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RÉSUMÉ EN FRANÇAIS

L'intelligence artificielle (IA) est un domaine scientifique prenant racine à la fin de la Seconde Guerre mondiale [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]). À ses débuts, les recherches dans le domaine de l'intelligence artificielle se sont concentrées sur les algorithmes de jeu et les mécanismes de raisonnement. Ses succès (et échecs) n'impactaient pas particulièrement le monde. Depuis les succès très médiatisés de l'apprentissage profond à partir de 2012 [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF][START_REF] Silver | Mastering the Game of Go with Deep Neural Networks and Tree Search[END_REF][START_REF] Savage | Neural Net Worth[END_REF][START_REF] Lan | ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations[END_REF], des questions éthiques et juridiques ont été soulevées et ont donné naissance à un nouveau domaine de recherche aujourd'hui très populaire : l'intelligence artificielle explicable (Adadi et al. 2018)).

Au contraire des algorithmes de programmation traditionnels, utilisant les instructions de manière explicite, les algorithmes d'apprentissage automatique (et en particulier les algorithmes d'apprentissage profond) apprennent des modèles directement à partir des données.

Les modèles d'apprentissage automatique sont généralement des fonctions mathématiques qui transforment des données d'entrée en une sortie attendue (dans le cas de l'apprentissage supervisé, la sortie attendue est explicitement donnée pendant l'apprentissage de la fonction). L'algorithme d'apprentissage vise à estimer les meilleurs paramètres pour cette fonction. L'une des méthodes d'apprentissage automatique les plus populaires, et la plus performante de nos jours, est appelée apprentissage profond [START_REF] Goodfellow | Deep Learning[END_REF]. Cependant, les modèles récents d'apprentissage profond (par exemple [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]) possèdent des millions de paramètres et les raisons pour lesquelles ces modèles prennent automatiquement certaines décisions, sont devenues opaques. Ces modèles complexes, dont la correspondance entre les données d'entrée et la sortie attendue (que nous appelons "décision" ou "prédiction") n'est pas suffisamment explicite pour être compréhensible par des humains, sont appelés modèles "boîtes noires". L'utilisation de modèles "boîtes noires" pour des applications sensibles (par exemple dans le droit, la médecine, l'assurance, la conduite autonome [START_REF] Guidotti | A Survey of Methods for Explaining Black Box Models[END_REF])), quel que soit leur performance, est la principale raison du questionnement mentionné au début de cette introduction. Au sein de l'Union Européenne par exemple, de nouvelles lois ont été votées imposant un "droit à l'explication" dans le Règlement général sur la protection des données (RGPD) 1 . Aux États-Unis d'Amérique, le programme de recherche "eXplainable AI (XAI)" de la DARPA 2 souligne également l'importance de ce domaine de recherche.

Les explications les plus intuitives pour un modèle "boîte noire" peuvent prendre plusieurs formes en fonction du public visé. Par exemple, elle peuvent prendre la forme d'informations que nous percevons dans la vie de tous les jours comme les informations visuelles (images), le langage humain (vocabulaires, sons), les odeurs, etc. Pour un public plus expert les informations peuvent être également liées à la spécialité de tels experts, par exemple des séries temporelles de température pour des médecins, des séries temporelles de puissance électrique pour des fournisseurs d'électricité, etc. Grâce à ces explications, il est possible de comprendre les mécanismes de décision d'une boite noire.

Dans cette thèse, nous nous concentrons sur un type de données particulièrement omniprésent : les séries temporelles. Une série temporelle est une collection finie de données réelles indexées par le temps. C'est l'un des types de données les plus courants dans la vie réelle et il modélise de nombreux processus tels que l'évolution de la bourse, la consommation quotidienne d'énergie, l'évolution de la température corporelle d'un patient particulier, etc. [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF].

L'analyse des séries temporelles consiste à extraire des caractéristiques statistiques et significatives de ces séries temporelles et à prendre des décisions sur la base de ces caractéristiques. Certains problèmes d'analyse de séries temporelles, tels que la prévision (e.g., la prédiction de la ou des prochaines valeurs d'une série donnée), la régression (l'association d'une valeur numérique à une série temporelle donnée), le clustering (le regroupement des séries temporelles en fonction de leurs similarités), la détection d'anomalies (la recherche de séries temporelles qui se comportent différemment des autres ou la recherche de valeurs surprenantes dans une série donnée), et la classification (la classification d'une série temporelle dans un ensemble de classes d'intérêt prédéfinies), peuvent être abordés en utilisant des méthodes d'apprentissage automatique. Dans cette thèse, nous nous concentrons sur le problème particulier de la classification des séries temporelles.

Nous utilisons des données de référence concernant la classification des séries temporelles issues du dépôt de l'UCR collectées par l'Université de Californie Riverside (Chen Figure 1 -Exemple de séries temporelles d'entraînement provenant du jeu de données de séries temporelles GunPoint pour la classe "GunDraw" (à gauche) et la classe "Point" (à droite) du dépôt de l'UCR. [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. et al. 2015). Le nombre de jeux de données de cette archive ayant augmenté avec le temps, ce dépôt s'appelle maintenant "UEA & UCR time series classification repository" et contient 128 jeux de données de séries temporelles univariées et 30 jeux de données multivariées (disponibles sur http://www.timeseriesclassification.com/). Nous n'utilisons que les 85 jeux de données de l'UCR [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]), car il s'agit des références les plus utilisées dans le communauté du domaine de la classification des séries temporelles.

Ces 85 ensembles de données de séries temporelles univariées sont collectés à partir de différentes sources de données, tels que des ECGs (électrocardiogrammes), des images, des capteurs de mouvement, des exemples synthétiques, des spectrographes, etc. Ces jeux de données sont de taille modérée, mais peuvent varier d'une taille allant de 16 instances d'entraînement (pour le jeu de données DiatomSizeReduction) à 8926 (ElectricDevices), d'une longueur allant de 24 points (ItalyPowerDemand) à 2709 points (HandOutlines), et d'un nombre de classes allant de 2 (GunPoint) à 60 classes (ShapesAll).

La Figure 1 montre un célèbre jeu de données de séries temporelles à 2 classes appelé GunPoint, ayant été collecté à partir des mouvements de la main de deux acteurs. Il s'agit de séries temporelles pour la classe "GunDraw" (l'acteur sort une arme d'un étui monté sur la hanche, la pointe vers une cible pendant environ 1 seconde et la remet en place) et "NoGun" (l'acteur agit avec ses doigts).

De nombreuses méthodes ont été développées pour la classification des séries temporelles (voir par exemple [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF][START_REF] Tavenard | Efficient Temporal Kernels between Feature Sets for Time Series Classification[END_REF][START_REF] Lods | Learning DTW-Preserving Shapelets[END_REF]Guillemé et al. 2019a;Fauvel et al. 2019)). Nous classons les méthodes existantes en quatre groupes : les méthodes basées sur la distance, l'extraction de caractéristiques, les Figure 2 -Exemple de série temporelle de test (lignes noires en pointillées) et trois shapelets les plus discriminantes utilisées pour sa classification pour un modèle de base [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) (à gauche) et pour notre modèle "XCNN" proposé (à droite) sur le jeu de données "HandOutlines" (du dépôt de l'UCR). [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]).

réseaux neuronaux et les méthodes ensemblistes. Les justifications de ces catégories ainsi qu'une revue de chaque méthode sont présentées dans le Chapitre 1.

Une catégorie de méthodes très étudiée consiste à trouver des sous-séquences discriminantes indépendantes d'indexes temporels, appelées shapelets, qui peuvent être utilisées pour classer ou décrire la série. Les shapelets sont des sous-séquences, i.e., des éléments visuels qui sont utiles pour expliquer les décisions prises par un modèle appris à partir de données de séries temporelles. Elles sont donc de bonnes candidates pour s'attaquer à notre problème d'interprétabilité de la classification de séries temporelles. Dans les premiers articles sur la classification des séries temporelles basée sur les shapelets [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF][START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF], les shapelets étaient directement extraites de l'ensemble d'apprentissage et les shapelets sélectionnées pouvaient ensuite être utilisées pour expliquer la décision du classificateur. Cependant, les processus d'énumération et de sélection des shapelets étaient soit très coûteux, soit peu coûteux mais ne donnant pas de bonnes performances (comme indiqué dans la Section 1.3.2). L'apprentissage conjoint d'une représentation basée sur les shapelets des séries du jeu de données et la classification des séries en fonction de cette représentation [START_REF] Lines | A Shapelet Transform for Time Series Classification[END_REF][START_REF] Grabocka | Learning Time-Series Shapelets[END_REF] permet d'obtenir des shapelets discriminantes de manière beaucoup plus efficace. Un exemple de telles shapelets obtenues avec la méthode de Grabocka et al. (2014), est donné dans la Figure 2 (à gauche). Cependant, si les shapelets apprises sont bien discriminantes, elles sont souvent différentes (visuellement) des morceaux réels d'une série temporelle du jeu de données. En tant que telles, ces shapelets peuvent ne pas être adaptées pour expliquer la décision d'un classificateur particulier puisqu'elles ne constituent pas des éléments de langage compréhensibles par un expert, ou mieux, par un utilisateur lambda.

Dans cette thèse, nous abordons le problème de la classification des séries temporelles interprétables. Dans le Chapitre 1, nous présentons les méthodes existantes de classification de séries temporelles, en particulier les méthodes basées sur les shapelets et les réseaux de neurones. Dans le Chapitre 2, nous clarifions la notion d'interprétabilité d'un modèle : un modèle est interprétable tant qu'il peut être compris par un humain. En fonction du processus d'apprentissage du modèle, l'interprétabilité d'un modèle peut être considérée comme ad-hoc, in-situ, et post-hoc. Nous discutons de l'importance de l'interprétabilité et passons en revue l'interprétabilité de différents modèles d'apprentissage automatique sous différents angles, i.e., une interprétabilité au niveau global, au niveau modulaire et au niveau local. Pour les modèles non interprétables, nous cherchons une interprétabilité post-hoc pour donner une explication particulière. Dans le Chapitre 3, nous adaptons le cadre proposé par Fauvel et al. (2020b) pour évaluer l'interprétabilité de la classification de séries temporelles. Ce cadre fournit des informations sur l'interprétabilité du modèle et évalue la qualité des explications. Dans le Chapitre 4, nous proposons une méthode appelée "eXplainable Convolutional Neural Network" (XCNN). Notre méthode apprend des shapelets contraintes à être proches des sous-séquences de la série temporelle d'apprentissage. Notre XCNN est interprétable in-situ à un niveau modulaire et produit des modèles discriminants de séries temporelles. A la fin de ce document, nous fournissons une conclusion concernant ce travail ainsi que quelques perspectives.
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INTRODUCTION

Artificial Intelligence (AI) is a science field which dates back to the end of the second world war [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. At its early stage, AI was focusing on game playing algorithms and reasoning mechanisms and its successes (and failures) did not particularly threaten the world. Since the very high-media profile successes of deep learning which have started in 2012 [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF][START_REF] Silver | Mastering the Game of Go with Deep Neural Networks and Tree Search[END_REF][START_REF] Savage | Neural Net Worth[END_REF][START_REF] Lan | ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations[END_REF], ethical and legal questions have started to be raised and have given birth to a very recent and yet nowadays extremely popular new field of research: eXplainable Artificial Intelligence (XAI) (Adadi et al. 2018).

Different from traditional programming algorithms, which use instructions explicitly, machine learning algorithms (and in particular deep learning ones) learn models directly from data. Machine learning models are usually mathematical functions that map the input data into an expected output (in case of supervised learning, the output is explicitly given while learning the function). The learning algorithm aims at estimating the best parameters for this function. One of the most popular and successful machine learning method is called deep learning [START_REF] Goodfellow | Deep Learning[END_REF]). However, recent deep learning models (e.g. [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]) have millions of parameters and the reasons why they take a particular decision have become opaque. These complex models whose mapping between the input data and the expected output (that we call "decision" or "prediction") is not explicit enough to be understandable by mere humans are called "black-box" models.

The use of black-box models for sensitive applications (e.g. in law, medicine, insurance, autonomous driving [START_REF] Guidotti | A Survey of Methods for Explaining Black Box Models[END_REF])), regardless of how successful they are, is the main reason for the questioning mentioned at the beginning of this introduction. In EU for example, new laws have been voted which impose a "right to explanation" in the General Data Protection Regulation (GDPR)3 . In the USA, the DARPA's eXplainable AI (XAI) research program4 also claims the importance of the XAI research field.

The most intuitive explanations for a black-box model are the ones which are the most familiar to human, i.e., the information we perceive in day-to-day life, such as visual information (images), human language (vocabularies, sound), smell, etc. for broad audiences, and the information related to the specialty of the domain experts, e.g. temperature time series for physicists, power time series for electricity providers. With these explanations, one may understand what is happened during the decision process in a black-box.

In this thesis, we focus on one particularly ubiquitous type of data: time series. A times series is a finite collection of real data indexed by time. It is one of the most common real life data types and models many processes such as stock exchange evolution, daily energy consumption, body temperature evolution of a particular patient, etc. [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF].

Time series analysis consists in extracting meaningful statistical characteristics of the series and making decisions based on these characteristics. Some time series analysis problems such as forecasting (such as predicting the next value(s) of a given series), regression (associating a numerical value to a given time series), clustering (grouping the time series according to their similarities), anomaly detection (finding time series that behave differently from others, or finding surprising values in a given series), and classification (classifying a time series into a set of predefined classes of interest), can be tackled using machine learning methods [START_REF] Siffer | Anomaly Detection in Streams with Extreme Value Theory[END_REF][START_REF] Leverger | Toward a Framework for Seasonal Time Series Forecasting Using Clustering[END_REF][START_REF] Gauthier | Online Forecasting of Daily Feed Intake in Lactating Sows Supported by Offline Time-Series Clustering, for Precision Livestock Farming[END_REF][START_REF] Zuo | SMATE: Semi-Supervised Spatio-Temporal Representation Learning on Multivariate Time Series[END_REF]. In this thesis we focus on the particular problem of time series classification.

In this thesis, we use the time series datasets from the UCR time series classification repository collected by University of California Riverside [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. The number of datasets of this archive increased with time. Now it is called UEA & UCR time series classification repository and contains 128 univariate and 30 multivariate time series datasets, available at http://www.timeseriesclassification.com/. We only use the 85 datasets from the UCR repository [START_REF] Chen | The UCR Time Series Classification Archive[END_REF], because it is the most used time series classification (TSC) benchmark in the community. These 85 univariate time series datasets are collected from different data sources, e.g. ECG (electrocardiograms), images, motion sensors, synthetic examples, spectrographs, etc. The datasets are usually of moderate sizes, but they vary in size from 16 training instances (for the DiatomSizeReduction dataset) to 8926 (ElectricDevices dataset), vary in length from 24 (ItalyPowerDemand) to 2709 (HandOutlines), and vary in class numbers from 2 (e.g. GunPoint) to 60 (ShapesAll).

We show in Figure 3 GunDraw (the actor draws a gun from a hip-mounted holster, point it at a target for approximately 1 second and return the gun back) and Point (also called NoGun) (the actor acts with his/her fingers).

Many methods have been developed for Time Series Classification (TSC) (see for example [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF][START_REF] Tavenard | Efficient Temporal Kernels between Feature Sets for Time Series Classification[END_REF][START_REF] Lods | Learning DTW-Preserving Shapelets[END_REF]Guillemé et al. 2019a;Fauvel et al. 2019)). We categorize the existing methods into four groups: distancebased, feature extraction, neural networks, and ensemble methods. The rationals for these categories along with a review of each method are presented in Chapter 1.

One very successful category of methods consists in "finding" discriminative phaseindependent subsequences, called shapelets, that can be used to classify or describe the series. The shapelets are subsequences, i.e., visual elements that are helpful for explaining the decisions taken by a model learned from time series data. They are thus a good candidate for tackling our interpretable TSC problem. In the first papers about shapeletbased time series classification [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF][START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF], the shapelets were directly extracted from the training set and the selected shapelets could then be used to explain the classifier's decision. However, the shapelet enumeration and selection processes were either very costly or the selection was fast but did not yield good performance (as discussed in Section 1.3.2). Jointly learning a shapelet-based representation of the series in the dataset and classifying the series according to this representation [START_REF] Lines | A Shapelet Transform for Time Series Classification[END_REF][START_REF] Grabocka | Learning Time-Series Shapelets[END_REF] allows to obtain discriminative shapelets in a much more efficient way. An example of such learned shapelets, obtained with the method from [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF], is given in Figure 4 (left). However, if the learned shapelets Figure 4 -Example test time series (dashed black lines) and three most discriminative shapelets used for its classification for a baseline [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) (left) and for our proposed XCNN model (right) on the HandOutlines dataset (from UCR repository [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]).

are well discriminative, they are often different (visually) from actual pieces of a real series in the dataset. As such, these shapelets might not be suited to explain a particular classifier's decision.

