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INTRODUCTION 

HEMATOPOIESIS 

         Many different cell types with unique properties and functions, such as 

lymphocytes and myelocytes, circulate into the bloodstream. These cells have a 

limited lifespan and need to be replaced continuously throughout life. The 

developmental process that brings immature stem cells and progenitors to 

differentiate into more mature and specialized blood cells is called hematopoiesis. In 

humans and mice, adult hematopoietic stem and progenitor cells (HSPC) reside into 

the bone marrow (BM), where they can differentiate into mature cells that will either 

enter the bloodstream to accomplish their function or reach a secondary location to 

complete their differentiation (Zhang et al., 2018). 

 

Hematopoiesis during ontogenesis 

         During ontogenesis, hematopoiesis takes place in different locations. In mouse, 

the first hematopoietic wave occurs in the yolk sack at embryonic (E) day 7.5, with 

the emergence of the first primitive erythrocytes. Later on, at E10.5, a second 

hematopoietic wave arises from the hemogenic endothelium (HE) of the aorta-gonad-

mesonephros region (AGM), along with the emergence of the first pre-hematopoietic 

stem cell (HSC). Afterwards, pre-HSC matures into a definitive HSC and, around 

E12.5, migrates into fetal liver, where hematopoiesis takes place until birth (Ghosn et 

al., 2019; Kobayashi et al., 2019). After birth, hematopoiesis relocates into the BM 

where blood cells are produced for the entire life. During adulthood, proliferation and 

differentiation of BM HSPC are finely regulated, as they have to promote turnover of 

mature cells. Underlying this process, crucial roles are played by both hematopoietic 

and non-hematopoietic cells that regulate hematopoiesis by producing different 

regulatory molecules (Pinho and Frenette, 2019). 

 

Hematopoiesis in the bone marrow  

         BM is a complex organ located in the cavity of long and axial bones. Two big 

categories of cells are found within the BM microenvironment: cells of hematopoietic 

origin and non-hematopoietic cells, such as stroma cells, endothelial cells, pericytes 
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and adipocytes (Ambrosi et al., 2017; Pinho and Frenette, 2019). The inner tissue 

around the bone marrow cavity is called endosteum and it is mainly composed by 

vasculature, osteoblasts and osteoclasts. Vasculature is highly dense all around the 

marrow with large arteries and veins mainly found in the central part of the marrow, 

branching to the peripheral endosteum into smaller arterioles and sinusoids. 

Wrapped around vascular cells there are pericytes and mesenchymal stem cells 

(MSC) able to differentiate into adipocytes, chondrocytes and osteoblasts. Moreover, 

within the marrow, are also found sympathetic noradrenergic fibers that can regulate 

hematopoietic cells in a circadian manner (Fig. A) (Pinho and Frenette, 2019; Zhao 

and Li, 2016).     

 

 

 
 
Figure A | The bone marrow cavity. 
A representative tibia section is shown. Within the inner bone part, it is possible to recognize the 
endosteoum, the marrow, the central blood vessels and the sympathetic nerve (Pinho and 
Frenette, 2019).    
 

Hematopoietic cell hierarchy  

         Hematopoiesis is often represented with the help of an inverted tree-like 

diagram: the apex contains the multi-potent hematopoietic stem and progenitor cells 

(HSPC), they can self-renew and give rise to committed progenitors. In a second 
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layer, we find the committed progenitors that can be broadly divided into three sub-

categories: i) the megakaryocyte and erythrocyte progenitors, originating red blood 

cells and platelets; ii) the myeloid progenitors that give rise to granulocyte, monocyte 

and also to dendritic cells and iii) the lymphoid progenitors generating B, T and also 

some dendritic cells (Fig. B).   

 

 

HSPC 

Erythrocytes 

Platelets Granulocytes 
Monocytes 

Dendritic 
cells B cells 
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Figure B | Hierarchical hematopoietic structure. 
Representation of the hematopoietic hierarchy. Starting from the top, HSPC give rise to the 
committed progenitors: megakaryocyte-erythrocyte (Meg-Ery), myeloid and lymphoid progenitors, 
which further differentiate in mature blood cells. 
  

 

HOW TO STUDY HEMATOPOIESIS  

Flow cytometry analysis  

         Flow cytometry is a routinely used technique to detect, quantify and classify 

cells based on their composition in either surface or intracellular markers.  In 

particular, using a specific combination of fluorophore-conjugated antibodies directed 
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against “identifier” antigens, it is possible to recognize and therefore divide a 

heterogeneous BM population into phenotypically and functionally defined sub-

populations. The flow cytometer scans high amounts of single cells in a relatively 

short time interval (~20.000 cells per second), allowing analyses even of small rare 

populations. Moreover, a relative high number of fluorophores, almost 15 in a single 

staining, can be used for a rapid and wide investigation of several populations (Adan 

et al., 2017; Cossarizza et al., 2017). 

         This technique has been extensively used in the past (and is still broadly 

employed), with the precise aim of discovering the antigen “combinations” necessary 

to divide total BM cells into distinct separate cell populations (Akashi et al., 2000; 

Kondo et al., 1997). In addition, the tool is particularly powerful when a researcher 

intends to study and quantify the effect of a specific genetic mutation (or 

intervention), as flow cytometry analysis allows for a fast and wide investigation. As 

mentioned before, it is also possible to stain cells for their intracellular content in DNA 

(cell cycle analyses), RNA, Ca2+, Reactive Oxygen Species (ROS) and proteins 

(Darzynkiewicz et al., 2010; Hyman and Franz, 2012; Lovelace and Maecker, 2011; 

Soh and Wallace, 2018). Importantly, the staining of intracellular proteins, such as 

Transcription Factors (TFs), cytokines and cell cycle regulators, allows for their 

quantification at the single cell level, therefore permitting protein quantification also in 

small cell populations, otherwise inaccessible with other techniques that require 

higher amounts of cells (“high input techniques”). 

         Despite the great utility of this technology, some concerns need to be kept in 

mind to avoid result misinterpretation. It may happen that a given treatment or 

genetic mutation affects the expression of an identifier antigen used to mark a given 

cell population. In such case, the investigated population will appear reduced but only 

because cells lost expression of the representative antigen. This deceptive 

phenotype can finally lead to erroneous interpretation. To avoid such issue, it may be 

useful to analyze the same population looking at different identifiers whenever 

possible or, alternatively, to use another method of analysis. 

 

Fluorescence Activated Cell Sorting (FACS) of a target population 

         Cells labeled either by fluorophore-conjugated antibody (directed to known 

surface antigens) or transgenic expression of a specific fluorescent protein can be 
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FACS purified and used for subsequent analyses (e.g. RNA-seq, ChIP-seq, cultures, 

etc.) (Cossarizza et al., 2017; Purton and Scadden, 2007). This tool is particularly 

useful when the cell population of interest is technically inaccessible because 

surrounded by other more abundant populations, as it is the case for HSC or 

progenitors (Frascoli et al., 2012; Oguro et al., 2013; Will and Steidl, 2010). An 

important issue to consider when sorting is cellular “contamination”, which may arise 

when cell populations possess a similar pattern of antigen expression that prevents 

an efficient separation. In particular, experiments like mRNA-sequencing or CFU 

assays might typically suffer from such issue, as a contaminated pool of cells could 

bias the experimental outcome. 

 

BM reconstitution assay 

         BM reconstitution assay represents a useful technique suitable to study HSC 

and progenitor (HSPC) functionality, reconstitution ability and differentiation potential. 

As only these cells engraft and reconstitute a hematopoietic depleted host system, 

these are the only cells appropriate for this assay. Based on reconstitution potential, 

HSPC can be divided into three groups: (i) Long Term reconstituting HSC (LT-HSC) 

that sustain hematopoiesis in a host environment for the whole life, (ii) Short-Term 

reconstituting HSC (ST-HSC) able to sustain hematopoiesis only for a few months 

and (iii) Multi-Potent Progenitors (MPP) capable to contribute to hematopoiesis in a 

host environment only for a few weeks (Grover et al., 2016; Kiel et al., 2005; Purton 

and Scadden, 2007). 

         Technically, HSPC donor cells, either FACS sorted or directly derived from total 

BM, can be injected into recipient host mice previously depleted of their endogenous 

hematopoietic system. If necessary, donor cells are typically injected along with 

helper BM cells, in order to sustain (during the first weeks) BM recovery and mouse 

survival. Donor HSPC and progeny are usually marked by the expression of an 

identifier surface antigen (e.g. CD45.2) that enables their distinction with respect to 

host cells (and helper cells), indeed marked by a different identifier (e.g. CD45.1 or 

both CD45.1 and CD45.2). This assay is particularly advantageous because it allows 

to study the HSC and progenitor function in an in vivo environment similar to the 

physiological one (Purton and Scadden, 2007).  
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         In particular, this tool becomes powerful to uncover whether a given germ-line 

genetic mutation affects hematopoiesis intrinsically, as mutant hematopoietic cells 

can be transplanted into a WT environment. Furthermore, BM reconstitution assay 

can be performed in a competitive manner. For instance, WT and “mutant” BM cells 

can be co-injected into the same host recipient in order to directly compare their BM 

reconstitution ability in the same environment (Kwarteng and Heinonen, 2016). In a 

similar way, a defined number of control and “mutant” HSC can be purified and 

separately injected into different recipient mice, allowing in this case comparative 

analyses between the same amount of HSC (Beerman et al., 2014; Rossi et al., 

2005). Lastly, BM reconstitution assay can be even performed with single injected 

LT-HSC, assessing in this way lineage potential at the single cell resolution (Carrelha 

et al., 2018). 

         Despite the idea that the host BM environment may represent the perfect 

“location” for studying HSPC behavior (because it is apparently identical to the 

physiological one), some concerns have to be considered. To make space into the 

BM and allow donor cell engraftment, the host hematopoietic system needs to be 

depleted, and this operation is often achieved through an invasive total body 

irradiation treatment. This process is known to be not specific and harmful for 

multiple non-hematopoietic tissues (like the BM microenvironment). When damaged, 

even only partially, those tissues may not be completely comparable to the initial 

healthy physiological state. Moreover, in contrast to the endogenous counterpart, 

transplanted HSPC need to extensively proliferate and differentiate in order to 

regenerate the depleted system, assuming a behavior which is different from, and not 

comparable to, the steady state one (Busch et al., 2015). Some new techniques have 

been recently developed in order to mitigate the aforementioned issue. Selective host 

HSPC depletion, achieved by using a specific antibody able to deliver toxic drugs to 

targeted cells, has been shown to be a good and mild strategy. Toxic targeted drug 

delivery allows elimination, through apoptosis, of endogenous HSPC (but in general 

of any cell type), thus creating an empty new space that allows the engraftment of 

donor injected HSPC (Czechowicz et al., 2019). 
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Colony forming unit (CFU) assay  

         When seeded into semisolid media containing appropriate cytokines, colony 

forming unit (CFU) cells, like HSC and progenitors, are able to proliferate and 

generate distinct separated colonies of mature hematopoietic cells. Each colony 

derives from a unique CFU cell and, as such, the final number of colonies will reflect 

the number of seeded progenitors (Purton and Scadden, 2007).  

         Several cytokine cocktails have been developed in order to stimulate the in vitro 

growth of progenitors or HSC. The general cocktail used to promote progenitor 

differentiation comprises SCF and IL3, which can be supplemented with more 

“lineage specific cytokines”. IL-6 and GM-CSF stimulate myeloid progenitor 

differentiation, while EPO is required for CFU-erythroid (erythroid progenitor) 

development; TPO stimulates CFU-megakaryocyte (megakaryocyte progenitor) 

differentiation, whereas IL7 promotes pro-B cell expansion but only in the absence of 

IL-3 and the other mentioned lineage specific cytokines (Akashi et al., 2000; 

Kobayashi et al., 2019; Rieger et al., 2009; Young et al., 2016). Interestingly, HSC 

differentiation has slightly different requirements, as both SCF and TPO are 

necessary and colonies of all myeloid kinds can be obtained with the addition of 

either myeloid or erythroid specific cytokines (Akashi et al., 2000; Drissen et al., 

2016; Grover et al., 2014; Mohrin et al., 2010). One of the greatest limitations of this 

assay is the impossibility to assess the myeloid and lymphoid HSC potential in the 

same medium, as lymphoid development requires unique and different culture 

conditions not compatible with the myeloid ones (Vieira and Cumano, 2004). 

         CFU assays can be performed by plating total BM cells; in this case, the assay 

is used to quantify the amount of specific CFU cells present in the BM. This approach 

represents an alternative quantification method with respect to flow cytometry 

analysis, as it allows progenitor quantification in a surface antigen independent 

manner. Alternatively, the assay can be applied to sorted HSC or progenitors in order 

to test their functionality. For example, by comparing sorted WT versus “mutant” 

HSC, it is possible to address whether an investigated mutation is able to affect the 

differentiation potential of such cells. Despite the fact that this assay provides a very 

advantageous tool of investigation, it is done in a synthetic ex vivo environment, 

which differs from the in vivo one; thus, the artificial condition could promote cellular 

behaviors that do not usually occur in vivo. In such respect, an externally provided 

cytokine cocktail may favor some paths instead of others, masking or biasing the real 
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potential of a given progenitor. Moreover, “ectopic” cytokine concentration could even 

force progenitors to accomplish certain differentiation pathways, which are not 

normally achieved in vivo, thus producing artificial outcomes.  

 

Cell expansion in liquid culture 

         A common drawback when working with rare and sorted populations is the 

limited amount of material, which precludes the use of high input techniques. To 

overcome this problem, sorted cells can be seeded and expanded in an appropriate 

liquid culture medium. However, not all cell types can be easily grown: HSC, for 

instance, easily undergo differentiation (Wilkinson et al., 2019). In such cases, the 

researcher might want to genetically modify primary cells in order to obtain, whether 

possible, a homogeneous immortalized cell line. Specifically, HSPC cell line can be 

generated by transduction with genes able to increase their self-renewal ability (e.g. 

HoxB4 or Lhx2) (Antonchuk et al., 2002; Pinto do et al., 2001). Once transduced, the 

derived HSPC cell line can be extensively expanded within the appropriate medium 

condition. Interestingly, Wilkinson and colleagues recently described a new protocol 

for massive LT-HSC expansion, allowing for the use of primary cells instead of HSC 

derived cell lines. They expanded LT-HSC over the period of 1 month increasing the 

starting numbers by 800x. However, they also expanded a considerable high amount 

of progenitor cells (more than 95% of the cells are indeed progenitors), thus 

generating a heterogeneous cell population that need to be subsequently FACS 

purified (Wilkinson et al., 2019).  

         In conclusion, despite the fact that in vitro cellular expansion may represent a 

necessary tool, the method possesses some limitations and caution must be taken 

when such cellular models are used in replacement of endogenous primary cells. 

First, the in vitro condition may not fully reflect the in vivo context and lead to cellular 

epigenetic and functional changes.  Second, genetic modification obtained for 

example by transgene insertion may drive dramatic cellular changes that render the 

in vitro cell system too different from the original one.  
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Cell tracking 

         Reporter genes encoding for fluorescent proteins (such as GFP, YFP and Td-

Tomato) have been extensively used in hematopoietic research to study protein 

expression, localization and, in some cases, to track specific cell types otherwise 

inaccessible by surface antigen staining. For Treg identification, for instance, reporter 

genes under the control of the specific FoxP3 Regulatory Elements (REs) are 

extensively used (Li and Zheng, 2015).  

         Alternatively, constitutive expression of a reporter gene can be induced in a 

cell-type specific manner and used to track the derived progeny. For example, HSC 

specific REs can be used to drive expression of Cre recombinase fused to the 

Estrogen Receptor (Cre-ER transgene); upon tamoxifen injection, the Cre-ER protein 

can excide a lox-stop-lox cassette used to prevent constitutive expression of a given 

reporter gene of interest. Several REs have been chosen in order to trigger 

constitutive reporter expression in HSC and progeny, with the specific aim of 

uncovering their contribution to steady state hematopoiesis (Busch et al., 2015; 

Sawai et al., 2016). Despite being useful, one important limitation of this technique 

concerns the choice of the RE used to drive Cre-ER expression, since not always the 

chosen RE homogeneously drives Cre-ER expression in the population of interest. 

For example, Tie2 RE used to induce YFP expression in LT-HSC is active only in a 

little subset of LT-HSC (~1% of total LT-HSC) (Busch et al., 2015). On the contrary, 

other LT-HSC specific REs, like Pdzk1ip1 RE, induce Td-Tomato expression 

abundantly in LT-HSC, but they also “leak” into the more differentiated ST-HSC and 

MPP (Sawai et al., 2016). 

         Another strategy that allows the study of the progeny derived from a given cell 

is based on a more recent cellular barcoding technology (Pei et al., 2017; Rodriguez-

Fraticelli et al., 2018). The generation of unique and permanent DNA barcodes, 

obtained for example by random transposition of a given DNA cassette or random 

recombination of a transgenic locus, allows the univocal reconstruction of the cellular 

hierarchy after barcode sequencing. With this method, HSC cells and the relative 

progeny will be identified because both share the same barcode sequence. The 

advantage of this technique, with respect to the gene reporter tool, is that each single 

cell is individually marked and, as such, single cell hierarchy can be estimated. Cell 

barcoding is usually achieved by using an inducible system, composed of a cell 

specific inducible protein, able to trigger random locus recombination or DNA 



 15 

cassette transposition. Importantly, as mentioned before, the REs chosen to drive the 

expression of the “barcoding activating protein” constitute the main limitation, given 

that in some cases they can be active either too “strictly” or too “generously”. To 

overcome this drawback, Camargo and colleagues developed a system to “barcode” 

all hematopoietic cells in an inducible way. Some weeks after barcode induction 

(from 1 to 4), they were able to identify barcodes both specific for, and in common 

with, sorted HSC, progenitor and mature cells (Rodriguez-Fraticelli et al., 2018). This 

second approach overcomes the main limitation of the previous one because it is 

“promoter unbiased” and, thus, all the hematopoietic trajectories can be effectively 

detected. Importantly, in order to comprehensively track the LT-HSC contribution 

without underestimating it, the entire hematopoietic system (HSC, progenitor and 

mature cells) needs to be sorted from a single mouse. 

 

High-throughput techniques 

         High-throughput technologies allow for a global assessment of molecular 

changes. RNA sequencing techniques detect transcriptional changes at the 

population level (bulk RNA-seq) or even at the single cell level (scRNA-seq). DNA 

sequencing-based techniques, such as ATAC-seq and ChIP-seq, serve to study 

nucleosome density, epigenetic modifications and TF-DNA binding (Jiang and 

Mortazavi, 2018). On the other hand, mass spectrometry represents the high 

throughput approach in the proteomic field. Interestingly, a hybrid flow cytometry – 

mass spectrometry machine, called Cy-TOF, has been recently developed and 

allows for the quantification of approximately hundred target proteins at the single cell 

resolution (Bendall et al., 2011).  

         While the value of these techniques is undisputed, some concerns need to be 

kept in mind. Chromatin immunoprecipitation, for example, possesses an intrinsic 

limitation, as it does not perform efficiently with small cell populations. Novel 

alternative low input approaches, like ChIPmentation, Cut and Run or ChIL-seq, have 

been recently developed in order to drastically reduce the amount of required input 

material (Harada et al., 2019; Schmidl et al., 2015; Skene and Henikoff, 2017). 

However, despite this great improvement, the starting material necessary for profiling 

TF binding to DNA is extremely variable and, in some cases, high amounts of cells 

are still required.  



 16 

         Single cell RNA sequencing (scRNA-seq) revolutionized the field of 

developmental biology, as the precise assessment of mRNA differences between 

single cells allows for the identification of cellular trajectories and heterogeneity with 

unprecedented high resolution. However, even scRNA-seq presents some 

limitations: high noise and “zero count”, due to partial mRNA capture, complicated 

differential gene expression analysis between small or “too similar” groups of cells, 

making bulk mRNA-seq more suitable for such aim (Hwang et al., 2018). 

 
 

THE HEMATOPOIETIC CELLS  

Mature cells 

         Mature hematopoietic cells can be broadly divided into lymphoid and myeloid 

cells. Myeloid cells, literally cells residing within the BM, are a heterogeneous group 

of mature cells. The definition of myeloid cells is vague and sometimes confusing. In 

the present thesis, the term myeloid cells will be used to indicate only granulocyte 

and monocyte cells, while the term pan-myeloid cells will be used to group 

erythrocyte, megakaryocyte, granulocyte, monocyte and dendritic cells.  

 
Megakaryocytes and platelets 

         Platelets are small, rounded and anucleated cells originating from larger 

megakaryocytes. Similar to granulocytes, platelets contain cytoplasmic granules that 

can be liberated after platelet activation, called alpha granules, delta granules and 

lysosomal granules. Platelets are mostly known for their role in blood vessel 

haemostasis, as endothelial injury promotes their accumulation aimed at damage 

repair. In particular, after endothelial damage, extracellular matrix proteins like 

collagen and Vwf are exposed and bound by circulating platelets. Once bound, 

platelets become activated and secrete bioactive molecules to promote further 

platelet recruitment and activation and, consequently, blood vessel plug formation 

and bleeding cessation (Golebiewska and Poole, 2015).  

         In addition to their well-known roles in haemostasis, platelets were more 

recently described to participate in pathogen clearance. They accumulate rapidly to 

the site of infection and promote pathogen removal by many means: directly, by 
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releasing antimicrobial peptides or indirectly, acting as docking and activation site for 

other immune cells, such as T and B lymphocytes, dendritic cells and granulocytes 

(Yeaman, 2014). Moreover, in addition to their classical platelet progenitor roles, 

megakaryocytes possess HSC regulatory functions: BM megakaryocytes localize in 

close proximity to HSC and can partially regulate their quiescence by secreting high 

amounts of TGF-β1 (Bruns et al., 2014; Zhao et al., 2014). 

    

Erythrocytes 

         Erythrocytes, also known as red blood cells (RBCs), are small, anucleated cells 

with a biconcave shape. They contain hemoglobin, a globular tetrameric protein 

composed of two α chains and two β chains. All globin chains are linked to a 

prostatic heme group containing an iron atom in the middle of the structure. The iron 

atom confers to the hemoglobin the ability to bind oxygen. RBCs circulate into the 

bloodstream and, once reached the lung capillaries, they bind oxygen and release 

CO2. On the contrary, they release oxygen and pick up CO2 when approaching 

peripheral tissues (Alam et al., 2017).  

 

Granulocytes 

         Granulocytes are a class of myeloid cells morphologically characterized by the 

presence of cytoplasmic granules and a specific nuclear shape, as they can be either 

bi-lobed or tri-lobed. Granulopoiesis occurs in the BM and, once terminally 

differentiated, granulocytes leave the bone and enter into the bloodstream, circulating 

until inflamed tissues request them. Based on the content of their granules, 

granulocytes can be divided into 3 categories: basophils, eosinophils and neutrophils 

(Koenderman et al., 2014). 

 
Basophils 

         Basophils are the least abundant granulocyte population in the blood, as they 

represent <1% of circulating leukocytes. They are characterized by the presence of 

basophilic granules, several Pattern Recognition Receptors (PRRs) and the strong 

expression of the Fragment crystallizable (Fc) Receptor (R) epsilon (FcεR), the 

immunoglobulin E receptor. With critical roles in allergy-related inflammation 

processes, basophils can be activated either in an Immunoglobulin (Ig) E mediated 
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way or in cytokine-related manners. Furthermore, basophils can also be important 

immune regulatory cells, as they secrete large amounts of IL4, a potent Th2 

stimulatory cytokine (Siracusa et al., 2013). 

 

Mast cells 

         Mast cells are mainly found in mucosal and epithelial tissues and, under 

physiological conditions, do not circulate into the bloodstream. They share many 

functional features with basophils, such as granules containing histamine and 

heparin, as well as the ability to bind IgE (Chirumbolo, 2012; Krystel-Whittemore et 

al., 2015). 

 
Eosinophils 

         Eosinophils are rare blood circulating cells characterized by bi-lobed nuclei, 

large acidophil granules and expression of several PRRs. In contrast to other 

granulocytes, they highly express specific receptors like IL5Rα, CCR3 and SIGLEC-

F. Among all the eosinophil regulatory cytokines, IL5 plays a major role in promoting 

their development, activation and survival. They express several Fc receptors that 

allow them to bind several immunoglobulin Fc chains. Furthermore, accumulating 

evidence have shown that eosinophils can act as antigen presenting cells (Akuthota 

et al., 2010; Rosenberg et al., 2013). 
 
Neutrophils 

         Neutrophils are the most abundant granulocytes circulating into the 

bloodstream and their main function is to eliminate pathogen microorganisms. 

Neutrophils can directly recognize pathogens by their PRRs or, alternatively, be 

recruited and activated to the site of inflammation. They eliminate pathogenic 

microorganisms by different mechanisms: 1) recognizing antibody coated cells 

through their FcγR, they can perform phagocytosis; 2) moreover, they are able to kill 

pathogens by releasing granules containing bactericidal protein and Reactive 

Oxygen Species (ROS); 3) finally, under certain conditions, neutrophils might 

enhance their response by secreting a neutrophil extracellular trap. In addition to 

their classical role in innate immunity, neutrophils can trans-differentiate into antigen 

presenting cells and modulate T cell activation, when required (Koenderman et al., 

2014; Li and Tablin, 2018; Mortaz et al., 2018). 
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Monocytes and macrophages 

         Monocytes and macrophages are mononuclear phagocytes that can be found 

either circulating into the bloodstream or resident into tissues. Like granulocytes, they 

express diverse PRRs and Fc receptors that help them to recognize and phagocyte 

pathogens. Once the inflammatory reaction is triggered, BM derived monocytes 

infiltrate the inflamed tissue and differentiate into macrophages. Macrophages 

activated by Pathogen Associated Molecular Patterns (PAMPs), Damage Associated 

Molecular Patterns (DAMPs) and inflammatory cytokines develop the pro-

inflammatory M1 phenotype. Conversely, anti-inflammatory cytokines such as IL-10, 

IL-4 and IL-13 induce the M2 phenotype.  

         In contrast to the macrophages derived from BM monocytes, embryonic-

derived, tissue resident macrophages have been shown to play major roles in 

regulating organ function and tissue homeostasis (Hirayama et al., 2017). 

Interestingly, it has been found that some macrophages marked by the surface 

antigen CD169 regulate BM to blood HSC migration and blood to BM HSC homing in 

antagonism to the sympathetic nervous system. Moreover, macrophages have 

essential roles in regulating erythrocyte maturation and enucleation (Chow et al., 

2011).  

 

Dendritic cells 

         Dendritic cells (DCs) are specialized Antigen Presenting Cells (APC) that 

operate at the interface between the innate and the adaptive immunity. They 

promote both T cell polarization and B cell activation, by presenting them foreign 

antigens. Three main subsets of BM-derived dendritic cells have been so far 

recognized: two conventional dendritic cell subtypes (cDCs), cDC1 and cDC2, and 

plasmacytoid dendritic cell (pDC).  

         cDCs reside in both lymphoid and non-lymphoid tissues and express high 

levels of the Major Histocompatibility Complex II (MHCII): type 1 cDC cells are 

recognizable because express the CD8a antigen, whereas type 2 cDC cells are 

CD11b positive (with splenic cDC2 also CD4 positive). Conventional DC 1 and 2 

are considered the classical APC: they have a stellate morphology, express a wide 

range of PRRs, have strong antigen up-taking, processing and presenting 

capabilities, as well as the faculty, once stimulated by pathogen particles, to 
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migrate to draining lymph nodes in order to activate both T and B cells. On the 

other hand, pDCs represent a small subset of DCs that resides in BM and lymphoid 

organs, characterized by a plasma cell-like morphology and specialized in virus 

recognition. Once activated by viral particles, that are recognized by the TLR 7 and 9, 

pDCs start to produce vast amounts of anti-viral type I Interferon (IFN α, β and 

ω) and become able to internalize, process and expose foreign antigen peptides on 

the MHCII complex (Eisenbarth, 2019; Schlitzer and Ginhoux, 2014). 

         These three DC subsets, in contrast to the embryonic-derived DCs (such as 

Langerhans cells), are continuously produced within the BM and arise from the 

Macrophage Dendritic cell Progenitor populations (MDP) that possess both 

monocyte and DC potentials. MDP cells further differentiate into Common Dendritic 

cell Progenitors (CDP), that lack monocyte potential and give rise to: i) pre-pDC, 

the pDC precursor and ii) pre-DC, the precursor of cDC 1 and 2 (Puhr et al., 2015; 

Schraml and Reis e Sousa, 2015).  
 

B lymphocytes 

         B cells are roundish nucleated cells mainly found in the bloodstream, bone 

marrow, spleen and lymph node. They recognize pathogens through their B cell 

receptor (BCR) or via PRRs. The BCR is constituted of a membrane bound 

Immunoglobulin (like IgD or IgM) responsible for the antigen binding, and by a 

transmembrane Igα and Igβ responsible for the signal transduction. Binding of the 

foreign antigen to the BCR triggers B cell activation. Immediately after binding, a 

cascade leading to the internalization, processing and presentation of the foreign 

antigen is started. The processed antigen is exposed on the MHCII and presented to 

lymph node or spleen naïve T cells. The B and T cell crosstalk promotes T cell 

polarization as well as B cell immunoglobulin class switch recombination, proliferation 

and terminal maturation. Terminally differentiated B cells, known as plasma cells, are 

devoted to secrete high amounts of soluble IgG, IgA and IgE used to opsonize 

pathogens (Tarlinton, 2019; Yuseff et al., 2013).  
 

T lymphocytes 

         T lymphocytes are roundish nucleated cells mainly found in the bloodstream, 

thymus, spleen and lymph node. They derive from the bone marrow Earliest Thymic 

Progenitors (ETP), which migrate into the thymus and generate naïve T cells. T cells 
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can be divided into two classes: CD4 T helper (Th) and CD8 effector (Te) (Shah and 

Zuniga-Pflucker, 2014). 

 

CD4+ cells 

         Each naïve CD4+ cell is characterized by the expression of a unique T cell 

receptor (TCR). The TCR recognizes antigens presented by the MHCII on activated 

APCs. Based on the nature and affinity of the antigen, the kind of co-receptors 

involved in the signaling as well as the type of released cytokines, naïve T cells can 

be polarized into functionally diverse Th cells.  

