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Summary

Carbon dioxide capture, utilization and storage (CCUS) is a powerful technology to reduce the
quantity of greenhouse gases emitted into the atmosphere. Generally, CO2 is stored in geological
underground structures such as depleted oil and gas reservoirs or saline aquifer. Once injected into
formations, CO2 is trapped underground by means of various trapping mechanisms. The formation
heterogeneities and changes in wettability are involved in one of them. The discontinuities thus
created are at the basis of the capillary barrier phenomenon, which plays a crucial role for flows in
porous media and in fractured ones in particular.

For Darcy flows, capillary pressure is often modeled as a function of fluid saturation and rock
type. Each lithology corresponds to a capillary pressure-saturation curve which displays strong
variations embodied by asymptotes. The change of curve induced by the change of rock requires
to define precisely the interface conditions between two different lithologies in order to model the
flow or the trapping of the fluids accurately through this interface. In view of these characteristics
and constraints, numerical difficulties may arise when simulating these flows, especially during
Newton iterations. Some choices of primary variables may be more appropriate than others.

In this thesis, we aim at improving Newton robustness in order to overcome the above-
mentioned difficulties and at proposing strategies to enforce transmission conditions at interfaces
in heterogeneous domains. Our work follows an order of increasing difficulties. First, we start
considering the easier model, the Richards equation, in a homogeneous medium. Then, we in-
troduce heterogeneities in the domain. Finally, we turn to the complete model in a challenging
configuration: the immiscible incompressible two-phase system in a heterogeneous domain.

To improve robustness, we propose a strategy based on variable switch and it is easily im-
plemented thanks to a fictitious variable that enables us to describe both the saturation and the
pressure and that we call parametrization technique. The numerical tests performed confirm the
potentiality of this technique, which allows the Richards equation to be solved without caring about
the choice of the primary unknown and without any convergence problems.

In a heterogeneous domain, a naive scheme without explicit inclusion of heterogeneities suf-
fers from a lack of accuracy in the predicted results. This motivates the introduction of a specific
treatment of the interfaces. Thus, we propose and compare several approaches to deal with the in-
terface transmission condition, analyzing their pros and cons when confronted to different physical
settings for the Richards equation as well as the two-phase Darcy flow model.
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Résumé

La séquestration du dioxyde de carbone constitue une technologie puissante permettant de réduire
la quantité de gaz à effet de serre émis dans l’atmosphère. En général, le CO2 est stocké dans
des structures géologiques souterraines telles que des réservoirs de pétrole et de gaz épuisés ou
des aquifères salins. Une fois injecté dans les formations, le CO2 est piégé dans le sous-sol au
moyen de divers mécanismes de piégeage. Les hétérogénéités de la formation et les changements
de mouillabilité sont impliqués dans l’un d’eux. Les discontinuités ainsi créées sont à la base du
phénomène de barrière capillaire, qui joue un rôle crucial pour les écoulements en milieu poreux
et en particulier dans les milieux fracturés.

Pour les écoulements de Darcy, la pression capillaire est souvent modélisée en fonction de
la saturation du fluide et du type de roche. A chaque lithologie correspond une courbe pres-
sion capillaire-saturation qui présente de fortes variations matérialisées par des asymptotes. Le
changement de courbe induit par le changement de roche nécessite de définir précisément les con-
ditions d’interface entre deux lithologies différentes afin de modéliser précisément l’écoulement ou
le piégeage des fluides à travers cette interface. Compte tenu de ces caractéristiques et contraintes,
des difficultés numériques peuvent apparaître lors de la simulation de ces écoulements, notamment
lors des itérations de Newton. Certains choix de variables primaires peuvent être plus appropriés
que d’autres.

Dans cette thèse, nous cherchons à améliorer la robustesse de Newton afin de surmonter les
difficultés mentionnées ci-dessus et à proposer des stratégies pour faire respecter les conditions
de transmission aux interfaces dans des domaines hétérogènes. Notre travail suit un ordre de
difficultés croissantes. Tout d’abord, nous commençons par considérer le modèle le plus simple,
l’équation de Richards, dans un milieu homogène. Ensuite, nous introduisons des hétérogénéités
dans le domaine. Enfin, nous nous tournons vers le modèle complet dans une configuration difficile
: le système diphasique incompressible immiscible dans un domaine hétérogène.

Pour améliorer la robustesse, nous proposons une stratégie basée sur le changement de variable
et elle est facilement mise en œuvre grâce à une variable fictive qui nous permet de décrire à la fois
la saturation et la pression et que nous appelons technique de paramétrisation. Les tests numériques
réalisés confirment la potentialité de cette technique qui permet de résoudre l’équation de Richards
sans se soucier du choix de l’inconnue primaire et sans problème de convergence.

Dans un domaine hétérogène, un schéma naïf sans prise en compte explicite des hétérogénéités
souffre d’un manque de précision dans les résultats. Ceci motive l’introduction d’un traitement
spécifique des interfaces. Ainsi, nous proposons et comparons plusieurs approches pour traiter la
condition de transmission aux interfaces, en analysant leurs avantages et inconvénients lorsqu’ils
sont confrontés à différents paramètres physiques pour l’équation de Richards ainsi que pour le
modèle d’écoulement diphasique de Darcy.
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Chapter 1

Introduction

This work comes within the area of simulation of multiphase flows in porous media, with CO2

storage as the primary application. We first describe this context in §1.1, laying emphasis on some
physical processes of interest for the sequel, among which capillarity is the most notable.

We then present in §1.2 the two mathematical models that will be considered throughout this
thesis. Far from being the most comprehensive ones from the point of view of physical effects, they
are nevertheless sufficiently representative of the difficulties that arise after numerical discretization.
The highlight of these difficulties and a review of the state of the art in §1.3 will allow us to state
the objectives and to provide an outline of the manuscript in §1.3.3.3.

1.1 Environmental and technical issues of CO2 storage

Global warming is a complex and non-negligible problem which is affecting the Earth and living
creatures. Signed on December 12th 2015 by 196 Parties at COP 21 in Paris, the Paris Agreement
on climate change became effective on November 4th 2016. Its goal is to limit global warming
to 1.5˝C, compared to pre-industrial levels. Different strategies have been adopted or are under
evaluation as instruments to alleviate climate change, such as greener technologies (nuclear energy,
wind energy etc. . . ). Unfortunately, the renewable energy development is slow and the demand for
fossil fuels in the world remains high, implying an increasing amount of greenhouse gases emitted
into the atmosphere.

1.1.1 Modes of storage

The carbon dioxide capture, utilization and storage (CCUS) technology is a powerful instrument to
reduce the quantity of greenhouse gases emitted into the atmosphere. Different CO2 sequestration
projects are in progress or in planning status in different parts of the world. The most notable
among these are the Sleipner project in Norway [131], the Weyburn project in Canada and the In
Salah project in Algeria. Moreover, diverse pilot-scale projects have also been carried out across
the world. They consist in injecting small quantities of CO2 into established formations for a
small period of time. The first pilot-scale project located in USA is Frio [92]. These projects
provide valuable information about the behavior of the carbon dioxide during the process. Also the
field-scale injections of CO2 have brought a greater understanding of the physics of the processes
involved in storage and on the monitoring tools which could be used for large-scale injections.
This need for information stems from the complexity and the risks of this process, such as carbon
dioxide leakage and induced seismicity. Numerical simulations have been performed to ascertain



12 Chapter 1. Introduction

these risks [114, 134]. Moreover, the complexity of the problem should not be overlooked, which
makes its modelling challenging. This is a multi-scale problem both in the temporal and spatial
scales in which physical and chemical mechanisms are involved.

Before speaking about the modeling of CO2 storage, let us provide more details about this
process. Storage modes can be classified into natural and man-made modes. The former includes
terrestrial sequestration (store the gas into soils and vegetation), while the latter includes storage in
geological formations and is the most largely used in sequestration technology: CO2 is stored in
geological underground structures such as depleted oil and gas reservoirs or saline aquifers (Figure
1.1). Depleted oil and gas reservoirs are fields that have been classified as uneconomical for further
production. These storage sites are already very well-known and there exist numerical computer
models of these formations which have been validated, providing enhanced confidence in them.
Moreover, these sites have been able to safely store oil and gas during a long time so they are
the favorite candidates for storage. The existing infrastructures and wells can be used for CO2

injection. On the other hand, the store capacity of these sites is lower than that of the saline aquifer
formations because of the necessity to avoid excessively high pressures that can damage the cap
rock. As already pointed out, saline aquifer formations are characterized by their highest storage
capacity. For example, for Alberta deep saline basin, an estimate of the order of 103 Gt storage
capacity has been made [87].

Figure 1.1: Different types of formations for geological storage of CO2. http://grrebs.ete.
inrs.ca/wp-content/uploads/2014/02/stockage_eng.jpg

Let us now discuss about storage process of CO2 in geological formations with a focus on saline
aquifers. A geological site to be selected as storage site, has to satisfy three main requisites: the
capacity, the injectivity and the containement. The capacity constraint guarantees that the site has
large pore volumes to store big quantities of CO2, i.e., an high porosity. The porosity

φ “
pore volume
total volume

 http://grrebs.ete.inrs.ca/wp-content/uploads/2014/02/stockage_eng.jpg
 http://grrebs.ete.inrs.ca/wp-content/uploads/2014/02/stockage_eng.jpg
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measures the fraction of the volume of voids over the total volume (Figure 1.2). If it also possesses
a high permeability (denoted by λ), which is a measure of the ability of a porous material to
allow fluids to pass through it, then the injectivity properties is satisfied, which ensures that lower
wellhead pressures can be employed to preserve desired injection rates. To avoid that injected
carbon dioxide leaks into groundwater or evades to the surface, because of the lower density of this
gas with respect to resident brine, adequate cap rocks (rocks characterized by very low permeability)
and sealing faults (if present) are needed. CO2 is stored in a supercritical phase, i.e., it is compressed
to higher pressures and temperatures about 89˝F and 7.4 MPa. It reduces the buoyancy differential
between CO2 and present fluids.

Figure 1.2: Example of media characterized by high and low porosities.

1.1.2 Physical processes involved

1.1.2.1 Trapping mechanisms

The injected supercritical CO2 is then trapped underground by means of two main trapping mech-
anisms: physical trapping and geochemical trapping.

Physical trapping. In this category we can distinguish two types of trapping. One is the struc-
tural trapping, in which the formation heterogeneities and changes of wettability play a crucial role.
Indeed an heterogeneous medium is characterized by different porosities, φ “ φpxq, and perme-
abilities, λ “ λpxq. This mechanism is similar to the one that has maintained oil and gas stored for
millennia. When the injection ceases, the supercritical CO2 tends to migrate upward via the porous
and permeable rock because of the buoyancy effect, and laterally through preferential pathways,
until it reaches a medium characterized by a low permeability cap rock, sealed discontinuities [89].
This prevents further migrations (Figure 1.3).

The second mechanism belonging to physical trapping is the residual/capillary trapping (Figure
1.4). While the carbon dioxide at supercritical state pervades the storage formations, reservoir
fluids are displaced and they fill the remaining spots. CO2 moves upward because of the density
differences and laterally as effect of viscous forces. The CO2 movement is stopped by the surface
tension between CO2 and brine [124]. Thereby CO2 is trapped in the pores at residual gas saturation.
This is called capillary effect.

The capillary pressure in a porous media depends on the wettability and interfacial tension
changes [24]. It is defined as the difference between the pressures of the non-wetting and wetting
phases. In a CO2-water system, CO2 is the non-wetting phase and water is the wetting one.
Capillary pressure formula is given by the Young-Laplace equation

pc “ pCO2 ´ pw “
2σw,CO2 cos θ

R
,
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Figure 1.3: Physical trapping of the injected CO2 due to the stratigraphic structure of the formation
[86].

Figure 1.4: Residual trapping of CO2 due to the pore structure of the formation. The CO2 plume
movement is indicated by the arrows [86].
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where R is the pore radius, σw,CO2 is the interfacial tension between water and CO2, and θ is the
contact angles between the wetting medium and the rock surface (Figure 1.5).

Figure 1.5: Young-Laplace’s equation: definition of the capillary pressure in a tube.

The contact angle is the angle between the surface of the liquid and the outline of the contact
surface and it is a measure of the wettability, of a solid by a liquid. Young’s equation

σsg “ σsl ` σlg ¨ cos θ

describes the relationship between the contact angle θ, the surface tension of the liquid σlg , the
interfacial tension σsl between liquid and solid and the surface free energy σs of the solid (Figure
1.6).

Figure 1.6: Schematic figure of contact angle.

The wettability of a fluid depends on its surface tension, the forces that drive a fluid’s tendency
to take up the minimal amount of space possible, and it is determined by the contact angle of the
fluid. So this angle is crucial to determine which is the wetting and non wetting phase. If θ ă 90˝,
water is the wetting phase but if θ ą 90˝ then CO2 is the wetting phase (Figure 1.7).

Geochemical trapping. Geochemical trapping occurs when CO2 reacts with the formation brine
and the rock. CO2 no longer appears as a separate phase, increasing storage capacity and promoting
long-term storage. In this category we find the solubility trapping and the mineral trapping. The
solubility trapping is the result of the CO2 dissolution in the brine, leading to dense CO2-saturated
brine. An example of a possible reaction is

CO2paqq ` H2OØ H` ` HCO´3 .
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Figure 1.7: Water, CO2 and mineral surface system illustrating different contact angles measured
through the water phase.

Gradually the latter becomes denser than the adjacent reservoir fluids and falls to the bottom of the
formation progressively. The mineral trapping is the result of the conversion of CO2 into calcite
because of reactions with solid minerals. CO2 in aqueous phase produces a weak acid which reacts
with mineral rocks to form bicarbonate ions characterized by different cations depending on the
mineralogy of the formation. An example of reaction with potassium basic silicate is

3K-feldspar` 2CO2 ` 2H2OØ Muscovite` 6Quartz` 2K` ` 2HCO´3 .

1.1.2.2 Other phenomena and laws

Various phenomena are involved in CO2 injection and storage: transport phenomena (convection,
diffusion and dispersion) and chemical phenomena (dissolution of CO2 in water, acidification of the
surrounding water, reactions between water and rock). There is a very strong link between these
different phenomena. The injection of CO2 and its dissolution in the water strongly influences the
flow. The chemical equilibrium of the medium is modified by the dissolution of CO2 in water, which
can imply numerous chemical reactions, in particular dissolution and precipitation reactions of the
rock. These reactions can modify the porosity, the permeability and thus change the characteristics
of the porous medium, and therefore the flow properties.

Moreover, the storage of CO2 in aquifers is made possible by gravity, capillary and viscous
forces. These last ones are the dominant forces for the migration of the gas during the injection
phase, because of the resulting pressure gradient. Then, in the post-injection phase, buoyancy
and capillary forces make possible the CO2 trapping. The drainage and imbibition-like processes
during the injection and post-injection phases lead to hysteresis, i.e. a process in which capillary
pressure and relative permeability curves change pathways (Figure 1.8). It is very important to the
CO2 trapping process modeling [84,98,129].
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Figure 1.8: Hysteresis of capillary pressure and relative permeability curves [110].

The basic governing equations of an appropriate model are usually divided into two categories:
fundamental balance laws, which express the conservation of mass and energy of the species,
and empirical constitutive laws, which reflect the experimental knowledge of physicists about the
physical effects under consideration. Moreover, the system can be enriched by other physical equa-
tions to predict geomechemical effects (permeability and porosity changements) and geochemical
reactions, as the ones reported in the geochemical trapping paragraph.

Balance laws. The mass conservation equations connect the time rate of mass change of a species
to the convection and the diffusive terms, as well as the source (sink) term, When each phase α
contains only one component, the mass balance for phase α is typically

Btpφ%αsαq `∇ ¨ p%αvαq “ qα, (1.1.1)

where φ P r0, 1s is the porosity of the medium, while sα P r0, 1s is the saturation, %α ą 0 is the
density, vα P R2 or R3 is the filtration velocity vector and qα is the source/sink term of phase α.
When thermal effects are into account, one or several energy balance laws must also be envisaged.
We shall neglect thermal effects in this thesis.

Darcy laws. The flow velocity of a fluid can be expressed via the Darcy law [55,112], which states
that, for each phase α,

vα “ ´λ
kr,αpsα, xq

µα
p∇pα ´ %αgq, (1.1.2)

where λ is the absolute permeability of the medium, kr,α ą 0 is the relative permeability of phase
α and g P R2 our R3 is the gravity vector. The sign suggests that, in absence of gravity, the flux
flows from the high pressure zone to the low pressure one. The notion of relative permeability
expresses the observation that a fluid in contact with another does not move in the same way as
if it were alone. It depends on the phase saturation value sα and on the wettability and density
properties of the other “contact” phases.

1.1.3 Simulation tools

In light of this brief overview of the physical and chemical processes that take place during CO2

storage, it is easy to see the complexity of this operation. In order to avoid the risks outlined above,
to predict the flow path of the injected CO2 and to optimize the well location, extensive simulations



18 Chapter 1. Introduction

must be carried out before the injection phase. This is where numerical mathematics comes into
action.

Normally, for modeling CO2 storage in saline aquifers either analytical or numerical models
are employed. The choice between the two depends on the purpose of the research, the given
problem and the available data. Analytical models can provide information about the eligibility of
a formation for storage [138], the plume migration [116], but their assumptions are oversimplified
to properly describe reservoir properties and model geometry heterogeneities. Moreover the geo-
chemical reactions occurring during the storage of CO2 cannot be described by analytical models.

Different forms of numerical modeling techniques have been employed to modeling of the
storage process such as streamline simulations, vertical equilibrium models and conventional grid-
based numerical models [48,57,83,95]. Let us cite some relevant simulators. IFP Energies Nouvelles
has designed the CO2 Reservoir Environmental Simulator (COORES) research code to study CO2

storage process from the well to the basin scale [102, 103]. COORES simulates multi-component
three-phase and 3-D fluid flow in heretogeneous porous media, using structured or unstructured
grids.

Another simulator project is the one developed by the University of Stuttgart: DuMux [79]. It
is a multi-scale, multi-physics toolbox for the simulation of flow and transport processes in porous
media. It is based on the Distributed and Unified Numerics Environment (DUNE) [21, 22] which
goal is to allow the use of different implementations as grids, solvers, etc. using C++ techniques.
The main intention of DuMux is to provide a scheme for easily and efficiently implement models for
porous media flow problems. Widely used in oil and gas industry is the simulation tool ECLIPSE
[125]. It includes two software packages: ECLIPSE Black Oil (E100) and ECLIPSE Compositional
(E300). The first one is a fully implicit, 3D black oil simulator; the second one is a compositional
simulator which have been enriched by options such as CO2STORE and GASWAT to handle CO2

solubility in water.

1.2 Two mathematical models

The simulation of flows porous media has evolved into a mature technology, with an abundant
catalog of models adapted to different needs and a wide range of numerical methods. The constant
quest for a better robustness of softwares is at the root of intense research activities. In order to
elaborate on the difficulties we want to address, we first need to fix ideas on the models and the
schemes. In this section, we introduce two mathematical models: a “difficult” one called two-phase
system and an “easier” one called Richards’ equation.

We denote by Ω a bounded open set of Rd (with d “ 2, 3) representing the porous medium,
by T ą 0 a finite time horizon and by

QT :“ Ωˆ p0, T q

the corresponding space-time cylinder. The boundary of the space domain is split into two parts
according to

BΩ “ ΓD Y ΓN, ΓD X ΓN “ H,

and ΓD having non-zero measure. One phase is called wetting (w) whereas the other one is called
non-wetting (nw). The generic subscript for phase is α P tw,nwu.
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1.2.1 Immiscible incompressible two-phase flow in porous media

By “incompressible” it is understood that both densities ρα are uniform. By “immiscible” we mean
that both viscosities µα are given constant. The two-phase system is made up of the following
equations:

• The two balance laws (1.1.1) divided by ρα and in which qα “ 0; more explicitly

Btpφswq `∇ ¨ vw “ 0 in QT , (1.2.1a)
Btpφsnwq `∇ ¨ vnw “ 0 in QT . (1.2.1b)

• The two Darcy laws (1.1.2), namely,

vw` λ
kr,wpsw, xq

µw
p∇pw ´ %wgq “ 0 in QT , (1.2.2a)

vnw`λ
kr,nwpsnw, xq

µnw
p∇pnw ´ %nwgq “ 0 in QT . (1.2.2b)

• The capillary pressure-saturation relationship

pnw ´ pw “: pc in QT , (1.2.3a)
snw ´ Snwppc, xq “ 0 in QT . (1.2.3b)

• The volume conservation
sw ` snw “ 1 in Q. (1.2.4)

• The Dirichlet and Neumann boundary conditions

pα “ pD
α on ΓD ˆ p0, T q, (1.2.5a)

vα ¨ ν “ qN
α on ΓN ˆ p0, T q, (1.2.5b)

where ν P Rd stands for the outward unit normal vector to BΩ.

• The initial condition
sαp¨, t “ 0q “ s0

α in Ω. (1.2.6)

The significance of various quantities has been given in §1.1.2.2. The unknowns of the system are
sα, vα, pα which are functions of px, tq P QT .

Let us now comment on the data. The porosity φ and the absolute permeability λ are given
functions of the space variable x. It is assumed that they both have positive lower bounds, that is,

φ ě φmin ą 0, λ ě λmin ą 0.

By definition (1.2.3a), the capillary pressure pc is the difference between the two phase pressures.
Traditionally, it is given as an empirical function of the saturation of the wetting fluid and on
the type of rock present at point x. Here, for the two-phase system, we choose to take it as
a function S´1

nw p¨, xq of the non-wetting saturation snw, in order to deal with a non-decreasing
capillary pressure law. The relative permeability kr,α takes values in r0, 1s and is an increasing
function of sα and of the rock type present present at point x.
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In the above equations, we have written kr,αpsα, xq and Snwppc, xq to stress the explicit de-
pendency of kr,α and Snw on location x through the rock type at this point. When several types
of rock are encountered, the medium is said to be heterogeneous. When only one type of rock can
be found, the medium is said to be homogeneous. In the latter case, we can simply write kr,αpsαq
and Snwppcq. It has been proven that system (1.2.1)–(1.2.6), for suitable initial and boundary con-
ditions, admits a solution in homogeneous domains [52, 101]. Moreover, an analysis of the limit as
the constitutive relation degenerates into a maximal monotone graph is undertaken in [9]. Finally,
regularity properties of the solution are investigated in [7].

1.2.2 Richards’ approximation

Richards’ equation is an approximation of the previously described two-phase model. It is valid in
the so-called vadose zone (also termed unsaturated zone). This approximation is of interest in the
field of hydrology and also in mathematics, as it allows one to work initially on a reduced model
and then move on to the full model. Thanks to the assumption

pnw “ 0,

the wetting and non-wetting phases of the two-phase system (1.2.1)–(1.2.6) can be decoupled. The
resulting equations for the wetting phase are

• The volume balance law
Btpφswq `∇ ¨ vw “ 0 in QT . (1.2.7)

• The Darcy law

vw ` λ
kr,wpsw, xq

µw
p∇pw ´ %wgq “ 0 in QT . (1.2.8)

• The capillary pressure-saturation relationship

sw ´ Swppw, xq “ 0 in QT . (1.2.9)

• The Dirichlet and Neumann boundary conditions

pw “ pD
w on ΓD ˆ p0, T q, (1.2.10a)

vw ¨ ν “ qN
w on ΓN ˆ p0, T q. (1.2.10b)

• The initial condition
swp¨, t “ 0q “ s0

w in Ω. (1.2.11)

Note that in the capillary pressure-saturation law (1.2.9), we now work with sw and pw, which is
the opposite of the capillary pressure. Since only the wetting phase is involved, we can safely omit
the subscript w for notational convenience. System (1.2.7)–(1.2.11) then becomes

Btpφsq `∇ ¨ v “ 0 in QT , (1.2.12a)

v ` λ
krps, xq

µ
p∇p´ %gq “ 0 in QT , (1.2.12b)

s´ Spp, xq “ 0 in QT , (1.2.12c)
p “ pD on ΓD ˆ p0, T q, (1.2.12d)

v ¨ ν “ qN on ΓN ˆ p0, T q, (1.2.12e)
sp¨, t “ 0q “ s0 in Ω. (1.2.12f)
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Elimination of v leads to the reduced system

Btpφsq ´∇ ¨
”

λ
krps, xq

µ
p∇p´ %gq

ı

“ 0 in QT , (1.2.13a)

s´ Spp, xq “ 0 in QT , (1.2.13b)

p “ pD on ΓD ˆ p0, T q, (1.2.13c)

´λ
krps, xq

µ
p∇p´ %gq ¨ ν “ qN on ΓN ˆ p0, T q, (1.2.13d)

sp¨, t “ 0q “ s0 in Ω. (1.2.13e)

The first two equations (1.2.7)–(1.2.8) can be further reduced by eliminating either the saturation to
have a scalar equation in p, namely,

BtpφSpp, xqq ´∇ ¨
”

λ
krpSpp, xq, xq

µ
p∇p´ %gq

ı

“ 0, (1.2.14)

or the pressure to have a scalar equation in s, namely,

Btpφsq ´∇ ¨
”

λ
krps, xq

µ
p∇S´1ps, xq ´ %gq

ı

“ 0, (1.2.15)

assuming invertibility of Sp¨, xq for each fixed x.
In a homogeneous domain or inside a homogeneous subdomain, it is customary to define the

Kirchhoff transform as

u “ U ppq :“

ż p

´8

krpSpπqqdπ. (1.2.16)

This new quantity, also known as the global pressure, combines the two main nonlinearities in one
and has the advantage of linearizing the gradient term, insofar as

∇u “ krpSppqq∇p.

It can be used instead of p as primary variable. Indeed, defining the new function S puq “ Sppq,
we can recast the homogeneous version of (1.2.13) under the form

Btpφsq ´∇ ¨
”λ

µ
p∇u´ krpsq%gq

ı

“ 0, in QT , (1.2.17a)

s´S puq “ 0, in QT , (1.2.17b)

u “ U ppDq on ΓD ˆ p0, T q, (1.2.17c)

´
λ

µ
p∇u´ krpsq%gq ¨ ν “ qN on ΓN ˆ p0, T q, (1.2.17d)

sp¨, t “ 0q “ s0 in Ω. (1.2.17e)

The existence and uniqueness of the solution of system (1.2.17) is studied in [8,117].

1.2.3 Constitutive relations

In industrial applications, the most classical models used for the relative permeabilities kr,α and
the capillary pressure-saturation relation Sα are those of Brooks-Corey [39] and van Genuchten-
Mualem [133]. Both models involve various parameters such as the residual non-wetting saturation
srn P r0, 1s and the residual wetting saturation srw P r0, 1s such that

srn ` srw ă 1. (1.2.18)
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1.2.3.1 Two-phase system

In a homogeneous domain characterized by a given pair psrn, srwq, the effective non-wetting satu-
ration is defined as

rseff :“ rseffpsnwq “ Πr0,1s

ˆ

p1´ srwq ´ snw

p1´ srwq ´ srn

˙

“ Πr0,1s

ˆ

sw ´ srw

p1´ srnq ´ srw

˙

, (1.2.19)

where Πr0,1sp¨q denotes the projection on the interval r0, 1s, that is,

Πr0,1sprq “

$

’

&

’

%

0 if r ă 0,

r if 0 ď r ď 1,

1 if r ą 1.

(1.2.20)

Then, we have

• for the Brooks-Corey model:

kr,wpsnwq “ rs
3`2{n
eff , (1.2.21a)

kr,nwpsnwq “ p1´ rseffq
2p1´ rs

1`2{n
eff q, (1.2.21b)

Snwppcq “

$

’

&

’

%

1´

„

srw ` p1´ srn ´ srwq

ˆ

pc

pb

˙´n

if pc ą pb,

srn if pc ď pb;

(1.2.21c)

• for the van Genuchten-Mualem model:

kr,wpsnwq “ rs
1{2
eff t1´

“

1´ rs
1{m
eff

‰m
u2, (1.2.22a)

kr,nwpsnwq “ p1´ rseffq
1{2

“

1´ rs
1{m
eff

‰2m
, (1.2.22b)

Snwppcq “

$

’

&

’

%

1´

„

srw ` p1´ srn ´ srwq

ˆ

1`

ˇ

ˇ

ˇ

ˇ

ξpc

%wg

ˇ

ˇ

ˇ

ˇ

n˙´m

if pc ą 0,

srn if pc ď 0,

(1.2.22c)

with m “ 1´ 1{n.

The purpose of the projection operator Πr0,1s in (1.2.19) is to make formulas for kr,α valid for all
sα P r0, 1s. In particular, we have

kr,αpsαq “

#

0 for sα P r0, srαs,

1 for sα P r1´ srα, 1s,
(1.2.23)

where α stands for the complementary phase of α, i.e., α “ nw if α “ w and α “ w if α “ nw. In
the formulas for Snw, the parameter pb ą 0 is the entry pressure. The function Snw : R Ñ r0, 1s
can be easily seen to be nondecreasing and to satisfy

Snwppcq “ srn for pc ď pb, (1.2.24a)
Snwppcq Ñ 1´ srw as pc Ñ `8. (1.2.24b)
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1´ srn srw pb rPas n λ rm2s φ

1.0 0.1 1.4708 ¨ 103 3.0 10´11 0.35

Table 1.1: Parameters used for the Brooks-Corey model.

1´ srn srw n λ rm2s ξ rm´1s φ

1.0 0.0782 2.239 6.3812 ¨ 10´12 2.8 0.3658

Table 1.2: Parameters used for the van Genuchten-Mualem model.

(a) Brooks-Corey model. (b) van Genuchten-Mualem model.

Figure 1.9: Plot of the capillary pressure curve using the Brooks-Corey model and the van
Genuchten-Mualem model.

(a) Brooks-Corey model. (b) van Genuchten-Mualem model.

Figure 1.10: Plot of the wetting and non-wetting relative permeability curve using the Brooks-Corey
model and the van Genuchten-Mualem model.
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In Figures 1.9–1.10 we report the plot of the capillary pressure pc and relative permeability
curves kr,α for the Brooks-Corey model and the van Genuchten-Mualem model using parameters
shown in Tables 1.1–1.2 respectively.

The exponents n,m, the entry pressure pb and the parameter ξ are also characteristic properties
of the rock type. In a homogeneous domain, these are given constants. In a heterogeneous domain,
the quantities

srwpxq, srnpxq, npxq, mpxq, pbpxq, ξpxq

depend on the coordinate x through the local rock type. Plugging their known values into (1.2.19)
and (1.2.21)–(1.2.22), we obtain

rseffpsnw, xq, kr,wpsnw, xq, kr,nwpsnw, xq, Snwppc, xq.

1.2.3.2 Richards’ equation

In a homogeneous domain characterized by the residual saturations psrn, srwq, the effective satu-
ration is defined as

seff :“ seffpsq “ Πr0,1s

ˆ

s´ srw

p1´ srnq ´ srw

˙

, (1.2.25)

where Πr0,1s is the projection on r0, 1s, defined in (1.2.20). We recall that the subscript w has been
dropped and that the capillary pressure-saturation is now written as s “ Sppq, where p “ ´pc.
Then, it follows from (1.2.21)–(1.2.22) that

• for the Brooks-Corey model:

krpsq “ s
3`2{n
eff , (1.2.26a)

Sppq “

$

’

&

’

%

srw ` p1´ srn ´ srwq

ˆ

´
p

pb

˙´n

if p ă ´pb,

1´ srn if p ě ´pb,
(1.2.26b)

• for the van Genuchten-Mualem model:

krpsq “ s
1{2
eff

`

1´
“

1´ s
1{m
eff

‰m˘2
, (1.2.27a)

Sppq “

$

’

&

’

%

srw ` p1´ srn ´ srwq

„

1`

ˇ

ˇ

ˇ

ˇ

ξp

%g

ˇ

ˇ

ˇ

ˇ

n´m

if p ă 0,

1´ srn if p ě 0,

(1.2.27b)

with m “ 1´ 1{n.

Thanks to the projection operator Πr0,1s, the formulas for kr are valid for all s P r0, 1s. In particular,
we have

krpsq “

#

0 for s P r0, srws,

1 for s P r1´ srn, 1s.
(1.2.28)

The function S : RÑ r0, 1s is nondecreasing and satisfies

Sppq “ 1´ srn for p ě ´pb, (1.2.29a)
Sppq Ñ srw as pÑ ´8. (1.2.29b)
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Figure 1.11: Water pressure and relative permeability curves for the Brooks-Corey model using
parameters reported in Table 1.1.

Figure 1.12: Water pressure and relative permeability curves for the van Genuchten-Mualem model
using parameters reported in Table 1.2.

In Figures 1.11–1.12, we report the plot of the water pressure p “ ´pc and relative permeability
curves kr for the Brooks-Corey model and the van Genuchten-Mualem model using parameters
shown in Tables 1.1–1.2 respectively.

In a heterogeneous domain, the quantities

srwpxq, srnpxq, npxq, mpxq, pbpxq, ξpxq

depend on the coordinate x through the local rock type. Plugging their known values into (1.2.25)
and (1.2.26)–(1.2.27), we obtain

seffps, xq, krps, xq, Spp, xq.

Going back to a homogeneous domain or subdomain, let us derive the relationship s “ S puq
when the Kirchhoff transform is applied along the lines of (1.2.16)–(1.2.17). Because the latter cannot
be analytically computed for the van Genuchten-Mualem model, we just do it for the Brooks-Corey
model. By straightforward calculations, we obtain

S puq “

$

’

&

’

%

srw ` p1´ srn ´ srwq

ˆ

u

ub

˙n{p3n`1q

if u ď ub,

1´ srn if u ą ub,

(1.2.30)



26 Chapter 1. Introduction

with ub “ ´pb{p3n` 1q. The behavior of such a function is illustrated in Figure 1.13.

Figure 1.13: Profile of the wetting saturation-global pressure graph for Brooks-Corey model using
parameters reported in Table 1.1.

1.3 Towards more robust and accurate numerical approximations

1.3.1 Two critical difficulties

We are going to explain the difficulties that arise in the numerical resolution of the Richards equation
(1.2.13) in the saturation-pression formulation. Those for the Richards equation (1.2.17) with the
Kirchhoff transform and for the two-phase system (1.2.1)–(1.2.6) are similar in essence.

Richards’ equation is a nonlinear, degenerate elliptic-parabolic partial differential equation. Loss
of ellipticity stems from the fact that kr is allowed to vanish, by virtue of (1.2.28) and as highlighted
in the left panel of Figure 1.14. This is aggravated by the low regularity of the constitutive laws kr
(at srw and 1 ´ srn) and S (at p “ ´pb), as underlined in Figure 1.15. However, the worse is yet
to come.

Figure 1.14: Relative permeability law kr (left) and saturation-pression relationship Sppq (right).

