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Introduction

In advanced applications of numerical methods, many models present local-
ized multi-scale features. Some typical engineering problems deal with plas-
tic deformations within a small zone included in a globally linear medium,
contact problems on the structural joints in large aircraft assemblies, cracks
propagating in elastic bodies, etc. Other examples can be found in compu-
tational hydrodynamics, for instance when modelling spread of polution in
the atmosphere, the sources (factories, explosions) can be on much smaller
scale than the area where the polution reaches by advection and diffusion.

The usual approach to solve such problems is of course the adaptive mesh
refinement, which may be guided by a posteriori error estimators to refine
the mesh around the small subregions of the entire computational domain,
where some local features should be acturately captured. There is an abun-
dant literature devoted to these techniques and we cite only the classical in-
troductory textbook [41] for a mathematical perspective. While the genera-
tion of adapted meshes is far advanced now, it remains a complicated and
costly procedure, both in terms of computing resources and of development
efforts.

One may look therefore for some alternative approaches. One of the most
simple and popular ones consists in superposing two grids, a coarse global
one and a fine local one and alternating solutions on these two grids in an
iterative manner. One can thus keep a non-adapted coarse grid and perform
a multi-scale simulation. This idea appears in the literature under different
names, for example the Chimera method [29], the method of finite element
patches [20], and numerical zoom [4]. The common feature of all these meth-
ods is that the approximate solution is sought as the sum of the global coarse
contribution and a local fine one. The coarse part of the overall solution is ob-
tained iteratively from the original governing equations putting the current
fine contributions to the right hand side. It is easy to see that such methods
are not well suited to the situations where the coefficients in the governing
equations are themselves of a localized multi-scale nature, since the finite el-
ement stiffness matrices for the coarse problem are then difficult to construct
in practice.

To circumvent this drawback, it was proposed in [30] to modify the above
cited methods by abandoning the superposition approach. The coarse prob-
lem is now constructed using a smoothed version of the original governing
model. The local fine model is again introduced on a fine local grid. The cou-
pling between the two grids (and the two models) is achieved by an iterative
algorithm alternating the two solvers. Rather than taking the sum of coarse



2 Contents

and fine contributions, we now declare the coarse solution inside the refined
zone (the zoom) purely fictitious and we replace it by the fine local solution.
The latter is made consistent with the global coarse solution on the boundary
of the zoom. The resulting method was baptized “the multi-model numeri-
cal zoom” since it couples two (possibly) different models: a global smoothed
one and the local refined one.

A very similar approach was also proposed in the computational mechan-
ics community [17–19, 23]. The main motivation of the authors was in devel-
oping non intrusive coupling methods. Indeed, it often happens that engi-
neers have at their disposal a software that allows them to model e.g. some
mechanical structure taken as a whole, but this software is not fine enough at
some zones of the structure. This can be caused by a mesh which is too coarse
or by neglecting some important physical phenomena. It may be too difficult
or even impossible to modify the existing code and one may then want to
develop a stand-alone code that provides a refined modeling where needed.
One should then couple the global coarse solver with the local fine one so that
they interact in an iterative manner, and one seeks for coupling methods that
minimize the interactions between the two codes. The methods proposed
in the articles cited above, essentially equivalent to the multi-model numer-
ical zoom of [30], are good candidates to achieve this goal and were already
tested on “real world” problems.

The methods of the multi-model numerical zoom or non intrusive model
coupling have already received some attention in the literature. Apart from
the works cited above, basically presenting the methods and discussing the
practical issues and the results obtained, there is a mathematical a posteriori
error analysis in [16,40]. The works [14,36] contain proofs of the convergence
of iterative algorithms of these methods on the continuous level in the con-
text of [14] to the the case of stochastic partial differential equations with lo-
calized uncertainties. The work [34] proves the same in the context of mono-
tone partial differential equations (with localized non-linearity). However,
apart from the unpublished manuscript [31], there is yet no complete a pri-
ori error analysis with respect to the discretization, especially when general
non-conforming meshes are used. Moreover, the convergence of the iterative
algorithm of the method has not been yet investigated on the discrete level,
even for simplest possible governing equations.

The goal of the present thesis is to fill to a certain extent the gap in the lit-
erature, outlined above. We consider mostly the following simple situation
(yet pertinent to some practical application): the Poisson equation in domain
containing a small hole. We employ a coarse global mesh that does not see
the hole and correct this defect thanks to an additional fine mesh placed over
the hole and conforming with it. An iterative algorithm (multi-model nu-
merical zoom or non intrusive model coupling ) is then proposed, solving
alternatively the problems on global and local meshes. We introduce a math-
ematical framework for these methods under very general assumptions on
the meshes: the fine mesh may be placed over the coarse one in an arbitrary
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manner. We perform then a complete theoretical analysis both of the accu-
racy with respect to a mesh refinement and of the convergence rate of itera-
tions. We also compare this approach with the method of matched asymp-
totic expansions of [11]. Finally, we adapt our method to monotone problems
with localized non-linearities, thus pursuing the work of [34], adapting the
convergence proof to the discrete level, and giving an a priori error estimate.

The thesis is organized as follows. In the next chapter, we present the ex-
isting methods of “numerical zoom” type in more details on the example of
a diffusion problem with the diffusion coefficient or the right-hand side ex-
hibiting a localized multi-scale behavior. We also introduce there our “multi-
model numerical zoom” method as a modification of the older algorithms.
Chapter 2 is devoted to the analysis of the “multi-model numerical zoom”
method for the elliptic problem posed in a perforated domain (a small hole
inside the domain with Neumann boundary conditions on its boundary). We
start the analysis in the case of nested triangulations (in an appropriate sense)
and then propose some modifications that can be useful in non-nested set-
tings. We establish optimal a priori error estimate and prove the convergence
of our iterative algorithms. Chapter 3 is devoted to an alternative method
based on matched asymptotic expansions for the same problem as in Chap-
ter 2. We propose several variants of this approach on the discrete level and
compare it numerically with the Numerical Zoom. Finally, we turn to mono-
tone non-linear problems in Chapter 4. We are interested there in the case
with localized non-linearities, adapting the Numerical Zoom method, the a
priori error estimate, and the convergence proof to this situation.
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Chapter 1

An overview of global-local
numerical methods: Chimera, finite
element patches, numerical zoom

We begin by presenting some multi-scale global-local methods on the exam-
ple of the following classical problem: find a function u : Ω→ R such that

−∇ · (K∇u) = f in Ω, (1.1)
u = 0 on ∂Ω,

Here Ω is a bounded domain in R2, f ∈ L2(Ω) is a given function and K =
(Kij) is a matrix valued function of class C1 satisfying

α|ξ|2 6 K(x)ξ · ξ 6 β|ξ|2 for all ξ ∈ R2 and x ∈ Ω

with some constants 0 < α 6 β < ∞. We are interested in the situation
where the right-hand side f or the coefficients Kij are highly oscillating in
a small subdomain Λ ⊂ Ω. We are interested in finite element methods that
provide an approximation for the solution u on a relatively coarse mesh on
Ω, certainly too coarse to take into account the highly oscillating features
inside Λ, and that correct in an iterative manner the numerical solution using
another much finer local mesh on Λ.

1.1 Schwarz domain decomposition algorithm or
Chimera method

One of the possible approaches to achieve the goals above is to use the
domain decomposition with overlap and the classical Schwarz alternating
method. This idea was introduced in a similar context (originally for nonlin-
ear time dependent problems) by Steger [29] under the name of the Chimera
method. The Schwarz method needs two interfaces to pass the information
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between the two meshes in both directions (coarse to fine and backwards).
One interface is naturally present in the form of the boundary of Λ, which
we call here Sh. In order to provide another interface, one digs a hole D in
the coarse domain strictly inside the zoom region Λ. We consider then the
domain ΩH = Ω\D, denote the new interface SH = ∂D, and loop on the two
problems: for n = 1, 2, . . . solve

−∇ · (K∇Un) = f in ΩH , U
n|∂Ω = 0, Un = un−1 on SH := ∂D,

and then
−∇ · (K∇un) = f in Λ, un = Un on Sh := ∂Λ

cf. Fig. 1.1.

FIGURE 1.1: The drawing shows the fine mesh of the zoom re-
gion Λ overlapping the coarse mesh in of ΩH and the interfaces

SH , Sh.

The problems above are discretized by finite elements using a coarse mesh
of size H on ΩH for Un and a fine mesh of size h << H on Λ for un. Although
this seems to work fine in most cases, cf. [27, 32], the convergence in the nat-
ural energy norm is an open problem, as well as the precision because of the
unavoidable interpolation of Un on ∂Λ when Λ is not made of elements of
the triangulation of Ω. Additionally, recalling our initial motivation to devise
non-intrusive coupling methods, the necessity to dig a hole D in the coarse
mesh on Ω may be seen as a serious drawback: one is led here to change
significantly the coarse global problem. Moreover, the rate of convergence of
the Schwarz method depends on the width of the overlap between Sh and
SH , which should be thus kept sufficiently big. It means that the zoom Λ
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may have to be chosen artificially large with respect to the size of the zone of
multi-scale behavior, which should be concentrated inside SH since it cannot
be resolved on the coarse mesh on ΩH .

1.2 The method of finite element patches

We now present the method of finite element patches [20], closely connected
to the numerical zoom approach [4]. The basic idea of this method is to search
the approximate multiscale solution as a sum of a global contribution on the
coarse mesh and a local correction on the fine mesh. The global coarse contri-
butions are calculated on iterations using the unperturbed coarse problems,
thus allowing one to use the "legacy code" without changing it (at least with-
out changing the rigidity matrix).

We now present the method of finite element patches applied to Problem
(1.1) on the discrete level. We introduce the following notations: let TH be a
triangulation of Ω and Th that of Λ. For the sake of simplicity, both domains
Ω and Λ are supposed polygonal. Both triangulations are supposed regular
(with the maximal aspect ratio of the triangles fixed once for all). Their el-
ement sizes H and h are typically such that h << H . Introduce the finite
element spaces

VH = {vH ∈ C0(Ω) : vH |T ∈ Pk ∀T ∈ TH , vH |∂Ω = 0}

and
V 0
h = {vh ∈ C0(Λ) : vh|T ∈ Pk ∀T ∈ Th, vh|∂Λ = 0}.

where Pk is the set of degree k polynomials for a given k > 1. The multi-scale
finite element approximation is constructed then in the above cited methods
by solving the problem: find uHh = uH +wh with uH ∈ VH , wh ∈ V 0

h such that∫
Ω

K∇(uH + wh) · ∇(vH + vh) =

∫
Ω

f(vH + vh), ∀vH ∈ VH , vh ∈ V 0
h . (1.2)

Note that the functions in V 0
h are here assumed to be extended by 0 outside

Λ, which makes sense since their traces are 0 on ∂Λ by construction.
As mentioned above, Problem (1.2) is not solved directly but rather by

an iterative method, like the following one: find successive approximations
unH ∈ VH , wnh ∈ V 0

h satisfying∫
Ω

K∇unH · ∇vH =

∫
Ω

fvH −
∫

Λ

K∇wn−1
h · ∇vH , ∀vH ∈ VH (1.3)∫

Λ

K∇wnh · ∇vh =

∫
Λ

fvh −
∫

Λ

K∇unH · ∇vh, ∀vh ∈ V 0
h . (1.4)

It is easy to see that if this iterative method converges, i.e. unH → uH , wnh → wh
as n → ∞, then uHh = uH + wh solves (1.2). The fact that the method is
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indeed convergent is proven in [20] where an optimal error estimate is also
established for the approximate solution uHh.

The method (1.3)–(1.4) thus alternates the solutions of coarse problems
on TH with the fine ones on Th. The stiffness matrices of both problems
are completely standard and independent from each other. The transfer of
information between the two problems is done via the mixed terms on the
right-hand sides of (1.3)–(1.4). Implementing these terms requires evaluat-
ing the integrals on the triangles of TH of functions defined on Th (and vice
versa integrals on Th of functions on TH). Such calculations are not straight-
forward, but some efficient implementations were proposed in the literature.
One can therefore consider that the method works fine, from both theoretical
and practical viewpoints, in the case of problems with multi-scale data, i.e.
when the right-hand side f is highly oscillating inside Λ.

We argue however that the method (1.3)–(1.4) is not really suitable for the
situations with multi-scale coefficients in the equations. Indeed, if the coeffi-
cientsKij are highly oscillating in Λ, an extra care should be taken in evaluat-
ing the integrals

∫
Ω
K∇φH,i ·∇φH,j that form the stiffness matrix of the coarse

problem, with φH,i being the finite element basis functions of VH . Indeed,
one should employ then a very accurate quadrature rule (or possibly a very
fine submesh) to calculate the part of these integrals inside Λ because of the
oscillations of Kij there. This comes in contradiction with the usual practice
of finite element calculations, in which some standard relatively low-order
quadrature rules are used to construct the entries of the stiffness matrix. In-
spired by this remark, we want to devise another approach where the coef-
ficients of K in the coarse finite element sub-problems can be smoothed out
inside Λ.

1.3 Numerical zoom for problems with multiscale
data and/or multiscale coefficients

The core of the difficulties outlined above lies in the reconstruction of the
multi-scale solution as a sum of the coarse and fine contributions. We are go-
ing therefore to adopt another strategy where the part of the coarse solution
inside Λ is finally neglected and the overall solution inside Λ is given by the
approximation on the fine mesh Th alone.

First, we restrict ourselves to the special case of nested meshes, i.e. we
suppose that Th is formed by a subdivision of the triangles of TH lying inside
Λ. In this case, we start by a reformulation of (1.3)–(1.4). Let us introduce the
new iterates on the fine mesh as unh = unH |Λ +wnh . Note that unh does no longer
vanish on the boundary of Λ. It lies in the space

Vh = {vh ∈ C0(Λ) : vh|T ∈ Pk ∀T ∈ Th} (1.5)

i.e. the same fine finite element space as before but without any requirement
on the boundary. Rewriting the algorithm with the new variables unH ∈ VH ,
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unh ∈ Vh leads to∫
Ω

K∇unH · ∇vH =

∫
Ω

fvH −
∫

Λ

K∇un−1
h · ∇vH +

∫
Λ

K∇un−1
H · ∇vH , ∀vH ∈ VH∫

Λ

K∇unh · ∇vh =

∫
Λ

fvh, ∀vh ∈ V 0
h

unh|∂Λ = unH |∂Λ.

We can furthermore impose the boundary conditions for unh on ∂Λ with the
help of a Lagrange multiplier. Let us define to this end the finite element
space Mh on ∂Λ as the space of traces of functions in Vh :

Mh = {µh ∈ C0(∂Λ) : µh|E ∈ Pk on every boundary edge E of the mesh Th}
(1.6)

and rewrite the iterative procedure above as follows: find unH ∈ VH , unh ∈ Vh,
λnh ∈Mh ∫

Ω

K∇unH · ∇vH =

∫
Ω\Λ̄

fvH −
∫
∂Λ

λn−1
h vH

+

∫
Λ

K∇un−1
H · ∇vH , ∀vH ∈ VH (1.7)∫

Λ

K∇unh · ∇vh −
∫
∂Λ

λnh vh =

∫
Λ

fvh, ∀vh ∈ Vh (1.8)∫
∂Λ

unh µh =

∫
∂Λ

unH µh, ∀µh ∈Mh (1.9)

Let us emphasize that the last algorithm is equivalent to the original algo-
rithm (1.3)–(1.4) in the case of nested triangulations. We have thus a conver-
gence result for the iterative method and an error estimate for the discretized
problem in this particular case.

However, in some applications, Λ is chosen in a manner which may be
completely incompatible with the coarse triangulation, for example, to keep
the shape of Λ simple in order to use a structured fine mesh on it. For non
nested meshes the new method (1.7)-(1.9) together with the definition of the
finite element spaces (1.5) and (1.6) makes sense on any meshes TH and Th,
but it is no longer equivalent to the method (1.3)–(1.4). The new algorithm
has the advantage over the old one in that it reduces the interactions be-
tween coarse and fine discretizations. Indeed, the only place where the two
discretizations talk to each other is the boundary integrals

∫
∂Λ
λn−1
h vH and∫

∂Λ
unHµh, in contrast to the mixed terms on the whole of Λ in the method

(1.3)–(1.4). This allows us to reduce the computational cost and the program-
ming burden.

More importantly, the new method (1.7)–(1.9) can be slightly modified to
be suited to situations where coefficients Kij are highly oscillating. Indeed,
the functions unH are only relevant outside Λ in the new method. This means
that we can modify the coarse problem inside Λ in order to make it smoother
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and to facilitate the calculation of the finite element stiffness matrix. We thus
introduce coefficients K̃ = (K̃ij) much smoother than K in Λ and such that
K̃|Ω\Λ = K|Ω\Λ̄. We assume, similarly to the original coefficients K,

α|ξ|2 6 K̃(x)ξ · ξ 6 β|ξ|2 for all ξ ∈ R2 and x ∈ Ω

We can then replace K by K̃ in the coarse problem, so that (1.7) becomes∫
Ω

K̃∇unH ·∇vH =

∫
Ω\Λ̄

fvH−
∫
∂Λ

λn−1
h vH+

∫
Λ

K̃∇un−1
H ·∇vH , ∀vH ∈ VH (1.10)

This does not affect the final solution, provided the iterative process con-
verges. The convergence can be indeed proven, cf. [31], if one adds relaxation
to the coarse problem (1.10). We should redefine unH as the convex combina-
tion ωûnH + (1 − ω)un−1

H , where ω ∈ (0, 1] is a relaxation parameter. Thus,
unH ∈ VH is computed as the solution to∫

Ω

K̃∇unH ·∇vH =

∫
Ω

K̃∇un−1
H · ∇vH (1.11)

+ ω

{∫
Ω\Λ̄

fvH −
∫
∂Λ

λn−1
h vH −

∫
Ω\Λ̄

K̃∇un−1
H · ∇vH

}
, ∀vH ∈ VH

We refer to the method (1.11)–(1.8)–(1.9) as the multi-model numerical zoom.
Indeed, its iterations can be viewed as a coupling of the smooth global model
(with K̃ defined over Ω) and the stiff local one (with K on Λ).

Let us reexamine now the non-intrusivity of the algorithm in the sense
of [18, 19]. As it is already mentioned, the boundary term in the coarse prob-
lem

∫
∂Λ
λn−1
h vH should be implemented in a stand-alone software since it con-

tains the fine correction λh. Moreover, the term
∫

Λ
K̃∇un−1

H · ∇vH may also
need a special treatment outside the coarse solver, although it involves only
functions on TH . Here, the integration should be performed on the patch Λ
which is not necessarily conforming with TH . The integral

∫
Λ
K̃∇un−1

H · ∇vH
will then have to be evaluated outside of the coarse solver. Let us note that
latter articles also introduce a closely related method involving Robin condi-
tions on the interface. Such a method is more intrusive because of the modi-
fication of the coarse stiffness matrix.

The idea of replacing locally sharp or oscillating coefficient K with a
smoothed version K̃ can be easily generalized to more complicated settings.
We shall consider two of them in the present thesis:

Chapter 2: A linear elliptic PDE posed in a perforated domain, namely a
domain with a small hole inside it. We shall consider the hole as a
perturbation to a simpler problem posed on the whole non-perforated
domain and reinterpret our algorithm as coupling between the unper-
turbed coarse model (approximated on a global coarse mesh that does
not see the hole) and the local corrected model (the actual problem on
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the patch surrounding the hole). Such a problem can be seen as a proto-
type of more realistic situations where a coarse solver cannot handle the
tiny geometrical details (joints, cracks, etc) and one needs local patches
(numerical zooms) to handle them.

Chapter 4: Non-linear problems with localized non-linearity (for example,
think of plasticity that affects the behaviour of an otherwise linear elas-
tic material only in the vicinity of some critical points). One can then
solve the linear global problem on a global coarse mesh, and correct it
locally by non-linear solvers on a fine mesh over the patch Λ.
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Chapter 2

Numerical zoom for elliptic
problems on perturbed domains

2.1 Presentation of the problem and adaptation of
the numerical zoom algorithm

Let Ω be a bounded domain in Rd (d = 2 or 3) and ωε ⊂ Ω be a sub-domain
of characteristic size ε much smaller than the characteristic size of Ω, cf. Fig.
2.1 top. We are interested in problems posed on the perturbed domain Ωε =
Ω \ ωε. As a typical simple example, we consider specifically the Poisson
problem on Ωε with Neumann boundary conditions on the boundary of the
hole ωε: find u : Ωε → R such that

−∆u = f in Ωε, (2.1)
u = 0 on ∂Ω,

∇u · n = 0 on ∂ωε,

where f ∈ L2(Ωε) is a given function. The weak formulation for (2.1) is
written as: let

V = {v ∈ H1(Ωε) : v|∂Ω = 0}

and find u ∈ V such that

a(u, v) =

∫
Ωε

fv, ∀v ∈ V (2.2)

where

a(u, v) =

∫
Ωε

∇u · ∇v . (2.3)

We want to devise a finite element method that works on a relatively
coarse mesh on Ω (the whole non-perforated domain), certainly too coarse
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FIGURE 2.1: An example of the perforated domain Ωε = Ω \ωε.
Top: Ωε with a fine mesh well resolving ωε. Bottom left: The
global coarse mesh TH that does not see ωε and the fine mesh
Th on the patch. Bottom right: same as on the left, zoomed

around.
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to take into account the small inclusion ωε, and then corrects the approxi-
mate solution iteratively using another sufficiently fine mesh around ωε. We
introduce thus the coarse global mesh TH of meshsize H on Ω, with H typ-
ically bigger than ε. In addition, we encompas the hole ωε into the patch Λ,
which is a small sub-domain of Ω: ωε ⊂ Λ ⊂ Ω (with both inclusions be-
ing proper). Denote Λε = Λ \ ωε and introduce the fine local mesh Th on Λε

(typically, the meshsize h is thus much smaller than ε). For the sake of sim-
plicity, both domains Ω and Λε are supposed polygonal and Λ is supposed to
lie inside Ω, i.e. the boundaries of Λ and Ω do not intersect each other. Both
meshes Th and TH are supposed regular simplicial triangulations of Ω and
Λε respectively, i.e. the maximal aspect ratio of the triangles/tetrahedrons in
both these meshes is fixed once for all. An illustration of the meshes is given
at Fig. 2.1 bottom.

Introduce the finite element spaces

VH = {vH ∈ C0(Ω) : vH |T ∈ Pk ∀T ∈ TH , vH |∂Ω = 0}

and
Vh = {vh ∈ C0(Λε) : vh|T ∈ Pk ∀T ∈ Th}.

where Pk is the set of polynomials in d real variables of a given degree k >
1. Let Γ = ∂Λ. Note that the boundary of Λε contains two components: Γ
and ∂ωε. We shall need a finite element space on Γ to be used for Lagrange
multipliers and defined as the space of traces of functions in Vh:

Mh = {µh ∈ C0(Γ) : µh|E ∈ Pk on every boundary facet E of mesh Th}
(2.4)

Our basic algorithm (Algorithm 2.1), inspired by (1.11)–(1.8)–(1.9), is pre-
sented on page 16. It starts from an initial coarse approximation u0

H ∈ VH ,
typically the solution to the “unperturbed” problem on the whole domain Ω
on the coarse mesh without taking into account the hole:∫

Ω

∇u0
H · ∇vH =

∫
Ω

fvH , ∀vH ∈ VH (2.5)

In writing this, we assume f ∈ L2(Ω) i.e. the right hand side is extended
inside the hole ωε. The algorithm goes on by correcting this approximation
and alternates between the fine problems on Λε and the coarse problems on
the whole Ω. Note that the rigidity matrix of these coarse problems is the
same as for the original “unpertubed” approximation (2.5).

