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The first principle is that you must not fool yourself - and you are the easiest person to 

fool 

 

Richard Feynman 
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Résumé en Français 

Introduction et objectifs de la thèse  

L’ADN est constamment altéré du fait du métabolisme oxydatif de la cellule ou de l’exposition à des 

agents génotoxiques environnementaux. Malgré l’existence de systèmes de réparation de l’ADN 

efficaces, certaines lésions sont encore présentes lors de la phase S du cycle cellulaire et bloquent la 

progression des fourches de réplication. Néanmoins plusieurs mécanismes « de tolérance » 

permettent à la cellule de poursuivre la synthèse d’ADN. L’un de ces mécanismes, appelé synthèse 

translésionnelle (TLS), fait intervenir des ADN polymérases spécialisées, dites « translésionnelles », 

qui remplacent les ADN polymérases réplicatives bloquées au niveau des lésions de l’ADN, au risque 

d'introduire des mutations dans le génome.  

L’importance du mécanisme TLS est illustrée par la maladie Xeroderma pigmentosum variant (XPV) 

caractérisée par une forte incidence de cancers cutanés. Les patients atteints sont déficients dans 

l’ADN polymérase η (pol η), capable de franchir très efficacement et sans erreur un dimère de 

pyrimidine T-T de type cyclobutane (lésion CPD majoritairement formée après irradiation des cellules 

aux rayonnements ultraviolets). En son absence, d’autres ADN polymérases TLS interviennent dans la 

réplication d’ADN endommagé, avec moins de fidélité et d'efficacité. Le maintien de l’intégrité 

génétique des cellules dépend donc d’une régulation fine de l’activité des ADN polymérases TLS. Ceci 

concerne non seulement leur recrutement au niveau des lésions de l’ADN, mais aussi leur 

démobilisation une fois la TLS réalisée, pour permettre la reprise de la réplication « classique », non 

mutagène.  

L’étude de la régulation de la TLS est l’objectif de ce travail de thèse. En particulier nous avons cherché 

à déterminer le rôle de l’interaction que nous avons mis en évidence entre pol η et CAPNS1, la sous-

unité régulatrice des calpaïnes 1 et 2. Ces protéases ubiquitaires dépendantes du calcium régulent de 

nombreux processus cellulaires fondamentaux en effectuant une digestion contrôlée de leur protéine 

cible. Il a été décrit qu’un stress réplicatif induit une élévation de la concentration intracellulaire du 

Ca2+ dans le noyau (Li et al., 2019) et que les calpaïnes sont activées après irradiation des cellules aux 

rayons ultra-violets (UV) (Gulati et al., 2004). Nos résultats permettent d’établir que les calpaïnes 

participent à la régulation de la TLS en impactant positivement la localisation de pol η dans les foyers 

de réplication dans les cellules irradiées aux UV.  
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Résultat acquis  

L’ADN polymérase translésionnelle pol η interagit avec CAPNS1  

En utilisant le système double hybride de levure nous avons montré que pol η interagit avec CAPNS1. 

Nous avons ainsi déterminé que la partie C-terminale de pol η, incluant les acides aminés 595 à 662, 

est suffisante, mais que la structure en doigt de zinc contenue dans cette région n’est pas impliquée. 

Après irradiation aux UV des cellules surexprimant la protéine de fusion eYPF-pol η, pol η est 

relocalisée dans les foyers de réplication, visibles et dénombrables sous un microscope à fluorescence. 

Nous avons observé que CAPNS1 s’accumule avec eYFP-pol η dans ces foyers de réplication suggérant 

que les deux protéines puissent y être associées.  

Clivage in vitro de pol η par la calpaïne  

Pol η, produite dans un lysat de réticulocytes de lapin, est coupée spécifiquement autour du résidu 

465 par la calpaïne 1 purifiée. En outre, l’incubation d’extraits protéiques en présence de calcium 

induit le clivage de pol η par une calpaïne endogène, comme le montre l’effet de la calpeptine, un 

inhibiteur des calpaïnes 1 et 2. Des analyses par spectrométrie de masse de la forme clivée de pol η 

confirment que le clivage s’effectue à la position 465 (Plateforme Protéomique Strasbourg IBMC) dans 

nos conditions expérimentales, ce qui est compatible avec une analyse informatique de prédiction des 

sites de coupure de la calpaïne (CaMPDB.org).  

Clivage de pol η dans les cellules après activation de la calpaïne  

L’activation de la calpaïne par le traitement des cellules avec un ionophore transporteur de calcium 

induit le clivage de pol η à la même position que lors de la coupure in vitro. Ce clivage peu efficace est 

augmenté lorsque l’on réduit l’expression de la calpastatine, protéine inhibitrice des calpaïnes, à l’aide 

de siRNA. Enfin, dans ces conditions d’inhibition de la calpastatine, le clivage est également observé 

après irradiation aux UV.  

La version clivée de pol η (1-465) est fonctionnelle pour la TLS  

Le produit de clivage de pol η par la calpaïne contient le domaine catalytique de pol η intact (1-435) 

et est dépourvu des domaines d’interaction avec l’ubiquitine et PCNA nécessaires au recrutement de 

pol η dans les foyers de réplication après irradiation des cellules aux UV. Cette version tronquée de 

pol η contient néanmoins une séquence alternative d’interaction avec PCNA dont le rôle est 

controversé (Acharya et al., 2008). Par mutagenèse dirigée nous avons établi que ce motif est 

fonctionnel car il confère à la version tronquée de pol η (1-465) une activité de TLS in vitro non 

négligeable par rapport à la protéine complète.  
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Les calpaïnes sont impliquées dans la localisation de pol η dans les foyers de réplication  

Curieusement, le nombre de foyers de pol η formés après irradiation aux UV est diminué lorsque les 

cellules sont traitées avec un inhibiteur des calpaïnes, alors que le cycle cellulaire et la 

monoubiquitination de PCNA ne sont pas modifiés. Cette réduction,qui atteint 50% après 6h et 9h 

d’irradiation montre que l’activité des calpaïnes est impliquée dans la mobilisation de pol η dans les 

foyers de réplication. La région où s’effectue le clivage de pol η est le siège de plusieurs autres 

modifications post-traductionnelles (GlcNAcylation à la position 457 et polyubiquitination à la position 

462) qui sont nécessaires à l’élimination de pol η après la TLS, limitant ainsi la mutagenèse (Ma et al., 

2017). Le clivage de pol η à la position 465 pourrait empêcher ces modifications et contrecarrer ainsi 

son départ de la chromatine.  

Conclusion  

Nous avons établi que pol η interagit avec CAPNS1, et que les deux protéines s’accumulent 

conjointement dans les foyers de réplication après irradiation des cellules aux UV. De plus, pol η est 

clivée in vitro et dans les cellules irradiées aux UV par la calpaïne. Le produit clivé comporte le domaine 

catalytique de pol η et un motif d’interaction avec PCNA fonctionnel. Enfin, le résultat majeur de notre 

étude réside dans le fait que l’activité des calpaïnes impacte de façon positive la localisation de pol η 

dans les foyers de réplication. Une perspective intéressante de ce travail est de rechercher si ce 

mécanisme de régulation pourrait avoir lieu lors de processus spécifiques au cours desquels l’activité 

mutagène de pol η est observée. Ceci pourrait être le cas dans les cellules B activées dans lesquelles 

la concentration de calcium intracellulaire est augmentée de façon significative et où pol η participe à 

l’hypermutation somatique en synthétisant de larges portions d’ADN de façon mutagène. L’activité 

mutagène de pol η est également responsable de l’activation d’oncogène dans les cellules tumorales 

subissant un stress réplicatif (Tsao and Eckert, 2018). La dérégulation du système calpaïne et de 

l’homéostasie du calcium de ces cellules pourrait être à l’origine de l’activité soutenue de pol η dans 

ces conditions.  

La compréhension de la régulation de pol η est essentielle pour le développement d'inhibiteurs des 

mécanismes de tolérance des dommages à l'ADN. De telles molécules pourraient sensibiliser les 

cellules tumorales aux agents génotoxiques (par exemple le cisplatine) et pourrait réduire les effets 

secondaires mutagènes de ces agents.   
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Introduction orientation 

This PhD thesis is about the regulation of the translesion DNA polymerase η (pol η). I will set 

the scene by introducing replication and by giving an overview of DNA damages and repair 

mechanisms. These paragraphs lead to an introduction of DNA damage tolerance 

mechanisms, which is followed by a detailed description of translesion synthesis (TLS), and 

more specifically about pol η. Pol η was found in our laboratory to interact with CAPNS1, the 

subunit of calpain 1 and 2, which are calcium dependent, modulating proteases. I focus my 

PhD research on this CAPNS1/ polymerase η interaction to study its biological relevance. 

Therefore, adherend to the pol η introduction is a chapter about calpains and their multiple 

functions and implications in human pathologies. 

Replication 

Origin of replication firing  

At each cell division, the genome is duplicated by replication. The replication is initiated at 

about 30,000 - 50,000 replication origins. Replication origins contain DNA sequences which 

are recognized by replication initiation proteins (Figure 1). During G1-phase, licensing of 

replication occurs by formation of the origin recognition complex (ORC), consisting of the 

hexamer ORC1-6, at the site of replication origin. This is controlled by a “licensing checkpoint” 

delaying entrance into S-phase until sufficient origins are licensed and therefore insures the 

replication of the complete genome. Secondly, the pre-replication complex is formed by 

binding of the DNA replication factor CDT1 and cell division control protein 6 homolog 

(CDC6), as well as loading of mini-chromosome maintenance (MCM) helicase complex. MCM 

contains six subunits: MCM2–7 (Fragkos et al., 2015). During G1- to S- phase transition, DBF4-

dependent kinase (DDK) and cyclin-dependent kinases (CDKs) phosphorylate numerous 

replication factors; most importantly MCM10, CDC45, ATP-dependent DNA helicase Q4 

(RECQL4), treslin, GINS, DNA topoisomerase 2-binding protein 1 (TOPBP1) and DNA 

polymerase ε (Pol ε), leading to the formation of the pre-initiation complex (pre-IC) and the 

activation of the MCM helicase complex. The MCM helicase double hexamer complex splits 

into two hexamers, subsequentially, both MCM helicases unwind the DNA and thereby 

creating two replication forks. Replication protein A (RPA) binds to the unwound single 
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stranded DNA, protecting it from degradation and hinders the formation of secondary 

structures. The later process is termed origin firing, which occurs in domains, which have a 

mean replication domain sizes of 1.4–3.6 Mbp and contain at least six replicons. Replicons are 

determined as the DNA region replicated from a single origin. The focal sites of DNA synthesis 

at a single origins are termed replication foci, which can be visualized by either labelling 

replisome components or by detecting sites of nucleotide incorporation upon pulse labeling 

(Chagin et al., 2016). When the replication of one domain is completed the origin firing 

spreads to its neighboring domains. Dormant origins can be activated in case of an absent 

origin firing in its vicinity or when a DNA damage stalls incoming forks, helping to complete 

replication. Unfired dormant origins are inactivated to prevent re-replication, if their DNA is 

replicated by an incoming fork, generated by a neighboring origin. Transcriptionally active 

open euchromatin replicates in early S-phase and heterochromatin generally replicates late 

in S-phase, often at the nuclear periphery and around nucleoli. Active replication and 

transcription take place separately from one another to avoid replication-transcription 

interference and therefore genome instability (Blow et al., 2011; Fragkos et al., 2015). Late 

replication is associated with elevated levels of mutations (Gaboriaud and Wu, 2019). It is 

proposed that during S-phase progression specific biochemical aspects change, such as dNTP 

levels/balance, activity of TLS DNA polymerases, and mismatch repair activity, causing effects 

on the introduction or repair of DNA lesions (Koren et al., 2012).  

Furthermore, early or late S-phase replication regions are associated with different mutation 

types. Whereas copy number variations and large-scale rearrangements occur in early S-

phase, while deletions and single-nucleotide polymorphisms arise in late S-phase. 
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Figure 1: Origin of replication from Fragkos et al., 2015 
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The DNA replication fork 

The DNA replication fork consists of many proteins that form a large complex, the replisome 

which includes all proteins described in the following paragraph. The replisome facilitates the 

efficient initiation and elongation of DNA synthesis (Figure 2). Proteins traveling with the 

replication fork are involved in chromatin-associated events, such as, repair, recombination, 

chromatin formation, chromatin modification, chromatin remodeling, maintenance of 

epigenetic information and the prevention of re-replication during replication fork 

progression (Mueller et al., 2019). DNA synthesis is started by primase, which synthesizes an 

RNA primer, in complex with the replicative DNA polymerase α, extending the RNA primer 

with DNA. The DNA sliding clamp proliferating cell nuclear antigen (PCNA) is loaded onto the 

DNA 3’-OH ends with the help of replication factor C (RFC) in an ATP (Adenosine triphosphate) 

dependent manner (Shiomi and Nishitani, 2017). RPA directly interacts with RFC to facilitate 

the specific binding of RFC to the 3ʹ junction, thereby directing PCNA loading. PCNA plays a 

fundamental role in coordinating multiple events on the DNA. During the next step, PCNA 

tethers the fidel replicative DNA polymerases δ and ε (pol δ and ε), stabilizing the interaction 

of the polymerases with the DNA. The daughter-stand is synthetized in 5’ to 3’ direction, 

originating from the RNA-DNA primer. Leading strand (3’ to 5’) synthesis is done in a continues 

manner in 5’ to 3’ direction towards the helicase, mainly by pol ε (subunits: PolE1-PolE4), 

whereas the lagging strand (5’ to 3’) is synthetized in about 200 nt fragments in 5’ to 3’ 

direction (Okazaki fragments) mainly by pol δ (subunits: PolD1-PolD4). The RNA parts of the 

primers are removed by ribonuclease H and Flap Structure-Specific Endonuclease 1 (FEN1). 

DNA pol δ fills the gaps with deoxynucleotides and the fragments are coupled by DNA ligase 

through 5’ to 3’ phosphodiester bonds (Nick McElhinny et al., 2008; Stillman, 2008). DNA 

topoisomerases bind ahead of the MCM helicase, nicking one or both of the DNA strands to 

release torsional tension induced by the unwinding of the DNA (Bjornsti and Kaufmann, 2019; 

Oakley and Hickson, 2002).  

During replication about 120 000 misplaced bases are integrated into the DNA per cell. If 

those mistakes aren’t repaired, they manifest into mutations during the next cell division. 

Fortunately, Pol δ and ε possess the ability to proofread their newly synthetized DNA strand 

and therefore, demonstrate an increased fidelity of 102-103 (Bębenek and Ziuzia-Graczyk, 

2018; Reha-Krantz, 2010). Furthermore, base mismatches can be repaired after the 
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replication due to a repair pathway called the mismatch repair (described below). Organisms 

deficient in MMR demonstrate an estimated mutation rate of 1.6x10-8 causing hereditary 

cancers (Meier et al., 2018). Faithfull DNA replication, with in error rate at about 10-9-10-10, is 

essential to prevent accumulations of mutations and to maintain genome integrity. 

Accordingly, germline mutations in the catalytic subunits of pol δ and pol ϵ lead to 

proofreading-associated polyposis (Briggs and Tomlinson, 2013; Palles et al., 2013). 

 

 

Figure 2: Replication fork in human cells. The replicative DNA polymerase α forms a complex with Primase, 

initiating the synthesis of the DNA fragment. The replicative DNA polymerases ε and δ synthesize the leading 

and the lagging strand, whereas PCNA serves as anchor for polymerase ε and δ. 

DNA damage 

The human body consists of approximately 1013 cells and each cell experiences tens of 

thousands DNA lesions per day (Lindahl and Barnes, 2000). DNA damage can be categorized 

into two types, endogenous and exogenous. Endogenous DNA damage is caused by the cell 

itself through reactive oxygen species (ROS), AP (apurinic or apyrimidic) sites, DNA 

methylation, active enzymatic DNA processes and other metabolic products (Lindahl and 

Barnes, 2000; Tubbs and Nussenzweig, 2017). Exogenous damage occurs when cells are 

exposed to ionizing radiation, ultraviolet radiation or chemical agents (e.g.: DNA damaging 

chemotherapeutics, carcinogens in tobacco smoke, alcohol) (Brooks, 1997; Ma et al., 2019). 

The DNA damages that occur can be base damage, sugar damage, single strand breaks (SSBs), 

or double strand breaks (DSBs) (Figure 3) (Kuo and Yang, 2008; Shiloh, 2003). DNA damage 

can lead to mutations and genome instabilities, which can result in many different medical 

conditions, including cancer. Approximately 38.4% of all people worldwide will be diagnosed 
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with cancer at some point during their lifetimes (based on data from 2013–2015 (National 

Cancer Institute, 2015)). This incident rate is expected to rise. 

 

 

Figure 3: DNA damage and the cellular response as shown in Shiloh, 2003. 

DNA repair 

DNA repair is crucial to an organism's ability to maintain its genome integrity and thus its 

function. Depending on the damage type there are different pathways to repair them (see 

Figure 4 and 5 for main repair pathways). The repair pathways are described in the following 

in two groups: single-strand DNA lesions and double-strand breaks. 

Repair mechanisms of lesions affecting one strand of the DNA 

Base excision repair (BER): BER is a mechanism during which a single non-helix distorting DNA 

alteration is removed and replaced with the correct base. Eleven different DNA glycosylases 

in humans recognize the different base damages. X-ray repair cross-complementing protein 1 
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(XRCC1) interacts with several of these DNA glycosylases involved in the repair of both 

oxidative and alkylated base lesions, and stimulates their activity. DNA glycosylases catalyze 

the cleavage of the N-glycosidic bond between the substrate base and the 2’- deoxyribose, 

producing an AP (Apyrimidinic/Apurinic) site. Subsequently, AP endonuclease (APE1) cleaves 

the DNA backbone. The following steps of gap filling and ligation are carried out either via the 

short-patch or the long-patch BER sub-pathways. The short-patch BER sub-pathway is 

dependent on the pol β, which can hydrolyze the 5’dRP and fills the single nucleotide gap. 

This prepares the strand for ligation by either a complex of DNA Ligase IIIα (LigIIIα) and XRCC1 

or LigI. The interaction between the BRCT II domain of XRCC1 with DNA Ligase IIIα protein is 

required to prevent the DNA Ligase degradation. For the long-patch sub-pathway a complex 

is formed, including pol δ or ε coupled with PCNA, flap endonuclease (Fen1) and DNA Ligase 

I (LigI). This complex is synthetizing DNA to fill the gap. Finally, the DNA strand integrity is 

restored by closing the nick with LigI (Lodish, 2008; Wallace, 2014).  

Single-strand break repair (SSBR): Single-strand breaks can be repaired through the SSBR 

pathway. The discontinuities in one strand of the DNA double helix are usually accompanied 

by loss of a single nucleotide. The binding of the PARP-1 and PARP-2 proteins to the single 

strand break activates the synthesis of poly(ADP-ribose) (PAR) polymers, thereby stimulating 

the recruitment of DNA repair proteins to the DNA damage site including the scaffold protein 

XRCC1. The nick is then repaired by either the long patch pathway or the short patch pathway 

as during the BER pathway (Brem and Hall, 2005; Polo et al., 2019). 

Mismatch repair (MMR): MMR is a pathway to repair mismatches after replication. The 

mismatch is identified by MSH2 and 6 and forms a ternary complex with the MLH1/PMS2 in 

an ATP dependent manner. A DNA helicase unwinds the double-stranded DNA and several 

hundred bases before and after the miss-matched base are nicked by the DNA endonucleases 

MLH1/PMS2. This complex interacts with PCNA which helps to identify the newly synthetized 

DNA strand. Subsequently, EXO1 removes about 800 nt including the mismatched DNA (Jeon 

et al., 2016). Finally, the gap is filled by the DNA pol δ and the DNA ends are joined by DNA 

ligase 1 (Hsieh and Zhang, 2017).  

Nucleotide excision repair (NER): NER is a mechanism that repairs helix-distorting DNA 

damage in a multistep 'cut and patch'-type reaction. One of the lesions the NER pathway can 

repair are thymine-thymine dimers caused by ultraviolet light. There are two types of NER, 

global genomic NER (GG-NER) and transcription-coupled NER (TC-NER). GG-NER repairs 
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damages occurring in active and inactive genes throughout the genome. GG-NER require 

Xeroderma pigmentosum C Protein (XP-C) and Rad23B for the recognition of helix distortion. 

TC-NER ensues in transcriptionally active regions of the genome and is initiated directly by 

CSA/CSB complex when RNA polymerase stalls at a lesion in DNA. The following mechanism 

is the same for both GG-NER and TC-NER. After activation of NER, the transcription factor 

TFIIH is recruited, activating its helicase subunit. An unwind DNA stretch of about 25 bases is 

formed with the help of XP-G and RPA proteins. XP-G and XP-F act as endonucleases and cut 

the unwind DNA segment that contains the distorted DNA backbone. The gap is filled by 

replicative DNA polymerases and sealed by DNA ligase (Lodish, 2008; Spivak, 2015). 