1.3.1.1 Lack of robustness due to stiffness of closure laws

Even in the regions where kr and S are smooth, other delicate issues contribute to make its numer-
ical resolution challenging. On the one hand, when the saturation s reaches value 1, the function
S is no longer invertible and its derivative is equal to zero, which causes the Richards equation to
degenerate from parabolic to elliptic. At the practical level, this implies that the saturation s cannot
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(a) Blow-up in k1
rpsq for van Genuchten-Mualem. (b) Kink in Sppq for Brooks-Corey.

Figure 1.15: Close-up on the severe stiffness of the constitutive laws krpsq and Sppq.

be taken as a primary unknown for this regime of solution. In the same vein, it is not recommended
to choose s as the primary variable in dry zones ps ! 1q where S is very flat, as illustrated in the
right panels of Figures 1.14–1.15. Indeed, inversion in p becomes ill-conditioned in the sense that
pS´1q1psq Ñ 8.

On the other hand, assuming that the pressure p is taken as the primary unknown, there is no
guarantee the algebraic system of discretized equations can be solved in an efficient way, say, by
the Newton method. To expand on this matter, let us consider a general discrete approximation
space Xh for the pressure p. Using a backward Euler method in time, discretization methods in
space usually amount to finding, at each time step n, a pnh P Xh such that

@

φpSppnhq ´ Sppn´1
h qq, vh

D

`∆tn
B

λkrpSppnhqq
µ

p∇pnh ´ %gq,∇vh
F

` . . . “ 0 (1.3.1)

for all vh P Xh. In (1.3.1), x¨, ¨y denotes a discrete scalar product related to a given scheme,
∆tn “ tn´ tn´1 and the dots may include other terms like boundary conditions (or even sources)
we do not detail. In the sequel, we will assume that these terms are absent without loss of generality.

The most classical way to solve equation (1.3.1) consists in using Newton’s method. Starting
from pn,0h “ pn´1

h , at each iteration k ě 0 find

pn,k`1
h “ pn,kh ` δn,kh

such that the increment δn,kh solves the linearized system

@

φSppn,kh q, vh
D

`
@

φS 1ppn,kh qδn,kh , vh
D

`∆tn
B

λ
krpSppn,kh qq

µ
p∇pn,k`1

h ´ %gq,∇vh
F

`∆tn
B

λ
k1rpSpp

n,k
h qq

µ
S 1ppn,kh qδn,kh p∇pn,kh ´ %gq,∇vh

F

“
@

φSppn´1
h q, vh

D

. (1.3.2)

Under favorable conditions, the Newton method converges quadratically provided that the starting
point is close enough to the exact solution. Here, we are very far from this ideal situation. Trou-
bles occur with the linear system (1.3.2) itself, since the matrix on the left-hand side contains the
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derivatives k1rpSpp
n,k
h qq and S 1ppn,kh q, each of which may become very large or even blow up, as

shown in Figure 1.15. This testifies to a highly ill-conditioned problem, which in practice leads to
a failure of convergence for the Newton method.

1.3.1.2 Lack of accuracy due to strong heterogeneities

Heterogeneous domains, as suggests the adjective, are characterized by the presence of different
lithologies presenting, consequently, piecewise-uniform petrophysical properties. Each lithology i
gives rise to a pair pkr,i,Siq of stiff closure laws [23, §5.1]. A strong contrast in the parameters of
these laws across an interface gives rise to an additional difficulty in the numerical resolution of the
model, and appears therefore as a challenge to be taken up.

Indeed, it is observed (§3–§4) that not only the robustness of the nonlinear iterative solver is
worsened, but also the orders of convergence of standard numerical methods become extremely
low with respect to the mesh size (e.g., 0.3 instead of 1, as examplified in Figure 1.16 for the test
case of §4.4.1.1). The heart of the matter is that the transmission conditions, especially pressure
continuity, are only recovered asymptotically. As a consequence, a naive scheme without any
specific treatment for heterogeneities would suffer from a lack of accuracy in the predicted results.
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Figure 1.16: L2pQT q relative error in saturation for a filling test case using the Brooks-Corey model
for a domain with two rock types: sand and clay.

Discontinuities in the capillary pressure function across the interface between different geologi-
cal layers may yield discontinuous saturations, since the phase pressures (thus the capillary pressure)
have to remain continuous provided both phases are present on both sides of the interface. The
effects of such discontinuities have been discussed for instance in [25, 113, 132], while mathemat-
ical contributions concerning the analysis of this phenomenon have been proposed in [27, 42, 46].
These discontinuities are at the basis of the capillary barrier phenomenon illustrated in Figure 1.17.
The capillary barrier effect plays a chief role for flows in porous media and in fractured ones in
particular. This is why an improved accuracy in its computation is a major issue for engineers.
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Figure 1.17: Within a homogeneous ideal porous medium with constant pore size, the resulting
capillary force on a connected component of non-wetting phase vanishes (left). This is no longer
true if the non-wetting phase straddles the interface between two idealized porous media (right):
capillarity generates a force orthogonal to the interface. Source: [13]

1.3.2 Classical approaches

Let us review some of the numerous attempts that have been made in the literature to address the
two above difficulties. Again, for the sake of simplicity, the presentation is made in an informal
way for the Richards equation.

1.3.2.1 For the robustness of nonlinear iterative solvers

Alternatives to Newton’s method. In place of the original Newton iterate (1.3.2), many variants
have been advocated to ensure a greater robustness, often at the expense of the rate of convergence.

The modified Picard method, proposed by Celia et al. [49], deliberately omits the derivative k1r
of the relative permeability. In other words, the linear system to be solved at each iteration becomes

@

φSppn,kh q, vh
D

`
@

φS 1ppn,kh qδn,kh , vh
D

`∆tn
B

λ
krpSppn,kh qq

µ
p∇pn,k`1

h ´ %gq,∇vh
F

“
@

φSppn´1
h q, vh

D

. (1.3.3)

By removing k1r to avoid infinity in the Jacobian matrix, we end up with a quasi-Newton method,
the convergence of which is notoriously slower. But at least iterations do not stop prematurely and
their convergence appears to be less dependent on the mesh size than for Newton’s case [107].

The original Newton method and the modified Picard method can be hybridized, as suggested
by Lehmann and Ackerer [104]: its basic version consists in performing a few iterations with the
modified Picard method and then in switching to Newton’s scheme, once we have

}δn,ih ´ δn,i´1
h } ď δa ` δr}δ

n,i
h }.

Since δa and δr cannot always be prescribed easily beforehand, a fixed number of Picard iterations
may rather be performed at each time-step. Note that in case the time derivative is not linearized
in (1.3.3), the corresponding nonlinear system also gives a conservative approximation of ph.

Casulli and Zanolli [47] put forward the more sophisticated idea of nested Newton iterations,
assuming that the saturation-pressure relationship can be decomposed into the form S “ S1´S2,
where the derivatives of S1 and S2 are both nondecreasing. The derivative k1r is neglected, as in
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the modified Picard method. Thus, if k designates the current Picard iterate, ` andm the inner and
outer Newton iterates, the linearized procedure is now

´
@

φS2pp
n,k,`
h q, vh

D

´
@

φS 12pp
n,k,`
h qδn,k,`,m2,h , vh

D

`
@

φS1pp
n,k,``1,m
h q, vh

D

`
@

φS 11pp
n,k,``1,m
h qδn,k,`,m1,h , vh

D

(1.3.4)

`∆tn
B

λ
krpSppn,kh qq

µ
p∇pn,k,`,mh ´ %gq,∇vh

F

“
@

φSppn´1
h q, vh

D

with
δn,k,`,m1,h “ pn,k,``1,m`1

h ´ pn,k,``1,m
h , δn,k,`,m2,h “ pn,k,``1,m`1

h ´ pn,k,`h .

Both Newton loops stop once the nonlinearities related to S1 and S2 have been solved.
Another quasi-Newton method is the L-scheme, in reference to the Lipschitz constant that is

chosen as an abrupt substitute for the exact derivative of the accumulation term [118,128]. Replacing
S1ppn,kh q in the modified Picard iterate (1.3.3) by L “ supp |S 1ppq|, this scheme writes

@

φSppn,kh q, vh
D

`
@

φLδn,kh , vh
D

`∆tn
B

λkrpSppn,kh qq

µ
p∇pn,k`1

h ´ %gq,∇vh
F

“
@

φSppn´1
h q, vh

D

. (1.3.5)

List and Radu [107] proved that this scheme is unconditionnally linearly convergent with a rate
depending on L, the value of the time step and the mobility function λkr{µ but not on the mesh
size. In the same way as previously mentioned, this scheme can also be combined with Newton’s
one in order to accelerate convergence.

Preconditioned Newton’smethod. Another philosophy to gain in robustness is to keep Newton’s
method as the linearization scheme while judiciously preconditioning the system to be solved. Let
us recall that for a linear system

Aw “ b, (1.3.6)

a preconditioner is an invertible matrix P such that either product P´1A or AP´1 has a smaller
condition number. We also recall that the latter is involved in the upper bound on the error on
the solution of (1.3.6) generated by a small pertubation on the data. Rather than working with the
original system (1.3.6), we can consider

• the left-preconditioned system
pP´1Aqw “ P´1b, (1.3.7)

which alters the matrix and the right-hand side, but not the unknown;

• the right-preconditioned system

pAP´1qz “ b, w “ P´1z, (1.3.8)

which alters the matrix and the unknown, but not the right-hand side.

Ideally, a good preconditioner P should be close to the original matrix A while being easy and
inexpensive to invert.

For a nonlinear “square” system
Fpwq “ 0, (1.3.9)
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we can analogously define a preconditioner to be an invertible function G such that the Jacobian
matrix of either G´1 ˝F or F ˝ G´1 has a better conditioning than that of F . This opens the way
to considering

• the left-preconditioned system

pG´1 ˝ Fqpwq “ G´1p0q; (1.3.10)

Brenner [28] implemented left-preconditioning for Richards’ equation.

• the right-preconditioned system

pF ˝ G´1qpzq “ 0, w “ G´1pzq; (1.3.11)

the parametrization technique of Brenner and Cancès [29] for Richards’ equation in the Kirch-
hoff transform formulation is in fact equivalent to right-preconditioning.

1.3.2.2 For the accuracy in heterogeneous domains

Regarding the numerical approximation in heterogeneous domains, a conforming P1 finite ele-
ment method has been proposed in [69]. Mixed Hybrid Finite Element and discontinuous Galerkin
schemes have respectively been proposed in [67,90,111]. There are more contributions in the realm
of Finite Volumes. In [65], a two-point flux approximation (TPFA) scheme for a simplified model
was studied. It was extended in [41] to the case of multivalued capillary pressure graphs in the one-
dimensional setting, and then in [30] to the multi-dimensional setting. The generalization to more
general schemes allowing for anisotropy and general grid was carried out in [74] in the general
framework of Gradient Schemes [62]. Similar approaches have been applied to hybrid-dimensional
models for flows in porous media with fracture networks [34,64].

The convergence of the nonlinear solvers are discussed in [37, 88, 94, 135]. In particular, the
papers [37,88] illustrate the better robustness in terms of nonlinear solvers of the so-called Hybrid
Upwinding Method —where two different upwindings are selected for the countercurrent contri-
butions (buoyancy and capillary diffusion) and the global convection driving both phases in the
same direction — with respect to the more classical Phase Potential Upwinding approach where
each phase is upwinded with respect to its own velocity.

Finally, let us mention the contributions [10,11,13] on the numerical simulation of the vanishing
capillarity limit of the equations, and the contributions [45,113,136] for vertically integrated reduced
models accounting for capillary trapping.

1.3.3 Contributions and outline of this thesis

We sketch out the objectives as well as the methodological approach adopted. As before, the
discussion is set for the Richards equation, but the ideas are also relevant for the two-phase system.

1.3.3.1 Robust Newton solver based on parametrization technique

As was pointed out in §1.3.1.1, the saturation s is not a good choice of primary variable in the dry
soils ps ! 1q or when the pressure p exceeds its entry value pp ą ´pbq. Nevertheless, s turns
out to be a legitimate and convenient primary variable in the sharp transition region from srw to
1 ´ srn, where S 1ppq grows larger and larger (Figure 1.15b). The fact that p should be taken as
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a natural primary variable somewhere and s should play this role somewhere else has motivated
practitioners to devise schemes based on variable switch between s and p, see [58,81].

The starting point of our approach is the work of Brenner and Cancès [29], who reformulated
the variable switch as a parametrization of the graph tp,Sppqu. An admissible parametrization is
given by two nondecreasing functions

s : I Ñ rsrw, 1´ srns, p : I Ñ R, (1.3.12)

where I P R is some appropriate interval, such that

spτq “ Spppτqq, 0 ă s1pτq ` p1pτq ă 8, (1.3.13)

for all τ P I Ă R. The last condition ensures that we cannot have s1pτq “ p1pτq “ 0 (which
would make the Jacobian matrix singular) and that both derivatives ps1pτq, p1pτqq remain bounded
(which avoids blow-up). This original abstract viewpoint not only makes it easier to implement
the switching, but also paves the way to a whole new family of right preconditioners, in the sense
of §1.3.2.1.

Our goal is to push further this idea, which in [29] was applied only to the Richards equation
in the Kirchhoff transform formulation. The Kirchhoff transform is a convenient trick to get rid of
the difficulty related to the blow-up of k1rpsq. Unfortunately, it is often not possible to calculate it
analytically. Nor is it always the best physical choice. This is the reason why we shall focus more
heavily on the pressure-saturation formulation. In this context and because of the possible blow-up
of k1rpsq, it is not at all obvious that the parametrization technique will continue to work properly.
In fact, as will be seen in §2, other ingredients will have to be developed.

1.3.3.2 Accurate transmission conditions for heterogeneous domains

As mentioned in §1.3.1.2, we believe that the root of the difficulties arising in heterogeneous do-
mains lies in the violation of the transmission conditions between two lithologies occupying two
subdomains Ωi and Ωj . Let i and j be the rock types on the two sides of the interface. The
transmission conditions across this interface read

vi ¨ νi ` vj ¨ νj “ 0, (1.3.14a)
pi ´ pj “ 0, (1.3.14b)

where pi and vi are the trace at the considered interface of the pressure p|Ωi and the flux v|Ωi
respectively. In other words, they express the equality of pressure and of normal velocity.

Our approach is to enforce (1.3.14) either exactly or at least with an improved accuracy in the
numerical resolution of the Richards equation, that can be written in each subdomain i as

φi Bts`∇ v “ 0, (1.3.15a)
v ` λi ηipsq∇pp´ %g ¨ xq “ 0, (1.3.15b)

s´ Sippq “ 0. (1.3.15c)

To this end, after a proof of convergence for the standard finite volume scheme in the heterogeneous
setting (§3), we shall work out 4 methods (§4) aimed at achieving (1.3.14) in a more satisfactory way.
This class of special methods for the interface will then be applied to the Richards equation (§4)
and extended to the two-phase system (§5).
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1.3.3.3 Organization of the manuscript

The rest of this dissertation roughly follows an order of increasing difficulty.
We start in chapter §2 with the easier model in the easier configuration, namely, the Richards

equation in homogeneous media. The simplicity brought by the homogeneity of the domain allows
us to focus on the difficulty associated with stiff closure laws. We advocate some necessary adap-
tations of the Brenner-Cancès parametrization technique for the pressure-saturation formulation.
Finally, we make the required comparisons between the two formulations and between several
choices of primary variable.

Heterogeneity begins to appear in Chapter §3, also for the Richards equation. The purpose of
this chapter is purely theoretical. It is about proving the convergence of the standard TPFA (Two-
Point Flux Approximation) finite volume scheme in heterogeneous domain, without any specific
treatment of the interfaces between different rocks. The text of this chapter is replicated from the
accepted article [20].

The numerical aspects of the Richards equation in heterogeneous media are the subject of
chapter §4, where we numerically demonstrate that the basic TPFA scheme actually gives rise to
a very low order of convergence. To remedy this shortcoming, we derive four different strategies
whose common point is the attempt to satisfy the transmission conditions at the interfaces, either
exactly or approximately. A comparison of these methods, labeled A, B, C, and D, is provided along
with a thorough discussion. The text of this chapter is a reproduction of the submitted paper [19].

Equipped with appropriate algorithmic tools, we can finally address in chapter §5 the more
difficult model in the more difficult configuration, namely, the immiscible incompressible two-
phase system in a heterogeneous domain. The parametrization technique and the four methods for
transmission conditions at interface are straightforwardly extended to the new model. Here, the
focus is on numerical simulations, with three validation test cases inspired by realistic operating
conditions, analyzed and commented at length.
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Chapter 2

Finite volume approximation of Richards’
equation in homogeneous domains

Let us start our journey by the easier case of the easier model, namely, the Richards equation (1.2.13)
or (1.2.17) in a homogeneous domain. Homogeneity is a simplifying assumption that enables us to
focus on the difficulty brought about by the stiffness of the closure laws (relative permeability kr
and water pressure-saturation S).

We first detail the selected numerical scheme (§2.1) together with the parametrization technique
(§2.2) and we describe its resolution via the Newton method (§2.3). Then, different numerical tests
are presented (§2.4) to demonstrate the robustness of the approach by means of comparative re-
sults obtained with pressure/Kirchhoff transform formulation and with/without the parametrization
technique.

2.1 Finite volume scheme for the Richards equation

2.1.1 State of the art

There is a great variety of families of numerical methods for Richards’ equation: finite differences
[49], finite volumes [73] or finite elements [66]. Over the past years, a large number of schemes
have been proposed to better approximate diffusion terms. These new methods aim at: (i) using
meshes with fewer constraints on the elements’ shape; (ii) taking better into account anisotropies and
heterogeneities in material properties; (iii) giving consistent flux approximations in both previous
cases. They include high-order methods like, for instance, discontinuous Galerkin methods [123] and
low-order methods such as finite-volume methods where the flux approximation uses an extended
stencil or additional unknowns.

In this work, we consider the simplest scheme within this finite volume family, that is, the Two-
Point Flux Approximation (TPFA). On a given face, this approximation only uses the two unknowns
of the cells located on each other side. Its name follows from this reduced stencil. Unfortunately,
this approximation does not provide consistent fluxes for general meshes and diffusion tensors.
To make this approximation valid we need and isotropic media (diagonal diffusion tensor) and
an admissible mesh in the sense of Definition 2.1.1. The TPFA is however often used in practice
despite these flaws since the maximum principle is preserved.

To ensure consistent approximations, other methods could be used which do not necessarily
maintain the positivity of the solutions nor the maximum principle. Some of them are presented in
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the review [60]: the Multi Point Flux Approximations (MPFA) [100] which make use of an extended
stencil, the Hybrid Mimetic Mixed Methods which include the Mimetic Finite Differences and the
Hybrid and Mixed Methods [36, 63] and introduce additional face unknowns, or Discrete Duality
Finite Volumes [17]. The Vertex Approximate Gradient (VAG) scheme, which uses both cell and
nodal unknowns, has also been extensively studied for two-phase flows and Richards problems [74]
and for fractured media [33].

We also point out that non-linear finite volume schemes, with TPFA [60, 73] and MPFA [1, 2]
approximations, can also be envisaged. Their non-linearity comes from the scheme coefficients,
the so-called transmissivities, which non-linearly depend on the discrete local unknowns. Despite
the fact that these schemes require the use of a few Newton or Picard iterations to compute ap-
proximations of the solutions to continuous linear problems, it has been shown that they lead to
positive solutions or solutions respecting the maximum principle [126].

Another important issue related to the spatial discretization is the treatment of convection terms.
Classically, an upstream choice is made to compute the mobility functions according to the sign of
the whole flux. Recent works have shown that specific upwindings knwon as hybrid upwinding
and designed for the gravity and capillarity terms (and for the total velocity term for two-phase
flows [32]) can improve the convergence of Newton’s algorithm [88].

2.1.2 Mesh and time-steps

Definition 2.1.1. An admissible mesh of Ω (see Figure 2.1) is a triplet pT ,E , pxKqKPT q such
that the following conditions are fulfilled:

(i) Each control volume (or cell) K P T is non-empty, open, polyhedral and convex, with
positive d-dimensional Lebesgue measure mK ą 0. We assume that

K X L “ H if K,L P T with K ‰ L, while
ď

KPT

K “ Ω.

(ii) Each face σ P E is closed and is contained in a hyperplane of Rd, with positive pd´ 1q-
dimensional Hausdorff measuremd´1pσq “ mσ ą 0. We assume thatmd´1pσXσ1q “ 0
for σ, σ1 P E unless σ1 “ σ. For all K P T , we assume that there exists a subset EK of E
such that BK “

Ť

σPEK
σ. Moreover, we suppose that

Ť

KPT EK “ E . Given two distinct
control volumes K,L P T , the intersection K X L either reduces to a single face σ P E
denoted by K|L, or its pd´ 1q-dimensional Hausdorff measure is 0.

(iii) The cell-centers pxKqKPT are pairwise distinct with xK P K , and are such that, ifK,L P
T share a face K|L, then the vector xL ´ xK is orthogonal to K|L.

(iv) For the boundary faces σ Ă BΩ, we assume that either σ Ă ΓD or σ Ă ΓN. For σ Ă BΩ
with σ P EK for some K P T , we assume additionally that there exists xσ P σ such that
xσ ´ xK is orthogonal to σ.

The set of edges E is then subdivided into: the set of internal faces shared by two cells Eint “
tσ “ K|L P E | K,L P T u, and the set of boundary edges Eext “ tσ P E |σ Ă BOmegau. This
last set includes the set of Dirichlet faces E D

ext “ tσ P E |σ Ă ΓDu and the set of Neumann faces
E N

ext “ tσ P E |σ Ă ΓNu. We also introduce the local set EK “ tσ P E |σ Ă BKu containing all
the faces surrounding a cell K . To each face σ P E we associate a distance dσ defined by

dσ “

#

|xK ´ xL| if σ “ K|L P Eint,

dK,σ if σ P EK X pE
D
ext Y E N

extq
(2.1.1)
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where, for all pair pK,σq such that σ P EK , dK,σ “ |xK ´ xσ|, with xK the cell center and xσ
the face center, which is chosen as the intersection of rxK , xLs with σ. Moreover, for each cell K ,
we denote by mK its Lebesgue measure, and by mσ the measure of a face σ.

Figure 2.1: Example of admissible mesh and detail of two cells K,L sharing a face σ P Eint.

The time discretization is given by a vector of values ptN q0ď1ďN with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă
tN “ T , and we denote by tn ´ tn´1 “ ∆tn, 1 ď n ď N , the time steps. At initial time t “ 0, s0

is discretized into
s0
K “

1

mK

ż

K
s0 dx.

We finally introduce the following notation: considering a generic variable w we define the mirror
value wnKσ of wnK across σ by

wnKσ “

$

’

’

’

&

’

’

’

%

wnL if σ “ K|L P Eint,

wK if σ P EK X E N
ext,

wnσ “
1

∆tnmσ

ż tn

tn´1

dt

ż

σ
uDdγ if σ P ED

ext.

(2.1.2)

2.1.3 Implicit TPFA discretization of the model

Assuming that the mesh meets the requirement of Definition 2.1.1, let us write down the discretized
equations for the Kirchhoff transform-saturation formulation first, after which those for the pressure-
saturation formulation will follow in a similar fashion.

Kirchhoff transform-saturation formulation. We first put system (1.2.17) under the form

Btpφsq `∇ ¨ v “ 0 in Ωˆ p0, T q, (2.1.3a)
v `

λ

µ
p∇u´ krpsq%gq “ 0, (2.1.3b)

s´S puq “ 0, (2.1.3c)
u “ uD on ΓD ˆ p0, T q, (2.1.3d)

v ¨ ν “ qN on ΓN ˆ p0, T q. (2.1.3e)

It is convenient to introduce the gravity potential

ψ “ ´%g ¨ x, (2.1.4)
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so that equation (2.1.3b) can be rewritten as

v `
λ

µ
p∇u` krpsq∇ψq “ 0. (2.1.5)

By integrating the water volume conservation (2.1.3a) over K , we obtain
ż

K
Btpφsq dx`

ż

K
∇ ¨ v dx “ 0.

By applying the Stokes theorem, we get
ż

K
Btpφsqdx`

ż

BK
v ¨ νK dγ “ 0,

where νK stands for the outward normal vector to BK . Then, we write the previous equation
at time tn and discretizing the time partial derivative by an implicit Euler scheme, we obtain the
semi-discretization

ż

K
φ
sn ´ sn´1

∆tn
dx`

ż

BK
vn ¨ νK dγ “ 0,

where vn “ vpx, tnq. The second integral can be split into
ż

BK
vn ¨ νK dγ “

ÿ

σPEK

ż

σ
vn ¨ νK,σ dγ.

Let us look for an approximation FnK,σ of the elementary flux
ż

σ
vn ¨ νK,σ dγ “

ż

σ
λ∇u ¨ νK,σ dγ `

1

µ

ż

σ
λkrps

nq∇ψ ¨ νK,σ dγ. (2.1.6)

If σ P EK X E N
ext, by virtue of the boundary conditions (2.1.3e), a natural choice is

FnK,σ “
1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ. (2.1.7)

Let us now consider the cases σ “ K|L P EK X Eint and σ P EK X Eext. We define the
transmissibilities pAσqσPE by

Aσ “

$

’

’

&

’

’

%

mσ

µ

λKλL
λLdK,σ ` λKdL,σ

if σ “ K|L P EK X Eint,

mσ

µ

λK
dK,σ

if σ P EK X Eext,
(2.1.8)

where mσ is the pd´ 1q-Lebesgue measure of the edge σ P E , λK “ 1
mK

ş

K λ dx and

dK,σ “

#

|xK ´ xL| if σ “ K X L P Eint,

distpxK , σq if σ P Eext.
(2.1.9)

The TPFA scheme is then defined thanks to the approximations

´
1

µ

ż

σ
λ∇u ¨ νK,σ dγ »

#

AσpuK ´ uLq if σ “ K|L P EK X Eint,

AσpuK ´ uσq if σ P EK X E D
ext,

(2.1.10)
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and

´
1

µ

ż

σ
λkrps

nq∇ψ ¨ νK,σ dγ »

#

Aσk
n,up
r,σ pψK ´ ψLq if σ “ K|L P EK X Eint,

Aσk
n,up
r,σ pψK ´ ψσq if σ P EK X E D

ext

(2.1.11)

where the edge relative permeability is upwinded according to the sign of the difference in ψ, viz.,

kn,upr,σ “

#

krps
n
Kq if ψK ´ ψK,σ ě 0,

krps
n
Kσq if ψK ´ ψK,σ ă 0,

(2.1.12)

in which snKσ stands for the mirror value of snK as defined in (2.1.2) inside the domain. At the
boundary,

snKσ “

#

snL if σ “ K|L P EK X Eint,

snσ “ S punσq if σ P EK X E D
ext,

Gathering the previous approximations, we obtain the approximate flux

FnK,σ “

$

&

%

Aσru
n
K ´ u

n
Kσ ` k

n,up
r,σ pψK ´ ψK,σqs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ if σ P EK X E N

ext.
(2.1.13)

This numerical flux is then consistent under the orthogonality assumption on the mesh in the sense
that, for any regular function ϕ P C8c pΩq, we have

ˇ

ˇ

ˇ

ˇ

´
1

µ

ż

σ
λ∇ϕ ¨ νK,σdσ ´ FK,σ

ˇ

ˇ

ˇ

ˇ

ď mσCϕ,λ,µh

for all K P T , Cϕ,λ,µ P R` depends on ϕ, λ and µ and h “ maxtdiampKq,K P T u. Note that,
from equation (2.1.13), the local conservation property

FK,σ ` FL,σ “ 0,

holds for σ “ K|L. We also point out that, for an inner or Dirichlet face, the flux (2.1.13) can be
recast under the form

FnK,σ “ Aσru
n
K ´ u

n
Kσ ` krps

n
KqpψK ´ ψKσq

` ` krps
n
K,σqpψK ´ ψKσq

´s (2.1.14)

with a` “ maxpa, 0q and a´ “ minpa, 0q. Our discrete equation finally reads

mKφK
snK ´ s

n´1
K

∆tn
`

ÿ

σPEK

FnK,σ “ 0, (2.1.15a)

snK ´S punKq “ 0, (2.1.15b)

for all K P T and n ě 1, where FnK,σ is defined by (2.1.13). This discretized scheme has been
studied in [75] where a convergence proof is stated.
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Pressure-saturation formulation. Following the same procedure, the discretized scheme for the
pressure-saturation formulation system (1.2.13) is

mKφK
snK ´ s

n´1
K

∆tn
`

ÿ

σPEK

FnK,σ “ 0, (2.1.16a)

snK ´ SppnKq “ 0, (2.1.16b)

with

FnK,σ “

$

&

%

Aσk
n,up
r,σ rϑnK ´ ϑ

n
Kσs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

ż

σ
qN dγ if σ P EK X E N

ext,
(2.1.17)

where the edge relative permeability

kn,upr,σ “

#

krps
n
Kq if ϑnK ´ ϑnKσ ě 0,

krps
n
Kσq if ϑnK ´ ϑnKσ ă 0,

(2.1.18)

is now upwinded according to the sign of the difference in the hydraulic head

ϑn “ pn ` ψ. (2.1.19)

In Chapter 3 we study this discretized scheme establishing the existence of a unique solution for
this scheme and providing a rigorous mathematical convergence proof.

2.2 Parametrization of the characteristic laws

Let us recall the motivations behind the choice of the primary variable τ . Choosing the pressure
as the primary variable is known to be inefficient for dry soils s ! 1. On the other hand, the
knowledge of the saturation is not sufficient to describe the pressure in saturated regions where
s “ 1 ´ srn. This motivated the introduction of schemes based on variable switching between s
and p in [58,81]. Indeed, throughout this thesis, we adopt a formulation that is close to the original
variable switch since our new variable τ behaves either as s or as p (or u) up to a linear function.

Pressure-saturation formulation. Our approach is based on [29] and can be seen as a reformu-
lation of the variable switch which makes its implementation much easier. The idea is to choose a
parametrization of the graph tp,Sppqu, i.e. to choose two functions

s : I Ñ rsrw, 1´ srns, p : I Ñ R,

such that
spτq “ Spppτqq, 0 ă s1pτq ` p1pτq ă 8,

for all τ P I Ă R. Such a parametrization is not unique: one can for instance choose I “ R, p “ Id
and s “ S , or p “ pId ` Sq´1 and s “ pId ` S´1q´1. The difficulty lies in finding the optimal
formulation. In the pressure-saturation formulation, we take I “ psrw,`8q and

pspτq, ppτqq “

$

&

%

pτ, S´1pτqq if τ ď ss,
´

S
´

ps `
τ ´ ss

S 1pp´s q

¯

, ps `
τ ´ ss

S 1pp´s q

¯

if τ ě ss,
(2.2.1)
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where S 1pp´s q denotes the limit of S 1ppq as p tends to ps from below. pps, τsq is the inflection point
of S , which is convex and then concave in both the Brooks-Corey model and van Genuchten-
Mualem settings, cf. Section 1.2.3. Thus both s and p are C1 and concave, and even C2 if S
is given by (1.2.27). Moreover, for all p P R, there exists a unique τ P psrw,`8q such that
pp,Sppqq “ pppτq, spτqq.

The discretized equations (2.1.16)–(2.1.18) become

mKφK
spτnKq ´ spτn´1

K q

∆tn
`

ÿ

σPEK

FnK,σ “ 0, (2.2.2)

with

FnK,σ “

$

&

%

Aσk
n,up
r,σ rϑpτnKq ´ ϑpτ

n
Kσqs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ if σ P EK X E N

ext

(2.2.3)

where

kn,upr,σ “

#

krpspτ
n
Kqq if ϑpτnKq ´ ϑpτnKσq ě 0,

krpspτ
n
K,σqq if ϑpτnKq ´ ϑpτnKσq ă 0,

(2.2.4)

is the upwinded edge relative permeability and

ϑpτnKq “ ppτnKq ` ψK , ϑpτnKσq “ ppτnKσq ` ψKσ, (2.2.5)

are the hydraulic heads.

Kirchhoff transform-saturation formulation. Similarly to the above approach, the idea is to
consider a parametrization of the graph tu,S puqu by means of two functions

s : I Ñ rsrw, 1´ srns and u : I Ñ R

such that spτq “ S pupτqq for all τ P I Ă R. Again, even subject to the speed-control condition

s1pτq ` u1pτq “ 1,

such a parametrization is not unique. In the spirit of the variable-switching method, we set I “
psrw,`8q and

pspτq, upτqq “

$

&

%

pτ, S ´1pτqq if τ ď τs,
´

S
´

us `
τ ´ ss

S 1pusq

¯

, us `
τ ´ ss

S 1pusq

¯

if τ ě τs,
(2.2.6)

with τs “ ss the switch value obtained by imposing ss “ S pusq. We recall that this Kirchhoff
transform-saturation formulation, and consequently this parametrization, is not always usable since,
depending on the chosen model for the characteristic laws, the Kirchhoff transform may not be
analytically computed. In our work this parametrization using the Kirchhoff transform formulation
is used only when the Brooks-Corey model is employed.

The discretized equations (2.1.17)–(2.1.18) become

mKφK
spτnKq ´ spτn´1

K q

∆tn
`

ÿ

σPEK

FnK,σ “ 0, (2.2.7)
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with

FnK,σ “

$

’

&

’

%

Aσrupτ
n
Kq ´ upτnKσq ` k

n,up
r,σ pψK ´ ψKσqs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ if σ P EK X EN

ext,
(2.2.8)

where

kn,upr,σ “

#

krpspτ
n
Kqq if ψK ´ ψKσ ě 0,

krpspτ
n
Kσqq if ψK ´ ψKσ ă 0.

(2.2.9)

Remark 2.2.1. If we define snK “ spτnKq and pnK “ ppτnKq —resp. unK “ upτnKq— then the
equation snK “ SppnKq —resp. snK “ S punKq— is automatically satisfied.

2.3 Iterative solver for the nonlinear system

2.3.1 Classical Newton-Raphson method

At each time-step, both systems (2.2.7)–(2.2.8) and (2.2.2)–(2.2.3) can be rewritten abstractly as

Fnpτnq :“ pfnKpτ
nqqKPT “ 0, (2.3.1)

which consists of #T nonlinear equations, each component of which is defined as

fnKpτ
nq “ mKφK

spτKq ´ spτn´1
K q

∆tn
`

ÿ

σPEK

FnK,σ, K P T . (2.3.2)

Solving (2.3.1) with Newton’s method amounts to constructing a sequence tτn,kukě0 defined by

τn,0 “ τn´1, (2.3.3a)
τn,k`1 “ τn,k ´ rJFnpτ

n,kqs´1Fnpτn,kq, (2.3.3b)

where
JFnpτ

n,kq “
BFn
Bτ

pτn,kq “

ˆ

BfnK
BτnL

pτn,kq

˙

KPT ,LPT

.

is the Jacobian matrix of Fn at τn,k , assumed to be nonsingular. Let us now detail the procedure
for both formulations.

