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Abstract
A large portion of the information contained in next-generation sequencing data is
potentially lost through classical bioinformatics analysis. Both the mapping of
sequencing reads to a genome or transcriptome and filtering results to focus on
known gene regions eliminate useful information. This is especially true in cancer
studies where patient transcriptomes or genomes may vary from their references.
We created a novel approach that makes use of recent advances in genetic
algorithms, neural networks and feature selection to comprehensively explore
massive volumes of sequencing data to classify samples without these biases. Our
approach, called GECKO for GEnetic Classification using κ‑mer Optimisation
maximizes the sequencing information used when trying to explain the difference
between 2 or more samples. Our algorithm has been effective at classifying data
from large-scale cancer studies using mRNA-seq, circulating DNA or whole-genome
resequencing.

iMOKA (interactive multi-objective κ‑mer analysis) is a software that enables the
comprehensive analysis of sequencing data from large cohorts to generate robust
classification models or explore specific genetic elements associated with disease
aetiology. iMOKA uses a fast and accurate feature reduction step that combines a
Naïve Bayes classifier augmented by an adaptive entropy filter and a graph-based
filter to rapidly reduce the search space. By using a flexible file format and distributed
indexing, iMOKA can easily integrate data from multiple experiments and also
reduces disk space requirements and identifies changes in transcript levels and
single nucleotide variants.
Our software could be run on a desktop computer and enable scientists and
clinicians to discover novel informative sequences in their own NGS data.

Accurate quantification and detection of intron retention levels require specialized
software. Building on our previous software, we have created a suite of tools:
IRFinder-S, to analyse and explore intron retention events in multiple samples.
Specifically, IRFinder-S allows a better identification of true intron retention events
using a convolutional neural network, allows the sharing of intron retention results
between labs, integrates a dynamic database to explore and contrast available
samples and provides a tested method to detect differential levels of intron retention.
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Résumé
Introduction
Dans ce résumé en français sont inclus les principaux concepts de chacun des
paragraphes de cette thèse.

L'ARN : une macromolécule polyvalente avec un rôle clé dans le système
cellulaire

Épissage d'ARNm

Dans les génomes eucaryotes, l'information pour produire une protéine spécifique
n'est pas continue mais divisée en segments, appelés exons, divisés par des régions
non codantes ou ne codant pas pour cette protéine, les introns.
La rétention d'intron (IR) se produit lorsque des séquences qui sont habituellement
épissées sont maintenues dans le transcrit mature.
L'IR n'est pas simplement le résultat d'un mauvais épissage, mais il a été rapporté
qu'il est omniprésent et susceptible d'affecter plus de 80 % de tous les gènes codant
pour les protéines, contribuant à la régulation du transcriptome et jouant un rôle non
seulement dans les maladies, mais aussi dans les processus physiologiques. .
Habituellement, les isoformes IR (IRI) contiennent des codons de terminaison
prématurés qui déclenchent leur dégradation rapide par la voie NMD. Dans certains
cas, au cours de la spermatogenèse, par exemple, le transcrit IRI peut être retenu
dans le noyau ou le cytoplasme et être soumis à un épissage supplémentaire en
réponse à des stimuli, montrant une demi-vie plus longue que les transcrits
correctement épissés. Enfin, l'IRI peut également échapper à la NMD et subir une
traduction, produisant des isoformes protéiques alternatives, généralement
tronquées et nocives pour la cellule.

Réseaux de régulation des gènes
Chaque cellule d'un même individu contient une copie du même génome, appelé
génotype, mais elles peuvent se différencier en plusieurs types cellulaires aux
formes, dimensions, fonctions et propriétés très différentes, appelés phénotypes.
Ce qui détermine le phénotype de chaque cellule est non seulement son génotype,
constant dans chaque cellule, mais aussi le milieu environnant et, surtout, son
interaction entre les produits du génome et l'environnement.
Cette interaction affecte la façon dont le génome est utilisé dans chaque cellule,
quels transcrits d'ARN sont exprimés, quand et combien, générant différents
modèles dans un réseau de régulation génique complexe
En raison de le contrôle de la qualité de la transcription et des étapes de régulation,
la quantité de transcrits ne correspond pas toujours à la quantité de la protéine
correspondante, mais les informations recueillies à partir des données d'expression
de l'ARN-seq sont parfois suffisantes pour déduire des modèles informatiques des
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parties des réseaux de régulation génique sous-jacents pour reproduire son
comportement dans des environnements contrôlés.
Plutôt que de tenter de décrire les interactions entre les éléments connus du réseau,
au cours des dernières années, les approches d'apprentissage automatique et
d'apprentissage profond se sont massivement développées: des modèles de boîte
noire sont entraînés pour prédire des phénotypes spécifiques à l'aide de données de
grande dimension. Ces méthodes peuvent utiliser différents types de
caractéristiques d'entrée, telles que l'expression des gènes, la méthylation de l'ADN,
les modifications des histones et le génotype, en les considérant individuellement ou
en combinaison à partir de grandes cohortes de patients.

Quantification de l'ARN : une rupture technologique
Séquençage de première génération
Également connue sous le nom de séquençage de Sanger, la méthode qui
permettait de déterminer la séquence de longs fragments de toute molécule d'ADN a
été publiée en 1975 et affinée au cours des années suivantes.
L'application de cette technologie s'étend de l'assemblage de novo du génome,
comme le projet du génome humain (HGP) dont la première ébauche a été publiée
en 2001, à la biologie évolutive, pour déterminer la phylogénie des organismes ou
l'évolution des gènes, en passant par les applications cliniques, comme la détection
de pathogènes ou les tests de mutations génomiques dans les pathologies
congénitales, ou encore à l'identification médico-légale et aux tests de paternité,
grâce aux empreintes génétiques.

Séquençage de deuxième génération
La réduction des coûts et l'augmentation de l'accessibilité ont permis d'appliquer les
NGS dans un large éventail de domaines : le reséquençage du génome, c'est-à-dire
la lecture de séquences cartographiques sur un génome de référence pour identifier
des variantes génétiques ; les tests prénataux non invasifs, la classification
moléculaire du cancer et le diagnostic des maladies mendéliennes ne sont que
quelques exemples des nombreuses applications cliniques qui sont devenues des
routines réalisables dans les hôpitaux.
Plusieurs méthodes ont été dérivées de l'ADN-seq standard pour quantifier
différentes molécules et événements. Un exemple est le séquençage de l'ARN qui,
en utilisant la transcriptase inverse et des protocoles dédiés, a presque
complètement remplacé la technologie des puces à ADN pour la quantification de
l'expression génique.

Séquençage de troisième génération
Deux décennies de travail et d'avancées technologiques ont été nécessaires pour un
premier prototype fonctionnel de nanopore et à la fondation en 2005 de la société
Oxford Nanopore Technology ( ONT ).
L'ONT utilise une différence de tension appliquée aux bains d'électrolytes de chaque
côté d'une membrane isolée pour produire un courant ionique.
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La précision de l'ONT était inférieure à 60 % lors de sa première introduction, mais
les améliorations du base calling au cours des dernières années ont permis des
valeurs de 85 % en 2018 et jusqu'à 98,3 % en 2021 et promettant 99 % avec la
version chimique Q20+.
Si l'entreprise britannique atteint cet objectif impensable d’ici quelques années, la
technologie des nanopores aura toutes les caractéristiques pour remplacer l'Illumina
dominant sur le marché mondial et plus encore : l'absence d'étape d'imagerie permet
la production d'appareils moins chers et plus petits, avec l'appareil MinION étant
aussi gros qu'un smartphone et coûtant 1000 dollars ; la longueur de lecture peut
aller de lecture courte à ultra-longue (plus de 2Mb d'ADN et plus de 20Kb d'ARN) ; il
permet une analyse en temps réel et la préparation de la bibliothèque est rapide, ne
nécessitant que dix minutes, et standardisée, grâce à un dispositif automatisé qui
augmente la reproductibilité des expériences.

Nanostring nCounter: quantification directe d'ARN
Une technologie émergente qui permet la quantification directe de molécules d'ARN
à l'aide d'un protocole simple et rapide est Nanostring Technologies nCounter. La
société Nanostring, fondée en 2003 et installée à Seattle, propose une technique
efficace en termes de coût et de temps pour quantifier des ensembles de séquences
spécifiques.
Cette plate-forme automatisée hybride les marqueurs moléculaires fluorescents
directement à des séquences d'acides nucléiques spécifiques, permettant la mesure
non amplifiée de jusqu'à 800 cibles dans un échantillon et de multiplexer jusqu'à 96
échantillons dans le même cycle.

Analyse des données RNA-seq
Conception expérimentale
À l'instar d'autres expériences scientifiques, le RNA-seq nécessite une préparation
minutieuse des données qui doivent être générées ou collectées. Une étude peut
être exploratoire, avec l'objectif de découvrir de futures tâches de recherche, ou
formelle, avec une hypothèse à tester.
L'application standard des données RNA-seq est l'étude de l'expression différentielle
(DE) des gènes et, moins fréquemment, des transcrits.
Différentes applications nécessitent différentes dimensions d'échantillon : si nous
voulons, par exemple, associer un SNP à un phénotype particulier, nous devons
appliquer des tailles d'échantillon d'étude d'association pangénomique (GWAS),
avec un minimum de 100 échantillons jusqu'à plus de 2000.
Pour ce qui concerne la profondeur, puisque plus de 80 % des lectures sont
attribuées aux 10 % de gènes les plus exprimés et qu’augmenter le nombre de
lectures n'augmente que marginalement la couverture des gènes faiblement
exprimés, surtout au-delà des 10 millions de lectures, il vaut mieux utiliser le budget
pour avoir plus de réplicats plutôt que peu d'échantillons avec un séquençage
profond.
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Enfin, lorsque l'expérience doit être exécutée en plusieurs lots, il est important de
répartir équitablement les conditions entre les lots. Le traitement de groupes
d'échantillons à des jours différents, à l'aide de différentes machines et par différents
opérateurs peut refléter de faibles écarts entre les lots qui peuvent être interprétés à
tort comme des signaux biologiques.

Alignement de lecture ARN-seq
Pour quantifier l'abondance de la molécule d'ARN au niveau du transcrit, en
considérant chaque isoforme comme une entité indépendante, ou au niveau du
gène, où l'expression d'un gène est la somme de l'expression de ses isoformes, il
est nécessaire d'aligner les lectures à un génome ou transcriptome de référence.
La cartographie des lectures sur un génome de référence présente le principal défi
pour aligner correctement une lecture qui comprend une jonction d'épissage (SJ).

Quantification au niveau des gènes et des transcrits
Indispensable pour la plupart des analyses en aval, l'évaluation de l'abondance des
gènes et des transcrits se caractérise également par une longue liste d'outils qui
atteignent le même objectif en utilisant différentes stratégies et avec des
performances différentes.
HTSeq, featureCounts, l'option intégrée à l'outil STAR et d'autres outils comptent
directement les fragments chevauchant les caractéristiques du gène après l'étape
d'alignement, différant les uns des autres par la façon dont ils gèrent certaines
situations, comme les alignements multiples fragmentés, les fragments qui
correspondent à plusieurs caractéristiques et des fragments s'alignant partiellement
sur une caractéristique. Cette approche est limitée par des changements dans la
composition des exons qui n'ont pas d'impact direct sur le nombre de lectures au
niveau des gènes, tels que la capacité d'un même gène à produire différentes
isoformes.
Pour surmonter ces obstacles, la quantification au niveau du transcrit est de plus en
plus utilisée, même pour estimer l'expression au niveau du gène avec de meilleures
performances sur l'analyse en aval. Il convient de mentionner que, contrairement
aux transcrits, le gène n'est pas une entité physique mais une abstraction utile
n'ayant pas de cible claire pour la quantification.
Des approches récentes utilisent des pseudo-alignements de κ‑mers pour accélérer
le processus, contourner l'étape d'alignement et produire une estimation précise.
Enfin, les outils classiques de quantification des gènes et des transcrits ne prennent
pas en compte les éléments répétitifs et transposables. Des logiciels dédiés, comme
TEtranscripts, télescope et SalmonTE, abordent ce problème, en appliquant des
approches similaires à celles utilisées pour les gènes classiques aux familles
d'éléments transposables.

