generate
deletions, their extent is rather small (1-3 bp), implying other mechanisms such as replication
fork instability which is a common feature of DNA damage checkpaoints inefficiency (5, 53, 54).
Replication fork collapse can also happen when repriming and template switch are inefficient,
however we have found no evidence for repriming nor for template switching in the context
of Xenopus early embryogenesis (10) (and our unpublished observations). Replication fork
collapse can be a consequence of suboptimal TLS activity due to limiting Rad18 levels (10).
Consistent with this interpretation, C. elegans strains with reduced TLS function accumulate
spontaneous genomic deletions as a result of double strand breaks at forks arrested by
endogenous DNA lesions (43). Notwithstanding, it cannot be excluded that these
rearrangements are the result of rare intermediates, Poln-dependent, that turned into
deletion upon transformation into E.colfi. Rad18"T overexpression would reduce fork stalling
by boosting both TLS and HDR, suppress NHEI toxic effect at collapsed replication forks and
therefore reduce deletions. This scenario is in line with evidence showing that Rad18 has a
negative effect on NHEJ (55) and that NHEJ is predominant over HDR in the early Xenopus
embryo (56). Externally applied DNA damage may stimulate repriming and/or template switch
by so far unclear mechanisms, thus facilitating replication fork restart, and suppressing
replication fork collapse.
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Functional conservation of constitutive TLS in the early embryogenesis of fast cleaving
embryos

Similar to what observed in Xenopus (10), we have provided evidence for both developmental
regulation of PCNA™® in Drosophila early embryogenesis, and TLS activity, suggesting that this
process is also conserved in invertebrates. Because a Drosophila Rad18 ortholog in Drosophila
could not be identified, it has not been possible to analyze mutagenesis in a complete Y-family
TLS-free context.

Detailed genome-wide analysis of SNVs in maternally-depleted dpoln adults revealed
a strong SNVs reduction in the pericentromeric region of chromosome 3, as well as SNVs
depletion on the Y chromosome and the pericentromeric region of chromosome X. It is
currently unclear why dPoln maternal depletion mainly affects SNVs abundance on
chromosome 3. This is the largest Drosophila chromosome which includes the largest cluster
of 120 bp Responder DNA repeats of a-satellite DNA within the pericentromeric
heterochromatin (57). Such DNA sequences form secondary structures that constitute a
challenge for a canonical replication fork, and Poln, and not Pol 1, has been previously shown
to be important to replicate unusual DNA sequences in somatic cells (58, 59). Because
Drosophila lacks Polk, Poln may be essential to assist the replisome in the replication of
heterochromatin, in particular on chromosome 3 that contains the largest block of Responder
DNA repeats. This interpretation is consistent with SNVs depletion observed on chromosome
Y which is highly heterochromatic and with the mutation spectrum that corresponds to the
reported incorporation errors of Poln on undamaged templates (33, 35, 45). Either replicative
polymerases, or dRevl may compensate for dPoln absence, although less efficiently. Due to
inefficiency of the replication checkpoint in the Drosophila pre-blastoderm syncytium,
embryos may accumulate chromosome abnormalities and undergo apoptosis at MBT (5), thus
explaining the reduced hatching rate and chromosome abnormalities observed in maternally-
depleted dpolr embryos. A caveat of this interpretation is that mapping to highly repetitive
genomic regions is not very accurate. However, we do not have any indication that this
contributed to the difference in SNVs identified on 3L and 3R chromosome arms between the
maternally-depleted and maternally-provided dPol 1 flies.

The 3L chromosome region also contain a set of genes involved in development and
viability. A great majority of SNVs in this region are predicted to generate mutations with low
or moderate impact on genes functions. Hence, it cannot excluded that the phenotype
observed in the dpoi7 homozygous flies may also be a consequence of mutations in essential
genes.
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Consequences of a high mutagenic rate in early embryogenesis: good or bad?

