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Summary

Carbon dioxide capture, utilization and storage (CCUS) is a powerful technology to reduce the quantity of greenhouse gases emitted into the atmosphere. Generally, CO 2 is stored in geological underground structures such as depleted oil and gas reservoirs or saline aquifer. Once injected into formations, CO 2 is trapped underground by means of various trapping mechanisms. The formation heterogeneities and changes in wettability are involved in one of them. The discontinuities thus created are at the basis of the capillary barrier phenomenon, which plays a crucial role for flows in porous media and in fractured ones in particular.

For Darcy flows, capillary pressure is often modeled as a function of fluid saturation and rock type. Each lithology corresponds to a capillary pressure-saturation curve which displays strong variations embodied by asymptotes. The change of curve induced by the change of rock requires to define precisely the interface conditions between two different lithologies in order to model the flow or the trapping of the fluids accurately through this interface. In view of these characteristics and constraints, numerical difficulties may arise when simulating these flows, especially during Newton iterations. Some choices of primary variables may be more appropriate than others.

In this thesis, we aim at improving Newton robustness in order to overcome the abovementioned difficulties and at proposing strategies to enforce transmission conditions at interfaces in heterogeneous domains. Our work follows an order of increasing difficulties. First, we start considering the easier model, the Richards equation, in a homogeneous medium. Then, we introduce heterogeneities in the domain. Finally, we turn to the complete model in a challenging configuration: the immiscible incompressible two-phase system in a heterogeneous domain.

To improve robustness, we propose a strategy based on variable switch and it is easily implemented thanks to a fictitious variable that enables us to describe both the saturation and the pressure and that we call parametrization technique. The numerical tests performed confirm the potentiality of this technique, which allows the Richards equation to be solved without caring about the choice of the primary unknown and without any convergence problems.

In a heterogeneous domain, a naive scheme without explicit inclusion of heterogeneities suffers from a lack of accuracy in the predicted results. This motivates the introduction of a specific treatment of the interfaces. Thus, we propose and compare several approaches to deal with the interface transmission condition, analyzing their pros and cons when confronted to different physical settings for the Richards equation as well as the two-phase Darcy flow model.

Résumé

La séquestration du dioxyde de carbone constitue une technologie puissante permettant de réduire la quantité de gaz à effet de serre émis dans l'atmosphère. En général, le CO 2 est stocké dans des structures géologiques souterraines telles que des réservoirs de pétrole et de gaz épuisés ou des aquifères salins. Une fois injecté dans les formations, le CO 2 est piégé dans le sous-sol au moyen de divers mécanismes de piégeage. Les hétérogénéités de la formation et les changements de mouillabilité sont impliqués dans l'un d'eux. Les discontinuités ainsi créées sont à la base du phénomène de barrière capillaire, qui joue un rôle crucial pour les écoulements en milieu poreux et en particulier dans les milieux fracturés.

Pour les écoulements de Darcy, la pression capillaire est souvent modélisée en fonction de la saturation du fluide et du type de roche. A chaque lithologie correspond une courbe pression capillaire-saturation qui présente de fortes variations matérialisées par des asymptotes. Le changement de courbe induit par le changement de roche nécessite de définir précisément les conditions d'interface entre deux lithologies différentes afin de modéliser précisément l'écoulement ou le piégeage des fluides à travers cette interface. Compte tenu de ces caractéristiques et contraintes, des difficultés numériques peuvent apparaître lors de la simulation de ces écoulements, notamment lors des itérations de Newton. Certains choix de variables primaires peuvent être plus appropriés que d'autres.

Dans cette thèse, nous cherchons à améliorer la robustesse de Newton afin de surmonter les difficultés mentionnées ci-dessus et à proposer des stratégies pour faire respecter les conditions de transmission aux interfaces dans des domaines hétérogènes. Notre travail suit un ordre de difficultés croissantes. Tout d'abord, nous commençons par considérer le modèle le plus simple, l'équation de Richards, dans un milieu homogène. Ensuite, nous introduisons des hétérogénéités dans le domaine. Enfin, nous nous tournons vers le modèle complet dans une configuration difficile : le système diphasique incompressible immiscible dans un domaine hétérogène.

Pour améliorer la robustesse, nous proposons une stratégie basée sur le changement de variable et elle est facilement mise en oeuvre grâce à une variable fictive qui nous permet de décrire à la fois la saturation et la pression et que nous appelons technique de paramétrisation. Les tests numériques réalisés confirment la potentialité de cette technique qui permet de résoudre l'équation de Richards sans se soucier du choix de l'inconnue primaire et sans problème de convergence.

Dans un domaine hétérogène, un schéma naïf sans prise en compte explicite des hétérogénéités souffre d'un manque de précision dans les résultats. Ceci motive l'introduction d'un traitement spécifique des interfaces. Ainsi, nous proposons et comparons plusieurs approches pour traiter la condition de transmission aux interfaces, en analysant leurs avantages et inconvénients lorsqu'ils sont confrontés à différents paramètres physiques pour l'équation de Richards ainsi que pour le modèle d'écoulement diphasique de Darcy.

Chapter 1 Introduction

This work comes within the area of simulation of multiphase flows in porous media, with CO 2 storage as the primary application. We first describe this context in §1.1, laying emphasis on some physical processes of interest for the sequel, among which capillarity is the most notable.

We then present in §1.2 the two mathematical models that will be considered throughout this thesis. Far from being the most comprehensive ones from the point of view of physical effects, they are nevertheless sufficiently representative of the difficulties that arise after numerical discretization. The highlight of these difficulties and a review of the state of the art in §1.3 will allow us to state the objectives and to provide an outline of the manuscript in §1.3.3.3.

Environmental and technical issues of CO 2 storage

Global warming is a complex and non-negligible problem which is affecting the Earth and living creatures. Signed on December 12th 2015 by 196 Parties at COP 21 in Paris, the Paris Agreement on climate change became effective on November 4th 2016. Its goal is to limit global warming to 1.5 ˝C, compared to pre-industrial levels. Different strategies have been adopted or are under evaluation as instruments to alleviate climate change, such as greener technologies (nuclear energy, wind energy etc. . . ). Unfortunately, the renewable energy development is slow and the demand for fossil fuels in the world remains high, implying an increasing amount of greenhouse gases emitted into the atmosphere.

these risks [START_REF]Induced seismicity and its implications for CO 2 storage risk[END_REF][START_REF]Coupled hydromechanical modeling of CO 2 sequestration in deep saline aquifers[END_REF]. Moreover, the complexity of the problem should not be overlooked, which makes its modelling challenging. This is a multi-scale problem both in the temporal and spatial scales in which physical and chemical mechanisms are involved.