Signatures d'épissage alternatif
L'abondance des transcrits et des gènes ne sont pas les seules caractéristiques
quantifiables qui peuvent être déduites du séquençage de l'ARN : le pourcentage de
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l'épissage (PSI) est utilisé dans les études d'épissage pour quantifier la fréquence
d'inclusion d'exons spécifiques.
Parmi les événements d'épissage alternatifs possibles, la rétention d'intron (IR)
nécessite des ajustements supplémentaires afin d'être correctement quantifiée.
Sans une approche appropriée, des sites d'épissage donneurs ou accepteurs
alternatifs non annotés et des transcrits qui se chevauchent pourraient conduire à
des événements mal classés. De plus, les introns enrichis en séquences de faible
complexité et répétitives peuvent restreindre la cartographie unique des données de
séquençage.

Analyse différentielle
La plupart des modèles expérimentaux visent à identifier les différences d'expression
entre deux ou plusieurs conditions, l'une utilisée comme contrôle et l'autre comme
cible. Avec cet objectif, l'analyse d'expression différentielle (DE) formule et teste une
hypothèse statistique pour chaque caractéristique dans les échantillons.
Habituellement, seul un nombre limité de réplicats est disponible (3 à 5 réplicats par
condition) et, combiné au grand nombre de fonctionnalités testées simultanément, la
puissance statistique réalisable serait très faible sans stratégies dédiées mises en
œuvre et affinées au cours des années par la communauté statistique.
La plupart de ces approches, telles que le limma-voom largement utilisé, ont été
initialement développées pour les données de microarrays et dans un second temps
adaptées au séquençage d'ARN.

Approches basées sur les κ‑mers
Quantifier l'abondance de transcrits connus ou d'événements d'épissage n'est pas le
seul moyen d'obtenir des caractéristiques significatives : compter les occurrences de
sous-chaînes de longueur k, appelées κ‑mers, dans les données brutes de
séquençage est une autre approche largement utilisée dans différents domaines,
tels que la métagénomique, l’ assemblages de novo et la phylogénie.
Ce type de représentation a l'avantage d'être sans référence, puisque le
dénombrement des occurrences de κ‑mers est indépendant de tout génome,
transcriptome ou annotation de référence.
L'inconvénient est qu'il est très redondant et avec une grande dimensionnalité.
La procédure de comptage, bien que simple, présente des défis de calcul pour ce
qui concerne les exigences de temps et d'espace.
Une fois les comptes κ‑mers obtenus, une approche courante consiste à créer des
graphes de Bruijn (dB), un graphe direct représentant les κ‑mers en tant que
sommets et le chevauchement entre eux en tant qu'arêtes.
L'application de la théorie des graphes aux graphes κ‑mer de de Bruijn est l'une des
clés du succès de cette méthodologie : cette représentation est gérée efficacement
par la machine et il existe un grand nombre d'algorithmes pour rechercher, parcourir,
trouver des chemins et représenter ses propriétés.
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Identification des événements IR
Huit ans après la publication de la première version d'IRFinder, avec plus de 400
citations cumulées, le logiciel est une référence pour l'analyse IR.
Les raisons de son succès résident non seulement dans la qualité de l'analyse mais
aussi dans l'implémentation de bout en bout qui prend en charge tous les aspects de
l'analyse des données brutes, y compris la génération de référence du du logiciel
d'alignement STAR, le découpage de l'adaptateur et les procédures d'analyse
différentielle.
Les aspects de la convivialité du logiciel ont été améliorés au cours de ces années,
également grâce aux commentaires des utilisateurs qui ont aidé à résoudre
différents bugs. Néanmoins, il reste encore quelques aspects qui nécessitent un
effort supplémentaire: le séquençage à lecture longue prend de plus en plus
d'importance, en particulier dans les études impliquant la structure des transcrits. Le
pipeline est calibré autour d'un séquençage à lecture courte, non seulement pour ce
qui concerne le type d'aligneur mais aussi pour les hypothèses qui sont posées pour
le calcul de l'IRratio.
Malgré les stratégies utilisées pour masquer les régions chevauchant des régions
difficiles à aligner et des caractéristiques connues, telles que des exons
supplémentaires et des ARN non codants, il existe une proportion considérable
d'événements IR faussement positifs qui peuvent être discriminés par inspection
visuelle sur un navigateur génomique.
La base de données IR, IRbase, construite en 2017 à partir de 2000 échantillons
humains est obsolète et ne permet pas à l'utilisateur de visualiser et de comparer
facilement ses propres données avec celles incluses dans la base de données.
L'approche IR différentielle n'a pas été validée dans les travaux antérieurs et
nécessite la connaissance du logiciel R.
Au cours de ma dernière année de doctorat, j'ai travaillé avec mon collègue Sylvain
Barrier pour améliorer IRFinder, en me concentrant non seulement sur les quatre
points décrits précédemment, mais également en améliorant l'aspect de la
convivialité et de la vitesse qui ont conduit à son succès.

Approches alternatives pour l'analyse des données RNA-seq
Des méthodes telles que DE-kupl, KOVER et HAWK ont démontré qu'il n'est pas
nécessaire d'intégrer les informations dans un format compréhensible et
interprétable par l'homme, tel que des gènes ou des transcriptions, pour comparer
les informations contenues dans les données de séquençage. Les κ‑mers nous
permettent de comparer des groupes d'échantillons de manière agnostique, sans
biais induit par aucune séquence de référence ou annotation, ce qui conduit à des
résultats hautement reproductibles : les décomptes de κ‑mers ne changeront pas,
tandis que notre connaissance de la composition du génome de référence s'améliore
chaque année. De plus, les κ‑mers permettent la comparaison de petites fractions
de la molécule d'ARN, évitant la perte d'informations dérivées de l'agrégation de
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plusieurs lectures sous une seule caractéristique, c'est-à-dire un gène, un transcrit
ou une jonction d'épissage.
Enfin, en utilisant un nombre suffisamment important d'échantillons, il serait possible
d'associer des variations, telles que le SNP ou les indels, à une population
spécifique, de la même manière que les études d'association pangénomique
(GWAS).

GECKO est un algorithme génétique pour classer et explorer les données de
séquençage à haut débit
GEnetic Classification using κ‑mer Optimization, GECKO, est la première méthode
permettant d’identifier des groupes de κ‑mers capables de classer deux ou plusieurs
groupes d'échantillons dans l'étude de grandes cohortes.
La méthode, décrite en détail dans l'article présenté ultérieurement dans le
manuscrit, montre qu'il est possible d'identifier des groupes de κ‑mers qui, seuls ou
en synergie, sont capables de classer différents groupes de patients, avec une
meilleure performance en ce qui concerne le nombre de gènes. L'approche a été
testée sur différents types de données de séquençage, tels que les données de
séquençage de miARN, d'ARNm et de bisulfite.
Brièvement, GECKO prend des séquences brutes en entrée et utilise Jellyfish2 pour
compter l’abondance des κ‑mers dans chaque échantillon. Il assemble ensuite une
matrice de κ‑mers, où chaque ligne est un κ‑mer et chaque colonne est un
échantillon.
La dernière étape du prétraitement consiste à filtrer des κ‑mers considérés comme
non informatifs, bruités et redondants.
Enfin, GECKO implémente un algorithme génétique adaptatif, un algorithme
d'optimisation métaheuristique efficace, pour sélectionner des sous-ensembles de
κ‑mers qui maximisent la précision de la classification des groupes d'échantillons à
l'aide d'un classificateur de vecteur de support linéaire (LinSVC).

iMOKA : logiciel basé sur κ‑mer pour analyser de grandes collections de
données de séquençage
iMOKA, Interactive Multi Objective κ‑mer Analysis, a d'abord été pensé comme un
filtre pour sélectionner les κ‑mers informatifs : la plupart des κ‑mers sélectionnés par
GECKO ont pu individuellement classer avec une assez bonne précision les
échantillons dans les groupes respectifs, même à l'aide d'une procédure de
validation croisée. À l'instar de GECKO, les détails de l'algorithme sont décrits dans
l'article présenté ultérieurement dans le manuscrit, y compris une référence sur
quatre ensembles de données dans lesquels les κ‑mers extraits par iMOKA sont
comparés aux valeurs PSI, à l'expression des gènes et des transcriptions en tant
que caractéristiques de classification selon un modèle de forêt aléatoire.
Brièvement, le logiciel peut prendre en entrée à la fois des fichiers de séquençage,
tels que fastq ou bam, ou des identifiants de lien externe, http, ftp ou SRR, en
téléchargeant les données requises avant le début de l'analyse.
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À l'aide de KMC3, iMOKA extrait le décompte des κ‑mers triés de chaque échantillon
et les convertit en fichiers binaires. Un fichier JSON contient les métadonnées des
échantillons appartenant à l'analyse, comprenant pour chaque échantillon : le nom,
l'étiquette du groupe, l'emplacement du fichier binaire et la somme totale des
comptages des κ‑mers, utilisés pour normaliser les données .
La première étape de réduction considère un κ‑mer à la fois et, à l'aide d'un
classificateur bayésien, estime la précision de la caractéristique permettant de
classer les échantillons dans les groupes respectifs. Cette étape est par défaut
couplée à un filtre d'entropie adaptatif qui accélère le processus en supprimant très
peu d'éléments réellement informatifs.
Enfin, une procédure d'agrégation regroupe les κ‑mers en fonction de leur séquence,
en construisant des graphes de de Bruijn et de leur pertinence biologique, en
cartographiant les séquences générées à partir des graphes sur un génome de
référence et en utilisant une annotation de référence pour attribuer des «
événements » aux κ‑mers les plus informatifs de dans chaque groupe.
Surtout, le logiciel est couplé à une interface utilisateur graphique (GUI) qui permet
d'exécuter en local ou sur un cluster distant toutes les étapes de l'algorithme.
L'utilisateur peut également explorer le résultat final de l'étape d'agrégation sous
forme de tableau interactif, visualiser l'alignement des κ‑mers sur un génome de
référence avec une version javascript du navigateur de génome IGV, générer des
cartes auto-organisatrices et des classificateurs basés sur des forêts aléatoires.

