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Abstract
Chemical bonding can be described using the density functional theory (DFT) framework as

electronic density reorganisation between chemical entities. Relying on Absolutely Localized

Molecular Orbitals (ALMO), the density reorganization can be separated into polarization and

charge transfer. However, the ALMO formalism is intractable when combined with mixed-

states theory, which is required for describing metals. As shown herein, these two theories

can be unified into a mean-field approximation called S-ALMO, allowing for a fundamental

density-based description of most chemical bonds.

In practice, bonds are most often defined by geometrical considerations. Based on an intu-

itive and powerful idea (an atom’s nearest neighbours must cover its field of view), SANN

(Solid Angle based Nearest Neighbours) provides locally adaptive parameter-free coordination

numbers. A natural extension of this algorithm, called ASANN, is developed to tackle local

anisotropy while remaining parameter-free. We demonstrate that this method effectively

provides a fundamental topology-based definition of coordination numbers applicable to

close packed bulks, liquids and interfaces.

Even though bonds are topologically defined, they contain chemically relevant information,

providing descriptors for describing the associated energy. Lattice-based cluster expansion

model Hamiltonians are particularly popular for determining the adsorption energy in hetero-

geneous catalysis. Fitting the corresponding model Hamiltonian is usually performed on a

training set composed of hundreds of structures hand-picked by a chemist. For the model

Hamiltonian to be relevant for describing a given reaction, the chemist uses his own expertise

and chemical intuition to select a diverse set of chemically relevant structures. Treating the

generation of a relevant input as a strategy-based game, a novel active learning scheme for

model Hamiltonians is designed based on a UCT (Upper Confidence Tree). Updating the

model Hamiltonian on-the-fly is achieved by a novel recursive least-squares algorithm, called

rank-Greville, exploiting the rank deficiencies of the occurrence matrix to reduce the scaling of

the update. Furthermore, a domain knowledge extension on top of the UCT framework allows

to optimize the training set construction, leading to the Reinforcement Sampling scheme. This

approach effectively replaces chemical intuition with reproducible reinforcement learning

techniques.

Keywords: Energy decomposition analysis, coordination numbers, active learning, rank-

deficient recursive least-squares
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Résumé
Cette thèse se focalise sur le développement d’outils pour l’étude fondamentale des interac-

tions latérales au travers de multiples projets :

D’un point de vue quantique, les effets énergétiques des interactions chimiques sont dé-

composables rigoureusement en utilisant des orbitales moléculaires absolument localisées

(ALMO). Au cours de cette thèse, une approximation de champ moyen a été développée et

implémentée dans CP2K afin d’unifier le formalisme ALMO avec la théorie des états mixtes

dans une description DFT, permettant d’étendre l’analyse en composantes énergétiques aux

systèmes métalliques.

D’un point de vue purement topologique, un nouvel algorithme de détermination de liaisons

chimiques (ASANN) a été développé durant cette thèse. Au travers d’un simple terme correc-

tif, ASANN étend l’algorithme de référence SANN aux systèmes présentant une anisotropie

locale, sans introduire aucun paramètre. Les nombres de coordination ainsi produits sont

particulièrement adaptés pour la descriptions d’interfaces.

Ces points de vue complémentaires se combinent sous la forme d’un Hamiltonien effectif basé

sur les interactions latérales. Un nouvel outil non-stochastique a été développé et implémenté

durant cette thèse, utilisant des algorithmes d’apprentissage par renforcement pour l’entraî-

nement automatique de tels modèles destinés à simuler un système à N corps sur surface

réactive. Cet outil repose sur l’adaptation d’un UCT avec une pré-exploration guidée par le

modèle en cours d’apprentissage. La mise à jour d’un tel modèle linéaire a été optimisée par

la formulation d’un nouvel algorithme de résolution des moindres carrés récursifs exploitant

les déficiences de rang.

Mots-clés : décomposition de l’énergie, nombres de coordination, résolution des moindres

carrés récursifs, systèmes linéaires défficient de rang, apprentissage actif
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1 Introduction

1.1 Motivation

Chemistry is infused with the concept of bonds. From covalent bonds to weak bonds1;2,

ionic bonds3 and metallic bonds4, chemical bonding plays a major role in almost all sub-

fields of Chemistry 5;6. But what exactly is a chemical bond? In its most general definition,

a chemical bond can be seen as a significant interaction between chemical entities. But in

fact, a precise definition would be very much dependent on the context and abstraction level.

Indeed, real chemical phenomena are incredibly complex processes that occur across diverse

characteristic space and time scales, at the same time7. In order to describe them, these

phenomena are usually decomposed into macro/meso/micro descriptions and various time-

range related effects (long term deviations, short term fluctuations, ...), all interacting together,

but studied separately with the appropriate approximations 8. Total synthesis, atomistics, data

science, thermodynamics, kinetics and so forth, all provide different contexts for studying

chemical events. Even at the atomic level, Theoretical Chemistry relies on a collection of tools

and models for exploring this vast domain of study. In particular, two major descriptions

coexist: Quantum Mechanics (QM) and Molecular Mechanics (MM).

In a QM approach, one is interested in the proper description of the electronic structure

of a chemical system. In this approach, electrons are treated as quantum objects, through

their wavefunction (i.e. the mathematical representation of a quantum state), by evaluating

and solving the (approximate) Hamiltonian of a given system. Because of the computational

complexity of this resolution, such approach is limited to systems with a relatively few number

of atoms. Instead of directly manipulating wavefunctions, one can consider the much simpler,

and chemically more intuitive, electronic density. This is particularly popular 9 in the context

of the Density Functional Theory10;11 (DFT). Furthermore, DFT allows for the description

of relatively larger systems at a quantum level description. One should note that, unlike the
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electronic density, chemical bonds are not an observable of the system 12. Hence, just like on

experimental grounds, QM enables an unbiased exploration of various bonding situations.

However, QM provides a plethora of tools to characterize, quantify and classify chemical

bonds 13–16.

However, in a MM approach, one is focused on the molecular structure only, using classical

models to describe the electronic effects: force fields17. Indeed, a force field is an empirical

model aimed at reproducing electronic effects through classical interactions between classical

objects (e.g., spheres) representing chemical entities. As a consequence, MM calculations are

performed at a rather abstract “high-level” description, dealing with classical nuclei coordi-

nates and, more generally, topology descriptors18–20. Such simplified model is particularly

well adapted to describe relatively large systems and/or large time scales that could not be

handled by a full quantum description in a reasonable computational time21. One should

note that, in an MM approach, chemical bonds are treated as additional relations (typically

restraints) between coordinates of classically defined chemical entities. As a consequence,

an acceptable chemical bond definition, in this context, should inherently be dealing with

geometrical considerations.

Interestingly enough, chemical bonds are defined in drastically different ways depending

on the approach. Indeed, both approaches rely on different representations and abstractions.

So much that covalent bonding is merely a derivable property in the QM approach, while

covalent bonds are crucial input data for the MM approach. In the first chapters of this thesis,

we explore further the fundamentally dissimilar definitions, depending on the electronic

vs. topology-based context, of the same notion of covalent bond that is so characteristic of

Chemistry.

1.2 Electronic point of view

From a fundamental point of view, chemical bonding can be described in terms of inter-

action between chemical entities. Such description is not limited to bonds between atoms,

since interactions are defined between molecules, ions, radicals, . . . (incorporating many-body

effects). These sub-systems will be referred to as fragments. A crucial question now is: how

can we identify or even quantify an interaction between fragments?

An emblematic characterization of bonds can be found in Bader’s Atoms-In-Molecule (AIM)

analysis 16, where bonding is linked to the topology of the electronic density. Alternatively, we

consider instead an energy-based “responsive” scheme, where an interaction is assessed as the

response of a fragment to the presence of an other fragment, compared with a hypothetical
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situation where the fragments are not interacting (i.e. do not “feel” each other) 22. We believe

that this approach provides meaningful definitions that can be easily interpreted 23.

In the DFT framework, an interaction between fragments is inevitably linked to an elec-

tronic density reorganisation of these fragments. A convenient way to characterize such

reorganisation is by evaluating its energy contribution. Indeed, such evaluation is retrieving

the strength of the interaction. However, the strength is not the only property that defines a

bond. Another important property lies in the nature of the interaction, and can be investigated

by discriminating the components of the reorganisation. Indeed, the electronic density reor-

ganisation, caused by the interaction between two fragments, can be naturally decomposed

into two main components:

• Electronic density reorganisation within the defined fragments, called polarisation.

• Electronic density reorganisation in-between the fragments, called charge transfer (CT).

This decomposition is not only interesting from a fundamental point of view, or as a tool for

rational design. It is also essential for choosing the right approximations and models in order

to accurately describe specific processes. For example, if charge transfer effects are found to

be significant (and unpredictable from polarization effects), then by definition, a polarizable

force-field will likely be not adapted in this context and one would need to rely, at least, on a

reactive force field, such as ReaxFF 24. Now, a natural question is: how such decomposition

can be evaluated/computed in practice?

The most straightforward way to study this decomposition would be to switch on and off

one of the components, in order to deduce its contribution. In fact, it is possible to do so with

charge transfer between fragments (i.e. disabling it artificially, without changing anything

else). The charge transfer contribution (and therefore the reorganization decomposition)

can be obtained by forcing the electronic density to remain localized on each fragment (i.e.

polarization effects only), and comparing it to the same system where the electronic density

to free to be delocalized (i.e. polarization and charge transfer effects). The energy difference

between these two systems represents, therefore, the energy contribution of the charge transfer

effects, leading to an energy-based decomposition of interactions. This Energy Decomposition

Analysis (EDA) requires, therefore, a method for forcing electrons to remain localized on

predefined fragments.

The most rigorous method for applying density localization constrains rely on the use

of localized orbitals, called Block-Localized Wavefunctions25 (BLW), Absolutely Localized
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Molecular Orbitals 22;26–28 (ALMO) or even Extremely Localized Molecular Orbitals 29 (ELMO).

The use of localized orbitals also provides significant computational advantages:

• The Basis Set Superposition Error (BSSE) between fragments is naturally reducedi.

• Near linear scaling DFT can be achieved in some settingsii. In this matter, the mixed

Gaussian Plane Waves (GPW) approach makes CP2K, the open-source simulation soft-

ware, particularly relevant for using localized orbitalsiii.

Unfortunately, ALMO has originally been formulated for pure states only, i.e., all spin-orbitals

are either occupied or empty. In metallic systems the density of states is continuous across

the Fermi-level. For Hartree-Fock and Kohn-Sham density functional theory, fractional or-

bital/band occupations following Fermi-Dirac statistics, are equivalent to the much more

involved explicit consideration of pure-state ensembles31. The limitation of ALMO to pure

states is especially unfortunate for exploring the charge transfer vs. polarization effects in-

volved in heterogeneous catalysis. It is also particularly problematic for electrochemical

simulations, with passive species whose charge must remain localized.

The occupied ALMOs are necessarily non-orthogonal between different fragments.iv The

self-consistent coupling of occupied (non-orthogonal) ALMOs between fragments implies

that the interactions with the surroundings depend on the quantum state of each fragment,

leading to non-identical orbitals from one quantum state to an other. It would therefore

seem that the ALMO formalism cannot be rigorously combined with mixed state theory in

a computationally tractable way. But what about an approximate unification? Is there a

meaningful approximation under which the ALMO formalism can be applied to metallic

systems?

I suggest in chapter 2 a mean-field approximation where the average interaction is con-

sidered for all quantum states independently, leading to a more general orbital occupations

rescaling trick, based on a novel and subtly different concept: selfish orbitals. Using selfish

orbitals, instead of rescaled orbitals (to obtain rescaled occupations), leads to a mixed-state

description that is (approximately) compatible with the ALMO formalism. This approximate

unified theory has been integrated into CP2K, under the name S-ALMO. This work extends,

therefore, the rigorous CT EDA-based characterization of chemical bonding to metallic sys-

tems, under a meaningful approximation.

iThe BSSE comes from the description inconsistencies arising from the superposition of basis set functions,
leading to some parts of the electronic density being described by additional basis set functions.

iiThis is due to the arising block-diagonal structure of the Kohn-Sham (KS) matrix.
iiiSince the use of plane waves ensures a fast construction of the locally-projected KS Hamiltonian 30

ivThis can be explained by additional degree of freedom constrains, in the general case.
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This S-ALMO powered EDA was applied, in chapter 3, to water adlayers adsorbed on noble

metal surfaces, in order to unravel the properties and origins of the adsorption energies.

1.3 Topological point of view

In practice, however, characterizing chemical bonds through an EDA is only reserved to

specific interactions of interest, on systems with a relatively few number of atoms. Indeed,

chemical bonds are commonly defined by geometrical considerations instead of density-based

analyses 32–46. Yet, these geometrically characterized bonds represent valuable and chemically

relevant topology-based descriptors 47–49. Such geometry-based definition is also particularly

relevant to structure analysis, for example applied to Molecular Dynamics (MD) simulations

of rather large systems on large time scales that could certainly not be processed by EDA (for

studying all possible interactions) in a reasonable amount of time. It now becomes clear that a

geometry-based definition of chemical bonds, allowing for fast detection, is essential in this

context.

Such detection is performed by a coordination number algorithm, using its own geometry-

based definition of covalent bonds. Many algorithms have been proposed 32–46, each with its

own set of rules for deciding which bonds should be accepted. The most common coordi-

nation algorithms rely on predefined cutoffs to define chemically relevant bonds: a covalent

bond is detected if and only if two atoms are at a distance shorter than a predefined cutoff

distance depending on the nature of the atoms pair 50. These algorithms are simple, fast and

typically used in visualization software 32. However, their generalizability can be identified to

be impacted by two major issues:

• Non adaptation to local environment: a fixed cutoff definition does not take the local

environment into account, reducing its transferability from one connectivity context to

another.

• Parameter dependent: the cutoff distances must be defined for each type of bond being

evaluated. As a consequence, such algorithm cannot be generalized to connections that

were not already pre-defined.

Parameter-free algorithms were developed, using the radial distribution function of atom

pairs of interest to define adequate cutoffs 34–40. However, this method requires to be trained

on a large and similar input dataset in order to extract typical bond distances that are relevant

for cutoff definition. Finally, the cutoff distances obtained are globally adapted to the kind

of structures being processed, but local variations are averaged out, so that each final cutoff

distance is fixed and applied regardless of the local environment.
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Only a few algorithms33;41;42;46 try to extract connectivity from the local topological en-

vironment and therefore define adaptive parameter-free bonds solely based on geometry

considerations. These algorithms define geometry-based bonding in terms of proximity, so

that an entity is defined to be connected only with its nearest neighbors. This definition is par-

ticularly convenient for ideal close-packed materials, where all nearest neighbors are exactly

at the same distance. But how are nearest neighbors defined in practice? A state-of-the-art

approach is given by the SANN (Solid Angle based Nearest Neighbours) algorithm46. This

approach is based on an intuitive yet powerful idea: an atom’s nearest neighbors must cover

its field of view. To be more precise, the central atom is considered a sphere and its neighbors

are considered as balls, all with the same radius, defined as the minimal radius such that the

union of the intersections between the central sphere and the neighboring balls covers the

whole central sphere. The nearest neighbors are defined as the neighbors whose associated

ball is intersecting the central sphere. Using this general definition, SANN provides locally

adaptive and parameter-free coordination numbers.

However, structures displaying a strong local anisotropy (e.g. edges, protuberance, in-

terfaces) are not well handled by this algorithm45. Indeed, the SANN algorithm relies on

an isotropic description, and therefore, does not take the local anisotropy into account. A

solution was proposed in the form of the Relative Angular Distance (RAD) algorithm45, by

introducing parameters. So a natural question is: Can nearest neighbors also be defined on

structures displaying strong local anisotropy, without introducing parameters?

In chapter 4, I suggest a simple extension of the SANN algorithm, called ASANN, that is

compatible with structures displaying a strong local anisotropy, while remaining parameter-

free. The ASANN algorithm incorporates into its description a simplev information about local

anisotropy, by using the barycenter of local neighbors. This information is used to estimate the

field of view that is effectively covered by neighbors. Then, the nearest neighbors are computed

similarly to the SANN algorithm, using a slightly modified version of the original idea: an

atom’s nearest neighbors must cover its locally relevant field of view. Therefore, using only a

basic local anisotropy descriptor, ASANN effectively provides a fundamental geometry-based

definition of bonds that is applicable to close packed bulks, liquids and interfaces.

1.4 Unification through model Hamiltonians

These opposite, yet both fundamental, definitions of bonds rely on complementary visions

that can actually be combined. Indeed, EDA describes bonds in terms of energetics, whereas

coordination number algorithms process bonds as geometry-based descriptors of the local

vOnly first-order anisotropy is taken into account, i.e. only one privileged direction is considered.
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connectivity. These two visions are conveniently exploited together in an effective (or model)

Hamiltonian. In a model Hamiltonian, geometry-based features are associated with energet-

ics47–49, just like in force fields. As a consequence, a model Hamiltonian can be seen as an

embedding of energetics into the space of geometry-based descriptors.

The simplest bond-based model Hamiltonian is a linear model that correlates the energy of

a system E (g ) to the number of chemical entities (usually atoms) of each type in system g and

each possible geometry-defined bond between them:

E(g ) =∑
a
βa Na(g )+∑

a,b
βa–b Na–b(g ), (1.1)

where a,b are among all defined elements, Na(g ) is the number of a atoms in g , Na–b(g ) is the

number of a–b bonds in g (for example defined by a coordination number algorithm), and

(βa , . . . ,βa–b , . . .) are the parameters of the (linear) model Hamiltonian, representing single-

body terms and the energy contribution of each type of bond. This drastically simplified

model can be applied quickly and is extremely easy to interpret. It is such a model that I have

applied in Chapter 4 to achieve a first approximation for the energy of CuAu alloy surfaces and

nanoparticles. However, this model suffers from two main issues:

• Bonds are treated in a binary fashion (present or not), which cannot account for contin-

uous variations in bond distances (see Figure 1.1 for a schematic representation). This

is no longer an issue for a lattice-based representation, where positions (and therefore,

distances) are discrete variables.

• Higher order many-body effects are not taken into account. Only singletons and pairs

are considered, whereas effects arising from the formation of triplets, and so forth, are

neglected.

As a consequence, such a model Hamiltonian would only be acceptable for lattice-based

structures where many-body effects arising from triplets (and more) are negligible. These

assumptions are quite restrictive in practice. But, in fact, this most basic model can be

extended/generalized into an exact framework for describing lattice-based structures 51.

This extension is accomplished by generalizing the concept of bonds between more than

two entities. Indeed, just as pair-based (i.e. 2-body) interactions can be described by geometry-

based descriptors (i.e., bonds), many-body interactions can be described by geometry-based

patterns, representing relations between the coordinates of possibly many objects. Even

though these patterns can be defined in 3D, they are much more conveniently appliedvi on

viDue to the related degrees of freedom reduction.
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Figure 1.1 – Comparison of the energy profiles of a single bond as the function of the bond length obtained from a Morse
potential or a bond-based model Hamiltonian. The bond detection being binary (i.e. found or not) in a typical
model Hamiltonian, the corresponding energy profile is a step function.

2D surfaces. In surface science and heterogeneous catalysis it is common to distinguish two

types of patterns: the “single-body” patterns, corresponding to chemical entities (adsorbates),

which can, in the general case, occupy more than a single site on the surface, and “patterns

of patterns”, representing the so called lateral interaction between adsorbates. Therefore,

a pattern-based description is particularly relevant for studying reactive surfaces such as

catalysts, especially at high coverage, where lateral interactions are important52–55. Besides,

since adsorbates are likely found at specific adsorption sites (typically top, bridge and hollow),

a lattice-based representation is particularly well suited. As a consequence, reactive surfaces

can quite rigorously be described by an enumerable set of discrete variables representing the

occurrences of each possible patternvii.

Using patterns as a generalization of geometry-based bonds, a unification of energetics

with geometry-based descriptors of connectivity can be found in a pattern-based model

Hamiltonian. This model is, therefore, now general enough to rigorously describe reactive

surfaces. The most common56;57 and rigorous pattern-based model Hamiltonian applied to

surfaces is the Cluster Expansion58;59 based model Hamiltonian:

Ead s(g ) =∑
a
β′

a Na(g )+∑
a,b

β′
a–b Na–b(g )+ ∑

a,b,c
β′

a–b–c Na–b–c (g )+ . . . , (1.2)

where a,b,c are now among possible adsorbates at the surface, Na , Na–b , Na–b–c refer to the

number of related patterns present at the surface and the target is now the total adsorption

energy Ead s(g ) of g , and β′ are the contributions of patterns to the adsorption energy. The

viiThese patterns are indeed enumerable, because of the lattice-like nature of site preference of adsorbates on
reactive surfaces
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1.5. Linear regression

peculiarity of this model Hamiltonian lies in the enumeration of all possible patterns: 1-

body terms, 2-body terms, 3-body terms, . . . up to terms where all adsorbates are considered,

ultimately accounting for all possible many-body effects. Of course, such model would require

far too many parameters to fit (possibly infinitely many). Fortunately, only a few number of

parameters are non-negligible in this expansion, as the energy contribution of high-order

terms and long-range patterns quickly decay to zero. Therefore, this expansion makes it simple

to truncate this model Hamiltonian while maintaining an accurate energy description with a

reduced number of variables 60.

To summarize, the CE-based model Hamiltonian is one of the of most general and rigorous,

yet simple, way to associate energetics with geometry-based descriptors of connectivity,

by defining energy contributions to the associated patterns. The not-so-trivial question is:

how can these energy contributions be obtained in practice? Is there a canonical/optimal

way to extract this information? To go deeper along this path, it is essential to identify the

key components of this learning process. Like any empirical model, a CE-based model

Hamiltonian is built from two key components:

• A functional form for the regression. Here, it is a simple linear model.

• A training set containing data to learn from.

Let us then explore the fundamentals of each component and, of course, search for optimal

algorithms.

1.5 Linear regression

Performing a linear regression between a target variable Y (also called regressand) and some

independent variables (called regressors) X1, . . . , Xm , using a set of n observations X ∈Rn×m

(with Xi , j being the value for the j-th regressor on the i-th observation) and associated target

values y ∈Rn is equivalent to finding a set of parameters bviii such that:

y = b>X +e, (1.3)

has least squares residuals e. Among the possibly infinitely many least-squares solutions, the

minimum-norm least-squares solution b is unique 61.

Under the ordinary least-squares assumptions, the minimum-norm least-squares solution

viiib is an estimator of the true parameters β of the linear model Y =β>X +ε
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can be written 62:

b = X +y, (1.4)

where X + is the pseudoinverse (also called Moore-Penrose inverse63;64) of the observation

matrix X . Commonly available least-square solvers65 usually rely on a decomposition of

X (Singular Value Decomposition (SVD), Cholesky decomposition, QR factorization, . . . ) to

efficiently compute the minimum-norm least-squares solution 61 b.

During the training of a CE-based model Hamiltonian, one might be interested in adding

new observations, to further refine the model, without the need to recompute the solution

from scratch. In other words, updating the least squares solution bn+1 due to the addition

of a new observation Γn+1 = (Xn+1,1, . . . , Xn+1,m) (with associated target yn+1) can be done

by re-using the previous solution bn , effectively saving computational time. Such updated

solution is obtained by a Recursive Least-Squares61;66 (RLS) solver and can be written:

bn+1 = bn +K × (
yn+1 −b>

n Γn+1
)

, (1.5)

where K is called the Kalman gain vector 61, and yn+1 −b>
n Γn+1 is the predicted residual (or a

priori error) representing the difference between the new target yn+1 and its predicted value

using the previous model b>
n Γn+1.

Commonly available least-squares solvers can be adapted to solve the recursive RLS problem

by using specific algorithms 61;67 to update their internal decomposition of X . Unfortunately,

these algorithms were not designed to benefit from an eventual rank deficiency of X (i.e. X

has rank r < min(n,m)). Indeed, a rank deficiency occurs when the observation matrix X of a

linear system is both:

• Column rank-deficient (i.e. r < m). In terms of a linear model, this reads as: the

regressors/input space was not fully observed. For example, if the regressor X2 was null

in all observations, no information can be extracted on its corresponding contribution

β2 to the target Y . In other words, some parts of the linear system are underdetermined.

• Row rank-deficient (i.e. r < n). This is due to some observations being linearly redun-

dant with others (i.e. at least one observation can be obtained by linear combination of

others). For example, if the observation Γ2 is identical to Γ1, a redundant information

is assimilated (leading to an eventual inconsistency if the target values are different

y1 6= y2). In other words, some parts of the linear system are overdetermined.

Real-life applications (e.g. in embedded systems66) generate observations that are rarely
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rank-deficient, since this would suggest that the regressors were poorly chosen, some of them

being redundant. However, rank-deficiency is particularly relevant for a model Hamiltonian

being trained, since the relatively small number of observations attainable (due to the compu-

tational cost of each new observation) forces to neglect groups of patterns with apparently

negligible contributions (i.e. underdetermination of apparently negligible contributions)

while non-negligible contributions should be properly sampled to integrate and average out

the contribution of eventually non-negligible truncated terms (i.e. overdetermination of

non-negligible contributions). So, how can RLS benefit, in terms of computational cost, from

rank-deficiency?

In chapter 5, I suggest an RLS algorithm based on a rank decomposition called Rank-Greville,

due to its apparent similarity with the Greville68;69 algorithm. By maintaining a basic rank

factorization, a maximal free familyix F of observations is maintained (i.e. observations are

categorized as redundant or not), leading to the full linear system being decomposed into two

separate sub-systems: a purely non-overdetermined system (composed of the observations in

F only) and a purely non-underdetermined system (where all observations are expressed as

linear combination of the observations in F ). These sub-systems, with reduced size, can be

solved independently and combined, allowing for a full solution update in O(mr ) operations

instead of O(mn) operations required by commonly available recursive least-squares solvers.

This Rank-Greville solver is, therefore, particularly adapted to maintain a constantly up-to-date

version of the model Hamiltonian being trained.

1.6 Training set selection

A critical component of any empirical model is the dataset used for its training. The CE-

based model Hamiltonian is no exception: it must be trained on a set of geometries that are

of relevance to the kind of applications that the model Hamiltonian is destined to. Typically,

a CE-based model Hamiltonian is designed for a specific surface-catalyzed reaction and is

trained with geometries representing the entities involved in the modelled process, adsorbed

on the reactive surface of interest. Unfortunately, this specific dataset is costly to obtain,

as the adsorption energy of each geometry needs to be evaluated, with eventual geometry

optimization beforehand, usually at a DFT level of theory. Besides, the combinatorial nature

of possibly relevant patterns leads to a relatively large number of parameters that, therefore,

require to be fitted from a rather large and diverse, yet specialized, training set (a hundred

geometries is the typical order of magnitude). As a consequence, the construction of such

training set is a tedious and (human and computing) resource consuming task70. Therefore,

the optimal and automatic choice of geometries to include in such training set is highly

desirable 70–72.

ixA free family is a set of linearly independent elements.

11



Chapter 1. Introduction

In practice, the geometries are hand-picked by the chemist, using chemical intuition and/or

a pseudo-exhaustive/random sampling. Such sampling is likely sub-optimal and hardly

transferable from one model Hamiltonian to the other. Finally, a pseudo-random sampling is

neither reproducible (without reporting explicitly all generated geometries) nor truly random.

So a natural question is: Can this training set selection task be automated? And even better,

can it be done in a way that is more optimal than a pseudo-exhaustive/random sampling?

Design of Experiments (DoE) are commonly used in experimental Chemistry to plan a series

of experiments in advance in order to optimize their usefulness 73, whereas active learning is a

sub-field of machine learning dedicated to the sequential optimization of a training set (i.e.

only the next selection is optimized, repetitively, while the model is being trained) 74. Therefore,

both approaches are of relevance for optimizing the training set of a model Hamiltonian. But,

before anything, what is an optimal training set?

In chapter 6, an adequate training set is identified by two main properties:

• Chemical relevance: an adequate training set should focus on geometries that hold

significant chemical information, just like a chemist would use its own chemical intu-

ition to prefer geometries displaying strong lateral interactions. The idea is that stronger

interactions should be explored more.

• Diversity: an adequate training set should ideally cover the whole chemical space and

allow for the description of most situations. Therefore, diversity is essential, since a

model has no rigorous predictive power outside the scope of its training set.

These apparently incompatible properties are typical of the classical exploitation vs. explo-

ration dilemma, that can be formulated here as: focusing on chemically relevant geometries

while, at the same time, exploring other types of geometries to globally explore the chemical

space.

When such dilemma is combined with a huge action space (i.e. here the chemical space), it

is commonly solved by relying on Upper Confidence Trees (UCTs). A UCT is a classical tool of

reinforcement learning, a sub-field of machine learning dedicated to the design of optimal

policies, that has become unavoidable in strategy-game playing algorithms 75–78. So, how can

a UCT be applied to solve the adequate training set problem in the context of a CE-based

model Hamiltonian construction?
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In the very same chapter 6, I suggest to reformulate the choice of a geometry (to include in

the training set) as a strategy-based game. Using this reformulation, I link the construction of

an adequate training set to the learning of an optimal strategy for playing this game. However,

this strategy-based game is unlike most board games, so that a conventional UCT is expected

to be ill-suited. Therefore, I suggest a custom UCT-based framework, called Reinforcement

Sampling, powered by a chemically relevant metric and a powerful pre-exploration step, acting

as an additional DoE approach on top of an active learning scheme.

1.7 Thesis diversity

In summary, this thesis focuses on the multiple points of view of the chemical bond (from

DFT-based energy effects to a more practical geometry-based description), and their unifica-

tion in the form of a model Hamiltonian. In particular, the focus is made on methodological

developments, guided by a strong algorithmic interest. For each aspect, a state-of-the-art

method is explored along with its applicability domain, and a novel extension is proposed

by merging various concepts. The developed solutions either exploit the specificity of some

applications or extend the applicability domain, geared towards the description of metallic

interfaces:

• The ALMO formalism is combined with mixed-states theory, leading to S-ALMO, a mean-

field based smearing-compatible generalization, allowing for the energy decomposition

analysis of the interaction between adsorbates and metallic surfaces.

• The SANN algorithm is combined with a simple barycenter-based local anisotropy

descriptor, leading to ASANN, an extension aware of local anisotropy, allowing for a

better description of interfaces.

• A rank factorization is combined with a Greville-like update, leading to Rank-Greville,

an RLS algorithm with improved computational complexity on linear systems with

rank-deficiency.

• Finally, the model Hamiltonian training is linked to playing a strategy-based game

and a UCT approach is combined with diverse add-ons, including a DoE-inspired pre-

exploration step, leading to the Reinforcement Sampling framework as an automation

tool for building an adequate training set on reactive surfaces.

Consequently, this thesis tackles challenging highly diverse themes. The topics addressed

in this thesis have barely any common notation nor shared concepts. Hence, each chapter

represents a specific topic and introduces its own context and notation. Therefore, each

chapter ought to be self-sufficient in its presentation of the related work, as is also the very
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purpose of articles. As a consequence, I believe articles to be relevant as chapters of this thesis,

to ensure an unentangled reading. Chapters 2, 3 and 4 are based on published papers, whereas

chapter 5 is based on an article being reviewed at the time of writing and chapter 6 is meant to

be condensed and submitted by the end of this thesis.
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2 Energy Decomposition Analysis for
Metal Surface – Adsorbate Interac-
tions by Block Localized Wave Func-
tions

This Chapter is based on the following article: R. Staub, M. Iannuzzi, R. Z. Khaliullin, and S. N.

Steinmann J. Chem. Theory Comput. 2019, 15, 265–275.

The energy decomposition analysis based on block localized wave functions (BLW-EDA) allows

to gain physical insight into the nature of chemical bonding, decomposing the interaction

energy in (1) a “frozen” term, accounting for the attraction due to electrostatic and dispersion

interactions, modulated by Pauli repulsion, (2) the variationally assessed polarization energy

and (3) the charge-transfer. This method has so far been applied to gas- and condensed-

phase molecular systems. However, its standard version is not compatible with fractionally

occupied orbitals (i.e. electronic smearing) and, as a consequence, cannot be applied to

metallic surfaces. In this work, we propose a simple and practical extension of BLW-EDA to

fractionally occupied orbitals, termed Ensemble BLW-EDA. As illustrative examples, we have

applied the developed method to analyze the nature of the interaction of various adsorbates

on Pt(111), ranging from physisorbed water to strongly chemisorbed ethylene. Our results

show that polarization and charge-transfer both contribute significantly to the adsorption

minimum for all studied systems. The energy decomposition analysis provides details with

respect to competing adsorption sites (e.g., CO on atop, vs. hollow sites) and elucidates the

respective importance of polarization and charge transfer for the increased adsorption energy

of H2S compared to H2O. Our development will enable a deeper understanding of the impact

of charge transfer on catalytic processes in general.
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Chapter 2. Energy Decomposition Analysis for Metal Surface – Adsorbate Interactions by
Block Localized Wave Functions

2.1 Introduction

Analyzing the chemical bond in order to understand the driving force and diversity of bonding

is almost as old as quantum mechanics. 1;2 Bader’s quantum theory of the atom in a molecule 3

and the natural bond orbitals by Weinhold,4 are among the most popular approaches, but

since the decomposition of the chemical bond energy into different contributions is not

unique,5 a multitude of other energy decomposition analysis (EDA) schemes have been

developed. 6 All these different schemes come with their advantages and weaknesses, so that

application of several tools can either bring contradicting results or provide confidence that at

least the trend is captured accurately. 7 Most of these tools are developed having molecules in

mind and their application to the bonding between surfaces and adsorbates is comparatively

rare.8–11 As one of the few examples, Tonner and co-workers have demonstrated that EDAs

on semi-conducting surfaces can provide a deep understanding of coverage effects12 and

elucidate peculiar bonding mechanisms. 13 Our goal is to extend the EDA based on the block-

localized wave function (BLW)14;15 to metallic surfaces. The BLW is designed to localize the

electrons in Hilbert space in the Mulliken sense, i.e., in terms of atom-centered basis functions.

A typical choice is to restrict the expansion to basis functions of atoms of a given molecule,

excluding contributions from all other basis functions in the system, thus defining one block

per molecule. The BLW – also known in this context as absolutely localized molecular orbitals

(ALMO) – is variationally optimized and the different blocks polarize each other. The main

advantage of the BLW-EDA compared to other EDAs is that the polarization of fragments in

their mutual presence is computed fully variationally. This allows to rigorously separate the

polarization energy from charge-transfer. The charge-transfer in BLW-EDA includes bonding

orbital interactions between the fragments, which distinguishes it from the charge-transfer

obtained by constrained density functional theory (CDFT) 16;17, where the charge-transfer is

defined in real-space, rather than Hilbert space. 18

The formulation of the theoretical framework exploited for optimizing the BLW goes back to

the works of Stoll and co-workers,19 who aimed at reducing the computational cost of the

self-consistent field (SCF) procedure by using ALMOs. The variational optimization of blocks

that are localized in Hilbert space has found other applications over the years, exploiting

other properties of the BLW unrelated to computational speed-ups. For instance, BLW has

been proposed to be used to remove the basis set superposition error (BSSE)20;21 and BLW-

EDA has been applied to molecular complexes at the DFT22–24 or correlated wave function

level of theory,25;26 quantifying hyperconjugation,27;28 strain energies29 and even covalent

bonds. 30;31 Futhermore, ALMOs can provide transferable molecular orbitals (where they are

also called ELMOs for extremely localized molecular orbitals) 32–35 or fragment densities to be

used in X-ray structure elucidations. 36 Through its variational character, BLW also provides the

unique opportunity to directly assess the impact of electron delocalization on the properties

of molecules by comparing computed NMR chemical shifts37;38 and J-couplings39 for (de-
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2.2. Methodology

)localized states, which can be seen as the comparison between a single Lewis structure

and the true, electron delocalized state. Similarly, the electronic structure of the electron

localized state can be analyzed by scalar fields such as the electron localization function (ELF)

or the localized orbital locator (LOL) in order to shed more light on the consequences of

electron delocalization on the electronic structure. 40;41 Due to the variational definition of the

polarization energy, other applications involve investigating of the impact of polarization on

the hydration shell of ionic solutes42 and comparison between the BLW polarization energy

and polarizable force fields, which has also been exploited to parametrize first principles

based force fields. 43;44

Heterogeneous catalytic reactions involving metal surfaces or particles are involved in many

major industrial processes, such as selective hydrogeneations in refineries, ammonia synthesis,

steam reforming etc. Furthermore, metal catalysts are key in heterogeneous electrocatalysis,

which is promising to improve the efficiency of electrolysis, fuel cells, CO2 reduction, but also

the synthesis of fine chemicals.45 Therefore, analysis of the interaction of adsorbates with

metallic surfaces can provide valuable insights for the design of novel, more efficient catalysts.

Furthermore, when considering metal alloys, the difference between electronic and ensemble

effects is a widely discussed topic.46 BLW would allow to construct an electron localized

(neutral) state of a given secondary element, clearly resolving the electronic (charge-transfer

between the two metals) and ensemble effect.

The formulation of BLW is based on the assumption of doubly occupied orbitals, although

extensions to spin-unrestricted systems exist,47;48 where the system is assumed to have a

gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied

molecular orbital (LUMO). Metallic electronic structures are, instead, characterized by a

continuum of energy levels over the Fermi energy, leading to partially occupied states.

In this work, we propose an extension of the BLW approach based on a mean field approx-

imation, to which we refer as Ensemble BLW-EDA. In the following, we first present the

conventional SCF procedure for metallic systems, followed by the main notions of BLW. Then,

we combine the two, extending BLW to metallic systems. Finally, we provide computational

details and applications to the prototypical adsorption of molecules (H2O, H2S, C2H4 and CO)

on Pt(111).

2.2 Methodology

2.2.1 Ensemble DFT

The ground-state of a metallic system, i.e., where the density of states around the Fermi level

is continuous, cannot be described by a single quantum state. Rather, an ensemble of states

is required, both for a physically sound description and for a smooth convergence of the
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wave function optimization in a self-consistent field (SCF) process. The different quantum

states within the ensemble are weighted according to their probability in order to determine

observables. Let Â be an operator, and Ω is the set of all possible quantum states of a given

system. Then, the expectation value 〈A〉Ω of the ensemble is:

〈A〉Ω =∑
χ∈Ω

〈Ψχ|Â|Ψχ〉pχ (2.1)

whereΨχ is the wavefunction associated with the quantum state χ. Ψχ spans the ground- and

single excited state determinants of the system. pχ is the probability that the real system is in

the quantum state χ, based on the energy of χ.

In the present context, we are interested in the reformulation of the 1-electron density operator

ρ̂. In the Hartree-Fock approximation, and in the case of orthonormal molecular orbitals ψi ,

ρ̂ can be written as:

ρ̂ =∑
occ ψi∈Ψ

|ψi 〉〈ψi | (2.2)

Dealing explicitly with ensembles is computationally inefficient and would require dedicated

implementations. Since singly excited determinants do not overlap with the ground-state

determinant, the same set of molecular orbitals can be used to construct all the relevant

quantum states of the system. Therefore, the ensemble 1-electron density (〈ρ̂〉Ω) can be

written in a convenient manner by considering the population of the orbitals (also known as

occupation numbers, ni ) instead of the probability of quantum states:

〈ρ̂〉Ω =∑
χ∈Ω

pχρ̂χ =
∑
χ∈Ω

pχ

∑
ψi∈Ψχ

|ψi 〉〈ψi | = (2.3)

=∑
i
|ψi 〉〈ψi |ni =

∑
i
|pniψi 〉〈pniψi | =

∑
i
|ψ′

i 〉〈ψ′
i | (2.4)

where i is the sum over all molecular orbitals, i.e., solutions of the Fock equation. In Eq. 2.4 we

have introduced the rescaled orbitals:

|ψ′
i 〉 =

p
ni |ψi 〉 (2.5)

which are particularly convenient computationally. The occupation number ni is related to

the probability for the orbital ψi to be occupied. For finite temperatures, they are determined

based on the energy εi of ψi , invoking Fermi-Dirac statistics:

ni = 1

exp( εi−µ
kT )+1

(2.6)
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where µ is the Fermi level, k is Boltzmann’s constant, and T is the (electronic) temperature.

With these rescaled orbitals |ψ′
i 〉, the mixed-state 1-electron density RΩ can be easily computed.

RΩ = CNC† (2.7)

where C is the molecular coefficient matrix and N is a diagonal matrix of Fermi weights ni

according to Eq. 2.6. Yang and co-workers have generalized this reformulation to any method

that can be reformulated based on the non-interacting Greens function, allowing to apply the

orbital scaling to virtual orbitals and thus to compute correlation energies with MP2 or RPA

for systems with fractional electrons. 49 With a mild approximation, these scaled orbitals can

also be used for coupled cluster computations for systems with fractional electrons. 50

2.2.2 BLW formalism

The basic idea of the BLW formalism is to express the wave function of the system in terms

of blocks of localized orbitals. In the present context, the orbitals are always localized on a

subset of atoms, so that the BLW partitions the atom-centered basis functions in mutually

exclusive blocks and imposes thereby a localization of the wave function in Hilbert space.

Formally, a block Bm is defined as a set of Nm basis functions {φm
1 . . .φm

Nm
}, such that each basis

function is associated with exactly one block, i.e.
∑

m Nm = N , where N is the total number of

basis functions of the system. In this work, the set of basis functions {φm
1 . . .φm

Nm
} associated

with the block Bm is the union of all N j basis set functions {φ j
1 . . .φ j

N j
} used to describe the jm

atoms of Bm , so that
∑

m jm equals to the total number of atoms in the system. Similarly, the

electrons of the system are assigned to a given block. In our case, all blocks are neutral.

An ALMO is defined as a linear combination of basis functions associated with the same block.

Therefore, an orbital ψi m pertaining to block Bm is written:

|ψi m 〉 =∑
ν

C m
ν,i |φm

ν 〉 (2.8)

where C is the orbital coefficient matrix for the entire system, while Cm is the matrix of block

Bm . We have used greek letters to label atomic orbital basis functions and i m indexes ALMOs

of a given block Bm .

The global orbital coefficient matrix C, which spans all molecular orbitals and, thus, has
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dimensions of N ×N , has a block-diagonal structure:

C =


C1 0 · · · 0

0 Cm · · · 0
...

...
. . .

...

0 0 · · · C
∑

m

 (2.9)

where Cm is the orbital coefficient matrix restricted to the block Bm . The orbital coefficients

C m
ν,i are variationally optimized according to the local diagonalisation-based SCF algorithm

developed by Stoll 19 and implemented in CP2K as the first stage of the two-step “ALMO-SCF”

scheme. 51

In general, locality and orthogonality constraints cannot be both satisfied simultaneously. 52

Therefore, ALMOs are inherently non-orthogonal between blocks, although they can be kept

orthonormal within a block without loss of generality. In this study, we will work under

this assumption. Hence, the ALMO overlap matrix (σ) has identity-like diagonal blocks, but

non-zero entries for overlaps between blocks.

In practice, the so called reciprocal (or bi-orthogonal) occupied orbitals | ˜ψi m 〉 are defined such

that 〈 ˜ψi m |ψ j l 〉 = δi m j l :

| ˜ψi m 〉 =∑
l , j

|ψ j l 〉σ−1
i m j l , T̃ = Tσ−1 (2.10)

where l goes over all blocks and j l indexes the occupied orbitals of block Bl , T̃ is the coefficient

matrix of reciprocal occupied orbitals and T is the occupied part of Eq. 2.9. To be explicit,

| ˜ψi m 〉 is expanded in terms of all basis functions of the system and not only of block Bm .

Reciprocal orbitals enable one to rewrite the Fock equations. As Stoll has demonstrated, the

self-consistent solution of projected eigenvalue equations for each block is equivalent to

finding variationally optimal ALMOs.

F̂ m |ψm
i 〉 = εm

i |ψm
i 〉, F̂ m =

(
1̂− ρ̂+ ρ̂m†

)
F̂

(
1̂− ρ̂+ ρ̂m)

(2.11)

ρ̂m =∑
i∈Bm

|ψ̃i m 〉〈ψi m | =∑
l ,ξ,ν

Rm
ξν|φl

ξ〉〈φm
ν | (2.12)

where 1 is the identity matrix, F̂ is the conventional Fock operator, F̂ m is the Fock operator

projected on block Bm , ρ̂ is the density operator of the entire system, ρ̂m is the non-Hermitian

operator that represents the density of the block defined by using only ALMOs of block Bm ,

and Rm is the associated block density matrix. ν is a basis function of block Bm (see Eq. 2.8),
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while ξ indexes the atom centered basis function of blocks Bl .

At each SCF iteration, these projected Fock equations are solved independently for each block,

but coupled to each other between successive iterations due to the projection operators. In

other words, each block Bm is optimized in the environment generated by all other blocks.

Since in mixed-state theory it is common to deal with orthonormal orbitals, we briefly discuss

the connection between the use of reciprocal orbitals and a Lowdin orthonormalization:

|Lψi 〉 =
∑

occ j
|ψ j 〉σ− 1

2
i j , LT = Tσ− 1

2 (2.13)

where i and j are general indexes, σ− 1
2 is the square root inverse of the overlap matrix and

LT is the Lowdin orbital coefficient matrix. The 1-electron density is equivalently expressed

through the Lowdin orthonormalized molecular orbitals and the use of reciprocal orbtials, the

latter avoiding the expensive computation of σ− 1
2 :

ρ̂ =∑
occ i

|Lψi 〉〈Lψi | =
∑

occ i
|ψ̃i 〉〈ψi | =

∑
occ i

∑
ν,ξ

T̃νi |φν〉〈φξ|Tξi =
∑
ν,ξ

∑
occ i

Tξi T̃ †
iν|φν〉〈φξ| =

∑
ν,ξ

Rνξ|φν〉〈φξ|

(2.14)

R = LTLT
† = TT̃† = T(Tσ−1)† = Tσ−1T† (2.15)

where R is the conventional 1-electron density matrix. R can then be fed to standard routines

to determine the electron density in real space, compute gradients and so forth.