 

 

Figure 4: DNA repair pathways of single strand DNA damages as presented in Gourzones-Dmitriev et al., 2013. 

DNA-Protein Crosslink (DPC) repair: The DPC repair pathway removes proteins irreversibly 

covalently bound to DNA. The trapped protein is cleaved by the DNA-dependent 

metalloproteases Wss1 or SPRTN. The DNA-bound peptide remnant can be bypassed by the 

DNA damage tolerance mechanism translesion synthesis during replication. For the repair the 

peptide remnants can be excised by the tyrosyl-DNA-phosophodiesterases 1 and 2. 

Alternatively, nucleases can also remove DPCs by cleaving the DNA to which DPCs are 

attached. Furthermore, the NER pathway can process DPCs (Fielden et al., 2018). 
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Double-strand break repair mechanisms 

Homologous recombination (HR): HR repairs double strand breaks by using the homologous 

DNA sequence as template and thus is restricted to the S and G2 phases of the cell cycle. For 

this, overhanging 3’ single strands are produced by exonucleases. The two DNA single strands 

intertwine with the intact double strand via Rad51, forming a holiday junction in order to 

synthetize the missing DNA fragment. After DNA synthesis and ligation of the fragments, the 

holiday junction needs to be resolved by cleavage and new ligation of the nicked DNA. This 

pathway can also repair collapsed replication forks. An unrepaired collapsed replication fork 

is likely to be lethal to the daughter cell due to the loss of genetic information. Furthermore, 

HR is used for the cross-over of genetic material between the maternal and the paternal 

chromosomes (Lodish, 2008; Wright et al., 2018).  

Non-homologous end joining (NHEJ): NHEJ is the dominant double-strand repair pathway 

and occurs in disregard of homology. NHEJ modifies the two broken ends and fuses them. 

This mechanism is about 3-6 times faster than HR but it is error prone and results in the loss 

of several base pairs (Mao et al., 2008). The DNA-dependent protein kinase (DNA-PK) and the 

KU70/KU80 heterodimer bind to the loose ends. Nucleases bind to the DNA ends and remove 

the overhang, producing blunt ends. These ends are ligated together resulting in a repaired 

but shortened DNA double strand (Lodish, 2008).  

 



 26 

 

Figure 5:Double strand break repair mechanisms as presented in Brochier and Langley, 2013. 

Fanconi anaemia (FA) pathway: The FA pathway (Figure 6) is involved in repairing interstrand 

crosslinks (ICLs), highly toxic DNA lesions that can block replisome progression as well as 

transcription. The ICLs are recognized by the FANCM–FAAP24–MHF1–MHF2 complex and 

subsequently the Fanconi anaemia core complex ubiquitinates two other Fanconi anemia 

proteins, FANCD2 and FANCI. FANCM activates the ATR checkpoint, which phosphorylates 

and activates multiple Fanconi anaemia proteins. Ubiquitinated FANCD2 at the ICL region 

recruits several factors, including SLX4 and Fanconi-associated nuclease 1 (FAN1), and 

coordinates nucleolytic incisions by ERCC4 or MUS81. Afterwards, the DNA sequences are 

unhooked, leaving the crosslinked nucleotide attached to the complementary strand. This 

moiety is bypassed by translesion synthesis polymerases such as REV1 or DNA polymerase ζ. 

Ligation restores an intact DNA duplex, which functions as a template for homologous 

recombination-mediated repair of the double-strand break. The USP1–UAF1 complex 

deubiquitylates the FANCD2–I heterodimer and completes repair (Ceccaldi et al., 2016). 
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Figure 6: Interstrand crosslink repair pathway - Cooperation of Fanconi anaemia, nucleotide excision repair, 

translesion synthesis and homologous recombination proteins as presented in Ceccaldi et al.,2016 

Importance of DNA repair and tolerance mechanisms for the cell cycle progression 

There are two vulnerable points during cell cycle progression where it is incremental that the 

DNA contains as little damage as possible to prevent mutations, loss of genetic information 

or further damage of the DNA. One vulnerable point during the cell cycle is mitosis. 

Unrepaired DNA damage during mitosis can lead to loss of genetic information due to the 

absent of homology. End joining (EJ) and homologous recombination operate throughout 
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interphase but are inhibited during mitosis. (Branzei and Foiani, 2008; Hustedt and Durocher, 

2017). 

The other vulnerable point during the cell cycle is during DNA replication, because 

mismatches can be transformed into mutations and DNA damage can lead to replication fork 

break down and subsequently to the loss of genetic information. To prevent this, firstly, the 

genome is scanned directly by the replicative polymerase, which incorporated the 

nucleotides, by its proofreading capacity for mis-incorporations. Secondly, several repair 

mechanisms take place to ensure the genome integrity, such as MMR. Notably, the S-phase 

DNA damage checkpoint is slowing replication in response to DNA damage but not halting cell 

cycle progression. The two S-phase checkpoint kinases, Ataxia Telangiectasia Mutated (ATM) 

and ATM and Rad3-related (ATR), respond to DNA damage. ATM is mainly activated upon 

double-strand breaks and ATR is activated in response to a variety of genotoxins such as UV, 

MMS, hydroxyurea (HU), aphidicolin, and psoralen. ATR also functions in unperturbed S-

phase in the regulation of origin firing. DNA damages during the S-phase such as interstrand 

crosslinks and DNA-protein crosslinks can furthermore hinder transcription process. 

However, repair throughout S-phase of lesion in the replication fork will lead to double 

strand-breaks. To avoid this, the cell initiates two DNA damage tolerance pathways upon 

stalled replication forks: template switching (TS) and translesion DNA synthesis (TLS).  

DNA damage tolerance mechanisms 

DNA damage tolerance (DDT) mechanism (sometimes referred to as DNA damage bypass or 

post-replication repair) allows to circumvent DNA lesions and thereby the completion of DNA 

replication, leaving the damages to be repaired after the replication (Bi, 2015). The two DNA-

damage tolerance mechanisms TLS and TS are regulated by PCNA mono- and K63-linked 

polyubiquitination, respectively.  

Upon DNA damage during replication, RPA coated single-stranded DNA recruits the E3-

ubiquitin ligase Rad18, whereas pol η can facilitate the Rad18 recruitment  by binding to PCNA 

and Rad18 (Durando et al., 2013). Furthermore, Nijmegen breakage syndrome 1 (NBS1) and 

breast cancer type 1 (BRCA1) can also help to recruit Rad18. RAD6 binds to RAD18 and the 

complex monoubiquitinates PCNA at K164, promoting TLS. However, the monoubiquitin can 

be polyubiquitinated by the E3-ubiquitin ligases helicase-like transcription factor (HLTF) or 
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the E3 ubiquitin-protein ligase SNF2 histone linker PHD RING helicase (SHPRH) (human 

orthologs of yeast Rad5) together with the E2-conjugating complex MMS2-UBC13 thus 

promoting TS. This polyubiquitination depends on the presence of HLTF in the replication 

fork. HLTF is stimulated by double-stranded DNA via recruitment to stalled primer ends. By 

contrast, when PCNA is monoubiquitinated in the absence of HLTF, it is not subsequently 

polyubiquitinated (Masuda et al., 2018).  

Template switching 

During template switching the damaged strand invades a homologous duplex DNA and uses 

it as template for replication (Figure 7), in an error free manner albeit at the cost of lost 

heterozygosity. As described above TS is activated by PCNA poly-ubiquitination, followed by 

strand invasion and pairing of newly synthesized strands from the two sister chromatids 

mediated in saccharomyces cerevisiae by Rad51, Rad52, Rad54, and Rad55/Rad57. Pol δ 

synthesis the missing gap along the homologous template DNA. Subsequently, the sister 

chromatid junction (SCJ) is resolved by the yeast complex Sgs1/Top3/Rmi1 (Bi, 2015). It was 

shown that in late S-, G2/M-phase the DNA damage tolerance can be achieved by the salvage 

HR pathway, which similar to the TS pathway invades the sister chromatin, synthetizing along 

the homologous DNA, followed by the resolution of the SCJ in a hyper-recombinogenic 

manner (Branzei et al., 2008; Minca and Kowalski, 2010; Pfander et al., 2005). Salvage HR is 

independent from PCNA ubiquitination and can be inhibited by recruitment of human PARPB 

(PARP1 Binding Protein, also termed PARI; Saccharomyces cerevisiae: Srs2) to sumoylated 

PCNA at K164 and K254. The PARPBP helicase can disrupt Rad51 presynaptic filaments and 

thus prevent HR (Burkovics et al., 2016; Moldovan et al., 2012). 
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Figure 7: Template switching in saccharomyces cerevisiae adopted from Bi, 2015 

Translesion Synthesis – TLS 

Replication forks can be stalled by unrepaired DNA damage or secondary structures. As 

described above, once DNA has been unwound at the replication fork, replication must 

proceed despite lesions to prevent more deleterious and mutagenic consequences. TLS 

polymerases are capable of synthetizing new DNA strands complementary to the sequence 

containing a lesion. TLS is active during S-phase replication, interestingly TLS has been 

described to be active in budding yeast during G2-phase. 

It is possible for TLS polymerases to synthetize new DNA strands across lesions because they 

possess a relaxed geometric selectivity in the nascent base pair binding pocket of their 
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catalytic domain, which is more open and accessible for bulky lesions than those of replicative 

polymerases. Without conformational selection or proofreading, accuracy of Y-family 

polymerases is achieved by chemical selection alone. General TLS includes the following 

steps: Firstly, the DNA is replicated by replicative DNA polymerases until the lesion. Secondly, 

the replication folk stalls and recruits TLS polymerases, which insert nucleotides across the 

lesion. Thirdly, oftentimes another TLS polymerase extends the newly synthetized strand 

(two-step mechanism). The extension can be achieved by the same TLS polymerase as the 

insertion in a one-step mechanism. Lastly, replicative polymerases continue the replication 

process (Figure 8). 

 

 

Figure 8: Dogma of TLS as presented by Yang and Gao, 2018. 

TLS polymerases 

DNA polymerases can be divided into different families: A, B, C, D, X, Y, RT (reverse 

transcriptase, including telomerase), and PrimPol (primase and polymerase) families, in 

dependence of their structure (Figure 9)(Garcia-Diaz and Bebenek, 2007; Ito and Braithwaite, 

1991; Ma et al., 2020). The main TLS polymerases include polymerase η, ι, κ, ζ and Rev 1. 

B family: DNA translesional polymerase ζ (subunits: REV3L, REV7, POLD2 and POLD3) belongs 

to the same family as the replicative polymerases α, δ, and ε. B family polymerases are 

multisubunit enzymes. Unlike other B family polymerases, pol ζ does not possess a 

proofreading function. Pol ζ extents the DNA primer, made by other translesion DNA 

polymerases at site of a lesion, so that the replicative DNA polymerases can continue the 

replicative process. Pol ζ is also capable of completing TLS without an insertion polymerase. 

DNA pol ζ is essential for normal embryogenesis, DNA replication and cell proliferation. Pol ζ 

operates as a tumor suppressor by preserving chromosomal stability at the cost of point 

mutations in mammals. In yeast, pol ζ is responsible for at least half of spontaneous 
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mutations, demonstrating its importance (Martin and Wood, 2019). Recently, it was shown 

that pol ζ is cleaved by taspase1, preventing ubiquitination dependent degradation, which 

appears to be important for DNA lesion response (Wang et al., 2020). 

Y family: DNA translesional polymerase η, ι, κ, and Rev 1 belong to the Y family and are 

encoded by the genes POLH, POLI, POLK, and REV1 respectively. Y family members have 

identical right-hand thumb, palm and finger domains. The active site, however, differs 

between family members in accordance with the different lesions across which they replicate. 

Y family members are generally recognized as insertion polymerases in two-step mechanisms, 

meaning that these polymerases are capable to insert nucleotides in front of lesion. The 

extension of this fragment is done by the B family pol ζ and Y family pol κ in dependence of 

the lesion. However, pol η is capable of extending the newly synthetized strand after CPD 

lesions until a replicative polymerase continues the synthesis, in a one-step mechanism 

(insertion and extension) (Livneh et al., 2010). Pol κ is also capable to bypass BPDE-N2-dG 

(10S-trans-anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide) lesions in a one-step 

mechanism (Stern et al., 2019). 

A family: The prototype of this family, bacterial pol I, was the first DNA polymerase to be 

isolated. DNA polymerases θ and ν encoded by the genes POLQ and POLN belong to the 

A family. Both polymerases have been implicated in somatic hypermutation and TLS (Masuda 

et al., 2006; Quinet et al., 2018). Pol θ can bypass 6-4PP in the presence of Pol ι, and is capable 

to extend past CPD and 6-4PP after insertion by another polymerase (Seki and Wood, 2008). 

Pol θ is a key enzyme of theta-mediated end joining, which is independent from the Ku 

heterodimer in comparison with the “classical” NHEJ (Schimmel et al., 2017). Pol ν and pol θ 

bypass alkylated guanine lesions (Du et al., 2020). 

PrimPol family: PrimPol is a member of the archaeo-eukaryotic primase (AEP) superfamily. 

Primpol performs TLS across both CPD and 6-4PP lesions as well as it synthesizes a de novo 

DNA primer at the leading strand downstream a UV induced lesion (Bianchi et al., 2013; 

Mourón et al., 2013). 
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Figure 9: Domains of translesional polymerases adapted from Ma et al. 2020. AEP domain, archaeo-eukaryotic 

primase domain; BRCT, BRCA1 carboxyl terminus; NLS, nuclear localization signal; PAD, polymerase-associated 

domain (also known as the little finger); PID, polymerase interacting domain (of REV1); PIP, PCNA-interacting 

peptide; RBD, RPA binding domain (RBD); RIR, REV1-interacting region (of other Y-family polymerases); UBM 

and UBZ, ubiquitin-binding domains. 

Polymerase switch 

TLS is dependent on several polymerase switches, that means that different polymerases are 

exchanged during the TLS process to accomplish specific tasks. Two general models of TLS 

activation and polymerase switches are discussed in the literature (Bertolin et al., 2015). 

Firstly, TLS is activated post-replicative, as shown in Figure 10A: when a replication fork stalls 

due to a lesion, replication restarts downstream of that lesion, leaving a gap behind. PCNA-

ubiquitination marks the gap in front of the DNA lesions, which then can be closed by TLS 

polymerases at a later time (Quinet et al., 2018). Secondly, TLS is replication-coupled (“on the 

fly”), Figure 10B: at the stalled replication forks PCNA is ubiquitinated and TLS polymerases 

are loaded. TLS polymerases elongate DNA across the DNA lesions and afterwards replicative 

polymerases are re-loaded to continue the replication. Consistently, it was shown in avian 

cells that both models serve to maintain genome stability. In these cells the C-terminus of 

REV1 is needed for coordination of TLS at stalled replication forks and PCNA ubiquitination is  

control TLS postreplicatively, behind the replication forks (Edmunds et al., 2008). 



 34 

 

Figure 10: Models for TLS activation adapted Bertolin et al, 2015.  

Independently from the model of TLS there are three mechanisms proposed for polymerase 

switches at stalled replication forks (Ma et al., 2020) (Figure 11). Firstly, PCNA ubiquitination 

facilitates TLS polymerases interaction at the stalled replication fork, enabling replicative 

polymerase à TLS polymerase switch (discussed further for pol η in the paragraph “TLS by 

pol η”) (Kanao et al., 2015; Kannouche et al., 2004). Secondly, REV1 binds to PCNA with its 

BRACA1 carboxyl terminus (BRCT) and polymerase-associated domain (PAD) domain, and to 

other polymerases with the C-terminal domain (CTD), building a bridge and facilitating 

replicative/TLS polymerase à TLS polymerase switch (Guo et al., 2003, 2009a; Zhao and 

Washington, 2017). The REV1 CTD N-terminal interacts with the REV1 interacting region (RIR) 

motifs of Y family polymerases and PolD3, while the REV1 CTD C-terminal binds REV7 (Boehm 

et al., 2016; Kikuchi et al., 2012; Pozhidaeva et al., 2012; Pustovalova et al., 2016; Wojtaszek 

et al., 2012a, 2012b; Xie et al., 2012). Lastly, the switch of polymerases can transpire due to 

sharing of subunits. It is shown that the pol δ subunit POLD2 interacts with the pol ζ catalytic 

subunit REV3. It is proposed that at stalled replication forks PolD2 and POLD3 stay at site of 

replication during TLS and form a complex with REV3-REV7 pol ζ (PolD2/PolD3/REV3/REV7), 

which may facilitate the polymerase switch between pol δ ↔ pol ζ (Baranovskiy et al., 2012).  
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Figure 11: Models for polymerase switching during TLS as shown in Ma et al., 2020. 

TLS and cancer  

Translesional polymerases have been implicated in the development of cancer by its 

mutational capacity’s and the development of resistance to some cancer treatment. On the 

other hand, translesional polymerases are important to protect from gross chromosomal 

instabilities and protection from developing cancer. Replicative DNA polymerases have an 

error rate of 10-6 to 10-8, which is decreased to 10-8 to 10-10 when those polymerases interact 

with auxiliary proteins such as PCNA, RPA and MMR (Figure 12). In contrast, TLS polymerases 

demonstrate low fidelity, with an error rate range of 10-1 to 10-3 when replicating undamaged 

DNA (Kunkel, 2004; Nick McElhinny et al., 2008). However, TLS polymerases replicating across 

their specialized lesions are thought to be error free (Gibbs et al., 2005; Washington et al., 

2000).  
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Figure 12: Polymerases error rates from McElhinny et al., 2008. Depiction of error rates of different DNA 

polymerases when replicating undamaged DNA. 

Several TLS polymerases have been reported to be overexpressed in cancers, for example, 

pol η in ovarian cancer stem cells and HNSCC, pol ι in glioblastoma, pol κ in glioblastomas and 

lung cancer, which has been associated with resistance against chemotherapeutics and bad 

prognostics (Albertella et al., 2005; Lemée et al., 2010; O-Wang et al., 2001; Srivastava et al., 

2015; Wang et al., 2010, 2004; Zhou et al., 2013). These results show that TLS polymerases 

can be mutagenic, however, inhibition of TLS polymerases is correlated with an increase in 

gross chromosomal instability, a hallmark of cancer. Consistently, XPV patients who are 

deficient for TLS pol η activity, have a very high cancer incidence rate (see chapter on pol η 

for details). Furthermore, mutations in several TLS polymerases have been associated with 

cancer, such as, pol ι and REV1 in lung cancer (Sakiyama et al., 2005; Starcevic et al., 2004). 

Additionally, decreased expression of pol ζ, pol η, pol ι and pol κ have been found in human 

tumors (Lemée et al., 2007; Pan et al., 2005). Furthermore, the selection of TLS polymerases 

to specific lesions is crucial to maintain genome stability without the cost of possible 

mutations. This is demonstrated by TLS across the UV lesion cyclobutane pyrimidine dimers, 

which can be accomplished by pol η and pol θ. Whereas pol η has a low error rate and pol θ 

is error prone. Yet, pol θ protects against genome instabilities, as shown by pol θ deficient 

mice who have a higher tumor rate than WT mice after UV irradiation (Yoon et al., 2019a). 

Take together it shows on one side the importance of TLS polymerases to maintain genome 

stability and on the other the mutagenic potential of these polymerases (Figure 13). 
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Figure 13: Correlation between polymerase activity and genome instability and mutations 

The implication of TLS in cancer can be exploited for cancer treatment in two ways: firstly, 

sensitizing tumors to genotoxins by inhibition of DNA damage tolerance mechanisms and 

secondly, using deficiencies in DNA damage tolerance mechanisms to exploit synthetic lethal 

relationships. Therefore, transient inhibition of TLS activity might be beneficial in the 

treatment of cancers with specific mutations, triggering synthetic lethality. For example, the 

ATR replication checkpoint is overactivated in pol η deficient cells leading to cell cycle arrests 

and these cells rely on ATR to maintain viability during replication stress. Depletion or 

inhibition of ATR was shown to be synthetically lethal with pol η deficiency, particularly when 

tumor cells were treated with replication stress-inducing drugs (Barnes et al., 2018; Despras 

et al., 2010). Another example for the clinical interest of synthetic lethality is the inhibition of 

poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) in ovarian- and breast cancer 

of patients with BRCA mutations (Fong et al., 2009). Targeting nonessential TLS pols that serve 

to facilitate resolution of replication stress and chemoresistance in tumors could be one route 

to reducing toxic side effects and improving outcomes for patients treated with genotoxic 

drugs. Inhibition of REV3 or REV1 expression by siRNA, sensitized cancers to cisplatin and 

decreased the formation of cisplatin resistant cells in vitro, demonstrating the potential of 

small molecule inhibitors on TLS mechanisms (Doles et al., 2010; Wu et al., 2004; Xie et al., 

2010). Recently, it was shown that the small molecule inhibitor JH-RE-06 targets REV1, 

inhibiting the dimerization with REV7, disrupting TLS. JH-RE-06 inhibits mutagenic TLS and 

enhances cisplatin induced toxicity in cellulo and suppresses the growth of xenograft human 
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melanomas in mice (Wojtaszek et al., 2019). Though, inhibition of TLS could result in 

chromosomal aberrations that promote secondary malignancies or other complications. 

