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ABSTRACT

Superconducting qubits are at the heart of many experiments exploring elementary
quantum mechanics and are one of the principal candidates for use in a future quantum
computer. In both cases, a high level of control over both the quantum system and its
environment is necessary. The first chapters of this thesis describe several techniques
used to engineer the effect of the environment in circuit QED with a focus on the
promising Fluxonium qubit. We give a detailed treatment of the theoretical basis for
protected qubits and analyse device design and dilution refrigerator wiring from the
perspective of environment noise reduction.
As an application of these methods, we reproduce state of the art conditions for

Fluxonium experiments in order to study the effect of the environment on the qubit.
We show how photons in the cavity used to measure the quantum bit and a high tem-
perature of the dilution refrigerator in which the device is placed can have detrimental
effects on the stability of the quantum state. Critically, this shows that there remain
several problems still to solve regarding the dispersive readout of Fluxoniums before
using them as the basis for a quantum computer.
Theoretically, the decoherence of a qubit can be broken down into many coherent

exchanges with the qubit environment about which the observer has no information.
In the last part of the thesis, we show the results of an experiment providing insight
into the thermodynamics of quantum measurement and operations by observing the
coherent energy exchange between a propagating field and a qubit under measurement.
We provide an interpretation of the preparation of a qubit state by a coherent light
pulse as a weak measurement of the pulse by the qubit.
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RÉSUMÉ

Les qubits supraconducteurs sont au cœur de nombreuses expériences de mécanique
quantique élémentaire et sont l’un des prétendants principaux pour le futur ordina-
teur quantique. Dans les deux cas, un haut niveau de contrôle, à la fois sur le qubit
et son environnement, est essentiel. Les premiers chapitres de cette thèse décrivent
plusieurs méthodes qui peuvent servir à concevoir l’effet de l’environnement sur les
circuits supraconducteurs, et en particulier sur le très prometteur qubit Fluxonium.
Nous détaillons la théorie des qubits protégés et traitons la conception des appareils
quantiques, ainsi que le câblage des réfrigérateurs à dilution avec l’objectif de réduire
le bruit de l’environnement.
En utilisant ces méthodes, nous créons des conditions permettant des expériences

pour étudier l’effet de l’environnement sur le qubit Fluxonium. Nous montrons que les
photons présents dans la cavité utilisée pour mesurer le qubit, ainsi qu’un réfrigérateur
à dilution avec une température trop élevée, peuvent avoir des effets néfastes sur la
stabilité de l’état quantique. Cette expérience met également en lumière les problèmes
qui restent à résoudre concernant la lecture dispersive des Fluxoniums avant de les
utiliser comme élément de base dans un ordinateur quantique.
La décohérence quantique d’un qubit peut être décrite par les nombreuses interac-

tions cohérentes avec l’environnement au sujet desquelles l’observatrice n’a aucune in-
formation. Dans la dernière partie de la thèse, nous présentons des résultats permettant
de mieux comprendre la thermodynamique des mesures et des opérations quantiques,
en observant l’échange cohérent d’énergie entre un champ propageant et un qubit que
l’on mesure. Nous interprétons la préparation de l’état du qubit par un pulse cohérent
comme une mesure faible du pulse par le qubit.
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A PERSONAL NOTE

PhD stands for Doctor of Philosophy (from the latin Philosophiae Doctor). While the
meaning of doctor can be summed up as someone who is highly competent in a given
subject, according to the Oxford English Dictionary the meaning of philosophy is rather
more poetic. Aside from its modern interpretation as the academic “study of the fun-
damental nature of knowledge”, a rarer and more historical interpretation is the “love
or pursuit of wisdom”. The research presented in this thesis is admittedly extremely
specific and concerns a fairly narrow field, yet this meaning of PhD resonates strongly
when I look back on the last four years. Firstly, I think I can claim to be an expert
of superconducting circuits. This has material consequences, namely some very excit-
ing career prospects, mostly due to a ‘right place, right time’ type of circumstance over
which I have little control. Yet, by becoming an expert, I feel I have foremostly acquired
some of the traits suggested by the definition of the academic title I will (hopefully!)
be discerned. I feel more humble, being able to better distinguish where my knowledge
ends and where my ignorance begins. This means I am also better prepared to face
something unfamiliar in the future: awareness of what you don’t know helps you ask
more pertinent questions. I further believe that I have broadened my interests and
horizons during my time as a PhD student, in a way only possible through long pe-
riods of reflection, enormous creative freedom and stimulating discussions. I owe this
increased intellectual curiosity - “love or pursuit of wisdom” - to the people who I have
met, both within and outside the physics community, whose intelligence and perspec-
tives have helped my personality mature. These interactions have often been jovial and
pleasant, making my time at ENS Lyon not only serious but also joyful. These con-
ditions have set the stage of various personal achievements, namely becoming a fully
qualified ski instructor and entertaining a long distance relationship between Paris and
Lyon. I hope to convey some of the gratitude I feel for these things in the next few
words as well as doing some storytelling to give a feeling of the mood of these last years.

Frankly, I had many reasons for joining the Quantum Circuit Group in 2017, many
of which were not for the “love of wisdom”. I wanted french citizenship, flexible hours
to be able to concentrate on other projects, I wanted to be surrounded by smart people
and if this could all be done whilst studying for a physics PhD, then why not? In case
I didn’t enjoy it in Lyon, I asked for a one year contract as an ‘ingénieur d’études’
with an agreement from my future advisor, Benjamin, that if I wanted, I would be able
to stay on for three years extra to complete my PhD. After three months, still only
knowing a small amount about the research in the lab, I told him I would continue.
The people I had met were simply too bright, friendly and relaxed to let go of.

I must first extend many thanks to Benjamin, whose role has been perhaps larger
than anyone’s in writing this thesis. Within two weeks of my arrival in the group, I
was in your office asking to take seven weeks leave over winter to prepare for my ski
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Figure 0.1: A visual summary of my PhD. a. A typical two-tone spectroscopy during the first
runs of the Fluxonium experiment. Although at low frequencies it looks like a screen-
shot from a badly connected analog TV screen, this is in fact measurement data in
which we expected to see some dark blue line corresponding to the qubit frequency.
b. I seek comfort and inpiration in the shade of a tree in my father’s garden when
struggling with some python code. c. A group photograph from Quentin’s wedding
in January 2019. From left to right: Antoine, Nath, Théau, Benjamin, me, Quentin
and Raphaël Lescanne from the group in Paris. d. A group photo shot in Octo-
ber 2020. From left to right: Rémy, Arne, Benjamin, Daniel, me, Alexis, Réouven,
Antoine, Audrey and Antoine M.

instructor exams. Having only worked with me for a few weeks up until then, your lack
of hesitation when giving me the go ahead was remarkable. I’m grateful that you gave
me the freedom I needed to go about my other passions and the confidence you showed
in me to get things done. You always provided the resources needed to succeed, both
materially and socially, by making sure the atmosphere in the group was friendly and
productive. I appreciate that you treated me as an equal and challenged my ideas with-
out jugement, while letting me convince you when you thought my reasoning was sound.
Your curiosity, your obsessive quest for excellence and your humility are quite inspiring.

When I started, we were only four: Nath, Quentin, Théau and I soon to be joined by
Antoine six months later. I remember a fair amount of laughter, music in the evening
once ‘the boss’ had left, and some pretty heated debates. Our relationship with Nath
was pretty explosive, sometimes over little things. I’m going to put this down to our
passion for measuring Fluxoniums, rather than what others may have called bad tem-
perament. When the debates got out of hand, the other members’ moods varied from
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annoyed to indifferent, with Théau sometimes moving in as a mediator (or is it man-
ager?) to try and diffuse things, and Antoine and Quentin living their own blasé agrégé
life calling all the instruments (and occasionally each other) ‘Michel’. My frustrating
scientific results of that year (despite my best intentions) were turned into a running
joke about Fluxonium experiments, the different features of white noise and random
number generators (see Fig. 0.1a.). To this day I can correctly make out resonances
where no one else believes there to be anything, and Antoine is still allowed his one
Fluxonium joke a day. Thanks Nath, Quentin and Théau for taking me into your great
group (Fig. 0.1c.) and teaching me how to measure!

With Antoine and I remaining once the others had left (although Théau hung around
to write his thesis), the group changed dimension with the arrival of Rémy, Réouven,
Daniel, Audrey, Arne, Alexis and Antoine M. It was now Antoine and I who were in
charge of keeping group traditions alive. I think we did a good job, making sure to
organise outings to Ninkasi and that people brought in cakes for birthdays and publi-
cations. Well except Réouven. You still haven’t brought in a cake, but your scientific
contributions and willingness to help more than compensate.
I was lucky enough to be teamed up with two post-docs, Daniel and Alexis on the ther-
modynamics and fluxonium experiments respectively. Alexis, you really helped me with
the Fluxonium data analysis when I was submerged by my own python code (Fig. 0.1b.).
Thanks for playing the ‘yellow duck’ and forcing me to organise my ideas by writing
my problems and their solutions down. I really enjoyed teaching you about Fluxonium
qubits when you arrived. I also learnt a lot from our healthy, albeit long, discussions
about quantum physics and superconductivity and I’m excited to see someone taking
over the Fluxonium experiments. Daniel, I enjoyed our debates about the meaning of
the post-selection measurements as we worked out where the energy was going during
qubit gates. It was also refreshing to chat about what was going on around the world
around the inevitable 4 o’clock bag of m&ms.
With the group having grown so much I didn’t have the opportunity to work closely
with everyone though. Thanks to you, Audrey, for teaching me how to use Solidworks
and your insights about the experiments. I’m really impressed by how fast you set up
the nanoESR project with Arne and your knowledge of the literature in the community.
Arne, your skills in the workshop blow my laithe coil winding out of the water and your
enthusiasm for caving is always really motivating. Rémy, thanks for often helping us
debug our setups and for laughing at my often poor jokes. Antoine M., you inherit the
HDAWG, good luck! Thanks to all the interns and students who passed through, with
a special mention for Meghan and Stefan who I worked with the closest.
Of course, I cannot forget the eternal ‘stagiaire’ Antoine (actually ‘professeur agrégé
stagiaire’), who has been my partner in crime during our PhDs in parallel. It has been
a relief to have someone to share some struggles with or, as exemplified by 5 minute
parties in Benasque or Génépi tasting in Les Houches, someone to enjoy the perks of
academia with. Thanks to you all for making the group such a great place to work in
(Fig. 0.1d.).
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Of course the microcosm of a research group is dependent on the institutions which
support it. I thank the members of the Laboratoire de Physique for being so welcoming
and approachable, making it an ideal place to conduct high level research. A special
mention goes to Fatiha Bouchneb. You had my paperwork ready from day one, making
sure everything went smoothly and your efficiency and administrative intelligence is leg-
endary. Thank you for helping us all concentrate on our research, I don’t think we could
bake enough cakes to repay you. Thanks to the cleanroom staff at ENS and around
Lyon, Vincent, Jérôme, Radek, Joëlle... without you, a number of projects wouldn’t
have started.

Thanks to my parents, sister and family for their never ending support. You are
are always there when I need guidance or have doubts. Thanks to my friends, who
provide a refreshingly different perspective on life, with whom I share my ideas and
interests and whose company helps me unwind and find new motivation. Thanks to the
Chaygneaud-Dupuy family for accepting an english speaking physicist/engineer who
likes snow, despite their better jugement. Lastly, thanks to Raphaëlle who weathered
the emotional ups and downs which come with research and a PhD, as well as the
burden of constant trips from Paris to Lyon and back. Your relentless enthusiasm, emo-
tional intelligence and constant suggestions for activities (visits to expositions, taking
a trip for the weekend, walking to a library, building furniture...) have a lot to do with
my relative sanity over the last few years. Discovering you and your interests has also
been part of my PhD.

Thank you to the members of the jury who accepted to read and review my thesis.

Lyon, September 2021 Jeremy Stevens
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1
INTRODUCTION

1.1 the big picture

Quantum mechanics has been an immensely successful theory. What spawned from the
mysteries of the ultraviolet catastrophe and the photoelectric effect, led to a formal-
ism enabling awesome improvements in human technology. Of the inventions of the
first quantum revolution, the transistor is perhaps the most important. In recognition
of this, the 1956 Nobel prize was awarded to Bardeen1, Brattain and Schockley “for
the discovery of the transistor effect” [2]. Transistors are the non-linear element at the
core of every electronics device. Gates, the elementary operations which modify the
billions of electronic states in computers, are implemented using transistors, and we
understand how transistors work because we know how electrons collectively behave in
semiconductors thanks to quantum theory. From a physics point of view, we can see
the democratisation of information technology over the course of the second half of the
20th century as a giant experimental verification of the collective behaviour of particles
underwritten by the laws of quantum mechanics. Ironically though, in its simplest form,
quantum mechanics makes statements about isolated degrees of freedom, about single
electrons and photons for example and about what happens when they are observed
(‘de-isolated’ in a sense). Checking these predictions was for a long time far from trivial.
As Erwin Schrödinger put it in 1952: “it is fair to state that we are not experimenting
with single particles, any more than we can raise Ichthyosauria in the zoo” [3]. The
issue is that isolating a degree of freedom is exceptionally difficult, as is demonstrated
by the fact that in our day to day, we are unaware of quantum mechanics. The dif-
ficulty is such that even experiments designed so that a single degree of freedom is
easy to isolate only really became feasible in the 1980s, becoming mainstream a decade
later. Two of the protagonists of this experimental progress, David Wineland and Serge
Haroche, were awarded the 2012 Nobel prize “for ground-breaking experimental meth-
ods that enable measuring and manipulation of individual quantum systems” [4]. The
reason why these results had not been achieved before, is because key technologies had
not yet been invented. The experiments of Haroche and Wineland were made possible
by the technological progress due to the very theory their experiments were seeking to
verify. The fact that Wineland and his team needed lasers to cool atoms using radiation
pressure for the first time illustrates this perfectly [5].

This brief historical approach offers some perspective to the works realised in this
thesis. Computers and lasers are significantly more complex than the electrons and
photons that constitute them, and building computers and isolating single ions do not

1 If proof was needed that this physicist had certainly understood some of the subtleties of quantum
machanics, Bardeen was later awarded a second physics Nobel prize, the only person to recieve it twice,
this time for the microscopic theory of superconductivity, together with Cooper and Schrieffer [1].
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require the same techniques, formalisms or even administrative structures. In this re-
spect, the advancement of our understanding of quantum mechanics came about thanks
to a productive exchange between research and technology and the mastery of effects
at different scales. Inspired by this, this thesis positions itself at a series of interfaces.
The interface between the physics of single excitations and that of collective properties.
The interface between research and technology. The interface between theory, experi-
ments and applications. The interface between isolated and open systems. Having the
ability to focus on one point of view and then being able to switch perspective at the
opportune time, will be essential to many of the results presented here.

1.2 superconducting microwave circuits

Ions and Rydberg atoms are naturally quantum. The orbitals of electrons around the
nucleus are very well described by Schrödinger’s equation and on the ladder of quantum
complexity, ions and Rydberg atoms sit on the second rung, just above a single particle.
This ‘natural quantumness’ has its disadvantages though. Atoms cannot be tweaked or
tuned. Each atom of an element is identical and immutable. If we restrict ourselves to
single elements, the number of choices for experiments is constrained by the periodic
table and its properties. Freedom from Nature’s rules about matter can only come by
changing scale2. This is the idea of superconducting microwave circuits, known also as
cQED (circuit Quantum ElectroDynamics).

Overall, the field of superconducting circuits deals with isolating and controlling
macroscopic degrees of freedom emerging from the interaction of a large number of mi-
croscopic particles. To do this, we use electrical circuits made out of superconductors
whose charges and currents oscillate at microwave frequencies. At the lowest level, elec-
trons in the superconductor start exhibiting collective behaviour by forming Cooper
pairs once the temperature drops below the critical temperature [6]. At that point,
the geometry of the circuit favours certain configurations called eigenmodes which can
be described quantum mechanically (Chapter 2,[7]). This illustrates how, by actually
increasing the number of microscopic degrees of freedom we have managed to isolate
a single macroscopic one. These eigenmodes can have linear properties, creating mi-
crowave resonators or transmission lines [8], but there are also non-linear components
called Josephson junctions [9, 10]. These non-linearities allow the properties of certain
eigenmodes to depend on the state of other modes in the circuit, including their own.
Finally, a fortuitous intersection of multiple criteria (the superconducting gap and junc-
tion plasmon frequency among others) make microwave frequency circuits (100 MHz to
20 GHz) an ideal choice. Moreover, the quantitative description of these eigenmodes de-
pends entirely on our own choice of how to draw the circuit. Superconducting circuits
therefore have that property unknown to the astro- or particle physicist. The experi-
mentalist becomes more than just an observer of the distant stars or the infinitely small,

2 This is essentially a reformulation that as the number of constituents increases, the number of mi-
crostates increases (super-)exponentially. In more everyday terms, there are an immense number of
possible castles to build with 1000 identical Lego bricks. The incredible diversity of different animal
and plant species in the natural world is also a good example.
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1.3 the effect of the environment

contenting themselves with the explanation of their recordings. They can now claim
to truely design, at the quantum level, the experiments they would like to work on.
The experimentalist can, without blushing, be considered both physicist and engineer.
This exciting ability has been fully exploited over the last two decades, making super-
conducting microwave circuits a test bed for a number of fundamental experiments in
quantum mechanics [11, 12, 13].

With such a high level of quantum control, many technologists believe that cQED is
a platform which could find itself at the core of future quantum computers envisioned
already in the 1980s [14, 15]. If a single experiment was to exemplify the reason why
superconducting circuits seem so promising for this application, it might be the 2004
work by Wallraff et al. who dispersively coupled a Transmon qubit to a microwave res-
onator [16, 17, 18]. Qubits (or quantum bits) are quantum information storage devices,
similar to classical bits on a hardrive up to the fact that the state of a qubit is de-
scribed by a superposition of 0 and 1, not just one or the other. By coupling a qubit to
a microwave mode, Wallraff and his collaborators showed two things. The first is that
superconducting qubits can be readout in a straightforward quantum non-demolition
(QND) manner [19, 20], using a pulse at a frequency different from the qubit transition,
so that the qubit can be reused immediately after measurement. The second is that
qubits could be interfaced with the techniques of microwave engineering, a subject area
which had been developped for miltary reasons since the world wars and with a large
amount of technological and industrial knowhow. Thus, by the beginning of the 2010s,
the trio of QND readout, coherent control (demonstrated by Nakamura et al. in 1999
[21]) and long storage times [22] were available in a (sort of) scalable platform3. With
Google’s claim of “quantum supremacy” in 2019 [23], superconducting microwave cir-
cuits appear as a clear contender in the race for the quantum computer. The race is far
from won, with other plaforms like Rydberg atoms [24], trapped ions [25], photonics
[26] or single electrons [27, 28] with their own advantages. For circuit QED, like for the
other platforms, there are still a number of open problems still to solve though, and
in the spirit of the field up until now, academic research still plays a leading role in
supporting the industrialisation, notably with novel quantum error correction protocols
[29, 30] or remote entanglement [31].

1.3 the effect of the environment

Research and industrial interests happen to be aligned in the search for better gates,
better readout and better storage. Indeed, whilst these are necessary to run quantum al-
gorithms, minimising operation errors in experiments is crucial in observing more and
more elusive quantum mechanical effects. Unfortunately, improving the operation of
quantum circuits often runs into what appear to be conflicting requirements. Quantum
storage for example becomes perfect when the degree of freedom in which the infor-

3 The parallel between those three ingredients and the gates, storage and readout trio materialised in
classical computer hardware by transistors, the magnetic domains of hardrives, and hardrive read-heads
is striking.

3



introduction

mation is encoded is fully isolated from its environment. Yet, if we are to measure the
state of the qubit, it must be in interaction with our measurement apparatus. Storage
and readout thus appear incompatible.

Working on this from a systemic point of view was one of the main objectives of this
thesis. From the get go, we chose the Fluxonium qubit because of its ability to combine
good storage properties with excellent readout fidelity. The Fluxonium qubit consists
of a single Josephson junction shunted by a capacitance and an inductance formed by
a chain of junctions4 [32]. Its energy level structure means that the subspace in which
the qubit’s state is encoded is at much lower frequencies than the other energy levels.
This offers it some level of protection from bit-flip errors for reasons associated with
the density of states of the environment. Phase-flip errors, the error type not present
in classical computers which describes a loss of information on the phase of a quantum
superposition, are also reduced by working in a parameter regime called the sweet-spot.
The protection from phase-flips, in opposition to bit-flip protection, comes from inter-
nal properties of the qubit. Another consequence of the energy level structure is that
the transition frequency within the computational subspace plays almost no part in
the qubit’s coupling rate to a readout resonator. This way we can determine the quan-
tum state when necessary without continuously disturbing the qubit. As of June 2021,
Fluxonium qubits are the most coherent and well controlled superconducting qubits
[33] with state of the art readout fidelities [34]. These ideas and the reasons for Fluxo-
nium’s success are developed in detail in Chapter 3.

Although an error symptom is determined at the level of the qubit, its cause may
be located in a galaxy far far away5. Chapters 4 and 5 try to fight quantum errors at
the level of the entire experimental setup. We characterise the qubit’s environment by
looking at the losses of the materials surrounding it and at different sources of stray
radiation which might affect the quantum state. Moreover, because circuit geometry
is under our control, we present some techniques which can be used to design quan-
tum systems with the Hamiltonians we would like to implement. We also review the
literature for the best materials to use for fabricating superconducting circuits. Regard-
ing the effects of radiation, we show that in some setups, even with state-of-the-art
shielding, there can be unknown effects which dominate the qubit losses. This under-
lines the necessity to juggle between microscopic and macroscopic concepts, as losses
due to quasiparticles can only be understood using BCS-theory, yet the change which
brought the greatest improvement in coherence times in this thesis was changing dilu-
tion refrigerator. In conclusion to this part dedicated to controlling external factors, we
demonstrate a number of ways to mitigate the thermal effects of the environment by
purifying the state of the qubit before operation, something of particular interest for
devices whose transition frequency is so low that a photon is less energetic than the
thermal energy kBT .

4 The collective property of a chain of individual junctions, to go from a non-linear object to something
mostly linear, is another example of a change of scale.

5 In the case of cosmic rays [35, 36].
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1.4 thermodynamics of quantum measurement

The experimentalist is of course an integral part of the environment. Their role is
especially pronounced at the time of readout, during which the qubit is entangled with
the probe to which they have access. Ideally, readout should be done in a QND manner
so that two successive readouts of the qubit state yield the same result. While there is
no theoretical reason to believe that this should not be the case in the dispersive limit
of circuit QED, experiments with Fluxoniums have often shown a number of non-QND
effects when their state is readout [34, 37, 38]. We realised during this thesis that these
effects were a real limitation for experimental progress, especially for devices where the
number of qubits exceeds one. In Chapter 6 we provide one of the few quantitative mea-
surements of these effects as the amplitude of the field used to ascertain the qubit state
increases and at different flux biases. For this purpose, we developed a novel scheme for
the identification of the qubit state from the histograms of measurement outcomes. We
also diagonalised the Hamiltonian of two capacitively coupled Fluxoniums coupled to
the same cavity. Then, in an experiment with no qubit gates, we extract the transition
rates between the two qubit states using quantum jump trajectories. By utilising the
information contained in the full jump trajectory, we improve our estimates for these
transition rates, despite the imperfect measurement. We show that the transition rates
between qubit states in presence of the drive vary significantly when the control param-
eters, flux and amplitude, are changed. In a last part, we simulate realistic quantum
jump trajectories, thereby providing a partial explanation for some of the structure of
the noise in our experiment. Our hope is that by quantifying the effect of the readout
pulse on the Fluxonium qubits systematically, theorists will be able to determine which
features to look for and may provide suggestions on how to avoid these effects.

1.4 thermodynamics of quantum measurement

The very last chapter of the thesis continues to deal with the topic of quantum mea-
surement, but this time at a fundamental level. Of all the strangeness associated with
quantum mechanics, the measurement postulate is perhaps the most unnerving. It can
be summarised by this statement attributed to Alexander Korotkov: “In quantum me-
chanics, you don’t see what you get. You get what you see!”. Why is there a collapse
of the wavefunction? Why is there measurement backaction? We choose the engineer’s
(politician’s?) perspective here and choose not to answer, but accept the experimental
evidence. There is a collapse. There is backaction. In Chapter 7 we construct an exam-
ple where a measurement apparatus appears to exchange energy with the qubit, despite
it being QND. The explanation we propose is in the spirit of this thesis. It requires
taking into account the measurement protocol as a whole, considering in particular the
entire procedure leading to the state measured by the QND apparatus. By recording
the energy inside the pulse reflected off the qubit which was used to prepare its state,
we recover a scenario where no energy is provided by the measurement. In doing so,
we make evident the entanglement between qubit and driving mode, manifesting itself
experimentally through the anomalous weak values of the qubit operators [39]. The
records of the driving mode post-selected on the result of a strong qubit measurement
after interaction further reveals the backaction of the measurement process on the prop-
agating field. A model, exploiting the properties of Bayesian probabilities, helps give
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an intuition for the results of the experiment.

Obviously, this work has research implications for quantum thermodynamics, which
questions how to harness the random outcomes of quantum measurements as a resource
[40]. Surprisingly, this experiment is also strongly related to the more applied uses of
circuit QED. Indeed, understanding that the state of the combined system has, from
the very beginning, no uniquely defined energy is critical for high fidelity quantum gates
and so is the number of photons in the pulse. Moreover, resolving the issue of energy
exchanges in qubit control and measurement is essential in figuring out how much
energy will be required to run a quantum processor. With potentially many millions of
qubits this is a very real unsolved problem [41].

1.5 closing remarks

In both Chapter 6 and Chapter 7 we use the past quantum state formalism [42] as
a tool for the calculation of some of the main results of the thesis. This formalism
helps predict the statistics of the unknown measurement outcome using both knowl-
edge about the system’s state preceding and following the time of measurement. It can
be thought of as trying to make predictions about the future and inferences about the
past coincide. Despite the formulas being relegated to an appendix, I think it can serve
here as a commentary for this thesis as a whole.

The thesis project started with the amibition of showing effective Fluxonium re-
sets, moving on to two qubit experiments and thermodynamics with Fluxonium. The
realities of experimental physics force us to change course sometimes, and instead we
focused on the readout problem and thermodynamics with a Transmon. With the thesis
written up, another a posteriori interpretation for this work could be to have explored
and engineered the effect of measurement on superconducting qubits. Limiting unmon-
itored measurement by the environment which leads to decoherence (Chapters 3 to 5),
benchmarking non-QNDness (Chapter 6), and observing the energetics of measurement
(Chapter 7). Different observers can have different past quantum states, reflecting their
own observations, their own point of view, yet all are correct. In this introduction I
chose to highlight the parallels between applied and fundamental physics on different
scales in my work. This shows that, despite Science’s idealisation of objectivity, there
is a certain amount of editorialising to a thesis. This is certainly not the only way this
work could have been presented, only my own take on the work done. I hope the choices
made in the following pages will be instructive.
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2
SUPERCONDUCTING CIRCUITS FOR QUANTUM COMPUTING

2.1 introduction

The goal of the following section is to give a short introduction to the superconducting
circuits platform and the theoretical and experimental techniques which describe the
most simple experiments in circuit QED. We will discuss the basic building blocks
which are microwave cavities (harmonic oscillators), the heavily used Transmon qubit
(anharmonic oscillators) and the procedure with which we can control the states of
qubits (Rabi oscillations) as well as measure the state of the qubit (dispersive readout).
Each of these topics will only be convered briefly, with details given in later chapters.
Many texts cover the material of this chapter, but a very thorough treatement of some
of the theory can be found in S. Girvin’s lecture notes from the Les Houches summer
school of 2011 [43]. For a more thorough review of the current state of the art, a number
of reviews have been published in recent years. Two excellent references are those by
Blais et al. [44] and Krantz et al. [45]. For a more quantum computation focused review,
the 2017 work by Wendin [46] is also a good place to look.

2.2 harmonic oscillators - microwave resonators

2.2.1 Theory

We start by considering one of the most well understood systems in physics: the har-
monic oscillator. Consider the LC circuit presented in Fig. 2.1a. A classical description
can be derived using the Langrangian of the circuit

L =
LQ̇2

2
− Q2

2C
, (2.1)

where Q is the charge on the capacitance plates, C is its capacitance and L is the
inductance of the circuit. A Legendre transform yields the quadratic Hamiltonian

H =
Φ2

2L
+
Q2

2C
, (2.2)

where we have introduced the generalised flux Φ = LQ̇ =
∫
V dt, which is the canon-

ically conjugate variable to the charge on the capacitor. V is the voltage across the
inductor or capacitor. Equivalently, we could have written the Langrangian as a func-
tion of the generalised flux

L =
CΦ̇2

2
− Φ2

2L
, (2.3)
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Figure 2.1: a. A parallel LC circuit. Here Q is the charge on one of the capacitance plates, I
is the current in the loop, V is the voltage across the capacitance or inductance,
C is the capacitance and L the inductance of the circuit. b. An illustration of the
spectrum of the harmonic oscillator. The black line corresponds to a potential given
by the Φ2 term in the Hamiltonian. The energy eigenstates in purple are equally
spaced by an energy ~ω.

and obtained the same Hamiltonian. Classically, we now have everything we need to
describe the circuit, and Hamilton’s equations immediately yield the equation of motion

Q̈+ ω2Q = 0 , (2.4)

which describes harmonic oscillations where energy is in turn stored in the electric field
of the capacitance and then in the magnetic field of the inductance. We introduced the
characteristic frequency of the circuit ω = 1√

LC
which has units of rad s−1.

In the quantum mechanical case, our general objective is to solve the Schrödinger
equation

i~
∂ |ψ〉
∂t

= Ĥ |ψ〉 , (2.5)

where the Hamiltonian has become an operator Ĥ acting on the state |ψ〉.

Ĥ =
Φ̂2

2L
+
Q̂2

2C
, (2.6)

is identical to the classical case but for the canonical commutation relation [Φ̂, Q̂] = i~
- a manifestation that simultaneous strong measurements of the charge on the capac-
itance and the generalised flux are impossible1. Because Ĥ does not depend on time,
(2.5) is separable and comes down to solving

Ĥ |ψn〉 = En |ψn〉 , (2.7)

where En and |ψn〉 are the eigenenergies and eigenstates of Ĥ respectively. Because
there are many possible solutions, |ψn〉 is indexed by n and its time evolution is given

1 Simultaneous weak measurements are possible though, as was demonstrated in [47, 48]
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2.2 harmonic oscillators - microwave resonators

by |ψn(t)〉 = e−iEnt/~ |ψn(0)〉 at time t. The standard technique for solving (2.5) (see
any quantum mechanics textbook, [49] or [50] for example) involves introducing the
ladder operators

â =
1√
2~Z

(
Φ̂ + iZQ̂

)
, (2.8)

â† =
1√
2~Z

(
Φ̂− iZQ̂

)
, (2.9)

where Z =
√

L
C is the circuit impedance. Conversely

Φ̂ =

√
~
2
·
√
Z(â† + â) = ΦZPF(â† + â) , (2.10)

Q̂ = i

√
~
2
· 1√

Z
(â† − â) = iQZPF(â† − â) . (2.11)

The prefactors ΦZPF and QZPF are called the “Zero Point Fluctuations” of flux and
charge and correspond to the excursions of the two variables around zero in the ground-
state. The Hamiltonian can be written in a diagonal form using these operators as

Ĥ = ~ω(â†â+
1

2
) . (2.12)

The eigenstates of the Hamiltonian in this form are indexed by the quantum number n ∈
N and written |n〉. Application of the operators follows the rules â† |n〉 =

√
n+ 1 |n+ 1〉

and â |n〉 =
√
n |n− 1〉, such that â and â† let us move up and down the ladder of states

indexed by n. Importantly, the energy difference 〈n|Ĥ|n〉− 〈n− 1|Ĥ|n− 1〉 is constant:
the ‘rungs’ of the ladder are separated by the constant energy ~ω (see Fig. 2.1b).

2.2.2 Hardware

Two conditions were necessary for the theoretical description above to be valid.

• The availability of a system which can be described as a simple combination of
an inductance and a capacitance in parallel.

• The availability of such a system with negligeable losses.

Indeed, our circuit description did not allow for the presence of losses, which would
have been modelled by a resistance somewhere in the circuit. This observation (among
others) motivates the use of superconductors for the physical implementation of our
quantum circuits. Below their critical temperature, around 1.2K for aluminium [51],
these materials oppose strictly zero resistance to DC electrical current [6]. We can im-
plement close to ideal LC oscillator circuits in two or three dimensions. In 3D, the
electromagnetic modes of a metal cavity can be modelled by LC oscillators with differ-
ent characteristic frequencies in the GHz frequency range. For the TE110 we can see the
opposite sides of the cavity as the plates of a capacitance and the metallic sidewalls as
an inductance as is clear from the distributions of current and charge in electromagnetic
simulations of a 3D cavity in HFSS (Fig. 2.2c&d). In 2D, the resonator can either be
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Figure 2.2: a. 3D aluminium cavity with a 2 euro coin for scale. Because the cavity is made
out of aluminium, it is almost lossless at dilution refrigerator temperatures. b-c-d.
Electromagnetic simulations of the cavity using HFSS. b. Shows the electric field
at the lowest frequency 8.1 GHz cavity eigenmode TE110. c. Current distribution
of the mode, illustrating how the sidewalls of the cavity form the inductors of the
equivalent LC circuit. d. Charge distribution of the mode, showing how the oppos-
ing faces of the cavity act as a parallel plate capacitor. e. Charge distribution in
a Sonnet simulation of a single port λ/2 co-planar waveguide (CPW) resonator at
7.1 GHz. The two gaps at either end of the resonator separate it from the tranmis-
sion line on the left and the ground plane on the right. Notice how the charges
accumulate at either end of the resonator, illustrating the capacitance of the mode.
For clarity, the x and y scales are different. f. Current distribution for the same
distributed resonator. The highest current density is found at the centre of the
resonator, illustrating the inductance of the mode.
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2.3 anharmonic oscillators - the transmon qubit
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Figure 2.3: a. Equivalent circuit of a Transmon qubit. Here Q is the charge on one of the
superconducting islands, I the current through the junction, V is the voltage across
the junction, C is the effective capacitance and LJ the Josephson inductance of
the junction. b. An illustration of the spectrum of the Transmon. The black line
corresponds to the cosine potential given by the Josephson Hamiltonian (2.17). The
energy eigenstates in green are no longer equally spaced because of the widening of
the potential at higher energies.

implemented in a lumped element fashion with an interdigitated capacitance and mean-
der or spiral inductance for example; or we can use a distributed element version where
the resonator is a finite length transmission line where reflections at either end create
an interference pattern only allowing standing waves [8]. The validity of the lumped
element circuit model with a single capacitance and inductance is again illustrated by
electromagnetic simulations in Sonnet for example (Fig. 2.2e&f).

2.3 anharmonic oscillators - the transmon qubit

We need to introduce a non-linearity to harness the full toolbox of quantum information.
On the one hand, this non-linearity will allow us to manipulate our quantum system
and prepare non-classical states, opening the possibilities of quantum control. On the
other hand, having a non-linearity will help us design a device with energy levels which
are not equally spaced. Because of the anharmonic level spacing, this device is often
approximated as a simple two level system or qubit. In the next section we introduce
the Transmon.

2.3.1 Theory

Josephson junctions, named after the physicist Brian Josephson, are the basic non-
linear building blocks of cQED. They are made of a superconducting/insulating/su-
perconducting tunnel barrier shown schematically in Fig. 2.4a. The phenomenological
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equations Josephson derived to describe the physics of these junctions (equations which
earned him the Nobel prize in 1973 [9]) are

V =
Φ0

2π

dϕ

dt
, (2.13)

I = I0 sinϕ . (2.14)

V and I are respectively the voltage across and the current through the junction, ϕ
is the phase difference between the two superconductors and I0 is the critical current
of the junction above which it becomes resistive. The superconducting flux quantum
Φ0 = h

2e also appears in the Josephson relations. From these macroscopic equations,
we can calculate the Hamiltonian describing the junction, where the superconducting
leads are considered islands, disconnected from the surroundings. Conventionally, the
potential term comes from the tunneling of Cooper pairs through the junction and can
be derived in a simple manner by integrating the power dissipated in the junction over
time

Epot =

∫
V Idt =

Φ0I0

2π

∫
dϕ

dt
sinϕ dt = −Φ0I0

2π
cosϕ . (2.15)

Integrating the first Josephson relation (2.14) we can see that ϕ is related to the gen-
eralised flux Φ by

ϕ = 2π
Φ

Φ0
, (2.16)

so that

Epot = −EJ cosϕ = −EJ cos

(
2π

Φ

Φ0

)
, (2.17)

where we have defined EJ = Φ0I0
2π or, in terms of the junction inductance LJ = Φ0

2πI0
,

EJ =
Φ2

0
4π2LJ

. The capacitive term, which is due to the non-zero physical size of the
junction and is traditionally associated with a kinetic energy, can be expressed using
C the total capacitance between the superconducting leads

Ecapa =
(Q−Qg)2

2C
=

4e2(n− ng)2

2C
= 4EC(n− ng)2 . (2.18)

2(Q − Qg) is the charge difference between either side of the junction expressed as a
function of the number of Cooper pairs n − ng carrying charge 2e and EC = e2

2C . The
total Hamiltonian of the Josephson junction, schematically represented by the circuit
in Fig. 2.3a, can thus be written

ĤTransmon = 4EC(n̂− ng)2 − EJ cos ϕ̂ . (2.19)

Qg and ng are here to take into account the offset charge of the islands. As suggested
by the lack of ‘hat’, Qg and ng are classical variables which do not have to take inte-
ger values. They can be thought of as thermodynamic quantities whose value depends
on the electrochemical potential of each island. Indeed, external electric fields, either
controlled by the experimentalist in the case of an engineered voltage gate or uncon-
trolled, like charge fluctuations due to the environment around the qubit, can affect
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the charge equilibrium point across the junction and thus the value of the offset charge.
Additionally, Qg and ng encompass the effect of fluctuations in the background charge
distribution on each island. Although the offset charge will prove to be of critical im-
portance later on (see Chapter 3.1.1), it does not play any role in the discussion about
the dynamics of the Transmon we want to have here. For this reason, we choose to omit
it for the time being.

The charge number and phase operators do not commute. The commutation relation
[n̂, ϕ̂] = −i can be derived using the definitions of Q̂ and Φ̂. In the case of the Transmon
qubit [18] we design the capacitance C and inductance LJ of the junction so that
EJ > 50EC . Intuitively, this means that changing the tunneling rate of Cooper pairs
(the current) through the junction is very costly compared to changing the number of
charges on either superconducting islands. The lowest energy levels of the Hamiltonian
will be separated only by small changes in ϕ̂ but by large changes of n̂. The energy
of ĤTransmon is minimised when ϕ̂ is close to 0 independently of the value of2 n̂. This
motivates a series expansion of the cosine around 0 to obtain the linearised Hamiltonian
Ĥlin = 4EC n̂

2 + 1
2EJ ϕ̂

2 which has a form identical to the harmonic oscillator of Sec.
2.2.13. We will see that the corrections to the harmonic spectrum due to the cosine term
are small, so that the Transmon qubit is dubbed an anharmonic oscillator. Including
terms up to fourth order in the cosine expansion

ĤTransmon ≈ ~ωQâ†â−
EC
12

(
â+ â†

)4
. (2.20)

We diagonalised the terms to second order using the definitions of (2.8) and (2.9), and
ωQ =

√
8ECEJ

~ the plasmon frequency of the qubit. Treating the fourth order term as a
perturbation allows us to calculate the correction of the cosine term on the energies of
the harmonic ladder for the lowest energy eigenstates

E|1〉 − E|0〉 = ~ωQ − EC , (2.21)

E|2〉 − E|1〉 = ~ωQ − 2EC . (2.22)

The difference in energy differences between the three lowest energy states is called the
anharmonicity and is noted α. Here α = EC , but for general qubit architectures this
is not necessarily the case. Also note that the qubit frequency, initially equal to the
plasmon frequency, is renormalised by the fourth order cosine term. In the following
we will abuse notation and ωQ will denote both the plasmon frequency and the true
qubit frequency as the difference will be clear from context. The fact that we now have
an anharmonic spectrum (see Fig. 2.3b) is critical for defining the two level subspace
which we will consider our qubit. Because the energy separation between the two lowest
energy states is unique, we can be certain that a probe at the transition frequency
(E|1〉−E|0〉)/h cannot excite the Transmon outside the computational subspace as long
as its amplitude does not imply Rabi rotations at frequencies larger than α.

2 Because of the cosine term in the Hamiltonian, the state |ϕ+ 2π〉 can be identified with the state
|ϕ〉. It is thus sufficient to restrict ourselves to the interval ] − π, π] for the values of ϕ. For further
discussion of this fundamental issue, see [43].

3 We have neglected the constant energy offset coming from the 0th order of the cosine, as it does not
change the dynamics of the system.
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Superconductor SuperconductorInsulator

Superconductor Superconductor

Insulator

200 nm

a.

b. c.
Figure 2.4: a. Basic schematic of a Josephson junction. The insulating tunnel barrier is high-

lighted in red. b. Cross section schematic of a Josephson junction fabricated by
overlapping two layers of superconducting material separated by an oxide layer
(red). Most junctions use aluminium as a superconductor and aluminium oxide for
the insulator. c. SEM picture of a junction fabricated on silicon using a 30 keV

e-beam lithography machine. The doubling of the junction fingers comes from the
Dolan bridge fabrication technique. The slight darkening of the silicon around the
aluminium pads is due to chemical treatment of the silicon substrate with HF before
the deposition of aluminium.

2.3.2 Hardware

Here we give a brief overview of the fabrication process for Transmon qubits. More
details about the basic fabrication techniques can be found in [52] for example, and a
discussion of the tradeoffs between the Hamiltonian parameters will follow in the next
section. Very generally we want Transmon frequencies close to, but slightly detuned
from, the cavity frequency in the 4 − 8 GHz range (the reason for this proximity will
become clear in the discussion of the dispersive readout in Section 2.4.3). We obtain the
correct frequencies through fine control of C and LJ thanks to various fabrication steps.
In practice, the capacitance C can be decomposed into the sum of two capacitances CJ
and Cpads. CJ corresponds to the direct overlap between the superconducting islands
separated by the insulating barrier. This interface is highlighted in red in Fig. 2.4b. The
second part of the capacitance, Cpads, is given by the geometrical capacitance assigned
to the superconducting islands either side of the junction. The superconducting islands
also have a dual purpose, as they act as an antenna for the electromagnetic fields which
will be used for qubit control and readout. Engineering EC requires taking into account
the contribution of CJ when designing the size of the superconducting islands. EJ , or
equivalently LJ , on the other hand is engineered by tuning the thickness and surface
area of the oxide layer. The superconducting pads can be fabricated using standard
optical lithography techniques because the characteristic size of these is around 10 µm

to 10 mm. Sometimes though, to reduce fabrication steps, the pads are fabricated with
the junction itself using e-beam lithography allowing minimum feature sizes of the
order of tens of nanom. The oxide layer is obtained using a Dolan bridge technique
[53] and double angle evaporation which allows a non-conductive overlap of the two
superconducting wires (see Fig. 2.4c).
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2.4 control and readout of a two-level system

In the previous section we showed how a realisable macroscopic physical system could
be described as a (quasi-)two-level system. Here we explore how to control and readout
the state of this two level system, showing that we can manipulate and observe the
information contained within the qubit.

2.4.1 Two-level system basics

In full generality, the quantum state of a two-level system can be described by

|ψ〉 = α |0〉+ β |1〉 , (2.23)

with α, β ∈ C and |α|2 + |β|2 = 1. By setting the unphysical global phase of the
wavefunction to 0, we can write

|ψ〉 = cos
θ

2
|0〉+ sin

θ

2
eiφ |1〉 , (2.24)

where θ ∈ [0, π] and φ ∈ [0, 2π]. |0〉 and |1〉 are the eigenstates of the Hamiltonian

Ĥ =
~
2
ωQσ̂

z , (2.25)

with eigenenergies ±~
2ωQ. σ̂

z is part of the basis of SU(2) spanned by the unitary oper-
ators of dimension 2 called the Pauli matrices. In the representation |0〉 = (0, 1)T , |1〉 =

(1, 0)T , the Pauli operators take the form

1 =

(
1 0

0 1

)
, σ̂x =

(
0 1

1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0

0 −1

)
. (2.26)

Two other useful operators are σ̂+ = 1
2(σ̂x+ iσ̂y) = ( 0 1

0 0 ) and σ̂− = 1
2(σ̂x− iσ̂y) = ( 0 0

1 0 )

which have the same incrementation properties as the ladder operators introduced be-
fore, but simply restricted to the two-level subspace: σ̂+ |0〉 = |1〉 and σ̂− |1〉 = |0〉.

A convenient visual representation of 2.24 is the Bloch vector

~u|ψ〉 =



〈σ̂x〉|ψ〉
〈σ̂y〉|ψ〉
〈σ̂z〉|ψ〉


 =




cosφ sin θ

sinφ sin θ

cos θ


 , (2.27)

of norm
∥∥~u|ψ〉

∥∥ = 1. In 3 dimensional euclidean space it describes all the positions on a
sphere with radius 1 (Fig. 2.5). With this description, there is a bijective map between
the vectors on the Bloch sphere and the possible states of a qubit.

2.4.2 Control Pulses

We can understand how to control the state of the two level system by considering the
equivalent circuit of Fig. 2.6a. The Hamiltonian of this circuit is [7]

Ĥ =
Q̂2

2(C + Cc)
− EJ cos

(
2π

Φ̂

Φ0

)
+

Cc
Cc + C

Q̂Vd(t) , (2.28)
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b.a.

Figure 2.5: a. Bloch sphere representation of the state |ψ〉 = 1
2 |0〉+ e−i

π
6

√
3

2 |1〉 (red vector). b.
Bloch sphere representation of Rabi oscillations around the x-axis. The trajectory
of a pure state with 〈σ̂x〉|ψ〉 = 0 (red vector) is given using the black dotted line.

which corresponds to a Transmon qubit coupled capacitively to an external drive. We
limit ourselves to the low energy subspace spanned by the states |0〉 and |1〉 by replacing
the ladder operators â and â† with the spin operators σ̂− and σ̂+. The Transmon
term is diagonalised straightforwardly using this correspondence and with the definition
Z =

√
LJ

C+Cc
. We obtain

Ĥ =
~ωQ

2
σ̂z + i

Cc
Cc + C

Vd(t)
1√
Z

(σ̂+ − σ̂−) . (2.29)

Note that this is a good example of how the effective capacitance of the Transmon can be
decomposed into various terms as described in Sec. 2.3.2: here the coupling to the drive
adds a contribution to the capacitance seen by the junction. At this point it is useful
to go to a frame rotating at the frequency of the drive ωd. We assume the voltage drive
evolves sinusoidally as a function of time with amplitude V0, Vd(t) = V0 sin(ωdt+ φ) The
Hamiltonian in the rotating frame H̃ under the unitary transformation Û = eiωdσ̂

zt/2

is given by

H̃ = ÛĤÛ †+ i~
dÛ

dt
Û † =

~δω
2
σ̂z+ i

Cc
Cc + C

Vd(t)
1√
Z

(
σ̂+eiωQt − σ̂−e−iωQt

)
, (2.30)

where δω = ωQ − ωd. After some algebra and under the rotating wave approximation
(RWA) which eliminates the rapidly rotating terms

H̃ ≈ −~Ω

2
[σ̂x cos(φ) + σ̂y sin(φ)] +

~δω
2
σ̂z. (2.31)

We have defined the Rabi frequency Ω = V0
Cc

Cc+C
1√
Z
∝ V0. Through this simple model

we were able to derive the Hamiltonian describing rotations around all three axes of
the Bloch sphere. The detuning controls the rotation around σ̂z and the phase of the
drive controls the rotation around σ̂x or σ̂y. As an illustration, starting in the state |0〉
and with φ = π and δω = 0, the time evolution of the qubit state is given by

|ψ(t)〉 = cos

(
Ω

2
t

)
|0〉 − i sin

(
Ω

2
t

)
|1〉 . (2.32)
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b.a.

Figure 2.6: a. Equivalent circuit of a Transmon coupled to an external drive. The coupling
capacitance Cc mediates the oscillating voltage drive on the right. b. Equivalent
circuit of a Transmon coupled to a cavity. The coupling capacitance Cc is mate-
rialised by the antennas of the junction placed inside the standing mode of the
resonator field.

After a time π
2Ω we obtain the state

∣∣ψ
(
π

2Ω

)〉
= 1√

2
|0〉 − i |1〉 = |−Y 〉, the eigenstate

of σ̂y with eigenvalue −1. We recognise the famous Rabi oscillations, here rotating left
handedly around the x-axis, represented on the Bloch sphere in Fig. 2.5.

In practice the circuit diagram of Fig. 2.6a is materialised by letting the qubit interact
with a propagating electromagnetic field generated by a RF frequency source. The pads
of the junction act as an antenna which couples the qubit capacitively to the field. When
placed inside a cavity, the antenna has the additionnal advantage of coupling the qubit
to the resonator mode allowing the readout of the qubit state.

2.4.3 Qubit readout

To readout the state of the qubit, we couple it to a readout cavity, usually capacitively.
The circuit model which best describes this is given in Fig. 2.6b. It is easiest to write
the Lagrangian using the matrix and vector

CM =

(
CR + Cc −Cc
−Cc C + Cc

)
, Φ =

(
ΦR

ΦJ

)
. (2.33)

With these definitions

L =
1

2
Φ̇TCM Φ̇− 1

2LR
Φ2
R + EJ cos

(
2π

ΦJ

Φ0

)
. (2.34)

Defining the resonator and qubit frequencies ωR = 1
LR

(
C−1
M

)
11

and ωQ = 1
LJ

(
C−1
M

)
22

as well as the coupling g =
(C−1

M )
12

+(C−1
M )

21

4
√
LRLJωRωQ

, the Hamiltonian is

Ĥ =
1

2
LRω

2
RQ

2
R+

Φ2
R

2LR
+

1

2
LJω

2
QQ

2
J−EJ cos

(
2π

ΦJ

Φ0

)
+2g

√
LRLJωRωQQ̂RQ̂J , (2.35)

where the indices of C−1
M correspond to the matrix elements of the inverse of CM . Here

again we see that the first two terms correspond to a harmonic oscillator, the next two
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to the Transmon mode and the last one to the capacitive coupling between the two.
Thus, to 4th order in the Transmon cosine term and introducting the cavity operators
ĉ and ĉ†

Ĥ ≈ ~ωRĉ†ĉ+ ~ωQâ†â−
EC
12

(
â+ â†

)4
− ~g(ĉ† − ĉ)(â† − â) , (2.36)

with ωQ =
√

8ECEJ/~. A simplification can be obtained by going to a frame rotating
at the qubit and cavity frequencies (Û = exp

[
iωRĉ

†ĉt+ iωQâ
†ât
]
) and applying the

RWA. This eliminates the terms ĉ†â† and ĉâ in (2.36).

Ĥ = ~ωRĉ†ĉ+ ~ωQâ†â+ ~g(ĉ†â+ ĉâ†)︸ ︷︷ ︸
linear

−EC
12

(
â+ â†

)4

︸ ︷︷ ︸
non-linear

. (2.37)

We can diagonalise the linear part of the Hamiltonian, by using the Bogoliubov trans-
formation [44] Û = eΛ(ĉ†â−ĉâ†) with Λ = 1

2 arctan (2g/∆) and ∆ = (ωQ − EC/~)− ωR.
In the dispersive limit, where g � |∆|, the Hamiltonian becomes

Ĥdispersive = ~ω̃Rĉ†ĉ+ ~ω̃Qâ†â+
~KR

2
(ĉ†)2ĉ2 +

~KQ

2
(â†)2â2 + ~χRQĉ†ĉâ†â. (2.38)

The dressed frequencies of the cavity and qubit are

ω̃R =
1

2

(
ωR + ωQ − EC/~−

√
∆2 + 4g2

)
, (2.39)

ω̃Q =
1

2

(
ωR + ωQ − EC/~ +

√
∆2 + 4g2

)
. (2.40)

Eq. (2.38) is a fundamental result of circuit QED and deserves some time spent explain-
ing it. In (2.36) there were two coupled modes, one linear and one with a cosine non-
linearity, in (2.38), the cosine has been replaced by only second order non-linearities and
the cavity has inherited some of the non-linearity of the junction. The frequency of the
cavity depends on the number of excitations inside it and increases by KR = −EC

2~
( g

∆

)4
for each additional excitation. We also retrieve the anharmonicity of the Transmon
KQ = −EC

~ . Note that the Transmon is much more anharmonic than the cavity, as is
evident from the factor

( g
∆

)4 which must be very small in the dispersive limit. In many
cases this justifies neglecting the cavity non-linearity and limiting the Transmon ladder
to its two lowest eigenenergies by replacing â and â† with σ̂− and σ̂+. In that case,

Ĥdispersive = ~ω̃Rĉ†ĉ+ ~
ω̃Q
2
σ̂z + ~

χRQ
2
ĉ†ĉσ̂z. (2.41)

We recover the coupling between cavity and qubit in the last term where χRQ =

− 2g2EC
~∆(∆−EC/~) is called the dispersive shift or cross-Kerr rate. This last term provides

a good interpretation of the dispersive regime: the interaction strength between cavity
and qubit is not sufficient to hybridise the two modes (the ‘quton-phobit’ regime) but
is enough for each mode to ‘feel’ the presence of the other. Here, ‘feeling’ the presence
of the other mode means that the cavity frequency is shifted by the state of the qubit
(called the ‘pull’ of the qubit) or vice versa. So, to determine the state of the qubit, it
is sufficient to determine the resonance frequency of the cavity. This is made easy with
a vector network analyser which is able to quickly measure the response function of
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the circuit at different frequencies. Moreover, because the interaction term ~χRQ2 ĉ†ĉσ̂z

commutes with the energy term of the qubit ~ ω̃Q2 σ̂
z, dispersive measurement of the

qubit is naturally QND (Quantum Non-Demolition) as there is no exchange of energy
between cavity and qubit. These details will become important later when we discuss
experiments demonstrating explicit non-QNDness and quantum thermodynamics.