In this thesis, we address the interpretable time series classification problem. In Chapter 1, we introduce existing time series classification methods, in particular shapelet-based methods and neural networks. In Chapter 2, we clarify the notion of model interpretability: a model is interpretable as long as it can be understood by human. Based on the training process of the model, the interpretability of a model can be considered as ad-hoc, in-situ, and post-hoc. We discuss the importance of interpretability and review the interpretability of different machine learning models under different scopes, i.e., global level, modular level, and local level interpretability. For non-interpretable models, we discuss the notion of post-hoc interpretability to give a particular explanation. In Chapter 3, we adapt the framework proposed by Fauvel et al. (2020b) to evaluate the interpretability for time series classification. This framework provides information about the model interpretability and evaluates the quality of the explanations. In Chapter 4, we propose a method called eXplainable Convolutional Neural Network (XCNN). Our method learns shapelets that are constrained to be close to subsequences of the training time series. Our XCNN is in-situ interpretable in a modular level, and produces time series discriminative patterns. In the end of this document, we provide a conclusion for this work along with some perspectives.
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TIME SERIES CLASSIFICATION

The Time Series Classification (TSC) problem has been studied in countless applications (see for example [START_REF] Shumway | Time Series Analysis and Its Applications[END_REF])) ranging from stock exchange evolution, daily energy consumption, medical sensors, videos, etc. This chapter introduces the necessary background for this problem.

Definition and taxonomy

Definition 1 (Time series). A time series (TS) Z is a series of time-ordered values, Z = [z (1) , z (2) , . . . , z (T ) ], where z (t) ∈ R d , T is the length of our time series and d is the dimension of the feature vector describing each data point.

If d = 1, Z is said univariate, otherwise it is said multivariate.
Definition 2 (Time series classification). Given a training set T = {(Z 1 , y 1 ), . . . , (Z n , y n )}, composed of n time series Z i and their associated labels y i (target variable), our aim is to learn a function h such that h(Z i ) = y i , in order to predict the labels of new unseen time series.

There exists a rich literature on the TSC problem (see for example [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF][START_REF] Tavenard | Efficient Temporal Kernels between Feature Sets for Time Series Classification[END_REF][START_REF] Lods | Learning DTW-Preserving Shapelets[END_REF]Guillemé et al. 2019a;Fauvel et al. 2019)). We have decided to group TSC approaches from literature into four main families as shown in Figure 1.1. First, a dedicated metric can be used to compare the distances between the time series. The most well-known and used metrics are the Euclidean distance and the Dynamic Time Warping (DTW) similarity. Note that if the DTW is often loosely qualified as a distance, in theory, it is not a valid metric (cf. Section 1.2.2).

The second family is based on the extraction of features from the time series. The feature extraction process extracts meaningful patterns or transforms the time series into different representations than the original one, including decomposition, aggregation approximation, and shapelet-based methods. Among the feature extraction category, shapelet-based classifiers have attracted a lot of attention from the research community and are the main focus of this thesis.

The third family includes all neural network-based approaches, including multilayer perceptron, convolutional neural networks, recurrent neural networks, and attention-based networks such as "Transformers". If some neural networks could be included into the "feature extraction" family, we believe that the end-to-end treatment made by neural networks makes them different in essence. Compared with traditional (hand-crafted) features extraction methods (see Section 1.3), the features extracted by deep learning models are learned directly from the data without any a priori consideration to the "shape" of the learned features and their usefulness for interpretations.

The best performing (in terms of classification) methods are ensemble methods. Stateof-the-art ensemble methods combine representations in different domains (e.g. time domain, frequency domain, shapelet domain, etc.). Both the combination scheme and the heterogeneous representations makes them poor candidates for interpretations. This problem is discussed in Section 2.3.

The following of this chapter presents these four TSC method families. 

Metricbased

Distance-based methods

Distance-based methods measure the similarity between different time series with a dedicated distance measure. The distances, presented below, can be rigid (for example the Euclidean one) or elastic (for example the Dynamic Time Warping (DTW) one). The distances can focus on parts of the series or the entire series. Once defined, they can be incorporated into machine learning classifiers such as Nearest neighbor classifiers.

Euclidean distance

The Euclidean distance is the most common one. The pairwise Euclidean distance between two time series, Z and Z ′ of the same length T , is defined as:

D E (Z, Z ′ ) = ||Z -Z ′ || = T i=1 ||z (i) -z ′ (i) || 2 .
This distance is particularly easy to compute but, when the distance is computed on entire series, it requires the series to be of the same length which is a strong limitation in practice. Besides, it is not entirely suited for time series analysis since it does not consider the temporal scaling of the series.

Dynamic time warping (DTW)

Dynamic time warping (DTW) [START_REF] Sakoe | Dynamic Programming Algorithm Optimization for Spoken Word Recognition[END_REF]) is a commonly used distance to find the optimal alignment between two time series. The optimal path is computed based on a cross-similarity matrix, and it contains the optimal alignment information for two time series. The DTW only considers the ordering of the time series values, and the exact occurring timestamps are ignored, as shown in Figure 1.2.1 

The DTW distance between time series Z, Z ′ of size n and m, respectively, is defined as an optimization problem on A(Z, Z ′ ), i.e., the set of all admissible paths (Tavenard 2020):

D DT W (Z, Z ′ ) = min π∈A(Z,Z ′ ) (i,j)∈π ||z (i) -z ′ (j) || 2
where π = [π 1 , π 2 , . . . , π K ] is a sequence of K ≡ (n + m -1) index pairs, and "≡" is the identical sign that indicates the equation is always satisfied. The path π k = (i k , j k ) follows such properties:

-i k ∈ [1, n] and j k ∈ [1, m] -π 1 = (1, 1) and π K = (n, m) -for all k > 1, π k = (i k , j k ) is related to π k-1 = (i k-1 , j k-1 ) as follows: -i k-1 ≤ i k ≤ i k-1 + 1 -j k-1 ≤ j k ≤ j k-1 + 1
DTW takes into account the time by warping the time axis of one (or both) time series to achieve a better alignment. It can be applied on time series with the same dimension but different lengths. DTW is time costly as its time complexity is quadratic (O(mn)). Mathematically, "DTW is not a valid metric since it satisfies neither the triangular inequality nor the identity of indiscernibles." (Tavenard 2020) There are many DTW variants [START_REF] Lines | Time Series Classification with Ensembles of Elastic Distance Measures[END_REF], and methods are developed to accelerate the DTW-based searches [START_REF] Tavenard | Improving the Efficiency of Traditional DTW Accelerators[END_REF]. However, these methods are out of the scope of this thesis.

Feature extraction methods

In machine learning, a feature is a variable that informs about observations, e.g., a measurement at a certain timestamp is a feature in time series. The features can be sep-arated into two categories: raw features (also called attributes) and informative features. Both these features contain characteristic information of the datasets. Raw features, i.e., features in their original form, can be difficult to manipulate due to the redundancy between them or their large dimensionality [START_REF] Bellman | Dynamic Programming[END_REF]. Thus, they usually cannot be used to solve realistic problems. One usually needs to extract information from raw features through feature engineering techniques, and make predictions based on these informative extracted features (stored in a so-called feature vector). The space that a feature vector lies in is called the feature space.

Time series data can be extremely large in the temporal dimension, and most of the TSC methods first try to extract the representative/informative features, then train a classifier based on these features. These extracted features are preferred to be meaningful patterns, such as frequency features from Fourier transform, motifs (frequently occurring patterns), or shapelets, instead of features in latent space, such as the "feature vector" in neural networks. Traditionally, decomposition methods were popular techniques for feature extraction, including spectral methods, e.g. Fourier transform (Agrawal et al. 1993;[START_REF] Faloutsos | Fast Subsequence Matching in Time-Series Databases[END_REF], wavelet transform [START_REF] Popivanov | Similarity Search over Time-Series Data Using Wavelets[END_REF], and eigenvalue analysis, e.g. singular value decomposition (SVD) [START_REF] Korn | Efficiently Supporting Ad Hoc Queries in Large Datasets of Time Sequences[END_REF]). We do not dive into these decomposition-based methods because they are already integrated into cited recent methods.

We now introduce the feature extraction techniques used nowadays in time series classification, namely aggregate approximation methods, which are simple but rapid feature extraction techniques, and shapelet-based methods, in which subsequences of the time series are used as discriminative patterns.

Aggregate approximation

In this section, we discuss symbolic representations of the time series, which are downsampling techniques that compress the time series. The aggregate approximation mainly includes two famous aggregate approximation representations [START_REF] Wang | Survey of Methods for Time Series Symbolic Aggregate Approximation[END_REF]): Piecewise Aggregate Approximation (PAA) and Symbolic aggregate approXimation (SAX). PAA is used to reduce the temporal resolution by aggregating the mean value of subsequences of the time series [START_REF] Keogh | Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[END_REF], SAX is based on PAA by splitting the value ranges to symbolic values [START_REF] Lin | A Symbolic Representation of Time Series, with Implications for Streaming Algorithms[END_REF], under an assumption that the PAA values follow a Gaussian distribution [START_REF] Lin | Experiencing SAX: A Novel Symbolic Representation of Time Series[END_REF]. Aggregate approximation methods are widely applied in time series analysis.

Piecewise Aggregate Approximation (PAA)

The PAA method was firstly introduced by [START_REF] Keogh | Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases[END_REF]. It requires one parameter, i.e., the number of PAA segments (or, alternatively, the PAA window size which is equivalent if the time series length is fixed), to generate PAA sequences from the original time series. The PAA representation is generated in two steps:

1. Divide a time series into segments of a given window size 2. Calculate the mean value for each PAA window

The PAA representation of different window size is shown in Figure 1.3. The quality of the PAA segments depends on the number of segments: too few windows will average all the characteristics out from the time series, while too many windows will give little difference to the original series, thus making the feature extraction process meaningless. 

Symbolic aggregate approXimation (SAX) and 1d-SAX

The SAX representation is based on the PAA method. It transforms the original time series into down-sampling symbolic representation under the assumption of Gaussian distribution [START_REF] Lin | Experiencing SAX: A Novel Symbolic Representation of Time Series[END_REF]. The SAX representation is generated in two steps:

1. Compute the PAA representation for the time series 2. Quantize the PAA representation in each window into a symbol from an alphabet.

Both PAA and SAX representations are sensitive to the window size. In addition, the SAX method depends on the alphabet size (the numbers of symbols used for quantization) and on the assumption of Gaussian distribution. [START_REF] Malinowski | 1d-SAX: A Novel Symbolic Representation for Time Series[END_REF] pointed out that the SAX representation does not contain the trend information on the SAX segments. They proposed a 1d-SAX method to quantize both the slope and the average value of the segments. The 1d-SAX representation has better retrieval performance than the original SAX method. The SAX and 1d-SAX representations are shown in Figure 1.4. 

Shapelet-based methods

Shapelets are discriminative subseries that can be either extracted a priori from a set of time series or learned to minimize an objective function, as shown in Figure 1.5. They have been introduced by [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF], in which a binary decision tree is built, whose nodes are shapelets and whose subtrees contain subsets of time series. In this work, shapelets are extracted from a training set of time series and building the decision tree requires to test all possible subseries from the training set, which makes the method intractable for large-scale learning with an overall time complexity of O(n 2 • T 4 ) where n is the number of training time series and T is the average length of the time series in the training set. This high time complexity has led to the use of heuristics in order to select the shapelets more efficiently.

In Fast Shapelets (FS) [START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF]), the authors rely on quantized time series and random projections in order to fasten the shapelet search. Note however that these improvements in time complexity are obtained at the cost of a lower classification accuracy, as reported in [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF].

The Shapelet Transform (ST) [START_REF] Lines | A Shapelet Transform for Time Series Classification[END_REF]) consists in transforming time series into a feature vector whose coordinates represent distances between the time series and Figure 1.5 -Shapelet (in red) from [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF]: if the distance between the shapelet and a time series is smaller than 38.94, the time series belongs to NoGun class. In practice, the shapelet performs as a sliding window on the time series, and the distance between a shapelet and a time series is a squared Euclidean distance at the best matching position.

the shapelets selected beforehand. It hence needs to select a shapelet set (as in [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF]) before transforming the time series. The resulting vectors are then given to a classifier in order to build the decision function. The training time complexity for ST is also in O(n 2 • T 4 ) (Fawaz et al. 2019), which makes it unfit for large scale learning.

In order to face the high complexity that comes with search-based methods, other strategies have been designed for shapelet selection. On the one hand, some attention has been paid to random sampling of shapelets from the training set [START_REF] Karlsson | Generalized Random Shapelet Forests[END_REF]Guillemé et al. 2019a). On the other hand, [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF] showed that shapelets could be learned using a gradient-descent-based optimization algorithm. The method, referred to as Learning Shapelets (LS) in the following, jointly learns the shapelets and the parameters of a logistic regression classifier. This makes the method very similar in spirit to a neural network with a single convolutional layer followed by a fully connected classification layer and where the convolution operation is replaced by a sliding-window local distance computation. A min-pooling aggregator should then be used for temporal aggregation.

(Deep) neural networks

A neural network is a graph of computing units (called neurons) structured in layers. Each neuron receives signals from other neurons and outputs a single value [START_REF] Mcculloch | A Logical Calculus of the Ideas Immanent in Nervous Activity[END_REF]. More generally, a neuron applies a nonlinearity on a linear combination of input values, and the output of a neuron can be written as σ(w τ x + b), where x = (x 1 ; x 2 ; . . . ; x d ) is the d-dimensional input vector of the neuron, w = (w 1 ; w 2 ; . . . ; w d ) the neuron weights, b the bias, (•) τ the transpose operation, and σ(•) the activation function (nonlinear transformation). The combination of neurons with nonlinearities gives neural networks great capacity to form complex functions, and the neural network architecture depends on the way the combination is made.

The simplest (modern) NN architecture is a fully connected network (also called a multilayer perceptron (MLP)), in which all neurons of one layer are connected to all neurons of the following layer. In addition to fully connected networks, neural networks can have different architectures, e.g., convolutional networks that apply convolutional operations to extract visual features [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF], recurrent networks that have the property to process sequential data. Recently, attention mechanism in the neural networks has attracted considerable attention within the scientific community. By applying attention mechanism, the neural network layers can pay attention to a specific zone of the input. Different from other methods, these neural networks can be considered as an end-to-end approach that integrates the feature engineering process in the learning problem.

In this section, we recall neural network architectures that appeared in time series classification literature with their advantages and disadvantages. We explain the neural networks in more details than other TSC methods because the contribution of this thesis is directly related to neural networks. [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF] were the first to apply neural networks to time series classification (TSC) problems. They examined different network architectures, including a multilayer perceptron (MLP), a fully convolutional neural network, and a residual network. In this section we only review the MLP proposed by [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF].

Multilayer perceptron (MLP)

The output vector h of a hidden block for an input vector x of the MLP is formed as:

x = f dropout,p (W x), h = ReLU (x),
where ReLU is the rectified linear unit operation that keeps the positive parts of its arguments, i.e., ReLU (x) = max(x, 0). This MLP has 3 hidden layers with 500 neurons for each layer. The last layer of the MLP has the same number of neurons as the number of classes K, followed by a softmax layer, as shown in Figure 1.6.

The softmax layer calculates the probability that the input time series belongs to the class j:

Ŷj = exp(a j ) K i=1 exp(a i )
where the a j is the j-th activation of the last layer before the softmax layer.

To train a neural network, we firstly initialize the parameters (also called weights) that connect the neurons randomly, then we fit the training set with the neural network by applying an optimization method to find the parameters that minimize a loss function. The usual loss function in classification is the multi-class categorical cross entropy:

L(Z) = - K j=1 Y j ln Ŷj , (1.1)
where j is the j-th class out of K classes, Ŷj the output of the model for class j, and Y j the true label (called ground truth) of the input series Z for class j.

The MLP is not suitable for time series data, because (i) it does not take into account the temporal information as each time stamp is treated independently (Fawaz et al. 2019), (ii) the length of the first hidden block of the network is fixed thus it is not suitable for time series with different input lengths. Another inconveniences for the MLP proposed by [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF] is that the number of neurons in each block is fixed, thus the MLP could easily encounter generalization problems (overfitting or underfitting). 

Convolutional neural networks (CNNs)

Preliminary work on convolutional networks for TSC was undertaken by [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF], then a large and growing body of literature has investigated [START_REF] Pelletier | Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series[END_REF]Fawaz et al. 2020;[START_REF] Dempster | ROCKET: Exceptionally Fast and Accurate Time Series Classification Using Random Convolutional Kernels[END_REF]. We discuss TSC methods rely on convolutional neural networks (CNNs) in this section.

Conventionally, in the machine learning domain, the convolution operation is implemented as the cross-correlation (also known as sliding dot product), which is similar to the convolution in nature but without flipping the kernel [START_REF] Goodfellow | Deep Learning[END_REF]. The convolution operation is a sliding window over the temporal dimension of the time series. It can be considered as a filtering process that generates another time series. In practice, each convolutional layer can have more than one filter2 , and each filter is called a channel. The convolutional layer generates multivariate time series whose dimension equals to the number of channels. The filters are learned as feature extractors that transform a time series into multiple discriminative features.

Fully convolutional network (FCN)

In the fully convolutional network (FCN) proposed by [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF], each hidden layer of the FCN does not have pooling operation which means that the length of the time series does not change (zero padding is applied) until the last layer. The output of a basic building block of the FCN is formed as:

x = BN (W * x), h = ReLU (x),
where the asterisk * denotes the convolution operation, BN the batch normalization operation that re-scales and re-centers the feature maps for stabilizing the training process.