Before speaking about the modeling of CO 2 storage, let us provide more details about this process. Storage modes can be classified into natural and man-made modes. The former includes terrestrial sequestration (store the gas into soils and vegetation), while the latter includes storage in geological formations and is the most largely used in sequestration technology: CO 2 is stored in geological underground structures such as depleted oil and gas reservoirs or saline aquifers (Figure 1.1). Depleted oil and gas reservoirs are fields that have been classified as uneconomical for further production. These storage sites are already very well-known and there exist numerical computer models of these formations which have been validated, providing enhanced confidence in them. Moreover, these sites have been able to safely store oil and gas during a long time so they are the favorite candidates for storage. The existing infrastructures and wells can be used for CO 2 injection. On the other hand, the store capacity of these sites is lower than that of the saline aquifer formations because of the necessity to avoid excessively high pressures that can damage the cap rock. As already pointed out, saline aquifer formations are characterized by their highest storage capacity. For example, for Alberta deep saline basin, an estimate of the order of 103 Gt storage capacity has been made [START_REF]Carbon dioxide sequestration in geological media-state of the science[END_REF].

Let us now discuss about storage process of CO 2 in geological formations with a focus on saline aquifers. A geological site to be selected as storage site, has to satisfy three main requisites: the capacity, the injectivity and the containement. The capacity constraint guarantees that the site has large pore volumes to store big quantities of CO 2 , i.e., an high porosity. The porosity φ " pore volume total volume measures the fraction of the volume of voids over the total volume (Figure 1.2). If it also possesses a high permeability (denoted by λ), which is a measure of the ability of a porous material to allow fluids to pass through it, then the injectivity properties is satisfied, which ensures that lower wellhead pressures can be employed to preserve desired injection rates. To avoid that injected carbon dioxide leaks into groundwater or evades to the surface, because of the lower density of this gas with respect to resident brine, adequate cap rocks (rocks characterized by very low permeability) and sealing faults (if present) are needed. CO 2 is stored in a supercritical phase, i.e., it is compressed to higher pressures and temperatures about 89 ˝F and 7.4 MPa. It reduces the buoyancy differential between CO 2 and present fluids. 

Physical processes involved

Trapping mechanisms

The injected supercritical CO 2 is then trapped underground by means of two main trapping mechanisms: physical trapping and geochemical trapping.

Physical trapping.

In this category we can distinguish two types of trapping. One is the structural trapping, in which the formation heterogeneities and changes of wettability play a crucial role. Indeed an heterogeneous medium is characterized by different porosities, φ " φpxq, and permeabilities, λ " λpxq. This mechanism is similar to the one that has maintained oil and gas stored for millennia. When the injection ceases, the supercritical CO 2 tends to migrate upward via the porous and permeable rock because of the buoyancy effect, and laterally through preferential pathways, until it reaches a medium characterized by a low permeability cap rock, sealed discontinuities [START_REF]Evaluation of trapping mechanisms in geologic CO 2 sequestration: Case study of SACROC northern platform, a 35-year CO 2 injection site[END_REF]. This prevents further migrations (Figure 1.3).

The second mechanism belonging to physical trapping is the residual/capillary trapping (Figure 1.4). While the carbon dioxide at supercritical state pervades the storage formations, reservoir fluids are displaced and they fill the remaining spots. CO 2 moves upward because of the density differences and laterally as effect of viscous forces. The CO 2 movement is stopped by the surface tension between CO 2 and brine [START_REF]New trapping mechanism in carbon sequestration[END_REF]. Thereby CO 2 is trapped in the pores at residual gas saturation. This is called capillary effect.

The capillary pressure in a porous media depends on the wettability and interfacial tension changes [START_REF]The impact of interfacial tension and pore size distribution/capillary pressure character on CO 2 relative permeability at reservoir conditions in CO 2 -brine systems[END_REF]. It is defined as the difference between the pressures of the non-wetting and wetting phases. In a CO 2 -water system, CO 2 is the non-wetting phase and water is the wetting one. Capillary pressure formula is given by the Young-Laplace equation p c " p CO 2 ´pw " 2σ w,CO 2 cos θ R , where R is the pore radius, σ w,CO 2 is the interfacial tension between water and CO 2 , and θ is the contact angles between the wetting medium and the rock surface (Figure 1.5). The contact angle is the angle between the surface of the liquid and the outline of the contact surface and it is a measure of the wettability, of a solid by a liquid. Young's equation σ sg " σ sl `σlg ¨cos θ describes the relationship between the contact angle θ, the surface tension of the liquid σ lg , the interfacial tension σ sl between liquid and solid and the surface free energy σ s of the solid (Figure 1.6). The wettability of a fluid depends on its surface tension, the forces that drive a fluid's tendency to take up the minimal amount of space possible, and it is determined by the contact angle of the fluid. So this angle is crucial to determine which is the wetting and non wetting phase. If θ ă 90 ˝, water is the wetting phase but if θ ą 90 ˝then CO 2 is the wetting phase (Figure 1.7).

Geochemical trapping. Geochemical trapping occurs when CO 2 reacts with the formation brine and the rock. CO 2 no longer appears as a separate phase, increasing storage capacity and promoting long-term storage. In this category we find the solubility trapping and the mineral trapping. The solubility trapping is the result of the CO 2 dissolution in the brine, leading to dense CO 2 -saturated brine. An example of a possible reaction is CO 2paqq `H2 O Ø H ``HCO 3 . Gradually the latter becomes denser than the adjacent reservoir fluids and falls to the bottom of the formation progressively. The mineral trapping is the result of the conversion of CO 2 into calcite because of reactions with solid minerals. CO 2 in aqueous phase produces a weak acid which reacts with mineral rocks to form bicarbonate ions characterized by different cations depending on the mineralogy of the formation. An example of reaction with potassium basic silicate is 3K-feldspar `2CO 2 `2H 2 O Ø Muscovite `6Quartz `2K ``2HCO 3 .

Other phenomena and laws

Various phenomena are involved in CO 2 injection and storage: transport phenomena (convection, diffusion and dispersion) and chemical phenomena (dissolution of CO 2 in water, acidification of the surrounding water, reactions between water and rock). There is a very strong link between these different phenomena. The injection of CO 2 and its dissolution in the water strongly influences the flow. The chemical equilibrium of the medium is modified by the dissolution of CO 2 in water, which can imply numerous chemical reactions, in particular dissolution and precipitation reactions of the rock. These reactions can modify the porosity, the permeability and thus change the characteristics of the porous medium, and therefore the flow properties.

Moreover, the storage of CO 2 in aquifers is made possible by gravity, capillary and viscous forces. These last ones are the dominant forces for the migration of the gas during the injection phase, because of the resulting pressure gradient. Then, in the post-injection phase, buoyancy and capillary forces make possible the CO 2 trapping. The drainage and imbibition-like processes during the injection and post-injection phases lead to hysteresis, i.e. a process in which capillary pressure and relative permeability curves change pathways (Figure 1.8). It is very important to the CO 2 trapping process modeling [START_REF]Hysteresis and field-scale optimization of WAG injection for coupled CO 2 -EOR and sequestration[END_REF][START_REF] O J | Impact of relative permeability hysteresis on geological CO 2 storage[END_REF][START_REF]Relative-permeability hysteresis: Trapping models and application to geological CO 2 sequestration[END_REF]. Figure 1.8: Hysteresis of capillary pressure and relative permeability curves [START_REF]Fronts in two-phase porous flow problems: effects of hysteresis and dynamic capillarity[END_REF].

