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Résumé de la thèse

0.1 Introduction

Une bactérie désigne un organisme vivant unicellulaire, microscopique et procaryote.
Cela signifie qu’individuellement (pour la plupart) elles ne sont pas visibles à l’œil nu
et que leur structure cellulaire ne comprend pas de noyau. Elles diffèrent des archées
(un autre groupe de procaryotes) par la composition de leur membrane et de leur ARN
ribosomal. Les bactéries se présentent sous de nombreuses formes : sphériques (cocci),
en bâtonnets (bacilles) ou hélicoïdales et une cellule bactérienne a habituellement une
longueur comprise entre 0,5 et 5 µm.

On trouve des bactéries dans tous les types d’environnement sur Terre, des profondeurs
océaniques au sol, en passant par la roche, l’air, et elles peuplent même les animaux,
les plantes et les humains. Leur omniprésence leur permet de jouer un rôle important
dans une grande majorité des processus géochimiques, par exemple dans les cycles du
carbone et de l’azote. Elles sont nécessaires au bon fonctionnement de l’ensemble de
l’écosystème et des organismes qui y vivent.

Malgré cette omniprésence, on connaît relativement peu de choses sur le monde des
bactéries et leur classification taxonomique reste compliquée. La taxonomie sert à re-
grouper les organismes sur la base de caractéristiques communes et ces groupes (les
taxons) se voient attribuer un rang taxonomique correspondant à leur niveau supposé
d’apparition dans l’arbre de la vie. Comme pour les autres micro-organismes, il est beau-
coup plus difficile d’établir une classification naturelle des bactéries que des animaux et
des plantes, car elles présentent relativement peu de caractéristiques phénotypiques vis-
ibles et se reproduisent par des mécanismes rapides et multiples, tant sexués qu’asexués.
Parmi ces mécanismes, on peut citer la division binaire simple et les échanges génétiques
par conjugaison bactérienne, qui impliquent un transfert horizontal bidirectionnel de
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matériel génétique entre des bactéries proches les unes des autres. Tout cela fait que
la taxonomie des bactéries est mouvante, rendant la définition d’une espèce bactérienne
floue. Les niveaux en dessous de l’espèce tel que ceux de la sous-espèce, de la souche et
du clone sont encore moins bien définis et, en fonction des définitions utilisées, peuvent
parfois se chevaucher.

Cependant, descendre à un niveau inférieur à l’espèce tel que celui de la souche est très
important. Prenons l’exemple de l’espèce bactérienne la plus étudiée, Escherichia coli.
Cette dernière contient des souches pathogènes [Navarro-Garcia 2014] des souches com-
mensales et d’autres probiotiques [Grozdanov et al. 2004]. Être capable de différencier
les trois types de souches relève donc d’un problème de santé publique.

A l’origine, l’étude des bactéries était réalisée majoritairement à partir de leurs phéno-
types visibles ainsi que de leurs types trophiques (source d’énergie, donneur d’électrons
et source de carbone) qui dépend de leur métabolisme. Or, pour réaliser ces études, la
bactérie doit être cultivée. Cependant, encore aujourd’hui, seulement un petit nombre de
bactéries est cultivable et donc observable scientifiquement. Dans leur grande majorité,
les bactéries ne peuvent donc pas être séparées par ces méthodes. Avec les avancées de la
génomique, l’étude des bactéries basée sur leur génome a permis d’accéder aux bactéries
non cultivables. Depuis une dizaine d’années, le nombre de génomes bactériens dans les
bases de données augmente rapidement, rendant les études comparatives entre espèces
et au sein d’espèces bactériennes possibles.

La comparaison de deux bactéries peut être réalisée sur la base de leur génome. On
peut le faire de façon minimale sur la base d’une séquence partielle du gène de l’ARNr
16S, un gène présent chez tous les procaryotes, contenant des parties variables permet-
tant la distinction entre les espèces et entouré de parties conservées permettant l’accroche
d’amorces de PCR (polymerase chain reaction), une technique moléculaire permettant
l’amplification du morceau d’ADN présent entre les amorces. Une autre façon de faire,
appelée MLST (Multi Locus Sequence Typing), consiste à se baser sur la comparaison
de 5 à 7 gènes de ménage (assurant des fonctions indispensables à la survie des cellules
et donc très conservés) permettant d’étudier les espèces et souches bactériennes plus en
détail.

Cependant ces approches n’utilisent qu’une petite partie de l’information des génomes
et manquent donc de robustesse pour discriminer correctement des souches bactériennes.
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Pour comparer des génomes de souches bactériennes d’une même espèce, il est possible
d’utiliser la totalité du génome de ces souches et calculer des indices de similarité entre
ces génomes regroupés en anglais sous le terme OGRI (indices de parenté génomique
globale). L’indice le plus couramment utilisé est le taux d’identité nucléotidique moyen
(ANI) qui se calcule en divisant un génome en fragments qui sont ensuite recherchés dans
l’autre génome à l’aide d’un algorithme d’alignement de séquences. Une valeur d’identité
nucléotidique est renvoyée à la suite de ce calcul et la valeur ANI est simplement la
moyenne de ces valeurs. Par la suite, [Konstantinidis and Tiedje 2005] a montré que
l’ANI restreint aux gènes conservés dans les génomes peut être utilisé comme mesure
robuste de leur distance évolutive. En plus de la distance ANI d’autre distances telle
que celle de Jaccard peuvent être déterminées en utilisant la composition en k-mers des
génomes pour évaluer la proximité des génomes entres eux.

Du fait de l’avancée des technologies de séquençage, on peut identifier des bactéries
présentes dans un échantillon à partir des séquences d’ADN qu’il contient. Les séquenceurs
fournissent en sortie des lectures (reads) représentant chacune un morceau de l’un des
individus présents dans l’échantillon.

Lors de cette thèse, la technologie de séquençage utilisée était la technologie d’Oxford
Nanopore produisant des lectures bien plus longues que des technologies précédentes telle
qu’Illumina, mais avec un taux d’erreurs beaucoup plus important. Pour séquencer un
morceau d’ADN, cette technologie utilise des nanopores protéiques disposés à la surface
d’une membrane sous tension à travers laquelle passent les molécules d’ADN [M. Jain,
Fiddes, et al. 2015]. En fonction des nucléotides de la molécule d’ADN passant par le
nanopore, le courant électrique à travers la membrane est modifié, ce qui produit un
signal brut qui est ensuite transformé en une séquence par des logiciels dédiés appelés
basecallers.

L’avantage de la technologie d’Oxford nanopore, et plus particulièrement du MinION,
qui est le séquenceur utilisé pendant cette thèse, outre la taille des lectures en sortie,
est le prix du séquenceur ainsi que ses dimensions réduites et donc sa portabilité, ce
qui permet de réaliser les expériences directement en laboratoire sans passer par les
plateformes de séquençage et ainsi d’accélérer le processus d’identification bactérienne.

Lors de la thèse le modèle d’étude utilisé était les bactéries lactiques, plus précisément,
Streptococcus thermophilus, une bactérie alimentaire Gram-positive de forme sphérique,
d’une taille de 0,7 à 1 µm, formant des chaînes, thermophile (la croissance optimale se
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situe entre 35 et 42°C selon la souche étudiée). Nous avons choisi cette bactérie comme
espèce modèle en raison de son importance dans les industries alimentaires en tant que
starter laitier [Martinović et al. 2020] et probiotique potentiel [Uriot et al. 2017], mais
également, car c’est une espèce contenant des souches étroitement apparentées avec une
faible diversité génomique [Alexandraki et al. 2019; Hu et al. 2020], ce qui rend le prob-
lème difficile.

Durant la thèse 31 souches de S. thermophilus provenant de la collection du Centre
International de Ressources Microbiennes - Bactéries Associées aux Aliments (CIRM-
BIA) ont été séquencées et assemblées. Ces souches avaient été séquencées avec la
technologie Illumina auparavant. L’utilisation de la technologie de séquençage Nanopore
lors de la thèse, a permis d’assembler complètement et correctement leurs génomes à
l’aide de l’assembleur hybride Unicycler (version 0.4.7) [Wick, Judd, Gorrie, et al. 2017].

Enfin, en plus de S. thermophilus, des tests sur des échantillons contenant d’autres
bactéries lactiques (produits laitiers), des souches de la bactérie E. coli et des souches
de Streptococcus pyogenes ont également été réalisés.

0.2 - État de l’art actuel de l’identification de souches bac-
tériennes à partir des séquences d’ADN

Le but de l’identification bactérienne à partir d’un ensemble de données de séquençage
issues d’un échantillon bactérien, est d’attribuer les individus présents dans cet échan-
tillon au niveau taxonomique le plus fin possible. Nous présentons ici l’état de l’art des
logiciels d’identification bactérienne travaillant à partir de séquences génomiques.

Les logiciels utilisés pour l’identification bactérienne sont en grande majorité dévelop-
pés pour traiter des lectures courtes, car ce sont encore actuellement les données les plus
répandues.

Pour identifier une souche bactérienne, il faut être capable d’assigner les séquences
issues du séquençage à leur génome d’origine ou au génome le plus proche actuellement
connu. Il existe deux façons de réaliser cette assignation, soit en alignant les lectures sur
les génomes soit en recherchant la présence de fragments de taille fixe.

L’alignement de deux séquences consiste à insérer des espaces (gaps) dans les séquences
pour que les séquences obtenues aient la même taille et qu’il y ait au moins un caractère
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qui ne soit pas un espace à chaque position de l’alignement. Un score peut ensuite être
associé à un alignement en fonction du nombre d’espaces et des correspondances (match)
ou discordances (mismatch) observées entre deux nucléotides alignés. Cependant trouver
une solution optimale au problème d’alignement se fait en temps quadratique en fonction
de la taille des séquences et des heuristiques ont dû être développées pour accélérer le
calcul. La plus connue étant l’heuristique seed-and-extend de BLAST [Altschul et al.
1990]. Elle consiste à rechercher une petite séquence (graine) identique entre les deux
séquences puis d’étendre l’alignement des deux côtés par programmation dynamique. La
recherche de cette graine a par la suite été grandement accélérée par l’utilisation d’une
structure compressée, le FM-index [Ferragina and Manzini 2000].

Pour échapper à la complexité de l’alignement, il est possible de décomposer les
génomes en fragments nommés k-mers. Un k-mer est une sous-séquence de taille k
d’une séquence. Cette décomposition en k-mers fait perdre la notion de continuité entre
les k-mers. Pour la conserver, il est possible d’utiliser un graphe de De Bruijn qui est
un graphe dirigé dont les nœuds correspondent au k-mers et les arêtes correspondent à
un chevauchement de k-1 positions.
Lorsque l’on utilise la décomposition en k-mers, on considère un génome comme un
ensemble. Les k-mers de cet ensemble peuvent être intégrés dans un index compressé
permettant un gain de place ainsi que la recherche rapide des k-mers communs entre une
séquence (la requête) et l’index.
Il existe plusieurs façons d’indexer un génome. On peut par exemple utiliser une struc-
ture de données telle que BOSS [Boucher et al. 2015] permettent d’indexer des graphes
de De Bruijn représentant un génome. Parmi les autres techniques d’indexation sans
graphe, on dispose d’index spécialisés dans les requêtes de type présence/absence de
k-mers et celles associant de l’information à chaque k-mer. Dans la première catégorie,
une structure essentielle est le filtre de Bloom. Les filtres de Bloom peuvent être vus
comme des tableaux de bits de taille n initialisés à 0, associés à une ou plusieurs fonctions
de hash h1..hm. Pour insérer un k-mer x dans le tableau, on met toutes les positions
h1(x)..hm(x) à 1. Ensuite pour rechercher un k-mer y dans le tableau, on regarde si les
positions h1(y)..hm(y) sont toutes à 1. Cette structure est probabiliste, elle ne produit
pas de faux négatif, mais peut produire des faux positifs. Les filtres de Bloom permet-
tent une représentation compacte des génomes et sont à la base de notre méthode. Des
techniques de compression sans perte existent pour faire en sorte que ces index prennent
le moins de place possible.
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Pour indexer plusieurs génomes en même temps, il existe des structures de données
agrégatives basées sur les index précédents. Si l’on identifie chaque génome par une
couleur, les deux grands groupes de méthodes d’agrégation sont :

• les méthodes d’agrégation par couleur où l’on mélange la totalité des k-mers des
génomes et on associe ensuite chaque k-mer à leur ensemble de couleurs.

• les méthodes d’agrégation par k-mer, elles, associent d’abord à chaque couleur leur
ensemble de k-mers puis cherchent à classifier les couleurs.

Parmi les méthodes d’agrégation par k-mers, on retrouve la structure de données
implémentée dans HowdeSBT [Harris and Medvedev 2020] qui va construire un filtre
de Bloom pour chaque génome avant d’agréger ces filtres dans une structure sous forme
d’arbre. C’est l’une des méthodes actuelle les plus efficaces en terme de place mémoire
utilisée pour indexer les jeux de données et c’est celle que nous avons utilisée pour réaliser
l’index de notre propre méthode.

Une fois qu’une lecture a été assignée à un certain nombre de génomes de la base
de données initiale, identifier les bactéries d’un échantillon consiste le plus souvent à
effectuer l’union des possibilités. Cette stratégie consiste à identifier la lecture par le plus
petit ancêtre commun dans la taxonomie des organismes dont le génome a été assigné.
Elle a été utilisée par des logiciels tels que Kraken [Wood and Salzberg 2014] et Kraken
2 [Wood, Lu, and Langmead 2019]. Cependant l’utilisation de l’ancêtre commun le plus
proche fait que l’identification a du mal à descendre au niveau taxonomique de l’espèce
voire du genre bactérien. Il est donc très difficile d’identifier des souches avec cette
approche et l’utilisation de lectures courtes rend l’identification de souches bactériennes
quasiment impossible.

Il existe cependant des logiciels d’identification de souches bactériennes basés sur les
lectures courtes tels que le logiciel StrainSeeker [Roosaare et al. 2017], développé pour
identifier des isolats bactériens, mais qui fonctionne également sur de petits mélanges de
souches bactériennes.

Les lectures longues contiennent plus d’information que les courtes du fait de leur
taille, mais leur fort taux d’erreurs rend l’assignation de ces lectures à une souche plus
compliquée. Cependant, dans cette thèse, nous partons de l’hypothèse que la taille des
lectures longues est assez importante pour ne pas nécessiter de les corriger.
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Assez peu de logiciels d’identification de souches bactériennes utilisent des lectures
longues. Cependant, certains logiciels fonctionnant avec des lectures courtes fonction-
nent également avec des lectures longues, tels que Centrifuge [D. Kim et al. 2016], Kraken
2 ou encore StrainSeeker. D’autres comme MEGAN-LR [Huson, Albrecht, et al. 2018]
ont adapté leur approche à ce nouveau type de données.

Parmi les logiciels spécifiques aux lectures longues, on retrouve Metamaps [A. T.
Dilthey et al. 2019] et NanoMAP [Hall, Speed, and Woodruff 2020], deux logiciels égale-
ment basés sur l’alignement de séquences. Le logiciel que nous avons développé durant
cette thèse semble cependant être le premier logiciel d’identification de souches bactéri-
ennes utilisant les lectures longues fonctionnant avec une approche utilisant les k-mers.

0.3 - Une approche d’identification de souches à l’aide de
graines espacées

Ce chapitre présente notre approche pour pallier les erreurs de séquençage lors de
l’assignation des lectures aux génomes ainsi que le problème de l’identification de souches
d’une même espèce bactérienne.

Lors de l’utilisation de k-mers, si l’on veut assigner une lecture à un génome de
référence, un seuil minimum de k-mers communs entre les deux séquences doit être fixé.
Ce seuil est régulièrement fixé entre 70% à 90%. Cependant, comme le taux d’erreurs
des lectures nanopore est important, nous avons fixé ce seuil à 50% durant la thèse.

Or, si l’on considère un simple modèle binomial et l’hypothèse d’un taux d’erreurs
uniforme dans la séquence, il est possible de montrer que si l’on a une lecture de taille 2
000 pb et une taille de k-mer de 15, il faudra en moyenne 4,5% d’erreurs pour que 50% des
k-mers de la lecture soient trouvés dans le génome. Ce taux d’erreurs est assez faible si
l’on considère ceux de la technologie nanopore. A titre d’exemple le taux d’erreurs moyen
dans nos expériences sur S. thermophilus était compris entre 5,06% et 4,89% en filtrant
pourtant les lectures sur leur qualité et leur longueur. Une expérience sur données réelles
a été réalisée pour regarder l’effet de la diminution de la taille des k-mers sur l’assignation
de 4 000 lectures de la souche S. thermophilus JIM8232 contenant environ 5% d’erreur
avec notre approche et en utilisant un index contenant 77 génomes de S. thermophilus.
Cette expérience montre que plus la taille des k-mers diminue plus le pourcentage de
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lectures assignées à au moins une souche augmente, mais que le pourcentage de lectures
assignées sans ambiguïtés diminue.

Comme le taux d’erreurs des lectures rend leur assignation plus compliquée, en plus
de diminuer la taille du k-mer utilisé, il est également possible d’utiliser des graines
espacées. Les graines espacées sont des séquences binaires débutant et finissant par un
1 et pouvant être utilisées comme masque lors d’un alignement de deux séquences. Les
positions à 1 dans ces graines représentent une correspondance entre les séquences et les
0 représentent des positions joker dont on ne se préoccupe pas. Le pattern comparé en
utilisant ce "masque" est appelé q-gram par la suite. Il est également possible d’appliquer
cette graine à un k-mer et d’en extraire le q-gram correspondant.

Il a été montré que l’utilisation des graines espacées apportait une amélioration
dans la précision des résultats à la fois lors d’alignements de séquences comme avec
PatternHunter [B. Ma, Tromp, and M. Li 2002] et lors de l’identification de bactéries
non basée sur de l’alignement comme avec Seed-Kraken [Břinda, Sykulski, and Kucherov
2015], une implémentation de Kraken utilisant les graines espacées. Dans notre cas
une seule graine 111111001111111 ayant pour but d’être moins sensible aux erreurs de
séquençage a été utilisée. Cette graine espacée a été déterminée expérimentalement pour
bien fonctionner dans l’identification de souches de S. thermophilus parmi un panel de
graines de taille et de poids croissants dont le pattern a été optimisé en utilisant le
logiciel iedera [Noé 2017].

Une fois les lectures assignées à leur(s) génome(s) de référence ou non assignées (ce
qui est le comportement voulu lors de contamination de l’échantillon par d’autres es-
pèces non indexées par exemple), il faut identifier les souches réellement présentes dans
l’échantillon. Pour comprendre la difficulté du problème, on a mesuré la proximité des
génomes de souches de S. thermophilus à deux niveaux :

• le niveau génique avec l’étude du pangénome (ensemble des gènes d’une espèce com-
posé du core génome (gènes communs à toutes les souches) et du génome variable
(gènes non présents chez au moins une souche)). L’annotation des génomes et le
calcul du pangénome ont été réalisés en utilisant les algorithmes fournis par la plate-
forme MicroScope [Vallenet et al. 2020]. Les noms des gènes ont ensuite été curés
manuellement et le pangénome a été utilisé pour réaliser une analyse formelle de
concepts [Ignatov 2015] afin de produire les biclusters maximaux {souches×gènes}
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avec en intention les souches et en extension les gènes. Le tout est calculé avec de
l’Answer Set Programming (ASP) [Gebser et al. 2012], un langage de programma-
tion déclaratif. Un bicluster maximal peut être vu comme un bicluster dans lequel
un ajout dans l’intention provoque forcément une perte dans l’extension.

• le niveau génomique avec la création d’un arbre de classification via un algorithme
de neighbour-joining proposé par MicroScope. Les biclusters maximaux ont été
appliqués sur cet arbre afin d’obtenir une représentation de l’arbre avec, pour
chaque nœud, la liste des gènes spécifiques à ce nœud, le tout disponible en ligne
grâce au visualisateur d’arbre phylogénique nommé iTOL [Letunic and Bork 2019]
: https://itol.embl.de/tree/131254134671311597925585. En plus de cela, les
distances d’ANI [C. Jain, Rodriguez-R, et al. 2018], de Jaccard et de Hamming ont
été calculées entre les différentes souches. Nous avons par la suite prouvé que ces
distances étaient corrélées et nous avons gardé la distance de Hamming car elle est
plus rapide à calculer avec les filtres de Bloom utilisés dans notre méthode. Ces
calculs de distances ont permis de produire une heatmap, représentant visuelle-
ment les distances entre souches de S. thermophilus sur laquelle on observe : (1)
certains génomes sont extrêmement similaires et vont donc être très compliqués
à identifier les uns par rapport aux autres. Enfin (3), si l’on ajoute les souches
d’une autre espèce et d’une autre famille bactérienne ces dernières sont facilement
différentiables des souches de S. thermophilus. (2) Des clusters de souches plus
proches les unes des autres et isolée du reste. On retrouve parmi ces clusters un
cluster de souche que nous avions séquencé puis assemblé, et qui est séparé du
reste des S. thermophilus. Si on compare l’origine de ces souches, on remarque que
ces dernières proviennent de produits laitiers italiens traditionnels.

A partir de l’assignation des lectures à un ou plusieurs génomes, nous avons créé
la matrice lectures × génomes contenant dans chaque case la proportion de k-mers de
la lecture retrouvée dans le génome, que nous appellerons α. L’identification est alors
réalisée en recherchant un nombre minimum de génomes qui expliquent la totalité des
lectures assignées. Comme ce problème est NP-complet, nous avons utilisé l’ASP qui
nous permet de trouver une solution exacte tant que le nombre de lectures et de souches
n’est pas trop important. Pour s’assurer de cela, un prétraitement des données est
réalisé. Premièrement, nous ne gardons que les lectures de bonne qualité en nous basant
sur la qualité indiquée dans les fichiers de séquençage bruts ainsi que la longueur de ces
lectures. Ensuite, durant l’étape d’identification, les lectures ayant un trop grand nombre
d’assignations sont supprimées, car elles ne sont pas assez informatives pour différencier
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des souches entre elles. Enfin, seuls les génomes des souches avec les meilleures valeurs
α sont gardées pour simplifier le calcul.

Dans notre approche, la possibilité est laissée à l’utilisateur de regrouper les souches
proches en une seule. Le regroupement de ces souches similaires est réalisé en fixant
un seuil sur la distance de Hamming entre les génomes. Dans le cas des souches de S.
thermophilus, ce seuil a été fixé de manière empirique à 2e−4 et permet de former 12
regroupements de souche proches. Par la suite dans notre méthode, une visualisation
simplifiée de la matrice de distance est fournie sous forme d’histogrammes représentant
les paires de distances de Hamming entre souches afin d’aider l’utilisateur à déterminer
un seuil de regroupement. Le regroupement des souches proches est réalisé en créant le
graphe dont les nœuds correspondent aux souches et les arêtes à une proximité entre deux
souches (distance < seuil), puis en réalisant l’union des filtres de Bloom des génomes qui
font partie de la même composante connexe.

0.4 - ORI, un nouveau logiciel pour l’identification des souches
bactériennes à partir de lectures longues

Ce chapitre présente ORI (Oxford nanopore Reads Identification) [Siekaniec et al.
2021] un nouveau logiciel d’identification de souches bactériennes utilisant des lectures
longues issues de séquençage nanopore. ORI est disponible sur github à l’adresse :
https://github.com/gsiekaniec/ORI et peut être installé avec conda.

ORI est basé sur quatre points principaux qui sont :

• l’utilisation de la structure d’index de HowDeSBT ;

• l’utilisation d’une graine espacée permettant d’être moins sensible aux erreurs de
séquençage ;

• le regroupement des souches proches ;

• l’identification des souches grâce à une optimisation exacte pour la sélection du
nombre minimal de souches permettant d’expliquer la totalité des assignations de
lectures observées.

Les trois premiers points étant liés au problème de l’assignation des lectures aux
génomes, il a fallu modifier le logiciel HowDeSBT. Les modifications apportées sont :
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1. l’insertion à l’intérieur des filtres de Bloom des q-grams à la place des k-mers. Ces
q-grams sont utilisés également pendant la requête via l’application d’une graine
espacée ;

2. le calcul de la distance de Hamming entre tous les filtres de Bloom, qui est une étape
qui utilise beaucoup de temps et de mémoire du fait des complexités respectives
en O(mn2) (temps) et O(mn) (mémoire) avec m la taille des filtres de Bloom et n
le nombre de génomes ;

3. la création de l’histogramme permettant le choix du seuil pour le regroupement
des souches proches et (4) l’union des filtres de Bloom de ces souches.

Afin de vérifier la compression des génomes ainsi que le temps et la mémoire utilisés
lors de la requête de l’index, des expériences ont été réalisées avec des génomes de
bactéries lactiques et d’Escherichia coli. Les différentes expériences ont montré des taux
de compression de plus de 85%. La mémoire maximum utilisée durant la requête est,
quant à elle, dépendante du nombre de lectures, mais pas de la taille de l’index alors
que le temps de requête est dépendant des deux paramètres, ce qui peut poser problème
lorsque le nombre de lectures devient important et que la taille de l’index l’est aussi.

ORI fonctionne en trois parties :

• la création de l’index basée sur la version modifiée de HowDeSBT ;

• la requête de cet index en utilisant les q-grams des lectures. C’est dans cette partie
"requête" que les lectures sont filtrées sur leur qualité et leur longueur afin de ne
garder que les lectures ayant la meilleure qualité ;

• l’identification des souches présentes dans l’échantillon d’origine à partir des résul-
tats d’assignation de chaque lecture et de l’étape d’optimisation présentée précédem-
ment.

0.5 - Validation de ORI sur les bactéries lactiques et expéri-
ences sur S. pyogenes et E. coli

Ce chapitre présente trois groupes principaux d’expériences visant à identifier des
souches bactériennes à partir de longues lectures de nanopores en utilisant ORI. Le pre-
mier groupe d’expériences est présenté dans l’article [Siekaniec et al. 2021] et correspond
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à l’identification de souches de Streptococcus thermophilus avec ORI, Kraken 2 et Strain-
Seeker.
Le deuxième groupe d’expériences correspond à l’identification avec ORI de souches
présentes dans différents produits laitiers.
Enfin, le troisième groupe d’expériences correspond à l’identification avec ORI de souches
de Streptococcus pyogenes puis des souches d’Escherichia coli provenant d’un microbiote
intestinal de porc.

Les premières expériences consistaient à identifier des souches de S. thermophilus dans
différents échantillons simulés à partir de mélanges des lectures issues du séquençage
nanopore réel de souche de S. thermophilus de la collection du CIRM-BIA. 180 expéri-
ences ont été réalisées en simulant des mélanges de lectures basées sur 4 paramètres
:

• le nombre de souches (4 ou 6) ;

• la proximité des souches (distantes, moyennement proches et proches). Les expéri-
ences avec des souches proches contiennent des souches qui possèdent au moins
une autre souche qui leur est proche (seuil sur la distance de Hamming entre les
filtres de Bloom des deux souches) ;

• le nombre de lectures (1 000, 4 000 et 16 000). Les 1 000 lectures sont sous-
sélectionnées aléatoirement parmi les 4 000 lectures qui sont elles-mêmes sous-
sélectionnées aléatoirement parmi les 16 000 lectures. Les 16 000 lectures sont
sélectionnées aléatoirement en mélangeant le nombre de lectures réelles de chaque
souche selon le nombre de souches utilisées et la distribution voulue ;

• la distribution des lectures (distribution uniforme ou distribution avec des souches
dominantes et sous-dominantes). Pour les expériences contenant des souches sous-
dominantes le nombre de lectures est simplement divisé par deux à chaque souche
ajoutée dans l’expérience à part pour la dernière souche. Par exemple pour 4 000
lectures contenant 4 souches on aura 2 000 lectures de la première souche, 1 000
lectures de la seconde souche et 500 lectures des deux dernières.

Pour chaque ensemble de paramètres possible, 5 réplicats ont été réalisés.
Des index contenant les mêmes souches ont été créés pour les trois logiciels comparés,
ORI, Kraken 2 et StrainSeeker. Ces index contiennent 77 souches de S. thermophilus
ainsi qu’un groupe externe composé d’une souche de L. delbrueckii subsp. bulgaricus et
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d’une souche de Streptococcus macedonicus. Sur les trois index, ceux d’ORI et de Kraken
2 ont des tailles similaires alors que celui de StrainSeeker est beaucoup plus grand.
Les résultats ont été validés en utilisant trois paramètres :

• la somme des distances de Hamming entre les souches identifiées par les logiciels et
leur souche la plus proche. Lors d’une identification complètement correcte cette
somme sera égale à 0 ;

• le coefficient de corrélation de Matthews qui mesure le compromis précision/sensibilité
de l’identification des souches. Ce coefficient varie entre 1 pour une identification
parfaite et -1 pour un désaccord total entre souches identifiées et réelles, 0 signifie
que les résultats ne sont pas meilleurs que si les souches avaient été sélectionnées
au hasard ;

• un ratio d’ambiguïté consistant à diviser le nombre de souches identifiées par le
nombre de souches attendues.

Avant de tester les logiciels dans ces conditions, deux tests d’identification d’isolats
ont été réalisés. D’abord l’identification d’une souche simple (S. thermophilus JIM 8232)
puis d’une souche plus complexe (S. thermophilus CIRM-BIA 67). Cette dernière est
plus complexe car il existe plusieurs souches proches.
Les résultats d’identification était bons pour les logiciels ORI et StrainSeeker. Kraken 2
a quant à lui donné des résultats peu concluants dès la première identification de souches.
Cependant, son identification était correcte au niveau de l’espèce bactérienne.
Sur les expériences de souches en mélange, les résultats d’identification ont été séparés
en deux : une distribution de lectures uniforme pour chaque souche versus des souches
dominantes et sous-dominantes.
Pour l’ensemble des expériences, les résultats ont été présentés de manière à observer les
effets de trois paramètres sur l’identification :

• le nombre de lectures (quantité de données) ;

• le nombre de souches (hétérogénéité) ;

• la proximité des souches (pouvoir de résolution de la méthode).

Avec une distribution uniforme des lectures, Kraken 2 ne donne pas de bons résultats
d’identification. StrainSeeker quant à lui donne de bons résultats mais est très sensible
au nombre de lectures fournies et donne de mauvaises identifications lorsque le nombre
de souches augmente ou diminue trop. ORI semble assez robuste au changement de
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paramètres et donne de bons résultats d’identification.
Pour les expériences avec des souches dominantes et sous-dominantes, le but était de
regarder si les souches sous-dominantes étaient bien identifiées par les méthodes. Sur ces
expériences StrainSeeker (qui est sensible au nombre de lectures) donne de bons résultats
d’identification (voir même meilleurs qu’ORI selon les conditions) lorsque le nombre de
lectures par souche n’est ni trop élevée ni trop faible. C’est également le cas de ORI qui
peine à identifier les souches sous-dominantes lorsque le nombre de lectures par souche
devient trop faible. Kraken 2 quant à lui s’améliore un peu et ne se montre pas sensible
au nombre de lectures utilisées pour l’identification.
La dernière expérience de cette section était de tester l’effet qu’avait le regroupement
des souches proches en une seule souche avec ORI. Globalement, regrouper les souches
proches améliore les résultats d’identifications sur l’ensemble des expériences. Les résul-
tats d’identification des souches sous-dominantes reste cependant peu concluants lorsque
le nombre de lectures par souche est trop faible (< 125 lectures par souche).

Le deuxième groupe d’expériences a consisté à identifier des souches parmi 5 produits
laitiers commerciaux. Ces produits étaient :

• 3 yaourts brassés. Un yaourt est composé obligatoirement et uniquement de
souches des deux espèces S. thermophilus et L. delbrueckii subsp. bulgaricus.

• 1 lait fermenté contenant des Bifidobacterium en plus des souches de S. ther-
mophilus et L. delbrueckii subsp. bulgaricus.

• 1 lait ribot (produit traditionnel Breton. Babeurre fermenté).

Ce groupe d’expérience avait pour but de montrer la faisabilité de l’utilisation d’un pro-
tocole "classique" d’extraction d’ADN et d’une mini flowcell Nanopore, la Flongle (60-80
pores actifs par rapport aux 1 300-1 600 pores d’une flowcell classique) ; à faible coût
(80 e / 810 e) ; avec multiplexage des échantillons.

L’ADN des souches de ces différents produits laitiers a été extrait puis séquencé en
utilisant le séquenceur MinION.
Afin d’étudier ces échantillons 4 index ORI ont été créés. Ces index contenaient respec-
tivement les génomes complet de :

• 95 souches de S. thermophilus.

• 237 souches de L. delbrueckii.
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• 694 souches de Bifidobacterium.

• 272 souches de Enterococcus, Lactobacillus et Leuconostoc. Notez que les nouvelles
classifications des Lactobacillaceae et Leuconostocaceae [J. Zheng et al. 2020] n’ont
pas été utilisées car la taxonomie de la base de données NCBI n’a pas encore été
mise à jour.

Ces expériences ont montré que :

• les yaourts 1 et 3 étaient proche, en se basant sur leur contenu en souches S.
thermophilus ;

• les yaourts 1 et 2 contenaient la même souche (ou des souches très proches) de L.
delbrueckii subsp. bulgaricus ;

• mis à part la présence de Bifidobacterium animalis subsp. lactis dans le lait fer-
menté, son contenu en S. thermophilus et L. delbrueckii subsp. bulgaricus était
très proche du yaourt 2 ;

• l’on trouvait majoritairement des souches de S. thermophilus, L. delbrueckii subsp.
indicus, Bifidobacterium breve, Lactococcus lactis, Lactococcus lactis subsp. cre-
moris et Lactococcus cremoris dans le lait ribot.

Cependant, le nombre de lectures obtenus pour chaque produit laitier était assez faible
du fait de l’utilisation de Flongle en multiplexant pour le séquençage. Les résultats
d’identification d’ORI sont donc à considérer avec précaution.
De manière générale, cette expérience aura montré qu’il était possible d’identifier des
souches bactériennes à partir de produits laitiers en utilisant ORI. Des améliorations
pouront être apportées à l’extraction de l’ADN et au séquençage de ce dernier.

Le troisième et dernier groupe d’expériences présente des expériences liées à des col-
laborations extérieures à la thèse et ayant nécessité la formation d’autres personnes à
l’utilisation d’ORI, ce qui a permis d’améliorer le logiciel et sa documentation. On peut
séparé les expériences réalisé en 2 :

• l’identification de souches de Streptococcus pyogenes, un streptocoque pathogène
d’intérêt clinique.

• un test d’identification en cas de contamination d’un échantillon d’une espèce par
une autre espèce proche en utilisant ORI.
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• un test d’identification de souches d’E. coli à partir d’un échantillon métagénomique
de microbiote intestinal de porc.

La première expérience consistait simplement à identifier une souche pathogène de S.
pyogenes STAB14018 dont le génome est connu à partir de lectures longues nanopore et
d’un index contenant 244 génomes complets dont les souches proches ont été regroupées
dans l’index. Le résultat obtenu est un groupe de trois souches proches regroupées dont
fait bien partie la souche S. pyogenes STAB14018. Cette expérience est un premier pas
permettant de montrer l’intérêt que peut avoir un logiciel tel que ORI dans le secteur
médical et permet de valider le fonctionnement d’ORI pour d’autres espèces (chaque
utilisateur peut librement créer un index adapté à ses besoins).

La deuxième expérience consistait à étudier les souches de E. coli présentes dans
un échantillon métagénomique intestinal de porcelet. Le nombre de lectures étant très
important et la diversité bactérienne très élevées, le logiciel Kraken 2 a été utilisé pour
identifier et trier les lectures provenant uniquement de l’espèce E. coli. Ces lectures ont
par la suite été utilisées par paquet de 4 000 lectures pour identifier les souches de E. coli
présentes dans l’échantillon. Pour cela, un index ORI contenant 1 644 génomes complets
de E. coli a été créé. C’est l’index le plus grand actuellement testé avec ORI (537 Mo).
Lors de ce test, 8 souches de E. coli ont été identifiées parmi lesquelles 6 souches avaient
bien été observées chez le porc [Poulin-Laprade et al. 2021; Z. Li et al. 2018]. Cette
expérience a montré que ORI pouvait être combiné avec Kraken 2 pour identifier des
souches d’une espèce d’intérêt dans un échantillon métagénomique.

Enfin, nous avons vérifié la spécificité d’ORI en nous appuyant sur les expériences
précédentes réalisées sur S. pyogenes et S. thermophilus. Cette dernière expérience con-
sistait à requêter un index contenant des souches de S. thermophilus avec des lectures
longues issus d’un séquençage d’une souche de S. pyogenes (espèce proche) afin de véri-
fier qu’aucune lecture n’était assignée. L’inverse à également été réalisé (lectures de S.
thermophilus contre un index de S. pyogenes). Dans les deux cas aucune lecture n’est
assignée à une souche de l’autre espèce, ce qui montre que ORI est robuste en présence
d’espèces proches de celles présentes dans l’index.