The FCN has three hidden blocks, and each block has 128, 256, 128 filters with length of 8, 5, 3, respectively. The output of the last block is a global average pooling (GAP), which corresponds to an average over the whole time dimension. The third hidden block is linked to a fully connected layer followed by a softmax similar to the last layer of the MLP.

Usually, the convolutional operation for TSC can be a 1D convolution that extracts temporal features, while for computer vision task (where the input is a 2D image) it is a 2D convolution that extracts spatial features. For multivariate time series (MTS), one may use diverse convolution operations for both temporal-spatial features. networks (TempCNNs). The TempCNNs architecture replaced the pooling operation of the FCN by a flatten operation, which performs the same as the vectorization of a matrix in linear algebra that converts the feature matrix into a column feature vector, and then added an extra FC layer between the feature vector and the FC output layer to reduce the dimension smoothly. The study of [START_REF] Pelletier | Temporal Convolutional Neural Network for the Classification of Satellite Image Time Series[END_REF] is limited for SITS classification. They show that the conventional pooling operation in image classification and FCN for time series is harmful for SITS classification.

Residual networks (ResNet)

The residual networks architecture was introduced by [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] for making neural networks deeper by adding residual blocks in the neural networks. Many object detection tasks that achieve state-of-the-art performance are based on ResNet architecture (for example [START_REF] Zhang | Localize to Classify and Classify to Localize: Mutual Guidance in Object Detection[END_REF]).

The ResNet architecture is similar to the FCN except the basic building block of the ResNet has a residual connection:

x = BN (W * x), h = ReLU (x + x)
The ResNet has three hidden blocks. The length of the filters for each block is set to 8, 5 and 3 respectively. The idea of residual block can help to form a much deeper network that contains a considerable amount of parameters, thus a deep ResNet can be overfitted easily on small time series datasets. The original the numbers of convolutional kernels were set to 64, 128, 128, resp., while Fawaz et al. (2019) reduced this number to 64 for each block. In [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF], the FCN outperforms the ResNet, but with the little modification made by Fawaz et al. (2019) the ResNet outperforms the FCN.

InceptionTime

In addition to the preliminary works on convolutional networks, Fawaz et al. (2020) proposed another CNN architecture called InceptionTime for TSC. The proposed architecture was inspired by Inception-v4 [START_REF] Szegedy | Inception-v4, Inception-Resnet and the Impact of Residual Connections on Learning[END_REF] for image classification problem. The InceptionTime architecture is an Inception network with residual connections. The building block of InceptionTime is an Inception module, as shown in Figure 1.7.

The Inception module has a bottleneck layer which is composed of several filters of length 1. This bottleneck layer reduces the dimension of the input multivariate time series, thus make it possible to learn longer convolutional filters (than ResNet) with roughly the same number of parameters. Convolutional layers with filters of different lengths are applied on the bottleneck outputs to extract features. In parallel, a shortcut is made by a max pooling operation, followed by another bottleneck layer in order to make the model invariant to small perturbations.

The concatenation of InceptionTime modules makes it possible to have a larger perspective field. Note that the bottleneck layer is meaningless for reducing the dimension of univariate time series, thus the bottleneck layer is skipped while applying the Incep-tionTime for univariate time series. 

RandOm Convolutional KErnel Transform (ROCKET)

RandOm Convolutional KErnel Transform (ROCKET) was introduced by [START_REF] Dempster | ROCKET: Exceptionally Fast and Accurate Time Series Classification Using Random Convolutional Kernels[END_REF]. It applies a numerous number of convolutional kernels as feature extractors, but all these kernels are randomly generalized, including the kernel lengths (selected in 7, 9, 11), the kernel weights (sampled from a normal distribution), and the kernel biases (sampled from a uniform distribution). When applying these kernels, the parameters for each kernel are also randomly chosen, including padding (applying padding will add zeros to the start and end of a time series to make the output has the same length of the input), and dilation (controls the spacing between the kernel points, sampled on an exponential scale). Stride (the step of each move of the kernels) is set to one in ROCKET.

Once these aspects of the kernels are randomly fixed, ROCKET transforms the input time series with these kernels to generate random features. The informative ones are selected by training a linear classifier on the transformed features.

Recurrent neural networks (RNN)

Different from feed forward neural networks, RNNs belong to another famous family of neural networks, which are applied to process and to generate sequences with different lengths. RNNs have inner loops in the networks, and these loops allow RNNs to take into account the previous information of the sequence. RNN architectures are especially useful for tasks like speech recognition and nature language processing (NLP), in which there is sequential data like time series and text.

The weights of RNN can be estimated by back-propagation through time [START_REF] Rumelhart | Learning Representations by Back-Propagating Errors[END_REF]). However, vanilla RNN is difficult to train because of the gradient vanishing/exploding problem [START_REF] Bengio | Learning Long-Term Dependencies with Gradient Descent Is Difficult[END_REF]). In addition, although RNN can take into account the previous information3 in a sequence, it is not able to learn the connection between the information (also called long-term dependencies) if there is a huge gap between the relevant timestamps. To fix the gradient vanishing problem, as well as the arbitrary long-term dependencies, different variants of RNNs have been developed, and among them, the long short-term memory networks (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF]) and gated recurrent unit (GRU) [START_REF] Cho | Learning Phrase Representa-tions Using RNN Encoder-Decoder for Statistical Machine Translation[END_REF] were the most successful ones.

Despite the benefits of LSTM and GRU networks, they still have some limitations:

1. Although LSTM networks are easier to train (than a vanilla RNN), when the length T of an input time series is too large, the LSTM becomes a T -layer deep neural network with its recursive operations. This may still cause gradient vanishing/exploding problem, thus the long-term memory can not be infinite long.

2. The recursive nature of LSTM (and other RNNs), i.e., each hidden state of the LSTM is calculated based on the previous state, makes it impossible to train in parallel and the training process will be long.

Apart from forecasting, one rarely applies RNNs for time series classification due to these limitations which cause a poor performance (Fawaz et al. 2019). In practice, RNNs are integrated as a module in a convolutional network (see "LSTM-FCN" [START_REF] Karim | LSTM Fully Convolutional Networks for Time Series Classification[END_REF]) for example). Self-attention (as discussed in the next section) handles these problems of RNNs, and lead to a better performance in many domains.

Attention mechanism

Attention mechanism was introduced by [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] to increase the performance of an auto-encoder proposed by [START_REF] Cho | Learning Phrase Representa-tions Using RNN Encoder-Decoder for Statistical Machine Translation[END_REF] in neural machine translation. In this NLP task, the auto-encoder encodes a source sentence into a vector in latent space, and decodes the latent vector into a sentence in the target language. The attention mechanism allows the decoder to pay attention to the segments of the original sentence for each target word. This attention connects the encoder and decoder, or generally speaking, is used between different layers in a neural network. [START_REF] Vaswani | Attention Is All You Need[END_REF] proposed a network architecture called "Transformer" that applies a self-attention to the input of one layer. Different from the original attention, selfattention is applied inside a layer and calculates the correlational importance between an input sequence and each other sequence of the input sequences of this layer.

Self-attention eliminates the limitations of RNNs (as shown in Section 1.4.3): it has infinite attention size by using all-to-all comparison, and can be trained in parallel. Overwhelming variants of Transformer, called xformer (see [START_REF] Tay | Efficient Transformers: A Survey[END_REF]) for a review), have been developed based on the self-attention. For TSC tasks, self-attention has been applied with CNNs to form new network architectures, and these self-attention-based networks have obtained state-of-the-art performance [START_REF] Lin | A Multivariate Time Series Classification Method Based on Self-Attention[END_REF][START_REF] Hao | A New Attention Mechanism to Classify Multivariate Time Series[END_REF][START_REF] Garnot | Satellite Image Time Series Classification with Pixel-Set Encoders and Temporal Self-Attention[END_REF].

Ensemble methods

Ensemble methods combine the predictions of different individual learners as their final prediction. This kind of machine learning models can get better generalization performance than individual learners. In this section, we recall the ensemble methods applied to time series classification. A general view of ensemble methods is available in the "non-interpretable ML models" section (Section 2.4.3).

Elastic ensemble (EE)

The elastic ensemble (EE) method [START_REF] Lines | Time Series Classification with Ensembles of Elastic Distance Measures[END_REF] combines 11 1-nearest neighbor classifiers as its base classifiers. The 11 similarity measures for these nearest neighbor classifiers include Euclidean distance, DTW, and DTW variants. [START_REF] Lines | Time Series Classification with Ensembles of Elastic Distance Measures[END_REF] conducted extensive experiments on 75 datasets. They found that the individual elastic measure-based classifiers used in the elastic ensemble method do not show significant difference among each other, but through ensemble, elastic ensemble method obtains a significantly more accurate classifier than all the nearest neighbor classifiers with a single metric.

Bag of SFA symbols (BOSS) ensemble

BOSS ensemble method [START_REF] Schäfer | The BOSS Is Concerned with Time Series Classification in the Presence of Noise[END_REF] used Bag of SFA symbols (BOSS) models as its base classifiers. This base classifier is essentially a bag-of-words model [START_REF] Lin | Rotation-Invariant Similarity in Time Series Using Bag-of-Patterns Representation[END_REF], which represents a sequence (e.g. a time series) as the bag of its words (SFA symbols in BOSS context), i.e., a dictionary that maps each SFA word to the counts of its occurrence.

The BOSS model transforms the time series into symbolic Fourier approximation (SFA) features4 and compares the words in a nearest neighbor classifier based on a BOSS distance to make prediction. The BOSS distance between two time series dist BOSS (Z, Z ′ ) is a modified non-symmetrical Euclidean distance. It calculates the mean square error of the pairwise SFA word count differences, but all SFA word counts of 0 in the query Z are omitted.

The BOSS ensemble is a combination of multiple BOSS classifiers at different window lengths. Based on the SFA symbols and aggregate approximation, which naturally are low pass filters, the BOSS ensemble can filter out the high-frequency noise in the time series, thus has better performance in classification.

Collection of transformation ensembles (COTE)

In this section, we recall the collection of transformation ensembles (COTE) and the hierarchical Vote Collective of Transformation-Based Ensembles (HIVE-COTE).

The collection of transformation ensembles (COTE) method is a meta-ensemble, because two components of the COTE are ensemble methods (random forest and rotation forest) [START_REF] Bagnall | Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles[END_REF]. COTE combines time series representations in four different domains, including the time, autocorrelation, power spectrum and shapelet domains [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF]. In total, COTE has 35 base classifiers. The final prediction is a weighted vote for all these 35 classifiers based on the cross validation accuracy of each classifier. This original COTE method is also called Flat-COTE, because the combination of the classifiers is flat.

The original HIVE-COTE (also called HIVE-COTE alpha) includes five ensembles as its modules, namely elastic ensemble (EE), shapelet ensemble, BOSS ensemble, time series forest, and spectral ensemble. It uses a hierarchical voting probability, i.e., a normalized weighted sum over these five modules [START_REF] Lines | HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles for Time Series Classification[END_REF]. COTE considers each classifier as a single module, while HIVE-COTE uses each ensemble as a module. The objective of this HIVE-COTE alpha is the performance in classification, thus it does not concern the computational complexity and it is very slow.

HIVE-COTE 1.0 (HC1) [START_REF] Bagnall | On the Usage and Performance of the Hierarchical Vote Collective of Transformation-Based Ensembles Version 1.0 (HIVE-COTE v1.0)[END_REF]) drops the elastic ensemble from the HIVE-COTE alpha because of the high computational complexity, and applies the crossvalidation accuracy weighted probabilistic ensemble (CAWPE) structure [START_REF] Large | A Probabilistic Classifier Ensemble Weighting Scheme Based on Cross-Validated Accuracy Estimates[END_REF]. HIVE-COTE 2.0 (HC2) [START_REF] Middlehurst | HIVE-COTE 2.0: A New Meta Ensemble for Time Series Classification[END_REF]) replaces the ensemble modules in HC1 with three state-of-the-art ensemble methods. In HC2, the ensemble modules are the temporal dictionary ensemble (TDE) (Middlehurst et al. 2020b), the canonical interval forest (DrCIF) (Middlehurst et al. 2020a), and the random convolutional kernel transform (ROCKET) [START_REF] Dempster | ROCKET: Exceptionally Fast and Accurate Time Series Classification Using Random Convolutional Kernels[END_REF].

Chapter 2

INTERPRETABILITY IN MACHINE LEARNING

This chapter covers the main methods used to explain or interpret the decisions of a particular machine learning model and, in particular, of a time series classifier. I will first discuss the vocabulary and explain why I decided to use the terms "interpretable models" and "interpretability" instead of the now more traditional "explainable AI" through this thesis.

Interpretability in general

"I couldn't reduce it to the freshman level. That means we really don't understand it."

--Richard Feynman

Interpret means "to explain or to present in understandable terms 1 ", and interpretability is the ability for a piece of information to be understandable by humans. Interpretability is important to a human, because we are born to be curious for explanations.

Information that a human perceives naturally in day-to-day life is considered interpretable, because of its familiarity, its ubiquitousness. However, interpretability is a subjective concept: whether a piece of information is interpretable depends on the knowledge of the perceiver. For a broad audience, visual information (images), human language (vocabularies, sound), smell, etc., are interpretable, while non-expert may not be able to interpret pressure time series or power time series which could, however, provide meaningful information to physicists.

What is model interpretability?

Bringing interpretability to machine learning is not a new idea. [START_REF] Kodratoff | The Comprehensibility Manifesto[END_REF] for example, mentions that the importance of comprehensibility or explanations about the learned models for industrial applications dates back to the 1980s. During the bygone era, people have used different words, e.g., comprehensibility, understandability, transparency, justifiability, etc., to denote interpretability and explainability, which are the terms used nowadays [START_REF] Bibal | Interpretability of Machine Learning Models and Representations: An Introduction[END_REF].

Unfortunately, the terms in the literature are not yet standardized. [START_REF] Lipton | The Mythos of Model Interpretability[END_REF] claims that "interpretability is not a monolithic concept". Interpretability is a very elusive concept, due to the fact that it is a domain specific notion [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF]. Interpretability is a mental fit, that is related to the degree of a human to evaluate the model, while data fit corresponds to predictive accuracy [START_REF] Bibal | Interpretability of Machine Learning Models and Representations: An Introduction[END_REF]. Different users consider interpretability differently.

Generally speaking, the disagreement nowadays comes from the ambiguity between interpretability and explainability. I will try to clarify these terms by reviewing definitions given by different researchers. [START_REF] Bibal | Interpretability and Explainability in Machine Learning[END_REF] defines interpretability as a property of an interpretable model: "a model can be said to be interpretable if, within a given time limit, the level of expertise of the user allows him to understand the model through its representation", while explainability is the capacity of the model to be explained based on "post-hoc explanations": the explanations of the prediction results of a complex trained model. This definition of explanations matches the commonly used definition for eXplainable Artificial Intelligence (XAI) which is the research domain that gives insights on the behavior of complex models learned by different machine learning algorithms [START_REF] Gilpin | Explaining Explanations: An Overview of Interpretability of Machine Learning[END_REF]. [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF] agrees with the definition given by [START_REF] Bibal | Interpretability and Explainability in Machine Learning[END_REF], and she advocates using the term inherently interpretable models for interpretable models2 . In this thesis, we call inherently interpretable models in-situ interpretable models. They are self-explainable ones for which no post-hoc methods is needed to understand what the model does or why it takes a particular decision. Note that there is a small disagreement between Rudin (2019) and [START_REF] Bibal | Interpretability and Explainability in Machine Learning[END_REF]. From the definition given by Bibal (2020), only simple enough models are in-situ interpretable, while for Rudin (2019), a model is interpretable when a part of the model is understandable by a human.

Other people consider that interpretability and explainability are interchangeable [START_REF] Du | Techniques for Interpretable Machine Learning[END_REF][START_REF] Jacovi | Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness?[END_REF]. [START_REF] Molnar | Interpretable Machine Learning[END_REF] and [START_REF] Miller | Explanation in Artificial Intelligence: Insights from the Social Sciences[END_REF] said: "Interpretability is the degree to which a human can understand the cause of a decision in a given context." For them, interpretability is the same thing as explainability (post-hoc explanations) defined by [START_REF] Bibal | Interpretability and Explainability in Machine Learning[END_REF].

The definition of model interpretability from Doshi-Velez et al. ( 2017) and [START_REF] Biran | Explanation and Justification in Machine Learning: A Survey[END_REF] can be used both for in-situ or for post-hoc, which makes a more general definition: Definition 3 (Model interpretability). Model interpretability is the property of a model that the operations in the model are understandable by a human, "either through introspection or through a produced explanation".

In Definition 3, the term (model) interpretability is a more general concept, which unifies the terms interpretability and explainability of the above cited authors. In the following sections of this thesis, we will use Definition 3 as our definition of model interpretability, and we will avoid using the term model explainability.

In my opinion, it is the in-situ and post-hoc model interpretability (as explained later in this section) which matter the most. We will only call in-situ interpretable models shortly for interpretable models, because post-hoc model interpretability is obtained with explanations, which are specifically obtained with post-hoc interpretability techniques applied on the prediction results of black-box models in order to enhance model interpretability. The relation of these terms are shown in Figure 2.1.