Translesion DNA Polymerase η  

Pol η belongs to the Y family polymerases and is involved in several mechanisms beyond TLS. 

It demonstrates mutagenic but also genome stabilising functions, which is why it is important 

to fully understand its interactome and its regulation. 

Pol η implication in Xeroderma pigmentosum variant 

The importance of functional pol η is demonstrated by the genetic disease Xeroderma 

Pigmentosum Variant (XPV). XP-patients display a high sensitivity to ultraviolet light and short 

exposure to sunlight can lead to severe sunburns. Furthermore, affected people also present 

with freckling in sun exposed areas, dry skin and changes in skin pigmentation. Moreover, XP-

patients have a 1.000 to 10.000-fold increase to develop skin cancers (melanoma and non-

melanoma skin cancers) and may present with neurological degeneration (DiGiovanna and 

Kraemer, 2012). These symptoms are caused by genetic mutations in proteins which manage 

UV damages (Cleaver, 1968). There are eight different types of Xeroderma pigmentosum, the 

first seven are caused by mutations in the XPA to XPG genes, which are involved in the NER 

pathway. The last type is Xeroderma pigmentosum variant (XPV), which makes up about 20 % 

of all XP patients. These patients have an inactivating bi-allelic mutation in the POLH gene 

coding for pol η. In comparison with the first seven groups of XP patients, people affected 

with XPV have milder presentations. XPV patients show a delayed onset of cancer with tumors 

appearing in 20–30 years old individuals and display variable severity of UV sensitivity. 

Interestingly, XPV patient do not show neurologic abnormalities as it is seen in XPA to XPG 

patients (Opletalova et al., 2014; Stary and Sarasin, 2002). 

Domain structure of pol η  

Mammalian pol η consists out of a polymerase catalytic domain in its N-terminus, several 

PCNA Interacting Protein regions (PIP) and a Ubiquitin-Binding Zinc finger domain (UBZ), two 

Rev1 interacting Regions (RIR) and a Nuclear Localization Sequence (NLS) in its C-terminus 

(Kannouche et al., 2001) (Figure 14). In accordance with Y family polymerases, human 
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catalytic domain of pol η contains four domains: palm, finger, thumb and little finger (LF). The 

active site resides in the palm domain and DNA is bound between thumb and LF (Biertümpfel 

et al., 2010). 

 

 

Figure 14: Pol η domains and some interaction partners. 

Functions of pol η 

Translesion synthesis by pol η plays a key function in genome stability. Furthermore, it is 

involved in somatic hypermutation, telomere maintenance, DNA repair pathways and 

replication of difficult to replicate DNA.  

Translesional synthesis by pol η  

Pol η is specialized on the bypass of Ultraviolet (UV) induced lesions. UV can alter DNA by 

inducing a variety of DNA lesions (Figure 15). The most energetic part of the solar spectrum 

that reaches the earth's surface is UVB with a wavelength of 280–320 nm, which accounts a 

typical proportion of about 0.3% of the whole solar light on the earth surface. UVB irradiation 

causes the formation of cyclobutane pyrimidine dimers (CPDs) (about 75%) and pyrimidine 

(6–4) pyrimidone photoproducts (6-4PPs) (about 25%) (Sinha and Häder, 2002). UVA light 

reaches the earth less energetic with a wave length of 320-400 nm, but 20–times more 

intense (5.1% of solar light) than UVB light. UVA can induce the formation of CPDs as well as 

a wide variety of oxidatively generated lesions such as single-strand breaks and oxidized 

bases, most commonly 8–oxo–7,8–dihydroguanine (8–oxo-Gua) (Figure 15). 8–oxo-Gua can 

also be produced by other mechanisms causing oxidative stress, such as cellular metabolism 

and xenobiotics. Lesions, such as CPDs, cause a distortion of the DNA backbone. Replicative 

polymerases are not capable of synthetizing across such lesions, because they possess a 

tighter catalytic pocket than pol η. Pol η is capable of synthetizing across the lesion in an error 
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free manner. p53 plays an important role in preventing cell death after UV light exposure, by 

favoring translesion DNA synthesis by pol η. UV induces p53 stabilization and transactivation 

leads to increased expression of pol η (Lerner et al., 2017).  

 

 

Figure 15: UV induced DNA damage adapted fromCadet et al., 2018 

Mechanism of pol η mediated TLS 

Upon replication fork blockage, PCNA is monoubiquitinated at K164 by Rad18/6, which 

facilitates TLS synthesis. Yet, Rad18 lacks a PCNA-binding motif. It has been shown that Rad18 

is targeted to PCNA by pol η, promoting PCNA monoubiquitination. This function is unique to 

pol η among Y-family TLS polymerases (Durando et al., 2013). Interestingly, PCNA K164 is 

NEDDylated (ubiquitin like) by Rad18 at later time points after oxidative stress or UV damage. 

This NEDDylation hinders the recruitment of pol η and antagonizes K164 ubiquitination (Guan 

et al., 2018). Pol η interacts with ub-PCNA via its UBZ and PIP interacting domains. However, 

this motifs are not required for pol η recruitment but for its retention at stalled replication 

foci (Despras et al., 2012). Consistently, Sabbioneda et al. state that the pol η residence times 

increase at replication forks, which is further facilitated by PCNA ubiquitination (Sabbioneda 

et al., 2008). Furthermore, using purified proteins it was shown that PCNA ubiquitination is 

not required for the binding of TLS polymerases to PCNA nor for the TLS polymerase switch 

(Hedglin et al., 2016).  

Spartan (also termed C1orf124, contains PIP and UBZ domain) interacts with pol η and 

(ubiquitinated) PCNA. Spartan interacts also with POLD3 and this interaction is reduced after 

UV irradiation (Ghosal et al., 2012). It was shown that spartan promotes pol η accumulation 

to stalled replication forks by its capacity to interact with DNA (Centore et al., 2012; Kim et 
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al., 2013; Toth et al., 2017). Consistently, spartan deficient cells demonstrated a highly 

defective pol η foci formation. Remarkably, it was shown that spartan recruits the ubiquitin-

selective chaperone p97 (transitional endoplasmic reticulum ATPase) to blocked replication 

forks. It is proposed that  thereby spartan promotes pol η dissociation during DNA repair, 

preventing excessive TLS (Davis et al., 2012; Mosbech et al., 2012).  

Pol η completes insertion and elongation across e.g. CPD lesions in a one-step mechanism 

and achieves insertion across e.g. 6-4PP in a two-step mechanism, whereas pol ζ does the 

elongation. After the completed synthesis across the lesion and its elongation by, another 

polymerase switch occurs and the replicative polymerases continue to replicate along the 

DNA. PCNA is ISGylated (ubiquitin like) by EFP on K164 and K168, this recruits USP10 which in 

turn facilitates PCNA deubiquitination and TLS termination (Cipolla et al., 2016; Park et al., 

2014). Furthermore, USP1/UAF1 can deubiquitinate PCNA and inhibition leads to pol η 

dependent UV sensitivity (Liang et al., 2014). Remarkably, UVC irradiation leads to down 

regulation of USP1 (Huang et al., 2006). Additionally, USP7 can de-ubiquitinate Ubi-PCNA in 

vitro and it suppresses UV- and oxidative-stress-induced PCNA monoubiquitylation in vivo 

(Kashiwaba et al., 2015) (Figure 16). Consistently, USP7 controls the stability of p53 by 

counteracting the activity of Mdm2 and thereby decreasing the expression of pol η. Yet, USP7 

also deubiquitinates pol η directly, stabilizing it (Qian et al., 2015). Furthermore, it was shown 

that USP7 stabilizes Rad18 and therefore PCNA monoubiquitination (Zlatanou et al., 2016). 
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Figure 16: Translesion synthesis 

Pol η is capable to replicate through other lesions beside UV induced ones. For instance, N1-

methyl adenine (1-MeA) lesions are bypassed by pol η. 1-MeA lesions impair the Watson-

Crick base pairing and block replicative DNA polymerases. TLS at 1-MeA lesion site in human 

cells occurs via three different pathways in which Pol ι and θ function in one pathway and 

pol η and pol ζ, respectively. TLS opposite this lesion in human cells occurs in a highly error-

free fashion (Conde et al., 2015). Additionally, 8-oxo-Gua which can occur after UV irradiation 

(see above) but is mainly a major lesion that is a consequence of oxidative stress, can be 

circumvented by pol η. 8-oxoGua is associated with cancer, aging, hepatitis, and infertility 

(Fraga et al., 1990, 1991; Malins and Haimanot, 1991). Pol η is bypassing 8-oxoGua in a mostly 

error-free manner, therefore, preventing GC→AT transversion mutations (Patra et al., 2014). 

Moreover, O2-[4-(3-Pyridyl)-4-oxobutyl]thymine, a DNA lesion formed from tobacco 

carcinogens, can be bypassed by a combination of pol η and pol ζ (Gowda and Spratt, 2016). 

The oxidized form of rNTPs, can be generated in the nucleotide pool by the action of oxygen 

radicals. These ribonucleotides are used as substrate during DNA replication. Pol η can 

efficiently and accurately bypassed undamaged and damaged ribonucleotides (rG and 8-oxo-

rG, respectively) in a more error-free manner compared with deoxynucleoside 8-oxo-dG 

(Sassa et al., 2016). The capability of pol η to synthetize across ribonucleotides is also used 

for somatic hypermutation (see “somatic hypermutation”).  
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Importantly, pol η can replicate along cisplatin induced lesions as described below in 

“Tolerance and resistance against cisplatin by pol η”. Similar to the cisplatin resistance by 

pol η it was recently shown that pol η is mutagenic when replication through cytarabine 

(AraC) lesions. AraC is a main treatment form against acute myeloid leukemia (Rechkoblit et 

al., 2019; Yoon et al., 2019b). 

Tolerance and resistance against cisplatin by pol η  

As described above pol η is involved in the development of cancer, furthermore, it is involved 

in the development of resistance against cancer treatments. Cisplatin (cisplatinum, or cis-

diamminedichloroplatinum (II)) is a first line platinum based chemotherapeutic, which is 

widely used against cancers including bladder-, breast-, cervical-, esophageal-, head and neck-

, lung-, ovarian-, and testicular cancers as well as mesotheliomas, brain tumors and 

neuroblastomas. It was the first FDA-approved platinum based drug against cancer in 1978 

(FDA; Kelland, 2007). Cisplatin crosslinks purine bases of the DNA most frequently, about 90%, 

within one DNA strand (intrastrand) and less often between two strands (interstrand) 

(Eastman, 1987; Fichtinger-Schepman et al., 1985; Jamieson and Lippard, 1999; Poklar et al., 

1996). Furthermore, monoadduct are formed which are likely bypassed by a replicative 

polymerase with a low error frequency, such as polymerase δ. The crosslinks interfere with 

DNA repair and replication mechanisms, which cause more DNA damage and subsequently 

leads to apoptosis of cancerous cells. However, the drug also attacks cell organelles, triggering 

the production of ROS, the release of lysosomal proteases and the deregulation of calcium 

storages and the misfolding of proteins (Dasari and Tchounwou, 2014). Unfortunately, this 

mechanism of action can cause severe side effects, which is one of the main disadvantages.  

The other main disadvantage of this drug is the development of resistance. The less common 

cisplatin adducts, the interstrand crosslinks, can be resolved by NER and TLS. Cisplatin induced 

intrastrand cross-links can be bypassed by pol β, ζ, η, and μ. Although, pol η demonstrated to 

be the most efficient of these polymerases to insert a base opposite the platinated purines 

(Havener et al., 2003; Hoffmann et al., 1995; Vaisman et al., 2000). In vitro bypass of cisplatin 

lesions requires pol η to insert dCTP opposite the 3ʹ guanine and pol ζ, to extend the primers 

(Lee et al., 2014a). Structural and biochemical analyses revealed that pol η inserts the correct 

nucleotide opposite the first G of cisplatin-GG, but it is less efficient and promiscuous in the 

bypass of the 5'dG (Alt et al., 2007; Ummat et al., 2012).This leads to mutations, which can 
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develop into resistance against cisplatin, through e.g. decreasing drug uptake, increasing drug 

efflux, and inducing drug detoxification by covalent binding to glutathione or metalloproteins. 

Consistently, high levels of pol η are associated with the development of cisplatin resistance 

in bladder, lung and ovarian cancers (Srivastava et al., 2015; Zhang et al., 2019a). It was shown 

that pol η is strongly induced after cisplatin treatment in a p53-dependent manner (Lerner et 

al., 2017). Furthermore, pol η is needed to overcome the cisplatin dependent S-phase arrest 

(Albertella et al., 2005).  

Interestingly, when the cells were treated with transplatin, which preferentially forms 

interstrand crosslinks, pol η-dependence was not detected (Albertella et al., 2005). 

Furthermore, cisplatin-induced mutations are 2- to 2.5-fold higher in fibroblasts lacking pol η 

in comparison with normal or high expressing pol η fibroblasts, confirming that pol η is mostly 

involved in error-free translesion synthesis past cisplatin crosslinks (Bassett et al., 2004; 

Vaisman et al., 2000). Taken together, pol η is important for intrastrand lesion tolerance and 

intrinsic resistance to cisplatin. Mutagenic effects of cisplatin in pol η negative cells suggests 

that other polymerases synthetizing DNA across the adducts in an error prone manner, 

leading to acquired resistance. Indeed it was shown that pol κ in combination with pol ζ 

results in error-prone TLS past cisplatin adducts (Shachar et al., 2009). Additionally, pol ζ has 

been shown to be active in translesion DNA synthesis, complementing pol η during cisplatin 

adduct bypass in in vitro experiments (Lee et al., 2014b). 

To overcome the disadvantage of cisplatin treatment combination therapies are highly 

researched and are applied in the clinic (Dasari and Tchounwou, 2014). Inhibition of TLS 

polymerases can have a dual anticancer effect, sensitizing the tumors to cisplatin and limiting 

the emergence of resistance. 

Somatic hypermutation 

The mutative capacity of pol η is needed during somatic hypermutation, a process by which 

B-cells maturate in germline centers of secondary lymphoid organs. This process generates 

cells displaying receptors with the highest affinity and specificity for a given antigen that will 

differentiate into either plasmocytes or memory B cells (Longo and Lipsky, 2006). During this 

process mutations accumulate in rearranged variable (V), diversity (D), and joining (J) genes 

on the heavy (H), kappa (κ) and lambda (λ) Ig loci (Saribasak and Gearhart, 2012). Point 

mutations, the most common alterations, occur with a frequency of 10-2 to 10-3 per bp in 
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these regions, a rate that is about 106-fold higher than the background mutation rates 

observed in other genes (Lebecque and Gearhart, 1990). Additionally, tandem double base 

substitutions, deletions, and insertions can occur. With every B-cell division mutations 

accumulate, however, many of these mutations reduce the affinity of the antibody. B-cells 

carrying affinity-increasing mutations have a selective advantage when competing for the 

antigen, provoking clonal selection. Therefore, B-cells can produce a generation of highly 

affine antibodies. Somatic hypermutation in antigen-activated B-cell is triggered by T-cells, 

upon which the B-cell expresses activation-induced deaminases (AID). AID deaminates 

cytosine residues to uracil on both strands (Golding et al., 1987). There are two types of 

mechanisms discussed in the literature following the DNA deamination to produce point 

mutations (Steele, 2016). Firstly, the DNA Deamination Model by which mutations are 

generated by five different modes by DNA repair and TLS proteins on the DNA (Figure 17) 

(Pilzecker and Jacobs, 2019). Secondly, the RNA/Reverse Transcriptase model which describes 

the use of RNA as a template to synthetize DNA strands containing mutations (Figure 18) 

(Steele, 2016). It was shown that pol η is implicated in repeat expansion diseases at RNA 

polymerase II-transcribed genes due to slipped hairpin-stabilized which can be explained with 

both the DNA deamination model and the RNA/Reverse transcriptase model (Franklin et al., 

2020).  

 

DNA Deamination Model 

There are five mutagenic pathways described during SHM, which follow the DNA deamination 

model. 1. The uracil synthesis pathway, during which adenine is directly inserted opposite the 

uracil template (Figure 17-1). 2. The UNG2 TLS pathway; the glycosylase UNG2 converts an 

uracil into an abasic site, which is filled by TLS, generating both transitions and transversions 

(Figure 17-2). 3. The ncMMR UNG2 hybrid pathway is a mix between the non-canonical 

mismatch repair (ncMMR) and UNG2 dependent TLS (Figure 17-3). 4. The ncMMR pathway 

generates the majority of A/T mutagenesis. Therefore, MSH2/MSH6/EXO1 remove part of the 

uracil containing strand and PCNA-Ub/pol η fill the gap (Figure 17-4). 5. The UNG2 PCNA-Ub 

pathway; UNG2 converts uracil into an abasic site and PCNA-Ub/pol η fill the abasic site. This 

non-canonical long-patch BER pathway generates a minor but significant subset of A/T 

mutations (∼8%) (Figure 17-5). 
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G/C base pair mutations involve several error-prone DNA polymerases (Rev1, pol ι and pol ζ), 

while A/T base pairs mutations depend exclusively on the activity of pol η(Franklin et al., 

2020; Wilson et al., 2005). Coherently, XPV patients present a decreased frequency of 

mutations at A/T sites in immunoglobulin genes and more G/C template mutations, while the 

frequency of overall mutations changes just slightly (Delbos et al., 2005, 2007; Reynaud et al., 

2009). Furthermore, it has been shown that XPV patients demonstrate an increased 

frequency of large deletions (Lerner et al., 2020). 

 



 47 

 

Figure 17: Somatic hypermutation - DNA Deamination Model as shown in Pilzecker and Jacobs, 2019. 

Depiction of five modes of mutagenic Uracil processing. 

RNA/Reverse Transcriptase model 

Similar to the DNA based model, the RNA/Reverse transcriptase model starts with the 

deamination of cytosines. Then, RNA Pol II introduces mutations into the newly synthetized 

mRNA as it copies deaminated nucleic acids from the transcribed DNA strand (Kuraoka et al., 

2003). Followed by ADAR1-mediated (adenosine deaminases that act on RNA) A-to-I RNA 

editing of WA sites (adenine followed by an adenine or uracil)(Steele et al., 2006). These 

mRNA is then reverse transcribed to cDNA by pol η. Afterward follows an unknown process 
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of strand invasion, heteroduplex formation and/or resolution of heteroduplex, integrating the 

mutated cDNA into the VDJ genes. 

 

 

Figure 18: Somatic hypermutation - RNA based model or reverse transcriptase model as shown in Steele, 2016. 

Implications of pol η in non-canonical mismatch repair  

As described above in the DNA deamination model for somatic hypermutations, pol η 

interacts with the mismatch repair pathway proteins MSH2-MSH6. This mechanism occurs 

also during a non-canonical mismatch repair pathway (Hsieh, 2012). Pol η interacts with 

transient ubiquitinated PCNA-induced at oxidative lesions in an S-phase independent manner. 

This modification requires the presence of MSH2-MSH6 and allows the repair of oxidative or 

alkylated DNA damage in a “non-canonical” MMR dependent pathway (Zlatanou et al., 2011). 

Interestingly, mismatch repair proteins and pol η recruitment at active chromatin was shown 



 49 

to be the cause of the clustered mutations (over a distance of less than 100 nucleotides) 

observed in several types of tumors (Peña-Diaz et al., 2012; Supek and Lehner, 2017). Thus, 

in tumor cells experiencing replication stress, pol η participates in tumorigenesis by inducing 

mutagenesis, including mutations responsible for the activation of oncogene. 

Other functions of pol η  

Pol η demonstrates further function, such as, its requirement for the stability of common 

fragile sites (CFSs) (Bergoglio et al., 2013; Rey et al., 2009). CFSs are typically several hundred 

kb regions of chromosomal DNA that are replicated in late S-phase, which are intrinsically 

difficult to replicate. CFSs rearrangements are considered a driving force of oncogenesis 

(Durkin and Glover, 2007). Furthermore, it was shown that pol η travels with the replication 

fork in unperturbed S-phase when it is sumoylated and thereby preventing under-replicated 

DNA during mitosis (Despras et al., 2016a). Interestingly, pol η was recently shown to 

compete with the replicative pol α and pol δ for the synthesis of the lagging strand genome-

wide in yeast, with a preference for T-T in the DNA template (Kreisel et al., 2019). 

Furthermore, it was shown that there is a strand bias for WA>WG transitions in human 

melanomas due to pol η activity, suggesting an evolutionary conservation of strand 

specificity. Recently, it was shown that pol η extends RNA primers, yet, in humans with a 103-

fold lower rate than when incorporating dNTPs. This RNA synthesize can also bypass 8-

oxoguanine and thymine dimer DNA lesions error-free (Mentegari et al., 2017; Su et al., 2016). 

This activity was recently shown to be implicated in transcription in Saccharomyces cerevisiae 

(Gali et al., 2017). 