2.2.3 Ensemble BLW

Exact Ensemble Formulation

In order to adapt the BLW formalism to an ensemble formulation, we need to adapt the density

matrices R or, equivalently, the construction of the reciprocal orbitals (Eq. 2.10). In other

words, we apply the general formula (Eq. 2.3) for the computation of an ensemble density

matrix RΩ to non-orthogonal molecular orbitals:

RΩ =∑
χ∈Ω

pχTχ =
∑
χ∈Ω

pχTχσ
−1
χ Rχ

† =∑
χ∈Ω

pχTχ(Tχ
†STχ)−1Tχ

† (2.16)

where pχ is the probability that the real system is in the quantum state χ, Rχ is the density

matrix of this quantum state, Tχ is the occupied orbital coefficient matrix associated with

the wavefunctionΨχ, σ−1
χ is the overlap matrix of the quantum state χ, and S is the basis set
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function overlap matrix which is common for all quantum states, since it is a property of the

geometry and basis set.

Let us consider a general orbital coefficient matrix C containing all the localized orbitals used

to construct every Tχ, the occupied orbital matrix of quantum state χ. Therefore, one can

construct any Tχ from C:

Tχ = C∆χ = C


δ1χ 0 · · · 0

0 δ2χ · · · 0
...

...
. . .

...

0 0 · · · δn+kχ

 , δiχ =
1 if ψi ∈Ψχ,

0 otherwise.
(2.17)

where ∆χ can be seen as a rescaling matrix with a dimension of N ×N .

Combining Eq. 2.17 with Eq. 2.16, we obtain the following reformulation:

R =∑
χ∈Ω

pχRχ =
∑
χ∈Ω

pχTχσ
−1
χ Tχ

† =∑
χ∈Ω

pχC∆χσ
−1
χ ∆χC† = C

(∑
χ∈Ω

pχ∆χσ
−1
χ ∆χ

)
C† = CΩσ−1 C†

(2.18)

where Ωσ−1 =∑
χ∈Ω

pχ∆χσ
−1
χ ∆χ.

Equation 2.18 requires σ−1
χ to be computed for each state involved separately, i.e., it is not

an efficient reformulation of Eq. 2.16. This contrasts with the canonical case, where Eq. 2.4

provides an efficient reformulation of Eq. 2.3, since the different quantum states involved are

orthonormal among each other.

If we have k orbitals in addition to the n formally doubly occupied orbitals, then the maximum

number |Ω| of quantum states to evaluate Eq. 2.17 is:

|Ω| =
(

n +k

n

)
= (n +k)!

n!k !
(2.19)

In the worst case, k = n, |Ω| ≈ 22np
πn

, i.e., the number of states to be considered is exponential in

n. Hence, such a method is not applicable to sizable systems (e.g. a little more than 7×10201

states for the Pt(111) surface investigated in the later sections).

Why can there not be a simple reformulation of ensemble BLW, just like in the canonical

case? Considering Eq. 2.14, we can understand that ALMOs are treated as if they would

be orthonormalized when computing the density matrix. Therefore, scaling them by their

occupation number is not an option, since this lack of normalization will simply be offset by

the corresponding σ−1. A second point of interference when aiming at a simplified ensemble
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description comes from the interdependence of blocks. Let us consider a two block system.

According to Eq. 2.10, the reciprocal orbitals of block 1 depend on the occupied orbitals

of all blocks. Hence, in general (i.e., when the orbitals between blocks overlap) varying the

occupations in block 2, enters as a varying environment for block 1 (and vice versa). In

other words, the different quantum states in block 1 are subjected to different environments,

depending on the quantum states of block 2. To put this in mathematical terms, let us

consider two quantum states χ and χ′, with associated wave-functionsΨχ andΨχ′ and three

different orbitals ψ1, ψ2 and ψ3 (considered doubly occupied) such that {ψ1, ψ2} ⊆Ψχ and

{ψ1, ψ3} ⊆Ψχ′ , but ψ3 ∉Ψχ and ψ2 ∉Ψχ′ . If we would like to use the same set of ALMOs for

describingΨχ andΨχ′ , then we would like ψ̃1 to be equal to ψ̃1
′ (respectively the reciprocal

orbital of ψ1 computed in the quantum state χ and χ′) so that Eq. 2.18 can be simplified in

full analogy with the situation when using orthonormalized orbitals. However the reciprocal

orbital ψ̃1 in the quantum state χ does not change by replacing the orbital ψ2 by ψ3, if and

only if ψ1 does not overlap with neither ψ2 nor ψ3, and there exists no ψi ∉ {ψ1, ψ2, ψ3} in

any quantum state χ j ∈Ω such that both ψ1 and ψ2 (or ψ3) overlap with ψi :

|ψ̃1〉 = |ψ̃1
′〉⇔


〈ψ1|ψ2〉 = 0

∧ (∀χ ∈Ω, @ψi ∈Ψχ\{ψ1,ψ2}, ψ1 ∈Ψχ → (〈ψ1|ψi 〉 6= 0 ∧ 〈ψ2|ψi 〉 6= 0)
)

∧ (idem for ψ3 instead of ψ2)

(2.20)

Therefore, the occupation-state dependency of the orthonormalized orbitals is always present,

except when the added or removed orbitals does not overlap with the rest of the system. Due

to this occupation-state dependency of the orthonormalized orbitals, they cannot be used to

construct an ensemble density matrix by rescaling them, in contrast to the canonical case.

As a conclusion, since the orbitals are non-orthogonal, when an orbital occupation is modified

the whole system has to re-adapt. Note that this conclusion applies to the use of any non-

orthogonal orbitals and not only to ALMOs.

Mean-field approximation to Ensemble BLW

The condition to formulate a computationally tractable approximation to ensemble BLW is

that the contribution of each orbital to the ensemble density can be computed only once per

SCF iteration and can then be weighted by the probability that the real system is in a quantum

state containing this orbital (or equivalently, the probability that this orbital is occupied in the

real system). In other words, we need to devise a scheme in which we have a common overlap

matrix σ for all quantum states involved, i.e., we generate an average interaction field (over

all quantum states) that is applied to every quantum state. Furthermore, we require that the

scheme is equivalent to standard ensemble theory for a single block. This implies that Eq. 2.6
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is applied to each block separately (with the block specific chemical potential µm), so that the

total number of electrons in each block remains an integer. With these two requirements, we

arrive at a mean-field approximation to the overlap matrix (ασ):

The interaction (i.e., overlap) between |ψi m 〉 and |ψ j l 〉 from any block, is rescaled by
p

ni
p

n j ,

while the self-overlap remains unmodified. This rescaling provides an approximate overlap

matrix ασ:

ασi j =
〈ψi m |ψi m 〉 = 1

〈ψi m |ψ j l 〉pni
p

n j

(2.21)

Hence, the density matrix αRΩ can be written:

αRΩ = T′ ασ−1T′† (2.22)

where T′ is the rescaled orbital coefficient matrix, in close analogy to Eq. 2.5, for the canonical

case.

We use |sψi m 〉 to denote the presence of fractionally occupied ALMOs, i.e., the ones that

necessitate the use of ασ. |sψi m 〉 have rescaled interactions (overlap), except with themselves.

Therefore, we call them “selfish orbitals”. Unlike the canonical rescaled orbitals, selfish orbitals

cannot be considered “shrunk”, they just interact less with their environment:

∀ j 6= i 〈sψi m |sψ j l 〉 =p
ni

√
n j 〈ψi m |ψ j l 〉 ; but 〈sψi m |sψi m 〉 = 〈ψi m |ψi m 〉 (2.23)

where j goes over ALMOs of all blocks.

In practice, at each SCF iteration the orbital coefficients T are scaled according to the (up-

dated) occupation number, yielding T′. With these scaled coefficients, the overlap matrix

σ is computed. Then, the diagonal of σ is set to unity to obtain ασ. The density matrix is

computed using Eq. 2.22 In brief, except for the use of T′ and ασ, the SCF procedure by Stoll is

not modified.

Please note that for non-interacting systems (blocks that are far apart), the mean-field approx-

imation reverts back to the canonical answer. Similarly, if the orbital occupations are either 0

or 2 (0 K limit of a system with a non-vanishing gap), our approximation provides the regular

BLW result.

In our implementation in CP2K, we exploit the eigenvalue based optimization by Stoll15;19,

which has been implemented in CP2K 51;53 and allows a variational optimization of the ensem-

ble BLW. The computational cost of the extension to partially occupied orbitals is negligible

thanks to the use of selfish orbitals and the additional storage used is limited to an array
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containing the orbital energies.

As discussed in Appendix A, the error introduced by the mean-field approximation turns out

to lead to losses of electrons in the Ensemble BLW. For example, for H2O up to 0.005 electrons

are lost when the molecule is closest to the metal surface. The energetic consequence on the

polarization energy of this electron loss can be estimated to be up to 0.5 kcal mol-1 assuming

a metallic system with a typical workfunction around 5 eV. As a result, the charge-transfer

energy, which does not suffer from this electron loss, is slightly overestimated compared to the

polarization energy. Given that water, which is the least strongly adsorbed molecule studied

herein, has an adsorption energy of -9.7 kcal mol-1, such an error is deemed acceptable. In

all cases no, or a small loss of electrons is encountered, never a gain in electrons. This can be

rationalized in analogy to Hartree-Fock, where the average electron repulsion overestimates

the actual electron repulsion. Hence, our mean-field approximation is an upper bound to exact

ensemble BLW. Since ensemble DFT formulation is variational with respect to the electronic

free energy (i.e., when accounting for the entropy related to the fractionally occupied orbitals),

our Ensemble BLW-EDA defines the charge-transfer through a variational principle for the

interaction of adsorbates with metallic surfaces.

2.3 Computational Details

The adsorbed structures were optimized with VASP 5.4.154;55 using periodic boundary con-

ditions applying the re-optimized Perdew, Burke and Ernzerhofer (PBE) functional to make

it compatible with the non-local van der Waals (vdW) functional, i.e. the optPBE-vdW56

functional. This functional has been found to be most accurate for adsorption energies

on Pt(111)57, together with PBE-dDsC58, an other dispersion corrected density functional.

Nonetheless, optPBE-vdW is available in CP2K, the code that is used for all Ensemble BLW-EDA

computations. An energy cutoff of 400 eV is chosen for the expansion of the plane-wave basis

set. The electron–ion interactions are described by the PAW formalism.59;60 The p(6×6) unit

cell is built from bulk platinum (2.821 Å nearest neighbor distance) with four metallic layers.

Additional tests regarding the need for K-point sampling reveal that the Γ-point optimized

geometries are very close to the ones obtained with a 3×3×1 K-point mesh. The adsorption

energy at the Γ-point is overestimated by 1-5 kcal mol-1, corresponding to up to 10% at the

equilibrium distance (see Table A.1). This accuracy is deemed acceptable for the current

purpose, where the relative importance of different interaction energy components and their

evolution as a function of the surface – adsorbate distance is analyzed.The out-of-plane vector

of the unit cell was chosen to be ∼ 23 Å to achieve a negligible interaction between periodic

images.

The molecular orbitals were represented by a double-ζ Gaussian basis set with one set of

polarization functions, called DZVP-MOLOPT-SR-GTH for both BLW-EDA and BSSE corrected
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SCF DFT simulations.61 A cutoff of 400 Ry was used to describe the electron density. The

exchange-correlation (XC) energy was approximated with the optPBE-vdW 56 functional. The

Brillouin zone was described at the Γ-point. Goedecker, Teter and Hutter (GTH) pseudo-

potentials 62 based on the PBE functional were used to describe the interactions between the

valence electrons and the ionic cores, and the electronic smearing was approximated by a

Fermi-Dirac distribution at 300 K, applied to all computations.

Figure A.1 provides a comparison between the total interaction energy (∆Ei nt , vide infra, Eq.

2.24) as computed by standard KS-DFT with VASP and CP2K. In both codes, we compare a 10

and a 18 valence electron pseudopotential. The 18 valence electron potential of CP2K gives

interaction energies very close to the one provided by VASP, independently if the latter uses 10

or a 18 valence electrons.

2.3.1 Energy Decomposition Analysis

The newly extended EDA scheme is now applied to charge transfer analysis of adsorption at a

metallic surface. We select three prototypical couples of systems (see Figure 2.1), aiming at

describing different types of bonding. The first couple is H2O and H2S, for which no strong

bond formation is expected, although H2S is interacting more strongly with Pt(111) than water.

The second couple compares the di-σ and π adsorption modes of ethylene, while the third

couple investigates the difference between CO adsorbed on fcc and top sites.

For all these systems, we have computed the interaction energy as a function of the distance

between the surface and the adsorbate. All coordinates are fully optimized, except the z-

coordinate of the heavy atoms closest to the surface and the two bottom layers that are kept

fixed in their bulk position. We define the total interaction energy ∆Etot as:

∆Etot = Es y stem −E f r ag 1,opt −E f r ag 2,opt −∆EBSSE (2.24)

Where Es y stem is the standard KS-SCF energy of the full system, E f r ag ,opt are the correspond-

ing energies of the freely optimized fragments. Since the BLW is only defined in a localized

basis set, we have to correct for the basis set superposition error (BSSE), which we do according

to the counterpoise procedure of Boys and Bernardi63, giving rise to the energy correction

∆EBSSE . Note, however, that BSSE only affects the charge-transfer term, as all other terms are

evaluated using exclusively the fragment basis set.

For the energy decomposition analysis, each system is divided into two blocks: a metallic

block containing the metal surface, and an adsorbate block containing the adsorbed molecule.

As common in BLW-EDA,22;23;64 we decompose the total interaction energy ∆Etot into the

following terms: preparation or deformation (∆Ede f or m), the frozen energy term (∆E f r ozen)

that describes the interaction of the two isolated fragment densities brought together and
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Figure 2.1 – Top: H2O (left) and H2S (right) top adsorption on Pt(111). Middle: Ethylene adsorption in a di-σ (left) and π

adsorption mode. Bottom: CO on fcc (left) and top (right) adsorption sites. All images refer to the equilibrium
distance with respect to the surface.

33



Chapter 2. Energy Decomposition Analysis for Metal Surface – Adsorbate Interactions by
Block Localized Wave Functions

–30

–25

–20

–15

–10

–5

0

5

2 3 4 5 6 7
–10

–8

–6

–4

–2

0

2

H
2
S

en
er

gy
(k

ca
l/m

ol
)

H
2
O

en
er

gy
(k

ca
l/m

ol
)

Distance (Å)

Etot H2O
EBSSE H2O

Edeform H2O
Etot H2S

EBSSE H2S
Edeform H2S

–50

0

50

100

2 3 4 5 6 7

–20

–10

0

10

20

30

40

H
2
S

en
er

gy
(k

ca
l/m

ol
)

H
2
O

en
er

gy
(k

ca
l/m

ol
)

Distance (Å)

Epol H2O
ECT H2O

Efrozen H2O
Etot H2O
Epol H2S
ECT H2S

Efrozen H2S
Etot H2S

Figure 2.2 – Energy decomposition analysis for H2O (full lines, right y axis) and H2S (broken lines, left y-axis). The total
interaction energy is compared to the BSSE and the deformation energy on the left, while the right quantifies the
frozen monomers, polarization and charge transfer interaction energy. Note that the y-scales are aligned in such
a way that the equilibrium interaction energy and the zero interaction energy are aligned for both systems, see
Appendix A for separated Figures.

covers electrostatic interaction and Pauli repulsion22 as well as dispersion interactions64,

polarization (∆Epol ) energy, obtained by variationally optimizing the BLW, and, finally, the

charge transfer (∆EC T ) interaction that includes covalent bond formation.

∆Etot =∆Ede f or m +∆E f r ozen +∆Epol +∆EC T (2.25)

These terms can be expressed as:

∆Ede f or m = E f r ag 1,s y s −E f r ag 1,opt +E f r ag 2,s y s −E f r ag 2,opt (2.26a)

∆E f r ozen = Eg uess −E f r ag 1,s y s −E f r ag 2,s y s (2.26b)

∆Epol = EBLW −Eg uess (2.26c)

∆EC T = Es y stem −EBLW −∆EBSSE (2.26d)

where E f r ag ,s y s corresponds to the energy of a fragment in its final geometry adopted in the

presence of the other fragment. Eg uess is the systems energy obtained by a superposition of

the fragment density matrices, which corresponds to the “frozen” density interaction energy

approximation. EBLW is the energy obtained by Ensemble BLW.
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2.4 Results and Discussion

As a first application of Ensemble BLW-EDA to metal surfaces, we compare the adsorption of

H2O and H2S on Pt(111). As shown Figure 2.1 for both molecules the most favorable adsorption

configuration is atop, with the molecular plane approximately parallel to the surface. The total

interaction energy as a function of the Pt–O or Pt–S distance shows that despite the nominally

larger non-covalent radius of sulfur with respect to oxygen (1.8 and 1.5 Å according to Bondi 65),

the minimum is found around 2.4 Å in both cases. This can be rationalized by the overall

stronger interaction of Pt–H2S (29 kcal mol-1) compared to Pt–H2O (9 kcal mol-1), which allows

S to approach the surface more closely than O with respect to its size. The BSSE contribution

to the interaction energy is similar for H2O and H2S (roughly 10% of the total interaction

energy). Therefore, the comparison between the two systems could be performed with a 10%

accuracy without the BSSE correction, for instance for molecular dynamics simulations of

H2S dissolved in water. The deformation energy of the two systems show different patterns.

While the energetic cost to deform water/Pt(111) to its optimal geometry is very small (at most

0.5 kcal mol-1), H2S/Pt(111) undergoes a deformation up to 7 kcal mol-1 at a distance that is

only slightly longer than the equilibrium distance, while it drops at shorter distances to about

1 kcal mol-1. Analyzing the origin of the deformation energy, we identify the deformation of

the metal surface as the major contributor. As shown in Figure A.2, the Pt atom on which the

adsorbate is adsorbed, is “pulled out” of the surface at intermediate distances. After a certain

elongation, it goes back to the original position, almost as if the spring had been overstretched

and thus broken. Moving to the interaction energy components of the fragments after paying

the preparation (deformation) energy (right hand graph of Figure 2.2), we first observe that the

“frozen” term, i.e., the energy cost (or gain) of putting the fragments together without electronic

density changes, follows the expected increase in atomic size when replacing oxygen by sulfur:

The energy of assembly becomes positive for distances below 2.8 and 3.2 Å for H2O and H2S,

respectively. At larger distances, the interaction energy is already negative without any further

electronic relaxation. This is due to the subtle balance between Pauli repulsion and attraction

by dispersion interactions. Note that electrostatic interactions are also included at this stage,

but since the isolated metal surfaces do not have significant electrostatic moments (dipole,

quadrupole etc.), they barely contribute in the present systems. Allowing the electron density

to relax in the presence of the other fragment, but prohibiting any charge transfer (or direct

orbital interaction), affords the stabilizing polarization energy Epol . H2S has a 2.7 times larger

polarizability than H2O (26.7 and 9.8 a.u.3, respectively, 66). Indeed, there is roughly a factor

of three between Epol for H2S compared to H2O at all relevant distances (> 2.3 Å), in close

agreement with the corresponding factor for the total interaction energy. The charge transfer

between the metal surface and the adsorbate, is, however, much more important for H2S than

for H2O. This contrasting energy decomposition can be rationalized recalling that sulfides

are softer bases than oxides and that platinum is a soft acid. Furthermore, interactions with

sulfur can benefit from stabilization through hypervalence by increasing the ionic character of
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bonds. 67

As a conclusion, the stabilizing interaction of a single water molecule with Pt(111) is due to

equal amounts to polarization and to charge transfer. In other words, even in this case of rather

weak physisorption, the use of a polarizable force field is unlikely to be enough to capture

the physics of the interaction energy accurately. However, a good approximation can be

obtained since the two components are well correlated, i.e., counting the polarization energy

twice, BLW could capture a reasonable approximation of the total interaction energy. This

insight might help the development of more accurate Pt/H2O force fields. 68;69 The situation

for H2S is more challenging to approximate: charge-transfer dominates the interaction energy,

which also induces significant deformations of the surface. Hence, already for H2S adsorption,

explicit terms to mimic orbital/charge-transfer interactions are required. The situation can be

simplified by excluding surface deformation. Given the scarcity of accurate force fields for the

deformation of metal surfaces, this is the preferred setup anyway. Figure A.3 shows that on an

ideal surface the deformation energy is negligible and the charge-transfer and polarization

energies are now as smooth as for water. Furthermore, on an ideal surface, a very similar

relative importance of the various contributions is obtained for H2O and H2S. Since Etot is not

very different when using an ideal Pt(111) surface, H2S adsorption can be described without

taking into account the surface deformation with only a small loss in accuracy. Given that EC T

is most strongly affected, this analysis also identifies the charge-transfer as the origin of the

deformation.

On a more technical level, we have also investigated the influence of the electronic smearing

temperature on the results. In Figure A.4 we show that increasing the electronic temperature

from 300 K to 1000 K does not visibly affect the results. Even at 2000 K only changes of 3-4 kcal

mol-1 are observed, leaving the relative importance of different terms unchanged. As detailed

in Appendix A, the small changes observed can be rationalized keeping in mind that higher

electronic temperatures lead to the occupation of orbitals lying above the Fermi level.

The deformation energy observed for H2S is small compared to the one obtained for ethylene

adsorption (see Figure 2.3). This does not come as a surprise, given that the adsorbed geometry

(Figure 2.1) suggests a re-hybridization of the sp2 carbon atoms. This significant geometric

rearrangement is best associated with a “state crossing”: sp2 at long distances but ∼ sp3 at

short distances. This state-crossing is non-continuous, as best seen in the deformation energy,

although other interaction energy components show a similar discontinuity. As mentioned

above, the deformation is mainly due to the deformation of the metal surface, where the Pt

atom is partially lifted out of the surface (see Figure A.2). The BSSE is again on the order of 10%

of the total interaction energy around the minimum and the total interaction energy is, with

30 and 37 kcal mol-1 for π and di-σ, respectively, similar. Furthermore, the larger geometric

deformation (H-C-C-H dihedral angles of 132 and 156◦) for the di-σ mode compared to the π

mode is nicely captured by the deformation energy. Similar to H2S, the maximum deformation
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Figure 2.3 – Energy decomposition analysis for di-σ (broken lines, left y-axis) and π (full lines, right y axis)C2H4. The total
interaction energy is compared to the BSSE and the deformation energy on the left, while the right quantifies the
frozen monomers, polarization and charge transfer interaction energy.

energy is obtained when the molecule is close enough to the surface to actually “feel” it, but not

close enough to form strong covalent bonds. The deformation and the total interaction energy

reflect quite well that the π mode approaches the surface less closely than the di-σ mode

(Pt–C distance of 2.20 Å in π and 2.13 Å in di-σ). The right hand side of the graph provides a

rationalization: the Pauli repulsion (contained in E f r ozen) is longer-ranged for the π bond at

the top of a Pt atom, than between the bridge site and carbon atoms that are not strictly on top

of Pt atoms. The same observation also applies to the polarization and charge-transfer energy.

However, the relative importance of repulsion, polarization and charge-transfer is surprisingly

similar for both modes, demonstrating that the nature of the bonding interaction is the same.

Nevertheless, the di-σ mode maximizes this bonding type which is characterized by ∼ 40%

polarization energy and ∼ 60% charge-transfer, very similar to the interaction of H2S with the

same surface.

The last example we are discussing here is the classic case of CO adsorption on Pt(111). One

of the challenging questions is whether CO is adsorbed on top or on bridge/hollow sites and

how this evolves as a function of the surface charge.70 The following analysis investigates

exclusively the bonding patterns at the respective adsorption sites, without drawing any

conclusions, neither on the reliability of the chosen density functional, nor on the actual site

preference of CO on Pt(111).

In Figure 2.4 the data for CO adsorption on top and fcc sites is compared. At our level of

theory, the fcc adsorption site is slightly preferred (-52 vs -49 kcal mol-1). However, these

graphs show very clearly the contrasting behavior of CO on these two sites: The top site
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Figure 2.4 – Energy decomposition analysis for top (full lines, right y axis) and fcc (broken lines, left y-axis) CO on Pt(111).
The total interaction energy is compared to the BSSE and the deformation energy on the left, while the right
quantifies the frozen monomers, polarization and charge transfer interaction energy.

experiences a significantly stronger Pauli repulsion, resulting in a longer equilibrium distance

(2 Å compared to 1.5 Å). The deformation energy, on the other hand, is slightly lower at the

equilibrium distance on the top site than on the fcc site, although the barrier for the state-

crossing is roughly equal (∼30 kcal mol-1), shifted by 0.75 Å to longer distances for the top

mode. Regarding the decomposition of the interaction energy we can first note that the Pauli

repulsion at long distances is lower for the fcc mode compared to the top adsorption mode,

but at shorter distances rises more quickly for the fcc site. Second, in contrast to the case

of C2H4, the ratio of polarization and charge-transfer energy is quite different for the two

adsorption modes. Somewhat surprisingly, the fcc mode shows a similar pattern as H2O

adsorption, with Epol and EC T being roughly equal over the entire range of distances. In

other words, polarization contributes more to the total binding than for the adsorption of

C2H4. While charge-transfer is relatively more important for the top adsorption mode, it is

still far from reaching the importance it takes for ethylene adsorption. We suggest that this

“lower than expected” importance of charge-transfer for the adsorption of CO on Pt(111) is

due to the intricate donation and back-donation involved in CO adsorption, which can be

seen as a particularly strong polarization effect. In other words, it is the polarization which is

particularly strong for CO adsorption, not the charge-transfer that is small: this dative bond is

the strongest bond investigated herein and orbital interactions are without any doubt key for

its accurate description. However, our analysis demonstrates that the top site is more sensitive

to charge-transfer than adsorption on the hollow site. This is in good agreement with previous

reports, 70 but it is the first time that such a difference is clearly traced back to charge-transfer

and disentangled from polarization effects.
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2.5 Conclusions

In this work, we have presented the extension of the BLW formalism to systems that require

fractionally occupied orbitals such as metals at finite temperature. Since the computational

cost of the rigorous combinatorial formulation is unpractical, our extension relies on a mean-

field approximation to ensemble BLW in the context of mixed-state theory. This approximation

is based on a new concept: selfish orbitals. Selfish orbitals are normalized, but their inter-

actions with other orbitals are scaled down according to their occupation number. This

mean-field approximation is exact in the case of infinitesimal smearing (i.e. BLW with a gap)

and/or 1-block systems (i.e. ensemble KS-DFT). Furthermore, in numerical examples studied,

the estimated error in the polarization energy is roughly 0.5 kcal mol-1.

The method has been implemented in CP2K and numerical applications have shown that

H2S is much more strongly bound to Pt(111) due to charge-transfer, while the contribution

of polarization is on a similar level as for H2O. The chemisorption of ethylene on Pt(111) is,

however, dominated by the charge-transfer and the two modes (di-σ and π) show the same

type of bonding, with proportions of different interaction energy components close to the ones

of H2S. CO adsorption, on the other hand, is shown to depend significantly on the adsorption

site: although the bond is five times stronger than for H2O, the hollow-site adsorption is

characterized by a roughly equal contribution of polarization and charge-transfer, just like

water adsorption. On the top site charge-transfer is somewhat more important, but even in

this case its importance is relatively smaller than for H2S or C2H4. We ascribe this particularity

to the donation/back-donation of CO, which can be seen as a particularly strong polarization

contribution.

As demonstrated herein, BLW-EDA provides a convenient (i.e. easy to use) tool, providing

polarization and charge-transfer energies at the metal interface, which is expected to pro-

vide valuable insight for catalysis and the understanding of the metal/gas and metal/liquid

interface.
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3 Water Adlayers on Noble Metal Sur-
faces: Insights from Energy Decompo-
sition Analysis

This Chapter is based on the following article: P. Clabaut, R. Staub, J. Galiana, E. Antonetti, and

S. N. Steinmann J. Chem. Phys. 2020, 153, 054703.

Water molecules adsorbed on noble metal surfaces are of fundamental interest in surface

science, heterogeneous catalysis and as a model for the metal/water interface. Herein, we

analyse 28 water structures adsorbed on five noble metal surfaces (Cu, Ag, Au, Pd, Pt) via den-

sity functional theory and energy decomposition analysis based on the block localized wave

function technique. The structures, ranging from the monomers to ice adlayers, reveal that the

charge-transfer from water to the surface is nearly independent from the charge-transfer be-

tween the water molecules, while the polarization energies are cooperative. Dense water-water

networks with small surface dipoles, such as the
p

39×p
39 unit cell (experimentally observed

on Pt(111) ) are favored compared to the highly ordered and popular Hup and Hdown phases.

The second main result of our study is that the many-body interactions, which stabilize the

water assemblies on the metal surfaces, are dominated by the polarization energies, with the

charge-transfer scaling with the polarization energies. Hence, if an empirical model could be

found that reproduces the polarization energies, the charge-transfer could be predicted as

well, opening exciting perspectives for force field development.
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Chapter 3. Water Adlayers on Noble Metal Surfaces: Insights from Energy Decomposition
Analysis

3.1 Introduction

Ice-like water layers over noble metal surfaces are widely studied, both experimentally and

theoretically. 1–4 Due to the sparsity of the characterization of the metal/water interface, they

are sometimes considered model systems for the solid/liquid interface,5–9 even though the

validity of this extrapolation is far from obvious. 10;11 Furthermore, the ice adlayers are regu-

larly used to model the metal/liquid interface in (electro-)catalysis. 12–16 The alternatives for

approximate treatments of the solvent are implicit solvents,17 which do not compete with

adsorbates for surface sites, 18 microsolvation 19;20 which solvates adsorbates only locally, and

ab initio molecular dynamics, which is computationally very expensive 21.

The most commonly reported and applied ice adlayers over closed-packed noble-metal sur-

faces are the
p

3×p
3 Hup and Hdown models, going back to the seminal STM work of Doering

on Ru. 1 However, larger unit cells have been observed for Pt(111) 2 and explained in terms of

more disordered ice-like layers featuring ring-structures of various sizes. 3

Previous theoretical studies have focused on the bonding mechanism of individual monomers

on metal surfaces 22;23 or on the possibility of water dissociation. 24 Herein, we focus on non-

dissociated water layers, fully covering the noble metal surfaces. The purpose of this study is,

on the one hand, to elucidate the relative stability of these ice-like structures on five noble

metal surfaces (Cu, Pd, Ag, Pt, Au) and, on the other hand, to identify the driving force of their

formation via energy decomposition analysis (EDA). We rely on dispersion corrected DFT to

achieve a balanced description between water–water and water–metal interactions. 25;26

Energy decomposition analysis is a powerful tool which is mostly applied in molecular chem-

istry,27–29 but also increasingly in condensed phase30 and at surfaces.31–33 EDAs, like most

concepts in chemistry, make reference to quantities that are neither observable, nor uniquely

defined, just like the definition of an atom in a molecule. Such noumenons are, nevertheless,

widely accepted to be useful.34 The lack of unique definition spurs debate in the commu-

nity,35;36 which we interpret as a sign of the importance of the concept and not of its futility.

Hence, we herein exploit EDA to gain insight into the role of polarization and charge-transfer

for the interaction of water with noble metal surfaces.

We have recently extended the block localized wave function (BLW) technique 37–39 to metallic

surfaces.33 The BLW based EDA now allows to decompose the adsorption energy into four

terms: deformation, frozen, polarization and charge-transfer, which encompasses electron

sharing. This energy decomposition not only provides deep insight into the bonding, but also

allows to gain information for force field development: 40 The charge-transfer (chemisorption)

is the term that is the most difficult to reproduce, as it is intrinsically a many-body term with no

generally applicable analytical expression known for it. The polarization is, on the other hand,

a better understood many-body term, which can be modelled via induced dipoles, themselves
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modelled according to different techniques. BLW, which includes polarization at the DFT level,

also defines the limit of the precision that can be expected from a polarizable force field in the

absence of error cancellations between different interaction energy components.

To achieve this detailed insight, the remaining of the work is structured as follows: After de-

scribing the computational details, we analyse the stability of the various ice-layers on the five

investigated metal surfaces. Next, we perform an EDA for the ice-layers, but also for 23 smaller

(monomer to heptamer) clusters (see Fig. B.4 and B.5). According to these computations,

the polarization interaction is strongly correlated to the charge-transfer energy, so that the

total interaction can be estimated based on the (linear-scaling41) BLW energy. Furthermore,

we quantify the cooperativity between water–water and water-metal polarization interac-

tions and evidence a competition between the water–water and water–metal charge-transfer

interactions. Note, that hydrogen bonds are, as attested by various previous studies, not

of pure electrostatic origin, but show characteristics of weak covalent bonds,30;42;43 which

is indistinguishable from charge-transfer in BLW. It is this partial covalent character that is

responsible for the synergy or competition with other interactions.

3.2 Methods

We start by defining the total adsorption energy of a given system:

∆Ead s = ESC F −Esur f opt −n ·EW opt +∆EBSSE (3.1)

where ESC F is the standard KS-SCF energy of the full system, Esur f opt and EW opt are the

corresponding energies of the freely optimized surface and water molecule, respectively. n is

the number of water molecules in a given system. Since the BLW is only defined in a localized

basis set, we have to correct for the basis set superposition error (BSSE), which we do according

to the counterpoise procedure of Boys and Bernardi 44, giving rise to the (by definition positive)

energy correction ∆EBSSE .

As common in BLW-EDA, 27;45;46 we decompose the total adsorption energy ∆Ead s into:

∆Ead s =∆Ede f or m +∆E f r ozen +∆Epol +∆EC T (3.2)

where ∆Ede f or m is the preparation or deformation energy, ∆E f r ozen is the frozen energy term

that describes the interaction of the isolated fragment densities brought together and covers

electrostatic interaction and Pauli repulsion27 as well as dispersion interactions46. ∆Epol

is the polarization energy which is obtained by variationally optimizing the BLW. ∆EC T is,

finally, the charge transfer interaction that includes the covalent bond formation. Note, that

the BSSE only affects the charge-transfer term, as all other terms are evaluated using the
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same fragment-decomposed basis set. It is important to note that the distinction between

∆Epol and ∆EC T depends on the choice of the basis set, as in the complete basis set limit the

variational optimization at the origin of∆Epol retrieves the full interaction energy. However, in

several previous studies the basis set influence has been found to be rather limited when using

“standard” basis sets. 46;47 Nevertheless, an extension has been proposed to fully overcome this

issue if it would severely affect the results. 48

The following equation summarizes the scheme and different terms. Further details on the

computation of these terms are given in the corresponding equations as indicated:

Ei sol ated
∆Ede f or m−−−−−−→
E q. 3.4a

E f r ag ment s

∆E BLW
i nt (E q.3.6)︷ ︸︸ ︷

∆E f r ozen−−−−−−→
E q. 3.4b

ESF D
∆Epol−−−−−→

E q. 3.4c
EBLW

∆EC T−−−−−−→
E q. 3.4d︸ ︷︷ ︸

∆Ei nt (E q.3.5)︸ ︷︷ ︸
∆Ead s (E q.3.2)

Ecor
−∆EBSSE−−−−−−→ ESC F (3.3)

where Ei sol ated = Esur f opt +n ·EW opt
i

is the sum of the electronic energy of each fragment opti-

mized separately, E f r ag ment s = Esur f s y s +∑n
i EW s y s

i
is the sum of the energy of each fragment

evaluated in its final geometry. The superscript “sys” corresponds to the energy of a fragment

in the geometry adopted in the presence of the other fragment s. ESF D is the total energy

after Superposition of the Fragment Densities, EBLW is the total energy obtained by the Block

Localized Wavefunction33 and Ecor corresponds to the final energy of the complete system,

corrected for the BSSE, while ESC F is the energy obtained by a standard SCF computation.

This leads to the following definitions for the four terms of the adsorption energy as decom-

posed in Eq. 3.2:

∆Ede f or m = Esur f s y s −Esur f opt +
n∑
i

EW s y s
i

−n ·EW opt (3.4a)

∆E f r ozen = ESF D −Esur f s y s −
n∑
i

EW s y s
i

(3.4b)

∆Epol = EBLW −ESF D (3.4c)

∆EC T = ESC F −EBLW +∆EBSSE (3.4d)

Furthermore, we define the interaction energy, ∆Ei nt as the adsorption energy excluding the

deformation energy, i.e.,

∆Ei nt =∆E f r ozen +∆Epol +∆EC T (3.5)
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Similarly, we define the BLW interaction energy as the interaction energy that excludes the

charge-transfer interaction:

∆EBLW =∆E f r ozen +∆Epol (3.6)

Since ∆EBLW include all polarization contributions at the DFT level but excludes any charge-

transfer, it can be understood as the interaction energy of an “ideal” polarizable force field.

Furthermore, computationally its evaluation can be performed with near linear scaling with

respect to the number of fragments, 41 which contrasts with the cubic scaling for the computa-

tions including the charge-transfer interactions.

For the energy decomposition analysis and its interpretation, each system is either divided

into two blocks (one for the metallic surface, one for all the n water molecules together) or

into n +1 blocks.

Taking the frozen interaction as an example, we denote the standard decomposition:

∆E f r ozen =∆E f r ozen(W1, . . . ,Wn , sur f ) (3.7)

as the situation where every water molecule Wi is treated as a separate subsystem. This

contrasts with decomposition into two blocks, the surface and the adlayer:

∆E sur f −l ayer
f r ozen =∆E f r ozen(

⋃
i

Wi , sur f ) (3.8)

where all the water molecules are treated together as a single block and the surface is a second

block.

Finally, in order to assess many-body effects, we also determine the “additive” frozen interac-

tion:

∆E add
f r ozen =

n∑
i
∆E f r ozen(Wi , sur f ) (3.9)

where we perform n separate computations, one for each water molecule, and then sum the

corresponding contributions.

The standard decomposition leads to the most complete interaction while Eq. 3.8 excludes

the water–water interaction components and Eq. 3.9 is free of any many-body interactions. It

is, therefore, possible to define the missing part of the interaction component

∆E Non Add
f r ozen =∆E f r ozen −∆E add

f r ozen (3.10)

which represent the non-additive part of the interaction.
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Analogous equations to Eq. 3.7-3.10 can be written for the polarization and charge-transfer

energy.

For the purpose of comparison with experimental estimates, we also compute an approximate

surface energy, defined as:

Γ= ∆Ead s

A
(3.11)

where ∆Ead s is the adsorption energy of the adlayer and A the area of the corresponding

surface, i.e., the unit-cell.

3.3 Computational Details

In order to avoid BSSE during geometry optimizations, the adsorbed structures were optimized

with the plane-wave code VASP 5.4.1 49;50 using periodic boundary conditions applying the re-

optimized Perdew, Burke and Ernzerhofer functional to make it compatible with the non-local

van der Waals (vdW) functional, in short optPBE-vdW 51 functional. An energy cutoff of 400 eV

is chosen for the expansion of the plane-wave basis set, which yields converged adsorption

energies in agreement with our previous studies18;52;53. The electron–ion interactions are

described by the PAW formalism. 54;55 The unit cells are built from bulk metals (2.821, 2.580,

2.955, 2.943 and 2.797 Å nearest neighbor distance for Pt, Cu, Au, Ag, and Pd, respectively)

with four metallic layers , the top two of which are allowed to relax. The out-of-plane vector

of the unit cell was chosen to be ∼ 20 Å to achieve a negligible interaction between periodic

images. Geometries are considered converged when the maximum gradient on all atoms

is below 0.05 eV/Å, with the electronic structure being converged to a precision of 10−6 eV.

VASP was also used to determine the surface dipole moment and the workfunction of the

various systems. Following our previous studies,18;56 the dipole moment was determined

using the self-consistent dipole correction. The latter not only computes the dipole moment,

but also decouples the periodic images, which avoids spurious polarization of the system. The

workfunction was, however, computed for a centro-symmetric slab of seven layers, which was

found sufficient in our previous study on formic acid decomposition over Pd(111). 56

In CP2K,57;58 which uses atom-centered basis functions as required for the BLW-EDA, the

molecular orbitals were represented by a double-ζ Gaussian basis set with one set of polariza-

tion functions, called DZVP-MOLOPT-SR-GTH for both BLW-EDA and BSSE corrected SCF

DFT simulations. 59 A cutoff of 400 Ry was used to describe the electron density in agreement

with our previous study 33. The exchange-correlation (XC) energy was approximated with

the optPBE-vdW51 functional. Like in VASP, the Brillouin zone was described at the Γ-point.

Goedecker, Teter and Hutter (GTH) pseudo-potentials60 based on the PBE functional were

used to describe the interactions between the valence electrons and the ionic cores, and the
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Figure 3.1 – Structures of the ice adlayers on Pt(111) together with their short-hand notation as used herein. The unit cell
is indicated in green. For the small unit cells, a supercell is chosen to have comparable sizes for all systems
and allow the use of the Γ point only in the DFT computations. The in-plane unit-cell vectors are of following
lengths (in Å) for Pt (and accordingly rescaled for the other metals, see sec. 3.3): 14.66×14.66; 14.66×14.66;
19.54×14.66; 17.16×17.16; and 17.62×17.62.

electronic smearing was approximated by a Fermi-Dirac distribution at 300 K. As discussed

in our previous publication33 the 18 valence electron potential is necessary for Pt to obtain

similar results between CP2K and VASP. For Cu and Au the 11 valence electron potential is

applied. For the adopted choice, Fig. B.1 in Appendix B provides the comparison between

CP2K and VASP, showing a satisfactory correlation for our purposes (R2 > 0.99), indicating

good numerical convergence of the results for both codes. We have performed additional tests

with the larger TZVP-MOLOPT-(SR)-GTH basis set. As shown in Fig. B.6, ∆Epol increases by

about 10% at the expense of ∆EC T , which is similar to the earlier reports. 46;47

In order to identify the water molecules in the ice-layers, where the atoms are ordered by

elements rather than molecule, we have used our in-house code imecs, which is provided in

the supplementary information.

3.4 Results and Discussion

3.4.1 Relative Stability of Ice-like Layers

We are comparing five previously reported ice-like layers (depicted in Fig. 3.1) on five metals,

which we will denote Hup, Hdown, chain-Hdown,
p

37 and
p

39. The nominal coverage of these

structures is 0.67 ML for the first three, 0.70 and 0.72 ML for the last two, where ML stands for

monolayer with respect to the surface metal atoms. Figure 3.2 shows that the
p

39 structure

leads to the lowest surface energy Γ (see Eq. 3.11) for almost all metals, closely followed byp
37. Cu(111) is the exception in the sense that it is the only metal investigated herein for

which Γ(
p

37) < Γ(
p

39). Concomitantly, Cu(111) has the lowest interatomic distance of 2.58 Å

followed by 2.80 Å for Pd, the second smallest metal investigated here.

In terms of absolute values, the surface energy of Pt(111) for the
p

37 structure is 1.73 kcal/(mol·
Å2), which compares to 0.46 kcal/(mol· Å2) for the adhesion of solid water at ∼ 100 K 61 and 3.45

kcal/(mol· Å2) for the Pt/liquid water tension. 62 For a broader comparison to experiment, Fig.
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Figure 3.2 – Surface energies Γ in kcal/mol/Å2 relative to the most stable ice adlayer, i.e.,
p

39 for all metals except for Cu,
where

p
37 is slightly more stable. The higher the bar, the less stable is the corresponding structure.
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Figure 3.3 – The change of workfunction (∆Φ) when an ice adlayer is adsorbed on a (111) noble metal surface.

B.2 shows the correlation between the lowest surface energy of each metal and the reported

experimental value. Except for Cu, the trends are nicely reproduced. Since, furthermore, the

interatomic distance of Cu (2.58 Å) is less compatible with the ideal H-bond length of ∼ 2.8 Å,

this might indicate that liquid water behaves differently on Cu(111) compared to the other

noble metal surfaces.

3.4.2 Electronic Analysis

Before moving to the energy decomposition analysis, we here investigate the electronic nature

of the various interfaces by computing the surface dipole moment and the workfunctionΦ.

The workfunction is intimately connected to the electrochemical potential and it has been

argued that the Hup and Hdown phases should co-exist over large potential ranges. 9;10 However

at that time the three other surfaces investigated here have not been assessed.

All ice adlayers taken alone, except Hup for all metals and chain-Hdown on top of Cu(111),

feature a positive dipole moment, meaning that there is a positive charge accumulation on

the “bottom” and a negative one on the “top”. The maximum (1.4 eÅ) is obtained for
p

39
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over Pd(111), while the minimum is found for Hup over Cu(111) (-2.7 eÅ). The water layers,

when optimized on different metallic surfaces (and hence, on different lattice sizes), undergo

noticeable geometry distortions. A specific layer, evaluated without metallic slab but in the

perturbed geometry corresponding to different metals, can exhibit a range of dipole moment

up to 1.3 eÅ. This maximum is obtained for the Hup layer optimized on Au(111) (-1.4 eÅ)

compared to the one from Cu(111) (-2.7 eÅ). Since water is adsorbed only slightly stronger

on Cu than on Au(111), this shows that it is mostly the lattice mismatch, and not so much

the interaction strength with the metal, that affects the electronic structures via geometrical

constraints.

Similarly, the change in workfunction upon adsorption of an ice adlayer depends significantly

on the metal (larger changes in absolute values for Pt, Pd and Cu than for Ag and Au) and on

the ice layer (see Fig. 3.3). In particular, the workfunction is lowered by almost 3 eV when

adsorbing the Hup layer on Pt, Pd and Cu, but “only” 1.6 V on Au and Ag. Given the very

reductive nature of the Hup structure,9 its stability is doubtful in itself. Even though one

could have expected that the Hdown layer has the opposite effect, this is not the case and the

workfunction still drops for Pt and Pd (-0.8 eV), but remains unchanged for Cu and increases

slightly (0.2 eV) for Ag and Au. This not only shows that a purely geometric analysis of the

structure is not enough to retrieve the trends on the electronic structure, but also that the

metal-dependant interaction plays a major role.

As expected based on basic physical principles, 63 the surface dipole moments of the hydrated

metal surfaces are correlated with the change in workfunction (∆Φ), with an intercept of zero

(see Fig. B.3). In other words, a positive surface dipole moment is associated with a positive

change in workfunction and vice versa. Given the generally positive dipole moments for the

isolated layers as discussed above, the dominance of negative changes in Φ, and, thus, the

negative dipole moments for hydrated surfaces, require additional explanations. Indeed, the

change in dipole moment upon adsorption is generally negative (the one exception being Hup

on Cu(111)), with an average of -0.8 eÅ and a minimum of -1.6 eÅ (chain-Hdown on Pt(111)).

This nicely demonstrates a “universal” interaction between water and noble metal surfaces

featuring a net polarization (or charge-transfer) from water to the surface, i.e., the surface

becomes more negatively charged and behaves as a more reductive system compared to

vacuum. This conclusion is fully confirmed by the analysis of the density reorganization

upon adsorption, as shown in Fig. B.9-B.11, which represent the density difference between

the fully relaxed density and the superposition of the density of the surface and the adlayer.