Interpretability

Ad-hoc interpretability (from data preprocessing) Model interpretability

In-situ interpretability (interpretable models)

Post-hoc Interpretability (from explanations)

Figure 2.1 -Terms related to interpretability in this thesis.

Data, model or prediction?

In this section, we discuss Figure 2.1 in detail, including ad-hoc, in-situ, and posthoc interpretability. They represent the interpretations during the preprocessing of the data (before training), the self-explainability property inside the model (during/after the training of the model), and the explanations of a prediction at inference (after training), respectively. Note that in-situ interpretable models are also capable to provide post-hoc explanations.

Ad-hoc interpretability

Ad-hoc interpretability is rarely discussed in the interpretability literature. It is the understanding of the data during the data preprocessing, which usually happens before model selection. The type of ad-hoc interpretation might be different depending on the data format: data are interpretable when they are expressed in low dimensions (especially for tabular data and graphs), or have intuitive features (especially for images, text, and time series), which can be more easily understandable by humans.

Ad-hoc interpretability can be achieved with dimensionality reduction techniques (such as feature selection [START_REF] Doquet | Agnostic Feature Selection[END_REF])) during the preprocessing of the data. We integrate the dimensionality reduction methods in the section dedicated to interpretable models (Section 2.4.1), because ad-hoc interpretability often eases model interpretability, as the model is trained on sparse or intuitive features.

In-situ interpretability

In-situ interpretability is related to interpretable models. The model is in-situ interpretable when the explanations can be extracted directly from the model. We can obtain model interpretability on both global, modular, and local level. [START_REF] Lipton | The Mythos of Model Interpretability[END_REF] argued that a global interpretability connotes low computational complexity, and a human should understand the model by reading it in a reasonable time. Thus, only sparse models with few parameters can be considered globally interpretable. However, for the reason of accuracy-interpretability trade-off, a simple model can not always have good performance, thus are most of the time not suitable. Global level interpretable models are reviewed in Section 2.4.1.

To overcome this, modular level interpretability becomes interesting. [START_REF] Molnar | Interpretable Machine Learning[END_REF] claimed that modular level interpretability answers the question: "how do parts of the model affect predictions?" [START_REF] Lipton | The Mythos of Model Interpretability[END_REF] proposed to call modular interpretability as decomposability: the model has modular level interpretability, if a human understands the mechanism of a part, whether it is an input, a parameter, or a calculation, during the classification. These components can be originally interpretable, or can be learned with constraints. Modular level interpretable models are reviewed in Section 2.4.2.

Although we can interpret an in-situ interpretable model at the modular or the global level, we can still extract directly the needed information from the model to explain a particular prediction. This makes the in-situ interpretable model always interpretable at a local level.

Note that in the interpretability literature, an in-situ interpretable model is also called a white-box model, an inherently/intrinsically interpretable model [START_REF] Molnar | Interpretable Machine Learning[END_REF][START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF], an explainable-by-design model [START_REF] Wang | Adversarial Regularization for Explainable-by-Design Time Series Classification[END_REF][START_REF] Du | Techniques for Interpretable Machine Learning[END_REF], or an ante-hoc interpretable model [START_REF] Rojat | Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey[END_REF].

Post-hoc interpretability

Techniques are applied on the prediction results of black-box models to provide explanations, with which we obtain model post-hoc interpretability. Post-hoc interpretability can be obtained both on global and local levels, as [START_REF] Guidotti | A Survey of Methods for Explaining Black Box Models[END_REF] and [START_REF] Beaudouin | Identifying the "Right" Level of Explanation in a given Situation[END_REF] distinguished, "global explainability means the ability to explain the functioning of the algorithm in its entirety, whereas local explainability means the ability to explain a particular algorithmic decision." In practice, local level post-hoc interpretability is the most important. Local level means that the explanation of the black-box is in the vicinity of an individual instance, and explanation is usually an observation of the feature importance. A review of post-hoc interpretability techniques is provided in Section 2.5.

When does interpretability matter?

In this section, we discuss the following two questions with examples:

-If we have a powerful accurate model, do we still care about interpretability? -In which situations don't we need interpretability?

Importance of interpretability

In this section, we present some examples about the reason why interpretability matters in machine learning context. Trust is first reason for using interpretable machine learning: it is fundamental to trust a prediction from a model before using it, and one tends to trust a white-box instead of a black one. We then show an example of Uber self-driving car to explain the importance of interpretability for safety reason. To avoid safety problems, we may apply interpretability to diagnose the model. In addition, model diagnosis provides other benefits, including bias finding in the dataset and debugging the model. As the bias can be easily spotted in interpretable models, interpretable models are more ethical and obey the demands in the GDPR regulation. Finally, interpretability could be helpful for finding the causality, such as "smoking is one of the causality of the lung cancer."

Trust: correct prediction with relevant features

Many papers argue that trust is an important motivation for making machine learning models interpretable [START_REF] Shen | Interpretability in ML: A Broad Overview[END_REF][START_REF] Lipton | The Mythos of Model Interpretability[END_REF][START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF] In the point of view of interpretability, trust not only means "performance" (in many cases, the accuracy) of a model, nor the robustness that the model performs well with respect to the real scenarios. Without interpretability, one can hardly spot if the learned features make sense and thus can not trust the model. [START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF] tested a prediction given by the Google's pre-trained Inception neural network [START_REF] Szegedy | Going Deeper with Convolutions[END_REF]. The reason of the good prediction of the Labrador dog is the head of the dog, as shown in Figure 2.2. This prediction along with the explanation provide trust to human, because a human can verify that the prediction is correct, and made based on right features.

Generally, trust is based on the explanations given by predictions: explanations for individual predictions is a solution to trusting a prediction problem, and a set of such explanations for different predictions is a solution to trusting a model problem 3 . Figure 2.2 -LIME explanations on an image [START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF]) on the top 3 classes predicted by Google's Inception neural network: the relevant features formed through superpixels given by the interpretation provide trust to human.

Safety: do not cause damage

Sometimes, the machine learning model gives critical predictions for safety measures. In this context, we want to make sure that the system is secure and robust. However, the predictions made by black-box models are not always reliable, and this can cause serious damage. A well-known example is the self-driving Uber car which killed a pedestrian in 2018. This was believed to be the first pedestrian death caused by a self-driving car 4 . The uber self-driving vehicle software is composed with several ML models to accomplish the tasks of perception, prediction, and motion planning to control the vehicle 5 . When a pedestrian is spotted in front of the self-driving car, the object detection model in the car is supposed to make the stop prediction. In this particular example, the defect was that the self-driving vehicle did not have the capability to classify a pedestrian unless he/she was near a crosswalk 6 . The absence of the crosswalk caused finally this fatal accident. With interpretable models, in which the important features can be represented directly, engineers could have spotted the potential defects and could have avoided the accident [START_REF] Shen | Interpretability in ML: A Broad Overview[END_REF].

Model diagnosis: fix errors and find bias from dataset

Many machine learning models work well in a laboratory, but behave poorly in real life. One wants to figure out what is happening with the models by conducting model diagnosis and then improve it. Interpretable machine learning can be one approach to do 4. The New York Times: Pedestrain killed by Uber 5. Uber Machine Learning Infrastructure for Self-driving car 6. Self-driving Uber car that hit and killed woman did not recognize that pedestrians jaywalk this. [START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF] provided another example about Google's Inception neural network. Given a Husky image, the model makes a wrong prediction as a wolf. For people who make a wrong prediction about dog/wolf, this may be caused by the similarity between a dog and a wolf. For this neural network, the problem comes from the snow on the background. The model takes the snow as the discriminative feature from the image, as shown in Figure 2.3. This is an example of a wrong prediction made based on wrong features from the image. With interpretable techniques, machine learners can find the reason why a model makes wrong prediction and fix bugs in the model.

Dataset plays an important role during the machine learning models' life cycle. One definitely does not want to use biased dataset to train machine learning models. A famous example of some biased data was the "tank problem" [START_REF] Kanal | Recognition System Design by Statistical Analysis[END_REF]. Scientists built an algorithm to detect military tanks from images. The model worked well for the tanks in test images (in the lab), but it failed with real photos in the field. Why? Because the model was focusing on wrong patterns from the images: in the training set, tanks are always emerging under clouds, and the model focused on the weather patterns, rather than the presence of tank. As long as one spots the bias from the dataset with interpretable machine learning techniques, the dataset can be improved.

Ethics: fairness and contestability

The predictions made by AI systems influence more and more in daily life, including the news we see, the loan we obtain from a bank, and even legal practices. As a widespread adopted technique in daily life, machine learning has to obey the code of ethics [START_REF] Lipton | The Mythos of Model Interpretability[END_REF]). New laws have been voted which impose a "right to explanation" in the General Data Protection Regulation (GDPR). We do not give more details about regulations about explainability (see [START_REF] Goodman | European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation[END_REF] and [START_REF] Beaudouin | Identifying the "Right" Level of Explanation in a given Situation[END_REF] for the legal concerns).

Medical diagnosis are often taken as an example for the importance of ethics in machine learning. [START_REF] Grote | On the Ethics of Algorithmic Decision-Making in Healthcare[END_REF] believed that although machine learning algorithms sometimes outperform clinicians in medical diagnosis, it comes at the expense of transparency. [START_REF] Martens | Performance of Classification Models from a User Perspective[END_REF] pointed out that a doctor has to understand the predictions given by a machine learning model before using the model. This can only be done with interpretable models.

Pretrial risk assessment has been wildly used before the detention in the criminal justice system (Pretrial Justice Institute 2019). Recently, machine learning models has also been used in this process [START_REF] Kehl | Algorithms in the Criminal Justice System: Assessing the Use of Risk Assessments in Sentencing[END_REF]. The purpose of the risk assessment is to mitigate judicial bias and to provide the decisions as objective as possible [START_REF] Green | The False Promise of Risk Assessments: Epistemic Reform and the Limits of Fairness[END_REF]). This objectivity is called fairness in the justice system. However, the machine learning models can be biased (O'neil 2016; [START_REF] Barocas | Big Data's Disparate Impact[END_REF]Angwin et al. 2016), e.g., the particular concern is that the algorithm may be discriminative against black people compared to white people, which is concerned unfair. In this context, interpretable machine learning is demanded to obtain fairness in the judicial trial.

Contestability is another important aspect of ethics, because people have the right to appeal to these decisions. Many end-to-end machine learning models make predictions based on the inputs, while the process is hidden in the black-box. When facing contestations, the black-box model cannot decompose itself into contestable components. Interpretability can help to solve this non-contestable problem by decomposing the components into a chain of reasoning [START_REF] Chen | Interpretability by Design: New Interpretable Machine Learning Models and Methods[END_REF].

Causality: learn from the model and reuse knowledge

During the scientific research, scientists process the obtained data and explain the observed phenomenon with the data. During this process, machine learning algorithms become useful tools from chemistry [START_REF] Burger | A Mobile Robotic Chemist[END_REF] 

to geology (Audebert et al. 2019).

There are common pitfalls (not only for scientists) exist in machine learning [START_REF] Riley | Three Pitfalls to Avoid in Machine Learning[END_REF]): (i) splitting data inappropriately, (ii) hidden variables (as they do not control some of the variables in the experiments), and (iii) mistaking the objective (the loss function). If scientists simply use black-box models without interpretability, they may fall into one of the pitfalls and give erroneous conclusions.

Usually, machine learning models are able to capture the correlations between variables, but not real causes. In addition to avoid the erroneous conclusions with interpretability, causal interpretable models can be even more interesting (than only interpretable models) for scientists. They are able to make causal inference by answering questions related to causality, e.g. "What is the specific feature that cause the prediction made by the model?". This property is helpful for scientists to understand the real causes of decisions made by machine learning algorithms [START_REF] Moraffah | Causal Interpretability for Machine Learning -Problems, Methods and Evaluation[END_REF]. Scientists may understand better the mechanisms behind a phenomenon, and reuse the knowledge in the future research.

When it does not matter

Interpretability becomes less necessary when models are tested effective in real life (empirically trustworthy) and would not cause ethics or safety problems.

The first example is the recommendation system for business. A recommendation system (e.g. for movies) cannot cause ethics or safety problems thus the effectiveness (the performance) is more important than interpretability: the most serious problem that a recommendation system can cause is that the system is not accurate enough to recommend products/services based on the customer's flavor, and this may entail a loss of customers and of revenue. Note that interpretability is still demanded when a recommendation system is at ethics or safety issues (e.g. a recommendation system used to choose a key component for a satellite) and is still helpful for debugging the recommendation system.

The second example is based-on assistance dogs. They are trained to tackle the "object detection problem" in different scenarios. Sniffer dogs are trained to detect hazardous odour such as drugs or explosives. Guide dogs lead blind people to avoid obstacles. These dogs are black-box models, because their nerve system can be considered as "neural networks" with plenty of parameters. Nobody asked if the neural system of a dog is interpretable, because they are longtime used/tested in real life and empirically trustworthy. It is acceptable for a human (maybe except for neuroscientists) that the dog remains a black-box.

Interpretable vs. non-interpretable ML models

Arrieta et al. ( 2020) illustrated a trade-off between model interpretability and performance for most common machine learning models in Figure 2.4. This trade-off is caused by the complexity of the real world: sometimes simple models are not capable of approximating decision boundaries for complicated data, while complex models may have better discriminative power.

In this section, we distinguish models as in-situ interpretable and non-interpretable, and review the in-situ interpretable models both at global and modular level (cf. Section 2.2.1). Generally, regression models (linear and logistic regression), decision trees/rules are global interpretable models, nearest neighbor and Bayesian classifiers are modular interpretable models, and support vector machine, ensemble models, and deep neural networks are black-box models. We recall post-hoc techniques for explaining predictions of black-box models.

Note that we only categorize the models in a "general way", as the interpretability is correlated with the complexity of the model, a linear model with a thousand parameters is not more interpretable than a sparse deep neural network (Lipton 2018).

ML models interpretable at a global level

In this section, we discuss interpretable machine learning models at the global level. Global level interpretable models are at the right bottom corner in Figure 2.4, including linear/logistic regression, decision trees/rules. They are usually simple models (as long as the data does not have too many attributes) that human could understand easily.

Note that an globally interpretable model is also interpretable locally, because when we obtain a prediction for an input test instance from an interpretable model, we can also explain for this particular prediction from the model for this single input instance.

Statistical regression models: linear model and logistic model

Statistical regression analysis has been used to estimate the relationship between features and dependent variables. We discuss how statistical regression methods can help to augment interpretability in this section, including the variants of the least squares method (Legendre 1805): linear regression, multiple regression, log-linear regression, and logistic regression. 

Linear regression A linear regression model is used to draw relation between dependent variables and independent variables. It is written as:

y = w τ x + b.
The parameters of the linear model can be estimated with maximum-likelihood estimation by minimizinglog((x, y)|w). For linear regression with normally distributed errors, the loss function becomes a mean square error (MSE). [START_REF] Molnar | Interpretable Machine Learning[END_REF] pointed out that linear regression models are simple enough, because they just learn a linear combination of the attributes, and the weights w describe the importance of each attribute in the prediction: with a positive w i , it contributes positively to a prediction, and vice versa. A linear model is deemed interpretable because there is a direct relation between the weights and the features in the model. Note that, however, the interpretation based on the weights should be done carefully. As Lipton (2018) argued, with sufficiently high dimensionality, linear models, as well as decision trees and decision rules (as discussed later in this section) are not more interpretable than deep neural networks.

Logistic regression

We recall an adaptation of the generalized linear model to make logistic regression. A logistic sigmoid function 7 , f (z) = 1 1+e -z is used for logistic regression, then we have

y = 1 1 + exp(-(w τ x + b)) and ln y 1 -y = w τ x + b. (2.1)
The outcome of logistic regression y is a probability between 0 and 1. We can consider y as the predicted probability to the positive class, and the 1 -y the predicted probability to the negative class, then the ratio y 1-y is called the odds. It describes the relative probability of the x to be a positive instance. When we take the logarithm of the odds, the term is called log odds (also called logit 8 ).

The formula 2.1 means that the log odds from the logistic regression follows a linear model. To interpret the logistic regression model, [START_REF] Molnar | Interpretable Machine Learning[END_REF] proposed to study the impact of changing the x j to 1 + x j for the j-th element of x. We have the odds ratio odds (x j +1) odds (x) = exp(w 1 x 1 + w 2 x 2 + . . . + w j (x j + 1) + . . .

+ w d x d + b) exp(w τ x + b)
= exp(w j (x j + 1) -w j x j )

= exp(w j ).

Molnar (2019) pointed out that "a change in a feature by one unit changes the odds ratio (multiplicative) by a factor of exp(w j ), or in other words, a change in x j by one unit increases the log odds ratio by the value of the corresponding weight."

Decision trees and classification rules

Decision trees are interpretable and useful models. A trained decision tree looks like a flowchart, each node is a conditional operation that compares a required feature with a cutoff value, called decision stump. When a data sample passes through, each node splits 7. Logistic sigmoid function is the most common example in the sigmoid function family, in which all the function has a sigmoid curve ("S"-shaped curve).