         The better characterized Th effector subtypes are: Th1 cells, promoting cellular 

immunity and characterized by the secretion of IL‐2, IFN‐γ and TNFα; Th2 cells, 

stimulating humoral response by producing IL‐4, IL‐5 and IL‐13; Th17 cells, 

characterized by the secretion of IL-17 and able to support host defense against 

bacteria, fungi and viruses (Zhu et al., 2010). Another kind of activated CD4+ cells, 

involved in self-tolerance maintenance, are FoxP3 expressing T regulatory cells 

(Treg), which secrete anti-inflammatory mediators that suppress APC cell functions 

as well as T cell activation. Recent work highlighted new roles for Treg, as they can 

also regulate homeostasis of non-lymphoid tissues (Burzyn et al., 2013). In relation to 

hematopoiesis, Tregs have been recently found to be a functional component of the 

Hematopoietic Stem and Progenitor Cell (HSPC) niche, where they suppress 

inflammation and promote lymphoid progenitor differentiation (Hirata et al., 2018; 

Pierini et al., 2017).  

 

CD8+ cells 

         Similar to CD4+ cells, naïve CD8+ cells are generated in the thymus. However, 

they recognize antigen exposed on the MHCI, expressed by all nucleated cells, and 

play a major role in fighting against intracellular pathogen infection. Once activated 

by APC, CD8+ cells undergo expansion and migrate to the site of infection, where 

they can kill the infected cells by using different strategies: i) secreting anti-viral and 

microbial cytokines like IFNγ and TNFα, ii) releasing cytotoxic granules containing 

perforin and granzymes as well as iii) inducing cell apoptosis by exposing FAS-ligand 

(Schurch et al., 2014; Zhang and Bevan, 2011).  
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Innate lymphoid cells 

         Innate lymphoid cells (ILC) are a newly described cellular component of the 

immune system. In contrast to B and T lymphocytes, they do not possess specific 

antigen receptors. However, despite the inability to be activated by specific antigens, 

they possess some T cell-like features and, based on that, they were divided into four 

main groups: ILC1 resembling Th1 cells, ILC2 resembling Th2 cells, ILC3 resembling 

Th17 cells and natural killer (NK) cells resembling cytotoxic CD8 cells (Vivier et al., 

2018). 

 

Progenitor cells 

Committed progenitors 

          “Committed progenitors” is a generic term used to group cells with common 

functional features: 

(1) the ability to expand and generate colonies of mature cells when plated ex vivo (in 

the appropriate condition);  

(2) reduced potency, as they can generate only a few (or even a unique) 

hematopoietic lineages (Boyer et al., 2019; Pronk et al., 2007); 

(3) reduced BM reconstitution ability, as they can sustain hematopoiesis only for a 

few weeks when transplanted into lethally irradiated mice (Boyer et al., 2019).   

 
Megakaryocyte progenitor (MkP) 

         MkP is defined as: lineage-, c-Kit+, Sca1- (LK), CD150+ and CD41+. FACS 

sorted MkPs plated in SCF, IL3, and TPO enriched medium generate colonies 

containing mature megakaryocytes (Pronk et al., 2007). 

 
Erythroid progenitors (Ery-P) 

         Two erythroid progenitors, called preCFU-E and CFU-E, were identified in 2007 

by the group of Weissman. Pre-CFU-E are considered the upstream progenitors, as 

they are able to give rise to more and bigger erythroid colonies than CFU-E, when 

cultured in media containing SCF, IL-3 and EPO. Phenotypically, they are defined as 

LK with a distinction: the preCFU-E are CD150+ and CD105+, whereas the CFU-E 

are CD150- and CD105+ (Pronk et al., 2007). 

 



 23 

Megakaryocyte-Erythrocyte progenitor (MEP) 

         A megakaryocyte erythrocyte bi-potent progenitor population was initially 

identified as LK, FcγR- and CD34- (Akashi et al., 2000). However, additional studies 

further divided this heterogeneous group into three populations, mainly composed of 

uni-potent erythroid and megakaryocyte progenitors, and a small bi-potent population 

called preMEP (Pronk et al., 2007).  

         PreMEP are LK CD150+ CD105-. Despite having both megakaryocyte and 

erythroid potential, it is currently not clear whether this population comprises bi-

potent progenitors or rather it is a mixture of multiple, not separated, uni-potent 

progenitors. Some clues come from recent work where the MEP progenitor mRNA 

content was profiled at the single cell level. Paul and colleagues did not observe the 

presence of any bi-potent progenitor expressing both megakaryocyte and erythroid 

transcripts, while uni-lineage primed cells were mostly detected (Paul et al., 2016) 

(Fig. C). These observations support a view where the megakaryocyte and 

erythrocyte progenitor compartment is mainly composed of uni-potent erythroid and 

megakaryocyte progenitors; however, functional validations are still required to 

further confirm this view. 

 
Granulocyte-Monocyte progenitor (GMP) 

         GMP is a bi-potent population defined as LK, FcγR+, CD34+ and CD150-. 

Cultured GMP in media enriched with SCF, IL3 and GM-CSF give rise to either mixed 

or single colonies of mature granulocytes and monocytes (Akashi et al., 2000; Pronk 

et al., 2007). As for preMEP, the bi-potent nature of the GMP population has been 

recently reviewed by the group of Grimes (Olsson et al., 2016). In particular, sc-

mRNA sequencing analysis identified two main cell clusters within the GMP pool: one 

cluster expressing Irf8 and monocyte transcripts, and a second one expressing Gfi1 

and granulocyte signatures. The author further purified these 2 populations, using 

Gfi1 and Irf8 reporters and they tested their potential using in vitro CFU assay. It 

emerged that Gfi1-positive GMP generate only granulocyte colonies, while Irf8-

positive GMP give rise exclusively to monocytes. 

         These findings strongly support the idea that the GMP population is mainly 

composed of uni-potent committed progenitors. In addition, the authors claimed the 

existence of an extra, rare bi-potent population co-expressing both monocyte and 

granulocyte signatures and capable of generating both lineages in vitro (Olsson et 
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al., 2016). However, there might be the possibility of an experimental artefact due to 

difficulties to clearly FACS separate this rare population. It is indeed located at the 

boarder of the abundant Gfi1 and Irf8 positive populations, raising the risk that the 

sorted cells represent just a contaminated pool of Gfi1 and Irf8 neighboring cells.  

 
Common lymphoid progenitor (CLP) 

         CLP was the first identified hematopoietic progenitor and, in contrast to the 

myeloid progenitor, it does not belong to the LK population. CLP is Lineage-, IL7rα+, 

Flt3+, Sca1mid and Kitmid. It possesses the ability to generate, in vitro as well as in 

vivo, lymphoid B and T mature cells. On the contrary, it is depleted of any myeloid 

reconstitution potential (Karsunky et al., 2008; Kondo et al., 1997). Recent work 

further sub-divided the CLP within 2 additional populations: Ly6D- CLP called All 

Lymphoid Progenitor (ALP), and a Ly6D+ CLP renamed B cell biased Lymphoid 

Progenitor (BLP). The ALP has both B cell and T cell potentials and it is considered 

the BLP precursor, mainly devoted to produce B cells (Ghaedi et al., 2016; Inlay et 

al., 2009).  
 
Common myeloid progenitor (CMP) 

- Discovery of a common myeloid progenitor  

         A common myeloid progenitor (CMP) population was identified in 2000 by the 

group of Weissman. CMP are lineage-, c-kit+, Sca1-, CD34+ and FcγRlow cells. 

Cultured CMP give rise to colonies of all myeloid kinds (pan-myeloid): granulocytes, 

monocytes, erythrocytes and megakaryocytes (Akashi et al., 2000) (Fig. Db). Some 

years later, the idea of multi-potent pan-myeloid CMP was challenged by the same 

group, as the CMP was further split into two distinct bi-potent populations: one 

CD150+ and CD105-, called preMEP with megakaryocyte-erythroid potential and 

another one, CD150- and CD105-, called preGM which possesses restricted 

granulocyte-monocyte potential. These observations prompted a view where the 

separation between megakaryocyte-erythroid and granulocyte-monocyte lineages 

occurred before reaching the CMP stage (Pronk et al., 2007) (Fig. Dc). 

 

- CMP in the single cell era 

         Single cell (sc) qPCR first and, more recently, scRNA sequencing experiments 

provided massive help in uncovering the nature of the myeloid progenitors (Paul et 
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al., 2016). In particular, scRNA-seq of purified progenitors (CMP, GMP and MEP) 

described a gradual transcriptional heterogeneity within the myeloid progenitor 

compartment (Fig. C), revealing:  

1) a well separated “peripheral” population composed of transcriptionally committed 

cells, clustering far away from each other and mainly part of the GMP and MEP 

populations;  

2) a smaller pool of transcriptionally inter-connected cells belonging to the CMP 

population (Fig. C).    

         Interestingly, the CMP populations were themselves found to be 

heterogeneous, although transcriptionally more similar. Five main clusters were 

identified, each of them composed of transcriptionally primed pan-myeloid 

progenitors. Within these clusters, the authors identified erythroid, megakaryocyte, 

granulocyte, monocyte and DC primed progenitors, based on their RNA content. On 

the contrary, they never observed any cell cluster potentially belonging to a 

transcriptionally bi-potent state (Paul et al., 2016). In summary, these findings 

depicted a pan-myeloid progenitor compartment mainly comprising a pool of cells 

already transcriptionally primed towards single pan-myeloid fates, although these 

different populations have not been yet validated for their effective potential and 

function. 
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CMP GMP MEP 

 
Figure C | The myeloid progenitor transcriptome at the single cell resolution. 
Single cell mRNA transcriptome-based heatmap of differentially expressed genes across purified 
CMP, GMP and MEP cells. Five CMP clusters are located within the middle part of the heatmap, 
while the more committed MEP- and GMP-derived clusters are found at the periphery of the map 
(Paul et al., 2016). 
 

- A new bifurcation in the preGM 

         In parallel, using a similar approach (scRNA-seq), Drissen and colleagues 

further recognized an additional branch separation within the pre granulo-monocyte 

progenitor (preGM) population, identifying: one preGM pool marked by the 

expression of Gata1 and a second one expressing Flt3. Furthermore, they 

functionally validated this bifurcation, uncovering that Gata1+ preGM were composed 

of eosinophil-basophil progenitors, while Flt3+ preGM were neutrophil-monocyte 

restricted progenitors (Fig. Da,d) (Drissen et al., 2016).  
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Figure D | Refining the myeloid progenitor hierarchy. 
(a) Hierarchical clustering of differentially expressed genes between single pre-GM cells. Two 
main clusters marked by Gata1 and Flt3 expression can be identified: the pre-GM eosinophil and 
basophil progenitors (Gata1+) and the monocyte / neutrophil progenitors (Flt3+) (Drissen et al., 
2016). (b) Myeloid progenitor hierarchy based on studies performed in 2000 (Akashi et al., 2000): 
a multi-potent CMP gives rise to bi-potent MEP and GMP. (c) Myeloid progenitor hierarchy based 
on Pronk and colleague findings (Pronk et al., 2007): the CMP population is split in pre-GM and 
pre-MEP populations. (d) Myeloid progenitor hierarchy from 2016: the pre-GM population is 
further divided in pre-GM Gata1+ and pre-GM Flt3+ progenitors (Drissen et al., 2016). 
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- To be a progenitor: a permanent state or a transient condition? 

         As discussed above, scRNA-seq analysis divided the CMP compartment into 

discrete clusters of lineage-primed cells. However, it remains unknown whether this 

transcriptional priming mostly represents a stable condition or rather a transient state. 

A recent publication from the Nerlov group has provided some hints. They showed 

that Gata1+ preGM cells retain the ability to differentiate in vitro into megakaryocyte 

and erythroid cells; similarly, Flt3+ preGM cells retain some lymphoid potential when 

cultured in a lymphoid cytokine enriched medium (Drissen et al., 2016). These 

results, even if performed in a synthetic in vitro context, seem to suggest that a 

certain degree of plasticity may exist within these transcriptionally primed cellular 

entities and that some developmental trajectories may be more interlinked with 

respect to others. 

         Taken together, both old and new findings provide support to a scenario in 

which the progenitor compartment is mainly composed of lineage primed cells, 

potentially able to maintain a partial degree of plasticity and multipotency (although 

with some limitations).  

 

Multipotent progenitors (MPP) 

         Multipotent progenitors are Lineage-, Sca1+, c-Kit+ and CD48+ cells, with the 

unique ability to give rise to 1) all pan-myeloid and lymphoid lineages when 

transplanted into lethally irradiated mice and 2) all hematopoietic lineages when 

cultured in the appropriate in vitro condition (Oguro et al., 2013). MPP possess a 

limited BM reconstitution ability, which remains however greater than that of CLP and 

CMP cells (Boyer et al., 2019). 

         More recently, based on the expression of the CD150 and Flt3 surface 

markers, heterogeneity was identified within the MPP population, with some MPP 

exclusively expressing the surface antigen Flt3 while others the surface antigen 

CD150. Based on these features, 3 subpopulations of lineage biased MPP, with not 

well-established borders, have been identified: MPP2, MPP3 and MPP4 (Pietras et 

al., 2015). Moreover, scRNA-seq analysis of MPP revealed that such population is 

mainly constituted by a continuum of cell states in which one extremity is composed 

of Flt3+ lymphoid biased cells, whereas the other edge by CD150+ megakaryocyte-

erythrocyte biased progenitors (Pietras et al., 2015; Rodriguez-Fraticelli et al., 2018).   
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MPP2 

         MPP2 are the first recognizable and immature megakaryocyte-erythrocyte 

biased progenitors. They are defined as CD48+ and CD150+, while they do not 

express the surface marker Flt3. In vivo, when transplanted into sub-lethally 

irradiated mice, they generate megakaryocytes and erythrocytes. Similarly, when 

plated in vitro, they produce mainly megakaryocyte-erythrocyte colonies (Fig. E) 

(Pietras et al., 2015).  

 

MPP3 

         MPP3 are granulocyte-monocyte biased progenitors. In the context of their 

antigen expression, they are “located” in between MPP2 and MPP4 as they express 

low levels of Flt3 and CD150. Similarly, at the transcriptional level they also cluster in 

between MPP2 and MPP4 cells, as they express both MPP2 and MPP4 transcripts. 

In vivo, when transplanted into sub-lethally irradiated mice, they generate mainly 

mature granulocytes and monocytes. When plated in vitro, in a similar way, they 

generate granulo-monocyte colonies (Fig. E) (Pietras et al., 2015). 

 
MPP4 

         MPP4 are lymphoid biased progenitors. They are marked by the high 

expression of Flt3 while, on the contrary, they do not express the antigen CD150. 

When MPP4 are transplanted into sub-lethally irradiated mice, they generate mainly 

mature lymphoid cells as well as also a minor percentage of myeloid cells. In line with 

the in vivo results, once plated in vitro, MPP4 can very efficiently generate lymphoid 

colonies, while retaining a partial granulo-monocyte potential. This mixed lymphoid 

and myeloid potential may derive from difficulties to properly separate MPP3 and 

MPP4 using flow cytometry techniques, as these two populations are “attached” to 

each other and do not possess well-defined borders (Fig. E) (Pietras et al., 2015; 

Young et al., 2016). 

 

- MPP: primed or multi-potent progenitors? 

        As mentioned, recent work depicted an MPP population composed of 3 

separate and biased cellular states. However, MPP properties were extrapolated 

based on in vitro CFU assays and in vivo transplantation experiments, conditions in 
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which MPP were “forced” to differentiate in small time windows. As such, these 

experiments do not provide information on the real MPP behavior at the steady state. 

Moreover, despite the described differences, MPP2, MPP3 and MPP4 still retain high 

degree of transcriptional similarity, greater than the one observed for example within 

CMP cells; for this reason, it might be hypothesized that they may retain a certain 

level of multipotency.  

        Suggestions supporting such scenario came from a recent publication. 

Rodriguez-Fraticelli and colleagues generated an inducible cellular barcoding 

system, in order to track the HSC and MPP steady state hematopoietic contribution 

(Rodriguez-Fraticelli et al., 2018). The author triggered random barcode transposition 

in all hematopoietic cells and they monitored the appearance of MPP specific 

barcodes within the more mature populations. Within the first two weeks, they noticed 

that each MPP was producing only one (or a few) mature cell lineage, a behavior 

expected from uni-potent cells. However, later on, unique MPP barcodes were 

abundantly found on different mature cells types, suggesting that MPP can indeed 

behave as plastic multi-potent cells in a long-term perspective.  
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Figure E | The pool of biased MPP. 
A schematic representation of the MPP hierarchy shows that MPP2 preferentially generate 
megakaryocyte and erythrocyte progeny (e.g. MEP), MPP3 originate myeloid progenitors (e.g. 
Pre-GM), while Flt3+ MPP4 mainly give rise to lymphoid lineages (e.g. CLP). The horizontal 
arrows suggest a possible scenario where MPP behave as partially inter-convertible plastic 
entities. 
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Hematopoietic stem cells (HSC) 

         HSC are placed at the apex of the hematopoietic hierarchy, as they fulfill 

unique and peculiar features:  

1) high quiescence, resulting from their attitude to divide rarely; 

2) multi-potency, as they can generate all hematopoietic lineages; 

3) self-renewal, as they can reconstitute and maintain the entire hematopoietic 

system when injected into lethally irradiated mice. Based on this specific property, 

they are divided into two functional groups: (i) Long Term repopulating HSC (LT-

HSC), belonging to the LSK, CD34-, CD48- CD150+ population and able to sustain 

hematopoiesis for the whole life; (ii) Short Term repopulating HSC (ST-HSC), 

enriched in the LSK, CD34+, CD48- CD150- population and responsible to sustain 

hematopoiesis only for a few months after transplantation (Bernitz et al., 2016; Oguro 

et al., 2013).  

 
 

-HSC: a heterogeneous multi-potent population 

         LT-HSC are undoubtedly real multi-potent cells, given that even a single LT-

HSC can reconstitute several, if not all, hematopoietic lineages upon transplantation 

into lethally irradiated recipient mice (Bernitz et al., 2016; Oguro et al., 2013). Despite 

multi-potent, LT-HSC are not as homogeneous as it could be expected: 

subpopulations of functionally distinct LT-HSC have been identified in the past few 

years. In a recent elegant work, Carrelha and colleagues injected single LT-HSC into 

lethally irradiated mice and analyzed their progeny over a period of four months. 

They described five novel functional groups of LT-HSC with a stereotypical behavior. 

Specifically, ~10% of total LT-HSC are platelets lineage restricted (P), a limited ~5% 

is composed of platelets- (P) and erythrocytes- (E) restricted LT-HSC (PE), ~15% of 

LT-HSC are pan-myeloid- (PEM), a bigger fraction corresponding to the ~20% of the 

total LT-HSC produces pan-myeloid and B cell lineages (PEMB), while the remaining 

~50% are multi-lineage reconstituting LT-HSC (Fig. F) (Carrelha et al., 2018). 
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         Although the authors provided this detailed functional classification, an 

equivalent detailed phenotypical classification is currently not available. Through 

surface marker analysis it is only possible to roughly distinguish three broader 

groups: i) platelets biased LT-HSC, Vwf + and CD41+, ii) pan-myeloid biased LT-HSC 

mainly CD150+ and iii) lymphoid biased (or equilibrated) CD150low LT-HSC (Gekas 

and Graf, 2013; Morita et al., 2010; Sanjuan-Pla et al., 2013). Moreover, no evidence 

of such functional heterogeneity have been recognized via scRNA sequencing 

analysis, as all LT-HSC tend to cluster close to each other without showing any sign 

of lineage priming (Olsson et al., 2016; Rodriguez-Fraticelli et al., 2018). 

Interestingly, an exception is represented by old LT-HSC that acquired a peculiar 

platelet biased gene expression profile (Grover et al., 2016; Olsson et al., 2016).  

 

 

 

Total=100

P
PE
PEM
PEMB
MULTI

 
Figure F | The LT-HSC pool.  
Schematic pie chart representing the LT-HSC repartition based on their in vivo single cell 
reconstitution potential: P are Platelets biased LT-HSC, PE are erythroid and platelet restricted 
LT-HSC, PEM are pan-myeloid LT-HSC, PEMB are pan-myeloid and B cell potent LT-HSC, while 
MULTI represents the more abundant population of multi-lineage reconstituting LT-HSC. Modified 
from (Carrelha et al., 2018). 
 

 

- Contribution of LT-HSC to adult steady state hematopoiesis 

 As previously mentioned, LT-HSC greatly contribute to hematopoiesis in 

transplantation context. However, it is currently not clear to which extent they 

participate in hematopoiesis maintenance at homeostasis. Several researchers made 

use of inducible systems to tackle the question. Typically, a Cre-ER transgene is 

placed under control of regulatory elements (REs) specifically active in LT-HSC and, 

after tamoxifen injection, constitutive reporter gene expression is triggered in LT-HSC 
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and maintained throughout the cell progeny. However, contradictory results have 

been collected over the past few years, and the debate is far to be closed.  

        Busch and colleagues drove Cre-ER expression under the control or Tie2 REs 

and traced the LT-HSC progeny, marked by the expression of YFP, for several 

months. 34 weeks after tamoxifen injection, they found that only 1% of mature cells 

were YFP positive, suggesting that LT-HSC poorly contribute to steady state 

hematopoiesis (Busch et al., 2015). In stark contrast, the groups of Reizis and 

Nakada, using a similar tracking system, found that LT-HSC massively contribute to 

steady state hematopoiesis, however they drove LT-HSC specific Cre-ER expression 

using different REs (Chapple et al., 2018; Sawai et al., 2016). The explanation for 

these contrasting results may reside in the degree of HSC specificity of the different 

REs employed to trigger Cre-ER expression and reporter gene activation. Tie2-

CreER was expressed only in a limited subset of LT-HSC (~1 % of total LT-HSC), 

raising the question whether enough LT-HSC were marked. On the contrary, the 

other Cre-ER system was also ectopically expressed in ST-HSC and MPP, 

suggesting that the observed contribution was mediated by more proliferating 

progenitors. Interestingly, independently from the level of LT-HSC contribution, all 

two groups found that LT-HSC preferentially renew the megakaryocyte-platelet 

lineage. 

         A third research group tried to address this question undertaking a different 

approach, in order to overcome the intrinsic limitations behind the promoter choice. 

Specifically, the group of Camargo labeled all hematopoietic cells using an unbiased 

barcode system and, over time, quantified the LT-HSC specific barcodes in common 

to the mature lineages. The authors found that LT-HSC strongly contributed to the 

megakaryocyte lineage replenishment and little to the myeloid and lymphoid renewal. 

Moreover, most of LT-HSC (~94.5%) were inactive, with no barcode shared with any 

mature cells (Rodriguez-Fraticelli et al., 2018). This experiment seems to propose, in 

a more unbiased and conclusive way, that LT-HSC provide little contribution to the 

steady state hematopoiesis, exception made for megakaryocyte lineage. 

 

- LT-HSC niche 

         LT-HSC activity, such as self-renewal, differentiation and migration, needs to 

be precisely regulated and relies on regulatory inputs provided by a specific “niche” in 

which both hematopoietic and non-hematopoietic cells reside (Pinho and Frenette, 
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2019; Zhao and Li, 2016) (Fig. G). LT-HSC and their niche are homogeneously 

distributed along the cavity of the bone marrow, although their concentration 

increases moving from the central vein to the endosteum (Kunisaki et al., 2013). LT-

HSC closely associate with endothelial cells (EC) and: ~ 80% of HSC are located 

close to sinusoids, while a smaller ~20% are found in close proximity to arterioles. 

Endothelial cells, and in particular arteriolar EC, are an important source of pro-

hematopoietic factors like: stem cell factor (SCF), which regulates HSC maintenance, 

and Dll4 modulating lymphoid progenitor development (Asada et al., 2017; Kunisaki 

et al., 2013; Xu et al., 2018). In addition, in close proximity to endothelial cells there 

are perivascular pericytesmyh11+, producing an important regulator of HSC 

maintenance and egress, CXCL12 (Asada et al., 2017). 

         Leptin Receptor Positive Mesenchymal Stem Cells (LepR+ MSC) represent 

another important niche component, reported to be a heterogeneous population of 

adipocyte-primed and osteoblast-primed cells, both able of produce high levels of 

SCF and CXCL12 (Asada et al., 2017; Mendez-Ferrer et al., 2010). In addition, some 

MSC can also produce IL-7, a crucial cytokine that stimulates lymphoid progenitor 

survival and development (Cordeiro Gomes et al., 2016; Tikhonova et al., 2019). 

Moreover, wrapped around blood vessel and MSC, are found sympathetic adrenergic 

fibers that can regulate HSC and MPP differentiation by stimulating MSC through the 

β2 and β3 Adrenergic Receptors (AR): β2AR induces MSC to produce IL-6 that, in 

turn, skews HSPC differentiation towards a myeloid-megakaryocyte fate. On the 

contrary, β3AR stimulation weakens myeloid-megakaryocyte differentiation (Ho et al., 

2019; Maryanovich et al., 2018).  
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Figure G | The bone marrow LT-HSC niche. 
Representative scheme of a typical BM LT-HSC niche architecture. LT-HSC localize close to 
vasculature, MSC and pericytes. Within the BM cavity, mature hematopoietic cells, such as 
megakaryocytes, macrophages and T cells, along with extra-hematopoietic cells, regulate LT-
HSC activity. Modified from (Wei and Frenette, 2018). 
 
 

AGING OF THE HEMATOPOIETIC SYSTEM 

The old hematopoietic system 

         Hematopoiesis in mouse (and human) occurs throughout the entire life, 

however the composition of the system changes with respect to the age. Old mice 

have reduced B cells, while producing more granulocytes, monocytes and platelets. 

Interestingly, the progenitor compartment changes in the same direction, as old mice 

have reduced MPP4 and CLP, as well as increased MPP3, GMP and MkP (Rossi et 

al., 2005; Young et al., 2016). Also, LT-HSC become affected by the aging process, 

as they: 

- accumulate DNA damage (Beerman et al., 2014; Flach et al., 2014); 

- increase in number (Rossi et al., 2005); 

- lessen their reconstitution ability (Pietras et al., 2015; Rossi et al., 2005); 

- start to express megakaryocyte specific genes (Grover et al., 2016); 

- acquire a myeloid and platelet skewed potential (Pietras et al., 2015). 
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LT-HSC aging 

         Old LT-HSC become less functional, as they reconstitute less efficiently lethally 

irradiated mice with respect to the young counterpart. Moreover, when transplanted, 

old LT-HSC reconstitute an old like hematopoietic system, with fewer B lymphoid 

cells and more granulocyte-monocyte cells (Pietras et al., 2015; Rossi et al., 2005). 

These findings suggested that LT-HSC might represent the major source of 

hematopoietic aging. 

 

A defective myeloid biased pool of LT-HSC expands in old mice 

         The LT-HSC compartment expands in old mice and, in particular, the pool of 

CD150+ and CD41+ megakaryocyte and myeloid biased LT-HSC (here called myLT-

HSC) expands more than the lineage equilibrated CD150low CD41- pool (also called 

lymphoid biased LT-HSC). Furthermore, only the injection of old myLT-HSC into 

lethally irradiated mice reproduces the aging phenotype, while injection of old 

CD150low LT-HSC alone does not generate an old system. These findings showed 

that a selective accumulation of “defective” megakaryocyte and myeloid biased LT-

HSC takes place in the BM of old mice (Gekas and Graf, 2013; Pietras et al., 2015). 

 

-How do old myeloid biased LT-HSC accumulate? 

         It has been proposed that myLT-HSC accumulate in old mice with a 

mechanism of clonal expansion (Pietras et al., 2015; Yamamoto et al., 2018). 

Although this could be possible, it is hard to explain why and how a specific pool of 

HSC should expand more than another one. Moreover, the myLT-HSC pool is little 

(and quiescent) in young mice and it seems unlikely that it can expand so much to 

overcome the more abundant pool of lineage equilibrated LT-HSC. Alternatively, it 

can be assumed that a gradual age-dependent “conversion” at the epigenetic and 

transcriptional levels transforms lineage equilibrated young LT-HSC into old myLT-

HSC. Recent studies showed that some stimuli, like inflammation and DNA damage, 

can indeed convert young stem cells into old-like LT-HSC (Chang et al., 2016; 

Mirantes et al., 2014). The HSC compartment changes phenotype when mice are 

treated with agents able to trigger an inflammatory response, such as 

lipopolysaccharides (LPS) and polyinosinic: polycytidylic acids (polyI:C). LT-HSC 

from treated mice rapidly acquire a platelet biased CD41+ phenotype and start to 

express genes that are typically up-regulated in old LT-HSC. These findings provide 
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evidence that inflammatory stimuli are potentially able to affect the LT-HSC 

phenotype (Haas et al., 2015; Mann et al., 2018). 

         Another potential aging driving force is DNA damage accumulation, which has 

been shown to dramatically increase in aged HSC (Beerman et al., 2014; Flach et al., 

2014). Several studies showed that DNA damage induced upon treatment (e.g. by 

gamma or X-ray irradiation) can convert young HSC into old ones. DNA damaged 

young HSC reconstitute an “old-like” hematopoietic system when injected into lethally 

irradiated mice, suggesting that DNA injury intrinsically and permanently generates 

an old LT-HSC phenotype (Chang et al., 2016). However, despite these results seem 

to indicate a critical role of DNA damage in driving HSC aging, it cannot be excluded 

that acute DNA damage may drive a myLT-HSC positive selection (and a negative 

one for lineage equilibrate HSC), rather than a young to old HSC conversion. 

 

Epigenetic and transcriptional changes occur in old LT-HSC 

         In order to understand the differences between old and young LT-HSC, 

epigenetic and transcriptomic analyses have been performed. Old LT-HSC have an 

altered DNA methylome when compared to young HSC. Specifically, Sun and 

colleagues reported that some lymphoid genes, like Flt3, were hypermethylated and 

repressed, while myeloid genes such as Gata2 and Runx1 showed the opposite 

pattern, suggesting a model where old HSC may “reprogram” their epigenome in 

order to be primed towards the myeloid fate, instead of the lymphoid one (Sun et al., 

2014). However, it should be noticed that the genes identified in this study represent 

only a very small fraction of the total lymphoid and myeloid genes. Moreover, recent 

mRNA-seq experiments did not arrive to the same conclusion when comparing 

young and old LT-HSC transcriptomes: gene set enrichment analysis (GSEA) did not 

show any significant depletion of lymphoid gene signatures in old LT-HSC (Grover et 

al., 2016). Interestingly, from this work it also emerged that old LT-HSC have an 

enrichment in megakaryocyte signatures (Grover et al., 2016), even though the 

functional relevance of such changes remains largely unknown and the mechanisms 

leading to the megakaryocyte and myeloid skewing still need a proper investigation. 
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- Are old LT-HSC alone sufficient for promoting the aging of the hematopoietic 

system? 

         As mentioned before, old LT-HSC are able to promote hematopoietic aging 

when injected into lethally irradiated mice. However, given that LT-HSC contribution 

to the steady state hematopoiesis seems to be limited (Busch et al., 2015; Chapple 

et al., 2018; Sawai et al., 2016), it could be argued that also their contribution to 

hematopoietic aging will be partial and limited. In a such scenario, what may drive 

hematopoietic age? Recent studies suggested that aged BM microenvironment may 

have a central role in shaping the old hematopoietic system. 