Kirchhoff transform-saturation formulation. The left-hand side of the discrete equation (2.2.8)
can be transformed, for all K P T , into

fnKpτ q “ mKφK
spτKq ´ spτn´1

K q

∆tn

`
ÿ

σPEintYE D
ext

AσrupτKq ´ upτKσq ` krpspτKqqpDK,σψq
` ` krpspτKσqqpDK,σψq

´s

`
ÿ

σPE N
ext

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ, (2.3.4)
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where
DK,σψ “ ψK ´ ψKσ. (2.3.5)

For this scheme, the Jacobian matrix is defined by

rJFnsK,Kpτ q “
mKφK

∆tn
s1pτKq `

ÿ

σPEintYE D
ext

Aσru
1pτKq ` k

1
rpspτKqqs

1pτKqpDK,σψq
`s, (2.3.6a)

rJFnsK,Lpτ q “ Aσr´u
1pτLq ` k

1
rpspτLqqs

1pτLqpDK,σψq
´s, (2.3.6b)

for all L P T such that σ “ K|L P EK .

Pressure-saturation formulation. The left-hand side of the discrete equation (2.2.3) can be trans-
formed, for all K P T , into

fnKpτ
nq “ mKφK

spτnKq ´ spτn´1
K q

∆tn

`
ÿ

σPEintYE D
ext

Aσrkrpspτ
n
KqqpDK,σϑ

nq` ` krpspτ
n
KσqqpDK,σϑ

nq´s

`
ÿ

σPE N
ext

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ, (2.3.7)

where
DK,σϑ

n “ ϑnK ´ ϑ
n
Kσ. (2.3.8)

For this scheme, the Jacobian matrix is defined by

rJFnsK,Kpτ q “
mKφK

∆tn
s1pτKq

`
ÿ

σPEintYE D
ext

Aσrk
up
r,σp

1pτKq ` k
1
rpspτKqqs

1pτKqpDK,σϑq
`s, (2.3.9a)

rJFnsK,Lpτ q “ Aσr´k
up
r,σp

1pτKσq ` k
1
rpspτKσqqspτKσqpDK,σϑq

´s, (2.3.9b)

for all L P T such that σ “ K|L P EK .

2.3.2 Enhancements of the Newton-Raphson method

The Newton’s algorithm we have implemented is detailed in Algorithm 1. It includes some addi-
tional functionalities, listed below, whose aim is to treat the difficulties presented by the constitutive
laws.

• truncatepq
Since Fn is not necessarily C1 (SBC is not C1 in the Brooks-Corey case), following [93,135],
the Newton increment is truncated near the inflection point ss.

• decreaseDeltaTimepq and increaseDeltaTimepq
In our numerical tests, we increase the time step in such a way that

∆tn`1 “ minp∆tmax, α
`
∆t∆t

nq, α`∆t ą 1,
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Initialization:
k “ 0;
τn,0 “ τn´1;

while r}Fnpτn,kq}8 ě ε and k ď kmaxs do
solve Jpτn,kqδn,k ` Fnpτn,kq “ 0;
for K P T do

truncatepq;
τn,k`1
K “ maxpsrw, τ

n,k
K ` δn,kK q;

end
k “ k ` 1;

end
if k ą kmax then

decreaseDeltaTimepq;
else

τn “ τn,k ;
n “ n` 1;
increaseDeltaTimepq;

end
Algorithm 1: Practical resolution of the system Fnpτnq “ 0.

and decrease it in such a way that

∆tn`1 “ maxpα´∆t∆t
n, ∆tminq, α´∆t ă 1.

If ∆tmin is reached, the simulation stops.

Moreover, an approximation of the law of the relative permeability kr in the van Genuchten-
Mualem case (1.2.27) is required because it presents very large derivative’s values, which can be
equal to 8, for s Ñ 1 ´ srn. We detail the approximation in the following. Let us now explain
why we introduced the truncation procedure. When we have presented the constitutive laws for
the Brooks-Corey and van Genuchten-Mualem models, we have pointed out that SBC, SBC are
not C1 and that the derivative of the relative permeability function krvGM blows up at s “ 1´srn.
Thus, as well as the possibly very large value of the derivative of kr affects the conditioning of
the Jacobian matrix, during Newton’s iterations, the presence of corner points may lead to wrong
gradient directions, resulting in a non-convergence of the method. Here we show how we have
handled these difficulties.

Truncation method to treat corner points. Let us assume that the function fpτq has a corner
point in τ “ τs. The truncation procedure is activated in the two following cases.

1. τn,kK ą τs and the expected τn,k`1
K ď τs. Then, we set τn,k`1

K “ τs´ εδ , where 0 ă εδ ! 1
is a fixed threshold. This is illustrated in Figure 2.2.

2. τn,kK ă τs and the expected τn,k`1
K ą τs. Then, we set τn,k`1

K “ τs ` εδ . This case is the
symmetric of the previous one, as illustrated in Figure 2.3.

The procedure is summarized in the pseudocode Algorithm 2.
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Figure 2.2: Case τn,kK ą τs, τn,k`1
K ď τs.

Figure 2.3: Case τn,kK ă τs, τn,k`1
K ą τs.

τn,k`1 “ τn,k ´ J´1
Fnpτ

n,kqFnpτn,kq ;
for K P T do

if pτn,kK ´ τsqpτ
n,k`1
K ´ τsq ď 0 then

if τn,kK ą τs then

τn,k`1
K “ τs ´ εδ ;

else

τn,k`1
K “ τs ` εδ ;

end
end

Algorithm 2: Pseudocode for the truncation procedure.

Chord slope method using a second degree polynomial. The idea is to smooth the relative
permeability law in the area where the derivative blows up by approximating it locally with a
polynomial. Its form is chosen in order to allow us to preserve the convexity of the real law. Let
us consider krpsq whose derivative tends to infinite when s Ñ 1 ´ srn. We fix a value slim ă 1
and, to interpolate the law between this point and s “ 1, we use a quadratic polynomial, namely,

℘psq “
k2r pslimq

2
ps´ slimq

2 ` k1rpslimqps´ slimq ` krpslimq.

Consequently the approximated law reads

rkrpsq “

#

krpsq if s ď slim

℘psq if s ą slim

.
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In Figure 2.4 we can see the profile of the relative permeability law and of the modified one. This
technique has already been applied, for instance, in [81]. But, contrary to us, in this work, the
approximation is applied not only to the relative permeability but also to the capillary pressure law.

In [18] we propose the same approximation with the only difference that interpolations are
updated during the iterations and the converge is reached with the original laws.

Figure 2.4: Shape of the relative permeability law and of the modified one for slim “ 1´srw´10´5.

2.4 Numerical results

We now present different tests for the numerical resolution of the Richards equation in the ho-
mogeneous case using the pressure-saturation formulation and the Kirchhoff transform-saturation
one. We first test the robustness of the Kirchhoff transform-saturation formulation under different
test settings. While the linearization property of the Kirchhoff-transform-saturation formulation is
advantageous, it is not always the best option. Firstly, the Kirchhoff transform cannot always be
calculated analytically, e.g., in the case of the van Genuchten-Mualem model. Secondly, when con-
sidering a domain composed of different rock types (heterogeneous case), transmissivity conditions
are imposed at the interfaces between different lithologies to ensure pressure continuity. In this
case, it is more natural to work directly with pressures. This motivates our interest in working in
pressure-saturation formulation. With this in mind, a test comparing the use of the two formulations
is presented, followed by other tests aimed at showing the advantage of using the parametrization
technique rather than solving the problem solely in the pressure or saturation variable.

2.4.1 Kirchhoff transform-saturation formulation

For the numerical validation of the Kirchhoff transform-saturation formulation (2.2.7)–(2.2.8) , using
the parametrized laws (2.2.6), we consider two test cases inspired from those proposed in [29]. For
the simulations we take the following parameters: ε “ 10´12, imax “ 500, εδ “ 10´7. The
time-step is taken constant during each simulation.

2.4.1.1 Robustness

Let us consider a two-dimensional domain Ω “ r0, 1sˆr0, 1s (in meters) which is initially very dry
with s0 “ 10´6. Water is injected trough the portion of the upper boundary ΓD “ tpx, yq |x P
r0, 0.3s, y “ 1u (in meters) imposing uD “ 1. A zero flux boundary condition is prescribed on
ΓN. The configuration of the domain is shown in Figure 2.5. The goal of this test is challenge
the robustness of the scheme. For this reason, some parameters are taken equal to one for seek of
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Figure 2.5: Configuration of the domain Ω for the filling test.

simplicity: the gravity vector is chosen in such a way that g “ ´ey , the porosity of the medium and
its permeability are considered equal to one (φ “ 1, λ “ 1m2) as well as the wetting phase viscosity
(µ “ 1Pa ¨s). We consider the Brooks-Corey model defined in (1.2.30) with srn “ srw “ 0. In order
to test the robustness of the parametrization, we set pb “ 10´2 and let the parameter n take values
in t1, 2, 4, 8, 16u. The curves of the characteristic laws, evaluated for each n, are reported in Figure
2.6. For each value of n, we compute a reference solution denoted by pτ refq taking for the tolerance

Figure 2.6: Profiles of the saturation-Kirchhoff transform relationship and relative permeability law
for n P t1, 2, 4, 8, 16u.

of Newton’s method εn,ref “ 10´12. Then, for each value of n, we perform calculations taking
as tolerance ε P t10´2, 10´4, 10´6, 10´8, 10´10u. We call these solutions pτn,εq and measure the
average number of iterations per time-step for each value of ε. Then we compute the deviation of
the observable variables u and s from the reference solution. The error committed is measured by
the quantities:

errun,ε “
}upτn,εq ´ upτn,refq}L8p0,T ;L8pΩqq

}upτn,refq}L8p0,T ;L8pΩqq
, (2.4.1a)

errsn,ε “
}spτn,εq ´ spτn,refq}L8p0,T ;L8pΩqq

}spτn,refq}L8p0,T ;L8pΩqq
. (2.4.1b)
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Figure 2.7: Profile of the saturation (top) and Kirchhoff transform (below) for t P t0.1, 0.5, 0.7u (in
seconds).
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Figure 2.8: Relative errors given by (2.4.1) as functions of the average number of Newton iterations
per time-step for each value of ε P t10´2, 10´4, 10´6, 10´8, 10´10u.
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The simulation is performed on a mesh composed of 32ˆ32 cells during a time interval r0, T s
with T “ 0.7 s. The time-step is equal to ∆t “ 0.01 s. The truncation procedure is activated
during Newton’s iterations. The profile of saturation and Kirchhoff transform of the reference
solution, using n “ 16, at different moments of the simulation are reported in Figure 2.7. Finally
the error profiles for errun,ε and errsn,ε are reported in Figure 2.8. We can notice that the number
of iterations required to reach the tolerance ε remains constant with respect to the parameter n.

Remark 2.4.1. It is very important to underline that if we solve the problem without the variable
switch, Newton’s method does not converge because of the infinite derivative of the saturation-
Kirchhoff transform curve at point p0, 0q (see left panel in Figure 2.6).

2.4.1.2 Filling the domain

In this test, we simulate the filling of an initially very dry domain of sand Ω “ r0, 1s ˆ r0, 1s (in
meters), see Figure 2.5. The hydraulic properties of this rock type are given in Table 2.1. The initial
saturation is set to

s0 “ 10´6 in Ω. (2.4.2)

The water is injected at pressure uD “ 500 ą ub “ 454 through a portion of the upper boundary
ΓD “ tpx, yq |x P r0, 0.3s, y “ 1u (in meters) and a no flux boundary condition is imposed on
BΩzΓD. For simplicity the gravity vector is chosen in such a way thatµ “ 10´3 Pa¨ s, ρ “ 1Kg¨m´3

and water viscosity is set equal to µ “ 10´3 Pa ¨ s. The configuration of the domain is shown
in Figure 2.5. The simulation is performed on a mesh composed of 32 ˆ 32 cells during a time
interval r0, T s with T “ 1.76 ¨ 105 s. The time-step is equal to ∆t “ 4 ¨ 103 s. The truncation
procedure is activated during Newton’s iterations.

1´ srn srw n λ rm2s pb rPas φ

Sand 1.0 0 2.239 6.3812 ¨ 10´12 3.5036 ¨ 103 0.3658

Table 2.1: Hydraulic properties of the porous medium.

The values of saturation and Kirchhoff transform obtained at different times are shown in Figure
2.9. During the simulation we have registered 4 iterations for Newton’s method on average with a
maximum of 17 iterations.

Figure 2.10 shows the evolution of the average Newton’s convergence rate given, for a time-step
n, by

CVnrate “
1

Nn
iter

Nn
iter´1
ÿ

k“0

log10

›

›Fnpτn,k`1q
›

›

8

log10 }Fnpτn,kq}8
.

Remark 2.4.2. Notice that, just on the Dirichlet boundary at the beginning and then progressively
in the whole domain, pressures are higher than the entry pressure ub and the saturation-pressure
relationship is a graph. If we solve the problem in Kirchhoff transform variable, Newton’s method
does not converge. On the other hand, is not possible to solve the problem in saturation variable
because we have u ą ub. The problem can still be solved thanks to the use of the parametriza-
tion technique that permits to select the suitable primary variable for each cell of the mesh
depending on its saturation-pressure value.

In order to further illustrate the robustness of our approach, let us now perform the same
simulation in just one time-step with ∆t “ T “ 1.76 ¨ 105 s. To achieve the convergence, 60
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Figure 2.9: Saturation and Kirchhoff transform profiles, on the left and right columns respectively,
for t P t1 ¨∆t, 5 ¨∆t, 15 ¨∆t, 25 ¨∆t, T u
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Figure 2.10: Filling test using Kirchhoff transform: evolution of the average Newton’s convergence
rate during time iterations.

Newton iterations are required. The evolution of the saturation profile during Newton’s iterations
is reported in Figure 2.11.

Figure 2.11: Evolution of the saturation profile at Newton’s iteration i “ 2, 10, 20, 30, 40, 60.

Even though one starts from an initial guess τ 0 which is very different from the solution, the
Newton method still converges. As expected, the use of a very large time-step introduces an error
in the solution. Figure 2.12 shows the distribution over the domain at the final time of the absolute
difference between the saturation/Kirchhoff transform values obtained with one single time-step or
with several ones. The maximal absolute difference obtained for the saturation is about 10´1 and
about 102 for the Kirchhoff transform.



52 Chapter 2. Finite volumes for homogeneous Richards equation

Figure 2.12: Distribution of the absolute error for the saturation values (left) and for the Kirchhoff
transform values (right).

2.4.1.3 Draining the domain

In this test, we consider a two-dimensional porous domain Ω “ r0, 1s ˆ r0, 1s (in meters), made
up of sand which is initially dry in one part of the domain and partially saturated in another one.
More precisely we have

s0 “

#

1 in Ω1 “ r0, 0.5s ˆ r0.5, 1s,

10´6 in Ω2 “ ΩzΩ1.

The hydraulic properties of this rock type are the ones given in Table 2.1. During the simulation,
water spreads into the domain and leaks out through a portion of the lower boundary ΓD “

tpx, yq |x P r0, 0.3s, y “ 0u where we impose uD “ 0 (which corresponds to a null saturation).
A no flux boundary condition is imposed on BΩzΓD. As for the filling test, for simplicity, the
gravity vector is still chosen as g “ ´ey , ρ “ 1 and we take water viscosity as µ “ 10´3 Pa ¨ s .
The configuration of the domain is shown in Figure 2.13. The simulation is performed on a mesh
composed of 32ˆ 32 cells during a time interval r0, T s with T “ 106 s. The time-step is equal to
∆t “ 2.5 ¨ 104 s. The truncation procedure is activated during Newton’s iterations.

The values of saturation and Kirchhoff transform obtained at different times are shown in
Figure 2.15. Note that this test is very challenging because the Kirchhoff transform varies from
values equal to the entry pressure to a null value corresponding to a null saturation. During the
simulation we have registered 3 Newton’s iterations on average with a maximum of 16 iterations.
Figure 2.14 shows the evolution of the average Newton’s convergence rate.

Let us now perform the same simulation in just one time-step with ∆t “ T “ 106 s. To
achieve the convergence, 43 Newton iterations are required. The evolution of the saturation profile
during Newton’s iteration is reported in Figure 2.16. As expected, the use of a very large time-step
introduces an error in the solution. Figure 2.17 shows the distribution over the domain at the final
time of the absolute dfference between the saturation/Kirchhoff transform values obtained with one
single time-step or with several ones. The maximal absolute difference obtained for the saturation
is about 10´1 and about 5 for the Kirchhoff transform.

2.4.2 Comparison between different formulations of Richards’ equation

In this section, we want to highlight the differences in using the capillary pressure variable (2.2.2)–
(2.2.3) or the Kirchhoff transform variable (2.2.7)–(2.2.8), employing the parametrized laws (2.2.1)
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Figure 2.13: Configuration of the domain Ω for the drainage test.
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Figure 2.14: Drainage case using Kirchhoff transform: Evolution of the average Newton’s conver-
gence rate during time iterations.

and (2.2.6) respectively. As we have already remarked in §1.2.3, the Kirchhoff transform cannot be
analytically computed for the van Genuchten-Mualem model entailing a first limit in the use of this
variable. Let us perform the solving in pressure formulation the filling test (§2.4.1.2) and drainage test
(§2.4.1.3) that we have previously solved using the Kirchhoff transform formulation. In the cited
tests, a boundary condition on the Kirchhoff transform variable is stated. For the following test
we choose boundary conditions values on water pressure obtained using the Kirchhoff transform
equation (1.2.16) in order to replicate faithfully the test settings of the previous section.

2.4.2.1 Filling the domain

Using the test settings presented in §2.4.1.2, we simulate the filling of an initially very dry domain of
sand Ω, characterized by s0 “ 10´6 as imposed in (2.4.2), in which water is injected through ΓD at
pressure pD “ ´3.45761 ¨ 103 Pa ą ´pb “ ´3.5036 ¨ 103 Pa and a no flux boundary condition is
imposed on BΩzΓD. In Figure 2.5 is shown the domain configuration and in Table 2.1 are reported
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Figure 2.15: Saturation and Kirchhoff transform profiles, on the left and right columns respectively,
for t P t0 ¨∆t,∆t, 5 ¨∆t, 20 ¨∆t, T u.
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Figure 2.16: Evolution of the saturation profile at nonlinear iteration number 0, 1, 10, 20, 30, 43.

Figure 2.17: Distribution of the absolute error for the saturation values (left) and Kirchhoff transform
values (right).

the hydraulic properties of the chosen rock type.
The values of saturation and water pressure obtained at different times are shown in Figure

2.18. During the whole simulation, the Newton method has required 4 iterations on average with
a maximum of 46 iterations to converge. Figure 2.19 shows the evolution of the average Newton’s
convergence rate. The test converges also in case the simulation is carried out using a single step
of time (∆t “ T ). In this case 103 Newton’s iterations are required to converge.

Let us now compare these results with the ones obtained using the Kirchhoff transform formu-
lation in 2.4.1.2. Looking the the saturation profile of both simulations (Figure 2.9 for the Kirchhoff
transform formulation and Figure 2.18 for the water pressure one), we can notice that no difference
can be remarked. Indeed, we are solving the same problem but using different formulations.

Concerning the computational cost, in Table 2.2 we report data on required Newton’s iterations
to converge for both formulations and in Figure 2.20 we show the cumulative iteration number evo-
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Figure 2.18: Saturation and water pressure profiles, on the left column and right columns respec-
tively, for t P t∆t, 5 ¨∆t, 15 ¨∆t, 25 ¨∆t, T u
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Figure 2.19: Filling test using water pressure: evolution of the average Newton’s convergence rate
during time iterations.

lution over the whole simulation. We can notice that the evolution profiles of the two formulations
follow the same trend. The only difference is that the water pressure formulation requires pro-
portionally more iterations to converge w.r.t. the Kirchhoff transform formulation which benefits
of effect of the linearization of the gradient term. Considering the case in which the simulation is
performed in one time step, the pressure formulation still required more iterations (almost the dou-
ble) to converge with respect to the Kirchhoff formulation (103 vs 60 iterations). Finally, observing
Figures 2.10 and 2.19, we note that both formulations present almost the same convergence rate
trend. More precisely, up to half simulation, Kirchhoff transform formulation has a convergence
rate slightly higher than the one of the pressure formulation. Inversely, in the second half of the sim-
ulation the pressure formulation has a convergence rate slightly higher than the one characterizing
the Kirchhoff transform formulation.

Formulation # total iterations # avg iterations # max iterations
Water pressure 297 4 46
Kirchhoff transform 217 4 17

Table 2.2: Statistics on the required Newton’s iterations to converge for filling test using pressure-
saturation and Kirchhoff transform-saturation formulation.

2.4.2.2 Draining the domain

Considering the test settings presented in §2.4.1.3, we simulate the draining of the domain Ω, made
of sand, which is initially saturated in one part of the domain (§2.4.3), Ω1, and dry elsewhere,
Ω2. The configuration of the domain is reported in Figure 2.13 and in Table 2.1 are reported the
hydraulic properties of the chosen rock type. During the simulation, water radiates into the domain
and leaks out through the portion of the lower boundary ΓD where pressure pD “ ´8 ¨ 108 Pa.

The values of saturation and water pressure obtained at different times are shown in Figure 2.21.
During the simulation, the Newton method has required 4 iterations on average with a maximum
of 44 iterations to converge. Figure 2.22 shows the evolution of the average Newton’s convergence
rate. This test still converges if we try to solve it in one time iteration (∆t “ T ). In this case, the
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Figure 2.20: Evolution of the Newton’s cumulative iterations number required to converge for the
filling test case.

Newton method require 65 iterations to converge.

We now compare these results with the ones obtained using the Kirchhoff transform formulation
in §2.4.1.3. Scrutinizing Figures 2.15 and 2.21, we can notice that the saturation profile follows the
same evolution in both formulations. We can notice that on ΓD and the cells in its neighbourhood,
the saturation value is greater for the simulation using the Kirchhoff transform formulation than the
value for the simulation in water pressure one. We think this is because the water pressure imposed
at the edge is proportionally lower than the value imposed for the Kirchhoff transform. Considering
the pressure, the water pressure profile evolution is steeper w.r.t. the one of the Kirchhoff transform.

Regarding the computational cost, we report in Table 2.3 the data on required Newton’s itera-
tions to converge for both formulation. Moreover, in Figure 2.23, we show the cumulative iteration
number required to converge over the entire simulation. We can notice that its evolution profile
has the same trend for both formulation, but the iterations required for the water pressure formula-
tion are always higher than those with Kirchhoff transform formulation, as for the filling test case.
Considering the case in which the simulation is performed in one time step, the pressure formu-
lation still required a few more iterations to converge with respect to the Kirchhoff formulation.
Finally, in view of Figures 2.14 and 2.22, both formulations present almost the same convergence
rate and it evolution follows the same trend. We observe that at the beginning of the simulation, for
t P r0, 10 ¨∆ts, the Kirchhoff transform formulation is characterized by a convergence rate slightly
higher than the one of the other formulation.

Formulation # total iterations # avg iterations # max iterations
Water pressure 200 4 44
Kirchhoff transform 150 3 16

Table 2.3: Statistics on the required Newton’s iterations to converge for drainage test using pressure-
saturation and Kirchhoff transform-saturation formulation.
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Figure 2.21: Saturation and water pressure profiles, on the left column and right columns respec-
tively, for t P t0 ¨∆t,∆t, 5 ¨∆t, 20 ¨∆t, T u.
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Figure 2.22: Drainage test using water pressure: evolution of the average Newton’s convergence
rate during time iterations.

Figure 2.23: Evolution of the Newton’s cumulative iterations number required to converge for the
drainage test case.
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2.4.3 Comparison between different primary variables: saturation, pressure, switching

We wish to show the advantage of using the parametrization technique rather than solving the
problem in saturation or pressure variable. Let us recall that, as explained earlier, choosing the
pressure as the primary variable is known to be inefficient for dry soils s ! 1; on the other hand,
the knowledge of the saturation is not sufficient to describe the pressure in saturated regions where
s “ 1 ´ srn. We now replicate the filling and drainage test cases in water pressure formulation
(§2.4.2.1–§2.4.2.2) always considering consider the system (2.2.2)–(2.2.3) and solving it with a fix
variable (saturation/pressure) or via a variable switch employing the parametrized laws (2.2.1).

2.4.3.1 Filling the domain

As already said in the remark in §2.4.1.2, the filling test case cannot be solved in saturation variable
because the pressure value imposed on the boundary and then, progressively, the pressure value in
the whole domain, are greater than the entry pressure vale pb. We recall that when the saturation
reaches value one (so p ě pb), the saturation law is no more invertible. For this reason in saturated
regions the saturation variable is not sufficient to describe the pressure profile. On the other hand,
solve the problem in pressure variable leads to a non convergence of the Newton method. In Figure
2.24 we report the evolution of the L8 norm of the residual at the first time iteration. As expected,
the norm of the residual explodes and Newton does not converge. On the other hand, the problem
can still be solved using the parametrization technique as previously shown (§2.4.2.1).

Figure 2.24: Filling test in pressure variable: Evolution of the L8 residual norm during the first
time step before blow-up.

2.4.3.2 Draining the domain

In the drainage test case, a part of the domain is saturated (s “ 1 and p “ pb) and the rest is
dry. Let us recall that the convenient choice as primary unknown to solve the Richards equation
in non-saturated region is the saturation variable. This is because if we perform this simulation
in pressure variable it fails: the Newton method does not converge because the L8 norm of the
residual at the first time iteration explodes. We report its evolution in Figure 2.25. On the other
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hand, solving the problem in saturation variable is possible because, during the whole simulation,
water pressure assumes values smaller (p “ pb only at the initial condition) than the entry pressure.

Figure 2.25: Drainage test in pressure variable: Evolution of the L8 residual norm during the first
time step before blow-up.



Chapter 3

Upstream mobility finite volumes for the
Richards equation in heterogeneous domains

The text of this chapter is replicated from [20].

The Richards equation [122] is one of the most well-known simplified models for water filtration
in unsaturated soils. While it has been extensively studied in the case of a homogeneous domain,
the heterogeneous case seems to have received less attention in the literature, at least from the
numerical perspective. The purpose of this chapter is to investigate a class of discretization scheme
for a special instance of heterogeneous domains, namely, those with piecewise-uniform physical
properties. Our first contribution is to rigorously prove convergence toward a weak solution of
cell-centered finite-volume schemes with upstream mobility and without Kirchhoff’s transform.
Our second contribution is to numerically demonstrate the relevance of locally refining the grid at
the interface between subregions, where discontinuities occur, in order to preserve an acceptable
accuracy for the results computed with the schemes under consideration.

Before stating our objectives in a precise manner, a few prerequisites must be introduced re-
garding the model in §3.1–§3.2 and the scheme in §3.4.1–§3.4.2. The goal of this chapter is fully
described in §3.3, in relation with other works.

3.1 Richards’ equation in heterogeneous porous media

Let Ω Ă Rd, where d P t2, 3u, be a connected open polyhedral domain with Lipschitz boundary
BΩ. A porous medium defined over the region Ω is characterized by

– the porosity φ : Ω Ñ p0, 1s;
– the permeability λ : Ω Ñ R˚`;
– the mobility function η : r0, 1s ˆ Ω Ñ R`;
– the saturation law S : RˆΩ Ñ r0, 1s function of the water pressure and the space location.

The conditions to be satisfied by φ, λ, η and S will be elaborated on later. In a homogeneous
medium, these physical properties are uniform over Ω, i.e.,

φpxq “ φ0, λpxq “ λ0, ηps, xq “ η0psq, Spp, xq “ S0ppq

for all x P Ω. In a heterogeneous medium, the dependence of φ, λ, η and S on x must naturally
be taken into account. The quantity s, called saturation, measures the relative volumic presence of
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water in the medium. The quantity p is the water pressure, which in our case is the opposite of
the capillary pressure.

Let T ą 0 be a finite time horizon. We designate byQT “ p0, T qˆΩ the space-time domain of
interest. Our task is to find the saturation field s : QT Ñ r0, 1s and the pressure field p : QT Ñ R
so as to satisfy

• the interior equations

φpxq Bts`∇ ¨ v “ 0 in QT , (3.1.1a)
v ` λpxq ηps, xq∇pp´ %g ¨ xq “ 0 in QT , (3.1.1b)

s´ Spp, xq “ 0 in QT ; (3.1.1c)

• the boundary conditions

v ¨ νpxq “ 0 on p0, T q ˆ ΓN, (3.1.1d)
ppt, xq “ pDpxq on p0, T q ˆ ΓD; (3.1.1e)

• the initial data

sp0, xq “ s0pxq in Ω. (3.1.1f)

The partial differential equation (3.1.1a) expresses the water volume balance. The flux F
involved in this balance is given by the Darcy-Muskat law (3.1.1b), in which g is the gravity vector
and % is the known constant density of water, assumed to be incompressible. It is convenient to
introduce

ψ “ ´%g ¨ x, ϑ “ p` ψ, (3.1.2)

referred to respectively as gravity potential and hydraulic head. In this way, the Darcy-Muskat law
(3.1.1b) can be rewritten as

F ` λpxq ηps, xq∇pp` ψq “ F ` λpxq ηps, xq∇ϑ “ 0.

Equation (3.1.1c) connecting the saturation s and the pressure p is the capillary pressure relation.
The boundary BΩ is split into two non-overlapping parts, viz.,

BΩ “ ΓN Y ΓD, ΓN X ΓD “ H, (3.1.3)

where ΓN is open and ΓD is closed, the latter having a positive pd ´ 1q-dimensional Hausdorff
measure md´1pΓDq ą 0. The no-flux Neumann condition (3.1.1d) is prescribed on p0, T q ˆ ΓN,
where νpxq is the outward normal unit vector at x P ΓN. The Dirichlet condition (3.1.1e) with a
known Lipschitz function pD PW 1,8pΩq is imposed on p0, T q ˆ ΓD. Note that, in our theoretical
development, the function pD is assumed to be defined over the whole domain Ω, which is stronger
than a data pD P L8pΓDq given only on the boundary. The assumption that pD does not depend
on time can be removed by following the lines of [44], but we prefer here not to deal with time-
dependent boundary data in order to keep the presentation as simple as possible. Finally, the initial
data s0 P L8pΩ; r0, 1sq in (3.1.1f) is also a given data.

In this work, we restrict ourselves to a specific type of heterogeneous media, defined as follows.
We assume that the domain Ω can be partitioned into several connected polyhedral subdomains
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Ωi, 1 ď i ď I . Technically, this means that if Γi,j denotes the interface between Ωi and Ωj (which
can be empty for some particular choices of ti, ju), then

Ωi X Ωj “ H, Ωi X Ωj “ Γi,j , if i ‰ j, Ω “
´

ď

1ďiďI

Ωi

¯

Y Γ, (3.1.4)

with Γ “
Ť

i‰j Γi,j . Each of these subdomains corresponds to a distinctive rocktype. Inside each
Ωi, the physical properties are homogeneous. In other words,

φpxq “ φi, λpxq “ λi, ηps, xq “ ηipsq, Spp, xq “ Sippq

for all x P Ωi. Therefore, system (3.1.1) is associated with

φpxq “
ÿ

1ďiďI

φi 1Ωipxq, ηps, xq “
ÿ

1ďiďI

ηipsq1Ωipxq, (3.1.5a)

λpxq “
ÿ

1ďiďI

λi 1Ωipxq, Spp, xq “
ÿ

1ďiďI

Sippq1Ωipxq, (3.1.5b)

where 1Ωi stands for the characteristic function of Ωi. For all i P t1, . . . , Iu, we assume that
φi P p0, 1s and λi ą 0. Furthermore, we require that

ηi is increasing on r0, 1s, ηip0q “ 0, ηip1q “
1

µ
, (3.1.6a)

where µ ą 0 is the (known) viscosity of water. In addition to the assumption that Sp¨, xq, de-
fined in (3.1.5b), is absolutely continuous and nondecreasing, the functions Si are also subject
to some generic requirements commonly verified the models available in the literature: for each
i P t1, . . . , Iu, there exists pi ď 0 such that

Si is increasing on p´8, pis, lim
pÑ´8

Sippq “ 0, Si ” 1 on rpi,`8q. (3.1.6b)

This allows us to define an inverse S´1
i : p0, 1s Ñ p´8, pis such that Si ˝ S´1

i psq “ s for all
s P p0, 1s. We further assume that for all i P t1, . . . , Iu the function Si is bounded in L1pR´q,
or equivalently, that S´1

i P L1p0, 1q. It thus makes sense to consider the capillary energy density
functions ei : Rˆ Ωi Ñ R` defined by

eips, xq “

ż s

SippDpxqq
φipS´1

i pςq ´ pDpxqqdς. (3.1.7)

For all x P Ωi, the function eip¨, xq is nonnegative, convex since S´1
i is monotone, and bounded

on r0, 1s as a consequence of the integrability of Si. For technical reasons that will appear clearly
later on, we further assume that

a

ηi ˝ Si P L1pR´q, @i P t1, . . . , Iu. (3.1.8)

Let Qi,T “ p0, T q ˆ Ωi be the space-time subdomains for 1 ď i ď I . The interior equations
(3.1.1a)–(3.1.1c) then boil down to

φi Bts`∇ ¨ v “ 0 in Qi,T , (3.1.9a)
v ` λi ηi∇pp` ψq “ 0 in Qi,T , (3.1.9b)

s´ Sippq “ 0 in Qi,T . (3.1.9c)
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At the interface Γi,j between Ωi and Ωj , i ‰ j, any solution of (3.1.1a)–(3.1.1c) satisfies the matching
conditions

vi ¨ νi ` vj ¨ νj “ 0 on p0, T q ˆ Γi,j , (3.1.10a)
pi ´ pj “ 0 on p0, T q ˆ Γi,j . (3.1.10b)

In the continuity of the normal fluxes (3.1.10a), which is enforced by the conservation of water
volume, νi denotes the outward normal to BΩi and Fi ¨ νi stands for the trace of the normal
component of F|Qi,T on p0, T q ˆ BΩi. In the continuity of pressure (3.1.10b), which also results
from (3.1.1a)–(3.1.1c), pi denotes the trace on p0, T qˆBΩi of the pressure p|Qi,T in the i-th domain.

3.2 Stability features and notion of weak solutions

We wish to give a proper sense to the notion of weak solution for problem (3.1.1). To achieve
this purpose, we need a few mathematical transformations the definition of which crucially relies
on a fundamental energy estimate at the continuous level. The calculations below are aimed at
highlighting this energy estimate and will be carried out in a formal way, in constrast to those in
the fully discrete setting.