The averaged profiles as a function of the out-of-plane distance demonstrate the density

accumulation in the region on top of the last metallic layer for all five adstructures. The

negative contributions, indicating the origin of the density accumulation, are, however, distinct

from one adstructure to the other. In the case of Hup, the density comes from the water adlayer.

For the other structures, it is a combination of charge transfer from the water-layer and

a polarization of the metallic system, down to the second metal layer. The top and side
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Figure 3.4 – Average (per water molecule) contributions of frozen, polarization, and charge-transfer to the total interaction
energy between water structures (oligomer of adlayer) and metal surfaces. The error bar gives the standard
deviation among all the 28 considered systems. Red dots give the specific values for the Hup layers and horizontal
dashes, those for the

p
(39) layers.

views of the isosurfaces of the density reorganization (Fig. B.9) nicely illustrates the spatial

heterogeneity of the
p

37 and
p

39 structures, which can be seen as a low-energy realization of

the proposed mixtures of Hup and Hdown structures proposed by Filhol and Doublet.9 Note,

however, that the arrangements with the lowest surface energy (
p

39 and
p

37) feature a ∆Φ

close to zero and thus also the smallest surface dipole moments.

In summary, both the energetic and the electronic structure analysis support the idea that the

lowest energy arrangement of water on noble metal surfaces might resemble the
p

39 structure,

i.e., densely packed, but containing various relative orientations of the water molecules.

3.4.3 Energy Decomposition Analysis

Water–Metal Interaction

The first, fundamental, question addressed herein is how the interaction of water with a given

metal surface depends on the arrangement of the water molecules and on the nature of the
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metal surface. This question is, furthermore, of importance when aiming at the development

of a second generation force field, improving over the existing ones that are fitted to monomer

interaction energies, i.e., missing all many body terms. Therefore, we start by analyzing the

interaction of the preformed adlayers with the metallic surface, i.e. ∆E sur f −l ayer
i nt , and each

of its components, defined in analogy to Eq. 3.8. This means that the deformation energy

is excluded, while the water molecules interact with each other freely, i.e., the water–water

charge-transfer associated with the hydrogen bonds is present at all stages of the analysis. As a

consequence, the water–water CT does not directly contribute to the studied energy difference:

the “frozen” term, ∆E sur f −l ayer
f r ozen , solely accounts for the electrostatic, steric and dispersion

interaction between the adlayer and the metal surface. The polarization term ∆E sur f −l ayer
pol is

mainly composed of the polarization of the metallic surface and the adlayer, but also contains

a response of the water–water interaction due to this polarization. Finally, the charge-transfer

contribution ∆E sur f −l ayer
C T captures the charge-transfer between the metal surface and the

adlayers and its repercussions on the water–water interaction ( see Fig. B.9 for a visualization).

To simplify the discussion, we will only discuss the case of three metals: Pt, Cu and Au. Indeed,

the corresponding values for Pd resemble Pt very closely and the same is true for the couple

Ag and Au. On the other hand, we enrich the discussion by including oligomeric clusters on

the surface (see Fig B.4 and B.5), in order to deduce more general trends than just observation

of the five ice adlayers. The oligomers offer a larger diversity of structural motifs than the

five adlayers. Furthermore, compared with the periodic adlayers that need to be stretched or

compressed to fit into the unit cell, the oligomers can relax and accommodate more easily the

various lattice constants.

Fig. 3.4 reports average energies per water molecule for the interaction energy and its compo-

nents. As expected based on the single molecule adsorption 25, the average interaction energy

is largest for Pt (-9.5 kcal/mol) and smallest for Au (-6.2 kcal/mol). Note, that this is less than

the single molecule adsorption (-10.6 and -7.5 kcal/mol), indicating that the net effect of high

coverage is slightly repulsive.

When moving to the components, we can first note a general trend for all components to be,

in absolute value, more important for Pt than for Cu, than for Au. For instance, the steric

repulsion, at the origin of the positive sign for ∆E sur f −l ayer
f r ozen , is highest for Pt and almost zero

for Au. This can be traced back to “geometrical” reasons, with a mean distance Au–O of 3.20 Å

vs. Pt–O of 2.98 Å, which is a consequence of the overall stronger adsorption on Pt, which leads

to shorter internuclear distances. The origin of this strong difference in geometry, and thus

steric repulsion, is mostly found in ∆E sur f −l ayer
C T , which is more than twice for Pt compared

to Au (-10.1 vs -4.2 kcal/mol). The same proportion applies to the polarization energy, but

overall, ∆E sur f −l ayer
pol is less stabilizing than ∆E sur f −l ayer

C T , except for Cu, where they average

to -5.9 and -5.4 kcal/mol, respectively.

To give an illustration of the spread of the individual components and the profound difference
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between Hup compared to the other ice adlayers, let us discuss them at the example of Pt(111),

even though the observations and conclusions for the other metal surfaces would barely

differ. First, many water molecules in the ice adlayers are not adsorbed in the optimal single

molecule geometry. This contributes to a lowering of the repulsion (∆E sur f −l ayer
f r ozen ) for the ice

adlayers compared to the average (4.6 vs. 8.9 kcal/mol). For Hup this repulsion is even only 0.6

kcal/mol, illustrating the little steric hindrance between the ice-layer and the metal surface.

The polarization energy is similarly small for Hup (-1.6 kcal/mol) while the two Hdown adlayers

feature ∆E sur f −l ayer
pol ≈ -5 kcal/mol. ∆E sur f −l ayer

pol reaches even ∼-8 kcal/mol for the more

complex
p

37 and
p

39 structures, a value that compares well to an average of -8.3 kcal/mol for

all 28 systems considered. The situation for the charge-transfer, ∆E sur f −l ayer
C T , is close to the

observations for∆E sur f −l ayer
pol , i.e., Hup only marginally benefits from CT (∆E sur f −l ayer

C T =−3.3

kcal/mol), while the other structures are, with -7.8 kcal/mol somewhat shy of the average

∆E sur f −l ayer
C T of -10.1 kcal/mol. These observations demonstrate that Hup behaves differently

compared to the other adlayers. However, most of the other ice adlayers, and in particular thep
37 and

p
39 structures which are the most stable ones, are closely related to adsorption pat-

terns that can be mimicked via oligomers. Indeed, especially on Au and Cu metallic surfaces,

the specific value of the energetic components of the surface-layer interaction for the
p

39

structure (for example) is found within the standard deviation among all considered systems.

On Pt, however, the
p

39 layer exhibits a lower than average∆E sur f −l ayer
f r ozen (5.3 kcal/mol against

8.9 kcal/mol). A similar behavior, but with opposite sign, is observed for ∆E sur f −l ayer
C T , so that

∆E sur f −l ayer
i nt is found within the standard deviation. Consequently, the

p
39 structure is a very

stable adlayer that is well represented by oligomers.

The comparison of
p

37 and Hup based on energetic quantities could not have been deduced

from the analysis of the flow of electron density as represented in Figs. B.9-B.11. This is in

full agreement with our previous study on molecular complexes, where we demonstrated

that the electron flow and the associated interaction strength are not directly related.64 In

the case of
p

39, the explanation is particularly simple: Even though the overall workfunction

is barely affected by the nearly vanishing surface dipole moment, this global property hides

the complexity of the local charge rearrangements, associated with the polarization and

charge-transfer (see Fig. B.9).

From the perspective of designing a force field, the most important question at this point

is if the charge-transfer energy between the ice-like layer and the metallic surface is indeed

required. Hence, Fig. 3.5 reports the interaction energy of the water subsystem with the

metal surface when charge-transfer is neglected (∆E sur f −l ayer
BLW ) as a function of the total

interaction energy (∆E sur f −l ayer
i nt ). To better distinguish the behavior of the oligomers (o)

and the complete ice adlayers (l), the two groups are depicted with different symbols, but

using the same color. For the oligomers (o) Fig. 3.5 it is evident that for Pt (green) there is no

relation between the BLW (polarization-only) and the total interaction energy. However, for Cu
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Figure 3.5 – The interaction of the water subsystem with the metal surface at the BLW level, ∆E
sur f −l ayer
BLW , is plotted against

the corresponding total interaction energy, ∆E
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. The empty symbols correspond to the three outlier adlayers

(Hup, Hdown and chain-Hdown) which are excluded from the correlation.

(orange) and Au (blue), where the role of CT is less important, there is a reasonable correlation

between the two quantities, suggesting that relative adsorption energies could already be

estimated at the BLW level. The BLW computations could benefit from a significant speedup

due to their (near) linear scaling, dramatically reducing the computational cost of sampling

phase space at the metal/liquid interface. When considering the ice adlayers (l) we first see

a rough correlation for all three metals which supports the suggestion that CT might not be

necessary for relative energies at the metal/liquid interface. At a closer look, the value for Hup

point (rightmost points of the (l) series) does not fit in the correlation for any of the metals.

Apparently, Hup has a non-typical behavior, meaning its properties are significantly different

from other water arrangements on noble metal surfaces. We, therefore, advise against its use

in practical applications as a model for the water/metal interface.

Even if in the absence of CT a good correlation with ∆E sur f −l ayer
i nt can be obtained, in absolute

terms it cannot be neglected: ∆E sur f −l ayer
i nt in the absence of CT, i.e., ∆E sur f −l ayer

BLW , is not

even stabilizing for Pt and only mildly so for Cu and Au (see Fig. 3.5). This demonstrates that

∆E sur f −l ayer
C T is a significant term over all the metals and most important on Pt. Platinum is

known to be more oxophilic than Au and Cu, which is also seen in the water monomer binding
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energy, which is -10.6 for Pt(111) vs -8.5 and -7.5 kcal/mol for Cu and Au, respectively. This

oxophilicity can explain the importance of CT over Pt(111). Strikingly, with the exception of

the Hup, Hdown and chain-Hdown adlayers, ∆E sur f −l ayer
C T can be estimated from ∆E sur f −l ayer

pol

(see Fig. 3.6). The slope of ∆E sur f −l ayer
C T vs ∆E sur f −l ayer

pol only slightly depends on the metal

when excluding the “outliers”, which are Hup, Hdown and chain-Hdown. The slope is close to

unity for Pt and Au, whereas it is only 0.7 for Cu. As shown in Fig. B.6, the basis set dependence

of ∆Epol and ∆EC T of about ∼ 10% is identical for all metals considered. The slope for Cu

rises to 0.9 when excluding all ice adlayers, revealing once again the impact of the lattice

mismatch. Hence, if an accurate prediction of the metal/water polarization energy could be

found via an empirical force field, the corresponding charge-transfer term could be estimated

without a detailed physical model. This possibility opens encouraging perspectives for the

next generation of water/metal force fields. Indeed, polarizable force fields for metals have

been developed in the past,65–67 but rarely coupled to polarizable water models,68 so that

their full potential might not have been reached so far.21;69 Furthermore, only our current

work quantifies the polarization energy that should be aimed at, an important quantity when

fitting an empirical force field.

Adsorption energy of water at noble metal surfaces

Having established that the interaction energy between an ice adlayer, or just a water oligomer,

and a noble metal surface can be expressed in terms of the frozen energy and a scaled po-

larization energy, we now tackle the more general question of the total adsorption energy

on metal surface. ∆Ead s , (Eq. 3.2) accounts for all the many-body interaction terms, i.e.,

the water–water many-body interactions that are already present in the absence of a metal

surface, 70 the water–metal many-body interactions at the interface and, moreover, the change

of the water–water interaction due to the presence of the metal surface.

To set the stage, Fig. 3.7 represents the same kind of analysis for ∆Ead s , as Fig. 3.4 does

for ∆E sur f −l ayer
i nt , i.e., the different interaction energy components per water molecule for

each metal. The first, general, comment is that the two Figures look quite similar, with the

same increase in absolute value of all terms when going from Au to Cu and then to Pt. The

additional energy contribution, ∆Ede f or m , turns out to be of minor importance overall (<1

kcal/mol). Even for Cu(111) the deformation energy is not larger than for Pt, despite the

more important lattice mismatch. This can be traced back to the relative rigidity of the water

molecules compared to the softer hydrogen bond interactions between them. Hence, while

the monomer geometry does not respond much to the unit cell, it is the assembly into an

adlayer that has to adapt upon adsorption.

On average, ∆Ead s only differs by ∼2 kcal/mol per water molecule between Au (weakest

adsorption) and Pt (strongest adsorption), even though the magnitude of the major adsorption
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Figure 3.7 – Average (per water molecule) contributions of deformation, frozen, polarization, and charge-transfer to the total
adsorption energy of water structures (oligomer of adlayer) on metal surfaces. The error bar gives the standard
deviation among all the 28 considered systems.
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Figure 3.9 – The charge-transfer ∆EC T is correlated to ∆Epol for the adsorption energy. The empty symbols correspond to

the three outlier adlayers (Hup, Hdown and chain-Hdown) which are excluded from the correlation.

energy components differ by at least a factor of two. In order to uncover if this similarity is

only true on average or if it is a “universality” of the interaction of water with any of the

noble metal surfaces, Fig. 3.8 reports the correlation of adsorption energies on Pt(111) and

Cu(111) with the more physisorption-like adsorption on Au(111). Due to the large absolute

difference between the adsorption energies of oligomers (up to -90 kcal/mol) and ice adlayers

(up to -380 kcal/mol), the two families of systems are separated. The oligomers (Fig. 3.8a)

have slope close to unity and the intercept reflects the stronger adsorption of a single water

molecule on Cu and Pt compared to Au(111). For the ice adlayers (Fig. 3.8b), Cu(111) is

nearly indistinguishable from Au(111). The combination of the two figures clearly shows

that even though water oligomers are more strongly bound on Cu(111) than on Au(111), the

lattice-mismatch affects the water adlayers significantly. ∆Ead s for ice adlayers on Pt(111)

is, with a slope of 1.24 against Au(111), stronger and indicative of additional stabilization on

Pt(111) compared to the other noble metals and compared to the oligomers. This stabilization

is presumably due to a combination of stronger chemisorption and a well-matching metal

lattice.

Despite this seemingly simple distinction between adlayers and oligomers when analyzing
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the differences between metals, the individual components offer a complementary insight. In

Fig. 3.9 we trace ∆EC T as a function of ∆Epol for the three metal surfaces. When excluding the

three “exceptional” and energetically less stable ice adlayers (Hup, Hdown and chain-Hdown), a

correlation with R2 > 0.99 is obtained with slopes of about 1.5 for all three metals. This slope

is higher compared to the near unity slope from Fig. 3.6, where only the interaction between

the adlayer and the metal surface was analyzed. The origin of the difference is two-fold: first

and foremost, the water–water interaction, which is directly present in the scaling of Fig. 3.9,

features a comparably stronger CT component with respect to the polarization energy. Second,

Fig. 3.9 also contains the full cooperativity between water–water and water–metal interactions,

which are quantified in more details in the next subsection. The variation of slope between Fig.

3.9 and Fig. 3.6 nicely illustrates that even though charge-transfer and polarization are related

(with the former vanishing in the complete basis set limit), the precise relationship between

the two components depends on the nature of the probed interaction. The linear correlation

of Fig. 3.9 means that ∆Epol is sufficient to retrieve the complex many-body physics of ∆EC T ,

even including the water–water interaction. Therefore, modelling the polarization energy in

the absence of charge-transfer should be enough to capture the essential features for the full

adsorption energies ∆Ead s .

Non-Additivity and Cooperativity of Water–Water–Metal Many-Body Interactions

Operationally, modification of the water–water interaction at the metal interface cannot

be distinguished from the modification of the water–metal interaction due to the presence

of co-adsorbed water molecules. We first quantify and compare the non-additivity of the

interaction energy (∆E Non Add
i nt =∆E Non Add

f r ozen +∆E Non Add
pol +∆E Non Add

C T ) for oligomers on Pt(111)

and Au(111). The non-additivity (Eq. 3.10) measures the difference in the interaction energy

between the sum of single water molecules interacting with the surface and the assembly of

all water molecules interacting with the metal surface.

For the oligomers, ∆E Non Add
i nt contributes to more than 30% to the total interaction energy. In

other words, the non-additivity is significant for a quantitative understanding of the interac-

tions at the metal/water interface. Fig. B.7 demonstrates, however, that ∆E Non Add
i nt correlates

(R2 = 0.93 and slope of almost unity) between the two extreme metals, Au (weak adsorption)

and Pt (strong adsorption), suggesting that it is a “universal” quantity. The components of

∆E Non Add
i nt do not all behave the same: The repulsive frozen term is very weakly correlated

(R2 ≈ 0.5), but noticeably smaller for Au than for Pt (roughly one third). This is to be expected

since the water molecules are further away from the surface on Au than on Pt. It is the non-

additive charge-transfer and polarization energies that are correlated between Pt and Au and

thus bring about the correlation between the metals.

We now unravel the origin of the non-additivity in terms of contributing components. Overall,
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z

Figure 3.10 – Representation of the cartwheel (θ) and propeller (φ) angles used to describe the orientation of water molecules
toward the surface. µ is the dipole of the water molecule. θ = 0◦ when µ is aligned with the z axis, φ= 0◦ when
he two hydrogen are at an equal distance to the surface.

∆E Non Add
f r ozen is destabilizing while both the polarization and charge-transfer energies are stabi-

lizing the adlayer and are responsible for ∼ 40% and 60% of ∆E Non Add
i nt −∆E Non Add

f r ozen (i.e. the

stabilizing component), respectively and are correlated with each other (R2 = 0.98). The major

exception to this trend is, again, the Hup layer for which the frozen interaction is attractive, but

the polarization and charge transfer provide less additional stability compared to the average.

Having established the “universal” character of the non-additivity interaction, we now focus

on the case of Pt(111) to obtain a geometric understanding of its origin. Since the structures

are essentially two-dimensional, we do not simply determine the coordination number, 71 but

perform a directional analysis: in each structure, the H-bond (H· · ·O distance below 2.5 Å)

acceptors are identified. Then, they are classified according to the Pt–O distance (<3.0 Å for

chemisorbed water molecules, > 3.0 Å for physisorbed molecules). Two angles are additionally

introduced to describe the water orientation with respect to the surface, namely the cartwheel

angle θ and the propeller angleφ (see Fig 3.10 for a graphical definition). These angles describe,

respectively, the angle between the dipole of water and the normal to the surface, and the

rotation of the hydrogen pair around the dipole of water, following our previous studies on the

development of water–metal surface force fields. 21;53 The value of θ is zero when the dipole is

pointing away from the surface and rises when the molecule is bending toward the surface.

Also, a value of φ of 0◦ indicates that the two hydrogens are equally close to the surface, while a

value of 180◦ indicate that the difference in distance to the surface between the two hydrogens
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Figure 3.11 – Representation of the non-additive energy contribution of physisorbed H-bond acceptors as a function of their
θ and φ characteristics. Dots indicate the observed points. The data is also available in Table B.1
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is maximal.

In order to simplify the analysis, the two-dimensional space spanned by θ and φ is divided

into 9 rectangles for the physisorbed water molecules. The limits of these rectangles are

optimized to find the optimal linear model reproducing the non-additivity for all 27 structures,

i.e., including the ice adlayers. For the chemisorbed molecules, only two combinations are

necessary (see Table B.1). The root mean square error of this linear regression amounts to 1.37

kcal/mol (see Fig. B.8), demonstrating the good predictive power of this simple model. The

advantage of the linear model is that we also identify the geometrical arrangements that are

responsible for the non-additivity. The corresponding energy coefficients for chemisorbed

molecules (see Table B.1) indicate that the typical adsorption minimum of a single water

molecule (θ ≈ 80◦,φ ≈ 0◦, Pt–O ≈ 2.5Å) is the worst H-bond acceptor (∆E acceptor,Non Add
i nt =

−3.0 kcal/mol), i.e., does not contribute significantly to the non-additivity. This is compatible

with the observation that the oxygen atom is already interacting with the metal surface via its

lone-pairs. Therefore, its electrons are less available to interact with a third hydrogen atom.

In contrast, the typical building block of the ice-like layers, where the chemisorbed water

molecule is tilted so that the hydrogens are pointing away from the surface (θ ≈ 50◦,φ ≈ 0,

Pt–O ≈ 2.5Å) is a better H-bond acceptor (-5.4 kcal/mol). The best H-bond acceptors are,

however, not chemisorbed to the surface but physisorbed (Pt–O> 3.0), and present all small φ

values (<70◦), meaning that the two hydrogens are at somewhat similar distances from the

surface. The very best region (-10.4 kcal/mol) is found for θ > 120◦, which corresponds to two

hydrogens pointing toward the surface, but with a lone pair of the oxygen atom pointing in

the direction of the surface, and thus, towards a potential H-bond donnor. A more in-depth

study on model systems would be necessary in order to deduce clearer trends and adapted

functional forms to reproduce these trends in an empirical force field. Nevertheless, based

on Fig. 3.11 it is clear that a strategy based on correction maps (CMAPs) as introduced for

protein backbone angles, 72 could successfully retrieve the non-additivity contributions. The

only extension to the CMAP approach would be the introduction of a distance dependence, in

analogy to the θ dependence introduced in our GAL forcefields. 21;53

The synergy between water–water charge transfer and water–metal charge transfer

The synergistic energy can be defined as

∆E s yn
C T =∆E Non Add

C T −EC T (
⋃

i
Wi ) =∆EC T −

n∑
i
∆EC T (Wi , sur f )−EC T (

⋃
i

Wi ), (3.12)

which represents the CT-associated energetic difference between, on one hand, the overall CT

and, and on the other hand, the sum of each individual charge transfer between a single water

molecule and the surface plus the charge transfer within the isolated water layer. This synergy

is therefore positive (destabilizing) if there is a competition between these charge transfers

66



3.5. Conclusion

and negative for (stabilizing) cooperativity. Overall, cooperativity is found with ∆E s yn
C T =−1.37

kcal/mol per water molecule on average for Pt and -0.57 kcal/mol for Au. For Hup, however,

∆E s yn
C T is positive for both Pt and Au (1.1 and 0.5 kcal/mol per water molecule, respectively).

On the opposite, the most stable layers (
p

37,
p

39) are the ones where this cooperation is

higher, with also small net dipole moments and large contributions due to polarization.

This observation is in full agreement with our discussion in sec. 3.4.3, where we have high-

lighted the important density reorganizations of
p

39 that, nevertheless, lead to a small surface

dipole moment.

3.5 Conclusion

The detailed analysis of the electronic and geometrical characteristics of 28 diverse water

arrangements (from monomer to ice adlayers) over the (111) surface of five noble metals

(Cu, Ag, Au, Pd and Pt) has allowed to identify trends and key factors for the stability of water

arrangements on metallic surfaces. We identified dense-packed layers to be the most stable

structures, like the
p

39×p
39 unit cell for Ag, Au, Pd and Pt and the

p
37×p

37 unit-cell for

Cu. This stability was found to correspond to the smallest change of workfunction upon

adsorption. The Hdown and Hup structures, which are often cited as model structure for

water/metal interfaces, are less stable and lead to workfunction changes up to 3 eV.

The energy decomposition analysis, relying on the block localized wave function (BLW), shows

that the charge-transfer from water to the surface is overall nearly independent from the

charge-transfer between the water molecules, the latter being key for the H-bonding. ∆EC T ,

which is the computationally most costly term, is found to be linearly correlated to ∆Epol .

Hence, it can be predicted at minimal cost. As a consequence, the polarization energy can be

seen as the most important contribution to the adsorption energy.

Remarkably, the polarization energy provides about 40% additional stability at the interface

compared to the single water molecule adsorption, and displays a strong correlation with its

charge-transfer counterpart (R2 = 0.99 on Pt(111)). This is good news for force field develop-

ments, where models for the polarization energy could be included to capture the many-body

effects. Alternatively, this cooperativity can be largely reproduced by an additive model based

on the geometric parameters of the H-bond acceptor molecule. In summary, our investigation

highlights the closely related physics that governs the various noble-metal – water interaction

and suggests that polarization energies should be enough to retrieve most of the complex

many-body interactions at the metal/water interface.

67



Chapter 3. Water Adlayers on Noble Metal Surfaces: Insights from Energy Decomposition
Analysis

Bibliography

[1] Doering, D. L.; Madey, T. E. The adsorption of water on clean and oxygen-dosed Ru(011).

Surface Science 1982, 123, 305–337.

[2] Glebov, A.; Graham, A. P.; Menzel, A.; Toennies, J. P. Orientational ordering of two-

dimensional ice on Pt(111). The Journal of Chemical Physics 1997, 106, 9382–9385.

[3] Nie, S.; Feibelman, P. J.; Bartelt, N. C.; Thürmer, K. Pentagons and Heptagons in the First

Water Layer on Pt(111). Phys. Rev. Lett. 2010, 105, 026102.

[4] Carrasco, J.; Hodgson, A.; Michaelides, A. A molecular perspective of water at metal

interfaces. Nature Materials 2012, 11, 667–674.

[5] Ogasawara, H.; Brena, B.; Nordlund, D.; Nyberg, M.; Pelmenschikov, A.; Pettersson, L.

G. M.; Nilsson, A. Structure and Bonding of Water on Pt(111). Phys. Rev. Lett. 2002, 89,

276102.

[6] Rossmeisl, J.; Norskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. Calculated Phase

Diagrams for the Electrochemical Oxidation and Reduction of Water over Pt(111). The

Journal of Physical Chemistry B 2006, 110, 21833–21839.

[7] Schnur, S.; Groß, A. Properties of metal–water interfaces studied from first principles.

New J. Phys. 2009, 11, 125003.

[8] Schiros, T.; Andersson, K. J.; Pettersson, L. G. M.; Nilsson, A.; Ogasawara, H. Chemical

bonding of water to metal surfaces studied with core-level spectroscopies. J. Electron

Spectrosc. Relat. Phenom. 2010, 177, 85–98.

[9] Filhol, J.-S.; Doublet, M.-L. An ab initio study of surface electrochemical disproportiona-

tion: The case of a water monolayer adsorbed on a Pd(111) surface. Electrocatalysis 2013,

202, 87–97.

[10] Vassilev, P.; van Santen, R. A.; Koper, M. T. M. Ab initio studies of a water layer at transition

metal surfaces. J. Chem. Phys. 2005, 122, 054701, Publisher: American Institute of Physics.

[11] Bjorneholm, O.; Hansen, M. H.; Hodgson, A.; Liu, L.-M.; Limmer, D. T.; Michaelides, A.;

Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; Tyrode, E.; Walz, M.-M.; Werner, J.;

Bluhm, H. Water at Interfaces. Chem. Rev. 2016, 116, 7698–7726.

[12] Desai, S. K.; Pallassana, V.; Neurock, M. A Periodic Density Functional Theory Analysis

of the Effect of Water Molecules on Deprotonation of Acetic Acid over Pd(111). J. Phys.

Chem. B 2001, 105, 9171–9182.

[13] Filhol, J.-S.; Neurock, M. Elucidation of the Electrochemical Activation of Water over Pd

by First Principles. Angew. Chem., Int. Ed. 2006, 45, 402–406.

68



Bibliography

[14] Skulason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jonsson, H.;

Norskov, J. K. Density functional theory calculations for the hydrogen evolution reaction

in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys.

2007, 9, 3241–3250.

[15] Tian, F.; Jinnouchi, R.; Anderson, A. B. How Potentials of Zero Charge and Potentials for

Water Oxidation to OH(ads) on Pt(111) Electrodes Vary With Coverage. J. Phys. Chem. C

2009, 113, 17484–17492, Publisher: American Chemical Society.

[16] Hussain, J.; Jónsson, H.; Skúlason, E. Calculations of Product Selectivity in Electrochemi-

cal CO2 Reduction. ACS Catal. 2018, 8, 5240–5249.

[17] Mathew, K.; Kolluru, V. S. C.; Mula, S.; Steinmann, S. N.; Hennig, R. G. Implicit self-

consistent electrolyte model in plane-wave density-functional theory. J. Chem. Phys.

2019, 151, 234101.

[18] Steinmann, S. N.; Sautet, P.; Michel, C. Solvation free energies for periodic surfaces:

comparison of implicit and explicit solvation models. Phys. Chem. Chem. Phys. 2016, 18,

31850–31861.

[19] Hibbitts, D. D.; Loveless, B. T.; Neurock, M.; Iglesia, E. Mechanistic Role of Water on the

Rate and Selectivity of Fischer-Tropsch Synthesis on Ruthenium Catalysts. Angew. Chem.

Int. Ed. 2013, 52, 12273–12278.

[20] Schweitzer, B.; Steinmann, S. N.; Michel, C. Can microsolvation effects be estimated

from vacuum computations? A case-study of alcohol decomposition at the H2O/Pt(111)

interface. Phys. Chem. Chem. Phys. 2019, 21, 5368–5377.

[21] Steinmann, S. N.; Ferreira De Morais, R.; Gotz, A. W.; Fleurat-Lessard, P.; Iannuzzi, M.;

Sautet, P.; Michel, C. Force Field for Water over Pt(111): Development, Assessment, and

Comparison. J. Chem. Theory Comput. 2018, 14, 3238–3251.

[22] Carrasco, J.; Michaelides, A.; Scheffler, M. Insight from first principles into the nature of

the bonding between water molecules and 4d metal surfaces. J. Chem. Phys. 2009, 130,

184707.

[23] Michaelides, A.; Ranea, V. A.; de Andres, P. L.; King, D. A. General Model for Water

Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces. Phys. Rev.

Lett. 2003, 90, 216102.

[24] Schiros, T.; Ogasawara, H.; Näslund, L.-Å.; Andersson, K. J.; Ren, J.; Meng, S.; Karl-

berg, G. S.; Odelius, M.; Nilsson, A.; Pettersson, L. G. M. Cooperativity in Surface Bonding

and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces. J. Phys. Chem. C 2010,

114, 10240–10248.

69



Chapter 3. Water Adlayers on Noble Metal Surfaces: Insights from Energy Decomposition
Analysis

[25] Carrasco, J.; Klimeš, J.; Michaelides, A. The role of van der Waals forces in water adsorption

on metals. J. Chem. Phys. 2013, 138, 024708, Publisher: American Institute of Physics.

[26] Carrasco, J.; Santra, B.; Klimeš, J.; Michaelides, A. To Wet or Not to Wet? Dispersion Forces

Tip the Balance for Water Ice on Metals. Phys. Rev. Lett. 2011, 106, 026101.

[27] Mo, Y.; Gao, J.; Peyerimhoff, S. D. Energy decomposition analysis of intermolecular

interactions using a block-localized wave function approach. J. Chem. Phys. 2000, 112,

5530–5538.

[28] Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. Analysis of charge transfer effects in molec-

ular complexes based on absolutely localized molecular orbitals. J. Chem. Phys. 2008,

128, 184112.

[29] Steinmann, S. N.; Vogel, P.; Mo, Y.; Corminboeuf, C. The norbornene mystery revealed.

Chem. Commun. 2011, 47, 227–229.

[30] Elgabarty, H.; Khaliullin, R. Z.; Kuhne, T. D. Covalency of hydrogen bonds in liquid water

can be probed by proton nuclear magnetic resonance experiments. Nat. Commun. 2015,

6.

[31] Philipsen, P. H. T.; Baerends, E. J. Role of the Fermi Surface in Adsorbate-Metal Interac-

tions: An Energy Decomposition Analysis. J. Phys. Chem. B 2006, 110, 12470–12479.

[32] Pecher, L.; Laref, S.; Raupach, M.; Tonner, R. Ethers on Si(001): A Prime Example for the

Common Ground between Surface Science and Molecular Organic Chemistry. Angew.

Chem., Int. Ed. 2017, 56, 15150–15154.

[33] Staub, R.; Iannuzzi, M.; Khaliullin, R. Z.; Steinmann, S. N. Energy Decomposition Analysis

for Metal Surface-Adsorbate Interactions by Block Localized Wave Functions. Journal of

Chemical Theory and Computation 2019, 15, 265–275.

[34] Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. What Is an Atom in a Molecule? J. Phys. Chem. A

2005, 109, 3957–3959.

[35] Bader, R. F. W. Letter to the editor: Quantum mechanics, or orbitals? International Journal

of Quantum Chemistry 2003, 94, 173–177.

[36] Zhao, L.; Hermann, M.; Schwarz, W. H. E.; Frenking, G. The Lewis electron-pair bonding

model: modern energy decomposition analysis. Nat Rev Chem 2019, 3, 48–63.

[37] Stoll, H.; Wagenblast, G.; Preuss, H. On the use of local basis sets for localized molecular

orbitals. Theor. Chim. Acta 1980, 57, 169–178.

[38] Mo, Y.; Peyerimhoff, S. D. Theoretical analysis of electronic delocalization. J. Chem. Phys.

1998, 109, 1687–1697.

70



Bibliography

[39] Steinmann, S. N.; Jana, D. F.; Wu, J. I.-C.; Schleyer, P. v. R.; Mo, Y.; Corminboeuf, C. Direct

Assessment of Electron Delocalization Using NMR Chemical Shifts. Angew. Chem., Int.

Ed. 2009, 48, 9828–9833.

[40] Demerdash, O.; Mao, Y.; Liu, T.; Head-Gordon, M.; Head-Gordon, T. Assessing many-body

contributions to intermolecular interactions of the AMOEBA force field using energy

decomposition analysis of electronic structure calculations. J. Chem. Phys. 2017, 147,

161721.

[41] Khaliullin, R. Z.; VandeVondele, J.; Hutter, J. Efficient Linear-Scaling Density Functional

Theory for Molecular Systems. Journal of Chemical Theory and Computation 2013, 9,

4421–4427.

[42] Martín Pendás, A.; Blanco, M. A.; Francisco, E. The nature of the hydrogen bond: A

synthesis from the interacting quantum atoms picture. J. Chem. Phys. 2006, 125, 184112,

Publisher: American Institute of Physics.

[43] Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.;

Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.;

Nesbitt, D. J. Defining the hydrogen bond: An account (IUPAC Technical Report). Pure

and Applied Chemistry 2011, 83, 1619–1636, Publisher: De Gruyter Section: Pure and

Applied Chemistry.

[44] Boys, S. F.; Bernardi, F. The calculation of small molecular interactions by the differences

of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553

– 566.

[45] Khaliullin, R. Z.; Cobar, E. A.; Lochan, R. C.; Bell, A. T.; Head-Gordon, M. Unravelling the

Origin of Intermolecular Interactions Using Absolutely Localized Molecular Orbitals. J.

Phys. Chem. A 2007, 111, 8753–8765.

[46] Steinmann, S. N.; Corminboeuf, C.; Wu, W.; Mo, Y. Dispersion-Corrected Energy De-

composition Analysis for Intermolecular Interactions Based on the BLW and dDXDM

Methods. J. Phys. Chem. A 2011, 115, 5467–5477.

[47] Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. Electron Donation in the Water-Water

Hydrogen Bond. Chem. Eur. J. 2009, 15, 851–855.

[48] Horn, P. R.; Mao, Y.; Head-Gordon, M. Probing non-covalent interactions with a sec-

ond generation energy decomposition analysis using absolutely localized molecular

orbitals. Phys. Chem. Chem. Phys. 2016, 18, 23067–23079, Publisher: The Royal Society of

Chemistry.

[49] Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993,

47, 558.

71



Chapter 3. Water Adlayers on Noble Metal Surfaces: Insights from Energy Decomposition
Analysis

[50] Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations

using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.

[51] Klimes, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density

functional. J. Phys.: Condens. Matter 2010, 22, 022201.

[52] Gautier, S.; Steinmann, S. N.; Michel, C.; Fleurat-Lessard, P.; Sautet, P. Molecular adsorp-

tion at Pt(111). How accurate are DFT functionals? Phys. Chem. Chem. Phys. 2015, 17,

28921–28930.

[53] Clabaut, P.; Fleurat-Lessard, P.; Michel, C.; Steinmann, S. N. Ten Facets, One Force Field:

The GAL19 Force Field for Water–Noble Metal Interfaces. Journal of Chemical Theory and

Computation 2020,

[54] Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.

[55] Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave

method. Phys. Rev. B 1999, 59, 1758.

[56] Wang, P.; Steinmann, S. N.; Fu, G.; Michel, C.; Sautet, P. Key Role of Anionic Doping for

H2 Production from Formic Acid on Pd(111). ACS Catal. 2017, 7, 1955–1959.

[57] VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quick-

step: Fast and accurate density functional calculations using a mixed Gaussian and plane

waves approach. Comput. Phys. Commun. 2005, 167, 103–128.

[58] Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. cp2k: atomistic simulations of

condensed matter systems. WIREs Comput Mol Sci 2014, 4, 15–25.

[59] VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular

systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105.

[60] Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys.

Rev. B 1996, 54, 1703–1710.

[61] Rumptz, J. R.; Campbell, C. T. Adhesion Energies of Solvent Films to Pt(111) and Ni(111)

Surfaces by Adsorption Calorimetry. ACS Catal. 2019, 11819–11825.

[62] Tyson, W.; Miller, W. Surface free energies of solid metals: Estimation from liquid surface

tension measurements. Surface Science 1977, 62, 267–276.

[63] Mortensen, J. J.; Hammer, B.; Nørskov, J. K. Alkali Promotion of $N_2$ Dissociation over

Ru(0001). Phys. Rev. Lett. 1998, 80, 4333–4336.

[64] Steinmann, S. N.; Piemontesi, C.; Delachat, A.; Corminboeuf, C. Why are the Interaction

Energies of Charge-Transfer Complexes Challenging for DFT? J. Chem. Theory Comput.

2012, 8, 1629–1640.

72



Bibliography

[65] Siepmann, J. I.; Sprik, M. Influence of surface topology and electrostatic potential on

water/electrode systems. J. Chem. Phys. 1995, 102, 511–524, Publisher: American Institute

of Physics.

[66] Iori, F.; Corni, S. Including image charge effects in the molecular dynamics simulations of

molecules on metal surfaces. J. Comput. Chem. 2008, 29, 1656–1666.

[67] Pensado, A. S.; Padua, A. A. H. Solvation and Stabilization of Metallic Nanoparticles in

Ionic Liquids. Angew. Chem. Int. Ed. 2011, 50, 8683–8687.

[68] Golze, D.; Iannuzzi, M.; Nguyen, M.-T.; Passerone, D.; Hutter, J. Simulation of Adsorption

Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach. J.

Chem. Theory Comput. 2013, 9, 5086–5097.

[69] Steinmann, S. N.; Fleurat-Lessard, P.; Götz, A. W.; Michel, C.; Ferreira de Morais, R.;

Sautet, P. Molecular mechanics models for the image charge, a comment on “including

image charge effects in the molecular dynamics simulations of molecules on metal

surfaces”. J. Comput. Chem. 2017, 38, 2127–2129.

[70] Reddy, S. K.; Straight, S. C.; Bajaj, P.; Huy Pham, C.; Riera, M.; Moberg, D. R.; Morales, M. A.;

Knight, C.; Götz, A. W.; Paesani, F. On the accuracy of the MB-pol many-body potential

for water: Interaction energies, vibrational frequencies, and classical thermodynamic

and dynamical properties from clusters to liquid water and ice. J. Chem. Phys. 2016, 145,

194504, Publisher: American Institute of Physics.

[71] Staub, R.; Steinmann, S. N. Parameter-free coordination numbers for solutions and

interfaces. J. Chem. Phys. 2020, 152, 024124.

[72] Mackerell, A. D.; Feig, M.; Brooks, C. L. Extending the treatment of backbone energetics

in protein force fields: Limitations of gas-phase quantum mechanics in reproducing

protein conformational distributions in molecular dynamics simulations. Journal of

Computational Chemistry 2004, 25, 1400–1415.

73





4 Parameter-Free Coordination Num-
bers for Solutions and Interfaces

This Chapter is based on the following article: R. Staub, and S. N. Steinmann J. Chem. Phys.

2020, 152, 024124.

Coordination numbers are among the central quantities to describe the local environment

of atoms and are thus used in various applications such as structure analysis, fingerprints

and parameters. Yet, there is no consensus regarding a practical algorithm for calculating

coordination numbers, and many proposed methods are designed for specific systems. In this

work, we propose a scale-free and parameter-free algorithm for nearest neighbor identification.

This algorithm extends the powerful Solid-Angle based Nearest-Neighbor (SANN) framework

to explicitly include local anisotropy. As such, our Anisotropically corrected Solid-Angle based

Nearest-Neighbor (ASANN) algorithm provides with a fast, robust and adaptive method for

computing coordination numbers. The ASANN algorithm is applied to flat and corrugated

metallic surfaces to demonstrate that the expected coordination numbers are retrieved without

the need for any system-specific adjustments. The same applies to the description of the

coordination numbers of metal atoms in AuCu nano-particles and we show that ASANN

based coordination numbers are well adapted for automatically counting neighbors and the

establishment of cluster expansions. Analysis of classical molecular dynamics simulations of

an electrified graphite electrode reveals a strong link between the coordination number of Cs+

ions and their position within the double layer, a relation that is absent for Na+, which keeps

its first solvation shell even close to the electrode.
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4.1 Introduction

Detailed analysis of chemical systems allows to gain insight into their working mechanisms,

to rationalize their properties and sometimes even to predict the impact of chemical mod-

ifications such as functionalization of molecules or alloying of surfaces. Roughly two big

categories can be distinguished: energetic and structural characterizations. While energy

decomposition analysis provides detailed energetic insight in molecular chemistry, solid inter-

faces and in liquid phase,1–4 it is the coordination environment that commonly defines the

building block for local structural interpretations. The main applications in chemistry involve

hydration numbers of ions 5;6, which are of particular interest in the context of biochemistry, 7

the link between structure and activity in heterogeneous catalysis 8;9 and the characterization

of alloys. 10;11

Intuitively, the coordination number of a particle is defined as the number of nearest neigh-

boring particles. However, this does not provide a rigorous definition: what is neighboring

after all? Chemists tend to link neighboring to the idea of bonding: two items are connected

if there is a strong interaction between them. But again, “strong” is not defined and most

of the time the strength of the interaction is not easily accessible. Therefore, it is far more

common and convenient to think in terms of spatial proximity, echoing the initial terminology

of “neighbors”.

In chemistry and physics, many different algorithms are used to define the connectivity

between atoms, using more or less additional parameters (e.g., nature of the atoms or reference

bond lengths). We propose to classify the algorithms based on their input, using only two

criteria: (i) Usage of parameters (e.g., particles’ nature, reference bond lengths). Any algorithm

that depends on more than a set of point coordinates falls into this category and is denoted with

a P 1, while parameter-free algorithms are denoted by P 0. (ii) Local adaptivity. By this we mean

that the connectivity between two particles depends on the presence of other surrounding

particles and denote it by A1, while the absence of local adaptivity corresponds to A0. Since

these two criteria are non-exclusive, Figure 4.1 provides relevant examples of algorithms for

the four possible combinations.

The simplest coordination number algorithm is based on tabulated “typical” bond lengths:

only if the atoms are closer, they are connected. Hence, it falls into the class P 1 A0. This simple

and rapid algorithm is most popular in visualization softwares, 12 where bond length cut-offs

are typically constructed from predefined covalent radii 13 of considered elements.

Instead of using predetermined typical/average bond lengths that might not be of relevance for

the considered sample, coordination cut-offs can be estimated from the sample itself. This led

to the development of multiple parameter-free methods 7;10;11;14–19 using a cut-off based on the

radial distribution function g (r ). However, such algorithms require enough data to perform
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Figure 4.1 – Overview of available coordination number algorithms. We report only popular algorithms of relevance for the
context of the ASANN algorithm development, with the references provided in the text.

meaningful radial distribution analysis. Finally, these algorithms have an inherently mean-

field description of coordination since they use averaged cut-offs. Hence, local fluctuations

are not necessarily well handled as these algorithms do not take the remaining neighboring

particles into account, i.e., it is a P 0 A0 algorithm.

Constructing locally adaptive coordination numbers requires an analysis of the surround-

ings of each possible connection, which necessarily increases the computational cost. The

best known algorithm to extract context-dependent coordination numbers uses a Voronoi

tesselation, 18;20 where space is decomposed into regions (polyhedra for 3D structures), based

on which particle is the closest. Two particles are connected if their corresponding regions

share a face. This algorithm is parameter-free and thus falls into the P 0 A1 category, which

means it can be applied without any additional knowledge on the set of particles considered.

However, it has been shown that Voronoi-based coordination numbers have a tendency to be

overestimated, 18–21 which can be alleviated by re-weighting. 11 Furthermore, 3D Voronoi tes-

selations are computationally expensive 22. In the same P 0 A1 category, the Solid-Angle based

Nearest-Neighbor algorithm (SANN) algorithm 21 was developed as an efficient alternative to

Voronoi tesselations. SANN attributes a solid angle to each possible neighbor and iteratively

increases the cut-off radius to reach a sum of 4π for the solid angles, corresponding to a fully

surrounded coordination environment. This elegant method is faster than the Voronoi tesse-

lation and, furthermore, reduces the overestimation of the coordination numbers, without

the introduction of any parameters21. However, SANN suffers from coordination number

overestimation at interfaces23.

Recently, the Relative Angular Distance (RAD) algorithm23 was developed to amend the

SANN overestimation at interfaces. The reduction of the coordination number is achieved

by accounting for blocking: the coordination of two particles can be obstructed by particles

between the considered pair. Compared to other available blocking-based methods 24;25 RAD
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does not require predefined cut-off distances, but still requires additional parameters, so that

the algorithm falls in the P 1 A1 class. An earlier P 0 A1 algorithm26 accounted for blocking by

considering only bonds that are not intersecting a triangle formed by shortest bonds. However,

this idea was not further explored as its computational cost is expected to be large, and we

found the method not suitable to describe surfaces.

Herein we propose to augment the SANN algorithm with a correction term that takes the

local anisotropy into account, while preserving all properties of SANN, i.e., low computational

cost, no parameters, being locally adaptive (P 0 A1 class) and being scale free, i.e., an isotropic

scaling of all coordinates does not change the coordination number. This scheme is called

Anisotropically corrected Solid-Angle based Nearest-Neighbors (ASANN).

To set the stage, we introduce the SANN algorithm in section 4.2.1. Then, in section 4.2.2, we

identify the SANN isotropic description as source of coordination number overestimation and

propose a natural solution to tackle local anisotropy through ASANN. After the computational

details in section 4.3, section 4.4 contains tests and applications of ASANN for characterizing

metal surfaces, alkali metal ion coordination at an electrified interface and for the construction

of model Hamiltonians for alloy nanoparticles.