Conclusion
Les trois dernières décennies ont été marquées par des avancées technologiques
incroyables, tant du point de vue biotechnologique que informatique.
Pour les suivre, nous avons adapté IRFinder pour prendre en charge les séquences
de troisième génération et utiliser de nouvelles méthodologies, le réseau de
neurones convolutifs, pour affiner et améliorer ses résultats. De plus, nous avons
proposé IRBase, une plateforme où les utilisateurs peuvent non seulement visualiser
leurs données mais aussi les comparer avec celles partagées par d'autres
utilisateurs.
La possibilité de séquencer à faible coût et haute fidélité de larges cohortes de
personnes donne l'opportunité d'approfondir nos connaissances sur les mécanismes
sous-jacents aux pathologies et de générer des modèles pour prédire les réponses
aux médicaments, aux traitements et aux modifications environnementales.
En introduction, nous avons vu comment les approches classiques, basées sur la
cartographie à un génome de référence et utilisant des annotations de référence,
présentent de nombreux niveaux de variabilité induits par les différentes versions
des références et des logiciels utilisés. De plus, une grande partie des informations
sont généralement rejetées car elles ne correspondent pas aux caractéristiques
considérées dans l'étude. Nous avons montré comment les approches basées sur
les κ‑mers peuvent être une représentation optimale et agnostique des données de
séquençage, utiles pour identifier des biomarqueurs pouvant être appliqués à des
fins cliniques et de recherche. Dans cette optique, nous avons mis en place iMOKA,
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un logiciel capable de sélectionner efficacement un groupe de κ‑mers avec une
faible redondance d'informations et une grande capacité de discrimination des
phénotypes en analyse au sein d'une cohorte de très grands échantillons.
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Preamble
With this manuscript, I wish not only to give a general overview of my past three
years of passionate work but also to convey a progressive view of why researchers
all over the world cooperate every day to advance the knowledge about ourselves
and the world around us. The acceptance of risks and failures in everyday
challenges, the constant curiosity and the awareness that every piece of certainties
that we have can be questioned thanks to technological advances are the keys for
success in this field, together with a bit of luck.
We’ll explore biological events essential for life, shaped by evolution in hundreds of
thousands of years. We'll analyse machinery built to quantify those events that would
have been considered sci-fi products by our grandfathers. Finally, I will introduce my
work that aims in part to use the data generated by those instruments using
well-corroborated methods to identify fine regulatory elements in complex systems
and in part to change perspective on how we use this huge amount of information.
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Introduction

RNA: a versatile macromolecule with a key role in the cellular
system
Ribonucleic acid (RNA) is one of the two main classes of nucleic acids together with
deoxyribonucleic acid (DNA), two polynucleotide chains that carry all the information
required to orchestrate the organization of the cell.
RNA is synthesized by the RNA polymerases in complexes that use a DNA segment
as a template and involves a wide network of regulators.
Although the existence of such molecules had been known since 1869, more than a
century was required to reveal their chemical composition4,5, their role 6,7, their
structures8, and only in 19779 we were able to read the information carried by those
molecules using techniques that we’ll describe in detail in the following chapter.
Furthermore, despite the first draft of full human genome assembly being available
for 20 years10,11, our knowledge about the complex mechanism underlying the
generation of a multicellular organism from a single omnipotent cell and the effect of
small genomic variations on such organisms is still limited.
The analysis of RNA and protein behaviour in response to genomic alteration can be
the key for further understanding since those molecules are the effectors that use the
information to act in the cellular environment.

According to the central dogma of molecular biology formulated by Crick in 195712,13,
the information to produce a protein is encoded as a four-letter alphabet sequence in
the nucleus, it’s transcribed into RNA molecules (messenger RNA, mRNA) that have
the role to export the information from the nucleus compartment to the cytosol, the
liquid matrix surrounding the organelles, where it is translated into a twenty letter
alphabet amino acid sequence.

Figure 1 shows a schematic version of this process, from the transcription of the
precursor mRNA molecule, pre-mRNA, its maturation through splicing, 5’ capping,
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polyadenylation and formation of the messenger ribonucleoprotein particle (mRNP),
the export in the cytoplasm and its final translation in a polypeptide chain, that will
fold in a functional protein. In sixty years from the formulation of the first version of
this dogma, we discover that this process is part of a complex network made of
effectors and regulators that interact to ensure the survival and the reproduction not
only of the single cell but of the whole organism of which the cell is part of.
In this system, the role of RNA molecules goes far beyond the mere carrier of
information from DNA to protein: they can have catalytic, structural and regulatory
functions14.
Within the following paragraphs, we’ll focus our attention on the RNA regulatory
strategies that take place in eukaryotic cells focusing our attention on the underlying
informational flow.
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mRNA splicing
In eukaryotic genomes the information to produce a specific protein is not continuous
but split into segments, called exons, divided by non-coding regions or not coding for
that protein, the introns.
The spliceosome is a ribonucleoprotein complex in which five small nuclear RNAs
(snRNAs), approximately 300 proteins and magnesium ions cooperate to remove the
introns from the pre-mRNA molecule in a two-step transesterification reaction15.
Donor, acceptor and branch sites are cis-acting elements necessary for the
recognition of the splice boundaries by the spliceosome and are located respectively
at the 5’, 3’ and 20-50 nucleotides upstream the 3’ end of the intron16.

The process is highly dynamic and not deterministic: the sites are not always
recognised by the spliceosome with the same efficiency. This flexibility leads to the
inclusion and exclusion of different portions in different mature mRNA isoforms, and,
as consequence, the possible formation of a variety of different proteins from the
same gene, increasing the genetic diversity. This phenomenon, called alternative
splicing (AS), gives plasticity to the transcriptome playing a key role during cell
development and differentiation17. AS is finely regulated by cis-acting elements,
trans-acting factors, transcription and chromatin structure, whose combinatorial
effect determines the final outcome 18,19 .
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AS can occur in different locations (Figure 3), but not all of their combinations result
in a functional protein. The mature transcripts undergo degradation if specialized
surveillance systems detect abnormalities in the mRNA sequence, such as the
nonsense-mediated decay (NMD) and the non-stop decay (NSD)20,21.
The NMD is mediated by proteins associated with the exon-exon junction (EJ
Complex, EJC) and the ribosome.
During the first round of translation, the ribosome removes the EJC but, in case of a
premature stop codon, the ribosome is released before reaching the last EJC. The
translation termination recruits additional factors that, in the case of residual EJC on
the mRNA, trigger the degradation of the mRNA by the exosome complex. Similarly,
the NSD occurs when the ribosome stalls at the poly-A, discharging the ribosome
and redirecting the mRNA to degradation.
Those abnormalities are more frequent in transcripts containing introns.
Intron retention (IR) occurs when sequences that are usually spliced out are
maintained in the mature transcript.
IR is not simply the outcome of mis-splicing but has been reported to be ubiquitous
and likely to affect over 80% of all protein-coding genes 22,23, contributing to the
transcriptome regulation 24 and having a role not only in diseases 25–27, but also in
physiological processes 28,29.
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Usually, IR isoforms (IRI) contain premature termination codons that trigger their
rapid degradation by the NMD pathway. In some cases, during spermatogenesis, for
example, IRI transcript can be retained in the nucleus or cytoplasm and be subject to
further splicing in response to stimuli, showing a longer half-life than properly spliced
transcripts30. Finally, IRI can also escape NMD and undergo translation, producing
alternative protein isoforms, usually truncated and harmful to the cell31–33.
Although this type of gene regulation requires the formation of the mature RNA and
its degradation, therefore inefficient under the energetical point of view respect the
downregulation at the transcription level, it’s more specific compared to transcription
factors, whose action covers a wide panel of genes. Since the energetic cost at the
transcription level is much lower than the one at the protein level34 and the speed of
translation is much higher than the transcription one35, the generation of a reservoir
of IRI transcripts allows to have an energetically efficient and fast way to produce
proteins in response to external stimuli.
In the next paragraph, we’ll focus our attention on the gene regulatory network,
which is the complex system where proteins, DNA and RNA molecules interact to
ensure the survival of the living organism.
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Gene regulatory networks
Cooperation is strength and complex multicellular organisms are the perfect
incarnation of this concept. Unicellular organisms are self-sufficient cells able to
provide all the functions needed for the survival and reproduction of their species.
In multicellular organisms each cell depends on the activity of each other, generating
complex systems having emergent properties.
Each cell of the same individual contains a copy of the same genome, called
genotype, but they can differentiate in several cell types with very different shapes,
dimensions, functions and properties, called phenotypes.
What determines the phenotype of each cell cannot be only its genotype, constant in
each cell, but also the surrounding environment and, more importantly, by the
interaction between the genome products and the environment.
This interaction affects how the genome is used in each cell, which RNA transcripts
are expressed, when and how much, generating different patterns in a complex gene
regulatory network36.
In such a network the abundances of each transcript and protein have to be finely
tuned by pathways characterized by regulatory intercommunicating loops.
Traditionally, the transcriptional pattern is modulated at two interconnected levels: a
first level having transcription factors (TF) that bind enhancer elements and recruit
cofactors and RNA polymerase II to target genes 37, and a second at the epigenetic
level that involves chromatin, its regulators and the DNA methylation38. As we saw in
the previous paragraph, however, there are additional control levels that influence
the network: RNA-binding proteins and non-coding RNAs, such as miRNA39 and
siRNA40, regulate the mRNA processing41–43, transport and degradation 44,45.
Furthermore, protein translation and degradation are finely regulated, the first at the
levels of initiation, elongation, localization and ribosome composition46–48, the second
with the ubiquitin-proteasome system49. Finally, the phenotype arises from the
protein’s activity, their composition, influenced also by post-translational
modifications and their interaction with other proteins and biomolecules50,51.
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Mammals contain thousands of cell types, each with a specific transcriptome and
proteome pattern where the alteration of a single key component can cause
diseases. For example, the oncogenic transcription factor TAL-1, overexpressed in
almost half of T cell lymphoblastic leukaemia cases, forms an interconnected
autoregulatory loop with several key TF partners52. Alteration of the information
content is a source of intraspecies variability, but if a mutation disrupts the balance of
the regulatory network it can cause developmental deficiencies, like missense
mutations in the RNA polymerase II Mediator subunit MED12 that cause intellectual
disability and multiple congenital anomalies53.

Because of transcript control quality and regulation steps, the quantifiable amount of
a transcript doesn’t always correspond to the amount of the corresponding
protein35,54, but the information gathered from RNA-seq expression data is
sometimes sufficient to infer computational models of portions of the underneath
gene regulatory networks to reproduce its behaviour in controlled environments. The
reaction kinetics in those models can be described using mathematical models, such
as sets of coupled ordinary or stochastic differential equations 55,56 , boolean and
bayesian networks. The strengths and the weakness of those methods are
accurately described in the review of M. Banf 57, where the author highlights the
importance of those methods in prescreening in silico the potential interactions,
limiting the extent of experimentation needed. However, the high complexity of the
gene regulatory network, its interaction with other cellular pathways and the
difficulties to correctly quantify all its components at the same time are the main
obstacles for the creation of a complete descriptive computational model, especially
when the models are based uniquely on expression data and not integrated with
consistent, large-scale multiple data types.
Rather than attempt to describe the interactions between the known elements of the
network, in the last few years machine learning and deep learning approaches are
flourishing: black-box models are trained to predict specific phenotypes using
high-dimensional data58,59. Those methods can use different types of input features,
such as gene expression, DNA methylation, histone modifications and genotype,
either considering these individually or in combination from large cohorts of patients
60–63.
The main challenges of this approach are to gather data correctly annotated and
having a dimension and composition such that it can be a representative sample of
the population in analysis. Projects like the human phenotype ontology64 aim to
standardize the medical annotation of the biological data to facilitate the integration
of data from different sources. For what concerns the data availability, large projects
like The Cancer Genome Atlas (TCGA)65, the Personal Genome Project66 and the
Human Protein Atlas67 gives access to large collections of standardized omic data,
but still small compared to the huge amount of data generated by hospitals and
research centers every year. Ethical and legal issues are intrinsically linked with
patient data: is it safe to share patient data? To which extent an individual is aware of
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the risk and benefit of sharing his medical record and biological data? Is it possible to
efficiently anonymize those types of data without a drastic loss of information?
An international effort of the bureaucratic bodies is required to face those questions,
together with the instauration of clear and efficient communication between the
scientific community and the general population to raise the interest about the
possible benefits and problems that this type of data sharing could bring in everyday
life.
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RNA quantification: a technological breakthrough
Technological advances allow novel definitions of basic concepts, such as the one of
life: “Life is an organized matter that provides genetic information metabolism” 68

given by Tetz in 2019. The author defines genetic information metabolism as
“functioning, reproduction, and creation of genes and their distribution among the
living and non-living carriers of genetic information”.