0.6 - Conclusions et Perspectives

Dans cette thèse, nous avons présenté une nouvelle approche d’identification de souches
bactériennes à partir de lectures longues erronées issues de séquençage nanopore ainsi
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qu’une implémentation de cette méthode dans un logiciel nommé ORI. Les expériences
menées avec ORI montrent que ce dernier est robuste dans ses identifications de souches
bactériennes et plus particulièrement lorsque les souches similaires et donc difficilement
séparables sont regroupées. ORI identifie correctement les souches présentes, mais peut
passer à côté de certaines souches lorsque leur couverture est trop faible.
Le temps de requête de l’index ORI reste relativement élevé et des améliorations pour-
raient être apportées. Les trois principales étant : (1) de descendre rapidement au niveau
espèce ou genre en utilisant une autre méthode avant d’utiliser ORI, (2) d’échanger
l’index d’ORI avec un index plus rapide à requêter, mais un peu plus volumineux ou (3)
de modifier/améliorer l’index actuel pour le rendre plus rapide.

En ce qui concerne les lectures longues d’Oxford nanopore, leur problème majeur est
le taux d’erreurs encore important actuellement. Cependant, ce taux d’erreurs diminue
rapidement au fur et à mesure que la technologie (physique, chimie, biologie moléculaire)
et les basecallers (bioinformatique) s’améliorent. Dans la suite de cette thèse, trois tests
pourraient être intéressants à réaliser : l’utilisation de Taiyaki permettant d’entraîner
spécifiquement le basecaller à reconnaître des bactéries lactiques et ainsi diminuer le
taux d’erreurs des lectures de ces dernières ; l’utilisation de l’API Read Until de ONT
pour sélectionner amplifier les lectures de bactéries minoritaires en écartant les séquences
majoritaires et, la réutilisation des flowcells. Cela permettrait un arrêt après un temps
court de séquençage (correspondant à 4 000 lectures pour une souche de qualité suff-
isante) suivie du lavage de la flowcell. Ce lavage permettrait de réutiliser les flowcells
pour une nouvelle identification et ainsi réduire le coût des expériences. Ce dernier
point rentre dans l’optimisation de la partie en laboratoire attachée à la thèse qui reste
actuellement la partie la plus longue lors de l’identification de souches bactériennes (ex-
traction ADN, préparation de la librairie, séquençage) bien qu’accélérée grandement par
l’utilisation en local du MinION d’Oxford nanopore (sans passer par une plateforme
externe de séquençage).
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Preamble: This chapter aims is a quick introduction to the bacterial domain
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1.1 Bacterial identification

Since their discovery by Antony van Leeuwenhoek in the 17th century with the first
microscopes, bacteria have been studied with increasingly precise means to better in-
vestigate and decipher their functions and purpose in the environment. Bacteriology,
the study of bacteria is one of the branches at the core of microbiology. In the 19th
century, Louis Pasteur played a major role in this domain by understanding the involve-
ment of bacteria in fermentation processes and diseases (pathogenic bacteria), and by
developing methods to destroy them (pasteurisation). The 19th century also saw the
beginning of medical bacteriology, linked to the work of Robert Koch, for the discovery
of pathogenic bacteria which are now extremely well studied. Since then, bacteriology
has evolved to allow humans to use bacteria to their advantage, such as in the treatment
of wastewater or the processing of food (e.g. the production of dairy products such as
yoghurt and cheese). In the 20th century, a major breakthrough was the discovery of
antibacterial agents such as penicillin, discovered by Ernest Duchesne and studied by
Alexander Fleming.

The term bacteria refers to unicellular, microscopic and prokaryotic living organisms.
This means (for the most part) that individually they are not visible to the naked
eye and their cell structure does not include a nucleus. They can be separated from
archaea (another group of prokaryotes) by differences in their membrane composition
and ribosomal RNA. They come in many forms like spherical (cocci), rod-shaped (bacilli)
or helicoidal. Usual bacterial cells have a length between 0.5 and 5 µm. However, large
bacterial species are known such as Thiomargarita namibiensis (from ∼100-300 µm up
to 750 µm wide) [Schulz et al. 1999] as well as other species of very small size like some
Actinobacteria (< 0.1 µm) [M. W. Hahn et al. 2003].

Bacteria can be found in all types of environment on Earth, from the ocean depths
to the soil, rock, air and even on and in animals, plants and humans. Their omnipres-
ence allows them to play an important role in a large majority of geochemical processes,
for example in the carbon and nitrogen cycles. Bacteria are necessary for the proper
functioning of the entire ecosystem and the organisms living in it. A change in the set
of bacteria present in an environment can have a significant impact. For example, a
dysbiosis (imbalance in the biodiversity of our intestinal flora) can lead to health issues
[Carding et al. 2015] and the presence of commensal E. coli in the gut microbiota helps
protect against pathogenic E. coli [Conway and Cohen 2015]. In the same way [Bell
et al. 2005] showed the importance of the bacterial community diversification for proper
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functioning of ecosystems. In the food industry, bacteria are widely used and modifica-
tions in bacterial population composition allow the production of a wide variety of foods
(e.g. cheese, yoghurt, sauerkraut, vinegar...). For example the bacterial composition of
sourdoughs can be associated with particular bread flavours [De Vuyst et al. 2002]. All
these examples explain the interest of being able to identify bacteria in the most precise
possible way. This raises the issue of identifying similarities and differences, that is,
classifying bacteria at a fine level. As for other microorganisms, establishing a natural
classification of bacteria is much harder than for animals and plants because they have
relatively few features and they reproduce via fast and multiple mechanisms, both sex-
ual and asexual. It includes simple binary division and genetic exchanges by bacterial
conjugation, which involves bidirectional horizontal transfer of genetic material between
bacteria close to each other.

1.1.1 Evolution and taxonomy of bacterial species

The study of the taxonomy and evolution of living organisms is called Systematics. It
addresses six key points [Michener et al. 1970]: (1) naming rationally biological organ-
isms, (2) describing them, (3) preserving them, (4) giving a classification of organisms
and collecting data on their distributions, (5) studying their evolutionary history and (6)
studying their environmental adaptation. Taxonomy is the part of systematics studying
points (1) to (4). The remaining points concern phylogeny, the study of the relationship
between present-day living beings and those that have already disappeared in order to
reconstruct the evolution of living organisms and to understand the mechanism of ap-
pearance of new species.
Taxonomy clusters organisms into taxa on the base of shared characteristics and these
groups are given a taxonomic rank corresponding to their level in a tree supposed to
represent the evolution of life forms since the beginning of life. The principal ranks (an
example for the bacteria Streptococcus thermophilus is given in brackets) in descending
order from the root of this tree are domain (Bacteria), kingdom (Eubacteria), phylum
(Firmicutes), class (Bacilli), order (Lactobacillales), family (Streptococcaceae), genus
(Streptococcus) and species (Streptococcus thermophilus).

The current classification of life into three major domains, proposed in 1990 by Carl
Woese, contains the Eukaryota or Eukarya and two prokaryotic domains, the Bacteria
and the Archaea.

The bacterial phyla are still subject to many controversies. The estimated number of
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bacterial phyla was about 1 300 in 2014 [Yarza et al. 2014] but it drops to only 127 in the
Genome Taxonomy Database (GTDB, release 202, June 2021) an Australian initiative to
establish a standard microbial taxonomy from genome phylogeny [Parks, Chuvochina,
Waite, et al. 2018; Parks, Chuvochina, Chaumeil, et al. 2020]. So the taxonomy of
bacteria is still in flux. In details, the clades below the phylum in GTDB (release 202)
contains 360 classes, 1 163 orders, 2 886 families, 12 037 genera and 45 555 species. The
real number of bacterial species is still debated, the current estimates ranging from 103

to 1012 or even higher [Yarza et al. 2014; Louca et al. 2019; Bodor et al. 2020], and a
large proportion of these species remains unknown.

1.1.2 Early methods and issues for the identification of bacteria

Bacteria were at first classified based on their shape (morphology), Gram stain, motil-
ity, culture conditions (growth requirements) and pathogenic potential [Schleifer 2009].
As explained in [Schleifer 2009] bacterial classification changes have been linked to the
introduction of new techniques allowing more precise observations and combine the phe-
notype and the genotype of the studied organism [Vandamme et al. 1996]. Improved
accessibility to genetic information due to the decreasing cost and higher throughput of
sequencing has allowed a shift from the original molecular biology techniques used for
bacterial recognition to computer techniques processing sequencing data directly.

Phenotypic information (bacterial features)

In bacteriology, morphology is the first phenotypic information that is useful for iden-
tification since it can be observed with the naked eye from a bacterial colony. The
general appearance of the colony, the shape of its relief, its size, its smell, its colour and
pigmentation as well as it’s transparency and edge can be easily observed.

To study the morphology of the bacterial cell in more detail, the use of microscope
is necessary. Microscopy allows in a fresh state (living bacteria) to see the motility
of the bacteria. Then, one of the systematic steps for the identification of bacteria
is the Gram stain, a technique developed by the bacteriologist H.C. Gram in 1884.
Originally, it consisted of attaching the bacteria to the plate by a smear and then staining
them with gentian violet in order to reveal the cell wall structure, mostly determine by
peptidoglycans. Since then, it is possible to predict the Gram stain of bacteria using
other techniques such as a specific polymerase chain reaction (PCR) called Multiplex
Gram-Specific TaqMan-Based PCR (MGST-PCR) [Bispo et al. 2011].

Gram staining allows a rough classification of bacteria into two types, Gram + and
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Gram -. Microscopy can be used to determine other morphological characteristics such
as the size of the bacteria, their shape, the way they are grouped together (e.g. grouped
in chains for Streptococci) or the presence of capsules or flagella. The formation of a
bacterial biofilm can also be used for identification.

Another source of phenotypic information is bacterial physiology and particularly
their metabolism, that is, the set of chemical reactions that take place in the cell. The
classification of bacteria is based on their trophic type, depending of their metabolism.
It takes into account three dimensions shown in Table 1.1.

Table 1.1: Classification of organisms based on their metabolism.

Energy source Electron donor Carbon source Trophic type
coupound

Light
Inorganic CO2 Photolithoautotroph

Organic compound Photolithoheterotroph

Organic CO2 Photoorganoautotroph
Organic compound Photoorganoheterotroph

Biochemical oxidation
Inorganic CO2 Chemolithoautotroph

Organic compound Chemolithoheterotroph

Organic CO2 Chemoorganoautotroph
Organic compound Chemoorganoheterotroph

In addition to the trophic type, it is also possible to study the capacity of a bacterium
to degrade certain substrates like glucose in the presence or absence of oxygen or even
the nitrate reduction. It is related to the presence or absence of certain enzymes in
the bacteria, which allows their classification. Currently, Gram staining associated with
tests for the presence of catalases (enzymes allowing oxidation-reduction reactions) and
oxidases (enzymes allowing the degradation of hydrogen peroxide into water and oxygen)
allow the classification of bacteria into a bacterial family. By performing other tests,
often depending on the family, it is possible to go further down the classification. Nowa-
days, it is possible to use analytical profile index (API) detection systems that quickly
perform miniaturised biochemical tests in each well of a gallery to refine the identifica-
tion of bacteria. The optimal growth medium and culture conditions (e.g. temperature,
hygrometry) of a bacterium depend on its trophic type and its ability to degrade certain
compounds and not others. It can thus be used for identification purposes.
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Finally, some methods of identification in the medical domain are based on serology
or resistance to certain antibiotics.

The identification of bacteria based on their phenotypes suffers from a serious draw-
back: the vast majority of bacteria are not cultivable or have not been described before
[Bodor et al. 2020]. Fortunately it is now possible to easily access the genetic content of
these organisms. One way of identifying non-cultivable species is therefore to go through
their genotype.

Genotypic information

The genotype represents the genetic information of an organism, inherited from its
parents. The genetic information, together with the environment and epigenetic modi-
fications, explains the phenotype of a living being.

It is present in the genome of living organisms in the form of a deoxyribonucleic acid
(DNA) polymer composed of four different types of nucleotides: adenine (A), thymine
(T), cytosine (C) and guanine (G). A DNA strand is an oriented chain from a 5’ end to
a 3’. The DNA of living organisms is double stranded, formed by two antiparallel and
complementary strands (a 5’-3’ sense strand opposite a 3’-5’ antisense strand) forming
a double helix. The nucleotides of the two DNA strands form bonds, so A will pair with
T and C will pair with G.

The size of genomes varies from species to species, with generally a few megabases
(Mb) for bacteria (e.g. 4.6 Mb for Escherichia coli [Blattner et al. 1997]).

A genome is composed of one or more chromosomes depending on the species. In
bacteria, there is often a single circular chromosome, but some may have multiple and/or
linear chromosomes. Chromosomes contain genes that code for ribonucleic acid (RNA)
molecules. Some of these RNAs can be translated into proteins with specific biological
functions, while others play a regulatory role in the functioning of cell metabolism.
In bacterial cells, in addition to the chromosome, other DNA molecules can be found,
called plasmids, which are capable of autonomous replication but are not essential for
the survival of the bacteria (e.g. resistance genes, fertility factor that will allow the
bacterial conjugation or completion of new metabolic pathways to use new nutrients).

Part of the bacterial genetic information is specific to a species or even a group of
individuals. Other parts can spread in many bacteria without passing through a process
of vertical transfer inherited from a common ancestor. This type of genetic material
is acquired through three mechanisms of horizontal transfer: (1) Bacterial conjugation,
which corresponds to the transmission of a conjugative plasmid from a donor bacterium
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to a recipient bacterium. Some plasmids are episomes, which means that they integrate
into the chromosomal DNA and several plasmids can be present in a bacterial cell. The
DNA sequence is transferred by contact between the two bacteria and integrated into
the DNA of the new bacterium. (2) Transduction, which transfers genetic material
from a donor bacterium to a recipient bacterium by means of a phage (bacterial virus).
(3) Transformation, which consists in the integration of an exogenous DNA fragment,
often from a dead bacterium, into a living bacterial cell. These three types of transfer
play a major role in the diversification of bacteria and make their classification and
identification more complicated.

In this thesis, we will not consider the issue of horizontal transfers during identifica-
tion. We will just discard plasmid sequences from databases and assume that although
some reads (pieces of DNA from a sequencing) are not relevant for identification purpose,
there is sufficient genetic content for the characterization of each bacterial strain.

The first discriminant genomic information is the genome length. However it assumes
that the complete genome sequence is correctly assembled, which implies a rather im-
portant sequencing and processing effort and therefore is not always realized.

Assuming that the entire or almost complete genome sequence of an organism is
known, several statistics may help its identification. With the global GC rate (percentage
of G or C nucleotides in the genome), bacteria can be classified from high to low GC.
For example, Streptococcus thermophilus has a global GC rate of 38.9% wich is far lower
than the 50.8% mid value for Esherichia coli or the 66.7% high GC rate of Deinococcus
radiodurans. The global GC content will affect the use of codons for a given amino
acid. Codons are sequences of three nucleotides in a coding gene that will define the
amino acids that will be used to produce the protein to be synthesised. However, more
than one codon can code for the same amino acid, this is called the codon degeneracy.
Bacteria with high GC will tend to use the same codons [L.-L. Chen and C.-T. Zhang
2003]. More precise information can be obtained by looking at the percentage of GC
of genes present in the genomes at position one, two and three of codons (GC1, GC2
and GC3). These GC values, especially GC2 and GC3, allow us to observe when there
is a bias in codon usage. Locally, this bias can be used to find genes resulting from
horizontal transfer [Lawrence and Ochman 1997]. The differential use of codons is also
suitable to differentiate between thermophilic bacteria (optimum growth above 50°C)
and mesophilic bacteria (optimum growth between 20 and 45°C) [Carbone, Képès, and
Zinovyev 2005].
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Classifying bacteria can be done by looking at their differences or by looking at their
commonality. Several methods are based on whole genome analysis either by biomolec-
ular techniques or on the genome sequence when available also called whole genome
sequencing (WGS) analysis. Restriction analysis is a method that has been widely used
for a cursory comparison of organisms. Restriction enzymes are proteins that cut DNA at
specific positions (restriction sites), depending on the sequence. If the genome sequence
is known, it is possible to predict where the restriction enzyme will cut and therefore the
size of the expected pieces (restriction length). The restriction length profile for a given
set of restriction enzymes is then used to compare genomes [McMaster, Tratschin, and
Siegl 1981]. More refined comparison techniques exist that are based on the capacity of
two DNA strands to hybridize.

DNA-DNA hybridation (DDH) is a technique for demonstrating genomes proxim-
ity (see figure 1.1). The DNA of one bacterium is marked and mixed with the un-
marked DNA of another. The mixture is then incubated at high temperature so that
the DNA strands dissociate and cooled gently to form a new hybrid double-stranded
DNA molecule. In order to hybridize, the sequences must have a high degree of sim-
ilarity. To separate the two DNAs, DNA melting is used, which consists of heating
the DNA until it separates. The higher the dissociation temperature, the closer the
DNAs are to each other. Nowadays DDH is computed in silico from sequenced genomes.
The DDH percentage represents the genomes/sequences similarity and a ’gold standard’
DDH value of 70% has been set for the delineation of species [Goris et al. n.d.; Moore
et al. 1987].

Genome 1

Genome 2

Genome 3

Genome 1

Heat (strands separation) 
and hybridisation

Similar sequences from genome 1 and 2
are difficult to separate  

Dissimilar sequences from genome 1 and 3
are easy to separate  

Determination of the strand separation 
temperature

Genomes from different
species

21 3

Figure 1.1: Representation of the DNA-DNA hybridisation technique. DNA strands from
the genomes of different species (1) are dissociated by heat (2) and then reassociated (3),
creating hybrids. Depending on the dissociation temperature of the two DNA strands
(3), it can be determined a measure of sequence similarity. A high temperature means
that the sequences are close, whereas a low temperature means that the sequences are
different.
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Today, with the advent of high throughput sequencing technology combined with com-
putational analyses, the studies and identification of bacteria have evolved. More sys-
tematic identification methods have emerged based on the study of parts of the genome
such as conserved genes, with or without amplification by Polymerase Chain Reaction
(PCR).

PCR is based, like DDH, on temperature-dependent hybridisation and separation
of complementary strands of DNA. It consists of three repeating steps: denaturation
(separation of the DNA double strands), hybridisation of specific sequence (primers)
on DNA strands and finally elongation of the DNA (synthesis of the complementary
strand). Repeating these three steps a number of times exponentially amplifies the
number of sequences corresponding to the area between two primers in the genome. If
the ends of sequence to be amplified are not in the genome, there will be no amplification,
it is a negative PCR test. By choosing the sequences of primers carefully, it is possible to
classify bacteria based on the presence of specific marker sequences, a technique known
as DNA fingerprinting.

In the last few years one of the most popular identification methods used small
subunit ribosomal RNA gene (16S rRNA) amplification (PCR), sequencing and analysis.
Indeed, this gene codes for part of the ribosome that is present in all bacterial cells
[Woese 1987]. The structure of the 16S rRNA gene consists of a highly conserved region
interspersed with genus or species-specific variable regions (see figure 1.2).
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Figure 1.2: Representation of the variable regions (V1-V9) of the ARNr 16S gene that
encodes the 30S subunit of the ribosome.

It is therefore easy to find PCR primers that bind to the conserved regions, allowing
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the amplification of the variable sequences of the rRNA gene [Relman 1999]. These
analyses have been accelerated by the advent of high-throughput sequencing, associated
with the Mothur [Schloss et al. 2009] or Qiime [Caporaso et al. 2010] pipelines which
are the two reference software for studying metagenomes from short reads from 16S
rRNA gene sequencing. This method is still widely used for example in the study of
marine ecosystems [Muyzer et al. 1995] or bacteria of clinical interest [Jenkins et al.
2012; Cai, Archambault, and Prescott 2003]. A link was established between DDH and
16S rRNA gene sequence similarity showing that 97% sequence similarity of the 16S
rRNA gene corresponded to the 70% DDH, which is the limit between bacterial species
[Stackebrandt 2002]. Subsequently, this threshold has been reviewed. For example in
2014 [M. Kim et al. 2014] a threshold of 98.65% sequence similarity of the 16S rRNA gene
was set and in 2018 this threshold was even higher (99% for the full length rRNA gene
similarity) [Edgar 2018]. For example, the 16S rRNA gene of Streptococcus thermophilus
and Streptococcus salivarius species are 99.74% identical. If we take this last value into
account it seems that, due to the speed of evolution of the 16S rRNA gene, this technique
does not always allows to go down to the species level. So, to separate species, it was
shown that the use of DDH (based on the whole genome) rather than 16S rRNA seems
more appropriate (from 97% similarity for 16S rRNA) [Tindall et al. n.d.].

Other more accurate techniques have therefore emerged such as Multilocus Sequence
Typing (MLST). It aims at analysing five to seven conserved housekeeping genes that
evolve faster than the 16S rRNA gene, thus allowing a better separation of bacteria.
By comparing orthologous genes of the same bacterial species, an allelic profile can be
created based on the nucleotide differences of these genes. In this context, ortholo-
gous genes represent genes that descent from a common ancestor, in single copy in the
genome, and are common to different strains. An approach very similar to MLST is
called multilocus sequence analysis (MLSA) [Chun and Rainey n.d.]. MLSA does not
assigned alleles, but concatenates housekeeping gene sequences and uses this concate-
nated sequence to determine phylogenetic relationships between genomes. These two
approaches can be used in the study of bacterial strains as in [Delorme, Legravet, et al.
2017] which analyzed 178 Streptococcus thermophilus strains with MLST or in the Strep-
tococcal taxonomy analysis using MLSA [Thompson et al. 2013]. This technique has,
like 16S rRNA gene sequencing, also benefited from new sequencing technology allowing
WGS which, coupled with MLST analysis, allows for more accurate identification by
computer analysis of the sequences [Larsen et al. 2012]. Finally, the success of MLST
and MLSA also stems from their escape from the difficulty of sequencing and assembling
certain complete genomes [Stackebrandt 2002].
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Figure 1.3: Number of bacterial and archaeal genomes sequenced each year since 1995.
Calculated from the prokaryotes.txt GenBank file, downloaded in September 2021.

However, with the progress of sequencing techniques, the number of complete strain
genomes is rapidly increasing (see figure 1.3). In the case of species with known complete
genome and for an accurate recognition of strains it seems now reasonable to not limit
the search to a few genes but rather make use of the whole genomic sequence. In [Chun
and Rainey n.d.] the similarity indices between two genomes based on whole genome
sequences are called overall genome relatedness indices (OGRI). The most commonly
used index is the average nucleotide identity (ANI). It can also be referred as digital
DDH or dDDH since it mimics the process of experimental DDH. The calculation goes
like this: one genome is split into fragments, each of these fragments is then searched
in the other genome using the BLASTn [Altschul et al. 1990] algorithm. A nucleotide
identity value is returned as a result of this calculation and the ANI value is simply the
average of these values. Furthermore, [Konstantinidis and Tiedje 2005] show that the
ANI restricted to conserved genes in genomes is a robust measure of their evolutionary
distance. The bacterial species delineation can be associated to an ANI value of 94-96%
that corresponds to 70% DDH [Goris et al. n.d.].

Genome to genome distances have shown better correlation with 16S rRNA gene
similarity values and ANI values than DDH values [Auch et al. 2010].

At last, other OGRI indices exist like the average amino acid identity (AAI), the
maximum unique matches index (MUMi) or the tetranucleotide regression slope. OGRI
have the advantage to produce more accurate and reproducible results than the DDH.
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In addition to all the problems that can be encountered in bacterial identification, there
are two separate issues that need to be considered: the problem of identifying a bacterial
isolate and the more complex problem of identifying bacteria within a metagenome.
The metagenome corresponds to the set of genomes present in a population in a given
environment. It is obviously more difficult to identify bacteria when their genomes are
mixed with those of other bacteria or even with the genomes of archaea or eukaryotes.
In this thesis, the study of metagenomes is not addressed and we limit ourselves to the
identification of a few strains in a mixture (e.g. fermented food).

1.1.3 Definition of a bacterial species, subspecies, clones and strain

"Which organisms are present in my sample ?" and "what do these organisms do ?"
are the two major questions of metagenomics.

In order to correctly define the bacterial composition of a sample, it is often necessary
to go down to a taxonomic level lower than the species level, the strain level. Whether at
the level of bacterial species or strain, the definitions remain vague and much debated.
The difficulty in applying the species principle to bacteria comes from the fact that the
species was originally defined for eukaryotes on the basis of a certain number of criteria,
including reproduction which is very different in bacteria. The concept of bacterial
species is debated [Doolittle 2012; Caro-Quintero and Konstantinidis 2012] but seems
to be useful. Furthermore, metagenomic studies tend to show that genetically similar
bacterial groups exist. Therefore species definitions have been proposed. A species can be
considered as the basic category in biological classification. The definition is still unclear
and inconsistencies may arise depending on the chosen definition [Kumar et al. 2015].
However, one way of expressing it would be that a species corresponds to isolates having
a common origin and being more closely related to each other than to any other isolate
[Dijkshoorn, B. Ursing, and J. Ursing 2000]. The strain can be described as a genetic
variant within a biological species. From a taxonomic point of view, a strain corresponds
to the descendants of a pure bacterial culture isolation from a single initial organism.
In 1995, [Tenover et al. 1995] defined the notion of strain as a descriptive subdivision
of a species, an isolate or group of isolates distinguishable from other isolates of the
same genus/species by phenotypic or genotypic characteristics. Furthermore, a strain
is different from a subspecies but their definition is quite similar. A subspecies can be
defined as a group of strains within species with distinct features such as populations in
a particular geographical area that are genetically distinct from other populations of the
same species. This notion of distinct characteristics being rather vague, distance values
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were put on the notion of subspecies, for example, [Meier-Kolthoff et al. 2014] define
the 79-80% dDDH value as the threshold for delineating subspecies by using Escherichia
coli strains.

Despite this difficulty in defining the strain as a taxonomic level, it remains important
in microbial studies to be able to describe and identify bacteria at a level below the
species level. For example, the most studied bacterial species, Escherichia coli contains
pathogenic [Navarro-Garcia 2014], commensal and probiotic strains [Grozdanov et al.
2004]. Another example is the Streptococcus thermophilus strain JIM8232, which will
produce a yellow pigment that is not usual for this bacterial species [Delorme, Bartholini,
et al. 2011]. Thus it is possible to observe phenotypic differences between strains that
are sometimes very close genetically. These differences can be linked to the addition, loss
or modification of one or more genes, the presence of a strain-specific plasmid specific
or even a differential genes expression between strains (e.g. prtS differential expression
in S. thermophilus strains [Galia et al. 2016]).

The current difficulty in identifying bacterial strains stems both from the lack a precise
definition of a strain and from the techniques currently used in bacterial identification.
Classification is often achieved on the basis of DNA but can also be done using meth-
ods based on the study of RNA and proteins. In the context of this thesis, only the
classification at the DNA level will be presented.

Since strains of the same species are genomically very similar organisms, it is hard to
base identification techniques on one or more genes. For example, 16S rRNA sequenc-
ing, which cannot always allows to distinguish different species [Poretsky et al. 2014],
becomes useless at the strain level. As for techniques such as MLST and MLSA devel-
oped especially for strain identification, these techniques allow the separation of certain
strains but this separation depends on the genes used. These genes often come from the
core-genome and the allelic profile may be identical between certain strains [Junjua et al.
2016]. The core-genome is the part of the pangenome containing the genes present in all
strains. The pangenome contains the core-genome as well as genes that are not found in
all strains of the species. Thus, in the case of species with a very large core genome, the
variables parts of the strain genomes, which contain genes shared by at least two strains
and strain-specific genes, will be little or not present at all for some strains.

It is possible to use the whole genome rather than just the genes. By doing this, we
no longer compare the genomes with the evolutionary spectrum but it is possible to see
differences in non-coding parts of the genomes. At this point another problem arises,
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which is how to treat two individuals with very few differences between their genomes
but which, from the point of view of their definition, are considered to be of different
strains. Could these strains be considered as clones ? A clone is a population in which all
members come from the same progenitor by asexual reproduction [Dijkshoorn, B. Ursing,
and J. Ursing 2000]. For their part, [F. Ørskov and I. Ørskov 1983] defines clones as
bacterial cultures isolated from different independent sources but which are so similar in
terms of phenotype and genotype that the only possible explanation is that they have a
common origin. However, for the purposes of this thesis, clones will be considered to be
bacteria that have undergone asexual reproduction and are completely identical. In the
case of bacteria with only a few differences these bacteria will be considered as variants.

Although the study of bacteria started rather late due to technological limitations, it is
now booming with the advent of high-throughput sequencing. In addition to pathogenic
bacteria, it now includes the study of whole communities of bacteria and their role in their
environment. Major projects concern the intestinal microbiota for humans or animals,
or the large-scale project Tara Ocean [Karsenti et al. 2011] aiming at the study of the
diversity, the ecology, and the global impact of microorganisms (including bacteria) in
the oceans. Furthermore, the identification of bacteria at the species level is actually
beginning to yield good results. However, there is still a need for the identification of
bacterial strains, both at the level of large metagenomic studies and at the level of use
and characterisation of single or small groups of strains. In this thesis we will focus on
the identification and characterisation of bacterial strains via the use of genotype and
more precisely via the use of the genomic sequence of the organisms studied.

1.2 Sequencing bacterial genomes

We now focus on the identification of bacteria in a sample based on the sequencing of
its DNA. Sequencing allows access to the genomic content of bacteria and in some cases
to recover their complete genome.

It is much more easy to sequence small parts of genomes (reads) than sequencing a
complete genome. The most widely used approach is the shotgun sequencing approach
proposed in 1979 [Staden 1979]. The first step of this technique is the fragmentation
of the genome. It forms what is called a library composed of random fragments from
the initial genomic DNA. There are two ways to perform shotgun sequencing: (1) whole
genome sequencing where the genomes are randomly sheared into small fragments and (2)
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hierarchical sequencing where the genomes are first divided into larger segments and each
fragment is then cut to form several libraries. In both cases, these DNA fragments are
then sequenced. This raises the computational issue of retrieving the original sequence
using the overlap of the sequenced fragments, this is called assembly. The greater the
number of overlapping reads, the more the genome is said to be covered. The average
number of times each position (nucleotide) of the genome is represented in these reads is
the sequencing depth. Sequencing with a depth of 100X means that on average each base
of the genome is sequenced 100 times. The greater the depth, the easier it is in theory
to reassemble the original genome. However, the existence of numerous repeated regions
in genomes can prevent the complete recovery of their sequence. Another parameter to
take into account is the coverage of the genome. The genome coverage corresponds to
the percentage of the genome represented by at least one read. It is another possible
factor of limitation for a correct assembly. Sequencing depth and coverage are therefore
two important parameters in the analysis of a whole genome sequencing.

1.2.1 First generation sequencing

The first generation of sequencer dates back to 1977. This sequencing method, named
Sanger sequencing after its creator, is based on the chain termination technique [Sanger,
Nicklen, and Coulson 1977]. It proceeds as follows: the synthesis reaction starts with
a small sequence (called a primer) complementary to part of the DNA fragment to be
sequenced. Elongation from the primer is carried out by a DNA polymerase (the same
as for PCR). It uses deoxyribonucleotide triphosphates (dNTPs: dATP, dCTP, dGTP,
dTTP) and a low concentration of one of the four dideoxyribonucleotides (ddNTPs:
ddATP, ddCTP, ddGTP, ddTTP). These ddNTPs stop the elongation, which explains
their "chain-terminating nucleotides" name. Four reactions will be carried out at the
same time, one for each letter. For example, in the reaction with ddATP, the elongation
will stop randomly at the level of a A because DNA polymerase uses ddATP in a random
manner. Thus, at the end of the elongation process, fragments of different sizes are
obtained, representing all possible sizes between the primer and any A position present
in the sequenced DNA (same for the three other dNTPs). By migrating fragments using
electrophoresis on a gel they can be ordered by length. This way, the sequence can be
reconstructed (see supplementary figure S1). This technique is laborious and expensive
but very accurate and robust, it allows to obtain the sequence of a DNA fragment of
about 1 kb long with an accuracy of 99,999% [Shendure and Ji 2008]. An evolved
version of this sequencing technique is still widely used in laboratories today for small-
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scale experiments or to finish regions such as long repeated regions that are difficult
to sequence with other sequencing techniques [Koh et al. 2021]. Nowadays reactions all
take place in a single tube and each ddNTP is labelled with a fluorochrome whose colour
depends on the ddNTP. At the end, a capillary electrophoresis is used to separate the
pieces of DNA instead of a gel. The fluorochrome is then excited with a laser and the
light signal is automatically analysed.

The DNA molecule to be sequenced has to be amplified in order to have a large
number of copies. It can be done by PCR or by plasmid cloning. Plasmid cloning
works as follows, a plasmid is cut, via a restriction enzyme for example [Nathans and
H. O. Smith 1975], and the DNA to be amplified is inserted into the plasmid by ligation
[Jackson, Symons, and Berg 1972], which is inserted into bacteria. The bacteria with its
plasmid reproduce by binary division. Subsequently, by extracting the plasmid insert
(again via a restriction enzyme), the clones of the original sequence are recovered.

The 2000s saw the emergence of the second generation of sequencing technologies, also
called next generation sequencing (NGS).

1.2.2 Next generation sequencing: short reads

The main NGS technologies are 454 sequencing, illumina sequencing, SOLiD sequencing
and Ion Torrent sequencing. The specificity of these sequencing technologies is that they
can sequence small fragments of about a hundred bp but with a high throughput (up
to one billion reads per run) [Ardui et al. 2018]. The workflow of NGS sequencers is
quite similar to Sanger sequencing. The PCR amplicons (clones of a fragment resulting
from the amplification) are grouped into clusters using different methods. This makes
it possible to amplify the signal in order to facilitate its analysis. Finally, a sequencing
process by synthesis is carried out (extension from primers by a polymerase or a ligase)
in a cyclic manner and there is, most of the time, an imaging-based data acquisition
(one image per cycle) [Shendure and Ji 2008].

The most widely used of all these systems is the Illumina sequencing technology.
The principle is as follows (see figure 1.4): first the DNA is fragmented and denatured

and adapter sequences are added to the ends of these fragments. Fragments are amplified
by a bridge PCR [Adessi et al. 2000; Fedurco et al. 2006] that works as follows: A
template strand is formed by attaching fragments to a flowcell via their adaptors. A
complementary strand is synthesised by a polymerase. The template strand is then
removed to leave only the synthesised strand attached to the flowcell. The free end of
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the complementary strand, which contains a second adaptor sequence, will then hybridize
to another complementary oligonucleotide attached to the flowcell. This results in a new
complementary strand synthesis identical to the template strand. A further denaturation
step separates the two strands. By performing this step a large number of times, clusters
of strands corresponding to a starting template strand are created.
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Figure 1.4: Simplified diagram of bridge PCR followed by Illumina sequencing. The black
line represents the flowcell. The DNA fragment is first amplified by PCR which forms
clusters containing many times the same molecule. Then these clusters are sequenced
by wave addition of nucleotide modified with fluorochrome which are excited by laser at
each sequencing step.

This is when sequencing begins. Sequencing primers are added and hybridize to all
strands of all clusters via sequences complementary to the adapters. Then fluorescent
labeled nucleotides with reversible terminators are incorporated. In each cycle the four
types of nucleotides are added and only one nucleotide is incorporated due to the ter-
minator nucleotide preventing elongation. The nucleotides are then excited with a laser
which produces a different light for each nucleotide. At each cycle, image processing
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enables to infer the incorporated nucleotide [Shendure and Ji 2008].

In addition to single end sequencing, Illumina offers paired end sequencing. Instead of
sequencing just one end of each fragment, both ends are sequenced (each on a different
strand). Since the two ends are on a same fragment, if the fragment is too long for the
sequenced ends to overlap, the fact that the two sequences are close on the genome may
be used to limit the assembly combinatorics.

The range of machines offered by Illumina has grown over time and can now generate
from 4 million to 20 billion sequences per run, with a maximum length of 150 to 300
bp. However, this size is still too small for some applications such as repeat region
assembly, even when using paired-end sequencing. The error rate of these devices is low:
in 2021 the mean error rate goes from 0.087% to 0.613% depending on the sequencer
used [Stoler and Nekrutenko 2021]. For example, according to the current illumina
data (2021), the MiSeq sequencer produces 90% of reads with a Qscore above 30. The
error rate corresponding to this Qscore Q can be calculate with the following equation
e = 10

−Q
10 , with Q the QScore and e the estimated probability of the basecall being

wrong.
Moreover, [Stoler and Nekrutenko 2021] have shown the context dependency of errors

to flanking sequences notably in the case of homopolymers.