4.2 Algorithms

4.2.1 The SANN algorithm

The reader is strongly encouraged to read the original SANN article 21 for details. Nevertheless,

the main points are outlined below to make the ASANN algorithm understandable.

SANN defines a coordination number CNSANN(i ) of particle i to be the number of the m

nearest neighbors found within the individual coordination sphere of radius R(m)
i (also called

shell radius). SANN elegantly provides a self-consistent definition of m and the associated

coordination sphere radius R(m)
i as detailed below.

Let ri , j be the distance between particle i and its j -th nearest neighbor (denoted simply as j

in the following). By definition of R(m)
i and m, one can already write the inequality:

ri ,m ≤ R(m)
i < ri ,m+1 (4.1)

Within SANN, the m nearest neighbors are defined such that the sum of their solid angles

(with respect to i ) is equal to 4π. This requirement is related to the intuitive idea that the

nearest neighbors of i are the smallest set of particles fully covering its field of view. Indeed,

each nearest neighbor j of particle i is associated with a solid angleΩi , j , which is defined by

Ωi , j = 2π(1−cos(θi , j )), where the angle θi , j is depicted on Figure 4.2.
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Figure 4.2 – Schematic representation of the solid angle definition Ωi , j = 2π(1− cos(θi , j )) associated with neighbor j at

distance ri , j of central particle i , and using a coordination radius of R(m)
i .

Figure 4.3 – Illustration of the SANN iterative algorithm in 2D. Blue dots represents neighbors of the considered particle
(green dot), while other particles are displayed in purple. For each increasing number of neighbors m (starting
from 3), a coordination sphere radius is computed such that the SANN equality is respected (sum of neighboring
solid angle requirement). The algorithm continues until the coordination radius is well-defined (i.e. surrounding
particles are considered neighbors if and only if they are within the coordination radius).

The above definitions are summarized in the following equation:

4π=
m∑

j=1
Ωi , j =

m∑
j=1

2π(1−cos(θi , j )) =
m∑

j=1
2π

(
1− ri , j

R(m)
i

)
(4.2)

One can rewrite the two fundamental Eqs 4.1 and 4.2 into a much simpler form:

R(m)
i =

m∑
j=1

ri , j

m −2
< ri ,m+1 (4.3)

The inequality of Eq. 4.3 allows to easily compute the CNSANN(i ) = m by iteratively increasing

R(m)
i from m = 3 until the inequality is respected (see Figure 4.3). The convergence of the

algorithm was mathematically proven21.

SANN is scale free, i.e., a uniform scaling of all coordinates will not affect the coordination
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number. This property can have counter-intuitive consequences when the analyzed phase

features significant density fluctuations. This is particularly problematic when applied to

the gas-liquid interface, where thermal fluctuations might create nearly isolated particles.

The scale-free algorithm will assign a significantly larger coordination sphere to such an

isolated particle, which potentially leads to a higher coordination number compared to par-

ticles in dense regions. However, such problematic cases can be spotted by monitoring the

coordination sphere radius.

Furthermore, in situations where the environment of j is more dense than the one of i , it

is possible that j is considered a neighbor of i , even though i is not considered a neighbor

of j . Further along this line, we note that the solid-angle based approach behind SANN is

inherently linked to the assumption of locally identical coordination radii. This hypothesis is

the only meaningful approach within a parameter-free approach and represents a first order

expansion for the coordination sphere. As a consequence, directional bonding (e.g., in organic

molecules) which leads to locally more compact geometries is can lead to an overestimation

of the coordination number compared to conventional views.

4.2.2 Anisotropically corrected Solid-Angle based Nearest-Neighbors, ASANN al-
gorithm

The SANN algorithm implicitly uses a locally isotropic description of the coordination shell,

i.e., the angular distribution of neighboring particles is not taken into account. At surfaces or

tips there are, however, simply no neighbors in some directions, leading to empty sections in

the coordination sphere. Therefore, the SANN radius must expand to reach more neighbors

in the non-empty directions in order to compensate and reach a total sum of 4π. Hence,

one observes an over-estimation of coordination numbers when neighboring particles are

not isotropically distributed.23 This issue was already reported in the literature, and led to

the development of the relative angular distance (RAD) algorithm. However, RAD requires

the particles sizes as input parameters, and is fundamentally different from SANN. Here, we

propose an Anisotropically corrected Solid-Angle based Nearest neighbors (ASANN) algorithm,

which is based on the SANN framework, but includes a parameter-free correction term to

correctly describe intrinsically anisotropic coordination shells.

The basic idea of the ASANN algorithm is that some directions are more relevant for coordina-

tion than others. Therefore, instead of requiring the neighbors to fill up the whole field of view,

ASANN only requires to fill up the relevant neighboring region of space (see Figure 4.4).

An estimator of the first order local anisotropy is obtained based on the barycentre. Specifi-

cally, we define the SANN-based barycentre ~G (m)
i as the position barycentre over all SANN-

coordinated neighbors of i , weighted by their SANN-based solid angleΩi , j (with respect to

i ). A similar solid-angle based neighbors weighting has been proposed in the context of the
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Figure 4.4 – Illustration of the SANN coordination number overestimation, and founding idea of the ASANN algorithm: tackle
local anisotropy by focusing on relevant regions for coordination. This leads to the consideration of a coordination
spherical cap instead of a sphere. The chosen spherical cap reproduces the local anisotropy, through our first
order local anisotropy estimator (using a SANN-based barycentre with solid-angle weighting).

Voronoi tessalation for its canonicity. 11 Mathematically, this can be written:

~G (m)
i =

m∑
j=1

Ωi , j~ri , j

m∑
j=1

Ωi , j

(4.4)

This SANN-based barycentre is in agreement with the properties expected for retrieving the

first order local anisotropy. Indeed, it identifies a global privileged direction in the distribution

of coordinating neighbors and, more importantly, it provides a quantitative estimation of the

first order local anisotropy magnitude α(m)
i defined by:

α(m)
i = ||~G (m)

i ||
R(m)

i

(4.5)

Instead of considering a coordination sphere, the ASANN algorithm uses a coordination

spherical cap C which focuses on the locally relevant region of space for coordination. Ci is

the spherical cap centered on i having the same anisotropic properties as the neighboring

particles through our first order local anisotropy estimator. This is achieved by setting the

radius RCi = R(m)
i and requiring that its barycentre ~GCi is confounded with the SANN-based

barycentre ~G (m)
i :

Ci is centred on i

RCi = R(m)
i

~GCi = ~G (m)
i

(4.6)

The solid angleΩCi associated with this spherical cap (with respect to i ) can be written as:

ΩCi = 4π(1−γCi ) (4.7)
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where γCi ∈ [0,1[ corresponds to the angular correction coefficient, which only depends on the

first order local anisotropy magnitude α(m)
i (see section C.1 in Appendix C for a derivation):

γCi =
α(m)

i +
√
α(m)

i

2 +3α(m)
i

3
(4.8)

Therefore, instead of filling up the whole field of view (
m∑

j=1
Ωi , j = 4π), ASANN neighbors only

cover the spherical cap. This leads to the fundamental equation of ASANN:

m′∑
j=1

Ω′
i , j =

m′∑
j=1

2π

(
1− ri , j

R ′(m′)
i

)
=ΩCi = 4π(1−γCi ) (4.9)

where the ASANN coordination number m′ and the coordination cap radius R ′(m′)
i are defined

by extending the SANN coordination radius definition to include the angular correction

coefficient γCi :

R ′(m′)
i =

m′∑
j=1

ri , j

m′−2× (1−γCi )
< ri ,m′+1 (4.10)

Note that for isotropic distributions (γCi = 0), Eq. 4.10 goes back to Eq. 4.3, which means that

SANN and ASANN coincide for this case.

Using the inequality of Eq. 4.10, the ASANN coordination number m′ can be easily computed

by iteratively computing R ′(m′)
i , starting with m′ = ⌊

2(1−γCi )
⌋+1, and increasing m′ until the

inequality is respected.

In principle, this angular correction could be computed self-consistently, i.e., the angular

correction term is recomputed at each iteration along with the ASANN coordination radius.

This self-consistency breaks the analytic, direct link between the fundamental equation (Eq.

4.9) and the coordination radius definition (Eq. 4.10). Therefore, we only explore the “pertur-

bative” angular correction, where the SANN-based barycentre ~G (m)
i and the associated angular

correction term γCi are computed only once, using the SANN-based coordination radius and

coordinating neighbors. Then, the iterative ASANN algorithm (Eq. 4.10) is performed with

a fixed γCi . As demonstrated in the supporting information, this algorithm converges to a

unique solution. The overall workflow for ASANN is depicted in Figure 4.5, which also provides

information regarding the computational cost of ASANN compared to SANN: Essentially, there

is a factor of two between them, since the iterations have to be performed twice. Knowing that

ASANN coordination number is lower or equal to the one from SANN (see Appendix C for a
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Figure 4.5 – Schematic representation of the ASANN workflow: Based on the SANN coordination sphere, the barycenter and
the corresponding angular correction is computed, leading to the ASANN coordination spherical cap.

proof), there are, in general, less ASANN than SANN iterations.

Based on general properties of ASANN, partially inherited from SANN, we show the expected

applicability domain of the two algorithms in Figure 4.6. The first major limitation is related

to low coordination numbers (e.g., four) in combination with isotropic distributions (e.g.,

a tetrahedron). In this case, the coordination radius R(4)
i of Eq. 4.3 is twice the distance

between atom i and its nearest neighbors j . If there are atoms closer than 2ri j , the inequality

is not satisfied and the coordination shell is expanded to include next nearest neighbors.

This is the case for most organic molecules (see Figs. C.2-C.5 and the associated discussion),

but also in ionic compounds where small cations are located in tetrahedral sites as shown

in Appendix C (Tables C.4 to C.15), where we have analyzed a variety of salts, oxides and

perovskites. The particularity of these systems is most clearly seen for the case of a graphene

sheet (Fig. C.5): the barycenter of neighboring atoms is confounded with the central atom, so

there is no first order anisotropy and ASANN is equivalent to SANN. There are three nearest

neighbor atoms at a distance rC−C and the next nearest neighbors are already at
p

3rC−C ,

again due to the directional bonding, but which is well below the R(3)
i = 3rC−C (Eq. 4.3 for the

perfect symmetry of this system). If there would not be an anisotropic preference due to bond

formation characteristic for an sp2 carbon atom, there would also be “space” for at least two

more particles one above and one below the plane within such a coordination sphere. But

this is not the case and, therefore, for geometrical reasons, ASANN significantly overestimates
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Figure 4.6 – Venn diagram depicting the applicability domains of both SANN and ASANN. By design, ASANN extends the
applicability domain of SANN to systems presenting local anisotropy.

the conventional coordination number of 3, by adding the 6 next nearest neighbors, reaching

a CNASANN=9 for carbon in graphene. The same geometrical reasons and deviations from

homogeneous distributions apply to the ionic compounds referred to above. Since ASANN is

built on a first order anisotropy, the application to nanopores or slits is also at the border of its

applicability: if the SANN coordination sphere spans two surfaces, the first order anisotropy

vanishes and ASANN does not improve upon SANN. Higher order anisotropy corrections might

correct SANN in this situation as well as for the isotropic, low-coordination environments

mentioned above. Second, density fluctuations are problematic for the scale free algorithms.

Therefore, cross-checks with the coordination radii are required for biphasic systems and the

liquid-gas interface. As we will show by numerical results below, ASANN extends, however,

the applicability of SANN to (inhomogeneous) solutions, the solid-liquid interface and rough

surfaces including nano-particles.

The time complexity of (A)SANN is in the worst-case O(nk) for pre-treated input, where n

is the number of particles, and k is the maximum coordination number. In fact, the most

time consuming step is due to the input pre-processing, required for both SANN and ASANN

algorithms. This pre-processing comprises the computation of pair-wise distances (and

vectors for ASANN) in O(n2), and sorting those distances in O(n2 log(n)). It is, therefore, this

step that is also responsible for the space complexity of (A)SANN in O(n2). In practice, this pre-

processing quickly becomes the computational bottleneck for large systems. As a consequence,

particular care was taken for optimizing these steps in our Python 3 implementation, heavily

relying on the Numpy library 27;28. We thus combine low-level language performance for large

systems, with convenient Python 3 syntax and modularity. As an example, the computation of

the Cs coordination numbers in a 742 atom system (vide infra), took around 0.14 seconds and

the computation of all coordination numbers in a 2942 atom system took about 2 seconds
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(93% is spent on input pre-processing) on a personal laptop (Core i5-6300HQ CPU).

4.3 Computational Details

The presented algorithms have been implemented using Python3 29 and are available in the

supporting information and also on the webpage of the authors. The implementation relies

on the Numpy library 27;28 whenever possible and ASE 12 for reading common coordinate

formats. A particular effort was made to provide with extensively commented code, including

documentation and illustrative examples.

Figures have been generated with a custom ASE 12 fork to visualize the coordination numbers.

All DFT computations are performed using VASP30;31. The PBE exchange-correlation func-

tional 32 was applied and a 400 eV energy cut-off was chosen for the plane-wave basis set. The

PAW pseudo-potentials were used for describing the electron–ion interactions. 33;34

Some of the optimized metallic surfaces and metal clusters have been previously published

by our group. 35–37 The graphite electrode was set up as follows: A symmetric six layer p(2×2)

graphite slab has been built based on the optimized bulk geometry using the PBE-dDsC38

level of theory. A 9×9×1 Monkhorst-Pack K-point grid was used to integrate the Brillouin zone.

To assess the charge distribution at negative potentials, the number of electrons was varied

and the linearized Poisson-Boltzmann equation was utilized to neutralize the unit cell as

implemented in the VASPsol package. 39;40 Similarly to our previous study on electroreduction

in aprotic medium,41 the isodensity value defining the cavity has been lowered to 5 10−4

e/Å3. In the case of graphite, this value ensures an absence of implicit solvent between the

dispersion bound graphene layers.

The potential of zero charge of graphite is, according to our setup, -0.2 V vs SHE, which

compares reasonably well with experiments (0.1 to 0.3 V depending on the nature of the

carbon electrode 42–44) considering the idealized morphology of our electrode and the expected

systematic error due to the simplified electrolyte model as discussed in the context of the

potential dependent adsorption of pyridine on a gold single crystal surface45. A negative

charge of -0.25 electrons in the unit cell (-0.125 electrons per surface) led to a potential drop of

2.4 V compared to the potential of zero charge and thus corresponds to a significant negative

polarization. Based on the DFT computations, the unit cell was replicated four times in each

in-plane direction, resulting in 128 carbon atoms per layer and a total charge of 4 e-. Following

a setup very similar to ref 46, the Lennard-Jones (LJ) parameters for graphite are taken from

UFF. 47 The initial solvent distribution is obtained from the predefined TIP3P 48 box with about

35 Å of water surrounding the system, resulting in a box of 716 water molecules. To simulate

a 1 M electrolyte, 15 Na+ (or Cs+) and 11 Cl− ions, described by their standard AMBER force

field parameters, are added using tleap of the AmberTools. MM computations are performed
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with NAMD 2.949 for 5 ns (time step of 2 fs), applying a Langevin thermostat (300 K) with a

damping coefficient of 1 ps-1. The Langevin barostat (1 bar) is applied with a piston period of

100 fs and a decay of 150 fs.

4.4 Results and Discussion

4.4.1 Metallic surfaces

As a first test, we apply ASANN to various metallic surfaces. The selection of surfaces is

intended to span a wide range of typical cases to assess the applicability domain of SANN and

ASANN.

For face centered cubic (fcc) metallic surfaces, the metal-metal contact distance in the bulk

is a reliable measure for identifying nearest neighbors. Reassuringly, closed packed, flat

surfaces are well described by SANN and ASANN, giving identical results that are in perfect

agreement with cutoff based methods (see Appendix C). In other words, flat surfaces are not

anisotropic enough to induce an expansion of the SANN coordination sphere to the next

nearest neighbors.

An increased local anisotropy can be obtained for nano-rods. The large rod, constructed

from the corresponding bulk without any geometry optimization (Figure 4.7), is still well and

identically described by SANN and ASANN.

However, stepped surfaces (see Figures 4.8 and 4.9) are more challenging for SANN, while

ASANN consistently retrieves the cutoff based coordination number. In particular, SANN

is very sensitive to small local surface induced contractions, while ASANN is more robust,

avoiding coordination number overestimations seen in Figure 4.9 for SANN. Stepped surfaces

can therefore be considered at the limit of the applicability domain of SANN, due to their local

convexity.

To simulate low-coordinated atoms,9 add-atoms have also been analyzed. Based on visual

inspection (and confirmed by cutoff based methods), the square of addatoms on a (100)

surface is characterized by two nearest neighbors from the square (the third is not “touching”,

i.e., it is a next-nearest neighbor) and four from the (100) plane below, yielding a coordina-

tion number of six. Similarly, an addatom of the triangle on a (111) surface possesses two

nearest neighbors from the triangle and three from the supporting (111) plane, resulting in a

coordination number of five. Recalling that the flat (100) surface of fcc closed packed metals

has a coordination number of 8 for its surface atoms, the CNSANN=8 for surface adatoms

reveal a clear overestimation (see Figures 4.10 and 4.11), qualitatively failing to identify the

low-coordination environment. This contrasts with CNASANN that is in full agreement with

visual inspection and cuttoff based methods.
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Figure 4.7 – Transversal cut of a periodic nano-rod of an fcc metal, with superimposed coordination numbers. SANN and
ASANN coordination numbers are identical.

Figure 4.8 – Side view of a stepped gold surface (664), with superimposed coordination numbers. SANN and ASANN coordi-
nation numbers are identical.
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(a) SANN (b) ASANN

Figure 4.9 – Side view of a stepped gold surface (644), with superimposed SANN (a) and ASANN (b) coordination numbers.

(a) SANN algorithm (b) ASANN algorithm

Figure 4.10 – Representation of a p(3×3) Cu(100) surface with a square of 4 Cu addatoms. Coordination numbers from
SANN (a) and ASANN (b) are superimposed.
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(a) SANN algorithm (b) ASANN algorithm

Figure 4.11 – Representation of a p(3×3) Cu(111) surface with a triangle of 3 Cu addatoms. Coordination numbers from
SANN (a) and ASANN (b) are superimposed.

To challenge the algorithms even further, we apply them to an optimized, amorphous gold

nanoparticle (see Figure 4.12). As can be seen, the particle features atoms that clearly form

tips and, therefore, we expect low CNs for them. However, just like for the addatoms on the

planar surfaces, SANN fails to correctly identify these low-coordinated atoms. For these highly

anisotropic distributions, the SANN coordination radius has to expand significantly to reach

the entire 4π for the sum of solid angles. In contrast, ASANN exploits the anisotropy of the

SANN coordination sphere to construct a spherical cap and, therefore, succeeds in identifying

intuitive nearest neighbors in all cases.

As a rule of thumb, we empirically found that SANN rarely finds coordination numbers below

7 in these systems, illustrating the surface-related overestimation reported earlier. 23 ASANN,

however, performs very well in all tested systems, correctly identifying low-coordination envi-

ronments. As shown in the supporting information, this robust, parameter-free performance

is also transmitted to generalized coordination numbers 9 of various surfaces, dispensing with

the need to define a characteristic distance or manual counting.

4.4.2 Coordination numbers at charged interfaces

The interaction of cations with negatively charged electrodes is of growing interest in the

electro-reduction of CO and CO2. 50–52 In a different context, electrolyte solutions at charged

silica interfaces are widely studied to understand the behavior of confined electrolytes.53

Finally, the advent of carbon based supercapacitors 54;55 has spurred simulations of electrolyte

solutions at charged carbon interfaces.56;57 Such simulations are also of particular interest

to understand the intercalation mechanism of alkali metal ions into graphitic surfaces.58

Here, we consider a simple model system: aqueous salt solutions in contact with a perfect
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(a) SANN algorithm (b) ASANN algorithm

Figure 4.12 – Low energy, amorphous Au38 nanoparticle. Coordination numbers from SANN (a) and ASANN (b) are superim-
posed. SANN overestimation is particularly visible at the tips.

graphite electrode. On the one hand, the experimental capacitance of a graphitic electrode is

not strongly dependent on the alkali cation in the electrolyte, 59 which might suggest that the

double layer structure is similar for all alkali metal cations. On the other hand, Cs+ ions are, in

contrast to Na+ ions, known to be soft and large, implying a low charge density at their surface.

As a consequence, Cs+ ions are expected to partially loose their solvation shell to approach the

negatively charged electrode surface more closely, which increases both the VdW interactions

and the Coulomb attraction.

We probe the difference between Cs+ and Na+ based on classical molecular dynamics simu-

lations of a graphite carbon electrode at a potential of about -2.5 V (see section 4.3) in ∼1 M

aqueous CsCl and NaCl solutions. To analyze the double layer, we investigate the existence of

a link between coordination number of ions in water (determined by ASANN, SANN and a g(r)

based cut-off algorithm) and their adsorption state.

Figure 4.13 displays the structuring of the electrolyte at the electrode surface. As commonly

observed 60, for both electrolyte solutions the distribution curve of the excess cation density

presents two well-defined peaks, corresponding to two distinct layers of preferred presence

near the anode. The strong first cation excess peak is followed by a nearly charge compensated

zone before a second, although lower, cation excess peak occurs which then decays to zero

towards the bulk solution. Besides, the anion (Cl−) distribution is barely structured and

independent on the nature of the cation. The details of the charge-excess profiles are quite

different: Cs+ excess density has the first peak at about 3.5 Å, while the corresponding one

for Na+ is at 4.8 Å. This difference indicates that Cs+ can indeed approach the electrode more

closely. The second peak is, accordingly, shifted from 6 Å to 7.5 Å when going from caesium to
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Figure 4.13 – Ionic density of ∼1 M CsCl (top pannel) and NaCl (bottom pannel) aqueous solutions near a graphite anode
(−2.5 V vs SHE). The excess counter-ions (compared with the co-ions, equivalent here to the charge density)
and the co-ions density are represented for both systems. Three distinct zones are identified, corresponding
to different adsorption/trapping states for the counter-ions. The average ASANN coordination number for the
counter-ions (with water molecules and co-ions) is superimposed for each zone.

Average coordination numbers of Cs+ ions

Method
Desolvated trapping layer

h < 4.7 Å
Solvated trapping layer

4.7 < h < 7 Å
Bulk-like layer

h > 7 Å
ASANN 7.4 (1.1) 9.6 (1.2) 9.4 (1.2)
SANN 9.1 (1.1) 10.6 (1.2) 10.5 (1.2)

fixed cutoff 7.1 (1.1) 9.2 (1.3) 9.0 (1.3)

Table 4.1 – Comparison of average Cs+ ions coordination numbers determined by ASANN, SANN and a fixed cutoff (4.0 Å)
for each defined region. The data is displayed in the form: mean (standard deviation).

sodium.

Table 4.1 and 4.2 report the ASANN and SANN coordination numbers of Cs+ and Na+, respec-

tively. For reference purposes, the radial distribution function of the O-Cs+ was analysed and

a first coordination sphere radius cutoff of 4.0 Å was identified. From this radius, cutoff-based

coordination numbers have been computed. All three algorithms agree that on average at

least one water molecule is lost when Cs+ is located in the first layer, while the second layer is

indistinguishable from the bulk solution in terms of the coordination numbers. This can be

rationalized based on Van der Waals (VdW) radii: a fully solvated Cs ion cannot approach the

graphitic electrode closer than roughly 7 Å (rC + rC s+ +3 Å, where 3 Å is a rough estimate for

the size of a water molecule).
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Average coordination numbers of Na+ ions

Method
First trapping layer

h < 6.5 Å
Second trapping layer

6.5 < h < 9 Å
Bulk-like layer

h > 9 Å
ASANN 6.1 (0.6) 6.1 (0.6) 6.1 (0.5)
SANN 6.5 (0.7) 6.6 (0.8) 6.5 (0.8)

fixed-cutoff 5.8 (0.5) 5.8 (0.5) 5.8 (0.5)

Table 4.2 – Comparison of average Na+ ions coordination numbers determined by ASANN, SANN and a fixed cutoff (3.2 Å)
for each defined region. The data is displayed in the form: mean (standard deviation).

For Na+ ions, however, the coordination numbers are the same in the two excess regions as in

the bulk, despite the qualitative similarity between the two cation excess profiles. Even the

nearest Na+ layer (∼ 4.8 Å) is not close enough to the surface to induce a partial desolvation

(see Table 4.2). In other words, in contrast to Cs+, the solvation shell of Na+ is strong and stable

across the double layer and the three methods agree on an approximate average coordination

number of six, indicating minor fluctuations and a rather isotropic distribution, in agreement

with spectroscopic data. 6

To quantitatively determine if ASANN provides with “good” coordination numbers, we assess

their ability to discriminate between “close” and “bulk” Cs ions. Specifically, we want to

quantify if CNASANN is statistically lower (i.e., below CNthresh) at the interface than in the bulk.

For the sake of comparison, we apply the same analysis also to SANN and to the cutoff based

algorithm.

To have a quantifiable measure whether or not CNASANN is lower at the interface than in

the bulk, we explore the relation between closeness and loss of coordination via a Receiver

Operating Characteristic (ROC) curve analysis. The ROC curve is one of the most rigorous

and well-established tools to evaluate the discriminating power for a binary classifier (here

close/not close) depending on a threshold value (here CNASANN). 61;62 The ROC curve of a class

of binary classifiers is constructed by plotting the True Positive Rate (TPR) against the False

Positive Rate (FPR) computed on a data set, for different threshold values.

Here, the TPR is the ratio of CNi <CNthresh for the i Cs ions “close” to the electrode to the

number of Cs ions “close” to the electrode overall, while the False Positive Rate is the ratio of

CNi <CNthresh for Cs ions not “close” to the electrode to the number of Cs ions not “close” to

the electrode overall. The threshold value can be varied between the minimum and maximum

observed with a given algorithm. Here, we define “close” as the Cs – surface distance ≤ 4.7 Å.

Such an analysis is reported on Figure 4.14. Let us first look at the ASANN results to explain

how to read a ROC curve. Since the CNs are reasonable descriptors, for low CNthresh (e.g., 7),

only “close” Cs ions are identified (FPR=0%), but not all of them (TPR≈20%), as shown in Table

C.16a. Similarly, at high CN (e.g., 10), the TPR reaches ≈100%, i.e., all “close” Cs ions have CNs
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Figure 4.14 – ROC curve for classifying Cs ions for being “close” to the carbon anode based on the coordination number
being below a given threshold. When moving from TPR=20% to TPR=55% with ASANN (blue curve), CNthresh
is increased from 7 to 8 (see Table C.16a in Appendix C for the raw data). This exploits the geometrical
constraint responsible for a partial desolvation when close enough to the surface. The distance criterium for
being close enough to the surface is chosen to be 4.7 Å, since it corresponds to the empirical frontier between
the partially desolvated adsorption zone and the fully solvated adsorption zone for Cs ions near the graphite
anode (see Fig. 4.13).

below this value, but about 50% (FPR) of the ions not close to the surface have CNs below this

value. Hence, increasing the threshold further does not change the TPR, but the FPR reaches

100%.

A major ROC curve analysis is performed through the Area Under the Curve (AUC), as it

provides an aggregate measure of classification performance 63. In this particular example, the

AUC is associated with the probability that a random interfacial Cs ion has a lower coordination

number than a random bulk Cs ion.

With an AUC of 0.90, we find a strong correlation between CNASANN and the proximity of Cs+

and the surface. This finding is coherent with ASANN providing reasonable coordination

numbers in this system. The same analysis performed with SANN only yields an AUC of 0.81.

The cutoff-based algorithm yields an AUC of 0.86, outperforming SANN, but not reaching the

performance of ASANN. This is rather remarkable, given that the cutoff algorithm is tuned to

the system by analyzing the radial distribution function, while ASANN does not know anything

about the specificities of the system. On a physical level, the major difference between the

cutoff algorithm and ASANN is that the ASANN coordination sphere adapts itself to the local

environment, while the cutoff does not. This means that the cutoff based CNs are more
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sensitive to thermal fluctuations. Indeed, we found cutoff-based coordination numbers to

be slightly noisier (≈+8%) than their ASANN/SANN counterparts within each region of the

studied system (see Table 4.1), rationalizing the poorer AUC performance.

From this comparison it can be concluded that fixed-cutoff based algorithms are somewhat

challenged when dealing with liquids, while SANN is not suitable for interfaces. In contrast,

ASANN combines the best features of these algorithms and performs well. Therefore, ASANN

is most relevant for describing solid/liquid interfaces.

4.4.3 Application to Au NP energy fitting

Exploring the energy landscape of alloy nano-particles from first principles is computationally

very expensive. Therefore, cheap energy evaluations based on simplified Hamiltonians are

often applied. 64–66. Furthermore, if the model Hamiltonian captures the essential physics, it

can also be used to gain insight into the driving force of the alloy formation. Inspired from

cluster expansions, we here test the use of a simple model Hamiltonian Hm for bimetallic

materials. Hm depends only on the number of atoms of each element and the number of

bonds between each possible elements pairs:

Hm =∑
χ
ΓχNχ+

∑
χ,χ′≥χ

Γχ,χ′Nχ,χ′ (4.11)

In other words, it is a two-body model Hamiltonian. For alloys of elements with quite different

atomic radii, the alloy nano-particles are not necessarily very regular and selecting charac-

teristic distances is not straightforward. Therefore, an automatic, parameter free algorithm

to identify bonds is particularly beneficial for these systems. In the following, we apply this

simplified model to bimetallic Au-Cu materials, where Hm becomes

Hm = ΓAu NAu +ΓCu NCu +ΓAu,Au NAu,Au +ΓAu,Cu NAu,Cu +ΓCu,Cu NCu,Cu

= Γ ·N
(4.12)

with Γ the set of parameters to fit. N is constructed by enumeration of atoms and bonds of

each type. The automatic bond enumeration was performed using ASANN and SANN for

comparison purposes. In order to have consistent bond description, a bond between atoms A

and B is only counted if and only if B is found as nearest neighbor of A and reciprocally. Such

filtering is particularly beneficial to SANN, where buried atoms are mostly spared from coordi-

nation overestimation. Hence, the bidirectional bond definition improves the soundness of

bonds between bulk and surface atoms.

For fitting the model Hamiltonian, we use a structurally diverse set of 27 Au-Cu bimetallic

nanoparticles composed of 38 atoms with various compositions and morphologies and 6
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Figure 4.15 – Parity plot for the total energy predicted by a 2-body model Hamiltonian fitted using the SANN vs. ASANN
coordination algorithm. The whole set of 27 nanoparticles + 6 Bulk structures was used as training set, and the
test set was composed of the 27 Au-Cu bimetallic nanoparticles only for graphical considerations.

Au-Cu bulk structured alloys with various Au-Cu ratios. The coordinates are provided in the

supplementary information.

When fitting only the nanoparticle set, the algorithms lead to model Hamiltonians with mean

absolute deviation (MAD) of 0.8 eV for ASANN and 0.7 eV for SANN, see Figure C.1. In other

words, both approaches are very similar, with SANN performing slightly better than ASANN.

However, the ASANN-derived parameters are found to be more robust than their SANN-based

counterparts when adding the bulk structured alloys to the training set (i.e. diversifying the

training set). The fitted parameters are not only slightly less impacted (see Tables C.1 and C.2

in Appendix C), but the overall model performance is better with ASANN-based bonds (MAD

near 1.5 eV for ASANN, versus 1.8 eV for SANN). This is especially true when using only the

nanoparticles as test set. The predicted energy for the nanoparticles with respect to the DFT

reference energies yields a coefficient of determination R2 = 0.72 and R2 = 0.59 with ASANN

and SANN based 2-body patterns, respectively (see Figure 4.15). Similarly, the pure bulks are

better described by ASANN (MAD=0.37 eV), than SANN (MAD=0.60 eV). Hence, the better

performance of SANN for exclusively fitting the nanoparticles set can be traced back to error

cancellation between coordination number overestimation and missing higher-order many-

body terms at the surface. In summary, we conclude that ASANN provides a balanced and
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physical sound description between bulk and surface-rich nanoparticles. Therefore, ASANN

can also be applied to alloys of elements with quite different atomic radii. Similarly, ASANN

could be used to provide a simple estimation of the surface of nanoparticles, by considering

the union (or surface sum) of the planar edge of each coordination cap. A more rigorous

approach using ASANN to define the surface of nanoparticles would be through the definition

of a locally adaptative coordination radius, defining the local coarseness of the surface.

4.5 Conclusion

In this work we have extended the solid-angle based nearest-neighbor (SANN) algorithm

to account for the local anisotropy, defining the anisotropically corrected solid-angle based

nearest-neighbor (ASANN) method. ASANN allows to efficiently compute parameter-free

coordination numbers and significantly improves over SANN at interfaces, where the coordi-

nation environment is highly anisotropic, such as nano-particles and partially desolvated ions

at solid/liquid interfaces, where SANN leads to overestimations of the coordination number.

In all situations tested, the ASANN coordination numbers are either identical or physically

more sound than the ones provided by SANN and on par with system-specific, cut-off based

coordination numbers. Therefore, ASANN provides a robust method to compute coordination

numbers for describing alloy nano-particles, extended surfaces and (electrified) solid/liquid

interfaces.
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5 Efficient Recursive Least Squares
Solver for Rank-Deficient Matrices

This Chapter is under review: R. Staub, and S. N. Steinmann Appl. Math. Comput.

Updating a linear least squares solution can be critical for near real-time signal-processing

applications. The Greville algorithm proposes a simple formula for updating the pseudoin-

verse of a matrix A ∈ Rn×m with rank r . In this paper, we explicitly derive a similar formula

by maintaining a general rank factorization, which we call rank-Greville. Based on this for-

mula, we implemented a recursive least squares algorithm exploiting the rank-deficiency of A,

achieving the update of the minimum-norm least-squares solution in O(mr ) operations and,

therefore, solving the linear least-squares problem from scratch in O(nmr ) operations. We

empirically confirmed that this algorithm displays a better asymptotic time complexity than

LAPACK solvers for rank-deficient matrices. The numerical stability of rank-Greville was found

to be comparable to Cholesky-based solvers. Nonetheless, our implementation supports exact

numerical representations of rationals, due to its remarkable algebraic simplicity.
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Chapter 5. Efficient Recursive Least Squares Solver for Rank-Deficient Matrices

5.1 Introduction

In this chapter, we are interested in computationally efficient algorithms for solving the

recursive least-squares problem on rank-deficient matrices.

Let Γi ∈Rm represent an observation of m variables, called regressors, associated with mea-

surement yi and let Xn be the unknown parameters of the linear relation:

An Xn +εn = Yn (5.1)

where An is an n ×m matrix representing n such observations, Yn contains associated mea-

surements and εn is the random disturbance:

An =


Γ1

>

Γ2
>

...

Γn
>

 , Yn =


y1

y2
...

yn

 (5.2)

The solution Xn to the general linear least-squares problem of equation 5.1 is defined as:

Xn = argmin
x∈S

(||x||2), S = argmin
x

(||An x −Yn ||2) (5.3)

This solution is unique1, and sometimes called minimum-norm least-squares solution. Be-

cause of its uniqueness, it is sometimes simply referred to as the least-squares solution.

As demonstrated in the seminal paper by Penrose, the least-squares solution Xn can also be

written2:

Xn = An
+Yn (5.4)

where An
+ is the pseudoinverse of An , also called generalized inverse, or Moore-Penrose

inverse. Due to its practical importance, the numerical determination of the generalized

inverse remains an active topic of research. 3;4

The pseudoinverse A+ ∈Cm×n of any matrix A ∈Cn×m is uniquely 5 characterized by the four

Penrose equations 6:

A A+A = A (5.5)

A+A A+ = A+ (5.6)

(A A+)> = A A+ (5.7)

(A+A)> = A+A (5.8)
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5.1. Introduction

Here, we are interested in a particular problem, i.e., updating a least-squares solution (or the

generalized inverse) when a new observation (Γn+1, yn+1) is added. This is typically called

the recursive least-squares (RLS) problem for which the updated solution Xn+1 is usually

written1;7:

Xn+1 = Xn +K × (yn+1 −Γn+1
>Xn) (5.9)

where yn+1 −Γn+1
>Xn is the predicted residual (or a priori error), and K is called the Kalman

gain vector.

Algorithms that allow to update an already known previous solution can be of critical impor-

tance for embedded-systems signal processing, for example, as near real-time solutions might

be required and new observations are added continuously 7. Therefore, recursive least-squares

algorithms significantly benefit from the computational efficiency introduced by updating the

least-squares solution instead of recomputing it from scratch.

If An has full column rank, the recursive least-squares solution Xn+1 of equation (5.9) can

be straightforwardly computed using normal equations1. This RLS algorithm has a time

complexity of O(m2) for each update. Therefore, computing the solution for n successive

observations, using equation (5.9), lead to a total time complexity of O(nm2).

However in the general case, An can be rank deficient, i.e. neither full column rank nor

full row rank. This is indeed the case if we want to sample a large variable space (column

deficiency), while accumulating data redundancy on the subspace of observed variables

(row deficiency). Handling rank deficiency is, for example, desirable in neurocomputational

learning applications8. Several algorithms have been developed to solve the rank-defficient

recursive least-squares problem. In particular, the Greville algorithm9 was designed for

the recursive least-squares problem specifically, whereas most of the other algorithms are

common least-squares solvers (based on Cholesky decomposition, QR factorization, SVD, . . . )

adapted to support updates of An (without the need to recompute the whole solution) 1.

The Greville algorithm provides an updated least-squares solution, and additionally, an up-

dated pseudoinverse at the same cost. This update step still has computational complexity in

O(m2), independently of the rank deficiency of An . This leads to a O(nm2) time complexity

for the computation of the full solution.i Variants of this algorithm were developed10 based

on the implicit decomposition of An , but still with an O(m2) update complexityii.

In this chapter, we write and implement a recursive least-squares algorithm that has single-

update time complexity in O(mr ) (i.e. O(nmr ) total time complexity), where r is the rank of

iNote that one can easily reach O(max(n,m)min(n,m)2) using the property (An
>)+ = (An

+)T .
iiUsing the notations defined below, Albert and Sittler maintain the m × m matrices (1 − Cn

>C̃n ) and

(C̃n
>Pn

−1C̃n ), whereas we maintain Cn , C̃n and Pn
−1 (whose sizes are reduced).
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the matrix An . The underlying idea is to maintain a general rank decomposition into a full

row rank matrix (purely non-overdetermined system) and a full column rank matrix (purely

non-underdetermined system), which are much easier to treat in a recursive least-squares

procedure. Indeed, due to the rank deficiency of An these matrices have reduced sizes, leading

to more efficient updates.

The remarkable simplicity of this approach makes it compatible with exact numerical rep-

resentations in practice, without the need to use expensive symbolic computing. We also

explore slightly more sophisticated rank decompositions, effectively bridging the gap between

the Greville algorithm and QR-based recursive least-squares solvers.

5.2 Derivation

5.2.1 General non-orthogonal rank factorization

Let An be a n ×m matrix of rank r . An can be expressed as the product9:

An = BnCn (5.10)

where Bn is a n × r matrix, and Cn is a r ×m matrix, both of rank r , which corresponds to a

full-rank factorization.

Let us consider a maximal free family BA of observations among observations Γi ∈Rm in An .

Note that BA is a basis of Im(An
>). Such basis is represented by the rows of Cn . Interpreting

rows of Cn as observations ΓCi ∈ Rm , we find that each observation ΓCi in Cn is linearly

independent of the others. Hence Cn can then be seen as a purely non-overdetermined

system. This system can be thought as linking the fitted value of each observation in BA , to

the fitted values for the m variables themselves.

Interpreting rows of Bn as observations γi ∈ Rr , we find that each observation γi in Bn is

the observation Γi of An expressed in the BA basis. Therefore, Bn can be seen as a purely

non-underdetermined system, since each observation in BA is observed at least once. One

can consider that this system links the value of each observation Γi in An , to the fitted values

for each observation in BA .

Theorem 1. The pseudoinverse An
+ of An can be computed in O(nmr ) if matrices Bn and Cn

verifying equation 5.10 are known. An explicit formula is then given by:

An
+ =Cn

>(CnCn
>)−1(Bn

>Bn)−1Bn
> (5.11)

Proof. By definition of Bn and Cn , Bn
>Bn and CnCn

> are both r × r matrices of rank r , and

therefore non-singular. As a consequence, the explicit formula given is well defined as long as
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5.2. Derivation

Bn and Cn correspond to a full-rank factorization.

It is straightforward to check that Eq. 5.11 satisfies all four Penrose equations (Eq. 5.5 to

5.8), and therefore, represents an acceptable pseudoinverse of An
9. By the unicity of the

Moore-Penrose inverse, we conclude that An
+ =Cn

>(CnCn
>)−1(Bn

>Bn)−1Bn
>. Computing

the pseudoinverse can, therefore, be reduced to computing the inverse of two r × r matrices

and three matrix multiplications giving rise (in any order) to a total O(nmr ) time complexity,

that could even be reduced by using faster algorithms11.

We are now interested in the update of the pseudoinverse of An when adding a new observation

Γn+1. Let us define An+1 as:

An+1 =
(

An

Γn+1
>

)
= Bn+1Cn+1 (5.12)

We distinguish two cases depending on the linear dependency of Γn+1 with respect to previous

observations Γ1, . . . , Γn . Note that we can equally well only consider the observations in BA ,

since BA is a basis for Vect(Γ1, . . . , Γn).

Let PBA
be the projector into Vect(BA ) = Im(C>). We define Γp

n+1 ∈Rm the projection of Γn+1

into Vect(BA ). We also define γp
n+1 ∈ Rr as Γp

n+1 expressed in the BA basis. If BA was an

orthonormal basis, the decomposition γ
p
n+1 could be easily computed by inner products with

γ
p
n+1 =CnΓn+1. However, in the general (non-orthonormal) case, the decomposition γ

p
n+1 of

PBA
Γn+1 can be obtained using the dual B̃A of BA , represented by the rows of C̃n defined

as:

C̃n = (CnCn
>)−1Cn

=σ−1
n Cn

(5.13)

where σn =CnCn
> is the Gram matrix of observations in BA . γp

n+1 can then be expressed by:

γ
p
n+1 = C̃nPBA

Γn+1

= C̃nΓn+1
(5.14)

and Γp
n+1 can then be expressed by:

Γ
p
n+1 = PBA

Γn+1

=Cn
>C̃nΓn+1

=Cn
>γp

n+1

(5.15)
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We define the rejection vector Γr e j
n+1 ∈Rm associated with the projection of Γn+1 into BA :

Γn+1 = PBA
Γn+1 +Γr e j

n+1

= Γp
n+1 +Γ

r e j
n+1

=Cn
>γp

n+1 +Γ
r e j
n+1

=Cn
>C̃nΓn+1 +Γr e j

n+1

(5.16)

It becomes clear that Γn+1 is linearly dependent from the previous observations Γ1, . . . , Γn , if

and only if, Γr e j
n+1 is null. Note that γp

n+1 , Γp
n+1 and Γr e j

n+1 can be computed in O(mr ) if C̃n and

Cn are already known.

The pseudoinverse An
+ can then be rewritten:

An
+ = C̃n

>
Pn

−1Bn
> (5.17)

where

Pn = Bn
>Bn =

n∑
i=1

γ
p
i ·γp

i
>

(5.18)

We finally define ζn+1 ∈Rr and βn+1 ∈Rn as:

ζn+1 = Pn
−1γ

p
n+1, βn+1 = Bnζn+1 (5.19)

Note that if C̃n , Cn and Pn
−1 are already known, ζn+1 can be computed in O(mr ), but βn+1

can only be computed in O(max(m,n)r ) if Bn is also known.

Theorem 2. If Γn+1 6= 0 is linearly independent from previous observations, the pseudoinverse

An+1
+ of An+1 can be updated in O(mn) if An

+, Bn , Pn
−1, Cn and C̃n are known. An explicit

formula is then given by:

An+1
+ =

(
An

+ 0
)
+ Γ

r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
−βn+1

> 1
)

(5.20)

Proof. First, let us observe how the full-rank factorization An+1 = Bn+1Cn+1 is impacted by

adding an observation Γn+1 linearly independent from previous observations. Concerning

Cn+1, we have:

Im(Cn+1
>) = Im(An+1

>) = Vect(BA ∪ {Γn+1}) 6= Vect(BA ) = Im(An
>) = Im(Cn

>)

⇒ Cn+1 6=Cn
(5.21)
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Adding Γn+1 to the rows of Cn leads to:

Cn+1 =
(

Cn

Γn+1
>

)
, Bn+1 =

(
Bn 0

0 1

)
(5.22)

It becomes clear from this definition that Bn+1 has full column rank since Bn has full column

rank, and also that Cn+1 has full row rank. Therefore, Bn+1 and Cn+1 represent an acceptable

full-rank decomposition of An+1, since we have:

Bn+1Cn+1 =
(

Bn 0

0 1

)(
Cn

Γn+1
>

)
=

(
BnCn

Γn+1
>

)
=

(
An

Γn+1
>

)
= An+1 (5.23)

Second, we apply Theorem 1 to An+1:

An+1
+ =Cn+1

>(Cn+1Cn+1
>)−1(Bn+1

>Bn+1)−1Bn+1
>

=
(
Cn

> Γn+1

)(
CnCn

> CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1 (
Bn

>Bn 0

0 1

)−1 (
Bn

> 0

0 1

)

=
(
Cn

> Γn+1

)(
CnCn

> CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1 (
(Bn

>Bn)−1 0

0 1

)(
Bn

> 0

0 1

)

=
(
Cn

> Γn+1

)(
σn CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1 (
Pn

−1Bn
> 0

0 1

)
(5.24)

Finally, we apply a generic block-wise inversion scheme:(
D E

E> F

)−1

=
(

D−1 +D−1E(F −E>D−1E)−1E>D−1 −D−1E(F −E>D−1E)−1

−(F −E>D−1E)−1E>D−1 (F −E>D−1E)−1

)

=
(

D−1 +D−1ES−1E>D−1 −D−1ES−1

−S−1E>D−1 S−1

) (5.25)

where S = F −E>D−1E , D =σn , E =CnΓn+1 and F = Γn+1
>Γn+1, since σn is non-singular and
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Γn+1
>Γn+1 is not null since Γn+1 6= 0. This leads to the pseudoinverse formula:

An+1
+ =

(
Cn

> Γn+1

)(
σn CnΓn+1

(CnΓn+1)> Γn+1
>Γn+1

)−1 (
Pn

−1Bn
> 0

0 1

)

=
(
Cn

> Γn+1

)(
σ−1

n +σ−1
n CnΓn+1S−1(CnΓn+1)>σ−1

n −σ−1
n CnΓn+1S−1

−S−1(CnΓn+1)>σ−1
n S−1

)(
Pn

−1Bn
> 0

0 1

)

=
(
Cn

> Γn+1

)(
σ−1

n +γp
n+1S−1γ

p
n+1

> −S−1γ
p
n+1

−S−1γ
p
n+1

>
S−1

)(
Pn

−1Bn
> 0

0 1

)

=
(
Cn

> Γn+1

)((
σ−1

n 0

0 0

)
+S−1

(
γ

p
n+1γ

p
n+1

> −γp
n+1

−γp
n+1

>
1

))(
Pn

−1Bn
> 0

0 1

)

=
(

An
+ 0

)
+S−1

(
Cn

> Γn+1

)(
γ

p
n+1γ

p
n+1

> −γp
n+1

−γp
n+1

>
1

)(
Pn

−1Bn
> 0

0 1

)
=

(
An

+ 0
)
+S−1

(
Cn

>γp
n+1γ

p
n+1

>
Pn

−1Bn
>−Γn+1γ

p
n+1

>
Pn

−1Bn
> −Cn

>γp
n+1 +Γn+1

)
=

(
An

+ 0
)
+S−1

(
−Γr e j

n+1βn+1
> Γ

r e j
n+1

)
(5.26)

where the Schur complement S of σn is written as:

S = Γn+1
>Γn+1 −Γn+1

>Cn
>σ−1

n CnΓn+1

= Γn+1
>Γn+1 −Γn+1

>Γp
n+1

= Γn+1
>Γr e j

n+1

= Γr e j
n+1

>
Γ

r e j
n+1 =

∥∥∥Γr e j
n+1

∥∥∥2

2

(5.27)

S is, therefore, the square of the norm of the component of Γn+1 along the orthogonal comple-

ment of Im(An
>). S is invertible since Γr e j

n+1 6= 0.