A recent study has shown that pol η is involved in the alternative lengthening of telomeres 

(ALT) (Garcia-Exposito et al., 2016). A proximity-dependent biotinylation assay revealed that 

multiple DNA repair pathways are present at ALT telomere. The author hypothesize that pol η 

is involved in the managing of replicative stress at ALT telomeres by restarting stalled 

replication forks and stimulating DNA synthesis by pol δ. Additionally, pol η is involved in the 

recombination-associated DNA synthesis during HR (Buisson et al., 2014). PALB2 and BRCA2 

interact with pol η to sustain the recruitment of pol η at blocked replication forks. This 

interaction stimulates pol η-dependent DNA synthesis on D loop substrates (Buisson et al., 

2014). PALB2 is also involved in telomer ALT mechanisms (Martinez et al., 2017; Pan et al., 

2019). The pol η/PALB2 interaction might stabilize pol η during replicative stress at telomers. 



 50 

 

Regulation of pol η by protein interactions and posttranslational 

modifications 

Proteins interacting with pol η  

As described above pol η has diverse functions, which can be contradictory in terms of error 

prone and error free mechanisms. Therefore, pol η needs to be regulated by several means. 

One way of regulating its activity is by protein interactions. Some of the most studied 

interactions are depicted in Figure 14 with the site of interaction on pol η. Figure 19 shows 

interactions with pol η, which have been demonstrated by at least two methods. Examples 

are for instance the above described interaction of pol η with PCNA as a scaffold protein 

during TLS and replication. Pol η also interacts with other polymerases, one of them is the 

replicative pol δ POLD2 as a possible way to facilitate the polymerase switch (Baldeck et al., 

2015). Additionally, pol η interacts with the translesional polymerases pol ι and REV1 (Boehm 

et al., 2016; Kannouche et al., 2003)(Paragraph “Polymerase switch”). Pol η was also 

described to interact with ubiquitinated H2B and FANCD2, helping pol η to be tethered to 

DNA (Fu et al., 2013; Northam and Trujillo, 2016). Also ubiquitinated H2A was proposed to 

recruit the Rad18/pol η complex (Despras et al., 2016a). Furthermore, pol η interacts with the 

homologous recombination proteins PALB2 (Partner and localizer of BRCA2) and BRCA2 

(breast cancer type 2 susceptibility protein), which is crucial in the initiation of recombination-

associated DNA synthesis (Buisson et al., 2014) (Paragraph “Other functions of pol η”). Pol η 

also interacts with Rad18, building a bridge between pol η and the PIAS1 SUMO ligase to 

promote pol η SUMOylation. Further examples are given throughout the introduction. 
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Figure 19: Proteins interacting with pol η from BioGrid3.5 software. Pol η interaction network presenting 

protein interactions with at least two experimental proofs of interaction. Proteins highlighted in blue are 

human proteins; Proteins highlighted in yellow are originated from other organisms. Greater node size 

represents increased connectivity and thicker edge sizes represent increased evidence supporting the 

association. 

Posttranslational modification of pol η 

Another mean of regulating the activity of pol η is by posttranslational modifications. There 

are several posttranslational modifications reported for pol η (Sumoylation, Ubiquitination, 

GlcNAcylation and Phosphorylation) (Figure 20).  

 

Firstly, pol η sumoylation on K163 is necessary for pol η to travel with the replication fork 

during unperturbed S-phase. Cells expressing pol η mutants which cannot be SUMOylated 

present with replication defects in response to mild replication stress, leading to chromosome 

fragments in mitosis (Despras et al., 2016a). Rad 18 builds a bridge between pol η and PIAS1 

SUMO ligase, promoting the sumoylation of pol η. Recently, it was shown that pol η is PIAS1-

dependent polysumoylated when it is associated with monoubiquitinated PCNA at DNA 
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damaged site. This sumoylation recruits SUMO-targeted ubiquitin ligase (STUbL) promoting 

the extraction of pol η (Guérillon et al., 2020a). 

 

Secondly, pol η can be mono- and polyubiquitinated at several sites. For instance, pol η is 

monoubiquitinated at K682 within the NLS sequence. Interestingly, if this site is mutated so 

that it cannot be ubiquitinated, the neighboring lysines would become a targeted for 

ubiquitination. Thus, pol η interacts with PCNA at two sites: the pol η PIP box interacts with 

PCNA and also the UBZ domain of pol η interacts with monoubiquitin attached to PCNA, 

forming an extended pol η-PCNA interaction surface. Furthermore, Jung et al. showed that 

Pirh2 mediated pol η monoubiquitination inhibits the interaction between pol η and PCNA, 

leading to decreased viability of UV-damaged cells (Jung et al., 2011). Bienko et al. propose a 

model where monoubiquitinated pol η can interact intramolecular between monoubiquitin 

and the UBZ domain, hindering pol η from interacting with PCNA during replication. Following 

UV irradiation, PCNA is monoubiquitinated and pol η is deubiquitinated, which in turn 

facilitates the interaction between pol η and PCNA. Consistently, monoubiquitination of pol η 

is downregulated by various DNA-damaging agents (Bienko et al., 2010). Additionally, Mdm2 

is polyubiquitinating pol η promoting its degradation under basal condition in response to UV 

irradiation (Jung et al., 2012). Pol η K462 is polyubiquitinated by CRL4CDT2 promoting pol η 

degradation (see O-GlcNAcylation) (Ma et al., 2017). Several more ubiquitination sites have 

been found in pol η, however, their relevance is not yet known (Akimov et al., 2018; Beltrao 

et al., 2012; Rose et al., 2016).  

 

Thirdly, pol η can by O-GlcNAcylated by O-GlcNAc transferase at T457. Pol η O-GlcNAcylation 

is induced by both UV and cisplatin exposure. Non O-GlcNAcylated pol η shows a significantly 

decreases K48-linked polyubiquitination at the adjacent K462. The following model is 

proposed: pol η is recruited to stalled replication forks and is O-GlcNAcylated. After pol η 

completes its task in TLS, O-GlcNAcylated pol η is ubiquitinated by CRL4CDT2 E3 ligase. This 

pol η polyubiquitination is recognized by the p97-UFD-NPL4 complex, resulting in its 

dissociation from replication forks and degradation. Thereby, O-GlcNAcylation of pol η is 

promoting its removal from replication forks by facilitating polyubiquitin-induced 

degradation and subsequent polymerase switches (Ma et al., 2017). 
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Fourthly, pol η can be phosphorylated at several sites, by different kinases. Phosphorylation 

of pol η is increased after UV irradiation. Preventing phosphorylation of S587 and T617 by 

mutation hinders nuclear foci formation induced by UV irradiation or treatment with 

gemcitabine/cisplatin (Chen et al., 2008). Furthermore, pol η phosphorylation at S601 by the 

ATR kinase depends on the interaction of pol η with Rad18 but not with Ub-PCNA after UV 

irradiation. This phosphorylation contributes to UV survival and is involved in the checkpoint 

response to UV damage (Göhler et al., 2011). Additionally, S687 is phosphorylated by Cyclin 

Dependent Kinase 2 (CDK2) in the absence of damage in a cell cycle-dependent manner. 

Phosphorylation on S687 protects pol η from degradation, which allows pol η to accumulate 

in late S and G2 when productive TLS is crucial for cell survival (Bertoletti et al., 2017). The 

S687 phosphorylation by CDK2 is also increases upon UV irradiation. This phosphorylation in 

the NLS sequence results in diminished interaction of pol η with PCNA in vitro, which is 

proposed to promote the polymerase switch from pol η to pol δ (Dai et al., 2016). 

Furthermore, cells expressing pol η with mutations of the phosphorylation sites S510, S512 

and S514 are mor sensitive to UV irradiation (Bertoletti et al., 2017). 

 

Figure 20: Posttranslational modifications of pol η. 1.) = site of modification; 2.) = enzyme of modification, 3.) = 

in dependence of which lesion; 4.) = reference. 
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Calpains 

Yeast two-hybrid screening, conducted in our laboratory, identified CAPNS1 as a putative 

pol η binding protein. CAPNS1 is a regulatory subunit essential for the stability and function 

of calpain 1 and 2. Calpains (EC 3.4.22.17; Clan CA; Family C2,) are a family of non-lysosomal 

cysteine proteases, which are evolutionarily well-conserved from bacteria to mammals. These 

proteases modulate the structure and function of their specific substrate through limited 

proteolysis rather than complete degradation. The importance of calpain 2 and CAPNS1 is 

demonstrated by the fact that their mutations are embryonic lethal (Arthur et al., 2000; Dutt 

et al., 2006; Takano et al., 2011; Zimmerman et al., 2000). Genetic mutations in the calpain 1 

gene CAPN1 lead to spastic paraplegia, platelet dysfunction and spinocerebellar ataxia (Azam 

et al., 2001; Gan-Or et al., 2016; Wang et al., 2016a). 

Calpains were shown to be involved in the same pathways or mechanisms as pol η. It was 

shown that calpain can be activated by UV light irradiation (Gulati et al., 2004), whereas pol η 

is needed for UV lesion bypass. Furthermore, it was shown that, during replication stress the 

Ca2+ level in the nucleus is elevated (Li et al., 2019). The calcium flux leads to phosphorylated 

Exo1, which cannot be recruited to stressed replication forks and thus circumventing 

unscheduled fork resection. This finding reveals a direct link between Ca2+ signaling and the 

DNA damage cell response. 

The calpain family 

Humans possess 15 calpain genes (CAPN1-3, CAPN5-16) and two calpain subunit genes 

(CAPNS1 and 2). The 15 calpain proteins expressed by these genes are classified by their 

domain structure or tissue distribution as depicted in Figure 21 A and B (Ono and Sorimachi, 

2012; Sorimachi et al., 2011). Humans have 9 classical calpains and 6 non-classical calpains 

(Figure 21B). Whereas most calpains are expressed ubiquitously, at least six calpains are 

tissue specific as highlighted in black in Figure 21 A. 
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Figure 21: Calpain family classification as described in Ono and Sorimachi, 2012 

 

Interestingly, some human calpains, particularly those with non-classical domain structures, 

are very similar to calpain homologs identified in evolutionarily distant organisms (Table 1). 

Whereas, the classical calpains are mostly conserved in vertebrates and until now homologs 
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have not been found in Caenorhabditis elegans (nematode), trypanosomes, plants, fungi, or 

Saccharomyces cerevisiae (budding yeast) (Table 1). 

 

Table 1: Calpains across species as shown on the calpain research portal “calpain.net”. TM: transmembrane 

domain, MIT: microtubule interacting and transport motif. 

 

In mammals, the two best-characterized members of the calpain family are calpain 1 and 

calpain 2 (µ-calpain and m-calpain, respectively). Calpain 1 and 2 bind to CAPNS1 in a calcium 

(Ca2+) dependent manner. Calpain 1 and 2 contain calpain-type beta-sandwich domain 

(CBSW) and penta-EF-hand domain (PEF) in addition to the calpain-like cysteine protease 

domain (CysPc). The CysPc domain consists out of the two protease core domains 1 and 2 

(PC1 and PC2) (Figure 21A). 

Regulation of calpain by calcium and calpastatin 

Activation of calpain 

Most calpains are Ca2+ activated. The Ca2+ ion is a ubiquitous signaling system in various cell 

types, and is involved in a vast range of cellular processes. Intracellular free Ca2+ 

concentration varies depending on its location. About 10-7 M in the cytoplasm, nuclear matrix  

and mitochondrial matrix whereas the Ca2+ concentration the extracellular milieu is much 
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higher with ∼10-3 M (Bagur and Hajnóczky, 2017). The Ca2+ homeostasis is kept through 

calcium transporters (e.g. plasma membrane Ca2+ transport ATPase (PMCA) and Na+/Ca2+ 

exchanger (NCX)) and transmembrane Ca2+ pumps in the plasma membrane and the 

membrane of intracellular Ca2+ stores. The main intracellular Ca2+ store is the endoplasmic 

reticulum (ER), which is continuous with the nuclear envelope, maintains a Ca2+ concentration 

of 1-5×10-4M (Mauger, 2012). Excessive Ca2+ is transported into the extracellular milieu, or 

stored within endoplasmic reticulum. The release of these Ca2+ molecules generate cell 

signals. High intracellular Ca2+ concentration can lead to many pathological mechanisms 

because of its reactivity with carboxyl groups (protein and nucleic acid aggregation, instability 

of plasma membrane, precipitation of phosphates, sulphates, and carbonates). 

Calpain 1 and calpain 2 need to heterodimerize with CAPNS1 in a calcium dependent manner, 

forming functional proteases. Calpains can bind up to ten Ca2+ atoms during activation, 

resulting in several conformational changes. In particular, the two PEF domains are closer to 

the core and have displaced the N-terminal anchor helix (see Figure 22: Calcium dependent 

activation of calpain) (Moldoveanu et al., 2008). Activated calpain 1 can undergo 

autoproteolysis from the 80 kDa catalytic subunit into a 78  kDa and 76 kDa subunit, resulting 

in a lower Ca2+ concentration requirement for its activity (Li et al., 2004). Calpain 2, also 

80 kDa, is autoproteolysed into a 79 kDa and 78 kDa protein. It was also shown that CAPNS1 

autolysis, from 28 kDa to 20 kDa and 18 kDa, is associated with the dissociation from calpain 

(Daniel et al., 2003; Hosfield, 1999). Calpain 1 and 2, are also termed µ- and m-calpain in 

accordance with the Ca2+ concentration (µM and mM respectively) required for their catalytic 

activity in vitro (Goll et al., 2003; Storr et al., 2011). In vitro activation of calpain requires Ca2+ 

concentrations in the micromolar range, which is relatively high for an in vivo activation, as 

cells have a free Ca2+ concentration of about 10-100 nM. Phospholipids, a major component 

of plasma membrane, can lower the required Ca2+ concentration for calpain activation 

(Beltran et al., 2011; Saido et al., 1992; Shao et al., 2006). Interestingly, a Ca2+ influx induced 

by ionomycin promotes also the nuclear entry of the mostly cytosolic calpain 2 (Baek et al., 

2016; Chou et al., 2011). 

Interestingly, calpains can be activated by different pathways, although the Ca2+ activation is 

considered the main activator. The epidermal growth factor (EGF) activates calpain 2 via 

phosphorylation by ERK/MAP kinase signaling pathway (Glading et al., 2000, 2001). 

Furthermore, it was shown that inhibition of phospholipid synthesis in membranes blocks 
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EGF-mediated calpain 2 activity (Shao et al., 2006). Lastly, the p94/calpain 3 protease can be 

activated by Na+ in the absence of Ca2+ (Ono et al., 2010).  

 

 

Figure 22: Calcium dependent activation of calpain as shown in Moldoveanu et al., 2008. 

Inhibition of calpain by the endogenous inhibitor calpastatin 

Calpastatin is an endogenous specific inhibitor for the calpains CAPN1, CAPN2, CAPN8[nCL-

2], and CAPN9[nCL-4] (Hata et al., 2007; Kiss et al., 2008; Lee et al., 1999). The single 

calpastatin gene can produce at least eight calpastatin polypeptide variants, ranging from 

17 kDa to 85 kDa by use of different promoters and alternative splicing events (Lee et al., 

1992; Parr et al., 2000). Calpastatin is very specific to classical calpains, which is not the case 

for many of the low molecular weight inhibitors that show some inhibition of cysteine 

proteases (Neffe and Abell, 2005). One full length calpastatin molecule contains four inhibitor 

units, each unit inhibiting one calpain molecule with variable efficiency (Emori et al., 1987; 

Maki et al., 1987) (Figure 23). Interestingly, calpastatin is poorly conserved between species, 

only the region A, C and parts of B within the inhibitor units are conserved. Co-crystallization 

of CAPN2/S1 with one of the inhibitory units of calpastatin and Ca2+ revealed that an 

intrinsically unstructured sequence of calpastatin enables tight binding to calpain, while 

calpastatin forms a loop which hinders proteolysis by calpain (Figure 22). Calpastatin 

recognizes calpain in its Ca2+ activated and subsequentially conformation changed form. The 

regions A and C target the penta-EF-hand domains of CAPN1/2/8/9 and CAPNS1 and thereby 

increase the affinity between calpain and calpastatin. Region B occupies the substrate-binding 

cleft and is consequently inhibiting calpain (Hanna et al., 2008; Moldoveanu et al., 2008; 

Wendt et al., 2004). However, calpastatin can interact with non-Ca2+ activated calpain with 

the non-inhibitory L-domain (Melloni et al., 2006). 
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Intracellular reversible phosphorylation of calpastatin is regulating the level of cytosolic 

calpastatin which is in proximity to the nuclear membrane in an aggregated state. This 

phosphorylation is removed upon Ca2+ increase, relocating the calpastatin to the cytoplasm 

(Averna et al., 2001; De Tullio et al., 1999). Recent studies have found that calpastatin 

expression can be regulated by the nuclear factor I (NFI): hypophosphorylation of NFI leads 

to the expression of an alternative splicing variant of CAST lacking the N-terminal XL domain 

and is localized predominantly in the perinuclear region of the cell (Vo et al., 2019a). As a 

consequence, calpain remains active in other compartments of the cytoplasm. Interestingly, 

calpain activates the phosphatase calcineurin, which in turn activates NFI by 

dephosphorylation. Hypophosphorylated NFI upregulates FABP7, which is associated with 

malignant glioma cell migration (Vo et al., 2019b). It was shown that in diseases characterized 

by Ca2+ dysregulation, overexpression of calpastatin inhibitory units successfully prevents the 

excessive digestion of calpain 1 targets (Rao et al., 2016; Ye et al., 2015).  

 

 

Figure 23: Calpastatin domains as described in Ono and Sorimachi, 2012 

Cleavage site prediction of calpain 1/2 

To understand the physiological functions of calpain, it is essential to elucidate their substrate 

specificity and selectivity, clarifying which proteins are proteolytically processed by calpain 

and at which position(s). CAPN1/2 preferentially recognize the PEST sequence (rich in proline 

(P), glutamate (E), serine (S), and threonine (T)) (Tompa et al., 2004). Yet, it was shown in 

several studies that the PEST sequences is not required for cleavage (Carillo et al., 1996; 

Molinari et al., 1995). The prediction of the cleavage sites of calpain 1/2 is complex because 

of the diverse cleavage site amino acid (aa) sequences. Nevertheless, one approach to predict 
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the cleavage site is based on the sequence of the substrate, a position-based residue 

preference (Banik et al., 1994; Cuerrier et al., 2005; Stabach et al., 1997; Tompa et al., 2004). 

The second approach is based on the tertiary structure of the substrate as well as the 

sequence (Sorimachi et al., 2012). Two of the calpain cleavage site computational tools, which 

were used for pol η cleavage site prediction are Calpacchopper (http://calpain.org/ 

predict.rb?cls=substrate) and DeepCalpain (http://deepcalpain. cancerbio.info/) (duVerle et 

al., 2011; Liu et al., 2019). 

Sequence comparisons of the cleavage sites of calpain 1 and 2 revealed similar catalytic 

efficiencies for most cleavage sites (Shinkai-Ouchi et al., 2016). Nonetheless, distinctive 

preferential sites could be revealed for each calpains at the positions P-9, P-8, P-7, P-2 and 

P+5 around the cleavage site as shown in Figure 24.  

 

Figure 24: Frequency of amino acids in proximity to CAPN1/2 cleavage site as presented in Shinkai-Ouchi et al., 

2016. C1 = CAPN1; C2 = CAPN2. The color of the amino acid letter indicates whether it is hydrophilic in black 

(Arg (R), Lys (K), Asp (D), Glu (E), Asn (N), or Gln (Q)), neutral in green (Ser (S), Gly (G), His (H), Thr (T), Ala (A), or 

Pro (P)), or hydrophobic in blue (Tyr (Y), Val (V), Met (M), Cys (C), Leu (L), Phe (F), Ile (I), or Trp (W)). Red circles 

around aa show significant differences between CAPN1 and 2. 
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Calpains in disease  

Unregulated calpain in human pathologies 

Calpains are implicated in several and very various diseases (table 2). Intracellular Ca2+ 

changes are implicated in a number of pathological states such as cardiac ischemia, muscular 

dystrophy, neuronal damage during cerebral ischemia and hypoglycemia (Guo et al., 2009b). 

It has been demonstrated that persistently altered Ca2+ homeostasis can lead to pathological 

disfunctions of calpain through an extensive intracellular degradation of specific proteins 

(Kanazawa et al., 2008). Calpain overactivation has been linked to several mis-regulated 

mechanisms causing diseases: aberrant angiogenesis, apoptosis, cytoskeletal degradation, 

inflammation and platelet dysfunction (Potz et al., 2016). Baseline calpain function is thought 

to be neuroprotective, while heightened calpain activity has been observed in several 

neurological injuries and disorders, where an inhibition of calpain is beneficial. This is 

described in ischemic (Cao et al., 2007; Chen et al., 2020; Stys and Jiang, 2002) and traumatic 

brain injuries (Gan et al., 2019; Kampfl et al., 1996; Liu et al., 2006), strokes (Etehadi 

Moghadam et al., 2018; Sun et al., 2009), Alzheimer’s (Di Rosa et al., 2002; Getz, 2012; Tsuji 

et al., 1998), Huntington’s (Gafni and Ellerby, 2002; Weber et al., 2016) Parkinson’s diseases 

(Alvira et al., 2008; Hassen et al., 2018; Samantaray et al., 2008; Shams et al., 2019) and 

multiple sclerosis (Das et al., 2008; Shields et al., 1999; Trager et al., 2014).  