Many definitions of life have been given throughout history, some of which focus the
attention more on the physical properties, as in Schrodinger’s book “What is Life?”69,
and some on the biological properties, like the notorious seven pillars of life70.
In 1944, before the discovery of the DNA as the carrier of information71, Schrodinger
defined life as a partially closed environment that, thanks to the genetic information
stored in an "aperiodic crystal" under the form of covalent chemical bonds, can
maintain a low internal entropy increasing the environmental one.
Fifty-eight years later, Koshland proposed seven principles that define any living
system. The genetic information, called the program, is the first pillar and is defined
as the organized way to handle the system components and their interactions.
Most of those evergreen definitions emerged from the enthusiasm led by the
possibility to study, analyse and quantify different biological properties, but the
content of information is a characteristic present in all of them, even when its
physical carrier was still unknown.
In the case of Tetz’s definition of life, the trigger is the high throughput sequencing
technology that allows to easily read the genetic information, opening the gates for
its decryption.
In the following paragraphs, we’ll go through three generations of sequencing
technologies that had an impact not only in the research field but also in everyday
life. Despite several detailed reviews written by the main characters that contribute to
this fascinating journey72,73, it’s important to remember the milestones that drove us
where we are.
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First-generation sequencing
The story of sequencing flows in the opposite direction with respect to the flow of
information: the first biological sequence decipher was the amino acid sequence of
the insulin protein in 195174, followed in 1965 by the first RNA sequence (alanine
tRNA), which required five people working three years with one gram of pure
material isolated from 140 kg of yeast to determine 76 nucleotides75.
The processes to sequence those two classes of molecules were similar:
fragmentation of the polymer followed by separation by chromatography and
electrophoresis, then deciphering of the individual fragments by sequential
exonuclease digestion and finally the sequence was deduced from overlaps.
The first successful sequencing of a DNA molecule was published in 1968 by We
and Kaiser: they measured the incorporation of radiolabeled nucleotides by
Escherichia Coli Polymerase in reactions that extended the 3’ end to fill in the
complementary cohesive end sequences of a phage lambda DNA of only 12
nucleotides76–78.
The cohesive portion was necessary for the polymerase to start the synthesis of the
complementary strand.
Copying the lactose-repressor binding site of E.Coli into RNA allowed its sequencing
by Gilbert and Maxam: 24 bases in two years79.
Thanks to the discovery of type II restriction enzymes by H.Smith80,81, it was possible
to generate short fragments from large molecules of DNA having ends that could
function as primers, starting points for the polymerase reaction.

Also known as Sanger sequencing, the method that allowed the determination of the
sequence of long fragments of any DNA molecule was published in 1975 and
fine-tuned in the following years9,82–85.

Sanger’s method involves four extensions of a labelled primer by DNA polymerase,
each with trace amounts of one chain-terminating dideoxynucleotides (dNTPs), to
produce fragments of different lengths. The sizes of fragments present in each
base-specific reaction were measured by electrophoresis on polyacrylamide slab
gels, which enabled the separation of the DNA fragments by size with single-base
resolution. The gels, with one lane per base, were put onto X-ray film, producing a
ladder image from which the sequence could be read off immediately, going up the
four lanes by size to infer the order of bases.
Notably, Maxam and Gilbert developed during the same period a similar method that,
instead of dNTPs, took a terminally labelled DNA restriction fragment and, in four
reactions, used chemicals to create base-specific partial cleavages86.
The application of Sanger sequencing was dominant and it was enhanced when
Messing and collaborators published a method for cloning into the single-stranded
phage M1385, the shotgun sequencing: any fragment of DNA can be inserted into a
specific location in the phage genome ( bacterial artificial chromosomes, BAC),
allowing primers designed on the known vector sequence to amplify the insert.
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By 1987, the company Applied Biosystems developed automated
fluorescence-based Sanger sequencing machines, shown in figure 6, able to
generate around 1,000 bases per day87, a number that reached 10 million bases per
day by 2001 in a small number of academic genome centres thanks to additional
technical improvements.
The application of this technology span from de novo genome assembly, such as the
human genome project (HGP) of which the first draft was published in 200110,11,
evolutionary biology, to determine organism phylogenies or the evolution of
genes88–91, clinical, as the detection of pathogens or testing for genomic mutations in
congenital pathologies92–94, to forensic identification and paternity testing, thanks to
DNA fingerprinting95–97.
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Second-generation sequencing
By 2004, Sanger automated instruments allowed to sequence 600-700 bp at cost of
1 dollar per read, but the technology reached a plateau in its evolution since
additional improvements had little or marginal effects73. Luckily, several groups
throughout the 80s and 90s explored alternative sequencing methods and, after the
HGP, those efforts paid off: next-generation sequencing (NGS) methods were
becoming more and more competitive and were destined to take over the Sanger
sequencing.
Also known as high throughput sequencing, the common denominator between
those novel methods are the multiplexing and the sequence by synthesis (SBS)
strategies.
Multiplexing replaced the one tube per reaction approach: a complex library of DNA
templates is densely immobilized onto a chemically treated surface, with all
templates accessible to a single reagent volume, allowing large numbers of libraries,
that could be created also from different samples, to be pooled and sequenced
simultaneously during a single sequencing run.
This step could be coupled by in vitro amplification: the most famous is the bridge
amplification, a process that amplifies a complex template library with primers
immobilized on a surface, such that copies of each template remain tightly
clustered98–100. Other techniques that allow to amplify in vitro the input DNA are
clonal PCR in emulsion, such that copies of each template are immobilized on
beads101,102, and rolling circle amplification in solution to generate clonal
‘nanoballs’103, followed in both cases by arraying on a surface for sequencing.
Finally, the SBS evolved in three main strategies:

1. The first system available was the pyrosequencing, used by the Roche 454
instruments, which consists in the detection of the light generated by a firefly
luciferase, that use as substrate the pyrophosphate released by the
incorporation of each dNTP, in a discrete step-wise manner104. This
technology is no longer being maintained since 2013. A similar approach
detects the incorporation of hydrogen ions released during the polymerization
of DNA, used by Ion Torrent.

2. A second approach uses the specificity of DNA ligases to attach fluorescent
oligonucleotides to templates in a sequence-dependent manner, used by
SOLiD8. This approach generates reads shorter than the competitor’s and has
issues with palindromic regions106.

3. The approach that became dominant since 2015 is Solexa that consists in a
stepwise, polymerase-mediated incorporation of fluorescently labelled dNTPs.
The development of engineered polymerase, reversibly terminating and
reversibly fluorescent dNTPs are the keys that allow the incorporation of a
single nucleotide in each cycle. After that the fluorescent colours are detected
by imaging, the blocking and fluorescent groups are removed to set up the
next extension107,108.
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Unlike Sanger sequencing, where Applied Biosystems had the monopoly, NGS
technologies gave birth to several companies, competing in terms of cost, accuracy
and read length. Few examples are the 454 and Solexa technologies, acquired
respectively by Roche and Illumina; Agencourt (Applied Biosystems); SOLiD (ABI);
Helicos (Quake), Complete Genomics (Drmanac) and Ion Torrent (Rothberg).
Those companies invested large capitals in several different approaches, allowing a
fast growth of the field and a democratization of the sequencing capacity: individual
laboratories could instantly access a vast catalogue of new methods, results,
genomes and services.
Between 2007 and 2012, the raw per-base cost decreased by four orders of
magnitude109, keeping an accuracy of over 99.9%, though the length of each read is
still shorter than Sanger sequencing.
In comparison with the first sentence of the paragraph, a single graduate student can
generate over a billion independent reads, roughly a terabase of sequence, on one
instrument for a few thousand dollars in a couple of days.

27



Reduction in costs and increased accessibility allowed NGS to be applied in a wide
spectrum of fields: genome resequencing, i.e. mapping sequence reads to a
reference genome to identify genetic variants; non-invasive prenatal testing, cancer
molecular classification and Mendelian disease diagnosis are just a few examples of
the many clinical applications that became feasible routines in hospitals.
Furthermore, de novo assemblies increased vastly, thanks to new assembly
algorithms based on de Bruijn graphs that partially overcome the length issue110,111:
with NGS many short reads generated from repetitive elements have only a single or
no base difference, leading to ambiguous connections in the assembly. Instead of
finding overlaps between reads, the EULER assembler 110 was the first to use a
different representation of the data: the de Bruijn graphs. The method is organized
around words of k nucleotides, the κ‑mers, and the reads are mapped as paths
through the graph. This data structure naturally handles the high redundancy without
affecting the number of nodes: each repeat is present only once in the graph with
explicit links to the different start and end points.

Several methods have been derived from the standard DNA-seq to quantify different
molecules and events. Some examples are the RNA sequencing that, making use of
the reverse transcriptase and dedicated protocols, replaced almost completely the
microarray technology for gene expression quantification and allowed researchers to
unveil the RNA world that we took into consideration in the previous chapter112; the
ChIP-Seq, a method used to quantify the protein-DNA interactions113; the Bisulfite
sequencing, that used to determine the DNA methylation patterns114; and the since
cell RNA-seq, one of the many adaptations of the RNA-seq technique that allows to
sequence the sparse transcriptome of individual cells.
An important approach is the paired-end sequencing that allows to sequence both
ends of a single biological fragment, generating more accurate read alignment and
the ability to detect insertion-deletion (indel) variants115.

Third-generation sequencing
The second-generation sequencing has two important limitations: the short length of
the reads, reaching nowadays a maximum of 300 bp116, and the PCR amplification
step. The first issue has repercussions on de novo assemblies of repetitive regions
and on the determination of the single-molecule RNA isoforms, the second add time
and complexity in the library preparation, loss of information, such as the lack of
information about eventual nucleotide modifications, and the introduction of copying
errors and sequence-dependent biases.
Due to those limitations, only recently the telomere to telomere (T-2-T) consortium
was able to complete the assembly of the full human genome, including the
constitutive heterochromatin regions, thanks to the combination of Illumina
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sequencing and a new generation of sequencing technology: third-generation
sequencing117,118.
A parallel research field, started back in the 1980s, aimed to sequence single
molecules in real-time (SMRT) and gave birth to two promising approaches: PacBio
and Nanopore sequencing.
Initiated by Webb and Craighead and developed by Korlach, Turner and Pacific
Bioscience, PacBio is the first approach capturing sequence information during the
replication process of a single DNA molecule and was released in 2011119,120.
The template is a closed, single-stranded circular DNA that is loaded into a chip
divided into a sequencing unit, the zero-mode waveguide (ZMW), a hole less than
half the wavelength of light that provides the smallest available volume for light
detection. In each ZMW, a single engineered polymerase is immobilized at the
bottom and can bind to the circular DNA to start the replication. Four different
fluorescent-labelled nucleotides are incorporated by the polymerase, generating
distinct emission spectrums that are recorded in a temporal sequence, the
continuous long read (CLR). A base-calling software analyses the CLR and
estimates the sequence based on the light-pulse spectrum.
Each strand can be sequenced multiple times, allowing the generation of multiple
subreads, whose consensus increases the accuracy of the technique, going from a
median error of 11% for a single pass to 1% with four passes and 0.1% with
nine121,122. The errors consist of more indels than mismatch and are distributed
randomly, a factor that allows reducing efficiently the error rate increasing the CLR
depth.
Base-calling can also detect nucleotide modifications, such as N6-methyladenine (m6