In order to overcome the small size of their reads, in 2014 Illumina created the Moleculo
technology called synthetic long reads (SLRs) [Voskoboynik et al. 2013]. A year later, a
variant allowing higher partitioning called linked-reads was proposed by 10X Genomics
[G. X. Y. Zheng et al. 2016]. These technologies based on Illumina sequencing allow for
more information than with conventional sequencing. The principle of these technologies
is to cut the genome into long DNA molecules ranging from 10 kb for SLRs to 100 kb
for linked reads. The long molecules are then cut into fragments for sequencing and
linked to a specific barcode for all fragments of the same molecule. Their innovation is
therefore based on a step upstream of sequencing that makes it possible to identify reads
from the same DNA molecule [Dijk et al. 2018].

Knowing which reads come from the same DNA fragment facilitates bioinformatics
analyses such as assembly for instance [Z. ( Ma et al. 2019].

1.2.3 Third generation sequencing: long reads

In the end of the 2000s, the third generation of sequencer has emerged [Check Hayden
2009]. They address some of the major problems of NGS. Indeed, NGS approaches
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use an amplification step [Dijk et al. 2018] whereas the third generation allows direct
sequencing of a single DNA molecule in real time. Moreover, the size of the reads has
been greatly increased compared to previous generations, giving access to long-range
information (at least several kb) [Pollard et al. 2018]. The two leading compagnies in
this domain are Pacific Biosciences (PacBio) and Oxford Nanopore Technology (ONT).
These technologies are still not mature, unlike NGS, their weak point being the quality
of their reads.

The Pacific Biosciences sequencing technology (PacBio)

The Pacific Biosciences (PacBio) sequencer works by synthesizing and sequencing
single molecules in real time (SMRT) [Eid et al. 2009] (see figure 1.5). PacBio uses
a nanowell containing a DNA polymerase immobilized in the transparent bottom of
the well that allows sequencing of a DNA template molecule [Levene et al. 2003]. The
template is a double-stranded molecule containing a hairpin adapter at both ends which
makes it circular. Sequencing occurs in each well by incorporating fluorescently labeled
nucleotides which after excitation via laser produces real-time recorded light signals
processed to get the sequence [Rhoads and Au 2015; Dijk et al. 2018].

There are several PacBio sequencing protocols with varying results in terms of error
rates and lengths. The limiting factor is polymerase lifetime, so two strategies are
possible: (1) Continuous Long Reads (CLR), which produces long reads that will have a
high error rate or (2) Circular Consensus Sequence (CCS) which produces shorter reads
with a lower error rate: thanks to hairpin adapters, the DNA sequence can be read in
loop until the DNA polymerase is no longer functioning. A CCS read results from the
calculated consensus of all these sequences.

In terms of features, CLRs average 10 kb in size and can approach 100 kb (Sedlazeck
et al., 2018a) with an error rate of 8-15% [Rhoads and Au 2015; Dijk et al. 2018;
Logsdon, Vollger, and Eichler 2020]. The CCS protocol makes it possible to produce
High-Fidelity (HiFi) reads that have a high accuracy (≥ 99%) and a length between 10
and 30 kb [Wenger et al. 2019; Logsdon, Vollger, and Eichler 2020]. PacBio long reads
are already currently used in bacterial genome assembly and identification [Wagner et al.
2016].

In the context of the thesis, we have used another technology, Nanopore sequencing
which has the advantage of being fast, portable and less expensive than PacBio.
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Figure 1.5: Simplified diagram of a PacBio sequencing in a nanowell containing a DNA
polymerase and fluorescently labeled nucleotides.

The Oxford Nanopore Technology (ONT)

This long read sequencing technology is commercialised by Oxford Nanopore Technolo-
gies (ONT) since 2014. It is thus quit recent and subject to multiple changes that were a
source of difficulties during the thesis since we had to multiply the experiments. Unlike
PacBio or Illumina, it is not based on a synthetic sequencing approach but performs
sequencing by passing DNA molecules in protein nanopores arranged on the surface of
a voltage membrane [M. Jain, Fiddes, et al. 2015]. Depending on the nucleotides pass-
ing through the nanopore, the electric current through the membrane is modified (see
figure 1.6). The raw signal data is then transformed into a DNA sequence via a base-
calling step. The first methods of basecalling were based on a hidden Markov model
(HMM) (e.g. Metrichor...) but were quickly replaced by connectionist machine learning
approaches (e.g. Albacore, Guppy...), notably deep learning.

During sequencing, double-stranded DNA molecules are transported to the pore by
a motor protein which then passes them through the pore base by base. Several types
of pore have been developed, the most common being R9.4.1 and R10.3. In R9 pores,
the signal is measured over about five bases [Wick, Judd, and Holt 2019] with a speed of
400-450 bases per second. In parallel with the improved chemistry, several protocols (1D,
2D, 1D2) have been developed to increase the accuracy of the data. The 1D2 protocol
is the most recent and uses specific adaptor sequences so that the forward and reverse
strands are attached and pass successively through the nanopore allowing for improved
accuracy [Lannoy, Ridder, and Risse 2017] by double reading the same sequence. In
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addition to the classic flowcell, ONT has developed the Flongles (Flow Cell Dongle). It
is an adapter that allows direct, real-time DNA sequencing on smaller and single-use
flowcells. These single-use flowcells contain fewer active pores but are less expensive
than a classic R9.4 flowcell.

The average size of current ONT reads is 10-20 kb long, with an error rate ranging
from 5-15% depending on the genome sequenced (%GC, low complexity regions...) and
the basecaller used. In addition, a protocol to produce ultra-long reads [M. Jain, Koren,
et al. 2018] has been developed and allows to obtain reads with an average size of 100
kb and reads up to almost 1 Mb long, particularly useful for genome assembly.

Finally, ONT offers a range of sequencers from the extremely small, cheap and
portable (MinION) to the extremely powerful and high-throughput (PromethION). Its
high portability (for the MinION) and affordability (see table 1.2) are advantages for
ONT compared to PacBio.

The main drawback of the ONT sequences is their error rate, which made them useless
at the beginning (around 40%). Even if error rate has dropped to acceptable levels, it
remains high in particular sequences such as homopolymeric sequences. This is because
the rate of base passage is not constant in the pore and the size of the reading head is
5 bases. Therefore, when dealing with homopolymeric sequences, the electrical signal
does not change and these sequences are poorly sequenced (see figure 1.7). However,
the technology is evolving very fast, with actually (2020-2021) on average a new version
of the ONT basecaller Guppy every 1 to 3 months. Due to all the improvements in
sequencing protocols and basecalling methods, it is currently possible to obtain reads
with an error rate of less than 5% [Delahaye and Nicolas 2021; Wick, Judd, and Holt
2019].

To overcome the problem of homopolymeric sequences, a new R10 pores based on
the use of two signal sensors have been developed by ONT (see figure 1.8). However,
the first experiments performed with these R10 pores produced more errors than when
using R9 pores. These errors are more random allowing a better correction of the reads
but progress remains to be made to improve this error rate.

The ONT technology also offers a sequencing mode called Read Until. Read Until
allows to analyse in real time the sequences that pass in the nanopore. It allows to filter
sequences of interest to amplify them (enrichment) or on the contrary reject useless reads
before the completion of sequencing. It is also possible to use this technology to globally
balance the barcodes of reads during sequencing and thus have a correct sequencing
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Figure 1.6: Overview of ONT sequencing. DNA is labelled with sequencing adapters
pre-linked with a motor protein on one or both ends. The motor proteins drive each
template to a nanopore that crosses a membrane. The motor protein separates the
double-stranded DNA template and a single-stranded DNA passes through the nanopore.
An electric current is applied to the membrane. With each passage of a nucleotide a
change in the electric current is recorded. Finally, the basecalling step transforms the
electric current changes into a DNA base chain.

depth for each sample when multiplexing.

Another benefit of the technology is the sale of a wash kit that allows to wash and
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Figure 1.7: Example of a systematic error in an homopolymeric sequence. The error in
the homopolymer being systematic it is not possible to correct it afterwards

reuse flowcells that has not been used in their entirety (where there are still active
pores). Washing the flowcells allows them to be reused and thus saves money and time
on experiments.

All these innovations, which are not yet fully developed and exploited, provide a
basis for many future developments, notably in bacterial characterization.
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Figure 1.8: Comparison between an R10 and R9 pore. In an R10 pore the electrical signal
is recorded at two different locations which makes it less sensitive to homopolymer errors.
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General conclusion on third generation sequencing

To conclude this section, third generation sequencing allows access to much longer
reads potentially containing more information, in particular structural information,
which is of interest for the purpose of fine identification of bacteria. However, despite
rapid improvement, their error rate is still high. For example in 2020, [Dohm et al. 2020]
showed an average error rate of 12.72% in third generation sequencing (TGS) reads by
aligning raw reads of E. coli to their respective genomes using four different long read
aligners. Furthermore, unlike NGS data, long reads have more insertion/deletion er-
rors than substitution errors which makes analyses at the gene level more complicated
because of shifts in the reading frame.

Table 1.2: Non-exhaustive list of third generation sequencers and their sequencing prices.
Extracted from [Dijk et al. 2018]. * means that the price of the Illumina sequencer used
must be added.

Platform Sequencer Device Cost (k$) Cost/Gb ($)

PacBio PacBio RSII 700 400
Sequel 350 85

ONT
MinION 1 24
GridION 50 – 143 24

PromethION 135 5
Illumina SLR Illumina sequencer * 12-27

10X Genomics SLR Chromium + Illumina 125* 8-11

For the purpose of this thesis the MinION sequencer was used with R9.4 flowcells or
Flongles. The thesis focuses on the use of such long reads to identify isolates or mixtures
of bacterial strains. Our choice was largely due to the portability and low cost (see table
1.2) of the MinION sequencer, which allows sequencing to be carried out directly in
the laboratory, allowing controlled, rapid and cheaper analysis than through sequencing
platforms.

1.3 Study model: lactic acid bacteria & coliforms

This thesis is realized in the context of a collaboration between a computer science team,
GenScale (bioinformatics) and a biology team, MicroBio from the STLO (milk and egg
science and technology). STLO is a laboratory that studies milk and the microorganisms
that are involved in its fermentation. The model of study during the thesis has been a
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lactic bacterium but tests on Esherichia coli have also been carried out.

1.3.1 Lactobacillales: an order whose taxonomy is still evolving

Lactobacillales are an order of Gram-positive anaerobic (or aerotolerant anaerobic)
bacteria including lactic acid bacteria (LAB). LAB are able to ferment sugars into lactic
acid and are therefore widely used as starters in dairy fermentations [El Soda 1993]
because acidification prevents the growth of spoilage microorganisms. These bacteria
are nutritionally demanding as they are auxotrophic (unable to synthesise) for a number
of organic compounds and are therefore obliged to find these compounds in their growth
medium.

Despite their worldwide use, lactobacillales remain an order whose taxonomy is still
evolving and which should be more studied. Recently, great changes in the taxonomy
of this order have been presented in [J. Zheng et al. 2020]. The genus Lactobacillus
which contains (in March 2020) very diverse species in terms of phenotype, ecology and
genotype has been broken down into 25 different genera and the family Lactobacillaceae
was also modified to include all the genera of the family Leuconostocaceae. Classification
errors were mainly due to the use of too few metrics, sometimes not informative enough,
which lead either to associate distant bacteria or to dissociate close bacteria. The study
has highlighted the value of using the whole-genome information such as in core genome
phylogeny to obtain more accurate classifications.

In this thesis we were particularly interested in the Streptococcus thermophilus species
belonging to these LAB.

1.3.2 Streptococcus thermophilus: a species with low genetic diversity

S. thermophilus is a food bacteria in the spherical shape of 0.7 to 1 µm and which
forms chains (see figure 1.9). It’s a Gram-positive bacterium of the genus Streptococcus
and a thermophilic bacterium with an optimum growth between 35 and 42°C depending
on the strain studied [Radke-Mitchell and Sandine 1986].

In this thesis, S. thermophilus was chosen as a model species because of its importance
in the food and health industries as a dairy starter [Martinović et al. 2020] and potential
probiotic [Uriot et al. 2017]. This species is closely related to other species of strep-
tococci including deadly human pathogens (e.g. Streptococcus pyogenes, Streptococcus
pneumoniae and Streptococcus agalactiae), which can cause diseases such as pneumonia,
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Figure 1.9: Microscopy image showing a chain of Streptococcus thermophilus bacteria
[Benyoussef 2013].

sepsis, meningitis and pharingitis [Tettelin 2004]. It is also related to other pathogens
such as S. mutans, which plays an important role in the development of dental decay
[Mitchell 2003]. However, due to the loss of the main pathogenic genes (absents or as
pseudogenes) [Bolotin et al. 2004], S. thermophilus is the only streptococcus that has
the "Generally Recognised As Safe" (GRAS) status granted by the American Food and
Drug Administration [FDA 2002; FDA 2012] and the "Qualified Presumption of Safety"
(QPS) granted by the European Food Safety Authority (EFSA). Indeed, S. thermophilus
is used in food processing and more than 1021 live cells are ingested each year by humans
[Hols et al. 2005]. The strains of S. thermophilus are used in the fermentation of milk to
produce fermented milk products such as yogurt or some cheeses. It is one of the only
two obligatory bacteria in association with the bacterial species Lactobacillus delbrueckii
subsp. bulgaricus for the manufacture of yogurt [Kiliç et al. 1996].

Currently (in August 2021) in the public databases, 84 complete genomes of S. ther-
mophilus strains can be found. Among these 84 genomes, 31 have been sequenced and
assembled in the context of this thesis. These strains come from the collection of the
International Centre for Microbial Resources - Food-Associated Bacteria (CIRM-BIA)
and have been sequenced with Illumina NGS technology and the Nanopore sequencing
technology. Illumina and Nanopore data have been used to fully and correctly assemble
their genomes using the Unicycler hybrid assembler (version 0.4.7) [Wick, Judd, Gorrie,
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et al. 2017]. These 31 complete annotated genomes have been made available on the
current NCBI database.

The Streptococcus thermophilus genome have a median length of 1.83 Mb, a median
number of genes of 1619 and a low percentage of GC content (median 39%). In addition,
S. thermophilus is known as a species that encompasses closely related strains with low
genomic diversity [Alexandraki et al. 2019; Hu et al. 2020]. This genomic proximity can
be observed by MLST where some strains remain indistinguishable [Delorme, Legravet,
et al. 2017]. However, despite this close genomic proximity, S. thermophilus strains can
have variable phenotypic characteristics, such as their ability to adhere to gastrointestinal
cells and survive gastrointestinal stress [Junjua et al. 2016], which means that some, but
not all, can be considered probiotic. Among those strains with a different phenotype
from other strains is the S. thermophilus strain JIM8232 [Delorme, Bartholini, et al.
2011] which, unlike all currently known strains, produces a yellow pigment acquired by
horizontal gene transfer.

As a result, the strain sequences are quite similar, which makes the challenge of
identifying them interesting in the context of this thesis. In this thesis we limit ourselves
to the use of genomic information only. It is interesting in the context of the S. ther-
mophilus species to show which bacterial strains can be distinguished on a genomic basis
and which ones need complementary information (e.g. phenotypic) to be distinguished.

1.3.3 Escherichia coli: the most studied bacterial model species

During the thesis, in addition to the identification of Streptococcus thermophilus strains,
identification of Escherichia coli strains was also performed. Escherichia coli is the
most studied bacterial species. It is a Gram-negative, facultative anaerobic rod-shaped
bacterium present in particular in the vertebrate intestines, generally commensal, but
including pathogenic strains [Denamur et al. 2021].

There are currently many E. coli strain genomes in the database with over 2 000 fully
assembled genomes of E. coli and more than 23 000 incomplete genomes (in September
2021).

From a strain identification point of view, there is more variability between E. coli
strains [Rasko et al. 2008] than between S. thermophilus strains so the identification
should be easier. However, identifying E. coli strains remains interesting because of the
large number of existing genomes and their interest in health.
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Preamble: The goal of bacterial identification from a DNA sequencing dataset
of a bacterial sample, is to assign the individuals present in this sample at the
lowest possible taxonomic level. This can reach the genus or species level or more
recently the strain level. The identification can either provide an assignment
of each read or only the global composition of the sample. When studying the
identification of bacteria from genomic sequences, several elements must be taken
into account. The first one is the sequencing device, because depending on the
technology, the DNA fragments will not have the same properties. In this chapter
we present methods based on short and long reads sequencing. The second element
to take into account is the quantity of information available. This leads to several
strategies, using marker genes, protein sequences or complete genomes. Finally, a
last point concerns the accuracy/efficiency trade-off when considering large sets
of genomes. Methods can use either alignments of sequences or a compressed
representation based on their composition into small words (k-mers).

2.1 Identification of bacterial strains using short reads

Identifying a bacterial strain requires the ability to compare it with already known
sequences. Two standard ways to do this are by aligning sequences or by checking the
presence of fixed-size fragments. Alignment-based methods will assign reads by aligning
them to reference genomes (or to their genes) whereas fixed fragments size methods will
assign reads by thresholding the percentage of common fragments between a genome
and the read. A read can be assigned to several reference genomes. It is then necessary
to either assign taxonomically each read or to identify the genomes actually present in a
sample. The main bacterial identification softwares are listed at the end of each section
(see tables 2.3 and 2.5).

2.1.1 Approaches based on sequence alignment with reference genomes

The alignment of two sequences is a way to identify the similar regions of these se-
quences. It consists in inserting a certain number of a special "gap" character in the
sequences at some positions such as the transformed sequences have the same size and
there is at least one non gap character at each position of the alignment. Then a score
may be associated to a given alignment by counting the number of positions where bases
are identical between the two sequences (match), different (mismatch) or one of the two
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sequences has a gap character (gap in the alignment corresponding to an insertion in
one sequence or a deletion in the other). The goal is to get an optimal alignment of the
two sequences with respect to the score.

Two algorithms based on dynamic programming have been proposed to solve this
problem: the Needleman-Wunsch (NW) algorithm [Needleman and Wunsch 1970] which
considers the whole sequences (global alignment) and the Smith-Waterman (SW) algo-
rithm [T. F. Smith and Waterman 1981] which considers only parts of the sequences
(local alignment). Both algorithms find an optimal solution to their respective align-
ment problem (global and local) in quadratic time (O(mn) where m and n are the size
of the two sequences).

For bacterial identification, alignments of sequenced reads to known genomic sequences
are sought. If a read aligns to a genomic fragment of a unique species with a good score
and on a sufficient length, then the species/strain is considered to be present. Due to the
size of the genomes and the number of reads (millions/billions), the exact resolution of
the alignment problem becomes too hard in practice. It is therefore necessary to design
heuristics allowing reasonable execution time. The most famous one is the seed-and-
extend heuristic of BLAST (Basic Local Alignment Search Tool) [Altschul et al. 1990]
which efficiently searches for highly similar regions, called seeds, between the sequences.
Then the alignment is extended from the seeds using dynamic programming which stops
when the alignment score drops below a threshold.

With the current number of sequences in databases and the size of the sequence
datasets, even BLAST has become insufficient, leading to the development of faster but
less sensitive aligners used by metagenomic classifiers [Breitwieser, Lu, and Salzberg
2019]. An improvement of the seed-and-extend is the use of adaptive seeds. LAST
[Kiełbasa et al. 2011] for example, looks for seeds that appear less than a certain number
of times in the reference. State-of-the-art techniques speed up the search for seeds by the
creation of an index for the reference and/or query sequences. The FM-index [Ferragina
and Manzini 2000] is often used for this task in the alignment technique (see figure 2.1).
This index is based on the BWT (Burrows Wheeler transformation) transform which
presents similarities with the suffix array that allows the search of a sequence of size m
in the index in time O(m).

It works as follows: first, the original sequence to index is transformed using the
BWT. This BWT allows to get another representation of the sequence that promotes
repetitions (see figure 2.1). This BWT corresponds to the last column when sorting all



50 CHAPTER 2. CURRENT STATE OF THE ART

Circular 
permutations

ATGCATTG$
$ATGCATTG
G$ATGCATT
TG$ATGCAT
TTG$ATGCA
ATTG$ATGC
CATTG$ATG
GCATTG$AT
TGCATTG$A

Sorted 
Permutations

$ATGCATTG
ATGCATTG$
ATTG$ATGC
CATTG$ATG
G$ATGCATT
GCATTG$AT
TG$ATGCAT
TGCATTG$A
TTG$ATGCA

Positions

1
2
3
4
5
6
7
8
9

alphabetical 
order

BWT : 2G$CGTTTAA

Start

Original text : ATGCATTG

c $ A C G T

C[c] 0 1 3 4 6

C[c] table

$

A

C

G

T

G $ C G T T T A A

1 2 3 4 5 6 7 8 9

0 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 2

0 0 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2 2

0 0 0 0 1 2 3 3 3

Occ(c,k) table

CompressionCompressed BWT

C[c] and 
Occ(c,k) 
construction

Figure 2.1: Example of indexing the ATGCATTG sequence using an FM index. The
Burrows Wheeler transform is performed by sorting all permutations of the text in
lexicographic order, then taking the last column. This column of size k represents the
BWT of the sequence. Then, it is used to construct the arrays C[c] and the function
Occ(c,k). The array C[c] associates each character c of the alphabet with the number of
characters in the text that are lexicographically smaller than c. The function Occ(c,k)
calculates the number of occurrences of character c in the BWT from 1 to k and creates
the Occ(c,k) table. In the original paper presenting the FM-index [Ferragina and Manzini
2000], in order to save space, the BWT is successively compressed by using three different
methods (a move-to-front algorithm (mtf) followed by a run-length encoding algorithm
(rle) on which a prefix code (PC) is applied). The final index corresponds to the BWT
compressed, the table C[c] and a function to compute Occ(c,k) in O(1).

permutations of the original text in a lexicographic order. The position of the original
sequence is also kept so that it can be found again.
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Once we have the BWT, it can be used to the create the FM-index corresponding to the
array C[c] and the function Occ(c, k), where c is a character of the alphabet (A,C,G,T in
the case of a nucleic sequence) and k is the position in the BWT. The array C[c] associates
each character c of the alphabet with the number of characters lexicographically smaller
than c in the text. The function Occ(c, k) computes the Occ(c, k) table containing the
number of characters c at the position ranging from 1 to k in the BWT. It has been
shown by [Ferragina and Manzini 2000] that the computation of this Occ(c, k) table can
be done in O(1). It is then possible to use lossless data compression techniques on the
BWT to save space. In the original paper [Ferragina and Manzini 2000] successively
compressed by three different techniques. The first one is a move-to-front algorithm
(mtf ) on the BWT wich consists in starting from the indexes of the characters c of
the alphabet in alphabetical order and changing the index value of these characters by
putting the current character in first position. For example, if we take the sequence
CTTTTTT with the alphabet {A,C,G, T} corresponding to {0, 1, 2, 3} indices, we will
have a 1 (C) then C is changed to 0 so the alphabet becomes {C,A,G, T}. Then we
have a 3 (T), T becomes 0 and then five 0’s. This example is presented in figure 2.2.
The final sequence is 1300000.
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Figure 2.2: Example of move-to-front algorithm applied to the CTTTTTT sequence on
the alphabet {A,C,G, T}.
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The structural properties of the BWT imply that the mtf(BWT ) will be domi-
nated by small numbers. On this mft encoding a run-length encoding (rle) is applied
to compress the 0 range created by the mtf. The rle principle is to encode the number
of characters followed by the character in question. For example 00000111111 will be
written 5061. Finally, this encode text is compressed by the use of a variable-length
prefix code (PC ) which consists of modifying the way the numbers are encoded in mem-
ory to use as few bits as possible. The final FM-index correspond to the compress
PC(rle(mtf(BWT ))) sequence, the C[c] table and the Occ(c,k) function.

The FM-index provides a lossless compressed representation of genomic sequences
with a complexity in time and storage space that is sublinear to the size of the input
data. It allows the rapid counting of the number of occurrences of a pattern of size m
in O(m) and the location of these occurrences can be achieved in a sublinear querytime
depending on the size m and the number of occurrences of the pattern. A more recent
version further speeds up the search for string positions in this index [Ferragina and
Manzini 2005].

In the case of the seed-and-extend heuristic, the FM-index is used to quickly find the
positions of the seeds. Techniques based on the use of this index are used by aligners
such as BWA-MEM [H. Li and Durbin 2009] and Bowtie2 [Langmead and Salzberg
2012] which are adapted to align a large number of relatively short sequences on a
single reference. BWA-MEM simply uses the BWA structure and takes advantage of
its similarity to the suffix table, whereas Bowtie2 use a modified FM-index structure.
This modified FM-index stores more information than a standard FM-index to allow a
quicker localisation of a pattern occurrences, in return the size of the index is therefore
larger. However, as both of these aligners are used to align very large numbers of reads
against a single medium-sized reference it is normal for their trade-off to be in favour of
query speed rather than data compression. In addition, to further accelerate the speed
of alignment, these two programs provide the possibility to parallelize the alignment of
the reads on the genome and thus to align several reads at the same time. A comparison
of the index size of both software is available in the table 2.1.

Other alignment software that work on protein sequences can include Hidden Markov
chains for search of proteins motifs or a preprocessing step to reduce the alphabet size.
Table 2.2 lists different short read alignment software and their strategy.
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Table 2.1: Comparison of BWA and Bowtie2 index size using Streptococcus thermophilus
and human genome.

Software Genomes Genomes size Index Index size

BWA-MEM S. thermophilus JIM8232 2 Mb BWT 3.3 Mb
Human 3.1 Gb 5.3 Gb

Bowtie2 S. thermophilus JIM8232 2 Mb FM-index 11 Mb
Human 3.1 Gb 7.1 Gb

The choice of the compromise between speed and space used (storage and memory)
depends on the desired alignment, so software specialising in the alignment of two whole
genomes will not use the same strategy than software for aligning reads on genomes.
FM-index is the most widely used strategy technique for aligning reads to genomes
but the BWT compression steps are sometimes not done and strategies are added to
speed up the pattern search at the expense of the space used to store the sequences. In
contrast MUMmer4 [Marçais, Delcher, et al. 2018] a software allowing the alignment of
two genomes, uses suffix trees to index the two genomes as these generally do not require
specifically to be compressed.

Table 2.2: Non-exhaustive table of short read alignment software and their main search
strategy.

Software Search strategy Reference

BLAST First implementation of [Altschul et al. 1990]the seed-and-extend heuristic

BWA-MEM Seed-and-extend with BWT [H. Li and Durbin 2009]allowing mismatch and gap in the seed
LAST Seed-and-extend with use of adaptive seeds [Kiełbasa et al. 2011]
Bowtie2 Seed-and-extend with FM-index [Langmead and Salzberg 2012]
HMMER Use of hidden Markov chain for protein alignment [Eddy 1998]

DIAMOND Seed-and-extend using reduced alphabet [Buchfink, Xie, and Huson 2015]and spaced seed for protein and translated DNA

MUMmer4 Complete genomes alignment [Marçais, Delcher, et al. 2018]using suffix trees

We present in table 2.2 a list of important alignment software used in bacterial
identification software. The early read classifiers used the presence of marker genes to
identify bacteria like for example MethaPhlAn [Segata et al. 2012]. The use of genes
allows to be faster than with whole-genome alignments. These approaches choose single
copy gene sets present in all organisms below a certain level of taxonomy. These genes are
searched, at the protein or nucleic level. However, it does not work well for strains due to
their proximity since they often differ by presence/absence and duplication of a genes.
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Even among genes that are common between strains, these are often well conserved
and do not necessarily show variation. More generally, differences between strains of
the same species will often be related to differences in the genes under selection, which
depends on the environment of the strain. For example the strains of the Pseudomonas
aeruginosa species diverge mostly because of their accessory genomes linked in particular
to transposable elements [Subedi et al. 2018]. Another example can be the evolution of
the genome composition of Lactobacillus salivarius strains to adapt to their specific host
[J.-Y. Lee et al. 2017] known as the host adaptation mechanism that is present in some
bacterial species [Toft and Andersson 2010]. Other approaches implement techniques
that use unique genomic fragments (often k-mers) specific to a taxon rather than a
set of unique genes (see GOTTCHA [Freitas et al. 2015]) or even techniques that use
species-specific marker genes variants (see the strain level version of MethaPlAn called
StrainPhlAn [Truong et al. 2017]).

Reads can also be assigned to genomes by alignment on the complete genome. Many
software make local alignment of reads on complete genomes before assigning them to a
taxonomic rank. However, most of them do not reach the strain level either by choice
or because of the lack of accuracy of aligners. In addition, most identification software
use the lowest common ancestor (LCA) in case of ambiguity in the alignment of a read:
if a read aligns to different genomes with a good score, it will be assigned to the LCA
of those genomes. A drawback of this strategy is that identification tends to stop before
the species level, especially as the read is short and therefore contains less information
because it will align itself more easily with distant genomes. The DUDes software [Piro,
Lindner, and Renard 2016] uses another notion called the deepest uncommon descendant
(DUD) which corresponds to a top-down approach going down the taxonomy. In addition
to finding the DUD (which corresponds to the LCA), DUDes uses alignment score to
solve certain ambiguities in the taxonomic rank. However it remains insufficient to go
down below the species level.

Among the identification software based on sequence alignment, Centrifuge [D. Kim
et al. 2016] is a fast metagenomic classifier descending to the strain level. It uses an
FM index to align reads on full genomes from databases. It also compresses shared
sequences from nearby genomes using a genome-genome aligner allowing the size of the
index data structure to be further reduced. However this compression rate of course
depends on the size of the species core genome. For example, in [D. Kim et al. 2016]
the compression of 131 E. coli genomes in one sequence allows a 16% gain in space
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with respect to the space taken by the 131 initial sequences. Another example is the
compression of the index containing about 4 300 bacterial and archaeal genomes from
6.9 GB to 4.2 GB. However, this compression limits Centrifuge to the species level
classification while without this compression the results are at the strain level. As with
other sequence alignment based identification software, Centrifuge faces the problem of
reads assigned to multiple genomes. To resolve these ambiguities Centrifuge then uses a
modified version of the LCA approach. This approach simply leaves a certain amount of
ambiguity where it exists. By default it is possible for a sequence to be associated with
five taxonomies (modifiable threshold). If there are more than five taxonomies associated
with a read, the number of taxonomies is reduced by grouping this taxonomies at higher
taxonomies (LCA approach) until there are five taxonomies associated with the read.

Another approach using an FM-index table similar to that used in Centrifuge is Kaiju
[Menzel, Ng, and Krogh 2016] which works with a protein database.

Finally, there are approaches allowing strains identification that assign reads to
genomes by using sequence quality and alignment quality associated with statistical
models such as Bayesian statistical model (Pathoscope [Francis et al. 2013]). Other soft-
ware such as Sigma [Ahn, Chai, and Pan 2015] use the alignment of reads to genomes
to define a probabilistic model to test for the presence of genomes in the sample.

Following taxonomic assignment some software (e.g. Centrifuge, Pathoscope) quantify
the strains present in the sample, most of the time, using an Expectation-Maximisation
(EM) algorithm. As the aim of this thesis is simply to identify the strains present in a
sample we will not discuss this genome quantification step further.

Table 2.3: List of important short read identification software based on the use of sequence
alignment.

Identification Alignment Taxonomic Reference
software software assignation

MethaPhlAn Bowtie2 [Segata et al. 2012]
Alignment StrainPhlAn Bowtie2 Clade-specific [Truong et al. 2017]
on genome mOTU HMMER unique marker genes [Sunagawa et al. 2013]
fragments Phylosift HMMER [Darling et al. 2014]

GOTTCHA BWA-MEM Clade-specific [Freitas et al. 2015]unique k-mers
MEGAN Any default: LCA [Huson, Beier, et al. 2016]

Local Taxator-tk short read BLAST/LAST [Dröge, Gregor, and McHardy 2015]
alignment DUDes aligner None DUD [Piro, Lindner, and Renard 2016]
on complete Kaiju Own aligner based LCA [Menzel, Ng, and Krogh 2016]
genomes Centrifuge on FM-index [D. Kim et al. 2016]

Pathoscope BLAST+GNUMAP Bayesian [Francis et al. 2013](probabilistic NW) statistical framework
Sigma Bowtie2 Statistical framework [Ahn, Chai, and Pan 2015]
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2.1.2 Approaches based on genome fragment indexing

In order to escape the intrinsic quadratic complexity of alignment, most recent meth-
ods are based on the decomposition of genomes into fragments which are then integrated
into an index. This ensures a good compression of data and a fast search for the presence
of fragments common to genomes and reads.

Genomes indexing and read assignation

An index is a structure whose purpose is to order and sort data using the less possible
space in order to be able to find them more quickly. In genomics, an index can be used
for example to search for a specific gene in thousands of metagenomic samples. In our
case the aim is to search for a read representing a small part of a genome in a more or less
large list of genomes. To do this, the genomes are fragmented into small fragments (e.g.
k-mers) which are then entered into the index; this is called genome indexing. In this
case, the index has two main roles: (1) the first is to save the presence information and
possibly the counting of genomes fragments by using the least amount of space possible.
(2) the second role of the index is to allow when a read is given to quickly find in which
genome(s) this read is present; this is what we call querying the index.
This query part allows a read to be assigned to its reference genome(s) and thus replaces
the read alignment step.

Indexing based on k-mers

The main approach for genome indexing is based on k-mers. A k-mer is a substring
of length k of a string. In our case, it is a fragment of DNA (read, genome...) or RNA,
and there are therefore 4k possible k-mers.
Unlike alignment-based approaches which will search for approximate sequence matches,
k-mer based approaches compare sequences only on the basis of the set of common
fragments. The contribution of each possible k-mer to the sequences similarities may be
based simply on its presence/absence or on a count of its occurrences.

This k-mer set representation of sequences is more compact due to the disappearance
of redundant k-mers occurrences. However, the indexing based on the decomposition
into k-mers will most of the time cause the notion of continuity between k-mers to be
lost. When we search for the presence of a read R in a genome G, if R is of size k (size
of the k-mers) then there will be no problem. In the case of a larger sequence R, it is
split into k-mers and each k-mer is searched in G. However, there is no guarantee that
even if all the k-mers of R are present in G, the unique continuous sequence R would
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also be present (see figure 2.3). However, the assumption used in most methods is that
k is large enough that this does not (or very rarely) happen.

Genome : ATTACTTCG

Read : ATTCG

ATT CTT
TTA TTC
TAC TCG
ACT

ATT  
TTC 
TCG

Extract k-mers

Extract k-mers

Figure 2.3: Example of read whose 3-mers are present in the genome but which is not
actually present in this genome. This error is related to the loss of continuity in the set
of k-mers. However, in reality, the size chosen for the the k-mers is large enough that
this type of false positive rarely occurs.

Many of the methods presented below were originally developed for other purposes
than bacterial strain identification (e.g. metagenomics, RNA-seq...). In the context of
this thesis we will consider the study of bacterial strain genomes. Thus these bacterial
genomes are the basic data to be indexed and the sequences searched in these genomes
are the long reads.

A set of k-mers can be simply represented by a bit vector that stores the pres-
ence/absence of a k-mer in the data. To save the k-mers continuity it is possible to use a
more advanced data structure called a De Bruijn graph [Chikhi, Holub, and Medvedev
2021]. We recall that a graph G is a pair (V,E) where V corresponds to the vertices
(also called nodes) and E to the edges of the graph (see A in figure 2.4). We will now
give a short review of some of the graph structures and types of graphs that will be used
later in this thesis.

Graph structures:

• A graph can be traversed via paths which are represented by a sequence of edges
connecting nodes together (see numbered nodes in figure 2.4).

• A graph is connected if each of its vertices can be connected to another by a path,
otherwise the graph is disconnected.
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• A subgraph is a subset V ′ and E′ of a graph G = (V,E).

• A connected component is a maximal connected subgraph of a graph.

• A graph is directed if edges are oriented (see B in figure 2.4).

• A cycle (in undirected graph) or circuit (in directed graph) is a path whose two
vertices at the ends are identical.

Specific type of graphs:

• A complete graph is a graph where all the nodes are connected between them (see
C in figure 2.4).

• A clique of a graph is a complete subgraph of that graph. The maximal cliques of
a graph are the cliques that are not contained in any other clique.

• A tree is an acyclic connected graph in which two nodes are thus connected only
by one path (see D in figure 2.4).

• A subtree is a subgraph of a tree.

The most widely used graph for storing genomic information based on k-mers is the
De Bruijn graph. A De Bruijn graph is a specific type of directed graph whose vertices
are k-mer and edges link k-mers overlapping on k-1 positions (see E and F in figure 2.4).
Recently [Bowe et al. 2012] showed that it is possible to represent a De Bruijn graph
in a compact way using a BWT representation of the graph that allow indexing and
compression called the BOSS structure (BWT-based De Bruijn Graphs) [Boucher et al.
2015].