The occurrence of a high mutation rate in early developing embryos of fast cleaving organisms
is rather surprising but somehow not completely unexpected since these embryos are
characterized by a highly contracted cell cycle that does not leave enough time to allow quality
control (1). In this situation, the toll to pay is an increased risk of mutagenesis and genomic
instahility, as we have reported in this work. Several reports have highlighted the occurrence
of genomic instability and mutations in early embryos (1) for review), which is apparently
compatible with normal development (63). These observations suggest that active protection
mechanisms must be operating to reduce the mutation load. Consistent with this possibility,
mutagenesis dropped to background levels when Xenopus embryos were injected with a high
dose of DNA, which mimics a pre-MBT stage (6). At MBT, cell cycle extension, activation of the
DNA damage checkpoint and apoptosis would ensure repair of errors introduced during the
cleavage stages, thereby limiting the propagation of cells having gross chromosomal
alterations, and explaining both the low level of developmental defects and embryonic
mortality (5, 60—62). In this work, we have unveiled that in Xenopus, Rad18 has a protective
function through an error-free HDR activity that reduces its TLS mutagenic activity. In addition,
we have shown that the MMR pathway also contributes to reduce mutagenesis in the pre-
MBT embryo. However, we have shown that in Drosophila, mutations generated in the pre-
blastoderm embryo are inherited in the adult, suggesting that protection mechanisms against
genomic instability are not very stringent.

Introduction of random mutations, generated by so far unclear mechanisms, has been
also recently observed in human embryos (48). In addition, pre-implantation human embryos
display genomic instability characterized by gross chromosomal rearrangements that can lead
to cleavage arrest at the 2-4 cell stage (63). Introduction of random mutations may constitute
an unexpected and novel source of genetic variation contributing to genome evolution that
may be advantageous for the adaptation of the species, but at the same time might be
dangerous for life. For example, an overall high mutation rate may be important for
pseudogenization, a process that silences the expression of pseudogenes (64) and be also
important to adaptation to a new environment. A recent study identified several genes
located on the Drosophila 3L chromosome involved in adaptation (65). We have observed that
Poln mutagenic activity may be important to maintain the stability of centromeric DNA
sequences in the Drosophila pre-blastoderm embryo, thus being good for life. Genome-wide
association studies have implicated hundreds of thousands of single-nucleotide
polymorphisms (SNPs) in human diseases and traits (66). In the future, it will be important to
explore which is the level of DNA damage inherited in the post-MBT embryo, and its
contribution to the polymorphisms that characterize each individual.
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Figure 1. Pre-MBT Xenopus embryos accumulate polymorphisms and deletions

(A) Drawing of the experimental strategy adopted to analyze mutagenesis in Xenopus laevis
embryos. 2-cell stage embryos are injected with a supercoiled plasmid containing lacZ-
reporter gene (pEL1) and allowed to replicate for further 3 divisions. After embryos collection,
plasmid DNA is extracted and transformed in JacZ-deficient bacteria for white/blue screening.

(B) Mutation frequency expressed as percentage of white colonies in each condition. The
mutation frequency of lacZ recovered from embryos injected with a post-MBT amount of
plasmid DNA is also included as comparison. pre-MBT and post-MBT n=3, pre-injection: n=2.

(C) Mutagenesis rate in the indicated different experimental conditions expressed as
mutations per base pair/locus per generation (see Materials and Methods), normalized to the
pre-injection background values, n=3.

(D) Mutation spectra of the lacZ gene recovered from Xenopus pre-MBT embryos after Sanger
sequencing, n=3.

(E) Western blot of total protein extracts obtained from Xenopus embryos subjected to the
indicated experimental conditions, n=2.

(F) Mutation frequency and (G) mutagenesis rate of lacZ isolated from Xenopus embryos
injected as indicated. lacZ n=3; MIh1: n=2.

Data are presented as means * SD. Means were compared using unpaired Student’s t test.
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