 

BM microenvironment and hematopoietic aging 

         The BM microenvironment undergoes gradual changes during mouse aging. 

The vasculature becomes depleted of arterioles, whereas the density of sinusoids 

and capillaries has been reported to increase. MSC expand in number, although they 

decrease the production of pro-hematopoietic factors like SCF, CXCL12 and 

Angiopoietin (Ho et al., 2019; Maryanovich et al., 2018). Discordant results have 

been described for the sympathetic nervous system, as some groups detected 

increased amounts of nervous fibers, while another team reported nerve 

degeneration. However, both groups agreed that adrenergic signals from 

sympathetic BM fibers can regulate LT-HSC transition towards a myeloid-

megakaryocyte biased state (Ho et al., 2019; Maryanovich et al., 2018). Furthermore, 

the amount of pro-inflammatory cytokines like IL1α/β, IL-6 and IFNγ, able to favor 

myeloid progenitor differentiation, increased in old BM. Nevertheless, the identity of 

the cells producing such cytokines, during aging, is not well defined (Ho et al., 2019; 

Maeda et al., 2005; Matatall et al., 2014; Mirantes et al., 2014).  

         Despite many studies have shown that the microenvironment and, particularly, 

chronic inflammatory conditions can shape the hematopoietic system in an aged-

related manner, an old BM environment alone seems to be not sufficient to age the 

hematopoietic system.  In particular, young LT-HSC transplanted into lethally 

irradiated old mice generate a “young-like” hematopoietic system, despite the old 

microenvironment and, the other way around, old LT-HSC transplanted into young 

recipients generate an old-like system despite the young microenvironment. Thus, it 

becomes clear that the LT-HSC state dominates over the microenvironment, 
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probably suggesting that intrinsic LT-HSC alterations may be somehow the primary 

cause of hematopoietic aging (Ergen et al., 2012; Rossi et al., 2005). 

         In light of these facts, the main question stays the same: how do LT-HSC 

promote the hematopoietic aging? While a clear and definitive answer cannot be 

addressed, it is possible to propose some hypotheses. In the first scenario, LT-HSC 

could directly contribute to hematopoietic aging by generating a biased progeny. 

However, as mentioned before, the most recent studies argue against this model, 

given that LT-HSC poorly contribute to steady state hematopoiesis. Alternatively, 

epigenetic changes may occur in LT-HSC and similarly within MPP, leading to a 

skewed myeloid differentiation outcome that is mainly supported by both HSC and 

MPP. Additionally, a third possibility envisions that old LT-HSC may become able to 

shape their own niche and affect the closest MPP. 

 

 

THE TRANSCRIPTIONAL CONTROL OF HEMATOPOIESIS 

The hematopoietic transcription factors 

         Extracellular signals are crucial mediators of cellular plasticity, as they for 

example regulate the stemness of the HSPC pool, as well as their commitment and 

further progenitor maturation. Elaboration of such environmental stimuli often 

converges on Transcription Factor (TF) activity, which in turn shapes gene 

expression. TFs represent the first layer of gene expression regulation, they are 

trans-acting factors able to bind short cis-DNA regulatory elements (REs) to positively 

or negatively affect gene expression. In particular, it has long been appreciated that 

TFs shape gene expression patterns by working in cooperation with other TFs; 

therefore, activation of a given gene network requires the joint activity of several TFs 

(Reiter et al., 2017). Importantly, acquisition of a specific TF “combination” is the key 

event that drives and support lineage specification. In hematopoiesis, for instance, 

erythroid specification requires GATA1, Sox6 and KLf1 TFs; myeloid progenitors 

need CEBPα, CEBPε and SPI1, whereas the lymphoid branch wants Pax5, Ikaros 

and EBF1. The presence of each member of a given TF combination is essential to 

guarantee a specific cellular fate, and even small changes in TF composition can 
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lead to phenotypic differences (Dore and Crispino, 2011; Wilson et al., 2011; Yu et 

al., 2017).  

         While it is clear that specific combinations of TFs are exploited to generate 

different cellular lineages, it remains obscure how these different combinations are 

assembled during the process of HSPC differentiation. A model of stochastic 

switches between cross-antagonistic TFs has been proposed to be the primary force 

underlying HSC differentiation (Hoppe et al., 2016): random fluctuations of the 

erythroid master TF GATA1 and the myeloid master TF SPI1 were suggested to 

determine HSC fate choice. In order to challenge this model, Hope and colleagues 

cloned two different reporter genes under the control of GATA1 and SPI1 REs. They 

sorted and seeded LT-HSC in media containing cytokines, promoting both 

erythrocyte-megakaryocyte and myeloid cell differentiation. They monitored by in vivo 

staining the differentiation process for one week, looking at the emergence of 

myeloid preGM and MEP cells. In parallel, they measured by real time 

immunofluorescence the levels of GATA1 and SPI1. This experiment showed that 

when GATA1 was detectable (after 3 days of culture), HSC or progenitors 

differentiate into megakaryocyte and erythroid cells independently of SPI1 levels. On 

the contrary, GATA1 was never detected when HSC undergo myeloid differentiation.  

         In conclusion, the authors denied the existence of a GATA1 versus SPI1 cross-

antagonism in HSC, as: i) the two TFs are not expressed together within the 

multipotent HSC; ii) GATA1 becomes expressed only later, independently of SPI1 

starting levels; iii) similarly, SPI1 is expressed at low levels in HSC and bursts only 

when the myeloid path is activated. The authors proposed that these two TFs were 

not involved in HSC fate choice but rather they were reinforcing their relative lineage 

pathways once the decision was already taken (Hoppe et al., 2016). This study does 

not exclude the strength of a model in which TFs with cross antagonistic effects may 

lead to HSC fate determination; however, it does exclude that this specific behavior is 

performed by GATA1 and SPI1. 

 

Ikaros family of TFs provides a useful tool to study hematopoiesis 

         Several approaches have been applied in order to uncover the mechanisms 

underlying cell decision, commitment and maturation. Among others, TF 

“manipulation” has emerged since many years as an advantageous tool, as it allowed 
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researchers to explore some of the networks and pathways that are crucial to 

accomplish a given cellular function. However, how could we select a good TF 

candidate? A promising candidate gene can be chosen by undertaking an 

experimental screening approach or, alternatively, because a certain TF may 

possess an intriguing expression pattern fitting with a given biological question. Once 

appointed, the TF is usually “manipulated” (often deleted but also overexpressed) in 

order to evaluate whether its removal or its ectopic induction causes any interesting 

phenotype. It must be noted that this first step represents a bottleneck, as not always 

the targeted TF shows an obvious and interesting phenotype. However, in case of a 

manifested phenotype, this mutation becomes a fruitful tool to characterize TF-

regulated networks and finally lead to the identification of the molecular and cellular 

mechanisms underlying the process object of study.  

         Several TFs have been used as models to study different aspects at the basis 

of hematopoietic development. One remarkable example is given by the Ikaros TFs, 

belonging to a family containing four homologous members: Ikaros (IKZF1), Helios 

(IKZF2), Aiolos (IKZF3) and Eos (IKZF4). These four genes encode proteins with 

similar structure and a peculiar pattern of expression (Fig. H). Different knockout 

(KO) mouse models of these hematopoietic specific TFs have been generated and 

helped to uncover gene networks, pathways and mechanisms fundamental to 

accomplish HSPC development, lymphoid differentiation, maturation and 

leukemogenesis avoidance (Georgopoulos, 2017; Heizmann et al., 2018). 

 

Ikaros:  
         In contrast to the other members of the family, Ikaros has a broad expression 

pattern: it is expressed in HSPC, progenitors and mature cells. Its KO causes a vast 

range of defects in the hematopoietic system and it represents the best-studied 

member of the family (Georgopoulos, 2017; Heizmann et al., 2018). 

 

- In HSPC 

         Germline Ikaros KO has a strong impact on hematopoiesis, as several lineages 

are affected at different stages of development. Specifically, Yoshida and colleagues 

found an important involvement of Ikaros regulation as early as at the HSPC stage, 

where it promotes proper HSPC differentiation. Mice bearing an Ikaros germline loss 

of function mutation indeed show reduced LMPP (also known as MPP4) and CLP 
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(Yoshida et al., 2006). Furthermore, transcriptome analysis of Ikaros KO LSK, in 

comparison to WT LSK, revealed a depletion of lymphoid gene signatures, with 

concomitant increased expression of stem cell-like genes (Ng et al., 2009). The 

authors concluded that Ikaros directly primes lymphoid gene expression in LSK or 

HSC. However, this interpretation may be not completely accurate, as at the time of 

this study the LSK pool was not well defined and it was studied as total bulk 

population. It is therefore difficult to distinguish whether the observed lymphoid gene 

depletion was directly mediated by Ikaros or, rather, it was an indirect consequence 

of an altered MPP composition. Today, given that the heterogeneity within the LSK 

population has been better resolved and great improvement has been achieved in 

low input and single cell-based techniques, it will be possible to investigate more 

accurately the mechanisms underlying Ikaros control of HSC differentiation.  

 

- In B cells 

         Ikaros is required also in early B cell development, as highlighted by its 

conditional deletion in pro-B cells. Lymphoid progenitor development requires 

adhesion to IL7+ MSC, while further maturation demands an efficient detachment 

(Freitas et al., 2017). Ikaros null pro-B cells showed a differentiation block at the early 

IL7 dependent pre-B cell stage and up-regulated genes involved in the IL-7 and 

Integrin dependent pathways (Heizmann et al., 2013; Joshi et al., 2014). 

Furthermore, ChIP-seq experiments showed that Ikaros directly binds and represses 

REs of cell adhesion coding genes, whereas it directly activates genes necessary for 

pre-B cell maturation (Hu et al., 2016).  

 

- In T cells 

         Immature Double Negative (DN) thymocytes carrying a hypomorphic Ikaros 

mutation (IkarosL/L) have altered H3k27 tri-methylation landscape along with entropic 

gene expression up-regulation. ChIP-seq experiments showed that Ikaros directly 

binds and represses enhancers typically active in immature HSC and progenitors. 

Consequently, IkarosL/L thymocytes progress their maturation with an inefficient and 

delayed repression of ectopic HSPC genes (Freitas et al., 2017). However, despite 

these alterations, IkarosL/L thymocytes manage to reach the final CD8 and CD4 

stage, while remaining defective and able to develop leukemia (Dumortier et al., 

2006; Oravecz et al., 2015).  
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Aiolos:  

         In contrast to Ikaros, Helios and Eos, Aiolos is the Ikaros member exclusively 

expressed in mature B and T cells. Aiolos KO mice have specific defects only during 

late B cell maturation: small pre-B cell compartment is expanded, highlighting a block 

of differentiation at this stage of B cell development (Wang et al., 1998). ChIP-seq 

experiments performed on pre-B cells showed that almost all Ikaros-bounded genes 

were also bounded by Aiolos (Hu et al., 2016). Despite this could suggest the 

existence of functional redundancy between the two factors, overexpression of Aiolos 

alone into Ikaros KO pre-B cells does not rescue the differentiation phenotype, 

suggesting that these factors may possess unique and different features, despite 

being very similar (unpublished data from our lab). 

 

Helios: 

         Helios is characterized by a peculiar expression pattern, with high mRNA levels 

detected in HSPC as well as in more differentiated Treg cells. While there is a large 

body of literature on its role in Treg cells, Helios contribution to HSPC biology has not 

been fully addressed yet. Helios KO mice do not show any alteration in T cell 

development, although Treg functionality appears to be compromised (Kim et al., 

2015; Liu et al., 2012). Kim and colleagues reported that Helios KO Treg are not as 

efficient as WT Treg in suppressing T helper cell activation; moreover, mice depleted 

of Helios activity are prone to develop autoimmunity with aging. These findings have 

been partially reviewed by the group of Shevach, which confirmed a role of Helios in 

regulating Treg suppressive function without however reporting the emergence of 

any autoimmune phenotype (Sebastian et al., 2016). Kharas and colleagues recently 

found that Helios is additionally involved in leukemic stem cell regulation, as its 

removal decreases their self-renewal capability while supporting their myeloid 

differentiation. Besides those aspects, to our surprise they found Helios to be 

dispensable for normal HSPC function (Park et al., 2019). 

 

Ikaros structure and partners 

         As mentioned before, Ikaros, Helios, Aiolos and Eos encode proteins that are 

structurally highly similar: in the N-terminus, they all possess 4 kruppel-type zinc 



 44 

finger domains, important for the binding to the a/gGGAA DNA core motif, while the 

C-terminal part of the protein encompasses 2 additional zinc-fingers engaged in 

protein-protein interaction, allowing contacts between family members (Fig. H) 

(Heizmann et al., 2018). 

         Ikaros and Helios were found to predominantly and abundantly interact with the 

Nucleosome Remodeling and Deacetylase (NuRD) Complex, either by co-

immunoprecipitation or mass-spectrometry analyses. Additional co-factors, like the 

SMARCA4 and PRC2 complexes, have been also pulled down by Ikaros in co-

immunoprecipitation assay. However, mass spectrometry analyses never detected 

such interaction, thus suggesting that they may represent minor partners (Kim et al., 

1999; Oravecz et al., 2015; Sridharan and Smale, 2007).  

 

 
 
Figure H | High degree of homology between IKAROS proteins.  
Representation of the main structural domains shared among the four TF homologous family 
members: 4 N-terminal kruppel-type zinc finger domains (red) are crucial to mediate TF-DNA 
binding, while 2 zinc-finger domains in the C-terminus (blue) are used for dimerization. 
 

 

NuRD multi-protein complex 

         Involved in chromatin remodeling and catalysis of histone deacetylation, NuRD 

is a multi-protein complex composed of several subunits: one SWI/SNF ATPase 

chromatin remodeling subunit called CHD4; one zinc finger protein GATAd2a or 

GATAd2b; one MDB3 or MDB2 subunit acting as a bridge in order to link the 

“chromatin remodeling side” to the “histone deacetylase edge”, containing in turn the 

protein HDAC1/2, the two histone chaperones Rbb4/Rbb7 and two MTA proteins 

(Mta1, Mta2 and/or Mta3) (Fig. I). It has been proposed that TFs, such as the Ikaros 
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members, function by guiding NuRD to the DNA target sites. However, recent studies 

challenged this idea. In particular, NuRD is broadly found across all active 

enhancers/promoters in a variety of cell types and it has been suggested that its 

recruitment to given chromatin regions is primarily mediated by its affinity for open 

chromatin and for histone tail modifications (like H3k9ac) while, on the contrary, TF 

interaction may be important to then trigger NuRD activity (Bornelov et al., 2018; 

Tencer et al., 2017). 

         The NuRD complex is very likely used to fine tune gene expression, as the 

removal of its main components only moderately affects gene expression levels (with 

most of gene expression changes around ~2 fold). On a functional level, it can act 

either as positive gene activator or rather as a repressor by reducing chromatin 

accessibility. Several groups found that NuRD regulates enhancer/promoter activity 

primarily through its chromatin remodeling action and, only later, by changing histone 

acetylation levels. Moreover, Liang and colleagues found that deacetylation activity 

was not necessary to establish Ikaros/NuRD-mediated pre-B gene down-regulation, 

and they proposed that deacetylation may serve to stabilize an already acquired 

repressive state (probably through PRC2 complex recruitment) (Bornelov et al., 

2018; Liang et al., 2017). 

 

 

 
Figure I | The NuRD complex subunits. 
Schematic representation of the NuRD structure. Starting from the left: Chd4, the chromodomain 
helicase protein; Mdb3, the subunit that links the chromatin remodeling NuRD side to the histone 
deacetylase part containing HDAC1/2. Modified from (Bornelov et al., 2018). 
 

 

The polycomb repressive complex 2 (PRC2) 

         The Polycomb Repressive Complex 2 is a multi-protein complex comprising the 

core subunits SUZ12, EEC, RBBP4/7 and the methyltransferase subunit EZH2 or 1. 
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PRC2 is the only complex able to mono-, di- and tri-methylate H3 on lysine27 

(H3k27me1, H3k27me2 and H3k27me3). However, only H3K27me3 is associated 

with detectable PRC2 binding and found on repressed enhancers/promoters. The 

mechanism through which PRC2 is recruited to chromatin in order methylate 

histones and trigger chromatin compaction is matter of intensive study and still need 

to be properly understood. Several researches highlight that PRC2 non-core 

subunits, TFs and PRC1 may cooperate to stabilize PRC2 binding. Furthermore, 

unmethylated CpG islands and lncRNAs have been reported to facilitate PRC2 

binding (Laugesen et al., 2019; Oravecz et al., 2015).  

 

SMARCA4 (BRG1) 

         SMARCA4 is one of the two mutually exclusive ATPase subunits of the 

SWI/SNF complex (the other one is called SMARCA2); it hydrolyzes ATP to promote 

nucleosome mobilization. SMACA4 loss of function in MEFs causes either an 

increase or decrease of H3k27 acetylation levels across enhancers/promoters, with 

consequent changes in expression of the neighboring genes. Similar results were 

obtained also in other cellular systems, where ablation of the SMARCA4 SWI/SNF 

function was found to affect gene expression either positively or negatively. These 

findings suggest that SWI/SNF complex is able to act either as transcriptional 

activator or repressor (Alver et al., 2017; Bossen et al., 2015). However, while the 

mechanisms promoting REs activation by enhancing chromatin accessibility are 

known, the basis of SMARCA4 SWI/SNF repressive function remains poorly 

characterized. 

 

- Ikaros interacts with many partners: which one is the predominant one? 

         Given that Ikaros deletion results in either REs activation or repression, it has 

been proposed the following: i) its repressive activity is mediated through NuRD or 

PRC2 interactions, as these two complexes were considered repressive, while ii) 

Ikaros-mediated activation is accomplished through SMARCA4 binding, given that 

SMARCA4 was considered an activator. However, this view has been recently 

revisited. On the one hand, several groups reported that NuRD acts both as activator 

and repressor. Bornelov and colleagues experimentally tracked genome wide 

enhancer accessibility and histone modification by MNase-seq and ChIP-seq, after 

inducing NuRD complex assembly; they found that half of the REs were activated 
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upon NuRD assembly, while the other half was repressed, thus revealing a dual 

functional nature of NuRD. On the other hand, Liang and colleagues showed that 

Ikaros and SMARCA4 complex function in a mutual antagonistic logic in pre-B cells, 

with genes that are activated or repressed by Ikaros found to be, on the opposite, 

repressed or activated by SMARCA4. Supporting such scenario, Liang and 

colleagues observed that some pre-B cell specific enhancers (e.g. Myc and Igll1 

enhancers) require efficient Ikaros-NuRD interaction in order to achieve nucleosome 

compaction (repression) and SMARCA4 eviction. SMARCA4 deletion, on the 

contrary, caused Myc down-regulation in pre-B cells, confirming the antagonistic role 

of SMARCA4 versus Ikaros-NuRD complex mentioned before (Bossen et al., 2015; 

Liang et al., 2017).  

         In conclusion, SMARCA4-Ikaros interaction appears less abundant, not always 

detected, and associated with a reciprocal antagonistic role, proposing that: i) 

SMARCA4 is not a relevant Ikaros partner, perhaps found to interact with it only 

because localized in close proximity, and ii) SMARCA4 and Ikaros interact only to 

regulate a limited subset of REs, even though evidence of a functional Ikaros-

SMARCA4 cooperation are mostly missing. In addition, our laboratory has shown 

that repression of stem cell genes in thymocyte progenitors requires the interaction 

between Ikaros and the PRC2 complex. Ikaros loss of function in thymocyte 

progenitors results indeed in decreased PRC2 binding, decreased H3k27 tri-

methylation and stem cell gene up-regulation. Importantly, PRC2-Ikaros binding 

occurs mainly in NuRD depleted regions and represents ~20% of the total Ikaros 

binding activity. On the contrary, more than 60% of Ikaros bound regions are found to 

be in association with the NuRD complex (Oravecz et al., 2015). 

         These findings propose NuRD as the main Ikaros partner, mediator of both its 

repressive and activating functions. On the contrary, PRC2 may represent a 

“secondary” partner whose recruitment may occur on REs that need to be stably 

repressed. It can be hypothesized that PRC2-Ikaros binding localizes to site 

previously deacetylated on H3K27 by Ikaros-NuRD, thus facilitating PRC2 

recruitment, methylation and further repression. 
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AIM OF STUDY 

 

         As introduced, the Ikaros family of TFs represents a group of critical 

hematopoietic regulators. They control several aspects of the development of 

lymphoid B, T cells as well as dendritic cells (Heizmann et al., 2018; Mastio et al., 

2018). One of the most interesting features of these TFs is their unique pattern of 

expression. In such respect, Helios is the Ikaors factor whose expression has been 

shown to be restricted within HSPC and mature Treg cells. Moreover, its expression 

is dynamically regulated during aging, with its down-regulation occurring specifically 

in old LT-HSC. Notably, while Helios role within Treg cells has been recently 

characterized (Kim et al., 2015), little is currently available on its function within the 

HSPC.  

         HSPC population comprises self renewing HSC and lineage biased MPP: 

MPP2, MPP3 and MPP4. The phenotipical and functional composition of the HSPC 

compartment has been extensively studied in the past few years (Pietras et al., 

2015). However, molecular mechanisms and players involved in the initial steps of 

hematopoietic diversification remain mainly obscure.  

         In our work, we aimed at elucidating the role of Helios within the HSPC 

population, in order to uncover how this Ikaros member is eventually able to shape 

HSPC differentiation and aging. 
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MATERIALS AND METHODS 

Mouse lines 

       Helios germline knockout mice were generated as described in (Cai et al., 2009). 

Briefly, Helios exon 7 was replaced by a 1.8-kb floxed PGK-neo-poly(A) cassette in 

order to remove the C-terminal part of the Helios protein, that encodes for two sets of 

zinc fingers. The vector used for the homologous recombination was transfected into 

P1 129/Sv embryonic stem cells and the recombination event was detected by 

Southern Blot. A positive clone was selected for injection into the C57BL/6 blastocyst 

to produce chimeric mice. Germline transmission was verified by PCR on tail or finger 

extracted genomic DNA using the primers P1, P2 and P3 (P1-P2 for the WT allele, 

P1-P3 for the knockout allele). The mouse used for the experiments in the present 

study were backcrossed six times onto the B6 background.  

         T cell conditional knockout was obtained by crossing mice bearing IKZF2 loxP 

flanked (f/f) insertion on exon 7 (Sebastian et al., 2016) with mice expressing the 

CRE recombinase under the control of the CD4 regulatory elements (Lee et al., 

2001). Germline transmission was verified by PCR on tail or finger extracted genomic 

DNA using the primer set P4and P5 to interrogate Helios deletion and the primer pair 

P6 and P7 for Cre recombinase transmission. Additionally, Helios conditional deletion 

was analyzed by BM Treg Helios intracellular staining. All mice were bred and 

maintained under pathogen free conditions in the animal facility of the Institut de 

Génétique et de Biologie Moléculaire et Cellulaire (IGBMC). Both males and females 

were used for the described experiments and mice were sacrificed at 6, 10 and 20 

week-of-age.  

 

Genotyping primer list:  
 

P1: 5′-TCTATTAGTGTCAGCTTTTTGACAGTTT-3′ 

P2: 5′-GATGAATTCCTTATAGATGTCCTTCAGAGAGCC-3′ 

P3: 5′-ATCTGCACGAGACTAGTGAGACG-3′ 

P4:	5′-CTGAGCCTCACACAATTGGA-3′ 

P5:	5′-TATGTGACCACACAAAGGGG-3′ 

P6: 5′-GTTCGCAAGAACCTGATGGACA-3′ 

P7: 5′-CTAGAGCCTGTTTTGCACGTTC-3′ 
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Flow cytometry analyses 

         Total bone marrow cells were prepared by crushing on a mortar 2 tibias, 2 

femurs, 2 pelvis, the sternum and the spine. Bone marrow derived cell suspension 

was incubated in 0.15M NH4Cl water solution for 2 minutes at RT in order to 

eliminate mature red blood cells. The cell suspension was further filtered using a 

100um cell strainer. The following antibodies were used in the described 

experiments: CD3e (145-2C11), CD4 (RM4-5), CD8 (53-6.7), CD11b (M1/70) CD11c 

(HL3), CD16/32 (2.4G2), CD19 (6D5), CD25 (PC61.5), CD41 (MWReg30), CD45 

(30-F11), CD45.1 (A20), CD45.2 (104.2), B220 (RA3-6B2), CD48 (HM48-1), CD71 

(R17217), CD105 (MJ7/18), c-KIT (2B8), CD127 (A7-R34), Flt3 (A2F10), CD150 

(TC15-12F12.2), FoxP3 (FJK-16S), GR1 (RB6-8C5), Helios (D8W4X), IFNg 

(XMG1.2), IL10 (JES5-16E3), SCA1 (D7), Ter119 (TER-119), AN2 (1E6.4), CD31 

(390), IL-2 (JES6-5H4). 

         ~5x106 cells were incubated with 2-5ug/ml of specific fluorophore or biotin 

conjugate antibodies. Biotinylated antibodies were detected with fluorochrome 

conjugated streptavidin. For intracellular protein staining, ~5x106 of previously 

surface stained BM cells were incubated o/n at 4°C in Fixation-Permeabilization 

solution (eBioscence 00-5523-00), permeabilized in permeabilization buffer 

(eBioscence 00-5523-00) and stained with primary antibodies 1h at RT, and with an 

eventual secondary antibody 1h on ice. Populations were defined as follow: 

Lineage staining (lin)+: (CD3, CD4, CD8, CD11b, CD11c, B2200, CD19, Ter119, 

CD71)+; LT-HSC: Lin-, SCA1+, c-KIT+, CD150+, CD48-; ST-HSC: Lin-, SCA1+, c-KIT+, 

CD150-, CD48-; MPP: Lin-, SCA1+, c-KIT+, CD150, CD48+; mkLT-HSC: Lin-, SCA1+, 

c-KIT+, CD150+, CD48-, CD41+; MPP2: Lin-, SCA1+, c-KIT+, CD150+, CD48+; MPP3: 

Lin-, SCA1+, c-KIT+, CD150-, CD48+, Flt3-; MPP4: Lin-, SCA1+, c-KIT+, CD150-, 

CD48+,Flt3+; CLP: Lin-, SCA1low, c-KITlow, CD127+,Flt3+;  MkP: Lin-, SCA1-, c-KIT+, 

CD150+, CD105-, CD41+; GMP: Lin-, SCA1-, c-KIT+, CD150-, CD16/32+; CMP: Lin-, 

SCA1-, c-KIT+, CD34+, CD16/32low; EryP: Lin-, SCA1-, c-KIT+, CD150+, CD105-, 

CD41-; pre MEP: Lin-, SCA1-, c-KIT+, CD150+, CD105-, CD41-; pre-GM: Lin-, SCA1-, 

c-KIT+, CD150-, CD105-, CD41+, CD16/32-; Erythrocytes: Ter119+,CD71+/low ; Myeloid 

cells: GR1+,CD11b+; B cells: B220+,CD19+; CD4+ T cells: CD4+,CD8-; Treg : CD4+, 

FoxP3+; CD8+ T cells: CD4-,CD8+. Samples were acquired on BD LSRII, LSR 

Fortessa and analyses were performed using Flowjo10 analysis software (TreeStar).  
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Fluorescence-activated cell sorting (FACS) 

         BM cells were prepared as described above, incubated for 20 minutes at 4°C 

with rat (CD3, CD4, CD8, CD11b, CD11c, B2200, CD19, Ter119, CD71) antibodies 

(rat IgG). Lineage positive stained cells were magnetically separated using anti-rat 

conjugated magnetic immunobeads (Dynabeads™ Sheep Anti-Rat IgG 11035). 

Depleted cells were stained as previously described and samples were acquired and 

sorted on BD FACS ARIA II or FACS ARIA Fusion. 

 

Colony forming unit (CFU) assays and single cell cultures 

         BM colony forming unit assay: 150.000 unfractionated BM cells were added to 

either 3ml of complete MethoCultTM media (3434) containing 50ng/ml SCF, 3U/ml 

EPO, 10ng/ml IL-3, 10ng/ml IL-6 or 3ml of MethoCultTM media (3134) supplemented 

with the following cytokine: 50ng/ml SCF, 50/ml TPO, 20ng/ml IL-3. 2 out of the 3 ml 

of media containing cells were further split, by using a 5ml syringe equipped with a 

19 gauge needle, into two distinct 30mm petri dish (1ml each). The Petri dishes were 

finally accommodated, along with an extra distilled water filled dish, inside to a larger 

dish in order to avoid medium evaporation. Cells were incubated in a 5% CO2 

humidified (95%) chamber incubator at 37°C. 8 days after cell seeding, colony 

morphology and number were scored using a Leica stereo microscope. 

Megakaryocyte containing colonies were defined as colonies containing large and 

light diffracting cells. Positive megakaryocyte and myeloid colonies were separately 

collected for cytospin preparation and May Grünwald Giemsa (MGG) staining to 

further confirm cellular identity.   

         Single cell cultures of purified MPP: 120 single MPP were sorted onto 2 

separated U-shaped 96 well plates, containing 50ul of complete MethoCultTM media 

(3434). The external wells of the 96 well plates were all filled with deionized water, in 

order to avoid media evaporation. Cells were incubated as previously described. 

Colony morphology and number found in positive wells were evaluated using a Leica 

stereo microscope 8 days after cell seeding.  

         Single cell culture of purified LT-HSC: 100 single LT-HSC were sorted onto 2 

separated U-shaped 96 well plates containing StemSpantm SFEM (STEMCELL 

Technologies), 20% FCS, 1% β-mercaptoethanol (Sigma, 0.1nM), 1% penicillin / 

streptomycin, 50ng/ml SCF, 20ng/ml IL-3 and 50ng/ml TPO. The external wells of the 
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96 well plates were all filled with deionized water, in order to avoid media 

evaporation. Cells were incubated as previously described. Colony morphology and 

number found in positive wells were evaluated using a Leica stereo microscope 8 

days after cell seeding. Positive megakaryocyte and myeloid colonies were 

separately collected for cytospin preparation and MGG staining to further determine 

the presence of megakaryocytes, granulocytes and monocytes.   