In their review, [Marchet, Boucher, et al. 2020] divide the other data structures that
allow to index a genome into two categories. The first one is dedicated to membership
queries: they store the presence/absence of k-mers. A typical structure in this category
is the Bloom filter (BF). This probabilistic data structure has been invented by Burton
Howard Bloom in 1970 (see figure 2.5) and we give some details on it since it will be used
in our approach. A BF can be seen as an array of bits (initially set to 0) of fixed size
n. In addition to the array the filter contains a collection of m hash functions h1...hm.
A hash function is a particular function which, from an input data, computes a digital
fingerprint used to quickly identify this initial data. While using with Bloom filters, the
hash functions compute from a k-mer, a number representing its position in an array.
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A B

C D

ATCG TCGT CGTA GTAA

TAAT

TAAA

AATA

AAAT

ATAC

ATCGTAA

TAAT

TAAAT

AATAC

E

F

1 2
3

4

Figure 2.4: Different representations of graphs. In A we have a disconnected undirected
graph with in red a cycle and an example of a path from node number 1 to 4. In B
we have a disconnected directed graph with a circuit in red (there are actually three
circuits in this graph). In C there is an example of a complete graph. In D there is an
example of a tree. Finally graph E represents a De Bruijn graph f the 4-mers set ATCG,
TCGT, CGTA, GTAA, TAAT, TAAA, AAAT, AATA, ATAC and graph F represents
the corresponding compacted De Bruijn graph.

To insert a k-mer x into the array, all positions h1(x)...hm(x) are set to 1 in the array.
Then, to find out if a k-mer y is present in the BF, we check if positions h1(y)...hm(y) in
the array correspond to a value 1. An advantage of this data structure is that it requires
fixed space to store the k-mers (n is fixed and defined beforehand). However, it can only
answer with certainty to queries about the absence of an element (no false negative) or
with a certain probability for the presence of the element (there can be false positives).
If we assume that the probability of each bit being equal to 1 is independent of other
bits, then the probability of a false positive can be estimated by using the following
equation:

Pfalse_positive ≈ (1− e
−lm

n )m (A)
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where l is the number of inserted elements.
Even if the independence assumption is false, the estimate of the false positive rate is
still close to reality if n

l is high and, due to its simplicity, this equation is therefore often
used to approximate the false positive rate of a Bloom filter.

0 1 0 0 1 0 1 1 0 0 0 1 0 0

ATGC GCTG AAGT

h1

h1
h1h2

h2h2

ATGC ? TTGC ?

11 success 10 fail

Figure 2.5: Bloom filter of size 14 with 2 hash functions h1 and h2. Three 4-mers
(ATGC, GCTG, AAGT) are inserted in the filter. The 4-mers ATGC and TTGC are
searched in the filter. The probability of having a false positive using this filter and
equation A is about 12,15%. But the n

l = 4.7 ratio is a bit low, so the false positive
probability is therefore probably underestimated.

The second category of index uses associative data structures, which associate infor-
mation with k-mers. For instance, the hash table used in the Othello hashing method
[Yu et al. 2018] is a MPHF (Minimal Perfect Hash Function) that allows to index n

keys on n consecutive integers without any collision. This permits to be more compact
than a conventional hash table while maintaining a constant time to search for the origin
genomes of a k-mer. The counting quotient filter (CQF) [Pandey, Bender, et al. 2017]
has strategy comparable to Bloom filters but with a different hashing strategy that al-
lows to perform element counts in addition to presence/absence queries. CQF cuts the
k-mer in two parts and uses the hash of the first part to find the position in the array
and store the second part associated with its count.

Most of the data structures that enable genome indexing can be compressed to save
space via various compression techniques. BFs are amenable to some of these compres-
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sion techniques because of their bit representation with long ranges of 1’s or 0’s. In their
review, [Marchet, Boucher, et al. 2020] separate k-mers set compression techniques into
three main types: the bit-vector compression, delta-based compression and hybrid tech-
niques. In bit vector compression we find methods such as RRR [R. Raman, V. Raman,
and Satti 2007] and Elias-Fano [Elias 1974; Ottaviano and Venturini 2014] whose overall
principle is to find the ranges of 0s and encode them in the most efficient way possible.
Delta-based compression techniques are based on the principle that if two sets of k-mers
are close it is more cost effective to store only one set and a representation of the dif-
ferences of this set with the other set. Finally the hybrid techniques are based on the
separation of vectors of bit in buckets. The compression technique used for each bucket
depends on characteristics of the vectors contained in the buckets. However, these data
compression techniques are complex and quite distant from the strain identification goal
of this thesis. Therefore, they will not be discussed in detail in this thesis. We will
simply note that basic data structures such as BF can be compressed to optimize space
usage.

All these methods represent a genome as a set of k-mers. A more difficult problem is
to index sets of genomes. For this purpose, it is possible to assign distinct color to each
genome. There are different data structures based on aggregative methods [Marchet,
Boucher, et al. 2020] that allow to index sets of genomes. These methods can be classified
into two categories, color-aggregative methods and k-mer aggregative methods (see table
2.4 at the end of this section).

Color-aggregative methods

Color-aggregative methods first index the union set of all k-mers then associate original
genome(s) information with each k-mers (see figure 2.6). The first color-aggregative
method was a colored DBG proposed by [Iqbal et al. 2012]. The principle is quite
simple, a colored DBG represents multiple genomes in a single DBG by coloring the
nodes of the graph with the colors of the genomes from which the k-mer comes.
Later, more compact structures were developed such as the Bloom Filter Trie (BFT)
[Holley, Wittler, and Stoye 2016] which stores the k-mers and their corresponding colors
in a tree-like structure. Going down this tree, we find the prefixes of the k-mer. The
leaves contain the suffixes corresponding to the prefixes of the previous nodes and the
colors of the genomes containing the k-mer. Another structure allowing to save space
compared to colored DBG is implemented in the Vari software [Muggli, Bowe, et al. 2017].
Vari compresses the DBG by using a BOSS structure associated with a compressed color
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matrix.
Improvements were made over times but in general, the basic strategy of all the methods
is as follows: the set of k-mers from all genomes is indexed using either a software-specific
representation (e.g. hash table) or a DBG. Then a correspondence is established between
this indexed k-mers and the colors (genomes). The association of colors to k-mers is done
using one of the three following structures:

• A color matrix (e.g. Vari, Vari-Merge, BLight) where a k-mer corresponds to a
row of the matrix that encodes the colors (genomes) corresponding.

• A color classes matrix (e.g. BFT, Rainbowfish, Mantis, Mantis+MST) where the
k-mers which have the same origins (same colors) point to the same row of the
matrix. This representation reduces space used compare to the use of color matrix.

• Several color matrices, this strategy is used in SeqOthello [Yu et al. 2018] and
depends on the k-mer occurrence in the reference genomes.

K-mer aggregative methods

Unlike color-aggregative methods, k-mers aggregative methods first index all k-mers
sets separately then aggregate them (see figure 2.6). In this category, we find many
methods having the Bloom filters as basic structure to store data. Indeed, the Bloom
filter is very efficient in terms of space to store DNA sequences and the false positive
rate of these filters is reduced by the search of the many k-mers of a query with a DNA
sequence. [Solomon and Kingsford 2016] has proven that even with a very high false
positive rate of the filters (e.g. 50%) there is still no performance degradation without
errors on a sequence if at least 50% of its k-mers are found. In practice, false positives can
be linked to sequencing errors in reads. In the context of bacterial strain identification
from nanopore reads, which is the aim of this thesis, this error rate is quite high and
therefore requires a lower false positive rate of the filters.

There are different data aggregation structures used in this category to regroup BFs.
The first one is the use of matrices. For example in BIGSI [Bradley et al. 2019], the BFs
are concatenated in order to obtain a matrix where each column corresponds to a color
(genome) which allows for very fast queries. COBS [Bingmann et al. 2019] subsequently
improved BIGSI method’s in terms of time (C++ implementation) and space by using
variable BF size depending on the genomes size instead of fixed size BFs. There are
similar works such as BioBloom Tools [Chu, Sadeghi, et al. 2014; Chu, Mohamadi, et al.
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2020] which evolved from the use of multiple hash functions in 2014 [Chu, Sadeghi, et
al. 2014] to a multiindex Bloom Filter (miBF) structure [Chu, Mohamadi, et al. 2020]
allowing the storage of multiple spaced seed sequences (see section 3.1.2 for further de-
tails) instead of multiple hash functions. Finally, structures containing BFs representing
several data sets also exist such as in RAMBO [Gupta et al. 2020] (matrix form) or
DREAM-YARA [Dadi et al. 2018]. RAMBO merges the initial BFs randomly and cre-
ates a matrix containing all combinations of the merge of the initial BFs. This matrix
is queried row by row and the intersection of the results is used to find where the k-mer
comes from. For DREAM-YARA, the data structure is based on the Interleaving Bloom
filters (IBF). The IBF is a large BF that interleaves the bits of the BFs corresponding to
the n different genomes. So, for example, the first n bits of the IBF correspond to the
first bit of the n initial BFs which allows to find very quickly in which genomes a k-mer
is present.

The second data aggregation structure is the search tree. In this case the initial
datasets are BFs at the leaves of the tree and the internal nodes represent groups of
datasets (union of the BFs) with the root node representing all the initial datasets. The
first implementation of this kind of structure is the Sequence Bloom Tree (SBT) [Solomon
and Kingsford 2016]. In this SBT a node in the tree represents the k-mers present in this
sets of the subtree under the node. The tree structure represents a hierarchical clustering
of BFs (datasets). It can be obtained by using for example the k-mers composition of the
datasets. Improvements were made later, Split-Sequence Bloom Trees (SSBT) [Solomon
and Kingsford 2018] and AllsomeSBT [Sun et al. 2017] are the first to implement the
use of two filters at each node of the tree. This allows for faster queries on the one
hand, and a more space-efficient index on the other. Finally, HowDeSBT [Harris and
Medvedev 2020] later improved the use of space and time by mixing ideas from the
previous softwares. It is currently, in August 2021, the most space-efficient tool for
indexing genomic k-mers datasets, and has been chosen for this reason as the basis of
our own method.

HowDeSBT works as follows: first, the set of datasets to be indexed are represented
by their Bloom filters in leaves of the tree (as with SBT). HowDeSBT uses only one
hash function to hash the k-mers and insert them into their BF. The tree topology is
determined by clustering using the Hamming distance between BFs (see section 3.2.1).
The bottom-up clustering method used in HowDeSBT is the same agglomerative hierar-
chical clustering as in AllSomeSBT based on [Hoon et al. 2004]. Grouping the BFs close



64 CHAPTER 2. CURRENT STATE OF THE ART

0 0 1 0 0 1 0 1

k5k1k4 k2 k3

1 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0

k4 k1k3

k2 k3k1

k4 k2 k5

Genome 1

Genome 2

Genome 3

k1

k3

k2

k4

k5

k1

k2

k3

k4

k5

k2

k4

k5

k1, k3

OR

0 0 1 0 0 1 0 1

1 0 1 0 0 0 0 1

1 0 0 1 0 1 0 0

k5k1k4 k2 k3

OR

0 0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0

1 0 1 0 0 1 0 1

1 0 1 1 0 1 0 1

Color-aggregative methods k-mers-aggregative methods

Color matrix

Color classes
matrix

Matrix

Tree

Compression

Colors

color x k-mers

color x k-mers

k-mer x colors

k-mer classes 
x colors

Figure 2.6: Diagram of the differences between color-aggregative and k-mers aggregative
methods. Color-aggregative methods first group the k-mers of the different sequences
(k1 to k5) before indexing and aggregate while k-mers aggregative methods first index
all k-mers sets separately then aggregate them.

to each other allows to have a faster query, indeed it avoids to have too many k-mers
distributed in very distant leaves of the tree and thus avoids to go down too often to
the leaf. HowDeSBT also uses two bit arrays per node: Bdet and Bhow. Bdet allows to
know if for a node u, all its children have the same bit value at position i (BFs[i]). In
the case where Bdet(u) = 1 the bit value will be given by Bhow. If Bdet(u)[i] = 1 and
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Bhow(u)[i] = 1 then all BFs[i] = 1 in the subtree and conversely if all BFs[i] = 0 in the
subtree then Bhow(u)[i] = 0. For the active bits of a node u, Bdet and Bhow are defined
as:

Bdet(u) =∆ B∩(u) ∪B∪(u) (B)

Bhow(u) =∆ B∩(u) (C)

A basic uncompressed representation of the HowDeSBT tree structure is given in
figure 2.7.
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Figure 2.7: Basic uncompressed tree structure of a HowDeSBT index. The Bloom Filters
at the leaves of the tree represent the sequences to be indexed, in our case the different
bacterial strain genomes. Bhow represents the nodes of the tree containing the union of
the leaves below. Bdet allows to know if the value of all child filters have the same bit
value at a certain position. Positions containing a − are positions that are considered
inactive because they will never be looked at during a query. This can append either if
their value is already known thanks to a parent node or if there are child nodes that do
not contain the same value.

In HowDeSBT, a query is performed by recursively descending the tree. The search
for the presence of the sequence is done using the set of its k-mers. Each k-mer is hashed
which gives positions allowing the representation of the query as a Bloom filter that we
will call query BF (see figure 2.8). Going down the tree, a recognition threshold θ is used
(θ ∈ J0, 1K). It defines the minimal fraction of k-mers that a genome must contain to be
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considered as containing the queried sequence. This threshold is set to 0.9 in [Harris and
Medvedev 2020] and is often placed between 0.7 and 0.9 [Marchet, Boucher, et al. 2020].
However, because of the number of errors in the long reads from nanopore sequencing
we have set this threshold to 0.5 in the context of the thesis. During the descent in
the tree two counters are incremented, the presence counter that counts the presence
(positions at 1) of the query BF k-mers in the subtree and the absence counter that
counts the absence (positions at 0) of the query BF k-mers in the subtree. The presence
counter allows to stop the search at a node v as soon as the threshold θ is reached (see
inequation D); the genomes of the subtree starting at v are then returned. Conversely
the absence counter allows to stop the search when we know that θ will never be reached
(see inequation E).

θ ≤ presence

|Q|
(D)

1− θ ≤ absence

|Q|
(E)

where |Q| is the size of the query BF. In the worst case which consists in having a read
containing only k-mers forcing to go through all the tree, the complexity of the query
will be O(Q× n) with Q the number of k-mers of the read and n the number of initial
genomes.

Some bits of Bdet and Bhow will never be used during a query, these bits are called
inactive (−) (introduced by [Solomon and Kingsford 2018] in SSBT) which is the opposite
of an active bit.

There are two possibilities for a bit at the position i to be inactive:

• Bhow(u)[i] is inactive if it cannot be determined at this node (Bdet(u)[i] = 0). This
means that there are descendant nodes with different values at the position i.

• Bdet(u)[i] and Bhow(u)[i] are inactives if there are already determined by an an-
cestor node (Bdet(ancestor(u))[i] = 1).

These inactive (non-informative) bits are not saved in order to save space. This removal
changes the indices into the filters, so the query is modified accordingly by using rank
and select algorithm [Mäkinen and Navarro 2007]. The tree structure without the inac-
tive bits is then compressed by using the succinct indexable dictionary from the RRR
compression [R. Raman, V. Raman, and Satti 2007] method that allows membership,
rank and select queries in O(1).
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Figure 2.8: Query of uncompressed HowDeSBT tree structure with a read. The read is
decomposed into k-mers which are hashed and inserted into a query Bloom filter of the
same size as the index Bloom filters. In this example, the read contain three k-mers. The
query is done as follow: the k-mers of the query BF are searched by going down the tree
from the root. The presence and absence counters of the k-mers are incremented using
nodes information and as soon as a node v has a ratio of presence to total number of k-
mers of the query BF above a threshold theta, the genomes at the leaves are returned. In
the figure, the recognition threshold is set to 0.5, which means that the read is considered
present if there are more than 50% of the queried k-mers in the index. In this example,
the read is found in the right part of the tree but not in the left part.

HowDeSBT’s index structure has two major advantages over the conventional SBT
structure:

• The acceleration and optimization of queries by using the Bhow and Bdet bit arrays
as well as efficient clustering of initial genomes.
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Figure 2.9: Suppression of inactive bits from the HowDeSBT index.

• The reduction of the space required for index storage by removing inactive bits
and compressing BFs.

Finally, as we have just seen, all these indexing methods allow the representation
of sets of genomes in a very time and space efficient way. The next step in genome
identification, is the assignment of reads to genomes from the query results of these
indexes. Table 2.5, at the end of this section, shows the main methods of bacterial
identification using a k-mer based approach.

Identification softwares based on k-mers

The current reference in k-mer-based bacterial identification approach is Kraken [Wood
and Salzberg 2014] and its second version Kraken 2 [Wood, Lu, and Langmead 2019].
Kraken was the first method to allow fast identification of reads in a metagenomic sam-
ple. Kraken uses a data structure related to the color-aggregation approach. Kraken
uses the Jellyfish [Marçais and Kingsford 2011] k-mer counter which cuts the genomes
into k-mers and makes a matrix with each k-mer and its count. However, for taxo-
nomic assignment Kraken will save the LCA (Lowest Common Ancestor) corresponding
to a k-mer instead of the k-mer count. This LCA corresponds to the lowest taxonomic
assignment taking into account all organisms whose genomes contain the k-mer.

Like most tools working with k-mer from read, Kraken and Kraken 2 use the notion
of canonical k-mer. Indeed, as dna has two strands, when searching for reads in a
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Table 2.4: Overview of existing color-aggregative and k-mer aggregative methods modified
from [Marchet, Boucher, et al. 2020]. Most of this methods are recent and new methods
improving query or indexing time or space, or even the index size are developed every
year.

Method Software K-mer set Set of sets Allowed Referencedata structure data structure compression
SeqOthello Othello hashing

yes

[Yu et al. 2018]
Bifrost

hash table

[Holley and Melsted 2020]
Metannot [Mustafa et al. 2017]

Multi-BRWT [Karasikov et al. 2019]
Color Pufferfish 1 or several no [Almodaresi, Sarkar, et al. 2018]

aggregative BLight color matrices [Marchet, Kerbiriou, and Limasset 2021]
REINDEER

yes

[Marchet, Iqbal, et al. 2020]
Vari(-merge) BOSS [Muggli, Bowe, et al. 2017; Muggli, Alipanahi, and Boucher 2019]
Rainbowfish [Almodaresi, Pandey, and Patro 2017]

Mantis(+MST) CQF [Pandey, Almodaresi, et al. 2018]
[Almodaresi, Pandey, Ferdman, et al. 2020]

BFT Bloom filter trie [Holley, Wittler, and Stoye 2016]
SBT, SSBT,

Bloom filter

search tree/forest
yes

[Solomon and Kingsford 2016; Solomon and Kingsford 2018]
AllSomeSBT [Sun et al. 2017]

Kmer HowDeSBT [Harris and Medvedev 2020]
aggregative BIGSI, COBS, RAMBO BF matrix/matrices [Bradley et al. 2019; Bingmann et al. 2019; Gupta et al. 2020]

DREAM-YARA interleaving BF [Dadi et al. 2018]
BioBloom Tools multiindex BF no [Chu, Sadeghi, et al. 2014; Chu, Mohamadi, et al. 2020]

genome, we do not know from which strand the read comes. To overcome this issue,
it is possible to use the canonical version of each k-mer. To do that we need to define
the reverse complement rc by rc(A) = T , rc(C) = G, rc(G) = C, rc(T ) = A, and
rc(x.w) = rc(w).rc(x), where x is a nucleotide and w a DNA sequence on the alphabet
A,C,G, T . The simplified canonical representation can(t) of a k-mer k with can(k) =
min(k, rc(k)), where the minimization is performed with respect to the lexicographic
order. For example, can(AGTCAC) = can(GTGACT ) = AGTCAC.
To speed up the search, in addition to storing k-mers, Kraken will look at the minimizer
(default size of 15) of the k-mers. For a k-mer K of size k, the minimizer M of size m
is the canonical M-mers of this k-mer that have the smallest lexicographic value. It can
be calculated using:

M(K) = min(
k−m+1∑

i=1
can(K[i : i+m− 1])) (F)

where m < k. Sometime, a minimum hash value is used instead of the minimum lexico-
graphic value but this does not change the general principle.
The k-mers with the same minimizer are then stored consecutively and sorted alphabet-
ically, which allows to group close k-mers. An index of the minimizers is saved which
allows to load the corresponding k-mers matrix part into memory. As adjacent k-mers
often have the same minimizer, the part of the k-mer matrix does not need to be reloaded
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in memory which allows quick access to the k-mers LCA. To look for a read in the index,
the read is split into k-mers whose minimizers are used to quickly find the LCAs. Then
a subtree of the species tree is constructed according to these LCAs. Each RTL (Root
To Leaf) which are paths from the root to the leaves of the subtree are then traversed.
The path selected for a read is the leaf with the RTL of maximum weight according to
the LCA count for each node.

Kraken version 2 (Kraken 2) is more efficient than Kraken in both space and time
and give similar identification results. The minimizers of the genomes k-mers are directly
stored in the Kraken 2 index instead of using a minimizer index allowing to find exact
k-mers like in Kraken. In addition, a spaced seed which represents a mask that removes
certain positions of a sequence is applied on the stored minimizers (see further section
3.1.2 for more details about spaced seed). We will then refer to this minimizers as spaced
minimizers. The hash value of the spaced minimizer is then calculated and combined to
the LCA corresponding to the k-mer. In case several k-mers with different LCAs have
the same spaced minimizer it is associated to all LCAs.
Searching for a read in the Kraken 2 index is performed in the same way as for Kraken
except that Kraken 2 looks at the LCAs corresponding to spaced minimizer of k-mer.
This use of spaced minimizer makes the bacterial identification performed by Kraken
2 more efficient in time and decreases the space used by the index but also makes the
bacterial identification harder. Indeed, a minimizer may be identical for different k-mers,
which can affiliate this minimizer to more than one LCA and thus make the taxonomic
assignment less accurate. Therefore, this approach makes it difficult to assign reads to
taxonomically related individuals such as bacterial strains.

Many taxonomic assignment software have used LCA based approaches after the pub-
lication of Kraken. For example the recent metagenomic classifier ganon [Piro, Dadi,
et al. 2020] uses the LCA to resolve uncertain read assignations. Ganon uses as index the
data structures implemented in DREAM-YARA based on a k-mer aggregative method
using interleaved Bloom filters (IBF). Then it uses k-mer counting lemma to assigns
reads to a genome. The k-mer counting lemma considers all overlapping k-mers of a
read and gives a lower bound corresponding to the number of k-mers shared between
a read containing e error match and its reference (see section 3.1.1 to further informa-
tion). However, some classifiers such as CLARK [Ounit, Wanamaker, et al. 2015] have
developed approaches that dispense the use of the LCA. CLARK developed an approach
based on the use of taxonomy-level specific k-mers stored in a structure which can be
related to a color matrix used to classify reads without using an LCA algorithm. Indeed,
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it uses the taxonomy-level specific k-mers count to assign the reads to the taxonomy with
the highest count. Furthermore, to avoid erroneous k-mer noise CLARK does not count
reads k-mers with a low occurrence.
In 2018, a version of Kraken developed to give more accurate identification results, called
KrakenUniq [Breitwieser, Baker, and Salzberg 2018], was released. This version allows a
better recall and precision than Kraken on bacterial identification by using the coverage
of unique k-mers present in each genomes to refine the taxonomic assignment of reads.

Table 2.5: Non-exhaustive table of short read identification software based on the use of
k-mers.

Identification Index type/methods Taxonomic Referenceassignation

Kraken(-2|-Uniq) Method similar to LCA
[Wood and Salzberg 2014; Wood, Lu, and Langmead 2019]

color-aggregative methods
[Breitwieser, Baker, and Salzberg 2018]

LMAT [Ames et al. 2013]
CLARK(-S) Target-specific k-mers [Ounit, Wanamaker, et al. 2015; Ounit and Lonardi 2016]

StrainSeeker
Guide tree containing kmers Assignment of isolates

[Roosaare et al. 2017]specific to nodes: similar (strain) with placement
to kmers-aggegative methods in the guide tree

k-SLAM

Hybrid method using

LCA [Ainsworth et al. 2017]
k-mers composition to find

read/genome overlap followed by
SW alignment and ’pseudo-assembly’

to infer genes and variant

Despite the large number of bacterial identification software based on fragments in-
dexing, most of them do not take into account the strain level. This lack of accuracy
can be explained by the relatively small amount of information that short reads contain
which makes it difficult to identify one bacterial strain from another. For some meth-
ods, a second explanation to this lack of accuracy is the loss of information during the
indexing of the initial genomes. We end this section by one of the rare short read identi-
fication software that goes down to the strain level, StrainSeeker [Roosaare et al. 2017],
a bacterial identification program based on a k-mer approach. Unlike other taxonomic
assignment software such as Kraken for example, StrainSeeker will not attempt to assign
reads to a taxonomic rank or a reference genome. Instead, StrainSeeker takes as input
the taxonomic tree of the strains (as a guide tree) and the corresponding genomes. The
goal is to build a tree index where each node contains a list of k-mers specific to that
node. This index is built from the leaves (strains) to the root: StrainSeeker retrieves the
list of k-mers of the strains and, following the guide tree, moves the k-mers common to
a set of strains up into the corresponding nodes. Subsequently, non-strain specific k-mer
are removed from the leaves k-mer sets. Unlike other methods, StrainSeeker does not
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search for reads in the indexed genomes but does the opposite. Therefore, the query is
done by searching the k-mers from each node of the index tree in the read k-mers set.
At each node a ratio k-mers observed/k-mers expected is calculated and allows to go
down in the tree. This method allows StrainSeeker to assign reads to a clade. How-
ever, because of its index (not scalable to very large number of genomes) and its way of
performing the query, StrainSeeker is developed to identify bacterial isolates (i.e. single
strains, not mixtures) but can actually give good results on a small mixture of strains
(See section 5.1).

2.1.3 Approaches based on variation graphs

In order to have a better representation of the variations between strains, graph-based
approaches, called variation graphs have been developed. Storing them is more space-
consuming than indexes based on k-mers composition but they are more informative as
they represent several sequences with their variations. Variation graphs are bidirectional
graphs of DNA sequences where the nodes represent subsequences of the input sequences
and the edges represent the links between these subsequences existing in the original
sequences (see figure 2.10). By associating each initial sequence to a color, it is possible
to associate each color to a path of the graph representing the variations observed in the
initial sequence ; these paths are then called colored paths. By following the different
colored paths it is then possible to retrieve the initial sequences. An implementation of
this variation graphs can be found in the vg toolkit [Garrison et al. 2018].

Sequence 1: ATCGTTCAGCGCGTTTCAGCGACTTCGCAGCAGCTACT

Sequence 2: ATCGTTCAGCGCGTTTC   GCGACTTCGCAGTTGCTACT

Sequence 3: ATCGTTCAGCGCGTTTCAGCGAC                  TTGCTACT

TT

GCTACT

CA

TTCGCAGGCGAC

A

ATCGTTCAGCGCGTTTC

Figure 2.10: Example of a variation graph built from three sequences. Each colored path
in the graph corresponds to one of the initial sequence.

These variation graphs allow an accurate representation of the variations between
closes sequences, such as individuals of the same species or alleles of the same gene.
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Although of great interest in the context of bacterial strain identification, these vari-
ation graphs are still under development. A recent bacterial strain identification and
quantification software, StrainFLAIR [Da Silva et al. 2021], has been developed to
demonstrate the feasibility of using variation graphs to store and query highly simi-
lar gene sequences of strains. By aligning the reads against a variation graphs one can
measure the abundance of the different colored paths corresponding to the strain-specific
genes and thus determine which strains are present in the starting sample by exploiting
this abundances.

Conclusion on strains identification using short reads

The vast majority of bacterial strain identification software was developed during the
rise of second generation sequencing (NGS) technologies. However, as these programs
have adapted their approaches to short sequencing reads containing relatively few errors,
most of them cannot work properly with very erroneous long reads. In the next section
we discuss of software that have been able to cope with both short and long reads.

2.2 The specificity of identification of bacterial strains us-
ing long reads

Since the advent of long reads in the 2000s, bacterial identification software has evolved
to adapt to these new reads. Despite the advantages of their size the difficulty in per-
forming identification using such reads is their high error rate which makes alignments
and k-mer index queries more complex. The problem becomes even more complicated
if we consider the high similarity of reference genomes in the case of bacterial strain
identification.

One of the first ideas that emerged to deal with this kind of reads was either (1)
correcting these long reads with non-erroneous short reads (hybrid correction) or (2)
using the sequencing depth [Fu, Wang, and Au 2019; H. Zhang, C. Jain, and Aluru
2020].

• Hybrid correction methods are composed of two categories: (1) correction methods
that assemble the short reads by making a De Bruijn graph and align the long
reads to this assembly for correction (e.g. LoRDEC [Salmela and Rivals 2014],
ECTools [H. Lee et al. 2014], HG-CoLor [Morisse, Lecroq, and Lefebvre 2018]),
and (2) correction methods that directly align the short reads to the long reads
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(e.g. Hercules [Firtina et al. 2018], CoLoRMap [Haghshenas et al. 2016], proovread
[Hackl et al. 2014], LSC [Au et al. 2012]).

• The non-hybrid methods align the long reads against themselves in order to correct
them using the sequencing depth (e.g. LoRMA [Salmela, Walve, et al. 2017], FLAS
[Bao et al. 2019], CONSENT [Morisse, Marchet, et al. 2021] or Canu [Koren et
al. 2017] which is a non-hybrid assembly software containing a read correction
module).

However, these correction methods are very time-consuming which is a major issue in the
context of this thesis as we aim to do a quick identification of bacterial strains. However,
even without correcting the reads, some tools manage to realise bacterial identification
from long reads.

2.2.1 Software developed to handle short reads, compatible with long
reads

Some software originally designed to work with short reads can work with long reads.
For example the k-mer based methods implemented in Kraken 2 and StrainSeeker pre-
sented in section 2.1.2 give correct results even when used with long reads. For methods
based on alignment of reads with reference genomes, it is possible to adapt the ap-
proaches by simply changing the aligner used by an aligner specific to long reads such as
Minimap2 [H. Li 2018] or Graphmap [Sović et al. 2016]. Certain tools based on sequence
alignment work directly with long reads such as Centrifuge or Kaiju, both based on the
FM index. Centrifuge is the software used by the ONT’s EPI2ME platform, which is a
data analysis platform that allows, via the use of What’s In My Pot (WIMP), real-time
quantitative identification of species from metagenomic samples. However, the few ex-
periments we have done with WIMP have shown that it is often limited to a classification
at the species or genus level.
Finally some metagenomic classifiers such the MEGAN software have modified their
method to allow the use of long erroneous reads (e.g. MEGAN-LR [Huson, Albrecht,
et al. 2018]). MEGAN-LR uses an interval-union LCA algorithm which consists in cut-
ting the long reads into parts of a certain size and assigning an LCA to each part. The
assignment consists in using the most present taxon among the LCAs of each part of
the reads.

However, as for short read identification, only few of these software allow to go down
to the level of the strain. Among these software working with bacterial strains, we can
cite StrainSeeker and Centrifuge.
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2.2.2 Native long read identification software

There are still relatively few strain identification software packages developed specifi-
cally for long reads. The first of these is MetaMaps [A. T. Dilthey et al. 2019] a software
based on the alignment of long reads against reference genomes. In addition to simul-
taneously carrying out read assignment and quantification, it provides information on
read mapping positions and read quality. However, it is not based on an existing long
read alignment software but on a fast approximate alignment using MashMap [C. Jain,
A. Dilthey, et al. 2017]. In short, to speed up the alignment of reads, MashMap uses a
combination of a fast approximate read alignment algorithm using minimizers (Winnow-
ing algorithm) combined with a Jaccard index calculation using the MinHash technique
(see further section 3.2.1). In addition to this fast alignment a probabilistic mapping
quality model is used and incorporated into an EM approach to estimate the sample
composition and location of the mapped reads. However, MetaMaps is still a fairly new
software and the current version remains complicated to install and we were not able to
install it properly with the few installation attempts we tried.

Another software to be mentioned is the NanoMAP software [Hall, Speed, andWoodruff
2020], which is a very recent software allowing the characterisation at strain level of sam-
ples using long reads. NanoMAP is based on the simple assumption that rather than
focusing on how to remedy the problem of long reads error rate, it is sufficient to exploit
the structural information gained from the length of the reads. The goal is to make
the most of the mapping quality scores (MAPQ) to get down to the bacterial strain.
NanoMap algorithm works as follow: First, for a species, NanoMAP concatenates the
genomes of the strains. Then, the reads are aligned to these genomes and the MAPQ of
each read is calculated. This score is 0 if a read optimally aligns to more than one strain
genome, and reads with a single optimal alignment in a genome will have a high MAPQ
score. Concatenation of strain genomes into a single sequence allows only the most in-
formative reads to be used because reads from the core genome of a species will have a
MAPQ score near 0. Clustering of nearby genomes is performed using reads aligning to
multiple genomes. The clusters formed give a first idea of the bacteria present in the
sample. Then, within each cluster, the reads with a high MAPQ score (reads with a
good alignment on an unique genome) are used to identify the strain genomes actually
present in the sample. Finally, a calculation of the abundance of the strains is performed
by an EM algorithm.
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We are not aware of any software based on a k-mer-based method specific to long
reads.

Conclusion on strains identification using long reads

More generally, there is a lack of strain identification software working with long
reads. The functionalities of the ONT technology are of interest for rapid identification
of bacterial strains. Indeed, ONT technology could allow a real time identification of
strains which actually takes several weeks through sequencing platform. It would also
be possible to stop the sequencing quickly and wash the flowcell in order to reuse it
afterwards and even use the "Read Until" technology to artificially amplify the genome
of subdominant strains that are present in the original sample by preventing the read of
the dominant strains.

The recent increase of complete bacterial genomes in databases enable the identifica-
tion at the strain level. However, even if there are many bacterial identification softwares,
very few of them work at the strain level and many stop at the species level or higher.
The fact that they cannot go down to the strain level is partly explainable by the lack
of information that is contained in a short read. Long reads technologies offer more
information but is still not mature, so only a few identification software exist to work
with them.

This thesis proposes a new k-mer-based approach to identify, on a single laptop, bac-
terial strains in mixtures or isolates via the use of long reads from ONT sequencing.
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Preamble: In this chapter we will look at a way of assigning long nanopore
reads from a sample, such as bacterial isolates or mixtures of few strains, to their
potential bacterial strains.
In the first chapter (see 1.2.3), we saw that long reads, and more specifically
Oxford Nanopore long reads, still have a high error rate, even if it has decreased
rapidly as technology and basecallers improved. Our goal is to manage this high
sequencing error rate without correcting the reads since correction tends to discard
small variations in the sequences that are crucial for bacterial strain identification.
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3.1 Assignment of Nanopore reads to strains

In this section, we focus on the problem of assigning newly sequenced reads to the most
likely reference genomes from which they may originate. This problem can be reduced
to the estimation of a similarity measure between a read and a genome. This measure
will be mostly derived from the best alignment between the read and the genome. The
thesis started from the strong premise, similar to the NanoMAP assumption (see 2.2.2),
that most of the reads from the Oxford Nanopore technology are long enough to contain
the information to separate bacterial strains from each other, or at least separate small
groups of strains from each other. In addition, we chose to use a k-mer-based approach
to assign reads to strains as these methods are faster and take less space than those
based on sequence alignment.

3.1.1 Assignment using k-mers

Worst case analysis

To assign a read to a reference genome, we can use the k-mer counting lemma [Reinert
et al. 2015] as it is the case in ganon [Piro, Dadi, et al. 2020] for example.

Counting lemma: Let G be a reference sequence, R a read of size lr included in G,
e the maximum number of erroneous positions in R. Consider the multisets of k-mer
occurrences KG and KR then the cardinal of KG∩KR is at least hitR = |KR|−k× e,
where |KR| = lr − k + 1.

The lemma define the worst case scenario where hitR is minimum because errors are
equidistantly distributed along a read. For example, a read R of size lR = 10 contains
nkmersR = 8 kmers of size k = 3. If there are at most 2 errors (e = 2) in R, R and the
reference must share at least 8− 6 = 2 k-mers.
However, in practice this equation is not restrictive enough to be useful. Assume an error
rate of 5%, k-mers of size 31 and a read of size 1000 are reasonable parameters when
working with Nanopore reads. In this case hitR = 970− (31 ∗ 50) < 0 and is therefore of
no use. Most of the time the counting lemma does not bring any exploitable constraint.
In practice, in a certain number of software, references are filtered by requiring that at
least 70 to 90% of the read k-mers are present in the reference. This threshold works
well with sequences with few errors such as short reads. In our case, as we are working
with long reads containing many errors, this threshold has been set at 50% (see section
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2.1.2). It is therefore required that 50% of the read k-mers are found in the reference
(hitR = nkmersR

2 ).
By reversing the equation of the counting lemma, one deduces the maximum error rate
allowed to find at least half of the read k-mers in the reference k-mer set. The equation
to find the number of errors is:

e = nkmersR

2k (A)

For a read R of size lR = 2000 and a k-mer size k = 31 (default size in the Kraken
software), there are nkmersR = 1970 k-mers in R and we need to find at least half of
these k-mers (hitR = 985). The maximum number of errors allowed to find at least 985
k-mers of the reads in the reference would be e = 985

62 ≈ 15.9 which represent a ≈ 0.8%
maximum error rate, which would be too low for long reads.