We note that articles on the original patch algorithm [21, 22, 25] ditin-
guished between the two cases – nested and not nested meshes, and the
inherent difficulties were not necessarily the same in the two cases. By the
nested meshes, it is understood that every element of the fine mesh Th is in-
cluded in an element of TH , i.e. Th was formed by splitting the elements of the
coarse mesh TH inside the patch Λ in the smaller elements. Obviously, such
a notion is not applicable to the case studied here: the coarse mesh is not



16 Chapter 2. Numerical zoom for elliptic problems on perturbed domains

Choose an initial guess u0
H ∈ VH and the relaxation parameter

ω ∈ (0, 1]
for n = 1, 2, 3, . . . do

Find unh ∈ Vh and λnh ∈Mh such that∫
Λε

∇unh · ∇vh −
∫

Γ

λnh vh =

∫
Λε

fvh, ∀vh ∈ Vh∫
Γ

unh µh =

∫
Γ

un−1
H µh, ∀µh ∈Mh

Find unH ∈ VH such that∫
Ω

∇unH · ∇vH = ω

∫
Ω\Λ̄

fvH − ω
∫

Γ

λnhvH + ω

∫
Λ

∇un−1
H · ∇vH

+(1− ω)

∫
Ω

∇un−1
H · ∇vH , ∀vH ∈ VH

Set

u
n−1/2
Hh =

{
unh, in Λε

un−1
H , outside Λ

unHh =

{
unh, in Λε

unH , outside Λ

end
Algorithm 2.1: Multi-model numerical zoom

conforming with the geometrical features of the small inclusion Ωε so that Th
which is conforming with Ωε cannot be a submesh of TH . We introduce thus
the weaker notion of Γ-nested meshes meaning that the boundary Γ of the
patch Λ is composed of facets of TH (and thus the patch is formed as a union
of certain elements of TH) and the trace of Th on Γ is obtained by dividing the
facets of the coarse mesh into smaller segments/triangles.

In the following section, we analyse the numerical zoom algorithm in the
case of Γ-nested meshes. We shall see that this analysis is much easier than
in the general case (cf. the subsequent sections). Note that the method is
also easier to implement in the Γ-nested case. Indeed, the integrals on Λ in
the coarse correction step are then straight-forward to implement since they
can be written as the sums of integrals over certain elements of TH unlike
the general case where the elements of TH can be arbitrarily cut by Γ. The
interpolation operator between TH and Th are also trivial in this case. This is
why we think that the case Γ-nested meshes is the most useful one in practice
(unless very particular situations where the form of the patch should be fixed
by some implementation issues and thus not necessarily conforming with the
coarse mesh). Note that the restriction of Γ-nestedness is general enough to
allow for an adaptive mesh adaptation of Th, independently from the coarse
mesh.
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2.2 Analysis of the algorithm for Γ-nested meshes

As announced above, we assume in this section that the meshes TH and Th
are nested on the interface Γ. For future references, we formalize this notion
as the following definition

Definition 2.1. The meshes Th and TH are called Γ-nested if the patch Λ is a union
of several elements of TH and every boundary facet of the mesh Th lying on Γ is a
subset of an internal facet of TH .

2.2.1 The finite element problem: an a priori error estimate

Assume for the moment that Algorithm 2.1 converges (this will be indeed
proved in the next subsection). The natural questions are then: how can one
characterize the limit of the iterative process in Algorithm 2.1 and what is
the precision of this limit with respect to the exact solution of problem (2.1)?
Let us suppose thus that unH → uH on Ω, unh → uh on Λε, and λnh → λh on
Γ as n → ∞. Passing to the limit in Algorithm 2.1, it is easy to see that the
functions uH ∈ VH , uh ∈ Vh and λh ∈Mh satisfy∫

Ω\Λ̄
∇uH · ∇vH +

∫
Γ

λhvH =

∫
Ω\Λ̄

fvH , ∀vH ∈ VH (2.6)∫
Λε

∇uh · ∇vh −
∫

Γ

λhvh =

∫
Λε

fvh, ∀vh ∈ Vh (2.7)∫
Γ

µh(uH − uh) = 0, ∀µh ∈Mh. (2.8)

We emphasize that unH survives at the limit n→∞ only outside Λ.
Let us introduce the combined approximation space

VHh = {v ∈ C(Ω̄ε) such that v = 0 on ∂Ω, v = vH on Ω \ Λ̄, v = vh on Λε

with some vH ∈ VH , vh ∈ Vh}

and gather uH and uh into uHh ∈ VHh such that uHh = uH on Ω \ Λ̄ and
uHh = uh on Λε. Note that uHh is indeed continuous on Γ thanks to (2.8)
which is equivalent to say uH = uh on Γ in the case of Γ-nested meshes.
Taking the sum of (2.6) and (2.7) we can easily eliminate λh and rewrite this
problem in terms of uHh alone: find uHh ∈ VHh such that

a(uHh, vHh) =

∫
Ω

fvHh, ∀vHh ∈ VHh. (2.9)

Theorem 2.1. Suppose that the meshes Th and TH are Γ-nested, cf. Definition 2.1.
Problem (2.9) admits the unique solution uHh ∈ VHh. If u, the exact solution to
(2.1), is in Hk+1(Ω), we have moreover the following a priori error estimate

‖uHh − u‖1,Ωε 6 C
(
Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λε

)
(2.10)
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with a constant C independent of H , h and u.

Proof. The bilinear form a is coercive on VHh ⊂ V which yields immediately
the existence and uniqueness of the solution uHh ∈ VHh to (2.9). We construct
now an appropriate interpolant ũHh ∈ VHh to u. Let

IH : Hk+1(Ω)→ VH and Ih : Hk+1(Λε)→ Vh

be the standard nodal interpolation operators satisfying

|v − IHv|1,T 6 CHk|v|k+1,T for any v ∈ Hk+1(T ), T ∈ TH (2.11)

and
|v − Ihv|1,T 6 Chk|v|k+1,T for any v ∈ Hk+1(T ), T ∈ Th. (2.12)

The constant C here depends only on the regularity of the meshes.
We note that we cannot define interpolant ũHh ∈ VHh simply by taking

Ihu inside Λ and IHu outside Λ since such a function would be discontinuous
over Γ. We should thus correct Ihu inside Λ to restore continuity by adding
a finite element function in Vh equal to IHu − Ihu on Γ. Thanks to the trace
theorem, there exists

r ∈ H1(Λ) such that r = IHu− Ihu on Γ and ‖r‖1,Λ ≤ C‖r‖ 1
2
,Γ

with a constant C > 0 depending only on Λ. Let rh ∈ Vh be the Scott-Zhang
interpolant of r [37] such that that rh = r on Γ. Such a choice is possible if the
values of rh at the boundary facets of Th on Γ are calculated through the ap-
propriate weighted averages of r on these facets (recall that the construction
of Scott-Zhang allows one to choose either elements or facets of the mesh to
construct the interpolant). Since r = IHu− Ihu is piecewise polynomial on Γ,
such a construction ensures indeed that rh = r on Γ. We have moreover

‖rh‖1,Λε ≤ C‖r‖1,Λε ≤ C‖r‖1,Λ ≤ C‖r‖ 1
2
,Γ

Combining these estimates and using again the trace theorem we can write

‖rh‖1,Λε ≤ C‖IHu− Ihu‖ 1
2
,Γ 6 C(‖IHu− u‖ 1

2
,Γ + ‖Ihu− u‖ 1

2
,Γ)

6 C(‖u− IHu‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε)

We now take ũHh ∈ VHh with the components ũH ∈ VH and ũh ∈ Vh such that
ũH = IHu and ũh = Ihu + rh. We have thanks to the interpolation estimates
mentioned above

‖u− ũHh‖1,Ωε 6 ‖u− IHu‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε + ‖rh‖1,Λε (2.13)
6 C(‖u− IHu‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε)

6 C(Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λε)
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In view of (2.9), (2.2) and the fact that VHh ⊂ V , the Céa lemma ensures that
‖uHh − u‖1,Ω 6 C‖ũHh − u‖1,Ω so that (2.13) leads to (2.10).

2.2.2 Convergence of the iterative algorithm

The proof of the convergence of Algorithm 2.1 will be based on a study of
operator AHh : VH → VH defined for fixed TH and Th as follows: for any
zH ∈ VH the function AHhzH ∈ VH solves

c(AHhzH , vH) =

∫
Ω\Λ̄
∇zH · ∇vH +

∫
Γ

νhvH , ∀vH ∈ VH (2.14)

where c(·, ·) is the H1
0 scalar product on Ω

c(u, v) =

∫
Ω

∇u · ∇v (2.15)

and νh ∈Mh together with zh ∈ Vh come as the solution to∫
Λε

∇zh · ∇vh −
∫

Γ

νhvh = 0, ∀vh ∈ Vh (2.16)∫
Γ

zhµh =

∫
Γ

zHµh, ∀µh ∈Mh. (2.17)

To motivate the definition of operator AHh, we decompose the iterates unh,
λnh from Algorithm 2.1 as

unh = yh + znh , λnh = ϕh + νnh

where (yh, ϕh) ∈ Vh×Mh is solution to∫
Λε

∇yh · ∇vh −
∫

Γ

ϕhvh =

∫
Λε

fvh, ∀vh ∈ Vh (2.18)∫
Γ

yhµh = 0, ∀µh ∈Mh

and (znh , ν
n
h ) ∈ Vh×Mh solve∫

Λε

∇znh · ∇vh −
∫

Γ

νnhvh = 0, ∀vh ∈ Vh∫
Γ

znhµh =

∫
Γ

un−1
H µh, ∀µh ∈Mh.
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These are the same equations as (2.16)–(2.17) with zH replaced by un−1
H . Using

these notations, we can rewrite the problem for unH from Algorithm 2.1 as

c(unH , vH) =c(un−1
H , vH)

+ ω

∫
Ω\Λ̄

fvH − ω
∫

Γ

ϕhvH − ω
∫

Γ

νnhvH − ω
∫

Ω\Λ̄
∇un−1

H · ∇vH

=c(un−1
H , vH)

+ ωc(FH , vH)− ω
∫

Γ

νnhvH − ω
∫

Ω\Λ̄
∇un−1

H · ∇vH , ∀vH ∈ VH

where FH ∈ VH is given by

c(FH , vH) =

∫
Ω\Λ̄

fvH −
∫

Γ

ϕhvH , ∀vH ∈ VH . (2.19)

We see that unH evolves from one iteration to another as

unH = (I − ωAHh)un−1
H + ωFH . (2.20)

It is thus a fixed point algorithm to solve the equation

AHhuH = FH (2.21)

rewritten as uH = (I − ωAHh)uH + ωFH .
Combining (2.14) and (2.16) we observe ∀zH , vH ∈ VH

c(AHhzH , vH) =

∫
Ω\Λ̄
∇zH · ∇vH +

∫
Λε

∇zh · ∇vh (2.22)

where zh ∈ Vh is the solution to (2.16)–(2.17) and vh is any function in Vh such
that vh = vH on Γ. We shall now prove that operator AHh is a self-adjoint and
coercive with respect to the scalar product c on a well-chosen subspace of VH .

Lemma 2.2. Operator AHh is self-adjoint with respect to the scalar product c, as
defined by (2.15):

c(AHhzH , z
∗
H) = c(zH , AHhz

∗
H), ∀zH , z∗H ∈ VH (2.23)

Proof. Take any zH , z∗H ∈ VH and let (zh, νh) ∈ Vh×Mh, resp. (z∗h, ν
∗
h) ∈ Vh×Mh

be the solutions to (2.16)–(2.17) with zH , resp. z∗H , in the right hand side of
(2.17). By (2.22)

c(AHhzH , z
∗
H) =

∫
Ω\Λ̄
∇zH · ∇z∗H +

∫
Λε

∇zh · ∇z∗h

which entails (2.23).
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We now decompose the finite element space VH into the direct sum V 0
H ⊕

V 1
H where

V 0
H = {v ∈ VH : supp v ⊂ Λε} (2.24)

and V 1
H is the orthogonal complement of V 0

H with respect to the scalar product
(2.15).

Lemma 2.3. The kernel of operator AHh coincides with V 0
H and AHh is coercive on

its orthogonal complement V 1
H . More precisely, there exists m > 0 depending only

on Λε and on the regularity of the mesh TH such that

c(AHhzH , zH) > m|zH |21,Ω ∀zH ∈ V 1
H . (2.25)

The norm of AHh as an operator in the space VH equipped with semi-norm of H1(Ω)
is bounded by a mesh-independent constant M > 0.

Proof. If zH ∈ kerAHh, then zH = 0 on Ω \ Λ̄ as follows from the expression
for c(AHhzH , zH) in (2.22). On the other hand, if zH ∈ V 0

H then zh = 0 on Λε

and zH = 0 on Γ so that AHhzH = 0. This entails kerAHh = V 0
H .

In order to prove the coercivity estimate we invoke again (2.22) with vH =
zH ∈ V 1

H , which implies

c(AHhzH , zH) >
∫

Ω\Λ̄
∇zH · ∇zH . (2.26)

Let v ∈ H1
0 (Ω) be such that v = zH on Ω \ Λ̄ and v|Λ satisfy

−∆v = 0 on Λ, v = zH on Γ. (2.27)

so that
‖v‖1,Λ 6 C‖zH‖ 1

2
,Γ.

Let RH : V → VH be a Scott-Zhang interpolation operator, cf. [37], chosen so
that RHv on Ω \ Λ̄ (resp. on Λ) is calculated by appropriate averaging of v on
the mesh elements lying in Ω̄ \ Λ (resp. Λ̄). Denoting vH = RHv we observe

‖vH‖1,Λ ≤ C‖v‖1,Λ

and, moreover, vH = zH on Ω \ Λ̄ since vH = zH on Ω \ Λ̄ is already in the
finite element space VH restricted to Ω \ Λ̄. Hence, (vH − zH) ∈ V 0

H so that
c(zH , vH − zH) = 0 (recall that zH ∈ V 1

H), which entails by Cauchy-Schwarz
inequality

|zH |21,Ω = c(zH , zH) = c(zH , vH) 6 |zH |1,Ω|vH |1,Ω
In view of the properties of the interpolation operator mentioned above, we
have thus

|zH |21,Ω 6 |vH |21,Ω 6 (C‖v‖2
1,Λ + |zH |21,Ω\Λ̄)

6 (C‖zH‖2
1
2
,Γ

+ |zH |21,Ω\Λ̄) 6 C|zH |21,Ω\Λ̄ (2.28)
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Combining (2.26) with (2.28), we obtain c(AHhzH , zH) > 1
C
|zH |21,Ω so that (2.25)

is established.
The last statement of the Lemma concerns the norm of operator AHh. In

order to prove it, we recall problem (2.16), reintroduce v ∈ H1(Λ) as the
solution to (2.27), and construct vh ∈ Vh as a Scott-Zhang interpolation of
v being a projection on the finite element trace space on Γ. We have thus
vh = zH on Γ so that

∫
Λε
∇zh · ∇(zh − vh) = 0 and

‖zh‖1,Λε 6 ‖vh‖1,Λε 6 C‖v‖1,Λ 6 C‖zH‖ 1
2
,Γ 6 C‖zH‖1,Ω\Λ̄

with a constant that depends only on Λ. We have thus using (2.22) ant taking
an appropriate vh ∈ Vh (constructed from vH ∈ VH in a similar manner to
zh, zH above)

c(AHhzH , vH) 6 C
(
|zH |1,Ω\Λ̄|vH |1,Ω\Λ̄ + |zh|1,Λε|vh|1,Λε

)
6 M |zH |1,Ω|vH |1,Ω

whereC andM denote the mesh-independent constants. Taking vH = AHhzH
gives

|AHhzH |1,Ω ≤M |zH |1,Ω
i.e. ‖AHh‖ 6M where ‖·‖means the operator norm in the space VH equipped
with the H1(Ω) semi-norm.

Theorem 2.4. Suppose that the meshes Th and TH are Γ-nested, cf. Definition 2.1.
Algorithm 2.1 converges to the solution of (2.9) provided 0 < ω < ω∗ where ω∗ is a
mesh-independent constant, i.e. un−1/2

Hh → uHh and unHh → uHh as n → ∞ where
uHh ∈ VHh is the unique solution of (2.9). The convergence rate depends only on the
regularity of TH and on Λε.

Proof. We decompose each iterate of Algorithm 2.1 as unH = un,0H + un,1H
with un,0H ∈ V 0

H and un,1H ∈ V 1
H . Using the facts that kerAHh = V 0

H and
FH ∈ ImAHh = (kerAHh)

⊥ = V 1
H , equation (2.20) can be decomposed in

separate equations on V 0
H and V 1

H :

un,0H = un−1,0
H

un,1H = (I − ωAHh)un−1,1
H + ωFH

As proved in the two preceding lemmas, the restriction of AHh to V 1
H is a

symmetric and positive definite operator. Its spectrum is thus real and lies in
the interval [m,M ], m being a lower bound for the coercivity constant of AHh
on V 1

H and M being an upper bound for its norm. It follows that the operator
(I − ωAHh) is a contraction provided ω < 2/M . This shows the convergence
of the sequence {un,1H }. The iterates unh are uniquely determined by the traces
of {unH} on Γ which coincide with those of un,1H . We see thus that the sequence
{unh} is also convergent, as are the sequences {un−1/2

Hh }, {unHh} since unHh = un,1H
on Ω \ Λ̄ and unHh = unH , un−1/2

Hh = un−1
H on Λε.
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2.3 Analysis of Algorithm 2.1 on non Γ-nested
meshes

We want now to abandon the Assumption of Γ-nested meshes (Definition
2.1). We shall see that the a priori error analysis of the general case reveals
potentially larger errors in the general case, although it is not usually seen in
the numerical experiments. Moreover, the iterative algorithm 2.1 can suffer
from slow convergence unless we are in a situation of a conforming interface,
as announced in the definition below, or close to it, in an appropriate sense
as will be seen in the convergence analysis below.

Definition 2.2. We say that the meshes Th and TH have a conforming interface if
the boundary of the zoom Λ is composed of the facets of TH .

This is is thus a generalization of Definition 2.1. Note that the issue of
possibly slow convergence was already recognized in the literature on the
original patches algorithm [20]. A possible remedy was proposed in [25]
under the name of the method of harmonic patches. Only the triangulations
with conforming interface were studied theoretically in [25]. In the current
Section, contrary to this article, we do not assume the conforming interface
and we keep our assumption on the meshes quite general, although we shall
recognize that the case of a conforming interface is the most beneficial with
respect to the rate of convergence.

2.3.1 The finite element problem: an a priori error estimate

Let us admit for the moment that Algorithm 2.1 converges (this will be in-
deed proved in the next section). Here, we are going to characterize the limit
of the iterative process in Algorithm 2.1 and to examine the precision of this
limit with respect to the exact solution of problem (2.1). We suppose thus
that unH → uH , unh → uh on Ω and λnh → λh on Γ as n → ∞. It is easy to see
that the functions uH ∈ VH , uh ∈ Vh and λh ∈Mh satisfy∫

Ω\Λ̄
∇uH · ∇vH +

∫
Γ

λhvH =

∫
Ω\Λ

fvH , ∀vH ∈ VH (2.29)∫
Λε

∇uh · ∇vh −
∫

Γ

λhvh =

∫
Λε

fvh, ∀vh ∈ Vh (2.30)∫
Γ

µh(uH − uh) = 0, ∀µh ∈Mh. (2.31)

These are or course the same as Equations (2.6)–(2.8) but we prefer to write
them once more to emphasize the difference with the previously studied case
of Γ-nested meshes: we no longer have uh = uH on Γ and it is no longer
possible to exclude the Lagrange multiplier simply as before.
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To compress the notations, we introduce the combined approximation
space

V d
Hh = {v : Ω→ R such that v = vH on Ω \ Λ̄, v = vh on Λε (2.32)

with some vH ∈ VH , vh ∈ Vh}

and gather uH and uh into uHh ∈ V d
Hh such that uHh = uH on Ω \ Λ̄ and

uHh = uh on Λε. The problem (2.29)–(2.31) can be rewritten in terms of uHh
and λh as

a(uHh, v) + b(v, λh) = L(v), ∀v ∈ V d
Hh (2.33)

b(uHh, µ) = 0, ∀µ ∈Mh

where

a(u, v) =

∫
Ω\Λ̄
∇u · ∇v +

∫
Λε

∇u · ∇v (2.34)

b(v, µ) =

∫
Γ

[v]µ (2.35)

L(v) =

∫
Ω

fv (2.36)

and [v] = v|Ω\Λ̄ − v|Λ denotes the jump of v on the interface Γ. Note that no
continuity on Γ of functions in V d

Hh is imposed, unlike the Γ-nested case. The
approximate continuity of uHh is now ensured by the finite element problem,
i.e. the second equation in (2.33). Our a priori error estimates will be de-
rived directly from the mixed problem (2.33) without trying to eliminate the
Lagrange multiplier λh from the equations (cf. however Remark 2.1 with an
alternative route of the proof using a subspace of weakly continuous func-
tions). We shall face the problem of the lack of regularity of ∇u · n at the
corners (edges) of Λ, which will prevent us from giving completely satisfac-
tory theoretical error estimates, cf. the forthcoming Lemma 2.8.

We start by rewriting the continuous problem (2.1) for u in the mixed form
similar to (2.33). To this end, we introduce the functional space

V d = {v : Ωε → R such that v|Λε ∈ H1(Λε), v|Ω\Λ̄ ∈ H1(Ω\Λ̄) and v|∂Ω = 0}

equipped with the norm

‖v‖V =
(
‖v‖2

1,Ω\Λ̄ + ‖v‖2
1,Λε

)1/2

.

We also set M = H−1/2(Γ). Obviously, u ∈ H1
0 (Ω) ⊂ V d so that problem

(2.1) can be rewritten as: find u ∈ V d and λ ∈ M (the Lagrange multiplier
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corresponding to the constraint [u] = 0 on Γ) such that

a(u, v) + b(v, λ) = L(v) ∀v ∈ V (2.37)
b(u, µ) = 0 ∀µ ∈M

This problem is well-posed. Indeed, if (u, λ) ∈ V ×M is a solution to (2.37),
then the second equation in (2.37) implies that u ∈ H1

0 (Ω) and restricting the
test functions in the first equation to H1

0 (Ω) shows that u is in fact the unique
solution to (2.1). An integration by parts allows us to identify then λ ∈ M
with (∇u ·n)|Γ where n is the unit normal vector on Γ looking outwards from
Λ.

We can now prove an error estimate for problem (2.33) as an appoxima-
tion to problem (2.37) using the theory of approximations to mixed prob-
lems [12]. The main ingredients to this proof are the two lemmas below
proving the coerciveness of the form a on the kernel of the operator asso-
ciated to the form b on both continuous and finite element levels, as well as
the inf-sup property for b. We follow essentially [13] where the analogous
results are proven in a slightly different context.

Let B : V → M ′ = H1/2(Γ) be the operator associated to the bilinear form
b by

< Bv, µ >M ′,M= b(v, µ) ∀v ∈ V, µ ∈M

and let BHh : V d
Hh →M ′

h be its discrete counterpart defined by

< BHhvHh, µh >M ′,M= b(vHh, µh) ∀vHh ∈ V d
Hh, µh ∈Mh.

Lemma 2.5. The bilinear form a is coercive on kerB∪kerBHh, i.e. there is a constant
γ0 > 0 independent of H, h such that

a(v, v) > γ0‖v‖2
V ∀v ∈ kerB ∪ kerBHh (2.38)

Proof. Consider the following subspace of V

V0 = {v ∈ V d :

∫
Γ

[v] = 0}.

Inequlity (2.38) is satisfied for all v ∈ V0 with some constant γ0 that depends
only on Ω, Λ and the coefficients K. This follows from the Peetre-Tartar
lemma [39], since the inclusion of V into L2(Ω) is compact and

a(v, v) = 0 and
∫

Γ

[v] = 0 =⇒ v = 0.

Indeed, if a(v, v) = 0 for some v ∈ V , then ∇v = 0 on Λ and on Ω\Λ̄ so that
v = c = const on Λ and v = 0 on Ω\Λ̄ since moreover v|∂Ω = 0. If we also
suppose that

∫
Γ
[v] = 0 then c = 0 so that v = 0 on Ω.