 

CD4+ T cell stimulation and cytokine staining  

 BM cells were prepared as previously described and CD4+ cell enrichment was 

obtained through immunomagnetic mature lineage cell depletion. Briefly, BM cell 

suspension was incubated with the following rat antibodies, CD11b, B220, CD8, 

Ter119, for 20’ at 4°C. Antibody bounded cells were magnetically separated using 

anti-rat conjugated magnetic immunobeads (Dynabeads™ Sheep Anti-Rat IgG 

11035). ~5x106 CD4+ enriched BM cells were further incubated in IMDM containing: 

Glutamax, 10% iFCS, non-essential amino acids, Sodium Pyruvate (1 mM), Penicillin 

Streptomycin (100U/ml), Hepes 10mM, beta Mercaptoethanol (57,2uM); further 

addition of Phorbol 12-Myristate 13-Acetate (PMA, 0.5 ug/ml), Ionomycin (0.5 ug/ml) 

and Golgi plug (1/1000, BD Biosciences) allowed to stimulate cytokine production 

while avoiding their release. Cells were stimulated for 2 hours in a 5% CO2 humidified 

(95%) chamber at 37°C. After stimulation, cells were stained with an anti-CD4 

fluorophore conjugated antibody, fixed for 30 minutes at 4°C in Fixation-

Permeabilization solution (eBioscence 00-5523-00), permeabilized in 

Permeabilization buffer and stained o/n with IFNγ, FoxP3, Il-2, Il-10 fluorophore 

conjugated antibodies. Samples were acquired on BD LSRII, LSR Fortessa and 

analyses were performed using Flowjo10 analysis software (TreeStar).  

 

BM reconstitution assay 

         BM competitive transplantation: donor (CD45.2) unfractionated BM cells from 

either WT or He-/- 10/15 week-old sex-matching mice were mixed in IMDM along with 

the same amount of competitor cells derived from age-matching CD45.1 mice. 

150.000 donor cells were injected in the presence of the same amount of competitor 

cells, within the tail vein of lethally irradiated (9Gy) CD45.1 and CD45.2 5/6 week-old 
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recipient congenic mice. Seven to nine recipient mice per donor genotype were used 

for each experiment. Reconstitution was analyzed 2 and 4 months after injection. 

         LT-HSC reconstitution assay: donor (CD45.2) WT and He-/- LT-HSC from age- 

(10/15 week-old) and sex- matching mice were sorted and mixed in IMDM along with 

unfractionated helper BM cells. 100 LT-HSC were co-injected together with 500.000 

helper unfractionated BM cells, within the tail vein of lethally irradiated (9Gy) CD45.1 

and CD45.2 5/6 week-old recipient congenic mice. Seven to nine recipient mice per 

donor genotype were used for each experiment. Peripheral blood reconstitution was 

analyzed 2 and 4 months after injection.  

         MPP3 and MPP4 in vivo differentiation assay: donor (CD45.2) sorted MPP4 

and MPP3 cells from either WT or He-/- age- (15 week-old) and sex- matching mice 

were separately mixed in IMDM. 5000 MPP3 were injected within the tail vein of 

lethally sub-irradiated (6.5Gy) CD45.1 and CD45.2 5/6 week-old congenic recipient 

mice. In the same way, 5000 MPP4 were injected into sub-lethally irradiated (6.5Gy) 

CD45.1, CD45.2 congenic recipient mice. Four to five recipient mice per donor MPP3 

or MPP4 genotype were used for each experiment. Peripheral blood reconstitution 

was analyzed 2 weeks after transplantation. Mice reconstituted with less than 0.5% 

donor cells were excluded from the analyses (4 mice out of 60 were excluded). 

         Peripheral blood preparation and staining: 200ul of peripheral blood extracted 

from the tail vein or directly from the heart of euthanized mice were collected into 

microtubes containing 50ul of 50mM EDTA and scaled up to 500ul with PBS. 500ul 

of 2% dextran was further added to the blood suspension in order to obtained a final 

1% dextran solution, that was then incubated for 30’ at 37°C. The upper phase was 

taken, centrifuged at 500g for 5’ and the pellet was lysed into 0.15M NH4Cl water 

solution for 2 minutes at RT, in order to eliminate residual mature red blood cells. 

White blood cells were stained with the following antibodies: B220, CD11b, CD4, 

CD8, CD45.1 and CD45.2. Donor/competitor myeloid and B lymphoid cells were 

defined as: donor B cells:  % of B220+, CD11b- within the CD45.2+ ter119- population; 

donor myeloid cells: % of B220-, CD11b+ within the CD45.2+ ter119- population; 

donor T cells: % of B220-, CD11b- CD4-8+ within the CD45.2+ ter119- population; 

competitor B cells:  % of B220+CD11b- within the CD45.1+ ter119- population; 

competitor myeloid cells: % of B220-, CD11b+ within the CD45.2+ ter119- population.   
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RNA extraction and bulk mRNA sequencing  

       Total RNA was extracted from 10.000 to 40.000 sorted WT and He-/- LT-HSC, 

MPP3 and MPP4 cells. Total RNA extraction was performed using the RNeasy Plus 

Micro Kit (Qiagen 74034). Libraries were prepared with the Clonotech SMART-seq 

v4 Ultra Low Input RNA Kit for Sequencing. Libraries were sequenced on Illumina 

HiSeq 4000 sequencer (1x50 bases). Reads were pre-processed in order to remove 

adapter, poly(A) and low-quality sequences (Phred quality score below 20). After this 

pre-processing, reads shorter than 40 bases were discarded for further analysis. 

These pre-processing steps were performed using cutadapt version 1.10. Reads 

were mapped onto the mm10 assembly of Mus musculus genome using STAR 

version 2.5.3a. Gene expression quantification was performed from uniquely aligned 

reads using htseq-count version 0.6.1p1, with annotations from Ensembl version 94 

and “union” mode. Differential gene expression analysis were performed using the 

Bioconductor package DESeq2 version 1.16.1 on R 3.3.2. Wald statistical test was 

used to identified gene significantly differentially expressed among the following 

comparison: LT-HSC WT versus He-/-; MPP3 WT versus He-/- and MPP4 WT versus 

He-/-.   

WT versus He-/- heatmaps on differentially expressed gene with a False Discovery 

Rate <0.1 (FDR<0.1) were created by using Cluster and Java TreeView software. 

Gene set enrichment analyses (GSEA) were performed using the GSEA software 

(http://software.broadinstitute.org/gsea/index.jsp). Up- and down-regulated genes 

identified by comparing WT versus He-/- transcriptomes of LT-HSC, MPP3 or MPP4 

respectively (p-value < 0.05 and log2 fold change > 0.5) have been used to create the 

ranked lists. CLP and MkP, gene signatures(Grover et al., 2016) were tested over the 

LT-HSC, MPP3 or MPP4 ranked lists. Old LT-HSC gene signature were obtained 

from data published by the Goodell lab (Sun et al., 2014). Old LT-HSC transcripts 

were selected by picking the 450 highest (highest fold change) up- or down-regulated 

genes. Pathways analyses were performed on LT-HSC differentially expressed 

genes (p-value < 0.05 and log2 fold change > 0.5) using the Metascape website 

(http://metascape.org/gp/index.html#/main/step1).  
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Single cell mRNA sequencing 

Libraries preparation 
         35.000 LSK were FACS purified from 4 total mice: 2 WT and 2 He-/-. Each LSK 

pool was uniquely labeled with a different anti-CD45 HasTag Oligo (HTO) conjugated 

antibody (following the Cell Hashing protocol; (Stoeckius et al., 2018) (TotalSeq-

A0301 Hashtag 1, TotalSeq-A0302 Hashtag 2, TotalSeq-A0303 Hashtag 3, 

TotalSeq-A0304 Hashtag 4) In order to multiplex together the four samples. 

Moreover, all the four LSK pool were stained with common anti- CD150, CD48, CD41 

and Flt3 HTO conjugated antibodies for cell population identification (TotalSeq 

133937 antiCD41, TotalSeq 115945 antiCD150, TotalSeq 135316 antiCD135 and 

TotalSeq 103477 antiCD48), as reported for the CITE-seq protocol (Stoeckius et al., 

2017). 10.000 total cells (2500 from each LSK pool) were selected for library 

preparation. mRNA and HTO libraries were prepared by using the 10x Genomics 

Single Cell 3’ v2 technology. Briefly, following cell lysis inside droplets, cellular mRNA 

and antibody-derived oligos were reverse-transcribed and indexed with a shared 

cellular barcode by using the Chromium Single Cell 3’ Reagent kits v2 (10X 

Genomics). Indexed cDNA were then pooled and amplified by PCR according to 10X 

Genomics protocol with the addition of supplementary primers in order to amplify also 

the antibody-derived cDNA (CITE-seq and Cell Hashing). SPRI bead size selection 

was then performed in order to separate both the mRNA-derived cDNA (>300bp) and 

the tagged antibody-derived cDNAs (180bp).  For the mRNA derived cDNA library 

preparation, we further proceeded with standard 10x Genomics protocol. For tagged 

antibody-derived library, we used the 2x KAPA HiFi PCR Master Mix with the 

following program and primers: 

- Cite-seq library = 10 cycles: 95°C for 3’; 95°C for 20’’, 60°C for 30’’, 72°C for 

20’’; final elongation 72°C 5’.   

- Cell Hashing library = 10 cycles: 95°C for 3’; 95°C for 20’’, 64°C for 30’’, 72°C 

for 20’’; final elongation 72°C 5’.   
- primers :  

- 10x Genomics SI-PCR primer (for 10x Genomics Single Cell 3P v2) 

- 5’AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC 
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- Illumina Small RNA RPI1 primer (for ADT amplification; i7 index 1, 

5’CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGG

CACCCGAGAATTCCA 

- Illumina TruSeq D701_s primer (for HTO amplification; i7 index 1, shorter 

than the original D701 Illumina sequence) 

5’CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGA

CGTGTGC 
Libraries were sequenced on Illumina HiSeq 4000 sequencer (2x100 bases). 
Read 1: barcode and UMI; Read 2 cDNA. 

 
Gene expression and library analysis 

         3’ mRNA-seq library reads were processed using Cell Ranger count pipeline 

version 3.0.2 from 10x Genomics on mm10 Mus musculus assembly and Ensembl 

version 93. HTO and ADT library reads were merged together and processed with 3’ 

mRNA-seq library using Feature Barcoding Analysis option. Hashtag identification 

was performed using the approach proposed in (Stoeckius et al., 2018) with Seurat R 

package (Butler et al., 2018; Stuart et al., 2019) version 3.0.0 and R version 3.5.1 on 

HTO counts. Furthermore, Cell Ranger has been used to filter out outlier cells 

possessing: more than >5% read count belonging to mitochondrial genes, having 

more than 32,883 total count in 3’mRNA-seq library, having more than 740 read 

count in ADT library, having more than 3,234 read count in HTO library or belonging 

to none or more than one hashtag categories. Resulting file was further analyzed 

using 10x Genomics Loupe Cell Browser. 

         LT-HSC were defined as cell expressing CD150 HTO (log2 expression >100 

counts) and not expressing CD48 HTO (log2 expression < 100 counts). MPP were 

defined as cell expressing CD48 HTO (log2 expression > 100 counts). HSC-MPP2 

cells were defined as Mpl positive (log2 expression > 0.1 counts) and Flt3 negative 

(log2 expression < 0.1 counts). MPP4 cells were defined as Flt3 positive (log2 

expression > 0.1 counts) and Mpl negative (log2 expression < 0.1 counts). MPP3 

were defined as not HSC-MPP2 and MPP4 cells expressing Sox4 (log2 expression > 

0.1 counts). K-mean clustering was performed using the K-mean clustering option 

present in the 10x Genomics Loupe Cell Browser, using a K=3 set-up. Genes 

enriched in each K mean cluster were computed and extracted using the 10x 
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Genomics Loupe Cell Browser and enriched pathway terms uncovered using the 

online Medscape application (metascape.org).    

 

Heatmap generation 

Cell Ranger Graph-Based t-SNE was rotated of -20° on the x-axis and then 

fragmented in a defined number of segments. Gene expression mean, for all 

transcripts was calculated taking into account all cells belonging to a given segment. 

Informative genes were further filtered out:  for a given transcript, we calculated 

mean expression in the central segment, if the gene expression value was higher 

than 0.5 (in log2 scale) within the segments at the right or at the left of the central 

segment, the gene was selected for heatmap representation. Outlier transcripts were 

further manually excluded.  
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RESULTS 

1) ANALYSIS OF HELIOS PROTEIN LEVELS ACROSS BM CELL 
POPULATIONS  

Helios protein is highly expressed in Hematopoietic Stem and Progenitor Cells 
(HSPC) 

         It has been shown that Helios mRNA is abundantly expressed within 

Hematopoietic Stem and Progenitor Cells (HSPC) and also within regulatory T (Treg) 

cells (data from Immunological Genome Project (ImmGen,http://www.immgen.org); 

however, information on its protein levels are still missing. To shed light on Helios 

protein expression pattern in BM hematopoietic cells, and to uncover in which cell 

types Helios might operate, we performed flow cytometry analysis.  

         We distinguished different mouse Bone Marrow (BM) populations by performing 

cell surface antigen stainings (and also intracellular for FoxP3+ Treg cells) and we 

evaluated Helios expression by intracellular staining using an anti-Helios antiboby. 

This strategy provided some advantages with respect to the microarray experiments 

performed by the ImmGen consortium: first, our technique allowed the detection of 

the protein and, as such, provided a better readout of Helios expression in 

comparison to the mRNA (as mRNA levels do not always correlate with protein 

levels); second, flow cytometry analysis allowed to detect Helios protein at the single 

cell level, thus permitting to uncover whether this transcription factor is 

homogeneously or heterogeneously expressed within a given population of interest. 

         We found Helios to be expressed in more than ~97% of LSK, LT-HSC, ST-HSC 

and MPP cells (Fig. 1a,b). Moreover, we also detected the protein in most of the 

committed LK, GMP, MEP and MkP populations, with over ~88% of Helios-positive 

cells (Fig. 1a,c,d). These results contrast with the low Helios mRNA expression 

detected in committed cells by the ImmGen consortium (as shown in the discussion 

section). On the other hand, Helios expression is reduced in total Lin-Sca1-c-kit- 

(LSK-) cells, as only ~10% of such cells express Helios, showing that its expression 

progressively decreases with cell maturation (Fig. 1a). In agreement, no Helios 

protein was detected in B cells, myeloid cells and erythrocytes (Fig. 1e,f). On the 

contrary, CD4+ and CD8+ T cells are the only mature BM populations expressing this 
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transcription factor (Fig. 1g), with high levels specifically detected in the Treg Foxp3+ 

CD4+ cells (Fig. 1h). 

         In order to evaluate and compare Helios levels among different BM cell types, 

we analyzed its median fluorescence intensity (MFI) within the different 

hematopoietic populations. We found that Helios MFI is ~2000 in HSC (both LT and 

ST –HSC) and around 4000 in MPP2, MPP3 and MPP4 (Fig. 1i). In committed 

progenitors, Helios MFI remains the highest in the GMP (~4000), while in the MkP, 

MEP and CLP we found roughly the same expression than HSC (MFI ~2000; Fig. 
1i). Moreover, the myeloid, B and erythroid cells showed almost no expression of this 

transcription factor (MFI <100; Fig. 1i). Notably, we also analyzed Helios expression 

within non-hematopoietic cells, such as Mesenchymal Stem Cells (MSC) and 

Endothelial Cells (EC), as they represent an important component of the BM 

microenvironment where they regulate HSPC maintenance and differentiation. 

Interestingly, Helios is mostly absent in the non-hematopoietic population (CD45-) 

and has low MFI in both EC and MSC (Fig. 1l,m), suggesting that Helios may 

specifically operate only within hematopoietic cells.  

         Intriguingly, by analyzing transcriptomics data from recent publications 

comparing LT-HSC isolated from young and old mice, we found that Helios mRNA 

levels decrease during the process of aging (Grover et al., 2016; Sun et al., 2014). 

This motivated us to understand whether Helios downregulation: 1) also occurs at the 

protein level in LT-HSC and 2) is specific to the LT-HSC or occurs more generally in 

all Helios-expressing progenitor cells. To address these questions, we performed 

Helios intracellular staining in BM HSPC and committed progenitor cells using both 

old and young mice. Interestingly, we showed that Helios MFI decreases significantly 

only in LT-HSC (1.5X) and MkP (1.4X), whereas Helios age-related changes were 

not observed in ST-HSC, MPP2, MPP3, MPP4, GMP and MEP populations (Fig. 
1n,o). In addition, we noticed a correlation between the low Helios expression level 

and a high expression of CD41, a typical cell surface marker known to be up-

regulated in aged myeloid-megakaryocyte-biased LT-HSC (Fig. 1o) (Gekas and 

Graf, 2013). 

         In view of these results, we concluded that Helios is homogeneously and 

abundantly expressed by HSC and progenitor cells, whereas Helios protein is absent 

in mature B, myeloid, erythrocyte and non-hematopoietic (CD45-) cells (except for 

some T cells). Intriguingly, the decreasing level of Helios expression in aged LT-HSC 
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prompts the possibility that this transcription factor participates in the aging process. 

Altogether, these findings motivated us to research Helios role in HSCP biology, 

development and aging. 
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Figure 1 | Helios is highly expressed in HSPC and down-regulated with age in LT-HSC.  
(a-d) On the left, representative contour plots depicting different BM populations defined by 
surface antigen expression. On the right, representative flow cytometry histograms showing the 
intracellular Helios protein levels within the indicated populations. As negative control, cells were 
stained only with the secondary antibody and its intracellular signal was detected within the same 
BM population. Flow cytometry analysis of Helios expression in: (a) LSK (Lin-Sca+c-Kit+), LK (Lin-

Sca-c-Kit+), LSK- (Lin-Sca-c-Kit-) cells; (b) long-term hematopoietic stem cells (Lin-Sca+c-
Kit+CD150+CD48-; LT-HSC), short term hematopoietic stem cells (Lin-Sca+c-Kit+CD150-CD48-; 
ST-HSC); multipotent progenitors (Lin-Sca+c-Kit+CD150-CD48+; MPP); (c) granulocyte-monocyte 
progenitors (Lin-Sca-c-Kit+CD150-CD16/32+; GMP), megakaryocyte-erythrocyte progenitors (Lin-

Sca-c-Kit+CD150+CD41-CD105-; MEP); (d) megakaryocyte progenitors (Lin-Sca-c-
Kit+CD150+CD41+; MkP); (e) B cells (B220+CD11B-), myeloid cells (B220-CD11B+); (f) 
erythrocytes (Ery) or Red Blood Cells (Ter119+; RBC); (g) CD4+ T cells, CD8+ T cells; (h) Treg 
cells (CD4+FoxP3+). (i) Helios Median Fluorescence Intensity (MFI) within different BM 
populations. (l) Representative contour plot (top) of BM non-hematopoietic cells (CD45- and 
Ter119-) and their relative Helios levels (bottom), in comparison to control intracellular staining 
(secondary antibody alone). (m) Helios MFI in BM Endothelial Cells (CD45-CD31+Ng2-; EC), 
Mesenchymal Stem Cells (CD45-CD31-Ng2+; MSC) and LT-HSC. (n) Helios MFI in hematopoietic 
BM populations derived from young (blue) and old (gray) mice. (o) Representative flow cytometry 
histograms (top) of Helios expression in old (grey) and young (blue) LT-HSC, in comparison to 
control intracellular staining (secondary antibody alone). Dot plot (bottom) representing Helios 
expression in old (grey) and young (blue) LT-HSC, considering the CD41 antigen level. Mean±SD 
from 3-4 independent experiments. Statistical significance was calculated using an unpaired two 
tailed t-test, * p<0.05, **p<0.01 and ***p<0.01. 
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2) EFFECT OF HELIOS DELETION IN MATURE HEMATOPOIETIC 
CELLS AND COMMITTED PROGENITORS  
 

A) MYELOID AND LYMPHOID CELLS 

Helios knockout (He-/-) mice acquire a myeloid skewed hematopoietic system 

         In order to understand the role of Helios in hematopoiesis, we made use of a 

Helios germline knockout mouse line (He-/-), that we always subjected to experiments 

in comparison to control WT mice. In general, He-/- mice are slightly smaller in size 

than WT animals (Fig. S1a) and possess a peculiar eye phenotype, as they have a 

narrow eye opening. Important for our experiments, He-/- mice show only a mild 

tendency to possess less BM cells, with respect to WT mice. Moreover, we found that 

BM cellularity is often highly variable between experiments (Fig S1b). For this 

reason, in the present study, we represented data in percentages (% of a given cell 

population within the BM), without considering absolute numbers. In this way, we 

managed to correct for the high BM cellular variability. 

         We started our analysis by characterizing the myeloid and lymphoid progenitor 

and mature cell compartments by using flow cytometry analysis. Specifically, we 

collected BM cells from WT and He-/- mice at 6, 10 and 20 weeks of age, in order to 

comprehensively capture early but also eventual later hematopoietic defects 

happening during growth. Interestingly, across the entire investigated time window, 

we observed that He-/- mice have ~1.6 times less Common Lymphoid Progenitors 

(CLP) and ~1.5 times less mature B lymphoid cells, in comparison to WT BM (Fig. 
2a, S2a, S2c). On the contrary, the He-/- myeloid compartment is increased, but only 

10- and 20- week-old animals bear such changes. Starting from 10 weeks, He-/- bone 

contains 1.2 times more GMP, while mature myeloid cells increase significantly only 

around 20 weeks (Fig. 2b, S2b, S2c). It must be noted that, in contrast to the B cell 

and myeloid compartments, CD4+ and CD8+ lymphoid cells are unaffected in He-/- 

mice, as their percentages did not change with respect to the WT counterpart (Fig. 
2c). Altogether, these results highlighted that Helios loss causes a bias in the 

production of hematopoietic cells, with a gain of myeloid derived cells and a reduction 

in the B lymphoid cell compartment. 

         To more directly confirm these findings, we quantified the number of myeloid 

progenitors using an alternative in vitro Colony Forming Unit (CFU) assay. We 
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seeded WT and He-/- BM cells into a semisolid media containing SCF, IL3, IL6 and 

EPO cytokines optimal to promote granulo-monocyte and erythroid progenitor 

expansion (MethoCult 3434 containing; Fig. 2d). Eight days after cell seeding, we 

counted the number of granulocyte/monocyte colonies, that we were able to 

distinguish from the erythroid ones based on chromatic features (erythroid colonies 

are red). Interestingly, we observed that He-/- BM possesses more myeloid colony 

forming unit cells, in both culture conditions, with respect to WT bones (Fig. 2e).  

         In conclusion, these results showed that Helios deletion caused a reduction in 

the B lymphoid lineage, while progressively skewed the hematopoietic system 

towards the myeloid fate, by mainly acting at the level of committed progenitors 

(CLP, GMP). Interestingly, the hematopoietic system conformation observed in He-/- 

mice is reminiscent of that observed in old mice (Rossi et al., 2005). 
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Figure 2 | Myeloid and lymphoid progenitor abundance is altered in He-/- mice.  
(a-c) Left – Representative contour plots of BM surface stained WT and He-/- populations. Right – 
Percentage of the indicated populations within the BM of 6-, 10- and 20- week-old WT or He-/- 
mice. (a) Flow cytometry analysis of Common Lymphoid Progenitor (CLP) and mature B cells. (b) 
Flow cytometry analysis of granulocyte and monocyte progenitors (GMP) and mature myeloid 
cells. (c) Flow cytometry analysis of CD4+ and CD8+ T cells. Mean ±SD from 3-7 independent 
experiments per mouse age. Statistical significance was calculated using an unpaired two tailed t-
test, * p<0.05 and **p<0.01. (d) Myeloid Colony Forming Unit (CFU) assay strategy: 50.000 
unfractionated BM cells from WT or He-/- 10- and 20-week-old mice were seeded in MethoCult 
cytokine complete medium (10ng/ml IL-3, 10ng/ml IL-6, 50ng/ml SCF and 3U/ml EPO) [3434]. (e) 
Box plot representing the number of granulocyte and monocyte (Gr-Mo) colonies after 8 days of 
culture. Mean ±SD from 4 independent experiments. Each experiment was performed in technical 
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duplicate. Statistical significance was calculated using an unpaired two tailed t-test, * p<0.05 and 
**p<0.01. 
 

 
B) MEGAKARYOCYTE AND ERYTHROID CELLS 

Increased megakaryocyte progenitor pool in He-/- BM  

         The premature aging phenotype that emerged in the absence of Helios 

encouraged us to analyze also the megakaryocyte and erythrocyte lineages. We 

performed flow cytometry analysis of BM megakaryocyte progenitors, erythroid 

progenitors as well as mature erythrocytes. We found a mild reduction in mature 

erythrocytes in He-/- 20-week-old mice, in comparison to the WT counterpart; 

however, such changes were not significant (Fig. 3a, S3a). In agreement with this 

result, we also did not observe a significant difference between WT and He-/- 

erythroid progenitors at all the investigated ages (Fig. 3b, S3b). On the contrary, He-/- 

BM showed a significant and gradual megakaryocyte progenitor expansion (Fig. 3c), 

a typical feature observed also during hematopoietic aging.  

         In order to independently confirm this last result, we quantified megakaryocyte 

progenitor abundance using an in vitro CFU assay. We seeded total BM cells from 

WT and He-/- mice, on IL3, SCF and TPO cytokine-containing semisolid media 

(MethoCult 3134) (Fig. 3d). After eight days of culture, we counted the number of 

megakaryocyte colonies characterized by the presence of large megakaryocyte cells 

(5-to-10 times larger than monocyte and granulocyte cells; Fig. 3f). Furthermore, to 

confirm the reliability of our analysis, we performed May Grünwald Giemsa (MGG) 

staining on the scored colonies (Fig. 3g). In line with the previous results, we 

detected three times more megakaryocyte colonies (~90) in He-/- mice (Fig. 3e), with 

respect to the WT counterpart (~25), highlighting that loss of Helios correlates with an 

expansion of megakaryocyte progenitors.  
In summary, our exploration of the mature and committed progenitor BM 

compartments revealed that He-/- mice have a lymphoid progenitor (CLP) reduction 

from an early age, along with a gradual accumulation of megakaryocyte and myeloid 

progenitors. Interestingly, these peculiar phenotypes are reminiscent of the main 

features found within the BM of old mice.   
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Figure 3 | Increase of megakaryocyte progenitors in He-/- mice.  
(a) Percentage of BM erythrocytes (Ter119+) and (b) Erythroid Progenitors (Ery-P; Lin-c-kit+Sca1-

CD105+) in 6-, 10- and 20- week-old WT and He-/- mice. (c) Representative gating strategy to 
identify Megakaryocyte Progenitors (MkP); on the left, percentage of MkP within the BM of 6-, 10- 
and 20-week-old WT and He-/- mice. Means ± SD from 3 to 8 independent experiments per 
mouse age. Statistical significance was calculated using an unpaired two tailed t-test, * p<0.05, 
**p<0.01 and ***p<0.001. (d) Megakaryocyte CFU assay strategy: 50.000 total BM cells derived 
from 10- and 20-week-old WT and He-/- mice were seeded in MethoCult medium [3134] with the 
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addition of the following cytokines: 50ng/ml SCF, 20ng/ml IL3 and 50ng/ml TPO. Large 
megakaryocyte colonies were scored after 8 days. (e) Box plot showing the number of 
megakaryocyte colonies after 8 days of culture. (f) Representative picture of a megakaryocyte 
colony. (g) May Grünwald Giemsa (MGG) staining of BM derived colonies. Mean ±SD from 4 
independent experiments. Each experiment was performed in technical duplicate. Statistical 
significance was calculated using an unpaired two tailed t-test, * p<0.05 and **p<0.01. 
 
 

3) EFFECT OF HELIOS DELETION ON MULTIPOTENT 
PROGENITORS AND HEMATOPOIETIC STEM CELLS 
 

A) MPP3 AND MPP4 

Reduced lymphoid potential in He-/- LSK cells 

         To gain insights into the origin of the altered myeloid-to-lymphoid ratio in He-/- 

mice, and discriminate between a defect disturbing the more committed progenitors 

or the stem cell and MPP levels, we analyzed by flow cytometry different MPP 

subpopulations, with a focus on myeloid-biased MPP3 and lymphoid-biased MPP4. 

Starting from 6 weeks of age, we found that the MPP4 compartment was significantly 

reduced (1.6X) in He-/- mice, in contrast to a global increase of the MPP3 population 

(1.2X) (Fig. 4a, S4a). 

         Given that Flt3 represents the MPP4 identifier antigen, we wanted to 

understand whether our observation was genuine and not due to an eventual Flt3 

down-regulation. Thus, we evaluated the MPP3 abundance (and indirectly also the 

MPP4 percentage) within the total MPP population, undertaking the ex vivo 

approach. We purified single WT and He-/- MPP cells into a 96 well plate and cultured 

them with medium containing cytokines stimulating myeloid cell proliferation 

(MethoCult 3434 containing SCF, IL3, IL6, EPO). Eight days after cell plating, we 

tallied the wells containing a myeloid colony (Fig. 4b). He-/- MPP generated 

significantly more myeloid colonies (1.2X) with respect to the WT MPP (Fig. 4c), 

therefore confirming, with a different approach, that He-/- MPP3 predominate over the 

lymphoid biased MPP4.  

         In addition, we further investigated the MPP potential using an in vivo 

transplantation approach. We purified WT and He-/- donor MPP3 and MPP4 cells 

(marked by the surface antigen polymorphism CD45.2), and we separately 
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transplanted them into sub-lethally irradiated recipient mice (marked by surface 

antigen polymorphism CD45.1 and CD45.2) (Fig. 4d). Two weeks after MPP3 and 

MPP4 transfer, we quantified blood B lymphoid and myeloid cells derived from WT 

and He-/- donors. We uncovered that donor He-/- MPP4 cells repopulate the B 

lymphoid compartment less efficiently (1.7X) than the WT counterpart and partially 

differentiate towards the myeloid lineage (CD11b+) (1.7X) (Fig. 4e, S4b). On the 

contrary, no differences were observed in the behavior of the MPP3, as both WT and 

He-/- MPP3 cells specifically give rise to equal amounts of myeloid cells (Fig. 4f, 
S4c). These results corroborated the validity of our previous observation and, 

moreover, showed that He-/- MPP4 are less efficient in producing lymphoid B cells, 

with respect to the WT counterpart. 