The basic governing equations of an appropriate model are usually divided into two categories: fundamental balance laws, which express the conservation of mass and energy of the species, and empirical constitutive laws, which reflect the experimental knowledge of physicists about the physical effects under consideration. Moreover, the system can be enriched by other physical equations to predict geomechemical effects (permeability and porosity changements) and geochemical reactions, as the ones reported in the geochemical trapping paragraph.

Balance laws. The mass conservation equations connect the time rate of mass change of a species to the convection and the diffusive terms, as well as the source (sink) term, When each phase α contains only one component, the mass balance for phase α is typically B t pφ α s α q `∇ ¨p α v α q " q α , (1. 1.1) where φ P r0, 1s is the porosity of the medium, while s α P r0, 1s is the saturation, α ą 0 is the density, v α P R 2 or R 3 is the filtration velocity vector and q α is the source/sink term of phase α.

When thermal effects are into account, one or several energy balance laws must also be envisaged.

We shall neglect thermal effects in this thesis.

Darcy laws. The flow velocity of a fluid can be expressed via the Darcy law [START_REF]Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau[END_REF][START_REF]The Flow of Homogeneous Fluids Through Porous Media[END_REF], which states that, for each phase α,

v α " ´λ k r,α ps α , xq µ α p∇p α ´ α gq, (1.1.2)
where λ is the absolute permeability of the medium, k r,α ą 0 is the relative permeability of phase α and g P R 2 our R 3 is the gravity vector. The sign suggests that, in absence of gravity, the flux flows from the high pressure zone to the low pressure one. The notion of relative permeability expresses the observation that a fluid in contact with another does not move in the same way as if it were alone. It depends on the phase saturation value s α and on the wettability and density properties of the other "contact" phases.

Simulation tools

In light of this brief overview of the physical and chemical processes that take place during CO 2 storage, it is easy to see the complexity of this operation. In order to avoid the risks outlined above, to predict the flow path of the injected CO 2 and to optimize the well location, extensive simulations must be carried out before the injection phase. This is where numerical mathematics comes into action.

Normally, for modeling CO 2 storage in saline aquifers either analytical or numerical models are employed. The choice between the two depends on the purpose of the research, the given problem and the available data. Analytical models can provide information about the eligibility of a formation for storage [138], the plume migration [START_REF]Injection and storage of CO 2 in deep saline aquifers: Analytical solution for CO 2 plume evolution during injection[END_REF], but their assumptions are oversimplified to properly describe reservoir properties and model geometry heterogeneities. Moreover the geochemical reactions occurring during the storage of CO 2 cannot be described by analytical models.

Different forms of numerical modeling techniques have been employed to modeling of the storage process such as streamline simulations, vertical equilibrium models and conventional gridbased numerical models [START_REF]The Sleipner storage site: Capillary flow modeling of a layered CO 2 plume requires fractured shale barriers within the Utsira formation[END_REF][START_REF]Modeling CO 2 sequestration using a sequentially coupled 'iterative-impec-time-split-thermal' compositional simulator[END_REF][START_REF] Si | Numerical models for evaluating CO 2 storage in deep, saline aquifers: Leaky wells and large-scale geological features[END_REF][START_REF]A review of physical modelling and numerical simulation of long-term geological storage of CO 2[END_REF]. Let us cite some relevant simulators. IFP Energies Nouvelles has designed the CO 2 Reservoir Environmental Simulator (COORES) research code to study CO 2 storage process from the well to the basin scale [START_REF]A sequential splitting strategy for CO 2 storage modelling[END_REF][START_REF] V -G | Long-term flow simulations of CO 2 storage in saline aquifer[END_REF]. COORES simulates multi-component three-phase and 3-D fluid flow in heretogeneous porous media, using structured or unstructured grids.

Another simulator project is the one developed by the University of Stuttgart: DuMu x [START_REF]DUMUX: a multi-scale multi-physics toolbox for flow and transport processes in porous media[END_REF]. It is a multi-scale, multi-physics toolbox for the simulation of flow and transport processes in porous media. It is based on the Distributed and Unified Numerics Environment (DUNE) [START_REF]A generic grid interface for parallel and adaptive scientific computing. Part II: Implementation and tests in DUNE[END_REF][START_REF]A generic grid interface for parallel and adaptive scientific computing. Part I: Abstract framework[END_REF] which goal is to allow the use of different implementations as grids, solvers, etc. using C++ techniques. The main intention of DuMu x is to provide a scheme for easily and efficiently implement models for porous media flow problems. Widely used in oil and gas industry is the simulation tool ECLIPSE [125]. It includes two software packages: ECLIPSE Black Oil (E100) and ECLIPSE Compositional (E300). The first one is a fully implicit, 3D black oil simulator; the second one is a compositional simulator which have been enriched by options such as CO2STORE and GASWAT to handle CO 2 solubility in water.

Two mathematical models

The simulation of flows porous media has evolved into a mature technology, with an abundant catalog of models adapted to different needs and a wide range of numerical methods. The constant quest for a better robustness of softwares is at the root of intense research activities. In order to elaborate on the difficulties we want to address, we first need to fix ideas on the models and the schemes. In this section, we introduce two mathematical models: a "difficult" one called two-phase system and an "easier" one called Richards' equation.

We denote by Ω a bounded open set of R d (with d " 2, 3) representing the porous medium, by T ą 0 a finite time horizon and by

Q T :" Ω ˆp0, T q
the corresponding space-time cylinder. The boundary of the space domain is split into two parts according to

BΩ " Γ D Y Γ N , Γ D X Γ N " H,
and Γ D having non-zero measure. One phase is called wetting (w) whereas the other one is called non-wetting (nw). The generic subscript for phase is α P tw, nwu.

Immiscible incompressible two-phase flow in porous media

By "incompressible" it is understood that both densities ρ α are uniform. By "immiscible" we mean that both viscosities µ α are given constant. The two-phase system is made up of the following equations:

• The two balance laws (1.1.1) divided by ρ α and in which q α " 0; more explicitly

B t pφs w q `∇ ¨vw " 0 in Q T , (1.2 
.1a)

B t pφs nw q `∇ ¨vnw " 0 in Q T .
(1.2.1b)

• The two Darcy laws (1.1.2), namely,

v w `λ k r,w ps w , xq µ w p∇p w ´ w gq " 0 in Q T , (1.2.2a) v nw `λ k r,nw ps nw , xq µ nw p∇p nw ´ nw gq " 0 in Q T .
(1.2.2b)

• The capillary pressure-saturation relationship

p nw ´pw ": p c in Q T , (1.2.3a) 
s nw ´Snw pp c , xq " 0 in Q T . (1.2.3b) 
• The volume conservation s w `snw " 1 in Q.