Average analysis

For this reason, most people prefer to fix the threshold with an average analysis, using
a simple binomial model [Singh 2020] and an assumption of a uniformity of errors with
error rate p. Under this assumption, finding the number of common k-mers corresponds
to finding the number of non-erroneous k-mers, which is the total number of k-mers
multiplied by the probability of having no error in a k-mer of size k. If X is a random
variable denoting the number of errors, we get:

hitR = nkmersR × P (X = 0) (B)

According to the probabilities of the binomial distribution, for all x in [0, k] we have:

P (X = x) = Cx
k × px × (1− p)k−x (C)

For x = 0, the formula becomes P (X = 0) = (1− p)k and we fall back on a uniform
distribution.

If we take as example a read R of size lR = 2000 and a 5% error rate, the average
number of common k-mers of size 31 between the read and the reference will be about
402 k-mers (see equation B).

In a more general way, if we require that α% of k-mers are without error on average
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we have:
α× nkmersR = nkmersR × (1− p)k (D)

Then, we can deduce (if nkmersR 6= 0):

α = (1− p)k

p = 1− k
√
α

k = log(α)
log(1− p)

(E)

with p the error rate, α the percent of k-mers without error and k the k-mer size. It is
then possible to calculate one parameter (α, p or k) by fixing the two others.

Now, to have 50% of the k-mers in common between a read and a reference we would
need, on average, 2% error for a read of size 2000 and a k-mer size of 31 and about 4.5%
error with a k-mer size of 15 (see equations E).

An average error rate of 5% can be achieved with nanopore sequencing, for example
S. thermophilus reads used in experiments described in section 5.1 have the following
error rate (see table 3.1).

Table 3.1: Average percent error rate in the S. thermophilus strains sequences. The filters
retain only the sequences with a quality greater than 9 and a size greater than 2000 bp.
Reads have been basecalled using the version v4.4.1 of the Guppy ONT basecaller. Table
from [Siekaniec et al. 2021]

Errors Mismatchs Deletions Insertions Total
All sequences 1.50% 2.16% 1.40% 5.06%
With filters 1.44% 2.08% 1.37% 4.89%

However a certain proportion of reads will have an error rate over 5%.
Using the equation E we can get the maximum size of k-mers necessary to have on aver-
age half of occurrences without error, as a function of error rate. With a 15% error rate,
the size of k-mers needed to have on average half of the non-erroneous k-mers will be
k = 4. This is clearly too small for a recognition at strain level. Tretramer composition
is used in metagenomics to predict the genus or the species level [Sandberg et al. 2001]
using sequences with very few errors and remains inadequate for the identification of
bacterial strains. If we decrease the error rate to 5% the needed size of the k-mers is 13
which is actually more usable.
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We present in the top part of the table 3.2 an experiment on the distribution of
assignment using HowDeSBT, for various values of k. It has been computed on 4 000
reads sequenced from a S. thermophilus JIM8232 strain. The sequencing error rate is
estimated to 5%. Decreasing the size of the k-mers allows more reads to be assigned
but they will be assigned to more reference genomes, thus increasing the ambiguity of
the results. The challenge is then to find a compromise for the k-mer size, large enough
to assign a maximum number of reads in a specific way and small enough to be able to
assign the read to at least one reference genome.

Table 3.2: Effect of k-mer size reduction on the assignment of 4000 reads of S. ther-
mophilus JIM8232 on a database of 77 S. thermophilus strains + S. macedonicus ACA-
DC 198 + L. delbrueckii subsp. bulgaricus ATCC 11842 using HowDeSBT. The effect
of using spaced seeds of size 17, 15 and 13 with a weight of respectively 15, 13 and 11 is
also presented for comparison with k-mers of size 15 and 13. Decreasing the size of k-
mers allows to assign more reads but less specifically. The use of spaced seeds improves
the trade-off between the number of reads assigned and the specificity of assignment
compared to the use of k-mers of the same size. The assignment results presented in the
table are percentages of assigned/unassigned reads.

K-mer Unassigned Reads assigned to Reads assigned to Reads assigned to
size reads (%) a maximum of 5 strains (%) more than 5 strains (%) a single strain (%)
31 23.75 17.25 59 10.13
15 0.83 16.50 82.67 3.60
13 0 4.68 95.32 1.83
11 0 0 100 0

Spaced seed Unassigned Reads assigned to Reads assigned to Reads assigned to
(size/weight) reads (%) a maximum of 5 strains (%) more than 5 strains (%) a single strain (%)

33/31 12.53 12.95 74.52 6.58
17/15 2.30 8.58 89.12 4.10
15/13 0.05 5.10 94.85 2.15
13/11 0 0 100 0

Overall, the error rate of current sequencers hardly allows to find a good combination
of the parameters p, k and α. Moreover, an exact assignation is not always possible since
we do not necessarily have in the databases the sequence of the correct reference genome.
In this case, we want to find the closest known genome, which will induce an additional
error rate due to the differences between the sequenced strain and the reference one,
rather than linked to the sequencing technology.

One of the particularities of Nanopore reads is the high error rate in homopolymer
sequences which increases very rapidly with the homopolymer size [Delahaye and Nico-
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las 2021]. In order to be less sensitive to sequencing errors, we started this thesis by
compressing these homopolymer sequences to one letter to avoid dealing with this kind
of information. This technique has been used in the software LSC corrector [Au et al.
2012], which compresses the homopolymers in both short and long reads to improve the
alignment of one against the other. It is also possible to keep homopolymers of size less
then four where the error rate can still be considered acceptable [Delahaye and Nicolas
2021] and to reduce other homopolymers to a size of 4. Of course, a certain amount of
sequence information is lost after this compression. In fact, our preliminary experiments
showed that the loss was too high to discriminate the generic sequences of some close
strains of the same species. Therefore, this idea was later abandoned for this thesis.

3.1.2 Assignment using spaced seeds

Instead of decreasing the k-mers size to be less sensitive to sequencing errors, it is
possible to use an extended notion of k-mer explicitly including a tolerance with respect
to errors. This is the goal of spaced seeds (see figure 3.1). A spaced seed is a binary
pattern composed of 1 and 0 (sometimes noted # and −) representing respectively the
notion of match and joker (or don’t care) position. A further constraint is that a spaced
seed must start and end with a 1 character. The seed is used as a mask when comparing
two sequences. For example the seed 10011 represents one match followed by two don’t
care positions and then two matches. A spaced seed of size s, has a weight w ≤ s, which
is its number of 1 (matching position). The sequence of letters at matching positions
is called a q-gram (or spaced k-mer in some studies). For example, the comparison of
the sequences ATGC and ATTC using the spaced seed 1101 of size four and weight
three produces a match, with q-gram (trigram) ATC. The effect of using spaced seeds
(s = 13, 15, 17 and w = 11, 13, 15) on a S. thermophilus JIM8232 read assignment with
an error rate of about 5% is presented in the bottom part of the table 3.2. Compared to
a k-mer of the same size, using a spaced seed improves the trade-off between the number
of assigned reads and their specific assignment to one or a few reference genomes. For
example, using the spaced seed size 15 and weight 13 allows more reads to be assigned
than a 13-mer while missing fewer reads than a 15-mer.

The first use of spaced seeds was sequence comparison in seed-and-extend algorithms
such as PatternHunter [B. Ma, Tromp, and M. Li 2002]. A q-gram match corresponds
to a potential alignment position that will be subsequently confirmed or denied by the
extend part of the algorithm. The spaced seed provided the starting point of the search.
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Figure 3.1: Comparison of the behaviour of a k-mer of length 3 and the spaced seed 1101
of length 4 and weight 3 on a sequence of size 11 containing 2 errors.

This paper showed empirically that spaced seeds improved the sensitivity/specificity
tradeoff in homology search by alignment. It was subsequently analysed more formally
in other works such as [Kucherov, Noé, and Roytberg 2006].
Spaced seeds were also used with k-mer based approaches for approximated sequence
alignment [Burkhardt and Kärkkäinen 2003]. The use of spaced seeds has also been
shown to improve alignment-free methods. In 2014 [Leimeister et al. 2014] showed that
using q-grams instead of k-mers allowed to obtain a more accurate phylogenetic tree
reconstruction. Then [Morgenstern et al. 2015] proved that matching q-grams between
sequences provides an even better phylogenetic distance estimator. The same year, an
extended implementation of Kraken call Seed-Kraken [Břinda, Sykulski, and Kucherov
2015] has shown that spaced seeds allow a significant improvement in the accuracy of
read classification compared to traditional contiguous k-mers. This improvement in
accuracy was subsequently also demonstrated by CLARK-S [Ounit and Lonardi 2016],
a version of the metagenomic reads classifier CLARK [Ounit, Wanamaker, et al. 2015]
with spaced seeds. The use of spaced seeds is also present in the most recent version of
Kraken: Kranken 2 against which we compared our method (see section 5.1). A simple
example showing how the use of a spaced seed may provide better results than k-mers
is proposed in figure 3.1.

Some authors have introduced algorithms working on several seeds simultaneously
(multiple seeds). This provides an advantage either in seed-and-extend sequence align-
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ment or in alignment-free comparison methods [Noé and Martin 2014; Leimeister et al.
2014]. However, in the latter case, each k-mer of a reference genome will be represented
by all q-grams related to the use of the different spaced seeds. For example a set of
three different spaced seeds requires for each k-mer of the genome three q-grams to
save. There are two possibilities for sequence indexing: (1) each spaced seed leads to
the construction of a new index for the reference sequences which makes the use of the
index more complex because it is necessary to solve three separate queries and merge the
result afterwards, (2) all q-grams are inserted into a single index, which may for some
type of index such as those based on Bloom filters increase the false positive rate. The
latter option is the one used by the miBF data structure [Chu, Mohamadi, et al. 2020].
This structure replaces the different hash functions of the Bloom filter by using different
spaced seeds applied to the k-mers which are then hashed with a single hash function.
This technique allows to combine high sensitivity with low memory usage. In our case,
after preliminary experiments, we decided to work with a single spaced seed because the
use of several seeds requires to increase the size of the Bloom filters to have the same
false positive rate and increases the time of creation and query of the index.

Actually, the use of spaced seeds, as opposed to k-mers, has led to improve per-
formance in terms of sensitivity and specificity in many applications at the expense
of higher computational cost. To overcome this problem, fast approaches for spaced
seeds indexing have recently been developed [Girotto, Comin, and Pizzi 2018b; Girotto,
Comin, and Pizzi 2018a; Petrucci et al. 2020]. However, these approaches were not used
during the thesis because the creation time of the index was not the limiting point of
our method. However, it would be interesting to integrate one of them in our tool (see
section 4.2) in order to accelerate the index construction.

In the case of alignments, spaced seeds can be compared by their sensitivity [Herms
and Rahmann 2008], which represents their probability of matching on an alignment
generated by a specific probabilistic alignment model. During the thesis, we used spaced
seeds in the context of alignment-free sequence comparison. The similarity of two se-
quences is measured by the number of matching q-grams between them. We then defined
a genome as the set of all q-grams that compose it. It is then possible to index these
q-grams efficiently as with k-mers, in a Bloom filter. We indexed the reference genomes
in this way. By comparing the sets of q-grams of two sequences it is then possible to
estimate the similarity of the genomes. In doing so, as with k-mers, the positions of
q-grams in the genome is lost. The hit number is associated with a second estimator
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of the similarity, which is the coverage of the sequence. The coverage [Noé and Martin
2014] can be defined as the number of bases covered by the matching q-grams. Obviously
coverage and hit number depend on the error distribution but also on the shape of the
spaced seed used.

The optimal spaced seeds for alignment will not be the same as the optimal one for
alignment-free comparisons [Noé and Martin 2014]. Studies have then been carried out
on the search for the best spaced seeds pattern according to their use. In 2017, it led to
the creation of iedera [Noé 2017], a tool for selecting and designing spaced seeds. Recent
studies further improve the seed sensitivity like the rasbhari algorithm [L. Hahn et al.
2016] and the ALeS software [Mallik and Ilie 2021] developed to generate spaced seeds
specific to alignment or alignment-free comparison. Moreover, the VSTseed software [V.
Titarenko and S. Titarenko 2021] demonstrated the utility of using periodic spaced seeds
(seed with a periodic pattern) to accurately determine the position of short reads in a
reference. It is therefore possible to obtain very sensitive task-specific seed patterns.

In our case, spaced seeds were used with an alignment-free comparison method and
allows us to be less sensitive to the ONT sequencer error rate. We propose the following
procedure to mix Bloom filters with spaced seeds: (1) the studied strain genomes (mainly
S. thermophilus genomes) are split into k-mers. (2) A spaced seeds is applied on these
k-mers to obtain the q-grams of these genomes. (3) These q-grams are inserted into a
Bloom filter based data structure (see further section 4.1). The k-mers size we used is
15 with a weight of 13 and the seed pattern is 111111001111111.
This seed pattern was selected between all spaced seed pattern of size in a range from 9 to
21 using the iedera software for finding the best pattern (see figure 3.2). This selection
is based on identification results from 4000 reads originating from the Streptococcus
thermophilus JIM8232 strain using our method ORI, which will be presented in section
4.2.

3.1.3 Perspectives: the use of indel seeds

Globally, the concept of spaced seeds allows to be less sensitive to mismatch errors
between two sequences. Restrictions exist for this concept. For example, the local align-
ment software YASS [Noé and Kucherov 2005] implements spaced seeds called transition
constrained seeds using "wildcard positions" that accept only transition type mismatches
(A to G or T to C) and no transversions (A or G to T or C).

For insertion/deletion errors (indel) an extended type of spaced seeds can be used ;
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Figure 3.2: Identification results on 4000 reads of the Streptococcus thermophilus
JIM8232 strain using different seed lengths and weights. The seed patterns were cal-
culated using the iedera software and the best identification result is obtained using a
seed of size 15 and weight 13 (light blue).

the indel seeds. An indel seed is a sequence on alphabet {0, 1, X}, where 1 represents a
match, 0 represents a wildcard position (match or mismatch) and X represents a joker
position that can be any event: a match, a mismatch, an insertion in the reference or
an insertion in the query. As for spaced seeds, indel seeds must start and end with a 1
character. However, unlike for classic spaced seeds, the number of possible q-grams Nq

associated to a given indel seed is greater than one. Nq depends on the number of X
runs (Nrange) as well as their length (Lrange) in the indel seed (see figure 3.3). Formally:

Nq =
Nrange∏

i=1
(1 + Lrange[i]) (F)

The usefulness of using this type of seed in homology search by sequence alignment
was demonstrated by [Mak, Gelfand, and Benson 2006]. Works have also been done
to find the most sensitive indel seeds in an efficient way like in [K. Chen et al. 2009].
Subsequently, these kind of seeds has been used by GraphMap [Sović et al. 2016], a
sequence mapping algorithm that showed a gain in accuracy when using indel seeds
with nanopore sequences. This algorithm has been used especially for the alignment
of long reads. Indeed the use of indel seeds is particularly relevant in the case of long
reads from Nanopore sequencing because of their high insertion/deletion rate (see section
1.2.3).

We are not aware of any work actually using indel seeds in the context of alignment-
free sequence comparison. This is probably due to the rapid increase of the number of
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Figure 3.3: The number of q-grams to be considered as a function of the number of X
runs and their size in the indel seed.

q-grams with respect to the number of X runs in the seed. Indeed, the issue is similar
to the use of multiple seeds but with a supplementary multiplicative factor that severely
impact the indexing space and the query time. Because of this issues, indel seeds have
not been used in our work. However the creation of an index able to manage this kind
of seed would be very useful for further developments in the context of Nanopore data.

3.1.4 Non-assignment of reads

The fact that some reads cannot be assigned to a reference genome, is a desirable
behaviour. In case of contamination of a sample by a non-bacterial genome for example,
the correct behavior is not to assign reads from this genome to any other genome in the
reference genome database. Recently [Marcelino, Holmes, and Sorrell 2020] have pointed
out that the use of taxon-specific reference databases for metagenome classification can
pose the problem of false species identification. This misclassification can be due to
reads containing sequences that are conserved across all living organisms. This problem
is particularly true for software working with short reads containing little information
but can also be a problem with long reads when the contaminant is a species close to
one of the reference genomes used for identification. This problem directly concerns our
method and has been taken into account. It will be discussed in the future section 4.2.2
and in the analysis of results in section 5.3.
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3.2 Strain identification

In this section we will discuss about the reads assigned to one or more genomes and
their use in identifying the bacterial strains actually present in the sample.

3.2.1 Measuring the proximity between strains

It is clear that a read can be considered to be present in several genomes. In every
genome, there exists a core part that is common to many species. When working with
several strains of a same species, this common portion may even become predominant.

In order to better understand the global landscape of proximity between strains and
therefore the difficulties of the identification of some of them, we started by a comparative
study of genomes themselves. In general, genomes are compared either on the basis of
their gene content or by using their whole genome sequence.

In the case of comparison of strain genomes based on the study of gene content,
the set of genes present in a species is called its pangenome. It is composed of the
core genome comprising all the genes present in all the individuals of the species and
the variable genome containing the other genes. More precisely, the pangenome can be
separated into three classes (see figure 3.4): (1) the persistent genome containing genes
present in all (core genome) or a large part of the strains, (2) the shell genome containing
genes present at a medium frequency in the species and (3) the cloud genome containing
genes present at a low frequency in the species (such as genes specific to a single strain)
[Koonin and Wolf 2008; Collins and Higgs 2012; Gautreau et al. 2020].

In case of a comparison based on whole genome sequences, there are many ways to
estimate their proximity. The main one is to calculate the average nucleotide identity
(ANI) distance [Goris et al. n.d.] between the two sequences (see section 1.1.2). The ANI
can be defined as the mean nucleotide identity of orthologous shared gene pairs. It can
be calculated using an alignment of sequences (e.g. with BLAST) or without alignment.

Other measures exist to calculate the proximity of genomes. Among these measures,
there are those based on the k-mer composition of genomes allowing the calculation of
distances such as the Jaccard distance:

J(G1, G2) = |G1 ∪G2| − |G1 ∩G2|
|G1 ∪G2| (G)

where G1 is the set of k-mers (or q-grams) from the first genome and G2 is the set of k-
mers (or q-grams) from the second genome. This Jaccard distance can also be estimated
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Figure 3.4: Venn diagram representing the pangenome of 4 genomes. As there are few
genomes, the persistent genome can be considered equal to the core genome and the
cloud genome contains only the genes specific to one genome.

very efficiently using MinHash, a technique invented by Andrei Broder in 1997 [Broder
1997]. The MinHash technique works as follow (see figure 3.5): the k-mers of two
genomes are retrieved and each k-mer is passed through a hash function h to obtain
a hash value. The resulting hash sets, G1 and G2 containing |G1| and |G2| distinct
hashes are then used to approximate the Jaccard index (J(G1, G2)). It corresponds to
the intersection between G1 and G2 divided by their union and can be approximated by
considering a much smaller random sample of G1 and G2. This random sample is built
by recovering only the n smallest hash values for G1, G2 and G1∪G2 called respectively
S(G1), S(G2) and S(G1 ∪ G2). So, S(G1 ∪ G2) 6= S(G1) ∪ S(G2) and S(G1 ∩ G2)
corresponds to S(G1∪G2)∩S(G1)∩S(G2). As S(G1∪G2) is obtained from a random
sample of G1∪G2, the fraction of S(G1∪G2) shared by S(G1) and S(G2) can be used
to calculate an unbiased estimate of J(G1, G2). Finally, the Jaccard distance (Jdistance)
can be recalculated from the Jaccard index by doing Jdistance(G1, G2) = 1− J(G1, G2).
This technique is used by Mash [Ondov et al. 2016] and sourmash [Pierce et al. 2019] to
perform sequence similarity comparisons by estimating the Jaccard distance.
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Figure 3.5: Overview of the MinHash technique for estimating the Jaccard index
(J(G1, G2)). The two hash sets G1 and G2, contains |G1| and |G2| distinct hashes
(yellow circles G1 \ (G1 ∪ G2) and blue circles G2 \ (G1 ∪ G2)). Double green circles
represent the common hash value between G1 and G2 (G1 ∩ G2). The Jaccard index
estimation is done by recovering only the five smallest hash values for G1, G2 (circles
with crosses) and S(G1) ∪ S(G2) (circles with crosses and diamond). Redrawn from
[Ondov et al. 2016].

Proximity of Streptococcus thermophilus strains

We have studied the proximity between strains of S. thermophilus both at the gene
level and at the finer genomic content level.
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Gene level

At the gene level, we have used the MicroScope [Vallenet et al. 2020] platform (https:

//mage.genoscope.cns.fr ; access date May 2020, v3.14.0) to annotate the genome of
77 S. thermophilus strains and calculate their pangenome. MicroScope uses the AMI-
Gene software [Bocs et al. 2003] to predict protein-coding genes and the results of more
than 20 methods are then used to assign a molecular function to these genes [Vallenet
et al. 2020]. MicroScope calculates the pangenome, which is separated into three sets
of genes corresponding to the persistent genome, shell genome and cloud genome. The
pangenome is based on the MicroScope gene families (MICFAM) computed with the
SiLiX software [Miele, Penel, and Duret 2011], which uses a single linkage clustering
algorithm on homologous genes sharing an amino acid alignment coverage and identity
greater than 80%. We then manually standardised the gene names of the pangenome
families for all strains and created a Strains×Genes matrix (see figure 3.6).
Using the information from this matrix we produced a biclustering of strains and genes
using formal concept analysis (FCA) [Ignatov 2015] computed with Answer Set Pro-
gramming (ASP), a declarative programming language implementing constraint pro-
gramming [Gebser et al. 2012]. In FCA a concept can be defined by its intent and
its extent: the extent is the set of objects that belong to the concept (in our case
the strains) while the intent is the set of attributes shared by these objects (in our
case the genes of these strains). The idea is to search for maximal (S,G) biclus-
ters (concepts), where S is a subset of strains and G a subset of genes present in all
strains of S. A maximal bicluster is such that adding an element to one set cause the
deletion of some elements in the other set. For example in figure 3.6, the bicluster
({Strain1, Strain2, Strain3}, {Gene1, Gene3, Gene4}) is maximal because the addition
of Strain4 will cause Gene3 and Gene4 to be lost. Reciprocally, adding {Gene5} to the
bicluster need for instance to delete {Strain1, Strain2}. Among the maximal biclusters
is the association of the complete set of strains within the core genome genes (e.g. Gene1
in figure 3.6) and the association of one strain with its strain-specific genes (e.g. Gene2
in figure 3.6). These genes are directly provided by MicroScope after the computation
of the pangenome. Therefore, the maximal biclusters interesting to compute are those
containing a number of strains greater than 1 and less than n, with n the number of
strains studied. An example of these biclusters are represented on the right lattice of
figure 3.7. They correspond to the concepts that do not contain all the intents, with a
number of intents greater than 1 from which we remove the non-specific extents.

https://mage.genoscope.cns.fr
https://mage.genoscope.cns.fr
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Figure 3.6: Biclusters in a Strains ×Genes matrix and associated labeling of nodes in
a classification tree.

At the genomic content level, we have also generated a strain classification tree with
Microscope, which proposes a neighbour-joining algorithm with pairwise genomic dis-
tances obtained from the Mash software [Ondov et al. 2016] (see figure 3.13 at the end of
this chapter). We used the knowledge of maximal biclusters to label some of the nodes
and explain the proximity of S. thermophilus strains in terms of gene context. For this
purpose, a node is represented by the set of its child leaves (strains) and, among the
maximal biclusters, the genes (extent) corresponding to this set of strains (intent) are
associated to this node. Therefore the leaves of the tree contain the strain-specific genes
and the root of the tree contain the genes of the core genome. However, the lattice
structure of maximal biclusters and the tree structure of strain clusters are not neces-
sary compatible. Some nodes may contain no genes at all because, among the maximal
biclusters there is no gene set corresponding to the set of strains in that node. In figure
3.6, this is the case for node2 because any characterisation of it would also cover Strain3.
Reversely, there are maximal biclusters that cannot be represented by a node of the tree
because they follow a different topology. For example {Strain3, Strain4} is not present
in the tree despite the fact that it can be uniquely characterised by the presence of
Gene1 and Gene5. We chose to just display the compatible clusters of strains, which
correspond to clusters with a strong support since they can be fully characterized both
by their gene and their k-mer content. This is achieved through a dedicated interface,
the iTOL tool [Letunic and Bork 2019]. Interactive Tree Of Life (iTOL) is an online
software for displaying, annotating and managing phylogenetic or clustering trees. The
maximum biclusters corresponding to the nodes are displayed interactively via popups
associated with each node. The iTOL tree containing the 77 S. thermophilus strains is
available here https://itol.embl.de/tree/131254134671311597925585.
The complete list of concepts can be found here: https://raw.githubusercontent.

https://itol.embl.de/tree/131254134671311597925585
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
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txt and https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_

thermophilus/CoreAndSpeGenomeBicluster.txt.
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Figure 3.7: Concept lattice based on the example presented in figure 3.6. {Gi}i=1..5
represent the different genes and {Si}i=1..4 represent the different strains. In the reduced
form, each element appears just once in the lattice and one can retrieve concepts by
propagating these elements in the direction of inheritance.

Whole genome level

At the genomic fragment level, several metrics were used to estimate the similarity
between two genomes.
The first is the average nucleotide identity (ANI) in their shared coding regions via
the use of FastANI (ManyToMany mode). FastANI [C. Jain, Rodriguez-R, et al. 2018]
allows whole-genome alignment-free calculation of average nucleotide identity (ANI) and
avoids costly sequence alignments by using Mashmap [C. Jain, A. Dilthey, et al. 2017], a

https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/Maximal_bicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/CoreAndSpeGenomeBicluster.txt
https://raw.githubusercontent.com/gsiekaniec/GeneTree/master/Streptococcus_thermophilus/CoreAndSpeGenomeBicluster.txt
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fast local aligner based on MinHash (see figure 3.5), to efficiently calculate orthologous
mappings and alignment identity estimates.
In addition to the ANI distance calculation, two other genome-wide distances were used,
the Jaccard (J) and Hamming (H) distances. In our case we have estimated, distances
J and H on the set of q-grams of the genomes. The Jaccard distances on the set
of 77 S. thermophilus strains are shown as a heatmap of a Jaccard distance in figure
3.8. Two genomes, one from Streptococcus macedonicus (different species) and the other
from Lactobacillus delbrueckii subsp. bulgaricus (different family), were added as an
outgroup. The diagonal represents the Jaccard distance of a strain against itself, which
is a distance of 0 (very dark blue). We made three main observations on this heatmap.
(1) The outgroup containing a different species and family is easily distinguished from the
S. thermophilus strains with the Jaccard distance (red rows and columns on the edge of
the heatmap). (2) Large dark blue squares appearing around the diagonal show clusters
of strains that are close to each other. The white squares with a number represent
clusters of particularly close strains that will be grouped together and considered as a
single strain (see further section 3.2.2). (3) A group of strains composed of 6 CIRM-BIA
strains (white cross on the heatmap marked with a star) is separated from the other
strains, forming a new subgroup of strains isolated mostly from traditional Italian dairy
products.

So far, we have considered three distances, the Jaccard and ANI distances and the
Mash distance used in the MicroScope classification procedure. Are these different mea-
sures coherent and do they have the same resolution power ? To compare them, we have
first extracted from the tree (Newick format) the corresponding distance matrix, using
the dendropy python package [Sukumaran and Holder 2010]. The observed Pearson
correlation between this matrix and the ANI/Jaccard distance matrices are very good
(r = 0.967, p− value = 1e− 04 and r = 0.987, p− value = 1e− 04 respectively for the
ANI and Jaccard distances). Overall, the three measures are close enough that any of
them can be used without affecting the results of bacterial strain classification.

Thereafter, as the genomes are indexed in Bloom filters, we decided to test a distance
that is tailored to this data structure for a more direct and thus more efficient computa-
tion of its value. We chose to measure the Hamming distance between the filters. The
Hamming distance H is calculated by dividing the number of different positions between
the Bloom filters of two genomes by the total number of positions (see equation H).
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Figure 3.8: Heatmap of the Jaccard distance for 77 S. thermophilus strains + S. mace-
donicus ACA-DC 198 + L. delbrueckii subsp. bulgaricus ATCC 11842. The clusters of
table 3.3 are represented by white squares numbered from 1 to 12.

H(BF1, BF2) = Number of positions where BF1 and BF2 are different
Total number of positions (H)
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where BF1 and BF2 correspond to two Bloom filters of the same size representing two
genomes of bacterial strains.

As for the Mash distance, we evaluated the correspondence between the Hamming
distance and the Jaccard distance for strain comparison. The correlation between the two
distances is fine (r = 0.99, p−value = 1e−04). It is also possible by quadratic regression
to determine the equation H = 3.81e−03(J2 +J) between the Hamming distance H and
the Jaccard distance J (see figure 3.9). For small values (J < 0.15), a linear relationship
H = 4.26e−03J also fits very well. However, these equations are only correct for the BFs
of size 5.108 bits that we used. Indeed, as the ratio is on the total number of positions,
the Hamming distance depends on the size of the BFs. Theoretically, if the number of
different positions remains the same, the larger the filter, the smaller the value of the
Hamming distance. However, as we work with BFs, it is not that simple because the
number of different positions is dependent on the false positive rate of the filter, which
is itself dependent on the size of the filter. Generally speaking, the distances calculated
from BFs (H or J) depend on the false positive rate and therefore on the size of the filters
if the genomes compared do not change. The smaller the filter the more the distance
obtained will be biased by the false positive rate.

H = 3.81e-03(J2+J)

Figure 3.9: Correlation between Jaccard and Hamming distances with a quadratic regres-
sion curve.
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3.2.2 Strain identification as an optimization problem

From a set of reference bacterial strains and the reads of a sample, the goal of identifica-
tion is to find a subset of strains that best explain the reads. To do this, reads are assigned
to their potential strains then identification is realised by using the Reads×Strains ma-
trix obtained from the previous assignment.

Preprocessing the reads

As we work with long nanopore reads that can have a high error rate, we first select
high quality reads by keeping only those:

• with a length greater than 2000 bp and an average Phred score greater than 9.
The Phred score Q is a basecaling quality score that simply reflects the probability
of error P in the sequence: Q = −10log10(P ).

• in which at least 50% of the q-grams are found in one at least on strain.

This first preprocessing of the reads allows to keep the reads of better quality and to
avoid assigning them to genomes that are too distant (e.g. other species/genus).
The probability of error can be calculated from a quality score given by:

P = 10
−Q
10 (I)

A Phred score of 9 is therefore associated with an error rate of ∼ 12.6%. However it
has been proven that this score is in practice different from the real error rate [Delahaye
and Nicolas 2021]. If we use the equation E = 0.042Q2 − 2.68Q + 43.92 provided by
[Delahaye and Nicolas 2021] we rather have a filter of reads with an error rate higher
than ∼ 23.2%.

In order to exclude uninformative reads and thus reduce the complexity of the prob-
lem by reducing the space of possible solutions, a second quick pre-processing step was
applied to filter out reads and strains that provided little information. Thus, reads found
in too many strains were not taken into account during the identification (by default, if a
read can be affiliated to 18 or more strains, they are considered ubiquitous and not useful
for identification). Furthermore, only the n best strains (12 by default) are considered
for each remaining read. The best strains are recovered according to the proportion of
their q-grams in the read. They are then ranked for each read according to this q-gram
proportion.
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The identification problem

We then present the identification problem as an optimization problem seeking to
account for the data by retaining the minimum number of necessary strains. It is thus
a question of exploiting a hypothesis of parsimony.
From a theoretical point of view, this identification issue can be seen as a set cover
optimisation problem whose aim is to find a minimal subset of strains to explain the
reads completely. This is one of Karp’s NP-complete problems and people usually limit
themselves to an approximate solution via a statistical approach (e.g. [Yang et al. 2019]).
But it is possible to search for an exact solution of moderate size (e.g. a dozen of strains
in the sample) using modern combinatorial solvers. During the thesis, the Answer Set
Programming (ASP) declarative problem solving approach was used to resolve this issue.
During the identification of the strains, a pre-processing is done to select the candidates
strains and to discard the marginal strains. A strain is considered as marginal if:

• less than 1% of reads are assigned to it.

• its weight (sum of its ranks) is less than 2% of the total weight (sum of the ranks
of all the strains).

This preprocessing allows to ignore strains that are not present enough in the assignment
results or often assigned but not as well as another strain.
Then the strains present in the sample are selected according to the following constraints:

• each read must be assigned to a selected strain.

• a selected strain must have at least one read specific to it if we consider only the
selected strains.

The identification is done by (1) minimizing the number of selected strains and (2)
maximizing the number of assigned reads and reads specific to each selected strain.

3.2.3 Clustering strain genomes before identification

The proximity of the S. thermophilus genomes makes taxonomic assignment of the
strains difficult, and the use of erroneous reads makes it even more difficult. Indeed,
comparison of the 16S-23S genomic regions of S. thermophilus strains showed a maximum
of 11 divergence mutations over a length of about 1420 bases for ST106 vs. CIRM-
BIA967 strains and most have no difference. Since these strains have very similar core
genomes, it is difficult if not impossible to differentiate them, even using MLST [Junjua
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et al. 2016]. If we look at the heatmap in figure 3.8 we can see that some strains are
extremely close, even if taking into account the whole genome sequences. One may
wonder whether these genomes should be considered as two different strains or not.
We propose to delimit a practical threshold from the point of view of sequence-based
identification. In this way, the biologist knows in advance the group of strains that
would require other methods for their discrimination. Of course, these groups should
be as small as possible. An additional advantage of defining a boundary is to identify
isolates that potentially have an identical phenotype. We call these very similar strains
sibling strains. The identification software we have developed (see section 4.2) allows to
consider them as a single entity to improve the accuracy of the detection.

Figure 3.10: Histogram representing the distribution of Hamming distance between pairs
of S. thermophilus strains. The distances observed on the right side of the histogram
are due to the presence of a strain of S. macedonicus and a strain of L. delbruecki subsp.
bulgaricus in the index. The vertical dotted red line represents the threshold for grouping
the sibling strains

The sibling strains are defined with respect to a threshold θ for the maximum dis-
tance between their genomic sequences. As the choice of the type of distance used does
not seem crucial (all distances are consistent with each other), we used the Hamming
distance. When the Hamming distance threshold is set to 0 (θ = 0), this means that all
strains are considered as distinct isolates. By default, the threshold was set to θ = 2e−4
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(0.005 for Jaccard) and used to group the sibling strains present in the 77 strains of S.
thermophilus with a Bloom filter of size 5.108. This threshold was determined empirically
by testing different thresholds and taking the minimum threshold that gave the lowest
identification error rate. Subsequently in the identification software we have developed
(see section 4.2), an histogram representation of the Hamming distance distribution be-
tween strains is provided to the user. This representation allows to determine a coherent
threshold to group the sibling strains. It is shown in figure 3.10 for the S. thermophilus
genomes.
Once this threshold is set, the groups of sibling strains are formed in the following way:

1. An undirected graph that we call the sibling strains graph is created with the
strains as vertices and edges connecting the strains whose Hamming distance is
lower than θ. The sibling strains graph created for the S. thermophilus genomes
with θ = 2e−4 is presented in figure 3.11.

2. Finally, the Bloom filters of the genomes belonging to the same connected com-
ponent of the graph are merged, thus recovering the pangenome of these related
strains in a single filter. The different clusters obtained with the S. thermophilus
strains are shown in table 3.3 and visible in the heatmap in figure 3.8 and in
the figure 3.11. Almost all are dense cliques or pseudocliques, a strong indication
that the chosen threshold provides a consistent view of equivalence classes across
strains.

Table 3.3: Clusters of S. thermophilus sibling strains. Cluster numbers also appear in
the heatmap figure 3.8.