         Altogether, these findings revealed that Helios deletion affects lymphoid and 

myeloid development as early as the MPP stage, given that He-/- BM contains more 

MPP3 and less functional MPP4. 
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Figure 4 | Decreased lymphoid potential in multipotent progenitors of He-/- mice.  
(a) Left - Representative contour plots depicting WT and He-/- BM MPP3 (Lin-Sca+c-kit+CD150-

CD48+Flt3-) and MPP4 (Lin-Sca+c-kit+CD150-CD48+Flt3+). Right – Percentage of MPP3 and 
MPP4 within the LSK compartment of 6-, 10- and 20-week old mice. Means ± SD from 3 to 7 
independent experiments per mouse age. Statistical significance was calculated using an 
unpaired two tailed t-test, * p<0.05, **p<0.01 and ***p<0.001. (b) Schematic strategy underlying 
the myeloid CFU assay: sorted MPP from WT or He-/- BM were seeded into 96 well plates (one 
cell per well) containing MethoCult cytokine complete medium (10ng/ml IL-3, 10ng/ml IL-6, 
50ng/ml SCF and 3U/ml EPO) [3434]. Myeloid colonies were tallied after 8 days of culture. (c) 
Percentage of myeloid colonies originated from WT and He-/- MPP. Means ± Max/Min from 4 
independent experiments performed in duplicate. Statistical significance was calculated using 
paired two tailed t-test, # p<0.05 and ## p<0.01. (d) Experimental strategy for MPP3 and MPP4 
transplantation: 5000 purified MPP3 and MPP4 from donor WT or He-/- (CD45.2+) BM were 
separately transplanted into sub-lethally (6.5Gy) irradiated recipient mice (CD45.1 and CD45.2). 
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Blood myeloid (CD11B+) and B (B220+) cell reconstitution was measured 2 weeks after 
transplantation. (e-f) Percentage of blood myeloid and B cells, within the CD45.2+ population, 
derived from WT and He-/- (e) MPP4 or (f) MPP3. Mean ± SD of 4 independent experiments with 
3-4 recipient mice per genotype. Statistical significance was calculated using an unpaired two 
tailed t-test, * p<0.05 and  **p<0.01. 

 
 

B) MPP2 AND HSC 

He-/- HSC are megakaryocyte biased 

         Give that the myeloid / lymphoid ratio was affected already at the MPP level, 

we wondered whether also the megakaryocyte expansion observed in He-/- mice was 

caused by a defect occurring in their more upstream precursors: MPP2 or LT-HSC 

(Rodriguez-Fraticelli et al., 2018). Flow cytometry analyses showed that MPP2 and 

LT-HSC percentages are unchanged in He-/- mice with respect to the WT 

counterpart, at all investigated mouse ages (Fig. 5a,b, S5a).  

         In order to deeply investigate the LT-HSC and MPP2 compartments, we further 

looked at the expression of the surface antigen CD41, that has been already shown 

to specifically mark platelet biased LT-HSC (Gekas and Graf, 2013). In this case, we 

found that around 60% of both LT-HSC (Fig. 5c, red bars) and MPP2 (Fig. 5d, red 

bars) derived from He-/- mice were CD41+, a much larger fraction (3X) with respect to 

the WT LT-HSC and MPP2 counterpart (Fig. 5c,d, S5b). These findings suggest a 

scenario where Helios deletion causes a LT-HSC and MPP2 platelet-oriented 

phenotype. 

         An in vitro culture approach allowed us to test whether LT-HSC were indeed 

functionally platelet biased. We isolated single LT-HSC from WT and He-/- mice and 

seeded each of them into 96 well plates (one cell per well) containing medium 

supplemented with SCF, IL3 and TPO cytokines specific for megakaryocyte but also 

myeloid cell development. Eight days after the seeding, we tallied the wells 

containing megakaryocytes, recognizable because of their large cell size, and those 

containing only granulo-monocyte colonies (Gr-Mo only colonies) depleted of large 

cells (Fig. 5e). Furthermore, to validate our finding we performed MGG staining on 

megakaryocyte positive and myeloid only colonies; as expected, we found 

megakaryocytes (recognizable by morphology) only within megakaryocyte positive 

wells (Fig. S5c). Our result showed that He-/- LT-HSC give rise to significantly more 

megakaryocyte containing colonies (1.5X) when compared to WT stem cells; 



 73 

conversely, WT LT-HSC generate more “megakaryocyte depleted” colonies (1.4X) 

(Fig. 5f). 
         Taken together, these results suggest that Helios is able to affect 

megakaryopoiesis as early as the LT-HSC stage, in a way reminiscent of the 

phenotype observed in old LT-HSC. 
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Figure 5 | He-/- LT-HSC are biased towards the megakaryocyte lineage.  
(a) Representative FACS plot of BM LT-HSC and their LSK percentage in WT and He-/- 6-, 10- 
and 20- week-old mice. (b) Representative FACS plot of BM Lin-Sca+c-Kit+CD150+CD48+ MPP2 
and their LSK percentage in WT and He-/- 6-, 10- and 20- week-old mice. (c) Representative flow 
cytometry histogram showing the CD41 levels within LT-HSC cells of WT and He-/- mice. Right 
panel - percentage of CD41 positive LT-HSC in WT and He-/- 6-, 10- and 20- week-old animals. 
(d) Representative flow cytometry histogram showing the CD41 levels within MPP2 cells of WT 
and He-/- mice. Right panel - percentage of CD41 positive MPP2 in WT and He-/- 6-, 10- and 20- 
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week-old animals. Means ± SD from 3 to 7 independent experiments per mouse age. Statistical 
significance was calculated using an unpaired two tailed t-test, * p<0.05, **p<0.01 and 
***p<0.001. (e) Schematic strategy underlying the megakaryocyte-myeloid single cell culture 
assay: single LT-HSC from WT or He-/- BM were seeded into 96 well plates (one cell per well) 
containing StemSpan SFEM supplemented with the following cytokines: 50ng/ml SCF, 20ng/ml 
IL3 and 50ng/ml TPO. Megakaryocyte containing colonies (Mk+) and “granulo-monocyte only” 
colonies (Gr-Mo only) were tallied 8 days later. (f) Percentage of megakaryocyte or “granulo-
monocyte only” colonies derived from WT and He-/- LT-HSC. Each dot represents the mean ± 
Max/Min of 4 independent experiments all performed in technical duplicates. Statistical 
significance was calculated using unpaired two tailed t-test, * p<0.05 and ** p<0.01. 

 

4) INTRINSIC VERSUS EXTRINSIC HELIOS EFFECT ON HSPC 
REGULATION 

 

A) TESTING THE HELIOS HSPC EXTRINSIC ROLE: INFLAMMATION IN 
THE BONE MARROW MICROENVIRONMENT  

Th1-like inflammation takes place in He-/- bone marrow 

      Accumulating evidence have shown that in old BM there is an increased 

concentration of pro-inflammatory cytokines, like interferon (IFN)-γ and interleukin 

(IL)-6 (Ho et al., 2019). Such pro-inflammatory cytokines can suppress lymphoid 

progenitor development and favor a myeloid and megakaryocyte bias (Ho et al., 

2019; Mirantes et al., 2014). Moreover, when acute inflammation is ectopically 

triggered in young mice, LSK are rapidly affected and undergo dramatic expansion 

(~5X) (Haas et al., 2015; Mirantes et al., 2014; Schurch et al., 2014). In similar way, 

He-/- mice have less lymphoid progenitors (MPP4 and CLP), more megakaryocyte 

and myeloid biased MPP and undergo an age related LSK expansion (around week 

20), with respect to the WT counterpart (Fig. 6a,b). These findings suggest that a 

kind of pro-inflammatory condition might be present in He-/- BM. Furthermore, Helios 

is highly expressed in CD4+ Foxp3+ Treg cells, where it has been recently described 

to regulate their suppressive function (Kim et al., 2015). Interestingly, recent 

publications highlighted that FoxP3+ Treg cells are located close to LT-HSC in the 

BM and that their selective depletion promoted LSK expansion and lymphoid lineage 

restriction (Pierini et al., 2017). These pieces of data give space to a scenario in 

which Helios indirectly regulates HSPC development by promoting Treg suppressive 
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ability: defective BM Treg suppression may indeed trigger T cell-mediated 

inflammation and finally skew HSPC towards a megakaryocyte and myeloid direction.  

         To investigate further this possibility, we explored whether a T cell-mediated 

inflammation was indeed present in the BM of He-/- mice. To match such goal, we 

incubated CD4+ enriched BM cells in media containing PMA and ionomycin and 

Golgi-plug, in order to enhance cytokine production and avoid their release. After two 

hours of stimulation we evaluated, by flow cytometry, the intracellular levels of IFN-γ, 

IL-10 and IL-2, typical Th1 cytokines. Within the He-/- CD4+ effector T cell pool, we 

found an enhanced production of IFN-γ (4.5X), IL10 (3.5X) and IL2 (1.5X) Th1 

cytokines, with respect to the WT counterpart (Fig. 6c,d). On the contrary, cytokine 

production was not affected in CD4+ FoxP3+ regulatory T cells (data not shown). 

These findings highlighted that a Th1-like inflammation condition is present within the 

He-/- BM, reinforcing the idea that T cell-mediated inflammation may have a role in 

regulating the Helios dependent HSPC phenotype. 
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Figure 6 | Th1-like inflammation in He-/- BM.  
(a) Representative contour plots of LSK cells and (b) their BM frequency in WT and He-/- mice at 
6, 10 and 20 weeks of age. Means ± SD from 3 to 7 independent experiments per mouse age. 
Statistical significance was calculated using an unpaired two tailed t-test, * p<0.05. (c) 
Representative pseudo-contour plots of WT and He-/- CD4+ BM T cells, intracellularly stained for 
Foxp3, IFN-γ, IL-10 and IL-2. (d) Percentage of positive IFN-γ, IL-10 and IL-2 cells within the 
CD4+FoxP3- population of WT and He-/- 20-week-old mice. Means ± SD from 3 to 4 mice per 
genotype. Statistical significance was calculated using an unpaired two tailed t-test, * p<0.05. 

 
 
 
 

B) TESTING THE HELIOS HSPC EXTRINSIC ROLE: CONSEQUENCES OF 
ITS DELETION ON T CELLS 

Helios knockout in T cells marginally affects hematopoiesis 

         In order to understand whether the myeloid-to-lymphoid MPP bias, as well as 

the Th1-like inflammation were caused by Helios loss in T cells, we decided to ablate 
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Helios specifically in this cell population. To achieve this goal, we crossed a mouse 

line expressing the Cre recombinase transgene under the control of the CD4 

regulatory elements (CD4-Cre) (Lee et al., 2001) with a second mouse line carrying 

the Helios gene flanked by two LoxP sites (Hef/f; kindly provided by the Shevach 

laboratory). In this way, we obtained CD4-Cre+ expressing mice in which Helios is 

constitutively deleted in both CD8 and CD4 cells (CD4-He-/-) (Fig. 7a). We assessed 

the Helios specific deletion in T cells by performing intracellular staining with an anti-

Helios antibody. As control, we stained Helios positive HSPC where we recovered 

normal Helios expression as expected (data not shown).  

         We analyzed the BM B lymphoid, myeloid and HSPC compartments of CD4-

He-/- and control CD4-Hef/f mice using flow cytometry. We observed an identical 

amount of mature B and myeloid cells (Fig. 7b,c) and, furthermore, we did not detect 

any difference in MkP, CD41+ LT-HSC and MPP3 abundance (Fig. 7d,e,f,g). We only 

detected a mild, however not significant, reduction in MPP4 and CLP percentages 

(Fig. 7g,h). More in detail, we observed a trend where around half of the investigated 

CD4-He-/- mice showed decreased amounts of MPP4 (Fig. 7g, dashed lines). 

         In addition, CD4+ effector T cells derived from CD4-He-/- mice produced more 

IFNγ, in comparison to control mice (Fig. 7i). However, this phenotype was highly 

variable across CD4-He-/- animals, with a trend similar to that observed within MPP4 

(Fig. 7g). Indeed, roughly two groups of mice could be recognized (Fig. 7i, dashed 

lines): half of them producing abundant IFNγ, whereas the other half expressing low 

IFNγ, to an extent almost comparable to control mice. Given that several studies 

highlighted the importance of IFNγ in regulating the HSPC myeloid versus lymphoid 

skewing (reviewed in (Mirantes et al., 2014), we wondered whether high IFNγ 

production could explain the low MPP4 abundance observed in some CD4-He-/- 

animals (Fig. 7g, lower dashed line). We thus divided the CD4-He-/- mice into two 

separate groups, one of them containing the four mice showing the highest IFNγ 

production (IFNγhigh) and a second group containing the four mice showing the lower 

IFNγ secretion (IFNγlow; Fig. 7i,l). Interestingly, we found that IFNγhigh mice had 

significantly less MPP4, with respect to control mice (1.5X), while IFNγlow animals 

displayed MPP4 amounts comparable to that of control mice (Fig. 7m).  

         In conclusion, these findings revealed that Helios expressing T cells are 

dispensable for: i) LT-HSC megakaryocyte priming, ii) megakaryocyte progenitor and 
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MPP3 expansion, as well as iii) myeloid cell augmentation and mature B cell 

reduction. Notably, it is rather possible that Helios expressing T cells may play partial 

roles in controlling the MPP4 compartment (although the phenotype is not fully 

penetrant). However, in contrast to CD4-He-/- animals, 100% of germline Helios 

knockout mice showed MPP4 reduction, implying that the main mechanism 

underlying lymphoid progenitor diminution may be HSPC intrinsic, and probably only 

partially contributed by Helios deletion in T cells. 
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Figure 7 | Analyses of mice bearing a Helios conditional deletion in T cells.  
(a) Schematic breeding strategy used to obtain CD4-specific Helios deletion. Mice carrying the 
CD4-Cre transgene and the LoxP floxed Helios gene in heterozygosis were crossed to animals 
bearing the two Helios floxed alleles. The following mice were generated and used for our 
analyses: CD4-Cre+; Hef/f (-/-) experimental animals and control CD4-Cre-; Hef/f (f/f) mice. Sex- 
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(both males and females) and age- (10-week-old) matched mice were used for the described 
experiments. (b) Percentage of mature myeloid and (c) B cells in the BM of CD4-He-/- and CD4-
Hef/f mice. (d) Percentage of MkP in the BM of CD4-He-/- and CD4-Hef/f mice. (e) Percentage of 
CD41 positive LT-HSC in the BM of CD4-He-/- and CD4-Hef/f mice. (f) Representative flow 
cytometry histogram showing the CD41 levels in LT-HSC of CD4-He-/-, CD4-Hef/f and Helios 
germline KO mice. (g) Percentage of MPP3 and MPP4 cells within the LSK compartment of CD4-
He-/- and CD4-Hef/f mice. (h) Percentage of CLP in the BM of CD4-He-/- and CD4-Hef/f mice. (i) 
Percentage of IFNγ positive cells within the BM CD4+ Foxp3- population of CD4-He-/- and CD4-
Hef/f mice. (l) Percentage of IFNγ positive cells within the CD4+FoxP3- populations of CD4-Hef/f, 
CD4-He-/- IFNγlow and CD4-He-/- IFNγhigh mice. (m) Percentage of MPP4 within the LSK population 
of CD4-Hef/f, CD4-He-/- IFNγlow and CD4-He-/- IFNγhigh mice. Means ± SD from 3 to 7 independent 
experiments. Statistical significance was calculated using an unpaired two tailed t-test, * p<0.05, 
** p<0.01 and *** p<0.001. 
 
 
 
C) TESTING THE HELIOS HSPC INTRINSIC ROLE: He-/- HSPC IN A WILD 
TYPE ENVIRONMENT 

Helios regulates the myeloid versus lymphoid bias in a hematopoietic intrinsic 
manner  

         Given that Helios deletion is present in all cells of the organism (since it is a 

germline mutation), we wanted to test whether its removal was intrinsically affecting 

the hematopoietic system. To address this point, we injected He-/- LT-HSC into a WT 

environment, in order to selectively evaluate the consequences of Helios deletion 

exclusively within the hematopoietic system. In particular, we injected into lethally 

irradiated WT recipient mice (CD45.1 and CD45.2) 100 purified LT-HSC (donor 

CD45.2) either from He-/- or WT control mice, along with 500.000 helper BM cells 

(CD45.1) able to sustain hematopoiesis during the first weeks after irradiation. We let 

the donor stem cells reconstitute the host hematopoietic system for two months and, 

afterwards, we analyzed their blood donor reconstitution (Fig. 8a). He-/- donor LT-

HSC generated significantly less B lymphocytes (2.3X), more myeloid cells (2.3X) as 

well as equal amounts of T cells, with respect to the WT donor counterpart (Fig. 
8b,c). This result showed that He-/- LT-HSC possess the ability to generate a myeloid 

versus lymphoid biased system in a WT environment, further suggesting that Helios 

operates intrinsically in hematopoietic cells.  

         At this point, it was important to discriminate whether Helios acts directly, 

probably within HSPC, or rather its mutation affects mature cells (e.g. T cells) able, in 
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turn, to exert a negative feedback on HSPC. In order to address this point, we 

performed competitive BM transplantation experiments. In such setup, we injected 

equal amounts of WT (competitor) and He-/- donor cells within the same lethally 

irradiated recipient mouse. If Helios acts directly on HSPC, only the He-/- donor 

counterpart is going to be perturbed, whereas if Helios deletion affects HSPC 

indirectly, also the co-hosted WT competitor cells would result equally affected. More 

in detail, we injected 150.000 BM donor He-/- (CD45.2) cells along with the same 

amount of WT competitor BM cells (CD45.1) into lethally irradiated recipient mice 

(CD45.1 and CD45.2). As control, we generated a parallel system where we injected 

donor WT cells together with WT competitors (Fig. 8d). Two months after 

transplantation, we observed that competitor cells (CD45.1), injected along with He-/- 

donors (CD45.2), gave rise to a normal B lymphoid and myeloid ratio: ~60% of B 

cells and ~20% of myeloid cells (Fig. 8e, gray). On the contrary, He-/- donor cells 

generated a myeloid skewed system composed of roughly the same amount (~40%) 

of both B and myeloid cells (Fig. 8e, red). As expected, no differences in 

reconstitution ability were observed between WT donor and WT competitor cells (Fig. 
8f). Altogether, these findings support a scenario in which Helios intrinsically affects 

hematopoiesis, most likely by acting on uncommitted HSPC cells. 
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Figure 8 | Transplantation of donor WT and He-/- hematopoietic cells into lethally irradiated 
recipient mice.  
(a) Schematic strategy of LT-HSC transplantation assay: 100 donor WT or He-/- sorted LT-HSC 
were injected into lethally irradiated recipient mice along with 500.000 helper BM cells. (b) Blood 
donor B, T and myeloid cell reconstitution was assessed by flow cytometry two months later. (c) 
Percentage of blood myeloid and B cells within the CD45.2+ population derived from WT and He-/- 

LT-HSC. Means ± SD from 3 independent experiments with 6-7 recipient mice per genotype (for 
B and myeloid cells). Means ± SD from 2 independent experiments with 6-7 recipient mice per 
genotype (for T cells). Statistical significance was calculated using an unpaired two tailed t-test, * 
p<0.05, **p<0.01 and ***p<0.001. (d) Strategy for competitive BM transplantation assay: 150.000 
donor WT or He-/- BM cells were injected into lethally irradiated recipient mice together with 
150.000 WT competitor BM cells. Blood B and myeloid cell reconstitution was assessed two 
months later. (e) In gray, percentage of blood myeloid and B cells within the CD45.1+ population 



 82 

(derived from the WT BM competitor) and in red, percentage of blood myeloid and B cells within 
the CD45.2+ population (derived from He-/- donor BM cells). Both BM populations, CD45.1+ and 
CD45.2+, were co-transplanted into the same lethally irradiated recipient mice. (f) In gray, 
percentage of blood myeloid and B cells within the CD45.1+ population (derived from the WT BM 
competitor) and in white, percentage of blood myeloid and B cells within the CD45.2+ population 
(derived from WT donor BM cells). Both BM populations, CD45.1+ and CD45.2+, were co-
transplanted into the same lethally irradiated recipient mice. Means ± SD from 4 independent 
experiments with 6-7 recipient mice per genotype. Statistical significance was calculated using an 
unpaired two tailed t-test, * p<0.05, **p<0.01 and ***p<0.001. 
 

 

5) HELIOS HSPC REGULATED GENES 

Helios deletion affects HSPC transcription, with a stronger impact on LT-HSC 
population 

         HSPC cells are functionally and phenotypically affected in He-/- mice but we still 

miss information about the molecular profile of this cell population. In order to 

uncover genes potentially mis-regulated in absence of Helios, we performed mRNA 

sequencing on purified LT-HSC, MPP3 and MPP4 (from 10-week-old mice), which 

represent the most affected populations in He-/- BM. Hierarchical clustering of 

differentially expressed genes between He-/- and the WT counterpart showed that LT-

HSC are the most perturbed cells, with approximately 400 mis-regulated genes 

(FDR<0.1). On the contrary, only a few genes were affected in MPP3 (46 genes, 

FDR<0.1) and MPP4 (26 genes, FDR<0.1) populations (Fig. 9a,b). 

         In order to understand which kind of gene signatures were affected by Helios 

deletion, we performed gene set enrichment analysis (GSEA) on WT versus He-/- 

Differentially Expressed Genes (DEG) with a p-value < 0.05. We found that He-/- LT-

HSC up-regulated transcripts were enriched for genes typically overexpressed in old 

LT-HSC and for signatures characteristic of megakaryocyte progenitors (Grover et 

al., 2016; Sun et al., 2014). Moreover, He-/- LT-HSC down-regulated mRNAs were 

enriched for transcripts typically down-regulated in old LT-HSC (Fig. 9c). These 

findings well correlate with the increased LT-HSC megakaryocyte bias potential 

observed in vivo and in vitro, and also with the premature aging phenotype observed 

in He-/- mice. Similarly, we found enrichment of megakaryocyte progenitor signatures 

on up-regulated He-/- MPP3 genes (Fig. 9d), whereas the lymphoid (CLP) signatures 

were enriched on the down-regulated transcripts of both He-/- MPP3 and MPP4 (Fig. 
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9d,e). These results revealed, on a genome wide scale, that the lymphoid 

transcriptional priming is negatively regulated in He-/- MPP. 

         Given that LT-HSC underwent the largest changes in their gene expression 

profile, we decided to further explore the affected pathways. For this aim, Metascape 

analysis was performed on up- and down- regulated LT-HSC genes. Platelet 

activation resulted to be the best represented category within the up-regulated 

genes, along with other categories still related to platelet biology and activation (Fig. 
9f) (Nakamura-Ishizu et al., 2018). Regarding the down-regulated genes, the affected 

categories were more heterogeneous, with cell adhesion, cell projection assembly 

and microtubule-based processes being the most recurrent terms (Fig. 9f).  
         In conclusion, comparison of the mRNA profiles across HSPC populations 

revealed that LT-HSC are the most affected cells by Helios deletion. He-/- LT-HSC 

acquired an old-like gene expression profile, along with the overexpression of genes 

involved in megakaryocyte development and platelet activation.             
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Figure 9 | Transcriptome analysis of He-/- HSPC.  
(a) Heatmap derived from hierarchical clustering of WT versus He-/- LT-HSC, MPP3 and MPP4 
up- and down- regulated mRNAs. (b) Number of genes (FDR<0.1) up- and down-regulated in He-

/- LT-HSC, MPP3 and MPP4. (c) GSEA using a ranked list comprising up- and down- regulated 
genes in He-/- LT-HSC (p < 0.05). The signature list is composed of: up-regulated genes in old LT-
HSC (450 genes), down-regulated genes in old LT-HSC (450 genes) (Sun et al., 2014), gene 
signatures of MkP progenitors (Grover et al., 2016). (d) GSEA using a ranked list comprising up- 
and down- regulated genes in He-/- MPP3 (p < 0.05). The signature list is composed of MkP 
progenitor and CLP signatures (Grover et al., 2016). (e) GSEA using a ranked list comprising up- 
and down- regulated genes in He-/- MPP4 (p < 0.05). The signature list is composed of CLP 
progenitor signatures (Grover et al., 2016) (f) Metascape heatmap of enriched terms (e.g. Gene 
Ontology terms), colored by p-value, across He-/- up-regulated, down-regulated and randomly 
selected LT-HSC input genes (as negative control).  
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6) SINGLE CELL ANALYSES OF HSPC 

HSPC heterogeneity revealed by single cell mRNA sequencing analyses 

         In order to more comprehensively explore Helios function within HSPC and 

understand how the compartment is globally shaped by its deletion, we decided to 

probe the whole molecular heterogeneity within WT and He-/- LSK, looking at single 

cell resolution. As illustrated in Fig. 10a, to achieve this goal we FACS purified LSK 

cells from WT and He-/- mice in biological duplicates (analyzing two animals for each 

genotype). Importantly, immediately after cellular sort we labeled cells from each 

distinct sample with a unique HasTag Oligo (HTO)-tagged antibody directed against 

the CD45 surface protein, as described in the recently published Cell Hashing 

protocol (Stoeckius et al., 2018). This provided us the advantage of pooling the four 

samples together, as they can be later on demultiplexed. Labeled LSK were 

additionally stained using the CITE-seq protocol (Stoeckius et al., 2017), in order to 

specifically distinguish the HSC and MPP2-4 populations upon sequencing. In 

particular, for LT-HSC identification we used the CD150 and CD41 HTO conjugated 

antibodies, while for MPP2, MPP3 and MPP4 detection we added CD48 and Flt3 

HTO conjugated antibodies. We then collected 10.000 total cells (2.500 from each 

sample) that we used to prepare mRNA and HTO libraries using the 10X chromium 

technology. After library sequencing and further bioinformatics cell analyses, we 

confidentially identified 3470 single cells (Fig. 10a), on top of which we performed all 

the following analyses.  

         First, taking advantage of the Cell Hashing derived HTO sequences, we 

identified the relative WT and He-/- cells within the total pool of LSK cells, recovering: 

554 and 824 cells belonging to the two He-/- samples; 1175 and 914 cells derived 

from the two WT samples. In a next step, we wanted to detect and separate cell sub-

populations within the total LSK pool. For this, we applied two main different 

clustering strategies to our transcriptomic data (illustrated in the form of T-distribute 

Stochastic Neighbor Embedding (t-SNE) plots in Fig. 10b,c): one based on the K-

mean unsupervised machine learning algorithm (Fig. 10b) and a second approach 

relying on the cell specific expression of CITE-seq-derived CD150, CD41, CD48 and 

Flt3 HTO (Fig.10c). 

         Applying the K-mean clustering (with n=3), we reliably identified 3 populations 

separated mainly based on differences in cell cycle and DNA replication genes (Fig. 
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10b, S6a). The more “quiescent” cells, which are depleted of DNA replication and cell 

cycle transcripts, are located at the bottom part of the t-SNE plot within the so called 

Cluster Q (blue); the middle cluster accommodates less quiescent cells expressing 

genes like CDK1 and MCM3 (Cluster M, orange); finally, the “active” and proliferating 

cells localize at the top of the t-SNE plot as part of the Cluster A (green), marked for 

example by the cell cycle gene Mki67 (Fig. 10b, S6a).  

         While K-mean clustering helped to separate cells based on their proliferative 

status, we used the 4 CITE-seq derived HTO (CD150, CD41, CD48 and Flt3) to 

assess the HSPC composition in LT-HSC, MPP2-4 (Fig. 10c). Unfortunately, we 

were not able to technically detect a clear signal over the background for the Flt3 and 

CD41 HTO. On the contrary, we succeeded to obtain a strong and clear signal for the 

HTO CD150 and CD48 markers. By selecting cells possessing high CD150 and low 

CD48 expression we identified LT-HSC, mainly localized within the left bottom part of 

the t-SNE plot (Fig 10c, orange), while by selecting cells expressing only high CD48 

HTO we retrieved the MPP pool, more homogeneously distributed to the opposite 

side of the plot (Fig. 10c, blue).  

         Interestingly, by combining both clustering analyses (Fig. 10b,c), we could 

realize that the majority of LT-HSC populate the K-mean Q cluster comprising 

quiescent cells; of note, a small percentage of LT-HSC, perhaps less quiescent, are 

also found within the K-mean cluster M, probably reflecting the existence of two pools 

of LT-HSC: one more quiescent and a second one more active. On the contrary, 

MPP cells were more homogeneously distributed across all K-mean clusters. 

         Given the technical impossibility to identify the MPP2-4 populations by using 

our HTO-based system, we decided to rather identify such populations by using 

selected marker mRNAs derived from our transcriptomic data (Fig. 9a), in 

combination with the available ImmGen dataset. As expected, several 

megakaryocyte lineage-related genes, known to be expressed by MPP2 (Pietras et 

al., 2015), were also found in HSC (e.g. MpI, Gata2; Fig. 10d). On the contrary, 

lymphoid related genes were enriched within MPP4 (e.g.Flt3; Fig. 10d). 

Unexpectedly, while we were able to identify cell specific signatures for HSC and 

MPP4, this was not the case for MPP3 cells, whose genes are shared with HSC (e.g 

CD63, Vamp5 and Sdsl) and more often with MPP4 (e.g. Sox4, Spi1 and Cebpa; Fig 
10d). Based on this, among the identified markers we specifically selected the Mpl, 

Sox4 and Flt3 “population specific” genes for our next analyses, as they were the 



 87 

best captured transcripts within our single cell transcriptome (Fig. S6b,c,d). In 

particular, we defined: i) HSC and MPP2 as cells positive for Mpl and negative for 

Flt3; ii) MPP4 as cells expressing Flt3 but negative for Mpl; iii) MPP3 as Sox4 

expressing cells, non-overlapping with MPP4 and HSC-MPP2 (Fig. 10d, bold).           

         By applying these criteria of “cell separation” (Fig. 10e), we identified a “vertical 

patterned” distribution of the three cell populations, encompassing the whole height 

of the t-SNE plot. Starting from the left, we found HSC-MPP2 (Fig. 10e, red) followed 

by MPP3 in the middle part (Fig. 10e, green) and finally by MPP4 on the right side 

(Fig. 10e, blue). Furthermore, based on the expression of the well characterized 

MPP2 specific TF Gata1 (ImmGen), we additionally identified MPP2 cells within the 

HSC-MPP2 cluster as Gata1+ cells (Fig. S6b). Interestingly, Gata1+ MPP2 localize 

almost exclusively within the K-mean M and A clusters (Fig. S6b), whereas MPP3 

and MPP4 are abundantly present within all three K-mean clusters (Fig. 10e). The 

surprising discovery that several MPP3 and MPP4 reside within the K-mean cluster 

Q, along with many LT-HSC, reveals the existence of “quiescent stem cell-like” MPP, 

that we envision may represent the more upstream biased multi-potent progenitors.  