Multiplying (3.1.9a) by p ´ pD, invoking (3.1.7), integrating over Ωi and summing over i, we
end up with

d

dt

I
ÿ

i“1

ż

Ωi

eips, xq dx`
I
ÿ

i“1

ż

Ωi

p∇ ¨ vqpp´ pDqdx “ 0. (3.2.1)

We now integrate by parts the second term. Thanks to the matching conditions (3.1.10) and the
regularity of pD, we obtain

A :“
I
ÿ

i“1

ż

Ωi

p∇ ¨ vqpp´ pDq dx “ ´
I
ÿ

i“1

ż

Ωi

v ¨∇pp´ pDqdx.

It follows from the flux value (3.1.9b) that

A “

I
ÿ

i“1

ż

Ωi

λiηipsq∇pp` ψq ¨∇pp´ pDq dx

“

I
ÿ

i“1

ż

Ωi

λiηipsq|∇p|2 dx´
I
ÿ

i“1

ż

Ωi

λiηipsq∇ψ ¨∇pD dx

`

I
ÿ

i“1

ż

Ωi

λiηipsq∇p ¨∇pψ ´ pDqdx.

Young’s inequality, combined with the boundedness of ∇pD, ∇ψ, λ and η, yields

A ě
1

2

I
ÿ

i“1

ż

Ωi

λiηipsq|∇p|2 dx´ C

for some C ě 0 depending only on λ, η, ψ, µ, Ω and pD.
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Let us define the energy E : r0, T s Ñ R` by

Eptq “
I
ÿ

i“1

ż

Ωi

eipspt, xq, xq dx, 0 ď t ď T.

Integrating (3.2.1) w.r.t. time results in

EpT q `
1

2

I
ÿ

i“1

żż

Qi,T

λiηipsq|∇p|2 dx dt ď Ep0q ` CT. (3.2.2)

Estimate (3.2.2) is the core of our analysis. However, it is difficult to use in its present form since
ηipsq “ ηipSippqq vanishes as p tends to ´8, so that the control of ∇p degenerates. To circum-
vent this difficulty, we resort to the nonlinear functions (customarily referred to as the Kirchhoff
transforms) Θi : RÑ R, Φi : RÑ R, and Υ : Rˆ Ω Ñ R respectively defined by

Θippq “

ż p

0

a

λiηi ˝ Sipπq dπ, p P R, (3.2.3a)

Φippq “

ż p

0
λiηi ˝ Sipπqdπ, p P R, (3.2.3b)

Υppq “

ż p

0
min

1ďiďI

a

λiηi ˝ Sipπq dπ, p P R, (3.2.3c)

the notion of Υ being due to [65]. Bearing in mind that EpT q ě 0, estimate (3.2.2) implies that

I
ÿ

i“1

żż

Qi,T

|∇Θippq|
2 dx dt ď 2pEp0q ` CT q ă `8. (3.2.4)

As Φi ˝ Θ´1
i is Lipschitz continuous, this also gives rise to a L2pQi,T q-estimate on ∇Φippq. The

functions
ř

i Θippq1Ωi and
ř

i Φippq1Ωi are in general discontinuous across the interfaces Γi,j ,
unlike Υppq. Since the functions Υ ˝ Θ´1

i are Lipschitz continuous, we can readily infer from
(3.2.4) that

żż

QT

|∇Υppq|2 dx ď C (3.2.5)

for some C depending on T , Ω, ‖∇pD‖8, the ‖Si‖L1pR´q’s and

λ “ ‖λ‖L8pΩq “ max
1ďiďI

λi, η “ ‖η‖L8pΩq “ max
1ďiďI

‖ηi‖L8pΩq “
1

µ
,

the last equality being due to (3.1.6a).
Moreover, Υppq ´ΥppDq vanishes on p0, T q ˆ ΓD. Poincaré’s inequality provides a L2pQT q-

estimate on Υppq since ΓD has positive measure and since ΥppDq is bounded in Ω. In view of
assumption (3.1.8), the functions Θi and Υ are bounded onR´. Besides, for p ě 0, ηi˝Sippq “ 1{µ,
so that Θippq “ p

a

λi{µ and Υppq “ min1ďiďI p
a

λi{µ. It finally comes that

Θippq ď Cp1`Υppqq, @p P R, 1 ď i ď I, (3.2.6)

from which we infer a L2pQi,T q-estimate on Θippq. Putting

V “
 

u P H1pΩq | u|
ΓD
“ 0

(

,

the above estimates suggest the following notion of weak solution for our problem.
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Definition 3.2.1. A measurable function p : QT Ñ R is said to be a weak solution to the
problem (3.1.9a)–(3.1.9c) if

Θippq P L
2pp0, T q;H1pΩiqq, for 1 ď i ď I, (3.2.7a)

Υppq ´ΥppDq P L2pp0, T q;V q (3.2.7b)

and if for all ϕ P C8c pr0, T q ˆ pΩY ΓNqq, there holds
żż

QT

φSpp, xqBtϕdx dt`

ż

Ω
φ s0ϕp¨, 0qdx`

żż

QT

F ¨∇ϕdx dt “ 0, (3.2.7c)

with
v “ ´∇Φippq ` λiηipSippqq %g in Qi,T , 1 ď i ď I. (3.2.7d)

The expression (3.2.7d) is a reformulation of the original one (3.1.9b) in a quasilinear form
which is suitable for analysis, even though the physical meaning of the Kirchhoff transform Φippq
is unclear. While the formulation (3.2.7c) should be thought of as a weak form of (3.1.9a), (3.1.10a),
(3.1.1f), and (3.1.1d), the condition Υppq ´ΥppDq P L2pp0, T q;V q contains (3.1.10b) and (3.1.1e).

3.3 Goal and positioning of this chapter

We are now in a position to clearly state the two objectives of this chapter.
The first objective is to put forward a rigorous proof that, for problem (3.1.1) with heteroge-

neous data (3.1.5), cell-centered finite-volume schemes with upstream mobility such as described
in §3.4.2, do converge towards a weak solution (in the sense of Definition 3.2.1) as the discretization
parameters tend to 0. Such mathematically assessed convergence results are often dedicated to
homogeneous cases: see for instance [16, 75, 120] for schemes involving the Kirchhoff transforms
for Richards’ equation, [5] for a upstream mobility CVFE approximation of Richards’ equation in
anisotropic domains, [51, 53, 54] for schemes for two-phase flows involving the Kirchhoff trans-
form, and [76, 85] for upstream mobility schemes for two-phase porous media flows. For flows in
highly heterogeneous porous media, rigorous mathematical results have been obtained for schemes
involving the introduction of additional interface unknowns and Kirchhoff’s transforms (see for
instance [30, 40, 41, 65]), or under the non-physical assumption that the mobilities are strictly posi-
tive [72,74]. We also refer the reader to [15,121] where the assumption of the non-degeneracy of the
mobility has been made. It was established very recently in [32] that cell-centered finite-volumes
with (hybrid) upwinding also converge for two-phase flows in heterogeneous domains, but with a
specific treatment of the interfaces located at the heterogeneities. Here, the novelty lies in the fact
that we do not consider any specific treatment of the interface in the design of the scheme.

3.4 Finite-volume discretization

The scheme we consider in this chapter is based on two-point flux approximation (TPFA) finite-
volumes. Hence, it is subject to some restrictions on the mesh [71, 82]. We first review the re-
quirements on the mesh in §3.4.1. Next, we construct the upstream mobility finite-volume scheme
for Richards’ equation in §3.4.2. The main mathematical results of this chapter, which are the
well-posedness of the nonlinear system corresponding to the scheme and the convergence of the
scheme, are then summarized in §3.4.3.
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3.4.1 Admissible discretization of QT

Let us start by discretizing w.r.t. space.

Definition 3.4.1. An admissible mesh of Ω is a triplet pT ,E , pxKqKPT q such that the following
conditions are fulfilled:

(i) Each control volume (or cell) K P T is non-empty, open, polyhedral and convex, with
positive d-dimensional Lebesgue measure mK ą 0. We assume that

K X L “ H if K,L P T with K ‰ L, while
ď

KPT

K “ Ω.

Moreover, we assume that the mesh is adapted to the heterogeneities of Ω, in the sense that
for all K P T , there exists i P t1, . . . , Iu such that K Ă Ωi.

(ii) Each face σ P E is closed and is contained in a hyperplane of Rd, with positive pd´ 1q-
dimensional Hausdorff measuremd´1pσq “ mσ ą 0. We assume thatmd´1pσXσ1q “ 0
for σ, σ1 P E unless σ1 “ σ. For all K P T , we assume that there exists a subset EK of E
such that BK “

Ť

σPEK
σ. Moreover, we suppose that

Ť

KPT EK “ E . Given two distinct
control volumes K,L P T , the intersection K X L either reduces to a single face σ P E
denoted by K|L, or its pd´ 1q-dimensional Hausdorff measure is 0.

(iii) The cell-centers pxKqKPT are pairwise distinct with xK P K , and are such that, ifK,L P
T share a face K|L, then the vector xL ´ xK is orthogonal to K|L.

(iv) For the boundary faces σ Ă BΩ, we assume that either σ Ă ΓD or σ Ă ΓN. For σ Ă BΩ
with σ P EK for some K P T , we assume additionally that there exists xσ P σ such that
xσ ´ xK is orthogonal to σ.

In our problem, the standard Definition 3.4.1 must be supplemented by a compatibility property
between the mesh and the subdomains. By “compatbility” we mean that each cell must lie entirely
inside a single subregion. Put another way,

@K P T , D! ipKq P t1, . . . , Iu | K Ă ΩipKq. (3.4.1)

This has two consequences. The first one is that, if we define

Ti “ tK P T | K Ă Ωiu, 1 ď i ď I, (3.4.2)

then T “
ŤI
i“1 Ti. The second one is that the subdomain interfaces Γi,j for i ‰ j coincide

necessarily with some edges σ P E . To express this more accurately, let EΓ “ tσ P E | σ Ă Γu
be the set of the interface edges, E D

ext “ tσ P E | σ Ă ΓDu be the set of Dirichlet boundary edges,
and E N

ext “ tσ P E | σ Ă ΓNu be the set of Neumann boundary edges. Then, Γ “
Ť

σPEΓ
σ, while

ΓD “
Ť

σPE D
ext
σ and ΓN “

Ť

σPE N
ext
σ. For later use, it is also convenient to introduce the subset

Ei Ă E consisting of those edges that correspond to cells in Ti only, i.e.,

Ei “

ˆ

ď

KPTi

EK

˙

zEΓ, 1 ď i ď I, (3.4.3a)

and the subset Eint of the internal edges, i.e.,

Eint “ E zpE D
ext Y E N

extq “
ď

K,LPT

tσ “ K|Lu. (3.4.3b)
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Note that EΓ Ă Eint.
To each edge σ P E , we associate a distance dσ by setting

dσ “

#

|xK ´ xL| if σ “ K|L P Eint,

|xK ´ xσ| if σ P EK X pE
D
ext Y E N

extq.
(3.4.4)

We also define dKσ “ distpxK , σq for all K P T and σ P EK . The transmissivity of the edge
σ P E is defined by

aσ “
mσ

dσ
. (3.4.5)

Throughout this chapter, many discrete quantities u will be defined either in cells K P T or
on Dirichlet boundary edges σ P E D

ext, i.e. w “ ppwKqKPT , pwσqσPE D
ext
q P XT YE D

ext , where X can
be either R`, ` ě 1, or a space of functions. Then for allK P T and σ P EK , we define the mirror
value wKσ by

wKσ “

$

’

&

’

%

wL if σ “ K|L P Eint,

wK if σ P EK X E N
ext,

wσ if σ P EK X E D
ext.

(3.4.6)

The diamond cell ∆σ corresponding to the edge σ is defined as the convex hull of txK , xKσ, σu
for K such that σ P EK , while the half-diamond cell ∆Kσ is defined as the convex hull of
txK , σu. Denoting by m∆σ the Lebesgue measure of ∆σ , the elementary geometrical relation
m∆σ “ dmσdσ where d stands for the dimension will be used many times in what follows.

Another notational shorthand is worth introducing now, since it will come in handy in the
sequel. Let

fp¨, xq “
ÿ

1ďiďI

fip¨q1Ωipxq (3.4.7a)

be a scalar quantity or a function whose dependence of x P Ω is of the type (3.1.5). Then, for
K P T , we slightly abuse the notations in writing

fKp¨q :“ fp¨, xKq “ fipKqp¨q, (3.4.7b)

where the index ipKq is defined in (3.4.1). The last equality in the above equation holds by virtue
of the compatibility property. For example, we will have not only φK “ φpxKq, λK “ λpxKq,
ηKpsq “ ηps, xKq, SKppq “ Spp, xKq but also eKpsq “ eps, xKq. Likewise, we shall be
writing fKσp¨q “ fp¨, xKσq for the mirror cell without any ambiguity: if σ P Eint Y E N

ext, then
xKσ is a cell-center; if σ P E D

ext, then xKσ lies on the boundary but does not belong to an interface
between subdomains.

The size hT and the regularity ζT of the mesh are respectively defined by

hT “ max
KPT

diampKq, ζT “ min
KPT

ˆ

1

Card EK
min
σPEK

dKσ
diampKq

˙

. (3.4.8)

The time discretization is given by ptnq0ď1ďN with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T . We denote
by ∆tn “ tn ´ tn´1 for all n P t1, . . . , Nu and by ∆t “ p∆tnq1ďnďN .
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3.4.2 Upstream mobility TPFA Finite Volume scheme

Given a discrete saturation profile psn´1
K qKPT P r0, 1sT at time tn´1, n P t1, . . . , Nu, we seek for

a discrete pressure profile ppnKqKPT P RT at time tn solution to the following nonlinear system of
equations. Taking advantage of the notational shorthand (3.4.7b), we define

snK “ SKppnKq, K P T , n ě 1. (3.4.9)

The volume balance (3.1.9a) is then discretized into

mKφK
snK ´ s

n´1
K

∆tn
`

ÿ

σPEK

FnKσ “ 0, K P T , n ě 1, (3.4.10)

using the approximation

FnKσ “
mσ

dσ
λση

n
σpϑ

n
K ´ ϑ

n
Kσq, σ P EK , K P T , n ě 1, (3.4.11a)

for the flux (3.1.1b), with

ϑnK “ pnK ` ψK , ϑnKσ “ pnKσ ` ψKσ, (3.4.11b)

where the mirror values pnKσ and ψKσ are given by (3.4.6). In the numerical flux (3.4.11a), the edge
permeabilities pλσqσPE are set to

λσ “

$

&

%

λKλLdσ
λKdL,σ ` λLdK,σ

if σ “ K|L P Eint,

λK if σ P EK X Eext,

while the edge mobilities are upwinded according to

ηnσ “

$

’

&

’

%

ηKps
n
Kq if ϑnK ą ϑnKσ,

1
2pηKps

n
Kq ` ηKσps

n
Kσqq if ϑnK “ ϑnKσ,

ηKσps
n
Kσq if ϑnK ă ϑnKσ.

(3.4.11c)

In practice, the definition of ηnσ when ϑnK “ ϑnKσ has no influence on the scheme. We choose here
to give a symmetric definition that does not depend on the orientation of the edge σ in order to
avoid ambiguities.

The boundary condition pD is discretized into
#

pD
K “

1
mK

ş

K p
Dpxq dx for K P T ,

pD
σ “

1
mσ

ş

σ p
Dpxq dmd´1pxq for σ P E D

ext,
(3.4.12)

whereas the initial condition is discretized into

s0
K “

1

mK

ż

K
s0pxqdx, for K P T . (3.4.13)

The Dirichlet boundary condition is encoded in the fluxes (3.4.11a) by setting

pnσ “ pD
σ , @σ P E D

ext, n ě 1. (3.4.14)

Bearing in mind the definition (3.4.6) of the mirror values for σ P E N
ext, the no-flux boundary

condition across σ P E N
ext is automatically encoded, i.e., FnKσ “ 0 for all σ P EK X E N

ext, K P T
and n ě 1.

In what follows, we denote by pn “ ppnKqKPT for 1 ď n ď N , and by sn “ psnKqKPT for
0 ď n ď N . Besides, we set pD “ pppD

KqKPT , pp
D
σ qσPE Dq.
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3.4.3 Main results and organization of this chapter

The theoretical part of this chapter includes two main results. The first one, which emerges from
the analysis at fixed grid, states that the schemes admits a unique solution ppnq1ďnďN .

Theorem 3.4.2. For all n P t1, . . . , Nu, there exists a unique solution pn to the scheme (3.4.9)–
(3.4.11c).

With Theorem 3.4.2 at hand, we define the approximate pressure pT ,∆t by

pT ,∆tpt, xq “ pnK for pt, xq P ptn´1, tns ˆK. (3.4.15a)

We also define the approximate saturation as

sT ,∆t “ SppT ,∆t, xq. (3.4.15b)

The second main result guarantees the convergence towards a weak solution of the sequence of
approximate solutions as the mesh size and the time-steps tend to 0. Let pTm,Em, pxKqKPTmqmě1

be a sequence of admissible discretizations of the domain Ω in the sense of Definition 3.4.1 such
that

hTm ÝÑ
mÑ8

0, sup
mě1

ζTm “: ζ ă `8, (3.4.16)

where the size hTm and the regularity ζTm are defined in (3.4.8). Let p∆tmqmě1 be time discretiza-
tions of p0, T q such that

lim
mÑ8

max
1ďnďNm

∆tnm “ 0. (3.4.17)

Theorem 3.4.3. There exists a weak solution p : QT Ñ R in the sense of Definition 3.2.1 such
that, up to a subsequence,

sTm,∆tm ÝÑ
mÑ8

Spp, xq a.e. in QT , (3.4.18a)

ΥppTm,∆tmq ÝÑmÑ8
Υppq weakly in L2pQT q. (3.4.18b)

The rest of this chapter is outlined as follows. Section §3.5 is devoted to the numerical analysis
at fixed grid. This encompasses the existence and uniqueness result stated in Theorem 3.4.2 as
well as a priori estimates that will help proving Theorem 3.4.3. The convergence of the scheme,
which is taken up in §3.6, relies on compactness arguments, which require a priori estimates that
are uniform w.r.t. the grid. These estimates are mainly adaptations to the discrete setting of their
continuous counterparts that arised in the stability analysis sketched out in §3.2. These estimates
are shown in §3.6.1 to provide some compactness on the sequence of approximate solutions. In
§3.6.2, we show that these compactness properties together with the a priori estimates are sufficient
to identify any limit of an approximate solution as a weak solution to the problem.

Remark 3.4.4. Theorem 3.4.3 only states the convergence of the scheme up to a subsequence. In
the case where the weak solution is unique, then the whole sequence of approximate solutions
would converge towards this solution. As far as we know, uniqueness of the weak solutions to
Richards’ equation is in general an open problem for heterogeneous media where x ÞÑ Spp, xq
is discontinuous. Uniqueness results are however available in the one-dimensional setting for
a slightly more restrictive notion of solutions, cf. [41], or under additional assumptions on the
nonlinearities ηi,Si, cf. [40].
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3.5 Analysis at fixed grid

3.5.1 Some uniform a priori estimates

In this section, our aim is to derive a priori estimates on the solutions to the scheme (3.4.9)–(3.4.13).
These estimates will be at the core of the existence proof of a solution to the scheme. They will
also play a key role in proving the convergence of the scheme.

The main estimate on which our analysis relies is a discrete counterpart of (3.2.2). We recall
that aσ is the transmissivity introduced in (3.4.5).

Proposition 3.5.1. There exist two constants C1, C2 depending only on λ, µ, pD, ψ, ζ , Ω, T , φ,
and ‖Si‖L1pR´q such that

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpp

n
K ´ p

n
Kσq

2 ď C1, (3.5.1a)

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpϑ

n
K ´ ϑ

n
Kσq

2 ď C2. (3.5.1b)

In (3.5.1), the relationship between σ and K is to be understood as follows. For an inner edge
σ P Eint, although it can be written as σ “ K|L or L|K , only one of these contributes to the sum.
For a boundary edge σ P Eext, there is only one cell K such that σ P EK , so there is no ambiguity
in the sum.

Proof. Multiplying (3.4.10) by ∆tnppnK ´ pD
Kq, summing over K P T and n P t1, . . . , Nu, and

carrying out discrete integration by parts yield

A` B “ 0, (3.5.2)

where we have set

A “

N
ÿ

n“1

ÿ

KPT

mKφKps
n
K ´ s

n´1
K qppnK ´ p

D
Kq, (3.5.3a)

B “

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpϑ

n
K ´ ϑ

n
Kσqpp

n
K ´ p

D
K ´ p

n
Kσ ` p

D
Kσq. (3.5.3b)

The discrete energy density function eK : r0, 1s Ñ R`, defined by means of the notation (3.4.7)
from the functions fi “ ei introduced in (3.1.7), is convex by construction. Consequently,

eKps
n´1
K q ´ eKps

n
Kq ě e

1
Kps

n
Kqps

n´1
K ´ snKq “ φKpp

n
K ´ p

D
Kqps

n´1
K ´ snKq.

Therefore, the quantity A of (3.5.3a) can be bounded below by

A ě

N
ÿ

n“1

ÿ

KPT

mKpeKps
n
Kq ´ eKps

n´1
K qq

“
ÿ

KPT

mKpeKps
N
Kq ´ eKps

0
Kqq ě ´CA, (3.5.4)

the last inequality being a consequence of the boundedness of eK on r0, 1s.
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Writing ϑ “ p` ψ and expanding each summand of (3.5.3b), we can split B into

B “ B1 ` B2 ` B3,

with

B1 “

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpp

n
K ´ p

n
Kσq

2,

B2 “

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpp

n
K ´ p

n
KσqpψK ´ ψKσ ´ p

D
K ` p

D
Kσq,

B3 “ ´

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpψK ´ ψKσqpp

D
K ´ p

D
Kσq.

It follows from [73, Lemma 9.4] and from the boundedness of η that there exists a constant C
depending only on λ, µ, ζT and Ω such that

ÿ

σPE

aσλση
n
σpp

D
K ´ p

D
Kσq

2 ď C ‖∇pD‖2
L2pΩqd , (3.5.5a)

ÿ

σPE

aσλση
n
σpψK ´ ψKσq

2 ď C ‖∇ψ‖2
L8pΩqd . (3.5.5b)

Thanks to these estimates and to the Cauchy-Schwarz inequality, we have

B3 ě ´CT ‖∇pD‖L2pΩqd ‖∇ψ‖L8pΩqd .

On the other hand, Young’s inequality provides

B2 ě ´
1

2
B1 ´ CT

`

‖∇pD‖2
L2pΩqd ` ‖∇ψ‖2

L8pΩqd

˘

.

Hence,

B ě
1

2

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpp

n
K ´ p

n
Kσq

2 ´ CB, (3.5.6)

by settingCB “ CT p‖∇pD‖2
L2pΩqd

`‖∇ψ‖2
L8pΩqd

`‖∇pD‖L2pΩqd ‖∇ψ‖L8pΩqdq. Inserting (3.5.4)
and (3.5.6) into (3.5.2), we recover (3.5.1a) with C1 “ 2pCA ` CBq. From (3.5.1a), we can deduce
(3.5.1b) by elementary manipulations.

So far, we have not used the upwind choice (3.4.11c) for the mobilities ηnσ . This will be done in
the next lemma, where we derive a more useful variant of estimate (3.5.1a), in which ηnσ is replaced
by ηnσ defined below. In a homogeneous medium, ηnσ ě ηnσ so that the new estimate (3.5.8) seems
to be stronger than (3.5.1a).

We begin by introducing the functions qησ : RÑ p0, 1{µs defined for σ P E by

qησppq “ min
 

ηK ˝ SKppq, ηKσ ˝ SKσppq
(

, @p P R. (3.5.7a)

By virtue of assumptions (3.1.6), each argument of the minimum function is nondecreasing and
positive function of p P R. As a result, qησ is also a nondecreasing and positive function of p P R.
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Note that qησ “ ηi ˝ Si for all σ P Ei, while for interface edges σ Ă Γi,j , the mere inequality
qησ ď ηi ˝ Si holds. Next, we consider the intervals

Jnσ “ rp
n
KKp

n
Kσ, p

n
KJp

n
Kσs, for σ P EK , K P T , 1 ď n ď N, (3.5.7b)

with the notations aKb “ minpa, bq and aJb “ maxpa, bq. At last, we set

ηnσ “ max
pPJnσ

qησppq, for σ P E , 1 ď n ď N. (3.5.7c)

Lemma 3.5.2. There exists a constant C3 depending on the same data as C1 such that

N
ÿ

n“1

∆tn
ÿ

σPE

aση
n
σ pp

n
K ´ p

n
Kσq

2
ď C3. (3.5.8)

Proof. We partition the set E of edges into three subsets, namely,

E n
` “

 

σ | ϑnK ą ϑnKσ
(

, E n
´ “

 

σ | ϑnK ă ϑnKσ
(

, E n
0 “

 

σ | ϑnK “ ϑnKσ
(

.

Invoking qησ “ minpηK ˝SK , ηKσ ˝SKσq, we can minorize the left-hand side of (3.5.1a) to obtain

N
ÿ

n“1

∆tn
”

ÿ

σPE n`

aσλσqησpp
n
Kqpp

n
K ´ p

n
Kσq

2 `
ÿ

σPE n´

aσλσqησpp
n
Kσqpp

n
K ´ p

n
Kσq

2

`
ÿ

σPE n0

aσλσ
1
2pqησpp

n
Kq ` qησpp

n
Kσqqpp

n
K ´ p

n
Kσq

2
ı

ď C1.

Starting from this inequality and using the boundedness of ηi and ψ, we can readily show that
there exists a constant C depending on the same data as C1 such that

D1 :“
N
ÿ

n“1

∆tn
”

ÿ

σPE n`

aσλσqησpp
n
Kqpp

n
K ´ p

n
Kσqpϑ

n
K ´ ϑ

n
Kσq

`
ÿ

σPE n´

aσλσqησpp
n
Kσqpp

n
K ´ p

n
Kσqpϑ

n
K ´ ϑ

n
Kσq

ı

ď C,

in which the sum over E n
0 was omitted because all of its summands vanish. Simlarly to what

was pointed out in equation 2.9 in [5], we notice that since ησ is nondecreasing w.r.t. p, it is
straightforward to check that the definition

qηnσ :“

$

’

&

’

%

qησpp
n
Kq if ϑnK ą ϑnKσ,

1
2pqησpp

n
Kq ` qησpp

n
Kσqq if ϑnK “ ϑnKσ,

qησpp
n
Kσq if ϑnK ă ϑnKσ

(3.5.9)

exactly amounts to

qηnσ “

$

’

&

’

%

maxpPJnσ qησppq if ppnK ´ pnKσqpϑnK ´ ϑnKσq ą 0,
1
2pqησpp

n
Kq ` qησpp

n
Kσqq if ppnK ´ pnKσqpϑnK ´ ϑnKσq “ 0,

minpPJnσ qησppq if ppnK ´ pnKσqpϑnK ´ ϑnKσq ă 0.

(3.5.10)
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Taking advantage of this equivalence, we can transform D1 into

D1 “

N
ÿ

n“1

∆tn
”

ÿ

σPE ną

aσλσ max
Jnσ

qησpp
n
K ´ p

n
Kσqpϑ

n
K ´ ϑ

n
Kσq

`
ÿ

σPE nă

aσλσ min
Jnσ

qησpp
n
K ´ p

n
Kσqpϑ

n
K ´ ϑ

n
Kσq

ı

ď C, (3.5.11)

where E n
ą “ tσ | pp

n
K´p

n
Kσqpϑ

n
K´ϑ

n
Kσq ą 0u and E n

ă “ tσ | pp
n
K´p

n
Kσqpϑ

n
K´ϑ

n
Kσq ă 0u. The

second sum over E n
ă contains only negative summands and can be further minorized if minJnσ qησ

is replaced by maxJnσ qησ . In other words,

D2 :“
N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpp

n
K ´ p

n
Kσqpϑ

n
K ´ ϑ

n
Kσq ď D1 ď C.

Writing ϑ “ p` ψ, expanding each summand of D2 and applying Young’s inequality, we end up
with

1

2

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σ rpp

n
K ´ p

n
Kσq

2 ´ pψnK ´ ψ
n
Kσq

2s ď D2 ď C.

Estimate (3.5.8) finally follows from the boundedness of η, 1{λ and ψ.

The above lemma has several important consequences for the analysis. Let us start with discrete
counterparts to estimations (3.2.4) and (3.2.5).

Corollary 3.5.3. Let C3 be the constant in Lemma 3.5.2. Then,

N
ÿ

n“1

∆tn
I
ÿ

i“1

ÿ

σPEi

aσpΘipp
n
Kq ´Θipp

n
Kσqq

2 ď C3, (3.5.12a)

N
ÿ

n“1

∆tn
ÿ

σPE

aσpΥpp
n
Kq ´ΥppnKσqq

2 ď C3. (3.5.12b)

Moreover, there exists two constants C4, C5 depending on the same data as C1 and additionnally
on ‖

?
ηi ˝ Si‖L1pR´q, 1 ď i ď I , such that

N
ÿ

n“1

∆tn
ÿ

KPT

mK |Υpp
n
Kq|

2 ď C4, (3.5.13a)

N
ÿ

n“1

∆tn
I
ÿ

i“1

ÿ

KPTi

mK |Θipp
n
Kq|

2 ď C5. (3.5.13b)

Proof. Consider those edges σ P Ei —defined in (3.4.3a)— corresponding to some fixed i P
t1, . . . , Iu, for which qησ “ ηi ˝ Si “ |Θ1i|

2 and ηnσ “ maxJnσ |Θ
1
i|

2 due to (3.2.3a). By sum-
ming the elementary inequality

pΘipp
n
Kq ´Θipp

n
Kσqq

2 ď ηnσ pp
n
K ´ p

n
Kσq

2,
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over σ P Ei, i P t1, . . . , Iu and n P t1, . . . , Nu using appropriate weights, we get

N
ÿ

n“1

∆tn
I
ÿ

i“1

ÿ

σPEi

aσpΘipp
n
Kq ´Θipp

n
Kσqq

2 ď

N
ÿ

n“1

∆tn
I
ÿ

i“1

ÿ

σPEi

aση
n
σ pp

n
K ´ p

n
Kσq

2,

whose right-hand side is obviously less than C3, thanks to (3.5.8). This proves (3.5.12a).
Similarly, the respective definitions of ηnσ and Υ have been tailored so that maxJnσ |Υ

1|2 ď ηnσ
for all σ P E . As a consequence,

pΥppnKq ´ΥppnKσqq
2 ď ηnσpp

n
K ´ p

n
Kσq

2.

Summing these inequalities over σ P E and n P t1, . . . , Nuwith appropriate weights and invoking
(3.5.8), we prove (3.5.12b).

The argument for (3.5.13a) is subtler. Starting from the basic inequality

pΥppnKq ´ΥppD
Kq ´ΥppnKσq `ΥppD

Kσqq
2

ď 2pΥppnKq ´ΥppnKσqq
2 ` 2pΥppD

Kq ´ΥppD
Kσqq

2,

we apply the discrete Poincaré inequality of [73, Lemma 9.1] —which is legitimate since ΓD has
positive measure— followed by [73, Lemma 9.4] to obtain

N
ÿ

n“1

∆tn
ÿ

KPT

mKpΥpp
n
Kq ´ΥppD

Kqq
2 ď 2CP,T

`

C3 ` CζT‖Υ1‖8‖∇pD‖2
˘

,

whereCP,T denotes the discrete Poincaré constant, andCζ is the quantity appearing in [73, Lemma
9.4] and only depends on ζT . This entails (3.5.13a) withC4 “ 4CP,T

`

C3`CζT‖Υ1‖8‖∇pD‖2
˘

`

2mΩT‖ΥppDq‖2
8.

The last estimate (3.5.13b) results from the comparison (3.2.6) of the nonlinearities Θi and Υ.

The purpose of the next lemma is to work out a weak estimate on the discrete counterpart of
Bts, which will lead to compactness properties in §3.6.1. For ϕ P C8c pQT q, let

ϕnK “
1

mK

ż

K
ϕptn, xqdx, @K P T , 1 ď n ď N.

Lemma 3.5.4. There exists a constant C6 depending on the same data as C1 such that

N
ÿ

n“1

ÿ

KPT

mKφKps
n
K ´ s

n´1
K qϕnK ď C6‖∇ϕ‖L8pQT qd , @ϕ P C8c pQT q. (3.5.14)

Proof. Multiplying (3.4.10) by ∆tn ϕnK , summing over K P T and n P t1, ¨ ¨ ¨ , Nu and carrying
out discrete integration by parts, we end up with

A :“
N
ÿ

n“1

ÿ

KPT

mKφKps
n
K ´ s

n´1
K qϕnK “ ´

N
ÿ

n“1

∆tn
ÿ

σPE

aσλση
n
σpϑ

n
K ´ ϑ

n
Kσqpϕ

n
K ´ ϕ

n
Kσq.

Applying the Cauchy-Schwarz inequality and using (3.5.1b), we get

A2 ď C2
maxi λi

µ

ÿ

n

∆tn
ÿ

σPE

aσpϕ
n
K ´ ϕ

n
Kσq

2. (3.5.15)
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The conclusion (3.5.14) is then reached by means of the property (see [12, Section 4.4])

N
ÿ

n“1

∆tn
ÿ

σPE

aσpϕ
n
K ´ ϕ

n
Kσq

2 ď C‖∇ϕ‖2
L8pQT qd

for some C depending only on Ω, T and the mesh regularity ζT .

3.5.2 Existence of a solution to the scheme

The statements of the previous section are all uniform w.r.t. the mesh and are meant to help
us passing to the limit in the next section. In contrast, the next lemma provides a bound on the
pressure that depends on the mesh size and on the time-step. This property is needed in the process
of ensuring the existence of a solution to the numerical scheme.

Lemma 3.5.5. There exist two constants C7, C8 depending on T , ∆tn as well as on the data
of the continuous model λ, µ, pD, ψ, ζ , Ω, T , φ, ‖Si‖L1pR´q and ‖

?
ηi ˝ Si‖L1pR´q, 1 ď i ď I ,

such that
´ C7 ď pnK ď C8, @K P T , n P t1, . . . , Nu. (3.5.16)

Proof. From (3.5.13a) and from Υppq “ p
a

mini λi{µ for p ě 0, we deduce that

pnK ď

c

µC4

∆tnmK mini λi
, @K P T , 1 ď n ď N.

Hence, the upper-bound C8 is found by maximizing the right-hand side over K P T and n P
t1, . . . , Nu.

To show that pnK is bounded from below, we employ a strategy that was developed in [43]
and extended to the case of Richards’ equation in [5, Lemma 3.10]. From (3.4.12), (3.4.14) and the
boundedness of pD, it is easy to see that

pnσ ě inf
xPBΩ

pDpxq, @σ P E D
ext.