A) and n4-methylcytosine (m4C), analyzing the kinetic variation from the light-pulse of
the temporal sequence123.
PacBio’s read length is limited by the longevity of the polymerase: with chemistry v3
released in 2018, the average RL is 30 kbp, spanning from 250bp to 50 kbp.
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A simple but revolutionary idea, hypothesized in the 1980s, is at the basis of the
second methodology: considering a hole through which water is streaming, the
passage of a body, let’s say a tennis ball, modifies the flux of water in a different way
a bowling ball would do. Detecting and decrypting the changes of the flux can tell the
dimensions of the object that obstructed the channel, being able to discriminate
between a bowling or a tennis ball. Similarly, but in a much smaller dimension,
detecting the patterns in the flow of ions generated when an ssDNA passes through
a narrow channel can be deciphered into the sequence of nucleotides that compose
the polymer124. Two decades of work and technological advancement were required
to move from this idea to the first successful nanopore prototype and the foundation
in 2005 of the company Oxford Nanopore Technology ( ONT ).
ONT uses a voltage difference applied across electrolyte baths on either side of an
insulated membrane to produce an ion current.
The current streams through a single channel protein, in the first chemistry versions
Mycobacterium smegmatis porin A (MspA), pulling the DNA through the nanopore in
a linear, head-to-tail fashion by electrophoresis. The passage would be too fast to be
detectable, that’s why another protein, called enzyme motor, acts as a molecular
stop, preventing the DNA from travelling any further through the nanopore124,125.
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The signal detected is then analysed using bonito126, a base caller that uses methods
widely used in speech recognition problems ( in particular a recurrent neural network
(RNN) model trained using connectionist temporal classification (CTC) and
conditional random field (CRF) ) to decode the electric signal into a sequence of
nucleotides.
ONT accuracy was less than 60%127,128 when first introduced, but the base caller
improvements over recent years allowed values of 85% in 2018 129 and up to 98.3%
in 2021 and promising a 99% with the chemistry version Q20+ 130,131.
If the British company accomplishes this goal, unthinkable a couple of years ago,
nanopore technology would have all the characteristics to replace the dominant
Illumina in the global market and more: the lack of an imaging step allows the
production of cheaper and smaller devices, with the MinION device being as big as a
smartphone and costing 1000 dollars; the read length can go from short to ultra-long
read ( more than 2Mb DNA and more than 20Kb RNA132,133); it allows real-time
analysis134,135 and the library preparation is quick, requiring only ten minutes, and
standardized, thanks to an automated device that increase the reproducibility of the
experiments; RNA molecules can be directly sequenced without needs of any cDNA
intermediates, reducing the time, costs and introductions of errors.

Nanostring nCounter: direct RNA quantification
Sequence technologies are fundamental in research, but for clinical application most
of the time it’s sufficient to know the abundance of specific subsets of sequences,
representing features like genes, specific isoforms, splicing junctions, chimeric
transcripts and SNP.
An emerging technology that allows the direct quantification of RNA molecules using
a simple and fast protocol is Nanostring Technologies nCounter136. The company
Nanostring, founded in 2003 and settled in Seattle, offers a cost and time efficient
technique to quantify specific sets of sequences137.
This automated platform hybridizes fluorescent barcodes directly to specific nucleic
acid sequences, allowing for the non amplified measurement of up to 800 targets
within one sample and to multiplex up to 96 samples in the same run136.
Nanostring’s nCounter has been used within different clinical and research
applications, such as assays to predict recurrence for gastric cancer after surgery138,
subtype molecular classification of diffuse large B-cell lymphoma139, the identification
of known oncogenic fusion genes in lung cancer140 and many others141–144.
The robustness, sensibility and high reproducibility of this technology outdo
microarrays, the most similar technology available, which are often expensive and
lack flexibility and reproducibility when evaluating low-quality RNA samples, such as
those from formalin-fixed paraffin embedded145.
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RNA-seq data analysis
In the previous chapters, we considered the biological aspects of the information
represented in the RNA-seq data and the evolution of the technologies that allow its
extraction into a series of four-letter strings. Now, we’ll focus on the common
approaches used to exploit this information, starting from the experimental design,
moving to read mapping, transcript quantification and concluding with differential
gene analysis. Finally, we’ll overview existing reference-free approaches that
extrapolate and analyse the information using κ‑mers.

Experimental design
Similarly to other scientific experiments, RNA-seq requires a careful design of the
data that has to be generated or collected. A study may be exploratory, with the
objective of discovering future research tasks, or formal, with a hypothesis to test.
An important factor to consider is whether the data comes from experiments, where
the researcher has control of the variables in the study, or ex post facto, where the
investigator cannot manipulate the variables, such as clinical data.
The sampling design must consider heterogeneous samples, representative of the
population in analysis, and balance between case and control, randomizing the
experimental units to treatment in order to reduce confounding factors.
Budget is one of the most limiting factors and it’s determined by the number of
samples processed and the number of reads generated for each of them, also called
sequencing depth.
Tools like “Scotty”146, “RNAseqPS”147, “PROPER”148 and “ssizeRNA”149 estimates the
optimal sample size required to achieve the desired statistical power and, although
most of them diverge significantly in the results150, can help the scientist in this
crucial step.

The standard application for RNA-seq data is differential expression (DE) study of
genes and, less frequently, of transcripts. In any experimental design, selecting the
appropriate number of biological replicates is a trade-off between cost and precision.
A misconception is that three replicates are enough in a DE study: Schurch et al.
show that to identify differentially expressed genes having a low fold change it’s
necessary to have at least six replicates per condition and that using only three
replicates per condition most of the DE analysis tools found only 20-40% of the
significant DE genes 151.
Different applications require different sample dimensions: if we want, for example, to
associate SNP to a particular phenotype, we need to apply genome-wide association
study (GWAS) sample sizes, with a minimum of 100 samples up to more than
2000152.
For what concerns the depth, since more than 80% of the reads are attributed to the
10% most expressed genes and increasing the number of reads only marginally
increases the coverage of lowly expressed genes, especially over the 10 million
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reads153, it’s better to use the budget to have more replicates rather than few
samples with deep sequencing.
Finally, when the experiment has to be run in multiple batches, it’s important to
equally distribute the conditions between the batches. Processing groups of samples
on different days, using different machines and by different operators can reflect on
small variances between the batches that can be misinterpreted as biological
signals.

RNA-seq read alignment
The final output of any sequencer is generally a FASTQ file, in which a read is
represented by four parts154: the first is the header, starting with a ‘@’ character and
including a unique ID attributed to the read, useful especially in paired-end
sequencing to identify the two mates; the second part contains the raw sequence,
usually encoded using the standard IUPAC single letter codes for DNA and RNA; the
third part, starting with a ‘+’ character, can contain additional description but is
usually empty. Finally, the last part encodes the quality values for each nucleotide.
Since v1.8 Illumina sequencers use the same quality score as the Sanger and
PacBio sequencer: the Phred quality score ( Qphread ), that is the -log10 of the
probability that the corresponding base call is incorrect.
Millions to billions of short cDNA reads contain information about what RNA
molecules are in the original sample, their abundance and sequences. This
information is randomly scattered across the reads: subsequential reads in the
FASTQ file can represent completely different RNA molecules.
To quantify the abundance of the RNA-molecule at the transcript level, considering
each isoform as an independent entity, or at the gene level, where the expression of
a gene is the sum of the expression of its isoforms, it’s necessary to align the reads
to a reference genome or transcriptome.
In organisms for which only a de novo transcriptome is available, or it’s much better
characterized than the reference genome, unspliced alignment is a feasible solution.
Mapping on a reference transcriptome, however, induces a high degree of
multi-mapping since different isoforms can share the same intron and isn’t flexible
enough to deal with novel splicing or expression patterns. Pseudo-alignment and fast
mapping to transcriptome is part of the strategy used by recent transcript abundance
estimators and we’ll focus on this subject in the next chapter.

Mapping the reads to a reference genome presents the main challenge to correctly
align the read that includes a splice junction (SJ). Bowtie155, STAR156, HISTAT157 and
GMAP158 are the most famous of a long list of splice-aware aligners that use known
or empirically deduced SJ sites to guide the alignment. Each software uses a
different approach, resulting not only in different performances in terms of time but
also in terms of the final result, adding a layer of variability to the experiment.
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Once mapped, the reads are stored in dedicated files, such as BAM, the binary and
compressed version of the SAM format ( Sequence Alignment Map ), and CRAM, a
reference-based storage format promoted by EBI from 40 to 50% smaller than the
BAM one159.
The problem of the lack of an international standard is being addressed by the
moving picture expert group (MPEG), mostly known for the audio and video coding,
who released the first version of the MPEG-G in 2019 proposing a new file format:
“The standard will offer high levels of compression, approximately 100 times
compared to raw data, i.e. more than one order of magnitude than possible with
currently used formats. Furthermore, the MPEG-G standard will provide new
functionalities such as native support for selective access, data protection
mechanisms, flexible storage and streaming capabilities. This will enable various
new applications scenarios, such as real-time streaming of data from a sequencing
machine to remote analysis centres during the sequencing and alignment
processes.”160

Gene and transcript level quantification
Essential for most of the downstream analysis, assessing the gene and transcript
level abundances is also characterized by a long list of tools that achieve the same
goal using different strategies and with different performances.
HTSeq, featureCounts, the built-in STAR option and other tools count directly the
fragment overlapping the gene features after the mapping step, differing one from
the other by the way they handle certain conditions, like multi mapping fragments,
fragments that map to multiple features and fragments mapping partially in the
feature. This approach is limited by changes in the composition of the exons that do
not directly impact the gene-level read count, such as isoform switching.
To overcome those obstacles, transcript-level quantification is getting more and more
used, even to estimate the gene-level expression with better performances on the
downstream analysis161. It’s worth mentioning that, in contrast with the transcripts,
the gene is not a physical entity but it’s a useful abstraction having no clear target for
quantification.
Methods like RSEM162 and Cufflinks163 define a generative model of RNA-seq reads
and use such a model to infer the transcript abundance, assigning in a probabilistic
way the ambiguous fragments to the different isoforms. Recent approaches make
use of pseudo-alignments of κ‑mers to speed up the process, bypass the alignment
step and produce an accurate estimation 164,165.
The pseudo alignment procedure uses the reference transcriptome in the form of the
de Bruijn graph to assign a read to a set of transcripts without alignment.
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In particular, Kallisto uses the transcriptome in the form of de Bruijn graph to assign
through expectation-maximization (EM) algorithm the read to the transcript from
which most likely was generated166.
Another widely used κ‑mer based tool is Salmon167: it first builds a sample-specific
bias model to correct effects like fragment GC-content bias; after that, it uses a
lightweight mapping procedure called quasi-mapping, similar to pseudo alignment in
the use of the transcriptome and κ‑mers.
This strategy, proposed by Srivastava A. et al with RapMap168 was first applied to
Sailfish169, has the same outcomes as the transcriptome pseudo alignment using a
different data structure168.
Easy to use, fast, with low computational requirements and high performances in
terms of speed and disk usage, the mapping-free κ‑mer based approaches have
become popular for assessing transcript and gene-level abundance, gaining the top
tiers of the most recent benchmark studies 170–172.
Finally, traditional gene and transcript quantification tools don’t consider repetitive
and transposable elements. Dedicated softwares, like TEtranscripts173, telescope174

and SalmonTE, address this problem, applying similar approaches like the ones
used for classical genes to transposable element families.