Cluster id Strains
1 05-34 ; ASCC_1275 ; DGCC_7710 ; KLDS_SM ; MN-BM-A02 ; ND07 ; C106
2 CIRM1048 ; CIRM1049
3 CIRM1051 ; MN-BM-A01 ; MN-ZLW-002
4 CIRM1055 ; APC151 ; KLDS3.1012 ; KU30 ; ND03
5 CIRM1116 ; CIRM1122 ; CIRM16 ; CIRM29 ; CNRZ1066 ; CS8 ; EPS ; S9
6 CIRM18 ; CIRM32
7 CIRM2101 ; CIRM23 ; CIRM36 ; CIRM65 ; CIRM67 ; LMG_18311
8 CIRM961 ; CIRM967
9 IDCC2201 ; BIO1488
10 LMD-9 ; LMG_S-29186 ; SMQ-301
11 ATCC_19258 ; NCTC12958
12 MTCC_5460 ; MTCC_5461
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Figure 3.11: sibling strains graph representing 77 S. thermophilus strains (plus one
strain of S. macedonicus and one strain of L. delbruecki subsp. bulgaricus) created with
θ = 2e−4. Vertices represents strains and edges connect the strains whose Hamming
distance is lower θ. The clusters created from this graph and present in the table 3.3 are
represented by red numbers from 1 to 12

Genome inclusion, a special case in genome proximity

When merging closely related strains, we were quickly confronted with strains so close
to each other that the question "are some strains included in others?" has arisen.
The calculation of the inclusion between two sequences is different from the calculation
of the distance between these sequences. Since it does not necessarily mean a small
distance between the two sequences.
The problem arising from this genome inclusion is that with our method, a genome
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totally included in another one could not be identified because it contains no specific
q-grams. To make sure that no S. thermophilus genome were totally included in another
one, we compared the initial Bloom filters by computing the percentage of position 1
of one filter found in the other filter. If the value is equal to 100% then the q-grams of
the first genome are entirely present in the q-grams set of the other genome. There are
two possibilities for this to happen, either the genome is entirely included in the other
genome, or it varies only by the number of occurrences of each q-gram (which is not
taken into account in the Bloom filters). In both cases, a fine representation of genomes
would be necessary such as variation graphs for example (see section 2.1.3).
In our case, some of the S. thermophilus genomes are more than 99% included in an-
other one, i.e. the S. thermophilus strain CIRM67 is 99.9% included in S. thermophilus
CIRM65 but no strain was totally included (100%) in another one. However, this means
that, for example, to identify CIRM67 from CIRM65 we need to use the 0.1% differences
between the two Bloom filters which makes the identification quite difficult.

Perspective to improve the sibling strains clustering

The clusters could be less coherent than for S. thermophilus strains. This is the case if
the connected component is made of several overlapping cliques sharing very few edges.
For example, case 5 in figure 3.12 has two cliques of size 6 and 7 overlapping on a single
node. Since the two groups of sibling strains have only one common strain, it makes more
sense to separate them than to group them together. For this purpose the minimum cut
(min-cut) can be used. This min-cut problem consists in cutting a minimal number of
edges to split the connected component.
To determine in which case to merge the overlapping cliques and in which case to separate
them it is possible to set a threshold taking into account the level of overlap of the two
cliques. For this purpose different measures can be used, one based on the number
of nodes and another on the number of edges of the sub-graph composed of the two
overlapping cliques. In any case, if more than two cliques overlap, cliques are merged
(or separated) in an iterative way, starting with the largest cliques.

The first measure would be a simple ratio R of the number of nodes in the sub-graph
divided by the number of nodes in the two separate cliques:

R = n

ni + nj
(J)
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with ni the number of nodes of the first clique, nj the number of nodes of the second
clique and n the number of nodes in the union of the nodes of the two cliques Ni ∪Nj .
If R is greater than a threshold Θ, the two cliques are merged. Otherwise the cliques
are separated using the minimum cut.

The second measure would be the clustering coefficient which allows to estimate the
completeness of a graph. Examples of clustering coefficient calculation for different
graphs are shown in figure K. In our case we considered the sub-graph composed of the
two overlapping cliques. It is calculated by dividing the proportion of edges existing in
this sub-graph by the number of edges of a complete graph containing the same number
of vertex. As the number of edges of a complete graph with N vertices is N×N−1

2 , the
clustering coefficient is computed as follows (see figure 3.12 and equation K):

Clco(Ni, Nj) =
2× |ENi ∪ ENj |

|Ni ∪Nj | × (|Ni ∪Nj | − 1) (K)

with Ni the nodes of the first clique, Nj the nodes of the second clique and ENi ∪ ENj

the union of the edges of both cliques.
If this clustering coefficient is lower than a threshold β, the two cliques are merged. In
the opposite case, the cliques are separated using the minimum cut.
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Clustering coefficient 
(Clco) :

31

2

N = 5
E = 10
Clco = 1

Clco =  
N(N-1)  

2E  

N = 6
E = 9
Clco = 0.6

N = 6
E = 11
Clco ≈ 0.73

4

N = 6
E = 13
Clco ≈ 0.87

5

N = 12
E = 36
Clco ≈ 0.55 

E = number of edges
N = number of nodes

Figure 3.12: Computation of the aggregated clustering coefficient (clco) for five graphs
representing a clique overlap. Graph 1 being complete, the clco is equal to 1. The
equation use to compute the clustering coefficient is presented in equation K.
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Figure 3.13: Representation of the iTOL tree containing the 77 S. thermophilus strains
available at https: // itol. embl. de/ tree/ 131254134671311597925585 . The list of
genes present in Streptococcus thermophilus strains JIM8232 and CIRM65 are shown for
information only, these lists appear interactively as a popup on the iTOL tree. The
clusters of the table 3.3 are represented by black boxes from 1 to 12.

https://itol.embl.de/tree/131254134671311597925585




Chapter 4

ORI, a new software for strain
identification from long reads

Contents
4.1 The difficulty of indexing many bacterial genomes . . . . . . 108

4.1.1 Data compression using our version of HowDeSBT . . . . . . . 110

4.1.2 Memory and time required to query an HowDeSBT index . . . 112

4.2 Oxford nanopore Read Identification (ORI) . . . . . . . . . . 115

4.2.1 Creation of the index . . . . . . . . . . . . . . . . . . . . . . . 115

4.2.2 Index query and read assignment . . . . . . . . . . . . . . . . . 119

4.2.3 Identification of the bacterial strains . . . . . . . . . . . . . . . 120

4.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3.1 Using the tetranucleotide vector of a sequence . . . . . . . . . . 121

4.3.2 Classification of reads into a family/genus . . . . . . . . . . . . 122

Preamble: This chapter presents the creation of a new tool to identify bacterial
strains from long Oxford nanopore reads. The development of this tool is based
on the spaced seeds, the strain identification method and the clustering of sibling
strains presented in chapter 3. This chapter emphasizes the difficulty of indexing
many bacterial genomes and the choices we made to move to a large genome bank
while using a low memory footprint. Our approach is based on an extension of
the HowDeSBT index.

107



108 CHAPTER 4. OXFORD NANOPORE READS IDENTIFICATION

4.1 The difficulty of indexing many bacterial genomes

In recent years, the number of genomes of strains in the databases became very large,
the technology improvements speeding up the number of sequenced samples every year
(see section 1.1.2 and figure 1.3). As an example there are currently (in September 2021)
more than 25 000 genomes of Escherichia coli in the National Center for Biotechnology
Information (NCBI) database.
This makes it possible to improve the precision of bacterial strain identification. How-
ever, it complicates the development of identification software that must scale up to
a large data bank size. This has been the case for metagenomic data, but it is also
becoming the case for simpler samples made of one or a few strains. In our work, we
added the constraint of being able to run the program on a standard laptop. For exam-
ple, to retrieve which strain is present in a sample of E. coli, it is necessary to store at
least the 2063 known complete genomes, which requires a minimum of about 10 Gb for
the sequences alone. If we consider the complete genomes of the order Lactobacillales
(25469 genomes), the raw data represent more than 55 Gb. These data would not fit
in a standard laptop with 8 Gb of RAM (Random Access Memory). Even a computer
with 32 Gb of RAM would not be able to process all the Lactobacillales without specific
data processing.

We start thus this thesis by looking for an index that would highly compress the data
and use a reasonable amount of memory during the query. We reviewed in chapter 2,
several methods to index the genomes in order to use as little memory as possible while
allowing to efficiently query the data. We chose to start from the k-mer data structure
based on Bloom filters implemented in HowDeSBT (see section 2.1.2) since it was the
structure that used the least amount of space to store the data at the time of our review.

A version of HowDeSBT specific to strain identification

The general functioning of HowDeSBT has already been presented in section 2.1.2. We
have adapted the method to the context of bacterial strains identification from long
erroneous reads. The modifications made are the following:

• To be less sensitive to ONT read errors, a spaced seed is used to extract q-grams
from the bacterial strain genomes to be indexed instead of k-mers. The indexing
of q-grams is shown in 1.
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Algorithm 1: Indexing q-grams from a genome
Data: genome G containing n k-mers of size k
Result: Bloom filter containing q-grams
for kmer in G do

// Canonical representation of k-mers

rev = reverse(kmer) // compute the complement of the k-mer

canonical = min(mask(kmer), mask(rev))
h = hash(canonical)
insertInBF(h)

end

The complexity the q-gram indexing is globally the same as k-mer indexing, O(n)
with n the number of k-mer occurrences in the genome G. There is an extra cost
in the number of operations to compute q-grams, for the masking using the spaced
seed pattern. It increases the number of operations from n(k + 4) to n(k + 6), a
minor constant factor.
In the same way, when querying the index, the q-grams are extracted from the
reads instead of k-mers. Actually, during this query, the complete file containing
all the reads is loaded in memory which allows to make the request faster by
querying all the reads at the same time, going down the index tree. The spaced
seed used during our experiment is the one presented at the end of the section
3.1.2.

• We added the computation of the Hamming distance matrix between strains using
the Bloom filters of the index. These step requires a lot of time and memory.
Indeed, all pairs of BF have to be compared. The computation of the Hamming
distance between two filters requires to traverse the filter obtained through a logical
operation (XOR) on them. The global time complexity is therefore O(n2m) with
n the number of BFs and m the size of a filter. Regarding the memory, in order
not to lose too much time loading and unloading the filters in RAM, they are all
loaded at once, which implies a memory complexity in O(nm).
In order to reduce this memory usage it is possible to implement hybrid approaches
where only part of the filters are loaded in memory before unloading them to load
another one, shifting the memory/time trade-off to even longer processing.
In order to scale up to the whole set of complete E. coli genomes (see section 5.3),
we chose another approach. We assumed that the hash function used to fill the
BFs was uniform which, means that the values are uniformly distributed over a
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BF. It is then possible to estimate the Hamming distance between two BFs by
using only a small part of them.
In order to check the quality of this estimation, we compared first the distances
on S. thermophilus data (on which the complete computation of the distances was
performed). The ordering of values was almost perfect when using 50% of the BFs.
We then made the test on a larger dataset containing 100 E. coli genomes (on
which the complete computation of distances was also available). It was possible
to decrease the portion of the filters used to less than 1% without modifying the
clusters of sibling strains formed by our method. More cautious reductions are
already interesting and sufficient in most cases: using 50% of the filters reduces
processing time and memory by two.
Overall, there is relatively few changes in the distances between 50 or 25% filter
use and full use (100%; see the distributions of distances in figure 4.1). We have
measured the differences between Hamming distance distributions with the Jensen-
Shannon distance JS, a normalized symetric score base on entropy (Kullback-
Leibler divergence). The JS distance ranges from 0 (identical) to 1 (maximally
different). The results are the following: JS(50||100) ≈ 0.00119, JS(25||100) ≈
0.0015 and JS(1||100) ≈ 0.0039. As can be seen, the discrepancy remains very low
and only starts become noticeable after a significant compression to 1%.
The sibling strains determination is done as explained in section 3.2.3 together
with the merging step of the strain BFs.

4.1.1 Data compression using our version of HowDeSBT

We present in table 4.1 some statistics on the extended HowDeSBT indexes we have
built on various genomes. The different datasets are presented in order of increasing
size. Index 1 is the set of complete genomes of Streptococcus thermophilus, to which are
added the complete genomes of Lactobacillus delbruecki for index 2. In index 3 the com-
plete genomes of Bifidobacterium are added then those of Leuconostoc, Lactococcus and
Enterococcus in index 4. The last index contains all complete genomes from Escherichia
coli.

As expected, our data structure offers a high compression rate, higher than 85% in
all cases and higher than 90% in 3 cases. In their article, [Solomon and Kingsford 2018]
obtained similar compression rate on their RNA-seq dataset. The lower compression level
in experiments 3 and 4 can be explained by the fact that these experiments contain more
distant genomes than others. Indeed, the data compression in HowDeSBT depends on
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(a) 100% (b) 50%

(c) 25% (d) 1%

Figure 4.1: Distribution of Hamming distances between 100 E. coli strains obtained using
different percentage (from 100% to 1%) of their Bloom filters. The differences remain
small and noticeable only for the smallest 1% and high distance values. The Jensen-
Shannon distances (using a base-2 logarithm) between the distribution using full Bloom
filters and the other distributions are as follows: JS(100||100) = 0, JS(50||100) ≈
0.0012, JS(25||100) ≈ 0.0015 and JS(1||100) ≈ 0.0039. The red lines correspond to the
threshold set to group the sibling strains together.

the tree structure determined by agglomerative hierarchical clustering using Hamming
distances between BFs (see section 2.1.2). Thus, the compression increasing with the
proportion of common k-mers (or q-grams in our case) in the close indexed genomes.
These common q-grams will be stored only once in nodes of the BF tree. On the contrary,
a common q-gram between two distant strains will be stored twice. As a result, close
genomes will be better compressed than more distant genomes. This index is therefore
well adapted to the representation of many strains of the same species.
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Table 4.1: Indexation of different complete genome datasets using HowDeSBT. The
sequence size column represents the total size of the genomic sequences to be indexed.
The BF size represents the size of a Bloom filters before compression and the index size
is the size of the final index after compression. This BF size has been set taking into
account the largest genome to be indexed and a requested false positive rate (less than
1% in this case). This size has however little repercussion on the final size of the index
because the BFs are compressed to use as little space as possible. Note that the creation
time is not a crucial parameter since it can be reached once for all applications made
from the index.

ID Indexed Genome Sequence BF Index Compression Max memory Time
genomes number size size size rate usage (hh:mm:ss)

1 Streptococcus thermophilus 95 171 Mb 0.21 Gb 1.3 Mb 99.24% 213 Mb 00:03:30
2 1 + Lactobacillus delbruecki 332 586 Mb 0.23 Gb 51 Mb 91.3% 260 Mb 00:12:50
3 2 + Bifidobacterium 1 026 2.1 Gb 0.33 Gb 299 Mb 85.8% 334 Mb 01:03:59

4
3 + Leuconostoc

1 298 2.7 Gb 0.33 Gb 404 Mb 85% 335 Mb 01:16:52Lactococcus
Enterococcus

5 Escherichia coli 2 063 9.8 Gb 0.76 Gb 539 Mb 94.5% 941 Mb 04:12:24

4.1.2 Memory and time required to query an HowDeSBT index

Once the index created, it is important to evaluate the complexity of queries on this
data structure. We have queried the different indexes created previously with three
different sets of 1 000 reads from a species contained in the index (S. thermophilus for
indexes 1,2,3 and 4 and E. coli for index 5). The average time and memory consumption
for these queries are shown in table 4.2.

Table 4.2: Query of our index on the complete genome datasets presented in table 4.1.
We used as queries three sets of 1 000 reads for each dataset. The results are the average
time and memory used by the query. The three sets of 1 000 reads correspond to S.
thermophilus JIM8232 (experiments 1,2,3 and 4) or E. coli (experiment 5).

ID Indexed Index Max memory Query time
genomes size usage (hh:mm:ss)

1 Streptococcus thermophilus 1.3 Mb 141 Mb 00:08:18
2 1 + Lactobacillus delbruecki 51 Mb 146 Mb 00:09:28
3 2 + Bifidobacterium 299 Mb 163 Mb 00:12:55

4
3 + Leuconostoc

404 Mb 168 Mb 00:17:49Lactococcus
Enterococcus

5 Escherichia coli 539 Mb 171 Mb 00:51:52
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Memory usage

The maximum amount of memory used by our indexing process is slightly impacted
by the index size. In fact, the memory used during the request depends on the size of
the starting BFs and their compression rate because the index only loads one filter at a
time into memory. Moreover, during the query, the largest part of the memory used is
linked to the number of reads.

Index size

299 Mb

51 Mb

1.3 Mb

Figure 4.2: Maximum memory usage for querying the first three indexes from table 4.1
of respectively 1.3, 51 and 299 Mb with an increasing number of reads from Streptococ-
cus thermophilus JIM8232. The maximum memory usage seems clearly to be a linear
function of the reads number and independent of the index size.

Figure 4.2 shows that the maximum memory consumption during queries is a linear
function of the number of reads (f(x) ≈ 0.0001x+ 0.03 in Gb). For queries that contain
until 45 000 reads (corresponding to about 6 Gb of maximum memory usage), the
maximum memory usage is not a problem even on a single laptop. In most practical
contexts, it will be sufficient to query the content of a bacterial sample. As we will see
in section 5.1 it is recommended in practice to use about 4 000 reads with our method
because the noise brought by the high error rate of these reads makes the identification
less accurate with too many reads. For the detection of rare events requiring the use of
more reads (see section 5.1), the memory growth remains reasonable. However, as for
other identification software, our identification method is not adapted to mixtures with
a species present in very low abundance. Indeed, false positive identifications become
very frequent in such a case due to the large core genome shared by many strains.
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Index size

299 Mb

51 Mb

1.3 Mb

Figure 4.3: Time usage for querying the first three HowDeSBT structures from table 4.1
of respectively 1.3, 51 and 299 Mb with an increasing number of reads from Streptococcus
thermophilus JIM8232. Time seems to be linear to the number of reads, as for maximum
memory usage, but depends this time on the size of the index. The size of the reads
might also slightly affect query time.

Time

The query time is impacted both by the size of the index (see table 4.2 and figure 4.3)
and by the number of reads in the query. As we can see in figure 4.3, the computation
time is a linear function of the number of reads in the request for a fixed size of index.
A larger index increases the computation time because the larger the index the more
likely the BF tree will be complex. In fact, an index containing the same 100 genomes
would take up little space because all the q-grams will be common and present once in
the root of the tree. In general, as the size of the index increases, the number of levels
of tree increases and the query needs to seek at an increasing number of BF node.
To be complete, the computation time depends also on the requested reads themselves.
As an example, a query with q-grams not present in the index will be processed very
quickly because all the reads will be rejected at the root of the index tree.
By keeping the number of reads low, the processing time is acceptable. It takes for
example less than one hour of computation to request up to 4 000 reads (our recommen-
dation) with the index of 299 Mb containing more than 1 000 genomes (see figure 4.3).
This query time remains however a limiting point of the method if one needs a fast
identification of bacterial strains. We will see later in section 4.3 some ideas to speed up
this query processing.
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4.2 ORI: a new software for strain identification from long
reads

We have integrated our ideas within a new bacterial strains identification software
called Oxford nanopore Read Identification (ORI). Table 4.3 summarizes the main com-
mands and parameters of ORI.

Table 4.3: Main ORI’s commands and parameters.

Command name Command description Parameter Parameter description
Index creation

ORI length
Computes the size of the

–false_positive_rate/-fpr
Maximum false positive percent

genomes and determines wanted for the BF
the size of the BFs to use containing the largest genome

howdesbt makebfQ Creates the BFs for each genome –qgram File containing the spaced seed pattern
–bits Size of the BFs

ORI threshold Creates the histogram representing –threshold/-t Threshold used to merge sibling strainsthe distribution of distances between genomes

howdesbt distance Computes Hamming distance between genomes –threshold
and merge of BFs of sibling strains –merge Merge the sibling strains cliques

Query part

ORI suppr_bad_reads Removes poor quality and small reads –qualityMin Minimum quality threshold to save a read
–lengthMin Minimum length threshold to save a read

howdesbt queryQ Queries the index with the reads –threshold Fraction of the reads that must be present
in a strain to be assigned to it

Identification part

ORI identification
Identifies the strains present in

–nbchoices/-n
Number of best strains to consider for each

the sample by using reads + if a read is affiliated
the read assignments to 1.5n strains it is not used for identification

4.2.1 Creation of the index

The main component of ORI is an index of reference genomes stored in a compact
HowDeSBT structure. The method can be divided into three steps: (1) the reference
genome index creation, (2) the query part of the index and (3) the strain identifica-
tion part (see figure 4.4). The ORI software is available on github at https://github.
com/gsiekaniec/ORI and can be installed through a conda package [Anaconda Software
Distribution 2020] using the following command:

conda install -c gsiekaniec -c conda-forge ori

As explained previously in section 4.1.2, the ORI index is created with an HowDeSBT
version modified to use a spaced seed to extract q-grams from k-mers of reference
genomes. In details, when indexing the q-gram of a genome, only one version of the
two strands of the chromosome is saved. As the DNA molecule is made up of two com-
plementary strands we used the canonical form of the q-grams (see previous section 2.1.2

https://github.com/gsiekaniec/ORI
https://github.com/gsiekaniec/ORI
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Figure 4.4: ORI’s pipeline divided into three parts: 1) index creation. 2) the query part
and 3) the identification part. In the workflow the user can trigger a merging step where
s/he has to fix the value of a threshold parameter.

for further details on the canonical form of a sequence). To do that, the spaced seed
is applied to the k-mer and its reverse complement before choosing the canonical q-gram.
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Genomes selection

ORI can index complete genomes as well as draft genomes. However, the latter are
not always of very good quality and can in turn reduce the quality of identification
results. Indeed, genomes in the form of contigs are genomes whose assembly is not fin-
ished. These genomes may still be cut into many sequences, have a total size (number
of base pairs) far from the real expected size, and contain chimeric contigs (sequences
from two different locations of the genome merged into a contiguous one). Genomes in
scaffold form are more elaborate. They contain less sequences and a total size closer
to the expected genome size. However, these genomes will often contain a large range
of N (indeterminate nucleotide). In our experiments the genomes used are complete
genomes to which scaffolded and contiged genomes are sometimes added. In addition to
the genomes, it is possible to recover the plasmid sequences present in the bacteria. As
we worked on the identification of bacterial strains we decided not to take into account
these plasmids. Indeed a plasmid can be transmitted from one bacterium to another
and it seems quite hazardous to base a bacterial strain identification on the presence or
absence of a plasmid. However, it is possible to make an ORI index specific to plasmids
and to look for plasmids separately from the chromosome genomes. The creation of
this index can be of particular interest in identifying specific functions such as antibiotic
resistance (see section 1.1.2 for more details on plasmids).
The genomes were downloaded using a python script based on asynchronous program-
ming. It is almost mandatory to efficiently download a large quantity of files such as all
the Lactobacillales genomes for example, but it requires proper error handling to avoid
stopping all downloads if one of them fails. We illustrate in figure 4.5 the advantages of
asynchronous vs synchronous downloads.

On the determination of the Bloom filter size

The reference genomes are represented by their set of q-grams, using a spaced seed
(section 3.1.2). These q-grams are hashed and then inserted into a Bloom filter of fixed
size (5.108 bits for the experiments with S. thermophilus in section 5.1), one filter per
reference genome. To fix the optimal size of the Bloom filters, ORI computes the size of
the reference genomes and allows the user to fix the value of the desired false positive
rate. By default, it is set to 1%. Then the BFs size is calculated via the formula A,
applied on the total number of q-grams of the largest genome:

Pfalse_positive ≈ (1− e
−lm

n )m (A)
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Figure 4.5: Example of behaviour of synchronous vs asynchronous download strategies.
In this example, the time for launching the downloads and processing the downloaded
files is considered to be insignificant. In asynchronous programming, the download time
is dependent on the download time of the largest file and no longer on all the files.

where l is the number of inserted q-grams, n is the length of the BFs and m is the
number of hash functions. In our case, m = 1. So the equation B to find n is

n ≈ −l
ln(1− Pfalse_positive) (B)

Considering that each q-gram of the genome is distinct from the other one leads to
overestimate the size of the BFs. This is however a minor issue since a BF that is less
dense will be better compressed in the final index. Indeed, the basis of the compression
algorithm (RRR) implemented in HowDeSBT is to encode the ranges of 0s in the most
efficient possible way.
In the case where it is crucial to improve this BFs size estimation, we advise to use as a
preprocessing step an algorithm called ntCard [Mohamadi, Khan, and Birol 2017], which
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allows to compute among other things the number of distinct k-mers of the genomes. It
is then possible to no longer overestimate the size of the BFs. Note however that ntCard
is based on k-mers and ORI works with q-grams which biases a bit the results. Moreover
the estimation needs more processing time since it does not consider that all q-grams
occurrences are different.

Merging the strains

Once the BF of each genome is created, the software proposes two possibilities, either
the genomes of the sibling strains are grouped together before the construction of the
index, or the genomes are considered separately. Merging is recommended to improve
the identification accuracy. It consists in merging the very close strains into a single
pangenome. The Hamming distance is calculated between all the BFs, which makes it
possible to obtain a distance matrix between genomes. From this matrix, ORI creates a
histogram that represents the distribution of distances between genomes. This histogram
gives an idea of the genome proximity in a graphical way and helps to determine a
threshold θ to group the strains considered as too close (θ = 2e−4 for the experiments
with S. thermophilus of section 5.1). Once a threshold is set, the strains whose Hamming
distance is lower than the threshold are grouped as explained in section 3.2.3 and their
BFs are merged. The result of the identification process depends in part on the choice of
this threshold, which must allow to group a limited number of strains with very similar
genomes. The creation of the index tree structure is then performed in the same way as
without merging (see section 2.1.2 for the index structure).

4.2.2 Index query and read assignment

The second step of ORI (query part in figure 4.4) takes as input the sequenced reads
of a sample and assigns these reads to bacterial strains present in the index. It starts by
filtering the reads, using their length and their quality to keep only the reads containing
the most information with the least amount of errors. Then, a manual selection may
occur. Following our preliminary experiments (see section 5.1 for details), the best
strategy seems to keep only a reduced number of reads randomly chosen among those
passing the filter. This reduces the computation time and improves the identification
results: as we have already pointed out before (see section 4.1.2), too many reads brings
too much noise related to sequencing errors which decreases the accuracy of our method
(see section 5.1 for more details). Then the q-grams are extracted from each read and
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the index is queried with the read q-gram set. A minimum number of q-grams from
the read (half of them, see –threshold parameter in table 4.3) must be found in a strain
for the read to be retained. This threshold allows an efficient filtering of reads that are
relevant to the species of interest. It takes advantage of the length of the reads and allows
contaminants to be removed, which is more difficult with short reads [Marcelino, Holmes,
and Sorrell 2020]. For example, we have highlighted by experiments presented in section
5.3 that reads from Streptococcus macedonicus would not be found in an index containing
genomes of Streptococcus thermophilus. The result of a query is a list, for each read, of
their assigned strains, weighted by their percentage of common q-grams. This list is then
summarised in a read× strain matrix that contains for each pair {read, genome} their
percentage of common q-grams (see affiliation matrix in figure 4.4). It is this matrix
that we use afterwards to identify the strains really present in the sample.

4.2.3 Identification of the bacterial strains

The final step (identification part in the figure 4.4) is the identification process itself,
which takes the read× strain affiliation matrix as input and searches for a minimal set
of strains that best explains the set of reads in the sample. This identification step of
strains based on the reads assignment is achieved by optimization, as explained in the
section 3.2.2.

4.3 Perspectives: Learning identification rules at a higher
taxonomic level

ORI gives good identification results on isolates or mixture made of small number
of strains. However, its current weakness is increase of response time when the index
becomes very large. It is therefore harder to identify mixtures that are too diverse
in terms of species, genus, family or order. However, an index containing all the lactic
bacteria could be of interest in the context of an analysis of a dairy products for example.
To compute efficiently this order-level indexing, the principle is to create several ORI
indexes at the genus/family level for sparse genera or families or at the species level. We
then need a fast technique to quickly assign the reads to the genus/family to which they
pertain in order to query only the appropriate genus indexes with the corresponding
reads.
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The first idea is to use another identification software that stops at the species level
such as Kraken 2 and run strain identifications from the cluster of reads of each identified
species. We used this strategy to study Escherichia coli strains from a metagenomic
sample of pig gut microbiota (see section 5.3). It worked well but is of course dependent
on the accuracy of the software chosen. To avoid this, the idea is to stay higher in the
taxonomic tree in order to obtain clearer, more robust delineations between bacterial
groups.

We tested this idea on an ORI index (the order index) starting from the Lactobacillales
order and stopping at the level of the 71 genera of this order. In addition, an index going
down to the strain is also created for each of the genera (the genus indexes) except for
the genera containing only one known genome. Querying the genus indexes can be done
in a parallel, allowing to save time.
Two tests were performed to create the order index. An index containing the union of
the strains q-grams of each genus and an index containing their intersection. In both
cases we faced a problem coming from the fact that some genus contain a lot of different
genomes. This is for example the case of the Lactobacillus genus whose taxonomy was
modified in 2020 (see section 1.3.1), which was not yet taken into account in the NCBI
taxonomy that we used for this test. As the genomes of Lactobacillus were very diverse,
the number of remaining q-grams was too small to allow a correct identification when
making the intersection of q-gram sets present in each strain of the genus. In the case of
the union of all these q-gram sets, the number of different q-grams was on the contrary
too important. All requested reads were assigned to Lactobacillus because the q-grams
of these reads were almost always found in this genus although each q-gram did not
come from the same Lactobacillus strain.
In general, it is important to remember that the notion of bacterial species is still vague.
Classification errors can be made and the union and intersection of genomic content are
very sensitive to these errors.

Subsequently we came up with other ideas presented below. This work is still in
preliminary but presents interesting research axes to improve the ORI software.

4.3.1 Using the tetranucleotide vector of a sequence

To identify sequences at the taxonomic level of genus or family it is not necessary to
be as precise as for species or strains and a global statistics could be sufficient. The use
of tetranucleotide composition has be used in metagenomics studies [Brisson et al. 2012]
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and could be considered as a simple means to achieve identification.
A tetranucleotide is a 4-mer, i.e. a 4-letter word in the alphabet {A, T,G,C}. There
are 44 = 256 possible tetranucleotides. However, as for q-grams, only the canonical
form (can(S)) of the tetranucleotides need to be considered since it is impossible to
determine the stain that is sequenced. There are 136 possible canonical tetranucleotides
noted Tetra[1 : 136] (with 16 palindromes).

In the end, the tetranucleotide composition comp(S) of a sequence S of size n is a
vector of size 136 obtained by the formula:

compt(S)[i] = 1
n− 3

n−3∑
j=1

(can(S[j : j + 3]) == Tetra[i]) (C)

It is known that the tetranucleotide composition of a genome is consistent with 16S
ribosomal RNA sequence analysis [Teeling et al. 2004] and allows to find species-specific
information in genomic fragments of 10 kb and sometimes even fragments of 1 kb [Abe
et al. 2003]. In [Sandberg et al. 2001], authors showed that by using tetranucleotides
there is 85% probability to correctly classify genomic sequences of 400 bases length in
a species. It would be interesting to extend this type of work to ambiguous recognition
with several candidates (species/genus) because it is possible to query more than one
index with the same sequence in parallel.

4.3.2 Classification of reads into a family/genus

If we consider a set of genera G = {Gi}i=1..m, each genus consists of a variable number
of strains sequences Sij . The tetranucleotide composition of the reads that we want to
classify into one of the genera must be as close as possible to that of the chosen genus.
So, if Gi = {Sij}, we want to learn a classifier of reads into genera C(comp(R)) that,
given the set of comp(Sij) sequences in each genus Gi and a learning set of reads rsi

whose classification is known, takes as input the tetranucleotide composition of a read
comp(R) and produces as output the genus that maximises the number of well-classed
reads in the training set.

To better understand the complexity of the problem, tests were conducted using an
average vector of the composition vectors on the set of sequences from a same genus of
the Lactobacillales order. We calculated the Euclidean distance between these vectors
and the vector of the considered reads. Figure 4.6 shows that the vectors of the reads
of a given genus have a dispersion that can be greater than that of the genera, which
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makes the method inapplicable in practice. It is therefore necessary to keep a certain
variability at the level of the members of a genus.

Figure 4.6: Multi Dimensional Scaling showing the mean tetranucleotides vectors rep-
resenting bacterial genera. The red dots represent the projection of 100 vectors corre-
sponding to reads from a strain of genus 1 301 (coordinates near the origin).

Some directions for further research are listed:

• For training data :

– select the most informative tetranucleotides, for instance by principal compo-
nent analysis (PCA).

– work with the full set of genus/family vectors rather than an average vector.

– split the complete genomes into fragments of size 4 000, then add errors to
them according to the nanopore error profiles and consider all the resulting
vectors of tetranucleotide composition.

• For learning methods:
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– use of deep learning with noisy fragment data

– learning decision forests or discrimination rules on vectors of complete or
fragmented genomic sequences.
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Preamble: This chapter presents three experiments to identify bacterial strains
from long ONT reads via the use of ORI. The first experiment is the one presented
in the paper [Siekaniec et al. 2021] and corresponds to the identification of Strep-
tococcus thermophilus strains with ORI, Kraken 2 and StrainSeeker. The second
experiment corresponds to the identification with ORI of strains from different
dairy products. Finally the third experiment corresponds to the identification of
Escherichia coli strains from pig intestinal microbiota as well as other small tests
on Streptococcus pyogenes strains with ORI.

5.1 Experiments on S. thermophilus strains

Our first bacterial strain identification experiments were to identify strains of our
model species S. thermophilus. These experiments were performed to:

1. test if ORI was able to perform a fine taxonomic assignment with a species con-
taining close related strains, despite the high error rate of ONT reads.

2. compare our ORI’s results with results from other bacterial identification software,
Kraken 2 and StrainSeeker (see section 2.1.2).

For this purpose, 46 genomes of S. thermophilus from public databases and 31 strains
from the CIRM-BIA collection were used. In addition to S. thermophilus, the strains
Streptococcus macedonicus PA and Lactobacillus delbruecki subsp. bulgaricus ATCC
11842 were also used as controls (see the heatmap in figure 3.8 in section 3.2.1). These
two strains represent a different bacterial species and family.
All the S.thermophilus strains used in this experiment are presented in appendix table
S1 and S2.

5.1.1 Bacterial strains sequencing and read filtering

In order to get nanopore sequences of the 31 strains of S. thermophilus from CIRM-
BIA as well as S. macedonicus PA and L. delbrueckii subsp. bulgaricus ATCC 11842,
these strains were sequenced at INRAE from Rennes in the UMR STLO by Emeline
Roux who took care of the wet lab part associated with this thesis.
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Briefly, S. thermophilus and S. macedonicus strains were pre-cultured anaerobically
and then grown on LM17 medium [Terzaghi and Sandine 1975] while incubated at 42°C.
L. delbrueckii was grown on MRS medium [De MAN, Rogosa, and Sharpe 1960] under
the same conditions.
One of the important steps in DNA sequencing with nanopore technology is the size
of the DNA molecules extracted from the bacteria. The goal is to extract the DNA
molecules of the bacteria by fragmenting them as little as possible. For this experiment
on S. thermophilus strains a long fragment extraction kit was used (Genomic-tip 100/G
from Qiagen). Once the DNA molecules extracted, the preparation of the library was
done following the protocol "Rapid Barcoding Sequencing (SQK-RBK004)" of ONT and
starting with 400 ng genomic DNA per strain and the 12 barcodes in order to sequence
12 strains at each sequencing.

The sequencing part was performed with an R9 flowcell (R9.4.1, FLO-MIND106D) and
run for 48 h. The amount of data generated is about 7 to 9 Gbp per sequencing, meaning
approximately 583 Mbp per strain, representing theoretically a sequencing depth of more
than 300X for each S. thermophilus strain whose genome is on average 1.83 Mb. In
reality, since concentrated DNA is not very homogeneous, it is complicated to get the
same amount of DNA for each sample. The 12 barcodes are therefore not all equally
covered. The ONT MinKNOW software (version 19.05.0) was used to monitor the
sequencing and generated fast5 files containing the raw signal from the sequencer. These
fast5 files were then basecalled (see section 1.2.3) with Guppy (version 4.4.1, default
setting) in high-accuracy mode in order to obtain the corresponding nanopore reads.

In addition to testing ORI on real data, the Nanopore reads were also used in con-
junction with Illumina reads to assemble the complete genome of S. thermophilus strains
from the CIRM-BIA collection (see section 1.3.2).

The reads obtained contained an average error rate of about 5% with 3% inser-
tions/deletions (see table 3.1 in section 3.1.1). In order to improve the quality of these
reads a filter was applied to keep only those with an average quality score of at least 9
and a size of at least 2000 (see section 3.2.2).

5.1.2 Indexes used for the identification

In order to perform the identification experiments, two ORI indexes were created as
explained in section 4.2.1 (without and with sibling strains merging). Both indexes
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contain the 77 S. thermophilus strains mentioned above (46 from databases + 31 from
CIRM-BIA) as well as the two strains Streptococcus macedonicus PA and Lactobacillus
delbruecki subsp. bulgaricus ATCC 11842 serving as controls. Plasmids were excluded
from the indexes because they are considered as a part of the mobilome (set of mobile
genetic elements in an organism) and not strain specific. The q-grams of the genomes are
inserted into Bloom filters of size 5×108 bits using the 111111001111111 spaced seed (see
section 3.1.2). The size of the filters used in this experiment is greatly overestimated.
If we take the average size of a S.thermophilus genome of 1.8 Mbp and consider that all
its q-grams of size 15 are different, entering them in an HowDeSBT Bloom filter (1 hash
function) of size 5× 108 will give a false positive rate of about 0.37% which is very low.
The difference between the two indexes is that in the second index the sibling strains
are merged into one filter using a threshold θ = 2e−4 as explained in section 4.2.1.