Estimate (3.5.8) then shows that for all K P T such that EK X E D
ext ‰ H, we have

pnK ě pnσ ´

d

C3

∆tnaσqησppnσq
“: πnK , @σ P EK X E D

ext.

The quantity πnK is well-defined, since qησpp
n
σq ą 0 for pnσ ą ´8, and does not depend on time,

as pD does not either. Furthermore, if pnK is bounded from below by some πK , then the pressure
in all its neighboring cells L P T such that σ “ K|L P EK is bounded from below by

pnL ě πnK ´

d

C3

∆tnaσqησpπnKq
“: πnL.

Again, πnL is well-defined owing to qησpπ
n
Kq ą 0. Since the mesh is finite and since the domain

is connected, only a finite number of edge-crossings is required to create a path from a Dirichlet
boundary edge σ P E D

ext to any prescribed cell K P T . Hence, the lower bound C7 is found by
minimizing πnK over K P T and n P t1, . . . , Nu.
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Lemma 3.5.5 is a crucial step in the proof of the existence of a solution pn “ ppnKqKPT to the
scheme (3.4.9)–(3.4.14).

Proposition 3.5.6. Given sn´1 “ psn´1
K qKPT P r0, 1sT , there exists a solution pn P RT to the

scheme (3.4.9)–(3.4.14).

The proof relies on a standard topological degree argument and is omitted here. However, we
make the homotopy explicit for readers’ convenience. Let γ P r0, 1s be the homotopy parameter.
We define the nondecreasing functions ηpγqi : r0, 1s Ñ R` by setting ηpγqi psq “ p1´γq{µ`γηipsq

for s P r0, 1s, and we seek a solution ppγq “ pppγqK qKPT to the problem

γmKφK
SKpppγqK q ´ s

n´1
K

∆tn
`

ÿ

σPEK

F
pγq
Kσ “ 0, K P T , γ P r0, 1s, (3.5.17a)

where the fluxes F pγqKσ are defined by

F
pγq
Kσ “

mσ

dσ
λση

pγq
σ

`

ϑ
pγq
K ´ ϑ

pγq
Kσ

˘

, σ P EK , K P T , γ P r0, 1s (3.5.17b)

with ϑpγq “ ppγq ` ψ and using the upwind mobilities

ηpγqσ “

$

’

&

’

%

η
pγq
K pSKpppγqK qq if ϑpγqK ą ϑ

pγq
Kσ,

1
2pη

pγq
K pSKpppγqK qq ` η

pγq
KσpSKσpp

pγq
K qqq if ϑpγqK “ ϑ

pγq
Kσ,

η
pγq
KσpSKσpp

pγq
K qq if ϑpγqK ă ϑ

pγq
Kσ.

(3.5.17c)

At the Dirichlet boundary edges, we still set ppγqσ “ pD
σ . For γ “ 0, the system is linear and

invertible, while for γ “ 1, system (3.5.17) coincides with the original system (3.4.9)–(3.4.14). A
priori estimates on ppγq that are uniform w.r.t. γ P r0, 1s (but not uniform w.r.t. T nor ∆tn) can
be derived on the basis of what was exposed previously, so that one can unfold Leray-Schauder’s
machinery [56,105] to prove the existence of (at least) one solution to the scheme.

3.5.3 Uniqueness of the discrete solution

To complete the proof of Theorem 3.4.2, it remains to show that the solution to the scheme is
unique. This is the purpose of the following proposition.

Proposition 3.5.7. Given sn´1 “ psn´1
K qKPT P r0, 1sT , the solution pn P RT to the scheme (3.4.9)–

(3.4.14) is unique.

Proof. The proof heavily rests upon the monotonicity properties inherited from the upwind choice
(3.4.11c) for the mobilities. Indeed, due to the upwind choice of the mobility, the flux FnKσ is a
function of pnK and pnKσ that is nondecreasing w.r.t. pnK and nonincreasing w.r.t. pnKσ . Moreover,
by virtue of the monotonicity of SK , the discrete volume balance (3.4.10) can be cast under the
abstract form

Hn
Kpp

n
K , pp

n
KσqσPEK q “ 0, @K P T , (3.5.18)

whereHn
K is nondecreasing w.r.t its first argument pnK and nonincreasing w.r.t each of the remain-

ing variables ppnKσqσPEK .
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Let rpn “ prpnKqKPT be another solution to the system (3.4.9)–(3.4.14), i.e.,

Hn
Kprp

n
K , prp

n
KσqσPEK q “ 0, @K P T . (3.5.19)

The nonincreasing behavior of Hn
K w.r.t. all its variables except the first one implies that

Hn
Kpp

n
K , pp

n
KσJrp

n
KσqσPEK q ď 0, Hn

Kprp
n
K , pp

n
KσJrp

n
KσqσPEK q ď 0,

for all K P T , where aJb “ maxpa, bq. Since pnKJrpnK is either equal to pnK or to rpnK , we infer
from the above inequalities that

Hn
Kpp

n
KJrp

n
K , pp

n
KσJrp

n
KσqσPEK q ď 0, @K P T . (3.5.20)

By a similar argument, we can show that

Hn
Kpp

n
KKrp

n
K , pp

n
KσKrp

n
KσqσPEK q ě 0, @K P T , (3.5.21)

where aKb “ minpa, bq. Subtracting (3.5.21) from (3.5.20) and summing over K P T , we find

ÿ

KPT

mKφK
|snK ´ rsnK |

∆tn
`

ÿ

σPE D
ext

aσλσR
n
σ ď 0, (3.5.22)

where snK “ SKppnKq, rsnK “ SKprpnKq and

Rnσ “ ηKps
n
KJrs

n
Kqpϑ

n
KJ

rϑnK ´ ϑ
n
σq
` ´ ηKps

n
σqpϑ

n
σ ´ ϑ

n
KJ

rϑnKq
`

´ ηKps
n
KKrs

n
Kqpϑ

n
KK

rϑnK ´ ϑ
n
σq
` ` ηKps

n
σqpϑ

n
σ ´ ϑ

n
KK

rϑnKq
`, (3.5.23)

with snσ “ SKppnσq. The top line of (3.5.23) expresses the upwinded flux of (3.5.20), while the
bottom line of (3.5.23) is the opposite of the upwinded flux of (3.5.21). Note that, since pnσ “ pD

σ is
prescribed at σ P E D

ext, we have ϑnσ “ ϑnσJ
rϑnσ “ ϑnσK

rϑnσ . Upon inspection of the rearrangement

Rnσ “ rηKps
n
KJrs

n
Kq ´ ηKps

n
KKrs

n
Kqspϑ

n
KJ

rϑnK ´ ϑ
n
σq
`

` ηKps
n
KKrs

n
Kqrpϑ

n
KJ

rϑnK ´ ϑ
n
σq
` ´ pϑnKK

rϑnK ´ ϑ
n
σq
`s

` ηKps
n
σq
“

pϑnσ ´ ϑ
n
KK

rϑnKq
` ´ pϑnσ ´ ϑ

n
KJ

rϑnKq
`
‰

, (3.5.24)

it is trivial that Rnσ ě 0. As a consequence, (3.5.22) implies that Rnσ “ 0 for all σ P E D
ext and that

snK “ rsnK for allK P T . At this stage, however, we cannot yet claim that pnK “ rpnK , as the function
SK is not invertible.

Taking into account snK “ rsnK , the residue (3.5.24) becomes

Rnσ “ ηKps
n
Kqrpϑ

n
KJ

rϑnK ´ ϑ
n
σq
` ´ pϑnKK

rϑnK ´ ϑ
n
σq
`s

` ηKps
n
σq
“

pϑnσ ´ ϑ
n
KK

rϑnKq
` ´ pϑnσ ´ ϑ

n
KJ

rϑnKq
`
‰

, (3.5.25)

which can be lower-bounded by

Rnσ ě minpηKps
n
Kq, ηKps

n
σqq|ϑ

n
K ´

rϑnK | (3.5.26)

thanks to the algebraic identities a` ´ p´aq` “ a and aJb ´ aKb “ |a ´ b|. In view of the
lower-bound on the discrete pressures of Lemma 3.5.5, we deduce from (3.1.6b) that snK ą 0 and



3.6. Convergence analysis 81

rsnK ą 0. The increasing behavior of ηK implies, in turn, that ηKpsnKq ą 0 and ηKprsnKq ą 0.
Therefore, the conjunction of Rnσ “ 0 and (3.5.26) yields ϑnK “ rϑnK and hence pnK “ rpnK for all
cells K having a Dirichlet boundary edge, i.e., EK X E D

ext ‰ H.
It remains to check that pnK “ rpnK , or equivalently ϑnK “ rϑnK for those cells K P T that are

far away from the Dirichlet part of the boundary. Subtracting (3.5.19) from (3.5.18) and recalling
that snK “ rsnK , we arrive at

ÿ

σPEK

aσλσ

!

ηKps
n
Kq

“

pϑnK ´ ϑ
n
Kσq

`
´ prϑnK ´

rϑnKσq
`
‰

`ηKσps
n
Kσq

“

prϑnKσ ´
rϑnKq

` ´ pϑnKσ ´ ϑ
n
Kq
`
‰

)

“ 0. (3.5.27)

Consider a cell K P T where ϑnK ´ rϑnK achieves its maximal value, i.e.,

ϑnK ´
rϑnK ě ϑnL ´

rϑnL, @L P T . (3.5.28)

This entails that
ϑnK ´ ϑ

n
Kσ ě

rϑnK ´
rϑnKσ, @σ P EK ,

so that the two brackets in the right-hand side of (3.5.27) are nonnegative. In fact, they both vanish
by the positivity of ηKpsnKq and ηKσpsnKσq. As a result, ϑnK ´ ϑnKσ “

rϑnK ´
rϑnKσ for all σ P EK .

This implies that ϑnK ´ rϑnK “ ϑnL ´
rϑnL for all the cells L P T sharing an edge σ “ K|L with

K , and thus that the cell L also achieves the maximality condition (3.5.28). The process can then
be repeated over and over again. Since Ω is connected, we deduce that ϑnK ´ rϑnK is constant over
K P T . The constant is finally equal to zero since ϑnK “ rϑnK on the cells having a Dirichlet
edge.

3.6 Convergence analysis

Once existence and uniqueness of the discrete solution have been settled, the next question to be
addressed is the convergence of the discrete solution towards a weak solution of the continuous
problem, as the mesh-size and the time-step are progressively refined. In accordance with the
general philosophy expounded in [73], the proof is built on compactness arguments. We start by
highlighting compactness properties in §3.6.1, before identifying the limit values as weak solutions
in §3.6.2.

3.6.1 Compactness properties

Let us define GEm,∆tm : QT Ñ Rd and JEm,∆tm : QT Ñ Rd by

GEm,∆tmpt, xq “

$

&

%

d
Θipp

n
Kσq ´Θipp

n
Kq

dσ
nKσ, if pt, xq P ptn´1

m , tnms ˆ∆σ,

0 otherwise,
(3.6.1)

for σ P Ei,m, 1 ď n ď Nm and, respectively,

JEm,∆tmpt, xq “ d
ΥppnKσq ´ΥppnKq

dσ
nKσ, if pt, xq P ptn´1

m , tnms ˆ∆σ, (3.6.2)

for σ P Em, 1 ď n ď Nm. We remind that sTm,∆tm “ SppTm,∆tm , xq is the sequence of approx-
imate saturation fields computed from that of approximate pressure fields pTm,∆tm by (3.4.15b).
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Proposition 3.6.1. There exists a measurable function p : QT Ñ R such that Υppq ´ΥppDq P

L2pp0, T q;V q and Θippq P L
2pp0, T q;H1pΩiqq, 1 ď i ď I , such that, up to a subsequence,

sTm,∆tm ÝÑ
mÑ`8

Spp, xq a.e. in QT , (3.6.3a)

GEm,∆tm ÝÑ
mÑ`8

∇Θippq weakly in L2pQi,T q
d, (3.6.3b)

JEm,∆tm ÝÑ
mÑ`8

∇Υppq weakly in L2pQT q
d. (3.6.3c)

Proof. We know from Corollary 3.5.3 that ΘippTm,∆tmq and ΥppTm,∆tmq are bounded w.r.t. m
in L2pQi,T q and L2pQT q respectively, while GEm,∆tm and JEm,∆tm are respectively bounded in
L2pQi,T q

d and L2pQT q
d. In particular, there exist pΘi P L

2pQi,T q, pΥ P L2pQT q, J P L2pQi,T q
d,

and J P L2pQT q
d such that

ΘippTm,∆tmq ÝÑ
mÑ`8

pΘi weakly in L2pQi,T q, (3.6.4a)

ΥppTm,∆tmq ÝÑ
mÑ`8

pΥ weakly in L2pQT q, (3.6.4b)

GEm,∆tm ÝÑ
mÑ`8

G weakly in L2pQi,T q
d, (3.6.4c)

JEm,∆tm ÝÑ
mÑ`8

J weakly in L2pQT q
d. (3.6.4d)

Establishing that pΘi P L2pp0, T q;H1pΩiqq and pΥ P L2pp0, T q;H1pΩqq with G “ ∇pΘi and
J “ ∇pΥ is now classical, see for instance [70, Lemma 2] or [50, Lemma 4.4].

The key points of this proof are the identification pΘi “ Θippq and pΥ “ Υppq for some measur-
able p, as well as the proofs of the almost everywhere convergence property (3.6.3a). The identifi-
cation of the limit and the almost everywhere convergence can be handled simultaneously by using
twice [12, Theorem 3.9], once for Θippq and once for Υppq. More precisely, Lemma 3.5.4 provides
a control on the time variations of the approximate saturation sTm,∆tm , whereas Corollary 3.5.3
provides some compactness w.r.t. space on ΘippTm,∆tmq and ΥppTm,∆tmq. Using further that
sTm,∆tm “ Si ˝ Θ´1

i

`

ΘippTm,∆tmq
˘

with Si ˝ Θ´1
i nondecreasing and continuous, then one

infers from [12, Theorem 3.9] that

sTm,∆tm ÝÑ
mÑ`8

Si ˝Θ´1
i p

pΘiq a.e. in Qi,T .

Let p “ Θ´1
i p

pΘiq. Then, (3.6.3a) and (3.6.3b) hold. Proving (3.6.3a) and (3.6.3c) is similar, and the
properties (3.6.3) can be assumed to hold for the same function p up to the extraction of yet another
subsequence.

Finally, by applying the arguments developed in [30, §4.2], we show that Υppq and ΥppDq share
the same trace on p0, T q ˆ ΓD, hence Υppq ´ΥppDq P L2pp0, T q;V q.

Let us now define

ηEm,∆tmpt, xq “ ηnσ if pt, xq P ptn´1
m , tnms ˆ∆σ (3.6.5)

for σ P Em, 1 ď n ď Nm.

Lemma 3.6.2. Up to a subsequence, the function p whose existence is guaranteed by Proposi-
tion 3.6.1 satisfies

ηEm,∆tm ÝÑ
mÑ8

ηpSpp, xqq in LqpQT q, 1 ď q ă `8. (3.6.6)
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Proof. Because of (3.6.3a), ηTm,∆tm “ ηpsTm,∆tm , xq converges almost everywhere to ηpSpp, xq, xq.
Since η is bounded, Lebesgue’s dominated convergence theorem ensures that the convergence holds
in LqpQT q for all q P r1,`8q. The reconstruction ηEm,∆tm of the mobility is also uniformly
bounded, so we have just to show that ‖ηTm,∆tm ´ ηEm,∆tm‖L1pQT q Ñ 0 as m Ñ `8. Letting
∆Kσ “ K X∆σ denote the half-diamond cell, we have

‖ηTm,∆tm ´ ηEm,∆tm‖L1pQT q ď

Nm
ÿ

n“1

∆tnm
ÿ

KPTm

ÿ

σPEK

m∆Kσ
|ηKps

n
Kq ´ η

n
σ |

ď

Nm
ÿ

n“1

∆tnm
ÿ

σPEm

m∆σ |ηKps
n
Kq ´ ηKσps

n
Kσq| ď

I
ÿ

i“1

Ri,m ` RΓ,m,

where

Ri,m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

m∆σ |ηKps
n
Kq ´ ηKσps

n
Kσq|,

RΓ,m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEΓ,m

m∆σ |ηKps
n
Kq ´ ηKσps

n
Kσq|.

Let us define

rEm,∆tmpt, xq “ |η
n
K ´ η

n
Kσ| “ rnσ if pt, xq P ptn´1

m , tnms ˆ∆σ,

then rEm,∆tm is uniformly bounded by ‖η‖8 “ 1{µ. Therefore,

RΓ,m ď
T

µ

ÿ

σPEΓ,m

m∆σ ď
2T md´1pΓq

µd
hTm

where hTm is the size of Tm as defined in (3.4.8). Besides, for i P t1, . . . , Iu, ηi ˝ Si ˝ Θ´1
i is

continuous, monotone and bounded, hence uniformly continuous. This provides the existence of a
modulus of continuity $i : R` Ñ R` with $ip0q “ 0 such that

rnσ :“ |η ˝ S ˝Θ´1
i pΘ

n
Kq ´ η ˝ S ˝Θ´1

i pΘ
n
Kσq| ď $ip|Θ

n
K ´Θn

Kσ|q (3.6.7)

for σ P Ei,m. Therefore, if the function

qEi,m,∆tmpt, xq “

#

|Θipp
n
Kq ´Θipp

n
Kσq| if pt, xq P ptn´1

m , tnms ˆ∆σ,

0 otherwise,
(3.6.8a)

for σ P Ei,m, 1 ď n ď Nm, could be proven to converge to 0 almost everywhere in Qi,T , then
it would also be the case for rEm,∆tm and Ri,m as m Ñ `8, thanks to Lebesgue’s dominated
convergence theorem. Now, it follows from (3.5.12a) and from the elementary geometric relation

m∆σ “
aσ
d
d2
σ ď 4

aσ
d
h2

Tm ,

that

‖qEi,m,∆tm‖2
L2pQi,T q

“

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

m∆σ |Θipp
n
Kq ´Θipp

n
Kσq|

2 ď
4C3

d
h2

Tm .

Therefore, qEi,m,∆tm Ñ 0 in L2pQi,T q, thus also almost everywhere up to extraction of a subse-
quence. This provides the desired result.
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3.6.2 Identification of the limit

So far, we have exhibited some “limit” value p for the approximate solution pTm,∆tm in Proposi-
tion 3.6.1. Next, we show that the scheme is consistent with the continuous problem by showing
that any limit value is a weak solution.

Proposition 3.6.3. The function p whose existence is guaranteed by Proposition 3.6.1 is a weak
solution of the problem (3.1.9a)–(3.1.9c) in the sense of Definition 3.2.1.

Proof. Let ϕ P C8c ptΩY ΓNu ˆ r0, T qq and denote by ϕnK “ ϕptnm, xKq, for all K P Tm and all
n P t0, . . . , Nmu. We multiply (3.4.10) by ∆tnmϕ

n´1
K and sum over n P t1, . . . , Nmu andK P Tm

to obtain
Am ` Bm “ 0, m ě 1, (3.6.9)

where we have set

Am “

Nm
ÿ

n“1

ÿ

KPTm

mKφKps
n
K ´ s

n´1
K qϕn´1

K , (3.6.10a)

Bm “

Nm
ÿ

n“1

∆tnm
ÿ

σPEm

aσλση
n
σpϑ

n
K ´ ϑ

n
Kσqpϕ

n´1
K ´ ϕn´1

Kσ q. (3.6.10b)

The quantity Am in (3.6.10a) can be rewritten as

Am “ ´

Nm
ÿ

n“1

∆tnm
ÿ

KPTm

mKφKs
n
K

ϕnK ´ ϕ
n´1
K

∆tnm
´

ÿ

KPTm

mKφKs
0
Kϕ

0
K

“ ´

żż

QT

φ sTm,∆tmδϕTm,∆tm dx dt´

ż

Ω
φ s0

Tmϕ
0
Tm dx

where

δϕTm,∆tmpt, xq “
ϕnK ´ ϕ

n´1
K

∆tnm
, if pt, xq P ptn´1

m , tnmq ˆK,

ϕ0
Tm “ ϕp0, xKq if x P K.

Thanks to the regularity of ϕ, the function δϕTm,∆tm converges uniformly to Btϕ on Ω ˆ r0, T s.
Moreover, by virtue of (3.6.3a) and the boundedness of sTm,∆tn we can state that

żż

QT

φ sTm,∆tmδϕTm,∆tm dx dt ÝÑ
mÑ`8

żż

QT

φSpp, xqBtϕdx dt,

and, in view of the definition (3.4.13) of s0
Tm

and of the uniform convergence of ϕ0
Tm

towards
ϕp0, ¨q,

ż

Ω
φTms

0
Tmϕ

0
Tm dx ÝÑ

mÑ`8

ż

Ω
φ s0ϕp0, ¨qdx.

From the above, we draw that

lim
mÑ`8

Am “ ´

żż

QT

φSpp, xqBtϕdx dt´

ż

Ω
φ s0ϕp0, ¨qdx. (3.6.11)
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Let us now turn our attention to the quantity Bm of (3.6.10b), which can be split into Bm “

B1
m ` B2

m using

B1
m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEm

aσλση
n
σpp

n
K ´ p

n
Kσqpϕ

n´1
K ´ ϕn´1

Kσ q,

B2
m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEm

aσλση
n
σpψK ´ ψKσqpϕ

n´1
K ´ ϕn´1

Kσ q.

Consider first the convective term B2
m. It follows from the definition of the discrete gravitational

potential
ψK “ ´%g ¨ xK , ψσ “ ´%g ¨ xσ, K P Tm, σ P E D

ext,m

and from the orthogonality of the mesh that

ψK ´ ψKσ “ dσ%g ¨ νKσ, @σ P EKzE
N
ext, K P Tm.

Therefore, B2
m can be transformed into

B2
m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEm

m∆σλση
n
σd
ϕn´1
K ´ ϕn´1

Kσ

dσ
nKσ ¨ %g

“´

żż

QT

λEmηEm,∆tmHEm,∆tm ¨ %g dx dt, (3.6.12)

where

λEmpxq “ λσ if x P ∆σ, σ P Em,

HEm,∆tmpt, xq “ pd{dσqpϕ
n´1
Kσ ´ ϕ

n´1
K qnKσ if pt, xq P rtn´1

m , tnmq ˆ∆σ.

After [50, Lemma 4.4], HEm,∆tm converges weakly in L2pQT q
d towards ∇ϕ, while λEm and

ηEm,∆tm converge strongly in L4pΩq and L4pQT q towards λ and ηpSpp, xqq respectively (cf.
Lemma 3.6.2). Thus, we can pass to the limit in (3.6.12) and

lim
mÑ`8

B2
m “ ´

żż

QT

ληpSpp, xqq%g ¨∇ϕdx dt. (3.6.13)

The capillary diffusion term B1
m appears to be the most difficult one to deal with. Taking

inspiration from [43], we introduce the auxiliary quantity

rB1
m “

I
ÿ

i“1

rB1
i,m

“

I
ÿ

i“1

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

aσ
a

λiηnσpΘipp
n
Kq ´Θipp

n
Kσqqpϕ

n´1
K ´ ϕn´1

Kσ q.

Analogously to [61], we can define a piecewise-constant vector field HEm,∆tm such that

HEm,∆tmpt, xq ¨ νKσ “ ϕn´1
Kσ ´ ϕ

n´1
K , if pt, xq P rtn´1

m , tnmq ˆ∆σ, σ P Em,



86 Chapter 3. Finite volumes for heterogeneous Richards equation

and such that HEm,∆tm converges uniformly towards ∇ϕ on QT . Under these circumstances,
rB1
i,m reads

rB1
i,m “

ż T

0

ż

Ωi,m

a

λiηEm,∆tm GEm,∆tm ¨HEm,∆tm dx dt

where Ωi,m “
Ť

σPEi,m
∆σ Ă Ωi. The strong convergence of ?ηEm,∆tm in L2pQi,T q towards

a

ηipSippqq directly follows from the boundedness of ηi combined with (3.6.3a). Combining this
with (3.6.3b) results in

rB1
i,m ÝÑ

mÑ`8

żż

Qi,T

a

λiηipSippqq∇Θippq ¨∇ϕdx dt “

żż

Qi,T

∇Φippq ¨∇ϕdx dt. (3.6.14)

Therefore, to finish the proof of Proposition 3.6.3, it only remains to check that B1
m and rB1

m share
the same limit. To this end, we observe that, by the triangle inequality, we have

|B1
m ´

rB1
m| ď RΓ,m `

I
ÿ

i“1

Ri,m, (3.6.15)

where

RΓ,m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEΓ,m

aσλση
n
σ |p

n
K ´ p

n
Kσ||ϕ

n´1
K ´ ϕn´1

Kσ |,

Ri,m “

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

aσ
a

λiηnσ |Θipp
n
Kq ´Θipp

n
Kσq ´

a

λiηnσpp
n
K ´ p

n
Kσq||ϕ

n´1
K ´ ϕn´1

Kσ |.

Applying the Cauchy-Schwarz inequality and using Proposition 3.5.1, we find

|RΓ,m|
2 ď C1

Nm
ÿ

n“1

∆tnm
ÿ

σPEΓ,m

aσλση
n
σ |ϕ

n´1
K ´ ϕn´1

Kσ |
2 ď 2C1T‖∇ϕ‖2

8

maxi λi
µ

md´1pΓqhTm ,

so RΓ,m Ñ 0 asmÑ `8. Besides, we also apply the Cauchy-Schwarz inequality to Ri,m in order
to obtain

|Ri,m|
2 ď C1

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

aσ λi
ˇ

ˇ

a

ηnσ ´
a

rηnσ
ˇ

ˇ

2 ˇ
ˇϕn´1
K ´ ϕn´1

Kσ

ˇ

ˇ

2

ď dλiC1‖∇ϕ‖2
8

Nm
ÿ

n“1

∆tnm
ÿ

σPEi,m

m∆σ |η
n
σ ´ rηnσ | ,

where we have set

rηnσ “

$

’

&

’

%

ηips
n
Kq if pnK “ pnKσ,

„

Θipp
n
Kq ´Θipp

n
Kσq?

λippnK ´ p
n
Kσq

2

otherwise.

Define

rηEm,∆tmpt, xq “

#

rηnσ if pt, xq P ptn´1
m , tnms ˆ∆σ, σ P

ŤI
i“1 Ei,m,

0 otherwise.
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Reproducing the proof of Lemma 3.6.2, we can show that

rηEm,∆tm ÝÑ
mÑ8

ηpSpp, xqq in LqpQT q, 1 ď q ă `8.

Therefore, Ri,m Ñ 0 as m Ñ `8. Putting things together in (3.6.15), we conclude that B1
m and

rB1
m share the same limit, which completes the proof of Proposition 3.6.3.
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Chapter 4

Numerical strategies to solve Richards’
equation in heterogeneous media

The text of this chapter is a reproduction of [19].

4.1 Introduction

The Richards equation [122] is a popular model for underground water flow in the vadose zone.
It consists in a simplification of the incompressible immiscible two-phase Darcy flow model, as-
suming that the pressure of the gas phase is known and equal to the atmospheric pressure, see
for instance [23]. Besides, Richards’ equation also attracts an important interest from scientists as it
provides a relatively simple model that already accounts for many difficulties occurring in complex
porous media flows, like degeneracies when one phase (air or water) vanishes, or strong material
heterogeneities with severe changes in the physical parameters at the interface between different
rocks. We formalize mathematically in §4.1.1 the problem under consideration in this chapter,
namely, Richards’ equation in heterogeneous domains, before discussing on possible numerical
strategies in §4.1.2.

4.1.1 The Richards equation in heterogeneous domains

Let Ω Ă Rd, 1 ď d ď 3, be a connected open polyhedral domain, representing the porous matrix in
which water flows. The porous matrix is assumed to be heterogeneous, and we particularly focus
on severe variations of the rock characteristics at the interface between different rock-types. More
precisely, we assume that there exist polyhedral connected and disjointed open subsets pΩiq1ďiďI
such that

Ω “
ď

1ďiďI

Ωi.

Each subdomain Ωi represents a rock-type, and is assumed to be homogeneous for simplicity. We
denote by

Γi,j “ Ωi X Ωj , 1 ď i, j ď I,

the interface between Ωi and Ωj and by

Γ “
ď

1ďi‰jďI

Γi,j
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the set containing all these interfaces.
Let T ą 0 be an arbitrary finite time horizon, then Richards’ equation in Qi,T “ p0, T q ˆ Ωi

writes

φi Bts`∇ ¨ v “ 0, (4.1.1)
v ` λi ηipsq∇pp´ %g ¨ xq “ 0, (4.1.2)

s´ Sippq “ 0. (4.1.3)

The unknowns are the water saturation s, the water velocity v and the water pressure p. Equa-
tion (4.1.1) encodes the local conservation of the water volume (since water is described as an
incompressible fluid). The Darcy-Muskat relation (4.1.2) relates the water flux to the gradient of
the hydraulic head, whereas the last equation (4.1.3) links the saturation to the pressure. In the
above system, φi stands for the porosity of the i-th rock and λi ą 0 for its intrinsic permeability
(isotropy of the porous medium is assumed here), while % stands for the water density which is
assumed to be constant, and g denotes the gravity vector. The mobility ηipsq is nonnegative and
nondecreasing with respect to the saturation, while the function Si relating the water pressure and
saturation is nondecreasing and takes its values in r0, 1s. In accordance with the classical models
of the literature — see §4.4.1.3 for the precise description of the models to be used in practice in
the numerical simulations — we assume that water is always mobile, i.e., that ηipSippqq ą 0 for
all p P R. Water becomes immobile in the dry asymptote, i.e. limpÑ´8 ηipSippqq “ 0, leading
to a degeneracy of hyperbolic type. On the other hand, positive pressures correspond to saturated
regimes, i.e. Sippq “ Sip0q for all p ě 0, leading to a degeneracy of elliptic type.

At the interface Γi,j , pressure and flux are continuous. More precisely, denote by pi the trace
at p0, T q ˆΓi,j of the pressure p|Ωi in Qi,T , and by Fi the trace at p0, T q ˆΓi,j of the flux F|Ωi in
Qi,T , then the transmission conditions across Γi,j write

vi ¨ νi ` vj ¨ νj “ 0, (4.1.4)
pi ´ pj “ 0, (4.1.5)

where νi (resp. νj ) denotes the normal to Γi,j outward w.r.t. Ωi (resp. Ωj ). Note that since
the pressure is continuous, and since Si ‰ Sj in general, the saturation is discontinuous across
Γi,j . The pressure continuity (4.1.5) has to be relaxed in the case where the water mobility could
vanish for finite p. We refer for instance to [27,42,65] for formulations with such relaxed pressure
continuity conditions at the interfaces. Let us stress that our work can be extended without further
difficulties to this more involving setting.

Concerning the boundary conditions, the external boundary BΩ, the outward normal of which
being denoted by ν , is split into a portion called ΓD where a constant Dirichlet boundary condition
is imposed, and ΓN “ BΩzΓD where a Neumann boundary condition is fixed, that is,

v ¨ ν “ qN on p0, T q ˆ ΓN, (4.1.6)
p “ pD on p0, T q ˆ ΓD. (4.1.7)

Finally, the initial saturation profile is prescribed,

sp0, xq “ s0pxq in Ω. (4.1.8)
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4.1.2 Motivation and positioning of our work

Richards’ equation is interesting in itself for modeling the infiltration of water in the near subsurface.
This motivated the development of many numerical approaches with the aim of being robust
while preserving accuracy, especially with respect to mass conservation. For numerical schemes
approximating the solutions to Richards equation, we refer for instance to [49] for finite differences,
to [80] for control volume finite elements, to [72,75] for two-point flux approximation (TPFA) finite
volumes and to [35, 100, 130] for more advanced finite volume methods, to [26, 120, 137] for mixed
finite elements, or to [106] for discontinuous Galerkin approaches. The above reference list is far
from being exhaustive, and we refer to [78] for a review.

The problem being nonlinear and degenerate, an important part of the research effort has been
assigned to the design of efficient iterative linearization procedures. Two main approaches then
emerge: a first one based on (modified) Picard type fixed point strategies, and second one relying on
Newton’s method. Suitably designed Picard iteration based methods are known to enjoy robustness
at the price of a mere linear convergence speed, see for instance [49, 107, 118, 128]. On the other
hand, a crude Newton’s algorithm may face severe difficulties to converge, see for instance [104,107]
for comparison of different approaches. This motivated the introduction of methods based on
variable switch [58, 81], nested Newton loops [47], or nonlinear preconditioning techniques [28] to
increase robustness. Our approach, which is described in §4.2.3 and [18], relies on the so-called
parametrization approach introduced in [29,34], which can be interpreted as a generalization of the
variable switch approach as well as a (diagonal) nonlinear preconditioning technique.

The second main difficulty to be addressed is the strong heterogeneity of the domain Ω with
discontinuous physical characteristics across Γ. Since the pressure is continuous, cf. (4.1.5), schemes
that are based on formulations involving the Kirchhoff transform θi “

şp
0 ηipSipaqqda, which is

known to be a powerful tool for the mathematical [9] and numerical [75,120,137] study of Richards
equation, will require a specific treatment at the interfaces to maintain the continuity of the pressure.
We refer for instance to [30,41,65,67,69,88] for methods built in this spirit. A more natural approach
consists in using discrete fluxes expressed directly in the form (4.1.2), with degrees of freedom
localized on the interface Γ to enforce the continuity of the pressure, as done for instance in [14,38,
74,90,115]. Let us also mention [3,4,127] where the authors solve the transmission condition (4.1.4)–
(4.1.5) thanks to an iterative procedure stemming from domain decomposition. In the case of cell
centered methods, like for instance TPFA finite volumes, convergence can also be assessed without
any specific treatment of the interface, as for example done in our recent contribution [20]. However,
the pressure continuity is only imposed at convergence w.r.t. grid refinement, leading to possible
loss in the accuracy. Therefore, specific treatments of the interface are needed. As highlighted
in [32], the specific treatment of the interface Γ may have a major impact on the Newton’s method
behavior. The purpose of this chapter is to compare several approaches described in §4.3 to deal
with the interface transmission condition (4.1.4)–(4.1.5) and to depict their pros and cons when
confronted to different physical settings described in §4.4.