Alternative splicing signatures
Transcript and gene abundances are not the only quantifiable features that can be
inferred from RNA-sequencing: the percentage of the splice in (PSI) is used in
splicing studies to quantify the frequency of inclusion of specific exons.
Tools like MISO175, rMATS176 and Whippet177 compute one PSI value for each exon
using the following formula:
𝑃𝑆𝐼 =  100 × 𝑎+𝑏

𝑎+𝑏+2𝑐

Where a and b represent the reads overlapping the splice junctions that support the
inclusion of the alternative exon to downstream and upstream constitutive exons and
c represents the ones that support the exclusion.
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PSI-Sigma uses a different PSI value:
𝑃𝑆𝐼
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Where Si and Sj are the splice-junction reads of all isoforms in the region between
two constitutive exons C1 and C2, generating multiple PSI in case an exon is used by
different isoforms178.
MAJIQ179 quantifies the PSI values for each isoform as well, using a combination of
read rate modelling, Bayesian PSI modelling and bootstrapping.
Finally, SUPPA2180 uses the transcript abundances to infer the PSI and delta PSI
(ΔPSI, difference in PSI between two conditions). This approach, though fast,
produces suboptimal results178.
All the aforementioned methods can be applied to second and third generation
sequencing since they take as input FASTA, FASTQ or BAM file formats, but only
PSI-Sigma was tested using long reads178 showing a more complete and precise
transcriptome profile.
Among the possible alternative splicing events, intron retention (IR) requires
additional adjustments in order to be correctly quantified: MAJIQ, for example, filters
the events having consecutive windows across the intron lower than a user definable
threshold; PSI-Sigma estimates the abundance of the IR isoform counting the
number of intronic reads crossing the first, 25th, 50th, 75th and 99th percentile
positions of an intron. Without a proper approach, unannotated alternative donor or
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acceptor splicing sites and overlapping transcripts could lead to misclassified events.
Furthermore, introns that are enriched in low-complexity and repetitive sequences
may restrict the unique mapping of sequencing data181.
IRFinder, the first software dedicated to IR analysis, addressed this problem
proposing a new metric, the IRratio, defined as:

𝐼𝑅𝑟𝑎𝑡𝑖𝑜 =  
𝐼

𝑎

𝐼
𝑎
+𝐸

𝑎

Where: Ia is the intronic abundance, estimated as the median depth of the intron
excluding low mappability regions and regions overlapping with other features; Ea is
the abundance of the flanking exon, estimated as the maximum number of reads that
map the 5’ or the 3’ flanking exon splice site22,182.
In 2015, Bai et al developed IRcall, a ranking strategy, and IRClassifier, a random
forest classifier, to detect IR events183. The first generates a joint score for IR events,
based on intron read counts, flanking exon read counts and splice junctions. The
latter uses 21 features extracted from other IR detection methods ( IRFinder, MATS
and ExpressionPlot) to build a Random Forest classifier to predict IR events.
Finally, iREAD184 uses the Shannon entropy185 to quantify the uniformity of the
distribution of reads across the intron and considers only introns that don’t overlap
with any other feature. Due to the lack of experimentally validated intron retention
events dataset availability, iREAD authors compared their tool with IRFinder using
simulated reads. In this benchmark, IRFinder achieved a precision of 0.73, iREAD of
0.99 and similar time performances. However, few considerations are due to
contextualize those results:

1. iREAD excludes all the introns overlapping known IR events or any other
features, considering so far a much smaller set of events, meanwhile IRFinder
includes the known IR events and masks the intronic annotations, such as
miRNA and antisense transcripts. In the evaluation of the metric, the authors
considered the same number of events to evaluate the performances of the
two software, using the minimum number of hits found in the two methods. In
the iREAD manuscripts, it’s not specified which method outputs the limiting
number of events, but for the aforementioned reasons, lots of IRFinder
positive results have not been taken into consideration.

2. The results are further biased by the criteria chosen to generate IR events in
the simulated RNA-seq data, which are the same criteria iREAD uses to
identify IR events. For example, an intron is considered retained if it has at
least 10 reads and one junction read that spans the exon-intron junction,
regardless of the length of the intron and the number of exon-exon splice
junctions, factors considered in IRFinder. Furthermore, IR events in isoforms
having known intron retention are not considered as IR by their gold standard
sets and iREAD algorithm but are generated anyway, increasing the number
of events considered false positive in IRFinder’s results.

3. The simulated data doesn’t take into account the possible presence of intronic
reads originated by unannotated intronic transcripts, which might affect the
global performances of the softwares.
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4. The speed comparison is biased: the authors use a machine with 20 cores
and don’t specify that IRFinder is a single-core process, while iREAD can
multithread the process, leading to unfair comparison. Finally, IRFinder is
optimized to have a low RAM footprint, an aspect that has not been
considered in the benchmark.

Differential analysis
Most of the experimental designs aim to identify differences in expression between
two or more conditions, one used as control and the other as a target. With this
objective, differential expression (DE) analysis formulates and tests a statistical
hypothesis for each feature across the samples.
Usually, only a limited number of replicates are available ( 3-5 replicates per
condition) and, combined with the large number of features that are tested
simultaneously, the achievable statistical power would be very small without
dedicated strategies implemented and refined during the years by the statistical
community. Most of those approaches, such as the widely used limma-voom186, were
initially developed for microarray data and in a second place adapted to
RNA-sequencing.

The general workflow includes:
1. Preprocessing: encompasses the filtering of uninformative features, such as

lowly expressed genes. Bourgon et al. showed that filtering independent of
the test statistic achieves a higher detection power187. To facilitate
across-sample comparison, the counts have to be directly normalized or, in
software like DESeq2188, scaling factors have to be computed to accompany
the analysis. In addition, few highly expressed genes can drive the sampling
of fragments, leading to inaccurate scaling measures. Calculating
sample-wise size factor can in part overcome this issue: this procedure
consists in generating a pseudo-reference sample, derived from the averages
of each gene across all the samples in the study; for each sample, compute
the ratio between the sample gene count and the pseudo-reference one and
use the median value as size factor, by which the raw count is divided to
obtain the normalized values. It can be considered a robust global fold change
between the current sample and an ideal reference sample, derived from all
the samples189,190.

2. Statistical model specification and estimation of its parameters: due to
the small sample size with respect to the number of features, DE tools mainly
implement parametric methods. The variability in gene expression across
technical replicates follows a Poisson distribution189, for which the variance is
equal to the mean:
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Where is the observed count for class i and feature f and its mean.𝑌
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The biological replication introduces additional variability between the
samples, approximately following an extension of the Poisson distribution: the
gamma-Poisson ( or negative binomial NB ) distribution, that presents an
additional dispersion parameter and a quadratic mean-variance relationship:
𝑌

𝑓𝑖
∼ 𝑁𝐵(µ

𝑓𝑖
, φ

𝑓
)

𝑉𝑎𝑟(𝑌
𝑓𝑖

) = µ
𝑓𝑖

+ φ
𝑓
µ2

𝑓𝑖

Where is the dispersion associated with the feature f. The limited number ofφ
𝑓

samples is again a problem for a reliable estimation of . Differentφ
𝑓

approaches have been developed to solve this issue, whose details go
beyond the scope of this introduction191. Finally, the generalized linear model
(GLM) framework, an extension of classical linear models to non-Gaussian
responses, allows the inclusion of multiple treatments or covariates to the
study192. The NB GLM model can be formulated as:
𝑙𝑜𝑔(µ
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Where is the linear predictor, is the design matrix, represents theη
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regression parameters and is the normalization scaling factor. can be𝑠
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fitted using standard GLMs algorithms and the estimated dispersion values φ
𝑓

.
3. Statistical inference: for each feature, fitted the GLM, it’s now the time to test

the null hypothesis H0 that there is no DE between conditions, generally that
the log-fold-change (LFC) is zero, against the alternative hypothesis H1 that
the . The LFC can be represented as L, a single regression𝐿𝐹𝐶 ≠ 0
parameter (vector) or a linear combination of parameters (matrix) in the GLM
framework as:
𝐻

0
: 𝐿𝐹𝐶 = 𝐿β

𝑓
= 0

There are several tests available for GLM, such as the likelihood ratio tests
(LRTs), implemented in edgeR193, that compare the likelihood of a full model
with the likelihood of a reduced model, where one or some of the parameters
are constrained according to H0. DESeq2, besides LRTs, implements also the
Wald test, a faster approach that achieves approximately the same results as
the LRT188 , assuming a symmetric likelihood distribution and asserting the
significance of the relation between the independent variable and the outcome
within the logistic model.

4. Adjustment for multiple testing: to avoid excess false positives, the
p-values obtained from the statistical inference must be corrected for multiple
testing. Family wise error rate corrections, such as the Bonferroni correction,
are usually too stringent for DE analysis, where a small proportion of false
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positive (FP) can be tolerated to obtain a large number of true positive (TP).
The false discovery rate (FDR) controlling procedure is widely used to control
the expected fraction of false positives in the detected set of features. One
example is the Benjamini–Hochberg (BH) procedure194,195, which has become
a common practice in high-dimensional data analysis thanks to its simplicity
and solid theoretical justification, accepted from both frequentist and Bayesian
perspectives196. The BH adjusted p-value, padj, is computed ranking in
ascending order the p-values and applying the following formula:

𝑝𝑎𝑑𝑗
𝑗

=  
𝑝

𝑗
×𝑚

𝑗

where pj is the p-value of the jth test and m is the total number of tests.

Though this pipeline is optimized for gene DE analysis, it can also support transcript
level DE analysis to detect differential transcript expression (DTE).
Another type of analysis considers the change in the relative abundance of the
isoform for a specific gene, called differential transcript usage (DTU), and of the
individual exons, called differential exon usage (DEU).
Tools like DEXSeq197, DRIMSeq198 and BayesDRIMSeq199 are specialized in this type
of analysis, adopting different strategies whose description goes beyond the scope
of this introduction.
To discover alternative splicing events between conditions, the difference of the PSIs
between is used.
rMATS176 uses likelihood ratio tests (LRTs), the same used in DGE analysis, while
SUPPA2180 test is based on comparing the observed difference in PSIs across
conditions to the empirical cumulative density function of the within-replicates
differences of PSIs of splice junctions from similarly expressed transcripts.
Finally, the differential IR analysis in IRFinder is performed using an Audic and
Claverie Test200, in case of a single replicate for each condition, or a GLM model,
using a wrapper of DESeq2, fitted with the intron and exon abundances of each
sample.

κ‑mer based approaches
Quantifying the abundance of known transcripts or splicing events is not the only
way to obtain meaningful features: counting the κ‑mers occurrences in the raw
sequencing data is another approach widely used in different fields, such as
metagenomics, de novo assemblies and phylogeny.
This kind of representation has the advantages of being reference-free since to
count the κ‑mers occurrences is independent of any reference genome,
transcriptome or annotation.
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The drawback is that it’s highly redundant and with high dimensionality: each
transcript of length L will generate L-k+1 κ‑mers and, globally, there are 4k possible
combinations of the four nucleotides in a string of length k.
The length of the κ‑mers is chosen according to the dimension and complexity of the
genome of interest: the bigger and more complex the reference is, the longer the
κ‑mer needs to be in order to have a sufficiently high fraction of uniquely mapping
κ‑mers.
Computationally, values close to a multiple of 8 ( the number of bits in a byte ) are
efficient values to be represented in binary form, where for example A can be
represented as 00, C as 01, G as 10 and T as 11.
Odd numbers are preferred to avoid reverse palindromic sequences: the central
nucleotide won’t ever be complementary of itself. Additionally, some tools use the
final bit to represent the original strand of the κ‑mer. Altogether, a common formula to
select the κ‑mer size is:
𝑘 = (8 × 𝑑) − 1
Where d is an integer arbitrarily chosen to have a good tradeoff between the κ‑mer
precision, representing the proportion of κ‑mers mapping uniquely on a reference
genome, and the tractable number of possible combinations. In human studies, for
example, d is set to 4, resulting in a k equal to 31.
To compare organisms with smaller genomes, dedicated tools like KITSUNE can be
used to determine the optimal k201,202.
For genomic applications, “canonical” κ‑mer representation is usually used to reduce
the total number of κ‑mers and have a unique representation of the DNA sequence.
The term canonical indicates the aggregation of the counts of a κ‑mer and its reverse
complementary to one of the two comings first using a relation order, generally the
lexicographic one203.
The counting procedure, though simple, presents computational challenges for what
concerns the time and space requirements. A recent benchmark of S.C. Manekar 204

compared ten famous κ‑mer counters, where KMC3, DSK and Gerbil showed the
best performances. Among the three, DSK205 is optimal in case of low RAM
availability, thanks to its algorithm design that subdivide efficiently hash tables into
multiple files on the hard disk; Gerbil206 is optimal in case a GPU is available, being
the only one supporting this type of processor able to massively parallelize
procedures; finally, KMC3207 presents the best tradeoff between time and resources,
it’s stable and offers a convenient C++ library.
Once obtained the κ‑mer counts, a common approach is to create de Bruijn graphs
(dBG), a direct graph representing the κ‑mers as vertices and the overlap of length
κ-1 between them as edges. A compressed representation of the dBG, the cDBG, is
obtained by merging two adjacent simple nodes, which means nodes linked to at
most two other nodes208.
The application of graph theory to de Bruijn κ‑mer graphs is one of the keys to the
success of this methodology: this representation is efficiently handled by the
machine and there are a large number of algorithms for searching, traversing, finding
paths and representing its properties. It’s important to mention that most of the κ‑mer
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dBGs are not complete but just subgraphs since not all the 4κ possible vertices are
represented and therefore not all the dBG properties and algorithms can be applied.
Due to the high dimensionality of these graphs, κ‑mer representation is mostly used
for small genome assemblies and comparisons209–213.
For example, kover214,215 implements a rule-based machine learning approach to
identify κ‑mers of bacterial genomes that can be used as biomarkers for antibiotic
resistance. CLARK216 and KrakenUniq217 are two tools able to classify metagenomes
using unique κ‑mers found in different taxa.