Moreover, calpain 2 is overexpressed and over activated in muscular dystrophy (Kumamoto 

et al., 1995; Shanmuga Sundaram et al., 2006) and calpain 3 is over activated in cataracts 

(Muralidharan et al., 2015; Tang et al., 2007). Calpains are also often dysregulated in cancer 

(Mamoune et al., 2003; Shiba et al., 1996; Yang et al., 2008)(see “calpain as prognostic marker 

in cancer”). For example in triple-negative breast cancer, an aggressive type of breast cancer, 

where the calpain system plays an important role in apoptosis and proliferation (Al-Bahlani 

et al., 2017). Many of the above described diseases are caused or are worsened by 

inflammation mechanism, which is also a hallmark of cancer (Hanahan and Weinberg, 

2011)(see calpain functions chapter). 

Calpain inhibitors 

Calpains can cause or worsen several human pathologies as describe above, which is why the 

calpain system has been studied as a target for treatment since decades (table 2). First calpain 
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inhibitors have been published in the 1970s, since then more than 50 calpain inhibitors have 

been analyzed in vivo and in clinical trials. One such a calpain peptide inhibitor is cysteic–

leucyl–argininal (CYLA). Following an acute ischemia calpain is activated, resulting in necrosis 

and apoptosis of retinal ganglion cells contributing to their degeneration. Treatment with 

CYLA in a rat model of retinal ischemia provides significant preservation of retinal function 

(David et al., 2011). Alicapistat (ABT-957) is a calpain 1/2 inhibitor which just completed 

successfully clinical trial phase 1 studies against Alzheimer disease (Lon et al., 2019). The 

calpain 1 and 2 inhibitor E-64d was tested in clinical trial phase 3 studies against muscular 

dystrophy (Satoyoshi, 1992) 

Indirect inhibitors have shown the most success so far. Olesoxime is in clinical trials against 

Huntington disease, multiple sclerosis, spinal muscular atrophy and amyotrophic lateral 

sclerosis (clinicaltrials.gov).It is thought to inhibits calcium and cytochrome c release from 

mitochondrial and thereby reduces calpain activation (Weber et al., 2019a). Cyclosporine A is 

tested in clinical trial phase 2 studies against traumatic brain injuries. One of its mechanisms 

of action is the regulation of calcium release similar to olesoxime (Ferrand-Drake et al., 2003). 
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Table 2: Calpain in diseases as presented in Ono et al., 2016  

 

 

Calpain in infectious disease 

Calpains are involved in diseases caused by infections with pathogenic microorganisms, such 

as malaria (Chandramohanadas et al., 2009; Li et al., 2007; Olaya and Wasserman, 1991), 

trypanosomiasis (Ersfeld et al., 2005), schistosomiasis (Karmakar et al., 2014), candidiasis (Xu 

et al., 2016) and periodontitis (Staniec et al., 2015). Calpain inhibitors are also developed 

against conditions caused by such pathogens. Candida albicans and Cryptococcus neoformans 

use the Rim101 pathway for infection that can cause candidiasis and meningitis. Rim101 is a 

zinc-finger transcription factor, which is activated under alkaline conditions activating the 
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expression of several proteins mainly involved in the adaption to environmental pH change. 

Rim13, a homologous to human calpain 7, is part of this pathway. Rim13 dependent 

filamentation is important for C. albicans virulence. It was shown that C. albicans, expressing 

nonfunctional Rim13, is hindered in infection. Thus inhibition of the calpain like Rim13 could 

be used against diseases which form consequently of C. albicans infection (Sorimachi et al., 

2011; Xu et al., 2015). Malaria infections depend also on its pf-calpain, which can be targeted 

with conventional calpain inhibitors ALLN and ALLM suppressing the erythrocyte invasion 

(Olaya and Wasserman, 1991). Leishmania amazonensis can be treated with the calpain 

inhibitor MDL28170, efficiently suppressing their growth and viability (Marinho et al., 2014). 

Calpain mutations causing diseases 

In opposition to the mostly negative effects of overexpressed calpain, tissue specific 

expressed calpains and their dysfunction or absence are associated with diseases in humans. 

For example, mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia as 

well as alterations in cerebellar development and cerebellar ataxia (Gan-Or et al., 2016; Wang 

et al., 2016b). Lost of CAPN2 or CAPNS1 is embryonic lethal (Arthur et al., 2000; Dutt et al., 

2006; Takano et al., 2011; Zimmerman et al., 2000). Furthermore, mutations in the CAPN3 

gene transcribed in muscle cells, causes the limb-girdle muscular dystrophy type 2A (LGMD2A 

or LGMDR1) a neuromuscular disorder (Lasa-Elgarresta et al., 2019; Lostal et al., 2019). 

Mutations in the CAPN10 gene contribute to the development of type II diabetes (Harris et 

al., 2006; Horikawa et al., 2000; Salazar et al., 2019) and CAPN5 mutations cause autoimmune 

uveitis, retinal neovascularization, and photoreceptor degeneration (Mahajan et al., 2012). 

Moreover, mutations in CAPN12 lead to congenital ichthyosis, a rare and often life-

threatening condition (Bochner et al., 2017). For those conditions, gene therapy could be a 

possible treatment option. However, tissue specificity and intricated expression levels 

complicate this endeavor.  

Calpain as prognostic marker in cancer 

Calpains evolve to be used as prognostic markers in several cancer types, for both a favorable 

and unfavorable outcome. In ovarian cancer for example high calpain 2 expression is 

associated with a negative overall survival, as well as low calpastatin and calpain 4 expression, 

whereas calpain 1 demonstrates no prognostic value (Zhang et al., 2019b). High expression of 

calpain 4 is linked to metastasis and poor prognosis in esophageal squamous cell carcinoma 
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(Wu et al., 2018). Low expression of calpain 9 is associated with poor outcome for patients 

with gastric cancer (Peng et al., 2016). 

Furthermore, the human protein atlas project analyzed several calpains and their prognostic 

value for cancers. Calpain 1 expression is favorable in renal cancer and unfavorable in 

pancreatic cancer. Calpain 2 expression is similar to calpain 1 favorable in renal cancer and 

unfavorable in pancreatic cancer, as well as unfavorable in urothelial cancer. Moreover, high 

expression of calpain 5 results in poor outcome for endometrial cancer patients, whereas 

colorectal cancer patients with a high calpain 7 expression have a better outcome. Calpain 10 

expression is associated with both outcomes, favorable for pancreatic cancer and head and 

neck cancer, yet unfavorable in liver cancer (Uhlen et al., 2017). Taken together, this 

demonstrates the importance of calpain in cancers as a prognostic marker.  

Functions of calpain  

Calpains do not require markers for substrate recognition, unlike other proteasomal 

degradation systems that required ubiquitin or chaperons. Due to their limited proteolytic 

activity and intrinsic substrate specificity, calpains are considered as modulator proteases 

rather than degradative proteases. Cleavage by calpains allows to regulate protein functions 

involved in various cellular pathways, such as apoptosis, autophagy and inflammation, which 

will be discussed in the following as examples on how the calpain system can work. However, 

calpains are also involved in cytoskeletal remodeling, cell cycle progression, gene expression, 

cell migration, insulin secretion, synaptic function and muscle homeostasis.  

The role of calpain in inflammation 

Calpain is involved in inflammatory processes (Figure 25). (Shumway et al., 1999). TNF-α 

indirectly activates cytosolic calpain 2 by redistributing it from the particulate to the cytosol. 

The activated calpain 2 then degrades IκB and this in turn activates NF-κB (Han et al., 1999). 

Subsequentially, NF-κB promotes the transcription of TNF-α and other cytokines and thereby 

amplifying the inflammation response. Inhibition of calpain activity promotes neutrophil 

migration associated with the activation of distinct signaling molecules (Katsube et al., 2008). 

Moreover, calpain can cleave pre-IL-1α, localizing IL-1α within the nucleus and increasing its 

affinity for IL-1 receptor 1 (Kobayashi et al., 1990). Calpain activity promotes the release of 

other cytokines, such as IL-6, IL-12 and IL-17 (Iguchi-Hashimoto et al., 2011; Smith et al., 
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2011). Conversely, the cytokine IL-13 may activate calpain by increasing the endoplasmic 

reticulum stress (Pan et al., 2013). Furthermore, calpain also reduces the activity of 

glucocorticoids by cleavage of HSP90 and therefore reduces the anti-inflammatory effects of 

the hormone (Bellocq et al., 1999). Calpain has been shown, additionally, that it can up- and 

down-regulate nitric oxide concentrations, which in turn can be pro- and anti-inflammatory 

(Cui et al., 2005; Dong et al., 2009; Wang et al., 2008). All these mechanisms illustrate the 

very intricate calpain system and its versatile role in inflammation. 

 

Figure 25: Inflammatory mechanisms and calpain adapted from Patel and Patel, 2015 

Autophagy and calpain 

Calpain has been shown to negatively regulate autophagy on multiple levels as shown in 

Figure 26 (Weber et al., 2019b). Autophagy is a self-degradative process, removing 

aggregated proteins, damaged organelles and intracellular pathogens. Calpain is involved in 

autophagy through inactivating ATG5 by cleavage, hindering the expansion of the phagohore 

membrane (Xia et al., 2010; Yousefi et al., 2006). Remarkably, the cleaved ATG5 relocates 

within the mitochondria, triggering the switch from autophagy to apoptosis (Yousefi et al., 

2006). Furthermore, Gsα cleavage by calpain activates adenylyl cyclase, which leads to an 
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accumulation of cAMP, inhibiting the autophagosome formation (Rivero-Ríos et al., 2016; 

Williams et al., 2008). It has been shown that ischemia-reperfusion leads to overactivation of 

calpain and the inhibition of autophagy, which can be prevented with calpain knockdown in 

test models (Kim et al., 2008; Russo et al., 2011; Zhao et al., 2016).  

 

Figure 26: Calpain targets in the autophagic machinery as presented in Weber et al., 2019 

Calpain activity during apoptosis 

Ca2+ level increase during apoptosis, activating calpain and driving apoptosis progression 

(Figure 27) (Guo et al., 2009b). Calpain can cleave Bax, generating a potent proapoptotic 

fragment that promotes cyt c release and therefore fosters apoptosis (Choi et al., 2001; Gao 

and Dou, 2001). Similarly, calpain can cleave Bid and the new generated fragment releases 

cyt c from mitochondria (Mandic et al., 2002). Interestingly, this cleavage was observed in 

human melanoma cells treated with cisplatin (Chen et al., 2001a). Furthermore, it was shown 

that caspase 12 activity is dependent on active calpain (Imai et al., 2014; Nakagawa and Yuan, 

2000). Calpain further promotes apoptosis through cleaving cain/cabin1, the endogenous 

inhibitor of the proapoptotic protein calcineurin. The caspase 3 inhibitor XIAP is degraded by 

calpain, enhancing the apoptotic progress (Yamada et al., 2012). Furthermore, PARP1 
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hyperactivation during apoptosis results in a Ca2+ flux which can activate calpain (Morales et 

al., 2014). Interestingly, CAPN3 was reported as anti-apoptotic factor in skeletal muscles by 

altering the regulation of the expression of NF-kappa B-dependent survival genes (Benayoun 

et al., 2008). 

 

 

Figure 27: Calpain activities during apoptosis as presented in Guo et al., 2009b 

Calpain activity on proteins involved in the same pathways as pol η  

Calpain activity was reported on several proteins involved in genome stability, such as, 

replicative polymerases, USP1 and p53. Firstly, calpain 1 cleaves POLD4 the smallest subunit 

of the replicative DNA polymerase pol δ when cells are calcium triggered. This POLD4 

cleavage occurs shortly after a chemical induced calcium surge, then after 24h the level is 

restored, followed by a renewed decrease of POLD4 after 36h, whereas the other pol δ 

subunits stay stable (Fan et al., 2014). Furthermore, calpain cleaves the catalytic subunit of 
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pol ϵ (POLE1), resulting in a 140 kDa fragment, which is slightly more active than the full-

length enzyme, yet it loses its capability of interacting with PCNA (Liu and Linn, 2000). Both 

replicative polymerase subunits (POLD4 and POLE1) were cleaved under apoptotic conditions. 

Interestingly, calpain inhibitors could partially suppress UV-induced apoptosis in Hela cells 

(Guo et al., 2009b). Another example is the cleavage of USP1 by calpain, which increases the 

stability of USP1. USP1 is deubiquitinating PCNA (see TLS) and thus destabilizing the 

interaction of TLS polymerases with PCNA. CAPNS1-depleted cells show an increase of 

ubiquitinated PCNA in unstressed conditions, favoring pol η on chromatin and mutagenesis. 

Additionally, the tumor suppressor p53 is cleaved by calpain independently from proteasomal 

degradation (Chen et al., 2018; Kubbutat and Vousden, 1997). Zhang et al. describes that 

degradation of p53 by a calpain-like protease is necessary for G1-to-S–phase transition (Zhang 

et al., 1997). The proteolysis of p53 was shown to be dependent on the digestive organ 

expansion factor (Def) protein and calpain 3 (Tao et al., 2013). 
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Thesis objectives 

Pol η has several functions preventing genome instabilities but also promoting mutations 

during somatic hypermutation. This contradictory potentials of pol η need to be carefully 

regulated. Yeast two hybrid studies showed that pol η interacts with CAPNS1, the small 

subunit of calpain 1 and 2. Therefore, we investigated the hypothesis that CAPNS1/pol η 

interaction is involved in the regulation of pol η. 

 

To verify this hypothesis, we sought to answer the following questions: 

1. Is calpain co-localized with pol η in cellulo? 

2. Which pol η part interacts with CAPNS1? 

3. Can calpain cleave pol η in vitro and in cellulo? Where is pol η cleaved? 

4. Can UV activated calpain cleave pol η? 

5. Which effect has calpain inhibition on pol η foci formation after UV irradiation?  
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Preliminary Article 
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Calpain is involved in the pol η-dependent UV response 

 

Jo-Ann Nettersheim, Régine Janel-Bintz and Agnès M. Cordonnier 

Biotechnologie et Signalisation Cellulaire, University of Strasbourg, UMR7242, Illkirch 67412, 

France 

Abstract 

DNA polymerase η (pol η) is specifically required for translesion DNA synthesis (TLS) across 

ultraviolet (UV) irradiation-induced DNA lesions. Recruitment of this error prone DNA 

polymerase is tightly regulated during replication to avoid mutagenesis and perturbation of 

fork progression. Here we report that pol η interacts with the small subunit of calpain, a 

calcium-dependent cysteine protease. This interaction is functional as demonstrated by the 

ability of endogenous calpain to mediate calcium-dependent cleavage of pol η in cell-free 

extracts and in living cells treated with a calcium ionophore. The proteolysis of pol η is found 

to occur at position 465 leading to a truncated protein encompassing the catalytic domain 

and the PIP1 motif. Unexpectedly, inhibiting calpain by treatment with the specific calpain 

inhibitor calpeptin decreases pol η foci formation after UV irradiation and pol η-dependent 

UV survival. Together, these data suggest a positive role for calpain in the pol η-dependent 

UV response. 

Introduction 

Cells are continuously exposed to exogenous and endogenous genotoxic agents that create 

damaged DNA bases or adducts. If the lesions have not been repaired before replication 

initiation, they may stall replicative DNA polymerases, inducing cytotoxic DNA double-strand 

breaks, gross chromosomal rearrangements, and even cell death. Translesion synthesis (TLS) 

across sites of base damage is one important mechanism that ensures the completion of 

genomic replication, contributing greatly to cell survival. TLS is carried out by specialized DNA 

polymerases able to accommodate a distorted DNA template owing to the open 

conformation of their catalytic site. Nevertheless, the recruitment of these error-prone DNA 

polymerases during replication have to be tightly regulated in order to avoid an increased 

mutagenesis.  
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One key event to the activation of TLS is the mono-ubiquitination of the sliding clamp PCNA, 

mediated by the Rad6-Rad18 complex upon exposure of ssDNA at sites of arrested replication 

in response to DNA damage. Y-family DNA polymerases (including REV1, pol η, pol ι, and 

pol κ) interact with monoubiquitinated PCNA (Ub-PCNA) through their ubiquitin-binding 

(UBM/UBZ) and PCNA-interacting motifs (PIP) (Bienko et al., 2005; Guo et al., 2006, 2008; 

Kannouche et al., 2004; Plosky et al., 2006; Watanabe et al., 2004). These domains are 

necessary for the accumulation of the TLS polymerases in replication factories in cells treated 

with agents stalling the replication forks. After lesion bypass, timely dissociation of TLS 

polymerases is essential for the switch back to replicative polymerases, thereby preventing 

mutagenesis. Deubiquitination of PCNA by USP1 (Huang et al., 2006), or by USP10 promoted 

by PCNA ISGylation (Park et al., 2014), has been invoked to limit the extension of bypass 

events.  

DNA polymerase η (pol η) is specifically required for the accurate replicative bypass of 

cyclobutane pyrimidine dimers (CPDs) induced in DNA by UV radiation (Johnson et al., 1999; 

Masutani et al., 1999). Consistently, loss of pol η in humans is responsible for the Xeroderma 

pigmentosum variant (XPV) disease, characterized by sensitivity to sunlight and a 

predisposition to skin cancer radiation (Johnson et al., 1999; Masutani et al., 1999, 2000). 

Additionally, pol η is able to replicate across other types of DNA damages including cisplatin-

induced GpG adducts (Pt-GG), (Vaisman et al., 2000; Zhao et al., 2012) and 8-oxoguanine 

(Patra et al., 2014).  

Besides TLS, pol η plays also important roles in somatic hypermutation (Zeng et al., 2001; Zhao 

et al., 2013), telomere maintenance (Garcia-Exposito et al., 2016; Pope-Varsalona et al., 

2014), and common fragile site stability (Bergoglio et al., 2013; Despras et al., 2016; Rey et 

al., 2009). Association with different partners and several post-translational modifications 

such as phosphorylation (Bertoletti et al., 2017; Chen et al., 2008; Dai et al., 2016; Göhler et 

al., 2011; Peddu et al., 2018), ubiquitination (Bienko et al., 2010; Jung et al., 2011), 

SUMOylation (Despras et al., 2016; Guérillon et al., 2020) and O-GlcNAcylation (Ma et al., 

2017) control pol η activity for these diverse functions.  

In a search for pol η binding partners that could be involved in the regulation of the protein, 

we identified CAPNS1 as a pol η interacting protein by a yeast two-hybrid screening. CAPNS1 

is the regulatory subunit essential for the stability and function of the ubiquitous calpain 1 

and 2. These proteases, belonging to the calcium-dependent calpain family, regulate a wide 
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range of key cellular physiological processes through limited proteolysis of their specific 

substrate. 

The finding that pol η interacts with CAPNS1 prompted us to examine whether calpains 

participate in TLS. Here we demonstrate that pol η is a substrate for calpains and that pol η 

and CAPNS1 are colocalized in the cell nucleus. Unexpectedly, inhibition of calpain results in 

a decreased UV survival of MRC5 cells and a reduced amount of pol η foci in UV-irradiated 

cells demonstrating a positive role of calpain in pol η relocalisation or maintenance in 

replication foci. These results unveil a key role for calpains in regulating TLS and open new 

avenues to a novel role of calcium signaling in the DNA damage response. 
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Material and Methods 

Cell lines and plasmids 

Cells were grown at 37°C in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

5% foetal bovine serum (Eurobio or Dutcher). The XP30RO cell line (SV40-transformed 

Xeroderma pigmentosum variant human fibroblasts) has a homozygous deletion in the pol η 

gene resulting in a truncated protein of only 42 amino acids (Masutani et al., 1999). MRC5-V1 

cells (called MRC5 in this paper) are SV40-transformed normal human lung fibroblasts 

(Huschtscha et al., 1983).  

MRC5 cell lines expressing either eYFP or eYFP-pol η were generated by transfection with the 

plasmid peYFP (Clonetech) or peYFP-pol η (Tissier et al., 2004). Transfected cells were 

selected for two weeks in medium containing 0.6 mg/ml G418 (Gibco). Cells were sorted using 

a FACSAria cell sorter (BD) to yield a population of cells moderately over-expressing pol η. 

Plasmids pcDNA, pGBKT7 or peYFP encoding wild type and mutant pol η proteins, and pACT2-

ubi, have been described previously (Schmutz et al., 2010; Tissier et al., 2004, 2010). Plasmid 

expressing eGFP-tagged pol κ was a kind gift from M.J. Pillaire (CRCT, Université de Toulouse, 

Inserm, CNRS). 

Mutations in the coding sequence of pol η were generated by site-directed mutagenesis. Full 

oligonucleotide sequences are available from the authors on request.  