8. In neural networks, the logits is a vector that contains a raw (non-normalized) predictions of a classifier.

the data sample into sub-data. When the dataset cannot be split anymore, the decisions are made based on the terminal node. A simple decision tree is in-situ interpretable, because a human can understand the feature splitting process in a reasonable time by reading the feature with the cutoff value of each node. [START_REF] Michie | Current Developments in Expert Systems[END_REF] considered that when decision trees become too large, they can also be complex and thus less transparent. The tree is too deep or with a lot of nodes, a human cannot understand the decision process in a reasonable time. [START_REF] Quinlan | Simplifying Decision Trees[END_REF] proposed several methods to reduce the complexity of decision trees. One of them simplifies the decision trees into decision rules. Like decision trees, the classification rules are also based on conditional operations. A terminal leaf from a simple decision tree corresponds to a decision rule:

if condition1 ∧ condition2 ∧ . .

. ∧ condition n then classc

These rules can be used in different forms:

-

IF-(ELSE)-THEN rules -M-of-N rules -Lists of rules

The rule-based classifiers are interpretable because it is readable for human beings. Fürnkranz et al. ( 2012) claimed that "rules offer the best trade-off between human and machine understandability".

Dimensionality reduction: feature extraction and feature selection techniques

Dimensionality reduction techniques use mathematical transforms to embed high dimensional data points into a subspace in which it is easier to calculate the distance between the data points. Among dimensionality reduction techniques, feature extraction is used to solve the curse of dimensionality, thus could be used to obtain ad-hoc interpretability, and feature selection is used to enhance in-situ interpretability by adding sparsity to the dataset and the model. Feature extraction techniques include principal component analysis (PCA) (Shlens 2014) and spectrum analysis (such as Fourier transform) (Von Luxburg 2007). For time series classification, PAA and SAX also belong to feature extraction methods. Feature selection methods include L1, lasso, and group-lasso [START_REF] Yuan | Model Selection and Estimation in Regression with Grouped Variables[END_REF]. It can also be tackled with neural networks [START_REF] Doquet | Agnostic Feature Selection[END_REF].

Note that dimensionality reduction techniques are not machine learning models, but they are useful for ad-hoc interpretability and ease model interpretability (cf. Section 2.2.1). Not all dimensionality reduction techniques are useful for interpretability, i.e., technically, neural networks are also feature extraction techniques, but we consider neural networks, especially deep neural networks, non-interpretable, as discussed in Section 2.4.3.

ML models interpretable at a modular level

In this section, we introduce machine learning models interpretable at the modular level (cf. Section 2.2.1), e.g. naive Bayes classifier, k-Nearest neighbor method, and prototype-based models. The interpretation of these models are different compared to globally interpretable models. We emphasize prototype-based models in this section because it is highly related to our contribution.

Naive Bayes classifier

Based on the Bayes theorem, the class c of a given example x, can be calculated as:

P (c|x) = P (c)P (x|c) P (x)
where P (c) is the prior probability of class c, P (x|c) is the likelihood of a sample x relative to class c. It is difficult to obtain the likelihood P (x|c) because one cannot estimate this probability from all the attributes of finite training set. The naive Bayes classifier adopts the attribute conditional independence assumption, i.e., it is naive to assume that each attribute contributes independently to the classification result. The naive Bayes classifier can be written as:

P (c|x) = P (c) P (x) d i P (x i |c)
where d is the number of attributes, and x i is the i-th attribute from the example x x x.

Naive Bayes classifier is interpretable because it can be interpreted on the modular level [START_REF] Molnar | Interpretable Machine Learning[END_REF]. The contribution of each attribute to a certain class is the conditional probability, and thus we can interpolate the behavior of the model from the contribution of the attributes.

k-nearest neighbor

The k-nearest neighbor (kNN) method is a common supervised learning method. The mechanism is straightforward: given a test example, the model calculate a distance to find the k nearest neighbors from the training set, and give the prediction based on these k nearest neighbors. For a classification problem, the k nearest neighbors will vote for the class. For regression, it takes the average value of these k neighbors. One does not train the model, but just store the training examples. To build the model, we only need to choose the k value and a dedicated metric.

kNN model does not have any parameters to learn, and it compares an example with its k-nearest neighbors. The model is inherently local thus it cannot be interpreted globally [START_REF] Molnar | Interpretable Machine Learning[END_REF]. The interpretability of kNN models relies on the neighbors of a given example [START_REF] Moraffah | Causal Interpretability for Machine Learning -Problems, Methods and Evaluation[END_REF]. Note that for a kNN model, the "curse of dimensionality" [START_REF] Bellman | Dynamic Programming[END_REF]) exists for the interpretation. As other interpretable models, a kNN model could become non-interpretable when the data has a thousand attributes.

Prototype-based methods

Prototypes form a minimum set of representative samples of a dataset. Traditionally, prototype-based methods can be classified into two categories in the literature: prototype selection and prototype generation [START_REF] Triguero | A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification[END_REF][START_REF] Triguero | A Taxonomy and Experimental Study on Prototype Generation for Nearest Neighbor Classification[END_REF]). Both of the methods form the prototype reduction methods, aiming at reducing the representative instances of the dataset by prototypes. Prototype selection methods belong to instance selection methods, which reduce the samples of the dataset into a small subset. Prototype generation methods generate new representation data from the existing dataset, in order to increase the generalization ability of the small amount of prototypes.

Prototype-based methods are very intuitive, because they make use of explicit representations, i.e., the prototypes of the dataset, and it compares directly the "distance" of the prototype(s) and the test instance [START_REF] Biehl | Prototype-Based Models in Machine Learning[END_REF]. Providing the domain experts with this small amount of prototypes, i.e., representative samples of each class, helps increase interpretability [START_REF] Bien | Prototype Selection for Interpretable Classification[END_REF]. Nowadays, prototype-based classifiers learn prototypes from the dataset, and compare the "distance" 9 between class prototypes and the object to be classified. This approach is strongly linked to kNN, with a reduction in time complexity [START_REF] Bien | Prototype Selection for Interpretable Classification[END_REF]; Impe-9. Can be distance, similarity, or dissimilarity [START_REF] Saralajew | New Prototype Concepts in Classification Learning[END_REF] dovo et al. 2014; [START_REF] Hu | Prototype Generation Using Multiobjective Particle Swarm Optimization for Nearest Neighbor Classification[END_REF], because once the prototypes are fixed, we can simply compute the distance between an example to be classified and the prototype(s) instead of comparing with all the instances from the dataset. An ideal prototype should have two properties: diversity and coverage (of the dataset) [START_REF] Gee | Explaining Deep Classification of Time-Series Data with Learned Prototypes[END_REF]. Diversity means that the prototype(s) of one class c should consist of instances that are close to the training instances from class c, and far away from training points from other classes [START_REF] Bien | Prototype Selection for Interpretable Classification[END_REF]. Diverse prototypes will help focus on areas, where there are overlapping class regions, to improve classification accuracy [START_REF] Gee | Explaining Deep Classification of Time-Series Data with Learned Prototypes[END_REF]. The coverage property means that the prototype(s) should also provide full coverage of the training set, i.e., every class should have at least one prototype.

As the neural networks draw great attention in the research community, prototype neural networks have been developed [START_REF] Li | Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network That Explains Its Predictions[END_REF][START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF][START_REF] Gee | Explaining Deep Classification of Time-Series Data with Learned Prototypes[END_REF]). These prototypes can be learned directly from other types of black-box models, and can provide in-situ interpretability on the modular level. [START_REF] Li | Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network That Explains Its Predictions[END_REF] provided a network architecture called prototype network to learn the prototypes through an end-to-end training. The proposed network contains an autoencoder that encodes the input vector into a latent representation; then the encoded vector is passed into a classifier, which contains a prototype layer, i.e., the layer holds the prototypes, as its first layer. The network learns the prototypes in the latent space, and as the prototypes have the same dimension of the latent representation of the input vector, users could use a decoder (from the auto-encoder) to visualize the prototypes. [START_REF] Gee | Explaining Deep Classification of Time-Series Data with Learned Prototypes[END_REF] improved the prototype network [START_REF] Li | Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network That Explains Its Predictions[END_REF]) by adding a penalty in the objective function in order to increase the prototype diversity and coverage of the data in the latent representation. This work adapts the prototype network for univariate time series classification tasks on medical data, and provides a tool to engage domain experts to fine-tune the model to increase interpretability. [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF] proposed a new network architecture called prototypical part network (ProtoPNet). The spirit is similar to the work of [START_REF] Li | Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network That Explains Its Predictions[END_REF]. The difference is that, in the work of [START_REF] Li | Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network That Explains Its Predictions[END_REF], the prototypes are in the latent space, thus should be visualized by a decoder, but in [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF], the prototypes are directly sub-images. During the prediction process, the ProtoPNet compares the parts on the image which are similar to the learned prototypes, and the prediction is based on the similarity between the sub-image and the prototypes. Their method uses the learned prototypes for making prediction, thus the model is considered interpretable (also called explainable-by-design because the model is in-situ). The prototype-based interpretability intends to look like global representations of the training data, but post-hoc interpretability does not give the intuition of the relation between the training data and the end result [START_REF] Gee | Explaining Deep Classification of Time-Series Data with Learned Prototypes[END_REF].

Non-interpretable ML models

In this section, we discuss non-interpretable machine learning models. They are usually complex models, e.g. SVM, ensemble methods, and deep neural networks. As shown in Figure 2.4, there exists a trade-off between the model complexity and its interpretability. The more complex a model is, the more capacity it will have to approximate a complex function, and the more difficult it is to interpret.

Support vector machines (SVMs)

The objective of support vector machines (SVMs) is to find hyperplane(s) from the sample space of the training set to separate different classes. The hyperplane can be described by a linear equation:

w τ x + b = 0
where w is the normal vector of the hyperplane, which decides the orientation of the hyperplane, and b the bias, which decides the distance between the hyperplane and the origin. This hyperplane is "supported" by the vectors that are perpendicular to the hyperplane and point to the nearest samples from different classes.

However, when a dataset does not have the linear separability in the sample space, we need to modify SVM to classify the dataset. [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF] changed the SVM decision function into the following linear combination:

f (x) = w τ [κ(x, x 1 ); κ(x, x 2 ); . . . ; κ(x, x n )] + b
where κ(•, •) is the kernel function that maps the sample from the origin sample space to a higher dimensional space, in which the instances from different classes becomes linearly separable.

The original features could be understandable for human beings, but the features in the higher dimensional space are not. The interpretation of SVMs given by machine learners is always post-hoc and can be written in the form "the higher an input feature x i is, the more likely the class is positive" [START_REF] Rüping | Learning Interpretable Models[END_REF].

Ensemble learning methods

An ensemble learning model is also called a multi-classifier system. Ensemble learning methods contain two steps: firstly, ensemble learning learns a group of individual learners, then it combines the predictions of the individual learners to get the final prediction [START_REF] Zhou | Ensemble Methods: Foundations and Algorithms[END_REF]. The individual learners can be homogeneous, i.e., they are the same ordinary machine learning method, or heterogeneous, i.e., individual learners are combined with different models.

Based on the generation process of the individual learner, ensemble methods can be separated into two categories. The first one is Boosting: the individual learners are trained sequentially such that each model that is added to the ensemble aims at correcting errors from the ensemble made of all previously introduced models. The second one is Bootstrap AGGregatING (bagging): the individual learners are learned independently on different subsets of the data, and the learning process can be parallelized.

Ensemble method can often get better generalization performance than individual model [START_REF] Dietterich | Ensemble Methods in Machine Learning[END_REF]. However, the interpretability of the ensemble model is sacrificed. For example, a single decision tree could be interpretable (as discussed in Section 2.4.1), but a random forest may contain a thousand trees, thus makes it hardly understandable by a human.

Deep neural networks (DNNs)

In practice, deep neural networks (DNNs) are used for better performance. The connections of DNNs can be considered as numerous non-linear functions [START_REF] Telgarsky | Benefits of Depth in Neural Networks[END_REF]. Intuitively, the multiple layer non-linear functions allow the network to learn features from different representation of the raw data to make the decision [START_REF] Camburu | Explaining Deep Neural Networks[END_REF].

However, DNNs are usually used for end-to-end task, and the features learned by DNNs are sometimes not make sense to humans [START_REF] Olah | The Building Blocks of Interpretability[END_REF]). These DNNs can neither be understood on global nor on modular level. Just like the ensemble methods, the increased number of layers and neurons makes DNNs difficult to interpret. In addition, state-ofthe-art DNNs [START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Vaswani | Attention Is All You Need[END_REF]) may have millions of parameters, and in general, we do not know which parameter is more important than others.

There are two ways to make DNNs understandable: (i) Giving explanations to their decisions with post-hoc interpretability techniques (cf. Section 2.5), (ii) Training the DNNs with constraints (cf. Section 2.4.2).

Post-hoc interpretability

For non-interpretable models, we need to apply post-hoc interpretability techniques to explaining a posteriori a complex trained model. Post-hoc interpretability is obtained with explanations given by these post-hoc techniques. Post-hoc interpretability is used for both global and local levels. For simplicity, we will use "explanation" for local post-hoc interpretability.

In Section 2.5.1 we review the basic idea of the global post-hoc interpretability and explain why it cannot be largely applied. In Section 2.5.2, we recall local post-hoc explanation. Local explanation focuses on an input test instance, i.e., once a non-interpretable model is trained, we do not modify the model but apply perturbations to the input in order to observe which feature of the input is important for the prediction. Local explanation methods are largely applied in the practice because they can provide intuitive explanations to reinforce model interpretability.

Global post-hoc interpretability

Global post-hoc interpretability is also called global surrogate explanations. We can learn a surrogate interpretable model (cf. Section 2.4.1), with the input and output of a learned black-box model, to mimic the behaviors of the black-box. These surrogate models can be decision trees or decision rules that are extracted from black-box [START_REF] Domingos | Knowledge Discovery via Multiple Models[END_REF][START_REF] Craven | Extracting Tree-Structured Representations of Trained Networks[END_REF][START_REF] Johansson | Evolving Decision Trees Using Oracle Guides[END_REF] or "white-box" mathematical functions understandable by human that are expressed through a succinct symbolic function (Alaa et al. 2019). This surrogate model can neither really reveal the mechanism of the blackbox, nor give similar prediction performance as the black-box, which may cause fidelity10 problems [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF]. In practice, if a surrogate interpretable model has comparable performance as the performance of a black-box model, we could just abandon the blackbox and use the interpretable model.

Local post-hoc interpretability

In this section, we review techniques that are applied to obtaining explanations for local post-hoc interpretability. We can divide existing methods that dedicated to obtaining local interpretability into three categories, as shown in Figure 2.5. Among these methods, feature importance is the most widely used. For approximation techniques, a feature importance score is assigned to each feature, and for saliency maps, a heat map, that indicates the regions that are used for the prediction result, is generated on the input instance. Rule-based methods and counterfactual explanations produce intuitive explanations to humans with the rules and counterfactual examples.

Feature importance

Given the prediction of a black-box model for an input instance, feature importance methods point out which features of the input are important for the prediction. The feature importance of an input instance of a model is obtained by perturbing its attributes.

Approximation: LIME and SHAP Local Interpretable Model-agnostic Explanations (LIME) [START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF] and SHapley Additive exPlanations (SHAP) [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF] are two prominent local approximation techniques that give the feature importance for an input instance with a score for each feature. The local approximation gives human an intuition about the model.

LIME assigns a feature importance value for each feature for an individual prediction. LIME tries to find the most suitable interpretable model (for instance a linear model) with two testes, the model parameter randomization test (randomize the parameters of a model to check a saliency map method depends on the parameters of a model), and the data randomization test (randomize the labels of the inputs to check if a saliency map method depends on the that the model was trained on). They tested on Gradient Input [START_REF] Shrikumar | Learning Important Features through Propagating Activation Differences[END_REF], Integrated Gradients [START_REF] Sundararajan | Axiomatic Attribution for Deep Networks[END_REF], Guided Backpropagation [START_REF] Springenberg | Striving for Simplicity: The All Convolutional Net[END_REF], Grad-CAM / Guided Grad-CAM [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF], and Smooth Grad [START_REF] Smilkov | SmoothGrad: Removing Noise by Adding Noise[END_REF]. Results show that Gradients and Grad-CAM pass the tests, while Guided BackProp and Guided Grad-CAM fail both (others fail at least one of the checks).

Among these saliency maps, the most successful saliency maps could be Grad-CAM (Gradient-weighted Class Activation Mapping) [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF]. It is a very popular method used in computer vision to understand which parts of an original image is used by a trained neural network to make a particular classification decision. Grad-CAM and Grad-CAM++ are considered generalizations of the original CAM method [START_REF] Zhou | Learning Deep Features for Discriminative Localization[END_REF]. The idea of Grad-CAM is to put a heat map on the original input of the neural network to highlight the regions (features) that the neural network looks at for the decision.

Attention mechanism was firstly introduced by [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF] for the neural machine translation task, then attention networks have met a great success in natural language processing (NLP), object detection, and other tasks. Attention scores are learned to reveal the inner relation between features. As a built-in component, attention maps are available by default in attention-based networks, and could be used directly to provide the feature importance.