It is easy to see that Bv = [v]Γ and consequently kerB = H1
0 (Ω) ⊂ V0. On

the discrete level, we observe that kerBHh = {v ∈ V d
Hh :

∫
Γ
[v]µ = 0, ∀µ ∈
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Mh} ⊂ V0 since 1 ∈ Mh. Thus kerB ∪ kerBHh ⊂ V0, consequently (2.38) is
satisfied for all v ∈ kerB ∪ kerBHh.

Lemma 2.6. There exists δ > 0 depending only on Ω and Λ such that

inf
λ∈M

sup
v∈V d

b(v, λ)

‖v‖V ‖λ‖M
> δ (2.39)

and
inf

λh∈Mh

sup
vHh∈V d

Hh

b(vHh, λh)

‖vHh‖V ‖λh‖M
> δ. (2.40)

Proof. The continuous inf-sup property (2.39) follows from the following in-
equalities, valid for any λ ∈M

‖λ‖M = ‖λ‖−1/2,Γ = sup
µ∈H1/2(Γ)

∫
Γ
λµ

‖µ‖1/2,Γ

6 C sup
w∈H1(Λε)

∫
Γ
λw

‖w‖1,Λε

(since ∀µ ∈ H1/2(Γ), ∃w ∈ H1(Λε) such that w = µ on ∂Λε and ‖w‖1,Λε 6 C‖µ‖1/2,Γ

with a constant C that depends only on Λε)

6 C sup
v∈V d

b(v, λ)

‖v‖V
(since one can always take v ∈ V d as v = −w on Λε and v = 0 on Ω\Λ̄ε)

To reproduce this proof on the discrete level, we borrow from [6] the fol-
lowing result: for all λh ∈Mh there exists vh ∈ Vh such that∫

Γ
vhλh

‖vh‖1,Λ‖λh‖− 1
2
,Γ

> δ. (2.41)

Note that this estimate is announced in [6] only for P1 finite elements, but we
can easily prove it for Pk elements with any k > 1. To this end, we start by
the definition of the H−

1
2 norm

‖λh‖− 1
2
,Γ = sup

v∈H
1
2 (Γ)

∫
Γ
vλh

‖v‖ 1
2
,Γ

6 C sup
v∈H1(Λ)

∫
Γ
vλh

‖v‖1,Λ

(2.42)

Let Ĩh : H1(Λε)→ Vh be the Scott-Zhang interpolator satisfying

|Ĩhv|1,Λε 6 C|v|1,Λε , ‖v − Ĩhv‖0,Λε 6 Ch|v|1,Λε , ‖v − Ĩhv‖0,Γ 6 C
√
h|v|1,Λε ,

for any v ∈ H1(Λε). Now, take any v ∈ H1(Λε) and construct vh ∈ Vh to be
equal to Ĩhv on the internal degrees of freedom inside Λε and to be the L2(Γ)
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orthogonal projection of v on Mh. We have thus

‖vh − Ĩhv‖0,Γ 6 ‖v − Ĩhv||0,Γ + ‖v − vh‖0,Γ 6 2‖v − Ĩhv‖0,Γ

Owing to the fact that vh and Ĩhv differ only at the boundary Γ, one can prove
(see the details in Lemma 2.7 below)

‖vh − Ĩhv‖0,Λε 6 C
√
h‖vh − Ĩhv‖0,Γ and |vh − Ĩhv|1,Λε 6

C√
h
‖vh − Ĩhv‖0,Γ

Putting all these estimates together gives

‖vh‖0,Λε 6 ‖vh − Ĩhv‖0,Λε + ‖v − Ĩhv‖0,Λε + ‖v‖0,Λε 6 Ch|v|1,Λε + ‖v‖0,Λε

and
|vh|1,Λε 6 |vh − Ĩhv|1,Λε + |Ĩhv|1,Λε 6 C|v|1,Λε

This means ‖vh‖1,Λε 6 C‖v‖1,Λε , so that we can continue the calculation in
(2.42) using for any v ∈ H1(Λε) the corresponding vh ∈ Vh constructed as
above and recalling that vh is the L2(Γ)-orthogonal projection of v on Γ

‖λh‖− 1
2
,Γ 6 C sup

v∈H1(Λε)

∫
Γ
vλh

‖v‖1,Λε

= C sup
v∈H1(Λε)

∫
Γ
vhλh

‖v‖1,Λε

6 C sup
vh∈Vh

∫
Γ
vhλh

‖vh‖1,Λε

which is equivalent to (2.41).
Returning to the proof of the discrete inf-sup (2.40), for any λh ∈ Mh, we

can thus take vHh ∈ V d
Hh as vHh|Ω\Λ̄ = 0 and vHh|Λε = −vh, with vh ∈ Vh

given by (2.41), so that [vHh] = vh on Γ. Observing that ‖vHh‖V = ‖vh‖1,Λε

and ‖λh‖M = ‖λh‖− 1
2
,Γ we conclude that (2.41) implies (2.40).

We provide in the following Lemma some technicalities which were used
in the previous one.

Lemma 2.7. Let vh ∈ Vh be such that all its degrees of freedom (in the sense of [15])
vanish except those on the boundary Γ (i.e. vh vanishes at all the interior nodes of
Th, at all the degrees of freedom inside the internal facets of Th and on the boundary
facets on ∂Ωε, and at all the degrees of freedom inside the elements of Th). Then,

‖vh‖0,Λε 6 C
√
h‖vh‖0,Γ and |vh|1,Λε 6

C√
h
‖vh‖0,Γ

Proof. The function vh ∈ Vh satisfying the hypotheses of the Lemma is non-
zero only on the mesh elements touching the boundary Γ. Let T ∈ Th be
such en element such that one of its faces F lies on Γ. Mapping vh|T to the
reference element and using the equivalence of norms we see that

‖vh‖0,T 6 C
√
h‖vh‖0,F
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Consider now T ∈ Th such that it touches Γ at only one node x. Let us choose
a boundary mesh facet F ⊂ Γ such that x is a vertex of F . Again, by mapping
to the reference element and the equivalence of norms we see that

‖vh‖0,T 6 Ch
d
2 |vh(x)| 6 Ch

d
2× 1

h
d−1

2

‖vh‖0,F 6 C
√
h‖vh‖0,F

In 3D, there is also the case of tetrahedrons T ∈ Th touching Γ at en edge E.
Choosing a boundary mesh face F ⊂ Γ such that E is a side of F , we get by
similar reasoning as above

‖vh‖0,T 6 C
√
h‖vh‖0,F

Denoting by T Γ
h the ensemble of mesh elements T ∈ Th touching Γ, and by

F (T ) the boundary facet on Γ chosen for any T ∈ T Γ
h as above, we get

‖vh‖0,Λε =

∑
T∈T Γ

h

‖vh‖2
0,T

 1
2

6 C

∑
T∈T Γ

h

h‖vh‖2
0,F (T )

 1
2

6 C
√
h‖vh‖0,Γ

This is the announced estimate in L2(Lε). The estimate in H1(Lε) is derived
by the usual inverse inequality.

The following Lemma provides an interpolation estimate for the La-
grange multiplier λ = ∇u · n and is thus crucial for establishing the a priori
error estimate for (2.33). We note that it is optimal only if k = 1, and even in
this case the result is not completely satisfactory since it requires more than
H2 regularity of u.

Lemma 2.8. Let Ph be the projector on Mh orthogonal in L2(Γ). Then, for any
u ∈ Hk+1(Λε) with∇u ∈ L∞(Γ), setting λ = ∇u · n on Γ, it holds

‖λ− Phλ‖−1/2,Γ 6 Chk|u|k+1,Λε + Ch
3
2‖∇u‖L∞(Γ) (2.43)

with constant C > 0 depending only on the mesh regularity and on Λ.

Proof. Let Γ1, . . . ,ΓN be the sides (segments in 2D, polygons in 3D) compos-
ing the boundary of the polygon (polyhedron) Λ. Denoting by Ih the usual
nodal interpolator to Vh (or a Scott-Zhang interpolator, if appropriate) we
observe on any side Γs∥∥∥∥ ∂u∂xi − Ih ∂u∂xi

∥∥∥∥
0,Γs

6 Chk−
1
2

∣∣∣∣ ∂u∂xi
∣∣∣∣
k,Λε

Let n(s) = (n
(s)
1 , . . . , n

(s)
d ) be the external unit normal on Γs and set λ(s)

h =∑d
i=1 n

(s)
i Ih

∂u
∂xi

. Then,

‖n(s) · ∇u− λ(s)
h ‖0,Γs 6 Chk−

1
2 |u|k+1,Λε
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Let us glue λ(1)
h , . . . , λ

(N)
h into a function λdh defined on Γ by λdh|Γs = λ

(s)
h |Γs ,

s = 1, . . . , N . Recalling that λ = ∇u · n on Γ, we have

‖λ− λdh‖0,Γ 6 Chk−
1
2 |u|k+1,Λε

The function λdh is piecewise polynomial (of degree k) and continuous on
every side Γs. However, in general, it is discontinuous on Γ since the normal
n jumps over the corners (edges) of the polygon (polyhedron) Γ. We now
construct a continuous “correction” λh ∈ Mh of λdh by setting λh = λdh at all
the internal degrees of freedom on every side Γs and setting λh = 0 at the
corners of Γ (or the degrees of freedom on the edges in the 3D case).

Let us denote Ch the ensemble of triangles of Th adjacent to the corners of
Γ in 2D (or the ensemble of tetrahedrons of Th adjacent to the edges of Γ in
3D). By construction, λh coincide with λdh on Γ outside Ch so that

‖λh − λdh‖0,Γ 6 C‖λdh‖L∞(Γ)

√
|Ch|

By construction, λdh is uniformly bounded by the maximum of |∇u| on Γ
(eventually, miltiplied by a constant that depends only on the degree k). It is
also easy to see that |Ch| 6 Ch2 with the constant C depending only on Λ.
Thus,

‖λh − λdh‖0,Γ 6 Ch‖∇u‖L∞(Γ)

Recalling that Ph is the L2(Γ)-orthogonal projection on Mh and λh ∈ Mh, we
see

‖λ− Phλ‖0,Γ 6 ‖λ− λh‖0,Γ 6 ‖λ− λdh‖0,Γ + ‖λh − λdh‖0,Γ

6 Chk−
1
2 |u|k+1,Λε + Ch‖∇u‖L∞(Γ).

We now can also bound the H−
1
2 norm

‖λ−Phλ‖−1/2,Γ = sup
v∈H1/2(Γ)

(λ− Phλ, v)L2(Γ)

‖v‖1/2,Γ

= sup
v∈H1/2(Γ)

(λ− Phλ, v − Ihv)L2(Γ)

‖v‖1/2,Γ

6
(
Chk−

1
2 |u|k+1,Λε + Ch‖∇u‖L∞(Γ)

)
×
√
h

since ‖v − Ihv‖0,Γ 6 C
√
h|v|1,Λε 6 C

√
h‖v‖1/2,Γ assuming that v is extended

to Λε as a harmonic function.

Theorem 2.9. Problem (2.33) admits a unique solution (uHh, λh) ∈ V d
Hh×Mh.

Provided u ∈ Hk+1(Ω) and ∇u ∈ L∞(Γ), we have moreover the following a priori
error estimate

‖uHh − u‖V 6 C
(
Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λε + Ch

3
2‖∇u‖L∞(Γ)

)
(2.44)

with constant C > 0 depending only on the mesh regularity and on Λ.
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Proof. The bilinear form a is uniformly coercive on kerBHh (Lemma 2.5) and
form b satisfies the uniform inf-sup condition on V d

Hh×Mh with a mesh-
independent constant (Lemma 2.6). It implies by the approximation theory
of mixed problems [12] that the discrete problem (2.33) is well-posed. More-
over, analogous properties hold on the continuous level. This entails that the
unique solution (uHh, λh) to (2.33) satisfies the error bound

‖u− uHh‖V + ‖λ− λh‖M 6 C

(
min

vHh∈V d
Hh

‖u− vHh‖V + min
µh∈Mh

‖λ− µh‖M
)
.

(2.45)
It remains thus to find the interpolants vHh and µh to u and λ respectively
that provide the optimal error estimate in the sense of inequality (2.44). We
begin by constructing the appropriate vHh. Let ũ ∈ Hk+1(Ω) be the extension
of u from Ω\Λ̄ to the whole of Ω, i.e. ũ = u on Ω\Λ̄. By the extension theorem
for Sobolev spaces [1], we can construct ũ so that ‖ũ‖k+1,Ω 6 C‖u‖k+1,Ω\Λ̄
where C is a constant that depends only on Ω and Λ. Let IH : Hk+1(Ω)→ VH
and Ih : Hk+1(Λ) → Vh be the standard interpolation operators satisfying
|v−IHv|1,Ω 6 CHk|v|k+1,Ω for any v ∈ Hk+1(Λε) and |v−Ihv|1,Λε 6 Chk|v|k+1,Λε

for any v ∈ Hk+1(Λε) where the constant C depends only on the regularity
of the meshes. We choose then vHh ∈ V d

Hh as follows: vHh = IH ũ on Ω\Λ̄ and
vHh = Ihu on Λ. The function satisfies

‖u− vHh‖V 6 C(|u− IH ũ|1,Ω + |u− Ihu|1,Λε)

6 C(Hk|ũ|k+1,Ω + hk|u|k+1,Λε) (2.46)

We now recall λ = (∇u·n) on Γ and take µh ∈Mh as the orthogonal projection
µh = Phµ. Combining (2.43) with (2.46) and substituting into (2.45) gives the
announced error estimate (2.44).

Remark 2.1. As an alternative to error estimate derivation based on the mixed for-
mulation as above, one can try a more direct approach by eliminating the Lagrange
multiplier λh from (2.33).

We start by introducing the space of functions satisfying the constraint in (2.33):

V wc
Hh = {v ∈ V d

Hh such that b(v, µ) = 0 ∀µ ∈Mh}

The function in V wc
Hh are “weakly continuous” in the sense of a natural finite element

approximation of the condition [v] = 0 on Γ. We can now rewrite problem (2.33) as:
find uHh ∈ V wc

Hh such that

a(uHh, v) = L(v), ∀v ∈ V wc
Hh (2.47)

It is possible to construct an optimal interpolant ũHh ∈ V wc
Hh to u. Let IH :

Hk+1(Ω) → VH and Ih : Hk+1(Λε) → Vh be the standard nodal interpolation
operators satisfying (2.11)–(2.12) and

|v − IHv|1,E 6 CHk− 1
2 |v|k+1,T for any v ∈ Hk+1(T ), T ∈ TH , E ∈ ∂T
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and

|v − Ihv|1,E 6 Chk−
1
2 |v|k+1,T for any v ∈ Hk+1(T ), T ∈ Th, E ∈ ∂T

with E representing any side of T .
As in the proofs above, we start to define the interpolant ũHh ∈ V wc

Hh by taking
IH ũ outside Λ where ũ is an extension of u from Ω \ Λ̄ to the whole Ω. We cannot
take ũHh simply as Ihu inside Λ since such a function would not satisfy the weak
continuity constraint over Γ. We should thus correct Ihu inside Λ to restore the
weak continuity by adding an appropriate finite element function rh ∈ Vh equal to
Ph(IH ũ) − Ihu on Γ. We introduce r ∈ H1(Λ) such that r = IH ũ − Ihu on Γ
and ‖r‖1,Λ ≤ C‖r‖ 1

2
,Γ with a constant C > 0 depending only on Λ. Moreover, let

Ĩh : H1(Λε)→ Vh be the Scott-Zhang interpolant satisfying

‖r − Ĩhr‖0,Γ 6 Ch|r|1,Γ and ‖Ĩhr‖1,Λε ≤ C‖r‖1,Λε

We have thus

‖Ĩhr‖1,Λε ≤ C‖r‖1,Λε ≤ C‖r‖1,Λ ≤ C‖r‖ 1
2
,Γ

= C‖IH ũ− Ihu‖ 1
2
,Γ 6 C(‖IH ũ− u‖ 1

2
,Γ + ‖Ihu− u‖ 1

2
,Γ)

6 C(‖u− IH ũ‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε)

Let rh ∈ Vh coincide with Ĩhr at all the internal degrees of freedom of the mesh Th
and be defined on Γ by rh = Phr = Ph(IH ũ) − Ihu. Invoking Lemma 2.7 and the
estimates on the interpolator Ĩh, we obtain

‖rh − Ĩhr‖1,Λε ≤
C√
h
‖rh − Ĩhr‖0,Γ ≤

C√
h

(‖r − Phr‖0,Γ + ‖r − Ĩhr‖0,Γ)

≤ C√
h
‖r − Ĩhr‖0,Γ 6 C

√
h|r|1,Γ 6 C

√
h(‖u− IH ũ‖1,Γ + ‖u− Ihu‖1,Γ)

We now take ũHh ∈ V wc
Hh with the components ũH ∈ VH and ũh ∈ Vh such

that ũH = IH ũ and ũh = Ihu + rh. We have thanks to the interpolation estimates
mentioned above

‖u− ũHh‖1,Ωε 6 ‖u− IH ũ‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε + ‖Ĩhr‖1,Λε + ‖rh − Ĩhr‖1,Λε

6 C(‖u− IH ũ‖1,Ω\Λ̄ + ‖u− Ihu‖1,Λε)

+C
√
h(‖u− IH ũ‖1,Γ + ‖u− Ihu‖1,Γ)

6 C(Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λε)

+C
√
h(Hk− 1

2 |u|k+1,Ω\Λ̄ + hk−
1
2 |u|k+1,Λε)

6 C(Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λε)
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We have thus constructed an optimal interpolant ũHh ∈ V wc
Hh for u, as in the Γ-

nested case, cf. the proof of Theorem 2.1. Unfortunately, this does not leave to an a
priori error estimate for the solution of Problem (2.47). Indeed, this discretization is
non-conforming: substituting the exact solution u there gives

a(uHh, v) = L(v) + b(v, λ), ∀v ∈ V wc
Hh

with the b-term which cannot be neglected. Dealing with it by a Strang lemma leads
again to the possibly sub-optimal estimate of Theorem 2.9.

2.3.2 Convergence of the iterative algorithm

The proof of the convergence of Algorithm 2.1 in the present general case
starts in the same manner as that in the Γ-dependent case in Subsection 2.2.2:
we introduce the operator AHh : VH → VH by (2.14) and recall the scalar
product (2.15). As in Section 2.2.2, we verify that the iterates unH evolve from
one iteration to another as

unH = (I − ωAHh)un−1
H + ωFH . (2.48)

with FH defined by (2.19) and (2.18). We can again prove that operator AHh
is self-adjoint and coercive with respect to the scalar product (2.15), cf. (2.23)
in Lemma 2.2. The expression (2.22) for AHh remains also valid.

In what follows we shall work with the ensemble of the triangles from
the coarse mesh that lie inside Λ (in contrast with the Γ-nested case, this en-
semble does not necessarily coincide with Λ) and we shall need to introduce
some assumptions about this set:

Definition 2.3. Let ΛH ⊂ Λ be defined as the interior of the union of all the cells
T ∈ TH that lie inside Λ̄ (we suppose here that Λ is an open set and the cells T are
closed). Thus, ΛH =

(
∪T∈TH , T⊂Λ̄T

)◦. We also denote ΓH = ∂ΛH

Definition 2.4. Using the notation ΛH ⊂ Λ from the previous definition, we intro-
duce the patch conformity parameter κH as κH = minT∈TH κ(T ) with

κ(T ) =

{
+∞, if T ⊂ Λ̄
|T\Λ̄|
|T | , otherwise

for any cell T ∈ TH . The patch Λ is said to be geometrically conforming with the
coarse mesh TH if κH = 1.

We observe that the patch conformity parameter is necessarily a number
in (0, 1]. Indeed, there are necessarily some mesh cells T ∈ TH such that
T 6⊂ Λ̄ (otherwise, the patch Λ would coincide with Ω, which is excluded
by our general assumptions) and κ(T ) ∈ (0, 1] for any such cell T . The case
of a conforming interface, as in Definition 2.2 corresponds to κH = 1. On
the other side of the spectrum, κH << 1 indicates the presence of mesh cells
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T ∈ TH that are almost, but nor entirely, covered by Λ. Such situations are
maleficent for the convergence of the iterative Algorithm 2.1, as will be seen
below.

We shall also need a rather technical assumption on Λ and ΛH , as stated in
the Definition below. We choose to write this out only in the case d = 2, but
the case d = 3 can be treated similarly modulo some more tedious notations.

Definition 2.5. The patch Λ will be called regular with respect to the mesh TH if the
boundary of the corresponding subdomain ΛH can be covered by a finite number of
open sets U1, U2, . . . so that

1. The number of sets Ui is not greater than N ;

2. Any point x ∈ ΓH belongs to at least one set Ui together with the ball B(x, ε)
of center x and radius ε;

3. The intersection of ΓH with each Ui can be represented as the graph of a Lips-
chitz function with Lipschitz constant 6 M , i.e. for each Ui there exist some
Cartesian coordinates ξ1, ξ2 and a function φi : R→ R such that

ΛH ∪ Ui = {(ξ1, ξ2) ∈ ΛH / ξ2 > φi(ξ1)}

and
|φi(x)− φi(y)| 6M |x− y|, ∀x, y ∈ R.

We will also assume that Λ is a polygon and

4. The intersection of Γ with any cell T ∈ TH consists of at most K straight
segments (planar faces).

The positive constants M , ε and the integers N , K should be chosen indepen-
dently of the meshes TH and Th. They will be referred to as the regularity parameters
of Λ with respect to TH .

The regularity assumptions 1–3 are introduced in the book [38] to char-
acterize minimally smooth domains for which it is possible to construct the
extension operators for the Sobolev spaces.1 In our analysis below, we shall
not only need that the regularity parameters M , ε and N exist but also that
they are independent of TH in the considered class of meshes. While it is
not entirely clear what restrictions do we need to impose on the meshes TH
in order to satisfy such an assumption, it does not seem too restrictive. In-
deed, in the 2D case, for any polygonal patch Λ and any regular family of
coarse meshes with non-obtuse cells, the angle between any edge of TH on
ΓH and the nearest edge of Λ will be less than some maximal angle αmax <

π
2
.

One can thus see that the portion of ΓH that goes along an edge of Λ can be
parametrized by a function with the Lipschitz constant that depends only on
αmax. Similar considerations are also valid in the 3D case.

1In fact, the definition in [38] is more general as it allows for an infinite sequence of open
sets {Ui} such that no point of R2 is contained in more than N of the Ui’s, but this subtlety
is not important in our context.
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Lemma 2.10. Suppose that the patch Λ is regular with respect to the mesh TH and
recall the patch conformity parameter κH from Definition 2.4. There exists δ > 0
which depends only on κH and on the regularity of TH and of Λ, such that∫

T\Λ̄
|∇uH |2 > δ

∫
T

|∇uH |2, ∀uH ∈ VH and ∀T ∈ TH .

Proof. We give the proof only in the 2D case to ease the notations. We want
to prove that the quantity

F(T,Λ, uH) =

∫
T\Λ̄ |∇uH |

2∫
T
|∇uH |2

is bounded from below by a positive constant for all admissible T,Λ and for
all polynomials uH 6= 0 of degree 6 k. F(T,Λ, uH) is invariant under the
following types of coordinate change: shift of the origin, rotation and homo-
thety x 7−→ λx (λ ∈ R). It it thus sufficient to bound this quantity under
the following geometrical assumption: the triangle T has the vertices A,B,C
with A = (0, 0), B = (0, 1) and C = (xC , yC) with some xC , yC bounded
by the regularity parameter of the mesh. The curve Γ ∩ T is the union of
at most K segments. Thus the geometry of T and T\Λ̄ is determined by
2(K + 1) real parameters which are the coordinates of C and the end points
of the segments in Γ ∩ T . All these parameters are uniformly bounded.
F(T,Λ, uH) does not change if we multiply the polynomial uH by any real
number, so that we can assume that all the coefficients of uH are bounded by
1 in absolute value. Thus, the problem of finding δ = inf F(T,Λ, uH) under
the restrictions on T,Λ, uH described above is a minimization problem for a
continuous function that depends on a finite number of parameters and all
these parameters are bounded. This problem admits therefore a minimizer,
i.e. there exist T,Λ, uH such that δ = F(T,Λ, uH). It remains to verify that
δ > 0. Supposing that it’s not true, i.e. δ = 0, implies

∫
T\Λ̄ |∇uH |

2 = 0

which is only possible if meas(T\Λ̄) = 0. But this contradicts the assumption
meas(T\Λ̄) > κHmeas(T ).