(1.2.4)

• The Dirichlet and Neumann boundary conditions

p α " p D α on Γ D ˆp0, T q, (1.2.5a) v α ¨ν " q N α on Γ N ˆp0, T q, (1.2.5b)
where ν P R d stands for the outward unit normal vector to BΩ.

• The initial condition

s α p¨, t " 0q " s 0 α in Ω. (1.2.6)
The significance of various quantities has been given in §1.1.2.2. The unknowns of the system are s α , v α , p α which are functions of px, tq P Q T .

Let us now comment on the data. The porosity φ and the absolute permeability λ are given functions of the space variable x. It is assumed that they both have positive lower bounds, that is,

φ ě φ min ą 0, λ ě λ min ą 0.
By definition (1.2.3a), the capillary pressure p c is the difference between the two phase pressures. Traditionally, it is given as an empirical function of the saturation of the wetting fluid and on the type of rock present at point x. Here, for the two-phase system, we choose to take it as a function S ´1 nw p¨, xq of the non-wetting saturation s nw , in order to deal with a non-decreasing capillary pressure law. The relative permeability k r,α takes values in r0, 1s and is an increasing function of s α and of the rock type present present at point x.

In the above equations, we have written k r,α ps α , xq and S nw pp c , xq to stress the explicit dependency of k r,α and S nw on location x through the rock type at this point. When several types of rock are encountered, the medium is said to be heterogeneous. When only one type of rock can be found, the medium is said to be homogeneous. In the latter case, we can simply write k r,α ps α q and S nw pp c q. It has been proven that system (1.2.1)-(1.2.6), for suitable initial and boundary conditions, admits a solution in homogeneous domains [START_REF]Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution[END_REF][START_REF]Flow of oil and water in a porous medium[END_REF]. Moreover, an analysis of the limit as the constitutive relation degenerates into a maximal monotone graph is undertaken in [START_REF]On nonstationary flow through porous media[END_REF]. Finally, regularity properties of the solution are investigated in [START_REF]Nonsteady flow of water and oil through inhomogeneous porous media[END_REF].

Richards' approximation

Richards' equation is an approximation of the previously described two-phase model. It is valid in the so-called vadose zone (also termed unsaturated zone). This approximation is of interest in the field of hydrology and also in mathematics, as it allows one to work initially on a reduced model and then move on to the full model. Thanks to the assumption p nw " 0, the wetting and non-wetting phases of the two-phase system (1.2.1)-(1.2.6) can be decoupled. The resulting equations for the wetting phase are • The volume balance law

B t pφs w q `∇ ¨vw " 0 in Q T . (1.2.7) 
• The Darcy law

v w `λ k r,w ps w , xq µ w p∇p w ´ w gq " 0 in Q T .
(1.2.8)

• The capillary pressure-saturation relationship

s w ´Sw pp w , xq " 0 in Q T .
(1.2.9)

• The Dirichlet and Neumann boundary conditions

p w " p D w on Γ D ˆp0, T q, (1.2.10a) v w ¨ν " q N w on Γ N ˆp0, T q. (1.2.10b) • The initial condition s w p¨, t " 0q " s 0 w in Ω. (1.2.11)
Note that in the capillary pressure-saturation law (1.2.9), we now work with s w and p w , which is the opposite of the capillary pressure. Since only the wetting phase is involved, we can safely omit the subscript w for notational convenience. System (1.2.7)-(1.2.11) then becomes

B t pφsq `∇ ¨v " 0 in Q T , (1.2.12a) v `λ k r ps, xq µ p∇p ´ gq " 0 in Q T , (1.2.12b) s ´Spp, xq " 0 in Q T , (1.2.12c) p " p D on Γ D ˆp0, T q, (1.2.12d) v ¨ν " q N on Γ N ˆp0, T q, (1.2.12e) sp¨, t " 0q " s 0 in Ω. (1.2.12f)
Elimination of v leads to the reduced system or the pressure to have a scalar equation in s, namely,

B t pφsq ´∇ ¨"λ k r ps, xq µ p∇p ´ gq ı " 0 in Q T , (1.2.13a) s ´Spp, xq " 0 in Q T , (1.2.13b) p " p D on Γ D ˆp0, T q, (1.2.13c) ´λ k r ps, xq µ p∇p ´ gq ¨ν " q N on Γ N ˆp0, T q, (1.2.13d) sp¨, t " 0q " s 0 in Ω. ( 1 
B t pφsq ´∇ ¨"λ k r ps, xq µ p∇S ´1ps, xq ´ gq ı " 0, (1.2.15) 
assuming invertibility of Sp¨, xq for each fixed x.

In a homogeneous domain or inside a homogeneous subdomain, it is customary to define the Kirchhoff transform as u " U ppq :"

ż p ´8 k r pSpπqq dπ. (1.2.16)
This new quantity, also known as the global pressure, combines the two main nonlinearities in one and has the advantage of linearizing the gradient term, insofar as ∇u " k r pSppqq∇p.

It can be used instead of p as primary variable. Indeed, defining the new function S puq " Sppq, we can recast the homogeneous version of (1.2.13) under the form

B t pφsq ´∇ ¨" λ µ p∇u ´kr psq gq ı " 0, in Q T , (1.2.17a) s ´S puq " 0, in Q T , (1.2.17b) u " U pp D q on Γ D ˆp0, T q, (1.2.17c) ´λ µ p∇u ´kr psq gq ¨ν " q N on Γ N ˆp0, T q, (1.2.17d) sp¨, t " 0q " s 0 in Ω. (1.2.17e)
The existence and uniqueness of the solution of system (1.2.17) is studied in [START_REF]Quasilinear elliptic-parabolic differential equations[END_REF][START_REF]L 1 -contraction and uniqueness for unstationary saturated-unsaturated porous media flow[END_REF].

Constitutive relations

In industrial applications, the most classical models used for the relative permeabilities k r,α and the capillary pressure-saturation relation S α are those of Brooks-Corey [START_REF]Hydraulic properties of porous media[END_REF] and van Genuchten-Mualem [START_REF]A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF]. Both models involve various parameters such as the residual non-wetting saturation s rn P r0, 1s and the residual wetting saturation s rw P r0, 1s such that s rn `srw ă 1.

(1.2.18)

Two-phase system

In a homogeneous domain characterized by a given pair ps rn , s rw q, the effective non-wetting saturation is defined as r s eff :" r s eff ps nw q " Π r0,1s ˆp1 ´srw q ´snw p1 ´srw q ´srn ˙" Π r0,1s ˆsw ´srw p1 ´srn q ´srw ˙,

where Π r0,1s p¨q denotes the projection on the interval r0, 1s, that is,

Π r0,1s prq " $ ' & ' % 0 if r ă 0, r if 0 ď r ď 1, 1 if r ą 1.
(1.2.20)

Then, we have

• for the Brooks-Corey model:

k r,w ps nw q " r s 3`2{n eff , (1.2.21a) 
k r,nw ps nw q " p1 ´r s eff q 2 p1 ´r s

1`2{n eff q, (1.2.21b) 
S nw pp c q " $ ' & ' % 1 
´"s rw `p1 ´srn ´srw q

ˆpc p b ˙´n  if p c ą p b , s rn if p c ď p b ; (1.2.21c) 
• for the van Genuchten-Mualem model:

k r,w ps nw q " r s 1{2 eff t1 ´"1 ´r s 1{m eff ‰ m u 2 , (1.2.22a) k r,nw ps nw q " p1 ´r s eff q 1{2 " 1 ´r s 1{m eff ‰ 2m , (1.2.22b) 
S nw pp c q " $ ' & ' % 1 
´"s rw `p1 ´srn ´srw q ˆ1 `ˇˇˇξ p c w g

ˇˇˇn ˙´m  if p c ą 0, s rn if p c ď 0, (1.2.22c) 
with m " 1 ´1{n.