Γ
r e j
n+1 and βn+1 can be computed in O(max(m,n)r ) if Cn , C̃n , Bn and Pn

−1 are already known.

Therefore, the time complexity bottleneck is the outer product Γr e j
n+1βn+1

>, leading to a total

update in O(mn).

Theorem 3. If Γn+1 is a linear combination of previous observations, the pseudoinverse An+1
+

of An+1 can be updated in O(mn) if An
+, Bn , Pn

−1, Cn and C̃n are known. An explicit formula

is then given by:

An+1
+ =

(
An

+ 0
)
+ C̃n

>
ζn+1

1+γp
n+1

>
ζn+1

(
−βn+1

> 1
)

(5.28)

Proof. First, let us observe how the full-rank factorization An+1 = Bn+1Cn+1 is impacted by
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5.2. Derivation

adding an observation Γn+1 that is a linear combination of previous observations. Notice that:

Γn+1 = PBA
Γn+1 +Γr e j

n+1 = PBA
Γn+1 = Γp

n+1

=Cn
>C̃nΓn+1

=Cn
>γp

n+1

(5.29)

Since Γn+1 ∈ Vect(Γ1, . . . , Γn) = Vect(BA ), BA is still a basis for Vect(Γ1, . . . , Γn ,Γn+1). As a

consequence, we can take Cn+1 =Cn , leading to:

Cn+1 =Cn , Bn+1 =
(

Bn

γ
p
n+1

>

)
(5.30)

From this definition follows that Cn+1 still has full row rank, and also that Bn+1 has full column

rank since Bn has full column rank. Therefore, Bn+1 and Cn+1 represent an acceptable full-rank

decomposition of An+1, since we have:

Bn+1Cn+1 =
(

Bn

γ
p
n+1

>

)
Cn =

(
BnCn

γ
p
n+1

>
Cn

)
=

(
An

Γn+1
>

)
= An+1 (5.31)

Second, we apply Theorem 1 to An+1:

An+1
+ =Cn+1

>(Cn+1Cn+1
>)−1(Bn+1

>Bn+1)−1Bn+1
>

=Cn
>(CnCn

>)−1

((
Bn

> γ
p
n+1

)(
Bn

γ
p
n+1

>

))−1 (
Bn

> γ
p
n+1

)
=Cn

>(CnCn
>)−1

(
Bn

>Bn +γp
n+1γ

p
n+1

>)−1 (
Bn

> γ
p
n+1

)
= C̃n

> (
Pn +γp

n+1γ
p
n+1

>)−1 (
Bn

> γ
p
n+1

)
(5.32)

Finally, we apply the Sherman-Morrison formula stating that for any non-singular matrix

G ∈Rn×n and any vector v ∈Rn , if G + v v> is non-singular, then:

G + v v> =G−1 − G−1v v>G−1

1+ v>G−1v
(5.33)

with G = Pn and v = γ
p
n+1, since Pn and Pn+1 = Bn+1Bn+1

> are non-singulariii. This leads to

iiiPn+1 = Bn+1Bn+1
> is non-singular, since Pn+1 is square with full rank. Indeed, rank(Pn+1) = rank(Bn+1) = r ,

using theorem 5.5.4 of 12
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the pseudoinverse formula:

An+1
+ = C̃n

> (
Pn +γp

n+1γ
p
n+1

>)−1 (
Bn

> γ
p
n+1

)
= C̃n

>
(

Pn
−1 − Pn

−1γ
p
n+1γ

p
n+1

>
Pn

−1

1+γp
n+1

>
Pn

−1γ
p
n+1

)(
Bn

> γ
p
n+1

)
= C̃n

>
(

Pn
−1 − ζn+1ζn+1

>

1+γp
n+1

>
ζn+1

)(
Bn

> γ
p
n+1

)
=

(
An

+ C̃n
>
ζn+1

)
− C̃n

> ζn+1ζn+1
>

1+γp
n+1

>
ζn+1

(
Bn

> γ
p
n+1

)

=
(

An
+ C̃n

>
ζn+1

)
− C̃n

>
ζn+1

1+γp
n+1

>
ζn+1

(
βn+1

> ζn+1
>γp

n+1

)

=
(

An
+ 0

)
+ C̃n

>
ζn+1

1+γp
n+1

>
ζn+1

(
−βn+1

> 1+γp
n+1

>
ζn+1 −ζn+1

>γp
n+1

)

=
(

An
+ 0

)
+ C̃n

>
ζn+1

1+γp
n+1

>
ζn+1

(
−βn+1

> 1
)

(5.34)

γ
p
n+1 , ζn+1 and βn+1 can be computed in O(max(m,n)r ) if C̃n , Bn and Pn

−1 are already known.

Therefore, the time complexity bottleneck is the outer product
(
C̃n

>
ζn+1

)
βn+1

>, leading to a

total update in O(mn).

Corollary 3.1. For any observation Γn+1 ∈Rm , the pseudoinverse An+1
+ of An+1 can be updated

in Θ(mn) if An
+, Bn , Pn

−1, Cn and C̃n are known.

Indeed, at least n ×m terms of the pseudoinverse need to be updated when adding a new

observation, in the general caseiv. Therefore, the pseudoinverse update has a fundamental

cost component that cannot be improved, hence the Θ(mn) complexity. This limitation is

not present in the recursive least-squares problem. In this problem, we are only interested in

updating the least-squares solution Xn+1 when adding a new observation Γn+1 with associated

target yn+1:

Xn+1 =
(

An

Γn+1
>

)+ (
Yn

yn+1

)
= An+1

+
(

Yn

yn+1

)
(5.35)

Theorem 4. If Γn+1 6= 0 is linearly independent from previous observations, the least-squares

solution Xn+1 can be updated in O(mr ) if Xn , Cn and C̃n are known. An explicit formula (in

ivTo be convinced, consider An = In the identity matrix and Γn+1 =


1
...
1

.
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the form of equation 5.9) is then given by:

Xn+1 = Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
yn+1 −Γn+1

>Xn
)

(5.36)

Proof. First, let us inject theorem 2 into the definition of Xn+1:

Xn+1 = An+1
+

(
Yn

yn+1

)

= An
+Yn + Γ

r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
−βn+1

> 1
)(

Yn

yn+1

)

= Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
yn+1 −βn+1

>Yn
)

(5.37)

Let us simplify further this equation by recognizing βn+1
>Yn as the fitted target associated

with Γn+1:

Xn+1 = Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
yn+1 −Γn+1

>C̃n
>

Pn
−1Bn

>Yn

)

= Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
yn+1 −Γn+1

>An
+Yn

)

= Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

(
yn+1 −Γn+1

>Xn
)

= Xn + Γ
r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

∆yn+1

(5.38)

where∆yn+1 = yn+1−Γn+1
>Xn is the difference between the expected/fitted target (i.e. Γn+1Xn

>)

and the real target yn+1 associated with the new observation Γn+1 (i.e. the predicted residual,

or a priori error). We identify
Γ

r e j
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

to be the associated Kalman gain vector in this case1.

Γ
r e j
n+1 can be computed in O(mr ) if Cn and C̃n are already known, which is the time complexity

bottleneck of the whole update step.

Theorem 5. If Γn+1 is a linear combination of previous observations, the least-squares solution

Xn+1 can be updated in O(mr ) if Xn , Cn , C̃n and Pn
−1 are known. An explicit formula (in the
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form of equation 5.9) is then given by:

Xn+1 = Xn + C̃n
>
ζn+1

1+γp
n+1

>
ζn+1

(
yn+1 −Γn+1

>Xn
)

(5.39)

Proof. Let us proceed similarly to theorem 4, by injecting theorem 3 into the definition of

Xn+1:

Xn+1 = An+1
+

(
Yn

yn+1

)

= An
+Yn + C̃n

>
ζn+1

1+γp
n+1

>
ζn+1

(
−βn+1

> 1
)(

Yn

yn+1

)

= Xn + C̃n
>
ζn+1

1+γp
n+1

>
ζn+1

(
yn+1 −βn+1

>Yn
)

= Xn + C̃n
>
ζn+1

1+γp
n+1

>
ζn+1

(
yn+1 −Γn+1

>Xn
)

= Xn + C̃n
>
ζn+1

1+γp
n+1

>
ζn+1

∆yn+1

(5.40)

where ∆yn+1 = yn+1 −Γn+1Xn
> (i.e. the predicted residual, or a priori error). We identify

C̃n
>
ζn+1

1+γp
n+1

>
ζn+1

to be the associated Kalman gain vector in this case.

γ
p
n+1 and ζn+1 can be computed in O(mr ) if Cn , C̃n and Pn

−1 are already known. The whole

update step can then be performed in O(mr ) operations.

Theorem 6. For any new observation Γn+1 ∈Rm , the matrices Cn+1, C̃n+1 and Pn+1
−1 can be

updated in O(mr ) if Cn , C̃n and Pn
−1 are already known.

Proof. The updating formula naturally depends on the linear dependency of Γn+1 from previ-

ous observations (i.e. whether Γr e j
n+1 is non-null). Let us note that Γr e j

n+1 itself can be computed

in O(mr ) operations if C̃n and Cn are known.

If Γn+1 is linearly independent from previous observations (i.e. Γr e j
n+1 6= 0), equation 5.22 is

valid, leading to:

P−1
n+1 =

(
Bn+1

>Bn+1
)−1 =

((
Bn

> 0

0 1

)(
Bn 0

0 1

))−1

=
(

Bn
>Bn 0

0 1

)−1

=
(

Pn
−1 0

0 1

) (5.41)
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Cn+1 =
(

Cn

Γn+1
>

)
(5.42)

Using equation 5.26, we can write:

C̃n+1 = (Cn+1Cn+1
>)−1Cn+1 =


σ−1

n + γ
p
n+1γ

p
n+1

>∥∥∥Γr e j
n+1

∥∥∥2

2

− γ
p
n+1∥∥∥Γr e j

n+1

∥∥∥2

2

− γ
p
n+1

>∥∥∥Γr e j
n+1

∥∥∥2

2

1∥∥∥Γr e j
n+1

∥∥∥2

2


(

Cn

Γn+1

)

=


C̃n −γp

n+1
Γ

r e j
n+1

>∥∥∥Γr e j
n+1

∥∥∥2

2

Γ
r e j
n+1

>∥∥∥Γr e j
n+1

∥∥∥2

2


(5.43)

These formulae can be applied in O(mr ) operations, since γp
n+1 and Γr e j

n+1 can themselves be

computed in O(mr ) operations if C̃n and Cn are already known.

If Γn+1 is a linear combination of previous observations (i.e. Γr e j
n+1 = 0), equation 5.30 is valid,

leading to:

Cn+1 =Cn , C̃n+1 = C̃n (5.44)

Using equation 5.34, we can write:

Pn+1
−1 = Pn

−1 − ζn+1ζn+1
>

1+γp
n+1

>
ζn+1

(5.45)

This formula can be applied in O(mr ) operationsv, since γp
n+1 and ζn+1 can themselves be

computed in O(mr ) operations if Pn
−1, C̃n and Cn are already known.

Corollary 6.1. For any n ×m matrix An of rank r and any vector Yn ∈ Rn , the least-squares

solution Xn = An
+Yn can be computed in O(mnr ) operations.

5.2.2 Orthogonal rank factorization

The theorems regarding the update of the pseudo-inverse An+1
+ (theorems 2 and 3) and

least-squares solution Xn+1 (theorems 4 and 5) are valid for any decomposition satisfying

vNote that this complexity reduces to O(r 2) if γ
p
n+1 is already known.
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equation 5.10. Therefore, the rows of Cn can be required to form an orthogonal basis. This can

be easily achieved by storing only the rejection vectors Γr e j
n+1 into Cn+1. More generally, one

can store rescaled rejection vectors αn+1Γ
r e j
n+1 instead, with 0 6=αn+1 ∈R. Theorem 6 remains

valid, with equations 5.41, 5.42 and 5.43 becoming:

Cn+1 =
(

Cn

αn+1Γ
r e j
n+1

>

)
(5.46)

C̃n+1 =

 C̃n

Γ
r e j
n+1

>

αn+1

∥∥∥Γr e j
n+1

∥∥∥2

2

 (5.47)

P−1
n+1 =

(
Bn+1

>Bn+1
)−1

=
((

Bn
> γ

p
n+1

0 1
αn+1

)(
Bn 0

γ
p
n+1

> 1
αn+1

))−1

=
(

Pn
−1 −αn+1ζn+1

−αn+1ζn+1
> α2

n+1(1+γp
n+1

>
ζn+1)

) (5.48)

In particular, one can consider αn+1 =
∥∥∥Γr e j

n+1

∥∥∥−1

2
. In this case the rows of Cn form an or-

thonormal basis, i.e., Cn is an orthogonal matrix (i.e. C̃n =Cn), and equation 5.10 becomes a

Gram-Schmidt based thin LQ decomposition. This variant offers slightly reduced storage and

update computational time.

5.3 Implementation

Based on the theorems above, one can devise a simple algorithm satisfying corollary 6.1, the

pseudocode of which is shown in Algorithm 1.

These formulae have been implemented in Python3 using the Numpy library. In addition to

the least-squares update algorithm (in O(mr ) operations), this implementation also supports

pseudo-inverse (in O(mn) operations) and covariance matrix 13 updates (in O(m2) operations).

The orthogonal and orthonormal basis variants described in section 5.2.2 have also been

implemented for least-squares update (in O(mr ) operations) and pseudo-inverse update (in

O(mn) operations).

In practice, checking if Γr e j
n+1 6= 0 is ill-defined with floating-point arithmetic. Yet, it is crucial in
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5.4. Numerical Tests

Algorithm 1 Rank-deficient RLS, also called rank-Greville

1: procedure UPDATELEASTSQUARES(Γ, y , X , C , C̃ , P−1)
2: γ← C̃ Γ
3: Γr ← Γ−C>γ
4: if Γr 6= 0 then
5: K ← Γr

‖Γr ‖2
2

6: C ←
(

C
Γ>

)
7: C̃ ←

(
C̃ −γK >

K >
)

8: P−1 ←
(
P−1 0

0 1

)
9: else

10: ζ← P−1γ

11: K ← C̃>ζ
1+γ>ζ

12: P−1 ← P−1 − ζζ>
1+γ>ζ

13: end if
14: X ← X +K × (

y −Γ>X
)

15: end procedure

this algorithm as it determines the effective rank of the linear system. Therefore, we define a

threshold eps so that Γn+1 is considered a linear combination of previous observations if and

only if:

||Γr e j
n+1||2 < eps or ||Γr e j

n+1||2 < eps ×||Γn+1||2 (5.49)

By default, eps is set to (m2r +mr +m)×εM in order to account for rounding error propagation,

with εM being the machine precision.

It is important to note that the general non-orthogonal basis implementation does support

exact representations such as those defined in Python’s fractions module. Indeed, this scheme

(as the Greville algorithm) uses only operations well defined on rational numbers. One

should note that the orthogonal basis variant scheme is also compatible with exact numerical

representations as long as the rescaling factors αn+1 can themselves be represented exactly.

5.4 Numerical Tests

All computations were performed using Python 3.6.914;15 with Scipy version 1.4.116 and

Numpy version 1.18.317;18 linked with OpenBLAS on an Intel Xeon W-2123 CPU with DDR4-

2666 RAM. The code used for the numerical tests is available along with our Python3 imple-
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mentation in the supporting information and will soon become available on https://github.

com/RubenStaub/rank-greville.

5.4.1 Computational efficiency

In this section we empirically evaluate the computational efficiency achieved by the rank

factorization Greville algorithm described in this chapter (Algorithm 1), referred to as “rank-

Greville”. Note that for comparison purposes, its total complexity (i.e. computing the full

least-squares solution from scratch in O(nmr ) operations) is studied here, even though this

algorithm was not specifically designed as a least-squares solver from scratchvi. Rather,

rank-Greville was designed for the recursive update in applications requiring a constantly

up-to-date solution.

For this analysis to be meaningful, the rank-Greville algorithm time efficiency is compared

against standard algorithms from the LAPACK library:

• “gelsy” refers to the DGELSY least-squares solver from the LAPACK library based on a

complete orthogonal factorization (using QR factorization with column pivoting) 19;20.

• “gelss” refers to the DGELSS least-squares solver from the LAPACK library based on

SVD 19.

• “gelsd” refers to the DGELSD least-squares solver from the LAPACK library also based

on SVD, using a diagonal form reduction19.

These routines were accessed through the scipy.linalg.lstsq wrapper function from the Scipy

library.

For these tests, we consider the computation from scratch of the least-squares solution Xn

verifying:

RN (n,m,r )Xn = RN (n,1,n) (5.50)

where the random matrix RN (n,m,r ) ∈Rn×m has rank r and its elements are sampled from

the normal N (0,1) distribution. For reproducibility purposes the pseudo-random number

generator was reset before each RN (n,m,r ) computation.

In order to assess the scaling properties of these algorithms, we evaluate (using Python’s timeit

module) the time elapsed for solving equation 5.50 using various ranges for the parameters n,

m, and r :

viIndeed, in this case rank-Greville must perform much more memory allocation and copy than a conventional
solver, explaining, in part, the large prefactor
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5.4. Numerical Tests

• Full-rank square matrices:

r = n = m (5.51)

Figure 5.1 highlights the O(n3) asymptotic complexity of all algorithms in this case.

• Full-rank rectangular matrices:

r = n ≤ m (5.52)

By fixing the number of rows n, Figure 5.2 highlights the O(mn2) asymptotic complexity

of all algorithms in this casevii.

• Rank-deficient square matrices:

r ≤ n = m (5.53)

At fixed rank r = 100, Figure 5.3 nicely highlights the exploitation of rank-deficiency

from rank-Greville to reach an O(mnr ) asymptotic complexity.

• Optimal (time-efficiency wise) applicability domains:

r ≤ n ≤ m (5.54)

Figure 5.4 illustrates which algorithm is the fastest (and by which margin) for a range

of parameters ratios. Even though not specifically designed for solving the linear least-

squares problem from scratch, the rank-Greville algorithm appears to be more efficient

than other LAPACK solvers, but only when the observations matrix has particularly low

rank r . 0.15×min(n,m).

These tests confirm the lowest O(mnr ) asymptotic complexity of the rank-Greville algorithm

compared with other LAPACK solvers (O(m2n) or O(mn2)) for solving the least-squares prob-

lem from scratch. We note, nonetheless, that rank-Greville has a larger pre-factor, in part due

to the additional work of maintaining a constantly up-to-date minimum-norm least-squares

solution, typical of RLS solvers.

viiAdditional tests at m > 4×105 seem to confirm the asymptotic linear dependency on m for the DGELSS solver.
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Figure 5.1 – Timings for solving the linear least-squares problem on a random full-rank square observations matrix
RN (n,n,n). The asymptotic dependency with respect to n is fitted on the last points and reported in the leg-
end.

Figure 5.2 – Timings for solving the linear least-squares problem on a random full-rank observations matrix RN (n,m,n) with
a fixed number of observations n = 100. The asymptotic dependency with respect to m is fitted on the last points
and reported in the legend.
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Figure 5.3 – Timings for solving the linear least-squares problem on a random rank-deficient square observations matrix
RN (n,n,r ) with a fixed rank r = 100. The asymptotic dependency with respect to n is fitted on the last points
and reported in the legend.

Figure 5.4 – The fastest algorithm is represented for various n/m and r /n ratios, with m = 4000. The contour plot represents
the interpolated relative margin by which an algorithm is the fastest (e.g. ×1.25 means that the execution time for
second fastest algorithm was 1.25 times larger than for the fastest one).
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5.4.2 Numerical stability

In this section we evaluate the numerical stability achieved by the approach described in this

chapter for computing the pseudoinverse.

For a more meaningful analysis, we compare our rank-Greville algorithm with standard

algorithms from the LAPACK library described in 5.4.1, and other related algorithms:

• “Cholesky” refers to the scipy.linalg.cho_solve solver applied to the Cholesky factoriza-

tion of M = A>A.

• “Greville” refers to a basic implementation of the original Greville algorithm 9;21.

• “orthogonal” refers to the orthogonal variant described in section 5.2.2 with rescaling

factors αn+1 = 1.

• “orthonormal” refers to the orthonormal variant described in section 5.2.2 (i.e. orthogo-

nal variant with rescaling factors αn+1 = ||Γr e j
n+1||−1

2 ).

In order to assess the numerical stability of the algorithms described in this chapter, we rely

on the measures defined in20;22:

• The stability factor of an algorithm with respect to the computation of the pseudoinverse

A+ of A is given by:

ealgo =

∣∣∣∣∣∣A+
algo − A+

∣∣∣∣∣∣
2

εM ||A+||2κ2(A)
(5.55)

where A+
algo is the pseudoinverse of A computed by the algorithm, A+ is the exact pseu-

doinverse, || · ||2 is the 2-norm (e.g. for a matrix A, ||A||2 = max(σ(A)) is the largest

singular value of A), κ2(A) = max(σ(A))
min(σ(A)) is the condition number of A and εM is the ma-

chine precision.

This estimator is related to the forward stability of such algorithm, and should be

bounded by a small constant depending on m and n.

• Similarly, we refer to the residual error as:

r esalgo =

∣∣∣∣∣∣A+
algo A− I

∣∣∣∣∣∣
2

||A||2
∣∣∣∣∣∣A+

algo

∣∣∣∣∣∣
2

(5.56)

where I is the identity.
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This estimator is related to the mixed forward-backward stability of such algorithm, and

should be of the order of the machine precision εM .

During the test, the machine precision used corresponds to εM ≈ 2.22×10−16.

This evaluation was performed empirically, using the matrices defined in22:

• Pascal matrices P (n) ∈Zn×n .

These are full-rank square matrices whose inverses P (n)−1 ∈ Zn×n can be computed

exactly since their elements are also integers.

Empirical results are reported in Tables 5.1 and 5.2. We found Greville-like algorithms, as

well as the Cholesky decomposition to be orders of magnitudes less robust than the stan-

dard LAPACK solvers, with respect to both numerical stability indicators. Nonetheless,

one should note that, as expected, when using fractions.Fraction based numerical repre-

sentation, the rank Greville algorithm and its orthogonal variant were able to compute

the exact inverse.

• Random matrices RN ∈ R3n×n whose elements are sampled from the normal N (0,1)

distribution.

Pseudoinverses generated by the DGELSY solver were used as reference for computing

the stability factor since they display the lowest residual error and the empirical results

are reported in Tables 5.3 and 5.4. We also found that the numerical stability indicators

for the Greville-like algorithms are significantly dependent on the seed used by the

pseudorandom number generator, unlike other algorithms tested.

• Random ill-conditioned matrices RN
4 ∈ Rn×n , taken as the fourth power of random

square matrices RN ∈Rn×n whose elements are sampled from the N (0,1) distribution.

Similarly as above, we used for pseudoinverse reference
(
RN

4
)+ = (

RN
+)4, the fourth

power of the pseudoinverse generated by the DGELSY solver.

Empirical results are reported in Tables 5.5 and 5.6, which show that for these ill-

conditioned matrices, the Cholesky-based solver is, overall, the least stable algorithm

tested herein.

• Random matrices U SV >, where U ∈R5n×n and V ∈Rn×n are random column orthogo-

nal matrices and S = di ag (1,2
1
2 , . . . ,2

n−1
2 ).

In this case, (U SV >)+ =V S−1U> was used for pseudoinverse reference.

Empirical results are reported in Tables 5.7 and 5.8. For these tests, the rcond/eps

parameter was set to 10−8. This was required by Greville-like algorithms to reach a

reasonable solution.
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Table 5.1 – Empiric stability factors associated with the pseudoinverse computation of Pascal matrices P (n).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

4 6.92e+2 8.80e−2 1.11e−1 1.67e+0 4.73e−2 5.88e+0 3.86e−2 6.67e−2 6.76e−2
6 1.11e+5 7.18e+2 1.06e+2 2.12e+2 6.58e+2 2.44e+3 5.04e−3 4.74e−2 4.74e−2
8 2.06e+7 3.42e+5 1.93e+3 2.18e+4 2.08e+5 1.59e+5 3.86e−3 8.55e−3 8.55e−3
10 4.16e+9 1.08e+6 1.08e+6 1.08e+6 1.08e+6 7.34e+5 3.00e−4 1.86e−3 1.86e−3

Table 5.2 – Empiric residual errors associated with the pseudoinverse computation of Pascal matrices P (n).
n κ2(A) r esorthonormal r esorthogonal r esrank-Greville r esGreville r esCholesky r esgelsy r esgelsd r esgelss

4 6.92e+2 1.83e−15 5.99e−16 3.85e−16 1.66e−17 4.01e−15 5.29e−17 5.39e−17 5.42e−17
6 1.11e+5 1.81e−13 4.16e−14 4.71e−14 1.46e−13 1.04e−12 2.49e−17 4.77e−17 4.47e−17
8 2.06e+7 7.60e−11 6.17e−13 4.84e−12 4.61e−11 9.24e−11 6.06e−17 3.16e−17 1.58e−17
10 4.16e+9 1.42e−9 1.61e−9 1.37e−9 1.54e−9 2.35e−8 4.78e−17 3.26e−17 1.54e−17

• Kahan matrices 23 K (c, s) ∈Rn×n with c2 + s2 = 1 and n = 100.

An explicit formula is available for the inverse 23, and was used as pseudoinverse refer-

ence.

Empirical results are reported in Table 5.9. Unlike what was reported in22, we did not

find the pure SVD-based solver to perform significantly worse than other LAPACK solvers.

Furthermore, after setting the rcond/eps parameter low enough to tackle the extreme

ill-conditionality of the Kahan matrices (i.e. r cond < κ2(A)−1), all algorithms (except

Cholesky) performed relatively well, with the QR-based LAPACK solver performing the

best.

The algorithms described in this chapter (rank-Greville and variants), including the original

Greville algorithm, perform roughly equivalently in terms of numerical stability. Furthermore,

the stability of these Greville-like algorithms seems much less dependent on κ2(A) than the

Cholesky based algorithm. As expected, we found these algorithms to be neither mixed

forward-backward nor forward stable. As a consequence, the much more robust LAPACK

least-squares solvers are to be recommended when numerical stability is crucial. However,

the stability of Greville-like algorithms are competitive compared to the Cholesky-based LS

solvers.

A compromise between update efficiency and numerical stability can be searched among the

Table 5.3 – Empiric stability factors associated with the pseudoinverse computation of random matrices RN ∈ R3n×n with
elements distributed from N (0,1).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsd egelss

4 2.44e+0 1.06e+2 7.46e+1 2.02e+1 2.84e+0 7.57e−1 2.08e+0 1.67e+0
6 2.25e+0 4.00e+0 4.98e+0 2.56e+0 1.05e+0 9.20e−1 1.35e+0 1.86e+0
8 2.74e+0 3.98e+0 4.43e+0 2.86e+0 2.23e+0 1.39e+0 1.81e+0 2.63e+0
10 2.84e+0 1.14e+3 4.60e+2 3.18e+2 2.24e+1 1.54e+0 1.99e+0 2.21e+0
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Table 5.4 – Empiric residual errors associated with the pseudoinverse computation of random matrices RN ∈ R3n×n with
elements distributed from N (0,1).

n κ2(A) r esorthonormal r esorthogonal r esrank-Greville r esGreville r esCholesky r esgelsy r esgelsd r esgelss

4 2.44e+0 3.45e−14 2.55e−14 6.36e−15 7.20e−16 1.25e−16 2.24e−16 4.38e−16 4.68e−16
6 2.25e+0 8.53e−16 1.69e−15 7.61e−16 2.09e−16 2.32e−16 2.24e−16 4.10e−16 6.77e−16
8 2.74e+0 1.24e−15 1.05e−15 3.88e−16 3.39e−16 2.77e−16 2.48e−16 4.96e−16 6.16e−16
10 2.84e+0 4.75e−13 1.73e−13 3.73e−14 3.22e−15 4.36e−16 2.64e−16 6.33e−16 8.02e−16

Table 5.5 – Empiric stability factors associated with the pseudoinverse computation of random ill-conditioned matrices R4
N

∈
Rn×n .

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

6 3.39e+2 5.52e+0 3.04e+0 1.39e+1 8.87e+0 3.72e+1 5.59e−2 6.86e−2 7.36e−2
8 1.08e+2 1.50e+0 3.07e+0 4.16e+0 6.85e+0 2.40e+0 1.66e−1 1.58e−1 1.72e−1
10 2.92e+7 3.53e+0 2.62e+0 8.25e+0 5.62e+0 6.60e+5 2.07e−1 1.49e−2 1.49e−2
12 5.78e+4 2.47e+1 1.64e+1 2.41e+2 3.06e+1 1.62e+3 2.80e−2 7.38e−2 7.38e−2

Table 5.6 – Empiric residual errors associated with the pseudoinverse computation of random ill-conditioned matrices R4
N

∈
Rn×n .

n κ2(A) r esorthonormal r esorthogonal r esrank-Greville r esGreville r esCholesky r esgelsy r esgelsd r esgelss

6 3.39e+2 1.40e−15 7.32e−16 3.38e−15 2.03e−15 1.01e−14 5.06e−17 8.23e−17 4.55e−17
8 1.08e+2 8.97e−16 1.55e−15 1.05e−15 1.63e−15 2.90e−15 1.02e−16 3.00e−16 2.79e−16
10 2.92e+7 1.57e−15 8.01e−16 1.83e−15 1.25e−15 9.58e−10 6.37e−17 1.71e−16 1.58e−16
12 5.78e+4 6.09e−15 5.01e−15 5.36e−14 6.90e−15 1.55e−12 4.71e−17 9.97e−17 1.36e−16

Table 5.7 – Empiric stability factors associated with the pseudoinverse computation of random matrices U SV > ∈R5n×n , where

U and V are random column orthogonal matrices and S = di ag (1,2
1
2 , . . . ,2

n−1
2 ).

n κ2(A) eorthonormal eorthogonal erank-Greville eGreville eCholesky egelsy egelsd egelss

10 2.26e+1 6.72e+0 4.60e+0 4.19e+1 1.09e+1 1.85e+0 2.77e−1 2.94e−1 2.89e−1
15 1.28e+2 1.63e+2 1.60e+2 2.40e+3 2.99e+3 1.16e+1 1.70e−1 2.85e−1 2.93e−1
20 7.24e+2 1.57e+2 2.41e+2 1.52e+4 1.07e+4 4.24e+1 1.60e−1 1.85e−1 1.85e−1

Table 5.8 – Empiric residual errors associated with the pseudoinverse computation of random matrices U SV > ∈R5n×n , where

U and V are random column orthogonal matrices and S = di ag (1,2
1
2 , . . . ,2

n−1
2 ).

n κ2(A) r esorthonormal r esorthogonal r esrank-Greville r esGreville r esCholesky r esgelsy r esgelsd r esgelss

10 2.26e+1 2.68e−15 4.25e−15 2.52e−15 5.92e−16 1.70e−15 1.01e−16 1.62e−16 1.26e−16
15 1.28e+2 1.67e−14 9.69e−15 9.20e−14 2.59e−13 7.37e−15 7.58e−17 1.19e−16 1.30e−16
20 7.24e+2 1.65e−14 6.11e−14 6.04e−13 4.93e−13 3.53e−14 4.31e−17 9.96e−17 5.61e−17

Table 5.9 – Empiric residual errors associated with the pseudoinverse computation of Kahan matrices K (c, s) ∈R100×100, with
c2 + s2 = 1.

c κ2(A) r esorthonormal r esorthogonal r esrank-Greville r esGreville r esCholesky r esgelsy r esgelsd r esgelss

0.10 5.42e+4 5.57e−17 3.00e−17 3.50e−17 2.64e−17 3.40e−13 5.24e−17 7.61e−17 1.33e−16
0.15 1.13e+7 1.11e−17 2.16e−17 1.03e−17 1.19e−17 1.60e−10 1.52e−17 5.61e−17 7.97e−17
0.20 2.18e+9 8.10e−18 7.96e−18 2.42e−18 2.41e−18 failure 7.40e−18 6.30e−17 5.69e−17
0.25 4.37e+11 2.07e−18 1.06e−18 1.14e−18 1.17e−18 1.61e−6 8.74e−18 4.85e−17 4.39e−17
0.30 9.77e+13 3.01e−19 4.31e−19 1.92e−19 1.94e−19 7.98e−4 1.82e−19 1.33e−16 2.43e−17
0.35 2.57e+16 3.57e−20 4.27e−20 2.73e−20 2.18e−20 failure 5.05e−20 9.43e−18 2.03e−18
0.40 8.36e+18 3.46e−21 3.51e−21 3.09e−21 2.55e−21 1.02e−4 1.08e−20 3.17e−19 3.04e−19
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full QR decomposition updating algorithms1, or even faster, stable updating algorithms for

Gram-Schmidt QR factorization1;24.

5.5 Conclusion

In this chapter, we first derive a simple explicit formula for the recursive least-squares problem

using a general rank decomposition update scheme. Based on this, we devise a transparent,

Greville-like algorithm. We also introduce two variants bridging the gap between Greville’s

algorithm and QR-based least-squares solvers. In contrast to Greville’s algorithm, we maintain

a rank decomposition at each update step. This allows us to exploit rank-deficiency to reach

an asymptotic computational complexity of O(mr ) for updating a least-squares solution

when adding an observation, leading to a total complexity of O(mnr ) for computing the full

least-squares solution. This complexity is lower than Greville’s algorithm or any commonly

available solver tested, even though a truncated QR factorization based solver can achieve

such a O(mnr ) bound for computing the full least-squares solution 25. Nonetheless, a O(mr )

bound for the least-squares solution update step is, to our knowledge, lower than those

achieved by the more sophisticated updating algorithms explicitly reported in the literature.

We have implemented these algorithms in Python3, using Numpy. This publicly available

implementation offers a recursive least-squares solver (O(mr ) operations per update), with

optional pseudoinverse (O(mn)) and covariance support (O(m2)). The numerical stability of

these Greville-like algorithms were empirically found to be significantly inferior compared to

common LAPACK solvers. However, it is important to note that the algebraic simplicity of some

of these Greville-like methods make them compatible with exact numerical representation,

without the need to use symbolic computing.
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6 UCT-based active learning applied
to cluster expansion Hamiltonians:
Reinforcement Sampling
Model Hamiltonians based on the so called cluster expansion (CE), which consist of a linear fit

of parameters corresponding to geometric patterns, provide an efficient and rigorous means

to quickly evaluate the energy of diverse arrangements of adsorbate mixtures on reactive

surfaces. The model Hamiltonians are particularly well suited to explore the phase-space

of adsorbates on catalytic surfaces and the kinetics of processes of key importance in het-

erogeneous catalysis, where high coverages, leading to significant lateral interactions, are

omnipresent. However, establishing the model Hamiltonian is a tedious task, requiring the

construction and optimization of many geometries. Today, most of these geometries are

constructed by hand, based on chemical intuition or random choices. Hence, the quality

of the training set is unlikely to be optimal and its construction is not reproducible. Herein,

we propose a reformulation of the construction of the training set as a strategy-based game,

aiming at an efficient exploration of the relevant patterns constituting the model Hamiltonian.

Based on this reformulation, we exploit a typical active learning solution for machine-learning

such a strategy game: an upper confidence tree (UCT) based framework. However, in con-

trast to standard games, evaluating the true score is computationally expensive, as it requires

a costly geometry optimization. Hence, we augment the UCT with a pre-exploration step,

inspired by the variance-based Design of Experiments methods. The pre-exploration step

uses the constantly updated model Hamiltonian to determine which additional structure is

most likely to improve the model Hamiltonian. This novel framework, called Reinforcement

Sampling allows to automatically construct a well adapted training set, minimizing computa-

tional cost and user-intervention. As a proof of principle, we apply Reinforcement Sampling

on the CO oxidation reaction on Pt(111), for which a reliable model Hamiltonian has been

established previously. The results demonstrate the effectiveness of the custom built UCT and

the significant benefit of the pre-exploration.
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Reactants
Products

Adsorption/
Migration/
Reaction

Catalyst surface

By-productsDesorption

Competition Poisoning

Figure 6.1 – Synoptic illustration of some of the many interdependent processes that can occur, in practice, during an hetero-
geneous catalysis.

6.1 Introduction

Heterogeneous catalytic processes play a major role in chemistry, with numerous real-world

applications1. Heterogeneous catalysis aims at optimizing reaction rates (i.e. the kinetics of

a reaction) through reactive surfaces, where the reactants are adsorbed, migrate, react and

the desired products are desorbed. In practice, however, many interdependent processes

should be taken into consideration 2 (e.g., competition, poisoning or side-reactions, see figure

6.1), leading to the need for powerful modelling tools for studying heterogeneous reactions,

in order to identify the key steps involved and eventually optimize them through rational

design3. The traditional kinetic models, such as the Langmuir-Hinshelwood model 4;5, allow

for computing analytical expressions for the total reaction rate. However, these models do

not explicitly capture the influence of other adsorbates present on the surface (i.e. the adsor-

bates do not explicitly “feel” each other), since these models rely on mean-field descriptions.

Nonetheless, these interactions between adsorbates (called lateral interactions) can have

significant effects6;7, especially at high coverage. Therefore, their description and inclusion

can be essential to properly describe catalytic processes8;9.

Explicitly accounting for all possible surface states Si would lead to an intractable set of

rate equations, and the associated master equations 10;11 can no longer be, reasonably, solved

analytically:

dP (Si , t )

d t
= ∑

j 6=i

(
R(S j →Si )P (S j , t )−R(Si →S j )P (Si , t )

)
, (6.1)

where P (Si , t ) is the probability of the system being in the state Si at time t and R(Si →S j )

is the transition rate associated with the transition Si →S j (i.e. the conditional probability of

hopping to state Si from state S j ).

Instead, this set of differential equations ought to be solved numerically. In a Kinetic Monte-
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Carlo 10;11 (KMC) approach, the total reaction rate is estimated by a Monte-Carlo method, using

the transition rates R(Si →S j ) predicted by Transition State Theory from the corresponding

activation energies E ‡. To account for lateral interactions, a Brønsted-Evans-Polanyi 12–14 (BEP)

relation is commonly used to estimate the corrected activation energies from the corrected

reaction energies, due to lateral interactions.

As a consequence, a KMC approach including lateral interactions requires to estimate the

energy of each surface state Si considered, including the energy correction due to lateral

interactions present in that state Si . Directly computing the energy of an occupied surface

from first-principles calculations (such as DFT) would require too much computational time

to efficiently sample the accessible states and provide meaningful kinetic predictions. Instead,

an approximate model Hamiltonian is typically used10;11, especially for describing lattice-

based systems such as metallic surfaces, where geometries corresponding to energy minima

are well defined and separated (i.e. the adsorbates are preferentially located at active sites)

and the relevant geometry space can therefore be discretized.

A model Hamiltonian (or effective Hamiltonian) is a model linking the energy of a system

to its geometrical features 15–17. The most simple yet rigorous model Hamiltonian for lattice-

based active surfaces (and accounting for lateral interactions) is probably a linear model based

on a Cluster Expansion18–21 (CE). In this CE-based model Hamiltonian, a linear relation is

considered between the total adsorption energy of an occupied surface and the number of

each type of lateral interactions present among the adsorbates at the surface. Using a lattice-

based representation of the surface, the types of lateral interactions become enumerable

(since the positions are discretized) but infinitely many distinct types of lateral interactions

can be defined. Therefore, a truncated CE is used in practice22, by considering only the

lateral interactions that display significant energy contributions. In other words, a CE-based

model Hamiltonian is a simple linear model whose parameters are these significant energy

contributions of the corresponding relevant lateral interactions. Therefore, identifying and

estimating these energy contributions from first-principles calculations (usually based on

DFT) is essential.

Indeed, like any empirical model, a CE-based model Hamiltonian must be trained on a set of

empirical data. In this case, the training set is composed of optimized geometries representing

different adsorption states of the active surface of interest and their associated energy, usually

computed at a DFT level. Therefore, the training set of a CE-based model Hamiltonian must

be composed of reaction-specific geometries (with the active surface and adsorbates involved

in the catalytic process being modelled), so that a universal training set cannot be designed

for such a model (or would require a combinatorially large database). As a consequence,
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the training set is an essential component of a KMC simulation, as it must be generated for

each catalytic process studied. Yet this training set is usually generated by the chemist23,

selecting around a few hundreds hand-picked geometries using their own intuition, and/or

trying to sample geometries at pseudo-random/exhaustively. Therefore, this essential task is

particularly time consuming, hardly reproducible, and leads to a possibly suboptimal training

set.

In the recent years, most efforts were made toward optimizing the selection of relevant

lateral interactions to include in the CE-based model Hamiltonian (i.e. optimizing the choice

of parameters) 24–28. While some efforts were also made for optimizing the training set, these

were basic variance-based Design of Experiments integrated in the dual optimization of both

the terms and the geometries in a greedy approach23;29, and were mainly designed to be

updated on-the-fly for applications to ground state predictions30. To our knowledge, the

a priori selection of geometries to evaluate (at a DFT level) with the aim of generating an

adequate training set for KMC applications has not yet been properly discussed, especially

since the development of recent reinforcement learning based active learning schemes31–33.

In this contribution, we address these challenges by proposing an active learning framework

for the construction of an adequate training set for KMC applications, by optimizing the

selection of geometries to include before evaluating their energy by first-principles calculations,

without imposing the choice of a CE-based Hamiltonian. This active learning algorithm

combines Reinforcement Learning techniques (i.e. a Upper Confidence Tree) with classical

variance-based Design of Experiments31 into a tool called Reinforcement Sampling, aimed

at automating the construction of a CE-based model Hamiltonian training set from scratch,

while reducing the computational time required for its creation and achieving a final training

set that is consistently better designed than from a pseudo-random sampling.

6.2 Cluster Expansion Hamiltonian

The Cluster Expansion (CE) Hamiltonian18–21 is a linear model Hamiltonian based on

lateral interactions, enumerated by their corresponding correction order, for predicting the

adsorption energy of a set of adsorbates at an active surface. A linear model Hamiltonian (or

effective Hamiltonian) is a linear model whose aim is to reproduce the energy E(gi ) (here,

the target function, or regressand, is the DFT-based adsorption energy) of a geometry gi , as a

linear combination of its input features Γi (called regressors):

E(gi ) = Γ>i β+εi , (6.2)
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where εi is the residual error. Therefore, a model Hamiltonian provides a simple and fast energy

predictor, as the regressors are typically features that can be computationally inexpensive to

obtain.

In a CE Hamiltonian, the regressors Γ are the multiplicities of each possible lateral interaction

(i.e. the number of times each possible lateral interaction is found in the geometry). The

parameters β of the model are, therefore, the energy contribution of each lateral interaction.

These interactions and their contributions are seen as corrective terms of increasing order to

the total energy:

E(gi ) = E (1)(gi )︸ ︷︷ ︸
1-body model

+
Nads∑
n=2

E (n)(gi )︸ ︷︷ ︸
many-body correction terms

, (6.3)

where Nads is the number of adsorbates in gi and E (n)(gi ) is the adsorption energy contribu-

tions of the n-body effects only:

E (n)(gi ) = ∑
{a1,...,an }⊆gi

a1 6=... 6=an

(
E({a1, . . . , an}@S )−

n−1∑
k=1

E (k)({a1, . . . , an}@S )

)
(6.4)

where {a1, . . . , an}@S is an altered version of the geometry gi where only the n adsorbates

a1, . . . , an of gi are considered to be present (and adsorbed at the surface).

A full explicit expansion, where the lateral interaction contributions appear, would be:

E(gi ) = ∑
a∈gi

E(a@S )︸ ︷︷ ︸
1-body terms

+ ∑
{a,b}⊆gi

a 6=b

E({a,b}@S )−E(a@S )−E(b@S )

︸ ︷︷ ︸
2-body terms

+ ∑
{a,b,c}⊆gi

a 6=b 6=c

E({a,b,c}@S )−E({a,b}@S )−E({a,c}@S )−E({b,c}@S )+E(a@S )+E(b@S )+E(c@S )

︸ ︷︷ ︸
3-body terms

+ . . .

(6.5)

In practice, only a truncated version of this model is considered22, typically up to the 2 or

3-body terms9. Indeed, higher order corrections tend to fade out quickly. Besides, a cutoff

is usually used to discard lateral interactions where the adsorbates are too far away from

to significantly “feel” each other. As a consequence, the number of lateral interactions to

consider become tractable, since only a few contributions are non negligible.
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Of course, the sums might contain redundant contributions if the same corresponding lateral

interaction is found multiple times, leading ultimately to the linear model described equation

6.2. It now becomes clear that, in the cluster expansion model, the residual error εi comes

from the discarded terms and the DFT-related error.