As said before, we compared ORI with Kraken 2 (version 2.0.9-beta) and StrainSeeker
(version 1.5). These two softwares have common methodological bases with ORI that are
the use of k-mers inserted in an index in order to be efficient during the identification. To
compare these softwares with ORI, we used the same set of indexed genomes. Further-
more, as StrainSeeker requires a guide tree in addition to the genomes, we used for this
purpose the clustering tree generated with MicroScope. This tree contains the 77 strains
of S. thermophilus (see section 3.2.1), to which the two genomes of S. macedonicus and
L. delbrueckii subsp. bulgaricus were added. For Kraken 2 and StrainSeeker, the size of
the k-mers used was chosen among the recommended defaults values of the softwares,
i.e. a size of 36 with a minimizer of 32 for the Kraken 2 index and a size of 16 for the
StrainSeeker index. The final index sizes are 23.4 Mo for the classic ORI index and 22.7
Mo for the ORI index with the sibling strains merged, which are close to the Kraken 2
index of 18.1 Mo and smaller than the StrainSeeker index of 2.1 Gb. The fact that the
ORI index is slightly larger than the Kraken 2 index can be easily explained. Indeed,
the size of the ORI index depends largely on the proximity of the genomes stored in it
and a little bit on the size of the filters used (largely overestimated in this experiment).
As an example, if we index 99 complete genomes of S. thermophilus from the databases
(September 2021) with filters of size 2.1× 108, the final size of the index is only 1.3 Mo
(see table 4.1 in section 4.1.1). The index size is smaller with 99 strains than with the
79 strains because there are only S. thermophilus strains among the 99 strains and the
main factor of growth is the proximity of the indexed strains, a desirable property if
interested by strain level (see section 4.1.1).



5.1. EXPERIMENTS ON S. THERMOPHILUS STRAINS 129

Querying indexes

For the ORI indexes the identification of strains in each experiment was performed
as presented in section 4.2. Briefly, the filtered reads are assigned to the strains by
querying the indexes with a minimum q-gram occurrence threshold of 0.5 (see section
4.2.2). Then an exact optimization step allows the selection of a minimum number of
strains explaining the totality of the reads as presented in section 4.2.3.
For Kraken 2 and StrainSeeker the default parameters were used for the bacterial iden-
tification.

5.1.3 Experimental design

Parameters

In order to properly test our method and compare it to Kraken 2 and StrainSeeker,
180 strain identification experiments were performed.

These experiments used the reads of S. thermophilus previously sequenced (see section
5.1.1) in order to create mixtures of real S. thermophilus nanopore reads whose the strains
composition and the proportion of reads for each strain are known. The size distribution
of the sets of reads have a mean of 8 842 bp, a median of 6 436 bp, a standard deviation
of 7 861 bp and ranges from 2 000 bp to 189 000 bp.
Thereafter, each identification result presented is an average of the results on a set of
parameters fixed beforehand. The different parameters used in the experiments are the
following:

• the number of strains: 4 or 6 strains.

• the number of reads: 1 000, 4 000 or 16 000 reads.

• the proximity of the strains: distant, moderately close, or close strains (see table
5.1).

• the distribution of the abundance of the strains: uniform distribution or distribu-
tion with dominant and subdominant strains.

Using these parameters, there are a total of 36 different possibilities to parameterize
the experiments. For each possibility, 5 replicates were performed by randomly recover-
ing reads from the sequenced strains.
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In order not to bias the results for experiments with an increasing number of reads (sec-
ond parameter), the 16 000 reads are first randomly selected in the filtered reads from
the corresponding strains, then 4 000 reads are randomly selected from this first 16 000
reads and finally the last 1 000 reads are randomly selected from the 4 000 reads, all by
keeping the proportion of each strain.
For the strain proximity experiments (third parameter), those labeled "close" are exper-
iments in which each strain has at least one other close strain. A strain is considered
to be close if the Hamming distance between the two strains is lower than the distance
threshold set for grouping sibling strains. However, there may be distant strains in these
experiments. The average Hamming distances of the reads of the "close", "moderately
close" and "distant" experiments are presented in table 5.1.

Table 5.1: Hamming distance between S. thermophilus strains for strain proximity ex-
periments (identification of strains more or less close). The Hamming distances are
multiplied by 104.

Distance ×104 close moderately close distant
Average 7.16 7.72 11.94
Mean std 5.21 2.23 3.81

Average Min/Max 0.0/11.6 2.7/10.3 6.4/16.4

For experiments with different strain abundances (fourth parameter), half of the
strains in the sample were arbitrarily considered to represent the subdominant strains.
Thus, the subdominant strains are:

• the two strains with the least number of reads for experiments containing four
strains. Their associated number of reads represents 12.5% of the total number of
reads of the experiment. The two other strains correspond respectively to 50 and
25% of the reads

• the three strains with the least number of reads for the experiments containing six
strains. The number of reads of these three strains represents respectively 6.25,
3.12 and 3.12% of the total number of reads of the experiment. The tree other
strains correspond respectively to 50, 25 and 12.5% of the reads.

The exact composition in strains, associated with their number of reads of the experi-
ments is shown in table 5.2.

During the presentation of the results the experiments are separated into two parts,
first the 90 experiments with a uniform number of reads per strain and then the 90
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Table 5.2: S. thermophilus strains composition of the 180 strains identification experi-
ments and number of reads per strains.

Strains proximity Close Moderately close Distant
Strains number 4 6 4 6 4 6

Experiment 1

CIRM65 CIRM65 JIM8232 CIRM2101 CIRM1047 CIRM1121
CIRM23 CIRM36 CIRM1358 CIRM1047 CIRM368 CIRM1055
CIRM1049 CIRM23 CIRM1047 CIRM65 CIRM336 CIRM1047
CIRM1048 CIRM67 CIRM1051 CIRM1049 CIRM956 CIRM1116

CIRM32 CIRM772 CIRM772
CIRM18 CIRM1035 CIRM336

Experiment 2

CIRM67 CIRM18 CIRM1050 CIRM32 CIRM1050 CIRM30
CIRM36 CIRM32 CIRM65 CIRM1055 CIRM2101 CIRM961
CIRM29 CIRM23 CIRM1035 CIRM67 CIRM30 JIM8232
CIRM1122 CIRM67 CIRM1116 CIRM1125 CIRM1051 CIRM368

CIRM2101 CIRM1048 CIRM1125
CIRM65 CIRM30 CIRM772

Experiment 3

CIRM1048 CIRM1116 CIRM30 CIRM19 CIRM1125 CIRM1050
CIRM1049 CIRM1122 CIRM1055 CIRM2101 CIRM1121 CIRM1055
CIRM1122 CIRM961 CIRM1051 CIRM1050 CIRM772 CIRM772
CIRM29 CIRM967 CIRM67 CIRM772 CIRM18 CIRM32

CIRM67 CIRM1116 CIRM1121
CIRM2101 CIRM23 CIRM1116

Experiment 4

CIRM2101 CIRM1116 CIRM1055 CIRM30 CIRM1125 CIRM1121
CIRM36 CIRM29 CIRM36 CIRM32 CIRM998 CIRM19
CIRM967 CIRM65 CIRM1046 CIRM1358 CIRM30 CIRM1046
CIRM961 CIRM2101 JIM8232 CIRM65 CIRM961 CIRM961

CIRM23 CIRM1116 CIRM1050
CIRM67 CIRM2101 CIRM29

Experiment 5

CIRM1116 CIRM36 CIRM18 CIRM368 CIRM1046 CIRM336
CIRM29 CIRM2101 CIRM36 CIRM961 CIRM961 CIRM1049
CIRM961 CIRM67 CIRM772 CIRM967 JIM8232 JIM8232
CIRM967 CIRM65 CIRM32 CIRM336 CIRM18 CIRM32

CIRM961 CIRM998 CIRM772
CIRM967 CIRM956 CIRM998

Distribution Uniform Dominant and subdominant
4 strains 1000 reads 4000 reads 16000 reads 1000 reads 4000 reads 16000 reads

1

250 1000 4000

500 2000 8000
2 250 1000 4000
3 125 500 20004

6 strains 1000 reads 4000 reads 16000 reads 1000 reads 4000 reads 16000 reads
1

167 667 2667

500 2000 8000
2 250 1000 4000
3 125 500 2000
4 62 250 1000
5 166 666 2666 32 125 5006 31

experiments containing low abundance strains.

Validation of results

To validate the identification results of the three programs we decided to use the sum
of the Hamming distances between the strains predicted by the programs and the closest
real strain present in the sample. This measure has the advantage of providing more
accurate distance information than a simple false positive calculation (strain present or
absent). The results are either 0 in the case of perfect identification, or a positive number
otherwise. In this way, even if a software identifies a strain not present in the sample,
if it is close to the expected strain, the distance obtained will remain low. However,
this distance sum measure poses a problem since unidentified strains are not taken into
account in this measure.
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To overcome this problem, the Matthews correlation coefficient (MCC) was also calcu-
lated to measure the precision/sensitivity trade-off of the identification. This MCC is
calculated as follows:

MCC = TP × TN − FP × FN√
(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)

(A)

with TP the number of true positives (correctly identified strain), FP the number of false
positives (falsely identified strain), TN the number of true negatives (strain not identified
because not present) and FN the number of false negatives (strain not identified while
present). As a correlation coefficient the MCC ranges from 1 for a perfect identification
to −1 for a complete disagreement between observation and reality and 0 indicates no
relationship. Finally, these two measures are balanced by what we call an ambiguity
ratio, which is the ratio between the number of predicted strains and the number of
actual strains.
In its results, StrainSeeker does not always identify a single isolate but is able to propose
groups of strains. In this case, the MCC and the ambiguity ratio were calculated by
considering each strain as TP for the correct strains or FP for the others.

5.1.4 Identification results on S. thermophilus strains

First we have tested the identification of S. thermophilus isolates (only one strain in the
sample). Then we have tested more complex mixtures (see table 5.2 in section 5.1.3).
We conclude this section by presenting results on the same data, using the ORI index
in which the sibling strains are merged.

Identification of isolated strains

The first experiment was to identify a single strain that was quite distant from the
other (see figure 3.8 and 3.13) known strains of S.thermophilus. 4 000 long ONT reads
were randomly selected from all sequenced reads for S. thermophilus JIM 8232 (approxi-
mately ∼ 200 000 reads). All three software programs tested were able to classify almost
all reads. The results were as follow:

• For Kraken 2, 50.10% of reads were identified as S. thermophilus JIM 8232, 26.56%
of reads were identified as S. thermophilus species (stop at the species level) and
the rest of reads were misidentified.

• For ORI, 99.7% of reads were classified as S. thermophilus JIM 8232, with the
remainder being unclassified.
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• Although StrainSeeker was developed specifically for Illumina reads, it classifies
all reads (100%) in the sample as S. thermophilus JIM 8232. This experiment
therefore proves that it is possible to use it with ONT reads, which had not been
tested before to our knowledge.

The second test concerned the S. thermophilus CIRM-BIA67 strain, which we will call
CIRM67 hereafter. This strain is much more difficult to identify than JIM 8232 because
of its proximity to other strains and in particular CIRM-BIA65 (see figure 3.8 and 3.13).
Indeed, these strains belong to a cluster of sibling strains identified by our method (see
table 3.3). The differences between these strains are mainly due to a contraction in
CIRM67 of two tandem repeats of a 13.5 kb fraction of the genome. The identification
results for an increasing number of reads are presented in table 5.3.

Table 5.3: Identification of reads from S. thermophilus CIRM67 from various numbers
of reads.

Software 100 reads 1000 reads 10 000 reads 20 000 reads
Kraken 2 CIRM67 2% CIRM67 1.70% CIRM67 1.31% CIRM67 1.23%

StrainSeeker

One group of many

CIRM67 100%
CIRM67 13.13% CIRM67 2.2%

indistinguishable strains 100% + 4 groups (other strains) + CIRM65 1.86%
(CIRM67 and 66 other strains) + 22 other strains

+ 2 groups
ORI CIRM67 100% CIRM67 100% CIRM65 100% CIRM65 100%

The results are as follows:

• Kraken 2 classifies most reads as S. thermophilus species but less than 2% to the
CIRM67 strain.

• StrainSeeker recognized the species level with a large group of S. thermophilus
strains that cannot be distinguished with 100 reads. Its results are very good with
1,000 reads where it finds 100% CIRM67. Then with more reads, the identification
becomes worse. This behavior will also be observed then discussed in the next
experiments (see sections 5.1.4 and 5.1.4). In general, StrainSeeker is very sensitive
to the amount of reads used for identification.

• The ORI identification is almost perfect in every case, 100% of CIRM67 up to 1
000 reads and 100% of its sibling strain CIRM65 with more reads.

From a general point of view, the error level of the long nanopore reads introduces
limitations in the identification of closely related strains for all three programs. However,
with ORI, this problem can be corrected by merging the sibling strains (see results in
section 5.1.4).
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Identification of strains mixture

The results presented in this section follow the experimental design described in section
5.1.3.
The figure 5.1 shows the identification results obtained by the three softwares with the
90 experiments containing a uniform number of reads per strain. The diagrams show
boxplots for the sum of the Hamming distances between predicted and actual strains.
These boxplots represent how close the identification results are to the expected results.
The MCC and ambiguity ratio values are also given below the boxplots. The MCC,
which measures the adequacy of the binary prediction (presence/absence of strains),
shows the balance between specificity and sensitivity. The ambiguity coefficient is used
because Kraken 2 and StrainSeeker propose ambiguous answers with more strains than
actually exist in the sample. This overflow of strains tends to artificially increase the
MCC, while ORI tries to minimize the number of predicted strains.

Four different representations of the same results based on the computation of the
Hamming distances, the MCC and the ambiguity ratio are proposed in figure 5.1. The
first representation show the global identification results of all 90 experiments (see in
figure 5.1a). The results were then detailed by separating them with three parameters:

• the number of reads, which allows to observe the effect of data quantity on the
results.

• the number of strains, which allows to observe the effect of heterogeneity in strains
on the results.

• the proximity of the strains, which allows to observe the resolution power of the
software.

Overall, the identification results are very good for ORI (figure 5.1a), both in terms
of mean and standard deviation, showing the robustness of our method.
StrainSeeker also performs well and has the best MCC but is penalized by producing
multiple solutions and with a larger variations than ORI.
Kraken 2 is less suitable for strain recognition.

Figure 5.1b shows the effect of increasing the number of strains on the results. The
results are very similar for both 4 and 6 strains. The difference between 4 and 6 strains
may not be large enough for an effect to be observed. It would have been interesting
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Figure 5.1: Identification results on a balanced mix of S. thermophilus strains. The
Hamming distance between observed and expected strains, on the y axis, have been
multiplied by 10 000 (blue: ORI, orange: StrainSeeker and green: Kraken 2). Stars
represent mean values. Matthews correlation coefficient (MCC) values are given on the
first line just above the x axis at the bottom of the diagrams. The second line represents
the ambiguity ratio (number of strains identified/number of strains present).

to increase this number of strains but it would have require a complete redesign of the
experimental set-up.

Using different amounts of data (figure 5.1c) shows that ORI seems to be sensitive to
the number of reads. The more data, the better the identification in terms of MCC and
ambiguity ratio. If we look at the distance we notice that the best distance is obtained
with 1 000 reads. If we associate this with the MCC value and the ambiguity ratio we
can then deduce that with few data ORI will tend to identify some strains well but miss
others.
When using a large number of reads, StrainSeeker clearly drops in accuracy. Its results
are best with 4 000 reads. This has already been observed for the identification of isolates
(section 5.1.4), and can be explained by the way StrainSeeker identifies strains. Contrary
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to Kraken 2 and ORI, StrainSeeker searches the index in the query, which means that
if the number of k-mers in the query increases, notably because of erroneous k-mers, all
the nodes in the query become saturated and the strains are all identified.
For Kraken 2, no difference was observed using 1 000, 4 000 or 16 000 reads.

The resolution power (figure 5.1d) of software has been measured with increasingly
close mixtures of strains, which increases in turn the difficulty of identification.
Kraken 2 is sensitive to this parameter and provides worse results for a close mixture of
strains.
With ORI and StrainSeeker, the effect is not marked but ORI has a slight degradation
of the MCC and the ambiguity ratio. This behavior is due to the existence of very close
S. thermophilus genomes and can be compensated by merging the sibling strains in the
index (see section 5.1.4).

The last experiment in this section shows the identification results in the most difficult
context; the identification of subdominant strains in a mixture of 4 or 6 strains (see
figure 5.2). The 4-strains mixture contains two dominant and two subdominant strains,
while the 6-strains mixture contains three dominants and three subdominant strains (see
section 5.1.3).
The main point is that Kraken 2, although not as accurate as other software, does a
better job at identifying strains in this situation, getting closer to the results of ORI and
StrainSeeker.
ORI continues to perform well for strains with at least 500 reads but its results are
degraded below that (see table 5.2 for the number of reads).
As before, StrainSeeker seems to be really affected by the number of reads to use for
identification. Its results are even better than those of ORI when the number of reads
is 4 000 but they are really bad with 16 000 reads.

Identification of mixtures after sibling strains merging

One of the problems of ORI in previous identifications was the presence of very similar
strains in the sample. It has been shown that it is useful to obtain an identification of
a group of very similar isolates [Van Rossum et al. 2020], rather than the exact isolate
itself.
To do that, we tested the preprocessing step consisting of clustering those close strains
(sibling strains) to measure its effect on the ORI’s results. The results obtained are
presented in tables 5.4 and 5.5. We have chosen to display these results in tables rather
than in diagrams because the Hamming distance values are very low. A more detailed
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Figure 5.2: Identification of subdominant strains in a mixture of S. thermophilus strains
using various numbers of reads. The Hamming distance between observed and expected
strains, on the y axis, have been multiplied by 10 000 (blue: ORI, orange: StrainSeeker
and green: Kraken 2). Matthews correlation coefficient (MCC) values are given on the
first line just above the x axis at the bottom of the diagrams. The second line represents
the ambiguity ratio (number of strains identified/number of strains present).

version (with median, standard deviation and minimum/maximum) of these results is
available in the appendix of the thesis (see tables S3 and S4).

Overall, the merge of sibling strains leads to almost perfect identification results, with
a Hamming distance that decreases compared to the classic version of ORI and which is
most often zero (detailed results are in appendix table S3). However, this is still not the
case for experiments with a very low number of reads per strain. The MCC increases
with the number of available reads and is on average close to 1. This proves that ORI
merge combines both high accuracy and high sensitivity. In some cases, the average
distance is zero and the MCC is less than 1. This simply indicates that the accuracy is
perfect (the identified strains are the right ones) but with a loss of sensitivity (missing
strains). Overall, the method is more robust because variations in parameter values
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Table 5.4: S. thermophilus strains identification by ORI, without and with merge, in a
balanced mixture of 4 or 6 strains more or less genetically close, by using 1 000, 4 000
or 16 000 sequencing reads. Distance: Hamming distance between the observed and
expected strains (0 = perfect identification); MCC: Matthews Correlation Coefficient
(1 = perfect correlation); Ambiguity: number of strains identified/number of strains
present (1 = perfect number of strains identified). The best results are shown in bold.

a) Global identification
Method ORI ORI merge
Distance 0.52 0.41

(MCC/Ambiguity) 0.66/0.63 0.92/0.91
b) Heterogeneity

Method ORI ORI merge
Number of strains 4 6 4 6

Distance 0.73 0.31 0.53 0.29
(MCC/Ambiguity) 0.70/0.65 0.65/0.56 0.94/0.93 0.96/0.96

c) Data quantity
Method ORI ORI merge

Number of reads 1 000 4 000 16 000 1 000 4 000 16 000
Distance 0.17 0.8 0.6 0 0.43 0.8

(MCC/Ambiguity) 0.55/0.44 0.64/0.64 0.78/0.80 0.86/0.77 0.93/0.92 0.98/1.05
d) Resolution power

Method ORI ORI merge
Proximity distant moderately close close distant moderately close close
Distance 0.10 1.17 0.30 0 0.90 0.33

(MCC/Ambiguity) 0.75/0.73 0.61/0.68 0.6/0.47 0.93/0.89 0.87/0.85 0.97/1

have less influence on the results. The accuracy of the identification of strains present
in the samples with and without the merge of sibling strains are presented in table S5
in the appendix. In this table it is clear that merging the bacterial strains improves
identification results.

For the identification of subdominant strains presented in table 5.5 (detailed results
are in appendix table S4). The results are much better with the merge of sibling strains
when the number of reads is high enough (16 000 and 4 000 reads). ORI is then capable
to correctly identify strains from only 250 reads (see table 5.1.3). For experiments
containing 1 000 reads, where the number of reads for a subdominant strain is at most
125 reads, even ORI merge shows its limits and the gain is lower or almost null for strains
with a maximum of 62 reads. The detailed identification precision for each subdominant
strain when the number of reads in the sample increases is presented in table S6 in
the appendix. Globally, the accuracy of identification of subdominant strains seems to
improve when more reads are used, but this is not always the case.
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Table 5.5: Subdominant S. thermophilus strains identification by ORI, without/with
merge, in a mixture of 4 or 6 strains, by using 1 000, 4 000 or 16 000 nanopore sequenc-
ing reads. Distance: Hamming distance between the observed and expected strains (0
= perfect identification); MCC: Matthews Correlation Coefficient (1 = perfect corre-
lation); Ambiguity ratio: number of strains identified/number of strains present (1 =
perfect number of strains identified). The best results are shown in bold.

Number of strains 4(ORI/ORI merge) 6(ORI/ORI merge)
Number of reads 1 000 4 000 16 000 1 000 4 000 16 000

Distance 19.8/19.8 9.9/0 0/0 30.3/15.4 26.7/0 0/0
MCC 0.28/0.38 0.42/0.78 0.57/0.9 0.22/0.38 0.34/0.65 0.63/0.8

Ambiguity 0.4/0.4 0.5/0.8 0.7/1 0.2/0.33 0.2/0.47 0.53/0.67

Conclusion and perspectives about S. thermophilus identification results

To conclude on S. thermophilus strains, ORI seems better than Kraken 2 in terms
of bacterial strain identification. Kraken 2 was the worst solution for identification.
However, the use of the default k-mer size of Kraken 2 was retrospectively probably
not the best idea for a fair comparison with the other two software. It would therefore
be interesting to retest Kraken 2 with a smaller k-mer size. Regarding StrainSeeker,
which was originally developed for short sequences, behaves surprisingly well on the
identification of small mixtures of strains from long nanopore reads when the number
of reads is neither too high nor too low. However, the StrainSeeker index requires 100
times more space than ORI and Kraken 2, which will prevent it from scaling up to large
datasets.

In the development of ORI, we made choices that take into account the fact that we
identify strains from erroneous long reads. The first one is the use of q-grams instead of
k-mers to be less sensitive to mismatch sequencing errors.
Another choice is the trade-off made between sensitivity and computational cost. For
example, the trade-off made by Kraken 2, such as the use of minimizers for example,
works well for the rapid identification of species in large metagenomic datasets but causes
a loss in sensitivity, which makes identification at the strain level more complicated or
even impossible. The trade-off made in ORI makes it more suitable for the identification
of small mixtures of strains or isolates than for large metagenomic samples. Another
argument in this line is that ORI uses an exact optimization step consisting in keeping
the minimum number of strains explaining the majority of the reads. Exact optimization
has a high complexity and should likely not scale up to a large number of strains to be
identified in the sample. This unique feature of ORI increases the robustness of the
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method (few false positives). However, it is also this step associated with the numerous
preprocessing used to remove poor quality or uninformative data that make ORI tend
to miss some strains sometimes.
The last choice is to add a preprocessing step for the grouping of sibling strains. This
choice allows to be more precise in the identification, but to identify groups of close
strains rather than isolates. However, as explained before, this choice is not necessarily
bad as it is useful to be able to identify clusters of related strains rather than isolates
(see the general conclusion on related strains in 6.1 for more details). Moreover, these
clusters are generally far smaller than the cluster of strains identified by other methods.

A last interesting point to mention is the fact that ORI works with quite few reads.
According to the results obtained in this section we recommend to use it with 4 000 reads
and a bit more to identify subdominant strains. However, ORI is sensitive to the number
of reads and seems to be less accurate as the number of reads increases too much. The
decrease in quality of the results with a higher number of reads can be explained by the
increase in the number of errors. However, the noise related to these errors should be
removed by the preprocessing steps (see section 3.2.2). Working on the improvement of
these preprocessing steps should be an interesting direction for further developments.

5.2 Identification in food: an experiment on dairy prod-
ucts

The experiment presented in this section is an experiment of strain identification in
different dairy products such as commercial yoghurts and fermented milk including Ribot
milk. The goal is (1) to get a global view on the strains present in different dairy product
and (2) to show that this can be done quickly and at low cost (80 e / 810 e) with the
use of the rapid barcoding kit and Fongles (mini ONT flowcell with about 60-80 active
pores compared to the 1 300-1 600 pores of a classical flowcell).

5.2.1 Preparation of the experiments

The different commercial dairy products are the following:

• 3 commercial full-fat stirred yoghurts that will be noted A, B and C.

• 1 commercial fermented milk product containing Bifidobacterium in addition to S.
thermophilus and L. delbrueckii that will be noted D.
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• 1 fermented milk product; a traditional Ribot milk that will be noted E (traditional
Breton product, fermented buttermilk).

In fact, more sample were tested but not retained for analysis because of the difficulty of
picking a good protocol. This is notably the case for 0% fat stirred yoghurts, where the
DNA extraction failed probably because of a higher composition of exopolysaccharide
(EPS) compensating the absence of fat.
Globally, the DNA extraction from strains in dairy product is complex and requires more
steps than a classic DNA extraction from isolates in culture. As a result, the recovered
DNA molecules will be more fragmented than with a simple DNA extraction. In our
case, we used the method for direct DNA extraction from the food matrix presented in
[Parayre et al. 2007]. The samples were then barcoded and the library was prepared
using the ONT rapid barcoding kit (SQK-RBK004). Finally, the sequencing was per-
formed on a Flongle with the DNA of 5 dairy products (plus one sample exterior to the
thesis).

Dairy products A, B and C are yoghurts which means, according to the law, that
they are fermented milk containing only the thermophilic lactic acid bacteria Lactobacil-
lus delbrueckii subsp. bulgaricus and Streptococcus thermophilus, which must be alive in
the finished product [Légifrance 1988]. We therefore knew in advance which species we
were looking for in these dairy products.
This is also the case for the fermented milk product D which is known to contain Bifi-
dobacterium in addition to S. thermophilus and L. delbrueckii subsp. bulgaricus.
The study of Ribot milk is more complex because we have no idea of the bacterial species
it contains.

Several indexes were created to perform the identifications.
The first test was to create an index containing the complete genomes of both S. ther-
mophilus and L. delbrueckii (see index in section 4.1.1). Unfortunately, the identification
results contained only S. thermophilus so it was decided to separate these two indexes.

In the end, the different indexes used were the following:

1. an index (size = 17 Mb) containing 95 complete genomes of S. thermophilus whose
sibling strains have been merged (θ = 2× 10−4).

2. an index (size = 34 Mb) containing 237 complete genomes of L. delbrueckii whose
sibling strains have been merged (θ = 2× 10−4).
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3. an index (size = 249 Mb) containing 694 complete genomes of Bifidobacterium
whose sibling strains have been merged (θ = 5× 10−6).

4. an index (size = 114 Mb) containing 272 complete genomes of Enterococcus, Lac-
tococcus and Leuconostoc whose sibling strains have been merged (θ = 5× 10−4).

Indexes 1 and 2 were used for all experiments. Index 3 was used on the two fermented
products. Index 4 was used only on the reads from the Ribot milk sequencing. It was
built according to the results of the Centrifuge software (included in the ONT WIMP
program) on these reads. These results rarely go down to the bacterial strain level
but the identified genera were used to create the ORI index. We found, a majority
of Lactococcus (> 95%) and a few Leuconostoc (> 1%) and Enterococcus (> 0.4%).
The other identified genera were not used because their percentage in the results was
considered too low (arbitrary).
The new classifications for Lactobacillaceae and Leuconostocaceae (see section 1.3.1) were
not used in these experiments because they have not yet been updated in the taxonomy
of the NCBI database used for this experiment.

The number of reads for each experiment before and after filtering out poor quality
reads is shown in table 5.6.

Table 5.6: Reads number in experiments before and after quality and length filter. The
reads are filtered to a minimum quality of 5 and a minimum length of 1 000 bp.

Experiment type Reads number Reads number after filter
A Stirred yoghurt 9 000 4 300
B Stirred yoghurt 2 749 1 756
C Stirred yoghurt 9 722 5 224
D Fermented dairy product 9 951 4 742
E Ribot milk 14 418 5 425

As can be seen, the number of reads for each experiment is quite low. As a con-
sequence, the filtering of these reads was reduced to filter only very low quality reads
(< 5) and reads with a small size (< 1 000). Despite of these very lax quality filters,
the number of reads in some experiments remains quite low. We thus did not hope to
identify the subdominant strains with ORI.
In addition, since commercial products are most often inoculated with strains not present
in public databases, the goal is just to identify the strains or strain clusters that are clos-
est to the real strains.
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5.2.2 Identification results

Overall, we found strains of S. thermophilus and L. delbrueckii subsp. bulgaricus in
all the yoghurts studied. Similarly, Bifidobacterium animalis is found in the fermented
milk D. Among the strains identified, yoghurts A and C contain a set of S. thermophilus
strains quite close to each other. It is possible that these two yoghurts are inoculated
with the same or at least similar strains of S. thermophilus. In yoghurt B, only one strain
of S. thermophilus is identified, which is also found in the fermented milk D. These re-
sults seem quite logical because yoghurts A and C come from the same manufacturer,
as well as dairy products B and D.
For the L. delbrueckii subsp. bulgaricus strains, only one strain was identified in dairy
products A, B, C and D. The same cluster of two sibling strains is identified for the
samples A, B and D while for the yoghurt C the identified strain is different.
Two Venn diagrams showing the identified strains common to the yoghurts (A, B and
C) are presented in figure 5.3. On these diagrams we can see that yoghurt A is quite
similar to yoghurt C with respect to the S. thermophilus strains and that it resembles
yoghurt B with respect to the L. delbrueckii subsp. bulgaricus strains. Yoghurts B and
C, on the other hand, seem to be completely different in terms of strains composition.

Streptococcus thermophilus Lactobacillus delbruecki
subsp. bulgaricus
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2
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Figure 5.3: Venn diagrams representing the common identified strains between the three
stirred yoghurts. The identification was done with the ORI software.

The fermented milk product D seems to be quite close in strain composition to yo-
ghurt B from which it differs by the presence of a strain of S. thermophilus identified
as present at less than 1% and a group of strains of Bifidobacterium animalis subsp.
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Table 5.7: Identification results of bacterial strains in different dairy products.
Strains/clusters of strains with a star are results identified in a very low percentage
(< 2%) and therefore potentially false positives not present in the sample.

Experiment Index Identified strain
Stirred yoghurt

A

S. thermophilus

ASCC 1275; MN-BM-A02; KLDS SM; ND07; DGCC 7710; 05-34; CS5; CS18
St1-WT; St1-GS-2; IDCC2201
* ATCC 19258; NCTC12958

24739; 13496; 13495
TH1436
GABA
EU01

* TK-P3A
B CIRM-BIA 1047

C

ASCC 1275; MN-BM-A02; KLDS SM; ND07; DGCC 7710; 05-34; CS5; CS18
MN-BM-A01; MN-ZLW-002; CIRM-BIA 1051

St1-WT; St1-GS-2; IDCC2201
* ATCC 19258; NCTC12958

* M17PTZA496
TH1436
EU01

A
L. delbrueckii subsp. bulgaricus

MBT 92059; KLDS1.1011
B MBT 92059; KLDS1.1011
C MGB30-1

Fermented dairy product

D S. thermophilus CIRM-BIA 1047
* CS9

D L. delbrueckii subsp. bulgaricus MBT 92059; KLDS1.1011

D Bifidobacterium animalis subsp. lactis

cluster of 27 strains (V9; S7; IDCC4301;
TF04-14; OM05-7AA; BLC1; BS 01; BSD2780061688st1_E5;

J063; J218; B06; BIOML-A2; B420; Bi-07; BIOML-A1;
Bl12; TK-J6A; 1001713B170131_170501_H10; RH; Bl-04;
H1; H3; i797; MGYG-HGUT-02459; i797; BF052; BB-12)

Ribot milk

E S. thermophilus ASCC 1275; MN-BM-A02; KLDS SM; ND07; DGCC 7710; 05-34; CS5; CS18
24853; 13498; 13492; 13493; 13491; MAG_rmk202_sterm

E L. delbrueckii subsp. indicus JCM 15610; DSM 15996
E Bifidobacterium breve DRBB28

E Lactococcus lactis

* L81-E2; L81; L62-G9; L62-C9
IPLA729
QH27_1

* CH_LC01
* MS22337
* MS22333
CF106

E Lactococcus cremoris

* C4; G3-2; EPSC
UC109

DPC6856
ATCC 19257

W34
1196

E Lactococcus lactis subsp. cremoris SK11
A76

lactis which are bacteria not present in a yoghurt. It is possible that the subdominant S.
thermophilus strain is wrongly identified or also that this strain is present in the yogurt
B but not identified. This second hypothesis is considered because the number of reads
in the B sample is low (1 756) and if we refer to the experiments performed previously
on S. thermophilus strains with few reads, there is a risk that ORI misses subdominant
strains (see section 5.1.4).
Regarding the Bifidobacterium animalis subsp. lactis strains, a single big cluster of 27
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similar strains was found for the experiment D. A representation of this cluster of 27
strains is given in figure 5.4. These strains are very close to each other because the
Hamming distance threshold for clustering sibling strains is much lower than for the
other indexes. However, it can be seen on the representation that some strains have
been grouped together despite the fact that they have little connection with the whole
cluster. This is due to the fact that the clusters correspond to the connected component
(see section 3.2.3). The results could therefore be improved by using one of the two
more elaborated approaches presented in section 3.2.3 to group sibling strains as dense
subgraphs.
A graph representation of all existing proximity relationships between Bifidobacterium
complete genomes with their assembly identifiers is presented in figure S2 and a rep-
resentation without identifiers but with the name of the species present in the clusters
containing more than 4 strains is presented in figure S3. On this last figure we can see
the limits of the existing species classification of some bacterial isolates, since they are
considered as two different species, but with genomes so close that they are grouped
in the same cluster of sibling strains, even with a low distance threshold. The study
of sibling strains containing several species could be a good test to check for possible
misclassification of same species.

The last experiment of identification of strains present in Ribot milk (experiment L)
was a little more complex because we had no idea of the species to be found in the
sample. The results obtained show a S. thermophilus strain from a cluster of sibling
strains also found in samples A and C as well as a cluster specific to Ribot milk. For
Lactobacillus, only one cluster of strains was identified but, unlike the other experi-
ments, it correspond to L. delbrueckii subsp. indicus and not to L. delbrueckii subsp.
bulgaricus (a different subspecies). Finally, different species of Lactococcus have been
identified in the sample. Among these species we found Lactococcus lactis (7 different
strains/clusters) and Lactococcus cremoris (6 different strains/clusters). Bacteria of the
subspecies Lactococcus lactis subsp. cremoris (2 strains) which is part of the species
Lactococcus cremoris are also found.

5.2.3 Conclusion about strains identification in dairy products

As we have just seen, the identification of bacterial strains present in dairy products
is much more complex than the identification of bacterial isolates. The challenge was
mainly for the wet lab part. DNA extraction is a key step that is made much more com-
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Figure 5.4: Representation of the cluster of 27 strains of Bifidobacterium animalis subsp.
lactis. A node represents a strain and an edge represents a Hamming distance less than
5 × 10−6 between two strains. Strain identifiers are not displayed here because we are
interested in the structure of the cluster and not in the specific strains composing it. The
complete graph of all existing proximity relationships between Bifidobacterium genomes
(with identifiers) is presented in figure S2.

plex by the presence of the the food matrix. Moreover, the particularities of the products
may require different extraction methods, as it was observed with 0% yoghurts, where
the DNA extraction did not work for this single experiment. Moreover, the extraction
being more complicated, the number of steps to extract the DNA increases which will
tend to produce shorter DNA fragments.
Regarding the sequencing itself, the samples were sequenced using a Flongle, which is
less expensive but contains fewer active pores than a classical flowcell (see section 1.2.3).
As a result, the amount of data obtained is reduced. If we combine this with the se-
quencing of 6 samples simultaneously, via the use of barcodes, the number of reads per
sample in output is finally quite low, which makes the identification of bacterial strains
more complicated.
ORI failed to identify L. delbrueckii subsp. bulgaricus when using the index mixing S.
thermophilus and L. delbrueckii. One explanation could be that the number of reads was
too low for L. delbrueckii which then becomes a subdominant species and is therefore no
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longer identified. For example if we look at the read assignment results of yoghurt A us-
ing the two separate indexes, 40 reads were assigned to L. delbrueckii subsp. bulgaricus
while the 3 883 reads were assigned to S. thermophilus. As the reads of S. thermophilus
are not assigned to L. dellbrueckii, ORI was able to perform the identification using only
the 40 reads assigned. It is however possible that the identification performed with these
40 reads is not robust enough.
There is another problem that can occur with the use of barcoded samples and that we
could not detect here: the fact that some of the barcodes may be misclassified while
demultiplexing due to sequencing errors. Therefore some of the reads may not belong
to the right sample. This is not a problem when the number of reads is very large but
it may have an impact when data become sparse.
It was possible, by using separate indexes for the main species, to identify the strains
present in the samples. Moreover, the results seem consistent with the background
knowledge on the different dairy products studied (e.g. S. thermophilus and L. del-
brueckii subsp. bulgaricus in yoghurts (A, B and C) to which Bifidobacterium animalis
was added to obtain the fermented product D). These experiments served as a test
bed for the identification of strains directly in food products with ORI, and other ex-
periments are necessary to improve the wet lab part (DNA extraction, sequencing) and
better parameterise ORI (discussed in sections 3.2.3 and 4.3 as well as in the conclusion
of this thesis). It shows however that it is feasible and worth further investigations.