The purpose of the projection operator Π r0,1s in (1.2.19) is to make formulas for k r,α valid for all s α P r0, 1s. In particular, we have k r,α ps α q " # 0 for s α P r0, s rα s, 1 for s α P r1 ´srα , 1s, (1.2.23) where α stands for the complementary phase of α, i.e., α " nw if α " w and α " w if α " nw. In the formulas for S nw , the parameter p b ą 0 is the entry pressure. The function S nw : R Ñ r0, 1s can be easily seen to be nondecreasing and to satisfy S nw pp c q " s rn for p c ď p b , (1.2.24a) The exponents n, m, the entry pressure p b and the parameter ξ are also characteristic properties of the rock type. In a homogeneous domain, these are given constants. 

S nw pp c q Ñ 1 ´srw as p c Ñ `8. (1.2.24b)

Richards' equation

In a homogeneous domain characterized by the residual saturations ps rn , s rw q, the effective saturation is defined as

s eff :" s eff psq " Π r0,1s ˆs ´srw p1 ´srnq ´srw ˙, (1.2.25) 
where Π r0,1s is the projection on r0, 1s, defined in (1.2.20). We recall that the subscript w has been dropped and that the capillary pressure-saturation is now written as s " Sppq, where p " ´pc . Then, it follows from (1. • for the van Genuchten-Mualem model:

k r psq " s 1{2 eff `1 ´"1 ´s1{m eff ‰ m ˘2, (1.2.27a) Sppq " $ ' & ' % s rw `p1 ´srn ´srw q " 1 `ˇˇˇξ p g ˇˇˇn  ´m if p ă 0, 1 ´srn if p ě 0, (1.2.27b) 
with m " 1 ´1{n.

Thanks to the projection operator Π r0,1s , the formulas for k r are valid for all s P r0, 1s. Figure 1.12: Water pressure and relative permeability curves for the van Genuchten-Mualem model using parameters reported in Table 1.2.

In Figures 1.11-1.12, we report the plot of the water pressure p " ´pc and relative permeability curves k r for the Brooks-Corey model and the van Genuchten-Mualem model using parameters shown in Tables 1.1 Going back to a homogeneous domain or subdomain, let us derive the relationship s " S puq when the Kirchhoff transform is applied along the lines of (1.2.16)-(1.2.17). Because the latter cannot be analytically computed for the van Genuchten-Mualem model, we just do it for the Brooks-Corey model. By straightforward calculations, we obtain 

S puq " $ ' & ' % s rw `p1 ´srn ´srw q ˆu u b ˙n{p3n`1q if u ď u b , 1 ´srn if u ą u b , (1.2 

Towards more robust and accurate numerical approximations 1.3.1 Two critical difficulties

We are going to explain the difficulties that arise in the numerical resolution of the Richards equation (1.2.13) in the saturation-pression formulation. Those for the Richards equation (1.2.17) with the Kirchhoff transform and for the two-phase system (1.2.1)-(1.2.6) are similar in essence. Richards' equation is a nonlinear, degenerate elliptic-parabolic partial differential equation. Loss of ellipticity stems from the fact that k r is allowed to vanish, by virtue of (1.2.28) and as highlighted in the left panel of Figure 1.14. This is aggravated by the low regularity of the constitutive laws k r (at s rw and 1 ´srn ) and S (at p " ´pb ), as underlined in Figure 1.15. However, the worse is yet to come. 

Lack of robustness due to stiffness of closure laws

Even in the regions where k r and S are smooth, other delicate issues contribute to make its numerical resolution challenging. On the one hand, when the saturation s reaches value 1, the function S is no longer invertible and its derivative is equal to zero, which causes the Richards equation to degenerate from parabolic to elliptic. At the practical level, this implies that the saturation s cannot be taken as a primary unknown for this regime of solution. In the same vein, it is not recommended to choose s as the primary variable in dry zones ps ! 1q where S is very flat, as illustrated in the right panels of Figures 1.14-1.15. Indeed, inversion in p becomes ill-conditioned in the sense that pS ´1q 1 psq Ñ 8.

On the other hand, assuming that the pressure p is taken as the primary unknown, there is no guarantee the algebraic system of discretized equations can be solved in an efficient way, say, by the Newton method. To expand on this matter, let us consider a general discrete approximation space X h for the pressure p. Using a backward Euler method in time, discretization methods in space usually amount to finding, at each time step n, a p n h P X h such that

@ φpSpp n h q ´Spp n´1 h qq, v h D `∆t n B λk r pSpp n h qq µ p∇p n h ´ gq, ∇v h F `. . . " 0 (1.3.1)
for all v h P X h . In (1.3.1), x¨, ¨y denotes a discrete scalar product related to a given scheme, ∆t n " t n ´tn´1 and the dots may include other terms like boundary conditions (or even sources) we do not detail. In the sequel, we will assume that these terms are absent without loss of generality. The most classical way to solve equation (1.3.1) consists in using Newton's method. Starting from p n,0 h " p n´1 h , at each iteration k ě 0 find

p n,k`1 h " p n,k h `δn,k h such that the increment δ n,k h solves the linearized system @ φSpp n,k h q, v h D `@φS 1 pp n,k h qδ n,k h , v h D `∆t n B λ k r pSpp n,k h qq µ p∇p n,k`1 h ´ gq, ∇v h F `∆t n B λ k 1 r pSpp n,k h qq µ S 1 pp n,k h qδ n,k h p∇p n,k h ´ gq, ∇v h F " @ φSpp n´1 h q, v h D . (1.3.2)
Under favorable conditions, the Newton method converges quadratically provided that the starting point is close enough to the exact solution. Here, we are very far from this ideal situation. Troubles occur with the linear system (1.3.2) itself, since the matrix on the left-hand side contains the derivatives k 1 r pSpp n,k h qq and S 1 pp n,k h q, each of which may become very large or even blow up, as shown in Figure 1.15. This testifies to a highly ill-conditioned problem, which in practice leads to a failure of convergence for the Newton method.