Remark 2.2. The estimate of the lemma above is trivial for P1 finite elements and
we can take δ = κH in this case. Indeed, for any cell T ∈ TH , T 6⊂ Λ∫

T\Λ̄
|∇uH |2 =

|T\Λ|
|T |

∫
T

|∇uH |2 > κH

∫
T

|∇uH |2

since |∇uH | = const on T .

Lemma 2.11. The kernel of operator AHh coincides with V 0
H , as defined by (2.24),

and AHh is coercive on its orthogonal complement V 1
H . More precisely, assuming

that Λ is regular with respect to TH , there exists m > 0 depending only on the
regularity parameters of Λ with respect to TH , on the parameter κH ∈ (0, 1] from
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Definition 2.4, and on the regularity parameters of TH itself, such that

(AHhvH , vH) > m|vH |21,Ω ∀vH ∈ V 1
H (2.49)

The norm of AHh as an operator in the Hilbert space H1
0 (Ω) equipped with the scalar

product (2.15) is bounded by a mesh-independent constant.

Proof. Let us first prove that kerAHh ⊂ V 0
H . If uH ∈ kerAHh, then uH = 0

on Ω\Λ̄ as follows from the expression for (AHhuH , uH) in (2.22). This means
that uH = 0 on every cell T ∈ TH which is not entirely inside Λ, since uH
is a polynomial. We have thus uH = 0 on Ω\Λ̄H . On the other hand, if
uH ∈ V 0

H then zh = 0 on Λ and νh = 0 on Γ so that AHhuH = 0. This entails
kerAHh = V 0

H .
In order to prove the coercivity estimate we invoke again (2.22) with zH =

uH ∈ V 1
H , which implies

(AHhuH , uH) >
∫

Ω\Λ̄
∇uH · ∇uH >

∑
T∈TH

∫
T\Λ̄
|∇uH |2 > δ

∫
Ω\Λ̄H

|∇uH |2 (2.50)

with δ > 0 from Lemma 2.10.
LetE be the Stein’s extension operator [38] that maps any integrable func-

tion u : Ω\Λ̄H → R to the function Eu : Ω → R so that Eu = u on Ω\Λ̄H . In
particular, E maps H1(Ω\Λ̄H) to H1(Ω). By construction, described in de-
tail in [38], the norm of E in these spaces depends only on the regularity
constants of Λ with respect to TH , cf. Definition 2.5. Now, let RH be a Clé-
ment type interpolation operator acting on functions in H1(ΛH) and produc-
ing piecewise polynomial (of degree k) finite element functions on the part
of the coarse mesh TH inside ΛH . One can assume that RHu = u on ∂ΛH pro-
vided u is piecewise polynomial (of degree k) there [7]. The norm of RH in
H1(ΛH) depends only on the regularity of TH . Taking any uH ∈ V 1

H , we can
thus construct vH ∈ VH such that

vH =

{
uH , on Ω\Λ̄H

RHEuH , on ΛH

By definition of V 1
H , we have c(uH , vH−uH) = 0 which entails |uH |1,Ω 6 |vH |1,Ω

so that

|uH |21,Ω 6 ‖RH,ΛH
‖2‖EuH‖2

H1(ΛH) + ‖uH‖2
H1(Ω\ΛH)

6
(
‖RH‖2‖E‖2 + 1

)
‖uH‖2

H1(Ω\ΛH)

6
(
‖RH‖2‖E‖2 + 1

)
CP |uH |21,Ω\Λ̄H

. (2.51)

CP in the last line stands for the constant in a Poincaré type inequality, which
is valid since uH vanishes on ∂Ω. Combining (2.50) with (2.51), we see that

(AHhuH , uH) >
δ

(‖RH‖2‖E‖2 + 1)CP
|uH |21,Ω, (2.52)
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which is equivalent to (2.49).
The last statement of the Lemma concerns the norm of operator AHh. In

order to prove it, we first observe that by the standard theory of the finite
element approximations to the mixed problems [12], the solution (zh, νh) to
problem (2.16) satisfies

‖zh‖1,Λ + ‖νh‖− 1
2
,Γ 6 C‖zH‖ 1

2
,Γ

with a constant that depends only on Λ. The definition of operator AHh now
gives ∀zH , vH ∈ VH

(AHhzH , vH) 6
∫

Ω\Λ̄
∇zH · ∇vH + ‖νh‖− 1

2
,Γ‖vH‖ 1

2
,Γ

6
∫

Ω\Λ̄
∇zH · ∇vH + C‖zH‖ 1

2
,Γ‖vH‖ 1

2
,Γ

6 M‖zH‖1,Ω‖vH‖1,Ω

where C,M denote the mesh-independent constants. Thus ‖AHh‖ 6M .

Theorem 2.12. Assume that Λ is regular with respect to TH , cf. Definitions 2.5 and
2.3. Algorithm 2.1 converges to the solution to (2.33) provided 0 < ω < ω∗ where
ω∗ is a mesh-independent constant. This means that unHh → uHh and λnh → λh as
n → ∞ where (uHh, λh) ∈ V d

Hh×Mh is solution to (2.33). The convergence rate
depends on the regularity of TH , on Λ and on its regularity with respect to TH and
also on the parameter κH introduced in Definition 2.4.

We skip the proof of this Theorem since it goes along literally the same
line as that of its analogue in the Γ-nested case (Theorem 2.4). Note that
ω∗ can be chosen indeed independent of κH since it depends essentially on
the continuity constant (the norm) of operator AHh, which is not affected
by κH . However, the patch conformity parameter κH has a crucial role, at
least in theory. Indeed, the convergence rate of the algorithm is essentially
determined by the coercitivity constant of operator AHh which, according to
(2.52), is essentially of the order of κH . Thus, the convergence of the iterations
can be very slow if the patch is badly positioned on the coarse mesh so that
κH << 1.

Remark 2.3. In the general case of two arbitrary meshes TH and Th, κH can be
extremely small if some cells of TH are cut by the boundary of Λ so that only a
tiny portion of them rests outside Λ. Thus, the convergence of Algorithm 2.1 can
be arbitrarily slow. We stress that this observation is not an artifact of possibly
non optimal estimates in the proof of our lemmas. It reflects the real behavior of
Algorithm 2.1 on general meshes as can be seen on the following simple example in
1D: let Ω = (0, 1) and consider the problem

−u′′ = f on Ω, u(0) = u(1) = 1.
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We take the patch Λ = (a, b) and suppose that it is placed symmetrically, i.e. a+ b =
1. We choose a uniform coarse grid of step H on Ω and introduce the piecewise linear
finite element space VH on it. We also introduce a fine mesh Th on Λ and the fine
finite element space Vh.

We now apply Algorithm 2.1 to this problem in the trivial case u = f = 0
starting from some non-zero initial approximation u0

H (there is no hole Ωε in this
simple example so that Λε = Λ). We take ω = 1 (relaxation, i.e. taking ω < 1 would
make the convergence even slower in this case). The coarse problem is∫ 1

0

(unH)′v′H = −λn−1
h (a)vH(a)− λn−1

h (b)vH(b) +

∫ b

a

(un−1
H )′v′H , ∀vH ∈ VH

The point a is inside the coarse mesh interval, say [i0H, (i0 + 1)H), for some integer
i0. We have thus a = (i0 +κH)H . By symmetry b = (i1−κH)H for some i1 > i0. If
the initial approximation is symmetric, so are all the iterates. Then unh(x) = unH(a)
for all x ∈ (a, b) and λnh = 0 so that the coarse problem is simplified to∫ 1

0

(unH)′v′H =

∫ b

a

(un−1
H )′v′H , ∀vH ∈ VH

This equation has a simple explicit solution if we take u0
H such that u0

H(x) = 0 for
x ∈ [0, i0H]∩ [i1H, 1] and u0

H(x) = 1 for x ∈ [(i0 + 1)H, (i1 − 1)H]. We have then
(recall that both VH and Vh are supposed to be the spaces of piecewise linear functions
on the corresponding meshes)

unH = (1− κH)nu0
H .

This proves that Algorithm 2.1 can indeed converge very slowly if κH << 1.
This being said, the numerical tests usually demonstrate that Algorithm 2.1 con-

verges rapidly even on “bad" meshes, more precisely the slow convergence is ob-
served in practice only when we measure the error between the iterates unHh and the
converged numerical solution uHh, but not for the error between unHh and the exact
solution u, which is ultimately the only quantity of practical interest. We do not
have a theoretical justification of this phenomenon, neither can we assure its gener-
ality. We can conjecture, however, the following scenario that may be quite common:
the error on each iteration (unHh − uHh) can be decomposed into the sum of “fast"
modes (the convergence on these if not affected by the possible smallness of κH) and
“slow” ones which are diminished by the algorithm at the rate proportional to κH ,
as in the 1D example above. This example suggests also that the slow modes are
somewhat “pathological", in the sense that they are finite element approximations of
some discontinuous functions. The contribution of such modes is small already in
the initial approximation (u0

Hh − uHh) if one constructs u0
Hh properly, for example

as the numerical solution on the coarse mesh. The part of the error on the “slow"
modes is thus masked out by the discretization error (uHh − u). The possible slow
convergence on general meshes remains nevertheless an undesirable feature of Algo-
rithm 2.1. In the next section, we propose a modification of this algorithms to get rid
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of the dependence on κH .

2.4 Numerical Zomm with discontinuous La-
grange multipliers for non Γ-nested meshes

Algorithm 2.1 is not completely satisfactory if one wants to deal with arbi-
trary, not necessarily Γ-nested triangulations TH and Th. Indeed, one cannot
guarantee then the optimal a priori estimate as in Theorem 2.1. The main
trouble is in the choice of continuous finite elements as the space Mh for the
Lagrange multiplier λh. This quantity can be interpreted as an approxima-
tion to the normal flux λ = n · ∇u|Γ which is discontinuous at the corners
of Γ. The error λh − λ cannot thus be of the optimal order. This does not
affect the error uHh − u (the only quantity of interest for us) in the case of
Γ-nested meshes since λh can be then essentially eliminated from the system,
cf. the proof of Theorem 2.1. However, this will not be necessarily the case
if one works on non Γ-nested meshes. We propose therefore to replace the
continuous finite element space Mh by the discontinuous one

Md
h = {µh ∈ L2(Γ) : µh|E ∈ Pk−1 on every boundary edge E

of the mesh Th inside Γ} (2.53)

The pair of spaces Vh×Md
h does no longer enjoy the infsup property with

respect to the bilinear form
∫

Γ
µh[vHh]. We introduce therefore a Barbosa-

Hughes stabilization in the fine problem for (unh, λ
n
h) as in [5, 24]. This gives

Algorithm 2.2.
In this Subsection, we shall investigate the precision and the convergence

of this Algorithm. As expected, an optimal a priori error estimates will be
established. On the other hand, Algorithm 2.2 can still suffer from slow con-
vergence if the meshes do not present a conforming interface (Definition 2.2).

2.4.1 The error estimate for Algorithm 2.2

The first thing to check about this algorithm is whether each iteration of it is
well defined. In particular, it is not immediate to see if the fine problem for
(unh, λ

n
h) admits a unique solution in Vh×Md

h . In order to see it, we note that
this problem can be rewritten in a compact form as: find (unh, λ

n
h) ∈ Vh×Md

h

such that

BΛε((u
n
h, λ

n
h), (vh, µh)) =

∫
Λε

fvh −
∫

Γ

unH µh, ∀(vh, µh) ∈ Vh×Md
h

where

BΛε((u, λ), (v, µ)) =

∫
Λε

∇u ·∇v−
∫

Γ

λv−
∫

Γ

µu−σh
∫

Γ

(λ−n ·∇u)(µ−n ·∇v)
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Choose an initial guess u0
H ∈ VH and the parameters ω ∈ (0, 1], σ > 0

for n = 1, 2, 3, . . . do
Find unh ∈ Vh and λnh ∈Md

h such that∫
Λε

∇unh · ∇vh −
∫

Γ

λnh vh + σh

∫
Γ

(λnh − n · ∇unh)n · ∇vh

=

∫
Λε

fvh, ∀vh ∈ Vh

−
∫

Γ

unh µh − σh
∫

Γ

(λnh − n · ∇unh)µh

= −
∫

Γ

un−1
H µh, ∀µh ∈Md

h

Find unH ∈ VH such that∫
Ω

∇unH · ∇vH = ω

∫
Ω\Λ̄

fvH − ω
∫

Γ

λnhvH + ω

∫
Λ

∇un−1
H · ∇vH

+(1− ω)

∫
Ω

∇un−1
H · ∇vH , ∀vH ∈ VH

Set

u
n−1/2
Hh =

{
unh, in Λε

un−1
H , outside Λ

unHh =

{
unh, in Λε

unH , outside Λ

end
Algorithm 2.2: Multi-model numerical zoom with discontinuous La-
grange multipliers

Lemma 2.13. There exists mesh-independent constants σ0 > 0, C > 0 and c > 0
such that for all σ ≤ σ0

inf
(uh,λh)∈Vh×Md

h

sup
(vh,µh)∈Vh×Md

h

BΛε((uh, λh), (vh, µh))

|||uh, λh|||Λε |||vh, µh|||Λε

> c, (2.54)

sup
(uh,λh)∈V d

h×Mh

sup
(vh,µh)∈Vh×Md

h

BΛε((uh, λh), (vh, µh))

|||uh, λh|||Λε |||vh, µh|||Λε

≤ C, (2.55)

where the triple norm is defined by

|||u, λ|||Λε =

(
|u|21,Λε

+
1

h
|u|20,Γ + h‖λ‖2

0,Γ

)1/2

,

and c, C are mesh-independent constants.
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The proof of this lemma is virtually the same as that of the forthcoming
Lemma 2.14 and we omit it. We note only that the infsup condition (2.54)
ensures indeed that the matrix of the problem for (unh, λ

n
h) on each iteration

of Algorithm 2.2 is indeed non singular and thus (unh, λ
n
h) are well defined

provided the stabilization parameter σ is chosen sufficiently small.
We now turn to the study of the precision of Algorithm 2.2. Assuming

for the moment that this algorithm converges (this will be indeed proved in
the next section), we write unH → uH , unh → uh on Ω and λnh → λh on Γ as
n→∞. Passing to the limit in Algorithm 2, it is easy to see that the functions
uH ∈ VH , uh ∈ Vh and λh ∈Md

h satisfy (2.6) and∫
Λε

∇uh · ∇vh −
∫

Γ

λhvh + σh

∫
Γ

(λh − n · ∇uh)n · ∇vh =

∫
Λε

fvh, (2.56)∫
Γ

µhuh + σh

∫
Γ

(λh − n · ∇uh)µh =

∫
Γ

µhuH , (2.57)

∀vh ∈ Vh and µh ∈Mh

Taking the difference between the two equations above, adding the result to
(2.6), and combining uH and uh into uHh ∈ V d

Hh where V d
Hh is the space of pos-

sibly discontinuous finite element functions (2.32), we see that the problem
for (uHh, λh) ∈ V d

Hh×Md
h can be written in the compact form

B((uHh, λh), (vHh, µh)) = L(vHh) ∀(vHh, µh) ∈ V d
Hh×Md

h (2.58)

where

B((u, λ), (v, µ)) = a(u, v)+

∫
Γ

λ[v]+

∫
Γ

µ[u]−σh
∫

Γ

(λ−n ·∇u|Λε)(µ−n ·∇v|Λε)

and the brackets stand for the jump on Γ, i.e. [v] = v|Ω\Λ̄ − v|Λε .
The following result is an adaptation of Lemma 3 from [24].

Lemma 2.14. There exists mesh-independent constants σ0 > 0, C > 0 and c > 0
such that for all σ ≤ σ0

inf
(uHh,λh)∈V d

Hh×M
d
h

sup
(vHh,µh)∈V d

Hh×M
d
h

B((uHh, λh), (vHh, µh))

|||uHh, λh||| |||vHh, µh|||
> c, (2.59)

sup
(uHh,λh)∈V d

Hh×M
d
h

sup
(vHh,µh)∈V d

Hh×M
d
h

B((uHh, λh), (vHh, µh))

|||uHh, λh||| |||vHh, µh|||
≤ C, (2.60)

where the triple norm is defined by

|||u, λ||| =
(
|u|21,Ω\Γ +

1

h
‖[u]‖2

0,Γ + h‖λ‖2
0,Γ

)1/2

, |u|21,Ω\Γ := |u|21,Ω\Λ̄ + |u|21,Λε
,
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and c, C are mesh-independent constants.

Proof. We observe ∀(uHh, λh) ∈ V d
Hh×Md

h with uHh|Ω\Λ̄ = uH and uHh|Λε = uh

B((uHh, λh), (uHh,−λh)) = |uHh|21,Ω\Γ − σh
∫

Γ

|n · ∇uh|2 + σh

∫
Γ

λ2
h

>
1

2
|uHh|21,Ω\Γ + σh‖λh‖2

0,Γ.

We have used here the inverse inequality

‖∇uh‖0,Γ ≤
CI√
h
‖∇uh‖0,Λε (2.61)

valid for any uh ∈ Vh and assumed that σ is small enough so that σC2
I 6 1

2
.

Inequality (2.61) can be easily proved element by element by running over
all the cells of Th adjacent to Γ and passing to a reference cell. This ensures in
particular that CI depends only on the regularity of Th.

Let us now take µ̄h = 1
h
Ph[uHh] where Ph is the L2(Γ)-orthogonal projector

on Md
h . Using again the inverse inequality above, we obtain

B((uHh, λh), (0, µ̄h)) =
1

h
‖Ph[uHh]‖2

0,Γ − σ
∫

Γ

(λh − n · ∇uh)Ph[uHh]

>
1

h
‖Ph[uHh]‖2

0,Γ − σ
(√

h‖λh‖0,Γ +
√
h‖∇uh‖0,Γ

) 1√
h
‖Ph[uHh]‖0,Γ

>
1

2h
‖Ph[uHh]‖2

0,Γ − 2σ2h‖λh‖2
0,Γ − 2σ2C2

I |uHh|21,Ω\Γ.

Combining the results above and taking η > 0 small enough yields

B((uHh, λh), (uHh,−λh + ηµ̄h)) > c
(
|uHh|21,Ω\Γ + h‖λh‖2

0,Γ +
η

2h
‖Ph[uHh]‖2

0,Γ

)
= c

(
|uHh|21,Ω\Γ + h‖λh‖2

0,Γ +
η

2h
‖[uHh]‖2

0,Γ −
η

2h
‖[uHh]− Ph[uHh]‖2

0,Γ

)
The equality in the last line is valid by Pythagoras theorem.

In order to eliminate the projector Ph in the last estimate, we remark first
the bound

‖v − Phv‖0,Γ ≤ C
√
h|v|1,Λε (2.62)

valid for any v ∈ H1(Λε). To prove (2.62) let us consider a boundary edge E
of mesh Th attached to a mesh element (cell) T . Denoting by v̄E the average
of v over E, i.e. v̄E = 1

|E|

∫
E
v, we see by scaling to a reference cell

‖v − v̄E‖0,E 6 C
√
h|v|1,T (2.63)
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Since the space of piecewise constants on the boundary edges of Th on Γ is a
subspace of Mh we see that

‖v − Phv‖0,Γ ≤

(∑
E

‖v − v̄E‖2
0,E

)1/2

with the sum taken over all boundary edges of Th on Γ. Combining the last
two bounds leads to (2.62).

We also have the bound

‖v − Phv‖0,Γ ≤ C
√
h|v|1,Ω\Λ (2.64)

for any v ∈ H1(Ω \ Λ). This can be proved similar to (2.62) by associating
to any boundary edge E of mesh Th a regular cell T lying inside Ω \ Λ and
having E as a side. One can construct these cells so that they intersect each
other only a finite (bounded uniformly in h) number of times. Then summing
of (2.63) with these cells over the edges E on Γ yields (2.64).

Applying (2.62) to v = uh and (2.64) to v = uH we conclude

‖[uHh]− Ph[uHh]‖0,Γ 6 ‖uH − PhuH‖0,Γ + ‖uh − Phuh‖0,Γ

6 C
√
h
(
|uH |1,Ω\Λ + |uh|1,Λε

)
6 C
√
h|uHh|1,Ω\Γ

so that, recalling that η is supposed sufficiently small,

B((uHh, λh), (uHh,−λh + ηµ̄h)) > c

(
1

2
|uHh|21,Ω\Γ + h‖λh‖2

0,Γ +
η

2h
‖[uHh]‖2

0,Γ

)
.

This proves (2.59).
In order to prove (2.60) we remark

B((uHh, λh), (vHh, µh)) ≤ |||uHh, λh||| |||vHh, µh|||+ σh(‖∇uh‖0,Γ + ‖λh‖0,Γ)(‖∇vh‖0,Γ + ‖µh‖0,Γ)

≤ C|||uHh, λh||| |||vHh, µh|||

using the inverse inequality (2.61).

Theorem 2.15. Problem (2.58) admits the unique solution (uHh, λh) ∈ V d
Hh×Md

h

provided the stabilization parameter σ is sufficiently small. If u, the exact solution
to (2.1), is in Hk+1(Ω), we have moreover the following a priori error estimate

‖uHh − u‖1,Ω\Γ 6 C
(
Hk‖u‖k+1,Ω\Λ̄ + hk‖u‖k+1,Λε

)
(2.65)

with a constant C independent of H , h and u.

Proof. Let

V d = {v ∈ L2(Ω) : v|Ω \ Λ̄ ∈ H1(Ω \ Λ̄), v|Λε ∈ H1(Λε), v|∂Ω = 0},
M = L2(Γ).
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The exact solution u ∈ V d together with λ = n · ∇u|Γ ∈M satisfy

B((u, λ), (v, µ)) = L(v) ∀(v, µ) ∈ V d×M

Subtracting (2.58) from the last equation we see that

B((u− uHh, λ− λh), (vHh, µh)) = L(vHh) ∀(vHh, µh) ∈ V d
Hh×Md

h

so that Lemma 2.14 implies

‖u− uHh‖1,Ω\Γ ≤ |||u− uHh, λ− λh||| ≤ C inf
(ũHh,λ̃h)∈V d

Hh×M
d
h

|||u− ũHh, λ− λ̃h|||.

(2.66)
It remains thus to find the interpolants ũHh and λ̃h to u and λ respectively
that provide the optimal error estimate in the sense of inequality (2.65). We
begin by constructing the appropriate vHh. Let ũ ∈ Hk+1(Ω) be the extension
of u from Ω\Λ̄ to the whole of Ω, i.e. ũ = u on Ω\Λ̄. By the extension theorem
for Sobolev spaces [1, 38], we can construct ũ so that ‖ũ‖k+1,Ω 6 C‖u‖k+1,Ω\Λ̄
where C is a constant that depends only on Ω and Λε. Let IH : Hk+1(Ω) →
VH and Ih : Hk+1(Λε) → Vh be the Clément type interpolation operators
satisfying |v − IHv|1,Ω 6 CHk|v|k+1,Ω for any v ∈ Hk+1(Ω) and |v − Ihv|1,Ω 6
Chk|v|k+1,Λε for any v ∈ Hk+1(Λε) where the constant C depends only on
the regularity of the meshes. Several other properties of the interpolation
operators will be also used. All of them can be proven by the methods of
[7, 37]. We choose now ũHh ∈ VHh so that ũHh = IH ũ on Ω \ Λ̄ and ũHh =
Ih(u+ IH ũ− ũ) on Λε. Hence

‖u− ũHh‖1,Ω\Γ =
(
|u− IH ũ|21,Ω\Λ̄ + |u− Ihu+ Ih(ũ− IH ũ)|21,Λε

) 1
2

(2.67)

6 C
(
|ũ− IH ũ|21,Ω + |u− Ihu|21,Λε

) 1
2

6 C(Hk|ũ|k+1,Ω + hk|u|k+1,Λε) 6 C(Hk‖u‖k+1,Ω\Λ̄ + hk|u|k+1,Λε)

Note that we have used here, besides the above mentioned interpolation
estimates, the H1-stability of operator Ih, i.e. |Ihv|1,Λε ≤ C|v|1,Λε for any
v ∈ H1(Λε).