         In conclusion, by superimposing molecular mRNA signatures on single cell 

transcriptome data, we identified three “vertical” HSC/MPP2, MPP3 and MPP4 

populations (Fig. 10e). On the contrary, by using the K-mean clustering strategy we 

uncovered three “horizontal” clusters based on cell cycle and proliferative properties 

(Fig 10b). 
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Figure 10 | Single cell mRNA sequencing of WT and He-/- HSPC.  
(a) Schematic strategy of the single cell mRNA-seq experiment. LSK cells were purified from 2 
WT and 2 He-/- mice. Each pool of LSK cells was labeled with a unique HasTag Oligo (HTO) 
conjugated anti-CD45 antibody (for a total of 4 uniquely tagged antibodies), following the Cell 
Hashing protocol described in (Stoeckius et al., 2018). In order to identify cell populations, the 4 
LSK samples were additionally labeled with a common mix of HTO conjugated anti- CD150, 
CD48, CD41 and Flt3 antibodies (as described in the CITE-seq protocol from (Stoeckius et al., 
2018). After antibody incubation, 2500 LSK cells from each pool were collected and the total 
10.000 cells were processed for library preparation using the 10X chromium technology. (b) LSK 
t-distributed Stochastic Neighbor Embedding (t-SNE) plot of color-coded K-mean clusters (K=3): 
cluster Q (blue) = quiescent cells; cluster M (orange) = less quiescent cells; cluster A (green) = 
proliferative cells. Dashed lines delimit borders of the 3 K-mean derived clusters. (c) LSK t-SNE 
plot of color-coded CITE-seq-derived populations. CD150 and CD48 HTO levels define the LT-
HSC and MPP clusters as follows: LT-HSC have high levels of CD150 HTO (read counts > 100) 
and low levels of CD48 (read count < 100); MPP express high levels of CD48 HTO (read counts 
> 100). Dashed lines delimit borders of the 3 K-mean derived clusters. (d) Representative 
heatmap showing: selected genes specifically expressed within LT-HSC and MPP4. MPP3 
enriched transcripts are also shared between LT-HSC or MPP4. (e) LSK t-SNE depicting HSC-
MPP2, MPP3 and MPP4 populations defined based on the expression levels of three marker 
genes: Mpl, Sox4 and Flt3. HSC-MPP2 are defined as positive for Mpl (read counts > 0.1) and 
negative for Flt3 (read counts <0.1); MPP4 cells are defined as positive for Flt3 (read counts > 
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0.1) and negative for Mpl (read counts <0.1); MPP3 are defined as Sox4 positive cells (read 
count > 0.1), non-overlapping with HSC-MPP2 and MPP4 clusters. Dashed lines delimit borders 
of the 3 K-mean derived clusters.  
 

Helios acts on a small pool of quiescent HSPC  

         Our ability to properly dissect the heterogeneous nature of HSPC pool 

organization offered us the unique opportunity to carefully “map” the impact of the 

Helios deletion. In order dissect the HSPC Helios effect, we compared and analyzed 

the WT and He-/- HSPC populations taking into account their heterogeneity: the 

proliferative heterogeneity described by the three K-mean clusters (Fig 10b) and the 

“cell population” heterogeneity described by our mRNA markers (Fig 10e). For this 

reason, we superimposed our three mRNA derived HSPC groups HSC-MPP2, MPP3 

and MPP4 to the three quiescent/proliferative Q, M and A clusters and evaluated 

eventual changes in the amounts of HSC-MPP2, MPP3 and MPP4 within individual 

K-mean clusters, comparing the WT and He-/- conditions (Fig. 11a,b,c). Interestingly, 

we found that the He-/- HSC-MPP2 population is increased by 1.5 fold within the Q 

cluster, with respect to the WT counterpart (Fig. 11a, red), and such Helios-

dependent HSC-MPP2 augmentation is offset by a concomitant reduction (1.6X) of 

MPP4 percentage within the same cluster (Fig. 11a, blue). On the contrary, no 

obvious changes in abundance were detected within both WT and He-/- MPP3 in the 

Q cluster (Fig. 11a, green).  

         Surprisingly, we did not observe a remarkable trend within the proliferative M 

and A clusters (Fig. 11b,c): He-/- HSC-MPP2 belonging to cluster M were only 

marginally increased (1.15X; Fig. 11b, red), while He-/- MPP4 slightly reduced 

(1.18X; Fig. 11b, blue). Finally, no big differences were observed comparing He-/- 

and WT populations within the cluster A (Fig. 11c), although variability between 

replicates in the WT background complicates a clear interpretation of these 

experiments. 
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Figure 11 | Comparison of WT and He-/- HSPC at the single cell level.  
(a-c) WT and He-/- HSC-MPP2, MPP3 and MPP4 quantification across the three K-mean clusters: 
Q, M and A. (a) Percentage of HSC-MPP2, MPP3 and MPP4 within the cluster Q. (b) Percentage 
of HSC-MPP2, MPP3 and MPP4 within the cluster M. (c) Percentage of HSC-MPP2, MPP3 and 
MPP4 within the cluster A. 
 

 

         In order to corroborate our findings in a more unbiased way and without a prior 

arbitrary HSC-MPP2, MPP3 and MPP4 definition, we decided to analyze our single 

cell mRNA data undertaking a different clustering approach. Given that HSC, MPP3 

and MPP4 cells are distributed in a progressive fashion, across the entire “left to right 

axis” of our t-SNE representation (Fig. 10e), we decided to subdivide the t-SNE plot 

into arbitrary, equally sized, vertical segments. This criterion allowed us to cover the 

entire HSC to MPP4 progression with high resolution and without a prior population 

definition. Moreover, we further took into account the three K-mean proliferative 

clusters, in order to separately analyze quiescent cells from more proliferative cells 

and increase in this way the resolution of our analysis (Fig. 12a). Based on this logic, 

we ended up with 45 final vertical segments: 23 within the cluster Q, 16 contained 

within the cluster M and 6 coming from the cluster A (Fig. 12a).  

         To identify the identity of each segment, we computationally extracted genes 

responsible for the left to right separation. We found that segments on the left, as 

expected, are enriched in genes typically expressed in HSC and MPP2 (e.g. Gata2, 

Mpl; Fig 12b, red); the middle segments possess both HSC and MPP4 lymphoid-like 

signatures, therefore likely reflecting an MPP3 identity (Fig 12b, green); finally, the 
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extreme right segments express exclusively MPP4 lymphoid genes (e.g. Flt3, Dntt; 

Fig 12b, blue). Interestingly, our heatmap depicted a sort of “left to right 

developmental gradient”: on the left we found cells enriched in megakaryocyte-like 

transcripts that, progressively, loose their marker genes while acquiring novel 

lymphoid-like signatures. In such view, we decided to quantify WT and He-/- cell 

percentage within each segment, in order to understand which classes of segments 

were more affected by Helios removal. By comparing WT and He-/- cell abundance 

within the Q cluster segments, we found that He-/- cells are homogeneously more 

abundant within HSC-MPP2 and some MPP3 segments, while homogeneously less 

profuse within the lymphoid MPP4 columns (Fig. 12c). On the contrary, such 

sinusoidal pattern was not identified within the segments belonging to the M and A 

clusters, where He-/- enriched and depleted segments are randomly distributed along 

the developmental gradient (Fig. 12d,e,f,g).  
         Such results, in line with our previous findings, showed that Helios deletion 

affects a limited pool of quiescent HSPC. 
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Figure 12 | Helios deletion affects a pool of quiescent HSPC.  
(a) 45 equally spaced segments were chosen to divide the t-SNE plot across the left-to-right axis: 
23 segments divided the Q cluster, 16 segments the M cluster and 6 segments the A cluster. 
Each segment was considered as a cell population and mean expression values were calculated 
for each gene. (b,d,f) Heatmaps depicting gene expression differences across segments: 
differentially expressed transcripts across the left-to-right axis have been selected in order to 
identify HSC-MPP2, MPP3 and MPP4 specific segments. (b) Q cluster derived heatmap: 
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segments are classified as HSC-MPP2, MPP3 and MPP4 based on their expression profile. (c) 
Quantification of He-/- and WT cellularity across the 23 single segments of the Q cluster. For each 
WT and He-/- segment we calculated the relative cell percentage. For WT cells, we divided the 
number of cells in a given segment by the total number of WT cells within the Q cluster. The 
same operation was performed for the He-/- segments. Upon this calculation we performed the 
following operation: %of He-/- cells (within a given segment) - % of WT cells (within the same 
segment), in this way we identified the He-/- enriched segments and the He-/- depleted segments. 
(d) M cluster derived heatmap: each segment is classified as HSC-MPP2, MPP3 and MPP4 
based on its expression profile. (e) The analyses described in (c) were performed also for the 16 
segments of the M cluster. (f) Cluster A derived heatmap: each segment is classified as HSC-
MPP2 and MPP4 segment based on its expression profile. (g) The analyses described in (c) were 
performed also for the 6 segments of the A cluster.   
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7) SUPPLEMENTARY RESULTS 
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Figure S1 | BM cellularity within WT and He-/- mice. 
(a) Body weight (grams) of WT and He-/- 10-week-old mice (both males and females are 
represented in the graph). (b) Number of BM cells within WT and He-/- 10-week-old mice (both 
females and males are represented in the graph). BM cells were derived from 2 tibia, 2 femurs, 2 
pelvis and sternum.   
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Figure S2 | Gating strategy for myeloid and lymphoid cell identification by flow cytometry. 
(a-c) Representative gating strategy for the identification of WT and He-/-: (a) Common Lymphoid 
Progenitor (CLP); (b) Granulocyte Monocyte Progenitor (GMP); (c) mature myeloid and B cells. 
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Figure S3 | Gating strategy for megakaryocyte and erythrocyte progenitor cell 
identification by flow cytometry. 
(a-b) Representative gating strategy for the identification of WT and He-/-: (a) Erythroid cell (Ery); 
(b) Megakaryocyte Progenitor (MkP) and Erythroid Progenitor (Ery-P).  
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Figure S4 | Gating strategy for BM MPP3 and MPP4 identification by flow cytometry.  
(a) Representative gating strategy for the identification of WT and He-/- MPP3 and MPP4. (b-c) 
Representative gating strategy for the identification of blood B and myeloid cells derived from WT 
and He-/- (b) MPP4 and (c) MPP3. 
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Figure S5 | Gating strategy for LT-HSC and MPP2 identification by flow cytometry. (a) 
Representative gating strategy for the identification of WT and He-/- LT-HSC, ST-HSC, MPP and 
MPP2. (b) Representative flow cytometry histogram depicting the CD41 levels in LT-HSC, MPP2, 
ST-HSC and MPP. CD41 positive cells were defined using WT MPP as negative reference. (c) 
Top - Representative pictures of megakaryocyte-containing colonies (Mk+): MK+ only (left) and 
Mk+ + Gr-Mo cells, middle) and a “granulocyte-monocyte only” colony (Gr-Mo only, right). Bottom 
- MGG staining of the upper described colonies. 
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Figure S6 | Expression pattern of selected genes within single HSPC. 
(a) Mcm3, Cdk1 and Mki67 expressing cells (orange) within the t-SNE plot. (b) HSC-MPP2 
specific genes Mpl, Gata2 and Gata1 and their expression patterns (orange) within the t-SNE 
plot. (c) MPP3 and MPP4 specific genes Sox4, Spi1 and Cebpα and their expression pattern 
(orange) within the t-SNE plot. (d) MPP4 specific genes Flt3, Dntt and Il7r and their expression 
pattern (orange) within the t-SNE plot. 
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DISCUSSION  

Helios is differentially expressed across hematopoietic populations  

         During our investigation, we evaluated Helios protein levels in several BM cell 

populations. We observed that Helios is almost absent in non-hematopoietic CD45- 

cells, as well as in mature B, myeloid and erythroid cells, most likely excluding a 

Helios extra hematopoietic and mature cell-related role (exception made for Treg 

cells). As expected, we detected Helios proteins in HSPC and, surprisingly, also in 

committed progenitor cells (e.g. GMP, MEP and CLP) where low mRNA levels were 

detected by transcriptomic analysis (Fig. 13a). These data may suggest that Helios 

regulation at the post-transcriptional levels is highly exploited by progenitors that, in 

turn, need to compensate for their low rate of transcription. In addition, another 

interesting aspect concerns the fact that Helios levels do not completely correlate 

with the amplitude of its knockout phenotype: the more affected HSC have less 

Helios expression, with respect to some committed progenitors (e.g. GMP), that 

showed a milder and delayed phenotype (as better discussed in the following 

paragraph). One possible reason behind this Helios level/function discrepancy might 

be that Helios production within progenitor cells does not translate into a functional 

output, or perhaps its loss can be partially compensated by other highly homologous 

Ikaros members. Alternatively, Helios activity and its ability to bind DNA may be 

uncoupled from its expression level, depicting a scenario in which cells with lower 

Helios expression may “paradoxically” benefit of an augmented capacity of Helios to 

bind DNA and regulate a broader spectrum of gene array. Such kind of behavior may 

result from post-transcriptional modifications that can affect Helios nuclear 

localization (as described for Ikaros (Song et al., 2011; Uckun et al., 2012)) or rather 

its dimerization efficiency.  

         Remarkably, we also found Helios to be down-regulated specifically in LT-HSC 

and MkP during the aging process, suggesting the existence of an age-dependent 

pathway able to modulate Helios expression. We envision that such pathway could 

work at the epigenetic or transcriptional level, as in aged LT-HSC Helios promoter 

becomes hyper-methylated and its mRNA is reduced (Fig 13b) (Grover et al., 2016; 

Sun et al., 2014). In such view, it would be extremely useful to further characterize 

the aging input able to affect Helios expression. We hypothesize that DNA damage, 
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oxidative stress or chronic inflammation could be important aging-related stimuli able 

to cause Helios repression. In line with this hypothesis, we are currently planning to 

test the contribution of such stimuli on Helios mRNA and protein expression, using 

either in vivo or ex vivo approaches (e.g. by directly exposing mice or purified LT-

HSC to agents able to trigger inflammation or stimulate the DNA damage response). 
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Fig. 13 | Helios expression and regulation 
(a) IKZF2 normalized mRNA expression across different hematopoietic progenitor populations 
(microarray data from ImmGen). Two LT- and ST-HSC gating strategies were used to identify 
such cells. (b) UCSC Genome browser view of the IKZF2 gene body (blue). The boxed area 
highlights IKZF2 promoter. Features associated with IKZF2 gene body are shown in color: purple 
tracks show the methylation profile within the IKZF2 gene body in young (m04) and old (m24) LT-
HSC; green tracks indicate the IKZF2 mRNA levels in young (m04) and old (m24) LT-HSC; pink 
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tracks refer to the H3k4me3 levels within IKZF2 gene body in young (m04) and old (m24) LT-
HSC (Sun et al., 2014).  
 

 

 

Helios deletion affects mainly HSPC 

         While we would tend to exclude a Helios involvement in mature hematopoietic 

cell biology (exception made for Treg cells, which will be proper discussed in the 

following paragraph), we only have indirect suggestions supporting Helios 

dispensability within the more committed progenitor populations. We observed that in 

the absence of Helios the abundance of both GMP and MkP progenitors looks overall 

affected during mouse growth, especially towards the adult stages (from 10 to 20 

weeks of age; Fig. 2, 3). On the contrary, MPP3 and megakaryocyte-biased HSC 

and MPP2 augmentation occurs earlier, already at the first investigated time point (6-

week-old mice), with a rather homogeneous and larger increase (Fig. 4, 5). 

Altogether, these findings lead us to hypothesize that the Helios-dependent MkP and 

GMP augmentation could be caused by upstream MPP3 and LT-HSC alterations. In 

such view, He-/- biased HSC and MPP would be the first affected population that, in 

turn, will favor the MkP and GMP accumulation. However, the reasons behind the 

gradual GMP and MkP accumulation are still obscure: indeed, if HSC and MPP are 

early biased, it is expected also that they generate a biased progeny from early on. 

The fact that this is mainly not observed at the early stage could be explained by 

other mechanisms (maybe related to the BM microenvironment), perhaps 

responsible for an initial compensation that, however, cannot last for long time. 

Interestingly, Ergen and colleagues found that a young BM microenvironment does 

not support myeloid differentiation as efficiently as an old microenvironment (Ergen et 

al., 2012). These findings may explain why GMP and MkP accumulate later in He-/- 

mice: the MkP and GMP “niches” may be saturated in young mice, while older BM 

may have increased tolerance for a surplus of myeloid progenitor production. 

         On the other hand, He-/- committed lymphoid progenitors are affected already in 

6-week-old mice, although also in this case their decrease is preceded by an 

upstream MPP4 reduction (Fig. 2, 4). Thus, once again, the committed progenitor 

phenotype is preceded by alterations within the upstream HSPC compartment, 
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further supporting that the root of the phenotype must reside at the top of the 

hierarchy, with the only difference that the early lymphoid progenitor reduction cannot 

be compensated. 

         It should be noted that, although these data support a Helios specific HSPC 

role, we still cannot rule out Helios function within committed progenitors. Some 

indirect corroborations to this view come from our transcriptomic data, where we 

found that Helios deletion mainly affects quiescent HSPC (Fig. 11, 12), without 

interfering with the group of more proliferating HSPC. Thus, these data not only 

confirm the importance of Helios within the HSPC population, but also restrict Helios 

function to a smaller target HSPC pool. Despite we did not directly analyzed 

committed progenitors using mRNA sequencing, we think that an eventual Helios 

role in such compartment is quite unlikely. Indeed, we would expect that the 

committed and proliferative GMP, MkP and CLP progenitors would behave more 

similarly to the more proliferative and marginally affected He-/- HSPC, with respect to 

the highly perturbed quiescent HSPC. 

         Some more additional hints come from our in vitro CFU assay, where we found 

more myeloid and megakaryocyte CFU cells by plating He-/- BM, with respect to WT 

bone (starting from 10 weeks of age; Fig. 2e, 3e). Importantly, the numerous 

colonies were all characterized by similar size, suggesting, once again, a model in 

which Helios mainly acts by shaping the CFU cell composition (progenitors), rather 

than affecting downstream progenitor proliferation and self-renewal. Indeed, if Helios 

would act on GMP self-renewal, we would expect to see not only more myeloid CFU 

cells but also larger and dense colonies. 

 

Helios acts in a HSPC intrinsic way 

         It was already shown that Helios is abundantly expressed by Treg cells, where 

it provides support to their suppressive function (Kim et al., 2015; Sebastian et al., 

2016). In the present study, we observed that Helios CD4 conditional deletion does 

not seem to affect HSC and their megakaryocyte phenotypes. However, we found 

that MPP4 were reduced in half of the cases (Fig. 7m). Interestingly, this MPP4 

reduction correlates with increased INFγ production. Based on this, we suggested 

that Helios deficient FoxP3+ Treg cells suppress less efficiently BM T cell mediated 

inflammation that, in turn, indirectly triggers lymphoid progenitor reduction (similarly 
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to what is described in (Pierini et al., 2017). Importantly, this phenotype is not 100% 

penetrant, implying that Helios function is also T cell independent. 

         A further confirmation that lymphoid restriction exists independently on Helios T 

cell function came from the competitive BM transplantation assay. In such case, only 

He-/- donor cells have a defective lymphoid repopulation capability, in contrast to the 

co-hosted competitors (Fig. 8,e,f). This result showed in an indirect way that Helios 

HSPC phenotype is not triggered by any mature cell (e.g. T cell) defect, as otherwise 

also competitor HSPC would be equally perturbed. In addition, by transplanting WT 

and He-/- LT-HSC, we showed that Helios function is most probably hematopoietic 

cell intrinsic, as the WT host environment did not rescue the lymphoid differentiation 

defect (Fig. 8c). Notably, we cannot exclude that transplanted LT-HSC at the 

moment of the transplantation were already irreversibly converted to a myeloid 

biased state, for example by endogenous unknown stimuli. However, we would tend 

to exclude such possibility as: i) Helios expression is not detected in extra 

hematopoietic BM cells and ii) unlikely an eventual systemic defect is going to 

selectively affect only quiescent HSPC, without affecting other cell types of the 

system (even very similar cell-like active MPP).  

         In conclusion, these results support a scenario where Helios acts in a 

hematopoietic intrinsic way. Moreover, considering the Helios expression pattern, 

together with its knockout phenotype and transcriptome profile, we can assume that 

most probably Helios TF acts intrinsically on HSPC.  

 

Helios regulates a small pool of quiescent HSPC 

         Total mRNA-seq analysis on LT-HSC, MPP3 and MPP4 showed that the more 

severally affected He-/- population is represented by the LT-HSC (Fig. 9a,b). Only 

smaller changes, in terms of number of affected genes and mRNA fold changes, 

were observed between WT and He-/- MPP3 and MPP4. In parallel, scRNA-seq 

analysis highlighted that the He-/- LSK compartment is mainly affected at the level of 

quiescent HSC and MPP (Fig. 11, 12). Moreover, by combining both single cell and 

bulk RNA-seq experiments, we found enrichment in cells expressing myeloid and 

megakaryocyte genes (e.g. Gata2 and Mpl) and depletion in cells expressing typical 

lymphoid markers (e.g. Flt3 and Dntt; Fig. 11, 12). However, a question remains 

unanswered: why is only a pool of HSPC affected by Helios deletion? We might 
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hypothesize that proliferative MPP may not require Helios anymore because other 

Ikaros dimers (e.g. Ikaros-Ikaros or Ikaros-Aiolos) could take over the Helios function. 

Alternatively, Helios deletion may be better compensated in proliferative HSPC 

(perhaps due to higher expression of Ikaros), while less efficiently in the quiescent 

ones. 

 

What is the Helios contribution to the physiological hematopoietic aging? 

         As just mentioned, He-/- LT-HSC represent the most affected population at the 

transcriptional level, suggesting that they might be the main players of our 

phenotype. However, can Helios bias the hematopoietic system in an age-related 

manner, by acting only in LT-HSC? We envision 3 possible scenarios, taking into 

account that LT-HSC more likely poorly contribute to steady state hematopoiesis 

(Rodriguez-Fraticelli et al., 2018) and, in transplantation assays, drive hematopoietic 

aging in a dominant manner bypassing the nature of the environment (e.g. young LT-

HSC generate a “young-like” hematopoietic system in the context of an old recipient 

mouse and vice-versa) (Ergen et al., 2012; Rossi et al., 2005).  

 

1) Old LT-HSC unlikely give rise to an old biased system 

         In a first model, we propose a Helios LT-HSC direct role and we imagine that, 

during physiological aging, LT-HSC down-regulate Helios expression and acquire the 

classic aging phenotype. In such scenario, LT-HSC would unlikely be able to directly 

give rise to a mature myeloid biased compartment at the steady state (in contrast to a 

transplantation context). Their hematopoietic contribution would be minimal, 

exception made for the megakaryocyte compartment, which is the only one highly 

renewed by LT-HSC (Rodriguez-Fraticelli et al., 2018). In this logic, Helios role during 

aging would be marginal and mainly relegated to the megakaryocyte lineage. On the 

contrary, global hematopoietic changes would be mostly explained by a Helios 

independent role.  

 

2) Old LT-HSC can indirectly generate an old biased system  

         If old LT-HSC alone are unlikely going to generate a biased hematopoietic 

system, we can imagine an alternative scenario where old LT-HSC drive 

hematopoietic aging by indirectly affecting the downstream MPP compartment (that 
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more prominently contribute to steady state hematopoiesis (Rodriguez-Fraticelli et 

al., 2018). In such view, upon acquisition of the characteristic old phenotype triggered 

by Helios down-regulation, LT-HSC may start to affect the neighbor niche and MPP 

cells. Following this logic, old LT-HSC might not directly give rise to a biased progeny 

but rather bias a preexisting MPP compartment through indirect means.  

         However, how do LT-HSC become able to affect adjacent cells? Some clues 

may come from carefully observing the old LT-HSC transcriptome profile. Indeed, old 

LT-HSC (but also He-/- LT-HSC) acquire a characteristic platelet-like pro-

inflammatory phenotype (Fig. 8c,f) and, similar to inflammatory platelets, LT-HSC 

may become able to recruit granulocytes and dendritic cells (as well as the platelets 

themselves), in part by overexpressing proteins like VWF and SELP (Grover et al., 

2016; Morrell et al., 2014). DC and granulocyte recruitment may finally lead to a LT-

HSC localized inflammation reaction, potentially able to reach and bias the adjacent 

MPP compartment (Pietras, 2017). Such eventual “dominant negative” LT-HSC effect 

may be for example addressed by their selective removal. Using for instance anti-

CD41 or anti-CD150 antibody-mediated saporin delivery, we could trigger LT-HSC 

apoptosis and assess whether their removal can rejuvenate the MPP compartment 

(Czechowicz et al., 2019).  

 

3) HSC and MPP together can give rise to an old hematopoietic system 

         In a third model, we hypothesize a Helios “extended” MPP role, assuming that 

hematopoietic aging is promoted by Helios down-regulation on both HSC and also 

MPP. We imagine a scenario where Helios is able to directly up-regulate genes 

important for the MPP4 lymphoid identity and repress “megakaryocyte lineage” 

genes important for HSC, MPP2 and partial MPP3 specification. Helios would be 

thus required by both HSC and MPP (most probably the quiescent MPP), in order to: 

i) maintain active the lymphoid genes while shutting down the megakaryocyte 

transcripts within MPP4, and ii) decrease "megakaryocyte-like” gene expression 

while favoring the beginning of a lymphoid priming within HSC. 

         However, the statement of such hypothesis clashes with the experimental 

evidence that He-/- MPP are only modestly affected at the transcriptional level (Fig. 
9a,b). Therefore, how can this model, that postulates a Helios direct role in HSC but 

also MPP aging, fit with our results? Such apparent paradox can be explained taking 

into consideration that we may have underestimated Helios function within MPP. Two 
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main mechanisms or “effects” can properly illustrate the reasons behind a 

transcriptional underestimation of Helios role within MPP: “dilution effect” and “LSK 

shift effect”.  

         For the first mechanism, it is important to notice that not all MPP3 and MPP4 

cells are touched by Helios deletion. For instance, Helios removal seems to mainly 

affect a limited subset of quiescent MPP, while proliferating MPP look overall 

unperturbed (Fig. 11, 12). Therefore, differential gene expression analysis between 

WT and He-/- MPP3 and MPP4 may suffer from a “dilution effect”, given that 

unaffected proliferating MPP3 and MPP4 would mask transcriptional changes 

occurring within the quiescent MPP (Fig. 14a), thus contributing to wrong or rather 

inaccurate interpretations of Helios cellular function. 

         For the second mechanism, that I called “LSK shift effect”, we have to postulate 

that Helios directly up-regulates lymphoid genes necessary for the MPP4 identity and 

down-regulates megakaryocyte signatures important for HSC, MPP2 and MPP3 

specification. In such scenario, Helios depletion in MPP4 would cause down-

regulation of their lymphoid genes and, in parallel, up-regulation of megakaryocyte 

transcripts, conferring to MPP4 a novel “shifted” identity, which is more similar to that 

of MPP3, or eventually HSC. The same logic can be applied to the next cellular pool: 

up-regulation of megakaryocyte-like signatures triggered by Helios ablation in MPP3 

would make them, in turn, more similar to HSC and divergent from MPP4. This shift 

effect then continues until the last upstream population, the LT-HSC (Fig. 14b): He-/- 

LT-HSC would acquire the most extreme megakaryocyte potential (with the lowest 

lymphoid one) and thus, when comparing them to WT LT-HSC, we will be able to 

recover only there the entire Helios effect, that cannot be masked anymore by a 

more upstream population (Fig. 14b).  

         Both these effects would help us to explain why we may have underestimated 

the Helios effect within the MPP pool. However, one problem remains: how does 

Helios affect MPP during aging, if its down-regulation only occurs within old LT-HSC 

and not in old MPP (Fig. 1n)? In line with the mentioned Helios dependent LSK shift 

effect, there might be the possibility for some of the old MPP (likely the quiescent 

ones) to shift identity towards a more megakaryocyte and less lymphoid phenotype 

upon Helios down-regulation, preventing us from measuring changes of Helios 

expression within MPP. In light of the described mechanisms, some credibility might 

be attributed also to the last described Helios dependent HSPC aging model. 
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Fig. 14 | Dilution and LSK shift effects.  
Schematic of WT and He-/- LSK pools. The vertical black lines define the borders between MPP4, 
MPP3 and HSC populations. The WT LSK compartment is represented in blue. On the left, the 
gray circle represents the unaffected He-/- LSK population (“dilution compartment”); on the right, 
the red circle shows the affected shifted He-/- LSK compartment.  
 

The Helios targeted genes 

         The investigation of genes that are bound by Helios TF may help to gain further 

insights into whether Helios acts only in HSC or in both HSC and MPP. In other 

words, the identification of Helios binding sites would allow us to understand whether 

Helios binds only the regulated LT-HSC specific genes or also lymphoid MPP4 

genes. However, it must be noted the existence of technical challenges underlying 

the research of HSPC Helios binding sites, as these cells are rare and only few 

techniques allow such investigation starting from low input material. Thus, we 

decided to set up the first Helios ChIP-seq experiments using cell line-based models 

as HSPC alternative systems.  

         We have preliminary results from two different hematopoietic cell lines: the 

HPC7 progenitor cell line and a second BH1 pre-B cell line generated in our 

laboratory (Heizmann et al., 2013). By using BH1 cells, Marie Celine Deau (PhD 

student in our team) identified several thousand Helios binding sites including HSC 

megakaryocyte genes and MPP4 lymphoid specific genes. On the contrary, using the 

HPC7 cell line (which resembles a mixture of LK and LSK CD48+ cells) we did not 

recover the same binding profile. Indeed, Helios targets relatively few genes (~200), 

many of which are related to neither megakaryocyte nor lymphoid function (data not 
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shown). In BH1 cells, we recovered a more predictable Helios binding profile, 

although the cell line should be far from LSK cells. On the other hand, while HPC7 

should be “closer” to LSK cells, the Helios binding profile weakly correlates with our 

transcriptomic data.  

         In order to more comprehensively access the Helios binding profile enigma, we 

planned to look at other cell systems. One strategy that we are going to adopt is 

based on LT-HSC (and also MPP) in vitro expansion (Wilkinson et al., 2019). 

Hopefully, this strategy will provide us the closest model with respect to the in vivo 

counterpart. Alternatively, we are currently searching for low input ChIP-seq like 

methods able to detect TF binding on freshly isolated LSK. 

         We already tried the newly described Cut and Run (CεR) and Cut and Tag 

(CεT) protocols, but unfortunately these techniques worked efficiently in my hands 

only on histone modifications (e.g. H3k27me3, H3k4me1), while CεR/T performed on 

Helios TF never gave the expected enrichment over the isotope control antibody 

(Kaya-Okur et al., 2019; Skene and Henikoff, 2017). For this reason, we have been 

trying to apply other low input methodologies such as ChIP-mentation and CHIL-seq, 

that may be more appropriate to match our goal as they both include a cross-link 

step that should favor the stabilization of TF-DNA interaction (Harada et al., 2019; 

Schmidl et al., 2015).  