In RNA sequencing experiments, κ‑mers are used not only to estimate the transcript
abundances, such as with the already mentioned kallisto166, but also to perform
specific tasks, such as the HLA ( Human Leukocyte Antigen ) alleles profile 218, detect
virus RNA in plants sequencing data219, detect targeted and de novo variants208,220–223

, motif identification224, identify fusion, noncoding and novel transcripts225,226 and
de novo transcriptome assembly 227.

For what concerns the differential analysis, there are few methods available that use
κ‑mers to identify biological markers: KISSPLICE208, HAWK228,229 and DE-kupl230.
KISSPLICE is a software initially designed to find alternative splicing events from
RNA-seq data, but which also outputs indels and SNPs. Those events correspond to
recognisable patterns, called bubbles, in a de Bruijn graph.

KissDE231 performs a likelihood ratio test on the abundance of the alleles found using
KissSplice and mapped to a reference genome using BLAT to identify
condition-specific SNP.
Hitting association with κ‑mers, HAWK, is a method that aims to identify κ‑mers with
counts that are statistically significant between two phenotypes in whole-genome
sequencing reads, applying GWAS techniques such as the correction for population
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stratification and other confounders. The approach consists in counting the κ‑mers in
each sample using Jellyfish203, test the differential expression using a Poisson
distribution based likelihood ratio test, correcting for confounders and finally merging
the κ‑mer using ABySS, a notorious assembler for short reads. In contrast with other
genomic classification tools, HAWK uses κ‑mer counts and differential expression
analysis, therefore it could be applied to RNA-seq data with the appropriate
modifications in the assembly of the κ‑mers.
Finally, DE-kupl is the first tool to compare κ‑mer abundances across two groups of
human replicates, removing κ‑mers represented in the reference transcriptome and
the ones considered noise due to low expression to identify differentially expressed
events that are not represented in existing transcript catalogues. Each κ‑mer is then
tested using either a t-test or DESeq2, reducing the set of κ‑mers to only the ones
considered differentially expressed between the two groups of samples. Finally,
overlapping κ‑mers are merged in sequences that can be mapped on a reference
genome to identify its biological meaning, such as differential splicing,
polyadenylation, lincRNA, allele-specific expression, repeats and IR.
Importantly, in DE-kupl publication it is shown that in RNA-seq the sequence
diversity from the reference genome and transcriptome is much bigger than in WGS,
suggesting the existence of a significant amount of biological information n RNA-seq
that cannot be accessed using reference-based approaches.

Concluding, κ‑mers have a large potential as biomarkers: they are agnostic since
their extraction from the raw data is independent of any reference genome or
annotation; they are interpretable, since they can be mapped to a reference genome
to derive the underlying biological meaning, and they can be aggregated by
overlapping their sequence, reducing the big issue of redundancy. Furthermore, the
specificity of the sequence allows the application of κ‑mers as biomarkers for clinical
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applications, using counting sequencing such as Nanostring nCounter described in
the previous chapter.

Identification of IR events
Eight years after the publication of the first version of IRFinder182, with more than 400
cumulative citations, the software is a reference for IR analysis.
The reasons for its success reside not only in the quality of the analysis but also in
the end-to-end implementation that takes care of all the aspects of the analysis of
raw data, including the STAR mapper reference generation, adapter trimming and
differential analysis procedures.
The aspects of usability of the software had been improved during those years, also
thanks to users feedback that helped to solve different bugs. Nevertheless, there are
still a few aspects that require additional effort:

1. Long read sequencing is gaining more and more importance, especially in
studies involving transcript structure. The pipeline is calibrated around
short-read sequencing, not only for what concerns the type of aligner but also
for the assumptions that are postulated computing the IRratio.

2. Despite the strategies used to mask regions overlapping low mappability
regions and known features, such as additional exons and non-coding RNAs,
there is a considerable portion of false-positive IR events that can be
discriminated by visual inspection on a genome browser.

3. The IR database, IRbase, built in 2017 from 2000 human samples is outdated
and doesn’t allow the user to easily visualize and compare his own data with
the ones included in the database.

4. The differential IR approach was not validated in previous works and requires
knowledge of the software R.

During my last year of PhD, I worked with my colleague Sylvain Barrier to improve
IRFinder, focusing not only on the four points described before but also enhancing
the aspect of usability and speed that lead to its success.
The result of our work is IRFinder-S3, a suite of tools including a second version of
IRFinder and a completely revised version of IRBase, described in the paper below.
My contribution to this work comprehends: the design of each new component,
enriched by frequent and useful discussions with S.B. and W.R.; the implementation
of the new component with the exclusion of the CNN model, trained, tested and
optimized by S.B.

The CNN Model
Convolutional Neural Networks (CNNs) are a special case of Artificial Neural
Networks (ANNs) in which the connections have been arranged in a way that
produces a convolution operation, hence their name. A detailed explanation of this
important field can be found in the book Deep Learning232.
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Convolutional neural networks have a special type of layer, the convolutional layer,
where the convolution is produced. Intuitively, a convolution consists of matching a
pattern present in the kernel across all possible positions in the image. In this sense,
matching is an element-wise multiplication between the kernel and each possible
position in the image. The element-wise product of each position is then summed to
generate an output value, as shown in Figure 13.

The output of the convolution of the image with a kernel is called a feature map, and
each value of this matrix is obtained by taking the image values within a window,
having the same shape as the kernel, and multiplying them element-wise with the
kernel. These are then summed to obtain a single value. The window of image
values is then moved by a certain amount, the kernel stride, and the element-wise
multiplication and summation are repeated. Each of the values in the output feature
maps represents the absence or the presence of the filter’s pattern inside the image.
The whole point with CNNs is to find "features" allowing them to represent objects by
learning them directly from data, instead of hand-crafting or manually selecting them.
This is done by updating the weights (kernels in the image context) in an iterative
manner such that these updates help minimize an error measuring function. The
adopted solutions to this problem are two well-known algorithms: gradient descent233

and error backpropagation234.
Usually, a pooling layer is added after the convolutional one: the aim is to replace the
output at a certain location with a summary statistic, usually the maximum, of nearby
outputs. This makes the representation invariant to small translations of the input
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and therefore allows the detection of the presence of a feature more than its precise
location. Replacing a region with a summary, this layer also improves the
computational and memory efficiency of the model, reducing the number of inputs in
the next layer.
In IRFinder-S we trained a CNN model using image-like vectors generated during
the main process of IRFinder where the BAM file is processed to estimate the
IRratio. Those vectors contain the information of the potential retained introns,
including 15 nucleotides of the flanking exons, in a one-dimensional array with two
channels. The only dimension represents the genomic position, the first channel
represents the number of reads that cover the related position and the second the
number of reads that are spliced.
Considering only introns having an IR ratio higher than 0.05, therefore presenting a
considerable level of intron retention, the goal of the model is to classify introns that
are truly retained from the ones that aren’t.
To determine the ground truth, if an intron is truly retained or not, we use long reads
and we filter the introns whose coverage isn’t sufficient to have a good degree of
confidence about their retention state.
The evaluation of the model performances requires a cross-validation procedure
where the dataset is divided into n equal partitions. n models are trained using the
data from n-1 partitions and tested on the remaining one.
This process allows us to estimate the performances of the model on unseen data.
Finally, to evaluate if the model could be generalized on different biological sources,
we tested the model trained on a whole dataset using two external cohorts, one
generated using the same cell line in a different differentiation state and a second
one generated using a different cell line.
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IRFinder-S: a comprehensive suite to discover and explore
intron retention
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Alternative approaches for the RNA-seq data
analysis
Methods like DE-kupl, KOVER and HAWK demonstrated that embedding the
information in a human-understandable and interpretable format such as genes or
transcripts is not necessary to compare the information contained in sequencing
data. κ‑mers allow us to compare groups of samples in an agnostic way, unbiased by
any reference sequence or annotation, leading to highly reproducible results: the
κ‑mer counts won’t change in the feature but our knowledge about the composition
of the reference genome improves every year. Furthermore, κ‑mers allow the
comparison of small fractions of the RNA molecule, avoiding the loss of information
derived from aggregating multiple reads under a single feature, that is gene,
transcript or splice junction.
Finally, using a large enough number of samples, it would be possible to associate
variations, such as SNP or indels, to a specific population, similarly to genome-wide
association studies (GWAS).
The two following paragraphs present the work of my team on two different
algorithms designed to identify κ‑mers able to classify two or more distinct groups of
samples in large cohorts of samples.

GECKO is a genetic algorithm to classify and explore high
throughput sequencing data
GEnetic Classification using κ‑mer Optimization, GECKO, is the first method that
aims to identify groups of κ‑mers able to classify two or more groups of samples in
large cohort studies.
The method, described in detail in the paper included below, shows that It’s possible
to identify groups of κ‑mers that, alone or in synergy, can classify different groups of
patients, with a better performance with respect to gene counts. The approach has
been tested on different sequencing data types, such as miRNA, mRNA and bisulfite
sequencing data.

In brief, GECKO takes in input raw sequences and uses Jellyfish2 to count the κ‑mer
abundances in each sample. It then assembles a κ‑mer matrix, where each row is a
κ‑mer and each column is a sample.
The last step of the preprocessing consists of the filtering of the κ‑mers considered
uninformative, noisy and redundant.
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Finally, GECKO implements an adaptive genetic algorithm, an efficient metaheuristic
optimization algorithm, to select subsets of κ‑mers that maximize the accuracy in
classifying the sample groups using a linear support vector classifier (LinSVC).

I joined the lab when GECKO was almost finished and I contributed by implementing
the step to reduce the redundancy, the optional step to filter the κ‑mers based on the
ANOVA f-test and by fixing some bugs.
Some crucial issues of working with κ‑mers on large datasets emerged:
1 - The unfiltered κ‑mer matrix is sparse and can easily occupy one terabyte of
space on a disk in a study with one thousand samples, even in binary form.
Furthermore, its fixed structure requires the user to allocate one matrix for each
experiment.
2 - Despite the redundancy reduction step, the final output presents several κ‑mers
mapping to the same biological entity. Though the information content is similar, it
might be different enough to escape the symmetric uncertainty based filter.
3 - The process is nondeterministic: running several times the genetic algorithm,
different subsets of κ‑mers are selected and there is not a clear procedure to select a
robust group of κ‑mers.

For what concerns the implementation, the use of Nextflow to coordinate different
scripts written in different languages ( C++, Perl and Python ) makes not only the
maintenance of the software challenging, but also requires an advanced user for the
installation and usage.
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iMOKA: κ‑mer based software to analyze large collections of
sequencing data
iMOKA, interactive Multi Objective κ‑mer Analysis, was initially thought as a filter to
select the informative κ‑mers: most of the κ‑mers selected by GECKO were able
individually to classify with relatively good accuracy the samples in the respective
groups, even using a cross-validation procedure. As for GECKO, the details of the
algorithm are described in the paper below, including a benchmark on four datasets
in which the κ‑mers extracted by iMOKA are compared to PSI values, gene and
transcript expression as classifying features in a Random Forest classifier model.