The interpolation operator Ih also satisfies ‖v − Ihv‖0,Γ 6 Chk+ 1
2 |v|k+1,Λε

(resp. ‖v − Ihv‖0,Γ 6 C
√
h|v|Λε) for any v ∈ Hk+1(Λε) (resp. v ∈ H1(Λε)

). Operator Ih can be constructed to preserve the homogeneous boundary
conditions on Γ so that Ih(u− ũ) = 0 on Γ. Hence,

‖[u− ũHh]‖0,Γ = ‖IH ũ− IhIH ũ‖0,Γ ≤ ‖IH ũ− ũ− Ih(IH ũ− ũ)‖0,Γ + ‖ũ− Ihũ‖0,Γ

(2.68)

6 C(
√
h|IH ũ− ũ|1,Λε + hk+ 1

2 |ũ|k+1,Λε)

6 C
√
h(Hk|ũ|k+1,Ω + hk|ũ|k+1,Λε) 6 C

√
hHk‖u‖k+1,Ω\Λ̄

Let us finally take λ̃h = Phλwhere Ph is the L2(Γ)-orthogonal projector on
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Md
h . Let us recall that Γ consists of NΓ sides Γ1, . . . ,ΓNΓ

. The standard finite
element estimates give on any side Γs

‖v − Phv‖0,Γs 6 Chk−1‖v‖k−1,Γs and ‖v − Phv‖0,Γs 6 Chk‖v‖k,Γs

for any v ∈ Hk−1(Γs) (resp. v ∈ Hk(Γs) ) so that, by interpolation,

‖v − Phv‖0,Γs 6 Chk−
1
2‖v‖k− 1

2
,Γs

for any v ∈ H
1
2 (Γs). Since u ∈ Hk+1(Λε), the trace theorem ensures that

λ|Γs ∈ Hk−1/2(Γs) on any side Γs with the usual estimate of the norms. Hence,

‖λ−µh‖0,Γ =

(
NΓ∑
s=1

‖λ− Phλ‖2
0,Γs

) 1
2

6 Chk−
1
2

NΓ∑
s=1

‖λ‖k− 1
2
,Γs

6 Chk−
1
2‖u‖k+1,Λε .

(2.69)
Combining (2.67), (2.68) and (2.69) yields

|||u− ũHh, λ− λ̃h||| ≤ C
(
Hk‖u‖k+1,Ω\Λ̄ + hk‖u‖k+1,Λε

)
.

which leads to (2.65) in view of (2.66).

2.4.2 Convergence of the iterative algorithm 2.2

The proof of the convergence of Algorithm 2.2 will be based on a study of
operator AdHh : VH → VH defined for fixed TH and Th as follows: for any
zH ∈ VH the function AdHhzH ∈ VH solves

c(AdHhzH , vH) =

∫
Ω\Λ̄
∇zH · ∇vH +

∫
Γ

νhvH , ∀vH ∈ VH (2.70)

where (·, ·) is the scalar product (2.15) and νh ∈ Md
h together with zh ∈ Vh

come as the solution to∫
Λε

∇zh · ∇vh −
∫

Γ

νhvh + σh

∫
Γ

(νh − n · ∇zh)n · ∇vh = 0, ∀vh ∈ Vh (2.71)∫
Γ

zhµh + σh

∫
Γ

(νh − n · ∇zh)µh =

∫
Γ

zHµh, ∀µh ∈Md
h .

(2.72)

Repeating the calculation from the beginning of Section 2.2.2, we easily see
that unH evolves from one iteration to another as

unH = (I − ωAdHh)un−1
H + ωFH (2.73)

with FH ∈ VH defined by (2.19).
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Taking the linear combination of equations (2.70), (2.71), (2.72) with coef-
ficients 1, -1, 1 we observe

c(AdHhzH , vH) = B((zHh, νh), (vHh, µh)) (2.74)

where zHh ∈ V d
Hh is the combination of zH and zh given by (2.71)–(2.72), νh is

also given by (2.71)–(2.72), while vHh ∈ V d
Hh and µh ∈Md

Hh are arbitrary.
We will now prove that operator AdHh is self-adjoint and coercive with re-

spect to the scalar product (2.15) on V 1
H ⊂ VH , i.e. the orthogonal complement

of V 0
H as defined by (2.24).

Lemma 2.16. Operator AdHh is self-adjoint with respect to the scalar product (2.15)

c(AdHhzH , z
∗
H) = c(zH , A

d
Hhz

∗
H), ∀zH , z∗H ∈ VH (2.75)

Proof. Take any zH , z∗H ∈ VH and let (zh, νh) ∈ Vh×Md
h , resp. (z∗h, ν

∗
h) ∈ Vh×Md

h

be the solutions to (2.71)–(2.72) with zH , resp. z∗H , on the right hand side of
(2.72). The relation (2.74) then gives

c(AdHhzH , z
∗
H) = B((zHh, νh), (z

∗
Hh, ν

∗
h))

where z∗Hh ∈ V d
Hh is the combination of z∗H and z∗h. This entails (2.75) since the

bilinear form B is symmetric.

In what follows we shall work with the ensemble ΛH of the cells from the
coarse mesh that lie inside Λ and we shall need to introduce some assump-
tions about this set, cf. Definitions 2.3, 2.4 and 2.5.

Lemma 2.17. The kernel of operator AdHh coincides with V 0
H , cf. (2.24), and AdHh

is coercive on its orthogonal complement V 1
H . More precisely, assuming that Λ is

regular with respect to TH , there exists m > 0 depending only on the regularity
parameters of Λ with respect to TH , on κH ∈ (0, 1], and on the regularity parameters
of TH itself, such that

c(AdHhvH , vH) > m|vH |21,Ω ∀vH ∈ V 1
H . (2.76)

The norm of AdHh as an operator in the Hilbert space H1
0 (Ω) equipped with the scalar

product (2.15) is bounded by a mesh-independent constant.

Proof. Let us first prove that kerAdHh ⊂ V 0
H . If zH ∈ kerAdHh, then zH = 0 on

Ω \ Λ̄ as follows from the expression for c(AdHhzH , zH) in (2.22). This means
that zH = 0 on every cell T ∈ TH which is not entirely inside Λ, since zH
is a polynomial. We have thus zH = 0 on Ω \ Λ̄H . On the other hand, if
zH ∈ V 0

H then zh = 0 on Λε and νh = 0 on Γ so that AdHhzH = 0. This entails
kerAdHh = V 0

H .
In order to prove the coercivity estimate we invoke again (2.74) with

vH = zH ∈ V 1
H , which implies for σ sufficiently small thanks to the inverse
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inequality (2.61)

c(AdHhzH , zH) = B((zHh, νh), (zHh,−νh)) = ‖zHh‖2
1,Ω\Γ + σh‖νh‖2

0,Γ − σh‖n · ∇uh‖2
0,Γ

>
∫

Ω\Λ̄
∇zH · ∇zH >

∑
T∈TH

∫
T\Λ̄
|∇zH |2 > δ

∫
Ω\Λ̄H

|∇zH |2 (2.77)

From this point on, we can repeat the proof of the similar Lemma 2.11, lead-
ing to

c(AdHhzH , zH) >
δ

(‖RH‖2‖E‖2 + 1)CP
|zH |21,Ω,

which is equivalent to (2.76).
The last statement of the Lemma concerns the norm of operator AdHh. In

order to prove it, we first observe that problem (2.71)–(2.72) for (zh, νh) ∈
Vh×Mh can be written as

BΛε((zh, νh), (vh, µh)) = −
∫
zH µh, ∀(vh, µh) ∈ Vh×Md

h

Let z̃h = IhzH with Ih being an appropriate Clément-like interpolation oper-
ator on Vh. Let rh = z̃h − zh and observe

BΛε((rh, νh), (vh, µh)) = −a(z̃h, vh)−
∫

Γ

(zH − z̃h)µh − σh
∫

Γ

n · ∇z̃h(µh − n · ∇vh)

6 |z̃h|1,Λε |vh|1,Λε + ‖zH − z̃h‖0,Γ‖µh‖0,Γ + |z̃h|1,Λε(
√
h‖µh‖0,Γ + |vh|1,Λε)

6 (|z̃h|1,Λε +
1√
h
‖zH − z̃h‖0,Γ) |||vh, µh|||Λε

Lemma 2.13 together with the properties of the interpolation Ih imply

|||zh− z̃h, νh|||Λε = |||rh, νh|||Λε ≤ C(|IhzH |1,Λε +
1√
h
‖zH−IhzH‖0,Γ) 6 C‖zH‖1,Ω

with a constant that depends only on Λε. Using (2.71) we obtain for any
v ∈ H1(Ω)∫

Γ

νhv =

∫
Γ

νh(v − Ihv) +

∫
Γ

νhIhv (2.78)

=

∫
Γ

νh(v − Ihv) +

∫
Λε

∇zh · ∇Ihv + σh

∫
Γ

(νh − n · ∇zh)n · ∇Ihv

6 ‖νh‖0,Γ‖v − Ihv‖0,Γ + C‖zh‖1,Λε‖Ihv‖1,Λε + Ch(‖νh‖0,Γ + ‖∇zh‖0,Γ)‖∇Ihv‖0,Γ

6 C(
√
h‖νh‖0,Γ + ‖zh‖1,Λε)‖v‖1,Ω

6 C(|||zh − z̃h, νh|||Λε + ‖z̃h‖1,Λε)‖v‖1,Ω 6 C‖zH‖1,Ω‖v‖1,Ω
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The definition of operator AdHh now gives ∀zH , vH ∈ VH

c(AdHhzH , vH) 6 C(|zH |1,Ω\Λ̄|vH |1,Ω\Λ̄ + ‖zH‖1,Ω‖vH‖1,Ω)

6 C‖zH‖1,Ω‖vH‖1,Ω

where we have used (2.78) with v = vH . This proves ‖AdHh‖ 6 C with a
mesh-independent constants C.

Theorem 2.18. Algorithm 2.2 converges to the solution to (2.58) provided 0 <
ω < ω∗ where ω∗ is a mesh-independent constant. This means that unHh → uHh
and λnh → λh as n → ∞ where (uHh, λh) ∈ V d

Hh×Md
h is solution to (2.9). The

convergence rate depends on the regularity of TH , on Λε and on its regularity with
respect to TH and also on the parameter κH introduced in Lemma 2.3.

The proof of this Theorem is completely the same as that of Theorem 2.4
and we omit it.

2.5 A modification of the algorithm for the case of
a strongly non conforming interface

Algorithm 2.2 presented in the last section improves (at least in theory) the
accuracy of the original Algorithm 2.1 in the case of general non Γ-nested
meshes. However, it does not resolve the issue of slow convergence on
meshes without conformal interface, which can be of practical importance,
as outlined in Remark 2.3. In this section, we present a slight modification
of Algorithm 2.2, namely Algorithm 2.3. Choosing the patch Λ conveniently
(possibly slightly larger than what was required in Algorithm 2.2), we can al-
ways ensure that the multi-scale geometrical perturbation ωε is inside ΛH , cf.
Definition 2.3. This is implicitly assumed from now on. We shall show that
the rate of convergence of the new Algorithm 2.3 is essentially independent
of the manner in which the patch Λ cuts the coarse mesh TH .

Note that the reconstruction of the global solution uHh is now intention-
ally ambiguous: we can take both uH and uh as good approximations to u on
the sub-domain Λ \ ΛH , cf. the error estimate below. In fact, the whole idea
behind Algorithm 3 is to impose on uH to be approximately equal to uh on
Λ \ ΛH in order to control better the behaviour of uH there. Intuitively, one
can say that the term with λh is not sufficient alone, as in Algorithm 2.2, to
impose the correct normal derivative on uH near Γ. We emphasize that this
remark holds only in the case of a non conforming interface. If the interface
is conforming, i.e. Λε = ΛH , the two Algorithms 2.2 and 2.3 are exactly the
same.
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Choose an initial guess u0
H ∈ VH and the parameters ω ∈ (0, 1], σ > 0

for n = 1, 2, 3, . . . do
Find unh ∈ Vh and λnh ∈Md

h such that∫
Λε

∇unh · ∇vh −
∫

Γ

λnh vh + σh

∫
Γ

(λnh − n · ∇unh)n · ∇vh

=

∫
Λε

fvh, ∀vh ∈ Vh

−
∫

Γ

unh µh + σh

∫
Γ

(λnh − n · ∇unh)µh

= −
∫

Γ

un−1
H µh, ∀µh ∈Md

h

Find unH ∈ VH∫
Ω

∇unH · ∇vH = ω

∫
Ω\Λ̄

fvH − ω
∫

Γ

λnhvH + ω

∫
ΛH

∇un−1
H · ∇vH

+ω

∫
Λ\Λ̄H

∇unh · ∇vH

+(1− ω)

∫
Ω

∇un−1
H · ∇vH , ∀vH ∈ VH

Set

u
n−1/2
Hh =

{
unh, in Λε

un−1
H , outside Λ

unHh =

{
unh, in Λε

unH , outside Λ

end
Algorithm 2.3: Numerical zoom for non conforming interfaces

2.5.1 An a priori error estimate for Algorithm 2.3

Our first goal is to characterize the limit of the iterative process in Algo-
rithm 2.3 (provided it converges) and to study the precision of this limit
with respect to the exact solution of problem (2.1). We suppose thus that
unH → uH , unh → uh on Ω and λnh → λh on Γ as n → ∞. Then, the limit
(uH , uh, λh) ∈ VH×Vh×Md

h satisfies∫
Ω\Λ̄H

∇uH · ∇vH −
∫

Λ\Λ̄H

∇uh · ∇vH +

∫
Γ

λhvH =

∫
Ω\Λ̄

fvH , (2.79)

∀vH ∈ VH

together with (2.56)–(2.57). If we compare this with the previous versions
of our algorithm leading to the discrete problem (2.6), we observe again that
there is now an overlap between the limit solutions uH and uh on Λ\Λ̄H while
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these solutions lived on non overlapping subdomains Ω\Λ̄ and Λε in the orig-
inal version. We need to adjust accordingly the functional setting to analyse
the new formulation. We introduce the space of functions represented by two
contributions that are defined on overlapping domains:

V̂ = {v ∈ H1(Ω\Λ̄H) : v|∂Ω = 0}×H1(Λε)

= {v = (v1, v2) such that v1 ∈ H1(Ω\Λ̄H), v2 ∈ H1(Λε) and v1|∂Ω = 0}

equipped with the norm

‖v‖V̂ = ‖(v1, v2)‖V̂ =
(
‖v1‖2

1,Ω\Λ̄H
+ ‖v2‖2

1,Λε

)1/2

.

We introduce also a bilinear form â on V̂ ×V̂ defined on any u = (u1, u2) and
v = (v1, v2) as

â(u, v) =

∫
Ω\Λ̄H

∇u1 · ∇v1 +

∫
Λε

∇u2 · ∇v2 −
∫

Λ\Λ̄H

∇u2 · ∇v1.

and the bilinear form B̂ on (V̂ ×M)2

B̂((u, λ), (v, µ)) = â(u, v) +

∫
Γ

λ[v] +

∫
Γ

µ[u]− σh
∫

Γ

(λ− n · ∇u2)(µ− n · ∇v2)

where [u] stands for the jump on Γ, i.e. [u] = (u1− u2)|Γ for any u = (u1, u2) ∈
V̂ . We can now rewrite problem (2.79)–(2.56)–(2.57) as: find (uHh, λh) ∈ V d

Hh×
Md

h such that

B̂((uHh, λh), (vHh, µh)) =

∫
Ω

fvHh ∀(vHh, µh) ∈ V d
Hh×Md

h (2.80)

We have interpreted here the combined finite element space V d
Hh as VH×Vh so

that any vHh ∈ V d
Hh is simply a combination of vH ∈ VH andvh ∈ Vh. Note that

the exact solution u to (2.1) can be viewed as an element of V̂ if we redefine
u = (u1, u2) with u1 = u|Ω\Λ̄H

and u2 = u|Λε . We see thus that u ∈ V̂ and
λ = ∇u · n|Γ ∈M satisfy

B̂((u, λ), (v, µ)) =

∫
Ω

fv ∀(v, µ) ∈ V̂ ×M (2.81)

We see thus that the finite element problem (2.80) is consistent with (2.81)
and an a priori error estimate for (2.80) can be proved in the same way as
that for problem (2.6)–(2.56)–(2.57) once one properly modifies Lemma 2.14.
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Lemma 2.19. There exists mesh-independent constants σ0 > 0, C > 0 and c > 0
such that for all σ ≤ σ0

inf
(uHh,λh)∈V d

Hh×M
d
h

sup
(vHh,µh)∈V d

Hh×M
d
h

B̂((uHh, λh), (vHh, µh))

|||uHh, λh||| |||vHh, µh|||
> c, (2.82)

sup
(uHh,λh)∈V d

Hh×M
d
h

sup
(vHh,µh)∈V d

Hh×M
d
h

B̂((uHh, λh), (vHh, µh))

|||uHh, λh|||V̂ |||vHh, µh|||V̂
≤ C, (2.83)

where the triple norm is defined by

|||u, λ|||V̂ =

(
‖u‖2

V̂
+

1

h
‖[u]‖2

0,Γ + h‖λ‖2
0,Γ

)1/2

,

and c, C are mesh-independent constants.

Proof. We observe first that for any u = (u1, u2) ∈ V̂

â(u, u) =

∫
Ω\Λ̄H

K|∇u1|2 +

∫
Λε

K|∇u2|2 −
∫

Λ\ΛH

∇u2 · ∇u1 (2.84)

>
1

2

∫
Ω\Λ̄H

K|∇u1|2 +
1

2

∫
Λε

K|∇u2|2 >
α

2
‖u‖2

V̂

by Young’s inequality. It is now easy to modify the proof of Lemma 2.14 to
the present context. For example, we have for any (uHh, λh) ∈ V d

Hh×Md
h

B̂((uHh, λh), (uHh,−λh)) = â(uHh, uHh)− σh
∫

Γ

|n · ∇uh|2 + σh

∫
Γ

λ2
h

>
α

4
‖uHh‖2

V̂
+ σh‖λh‖2

0,Γ.

by the inverse inequality (2.61). The rest of the proof of (2.82) goes as that of
(2.59) without major changes. Similarly, to prove (2.83) it suffices to repeat
that of (2.60) and remark that

â(u, v) ≤ ‖u‖V̂ ‖v‖V̂ , ∀u, v ∈ V̂ (2.85)

Theorem 2.20. Problem (2.80) admits a unique solution (uHh, λh) ∈ V d
Hh×Md

h .
Provided u ∈ Hk+1(Ω), we have moreover the following a priori error estimate

‖uHh−u‖V̂ =
(
‖uH − u‖2

1,Ω\Λ̄H
+ ‖uh − u‖2

1,Λε

)1/2

6 C(Hk‖u‖k+1,Ω\Λ̄H
+hk‖u‖k+1,Λε)

with a constant C independent of H , h and u.
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Proof. We can repeat the proof of Theorem 2.15 using the lemma above and
the fact that the exact solution u to (2.1), viewed as an element of V̂ , satisfies
(2.81).

2.5.2 Convergence on iterations in Algorithm 2.3

In order to study the convergence of the iterative procedure in Algorithm 2.3,
we introduce the operator ÂdHh : VH → VH

∫
Ω

∇(ÂdHhzH)·∇vH =

∫
Ω\Λ̄H

∇uH ·∇vH+

∫
Γ

νhvH−
∫

Λ\Λ̄H

∇zh ·∇vH , ∀vH ∈ VH

(2.86)
where (zh, νh) ∈ Vh×Md

h come as the solution to (2.71)–(2.72). Unlike operator
AdHh, operator ÂdHh is not symmetric, but it still coercive and bounded.

Lemma 2.21. The kernel of ÂdHh coincides with V 0
H and the image of ÂdHh coincides

with V 1
H . Operator ÂdHh is coercive and bounded on V 1

H , i.e. ∀zH , vH ∈ VH

(ÂdHhzH , zH) > m|zH |21,Ω
(ÂdHhzH , vH) ≤M |zH |1,Ω|vH |1,Ω

with positive constants m and M that depend only on the regularity of TH and Th.

Proof. The statements about the kernel and the image of ÂdHh are immediately
seen from the definition of this operator. Taking the linear combination of
equations (2.86), (2.71), (2.72) with coefficients 1, -1, 1 we observe

(ÂdHhzH , vH) = B̂((zHh, νh), (vHh, µh)) (2.87)

where zHh ∈ V d
Hh is the combination of zH and zh given by (2.71)–(2.72), νh is

also given by (2.71)–(2.72), while vHh ∈ V d
Hh and µh ∈ Md

Hh are arbitrary. In
order to prove the coercivity estimate we invoke again (2.87) with vH = zH ∈
V 1
H , which implies for σ sufficiently small thanks to the inverse inequality

(2.61)

(ÂdHhzH , zH) = B̂((zHh, νh), (zHh,−νh))
= â(zHh, zHh) + σh‖νh‖2

0,Γ − σh‖n · ∇zh‖2
0,Γ

>
∫

Ω\Λ̄H

∇zH · ∇zH +
1

2

∫
Λε

∇zh · ∇zh −
∫

Λ\Λ̄H

∇zH · ∇zh

≥ 1

2

∫
Ω\Λ̄
∇zH · ∇zH ≥ n|zH |21,Ω

with a mesh independent constant m > 0. The last inequality here is bor-
rowed from the proof of Lemma 2.17. The boundness of the operator ÂdHh



52 Chapter 2. Numerical zoom for elliptic problems on perturbed domains

with a mesh independent constant is also proved exactly as in the proof of
Lemma 2.17, using now the boundedness of form â, cf. (2.85).

Theorem 2.22. Algorithm 2.3 converges to the solution of (2.80) provided one takes
the relaxation parameter ω > 0 small enough. This means that unHh → uHh and
λnh → λh as n→∞. Moreover, the convergence rate depends only on the regularity
of TH and Th.

Proof. As in the proof of Theorem 2.4, we decompose each iterate of Algo-
rithm 2.3 as unH = un,0H + un,1H with un,0H ∈ V 0

H and un,1H ∈ V 1
H which evolve

as

un,0H = un−1,0
H

un,1H = (I − ωÂdHh)u
n−1,1
H + ωFH

with some fixed FH . Again, as in the proof of Theorem 2.4, it is sufficient
to study the convergence of un,1H . It is sufficient to this end to prove that the
norm of operator (I − ωÂdHh) is < 1. This follows from Lemma 2.21. Indeed,
∀uH ∈ VH(

(I − ωÂdHh)uH , (I − ωÂdHh)uH
)

= (uH , uH)− 2ω
(
ÂdHhuH , uH

)
+ ω2

(
ÂdHhuH , Â

d
HhuH

)
≤ (1− 2cω + Cω2)(uH , uH).

and 1− 2cω + Cω2 < 1 for sufficiently small ω.

2.6 Numerical tests

We shall test our methods on a slightly more general version of Problem (2.1):

−∆u = f in Ωε,

u = g on ∂Ω, (2.88)
∇u · n = 0 on ∂ωε,

We add namely the possibility for a non-homogeneous Dirichlet boundary
condition on the external border ∂Ω. The only modification that it induces
into the Algorithms 2.1–2.3 is that the contributions on the coarse mesh
should be adapted on the boundary ∂Ω by setting unH = gH where gH is the
nodal interpolation of g on ∂Ω.

For our numerical experiments, we have chosen the domain as in Fig. 2.1.
The boundary of ωε is the curve given in the parameterized form as

x = ε cos(t), y = ε
sin(t) + cos2(t)

2
, t ∈ [0, 2π]
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This curve can be also be represented by the level-set function

ϕ(x, y) =
(x
ε

)2

+

(
2y

ε
− x2

ε2

)2

− 1 (2.89)

We mean by this that ∂ωε is given by the equation ϕ(x, y) = 0. Here, ε > 0
is a parameter which serves also as the characteristic size of the perforation
ωε (in fact, diam(ωε) = 2ε). In Fig. 2.1 we have set ε = 0.1 while the whole
domain Ω is set as the square (−1, 1)2.