2.5 open quantum systems

As is clear from the previous study of qubit control and readout, it is impossible to
consider the qubits used in circuit QED as isolated quantum systems. They are in fact in
constant interaction with their environment in both a coherent and incoherent manner.
On the one hand, when the interaction is coherent and controlled, this is something
useful, allowing us to access the quantum systems we design. On the other hand, when
the interation is uncontrolled or incoherent, it can be detrimental to the objective of
preserving and knowing the state of our system at all time. In this section we describe
the dynamics of a qubit coupled to it’s uncontrolled environment.

2.5.1 Density Matrices

Quantum mechanics accurately describes degrees of freedom isolated from their environ-
ment. When information about the quantum system starts to leak out to uncontrolled
degrees of freedom, an observer with information about the supposedly isolated system
only must consider that degree of freedom as becoming more and more classical. There
is thus a continuous transition between the quantum state |ψ〉 of (2.24) determined by
two real variables θ and φ, and a classical bit described by a single probability p of mea-
suring the value "0" akin to the value 1+cos θ

2 . The density matrix introduced by Von
Neumann in 1927, generally denoted by ρ, allows us to consistently describe quantum
systems for which we only know partial information. For a pure state whose evolution
is given by the Schrödinger equation, ρ = |ψ〉 〈ψ|. More generally though, a density ma-
trix on a Hilbert space H is a hermitian, positive semi-definite operator of unit trace.
In the basis (|λ〉 |λ ∈ {1, . . . ,dimH}) in which ρ is diagonal, ρ =

∑
λ pλ |λ〉 〈λ| and pλ

is the probability of obtaining the state |λ〉 after measurement. The expectation value
of any operator ô is given by

〈ô〉ρ = tr [ρô] . (2.42)

Finally, the equivalent of the Schrödinger equation for |ψ〉 is given by

dρ

dt
= − i

~
[Ĥ, ρ] (2.43)

for the density matrix.

2.5.2 Decoherence and energy-decay

Let us focus now again on the description of a qubit. In full equivalence to Sec. 2.4.1

we can define a Bloch vector ~uρ =
(
〈σ̂x〉ρ 〈σ̂y〉ρ 〈σ̂z〉ρ

)T
, but whose norm is only max-
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imised to 1 for a pure state, ‖~uρ‖ ≤ 1. This gives us a pratical representation of the
‘quantumness’ of a state of a qubit: the further the Bloch vector is from the z-axis of
the sphere, the less it can be totally described by the probability of its measurement
outcomes along σ̂z. Being on the z-axis is mathematically equivalent to saying that the
off-diagonal terms of ρ in the basis (|0〉 , |1〉) - the coherences - are 0. The characteristic
time over which these coherences disappear (the rate at which the Bloch vector moves
towards the σ̂z axis) when the initially isolated quantum system is put in contact with
its environment is called the decoherence time and is noted T2. The decoherence time
contains two contributions: the energy-decay time T1 and the pure dephasing time Tφ
related to T2 by

1

T2
=

1

Tφ
+

1

2T1
. (2.44)

Tφ is called the pure dephasing time, whereas T1 measures the speed of energy tunneling
between the two states |0〉 and |1〉. Note that Tφ has no classical counterpart, as there
is no such thing as the phase of a superpostion in the classical case. This is not true for
T1 though, as a transition between two classical states of different energies separated
by a potential barrier is possible, and can be activated by statistical fluctuations at
non-zero temperature like the Arrhenius equation or Kramers escape for example [54].
In the language of quantum computing, T1 is a measure of the bit-flip rate and T2 a
measure of the phase-flip rate. Because in the case of a bit-flip the energy of the qubit
changes, there must be some energy exchange with the environment. This can happen
in two ways: either the qubit gains energy at a rate Γ↑, or it can lose energy to the
environment at rate Γ↓. Thus

1

T1
= Γ1 = Γ↑ + Γ↓ . (2.45)

The temperature of the bath to which the qubit is connected determines the balance
between Γ↑ and Γ↓. At T = 0, Γ↑ = 0 because the environment cannot give any energy
to the qubit. As T → ∞, Γ↑

Γ↓
→ 1− because the bath becomes able to give and take

energy equally. The ratio of the rates follow the detailed balance relation

Γ↑
Γ↓

= e−~ωQ/kBT , (2.46)

where kB = 1.38 × 10−23J K−1 is Boltzmann’s constant and T is the temperature of
the environment with which the qubit is interacting. Γ↑, Γ↓ and Γφ are thus the decay
mechanisms which affect the qubit state when interacting with an uncontrolled bath.
These concepts can be formalised through to arbitrary quantum systems, which is the
subject of the next section.

2.5.3 Lindblad master equation and Bloch equations

An open quantum system in interaction with a number of uncontrolled degrees of
freedom can often be accurately described by the Lindblad master equation [55]

dρ

dt
= − i

~
[Ĥ, ρ] +

∑

i

γiD[L̂i](ρ) , (2.47)
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where Ĥ is the Hamiltonian of the system and D is called the Lindblad superoperator.
This equation holds under the Markov approximation. In other words the bath must
be memoryless. This means that the correlation time of the bath must be much shorter
than any of the dynamics of the quantum system with which it is interacting. Given a
jump operator L̂ acting on the quantum system

D[L̂](ρ) = L̂ρL̂† − 1

2
ρL̂†L̂− 1

2
L̂†L̂ρ . (2.48)

The first term of (2.47) corresponds to the deterministic evolution of the quantum state
due to the Hamiltonian Ĥ. The second term contains the description of the incoherent
interaction with the bath modes. Each interaction channel i is given a rate γi at which
information about the system leaks out into the environment through L̂i. Determining
the correct jump operators L̂i is thus critical in obtaining a correct decription of the
open system dynamics.

It helps to have an example to understand the terms in more detail. We can consider a
qubit which interacts with the environment through three channels: energy absorption,
energy emission and dephasing at rates Γ↑, Γ↓ and Γφ respectively. The Lindblad master
equation for this system can be written

dρ

dt
= − i

~
[Ĥ, ρ] +

Γφ
2
D[σ̂z](ρ) + Γ↓D[σ̂−](ρ) + Γ↑D[σ̂+](ρ) . (2.49)

We associate σ̂+ and σ̂− to the energy absorption and emission respectively since they
transform state |1〉 into |0〉 and vice versa. σ̂z is associated with dephasing because it
changes the sign of the superposition of |1〉 and |0〉 : σ̂z 1√

2
(|1〉+ |0〉) = 1√

2
(|1〉− |0〉). It

will be useful to write down (2.49) for the Rabi Hamiltonian Ĥ = ~Ω
2 σ̂

y as a function of
the coordinates of the Bloch vector. We obtain the Bloch equations from NMR (Nuclear
Magnetic Resonance)

d

dt



〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


 =



−Γ2 0 Ω

0 −Γ2 0

−Ω 0 −Γ1






〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


+




0

0

Γ↑ − Γ↓


 , (2.50)

which describe Rabi oscillations of the Bloch vector around the y-axis at the frequency

ΩR =

√
Ω2 − (Γ1−Γ2)2

4 decaying at a rate ΓR = Γ2+Γ1
2 . A detailed solution to these

equations is given in appendix A.

2.5.4 Input - Output theory of a cavity connected to a transmission line

So far, as an example of an open quantum system, we have studied a qubit interacting
with its environment whose density matrix follows the evolution given by the Lindblad
master equation. The modes of a microwave cavity can also be described using the
Lindblad master equation. In that case, for a mode of frequency ωR described by an
annihilation operator â interacting with a bath at zero temperature, the master equation
reads

dρ

dt
= − i

~
[Ĥ, ρ] + κD[a](ρ) , (2.51)

21



superconducting circuits for quantum computing

where ρ is the density matrix of the mode over the infinite dimension Hilbert space
spanned by the Fock states |n〉 of the mode, and κ is the loss rate to the environment.
When the cavity is connected to a transmission line, the loss rate to the environment can
be separated into two components κ = κi+κc. The first, κi, corresponds to the intrinsic
loss of the cavity due to uncontrolled sources (surface losses, uncontrolled radiative
losses...). κc is the rate at which the cavity decays into the transmission line. The main
difference between the two cases is that the information on the cavity that leaks into
the transmission line can in principle be at least partially retrieved, whereas this is not
possible for the other decay channels to which we do not have access. This observation
also suggests that we can send signals into the cavity through the same tranmission
line decay channel. Input-output theory allows us to formalise these thoughts. Using
many of the same techniques used to derive the Lindblad equation [56] we can derive
the quantum Langevin equation for the cavity operator â in the Heisenberg picture [57]

dâ

dt
= −iωRâ−

κ

2
â+
√
κcâin . (2.52)

In the above equation −iωRâ corresponds to the evolution of â given by the Heisenberg
equation of motion. The term −κ

2 â represents the decay of the field inside the cavity
given by the decay channels explicited above. The last term, introduces the ability for an
incoming propagating field âin in the transmission line to interact with the cavity mode.
Note that âin has units of

√
Hz and only describes the part of the transmission line

field propagating towards the cavity. A time-reversed Langevin equation considering
the field propagating away from the cavity can equally be derived

dâ

dt
= −iωRâ+

κ

2
â−√κcâout , (2.53)

such that we obtain the input-output relation

âout − âin =
√
κcâ (2.54)

showing how all three operators are connected. Conveniently, if the cavity has multiple
ports, these equations can be generalised by adding a term √κc,j âin,j for each addi-
tional port in (2.52) and (2.53) and making sure (2.54) holds true for each port j. We
also need to update our definition of the total loss rate κ = κi +

∑
j κc,j

We can connect the operator relations above to the response of the cavity seen by a
vector network anaylser through the transmission lines by assuming the operators are
classical (â→ α) and going to frequency space [58]

Sjj(ω) =
αout,j
αin,j

=
2κc,j − κ+ 2i(ω − ωR)

κ− 2i(ω − ωR)
, (2.55)

Skj(ω) =
αout,k
αin,j

=
2
√
κc,jκc,k

κ− 2i(ω − ωR)
. (2.56)

Finally, we define the quality factor of any loss mechanism l as Ql = ωR
κl
. For a cavity,

the total quality factor Q = ωR
κ is a measure of the characteristic number of times the

photon in the resonator ‘bounces’ back and forth between both sides of the box before
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exiting the cavity through some mechanism. We can rewrite the expressions for Sjj(ω)

and Skj(ω) as a function of the quality factors defined above

Sjj(ω) =

(
2 Q
Qc,j
− 1
)

+ 2iQω−ωR
ωR

1 + 2iQω−ωR
ωR

, (2.57)

Skj(ω) =
2Q√
Qc,jQc,k

· 1

1 + 2iQω−ωR
ωR

. (2.58)

A standard experiment to calibrate a cQED setup is to measure the reflection off
or transmitted through a microwave cavity. For low loss cavities with ports 1 and
2, S11 only contains information about ωR and κ in the phase (|S11| ≈ 1), whereas
information can be extracted from both the absolute value and the phase in the case
of a measurement in transmission of S21.

2.6 experimental methods of circuit qed

2.6.1 Cryogenics

Working with superconductors means working at temperatures below the critical tem-
perature Tc of the metals involved. Given that the junctions are made out of aluminium,
it is imperative make sure the device is below 1 K at all times. Additionally, it is desir-
able to lower the temperature as far as possible, to make sure that thermal effects are
not dominant and that we do not need to go through exhaustive state preparation to
obtain a pure state. Ideally we should be in the regime

Tfridge �
~ω
kB

, (2.59)

where kB = 1.38× 10−23 J K−1 is Boltzmann’s constant, ω is the characteristic fre-
quency of the system and Tfridge is the temperature at which we operate the device. For
ω/2π in the range 4 GHz to 8 GHz, the temperature needs to be in the mK range. For
frequencies much lower than this, we will have to resort to state preparation techniques
if we want a pure state. To achieve these low temperatures, we place our ciruits at the
base plate of a dilution refrigerator, a picture of which is shown in Fig. 2.7. Dry dilu-
tion refrigerators function by combining two different cryogenic technologies. A pulse
tube, which uses the compression and decompression cycle of helium to take heat away
from the fridge, initially brings the temperature to ∼ 4 K. To bring the temperature to
below 1 K, the thermodynamic properites of the two phases of a 3He-4He mixture (at
the lowest temperature, one phase is almost pure 3He, the other is around 93% 4He)
are exploited. Passing 3He rich phase through the dilute phase in the mixing chamber
is an endothermic process which happens at the base plate of the dilution refrigerator,
bringing the temperature down to between 10 and 40 mK. Because the cooling power
of the mixing chamber is small (∼ 14 µW at 20 mK), the refrigerator is organised into
several stages so that each level can be well thermal isolated from the others. The
stages are shown in Fig. 2.7. The cold side of the pulse tube cryocooler is attached
to the 4 K stage and provides a cooling power of around 1 mW. Below it we find the
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Figure 2.7: Typical circuit QED experimental setup. Signals generated by the RF sources and
AWG (Arbitrary Waveform Generator) are mixed on the microwave optics table
before being sent to the dilution refrigerator. They are attenuated and reach the
base plate of the fridge where they interact with the qubit and cavity. Signals
coming from the device are amplified and routed up the different stages, then sent
to the microwave optics table again. The ouput signal is down-converted and sent
to the ADC (Analog to Digital Converter) for acquisition.

1 K stage attached to the still filled with liquid 4He. Below this, at the 100 mK stage,
downwards flowing warm 3He is cooled through heat exchangers by upwards flowing
cold 3He. Finally, the lowest stage is the mixing chamber stage. To prevent any thermal
shorts the dilution refrigerator is operated under vacuum and the different stages are
physically connected by heat switches which can be turned on and off during cooldown,
warmup or standard operation. Different shields (not present in Fig. 2.7) protect lower
stages from heating up because of the radiation of the higher temperature stages.

24



2.6 experimental methods of circuit qed
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Figure 2.8: Schematic of the basic structure of the microwave optics table. The circles with
crosses are single sideband mixers.

2.6.2 Qubit control and signal acquisition

We control the devices placed at the base plate of the dilution refrigerator with mi-
crowave frequency signals prepared at room temperature. Initially, carrier frequencies
(∼ GHz) are generated by RF sources shown in Fig. 2.7 and drawn schematically in
Fig. 2.8. These signals are continuous waveforms and need to be amplitude modulated
to obtain time resolved qubit control. For this we use high frequency Arbitary Waveform
Generators (AWGs) which provide arbitrary signals at lower frequencies (∼ MHz). On
the microwave optics table these signals can be split and mixed depending on the dif-
ferent experimental requirements. Mixing the RF source output (called local oscillator
- LO) with the AWG signal (called intermediate frequency - IF) gives us a modulated
signal at RF frequencies4 which is sent into the fridge (see Fig. 2.8). Signals propagating
down the input lines are then attenutated down to the single excitation level inside the
dilution refrigerator (more about this in Chapter 5) before interacting with the device
placed inside a cryoperm shield like the one visible in Fig. 2.7. Readout signals coming
from the device are routed up through the dilution refrigerator stages and are amplified
above the room temperature noise at the entrance of the ADC by a High Electron Mo-
bility Transitor amplifier (HEMT) at the 4K stage. At room temperature, the readout
signal is down-converted using the same local oscillator as the input readout pulse was
generated with to ensure phase stability. The now low frequency signals (∼ MHz) are
then acquired by a Analog to Digital Converter (ADC) at a high sampling rate to be
treated numerically on a computer.

4 It is possible to do without this step for low frequencies which can be generated directly by the AWG.
The Fluxonium qubits measured in this thesis were indeed often driven directly by signals generated
by an Zurich Instruments HDAWG. AWGs at GHz frequencies are available but still expensive.
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2.6.3 Heterodyne detection

We know from Sec. 2.4.3 that the cavity frequency changes depending on the qubit
state. For a measurement in reflection and in the low loss limit κc = κ, this means
that the phase of a fixed frequency signal at ωRO ≈ ω̃R reflected off the readout cavity
will depend on the qubit state. For a measurement in transmission, both the phase and
amplitude can change. Measuring these changes is the way we determine the quantum
state of the qubit(s). So as to consistently use the same vocabulary through the thesis,
we present here the principle of the readout of the qubit state.

To measure the state of the qubit, we want to either monitor the reflection off the
input port or the transmission between the input and output ports depending on the
experimental setup. To do this, we generate a square pulse with the AWG modulated
at the frequency ωIF and mix it with a tone from an RF source at frequency ωRO +ωIF.
In the case of a single sideband mixer which selects only the lower sideband, the square
pulse sent into the experiment input lines is now modulated at frequency ωRO. This
pulse is called the readout pulse and its phase and amplitude are set by the control
parameters of the instruments used to generate it. Physically it corresponds to a time
dependent modulation of the electric field, or equivalently voltage, between the two
conductors of a transmission line. Within a time defined by the rectangular envelope,
the amplitude of the voltage difference at a given point along the input transmission
lines can be described by

Vin(t) = Iin cos(ωROt)+Qin sin(ωROt) = Vin cos(ωROt+ φin) = Re
[
Vine

iωROt+iφin
]
,

(2.60)

where Iin and Qin are the amplitudes of the in and out of phase quadratures of the
oscillating field and Vin =

√
I2
in +Q2

in and φin = arctan Qin
Iin

. We have some freedom
on the choice of the global phase reference, so the phase φin only makes sense when
comparing it to some other known oscillator. A convenient representation of V (t) in the
frame rotating at a frequency ωRO is the IQ-plane (also known as Fresnel plane) shown
in Fig. 2.9. The x-axis is given by the magnitude of the I quadrature, and the y-axis by
the Q quadrature. We have represented the uncertainty on Iin and Qin due to noise by
a circle surrounding their mean values. This noise can be of classical origin, but there
exists a fundamental limit on the minimum noise because of the Heisenberg uncertainty
relation. In this representation, a change of phase of the oscillation corresponds to a
rotation around the origin and a change of amplitude to a change along the radial
direction. We can understand the scattering parameters S(ωRO) as relating the voltage
wave Vin(t) in the input line to the outgoing one Vout(t) in the output lines as [8]

Vout(t) = S(ωRO)Vin(t) . (2.61)

If the qubit’s state does not change during the measurement of the scattering coeffi-
cient, S(ωRO) can be chosen as S11(ωRO) or S21(ωRO) depending on the experimental
setup. In the most general case though, the qubit state is not stationary, and we refer
to S(ωRO) as the transmission or reflection coefficient only. Thanks to this, we can see
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b.a.
Figure 2.9: IQ-plane representation of the propagating voltage. a. Vin(t) described by its Iin

and Qin coordinates in the frame rotating at ωRO. The beige circle denotes all the
possible mean IQ-coordinates for a wave of amplitude |Vin|. The purple histogram
represents the distribution of IQ quadratures one would obtain if repeatedly measur-
ing the the wave of amplitude |Vin|. b. Outgoing field at ωRO ≈ ω̃R after reflecting
off a lossless cavity containing a single qubit. The phase of the outgoing field de-
pends on the state of the qubit inside the cavity.

that Vout(t) will obtain some phase and amplitude relative to Vin(t) depending on the
state of the qubit, due to presence of the scattering parameter S(ωRO) in (2.61). The
distribution of Vout(t) in the IQ-plane is thus different whether the qubit is in |0〉 or |1〉
(see Fig. 2.9).

We can determine the I and Q quadratures experimentally of the outgoing signal
through heterodyne measurement. First the signal coming from the experiment is down-
converted to MHz frequencies by demodulating using the local oscillator signal provided
by the split RF source (see Fig. 2.8). By power splitting the same RF source for modula-
tion and demodulation we preserve the phase coherence between the modulated input
signal and demodulated output signal up to the phase variations in the cables. The
down-converted signal Vdemod is now at the frequency of the AWG waveform ωIF (often
around 50 MHz). Although the period of 20 ns for ωIF = 50 MHz modulation is longer
than it would be for signals in the GHz range, it is not usually a limiting factor for
resolving the qubit dynamics. The MHz signal is then digitized by an ADC at a sam-
pling rate of around 1GS/s. At this point, the digitised signal is compared numerically
with the voltage of a local oscillator V φ

LO(t) whose phase φ and amplitude VLO are well
known and whose frequency is equal to ωIF

V φ
LO(t) = VLO cos(ωIFt+ φ) . (2.62)

If the readout pulse is square, then, by taking T = 2π
ωIF

the period of the downconverted
signal frequency, we define

Iout(t) =
2

T

∫ T

0
Vdemod(t)V 0

LO(t)dt , (2.63)

Qout(t) =
2

T

∫ T

0
Vdemod(t)V

π
2
LO(t)dt . (2.64)
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In general, the pulse may not be square or the qubit state not stationary, so Iout(t)
and Qout(t) can vary in time. In that case, because the integral must be taken over a
full period of the oscillation, the minium time step over which the values of Iout(t) and
Qout(t) are decorrelated is T .

Of course, the noise in the experiment, whether quantum or classical, limits our ability
to discriminate the qubit state owing to a possible overlap between distributions in the
IQ-plane shown in Fig. 2.9. It is thus important to gain some statistics about the values
of Iout and Qout. We can do this by measuring an entire measurement record in the
IQ-plane {Znout = Inout + iQnout|n ∈ {0, . . . , N − 1}} where

Inout =
2

T

∫ T

0
Vout(nT + t)V 0

LO(nT + t)dt , (2.65)

Qnout =
2

T

∫ T

0
Vout(nT + t)V

π
2
LO(nT + t)dt . (2.66)

This comes down to sending a readout pulse of duration N ×T and recording the noisy
values of I and Q at each period of the IF. By taking the average Z̄out = Īout + iQ̄out

Īout =
1

N

N−1∑

n=0

Inout , (2.67)

Q̄out =
1

N

N−1∑

n=0

Qnout , (2.68)

we can reduce the noise of the readout significantly. To reduce the noise further, ex-
periments and the subsequent readout pulses are repeated M ∼ 104 − 106 times. In
Fig. 2.10a. we show a histogram of the values of Z̄out in the IQ-plane obtained from
the heterodyne measurement of a readout pulse transmitted through a cavity coupled
to a single qubit. The units of the axes are mV as this corresponds to the units used
by the acquisition card. When we can distinguish the distributions attributed to the
qubit states |0〉 and |1〉, as is the case in Fig. 2.10a., we say that we have a single-shot
measurement of the qubit within the readout time defined by the duration of the pulse.
Mathematically, this can be expressed by

σIQ <
∣∣∣Z̄ |0〉out − Z̄

|1〉
out

∣∣∣ , (2.69)

where σIQ is the measurement duration dependent standard deviation of the distribu-
tions corresponding to each qubit state |i〉 and Z̄ |i〉out is the center of the distribution if
the qubit state is prepared perfectly in state |i〉.

Often, the histograms of Z̄out are bipartite because there are only two qubit states.
In that case, all the information about the qubit population is contained along a line
going through Z̄ |0〉out and Z̄

|1〉
out. By finding the principal axis of the distribution of results

in the IQ-plane by diagonalising its covariance matrix, we can rotate the distribution
around the centre of the IQ-plane by multiplying Z̄out by some phase factor so that this
principal axis lies parallel to the x-axis. Such a transformation is shown in Fig. 2.10b.
Notice how the lobes of the single quadrature distributions in the subpanels are now
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Figure 2.10: Histograms of the distribution of Z̄out for 40000 repetitions of a 700 ns square
readout pulse transmitted through a cavity dispersively coupled to a Transmon. a.
(Main panel) distribution of the values of Z̄out in the IQ-plane as obtained directly
by the procedure described above. The red line corresponds to the principal axis
of the distribution, the blue and orange crosses to Z̄

|0〉
out and Z̄

|1〉
out respectively.

The coloured circles extend a distance σIQ around each Z̄ |i〉out. The cloud of points
in the top right of the distribution corresponds to higher excited states of the
qubit. (Minor panels) Marginals of the distributions of Īout (top) and Q̄out (right).
b. Same as figure a, but with the results rotated so the principal axis of the
distribution coincides with the x-axis.

better defined. The information about the state of the qubit is almost entirely along the
Īout axis in Fig. 2.10b., whereas is it is distributed along both quadratures in Fig. 2.10a.
The slight discrepancy between the principal axis and the line going through Z̄ |0〉out and
Z̄
|1〉
out is due to the presence of the higher excited state of the Transmon. Thus, note

that in general, for IQ-plane distributions made of many Gaussian distributions, the
principal axis may not be aligned with the axis along which changes happen to the
qubit in the experimental pulse sequence, but often rotating the data helps. In graphs
where a single pulse sequence parameter P is varied (time, amplitude, phase...), and
the axes are not calibrated to the number of photons in the cavity, we will label the
y-axis with the label “I (mV)” showing the units of the acquisition card. This is to be
understood as showing the average

〈
Īout

〉
of the outgoing I quadrature taken over all

the realisations of the experiment where P is fixed and after the readout results have
been rotated so the principal axis is aligned with x. Because the rotation around the
origin is unphysical, the absolute offset of the value of

〈
Īout

〉
in mV is also irrelevant

and cannot be compared from experiment to experiment. Furthermore the scale of the
variations of the measurement signal along

〈
Īout

〉
, depend strongly on the settings of

the AWG and the experimental setup. They should therefore also not be compared
between experiments.
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2.7 conclusion

By introducing microwave cavities and Josephson junctions we were able to present
harmonic oscillators and the Josephson Hamiltonian as the basis for circuit QED. We
used the methods of circuit quantisation to derive some basic results concerning the
Transmon qubit, Rabi oscillations and dispersive readout. As these calculations showed
us, it is necessary to let the quantum system interact with the environment so we can
control the qubit coherently and determine its state. We took into account the losses
ensued because of this through the Lindblad master equation. In the last part of the
chapter, we gave a short introduction to the experimental techniques of circuit QED.
Signals are generated and manipulated at room temperature, interact with the devices
at the base plate of a dilution refrigerator and information about the qubit state is
determined by a homodyne measurement of the outgoing field at room temperature.
In the next chapter we will look at how to design effective two-level systems which are
intrinsically protected to the noise sources we introduced to control and readout the
qubit state.
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3
THE FLUXONIUM , A PROTECTED QUBIT

Now we have established the basics of superconducting circuits and their description.
It’s time to explore in detail what makes a useful qubit. This chapter will, in a sense, fol-
low the historical evolution of a subset of superconducting qubits - inductively shunted
Josephson junctions - whose figurehead is the Fluxonium qubit. Chronology shouldn’t
be seen as the only factor linking the different discussions below though. Indeed, we
will see that a modern take, reinterpreting successive inventions as a quest for extended
decoherence times, convieniently and elegantly links the different qubits in this chapter.
We start by exposing the advantages and limitations of the Transmon as an introduc-
tion to the concepts we will need throughout. In a second part we focus on Fluxonium,
the centrepiece of this chapter. The intuition and theory developped here will be es-
sential to understand the experimental results of the following chapters. The chapter
ends with a discussion about protected qubits and how they can be implemented using
dual-mode circuits like the “0− π” qubit.

3.1 beyond the transmon

3.1.1 Protection from Decoherence

Let’s delve deeper into the properties of the Transmon qubit in order to illustrate the
reasons why it is so ubiquitous, yet imperfect. Consider again the harmonic oscillator of
Eq. (2.6). The expectation values

〈
Q̂2
〉
ψ
and

〈
Φ̂2
〉
ψ
are measures of the variance of the

charge and flux variables respectively, giving a measure of the spread of their probability

distribution in the state |ψ〉. Intuitively,
√〈

Φ̂2
〉
ψ
is the quantum mechanical analog

of the average height of a classical skater in a halfpipe. In the energy basis
〈
Q̂2
〉
n

=
~

2Z
(2n+ 1) , (3.1)

〈
Φ̂2
〉
n

=
~Z
2

(2n+ 1) . (3.2)

Now say that in the Transmon Hamiltonian we expand the cos(ϕ̂) to second order,
without à priori justifying the expansion. We can in this case express the characteristic
impedance

Z =

√
Lj
C

=
RQ
π

√
2EC
EJ

, (3.3)
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Figure 3.1: Figures adapted from [18]. Eigenenergies for the first three levels of the Transmon
Hamiltonian 3.6 as a function of the offset charge ng for different ratios EJ/EC .
Energies are given in units of the transition energy E01, evaluated at the point
ng = 0.5. Notice how as the ratio EJ/EC becomes large the eigenenrgies dependent
less and less on the offset charge. b. The two lowest energy eigenstates |ψ0〉 and |ψ1〉
represented in the charge basis for ng = 0.5. Notice how the eigenstates become
more and more delocalised as EJ/EC increases.

where RQ = h
4e2

= 6.45 kΩ is the superconducting resistance quantum which will come
in useful later. Replacing Z in the variances above we obtain

√〈
Q̂2
〉
n

=
e

(
2EC
EJ

)1/4

√
2n+ 1⇔

√
〈n̂2〉n =

1

2
(

2EC
EJ

)1/4

√
2n+ 1 , (3.4)

√〈
Φ̂2
〉
n

=
Φ0

2π

(
2EC
EJ

)1/4√
2n+ 1⇔

√
〈ϕ̂2〉n =

(
2EC
EJ

)1/4√
2n+ 1 . (3.5)

In the case where EJ > 50EC the average phase excursion is much smaller than 2π

for n small, which justifies our expansion self-consistently. Moreover, the spread of n̂
increases with the ratio EJ/EC , suggesting that the charge information is delocalised in
the lowest energy states of the transmon (see Fig. 3.1b). Of course, this is just another
way of expressing the Heisenberg uncertainty relation between two conjugate operators.
If the phase ϕ̂ is localised then the number of Cooper paires n̂ must be delocalised.
It is critical that the wavefunction be spread over multiple charge modes to protect it
from dephasing: the environment is not able to determine the state of the Transmon
by a measurement of the charges within the islands [59]. Equivalently, and taking the
historical perspective, the delocalisation of the state across many charge modes gives
the Transmon exponential insensitivity to charge noise [18].

To understand this, recall the Hamiltonian of 2.19 which took into account the effect
of an external electric potential on the Josephson junction through the term ng

Ĥ = 4EC(n̂− ng)2 − EJ cos ϕ̂ . (3.6)
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Whilst accounting for ng was not necessary to understand the level structure of the
Transmon, it is critical for understanding the effect of charge noise on decoherence.
Indeed, whilst the average value of ng can be controlled using a voltage bias (see Fig.
2.6 for example), fluctuations of the electrochemical potential around the qubit are
uncontrolled and are repercussed as fluctuations δng of ng around its average value.
We can calculate the effect of variations of ng on the qubit coherence Γφ to first order
using the formula

Γφ ∝
∣∣∣∣
∂ωq
∂ng

∣∣∣∣
2

, (3.7)

which is to say that the qubit frequency should be first order insensitive to the noise. In
the case where EC is comparable to or larger than EJ , the energy eigenstates of (3.6)
are very close to eigenstates of the charge operator. At the sweet spot ng = 0.5, and
because of the non-zero tunneling rate given by the cosine term, the charge eigenstates
|n = 0〉 and |n = 1〉 hybridise into the energy eigenstates |±〉 = 1√

2
|n = 0〉 ± |n = 1〉

[60]. We calculate the derivative of the Hamiltonian with respect to the offset charge

∂Ĥ

∂ng
= −8EC(n̂− ng) , (3.8)

so that
∣∣∣∣
∂ωq
∂ng

∣∣∣∣
2

=
1

~2

∣∣∣∣∣ 〈+|
∂Ĥ

∂ng
|+〉 − 〈−| ∂Ĥ

∂ng
|−〉
∣∣∣∣∣

2

=
1

~2
|−8EC( 〈+|n̂− ng|+〉 − 〈−|n̂− ng|−〉)|2 = 0 , for ng = 0.5 , (3.9)

because each expectation value vanishes independently. The fact that the qubit fre-
quency is first order insensitive to charge noise is clearly visible in Fig. 3.1a. When
EJ/EC = 1, a smooth minimum of the transition frequency is visible at ng = 0.5. In
fact, the ability to set ng to 0.5 using an on chip gate was a major innovation from the
Saclay team when they developped the Quantronium qubit [61]. The previous Cooper-
Pair Box (CPB) qubit, on which the first coherent measurements were demonstrated
([21]) only showed coherence times of the order of a few ns compared to the µs times
exhibited by Quantronium. When EJ > 50EC the charge noise becomes irrelevant, as
the energy eigenstates are no longer very sensitive to the value of ng because of their
spread in charge space.

∣∣∣∣
∂ωq
∂ng

∣∣∣∣
2

= |−8EC( 〈φground|n̂− ng|φground〉 − 〈φexcited|n̂− ng|φexcited〉)|2 = 0 , ∀ng ,

(3.10)

because, again, each expectation value vanishes independently. Indeed, the expectation
value of n̂ is equal to ng for the two lowest energy eigenstates in the harmonic limit.

It is interesting from a historical point of view to clarify that the Quantronics team
had in 2002 already understood that increasing EJ would solve the problem of charge
noise: “The amplitude of the charge noise is in agreement with measurements of 1/f
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charge noise, and its effect could be minimized by increasing the EJ/ECP ratio” [61].
The issue at the time was the inability to readout the qubit state if the ratio was too
large. It was thus the idea of coupling the qubit to a cavity in 2004 [16], leading to the
dispersive readout scheme, which truely allowed the development of the Transmon.

3.1.2 Limitations of the Transmon

Since it’s inception, the Transmon qubit has received the lion’s share of research on
superconducting circuits. It’s popularity can be traced back to it’s insensitivity to charge
noise, the simplicity of it’s fabrication, the ease of state readout and the availability
of exact yet simple mathematical formulas describing it’s behaviour. State of the art
Transmons can achieve T1 and T2 in the range 100 − 500 µs [62]. This improvement
from the µs level in the first Transmon experiments [63] can be attributed to a single
generic mechanism: the reduction of environmental noise sources.
Consider H = AÔX̂ the Hamiltonian coupling the Transmon to an external energy
bath. Ô is a dimensionless qubit operator like n̂ or ϕ̂ for example. The physical process
to which the (dimension-full) noise operator X̂ is coupled - a current, a voltage - is
encapsulated by the constant A which has a certain dimensionality. The energy decay
rate of the qubit into the bath is given by

Γ1→0 =
A2

~2

∣∣∣ 〈0|Ô|1〉
∣∣∣
2
· SXX(ω01) , (3.11)

called Fermi’s golden rule.

SXX(ω01) =

∫ ∞

−∞
dteiω01t

〈
X̂(t)X̂(0)

〉
(3.12)

is the quantum noise spectral density of the operator X̂ [20] (more details on Fermi’s
golden rule in 3.2.2). Fermi’s golden rule (3.11) explicitly contains two contributions.
The first, the matrix element 〈0|Ô|1〉, defines the ability of the operator Ô, coupling
the qubit to the noise, to make the two level system transition from the |0〉 to the |1〉
state or vice versa. In the case of charge noise this operator is

Ô =
∂H

∂ng
= −8EC(n̂− ng) ; (3.13)

the first term in a Taylor expansion of the Hamiltonian around ng = 0. In contrast to
the case of decoherence, the matrix elements 〈0|n̂|1〉 are non-zero in the case of the
Transmon. Charge noise can still cause energy loss but only if the modes of the envi-
ronment can give or take energy at the qubit frequency. This condition is encompassed
in the spectral density SXX(ω01). Increasing T1 and T2 in Transmon qubits has been
the exclusive effort of reducing the value of the SXX(ω01) term [59].

A second weakness of Transmon qubits is their low anharmonicity. In increasing the
ratio EJ/EC we exponentially reduced decoherence due to charge noise, but sacrificed
anharmonicity in polynomial fashion [18]. Yet anharmonicity poses a fundamental limit
on qubit gate speed

Tgate & C ·
2π

α
. (3.14)
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For reasonable fidelities, C ≈ 1.36 was shown numerically [64]. If this limit is surpassed,
the width in frequency space of the pulse defining the gate becomes great enough to
start exciting the |1〉 − |2〉 transition. Given that Transmon anharmonicity is generally
of the order of a few hundred MHz, this suggests that high fidelity gates with durations
much below 10 ns will be challenging for Transmons, as is illustrated by the current
state of the art [65].

3.1.3 Characteristic Impedance: a Unifying Vision

As a conclusion to the discussion on Transmon qubits and as an introduction to the
next part, we introduce the concept of characteristic impedance as a unifying method
of thinking about noise insensitivity. Consider again the expressions (2.11) and (2.10).
The expressions for the zero point fluctuations can be rewritten as [43, 66]

ΦZPF =

√
~Z
2

= Φ0

√
1

4π

Z

RQ
=

Φ0

2π

(
2EC
EJ

)1/4

, (3.15)

QZPF =

√
~

2Z
= 2e

√
1

4π

RQ
Z

= 2e

(
EJ

32EC

)1/4

. (3.16)

In the case of the Cooper Pair Box, EC & EJ leading to QZPF < 2e. The charge is well
localised [32]. The impedance Z of the circuit is greater than the resistance quantum
RQ. For the Transmon, EJ > 50EC ⇔ Z � RQ, and the charge is delocalised, provid-
ing noise insensitivity. Thus, looking at the characteristic impedance is a useful way to
determine the sensitivity to noise in charge and flux.

We now list three observations which will help in designing a qubit which can solve
some of the issues of the Transmon.

1. There exists a duality between charge and flux, n̂ and ϕ̂. Describing the physics
of superconducting circuits using the charge basis is equivalent to a description
in the flux basis.

2. Creating circuits with characteristic impedance above the resistance quantum is
difficult [67, 68].

3. Experimentally, charge noise measured in units of 2e is around 2 orders of mag-
nitude greater than flux noise measured in units of Φ0 in superconducting circuit
experiments [59].

The first observation motivates the design of a circuit which is the dual of the Trans-
mon in phase space. It consists of a Transmon qubit shunted by an additional large
inductance Lshunt such that Z =

√
Lshunt+LJ

C > RQ (Fig. 3.2a), delocalising the phase
variable and protecting it from flux noise. This ‘hypothetical’ qubit is naturally pro-
tected from charge noise, because the two superconducting islands of the Transmon are
now DC connected to each other, rendering it insensitive to charge offsets.
Unfortunately, creating such a large inductance is difficult (our second observation).
In fact for a long time it was considered impossible to surpass the value of RQ with
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the fluxonium, a protected qubit

a purely geometrical inductance. Indeed, in a geometrical inductor, the electrical and
magnetic fields live in vacuum or in materials with εr > 1, such that their impedance
is generally bound the impedance of free space Z0 ≈ 377 Ω [32, 69]. Up until recently,
surpassing Z0 required using the kinetic inductance of materials like NbN, granular
alumnium or the effective kinetic inductance of a chain of Josephson junctions. Only in
2018 was the first geometrical inductor with Z > RQ demonstrated [70] and the bound
was widely improved in 2020 thanks to extreme miniaturisation and careful substrate
engineering [68]. Kinetic inductance is still of prime importance though. It was the
kinetic inductor formed by a suspended chain of Josephson junctions, removing the
impedance reducing spurious self-capacitance of the chain by moving the dielectric fur-
ther away from the chain currents (εr → 1), which in 2019 allowed the realisation of our
hypothetical Transmon dual: the Blochnium qubit [67]. An impressive breakthrough in
circuit fabrication at the university of Maryland was key in achieving this design.
As is evident, designing the dual circuit to the Transmon is challenging, only being
realised for the first time during the duration of this thesis and so far only consistently
mastered by a single research group worldwide. Thankfully we can exploit our last ob-
servation, the charge/flux noise asymmetry, to design a qubit which will solve some of
the issues of the Transmon. To understand why charge noise is greater than flux noise,
we can consider the ratio

RQ
Z

=
1

8α

Z0

Z
, (3.17)

where α ≈ 1/137 is the fine structure constant. It we imagine the noise of the envi-
ronment as an ensemble of LC fluctuators in vacuum, the characteristic impedance of
these modes is Z0. So the ratio of the noise in flux to the noise in charge is given by the
ratio of the environment mode’s zero point fluctuations measured in the natural units
Φ0 and 2e

ΦZPF/Φ0

QZPF/2e
= 8α ≈ 0.06 . (3.18)

We approximately retrieve the order of magnitude observed experimentally. Concretely,
this asymmetry between charge and flux noise means that it can still be advantageous to
shunt the Transmon with a large inductance even if we are not completely in the regime
where the phase is delocalised. Obviously, this will solve the charge offset problem,
but will also increase the anharmonicity dramatically as well as reduce the value of
SXX(ω01). In the next section we will detail the physics of the Fluxonium qubit.

3.2 fluxonium theory

3.2.1 Fluxonium Hamiltonian

The basic circuit model for Fluxonium qubits is given in Fig. 3.2a, looking like a Trans-
mon shorted by an inductance as mentioned before. The value of EJ is defined by the
small junction in the top left corner of the SEM image of Fig. 3.2b. EL =

Φ2
0

4π2L
is given

by the value of the inductance L formed by the junction chain in the same figure. Fi-
nally, EC is given by the combination in parallel of the capacitance of the small junction
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3.2 fluxonium theory

Figure 3.2: a. Generic circuit model for the Hamiltonian given in (3.19). In the closed loop
formed by the junction and the inductance we can couple an external magnetic
field given symbolised here by the external flux Φext. b. An SEM image of the
small junction (top left) and the superinductance formed by a chain of Josephson
junctions. c. Image of a full 3D Fluxonium circuit taken with an optical microscope.
The two pads either side of the loop in the centre of the image serve a double
purpose: dominating the capacitive energy EC and coupling to the cavity field in
which they are placed. Images b and c were taken at the University of Maryland,
where our Fluxonium qubits were fabricated.

and the capacitance of the antennas in Fig. 3.2c. That a chain of Josephson junctions
should effectively form a large inductance is not an entirely trivial statement. Several
conditions need to be met: the junctions must be physcially large (small inductance,
large capacitance), exponentially suppressing phase slips across junctions in the chain;
the chain must contain a sufficient number of junctions to be considered a linear ele-
ment; the chain must be short enough so that transmission line modes allowed by the
spurious capacitances to ground do not resonate at the same frequency as the modes
of interest in the Fluxonium; the operation frequency of the chain must be well below
the plasma frequency of the individual junctions [32, 66, 71, 72, 73]. It should also be
noted that it is possible to create Fluxoniums with disordered superconductors with
high kinetic inductance such as granular aluminium (GrAl) [74], or using a nanowire
superinductance as was demonstrated in [75].

The generic Hamiltonian of the circuit model of Fig. 3.2a is

Ĥ = 4EC n̂
2 +

1

2
ELϕ̂

2 − EJ cos

(
ϕ̂− 2π

Φext

Φ0

)
. (3.19)

It is possible to thread an external magnetic flux Φext through the closed loop, displacing
the cosine potential of the junction with respect to the harmonic potential of the induc-
tor. The ng term which was problematic for Transmon devices has disappeared because
the two sides of the small junction are galvanically connected. Furthermore, the flux
potential is no longer 2π periodic allowing the charge number n̂ to take continous values
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Figure 3.3: Fluxonium wavefunctions and energy levels at different external fluxes for the pa-
rameters EC = 0.97 GHz, EL = 0.69 GHz, EJ = 4 GHz as a function of the phase
ϕ. The wavefunctions of the first 5 energy levels are plotted with solid coloured
lines, offset by corresponding eigenenergies given in GHz (pale coloured lines). In
gray we show the potential given by 1

2ELϕ
2 − EJ cos

(
ϕ− 2πΦext

Φ0

)
.

instead of being quantised as in the Transmon case [43]. The usual parameters of Flux-
onium devices puts them in the regime EJ � EL and EJ

EC
∼ 1− 10 [66, 76]. Concretely,

for the superinductance, we need to make chains with inductance Lchain
J = 1 − 5 nH

per junction with around 50− 200 junctions so that EL/h = 0.5− 1 GHz. The tunnel-
ing energy is set by the inductance LJ = 10 − 40 nH of the small junction such that
EJ/h = 2 − 20 GHz. Finally we aim for a capacitive energy of EC/h = 0.5 − 5 GHz

corresponding to capacitances of the order of C = 5− 50 fF. These capacitance values
are well above the capacitance CJ of the small junction, which is defined by the surface
area of the junction and the oxidation parameters during the fabrication of the oxide
layer. In standard devices CJ = 0.5 − 3 fF, so that the main contribution to EC must
come from the capacitance of the antennas (Fig. 3.2c) or from the difficultly control-
lable capacitance to ground if the circuit is in 2D.

A good way to understand the spectrum of (3.19) is to do some numerics (more de-
tails on this later). In Fig. 3.3 we show the wavefunctions, energy levels and potential
of the Fluxonium qubit in phase representation. At Φext = 0, the spectrum resem-
bles that of a Transmon circuit. At low energies the potential is quasi-harmonic and
the energy levels are approximately separated by the Lamb shifted plasmon frequency

ωQ =

√
8EC(EJ+EL)−EC

~ . Transitions between levels are called plasmons because the
average value of the flux does not change during the transition. At this working point,
Fluxoniums exhibit very little difference from Transmon qubits. As we move towards
the half flux point, at Φext = 0.4Φ0 in the 2nd panel, the two wells corresponding to the
closest minima of the cosine to ϕ̂ = 0 and house the two lowest energy states |0〉 and |1〉.
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3.2 fluxonium theory

The transition between these two levels is called a fluxon because it requires changing
the value of ϕ̂. When the two energy levels exhibit disjoint support like in this case, T1

is strongly enhanced because a local operator Ô cannot effectively induce a transition
between the two levels [59]. Equivalently, the matrix element 〈0|Ô|1〉 of (3.11) is very
small. Finally, we consider the spectrum at Φext = 0.5Φ0 called the sweet spot and the
standard working point for Fluxonium qubits. At this value of external flux, the energy
levels within both wells are degenerate, a degeneracy lifted by the 4EC n̂

2 term of the
Hamiltonian. Noting |	〉 the state localised in the well on the left, and |�〉 the state
localised in the well on the right, the first 2 energy levels are given by symmetric and
antisymmetric superpositions of these states

|0〉 =
|	〉+ |�〉√

2
, (3.20)

|1〉 =
|	〉 − |�〉√

2
. (3.21)

This notation is useful in reminding us of the physical manifestation of these energy
states as superpositions of currents circulating clockwise and anticlockwise in the loop
formed by the junction and inductor. Because the transition frequency at the sweet
spot is given by the lifting of a degeneracy of a double well potential, the ratio of
EC to EJ plays a central role in determining the qubit frequency. Intuitively, EJ sets
the height of the barrier between the two wells and EC sets the tunneling rate. When
EC reduces compared to EJ , the qubit frequency drops as the level splitting decreases
[77]. If the ratio EJ/EC decreases (eventually becoming smaller than 1), the qubit
frequency will increase as the levels repel each other. In practice, the frequency of
the |0〉 − |1〉 transition can be anywhere between 10 MHz and 1 GHz, depending on
the qubit parameters [32, 74, 75, 77, 67, 78]. For the Fluxoniums used in this thesis
ω01/2π = 100− 500 MHz and ω12/2π ∼ 5 GHz at the sweet spot, exhibiting extremely
large anharmonicity. Furthermore, as is clear from the symmetry of the 3rd panel of
Fig. 3.3, Fluxoniums are insensitive to flux noise at1 Φext = 0.5Φ0, strongly enhancing
their T2. A typical T2 measurement as a function of flux is shown in Fig. 3.4 where
this enhancement is visible. Interestingly, it is the same mechanism protecting T1 for
Φext 6= 0.5Φ0 that protects T2 at the sweet spot. A phase-flip, measured at a rate 1/T2,
occurs when |+X〉 is transformed into |−X〉. Yet in the Fluxonium qubit, the states
|±X〉 = |0〉±|1〉√

2
are in fact just the clockwise and anticlockwise current states |	〉 and

|�〉. These states are localised in the degenerate left and right potential wells such that
their support is disjoint. A local operator thus cannot induce a phase-flip. Does this
mean that T1 is now unprotected? In the wavefunction support sense, yes, but because
the qubit frequency is an order of magnitude lower than in Transmons (0.5 vs. 5 GHz),
SXX(ω01) is also reduced for most lost mechanisms.

1 This is also true at Φext = 0Φ0.
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the fluxonium, a protected qubit

Figure 3.4: Typical measurement of T2 as a function of flux. Notice how T2 is enhanced only
very close to the sweet spot, within one 10000th of a flux quantum. Such a high
sensitivity was also observed in [77, 74, 79].

3.2.2 Loss mechanisms

Let’s be more specific about Fermi’s golden rule. Recall that for a qubit coupled to a
bath at temperature T through the interactionHint = AÔX̂, where Ô is a dimensionless
qubit operator and X̂ is the operator of the bath, Fermi’s golden rule is

Γ1→0 =
A2

~2

∣∣∣ 〈0|Ô|1〉
∣∣∣
2
· SXX(ω01) . (3.22)

The spectral noise density SXX(ω01) (see (3.12)) quantifies the ability for the bath to
receive energy at the frequency ω01 given its temperature T . Note that, in contrast
to classical spectral densities, SXX(ω) 6= SXX(−ω), meaning that giving and taking
energy is not the same for the bath. This is best illustrated at T = 0 where the bath
can receive energy, but cannot give it [20]. Generally, Hint can be found by taking the
derivative of the Hamiltonian with respect to an external parameter λ which can be
affected by the noise of the bath. Expressedly, if δλ is the environmental noise around
the set parameter λ0 then

Ĥ(λ) ≈ Ĥ(λ0) +
∂Ĥ

∂λ
δλ

︸ ︷︷ ︸
Hint

. (3.23)

δλ will be expressed by some bath operator. Concretely, in the case of current noise in
a coil biasing the Fluxonium at its sweet spot, λ = Φext and δλ = MδÎcoil where M is
the mutual coupling between the coil and the Fluxonium loop. In the following though,
we keep the discussion very generic in order to derive some general formulas for the
effect of noise on Fluxonium.
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Qubit

a. b. c.

Figure 3.5: a. General circuit model for a linear dissipator. The qubit is shunted by a frequency
dependent admittance. b. Circuit model for capacitive type losses. c. Circuit model
for inductive type losses.

The operator Ô is often the charge n̂ or phase ϕ̂ operator. Yet we know that repre-
sentations in charge and phase contain the same information. A manifestation of this
is the relation

〈1|n̂|0〉 = i
ω01

2π
RQC 〈1|ϕ̂|0〉 (3.24)

providing a connection between the charge and phase matrix elements through the total
capacitance C of the circuit given by2 EC (for a full derivation see [80]). Thus, we can
restrict ourselves to considering any loss mechanism as affecting the phase operator ϕ̂
only. In this case, it is useful to imagine the lossy bath as an admitance in parallel with
the inductance of the Fluxonium [7] (see Fig. 3.5a). The coupling Hamiltonian becomes
Hint = Φ̂Îadmitance (the integrated power dissipated in the admitance due to the flux
across the junction) and we hide the particular properties of the dissipation mechanism
in the expression of the admitance Y (ω) so that [20]

SII(ω01) = ~ω01 Re [Y (ω01)]

[
coth

(
~ω01

2kBT

)
+ 1

]
. (3.25)

For specific loss mechanisms we now have to identify the expression for the admitance
Y (ω01).

Dielectric losses are one of the main sources of energy loss in superconducting circuits
[81]. They correspond to two level systems (TLSs) present in the substrate on which
the circuits are patterned which interact with the electric fields of the circuits. This
can be modelled by assuming the capacitance possesses a lossy dielectric: the dielectric
constant has an imaginary part ε = ε0+iε1. The admittance of a parallel plate capacitor
of surface A and distance d is Y = iω (ε0+iε1)d

A = iωC − ωC tan δ. We have introduced
the angle δ such that tan δ = ε1

ε0
. This is the admittance of a capacitor and (frequency

dependent) resistor in parallel (Fig 3.5b.) of which the Q-factor is Q = ωRC [8] and
R = 1

ωC tan δ = 1/Re [Ydiel(ω)]. Hence

Re [Ydiel(ω01)] =
ω01C

Qdiel
, (3.26)

2 Equivalently, we can see C as a constant which connects the voltage across the junction to the charge
number V̂ = 2e

C
n̂
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and Q−1
diel = tan δ is coventionnally given by the loss tangent of the material (see Tab.