There are some disagreements on whether an attention map could be used as an explanation. [START_REF] Jain | Attention Is Not Explanation[END_REF] pointed out that "attention is not explanation" because the relationship between attention weights and model predictions is not clear, and the attention map is not always the same as the gradient-based saliency map. However, [START_REF] Jain | Attention Is Not Explanation[END_REF] were challenged by a paper entitled "attention is not not explanation" [START_REF] Wiegreffe | Attention Is Not Not Explanation[END_REF]. They point out that the argument "attention is not explanation" is based on one's definition of "explanation" and propose different tests to prove that the attention map can be an explanation.

We believe that an explanation is nothing but an observation, and we use interpretability as a generalized term, thus, we adapt the idea of [START_REF] Gilpin | Explaining Explanations: An Overview of Interpretability of Machine Learning[END_REF] in this thesis: if an attention map of a test sample matches the attention of human, then it can be a good explanation.

Rule-based explanations: Anchors

Sometimes, linear explanations, such as the ones given by LIME, could lead to poor performance because the decision boundary of a complex model in the vicinity of an input instance could be highly non-linear. An anchor provides an explanation with sufficient conditions (rules) for the prediction [START_REF] Ribeiro | Anchors: High Precision Model-Agnostic Explanations[END_REF]). Anchor explanation is effective at explaining non-linear decision boundaries of the input example. More importantly, the produced rules can often be generalized to many instances other than a given input instance.

Counterfactual: Contrastive explanation method

Counterfactual explanation methods try to find a counterfactual example x ′ with the smallest change to the feature values of an original input x, but leading a different prediction y ′ instead of a predefined prediction y. [START_REF] Dhurandhar | Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives[END_REF] argued that counterfactual explanations are natural for humans and propose a contrastive explanation method (CEM) that generates pertinent positives (PP), i.e., features should be minimally and sufficiently present, and pertinent negatives (PN), i.e., features should be minimally and necessarily absent, from the input instance as its explanations. The quality of the modified x ′ is measured with an autoencoder by evaluating the closeness of the data manifold.

However, for an instance to be explained, counterfactual methods may find several counterfactual examples, which may contradict each other (also called Rashomon effect), and it is also possible that the counterfactual may find no example for a given tolerance value of the "small change". These situations may cause inconvenience for final users.

Summary

In this chapter, we first discussed the definition and the necessity of interpretability in the context of AI. As there exist ambiguities between the terminology of interpretability and explainability in the literature, we reviewed the different definitions and decided to use model interpretability as a general term, i.e., a model is interpretable as long as it is understandable by a human. We need interpretability not only because of the potential harm (e.g. trust and ethic problems) that a non-interpretable machine learning system may cause, but also because of its abilities to debug the model or to make causal inference by answering questions related to causality.

The interpretability concept contains many aspects. A model can be understood in either global, modular, or local level, and based on the moment that we interpret the model, i.e., before training, during a prediction, after a prediction, we can have ad-hoc, in-situ and post-hoc interpretability. Note that although global post-hoc interpretability exists, it is not very helpful in practice (cf. Section 2.5.1), thus post-hoc interpretability is obtained with an explanation at the local level.

Global level interpretability comes with the sparsity of the model, and modular level interpretability means that parts of the model is understandable by human. Regression model, decision trees, and classification rules are interpretable at the global level. Naive Bayes, kNN, and prototype-based models are interpretable at the modular level. For black-box models, post-hoc methods are applied to understand them locally to an input instance of the model.

Chapter 3

INTERPRETABLE TIME SERIES CLASSIFICATION UNDER A UNIFIED FRAMEWORK

Many time series classification (TSC) methods, especially ensemble methods and neural networks, are focused on getting better performance in accuracy. However, the stateof-the-art TSC methods are considered as black-box models (cf. Chapter 2.4) and not deemed interpretable. We need interpretable TSC, because TSC can be applied in critical decision-making process and thus cause serious problems (cf. Section 2.3).

In Section 3.1, we focus on an analytical framework to benchmark interpretable time series classification methods. The main part of this framework was proposed by Fauvel (2020). It is called a performance-explainability framework. The framework of Fauvel (2020) is focused on information about the explanations given by post-hoc techniques. Different from Fauvel (2020), we adapt it to emphasize in-situ interpretability for time series classification. The modified framework is called performance-interpretability framework. In Section 3.2 we review the context of interpretability in time series classification, specifically the post-hoc explainable methods for TSC models, and we instantiate the performance-interpretability framework to compare existing explanations for TSC tasks.

Performance-interpretability framework

As in Definition 3, in this thesis we emphasize comprehensibility as the most important property for interpretable time series classification. We are inspired by the literature in interpretability (Arrieta et al. 2020;[START_REF] Rojat | Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey[END_REF], especially the framework of Fauvel et al. (2020b), and we adapt this framework to answer the following questions:

-How does the model perform in the state-of-the-art? -How is the model interpretable?

-What is the scope of its interpretability (granularity)? -Are the explanations faithful? -Which kind of information do the explanations provide? -What is the target user category of the explanations?

The details of the components that answer these questions are discussed in the following of this section. Inspired by Fauvel et al. (2020b), we present this framework in parallel coordinates plot in order to compare different methods, as shown in Figure 3 Every single model improves between the bottom and the top of a given dimension.

Performance

The level of performance of the model is the first component in the framework. Different metrics (e.g. accuracy, F-score, receiver operating characteristic (ROC) curve, . . . ) exist to evaluate the performance of a machine learning model. The choice of a metric to evaluate the performance of a machine learning model depends on the application.

In this thesis, we focus on TSC tasks and we use the accuracy score as the performance, because it is the most widely used metric for classification tasks. Note that the evaluation setting could be changed. The performance of a tested model is then categorized into 3 categories:

-Best: the tested model has a comparable performance as state-of-the-art models; -Similar: the tested model performs similarly to the compared methods; -Below: the performance of the tested model is below the performance of the compared methods.

Model interpretability

"How is the model interpretable?" Different from the comprehensibility proposed by Fauvel et al. (2020b), a model can be in-situ or post-hoc interpretable by Definition 3: an in-situ interpretable model is self-explainable, and a black-box model needs post-hoc explanations.

Scope of interpretability (granularity)

Scope is also important for the quality of interpretability. Different from Fauvel et al. (2020b), we modified the granularity of an interpretation, as discussed in Section 2.2.1: (i) for in-situ interpretable models, the interpretability is at the global level when the model is simple or sparse (cf. Section 2.4.1), and is at the modular level when one can understand a part of the model (cf. Section 2.4.2); or it can also be interpretable at the local level; (ii) for black-box models that need post-hoc explanations, the interpretability is at the global and/or local level.

Faithfulness

The faithfulness is an important property of explanations. There exists a variety of terms related to faithfulness (e.g. fidelity [START_REF] Guidotti | A Survey of Methods for Explaining Black Box Models[END_REF], trustworthiness [START_REF] Camburu | Explaining Deep Neural Networks[END_REF]). It refers to how accurately an explanation reflects the true reasoning process of the model [START_REF] Wiegreffe | Attention Is Not Not Explanation[END_REF]. Since explanations provided by surrogate models cannot be perfectly faithful to the original model [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF], we consider the faithfulness proposed by Fauvel et al. (2020b) good enough for us to compare explanations:

-Perfect: an explanation extracted directly from the original model is perfectly faithful;

-Imperfect: an explanation extracted from surrogate models is imperfectly faithful.

3.1.5 Information type: causality, patterns, and feature importance "Which kind of information does the explanation provide?"

Different explainers may provide different forms of explanations (cf. Section 2.5), e.g. saliency maps [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF], linear models (LIME) [START_REF] Ribeiro | Why Should I Trust You?": Explaining the Predictions of Any Classifier[END_REF]), decision rules [START_REF] Ribeiro | Anchors: High Precision Model-Agnostic Explanations[END_REF], counterfactual examples [START_REF] Dhurandhar | Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives[END_REF], etc. These forms of explanations provide different types of information (in the order from the best to the worst):

-Causal rules / counterfactual examples; -Patterns: sequences and itemsets; -Feature importance: features+time+values, features+time, and features. Among these explanations, the most valuable information provided by an explainer are causal rules and counterfactual examples [START_REF] Pearl | The Book of Why: The New Science of Cause and Effect[END_REF]. Causal rules provide the true cause of some model predictions (cf. Section 2.3.1), and counterfactual examples provide contrastive explanations (cf. Section 2.5.2). However, most of the time, machine learning models are only capable of discovering correlations, which may not provide an intuition of possible causal relations, among the data (Arrieta et al. 2020).

Besides causal rules and contractual examples, the most intuitive explanations resemble the information we perceive in day-to-day life, such as visual information (images), human natural language (text, sound), smell, etc. The information provided by an explanation can be categorized into two types: patterns and feature importance. Patterns are frequent features in a dataset, and feature importance is the relative importance of the features for a prediction.

Pattern-based explanations are better than post-hoc feature importance explanations. In the paper "This looks like that: deep learning for interpretable image recognition", [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF] proposed to learn prototypes, which are representative patterns in a dataset, to make predictions. These prototypes are constrained by training examples from the dataset. Their prototype-based method is considered in-situ interpretable. Two types of patterns can be given as information (Fauvel et al. 2020b):

-Itemsets: "the explanations provide patterns under the form of unordered groups of values, also called itemsets."

-Sequences: "the explanations provide patterns under the form of ordered groups of values, also called sequences." Note that shapelets are naturally subsequences of time series thus belong to sequences.

Feature importance explanations are extracted with LIME or Grad-CAM methods (cf. Section 2.5.2). For TSC task, Fauvel et al. (2020b) categorized feature importance into three groups:

-Features: the explanations only provide features relatively more important than others; -Features+time: the explanations provide relative important features and the occurring timestamps; -Features+time+values: the explanations provide relative important features, the occurring timestamps, and the discriminative values of a feature for each class.

Audience

"Is the explanation fit for broad audiences, domain experts, or machine learning experts?" Fauvel et al. (2020b) propose to categorize the target users into three groups, from the most general to the least:

-Broad audience: non-domain experts (e.g. policymakers); -Domain experts (e.g. researchers, physicians, doctors, electricians, traders, . . . ); -Machine learning experts.

The more intuitive an explanation is, the more general the target users could be. The visual patterns (in images) could be good representations of the data for broad audiences, while a cardiologist (as a domain expert) could understand the shapelets in ECG data.

A comparison of post-hoc explanations for TSC

Grad-CAM and LIME are two famous methods for post-hoc explanations in machine learning (cf. Section 2.5). Both methods have been adapted for explaining time series classification results. We compare in the performance-interpretability framework for two post-hoc interpretability techniques in this chapter (namely CAM and LEFTIST), as shown in Figure 3.2.

As explained in Section 2.5.2, many post-hoc techniques superpose a heatmap on the input of the model as their explanations. The idea is to highlight the important regions of an input (e.g. an image or a sequence of text) to show the feature importance. Heatmap-based techniques are applicable to almost all TSC problems, and they highlight the discriminative regions on the time series. Based on our framework, the discriminative regions provide the features+time information. Many recent works used heatmaps on the input time series as their explanations, e. LIME is another famous method that applies perturbations on the original input of the model. As discussed in Section 2.5.2, the interpretable components (the components used as features) of LIME can be superpixels for images, attributes for tabular data, and words for text, but it can be difficult to determine the interpretable components in a time series. [START_REF] Guillemé | Agnostic Local Explanation for Time Series Classification[END_REF] adapted LIME for time series classification task and proposed a method called Local Explainer For TIme Series classificaTion (LEFTIST). The basic idea of LEFTIST is to use prefixed (both the length and the position) shapelets as the interpretable components, and provide the feature importance of each shapelet. [START_REF] Guillemé | Agnostic Local Explanation for Time Series Classification[END_REF] claimed that this idea corresponds to superpixels in computer vision. Figure 3.4 illustrates an explication given by LEFTIST Guillemé et al. (2019b). Chapter 4

In-situ INTERPRETABLE TIME SERIES CLASSIFICATION

In this chapter, we make use of a simple convolutional network to classify time series, and we show how one can leverage the principle of adversarial learning to regularize the parameters of this network such that it learns shapelets that could be more useful to interpret the classifier's decision. We detail our eXplainable-by-design CNN (XCNN) method1 in Section 4.1, and we show quantitative and qualitative results on the usual time series benchmarks [START_REF] Chen | The UCR Time Series Classification Archive[END_REF] in Section 4.2. Our XCNN performance are on a par with comparable state-of-the-art methods, and comparing to existing post-hoc explanations, we provide new types of explanations for neural networks' predictions.

Method

In this section, we present our approach to learn interpretable discriminative shapelets for time series classification.

Our base time series classifier is a Convolutional Neural Network (CNN). Closely related to shapelet-based methods (as stated in Section 1.3.2 and Section 3.1), variants of Convolutional Neural Networks (CNN) have been introduced for the TSC task [START_REF] Wang | Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline[END_REF]. These are mostly mono-dimensional variants of CNN models developed in the Computer Vision field. Note however that most models are rather shallow, which is likely to be related to the moderate sizes of the benchmark datasets present in the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF].

Both learning shapelets (LS) and CNN slide the shapelets on the series to compute local (dis)similarities. The main difference between the classifier of LS and that of our method is the (dis)similarity between a shapelet and a series. LS uses a squared Euclidean distance between a portion of the time series Z starting at index i and a shapelet S of length L:

F (z i:i+L , S) = L l=1 z (i+l-1) -S (l) 2 . (4.1)
The smaller this distance, the closer the shapelet is to the considered subseries. In a CNN, the feature map is obtained from a convolution, and hence encodes cross-correlation between a series and a shapelet:

F (z i:i+L , S) = L l=1 z (i+l-1) • S (l) . (4.2)
Note that here, the higher F (z i:i+L , S), the more similar the shapelet is to the subseries. We will loosely refer to the convolution filters of a CNN classifier as Shapelets in the following.

Inspired by previous works on adversarial training, e.g. Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], we make use of both a CNN classifier and an adversarial neural network (as shown in Figure 4.1) to regularize the convolution parameters of our classifier. We call this neural network architecture eXplainable-by-design CNN (XCNN).

A GAN is a combination of two neural networks: a generator and a discriminator which compete against each other during the training process to reach an equilibrium where the discriminator cannot distinguish between the generator outputs and real training data. In a GAN, the adversarial network is used to push the generator towards producing data as similar to real data as possible.

Contrarily to GANs, our adversarial architecture does not rely on a generator to produce fake samples from a latent space. Our regularization acts as a soft constraint for the classifier to learn shapelets (i.e. the convolution filters of the classifier) as similar to real pieces of the training time series as possible. As described in our framework (cf. Section 3.1), our model is self-explainable in modular level (due to the constrained shapelets), because the XCNN strategy iteratively modifies the shapelets such that they become close to subseries from the training set. To execute this strategy, the discriminator is trained to distinguish between real subseries from the training set and the shapelets. During the regularization phase, the discriminator updates the shapelets so that they become more and more similar to real subseries.

To obtain the best trade-off between the discriminative power of the shapelets (i.e. the final classification performance) and their interpretability, our training procedure alternates between training the discriminator and the classifier.

The type of data given as input to the discriminator is another major difference between a GAN and XCNN: in a GAN, the discriminator is fed with complete instances, while in XCNN, the discriminator takes subseries as input. These subseries can either be shapelets from the classifier model (denoted as x in Figure 4.1), portions of training time series (denoted as x) or interpolations between shapelets and training time series portions (x, see the following section for more details on those), as illustrated in Figure 4.2. This process allows the discriminator to alter the shapelets for better interpretability.

Loss Function

As for GANs, our optimization process alternates between losses attached to the subparts of our XCNN model. Here, each training epoch consists of three main steps that are (i) optimizing the classifier parameters for correct classification, (ii) optimizing the discriminator parameters to better distinguish between real subseries and shapelets and (iii) optimizing shapelets to fool the discriminator. Each of these steps is attached to a loss function that we describe in the following.

Firstly, a multi-class cross entropy loss is used for the classifier. It is denoted by L c (θ c ) where θ c is the list of all classifier parameters.

L c (θ c ) = - n cl c=1 y o,c log(p o,c ) (4.3)
where n cl is the number of classes, y is the binary indicator if class label c is the correct classification for observation o, and p is predicted probability observation o is of class c.

Secondly, our discriminator is trained using a loss function derived from the Wasserstein GANs with Gradient Penalty (WGAN-GP) [START_REF] Gulrajani | Improved Training of Wasserstein GANs[END_REF]:

L d (θ d ) = E x∼P S [D(x)] -E x∼Px [D(x)] + λ E x∼P x (||∇ xD(x)|| 2 -1) 2
where P S is the empirical distribution over the shapelets, P x is the empirical distribution over the training subseries, and x = ϵx + (1 -ϵ)x, where ϵ is drawn uniformly at random from the interval [0, 1] (cf. 

L (j) r ← -D(x j ) end θ s ← Adam(∇ θs 1 n S n S j=1 L (j) r , θ s , α, β 1 , β 2 )
end end shapelets, as well as sampling subseries from the training set, is performed uniformly at random.

Experiments

In this section, we will detail the training procedure for XCNN and present both quantitative and qualitative experimental results. The source code for our experiments was made publicly available2 .