 

 

FINAL CONSIDERATIONS 

The HSPC TF networks 

         Several TFs have been so far identified as critical hematopoietic lineage 

regulators. Among them, we can define: i) “peripheral TFs” that act on already 

committed progenitors, where they reinforce lineage-specific decisions while 

repressing alternative fates. Examples of such factors are Gata1, Cebpα and Pax5 

(Dahl et al., 2003; Dore and Crispino, 2011; Paul et al., 2016). On the other hand, we 

can find ii) “HSPC TFs” dedicated to control the lineage-priming of multipotent HSC 

and MPP. Some examples of early hematopoietic TFs are represented by Gata2, 

Spi1 and Ikaros (Huang et al., 2009; Menendez-Gonzalez et al., 2019). Interestingly, 

two main antagonistic networks seem to exist within the HSPC population: a Gata2-
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related network for the activation of pan-myeloid genes (Huang et al., 2009; 

Menendez-Gonzalez et al., 2019) and an Ikaros-Spi1 network important for lymphoid 

gene priming and pan-myeloid program repression (Pang et al., 2018; Yoshida et al., 

2006). In such context, our study proposed Helios as a novel “HSPC specific TF” and 

collocated its function within the Ikaros and Spi1 network. As such, it is possible that 

these TFs may collaborate together in order to coordinate the expression of common 

gene batteries. Interestingly, all the three factors bind to a very similar ‘GGAA’ DNA 

motif, suggesting that their synergistic roles might be even mediated by protein-

protein interaction. Notably, as mentioned in the introduction, Helios and Ikaros are 

indeed well described partners (while their interaction with Spi1 has not been 

validated yet); therefore, it does not surprise that they may possess similar, 

overlapping and maybe redundant roles. 

         In this context, it would be interesting to understand the nature of this family 

member cooperation.  Starting from the observation that Helios and Aiolos possess a 

restricted pattern of expression, while Ikaros is broadly expressed across several 

lineages, we tried to hypothesize two scenarios: 1) Helios, Aiolos and Ikaros play 

similar roles and their “split” pattern of expression may serve to confer robustness to 

the system at particular (and maybe critical) stages of the hematopoietic 

development. Alternatively, 2) Helios and Aiolos may represent the Ikaros “regulatory 

partners” and, in such scenario, they may serve to turn on/off Ikaros activity in a 

spatio-temporal regulated manner. However, it is also important to notice that Ikaros 

role within the HSPC population was identified several years ago, when HSPC cells 

were not functionally characterized as they are nowadays. For this reason, an 

updated characterization of Ikaros function would be important in order to understand 

whether Helios and Ikaros have overlapping roles or rather they regulate different 

HSPC populations.  

 

Single cell mRNA-seq considerations  

         The HSPC single cell mRNA sequencing allowed us to visualize, to a large 

scale, the molecular heterogeneity within HSC and MPP populations. We identified a 

continuum gradient of differentiation: the more extreme lineages are represented by 

HSC-MPP2 and MPP4, while in the middle there are MPP3 that possess both HSC-

MPP2 and MPP4 features (Fig. 11, 12). Surprisingly, we discovered a pool of stem 
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cell-like quiescent MPP that we hypothesized may represent the more apical 

progenitors. 

         We speculate that HSC may give rise to MPP3 and MPP4 at the beginning of 

BM ontogenesis. Once the HSPC system is established, quiescent HSC are co-opted 

as long-lived megakaryocyte progenitors (a sort of upstream MPP2), quiescent 

MPP3 as myeloid precursors and quiescent MPP4 as permanent lymphoid mature 

cell source. This would in part explain why LT-HSC mainly acts as megakaryocyte 

progenitors at the steady state, while they poorly contribute to either MPP or mature 

cell renew (with the exception of megakaryocytes). We further speculate that the 

proliferating HSPC pool may represent a second layer of progenitors more prone to 

differentiate and less able to renew themselves.  

 

Is Helios dispensable for HSPC differentiation? 

         A recent publication from the group of Kharas examined the role of Helios 

within HSPC and leukemic stem cells by using VAV-Cre conditional Helios knockout 

mice (HecKO). In contrast to our findings, they concluded Helios to be dispensable for 

steady state hematopoiesis, while its deletion would only be crucial for leukemic stem 

cell self-renewal (Park et al., 2019). However, this apparent inconsistency between 

our and their conclusions can be understood and explained. Indeed, Park and 

colleagues restricted their analysis to only HecKO 7-week-old mice and investigated 

exclusively their GMP, CMP, MEP, LSK and MPP (total MPP without MPP2-4) 

populations, all cell types that we also did not find affected in 6-week-old He-/- mice. 

On the contrary, they did not look at the He-/- BM populations that we described as 

the most affected, such as CD41+ HSC, MPP2-MPP4, CLP and MkP. Similarly to us, 

they observed a mature B cell reduction within the BM of HecKO mice, however their 

data did not reach statistical significance probably because of high mouse-to-mouse 

B cell variability and the minimal numbers of analyzed samples (n=4). On the 

contrary, we analyzed more mice (n=7) and, despite the B cell mouse-to-mouse 

variability, that we noticed is higher in 6-week-old mice with respect to 10-20-week-

old mice (Fig. 2a), we managed to obtain significant results. Additionally, they 

performed non-competitive BM transplantation assays without finding any difference 

between WT and HecKO blood lineages reconstitution. Notably, it is important to 

consider how they analyzed the results. For instance, when they measured B cell 
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reconstitution (but this is also true for the myeloid one), they looked at the % of donor 

positive cells within the pool of total B220 cells; however, given that the mouse was 

composed mainly (if not only) by donor cells, they always recovered around 90% of 

donor chimerism in both WT and HecKO condition. This type of set-up most probably 

did not allow them to properly quantify the real lymphoid lineage potential of the 

HecKO HSPC.  

         In conclusion, in my opinion our and their results are not dissimilar and the 

main differences reside in both the analyzed populations and the experimental set-up 

of the BM reconstitution assay. Moreover, we cannot exclude that their HecKO model 

could be partially different from our He-/- model (although the Helios deletions are 

very similar); however, given that our analyses differ from each other, we cannot 

neither exclude nor refute this possibility. 
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Abstract

Plasmacytoid and conventional dendritic cells (pDCs and cDCs) arise from monocyte and

dendritic progenitors (MDPs) and common dendritic progenitors (CDPs) through gene

expression changes that remain partially understood. Here we show that the Ikaros transcrip-

tion factor is required for DC development at multiple stages. Ikaros cooperates with Notch

pathway activation to maintain the homeostasis of MDPs and CDPs. Ikaros then antagonizes

TGFβ function to promote pDC differentiation from CDPs. Strikingly, Ikaros-deficient CDPs

and pDCs express a cDC-like transcriptional signature that is correlated with TGFβ activa-

tion, suggesting that Ikaros is an upstream negative regulator of the TGFβ pathway and a

repressor of cDC-lineage genes in pDCs. Almost all of these phenotypes can be rescued by

short-term in vitro treatment with γ-secretase inhibitors, which affects both TGFβ-dependent

and -independent pathways, but is Notch-independent. We conclude that Ikaros is a crucial

differentiation factor in early dendritic progenitors that is required for pDC identity.

Author summary

Dendritic cells (DCs) are an important component of the immune system, and exist as
two major subtypes: conventional DCs (cDCs) which present antigen via major histocom-
patibility class II molecules, and plasmacytoid DCs (pDCs) which act mainly as producers
of type-I interferon in response to viral infections. Both types of DCs derive from a com-
mon dendritic progenitor (CDP), but the genetic pathways that influence their develop-
ment are not completely understood. A better understanding of these pathways is
important, which may lead to protocols for generating specific DCs in culture, depending
on the need. In this study, we have discovered important roles for the Ikaros transcription
factor in DC development. We found that: (i) Ikaros cooperates with the Notch pathway
to promote the development or homeostasis of CDPs; (ii) Ikaros controls pDC differentia-
tion from CDPs through a γ-secretase sensitive pathway; and (iii) Ikaros antagonizes the
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TGFβ pathway to inhibit cDC differentiation. Our results thus identify Ikaros as a key
player in the early steps of DC development.

Introduction

Dendritic cells (DCs) are essential modulators of the immune response [1]. They can be
broadly divided into conventional DCs (cDC), which are required for antigen presentation,
and plasmacytoid DCs (pDC), which secrete high quantities of type-I interferon (IFN-α, -β,
-ω) upon certain viral infections [2, 3]. cDCs are further divided into cDC1 (CD8+) and cDC2
(CD11b+) subsets. Both DC lineages develop in the bone marrow. Monocyte and dendritic
progenitors (MDPs) are the earliest known DC precursors, and they give rise to monocytes
and common dendritic progenitors (CDPs) [4–6]. In turn, CDPs differentiate into pDCs and
pre-cDCs, the latter of which migrate to the periphery to become cDCs. The molecular circuits
regulating DC cell fate have been intensively studied, and some transcriptional regulators
(Ikaros, E2.2, PU.1, IRF8, GFI1, NFIL3, BATF3, BCL11a) and canonical signaling pathways
(TGFβ, Notch, Wnt) have been identified [3, 7–12]. However, the relationships and interac-
tions between these players remain unclear, and this is important to understand if we wish to
manipulate DC function.

Deficiency of the Ikaros zinc finger DNA-binding protein and tumor suppressor, encoded
by the Ikzf1 gene, is associated with profoundly impaired DC development. Mice homozygous
for a dominant-negative (dn) Ikzf1 mutation lack all cDCs, while animals with a null mutation
predominantly lack cDC2s [13]. In contrast, mice carrying the hypomorphic IkL/L mutation
show a selective block in bone marrow (BM) pDC development, leading to an absence of
peripheral pDCs, although cDCs appear normal [14]. These studies highlight the sensitivity of
the DC lineages to Ikaros levels, where pDC development requires more Ikaros function than
cDCs. In man, patients with germline IKZF1 mutations also exhibit reduced pDC, but not
cDC numbers, indicating a conserved role for Ikaros in DC development [15]. Interestingly,
IKZF1 deletions are associated with blastic plasmacytoid dendritic cell neoplasms (BPDCN), a
malignancy of pDC precursors with poor prognosis [16–18]. Thus Ikaros is required for DC
development, but little is known about its molecular mechanisms.

Here we show that Ikaros deficiency leads to multiple defects in pDC and cDC develop-
ment. In particular, Ikaros is required for CDP development, where it antagonizes TGFβ func-
tion to promote pDC differentiation. We further show that Ikaros cooperates with Notch
pathway activation to support the homeostasis of DC progenitors. Lastly, we show that a tran-
sient incubation of bone marrow cells with γ-secretase inhibitors rescues pDC development
from WT and Ikaros-deficient BM progenitors, revealing a potentially novel way to enhance
pDC function.

Results

Ikaros is required for CDP differentiation

To determine how pDC differentiation is affected by Ikaros deficiency, we evaluated DC pro-
genitor populations in IkL/L mice. IkL/L cells express functional Ikaros proteins at ~10% of WT
levels, and although IkL/L mice die from Notch-dependent T cell leukemias at 4–6 months of
age, the animals studied (6–8 weeks of age) showed no signs of transformation (normal
CD4/CD8 profiles, T cell receptor chain usage, Notch pathway activation) [19–21].

Successive stages of DC development were analyzed, which included BM Lin-Sca1-CD135+

cells, containing CD117hiCD115+ MDPs and CD117loCD115+ CDPs, as well as the more
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downstream BM CD11c+CD317+ pDCs and CD11c+CD135+MHCII-CD172a- pre-cDCs, and
splenic cDCs (Fig 1) [4–6, 22]. In the BM, CDP numbers were significantly increased and pDC
and pre-cDC numbers were significantly decreased in IkL/L mice, suggesting that IkL/L DC dif-
ferentiation is blocked at the CDP stage (Fig 1A–1C, 1E and 1F). In the spleen, IkL/L animals
had no detectable pDCs, as previously reported [13, 14], fewer cDC2s, but similar numbers of
cDC1s compared with WT (Fig 1D and 1G). Thus Ikaros deficiency results in the specific
accumulation of BM CDPs.

Fig 1. Ikaros regulates DC progenitor development. (A) Representative analysis of MDPs, CDPs, (B) pre-cDCs, and (C) pDCs from IkL/L (L/L) and WT BM, by flow
cytometry. (D) Representative analysis of splenic cDCs (CD11c+MHCII+). (E) Relative numbers of BM MDPs, CDPs and pre-cDCs (as gated in A and B), (F) BM pDCs
(as gated in C), and (G) splenic cDCs (as gated in D). Mean±SD of 4–12 animals per group. ⇤p0.05; ⇤⇤p0.01; ⇤⇤⇤p0.001 (Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007485.g001
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The Notch pathway is activated in Ikaros-deficient pDCs

We previously observed in a genome-wide study that genes associated with the Notch pathway
(eg. Hes1, Ptcra, Uaca) are upregulated in the BM pDCs of IkL/L mice [14]. Higher Hes1 and
Ptcra mRNA levels were confirmed by RT-qPCR (Fig 2A). To determine if Ikaros deficiency
results in Notch activation throughout pDC development, we crossed IkL/L mice with animals
carrying a Hes1-GFP knock-in (KI) reporter [23]. Total BM cells from Ik+/+ (WT) and IkL/L

Hes1-GFP KI mice contained similar frequencies of GFP+ cells (mostly CD19+ B cells) (Fig 2B
and 2C). In contrast, GFP+ cells were nearly absent in WT BM pDCs, but they were present in
a fraction of IkL/L pDCs (7–35%). IkL/L GFP+ pDCs were mostly SiglecH+CCR9lo, suggesting
an immature phenotype (Fig 2D) [24, 25]. CCR9lo pDCs from WT Hes1-GFP KI mice did not
express GFP. These data indicated that the Hes1 locus, and perhaps the Notch pathway, are
ectopically activated during pDC development in the mutant mice.

Fig 2. Notch pathway activation in IkL/L pDCs. (A) Hes1 and Ptcra mRNA expression in BM pDCs from 4 WT and 5 (IkL/L) mice, as analyzed by RT-
qPCR and normalized to Hprt mRNA levels (mean±SD of triplicate data). (B) GFP reporter expression (black line) in total BM cells and BM pDCs
(CD11c+CD317+) from Hes1-GFP+ WT and IkL/L mice, by flow cytometry. Grey histograms correspond to control cells from mice lacking the Hes1-GFP
reporter. (C) Percentage of GFP+ BM pDCs (CD11c+CD317+) from Hes1-GFP+ WT and IkL/L mice, as analyzed in (B). ⇤p0.05 (Student’s t-test). (D)
CCR9 and SiglecH vs. GFP expression in BM pDCs from Hes1-GFP+ WT and IkL/L mice. Representative of 3 independent experiments.

https://doi.org/10.1371/journal.pgen.1007485.g002
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γ-secretase inhibitors rescue IkL/L CDP differentiation in vitro and in vivo

To determine if ectopic Notch activation interferes with pDC differentiation in IkL/L mice, we
first blocked Notch signaling in Flt3L-supplemented cultures of total BM cells, using a γ-secre-
tase inhibitor (GSI, Compound E) [26, 27]. As γ-secretase is required to cleave and activate
ligand-bound Notch receptors, GSIs are potent inhibitors of Notch function. In the absence of
GSI (DMSO), WT cultures generated robust numbers of CD11c+CD137+CD11b- pDCs over
an 8-day period, while IkL/L cultures did not (Fig 3A). Strikingly, GSI treatment significantly
enhanced WT pDC differentiation, and rescued pDC development in the IkL/L cultures to lev-
els of WT cells. This occurred early, as GSI treatment at day 0 was both necessary and sufficient
to rescue IkL/L pDC development (Fig 3B and 3C). Similar results were obtained with other
GSI compounds (DAPT and MRK003). In addition, early GSI treatment resulted in an
increase in total cell numbers (Fig 3D), which correlated with an expansion of immature
CD11c- cells, particularly in the IkL/L cultures (Fig 3B). The pDCs produced in the GSI-treated
cultures were more immature, and expressed low levels of CCR9 and Ly49Q (Fig 3E); B220
levels, however, remained unchanged after GSI treatment. Importantly, the GSI-rescued WT
and IkL/L pDCs expressed mRNA for Ifna following TLR9 stimulation in vitro with CpG ODN
1885 (Fig 3F), suggesting functionality. Because GSI treatment at day 0 of culture was sufficient
to induce differentiation, GSI was added only once at the onset of culture in subsequent
experiments.

To identify the DC progenitor cells sensitive to GSI, we co-cultured WT and IkL/L total BM
cells, purified Lin-Sca1- cells, MDPs or CDPs (all CD45.2+), with CD45.1+ supporting WT BM
cells, in the presence of GSI and Flt3L, for 8 days (Fig 4A). The ability of the different CD45.2+

populations to give rise to pDCs was evaluated. GSI treatment consistently increased pDC dif-
ferentiation from IkL/L CDPs (Fig 4B). On the contrary, GSI did not affect WT MDPs (2 out of
3 experiments) and CDPs, even though it enhanced pDC development from total WT BM
cells. We also analyzed Lin-Sca1-CD117loCD135+CD115- cells ("CD115- CDPs") in these
assays, as they were reported to contain pDC-specific precursors [28], even though they existed
in similar numbers in WT and IkL/L BM (S1A and S1B Fig); GSI did not affect the pDC pro-
duction from either WT or IkL/L CD115- CDPs (S1C and S1D Fig), and these cells were not
studied further. These results therefore suggested that Ikaros negatively regulates a γ-secretase-
sensitive pathway mainly in (CD115+) CDPs.

To determine if transient GSI treatment rescues IkL/L pDC development in vivo, we adop-
tively transferred GSI-treated BM cells into recipient mice. WT and IkL/L BM cells (CD45.2+)
were cultured with Flt3L and GSI for 2 days, and then transplanted into irradiated hosts
(CD45.1+CD45.2+) along with CD45.1+ supporting WT BM cells. BM and spleen cells were
analyzed 9 days later for CD45.2+ pDCs (Fig 4C and 4D). In the BM, IkL/L cells generated few
CD11c+CD137+CD11b- pDCs, regardless of GSI treatment (S2 Fig). However, in the spleen,
GSI-treated IkL/L cells generated CD11c+CD137+CD11b- pDCs while the DMSO-treated cells
did not (Fig 4C and 4D). WT cells generated slightly more pDCs after GSI treatment compared
with DMSO. Importantly, the CD45.1+ supporting cells produced similar frequencies of pDCs
in all conditions, indicating that GSI treatment enhanced IkL/L and WT pDC differentiation in
a cell-intrinsic manner.

Collectively, our results indicated that γ-secretase inhibitors rescue Ikaros-deficient pDC
development in vitro and in vivo.

GSI promotes CDP differentiation via Notch-independent pathways

Because γ-secretase inhibitors affect other pathways in addition to Notch, we tested the role of
Notch activation in pDC development by genetic means. IkL/L mice were crossed with animals

Ikaros antagonizes TGFβ in CDPs
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carrying a floxed null allele for Rbpj (Rbpjf/f), the Notch transcriptional mediator, and the
R26-CreERT2 transgene [29, 30]. IkL/L Rbpj+/+ Cre+ (IkL/L RBPJ WT) and IkL/L Rbpjf/f Cre+

(IkL/L RBPJ KO) mice, along with control animals, were treated with tamoxifen for 5 days to
delete Rbpj, and analyzed 5 days after the last injection. Deletion was confirmed by Western

Fig 3. Inhibition of γ-secretase rescues IkL/L pDC differentiation in vitro. (A) Percentage of CD11c+CD317+CD11b- pDCs after 8 days of Flt3L-supplemented WT
and IkL/L BM cultures, treated with GSI or vehicle (DMSO) at the indicated days of culture. Representative of>5 independent experiments. (B) Percentage of pDCs
from Flt3L-supplemented WT and IkL/L BM cultures, treated with GSI or DMSO at day 0 and analyzed at day 8. (C, D) Numbers of pDCs (C) and total cell numbers
(D) obtained from cultures described in (B). ⇤p0.05; ⇤⇤p0.01; ⇤⇤⇤p0.001 (Student’s t-test). (E) CCR9, Ly49Q and B220 expression on pDCs cultured as in (B).
Representative of 3 independent experiments. (F) RT-qPCR analysis of Ifna expression induced from pDCs after in vitro culture. WT and IkL/L pDCs were sorted at d8
of culture, after GSI treatment at day 0, and stimulated for 16h with CpG ODN 1585. Ifna mRNA levels were measured by RT-qPCR and normalized to Ubb mRNA. nd:
not done.

https://doi.org/10.1371/journal.pgen.1007485.g003
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blot (S3 Fig). BM cells from the tamoxifen-treated mice were cultured with Flt3L for 8 days, in
the presence or absence of GSI, and cell expansion and pDC development were studied (Fig
5A and 5B). In these experiments, we reasoned that if GSI rescues pDC development by inhib-
iting Notch signaling, then (i) Rbpj inactivation should mimic the effects of GSI, and (ii) GSI
should not have additional effects when Rbpj is deleted.

When cell numbers were evaluated, we observed that the samples treated with GSI con-
tained significantly higher numbers of cells, regardless of RBPJ and/or Ikaros status (Fig 5B).
This suggested that GSI inhibits the function of pathways other than Notch. Likewise, when
pDC development was evaluated (Fig 5A and 5B), Rbpj deletion by itself did not enhance the
differentiation of IkWT DMSO-treated cells, indicating that Notch activation is not required to
limit pDC development when Ikaros is present. Further, in IkWT cells, GSI treatment enhanced
pDC differentiation in both RBPJ WT and KO conditions, suggesting that GSI enhances pDC
differentiation in the absence of Notch. Interestingly, when similar experiments were per-
formed in IkL/L conditions, GSI treatment rescued pDC development in the RBPJ WT samples,
as expected, but no rescue was observed when both RBPJ and Ikaros were mutated. GSI never-
theless still increased total cell numbers in the cultures from the RBPJ-Ikaros double mutant
cells, indicating that its effects on pDC differentiation and cell expansion are separable.

To determine why GSI treatment did not rescue pDC development in IkL/L RBPJ KO BM
cultures, we analyzed the BM DC progenitor populations of tamoxifen-treated IkL/L RBPJ KO
mice and littermate controls (Fig 5C and 5D). Specifically, we evaluated the CDP population
in the double mutant mice, as GSI rescues IkL/L CDP differentiation. These experiments
revealed that MDPs and CDPs were barely detectable in most of the IkL/L RBPJ KO BM sam-
ples (4 out of 5), while the BM from single mutant mice contained easily recognizable MDP
and CDP cells. These results indicated that the GSI target population is absent in the IkL/L

RBPJ KO BM, and suggested that Ikaros and Notch activation cooperate to generate or main-
tain MDP and CDP cells in the BM.

Collectively, our results demonstrate that GSI treatment inhibits a Notch-independent
pathway important for CDP development.

The TGFβ pathway is activated in Ikaros-deficient CDPs

To further investigate the molecular pathways targeted by Ikaros and γ-secretase in CDPs, we
studied the transcriptome profiles of WT and IkL/L MDPs and CDPs, cultured in the presence
or absence of GSI. We used a protocol similar to the one above, and co-cultured CD45.2+ WT
or IkL/L MDPs, and CDPs, with supporting CD45.1+ WT BM cells. CD45.2+ cells were purified
after 24h, and their transcriptomes were analyzed by microarray.

In the vehicle-treated samples, 963 genes were differentially expressed >1.5-fold between
IkL/L CDPs and all WT populations (Fig 6A). Approximately 30% of these genes were deregu-
lated in both IkL/L MDPs and CDPs (clusters III and IV), and 70% were deregulated only in
the IkL/L CDPs (clusters I and II). To determine how these genes are expressed during WT
DC development, we compared their levels of expression in IkL/L CDPs with those in WT

Fig 4. GSI acts on DC progenitors and rescues IkL/L pDC maturation in vivo. (A) Experimental scheme: the indicated cell populations from WT or IkL/L BM
(CD45.2+) were cultured with supporting C57BL/6CD45.1 (CD45.1+) WT BM cells. Cultures were treated with GSI or DMSO at d0, and the percentage of CD45.2+ pDCs
were analyzed at d8. (B) Percentage of CD45.2+ pDCs (CD11c+CD317+CD11b-) after 8 days of co-culture. Data from cells of the same mouse treated with DMSO or GSI
were connected by lines. Data from 3 independent experiments. (C) Representative analysis of splenic pDCs from CD45.2+ WT or IkL/L BM cells, cultured with Flt3L in
the presence or absence of GSI for 2d, and then transplanted (2x105 cells per recipient) into lethally-irradiated CD45.1+CD45.2+ recipient mice, in the presence of
supporting CD45.1+ WT BM cells (2x105 cells). The presence of pDCs was analyzed 9 days after transplantation. Representative of 2 independent experiments, 2–4
animals per condition per experiment. (D) Frequency of splenic CD45.1+ and CD45.2+ pDCs (CD11c+CD317+CD11b-) in the recipient mice, as described in (A).
⇤⇤⇤p0.001 (Student’s t-test).

https://doi.org/10.1371/journal.pgen.1007485.g004
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progenitors and mature DC populations, as reported by the ImmGen Compendium
(GSE15907), using unsupervised clustering [7]. Interestingly, this revealed that, among the
genes up-regulated in IkL/L CDPs (Fig 6B), the large majority (>70%) were related to mature
cDC genes, and not pDCs. The remainder of the genes were DC progenitor-related. In con-
trast, among the genes down-regulated in IkL/L CDPs (S4A Fig), most were related to DC pro-
genitor (CMP, MDP, CDP) genes. Further, gene set enrichment analyses (GSEA) indicated
that both the up- and down-regulated genes in the IkL/L CDPs correlated with those normally
expressed in WT cDCs (S4B Fig). Thus, Ikaros is required to repress the premature expression
of cDC-associated genes in CDPs. We then asked if the cDC transcriptional hallmarks that
characterize the IkL/L CDPs were also retained in the BM pDCs from IkL/L mice. Indeed,
GSEA analysis showed that genes up- or down-regulated in IkL/L pDCs (transcriptome data
from [14]) were also up- or down-regulated in mature cDCs (S4C Fig), thereby confirming
our hypothesis.

Among the genes deregulated in IkL/L CDPs, only 70 were differentially expressed between
GSI and DMSO treated samples (Fig 6C, S1 Table). To identify the potential upstream path-
ways involved in the regulation of their expression in DC progenitors, we performed Ingenuity
Pathway Analysis (Fig 6D). This revealed Ikaros to be a significant probable regulator, which
validated our approach, and showed the importance of Ikaros in CDPs. The top candidate,
however, was TGFβ1, which was interesting because TGFβ1 was previously reported to skew
CDP differentiation towards the cDC lineage at the expense of pDCs [9]. We therefore asked if
the deregulated genes found in IkL/L CDPs were enriched for TGFβ-associated genes, by
GSEA. These results showed a strong and direct correlation between the genes down-regulated
in IkL/L CDPs and those down-regulated by TGFβ1 signaling (Fig 6E) [9]. Conversely, the
genes up-regulated in IkL/L CDPs were up-regulated by TGFβ1 activation (Fig 6F). Thus,
Ikaros expression is correlated with reduced TGFβ1 signaling in CDP cells.

To determine if Ikaros directly regulates the TGFβ pathway, we investigated its capacity to
bind TGFβ target genes. The low number of CDPs in WT mice did not allow us to directly
investigate Ikaros binding in these cells. We therefore compared Ikaros binding to chromatin
from 2 unrelated precursor cell types (pre-B cells and DN3 thymocytes) [31, 32], because con-
served binding might indicate that Ikaros regulates similar elements across hematopoietic cell
types. These analyses showed strong and conserved Ikaros binding to several TGFβ target
genes implicated in DC differentiation (eg. Axl, Irf1, Irf4, Nfkb2, Nfkbie, Rel, Relb) (Fig 6G and
S4 Fig), and suggested that Ikaros may directly regulate the expression of TGFβ target genes in
CDPs.

Inhibition of TGFβ signaling rescues Ikaros-deficient pDC development

To determine if the TGFβ pathway is activated in IkL/L CDPs, we studied the mRNA expres-
sion of genes encoding upstream components of this pathway. Although the level of transcripts
encoding the type I and type II TGFβ receptors, and the downstream SMAD proteins, were
similar between WT and IkL/L MDPs and CDPs, we found that the mRNA levels of Eng,
encoding the type III TGFβ receptor Endoglin, was higher in IkL/L MDPs (2x) and CDPs
(2.8x), regardless of GSI treatment (Fig 6A). Endoglin (CD105), is an auxiliary receptor for the
TGFβ receptor complex, which has been shown to positively modulate TGFβ signaling [33].

Fig 5. Genetic deletion of RBPJ does not rescue IkL/L pDC differentiation. (A) Representative analysis of Flt3L-supplemented cultures of BM cells from compound
mutant mice with IkL/L and/or RBPJ KO alleles, after addition of DMSO or GSI at day 0. Cultures were analyzed 8d later. (B) Numbers of total cells and pDCs obtained
from cultures described in (A) (mean±SD from 3–5 mice per genotype; p values were obtained by paired Student’s t-test). (C) Analysis and (D) relative numbers of
MDPs and CDPs from the BM of Ikaros-RBPJ compound mutant mice (representative of 2 independent experiments with 2–5 mice per genotype and per experiment; p
values were obtained by Student’s t-test). ⇤p0.05; ⇤⇤p0.01; ⇤⇤⇤p0.001.

https://doi.org/10.1371/journal.pgen.1007485.g005
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Higher CD105 expression was also detected on IkL/L MDPs, CDPs and pDCs (Fig 7A and 7B).
In contrast, CD105 levels were stable in other BM populations, including CD11c+CD317-

cDCs (Fig 7B), indicating that Endoglin expression is specifically increased in IkL/L pDCs and
DC progenitors. In addition, we observed that Ikaros bound to the Eng locus in pre-B and
DN3 cells, suggesting that it is an Ikaros target gene (S5A Fig).

Lastly, we analyzed the functional consequence of TGFβ inhibition on pDC development.
WT and IkL/L BM cells were cultured with Flt3L for 8 days, in the presence or absence of a
TGFβR1 inhibitor (SB431542), and/or GSI. SB431542 treatment alone did not affect total cell
numbers (S5B Fig), but increased pDC numbers in both WT and IkL/L cultures (Fig 7C and
7D). In contrast, GSI treatment alone increased both total cell numbers and pDC numbers.
The combination of SB431542 and GSI gave similar total and pDC numbers, compared with
GSI alone. These results suggested that TGFβ inhibition promotes pDC differentiation in IkL/L

CDPs.

Discussion

Here we identify Ikaros as a promoter of early DC development. We show that Ikaros cooper-
ates with Notch signaling to enhance the emergence and/or survival of MDPs and CDPs in the
BM (Fig 7E). We also show that Ikaros is required to promote CDP differentiation and cell fate
specification towards the pDC and cDC lineages, in large part by correctly regulating the
expression of DC-specific target genes, and secondly, by antagonizing TGFβ function. These
results indicate that the general absence of mature DCs in Ikaros null mice [13, 34], as well as
the selective absence of pDCs in Ikaros hypomorphic animals [14], are due at least in part to
CDP defects.