4.3 in Chapter 4).

In full analogy, we can compute inductive losses, the losses due to coupling to the
magnetic field, by using a complex permeability for the inductance. The admittance of
a coil of inner area A, length l and number of winds N is Y = (iω(µ0 + iµ1)N

2A
l )−1.

Close to the frequency of interest, we can model this admittance as an inductor and
resistor in series Y = (iωL−R)−1 (Fig 3.5c) where R = ωL tan δµ and tan δµ = µ1

µ0
in

full analogy with the dielectric case. The Q-factor of such a circuit is given by Q = ωL
R

[8]. Finally, under the approximation that the losses are small (Qind � 1)

Re [Yind(ω01)] =
1

ω01LQind
, (3.27)

with Q−1
ind = tan δµ. Whereas there generally exist tables of loss tangents for various

dielectrics, this is not always the case for magnetic losses. This expression is thus gen-
erally used as an estimator for a bound on the quality factor Qind.

Radiative losses, such as those given by the Purcell rate can equally be calculated
using this technique. An expression for the admitance as a function of circuit parame-
ters is given in [80], but is rarely useful because of the lack of knowledge of the circuit
parameters involved. We prefer to follow the approach of [73] which relies on finite
element simulations. In Sonnet for example, placing a port at the junction position and
another at the transmission line input allows the simulation of the admittance as seen
by the Josephon junction.

A last source of losses is the one due to quasiparticles tunneling through the junctions
in the circuit. Quasiparticles, which should basically not be present at the temperatures
at which dilution refrigerators are operated, correspond to electronic excitations above
the superconducting gap ∆. In theory, the ratio of the number of quasiparticles to the
number of Cooper pairs xqp should be around ∼ 10−23 at 40 mK, but in practice many
measurements find values well above this in the range 10−7 − 10−5 [82, 83, 84, 85, 86,
87, 37]. A thorough treatment of the issue and potential explanations can be found
in [88]. Because these losses do not involve a linear interaction Hamiltonian, but the
non-linearity of the junction tunneling, the techniques given above combining (3.22)
and (3.25) are not valid. The expression for the loss rate from quasiparticles tunneling
through the small junction is given as [88]

Γ1→0 =
8EJ
π~

xqp

√
2∆

ω01

∣∣∣∣ 〈0|sin
(
ϕ̂

2
− πΦext

Φ0

)
|1〉
∣∣∣∣
2

. (3.28)

For the losses due to tunneling in the chain, the operator in the matrix element is
linearised and EJ is replaced with EL [89]

Γ1→0 =
8EL
π~

xqp

√
2∆

ω01

∣∣∣∣ 〈0|
ϕ̂

2
|1〉
∣∣∣∣
2

. (3.29)

A summary of the different relaxation rates is given in Table 3.1. Before continuing,
it is useful to comment about dielectric and quasiparticle losses in more detail. We can
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Loss Type Expression for Γ1→0

Dielectric ~ω2
01C

4e2Qdiel
| 〈1|ϕ̂|0〉|2

[
coth

(
~ω01
2kBT

)
+ 1
]

Inductive ~
4e2LQind

| 〈1|ϕ̂|0〉|2
[
coth

(
~ω01
2kBT

)
+ 1
]

Radiative (including Purcell) ~ω01
4e2

Re [Y (ω01)] | 〈1|ϕ̂|0〉|2
[
coth

(
~ω01
2kBT

)
+ 1
]

Quasiparticles (small junction) 8EJ
π~ xqp

√
2∆
ω01

∣∣∣ 〈0|sin
(
ϕ̂
2 − πΦext

Φ0

)
|1〉
∣∣∣
2

Quasiparticles (chain) 8EL
π~ xqp

√
2∆
ω01

∣∣∣ 〈0| ϕ̂2 |1〉
∣∣∣
2

Table 3.1: Table summarising the different loss mechanisms and their expressions.

see how advantageous it is to reduce the frequency of Fluxoniums with respect to their
Transmon counterparts when it comes to the losses. Dielectric losses depend on ω2

01

such that by reducing the frequency by a factor 10, we have gained a factor 100 on
the limit given by dieletric loss on qubit lifetimes. This is what enables Fluxonium to
be the most coherent quantum circuit to date (T2 > 1 ms), despite being limited by
delectric losses [79, 33]. Additionally, quasiparticle tunneling through the small junction
is supressed at Φext = 0.5Φ0 because the matrix element 〈0|sin

(
ϕ̂
2 − πΦext

Φ0

)
|1〉 vanishes

at this point thanks to parity protection [82].

3.2.3 Single qubit gates

In the previous section we have seen that by lowering the qubit frequency we can re-
duce the energy decay rate of the Fluxonium, especially the losses due to dielectrics.
In general, the level structure of the Fluxonium has a number of consequences on the
availability of gates for controlling the qubit state.

First of all, at the flux symmetry points the matrix elements 〈j|ϕ̂|k〉 where j − k is
even go to 0 exactly. This selection rule can be seen from considerations on the symmetry
of the wavefunctions: ϕ̂must couple wavefunctions with opposite phase parity3. A direct
practical consequence is that the |0〉 − |2〉 transition is hard to probe at half flux (even
transitions in Fig. 3.6).
Furthermore, in many schemes qubit gates consist of applying microwave tones pulses
coupling to the charge degree of freedom. Although inductive coupling schemes in 3D
exist as well [74], direct coupling between the field and the charge degree of freedom
is standard for 3D Fluxoniums in a cavity in particular (see the antennas in Fig. 3.2
for example). Yet from (3.24) and the low frequency transitions in Fig. 3.6 we see that
the “drivability” of the transition, given by the charge matrix element, disappears with

3 A direct proof is to calculate the overlap integral
∫∞
−∞ ψj(ϕ)ϕψk(ϕ)dϕ where ψj and ψk have the same

symmetry in ϕ.
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Figure 3.6: Magnitude of the charge (orange) and phase (blue) matrix elements as a function of
the transition frequency at Φext = Φ0/2. The cavity frequency 7.752 GHz is given
by the black dashed line. The qubit parameters are EC = 0.97 GHz, EL = 0.69 GHz,
EJ = 4 GHz (same as in Fig. 3.3). Note how the even matrix elements are strictly
0 and how the values of | 〈l|n̂|k〉| are supressed with respect to those of | 〈l|ϕ̂|k〉| at
low frequency.

the qubit frequency ω01, posing a potential issue for fast operations. By decreasing the
magnitude of the charge matrix element we increased coherence, but does this come at
the cost of slower gates? Indeed, with the perspective of using superconducting qubits
for quantum computation, we should strive to keep increasing T2

Tgate
(or at least keep it

constant for increasing T2). In practice though, it is sufficient to increase the drive power
to compensate the smaller matrix elements, and obtain Rabi frequencies equivalent to
those seen in Transmons without being prone to leakage outside of the computational
subspace thanks to the large anharmonicity. In fact 80 ns microwave activated gates
on a low frequency Fluxonium are currently the highest fidelidy gates acheived in
superconducting circuits [33], with 20 ns gates reaching fidelities above 99.9% [90]. At
very low frequencies however, the suppression of the charge matrix element does become
a problem and gates are engineered thanks to the phase matrix element 〈1|ϕ̂|0〉 as was
demonstrated in [77]. There, they exploited the Landau-Zener transition due to the
level repulsion of the states in either phase potential wells at half flux to generate an
effective σ̂x Hamiltonian with small flux displacements.

3.2.4 Fluxonium Readout

Before discussing two qubit gates, we focus on the readout of Fluxonium qubits because
some of the principles will be the same. As discussed in Sec. 2.4.3, the qubit and cavity
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are coupled through the term Ĥint = ~gn̂(â + â†). We put ourselves in the dispersive
limit, meaning that

∣∣∣∣
El − Ek

~
− ωR

∣∣∣∣� g| 〈l|n̂|k〉| , (3.30)

where El and Ek are the eigenenergies of the Fluxonium state |l〉 and |k〉 respectively4
[91]. In this limit, it is useful to consider the coupling term of the Hamiltonian as a small
correction and apply perturbation theory to the uncoupled eigenstates of the system.
Labeling the uncoupled states |µ,m〉 = |µ〉 ⊗ |m〉 (we use Greek letters for the qubit,
the Roman alphabet for the cavity), the first two perturbative terms5 for the energy
correction due to the qubit-cavity coupling are given as

E(1)
µ,m = ~g 〈µ|n̂|µ〉 〈m|â+ â†|m〉 , (3.31)

E(2)
µ,m = ~2g2

∑

ν 6=µ, l 6=m

| 〈µ|n̂|ν〉|2 ·
∣∣ 〈m|â+ â†|l〉

∣∣2

Eµ,m − Eν,l
. (3.32)

The first order term disappears at all fluxes, not because of the 〈µ|n̂|µ〉 term which
only vanishes at half flux, but because of the cavity matrix element which vanishes
at any flux. The second order term is simplified as â + â† only couples to consecutive
cavity states

E(2)
µ,m = ~2g2

∑

ν 6=µ
| 〈µ|n̂|ν〉|2

(
m+ 1

Eµ − Eν − ~ωR
+

m

Eµ − Eν + ~ωR

)
. (3.33)

Thus, the shift imposed by the qubit in state |µ〉 on the cavity frequency is

E(2)
µ,m − E(2)

µ,m−1 = ~2g2
∑

ν 6=µ
| 〈µ|n̂|ν〉|2

(
1

Eµ − Eν − ~ωR
+

1

Eµ − Eν + ~ωR

)

= ~2g2
∑

ν 6=µ
| 〈µ|n̂|ν〉|2 2(Eµ − Eν)

(Eµ − Eν)2 − ~2ω2
R

= ~g2
∑

ν 6=µ

2ωµν | 〈µ|n̂|ν〉|2
ω2
µν − ω2

R

= ~χµ , (3.34)

where we have defined the transition frequency ωµν =
Eµ−Eν

~ . If the qubit and cavity
are coupled through the phase Ĥint = ~gn̂(â† − â), we have to recalculate the second
order perturbation theory. This is straightforward and we obtain

~χµ = ~g2
∑

ν 6=µ

2ωR| 〈µ|ϕ̂|ν〉|2
ω2
µν − ω2

R

. (3.35)

Experimentally, use usually measure the dispersive shift χµ −χν of the cavity frequency
when the qubit changes from |ν〉 to |µ〉, as this does not require knowledge of the bare

4 There is some simplification here with respect to the most general dispersive limit, as we only consider
a single mode cavity.

5 Fourth order corrections are in fact visible in experiments [91], but the main features are already
captured by the second order terms.
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cavity frequency ωR which is generally inaccessible6.

It is useful to understand (3.34) in some detail before going further. At Φext = Φ0/2

the charge matrix element only couples to even transitions, so when dealing with the
dispersive shift of the ground state for example, the only relevant terms in the series
correspond to ν being odd. In practice, ωR ≈ 7.5 GHz in most of the devices in this thesis
which is not a coincidence. With the knowledge that in general ω10 ∼ 500 MHz and
ω30 ∼ 7 GHz, notice that the term β = 3 dominates the infinite sum for χ0 because the
denominator is very small. The SNR of the qubit readout is given by |χ0−χ1|

κ with κ the
linewidth of the cavity. No term in the sum for χ1 is as large though because 〈1|n̂|3〉 = 0,
and ω14−ωR will change sign compared to ω03−ωR thanks to the large anharmonicity
thus contributing constructively to the dispersive shift. These considerations are clearly
visible in Fig. 3.6. It is thus the proximity of transitions outside the computational
subspace with the cavity frequency that defines the magnitude of the dispersive shift
of the 0− 1 transition.
This is in stark contrast to the Transmon. While (3.34) is still valid for Transmon
qubits, it is the terms involving ω01 and ω12 = ω01 − α which are dominant. Because
the anharmonicity α is small, there is no decoupling between the cavity frequency and
the dispersive shift. The qubit frequency must be close to the cavity frequency if we
want the readout to be effective. Moreover, in Transmons the dispersive shift χ1−χ0 is
almost always negative except for the special case of the stradling regime7. That is to
say that the cavity frequency when the qubit is in |1〉 is invariably lower than when it
is in state |0〉. This is not the case for Fluxonium, where the dispersive shift routinely
changes sign as a function of flux.
In Fig. 3.7 we show a Fluxonium qubit spectrum measured using two tone spectroscopy.
In this measurement a first tone at ωd close to ωR is used to monitor the cavity frequency.
If the qubit state changes, so will the cavity frequency and thus the phase and amplitude
of the drive transmitted through the readout cavity (see Chapter 2 for details). The
second tone’s role is to excite the various qubit transitions. To do this, its frequency
ωp is swept over a wide range at fixed amplitude. When ωp gets close to one of the
Fluxonium’s transition frequencies ωµν , the qubit’s state begins to change, leaving a
signature on the phase and amplitude of the transmitted cavity drive visible in In Fig.
3.7. Finally, to monitor the Fluxonium’s flux dependence, we also sweep the external
flux Φext. Colored lines, showing deviations of the cavity response from its response
with thermal qubit occupation, indicate that the probe tone is at resonance with a
qubit transition. The color represents the phase of the cavity response, encoding the
sign and magnitude of the dispersive shift due to the qubit. Notice how throughout the
spectrum, the lines become more or less thick, indicating the varying susceptibility of
the transition to the drive, as expected from the flux dependence of the magnitude of

6 The cavity frequency without the qubit and the cavity frequency with the qubit inside are not the same.
We showed this in (2.39), where the cavity frequency is dressed by the qubit and cavity coupling. Even
if we effectively eliminate the coupling between qubit and cavity (like here [92]) the cavity frequency
is still modified by the presence of the dielectric from the silicon chip on which the qubit is patterned.
A measurement of the cavity frequency with no silicon chip inside would not yield the same result as
a removal of the coupling between cavity and qubit.

7 The stradling regime is defined as ωR < ω01 < ωR + α
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Phase of resp
onse (degrees)

b.

a. c.

Figure 3.7: Measurement of a 3D Fluxonium spectrum by two tone spectroscopy. The colorscale
(blue - white - red) corresponds to the phase of the cavity response with respect to
its value away from any qubit transitions. Dashed lines are fits to the Fluxonium
Hamiltonian eigenenergies with parameters EC = 0.97 GHz, EL = 0.69 GHz, EJ =

4 GHz. The brown line at the top of panel a. is the cavity frequency and the dotted
line corresponds to the value of ωR − ω02. b. Zoom around the frequency of the
|0〉 − |2〉 transition at half flux. c. Zoom around 3 GHz at the flux point where the
|0〉 − |3〉 crosses the cavity frequency. Notice that some of the transitions visible in
the spectrum, around 4 GHz at Φext = 0.4Φ0 for example, are due to the presence
of a second Fluxonium on the same chip that is coupled to the same cavity.

the charge matrix element 〈µ|n̂|ν〉. In particular, in the top right inset, we can clearly
see how the matrix element of the |0〉 − |2〉 transition disappears at half flux because
of the selection rule. The cavity mediated |0〉 − |2〉 transition is also visible in the
inset (upside down hyperbola). In practice this is the frequency ωR−ω02 corresponding
to the conversion of 2 qubit excitations into a single cavity excitation and vice versa
|α = 0,m = 1〉 − |α = 2,m = 0〉 (more on this in Chapter 5). As a confirmation of the
theory, this transition is not parity protected thanks to the involvement of the cavity
and is thus visible at the sweet spot Φ0/2. In the bottom right inset, we see how
the dispersive shift of a transition can change abruptly with flux. See how the visible
transitions go from blue to red to blue as we increase the flux. In perfect accord with
the discussion above, the flux point where this happens is exactly where the |0〉 − |3〉
transition crosses the cavity frequency.

3.2.5 Diagonalising the Fluxonium Hamiltonian

Alone, the Transmon qubit can be diagonalised exactly [18]. No analytical solution to
the problem of a the transmon coupled to a cavity exists though and we must turn to
numerics. A number of open source projects have been developped [93, 94, 95], relying
for the most part on the technique of Black Box Quantisation [96]. This relies on the
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weak anharmonicity of the Transmon to initialy linearise the circuit, expanding the
cos(ϕ̂) to second order, finding the normal modes and then diagonalising the Hamilto-
nian in the normal mode basis with the cosine expansion truncated to low (4th) order.
This technique cannot be used for Fluxoniums, simply because they are not weakly
anharmonic and the higher order cosine terms contribute strongly to the spectrum [97].

The Hamiltonian of a Fluxonium qubit coupled to a cavity can be decomposed into
3 terms

Ĥ = ĤFluxonium + ĤCavity + ĤCoupling , (3.36)

where

ĤFluxonium = 4EC n̂
2 +

1

2
ELϕ̂

2 − EJ cos

(
ϕ̂− 2π

Φext

Φ0

)
, (3.37)

ĤCavity = ~ωRâ†câc , (3.38)

ĤCoupling = −~gn̂(â†c + âc) . (3.39)

When the coupling g is weak, as is defined by the dispersive limit of (3.30), we want
to calculate the corrections to the eigenenergies of the qubit and cavity due to the
coupling between the two. Here we expose in detail three different methods for doing
this.

3.2.5.1 Perturbation Theory

The simplest technique is to use the results of second order perturbation theory, as
were described in Sec. 3.2.4. For this, we can diagonalise the qubit Hamiltonian (3.37)
alone using Qutip [98, 99] by expressing n̂ and ϕ̂ in terms of the harmonic oscillator
operators â†q and âq [32]

n̂ = inZPF(â†q − âq) , nZPF =

(
32EC
EL

)−1/4

(3.40)

ϕ̂ = ϕZPF(â†q + âq) , ϕZPF =

(
2EC
EL

)1/4

. (3.41)

The linear term 4EC n̂
2 + 1

2ELϕ̂
2 becomes ~ωpâ†qâq where ωp =

√
8ECEL/~. The co-

sine term cos
(
ϕ̂− 2πΦext

Φ0

)
can be calculated using the numerical matrix cosine imple-

mented in Qutip. Numerical diagonalisation of the resulting Hamiltonian matrix yields
the eigenenergies and eigenstates of the Fluxonium which can be used to fit spectra as
in Fig. 3.7. Calculating the dispersive shift is done by fixing a qubit state independent
cavity frequency ωR and using (3.34).

3.2.5.2 Harmonic modes

The second technique is to diagonalise the full bipartite Hamiltonian Ĥ using the
harmonic modes defined in (3.41) and (3.40) again. The choice of the dimensions dq and
dcav of at which Hq and Hcav are respectively truncated is important to obtain sufficient
precision on the transition frequencies and the dispersive shifts without unnecessarily
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slowing down the numerics. Numerical diagonalisation of the Hamiltonian matrix yields
the eigenenergies El and eigenstates |ψl〉 in order of increasing energy. We proceed to
label each of the states with two quantum numbers µ and m corresponding to the most
likely number of excitations in state for the qubit and cavity mode respectively. For
this we follow a technique developped in [100] and calculate the matrix elements of the
dipole operator

dlm = 〈ψl|â†c + âc|ψm〉 . (3.42)

dlm is large when the transition |ψl〉 − |ψm〉 corresponds to a single cavity exictation.
This yields ladders of states where the qubit number µ is fixed and the photon number
is incremented as we move up the ladder. We can thus label |ψl〉 as |ν,m〉 where
m is the photon number in the resonator. Assigning the quantum number µ to the
states |ν,m〉 is done by comparing |ν, 0〉 with the product states |µ〉 ⊗ |0〉 obtained by
direct diagonalisation of the Fluxonium Hamiltonian (3.37). In practice we calculate
the overlap

|〈ν, 0| (|µ〉 ⊗ |0〉)| . (3.43)

3.2.5.3 Normal modes

The third method diagonalises the full coupled Hamiltonian using the normal modes
as suggested in [97]. The basis is obtained by defining the operators ãc and ãq which
diagonalise the linear part of the Hamiltonian

Ĥlin = ~ωRâ†câc + 4EC n̂
2 +

1

2
ELϕ̂

2 − ~gn̂(â†c + âc) = ~ω̃Rã†cãc + ~ω̃Qã†qãq . (3.44)

Details on how to find identify the operators ãc and ãq is given in [101] and in Appendix
B. Once the operators have been defined we proceed as in the harmonic mode case.

A comparison of the different diagonalisation techniques is given in Fig. 3.8. Quite
generally, at Φext = Φ0/2, all three simulations agree on the frequency and dispersive
shift of the |0〉− |1〉 transition as well as the frequency of the cavity to within less than
a percent when the dimension of the qubit Hilbert space becomes large. Specifically,
the values calculated using perturbation theory and those using the harmonic modes
give almost exactly the same results for all dq as is visible by the almost perfect overlap
between the orange and blue curves in the first column. The real difference between the
methods is visible in the second column where we quantify the speed of convergence of
the simulated values towards the ‘true’ values obtained in a simulation with dq = 50.
For both the cavity and qubit frequency ω01 the diagonalisation using the normal modes
converges faster, a fact which motivated this method in [97]. Finally, note that if we
want a good estimation of the dispersive shift, the Hilbert space dimension needs to be
large: dq > 15. This is a manifestation of the sensitivity of the series in (3.34) to the
value of the denominators.

49



the fluxonium, a protected qubit

Simulated Frequency Relative Convergence Simulation Agreement

Perturbation Theory (PT)
Harmonic Modes (HM)
Normal Modes (NM)

Re
la

tiv
e 

di
st

an
ce

Re
la

tiv
e 

di
st

an
ce

Re
la

tiv
e 

di
st

an
ce

Re
la

tiv
e 

di
st

an
ce

Re
la

tiv
e 

di
st

an
ce

Re
la

tiv
e 

di
st

an
ce

Fr
eq

ue
nc

y 
(G

H
z)

Fr
eq

ue
nc

y 
(G

H
z)

Fr
eq

ue
nc

y 
(M

H
z)

Dimension Dimension

PT - NM
HM - NM

Dimension

Figure 3.8: Comparison of different numerical techniques to calculate the qubit and cavity tran-
sition frequencies as well as the dispersive shift χ01 from the Hamiltonian (3.36)
as a function of the dimension of the qubit Hilbert space dq. The three different
techniques we use are perturbation theory (PT, blue in the first two columns), the
harmonic modes (HM, orange) and the normal modes (NM, green) as described
in the text. Data in each row (from top to bottom): frequency of |0〉 − |1〉 transi-
tion, cavity frequency, dispersive shift of |0〉 − |1〉 transition. Data in each column
(from left to right): Simulated value of each frequency xi (i indexes the dimension),
relative convergence of xi to its value x∞ (for dq = 50), relative distance between
different simulations xTi (T is the simulation technique) compared to the value of
the normal mode simulation. All simulations used the parameters: EC = 0.97 GHz,
EL = 0.69 GHz, EJ = 4 GHz, ωR = 7.752 GHz, g = 0.2 GHz, Φext = 0.5Φ0. For the
HM and NM simulations, the dimension of the cavity Hilbert space was 5.
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3.2.6 Two qubit Gates

Two qubit gates with Fluxonium are still relatively recent and are not the topic of
this thesis, but we provide a brief overview here for the sake of completeness and to
illustrate the advantages of the anharmonic spectrum. Quite generally, to obtain a 2
qubit gate you need to find a way of engineering an interaction term n̂An̂B between
two qubits A and B. In Transmons this can be done permanently, by coupling the
two qubits capacitively in a permanent manner, or temporarily by tuning the qubit
frequencies with a magnetic field or by applying a microwave pulse at a well chosen
frequency for instance [102, 11, 103, 104]. In practice though, the low anharmonicity
and the fact that the frequency of transitions in qubit A depend on the state of qubit
B (the transitions 00− 10 and 01− 11 for example) is detrimental to the gate fidelities.
Successful workarounds always increase circuit complexity or need additional resources.
A significant advantage of Fluxoniums is that coupling within the computational sub-
space can be mediated by high level transitions as is the case for the dispersive readout.
This fact has been exploited in the 2 qubit gate attempts at the university of Maryland
[38, 105]. The other approach consists in using the flux tunability, to bring the 0 − 1

transitions of both qubits into resonance, implementing a 2 qubit gate whilst remaining
in the computational subspace [90].

3.2.7 Limitations of the Fluxonium qubit

Despite the numerous advantages and successes of Fluxonium over their Transmon
counterparts, they do exhibit some limitations. From a fabrication perspective first of
all, Fluxonium devices require fine control over a 3rd parameter EL, controlled by the
superinductance. Whilst not impossible8, chains of Josephson junctions do pose a cer-
tain fabrication challenge, requiring good control and calibration of e-beam lithography
techniques. Furthermore, the additional degree of freedom enabled through Φext adds
complexity to the measurement setup and can be the source of additional noise. For
the experimentalist, it adds another global parameter (one on which everything else
depends) to the already highly dimensional parameter space of superconducting ex-
periements. With these engineering challenges come two important physical challenges
which are yet to be resolved and are the subject of much of the work in this thesis. The
first is the large thermal population of the 1st excited state at Φext = 0.5Φ0. At a tem-
perature of 40 mK the populations of the |0〉, |1〉 and |2〉 states are respectively: 60%,
39%, 1% for a qubit with parameters EC = 0.97 GHz, EL = 0.69 GHz, EJ = 4 GHz

such that the |0〉 − |1〉 transition has frequency 378 MHz at the sweet spot. This is
a big problem for quantum algorithms which expect as input a qubit in a pure state.
Initialisation of Fluxoniums to a pure state (usually |0〉) is a subject of current research
and will be discussed in detail in Chapter 5. The second big challenge is Fluxonium
readout. Again, Fluxonium may be the most coherent quantum circuit, but this is not
of practical importance if the state of the qubit at the end of the algorithm cannot be

8 “Really easy to fabricate”, V. Manucharyan, Quantum Information Machines - Les Houches Summer
School 2019.
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successful determined. Controllably designing a QND dispersive readout for Fluxonium
is still a subject of current research and will be the subject of Chapter 6.

3.3 protected qubits

We have discussed in detail the mechanisms which govern error rates in Fluxoniums
and in Transmon qubits. The objective of this section will be to sum up some of these
considerations and give an overview of how to design even more coherent qubits.

3.3.1 The laws of error protection

Environmental noise on quantum degrees of freedom is both ubiquitous and unavoidable
and is one of the main sources of errors for quantum systems. Mitigating the effect of
noise can be done in three different ways.

1. We can act at the source and reduce the magnitude of the noise affecting our
systems. This can be done by filtering the control lines used to address the qubit
for example, or by increasing the shielding and thermalisation of our experiments.
We should be aware that these efforts can never be perfect, because there will
always be a noise source which we will not have considered. We will go into more
detail about this topic in Chapters 4 and 5.

2. We can design quantum systems which are as resilient to noise as possible, systems
whose fundamental properties make them insensitive to the noise sources we are
trying to control. This is the concept of “hardware protection” which we will detail
shortly. Of course, even if by design we are able to think of systems insusceptible
to noise, this ideal will be confronted to the imperfections of reality where exact
control, over fabrication parameters for example is impossible, to achieve.

3. There lies the role of Quantum Error Correction (QEC) whose objective is to
detect and correct the residual errors. Error correction presents its own challenges,
both from an engineering and physics perspective. Thus, although QEC will be
inevitable to have a functioning fault tolerant quantum computer, we should
design its building blocks to be as robust as possible to errors, reducing the
complexity of the error correction required.

Why can we not rely on error correction techniques? Quite generally, error correction
consists increasing the number of error prone systems over which the quantum informa-
tion is spread in the hope that increased redundency will at some point counter-balance
the error rates of each individual subsystem. The subsystem error rate at which point
it becomes interesting to implement some kind of QEC is called the “threshold” for that
kind of QEC. When the error rate is below the threshold, increasing the number of error
prone subsystems can reduce the overall error rate. Moreover, for a constant number of
subsystems the overall error rate decreases with the error rate of the individual subsys-
tems or, conversely, when the subsystem error rate is improved the number of required
subsystems to achieve an equivalent overall error rate is decreased. These observations
mean two things: we need to reduce error rates to a certain point before even being
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Figure 3.9: Landscape of inductively and capacitively shunted qubits as a function of the
EL/EC and EJ/EC ratios. The different markers correspond to the devices de-
scribed in [18, 67, 109, 79]. The colorscales represent protection against phase-flips
(blue) quantified by the dependence of qubit frequency on external parameters
ϕe = 2πΦext

Φ0
and ng (Φext = 0.25Φ0 and ng = 0.25), and the protection against

bit-flips (brown) is quantified by the charge matrix element | 〈0|n̂|1〉| (EC = 1 GHz

and Φext = 0.45Φ0). Modes are called light and heavy with respect to the value
of the capacitance C which plays the role of the mass in the qubit Hamiltonians.
Figure adapted from [59].

able to start with QEC; reducing error rates even further can only be advantageous. As
an illustration, the very popular Surface Code [106] needs a large number of physical
qubits to obtain a single error tolerant logical qubit at current error rates (on the order
of 1000 to 100009[107]). Using a hardware efficient approach, involving storing informa-
tion in the states of a harmonic oscillator, bosonic codes can have exponentially lower
bit flip rates than standard transmons [30], potentially allowing us to reduce the hard-
ware overhead dramatically to only a few tens of qubits [108]. The protection afforded
by Cat or GKP qubits [29] does not come for free though, with the protection only
being guaranteed by the intervention of external pumps to protect the quantum state.
Ideally, this external input would not be necessary. Hence the motivation to develop
hardware efficient qubits, which by design of their internal degrees of freedom are able
to suppress certain error channels.

3.3.2 The landscape of inductively and capacitively shunted qubits

Fig. 3.9 provides a good overview of the tradeoffs we have to deal with when designing
inductively and capacitively shunted single mode qubits. The main message is that we

9 Note that many thousands of logical qubits are required for computation and that certain qubit gates
in the surface code require magic state distillation, increasing the number of required qubits further.
At current estimates, 108 physical qubits would be required to factor a 2000 bit number using Shor’s
algorithm.
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cannot both have protection against bit-flips and phase-flips, as is visible by the lack of
overlap between the brown and blue colored zones in the top panel. The reason for this is
the incompatibility between the necessity to have low wavefunction overlap between |0〉
and |1〉 for bit-flip protection and the distribution of the wavefunction over many basis
states (typically |n〉 or |ϕ〉) for phase-flip protection. Blochnium (light Fluxonium) and
heavy Fluxonium are exactly opposite in this respect. Ideally, for inductively shunted
qubits, you want EL as small as possible so that the inductor only plays the role of
shunting the superconducting islands at zero frequency, removing charge noise but not
contributing much to shunting the junction at RF frequencies. This condition is embed-
ded in EL/EJ � 1. Then the ratio EJ/EC determines whether bit-flips or phase-flips
are protected. For the Blochnium and heavy Fluxonium points in red, EL/EJ ∼ 0.015

and EL/EJ ∼ 0.036 respectively, so the large inductance condition is fulfilled. On the

y-axis EL/EC = 2
π2

(
RQ
Z

)2
expresses how strongly the high impedance condition must

be met: EL/EC < 10−2 requires Z > 4.5RQ.

The wavefunctions of heavy Fluxonium and Blochnium qubits are shown in Fig.
3.10a&b. The difference in wavefunction localisation in phase space is extremely marked.
Even the higher energy levels of heavy fluxonium are very strongly bounded by the po-
tential wells formed by the cosine (leading to exceptionnally long T1s above 10 ms

[109, 110]), whereas in the Blochnium qubit the wavefunctions are delocalised over four
wells even for the lowest energy states away from the sweet spot. In comparison, the
Fluxonium wavefunctions of Fig. 3.3 lie in some kind of middle ground. As a further
illustration of the opposite protection of both qubits, we show the matrix elements
| 〈0|ϕ̂|1〉| and | 〈0|n̂|1〉| as well as the derivative of the frequency

∣∣∣ ∂ω01
∂Φext

∣∣∣ as a function
of the external flux in Fig.3.10c,d&e. In panel d., the lower the value, the higher the
protection again energy decay. Notice how the phase matrix element is strongly peaked
around Φext = 0.5Φ0 for the heavy and normal Fluxonium because only at that flux do
the |0〉 and |1〉 states hybridise. Blochnium is comparitively unaffected by this as the
wavefunctions are already strongly distributed. Heavy Fluxonium shows charge matrix
elements orders of magnitude lower than Blochnium at all fluxes because the peak in
charge is compensated by an extremely low qubit frequency according to (3.24). Look-
ing at panel e., Blochnium’s frequency only depends slightly on flux compared to heavy
Fluxonium, except at the sweet spot where the derivatives for all qubits cancel exactly.
Note that as the qubit states away from half flux become more and more delocalised
in phase space, the qubit becomes more and more tolerant towards deviations from the
sweetspot. This is visible in the inset of 3.10 where you can see the Fluxonium qubit’s
derivative rise much more slowly than for its heavy counterpart and even more slowly
for Blochnium. Quite generally, these plots illustrate how standard low frequency Fluxo-
niums [79] offer some compromise between the extremes of the light and heavy versions.

The reason for the extra bottom panel in Fig. 3.9 is that inductively shunted qubits
with EL → 0 are topologically not equivalent to qubits without the inductive shunt
because of the already mentioned offset charge. This perhaps moderates the statement
that Blochnium is the dual of the Transmon and heavy Fluxonium is the dual of the
Cooper Pair Box. More specifically, a circuit element whose energy is periodic in charge
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a. b.

c. d.

Heavy 
Fluxonum

Blochnium
Fluxonium

e.
Figure 3.10: Comparison of the properties of the heavy fluxonium in [109] and Blochnium

in [67] with the Fluxonium with parameters EC = 0.97 GHz, EL = 0.69 GHz,
EJ = 4 GHz we have studied in all figures so far. The wavefunctions of the first
5 energy levels of both qubits (a. heavy fluxonium, b. Blochnium) at Φext =

0.45Φ0 are plotted with solid coloured lines, offset by corresponding energies given
in GHz (pale coloured lines). In gray we show the potential given by 1

2ELϕ
2 −

EJ cos
(
ϕ− 2πΦext

Φ0

)
. c.&d. Comparison of the absolute value of the phase & charge

matrix element between states |0〉 and |1〉 for all three qubits. e. Comparison of
the absolute value of the derivative of ω01 with respect to external flux.
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is not available, something that would allow localisation of the charge in it’s own well,
separated by an energy barrier.

Blochnium and heavy Fluxonium do offer interesting properties, but as always, this
is not without tradeoffs. Small charge matrix elements and the low frequencies of heavy
fluxoniums mean that microwave activated gates are much slower, which can mean
work arounds using flux gates [77] or virtual transitions outside the (protected) compu-
tational subspace [111]. Low frequencies also require mitigating the thermal population
of |1〉 at dilution fridge temperatures. As an example, the excited state population for a
transition at 14 MHz was 49.6% for a base plate temperature of 15 mK in [77]. Further-
more, whilst Blochnium has a “sweet spot everywhere” property, virtually protecting
it from flux noise everywhere in the circuit, it does this at the price of reduced anhar-
monicity for the lower energy levels [67]. Finally, creating an inductance that large is
a real fabrication challenge. Some of these issues, notably protecting against energy
decay and dephasing simultaneously could potentially be resolved by using multimode
circuits.

3.3.3 The “0− π” qubit - Beyond single mode circuits

One of the best characterised multimode noise insensitive qubits is the “0−π” qubit[112].
Whilst there are others, the bifluxon qubit [113] for example, the “0− π” presents the
advantage of sort of being the assembly of a Transmon and Fluxonium circuit simulta-
neously, such that many of the arguments discussed previously in this chapter will also
be valid here. For a very detailed discussion of “0−π”, Di Paolo’s thesis [114] is a good
reference and many of the arguments presented here are taken from that work.

The circuit model for the “0 − π” qubit is given in Fig. 3.11a. A circuit theory
quantisation leads to the Hamiltonian [111]

Ĥ0− π = 4EθC(n̂θ − nθg)2 + 4EφC n̂
2
φ + ELφ̂

2 − 2EJ cos θ̂ cos

(
φ̂− πΦext

Φ0

)
. (3.45)

nθ and nφ are the conjugate charge numbers to the phases θ = 2π
Φ0

(−Φ1 + Φ2 + Φ3 − Φ4)

and φ = 2π
Φ0

(Φ1 − Φ2 + Φ3 − Φ4) respectively, where Φi is the generalised flux at node
i. These phase variables define the Transmon like mode (θ) involving the two junctions
and the two shunting capacitances, and the Fluxonium like mode (φ) involving the
two junctions and the two shunting inductances (Fig. 3.11b.). The offset charge nθg is
present because in the θ mode the superconducting islands either side of the junctions
are disconnected. Φext is the flux threading the loop created by the two junctions and
inductances in the φ mode. Importantly, for these modes to be truly Transmon- and
Fluxonium-like, EL should be reduced as far as possible and EJ/E

θ
C � EJ/E

φ
C . In

terms of impedance, we are looking for a low impedance θ mode, such that its wave-
functions are localised in θ, and a high impedance φmode, so that the wavefunctions are
delocalised over φ. This is possible, given Cθ ∝ 2(CJ +C), Cφ ∝ 2CJ , EJ = Ejunction

J /2

and EL = Einductor
L /2 following standard combination of parallel capacitors and series

inductors, if the shunting capacitance is much larger than the junction capacitance and

56



3.3 protected qubits

Figure 3.11: Circuit model and wavefunctions of the “0− π” qubit. a. Full circuit model. With
two identical pairs of junctions, capacitances and inductors. The junction ca-
pacitance is CJ . The circuit elements participating in the main eigenmodes θ
and φ of the circuit are represented in b. The harmonic mode of the device
is shown above and right of the full circuit. c. Potential and wavefunctions of
the “0 − π” Hamiltonian with parameters EθC = 0.026 GHz, EφC = 56.7 GHz,
EJ = 24.75 GHz and EL = 0.15 GHz. (Top) Potential energy U(φ, θ) = ELφ

2 −
2EJ cos θ cos

(
φ− πΦext

Φ0

)
. (Middle and bottom) Ground and first excited eigen-

states of the Hamiltonian represented in θ−φ space. Subfigures a.&b. are adapted
from [111] and subfigure c. from [114].
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the shunting inductance much larger than the Josephson inductance. Also worthy of
note, because the external flux is spread around a loop containing two junctions, two
flux quanta are required to retrieve the periodicity of the φ cosine term.

To further our understanding, let’s set Φext = 0 and consider the Transmon-like mode
θ. Unlike Hamiltonian 3.6, the cosine term −2EJ cos θ has a parameter dependent pref-
actor cosφ such that the energy of the mode is minimised not only at θ = 0 (when
φ = 0), but also at θ = π (when φ = π). Now flipping perspectives, at θ = 0, the φ
mode describes a Fluxonium Hamiltonian with Φext = 0. At θ = π this is equivalent
to Fluxonium at10 Φext = 0.5Φ0. Fig. 3.11c. showing the lowest energy wavefunctions
in each potential well along θ illustrates this fact. It is these two states which will
form the logical subspace of our qubit. Note that only when EL is the smallest energy
scale in our system are these two states, separated by11 ∼ ELπ2, also the lowest energy
eigenstates of (3.45). This was not the case in the only “0 − π” experiment to date
[111]. How does the qubit defined by these two energy levels fulfill the promise of full
protection? Let’s start with phase-flips. By working in the Transmon regime, EJ/EθC ,
the θ degree of freedom is protected from fluctuations in ng as was explained in Sec.
3.1.1. Flux noise is irrelevant for this mode because there is no loop. The φ degree of
freedom is protected from flux noise when the parameters EφC , EL and EJ combine
in a Blochnium configuration. This configuration being difficult to achieve experimen-
tally, a compromise can be the first order sensitivity afforded at the sweet spot. Finally,
the φ mode is insensitive to charge noise because of the inductive shunt. How about
bit flips? As is evident in Fig. 3.11c., the wavefunction supports of the computational
states have negligeable overlap thanks to the large tunneling energy EJ which strongly
localises θ. By increasing the system complexity, by using a two mode circuit, we have
simultaneously protected against phase and bit-flips.

So should we all be using “0−π” qubits? No. At least not yet. As always, the mantra
that there is no free lunch holds true and “0 − π” is devilishly tricky to fabricate in
real life. Reducing cross-capacitances between modes is essential to guarantee EφC �
EθC . This was also one of the challenges of Blochnium, a circuit which is only reliably
fabricated in a single group worldwide. Also related to fabrication, the description
(3.45) of a two mode circuit is only valid if the two capacitors, two inductors and both
junctions are identical. This is clearly never true and we are left with an unprotected
third mode (top right of Fig. 3.11a.), comprising large capacitances and inductances
such that the frequency is low, which is coupled to the θ and φ modes. Photon shot
noise from this mode can be a limiting factor in the coherence times. What was true
for previous devices is also true for “0 − π” qubits and small matrix elements offering
bit-flip protection can also impede the realisation of fast protected gates within the
computational subspace. The same techniques as used for Fluxonium can be used to
resolve these issues. Other, more complex issues regarding readout techniques are also
of concern [114]. Concretely, the first experimental realisation of this qubit, whilst

10 This is with respect to the periodicity of Φext for Fluxonium, not the 2Φ0 of (3.45).
11 To see this, replace θ and φ in the “0− π” Hamiltonian by their 2nd moments in either potential well:

the pairs (0, 0) and (π,∼ π).
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impressive, ran into all of these limitations [111]. Gate speeds were slow (800 ns π-
pulse) and outside of the computational subspace; the qubit was only insensitive to
flux noise at the sweet spot; and whilst T1 = 1.56 ms was state of the art, T2 = 8.5 µs

would be what is expected of a Transmon without particular optimisation. Resolving
these issues is a subject of continuing research [114].

3.4 conclusion

In this chapter we have explored the ingredients which make a good qubit. From the
reinterpretation of the Transmon’s charge noise insensitivity to the “0− π” qubit’s two
modes, delocalising or, on the contrary, localising qubit eigenstates can be a resource
for protection against errors. We have also seen that thinking about circuits in terms
of their impedance can be useful in identifying which of the two conjugate variables
n and ϕ will fluctuate the most. These considerations help understand in detail the
Fluxonium qubit whose first order flux noise insensitivity and low frequency have lead
it to be the most coherent superconducting circuit. We also spent some time on the non-
trivial numerics of Fluxonium which will come in useful in Chapter 6. So far though,
our discussion has being focused on all these qubits in isolation. Yet, like any quantum
system they constantly interact with their environment, as we’ve already exposed when
discussing loss mechanisms. Thankfully, this interaction is not completely out of our
control. In the following chapter we explore how to choose the right materials for
superconducting circuits and how to design the specific interactions we need to protect
and control quantum devices.
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4
DES IGN ING AND FABRICATING SUPERCONDUCTING
CIRCUITS

In the previous chapter we focused on qubits with hardware protection to noise. The
properties of these devices meant that under certain conditions they were protected
from bit-flip and phase-flip errors. The rates at which bit-flips occur are given by Fermi’s
golden rule (3.22) which we have studied previously. Protected qubits are designed to

minimise the matrix element
∣∣∣ 〈0|Ô|1〉

∣∣∣
2
, ideally bringing it to zero. Additionnally it is

desirable to reduce the noise spectral density SXX(ω01) to decrease Γ1. The phase-flip
rate Γφ can also be described as a function of SXX . The magnitude of the coherences
(off diagonal elements) of the density matrix of a two level system decay according to
[45]

|ρ01(t)| ∝ exp

[
−2 ·

∣∣∣∣
∂ω01

∂X

∣∣∣∣
2 ∫ ∞

−∞

sin2
(
ωt
2

)

ω2
SXX(ω)dω

]
, (4.1)

such that in the case of white noise SXX(ω) = Swhite
XX we retrieve the expression

|ρ01(t)| ∝ exp

[
−1

2

∣∣∣∣
∂ω01

∂X

∣∣∣∣
2

Swhite
XX t

]
= exp [−Γφt] , (4.2)

corresponding to an exponential decay of the coherences1. In this chapter we explain
how material, fabrication and design choices can help reduce the magnitude of SXX(ω)

and improve the total coherence times T2 of superconducting qubits.

4.1 choosing materials for circuit qed

4.1.1 Reviewing the properties of superconducting materials

A number of considerations come into play when deciding which materials to use for
superconducting circuits. Clearly, they ought to be superconducting at dilution refrig-
erator temperatures below 100 mK, though the higher the transition temperature to
a normal metal is, the better. This is perhaps best evidenced by the loss-rate due to
quasiparticles (3.28) which is proportional to the square-root of the superconducting
gap ∆, itself related to the critical temperature Tc

∆ = 1.764kBTc . (4.3)

Converting the critical temperature of aluminium 1.2 K to a frequency ∆/h we obtain
44 GHz, usually above the energies at play in superconducting circuits. The chosen

1 Often the noise spectrum is not white but depends on inverse of the frequency. This leads to a Gaussian
type decay e−Γ2

φt
2

[115].
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superconductors should also be easy to pattern, using chemical and plasma etching
or liftoff techniques for example, and easy to deposit on the substrate: sputtering and
evaporation are standard techniques. This facilitates the iteration of samples, hopefully
simplifying the production of complex geometries. The combination of substrate and
superconductor should be low loss. Indeed, as we discussed in chapter 3, dielectrics are
one of the main sources of uncontrolled loss in superconducting circuits.

With these criteria in mind, the superconducting circuits community has converged
towards a relatively short list of materials for making devices. For the non-conductive
substrate, high resistivity silicon and pure sapphire are the go to materials. For the
Josephson junctions, aluminium is standard. Attempts with other materials such as
niobium exist [116], although they are notoriously more difficult to fabricate and have
not achieved high coherence times. For the superconducting junction pads, or CPW
resonators and transmission lines, the (non-exhaustive) list is longer: aluminium (Al),
niobium (Nb), titanium nitride (TiN), niobium titanium nitride (NbTiN) and recently
tantalum (Ta) have been used. If a high kinetic inductance is specifically required, TiN,
NbTiN or niobium nitride (NbN) are interesting candidates or granular aluminium
(GraAl) which successfully replaced the junction chain in a Fluxonium [74] and the sin-
gle junction of a Transmon device [117]. Tungsten (W) nanowires [118], boron doped
silicon (Si:B) [119] have also been used, as have materials with a high kinetic inductance
like niobium silicate (NbSi) [120] or rhenium (Re) [121].

In the tables 4.1, 4.2, 4.3 we give an overview of the properties of these materi-
als at the time of writing (May 2021). The first two show experiments giving useful
benchmarks of the losses of each material by looking at the quality factors of CPW
resonators and qubit coherences respectively. Importantly, to correctly quantify the
dominant losses in superconducting circuits, experiments which work at the level of
single excitations, measuring the Q-factor should be done using the smallest number of
circulating photons in the resonator as possible. This means measuring at low enough
power and at low enough temperature so that the thermal occupation of the resonator
is low. Indeed, the quality factors of superconducting resonators often increase with
photon number, as two level systems (TLS) at the interfaces become saturated by the
energy exchange with the photons [126]. We thus show the internal quality factor Qi
for both n̄ ∼ 1 and n̄ ∼ 106. The third table, presents a summary of the known best
achieved material properties for superconducting circuits. We can use the information
assembled here to guide the choice of materials for cQED experiments.

Focusing first on the choice between crystalline silicon and sapphire as a substrate,
note that both materials exhibit loss tangents tan δ < 10−6 in the microwave domain al-
though sapphire may be slightly less lossy [148]. The quality factors of CPW resonators
are not substantially different between the two though, with single photon values gener-
ally in the range 1−2×106. Currently the best achieved coherences, both in Transmons
and Fluxoniums, are found on sapphire substrates. To add perspective though, the life-
time of Fluxonium on sapphire was only improved by a factor 2, with respect to its
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4.1 choosing materials for circuit qed

Metal
Qi (104)

n̄ ∼ 1
T1 (µs)

Silicon
tan δ (10−4)

Sapphire
tan δ (10−4)

LK nH/� TC (K)

Al 170 [122] 49 [141]

MS: 1.3 (3.2)
SA: 35 (29)

MA: 327 (294)
[142]

26 [137] - 1.2 [51]

Nb 700 [131] 114 [130] MS: 3.5 [131] - -
9.1 - 9.2
[143, 131]

TiN 500 [127] -
MS: 4.6 (2.7)
SA: 17 (12)
MA: 33 (35)

[142]

- 0.1 [73]
2 - 4
[127]

NbTiN 110 [124] - - - 0.1 [73] -

NbN 2 [133] - - -
0.1 - 0.2
[73, 133]

7.4 [133]

Ta 120 [144] 503 [62] - - -
4.2-4.38
[135, 62]

GrAl 120 [129] - -
24 - 40

[145, 129]
2 [145]

1.9 - 2.2
[146]

Si:B [119] 0.392 - - - 0.05 - 0.5 0.7

W [118] 0.399 - - - 0.015 4 - 6

NbSi [120] 1.6 - - - 0.83 0.85

Re [121] 1.4 - - - 0.002 1.9

Table 4.3: Review of the best parameters for superconducting circuits achieved using different
electrode materials some with Al/AlOX/Al Josephson junctions as of May 2021. T1

and Qi are the maximum achieved values available for Transmons and CPW (or
lumped element) resonators respectively available in the litterature. The values in
the tan δ columns are given for the interface loss. When available, the loss tangents
for each interface are given (MS: Metal - Substrate; SA: Substrate - Air; MA: Metal
- Air). Loss tangents of the bulk are tan δ = 1.3 − 2.8 × 10−7 for silicon [142, 147,
148] and tan δ = 2×10−8 for c-plane sapphire [149]. We cite the loss tangents of the
interfaces after HF treatment in parentheses. For an even more complete treatment
of the interface dielectric losses see the supplementary material of [126].
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silicon counterpart, despite its frequency being halved2. Had the dielectric losses been
the limiting factor we would have expected a four fold increase according to 3.1. For
the Transmon experiments [135, 62], the effect of using a sapphire substrate cannot be
separated from the novel use of tantalum, such that we are unable to conclude about
the contribution of the dielectric to this result. It has been hypothesised though, that
the higher band-gap of sapphire compared to silicon would make sapphire based devices
less sensitive to cosmic ray induced charge noise [150]. It thus appears that, at present,
the loss from the bulk substrate should not be an overriding factor in the choice of
substrate. Indeed, in many geometries, the quality factors of superconducting CPW
resonators and qubit are limited by the losses at the metal - substrate (MS), substrate -
air (SA) and metal - air (MA) interfaces [147, 142, 151]. Precise knowledge of the losses
of each of these interfaces combined with detailed electromagnetic simulations would
allow us to design devices with the highest quality factors possible. Yet, quantifying
the loss tangents of the interfaces is difficult and has only been achieved by a single
group so far for aluminium and TiN on silicon [147] 3. Nevertheless, surface preparation
before metal deposition or liftoff appears critical. A number of groups are now using
hydrofluoric acid (or a derivative) to remove oxides at the MS interface with silicon, and
this has consistently lead to higher Q-factors and coherences [124, 130, 135, 142, 148,
62]. High temperature annealing in a controlled atmosphere has also proven successful
[122, 123], while ion milling was shown to have negative effects on quality factors [130].
Another strategy to reduce losses can be trenching for example [126], but this makes
a good contact between the aluminium junctions and the surrounding superconductor
difficult to obtain. In the end, practical considerations around fabrication - sapphire is
transparent, difficult to etch and non-conductive4; the quality of silicon wafer batches
can be unpredictable5 and crystalline orientation is important - can tip the balance in
favour of one or the other.

The choice of material for the superconductor depends strongly on the properties
wanted for the final circuit. NbTiN [124], Al [122], TiN [126, 127, 128] and Nb [130,
132, 131] co-planar waveguide resonators have been demonstrated to have internal qual-
ity factors above Qi = 106, and Transmon qubits contacted to Al [139], Nb [130] and
Ta [135, 62] have some of the longest coherences ever reported6. Another criterium is
the response of materials under external magnetic fields. TiN, NbTiN, NbN and GrAl

2 Experiments [79] and [33] also used a very similar fabrication process.
3 The difficulty lies in controllably varying the participations of each interface in the total loss so as to
invert the matrix relating the measured quality factors to the loss tangents. Some works have tried
to modify the geometry of 3D Transmon devices to be more or less sensitive to different interfaces,
but were only able to extract a weighted sum of the interface loss tangents [137], or had too large
of a spread in the losses from different devices to be conclusive [138]. The authors of [147] put their
success down to the number of devices measured, the novel isotropic etch process used to vary the 3D
geometry of their resonators, and the cross-sectional imaging of each device using an SEM, allowing
precise electromagnetic simulations.

4 Transparency makes figuring out which side the metal is on tricky, and the fact that it is an electrical
insulator means SEM images are impossible without a conductive discharging layer.

5 Some groups have got into the habit of ordering multiple batches of wafers, testing resonators made
one a single wafer from each batch and only keeping the batch which works best [148].