Experimental Setting

Competitors

We provide experiments about the quality (for explanations) of our learned shapelets as well as their quality for classification. We consider that the similar a shapelet looks like a part of a subseries, the more interpretable it is. This criterion is similar to the idea of prototype-based interpretability proposed by the paper "This looks like that: deep learning for interpretable image recognition" [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF]. As explained in Section 1.3.2, our most relevant competitor is Learning Shapelets (LS) from [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF] as it also describes a shapelet-based model where the shapelets are learned and where a single model is used for classification. The quality (for explanations) of the shapelets produced by [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF]) and [START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF]) is, by design, perfect since the shapelets are true subpart of the original series so we do not compare with them but only with the shapelets learned by [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]. However, we compare our classification performance to [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF]), Fast Shapelets [START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF] and the recent ELIS (Fang et al. 2018).

Datasets

We use the 85 univariate time series datasets from the UCR repository for which most of our baselines results are already available [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. Note that our CNN-based method may also be suited for multivariate time series but giving "intuitive" explanations for multivariate data is far from obvious and we decided to focus only on univariate ones in this paper. The datasets are significantly different from one to another, including seven types of data with various number of instances, lengths, and classes. The splits between training and test sets are provided in the repository.

Architecture details and parameter setting

We have implemented the XCNN model using TensorFlow (Abadi et al. 2015) following the general architecture illustrated in Figure 4.1. The classifier is composed of one 1D convolution layer with ReLU activation, followed by a max-pooling layer along the temporal dimension and a fully connected layer with a soft-max activation. The shapelets use a Glorot uniform initializer [START_REF] Glorot | Understanding the Difficulty of Training Deep Feedforward Neural Networks[END_REF] while the other weights are initialized uniformly (using a fixed range). For each dataset, three different shapelet lengths are considered, inspired by the heuristic from [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) but without resorting to hyper-parameter search: we consider 3 groups of 20 × n cl shapelets of length 0.2T , 0.4T and 0.6T , where n cl is the number of classes in the dataset and T is the length of the time series at stake.

The convolution filters of the classifier, i.e. the shapelets, are given as input to the discriminator which has the same structure as the classifier, but with shorter convolution filters (100 filters of size 0.06T , 0.12T and 0.18T ) and a single-neuron tanh activation instead of the soft-max in the last layer. For optimization, we use Adam optimizer with a standard parameterization (α = 10 -3 , β 1 = 0.9 and β 2 = 0.999) and each epoch consists in n c = 15 (resp. n d = 20 and n r = 17) mini-batches of optimization for the classifier loss (resp. discriminator and regularizer losses).

Experimental results are reported in terms of test accuracy and aggregated over five random initializations. All experiments are run for 8,000 training epochs.

Qualitative results for explainability

We first describe how we compute the shapelet contributions to the classification of one (or multiple) example(s) and validate that our adversarial regularization actually ensures that shapelets are visually similar to the training data. We believe that the Euclidean distance is the most understandable distance for human eyes so all the figures that show shapelets and series will be displayed using this distance even though it is not the one optimized during XCNN training.

Then we show, in different ways how shapelets that look like subseries are better suited to explain decisions by comparing with standard post-hoc explanations from gradientbased and perturbation-based methods (cf. Section 3.2).

Training process

We illustrate our training process and its impact on a single shapelet in Figure 4.3. In this figure, we show the evolution of a given shapelet for the Wine dataset at epochs 20, 200, 800 and 8,000. One can see from the loss values reported in Figures 4.3a and 4.3b that these correspond to different stages in our learning process. At epoch 20, the Wasserstein loss is far from the 0 value (L d = 0 corresponds to a case where the discriminator cannot distinguish between shapelets and real subseries), and this indeed corresponds to a shapelet that looks very different from an actual subseries. As epochs go, both the Wasserstein loss L d and the cross-entropy one L c get closer to 0, leading to both realistic and discriminative shapelets. Figure 4.4 -Three most discriminative shapelets obtained for the datasets Beef, Car, DiatomSizeReduction, ECG200, GunPoint, Herring, OliveOil, Strawberry (rows 1 to 8, respectively) using (left column) Learning Shapelets or (right column) our XCNN architecture. The average discriminative power of the shapelets is evaluated using Eq. 4.5 and each shapelet is superimposed over its best matching time series in the test set.

Shapelet contributions (modular level interpretability)

The computation of the contribution of a shapelet to a decision is based on Grad-CAM. The "interesting" parts are shown using a heat map on the original image. We recall that in a convolutional neural network, a feature map is the output of a particular layer of neurons. It somehow (ignoring the activation function) shows the response of a given convolution filter to the output of the previous layer. Grad-CAM computes the feature importance α c k of the feature map A k on the classification decision c. This is computed after the final pooling layer which transforms all spatial positions (for images)

A k ij of the k th feature map to a single value F k . The filter importance weight α c k , for a given input image (omitted for conciseness), is calculated with:

α c k = ∂y c ∂F k
where y c is the output of the network for class c.

Compared to the image classifiers used in [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF], in our time series classification problem (1-dimensional) we are interested in both the positive and negative contributions of each learned shapelet on the classification of the (set of) series (whereas in [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF]) only the positive contributions matter). Those contributions are defined for a trained network and a given time series Z i (implicitly present in the partial derivatives) as:

p k (Z i ) = ReLU ∂y c ∂F k and n k (Z i ) = -ReLU - ∂y c ∂F k .
The positive and negative contribution of a shapelet is used for identifying whether the appearance of a shapelet is supportive or not for a prediction. Future explanations of this equation is discussed in the next subsection, as shown in Figure 4.6.

As F k is obtained from a global max pooling (F k = max t A k t ), each shapelet contribution can be associated to a timestamp

t = arg max t ′ A k t ′ ,
allowing us to localize the contribution. To produce a heat map with the positive contri-butions, we follow the same principle as in [START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF]):

L mask (Z i ) = k p k (Z i ) Ãk (Z i ).
where Ãk is a vector of all zeros but at position t = arg max t ′ A k t ′ (where A k t is stored). To obtain the global positive contribution of a shapelet k given a set of N time series examples, we compute

gp k = 1 N N i=1 p k (Z i ). (4.5)
The shapelets shown in Figure 4.4 are the 3 most contributing shapelets, according to this global criterion. In Figure 4.4, the shapelets learned by XCNN seem visually closer to the time series than the shapelets learned by LS.

We then computed the average L 2 between a shapelet and a subpart of a time series over all the shapelets learned by XCNN and by LS for a given dataset, computed at the best matching point of the closest time series in the dataset (also in terms of L 2 ). This L 2 distance is meaningful in our framework, because the closer a shapelet is to a time series, the more it contributes to the explainability of the model. The results are given in Figure 4.5. This scatter-plot shows that, even if the optimized distance between the shapelets and the input series in the neural network is not the L 2 one (it is the dot product), our adversarial regularization allows XCNN to obtain closer (in terms of L2) shapelets than LS which are deemed more suited for explanations.

Local and global interpretations with XCNN shapelets

Since we use a neural network classifier, we could directly benefit from the standard gradient-based explanations, as also discussed in (Fawaz et al. 2019), to show what parts of a given time series example is important for the classifier to take its classification decision.

These, nowadays standard, gradient-based explanations are interesting but do not show the inner working of the classifier and, in particular, the reason why some parts of the input series were particularly useful for the classification. We believe that our ability, with XCNN, to show the shapelets that were learned and used to make the classification gives a different type of information than the gradient-based one. To illustrate this, we overlay in Figure 4.6a and 4.6b the three most positively (resp. negatively on the right) contributing shapelets on the time series at their best matching location (using L 2 distance). Note that on the left side, the horizontal axis gives the length of the series (in black) while on the right, it gives the length of the shapelets which is at most 60% of the length of the series. We do not show the original series for the negative shapelets since, by definition, they are very far from the original series.

In Figure 4.6b there is no negative shapelet used to discriminate the series of this dataset. This is due to the fact that the series for all the classes are very similar except for very small changes in the slope of the bump or in the size of the plateau at the top of the bump. These small changes can be captured by the positive shapelets but many of them are used to succeed in discriminating the classes.

We can also use our method to show the shapelets that most contribute to the classification of all examples of a given class. This is useful when one wants to understand the class characteristics. The global relative positive contribution of one shapelet considering all series from a given class is:

rp k (c) = ReLU     1 N c N c i=1     p c k (Z i ) - 1 n cl -1 n cl -1 j=1 j̸ =c p j k (Z i )        
where N c is the number of examples in class c, and n cl is the total number of classes Note that there are in total {92, 94, 114} positive shapelets used for this decision and {148, 146, 126} negative ones for these three predictions, resp.

(b) Interpretations for random series of the classes (class 0, 1, 2, resp.). Note that there are in total {239, 239, 239} positive shapelets used for this decision and {0, 0, 0} negative ones for these three predictions, resp. 

Comparison with perturbation-based explanations (LEFTIST)

We compare the explanations provided by XCNN with the ones from LEFTIST [START_REF] Guillemé | Agnostic Local Explanation for Time Series Classification[END_REF]. As discussed in Section 3.2, LEFTIST prefixes the number of the interpretable components (the segments of the time series).

We firstly apply LEFTIST on a same time series with different segments on the Car dataset. As shown in Figure 4.8, each color block indicates the contribution of a segment: green and red blocks indicate positive and negative contributions, respectively, and the opacity of the color indicates the absolute value of the contribution. When segments increase from 3 to 20, the contribution of the leftmost feature from the segments changes from positive to negative, and when there are a lot of segments (100 for instance), each segment contributes poorly to a prediction. This means that the segment number is difficult to choose, and explanations are highly dependent on different segment numbers. The lengths of shapelets in our XCNN are also prefixed, but as shown in Figure 4.6a, shapelets of different length could be used to explain a prediction result.

Figure 4.8 illustrates that for LEFTIST, once the segments are fixed, the position of the shapelets are fixed. The shapelets in our XCNN are sliding windows, which are deemed to be more flexible for giving explanations.

From Figure 4.9a we can see that, surprisingly, although the time series are from the same class, the contributions of the first and the last segments are not the same. We then increase the segments, as shown in Figure 4.9b, and find that the discriminative parts of different series from the same class become closer to what is found by XCNN.

These examples show that LEFTIST inherits the drawbacks of LIME: (i) the number of segments are difficult to set and this may cause faithfulness problems, (ii) once the number of segments is fixed, each interpretable component has a fixed position and the same length. Compared with the explanations given by our XCNN, those of LEFTIST are less flexible. 

Training Time

(n 2 • T 4 ) O(n • T 2 ) O(n • (T 2 n shap + n shap • n cl ))
We provide a theoretical complexity study (see Table 4.1) of all the baselines and of our XCNN method. Our method is based on a classifier and a discriminator, and both of them are simple CNNs. So the complexity of our algorithm (O(n•(T 2 n shap +n shap •n cl ))) is related to training a CNN and should depend mainly on the number of examples (n), the average length of the time series (T ), and the number of classes (n cl ), since the latter is used to decide the number of shapelets to be learned. Note that for both LS and XCNN, the provided complexity is the one for a single iteration of the algorithm since the number of iterations required for such algorithms to converge is highly data dependent.

To have a better grasp on the actual training time of all methods, we ran the methods on a single dataset (ElectricDevices) and recorded the CPU time. The experiments were conducted on a Debian Cluster using Intel(R) Xeon(R) CPU E5-2650 v4 Processor (12 core 2.20 GHz CPU) with 32GB memory. The results are averaged over five runs. The implementation code of our baselines is taken from [START_REF] Bagnall | The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances[END_REF] (as for the accuracy results). As expected, the original Shapelet [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF]) method does not finish in 48 hours for this medium size dataset. FS finishes in 12.1 minutes, LS finishes in 2323 minutes, and our method takes 142 minutes. The theoretical complexity of LS and XCNN is identical so these results were surprising. We suspected that the JAVA implementation of LS was not well optimized and we used the implementation of LS method from tslearn (Tavenard et al. 2020) using Keras 3 with TensorFlow as backend. With this implementation, the training phase took only 71 minutes for LS on this dataset (compared to 142 for XCNN) which shows that the time difference between the two algorithms is mainly related to the implementation (and the hyper-parameters related to the number of epochs).

Discussion

We place our XCNN method in our performance-interpretable framework, as shown in Figure 4.14. Note that our model is interpretable at all levels.

Our main contribution uses a shapelet-based representation for TSC tasks. Our shapelets are constrained to be the discriminative parts of the time series, as the prototypes, and provide in-situ modular level interpretability as well as global and local level explanations. We consider shapelets, the subsequences of time series which are both important for classification and for explanations: for us, the visual quality of shapelets, i.e., the similarity to real time series, provides sequences for explaining a particular prediction to domain experts.

As discussed in Chapter 1, the representations of time series can be in many domains (e.g. time domain, frequency domain, shapelet domain, etc.). Our shapelet-based method only gives explanations in the shapelet domain, i.e., the presence/absence of a shapelet leads to such prediction. However, sometimes a discriminative feature of a prediction could be found in other domain, e.g. the presence of a frequency in the time series leads to a particular class. In this context, our shapelet-based method is limited in the shapelet domain.

Summary

In this chapter, we have presented a new shapelet-based time series classification method that produces shapelets that are, by design, better suited to explain decisions. The method is based on a novel adversarial architecture where one convolutional neural network is used to classify the series and another one is used to constrain the first network to learn both discriminative and meaningful shapelets. Our results show that the expected trade-off between accuracy and interpretability is satisfactory: our classification results are comparable with similar state-of-the-art methods but with shapelets that can be used in many different ways to explain the decisions. We also illustrate how the learned shapelet can be used to better understand decisions made by a classifier in terms of (i) localization of the discriminative information in the time series and (ii) visualization of the most prominent shapelets at stake in classification decisions.

We believe that the proposed adversarial regularization method could be used in many more applications where one would like to shape the features used to classify in order to better explain the decisions. This is different from what is, for example, used in Generative Adversarial Networks, where the regularization is made on the latent representation which is much less interesting in the case of time series when trying to obtain explainable decisions.

CONCLUSION AND PERSPECTIVES

Conclusion

As time series classification (TSC) and interpretability are both key issues in machine learning, in this thesis we address the problem of interpretable time series classification.

There exists a variety of terms about interpretability (e.g. explainability, comprehensibility), and we standardize the terminology of model interpretability, i.e., as long as a human can understand a model, either through its sparsity, through its description in a familiar language, or through a produced explanation, the model is interpretable. We emphasize the difference between in-situ interpretable model and post-hoc interpretability for a black-box model. We discuss the necessity of interpretability in AI system: interpretability is important not only for trust or ethic/regularization reasons, but also because machine learning experts could apply interpretability to understand better the data or to debug the model. Based on the life cycle of a machine learning model, we distinguish ad-hoc, in-situ, and post-hoc interpretability. We believe, as also pointed out by [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF] and [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF], that post-hoc explanations may cause faithfulness problems, and that in-situ ones might be preferable. Similar to Arrieta et al. (2020), we group different machine learning models in terms of their interpretability at a global level (e.g. statistical regression models, decision trees, and rule-based learning), at a modular level (e.g. naive Bayes and kNN), and non-interpretable models (e.g. SVM, ensemble methods, and deep neural networks). For those non-interpretable models, we review post-hoc explanation techniques to understand the prediction of a model locally, i.e., related to a specific prediction.

We adapted a framework of Fauvel et al. (2020b) (called performance-explainability framework) to put our method into perspective. Our framework is called performanceinterpretability framework, and tries to answer the following questions: How does the model perform in the state-of-the-art? How is the model interpretable? What is the scope of its interpretability (granularity)? Are the explanations faithful? Which kind of information do the explanations provide? What is the target user category of the explanations? Different from the framework of Fauvel et al. (2020b), which focuses on the quality of spatial information in parallel from an input time series, and makes decisions based on the extracted information. XCM performed well, but as Fauvel et al. (2020a) applied Grad-CAM for the explanations for XCM, the explanations of XCM are post-hoc. Different from Fauvel et al. (2019), our objective is to build in-situ interpretable networks. [START_REF] Bostrom | A Shapelet Transform for Multivariate Time Series Classification[END_REF] proposed shapelet-based method for MTSC tasks: Multivariate Dependent Shapelet Transform (MST D ) and Multivariate Independent Shapelet Transform (MST I ). The difference is that MST D applies a shapelet as sliding windows for all the dimensions, while MST I finds the closest match of a shapelet to each dimension independently (thus the best match time stamps can be different for MST I ). When we adapt our XCNN to MTSC, the shapelets can also be treated as dimension dependently or independently, and the interpretation of these shapelets on the multivariate time series should be done carefully.