Our results suggest that Ikaros antagonizes a TGFβ-dependent gene expression program in
CDPs. TGFβ was previously reported to skew CDP differentiation towards the cDC lineage at
the expense of pDCs, in part because it induces the expression of Id2, which inhibits the master
pDC regulator E2.2 [9, 35–37]. We show that Ikaros-deficient CDPs display a premature cDC
gene expression signature, indicating that Ikaros represses the expression of mature cDC-asso-
ciated genes in DC progenitors. In addition, Ikaros-deficient BM pDCs also display a cDC sig-
nature, suggesting that the mutant CDPs that commit to the pDC lineage continue to express a
promiscuous cDC gene expression program. Neither Id2 nor E2.2 are affected at the mRNA
level in Ikaros-deficient CDPs and pDCs, suggesting that Ikaros promotes CDP differentiation
independently of E2.2.

How Ikaros antagonizes TGFβ function remains only partially understood. Certain TGFβ
target genes are enriched among the genes deregulated by GSI in CDPs. Furthermore, Ikaros-
deficient CDPs ectopically express high levels of endoglin which can potentiate TGFβ signaling
[38]. Because no other TGFβ receptors or downstream SMAD factors are deregulated in these
cells, endoglin upregulation probably plays an important role in activating the TGFβ pathway

Fig 6. The TGFβ1 pathway is activated in IkL/L CDPs. CD45.2+ WT or IkL/L MDPs, and CDPs, were co-cultured with supporting CD45.1+ WT BM cells for 24h
with Flt3L and GSI (or DMSO). CD45.2+ cells were then re-purified and their transcriptomes analyzed. 2 mice per condition. (A) Heat map representing K-means
clustering of 963 genes differentially expressed between WT or IkL/L CDPs [fold change (FC)>1.5]. Clusters I and II are deregulated specifically in IkL/L CDPs.
Clusters III and IV are deregulated in all IkL/L DC progenitors. Eng indicates the Endoglin gene. Red and green indicate high and low expression, respectively. (B)
Hierarchical clustering of the genes from clusters II and IV in (A), using Immgen transcriptome data for DC progenitors and mature subsets (GSE15907). Clusters
of genes similarly expressed between IkL/L CDPs and DC progenitors (Imm) or mature DCs (DC) are indicated. (C) K-means clustering of 70 genes differentially
expressed between WT and IkL/L CDPs, and deregulated by GSI (FC>1.5). (D) Top 5 putative upstream regulators related to the 70 genes from (C), as identified by
the Ingenuity Pathways Analysis software. (E) GSEA enrichment plots of genes specifically down-regulated [clusters I and III in (A)] and (F) up-regulated (clusters
II and IV) in IkL/L CDPs. The ranked gene list corresponds to TGFβ1-regulated genes in CDPs, as identified by Felker et al (2010). NES: normalized enrichment
score; FDR: false discovery rate. (G) Genome browser tracks showing Ikaros binding to loci associated with TGFβ activation in pre-B cells (BH1-Ik1-ER-Bcl2 cell
line) and immature DN3 thymocytes (GEO GSE114629 and GSE61148 accession numbers).

https://doi.org/10.1371/journal.pgen.1007485.g006
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in the mutant DC progenitors. Interestingly, betaglycan, a type III TGFβ receptor closely
related to endoglin in structure and function, is a substrate of γ-secretase, and GSI inhibits
TGFβ2-mediated reporter gene expression via betaglycan inactivation in HepG2 cells [39]. γ-
secretase cleavage of type III TGFβ receptors may therefore inhibit TGFβ receptor signaling in
Ikaros-deficient cells. If true, this suggests that Ikaros may be a novel upstream regulator of
TGFβ signaling.

In addition to its role in CDP differentiation, Ikaros is also required for MDP and CDP
homeostasis. Observed only in compound mutants deficient for Ikaros and RBPJ where both
populations are absent, our results demonstrate that Ikaros cooperates with Notch activation
to maintain DC progenitor survival and/or expansion. Notch signaling by itself was previously
found to promote DC development in vitro via up-regulation of the Frizzled family Wnt recep-
tors [10], but the basis for its cooperation with Ikaros remains to be elucidated. We have
reported that Ikaros antagonizes Notch function in T cells, and interacts directly with the acti-
vated Notch1 protein to control a set of common target genes [40]. Whether Ikaros and Notch
regulate common genes in DC progenitors remains to be investigated. Other studies have sug-
gested that the Notch and TGFβ pathways interact to regulate common genes. Indeed, Hes1 is
a common target of both pathways, because it is transcriptionally regulated by the Notch
receptor intracellular domain or by Smad3 following TGFβ signaling [41]. In IkL/L cells, how-
ever, Hes1 up-regulation was observed in pDCs but not in the more immature dendritic pro-
genitors, suggesting that Hes1 is differentially regulated by Notch and TGFβ activation in these
populations.

Finally, our results with γ-secretase inhibitors are unexpected and intriguing, and indicate
that these compounds can be exploited to enhance and rescue WT and Ikaros-deficient DC
development in vitro, though the effects are stronger in the mutant cells. We showed that tran-
sient GSI treatment promotes the generation of CD11c- cells, probably the upstream precur-
sors of MDPs and CDPs, and pDC differentiation from CDPs. These actions suggest that GSI
molecules might be considered as a potential treatment to enhance pDC function during cer-
tain viral infections, like chronic HIV or hepatitis C virus. Conversely, it will be important to
test if GSI molecules might have a differentiating effect on BPDCN cancers, a rare and fatal
leukemia with few options for treatment [42].

Materials and methods

Ethics statement

All mouse procedures were approved by the IGBMC Ethical Committee (Com’Eth); APA-
FIS#8752–20 170 1261 0337966 v2.

Mice

The mouse lines used in this study were described previously: IkL/L, Hes1-EmGFPSAT, RBPJf/f

and R26-CreER(T2) [19, 23, 29, 30]. Mice were used between 6–9 weeks of age. To delete Rbpj
in vivo, RBPJf/f R26-CreET(T2)+ or IkL/L RBPJf/f R26-CreET(T2)+ mice were injected

Fig 7. TGFβ1 activation inhibits pDC development from IkL/L CDPs. (A) CD105 expression on WT and IkL/L DC progenitors. (B) SiglecH vs. CD105 expression on
BM pDCs (CD317+) and non-pDCs (CD317-). Representative of 4 independent experiments. (C) Effect of the TGFβR1 inhibitor SB431542 on pDC differentiation in
Flt3L-supplemented WT and IkL/L BM cultures. Cells were treated at d0 with SB431542 and/or GSI and analyzed at d8. Percentages of cells in the corresponding gates
are indicated. Representative of 4 independent experiments. (D) Number of pDCs obtained from experiments described in (C). Data of the SB431542 treatments are
shown at a larger scale in the lower panel. Representative of 4 independent experiments; 2 mice per genotype per experiment; p values were obtained with a Student’s t-
test. ⇤p0.05. (E) Schematic representation of Ikaros function during DC development in the BM. Ikaros and Notch signaling are required for the onset of DC
differentiation and the appearance of MDPs and CDPs. Later, in CDPs, Ikaros promotes pDC development by antagonizing TGFβ1 signaling and by repressing the
cDC gene expression program. HSPC: Hematopoietic stem/progenitor cell.

https://doi.org/10.1371/journal.pgen.1007485.g007
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intraperitoneally daily for 5 days with 75 mg/kg of tamoxifen dissolved in sunflower oil, and
analyzed 10 days after the first injection.

Cell culture

pDC cultures were performed as described [26]. Briefly, BM cells were seeded at 2x106 cells/
ml, and cultured in RPMI 1640 containing 10% fetal calf serum, 20 mM HEPES, 2 mM L-glu-
tamine, 2 mM Sodium Pyruvate, 50 μM β-mercaptoethanol, 1x MEM non-essential amino
acids, and antibiotics. Cultures were supplemented with conditioned medium from a Flt3L-
producing cell line (B16-Flt3L) [43], or rFlt3L at 100 ng/ml (Peprotech). After 4d, half of the
medium was replaced with fresh medium containing 2x Flt3L. GSI (Compound E, Calbio-
chem) and SB431542 (Selleckchem) were used at 5 μM. pDC cultures from DC progenitors
were performed as above in 1 ml of Flt3L-supplemented medium using FACS-sorted Lin-

Sca1-ckit+, MDPs, CDPs or CD115-CDPs from BM cells (CD45.2+) which were co-cultured
with 106 CD45.1+ whole BM cells. For CpG oligo-deoxynucleotide (ODN) stimulations, pDCs
(CD11c+CD317+CD11b-) were sorted after 8 days of culture and stimulated at 2x106 cells/ml
in 96-well plates. CpG ODN 1585 or an ODN control (InvivoGen) were used at 2.5 μM. Cells
were collected after 16h of stimulation.

Transplantations

BM cells from donor mice (CD45.2+) were cultured with Flt3L in the presence or absence of
GSI for 48h. 2x105 cells from these cultures were then transplanted with 2x105 supporting WT
BM cells (CD45.1+) into lethally-irradiated (9 Gy) CD45.1+CD45.2+ recipient mice. Mice were
sacrificed and analyzed 9 days after the transfer.

RT-qPCR

RNA was extracted with the RNeasy (Qiagen) or Nucleospin RNA (Macherey-Nagel) kits, and
reverse transcribed using Superscript II (Invitrogen). Hes1, Ptcra and Hprt were amplified
using the QuantiTect SYBR green system with the Mm_Hes1_1SG, Mm_PtcrA_1SG and
Mm_Hprt_1SG primer sets (Qiagen). Ifna mRNA was amplified using the SYBR green master
mix (Roche) with 50 cycles of 10s 95˚C, 30s 66˚C, 15s 72˚C. Primers used to amplify most of
the Ifna subtypes were 5’-cctgctggctgtgaggaaata and 5’-gcacagggggctgtgtttct. Primers for Ubi-
quitin (Ubb) were 5’-tggctattaattattcggtctgcat and 5’-gcaagtggctagagtgcagagtaa. Hes1 and Ptcra
levels were normalized to that of Hprt, while Ifna expression was normalized to that of Ubb.

Flow cytometry

We used the following antibodies: anti-CD11b (M1/70) eFluor450 or PE; anti-CD11c (N418)
AlexaFluor700; anti-human/mouse CD45R (B220) eFluor650NC; anti- CD59 and Gr1 (RB6-
8C5) biotin; anti-CD199 (CCR9) PE/Cy7; anti-CD317 (ebio927) AlexaFluor488 or eFluor450;
anti-MHCII (M5/114.15.2) FITC or PE/Cy5; anti-Sca1 (D7) biotin (eBioscience); anti-CD3
(145-2C11) biotin; anti-CD4 (RM4-5) biotin; anti-CD8 (53–6.7) biotin; anti-CD11b (M1/70)
biotin; anti-CD45.1 (A20) PE; anti-human/mouse CD45R (B220) biotin; anti-CD115 (c-fms)
APC; anti-CD135 (A2F10) PE; anti-CD172a (P84) APC; anti-NK1.1 (PK136) biotin; anti-
Ter119 biotin (BD Biosciences); anti-CD11c (N418) biotin or APC; anti-CD19 (6D5) biotin;
anti-CD45.1 (A20) FITC; anti-CD45.2 (104.2) PE or AlexaFluor700; anti-CD105 (Endoglin)
Alexa488; anti-CD117 (c-kit) APC/Cy7; anti-Ly49Q (2E6) PE (MBL); anti-SiglecH (551.3D3)
PE (BioLegend); AlexaFluor™ 405 (InvitroGen) or AlexaFluor488 Streptavidin (Jackson Immu-
noResearch). Lineage staining was performed using a mixture of anti-CD3, -CD4, -CD8,
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-CD19, -CD11b, -CD11c, -Gr1, -Ter119, -NK1.1 and -B220 antibodies for Lin, and anti-CD3,
-CD19, -Ter119, -NK1.1 and -B220 for Lin⇤. Cells were analyzed on a LSRII analyzer (BD Bio-
sciences) and sorted on a FACSAriaIISORP (BD Biosciences). Sort purity was >98%.

Western blotting

Total protein extracts from 106 BM cells were separated on SDS-PAGE gels. Immunoblots
were analyzed with anti-RPBJ (T6719; Institute of Immunology, Japan), and anti-β-actin
(A5441, Sigma) polyclonal antibodies. All secondary antibodies were horseradish conjugated
(Santa Cruz, Jackson ImmunoResearch).

Microarray analysis

Transcriptome analyses were performed with Affymetrix Gene ST 1.0 arrays. Unsupervised
hierarchical clustering and K-means clustering were performed using Cluster 3. GSEA was
performed using the GSEA 2.0 software [44, 45]. Microarray data are available in the GEO
databank (GSE114108).

Supporting information

S1 Fig. GSI does not act on CD115- CDPs to stimulate pDC differentiation. (A) Representa-
tive analysis of CD115- CDPs from WT and IkL/L BM, by flow cytometry. (B) Relative numbers
of CD115- CDPs (as gated in A). ns: not significant (Student’s t-test). (C) Experimental scheme:
CD115- CDPs from WT or IkL/L BM (CD45.2+) were cultured with supporting C57BL/6CD45.1

(CD45.1+) WT BM cells. Cultures were treated with GSI or DMSO at d0, and the percentage of
CD45.2+ pDCs analyzed at d8. (D) Percentage of CD45.2+ pDCs (CD11c+CD317+CD11b-)
after 8 days of co-culture. Data from cells of the same mouse treated with DMSO or GSI were
connected by lines. Data from 3 independent experiments.
(EPS)

S2 Fig. Frequency of GSI-treated pDCs after transplantation. Frequencies of pDCs
(CD11c+CD317+CD11b-) from CD45.1+ BM and CD45.2+ GSI-treated WT and IkL/L cells in
the BM of recipient mice 9 days post-transplantation.
(EPS)

S3 Fig. Conditional deletion of RBPJ by tamoxifen in IkL/L mice. Western blot of RBPJ
expression in total BM cells from Ikaros-RBPJ compound mutant mice. Actin was used as a
loading control.
(EPS)

S4 Fig. Gene expression changes in IkL/L CDPs. Transcriptome profiling of purified MDPs
and CDPs from WT or IkL/L BM, treated beforehand with GSI or DMSO for 24h. (A) Hierar-
chical clustering of the genes from clusters I and III in Fig 6A, using Immgen transcriptome
data for DC progenitors and mature subsets (GSE15907). (B) GSEA enrichment plots of genes
up- or down-regulated in IkL/L CDPs compared with WT (clusters II and IV, and clusters I
and III in Fig 6A, respectively). (C) GSEA enrichment plots of genes specifically up- or down-
regulated in IkL/L pDCs compared with WT (FC>2; p0,05) [14]. In (B) and (C), the ranked
gene list corresponds to the differential gene expression between WT cDCs and pDCs (Imm-
gen GSE15907). NES: normalized enrichment score; FDR: false discovery rate. (D) Genome
browser tracks showing Ikaros binding sites in the Rel and Relb loci in pre-B cells and DN3
thymocytes (GEO GSE114629 and GSE61148 accession numbers).
(EPS)
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S5 Fig. TGFβ1 signaling during pDC development in IkL/L CDPs. (A) Genome browser
tracks showing Ikaros binding in the Eng locus in pre-B cells and DN3 thymocytes (GEO
GSE114629 and GSE61148 accession numbers). (B) Total numbers of cells after 8 days of
Flt3L-supplemented cultures of WT and IkL/L BM cells treated with SB431542 and/or GSI. See
experiments shown in Fig 7C and 7D. Representative of 4 independent experiments; 2 mice
per genotype per experiment; p values were obtained by a Student’s t-test. ⇤p0.05;
⇤⇤⇤p0.001.
(EPS)

S1 Table. FC of the 70 genes deregulated in IkL/L CDPs vs. WT cells, and sensitive to GSI
treatment.
(EPS)

Acknowledgments

We thank Silvia Fre, Spyros Artavanis-Tsakonas and Tasuku Honjo for the Hes1-GFP and
floxed RBPJ mouse lines, Marc Dalod for the B16-Flt3L cell line, Patricia Marchal for technical
assistance, Claudine Ebel and Muriel Philipps for cell sorting, Cathy Herouard for microarray
experiments, Michael Gendron for mouse husbandry, and members of the Kastner-Chan lab
for discussions.

Author Contributions
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Formal analysis: Jérôme Mastio, Peggy Kirstetter.

Funding acquisition: Philippe Kastner, Susan Chan, Peggy Kirstetter.
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S1 Fig. GSI does not act on CD115- CDPs to stimulate pDC differentiation. 
(A) Representative analysis of CD115- CDPs from WT and IkL/L BM, by flow cytometry. (B) Relative 
numbers of CD115- CDPs (as gated in A). ns: not significant (Student's t-test). (C) Experimental 
scheme: CD115- CDPs from WT or IkL/L BM (CD45.2+) were cultured with supporting 
C57BL/6CD45.1 (CD45.1+) WT BM cells. Cultures were treated with GSI or DMSO at d0, and the 
percentage of CD45.2+ pDCs analyzed at d8. (D) Percentage of CD45.2+ pDCs 
(CD11c+CD317+CD11b-) after 8 days of co-culture. Data from cells of the same mouse treated with 
DMSO or GSI were connected by lines. Data from 3 independent experiments. 
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S2 Fig. Frequency of GSI-treated pDCs after transplantation. 
Frequencies of pDCs (CD11c+CD317+CD11b-) from CD45.1+ BM and CD45.2+ GSI-treated WT and 
IkL/L cells in the BM of recipient mice 9 days post-transplantation. 
 
 

 
 

S3 Fig. Conditional deletion of RBPJ by tamoxifen in IkL/L mice. 
Western blot of RBPJ expression in total BM cells from Ikaros-RBPJ compound mutant mice. Actin 
was used as a loading control 
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S4 Fig. Gene expression changes in IkL/L CDPs. 
Transcriptome profiling of purified MDPs and CDPs from WT or IkL/L BM, treated beforehand with GSI 
or DMSO for 24h. (A) Hierarchical clustering of the genes from clusters I and III in Fig 6A, using 
Immgen transcriptome data for DC progenitors and mature subsets (GSE15907). (B) GSEA 
enrichment plots of genes up- or down-regulated in IkL/L CDPs compared with WT (clusters II and IV, 
and clusters I and III in Fig 6A, respectively). (C) GSEA enrichment plots of genes specifically up- or 
down-regulated in IkL/L pDCs compared with WT (FC>2; p≤0,05) [14]. In (B) and (C), the ranked gene 
list corresponds to the differential gene expression between WT cDCs and pDCs (Immgen 
GSE15907). NES: normalized enrichment score; FDR: false discovery rate. (D) Genome browser 
tracks showing Ikaros binding sites in the Rel and Relb loci in pre-B cells and DN3 thymocytes (GEO 
GSE114629 and GSE61148 accession numbers). 
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S5 Fig. TGFβ1 signaling during pDC development in IkL/L CDPs. 
(A) Genome browser tracks showing Ikaros binding in the Eng locus in pre-B cells and DN3 
thymocytes (GEO GSE114629 and GSE61148 accession numbers). (B) Total numbers of cells after 8 
days of Flt3L-supplemented cultures of WT and IkL/L BM cells treated with SB431542 and/or GSI. See 
experiments shown in Fig 7C and 7D. Representative of 4 independent experiments; 2 mice per 
genotype per experiment; p values were obtained by a Student’s t-test. *p≤0.05; ***p≤0.001 
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S1 Table. FC of the 70 genes deregulated in IkL/L CDPs vs. WT cells, and sensitive to GSI treatment. 
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TITRE 
 

Rôle d'Helios dans la biologie des cellules souches et des progéniteurs 

hématopoïétiques. 
 

  

CONTEXTE 
 

Les cellules souches hématopoïétiques (CSH), situées dans la moelle osseuse 

(MO), donnent naissance aux cellules sanguines matures tout au long de la vie 

adulte d’un individu1. Les deux fonctions importantes des CSH et de leurs 

progéniteurs en aval sont (1) leur capacité à générer des cellules lymphoïdes, des 

cellules myéloïdes et des érythro-mégacaryocytes1, et (2) leur capacité à préserver 

une intégrité du génome suite aux dommages de l'ADN2,3. La perte de la première 

fonction peut entraîner des immunodéficiences ou une anémie tandis que la perte de 

la seconde fonction est souvent associée au développement de leucémies4,6. 

Dans la hiérarchie simplifiée, les CSH sont divisées en CSH à long terme (LT-) (Lin-

Sca1+cKit+CD48-CD150+), qui se s’auto-renouvellent et se différencient rarement, et 

les CSH à court terme en aval (ST-) (Lin-Sca1+cKit+CD48-CD150-), qui s'auto-

renouveler de manière plus importante et se différencient en cellules progénitrices 

multi-potentes (MPP). Récemment, il a été démontré que les MPP constituaient une 

population hétérogène, qui peut être divisée en 3 sous-populations: les MPP2, 3 et 

44,5. Les cellules MPP2 (Lin-Sca1+cKit+Flt3-CD48+CD150+) donnent naissance 

principalement à la lignée érythroïde et mégacaryocytaire. Les cellules MPP3 (Lin-

Sca1+cKit+Flt3-CD48+CD150-) sont limitées aux cellules de la lignée myéloïde et 

deviennent des progéniteurs des monocytes et des granulocytes (GMP), tandis que 

les MPP4 (Lin-Sca1+cKit+Flt3+CD48+CD150-) sont principalement composées de 

progéniteurs lymphoïdes (CLP) qui vont se différencier en cellules lymphoïdes 

matures. Chez les souris adultes jeunes (<6 mois), les cellules MPP3 et MPP4 sont 

présentent dans les mêmes proportions parmi les MPP, tandis que les cellules MPP2 

ne représentent qu’environ 10% de cette population. La régulation de l’ensemble de 

ces premières étapes de différenciation par les facteurs transcriptionnels reste 

encore largement méconnue. 
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Notre laboratoire s'intéresse à la régulation moléculaire de l'expression des gènes au 

cours de l’hématopoïèse normale et pathologique. En particulier, nous étudions la 

famille des facteurs de transcription Ikaros [Ikaros (IKZF1), Helios (IKZF2), Aiolos 

(IKZF3), Eos (IKZF4)], qui jouent un rôle crucial dans le développement de 

différentes cellules hématopoïétiques. Ces protéines, qui se lient à l'ADN par 

l’intermédiaire d’un motif à un doigt de zinc, sont également impliquées en tant que 

suppresseurs de tumeurs7. Chez la souris, ces facteurs sont nécessaires pour la 

différenciation de plusieurs types de cellules hématopoïétiques. Chez l'homme, les 

mutations des gènes IKZF sont corrélées aux leucémies aiguës lymphoblastiques. 

Des délétions ou des mutations dominantes négatives d'IKZF1 sont plus étroitement 

associées aux leucémies aiguës lymphoblastiques à cellules B. En revanche, des 

délétions d'IKZF2 ont été observées dans plus de 50% des leucémies aiguës 

lymphoblastiques dites hypodiploïde avec seulement 32 à 39 chromosomes; ces 

leucémies ont des pronostics très médiocres7. 

Les protéines Ikaros et Helios sont fortement exprimées dans les CSH. S’il a été 

montré qu’Ikaros est nécessaire à l’auto-renouvellement et à la différenciation des 

progéniteurs des CSH8, la fonction d'Helios dans ces cellules reste inconnue. 

Mon projet au laboratoire a consisté à étudier la fonction d'Helios dans les CSH, à 

l'aide d'un modèle murin où le gène IKZF2 est supprimé dans la lignée germinale. 

Mon travail a révélé qu’Helios influence le développement des cellules souches et 

progénitrices hématopoïétiques en favorisant la différenciation de ces cellules vers la 

lignée lymphoïde. 

 

 

 

RÉSULTATS 
 

Pour déterminer le rôle d'Helios dans l'hématopoïèse, j'ai d'abord étudié son 

expression au niveau protéique dans les CSH et leurs progéniteurs en aval dans la 

MO par cytométrie en flux. J'ai montré qu'Helios est fortement exprimé dans les 

cellules Lineage-cKit+Sca1+ (LSK), qui comprennent les CSH à long terme (LT) et à 

court terme (ST), ainsi que les progéniteurs débutants multi-potents (MPP). Au 

contraire, Helios est largement absent des cellules hématopoïétiques matures et des 

cellules de la niche hématopoïétique. Ces résultats suggèrent qu'Helios joue un rôle 
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important dans la biologie des cellules souches et des progéniteurs 

hématopoïétiques. 

Pour déterminer son rôle dans l'hématopoïèse, nous avons analysé le phénotype des 

CSH et des progéniteurs hématopoïétiques chez les souris sauvages (WT) et 

déficientes pour Helios (He-/-) âgées de 7 à 20 semaines. Au cours de l’analyse par 

cytométrie de flux de l'expression des marqueurs de surfaces des CSH, nous avons 

constaté une forte réduction du nombre total de cellules B matures et des 

progéniteurs lymphoïdes engagés ainsi qu’une augmentation accrue des 

progéniteurs myéloïdes et de mégacaryocytaires, ce phénotype ressemble fortement 

à un celui observé lors du vieillissement des CSH. 

Nous avons découvert en analysant les premiers progéniteurs multi-potents une 

diminution significative du nombre de progéniteurs engagés vers le lignage 

lymphoïde (LMPP ou MPP4) accompagnée d’une augmentation des progéniteurs 

myéloïdes (MPP3) dans la MO des souris He-/-. De plus, les progéniteurs érythroïdes 

/ mégakaryocytaires (MPP2) sont biaisées vers le lignage megacaryocytaire. Ces 

résultats suggèrent qu'Helios joue un rôle précoce dans la différenciation 

hématopoïétique. 

Pour valider ce déséquilibre de différenciation hématopoïétique au niveau 

fonctionnel, nous avons étudié la capacité des cellules totales ou des CSH et / ou 

MPP purifiées de la MO He-/- à se différencier en cellules lymphoïdes, myéloïdes et 

mégacaryocytaires in vivo (expériences de greffe de la MO) et ex vivo (formation de 

colonies en culture). In vivo, nous avons constaté qu'après la greffe de cellules 

totales de MO ou de CSH purifiées chez les souris receveuses irradiées de manière 

létale, les cellules He-/- engendrent moins de cellules lymphoïdes B et plus de cellules 

myéloïdes que les cellules donneuses WT. Des résultats similaires ont été obtenus in 

vitro lorsque des CSH et des MPP purifiés He-/- ont été mis en cultures. Dans toutes 

les expériences effectuées, les cellules He-/- génèrent un nombre plus important de 

cellules myéloïdes et de mégacaryocytes comparés aux cellules WT. Ces résultats 

suggèrent qu'Helios est nécessaire pour que la différentiation des cellules 

hématopoïétiques à partir des CSH et des MPP s’effectue proprement et de manière 

équilibrée. 

Pour étudier la régulation génique plus en profondeur, nous avons effectué un 

séquençage des transcrits de cellules purifiées LT-CSH, MPP3 et MPP4 à partir de 

MO de souris He-/- et WT. Nous avons découvert que les populations les plus 



 157 

affectées par la déficience d'Helios sont les LT-CSH tandis que le profil 

transcriptionel des MPP est modérément affecté. En outre, nous avons constaté, en 

effectuant des analyses GSEA (gene set enrichment analysis), que les LT-CSH He-/-   

ont un profil transcriptionnel similaire à celui observé chez les CSH WT âgées et aux 

CSH biaisées vers le lignage megacaryocytaire. Une réduction de la transcription 

des gènes spécifiques du lignage lymphoïde a été observé dans les MPP3 et MPP4 

He-/-. 

Dans l’ensemble, ces résultats supportent qu’Hélios est un acteur décisif dans le 

chez choix des cellules hématopoïétiques précoces dès les premières étapes de 

l’hématopoïèse. 

Nous effectuons actuellement des analyses moléculaires plus détaillées afin de 

déterminer si la différence d'expression de transcrit est due aux changements 

d'expression génique intrinsèque aux cellules souches hématopoïétiques ou due à 

une différence composition de la population étudiée. De plus, pour caractériser 

directement les gènes cibles d’Helios, nous testons de nouvelles techniques pour 

déterminer les gènes directement régulés par Helios (Cut&Run, ChIP). 
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Hematopoietic Stem and Progenitor Cells (HSPC) engender all the mature blood cells throughout 
life. They are subdivided in undifferentiated stem cells (HSC) and primed multipotent progenitors 
(MPP). MPP are heterogeneous and composed of erythro-megakaryocytes (MMP2), myeloid 
(MPP3) and lymphoid (MPP4) primed cells. Despite the fact that these populations are well defined, 
the molecular mechanisms underlying their differentiation remain unclear. We showed that the 
transcription factor Helios, highly expressed in the HSPC, is crucial for HSPC specification and 
aging. Bone marrow transplantation, ex-vivo differentiation and flow cytometry assays revealed that 
Helios deficient mice have reduced MPP4 as well as lymphoid progenitors. This deficiency is offset 
by an increase in MPP3, granulo-monocyte and megakaryocyte progenitors. Moreover, 
transcriptional analysis of HSPC revealed that Helios deficiency affects mainly HSC with an 
enrichment of megakaryocyte and old HSC genes signatures, whereas Helios deficient MPP express 
lower levels of lymphoid specific genes. Our work reveals Helios as a novel regulator of HSC 
specification and aging. 

 

 
 
 
 

 

Les cellules souches et progénitrices hématopoïétiques (CSPH) produisent les cellules sanguines 
durant toute la vie. Elles sont divisées en cellules souches indifférenciées (CSH) et en cellules 
progénitrices multipotentes engagées (MPP). Les MPP sont hétérogènes et composées de cellules 
progénitrices multipotentes engagées vers les lignages érythro-mégacaryocytaires (MPP2), 
myéloïdes (MPP3) et lymphoïdes (MPP4). Malgré que ces populations cellulaires soient bien 
définies, les mécanismes moléculaires gouvernants leurs différenciations restent en grande partie 
encore inconnus. Nous avons montré que le facteur de transcription Hélios, exprimé fortement dans 
les CSPH, est crucial pour la spécification et le vieillissement des CSPH. Les greffes de moëlle 
osseuse et les expériences de différenciation ex-vivo et de cytométrie en flux montrent que les 
souris déficientes pour Hélios possèdent un nombre réduit de MPP4 et de progéniteurs lymphoïdes. 
Ce déficit est compensé par une augmentation du nombre de MPP3 et de progéniteurs granulo-
monocytaires et mégacaryocytaires. De plus l’analyse transcriptionnelle des CSPH indique que la 
déficience pour Hélios affecte principalement les CSH exprimant des gènes spécifiques aux 
mégacaryocytes et aux vieilles CSH, tandis que les MPP déficients pour Hélios expriment faiblement 
les gènes spécifiques aux cellules lymphoïdes. Notre travail montre que Hélios est un nouveau 
régulateur de la spécification et du vieillissement des HSC. 

 