Lack of accuracy due to strong heterogeneities

Heterogeneous domains, as suggests the adjective, are characterized by the presence of different lithologies presenting, consequently, piecewise-uniform petrophysical properties. Each lithology i gives rise to a pair pk r,i , S i q of stiff closure laws [23, §5.1]. A strong contrast in the parameters of these laws across an interface gives rise to an additional difficulty in the numerical resolution of the model, and appears therefore as a challenge to be taken up. Indeed, it is observed ( §3- §4) that not only the robustness of the nonlinear iterative solver is worsened, but also the orders of convergence of standard numerical methods become extremely low with respect to the mesh size (e.g., 0.3 instead of 1, as examplified in Figure 1.16 for the test case of §4.4.1.1). The heart of the matter is that the transmission conditions, especially pressure continuity, are only recovered asymptotically. As a consequence, a naive scheme without any specific treatment for heterogeneities would suffer from a lack of accuracy in the predicted results. Discontinuities in the capillary pressure function across the interface between different geological layers may yield discontinuous saturations, since the phase pressures (thus the capillary pressure) have to remain continuous provided both phases are present on both sides of the interface. The effects of such discontinuities have been discussed for instance in [START_REF]Capillary pressures in stratigraphic traps[END_REF][START_REF]Buoyant flow of CO 2 through and around a semi-permeable layer of finite extent[END_REF][START_REF]The effect of capillary forces on immiscible twophase flows in heterogeneous porous media[END_REF], while mathematical contributions concerning the analysis of this phenomenon have been proposed in [START_REF]Analysis of oil trapping in porous media flow[END_REF][START_REF]Two-phase flows involving capillary barriers in heterogeneous porous media[END_REF][START_REF]An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field[END_REF]. These discontinuities are at the basis of the capillary barrier phenomenon illustrated in Figure 1.17. The capillary barrier effect plays a chief role for flows in porous media and in fractured ones in particular. This is why an improved accuracy in its computation is a major issue for engineers. Figure 1.17: Within a homogeneous ideal porous medium with constant pore size, the resulting capillary force on a connected component of non-wetting phase vanishes (left). This is no longer true if the non-wetting phase straddles the interface between two idealized porous media (right): capillarity generates a force orthogonal to the interface. Source: [START_REF]A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media[END_REF] 

Classical approaches

Let us review some of the numerous attempts that have been made in the literature to address the two above difficulties. Again, for the sake of simplicity, the presentation is made in an informal way for the Richards equation.

For the robustness of nonlinear iterative solvers

Alternatives to Newton's method. In place of the original Newton iterate (1.3.2), many variants have been advocated to ensure a greater robustness, often at the expense of the rate of convergence.

The modified Picard method, proposed by Celia et al. [START_REF]A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], deliberately omits the derivative k 1 r of the relative permeability. In other words, the linear system to be solved at each iteration becomes

@ φSpp n,k h q, v h D `@φS 1 pp n,k h qδ n,k h , v h D `∆t n B λ k r pSpp n,k h qq µ p∇p n,k`1 h
´ gq, ∇v h

F " @ φSpp n´1 h q, v h D . (1.3.3) 
By removing k 1 r to avoid infinity in the Jacobian matrix, we end up with a quasi-Newton method, the convergence of which is notoriously slower. But at least iterations do not stop prematurely and their convergence appears to be less dependent on the mesh size than for Newton's case [107].

The original Newton method and the modified Picard method can be hybridized, as suggested by Lehmann and Ackerer [START_REF]Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[END_REF]: its basic version consists in performing a few iterations with the modified Picard method and then in switching to Newton's scheme, once we have

}δ n,i h ´δn,i´1 h } ď δ a `δr }δ n,i h }.
Since δ a and δ r cannot always be prescribed easily beforehand, a fixed number of Picard iterations may rather be performed at each time-step. Note that in case the time derivative is not linearized in (1.3.3), the corresponding nonlinear system also gives a conservative approximation of p h . Casulli and Zanolli [START_REF]A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF] put forward the more sophisticated idea of nested Newton iterations, assuming that the saturation-pressure relationship can be decomposed into the form S " S 1 ´S2 , where the derivatives of S 1 and S 2 are both nondecreasing. The derivative k 1 r is neglected, as in the modified Picard method. Thus, if k designates the current Picard iterate, and m the inner and outer Newton iterates, the linearized procedure is now

´@φS 2 pp n,k, h q, v h D ´@φS 1 2 pp n,k, h qδ n,k, ,m 2,h , v h D `@φS 1 pp n,k, `1,m h q, v h D `@φS 1 1 pp n,k, `1,m h qδ n,k, ,m 1,h , v h D (1.3.4) `∆t n B λ k r pSpp n,k h qq µ p∇p n,k, ,m h ´ gq, ∇v h F " @ φSpp n´1 h q, v h D with δ n,k, ,m 1,h " p n,k, `1,m`1 h ´pn,k, `1,m h , δ n,k, ,m 2,h " p n,k, `1,m`1 h ´pn,k, h .
Both Newton loops stop once the nonlinearities related to S 1 and S 2 have been solved. Another quasi-Newton method is the L-scheme, in reference to the Lipschitz constant that is chosen as an abrupt substitute for the exact derivative of the accumulation term [START_REF]Mixed finite elements for the Richards' equation: linearization procedure[END_REF][START_REF]A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media[END_REF]. Replacing S 1 pp n,k h q in the modified Picard iterate (1.3.3) by L " sup p |S 1 ppq|, this scheme writes

@ φSpp n,k h q, v h D `@φLδ n,k h , v h D `∆t n B λk r pSpp n,k h qq µ p∇p n,k`1 h
´ gq, ∇v h

F " @ φSpp n´1 h q, v h D . (1.3.5) 
List and Radu [107] proved that this scheme is unconditionnally linearly convergent with a rate depending on L, the value of the time step and the mobility function λk r {µ but not on the mesh size. In the same way as previously mentioned, this scheme can also be combined with Newton's one in order to accelerate convergence.

Preconditioned Newton's method. Another philosophy to gain in robustness is to keep Newton's method as the linearization scheme while judiciously preconditioning the system to be solved. Let us recall that for a linear system Aw " b,

a preconditioner is an invertible matrix P such that either product P ´1A or AP ´1 has a smaller condition number. We also recall that the latter is involved in the upper bound on the error on the solution of (1.3.6) generated by a small pertubation on the data. Rather than working with the original system (1.3.6), we can consider

• the left-preconditioned system pP ´1Aqw " P ´1b, (1.3.7) which alters the matrix and the right-hand side, but not the unknown;

• the right-preconditioned system pAP ´1qz " b, w " P ´1z, (1.3.8) which alters the matrix and the unknown, but not the right-hand side.

Ideally, a good preconditioner P should be close to the original matrix A while being easy and inexpensive to invert. For a nonlinear "square" system Fpwq " 0, (1.3.9)

we can analogously define a preconditioner to be an invertible function G such that the Jacobian matrix of either G ´1 ˝F or F ˝G´1 has a better conditioning than that of F. This opens the way to considering

• the left-preconditioned system pG ´1 ˝Fqpwq " G ´1p0q;

(1.3.10)

Brenner [START_REF]Acceleration of Newton's method using nonlinear Jacobi preconditioning[END_REF] implemented left-preconditioning for Richards' equation.