Two-hybrid analysis (Y2H) 

Two-hybrid analysis was performed in S. cerevisiae AH109, using plasmids pGBKT7-pol η as 

described previously (Tissier et al., 2004). pACT2-CAPNS1 (residues 27-268) identified as a 

positive clone during a screening using pol h as the « bait », lacked the extreme N-terminal 

part of CAPNS1.  

In vitro calpain cleavage assay 

In vitro transcription/translation was performed using a TnT Quick coupled lysate system 

(Promega) and the pGBKT7 or pcDNA plasmids encoding wild type or mutant pol η. 35S-

labeled protein (2.5 ml) was mixed on ice with cleavage buffer (30 mM Tris-HCl pH7.5, 250 mM 

CaCL2, 1.5 mM dithiothreitol in a final volume of 20 ml). The mixture was incubated at 30°C in 

the presence of purified calpain 1 (Calbiochem; 380 U/ml) as indicated. The reactions were 
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stopped in Laemmli buffer and analyzed by SDS- PAGE, immunoblotting and phosphorimaging 

(GE Healthcare). 

Translesion synthesis assay 

The construction of single-stranded plasmids containing a single CPD lesion (pUCTT-CPD.ss) 

has been extensively described (Napolitano and Fuchs, 1997). Primer extension assays were 

performed as previously described (Cordonnier et al., 1999). Briefly, the reaction mixture 

(6.25 ml) containing 10 fmoles of primed circular single-stranded DNA and an XP30RO cell 

extract (20 mg) was incubated at 37°C for 10 min in 50 mM Hepes-KOH (pH 7.8), 7 mM MgCl2, 

1 mM DTT, 4 mM ATP, 200 mM of dNTPs, 40 mM creatine phosphate, 100 µg/ml creatine 

kinase. The XP30RO nuclear extract was supplemented with wild type or mutated pol η 

(0.1 ml) produced using a TnT Quick coupled lysate system (Promega) with the pcDNA 

plasmids. Replication products were digested with EcoRI and PvuII restriction enzymes and 

analyzed by electrophoresis on a 8% polyacrylamide-7 M urea denaturing gel. The 

quantification of TLS levels were determined using the ImageQuantTM TL software after 

phosphorimaging (GE Healthcare). The percentage of TLS was calculated as the ratio of the 

intensity of the bands of TLS to the sum of the intensity of the TLS and L-1 bands.  

RNA interference transfection  

All RNA interference (siRNA) experiments were performed at the concentration of 40 nM 

using INTERFERin transfection reagent according to the manufacturer instructions (Polyplus). 

All siRNA used in this study were ON-TARGETplus SMART pools (Dharmacon; Non-Targeting 

siRNA #1 D-001810-01-05, Human CAST siRNA R-017433-00-0005). The cells were 

synchronized 48 h after siRNA transfection with 2 mM thymidine for 17 h. After a 2 h release 

cells were treated either with 15 J/m2 UV (254 nm) or with 10 µM ionophore (Sigma) for 

indicated times. If stated, cells were treated with 20 µM calpeptin 30 min before the UV or 

Ionophore treatment. Afterwards, cells were fixed and stained for immunofluorescence 

microscopy or lysed for immunoblotting. 

Whole cell extracts and Immunoblotting 

Cells were harvested at indicated times by scrapping and washed twice with PBS. Half of the 

cells were resuspended in one pellet volume fresh lysis buffer (50 mM Tris pH 7.5, 20 mM 



 77 

NaCl, 10 mM MgCl2, 0.1% SDS, anti-proteases (Roche)) for 30 min on ice. Aliquots were used 

as whole cell extract (W). 

After electrophoresis on SDS/polyacrylamide gels, separated proteins were transferred onto 

a PVDF or low fluorescence PVDF membrane (Biorad) and probed with antibodies.  Antibodies 

used in this study included: PCNA-PC10 (SC56, Santa Cruz, 1/2000); pol η (custom made by 

Biotem, raised against three peptides: 1. CGEEPQPRDEEEAELELLRQ, 2. 

CRAKQMGLEPPPEVWQVLKT, 3.PEVWQVLKTHPGDPRFQC, 1:1000); pol η (ab17725 1/500); 

pol η (C-terminal part 414-713; H300 sc-5592, Santa Cruz 1/1000); Myc (9E10, sc-40, 1/3000, 

Santa Cruz Biotechnology); POLD1 catalytic subunit (A9, sc-1777, Santa Cruz, 1/1000), POLD2 

(C-50, sc8800, Santa Cruz, 1/500), GFP JL8 (632381, Clontech, 1/500), Calpain (25565, Cell 

signaling technology, 1/1000) and Calpastatin (A-1, sc376547, Santa Cruz, 1/500). 

Clonogenic assay cell survival 

2x103 cells were plated in 100 mm dishes in triplicates for each condition. 48 h after, cells 

were treated with calpeptin for 30 min, washed in PBS and UV irradiated as indicated. 

Medium containing calpeptin or DMSO was added to the cells and incubated at 37°C for 

10 days. Cells were fixated with 4% formaldehyde in PBS for 15 min at room temperature. 

Subsequently, colonies were stained with a 0.1% crystal violet solution for 30 min at room 

temperature and washed with water 3-4 times. Colonies were counted. 

Fluorescence Microscopy  

Cells grown on glass coverslips were transfected using the jetPEI or the TransIT®-LT1 reagents 

according to the manufacturer's protocols (Polyplus and Mirus, respectively). Transfected 

cells or MRC5 cell lines expressing either eYFP or eYFP-pol η were UV-irradiated at 

15 J/m2, 48 h after transfection and were processed at the indicated times. Cells were washed 

twice with phosphate buffered saline (PBS) and treated for 5 min with CSK 100 buffer 

(100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM Pipes pH 6.8, 1 mM EGTA) 

supplemented with 0.2% Triton-X100 and a protease inhibitor cocktail (Complete, Roche). 

Cells were then fixed for 20 min in 4% formaldehyde/PBS, permeabilized with methanol at -

20°C for 10 sec and stained by overnight incubation at 4°C with a primary antibody 

(CAPNS1, clone 3C4, Merck-Sigma, 1:100 dilution; PCNA ab15497, abcam 1:200 dilution, 

PCNA PC10 Santa Cruz, 1/300). Finally, after washing with PBS the coverslips were incubated 

for at least 2 h at room temperature with a secondary antibody (Alexa Fluor 594 goat anti-
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mouse IgG, 1:1000; Alexa Fluor 488 goat anti-rabbit IgG, 1:1000; all Invitrogen) before 

mounting onto slides using Fluorescent mounting medium (Southern Biotech containing 

DAPI).  

The proximity ligation assay (PLA) kit was purchased from Sigma. Cells were washed twice 

with PBS and treated for 5 min with ice-cold CSK 100 buffer and fixed as described above. The 

primary antibodies mouse anti-CAPNS1 (clone 3C4, Merck-Sigma, 1:100 dilution) and rabbit 

anti-PCNA (ab15497, abcam 1:200 dilution) were incubated overnight at 4°C. The secondary 

antibodies conjugated to the PLA-oligonucleotide probes were used (Duolink II PLA probe 

anti-mouse MINUS, anti-rabbit PLUS) according to the manufacturer's instructions. Slides 

were analyzed on a Leica DM5500B microscope equipped with a LeicaDFC350FX camera and 

the capture software LASAF. Analysis of Images in ImageJ (see appendix for script). 

Statistical Analyses 

Differences in survival assays were analyzed by two-way ANOVA. Statistical differences in all 

cases were determined by Student’s t-test. IF image analysis of foci formation was tested for 

significance by Wilcoxon signed-rank tests. In all cases: NS (not significant) p > 0.05; ∗p < 

0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001. 
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Results 

Pol η interacts with CAPNS1  

A yeast two-hybrid screen identified CAPNS1, the regulatory subunit of the calcium-

dependent protease calpain, as a putative pol η interacting protein. In contrast, interaction 

of CAPNS1 with pol κ, another Y-family DNA polymerase, was not detected by the Y2H assay 

suggesting that CAPNS1 specifically interacts with pol η (Figure 1A). By using deletion 

constructs we determine that the region of pol η spanning amino acids 596-662 is sufficient 

for the binding to CAPNS1 (Figure 1B). This region encompasses the UBZ domain of pol η that 

drives its interaction with Ubiquitin. We therefore investigated the impact of point mutations 

in this region. The mutations in the UBZ domain of pol η that abolish the zing finger structure 

(H650A/H654A) or the interaction with ubiquitin (D652A) do not change the pol η ability to 

interact with CAPNS1. This suggests that CAPNS1 and ubiquitin may utilize independent 

interaction interfaces to bind to pol η within the same region (Figure 1C). 

The interaction of CAPNS1 with pol η was further explored in vivo by assessing their 

subnuclear localization. Previous work showed that pol η is uniformly distributed through the 

nucleus but accumulates during S phase in replication foci, which are resistant to a mild 

extraction with a CSK buffer. UV-irradiation results in an increase in S-phase cells containing 

polymerase foci, which represent replication factories containing stalled replication forks. 

Since the endogenous levels of pol η are insufficient to be detected by any commercial 

antibody, we used an MRC5 cell line stably overexpressing eYFP-pol η. As expected from 

previous studies, pol η accumulates in replication foci in a low proportion of unperturbed 

cells, and this fraction increases after UV irradiation (Figure 2A, 2B). Remarkably, at least 75% 

of cells containing eYFP-pol η foci displayed colocalizing CAPNS1 foci (Figure 2B, lower 

histogram) whereas the accumulation of endogenous CAPNS1 in replication foci is not 

detected in the control cells expressing eYFP alone. Transient transfection of MRC5 cells with 

a construct encoding eYFP fused to the minimal domain required for pol η foci formation (aa 

594 to 713; Kannouche 2001) shows that it is sufficient for CAPNS1 relocalization (Figure 2A, 

panel g). In contrast, CAPNS1 does not colocalize within UV-induced GFP-pol κ foci 
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(Figure 2C), consistent with the previous observation that this related TLS polymerase does 

not interact with CAPNS1 in Y2H.  

To further probe for a localization of CAPNS1 in replication factories we used the Proximity 

Ligation Assay technology with antibodies directed against CAPNS1 and PCNA. The proximity 

between PCNA and CAPNS1 is unveiled in the cells displaying eYFP-pol η foci (Figure 2D). An 

increase in PLA signals after UV irradiation is observed, which correlate with the number of 

pol η foci per cell (Figure 2E). MRC5 cells stably expressing eYFP exhibit also a small but 

significant increase of PCNA/CAPNS1 PLA signals after UV irradiation which could be due to 

the relocalization of endogenous pol η to the replication foci. All together, these data suggest 

that the CAPNS1 interaction within the C-terminal part of pol η may be responsible for 

CAPNS1 localization in replication foci. However, the proximity of CAPNS1 with PCNA is 

observed only in a subset of replication foci after UV irradiation. Whether UV irradiation 

merely promotes CAPNS1 interaction with PCNA remains to be resolved.  

Pol η is a calpain substrate in vitro 

Purified calpain 1 was used to investigate whether pol η could be a substrate of calpain. The 

cleavage of myc-pol η protein results in a major cleavage product (about 50 kDa) that is 

recognized by the anti-myc antibody but not by the antibody H300 (Santa Cruz) which was 

raised against a C-terminal peptide (414-713) of pol η (Figure 3A). A time course experiment 

with calpain 1 shows that the reaction is almost complete within 20 sec (Figure 3B). A 

truncated portion of pol η corresponding the extreme C-terminus is observed at early times 

and disappeared thereafter while the major product of 50 kDa remains stable over time. 

We next sought to determine whether pol η could be cleaved by endogenous calpain in a cell-

free extract. Figure 3C shows that incubating a cell-free extract expressing eYFP-pol η in the 

presence of CaCl2 is sufficient to induce the cleavage of eYFP-pol η (lanes 1-4). The cleavage 

product is specifically recognized by an anti-GFP antibody and has a similar electrophoretic 

mobility on SDS-PAGE compared to the recombinant eYFP-pol η (1-465) transiently expressed 

in MRC5 cells (lane 9). The cleavage is dependent upon CaCl2 addition and correlates with the 

activation of calpain 1, as shown by its autoproteolytic conversion of the 80-kDa large subunit 

to a 78-kDa "intermediate" and a 76-kDa fully autolyzed form. Figure 3C shows that similarly 

to eYFP-pol η, p53 an already known substrate of calpain, can be cleaved upon incubation of 

cell-free extracts in the presence of CaCl2 to a distinct 46-kDa form, as already published 
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(Kubbutat and Vousden, 1997). The calpain inhibitor calpeptin significantly abolished eYFP-

pol η and p53 cleavages, as well as calpain activation (Figure 3C; lanes 5-8). Collectively, these 

findings suggest that pol η is a target of endogenous calpain in cell-free extract, leading to a 

truncated protein devoided of the regulatory domains located at the C terminus of the 

protein.  

Using two different calpain cleavage prediction computer programs (calpain.org and 

ccd.biocuckoo.org), we found that although several cleavage sites are predicted, the highest 

score is at the position 465. This is consistent with the size of the major cleavage product 

obtained in vitro with purified calpain 1 and in cell extracts (Figure 3 A-C). To determine the 

cleavage site of pol η precisely, eYFP-pol η was isolated from MRC5 expressing cells by pull-

down using anti-GFP coupled agarose beads and was subsequently incubated with purified 

calpain 1 in the presence of calcium. The products were separated by SDS-PAGE (Figure 3D) 

and subjected to mass spectrometry analysis after digestion with AspN and chymotrypsin 

endopeptidases. This analysis revealed that the truncated eYFP-pol η is the N-terminal part 

of pol η, with peptides ending at Gly 465, Ser 459 and Ser 458 (Figure 3D). Relative 

abundances of these peptides suggest that the preferred cleavage site is between amino acids 

Gly 465 and Ser 466 as predicted by cleavage prediction programs. These residues are 

conserved in mammalians whereas the proline localized three residues after the major 

cleavage site is conserved among most vertebrates except Danio rerio. Notably, it has been 

reported that calpain 1 and 2 have a significant preference for proline at P3’ position of their 

substrates even though the cleavage site specificity of calpain is rather weak and is defined 

by both primary and higher-order structures (Shinkai-Ouchi et al., 2016). In short, eYFP-pol η 

is preferentially cleaved after the amino acid 465, a site which is conserved among mammals.  

Pol η is a substrate of calpain in vivo 

To determine whether pol η could be cleaved by calpain in vivo, we treated eYFP-pol η 

expressing MRC5 cells with calcium ionophore, which causes an increase in intracellular 

calcium levels. In addition, the expression of calpastatin, the endogenous inhibitor of calpains 

was knocked down by siRNA transfection (siCAST). The appearance of the truncated form of 

eYFP-pol η correlates with a substantial activation of calpain, as evidenced by the 

autocleavage of calpain 1 (Figure 4A left panel). Similarly, the disappearance of endogenous 

pol η is observed in MRC5 cells co-treated with ionophore and siCAST, indicating that 
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endogenous pol η is also a substrate for calpains in these conditions (Figure 4A right panel). 

Treatment with the calpain inhibitor, calpeptin, abrogates eYFP-pol η cleavage as well as 

calpain activation. The cleaved product comigrates with a in MRC5 expressed eYFP-pol η 1-

465 protein (Figure 4B). To check a possible link of the observed truncation of pol η with 

apoptosis, we tested the cells for signs of apoptosis under conditions inducing the truncation. 

The non-cleavage of the 115-kDa PARP 1 indicates that the cells are not undergoing PARP1-

dependent apoptosis in these conditions (data not shown). Collectively, these data show that 

increased calcium and subsequent calpain activation are responsible for pol η cleavage in vivo 

at the same site than in vitro. 

Translesion synthesis efficiency of truncated pol η across a TT-CPD lesion  

Overall, the data described above show that the C-terminal domain of pol η is very sensitive 

to proteolytic degradation by calpain both in vitro and in vivo. The resistant truncated pol η 

(1-465) encompasses the catalytic domain (1-435) and a small adjacent region containing a 

PCNA-binding motif, named PIP1 (437-444). It has been shown that PCNA binding to this motif 

is involved in the stimulation of DNA polymerase activity (Acharya et al., 2008; Masuda et al., 

2015). To determine whether pol η (1-465) could function in TLS, we expressed wild type and 

truncated pol η mutants in rabbit reticulocyte lysates. The catalytic activities of these proteins 

are all equivalent as assessed by the measure of the primer extension efficiencies on 

undamaged DNA templates (Figure 5B). We then tested the ability of these proteins to 

complement an XP30RO cell extract for the bypass of a TT-CPD lesion. We have previously 

established that the PIP2 (701-708), PIP3 (483-484) and UBZ domains localized in the C-

terminal region of pol η contribute to the bypass reaction in this assay (Schmutz et al., 2010). 

Accordingly, pol η (1-435) containing only the catalytic domain is defective in TLS. 

Interestingly, pol η (1-465) still functions in TLS, albeit with a lower efficiency than the wild 

type protein. As shown in Figure 5B, mutational inactivation (F443A/L444A) of the PIP1 motif 

within this region abrogates the residual TLS ability of pol η (1-465), which thus relies on the 

presence of a functional PIP1. Altogether, the truncated pol η (1-465) can complete TLS in 

dependence of its PIP1 domain, although less efficiently than the full-length pol η. 
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Calpain is involved in pol h foci formation  

To investigate further the influence of calpain on pol η during UV irradiation response, we 

irradiated MRC5-eYFP-pol η cells with UV and compared the level of pol η foci formation 

when the calpain inhibitor calpeptin is used. As published in the literature (Kannouche and 

Lehmann, 2006), the foci formation increases over time and decreases at 9 h. Interestingly, 

cells treated with calpeptin form less foci per cell than untreated cells 6 and 9 h after UV 

irradiation (Figure 6A). This difference could be explained if calpeptin changes the cell cycle 

or lowers the level of PCNA ubiquitination. Both were tested and revealed no differences 

between calpain treated and untreated cells (Supplementary Figure 1). Furthermore, when 

cells are calpastatin depleted with siRNA, MRC5-eYFP-pol η cells show an increase of pol η 

foci formation after 24 h, whereas no changes in the cell cycle and PCNA ubiquitination could 

be detected under these experimental conditions (Supplementary Figure 2). Taken together 

this demonstrates that calpain activity promotes pol η foci formation. In addition, in order to 

investigate if calpain is involved in the pol η-dependent UV survival, XP30RO and MRC5 cells 

were irradiated with UV light while treated with different concentrations of calpeptin (Figure 

6B). In non-irradiated cells, calpeptin treatment alone reduces cell survival in XP30RO and 

MRC5 equally (Figure 6C). In contrast, while calpeptin only modestly affects UV survival of 

XP30RO cells, it affects significantly MRC5 cells, suggesting that calpain is involved in the 

pol η-dependent UV response.  
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Discussion 

Pol η has several functions preventing genome instabilities but also promoting mutations 

during somatic hypermutation. This contradictory potentials of pol η need to be carefully 

regulated. Yeast two-hybrid studies showed that pol η interacts with CAPNS1, the small 

subunit of calpain 1 and 2. Therefore, we investigated the hypothesis that CAPNS1/pol η 

interaction is involved in the regulation of pol η. 

In this paper we demonstrate that the translesion DNA pol η interacts with CAPNS1, the small 

regulatory subunit of calcium-dependent proteases calpain 1 and 2. More specifically CAPNS1 

interacts with the amino acids 596-662 of pol η. Furthermore, CAPNS1 is colocalized with 

pol η and PCNA in replication foci. In vitro assays confirmed that pol η is cleaved by calpain in 

a calcium-dependent manner and mass spectrometry analysis of the cleaved fragment 

demonstrated its cleavage between the amino acids 465-466, leaving the catalytic domain of 

pol η intact with an alternative PIP domain, PIP1 (1-465). Interestingly, also the C-terminus of 

pol η is initially conserved after cleavage induction and is degraded in vitro just after 30 min. 

This could indicate that the C-terminus could exhibit a function, which needs to be further 

investigated. The TLS assay shows that the truncated pol η fragment (1-465) containing the 

catalytic domain is still active, although less efficient. This result is in accordance with previous 

studies showing that a truncated version of pol η (1-475) is responsive to PCNA stimulation in 

vitro, promotes efficient TLS opposite a cis-syn TT dimer in vivo and confers UV resistance to 

XP30RO cells (Acharya et al., 2010). We conclude from this result that the PIP1 motif plays a 

role in TLS in vitro, in accordance with previous studies (Acharya et al., 2008; Masuda et al., 

2015). However, the loss in efficiency shows that this motif cannot completely substitute for 

the other pol η PIP motifs that have been shown to exert distinct functions in vivo (Masuda 

et al., 2015). In addition, the truncated pol η protein, devoided of the UBZ and PIP2 motifs, 

can no longer relocalize into replication foci in UV irradiated cells (Kannouche et al., 2001). 