As a third perspective, we would like to increase the depth of XCNN to potentially increase its performance. In a deeper network, it will not be possible to apply a regularization on the "shapelets" in our XCNN. We could regularize the "prototypes", as the prototypical part network (ProtoPNet) proposed by [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF]. As discussed in Section 2.4.2, ProtoPNet uses several 1 × 1 convolutional operations as their prototypes in the prototype layer, and they constrain the prototype layer to be similar to a patch of the output of the last convolutional layer before the prototype layer. Each prototype is a latent representation of some training image patch, and the visualization of the prototypes are upsampled in the original image. Thus, we consider applying a prototype layer as ProtoPNet does, combined with our current regularization to make the XCNN deeper. This combination would also make it possible to use the network architecture on different data types than time series (images for example). Systems 2018, NeurIPS 2018[START_REF] Dhurandhar | Explanations Based on the Missing: Towards Contrastive Explanations with Pertinent Negatives[END_REF], Montréal, Canada, pp. 9525-9536. Agrawal, Rakesh, Christos Faloutsos, and Arun N. Swami (1993), "Efficient Similarity Search in Sequence Databases", in: Foundations of Data Organization andAlgorithms, 4th International Conference, FODO'93, Chicago, Illinois, USA, October 13-15, 1993, Proceedings, vol. 730, pp. 69-84. Alaa, Ahmed M. andMihaela van der Schaar (2019) 2019[START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF], Vancouver, BC, Canada, pp. 11301-11311. Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner (2016), "Machine Bias", in: ProPublica, May 23.2016, pp. 139-159. Arnold, Matthew et al. (2019) Bien que certaines méthodes de l'état de l'art permettent d'apprendre des shapelets discriminantes automatiquement, nous constatons qu'elles ne sont pas toujours similaires aux morceaux d'une série réelle existante. Il est donc difficile de les utiliser pour expliquer la décision du classificateur à un utilisateur qui pourrait être dérouté par ce langage d'explication éloigné des séries qu'il connait.
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Nous proposons une méthode innovante qui permet, grâce à un réseau convolutif simple, de classer des séries temporelles et nous introduisons une régularisation antagoniste pour contraindre le modèle à apprendre des shapelets interprétables.

Nos résultats de classification sur de nombreux jeux de données de séries temporelles univariées, sont comparables, en terme de précision, aux meilleurs résultats obtenus par les algorithmes de classification basés sur les shapelets. Cependant, nous montrons, en comparant avec d'autres méthodes d'explication sur des modèles de type "boîte noire", que notre régularisation antagoniste permet d'apprendre des shapelets qui sont, par conception, mieux adaptées pour expliquer les décisions et cela pour plusieurs niveaux d'explication.

Title: Interpretable time series classification

Keywords: Time series, interpretability, convolutional neural networks, adversarial training, explainable artificial intelligence Abstract: In this thesis, we will study different existing methods that can be used to explain decisions taken by time series classification models. We argue that, in the case of time series, the best explanations should take the form of sub-series (also called shapelets) since it is "pattern language" familiar to a time series user.

We review state-of-the-art classification methods that can jointly learn a shapeletbased representation of the series in the dataset and classify the series according to this representation. However, although the learned shapelets are discriminative, they are not always similar to pieces of a real series in the dataset. This makes them difficult to use to explain the classifier's decision. We make use of a simple convolutional network to tackle the time series classification task and we introduce an adversarial regularization to constrain the model to learn meaningful shapelets.

Our classification results, on many univariate time series benchmark datasets, are comparable with the results obtained by stateof-the-art shapelet-based classification algorithms. However, we show, by comparing to other black box explanation methods that our adversarially regularized method learns shapelets that are, by design, better suited to explain decisions.
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 3 Figure 3 -Example of training time series from GunPoint time series dataset for GunDraw class (left) and Point class (right) from UCR repository (Chen et al. 2015).
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 11 Figure 1.1 -Taxonomy of time series classification methods.

Figure 1

 1 Figure 1.2 -DTW example for two series X and Y: optimal warping path (left) and alignment (right).

Figure 1

 1 Figure 1.3 -PAA segments with different window numbers.
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 1 Figure 1.4 -SAX (left) and 1d-SAX (right).

Figure 1

 1 Figure 1.6 -Architecture of MLP. Each block has 500 neurons, and the values between each block are the dropout probability (Wang et al. 2017).

Figure 1

 1 Figure 1.7 -Inception module: the building block of InceptionTime (Fawaz et al. 2020).

  , because people can hardly trust the model as long as they do not understand how the model works by looking at the parameters learned from training examples. Arnold et al. (2019) proposed four pillars of trusted AI, and interpretability is a means of solving the trust problem.

Figure 2

 2 Figure 2.3 -Classifier failure (Ribeiro et al. 2016): a husky is classified as wolf because the classifier uses the snow from the background on the image as the discriminative feature.

Figure 2

 2 Figure 2.4 -Trade-off between model interpretability and performance (Arrieta et al. 2020).
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 25 Figure 2.5 -Local post-hoc interpretability methods.

  Figure 3.1 -Performance-interpretability framework for TSC: there are 6 dimensions. Every single model improves between the bottom and the top of a given dimension.

  Figure 3.2 -Comparison of TSC methods with their post-hoc explanations for different classifiers namely ResNet (Fawaz et al. 2019) and SVM (Guillemé et al. 2019b).

  g. (Le Nguyen et al. 2019) (the discriminative regions were highlighted), especially neural network-based methods (Fawaz et al. 2019).

  Figure 3.3 illustrates a CAM-based explication for ResNet classifier from Fawaz et al. (2019).

Figure 3

 3 Figure 3.3 -CAM-based explications for a ResNet classifier for GunPoint dataset: a heatmap is superposed on each time series to highlight the discriminative parts (Fawaz et al. 2019).

Figure 3

 3 Figure 3.4 -LIME-based explication for an SVM classifier for a time series belongs to class 1 from GunPoint dataset: the time series is separated into 10 shapelet segments, and each value indicates the contribution of corresponding shapelet segment (Guillemé et al. 2019b).

  Figure 4.1 -Architecture of our proposed eXplainable-by-design CNN (XCNN)
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 42 Figure 4.2 -An example of samples x, x and x provided as input to the discriminator.

  Figure 4.2). Thirdly, shapelets are updated to fool the discriminator by optimizing on the loss L r (θ s ) where θ s ⊂ θ c is the set of shapelet coefficients: L r (θ s ) = -E the whole training procedure to update the parameters of our XCNN model. At each epoch of this algorithm, the three steps presented above are executed sequentially. Note that in the second step (lines 10-17), sampling classifier Algorithm 1: Learning Interpretable Shapelet Require: number of shapelets n S Require: random initialization for the classifier/discriminator/shapelets θ c , θ d , θ s ⊂ θ c Require: gradient penalty coefficient λ Require: number of epochs n epochs , mini-batch size m Require: number of classifier/discriminator/regularization mini-batches per epoch n c , n d , n r Require: optimizer (Adam) hyperparameters α, β 1 , β 2 1 for i = 1, . . . , n epochs do 2 for t = 1, . . . , n c do 3 for j = 1, . . . , m do 4 Sample a pair (Z j , y j ) from the training set 5 ŷj ← h θc (Z j ) 6 L (j) c ← CrossEntropy(y j , ŷj ) 1, ..., n d do for j = 1, ..., m do Sample a shapelet xj from the set θ s , a subseries x j from the training set and a random number ϵ ∼ U [0, 1] xj ← ϵx j + (1 -ϵ)x j L (j) d ← D(x j ) -D(x j ) + λ(||∇ xD(x j )|| 2 -1) 2 end θ d ← Adam(∇ θ d d , α, β 1 , β 2 ) end for t = 1, . . . , n r do for j = 1, . . . , n S do xj ← θ s [j]
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 43 Figure 4.3 -Illustration of the evolution of a shapelet during training (for the Wine dataset).

Figure 4

 4 Figure 4.5 -Average over all the shapelets learned by XCNN and by LS for a given dataset, of the L 2 distances between a shapelet and a subpart of a time series at the best matching point of the closest time series in the dataset.

  Interpretations for random series of the classes (class 0, 1, 3, resp.).
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 46 Figure 4.6 -Local explanations with shapelets for random series for (a) the Car dataset and (b) the DiatomSizeReduction dataset.
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 4 Figure 4.7 -Global interpretations with shapelets for some classes for (a) the Car dataset (b) the DiatomSizeReduction dataset.
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 4 Figure 4.8 -LEFTIST explanations extracted from a same series (from class 2) with different segments (from left to right 3, 5, 20, 100, resp.) on the Car dataset.
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 4 Figure 4.9 -LEFTIST explanations extracted from different series from the same class (class 2) with same segments on the Car dataset.
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 4444 Figure 4.10 -Accuracy comparison between Fast Shapelets (FS) and XCNN on 85 datasets (each point is a dataset) of the UCR repository (Chen et al. 2015).

Figure 4

 4 Figure 4.14 -Placement of our XCNN method in the performance-interpretability framework.

  

Table 4 .

 4 1 -Complexity of four different shapelet-based TSC algorithms (Shapelet[START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF], FS[START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF], LS[START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) and XCNN). n is the number of examples in the training set, T is the average length of the time series, n shap is the number of selected shapelets (if set a priori), and n cl is the number of classes.
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Titre : Classification interprétable de séries temporelles

Mot clés :

https://gdpr-info.eu/recitals/no-71/

https://www.darpa.mil/program/explainable-artificial-intelligence

If not specified, all the time series figures in this chapter are generated with tslearn package(Tavenard et al. 2020).

1.3. Feature extraction methods

A convolutional filter is also called a convolutional kernel.

with a bi-directional RNN architecture, we can also take into account the information in the following sequences.

Similar to aggregate approximation, but uses a DFT instead of a PAA/SAX on each window, and the window size is also changeable.

In the literature on interpretability, numerous names are used for inherently interpretable models (see Section 2.2.1 for details).

It is called the instance level / model level interpretability in Section 2.2.1

Fidelity is the ability of the explanations that reflect the behavior of the black-box model.

An explainable-by-besign model is an in-situ interpretable model (cf. Section

2.2.1).

https://github.com/yichangwang/XCNN
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based on the perturbations of an original input instance, which formulates the local approximation near the input instance.

The mathematical expression of an LIME explanation ξ for a black-box f can be written as:

where the model g is an explanation in the potential interpretable model family G, L measures the unfaithfulness of the explanation, kernel π x (z) = exp -D E (x,z) 2 σ 2 defines the locality between neighborhoods z and the instance x with a hyperparameter σ, and Ω(g) the complexity of g (the regularization term). The generated linear model has only a few non-zero coefficients.

The LIME method can be used for tabular data, text and images. LIME needs to cut the input data into interpretable components and train the linear model on these components, For tabular data, the interpretable components could be attributes, for text they could be words, and for images they could be superpixels. Once the linear surrogate model is built, the coefficients of the linear model indicates the importance of the input attributes. The original LIME method is not suitable for time series, because natural segmentation does not exist on time series for interpretable components. An adapted LIME method (called LEFTIST) for time series data is proposed by [START_REF] Guillemé | Agnostic Local Explanation for Time Series Classification[END_REF], as introduced in Section 3.2.

SHAP is a local model-agnostic explanation method based on game theory. The idea is similar to LIME (and other approximation explanation techniques), i.e. SHAP assigns to each feature an importance score for an individual prediction. Different from LIME, SHAP computes the Shapley value [START_REF] Shapley | A Value for N-Person Games[END_REF] as the feature importance value, i.e. Shapley values fairly distribute the prediction among the features.

Heatmap-based methods: Grad-CAM and attention map Heatmap-based methods are visualization techniques that superpose a heatmap to highlight features in an input (e.g. images or text). They are useful for finding the attention regions of an individual prediction. A large family of heatmap-based methods has been developed recently, including class saliency visualization [START_REF] Simonyan | Deep inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps[END_REF], the class activation maps (CAM) family [START_REF] Zhou | Learning Deep Features for Discriminative Localization[END_REF][START_REF] Selvaraju | Grad-Cam: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF][START_REF] Chattopadhyay | Grad-CAM++: Generalized Gradient-Based Visual Explanations for Deep Convolutional Networks[END_REF], and the attention maps family [START_REF] Xu | Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[END_REF][START_REF] Choi | RETAIN: An Interpretable Predictive Model for Healthcare Using Reverse Time Attention Mechanism[END_REF]Lei 2017).

As an end user could not select one of these methods only based on the visual appeal of the image, Adebayo et al. ( 2018) evaluated the quality of different saliency maps

Part II

Interpretable time series classification

However, we agree with [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF] on the fact that post-hoc explanations could be replaced by in-situ interpretability, because post-hoc explanation can only reflect but can not change the behavior of a model, while constrained interpretable components of the model could ensure the safety and trust of this model.

Summary

In this chapter, we adapted the performance-explainability framework of Fauvel et al. (2020b). We emphasized the in-situ interpretability as defined in Definition 3, and we regroup the granularity of the interpretability with in-situ and post-hoc interpretability. This framework can be used for benchmarking the performance of a model, the model interpretability, and the quality of explanations for time series classification. We examined two famous post-hoc explanation techniques for TSC tasks (namely CAM and LEFTIST) in our framework to compare them. They both provide post-hoc local interpretability, which is often considered unfaithful. The only difference between them is that CAM explanations provide both feature importance and the occurring time stamps, while LEFTIST provide feature importance at prefixed time stamps.

Quantitative Results

XCNN is able to learn, by design, shapelets that are discriminative and suited for explanations. We want to quantify if this is achieved at the expense of classification accuracy and/or computation time. Our goal is to be much faster than exhaustive shapelet search methods (our baseline is Shapelets [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF])), much more accurate than very fast random shapelet selection-based methods (our baseline is FS [START_REF] Rakthanmanon | Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets[END_REF]) and as accurate and as fast as single model shapelet learning methods (our baselines are LS [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) and ELIS (Fang et al. 2018)) with additional interpretability benefits.

Accuracy

We analyze the accuracies obtained by FS, LS, ELIS and our XCNN method on the 85 datasets using scatter plots. We compare FS versus XCNN in Figure 4.10, LS versus XCNN in Figure 4.11 and ELIS versus XCNN in Figure 4.12. We also show how a simple CNN (without the adversarial regularization) compares against LS in Figure 4.13. We indicate the number of win/tie/loss for our method and we provide a Wilcoxon significance test [START_REF] Demšar | Statistical Comparisons of Classifiers over Multiple Data Sets[END_REF]) with the resulting p-value (> 0.01: none of the two methods is significantly better than the other). The points on the diagonal are datasets for which the accuracy is identical for both competitors.

Figure 4.10 shows that, as expected, our method yields significantly better performance than FS. It gives similar results (not significantly better nor worse on average) than ELIS for 52 datasets for which ELIS terminated in 48 hours. However for 33 datasets ELIS took more than 48 hours to complete.

Compared to LS, as shown in Figure 4.11, for most datasets, the difference in accuracy is low, with a small edge (significant) for LS: on average for the 85 datasets, LS obtains an accuracy of 0.77 whereas XCNN obtains an accuracy 0.76. On three datasets (namely HandOutlines, NonInvasiveFetalECGThorax1 and OliveOil), our XCNN method and its regularization seems to be strongly positive (and detrimental on one dataset), in terms of generalization. A simple CNN that would correspond to the classifier of our XCNN alone seems to give slightly better (non significant) results than LS (and thus than our XCNN). This means that our backbone neural network architecture is a good candidate to jointly learn interpretable shapelets and classify time series with little loss on accuracy.

post-hoc explanations, our framework emphasize the in-situ model interpretability, and it combines granularity for both in-situ and post-hoc interpretability. We compare different post-hoc explanation techniques (namely CAM and LEFTIST) for TSC tasks in our proposed framework, and find that they both provide post-hoc local interpretability, which are considered unfaithful. The only difference between them is that CAM explanations provide both feature importance and the occurring time stamps, while LEFTIST provide feature importance at prefixed time stamps.

We propose a method that learns an in-situ interpretable model at the modular level. Our model (called eXplainable CNN (XCNN)) is based on Learning Shapelets (LS) [START_REF] Grabocka | Learning Time-Series Shapelets[END_REF]) which for us is not interpretable, because the learned shapelets of LS are not similar to original subsequences of the time series. We regularize the shapelets with constraints, so that our shapelets would look like the subsequences. Our idea is similar to the idea of learning constrained prototypes that are similar to subparts of an image [START_REF] Chen | This Looks like That: Deep Learning for Interpretable Image Recognition[END_REF], and XCNN provide patterns (shapelets) that represent the characteristic of the input time series. In addition to the in-situ property, our model is able to provide faithful interpretations by positioning the shapelets on the time series, and with our reformulated Grad-CAM-liked post-hoc techniques, we provide sequences as information and our explanations are both at the local and global levels. These interpretations are helpful for domain experts to evaluate our model. In terms of accuracy, XCNN performance are on a par with comparable state-of-the-art methods, and XCNN provides new types of explanations for neural networks' predictions.

Perspectives

XCNN is a flexible and scalable method. It is interpretable at the modular level, because there are many constrained shapelets used as feature extractors in our model and each extracted feature contributes to the prediction. The sparsity of the extracted features can be useful to enhance our model interpretability to the global level. We consider using other regularization terms (e.g. group-lasso) to enforce this sparsity. This group-lasso (also called l 2,1 or l 1 /l 2 norm) could constrain the network to use as few shapelets as possible [START_REF] Bascol | Unsupervised Interpretable Pattern Discovery in Time Series Using Autoencoders[END_REF].

The second perspective is to adapt XCNN for Multivariate Time Series Classification (MTSC) tasks. Fauvel et al. (2020a) proposed an eXplainable Convolutional neural network for Multivariate time series classification (XCM). XCM extracts the temporal-