6 In a blog post from their quantum computing division dated 4th March 2019, IBM showed a measure-
ment on a Transmon with T1 = 500 µs, surpassing both of the previously mentioned devices [152]. IBM
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resonators in particular have been shown to be insensitive to these with quality factors
above Qi = 105 for in plane magnetic fields of the order of 1 T and out of plane fields in
the mT range for GrAl [154] and NbTiN [125], and for fields on the order of the earth’s
magnetic field ∼ 200 µT for TiN [123]. This property is particularly interesting for cir-
cuits integrating devices like Fluxonium which need to use an external magnetic field
to obtain the correct flux working point. When high kinetic inductance is necessary, ki-
netic inductance detectors (KID) for example, fields close to superconducting circuits,
the materials considerations change once again. GrAl and NbN nanowire resonators
have demonstrated Q-factors above 105 [154, 155], showing that long photon lifetimes
and high impedance are compatible. Finally NbTiN and GrAl have been integrated
into Fluxonium devices [74, 156] as a replacement for the junction chain for example.

A major issue with strategies for studying materials for superconducting circuits
is the difficulty of comparability between results. A number of factors can influence
the quality factors and coherences of superconducting qubits, choice of materials but
also electromagnetic packaging [157], radiation shielding [35], microwave line filtering
[137, 158]. Evolutions in hygrometry throughout the year and variations in background
noise during the day due to human activities can also impact junction fabrication and
experimental results respectively. Thus, detailing exactly what material properties are
desirable for quantum circuits remains an open problem in general and is a topic of
current research.

4.1.2 Optimising the quality factors of TiN CPW resonators

Given the encouraging results published in the literature regarding TiN CPW res-
onators (see Tab. 4.1), we decided to fabricate TiN resonators ourselves in the hope of
using them in future experiments in the group. In particular, the moderate magnetic
field insensitivity of the quality factor is an interesting property for devices using a
Fluxonium given the use of external fields to achieve Φext = Φ0/2. As a benchmark for
the CPW resonators, we used the intrinsic quality factors Qi. This has an immediate
design implication as, for a two port cavity, only measurements of both S11 and S21

yield enough information to determine all the coupling κi, κc,1 and κc,2 (see Sec. 2.5.4
for the formulas for resonators in reflection and transmission). Whilst we can cable a
dilution refrigerator to make this measurement possible, by using circulators on the
output port of the cavity for example, this would limit us to measuring a single res-
onator per input and output line in the fridge (without using microwave switches at
base temperature). Faced with this issue, we chose to use a ‘hanger’ geometry. As can
be seen in Fig. 4.1a. we place 5 CPW resonators coupled by a single port to the same
transmission line. The resonators are separated in frequency by about 300 − 400 MHz

further improved this claim this in a Tweet on the 20th of May 2021 by showing a T1 = 1.1 ms [153].
The techniques and materials use to achieve these results are not publicly available.
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Figure 4.1: a. Hanger resonators fabricated in TiN on a silicon substrate. Purple arrows show
the fields propating from port 1, to the resonator and finally to port 2. An overlay
from a Sonnet simulation shows how the current density is distributed inside the
chip, illustrating how we can address each resonator independently. The chip is
wirebonded to a PCB (Printed Circuit Board) visible around the edges. b. Typical
response measurement of a resonator using a hanger geometry. We show the raw
data in the IQ-plane in the top left subplot and the value of S21 after calibration
of the phase offset, gain and electrical delay in the others. Red lines are fits to
the calibrated data using (4.4). For this resonator the fit parameters are: ωR =

2π×4.837 189 GHz, ω0 = ωR−2π×0.85 kHz, Qc = 1.62×105 and Qi = 6.95×105.

between 4.5 and 6 GHz so we can address them each separately. For each resonator, a
response measurement from port 1 to port 2 of the chip can be described by [159]

S21(ω) =
Qc + 2iQcQi

(
ω−ωR
ωR

+ ωR−ω0
ω0

)

(Qi +Qc) + 2iQcQi
ω−ωR
ωR

. (4.4)

Qi andQc are the quality factors associated with the intrinsic losses of the resonator and
the coupling to the transmission line respectively, ωR is the resonance frequency and ω0

is the ‘bare’ resonator frequency. Indeed, this expression takes into account impedance
mismatches either side of the transmission line which deform the response function of
the resonator. If there are no mismatches, ωR = ω0 and the response function becomes
symmetric

Ssym
21 (ω) =

Qc + 2iQcQi
ω−ωR
ωR

(Qi +Qc) + 2iQcQi
ω−ωR
ωR

. (4.5)

In the symmetric case (4.5), at resonance Ssym
21 (ωR) = Qc

Qc+Qi
, such that we are most

sensitive to the value of Qi when Qi ∼ Qc. Thus without any a priori knowledge of Qi
we designed our resonators with variable capacitive coupling Qc to the transmission line,
visible in Fig. 4.1a. by the increasing proximity between resonator and transmission line.
Going from top to bottom QC increases by 3 orders of magnitude from QC ∼ 6000 to
QC ∼ 106. In reality we never get a direct record of S21(ω). The experimental setup used

68



4.1 choosing materials for circuit qed

Resonance Metal
ωQ/2π
(GHz)

Details

TiN 01 TiN 4.5
TiN 02 TiN 5.4
Nb 01 Nb 9.3
TiN 03 TiN 6.3 TiN 02 with HF dip
Nb 02A Nb 5.3

HF dip before RIE
Nb 02B Nb 4.8
Nb 03 Nb 4.5 HF cleaning after RIE
Nb 04A Nb 5.2

HF dip after RIE + holed PCB
Nb 04B Nb 4.8

a. b.

Figure 4.2: Summary of results from the resonator measurements. a. Quality factors of the
different resonators depending on the average number of photons circulating inside.
Not all resonators had a hanger geometry, some were used in experiments ongoing
in the group at the time of the experimental work. b. Material and fabrication
details for each resonator measured in a.

for the measurement introduces a phase offset φ, additional gain α and an electrical
delay τ . These can be modeled by defining

Sexp
21 (ω) = αeiφeiωτS21(ω) . (4.6)

Because of this, rather than resembling a circle in the complex plane the data is twisted
like in the top right panel of Fig. 4.1b and the couplings and resonant frequency cannot
be directly determined without further treatment. An algorithm for resolving this issue
is given in [160] on which we base ourselves for the fits in this thesis. Detailed discussions
are also given in [161, 122].

In Fig 4.2 we show the measured quality factors (a.) for resonators out of TiN and
Nb having undergone different treatments (b.). The quality factors measured for TiN
are disappointing, given Qi = 1.7× 105 at the single photon level in regard to the state
of the art Qi = 5 × 106 [127]. We put this down to a lack of control of the precise
stoichiometry of the TiN films measured thanks to an EDX (Energy Dispersive X-ray)
analysis after deposition (see Tab. C.1 in Appendix C for details). Indeed, according
to [127] high Q TiN films exhibit a low but non-zero level of oxygen inclusion in the
structure, which depends strongly on the deposition parameters used. In our case, the
use of a shared sputtering machine with a variety of contaminants and whose cham-
ber was regularly exposed to air (targets were changed weekly) did not allow for ideal
deposition conditions. Furthermore, the complicated fabrication workflow spread over
three different cleanrooms in Lyon was not conducive to the iterative process needed to
develop new recipes. Nevertheless, some progress was made with the surface treatment
of metalic films. On both niobium films deposited by colleagues in Paris and with our
own TiN samples, HF treatement after the plasma etch increased the measured quality
factors. In particular, a TiN sample mesured before and after an HF dip showed an in-
creased quality factor after after the acid treatment. We also observed increased quality
factors by using a holed PCB to remove interferences between its box mode and the
resonators on our chip and to attenuate the losses of the dieletric below the substrate..
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This adds weight to the observation that spurious electromagnetic modes in close prox-
imity to quantum circuits can be detrimental to quality factors [157] and motivated in
part the current redesign of our sample holder. Thus, following this study, drilling a
hole in the PCB and preparing chips with HF before measurement was generalised to
all experiments in the group.

As we have made evident in this part, the choice of materials for superconducting
circuits, whilst important, is not always the limiting factor: many other elements play
a role in controlling the losses. In particular, a successful initial electromagnetic design
can have a large influence on our ability to achieve what we want in cQED experiments
as is exemplified by the requirement Qc = Qi for hanger resonators. In the next part,
we will explore some of the techniques used to design the circuits measured in this
thesis.

4.2 controlling losses in a 2d fluxonium device

Designing circuits for cQED experiments is a balancing act between the experiential
and the intuitive. Experiential, because a great deal of iteration and trial and error is
necessary to converge on the desired parameters. Intuitive, because knowing from where
to start the iterative process requires an deep understanding of Maxwell’s equations at
GHz frequencies possessed by trained physicists and microwave engineers. Yet, circuit
design is reaching a sufficient level of maturity that a number of standard tasks can be
delegated to computers. Companies like IBM for example have released software which
allows a high level of automation in circuit design [162]. In the following sections we
give some details into how we can design quantum circuits starting from an idea for
an experiment. We will look at some theoretical and software tools used to design the
experiments discussed in this thesis. A 3D Transmon experiment will illustrate the use
of Black Box Quantisation (BBQ), Energy Participation Ratios (EPR) and the software
package pyEPR, and the design of 2D Fluxonium chips will show how we can estimate
loss rates at the simulation stage.

4.2.1 Basics of circuit design

In Fig. 4.3 we show the different stages necessary to go from an idea to a cQED experi-
ment. We start with an idea, say to make a 2D Fluxonium qubit inductively coupled to
a readout resonator. We can formalise this idea, by writing down a Hamiltonian whose
dynamics produces the physical effects we would like to measure. For the case of the 2D
Fluxonium, the Hamiltonian is given by the expression of Fig. 4.4a. it is then practical
to create an ideal electrical circuit model (Fig. 4.4b.) which, when quantised, gives an
expression for the parameters of the Hamiltonian as a function of the values of the cir-
cuit elements. We gave examples of this in Chapter 2 when deriving the expressions for
the dispersive readout or Rabi oscillations. Next, we make a first design of our circuit
by using lumped or distributed elements which reproduce the ideal circuit model. This
design is heavily constrained. By the Hamiltonian obviously, as the design’s objective
is to engineer Ĥ, but also by fabrication and experimental constraints. If we make the
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Simulated
Parameters
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Hamiltonian &
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Design
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Yes
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Circuit
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Constrained by
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Using

...

Design stage

...

Tool
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Figure 4.3: Flowchart of circuit QED: from an idea to an experiment.

design too ambitious, for example by using feature sizes under the resolution of the
lithography machine, it will be irrealisable. If we make the couplings between the mi-
crowave transmission lines and the readout resonator too small for example, we won’t
have enough power at room temperature to measure the state of the qubit. Usually, we
design our circuits directly in a finite-element radio-frequency (RF) electro-magnetic
simulation software like Sonnet or HFSS (Fig. 4.4c.). By studying the response function
of the circuit or its eigenmodes, we relate variations on the design with changes in qual-
ity factors and frequencies themselves connected to the Hamiltonian parameters. Tools
like pyEPR can help us make this last step between the classical simulation results and
the quantum mechanical parameters of Ĥ. Once we have sufficiently iterated through
the design and simulation cycle, comes the fabrication step. This also requires a great
deal of iterative work to get the recipes right. Finally, the fabricated chip (Fig. 4.4d.)
is measured and we can compare the experimental values to the results expected from
the simulation. If the experimental parameters are not satisfactory with respect to the
Hamiltonian wished for, we return to the design stage and improve the circuit based
on what we have learnt through the measurement.

Let’s now look at specific techniques used to design 2D Fluxonium devices during
this thesis work and compare the experimental results with those obtained from the
simulations.
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Figure 4.4: The flowchart of Fig. 4.3 illustrated by the different stages of a 2D Fluxonium design
process. a. Hamiltonian we want to achieve with our design. b. Circuit model which
when quantised leads to the desired Hamiltonian. Cin, Cout, CR, LR, LC , LQ, LJ
and CJ are all parameters which can be controlled in the design or fabrication stages.
c. Illustration of a basic Sonnet simulation of the coupling to the resonator from the
transmission line. As the distance between the line on the left and braket shaped
resonator is increased, the quality factor of the resonance increases in tandem, as
can be seen from the simulated slope of the phase change from 0 to −2π (κc =

2π × 1.76 MHz for the yellow curve, κc = 2π × 0.22 MHz for the black curve). d.
Optical and electronic microscope images of the final device. The dark circle visible
in the center of the chip is the hole in the PCB visible through the transparent
sapphire substrate. CR is materialised by the large braket shaped capacitors either
side of the meander inductor LR (green zoom - optical microscope). On the purple
zoom (SEM image) we see how LJ is given by the small junction inductance, LQ
by the total inductance of the junction chain and LC by a single large junction
between the contacts to the meander.
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4.2.2 From Hamiltonian to circuit model to design

Following an approach similar to the circuit quantisation of a Fluxonium inductively
coupled to a resonator in [73] we can relate the circuit model parameters of Fig. 4.4b.
with the Hamiltonian Ĥ.

ωR =
1√
CRL̃R

, Z =

√
L̃R
CR

; (4.7)

EC =
e2

2CJ
, EL =

Φ2
0

4π2L̃Q
, EJ =

Φ2
0

4π2LJ
; (4.8)

g =

√
~Z/2Φ0

2π

LC
LQLC + LCLR + LQLR

(4.9)

L̃R = LR + LQ||LC , L̃Q = LQ + LR||LC . (4.10)

In the equations above we have used the symbol || to denote the addition of two
inductances in parallel. Note that the equations are invertible so that there is a bijection
between the requirements on Ĥ and the circuit elements. The Fluxonium inductance
L̃Q is only slightly renormalised by the presence of the cavity and coupling inductances,
as is the resonator inductance L̃R by the Fluxonium and coupling inductances. This
is the strong point of this design, LJ , LQ and LC are given, up to a small correction,
by the inductance of Josephson junctions fabricated in a single e-beam lithography
step. Indeed we choose to fabricate LC using a single large junction identical to those
used in the chain for LQ. Thus, because the inductance of the individual junctions
and chain can be calibrated using the normal state junction resistance RN and the
superconducting gap ∆ using the Ambegaokar-Baratoff formula [163]

EJ =
RQ∆

2RN
, (4.11)

simulating L̃Q, LJ and LC is not necessary. Note that in (4.11), ∆ is the superconduct-
ing gap at T = 0 K, RN is the normal state resistance at the critical temperature Tc and
RQ = h

4e2
. When using the room temperature resistance, an empirical corrective factor

should be used [52], which should be calibrated for each specific fabrication process. At
ENS de Lyon this factor approaches 0.85 as of May 2021

EJ ≈ 0.85
RQ∆

2RN
. (4.12)

In the green inset of Fig. 4.4d. we show the experimentally realised circuit with the
required circuit model. The inductance LR is essentially given by the meander inductor
between the braket shaped pads. This meander inductor is easy to roughly simulate
because the theoretical geometric inductance of a line (1 nH mm−1) is only slightly
corrected by its mutual inductance with other parts of the meander. Intuitively, if a
current flows through the meander, the opposing directions of current in different parts
of the inductor have a tendency to cancel each other’s magnetic fields because of the
principle of superposition. A two port Sonnet simulation, with a port at either end of
the inductance, gives a direct estimation of the meander’s inductance as a function of
frequency. Fig. 4.4d. also highlights the greatest weakness of our design, the difficulty to
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estimate the capacitances CR and particularly CJ . Designing CR is done by estimating
the resonator frequency ωR. We use a two port simulation and, in a first step, replace the
meander inductor and Josephson junctions with an effective lumped element inductor
with value L̃R. It is important to use the same braket pad geometry and ground plane
as for the final design to obtain realistic values. The value of frequency at which the
transmission |S21| is peaked corresponds to ωR, yielding CR by (4.7). The real issue
lies with CJ . The circuit model is quite misleading here, as it appears that CJ is solely
the intrisic capacitance of the small junction. This is not actually the case, and a large
contribution to CJ comes from the capacitance of the junction to the ground plane and
to the rest of the junction chain. It is very difficult to calibrate the value of EC in the
simulations, and we will see when we compare with the experimental results that this
is a parameter we failed to estimate properly.

4.2.3 Coupling to the transmission line

4.2.3.1 Tuning the coupling

In the circuit model of Fig. 4.4b. we show two additional capacitances Cin and Cout

which correspond to the couplings κin and κout to the transmission lines. Because the
metals are lossless in the Sonnet simulation, the resonator linewidth is exclusively given
by the coupling to the transmission lines. We thus proceed by simulating a circuit with
a single port, whose resonance frequency is tuned close to the target ωR thanks to a
lumped element inductor and whose geometry close to the port is similar to the actual
design (Fig. 4.4c.). By fitting the phase of the reflection coefficient using (2.55) we
obtain κin directly. We can tune the coupling by changing the distance between the
end of the transmission line and the resonator capacitor pad. An example of how the
phase response evolves as a function of this distance is given in the graph of Fig. 4.4c. In
practice, we choose κin and κout so that κin+κout ≈ χ01 to maximise the readout signal
to noise ratio (SNR) in the case where κi = 0 [164]. Moreover, we need κin � κout to
make sure that the efficiency of the readout in transmission, given by the ratio κout

κin+lκout
,

is high and that information about the qubit state is not lost in the experiment input
lines.

4.2.3.2 Qubit Purcell decay rate

The input and output couplings affect not only the resonator but also the Fluxonium’s
lifetime. Because part of the qubit mode is stored in the resonator due to the inductive
coupling, one of the decay channels of the Fluxonium is loss of information through
the cavity into the transmission line, called the Purcell rate. To estimate the limit of
the qubit lifetime due to Purcell decay we follow the treatment presented in [77]. For a
cavity with annihilation operator âc and port coupling κc we can write, using Fermi’s
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Golden rule, the transition rate Γi→j,↓ from the eigenstate |ψi〉 to eigenstate |ψj〉 of the
coupled cavity-qubit system7

Γi→j,↓ = κc| 〈ψj |âc|ψi〉|2(nBE(|ωij |) + 1) . (4.13)

Here nBE(ω) =
(
e~ω/kBT − 1

)−1 is the Bose-Einstein distribution and ωij is the transi-
tion frequency between |ψi〉 and |ψj〉. Note that we assume that the energy Ei of |ψi〉
is greater than the energy Ej of |ψj〉. This formula can be interpreted as the rate at
which the loss of photons in the resonator to the transmission line induces a transition
between the eigenstates |ψi〉 and |ψj〉. We can equally define the upwards transition
rate, where energy is taken from the transmission line and this time Ej > Ei

Γi→j,↑ = κc

∣∣∣ 〈ψj |â†c|ψi〉
∣∣∣
2
nBE(|ωij |) . (4.14)

Its insightful to pause and consider where exactly the coupling κc comes from. In gen-
eral the coupling κc should depend on frequency, because according to [20] κc(ω) ∝ ρ(ω),
where ρ(ω) is the density of the states of bath constituted by the transmission line. By
saying that κc is independent of frequency we are implicitely assuming that we are
dealing with perfectly 1D 50 Ω transmission lines. In that case ρ = 2

πc = const., corre-
sponding to a perfectly ohmic bath. Of course, usually the transmission line is filtered
in some way, either voluntarily or not, and ρ then depends on frequency again. Linking
the microscopic density of states ρ(ω) to the classical microwave RF admittance Y (ω)

can be done using the Caldeira-Legett model [165]. The fact that ρ is basically a con-
stant is also a significant difference between the field of cQED and cavity QED (CQED)
who work with 3D densities of states. In that case ρ(ω) = ω2

πc3
which has fundamental

consequences on the couplings between atoms and fields.

Continuing from our intermezzo, we can now recenter the discussion about the decay
rates around the Fluxonium qubit itself by labeling the eigenstates of the coupled
system with the quantum numbers of the qubit and cavity |ψi〉 = |µ,m〉 using the weak
coupling argument we detailed in Sec. 3.2.5. For the transtion rate between qubit states
we get

Γµ→ν,↓ =
∑

m,n

P (m)κc| 〈ν, n|âc|µ,m〉|2 (nBE(ωµ,m − ων,m) + 1) , (4.15)

Γµ→ν,↑ =
∑

m,n

P (m)κc

∣∣∣ 〈ν, n|â†c|µ,m〉
∣∣∣
2
nBE(ων,n − ωµ,m) . (4.16)

ωµ,m = Eµ,m/~ is the energy of eigenstate |µ,m〉 measured in frequency and P (m) is
the probability of having m photons in the resonator. At thermal equilibrium P (m) =
e−m~ωR/kBT

1−e−~ωR/kBT
. The rate Γµ→ν is calculated by summing up the two contributions ↑ and

↓. Note that this estimation requires complete knowledge of the Fluxonium’s spectrum
obtained by numerical diagonalisation.

7 In general the coupling κc depends on frequency. According to [20] κc(ω) ∝ ρ(ω), where ρ(ω) is the
density of the states of bath constituted by the transmission line. Because we are working with 1D
microwave transmission lines ρ(ω) = const. and κc is frequency independent.
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Figure 4.5: Estimating the mutual coupling between the Fluxonium loop and a flux line. a.
Sonnet simulation designed to extract M . A port is placed within the Fluxonium
loop with lumped element inductances, and a second at the end of the flux line. b.
Equivalent circuit for the mutual coupling. Both circuits are equivalent represen-
tations of the mutual inductance, something which can be shown using Kirchoff’s
circuit laws.

4.2.4 Designing the flux line

4.2.4.1 Finding the value of M

We can bias a single 2D Fluxonium device at the sweet spot by using a global magnetic
field produced by a coil around the sample holder for example. Using this field for flux
gates is not ideal though because of the lengthy response time of a macroscopic coil
τ = L

Z0
(Z0 = 50 Ω, L is the coil inductance). Furthermore, if we are to use multiple

Fluxoniums on the same device, we want individual flux control unattainable with a
global field. This motivates the development of fast flux lines like those of [139] or [77].
In Fig. 4.4d. we can see the experimental realisation of this flux line, coming from a
port at the top of the chip and descending through an on chip filter to a thin line close
to the Fluxonium loop visible in the SEM image. We will come back to the filter in Sec.
4.2.6. The physical parameter which defines the characteristics of the flux line is the
mutual inductance M between the current line and the Fluxonium loop. In a Sonnet
simulation we check the value of M by placing a port on the loop and simulating the
parameter Z21 of the complex impedance matrix Z between port 1 and a port placed
at the end of the flux line (Fig. 4.5a.). Z21 is directly related to M [8]

ImZ21(ω) = ωM . (4.17)

The value of M will have an incidence on the speed at which we apply flux gates and
the power used thereby, as well as the rate at which the qubit relaxes into the flux line.
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4.2.4.2 Maximum gate speed

The maximum speed of the flux gate is limited by the total inductance LT seen by the
flux line. We see from Fig. 4.5b. that this is given by

LT = LF −M +

(
1

M
− 1

LQ −M

)−1

. (4.18)

The gate speed is limited by the reaction time of the RL constituted by the Z0 = 50 Ω

transmission line impedance and the inductance LT of the seen from the flux line

Tgate ≥
LT
Z0

. (4.19)

Because LQ ∼ 100 nH�M ∼ 1 pH, LT ≈ LF ∼ 100 pH and Tgate ≥ 2 ps, we conclude
that this is not a limiting factor for flux gates with Fluxonium.

4.2.4.3 Dissipated power

The mutual inductance also impacts the current needed at the 20 mK stage to bias
the Fluxonium’s flux. The external flux induced by a current in the flux line is Φext =

MIF . If we want to realise a gate which requires changes in flux of the order of the
flux quantum, we need to make sure that IF = Φ0/M is not an unrealistic current
at the base plate of a dilution refrigerator. For a mutual inductance M = 2 nH we
obtain IF = 1 µA. The power dissipated through a 50 Ω resistor by this current is
P = Z0I

2
F = 5× 10−11 µW, well within the cooling power specficiations of a standard

dilution refrigerator (∼ 14 µW at 10 mK [166]).

4.2.4.4 Direct decay into flux line

The qubit can also decay into the flux line through the mutual inductance. To calculate
the rate at which this happens, we follow the treatment in [18]. Returning to the
expression 3.22 we identify the qubit operator as Ô = ϕ̂, the constant A = EL

2π
Φ0

and
the noise operator as X = Φext = MIF . The current spectral density is given by [20]

SIF IF (ω) =
2~|ω|
Z0

[nBE(|ω|)θ(−ω) + (nBE(|ω|) + 1)θ(ω)] , (4.20)

where θ(ω) is the Heaviside function. Because this expression should be evaluated at the
qubit eigenmode frequency, and the calculation of the loss rates depends on the qubit
matrix elements, its evaluation can only be done using a numerical diagonalisation of
the qubit Hamiltonian.

4.2.5 Coupling between qubit and resonator

While for the inductively coupled Fluxonium of Fig. 4.4 the coupling parameter g was
given primarily by the design of the Josephson junctions in the chain, this is not the
case for capacitively coupled systems. In that case the coupling Hamiltonian reads

Hcoupling = −~gn̂(â†c + âc) . (4.21)
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Figure 4.6: Estimating the capacitive coupling g between cavity and Fluxonium. a. A resonator
at frequency ωR = 2π × 7.37 GHz is probed through a single port in reflection (off
screen) and is capacitively coupled to a lumped element resonator with the same
geometry as a future Fluxonium qubit. The ideal inductor’s value L can be swept
in the simulation. b. Simulated resonances as a function of the value of L. We fit
the simulated data using (4.22) to extract the coupling parameter g = 70 MHz.
The simulation reveals a constant resonator frequency and a qubit frequency which
follows the law ωQ = (LC)−1/2 where C = 15.5 fF is a fit parameter.

Determining the coupling parameter g then requires an electromagnetic simulation
of the capacitance between Fluxonium and resonator. We base the principle of the
simulation on the frequency anti-crossing formula

ω± =
ωR + ωQ

2
±
√

(ωR − ωQ)2 + 4g2 . (4.22)

In Fig 4.6 we show the simulation setup with a resonator probed in reflection and a
lumped element resonator with the same geometry as a future Fluxonium qubit. By
sweeping the value of the ideal inductance and tracking the different resonant frequen-
cies in the simulation we are able to extract g.

4.2.6 Comparison with experimental results

Now we have described the techniques used to design the 2D Fluxonium device, we
give a comparison between the parameter values expected from the simulations and
those obtained experimentally in Tab. 4.4. EC , EL, EJ and g were obtained by fitting
a two tone spectroscopy measurement like in Fig. 3.7 and a measurement of the cavity
frequency as a function of Φext. The cavity linewidth κ was obtained by fitting the
transmitted signal through the readout cavity with the analytical expression (2.56) for
S21. T1 and T2 were obtained by using a qubit relaxation and Ramsey pulse sequence
respectively. The double exponential expression developped in [82] was a better match
to the qubit relaxation data, a result we attribute to quasiparticles (see 5). Finally, we
extracted the mutual inductance M from a calculation of the current at 20 mK needed
to bias the Fluxonium with a single flux quantum given the knowledge of the current
applied into the flux line at room temperature.

As highlighted earlier in this section, the main difficulty of this experiment was the
lack of knowledge of EC before measuring the actual device. While the achieved EL

78



4.2 controlling losses in a 2d fluxonium device

Parameter Simulation Experiment
EC/2π~ (GHz) - 5.65
EL/2π~ (GHz) 0.8 1.5
EJ/2π~ (GHz) 8 8
ωR/2π (GHz) 5.5 6.458
g/2π (MHz) 30 50
κin/2π (MHz) 0.01

1.84 (κ)
κout/2π (MHz) 1.1

M (pH) 1.1 1.4
TPurcell

1 (Φext = 1
2Φ0) (µs) 1.4× 103 SE: 1.4 (T1)

DE: 2.3 (Tqp) & 16.4 (Tr)TFlux
1 (Φext = 1

2Φ0) (µs) 1.08× 103

T2(Φext = 1
2Φ0) (µs) - 1.5

Table 4.4: Comparison of the simulated and experimentally achieved parameters for the 2D
Fluxonium circuit presented in Fig. 4.4. SE: Single Exponential fit to the T1 relax-
ation; DE: Double Exponential fit [82]. κin and κout were experimentally inaccessible
with our experimental setup at the time (cavity transmission measurement) so we
only give the value of the total linewidth κ.

and EJ were reasonable for a Fluxonium device, the large value of EC meant that
the |0〉 − |1〉 transition was very high: ω01 = 3.78 GHz. This had various consequences,
foremostly that the measured energy relaxation times were disappointing with T1 ≈
2 µs. Nevertheless, discounting the effect of quasiparticles on our device, the residual
relaxation time Tr = 16.4µs is encouraging as it promises, if we are currently limited
by dielectric loss, T1 of the order of 100 µs when qubit frequencies drop below 500 MHz.
Another consequence of the large EC was that the magnitude of the dispersive shift
allowing the qubit readout was dominated by the anti-crossing between the cavity
transition and the |1〉 − |2〉 and |0〉 − |1〉 transitions as opposed to |0〉 − |3〉 and |1〉 −
|4〉 in low frequency Fluxoniums (see Sec. 3.2.4). The values of EL, EJ and g were
satisfactory with respect to their targets, but not perfect. This highlights the difficulty
to correctly calibrate the resin thickness, oxidation and lithography step which affect
junction parameters as these dominate the values of EL, EJ and g in turn controlling
the qubit parameters. Furthermore, the use of a single junction for the inductive qubit
cavity coupling lead to unwanted non-linearity in the readout resonator even at low
photon numbers. Because of these observations, in the long run it is thus perhaps more
advisable to aim for a capacitive coupling between qubit and cavity. Indeed, once the
right capacitance is found there is almost no variability, as it depends on the geometry
alone. We were quite successful at predicting κout if we consider the cavity losses to
be dominated by the coupling to the transmission line. Our prediction for M was also
good and its value is clearly not currently a limiting factor for the qubit lifetimes in
our experiment. In fact, this was something we only understood once the device had
been fabricated. As can be seen in Fig. 4.4d., we placed a lowpass filter along the flux
line with a cutoff at 500 GHz. The idea was to have the filter stop the qubit decaying
into the flux line but still allow us to have fast gates: a cutoff at 500 MHz allows gate
durations down to 2 ns. In fact, whenM is chosen reasonably, the filter is not necessary
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1L 2L 3L NL

1C 2C 3C NC

Black Box

a. b. c.

Figure 4.7: a. Circuit model for a Transmon coupled to a resonator similar to Fig. 2.6b. We have
decomposed the qubit’s junction into a linear inductor LJ and a non-linear element
(spider symbol) b. Arbitrary impedance Z(ω) representing the rest of the circuit
considered a black-box seen by the non-linear element. c. Foster decomposition of
an arbitrary complex impedance into a series of LC circuits. This part of the figure
was taken from [43].

as is evidenced by the value of T flux
1 = 1.08 ms. The filter will be removed in future

iterations.

4.3 3d design using energy participation ratios

In the previous section we designed a Fluxonium device with full knowledge of the
underlying Hamiltonian. The frequency and dispersive shifts of the qubit can then be
calculated by the full diagonalisation of the coupled cavity-qubit Hamiltonian. Impor-
tantly, each individual constant present in the Hamiltonian was simulated separately:
knowledge of the cavity frequency ωR and the coupling g required two different simula-
tions for example. In this section we present two techniques - Black Box Quantisation
(BBQ) and the Energy Participation Ratio (EPR) - which can be used to determine the
Hamiltonian of a weakly anharmonic circuit using global simulations of the full device
only. We stress that the circuits must be weakly anharmonic for these tehcniques to be
valid. In other words the perturbation to the frequencies of the eigenmodes of circuit
from the non-linearities should be much smaller than the eigenfrequencies of the bare
circuit without non-linearity. This means that while the following techniques can be
used to design Transmon qubits and could forseeably be used to design Fluxoniums at
Φext = 0, they cannot be used to predict the frequency of Fluxoniums at Φext = 1

2Φ0.
Following the historical approach, treating BBQ before EPR, appears the most peda-
gogical. Finally we will talk about the design of a 3D Transmon in a cavity used for
the experiment of Chapter 7.

4.3.1 Black Box Quantisation (BBQ)

We will follow closely the paper by Nigg et al. [96]. For a more introductory presentation,
S. Girvin’s lecture notes from Les Houches 2011 [43] are a good choice. For more
advanced loss models see [167, 168], In chapter 2 Sec. 2.4.3 we derived the Hamiltonian
for a Transmon qubit capacitively coupled to a cavity as represented by the circuit
model in Fig. 2.6b. We showed that the cavity and qubit frequencies were renormalised
by the coupling and that the cavity mode inherited part of the non-linearity of the
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4.3 3d design using energy participation ratios

Josephson junction of the Transmon. To do this, recall that we separated the linear
part of the Hamiltonian from the non-linear terms

Ĥ = ~ωRâ†câc + 4EC n̂
2 +

1

2
EJ ϕ̂

2 + ~gn̂(âc + â†c)
︸ ︷︷ ︸

linear

−EJ cos(ϕ̂)− 1

2
EJ ϕ̂

2

︸ ︷︷ ︸
non-linear

. (4.23)

and then we diagonalised the linear part of the Hamitonian8. This idea is the basis of
BBQ and is represented in Fig. 4.7a. We have separated the contributions to the energy
from the linear part of the Josephson junction Ĥ linear

J = 1
2EJ ϕ̂

2 and the non-linear part
Ĥnon-linear
J = −EJ cos(ϕ̂) − 1

2EJ ϕ̂
2. Separating these two parts of the circuit is a key

conceptual step because the response of a linear circuit is completely defined by its
impedance matrix Z which relates the voltages ~V and currents ~I at each of the circuit
nodes and branches [7]

~V = Z~I . (4.24)

In the case of the cavity-qubit circuit, this allows us to consider the linear part of the
circuit as a black-box with a single port to which the non-linear element is connected
(Fig. 4.7b.). The impedance of this black-box can be decomposed into its Foster equiv-
alent circuit [169], represented by the circuit in Fig. 4.7c. in the general case. In this
representation

Z(ω) =
N∑

p=1

(
iωCp +

1

iωLp

)−1

(4.25)

such that the frequencies ωp = 1/
√
LpCp at which the impedance has a pole (or the

admittance Y (ω) = Z−1(ω) has a zero) correspond to the resonant eigenmodes of the
circuit. These eigenmodes (and their eigenfrequencies ωp) already take into account
coupling terms like ~gn̂(âc + â†c), such that the two frequencies ω̃R and ω̃Q at which
the admittance of the circuit enclosed in gray dashed lines in Fig. 4.7a. becomes zero
are identical to those in the rewritten Hamiltonian

Ĥ = ~ω̃Râ†câc + ~ω̃Qâ†qâq − EJ cos(ϕ̂)− 1

2
EJ ϕ̂

2 . (4.26)

Conveniently, the derivative of the admittance with respect to frequency Y ′(ω) contains
information about the impedance of each eigenmode p

Zp =
2

ωp ImY ′(ωp)
, (4.27)

allowing us to rewrite the flux corresponding to each mode p as

Φ̂p =

√
~Zp

2
(â†p + âp) . (4.28)

The flux across the port of the Foster decomposition of Fig. 4.7c. must be equal to the
sum of the fluxes of each of the N LC-circuits by an application of Kirchhoff’s laws.
Because this flux is also the flux across the non-linear element we get

ϕ̂ =
2π

Φ0

N∑

p=1

Φ̂p =
2π

Φ0

N∑

p=1

√
~Zp

2
(â†p + âp) . (4.29)

8 It is important to realise that EC = e2

2CΣ
with CΣ 6= CJ the total capacitance shunting the Transmon’s

junction. This detail will be important later.
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If we limit ourselves to the analysis of the non-linear term up to 4th order, using the
formula above we obtain

Ĥ = ~
N∑

p=1

ωpâ
†
pâp−

e2

2LJ

N∑

p=1


Zp




N∑

q=1

Zq


−

Z2
p

2


 â†pâp

︸ ︷︷ ︸
Lamb-shifts

− e2

2LJ

N∑

p,r=1

ZpZrâ
†
pâpâ

†
râr

︸ ︷︷ ︸
self-Kerr (p = r)
cross-Kerr (p 6=r)

.

(4.30)

This equation is essentially a generalisation to an arbitrary number of modes of the ex-
pressions for the Lamb-shift (EC), self-Kerr (KR and KQ) and cross-Kerr (χRQ) terms
given in Sec. 2.4.3. It is important to realise that aside from the junction inductance
LJ , once the electro-magnetic geometry of the device and analytical expression for the
non-linearity are specified there are no free parameters in this expression. From a design
point of view, this is extremely useful: we can draw a circuit containing a Josephson
junction; replace the junction by an ideal inductor LJ in parallel with a microwave
port in a finite-element simulation software; simulate the response of the circuit at this
port giving us the admittance Y (ω); find the zeros ωp of Y and the derivative Y ′ eval-
uated at ωp; and obtain the full quantum mechanical Hamiltonian Ĥ of the circuit. LJ
just needs to be chosen using (4.12) in a way which makes the junction easy to fabricate.

This method was shown to agree with experiments within 10% for the Kerr terms,
and within less than a percent for the mode frequencies [96]. It can also be generalised
to circuits with more than one junction and to cases with dissipation [96]. If this
technique was not used during this thesis it is because of two reasons. The first is
that calculating Y (ω) for many frequencies around the ωp necessary to obtain Y ′(ω) is
computationally expensive. The EPR technique we will turn to now, solves this issue.
The second reason is one of convenience, the pyEPR package [170], which provides a
big step in streamlining the design workflow, was developped in the middle of the thesis
work technique and was immediately used in our research group.

4.3.2 The Energy Participation Ratio (EPR)

The theoretical details behind EPR quantisation of superconducting circuits we are
about to explicit can be found in the publication by Z. Minev et al [93]. The starting
point for the EPR analysis of superconducting circuits is the black-box point of view
of Fig. 4.7b. corresponding to the Hamiltonian

Ĥ = ~
N∑

p=1

ωpâ
†
pâp

︸ ︷︷ ︸
Ĥlin

−EJ cos(ϕ̂)− 1

2
EJ ϕ̂

2 , (4.31)

where the black-box (linear) part of the circuit is already diagonal, but the non-linear
part still needs to be treated. The frequencies ωp can be obtained from an eigenmode
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simulation in Ansys HFSS for example. The crux of the problem can be summed up as
finding the coefficients ϕp such that

ϕ̂ =
N∑

p=1

ϕp(â
†
p + âp) . (4.32)

Recall that these coefficients were given by ϕp = 2π
Φ0

√
~Zp

2 in the previous section.
To calculate this, we consider the participation ratio ℘p defined as the fraction of
the inductive energy of mode p which is stored in the Josephson junction. It can be
calculated quantum mechanically using the following formula

℘p =

〈
1
2EJϕ

2
〉
ψp
−
〈

1
2EJϕ

2
〉
ψ0
p

1
2

〈
Ĥlin

〉
ψp

, (4.33)

where the overbar .̄ denotes the time average and |ψp〉 is a state in which only mode
p is excited above its ground state

∣∣ψ0
p

〉
. A further comment about the time average is

required. In a classical LC circuit, the energy is stored in turn in the capacitive elements
(electric field) and then in the inductive elements (magnetic field) of the circuit following
a sinusoidal oscillation. In that case, the time averaged inductive energy is equal to half
the total mode energy given by

〈
Ĥlin

〉
ψp
, hence the denominator of (4.33). We also

consider only the deviations from the ground state energy, such that the participation
ratio measures the distribution of the additional energy due to the excitation. For a
coherent state |α〉 in mode p (all other modes in the vacuum state |0〉)
〈

1
2EJϕ

2
〉
ψp
−
〈

1
2EJϕ

2
〉
ψ0
p

= 〈α(t)|12EJϕ2
p(â
†
p + âp)|α(t)〉 − 〈0|12EJϕ2

p(â
†
p + âp)|0〉

=
1

2
EJϕ

2
p(α
∗(t)2 + α(t)2 + 2|α(t)|2)

= EJϕ
2
p|α|2 , (4.34)

because for a time evolution α(t) = α(0)e−iωpt, α∗(t)2 = α(t)2 = 0. Furthermore,

1

2

〈
Ĥlin

〉
ψp

=
1

2
~ωp|α|2 , (4.35)

so that we finally obtain

℘p =
2EJϕ

2
p

~ωp
, (4.36)

relating the participation ratio to the coefficient ϕp. We chose to calculate (4.36) for a
coherent state because this is what is simulated in a classical electromagnetic simulation,
but we can obtain the same result for a Fock state. By relating the mode impedance
to the participation ratio

Zp =
ωpΦ

2
0

4π2EJ
℘p , (4.37)

we can use equation (4.30) to calculate the anharmonicities and cross Kerr rates to 4th

order.
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The participation ratio ℘p can be determined in an electromagnetic simulation by
determining the ratio of energy stored in a lumped element inductor which takes the
place of the junction, to the total magnetic energy stored in the electromagnetic mode9.
The magnetic energy Emag in the simulation is then given by the sum of two terms:
the inductive energy Eind, corresponding to the energy stored in the lumped element
inductor, and the field energy EH-field stored inside the magnetic field of the eigenmode

Emag = Eind + EH-field . (4.38)

The electric energy of the eigenmode Eelec on the other hand is stored both in any
lumped element capacitances in the simulation Ecap and in the electric fields EE-field

Eelec = Ecap + EE-field . (4.39)

Generally, we do not use any lumped element capacitances in the simulation, such that
Ecap = 0. Finally, because of detailed balance, Emag = Eelec. These relations lead to an
expression for the participation ratio

℘p =
Eind

Emag
=
EE-field − EH-field

EE-field
. (4.40)

The energies in each of the fields is obtained by integrating over the entire simulation
volume taking into account the different dielectric regions.

4.3.3 Designing the Purcell rate of a Transmon in a cavity

We used the EPR method to design the 3D Transmon device used for the experiment
of Chapter 7. The electromagnetic eigenmode simulations were done using HFSS, the
results for the field and current distributions of each eigenmode were then used by
pyEPR to calculate the participation ratios of each mode and return the anharmonic-
ities and cross-Kerr rates. In Fig. 4.8a. we show the design layout used in HFSS to
calculate the different eigenmodes and their coupling to the output port. The large
quasi-rectangular volume represents the aluminium cavity and carries perfect E bound-
ary conditions, meaning that the electric field must be perpendicular to the surface.
In the centre, we represent the qubit chip by a rectangular dielectric with the losses
and dielectric constant of sapphire. The Transmon pads are visible as 2D sheets (the
thickness of aluminium is negligeable) with perfect E boundary conditions. Between
the two, as is visible in Fig. 4.8b., we place another sheet whose width is equivalent to
the width of the leads going to the Transmon’s junction (slightly pink rectangle) Fig.
4.8d. This sheet carries a lumped element RLC boundary condition, with an inductance
equal to the targeted junction inductance LJ . We also define a current line (black line)
through the middle of the junction sheet connecting the Transmon pads. This line is
not necessary for the HFSS simulation, but is used by pyEPR to define the direction of
current in the junction. The cavity port is defined by a metallic rod entering the cavity
through a cylinder with perfect E boundary conditions, representing the tube whose

9 Here we change the denominations compared to the pyEPR paper [93].
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Figure 4.8: a. HFSS design layout for the 3D Transmon in a cavity shown in the c. panel.
Note how the port opening with the antenna is visible behind the silicon chip in c.
and represented by the orange material in the simulation. b. Current field for the
frequency corresponding to the qubit eigenmode at the position of the rectangle
with inductive boundary conditions (pink). These boundary conditions represent
the inductance of the junction in the acutal device, shown in d.

length corresponds to the cavity thickness through which the coupling pin is threaded.
The blue cylinder above the cavity in the simulation corresponds to the dielectric of the
SMA connector seen in gold plated stainless steel in Fig. 4.8c. To realistically simulate
the electromagnetic environment seen by the cavity through the pin, we terminate the
SMA connector dielectric by a lumped element 50 Ω boundary condition. Although the
cavity has two ports because we measure the cavity response in transmission (the other
side of the cavity is not visible in Fig. 4.8c.), because the coupling is asymmetrical
(κin � κout), we only model a single one in HFSS to reduce the simulation completion
time.

Our objective in this experiment was to measure the fluorescence of the Transmon
and post-select the results on a subsequent projective measurement of the qubit. This
objective introduced a number of criteria on the qubit parameters. Firstly, we wanted
the readout SNR of the qubit to be high, so we target κout = χ01 (see Sec. 4.2.3).
Because we readout by probing the cavity in transmission, we require κout ≈ κ to make
the output port dominate the information extraction. Secondly, to maximise the SNR
of the fluorescence signal coming out of the cavity, we want to make sure the decay rate
of the qubit is limited by its Purcell decay rate into the transmission line T1 . TPurcell

1 ,
so that the majority of information about the qubit contained in the fluorescence field
can be registered by the experimentalist. Finally, it was also necessary to have a suffi-
ciently long T1 compared to the duration of the readout T1 � TRO so that the fidelity
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Parameter
V1 (Timur) V2 (Kuno) V3 (Kuno)

Target Measured Target Measured Target Measured
κ/2π (MHz) 1 1.3 1 1.41 12 12.38
ω01/2π (GHz) 4.27 3.59 4.32 4.87 4.32 4.81
LJ (nH) 5.84 - 9 - 9 -

χ01/2π (MHz) 0.88 3.5 4.56 6 4.56 4.55
EC/2π~ (MHz) 84.8 ? 127 152 127 152
TPurcell

1 (µs) - - - 19.6 7.5 8.83
2EC
~χ01κ

(µs) 30.7 ? 6.8 5.7 0.7 0.9

T1 (µs) - 13 -
10 (Tr)
4.6 (Tqp)

- 6.4

Table 4.5: Table comparing the simulated and measured device parameters for three iterations
of the experiment. The name of the fabricated qubit is given in parentheses. The
target parameters are determined by simulation except for κ which is controlled at
room temperature by lengthening or shortening the pins inside the cavity belonging
to the SMA connectors. For a good rule of thumb for how much you need to cut the
pin by see Chapter 2 of [58]. In the second iteration, we saw double exponential T1

curves so we give Tr and Tqp for this case.

of the readout would be high.

In Tab. 4.5 we show how the targeted values of parameters and their measured values
compare as we iterated through different devices. In the very first iteration (V1) we were
optimistic about our fabrication capabilities and aimed for Purcell rate of around 100 µs.
This was calculated using the approximate formula for a two level system dispersively
coupled to a single mode cavity

1

T approx
Purcell

= Γapprox
Purcell = κ

( g
∆

)2
=

χκ

2EC/~
. (4.41)

We can understand this formula intuitively by reminding ourselves that
( g

∆

)2 is the pro-
portion of the qubit mode which lives inside the physical cavity (see Chapter 2 equation
(2.40)). Thus the proportion of the cavity losses that the qubit sees is

( g
∆

)2 leading to
(4.41). With the actual T1 being much lower than expected and χ01 completely different
from the targeted value, we decided to fabricate another sample.

In V2, the measured parameters agree with the simulations using HFSS and pyEPR
to within ∼ 10%. The main issue lies in the discrepancy between the measured T1 ∼
5 − 10 µs and the measured Purcell time TPurcell

1 = 19.6 µs despite having good agree-
ment between T1 and the predicted Purcell limit T approx

Purcell = 5.7 µs. This discrepancy has
been studied in detail in [63]. The main issue is that the cavity does not behave as a
single mode resonator, but allows a number of harmonics to couple to the Transmon
qubit. The break down of the single mode approximation can explain the deviation
of the true Purcell rate away from the one predicted by (4.41). To simulate the true
Purcell rate we fall back on the quality factor of the eigenmode corresponding to the
qubit transition. Assuming the losses in the simulation are dominated by the coupling
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to the port, the quality factor of the qubit eigenmode is a direct mesure of the Purcell
limit.

The improvements achieved thanks to this approach are visible in the 3rd column of
Tab. 4.5. We made the cavity output port pin much longer, leading to a linewidth of
κ = 12.4 MHz. Consequentially, the Purcell limit of the qubit went down and appears
to significantly limit the T1 time of the Transmon. Note that the predictions of the ap-
proximate Purcell rate formula are far removed from the experimental results. Overall,
the results of this experiment validate the EPR method for the design of 3D Transmons
in our group.

4.4 conclusion

A good choice of material and a thought-out design are essential to obtaining the prop-
erties we are looking for in quantum circuits. A number of materials have been used
to effectively fabricate circuits whose long lifetimes with respect to current operation
speeds are promising for sophisticated gate sequences. The level of control is such that
we are able to tune certain material properties, like kinetic inductance, for specific
uses in our devices. We also have a remarkable level of control on the Hamiltonian of
our devices and the exploration of the design techniques in this chapter justifies the
term “Hamiltonian engineering”. The subject has matured sufficiently for there to be
ready-to-use techniques (BBQ & EPR) embedded in user friendly software (pyEPR,
Metal) to help design superconducting circuits. An understanding of how the Hamil-
tonian parameters can be designed manually though, can provide significant physical
insight into the electrodynamic mechanisms at work. The experiments on Transmons
and Fluxoniums studied in this chapter reinforce the quantitative agreement between
simulation and measurement. Yet, as was already mentioned in the materials section,
external factors (substrate cleaning, radiation shielding...) significantly affect the per-
formances of superconducting quantum devices. In the following chapter, we go through
some experiments which illustrate how to mitigate some of this effects.
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5
THE FLUXONIUM QUBIT AND ITS ENVIRONMENT

In this chapter we continue on our quest to better control the environment of our
qubits. For low frequency Fluxoniums this is particularly important, because of their
high thermal occupation and susceptibility to flux noise, two effects not present in
Transmons. This chapter will be constructed as follows. First we will give details on
the predicted and observed effect of certain only partially controlled environmental
factors on superconducting devices. In particular, we will see how temperature and
external radiation can disturb the ideal conditions needed for quantum circuits. This
should motivate our own work on environmental mitigation strategies over multiple
Fluxonium device measurements, leading to close to state of the art energy decay times
T1 ∼ 100 µs. In the last part of the chapter, we will focus specifically on the different
techniques used to reset low frequency Fluxonium qubits to their ground-state, many
of which were benchmarked during this thesis.

5.1 the effect of the environment on low frequency qubits

To motivate the experimental work realised during this thesis on mitigating the effect of
environmental noise, we first give some theoretical background and orders of magnitude
to understand the origins of the noise we are trying to reduce.

5.1.1 Temperature dependence of T1

Temperature has a direct effect on the energy decay times of two-level systems. To see
this, consider a qubit interacting with a bath such that the populations of the qubit
states are governed by the detailed balance equations

dp0

dt
= Γ↓p1 − Γ↑p0 , (5.1)

dp1

dt
= Γ↑p0 − Γ↓p1 , (5.2)

where Γ↑ and Γ↓ are the qubit excitation and deexcitation rates and p0 and p1 are the
respective populations of each of the qubit states |0〉 and |1〉. Formally, p0 and p1 are
the diagonal elements of the qubit density matrix ρ in the {|0〉 , |1〉} basis. As we saw
in the previous chapter, the rates Γ↑ and Γ↓ are related to the spectral noise density of
the bath, itself dependent on the Bose-Einstein distribution nBE(ω)

Γ↑ = N
∣∣ 〈1|σ̂+|0〉

∣∣2nBE(ω01) , (5.3)

Γ↓ = N
∣∣ 〈0|σ̂−|1〉

∣∣2(nBE(ω01) + 1) . (5.4)

In the above equations, N is a proportionality factor which scales with the qubit-
bath coupling as was shown in Chapter 4. Importantly, these equations are only valid
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Figure 5.1: T1 as function of the effective bath temperature with respect to its value at T = 0

following (5.6).

when the coupling between the bath and the qubit is linear, so they do not hold for
quasiparticle relaxation for example. To determine the temperature dependence of T1,
we consider the steady-state of (5.1) and (5.2) and use the fact that | 〈1|σ̂+|0〉|2 =

| 〈0|σ̂−|1〉|2 in (5.3) and (5.4) which leads to the detailed balance equation

p1

p0
=

Γ↑
Γ↓

=
nBE(ω01)

nBE(ω01) + 1
= e

−~ω01
kBT . (5.5)

To obtain the final exponential, we have used nBE(ω) =
(
e~ω01/kBT − 1

)−1. Recalling
the definition Γ1 = Γ↑ + Γ↓ (see 2) we can derive

Γ1 = Γ↓

(
1 + e−~ω01/kBT

)
= Γ1|T=0 coth

(
~ω01

2kBT

)
⇔ T1 = T1|T=0 tanh

(
~ω01

2kBT

)
,

(5.6)

given that at zero temperature Γ1 = Γ↓ and reusing (5.4). In Fig. 5.1 we show how the
hyperbolic tangent affects the qubit relaxation time. As the temperature is increased
T1 remains almost constant as long as ~ω � kBT . For large temperatures ~ω � kBT ,
T1 decreases as 1/T . Thus, to maximise coherence times, we would like to make sure
that ~ω01 � kBT . This clearly is not always the case in Fluxonium qubits as, with a
temperature to frequency conversion factor of kB

h ≈ 21 GHz K−1, dilution refrigerator
temperatures of 20 mK are already equivalent to a qubit frequency of ω01 = 2π ×
420 MHz, such that T1 is already diminished compared to its value at zero temperature.
The importance of keeping the temperature as low as possible will become clear in the
experiments of Sec. 5.2

5.1.2 Thermal occupation of the qubit states

As is evident from (5.5), the temperature of the bath also impacts the thermal popula-
tion of qubits. This is particularily problematic for quantum circuits using Fluxoniums,
again because of their low frequency. For ω01 = 2π × 500 MHz the population ratio
between the excited and ground states is 0.3 for a bath at 20 mK. At 100 MHz the ratio
becomes p1

p0
= 0.79. Many quantum algorithms assume a qubit initialised in a pure
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starting state, such that Fluxoniums must be reset to the ground-state before being
used for operations. This is not the case for Transmon qubits, whose excited state pop-
ulation is usually measured at the percent level. This is already well above the expected
p1 ∼ 10−4% for a 5 GHz qubit at 20 mK. In practice, effective bath temperatures are
in fact determined by this ratio between the excited and ground state populations, and
are usually measured somewhere in the range 50 - 140 mK [87, 137].