Assuming that the CE Hamiltonian satisfies the assumptions of the linear regression modeli,

an ordinary least squares method can be applied to retrieve an unbiased, consistent and

efficient estimator 34 β̂ for the energy contributions of the considered lateral interactions. One

should note that a guess βg uess can be given, so that instead of β̂ being the mininum-norm

least-squares solution, it is searched as the least-squares solution with minimum Euclidean

distance to βg uess
ii. Such guess would therefore only have an impact where no empirical data

is available (i.e. when the CE Hamiltonian is underdetermined).

Futhermore, the uncertainty on the parameters β̂ is given by the covariance matrix Var(β̂).

On a purely overdetermined system of linear equationsiii, this covariance can be estimated

with 34:

Var(β̂) ≈ s2(Γ>Γ)−1, (6.6)

where s2 = E−Γ>β̂
n−r is an estimator of the variance of the noise σ2, with E =

(
E1 . . .En

)>
, n the

number of observations and r the rank of Γ (i.e. n − r is the number of linearly redundant

observations).

However, in the general case and especially during the training of a non-truncated CE Hamilto-

nian, the number of observations is likely to be less than the number of regressors, so that one

must deal with a underdetermined system. Nonetheless, any linear system of equation can be

decomposed into a purely non-overdetermined system and a purely non-underdetermined

system (see chapter 5). Therefore, it is always possible to define the unique maximum sub-

spaceiv Vect(Γover ) onto which a model Hamiltonian is overdetermined.

As a consequence, it is possible to estimate a covariance matrix embedded unto that sub-

space Var(β̂)empi r i cal , using equation 6.6. Concerning the rest of the regressors space, the

user-defined variance of the guessed parameters Var(βg uess) can be used onto that space.

isee section D.1 in appendix D
iiThis can be done by considering a simple minimum-norm least-square solution (β−βg uess )̂ on the linear

equation E j −Γ>i βg uess = Γ>i (β−βg uess )+εi , and choosing (β−βg uess )̂+βg uess as the final estimator.
iiiTo be precise: the covariance formula is valid if the observation matrix Γ> = (

Γ1 . . .Γn
)>

has full column-rank.
In other words, if the whole regressors space is spanned by the observations.

ivThis subspace is eventually null (if all observations are are linearly independent), otherwise it is the subspace
spanned the all the observations Vect(Γover ) = Vect(Γ).
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Combining these two terms (assuming that guessed parameters are uncorrelated with empiri-

cally estimated parameters) provides a covariance matrix estimator Var(β̂) = Var(β̂)empi r i cal +
Var(βg uess) that can be defined even on a non purely overdetermined model Hamiltonian.

Using this estimator, it is possible to estimate the uncertainty associated with the prediction

of the energy E j on a given input Γ j (called prediction error):

Var(E j −Γ>j β̂) = Var(Γ>j β+ε j −Γ>j β̂)

=σ2 +Γ>j Var(β̂)Γ j

≈ s2 +Γ>j Var(β̂)Γ j

(6.7)

As a consequence, Var(β̂) is an important tool for estimating the quality of a prediction, and

more globally, of the full CE Hamiltonian in terms of convergencev.

6.3 Presentation of the problem and the strategy

Building a model Hamiltonian requires two main components: a functional form for the

effective Hamiltonian and a training dataset to feed to the model. Regarding the first compo-

nent, we place our study in the context of a cluster expansion (CE) Hamiltonian for describing

the many-body effects. The basic notions of this energetic model are presented in section 6.2.

The main focus of our study is, however, related to the second ingredient, i.e., building the

most appropriate training set which we here call “adequate training set” from scratch in an au-

tomated and reproducible way. The developed framework is general and is, thus, not strongly

linked to the first component. In other words, instead of training a CE Hamiltonian, one could

construct a training set for semi-empirical methods or neural networks in an analogous way.

6.3.1 Definition of an “adequate” training set

Before anything, we define an adequate training set as a set of geometries satisfying three

criteria:

• Diverse: We wish our model Hamiltonian to be able to describe most likely events and

even some rare events. Therefore, an adequate training set should contain a broad

and diverse set of geometries. Ideally, such sampling should roughly cover the whole

chemical space available. Mathematically, we require: any possible geometry should

have a non-zero probability to be found in an adequate training set.

vIndeed, since β̂ is an efficient estimator, Var(β̂) represents the inverse Fisher information matrix.
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• Chemically relevant: Just as a chemist would use its chemical intuition to choose ge-

ometries displaying large many-body effects, we wish our model Hamiltonian to better

describe strong lateral interactions than negligible ones. This is translated mathemat-

ically as: the higher the absolute energy deviation from the 1-body model associated

with a geometry, the more likely an adequate training set should contain this geometry.

For a discussion of this particular choice to measure the relevance of a geometry, see

section D.3 of appendix D.

• Reasonably-sized: In a typical setting, all possible geometry combinations cannot even

be enumerated in a reasonable time. Furthermore, including a new geometry in the

training set is a computationally expensive task: in a typical case, it requires to run a

geometry optimization or at least a single point energy computation at a DFT level.

Therefore, an adequate training set should not contain geometries that can be removed

without a major impact on the quality of the resulting model Hamiltonian. In other

words, the training should stop as soon as the model would reach sufficient convergence.

In summary, building an adequate training set requires a balance between focusing on groups

of geometries that seem chemically relevant (i.e. sets of similar geometries that were found

to contain geometries with large associated many-body energy effects) and exploring novel

groups of geometries.

6.3.2 Upper Confidence Trees for solving the adequate training set problem

In this section, we describe our training set selection problem using a related problem with

known solution. Indeed, the balance between exploration and exploitation is a well-known

dilemma that has been most studied with the notorious multi-armed bandit problem.

Multi-armed bandit problem

The multi-armed bandit problem can be formulated as follows: at a casino, there are

multiple armed bandit machines (B1,B2, . . . ,Bk ). Each has its own average payout E(Wi ) that

is a priori unknown to the player. The aim is to find a playing strategy that has minimal

cumulative regret (i.e. the total number of times a sub-optimal bandit has been played).

Of course, if the average payouts E(Wi ) were known, the optimal strategy would be obvious:

play repeatedly the armed bandit with highest payout on average. But since the average

payouts are a priori unknown, they must be estimated during the play. It then becomes clear

that an optimal strategy should maintain a balance between estimating the payout of bandits

(i.e. exploration) and focusing on the apparently most profitable bandits (i.e. exploitation), as

the latter evolve as a function of the exploration.
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This is reminiscent of the exploration vs. exploitation balance required for building an

adequate training set. Therefore, we propose in this chapter to identify the building of an

adequate training set as a multi-armed bandit problem. In such embedding, the bandit

machines Bi are identified as possible groups Gi of similar geometries to be included in

the training set, playing a bandit Bi means adding to the training set an arbitrarily chosen

geometry g j ∈Gi within the related group Gi and the associated payout Wi of playing Bi is

taken as the absolute deviation from the 1-body model Wi = |E j −E al one
j | associated with the

chosen geometry g j , where E al one
j = ∑

k
Ek is the sum of the individual adsorption energies

Ek for each adsorbate Mk present in g j as if adsorbed alone at the surface.viLet us illustrate

these notations with a more chemical example by considering g j = (H2O+NH3)@Pt(111) a

geometry where one water molecule and one ammonia molecule are adsorbed on top of a

Pt(111) surface: then E j = E ((H2O–NH3)@Pt(111))−E (Pt(111))−E (H2O)−E (NH3) is the DFT-

based adsorption energy of one molecule of water and ammonia together, and E al one
j = EH2O+

ENH3
=

(
E(H2O@Pt(111))−E(Pt(111))−E(H2O)

)
+

(
E(NH3@Pt(111))−E(Pt(111))−E(NH3)

)
is the sum of EH2O and ENH3

the adsorption energies of a single water/ammonia molecule,

individually. So Wi = |E j −E al one
j | is the absolute value of the energy correction from the

one-body model, due to the lateral interaction H2O–NH3

The Upper Confidence Bound approach

The multi-armed bandit problem has been much studied in the literature, and the most

efficient strategies are commonly based on Upper Confidence Bound (UCB) approaches.

The general idea behind UCB-like approaches can seem intuitive: each bandit is given a

score Si = E(Wi )emp +bi(ni ,T ), where ni is the number of times bandit Bi was played, T is

the total number of plays (i.e.
∑

i ni = T ), E(Wi )emp is the empirical estimator of the average

payout and bi(ni ,T ) is called the exploration bias. The UCB strategy is then: repeatedly play

the bandit Bi with the highest UCB score Si .

Such UCB approach is inherently optimistic. Indeed, the exploration bias acts as an upper

confidence interval for the empirical estimate of the payout. From this perspective, it becomes

clear that the UCB score provides an upper confidence bound for the true payout E(Wi ). Of

course, the main challenge lies in determining the exploration bias. Finding an efficient

functional form for the exploration bias is still an active field of research, even though many

functions have already been designed35–39. The most widespread formula probably comes

viNote that, as in a typical multi-armed bandit problem, the payout Wi can be seen as a random variable since
g j is chosen randomly in Gi .
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from the UCB1 algorithm35, with bi(ni ,T ) =C
√

log (ni )
T where C is an input parameter acting

as a confidence level.

However, a UCB approach alone is not enough to efficiently solve our training set building

problem. Indeed, the organization of geometries into groups is still not well-defined. In

particular, optimising their number/sizes is a major problem which is exacerbated by the

sheer number of possible geometries: too large groups would lead to a loss of group specificity,

while too many small groups would require too much exploration to properly sample them (i.e.

there would be a loss in interpolation/generalisation power, in the sense that the information

gained from each play would only be applicable to a small number of geometries)vii. This

specificity vs generalisation power trade-off is usually solved by combining the UCB approach

with a Monte-Carlo Tree Search (MCTS) scheme, effectively taking the best of both worlds

between coarse-grain and fine-grain sampling.

Combining a Monte-Carlo Tree Search with the Upper Confidence Bound, leading to the

Upper Confidence Tree construction of the training set

Instead of using a single arbitrary group size, a MCTS framework uses a recursive grouping.

In our case, all geometries are organized in a tree structure: each single geometry is represented

by a leaf, and each node Ni (a branch) represents therefore a group of geometries Gi composed

of all the geometries g j ∈Gi associated with the leaves descending from that node. The tree

starts out with a single root (or the trunk of the tree to push the analogy to biology). The more

similar two geometries are, the closer their corresponding leaves in the tree structure are (i.e.

the more nodes are shared in both paths from the root node)viii.

Selecting a leaf in a MCTS framework is done by a best-first search composed of the following

steps:

• Selection/Expansion: Starting from the root node, the best child node is selected until

an unexplored node (or a leaf corresponding to a single geometry) is reached. In a pure

MCTS framework, each node Ni is evaluated using a score Si taken as the empirical

average payout of its associated group of geometries E(Wi )emp =
∑
j
|E j−E al one

j |
ni

where ni is

the number of times node Ni was explored, E j is the adsorption energy of geometry g j ,

E al one
j is the sum of all individual adsorption energies for each adsorbate in geometry g j ,

and the sum
∑
j

is over all ni corresponding geometries g j ∈Gi already explored/chosen.

viiNote that this can be seen as a typical coarse-grain versus fine-grain sampling trade-off.
viiiThis is a direct generalisation of the definition of groups of geometries as sets of similar geometries.
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• Playout/rollout: Once an unexplored node Ni is selected, a geometry g j is arbitrarily

chosen from the associated group of geometries Gi .

• Backpropagation: The scores of all ancestors of Ni (i.e. all nodes selected during the

selection/expansion step) are updated with the lateral interaction energy E j −E al one
j of

the chosen geometry g j ∈Gi .

During the selection step, choosing the best child node can be seen as a typical multi-armed

bandit problem (as described in section 6.3.2, since each child node represents a distinct

group of geometries). Therefore, this framework is expected to benefit from an UCB-like

approach by adding an upper confidence bound to the empirical average payout used as a

score for choosing a best child node. An MCTS using such score Si = E(Wi )emp +bi(ni ,T )

(instead of an empirical average payout alone) is referred as an Upper Confidence Tree (UCT).

In an MCTS scheme, the selection step can be seen as a successive selection over increasingly

specific groups. In this manner, each selection step benefits in its early stages from coarse-

grain sampling effects where large sub-groups of apparently sub-optimal geometries are

excluded (i.e. at low depth into the tree the choice is made among large groups of geometries),

while deeper in the tree the selection is performed over increasingly specific groups, where

the exponentially reduced number of reachable geometries at this point makes such finely

tuned sampling achievable.

The sampling associated with such framework displays an interesting property: while the

whole geometry space is sampled, the regions with apparently larger many-body energy

effects associated are more sampled. As a consequence, such MCTS trees are in practice

explored/evaluated in a largely unbalanced manner (i.e. some branches are much more

explored than others).

In summary, the UCT framework is expected to be particularly relevant for solving our

adequate training set building problem: the diverse property is expected to be fulfilled since

the whole geometry space is sampled, while the chemically relevant property is expected to

be fulfilled by the enhanced sampling of regions associated with apparently larger many-body

energy effects. Finally, the reasonably-sized property depends on the convergence rate of the

chosen UCT framework. This last property is closely related to the learning rate of the UCT

framework, as it can be seen more clearly by reformulating our adequate training set building

problem into a strategy learning task.
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Indeed, UCTs are a common tool of reinforcement learningix used for designing optimal

strategies. An easy to grasp real-world application can be found in strategy-based game playing,

where UCT-based approaches demonstrated spectacular performance 32;33;40. Consequently,

on the one hand, a UCT approach is expected to be relevant for solving our adequate training

set building problem, while on the other hand, UCTs are known to perform remarkably well for

playing strategy-based games. This suggests that our adequate training set building problem

can be reformulated in terms of a strategy-based game. Such analogy not only provides with

an alternative point of view for better vizualization purposes, but is also relevant in developing

an intuition of the mechanisms involved in our novel reinforcement sampling approach

described in this chapter.

6.3.3 Reformulation of the training set construction as a game

Let us describe the construction of a single geometry as a strategy-based game entitled

“Build a configuration”, whose goal is to create a configuration (i.e. an assembly of molecular

adsorbates occupying specific active sites of a catalytic surface). A configuration can be seen

as an abstract description of a geometry. “Build a configuration” is actually a simple game:

• This is a turn-based 1-player gamex.

• This game is played on a predefined board that represents a surface or any lattice-based

space. A board is composed of an arbitrary number of cells Ci representing active sites

Si on that surface. Just as active sites are positioned next to each other, cells can be

directly connected and considered adjacent. In addition to relative positioning, the

relative orientation of active sites can be taken into account by considering oriented

cells. Mathematically, a board is a node-colored and edge-colored graph whose nodes

are cellsxi.

• This game requires a predefined set of pawns. Each pawn Pi represents a molecular

adsorbate Mi . Pawns can be placed on the board, in cells. A pawn Pi placed in a board

cell C j represents a molecule Mi adsorbed at the active site S j on the surface. However,

the chemical nature of the adsorbate is not enough: orientation should also be taken

into consideration. Therefore, pawns can come with predefined orientations. In fact,

pawns contain all necessary parameters for adsorbing a given adsorbate (offset from

the surface, angles, . . . ). Finally, just as a multidentate adsorbate can occupy multiple

active sites, pawns can spawn across multiple cells.

ixReinforcement learning is a sub-field of machine learning, along with supervised and unsupervised learning
xJust as a chemist would naturally place adsorbates on the surface, one at a time.

xiNote that while this definition allows for the description of finite surfaces and periodic surfaces (spheres or
torus), in practice, a path connecting an active site with one of its periodic images cannot be properly represented
with such graph. As a consequence, a large enough unit cell should be considered when building an associated
board.
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• This game is played in Nads turns, where Nads is the target number of adsorbed molecular

entities desired in the final configuration. At each turn, the player selects a pawn and

places it on the board. Therefore, playing an instance of this game is equivalent to

sequentially building an input geometry by adding adsorbates on a surface, with specific

parameters (positions, offsets, orientations), one at a time.

• The board is initially empty. At the end of the Nads turns, the final configuration created

(by placing pawns on the board) is given a score. This score represents the absolute total

lateral interaction energy (i.e. the absolute many-body energy effects, or deviation from

the 1-body model) associated with the corresponding geometry. Indeed, in our Cluster

Expansion based model Hamiltonian framework, we are only interested in learning

the many-body correction terms to the adsorption energy. Let us distinguish which

components are included/excluded in the final score:

– Excluded components: Each pawn Pi placed on the board is worth points in an

amount that depends on the occupied board cell C j . These points represent the

stabilization energy associated with the adsorption of a single molecule Mi at the

S j active site of the surface considered, alone (i.e. no other molecules are adsorbed

on the surface). These contributions are a priori known to the player beforehand,

as preliminary studies of competitiveness among active sites are usually performed

before conducting kinetic Monte-Carlo simulations. Therefore, these points are

not taken into account for the score, since they do not contain multi-body effects.

– Included components: Bonuses and maluses are granted for each many-body

pattern present in the final configuration. These points represent the energy

contributions of lateral interactions between adsorbed molecular entities. Lat-

eral interactions can be stabilizing or destabilizing and are a priori unknown to

the player, so that they can be seen as hidden score contributions whose sum is

only revealed at the end of the game. These points are the only ones considered

for computing the final score, and can result in a positive or negative total sum

corresponding to the total many-body effects (that can be globally stabilizing or

destabilizing).

– Final score computation: the final score is taken as the absolute value of the

number of points earned for the corresponding configuration.

This scoring is coherent with a description relying on a cluster expansion based model

Hamiltonian, where the total adsorption energy of an occupied surface is taken as

the sum of the individual adsorption energies of each adsorbate as if taken alone plus

correction terms corresponding to many-body lateral interactions. Here, we are only

interested in the correction terms to the adsorption energy (associated with many-

body lateral interactions), and the final score correspond to the total strength of the

cumulative many-body effects (either globally stabilizing or not).
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Figure 6.2 – Synoptic illustration of the “Build a configuration” game. The parallel with hetero-catalysis is highlighted by
explicitly linking game features to surface science concepts. At each turn, the player chooses a pawn and places
it on a free available cell. This is equivalent to the chemist placing adsorbates at non-occupied active sites
on a surface. After Nads turns, the occupied board (called configuration) represents an occupied surface with
Nads adsorbates. Each many-body pattern found on the final configuration earns points, in an amount that is
based on the strength of the associated lateral interaction. These points can be positive or negative, but the
individual details are not known to the player. The final score is the absolute value of the sum of these points
(one could imagine some sort of game where the aim would be to be the best mythical creature, either “angel”
by accumulating the most “good karma” points, or “demon” by accumulating the most “bad karma” points). This
score of a final configuration is chosen to match the absolute adsorption energy deviation, from the 1-body model,
of the corresponding geometry.

Figure 6.2 represents a synoptic illustration of the “Build a configuration” game features.

Despite its apparent simplicity, “Build a configuration” is a strategy-based game due to the

additional points contributions (i.e. pattern-related bonuses and penalties), even though

these contributions are hidden (i.e. a priori unknown to the player). This is better illustrated

with an example: in chess, early queen attacks would seem advantageous to the novice player,

but latter in the game, these moves would surely prove disappointing and the player pay the

hidden cost associated with such risky moves. The quality of a move is learned by experience

and simulation, so that an experimented player will eventually develop an intuition helping

them devise strategies, just as a chemist uses their own intuition to build chemically relevant

structures (e.g. creating a H-bond network, ...).
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UCTs provide a general framework for efficiently learning (i.e. with as few simulations as

possible) how to play strategy-based games. Therefore, we expect a UCT-based approach

to be relevant for learning how to play this “Build a configuration” in a minimal amount of

simulations (and associated computational time for evaluating the DFT-based adsorption

energies corresponding to final configurations). This learning is based on exploring game

strategies leading to high-score final configurations and extracting expertise/intuition for

devising strategies to explore novel configurations with even higher scores. Therefore, a UCT-

based learning is designed to generate a diverse set of high-quality configurations during its

training, using the smallest amount of simulations (i.e. reducing the number of sub-optimal

configurations generated). With this game reformulation, it becomes clearer why the set of

configurations explored by a UCT framework is expected to provide an adequate training set.

By all means “Build a configuration” is an unusual game where, in particular, simulations

are expensive (since evaluating the score requires a full DFT-based geometry optimization).

Therefore, the Reinforcement Sampling framework for model Hamiltonians introduces tweaks

from the pure UCT framework, in practice, to better fit the specific properties of the “Build a

configuration” game.

6.4 Designing a UCT for model Hamiltonians: Reinforcement Sam-

pling

Since Reinforcement Sampling for model Hamiltonians is not simply a pure UCT framework,

its design is not straightforward, as it encompasses further optimizations and approximations

to tackle the technical difficulties and specifics relative to the adequate training set problem.

6.4.1 Patterns

Patterns have a crucial role when dealing with CE-based model Hamiltonians (where there

are also sometimes called figures), as they represent lateral interactions. Their definition

and identification are of utmost importance for building meaningful model Hamiltonians.

In particular, careful considerations must be applied to recognize equivalent patterns, since

lateral interactions are defined up to global translation, rotation and chirality (i.e. the energy

of an isolated sub-system is invariant by translation, rotation and reflection).

Let us introduce notations to rigorously describe patterns from a mathematical point of

view:

• Abstract binding sites (ABS): Let an ABS be an abstract representation of a binding site.
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An ABS needs to contain only 3 pieces of information: chemical nature of the binding

site ; orientation relative to a reference axis (if applicable, e.g. bridge sites) ; chirality.

Note that abstract binding sites are defined for both active sites on the surface (e.g. Pt

top-site) and binding sites on adsorbates (e.g. [SCN] – S-site). These ABS can, therefore,

be thought of as anchor points (for both adsorbates and surface) and are assumed to

be enough for describing unambiguously ligand-surface connections, since additional

adsorption parameters (offset, bond angle, ...) can be encoded in the chemical type.

Note that ABS do not contain information about absolute positioning, and therefore are

unchanged by global translation.

• Abstract surface: Similarly to board (see 6.3.3), surfaces are abstractly represented by

a node-colored and edge-colored directed graph whose nodes are ABS representing

surface active sites. Adjacent sites are connected by directed edges containing only

essential geometrical information: distance between sites and orientation relative to

the reference axis.

• Abstract path: Starting with paths on the surface, the associated abstract description

can be generic enough to no longer require an arbitrary reference axis, making abstract

paths invariant by global rotation. A directed path (i.e. an ordered sequence of pairwise

adjacent active sites) on the surface is abstractly represented by 4 components that are

invariant by translation and rotation:

– Ordered sequence of ABS, corresponding to surface active sites along the path, in

a generic version where the absolute orientation is discarded (i.e. only chemical

type and chirality are considered). Note that the first and last ABS are not explicitly

included, as an abstract path focuses on the connection between endpoints.

– Ordered sequence of distance between adjacent sites considered along the path.

– Ordered sequence of edge-in–edge-out angles along the path (i.e. relative orienta-

tion of next ABS with respect to previous ABS, for each ABS considered along the

abstract path).

– Ordered sequence of edge-in–active site angles along the path (i.e. intrinsic orien-

tation of the current ABS relative to the orientation of previous ABS, for each ABS

considered along the abstract path).

• Abstract occupied surfaces (AOS): Here, we are interested in modelling the occupied ac-

tive sites (and corresponding adsorbates) and their connections, with translational and

rotational invariance. Theoretically, a complete description of the connection between

two active sites on the surface should include all possible paths connecting them, so

that the full environment (even far from both sites) can be taken into account. However,

in practice, local effects are significantly stronger, so that we consider only shortest
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paths (in terms of numbers of sites along the path)xii. An occupied surface is therefore

abstractly represented by a node-colored and edge-colored directed multigraph whose

nodes are occupied surface ABS (each coupled with the associated adsorbate ABS) and

directed edges are abstract paths representing shortest paths between them. Note that,

just as two occupied active sites can have multiple shortest paths, a multigraph can be

defined with multiple edges connecting the same nodes.

Figure 6.3 shows a synoptic illustration of these notions and their relation to pattern definition.

Theoretically, patterns are rigorously defined by vertex-induced subgraphs of AOS (i.e.

a subset of nodes and all edges whose both endpoints are within that subset). However,

such definition is rather impractical in terms of both manipulation/storage and comparison.

Therefore, in practice, we consider two main approximations:

• Simple subgraphs: when two occupied active sites are connected by multiple shortest

paths, only one is considered per pattern. This approximation helps reduce the possible

number of patterns and extend the extrapolative power of the model Hamiltonian being

trained (since two rigorous patterns sharing the same simple subgraph, with maximum

size, will be considered with correlated energy effects).

• Simple paths: instead of considering the whole connectivity of a subgraph, a pattern

is defined as a simple path (i.e. no node seen twice on the path) on an AOS. This

major approximation is only impacting patterns with at least 3 bodies where discarded

connections (i.e. shortest paths) contain ABS that are not already included (otherwise,

the encoded geometrical information is enough to ensure that a single pattern can be

represented by a single path). This approximation also helps reduce the possible number

of patterns definable and extend the extrapolative power of the model Hamiltonian

being trained. Finally, paths are much more convenient for storage and comparison

purposesxiii.

The major benefit of these approximations lies in the reduction of the maximum number

of learnable patterns, since the number of possible paths is much lower than the number

of possible graphs of same size, especially for patterns with many bodies involved. This

reduction in the number of regressors naturally induces energy correlations between full

patterns. Consequently, such representation helps the extrapolation of unseen full patterns

from shared paths.

xiiThe significance of local effects compared to long distance ones can also be seen in the relevance of a truncated
cluster expansion model.

xiiiComparing paths is straightforward, unlike graphs requiring isomorphism detection (even though such
comparison can be done in linear time for planar graphs).
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Figure 6.3 – Synoptic illustration of the pattern definition. From a final configuration, all shortest paths between any two
occupied sites are computed, and represented here with colored shadows. Note that a cutoff of maximum 2 edges
was applied here (so that occupied sites are not considered connected in the abstract occupied surface (AOS) if
they are more than two edges away). These paths only are considered in the AOS. Note that the AOS is a directed
multigraph, since abstract paths are directed and two occupied sites can have multiple shortest paths between
them. A pattern is then defined as a simple path (no same edge/node explored twice, maximum one edge
between two nodes) on the AOS, instead of the usual connected simple sub-graph (no multiple edges between
two nodes). Using the properties of sites seen along the path (including chemical properties, distances and
orientations of both the adsorbates and surface sites, if any), a translational and rotational-invariant description is
formed, while avoiding redundancies. Each time a new pattern is detected, all equivalent patterns are generated
by the combination of all applicable symmetries (user-defined ABS equivalencies, reflection and reversal). All
these equivalent patterns are assigned a unique pattern index.
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More precisely, in this framework, patterns are taken as simple paths on an AOS, and are

composed of 4 types of information that are invariant by global translation and rotation:

• Ordered sequence of couples of ABS (in their generic version with chemical type and

chirality only) corresponding to the occupied active sites and related adsorbates.

• Ordered sequence of single shortest abstract paths along the pattern path.

• Ordered sequence of in-path–out-path angles.

• Ordered sequence of in-path–ABS angles (for both the occupied surface ABS and adsor-

bate ABS, if applicable).

Figure 6.3 illustrates this definition on an example.

This representation of patterns is therefore invariant by global translation and rotation. But

patterns (paths) should also be invariant by reflection and by reversing the path direction.

These symmetries are actually not enough to ensure that patterns are uniquely identified

since each ABS can display additional symmetries (e.g. fcc sites on a 111 surface have C3

symmetry, and the N-site of NH3 belongs to the C3v point group). These symmetries are taken

into account by generating all equivalent patterns constructed from the equivalents of all ABS

involved. For each such equivalent pattern (path), its reversed and/or reflected versions are

also generated to cover all identified sources of invariance that can be applied to a path on the

surface.

However, patterns defined as simple paths on an AOS correspond to walksxiv on the surface

(and not only to paths), allowing for the description of embedded graphs on the surface

(by representing a graph traversal, for example). Therefore complex patterns might require

additional symmetries considerations due to the presence of:

• Automorphisms (i.e. multiple identical traversals of the same graph) when an embedded

graph on the surface can be represented by multiple identical patterns.

• Equivalencies (i.e. multiple different traversals of thhe same graph) when multiple

different patterns represent the same embedded graph on the surface.

We suggest to detect these additional symmetries on-the-fly by merging the detected patterns

sharing the same connections on the surface. Finally, on top of these symmetries, systematic

xivPaths where nodes and edges can be repeated.
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correlations can occur. These correlations might give rise to additional pattern multiplicities

that ought to be defined by the user (i.e. expert-based knowledge), since an automatic and

accurate detection of such correlations would likely require the exploration of all possible final

configurations.

A classical way to uniquely define equivalent patterns would be to consider only the min-

imum equivalent pattern, using a lexicographic order for example41, each time a pattern

is identified. Such approach becomes quickly computationally expensive, especially since

pattern detection is constantly performed in a Reinforcement Sampling run.

Therefore, we suggest to use a time-memory trade-off by defining a lookup table. Since the

same patterns are constantly being identified, it is most beneficial to perform the exhaustive

generation of equivalents only once per pattern. All of these equivalent patterns are stored

under the same unique identifier, leading to subsequent equivalency evaluations in O(1)

operations.

6.4.2 Basic UCT design

The UCT approach is highly generic, so applying it to a specific case is not straightforward,

as one needs to choose and tune implementation details.

Tree structure (modular organization)

One of the most crucial elements of an MCTS instance is undoubtedly the organization of

the tree used. In other words, how the final configurations are organized in groups. Groups

are meant to gather similar configurations, and the whole tree can be seen as a metric: the

more similar two configurations are, the closer they should be on the tree (see section 6.3.2).

In a MCTS framework, groups are used the extrapolate the score of close configurationsxv, so

that the convergence rate is dependent on the metric used.

In the case of final configurations, the optimal a priori metric would be based on the sharing

of similar lateral interactions. However, the partitioning of final configurations with respect

to lateral interactions similarity is not a trivial task, since one would need to enumerate all

possible configurations and identify all patterns beforehand, or privilege some lateral interac-

tions to be more importantxvi. We implemented one of the latter approaches by considering a

partitioning inspired by game playing, where final configurations are partitioned by the first

xvThis is reminiscent of the fundamental principle “similar structures have similar properties” of QSPR models
(Quantitative Structure-Property Relationship) in Chemoinformatics, where the metric is an essential component.

xviOne can think of this as a multi-scale clustering task with unknown data...

148



6.4. Designing a UCT for model Hamiltonians: Reinforcement Sampling

move (i.e. the first turn of a “Build a configuration” game), then sub-partitioned based on the

second move, and so forth.

However, the number of possible moves per turn is quite large, so partitioning only on com-

plete moves would lead to a large branching factor (i.e. the number of children per node) and

a small maximal depth that would reduce the relevance of an MCTS approach. Inspired by

move grouping42;43, we subdivide each move into the following sub-partitions, in that order:

• Chemical nature of the adsorbate (e.g. H2O O-site, NH3 N-site, . . . ).

• Chemical nature of the active site (e.g. Pt, Au, . . . ).

• Type of the active site (e.g. top, bridge, fcc, hcp, . . . ).

• Site number (i.e. position on the surface).

• Orientation of the adsorbate, with respect to the arbitrary axis, if applicable.

• Chirality state of the adsorbate.

These sub-partitions and this specific order were subjectively chosen based on chemical

intuition in order to produce intermediate groups with a relative similarity in terms of lateral

interactions. Figure 6.4 illustrate this partitioning on a simple example.

This game-playing inspired partitioning provides an acceptable tree structure that is, fur-

thermore, coherent with a metric based on the sharing of similar lateral interactions. Indeed,

let us consider a node Ni that is located at a depth corresponding to k turns of choices/parti-

tioning. In other words, Ni corresponds to an incomplete configuration (with k adsorbates)

generated after k turns. Therefore, all final configurations (with Nads adsorbates) descending

from that node Ni will result from the addition of Nads −k new adsorbates, corresponding to

the remaining Nads −k turns. Since all adsorbates placed on the surface are not modified by

subsequent moves, any final configuration or group/node descending from Ni is guaranteed

to contain the incomplete k adsorbates based configuration represented by Ni , along with

all patterns present in this incomplete configuration. As a consequence, this partitioning

ensures that, for any branch of the corresponding tree, the further down a node/group is in

that branch, the more lateral interactions are shared among that group, since patterns are

cumulativexvii.

xviiNote that some branches are likely to converge faster toward homogeneous groups than others. Or maybe
another partitioning would have provided better group homogeneity convergence. Actually, no guarantees are
made concerning group homogeneity, since we only discuss the number of shared patterns (which are, nonetheless,
a pre-requisite for group homogeneity in terms of lateral interactions). Still, this basic turn-based partitioning
guarantees that the number of shared patterns within groups is bound to increase along any path from such tree.
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Figure 6.4 – Illustration of the turn-based partitioning for constructing the full game tree. All possible moves during a turn
are partitioned (see the Turn partition tree) according to properties of the new site(s) being occupied (at the end
of that turn). This partitioning is fixed and based on chemical intuition (i.e. expert selection). The leaves (i.e.
terminal nodes) of this turn partition tree represent acceptable moves for the current turn. In this illustration,
the turn partition tree represents the first turn. Following turns are represented by their own altered partition
tree (some moves might become unavailable, while others might finally become available). The full game tree
is globally organized/partitioned in a turn-based manner. Indeed, each node representing a game state after a
single turn is expanded into all 2-turns game states that can be played from that single turn game state. As a
consequence, all nodes representing a k-turns game states are at the same depth in that tree, and the more
turns are required to reach a certain game state, the deeper its corresponding node is located in the tree. Each
turn is sub-partitioned according to the turn partition tree, leading to the full structure depicted in this figure.
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This turn-based partitioning also provides highly modular trees that can easily be extend-

ed/truncated for generating final configurations with different numbers of adsorbates (i.e.

changing the number of total turns, see figure 6.4). To that purpose, one might want to re-use

previous data that was generated from configurations with a different number of adsorbates,

instead of restarting from scratch. In order to help generating data that can be relatively

generalized to any final number of adsorbates, we store properties per adsorbate, so that all

scores used are at least defined for any number of adsorbatesxviii.

Finally, this partitioning produces trees that are convenient to visualize, as it illustrates the

possible evolution of a “Build a configuration” game. Each end of turn corresponds to a fixed

depth, and adding a configuration (i.e. exploring the tree from node Ni ) is made with the

full knowledge of the incomplete configuration corresponding to Ni , in a convenient way

(i.e. the position, orientation, chirality and nature of previously placed adsorbates are fully

known). This structure makes, therefore, the definition of custom symmetries (for avoiding

the redundancy of configurations within the tree) more user-friendly (e.g. fixing the position

of the first adsorbate, restraining the orientation of the second adsorbate with respect to the

first one, . . . ).

Concerning symmetries, a major source of redundancy comes from the ordering in which

adsorbates are placed, since adsorbates can be placed in any order to generate the same final

configuration. As a consequence, we force an arbitrary lexicographic order on the sequence of

adsorbates placed. This lexicographic order ensures that for each branch in the tree, no other

permutation of the associated sequence of moves can be found in any other branch of the

tree. In practice, this is done by imposing each move to be strictly greater than the previous

one, using the usual lexicographic order ≤move on the tuple associated with a move (adsorbate

chemical nature, surface site nature, site type, site number, orientation, chirality).

Normalized exploration rate

Due to the lexicographic order, the children of a node are likely unbalanced in terms of

number of accessible final configurations (e.g. all the other moves can be explored after

the ≤move-smallest move whereas no move is accessible after the ≤move-largest one). This

contributes to create unbalanced branches, even when fully explored, leading to the over-

representation of ≤move-small moves as first, or so, moves.

Such imbalance can also result from the unequal representation of some properties within

the 1-body terms. For example, if multiple distinct orientations (0◦, 90◦, 180◦, 270◦) of an NH3

xviiiNote that this trick remains a somewhat crude extrapolation from dissimilar data.
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molecule are considered whereas CO does not have alternative orientations, then the number

of moves placing an NH3 molecule is roughly 4 times more than for placing a CO molecule.

By default, a UCT approach will uniformly sample children that seem equally promising,

independently of the number of geometries that they represent (i.e. independently of the

number of accessible final configurations from them). For example, a UCT-based sampling of

the 1-body configurations with the NH3 and CO adsorbates considered above being equally

relevant would lead to sampled configurations having NH3 and CO equally represented (i.e.

NH3 configurations and CO configurations in equal proportions). Indeed, a classic UCT

framework has a tendency to uniformly sample equally promising moves.

However, we highlighted that tree imbalance leads to some moves being over-represented

in the set of accessible final configurations. Therefore, when such imbalance is present,

uniformly sampling moves leads to a nonuniform sampling of configurations. Indeed, with

equally promising branches, a move leading to more accessible final configurations should

be sampled more than a move leading to just a few configurations, if we are interested in

representing all similarly promising configurations equally. This is well illustrated using our

equally promising NH3/CO example, where each orientation of NH3 is sampled roughly 4

times less than the single orientation of CO if the chemical type related moves (i.e. choosing

either NH3 or CO) are equally sampled, despite NH3 configurations displaying a greater

diversity due to additional sub-partitioning (based on orientation).

A normalized exploration rate, inspired by Bosc et al. 44, can be used to take into account the

number of accessible geometries and consider a uniform effective exploration ratio between

unbalanced branches. The general idea behind this is intuitive: each exploration is weighted

by the number of explorations that would be required on the most populated sibling to sample

the same fraction of descendants. Back to our NH3/CO example: each exploration of the

CO node shall be counted as 4 explorations (i.e. the number of explorations required to

equivalently sample the NH3 node)xix. Mathematically, this reads as:

nnorm
i = ni ×

max
j∈Sbl (i )

(d j )

di
, (6.8)

where ni the number of times node Ni was explored, nnorm
i is the normalized number of

explorations of Ni , d j is the number of descendants of node N j and Sbl (i ) are the siblings

of node Ni (i.e. the children of the parent of node Ni ). Note that with this definition, the

xixAnother way to see it is: counting in terms of NH3-equivalent explorations.

152



6.4. Designing a UCT for model Hamiltonians: Reinforcement Sampling

normalized number of explorations of the parent node T norm (required for computing the UCB

pre-factor) is taken as the sum of the normalized number of explorations of all its children.

Using these normalized number of explorations for computing the UCB score (through the

exploration bias term, see section 6.3.2) should contribute to the reduction of the sampling

bias introduced by unbalanced partitioning in the tree structure.

KL-UCB score

Many functional forms are available for the exploration bias term bi(nnorm
i ,T norm) defined

in section 6.3.2. While variants of the original UCB1 policy have been developed, displaying

better empirical performance on specific classes of the multi-armed bandit problem, KL-UCB

was found to be the only algorithm performing consistently better than the UCB1 policy 39.

In our case, since DFT computations are expensive, we can typically explore up to only a

few hundred geometries. For this reason, we rely on a KL-UCB framework, as this algorithm is

expected to be efficient even with a small number of observations 39. Finally, KL-UCB requires

only the empirical mean E(Wi )emp and the bounds of the target function Wi of node Ni , in

comparison to other variants requiring additional information (e.g. the empirical variance 36).

Besides, KL-UCB is parameter-free in practice.

The KL-UCB score is based on the Kullback-Leibler divergence, a metric for comparing

probability distributions, and its functional form is a bit different from the classical Si =
E(Wi )emp +bi(ni ,T ) UCB form. The KL-UCB score of a node Ni is defined as:

Si =µ−1
i

(
max

q

{
q ∈ [0,1]

∣∣∣∣∣ K Ldi v

(
µi

(
E(Wi )emp

)
, q

)
≤ log(T norm)

nnorm
i

})
, (6.9)

where µi is a normalization function for the target variable Wi , nnorm
i is the number of normal-

ized explorations of node Ni , T norm is the number of normalized explorations of its parent

node, and K Ldi v is the Bernoulli Kullback-Leibler divergence:

K Ldi v (p, q) = p log

(
p

q

)
+ (1−p) log

(
1−p

1−q

)
(6.10)

Note that the target function Wi needs to be bounded in [0,1] for computing the KL-UCB

score. However, the exact bounds of Wi are a priori unknown: even though the absolute

energy deviation is always positive, its effective lower bound is dependent on the geometries
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within Gi and its effective higher bound can only be known exactly by evaluating all the

geometries in Gi . Therefore an estimate of the effective bounds [min(Wi ),max(Wi )] of Wi can

be computed from its empirical minimum min(Wi )emp and maximum max(Wi )emp assuming,

rather crudely, a uniform distributionxx. Using these bounds, the normalization function µi is

designed to rescale the Wi variable to [0,1].

6.4.3 Pre-exploration

Despite the efficiency of KL-UCB to deal with even a small number of observations, a

DFT-based Reinforcement Sampling is far from the usual application of a UCT framework.

The reason behind this lies in the most relevant difference between “Build a configuration”

and classical board games: the computational cost associated with evaluating the score

of a final game state. Indeed, conventional games rely on the application of a simple set

of rules for quickly evaluating a final game state, whereas “Build a configuration” requires

a DFT-based geometry optimization which is orders of magnitude more computationally

expensive. As a consequence, additional efforts should be made to favour the selection of

adequate configurations, especially during the playout/rollout phase where the choice is made

randomly in “vanilla” MCTS.

Indeed, instead of a random sampling of unexplored nodes, a rollout policy can be applied

through heuristics 45–47 or other exploration techniques 48, in order to filter out configurations

that are expected to be sub-optimal. Since including a final configuration requires compu-

tationally expensive calculations, such policy is therefore especially important here to avoid

spending a large amount of computational time on sub-optimal configurations.

After a pre-exploration step composed of P successive random pre-explorations, P novelxxi

final configurations are selected. These configurations are expected to display large absolute

energy deviation, according to the UCT-based policy that selected them. As a consequence, the

pre-exploration step can be seen as a broad sampling of configurations, with predicted strong

many-body effects, from which one should choose the next configuration to be included in

the model Hamiltonian training set.

In fact, a random rollout would avoid such major convergence issues by eventually selecting

an unexpectedly good final configuration. Fortunately, instead of relying on random discovery,

it is possible to actively select the configuration that would benefit the most to the model

xxThis is known as the German tank problem, see section 6.4.4
xxiIn the sense that none of them was already included in the training set (i.e. chosen for DFT-based evaluation),

but a same configuration could be pre-explored multiple times.
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Hamiltonian in terms of diversity. In fact, the diversity requirement is only there to prevent

the resulting model Hamiltonian from systematically focusing on lateral interactions whose

contributions are already well defined, instead of exploring lateral interactions whose con-

tributions are ill-defined. Mathematically, the uncertainty associated with a linear model is

properly defined by the variance of its parameters Var(β̂). Each new observation reduces the

variance matrix Var(β̂) by a symmetric positive semi-definite xxii matrix ∆Var(β̂) that roughly

depends on how redundant is the new observation with respect to the previous ones (globally,

the more a configuration has already been seen, the less its inclusion impacts the variance

matrix). By estimating the changes in the variance matrix ∆Var(β̂)xxiii, one can choose the

configuration that benefits the most the model Hamiltonian. One should note that this is

a typical variance-based DoE approach31. A convenient quality estimator for the variance

reduction can be seen in the trace Tr(∆Var(β̂)), considering that all lateral interactions are

equivalently importantxxiv.

As a conclusion, we propose a rollout policy that consists in selecting, among the pre-

explored configurations, the configuration expected to benefit the most the model Hamilto-

nian being learned. This policy can be seen as an additional compromise between exploration

(choosing the configuration with a priori least redundant information) and exploitation (the

UCT-based selection policy acts as a filter for predicted high-score configurations). Finally,

even if the whole UCT-based sampling went to fail, Reinforcement Sampling would still be

similar to an A-optimal variance-based active learning algorithm31 due to the Tr(∆Var(β̂))-

based final selection during the rollout step. One should, therefore, expect Reinforcement

Sampling to be more efficient than random sampling as an active learning algorithm.

6.4.4 Implementation

The Reinforcement Sampling framework described in this chapter has been implemented

in Python3, with a modular design and a relatively few number of required parameters. Our

implementation heavily relies on the NetworkX library for all graph-related algorithms, and

Numpy whenever applicable. The code is available on GitHub, along with a rich documenta-

tion and examples.

xxiiA symmetric matrix M is positive semi-definite if ∀x, x>M x ≥ 0.
xxiiiAssuming a constant variance of the noise.
xxivThis A-optimal design (i.e. minimizing the trace of the inverse Fisher information matrix of the whole model)
is a popular choice for active learning algorithms 31

155



Chapter 6. UCT-based active learning applied to cluster expansion Hamiltonians:
Reinforcement Sampling

This module was designed as a versatile tool, with numerous flags/options for addressing

most cases. For example, our implementation can easily be turned into a purely pseudoran-

dom sampler, or even using a pre-exploration step on a pseudorandom sampling, leading to a

typical variance-based active learning algorithm.

Let us review some major implementation details that are not straightforward from the

Reinforcement Sampling features described in this chapter, for application to CE-based model

Hamiltonians.

Node storage

As mentioned in section 6.3.2, UCT trees are explored in a largely unbalanced manner. This

feature is taken advantage of by storing only the evaluated nodes and expanding the tree

on-the-fly, enabling the effective storage in memory of an incomplete combinatorially large

space that would otherwise be impossible to store in fullxxv.

In practice, the expansion of the tree is made by maintaining a turn partition tree containing

all available sub-moves until the end of the current turn (see Figure 6.4). All move filters

are applied to this turn partition tree by removing the sub-moves filtered out along with

their descendants, then pruning the above branches by removing those with no complete

turn-move leaf remaining (using a inverse topological ordering).

By default, two filters are applied, at the beginning of a new turn, when the turn partition tree

is reset:

• Lexicographic ordering: all turn-moves that are ≤move-smaller than the previous turn-

move are removed.

• No doubly occupied active sites: all turn-moves that would occupy an already occupied

active site are removed.

Additional user-defined filters (also called symmetries) can be applied, leading to hardly

predictable move filtering from one turn to the next turns. Therefore, during the expansion,

all subsequent moves could be found unsuitable, leading to a failed exploration.