4.2 Problem discretization

4.2.1 Space-time discretization

Let pT ,E q be a finite-volume space discretization of Ω satisfying the classical orthogonality condi-
tion required for the consistency of the Two Point Flux Approximation (TPFA), see [73, Definition
9.1] for more details. Here T denotes the set of cells and E the set of faces. We assume that the
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mesh is consistent with the geometry in the sense that, for all K P T , there exists i P t1, . . . , Iu
such that K Ă Ωi. We denote by Ti “ tK P T | K Ă Ωiu. Then for all f P tS, λ, φ, . . . u that
depends on the rock-type, we set fK “ fi if K P Ti. The set E is then subdivided into: the set of
internal faces shared by cells of the same subdomain Ei “ tσ “ K|L P E | K,L P Tiu, the set
of the internal faces shared by cells belonging to different subdomains EΓ “ tσ P E | σ Ă Γu “
Ť

i‰jtσ “ K|L P E | K P Ti, L P Tju, the set of Dirichlet faces E D
ext “ tσ P E |σ Ă ΓDu

and the set of Neumann faces E N
ext “ tσ P E |σ Ă ΓNu. Let us call Eint “ Ei Y EΓ the set of all

internal faces. We also introduce the local set EK “ tσ P E |σ Ă BKu containing all the faces
surrounding a cell K . To each face σ P E we associate a distance dσ defined by

dσ “

#

|xK ´ xL| if σ “ K|L P Eint,

dK,σ if σ P EK X pE
D
ext Y E N

extq
(4.2.1)

where, for all pair pK,σq such that σ P EK , dK,σ “ |xK ´xσ|, with xK the cell center and xσ the
face center, which is chosen as the intersection of rxK , xLs with σ. Moreover, for each cell K , we
denote by mK its Lebesgue measure, and by mσ the measure of a face σ. The time discretization
is given by a vector of values ptnq0ďtďN with 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tN “ T , and we denote by
tn ´ tn´1 “ ∆tn, 1 ď n ď N , the time-steps.

4.2.2 Upstream TPFA finite-volume scheme

The two-point flux approximation of a diffusive flux, FKσ , related to the gradient of an unknown
w and coming out a cell K through the face σ, is defined by

FKσ “ aσpwKσ ´ wKq,

where the transmissivity on the face σ P E is defined by

aσ “
mσ

dσ

and the mirror value wKσ by

wKσ “

$

’

&

’

%

wL if σ “ K|L P Eint,

wK if σ P EK X E N
ext,

wσ if σ P EK X E D
ext.

The saturation capillary-pressure relationship (4.1.3) and the volume balance (4.1.1) are discretized
into

mKφK
snK ´ s

n´1
K

∆tn
`

ÿ

σPEK

FnKσ “ 0, K P Ti, n ě 1, (4.2.2a)

snK ´ SKppnKq “ 0, K P Ti, n ě 1, (4.2.2b)

where the flux

FnKσ “

$

&

%

aσλKη
n
σ rϑ

n
K ´ ϑ

n
Kσs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN dγ, if σ P EK X E N

ext,
(4.2.3)
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is an approximation of
ş

σ v
n ¨ νK,σ dγ, with the hydraulic head being defined as

ϑn “ pn ` ψ “ pn ´ %g ¨ x.

In (4.2.3), the face mobilities are upwinded in the following way

ηnσ “

#

ηKps
n
Kq if ϑnK ´ ϑnKσ ě 0,

ηKσps
n
Kσq otherwise.

(4.2.4)

The initial condition (4.1.8) is discretized into

s0
K “

1

mK

ż

K
s0, @K P Ti, (4.2.5)

and the Dirichlet boundary condition (4.1.7) into

pD
σ “

1

mσ

ż

σ
pD, @σ P E D

ext. (4.2.6)

4.2.3 Switch of variable and parametrization technique

Let us now detail the resolution strategy for problem (4.2.2b)–(4.2.6). A natural approach to solve
this nonlinear system is to choose the pressure ppKqKPT as primary unknown and to solve it via an
iterative method such as Newton’s one. However, the pressure variable is known to be an inefficient
choice for dry soils s ! 1, because of the degeneracy of Richards’ equation, where schemes in which
saturation is the primary variable outperform. On the other hand, the knowledge of the saturation
is not sufficient to describe the pressure curve in saturated regions where the pressure-saturation
relation cannot be inverted. This motivated the design of schemes which introduce a switch of
variable [58, 81]. Our approach is based on the technique proposed by Brenner and Cancès [29],
in which a third generic variable τ is introduced to become the primary unknown of the system.
Then, removing the subscript i related to the rock-type for convenience, the idea is to choose a
parametrization of the graph tp,Sppqu, i.e., to construct two monotone functions

s : I Ñ rsrw, 1´ srns, p : I Ñ R,

such that
spτq “ Spppτqq, 0 ă s1pτq ` p1pτq ă 8, (4.2.7)

for all τ P I Ă R. The latter non-degeneracy assumption ensures that for all p P R, there exists a
unique τ P R such that pp,Sppqq “ pppτq, spτqq. Such a parametrization is not unique, for instance
we can choose I “ R, p “ Id which is equivalent to solving the system always in pressure, but
this is not recommended as seen before. Here, we set I “ R and

spτq “

$

’

&

’

%

Spκpτ ´ τ˚q ` p˚q if τ ď τ˚,

srw ` τp1´ srn ´ srwq if τ˚ ď τ ď τs,

Spps ` ςpτ ´ τsqq if τ ě τs,

(4.2.8a)

ppτq “

$

’

&

’

%

κpτ ´ τ˚q ` p˚ if τ ď τ˚,

S´1psrw ` τp1´ srn ´ srwqq if τ˚ ď τ ď τs,

ps ` ςpτ ´ τsq if τ ě τs.

(4.2.8b)
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In the above formulas, pps, ssq “ pppτsq, spτsqq is referred later on as the switching point, at
which one passes from τ behaving as the saturation to τ behaving as the pressure (recall that
Newton’s iterations are not sensitive to linear changes of variables). Another switch is incorporated
at pp˚, s˚q “ pppτ˚q, spτ˚qq to improve Newton’s robustness in presence of heterogeneities. The
parameter τ˚ is chosen so small that the solution ppnK , snKqKPT to the scheme is always larger that
pp˚, s˚q. The parameters κ and ς are chosen so that p is C1, leading to the expressions

κ “
1´ srn ´ srw

S 1pp`˚ q
, and ς “

1´ srn ´ srw

S 1pps
´q

, (4.2.9)

where S 1pp`˚ q and S 1pp´s q respectively denote the limits of S 1ppq as p tends to p˚ and ps from above
and below. Then if S is C1, so is s “ S ˝ p. When S is convex then concave, as in the Brooks-
Corey and van Genuchten-Mualem settings detailed in §4.4.1.3, then choosing τs such that pps, ssq

is the inflection point of the graph of S ensures that both p and the restriction of s to rτ˚,`8q are
concave. Moreover, if S belongs to C2pRq as in the van Genuchten-Mualem setting, then so do the
restrictions of p and s to pτ˚,`8q. An example of parametrized curves p, s corresponding to van
Genuchten-Mualem pressure-saturation laws is shown in Figure 4.1.

Figure 4.1: Plot of saturation and pressure parametrized van Genuchten-Mualem curves, using
values of rock type 1 reported in Table 4.2 . The green dot indicate the value for τ “ τ˚ and the
magenta one τ “ τs.

Applying the parametrization to our equations, we obtain the parametrized system:

mKφK
sKpτ

n
Kq ´ sKpτ

n´1
K q

∆tn
`

ÿ

σPEK

FnKσ “ 0, K P Ti, n ě 1, (4.2.10)

where the fluxes (4.2.3) become

FnKσ “

$

’

&

’

%

aσλKη
n
σ rϑKpτ

n
Kq ´ ϑKσpτ

n
Kσqs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn`1

tn
dt

ż

σ
qN dγ if σ P EK X E N

ext,
(4.2.11)

with
ϑKpτq “ pKpτq ` ψK “ pKpτq ´ %g ¨ xK , (4.2.12)
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and the upwinded face mobilities turn into

ηnσ “

#

ηKpsKpτ
n
Kqq if ϑKpτnKq ´ ϑKσpτnKσq ě 0,

ηKσpsKpτ
n
Kσqq otherwise.

(4.2.13)

Finally, we rewrite the initial condition as

τ0
K “ s´1

K

ˆ

1

mK

ż

K
s0

˙

, @K P Ti, (4.2.14)

and the Dirichlet boundary condition as

τD
σ “ p´1

K

ˆ

1

mσ

ż

σ
pD

˙

, @σ P E D
ext. (4.2.15)

So far, We have not specified yet how the interface fluxes FnKσ for σ “ EΓ are treated. This
specification is the purpose of §4.3. In the case of a homogeneous domain where Γ “ H, the
resulting system Fnpτnq “ 0 which is fully equivalent to (4.2.2b)–(4.2.6), admits a unique solution
τn (for details see [20, Proposition 3.6-3.7]).

Remark 4.2.1. The practical resolution of the nonlinear system relies on Newton’s method. In
the homogeneous setting, the method we use is the one that is presented in [18, Section 2] with
some differences. The first one concerns the approximation of the kr law by the van Genuchten-
Mualem model, that we explain in §4.4.1.3. Another one is related to the values of τ : here
I “ R, so no projection of τ after each Newton iteration to avoid τ ă srw is required. Then,
when we treat dry zones, we risk to manage a singular Jacobian matrix. In order to avoid this
we impose that krpsrwq “ 10´33 when evaluating J to allow the pressure-gravity motor not to
be zero. Finally, to help Newton’s algorithm recover the good direction when the `8 norm of the
residual exceeds 102, a relaxation is activated with 0.3 as relaxing constant.

4.3 Numerical treatment of the interface

This section is devoted to the presentation of different strategies to approximate the transmission
conditions (4.1.4)–(4.1.5) across the faces σ P EΓ located at an interface between to different rock-
types. We propose four schemes, referred to as methods A to D. For the last one, two different
iterative Newton-based solvers are proposed.

4.3.1 Method A

This method basically consists in treating the interfaces as standard bulk faces, leading to the
formula

FnKσ “ aσλση
n
σ rpKpτ

n
Kq ´ pLpτ

n
Lq ´ %g ¨ pxK ´ xLqs, σ “ K|L P EΓ, (4.3.1)

where the face permeabilities pλσqσPEΓ
are given by

λσ “
λKλLdσ

λKdL,σ ` λLdK,σ
, σ “ K|L P EΓ, (4.3.2)
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and the upwind face mobilities turn into

ηnσ “

#

ηKpsKpτ
n
Kqq if pKpτnKq ´ pLpτ

n
Lq ´ %g ¨ pxK ´ xLq ě 0,

ηLpsLpτ
n
Lqq otherwise.

(4.3.3)

Therefore, the continuity of the normal flux (4.1.4) is exactly transposed into the local conservation
condition

FnKσ ` F
n
Lσ “ 0, σ “ K|L P EΓ, n ě 1. (4.3.4)

On the other hand, pnK ‰ pnL in general. The pressure continuity (4.1.5) is recovered asymptotically
as dσ tends to 0 from (4.3.1). More precisely, assuming that |FnKσ| ď Cmσ , then we deduce
from (4.3.1) that |pKpτnKq ´ pLpτ

n
Lq| ď Cdσ , where the constant C has been updated and further

depends on λσ,maxi }ηi ˝ Si}8 and %g.
The scheme (4.2.10)–(4.2.13), complemented by the interface fluxes (4.3.1)–(4.3.3), has been

shown in [20] to be well-posed in the sense that the corresponding nonlinear system admits a
unique solution pτnKqKPT . Further, the rigorous convergence of the scheme as the mesh size and
the time-steps tend to 0 is also established. However, the numerical results presented in [20] (as
well as those presented in what follows) show that the expected first order convergence can be lost
in presence of heterogeneities. Methods B, C, and D have been designed as remedies to this loss
of accuracy, which takes its origin in the poor approximation of the pressure continuity (4.1.5) by
Method A.

4.3.2 Method B

This method, introduced in [20] consists in adding two thin cells, denoted by Iσ,K and Iσ,L, of
thickness δB ! dσ on both sides of each face σ “ K|L P EΓ located at a rock-type interface,
as depicted in Figure 4.2. This leads to the adjunction of two additional unknowns τnσ,K and τnσ,L
per interface σ “ K|L P EΓ, that will allow for a more precise approximation of the pressure
continuity condition (4.1.5).

Figure 4.2: Method B: introduction of two thin cells on both sides of a face located between two
rock types.

Define pFnKσqσPEΓ
to be used in (4.2.10) by setting, for σ “ K|L P EΓ and n ě 1,

FnKσ “ aσ,KλKη
n
σ,K rpKpτ

n
Kq ´ pKpτ

n
σ,Kq ´ %g ¨ pxK ´ xσ,Kqs, (4.3.5a)

FnLσ “ aσ,LλLη
n
σ,L rpLpτ

n
Lq ´ pLpτ

n
σ,Lq ´ %g ¨ pxL ´ xσ,Lqs, (4.3.5b)
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where we have set

aσ,K “
mσ

dK,σ ´ δB{2
, xσ,K “ xK `

dK,σ ´ δB{2

dσ
pxL ´ xKq, (4.3.6a)

aσ,L “
mσ

dL,σ ´ δB{2
, xσ,L “ xL `

dL,σ ´ δB{2

dσ
pxK ´ xLq, (4.3.6b)

and

ηnσ,K “

#

ηKpsKpτ
n
Kqq if pKpτnKq ´ %g ¨ xK ě pKpτ

n
σ,Kq ´ %g ¨ xσ,K ,

ηKpsKpτ
n
σ,Kqq otherwise.

Two equations are required to determine τnσ,K and τnσ,L. These equations are local conservation
laws in the thin cells Iσ,K and Iσ,L. Denote by mσ,K and mσ,L the Lebesgue measure of the thin
cells Iσ,K and Iσ,L respectively (mKσ “ mσδB for Cartesian grids as depicted in Figure 4.2), then
pτnKσ, τ

n
Lσq are determined by

mσ,KφK
sKpτ

n
σ,Kq ´ sKpτ

n´1
σ,K q

∆t
` Fnσ ´ F

n
Kσ “ 0, (4.3.7a)

mσ,LφL
sLpτ

n
σ,Lq ´ sLpτ

n´1
σ,L q

∆t
´ Fnσ ´ F

n
Lσ “ 0, (4.3.7b)

where Fnσ is the flux from Iσ,K to Iσ,L defined by

Fnσ “
mσ

δB
λση

n
σ rpKpτ

n
σ,Kq ´ pLpτ

n
σ,Lq ´ %g ¨ pxσ,K ´ xσ,Lqs, (4.3.8)

with λσ given by (4.3.2) and

ηnσ “

#

ηKpsKpτ
n
σ,Kqq if pKpτnσ,Kq ´ %g ¨ xσ,K ě pLpτ

n
σ,Lq ´ %g ¨ xσ,L,

ηLpsLpτ
n
σ,Lqq otherwise.

(4.3.9)

Assuming that |Fnσ | ď Cmσ , then we deduce from (4.3.8) that |pKpτnσ,Kq ´ pLpτ
n
σ,Lq| ď CδB,

improving the pressure continuity with respect to Method A since δB ! dσ . On the other hand,
summing (4.3.7a) and (4.3.7b) yields

|FnKσ ` F
n
Lσ| ď C

mσδB

∆t
ÝÑ
δBÑ0

0. (4.3.10)

Note that even if (4.3.10) can be interpreted as a defect in the approximation of (4.1.4), Method B is
still conservative since we keep track of this defect thanks to the discrete conservation laws (4.3.7a)–
(4.3.7b). The volume mK of the cell K is updated into

mK Ð mK ´
ÿ

σPEKXEΓ

mσ,K (4.3.11)

in (4.2.10) for all K having interface edges.
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Figure 4.3: Method C: one extra thin cell Iσ overlaps the interface located between two rock types.

4.3.3 Method C

This method takes inspiration from [32,34] and consists in adding only one thin cell, Iσ , of thickness
δC ! dσ , which overlaps the rock-type interface as shown in Figure 4.3.

For σ “ K|L P EΓ, we denote by mσ,K and mσ,L the Lebesgue measures of Iσ,K :“ Iσ XK
and Iσ,L :“ IσXL respectively. The system is enriched with only one extra unknown τnσ per face
σ P EΓ, in opposition to Method B where two additional unknowns where needed. The new cell
Iσ is shared by two subcells Iσ,K and Iσ,L corresponding to different lithologies. To enforce one
single pressure in the cell, we introduce a second parametrization and define monotone functions
ωσ,K , ωσ,L with ω1σ,K ` ω1σ,L ą 0 such that

pKpωσ,Kpτqq “ pLpωσ,Lpτqq, @τ. (4.3.12)

As for the parametrization pp, sq of the graph of S , an infinite number of admissible pωσ,K , ωσ,Lq
satisfying (4.3.12) can be built. We further investigate two choices.

The first possibility, named with exponent 1, consists in setting

ω1
σ,Kpτq “ τ, ω1

σ,Lpτq “ p´1
L ˝ pKpτq, (4.3.13)

the orientation of the cell being such that ω1
σ,L is concave (choose K and L such that pb,K ą

pb,L or ξK ą ξL in the Brooks-Corey and van Genuchten-Mualem settings described in §4.4.1.3
respectively), hence so does pL ˝ ω1

σ,L. As it appears on figures 4.4 and 4.5, the derivative of ω1
σ,L

might blow up (the value of κK defined by (4.2.9) is very large in practice).

Figure 4.4: Behaviour of ω1
σ,Kp¨q and ω1

σ,Lp¨q functions using the Brooks-Corey model.

Our second proposition, named with exponent 2, is tailored to maintain control on the deriva-
tives of ω2

σ,K and ω2
σ,L. To this end, keeping the same orientation K|L of the interface σ, we set
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Figure 4.5: Behaviour of ω1
σ,Kp¨q and ω1

σ,Lp¨q functions using the van Genuchten-Mualem model.

ω2
σ,Kpτq “

#

p´1
K ˝ pLpτq if τ ď βL,

τ ` βK ´ βL if τ ě βL.
(4.3.14a)

ω2
σ,Lpτq “

#

τ if τ ď βL,

p´1
L ˝ pKpτ ` βK ´ βLq if τ ě βL.

(4.3.14b)

the parameters βK and βL are uniquely determined by the conditions

pKpβKq “ pLpβLq, p1KpβKq “ p1LpβLq,

since pK , pL are increasing and concave. This yields 1-Lipschitz continuous functions ω2
σ,K and

ω2
σ,L as depicted on Figures 4.6 and 4.7.

Figure 4.6: Behaviour of ω2
σ,Kp¨q and ω2

σ,Lp¨q functions using the Brooks-Corey model.

With a double parametrization pωσ,K , ωσ,LqσPEΓ
at hand, Method C then consists in writing

a discrete conservation law in Iσ . While in Method B, the sub-cells Iσ,K and Iσ,L had different
pressures generating an in-between flux Fnσ (4.3.8), here the two sub-cells share the same pressure

pnσ “ pKpωσ,Kpτ
n
σ qq “ pLpωσ,Lpτ

n
σ qq, σ “ K|L P EΓ, (4.3.15)

thanks to (4.3.12). The discrete volume conservation on Iσ then reads

mσ,KφK
sKpωσ,Kpτ

n
σ qq ´ sKpωσ,Kpτ

n´1
σ qq

∆tn
`mσ,LφL

sLpωσ,Lpτ
n
σ qq ´ sLpωσ,Lpτ

n´1
σ qq

∆tn

´ FnKσ ´ F
n
Lσ “ 0, (4.3.16)
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Figure 4.7: Behaviour of ω2
σ,Kp¨q and ω2

σ,Lp¨q functions using the van Genuchten-Mualem model.

where the fluxes FnKσ and FnLσ from K to Iσ and from L to Iσ are given by

FnKσ “
mσ

dK,σ
λKη

n
σ,K rpKpτ

n
Kq ´ p

n
σ ` %g ¨ pxK ´ xσqs, (4.3.17a)

FnLσ “
mσ

dL,σ
λLη

n
σ,L rpLpτ

n
Lq ´ p

n
σ ` %g ¨ pxL ´ xσqs, (4.3.17b)

with

ηnσ,K “

#

ηKpsKpτ
n
Kqq if pKpτnKq ´ %g ¨ xK ě pnσ ´ %g ¨ xσ,

ηKpsKpωσ,Kpτ
n
σ qqq otherwise.

(4.3.18)

In (4.3.17)–(4.3.18), pnσ is given by (4.3.15), which should be thought as the discrete counterpart to
the pressure continuity (4.1.5) across the interface. Concerning the continuity of the fluxes (4.1.4),
it follows from (4.3.16) that

|FnKσ ` F
n
Lσ| ď C

mσδC

∆t
ÝÑ
δCÑ0

0, (4.3.19)

meaning that (4.1.4) is recovered only asymptotically. Nevertheless, with δC small, flux continuity
is captured in an accurate way. Moreover, as for Method B, Method C is locally conservative if one
corrects the cell size mK as prescribed by (4.3.11).

4.3.4 Method D

The last method we propose, referred to as Method D, consists in enforcing both the pressure
continuity and the flux continuity across the interface, at the price of one edge unknown τnσ on each
σ P EΓ on the interface between different rocks. Such an approach has already been proposed for
instance in [30, 32, 41, 65]. Letting δC tend to 0 in Method C (cf. Figure 4.8, and more precisely in
(4.3.16)), one recovers the flux continuity

FnKσ ` F
n
Lσ “ 0, σ “ K|L P EΓ, (4.3.20)

with FnKσ and FnLσ respectively defined by (4.3.17) and (4.3.17b), whereas pressure continuity is
still ensured by (4.3.15). We propose then two numerical strategies, later referred to as Methods
D1 and D2 to solve the resulting nonlinear system.
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Figure 4.8: Method D: introduction of a face unknown τnσ with no associated volume.

4.3.4.1 Method D1: Schur complement based elimination of the face unknowns

With the rock-type face unknowns the obtained system is made of #T `#EΓ equations

FpτnT , τnEΓ
q “

„

FT pτ
n
T , τ

n
EΓ
q

FEΓ
pτnT , τ

n
EΓ
q



“ 0 (4.3.21)

where τnT “ pτnKqKPT , τnEΓ
“ pτnσ qσPEΓ

, and where FT corresponds to the volume conservation
laws (4.2.10) and FEΓ

to the flux conservation across the interfaces (4.3.20).
In what follows, we are interested in the resolution of the system (4.3.21) at a prescribed

time-step n. For notation convenience, the superscript n is dropped in this section. Denote by
pτ `T , τ

`
EΓ
q`ě0 a sequence of approximation of pτT , τ EΓ

q given by iterations of Newton’s method.
The Jacobian matrix of F at pτ `T , τ `EΓ

q, ` ě 0, can be split into four blocks as

JF pτ
`
T , τ

`
EΓ
q “

„

A` B`

C` D`



, (4.3.22)

where

A` “
BFT

BτT
pτ `T , τ

`
EΓ
q, B` “

BFT

BτnEΓ

pτ `T , τ
`
EΓ
q, (4.3.23a)

C` “
BFEΓ

BτnT
pτ `T , τ

`
EΓ
q, D` “

BFEΓ

BτnEΓ

pτ `T , τ
`
EΓ
q. (4.3.23b)

Then the matrix D` is diagonal with negative diagonal entries because of the monotonicity of FnKσ ,
FnLσ with respect to τnσ that can be deduced from the monotonicity of pK , pL and ωσ,K , ωσ,L.
Therefore, D` can be inverted for free.

A Newton iteration to solve (4.3.21) then computes an increment δ` “ pδ`T , δ`EΓ
qT that solves

JF pτ
`
T , τ

`
EΓ
qδ` “ ´Fpτ `T , τ `EΓ

q “ ´

„

FT pτ
`
T , τ

`
EΓ
q

FEΓ
pτ `T , τ

`
EΓ
q



“ ´

„

F `
T

F `
EΓ



,

or equivalently

pA` ´ B`pD`q´1C`qδ`T “ ´F `
T ` B`pD`q´1F `

EΓ
, (4.3.24a)

D`δ`EΓ
“ ´F `

EΓ
´ C`δ`T . (4.3.24b)

After solving the linear system (4.3.24a) of size #T ˆ#T for δ`T , inferring δ`EΓ
by (4.3.24b), the

unknowns are updated by τ ``1 “ τ ` ` δ`.
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4.3.4.2 Method D2: face unknowns elimination thanks to a bisection method

We present here an alternative approach to solve the nonlinear system (4.3.21). The strategy consists
here in computing increments of the cell unknowns via Newton’s method and updating the face
unknowns by solving exactly the flux conservation (4.3.20) on each interface and at each Newton
iteration `. More specifically, instead of (4.3.24), the algorithm reads

pA` ´ B`pD`q´1C`qδ`T “ ´F `
T ` B`pD`q´1F `

EΓ
, (4.3.25a)

τ ``1
T “ τ `T ` δ

`
T , (4.3.25b)

FEΓ
pτ ``1

T , τ ``1
EΓ
q “ 0. (4.3.25c)

In the last step, we solve the nonlinear equation (4.3.25c) for τ ``1
EΓ

with a known value of τ ``1
T .

This can be achieved with the help of a bisection method.
We now further detail how to solve (4.3.25c) knowing pτ `KqKPT . For each σ P EΓ and for all

outer Newton loop iteration `, we build a sequence

pϑ`,kσ qkě0 “ pp
`,k
σ ´ %g ¨ xσqkě0

approximating the interface hydraulic head at the interface. More precisely, define

ϑ`K “ pKpτ
`
Kq ´ %g ¨ xK (4.3.26)

for K P T and

F `K,σpϑσq “
mσ

dK,σ
λKη

`
σ,Kpϑσqrϑ

`
K ´ ϑσs, (4.3.27a)

F `L,σpϑσq “
mσ

dL,σ
λLη

`
σ,Lpϑσqrϑ

`
L ´ ϑσs, (4.3.27b)

for σ “ K|L P EΓ, with

η`σ,Kpϑσq “

#

ηK ˝ sK ˝ p
´1
K pϑ

`
K ` %g ¨ xKq if ϑσ ď ϑ`K ,

ηK ˝ sK ˝ p
´1
K pϑσ ` %g ¨ xσq otherwise

(4.3.28)

and a similar definition for η`σ,L. Then, one readily checks that F `K,σ is decreasing w.r.t. ϑσ , and
that

F `K,σpminpϑ`K , ϑ
`
Lqq ě 0 ě F `K,σpmaxpϑ`K , ϑ

`
Lqq.

Therefore, the continuous and decreasing function G`σ : RÑ R defined by

G`σpϑσq “
F `K,σpϑσq ` F

`
L,σpϑσq

aσµ´1pλK ` λLqp|ϑ`K | ` |ϑ
`
L|q

vanishes at some ϑ`σ P
“

minpϑ`K , ϑ
`
Lq,maxpϑ`K , ϑ

`
Lq
‰

, from which one deduces

τ `σ “ ω´1
σ,K ˝ p

´1
K pϑ

`
σ ` %g ¨ xσq “ ω´1

σ,L ˝ p
´1
L pϑ

`
σ ` %gxσq

with pωσ,K , ωσ,Lq being a double parametrization as introduced in §4.3.3. Then we solve the
nonlinear equation G`σpϑσq “ 0 thanks to the classical bisection method, stopping the iterations
over k when either |G`σpϑkσq| ă εbis or |ϑk0 ´ ϑk1| ă γminp|ϑk0|, |ϑ

k
1|q with εbis “ 10´16 and

γ “ 10´15 in our simulations. We can finally remark that Method D2 does not depend on the
choice of the double parametrization.
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4.4 Numerical results

We now present numerical results obtained for different test cases. In all cases, we consider a two-
dimensional layered domain Ω “ r0, 5s ˆ r´3, 0s (in meters) made up of two rock types denoted
by RT0 and RT1 respectively, RT1 being less permeable than RT0. The domain Ω is partitioned
into three connected subdomains: Ω1 “ r1, 4s ˆ r´1, 0s, Ω2 “ r0, 5s ˆ r´3,´2s (in meters) and
Ω3 “ Ωz pΩ1 Y Ω2q, as depicted in Figure 4.9.

Figure 4.9: Simulation domain Ω “ r0m, 5ms ˆ r´3m, 0ms.

4.4.1 Description of the test cases

Both filling and drainage configurations are considered along with the two classical Brooks-Corey
and van Genuchten-Mualem hydraulic models. These analytical models are first used in a set-
ting where the pressure-saturation relationship and its inverse have moderate derivatives (non-
steep cases). We then only consider the Brooks-Corey model and coefficients where the pressure-
saturation dependence has sharp variations (steep cases).

4.4.1.1 Filling case

This test case has already been considered in [47,81,99,109]. The rock-type repartition is reported
in Figure 4.10. Starting from an initially dry domain Ω, where the initial capillary pressure is set to
´47.088 ¨ 105 Pa, water flows from a portion ΓN “ tpx, yq |x P r1, 4s, y “ 0u (in meters) of the
top boundary at a constant rate of 0.5m/day. A no-flow boundary condition is applied elsewhere.
The simulation stops after 1 day.

Water flows according to the following dynamics. It starts invading the dry porous space in
Ω1. When it reaches the interface with Ω3, capillary forces create a suction force on water from
Ω1 to Ω3. But, on the other hand, the low permeability value in RT1 is set against this water flow
through Ω3. The simulation ends before water reaches the bottom part corresponding to Ω2.

4.4.1.2 Drainage case

This test case is designed as a two-dimensional extension of a one-dimensional test case proposed
by [108] and addressed in [47,109]. We simulate a vertical drainage starting from saturated initial and
boundary conditions during 105 ¨ 104 s. The initial pressure is hydro-static, that is p0pzq “ ´ρgz.
A Dirichlet boundary condition pD “ 0 Pa is imposed on the bottom boundary, ΓD “ tpx, yq |x P
r0, 5s, y “ ´3u (in meters). The rock-type distribution of Ω is shown in Figure 4.11 along with the
bottom boundary condition.
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Figure 4.10: Boundary condition for the filling case.

Figure 4.11: Boundary condition for the drainage test.

Note that rock types RT0 and RT1 are here reversed compared to the previous case. Thus, at
the top interface between Ω1 and Ω3, capillarity acts in opposition to gravity and to the evolution
of the system towards a dryer configuration. The interface between Ω2 and Ω3 acts in the opposite
way: both capillarity and gravity contribute to the drainage of the RT0 subdomain.

4.4.1.3 Hydraulic models

For two-phase problems, water saturation and capillary pressure are linked through the relation
s “ Sppq. Here S : R Ñ r0, 1s is nondecreasing. It satisfies Sppq “ 1 ´ srn if p ě pb and
Sppq Ñ srw as p Ñ ´8, with srw (resp. srn) the residual wetting (resp. non-wetting) saturation.
In the following, we define the effective saturation

seff “ Πr0,1s

ˆ

s´ srw

p1´ srnq ´ srw

˙

, (4.4.1)

where Πr0,1s is the projection on r0, 1s. To model the two-phase flow characteristics for both rock
types, we use
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• either the Brooks-Corey [39] model:

krpsq “ s
3`2{n
eff , (4.4.2a)

Sppq “

$

’

&

’

%

srw ` p1´ srn ´ srwq

ˆ

´
p

pb

˙´n

if p ď ´pb,

1´ srn if p ą ´pb,
(4.4.2b)

• or the van Genuchten-Mualem [133] model:

krpsq “ s
1{2
eff

 

1´
“

1´ s
1{m
eff

‰m(2
, (4.4.3a)

Sppq “

$

’

&

’

%

srw ` p1´ srn ´ srwq

„

1`

ˇ

ˇ

ˇ

ˇ

ξp

%g

ˇ

ˇ

ˇ

ˇ

n´m

if p ď 0,

1´ srn if p ą 0,

(4.4.3b)

with m “ 1´ 1{n.

In both models, we have denoted by krp¨q the relative permeability which, with the water viscosity
µ “ 10´3 Pa ¨ s, defines the water mobility thanks to ηp¨q “ krp¨q{µ. The parameters used for
both rock types are given in Table 4.1 for cases using the Brooks-Corey model and in Table 4.2 for
the other ones. These parameters have been chosen in such a way that water is more likely to be
in RT1 than in RT0: indeed, at a fixed pressure, the water saturation is higher in RT1 than in RT0.
This can be observed on the plots of the capillary-pressure functions depicted in Figures 4.12–4.14.
On these figures, the relative permeability functions are also shown. Let us, in particular, remark
the non-Lipschitz character of the relative permeability in the van Genuchten-Mualem case. Thus,
in order to avoid infinite values for the derivative of krpsq when s Ñ 1 ´ srn, we approximate
it for s P rslim, 1 ´ srns using a second degree polynomial rkrpsq. This polynomial satisfies the
conditions

krpslimq “
rkrpslimq, rk1rpslimq “ k1rpslimq, rkrp1´ srnq “ 1,

where slim is chosen so that seff “ 0.998.

1´ srn srw pb rPas n λ rm2s φ

RT0 1.0 0.1 1.4708 ¨ 103 3.0 10´11 0.35
RT1 1.0 0.2 3.4301 ¨ 103 1.5 10´13 0.35

Table 4.1: Parameters used for the Brooks-Corey model.

1´ srn srw n λ rm2s ξ rm´1s φ

RT0 (Sand) 1.0 0.0782 2.239 6.3812 ¨ 10´12 2.8 0.3658
RT1 (Clay) 1.0 0.2262 1.3954 1.5461 ¨ 10´13 1.04 0.4686

Table 4.2: Parameters used for the van Genuchten-Mualem model.
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Figure 4.12: Water pressure and relative permeability curves for the Brooks-Corey model.

Figure 4.13: Parametrized saturation and pressure functions using the Brooks-Corey model and
parameters of Table 4.1. The green dot indicates the value for τ “ τ˚ and the magenta one τ “ τs.

Figure 4.14: Water pressure and relative permeability curves for the van Genuchten-Mualemmodel.
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Figure 4.15: Parametrized saturation and pressure functions using the van Genuchten Mualem
model using parameters of Table 4.2. The green dot indicate the value for τ “ τ˚ and the magenta
one τ “ τs.

4.4.2 Comparison of the results in non-steep cases

We now analyze the results obtained on the test cases which were previously introduced. We use
uniform time discretizations. The time-step ∆t depends on the test case and is reported in Table
4.5 together with the others numerical parameters used for these simulations. The detailed results
for the different cases, methods and meshes along with figures of the solutions are reported in
Appendix §4.5.

In Table 4.3 we present a brief classification of the proposed methods based on both robustness
(R) and accuracy (A) criteria. For each criterion, the colour choice corresponds to the following glos-
sary: green for good, orange for average, red for bad. Regarding the robustness, a non-convergent
method is classified as red; orange is used if a method faces many times difficulties during Newton’s
resolution (maximal number of iterations reached, a much larger number of total iterations in com-
parison to other methods...); the green label is used in other cases. Thus, a method, having a relative
error in the same order as the best performing one, is tagged as green; if an error has one (resp.
several) order(s) of magnitude more than the best performing one, the label of the corresponding
method is taken as orange (resp. red).