Moreover, simultaneous invalidation of both these motifs confers cells sensitivity to UVC 

(Despras et al., 2012) and is responsible for the carcinogenesis in XPV patients (Broughton et 

al., 2002). We thus anticipate that the cleavage of pol η by calpain would impair its 

relocalization in vivo. However, if the cleavage occurs on the chromatin after relocalization at 

blocked replication forks, the cleaved pol eta could retain TLS ability.  
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Treatment of cells with the calcium transporter ionophore confirmed the cleavage of pol η by 

calpain in vivo. However, the endogenous inhibitor of calpain, calpastatin, inhibited most of 

the ionophore-induced activity of calpain. When down regulating calpastatin with siRNA, 

calpain is strongly activated and cleaves most of the overexpressed eYFP-tagged pol η as well 

as about 50% of the endogenous pol η (MRC5). This suggests that about half of the 

endogenous pol η (or an equal amount of the tagged pol η) is protected from the cleavage 

due to posttranslational modification or interactions with other proteins. Some activities of 

calpain occur during apoptosis (Cao et al., 2007; Fan et al., 2014; Liu and Linn, 2000), therefore 

we analyzed PARP1 as an apoptosis marker (Chaitanya et al., 2010; Soldani and Scovassi, 

2002). We observed that PARP1 is not cleaved and therefore PARP1-dependent apoptosis is 

not active in the conditions were pol η is cleaved. 

It was shown that during replication stress the Ca2+ level in the nucleus is elevated (Li et al., 

2019), which could activate calpain. Furthermore, it was shown that calpain can be activated 

by UV irradiation (Gulati et al., 2004). Thus, we investigated the influence of calpain on the 

UV damage response. We could demonstrate that pol η-dependent UV survival is reduced 

when cells are treated with calpeptin. To further investigate the influence of calpain on UV-

induced translesion synthesis, replication foci formation was investigated in MRC5 cells 

expressing eYFP-pol η. Surprisingly, the inhibition of calpain with calpeptin decreases the 

amount of pol η foci per cell, indicating that calpain activity facilitates pol η foci formation. 

These results can be explained by several hypothesis: First hypothesis: the cleavage of pol η 

by calpain could protect pol η from proteasomal degradation, a common outcome for calpain 

cleaved proteins (Cataldo et al., 2013). The cleavage site on pol η by calpain lies next to the 

O-GlcNAcylation site T457 (Ma et al., 2017). When pol η is O-GlcNAcylated and 

subsequentially polyubiquitinated, pol η is degraded by the proteasome. The cleavage of 

pol η could hinder the O-GlcNAcylation and therefore degradation. Consistently, it was shown 

that when the O-GlcNAcylation site T457 is mutated, pol η foci persist longer. The remaining 

truncated pol η could complete TLS with the help of its remaining PIP1 domain. It is described 

that mutations in the UBZ of pol η greatly impairs the localization of pol η in replication foci 

(Bienko et al., 2005; Plosky et al., 2006). The truncated pol η does not possess the UBZ or PIP 

domain, therefore, we suggest that this cleavage occurs when pol η is already interacting or 

in vicinity with PCNA. Second hypothesis: calpain is needed to cleave other proteins that 

compete with pol η for the interaction with PCNA at the replication fork. The cleavage of the 
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POLD4 subunit of the replicative pol δ by calpain in calcium triggered apoptotic HeLa cells has 

been described by Fan et al., 2014. It has been proposed that this could be an alternative 

pathway to the cleavage of POLD4 after UV by CRL4Cdt2  (Terai et al., 2013; Zhang et al., 2013) 

allowing the space for pol η and therefore the polymerase switch to occur. Similarly, UV-

induced degradation of p21cip1 trough CRL4Cdt2 in response to DNA damage by UV has been 

shown to be required for efficient pol η recruitment to DNA lesions (Bendjennat et al., 2003; 

Soria and Gottifredi, 2010; Soria et al., 2006). p21cip1 was also shown to be degraded by 

calpain (Chen et al., 2001).Calpain could be here as well an alternative pathway to regulate 

p21cip1. Third hypothesis: is was described that USP1 is cleaved by calpain (Cataldo et al., 

2013). USP1 is a modulator of TLS and DNA repair, partly through deubiquitination of FANCD2 

and PCNA (Huang et al., 2006; Nijman et al., 2005; Oestergaard et al., 2007). The cleavage of 

USP1 by calpain in non-stressed cells, leads to a stabilization of USP1, but impairs its 

deubiquitination function of FANCD2 (Arkinson et al., 2018). The USP1 deficient dependent 

enrichment of monoubiquitinated FANCD2 recruits pol η in response to DNA damage (Fu et 

al., 2013).  

Calpain inhibitors are in clinical trials for several cardiovascular and neuronal diseases and 

have shown promising results under short term treatments. Such calpain inhibitors could be 

used as a supportive treatment with cisplatin to reduce or even inhibit the resistance caused 

be pol η. Taken together we found that CAPNS1 colocalizes and interacts with pol η and we 

uncovered a positive role for calpain in pol η foci formation and cell survival after UV 

irradiation. Further work should seek to decipher the mechanism underlying the mechanism 

of calpain in TLS. 
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Figure legends 

Figure 1. Pol η interacts with CAPNS1, the small subunit of calpain 

A and B: Schematic representation of pol η and pol k proteins and several truncated forms of 

pol η (remaining residues are indicated into brackets). Their ability to interact with CAPNS1 is 

indicated. The catalytic and regulatory domains of pol η are depicted as well as the UBZ motif. 

C: Yeast transformants expressing both CAPNS1 and wild type or pol η mutant fusion proteins 

are selected on double drop out medium (-W-L). Positive interactions are indicated by growth 

on quadruple drop out medium (-W-L-A-H). The ubiquitin which interacts with the UBZ 

domain of pol η was used in parallel as a control. 

Figure 2. Association of CAPNS1 and eYFP-pol η within the nucleus 

A: Representative images of MRC5 cells expressing eYFP, eYFP-pol η (1-713) or eYFP-pol η 

(594-713), immunostained with CAPNS1 antibody 6 hours after mock or UV irradiation 

(15 J/m2). The panels d, f and g show the magnification of one nucleus. Scale bars, 10 µm. 

B: MRC5 cells expressing eYFP-pol η (1-713) were processed as in A. The percentage of cells 

with either eYFP-pol η (green) or CAPNS1 (red) foci are presented in the upper histogram. The 

lower histogram displays the percentage of cells containing pol η foci with colocalizing 

CAPNS1 foci. Data are the mean +/- SD of three independent experiments (n > 180 for each 

experiment). 

C: Representative images of MRC5 cells expressing eGFP-pol η or eGFP-pol κ, immunostained 

with CAPNS1 antibody 6 hours after UV irradiation (15 J/m2). The panels show the 

magnification of one nucleus. Scale bars, 10 μm. 

D: Localization of CAPNS1 in replication factories: representative images of a Proximity 

Ligation Assay (PLA: CAPNS1/PCNA) in MRC5 cells expressing eYFP or eYFP-pol η, using 

antibodies against CAPNS1 and PCNA, 6 hours after mock or UV irradiation (15 J/m2). Scale 

bars, 10 μm. 

E: The upper boxplot represents the distribution of the number of PLA signals (CAPNS1/PCNA) 

per nucleus in each sample in one representative experiments. The lower boxplot shows the 

amount of pol η foci per cell cells in the indicated cell lines before or after UV irradiation 

(15J/m2) (n > 400 cells; **** = p<0.0001, unpaired Wilcoxon test).  
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Figure 3. pol η is a substrate of calpain 1 in vitro 

A: In vitro cleavage of 35S-labeled myc-pol η by various amounts of purified calpain 1 was 

carried out as described in Materials and Methods for 30 min at 30°C. After electrophoresis 

on a 8-15% polyacrylamide/SDS gel and transfer on a nitrocellulose membrane, samples were 

analyzed by phosphorimaging (left panel) or probed either with an anti-myc antibody (middle 

panel) or an anti-pol η antibody against the C-terminal domain of pol η (right panel). The 

positions of the full-length myc-pol η protein (arrowhead) and preferential cleavage products 

(*) are indicated. 

B: Time course experiment of the cleavage of wild type pol η using purified calpain 1 (80 mU) 

as indicated. After SDS-PAGE and transfer, the nitrocellulose membrane was analyzed by 

phosphorimaging and probed with an antibody against the C-terminal part of pol η. Asterisk 

indicates the major cleavage product. 

C: Cell-free extracts from cells expressing eYFP-pol η were incubated in the presence of 

increasing amounts of CaCl2 and calpeptin, as indicated. After a 10 min incubation at 30°C, 

cell extracts were assessed for eYFP-pol η or p53 cleavages by immunoblotting with an anti-

GFP or anti-p53 antibodies, respectively. Positions of the full-length and truncated proteins 

are denoted by an arrow and an asterisk respectively. POLD1 is used as a loading control. A 

MRC5 extract overexpressing eYFP-pol η (1-465) is loaded on the same gel (lane 9) as a 

molecular weight control.  

D: Left panel: eYFP-pol η proteolyzed with calpain 1 in vitro was subjected to SDS-PAGE and 

stained with Coomassie Brilliant Blue. The cleavage product (asterisk) was excised and 

analyzed by mass spectrometry. Right panel: A summary of the MS-detected peptides after 

digestion with AspN or chymotrypsin. The sequence of pol η (430-470 aa) and the peptides 

covering this region are shown. The cleavages sites are highlighted with arrows and the 

numbers of the peptides identified by MS-LC-MS are indicated.  

E: Sequence alignment using COBALT (Constraint-based Multiple Alignment tool) centered on 

region 454-476 of human pol η sequence. The calpain cleavage site conserved in mammalian 

species and the proline residue important for cleavage are highlighted. NCBI RefSeq 

identifiers are as follow: Homo sapiens: NP_006493.1 ; Pan troglodytes: XP_518497.1 ; Bos 
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taurus: NP_001029622.1 ; Mus musculus: NP_109640.1 ; Alligator mississipiensis: gb 

KYO23933.1 ; Gallus gallus: NP_001001304.1 ; Xenopus laevis: NP_001086552.1. 

Figure 4. Ionophore induces eYFP-pol η cleavage 

A: MRC5 cells expressing eYFP-pol η (left panel) or MRC5 cells (right panel) were treated with 

siRNA against calpastatin or with non-targeting siRNA for 72 h. After treatment with 

ionophore and/or calpeptin as indicated, proteins were extracted and analyzed by western 

blotting with the indicated antibodies. Cleavage products are indicated with an asterisk *. 

B: SDS-PAGE migration profile comparison of eYFP pol η (1-465) with the calpain cleavage 

product of eYFP-pol η after ionophore and siRNA against Calpastatin treatment as described 

in A. 

Figure 5. Catalytic and TLS activity of wild type and truncated mutant pol η 

A: Scheme of the wild type and truncated pol η proteins. Amino acid sequence (438-447) 

located just after the catalytic domain, is indicated. The FL residues of the PIP1 motif which 

are mutated to AA in the FL*mutant, are underlined.  

B: Time course of DNA synthesis catalyzed by wild type (WT) or mutant pol η (0.04 ml of the 

reticulocyte lysate) using a primed single-stranded template (pUC118.ss). DNA products were 

subjected to electrophoresis on a 20% polyacrylamide–7 M urea denaturing gel. Below the 

gel: Immunoblot of the different forms of pol η produced in rabbit reticulocytes lysates (1 ml), 

using an antibody against the N-terminal part of pol η.  

C: TT-CPD bypass efficiency of wild type and mutant pol η 

Upper panel: Outline of the experiment and diagram of the modified plasmid. The length of 

the strand produced upon elongation of the [32P]-labeled primer, up to the lesion site, is 

indicated. nts: nucleotides.  

Middle panel: Monomodified DNA substrates (10 fmoles) were incubated 10 minutes at 37°C 

in the presence of XP30RO cell-free extracts (20 mg) complemented with an equal amount 

(0.1 ml) of different forms of pol η produced in vitro (as shown panel B). Products were 

analyzed by electrophoresis through a 8% denaturing polyacrylamide gel after restriction 

analysis. Product L-1 is generated when synthesis is blocked one nucleotide before the lesion.  
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Lower panel: Quantitative analysis of TLS efficiency with the different versions of pol η. Error 

bars denote the standard deviation (SD) of three experiments performed with independent 

pol η samples. 

Figure 6. Calpain is involved in pol η foci formation and UV survival 

A: Synchonized MRC5 cells expressing eYFP-pol η were treated with 20 µM calpeptin and 

irradiated with 15 J/m2 UV (254 nm). The boxplot is a representative of three experiments, 

showing the amount of foci formation per cell in the different conditions as indicated. IF 

image analysis of foci formation was tested for significance by Wilcoxon signed-rank tests. In 

all cases: NS (not significant) p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001. 

B: Colony survival assay with MRC5 and XP30RO cells irradiated at 5 J/m2 and 2 J/m2 

respectively in the presence of calpeptin as indicated. UV survival was assessed in three 

independent experiments (mean +/- SD). Normalized on non-UV irradiated but calpeptin 

treated cells to distinguish from solely calpeptin effect. Differences in survival assays were 

analyzed by two-way ANOVA. Statistical differences in all cases were determined by Student’s 

t-test. NS (not significant) p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001. 

C: Cell survival after treatment with calpeptin alone at indicated concentrations using MRC5 

and XP30RO cells. UV survival was assessed in three independent experiments (mean +/- SD). 

Figure 7. Hypothesis of the regulation of pol η by calpain 

The center part of the figure shows the dogma of TLS: Firstly, the DNA is replicated by 

replicative DNA polymerases until the lesion. Secondly, the replication fork stalls and recruits 

TLS polymerases η, which insert nucleotides across the lesion. Thirdly, a second switch occurs 

back to replicative polymerases. The red squares represent the three hypothesis debated in 

the discussion. Hypothesis 1: pol η is stabilized by cleavage of calpain, protecting against O-

GlcNAcylation-dependent degradation. Hypothesis 2: Calpain cleaves proteins which 

compete with pol η for the access to the replication site. Hypothesis 3: USP1 is cleaved by 

calpain, inhibiting deubiquitination of FANCD2. Ubiquitinated FANCD2 recruits pol η to the 

replication site. 

Supplementary figure 1. Cell cycle and PCNA ubiquitination after calpeptin treatment  

A: MRC5 cells expressing eYFP-pol η were treated with 20 µM calpeptin and irradiated with 

15 J/m2 UV (254 nm). The cell cycle was synchronized with 2 mM thymidine and cells treated 
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1.5 h after release. The cell cycle was analyzed in ethanol fixed cells 3, 6 and 9h after UV 

irradiation. Cells were stained with propidium iodide (4 μg/ml; Sigma) using the BD Accuri™ 

C6 Plus flow cytometer (BD Bioscience). 

B: Cells treated in the same conditions as in A were analyzed on western blot.  

Supplementary figure 2. Foci formation after UV irradiation in calpastatin depleted cells  

A: MRC5 cells expressing eYFP-pol η were treated with siRNA against calpastatin 72 h before 

UV irradiation with 15 J/m2 (254 nm). The cell cycle was synchronized with 2 mM thymidine 

and cells were treated 2 h after release. The boxplot is representative of triplicates, showing 

the amount of foci formation per cell in the different conditions as indicated. IF image analysis 

of foci formation was tested for significance by Wilcoxon signed-rank tests. In all cases: NS 

(not significant) p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001. 

B: Cells treated in the same conditions as in A were analyzed on western  

C: The cell cycle was analyzed in ethanol fixed cells treated in in the same conditions as in A. 

Cells were stained with propidium iodide (4 μg/ml; Sigma) using the BD Accuri™ C6 Plus flow 

cytometer (BD Bioscience). 

blot. 
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Figure 7 
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Additional results and discussion 
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Ionophore induces eYFP-pol η and POLD1 cleavage 

During the analysis of the cleavage of pol η in cells after treatment with ionophore and siCAST 

(Paper Figure 4), we observed that POLD1 can also be cleaved by calpain (Figure 28 A). 

Interestingly, the cleavage of POLD1 occurs also in different cell lines stably over-expressing 

tagged pol η (XP30RO-eGFP-pol η and U2OS-Flag-pol η) (Figure 28 B). Furthermore, the 

cleavage of pol η occurs as well in these cell lines overexpressing pol η with different tags, 

demonstrating that pol η is cleaved independently form the GFP-tag in vivo. Compellingly, the 

cleavage of POLD1 would open up the site of replication and allows access for pol η, enabling 

the first polymerase switch during TLS. This mechanism could explain the decreased foci 

formation of pol η after UV irradiation when calpain is inhibited (Paper Figure 6). However, 

the cleavage of POLD1 is not visible in MRC5 cells (Figure 28A), whereas the endogenous pol η 

is cleaved. This might occur because the activation of calpain appears to be stronger in MRC5 

cells over expressing pol η than in MRC5 cells in which higher calpastatin levels and lower 

autolysis of calpain are observed. Alternatively, pol η could bring calpain together with 

CAPNS1 to the replication foci. The increased pol η level in the stable cell lines could lead to 

a higher activity of calpain in the replication forks leading to the increased cleavage of POLD1. 

The cleavage of POLD1 presents an interesting mechanism on how pol η can access the DNA, 

which needs to be further investigated. 

Interestingly, in addition to the band corresponding to the major cleavage N-ter product 

another band was detected after the induction of cleavage by ionophore and siCAST 

treatment in MRC5, MRC5-eYFP-pol η cells (Figure 28 B right panel) and U2OS-Flag-pol η 

(Figure 28 B middle panel) cells when using an antibody raised against the C-ter of pol η. This 

band appears at about 37 kDa which is not the expected size for the cleaved C-ter (the 

fragment 465-713 is about 27 kDa). This could indicate that C-ter ubiquitinated or sumoylated 

pol η is cleaved by calpain. The only sumoylation on the pol η C-ter described is a 

polysumoylation occuring at positions all over pol η after UV irradiation, leading to the 

displacement of pol η from the DNA damaged site (Guérillon et al., 2020b). The observed 

band presents as single band at about 37 kDa, suggesting only a monosumoylation. 

Ubiquitination of pol η was described at several positions at the C-ter with its main site at 

K682 in unstressed cells (Jung et al., 2011). It is proposed that the monoubiquitinated pol η 

interacts intramolecular between monoubiquitin and the UBZ domain, hindering pol η from 
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interacting with PCNA during replication. Consistently, UV irradiation induces PCNA 

monoubiquitination and pol η deubiquitination, which in turn facilitates the interaction 

between pol η and PCNA (Bienko et al., 2010). The reduced pol η ubiquitination occurs 6 h 

after UV irradiation, which is the time frame during which calpain appears to be important 

during pol η foci formation. This suggests that calpain could cleave ubiquitinated pol η after 

UV irradiation, removing it from the vicinity of the replication fork and thereby improving the 

interaction of non-ubiquitinated pol η with the replication fork. 
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A 

 

B 

 

Figure 28: Ionophore induced cleavage of pol η and POLD1. A: MRC5 cells expressing eYFP-pol η (left panel) or 

MRC5 cells (right panel) were treated with siRNA against calpastatin or with non-targeting siRNA for 72 h. After 

treatment with ionophore and/or calpeptin as indicated, proteins were extracted and analyzed by western 

blotting with the indicated antibodies. Cleavage products are indicated with an asterisk *. Pol η was visualized 
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with an anti-GFP antibody on MRC5 eYFP-pol η cell samples revealing the pol η N-ter and an anti-pol η C-ter 

antibody was used for MRC5 cells revealing the endogenous pol η. B: XP30RO cells expressing stably eGFP-pol η 

and U2OS cells expressing stably Flag-pol η were treated as in A. Depicted are the results of cells treated with 

siRNA against calpastatin. Arrows highlight the C-ter cleaved products. Pol η was visualized with an anti-GFP 

antibody on XP30RO eGFP pol η cell samples revealing the pol η N-ter and an anti-pol η C-ter antibody was used 

for MRC5 and U2OS Flag-pol η cells. 

Cleavage of pol η by calpain after UV irradiation 

Calpain is activated by an increase of the calcium concentration, which was shown to occur 

during replication stress in the nucleus (Li et al., 2019). Furthermore, UV irradiation can 

activate calpain (Gulati et al., 2004). Therefore, we investigate if UV activated calpain cleaves 

pol η, since pol η is the main translesion polymerase replicating across UV-induced lesions. 

For this, we analyzed the cleavage of pol η in calpastatin depleted cells, irradiated with 

15 J/m2 at 254 nm. The results (Figure 29) show that, eYFP-pol η is cleaved at the 1 h time 

point after irradiation while at 9 h the cleaved pol η product disappears, suggesting that pol η 

cleavage occurs early after UV irradiation. The cleaved eYFP-pol η migrates similar as the 

engineered eYFP-pol η 465 control. Interestingly, POLD1 cleavage could not be detected, 

indicating that it may not be triggered by UV irradiation. The cleaved pol η is mainly present 

in the soluble fraction, suggesting that it is either cleaved directly in this fraction or pol η 

detaches from the chromatin after cleavage. This detachment might appear because the 

interacting regions are separated from the catalytic domain (connected with eYFP). However, 

the cleavage of pol η occurred only in a small proportion of the protein after UV irradiation 

since the band appearing after the cleavage is close to the detection limit. Therefore, other 

cell lines can be used like XP30RO eGFP-pol η or U2OS as the activation with Ionophore was 

stronger in these cell lines, this might also be the case for UV activation. 
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Figure 29: Cleavage of pol η by calpain after UV irradiation. MRC5 expressing eYFP-pol η were treated with siRNA 

against calpastatin or with non-targeting siRNA for 72 h. The cell cycle was synchronized with 2 mM thymidine 

and cells were UV irradiated 2 h after release with 15 J/m2 (254 nm). Cell extracts were assessed for eYFP-pol η 

cleavage by immunoblotting with an anti-GFP antibody. Cleavage products are indicated with an asterisk *. 