Note that the lexicographic ordering is applied by deleting incompatible sub-trees while

exploring the turn partition tree in a BFSxxvi order to save computational time.

xxvUsing coarse approximations, the number of nodes evaluated after T exploration steps is linear in T , since it is
loosely bound by O(T d max

i
(Bi )) where d is the tree depth and max

i
(Bi ) is the maximal number of children.

xxviBreadth First Search, exploring the siblings of a node before its children
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Biased exploration

As mentioned in section 6.4.2, the lexicographic order filtering induces a sampling bias in

the space of accessible final configuration (if the moves sampling is unbiased), that ought to

be corrected by a bias in the sampling of moves. To do so, the number of final configurations

that can be accessed from a node should be estimated. From a lexicographic order filtering

only, estimating the number of final configurations from a complete turn-move, that is the

(N +1)-th ≤move-largest turn-move and after n additional turns, is equivalent to the number

of strictly increasing sequences of size n with N possible values (i.e.
(N

n

)= N !
n! (N−n)! ). Therefore,

the number of final configurations accessible from any sub-move can be computed from those

of its children, and are therefore updated in an inverse topological order, in practice.

However, the lexicographic order filtering is not the only filter applied. In particular, another

important filter is applied to avoid doubly occupied active sites. Yet this filter, simply “removes”

an active site, reducing the number of final configurations roughly equivalently between node

siblings. In fact, the only imbalance effects from such filter comes from the correlation with

other filters (e.g. if CO can only be adsorbed at a fcc site while NH3 can be adsorbed at fcc

or hcp site, the occupation of a hcp site will impact the remaining possible adsorptions of

NH3 but not CO). However, such effects are hardly predictable, and in real-life applications,

should not be significant compared to the lexicographic order filtering. Therefore, only the

lexicographic order filtering is considered for estimating the number of final configurations

and computing the normalized exploration rate.

Finally, custom (i.e. user-defined) symmetry functions (defined to avoid redundancies

specific to the modeled system) may also affect unequally the number of descendants, and

are not considered in this normalized exploration rate approach (as there is no general rule

for quickly predicting their effects beforehand).

Pre-exploration bias

First of all, the final selection from the configurations sampled during the pre-exploration

step optimizes the reduction of the trace of the covariance matrix for the model parameters

Tr(∆Var(β̂)) (see section 6.4.3). However, when using a large uniform guess for the parameters

variance, any new observation that is linearly independent from the previous observations

roughly induces the same reduction of the covariance matrix tracexxvii, regardless of the num-

ber of new patterns discovered. This behavior is undesired because it reduces the likelihood

of the new observation to explore an unseen subspace of relevant patterns (the fewer the

xxviiIndeed, any non-redundant new observation is equivalent in terms of increasing the rank of Γ (i.e. reducing
the null space of Γ).
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number of new variables in a non-redundant observation, the fewer the number of variable

subspaces, spanned by a subsets of variables, are impacted by this observation). Furthermore,

the reduction in extrapolation is not expected to benefit much the framework since it has been

partially designed to deal with extrapolated models. Therefore a bonus score is added for each

new pattern discovered.

Finally, during the pre-exploration step, a balance between exploration and exploitation is

achieved by the UCT framework based on the predicted absolute energy deviation from the

current model. However, this model is likely partially trained and meant to be updated, leading

to the predicted energies being modified. This would not be very problematic if the rollout was

purely random, but in our case, the rollout policy is expected to be biased toward apparently

relevant configurations. As a consequence, the model quality directly impacts the rollout

exploration bias. Therefore, nodes explored at different times might have been explored using

different policies, so that their reward cannot be compared. For example, a node N1 that has

been explored in the early stages of Reinforcement Sampling should contain rewards from

geometries that were expected to be chemically relevant (i.e. large absolute energy deviation)

from the early and incomplete form of the model, but are now not so chemically relevant with

respect to the final model, whereas a node N2 explored in the final stages have been explored

with a much better model, leading to effectively better rewards E(W pr ed
2 )emp

?> E(W pr ed
1 )emp

with the current model. Therefore, to accelerate the re-exploration of nodes explored with a

poorly trained model, we in principle allow the weighting of exploration count, so that each

node exploration can be weighted according to the current model quality for being considered

in the UCB score (i.e. an exploration with a robust model can count as multiple explorations

with a poorly trained model). However, since we currently lack the justification for a particular

weighting function, we do not exploit this capability in practice.

Estimation of score statistics (mean, min/max)

First of all, the KL-UCB score ought to be computed on normalized rewards. Therefore,

one should estimate the distribution maximum max(Wi ) and minimum min(Wi ) from the

empirical maximum max(Wi )emp and minimum min(Wi )emp . As mentioned in section 6.4.2,

assuming a uniform distribution, this is a typical German tank problem that lead to the

estimates:

min(Wi ) ≈ n ×min(Wi )emp −max(Wi )emp

n −1

max(Wi ) ≈ n ×max(Wi )emp −min(Wi )emp

n −1

(6.11)
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where n is the number of records seen. The details of the derivation can be found in the

section D.2 of appendix D.

For the “real” DFT-based energy deviations, the rewards are directly indepedent from the

model, and can therefore be stored safely. However, the predicted absolute energy deviations

do depend on the model, and therefore, cannot be permanently stored in the nodes (since

these predicted deviations would become outdated as soon as the model is updated), see

section 6.4.3. So instead, the inputs (for the model Hamiltonian) are stored, each in the form of

a hash table linking for each pattern index found, the number of corresponding patterns found

in the final configuration considered. These pattern multiplicities (i.e. the model Hamiltonian

input) corresponding to the geometry gi will be referred as Γi in the following. Therefore,

each node N should theoretically store Γi for each geometry gi explored from that node N.

However, such storage would require large amounts of memory. So, in order to reduce the

memory consumption, all the explored inputs are not explicitly stored in the nodes. Instead,

our implementation relies on approximations to drastically reduce the storage in each node.

Let us now consider the approximation concerning the average predicted absolute energy

deviation. First of all, updating the mean of absolute deviation for a node would require the

storage of all seen configurations for that node. Instead of greatly increasing the memory con-

sumption, we use an approximation that requires only to store E(Γi )emp , which is equivalent

to a single configuration per node in terms of memory:

E(W pr ed
i )emp = E(|Γ>i β̂′|)emp ≈ E(Γ>i |β̂′|)emp = E(Γi )>emp |β̂′|, (6.12)

where β̂′ = β̂− β̂1-body are the energy contributions (of the CE-based model Hamiltonian)

of many-body lateral interactions only (i.e. the contributions of the single-body model are

subtracted to those of the full model).

This rough approximation is undoubtedly prone to errors, in general, if both stabilizing

and destabilizing lateral interactions are defined (this approximation is exact if only stabiliz-

ing/destabilizing lateral interactions are found). In fact, the most significant errors introduced

by this approximation come from configurations where there is a coexistence of apparently

largely stabilizing and destabilizing lateral interactions. Fortunately, these errors are expected

to be relatively mitigated within a linear model dominated by extrapolationxxviii.

xxviiiIndeed, apparent lateral interactions are extrapolated largely stabilizing (or destabilizing) when they are not
found canceled out in configurations. Therefore, if the already selected configurations are representative enough
for the pre-explored configurations, it is relatively unlikely that apparently largely stabilizing and destabilizing
lateral interactions be found together in pre-explored configurations.
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For the maximum/minimum predicted absolute energy deviations, additional approxima-

tions are made to limit the memory consumption to O(m) per node (i.e. roughly the storage re-

quired for a fixed number of configurations). The approximation chosen uses min(Γi )emp and

max(Γi )emp , corresponding to the minimum/maximum number of corresponding patterns

seen in a single configuration for each pattern indexxxix. This approximation uses therefore

the equivalent of two configurations per node in terms of storage, and defines min(W pr ed
i )emp

and max(W pr ed
i )emp as:

min(W pr ed
i )emp ≥ 0

max(W pr ed
i )emp ≤ max


∣∣β̂′

>0 min(Γi )emp + β̂′
<0 max(Γi )emp

∣∣∣∣β̂′
>0 max(Γi )emp + β̂′

<0 min(Γi )emp
∣∣ ,

(6.13)

where β̂′
>0 are the model parameters (for the energy deviation) for which only positive energy

contributions are kept (i.e. negative terms are set to zero), and reciprocally for β̂′
<0. Therefore,

β̂′
>0 max(W pr ed

i )emp+β̂′
<0 min(W pr ed

i )emp is an upper bound on the maximal energy deviation

observed, and β̂′
>0 min(W pr ed

i )emp + β̂′
<0 max(W pr ed

i )emp is a lower bound on the minimal

energy deviation observed. Consequently, this approximation gives lower/upper bounds for

the true empirical minimum/maximum of the absolute energy deviation, respectively. As

stated previously, this approximation is rather crude, but can be partially justified in the case

of a linear model dominated by extrapolation.

Finally, each energy deviation prediction comes with an uncertainty that can be estimated

through confidence intervals. In order to account for these confidence intervals, additional ap-

proximations are considered to keep a storage in O(m) per node. This additional approximated

correction is explained in details in section D.2 of appendix D, along with a reformulation and

explanations of most approximations above, applied to the predicted energies (as it is simpler

to grasp than with absolute deviation energies, without changing much of the reasoning).

Solvers

For computing the KL-UCB score, our implementation uses the scipy.optimize.brentq
solver.

For updating the linear model associated with the internal model Hamiltonian, and esti-

mating the covariance change, we use the Recursive Least Squares algorithm rank-Greville,

described in details in chapter 5.

xxixOnce again, this is stored in a hash table to save space in case a small fraction of distinct pattern indexes were
found.
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6.5 Results

6.5.1 Protocol presentation

As a proof of principle, the Reinforcement Sampling approach is applied to a real-life appli-

cation of CO oxidation on Pd(111), by learning the CE-based model Hamiltonian described by

S. Piccinin and M. Stamatakis, 9 and used as reference.

Pattern definition

The model of ref9 defines 52 relevant “figures” (which roughly correspond to what we call

patterns) composed of up to 3 adsorbates/sites and exploring up to the second nearest neigh-

bors; four of these figures correspond to steric clashes. Therefore, in our framework, we are

only interested in patterns involving up to 3 adsorbates, 3 sites (occupied or not), and occupied

sites are directly connected in the AOS representation if there are not further away than second

nearest-neighbors. The adsorbates (CO and O) were defined with no characteristic orientation

(i.e. treated with D∞ symmetry group on the surface). The active sites (fcc and hcp) rigorously

have D3 for symmetry group, but their symmetry is not considered in the reference model

Hamiltonian, so for coherence purposes, we treat them with the D∞ symmetry group.

Using these restrictions, we find 56 distinct patternsxxx corresponding to the relevant figures

defined in the reference model Hamiltonian and 138 possible patterns. This difference of 4

additional relevant patterns are attributed to triangle shaped figures, since multiple 3-sites

paths can define the same triangle. We identify these patterns and set them to be equivalent,

with adequate multiplicities so that there is a bijection between relevant patterns and relevant

figures, leading to a final number of 52 distinct relevant patterns and a total of 134 possible

patterns. However, we convert the 4 relevant patterns corresponding to steric clashes to a

user-defined filter that prevents any configuration from displaying these clashes. Accounting

for these additional constraints, only 70 distinct possible patterns remain from the 138 initially

detected patterns, 48 of which are distinct relevant patterns, i.e., corresponding to a relevant

figure. While the four single-body terms are taken to be known from the beginning, the

remaining 24 2-body patterns and 20 3-body patterns are to be learned via a relevant training

set.

Model quality evaluation

In this test, we are interested in evaluating the performance of the Reinforcement Sampling

framework for generating a training set that is optimal for learning the relevant many-body

xxxThese patterns are defined as paths, see section 6.4.1
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energy contributions (i.e. training a relevant model Hamiltonian), using only a limited number

of first-principles calculations.

In order to assess this performance, we use the Reinforcement Sampling framework to learn

the reference model Hamiltonian described by S. Piccinin and M. Stamatakis, using only a

limited number of access to the predictions of this reference Hamiltonian. Indeed, this model

Hamiltonian already defines which patterns are relevant, so that the relevant many-body

energy contributions are already given. Therefore, we wish to evaluate the final training set on

its performance for estimating, not all the possible many-body energy contributions, but only

the relevant ones, as identified in the model Hamiltonian.

Of course, these contributions are not known beforehand by the framework which has only

access to a limited number of predictions from the reference model Hamiltonian, similarly

as if the predictions were computed from first-principles calculations. One should also note

that the selection of relevant parameters is not addressed here (actually, the internal model

Hamiltonian defines all possible contributions): only the training set is evaluated, not the

eventual dimensionality reduction (in fact, that is why we use a reference model Hamiltonian,

so that the relevant contributions are already identified, and therefore, the performance of our

framework is not impacted by the dimensionality reduction performance).

As a consequence, we evaluate the performance of a training set Γ1,Γ2, ...,Γn by:

• First, training a linear model (i.e. a model Hamiltonian) for estimating the 44 relevant

multi-body energy contributions β̂r el from these configurations and their associated

energy (predicted from the reference model Hamiltonian).

• Then, the covariance matrix of the estimated contributions is computed Var(β̂r el ).

• Finally, we use the trace of the covariance matrix Tr(Var(β̂r el )) as an estimator of the

robustness of these parameters, and therefore as an estimator of the quality of the

training set Γ1,Γ2, ...,Γn .

In fact, the covariance matrix is independent from the predicted energies, and can be com-

putedxxxi as:

Var(β̂r el ) = (X >
r el Xr el )−1, (6.14)

where X is the observation matrix associated with the training set Γ1,Γ2, ...,Γn , restricted to

the 44 relevant many-body patterns.

xxxiAssuming a non-underdetermined linear system.
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In the unfortunate case where the training set does not sample the whole 44-patterns subspace,

X >
r el Xr el is singular. We can still evaluate the model quality on the subspace effectively sampled

by using the eigenvaluesxxxii of X >
r el Xr el .

Modelling parameters

For this test, we limit the number of predictions from the reference model Hamiltonian to

100. This leads to the final training having 100 configurations. This compares to the 92 DFT

configurations used in ref 9.

The Reinforcement Sampling framework aims at reducing the computational cost spent of

first-principles calculations for creating a training set. Therefore, it is natural to consider the

smallest surface for the geometries in the training set. The smallest supercell where all patterns

can be defined (due to periodic boundary conditions) is the 4×3 cell, therefore composed of

12 unit cells each containing a single fcc and a single hcp site, leading to 24 active sites in total.

Random sampling

First of all, we estimate the quality of a purely random sampling (still using a normalized

exploration rate, to ensure a relatively unbiased sampling in the configuration space), and

study the impact of coverage on the final training set quality.

Figure 6.5 represents the final training set quality (defined in section 6.5.1) obtained by

simply sampling from random. From these results, it is clear that the coverage has a strong

influence on the quality of the final training set.

At low coverage (i.e. small Nads), each configuration displays only a small number of

patterns, leading to poor quality training sets. Indeed, a simple argument is that if one doubles

the number of each pattern found in each observations, then the covariance matrix of the

parameters becomes (2X >
r el 2Xr el )−1 = 1

4 Var(β̂r el ). Another way to grasp this idea is to consider

that the residual error εi associated with a configuration Γi is “split”/“diluted” into all the

patterns seen, so that the more patterns the fewer residual “per pattern”.

Whereas at high coverage, the diversity of patterns seen is reduced from one observation to

the other. Indeed, the patterns are being correlated, leading to less well-defined contributions.

For example, on a fully covered surface, any 2-body pattern is never seen isolated, but always

xxxiiIndeed, since X>
r el Xr el is symmetric, its eigenvalues are well-defined and the sum of their inverse is equal to

the trace of the inverse matrix. Therefore, we can use the sum of the inverse eigenvalues that are strictly positive.
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Figure 6.5 – Evaluation of the quality of the random sampling with respect to the coverage. The quality of a sampling is defined
by the ability of the corresponding training set (obtained after such sampling) to properly determine the energy
contributions β̂r el of patterns defined as relevant. This ability is measured in terms of Tr(Var(β̂r el )), the trace of
the covariance matrix of β̂r el obtained after fitting a CE-based model Hamiltonian (with β̂r el as parameters) on
this training set. Therefore, the better (i.e. the most adapted) a sampling, the lower the Tr(Var(β̂r el )). A range of
coverage are explored, by varying the number of adsorbates (i.e. occupied sites) on a 4×3 supercell composed
of 24 sites. For each coverage, the random seed is reset to 0 and 10 consecutive tests are run. The error bars
are estimated from the corresponding Student’s t -distribution.
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found with the same group of 3-body patterns, leading to its contribution being eventually

indiscernible from those of the 3-body patterns group.

In the absence of correlation, we expect this performance to be roughly correlated to the

total possible number of distinct configurations, and here, the optimal coverage corresponds

to a third the sites being occupied Nads = 8.

Nonetheless, the full subspace of relevant patterns is not systematically explored, even

with Nads = 8, leading to the final relevant model Hamiltonian being underdetermined and

therefore a subset of relevant contributions being indiscernible. From a general point of view,

random sampling does not seem well-adapted to describe systems subjected to constrains or

strong correlations.

One should also note that below Nads ≤ 7 the random sampling does not consistently

succeed in exploring all 44 relevant many-body patterns. Finally, configurations with Nads > 12

are undefined due to the steric clashes constrains.

Since we search a method that is consistently better than random, we consider in the

following the most favorable coverage for a random sampling: Nads = 8.

Pure UCT sampling

Using a pure UCT-based sampling (i.e. using a single pre-exploration step) leads to an

insufficient exploration after 100 steps. Indeed, after choosing the first configuration at

random, the pure UCT-based framework failed to explore all 44 many-body patterns in almost

all cases (≈ 80% of failure) with Nads = 8.

Therefore, the exploration rate of the pure UCT framework is insufficient for this application.

Pre-explored random sampling

Here we consider a full exploration approach, by applying the variance-based selection of

the rollout policy to the pre-explored configurations sampled at random.

Indeed, at the end of the rollout policy, the selected configuration is chosen among the pre-

explored configurations as the one that improves the most the internal model Hamiltonian.
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Figure 6.6 – Evaluation of the effects of pre-exploration (i.e. performing a variance-based DoE selection on a pool of 10
random configurations) on the quality of the random sampling. The quality of a sampling is defined by the ability
of the corresponding training set (obtained after such sampling) to properly determine the energy contributions
β̂r el of patterns defined as relevant. This ability is measured in terms of Tr(Var(β̂r el )), the trace of the covariance
matrix of β̂r el obtained after fitting a CE-based model Hamiltonian (with β̂r el as parameters) on this training set.
Therefore, the better (i.e. the most adapted) a sampling, the lower the Tr(Var(β̂r el )). A range of coverage are
explored, by varying the number of adsorbates (i.e. occupied sites) on a 4×3 supercell composed of 24 sites.
For each coverage, the random seed is reset to 0 and 10 consecutive tests are run. The error bars are estimated
from the corresponding Student’s t -distribution.

So that adding a few pre-exploration steps should increase the exploration rate and the

diversity of the training set. It is crucial to note that the variance-based final selection aims at

reducing the full internal model Hamiltonian, i.e. the trace of the covariance Tr(Var(β̂ f ul l ))

of all 70 patterns contributions, not only the relevant ones β̂r el identified by the reference

model Hamiltonian (since they are a priori unknown to the Reinforcement Sampling). Yet by

reducing Tr(Var(β̂ f ul l )), we expect to also approximately reduce the variance for any subset of

contributions (therefore also for β̂r el ).

Using 10 pre-explored configuration sampled at random (instead of selected by the UCT

framework) per step and applying the DoE-inspired variance based selection leads to a signifi-

cant and systematic improvement over the random sampling for generating training sets that

efficiently discriminate the relevant contributions, see figure 6.6.
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Pre-explored UCT sampling (pure Reinforcement Sampling)

In this approach, at each step, the variance-based selection is applied to 10 configurations

that are expected to be chemically relevant (strong many-body effects) as they are pre-explored

using the UCT framework. Therefore, the subspace of relevant pattern is expected to be

sampled.

Indeed, by filtering the pre-explored nodes based on their predicted chemical relevance,

we hope to sample more thoroughly the space of relevant patterns, and therefore better

discriminating the relevant contributions β̂r el , by pre-exploring preferentially configurations

displaying relevant patterns. Indeed, for example, if all pre-explored configurations contain

only relevant patterns, then optimizing Tr(Var(β̂ f ul l )) is equivalent to optimizing Tr(Var(β̂ f ul l ))

among these configurations.

Using a 10 step pre-exploration from the UCT approach (i.e. pure Reinforcement Sampling

approach) leads indeed to an improved exploration rate compared to the pure UCT approach,

since all 44 relevant multi-body patterns are now found in every run. Besides, the final model

is systematically found non-underdetermined, compared to the pure random sampling.

Nonetheless, compared with the pure pre-explored random sampling, the quality of the

training set is systematically reduced for estimating the relevant contributions defined in the

reference model Hamiltonian (see figure 6.7).

This is characteristic of a biased sampling, and this, despite the variance-based selection

at the end of the rollout policy. Therefore, this sampling bias (even within the subspace of

relevant configurations) is also strongly present in the pre-explored configurations (this is

coherent with the poor exploration rate of the pure UCT-based framework), and cannot be

removed during the final variance-based selection. Let us investigate this issue.

First of all, let us exclude the eventual UCT being completely confused by the extrapolated lin-

ear model and systematically sampling patterns that are not relevant. Indeed, the proportion

of relevant patterns per configuration is equivalent to the proportion obtained by random

sampling. Furthermore, the final training set still provides more robust parameters for the

relevant contributions than by random sampling, which is a consequence of the subspace of

relevant patterns being better sampled.

Therefore, this bias could be explained by two main mechanisms:

• The UCT framework is stuck in a local minimum. So, this would typically be a conver-

gence issue. Indeed, the average absolute energy deviation is not found significantly
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Figure 6.7 – Comparison of the Reinforcement Sampling (10 pre-exploration steps from the UCT) with pre-exploration from
random (10 pre-exploration steps from random) and random only. The quality of a sampling is defined by the
ability of the corresponding training set (obtained after such sampling) to properly determine the energy contri-
butions β̂r el of patterns defined as relevant. This ability is measured in terms of Tr(Var(β̂r el )), the trace of the
covariance matrix of β̂r el obtained after fitting a CE-based model Hamiltonian (with β̂r el as parameters) on this
training set. Therefore, the better (i.e. the most adapted) a sampling, the lower the Tr(Var(β̂r el )). A range of
coverage are explored, by varying the number of adsorbates (i.e. occupied sites) on a 4×3 supercell composed
of 24 sites. For each coverage, the random seed is reset to 0 and 10 consecutive tests are run. The error bars
are estimated from the corresponding Student’s t -distribution.
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larger than with a random sampling (4.30 eV instead of 4.31 eV).

• The relevant patterns have highly dispersed contributions (i.e. some contributions

are negligible compared to others, but are still labelled “relevant”), leading the UCT

framework to disregard these negligible “relevant” patterns. Indeed, the strongest

relevant contributions is 0.2849 eV, while the weakest is 0.0016 eV. Besides, if the 20

strongest contributions only are considered relevant, then the Reinforcement Sampling

is globally performing better than the pre-explored random sampling and significantly

better than the random sampling, see figure 6.8.

Nonetheless, both mechanisms are likely to be involved. Indeed, to test the convergence issue

hypothesis, 1000 steps of the Reinforcement Sampling framework are run with Nads = 8 and

compared with a random sampling. The average absolute deviation is now larger than with a

random sampling (4.83 eV per configuration instead of 4.31 eV), suggesting a convergence

issue (since such difference was not observed after only 100 steps). However, the training

set quality was now lower than with a random sampling (0.47 eV2 instead of 0.36 eV2)xxxiii,

suggesting that this convergence issue is not particularly relevant.

As a consequence, the UCT framework induces a strong bias toward the sampling of the

most significant interactions, which can lead to the full subspace of relevant patterns being

sampled in an heterogeneous manner, leading to some directions being poorly sampled,

and therefore leading to a poorly trained model (defined on arbitrary patterns or with highly

dispersed contributions) compared to a pre-explored random sampling that is prone to

sampling homogeneously the full 70 pattern space. In such a case, the gain from biasing toward

more chemically relevant configurations is not as essential as ensuring an homogeneously

sampled pattern space.

Impact of the number of pre-exploration steps

While the benefit of the DoE-inspired variance-based pre-exploration (i.e. choosing the

configuration minimizing Tr(Var(β̂ f ul l )) from Npre-exp pre-explored configurations) are clear

from these results, the importance of the number of pre-exploration steps Npre-exp is studied

in figure 6.9. Globally, increasing the number of pre-exploration steps Npre-exp leads to overall

better performance, but comes at the cost of additional computational time (scaling linearly

with Npre-exp).

xxxiiiIf only the 20 strongest contributions are considered: pure Reinforcement Sampling is better than random
sampling 0.09 eV2 instead of 0.13 eV2, but slightly worse than pre-explored random sampling (0.08 eV2). But
Reinforcement Sampling is now better than pre-explored random sampling for determining the up-to 8 strongest
contributions 7.8e −3 eV2 instead of 1.3e −2 eV2, which is coherent with an increased bias toward the strongest
contributions. Otherwise, the decreased performance can simply arise from synergistic correlations that lead to
higher absolute deviation energy.
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Figure 6.8 – Comparison of the Reinforcement Sampling (10 pre-exploration steps from the UCT) with pre-exploration from
random (10 pre-exploration steps from random) and random only. The quality of a sampling is defined by the
ability of the corresponding training set (obtained after such sampling) to properly determine the strongest energy
contributions β̂best . This ability is measured in terms of Tr(Var(β̂best )), the trace of the covariance matrix of β̂best
obtained after fitting a CE-based model Hamiltonian (with β̂best as parameters) on this training set. Therefore,
the better (i.e. the most adapted) a sampling, the lower the Tr(Var(β̂best )). A range of coverage are explored,
by varying the number of adsorbates (i.e. occupied sites) on a 4×3 supercell composed of 24 sites. For each
coverage, the random seed is reset to 0 and 10 consecutive tests are run. The error bars are estimated from the
corresponding Student’s t -distribution.
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Figure 6.9 – Influence of the number of pre-exploration steps on the sampling quality. The quality of a sampling is defined
by the ability of the corresponding training set (obtained after such sampling) to properly determine the energy
contributions β̂r el of patterns defined as relevant. This ability is measured in terms of Tr(Var(β̂r el )), the trace of
the covariance matrix of β̂r el obtained after fitting a CE-based model Hamiltonian (with β̂r el as parameters) on
this training set. Therefore, the better (i.e. the most adapted) a sampling, the lower the Tr(Var(β̂r el )). A range of
coverage are explored, by varying the number of adsorbates (i.e. occupied sites) on a 4×3 supercell composed
of 24 sites. For each coverage, the random seed is reset to 0 and 10 consecutive tests are run. The error bars
are estimated from the corresponding Student’s t -distribution.
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The apparent mitigated improvement for when configurations are pre-explored from UCT

instead of random sampling might come from the strong bias imposed by the UCT framework,

making it harder to find significantly different configurations during the pre-exploration.

Besides, this pre-exploration step might come in direct competition with the exploitation

optimization approach of the UCT framework.

6.5.2 Conclusion

In this chapter, we addressed the optimization of building a training set for any relevant

CE-based model Hamiltonian while limiting the number of first-principles calculation. The

benefits of such approach are multiple: not only the final model Hamiltonian is better defined

(reduction of the covariance of the parameters), but the computational time required for its

construction is reduced, and the building process itself is automated.

From the definition of an adequate training set, an active learning framework is designed,

based on Reinforcement Learning and classical variance-based Design of Experiments, to

tackle the challenge imposed by the limited number of first-principles calculation.

From preliminary results, it seems that the chemical relevance property is not as important

as homogeneously sampling the pattern space in order to train a model Hamiltonian com-

posed of highly dispersed contributions. Therefore, in such a case, a classical variance-based

Design of Experiments approach on top of a random generation seems to provide the best

results. However, if only the most significant contributions are of interest or if the relevant

patterns have similar contributions (and no synergistic correlations with respect to the energy

deviation) or if the total lateral interaction is an explicit target, then a pure Reinforcement

Sampling approach may prove more suited.

For cases in between, additional efforts ought to be made to find a compromise between the

pure Reinforcement Sampling approach and the pure pre-explored random approach, bene-

fiting from both the preferential sampling of relevant patterns and the broadly homogeneous

and efficient sampling within that subspace.
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7 Conclusions and Outlook

As stated by its title, this thesis has been focused on the development of numerical tools

for the understanding and quantification of chemical interactions of adsorbates on metallic

surfaces. Let us review this statement:

Indeed, this thesis explored the chemical interaction in its many forms, depending on the

level of abstraction considered:

• At a DFT level, the energy effects are addressed through an energy decomposition

analysis, where the energy contribution of interactions is decomposed between charge

transfer and polarization effects.

• At a classical level, the chemical bonds are addressed though geometry-based descrip-

tors with the concept of nearest neighbours.

• Finally, their unification is addressed in the form of a model Hamiltonian, defining a

linear relationship between the total energy of a system and the presence of geometry-

based interactions.

Besides, methodological development and algorithms has been the focus of study, through-

out this thesis:

• The ALMO formalism is the key tool at the core of any rigorous polarization vs. charge

transfer EDA.

• The SANN algorithm is based on an elegant method for defining geometry-based nearest

neighbors, in a fundamental and parameter-free fashion.
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• RLS algorithms are essential and efficient engines for updating the minimum-norm

least-squares solution of a linear system.

• Finally, Reinforcement Learning is a fundamental framework that is of relevance for pow-

ering active learning tools, which are themselves of critical importance for constructing

an optimal training set.

All these developments are either already available publicly on GitHub or will be rendered

public upon publication.

Finally, the work achieved during this thesis has been directed towards metallic surfaces

applications:

• The ALMO formalism has been made compatible with electronic smearing, allowing for

the description of metals, as exemplified by the application to water adlayers on noble

metal surfaces.

• The SANN algorithm has been extended toward interfaces, by taking local anisotropy

into account, ideally suited for nanoparticles and solvation shells of ions at interfaces.

• A reinforcement learning based active learning framework (including a custom RLS

algorithm) has been designed to optimally train model Hamiltonians describing reactive

surfaces for KMC applications.

Let us now review in more details each work separately:

• The ALMO formalism has been unified with mixed-state theory, using a mean-field

approximation called S-ALMO. In this approximation, the interaction between orbitals

are averaged (i.e. mean occupancy-rescaled) across all accessible quantum states at a

given temperature (i.e. electronic smearing) and applied for all states independently.

Therefore, S-ALMO allows for the quantification of charge transfer effects involving

metals. In particular, S-ALMO has been applied to water adlayers adsorbed on surfaces

of noble metals in order to examine the adsorption effects and their origins.

• The SANN algorithm has been adapted to tackle local anisotropy, through a simple yet

efficient correction term, leading to the ASANN algorithm. Indeed, the barycenter of

the SANN-based nearest neighbors allows to estimate the field of view that should be

relevant for searching nearest neighbors. This effective field of view is then plugged back

into the SANN algorithm through a correction term that, consequently, accounts for the

local anisotropy. As a consequence, ASANN extends the SANN algorithm to interfaces
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where the local anisotropy is strong (e.g. corrugated surfaces, edges, nanoparticules, . . . )

while remaining parameter-free.

• An RLS algorithm, called rank-Greville, has been developed by maintaining a general

rank factorization. Indeed, a simple formula is derived for updating the pseudoinverse

of a matrix A ∈Rn×m of rank r when a new row is added. This formula is similar to the

Greville formula but relies on a rank factorization, which allows for solving two inde-

pendent sub-systems separately and merging them with reduced overall computational

cost. This formula has been implemented in the rank-Greville RLS solver to achieve an

update of the linear least-squares solution in O(mr ) operations. Besides, its remarkable

algebraic simplicity allows to use exact numerical representations of rationals, without

the need for symbolic computing.

• Finally, an active learning framework, called Reinforcement Sampling, has been de-

veloped to automatically generate, in a reproducible way, an optimal training set for

a CE-based model Hamiltonian (i.e. handling many-body effects). By reformulating

the construction of a relevant input geometry as a strategy-based game, a reinforce-

ment learning method is applied to the construction of an optimal training set. This

UCT-based approach tackles the unusual properties of this strategy-based game by

introducing various tweaks, including a carefully crafted pre-exploration step exploiting

the very model Hamiltonian being trained. Consequently, the Reinforcement Sampling

framework performs better than a random approach, effectively replacing the chemical

intuition, typically used for building a curated training set, by reinforcement sampling.

Nonetheless, many challenges still remain in each topic addressed. In particular, many

open questions/research topics can be formulated that are deeply linked to the work presented

in this thesis.

• The unification between ALMO and mixed-states theory proposed in S-ALMO could be

extended to the extensions of ALMO. In particular, (X)ALMO that have been recently

developed 1 and allow the same basis function to be used in multiple fragment, but are

currently incompatible with metals. These smearing-compatible extensions could then

be applied to provide valuable insights on the origin of alloys effects on heterocatalytic

processes. Finally, S-ALMO is not yet compatible with spin-polarized systems, which

precludes the energy decomposition analysis for ferromagnetic surfaces.

• ASANN relies on a simple local anisotropy descriptor that is only sensitive to a single

privileged direction. This is relevant for interfaces, but this description is no longer

adapted for molecules, for example, where the bonding anisotropy is much more com-

plex. Using a better description of local anisotropy that is able to handle non-trivial
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anisotropy, by using a multipole expansion based on spherical harmonics for example,

should make it possible to extend further the (A)SANN algorithm.

• Despite promising results, the Reinforcement Sampling framework could still be opti-

mized in many ways. Indeed, this framework relies on numerous assumptions and ap-

proximations. In particular, tighter bounds for the payout distributions could accelerate

the convergence of the UCT. Other metrics could also be considered for better perfor-

mance. Finally, additional efforts could be made to better integrate the pre-exploration

step within the UCT framework.

• The results presented in Chapter 6 are just a proof of concept. Additional tests with

different Hamiltonians should be performed to confirm the results obtained. Finally, ap-

plication of the algorithm with a true coupling to on-the-fly DFT geometry optimizations

will make our tool truly valuable for the routine training of model Hamiltonians.

• Finally, the Reinforcement Sampling framework specifically addresses the optimal con-

struction of an adequate training set, regardless of the final model Hamiltonian chosen

(i.e. which energy contributions β̂r el to fit), only assuming that such model will contain

patterns associated with significant contributions. The optimisation of the relevant

patterns to include in the final model Hamiltonian (i.e. dimensionality reduction) is a

complementary yet crucial matter that has not been explored in this work2–6. In fact,

the full model Hamiltonian (i.e. β̂ f ul l ) is used internally to predict the deviation during

the pre-exploration, but optimizing the form of the final model Hamiltonian during the

training set building step (and using such a model internally) should help to design even

better training sets, specifically designed for the final model Hamiltonian.

In fact, the Reinforcement Sampling framework has been mainly thought as a proof of

concept for the broad application of reinforcement learning techniques to chemical challenges

involving an exploitation/exploration dilemma. Indeed, reinforcement learning is a sub-field

of machine learning that has yet to be exploited to solve chemical challenges (compared

with the growing applications of supervised/unsupervised learning techniques in Chemistry),

with a notable exception in retrosynthesis7;8. Yet, I believe that reinforcement learning can

prove to be an asset to plenty of other chemical challenges. In particular, the strategy-based

game reformulation could prove beneficial to many areas of Chemistry involving optimization

challenges, or at least, it would help suggest an unconventional yet appealing point of view.
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A Appendix to Chapter 2

A.1 Density recovery

Even if no proper references are available, a quality estimator can be conceived: the number

of electrons recovered. Indeed, since we are constructing the density of a N-electrons system,

then this density must account for exactly N electrons (i.e. the N electrons have to be recovered

in the density).

The number of electrons recovered Ncalc can be computed by integrating the density over the

whole space. In matrix form, this calculation becomes:

Ncalc =
∑
µ,ν

RµνSµν =
∑
µ,ν

RµνSνµ =
∑
µ

(RS)µµ = Tr(RS) (A.1)

Since this estimator needs to be computed only once, at the end of a simulation, it can then

be computed systematically with negligible additional cost.

Counterexample evaluation: As an example, the number of electron pairs recovered from

a simple model system is evaluated. Let us investigate a case as far as possible from the

domains of application where our construction is exact: infinite smearing with a 2-block

system. Indeed, adding other blocks will not fundamentally change much the problem, since

the real challenge here is in fact when we have blocks that interact strongly.

Let us therefore consider a 2-block system, composed of 1 doubly occupied orbital in the

first block, and 2 orbitals of same energy in the second block (i.e. high degeneracy) with 1 pair

of electron to share between the two orbitals of that block (i.e. infinite smearing in the second

block). Let us consider an arbitrary basis set, and an acceptable orbital construction such that
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there is a strong interaction between blocks. Such a system is studied here with the following

description:

S =

 1 0.5 0.5

0.5 1 0

0.5 0 1

 , T =

1 0 0

0 1 0

0 0 1

 , T ′ =


1 0 0

0
√

1
2 0

0 0
√

1
2

 (A.2)

where S is the basis set function overlap matrix, and T ′ is the rescaled orbital coefficient matrix.

Applying our mean-field approximation, we obtain a mean-field orbital overlap matrix ασ,

and an associated density matrix αR to be compared with the reali density matrix R:

ασ≈

 1 0.35 0.35

0.35 1 0

0.35 0 1

 , αR ≈

 1.33 −0.33 −0.33

−0.33 0.58 0.08

−0.33 0.08 0.58

 6= R ≈

 1.33 −0.33 −0.33

−0.33 0.67 0

−0.33 0 0.67


(A.3)

The density matrix αR obtained is different from the real density matrix R. Indeed, this

simplified model system exhibits a strong occupation-state dependency, coupled with strong

inter-blocs interactions.

As expected from a quality estimator, the 2-electron pairs counterexample studied above is

Ncalc ≈ 1.83 6= 2. Therefore, 8.33% of the total density was lost.

However, this estimator provides a test that is only a necessary, not sufficient condition. Thus,

a total recovery of the density would not necessarily mean that the S-ALMO result is exact.

As can be seen in the above example, the errors are largest when partially occupied orbitals

overlap with orbitals from other blocks. This is typically the case when adsorbates with diffuse

densities closely approach the metal surface or when the electronic smearing temperature is

high. For example, the electron loss reaches 0.04 electrons for H2S at 2000 K, while it is only

0.02 electrons at 300 K.

iThe real density matrix R was obtained with the exact ensemble BLW formulation (i.e. in this case: R =
1
2 R10 + 1

2 R01, where R10 (resp. R01) is the system where the electron pair is on the first (resp. second) orbital of the
second block).
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A.2 Comparison of results with two different Pt pseudo potentials

and results from VASP

A.3 Further analysis of the deformation energy

A.4 Influence of the electronic temperature

The difference between 300 K and 2000 K in Figure A.4 can be understood recalling that the

higher electronic temperature increases the occupation of higher lying orbitals (or rather

bands for periodic systems). Hence, the total interaction energy is less stabilizing as also

slighlty anti-bonding bands are occupied. On the other hand, since the electron density is

more diffuse, the attractive interaction stretches out to longer ranges. Regarding the individual

terms, EBSSE and Ede f or m do not change significantly. ∆E f r ozen indicates that the metal

surface becomes less repulsive at 2000 K due to the increased diffuseness of the electron

density. ∆Epol is roughly of the same magnitude but with opposite sign, suggesting that at

2000 K the polarization cannot achieve the same stabilization as at 300 K. This is due to the fact

that at 2000 K the low lying bands (the ones that can easily be polarized) are already partially

occupied, so that in the presence of the adsorbate only a smaller energy gain can be achieved.

Last but not least, ∆EC T is also negative, identifying this term as the responsible for the loss

in overall stability seen in the graph on the left. Similarly to polarization, the charge-transfer

stabilization is reduced due to the partial occupation of the orbitals that are most favorable for

accepting electron density from the other fragment.

A.5 Expanded Figures 2, 3 and 4

A.6 Effect of K-point sampling
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Figure A.1 – Top: H2S and H2O top adsorption on Pt(111). Bottom: Ethylene adsorption in a di-σ adsorption mode and CO
on the fcc site. VASPq10 refers to standard VASP settings and pseudo-potentials, with a 400 eV energy cutoff
plane-wave basis set. VASPq18 refers to a small-core pseudo-potential for Pt and the latest pseudo-potentials,
recommended for GW computations, for all other elements. A refined FFT grid is used by using “accurate”
precision settings and the plane-wave energy cutoff is set to 500 eV. CP2Kq10 refers to the GTH-PBE-q10
pseudo-potential, in conjunction with the DZVP-A5-Q10-323-MOL-T1-DERIVED_SET-0 basis set for Pt, while
CP2Kq18 refers to the GTH-PBE-q18 small core pseudo-potential with DZVP-MOLOPT-SR-GTH as basis set.
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Figure A.2 – Top: H2S top adsorption on Pt(111). Bottom: Ethylene adsorption in a di-σ adsorption mode. The left y-axis
refers to the deformation energy in kcal/mol of the slab (red squares) and the right y-axis to the out-of-plane
movement of the Pt atom with respect to the longest distance in Å (blue crosses).
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Figure A.3 – H2S top adsorption on Pt(111). Full lines: Relaxed Pt(111) surface. Broken lines: ideal Pt(111) surface.
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Figure A.5 – Energy decomposition analysis for H2O (full lines, bottom) and H2S (broken lines, top). The total interaction
energy is compared to the BSSE and the deformation energy on the left, while the right quantifies the frozen
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that the equilibrium interaction energy and the zero interaction energy are aligned for both systems.
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Figure A.6 – Energy decomposition analysis for di-σ (broken lines, bottom) and π (full lines, top)C2H4. The total interaction
energy is compared to the BSSE and the deformation energy on the left, while the right quantifies the frozen
monomers, polarization and charge transfer interaction energy.
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Figure A.7 – Energy decomposition analysis for top (full lines, bottom) and fcc (broken lines, top) CO on Pt(111). The total
interaction energy is compared to the BSSE and the deformation energy on the left, while the right quantifies the
frozen monomers, polarization and charge transfer interaction energy.
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Table A.1 – Effect of K-point sampling on optimum geometry and adsorption energy (∆Etot in kcal mol-1), as obtained with
VASP. δ∆Etot refers to the error compared to the optimized adsorption energy with a 3×3×1 K-point Monkhorst-
Pack K-point mesh and %Error is the corresponding error in percentage.

System ∆EΓ
tot ∆E 3×3×1,SP

tot ∆E 3×3×1
tot δ∆EΓ

tot δ∆E 3×3×1,SP
tot %ErrorΓ %Error3×3×1,SP

H2O_top -9.97 -9.64 -10.18 0.21 0.54 -2.1 -5.3
H2S_top -27.14 -24.13 -24.35 -2.79 0.23 11.4 -0.9
C2H4_sigma -35.14 -31.96 -31.98 -3.15 0.02 9.9 -0.1
C2H4_pi -29.52 -26.02 -25.95 -3.57 -0.07 13.7 0.3
C6H6_hcp0 -43.56 -38.00 -37.66 -5.90 -0.35 15.7 0.9
C6H6_bridge -47.78 -42.67 -42.41 -5.37 -0.26 12.6 0.6
CO_top -42.40 -38.71 -38.65 -3.75 -0.05 9.7 0.1
CO_hcp -43.94 -39.58 -39.17 -4.77 -0.40 12.2 1.0
CO_fcc -45.11 -40.89 -40.59 -4.52 -0.30 11.1 0.7
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B.1 Additional Analysis

B.1.1 Water–Water interaction

The water–water interaction as assessed in the absence of the metal surfaces amounts to -4 (Pt)

to -5 (Au) kcal/mol per water molecule, indicating that the chemisorption on Pt(111) imposes

stronger constraints on the water geometries than the weaker interaction with Au(111).

In other words, the chemisorption on Pt leads to water layers that adopt less favorable geome-

tries than on Au, with the deformation energy at the single molecule level being negligible.

Interestingly, Cu is, in this respect, closer to the behavior of Pt than of Au. This is likely a

coincidence, with the lattice missmatch on Cu(111) playing the role of the chemisorption on

Pt(111).

The water–water interaction is, in magnitude, dominated by the ∆EC T , which contributes -4.0

kcal/mol per water molecule over Pt(111), close to the -4.2 kcal/mol average total stabilization.

The water–water interaction contributes -10 kcal/mol per water molecule, more than twice as

much as on average, to the stability of the Hup adlayer. In contrast, the
p

37 and
p

39 structures

benefit “only” from a stabilization of about -6 kcal/mol per molecule, once again pointing to

the fact that the Hup layer is “peculiar” and not a typical case for the interaction of water with

metal surfaces.

B.2 Addtional Tables and Figures

For chemisorbed acceptors (with a distance to the surface z < 3.0 Å), E acceptor
ad s = -5.4 kcal·mol−1

if θ < 60◦ and -3.0 kcal·mol−1 else.
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Figure B.1 – Interaction energies obtained with CP2K plotted against the ones from VASP. The black line correponds to the
bisector.