5.1.3 Thermal photon induced dephasing

This unexpectedly high bath temperature also has an impact on coherence because
of the qubit’s coupling to a thermally populated readout cavity. Intuitively, photons
circulating in the readout cavity are constantly gaining information about the quantum
state through their interaction with the qubit, leading to a decay of the off-diagonal
elements of the density matrix as the two systems become entangled. Decoherence
induced by uncontrolled degrees of freedom gaining information about the qubit is
called measurement induced dephasing [171, 172]. We can be quantitative about the
dephasing rate Γφ induced by the average number of thermal photons n̄th in the cavity.
Because the cavity mode is bosonic, n̄th is directly related is directly related to the
Bose-Einstein distribution

n̄th = nBE(ωR) . (5.7)

At 20 mK we expect n̄th ∼ 10−8 according to this formula, yet experiments report
values between 6× 10−4 to 0.15, orders of magnitude above the theoretical prediction
[137]. The formula for the dephasing rate induced by the n̄th photons is

Γφ =
n̄thκχ

2
01

κ2 + χ2
01

, (5.8)

where κ is the cavity linewidth and χ01 is the dispersive shift of the qubit’s |0〉 − |1〉
transition.

The discrepancy between the experimentally observed n̄th and qubit population ra-
tios p1

p0
and their theoretical prediction is a subject of on-going research. Unthermalised

photons from the microwave lines coupling into the cavity are one possible source and
have motivated research into new types of filters, designed specifically for supercon-
ducting circuit applications1. In one experiment, using these filters right in front of
the readout entry port increased the qubit coherence time to its limit with no pure
dephasing T2 = 2T1 [137]. A second possible source of thermal photons is stray radia-
tion from the ≥ 4 K stages of the dilution refrigerator and radiation from outside the
crogenic unit. To mitigate the effect of this radiation, comprehensive radiation shield-
ing is used, often composed of copper, lead or aluminium cans sometimes coated with
stycast, carbon black or eccosorb [137, 173, 174].

1 A number of groups have designed and fabricated their own homemade filters and attenuators (Univer-
sity of Maryland (Manucharyan group), University of Chicago (Cleland group), UCSB - Google, Néel
Institute...), but as these components are often critical for device performance, the designs are rarely
published for fear of relinquishing a competitive advantage.
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5.1.4 Quasiparticles

Another advantage of making sure stray radiation does not reach the superconduct-
ing device is the reduction of the number of quasi-particles. We already mentioned in
Chapter 3 that the expected number of quasiparticles at dilution fridge temperatures
of 40 mK were 16 orders of magnitude lower than the observed number. This impres-
sive discrepancy has been theorised to originate from out of equilibrium quasiparticles
excited by highly energetic photons ~ω ≥ 2∆ arriving on the superconducting junc-
tion. Theories taking into account this effect, that the density of quasiparticles can be
separated into two contributions: one temperature independent (non-equilibrium) and
one temperature dependent (equilibrium) [175, 89]; have been successful in explaining
experiments where qubit transitions are correlated with the charge parity either side
of a single Josephson junction [176, 83], and the temperature dependence of T1 [177].
Furthermore, reducing infrared radiation coming from inside the dilution refrigerator
by using absorbing shields was shown to increase lifetimes by reducing the quasiparticle
number[173, 174]. The presence of lead bricks around the dilution refrigerator also had
significant effects on the lifetime of resonators and qubits [35, 36].

Experimentally, the quasiparticle density xqp, defined as the ratio of the number of
quasiparticles to the number of Cooper pairs in the superconductor, can be determined
by a time averaged T1 measurement. Because the quasiparticle loss rate Γqp is propor-
tional to xqp (see 3 (3.28)) which in turn is proportional to the number of quasiparticles
nqp in the superconducting islands either side of the junction, we can define a loss rate
Γ̃qp associated with the loss due to a single quasiparticle in the islands [82]. The total
quasiparticle rate then becomes

Γqp = nqpΓ̃qp . (5.9)

The qubit lifetime is given by the sum of all relaxation rates, such that, assuming no
thermal population at equilibrium, the population P of the qubit prepared in |e〉 as a
function of time is

P (t) = e−nqpΓ̃qpt−Γrt , (5.10)

where Γr is the qubit relaxation rate due to mechanisms other than quasiparticles.
To go further, we assume that the number of quasiparticles n at a given moment is
distributed according to a Poisson law pλ(n) with average λ

pλ(n) =
λne−λ

n!
. (5.11)

If we make a series of T1 measurements such that the measurement sequence is much
shorter than the time it takes for the number of quasiparticles to change, the average
relaxation trace will be given by a ‘double-exponential’

〈P (t)〉 = eλ(exp(−Γ̃qpt)−1)e−Γrt . (5.12)

A typical example of such a double exponential decay curve is given in Fig. 5.2, where
we can clearly see the difference at long times between the two fits. Using a logarithmic
scale can be useful to make out the difference, as an exponential decay follows a straight
line in a graph with a logarithmic y-axis.
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b.a.
Figure 5.2: Qubit excitation p as a function of time after a π-pulse exhibiting a double expo-

nential decay. In panel a. the qubit population p(t) is shown on a linear y scale, in
b. we use a logarithmic scale after substracting the thermal equilibrium excitation
pth obtained from the fit. Blue and red dashed lines denote fits to an exponential
P (t) = e−t/T1 and to the double exponential (5.12) respectively. In this case, the ex-
tracted decay rates were, T1 = 42 µs for the exponential fit and Tqp = 1/Γ̃qp = 58 µs

and Tr = 1/Γr = 96 µs with λ = 1.0 for the double exponential fit.

5.1.5 Summary

Qubit loss rates depend on the bath with which they interact. This bath is often
characteristed by an effective frequency dependent temperature which encompasses
the net effect of the environment on the qubit. This effective temperature can have a
direct effect on the qubit lifetimes and qubit population. In certain cases, this can be
explained microscopically as dephasing due to photons in the cavity or the decay due
to quasiparticles excited by incumbent high energy photons. If we are to achieve qubits
with long lifetimes, the goal should be to reduce this effective temperature and stray
radiation. In the next section, we see which strategies we can implement to achieve this
goal.

5.2 environmental mitigation strategies in fluxonium experi-
ments

About a year of this thesis work, between the summer of 2018 and the summer of 2019,
was spent trying to achieve the same high coherences with Fluxonium qubits as those
reported in [79]. Indeed, through a collaboration with the Manucharyan group, we had
access to samples we knew had been measured with T1, T2 > 100 µs at the University
of Maryland. An essential part of the scientific project at the time, was to demonstrate
that these lifetimes could be achieved in other laboratories and in particular at the
ENS in Lyon. In this section we detail some of the iterative work necessary to achieve
state of the art, including failed experiments, and highlight some of the group’s current
best practices for Fluxonium experiments. The purpose is mainly to expose some things
which could be tried to improve coherence times in future experiments and which have
proven their worth in the literature or in our group. During the work of this thesis, many
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of these techniques did not affect our qubits either negatively or positively, leading us
to believe that in one of our dilution refrigerators, the Cryoconcept, there is some still
unknown noise source which is extremely detrimental to qubit lifetimes.

The subsections will follow the work of the first year of Fluxonium experiments
chronologically, with the titles of the different subsections underlining a particular tech-
nique or improvement explored during that period. Occasionally, improvements from
later on in the thesis will also be discussed. In Table 5.1 and Fig. 5.3 we summarise the
main changes to the experiment during the one year period.

5.2.1 Fluxonium from scratch: optimising the readout and finding the spectrum

We recieved our first Fluxonium device over the summer of 2018 from the University of
Maryland. The setup consisted of a single Fluxonium device, patterned in aluminium
on a silicon chip inside a 3D copper cavity. Although the fabrication technology was
identical to that reported in [79], the Manucharyan team had not reported long lifetimes
(T1 < 100 µs) for this sample and we were to use it to test our setup before receiving
another device with longer lifetimes later on. In 2018, the group had just moved from
Paris with two dilution refrigerators, one made by Bluefors reaching ∼ 24 mK at base
temperature2, and the other made by Cryoconcept reaching ∼ 35 mK. With two other
experiments running in the Bluefors fridge, our experiment was setup in the Cryocon-
cept. The first step was to identify the cavity frequency, which we achieved using a
spectrum analyser in transmission on the setup input and output lines. The Maryland
group had sent us a spectrum of the qubit measured on their setup, which we immedi-
ately tried to reproduce using a two tone spectroscopy measurement as is explained in
Sec. 3.2.4. This was a mistake. Indeed, the parameter space which controls the visibility
(SNR), frequency and linewidth of the resonances in a two tone spectroscopy measure-
ment is very large. The matrix elements, readout power and integration time and the
probe drive power influence the visibility of the transition, the flux point changes its
frequency and the drive power and matrix elements affect the linewidth. This is too
many parameters for an initial measurement where the ideal values of these parameters
are all unknown. Moreover, in an attempt to optimise T2, the group in College Park
had designed the Fluxonium so that the dispersive shift χ was much smaller than the
cavity linewidth κ. This made finding the qubit spectrum even more difficult.

From experience it is best to start by optimising the readout, something which was
greatly simplified when we received a Traveling Wave Parametric Amplifier (TWPA)
[178] from Lincoln Labs (see Run 4 in Table 5.1). The idea is to increase the readout
pulse input amplitude until observing the non-linearity inherited from the qubit. The
non-linearity is evident in Fig. 5.4a., where we show an example of the cavity trans-
mission as a function of frequency. When the amplitude of the readout tone becomes
high enough, the cavity drifts to lower frequencies and the resonance shape is deformed.
Using an amplitude just below the visible onset of the non-linearity is usually a good

2 After refilling the helium lines with 3He, this fridge now achieves ∼ 15 mK fully cabled.
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Figure 5.4: Optimising the readout. The data in a. comes from a Fluxonium experiment not
discussed in this section, and the data in b. comes from a 3D Transmon experiment.
a. Absolute value of the cavity transmission (t = Īout + iQ̄out) as a function of the
readout amplitude. Grey lines are fits to a Duffing oscillator equation. b. SNR of
the readout signal as a function of the TWPA pump parameters: pump power and
frequency. The SNR is defined as the ratio (d/r)2 shown in the inset for a typical
readout histogram. The SNR decreases dramatically if we pump too hard or move
the pump frequency into the dispersive feature. Note that the point at which the
SNR is highest is not necessary the point with the highest gain.

choice. Then, keeping the readout power and integration time constant, we sweep the
power and frequency of the TWPA drive around the values specified in the specifica-
tion sheet to optimise the readout SNR in the complex plane. This is measured by the
ratio (d/r)2 of the distance of the gaussian distribution from the origin to its standard
deviation (see inset of Fig. 5.4b.). A typical ‘TWPA map’ is shown in Fig. 5.4b., where
we can clearly see the increase in SNR at certain parameter combinations as well as
the dispersive feature above 6.3 GHz.

Once the readout parameters are set, it is useful to know at which flux point we are
working at. To do this, the simplest is to probe the cavity at fixed frequency and measure
its response as a function of external flux, controlled by the voltage or current in the
flux line. This is a direct measurement of the dispersive shift of the qubit on the cavity,
depending on the thermal equilibrium of the qubit levels at each flux point. A typical
result of this measurement is shown in Fig. 5.5, where we can distinguish two axes of
symmetry as a function of flux. These axes correspond to the symmetries of the qubit
spectrum around the flux points Φext = kΦ0 and Φext = (k+ 1

2)Φ0 (k ∈ Z). Without a
priori knowledge of the qubit spectrum, it is not possible to determine which of the two
points of symmetry correspond to which flux points, but this limits the search for the
|0〉 − |1〉 transition at Φext = 1

2Φ0 to two possibilities. It is generally easiest to look for
qubit transitions above 1 GHz, because at those frequencies the charge matrix elements
are larger. A map like Fig. 5.5 and a few well identified transitions are sufficient to find

97



the fluxonium qubit and its environment

100 75 50 25 0 25 50 75 100
Coil bias (mV)

120

100

80

60

ar
g[

t] 
(°

)

Figure 5.5: Typical phase response (t = Īout + iQ̄out) of the cavity at fixed frequency as a
function of the external flux (coil voltage). The symmetry axes corresponding to
fluxes Φext = kΦ0 and Φext = (k + 1

2 )Φ0 (k ∈ Z) are given by orange and pink
dashed lines respectively.

the parameters EC , EJ , EL through a fit of the Fluxonium Hamiltonian. Once these
parameters are known, the frequencies of all the other transitions as a function of flux
as well as their matrix elements can be infered. Unlike Transmons, Fluxonium devices
in this thesis seemed to be much more sensitive to drives at high power when doing two
tone spectroscopy. If a transition is not visible, sometimes it is necessary to reduce the
drive power rather than increase it. In particular, because the spectrum of a Fluxonium
is much more complicated than a Transmon, increasing the drive power can make higher
order transitions appear which complicates the identification of direct qubit transitions.

Searching for the qubit spectrum on the first generation of devices lead us to realise
the importance of making sure the cavity linewidth κ was of the same order of mag-
nitude as the qubit’s dispersive shift χ. This was a major change between the Runs 4
and 6 (Table 5.1), where we closed the input and output ports of the cavity to be more
in line with the expected χ < 1 MHz of the |0〉 − |1〉 transition at Φext = 1

2Φ0 commu-
nicated by the Maryland group. It was during Run 4 that we obtained the highest T1

measured for this sample, fluctuating around ∼ 20 µs.

5.2.2 Thermalising RF and DC control lines

One of the immediate consequences of working with lower frequencies is the need for
more power in the qubit drives. Following the discussion of chapter 3, we know that if
the frequency drops by an order of magnitude (from 5 GHz to 500 MHz for instance),
the charge matrix element | 〈1|n̂|0〉|, which is directly proportional the Rabi frequency
Ω ∝ | 〈1|n̂|0〉|, is reduced by two orders of magnitude. This boils down to the realisa-
tion that to obtain the same gate speed for Fluxonium qubits as for Transmon qubits
(all other things being equal), we need to increase the drive power by 20 dB. This po-
tentially poses a problem, because attenuators at the 20 mK stage, at which cooling
power is limited, will also dissipate 100 times more power. To remedy this, we replaced
a −40 dB attenuator on the input line with a directional coupler and an attenuator
in Run 7 (see cabling A versus all other cablings after C in Fig. 5.3). This presents

98



5.2 environmental mitigation strategies in fluxonium experiments

the advantage that, by routing the uncoupled signal to the isolated port terminated
by a 50 Ω at 4 K, 99% (in the case of a −20 dB input coupling) of the input signal is
dissipated at a stage where cooling power is not an issue. Importantly, the attenuator
must come after the directional coupler for this to work. This was the error of Run 6, as
in that case 90% of the power was still dissipated at 20 mK. There is also no noise level
increase by dissipating at 4 K because signals from the isolated port are attenuated
by −40 dB into the coupled port3. Aside from the specific case of the mixing chamber
stage, attenuation along the lines is calculated following the standard techniques and
considerations about noise temperature explicited in [179]. Finally, fridge heating also
motivated the reopening of the cavity input port between Runs 6 and 7 to increase the
proportion of the incoming field reaching the qubit.

Once the attenuation has been designed properly it is important to make sure that
all attenuators are properly thermalised to avoid hot spots in the fridge. It is also impor-
tant to reduce the thermal leakage from higher temperature stages inside the dilution
refrigerator. Between Runs 4 and 6 we spent some time improving the thermalisations
within the fridge. Attenuators at 4 K were thermalised using Apiezon vacuum grease
whilst at lower temperatures we used unoxidised copper strips tightly screwed to both
the component and fridge (Fig. 5.6a.). This follows the recommendations of the book
by Ekin [51] on low temperature measurements. Futher efforts were put in to reduce the
thermal conduction between levels due to the RF and DC cabling. Before starting to
use the refrigerator we ordered new stainless steel microwave cables for the input lines
which have low thermal conductivity at low temperatures [179]. In the same vein, but
with the additionnal consideration of quantum efficiency, superconducting NbTi cables
were used for the output lines. Considerable work was also done on the twisted pairs
used for the flux control. To bias the Fluxonium devices we used a homemade coil with
∼ 1500 turns wound around a brass (copper in subsequent iterations4) support ther-
malised to the 20 mK stage (Fig. 5.6e.). The leads of the coil were routed as a twisted
pair up to the 4 K stage and soldered to a connector whose electronic temperature was
thermalised to 4 K (Fig. 5.6f.). Importantly, to stop the direct galvanic contact between
the 4 K and 20 mK stage due to the twisted pair, we thermalised the DC lines at the
1 K stage using a copper post (pictured in 5.6c.) and left a long length of cable between
the 1 K and 20 mK stages (5.6d.), to make sure there were no thermal shorts between
stages. Later on, between Runs 17 and 18 we also made sure there were no holes in the
platforms above 20 mK by sealing them with stycast (5.6b.).

Unfortunately, none of these experimental efforts helped with the improvement of
our coherence times whose maximum values were recorded as T1 = 25 µs and T2 = 6 µs

3 Recent measurements done on 3D Transmons in the group, with the isolated port terminated at 20 mK,
have shown that this setup can also improve T1 in certain cases, something which we attribute to the
thermal decoupling between the input and coupled lines.

4 In a later Fluxonium experiment in the Bluefors fridge, we made a coil support out of leftover brass
from the laboratory workshop. This brass was slightly ferromagnetic, which was not the case of the
brass support we used initially which came from the Maryland group. Using a magnetic material to
bias a flux sensitive device turned out to be a bad idea and we saw flux jumps at a rate of around 1
per minute during that cooldown. In all future experiments we used copper coil supports.
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Figure 5.6: Examples of the thermalisation work done on the Fluxonium experiments during
this thesis. a. Copper bands were used to thermalise the components to the dilution
refrigerator. The cryoperm shield containing the coil and cavity can be seen in the
background. b. Plugging the holes in the fridge using stycast prevents radiation
leakage from the hot to the cold stages. c. Twisted pair wrapped around a copper
post at the 1 K stage. The wire is maintained in thermal contact with the post
using Apiezon vacuum grease or GE varnish and capton tape. d. When possible
we used a spirally grooved tube of PCB around which we wrapped the DC wiring
at the 100 mK stage. This allows a long length to avoird thermal shorts between
stages, without taking up too much space. In the cryoconcept, with the 100 mK

stage unusable we left a long length of wire wrapped around the fridge at the 1 K

stage. e. Cavity and coil taken out of the cryoperm shielding. Both coil and cavity
were solidly screwed onto a copper post, itself screwed into the base plate of the
dilution refrigerator. f. 15 pin D-sub connector at 4 K to which the coil leads were
soldered. The copper post thermalises the wires coming from the 70 K stage to 4 K.

at Φext = 1
2Φ0 for this qubit with EC = h × 0.84 GHz, EL = h × 0.56 GHz and

EJ = h× 2.41 GHz.

5.2.3 Using another qubit as a sanity check

Because so far the coherence of the last sample had been disappointing despite our
efforts regarding the fridge cabling, we concluded that the issue was perhaps with
the sample sent from the University of Maryland. The Manucharyan group obliged our
request for a new sample (at that time we did not have the equipement - an evaporator -
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Figure 5.7: Two Fluxonium device. a. Optical image of two aluminium Fluxoniums patterned
on a silicon substrate (image credit goes to the University of Maryland). The
loops of each Fluxonium do not have the same area, as is revealed in the SEM
images of subfigures c. and d., so the flux periodicity of each qubit is differ-
ent. The Hamiltonian parameters are EC = h × 0.99 GHz, EL = h × 0.61 GHz,
EJ = h× 3.89 GHz (measured at the University of Maryland) for the qubit on the
right and EC = h × 0.97 GHz, EL = h × 0.69 GHz, EJ = h × 4.0 GHz (measured
at ENS de Lyon) for the qubit on the left. b. Average result of the readout after
the Ramsey sequence shown above the graph for Φext close to the sweet spot of the
qubit on the left. We fit the model (5.13) to the data. Because of the capacitive
coupling between the two Fluxoniums we can make out two frequencies separated
by ∼ 165 kHz and a decay time of T2 = 5.3 µs.

to make Fluxoniums ourselves) which they had previously measured to have T1 = 200 µs

and T2 = 100 µs at Φext = 1
2Φ0 for both qubits on the sample. Indeed, as part of their

research on 2 qubit gates, they had designed samples with two Fluxoniums capacitively
coupled to each other as is visible on Fig. 5.7a. The spectrum for this device is shown
in Chapter 3 Fig. 3.7. We decided to focus on only one of the two Fluxoniums (the
device on the left in 5.7a.), to simplify the benchmarking of T1 and T2. Throughout
Runs 8 to 10 we consistently measured T1 between 20 and 30 µs, independent of any
changes to the fridge cabling and experimental setup. T2 on the other hand was difficult
to benchmark, as its value depends much more strongly on Φext than T1 (see Fig. 3.4
in Chapter 3). The highest measured T2 was between 10 and 20 µs in Runs 8 to 10 and
we recurrently saw beating oscillations in later runs when the readout had been further
improved. In Fig. 5.7b. we show the results of a Ramsey measurement on our qubit.
We can adjust the parameters of the functional

f(t) = Ae−t/T2 (cos(ω1t+ φ) + ε cos(ω2t+ φ) + b) , (5.13)

to fit the data in Fig. 5.7b. We interpret ω1 and ω2 to be the frequencies of the qubit we
were measuring, dependent on the state of the second qubit on the chip. The capacitive
coupling between the Fluxoniums could have been a limiting factor to the T2 given
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Figure 5.8: a. Residual shard of the Fluxonium device after breakage, mounted inside the copper
cavity. Its physical resemblence to a shark fin is striking. b. Photograph of the base
plate of the cryoconcept fridge showing the two copper panels coated with absorbing
materials. We can also identify the homemade eccosorb filters placed at the cavity
input and output ports.

that the sweet spot for the qubit we were measuring did not correspond to the sweet
spot of the the second qubit because of the unequal loop sizes (Fig. 5.7c. and d.). This
effect would have been observed in the Manucharyan group though, and they claimed
to have observed much higher T2.

With the newly arrived chip not having resolved the issue with our coherence times,
we decided to try etching the copper readout cavity and clean the qubit chip. Unfortu-
nately, upon closing the cavity again, the chip broke, something which became clear in
Run 11 during which we could not measure any sign of the qubit. Opening the cavity
again after warming up, revealed a small fragment of the chip on which both Fluxoni-
ums appeared to be intact. The reason for the breakage was the important thickness of
the indium wire which we had used to maintain the chip inside the cavity. Subsequently,
all chips were secured using much thinner indium foil. By mounting the still apparently
functional shard inside the cavity we were able to resume experiments in Run 12 (Fig.
5.8a.).

5.2.4 Eccosorb and stycast as absorbers

Throughout all the experimental runs care was taken to correctly filter out stray ra-
diation coming down the microwave lines. High frequency filtering can be done using
multiple techniques, typically using commercial low pass K&L filters or homemade cop-
per powder [180] or eccosorb [181] filters. We use homemade Eccosorb filters (Fig. 5.8b.)
on the input and output ports of the readout cavity in all experiments (Fig 5.3). In more
recent iterations of the cabling inside the Bluefors fridge, we also place K&L filters just
before (after) the eccosorb filters on the input (output) ports to increase the filtering
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further. During the experimental work in the Cryoconcept, a publication by Serniak et
al. [182], showed that placing the eccosorb filters close the the cavity inside a cryop-
erm and aluminium shield reduced the number of quasiparticles xqp in their Transmon
qubit. Between Runs 10 and 15, we tried to place the eccosorb filters within the same
cryoperm box as the cavity or within their own cryoperm, consistently wrapping them
with aluminium foil as an equivalent to the aluminium shield. These attempts lead to
no significant change in T1 or T2 and the eccosorb filters were subsequently taken out
of the cryoperm and aluminium shielding for pratical reasons. It is likely that at this
point we were limited by something other than quasiparticles, potentially to do with
the breakage of the qubit chip.
In a last test of high frequency absorbers, we placed two thick copper sheets (∼

1 mm) respectively coated with stycast and eccosorb at the base plate on the dilution
refrigerator. These copper sheets can be seen in Fig. 5.8b. For the stycast and silica
beads mixture we followed the recipe proposed in [173] with the omission of carbon
power which was not available. For the eccosorb coating we used type CR 110 and
followed the recipe provided by the manufacturer. Again here, no difference between
before and after was observed, despite results from other groups suggesting otherwise
[173, 174]. The results of this experiment are not conclusive however, because of the
small surface area of the absorbing material and the likelihood that factors outside of
those controlled by high frequency absorbers were the source of the short lifetimes.

5.2.5 Temperature as a critical parameter

Having exhaused our ideas for improvements on the setup we were left faced with the
following observations

• Our T1 time had been degraded ever since the second Fluxonium device had
broken;

• No changes to the setup in the Cryoconcept fridge seemed to have any significant
effect on the coherence times even before the chip had broken.

From the first observation it seemed clear that we either needed to go back to the
original Fluxonium device used in Runs 1 to 7, or obtain a new device. From the sec-
ond observation we concluded either one of two things: either the device was getting
degraded during transport, possibly from high altitude radiation during the transat-
lantic flight to Europe; or the Cryoconcept fridge itself was somehow problematic and
we should try measuring Fluxoniums in a different dilution refrigerator. Luckily, the
transport problem had already been adressed by another group collaborating with the
University of Maryland based at the University of Massachusetts Amherst. They were
also having issues with reproducing the lifetimes observed by the Manucharyan group
with devices shipped by airmail to Amherst. Yet, devices driven from College Park to
Amherst did not show any improvement, de facto excluding the issue with airtravel.

From this we devised the following protocol. We would ask for a new device from the
University of Maryland which had been previously measured in their fridges to have
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Figure 5.9: Comparison of the wirings in the Cryoconcept and Bluefors fridges. Elements in
red were used in the run in the Cryoconcept whereas elements in blue were used
in the Bluefors fridge. We show the measured fridge stage temperatures for each
fridge in blue and red either side of the cable diagram. There is no temperature
measurement on the 100 mK stage.

high coherence, sent to Lyon by plane. We would measure this device with no changes,
first in the Bluefors fridge, then in the Cryoconcept, taking care to use as far as pos-
sible the same cables and components in both fridges to have some basis for comparison.

The new device we recieved from College Park was another two Fluxonium device
which had been measured to have T1 and T2 between 70 and 100 µs for both qubits at
half flux. Using cablings, shown in Fig. 5.9, similar to those described previously, we
measured the Fluxonium qubits’ T1 times in both fridges. Much care was taken, going
as far as using the same cables for the wiring at base temperature, to make sure the two
setups were comparable. The results shown in Fig. 5.10a. are unequivocal: the energy
decay times in the Bluefors fridge are 2 to 3 times longer than in the Cryoconcept and
attain the values measured at the University of Maryland. Because the changes to the
cabling are relatively minor, without any changes to the input attenuation or filtering,
so the discrepancy in T1 must be attributed to something else. One obvious difference
between the two fridges is their difference in temperature at each stage. The Bluefors
fridge is consistently colder at the 20 mK stage but also at the still, 4 K and 70 K stages.
This suggests that both the actual temperature of the device as well as the level of ther-
mal radiation in the fridge may play a role in reducing qubit lifetimes. To test the first
hypothesis, a year later we performed a measurement of T1 as a function of the base
plate temperature in a third Bluefors dilution refrigerator fitted with a heater at the
base plate. We waited around 2 h at each temperature set point for the fridge compo-
nents to thermalise before measurement. The results for both qubits are shown in Fig.
5.10b. As the temperature increases above 40 mK we see a clear decrease in T1 down to
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Figure 5.10: The effect of temperature on the qubit T1. a. Examples of lifetimes of the two
qubits in both the Cryoconcept and Bluefors fridges. All the relaxation curves are
fitted with double exponentials, whose parameters are visible in the figure. T1 was
measured at Φext ≈ 1

2Φ0 (ωH01 = 318 MHz), Φext ≈ 0.35Φ0 (ωL01 = 3.49 GHz) and
Φext ≈ 0.485Φ0 (ωL01 = 382 MHz) for the red, purple and blue data respectively.
b. Spread of T1 measurements as a function of the dilution refrigerator mixing
chamber stage temperature at Φext ≈ 0.49Φ0 for both qubits (ωL01 ≈ 270 GHz and
ωH01 ≈ 360 GHz). T1 was obtained by fitting the time decay of the probability of
obtaining the qubit in |0〉 at time t after preparing it in state |0〉 at a time t = 0

with an exponential model. 50 realisations of the experiment are done at each
temperature point, showing a certain spread of T1. For comparison we show the
values of an exponential fit to the data in a. with the stars and with yellow bars
the range of values reported by the Manucharyan group at 50 mK. The grey lines
in the background show the expected temperature dependence for different qubit
lifetimes at T = 0K according to (5.6). Dotted lines are the predictions for qubit
temperatures 20 mK above the base plate temperature.

around 10 µs at 120 mK. Corroborating this data was the fact that prior to sending us
the sample, the group at the University of Maryland had measured a decrease of both
Fluxoniums’ T1 to the 30 to 40 µs range at a fridge temperature of 50 mK (shown as
the yellow bars in Fig. 5.10b). Curiously though, the T1 measurements do not seem to
follow the hyperbolic tangent dependence on temperature described in (5.6) shown in
Fig. 5.10 by the grey lines. This is the case even when we take into account a possible
discrepancy between the temperature of the base plate and the temperature of the
qubit. This result is fundamental because it shows that the qubit cannot be thought
of as being in contact with the same bosonic bath at all temperatures. Moreover, the
measured T1 seem to saturate at low temperatures, possibly indicating some other lim-
iting factor at low temperatures.

Understanding why the T1 behaves this way is still an open question, but it is not
alone. It would also be interesting to study the dependence of T1 on the temperature
of the other fridge stages. In our measurement, it was necessary to deactivate the
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temperature measurement at all but the 20 mK stage to ensure a fast temperature
feedback control loop. We were thus unable to monitor the temperature of the 4 K

stage for example, while the base plate was above 14 mK. Futhermore, although we fit
the data in Fig. 5.10b. with an exponential model, most relaxation curves we observed
on this third device exhibited double exponential decays, whether in the Cryoconcept
or Bluefors fridge. The reason for this - quasiparticles or an other unknown mechanism
- is not yet clear and will be explored in detail in Chapter 6.

5.2.6 DOs and DO NOTs of Fluxonium experiments

By successive iteration we converged on an experimental setup which allowed us to
measure state of the art lifetimes with Fluxonium qubits fabricated at the University
of Maryland. The various experiments presented here and some found in the literature
lead us to a list of techniques we know work, some which do not and a number of open
questions.

In a Fluxonium experiment DO

• Use the coldest dilution refrigerator available;

• Spend time thermalising components thoroughly to avoid hot spots in the fridge;

• Carefully calculate the heat load on the RF and DC lines to prevent fridge heating;

• Protect the device from high frequency noise using filters or shielding;

• Optimise the readout before attempting to find the qubit spectrum when starting
from scratch.

In a Fluxonium experiment DO NOT

• Use brass as a support for a coil without checking its magnetic properties first;

• Use thick indium wire to secure the chip inside the cavity;

• Leave the voltage source used for the flux bias plugged in during cooldown (not
adressed here, but can lead to a lot of flux jumps);

• Necessarily increase the power when a qubit transition is invisible.

OPEN QUESTIONS

• Does putting the eccosorb filters inside a cryoperm shield really matter for T1 and
T2?

• At what level of T1 and T2 do protective shields (lead, eccosorb, stycast) and
filtering have an effect?

• Is the temperature of the stages above the base plate critical to qubit coherence?

• Why is fridge temperature such a critical parameter for Fluxonium qubits?
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5.3 reset strategies for low frequency fluxonium qubits

We have mentioned multiple times that the relatively low frequency of Fluxonium qubits
can be problematic because of the high thermal occupancy of the excited state. It is
therefore desirable to develop schemes which purify the quantum state, resetting it to a
known starting configuration. In fact, the ability to quickly and effectively prepare the
qubit state is an issue also outside the specific sub-field of Fluxonium qubits. Indeed,
even for qubits with ~ω � kBT such that the thermal occupation is negligeable, when
the T1 relaxation time is long, waiting for the qubit to decay naturally to the ground-
state can be a significant proportion of the run time of a quantum algorithm. Because of
this, numerous studies have also been carried out on resetting Transmon qubits to their
ground-state. We can draw inspiration from these studies to help the state preparation
of Fluxonium devices. For ease of notation, we use letters (|g〉, |e〉, |f〉...) for the qubit
states and integers for the cavity Fock states (|0〉, |1〉, |2〉...) in this part of the thesis.

5.3.1 Overview of qubit reset techniques

There are many techniques which have been used to reset Transmon and Fluxonium
qubits to a known pure state. We can broadly define some categories to classify the
different strategies. Perhaps the most naive (but not the least resource intensive) is
to reset the device by either heralding the qubit state or by applying some feedback
after a readout. The principle of heralding preparation is to start every protocol with a
strong measurement of the qubit state and discard those times where the measurement
result was not the one desired. The advantage of this technique is its simplicity, and
the fact that is is limited only by the readout fidelity, which can be high (99.2% in
[183]). For Fluxonium qubits though, because the thermal population is high, close to
50% of realisations must be discarded, leaving a lot of deadtime. Reset by feedback
solves this problem, as after the readout, we apply a π-pulse on the qubit conditioned
on the result of the measurement (see Fig. 5.11c.). Say we wanted to prepare |g〉. If the
measurement result is |g〉 we do nothing; if it is |e〉 we can apply a π-pulse to retrieve
the |g〉 state. Feedback state preparation was used on a Fluxonium qubit in [34] to
prepare the |g〉 (|e〉) state with 98% (90%) fidelity within 1036 ns. The fidelity of the
state preparation is limited here both by the readout as well as the π-pulse fidelity.
The time of the preparation is limited by the duration of the readout, the electronic
feedback loop and the duration of the π-pulse when necessary.

A broad category of resets are those which exploit the higher levels of the Transmon
and Fluxonium artificial atoms and the presence of the coupling to the readout cav-
ity. An established reset technique using this concept is the DDROP protocol which
consists of simultaneously driving the |g, 0〉 − |e, 0〉 and |g, 0〉 − |g, 1〉 transitions [184].
The first drive converts the qubit |e〉 state into the ground-state conditionned on the
cavity being empty, whilst the second drive populates the cavity once the qubit is in |g〉
stopping the first drive from re-exciting the qubit. Another well studied technique is to
drive the (not-forbidden) |f, 0〉 − |g, 1〉 transition after applying a π-pulse to transfer
any residual population in |e〉 to |f〉 (Fig. 5.11a.). This effectively converts two qubit
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Figure 5.11: Overview of the different qubit reset techniques presented in this thesis. a. Qubit
reset by driving the |f, 0〉−|g, 1〉 transition by using a pump tone at the frequency
ωp = ωR−ωfg. At the same time a Rabi drive on the |e〉−|f〉 transition brings the
residual population into the |f〉 state before conversion into the cavity. The lossy
cavity then dissipates the converted energy. For this to work the cavity decay rate
must be much greater than the qubit re-excitation rates κ � Γg→e,Γe→f ,Γg→f .
b. Similar idea but by driving the |e, 0〉 − |g, 1〉 transition by using a pump tone
at the frequency ωp = (ωR − ωeg)/2. The Rabi drive on the |e〉 − |f〉 transition
is not necessarily useful here because the population in |f〉 is supposed to be low.
c. Qubit reset by feedback or heralding. The qubit is first strongly read. Then, in
the case of feedback if the result is not the one targeted, an additional unitary is
applied to prepare the desired state. In the case of heralding, the measurement is
repeated until we obtain the desired state. d. By applying a strong drive at the
resonator frequency to populate the cavity, the populations of the qubit states
change, hopefully preparing it in a pure state.
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excitations into a single cavity excitation mediated by a pump tone, by the means of a
4th order process allowed by the expansion of the cosine non-linearity. As long as the
Rabi rate Ω|f,0〉−|g,1〉 of the qubit to photon conversion is smaller than the cavity decay
rate κ, the photon in the cavity will decay, leaving the state |g, 0〉 before the cavity ex-
citation can be swapped back into the qubit |f〉 state. This protocol was demonstrated
on Transmons in [185] with 0.2% residual excitation and within 500 ns. Reset to within
2% was achieved by [186] in 210 ns. Using this transition to generate single photons
was demonstrated in [187] a reference which also provides insight into the theoretical
description of multilevel qubit drives. Other transitions have also been used, using the
3rd excited state of Fluxonium in [77] for example. Higher qubit transitions can also be
used to drive the protected transitions Λ type [110, 109].

Other more specific reset techniques exploit flux tunability, something which is not
always available in Transmon devices. In [188], the authors showed how a qubit could
be coupled to flux tunable lossy cavity. By bringing the cavity into resonance with the
qubit transition, the qubit decay times are shortened. More recently, fast flux gates in
a Fluxonium circuit were used to accelerate a reset protocol using the concept of side-
band cooling we already described for the |f, 0〉 − |g, 1〉 transition. The Alibaba group
showed that it is possible to reset a Fluxonium qubit by directly driving the |e, 0〉−|g, 1〉
transition away from the Φext = 1

2Φ0 sweet spot [189]. Indeed, at the sweet spot, this
transition is forbidden for parity reasons. Their protocol consisted of a flux gate biasing
the qubit away from Φext = 1

2Φ0, a drive on the |e, 0〉 − |g, 1〉, dissipating the qubit
excitation in the cavity, before bringing the flux back to Φext = 1

2Φ0. They claimed
a reset fidelity of 98% in 200 - 500 ns depending on the flux point to which the qubit
was taken during the excursion. In this thesis we show that it is in fact possible to
drive this transition at the sweet spot as long as the available pump power is high
enough (Fig. 5.11b.). This is because the 4th order process at the base of this mech-
anism needs to 2 pump photons to convert the qubit excitation into a cavity excitation.

We can end this discussion with a simple method for preparing Fluxonium qubits,
but one which has yet to be understood at a theoretical level. There have been many
reports that a strong drive at the readout cavity frequency (but not only) has a puri-
fying effect on the qubit state (Fig 5.11d.). Some of these reports are informal (from
the Devoret group at Yale [66], or the Pop group in Karlsruhe) but this technique has
also been mentioned in publications by the Manucharyan group for example [38, 33]. In
both these works, a large drive at the cavity frequency had a tendency to prepare the
qubit in the |e〉 state. The preparation time is slow, around T1/5 in both cases and the
residual population in |g〉 is on the order of 10 to 20%. Quantifying the rate at which
the qubit populations are affected by this drive at different amplitudes and fluxes is
the subject of Chapter 6.

In the next subsections we present some of our results concerning the reset of Flux-
onium qubits.
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Figure 5.12: Effect of the cooling pump at ℘ = ωR − ω02 on the qubit. a. Real part of the
cavity response as the frequency of pump ωp is swept. The full measurement
sequence is shown above the graph. The durations of the π-pulses on |g〉− |e〉 and
|e〉 − |f〉 are fixed to 500 and 420 ns respectively. The pump duration is 2000 ns.
The gray line shows the frequency chosen for the cooling pump in this experiment:
ωp = 2π×4.612 GHz. b. Rabi oscillations of the |g〉− |e〉 transition with (ON) and
without (OFF) cooling applied before the qubit rotation. Here the simultaneous
drives at ωp and ωfe are both active for 20 µs when the cooling is applied. Grey
lines correspond to an exponentially decaying cosine model.

5.3.2 Driving the |f, 0〉 − |g, 1〉 transition

In this section we will consider the Fluxonium qubit (EC = 2π~ × 0.84 GHz, EJ =

2π~×2.41 GHz, EL = 2π~×0.56 GHz) of runs 1 to 7 in Table 5.1. The qubit is coupled
dispersively to a readout cavity and the qubit transitions can be driven by external fields
coupling to the Fluxonium’s charge operator n̂. At Φext = 1

2Φ0, ωeg = 2π × 540 MHz

and ωfe = 2π×2.41 GHz; the cavity frequency is ωR = 2π×7.563 GHz and its linewidth
is κ = 2π × 9.4 MHz.

With these qubit parameters we expect the populations pg = 64%, pe = 34% and
pf = 2% of the |g〉, |e〉 and |f〉 states respectively for a bath at 40 mK. Because pf is
so low, we can neglect the populations of the other qubit states in the following and
consider only the qutrit made of |g〉, |e〉 and |f〉. We also see that we have a lot to gain
by preparing the qubit in the |g〉 state, as pe = 34% is far from negligeable. In Fig. 5.12a.
we show the spectroscopy used to find the pump frequency ωp. The pulse sequence used,
shown above the graph in Fig. 5.12a., is designed to maximise the contrast in cavity
response between the case where the pump is on resonance with the cooling transition
and when it is not. Experimentally we set ωp = 2π × 4.612 GHz, almost exactly the
theoretically predicted frequency ωR − ω02 = 2π × 4.613 GHz. To verify that this is
indeed the cooling transition we measure Rabi oscillations on the |g〉 − |e〉 transition
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with and without preparing the qubit state using the protocol described in Fig. 5.11a.
The results are shown in Fig. 5.12b. and by fitting a decaying cosine model given by

f(x) = Ae−t/TR cos(Ωt) + b , (5.14)

where A, TR, Ω and b are free parameters, to the measured Rabi oscillations (grey
lines), we deduce that the contrast of the Rabi oscillations is increased by a factor 1.95

when preparing the qubit state with the cooling mechanism. Whilst this already gives
some information about the efficiency of the cooling protocol, we need to determine the
qubit populations to be more quantitative. This is typically done by using a gaussian
model to extract the populations of each qubit pointer state in histograms of the qubit
readout, but here such a high readout fidelity was unattainable. We devised a technique
using only the phase of the cavity response and different gates to perform a tomography
of the qubit.

Let us define χg, χe and χf the dispersive shifts of states |g〉, |e〉 and |f〉 on the cavity
frequency. The frequency of the cavity for any population of the three qubit levels is

ωR = ωbare
R + pgχg + peχe + pfχf , (5.15)

where ωbare
R is the frequency of the cavity uncoupled from the qubit (inaccessible, see the

discussion in Chapter 3). Theoretically, the phase of the cavity response in transmission
is given by

arg [S21(ω)] = − arctan

(
2(ω − ωR)

κ

)
. (5.16)

We can also fix the frequency of the cavity probe. We choose ωth
R = ωbare

R + pthg χg +

pthe χe + pthf χf , the frequency of the cavity when the qubit is in thermal equilibrium
with its environment, such that

arg[t] = − arctan

(
(pthg − pg)χg + (pthe − pe)χe + (pthf − pf )χf )

κ/2

)
. (5.17)

We also knew from exchanges with the Manucharyan group that all the dispersive
shifts were much smaller that the cavity linewidth (we did not know the qubit/cavity
coupling). To give a sense of scale, for a charge coupling between qubit and cavity with
coupling constant g = 2π × 100 MHz, χg = 2π × 290 kHz, χe = 2π × 620 kHz and
χf = 2π × 340 kHz. The arctan can therefore be approximated as a linear function so
that

arg[t] = −
(pthg − pg)χg + (pthe − pe)χe + (pthf − pf )χf

κ/2
. (5.18)

Finally, although we do not know g, we do know that the dispersive shifts are propor-
tional to g2 at second order (see Chapter 3). We can define χ0

x = χx/g
2 , x ∈ {g, e, f}

and include g2 in a multiplicative unknown in our equation. Indeed, we can calculate
the χ0

x through a numerical simulation of the Fluxonium without needing any knowl-
edge of g. The thermal populations pthx are also unknown and they can be included in
an additional phase offset φ. Thus

arg[t] = φ− 2g2

κ

(
pgχ

0
g + peχ

0
e + pfχ

0
f

)
. (5.19)
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Figure 5.13: Benchmarking the cooling process using the |f, 0〉 − |g, 1〉 transition. a. Phase of
the cavity response after each qubit gate with (blue) and without (red) the cooling
procedure for a 141 repetitions of the measurement. Fitting the model defined by
(5.20) in both cases gives predicted values to arg[t] shown by the larger markers
circled in black. From the model given by (5.20) we obtain pth

g = 71%, pth
e = 29%

and pth
f ∼ 0% for the qubit in the thermal state and pcool

g = 95%, pcool
e = 4% and

pcool
f ∼ 1% after we have prepared the qubit state by cooling. When on, the cooling

sequence is applied for 20 µs b. Real part of the cavity response as the duration of
the two simultaneous tones at ωp and ωfe is swept in the measurement sequence
above the graph. Adjusting the characteristic time of an exponential relaxation
model to the data gives a cooling rate of 7.1 µs.

φ also contains the dependence of the measurement result on the electrical delay and
impedance mismatches in the experimental setup. In the above equation, there are 5
unknowns: the phase offset φ, the multiplicative factor 2g2

κ and the qubit populations.
This is where the qubit gates come in. For each qubit state we want to know the
populations of, we can apply the gates 1, Xπ

eg (π-pulse on |g〉 − |e〉), Xπ
fe (π-pulse on

|e〉 − |f〉) and Xπ
egX

π
fe (two successive π-pulses, first on |e〉 − |f〉 then on |g〉 − |e〉),

before reading out the qubit state. Assuming the gates have 100% fidelity, we obtain
a set of 5 equations with 5 unknowns which can be solved simultaneously to find the
populations.





arg[t]1 = φ− 2g2

κ

(
pgχ

0
g + peχ

0
e + pfχ

0
f

)
,

arg[t]Xπ
eg

= φ− 2g2

κ

(
peχ

0
g + pgχ

0
e + pfχ

0
f

)
,

arg[t]Xπ
fe

= φ− 2g2

κ

(
pgχ

0
g + pfχ

0
e + peχ

0
f

)
,

arg[t]Xπ
egX

π
fe

= φ− 2g2

κ

(
pfχ

0
g + pgχ

0
e + peχ

0
f

)
,

1 = pg + pe + pf .

(5.20)

We use this technique to benchmark the effectiveness of our cooling procedure. In
Fig. 5.13a. we show the phase of the transmitted signal as a function of the gate after
cooling or with the qubit in the thermal state. After cooling the population of the
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ground state increases from 71% to 95% and the population of |e〉 is reduced from 29%
to 4%, corresponding to a reduction of the effective temperature from 29 mK to 8 mK.
These values make intuitive sense with respect to the results shown in Fig. 5.13a. as
arg[t]Xπ

eg
≈ arg[t]Xπ

egX
π
fe

and arg[t]1 ≈ arg[t]Xπ
fe

if pg ≈ 1 in (5.20). Additionally, we
can explain the fact that arg[t]Xπ

fe
is close to insensitive to the pe/pg ratio by noting

that χg/χf ≈ 1. Finally, the ratio of the difference in populations pcool
g −pcool

e

pthg −pthe
= 2.2 is

commensurable with the factor 2 contrast increase of the Rabi oscillations in Fig. 5.12b.
Factoring in pulse fidelities estimated to be above 90% does not change the results sig-
nificantly.

Because the speed at which we can reset the qubit is also important, in Fig. 5.13b.
we sweep the length of the cooling pulses, montoring the quadrature of the readout
signal to measure the effect of increasing the cooling duration. The results follow an
exponential saturation with time constant Tcool = 7.1 µs, 5 times shorter than the
measured T1. Whilst this is a longer than a typical qubit gate, it suggests that it is still
worthwhile using the cooling sequence to reset the qubit rather than simply waiting for
the spontaneous qubit decay.

5.3.3 Driving the |e, 0〉 − |g, 1〉 transition

The second type of cooling we used during the experiments in this thesis, is the reset of
the qubit using the |e, 0〉−|g, 1〉 transition shown in Fig. 5.11b. We will show the results
for this technique using the two Fluxonium sample measured in runs 14 and 15 (see
Tab. 5.1). The Fluxonium in question had EC/h = 0.97 GHz, EL/h = 0.69 GHz and
EJ/h = 4 GHz so that at Φext = 1

2Φ0, ωeg = 2π × 375 MHz and ωfe = 2π × 3.495 GHz.
The cavity frequency was ωR = 2π×7.752 GHz and its linewidth was κ = 2π×2.9 MHz.

We start by looking for the pump frequency and power using the measurement se-
quence shown in Fig. 5.14a. First we apply a cooling tone for a fixed duration of 10 µs

before: either immediately reading out the qubit state, or first applying a π-pulse on
the |e〉 − |g〉 transition before reading out. By monitoring the distance

∣∣∣Z̄1
out − Z̄

Xπ
eg

out

∣∣∣
between the average readout signal of these two cases in the IQ-plane, we can find the
power and frequency at which the cooling pump is most effective (shown in Fig. 5.14a.).
Interestingly, the optimal frequency depends linearly on the drive power, which is com-
mensurate with an AC-stark shift of the qubit as the power is increased. At low powers
we retrieve the predicted pump frequency ωp =

ωR−ωeg
2 = 2π×3.689 GHz. Furthermore,

it is not necessarily the highest pump powers which lead to the highest contrast. When
the power was too high, we saw a saturation and then a decrease in the contrast as
high order terms from the cosine non-linearity became important.

The effect of the cooling tone on the average readout signal can be seen in the Rabi
oscillations of Fig. 5.14b. The increase in contrast is here 12 fold, which seems incom-
patible with the measurement of Fig. 5.12b. Indeed, for the measurement contrast to
increase by such a large factor, the ratio of qubit populations in the thermal state
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Figure 5.14: Effect of the cooling pump at ωp =
ωR−ωeg

2 on the qubit. a. Distance between av-
erage measurement results in the IQ-plane after the measurement sequence shown
above. The pump power referred to the source and frequency are varied while its
duration 10 µs is kept fixed. The π-pulse on the |e〉−|g〉 transition lasts 350 ns and
has a hyperbolic secant shape. b. Rabi oscillations with (blue) and without (red)
using the cooling pump for 10 µs. For better visibility the case without cooling has
been magnified 12 times and offset vertically for better comparison.

should close to unity pth1
pth0
≈ 1. Yet for a qubit at 540 MHz at the same nominal tem-

perature we predicted pth1
pth0

= 0.53 and measured 0.41 (see Fig. 5.13), far away from 1
even when taking into account the lower frequency of the qubit this time around. It
was only after the experiment was over that we realised that explaning this requires
taking into account the presence of the second Fluxonium on the same chip. Everytime
we measure the qubit, we are in fact measuring the computational subspace of the two
qubit system containing four states: |g, g〉, |e, g〉, |g, e〉 and |e, e〉. Because the charge
coupling between the two qubits only mediates a small hybridisation of the states (a
few hundreds of kHz according to the beats in the Ramsey measurement of Fig. 5.7b.),
these four states are very close to the product states |g〉 ⊗ |g〉, |e〉 ⊗ |g〉, |g〉 ⊗ |e〉 and
|e〉 ⊗ |e〉 of the uncoupled qubits. In the following we will use the convention that the
first letter denotes the state of the qubit whose parameters were given above. In the
IQ-plane, these four states are materialised by the 4 gaussian distributions whose pro-
jection on the real quadrature I when the qubit is in the thermal state is given by the
red points in the left panel of Fig. 5.15a. The histogram can be decomposed into a
single gaussian on the right and the overlap of three gaussians on the left. From various
other measurements we deduce that the gaussian peak on the right corresponds to the
|g, g〉 state, whereas the other three states cannot really by identified in the distribu-
tion on the left. As is evident by comparing the cases with and without a π-pulse on
|e〉 − |g〉 (the red histograms in the right and left panels respectively), the expected
contrast of Rabi oscillations is low. This is not due to the infidelity of the π-pulse, for
which we measured a fidelity of around 99%. When the cooling pump is applied, the
distributions (blue) become more polarised, leading to a large increase in the contrast
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Figure 5.15: Benchmarking the cooling process using the |e, 0〉−|g, 1〉 transition. a. Real part of
the readout histograms for 200000 iterations of each of the different experiments
show in the pulse sequences above the graphs. Points in red are taken when the
cooling is off, points in blue show the results when the measurement sequence
started with the cooling pump. Fits to the gaussian part of the distribution on the
right of the gray dashed line are shown with solid lines. The pump was applied for
10 µs when the cooling was on. b. Distance between average measurement results
in the IQ-plane as a function of the pump duration in the measurement sequence
shown above. The gray line is the fit an exponential saturation with time constant
890 ns.

of Rabi oscillations.