Whole cell extract (W) was obtained as described in the paper. For cell fractionation, the second half of the 

collected cells were used. The cell pellet was resuspended in one volume of CytoSKeleton (CSK) 100 buffer 

(100 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES pH 6.8, 1 mM Ethyleneglycol -tetraacetic Acid 

(EGTA), 0.2% Triton ×100, anti-proteases) and incubated 15 min on ice. Sample was centrifuged at 4500 g for 

5 min at 4°C. Supernatant was kept as soluble protein fraction (SF). The pellet was resuspended in one volume 

of CSK 50 (50 mM NaCl, 300 mM sucrose, 3 mM MgCl2, 10 mM PIPES pH 6.8, 1 mM Ethyleneglycol -tetraacetic 

Acid (EGTA), 0.2% Triton ×100, anti-proteases) containing 250 units/ml Benzonase (Merck Millipore) and was 

incubated for 15 min on a wheel at room temperature to give the chromatin fraction (CH). The pellet was 

resuspended in one volume of lysis buffer (50 mM Tris pH 7.5, 20 mM NaCl, 10 mM MgCl2, 0.1% SDS, anti-

proteases) and was lysed for 10 min on a wheel at room temperature to give the insoluble protein fraction. 
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Discussion  
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Discussion 

In this thesis we discovered an interaction between the C-ter of pol η and CAPNS1, the small 

subunit of calpain 1 and 2. Interestingly, Y2H experiments revealed that CAPNS1 does not 

interact with pol κ and ι (data not shown), demonstrating the selectivity of its substrates. 

Within cells, CAPNS1 colocalizes with pol η in the nucleus and forms foci after UV irradiation. 

Thus, we investigated if calpain can cleave pol η. Our result show that pol η is cleaved in vitro 

in a time and concentration-dependent manner, as well as in cells by ionophore activated 

calpain. Furthermore, we showed that calpain activity is needed to form pol η foci after UV 

irradiation and the downregulation of the inhibitor calpastatin leads to more foci formation. 

As discussed in the paper this could be explained by several hypothesis.  

Cataldo et al. described that USP1 is stabilized through cleavage by calpain and CAPNS1 

depleted cells show an increase of pol η foci formation in unstressed cells. Surprisingly, 

CAPNS1 depletion has no impact in UV irradiated cells. However, the depletion shown for 

CAPNS1 is not complete and leaves a noteworthy amount of CAPNS1 within the cells. The 

remaining CAPNS1 could still interact with calpain and induce its interaction. This could 

explain why Cataldo et. al. did not find a difference in UV irradiated cells, whereas we found 

that calpain inactivity reduces the pol η foci formation after UV irradiation. 

Alternative to the UV damage related activity of the pol η/calpain interaction, we theorize 

that pol η could be cleaved by calpain during its function in somatic hypermutation in B-cells. 

Calcium signaling is a common regulation in B-cells (Scharenberg et al., 2007), which could 

activate calpain. The truncated pol η containing the catalytic domain with the alternative PIP 

domain could increase its mutagenicity by omitting regulations of pol η through the C-

terminus and thereby its retention time. This could promote antibody diversity, which would 

be interesting to investigate. 

Perspectives 

To fully understand the function of calpain during pol η recruitment and completion of TLS, 

the different hypothesis discussed above need to be investigated. To identify which proteins 

could be targeted by calpain during the UV response in an unbiased approach, we suggest to 

analyze protein changes by 2D gel analysis. For this, cells need to be irradiated with 

15 J/m2 UV (254 nm) in the presence or absence of calpeptin in a time course experiment. 
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Extracted proteins are analyzed by 2D-DIGE (Differential In Gel Electrophoresis) to identify 

differential protein spots by mass spectrometry. Direct analysis by mass spectrometry to 

identify calpain targets during the UV damage response is not suited, because we expect 

several proteins to be cleaved, whereas a cleavage of a protein would not be detectable by 

mass spectrometry due to the unchanged spectral counts (assuming truncated proteins are 

not degraded). This analysis can also be used to analyze post translational modifications 

which potentially could hinder or enable calpain activity. 

The pol η/CAPNS1 interaction could also play a role during somatic hypermutations in B-cell. 

Pol η is needed to induce A/T mutations in immunoglobulin genes during B-cell maturation. 

Firstly, the cleavage of pol η should be analyzed in B-cells. Secondly, it would be interesting 

to study if the truncated pol η 1-465 is more mutagenic than the full-length pol η, which 

would be preferential during somatic hypermutation. Therefore, mutation frequency would 

be assessed in XP30RO cells stably expressing either pol η full-length or pol η 1-465 using the 

supF shuttle vector system (Parris and Seidman, 1992). Increased pol η activity can be 

achieved with UV irradiation. 

Lastly, the mutation patterns in B-cell immunoglobulin genes can be analyzed in mice treated 

with calpeptin. Immunization and analysis of immunoglobulin genes by sequencing could be 

performed as described in Cui et al., 2016. Calpeptin treatments of mice have been described 

in investigation of calpeptin as therapy against several diseases and could be adapted from 

these protocols e.g. Mani et al., 2009; Tabata et al., 2010 and Zhou and Cai, 2019. Assuming 

that pol η function is reduced or even inhibited when mice are treated with calpeptin, we 

expect less A/T mutations to occur and more G/C mutations.  

Conclusion 

Taken together, pol η interacts with CAPNS1 and is colocalized in the nucleus. Pol η is cleaved 

by calpain after the amino acid 465 in vitro and in vivo. Interestingly, UV-induced foci 

formation of pol η and the UV cell survival are reduced in calpain inhibited cells. These results, 

indicating a novel role of calpain in the UV-induced response, encourage further studies 

aimed at deciphering the exact mechanism calpain has during TLS by pol η. 
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Image analysis of foci formation script 

 
pathFichier = "/Users/jo-ann/Desktop/FociLiffstack/"; 
listeFichierInDir = getFileList(pathFichier);//crée un Array contenant 
les noms des fichiers 
 
//***********************************Setup for Chanels 
marquageDapi = 1; 
marquageFitc = 1; 
marquageRhod = 1; 
 
marquage1 = "dapi"; 
marquage2 = "fitc"; 
marquage3 = "rhod"; 
nbMarquage = marquageDapi + marquageFitc + marquageRhod + marquageIR; 
 
//********* Order of chanels ************************  
dapiZ = 2; 
IRZ = 0; 
RhoDZ = 1; 
fitcZ = 3; 
 
//********* Counting ************************************** 
fociRhod = 1;//Mettre 1 pour compter les foci 
fociFitc = 1;//Mettre 1 pour compter les foci 
colocalisation = 1; //Mettre 1 pour colocalisation des foci 
limitMaximaRhod = 80; 
limitMaximaFitc = 100; 
limitMaximaColoc = 150000; 
 
if (nbMarquage == 0){ 
    exit("Terminé"); 
} 
 
//setBatchMode(true); 
 
for (ii = 0; ii< listeFichierInDir.length; ii++){//Boucle sur tous les 
fichiers images du dossier précisé .liff 
    if (endsWith(listeFichierInDir[ii],".liff")){//test la présence de 
fichier .liff 
        fichier = substring(listeFichierInDir[ii], 0 
,lengthOf(listeFichierInDir[ii])-5);//crée le nom de fichier en 
enlevant l extension 
        cheminFichier = pathFichier + fichier + ".liff"; 
  if (marquageDapi == 0){ 
   exit("Terminé"); 
  }else{ 
  //************************************Analyse des ROI et 
sauve le fichier contenant les ROI 
  run("Bio-Formats Importer", "open=" + cheminFichier + " 
color_mode=Default rois_import=[ROI manager] specify_range 
view=[Standard ImageJ] stack_order=Default z_begin=dapiZ 
z_step=nbMarquage"); 
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  run("Set Measurements...", "area mean standard modal min 
centroid center perimeter bounding fit shape feret's integrated median 
skewness kurtosis redirect=None decimal=3"); 
  run("Smooth", "stack"); 
  run("Smooth", "stack"); 
  run("Enhance Contrast...", "saturated=0.1 normalize 
process_all"); 
  run("Unsharp Mask...", "radius=10 mask=0.80 stack"); 
  setOption("BlackBackground", true); 
  run("Convert to Mask", "method=Triangle background=Dark 
calculate black"); 
  run("Fill Holes", "stack"); 
   run("Erode", "stack"); 
   //run("Erode", "stack"); 
   //run("Erode", "stack"); 
  run("Set Scale...", "distance=0 global"); 
  run("Analyze Particles...", "size=3000-Infinity 
circularity=0.50-1.00 show=Outlines display clear summarize add in_situ 
stack"); 
  roiManager("Show All without labels"); 
  //nROIs = roiManager("count"); 
  fichierROI = pathFichier + "ROI_" + fichier + ".zip"; 
  roiManager("Save", fichierROI); 
 
  close(); 
  selectWindow("Results");  
  run("Close"); 
 
  //*****************************************Analyse Dapi - 
Couleur 1 ********************************************** 
  run("Bio-Formats Importer", "open=" + cheminFichier + " 
color_mode=Default rois_import=[ROI manager] specify_range 
view=[Standard ImageJ] stack_order=Default z_begin=dapiZ 
z_step=nbMarquage"); 
 
  selectWindow(fichier + ".liff"); 
  run("Enhance Contrast", "saturated=0.35"); 
  //run("Set Measurements...", "area mean standard modal min 
centroid center perimeter bounding fit shape feret's integrated median 
skewness kurtosis redirect=None decimal=3"); 
  run("Set Measurements...", "area mean standard min 
integrated median redirect=None decimal=3"); 
  roiManager("Show All without labels"); 
  roiManager("Measure"); 
 
  //**************rajoute les colonnes Label contenant fichier 
et Couleur contenant couleur1 
  if (nResults != 0){  
          for (i=0; i < nResults; i++){                           
                          setResult("Label", i, fichier); // 
set the text string for new label  
                          setResult("Marquage", i, marquage1); 
// set the text string for Couleur            
  }  
  } else {  
          showMessage("No Result found in result table"); 
   exit("Terminé"); 
  }  
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  updateResults(); 
 
  selectWindow(fichier + ".liff"); 
  run("Close"); 
  }//fin test DAPI = oui *********************** 
  //*************************************** Fin Dapi: Analyse 
Roi et comptage Dapi ********************************** 
 
  if (marquageFitc == 1){ 
 
 //******************************************************Analyse 
Fitc *************************************** 
  run("Bio-Formats Importer", "open=" + cheminFichier + " 
color_mode=Default rois_import=[ROI manager] specify_range 
view=[Standard ImageJ] stack_order=Default z_begin=fitcZ 
z_step=nbMarquage"); 
 
  selectWindow(fichier + ".liff"); 
  run("Enhance Contrast", "saturated=0.35"); 
  run("Unsharp Mask...", "radius=1 mask=0.50 stack"); 
  run("Set Measurements...", "area mean standard min 
integrated median redirect=None decimal=3"); 
  roiManager("Show All without labels"); 
  roiManager("Measure"); 
 
  //**********************************Partie 2 : ajoute 
Couleur pour le deuxième marquage 
  if (nResults != 0){ 
  for (i=0; i < nResults; i++){ 
   labeli = getResult("Label", i); 
   couleuri = getResult("Marquage", i); 
   if (couleuri == 0){ 
    setResult("Marquage", i, marquage2); 
   }  
   setResult("Label", i, fichier); 
  } 
  } else {  
          showMessage("No Result found in result table"); 
   exit("Terminé");  
  }  
 
  updateResults(); 
 
  selectWindow(fichier + ".liff"); 
  run("Close"); 
 
  }//Fin Analyse marquage 
fitc*******************************************************************
*************** 
  
  if (marquageRhod == 1){ 
 
 //************************************************************* 
Rhod ***************************************** 
  run("Bio-Formats Importer", "open=" + cheminFichier + " 
color_mode=Default rois_import=[ROI manager] specify_range 
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view=[Standard ImageJ] stack_order=Default z_begin=RhoDZ 
z_step=nbMarquage"); 
 
  selectWindow(fichier + ".liff"); 
  run("Enhance Contrast", "saturated=0.35"); 
  run("Unsharp Mask...", "radius=1 mask=0.50 stack"); 
  run("Set Measurements...", "area mean standard min 
integrated median redirect=None decimal=3"); 
  roiManager("Show All without labels"); 
  roiManager("Measure"); 
 
  updateResults(); 
  //*************************************************** 
  if (nResults != 0){ 
  for (i=0; i < nResults; i++){ 
   labeli = getResult("Label", i); 
   couleuri = getResult("Marquage", i); 
   if (couleuri == 0){ 
    setResult("Marquage", i, marquage3); 
    //setResult("Label", i, fichier); 
   }  
   setResult("Label", i, fichier); 
  } 
  } else {  
          showMessage("No Result found in result table"); 
   exit("Terminé");  
  } 
 
  updateResults(); 
 
  selectWindow(fichier + ".liff"); 
  run("Close"); 
  }//Fin Analyse marquage Rhod 
 
 
  //********************** Rhod 
******************************** 
   j = 0; 
  // couleuri = ""; 
 
  for (i=0; i < nResults; i++){ 
  couleuri = getResultString("Marquage", i); 
   if (couleuri == "rhod"){ 
    roiManager("Select", j); //  
    run("Find Maxima...", "noise=limitMaximaRhod 
output=[Point Selection]"); 
                  getSelectionCoordinates(x,y); 
    if (selectionType==10){ 
     nn = x.length; 
     setResult("Comptage", i, nn); 
    } 
    j++; 
   }  
    } 

updateResults(); 
  selectWindow(fichier + ".liff"); 
  run("Close"); 
  }//fin test si comptage de fociRhod 
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  if (fociFitc == 1){ 
  run("Bio-Formats Importer", "open=" + cheminFichier + " 
color_mode=Default rois_import=[ROI manager] specify_range 
view=[Standard ImageJ] stack_order=Default z_begin=fitcZ 
z_step=nbMarquage"); 
 
  selectWindow(fichier + ".liff"); 
  run("Enhance Contrast", "saturated=0.1"); 
  run("Unsharp Mask...", "radius=1 mask=0.50 stack"); 
  roiManager("Show All without labels"); 
   
  //********************** Fitc 
******************************** 
  j = 0; 
  // couleuri = ""; 
 
  for (i=0; i < nResults; i++){ 
  couleuri = getResultString("Marquage", i); 
   if (couleuri == "fitc"){ 
    roiManager("Select", j); //  
    run("Find Maxima...", "noise=limitMaximaFitc 
output=[Point Selection]"); 
                  getSelectionCoordinates(x,y); 
    if (selectionType==10){ 
     nn = x.length; 
     setResult("Comptage", i, nn); 
    } 
    j++; 
   }  
  } 
 
  updateResults(); 
  selectWindow(fichier + ".liff"); 
  run("Close"); 
  }//fin test si comptage de fociFitc 
 
 
  //*********************************Colocalisation foci Fitc 
* Rhod 
  if (colocalisation == 1){ 
        run("Bio-Formats Importer", "open=" + 
cheminFichier + " color_mode=Default rois_import=[ROI manager] 
specify_range view=[Standard ImageJ] stack_order=Default z_begin=fitcZ 
z_step=nbMarquage"); 
                      selectWindow(fichier + ".liff"); 
        rename(fichier + "(Rhod)" + ".liff"); 
        run("Smooth", "stack"); 
                      run("Smooth", "stack"); 
        run("Unsharp Mask...", "radius=2 mask=0.50 
stack"); 
        run("Bio-Formats Importer", "open=" + 
cheminFichier + " color_mode=Default rois_import=[ROI manager] 
specify_range view=[Standard ImageJ] stack_order=Default z_begin=RhoDZ 
z_step=nbMarquage"); 
                      selectWindow(fichier + ".liff"); 
        rename(fichier + "(Fitc)" + ".liff"); 
        run("Smooth", "stack"); 
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                      run("Smooth", "stack"); 
        run("Unsharp Mask...", "radius=2 mask=0.50 
stack"); 
        imageCalculator("Multiply create 32-bit 
stack", fichier + "(Fitc)" + ".liff", fichier + "(Rhod)" + ".liff"); 
        selectWindow(fichier + "(Fitc)" + ".liff"); 
        run("Close"); 
        selectWindow(fichier + "(Rhod)" + ".liff"); 
        run("Close"); 
 
        selectWindow("Result of " + fichier + 
"(Fitc)" + ".liff"); 
 
                          //**********************Compte les 
foci de colocalisation ******************************** 
                          j = 0; 
                          // couleuri = ""; 
                         
                          for (i=0; i < nResults; i++){ 
                              couleuri = 
getResultString("Marquage", i); 
                              if (couleuri == "fitc"){ 
                                  roiManager("Select", j); //  
                                  run("Find Maxima...", 
"noise=limitMaximaColoc output=[Point Selection]"); 
                                  
getSelectionCoordinates(x,y); 
       if (selectionType==10){ 
       nn = x.length; 
       setResult("Colocalisation", i, 
nn); 
      } 
                                  j++; 
                              }  
                          } 
                         
                          updateResults(); 
     selectWindow("Result of " + fichier + 
"(Fitc)" + ".liff"); 
                       run("Close"); 
  }//fin test si comptage de Colocalisation 
 
  cheminFichierExcel = pathFichier + fichier + ".csv"; 
  selectWindow("Results"); 
  saveAs("Results", cheminFichierExcel); //sauve les résultats 
en .csv avec des virgules comme séparateurs 
 
  roiManager("reset") 
  selectWindow("Results"); 
  run("Close"); 
         
    }//du test de fichier .liff 
}// fin de la boucle sur les fichiers 
 
//selectWindow(fichier + ".liff"); 
//run("Close"); 
exit("Terminé"); 
setBatchMode(false); 
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Interplay between the translesion DNA polymerase η and the 
calpain system 

 

Abstract 
Cells are constantly exposed to DNA damaging agents causing lesions, which are repaired by 
a range of DNA repair pathways. If DNA damages prevail during replication, they can cause 
replication fork breakdowns and mutations. One mechanism to prevent this is the translesion 
synthesis. Pol η is a translesion DNA polymerase which is capable to circumvent UV-induced 
lesions, to be repaired at a later time. However, pol η is error prone on non-damaged DNA 
and, therefore, needs to be tightly regulated. In this thesis I present an interaction between 
pol η and CAPNS1 we have found in our laboratory and our investigation of its role in 
regulating pol η. CAPNS1 is the small subunit of the calcium dependent calpain 1 and 2. We 
demonstrate that CAPNS1 is colocalized with pol η in the nucleus and calpain 1/2 can cleave 

pol η in vitro and in vivo. The proteolysis of pol η is found to occur at position 465 leading to 
a truncated protein encompassing the catalytic domain and the PIP1 motif. Interestingly, 
inhibition of calpain leads to a perturbed pol η foci formation and decreased cell survival. 

Taken together, these results suggest an important positive role for calpain in pol η 

dependent TLS. 
 

Résumé 
L’ADN est constamment altéré du fait du métabolisme oxydatif de la cellule ou de l’exposition 

à des agents génotoxiques environnementaux. Malgré l’existence de systèmes de réparation 
de l’ADN efficaces, certaines lésions sont encore présentes lors de la phase S du cycle 

cellulaire et bloquent la progression des fourches de réplication. La synthèse translésionnelle 
permet la reprise de la réplication. Pol η est une ADN polymérase translésionnelles capable 
de franchir très efficacement et sans erreur les lésions induites par les UV, qui sont réparées 
ultérieurement. Cependant, pol η est mutagène lorsqu’elle réplique l'ADN non endommagé 
et, par conséquent, son activité doit être strictement régulée. Dans cette thèse, je présente 
l’étude de l’interaction entre pol η et CAPNS1mis en évidence dans notre laboratoire. CAPNS1 
est la sous-unité régulatrice des calpaïnes 1 et 2, des protéases ubiquitaires dépendantes du 
calcium qui régulent de nombreux processus cellulaires fondamentaux en effectuant une 
digestion contrôlée de leurs protéines cibles. Nous démontrons que CAPNS1 est colocalisée 
avec pol η dans le noyau et que la calpaïne peut cliver pol η in vitro et in vivo. La protéolyse 
de pol η s’effectue après l’acide aminé 465, laissant le domaine catalytique intact avec un 
motif PIP1 alternatif. De manière surprenante, l'inhibition de la calpaïne entraîne une 
diminution de la formation de foyers pol η et de la survie cellulaire. Notre étude permet de 
dévoiler l’implication de la calpaïne dans la TLS dépendante de pol η. 