The exact solution u to (2.88) is taken as

u = exp

(
−ϕ

2

2δ

)
(2.90)

where ϕ is the level set (2.89) and δ is a positive parameter. In this way, the
Neumann boundary condition on ∂ωε is automatically satisfied. Indeed, the
normal n is colinear with∇ϕ on ∂ωε = {ϕ = 0} and

∇ϕ · ∇u = −ϕ
δ
u|∇ϕ|2 = 0 on ∂ωε .

The data f and g in (2.88) are calculated from u as f = −∆u and g = u on Γ.
We have implemented Algorithms 2.1–2.3 in the general purpose finite

element software FreeFEM [26]. The implementation is particularly straight-
forward in the case of Algorithm 2.1 on Γ-nested meshes. The only non stan-
dard feature from the implementation viewpoint is the presence of integrals
on the boundary of the patch mixing the contributions from the two meshes
of the type

∫
Γ
λnhvH . These integrals are computed exactly by FreeFEM if

we take care to define them on the boundary of the fine mesh Th by writ-
ing int1d(Th)(...) with Th being the FreeFEM’s name for the fine mesh.
This is achieved by the interpolation from VH to Vh which is (implicitly) per-
formed by FreeFEM. Another slightly non-trivial feature of our algorithms,
the integrals of the type

∫
Λ
∇uH · ∇vH , is implemented by the standard inte-

gration on the whole mesh TH by multiplying the integrand by a piecewise
constant indicator function (1 on Λ, 0 elsewhere). The things become more
complicated when we implement the methods on general meshes, not nec-
essarily Γ-nested meshes. We return to this issue in the corresponding para-
graph below.

2.6.1 Algorithm 2.1 on Γ-nested meshes

The behavior of our simplest Algorithm 2.1 without relaxation (i.e. ω = 1) in
the simplest case of Γ-nested meshes TH and Th is illustrated at Fig. 2.2. We
use the meshes depicted at Fig. 2.1, cf. a more detailed description of the pa-
rameters in the caption of Fig. 2.2. We observe that the initial approximation
(on the coarse mesh without the patch) is (not surprisingly) very bad and it
gets corrected essentially on first 4 iterations.
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These observations are made more precise and complete by more numer-
ical experiments reported at Fig. 2.3. We consider there the same test case
as before and refine both meshes TH and Th twofold several times. The rela-
tive errors are reported in H1 and L2 norms for both reconstruction unHh and
u
n−1/2
Hh . We observe that the method stabilizes indeed at n = 4 on the original

meshes with H = 0.2, h = 0.01 and the convergence occurs even faster on
finer meshes (after 2 or 3 iterations). The numerical results also confirm the
optimal convergence with respect to the mesh size in both H1 and L2 norms.

2.6.2 A numerical comparison of Algorithms 2.1–2.3 on gen-
eral meshes

Before presenting the result on general meshes, we return to some implemen-
tation issues in this case. The implementation of our methods in FreeFEM re-
mains rather simple, but it now involves several extra approximations with
respect to what is written on paper. These additional approximations are dif-
ficult to analyze theoretically and we do not attempt to do it here. We note
the following details:

– The integrals of the type
∫

Γ
λnhvH are still evaluated by FreeFEM com-

mand int1d(Th)(...) on the boundary of the fine mesh Th. This still
involves the interpolation from VH toVh (more strictly speaking, the in-
terpolation to some Gauss points on the boundary of Th). The resulting
evaluation is not exact.

– The integrals of the type
∫

Λ
∇uH · ∇vH are now also difficult to im-

plement exactly. The difficulty is not interpolating from mesh to an-
other (both integrands are defined on the coarse mesh TH) but rather
in the fact that the integration domain Λ is no longer a union of trian-
gles of TH : the boundary Γ cuts the mesh cells in an arbitrary man-
ner. We have chosen to implement this integral by the command
int2d(TH,levelset=phiP) where TH denotes the coarse mesh, and
phiP is a level-set for the patch Λ, i.e. a continuous function that is neg-
ative inside Λ and positive outside it. The keyword levelset makes
FreeFEM to perform the integration only on the cut portion of mesh tri-
angles. However, this cut is performed approximately by interpolating
the level-set phiP by a piecewise linear function on TH . The resulting
integration is thus not exact.

– Algorithm 2.3 avoids the integration on Λ of quantities defined on the
coarse mesh TH , and introduces instead the integrals on ΛH which are
computed exactly in our code by multiplying the integrand by a piece-
wise constant indicator function on TH . However, there is now another
difficult integral

∫
Λ\Λ̄H

∇unh ·∇vH . We have chosen to approximate those
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FIGURE 2.2: Evolution on iterations of Algorithm 2.1 in the Γ-
nested case. The test case (2.89)–(2.90) with ε = 0.1, δ = 0.5, the
mesh sizes H = 0.2, h = 0.01 on the patch Λ = (−0.2, 0.2)2. The
initial coarse approximation (Iter 0, u0

H ) and the first 5 iterations
(unHh, n = 1, . . . , 5) of Algorithm 2.1 are presented from top to

bottom, left to right.
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FIGURE 2.3: Convergence of Algorithm 2.1 under the mesh re-
finement in the Γ-nested case. The test case (2.89)–(2.90) with
ε = 0.1, δ = 0.5, the varying mesh size H , and the fine mesh

size h = H/20 on the patch Λ = (−0.2, 0.2)2.
Top left: the relative H1-error on iterations; Top right: the rela-
tive L2-error on iterations; Bottom: the relative errors as func-

tions on the mesh size H
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by a numerical quadrature on the fine mesh involving the multiplica-
tion by a piecewise constant indicator function on TH taking into ac-
count ΛH . It involves thus an interpolation of discontinuous functions
from one mesh to another and the resulting computation is not exact.

In order to investigate the behavior of our methods on general, not neces-
sary Γ-nested meshes, we take the benchmark as above (Ω = (−1, 1)2, the per-
foration ωε given by (2.89), the exact solution (2.90) with ε = 0.1, δ = 0.5) and
slightly vary one of the mesh configurations considered above, cf. Fig. 2.4:

Situation 1 Γ-nested meshes as in Fig. 3.1, refined 4 times. Recalling Defini-
tion 2.4, this corresponds to κH = 1.

Situation 2 We slightly enlarge the patch Λ (with respect to Situation 1) so
that some of the coarse mesh triangles are only slightly covered by
Λ (the majority of coarse triangles being either completely inside the
patch or completely outside it). This corresponds to κH close to 1, in
fact κH ≈ 0.8.

Situation 3 We slightly shrink the patch Λ (with respect to Situation 1) so
that some of the coarse mesh triangles are almost covered by Λ with
only a small portion of the triangle being outside the patch. This corre-
sponds to κH close to 0, in fact κH ≈ 0.2.

Situation 4 A less artificial configuration where some of coarse triangles are
"badly" cut by Λ (as in Sutuation 3), the others "well" cut by Λ (as in
Situation 2). This is achieved by going to a non-uniform coarse mesh
TH .

We present the convergence of our 3 algorithms in the 4 situations above
at Figs. 2.5–2.7. We note that the possible "bad" intersections of the coarse
mesh cells with Λ do not seem to influence significantly the speed of con-
vergence towards the exact solution on iterations. On the other hand, the
precision of the methods (especially when measured in the L2 norm) can be
largely deteriorated on the "dangerous" meshes (Situations 3 and 4) if one
measures the error in the L2 norm.
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Situation 1 Situation 2

Situation 3 Situation 4

FIGURE 2.4: The meshes (partial view around Λ) in 4 situations.
The coarse mesh with H ≈ 0.05 on Ω = (−1, 1)2. The fine mesh

with h ≈ 0.025 on the patch Λ = (−L,L)2.
Situation 1: L = 0.2; Situation 2: L = 0.21; Situation 3: L = 0.19;

Situation 4: L = 0.2 and a non-uniform coarse mesh TH .
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FIGURE 2.5: Evolution of Algorithm 2.1 in 4 situations, as in
Fig. 2.4.

FIGURE 2.6: Evolution of Algorithm 2.2 in 4 situations, as in
Fig. 2.4.
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FIGURE 2.7: Evolution of Algorithm 2.3 in 4 situations, as in
Fig. 2.4.
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Chapter 3

The approach of matched
asymptotic expansions and
comparisons with the numerical
zoom

In this chapter, we study an alternative approach to the numerical solution
of Problem (2.1) in domain Ω with a small hole ωε. We shall consider the
solution to this problem as a perturbation to that of a simpler problem posed
in the whole domain Ω and employ the approach of the matched asymptotic
expansions treating the size of the hole ε as the small perturbation parameter.
Our work will be inspired by that of V. Bonnaillie-Noël, G. Vial et al [9–11,
42] although we only consider here the simplest case of a single inclusion.
The basic mathematical principles of the approach of the matched asymptotic
expansions are well known and can be found, for example, in monographs
[28, 33]. In the following section, we recall some basic results of this theory
and give formally the construction of the expansion.

3.1 The method of matched asymptotic expan-
sions

FIGURE 3.1: A domain Ωε with a small perforation ωε.
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The assumptions on the geometry of the computational domain remain
essentially the same as in the preceding chapter. We consider a fixed domain
Ω ⊂ R2 with a hole ωε. However, we should now be more precise about the
geometry of the hole: we assume that ωε is obtained from a fixed domain ω,
centered at the origin, shrinking it by the factor ε. In order to be sure that
ωε is inside Ω we assume that both Ω and ω contain the origin and that ε is
sufficiently small. We define now the perturbed domain Ωε, see Fig. 3.1, as

Ωε = Ω\ωε, with ωε = εω

The problem we are interested in reads
−∆uε = f in Ωε

uε = 0 on ∂Ω
∂nuε = 0 on ∂ωε,

(3.1)

for some f ∈ L2 (Ω). As ε → 0, we should recover, at least formally, the
solution u0 of the Dirichlet-Laplacian on the unperturbed domain Ω:{

−∆u0 = f in Ω
u0 = 0 on ∂Ω

(3.2)

Now, for small ε > 0, we can represent the solution uε as the asymptotic
series

uε = u0 + εu1 + ε2u2 + · · ·

with u0 being the solution to the non-perturbed problem (3.2). The following
terms u1, u2, . . . should decay away from the origin at the lengthscale∼ ε. We
can take this into account by postulating that these terms are functions of the
“fast variable” x/ε. We shall thus search for the asymptotic development of
the form

uε (x) = u0 (x) + εu1

(x
ε

)
+ ε2u2

(x
ε

)
+ · · ·

One can estimate r0
ε := uε−u0 and thus prove that u0 is the zeroth order term

of the expansion of uε, cf. the literature cited above.
Let us explain formally how we determine the following term in the

asymptotic expansion. To determine the first order term, we notice that r0
ε

satisfies: 
−∆r0

ε = 0 in Ωε

r0
ε = 0 on ∂Ω

∂nr
0
ε = −∂nu0 on ∂ωε

where n denotes the unit normal outward looking from Ωε, thus pointing
into ωε. At the leading order, we can approximate ∂nu0 on ∂ωε by its value at
0:

∂nr
0
ε = −∇u0(0).n +O(ε) on ∂ωε.

Let us now rescale the small domain ωε of size ∼ ε to the “reference" domain
ω of size∼ 1 and represent r0

ε in the rescaled variables as r0
ε(·) = εV

( ·
ε

)
. Note,
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by the chain rule, ∂ir0
ε(·) = (∂iV )

( ·
ε

)
where ∂i denotes the partial derivative

in the i-th direction. Neglecting the higher order terms in the boundary con-
ditions on ∂ωε and assuming that the outer boundary ∂Ω is sufficiently far
for ωε to treat it essentially as the infinity, we obtain the following problem
for V : 

−∆V = 0 in R2 \ ω̄
∂nV = −∇u0(0) · n on ∂ω
V −→ 0 at infinty

(3.3)

By linearity we get then at the leading order

r0
ε(·) ≈ ε

2∑
i=1

(∂iu0)(0)Vi

( ·
ε

)
(3.4)

where V1, V2 are so called profiles:
−∆Vi = 0 in R2 \ ω̄
∂nVi = −ni on ∂ω
Vi −→ 0 at infinty

(3.5)

The validity of the asymptotic expansion (3.4) is established thanks to the
decay of the profiles at the infinity. We recall in particular a result from [3]:

Proposition 3.1. Let ω be a smooth bounded domain of R2 with 0 ∈ ω. We assume
that g ∈ H−1/2 (∂ω) satisfies 〈g, 1〉H−1/2∗H1/2 = 0. Then the boundary value problem

−∆v = 0 in R2\ω
∂nv = g on ∂ω
v −→ 0 at infinty

(3.6)

admits a unique weak solution v0 in the variational space{
v : ∇v ∈ L2

(
R2\ω

)
and

v

(1 + |X|) log (2 + |X|)
∈ L2

(
R2\ω

)}
Starting from this result one can indeed show that the error in the approx-

imation (3.4) is of order ε2. Finally, the first order expansion of uε takes the
form

uε,1 (·) = u0 (·) + ε
2∑
i=1

(∂iu0)(0)Vi

( ·
ε

)
(3.7)

and one can prove

uε = uε,1 + r1
ε with

∥∥r1
ε

∥∥
H1(Ωε)

≤ Cε2. (3.8)
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3.2 Finite element methods based on asymptotic
expansions

3.2.1 Superposition method

The numerical computation of the solution uε to problem (3.1) can be difficult
since a very fine mesh is required if ε is small. For such values of ε, it is nat-
ural to use the asymptotic expansion (3.7). We thus introduce a coarse global
mesh TH of meshsize H on Ω, with H typically bigger than ε. Introducing
the Pk finite element space VH on TH (with functions vanishing on ∂Ω) we
approximate the zeroth order term u0 in (3.7) by u0,H ∈ VH such that∫

Ω

∇u0,H · ∇v =

∫
Ω

fv, ∀v ∈ VH (3.9)

We also need to approximate the profiles Vi that are solutions to (3.5).
The difficulty lies in the fact that these problems are posed on an unbounded
domain with zero Dirichlet boundary conditions at infinity. The simplest ap-
proach to discretize such a problem is to truncate the whole space R2 to a
sufficiently large ball and to impose homogeneous Dirichlet boundary con-
ditions on the boundary of this ball. For our numerical purposes it is more
convenient to transform the problems (3.5) back to the original scale ε. We
thus introduce the “patch” Λ = BR(0) with R >> ε but still R not too big
so that Λ ⊂ Ω. We denote Γ = ∂Λ and Λε = Λ \ ωε and are looking to
V ε
i (·) ≈ εVi

( ·
ε

)
on Λε. The problems (3.5) are now truncated and rewritten as

−∆V ε
i = 0 in Λε

∂nV
ε
i = −ni on ∂ωε
V ε
i = 0 on Γ

(3.10)

We now introduce the fine local mesh Th on Λε (typically, the meshsize h
is thus much smaller than ε). Introducing the Pk finite element space V 0

h on Th
(with functions vanishing on Γ) we approximate the profiles V ε

i by V ε
i,h ∈ V 0

h

such that ∫
Λε

∇V ε
i,h · ∇v = −

∫
∂ωε

niv, ∀v ∈ V 0
h (3.11)

Finally, we propose the following approximation to the exact solution uε
of Problem (3.1) inspiring ourselves from the asymptotic expansion (3.7):

uε,1,Hh = u0,H +
2∑
i=1

(∂iu0,H)(0)V ε
i,h (3.12)
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We call this approach “the superposition method" since the global approxi-
mation is corrected by superimposing the local corrections V ε

i,h on it, multi-
plying them with easily computable coefficients borrowed from the asymp-
totic expansions theory on the continuous level. Note that the resulting ap-
proximation uε,1,Hh is conforming, i.e. continuous on Ωε, since V ε

i,h vanish on
Γ = ∂Λ.

3.2.2 A variational method with profiles vanishing on ∂Λ

One can argue that taking (∂iu0,H)(0) as coefficients in the linear combination
of profiles in (3.12) is not necessarily the best choice because the finite element
approximation of the derivatives ∂iu0 may be rather poor pointwise. One
can try then to automatically adjust these coefficients by putting the profiles
V ε
i,h directly into an approximate (Galerkin) variational formulation. We thus

introduce a “locally corrected” finite element space

V c,Dir
H = VH ⊕ span {V ε

1,h, V
ε

2,h}

We put the abbreviation “c” and “Dir” to emphasize the fact that homoge-
neous Dirichlet boundary conditions on Γ were used for V ε

1,h, V
ε

2,h here and
the resulting augmented finite element space is thus conforming (it contains
only continuous functions).

The method that we call Variational Superposition goes now as: find
uc,DirH ∈ V c,Dir

H such that∫
Ωε

∇uc,DirH · ∇v =

∫
Ωε

fv, ∀v ∈ V c,Dir
H (3.13)

This method is of course much more expensive that the superposition
method which consists in solving the standard finite element problem (3.9)
and then putting things together as in (3.12). To implement (3.13) one should
calculate the integrals involving both the profiles V ε

2,h and the basis functions
of VH . Moreoever, even the part of the problem on VH is not standard since
the integrals are performed on the perforated domain Ωε while the basis func-
tions of VH live on the triangles of the mesh TH which is cut by the hole ωε.

3.2.3 Variational methods with more accurate profiles

The accuracy and computational cost of the methods above can be greatly
affected by the truncation parameter R. The choice of R may be not easy
to do in practice: on one hand, we want R to be sufficiently large so that
the truncated problem (3.10) approximates well the original problem for the
profiles (3.5), which is set in an unbounded domain. On the other hand, R
should be not too large to keep the method computationally attractive (the
problem on the perforated patch Λε is discretized on the fine mesh Th with
h << ε) and to keep Λ inside Ω.
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We know from [10] that one can choose artificial boundary conditions on
Γ, more intricate than the homogeneous Dirichlet ones used above, allowing
us to obtain more accurate approximation of the profiles at a given trunca-
tion radius R or, more interestingly for us, to obtain sufficient accuracy at
reduced R. The derivation of these conditions is based on the representa-
tion of the profile by the sum of harmonics that behave at infinity as |x|−p−1,
p = 0, 1, . . . One seeks then for a linear combination of Vi with its derivatives
on Γ that vanishes on a certain number of leading terms in this sum. If one
stops at orders p = 0, 1, 2, one obtains respectively Dirichlet, Robin, and Vent-
cel conditions. In particular, the last two boundary conditions are written
as

Robin boundary conditions to truncate (3.5):

Vi +R∂nVi = 0, (3.14)

Ventcel boundary conditions to truncate (3.5)

Vi +
3R

2
∂nVi −

R2

2
∆ΓVi = 0 (3.15)

where ∆Γ is the Laplace-Beltrami operator on Γ.

In order to discretize the truncated problems (3.10) with Robin or Ventcel
boundary conditions on Γ instead of the Dirichlet ones, we introduce again
the fine mesh Th on Λε, and the Pk finite element space Vh on Th (note that
the functions in Vh are free on Γ). The approximated profiles V ε,R

i,h with Robin
boundary conditions are then defined by: V ε,R

i,h ∈ Vh such that∫
Λε

∇V ε,R
i,h · ∇v +

1

R

∫
Γ

V ε,R
i,h v = −

∫
∂ωε

niv, ∀v ∈ Vh (3.16)

The approximated profiles V ε,V
i,h with Ventcel boundary conditions are then

defined by: V ε,V
i,h ∈ Vh such that∫

Λε

∇V ε,V
i,h · ∇v +

2

3R

∫
Γ

V ε,V
i,h v +

R

3

∫
Γ

∇ΓV
ε,V
i,h · ∇Γv = −

∫
∂ωε

niv, ∀v ∈ Vh
(3.17)

where∇Γ is the tangential part of the gradient on Γ: ∇Γv = ∇v − (∇v · n)n.
The technical problem with the approximate profiles above is that they do

no vanish on Γ, unlike the Dirichlet case. They are not even supposed to be
very small on Γ. Indeed, the whole point of introducing the approximation
with Robin or Ventcel boundary conditions is to be able to reduce the size of
the “patch” Λ so that its boundary Γ is not too far from the perforation ωε. We
thus cannot simply add these approximate profiles to the coarse space VH , as
we did in the Dirichlet case. Our solution to this problem is to work with
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discontinuous approximations, and to impose an approximate continuity by
Lagrange multipliers.

We introduce the coarse mesh approximation of the patch Λ

ΛH =
(
∪T∈TH , T⊂Λ̄T

)◦
and denote its boundary by ΓH = ∂ΛH , as in Definition 2.3. The corrections
V ε,R
i,h or V ε,V

i,h will be used on ΛH only and will introduce a discontinuity across
ΓH . In order to treat this discontinuity and to impose a weak continuity in a
finite element fashion, we introduce the space of Lagrange multipliers on ΓH

MH = {µH : ΓH → R such that ∃vH ∈ VH with µH = vH |ΓH
}

We are now set to propose a finite element approximation augmented by
the asymptotic profiles truncated with the Robin boundary condition. We
thus introduce the discontinuous counterpart of VH (with discontinuity pos-
sible on ΓH only) and augment it by approximate profiles V ε,R

i,h (inside ΛH

only):

V d,Rob
H =

{
vH : Ωε → R such that ∃v(out)

H ∈ VH , v(in)
H ∈ VH and

vH = v
(out)
H on Ω \ Λ̄H ,

vH = v
(in)
H +

2∑
i=1

αiV
ε,R
i,h with some α1, α2 ∈ R on ΛH \ ωε

}
The method, referred to as the Robin Zoom, finds an approximation in this
discontinuous space V d,Rob

H and imposes continuity weakly on ΓH using the
Lagrange multipliers from MH . It reads thus: find ud,RobH ∈ V d,Rob

H , λH ∈ MH

such that∫
Ωε

∇ud,RobH · ∇v +

∫
ΓH

λH [v] =

∫
Ωε

fv, ∀v ∈ V d,Rob
H (3.18)∫

ΓH

µ[ud,RobH ] = 0, ∀µ ∈MH

Here [·] stand for the jump over ΓH .
Similarly, for Ventcel based approximate profiles, we introduce the dis-

continuous counterpart of VH augmented by approximate profiles V ε,V
i,h (in-

side ΛH only):

V d,V en
H =

{
vH : Ωε → R such that ∃v(out)

H ∈ VH , v(in)
H ∈ VH and

vH = v
(out)
H on Ω \ Λ̄H ,

vH = v
(in)
H +

2∑
i=1

αiV
ε,V
i,h with some α1, α2 ∈ R on ΛH \ ωε

}
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The Ventcel Zoom method reads then: find ud,V enH ∈ V d,V en
H , λH ∈ MH such

that ∫
Ωε

∇ud,V enH · ∇v +

∫
ΓH

λH [v] =

∫
Ωε

fv, ∀v ∈ V d,V en
H (3.19)∫

ΓH

µ[ud,V enH ] = 0, ∀µ ∈MH

To complete our palette of methods, we introduce a discontinuous treate-
ment for Dirichlet based approximate profiles (as an alternative to the con-
tinuous treatment (3.13) although the latter was already well suited to the
Dirichlet case). We introduce the discontinuous counterpart of VH aug-
mented by approximate profiles V ε

i,h, as defined by (3.11), inside ΛH only:

V d,Dir
H =

{
vH : Ωε → R such that ∃v(out)

H ∈ VH , v(in)
H ∈ VH and

vH = v
(out)
H on Ω \ Λ̄H ,

vH = v
(in)
H +

2∑
i=1

αiV
ε
i,h with some α1, α2 ∈ R on ΛH \ ωε

}
The Dirichlet Zoom method reads then: find ud,DirH ∈ V d,Dir

H , λH ∈ MH such
that ∫

Ωε

∇ud,DirH · ∇v +

∫
ΓH

λH [v] =

∫
Ωε

fv, ∀v ∈ V d,Dir
H (3.20)∫

ΓH

µ[ud,DirH ] = 0, ∀µ ∈MH

3.3 Numerical results

We illustrate all the methods presented above on the example of Problem
(3.1) in the domain Ωε as in Fig. 2.1. We set namely Ω = (−1, 1)2, ωε given
by the level-set (2.89) with ε = 0.1, and Ωε = Ω \ ωε. Unlike the numerical
experiments of the previous chapter, we choose here a simpler expression for
the right-hand side1

f = x+ y. (3.21)

In all our numerical tests, we use piecewise linear finite elements on a
coarse mesh TH on Ω. We set the patch Λ as the circle of radius 0.2 centered
at the origin, and use piecewise linear finite elements on a fine mesh Th on
Λ. Typical meshes are given at Fig. 3.2. As our problem does not have an
analytic solution, we should also employ a fine global mesh T globh to compute

1We have also tried the test case with the exact solution (2.90) but found the asymptotic
expansion methods inappropriate. Indeed, these methods are designed work only if uε is a
small perturbation of u0 which is not the case of (2.90).
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FIGURE 3.2: The coarse mesh TH on Ω and the fine mesh Th on
Λε, H = 0.15, h = 0.02. Left: the whole picture; Right: a zoom

around Λ.

a reference solution on Ωε. We always construct T globh with approximately the
same mesh size as that of Th.