By studying these histograms we can determine the effectiveness of the cooling pro-
cedure. Because the gaussian distributions of the |e, g〉, |g, e〉 and |e, e〉 states cannot
be identified, we focus on measuring the population pgg in the |g, g〉 state. This is
determined by fitting the model

f(x) = pgg ·
1√
2πσ

e−
(x−µ)2

2σ2 , (5.21)

a weighted normalised gaussian with mean µ and standard deviation σ, to the points
on the right of the gray dashed line in Fig. 5.15a. µ and σ are kept fix for all the
distributions and the results of the fit are shown by the red and blue solid lines. The
information about pgg in each situation, and the knowledge that the π-pulse on |e〉−|g〉
almost exactly inverts the populations pg and pe, is enough to deduce the cooling
effectiveness5. We can start with the following assumptions

1 = pgg + peg + pge + pee and
pgg
peg

=
pge
pee

. (5.22)

The first neglects the presence of the higher energy levels of both Fluxoniums. The
second is a consequence of detailed balance. From this we deduce

1 = pgg + peg + pge +
peg
pgg

pge . (5.23)

5 The π-pulse is not selective because its duration (100 ns) is much smaller than the inverse of the
frequency splitting between the transitions |gg〉 − |eg〉 and |ge〉 − |ee〉 (165 kHz). It switches pgg with
peg as effectively as pge with pee.
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Solving for pge leads to

pge =
1− pgg − peg

1 +
peg
pgg

. (5.24)

We have direct access to pgg and peg both with and without cooling, thanks to the
fitting technique explained above and the high fidelity π-pulse. We can thus deduce
pthgg = 42%, ptheg = 38%, pthge = 10% and pthee = 10%; pcoolgg = 71%, pcooleg = 8%, pcoolge = 19%

and pcoolee = 2%; such that for the qubit we are interested in pthg = 52%, pthe = 48%

and pcoolg = 90%, pcoole = 10%. These populations represent effective temperatures of
225+225
−75 mK and 8.2 ± 0.4 mK. Finally, to measure the time it takes to achieve the

qubit reset, we monitor the contrast
∣∣∣Z̄1

out − Z̄
Xπ
eg

out

∣∣∣ as a function of the pump duration
in Fig. 5.15b. A fit of an exponential model to the saturation curve gives Tcool = 890 ns,
much shorter than the T1 = 10 µs. With this value for Tcool, sideband cooling of the
|e, 0〉 − |g, 1〉 transition appears to be more effective than using the |f, 0〉 − |g, 1〉 tran-
sition in the previous section, although in the latter case we had not swept the pump
power to opimise the cooling rate. Combined with the use of a different qubit with
different T1, this makes comparisons delicate.

As a final note, we mention that it is also possible to pump the upper sideband of
the same transition. By applying a pump at ωp =

ωR+ωeg
2 if is possible to prepare state

|e〉 rather than |g〉. This involves creating a qubit as well as a cavity excitation by the
conversion of two pump photons.

5.3.4 Reset by strong drive

To motivate why the qubit state might be affected by a strong drive at the cavity
frequency, it is worth taking a moment here to highlight some of the remaining incon-
sistencies with the results of the two last sections. Consider the effective temperatures
of the qubit in the thermal state. In the previous section we found Teff = 29 mK and
here Teff = 320 mK despite the qubit frequencies being relatively similar. How can
we explain this, when the range expected from the literature is 50 to 140 mK (see
Sec. 5.1.2)? While the first case could be explained by the poor readout signal and
unknown π-pulse fidelity, the second temperature appears more robust because it is
directly extracted from the readout histograms. This leads us to question the fidelity of
our readout pulses. In Fig. 5.16 we qualitatively illustrate the problem. Although the
qubit’s thermal population prior to the readout pulse is constant, the population pgg
of the ground-state (gaussian distribution at the bottom of the histograms) appears
to be depleted as the amplitude of the readout pulse increases. This is a clear sign
that the readout pulse is affecting the qubit populations. Whilst this can appear to be
something negative which needs to be understood more fully (which will be the case in
Chapter 6), it can also be used as a ressource.

To see this we can turn to another Fluxonium device with two qubits. This is the
device which is studied in detail in Chapter 6 and whose parameters and properties are
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Figure 5.16: Histograms of 10000 (I,Q) quadratures obtained by heterodyne measurement of
800 ns long readout pulses as a function of the pulse amplitude A for the device
described in Sec. 5.3.3. The results of that section were obtained with A = 0.45.

described there. At the half flux point Φext = 1
2Φ0, the dispersive shifts of the |e, g〉 and

|g, e〉 states are the same, which is why there are only three visible pointer states in
the readout histogram of Fig. 5.17a. Because the signal to noise ratio of the histograms
is sufficient, we can immediately extract the qubit populations by fitting 4 gaussians
to the experimental distribution corresponding to the states |g, g〉, |e, e〉, |other〉 and
the overlapping states |g, e〉 and |e, g〉. We use the designation of |other〉 for the points
in the histogram which do not belong to the 3 pointer-states visible in Fig. 5.17a. To
efficiently extract the populations, we use the gaussian mixture model available in the
python package scikit-learn [190]. We use our ability to extract the qubit populations
from the histogram to monitor the effect of a strong cavity pulse in Fig. 5.17b. As
the length of the cavity pulse is increased, the |g, g〉 state is emptied rapidly, bringing
the ground-state population down to 2.5% within an exponential decay time of 190 ns.
This is around 500 times faster than T1 ∼ 100 µs. Unfortunately, emptying the state
|g, g〉 comes at the price of increasing the population in the |other〉 states, outside of
the computational subspace. Interestingly, the pulse amplitude necessary to produce
this behaviour is only 50% greater than the readout amplitude suggesting that the
mechanisms behind it depend sharply on the drive power.

In other measurements done on the same qubit as in Sec. 5.3.3, we were able to
increase the Rabi constrast by applying a strong pump at frequencies away from the
transitions we discussed above or the cavity frequency. Depending on the frequency, we
tended to increase or decrease the population of the ground-state. This suggests that
the interaction between the pump and the complicated level structure of Fluxonium
devices is important in explaining these measurements fully.

5.3.5 Heralding and Feedback

At the basis of qubit reset by heralding, there is the assumption that the qubit readout
resitutes the state of the qubit with high fidelity. We can express this as condition on
the probability

P (|g〉 |“g”) = 1 . (5.25)

117



the fluxonium qubit and its environment

Figure 5.17: a.Histograms of 10000 acquisitions of a 1300 ns readout pulse on the qubit de-
scribed in Chapter 6. We have identified the different parts of the distribution
with their corresponding qubit state. The state |other〉 corresponds to the points
in the histogram which do not belong to states in the computational subspace. b.
Populations as determined by a gaussian mixture model in each of the qubit states
as a function of the cavity pulse drive time in the sequence above the graph. The
ratio of the amplitude of the drive to the amplitude of the readout is 1.6, and the
readout duration 1300 ns, identical to a. An exponential model is fit to the decay
of pg,g with time a constant of 190 ns.

For a measurement outcome “g” which is up to the experimentalist to define (obtaining
readout quadratures within some distance of the centre of the pointer state distribu-
tion at the bottom of Fig. 5.16 for example), the likelihood of being in state |g〉 should
be close to 1. Here we are focusing on the state |g〉 but this idea can be generalised
to any target state. Calculating P (|g〉 |“g”) is non-trivial and is presented in detail in
Chapter 7 for the case of the readout of a 3D Transmon. Regardless of the exact value
of P (|g〉 |“g”), it can be useful to start measurement sequences on low frequency Flux-
oniums with a single readout pulse to project the qubit into the energy eigenbasis.

Reseting the qubit by feedback also requires a high fidelity P (|g〉 |“g”). We attempted
it on the 2 Fluxonium device, whose readout histogram is shown in Fig. 5.17. The main
constraint here is the electronics hardware needed to perform the feedback. Indeed, once
the readout has been performed, it is necessary to generate the correct control pulse
based on the measurement outcome, before the state of the qubit changes. This can
be done using custom FPGA boards for example or with commercial devices, like the
control systems provided by the companies Quantum Machines or Zürich Instruments
(ZI). We tried to perform feedback using a combination of the ZI HDAWG for pulse
generation and ZI UHFQA for acquisition and feedback, but this was unsuccessful
because of unresolved communication issues between the two instruments.
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5.4 conclusion

Limiting the environmental noise affecting superconducting qubits and Fluxoniums in
particular is critical to obtaining long coherence times. At a theoretical level we saw how
the temperature of the environment can affect T1 and Tφ by increasing the population
of the readout cavity for example. Temperature also poses a problem in terms of the
thermal population of the qubit, especially for low frequency devices like Fluxonium.
Stray, high energy radiation (radioactivity, infrared...) can create quasi-particles or take
superconducting devices out of equilibrium with their environment. These effects can
be prevented by various degrees of shielding and filtering, which we tried to put in
place in the Cryoconcept fridge. The ineffectiveness of these measures on coherences
suggest that we are limited by something still unidentified. Only by changing to the
Bluefors dilution refrigerator were we able to retrieve close to state-of-the-art lifetimes
and put forwards the strong dependence of Fluxonium qubits on temperature. In the
last part of the chapter we reviewed the different methods which can be used to reset
Fluxonium devices to a known pure state. We explored optical-pumping type cooling
which resets the ground-state population to above 90% in only a fraction of the T1

time. By exploring the reset through measurement, heralding, feedback and strong
cavity drives, we demonstrated that reading out the state of Fluxonium qubits is non-
trivial. This motivates the experiment of the following chapter, where we describe
quantitatively how the transition rates between the states of Fluxonium qubits are
affected by a cavity drive.
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6
TRANS IT ION RATES IN FLUXONIUM

6.1 introduction

In some of the last results of the previous chapter we saw that the readout drive could
have a significant effect on the state of Fluxonium qubits. This was evident in the
readout of our own two qubit system but it has also been observed elsewhere. In the
Yale group even a small number of cavity photons (∼ 2) were shown to increase the
qubit decay rate [37] and variations in the qubit excitation and deexcitation rates Γ↑
and Γ↓ were observed in a GraAl Fluxonium in the Karlsruhe group [34]. This effect
was harnessed as a resource in the Maryland group to purify the state of Fluxonium
qubits before measurement [38, 33]. There have also been observations that high pho-
ton numbers in the readout cavity impact the qubit state in Transmons [191, 92, 192].
These effects are especially problematic as they reduce the QNDness of the readout,
such that we are no longer sure that the qubit is indeed in the state corresponding to
the measurement outcome. Some theoretical works have tried to explain these effects
by considering non-linearities beyond the standard dispersive limit [193, 194, 195], but
there is no consensus yet on an explanation for non-QND phenomena in the fluxonium
qubit.

This chapter presents one of the main experimental works of this thesis, about the
effect of a cavity drive on the transition rates between levels in a capacitively coupled
two Fluxonium system. The objective is to obtain a quantitative analysis of the deple-
tion of the ground state population shown qualitatively in Fig. 5.16. To do this, our
goal is to measure the transition rates Γµν between the states |ν〉 and |µ〉 of the coupled
two Fluxonium system, both as a function of the photon number n̄ and of the external
flux bias Φext.

We start by presenting the experimental setup and some first calibrations of the
qubit parameters. We then expose some of the problems we risk facing when trying
to measure Γµν(n̄,Φext), notably the correct definition of n̄ and the dependence of the
dispersive shifts of the qubit both on n̄ and Φext. Addressing these issues will bring us
to develop a novel pointer-state identification scheme in the IQ-plane and a rigorous
self-consistent definition of n̄. We are then able to show that the population of each
qubit state depends on the amplitude of the field in the readout cavity to which it is
coupled. To determine the mechanisms involved at a microscopic level, we then use the
information contained in a 104 µs long measurement record to extract the transition
rates between qubit states while the cavity is occupied. These transition rates, varying
between 1 and 200 kHz, vary strongly both in flux and in photon number. Finally we
show how a numerical simulation of the measurement record could reproduce some of
the features we observe.
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Figure 6.1: Experimental setup and Fluxonium device. a. Side view of the cavity placed within
the copper coil wound in house. b. Open copper cavity showing the silicon chip on
which the Fluxoniums are patterned on the left hand side. The indium seal of the
cavity is still visible around the opening. c. Optical image of the two qubit chip. The
qubit-qubit and qubit-cavity couplings are mediated by the Fluxonium antennas.
The inset SEM images show the junction chain. Notice how the surface enclosed by
chain in the purple frame is the same as the one in the green frame but with less
junctions.

6.2 characterising the two-fluxonium system

6.2.1 Experimental setup

The device under test in this chapter is shown in Fig. 6.1. The silicon chip carrying
the two patterned Fluxoniums (panel c) is placed inside a copper cavity with two ports
(panel b.), one of which (the output port) is much more strongly coupled to the cavity
than the other (the input port). The Fluxonium loops, visible in the SEM images of
Fig. 6.1, are designed to have the same surface area so that their flux periodicity is the
same, despite the number of junctions in each Fluxonium being different. Details about
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the fabrication of the devices can be found in [79].

In the experiment, the device is placed inside a cryoperm at the base plate of the
Bluefors dilution refrigerator. The DC cabling is thermalised as described in Chapter
5. For the RF pulses, a schematic of the measurement setup is given in Fig. 6.2. Qubit
pulses are either generated directly by a Zurich Instruments HDAWG (ω < 2π ×
600 MHz) or first upconverted by using a Polyphase Microwave single sideband mixer
(SSB) and a local oscillator (LO) signal generated by a Rhode & Schwarz SGS100A RF
source (ω ≥ 2π × 600 MHz). Signals at the cavity frequency are generated similarily
using an Anapico APSIN12G RF source as the LO. The cavity output signal is first
amplified by a Josephson Traveling Wave Parametric Amplifier (TWPA) [178] provided
by Lincoln Labs followed by a High Electron Mobility Transistor (HEMT) amplifier
from Caltech [196] and finally by a room temperature amplifier. The signal is then
downconverted using another Polyphase Microwave single sideband mixer (SSB) with
the LO and RF ports reversed to act as an image reject mixer. Finally the now low
frequency (∼ MHz) signal is filtered and then amplified one last time by a Femto
HVA-500M-20-B amplifier, before being sent to an AlazarTech 9351 acquisition card.
Numerical demodulation yields the I and Q quadratures of the readout signal. A full
schematic of the room temperature and cryogenic cabling is shown in Fig. 6.2.

6.2.2 Basic device characterisation

We start by determining the resonator linewidth, by measuring a cavity ring down close
to the resonant frequency. Determining the bare cavity frequency ωR will come later.
In Fig. 6.3a. we show a measurement trace of the Alazar acquisition board as a func-
tion of the time after which the card is armed for acquisition when a square pulse is
transmitted through the cavity. The oscillations correspond to the 50 MHz modulation
of the AWG IF. The acquired voltage amplitude decays at a rate κ/2 where κ is the
cavity linewidth. From this we extract κ = 2π × 10.2 MHz.

The next step is to determine the parameters of both Fluxonium qubits on the
silicon chip. To do this we measure the qubit spectrum using a two tone spectroscopy
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Figure 6.2: Schematic of the measurement setup. In green we mark the part of the measurement
setup necessary if ω ≥ 2π×600 MHz. If ω < 2π×600 MHz we drive the qubit directly
using the ouput of the AWG (dashed green). We use the components in the pink
box exclusively for the initial qubit spectroscopy and device characterisation. None
of these components are necessary for quantum jump trajectories shown later in
the chapter, for which an equivalent bypass could have been used (dashed pink).
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Figure 6.3: Basic characterisation of the device. a. Cavity ring-down mesurement. At time 0 ns

a square pulse is sent to the cavity and its transmission recorded by the Alazar
acquisition card. The transmitted amplitude falls to 0 at a rate κ/2 once the read-
out drive is terminated. b. Level structure of the computational subspace and the
four qubit states under study in the experiment. c. Spectroscopy of the qubit as
a function of the external flux of qubit L. Colored lines show the predicted transi-
tion frequencies obtained by the diagonalisation of the Hamiltonian of (6.1). The
non-labeled resonances correspond either to unidentified qubit transitions or to
spurious sidebands of the measurement setup. The |2, 1〉 − |1, 0〉 transition’s mini-
mum is slightly shifted with respect to the other transitions because of a slight flux
imbalance between the two Fluxonium loops of around ∼ 3

10000Φ0.

(as defined in Chapter 3) shown in Fig. 6.3c. We model the two coupled qubits and the
cavity by the following Hamiltonian

Ĥ = ~ωRâ†â︸ ︷︷ ︸
cavity

+ 4EC n̂
2
L +

1

2
E

(L)
L Φ̂2

L − E(L)
J cos

(
Φ̂L − 2π

Φ
(L)
ext

Φ0

)

︸ ︷︷ ︸
lower energy qubit

+ 4EC n̂
2
H +

1

2
E

(H)
L Φ̂2

H − E(H)
J cos

(
Φ̂H − 2π

Φ
(H)
ext
Φ0

)

︸ ︷︷ ︸
higher energy qubit

−~gcn̂L(â† + â)− ~gcn̂H(â† + â)︸ ︷︷ ︸
cavity-qubit coupling

−~gHLn̂Ln̂H︸ ︷︷ ︸
qubit-qubit coupling

.

(6.1)

Here â† is the cavity annihilation operator and ωR the cavity frequency. The operators
Φ̂X and n̂X are respectively the phase twist across the inductance and the charge on
the capacitor of qubits L (low) and H (high) labeled in reference to the frequency of
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their |0〉− |1〉 transition at Φ
(X)
ext = 0.5Φ0. Finally, EC , E

(X)
L and E(X)

J are the charging
energy, inductive energy and Josephson energy of each qubit, and gc and gHL are the
qubit-cavity and qubit-qubit couplings respectively. Because the antenna geometry of
both qubits is identical, we consider EC and gc to be the same for both qubits. We
discuss different diagonalisation methods for Ĥ in Chapter 3 and Appendix B.

To identify the transitions of Fig. 6.3c. we do not need to include ωR and gc as fit
parameters, as they only change the frequencies marginally. By fitting the calculated
transition frequencies of the diagonalised Hamiltonian to the transitions visible in 6.3c.
we obtain a charging energy EC = 2π~× 1.00 GHz for both qubits, Josephson energies
E

(H)
J /h = 5.41 GHz and E

(L)
J /h = 5.95 GHz, inductive energies E(H)

L /h = 1.09 GHz

and E
(L)
L /h = 0.86 GHz, and the magnitude of the capacitive coupling between the

qubits gHL/h = 252 MHz. From the values of E(H,L)
L we can deduce that the qubit

framed in purple in Fig. 6.1 is qubit H (smaller number of junctions so smaller in-
ductance), while the one in green is qubit L. Close to the half flux quantum (we as-
sociate values of Φext with the flux threading the loop of qubit L), the energy levels
of the coupled fluxonium system ressemble a diamond structure shown in Fig. 6.3b.
where the |0〉 − |1〉 transition frequency of each qubit (ωL01 = 2π × 157.1 MHz and
ωH01 = 2π × 327.6 MHz) depends only weakly on the state of the second. The splitting
between the two transition frequencies δX01 is of the order of 2π× 100 kHz. In Fig. 6.3b.
and c. we note |i, j〉 the eigenstate1 with i excitations in qubit H and j excitations in
qubit L.

6.3 exposing the experimental strategy

Now we have determined some of the basic parameters of the Hamiltonian required to
describe the system we are studying, we would like to turn to the effect of the readout
on this system. To motivate this we show the histograms of the recorded quadratures of
a square readout pulse as a function of the drive amplitude aRT in Fig. 6.4. As we saw
previously, as the amplitude of the cavity pulse increases, the populations of the qubit
states more and more affected. This is particularly noticable in the lowest gaussian
visible in the histograms, which only begins to populate as aRT increases. Furthermore,
we see that compared to Fig. 5.16, there is some structure to the distribution at the
top right of the histograms, suggesting that there are some transitions between the
identifiable four state computational subspace and higher excited states. Removing the
contribution of these levels to properly compute the transition rates within the com-
putational subspace will be critical. Moreover, our stated objective was to calculate
the transition rates as a function of the average photon number in the cavity n̄ and
the external flux Φext. To do this we will have to related the amplitude aRT to the
number of photons n̄ in the cavity. This is non-trivial as the number of photons inside
the cavity depends on its frequency with respect to the readout drive, which in turn

1 Note that |i, j〉 is not a separable state in the basis of isolated qubits because the two qubits are
coupled. Yet, because the coupling is weak, |i, j〉 is very close to |i〉 ⊗ |j〉
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6.3 exposing the experimental strategy

Figure 6.4: Histograms of the I and Q measurement results as a function of the amplitude of
the cavity drive aRT at Φext = 0.52Φ0. Here the signal coming from the cavity was
integrated for 2600 ns, and the axes are calibrated to the number of photons in the
cavity.

depends on the state of the qubit. We would be able to simulate the cavity frequency,
for each qubit state if we had access to all the parameters of the full Hamiltonian in
(6.1). To determine gc and ωR we need to know the dispersive shift imposed by each
qubit state on the cavity. This is encoded in the position of each pointer-state in the
IQ-plane visible in Fig. 6.4 for example. Because the positions of the distributions in
the IQ-plane will change with different values of Φext (because the dispersive shifts
change) we developped a method for detecting an arbitrary number pointer-states in
the IQ-plane readout histograms. With the combination of these techniques we will be
able to associate a photon number n̄ and a qubit state |i, j〉 with each readout trace of
amplitude aRT at flux Φext.

Once this technical part has been completed successfully, we can turn to the mea-
surement of Γµν(n̄,Φext). To do this, we track the number of jumps between qubit
states during the cavity drive. The transmitted field is demodulated in steps, each step
being associated with a particular qubit state which is estimated using the information
contained in the entire measurement record (past and future). This is based on Baysian
estimation and the past quantum state formalism [42]. Counting the jumps between
states within a set time yields Γµν(n̄,Φext) directly.

We start by determining gc and ωR.
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6.4 determining the parameters gc and ωR

6.4.1 Photon-Number Dependence of Qubit-Cavity Steady-State

6.4.1.1 Deriving a self-consistent relation for n̄

We start by clearly defining what is meant by the average photon number n̄. As men-
tioned previously, this task is delicate when the cavity frequency not only depends on
the qubit state (cross-Kerr) but also on its own occupation (self-Kerr) to many orders.
We define the frequencies ωR(|n〉 , |i, j〉 ,Φext) as the frequency of the cavity when the
coupled qubits’ state is |i, j〉, the flux is set to Φext and n ∈ N is the number of exci-
tations (photons) inside the cavity. In this case, the Hamiltonian of the cavity, having
adiabatically eliminated the qubit degrees of freedom is

Ĥcav(|i, j〉 ,Φext) = ~
∑

k

k∑

l=0

ωR(|l〉 , |i, j〉 ,Φext) |k〉 〈k| . (6.2)

This means that the energy difference between two successive cavity Fock states is

Ek+1 − Ek = ~ωR(|k〉 , |i, j〉 ,Φext) . (6.3)

When a classical field drives the cavity, the steady field inside is a coherent state
∣∣√n̄

〉

with an average of n̄ photons. Taking the definition of 6.3 to the continuous limit

ωR(n̄, |i, j〉 ,Φext) =
1

~
∂

∂n̄

〈√
n̄
∣∣∣ Ĥcav(|i, j〉 ,Φext)

∣∣∣
√
n̄
〉
. (6.4)

Equivalently, we can consider the total system Hamiltonian without the adiabatic elim-
ination

ωR(n̄, |i, j〉 ,Φext) =
1

~
∂

∂n̄

〈√
n̄, i, j

∣∣∣ Ĥ(Φext)
∣∣∣
√
n̄, i, j

〉
. (6.5)

If |k, i, j〉 is an eigenstate of Ĥ indexed by the product state |k〉 ⊗ |i, j〉 with which it
has the greatest overlap (k is the cavity excitation number and |k, i, j〉 ≈ |k〉 ⊗ |i, j〉
well below ncrit the critical photon number of the dispersive regime [197, 91]), then

∣∣∣
√
n̄, i, j

〉
= e−|n̄|/2

∞∑

k=0

n̄k/2√
k!
|k, i, j〉 . (6.6)

128
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These definitions equip us for the following calculation where to simplify notation we
have omitted Φext and defined Ek,|i,j〉 = 〈k| ⊗ 〈i, j| Ĥ |k〉 ⊗ |i, j〉

∞∑

k=0

e−n̄
n̄k

k!
ωR(|k〉 , |i, j〉) =

1

~

∞∑

k=0

e−n̄
n̄k

k!
(Ek+1,|i,j〉 − Ek,|i,j〉) (6.7)

=
1

~

[ ∞∑

k=1

e−n̄
n̄k−1

(k − 1)!
Ek,|i,j〉 −

∞∑

k=0

e−n̄
n̄k

k!
Ek,|i,j〉

]
(6.8)

=
1

~
∂

∂n̄

∞∑

k=0

e−n̄
n̄k

k!
Ek,|i,j〉 (6.9)

≈ 1

~
∂

∂n̄

∞∑

k=0

e−n̄
n̄k

k!
〈k, i, j| Ĥ |k, i, j〉 (6.10)

=
1

~
∂

∂n̄

∞∑

k,l=0

e−
n̄
2
n̄
k
2√
k!
〈k, i, j| Ĥ |l, i, j〉 e− n̄2 n̄

l
2√
l!

(6.11)

=
1

~
∂

∂n̄

〈√
n̄, i, j

∣∣∣ Ĥ
∣∣∣
√
n̄, i, j

〉
. (6.12)

From (6.10) to (6.11) we used the orthogonality of the energy eigenstates. Defining
Pn̄(k) = e−n̄ n̄

k

k! and using (6.5) we obtain the identity

∞∑

k=0

Pn̄(k)× ωR(|k〉 , |i, j〉 ,Φext) = ωR(n̄, |i, j〉 ,Φext) . (6.13)

This is useful because it relates a quantity which can be simulated

ωR(|k〉 , |i, j〉 ,Φext) =

(
〈k + 1, i, j| Ĥ |k + 1, i, j〉 − 〈k, i, j| Ĥ |k, i, j〉

)

~
, (6.14)

to a quantity we measure experimentally ωR(n̄, |i, j〉 ,Φext).

For the time being though, n̄ remains ill defined for given driving conditions because
it also depends on ωR(n̄, |i, j〉 ,Φext) as the number of photons inside the cavity depends
on the detuning between drive and cavity frequency. To remove this circularity we define
n̄ self-consistently as the fixed point of the equation [198]

n̄|i,j〉,Φext(aRT) =
|µaRT|2

κ2

4 + (ωRO − ωR(n̄, |i, j〉 ,Φext))2
, (6.15)

where κ is the cavity linewidth, aRT is the amplitude of the cavity drive on the room
temperature setup in V and µ is a proportionality coeficient calibrated by a populated
Ramsey experiment (see next section), such that µaRT is the amplitude of the coherent
field entering the cavity at the dilution refrigerator base plate. This equation can be
derived by considering the steady-state of the Langevin equation defining the field
inside the cavity in the frame rotating at the cavity frequency

˙̂a = −i(ωRO − ωR(n̄, |i, j〉 ,Φext))â−
κ

2
â+
√
κc1âin . (6.16)
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Here âin is the input field operator at the frequency ωRO, and κc1 is the input port cou-
pling. With this we can see the equivalence between the room temperature amplitudes
and the microscopic description of the cavity coupled to the transmission line

κc1

〈
â†inâin

〉
= |µaRT|2 . (6.17)

Note that other than gc and ωR which come into the calculation of ωR(n̄, |i, j〉 ,Φext),
and µ which we are about to calibrate, there are no other free parameters in (6.15).
This means that n̄ is now a simulatable quantity.

6.4.1.2 Calibrating µ

We can find the value of µ in (6.15) by performing a populated Ramsey experiment to
measure the AC-stark shift and measurement induced dephasing rate at Φext = 0.5Φ0

on qubit L. The pulse sequence in question is shown in Fig. 6.5a. Between the π
2 pulses

necessary for a Ramsey sequence, we add a cavity displacement pulse at frequency ωd
whose objective is to populate the cavity with photons. We design the sequence with
tramsey � 1/κ so that we can neglect the transients during which the cavity is not in
its steady-state. We add a readout pulse at the beginning of the sequence to be able
post-select the experiments on the two qubits being initially in state |0, 0〉. This ensures
that our Xπ

2
pulse only drives the transition between levels |0, 0〉 and |0, 1〉 and not the

transition between |1, 0〉 and |1, 1〉, whose transition frequencies are separated only by
∼ 100 kHz. We can determine the decay rate Γd and oscillation frequency ωAC of the
Ramsey oscillations. They are related to µ, aRT, the detuning of the drive ∆ = ω̄R−ωd
with respect to the average cavity frequency ω̄R = ωR(|0,0〉)+ωR(|0,1〉)

2 and the dispersive
shift χ between the two qubit states. It is predicted that [199, 58]

Γd = χ Im
{
α∗|0,0〉α|0,1〉

}
, ωAC = χRe

{
α∗|0,0〉α|0,1〉

}
, (6.18)

wehre

α|0,0〉 =
µaRT

i(∆− χ
2 ) + κ

2

and α|0,1〉 =
µaRT

i(∆ + χ
2 ) + κ

2

(6.19)

are the steady amplitudes of the cavity for the two qubit states. Note that ω̄R is
unknown and must be determined experimentally. For the amplitudes considered here,
we make the approximation that ω̄R is fixed because the cavity occupation is low
(n̄ << 1 , ncrit). Similarly, while the dispersive shift χ generally depends on the cavity
occupation n and by extension on the cavity drive amplitude

χ(n) = ωR(n+ 1, |0, 0〉)− ωR(n, |0, 0〉)− [ωR(n+ 1, |0, 1〉)− ωR(n, |0, 1〉)] , (6.20)

this is negligeable for the amplitudes in this case as they are far below the single photon
occupancy of the cavity. Here, the dispersive shift χ = 2π × 3.14 MHz is determined
experimentally by using the position of the pointer-states in the IQ-plane2

χ =
κ

2

(
tan
(

arg[Z̄
|0,0〉
out ]

)
− tan

(
arg[Z̄

|0,1〉
out ]

))
. (6.21)

The results of the populated Ramsey experiment are shown in Fig. 6.5b. By adjusting
the model of (6.18) and (6.19) to reproduce the experimental results at low aRT we
obtain µ = 17.4

√
photons.MHz V−1 and ω̄R = 2π × 7.5742 GHz.

2 See Chapter 2 for a definition of Z̄out.
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a.

b.

time

RO RO2
πX

2
πX

Cavity Displacement

RTa ramseyt

waitt waitt waitt waitt

dω

Figure 6.5: a. Measurement sequence of the populated Ramsey experiment. An initial readout
pulse is used to herald the initial state |0, 0〉. This is followed by a π

2 pulse on the
|0, 0〉 − |0, 1〉 transition after waiting twait = 100 ns. The cavity is then displaced
before a second π

2 pulse completes the Ramsey sequence. A final readout pulse
allows the single-shot determination of the qubit state. aRT the amplitude of the
cavity drive, ωd the frequency of the cavity diplacement pulse and tramsey are all
varied in this experiment. b. Dephasing rate Γd and frequency stark-shift ωAC

of the |0, 0〉 − |0, 1〉 transition as a function of ∆ = ωR − ωd. These quantities
are obtained from the Ramsey oscillations (not shown) with twait varied. Dashed
lines correspond to the model given by the equations (6.18) and (6.19) with the
parameters µ = 17.4

√
photons.MHz V−1 and ω̄R = 2π × 7.5742 GHz adjusted so

that the model reproduces the experiment results as faithfully as possible for low
aRT .

6.4.2 Pointer state location in complex plane

To determine the correct values for ωR and gc we need to be able to compare the experi-
mental values of the cavity frequency ωR(n̄, |i, j〉 ,Φext) with the numerically calculated∑∞

k=0 Pn̄(k) × ωR(|k〉 , |i, j〉 ,Φext). We can obtain the experimental cavity frequencies
by remembering that the position of the pointer states in the IQ plane is determined by
the detuning of the qubit state dependent cavity frequency with respect to the cavity
probe frequency. Specifically, the transmission of the cavity when the qubit state is
stationary is

S21(ωRO, n̄, |i, j〉 ,Φext) =
2
√
κc1κc2

κ− 2i(ωRO − ωR(n̄, |i, j〉 ,Φext))
, (6.22)
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where κc2 is the cavity output coupling. Then
κ

2
tan arg [S21(ωRO, n̄, |i, j〉 ,Φext)] = ωRO − ωR(n̄, |i, j〉 ,Φext) , (6.23)

Determining the correct position of the pointer states in the IQ plane is thus essential to
be able to deduce the qubit state dependent cavity frequency at each flux. To determine
these positions with no prior knowledge as to how many states might be resolvable at
each flux and how they may be positioned along the cavity response circle we developed
an novel procedure which uses the information contained in rare events of IQ-plane
histograms. This method comprises a series of steps:

1. Define the variance of the distribution of a pointer state in the IQ-plane;

2. Adjust the readout time so that the readout histograms have constant SNR for
any set of parameters aRT and Φext;

3. Rescale the I and Q coordinates into arbitrary units valid for any measurement
amplitude;

4. Analyse the curvature of a contour around the base of the histogram and extract
the segments where the curvature is greater than we expect (signature of a pointer
state);

5. Fit these contour segments with circles whose centres all lie on the same ‘reso-
nance circle’ passing through the origin of the complex-plane corresponding to
the response of a cavity probed in transmission.

6.4.2.1 On the variance of the pointer-state distributions in the complex plane

A prerequisite for detecting the position of the pointer-states in the IQ-plane is know-
ing the variance of the distribution of their (I,Q) coordinates. For a given measurement
amplification chain, the variance depends only on the integration time after demodula-
tion. We calibrate the variance by averaging a single read-out of duration 1300 ns and
amplitude aRT = 1 V at half flux (Φext = 0.5Φ0). We choose this flux point because
we can easily distinguish the qubit pointer states (as is evident from the centre his-
togram of Fig. 6.7). For a different integration time τ in ns, the variance σ2

|pointer〉(τ) of
a pointer-state in the IQ-plane is given by

σ2
|pointer〉(τ) = σ2

|pointer〉(1300 ns) · 1300 ns

τ
(6.24)

as a function of the variance σ|pointer〉(1300 ns) of the calibration measurement. In the
above we have made the assumption that the qubit does not change during the measure-
ment, or equivalently that the integration time is much shorter than the characteristic
time of a qubit transition Γ−1: τ � Γ−1. The SNR, defined as the ratio of the distance
between two pointer states in the IQ-plane to σ2

|pointer〉(τ), depends also on the read-
out field amplitude. The pointer-states separate with the amplitude of the transmitted
readout pulse and their variance decreases with the measurement integration time so
that

SNR ∝ aRT
√
τ . (6.25)
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6.4.2.2 Histogram resampling & rescaling

To obtain a constant SNR for our analysis, we ajusted the length of the readout inte-
gration time depending on the amplitude aRT of the input signal according to (6.25).
Following this, we create histograms in the IQ-plane with a constant number of bins
along each axis. This makes the dimensions of the histograms describing the readout
results independent of the amplitude aRT. We have thus defined a measurement pa-
rameter independent coordinate set and SNR on which we can run our state detection
algorithm (see the difference between the histograms of Fig. 6.6 a and b).

6.4.2.3 Extracting information from the contour

The basis for the state detection is a histogram contour at a specific level. For density
histograms, the height h at which the contour is drawn is given by

h =
1

δ2Nexp
, (6.26)

where δ is the bin width in mV along each axis and Nexp is the number of repetitions
of the experiment. An example of a typical histogram and the corresponding contour is
shown in Fig. 6.6b. If there are multiple disconnected contours at this level, we discard
all but the longest one. We can now consider the contour as a path in two dimensional
space. To remove measurement noise, we apply a gaussian filter on each of the x and y
coordinates of the contour. The width of the filter is determined empirically. At each
point zj along the contour we associate an angle βj = arg[zj+1 − zj ] which defines the
direction of change of the contour. For any closed contour which does not cross itself,∑

j βj = 2π, corresponding to a full rotation in the complex plane. We calculate and
filter the gradient of these angles to obtain a measure of the local curvature C along
the contour C =

dβj
dj . The curvature of our example contour is shown in Fig. 6.6c. As

a global rule, points where C is large and negative, corresponding to turning hard to
the right when going around the contour clockwise, signal a possible pointer state. If
C is positive, this signals zones between pointer states. We can classify points along
the contour pertaining or not to pointer states by thresholding C above a certain level.
This threshold is determined relative to the maximum curvature of the contour of each
histogram specifically. The proportionality coeficient between threshold and peak cur-
vature is fixed for all histograms and is determined empirically. Points whose curvature
is below the threshold are arranged into groups. Each group signals a priori the position
of a pointer state. These different groups for the example contour are shown in colour
in Fig. 6.6c.

6.4.2.4 Fitting circles on the blocks

Because the contour goes around the exterior of the histogram and pointer states man-
ifest themselves by a gaussian distribution of possible IQ values, the contour groups
are expected to be close to arcs of circles surrounding the base of each pointer state
distribution. We call cν the circle from which the arc pertaining to pointer state |ν〉
is taken. In the next step we fit all the state circle arcs detected in the previous step
simultaneously with circles cν , under the condition that their centres lie on another
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Figure 6.6: Zone detection algorithm on a typical histogram, measured here at Φext = 0.5Φ0. a.
Histogram of the quadratures Īout and Q̄out forNexp = 20×106 iterations of a 260 ns

readout. b. Identical histogram when the integration time is increased by a factor 8
(τresampled = 2080 ns) with the rare event contour drawn in in blue. Coloured points
along the contour correspond to points where the curvature is below the threshold.
c. Curvature C along the contour. The curvature threshhold under which points
are to be considered a signature of a pointer state is shown by the horizontal black
line. Point groups below the threshold are highlighted in colour and correspond to
the points in colour in panel b. These point groups are reproduced in colour on the
histogram to the left. d. Curvature C along the contour but with the coloured points
reduced to those selected by the iterative filtering process. e. Identical histogram
to b (axes have been rescaled for clarity) with the final fit of state circles cν to
the detected state arcs. In purple we have drawn the cavity resonance circle. f.
Histogram identical to a. but with circles of radius 2σ|pointer〉(260 ns) centred at the
positions where pointer states were detected.

‘resonance circle’ which passes through the origin of the IQ-plane. The resonance circle
corresponds to the possible values of I and Q if the transmitted signal is scattered
exactly by the scattering formula (6.22). This limits the number of fit parameters to:
x0 and y0 the centre of the resonance circle (whose radius is

√
x2

0 + y2
0); γν the angle

around the resonance circle at which to position the centre of the state circle cν and rν
the unphysical radius of cν . Knowledge of the angle γν is the critical parameter which
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makes the link between experiment and theory given by (6.23).

At this point, the algorithm needs a lot of fine tuning, principally because the fit
parameter space is large. We use a variety of techniques to force convergence to a re-
sult which makes sense, by forcing the resonance circle to lie somewhere in the centre
of our histogram coordinates and by ensuring that state circles are not too large or
too small. In particular, once a first estimate for the γν is obtained, we combine curve
groups together whose centres are closer than σ|pointer〉(τ). This is equivalent to saying
that two gaussians are indiscernable if the distance between their means is smaller than
their standard deviation. Furthermore, to determine more accurate groups of points, we
discard those which lie inside the resonance circle. Indeed, inside the resonance circle
we may see the result of state transitions during the readout integration time, so we
cannot guarantee in that case that curvature outliers correspond truely to a pointer
state. Finally, the multi-circle fit is iterated until groups are no longer modified. In
Fig. 6.6e we show the result of the circle fit and in Fig. 6.6d the groups of points along
the contour below the threshold after those points which do not fulfill the criteria above
have been removed.

With the positions of the states along the resonance circle now well defined, we can
define the theoretic gaussian distributions P (z| |ν〉) of width σ|pointer〉(τ) corresponding
to the probability of obtaining a measurement results z = I + iQ with the knowledge
that the qubit state was |ν〉.

P (z| |ν〉) =
1√

2πσ|pointer〉(τ)
exp

[ −(z − zν)2

2σ|pointer〉(τ)2

]
, (6.27)

where zν = x0 + iy0 +
√
x2

0 + y2
0e
iγν . The contours at the 2σ level of these distributions

are given in Fig. 6.6f.

6.4.3 Matching experimental and simulated cavity frequencies

We finally have all the tools at hand to determine the qubit-cavity coupling gc and the
bare cavity frequency ωR. We start by letting the state location algorithm just described
run on IQ-plane histograms over the flux range of interest at fixed aRT = 1.125 V.
This gives us the positions of the qubit pointer-states in the IQ-plane which, up to
some offset determined by the bare cavity frequency ωR, yields the frequency of the
cavity in each qubit state ωR(n̄, |i, j〉 ,Φext) for the average photon occupation n̄. We
self consistently calculate

∑∞
k=0 Pn̄(k) × ωR(|k〉 , |i, j〉 ,Φext) and n̄ numerically using

the techniques described in Sec. 6.4.1 and Appendix B. By adjusting the value of ωR
and gc in the numerical model we can match the experimentally determined cavity
frequencies with the calculated ones. The overlap between the numerical model and
the frequencies taken from the experiment can be seen in Fig. 6.7. In other results
not featured here, the correspondence between theory and experiment is excellent for
a wide range of fluxes and amplitudes. We conclude that ωR = 2π × 7.567 GHz and
gc = 2π/times111 MHz. A full table of all Hamiltonian parameters is given in Tab. 6.1.
Note that with a Hamiltonian model with this level of precision we can identify which
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Figure 6.7: (Top) Qubit state dependent cavity frequency as a function of flux at aRT = 1.125 V.
Empty circles correspond to experimentally measured cavity frequencies deduced
from equation (6.23). Colored squares correspond to the numerically calculated val-
ues of the cavity frequency using equations (6.13) and (6.15). At certain points the
numerics fails for state |0, 1〉 explaining the absence of numerical values. (Bottom)
Histograms of readout results in the IQ-plane (integration time 1560 ns) at the flux
points marked by dashed lines. The axes have been calibrated to the number of
photons in the cavity. The purple circles correspond to the cavity response. Col-
ored dots correspond to the positions of the pointer-state circle centres along the
resonance circle (see Sec. 6.4.2 for details). Grey points in all plots correspond to
states detected by the state detection algorithm, but which we are unable to assign
a qubit state to.

Parameter Value
ωR 2π × 7.567 GHz

κ 2π × 10.2 MHz

EC 2π~× 1.00 GHz

E
(H)
J 2π~× 5.41 GHz

E
(H)
L 2π~× 1.09 GHz

E
(L)
J 2π~× 5.95 GHz

E
(L)
L 2π~× 0.86 GHz

gHL 2π × 252 MHz

gcav 2π × 111 MHz

Table 6.1: Table of all system parameters.
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a. b.

Figure 6.8: a. Qubit state dependent mean photon number inside the cavity at Φext = −0.52Φ0.
Dashed lines correspond to the amplitudes at which the histograms of Fig. 6.4 are
taken. (Inset) Square root of the average photon number when the qubit is in |0, 0〉
as a function of aRT. Gray circles correspond to the calculated n̄ and the blue line
to a quadratic model n̄ = Ca2

RT where C is an adjustable parameter. The red line
corresponds to a model described by n̄ =

Ca2
RT

1+(B+Da2
RT)2 where C, B and D are

adjustable parameters. This is the functional form of (6.15) when ωR(n̄, |i, j〉 ,Φext)

is a quadratic function of aRT. b. Populations of qubit states as a function of cavity
drive amplitude at Φext = −0.52Φ0. The colored dots correspond to pointer states
we can correctly label in the IQ-plane and grey markers are pointer states which we
identify but aren’t able to assign a qubit state to. Notice that these unknown states
are always populated, regardless of drive amplitude. The sum of the occupation
probabilities of the coloured dots is given in black. Grey dashed lines correspond
to the amplitudes of the histograms in Fig. 6.4.

pointer state corresponds to which qubit state with a single readout experiment and
without the necessity for qubit spectroscopy or π-pulses as is traditionally the case.

6.5 qubit state populations as a function of photon number

Now we have resolved the theoretical model and the definition of n̄ as a function of
aRT, we can start to be more quantitative about the effect of the readout drive on
the qubit. In Fig. 6.8a. we show the ‘Rosetta stone’ of the experiment, which trans-
lates the controlled fixed amplitude aRT of the drive at ωRO = 2π × 7.572 GHz into
the average photon number of the coherent state inside the cavity for each two qubit
state. Usually, if the cavity is linear, the number of photons inside the cavity should in-
crease quadratically with the drive amplitude. Here there is a slight deviation from this
quadratic behaviour as the non-linearity of the cavity induced by the qubits becomes
non-negligeable at higher photon numbers. The dependence of the photon number on
the amplitude is accurately captured by a linear dependence of the cavity frequency on
photon number, which progressively detunes the cavity from the drive frequency (see
the inset of Fig. 6.8a.).
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In Fig. 6.8b. we show how the population p|i,j〉 of state |i, j〉 evolves with the cavity
drive amplitude aRT. The population of each state |i, j〉 is determined as the fraction
of points in each experiment whose (I,Q) coordinate z is such that the probability
P (z| |i, j〉) is larger than any other probability P (z| |k, l〉), where (k, l) 6= (i, j). For
Nexp readout traces

p|i,j〉 =
1

Nexp

Nexp∑

r=1

δ|i,j〉,argmax|k,l〉 P (zr||k,l〉) , (6.28)

where δ|i,j〉,|k,l〉 is unity only if |i, j〉 is the same state as |k, l〉 and zr is the coordi-
nate of the readout r in the IQ-plane. Surprisingly, the states with higher energy are
consistently more heavily populated that those with lower energy, suggesting that the
additional cavity drive brings the qubit out of thermal equilibrium with its environment.
Moreover, the dependence of the populations on the drive amplitude is not monotonous
even at such low photon number, something that was already observed in [34]. To un-
derstand the dynamics of the populations, we turn to the study of the transition rates
between each state.

6.6 extracting the transition rates

6.6.1 Measurement sequence

The measurement sequence for extracting the transition rates (Fig. 6.9a.) consists of
a single cavity pulse whose transmitted signal is demodulated in successive time bins
yielding a trajectory of quantum jumps. During the first part of the pulse, for a time
Twait, the transmitted signal is discarded (the reason for which will become clear later)
after which it is numerically demodulated during a time Ttraj and integrated in bins
of length tbin. This provides a measurement trace {zk|k ∈ {1, 2, . . . , N}} of positions
in the IQ-plane corresponding to times tk (Fig. 6.9b.) for each cavity pulse. To gather
information about different photon numbers and different fluxes, the measurement is
repeated Nexp = 50000 times for each value of aRT and Φext. Initially, we associate
to each point of the measurement trace zk a qubit state |i, j〉 which maximises the
probability P (zk| |i, j〉)

|i, j〉 = argmax
|k,l〉

P (zk| |k, l〉) . (6.29)

An example of a quantum jump trajectory given by this assignment is shown in Fig
6.9c. Note that this assignment is made without using the information contained in
the entire measurement record outside of the single time bin tk from which zk is taken.
Knowing the qubit state at each time bin allows us obtain the transition rates between
the qubit states.
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Figure 6.9: a. Pulse sequence of the trajectory measurement. The cavity is driven for a fixed
waiting time Twait = 50µs before the transmitted signal is acquired for Ttraj =

104µs. The acquisition is broken down into bins of length tk+1−tk = tbin = 1040 ns

during which the signal is integrated leading to a trajectory {z1, z2, . . . , zN} of po-
sitions in the IQ-plane. b. Typical trajectory in the complex plane super imposed
on the readout histogram obtained for a 1040 ns integration time and aRT = 0.9 V.
Circles correspond to 2σ|pointer〉(tbin) excursions around the detected pointer state
centres in a histogram with longer integration time. The |Green〉 and |Brown〉 cir-
cles correspond to pointer-states whose qubit state equivalence was not identified.
Note how some points find themselves within two circles at the same time. c. As-
signed qubit states as a function of time for the trajectory shown in panel b. The
probabilities P (zk| |i, j〉)/

∑
|k,l〉 P (zk| |k, l〉) are shown in by the blue colormap and

the most likely trajectory defined by the qubit states assigned at each time is shown
in green.

6.6.2 Defining the transition rates

The transition rates between the different qubit states are defined as the coefficients of
the detailed balance equations describing the time evolution of the state populations
p|ν〉

dp|ν〉(t)

dt
=
∑

µ

Γνµp|µ〉(t) . (6.30)

From now on we also use Greek letter indices to denote the multi-index of the state
of the two qubits when appropriate notationaly: |ν〉 ⇔ |i, j〉. To keep the equation
compact, we have used a convention where Γνν = −∑µ6=ν Γµν . This is also useful when
doing numerics on the matrix (Γ)νµ = Γνµ. Note also that −Γνν = Γtot

ν is equal to
the total rate at which the system leaves state |ν〉. To give some intuition of how the

139



transition rates in fluxonium

transition rates relate to the jump probabilities P kν→µ defined above, the probability of
starting in state |ν〉 and not leaving for a time t is given by

Pstay,ν(t) = e−Γtot
ν t . (6.31)

Similarly, the probability that the first jump away from |ν〉 happened before t and that
the state became |µ〉 is

Pν→µ(t) =
Γµν
Γtot
ν

(1− e−Γtot
ν t) . (6.32)

These last two expressions give us a tool for estimating the rates Γνµ from the quantum
jump trajectories. If tbin � 1/Γtot

ν , then Taylor expanding the exponential in (6.32)
yields

Pν→µ(tbin) ≈ Γµνtbin . (6.33)

We can calculate the probability P kν→µ of the qubit state jumping from |ν〉 to |µ〉
between times tk and tk+1 by counting the number of jumps Nk

ν→µ from state |ν〉
to |µ〉 and dividing by the total number of jumps leaving state |ν〉 at tk,

∑
µN

k
ν→µ.

Convieniently, in our experiment, because the cavity drive parameters do not change
during our measurement, P kν→µ = Pν→µ is independent of the time step. Note that this
is true whether or not we are in the steady-state of Eq. (6.30), which is not the case
for the Nk

ν→µ which explicitly depend on time. Obviously
∑

µ

Pν→µ = 1 . (6.34)

The transition rates and jump probabilities are thus related in the following way

∀ν 6= µ , Γνµtbin = Pµ→ν ; (6.35)

∀ν , Γννtbin = −(1− Pν→ν) . (6.36)

If we assume that the matrix Γ possesses only a single eigenvalue with value 0 (all
others are negative such that all energy eigenstates of the Hamiltonian have non-zero
transition rates between each other), then the equilibrium populations of the qubit in
the steady state are determined by the eigenvalue equation

Γ~pth = 0 . (6.37)

Equivalently, regardless of the initial state, at infinite time the qubit’s populations
should be in the steady-state. This mean Finally, in the steady state, the populations
of each qubit state are related to the matrix Γ by

lim
t→∞

eΓt~pinit = ~pth . (6.38)

6.6.3 Forward-Backward state estimation

In the previous section we gave a method for estimating the transition rates using
the quantum jump trajectory. This relied on the assignment of each zk to a qubit
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state, about which we then defined jump probabilities. Unfortunately, as is clear from
Fig. 6.9b. the SNR is too small to assign a qubit state to each zk with a high probability
of being correct. In particular, some points in the IQ-plane could be associated with
two different qubit states with similar probability. One way of correcting for this is to
consider the information contained in the entire measurement record. For this we use
the Past Quantum State (PQS) formalism described in detail in [42] and in Quentin
Ficheux’s thesis [48]. This formalism helps predict the outcome of a generalised mea-
surement of a quantum system at time tmeas based on the quantum trajectory of the
quantum state ρ inferred from weak measurements at times t < tmeas and t > tmeas, as
well as the knowledge of the starting state at t = 0 and the result of a strong measure-
ment at t = tfinal. Some of the main results of this formalism, useful for interpreting the
results of this chapter and the next are given in Appendix D. Because the measurement
of the qubit at each time step is projective, we do not need to deal with the off-diagonal
elements of the density matrix describing the qubit state. In that case, the PQS formal-
ism simplifies to a Forward-Backward Bayesian estimation used for example in [200] to
estimate the number of photons in a microwave resonator of a cavity QED experiment.

For a single quantum jump trajectory, we define PF(|ν〉 , k) as the (forwards) prob-
ability of the qubit being in state |ν〉 in time bin k given all the information on the
trajectory prior to time tk. Equivalently, PB(|ν〉 , k) is the (backwards) probability of
the qubit being in state |ν〉 in time bin k given all the information on the trajectory
after time tk. We can relate successive time steps to each other through the following
equations [201]

PF(|µ〉 , k + 1) =
∑

ν

(eΓtbin)µν ·
P (zk| |ν〉)PF(|ν〉 , k)∑
σ P (zk| |σ〉)PF(|σ〉 , k)

, (6.39)

PB(|µ〉 , k − 1) =
∑

ν

(eΓT tbin)µν ·
P (zk| |ν〉)PB(|ν〉 , k)∑
σ P (zk| |σ〉)PB(|σ〉 , k)

. (6.40)

In the above equations, the second term is the Bayesian update, which corrects the
probability PF,B(|ν〉 , k) of being in state |ν〉 based on the measurement result at time
tk. The denominator is there for normalisation. The first term with the exponential
corresponds to the state evolution between times tk and tk±1 due to the transition
rates captured in the matrix Γ. We take into account both the forward and backward
propagating probabilities in PFB(|ν〉 , k) (forward-backward) defined as

PFB(|ν〉 , k) =
PF(|ν〉 , k)PB(|ν〉 , k)∑
µ PF(|µ〉 , k)PB(|µ〉 , k)

. (6.41)

PFB(|ν〉 , k) consists of our best estimate for the probability of the qubit being in state
|ν〉 at time tk given the information contained in the entire measurement record. Impor-
tantly, the initial probability PF(z0| |ν〉) is initialised with the equilibrium populations
given by (6.38). The backward probabilities are initialised with the maximally entropic
state PB(zN+1| |ν〉) = 1

dimH , where dimH is the dimension of the Hilbert space in which
we are working. Because PFB(|ν〉 , k) is the best estimate we have for the probabilities,
we can assign to each time step the most likely state defined as

|µ〉 = argmax
|ν〉

PFB(|ν〉 , k) , (6.42)
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in equivalence with (6.29). Note that the forward-backward estimation needs to be done
for each of the Nexp measurement traces.