Let us discuss each test case in details, starting with the filling test case simulated with the
Brooks-Corey model. Table 4.6 shows that Method A has the smallest saturation relative error with
the coarsest mesh. Subsequent refinements then enable to reduce the error related to methods B,
C, D at a higher convergence rate, leading to errors on the finest grid that are smaller than the one
obtained with the classical scheme A. All the methods face difficulties in the Brooks-Corey filling
case for the third mesh and the first time-step. This is due to our non-optimal choice of a uniform
time discretization. A simple time-step adaptation strategy similar to the one used in the steep case
would fix this issue.

Keeping the Brooks-Corey model, if we now analyze the results reported in Table 4.7 for the
drainage case, we notice that methods B, C and D always have a smaller error than method A
that converges again at a slower rate. Concerning Method C, it behaves as Method A in terms of
accuracy and is fairly cheaper in terms of iterations with respect to this one.

We now consider the results obtained with the van Genuchten-Mualem model. Table 4.8
summarizes the results obtained with the filling case. We can notice that all methods have ap-
proximately the same errors and convergence rates. Regarding Newton’s cost, the conclusions are
similar to the ones made for the Brooks-Corey tests.
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Method A Method B Method C Method D1 Method D2

R A R A R A R A R A

Brooks-Corey
Filling case

Brooks-Corey
Drainage case

van Genuchten-Mualem
Filling case

van Genuchten-Mualem
Drainage case

Table 4.3: Summary of methods’ robustness (R) and accuracy (A) classification. Method D1 and
Method D2 denote Method D with Schur complement and bisection method respectively. Color
legend: green= good, orange= passing, red=bad.

In the drainage case (see Table 4.9), methods B and C turn out to be more precise and to converge
faster that Method A. On the other hand, Methods B and C require more Newton iterations than
Method A and D that almost have the same iterations’ cost. Moreover we observe that all methods
require an important maximum number of iterations to converge which is greater than 50 (reaching
the number of 100 iteration for the finer meshes.)

Throughout all these non-steep tests we can also notice that the number of Newton iterations
to reach convergence with method B is larger than for the other ones.

Let us now make one last comment on the results obtained using the two proposed double
parametrizations (see Eq. (4.3.13)–(4.3.14)) in Method D: they provide the same solutions with the
same accuracy in all tests. They only differ in terms of Newton iterations which slightly vary from
one parametrization to the other one according to the test case.

4.4.3 Tests with Brooks-Corey model and steep capillary-pressure curves

The aim of this section is to evaluate the robustness of Newton’s algorithm when used with the
four previous methods and steep capillary-pressure curves. We use the same filling and drainage
cases with Brooks-Corey model as in the previous section. We here only change the value of the
parameter n which is now equal to 120 for rock-type RT0 and 60 for RT1, making the problem
(4.1.1)–(4.1.8) close to a strongly-degenerate parabolic case. The corresponding capillary pressure
curves are represented in Figure 4.16. The time evolution for these tests is adaptive:

• Filling case
Minimal, maximal and initial time-steps are such that ∆tmin “ 10´6s, ∆tmax “ 104s,
∆t0 “ 10´6s and, for n ě 0,

∆tn`1 “ minp∆tmax, 1.2∆tnq

in case of Newton’s convergence or

∆tn`1 “ maxp∆tmin,∆t
n{2q

in the absence of convergence. In the latter case, for ∆t “ ∆tmin, the simulation stops.
Nmax “ 30 is taken as maximal number of Newton’s iterations.
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Figure 4.16: Steep cases: water pressure and relative permeability curves for the Brooks-Corey
model.

• Drainage case
Minimal, maximal and initial time-steps are such that ∆tmin “ 1s, ∆tmax “ 105s, ∆t0 “ 1s
and, for n ě 0,

∆tn`1 “

#

2.5∆tn if ∆t ă 500s,

minp∆tmax, 1.2∆tnq otherwise,

in case of a successful time-step, or

∆tn`1 “

#

maxp∆tmin,∆t
n{5q if ∆t ă 500s,

∆tn{2 otherwise,

in the absence of convergence with Nmax “ 30 iterations. If Newton does not converge for
∆t “ ∆tmin the simulation stops.

4.4.3.1 Comparison of the results

Table 4.4 shows that only methods A, B, C2, D2
1 and D2 converge for all test cases. Here and

hereafter, the exponents 1 or 2 refer to the choice of the double parametrization presented in §4.3.3.
Figure 4.23 reports on the evolution of the cumulated number of Newton iterations for the filling
case with the 50ˆ30 cells mesh. Apart from method D which faces difficulties at the beginning, all
curves evolve in the same way. These conclusions remain valid for the 400ˆ 240 cells mesh with
an exception for method B whose number of iterations increased as it can be observed in Figure
4.24.

Figures 4.26 and 4.27 show the results obtained on the drainage case with meshes of resolutions
50ˆ 30 and 400ˆ 240 respectively. In both cases, the methods C1 and D1

1 face more difficulties
to converge than the other ones around time t “ 348500s. It corresponds to the moment at which
the cells line in Ω2 below the interface between Ω3 and Ω2 starts to empty. Note that the number
of Newton iterations also increases for method B at that particular time on the finer mesh too.
Method C2 also encounters difficulties on the coarser mesh but at a earlier time (when the cells line
in Ω1 below the interface between Ω1 and Ω3 starts to empty) and to a lesser extent. On the whole,
the results on this last case show a higher degree of robustness for methods A and the second
proposition of the double parametrization which has been designed with the aim of controlling and
bounding its derivatives, as it can be seen in Figures 4.17.
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Figure 4.17: Comparison between ω11σ,Kp¨q, ω11σ,Lp¨q (above) and ω12σ,Kp¨q, ω12σ,Lp¨q (below) when using
steep capillary pressure curves.

Method A Method B Method C Method D1 Method D2

Mesh dp1 dp2 dp1 dp2 dp1 dp2

Filling case
50ˆ 30

400ˆ 240

Drainage case
50ˆ 30

400ˆ 240

Table 4.4: Summary of methods’ robustness classification for steep tests. Method D1 and Method
D2 denote Method D with Schur complement and bisection method respectively. Color legend:
green= good, orange= passing, red=not converge.
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4.4.4 Overall method evaluation

Using this glossary and the results obtained in the steep and non-steep cases, we proceed, in the
following of this section, to a general evaluation of the five studied methods.

Let us start with Method A. In this approach, rock-type interface faces are treated like classical
inner faces and the pressure continuity on these interfaces is not enforced. Nevertheless, if the
simulation is performed on a sufficiently refined mesh, a good approximation of this condition can
be obtained. In the previous tests, and in particular in the steep ones (see §4.4.3), this method
turns out to be very robust. On fine meshes its accuracy is, in general, close to the ones of other
methods. In the filling case with the Brooks-Corey model (see Table 4.6), this method is even the
most accurate one on coarse meshes. A noticeable drawback of this method is the loss of the linear
convergence rate when used with the Brooks-Corey model (see Tables 4.6–4.7).

Method B is the first approach we propose with a specific treatment for the rock-type interfaces,
which only entails moderate changes in terms of implementation compared to method A. We here
just add two thin cells around the rock-type interfaces and neglect, for these new cells, the fluxes
through the faces with small measures. It features a rather good robustness since it also converges
in the steep cases (see §4.4.3). For non-steep cases, it always provides a rather accurate solution and
good robustness. Compared to method A, the linear convergence rate is recovered at the price of
about 10% extra Newton iterations.

Method C is the first method which strongly enforces the pressure continuity on the rock-type
interfaces. Here, the interfaces are thickened in thin cells and the pressure continuity is ensured by
introducing a second parametrization (4.3.12) for which we propose two different forms detailed in
Equations (4.3.13)–(4.3.14). This parametrization should be calculated beforehand and depends on
the chosen petro-physical model. Thus, this method involves more changes for its implementation
with respect to the previous one. In non-steep simulations, the two proposed double parametriza-
tions provide the same solutions with the same accuracy with just a slight difference in the required
number of iterations. Moreover it behaves as Method B in all non-steep simulations in terms of er-
ror. In the steep tests a remarkable difference of performance between the use of the two proposed
parametrizations for the pressure continuity at interfaces arises: the first proposition of parametriza-
tion converges only in drainage case while the second one always converges showing, generally, a
competitive robustness.

The last studied method Method D guarantees the flux conservation between all cells of the
initial meshes and pressure continuity at rock-type interfaces. As for Method C, it also uses a
double parametrization (4.3.12). In the non-steep cases, the application of the two proposed second
parametrizations, as in Method C, provides the same solutions with the same accuracy with just
a slight difference in the required number of iterations, as already remarked in §4.4.2. Moreover,
Methods D1 and D2 show in all tests a good robustness and the same rather good accuracy: in
drainage cases their accuracy is fairly better than Method A when using the Brooks-Corey model
and, when employing the van Genuchten-Mualem model, they show a relative error almost halved
with respect to the one of Method A. In filling cases they have almost the same accuracy as Method
A. Methods D1 and D2 always recover a first-order convergence except for the drainage test case
with the van Genuchten-Mualem model in which the convergence rate is slightly degraded. The
fact that Methods D1 and D2 show the same accuracy is not surprising: the only difference between
the two methods is how we solve the system that, for its part, does not change. In steep tests both
double parametrizations employed in Method D1 and D2 make the simulation converge, apart for
the filling test case in which Method D1

1 fails, just showing in some cases a difference of behaviour
in terms of robustness as detailed in §4.4.3.1.
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Finally we can conclude that if we want to perform simulation for test cases with steep pressure
curves, we can choose between Method A or B or, if one does not mind making larger code changes,
methods C2, D2

1 or D2 can also be used. If it is not the case, for coarse meshes, Method A ensures a
good robustness and an accurate solution without any particular treatment for interfaces. For more
refined meshes, even if its accuracy is slightly lower or comparable -it depends on the specific test
case- to that of Method D, Method B is easier to implement and the least intrusive with respect to
methods introducing a treatment for interfaces. So, if the choice is based on an accuracy criterion
actually Method B, C and D are almost equivalent; in terms of ease of implementation the best
choice is Method B.

4.5 Figures and data related to the non-steep cases

∆t τ˚ ε εbis γ δB δC
Filling – Brooks-Corey 500 10´10 10´12 10´16 10´15 10´6 2 ¨ 10´6

Filling – van Genuchten-Mualem 500 10´8 10´12 10´16 10´15 10´6 2 ¨ 10´6

Drainage – Brooks-Corey 1000 10´10 10´12 10´16 10´15 10´6 2 ¨ 10´6

Drainage – van Genuchten-Mualem 1000 10´8 10´12 10´16 10´15 10´6 2 ¨ 10´6

Table 4.5: Numerical parameters used in the examples.

4.5.1 Filling case using Brooks-Corey model

Figure 4.18: Evolution of the saturation profile for t P t0 s, 21.5 ¨ 103 s, 41.5 ¨ 103 s, 86.4 ¨ 103 su for
the non-steep filling case, using Brooks-Corey model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
9.60719e-2 8.08028e-2 6.41616e-2 5.18869e-2

Rate of convergence ´ 0.25 0.333 0.306
# total iterations 647 777 1074 1236
# avg iterations 3 4 6 7
# max iterations 18 21 168 32

Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.43731e-1 1.0421e-1 6.3325e-2 2.76736e-2

Rate of convergence ´ 0.464 0.719 1.194
# total iterations 835 959 1279 1428
# avg iterations 4 5 7 8
# max iterations 19 21 168 38

Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.46706e-1 1.06227e-1 6.45985e-2 2.84733e-2

Rate of convergence ´ 0.465 0.7156 1.182
# total iterations 690 796p794q 1106p1102q 1253p1247q
# avg iterations 3 4 6 7
# max iterations 20p18q 21 168 29

Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.7701e-1 1.26129e-1 7.75469e-2 3.66345e-2

Rate of convergence ´ 0.489 0.702 1.082
# total iterations 620p634q 721p734q 1001p1018q 1140p1146q
# avg iterations 3 4 5 6
# max iterations 17 20 155 32

Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.7701e-1 1.26129e-1 7.75469e-2 3.66345e-2

Rate of convergence ´ 0.489 0.702 1.082
# total iterations 590 714 999 1140
# avg iterations 3 4 5 6
# max iterations 17 20 155 32
# avg it. bisection per face 16 15 15 14

Table 4.6: Results for the non-steep filling case using Brooks-Corey model. For methods C and
D1, we specify within parentheses the number of iterations corresponding to the second choice
of double parametrization when it differs from the one obtained with the first choice, which is
reported without parentheses.
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4.5.2 Drainage case using Brooks-Corey model

Figure 4.19: Evolution of the saturation profile for t P t0 s, 35 ¨ 104 s, 70 ¨ 104 s, 105 ¨ 104 su for the
non-steep drainage case, using Brooks-Corey model, Method B and the 50ˆ 30 cells mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
4.48867e-2 2.60531e-2 1.64213e-2 1.110698e-2

Rate of convergence ´ 0.785 0.666 0.564
# total iterations 2598 2848 3258 3819
# avg iterations 2 2 3 3
# max iterations 21 24 29 32

Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.80469e-2 9.9613e-3 4.83626e-3 1.77811e-3

Rate of convergence ´ 0.857 1.042 1.443
# total iterations 2845 3056 3448 3918
# avg iterations 2 2 3 3
# max iterations 20 24 20 32

Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.81634e-2 1.00638e-2 4.92295e-3 1.84945e-3

Rate of convergence ´ 0.851 1.032 1.412
# total iterations 2659p2653q 2893p2887q 3304p3298q 3804p3798q
# avg iterations 2 2 3 3
# max iterations 20p21q 24 28p29q 32

Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3

Rate of convergence ´ 0.898 0.915 1.046
# total iterations 2659p2665q 2919p2905q 3329p3324q 3863p3861q
# avg iterations 2 2 3 3
# max iterations 21p20q 24 29p30q 32

Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3

Rate of convergence ´ 0.898 0.915 1.046
# total iterations 2614 2894 3320 3856
# avg iterations 2 2 3 3
# max iterations 21 24 29 32
# avg it. bisection per face 35 34 33 32

Table 4.7: Results for the non-steep drainage case using Brooks-Corey model. For methods C and
D1, we specify within parentheses the number of iterations corresponding to the second choice
of double parametrization when it differs from the one obtained with the first choice, which is
reported without parentheses.
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4.5.3 Filling case using van Genuchten-Mualem model

Figure 4.20: Evolution of the saturation profile for t P t0 s, 21.5 ¨ 103 s, 41.5 ¨ 103 s, 86.4 ¨ 103 su
for the non-steep filling case using van Genuchten-Mualem model, Method B and the 50ˆ 30 cells
mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.05534e-1 7.48124e-2 4.55216e-2 2.1125e-2

Rate of convergence ´ 0.496 0.717 1.108
# total iterations 575 667 782 930
# avg iterations 3 3 4 5
# max iterations 9 12 15 18

Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.23187e-1 8.67715e-2 5.30592e-2 2.40712e-2

Rate of convergence ´ 0.506 0.71 1.14
# total iterations 836 900 959 1076
# avg iterations 4 5 5 6
# max iterations 9 12 15 18

Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.23321e-1 8.68681e-2 5.31222e-2 2.41106e-2

Rate of convergence ´ 0.509 0.706 1.14
# total iterations 571p573q 678p675q 779p800q 934p960q
# avg iterations 3 3 4 5
# max iterations 9 12 15 18

Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.50856e-1 1.0295e-1 6.20923e-2 2.91945e-2

Rate of convergence ´ 0.551 0.729 1.089
# total iterations 579p581q 677p676q 785p814q 933p985q
# avg iterations 3 3 4 5
# max iterations 9 12 15 18

Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.50856e-1 1.0295e-1 6.20923e-2 2.91945e-2

Rate of convergence ´ 0.551 0.729 1.089
# total iterations 579 674 783 933
# avg iterations 3 3 4 5
# max iterations 9 12 15 18
# avg it. bisection per face 15 13 12 11

Table 4.8: Results for the non-steep filling case using van Genuchten-Mualem model. For methods
C and D1, we specify within parentheses the number of iterations corresponding to the second
choice of double parametrization when it differs from the one obtained with the first choice, which
is reported without parentheses.
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4.5.4 Drainage case using van Genuchten-Mualem model

Figure 4.21: Evolution of the saturation profile for t P t0s, 35 ¨ 104s, 70 ¨ 104s, 105 ¨ 104su for the
non-steep drainage case using the van Genuchten-Mualem model, Method B and the 50ˆ 30 cells
mesh.
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Method A 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
1.50494e-2 7.3434e-3 3.57016e-3 1.66693e-3

Rate of convergence ´ 1.035 1.04 1.099
# total iterations 2333 2330 2325 2326
# avg iterations 2 2 2 2
# max iterations 65 67 67 72

Method B 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
6.52099e-3 3.11282e-3 1.35196e-3 4.53001e-4

Rate of convergence ´ 1.064 1.203 1.577
# total iterations 2949 3006 3028 3236
# avg iterations 2 2 2 3
# max iterations 97 96 96 100

Method C 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
6.52104e-3 3.11287e-3 1.35201e-3 4.53048e-4

Rate of convergence ´ 1.067 1.203 1.577
# total iterations 2855 2818p2817q 2904p2902q 2970p2962q
# avg iterations 2 2 2 2
# max iterations 99 98p97q 97p95q 101p93q

Method D1 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3

Rate of convergence ´ 0.886 0.926 0.893
# total iterations 2349 2351p2350q 2350 2367
# avg iterations 2 2 2 2
# max iterations 76 77p76q 80 84

Method D2 50ˆ 30 100ˆ 60 200ˆ 120 400ˆ 240
}s´sref}L2pr0,T s,Ωq

}sref}L2pr0,T s,Ωq
6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3

Rate of convergence ´ 0.886 0.923 0.893
# total iterations 2348 2345 2350 2367
# avg iterations 2 2 2 2
# max iterations 76 76 80 84
# avg it. bisection per face 34 33 32 31

Table 4.9: Results for the non-steep drainage case using van Genuchten-Mualem model. For meth-
ods C and D1, we specify within parentheses the number of iterations corresponding to the second
choice of double parametrization when it differs from the one obtained with the first choice, which
is reported without parentheses.
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4.6 Figures and data related to the steep cases

4.6.1 Filling case

Figure 4.22: Evolution of the saturation profile for t P t0 s, 5422.843 s, 37844.5 s, 86.4 ¨ 103 su for
the steep filling case using Brooks-Corey model, Method B and the 50ˆ 30 cells mesh
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Figure 4.23: Steep filling case: Evolution of the cumulated number of Newton’s iterations for the
50ˆ 30 cells mesh
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Figure 4.24: Steep filling case: Evolution of the cumulated number of Newton’s iterations for the
400ˆ 240 cells mesh

4.6.2 Drainage case

Figure 4.25: Evolution of the saturation profile for t P t0 s, 81593.8 s, 308776 s, 105 ¨ 104 su for the
steep drainage case using Brooks-Corey model, Method B and the 50ˆ 30 cells mesh
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Figure 4.26: Steep drainage case: Evolution of the cumulated number of Newton’s iterations for the
50ˆ 30 cells mesh
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Figure 4.27: Steep drainage case: Evolution of the cumulated number of Newton’s iterations for the
400ˆ 240 cells mesh



Chapter 5

Finite volume scheme and numerical
strategies to solve two-phase Darcy flows in
heterogeneous domains

Relying on the ideas developed in the previous chapters for the Richards equation, we are now in
a position to cope with the more difficult case of the more difficult model, namely, the immiscible
incompressible two-phase system (1.2.1)–(1.2.6) —also known as the isotherm Dead Oil model in
the reservoir engineering community— in a heterogeneous domain.

After introducing the finite volume discretization (§5.1) and extending the specific techniques
addressing stiffness and interface transmission to the two-phase system (§5.2), we perform three
CO2 injection test cases (§5.3) that are representative of realistic operating conditions in order to
validate the numerical strategies proposed.

5.1 Finite volume scheme for the two-phase system

5.1.1 State of the art

Similarly to the Richards equation, it is useful to be aware of the vast amount of literature on the
numerical resolution of the immiscible incompressible two-phase flow system. The review below
is in no way exhaustive.

For a homogeneous capillary pressure function, we can cite the seminal work of Chen and
Ewing [53,54] and the analysis of Radu et al. [119] using finite elements, the contribution of Eymard
et al. [76] using finite volumes, or the more recent multinumerics method by Doyle et al. [59].

The case of a heterogeneous medium has received a lot of attention with various methods of
the discontinuous Galerkin family [68,77,97,111], the finite element [90,91,96] and the finite volume
one [30, 65, 74]. In particular, the treatment of discontinuity in capillary pressure has been the
subject of extensive researches in the VAG (Vertex Approximate Gradient) community [32, 34, 38].
This occurs in conjunction with a renewed interest in the HU (Hybrid Upwiding) paradigm [6,88]
for matrix-fracture systems.

In the sequel, only the TPFA finite volume schemewill be needed to illustrate how our numerical
strategies can be deployed.
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5.1.2 Implicit TPFA discretization of the model

Let us first rewrite the system (1.2.1)–(1.2.6) under the slightly more condensed form

Btpφsαq `∇ ¨ vα “ 0 in QT , (5.1.1a)

vα ` λ
kr,αpsα, xq

µα
p∇pα ´ %αgq “ 0 in QT , (5.1.1b)

pnw ´ pw “ pc in QT , (5.1.1c)
snw ´ Snwppc, xq “ 0 in QT , (5.1.1d)

sw ` snw “ 1 in QT . (5.1.1e)
pα “ pD

α on ΓD ˆ p0, T q, (5.1.1f)
vα ¨ ν “ qN

α on ΓN ˆ p0, T q, (5.1.1g)
sαp¨, t “ 0q “ s0

α in Ω, (5.1.1h)

where α P tw, nwu. Given an admissible mesh and a sequence of time-steps as described in §4.2.1,
we follow the standard procedure detailed in §4.2.2. Put another way, we integrate each volume
balance equation (5.1.1a) over a cellK and apply Green’s theorem to transform the volume integral
of ∇ ¨ vα into a close surface integral involving its normal component vα ¨ ν .

Being implicitly understood that sw “ 1´ snw, the resulting scheme reads

mKφK
pswq

n
K ´ pswq

n´1
K

∆tn
`

ÿ

σPEK

pFwq
n
Kσ “ 0, (5.1.2a)

mKφK
psnwq

n
K ´ psnwq

n´1
K

∆tn
`

ÿ

σPEK

pFnwq
n
Kσ “ 0, (5.1.2b)

ppcq
n
K ´ rppnwq

n
K ´ ppwq

n
Ks “ 0, (5.1.2c)

psnwq
n
K ´ pSnwqKpppcq

n
Kq “ 0, (5.1.2d)

for each cell K P T , where the numerical fluxes

pFwq
n
Kσ “

$

’

’

&

’

’

%

Aσ
pkr,wq

n
σ

µw
rpϑwq

n
K ´ pϑwq

n
Kσs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN

w dγ if σ P EK X E N
ext,

(5.1.3a)

pFnwq
n
Kσ “

$

’

’

&

’

’

%

Aσ
pkr,nwq

n
σ

µnw
rpϑnwq

n
K ´ pϑnwq

n
Kσs, if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN

nw dγ if σ P EK X E N
ext,

(5.1.3b)

are implicit TPFA approximations of
ş

σ vw ¨ νK,σ dγ and
ş

σ vnw ¨ νK,σ dγ. We recall that

Aσ “

$

’

’

&

’

’

%

mσ

µ

λKλL
λLdK,σ ` λKdL,σ

if σ “ K|L P EK X Eint,

mσ

µ

λK
dK,σ

if σ P EK X Eext,
(5.1.4)

is the transmissibilty, as was defined in (2.1.8), while wKσ stands for the mirror value of wK as
defined in the previous chapters. In (5.1.3), the face mobilities are upwinded according to the sign
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of the difference in the hydraulic heads

pϑwq
n “ ppwq

n ` ψw “ ppwq
n ´ %w g ¨ x, (5.1.5a)

pϑnwq
n “ ppnwq

n ` ψnw “ ppnwq
n ´ %nw g ¨ x. (5.1.5b)

In other words,

pkr,wq
n
σ “

#

pkr,wqKppswq
n
Kq if pϑwq

n
K ´ pϑwq

n
Kσ ě 0,

pkr,wqKσppswq
n
Kσq if pϑwq

n
K ´ pϑwq

n
Kσ ă 0.

(5.1.6a)

pkr,nwq
n
σ “

#

pkr,nwqKppswq
n
Kq if pϑnwq

n
K ´ pϑnwq

n
Kσ ě 0,

pkr,nwqKσppswq
n
Kσq if pϑnwq

n
K ´ pϑnwq

n
Kσ ă 0.

(5.1.6b)

5.2 Application of previously developed techniques

5.2.1 Parametrization by variable switching

Let us recall the hydraulic model for the two-phase flow (1.2.21)–(1.2.22) presented in §1. Setting
the effective saturation as

rseff :“ rseffpsnwq “ Πr0,1s

ˆ

p1´ srwq ´ snw

p1´ srwq ´ srn

˙

“ Πr0,1s

ˆ

sw ´ srw

p1´ srnq ´ srw

˙

, (5.2.1)

where Πr0,1s stands for the projection on r0, 1s, we have

• for the Brooks-Corey model:

kr,wpsnwq “ rs
3`2{n
eff , (5.2.2a)

kr,nwpsnwq “ p1´ rseffq
2p1´ rs

1`2{n
eff q, (5.2.2b)

Snwppcq “

$

’

&

’

%

1´

„

srw ` p1´ srn ´ srwq

ˆ

pc

pb

˙´n

if pc ą pb,

srn if pc ď pb;

(5.2.2c)

• for the van Genuchten-Mualem model:

kr,wpsnwq “ rs
1{2
eff t1´

“

1´ rs
1{m
eff

‰m
u2, (5.2.3a)

kr,nwpsnwq “ p1´ rseffq
1{2

“

1´ rs
1{m
eff

‰2m
, (5.2.3b)

Snwppcq “

$

’

&

’

%

1´

„

srw ` p1´ srn ´ srwq

ˆ

1`

ˇ

ˇ

ˇ

ˇ

ξpc

%wg

ˇ

ˇ

ˇ

ˇ

n˙´m

if pc ą 0,

srn if pc ď 0,

(5.2.3c)

with m “ 1´ 1{n.

As we did in §4.4.1.3, in order to avoid infinite values for the derivative of kr,wpsnwq when
snw Ñ srn, we approximate it for s P rslim, 1 ´ srns using a second degree polynomial rkr,wp¨q.
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1´ srn srw pb rPas n

RT0 1.0 0.1 1.4708 ¨ 103 3.0
RT1 1.0 0.2 3.4301 ¨ 103 1.5

Table 5.1: Parameters used for the Brooks-Corey model.

1´ srn srw n ξ rm´1s

RT0 (Sand) 1.0 0.0782 2.239 2.8
RT1 (Clay) 1.0 0.2262 1.3954 1.04

Table 5.2: Parameters used for the van Genuchten-Mualem model.

Figure 5.1: Plot of Snwppcq curve for the Brooks-Corey model (left) and for the van Genuchten-
Mualem model (right).

This polynomial satisfies the conditions

kr,wpsnw,limq “
rkr,wpsnw,limq, (5.2.4a)

rk1r,wpsnw,limq “ k1r,wpsnw,limq, (5.2.4b)
rkr,wpsrnq “ 1, (5.2.4c)

where snw,lim is chosen so that rseff “ 0.002.
Let us now adapt the parametrization presented in our article [19] to the two-phase flow case. Re-

moving the subscript i related to the rock-type for convenience, the idea is to choose a parametriza-
tion of the graph tpc,Sppcqu, i.e., to construct two monotone functions

snw : I Ñ rsrn, 1´ srws, pc : I Ñ R,

such that
snwpτq “ Snwppcpτqq, 0 ă s1nwpτq ` p1cpτq ă 8, (5.2.5)

for all τ P I Ă R. The latter non-degeneracy assumption ensures that for all p P R, there exists
a unique τ P R such that ppc,Snwppcqq “ ppcpτq, snwpτqq. With respect to the parametrization
proposed in [19], basically we have to reverse the order of the switch points to follow the behaviour
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(a) Plots using the Brooks-Corey model, for rock type 0 (left) and rock type 1 on (right).

(b) Plots using the van Genuchten-Mualem model, for rock type 0 (left) and rock type 1 (right).

Figure 5.2: Plot of the wetting and non-wetting relative permeability curve using the Brooks-Corey
model and the van Genuchten-Mualem model.

of law Snw. We set I “ R and

snwpτq “

$

’

&

’

%

Snwpps ` ςpτ ´ τsqq if τ ď τs,

srn ` τp1´ srn ´ srwq if τs ď τ ď τ˚,

Snwpκpτ ´ τ˚q ` p˚q if τ ě τ˚,

(5.2.6a)

pcpτq “

$

’

&

’

%

ps ` ςpτ ´ τsq if τ ď τs.

S´1
nw psrn ` τp1´ srn ´ srwqq if τs ď τ ď τ˚,

κpτ ´ τ˚q ` p˚ if τ ě τ˚,

(5.2.6b)

In the above formulas, pps, ssq “ pppτsq, spτsqq is referred later on as the switching point, at
which one passes from τ behaving as the saturation to τ behaving as the pressure (recall that
Newton’s iterations are not sensitive to linear changes of variables). Another switch is incorporated
at pp˚, s˚q “ pppτ˚q, spτ˚qq to improve Newton’s robustness in presence of heterogeneities. The
parameter τ˚, such that s˚ “ 1´srw´ε˚ « 1´srw, is chosen so that the solution ppc

n
K , snw

n
KqKPT

to the scheme is always smaller that pp˚, s˚q. The parameters κ and ς are chosen so that p is C1,
leading to the expressions

κ “
1´ srn ´ srw

S 1nwpp
`
˚ q

, and ς “
1´ srn ´ srw

S 1nwpp
´
s q

, (5.2.7)
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where S 1nwpp
´
˚ q and S 1nwpp

`
s q respectively denote the limits of S 1nwppq as p tends to p˚ and ps from

below and above. Then if Snw is C1, so is snw “ Snw ˝ pc. Unfortunately, we lose the concavity of
pc because S´1

nw is convex. An example of parametrized curves p, s corresponding to Brooks-Corey
and van Genuchten-Mualem capillary pressure-(non-wetting) saturation law is shown in Figures
5.3–5.4.

Figure 5.3: Plot of pc and snw for the Brooks-Corey model, using rock types of Table 5.1.

Figure 5.4: Plot of pc and snw for the van Genuchten-Mualem model, using rock types of Table 5.2.

Applying this parametrization to the previous equations, we obtain the parametrized system

mKφK
swpτ

n
Kq ´ swpτ

n´1
K q

∆t
`

ÿ

σPEK

pFwq
n
Kσ “ 0, (5.2.8a)

mKφK
snwpτ

n
Kq ´ snwpτ

n´1
K q

∆t
`

ÿ

σPEK

pFnwq
n
Kσ “ 0, (5.2.8b)

pcpτ
n
Kq ´ rppnwq

n
K ´ ppwq

n
Ks “ 0, (5.2.8c)

snwpτ
n
Kq ´ pSnwqKppcpτ

n
Kqq “ 0, (5.2.8d)
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where the numerical fluxes become

pFwq
n
Kσ “

$

’

’

&

’

’

%

Aσ
pkr,wq

n
σ

µw
rpϑwq

n
K ´ pϑwq

n
Kσs if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN

w dγ if σ P EK X E N
ext,

(5.2.9a)

pFnwq
n
Kσ “

$

’

’

&

’

’

%

Aσ
pkr,nwq

n
σ

µnw
rpϑnwq

n
K ´ pϑnwq

n
Kσs, if σ P EK X pEint Y E D

extq,

1

∆tn

ż tn

tn´1

dt

ż

σ
qN

nw dγ if σ P EK X E N
ext,

(5.2.9b)

with

pϑwq
n
K ´ pϑwq

n
Kσ “ ppwq

n
K ´ ppwq

n
Kσ ` pψwqK ´ pψwqKσ, (5.2.10a)

pϑnwq
n
K ´ pϑnwq

n
Kσ “ ppnwq

n
K ´ ppnwq

n
Kσ ` pψnwqK ´ pψnwqKσ (5.2.10b)

“ ppwq
n
K ´ ppwq

n
Kσ ` pcpτ

n
Kq ´ pcpτ

n
Kσq ` pψnwqK ´ pψnwqKσ

and the face mobilities turn into

pkr,wq
n
σ “

#

pkr,wqKpsnwpτ
n
Kqq if pϑwq

n
K ´ pϑwq

n
Kσ ě 0,

pkr,wqKσpsnwpτ
n
Kσqq if pϑwq

n
K ´ pϑwq

n
Kσ ă 0.

(5.2.11a)

pkr,nwq
n
σ “

#

pkr,nwqKpsnwpτ
n
Kqq if pϑnwq

n
K ´ pϑnwq

n
Kσ ě 0,

pkr,nwqKσpsnwpτ
n
Kσqq if pϑnwq

n
K ´ pϑnwq

n
Kσ ă 0.

(5.2.11b)

5.2.2 Treatment of the interface

As in the Richards’ equation case, at the interface Γi,j , pressures and flux are continuous. More
precisely, denote by pwi, pci the traces at p0, T q ˆ Γi,j of the wetting and the capillary pressures
pw|Ωi

, pc|Ωi
in Qi,T , and by vwi, vnwi the traces at p0, T q ˆ Γi,j of the wetting and non-wetting

velocity vectors vw|Ωi , vnw|Ωi in Qi,T , then the transmission conditions across Γi,j write

vwi ¨ νi ` vwj ¨ νj “ 0, (5.2.12a)
pwi ´ pwj “ 0, (5.2.12b)

vnwi ¨ νi ` vnwj ¨ νj “ 0, (5.2.12c)
pci ´ pcj “ 0, (5.2.12d)

where νi (resp. νj ) denotes the normal to Γi,j outward w.r.t. Ωi (resp. Ωj ). To approximate these
conditions, we can apply the four schemes detailed in §4.3. Concerning the second parametrization
introduced in order to enforce the pressure continuity (4.3.12) for Methods C and D, also in this
case we need to define monotone functions ωσ,K , ωσ,L, with ωσ,K ` ωσ,L ą 0, such that

pcKpωσ,Kpτqq “ pcLpωσ,Lpτqq, @σ P Γ. (5.2.13)

ChoosingK andL such that pb,K ă pb,L for the Brooks-Corey and ξK ą ξL for the van Genuchten-
Mualem settings described in (5.2.2)–(5.2.3) respectively, we can choose between the two propo-
sitions presented in (4.3.13)–(4.3.14) for functions ωσ,K , ωσ,L. The form of the first proposition
(4.3.13)

ω1
σ,Kpτq “ τ, ω1

σ,Lpτq “ p´1
L ˝ pKpτq,
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does not change for the two-phase flow case. On the contrary, as we have done for the parametriza-
tion, a permutation of the two branches is necessary, i.e.