We start by summarizing the methods to be tested, giving them "nick-
names" for future reference.

Zoom The Numerical Zoom Algorithm 2.1. We shall also use the abbrevi-
ation "Zoom n" to designate the result obtained after n iteration of the
method, i.e. unHh.

Superpos The simplest implementatino of the approach of matched asymp-
totic expansions where we solve first the unperturbed problem on the
coarse mesh and then superimpose the corrections by (3.12).

SupVar Variational superposition approach where the corrections (Dirichlet
profiles (3.11), the same as in the previous method) are incorporated in
the variational formulation, cf. (3.13).

DirZoom Dirichlet Zoom method, using the same profiles as abobe, but on
ΛH only, coupling everything together by (3.20).

RobZoom Robin Zoom method, using profiles (3.16) on ΛH only, coupling
everything together by (3.18).

VenZoom Ventcel Zoom method, using profiles (3.17) on ΛH only, coupling
everything together by (3.19).

We present first the convergence of the Zoom method, Fig. 3.3. We ob-
serve that the method has essentially converged in 4 iterations. The same
is true on finer meshes, cf. Fig. 3.9. We recall now that the asymptotic ex-
pansion methods arrive to correct the coarse solution at "one shot" by pre-
calculating the profiles as presented at Figs. 3.4, 3.5, and 3.6 for, respectively,
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Dirichlet, Robin, and Ventcel boundary conditions on Γ. The results obtained
using these profiles are presented at Fig. 3.7. Visually, all of them resemble
much the results obtained by 4 iterations of Zoom method. This is confirmed
by a mesh convergence study at Fig. 3.8. All the methods arrive at very simi-
lar precision with the exception of the simplest (and cheapest) superposition
method, which degrades significantly, especially on the finer meshes.
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FIGURE 3.3: Evolution on iterations of Algorithm 2.1 in the test
case (2.89)–(3.21) with ε = 0.1, the meshes as in Fig. 3.2. The
reference solution, the initial coarse approximation (Iter 0, u0

H )
and the first 4 iterations (unHh, n = 1, . . . , 5) of Algorithm 2.1 are

presented from top to bottom, left to right.
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FIGURE 3.4: Dirichlet correctors.

FIGURE 3.5: Robin correctors.

FIGURE 3.6: Vencel correctors.
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Reference solution Superpos

SupVar DirZoom

RobZoom VenZoom

FIGURE 3.7: All methods.
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FIGURE 3.8: The relative errors in H1 and L2 norms as func-
tions of the mesh size H .

FIGURE 3.9: The relative errors in H1 and L2 norms as func-
tions of the mesh size H .
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Chapter 4

Numerical zoom for monotone non
linear problems

In this chapter, we shall consider non-linear monotone problems with
localized non-linearity. We shall adapt the multi-model numerical
zoom(Algorithm 2.1) to this situation, by introducing a non-linear local prob-
lem on the fine mesh in this algorithm. Such an algorithm has been already
proposed and theoretically investigated on the continuous level in [34]. Here,
we shall prove the a priori error estimate and the convergence of the algo-
rithm on the discrete level, restricting our attention to the case of Γ-nested
meshes.

4.1 General properties of monotone operators and
applications to PDEs

Let us start by some generalities on non-linear monotone problems, follow-
ing [35]. We shall assume V a real Hilbert space (the general theory can be
also set in reflexive Banach spaces). We consider mappings A : V → V ∗ with
V ∗ being the dual space, i.e. the space of continuous linear functions on V .
For element g ∈ V ∗ and v ∈ V , we write (g, v) for g(v).

Definition 4.1. We say that a mapping A : V → V ∗ is bounded if it maps bounded
sets in V to bounded sets in V ∗. The mapping is continuous if for every u ∈ V and
any sequence {un} ⊂ V such that un → u we have

‖A(u)−A(un)‖V ∗ → 0.

Definition 4.2. We say that a mapping A : V → V ∗ is monotone if

(A(u)−A(v), u− v) > 0 for all u, v ∈ V,

and strictly monotone if this inequality is strict whenever u 6= v.
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Definition 4.3. We say that a mapping A : V → V ∗ is coercive if

(A(u), u)

‖u‖V
→∞ as ‖u‖V →∞

The properties above can be seen as a non-linear generalization of the as-
sumption of the Lax-Milgram lemma. In particular, they ensure the existence
and uniqueness of solutions to equation with non-linear monotone opera-
tors, as specified by the following theorem due to Browder and Minty. We
shall further reformulate this theorem in a form closer to the Lax-Milgram
lemma, cf. Corollary 4.2 below.

Theorem 4.1. Let V be a real Hilbert space and let A : V → V ∗ be bounded,
continuous, coercive and monotone. Then A(V ) = V ∗, i.e. for any g ∈ V ∗ there
exists a solution u ∈ V of the equation

A(u) = g.

Remark 4.1. The solution given by Browder-Minty theorem is unique if the map-
pingA is strictly monotone. Indeed, supposing that there are two different solutions
u 6= ũ of A(u) = A(ũ) = g leads to

(A(u)−A(ũ), u− ũ) = 0

in contradiction with the property of the strictly monotone mapping.

In practice, the mappingA is usually introduced by a variataional formu-
lation of a partial differential equation. We thus associate with A : V → V ∗

a semi-linear form (a real-valued functional of two variables, which is linear
with respect to the second parameter, but generally non-linear with respect
to the first one) a : V ×V → R defined by

a(u, v) = (A(u), v) for all u, v ∈ V. (4.1)

We shall always assume that the form a satisfies the following 3 assumptions
which are more stringent than the properties required by Browder-Minty the-
orem:

Assumption 4.1. There exists α > 0 such that for all u, v ∈ V

a(u, u− v)− a(v, u− v) > α‖u− v‖2
V (4.2)

Assumption 4.2. There exists a non decreasing function φ : R+ → R+ such that
for all u, v, w ∈ V

|a(u,w)− a(v, w)| 6 φ(‖u‖V + ‖v‖V )‖u− v‖V ‖w‖V (4.3)

Assumption 4.3. It holds for all v ∈ V

a(0, v) = 0.
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Remark 4.2. Assumption 4.1 is known as strong monotonicity. Assumption 4.2
means that the mapping A is locally Lipschitz continuous, i.e. Lipschitz continuous
on any ball. Note that we do not necessarily suppose that A is Lipschitz continuous
on V . The last Assumption 4.3 says simply A(0) = 0 and is not essential. Indeed
if A(0) 6= 0 one can introduce a corrected mapping A′(u) = A(u) − A(0) so that
A′(0) = 0 and the Assumptions 4.1 and 4.2 hold for A′ if they hold for A, when
one associates with them the semi-linear forms a′ and a via (4.1). We prefer however
to announce Assumption 4.3 since it is natural for applications in PDEs and it
simplifies some calculations below.

Under Assumptions 4.1–4.3, the mappting A is

– bounded; indeed ‖u‖V 6 C implies ‖A(u)‖V ∗ 6 φ(C) by (4.3) with
v = 0.

– continuous; indeed if un → u then ‖A(un) − A(u)‖V ∗ 6 φ(‖un‖V +
‖u‖V )‖un − u‖V → 0 so that A(un) → A(u) since the sequence {un} is
bounded in V .

– strictly monotone; indeed for all u, v ∈ V we have (A(u) − A(v), u −
v) > α‖u− v‖2

V by (4.2).

– coercive; indeed for all u ∈ V we have (A(u), u) > α‖u‖2
V by (4.2) with

v = 0.

We have thus the following simple corollary of Browder-Minty Theorem:

Corollary 4.2. Let V be a real Hilbert space and suppose that the semi-linear form
a : V ×V → R satisfies Assumptions 4.1–4.3. Then, for any g ∈ V ∗ there exists the
unique solution u ∈ V of the equation

a(u, v) = (g, v) for all v ∈ V. (4.4)

Under Assumptions 4.1–4.3, we can also easily prove the analogue of Céa
lemma for the Galerkin approximation.

Lemma 4.3. Let V be a real Hilbert space and suppose that the semi-linear form
a : V ×V → R satisfies Assumptions 4.1–4.3. Let g ∈ V ∗ and u ∈ V the unique
solution of equation (4.4). Take a subspace Vh ⊂ V and consider the unique solution
uh ∈ Vh of equation

a(uh, vh) = (g, vh) for all vh ∈ Vh. (4.5)

Then,
‖u− uh‖V 6 C inf

ũh∈Vh
‖u− ũh‖V

with a constant that depends on a and g but does not depend on the choice of the
subspace Vh.
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Proof. Put v = u in (4.4) and apply Assumptions 4.1, 4.3

α‖u‖2
V 6 a(u, u)− a(0, u) = (g, u) 6 ‖g‖V ∗‖u‖V

so that ‖u‖V 6 ‖g‖V ∗/α. Similarly, ‖uh‖V 6 ‖g‖V ∗/α.
Put v = vh for any vh ∈ Vh in (4.4) and subtract (4.5) from it. This gives the

Galerkin orthogonality relation

a(u, vh)− a(uh, vh) = 0, ∀vh ∈ Vh.

Take any ũh ∈ Vh. By Assumption 4.1, the linearity of a with respect to the
second argument, and the relation above for vh = uh − ũh,

α‖u− uh‖2
V 6 a(u, u− uh)− a(uh, u− uh) = a(u, u− ũh)− a(uh, u− ũh)

We continue using Assumption 4.2

α‖u− uh‖2
V 6 φ(‖u‖V + ‖uh‖V )‖u− uh‖V ‖u− ũh‖V

By the estimates above

‖u− uh‖V 6
1

α
φ(2‖g‖V ∗/α)‖u− ũh‖V

Example 4.1. Consider the non-linear PDE with Dirichlet boundary conditions in
a bounded doman Ω ⊂ R2 or R3

−∆u+ u3 = f in Ω

u = 0 on ∂Ω

Supposing f ∈ L2(Ω), the weak formulation is posed in the Hilbert space V =
H1

0 (Ω) and reads: find u ∈ V such that

a(u, v) =

∫
Ω

fv for all v ∈ V

where
a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

u3v

We equip the space V with the H1 semi-norm ‖ · ‖V = | · |1,Ω and prove that As-
sumptions 4.1 and 4.2 are satisfied (Assumptions 4.3 is obvious). Indeed, for all
u, v ∈ V

a(u, u− v)− a(v, u− v) = |u− v|21,Ω +

∫
Ω

(u3 − v3)(u− v) > |u− v|21,Ω
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since

(u3 − v3)(u− v) = (u− v)2(u2 + uv + v2) >
1

2
(u− v)2(u2 + v2) > 0.

This proves Assumption 4.1.
Now, for all u, v, w ∈ V

|a(u,w)− a(v, w)| 6 |u− v|1,Ω|w|1,Ω +

∣∣∣∣∫
Ω

(u3 − v3)w

∣∣∣∣
Note that

|u3 − v3| = |u− v|(u2 + uv + v2) 6
3

2
|u− v|(u2 + v2)

so that by Hölder inequality∣∣∣∣∫
Ω

(u3 − v3)w

∣∣∣∣ 6 3

2
‖u− v‖L3(Ω)‖u2 + v2‖L3(Ω)‖w‖L3(Ω)

6
3

2
‖u− v‖L3(Ω)(‖u‖2

L6(Ω) + ‖v‖2
L6(Ω))‖w‖L3(Ω)

By Sobolev embedding H1(Ω) ⊂ L6(Ω) ⊂ L3(Ω) and the fact the H1 semi-norm is
equivalent to the full H1 norm on H1

0 (Ω), we conclude∣∣∣∣∫
Ω

(u3 − v3)w

∣∣∣∣ 6 C|u− v|1,Ω(|u|1,Ω + |v|1,Ω)2|w|1,Ω

This proves Assumption 2 with φ(t) = 1 + Ct2.

Example 4.2. A more practical example is provided by the stationary (Kirchhoff
transformed) Richards equation that describes the groundwater flow in unsaturated
soils (c.f. [2, 8]). The equation reads

∇ · (K∇u)−∇ · (K kr(M(u))~g) = f,

where u is the so-called generalized pressure, K is the hydraulic conductivity in the
soil, kr the relative permeability depending on the saturation, M is some nonlin-
earity arising from the Kirchhoff transformation and ~g denotes the gravity vector.
Various explicit formulas for kr ◦M are available and, usually, this is a Lipschitz
continuous function on R (after a possible regularization).

Introducing the semi-linear form of the weak formulation of the problem on V =
H1

0 (Ω)

a(u, v) =

∫
Ω

K∇u · ∇v +

∫
Ω

K kr(M(u))~g · ∇v

we see that it is globally Lipschitz continuous, i.e. Assumption 4.2 is satisfied with
φ = const. Moreover, if the Lipschitz constant L of kr ◦M is sufficiently small, than
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a is strongly monotone, i.e. Assumption 4.1 is satisfied. Indeed, assuming

α|ξ|2 6 Kξ · ξ 6 β|ξ|2, ∀ξ ∈ Rd

we have for all u, v ∈ V

a(u, u− v)−a(v, u− v) >
∫

Ω

K∇(u− v) ·∇(u− v)−
∫

Ω

KL|u− v|~g ·∇(u− v)

> α|u− v|21,Ω − βL|~g|‖u− v‖0,Ω|u− v|1,Ω > (α− βL|~g|CP )|u− v|21,Ω

where CP is the constant in Poincaré inequality on Ω. Hence, Assumption 4.1 is
satisfied if α− βL|~g|CP > 0.

4.2 A class of monotone PDEs with localized non-
linearity and a Numerical Zoom for it

We are here interested in monotone PDEs, as in Examples 4.1–4.2, assum-
ing that the non-linearity is present only in a small sub-region of the whole
computational domain. Let Ω ∈ Rd be a bounded domain, ω ⊂ Ω its small
sub-domain, and V = H1

0 (Ω). We consider the problem: find u ∈ V such that

aΩ(u, v) = (f, v)Ω, ∀v ∈ V (4.6)

where aΩ is a semi-linear form satisfying Assumptions 4.1–4.3 on space V
equipped with the norm ‖·‖V = | · |1,Ω and (·, ·)Ω stands for the scalar product
in L2(Ω). More precisely

aΩ(u, v) = cΩ(u, v) + anlω (u, v) (4.7)

where cΩ is a coercive continuous symmetric bi-linear form on V and anlω is
a semi-linear form on H1(ω) satisfying properly modified Assumptions 4.1–
4.3, namely:

Monotonicity: There exists α > 0 such that for all u, v ∈ H1(ω)

anlω (u, u− v)− anlω (v, u− v) > 0 (4.8)

Lipschitz: There exists a non decreasing function φ : R+ → R+ such that for
all u, v, w ∈ H1(ω)

|anlω (u,w)− anlω (v, w)| 6 φ(‖u‖1,ω + ‖v‖1,ω)‖u− v‖1,ω‖w‖1,ω (4.9)

Vanishing at 0: It holds for all v ∈ H1(ω)

anlω (0, v) = 0. (4.10)
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In all the assumptions above and in (4.7), we implicitly assume that anlω works
on the restrictions to ω of functions inH1

0 (Ω). Note that monotonicity of anlω in
(4.8) implies the strong monotonicity of aΩ, as in (4.1), thanks to the coerciity
of cΩ.

In order to have concrete examples in mind, we may consider localized
version of problems in Examples 4.1–4.2.

Example 4.3. Consider the non-linear PDE with Dirichlet boundary conditions in
a bounded domain Ω ⊂ R2 or R3

−∆u+ χu3 = f in Ω (4.11)
u = 0 on ∂Ω

where χ : Ω → R is localized in a small subdomain ω ⊂ Ω, i.e. supp(χ) ⊂ ω.
Supposing f ∈ L2(Ω), χ ≥ 0, and χ ∈ L∞(Ω), the weak formulation in V = H1

0 (Ω)
reads: find u ∈ V such that

a(u, v) =

∫
Ω

fv for all v ∈ V

where
a(u, v) =

∫
Ω

∇u · ∇v +

∫
Ω

χu3v

Assumptions (4.8)–(4.10) are satisfied setting

cΩ(u, v) =

∫
Ω

∇u · ∇v and anlΩ (u, v) =

∫
ω

χu3v

This is proved in the same manner as in Example 4.1. Thus, Assumptions 4.1–4.3
are also satisfied and the problem admits the unique solution.

Example 4.4. We reconsider Richards equation modeling the groundwater flow in
unsaturated soils, as in Example 4.2, but assume in addition that one can simplify
the equation to the linear Darcy equation everywhere on Ω except a small subdomain
ω. The governing equation then reads

∇ · (K∇u)−∇ · (Kχωkr(M(u))~g) = f,

where χω is the characteristic function of the subdomain ω. The semi-linear form of
the weak formulation of the problem on V = H1

0 (Ω) is now

a(u, v) =

∫
Ω

K∇u · ∇v +

∫
ω

Kkr(M(u))~g · ∇v

Assumptions (4.8)–(4.10) are satisfied setting

cΩ(u, v) =

∫
Ω

K∇u · ∇v and anlΩ (u, v) =

∫
ω

K kr(M(u))~g · ∇v
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Thus, Assumptions 4.1–4.3 are also satisfied and the problem admits a unique solu-
tion. In particular, Assumptions 4.9 and 4.2 are satisfied with φ = const.

We want to devise a finite element method that works on a relatively
coarse mesh TH on Ω and solves on this mesh only the linear part of the
problem, with the bilinear form cΩ. The mesh TH will be typically too coarse
to take properly into account the small inclusion ω, and the possibly sharp
behavior of the solution on it. Any way, the global coarse solver on TH will
not see the nonlinearity inside ω. This coarse approximation will be then
corrected iteratively using another sufficiently fine mesh around ω. We in-
troduce thus the patch Λ, ω ⊂ Λ ⊂ Ω, and the fine local mesh Th on Λ.
For the sake of simplicity, both domains Ω and Λ are supposed polygonal
and Λ is supposed to lie inside Ω, i.e. the boundaries of Λ and Ω do not in-
tersect each other. Both meshes Th and TH are supposed regular simplicial
triangulations of Ω and Λ respectively, i.e. the maximal aspect ratio of the
triangles/tetrahedrons in both these meshes is fixed once for all.

Introduce the finite element spaces

VH = {vH ∈ C0(Ω) : vH |T ∈ Pk ∀T ∈ TH , vH |∂Ω = 0}

and
Vh = {vh ∈ C0(Λ) : vh|T ∈ Pk ∀T ∈ Th}.

where Pk is the set of polynomials in d real variables of a given degree k > 1.
Let Γ = ∂Λ. We shall need a finite element space on Γ to be used for Lagrange
multipliers and defined as the space of traces of functions in Vh:

Mh = {µh ∈ C0(Γ) : µh|E ∈ Pk on every boundary facet E of mesh Th}

The approach outlined above is formalized as Algorithm 4.1, which is a
natural extension of our basic Algorithm 2.1 to the present nonlinear setting.
In writing this algorithm, we adopt the following assumptions and notations:

– (·, ·)Ω and (·, ·)Λ stand for the scalar product in L2(Ω) and L2(Λ) respec-
tively.

– 〈·, ·〉 the scalar product in L2(Γ)

– We suppose that the bilinear form cΩ can be decomposed as

cΩ(u, v) = cΛ(u, v) + cΩ\Λ̄(u, v) (4.12)

with bilinear forms cΛ which is semicoercive and continuous on H1(Λ)
in the sense

cΛ(u, u) ≥ α|u|21,Λ, cΛ(u, v) ≤M |u|1,Λ|v|1,Λ, ∀u, v ∈ H1(Λ), (4.13)

and cΩ\Λ̄ which is coercive and continuous on the restriction of V on
Ω \ Λ̄.



4.3. Analysis of Algorithm 4.1 on Γ-nested meshes 83

Compute the initial guess u0
H ∈ VH such that

cΩ(u0
H , vH) = (f, vH)Ω, ∀vH ∈ VH

and choose the relaxation parameter ω ∈ (0, 1].
for n = 1, 2, 3, . . . do

Find unh ∈ Vh and λnh ∈Mh such that

aΛ(unh, vh)− 〈λnh, vh〉 = (f, vh)Λ, ∀vh ∈ Vh
〈unh, µh〉 = 〈un−1

H , µh〉, ∀µh ∈Mh

Find unH ∈ VH such that

cΩ(unH , vH) = ω(f, vH)Ω\Λ̄ − ω〈λnh, vH〉+ ωcΛ(un−1
H , vH)

+(1− ω)cΩ(un−1
H , vH), ∀vH ∈ VH

Set

u
n−1/2
Hh =

{
unh, in Λ
un−1
H , outside Λ

unHh =

{
unh, in Λ
unH , outside Λ

end
Algorithm 4.1: Numerical zoom for monotone nonlinear problems

Similarly, the semi-linear form aΩ is decomposed as

aΩ(u, v) = aΛ(u, v) + aΩ\Λ̄(u, v) (4.14)

where
aΛ(u, v) = cΛ(u, v) + anlω (u, v)

and aΩ\Λ̄ = cΩ\Λ̄.

4.3 Analysis of Algorithm 4.1 on Γ-nested meshes

We shall analyze the accuracy and convergence of Algorithm 4.1 only in the
case of Γ-nested meshes in the sense of Definition 2.1. We assume throughout
the Section that the localized linearity satisfies (4.8)–(4.10) so that Assump-
tions 4.1–4.3 hold true. We shall prove the convergence of iterations, under 2
additional alternative assumptions:

Non-linearity localized well away from Γ as in [34]: the nonlinearity re-
gion ω is well inside Λ, i.e. there is a big enough gap between ∂ω and
Γ = ∂Λ. The (theoretical) convergence rate depends on the width of the
gap so that the iterative algorithm can converge very slowly is the gap
is very narrow. The proofs are in Subsection 4.3.2.
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Globally Lipschitz non-linearity: Assumption 4.9 is satisfied with φ =
const. The proofs are in Subsection 4.3.3.

4.3.1 The finite element problem: an a priori error estimate

Assume for the moment that Algorithm 4.1 converges (as proved in the next
subsections under some additional assumptions). Here, we are going to char-
acterize the limit of the iterative process in Algorithm 4.1 and examine the
precision of this limit with respect to the exact solution of problem (4.6). Let
us suppose thus that unH → uH on Ω, unh → uh on Λ, and λnh → λh on Γ as
n→∞. Passing to the limit in Algorithm 1, it is easy to see that the functions
uH ∈ VH , uh ∈ Vh and λh ∈Mh satisfy

cΩ\Λ̄(uH , vH) + 〈λh, vH〉 = (f, vH)Ω\Λ̄, ∀vH ∈ VH (4.15)
aΛ(uh, vh)− 〈λh, vh〉 = (f, vh)Λ, ∀vh ∈ Vh (4.16)

〈µh, uH − uh〉 = 0, ∀µh ∈Mh. (4.17)

We emphasize that uH survives at the limit n→∞ only outside Λ.
Assuming that the meshes are Γ-nested, cf. Definition 2.1, let us denote

the combined approximation space

VHh = {v ∈ C(Ω̄) such that v = vH on Ω \ Λ̄, v = vh on Λ

with some vH ∈ VH , vh ∈ Vh}

and gather uH and uh into uHh ∈ VHh such that uHh = uH on Ω \ Λ̄ and
uHh = uh on Λ. Note that uHh is indeed continuous on Γ thanks to (4.17)
which is equivalent to say uH = uh on Γ in the case of Γ-nested meshes.
Taking the sum of (4.15) and (4.16) we can easily eliminate λh and rewrite
this problem in terms of uHh alone: find uHh ∈ VHh such that

aΩ(uHh, vHh) = (f, vHh)Ω, ∀vHh ∈ VHh. (4.18)

Theorem 4.4. Problem (4.18) admits a unique solution uHh ∈ VHh. If u, the ex-
act solution to (4.6), is in Hk+1(Ω), we have moreover the following a priori error
estimate

||uHh − u||1,Ω 6 C
(
Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λ

)
(4.19)

with a constant C independent of H , h and u.