A certain circularity now becomes clear, because we need (6.42) to calculate Γ which
in turn is needed to obtain PFB(|ν〉 , k) and (6.42). We resolve this by iterating the
procedure described above until the entries of the Γ matrix converge.

1. Initialise Γ(0) with the transition rates obtained from the jump rates deduced
from the probabilities P (zk| |ν〉).

2. Use these transition rates Γ(i) to estimate the forward-backward probabilities
P

(i+1)
FB (|ν〉 , k) using (6.39), (6.40) and (6.41).

3. From P
(i+1)
FB (|ν〉 , k) update the transition rate matrix to Γ(i+1).

4. Repeat.

The results of this iterative procedure on the qubit state assignment is shown in
Fig. 6.10a. Thanks to the Bayesian update, which takes into account the information ei-
ther side of time point tk, we are able to significantly reduce the switching between qubit
states in the final iteration of the forward-backward procedure compared to the initial
qubit trajectory. We attribute the jumps we saw before using the forward-backward
probabilities to the measurement noise. This is especially evident for the states |0, 1〉
and |1, 0〉 which are not well resolve in the IQ-plane. The convergence of this algo-
rithm for finding the transition rates is shown in Fig. 6.10b and c. We see that all the
transition rates converge exponentially to stationary values as the number of iterations
increase. This is a good sign for the behaviour of the numerics, because calculating
PFB(|ν〉 , k) and γ is computationally intensive. Five iterations are sufficient to obtain
a relative difference of ∼ 10−2 on the transition rates estimates between the 4th and
5th iterations of the algorithm. We also note that the transition rates are all below the
1/tbin = 1040 ns−1 threshold for the rates resolvable with time bins of 1040 ns.

6.6.4 Flux and Photon-Number Dependent Transition Rates

By applying the foward-backward algorithm on measurement records of different fluxes
and amplitudes, we are able to extract the transition rates Γνµ(n̄,Φext). The results for
the fixed amplitude aRT = 0.275 and fixed flux Φext = −0.52Φ0 are shown in the left
and right panels of Fig. 6.11 respectively. Strikingly, the transition rates are neither con-
stant in flux nor in the mean photon number. In flux the transition rates exhibit order of
magnitude variations when Φext is varied over a 1

100Φ0 range (around Φext = −0.5Φ0) as
well as showing factor of two enhancements within 1

1000Φ0 around Φext = −0.508Φ0 or
−0.517Φ0 for example. In particular, not all of the transition rates are affected equally
e.g. at Φext = −0.508Φ0 where the variations in Γ|0,1〉→|0,0〉,Γ|1,1〉→|0,0〉 and Γ|1,1〉→|1,0〉
are more pronounced than for the other transitions. We also note that the flux depen-
dent transition rates exhibit some symmetry around the point Φext = −0.5Φ0, similarly
to the two qubit spectrum which is also quasi-symmetric.
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Figure 6.10: Results of the forward-backwards algorithm. a. The assigned qubit states as a
function of time for the same trajectory as shown in Fig. 6.9b. but after the forward-
backwards procedure are shown in red. For comparison, the initial trajectory is
shown again in green. The probabilities P (i+1)

FB (|ν〉 , k) are shown in by the blue
colormap. b. Values of the transition rates as a function of the forward-backwards
iteration number s. We only show the off-diagonal elements of the matrix Γ which
is why they are all positive. Each color corresponds to a different rate. c. Relative
convergence of the forward-backward estimation of the transition rates compared
to the last iteration.

Fig. 6.11 constitutes one of the few quantitative measurements of the transition rates
in Fluxonium qubits over a wide range of parameters. Yet, the fact that strong drives
away from the qubit frequency may affect the qubit state is not a new problem. For
more than a decade already a number of experiments have observed changes in the
qubit transition rates as the amplitude of a drive away from the qubit frequency in-
creases, both in Transmons and in Fluxoniums [92, 202, 203, 37, 34, 204]. Interestingly,
experiments do not consistently report an increase or decrease in the qubit excitation
or deexcitation rates as a function of the average photon number in the drive. This is
inline with our own observations, as the transition rates do not evolve monotonically
as a function of the average photon number in Fig. 6.11. As the necessity to use strong
drives for fast gates in quantum algorithms becomes more and more evident, there has
recently been renewed interest in explaining these effects. A number of theoretical ef-
forts, mostly focused on the more prevailent Transmon qubit have attempted to explain
some of the experimental results [197, 205, 193], also reproducing in turn the potential
increase or descrease of the transition rates, depending on the effects considered. A
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〉1,0〉→|1,1|Γ

〉0,1〉→|1,1|Γ

Figure 6.11: Transition rates between levels as a function of flux (left) or as a function of the
mean photon number (right). In the region of flux between the gray dashed lines,
states |1, 0〉 and |0, 1〉 cannot be differentiated using a dispersive measurement
because their dispersive shifts almost exactly coincide. In this region the pointer
state labeled |0, 1〉 should be considered a statistical mixture of the two single
excitation states ρ = (|1, 0〉 〈1, 0|+ |0, 1〉 〈0, 1|)/2. Photon numbers in the right are
given for the state |ν〉 which we are leaving through the transition Γµν . Missing
points are due to issues with the identification of the pointer-states in the IQ-plane
or to poor convergence of the forward-backward analysis.

recent theoretical work [194, 195] was even able to demonstrate some non-monotonous
effects by carefully considering how the cosine non-linearity can mix drive and qubit
operators, naturally leading to effective qubit transitions. Unfortunately, generalising
these theories to the Fluxonium qubit is difficult because it cannot be considered to
be weakly non-linear. Looking at the average photon number dependence of the transi-
tion rates, in particular the clear peak in the transition rate leaving the coupled qubit
ground-state at n̄ ≈ 7 photons, suggests starting with a theory resembling the one
developped in [191] which looks for correspondances between the frequency of virtual
transitions enabled by the drive and the qubit frequency. This is direction of research
is supported by the fact that some features are well defined in flux, resembling coinci-
dences between cavity, drive and qubit levels at specific Φext, which lead to enhanced
transition rates at certain photon numbers. Coincidentally, the values for Γνµ reported
here are also very close to those recently reported in a work by Gusenkova et al., who
also saw a non-monotonous evolution of the transition rates as a function of n̄, albeit
over a much larger range [34]. Given the differences between our device and theirs - dif-
ferent ratios between the terms in the Hamiltonian and the use of granular aluminium
for the fluxonium inductance - it appears possible that the mechanisms driving the
transitions between levels might be common to all types of Fluxonium atoms. In that
case, the fact that they could readout the state of their Fluxonium at very high photon
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numbers could be due to a feature of the qubit spectrum at the flux point at which the
qubit was measured. Regardless of the mechanisms involved, it appears urgent to find
solutions to this readout problem for future experiments with Fluxonium.

6.7 simulating quantum jump trajectories

6.7.1 Taking into account non-poissonian statistics

Implicit in the previous sections was that the distribution of quantum jumps followed
poissonian statistics. We assumed this when Taylor expanding Pν→µ(t) in (6.33) so
that we could simply count the number of jumps at each time step to determine the
transition rates. Yet it is known that energy decays observed in Fluxonium devices
often show the so called double exponential behaviour

〈P (t)〉 = eλ(exp(−t/Tqp)−1)e−t/Tr (6.43)

we derived in Chapter 5 which is usually attributed to quasi-particles [82]. Non-poissonian
distributions leading to double exponential decay was also observed in Fluxonium quan-
tum jumps both in Yale [37] and in Karlsruhe [34].

In Fig. 6.12 we show a typical example of the ensemble average 〈Pstay,ν(t)〉 of the
probability of not leaving state |ν〉 up until time t. Here the average is taken over all the
Nexp = 50000 experiments at flux Φext = −0.508Φ0 and drive amplitude aRT = 1.15 V

for the quantum jump trace before applying the forward-backwards algorithm. At short
times we clearly see a departure from the linear time dependence expected when plot-
ting 〈Pstay,ν(t)〉 on a logarithmic scale. The non-linear dependence on time is reproduced
phenomenologically by a double exponential model adjusted to the experimental results.

This result could pose a real issue for the use of the forward-backward algorithm
described in the previous section. Indeed, in that case we assumed the transition rates
to be constant over all Nexp = 50000 experiments. This cannot be the case if the
phenomenogically double exponential decay of Fig. 6.12 is explained by quasiparticles.
Indeed, in that case (assuming the number of quasiparticles nqp does not change over
the duration of the cavity pulse) for each experimental record i the transition rates
would be different

Γi = Γr + Γqpn
i
qp , (6.44)

where Γr are the (fixed) transition rates, independent of nqp, Γqp are the transition
rates induced by quasiparticles and niqp is the number of quasiparticles for the specific
experiment i. Taking this dependence on nqp into account is possible only if the length of
the cavity pulses are sufficiently long to gather statistics about the transition rates with
nqp constant which, with pulses of 104 µs and transition rates of the order of 10 kHz

to 100 kHz, is not the case here. This problem could also potentially be resolved by
using the parameter estimation techniques described in [206], but it is mathematically
involved and numerically complex to implement. In fact, as we will show in the following,
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a. b.
Figure 6.12: Typical dependence of 〈Pstay,ν(t)〉 on time, shown here for Φext = −0.508Φ0 and

aRT = 1.15 V, before the forward-backward procedure has been applied. The black
dots correspond to the experimentally extracted probabilities and the red lines to
a double exponential model like (6.43) adjusted to reproduce the experimental
results. Note that the model forces a probability of 1 at time 0. Panel b. is a zoom
on the short times of panel a. In this case, tbin = 260 ns.

the double exponential decay can at least in part be explained by the finite SNR of
the readout histograms. To support this and dismiss the presence of quasiparticles, we
simulate quantum jump trajectories numerically.

6.7.2 Simulating quantum jump trajectories

In the following we consider only the four states within the computational subspace.
For each pair Φext and aRT the positions of the pointer states in the IQ-plane is known.
The following steps are used to simulate Nexp noisy trajectories in the IQ-plane. We
assume that the transition rates given in the matrix Γ are known.

1. Initialise the trajectory probabilistically with one of the 4 positions z|ν〉. The
probability of initialising the trajectory with state |ν〉 is given by

[
limt→∞ e

Γt
]
ν0
.

2. For each step k in the trajectory, generate the state of the qubit at time k + 1

following the probabilities pν→µ(T ) = [eΓT ]µν depending on the state of the qubit
in step i. T is the length of the time step of the trajectory we want to simulate.
This is done by drawing a uniformly distributed random number between 0 and
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Figure 6.13: Typical simulated noisy quantum jump trajectory for 4 qubit states. a. The noisy
trajectory is shown in the IQ-plane with blue markers denoting the experimentally
determined centre of each pointer state. The transition rates used to simulate
the trajectory were taken from the results of the forward-backwards algorithm
applied to the measurement records for Φext = −0.508Φ0 and aRT = 0.925 V. b.
Effect of the noise on the qubit state assignment. In red we show the qubit state
generated by the simulation before noise is added to the trace, and in yellow the
state which maximises P (zk| |ν〉) for the simulated measurement record. These
probabilities are calculated according to a gaussian probability distribution with
the same standard deviation σIQ as the added noise. The colormap shows the
probabilities P (zk| |ν〉)/

∑
|µ〉 P (zk| |µ〉) for each state.

1 and comparing it with the jump probabilities for each state. Do this for the N
time steps of the trajectory to simulate.

3. Add noise to the trajectory by generating N normally distributed complex ran-
dom numbers with variance σ2

IQ and adding it to the position of each state. With
this we have reproduced the 2D measurement trace.

4. For each value in the trajectory assign the state with the highest probability of
occurence according to the same probability distribution as the noise. This is
equivalent to (6.29). By doing this we have simulated misinterpreted jumps in
the trajectory.

An example of a trajectory generated in such a manner is given in Fig 6.13a. The added
gaussian noise leads to mistakes in the states infered from the trajectory and the true
qubit states which are known perfectly from the simulation. The differences between
the two are shown in Fig. 6.13b.

6.7.3 Reproducing double exponential decay with gaussian noise

With the above simulation, we can redo the same analysis of Fig. 6.12 for the sim-
ulated trajectories. In Fig. 6.14 we show the probabilities 〈Pstay,ν(t)〉 extracted from
40000 simulated measurement traces. To underline the non-exponential time depen-
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a. b.

Figure 6.14: Simulated dependence of 〈Pstay,ν(t)〉 on time, shown here for Φext = −0.508Φ0

and aRT = 0.925 V. Compared to Fig. 6.9 we have set t1 = 0. a. and b. show the
same information on different scales. Black circles correspond to the probabilities
extracted from the simulation, with a single point with coordinates (0,1) is added
by hand to respect the unit probability condition at time 0 (the point is barely
visible because of the plot boundaries). The solid red line is generated from a
double exponential model like (6.43) (model A), the blue dashed line corresponds
to a functional f(t) = e−t/T with T as an adjustable parameter (model B) and
the green dashed line to f(t) = Ae−t/T with T and A as adjustable parameters
(model C).

dence we compare different models: a double exponential model like (6.43) which must
go through (0, 1) (model A - red); an exponential model which must go through (0, 1)

(model B - blue); an exponential fit which is not contrained on its y-intersect (model C -
green). Imposing a y-intersect of 1 can be interpreted as a physical boundary condition:
at time 0+, the likelihood of still being in the state in which we were in at t = 0− must
be 1. Only the double exponential model is able to reproduce the simulated results over
the full range of values and take into account the boundary condition. By observing the
quality of the overlap between model C and the simulated probabilities at long times,
we deduce that beyond the first few time bins, 〈Pstay,ν(t)〉 follows an exponential law.
This result suggests that non-exponential decay seen in Fig. 6.12 could at least be in
part due to the noise in the measurement, and invites us to be cautious when claiming
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the role of quasiparticles on transition rates when dealing with quantum jump statistics.

To check how far our simulations are able to reproduce quantitatively the double
exponential decay rates observed in the experiment, we first generated simulated quan-
tum jump trajectories using the corrected transition rates extracted from the forward-
backwards algorithm for measurements taken at Φext = −0.508Φ0 (see illustration of
Fig. 6.15a.). Then, we compare the parameters of a double exponential model adjusted
to 〈Pstay,ν(t)〉 taken from the raw, forward-backwards and simulated quantum jump
trajectories for varying cavity drive amplitudes (Fig. 6.15). Our first observation is
that the value of the parameters Tr, Tqp and λ tend to converge in most cases for large
aRT. This is no coincidence, because as the drive amplitude increases, so does the SNR
of our measurement (see (6.25)). Thus as aRT increases, the forward-backwards proce-
dure corrects less and less the transition rates extracted from the raw quantum jump
trajectories. We also see that the parameters extracted from the simulation statistics
qualitatively match the dependence on drive amplitude of those taken from the raw
trajectories. In particular, the values of the model adjusted to the raw and simulated
statistics are often quite similar, especially for Tr. This is a sign that it may be possible
to reproduce the same statistics of the measured raw trajectories simply by adding
gaussian noise to an ideal quantum jump trajectory. There are discrepancies though
between the simulations and measurement statistics; like the fact that the adjusted
parameter λ has consistently lower values for the simulations compared to the raw tra-
jectories. In the future, to improve the correspondence in the statistics between the raw
and simulated trajectories, our simulation model should take into account the finite
integration time of the readout and the presence of additional excited states which
contribute to the transition rates.

Following this comparison, it appears that simulations taking into account the gaus-
sian noise of the measurement can, a least in part, reproduce the double exponential
statistics of the quantum jump traces of our Fluxonium device. This adds weight to
the argument that we did not make an error in using the forward-backwards algorithm
on the datasets from the measurement. Indeed, if the double exponential decay was
due to quasiparticles, using the forward-backwards algorithm would have yielded the
wrong results for the transition rates. For aRT & 0.8 V, the statistics from the simulated,
raw and forward-backward quantum jumps tend to converge, indicating that either the
quasiparticles manifesting themselves as non-poissonian trajectory statistics disappear
at strong drives, or the double exponential is partially explained by the noise of the
measurement. Thus, although we cannot completely exclude the effect of quasiparticles,
we can increase our confidence in the results of Fig. 6.11, especially at high amplitude,
where the SNR of the trajectories is large.

6.8 conclusion

We have extracted the cavity photon induced transition rates in a coupled fluxonium
qubit system thanks to a rigorous analysis of cavity measurement traces and a compre-
hensive theoretical understanding of our system Hamiltonian. We were able to show
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Parameters for 

Raw
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“Corrected”
transition rates
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trajectories

Simulated
trajectories

a.

b.
Figure 6.15: Comparison of the experimental (raw and forward-backwards) quantum jump

statistics with the simulated ones. a. We apply the forward-backwards algorithm
on the raw trajectories, yielding “corrected” transition rates and the statistics of
the forward-backwards trajectories. We use the corrected transition rates as the
basis for our simulated trajectories. b. Comparison of the adjustable parameters of
(6.43) which best reproduce the time dependence of the probabilities 〈Pstay,ν(t)〉 ex-
tracted from the raw quantum jumps, those remaining after the forward-backwards
procedure and a quantum jump simulation (tbin = 1040 ns). Each row corresponds
to a different state and the colored lines correspond to the amplitude dependence
of each model parameter.
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6.8 conclusion

that these rates evolve as a function of cavity photon number and external flux. With
this work, we have brought a timely contribution to the resolution of the extensively
documented issues with superconducting circuit readout. Our quantitative measure-
ment is interesting because it provides hints as to the possible directions of research to
explain the dependence of transition rates on photon number. Both the rates we found
and the value at which photon number affects the transition rates are within the range
of values observed in the literature [34, 37, 66, 38] and we hypothesise that the mech-
anisms governing the transition rates dependence on aRT and Φext could be common
to all Fluxoniums. The smallest resonant features in the transition rates arise within
1000th of a flux quantum in flux, and when the cavity occupation is changed on the
order of a single photon. This indicates that elements of explanation could be resonant
crossings between qubit and cavity levels in a manner close to those reported in [191],
possibly due to matrix elements allowed by the cosine non-linearity and the strong
drive [195]. Understanding the transition rates in Fluxonium qubits would certainly be
a large step in resolving long standing issues with Fluxonium qubit readout, and could
be essential to the design of future multi-Fluxonium devices. We also explored the effect
of gaussian noise on the statistics of our quantum jump trajectories, highlighting that
care must be taken with interpreting double exponential decay qubit decay obtained
from quantum jump trajectories as the definitive sign of the presence of quasiparticles.
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7
THERMODYNAMICS OF A QUBIT GATE

This chapter stands apart in this thesis for multiple reasons. We have, up until now,
been focused mainly on the Fluxonium qubit, which plays no part in the results of this
chapter. Second, the project presented here only really started at the beginning of the
last year of the thesis work, well after most of the results obtained with the Fluxonium
qubit. Finally, while the motivations for the experiments up until now have been quite
practical in nature, especially in the context of quantum computing (better qubit read-
out, error protection, design), this chapter appears more fundamental in the question it
seeks to answer: “What is the energy balance of a qubit measurement?” Although not
connected by design to the rest of this thesis, it is not hard to see parallels between the
fundamental energetics of quantum measurements, the qubit transition rates during
readout explored in Chapter 6 and the loss of information on the qubit state due to
energy and information exchange between a qubit and its environment (Chapters 3 and
4). As an illustration of how many of these concepts are in fact interrelated, a different
flavour of the past quantum state formalism as the one used in Chapter 6 will find its
place here.

The chapter is structured as follows. First we provide a short introduction to quantum
thermodynamics, focusing on the concept of quantum heat. In the next parts we present
the results of an experiment designed to shed light on the microscopic energy exchanges
at play during a qubit gate. We will show that these exchanges can be interpreted as
the result of the backaction of a weak measurement of the field used to prepare the
qubit state.

7.1 a short history of quantum heat

At its origins, thermodynamics served as a formalism to design more efficient machines
during the second industrial revolution, harnessing the laws of heat exchange to ex-
tract work. The highly practical motivations for the development of this theory are
visible in the very name of the discipline, which suggests using temperature (‘thermo’)
to produce movement (‘dynamics’). From a modern point of view, the difference made
between work and heat can be characterised by the reversibility of the process. The
exchange of work between two systems can be done reversibly (think of Newton’s pen-
dulum), whereas heat exchanges cannot: once your warm water is at room temperature,
there is no way of extracting the heat from the air back into the cup. Another point
of view, rephrasing the Clausius inequality, is to say that while work can be fully con-
verted into heat, the converse is not true. For the 21st century physicist, the concept
of irreversibility appears deeply connected to the information about the microscopic
state of the systems studied. The statistical physics approach to thermodynamics is
to consider its laws as emerging from microscopic interactions when the system size
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Figure 7.1: Classical versus quantum thermodynamics (taken from [41]). a. A system S ex-
changes work with a controller O and heat with a thermal reservoir R. The random
action of the reservoir on the system is illustrated by the die kB . b. In the quantum
case, the measurement apparatus is the source of quantum randomness illustrated
by the die ~. Reversible interactions with the controller are described by the time
dependent Hamiltonian HS(t).

becomes large [207, 208]. In that case, irreversibility is just the manifestation that it is
difficult to keep track of the exact state of & 1023 degrees of freedom. This hypothetical
ability is the basis of the Maxwell’s demon thought experiment [209]. Can an omniscient
being (the demon) extract work for free from a heat bath by knowing exactly all of the
microscopic degrees of freedom? The resolution of the paradox, involving the erasure
of the demon’s memory, intimately relates information to energy and to this day gives
a lower bound on the amount of energy needed to run a classical computer [210, 211].
Finally, the lack of information about a system can also be the origin of perceived
randomness. For a small enough system interacting with a heat bath, the state of the
system will undergo apparently random fluctuations due to the presence of the bath.
A prime example of such stochastic dynamics is Brownian motion [212]. The idea of
this microscopic interpretation of heat is shown in Fig. 7.1a. taken from the lecture
notes of Alexia Auffèves [41]. The difference between the reversible property of work
exchange and the stochastic effects of the heat bath on the system is symbolised by a
die with the conversion factor between temperature and energy kB. The presence of the
Boltzmann factor also underlines that at zero temperature, the thermal reservoir can
have no effect on the system, as there are no fluctuations.

Presenting classical thermodynamics in this way allows us to effectively introduce
analogies with quantum systems. Elouard et al. propose a formal treatment of one way
to connect quantum mechanics to stochastic thermodynamics and its interpretation
in [40] from which parts of the following are taken. We can identify work with the
action of an external perturbation on the quantum system, formalised by the time
dependent Hamiltonian ĤS(t) in Fig. 7.1b. and the unitary time evolution operator
Û(t) = exp

(
− i

~
∫ t

0 ĤS(τ)dτ
)
derived from it. A typical example of such a Hamiltonian

in the context of circuit QED could be

ĤS(t) ∝ ε(t)âσ̂+ + ε∗(t)â†σ̂− , (7.1)
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which describes the exchange of excitations between a photon field (â, â† operators)
and a qubit (σ̂−, σ̂+ operators). It is visible from the hermiticity of ĤS(t) that both
the conversion of a photon into a qubit excitation and the opposite are possible, high-
lighting the reversibility of the process. This is true of any physical Hamiltonian as
the Schrödinger equation is time symmetric. The ability to extract excitations from
the qubit gives access a usable energy which can be transformed into mechanical mo-
tion (think radiation pressure for example), coming back to the original 19th century
definition of work. Irreversibility can arise in two ways. The first is dissipation in the
case of an open system, but that can be interpreted as an inability to track the leakage
of information into a bath through a number of unitary channels. In that case, there
is no conceptual difference with the irreversibility of the classical case. The second is
quantum measurement. In the textbook case of a Von Neumann projective measure-
ment, if the state of the system is not in an eigenstate of the measurement operator,
then the unknown state before the measurement is lost. Because the outcome of the
measurement is random, it is symbolised by the die labeled ~ in Fig. 7.1b. A major
feature of this random outcome is that it can be generated on pure states - states with
zero entropy - and at zero temperature.

The realisation that quantum measurement can be interpreted thermodynamically
has motivated a number of works trying to understand and harness the consequences
thereof. Recent experimental work on quantum Maxwell’s demons [213, 214, 215] and
measurement driven engines [216, 217] are examples of this. Progress has also been
made on the theory side in understanding the thermodynamic consequences of entan-
glement, coherence and control [218, 219, 220, 221], devising generalised fluctuation
theorems [222, 223] and relating thermodynamic quantities to quantum observables for
example [224, 225]. Numerous concepts are still debated, notably the concept of “quan-
tum heat” defined in [40]. It is enlightening to consider a simple example to illustrate
the concept. Consider a two level system with Hamiltonian Ĥ =

~ωQ
2 σ̂z. We can prepare

the qubit in the state |+X〉 = 1√
2
(|g〉+ |e〉) and subsequently projectively measure the

σ̂z component. The measurement has two outcomes of equal probability: “g” for which
the state of the qubit immediately after the measurement is |g〉, and “e” for |e〉. Because
the measurement operator and the Hamiltonian commute, the possible pointer-states of
the measurement are eigenstates of the Hamiltonian with energies −~ωQ

2 and ~ωQ
2 for “g”

and “e” respectively. Yet the initial expectation value of the energy was
〈
Ĥ
〉
|+X〉

= 0.

This change in the internal energy of the qubit, defined as the expectation value of Ĥ
for a given qubit state, is called the “quantum heat” Qq

Qq =
〈
Ĥ
〉
|before measurement〉

−
〈
Ĥ
〉
|after measurement〉

. (7.2)

Note that here, because the qubit’s internal energy can change positively or negatively
with equal magnitude and probability, and more generally because the measurement
operator and Ĥ commute, over many iterations of the same experiment the average
quantum heat 〈Qq〉 is zero. This need not be true when the measurement operator and
Hamiltonian do not commute. Take for example the qubit prepared in |g〉 and measured
along σ̂x. In that case, 〈Qq〉 =

~ωQ
2 such that the act of measuring provides energy to
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the system. This observation is at the basis of a theoretical proposal for a measurement
based engine [226].

The two examples exposed in the previous paragraph are not so different. We obtain
the same measurement result statistics measuring |g〉 along σ̂x as measuring |+X〉 along
σ̂z. What about the difference in 〈Qq〉? At zero temperature, preparing state |+X〉 it-
self must cost energy. Epreparation =

~ωQ
2 on average to be exact. Thus, measuring the

qubit along an axis rotated by an angle θ to the one defined by the energy of the system
and accepting that the measurement transfers some average heat to the system appears
equivalent to preparing the qubit in a state along the θ axis of the Bloch sphere at the
cost of some unitary exchange of energy (work), and then having zero energy transfer
on average between measurement apparatus and qubit.

It is always possible to decompose a measurement apparatus into two systems, an an-
cilla and the probe. The ancilla acts in a unitary manner on the system to be measured
by applying work. By doing this, the system becomes entangled with the ancilla, such
that the probe can project the state of the entangled ancilla/system ensemble without
any energetic cost. In a sense, coming back to our qubit example, the change of the
qubit state’s energy after measurement in a basis not colinear to the energy operator,
just reveals the unitary energy exchange done by some state preparation that has not
been accounted for. Collapse of the wavefunction comes for free.

We can use this reasoning once more to explain the single shot energy differences
−~ωQ

2 and ~ωQ
2 for the measurement of |+X〉 in the σ̂z basis. This is the idea of the

experiment of this chapter.

7.2 principle of the experiment

Compared to the previous section, although we consider a qubit interacting with a
resonant drive, we do not limit ourselves to a π

2 -pulse preparing |+X〉, but we are
dealing with any arbitrary rotation of the qubit around the σ̂y axis on the Bloch sphere.
We assume the qubit starts in the ground state |g〉, and is driven by a coherent field
|ψin〉. Initially, the qubit and the propagating drive mode a are in the separable state
|ψinitial〉 = |ψin〉⊗|g〉 (Fig. 7.2a.). Owing to the light-matter coupling between the drive
mode and the qubit, they evolve into the entangled state [227, 228]

|ψfinal〉 = λg |ψg〉 ⊗ |g〉+ λe |ψe〉 ⊗ |e〉 (7.3)

where λg and λe are the probability amplitudes for each state in the superposition, and
|ψg,e〉 designate the outgoing states of the drive mode after interaction with the qubit.
Note that these parameters and states depend on |ψin〉 implicitly, and that 〈ψg|ψe〉 6= 0

in general. The number of excitations â†â+ |e〉 〈e| before and after the interaction must
be conserved, which leads to the equality

〈â†â〉|ψin〉 = |λg|2〈â†â〉|ψg〉 + |λe|2
[
〈â†â〉|ψe〉 + 1

]
. (7.4)
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7.2 principle of the experiment

a. b.
Figure 7.2: Principle of the experiment. a. A coherent wavepacket at the frequency ωQ is sent

to interact with a qubit initially prepared in |g〉. b. After the interaction, the qubit
and wavepacket states are entangled. The outgoing wavepacket is recorded and
the qubit is measured strongly along σ̂z. Tracing over the field degrees of freedom
reveals a rotation of the qubit around the y-axis of the Bloch sphere, such that the
qubit state has energy ~ωQ|λe|2.

This can be rewritten as

tr
[
â†âρinitialF

]
− tr

[
â†âρfinalF

]
= tr

[
|e〉 〈e| ρfinalQ

]
− tr

[
|e〉 〈e| ρinitialQ

]
, (7.5)

where ρF and ρQ are the density matrices of the propagating field and qubit respec-
tively, calculated by taking the partial trace of the total density matrix ρ. This last
equality (7.5) corresponds to the physical intuition that an energy ~ωQ|λe|2 must have
been transfered from the pulse to the qubit state during state preparation. It is then
unsurprising that (7.4) holds for the case where

〈
â†â
〉
|ψg〉 −

〈
â†â
〉
|ψe〉 = 1, i.e. there

can be a single photon difference in energy between the outgoing qubit pulse when the
qubit is measured in |e〉 or |g〉 after the interaction. Much less intuitive is that this does
not need to be the case. Indeed

〈
â†â
〉
|ψg〉 6=

〈
â†â
〉
|ψin〉

in general, which gives extra
freedom to the energy expectation values of the outgoing fields. In our experiment we
propose to measure these energy expectation values, by recording the outgoing pulses
and post-selecting the results on the outcome of a strong qubit measurement. This is
illustrated in Fig. 7.2b. By doing this, we hope to shed light on some of the energy
transfer mechanisms between pulse and qubit during a quantum gate and conversely
on the effect of the backaction of the qubit measurement on the outgoing drive mode.

As an important sidenote, one can legitimately ask the question as to the fidelity
limitations of qubit gates due to the entanglement of (7.3). Indeed the the purity of
the qubit density matrix reads

tr
[
(ρfinal
Q )2

]
= 1− 2|λgλe|2

(
1− |〈ψe|ψg〉|2

)
. (7.6)

Luckily, the overlap between |ψg〉 and |ψe〉 tends to 1 as the drive amplitude in-
creases [229, 230]. The lack of purity also determines how much information can be
extracted about the drive mode when measuring the qubit state. Indeed, if the state
is pure, this suggests that the system density matrix is separable, and measuring the
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qubit gives no information about the drive mode. From a thermodynamics point of view,
when the qubit is measured in its energy basis, the measurement backaction prepares
the drive mode in states of different energies.

7.3 calibration of the experimental setup

7.3.1 Experimental setup

The experiment described in the previous section can conveniently be realised in a cir-
cuit QED setup. We place the 3D Transmon qubit designed in Chapter 4 of frequency
ωQ = 2π × 4.81 GHz inside an aluminium cavity of frequency ωR = 2π × 7.69 GHz at
the base plate of a dilution refrigerator at 20 mK (see Fig. 7.3). The cavity has two
ports, one weakly coupled through which we send the readout drive and a second more
stongly coupled port through which we apply qubit pulses. The microwave pulses for
the qubit and readout are generated in two independent channels in a Tabor WX1284C
AWG at 100 MHz and 125 MHz respectively. These frequencies are upconverted by sin-
gle sideband mixers (Polyphase) by mixing with continuous microwave tones generated
by an Anapico APSIN12G for the qubit and a WindFreak SynthHD for the readout.
The local oscillators are split before mixing to keep a static phase reference during
downconversion.

Outgoing fields leave the cavity through the well coupled port and are then amplified
at the 20 mK stage by a Travelling Wave Parametric Amplifier (TWPA) [178] provided
by Lincoln Labs before further amplification by a High Electron Mobility Transistor
amplifier (HEMT) made by Low Noise Factory at the 4 K stage. At room temperature,
the output channel is split, and downconverted using the two continuous wave local
oscillators. The signals are then digitized using an Alazar acquisition board. Numerical
heterodyning (see Chapter 2) yields both quadratures of the fields at both the qubit
and readout frequency. The TWPA itself needs to be driven by a continuous microwave
tone for which we use an Anapico APSIN20G.

7.3.2 Measuring fluorescence

7.3.2.1 Calibrating the Purcell rate

Because our experiment requires knowing the number of photons in the outgoing drive
mode, we start by measuring the fluorescence of the qubit into the transmission line.
In the limit where the cavity input port coupling is much smaller than the output port
coupling, the field exiting the cavity at the qubit frequency is given by [71]

âout = âin −
√

Γaσ̂
−, (7.7)

158



7.3 calibration of the experimental setup

a.

b.

-30

-20

-20
-10

-10

-10

-10

K&L

HEMT
+40 dB

+25 dB

+19 dB

-20

K&L

-20
-3 -3

-40

-30

-3

K&L

5-7.2 GHz

20 mK

100 mK

4 K

50 K

300 K

TWPA

ADC

4.91 GHz

7.81 GHz

6-11 GHz

500 MHz 500 MHz

200 MHz 200 MHz

epoxy shield

in-port

out-port
(not shown)

K&L K&L

Ecco

6.23 GHz

AWG Tabor

CH1 CH2

-20
IRIR

Directional coupler

Mixer

IR

Image reject mixer

4-8 GHz isolator

-X X dB attenuator

RF source

Band-pass filter

Low-pass filter

Amplifier

AWG
CH

Arbitrary waveform 
generator signal

Combiner/Splitter

Eccosorb filterEcco 50     termination

Transmon

A
D
C

A
D
C

Figure 7.3: Experimental setup. a. Implementation of the protocol shown in Fig. 7.2 in a circuit
QED setup. A Transmon qubit is placed inside a microwave cavity and is addressed
through a well coupled output port on the right. The input port on the left serves for
the readout in transmission. A circulator directs the outgoing field into the amplifi-
cation and acquisition chain. b. Full cryogenic and room temperature measurement
setup.
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where Γa is the Purcell decay rate of the qubit into the transmission line. The expec-
tation value 〈âout〉 (t) is directly related to the measured quadratures of the outgoing
qubit field

〈âout〉 =
〈Iout〉+ i 〈Qout〉√

G
(7.8)

where Iout and Qout are defined like in (2.63) and (2.64) (the expectation value are
averages over many measurements) and G is the power gain of the measurement chain.
Before directly measuring the time dependence of 〈âout〉 it is useful to calibrate Γa. To
do this, we define the reflection coefficient

r =
〈âout〉
〈âin〉

= 1−
√

Γa 〈σ̂−〉
〈âin〉

. (7.9)

The expectation value of the lowering operator is given by the steady-state solution of
the Bloch equations (see Appendix A)

〈
σ̂−
〉

= −zth
ΩaΓ1(Γ2 − iδ)

2
[
Γ1(Γ2

2 + δ2) + Γ2Ω2
a

] , (7.10)

and we can relate the Rabi frequency Ωa of the qubit to the amplitude of the input
coherent field using

〈âin〉 = αin =
Ωa

2
√

Γa
. (7.11)

The detuning between the drive frequency and the qubit frequency is δ = ωQ − ωd,
1/Γ1 = T1 = 5.5 ± 0.3 µs and Γ2 = Γφ + Γ1

2 with 1/Γφ = Tφ = 2.4 µs are measured
independently using the depolarisation and Ramsey sequences discussed ealier in this
thesis. zth = −1 + 2pthe is obtained by a direct fit of the thermal population observed in
the qubit readout histograms (see Sec. 7.4.3.1). Replacing the expressions for 〈σ̂−〉 and
〈âin〉 in (7.9) and taking into account the gain of the amplification chain we obtain the
reflection coefficient measured by the experimentalist in a single tone qubit spectroscopy

rexp =
√
Gr =

√
G

(
1 + zth

ΓaΓ1(Γ2 − iδ)[
Γ1(Γ2

2 + δ2) + Γ2Ω2
a

]
)
. (7.12)

The scaling factor
√
G can be determined simply by measuring the reflection off the

qubit away from the resonance frequency |δ| → ∞. Then, the only residual parameters
are the Purcell rate Γa and the Rabi frequency Ωa. We can adjust these two parameters
following the model of (7.12) to match the measurement of r shown in Fig. 7.4. From
this we obtain Γa = 2π × 20 kHz.

7.3.2.2 Time dependent fluorescence field

The results of Fig. 7.4 were obtained with the qubit in the steady-state of the Bloch
equations. It is also possible to measure the dynamics of the expectation value of the
outgoing mode amplitude

〈âout〉 (t) = αin −
√

Γa
〈
σ̂−
〉

(t) . (7.13)
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Figure 7.4: Measuring the qubit Purcell rate. a. Absolute value of the reflection off the qubit
as a function of the detuning δ. A colorscale encodes the Rabi frequency of each
experiment extracted from the model (7.12) which is adjusted to the complex val-
ues of r shown in panel b. The reflection coefficient is obtained by measuring the
quadratures of a 10 µs drive at the qubit frequency ωQ.

This was already done multiple times in our research group and the reader is encouraged
to look at the theses of Nathanaël Cottet or Quentin Ficheux for details [71, 48]. We
concentrate here on the dynamics of the expectation value of the outgoing photon rate
ṅm

ρ
which will be used to calculate the total number of outgoing photons in the drive

mode. Multiplying (7.7) with its adjoint yields [7, 20, 71]

ṅm
ρ

= |αin|2 + Γa
1 + 〈σ̂z〉ρ

2
− Ωa

2
〈σ̂x〉ρ . (7.14)

We have each time made explicit over which state ρ the expectation values are taken.
This will become useful later, when the averages will be taken depending on the mea-
sured state of the qubit. The three terms on the right can be interpreted physically.
The first is simply the photon flux due to the incoming field. Because the cavity port
couplings are so asymmetric, almost all the incoming photon flux in the qubit drive is
reflected instead of being transmitted. The second term is the spontaneous emission of
the qubit into the transmission line. If ρ = |g〉 〈g|, then the second term is zero. The last
term is the stimulated emission due to the Rabi cycling of the qubit under the drive.
In Fig. 7.5 we show the oscillations of 〈Iout(t)

2〉+ 〈Qout(t)
2〉 as a function of time t as

recorded on our acquisition card whilst applying a qubit drive with varying amplitude.
Here the expectation values are taken over all 100000 iterations of the experiment and
the amplitude of the drive is proportional to the Rabi frequency Ωa extracted from
the oscillations. This measurement is the temporal version of the Mollow triplet and
was already measured in several experiments [231, 232, 233, 234]. As expected from
(7.14), the amplitude and frequency of the oscillations increase with the amplitude of
the drive due to the Ωa

2 〈σ̂x〉ρ term. Yet, as Ωa goes to zero, we expect the power in
the acquisition card to vanish equally. This is clearly not the case in Fig. 7.5, which
is expected since the noise of the amplifier chain comprises a large part of the power
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Figure 7.5: Average power measured by the acquisition card as a function of time t after the
start of a drive at ωQ. The Rabi frequencies are determined from an independent
Rabi oscillation measurement (drive then readout of σ̂z, not shown).

coming from the experimental setup. The qualitative agreement is satisfying though
and suggests a correctly functioning experimental setup. In the following we describe
how we calibrate ṅm

ρ
from the power acquired by the ADC.

7.4 weak values of the photon number

7.4.1 Calibrating the noise of the amplification chain

While the amplitude measurements (see (7.8)) do not suffer from the added noise of
the amplification chain because the amplitude of the noise averages to 0, this is not the
case for the noise power. We can relate the field operator after amplification b̂out to the
outgoing cavity field âout by [20]

b̂out =
√
Gâout +

√
G− 1N̂ †vac . (7.15)

In general,
〈
N̂ †vacN̂vac

〉
6= 0 which should be taken into account when measuring the

outgoing power

〈I2
out〉+ 〈Q2

out〉 =
〈
b̂†outb̂out

〉
= Gṅm +G

〈
N̂vacN̂

†
vac

〉
. (7.16)

This added noise offsets the traces in Fig. 7.5 by about 100 mV2. To remove this offset,
we measure the reflection of a tone at ωQ whilst simultaneously applying a continuous
drive at the cavity frequency ωR, AC-Stark shifting the qubit frequency away from
ωQ. The sequence used to do this is shown in the inset of Fig. 7.6. To prove that the
Stark-shift pulse is indeed effective, we do a two tone spectroscopy of the qubit (as
defined in Chapter 3), obtained while a continous drive is applied at ωR (Fig. 7.6). As
the strength of the cavity drive increases, the qubit shifts to lower frequencies. Thus,

162



7.4 weak values of the photon number

4.76 4.78 4.80 4.82
Qubit probe frequency (GHz)

-16

-12

-8

-4

0

C
av
it
y
qu
ad
ra
tu
re

(m
V
) 1.5 mV

1.0 mV

0.2 mV

ReadoutAC Stark
pulse

qubit
excitation

Figure 7.6: Calibration of the AC-Stark shift. Using the pulse sequence shown in the inset,
we realize a qubit spectroscopy by sending a weak microwave pulse near the qubit
frequency, followed by a readout pulse sent on the cavity whose measured trans-
mission is used to infer the qubit excitation (quadrature shown on the y-axis). The
experiment is repeated for varying cavity drive amplitudes (colors), showing that
as the cavity population increases the qubit frequency decreases as expected for a
negative AC-Stark shift. When the cavity drive is sufficiently strong, we observe
the qubit detuned from its bare frequency by much more than its linewidth.

applying a drive at ωQ while the cavity is populated acts as a reference for the amplifier
chain where 〈σ̂x〉 = 1+〈σ̂z〉

2 = 0 because the tone at ωQ is no longer resonant with the
qubit transition. Thus the power acquired at the qubit frequency whilst the cavity drive
is switched on is

〈
b̂†refout b̂

ref
out

〉
= G

〈
â†inâin

〉
+ (G− 1)

〈
N̂vacN̂

†
vac

〉
+
〈
N̂ †c N̂c

〉
. (7.17)

We include a contribution
〈
N̂ †c N̂c

〉
to account for cross-talk in our aquisition card

when the cavity drive is on. We can access the added contribution to the noise due to
cross-talk by acquiring the noise spectrum at ωQ when the cavity drive is on but the
qubit drive is switched off. The expectation value of the power entering the acquisition
card is then given by

〈
b̂†coutb̂

c
out

〉
= (G− 1)

〈
N̂vacN̂

†
vac

〉
+
〈
N̂ †c N̂c

〉
. (7.18)

(G−1)
〈
N̂vacN̂

†
vac

〉
is determined by switching off all inputs into the measurement chain

and measuring the power spectrum in our aquisition card at ωQ again. Finally we can
relate the outgoing photon flux to all of these measurable quantities through

ṅm =
Ω2
a

4Γa

〈
b̂†outb̂out

〉
− (G− 1)

〈
N̂vacN̂

†
vac

〉

〈
b̂†refout b̂

ref
out

〉
−
〈
b̂†coutb̂

c
out

〉 , (7.19)

where the bar .̄ over the expectation values denotes the time average and we have used
the fact that

〈
â†inâin

〉
= |αin|2 = Ω2

a
4Γa

.
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7.4.2 Post-selected outgoing photon flux - part 1

The pulse sequence used to measure ṅm as a function of time is shown in Fig. 7.7a.
First, a pulse of amplitude αin > 0 drives the qubit at frequency ωQ for a duration
td = 400 ns. The reflected pulse is recorded by the ADC to yield the instantaneous
power including noise

〈
b̂†outb̂out

〉
. We chose Gaussian edged pulses Fig. 7.7a. following

the functional

f(t) =





A exp

(
− (t−2w)2

2w2

8 ln 2

)
, for t ≤ 2w ;

A exp

(
− (t−td+2w)2

2w2

8 ln 2

)
, for td − t ≤ 2w ;

A, else ,

(7.20)

where w = 10 ns and A is the pulse amplitude, to limit spectral leakage during the
pulse rise time. The qubit is measured dispersively 20 ns later using a pulse of duration
tRO = 704 ns allowing us to post-select the qubit pulse records on the result of this
measurement. After waiting 5 µs a second readout pulse is applied which is used as a
protection against drifts of T1 over time (more on this in Sec. 7.4.4). At the end of
the sequence, we determine

〈
b̂†refout b̂

ref
out

〉
and

〈
b̂†coutb̂

c
out

〉
using the part of the sequence

during which the Stark shift pulse at the cavity frequency is switched on.

In Fig. 7.7b. we show the measured photon flux ṅm
ρ
as a function of time for three

400 ns Gaussian edged qubit pulses with different drive amplitudes (grey points). The
rotation angles θ = π, 1.8π and 2.6π of the Bloch vector after time td were calibrated
including the effect of the Gaussian edged shape by measuring Rabi oscillations as
a function of the drive amplitude in an independent measurement (not shown). Ini-
tially we aimed to measure the outgoing power as a function of the qubit state after
measurement (see Fig. 7.2). To do this we average the instantaneous power arriving
at the acquisition card conditioned on the measurement outcome of the first readout
pulse of Fig. 7.7a. Using the same calibration as for the unpost-selected averages, we
show ṅm

ρ
conditioned on the measurement outcome “g” (blue) and “e” (red) in Fig.

7.7b. The measurement outcome “g” (“e”) is defined as a measured value Z̄out in the
IQ-plane within a distance 1.5σIQ of the centre Zg (Ze) of the Gaussian distribution
corresponding to the pointer-states of |g〉 (|e〉). The circles within which the outcome
is either “g” or “e” are shown in Fig. 7.8a. σIQ is the standard deviation of the Gaussian
distribution of a single pointer state in the IQ-plane. To high fidelity, these measure-
ment outcomes coincide with the qubit being projected to the pure states |g〉 and |e〉
for “g” and “e” respectively (see Sec. 7.4.3.2). We observe a clear deviation from the un-
conditional average power, thus revealing the correlation between qubit and drive mode.

It is possible to capture the dependence of the drive power on the qubit measurement
outcome using the past quantum state formalism we already introduced in Chapter
6 [39, 235, 42]. A full description of the drive mode at each moment in time can be
given by considering both the initial starting condition via the density matrix of the
qubit ρ(t) and the final measurement result through the effect matrix of the qubit
E(t) (see Appendix D). The density matrix obeys the standard Lindblad equation
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Figure 7.7: a. Complete measurement pulse sequence. The qubit gate and readout serve the
basic objectives of the experiment, determining the backaction of the qubit measure-
ment on the driving mode. The second readout allows an in situ measurement of T1

to control any possible drifts. The reference pulse and Stark shift pulse are used to
calibrate the noise of the experimental setup. b. Measured average outgoing photon
flux ṅm as a function of time t for three drive powers resulting in rotation angles
θ = π, 1.8π and 2.6π going from bottom to top (grey: no post-selection, blue/red:
readout outcome “g”/“e”). Corresponding output powers are shown on the right
axis. Lines: expected power from Eq. (7.21) using the past quantum state formal-
ism and parameters detailed in the text. The time delay between the experimental
and numerical data has been adjusted by hand.
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while the effect matrix is constrained by its value at the final measurement time and
is back propagated using the adjoint of the Lindblad equation. One can show that the
post-selected expectation value of the outgoing photon rate is given by [236]

ṅm
E,ρ

= |αin|2 − ΩaReE
〈
σ̂−
〉
ρ + ΓaI(E, ρ) , (7.21)

where I(E, ρ) =
Tr[Eσ̂−ρσ̂+]

Tr[Eρ] can be understood as the weak value of a photo-detection

rate and E〈σ̂−〉ρ =
Tr[Eσ̂−ρ]

Tr[Eρ] is the weak value of the σ̂− operator. In our case, ρ is
initialized at time t = 0 in a thermal state

ρ(0) = pth
g |g〉 〈g|+ pth

e |e〉 〈e| . (7.22)

The effect matrix E is defined at measurement time t = td conditioned on the post-
selected readout outcome. For example, if the outcome was “g”, then

E(td) = P(|g〉 |“g”) |g〉 〈g|+ P(|e〉 |“g”) |e〉 〈e| , (7.23)

where P(|g〉 |“g”) is defined as the probability of indeed being in state |g〉 at the be-
ginning of the readout pulse, given that the measurement record integrated over the
readout time yields the outcome “g”. If we are to reproduce the measurement results the-
oretically, we thus need to have access to the thermal populations and the probabilities
P(|x〉 |“y”) , x, y ∈ {g, e}.

7.4.3 Analysing the qubit readout

7.4.3.1 Readout histograms

A histogram of the recorded quadratures for 40000 readout pulses is shown in Fig. 7.8a.
By using a gaussian mixture model (GMM) [190] on the distribution of points in the
complex plane, we can identify the qubit state which most likely yielded each quadrature
pair. The resulting segmentation of the recorded points in the complex plane is shown by
the blue, red and grey shadings in the histogram overlay. The GMM algorithm directly
gives the weights of the Gaussian probability mixture with the highest likelihood of
reproducing the histograms obtained from the readout quadratures. We identify these
weights as the qubit populations of each state immediately before the readout. In other
words, the proportion of points within the blue shading of Fig. 7.8b. corresponds to
our best guess for the population pg of the qubit state |g〉. To make sure an increase in
the readout amplitude does not affect the measured qubit populations, we monitor the
qubit pg, pe and pf as a function of the room temperature readout pulse amplitude in
Fig. 7.8c. At low amplitude, the measurement is very imprecise, as the pointer states
of the readout are not yet fully separated, explaining the change in population below
an amplitude of 0.5Vpp. At higher amplitudes, the populations do not change with the
readout amplitude, indicating that the amplitude of the readout pulse has no effect on
the observed qubit populations. On this scale, the pulse amplitude used in the post-
selection readout is 2Vpp and we saw no variation of the thermal population between
1.5Vpp and this value. For the rest of the work the thermal populations are set to
pthg = 0.892±0.002 and pthe = 0.088±0.002 obtained from 30 measurements of pth over
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Figure 7.8: a. Histogram of the quadratures of 40000 demodulated square readout pulses. The
histogram bin size is 0.31 mV2. Colored circles with radius 1.5σIQ are shown cen-
tered on Zg and Ze which are materialised by blue and red points respectively. Blue,
red and grey shading shows the parts of the IQ plane associated with the states |g〉,
|e〉 and |f〉 by the GMM algorithm. c. Extracted populations of each qubit state
using the GMM algorithm as a function of the readout pulse amplitude referred to
room temperature. Horizontal dashed lines correspond to the average qubit popu-
lations above 0.8Vpp, which are equal to the qubit’s thermal populations pth

g , pth
e

and pth
f .

30000 readout traces at 2Vpp. To initialise the density matrix of (7.22) we neglect the
population of the |f〉 state setting

ρ(0) = (1− pthe ) |g〉 〈g|+ pthe |e〉 〈e| .r (7.24)

7.4.3.2 Readout Fidelity

The effect matrix is initialised with the information about the qubit state at time
td that we gained thanks to the readout pulse. If the measurement outcome is “g”
then, neglecting the effect of the |f〉 state, we initialise the effect matrix as E(td) =

P(|g〉 |“g”) |g〉 〈g| + (1 − P(|g〉 |“g”)) |e〉 〈e|, and similarly for “e”. We thus need to first
measure the readout fidelities P(|g〉 |“g”) and P(|e〉 |“e”).