In brief, the software can take as input both sequencing files, such as fastq or bam,
or external link, HTTP, FTP or SRR ids, downloading the required data before the
beginning of the analysis.
Using KMC3, iMOKA extracts the sorted κ‑mer counts from each sample and
converts them into binary files. A JSON file contains the metadata of the samples
belonging to the analysis, including for each sample: the name, the label of the
group, the location of the binary file and the total sum of the κ‑mer counts, used to
normalize the data.
The first step of reduction considers one κ‑mer at the time and, using a Bayes
Classifier, estimates the accuracy of the feature to classify the samples in the
respective groups. This step is by default coupled to an adaptive entropy filter that
speeds up the process discarding few truly informative features.
Finally, an aggregation procedure groups the κ‑mers based on their sequence,
building de Bruijn graphs, and their biological relevance, mapping the sequences
generated from the graphs on a reference genome and using a reference annotation
to assign “events” to the most informative κ‑mers in each group.

Importantly, the software is coupled with a graphical user interface (GUI) that allows
running in local or on a remote cluster all the steps of the algorithm. The user can
also explore the final output of the aggregation step as an interactive table, visualize
the κ‑mers mapping on a reference genome with a javascript version of IGV genome
browser, generate self-organizing maps and Random forest classifiers.

The key novelties of iMOKA are represented by:
1. The scalability: the κ‑mer matrix is generated on the flight by combining the

κ‑mer counts of each sample, stored independently in sorted binary files. No
matter how many samples there are in input, iMOKA adapts to the
user-defined RAM limits and is going to keep in memory only a small buffer
for each column, allowing it to run the first step of the algorithm with few
resources. This representation is compact since the “zero” values are
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represented by the absence of a determined κ‑mer in a sample, solving the
issue of sparsity. Furthermore, thanks to its flexible structure, the same
sample can be used in different studies. Currently, the aggregation step
doesn’t consider the available memory and it could require a large amount of
RAM in case of numerous κ‑mers in input.

2. The reduction step is based on a machine learning procedure and not on a
statistical test. This method, though slower with respect to the differential
expression analysis, used for example in DE-kupl, is robust to outliers and
scales efficiently with the number of samples.

3. The aggregation step reduces the redundancy based not only on the
sequence but also on its biological meaning. Furthermore, the software
assigns different types of events, such as mutations, indel, splice, alternative
splice and DE based on the information obtained by the alignment and the
gene annotations.

4. Finally, the GUI is an uncommon feature for bioinformatics tools and it’s useful
to interactively explore the results, visualizing not only the individual κ‑mers
but also the context in which it resides.

A dedicated k-mer structure
The selection of a performant and compacted data structure to store and access the
k-mer sequences and abundances must be aware of the application and the context
required by the software.
The literature offers detailed reviews about techniques to store and query a set of
k-mers235 and large collections of sequencing data sets236.
Designing iMOKA we were looking for a data structure able to dynamically generate
a k-mer matrix, to store efficiently the sample’s k-mer counts and to load only small
portions of the files in order to handle large datasets on virtually any architecture.
We implemented a prefix-suffix structure similar to the one used as database format
in the first version of the k-mer counter software KMC237. Rather than using two files (
.kmc_pre and .kmc_suf ), we store both the prefix and suffix information in the same
binary file. The prefix data contains, for each prefix:

- The binary encoded DNA symbols ( A=00, C = 01, G = 10, T=11 ) of p stored
as char values.

- The position in the suffix array that corresponds to the first suffix associated
with the p, stored as uint64. To know the range of the suffixes of p is therefore
sufficient to retrieve the position of the first suffix of p+1.

Similarly, the suffix data contains the binary encoded DNA symbols of the suffixes
and the related counts, stored as uint32.
The length of the prefix is chosen according to the total number of k-mers present in
the dataset, following a formula adapted by A. Mancheron in 238 and described in the
article.
This type of data structure allows loading small buffers of suffix and prefix data at the
time.
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Furthermore, prefixes and suffixes are sorted lexicographically, which allows
generating the k-mer matrix dynamically using an n-way merge algorithm:

1. Each sample’s database loads a buffer of prefixes and suffixes.
2. A pointer is associated with the first k-mer in each database.
3. A copy of the k-mer associated with the pointers is stored in a sorted set S.
4. A pop operation retrieves the lexicographically smallest k-mer from S, kn,

which will correspond to the current row of the k-mer matrix.
5. For each sample m, if the pointer corresponds to kn, the count of kn is

assigned to m in the current row and the pointer moves one position forward,
updating S, otherwise the count of kn is 0.

6. Repeat from 4 until all the databases are empty, refilling the buffers when
needed.

Finally, to allow a multithreading generation of the matrix it’s possible to generate it
starting from any k-mer kn: using a binary search, each database can be initialized to
kn or, if absent, to the closest k-mer following kn.
Graphs based data structures, such as de Bruijn graphs, offer great querying
performances and allow to quickly query for k-mers in the neighbour nodes but we
didn’t consider them since the reduction step of iMOKA doesn’t require a
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navigational data structure since each feature is considered independently from the
others.
Most of the recent k-mer counting tools, such as Jellyfish203 or KMC3207, use Hash
Tables (HT) or Bloom Filter (BF) to store the k-mer counts.
Though optimal for querying and modification operations, those data structures don’t
store the k-mers in sorted order and require loading the full index in memory or
performing frequent disk reading operations compared to the prefix-suffix structure
aforementioned to produce a k-mer matrix.
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Conclusions
The last three decades were marked by incredible technological advancements, both
from the biotechnological and computational points of view.
To keep up with them, we adapted IRFinder to support the third-generation
sequences and use new methodologies, the convolutional neural network, to refine
and improve its results. Furthermore, we proposed IRBase, a platform where users
can not only visualize their data but also compare them with the ones shared by
other users.
The possibility to sequence at low cost and high fidelity large cohorts of people gives
the opportunity to increase our knowledge about the mechanisms underlying
pathologies and generate models to predict the responses to drugs, treatments and
environmental modification.
In the introduction, we saw how classical approaches, based on mapping to a
reference genome and using reference annotations, present lots of levels of
variability caused by different versions of the references and softwares used.
Additionally, a large portion of the information is usually discarded because it doesn’t
fit with the features considered in the study.
We showed how κ‑mer based approaches can be an optimal and agnostic
representation of sequencing data, useful to identify biomarkers that can be applied
for clinical and research purposes.
In this optic, we implemented iMOKA, a software that can efficiently select a group of
κ‑mers with a low redundancy of information and high capacity in discrimination of
the phenotypes in analysis within a large cohort of samples.

Bioinformatics is a young field and its identity is still shaping, trying to find its place in
the middle between statistics, informatics and biology.
The technological advancements we saw taking place in the last few decades are
causing a revolutionary shift from hypothesis-driven to data-driven science, requiring
wet-lab researchers to spend more time in front of a computer to analyse and
understand the data they produced.
Bioinformatics classes are given in most of the university biological science courses,
forming the next generation of researchers in the usage of the basic tools and
resources currently available.
Developing user-friendly, maintainable and powerful platforms is therefore the
direction that not only lots of private companies are taking, such as Geneious and
QIAGEN CLC Genomics Workbench, but also the open-source community, of which
Galaxy is the most successful example.
Additionally, more and more pure bioinformatics laboratories are rising in the
research centres that use publicly available data to perform novel analyses and
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develop new algorithms, supported by classical wet labs only for the validation of the
findings.
Unfortunately, this shift is not affecting the way data is stored and distributed.
For companies such as Google, Amazon and Microsoft, it’s enough to accept the
general conditions with a single click to have access to any user data: e-mails,
browsing history, what colour was the t-shirt we bought three years ago and our
exact location every minute we keep our phone in our pocket.
They use that information to feed you with “the best advertisement for you”, to
influence your opinion on social media and to direct your next vote239, in the most
efficient way possible. They can store and share within their platforms this huge
amount of information, legally and in the name of profit.
On the other side, we have fragmented national health systems that don't take care
of how or where the clinical data are stored, leaving the burden to the individual
hospitals.
In my opinion, creating an international platform for data storage is the next big but
necessary challenge the scientific community has to face to fully exploit the potential
of the new sequencing technologies.
Such a platform should use light and standard data format, a complete and flexible
ontology and ensure the privacy of the information, allowing certified laboratories to
access in agreement with detailed rules of conduct.
An interesting report from NIH240 predicts that sequencing and analysing the whole
human genome of patients will become a routine procedure for any research lab by
2030, that transcriptome and epigenetic analysis will be routinely incorporated into
predictive models and that “an individual’s complete genome sequence along with
informative annotations will, if desired, be securely and readily accessible on their
smartphone.”
Those forecasts need a large and international effort to generate new tools able to
generate, store and analyse such data using fast, efficient, robust and privacy-aware
procedures.
κ‑mer based algorithms have all the prerequisites to not only offer a compressed
representation of the data but also to analyse large cohorts of samples to identify
biomarkers useful for personalized medicine.
Future works should focus on the generation of κ‑mer based algorithms for the
efficient and lossless compression of raw sequencing data, their anonymization and
application to new biological questions using different types of data.
For example, a recent study241 used compressed k-mer groups, a set of k-mers
having similar counts across the samples, to cluster single cells in scRNA-seq data,
a task usually performed using gene counts.
Another interesting field of application for k-mers using human whole-genome
sequencing analysis are genome-wide association studies, identification of
mutational events in cancer, copy number variations analysis and the identification of
translocation events.
Improving the interpretability of the k-mers results would allow more and more
researchers to accept k-mer based softwares as part of standard analysis.
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A file format based on k-mers able to store both the abundance and the order of the
k-mers in a compressed, lossless and efficient way would take over the current
standard BAM and CRAM files, especially if paired to a genome browser able to
quickly reproduce a visualization of this information on a reference genome.
Finally, IRFinder-S is just one of the several examples of how artificial intelligence
methodologies and large cohorts of data can help in solving biological related
problems where classical approaches struggle to face.
The methodology used to train the CNN model of IRFinder can be, with the proper
adaptations, extended to identify other types of alternative splicing events, new
transcripts and other transcriptomics related elements, such as promoter upstream
transcripts, in a reference-free manner.
To achieve this goal, a finely annotated training set is necessary in order to correctly
train the model, together with a fast and efficient implementation of a genome-wise
features generator.
Third generation sequencing data would facilitate the task because they are more
likely to give the information concerning the full structure of the transcripts isoforms.
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Annexes

A cell-to-patient machine learning transfer approach uncovers
novel basal-like breast cancer prognostic markers amongst
alternative splice variants
During my last year of PhD, I contributed to the revision of the following paper. The
main contributions before the revisions were the discussions about an effective
strategy to apply to effectively transfer the information from cell line data to patients.
During the revisions, my main contributions were the cleaning of the code and the
implementation of the mixed feature model.
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PickPocket: Pocket binding prediction for specific ligand
families using neural networks.
During the last three years I helped Benjamin Viart in the implementation of
PickPocket, focusing especially on the implementation in Python of the feature
extraction process and the ML approaches.
Though promising, the method performances are not yet satisfying enough and the
project needs more time and effort to be concluded.
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NF90 modulates processing of a subset of human pri-miRNAs
During my first year of PhD I helped G.G. to perform statistical analysis for her
project.
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Translesion DNA synthesis-driven mutagenesis in very early
embryogenesis of fast cleaving embryos
During my second and third year of PhD I helped E.L.F. to analyse the WGS data for
her project. The paper is currently under revision in Nucleic Acid Research.
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