• the right-preconditioned system pF ˝G´1 qpzq " 0, w " G ´1pzq; (1.3.11) the parametrization technique of Brenner and Cancès [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF] for Richards' equation in the Kirchhoff transform formulation is in fact equivalent to right-preconditioning.

For the accuracy in heterogeneous domains

Regarding the numerical approximation in heterogeneous domains, a conforming P 1 finite element method has been proposed in [START_REF]Numerical methods for flows in a porous medium with internal boundary[END_REF]. Mixed Hybrid Finite Element and discontinuous Galerkin schemes have respectively been proposed in [START_REF]Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures[END_REF][START_REF]Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures[END_REF]111]. There are more contributions in the realm of Finite Volumes. In [START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF], a two-point flux approximation (TPFA) scheme for a simplified model was studied. It was extended in [START_REF]Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities[END_REF] to the case of multivalued capillary pressure graphs in the onedimensional setting, and then in [START_REF]Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF] to the multi-dimensional setting. The generalization to more general schemes allowing for anisotropy and general grid was carried out in [START_REF] Lions | Gradient schemes for two-phase flow in heterogeneous porous media and richards equation[END_REF] in the general framework of Gradient Schemes [START_REF] Omnes | The Gradient Discretisation Method[END_REF]. Similar approaches have been applied to hybrid-dimensional models for flows in porous media with fracture networks [START_REF]Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media[END_REF][START_REF]Numerical analysis of a two-phase flow discrete fracture matrix model[END_REF].

The convergence of the nonlinear solvers are discussed in [START_REF]A robust VAG scheme for a two-phase flow problem in heterogeneous porous media[END_REF][START_REF] Dodge | Implicit hybrid upwinding for two-phase flow in heterogeneous porous media with buoyancy and capillarity[END_REF][START_REF]Dissipation-based continuation method for multiphase flow in heterogeneous porous media[END_REF][START_REF]Trust-region based solver for nonlinear transport in heterogeneous porous media[END_REF]. In particular, the papers [START_REF]A robust VAG scheme for a two-phase flow problem in heterogeneous porous media[END_REF][START_REF] Dodge | Implicit hybrid upwinding for two-phase flow in heterogeneous porous media with buoyancy and capillarity[END_REF] illustrate the better robustness in terms of nonlinear solvers of the so-called Hybrid Upwinding Method -where two different upwindings are selected for the countercurrent contributions (buoyancy and capillary diffusion) and the global convection driving both phases in the same direction -with respect to the more classical Phase Potential Upwinding approach where each phase is upwinded with respect to its own velocity.

Finally, let us mention the contributions [START_REF]Approximating the vanishing capillarity limit of twophase flow in multi-dimensional heterogeneous porous medium[END_REF][START_REF]Vanishing capillarity solutions of Buckley-Leverett equation with gravity in two-rocks' medium[END_REF][START_REF]A phase-by-phase upstream scheme that converges to the vanishing capillarity solution for countercurrent two-phase flow in two-rock media[END_REF] on the numerical simulation of the vanishing capillarity limit of the equations, and the contributions [START_REF]A gravity current model with capillary trapping for oil migration in multilayer geological basins[END_REF][START_REF]Buoyant flow of CO 2 through and around a semi-permeable layer of finite extent[END_REF][START_REF]Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock[END_REF] for vertically integrated reduced models accounting for capillary trapping.

Contributions and outline of this thesis

We sketch out the objectives as well as the methodological approach adopted. As before, the discussion is set for the Richards equation, but the ideas are also relevant for the two-phase system.

Robust Newton solver based on parametrization technique

As was pointed out in §1.3.1.1, the saturation s is not a good choice of primary variable in the dry soils ps ! 1q or when the pressure p exceeds its entry value pp ą ´pb q. Nevertheless, s turns out to be a legitimate and convenient primary variable in the sharp transition region from s rw to 1 ´srn , where S 1 ppq grows larger and larger (Figure 1.15b). The fact that p should be taken as a natural primary variable somewhere and s should play this role somewhere else has motivated practitioners to devise schemes based on variable switch between s and p, see [START_REF]On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF][START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF].

The starting point of our approach is the work of Brenner and Cancès [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF], who reformulated the variable switch as a parametrization of the graph tp, Sppqu. An admissible parametrization is given by two nondecreasing functions

s : I Ñ rs rw , 1 ´srn s, p : I Ñ R, (1.3.12) 
where I P R is some appropriate interval, such that spτ q " Spppτ qq, 0 ă s 1 pτ q `p1 pτ q ă 8, (1.3.13) for all τ P I Ă R. The last condition ensures that we cannot have s 1 pτ q " p 1 pτ q " 0 (which would make the Jacobian matrix singular) and that both derivatives ps 1 pτ q, p 1 pτ qq remain bounded (which avoids blow-up). This original abstract viewpoint not only makes it easier to implement the switching, but also paves the way to a whole new family of right preconditioners, in the sense of §1.3.2.1.

Our goal is to push further this idea, which in [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF] was applied only to the Richards equation in the Kirchhoff transform formulation. The Kirchhoff transform is a convenient trick to get rid of the difficulty related to the blow-up of k 1 r psq. Unfortunately, it is often not possible to calculate it analytically. Nor is it always the best physical choice. This is the reason why we shall focus more heavily on the pressure-saturation formulation. In this context and because of the possible blow-up of k 1 r psq, it is not at all obvious that the parametrization technique will continue to work properly. In fact, as will be seen in §2, other ingredients will have to be developed.

Accurate transmission conditions for heterogeneous domains

As mentioned in §1.3.1.2, we believe that the root of the difficulties arising in heterogeneous domains lies in the violation of the transmission conditions between two lithologies occupying two subdomains Ω i and Ω j . Let i and j be the rock types on the two sides of the interface. The transmission conditions across this interface read v i ¨νi `vj ¨νj " 0, (1.3.14a)

p i ´pj " 0, (1.3.14b) 
where p i and v i are the trace at the considered interface of the pressure p| Ω i and the flux v| Ω i respectively. In other words, they express the equality of pressure and of normal velocity.

Our approach is to enforce (1.3.14) either exactly or at least with an improved accuracy in the numerical resolution of the Richards equation, that can be written in each subdomain i as

φ i B t s `∇ v " 0, (1.3.15a) v `λi η i psq ∇pp ´ g ¨xq " 0, (1.3.15b) s ´Si ppq " 0. (1.3.15c)
To this end, after a proof of convergence for the standard finite volume scheme in the heterogeneous setting ( §3), we shall work out 4 methods ( §4) aimed at achieving (1.3.14) in a more satisfactory way. This class of special methods for the interface will then be applied to the Richards equation ( §4) and extended to the two-phase system ( §5).