For simplicity we will only detail the case P(|g〉 |“g”), but the method for P(|e〉 |“e”)
is identical. To determine the probability P(|g〉 |“g”) we use Bayes’ rule

P(|g〉 |“g”) =
P(“g”| |g〉)P(|g〉)

P(“g”)
, (7.25)

where P(|g〉) is the probability of the qubit being in state |g〉 immediately before the
readout and P(“g”) is the probability of obtaining the measurement outcome “g”. In
practice, we set P(|g〉) = P(“G”), where P(“G”) is the proportion of points in the
IQ-plane within the distribution pertaining to the pointer-state of |g〉 as determined
by the GMM (see Fig. 7.8a.). P(“g”) on the other hand, is simply the proportion of
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Figure 7.9: Measuring the readout fidelity a. P(“x”||ZRO − Zg| < r)(200 ns) as function of r
measured in units of σIQ (x ∈ {g, e}). b. Probability of obtaining measuremement
outcome "x" in the second readout, given the knowledge that the qubit state was
|x〉 immediately after the first readout (x ∈ {g, e}. The solid lines are given by (7.29)
with T1 = 5.5µs, pth

g = 0.892 and pth
e = 0.088, P(“g”| |g〉) = 0.696, P(“e”| |e〉) =

0.605 and P(“g”| |e〉) = P(“e”| |g〉) = 0.

measurements with outcome “g”. We calculate P(“g”| |g〉) (the probability of obtaining
outcome “g” knowing the qubit was in state |g〉 at the beginning of the readout) using
the pulse sequence shown above the panels of Fig. 7.9 corresponding to two successive
readout pulses separated by a wait time twait. Varying twait is necessary to separate
potential non-QND effects of the readout from the decay of the qubit during the wait
time. In Fig. 7.9a. we show the probability P(“g”||ZRO − Zg| < r)(twait = 200 ns) of
obtaining the outcome “g” in the second readout after waiting 200 ns between the two
readouts, knowing that in the first readout, the measurement result ZRO was within a
circle of radius r around Zg. As r decreases, the probability saturates

lim
r→0

P(“g”||ZRO − Zg| < r)(twait) = P(“g”| |g〉)(twait) , (7.26)

such that at sufficiently small r, we can consider the qubit state to have remained in
|g〉 throughout the entire readout pulse. This means that immediately after the readout
pulse has ended, the qubit state is known to be |g〉. After the wait time between the
readouts the qubit finds itself in the mixed state

ρ = pg(twait) |g〉 〈g|+ (1− pg(twait)) |e〉 〈e| , (7.27)

where

pg(t) = (1− pthg )e−t/T1 + pthg (7.28)
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describes the decay of the qubit polarisation due to T1. The probability of the outcome
“g” for this mixed state is given by

P(“g”| |g〉)(twait) = pg(twait)P(“g”| |g〉) + (1− pg(twait))P(“g”| |e〉) . (7.29)

In Fig. 7.9b. we show P(“g”||ZRO − Zg| < 0.5σIQ)(twait) ≈ P(“g”| |g〉)(twait) as a
function of twait. We choose r = 0.5σIQ because at around that level the value of
P(“g”||ZRO − Zg| < r)(twait) saturates. The variations at small r seen in Fig. 7.9a. are
taken into account by the error bar on the scattered points of Fig. 7.9b. By adjusting the
model of (7.29) with only two free parameters (T1, pthg and pthe are measured indepen-
dently) we can determine P(“g”| |g〉) = 0.696±0.002 and P(“g”| |e〉) < 10−7. The latter
value can be explained by the large 6σIQ separation between the two pointer states in
the IQ-plane (see Fig. 7.8). From these values, and using (7.25) we obtain P(|g〉 |“g”) ≥
97%. Using an identical method but for |e〉, we obtain P(“e”| |e〉) = 0.605 ± 0.002,
P(“e”| |g〉) < 10−7 and P(|e〉 |“e”) = 86.7± 2.8%.

7.4.4 Post-selected outgoing photon flux - part 2

With the thermal populations and readout fidelities now determined, we can use (7.21)
to reproduce the experimental results. As a reminder, the cases where the measurement
outcome is “g” are given by using E(td) = P(|g〉 |“g”) |g〉 〈g| + (1 − P(|g〉 |“g”)) |e〉 〈e|
and when the outcome is “e” by E(td) = P(|e〉 |“e”) |e〉 〈e|+ (1−P(|e〉 |“e”)) |g〉 〈g|. This
allows us to trace the solid lines in Fig. 7.7b. which reproduce the experimental results.
This also works over a wide range of Rabi frequencies as shown in Fig. 7.10. Note that
if there is no post-selection, the theory accounts for this by setting E(td) = 1

21. We
explain the discrepancies between the theory and experiment at the beginning of the
400 ns time trace by deformations of the Gaussian edged pulse in the experimental
setup. Because of this, we allow ourselves a single free parameter and adjust the time
delay between the experimental results and theoretical model by hand. This delay is
determined empirically to be around 3 ns which is much shorter than any other char-
acteristic times in the experiment. This small value suggests that the offset could be
be partially due to an error in the calibration of the delay between the trigger of our
acquision card and the arrival of the qubit pulse from the dilution refrigerator.

A last technical comment about the T1 measurement embedded in the pulse sequence
of Fig. 7.7a. is in order. We observed significant T1 drifts during the time it took
to acquire the results shown in Fig. 7.7b. and Fig. 7.10. To eliminate this effect, we
measured the average T1 over batches of 40000 iterations of the experiment by counting
the number of events where the qubit started in |g〉 in the first readout and finished in
|e〉 in the second. With this probability being given by 1− pg(t = 5 µs) (see (7.28)) and
with all but T1 known, this allows us to keep track of the average T1 over the course of
the experiment. Only batches with T1 in the range 5.5± 0.3 µs were kept.
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Figure 7.10: Post-selected fluorescence power for 400 ns pulses and varying Rabi frequencies
Ωa leading to a rotation angle θ after td. In the top left, without post-selection
the qubit undergoes just over a π/2 pulse. In the bottom right, the qubit has
approximately undergone a full 2π rotation before being measured. As before,
grey is without post-selection, blue a measurement in “g” and red a measurement
in “e”

7.4.5 Post-selection of the total photon number

Up until now we have considered the outgoing photon flux ṅm, and although we saw
that its average value depended on the result of the qubit measurement, our original
goal was to detect changes in the total energy of the outgoing drive. We thus now
look at the total number of photons contained in the pulse. It can be calculated as
〈nout〉 =

∫ td
0 ṅm

E,ρ
dt from the measured ṅm. In Fig. 7.11a, we show the square root

of the measured total photon numbers
√
〈nout〉 as a function of the rotation angle in

the Bloch sphere. The photon number scales as the square of the rotation angle as
expected since the Rabi frequency scales as the drive amplitude. The measurement
outcome-dependent change in 〈nout〉 is negligible compared to the total number of pho-
tons in the pulse, as expected from the strong overlap of states |ψg〉 and |ψe〉 explained
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Figure 7.11: a. Square root of the measured total mean number of photons in the outgoing
drive pulse as a function of the qubit rotation angle θ around σ̂y. Gray crosses
correspond to no post-selection, lines to post-selection on the qubit being measured
in |g〉 (blue) and |e〉 (red). For these photon numbers, the effect of post-selection is
almost indistinguishable. b. Dots: measured difference ∆n between the mean post-
selected number of photons and the mean number of photons in the incoming
drive pulse as a function of the qubit rotation angle. Colors indicate the kind of
post-selection. Lines: time integrated equation (7.21). Dotted lines: guides to the
eye with equation y = θ/2 =

√
Γatdnin. Shaded area: allowed range of exchanged

energy without post-selection (between −1 and 0 photons).

in Sec. 7.2.

To reveal the difference between the energies of these states, we subtract the mean
number of photons contained in the incoming pulse nin =

∫ td
0 |αin(t)|2dt (Fig. 7.11b).

Without post-selection, the difference ∆n = 〈nout〉 − nin oscillates between −1 and 0,
as expected from the principle of energy conservation: when the qubit is excited, it
extracts a photon from the pulse and when it is in the ground state the pulse energy
stays unchanged. With post-selection, ∆ng,e can exceed the non post-selected average
value (blue and red dots out of shaded area in Fig. 7.11b), which is typical behavior
for weak values [237]. The dependence of ∆ng,e with the qubit rotation angle is also
typical of the dependence of a weak value with its post-selection parameter as sharp
slopes can be observed compared to the non post-selected case. Interestingly, one can
observe that the post-selected photon number ∆ng oscillates in counter-phase with ∆ne.
This reveals the two contributions to the measurement backaction exerted on the drive
pulse by the qubit measurement. First, the information acquired on the qubit state
distorts the probability of finding a given photon number in the drive pulse, hence
producing the oscillations. Second, the qubit measurement is a destructive operation
from the point of view of the drive pulse and only if the qubit is found in |e〉, it implies
that the drive pulse now has one less photon.
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Figure 7.12: Probabilities that the drive pulse contains n photons. a. Predicted probability
that the drive contains n photons conditioned on the qubit being measured in |g〉
(blue) or in |e〉 (red). Vertical grey dotted lines correspond to the Rabi rotations
featured in the panels below. b & c. Probability that the drive pulse contains
n photons knowing that it was prepared in a coherent state leading to a Rabi
rotation of θ = 1.6π (b) or θ = 4.4π (c). Colors encode the conditional outcome
of the qubit measurement: no post-selection (grey), |g〉 (blue) and |e〉 (red). Bloch
representation of the qubit state after the drive pulse has left it. A green arrow
represents the Rabi rotation around σy endured by the driven qubit. Blue and red
dots indicate the |g〉 and |e〉 states.

7.5 backaction of the qubit measurement on the drive field

To better understand the origin of the oscillations in the photon number difference
∆ng,e, we propose a simple but enlightening model, where the drive pulse is a harmonic
oscillator that is coupled to the qubit for a time td with a rate Γa. Let us assume that we
measure the photon number in the drive pulse with a photon number-resolved counter
and that the qubit starts in the ground state. In Fig. 7.12a, we plot the conditional prob-
ability that the incoming drive has a given number of photons n when the qubit is mea-
sured in |g〉 (|e〉) given by P(n|g) = cos2(

√
nΓatd) (P(n|e) = sin2(

√
nΓatd)). This sim-

ple observation allows us to get further insight into the thermodynamic properties of the
measurement backaction. In the model, for a rotation angle θ, the incoming drive pulse
is in a coherent state |√nin〉 = |θ/√4Γatd〉, which corresponds to a Poisson distribution
of photon numbers P(n|θ) with mean nin (grey in Fig. 7.12b. & c.). The information
provided by the measurement of the qubit state thus leads to new distributions, which
are the products P(n|g, θ) ∝ cos2(

√
nΓatd)P(n|θ) and P(n|e, θ) ∝ sin2(

√
nΓatd)P(n|θ)

(blue and red in Fig. 7.12b. & c.). The oscillations now become clear. Depending on the
rotation angle, the outcome of the qubit measurement indicates that the qubit is either
ahead of its average evolution (more photons than expected in the drive), or behind
(less photons). In Fig. 7.12b., one can see that for θ = 1.6π, finding the qubit in |g〉
indicates that it is ahead and thus offsets the probability distribution P(n|g, θ) towards

172



7.5 backaction of the qubit measurement on the drive field

−20

0

20
∆

n

Past quantum state

∆ng(θ)

∆ne(θ + π)
−1.0

−0.5

0.0

θ
θ
+
π
∆

n
e
(θ

+
π
)
−

∆
n
g
(θ

) Past quantum state

0 4 8 12 16 20
θ/π

−100

0

100

∆
n

Toy model

∆ng(θ)

∆ne(θ + π)

0 4 8 12 16 20
θ/π

0.0

0.1

0.2

θ
θ
+
π
∆

n
e
(θ

+
π
)
−

∆
n
g
(θ

) Toy model
a. b.

d.c.

Figure 7.13: Identifying the sources of backaction. a. Comparison of the photon number differ-
ences ∆ng,e for post-selection in “g” and “e” according to the predictions of (7.21)
for our experiment. ∆ne is offset by π to highlight the similarity between the two
cases up to a half period. b. Difference between the phase shifted and rescaled ∆ne
and ∆ng. For large θ, and up to a half qubit rotation, ∆ne and ∆ng tend to differ
by a single excitation. c. & d. Same as a. & b. but for the toy model presented
above. Note that the difference θ

θ+π∆ne(θ+π)−∆ng(θ) tends to 0 for our model.

larger photon numbers. For other angles, such as θ = 4.4π (Fig. 7.12c.), the same out-
come reveals a qubit behind, which offsets P(n|g, θ) towards smaller photon numbers.
With this argument, one understands why at each half turn in the rotation angle, the
situation between |g〉 and |e〉 outcomes is reversed in Fig. 7.11b. Additionally, owing to
the increasing standard deviation of the Poisson distribution with the amplitude

√
nin,

the backaction on ∆n increases linearly with θ (dotted lines in Fig. 7.11b).

Up to now, this model only completed the first part of the backaction: the distortion
of the photon number distribution owing to the information acquired by the qubit mea-
surement. In order to predict the measured distribution instead, one needs to take into
account the fact that the qubit consumed a photon if it is measured in |e〉 and not if it
is found in |g〉. To highlight this effect, we compare the phase shifted photon number
differences ∆ng(θ) and ∆ne(θ + π) calculated both using (7.21) and our model in Fig.
7.13. For the information backaction, there is an exchange symmetry between |g〉 and
|e〉 with respect to π rotations around the Bloch sphere. Thus the differences between
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∆ng(θ) and ∆ne(θ + π) are thus small in both models (see Fig. 7.13a. & c.). They
do not overlap entirely though, because an extra π rotation requires extra photons in
the field. Knowing phenomenologically that the backaction scales as

√
nin ∝ θ, it is

thus judicious to compare ∆ng(θ) with ∆ne(θ + π) rescaled by a factor θ
θ+π to take

the additional rotation into account. The differences θ
θ+π∆ne(θ+π)−∆ng(θ) for both

models are shown in Fig. 7.13b. & d. While for large θ the difference tends to go to 0 for
our toy model, the limit appears to be -1 for the complete theory. This corresponds to
the single photon absorbed by the qubit from the field when it is measured in |e〉 which
we have not accounted for. Critically, this allows us to separate both contributions to
the measurement backaction: the information update and the energy update. By mea-
suring the qubit in either |g〉 or |e〉, we bias the probability of having a certain number
of photons in the field and then subtract a single photon if the qubit was measured in |e〉.

As a further illustration that this is a useful way of thinking, we can come back
to a simpler situation of a single cavity coupled to a transmission line at a rate κ
which is connected to a photodetector [229]. Assuming the state inside the cavity starts
in the superpostion |ψi〉 = 1√

2
(|k〉 + |l〉), where |k〉 (|l〉) is the Fock state with k (l)

photons inside the cavity. The probability of having n photons inside the cavity if the
photodector clicks is given by Bayes’ rule

P(n|“click”) =
P(“click”|n)P(n)

P(“click”)
=
nκτ · (1

2δkn + 1
2δln)

k+l
2 κτ

, (7.30)

where τ is some time between measurements. Additionally, if a photon left the cavity,
then we need to reduce the number of excitations inside by 1

P(n|“click” and − 1 photon) = P(n+ 1|“click”) =
(n+ 1)κτ · (1

2δk−1,n + 1
2δl−1,n)

k+l
2 κτ

.

(7.31)

This is exactly the result predicted by quantum mechanics

|ψafter meas.〉 =
M̂ |ψi〉√

〈ψi| M̂ †M̂ |ψi〉
=

√
k

k + l
|k − 1〉+

√
l

k + l
|l − 1〉 , (7.32)

where M̂ = â is the Kraus operator describing the photon detection (see Appendix D).
Note that the information update must be done before the energy update to obtain the
correct results.

7.6 conclusion

This chapter offers a new perspective on our interpretation of qubit gates. We started
with a qubit and field in a separable state. After letting them interact, the qubit and field
become entangled. We demonstrated this by measuring the photon flux in the outgoing
drive conditioned on the outcome of a strong qubit measurement after the two finished
interacting. We showed that on average a single excitation is transfered between the
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drive and the qubit, but that the number of photons in the field could change by more
than 1 if the qubit is measured to be in |g〉 or |e〉. This can be interpreted as the
backaction of a weak measurement by the qubit on the coherent pulse. The backaction
scales with the width of the photon number distribution in the incoming field and
shows a certain symmetry when going through a full rotation of the qubit on the Bloch
sphere. By comparing the experimentally observed backaction with a simplified model,
we were able to separate the contributions of the information update and energy update
on the outgoing field. The apparent ability for the field to gain or lose more than the
single quantum of energy allowed by the qubit is explained by the fact that the system’s
starting state is not an eigenstate of the Hamiltonian, so its energy is undetermined from
the beginning. Thus the energy change made evident by the projective measurement,
is in fact due to a collapse of the global system wavefunction whose average energy is
conserved, and not to the interaction with the measurement apparatus.
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A
SOLV ING THE BLOCH EQUATIONS

a.1 dynamics of the density matrix

We consider a qubit undergoing Rabi oscillations. In the frame rotating at the qubit
frequency ωQ, the Hamiltonian of the system can be written H = −~Ω

2 σ̂
y + ~ δ2 σ̂

z,
where the detuning of the driving field at frequency ωd from the qubit frequency is
δ = ωQ − ωd. Note that by writing the term −~Ω

2 σ̂
y we have implicitly chosen a phase

for the qubit drive. There is no loss of generality in doing this, as we can always redefine
the axes of the Bloch sphere to be aligned with the phase of the drive. The Lindblad
master equation defining the dynamics of the qubit density matrix ρ is given by

∂tρ = − i
~

[Ĥ, ρ] +
Γφ
2
D[σ̂z](ρ) + Γ↓D[σ̂−](ρ) + Γ↑D[σ̂+](ρ) . (A.1)

Γφ is the pure dephasing rate and Γ↑,↓ are the energy excitation (↑) and de-excitation
rates (↓). We define the Lindblad superoperator in the standard way

D[L](ρ) = LρL† − 1

2
ρL†L− 1

2
L†Lρ . (A.2)

a.1.1 Time dependence

To simplify the discussion we consider the qubit drive to be at the frequency ωQ in the
following such that δ = 0. Eq. (A.1) can be conveniently expressed in matrix form

(
˙ρee ˙ρeg
˙ρge ˙ρgg

)
= −Ω

2

(
−(ρeg + ρge) ρee − ρgg
ρee − ρgg ρeg + ρge

)
+ Γφ

(
0 −ρeg
−ρge 0

)
+

Γ↓

(
−ρee −1

2ρeg
−1

2ρge ρee

)
+ Γ↑

(
ρgg −1

2ρeg
−1

2ρge −ρgg

)
, (A.3)

or, using Γ2 = Γφ + Γ1
2 and in a form more tractable for subsequent calculations




˙ρee
˙ρeg
˙ρge
˙ρgg


 =




−Γ↓
Ω
2

Ω
2 Γ↑

−Ω
2 −Γ2 0 Ω

2

−Ω
2 0 −Γ2

Ω
2

Γ↓ −Ω
2 −Ω

2 −Γ↑







ρee
ρeg
ρge
ρgg


 . (A.4)

It is standard practice to rewrite this equation in the basis of the expectation values of
the Pauli operators or, in other words, as the components of the Bloch vector

〈σ̂x〉 = ρeg + ρge , (A.5)

〈σ̂y〉 = i(ρeg − ρge) , (A.6)

〈σ̂z〉 = ρee − ρgg . (A.7)
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Remember that ρee + ρgg = 1 so there is one degree of freedom less than there appears.
In this basis we can write

d

dt



〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


 =



−Γ2 0 −Ω

0 −Γ2 0

Ω 0 −Γ1






〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


+




0

0

Γ↑ − Γ↓


 . (A.8)

The solution to the homogeneous part of the equation is (using Mathematica)



〈σ̂x〉 (t)
〈σ̂y〉 (t)
〈σ̂z〉 (t)


 =




e−
Γ2+Γ1

2
t

2∆

[
∆(e

1
2 ∆t + e−

1
2 ∆t) + (Γ1 − Γ2)(e

1
2 ∆t − e− 1

2 ∆t)
]

0

0 e−Γ2t

−Ω
∆e
−Γ2+Γ1

2 t(e−
1
2 ∆t − e 1

2 ∆t) 0

−Ω
∆e
−Γ2+Γ1

2 t(e
1
2 ∆t − e− 1

2 ∆t)

0

e−
Γ2+Γ1

2
t

2∆

[
∆(e

1
2 ∆t + e−

1
2 ∆t) + (Γ1 − Γ2)(e−

1
2 ∆t − e 1

2 ∆t)
]






xc
yc
zc


 , (A.9)

where ∆2 = (Γ1 − Γ2)2 − 4Ω2 and xc, yc and zc are some constants to be determined.
When |Ω| ≥ Γ1−Γ2

2 then the solution includes under-damped oscillations



〈σ̂x〉 (t)
〈σ̂y〉 (t)
〈σ̂z〉 (t)


 =



e−ΓRt

2∆ [2∆ cos(ΩRt) + 2i(Γ1 − Γ2) sin(ΩRt)] 0

0 e−Γ2t

2iΩ
∆e
−ΓRt sin(ΩRt) 0

−2iΩ
∆e
−ΓRt sin(ΩRt)

0
e−ΓRt

2∆ [2∆ cos(ΩRt)− 2i(Γ1 − Γ2) sin(ΩRt)]






xc
yc
zc


 , (A.10)

with ΓR = Γ2+Γ1
2 and ΩR =

√
Ω2 − (Γ1−Γ2)2

4 = ∆
2i . Finally

(
〈σ̂x〉 (t)
〈σ̂y〉 (t)
〈σ̂z〉 (t)

)
=

(
e−ΓRt

[
cos(ΩRt) +

(Γ1−Γ2)
2ΩR

sin(ΩRt)
]

0 − Ω
ΩR

e−ΓRt sin(ΩRt)

0 e−Γ2t 0
Ω

ΩR
e−ΓRt sin(ΩRt) 0 e−ΓRt

[
cos(ΩRt)−

(Γ1−Γ2)
2ΩR

sin(ΩRt)
]
)(

xc
yc
zc

)
,

(A.11)

The particular solution is obtained by setting the time derivative to 0


〈σ̂x〉p
〈σ̂y〉p
〈σ̂z〉p


 = −



−Γ2 0 −Ω

0 −Γ2 0

Ω 0 −Γ1




−1


0

0

Γ↑ − Γ↓


 (A.12)

= − 1

Γ1Γ2 + Ω2



−Γ1 0 Ω

0 −Γ1Γ2+Ω2

Γ2
0

−Ω 0 −Γ2







0

0

Γ↑ − Γ↓


 (A.13)

=
1

Γ1Γ2 + Ω2




Ω(Γ↓ − Γ↑)

0

Γ2(Γ↑ − Γ↓)


 , (A.14)
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In the following we note the particular solutions, the solution to the Bloch equations in
the steady-state as (x∞, y∞, z∞)T . We can write out the solutions without taking into
account the boundary conditions as

〈σ̂x〉 (t) = x∞ + e−ΓRt

[
cos(ΩRt)xc +

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
xc − Ωzc

)]
, (A.15)

〈σ̂y〉 (t) = e−Γ2tyc , (A.16)

〈σ̂z〉 (t) = z∞ + e−ΓRt

[
cos(ΩRt)zc −

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
zc − Ωxc

)]
. (A.17)

If we know the conditions x0, y0 and z0 at time 0, we can replace the constants

〈σ̂x〉 (t) = x∞ + e−ΓRt [cos(ΩRt)(x0 − x∞)+

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
(x0 − x∞)− Ω(z0 − z∞)

)]
, (A.18)

〈σ̂y〉 (t) = e−Γ2ty0 , (A.19)

〈σ̂z〉 (t) = z∞ + e−ΓRt [cos(ΩRt)(z0 − z∞)−
sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
(z0 − z∞)− Ω(x0 − x∞)

)]
. (A.20)

We can consider the case where qubit never has a component along the y-axis. In that
case

〈σ̂y〉 = 0⇔ ρeg = ρge , (A.21)

〈σ̂x〉 = 2ρeg = 2ρge , (A.22)

〈σ̂z〉 = 2ρee − 1 = 1− 2ρgg . (A.23)

This allows us to transform the solution of the Bloch equations into the solutions for
the components of the density matrix

ρee =
1

2

{
1 + z∞ + e−ΓRt [cos(ΩRt)(z0 − z∞)−

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
(z0 − z∞)− Ω(x0 − x∞)

)]}
(A.24)

ρeg = ρge =
1

2

{
x∞ + e−ΓRt [cos(ΩRt)(x0 − x∞)+

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
(x0 − x∞)− Ω(z0 − z∞)

)]}
(A.25)

ρgg =
1

2

{
1− z∞ − e−ΓRt [cos(ΩRt)(z0 − z∞)−

sin(ΩRt)

ΩR

(
Γ1 − Γ2

2
(z0 − z∞)− Ω(x0 − x∞)

)]}
(A.26)
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a.1.2 Steady-State

It’s useful to study the steady-state solutions in more detail, in particular when δ 6= 0.
In that case

x∞ = lim
t→∞
〈σ̂x〉 (t) = −zth

Γ1Γ2Ω

Γ1(Γ2
2 + δ2) + Γ2Ω2

, (A.27)

y∞ = lim
t→∞
〈σ̂y〉 (t) = −zth

δΓ1Ω

Γ1(Γ2
2 + δ2) + Γ2Ω2

, (A.28)

z∞ = lim
t→∞
〈σ̂z〉 (t) = zth

Γ1(Γ2
2 + δ2)

Γ1(Γ2
2 + δ2) + Γ2Ω2

, (A.29)

where zth is the thermal population of the qubit zth =
Γ↑−Γ↓

Γ1
.
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B
TWO CAPACIT IVELY COUPLED FLUXONIUMS COUPLED TO
CAVITY

A novelty of this thesis was the need for a precise knowledge of all parameters of the
complex Hamiltonian

Ĥ = ĤL + ĤH + Ĥc + ĤH↔L + Ĥc↔L + Ĥc↔H , (B.1)

with

ĤH/L = 4EC n̂
2
H/L +

1

2
E

(H/L)
L ϕ̂2

H/L − E
(H/L)
J cos

(
ϕ̂H/L − 2π

Φext,H/L

Φ0

)
,(B.2)

Ĥc = ~ωRâ†câc , (B.3)

ĤH↔L = −~gHLn̂Ln̂H , (B.4)

Ĥcav↔H/L = −~gcn̂H/L(â†c + âc) , (B.5)

corresponding to two capacitively coupled Fluxoniums (indexed byH and L for low and
high in reference to their frequencies ω01 at half flux) each coupled to the same linear
resonator. The approach which was the most successful in our case is a generalisation of
the technique mentioned in [97] with the addition of a state labeling technique inspired
by [100].

b.1 diagonalise linear hamiltonian

The first step involves the diagonalisation of the linear part of the Hamiltonian given
explicitly by

Ĥlin = ~ωRâ†câc + 4EC n̂
2
L + 1

2E
(L)
L ϕ̂2

L + 4EC n̂
2
H + 1

2E
(H)
L ϕ̂2

L

−~gcn̂L(â†c + âc)− ~gcn̂H(â†c + âc)− ~gHLn̂Ln̂H .

Because the terms pertaining to the two Fluxonium qubits are quadratic, the linear
Hamiltonian can be rewritten

Ĥlin = ~ωRâ†câc + ~ωH â†H âH + ~ωLâ†LâL
−i~gcnHZPF(âc + â†c)(â

†
H − âH)− i~gcnLZPF(âc + â†c)(â

†
L − âL)

+~gHLn
L
ZPFn

H
ZPF(â†H − âH)(â†L − âL) ,

where

ωH/L =

√
8ECE

(H/L)
L

and we have defined the operators âH/L and â†H/L as in (3.40) and (3.41). Finding the
operator transformation which makes this Hamiltonian diagonal involves the diagonal-
isation of the matrix MH so that

Ĥlin =
~
2
v̂†MH v̂ , (B.6)
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where v̂† is the row vector (â†c â
†
H â†L âc âH âL)[101]. MH reads




ωR igcn
H
ZPF igcn

L
ZPF 0 −igcnHZPF −igcnLZPF

−igcnHZPF ωH −gHLn
L
ZPFn

H
ZPF −igcnHZPF 0 gHLn

L
ZPFn

H
ZPF

−igcnLZPF −gHLn
L
ZPFn

H
ZPF ωL −igcnLZPF gHLn

L
ZPFn

H
ZPF 0

0 igcn
H
ZPF igcn

L
ZPF ωR −igcnHZPF −igcnLZPF

igcn
H
ZPF 0 gHLn

L
ZPFn

H
ZPF igcn

H
ZPF ωH −gHLn

L
ZPFn

H
ZPF

igcn
L
ZPF gHLn

L
ZPFn

H
ZPF 0 igcn

L
ZPF −gHLn

L
ZPFn

H
ZPF ωL



.

(B.7)

This is possible algebraically, but involves finding the roots of 3rd order polynomials
and the equations are intractable. Numerical diagonalisation of MH yields a set of
eigenoperators ãX labelled by the set S = {c,H,L} which are a linear combination of
the original operators and their conjugates1. Conversely

âX =
∑

Y ∈S
λXY ã

†
Y + µ∗XY ãY , λXY , µXY ∈ C . (B.8)

In this basis the full Hamiltonian is written

H̃ = ~ω̃Rã†cãc + ~ω̃H ã†H ãH + ~ω̃Lã†LãL

−E(L)
J cos

(
ϕ̂L − 2π

Φ
(L)
ext

Φ0

)
− E(H)

J cos

(
ϕ̂H − 2π

Φ
(H)
ext
Φ0

)
, (B.9)

and we can express the phase of each qubit as a function of the new operators

ϕ̂X = ϕXZPF(â†X + âX) = ϕXZPF

∑

Y ∈S
c∗XY ãY + cXY ã

†
Y , (B.10)

where we have defined cXY = λXY + µXY .

b.2 calculating the matrix cosine

At this point we encounter severe numerical issues simply in setting up the matrix
for the cosine terms. Indeed, with the dimensions of the qubit Hilbert spaces around
20 and the cavity Hilbert space of dimension 10, we need to numerically compute the
matrix cosine of a 4000× 4000 matrix. This is doable, but not convenient if we want to
evaluate the result of the diagonalisation at different fluxes. Thankfully, there exists an
algebraic solution for the cosine matrix. We reexpress the equation for ϕ̂X above as a
sum of charge and phase operators. To do this we define θXY = arg cXY and continue
transforming the expression

c∗XY ãY + cXY ã
†
Y = |cXY |

(
e−iθXY ãY + eiθXY ã†Y

)

=
|cXY | cos θXY

ϕ̃Y,ZPF
ϕ̃Y +

|cXY | sin θXY
ñY,ZPF

ñY . (B.11)

In the above ϕ̃Y,ZPF and ñY,ZPF are the zero point fluctuations of the operators ϕ̃Y and
ñY respectively. So finally

ϕ̂X = ϕXZPF

∑

Y ∈S

|cXY | cos θXY
ϕ̃Y,ZPF

ϕ̃Y +
|cXY | sin θXY

ñY,ZPF
ñY . (B.12)

1 We omit the operator hat notation .̂ for the tilde operators for the sake of readability.
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B.2 calculating the matrix cosine

Note that the diagonalised Hamiltonian in the eigenmode basis is invariant under the
redefinition of the phase of each of the operators in O. So there is a phase degree of
freedom we have not yet used in this calculation. We can use it to eliminate the sine
term in the expression for ϕ̂X . The expression for the phase operator becomes

ϕ̂X =
∑

Y ∈S

|cXY | cos θXY
ϕ̃Y,ZPF

ϕ̃Y =
∑

Y ∈S
ξXY ϕ̃Y . (B.13)

b.2.1 Phase criterion

To eliminate the sine term we impose the following condition

sin θX,Y = 0⇔ θX,Y = 0⇔ λXY + µXY ∈ R . (B.14)

We express this as a condition on the transformation from the original operators to the
operators in the normal basis. Let ṽ = Av̂, with A the matrix that diagonalises MH .
We also define the following matrix

K =

(
0 13

13 0

)
, (B.15)

and the phase matrix β which describes a transformation of the phase of the operators

β = diag(eiβc , eiβH , eiβL , e−iβc , e−iβH , e−iβL) . (B.16)

Noting the following identity



âc + â†c

âH + â†H
âL + â†L
â†c + âc

â†H + âH
â†L + âL




= (1 +K)v̂ = (1 +K)A−1βṽ , (B.17)

if we want ϕ̂X =
∑

Y ∈S ξXY ϕ̃Y then we need to choose β such that the rows of the
matrix T = (1 +K)A−1β are of the form (αi βi γi αi βi γi) with αi, βi, γi ∈ C and i
is the row index of T. With this

ϕ̂H = ϕHZPF

6∑

j=1

T1j ṽj , (B.18)

ϕ̂L = ϕLZPF

6∑

j=1

T2j ṽj . (B.19)
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two capacitively coupled fluxoniums coupled to cavity

b.2.2 Cosine matrix elements

Concretely, we now need to calculate cos

(
ϕ̂X − 2π

Φ
(X)
ext
Φ0

)
. We use the expression for a

cosine containing four different terms

cos

(
4∑

i=1

θi

)
=

2∑

k=0

(−1)k
∑

A⊆{ 1,2,3,4}
|A|=2k


∏

i∈A
sin θi

∏

i 6∈A
cos θi


 , (B.20)

so that

cos (ϕ̂X − ϕext) =
2∑

k=0

(−1)k
∑

A⊆{c,H,L,ext}
|A|=2k






∏

Y ∈A
Y 6=ext

sin ξXY ϕ̃Y
∏

Y 6∈A
Y 6=ext

cos ξXY ϕ̃Y




·(δext∈A sin (−ϕext) + δext6∈A cosϕext)] . (B.21)

Let’s take |α, β,m〉 = |α〉⊗|β〉⊗|m〉 as a basis of the Hilbert space H = HH⊗HL⊗Hc
spanned by the operators ã†H ãH , ã

†
LãL, ã

†
cãc with eigenstates |α〉 , |β〉 , |m〉. We can

decompose the expression (B.21) onto this basis

cos (ϕ̂X − ϕext) =
∑

α,α′

β,β′

m,m′

|α, β,m〉
〈
α′, β′,m′

∣∣
2∑

k=0

(−1)k
∑

A⊆{c,H,L,ext}
|A|=2k

〈α, β,m|

(δc∈A sin ξXcϕ̃c + δc 6∈A cos ξXcϕ̃c)(δH∈A sin ξXH ϕ̃H + δH 6∈A cos ξXH ϕ̃H)·
(δL∈A sin ξXLϕ̃L+δL6∈A cos ξXLϕ̃L)(δext∈A sin (−ϕext)+δext6∈A cosϕext)

∣∣α′, β′,m′
〉

(B.22)

Note that each of the ϕ̃X act on a different part of the Hilbert space H. Using the
associativity of the product

cos (ϕ̂X − ϕext) =
2∑

k=0

(−1)k
∑

A⊆{c,H,L,ext}
|A|=2k

(δext∈A sin (−ϕext) + δext 6∈A cosϕext)·


δH∈A

∑

α,α′

|α〉
〈
α′
∣∣ 〈α

∣∣sin ξXH ϕ̃H
∣∣α′
〉

+ δH 6∈A
∑

α,α′

|α〉
〈
α′
∣∣ 〈α

∣∣cos ξXH ϕ̃H
∣∣α′
〉

⊗


δL∈A

∑

β,β′

|β〉
〈
β′
∣∣ 〈β

∣∣sin ξXLϕ̃L
∣∣β′
〉

+ δL6∈A
∑

β,β′

|β〉
〈
β′
∣∣ 〈β

∣∣cos ξXLϕ̃L
∣∣β′
〉

⊗


δc∈A

∑

l,l′

|l〉
〈
l′
∣∣ 〈l
∣∣sin ξXcϕ̃c

∣∣l′
〉

+ δc 6∈A
∑

l,l′

|l〉
〈
l′
∣∣ 〈l
∣∣cos ξXcϕ̃c

∣∣l′
〉

 (B.23)
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B.3 ordering the states

Finally, the matrix elements 〈k|sinλϕ|l〉 and 〈k|cosλϕ|l〉 are given by the analytical
expressions ([97] and equations 7.388.6 & 7.388.7 of [238])

〈k|cosλϕ|l〉 =
{

(−1)
l−k

2

√
k!
l! (λϕZPF)l−ke−(λϕZPF)2/2Ll−kk ((λϕZPF)2) (k + l even, k ≤ l)

0 (k + l odd) ;

(B.24)

〈k|sinλϕ|l〉 =
{

0 (k + l even)

(−1)
l−k+1

2

√
k!
l! (λϕZPF)l−ke−(λϕZPF)2/2Ll−kk ((λϕZPF)2) (k + l odd, k ≤ l) .

(B.25)

In the above formulas, Lba are the associated Laguerre polynomials.

b.3 ordering the states

Diagonalising H̃ yields a list of energy eigenstates and their respective energies ordered
by increasing energy. For the diagonalisation to be useful we need to assign quantum
numbers belonging to the cavity and both fluxoniums to each state. To do this we first
use a technique developped in [100] which uses the cavity dipole operator to identify
resonator transitions. We calculate

〈ψn|ã†c + ãc|ψm〉 , (B.26)

for all eigenstates |ψn〉 in H. The coupling gcav is weak so the operator ã†c + ãc is very
close to â†c + âc. Because of this we can restrict the numerics to the states separated in
energy by a range around the experimental cavity frequency. This dramatically reduces
the number of calculations from N2 to Θ(N) (N is the dimension of H), which is a key
speed up when N is large. The calculation of these matrix elements allows us to create
ladders of states corresponding to increments in the photon number in the resonator.
Thus, we can already label |ψn〉 as |γ,m〉 wherem is the photon number in the resonator.
Assigning quantum numbers from the two Fluxonium qubits is done by comparing |γ, 0〉
with the product states |α〉 ⊗ |β〉 ⊗ |0〉 obtained by direct diagonalisation of

H̃H = ~ω̃H ã†H ãH − E
(H)
J cos

(
ϕ̂H − 2π

Φ
(H)
ext

Φ0

)
, (B.27)

H̃L = ~ω̃Lã†LãL − E
(L)
J cos

(
ϕ̂L − 2π

Φ
(L)
ext

Φ0

)
, (B.28)

independently. In practice we calculate the overlaps 〈γ, 0| (|α〉⊗|β〉⊗|0〉). We can again
reduce the number of overlaps, by considering that the energies of the states |γ, 0〉 are
close to those of |α〉 ⊗ |β〉 ⊗ |0〉. This is equivalent to saying that the couplings gc and
gHL are small compared to the energies of each Hamiltonian independently. This way
we don’t compare states which are energetically too distant.
We have obtained a labelling with quantum numbers α, β and m such that |ψn〉 =

|α, β,m〉 is in fact very close to |α〉 ⊗ |β〉 ⊗ |m〉 in the case of weak couplings.
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C
FABRICAT ION OF TITANIUM NITR IDE DEVICES

The fabrication of the TiN hanger resonators was done in multiple steps in multiple
cleanrooms.

1. High resistivity (> 20 000 Ω cm) Silicon (111) wafers were cleaned in acetone and
IPA for 1 minute, before a plasma O2 clean for 3 minutes.

2. The wafer were then dipped in a 5% HF solution for 1 minute before being rinsed
with DI water.

3. They were then placed as fast as possible inside the sputtering machine to avoid
reoxidation of the silicon substrate. Deposition was done according to the param-
eters mentioned in Tab. C.1.

4. The colour of the TiN films were monitored during venting of the sputtering
chamber and the colour immediately after exiting the sputtering machine was
recorded. This colour was not necessarily the same as inside the chamber, but that
colour was difficult to determine precisely due to the UV filters on the chamber
windows. The wafers were then package for transport.

5. Before spin coating with S1813 resin (10s 1000rpm (500 rpm/s), 40s 2000rpm
(4000 rpm/s), 1 minute bake at 115°C) the wafers were cleaned with acetone and
IPA again.

6. Optical lithography was used to pattern the wafer after which the exposed resin
was developped using AZ726 MIF for 90 seconds and then rinsed in DI water.

7. The exposed TiN film was etched using an SF6 plasma taking care not to over-etch
the silicon beneath.

8. The resin was the removed using acetone and IPA.

9. In certain cases the wafer was then taken for another etch with HF 5% for 1
minute and DI water rinse in a different location (INSA).

Figure C.1: Optical image of the chips labeled 1 - 4 in Tab. C.1 illustrating the different colours
of TiN samples visible on 31/05/2018.
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fabrication of titanium nitride devices

10. Finally, the wafers were diced after having been spin coated with resin for protec-
tion. A final clean with acetone and IPA was done before wirebonding.

Steps 1 to 4 were done in the cleanroom at Centrale Lyon, steps 5 - 8 and 10 at the
cleanroom at the Université Claude Bernard and step 9 was done at the cleanroom at
INSA Lyon.
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fabrication of titanium nitride devices
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D
PAST QUANTUM STATE FORMALISM

d.1 introduction

The dynamics of a classical system can be described by propagating the system forwards
in time from a known initial state at time ti. If we have access to all the microscopic
microstates of the system, this forwards trajectory is full reversible by propagating
the perfectly known final state at time tf backwards in time towards the intial state.
For an isolated quantum system this is also the case, as the Schrödinger equation
possesses time reversal symmetry. Differences arise if the quantum system is measured.
In the classical case, measurement does not affect the system and does not need to be
included in the dynamics, whether backwards or forwards. In the quantum case, because
a measurement at time tM ∈ [ti, tf ] always leads to some backaction on the state of
the system, the dynamics after the measurement can only be described conditioned on
the result of the measurement at time tM . Using the density matrix and the Lindblad
master equation, we can predict the probability of a certain measurement outcome at
time tM using the information about the state before the measurement. Is it possible
to improve the estimation of the unknown outcome of an measurement at time tM
by also using the information about the quantum state at times t ∈ [tM , tf ]? This is
the objective of the past quantum state formalism as described in [42, 239]. The work
by Gammelmark et al. introduces the pair of matrices (ρ(t), E(t)) which contain the
observer’s information about the quantum state obtained both before and after time
t. ρ(t) is simply the density matrix and E(t) is called the effect matrix. The thesis of
Quentin Ficheux [48] gives an excellent introduction to the subject complementary to
the work by Gammelmark et al. Here we will simply sum up some of the main results
useful for understanding the results and techniques developed in this thesis.

d.2 generalised measurements in quantum mechanics

Quantum measurements, unlike their classical counterparts whose nature is fixed, be-
long on a spectrum, from weak to strong. At the strong end we find projective mea-
surements, or Von Neumann measurements, which collapse the quantum state after the
measurement onto one of the pointer states of the measurement operator. Stern and
Gerlach’s experiment measures the spin of an incoming particle strongly by encoding
the measured value in the position of the particle’s impact on a screen when using a
large magnetic field gradient [240]. Particles with different measured spins can there-
fore be distinguished by comparing the positions of their impacts on the screen. At the
weak end, the measurement outcome gives little information about the quantum state,
which is barely disturbed by the measurement. This is the case if the magnitude of the
magnetic field gradient is much smaller, only separating the spins a little, such that we
cannot truely distinguish different positions on the screen. In that case the spin is not
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past quantum state formalism

totally projected onto a single value, but there remains some uncertainty. To describe
these generalised measurements, we introduce a set of Kraus operators {M̂i} with out-
comes λi. All the operators M̂ †i M̂i are hermitian and

∑
i M̂

†
i M̂i = 1. The probability

of each measurement outcome is

pi = tr
[
M̂iρM̂

†
i

]
(D.1)

given a density matrix ρ, and immediately after a measurement with outcome λi the
state is given by

ρ =
M̂iρM̂

†
i

tr
[
M̂iρM̂

†
i

] . (D.2)

d.3 forward-backward algorithm

In Chapter 6 we considered the probabilities P (zk| |ν〉) of obtaining the point zk in
the IQ-plane if the qubit was in state |ν〉. We can express this as a function of a set
of Kraus operators {M̂z} whose outcomes are all possible values z in the IQ-plane. In
that case

P (z| |ν〉) = tr
[
M̂z |ν〉 〈ν| M̂ †z

]
=
∑

σ

〈σ|M̂z|ν〉 〈ν|M̂ †z |σ〉 =
∑

σ

∣∣∣ 〈σ|M̂z|ν〉
∣∣∣
2
. (D.3)

Equivalently, the probability P (|ν〉 , k) of being in state |ν〉 at time tk is given by the
diagonal elements of the density matrix at time tk

P (|ν〉 , k) = 〈ν|ρ(tk)|ν〉 . (D.4)

We are now ready to derive equation (6.39) from the Kraus matrix representation. To do
that, remember that our dispersive measurement does not yield any information about
the coherences of the density matrix at each time step. Thus after each measurement,
the density matrix stays diagonal. In that case, to determine the density matrix ρ(t+k )

just after the measurement with outcome z at time tk, we only need to specify

P (|ν〉 , k+) = 〈ν|ρ(t+k )|ν〉 = 〈ν| M̂zρ(t−k )M̂ †z

tr
[
M̂zρ(t−k )M̂ †z

] |ν〉 , (D.5)

where ρ(t−k ) is the density matrix just before the measurement. Using the fact that ρ
is diagonal, the numerator can be reduced to

〈ν|M̂zρ(t−k )M̂ †z |ν〉 =
∑

µ

∣∣∣ 〈ν|M̂z|µ〉
∣∣∣
2
P (|µ〉 , k−) , (D.6)

because ρ(t−k ) =
∑

µ P (|µ〉 , k−) |µ〉 〈µ|. Equivalently, the trace becomes

tr
[
M̂zρ(t−k )M̂ †z

]
=
∑

µ,σ

∣∣∣ 〈σ|M̂z|µ〉
∣∣∣
2
P (|µ〉 , k−) =

∑

µ

P (z| |µ〉)P (|µ〉 , k−) . (D.7)

Equation (D.7) already corresponds to the denominator of (6.39). To transform (D.6)
into the correct form we need to specify some assumptions about the physical model.
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D.4 link to the effect matrix

Subliminal to (6.39) is the assumption that the measurement record is obtained by a
series of instantaneous measurements, followed by an evolution given by the transition
rates. Of course this is not really the case as the cavity drive is applied continuously, so
the true description of the system would have to take into account infinitesimal time
steps and an evolution related to the stochastic master equation. Because we separate
the measurement result from the dynamics of the qubit during the measurement, we
can assume that our instantaneous measurement is quantum non-demolition. In that
case, M̂z is diagonal in the qubit basis [241]. So

〈ν|M̂z|µ〉 = δµ,ν 〈ν|M̂z|ν〉 , (D.8)

and (D.6) becomes

〈ν|M̂zρ(t−k )M̂ †z |ν〉 = P (z| |ν〉)P (|ν〉 , k−) . (D.9)

Finally

P (|ν〉 , k+) =
P (z| |ν〉)P (|ν〉 , k−)∑
µ P (z| |µ〉)P (|µ〉 , k−)

, (D.10)

exactly reproducing (6.39) when taking into account the transition rates between mea-
surements. The backwards update equation (6.40) can be determined the same way.

d.4 link to the effect matrix

Through the example of the quantum jumps of Chapter 6 we can better understand
the role of the effect matrix. When propagating forward through time the density
matrix is updated by the Hamiltonian dynamics and by the information obtained in the
measurement record. When the measurement efficiency and coherences of the quantum
state need to be taken into account, the evolution of ρ is given by the stochastic master
equation. This equation can be seen as a successive application of Kraus maps at
each time step dt which take into account the Hamiltonian dynamics, dissipation and
measurement record. The effect matrix also obeys a stochastic master equation, but
with time propagating backwards. Thus, when there is no measurement, while ρ obeys
the Lindblad master equation, E obeys

∂tE = − i
~

[E, ρ]−
∑

i

D∗[L̂i](E) (D.11)

where the adjoint of the Lindblad superoperator is

D∗[L̂](E) = L̂†EL̂− 1

2
EL̂†L̂− 1

2
L̂†L̂E . (D.12)

Note the change of sign with respect to the normal Lindblad equation

∂tE = − i
~

[E, ρ] +
∑

i

D[L̂i](E) . (D.13)
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past quantum state formalism

preparation post-selection

prediction retrodiction

Figure D.1: The effect matrix is the dual of the density matrix propagating backwards in time.
Figure taken from [48].

How can we use the effect matrix to make better predictions about measurements at
past times? Given a set of measurement operators {M̂i} the probability of a measure-
ment outcome λm at time t is given by

P (λm) =
tr
[
M̂mρ(t)M̂ †mE(t)

]

∑
n tr

[
M̂nρ(t)M̂ †nE(t)

] . (D.14)

If we have no information about the qubit state at future times, E(t) = 1/ dimH and we
retrieve equation (D.1). E(t) should therefore be interpreted as the information about
the state we obtain from observation and not the state itself. In particular, tr [E(t)] is
not always equal to 1.

d.5 time evolution of the effect matrix

We solve the backward propagating Lindblad equation equivalent to A.1 for the effect
matrix

∂tE = − i
~

[E, ρ]− Γφ
2
D∗[σ̂z](E)− Γ↓D

∗[σ̂−](E)− Γ↑D
∗[σ̂+](E) . (D.15)

We can express the equations in matrix form again
(
Ėee ˙Eeg

˙Ege ˙Egg

)
= −Ω

2

(
−(Eeg + Ege) Eee − Egg
Eee − Egg Eeg + Ege

)
− Γφ

(
0 −Eeg
−Ege 0

)

− Γ↓

(
Egg − Eee −1

2Eeg
−1

2Ege 0

)
− Γ↑

(
0 −1

2Eeg
−1

2Ege Eee − Egg

)
, (D.16)

or in a more readable form



Ėee
˙Eeg
˙Ege
˙Egg


 =




Γ↓
Ω
2

Ω
2 −Γ↓

−Ω
2 Γ2 0 Ω

2

−Ω
2 0 Γ2

Ω
2

−Γ↑ −Ω
2 −Ω

2 Γ↑







Eee
Eeg
Ege
Egg


 . (D.17)

Note that these equations do not the trace of E Ėee + ˙Egg 6= 0. In the Bloch basis we
obtain

d

dt



〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


 =




Γ2 0 −Ω

0 Γ2 0

Ω 0 Γ1






〈σ̂x〉
〈σ̂y〉
〈σ̂z〉


 . (D.18)
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D.6 weak values

To take into account the last degree of freedom we use the independent equation Ėee +
˙Egg = (Γ↓−Γ↑) 〈σ̂z〉, which is the time reversed equivalent of the constant term above.

We already know the homogeneous solution to the Bloch equations for the density
matrix, we just need to replace all the dissipation terms by their negative

〈σ̂x〉 (t) = eΓRt

[
cos(ΩRt)xc +

sin(ΩRt)

ΩR

(
Γ2 − Γ1

2
xc − Ωzc

)]
, (D.19)

〈σ̂y〉 (t) = eΓ2tyc , (D.20)

〈σ̂z〉 (t) = eΓRt

[
cos(ΩRt)zc −

sin(ΩRt)

ΩR

(
Γ2 − Γ1

2
zc − Ωxc

)]
. (D.21)

Here again the constants correspond to the boundary conditions, this time most likely
at the end of the trajectory. We can again consider the case where the qubit never has
a component along the y-axis. In that case

Eee − Egg = 〈σ̂z〉 , (D.22)

Eee + Egg = (Γ↓ − Γ↑)

∫
〈σ̂z〉 dt+ c , (D.23)

Eeg = Ege =
1

2
〈σ̂x〉 , (D.24)

where c is a constant which depends on the boundary conditions. Solving the integral
is painless by using the exponential formulas for cos and sin

∫
eΓt(a cos(ωt)−b sin(ωt))dt =

eΓt

Γ2 + ω2
[cos(ωt)(aΓ + bω) + sin(ωt)(aω − bΓ)]+cI ,

(D.25)

replacing the constants by the correct values
∫
〈σ̂z〉 dt =

eΓRt

Γ2
R + Ω2

R

[
cos(ΩRt)

(
zcΓR +

Γ2 − Γ1

2
zc − Ωxc

)

+ sin(ΩRt)

(
zcΩR −

ΓR
ΩR

(
Γ2 − Γ1

2
zc − Ωxc

))]
+ cI , (D.26)

and

Eee + Egg =
eΓRt(Γ↓ − Γ↑)

Γ2
R + Ω2

R

[cos(ΩRt) (zcΓ2 − Ωxc)

+
sin(ΩRt)

ΩR

((
Ω2
R − ΓR

Γ2 − Γ1

2

)
zc + xcΓRΩ

)]
+ cI , (D.27)

Eee − Egg = eΓRt

[
cos(ΩRt)zc −

sin(ΩRt)

ΩR

(
Γ2 − Γ1

2
zc − Ωxc

)]
, (D.28)

Eeg = Ege =
1

2
eΓRt

[
cos(ΩRt)xc +

sin(ΩRt)

ΩR

(
Γ2 − Γ1

2
xc − Ωzc

)]
. (D.29)

d.6 weak values

In Chapter 7 we use the past quantum state formalism to predict the expectation value
of an operator at time t post-selected on the results of a strong measurement at time
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past quantum state formalism

tm > t and with knowledge of the qubit starting state. This expectation value of an
operator ô conditioned on the measurement result λ at tm is given by

〈ô〉λ =
tr [Eλ(t)ôρ(t)]

tr [Eλ(t)ρ(t)]
. (D.30)

This is called the weak value of ô [237].
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