ω2
σ,Kpτq “

#

τ ` βK ´ βL if τ ď βL,

p´1
K ˝ pLpτq if τ ě βL.

(5.2.14a)

ω2
σ,Lpτq “

#

p´1
L ˝ pKpτ ` βK ´ βLq if τ ď βL,

τ if τ ě βL.
(5.2.14b)

Figure 5.5: Behaviour of ω1
σ,Kp¨q, ω

1
σ,Lp¨q and ω2

σ,Kp¨q, ω
2
σ,Lp¨q functions using the Brooks-Corey

model.

Figure 5.6: Behaviour of ω1
σ,Kp¨q, ω

1
σ,Lp¨q and ω2

σ,Kp¨q, ω
2
σ,Lp¨q functions using the van Genuchten-

Mualem model.

The behaviour of ωσ,K , ωσ,L using the Brooks-Corey model and the van Genuchten-Mualem
one are reported in Figures 5.5–5.6. As we can notice in the plot, the first and the second propositions
overlap for τ ą βL for both models but, for τ ă βL, functions behave differently. Considering the
Brooks-Corey model, this difference is not relevant because τ remains non-negative all along the
simulations. It is no longer the case with the van Genuchten-Mualem model for which the value of
βL is positive. Nevertheless the functions slope for τ P r0, βLs remains finite and limited in both
cases. Since we are not interested in performing simulations with steep capillary pressure curves,
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we postulate that both proposition yield similar numerical behaviors. For sake of simplicity, we
will employ just the first proposition, namely ω1

σ,K , ω1
σ,L.

Remark 5.2.1. Regarding the resolution of the obtained system considering Method D, in this
chapter we only consider the numerical strategy based on the elimination of the face unknowns
via the Schur complement (the so-called Method D1). Consequently, from now on, we remove
the index 1 and we will just denote it as Method D. The resolution of the system based on the
face unknowns elimination thanks to a bisection method is a perspective (see §6.2.2).

5.3 Numerical validation

We now validate the different approaches we have presented in §5.2.2 to treat the transmission
conditions across interfaces when solving the two-phase Darcy flows system in heterogeneous
domain via different numerical tests.

5.3.1 CO2 injection in geological formation

This test is a simplified simulation of the CO2 physical trapping in a geological formation.

5.3.1.1 Description of the test case

We consider a two-dimensional layered domain Ω “ r0, 800s ˆ r´600, 0s (in meters) made up of
two rock types denoted by RT0 and RT1 respectively, RT1 (which plays the role of cap rock) being
less permeable than RT0. Details are reported in Table 5.1 and 5.3. As wetting and non-wetting
phases we consider water and CO2, characterized by the parameters reported in Table 5.4.

λrm2s φ

RT0 10´11 0.2
RT1 10´13 0.2

Table 5.3: Parameters of relative permeability and porosity used for RT0 and RT1 with the Brooks-
Corey model.

% rkg ¨m´3s µ rPa ¨ ss
Water 1000 10´3

CO2 1.795 1.495 ¨ 10´3

Table 5.4: Parameters used for the wetting (water) and non-wetting phase (CO2).

The domain Ω is partitioned into three connected subdomains: Ω1 “ r0, 800s ˆ r´200, 0s,
Ω2 “ r0, 800s ˆ r´400,´200s and Ω3 “ r0, 800s ˆ r´600,´400s (in meters), as depicted in
Figure 5.7. The subdomains Ω1,Ω3 are characterized by RT0; Ω2 by RT1.

Starting from an initially water saturated domain, s0
nw “ 10´6, CO2 is leaking into the domain

through the bottom boundary ΓD
1 “ tpx, yq | y “ ´600mu on which we impose the boundary

conditions
ppcq

D
1 “ 107 Pa, ppwq

D
1 “ 0 Pa. (5.3.1)
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Figure 5.7: Simulation domain Ω “ r0m, 800ms ˆ r´600m, 0ms.

On the top boundary of the domain ΓD
2 “ tpx, yq | y “ 0mu we set

psnwq
D
2 “ 0, ppwq

D
2 “ 0 Pa. (5.3.2)

On the lateral boundaries, no-flux boundary conditions are fixed. With these data, CO2 enters the
domain by the bottom and moves upward, whereas water moves first downward then upward. The
simulation lasts T “ 116 days and we adopt an adaptive time-stepping strategy with ∆t0 “ 10 s.
We take

∆tn`1 “

#

minp∆tmax, 1.2∆tnq for a successful time-step,
maxp∆tmin, 0.5∆tnq otherwise.

In the latter case, for ∆t “ ∆tmin, the simulation stops. We choose ∆tmin “ ∆t0 and ∆tmax “

T ¨ 10´2. We set Nmax “ 20 as the maximal number of Newton’s iterations. The simulation
is performed on three structured squared meshes of different resolutions: 20 ˆ 15, 40 ˆ 30 and
80ˆ 60 cells. It allows us to study the evolution of the solution error measured using the L2pΩq-
norm of the relative difference at final time between the saturations obtained on a given mesh and
the ones computed with Method B and a mesh of resolution 160ˆ 120. For this test the classical
Brooks-Corey model (§5.2.2) is considered. In Table 5.5 we report the numerical parameters used.

τ˚ ε δB δC
10´10 10´11 10´1 2 ¨ 10´1

Table 5.5: Numerical parameters used in the examples.

5.3.1.2 Numerical results

We now analyze the results obtained. In Figure 5.8, we report the evolution of the saturation profile
at different times obtained on mesh 40ˆ 30 using Method B.
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Observing Table 5.6 we can remark that Methods A,B,C and D have essentially the same
accuracy on this test case, but they present a different behaviour in terms of computational cost.
The method that requires the lowest number of Newton iterations is Method A. Method B requires
a slightly higher number of iterations but its cost remains comparable to that of Method A. On the
other hand the computational cost increases considerably for Methods C and D. Looking at the
evolution of the number of iterations for these methods, we notice that it decreases by refining the
mesh. For Method C we guess that this behaviour has a connection with the ratio between the size
of a cell and the size of the cell introduced on the interface.

Let us better analyze this phenomenon by rerunning the test for Method B and C using different
thickness for the interface cell(s). More precisely, using the 40 ˆ 30 grid, we have considered the
thickness values δB P t10´1, 10´2, 10´3u for Method B and δC P t2 ¨ 10´1, 2 ¨ 10´2, 2 ¨ 10´3u for
Method C. In Table 5.7, we report data regarding these simulations. As we expected, we can see
that the number of iterations and failures increase considerably when δB and δC decrease. The
L2pΩq-norm reported in this table is the relative difference at final time between the saturations
obtained using the two coarser values for δB (δC respectively) and the ones computed with the finer
one, always employing Method B (Method C respectively) and the mesh of resolution 40ˆ 30. We
conclude that the thickness chosen for the tests, reported in the Table 5.5, is a good compromise
between solution accuracy and computational cost. The key role played by the added mass to the
interface unknowns has also an impact on Method D, which is the only one method without mass
on the variable interface. Even if mesh refinements yield smaller number of iterations compared to
Methods B and C, we notice that it reports a greater number of failures during simulation than the
latter two.

Let us try to isolate the behaviour of the different methods analyzing Figure 5.9. This image
shows the evolution of the cumulative number of iterations demanded from the Newton method
to converge for the simulation carried out on the mesh 40 ˆ 30. We have already remarked that
Methods A and B have a comparable computational cost. Indeed if we look at Figure 5.10, which
report the iterations evolution profile for these two methods, we can see that before the CO2 flux
meets the first barrier between Ω3 and Ω2 at t « 1.5 ¨ 106, the two curves overlap. Arrived
at this point Method B requires lower time steps which implies an increase of the cumulative
number of iterations required to converge. Once the non-wetting phase begins to infiltrate Ω2, the
evolution curves for Method A and B follow the same trend until the end of the simulation. The
passage of the barrier is also a difficult step for Methods C and D. In Figure 5.9 we see that the
number of cumulated iterations increase at t « 1.5 ¨ 106. After the two methods have a different
behaviour. Thanks to Figure 5.11 we see that, once the CO2 flux has crossed the barrier, Method
C still encounters some difficulties in converging. Nevertheless it behaves better than Method D.
Indeed the latter still encounters important difficulties in converging after the passage of the barrier
requiring an average time step around ∆t « 5000 s, almost one twentieth of the maximum time
step. At the end of the simulation the time step increases a little bit but remains lower than the one
employed by Method B at the same time.
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Figure 5.8: Evolution of the saturation profile for t P t0 s, 1.14732 ¨106 s, 2.45023 ¨106 s, 5.45695 ¨
106 s, 1.00224 ¨ 107 su using the Brooks-Corey model, Method B and the 40ˆ 30 cells mesh.

Figure 5.9: Evolution of the average Newton’s convergence rate during time iterations for simulation
with the Brooks-Corey model on 40ˆ 30 cells mesh.
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Method A 20ˆ 15 40ˆ 30 80ˆ 60
}sN´sNref}L2pΩq

}sNref}L2pΩq

6.24516e-2 3.77878e-2 1.70673e-2
Rate of convergence ´ 0.72 1.15
# total iterations 473 479 563
# avg iterations 3 3 3
# max iterations 5 5 5
# failures 0 0 0

Method B 20ˆ 15 40ˆ 30 80ˆ 60
}sN´sNref}L2pΩq

}sNref}L2pΩq

6.66594e-2 4.11436e-2 1.80111e-2
Rate of convergence ´ 0.72 1.2
# total iterations 502 494 581
# avg iterations 3 3 3
# max iterations 7 8 8
# failures 2 0 1

Method C 20ˆ 15 40ˆ 30 80ˆ 60
}sN´sNref}L2pΩq

}sNref}L2pΩq

6.5432e-2 3.93114e-2 1.69376e-2
Rate of convergence ´ 0.76 1.21
# total iterations 4005 3507 2973
# avg iterations 8 7 6
# max iterations 20 20 20
# failures 111 111 108

Method D 20ˆ 15 40ˆ 30 80ˆ 60
}sN´sNref}L2pΩq

}sNref}L2pΩq

6.85773e-2 4.29154e-2 2.07104e-2
Rate of convergence ´ 0.68 1.05
# total iterations 60602 8873 1472
# avg iterations 3 3 4
# max iterations 19 20 20
# failures 4561 578 62

Table 5.6: Results using the Brooks-Corey model.
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Method B δB “ 10´1 δB “ 10´2 δB “ 10´3

}sN´sNref}L2pΩq

}sNref}L2pΩq

3.49746e-3 5.83534e-4 ´

# total iterations 494 1642 13435
# avg iterations 3 3 2
# max iterations 8 18 20
# failures 0 124 1423

Method C δC “ 2 ¨ 10´1 δC “ 2 ¨ 10´2 δC “ 2 ¨ 10´3

}sN´sNref}L2pΩq

}sNref}L2pΩq

3.9765e-3 1.33095e-3 ´

# total iterations 3507 16977 120808
# avg iterations 7 12 13
# max iterations 20 20 20
# failures 111 34 2373

Table 5.7: Evolution of the required Newton iterations w.r.t. the thickness of the interfaces cells for
Methods B and C using the Brooks-Corey model with mesh 40ˆ 30.

Figure 5.10: Evolution of the average Newton’s convergence rate during time iterations for simula-
tion with the Brooks-Corey model on 40ˆ 30 cells mesh for Methods A and B.
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Figure 5.11: Evolution of time step during time iterations for simulation with the Brooks-Corey
model on 40ˆ 30 cells mesh for Methods C and D.

5.3.2 CO2 migration towards surface

Thanks to the test case proposed in §5.3.1 we have analyzed the robustness of the proposed strategies
to treat heterogeneities in the domain but we have not noticed major improvements in the accuracy
of the solution. Thus, to put the different methods to the test and show that, considering the same
grid, approaches that introduce an interface-specific treatment provide a more accurate solution
than the classical TPFA scheme, we now introduce a second test case. The idea is to consider a
case of CO2 trapping and simulate the migration of CO2 to the surface through a poorly permeable
layer as only an effect of capillarity. Let us detail this test case.

5.3.2.1 Description of the test case

We consider a two-dimensional layered domain Ω “ r0, 1sˆr´0.6, 0s (in meters) made up of two
rock types denoted by RT0 and RT1 respectively, RT1 (which plays the role of cap rock) being less
permeable than RT0. Details are reported in Table 5.1 and 5.3. As wetting and non-wetting phases
we consider water and CO2, characterized by the parameters reported in Table 5.4.

The domain Ω is partitioned into three connected subdomains: Ω1 “ r0, 1s ˆ r´0.2, 0s, Ω2 “

r0, 1s ˆ r´0.3,´0.2s and Ω3 “ r0, 1s ˆ r´0.6,´0.3s (in meters), as depicted in Figure 5.12. The
subdomains Ω1,Ω3 are characterized by RT0; Ω2 by RT1.

Initially, subdomains Ω1,Ω2 are water saturated and Ω3 is gradually CO2 saturated. More
precise we set the initial capillary pressure profile:

p0
c “

$

’

&

’

%

pRT0
b if ´ 0.2 ă z ď 0,

pRT1
b if ´ 0.3 ă z ď ´0.2,

pRT0
b ` p%w ´ %nwqgpz ` 0.3q if ´ 0.6 ă z ď ´0.3.
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Figure 5.12: Simulation domain Ω “ r0m, 1ms ˆ r´0.6m, 0ms.

The thickness of Ω3 has been chosen in order to have, at equilibrium, a certain amount of trapped
CO2, that we denote as hacc, below the cap rock via the relation

hacc “
pRT1
b ´ pRT0

b

p%w ´ %nwqg
,

where pRT0
b , pRT1

b are the entry pressures of the two lithologies characterizing the domain: rock
type 0 and 1 respectively (cf. Table 5.3). Then we take the thickness of Ω3 slightly greater than the
height hacc. On boundaries, no-flux boundary conditions are fixed. The simulation lasts T “ 116
days and we adopt an adaptive time-stepping strategy with ∆t0 “ 100 s. We take

∆tn`1 “

#

minp∆tmax, 1.2∆tnq for a successful time-step,
maxp∆tmin, 0.5∆tnq otherwise.

In the latter case, for ∆t “ ∆tmin, the simulation stops. We choose ∆tmin “ ∆t0 and ∆tmax “ T .
We setNmax “ 20 as the maximal number of Newton’s iterations. The simulation is performed on
three structured squared meshes of different resolutions: 8ˆ 6, 16ˆ 12 and 32ˆ 24 cells. A study
of the evolution of the solution error measured using the L2pΩq-norm of the relative difference at
final time between the saturations obtained on a given mesh and the ones computed with Method
B and a mesh of resolution 64 ˆ 48. For this test the classical Brooks-Corey (cf. §5.2.2) model is
considered. In Table 5.8 we report the numerical parameters used in the test.

τ˚ ε δB δC
Brooks-Corey 10´10 10´12 10´3 2 ¨ 10´3

Table 5.8: Numerical parameters used in the examples.

5.3.2.2 Numerical results

We now analyze the obtained results. In Figure 5.13, we report the evolution of the saturation
profile at different times obtained on mesh 40 ˆ 30 using Method B. Observing Table 5.9 we can
immediately remark that the relative L2 error committed w.r.t. the reference solution using Method
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Figure 5.13: Evolution of the saturation profile for t P t0 s, 2.04593 ¨105 s, 8.81363 ¨105 s, 1.82813 ¨
106 s, 10.022400 ¨ 106 su using the Brooks-Corey model, Method B and the 32ˆ 24 cells mesh.

A is greater than the one committed by methods which introduce a treatment of the interface. This
lack of accuracy is motivated by the fact that the entrapped height hacc for Methods A is calculated
from the center of the cells above the interface between Ω2 and Ω3, while, for the other methods,
it is calculated from the interface. Therefore the amount of trapped CO2 is underestimated using
Method A and a lack of accuracy at the interface level arises. It implies that, if a coarse mesh is
considered, Method A is less accurate than the other methods. Looking at Table 5.9 we can observe
that method B is the most accurate. Even though method C shows a better accuracy with respect
to method A, it is slightly degraded with respect to that of method B.

In the above cited table, data, regarding the simulation using Method D, are not reported be-
cause, even if we allow time-steps smaller than the prescribed ∆tmin, the simulation does not
converge. We recall that Method D is the only approach in which an interface variable is added to
the system without giving it mass. In the test presented previously (§5.3.1), we had noticed that the
addition of mass to the interface variable had an obvious stabilization effect on the simulation (see
Table 5.7 and the corresponding analysis performed by refining the thickness of the interface cells).
Therefore, the fact that with Method D the simulation does not converge confirms our observation.

Concerning the computational cost, looking at Figure 5.14 we almost observe the same be-
haviours as in the previous test. More precisely, Methods A and B follow the same trend but
Method B requires more iterations at the beginning to converge (passage of the barrier between Ω2

and Ω3). It justifies the gap in the cumulated iterations profile between these two methods. Method
C is the most expensive one: it suffers from convergence problems during the whole simulation
leading to an explosion of the required total number of iterations.
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Method A 8ˆ 6 16ˆ 12 32ˆ 24
}sN´sNref}L2pΩq

}sNref}L2pΩq

3.40626e-1 1.61846e-1 8.92542e-2
Rate of convergence ´ 1.07 0.88
# total iterations 251 241 256
# avg iterations 4 4 4
# max iterations 8 7 8
# failures 0 0 0

Method B 8ˆ 6 16ˆ 12 32ˆ 24
}sN´sNref}L2pΩq

}sNref}L2pΩq

2.85001e-2 1.64425e-2 7.98564e-3
Rate of convergence ´ 0.79 1.04
# total iterations 298 334 272
# avg iterations 5 4 4
# max iterations 8 14 15
# failures 0 4 0

Method C 8ˆ 6 16ˆ 12 32ˆ 24
}sN´sNref}L2pΩq

}sNref}L2pΩq

3.58215e-2 2.50147e-2 1.51162e-2
Rate of convergence ´ 0.51 0.73
# total iterations 33020 16007 13950
# avg iterations 16 14 12
# max iterations 20 20 20
# failures 517 281 271

Table 5.9: Results using the Brooks-Corey model.
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Figure 5.14: Evolution of the average Newton’s convergence rate during time iterations for simula-
tion with the Brooks-Corey model on 16ˆ 12 cells mesh.

5.3.3 CO2 migration in layered formation

Let us consider another test case inspired from a test presented in [31]. This test simulates the CO2

migration in a two-dimensional basin with two barriers.

5.3.3.1 Description of the test case

Let us consider the domain Ω “ r0, 800s ˆ r0, 800s (in meters) discretized via a uniform mesh
of size 40 ˆ 80. The domain is composed a drain rock sliced by two horizontal barrier layers.
More precisely, Ω is partitioned into three connected subdomains: Ω2 “ r0, 700s ˆ r400, 500s,
Ω3 “ r100, 800sˆr200, 300s and Ω1 “ Ωz pΩ2YΩ3q, as depicted in Figure 5.15. The subdomains
Ω2,Ω3 are characterized by RT1; Ω1 by RT0. The rock type porosities are φ P t0.2, 0.2u and their
absolute permeabilities are λ P t10´11 m2, 10´13 m2u respectively. Details of the constitutive
laws’ parameters are reported in Table 5.1 and 5.2. The reservoir is initially water saturated and
the non-wetting phase (the parameters of wetting and non-wetting phases are reported in Table
5.10) is injected through ΓD

1 “ tpx, yq | y “ 0mu via the Dirichlet conditions

ppcq
D
1 “ 107 Pa, ppwq

D
1 “ 0 Pa. (5.3.3)

On the top boundary ΓD
2 “ tpx, yq | y “ 800mu the Dirichlet conditions

psnwq
D
2 “ 0, ppwq

D
2 “ 0 Pa (5.3.4)

are imposed. On the other boundaries, no-flux boundary conditions are fixed.

% rkg ¨m´3s µ rPa ¨ ss
wetting phase 1000 10´3

non-wetting phase 1.795 1.495 ¨ 10´3

Table 5.10: Parameters used for the wetting and non-wetting phases.
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Figure 5.15: Configuration of the domain for the non-wetting injection test case.

The simulation lasts T “ 116 days and an adaptive time-stepping strategy is adopted using:
∆tmin “ 1 s, ∆tmax “ T . Simulation starts with ∆t “ ∆t0, then for n ě 0,

∆tn`1 “

#

minp∆tmax, 1.2∆tnq for a successful time-step,
maxp∆tmin, 0.5∆tnq otherwise.

In the latter case, for ∆t “ ∆tmin, the simulation stops. Nmax “ 30 is taken as maximal number
of Newton’s iterations.

∆t0 s0
nw ε˚ ε δB δC

Brooks-Corey 10 10´6 10´10 10´12 10´1 2 ¨ 10´1

van Genuchten-Mualem 100 5 ¨ 10´5 10´8 10´12 10´1 2 ¨ 10´1

Table 5.11: Numerical parameters used in the examples.

5.3.3.2 Test using the Brooks-Corey model

Let us perform the simulation applying the Brooks-Corey model using, for the lithologies, values
in Table 5.1. Figure 5.16 shows the saturation profile at the final time using the four methods.
To better visualize the differences between the four profiles, cross sections along the y-axis at the
extremities of the two barriers and at the middle of the x-axis are provided in Figure 5.17.

As expected, the various profiles show differences mainly at the barrier level. Leaving aside
the areas where the flow can contour the end of a barrier, we can see that in Ω3 (see Figures 5.17b,
5.17c) the amount of CO2 that penetrates the barrier is higher with Method A than with the other
methods. This is because method A does not have a specific treatment for the barrier: if the mesh
is not fine enough, the effect of the capillary barrier is weakened. On the contrary, with the same
mesh, the other approaches allow to simulate more accurately the capillary barrier by introducing
interface unknowns. Because of the stronger capillary effect with Methods B, C, D, the CO2 tends
to go around the barrier rather than through it. This explains why in Figure 5.17a a higher amount
of CO2 at the extremity of the Ω3 barrier is obtained with these methods rather with Method A.
These comments are also valid for the barrier Ω2 too.
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From the computational-cost point of view, the highlighted behavior of the various methods is
consistent with what has been observed in previous tests (cf. Table 5.12). More precisely, Method
B requires a slightly larger number of iterations than Method A. But, as shown in Figure 5.18,
the evolution of the cumulative number of Newton iterations follows the same trend. Method C
encounters more difficulties in converging when crossing the barrier and then stabilizes its number
of iterations. In contrast, Method D struggles to converge during the whole simulation.

(a) Method A (b) Method B

(c) Method C (d) Method D

Figure 5.16: Wetting saturation profile at final time of the non-wetting injection simulation with the
Brooks-Corey model using Methods A, B, C and D.
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(a) Cross-section at x “ 110m

(b) Cross-section at x “ 390m

(c) Cross-section at x “ 690m

Figure 5.17: Vertical cross-sections of the wetting saturation profile at final time of the simulation
t “ 116 days using the Brooks-Corey model.
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# total iterations # avg iterations # max iterations # Newton’s failures
Method A 3121 4 28 185
Method B 4354 4 19 262
Method C 20011 16 30 301
Method D 31397 3 29 2398

Table 5.12: Statistics on the required Newton’s iterations to converge for test with the Brooks-Corey
model.

Figure 5.18: Evolution of the average Newton’s convergence rate during time iterations for simula-
tion with the Brooks-Corey model.

5.3.3.3 Test using the van Genuchten-Mualem model

Let us now perform simulations with the van Genuchten-Mualem model. Lithology data are given
in Table 5.2. Figure 5.19 shows the saturation profile at the final time using Methods A,B,C. The
lack of results for method D is related to Newton’s algorithm which could not converge even by
using a time step smaller than ∆tmin. This problem of robustness has already been found out
when analyzing the results of the previous tests and the explanations, we then provided, here still
apply.

To better visualize the differences between the three profiles, cross sections along the y-axis at
the extremities of the two barriers and at the middle of the x-axis are provided in Figure 5.20. We
can notice that the saturation profiles obtained with Methods B and C almost completely overlap
and correspond to the saturation profile obtained using Method A. Indeed, going back to the results
obtained for the filling test case with Richards equation in §4.4.1.1, methods A, B and C almost
exhibit the same accuracy. Considering the computational cost and observing Table 5.13 and
Figure 5.21, the methods behave in the same way as in the previous tests.
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(a) Method A (b) Method B

(c) Method C

Figure 5.19: Wetting saturation profile at final time of the non-wetting injection simulation with the
van Genuchten-Mualem model using Methods A, B, C.
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(a) Cross-section at x “ 110m

(b) Cross-section at x “ 390m

(c) Cross-section at x “ 690m

Figure 5.20: Vertical cross-sections of the wetting saturation profile at final time of the simulation
t “ 116 days using the van Genuchten-Mualem model.
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# total iterations # avg iterations # max iterations # Newton’s failures
Method A 3531 4 22 195
Method B 4599 4 21 256
Method C 14923 14 30 267

Table 5.13: Statistics on the required Newton’s iterations to converge for test with the van
Genuchten-Mualem model.

Figure 5.21: Evolution of the average Newton’s convergence rate during time iterations for simula-
tion with the van Genuchten-Mualem model.

5.4 Overall method evaluation

We conclude this chapter by drawing conclusions on the behavior of methods B, C and D compared
to method A. During the previous tests, it turned out that methods B and C, which add a mass
conservation law related to the interface variables are more robust than method D which only
uses the flux conservation. For some cases (§5.3.2–§5.3.3.3), Method D was not able to provide the
final solution. Moreover, we have observed (Table 5.7) that the amount of added mass influences
Newton’s convergence: the more the ratio between the mass of the interface cell and the mass of
an internal cell is small, the more Newton iterations are required.

Regarding the accuracy of the provided solutions, the test presented in §5.3.1 has shown that a
specific treatment of the transmission conditions at the interface allows for a more accurate solution
even in case of coarse meshes. Without specific treatment, i.e., using Method A, it is necessary
to consider a relative fine mesh to obtain the same order of accuracy. From the standpoint of
computational times, methods C and D are quite costly, in particular method D. Method B, on the
other hand, exhibits a slight surplus in computational cost compared to Method A but can give
more accurate solutions. It therefore seems to be the best option for solving two-phase Darcy flows
in heterogeneous domains. Moreover, it entails moderate changes in existing codes in terms of
implementation compared to methods C and D.



Chapter 6

Conclusion and perspectives

6.1 Summary of key results

In response to the numerical difficulties stated in §1.3.1, we have conducted works along two lines
of research, which have given rise to several presentations at conferences. Besides the FVCA-9
proceeding [18], two scientific publications [19,20] have been submitted. The first one [20] has been
accepted and is about to appear in ESAIM: Mathematical Modelling and Numerical Analysis.
Below we summarize the most salient results.

6.1.1 Improvement of robustness for Newton’s method

As underlined in §1.3.1.1, the numerical resolution of the Richards equation is made challenging not
only by the fact that it is a nonlinear, degenerate elliptic-parabolic partial differential equation, but
also by a bad choice of the primary unknown for the resolution, which leads to ill-conditioning.

To overcome these difficulties, we have adopted an approach based on a reformulation of
the variable switch technique as a parametrization of the graph tp,Sppqu proposed by Brenner
and Cancès [29]. Keeping in mind realistic closure laws for which analytical calculation is no
longer feasible, we have expanded their idea beyond the Kirchhoff transform-saturation formulation
and have primarily focused on the pressure-saturation formulation. Furthermore, to deal with the
numerical difficulties introduced by the constitutive laws (blow-up in k1rpsq for the van Genuchten-
Mualem model and kink in Sppq for the Brooks-Corey model), we have enriched the Newton
method specific features to handle such issues.

Numerical tests presented in chapter §2 validated the potentiality of the new parametrization
technique. This allows the Richards equation to be solved without caring about the choice of the
primary unknown and without any convergence problems due to the selected constitutive laws or
the degeneracy of the equation.

6.1.2 Improvement of accuracy for heterogeneous domains

In §1.3.1.2, we highlighted the additional difficulties in the numerical resolution caused by an strong
contrast in the constitutive laws’ parameters at interface between different lithologies. Using the
classical upstream mobility TPFA scheme without any specific treatment for heterogeneities, not
only we observe a lack of the accuracy in the predicted results, but also the order of convergence
is degraded. The discontinuities in the capillary pressure function between different media are at
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the basis of the phenomenon of the capillary barrier, which has a crucial role for flows in porous
media. These is why the introduction of specific treatements for interfaces is so important.

In chapter §3, we proved that standard upstream mobility finite volume schemes for variable
saturated porous media flows still converge in highly heterogeneous contexts without any specific
treatment of the rock type discontinuities. The scheme is indeed shown to satisfy some energy
stability which provides enough a priori estimates to carry out its numerical analysis. First, the
existence of a unique solution to the nonlinear system stemming from the scheme is established
thanks to a topological degree argument and from the monotonicity of the scheme. Besides, a
rigorous mathematical convergence proof is conducted, based on compactness arguments. No
error estimate can then be deduced from our analysis.

Motivated by the need for a dedicated numerical treatment for the interfaces to enhance the
accuracy of the solution and its convergence order, we put forward four methods in chapter §4. The
basic the idea is to add unknowns to the system in correspondence/on of the interfaces endowing
them with mass or not. The different strategies are compared on filling and drainage test cases
with standard nonlinearities of Brooks-Corey and van Genuchten-Mualem type, as well as with
challenging steep nonlinearities. The numerical experiments show that the proposed methods
allow the lost first-order accuracy to be recovered and the accuracy of the solution to be improved
in comparison to that of a naive scheme without any specific treatment for heterogeneities.

Finally, in chapter §5, we successfully extended the parametrization technique and the strategies
to treat heterogeneities to the Darcy two-phase flow model. Numerical tests show, as expected,
an improved solution accuracy using these strategies compared to that obtained using the scheme
without specific treatments for heterogeneities. Nevertheless, contrary to the Richards equation, we
have observed that the amount of added mass to interface unknowns plays a very important role
in the robustness of the method.

6.2 Recommendations for future research

6.2.1 More advanced models and schemes

The immiscible incompressible two-phase system is barely the most affordable representative of
a larger catalog of models, in which more and more physical effects are taken into account. It
is natural to move into more advanced models in order to improve the prediction quality of the
simulations. The first step would be to incorporate compressibility of both phases. This amounts
to considering the interior system

Btpφραsαq `∇ ¨ pραvαq “ 0, (6.2.1a)

vα ` λ
kr,αpsα, xq

µα
p∇pα ´ %αgq “ 0, (6.2.1b)

snw ´ Snwppnw ´ pw, xq “ 0, (6.2.1c)
sw ` snw “ 1, (6.2.1d)

ρα ´ rραppαq “ 0, (6.2.1e)

in which the densities ρα are now given functions of the pressures pα. Next in the complexity scale
is the compressible two-phase model with a notion of temperature and an energy equation in order
to reflect thermal effects. Last but not least, the most realistic one is the multiphase compositional
model with a full thermodynamics involving dynamic appearance and disappearance of phases.

Likewise, the TPFA scheme is the least expensive member of a wider family of finite volume
methods. It would be interesting to combine our parametrization technique with more sophisticated
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schemes such as MPFA (Multi-Point Flux Approximation) [1,2] for more accuracy on general meshes
or nonlinear TPFA [126] for the maximum principle.

6.2.2 Bisection method for the two-phase system

In chapter §5, we did not consider Method D2 introduced in §4.3.4.2 for the heterogeneous case of the
Richards equation. In this method, a face unknown on interfaces is inserted and the system obtained
is solved via the face unknowns elimination, thanks to a bisection method. More precisely, the idea
is to update the cell unknowns pτKqKPT at each Newton iteration ` via a linear Schur complement
system and then update the interface unknowns pτσqσPEΓ

by solving exactly the nonlinear wetting
flux conservation

F `K,σpϑσq ` F
`
L,σpϑσq “ 0,

where
ϑ`K “ pKpτ

`
Kq ´ %g ¨ xK

and

F `K,σpϑσq “
mσ

dK,σ
λKη

`
σ,Kpϑσqrϑ

`
K ´ ϑσs,

F `L,σpϑσq “
mσ

dL,σ
λLη

`
σ,Lpϑσqrϑ

`
L ´ ϑσs,

via a bisection method on each interface. While this was possible for Richards’ equation, because
the wetting flux conservation is monotone w.r.t. ϑσ , things became much more intricate when
we turned to the two-phase Darcy flow model. Below we formalize some thoughts in order to
circumvent the difficulties encountered.

Let us consider and interface σ “ K | L shared by two different rock types. In cell K —resp.
L, the flux is characterized by the wetting pressure ppwqK —resp. ppwqL, the capillary pressure
ppcqK —resp. ppcqL— and the non-wetting pressure ppnwqK “ ppwqK ` ppcqK —resp. ppnwqL “

ppcqL` ppwqL. We look for the pressure values ppwqσ, ppcqσ and ppnwqσ “ ppwqσ ` ppcqσ on the
interface to ensure flux continuity for each phase, i.e.,

pFwqKσ ` pFwqLσ “ 0, (6.2.2a)
pFnwqKσ ` pFnwqLσ “ 0. (6.2.2b)

The precise expression of the wetting and non-wetting flux Fw, Fnw is plugged into equations
(5.2.9)–(5.2.10). From these equations, we deduce that if ppwqσ verifies (6.2.2a), then

minpppwqK , ppwqLq ď ppwqσ ď maxpppwqK , ppwqLq. (6.2.3)

Analogously, if ppnwqσ “ ppwqσ ` ppcqσ satisfies (6.2.2b), it verifies

minpppnwqK , ppnwqLq ď ppnwqσ ď maxpppnwqK , ppnwqLq.

Taking advantage of relation (6.2.3), from (6.2.2a) we can explicit ppwqσ as

ppwqσ “ αKσpppcqσqppwqK ` αLσpppcqσqppwqL,

where αKσ and αLσ are Lipschitz functions taking values in r0, 1s. Both functions are monotone,
respectively increasing and decreasing if the wetting motor pϑwqK ´ pϑwqL given by (5.1.5a) is
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positive, inversely if negative. The obtained value for ppwqσ can be substituted in the non-wetting
flux conservation equation (6.2.2b) and we get that the function

Ψσ : ppcqσ ÞÑ pFnwqKσ pppcqσq ` pFnwqLσ pppcqσq

is strictly decreasing and Lipschitz. Finally, depending on the sign of the non-wetting motor
pϑnwqK ´ pϑnwqL given by (5.1.5b), we can find the range of values in which search the cap-
illary pressure ppcqσ via the bisection method. Moreover, the sign of the fluxes guarantees the
existence and uniqueness of ppcqσ in the previously found interval. It would be interesting to test
this method and analyze its behavior to see if it brings advantages over the Method D1.
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