Proof. The semi-linear form aΩ satisfies Assumptions 4.1–4.3 so that Problem
(4.18) admits the unique solution thanks to Browder-Minty theorem. Recall
the interpolation estimate from the proof of Theorem 2.1: there exists ũHh ∈
VHh such that

||u− ũHh||1,Ωε 6 C(Hk|u|k+1,Ω\Λ̄ + hk|u|k+1,Λ) (4.20)
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In view of (4.18), (4.6) and the fact that VHh ⊂ V , the nonlinear adaptation of
Céa lemma 4.3 ensures that ||uHh−u||1,Ω 6 C||ũHh−u||1,Ω so that (4.20) leads
to (4.19).

4.3.2 Convergence of the iterative algorithm for well local-
ized non-linearities

The proof of the convergence of Algorithm 4.1 will be here done under the
additional geometrical assumption, also introduced in [34]:

Assumption 4.4. There is a gap between ∂ω and Γ, i.e. δ := dist(∂ω,Γ) > 0.
Moreover, the meshsize of Th is small enough so that the mesh cells of Th adjacent to
Γ do not intersect ω.

Let us recall the decomposition of the finite element space VH = V 0
H ⊕

V 1
H where V 0

H is defined by (2.24) and V 1
H is the orthogonal complement of

V 0
H with respect to the scalar product cΩ. The proof of the convergence of

Algorithm 4.1 will be based on a study of the mapping AHh : V 1
H → V 1

H

defined for fixed TH and Th as follows: for any zH ∈ V 1
H the function AHhzH ∈

V 1
H solves

cΩ(AHhzH , vH) = cΩ\Λ̄(zH , vH) + 〈νh, vH〉 − (f, vH)Ω\Λ̄,∀vH ∈ V 1
H (4.21)

where νh ∈Mh together with zh ∈ Vh come as the solution to

aΛ(zh, vh)− 〈νh, vh〉 = (f, vh)Λ, ∀vh ∈ Vh (4.22)
〈zh, µh〉 = 〈zH , µh〉, ∀µh ∈Mh. (4.23)

Comparing with Algorithm 4.1 we observes that the iterates unH evolve in this
Algorithm from one iteration to another as

unH = (I − ωAHh)un−1
H . (4.24)

It is thus a fixed point algorithm to solve the equation

AHhuH = 0 (4.25)

Combining (4.21) and (4.22), we observe ∀zH , vH ∈ VH

cΩ(AHhzH , vH) = cΩ\Λ̄(zH , vH) + aΛ(zh, vh)− (f, vH)Ω\Λ̄ − (f, vh)Λ (4.26)

where zh ∈ Vh is the solution to (4.22)–(4.23) and vh ∈ Vh is such that vh = vH
on Γ.

We will now prove that the mapping AHh is a contraction in the norm
‖ ·‖c associated to the scalar product cΩ, provided ω > 0 is chosen sufficiently
small.
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Lemma 4.5. Assuming properties (4.8)–(4.10) together with the properties of cΛ

and cΩ\Λ̄ lised on page 82, the mapping AHh is strictly monotone on V 1
H with respect

to the scalar product cΩ: there exists γ > 0 such that for all zH , z̃H ∈ V 1
H

cΩ(AHhzH , zH − z̃H)− cΩ(AHhz̃H , zH − z̃H) > γ‖zH − z̃H‖2
c (4.27)

Proof. Take any zH , z̃H ∈ V 1
H and let (zh, νh) ∈ Vh×Mh, resp. (z̃h, ν̃h) ∈ Vh×Mh

be the solutions to (4.22)–(4.23) with zH , resp. z̃H , in the right hand side of
(4.23). Set vH = zH − z̃H , vh = zh − z̃h. By (4.26), the linearity of the form cΩ,
and (4.8),

cΩ(AHhzH , vH)− cΩ(AHhz̃H , vH) = cΩ\Λ̄(zH − z̃H , vH) + aΛ(zh, vh)− aΛ(z̃h, vh)

> cΩ\Λ̄(vH , vH) ≥ C|vH |21,Ω\Λ̄ .

The last inequality is valid since cΩ\Λ̄ is coercive. We now recall from the
proof of Lemma 2.3

|vH |1,Ω\Λ̄ ≥ C|vH |1,Ω
since vH ∈ V 1

H . This entails (4.27).

Lemma 4.6. Assuming properties (4.8)–(4.10) and Assumption 4.4, the mapping
AHh is Lipschitz continuous on V 1

H with respect to the scalar product cΩ: there exists
M > 0 such that for all zH , z̃H ∈ V 1

H

‖AHhzH − AHhz̃H‖c 6M‖zH − z̃H‖c (4.28)

with M ∼ 1/δ.

Proof. Take any zH , z̃H ∈ V 1
H and let (zh, νh) ∈ Vh×Mh, resp. (z̃h, ν̃h) ∈ Vh×Mh

be the solutions to (4.22)–(4.23) with zH , resp. z̃H , in the right hand side of
(4.23).

Introduce a lifting operator RΓ
h : Mh → Vh that takes a function on Γ in the

trace space of Vh and reconstructs a function in Vh having the prescribed trace
on Γ. Thanks to Assumption 4.4, we can safely assume that for any µh ∈Mh

RΓ
hµh = 0 on ω, and |RΓ

hµh|1,Λ 6 CΓ|µh| 1
2
,Γ (4.29)

with a constant CΓ of order 1/δ.
We decompose zh = z0

h +RΓ
hzH with z0

h ∈ Vh, z0
h|Γ = 0 and similarly for z̃h.

Problems (4.22)–(4.23) can be then rewritten as

aΛ(z0
h +RΓ

hzH , v
0
h) = (f, v0

h)Λ

aΛ(z̃0
h +RΓ

h z̃H , v
0
h) = (f, v0

h)Λ

for any v0
h ∈ Vh such that v0

h|Γ = 0. Since the non-linearity in aΛ acts only
inside ω, it does not affect the contributions with RΓ

h which are non-zero only
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on Λ \ ω. The problems above can be thus recast as

aΛ(z0
h, v

0
h) + cΛ(RΓ

hzH , v
0
h) = (f, v0

h)Λ

aΛ(z̃0
h, v

0
h) + cΛ(RΓ

h z̃H , v
0
h) = (f, v0

h)Λ

Taking the difference between these two equations, setting v0
h = z0

h − z̃0
h and

applying the monotonicity property (4.8) gives

α|z0
h − z̃0

h|21,Λ 6 aΛ(z0
h, v

0
h)− aΛ(z̃0

h, v
0
h) = −cΛ(RΓ

hzH −RΓ
h z̃H , v

0
h)

so that, by (4.13),
|z0
h − z̃0

h|Λ 6 C|RΓ
hzH −RΓ

h z̃H |1,Λ (4.30)

We now note that the calculation of νh in (4.22) is only affected by the test
functions vh attached to Γ, i.e. (having already computed zh) we can assume
that vh in (4.22) vanishes on ω thanks to Assumption 4.4. But aΛ coincides
on Λ with the bilinear form cΛ so that (4.22) can be rewritten for such test
functions as

cΛ(zh, vh)− 〈νh, vh〉 = (f, vh)Λ

Writing the same for z̃h, ν̃h and taking vh = RΓ
hvH for vH = zH − z̃H , we see

that

〈νh − ν̃h, vH〉 = cΛ(zh − z̃h, RΓ
hvH) 6 C|zh − z̃h|1,Λ|RΓ

hvH |1,Λ
6 C(|z0

h − z̃0
h|1,Λ + |RΓ

hzH −RΓ
h z̃H |1,Λ)|vH |1,Ω\Λ̄
6 C CΓ|zH − z̃H |1,Ω\Λ̄|vH |1,Ω\Λ̄

We have used here (4.30) and (4.29) together with a trace inequality on Ω \ Λ̄.
Substituting this into (4.21) gives

cΩ(AHhzH − AHhz̃H , vH) = cΩ\Λ̄(zH − z̃H , vH) + 〈νh − ν̃h, vH〉
6 C CΓ|zH − z̃H |1,Ω\Λ̄|vH |1,Ω\Λ̄

which implies (4.28) with a constant of order 1/δ.

Corollary 4.7. Assuming properties (4.8)–(4.10) and Assumption 4.4, the mapping
I−ωAHh is a contraction on V 1

H for 0 < ω < ω0 with some sufficiently small ω0 > 0.

Proof. For any uH , vH ∈ V 1
H , using (4.27) and (4.28),

‖(I − ωAHh)uH − (I − ωAHh)vH‖2
c

= ‖uH − vH‖2
c − 2ωcΩ(AHhuH − AHhvH , uH − vH) + ‖AHhuH − AHhvH‖2

c

6 ‖uH − vH‖2
c(1− 2ωγ + ω2M2)

We note that 1 − 2ωγ + ω2M2 < 1 for all ω ∈ (0, ω0) with ω0 = 2γ
M2 . Hence,

(I − ωAHh) is a contraction for these ω.
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Theorem 4.8. Assuming properties (4.8)–(4.10) and Assumption 4.4, Algorithm
4.1 converges to the solution of (4.18) provided 0 < ω < ω∗ where ω∗ is a mesh-
independent constant, i.e. unHh → uHh as n → ∞ where uHh ∈ VHh is the unique
solution of (4.18). The convergence rate is independent from h and H , but may
depend on δ from Assumption 4.4.

Proof. We decompose each iterate of Algorithm 4.1 as unH = un,0H + un,1H with
un,0H ∈ V 0

H and un,1H ∈ V 1
H . Taking the test functions vH ∈ V 0

H in the equation
for unH of Algorithm 4.1 we see immediately

un,0H = un−1,0
H

Similarly, taking the test functions vH ∈ V 1
H , we rediscover

un,1H = (I − ωAHh)un−1,1
H

As proved in the preceding corollary, (I −ωAHh) is a contraction on V 1
H . This

shows the convergence of the sequence {un,1H }. The iterates unh are uniquely
determined by the traces of {unH} on Γ which coincide with those of un,1H . We
see thus that the sequence {unh} is also convergent, as is the sequence {unHh}
since unHh = un,1H on Ω \ Λ̄ and unHh = unH on Λ.

An unfortunate feature of Algorithm 4.1 is that its convergence rate
strongly depends on the distance δ between ∂ω and Γ in Assumption 4.4
so that, at least according to our proofs, the patch Λ should be taken much
larger than the nonlinearity zone ω. The (theoretical) reason for this lies in
the Dirichlet boundary conditions for unh. Technically, this obliges us to intro-
duce the lifting operator RΓ

h in the analysis of Lemma 4.6 that should live in
the gap between ∂ω and Γ and thus prevents us from shrinking this gap. In
the next Subsection, we present a convergence analysis avoiding the annoy-
ing geometrical Assumption 4.4.

4.3.3 Convergence of the iterative algorithm for globally Lip-
schitz non-linearities

The proof of the convergence of Algorithm 4.1 will be done here under the
additional assumption about the form aΛ, which is stronger than property
(4.9):

Assumption 4.5. There exists L > 0 such that for all u, v, w ∈ H1(Λ)

|aΛ(u,w)− aΛ(v, w)| ≤ L‖u− v‖1,Λ|w|1,Λ

Remark 4.3. The assumption of the global Lipschitz continuity is of course rather
restrictive. We argue however that we can often adopt it in practice. For instance,
Richards equation (Examples 4.2 or 4.4) leads naturally to global Lipschitz problems.
On the other hand, the cubic linearity in Examples 4.1 or 4.3 is only locally Lipschitz.
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However, if the solution to (4.11) is bounded, i.e. |u(x)| ≤ θ for all x ∈ Ω for some
θ > 0, we can replace the governing equation with

−∆u+ χNθ(u) = f (4.31)

where
Nθ(u) =

{
u3, for|u| 6 θ
θ2u, for|u| > θ

(4.32)

This does not change the solution and the associated semi-linear form is globally
Lipschitz.
Lemma 4.9. Under Assumption 4.5 and properties (4.8), (4.10), the mapping AHh
is Lipschitz continuous on V 1

H with respect to the scalar product cΩ: there exists
M > 0 such that for all zH , z̃H ∈ V 1

H

‖AHhzH − AHhz̃H‖c 6M‖zH − z̃H‖c (4.33)

Proof. Take any zH , z̃H ∈ V 1
H and let (zh, νh) ∈ Vh×Mh, resp. (z̃h, ν̃h) ∈ Vh×Mh

be the solutions to (4.22)–(4.23) with zH , resp. z̃H , in the right hand side of
(4.23).

Introduce w ∈ H1(Λ) as the solution to

−∆w = 0 in Λ, w = zH − z̃H on Γ

and construct wh ∈ Vh as a Scott-Zhang interpolation of w being a projection
on the finite element trace space on Γ so that we have wh = zH − z̃H on Γ. By
the properties of Scott-Zhang interpolation

‖wh‖1,Λ 6 C‖w‖1,Λ 6 C‖zH − z̃H‖0,Γ (4.34)

Take vh = zh − z̃h − wh in problems (4.22)–(4.23). Noting that vh = 0 on Γ,
these problems can be then rewritten as

aΛ(zh, vh) = (f, vh)Λ

aΛ(z̃h, vh) = (f, vh)Λ

Taking the difference between these two equations gives

aΛ(zh, vh)− aΛ(z̃h, vh) = 0

which we can rewrite, thanks to the linearity of aΛ with respect to the second
argument, as

aΛ(zh, zh − z̃h)− aΛ(z̃h, zh − z̃h) = aΛ(zh, wh)− aΛ(z̃h, wh)

This gives, since aΛ is monotone and globally Lipschitz,

α|zh − z̃h|21,Λ 6 L‖zh − z̃h‖1,Λ‖wh‖1,Λ 6
Lε

2
‖zh − z̃h‖2

1,Λ +
L

2ε
‖wh‖2

1,Λ
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for any ε > 0. Using Poincaré and trace inequalities, one can prove

‖zh − z̃h‖2
1,Λ = |zh − z̃h|21,Λ + ‖zh − z̃h‖2

0,Λ 6 C(|zh − z̃h|21,Λ + ‖zh − z̃h‖2
0,Γ) .

Hence, taking ε small enough

|zh − z̃h|21,Λ 6 C(‖zH − z̃H‖2
0,Γ + ‖wh‖2

1,Λ) 6 C‖zH − z̃H‖2
0,Γ

thanks to (4.34). We now use a trace inequality on Ω \ Λ̄ to conclude

‖zh − z̃h‖1,Λ 6 C|zH − z̃H |1,Ω\Λ̄

Substituting this into (4.26) gives

cΩ(AHhzH − AHhz̃H , vH) = cΩ\Λ̄(zH − z̃H , vH) + aΛ(zh, vh)− aΛ(z̃h, vh)

6 C|zH − z̃H |1,Ω\Λ̄|vH |1,Ω\Λ̄

which implies (4.33).

We note that the monotonicity of the mapping AHh without additional
Assumptions 4.4 and 4.5, cf. Lemma 4.5. Thus, combining Lemmas 4.5 and
4.9, we arrive at

Theorem 4.10. Under Assumptions 4.1–4.3 and 4.5 and properties (4.8), (4.10),
Algorithm 4.1 converges to the solution of (4.18) provided 0 < ω < ω∗ where ω∗ is
a mesh-independent constant, i.e. unHh → uHh as n → ∞ where uHh ∈ VHh is the
unique solution of (4.18). The convergence rate is independent of h and H .

4.4 Numerical tests

We shall test the numerical zoom Algorithm 4.1 on a problem with localized
cubic non-linearity (4.11). We choose the domain Ω as the square (−1, 1)2

and the subdomain ω where the non-linearity is active in the disk of radius
r: ω = {(x, y) : x2 + y2 < r2}. We set χ accordingly and choose the right-hand
side as

χ(x, y) =

{
η, if x2 + y2 < r2

0, otherwise and f = const (4.35)

We have thus three numerical parameters r, η, and f to fix in each numerical
experiment.

We use the uniform Cartesian mesh of size h in x and y directions on Λ =
(−L,L)2 with L,H ,h set so that L/H and H/h are integers. The non-linear
problems on the fine mesh in Algorithm 4.1 are solved by Newton’s method
with the stopping criterion ‖un(k)

h −un(k−1)
h ‖0,Λ ≤ 10−8. Problem (4.11) with the

settings above does not have an analytical solution. We have thus compared
the approximation with the reference solution computed on a global uniform
Cartesian mesh of size h.
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First test case (well localized non linearity). We consider Problem (4.11)
with coefficients (4.35) and r =

√
0.02, η = f = 10. We take the patch

Λ = (−0.2, 0.2)2 so that the non-linearity zone ω (the disc or radius
√

0.02)
is separated from Γ = ∂Λ by a comfortable gap. We present the convergence
of Algorithm 4.1 without relaxation (i.e. ω = 1) at Fig. 4.1. Visually, we ob-
serve that the algorithm converges, but its first iterations are very far from
the final solution, and the convergence is rather slow. This is confirmed by
convergence curve at Fig. 4.2. We report there the relative errors inH1 and L2

norms on iteration using several, more and more refined grids. The conver-
gence becomes slower on more refined meshes, and one needs 40 iterations
in order to observe the converged solution on all the meshes if one looks at
the H1 norm. One observes the optimal O(H) behavior of the error in this
norm for the converged approximate solutions. On the contrary, these 40 it-
eration seem not enough when we look at the L2 norm, which can explain
the lack of the optimal O(H2) behavior of the error.

Second test case (non linearity touching Γ). We consider again Problem
(4.11) with coefficients (4.35) and put r = 0.02, while keeping η = f = 10
and the patch Λ = (−0.2, 0.2)2 so that the non-linearity zone ω (the disc or
radius 0.02) touches Γ. Algorithm 4.1 without relaxation (i.e. ω = 1) does
not converge in this case, as reported at Fig. 4.3 (red curves). We have tried
to make the cubic non linearity by a globally Lipschitz one (4.31)–(4.32) with
θ = 6. This, however, does not make the method convergent, only slowing
the divergence, as seen at Fig. 4.3 (green curves). The only trick to retrieve
convergence is to introduce some relaxation in the method, i.e. take ω < 1.
For example, taking ω = 0.2, the method converges at essentially 5 iteration,
see Fig. 4.3 (blue curves). Note that we do not introduce the cut-off in these
last experiments. The convergence is thus not guaranteed by our theory of
Subsections 4.3.2 or 4.3.3. The convergence of the method with ω = 0.2 is ad-
ditionally illustrated by Figs. 4.4–4.5, where the iteration up to 4th are plotted
and we see clearly that the iterative process has stabilized.

As a conclusion of these first numerical experiments, we can say that ad-
ditional Assumptions 4.4 or 4.5 are not really necessary for Algorithm 4.1 to
converge (contrary to the relaxation, which can be indeed necessary). One
needs a subtler theory to investigate Algorithm 4.1 without Assumptions 4.4
or 4.5.



92 Chapter 4. Numerical zoom for monotone non linear problems

FIGURE 4.1: Evolution on iterations of Algorithm 4.1. The test
case (4.11)–(4.35) with r =

√
0.02, η = f = 10, the mesh sizes

H = 0.1, h = 0.01 on the patch Λ = (−0.2, 0.2)2. The reference
solution, the initial coarse approximation (Iter 0, u0

H ) and sev-
eral subsequent iterations (u1.5

Hh, u2
Hh, u39.5

Hh , u40
Hh) of Algorithm

4.1 are presented from top to bottom, left to right.
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FIGURE 4.2: Convergence of Algorithm 4.1 under the mesh
refinement for the same test case as in Fig. 4.1, the varying
mesh size H , and the fine mesh size h = H/20 on the patch

Λ = (−0.2, 0.2)2.
Left: the relative H1-error on iterations; Right: the relative L2-

error on iterations.
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FIGURE 4.3: Convergence of Algorithm 4.1 . The test case
(4.11)–(4.35) with r = 0.02, η = f = 10, the mesh sizes H = 0.1,
h = 0.01 on the patch Λ = (−0.2, 0.2)2. We present 3 variants:

i) no relaxation (ω = 1); ii) no relaxation (ω = 1) but a cut-off on
the non-linearity (θ = 6); iii) relaxation (ω = 0.2), no cut-off.

Left: the relative H1-error on iterations; Right: the relative L2-
error on iterations.
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FIGURE 4.4: Evolution on iterations of Algorithm 4.1 on the
same test case and the meshes as in Fig. 4.3. The reference so-
lution, the initial coarse approximation (Iter 0, u0

H ) and several
first iterations (u0.5

Hh, u1
Hh, u1.5

Hh, u2
Hh) of Algorithm 4.1 are pre-

sented from top to bottom, left to right.
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FIGURE 4.5: Continued from Fig. 4.4. iterations u3.5
Hh and u4

Hh.
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titre La méthode de Zoom Numérique pour des problèmes elliptiques per-
turbés et des problèmes non linéaires

Mots clés elements finis, zoom numérique, problèmes non linéaires

Résumé Nous proposons plusieurs nouvelles variantes de la méthode du Zoom
Numérique et les étudions mathématiquement. Nous considérons principale-
ment la situation suivante simple, mais pertinente aux applications pratiques :
l’équation de Poisson dans un domaine contenant un petit trou. Nous util-
isons un maillage global grossier qui ne voit pas le trou et corrigeons ce défaut
grâce à un maillage fin placé autour du trou et conforme à celui-ci. Un al-
gorithme itératif (zoom numérique multi-modèles ou couplage des modèles
non intrusif) est alors proposé, résolvant alternativement les problèmes sur
les maillages global et local. Nous introduisons un cadre mathématique pour
ces méthodes sous des hypothèses très générales sur les maillages : le mail-
lage fin peut être placé sur le maillage grossier de manière arbitraire. Nous
analysons ensuite théoriquement à la fois la précision de la méthode par rap-
port aux raffinements du maillage et le taux de convergence des itérations.
Nous comparons également cette approche avec la méthode des développe-
ments asymptotiques. Enfin, nous adaptons notre méthode aux problèmes
monotones avec des non-linéarités localisées, en modifiant la preuve de con-
vergence et en donnant une estimation d’erreur a priori.

Title : The Numerical Zoom method for the elliptic perturbed problems and
non-linear problems

Keywords :] finite elements, numerical zoom, nonlinear problems

Abstract : We propose several new variants of the method of Numerical Zoom and
study them mathematically on several model problems. We consider mostly
the following simple situation, yet pertinent to some practical application:
Poisson equation in a domain containing a small hole. We employ a coarse
global mesh that does not see the hole and correct this defect using an addi-
tional fine mesh placed around the hole and conforming with it. An iterative
algorithm (multi-model numerical zoom or non intrusive model coupling) is
then proposed, solving alternatively the problems on global and local meshes.
We introduce a mathematical framework for these methods under very gen-
eral assumptions on the meshes: the fine mesh may be placed over the coarse
one in an arbitrary manner. We perform then a complete theoretical analysis
both of the accuracy with respect to a mesh refinement and of the convergence
rate of iterations. We also compare this approach with the method of matched
asymptotic expansions. Finally, we adapt our method to monotone problems
with localized non-linearities, adapting the convergence proof and giving an
a priori error estimate.
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