5.3 Strain identification in other species

In this last part, we will present the results obtained with other species than S. ther-
mophilus and a negative control. These experiments present collaborative work to test
ORI on other species than our S. thermophilus model. These experiences required the
training of other people in the use of ORI, which made it possible to improve the software
and its documentation.

5.3.1 Identification of S. pyogenes strains

This first two experiments were performed in collaboration with Emeline Roux who
was working with the Clinical Investigation Center (CIC) of Rennes on the study of S.
pyogenes strains [Devaere et al. 2020].
For this experiment, the DNA extraction was performed by a classical extraction with
phenol-chloroform, which keeps DNA molecules long enough without being specific to
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this task.

Streptococcus pyogenes is a pathogenic streptococcus of clinical interest that is re-
sponsible for more than 600 million worldwide infections per year and has a high level
of morbidity and mortality [Carapetis et al. 2005]. S. pyogenes is quite similar to S.
thermophilus as they are both bacteria of the same genus. There are currently more
than 2 000 genomes of S. pyogenes in the databases, including 244 complete genomes
with some closely related genomes.
The experiment consisted of identifying reads from the S. pyogenes STAB14018 (emm75
type) strain using ORI with long nanopore reads and an index containing 217 complete
S. pyogenes genomes whose sibling strains were merged (θ = 1 × 10−4). The size of
the Bloom filters used to create the index was 2.5× 108 bit. The size of the final index
was 33 Mb and included 23 clusters of sibling strains. This experiment is similar to
the identification of a bacterial isolate as performed with S. thermophilus strains but on
another species having more reference genomes.
The identification was performed with the first 4 000 reads filtered on their quality and
length (quality > 9 and length > 2 000). The identification result obtained is 100% of a
cluster of 3 close strains containing the desired strain S. pyogenes STAB14018 and two
other strains: S. pyogenes STAB120304 and S. pyogenes NCTC13751 (see figure S4 in
appendix).

5.3.2 Verification of the ORI specificity

The second experiment consisted in testing the ORI’s behaviour in case of contamina-
tion by a different but close species. For this purpose, the 4 000 reads of S. pyogenes were
used to query the index composed of S. thermophilus strains (same species) presented in
section 5.1.4. In this case no reads are assigned because there are none with more than
50% of q-grams common to any strain in the index, and therefore no identification is
performed. Similarly, when searching for S. thermophilus reads in the index containing
only S. pyogenes strains no reads are assigned. This experiment shows that ORI is not
impacted by contamination even when using an index containing only one species, which
could lead to misclassification [Marcelino, Holmes, and Sorrell 2020].

5.3.3 Identification of E. coli strains in a complex microbiota

Finally, the last experience was realized during the internship of a M2 student, Rania
Ouazahrou supervised by Emeline Roux and Gaelle Boudry from the NuMeCan Insti-
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tute in Rennes. The aim of the presented experiment was to identify the strains of E.
coli bacteria (see section 1.3.3) from a sequencing of pig intestinal microbiota.
The DNA was extracted using a specific kit for microbiota DNA extraction. However,
as there are many species in a microbiota, and these species will be more or less difficult
to lyse, the extraction performed with this kind of kit is very drastic and thus fragment
the DNA molecules a lot. It is interesting to note that to our knowledge, no protocol
exist to date for extracting long DNA from microbiota.
The sequencing of this microbiota produced 30 Gb of nanopore sequences. This repre-
sents 3 145 521 reads in total with at least 50% of reads having a size greater than 8 000
bp and an average quality score of 13.5.

The challenge of studying the E. coli strains in this metagenomic sequencing comes
from both the number of reads to be processed and the number of known E. coli strains
present in the databases. There are currently (in September 2021) over 22 000 E. coli
genomes including over 2 000 complete E. coli genomes in the public databases (see
section 1.3.3). Moreover, this number of complete genomes is increasing very rapidly.
As an example, there were 1 693 complete E. coli genomes at the end of December
2020. The 1 644 complete E. coli genomes present in the databases at the time of the
experiment were inserted into an ORI index. The size of the total index is 537 Mb and
there was no merge of sibling strains since the creation time of the index was already
very long (18h20m04s).

As explained previously (see section 4.1.2) ORI is not adapted to queries with many
reads to identify bacterial strains. We tested two approaches to reduce the size of the
query:

• using 4 000 random reads from the entire metagenomic sample. Since ORI is not
sensitive to the contaminant, it should theoretically be able to assign E. coli reads
without assigning those not belonging to this species.

• using the Kraken 2 software to extract reads from the species E. coli present in the
metagenomic sample. On the 3 145 251 initial reads, only 32 178 reads (approx
1%) were identified by Kraken 2 as belonging to E. coli. Then the identification
of the E. coli strains was done with ORI using this pre-identified reads.

The first approach with 4 000 randomly selected reads identified a single pathogenic
E. coli strain; E. coli O157:H7. However, overall abundance of E. coli in the sample



150 CHAPTER 5. VALIDATION OF ORI

being estimated to 1%, the selection should contained about 40 reads of E. coli. This
represents very few reads, especially since we expected more than one strain in the pig
gut microbiota. Furthermore, it has been shown by experiments on S. thermophilus that
ORI tends to give poor results with a reduced number of reads per strain (at least 500
reads per strain are required; see section 5.1.4). This explains that only one strain was
recognized. A number of random draws should be used to obtain recognition of more
strains

A second approach was chosen instead, to select among the total reads those belong-
ing to the E. coli species, thanks to Kraken 2. However, as the index containing 1 644
genomes was large, in order to speed up the calculations, the 32 178 reads were sepa-
rated into 8 files of 4 000 reads. The average computation time for the identification of
bacterial strains for each group of 4 000 reads with an index of this size (537 Mb) was
approximately 4h23m54s. The identification of the E. coli strains was performed from
these 8 groups of reads separately. By pooling the results of the 9 identifications we
obtained a total identification of 8 E. coli strains. Of these 8 strains identified, 5 were
close strains that have been observed in pigs [Poulin-Laprade et al. 2021] and one strain
is known to be a pathogenic strain (Enterotoxigenic E. coli) of pigs [Z. Li et al. 2018].
The 8 identified strains are presented in table 5.8.

Table 5.8: Escherichia coli strains identified using 8 groups of 4000 long nanopore reads
of E. coli from a pig intestinal metagenomic sample. The reads corresponding to the
species were first identified using Kraken 2 and then the strains were identified using
ORI.

Strains Size GC% Assembly accession Status Reference
Res13-Lact-PER12-33-A 5.11 Mb 50.59% GCA_015571615.1 Complete Genome [Poulin-Laprade et al. 2021]
Res13-Lact-PEA06-10 5.12 Mb 50.59% GCA_015571775.1 Complete Genome [Poulin-Laprade et al. 2021]
Res13-Lact-PER02-33 5.12 Mb 50.59% GCA_015571655.1 Complete Genome [Poulin-Laprade et al. 2021]
Res13-Lact-PER04-33 5.11 Mb 50.61% GCA_015571635.1 Complete Genome [Poulin-Laprade et al. 2021]

Res13-Sevr-PER06-05-b-A 5.11 Mb 50.60% GCA_015571555.1 Complete Genome [Poulin-Laprade et al. 2021]
AH01 5.22 Mb 50.61% GCA_013371685.1 Complete Genome
cq9 5.91 Mb 50.33% GCA_003402955.1 Complete Genome

CV839-15 5.26 Mb 50.84% GCA_002803805.2 Complete Genome [Z. Li et al. 2018]

It would be interesting to test these strains with an index where the sibling strains
of E. coli would have been grouped together in order to determine if the identification of
the different strains from [Poulin-Laprade et al. 2021] is due to their proximity or not.
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At last, large scale test was achieved on the whole set of E. coli reads selected by
Kraken 2 running ORI on all 32 178 reads and tests were made on subsamples of 16 000,
8 000 and 4 000 reads randomly selected among the totality of the reads. The results
obtained are presented in table 5.9.

Table 5.9: Escherichia coli strains identified using variant numbers of E. coli reads from
a pig intestinal metagenomic sample. The reads corresponding to the species were first
identified using Kraken 2 and then the strains were identified using ORI.

Reads number Strain Assembly accession Reference

32 178 Res13-Lact-PER12-33-A GCA_015571615.1 [Poulin-Laprade et al. 2021]
CV839-15 GCA_002803805.2 [Z. Li et al. 2018]

16 000 Res13-Lact-PER12-33-A GCA_015571615.1 [Poulin-Laprade et al. 2021]
AH01 GCA_013371685.1

8 000 Res13-Lact-PER12-33-A GCA_015571615.1 [Poulin-Laprade et al. 2021]
4 000 Res13-Lact-PER12-33-A GCA_015571615.1 [Poulin-Laprade et al. 2021]

As can be seen, these experiments are successful in finding the Res13-Lact-PER12-
33-A strain each time. Strains CV839-15 and AH01 also stand out in the experiments
with many reads and could be subdominant strains of the sample.
For the identification of 32 178 reads with the index containing 1 644 E. coli genomes
the identification took 1d8h7m19s which shows the limit of ORI in terms of computation
time when the index and the number of reads increase.

In addition to E. coli, ORI was used to find strains of the majority species of the
microbiota and gave good results in most cases except for the species Phocaecola vulgatus
identified as present by Kraken 2 but where ORI did not identify any genome.

Globally, this experiment demonstrated the use of ORI in combination with Kraken
2 for the purpose of strain identification in a metagenomic sample. This is a first step
towards the use of ORI on a larger scale data for the identification of bacterial strains
in metagenomic samples.

5.3.4 Conclusion on the identification of strains not belonging to S.
thermophilus

In general, the three experiments presented in this last section show that ORI is able
to identify bacterial strains of different species including pathogenic species of clinical
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interest such as Streptococcus pyogenes or Escherichia coli.

The second experiment shows that ORI is robust with respect to the presence of
genomes not present in the database. This characteristic is important when studying
mixture of strains from different species.

Moreover, the experience with E. coli strains shows that ORI can be used in a larger
context than the identification of bacterial isolates or small mixtures of strains. It is a
starting point for strain identification directly from metagenomic data.
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Preamble: This chapter presents some conclusions on the thesis as well as per-
spectives for the development of ORI and the identification of bacterial strains
from ONT sequencing which seems interesting to improve both the speed and
accuracy of our method.

This thesis brings some thoughts on the field of bacterial identification from Nanopore
reads but also on adapting comparative genomics to the study of bacterial strains.

6.1 Conclusion and perspectives on ORI

The major result of the thesis is the design of a new identification method and the
implementation of an associated software called ORI. ORI is based on a new association
of:

• a k-mer set indexing technique.

• the use of spaced seeds.

• a preprocessing step for the clustering of sibling strains.
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• an exact optimization step for the selection of a minimum number of strains ex-
plaining the totality of the reads.

This association allows an efficient storage of the reference strain genomes and a more
error-tolerant assignment of the long Nanopore reads, while being memory efficient.
In addition to the development of ORI, part of the thesis have consisted in making it
available to the scientific community, presenting it and training biologist and bioinfor-
matician users to its use whose feedback has allowed and still allows its improvement.

Conclusion on the use of an HowDeSBT index with spaced seeds

From one side, using an extension of the HowDeSBT-based index allows ORI to be
space and time efficient. Furthermore the use of q-grams instead of k-mers allows to be
less sensitive to erroneous long reads generated by the Oxford nanopore technology.
From another side, the index query time is currently the limiting point of the ORI’s
method. Indeed, the creation of an index is always a matter of trade-offs. In the case
of HowDeSBT the compromise is clearly in favour of the size of the index and the
memory usage. This choice has an impact on the calculation time of the query. In
order to improve it and to scale to a bigger number of strains there are several possible
improvements.

Perspectives for improving the search time of the ORI index

We propose direction for further research based on three main ideas:

• A divide and conquer strategy based on a partition of the index allowing to quickly
query it by going down in the taxonomy. It would be interesting to first quickly
identify the genus (or family) of bacteria present in the sample, before identifying
more precisely in a second stage the isolates or group of isolates present for each
genus identified. Two propositions based on either using a fast existing species
identification software or making use of a tetranucleotide vector representation
have already been presented in section 4.3 of the thesis.

• An improved exploitation of system resources for handling the current HowDeSBT
index. An easy modification would include the loading of the whole index in main
memory, which would allow to slightly speed up the query at the expense of the
used memory.
It is also possible to use the very recent modular tool suite developed in our
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team named kmtricks [Lemane et al. 2021], allowing the rapid construction of
BFs for large collections of sequencing data. A kmtricks compatible version of
HowDeSBT is already available and it should be possible to merge this version
with our HowDeSBT extension which is expected to greatly speed up the index
construction and query time.
In addition, another tool in development in our team, findere [Robidou and Peter-
longo 2021] seems interesting to be considered. It enables to speed-up the queries
time and to decrease the false-positive rate of approximate membership queries
(such as BF queries) without modifying the original indexing data structure. Since
it does not cause memory overhead, it is then theoretically possible to use it in
conjunction with HowDeSBT and kmtricks to further accelerate our approach.

• The replacement of the index with a new one, faster to query with many long reads.
In their recent review [Marchet, Boucher, et al. 2020] concluded that the color-
aggregative methods and BIGSI/COBS seem better suited to query large sequences
which is the case when working with long reads. In general COBS seems to be
a good compromise because it is efficient in query time, indexing and uses quite
little memory. The index created will be a bit larger than with HowDeSBT but it
would remain acceptable for bacterial genomes. It would therefore be interesting
to modify COBS to adapt it to the use of spaced seeds in order to test the trade-off
between time savings during the query and the increase in the size of the indexes.

Perspectives about the spaced seed use

The use of spaced seeds allows to be less sensitive to mismatch errors. As seen in
section 3.1.3, it is possible to take into account insertion deletion errors with indel seeds
but at the cost of an important increase in terms of space and time. Currently there is
a lack of k-mer indexing structure that would allow to efficiently index genomes using
these indel seeds. There is still work to do in this area which would undoubtedly benefit
our ORI software and more generally any treatment of erroneous long reads.

Conclusion on sibling strain clustering

The identification of bacteria is based on their classification but this classification is
far from being stable and established. At the level of detail studied in this thesis, it is
even more difficult and fuzzy. The definitions of bacterial strain, bacterial subspecies
and bacterial clone remain very vague and, depending on the chosen definition, they
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may even overlap.
However, it is useful to obtain an identification resolution of a group of very similar
isolates [Van Rossum et al. 2020], rather than the exact isolate itself. For example, in
the medical field, the identification of epidemic strains is very important and represents
a major use of MinION sequencing because of its portability allowing rapid sequencing
in the field. However, in general, identification at the level of the individual isolate is
of little practical value. As an illustration, a recent article [Gori et al. 2020] presents
identification results on nearly 2000 samples of Streptococcus agalactiae characterized
by different degrees of virulence and preferred host. The authors choose to distinguish
only a few dozen different types at most despite the requirement of specialists for strain
distinction.
One of the other major ideas of ORI is the clustering of sibling strains. This clustering
has the advantage of allowing robust identification of clusters of close related strains and
prevents misidentification of difficult strains. It is based on the calculation of genomic
distances between strains and our experiments show that it leads to better identification
results when processing long erroneous reads. Furthermore, as the strains are grouped
during the index creation, the created clusters can be discussed with an expert knowing
the precise characteristics of the grouped strains before any identification. It helps to
determine the best clustering threshold to use and allows to plan other biological tests
to further discriminate strains within a group.
For example, a recent application of clustering of closely related strains is the inference of
antibiotic resistance and susceptibility [Břinda, Callendrello, et al. 2020]. In general, the
identification of sibling clusters with ORI is quite robust. In the identification results,
ORI errors are more likely to miss strains present in a sample (FN) than to identify
strains that are actually absent (FP). These results therefore allow a more detailed
investigation to discriminate the strain among a limited number of possibilities. When
studying the iTOL tree containing the S. thermophilus strains, it was observed that
the sibling strains were annotated mainly by specific genes of unknown function, unlike
other strains (e.g. S. thermophilus JIM8232). However, two differently labeled unknown
genes may be related. The sibling strains could therefore indicate groups with a compact
pangenome useful for the identification of these strains.

Perspectives on sibling strain clustering

Based on these observations, an interesting perspective would be to verify that the
clustering of nearby strains allows to distinguish strains with important phenotypic traits
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such as antimicrobial resistance profiles [Greig et al. 2018].
It could also be interesting, in the case where genes of the different strains of the index
are known, to add in ORI the computation of the maximal biclusters {strains}×{genes}
and to use them in the identification of the strains by looking for the genes specific to a
strain or a cluster of strains present in the reads. This study of the genes present in the
strains could validate and in some cases refine the identification performed by ORI.
An interesting idea to study in more detail the clusters of sibling strains once identified
would be to create the graph of variation of these strain and to realign the correspond-
ing reads on this graph to determine more precisely the strains actually present. The
construction of such a variation graph is too complex to be applicable to the totality of
the index strains but for few strains of a cluster it becomes possible.
Another valuable point would be to integrate in ORI the creation of a heatmap such
as the one presented in figure 3.8. It can be produced from the use of the Hamming
distance matrix and include the sibling strains clusters according to a given threshold.
This kind of representation would be easier to use than the current histogram to set a
relevant clustering threshold.
Finally, the quadratic strain clustering step is the most time and memory consuming
step during the index creation. In the case the index query time is accelerated, it would
be the limiting step. We are mostly interested in closest strains and it could help to re-
duce the number of needed comparisons, for instance by making comparisons below the
genus or family level. Moreover, other indexing method may lead to a faster estimation
of distances.

Global discussion on bacterial strains characterisation

In general, the study of bacterial strains is necessary in many fields but the strain
definition remains unclear. If we consider only the complete sequence of the genomes
during the comparative study of strains of the same species and if we base the strain
definition on a distance threshold between them, then this threshold will be different
depending on the species studied. An interesting issue is then to find a threshold where
the formed strain clusters allows to separate the individuals according to a studied
phenotypic property (e.g. antimicrobial resistance, pathogenicity, probiotic effects).

Conclusion and perspectives about the ORI’s strain identification part

For the last stage of strain identification, we have shown that the search for a minimum
number of strains explaining most of the reads may be solved exactly and provides
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good results when considering a limited number of reads and strains. In case these
numbers become too large the process will become too long. In order to prevent this,
different filters of reads and strains are performed (see section 3.2.2). Furthermore,
according to our experiments, too many reads seem to decrease the accuracy of the ORI
identification. The preprocessing with filters is used to reduce the information quantity
(reads and strains) to be processed, both to decrease computation time and to increase
data quality, by keeping only the most relevant information to identify the strains really
present. A good parameterization of these filters should allow to obtain the best possible
information/noise ratio.

Estimating strain abundance

It is possible to estimate strain abundance in ORI using an Expectation-Maximization
(EM) algorithm similar to that used in Centrifuge. However, ORI already provides access
to indicative abundance values in addition to the strain identification that can help to
interpret the identification results. To demonstrate the utility of this quantification,
using the example from [Siekaniec et al. 2021], let’s consider one of the S. thermophilus
strain experiments on a sample containing 16,000 reads of 6 S. thermophilus strains
equally distributed and forming 2 clusters of sibling strains: A={CIRM-BIA18, CIRM-
BIA32} and B={CIRM-BIA2101, CIRM-BIA23, CIRM-BIA65, CIRM-BIA67}. The
sample is thus composed of 1/3 of A and 2/3 of B. The identification made by ORI is
as follows: 25% of A, 72% of B and 3% of a third cluster C={CIRM-BIA1116, CIRM-
BIA1122, CIRM-BIA16, CIRM-BIA29, CNRZ1066, CS8, EPS, S9} not really present
in the sample. However the current abundance of C provided by ORI is quite low and
C is quite close to cluster B (see figure 3.8), so it is reasonable to assume that C is
not actually present in the sample. By increasing the merging threshold of the nearby
strains, B and C would indeed be fused, which would lead to perfect identification.

Comparison of ORI with other identification tools

In the course of this thesis, ORI was compared to two software, Kraken 2 and Strain-
Seeker, that have in common a methodological background based on a k-mer genome
partition inserted in an index. However, these programs were originally developed to
identify bacteria from short reads. Then, it would be interesting to compare the identi-
fication results of ORI with results from identification software based on the alignment
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of long erroneous reads such as NanoMAP, MetaMaps. These comparisons were not
performed during the thesis because:

• NanoMAP is a new software that did not exist at the time of our experiments.

• MetaMaps was a recent and therefore unstable software at the time of our ex-
periments. Therefore, we did not manage to install it. The authors have been
contacted and a conda package allowing a simplified installation has since been
made available.

Therefore, these two softwares will be compared to ORI in future identification experi-
ments that we will perform.

To go further with a strain-based annotation

The identification of bacterial strains present in a sample allows for more detailed
analyses. For example, the results of the identification of E. coli strains presented in
section 5.3 were then used by a Masters trainee (Rania Ouazahrou) to reconstruct the
metabolic pathways present in the sample from annotation of the genomes of identified
strains.

6.2 Short conclusion on S. thermophilus

During the thesis, the genomes of 31 strains of S. thermophilus were sequenced and
assembled. These genomes are added to the reference genomes already present in the
databases thus increasing our available knowledge of this species of food interest. More-
over, the comparative study of these strains carried out during the thesis led to the cre-
ation of the clustering tree associated with the maximal biclusters {strains} × {genes}
available in iTOL (see section 3.2.1). This tree allows to have a general view of the
species and should allow further comparative studies on S. thermophilus genomes.

6.3 Perspectives on increasing the quantity and sensitivity
of sequenced ONT long reads

With the advancement of Nanopore technology and especially basecallers, the error
rate of reads is decreasing month after month. If this trend continues until it reaches the
error rate of the illumina technology, the identification of strains from these reads will
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become more accurate. Actually, in order to decrease the error rate of reads, basecalling
software can be trained on a sample of reference genomes by using Taiyaki [Taiyaki
2021]. It would then be very interesting in our case to train the basecaller to recognize
lactic bacteria (by default the ONT basecaller guppy is trained on human and E.coli for
bacteria) in order to decrease as much as possible the errors in the sequenced reads.
In addition, tools are available that work in real time during sequencing, whether it is at
the level of the basecalled reads or the raw signal. In our case, the possibilities offered
by ONT sequencing such as Read Until and the washing and reuse of flowcells are two
points of interest in the perspective of a fast and cheap identification process. Indeed
the Reads Until capacity (see section 1.2.3), associated to a fast identification of the
dominant strains of a sample, would allow to artificially amplify during the sequencing
the minority strains by rejecting the reads from already identified strains.

Compromise made during the wet lab part

The wet lab part was realized by Emeline Roux during the thesis. This part is also
to be taken into account in the bacterial strain identification time. The portability of
the MinION sequencer means that it can be used directly in each laboratory (and even
outside laboratories [Johnson et al. 2017; Castro-Wallace et al. 2017]) without having to
send the sample to a sequencing platform. This is a big practical improvement for faster
identification in situ.
However, the wet lab part may be relatively long to set up and should therefore be
optimized. The trade-offs in this part are mainly between time and quality/length of
reads as well as production cost.
During our experiments, DNA was extracted via a specific kit for long reads, using
mostly ONT’s R9.4 flowcell for sequencing (Flongles have also been tried and allow to
decrease the cost of sequencing at the expense of a lower number of reads in the output).
The extraction of long fragments DNA requires tedious passage times in the gravity
column (from 6 to 8 hours, depending on the strain) and is quite expensive. The choice
of the extraction method is crucial to reduce costs and times as much as possible while
maintaining good ORI performance. A DNA extraction kit designed for short reads and
therefore faster and cheaper would tends to fragment more the sampled DNA. A good
compromise between speed and quality could however be obtained with a fast DNA
extraction with magnetic beads.
Concerning the nanopore library sequencing kit, the rapid barcoding kit was mostly
used. This kit reduces a little the size of the reads obtained (factor 3) but also decreases
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a lot the preparation time (factor 20) compared to a classical nanopore kit SQK-LSK109.
Note that the incubation times for all protocols have been increased to match those of
the New England Biolabs (NEB) enzyme supplier
Regarding the sequencing time required by ORI to perform identification, less than
10 minutes of sequencing are sufficient to produce 4,000 reads. Overall, from sample
collection to sequence files, for a sample containing 4 strains, it takes less than 6 hours (for
a total cost of 200 emaximum using Flongles). From this sequence file, the identification
time achieved by ORI is dependent on the size of the index used (about 30 minutes for
an index containing all 95 S. thermophilus available in the current databases and about
50 minutes for an index containing 1 026 lactic bacterial genomes from S. thermophilus,
Lactobacillus delbruecki and Bifidobacterium).

Taking this into account, the long term goal of bacterial identification from nanopore
sequencing would be to have an analysis report of the bacterial strains present in a sample
directly at the output of the sequencing using a simple laptop computer. This would
allow the rapid study of samples in the field and thus properly exploit the advantage
brought by the portability of the Oxford MinION nanopore sequencer. The development
of ORI is helping to move in this direction.





Appendices

Figure S1: Simplified diagram showing the fragments obtained by the first Sanger se-
quencing visible as bands on the polyacrylamide gel.
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Table S3: S. thermophilus strains identification by ORI, with and without merge index,
in a balanced mixture of 4 or 6 strains more or less genetically close, by using 1000, 4000
or 16000 Nanopore sequencing reads. Best results are in bold. Values of Hamming dis-
tance (0 = perfect identification); MCC: Matthews Correlation Coefficient (1 = perfect
correlation); ratio: number of strains identified / number of strains present (1 = perfect
number); std: standard deviation.

(a) Heterogeneity results (variable number of strains mixed):
Method ORI ORI_merge

Number of strains 4 6 4 6

Distance

median 0 0 0 0
mean 0.73 0.31 0.53 0.29
std 2.64 1.13 1.78 1.19

[min,max] [0,15] [0,7] [0,7] [0,7]

MCC mean 0.70 0.65 0.94 0.96
std 0.18 0.15 0.10 0.08

Ambiguity mean 0.65 0.56 0.93 0.96
std 0.25 0.21 0.19 0.15

(b) Data quantity (different number of .fastq reads):
Method ORI ORI_merge

Number of reads 1000 4000 16000 1000 4000 16000

Distance

median 0 0 0 0 0 0
mean 0.17 0.80 0.60 0 0.43 0.80
std 0.73 2.93 1.80 0 1.43 2.14

[min,max] [0,4] [0,15] [0,7] [0,0] [0,7] [0,7]

MCC mean 0.55 0.64 0.78 0.86 0.93 0.98
std 0.20 0.18 0.14 0.14 0.12 0.05

Ambiguity mean 0.44 0.64 0.80 0.77 0.92 1.05
std 0.17 0.20 0.20 0.21 0.12 0.13

(c) Resolution power (proximity between strains within the mixture ):
Method ORI ORI_merge
Proximity distant medium close distant medium close

Distance

median 0 0 0 0 0 0
mean 0.10 1.17 0.30 0 0.90 0.33
std 0.54 3.16 1.27 0 2.17 1.35

[min,max] [0,3] [0,15] [0,7] [0,0] [0,7] [0,7]

MCC mean 0.75 0.61 0.6 0.93 0.87 0.97
std 0.17 0.24 0.14 0.09 0.15 0.09

Ambiguity mean 0.73 0.68 0.47 0.89 0.85 1
std 0.20 0.23 0.19 0.15 0.22 0.18

166



Table S4: Subdominant S. thermophilus strains identification by ORI, with-
out/with merge in a mixture of 4 or 6 strains, by using 1000, 4000 or 16000
Nanopore sequencing reads. Best results are in bold. Values of Hamming distance:
in all experiments, minimum value is 0 (perfect identification); MCC: Matthews Corre-
lation Coefficient (1 = perfect correlation); Ambiguity ratio: number of strains identified
/ number of strains present; std: standard deviation.

Number of strains 4 (ORI/ORI_merge) 6 (ORI/ORI_merge)
Number of reads 1000 4000 16000 1000 4000 16000

Distance

median 0/0 0/0 0/0 3/0 0/0 0/0
mean 19.8/19.8 9.9/0 0/0 30.3/15.4 26.7/0 0/0
std 24.2/24.2 19.8/0 0/0 35.9/29.4 36.3/0 0/0
max 49/49 49/0 0/0 74.2/74.2 74.2/0 0/0

MCC mean 0.28/0.38 0.42/0.78 0.57/0.9 0.22/0.38 0.34/0.65 0.63/0.8
std 0.35/0.32 0.35/0.2 0.34/0.21 0.28/0.34 0.28/0.17 0.16/0.14

Ambiguity mean 0.4/0.4 0.5/0.8 0.7/1 0.2/0.33 0.2/0.47 0.53/0.67
std 0.37/0.37 0.32/0.24 0.24/0 0.16/0.21 0.16/0.27 0.16/0.21
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Table S5: Precision of the Streptococcus thermophilus strains identification using ORI
with and without clustering of sibling strains for all the experiments. The clusters are
the same as in Table S5. The percentage represents the number of times the strain was
correctly identified divided by the number of times it was identified. This corresponds
to the precision: TP/(TP+FP) with TP = true positives and FP = false positives.

Feuille1

Page 1

Cluster id Strain Precision with merge (%)

2
CIRM1048 54.5

100.0 
CIRM1049 81.2

3 CIRM1051 100.0 100.0

4 CIRM1055 100.0 100.0

5

CIRM29 100.0

91.8CIRM1116 100.0

CIRM1122 100.0

6
CIRM18 33.3

100.0
CIRM32 80.6

7

CIRM67 50.0

100.0

CIRM36 60.0

CIRM65 77.3

CIRM2101 100.0

CIRM23 100.0

8
CIRM967 100.0

100.0
CIRM961 100.0

No cluster

CIRM1125 62.5 76.0

CIRM19 83.3 100.0

CIRM368 89.5 94.4

CIRM1050 100.0 100.0

CIRM30 100.0 100.0

CIRM1046 100.0 100.0

JIM_8232 100.0 100.0

CIRM998 100.0 100.0

CIRM772 100.0 100.0

CIRM1121 100.0 100.0

CIRM1035 100.0 100.0

CIRM336 100.0 100.0

CIRM1047 100.0 100.0

CIRM1358 100.0 100.0

CIRM956 100.0 100.0

Precision without merge 
(%)
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Table S6: Precision of the Streptococcus thermophilus subdominant strains identification
using ORI without clustering of sibling strains for experiments with dominant and sub-
dominant strains. The clusters are the same as in Table S5. The percentage represents
the number of times the strain was correctly identified divided by the number of times
it was identified. This corresponds to the precision: TP/(TP+FP) with TP = true
positives and FP = false positives. Unpredicted means that the strain is not identified
in any experiment. Feuille2

Page 2

Cluster id Strain 1000 reads 4000 reads 16000 reads

2
CIRM1048 0.0 0.0 0.0
CIRM1049 50.0 100.0 33.33

3 CIRM1051 100.0 100.0 100.0
4 CIRM1055 Unpredicted Unpredicted Unpredicted

5
CIRM1116 0.0 0.0 0.0
CIRM1122 Unpredicted 66.67 66.67

CIRM29 50.0 50.0 33.33

6
CIRM18 0.0 50.0 0.0
CIRM32 33.33 0.0 42.86

7

CIRM2101 0.0 0.0 0.0
CIRM23 Unpredicted 0.0 33.33
CIRM65 0.0 14.29 0.0
CIRM67 50.0 Unpredicted Unpredicted

8
CIRM961 40.0 50.0 55.56
CIRM967 75.0 100.0 100.0

No cluster

CIRM1125 0.0 0.0 0.0
CIRM1121 0.0 0.0 0.0
CIRM1050 0.0 0.0 20.0

CIRM30 0.0 25.0 25.0
CIRM1047 0.0 25.0 25.0
CIRM998 0.0 50.0 66.67
CIRM956 Unpredicted Unpredicted 100.0

CIRM1035 Unpredicted 100.0 100.0
CIRM368 25.0 33.33 33.33
JIM_8232 40.0 40.0 40.0
CIRM1046 50.0 33.33 33.33
CIRM336 66.67 66.67 75.0
CIRM772 100.0 50.0 75.0

Precision without merge ( %)
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Figure S2: Graphical representation of the graph representing all existing proximity re-
lationships between the complete genomes of Bifidobacterium with their assembly identi-
fiers.
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Figure S3: Graphical representation of the graph representing all existing proximity rela-
tionships between the complete genomes of Bifidobacterium. For the related components
of more than 4 strains the name of the species present in the cluster is given.
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Figure S4: Clustering tree created from MicroScope presenting 40 strains of S. pyogenes
including the cluster identified in the results in section 5.3.
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Titre : Identification de souches d’une espèce bactérienne à partir de longues lectures
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Résumé : Actuellement, l’identification à partir de
séquences génomiques de souches d’une espèce
bactérienne présentes dans un échantillon reste
un processus complexe et chronophage. Cette dif-
ficulté provient de la grande similarité génomique
entre ces souches. Cependant, pouvoir les diffé-
rencier rapidement est crucial dans de nombreux
domaines, que ce soit en agroalimentaire (comme
Streptococcus thermophilus) ou en santé publique.
Récemment, la troisième génération de techno-
logies de séquençage, et plus particulièrement
les séquenceurs d’Oxford Nanopore Technologies,
permettent d’obtenir des séquences longues mais
erronées à partir d’échantillons contenant des
souches bactériennes. Ces lectures contiennent
plus d’informations que les anciennes lectures
courtes de seconde génération. Or, actuellement,
il existe encore assez peu de logiciels bioinforma-

tiques développés pour identifier les souches bac-
tériennes à partir de longues lectures erronées.
Cette thèse propose donc une nouvelle méthode
d’identification de souches bactériennes basée sur
l’hypothèse qu’une lecture nanopore est suffisam-
ment longue pour permettre de distinguer une
souche (ou un groupe de souches) des autres.
Cette méthode utilise une technique d’indexation
particulièrement compacte d’une base de données
de génomes connus. Elle repose également sur
l’utilisation d’une graine espacée afin de recher-
cher les séquences dans l’index en étant moins
sensible aux erreurs des lectures longues. La mé-
thode est implémentée dans un logiciel appelé
ORI (Oxford nanopore Reads Identification) qui a
montré des résultats robuste d’identification bacté-
rienne sur des données réelles de Streptococcus
thermophilus.

Title: Identification of strains of a bacterial species from long reads

Keywords: Bioinformatics, Bacterial strains identification, Streptococcus thermophilus, long
read, indexing, spaced seed, ORI

Abstract: Currently, the identification from ge-
nomic sequences of strains of a bacterial species
present in a sample remains a complex and time
consuming process. This difficulty comes from the
genomic similarity between these strains. How-
ever, being able to differentiate them quickly is cru-
cial in many fields, whether in agri-food (such as
Streptococcus thermophilus) or in public health.
Recently, the third generation of sequencing
technologies, and more specifically the Oxford
Nanopore Technologies sequencers, make it pos-
sible to obtain long but erroneous sequences from
samples containing bacterial strains. These reads
contain more information than the short reads from
the second generation. However, currently, there
are still few bioinformatics softwares developed

to identify bacterial strains from erroneous long
reads.
This thesis therefore proposes a new method of
bacterial strain identification based on the assump-
tion that a nanopore read is long enough to distin-
guish one strain (or group of strains) from others.
This method uses a particularly compact indexing
technique of a known genome database. It also re-
lies on the use of a spaced seed in order to search
for sequences in the index while being less sen-
sitive to long reads errors. The method is imple-
mented in a software called ORI (Oxford nanopore
Reads Identification) which has shown robust bac-
terial identification results on real data of Strepto-
coccus thermophilus.
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