θ(◦)/φ(◦) [0−100] [100−120] [120−180]

[80−90] −6.2 −7.5 −7.4
[70−80] −8.2 −5.6 −8.5
[0−70] −9.3 −9.6 −10.4

Table B.1 – E
acceptor
ad s

(kcal·mol−1) for acceptor with a distance to the surface z > 3.0 Å
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Figure B.2 – Surface energies in kcal/mol/Å2 of the most stable ice-like water layer as a function of the experimental metal/liq-
uid tension, retrieved from Heinz et al. 1 The black line corresponds to the bisector.
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Figure B.3 – The correlation between the surface dipole moment and the change in workfunction ∆Φ upon adsorption of ice
adlayers.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure B.4 – Visualization of the different discussed water oligomeres. The cell and slab used were similar to those used for
Hup and Hup water layers on each metal (3

p
3x3

p
3 (111)). (1st part)
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure B.5 – Visualization of the different discussed water oligomeres. The cell and slab used were similar to those used for
Hup and Hup water layers on each metal (3

p
3x3

p
3 (111)). (2nd part)
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Figure B.6 – Correlation between DZVP basis set based computation and TZVP computations for ∆Epol and ∆EC T of water
layers on Au(111), Cu (111), and Pt(111). The black continuous line corresponds to the fitted trend for polarisation
energy and the dashed one to the fitted trend of charge transfer energy.
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Figure B.7 – Correlation between ∆E Non Add
i nt for oligomers on Pt(111) vs Au(111). The black line corresponds to the bisector.
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Figure B.8 – Parity plot for the linear regression model based on the H-bond acceptor type for the 27 investigated systems.
Eleven variables are used (see Table B.1), leading to a root mean squared error of 1.37 kcal/mol. The black line
represent the parity line.
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(a) chain-Hdown (top) (b) chain-Hdown (side)

(c) Hdown (top) (d) Hdown (side) (e) Hup (top) (f) Hup (side)

(g)
p

37 (top) (h)
p

37 (side) (i)
p

39 (top) (j)
p

39 (side)

Figure B.9 – Visualization of the spatial distribution of the electronic density from water layers. Isosurfaces are plotted at
-0.02 eV (?)
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Figure B.10 – Averaged density difference (ρ(SCF)−ρ(
⋃

surface,adlayer)) profiles along the out-of-plane unit-cell direction
(1st part). Density accumulations are positive, while density depletion with respect to the sum of the densities
of the surface and the adlayer is negative. Grey vertical lines indicate the position of the Pt metal layers.
Dark red and broken cyan lines indicate the top-most and lowest position of the oxygen and hydrogen atoms,
respectively.
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Figure B.11 – Averaged density difference (ρ(SCF)−ρ(
⋃

surface,adlayer)) profiles along the out-of-plane unit-cell direction
(2nd part). Density accumulations are positive, while density depletion with respect to the sum of the densities
of the surface and the adlayer is negative. Grey vertical lines indicate the position of the Pt metal layers.
Dark red and broken cyan lines indicate the top-most and lowest position of the oxygen and hydrogen atoms,
respectively.
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C Appendix to Chapter 4

C.1 Angular correction term derivation

Here, we are interested in deriving a relation between the solid-angle ΩC of a spherical cap

C of radius RC , and its barycentre (more precisely, the distance GC between its center and its

barycentre).

We start from the relation between GC and its height hC
1:

GC = 3(2RC −hC )2

4(3RC −hC )
(C.1)

One can identify a second order polynomial in hC :

12GC RC −4GC hC = 12R2
C −12RC hC +3h2

C

3h2
C +4hC (GC −3RC )+12RC (RC −GC ) = 0

(C.2)

Which solves for hC as:

∆= 16(GC −3RC )2 −122RC (RC −GC )

= 16
(
G2

C −6GC RC +9R2
C −9R2

C +9RC GC

)
= 16GC (GC +3RC )

hC = 4(3RC −GC )−p
16GC (GC +3RC )

6

= 2
(
3RC −GC −p

GC (GC +3RC )
)

3

(C.3)
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the other solution being unphysical (corresponding to hC > 2RC ).

Introducing α= GC

RC
andΩC = 2π(1− RC −hC

RC
) = 2πhC

RC
leads to a simplified final form:

ΩC = 2π
hC

RC
= 4π

3RC −GC −p
GC (GC +3RC )

3RC

= 4π

(
1− α+p

α(α+3)

3

)
= 4π

(
1−γC

)
(C.4)

where

γC = α+p
α(α+3)

3
(C.5)

is the angular correction term used in the fundamental ASANN inequality.

C.2 ASANN Theorems

The following theorems and properties make use of the previously introduced notations

(ri ,m , Ωi , j , R(m)
i , R ′(m′)

i , . . . ), and consider any particle distribution {ri ,1, . . . ,ri ,n}n∈N? with n

large enough.

Theorem 7. For a given neighborhood distribution, the associated SANN-based coordination

number m and the ASANN-based coordination number m′ are related by the inequality:

m′ ≤ m (C.6)

Proof. Let us take an integer m◦ satisfying the definition domain of both the SANN and ASANN

coordination radius m and m′ (i.e. such that R ′(m◦)
i and R ′(m◦)

i are defined). By definition of m

and m′, m◦ must respect the inequalities:

3 ≤ m◦ ≤ m

1 ≤ ⌊
2(1−γC )

⌋+1 ≤ m◦ ≤ m′ (C.7)

Such integer cannot be defined only if m′ < 3, which would trivially leadi to m′ ≤ m.

By definition of the angular correction term γC :

0 ≤ γC < 1 (C.8)

iIndeed, in such case: m′ < 3 ≤ m by definition of m.
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Therefore, using m◦, one can write:

R ′(m◦)
i =

m◦∑
j=1

ri , j

m◦−2× (1−γC )
≤

m◦∑
j=1

ri , j

m◦−2
= R(m◦)

i (C.9)

By contradiction, let us suppose that m < m′. In that case, we can take m◦ = m, and equation

(4.3) of the main manuscript can be injected into equation (C.9) to give:

R ′(m)
i ≤ R(m)

i < ri ,m (C.10)

This contradicts the definition of m′ (i.e. the lowest acceptable integer such that the ASANN

fundamental inequality is respected). Therefore, the SANN-based coordination number m

cannot be strictly fewer than the associated ASANN-based coordination number m′, which

proves the theorem.

This is in agreement with the intuitive idea that ASANN only focus on the relevant region of

space with respect to coordination, and therefore less neighbors might cover enough of the

ASANN coordination cap (even if they do not fill up the whole coordination sphere).

Theorem 8. For any particle distribution, the ASANN algorithm is sure to converge to an

acceptable solution. In other words, there exist a unique integer m′ such that:

ri ,m′ ≤ R ′(m′)
i =

m′∑
j=1

ri , j

m′−2× (1−γC )
< ri ,m′+1 (C.11)

and this integer is the ASANN-based coordination number.

Proof. Theorem 7 ensures that the ASANN algorithm converge if the SANN algorithm con-

verges, which can be proven2. In other words, there exist an integer m′ such that:

R ′(m′)
i =

m′∑
j=1

ri , j

m′−2× (1−γC )
< ri ,m′+1 (C.12)

but

∀ m◦ < m′, R ′(m◦)
i is defined ⇔ R ′(m◦)

i ≥ ri ,m◦+1 (C.13)

Using this definition is becomes clear that such m′ is unique, since it is the lowest acceptable

integer respecting the fundamental ASANN inequality (4.10) of the main manuscript.
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One must prove now that such integer m′ yield an acceptable coordination number (i.e. the

m′-th first neighbors distances are within the coordination radius). In other words, for such

integer m′, the left-side of the stated inequality holds:

ri ,m′ ≤ R ′(m′)
i =

m′∑
j=1

ri , j

m′−2× (1−γC )
(C.14)

One can distinguish two cases whether R ′(m′−1)
i is defined or not:

• Let us rule out the case where m′ is the minimal acceptable coordination number (i.e.⌊
2(1−γC )

⌋+1 = m′) which is handled by the definition of the lower bound
⌊

2(1−γC )
⌋+

1:

In such a case, if R ′(m′)
i < ri ,m′ , then the m′-th nearest neighbor contributes to a negative

value for the total solid angle, which means that the first m′−1 neighbors contributions

are more than enough to reach the total solid angle of ΩC = 4π(1−γC ). If m′−1 = 0,

this is absurd. Otherwise, this can be written as:

m′−1∑
j=1

Ωi , j >ΩC = 4π(1−γC ) (C.15)

However, each single contribution cannot exceed 2π due to basic geometrical consider-

ations. Therefore, one can write:

4π(1−γC ) =ΩC <
m′−1∑

j=1
Ωi , j =

b2(1−γC )c∑
j=1

Ωi , j ≤ 2π×⌊
2(1−γC )

⌋
(C.16)

Which is absurd by definition of the floor operator b·c, and therefore proves that ri ,m′ ≤
R ′(m′)

i in such a case.

• If R ′(m′−1)
i is defined, by definition of m′, R ′(m′−1)

i do not respect the ASANN inequality:

R ′(m′−1)
i =

m′−1∑
j=1

ri , j

m′−1−2× (1−γC )
≥ ri ,m′ (C.17)
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C.3. Discussion regarding a continuous version

Yet, by definition of R ′(m′)
i , and using the notation β= 2× (1−γC ) > 0, one can write:

R ′(m′)
i =

m′∑
j=1

ri , j

m′−β =
ri ,m′ +

m′−1∑
j=1

ri , j

m′−β
= ri ,m′

m′−β +R ′(m′−1)
i

m′−β−1

m′−β
≥ ri ,m′

m′−β + ri ,m′
m′−β−1

m′−β
≥ ri ,m′

(C.18)

In both cases, the inequality ri ,m′ ≤ R ′(m′)
i holds, which finishes to prove the theorem.

C.3 Discussion regarding a continuous version

Coordination numbers act as topological descriptors (either local, or more global 3), asso-

ciated with the idea of bonding. As a consequence, they can be used as relevant variables

(collective variables, reaction coordinates, ...).

A major application of these variables is in force fields4. However, force field parameters

should be at least continuously differentiable with respect to the degrees of freedom involved

(i.e. here, the atoms coordinates). Therefore, coordination numbers must be smoothed in

order to be used in force fields.

Unfortunately, we could not find a satisfactory continuously differentiable version of the

ASANN algorithmii.

In fact, one can ask about the relevance of such smoothed coordination numbers. To do so,

we enumerate some desirable properties that a coordination number evaluator could verify,

and check if these are compatible with the continuously differentiable condition.

Let us consider a local purely distance-based coordination number evaluator C Ni , providing

a coordination number for an element Vi based on the distances di j between Vi and all the n

others elements V j . Mathematically, this reads as:

C Ni : (R+)n →R+

d = di 1,di 2, . . . ,di n 7→ CN of Vi

iiIn particular, the canonical rescaling of each neighbors contribution by S A
S Amax

(where S A is the solid angle
of the corresponding neighbor, and S Amax is the solid angle of the nearest neighbor) leads to non continuously
differentiable coordination numbers...
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Supremum bound A fundamental property of C N is that if there n +1 elements in total,

Then the coordination number of Vi cannot be more than n:

∀ d ∈ (R+)n , C Ni (d) ≤ n (C.19)

Ideal case There must exist an ideal configuration in which Vi is coordinated to all the n

other elements (if this is only true for low enough n, then we consider such n for the rest of this

proof). Such configuration (associated to d = dideal = d◦
i 1,d◦

i 2, . . . ,d◦
i n) should be associated

with a coordination number of n for Vi :

∃ dideal ∈ (R+)n , C Ni (dideal) = n (C.20)

Sensitivity to small displacements The coordination number evaluator should not be less

sensitive to small displacements near an ideal case, than far from it. In particular, a small

displacement of an element V j situated infinitely far from Vi should have less impact on C Ni

than if V j was closer to Vi . More generally, one can ask that the further V j is from the ideal

case, the fewer C Ni should be impacted by a small displacement of V j .

This is coherent with the discrete version, where the most critical region for the coordination

number (i.e. the frontier between coordinated/non-coordinated) is by definition located near

an ideal case (i.e. a fully coordinated case). Not respecting this property means shifting the

frontier to a partially coordinated region, and therefore, focusing on partial coordination

instead of full coordination. This would require additional insights on the system studied,

which is poorly compatible with a parameter-free method.

Let C N ◦
i be defined as:

C N ◦
i : R+ →R+

x 7→C Ni (d◦
i 1 +x,d◦

i 2, . . . ,d◦
i n)

This property can then be written, in terms of C N ◦
i :

∀ ε1,ε2 ≥ 0, C N ◦
i (0)−C N ◦

i (ε2) ≥C N ◦
i (ε1)−C N ◦

i (ε1 +ε2) (C.21)

Definition: A coordination number evaluator satisfying the three properties above (i.e.

(C.19), (C.20) and (C.21)) will be denoted in the following as topologically coherent.

Theorem 9. Any local purely distance-based coordination number evaluator is either non

topologically coherent or non continuously differentiable. In other words, there cannot exist a
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C.5. Model Hamiltonian parameters

Algorithm ΓN P
Cu ΓN P

Au ΓN P
Cu,Cu ΓN P

Au,Cu ΓN P
Au,Au

SANN -1.97 -2.62 -0.24 -0.14 0.003
ASANN -2.26 -2.62 -0.18 -0.12 0.003

Table C.1 – Model Hamiltonian parameters, using only nanoparticles in the training set (in eV).

local purely distance-based coordination number evaluator that is both topologically coherent

and continuously differentiable.

Proof. Applying (C.20) to C N ◦
i , we have:

C N ◦
i (0) = n (C.22)

Therefore, according to (C.19), it comes that C N ◦
i admits a maximum at 0.

If C Ni is continuously differentiable, then C N ◦
i is also continuously differentiable:

C Ni ∈C 1 ⇒ C N ◦
i ∈C 1 (C.23)

Then, condition (C.21) can be rewritten:

∀a,b ≥ 0, a ≤ b ⇒ dC N ◦
i

d x
(a) ≤ dC N ◦

i

d x
(b) (C.24)

However, since C N ◦
i admits a maximum at 0, we have:

C Ni ∈C 1 ⇒ dC N ◦
i

d x
(0) = 0 (C.25)

Combining (C.25) and (C.24) gives that C N ◦
i is increasing on R+. Applying (C.19) to this result,

finally gives:

C Ni ∈C 1 ⇒ ∀x ≥ 0, C N ◦
i (x) = n (C.26)

It comes finally that such a coordination number evaluator would consider that an infinitely

far neighbor is still fully bonded. Which is absurd, and therefore proves our theorem.
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Figure C.1 – Parity plot for the total energy predicted by a 2-body model Hamiltonian fitted using the SANN vs. ASANN
coordination algorithm. The set of 27 Au-Cu bimetallic nanoparticles was used for training and test set.

Algorithm Γal l
Cu Γal l

Au Γal l
Cu,Cu Γal l

Au,Cu Γal l
Au,Au

SANN -1.38 -1.82 -0.39 -0.29 -0.23
ASANN -1.68 -1.91 -0.34 -0.27 -0.22

Table C.2 – Model Hamiltonian parameters, using nanoparticles and bulks in the training set (in eV).
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Algorithm Co(100) Co(110) Co(111) Co(211)
ASANN 6.67 5.83 7.5 8.75/7.33/5.5
SANN 6.67 5.83 7.5 8.75/7.33/5.5

Reference 20
3

35
6

30
4

35
4 / 22

3 / 11
2

Algorithm Co(0001) Co(10-10) Co(10-11) Co(10-12) Co(11-20)
ASANN 7.5 8.33/6.67 7.5/6.58 9.17/6.75/5.67 9.17/5.83
SANN 7.5 8.33/6.67 7.5/6.58 9.17/6.75/5.67 9.83/8.17

Reference 15
2

25
3 / 20

3
15
2 / 79

12
55
6 / 27

4 / 17
3

55
6 / 35

6

Table C.3 – Generalized coordination numbers found by ASANN and SANN for various Cobalt surfaces.

C.4 Additional Figures

C.5 Model Hamiltonian parameters

The distance between the two set of parameters is:√∑
χ

(
Γal l
χ −ΓN P

χ

)2 = 1.04 eV2 for SANN

= 0.97 eV2 for ASANN

(C.27)

C.6 Generalized Coordination Numbers

In addition to the determination of conventional coordination numbers, we also applied our

algorithm to the determination of generalized coordination numbers3, as this measure is

believed to provide with a more realistic coordination picture, which is especially useful for

adsorption properties prediction. Generalized coordination numbers are a first-neighbors

extended generalisation of coordination defined by the formula:

GC N (i ) =C N (i ) =
C N (i )∑

j=1

C N ( j )

C Nmax
(C.28)

where C N (i ) is the conventional coordination number of i , j represents a nearest neighbor of

i , and C Nmax is the bulk coordination number. Our Python 3 implementation of ASANN and

SANN includes an optional generalized coordination number feature. The relevant generalized

coordination numbers computed for the top sites of highlighted surfaces are presented in

table C.3.
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Atom type ASANN (ref) CNs
Cs 8 (8)
Cl 8 (8)

Table C.4 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of CsCl (mp-
22865).

Atom type ASANN (ref) CNs
K 6 (6)
F 6 (6)

Table C.5 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of KF (mp-463)

C.7 Ionic crystals

Atom type ASANN (ref) CNs
Na 6 (6)
Cl 6 (6)

Table C.6 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of NaCl (mp-
22862)
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Atom type ASANN (ref) CNs
Cd 6 (6)

I 3 (3)

Table C.7 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of CdI2 (mp-
567259)

Atom type ASANN (ref) CNs
Ca 7,9 (3)

Si(II) 4 (2)
Si(III) 4 (3)
O(I) 5-7 (1)
O(II) 7 (2)

Table C.8 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of CaSiO3 (mp-
4429)

Atom type ASANN (ref) CNs
Zn 16 (4)
S 16 (4)

Table C.9 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of ZnS (mp-
10695)

Atom type ASANN (ref) CNs
Ti 6 (1)
Pb 8 (4)

O(I) 6 (1)
O(II) 6 (2)

Table C.10 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of TiPbO3 (mp-
20459)

Atom type ASANN (ref) CNs
Ca 9 (3)
Ti 6 (6)
O 6 (2)

Table C.11 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of CaTiO3 (mp-
4019)

Atom type ASANN (ref) CNs
Zn 5 (4)
S 5 (4)

Table C.12 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of ZnS (mp-
560588)
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Atom type ASANN (ref) CNs
Ni 6 (3)
S 5 (3)

Table C.13 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of NiS (mp-
1547)

Atom type ASANN (ref) CNs
Ca 8 (8)
F 16 (4)

Table C.14 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of CaF2 (mp-
2741)

C.8 Molecules

Molecular structures are governed by atomic orbitals displaying a large higher-order anisotropy,

compared to their first-order term (e.g. an atomic p-orbital has a strong anisotropy, yet its

barycentre is on the nucleus). The ASANN description of such systems is therefore poorly

improved over SANN, since ASANN only considers first-order anisotropy terms.

Atom type ASANN (ref) CNs
Ti 6 (6)
O 7 (3)

Table C.15 – Coordination numbers found by ASANN (compared with reference) for crystallographic structure of TiO2 (mp-
2657).
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C.8. Molecules

Figure C.2 – Representation of a single EtOH molecule, with ASANN coordination numbers superimposed.

Figure C.3 – Representation of a single thiophene molecule, with ASANN coordination numbers superimposed.

Figure C.4 – Representation of a single benzene molecule, with ASANN coordination numbers superimposed.
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Figure C.5 – Representation of a single graphene layer, with ASANN coordination numbers superimposed.

C.9 ROC data
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Table C.16 – Raw data for classifying Cs ions as close enough to the surface (threshold 4.7 Å), based on their coordination
numbers. Example of reading: 86% of Cs ions closer than 4.7 Å from the surface have ASANN coordination
number below 9, while only 20% of the ions further from the surface have ASANN CNs below 9.

CN threshold TPR FPR
0 0% 0%
1 0% 0%
2 0% 0%
3 0% 0%
4 0% 0%
5 0% 0%
6 2% 0%
7 19% 0%
8 56% 3%
9 86% 20%

10 97% 53%
11 100% 82%
12 100% 96%
13 100% 99%
14 100% 100%

(a) ASANN algorithm.

CN threshold TPR FPR
0 0% 0%
1 0% 0%
2 0% 0%
3 0% 0%
4 0% 0%
5 0% 0%
6 0% 0%
7 0% 0%
8 5% 0%
9 31% 3%

10 68% 19%
11 91% 51%
12 98% 80%
13 100% 95%
14 100% 99%
15 100% 100%

(b) SANN algorithm.

CN threshold TPR FPR
0 0% 0%
1 0% 0%
2 0% 0%
3 0% 0%
4 0% 0%
5 0% 0%
6 6% 0%
7 31% 2%
8 65% 11%
9 89% 35%

10 98% 66%
11 100% 89%
12 100% 98%
13 100% 100%
(c) Fixed cut-off (4.0 Å).
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D Appendix to Chapter 6

D.1 Linear regression models

The classical linear regression model y = Xβ+ε relies on multiple hypothesis and assumptions.

Yet, ordinary least squares estimators are commonly applied to the cluster expansion model.

Here, we discuss whether the linear regression model hypotheses are indeed satisfied by the

cluster expansion model.

D.1.1 Common assumptions

Linearity

Hypothesis: The model assumes a linear relationship between the regressand y and the

regressors X.

Analysis: This is exactly the hypothesis behind the cluster expansion model. Therefore, this

assumption is verified as long as the cluster expansion model is valid.

Full rank

Hypothesis: There should not be any collinearity within the regressors (i.e. there should be

no exact linear relationship among any of the independent variables in the model).

Analysis: Using the rank-Greville recursive least squares scheme, we ensure that our sub-

system is purely overdetermined (i.e. full column rank).
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Exogeneity

Hypothesis: The residuals have zero conditional mean: E [ε|X] = 0. This assumption implies

E [y|X] = Xβ.

Analysis (non-truncated cluster expansion): In the full cluster expansion method, the

residual is only due to the precision of the underlying DFT formalism. One can satisfy this

assumption by considering a cluster expansion model for the average DFT energy, instead

of the exact energy. The validity of the cluster expansion model for average DFT energy is

a crucial hypothesis for the justification of using the DFT formalism. In our case, we must

assume this hypothesis as higher quality computations are not reasonably available.

Analysis (truncated cluster expansion): However, in the truncated cluster expansion model,

the residuals are coming from the DFT precision and the higher-order terms. Clearly, the

higher-order terms are correlated with lower-order terms (imagine there is no 1-body water

term, then higher-order terms involving water will be zero as well), meaning that the residuals

are correlated with the regressors, which could indicate that a constant conditional mean

is unlikely. However, this zero conditional mean assumption on the residuals is in practice

not really constraining. Indeed, if the conditional average contribution of higher-order terms

E [δyi |xi] associated with regressor xi is linear in xi, then those terms contribution is to be

incorporated into the model’s coefficients, providing with zero conditional mean residuals.

In the cluster expansion formalism, the (N+1)-order terms occurrences xN+1
i have convenient

bounds. The lower bound is simply min
xn≤N

i

(xN+1
i ) = 0, since it is always possible to find a config-

uration such that the cluster expansion hasnegligible terms up to order N (e.g. considering

a N-body configuration with low coverage). The higher bound is in practice linear with re-

spect to the lower-order terms max
xn≤N

i

(xN+1
i ) =αxN

i whereα contains geometry-constrained data.

Indeed, this bound is usually achieved at highest coverage, and the linear relationship arise

from the maximum coordination number achievable. A justification of this can be found in

the following: the occurrences in xN+1
i occurs from combinatorics, with maximum bound in(nb_e

N+1

)=O(nb_eN+1) for large enough number of entities nb_e in the system. However, due

to geometric constrains and lattice-related considerations, each N-body pattern can only

accept a fixed number of acceptable neighbouring entities, hence a linear maximal number of

(N+1)-body terms.

As a consequence, the minimum and maximum contribution bounds are compatible with

zero conditional mean of the residuals. Yet, we are interested in the average higher-order

contributions, which can therefore be linear in the regressors. This is, at the end, dependant of

the sampling method, and as such, hard to predict. We will assume that our sampling method
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D.1. Linear regression models

is compatible with the exogeneity assumption in the case of truncated cluster expansion, since

it should focus on configurations where apparently strongly stabilizing or destabilizing terms

are maximized, whereas apparently negligible terms are minimized.

Homoscedasticity and nonautocorrelation

Hypothesis Each residual εi has the same finite variance σi , and is uncorrelated with every

other residual ε j .

Analysis (non-truncated cluster expansion): In the full cluster expansion method, the

residuals are only due to the precision of the underlying DFT formalism. This assumes

that the DFT formalism does not describe some structures better than others, and does not

consistently favour or disfavour some configurations (i.e. DFT-based errors are not correlated

between each other). Therefore, this assumption should be satisfied as long as the DFT com-

putations are performed at the same level of precision, and assuming DFT is similarly valid for

all considered configurations.

Analysis (truncated cluster expansion): However, in the truncated cluster expansion model,

the residuals are coming from the DFT precision and the higher-order terms. Clearly, the

higher-order terms contribution range differs between lower-order grouped configurations.

Therefore, hidden higher-order terms must provide with heteroscedastic residuals. Besides,

those higher-order terms are likely to be shared among multiple configurations, leading to

autocorrelation.

D.1.2 Ordinary least squares

If we consider a non-truncated cluster expansion model, the ordinary least square solution

β̂= (XTX)−1XTy is unbiased, consistent and efficient (according to Gauss-Markov theorem).

Bias : The estimator β̂ is unbiasedi, meaning that E [β̂] =β.

Consistency : Assuming that XTX
n converges in probability to a positive definite matrix Q (i.e.

XTX
n

p−→ Q), then the estimator β̂ is consistentii, meaning that it converges in probability to the

true parameters of the model (i.e. β̂
p−→β).

iSection 4.3.1 of Econometric Analysis (8th edition)
iiSection 4.4.1 of Econometric Analysis (8th edition)
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Efficiency According to the Gauss-Markov theorem, the estimator β̂ is efficientiii, meaning

that its covariance matrix Var(β̂) =σ2(XTX)−1 (where σ2 is the residual variance, and can be

asymptotically estimatediv by s2 = er r T·er r
n−K ) is the lowest among the unbiased estimators of β.

D.1.3 Generalized least squares

However, the ordinary least squares estimator is no longer (the best estimator) adaptedv for

describing the truncated cluster expansion model. Indeed, the ordinary least square is still un-

biasedvi and consistentvii, but no longer efficientviii. In presence of heteroscedasticity and auto-

correlation (i.e. if E [εTε] =σ2Ω 6=σ2I), the generalized least squares β̂= (XTΩ−1X)−1XTΩ−1y

is unbiased, consistent and efficientix with Var(β̂|X) =σ2(XTΩ−1X)−1.

D.1.4 Conclusion

An ordinary least squares is indeed well-adapted for the non-truncated expansion model,

since we can assume that all the hypotheses of the linear regressions model are satisfied.

For the truncated version however, a generalized least squares would be required, since the

homoscedasticity and nonautocorrelation hypothesis is violated by the presence of higher-

order terms. Nevertheless, if we assume that the discarded higher-order terms are indeed

negligible, then an ordinary least squares could be applied rigorously.

Consequently, the ordinary least squares estimator is adapted for describing the cluster ex-

pansion model, as long as the eventual truncation is performed properly, discarding only

effectively negligible contributions.

D.2 Score range for UCB

For evaluating the score of an arm, most UCB algorithms only need the range of its associated

rewards1. Some UCB variants also use the variance (or its estimation via the empirical vari-

ance) of the rewards 2;3. It is expected that “variance-aware” UCB variants will perform better

than UCB-like algorithms that are not aware of the reward variance 3.

Unfortunately, the energy range per adsorbate in a subtree is not known beforehand. Therefore,

iiiSection 4.3.5 of Econometric Analysis (8th edition)
ivSection 4.3.4 and 4.4.2 of Econometric Analysis (8th edition)
vSection 9.3 of Econometric Analysis (8th edition)

viSection 4.3.1 of Econometric Analysis (8th edition)
viiSection 4.5.1 of Econometric Analysis (8th edition)

viiiSection 4.5.2 of Econometric Analysis (8th edition)
ixSection 9.4.1 of Econometric Analysis (8th edition)
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we consider in section D.2.1 an approximation using the empirical range.

In the case of the predicted energy, two major issues occur:

• Since the model parameters x will certainly change during the run, one should not store

the predicted energies Epr ed = Γ>xmodel , but the observed configurations Γ. Storing all

seen configurations for each arm (and sub-arm, i.e. node) would probably require too

much space and recomputing the all the predicted energies seen would also be compu-

tationally expensive. An estimator of the model-dependent minimum and maximum

predicted energy is introduced in section D.2.1. This estimator requires only the storage

of two configurations per node.

• The linear model comes with uncertainties that should be taken into account. Indeed,

the variance of the energy prediction associated with Γ is Var(Epr ed ) = Var(Γ>xmodel +
er r ) = Γ> Var(xmodel )Γ+Var(er r ). The implication of such uncertainties is considered

in sections D.2.2 and D.2.4.

D.2.1 Range without uncertainty

Sample minimum and maximum

In the case of real DFT energies per adsorbate, storing and maintaining the minimum and

maximum energy observed for each arm is straightforward.

However, in the case of predicted energies Epr ed = Γ>x. Maintaining a model-dependent

minimum/maximum would require to store all observed configurations and compute on-the-

fly:

minexact (Epr ed ) = min
Γseen

Γ>x (D.1)

This would quickly require too much storage and, in a lesser extent, would be slightly compu-

tationally expensive.

An approximation can be found in the natural bound:

minappr ox (Epr ed ) =∑
i

xi ×


min
Γseen

Γi , if xi ≥ 0

max
Γseen

Γi , else

= x ·min
Γ

/max
Γ

(Γ)

(D.2)

where we only need to store the minimum/maximum of each components of Γ seen (simply

called min
Γ
Γ and max

Γ
Γ), which is straightforward to maintain and only represents the storage
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of 2m integersx.

Similar equations can be derived for the estimated sample maximum. These approximations

are particularly good when the components of Γ are independent. Figure D.1 is an illustration

of this approximation.

Figure D.1 – The min/max bound corresponds to the minimum/maximum over all configurations within the blue box (indepen-
dently of those effectively seen in this box), whose frontiers are the empirical min/max for each component.

Estimated range

Let X1, X2, . . . Xn be a sample from the uniform distribution on [a,b]. Estimating the range

b −a from the sample range max
i=1,...,n

Xi − min
i=1,...,n

Xi is related to the German tank problem, and

can be solved using the relation:

E

(
max

i=1,...,n
Xi − min

i=1,...,n
Xi

)
= (b −a)

n −1

n +1
(D.3)

xΓ ∈Nm
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D.2. Score range for UCB

Proof.

P

(
max

i=1,...,n
Xi < x

)
=

( x −a

b −a

)n

E

(
max

i=1,...,n
Xi

)
=

∫ b

a
xn

(x −a)n−1

(b −a)n dx

= a +bn

n +1

P

(
min

i=1,...,n
Xi < x

)
= 1−

(
b −x

b −a

)n

E

(
min

i=1,...,n
Xi

)
=

∫ b

a
xn

(b −x)n−1

(b −a)n dx

= an +b

n +1

E

(
max

i=1,...,n
Xi − min

i=1,...,n
Xi

)
= bn −b − (an −a)

n +1

= (b −a)
n −1

n +1

(D.4)

Therefore, assuming a uniform distribution for the rewards of a given arm, the reward range

can be estimated from the sample range r ang esample using the (unbiased) estimator:

r ang eappr ox = r ang esample ×
n +1

n −1
(D.5)

D.2.2 Range with uncertainty

For real DFT energies per adsorbate, one can directly apply equation D.5 using the sample

range:

r ang esample = max(EDF T )−min(EDF T ) (D.6)

However, for predicted energies Epr ed = Γ>x, one should take into account the uncertainty

due to the model. Indeed, one can assume that the real energy associated with configuration

Γ is within:

Γ>x −C
√
Γ> Var(x)Γ+Var(er r ) ≤ Er eal ≤ Γ>x +C

√
Var(Γ>x)+Var(er r )

= Γ>x +C
√
Γ> Var(x)Γ+Var(er r )

(D.7)

where C is the confidence level desired.
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Therefore, the uncertainty-corrected sample minimum for predicted energies should be:

mincor r ected
exact (Epr ed ) = min

Γ

(
Γ>x −C

√
Γ> Var(x)Γ+Var(er r )

)
(D.8)

This would require the storage of all observed configurations for each node, which will quickly

become problematic. Furthermore, in a lesser extent, this computation would become slightly

computationally expensive.

A bound approximation can be found in bounding the estimated sample minimum predicted

energy with the largest confidence interval observed:

mincor r ected
exact (Epr ed ) ≥ minappr ox (Epr ed )−C

√
max
Γ

(
Γ> Var(x)Γ

)+Var(er r )

= minappr ox (Epr ed )−C
√

max
Γ

(∑
(ΓΓ>×Var(x))

)+Var(er r )

≥ mincor r ected
bound (Epr ed ) = minappr ox (Epr ed )−C

√∑(
max
Γ

/min
Γ

(ΓΓ>)×Var(x)

)
+Var(er r )

(D.9)

where max
Γ

/min
Γ

(ΓΓ>)i j =


max
Γseen

(ΓΓ>)i j , if Var(x)i j ≥ 0

min
Γseen

(ΓΓ>)i j , else
.

This bound requires to store max
Γseen

(ΓΓ>) and min
Γseen

(ΓΓ>) (O(m2) bits), which is likely to be

problematic.

A more memory-efficient approximation (but even looser bound) can be found in:

mincor r ected
appr ox (Epr ed ) = minappr ox (Epr ed )−C

√∑(
max
Γ

2/min
Γ

2(Γ)×Var(x)

)
+Var(er r )

≤ mincor r ected
bound (Epr ed ) ≤ mincor r ected

exact (Epr ed )

(D.10)

where max
Γ

2/min
Γ

2(Γ)i j =


max
Γseen

(Γi )× max
Γseen

(Γ j ), if Var(x)i j ≥ 0

min
Γseen

(Γi )× min
Γseen

(Γ j ), else
, because Γ has positive com-

ponents.

Note that this bound only requires to store the minimum/maximum of each components of Γ

seen, which is already stored from section D.2.1.

For these reasons, mincor r ected
appr ox (Epr ed ) was chosen in our implementation as the sample

minimum bound.
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A tighter bound can be found in using only the borders of the multidimensional blue box

defined figure D.1:

mincor r ected
bor der s (Epr ed ) = minappr ox (Epr ed )−C

√
max
Γ∈box

(
Γ> Var(x)Γ

)+Var(er r )

= minappr ox (Epr ed )−C
√

max
Γ∈bor der s

(
Γ> Var(x)Γ

)+Var(er r )
(D.11)

where

box =
{
Γ

∣∣∣∣ ∀i , min
Γseen

(Γi ) ≤ Γi ≤ max
Γseen

(Γi )

}
and

bor der s =
{
Γ

∣∣∣∣ ∀i , Γi = min
Γseen

(Γi ) ∨ Γi = max
Γseen

(Γi )

}
But even with borders only, a naive implementation would need to test O(2m) configurations.

Finally a much simpler approximation comes from simply using the bounds for the approxi-

mate sample minimum/maximum:

mincor r ected
basi c (Epr ed ) = minappr ox (Epr ed )−C

√
min
Γ

/max
Γ

(Γ)> ·Var(x) ·min
Γ

/max
Γ

(Γ)+Var(er r )

(D.12)

However, this approximation does not correspond systematically to a bound, and could

therefore be difficult to interpret in the general case.

With trivial changes to the equations, one can obtain similar bounds for the maximum.

D.2.3 Variance without uncertainty

Here we are interested in evaluating the empiric variance for the reward of a given arm.

Model independent rewards

For the real DFT energies per adsorbate, these rewards are independent from the model.

Therefore, estimating the reward variance is straightforward using the (unbiased) estimator:

Var(EDF T )empi r i c = E((EDF T −E(EDF T )empi r i c )2)empi r i c

= E(E 2
DF T )empi r i c −E(EDF T )2

empi r i c

(D.13)
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which requires the storage of E(E 2
DF T )empi r i c on top of E(EDF T )empi r i c .

Model dependent rewards

On the other hand, the predicted energies Epr ed = Γ>x are dependent on the model parame-

ters x, which are likely to change during the run. Keeping a decomposed form for Epr ed leads

to the empirical variance formula:

Var(Epr ed )empi r i c = EΓ((Γ>x −EΓ(Γ>x)empi r i c )2)empi r i c

= EΓ((Γ>x)2)empi r i c −EΓ(Γ>x)2
empi r i c

= EΓ(x>ΓΓ>x)empi r i c − (EΓ(Γ)>empi r i c · x)2

= x> ·EΓ(ΓΓ>)empi r i c · x − (EΓ(Γ)>empi r i c · x)2

(D.14)

This requires to store EΓ(ΓΓ>)empi r i c (O(m2)) on top of EΓ(Γ)empi r i c (O(m)), which is likely to

be problematic.

Instead, similarly to the range estimates, one can estimate a maximum bound for the variance

with the formula:

Var(Epr ed )bound = (max
Γ

/min
Γ

(Γ)> · x)2 − (EΓ(Γ)>empi r i c · x)2

≥∑
(xx>×max

Γ
/min

Γ
(ΓΓ>))− (EΓ(Γ)>empi r i c · x)2

= x> ·max
Γ

/min
Γ

(ΓΓ>) · x − (EΓ(Γ)>empi r i c · x)2

≥ Var(Epr ed )empi r i c

(D.15)

where max
Γ

/min
Γ

(ΓΓ>)i j =


max
Γseen

(ΓΓ>)i j , if (xx>)i j ≥ 0

min
Γseen

(ΓΓ>)i j , else
.

Note that this bound only requires to store the minimum/maximum of each components of Γ

seen, which is already stored from section D.2.1.

This variance bound is expected to be very loose, and should therefore be capped with

min( r ang e2

4 ,V ar ), to ensure that the variance estimate is not worse than the maximal variance

acceptable for a bounded distribution. Note that this feature is explicitly used in UCB-Tuned 2.
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D.2.4 Variance with uncertainty

Here, we are interested in evaluating the empirical variance of the predicted energy cor-

rected with the uncertaintiesxi from the model Γ>x +δEΓ, where E(δEΓ) = 0 and Var(δEΓ) =
Γ> Var(x)Γ+Var(er r ):

Var(Epr ed )cor r ected
empi r i c = EΓ,δEΓ

((
Γ>x +δEΓ−EΓ,δEΓ

(
Γ>x +δEΓ

)
empi r i c

)2
)

empi r i c

= EΓ,δEΓ

((
Γ>x −EΓ

(
Γ>x

)
empi r i c +δEΓ−EδEΓ (δEΓ)

)2
)

empi r i c

= EΓ
(
EδEΓ

((
Γ>x −EΓ

(
Γ>x

)
empi r i c

)2 + (
δEΓ−EδEΓ (δEΓ)

)2

+2
(
Γ>x −EΓ

(
Γ>x

)
empi r i c

)(
δEΓ−EδEΓ (δEΓ)

)))
empi r i c

= Var(Epr ed )empi r i c +EΓ (Var(δEΓ))empi r i c

(D.16)

Since Var(Epr ed )cor r ected
empi r i c contains the term Var(Epr ed )empi r i c , then we can deduce that finding

an approximation here is at least as problematic as in section D.2.3.

D.2.5 Conclusion

Simple yet reasonable approximations can be formulated for estimating the range at low

memory cost, even when taking uncertainties into account.

However, the similar memory efficient approximations that were found for the empirical

variance are likely to be unreasonable. Therefore, unless better approximations are found,

variance-based UCB-like algorithms could only be applied with a large memory cost.

Despite the performance of some non variance-based UCB-like algorithms 1, one could expect

a variance-based UCB variant to be particularly beneficial here, as the estimated range is very

likely to be overestimated.

D.3 Heuristic score justification

D.3.1 A first guess: total adsorption energy

A natural and intuitive idea is to preferentially focus on chemically stable geometries for

inclusion in a training set. “The more stable the better” is the typical way to go for creating

xiThis problem is similar to the more tangible one: estimating the variance of a die roll chosen at random from a
finite set of different dice.
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geometries that describe observed/realistic processes.

One could even devise a sort of rationale behind this choice: a model should better describe

geometries that are more likely to occur (in other words, unrealistic geometries are almost

never observed, so it is less useful to properly describe them). Such rationale would make

sense for designing models aimed at handling only geometries that are typically observed. But

KMC simulations do not handle only realistic geometries. Indeed, in a typical KMC simulation,

geometries are generated at random. Even though the selection of a stable geometry is

more likely than an unstable one, unrealistic geometries are constantly being generated and

evaluated (and likely excluded). As a matter of fact, misjudging unrealistic geometries could

lead to them being accepted in a disproportionate amount and ultimately result in unrealistic

kinetic simulations.

For example, focusing on stable geometries would not provide much many-body insights

if all lateral interactions were destabilizing. In such settings, a model Hamiltonian mainly

trained on the most stable geometries would not be much better than the non-interacting (i.e.

one-body) model.

D.3.2 Relevant heuristic: absolute deviation from non-interacting model

The one-body (i.e. non-interacting) model Hamiltonian is usually already known, as it is rela-

tively easy to obtain (by computing the adsorption energy of each single molecular adsorbate

at each possible active site) and essential for a preliminary study. So why not focusing on

learning the lateral interactions only?

In this section we will justify that the quick learning of lateral interactions can benefit from

focusing on geometries displaying the largest deviations from the non-interacting model.

Before diving into mathematical considerations, a simple intuition can be formulated in this

very direction: including geometries with only negligible lateral interactions does not seem

relevant to learn many-body effects.

Justification

We consider here a linear model (solved by ordinary least squares) where the regressors/fea-

tures are the occurences of each lateral interaction, the regressand/target is the total energy

deviation from the non-interacting model (i.e. the total energy contribution due to lateral

interactions) and the parameters to learn are the individual energy contributions of each

lateral interactions.

Because of the sheer number of features and the relatively low number of observations (quick

232



D.3. Heuristic score justification

learning), the corresponding set of linear equations is largely under-determined. Furthermore,

the Reinforcement Sampling approach makes use of this linear model when it is being partially

trained, which naturally amplify its under-determination.

As a consequence, not only the interpolative power (i.e. accurate description within the

subspace spanned by observed features), but also the extrapolative power (i.e. relatively

accurate description outside, but still near, the subspace spanned by observed features) are

critical for powering a heuristic that impacts the convergence rate of the whole Reinforcement

Sampling procedure.

The extrapolative properties of the ordinary least squares come from the balanced distribution

of the target among the observed featuresxii, so that when learning with a novel geometry,

associated many-body effects are typically attributed in a proportionate amount to the lateral

interactions that are present in this new geometry. In other words, the ordinary least squares

algorithm has a tendency to a priori provide uniform lateral interaction contributions (since it

provides the set of best fitting parameters having minimum norm).

Therefore, learning from geometries displaying lateral interactions whose energy contributions

are mostly similar contributes to provide a linear model with better extrapolative power i.e.,

having a relative accuracy even outside of the explored subspace despite being largely under-

determined. On the contrary, learning from geometries displaying lateral interactions whose

energy contributions are highly different would not benefit much the extrapolative power

of the linear model. Indeed, a strongly positive contribution c, for example, is expected to

“poison” the extrapolation of a negative contribution a (if seen together) by canceling it, and

therefore, inducing the attribution of an overestimated positive value to this contribution a

(and vice versa).

A trivial example can illustrate this phenomenon: assume 2 strongly stabilizing lateral in-

teractions whose energy contributions are a = b =−1 eV and 2 strongly destabilizing lateral

interactions with associated energy contributions c = d = 1 eV. Learning these 4 parameters

with only 2 geometries is equivalent to solving an under-determined set of linear equations,

and therefore, the resulting model will display a large extrapolated component. From this

simple example, it is easy to illustrate how the extrapolative power is impacted by learning

with similarly/dissimilarly combined parameters:

• Learning from observations where combined parameters are similar:

a +b =−2 eV

c +d = 2 eV
(D.17)

xiiTo be precise, the difference between the observed target and the linear prediction (the a priori error) is
distributed proportionally to the previously unexplored component of the newly observed features, see theorem 4
for more details.
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will lead to a set of fitted parameters a′ = a, b′ = b, c ′ = c and d ′ = d that perfectly

matches the true contributions, and can therefore be applied accurately across the

whole feature space.

• While learning from observations where combined parameters are dissimilar:

a + c = 0 eV

b +d = 0 eV
(D.18)

will naturally lead to a set of fitted parameters a′ = b′ = c ′ = d ′ = 0 that cannot be much

extrapolated outside of the feature subspace upon which the model was trained.

Even though learning with geometries where energetically similar interactions are combined

is optimal, accurately finding such geometries (if they exist) is almost impossible a priori.

Indeed, one would theoretically need to known beforehand the energy contributions of the

lateral interactions involved, which are the very parameters being learnedxiii.

Nevertheless, focusing on geometries with large associated target in absolute value (i.e. ab-

solute energy deviation from the non-interacting model) naturally introduces a bias toward

geometries where lateral interactions with significant energy contributions (and same sign)

are found simultaneously. At least, this bias is privileging geometries where large energy

contributions are not canceled out too much by the other interactions being present.

As a consequence, using such heuristic (i.e. using the absolute energy deviation from the

non-interacting model as a heuristic) for choosing geometries to learn from is expected to

produce models with better extrapolative power on the subspace of significant non-canceled

lateral interactions, on average. One should note that this gain in extrapolative power on one

specific subspace is made at the cost of extrapolative power for describing the other lateral

interactions present in the geometries (i.e. the more a set of contributions is dominating the

whole many-body effects, the stronger is the “extrapolation poisoning” toward the remaining

contributions).

In practice, however, the whole model Hamiltonian cannot reasonably be constructed. The

raw feature space is combinatorially large, and would require far too much observations to

be properly sampled, resulting in an unreasonable amount of computational resources that

would likely cancel out the computational gain from such model Hamiltonian. Instead, only a

truncated version of such many-body model Hamiltonian can reasonably be learned quickly.

Fast learning (i.e. with only a few number of observations/geometries) means that only a few

number of lateral interaction contributions can be properly defined (i.e. without extrapo-

xiiiFurthermore, any prediction purely based on the few geometries already evaluated would be highly biased
without external knowledge.
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lation), due to rank considerations. Therefore, a truncated many-body model Hamiltonian

should try to recover most of the many-body effects with the fewest number of lateral inter-

actions. Fortunately, a cluster expansion based model is particularly prone to truncation as

most many-body terms (especially long-range and/or high order correction terms involving

more than 2-3 entities) are expected to be negligible. As a consequence, such truncated cluster

expansion based model Hamiltonian typically focuses on the few strongest lateral interactions,

and discards negligible ones.

Last but not least, let us consider the sets of strong interactions effectively canceling each

others that are not found in geometries displaying a deviation from the non-interacting model.

These interactions are therefore always found canceling each others, despite actively looking

for geometries where they are not (except with geometries where they are canceled out by

already known interactions). Consequently, such sets of interactions globally seem to be

strongly correlated (in term of presence) in practice, and could therefore be relatively safely

treated as negligible, especially for the truncation.

Note that if the heuristic-guided exploration is successful, the eventual completely unexplored

features should correspond to lateral interactions with negligible energy contribution to the

many-body effects. Therefore, this heuristic brings coherence to the default value of a least

square solution (i.e. 0, due to the minimum norm constraint) for such contributions.
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