Organization of the manuscript

The rest of this dissertation roughly follows an order of increasing difficulty. We start in chapter §2 with the easier model in the easier configuration, namely, the Richards equation in homogeneous media. The simplicity brought by the homogeneity of the domain allows us to focus on the difficulty associated with stiff closure laws. We advocate some necessary adaptations of the Brenner-Cancès parametrization technique for the pressure-saturation formulation. Finally, we make the required comparisons between the two formulations and between several choices of primary variable.

Heterogeneity begins to appear in Chapter §3, also for the Richards equation. The purpose of this chapter is purely theoretical. It is about proving the convergence of the standard TPFA (Two-Point Flux Approximation) finite volume scheme in heterogeneous domain, without any specific treatment of the interfaces between different rocks. The text of this chapter is replicated from the accepted article [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF].

The numerical aspects of the Richards equation in heterogeneous media are the subject of chapter §4, where we numerically demonstrate that the basic TPFA scheme actually gives rise to a very low order of convergence. To remedy this shortcoming, we derive four different strategies whose common point is the attempt to satisfy the transmission conditions at the interfaces, either exactly or approximately. A comparison of these methods, labeled A, B, C, and D, is provided along with a thorough discussion. The text of this chapter is a reproduction of the submitted paper [START_REF] Fuhrmann | On several numerical strategies to solve Richards' equation in heterogeneous media with Finite Volumes[END_REF].

Equipped with appropriate algorithmic tools, we can finally address in chapter §5 the more difficult model in the more difficult configuration, namely, the immiscible incompressible twophase system in a heterogeneous domain. The parametrization technique and the four methods for transmission conditions at interface are straightforwardly extended to the new model. Here, the focus is on numerical simulations, with three validation test cases inspired by realistic operating conditions, analyzed and commented at length.

Chapter 2

Finite volume approximation of Richards' equation in homogeneous domains

Let us start our journey by the easier case of the easier model, namely, the Richards equation (1.2.13) or (1.2.17) in a homogeneous domain. Homogeneity is a simplifying assumption that enables us to focus on the difficulty brought about by the stiffness of the closure laws (relative permeability k r and water pressure-saturation S).

We first detail the selected numerical scheme ( §2.1) together with the parametrization technique ( §2.2) and we describe its resolution via the Newton method ( §2.3). Then, different numerical tests are presented ( §2.4) to demonstrate the robustness of the approach by means of comparative results obtained with pressure/Kirchhoff transform formulation and with/without the parametrization technique.

Finite volume scheme for the Richards equation

State of the art

There is a great variety of families of numerical methods for Richards' equation: finite differences [START_REF]A general mass-conservative numerical solution for the unsaturated flow equation[END_REF], finite volumes [START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF] or finite elements [START_REF]Theory and practice of finite elements[END_REF]. Over the past years, a large number of schemes have been proposed to better approximate diffusion terms. These new methods aim at: (i) using meshes with fewer constraints on the elements' shape; (ii) taking better into account anisotropies and heterogeneities in material properties; (iii) giving consistent flux approximations in both previous cases. They include high-order methods like, for instance, discontinuous Galerkin methods [START_REF]Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation[END_REF] and low-order methods such as finite-volume methods where the flux approximation uses an extended stencil or additional unknowns.

In this work, we consider the simplest scheme within this finite volume family, that is, the Two-Point Flux Approximation (TPFA). On a given face, this approximation only uses the two unknowns of the cells located on each other side. Its name follows from this reduced stencil. Unfortunately, this approximation does not provide consistent fluxes for general meshes and diffusion tensors. To make this approximation valid we need and isotropic media (diagonal diffusion tensor) and an admissible mesh in the sense of Definition 2.1.1. The TPFA is however often used in practice despite these flaws since the maximum principle is preserved.

To ensure consistent approximations, other methods could be used which do not necessarily maintain the positivity of the solutions nor the maximum principle. Some of them are presented in the review [START_REF]Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF]: the Multi Point Flux Approximations (MPFA) [START_REF]Convergence of MPFA on triangulations and for Richards' equation[END_REF] which make use of an extended stencil, the Hybrid Mimetic Mixed Methods which include the Mimetic Finite Differences and the Hybrid and Mixed Methods [START_REF] Rohde | The generalized finite volume SUSHI scheme for the discretization of Richards equation[END_REF][START_REF]A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods[END_REF] and introduce additional face unknowns, or Discrete Duality Finite Volumes [START_REF]Comparison of DDFV and DG methods for flow in anisotropic heterogeneous porous media[END_REF]. The Vertex Approximate Gradient (VAG) scheme, which uses both cell and nodal unknowns, has also been extensively studied for two-phase flows and Richards problems [START_REF] Lions | Gradient schemes for two-phase flow in heterogeneous porous media and richards equation[END_REF] and for fractured media [START_REF]Vertex approximate gradient scheme for hybrid dimensional two-phase Darcy flows in fractured porous media[END_REF].

We also point out that non-linear finite volume schemes, with TPFA [START_REF]Finite volume schemes for diffusion equations: introduction to and review of modern methods[END_REF][START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF] and MPFA [START_REF] Florence | Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF][START_REF]Convergence of finite volume MPFA-O type schemes for heterogeneous anisotropic diffusion problems on general meshes[END_REF] approximations, can also be envisaged. Their non-linearity comes from the scheme coefficients, the so-called transmissivities, which non-linearly depend on the discrete local unknowns. Despite the fact that these schemes require the use of a few Newton or Picard iterations to compute approximations of the solutions to continuous linear problems, it has been shown that they lead to positive solutions or solutions respecting the maximum principle [START_REF]Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF].

Another important issue related to the spatial discretization is the treatment of convection terms. Classically, an upstream choice is made to compute the mobility functions according to the sign of the whole flux. Recent works have shown that specific upwindings knwon as hybrid upwinding and designed for the gravity and capillarity terms (and for the total velocity term for two-phase flows [START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF]) can improve the convergence of Newton's algorithm [START_REF] Dodge | Implicit hybrid upwinding for two-phase flow in heterogeneous porous media with buoyancy and capillarity[END_REF].

Mesh and time-steps

Definition 2.1.1. An admissible mesh of Ω (see Figure 2.1) is a triplet pT , E , px K q KPT q such that the following conditions are fulfilled: (i) Each control volume (or cell) K P T is non-empty, open, polyhedral and convex, with positive d-dimensional Lebesgue measure m K ą 0. We assume that

K X L " H if K, L P T with K ‰ L, while ď KPT K " Ω.
(ii) Each face σ P E is closed and is contained in a hyperplane of R d , with positive pd ´1qdimensional Hausdorff measure m d´1 pσq " m σ ą 0. We assume that m d´1 pσ X σ 1 q " 0 for σ, σ 1 P E unless σ 1 " σ. For all K P T , we assume that there exists a subset E K of E such that BK " Ť σPE K σ. Moreover, we suppose that

Ť KPT E K " E .
Given two distinct control volumes K, L P T , the intersection K X L either reduces to a single face σ P E denoted by K|L, or its pd ´1q-dimensional Hausdorff measure is 0.

(iii) The cell-centers px K q KPT are pairwise distinct with x K P K, and are such that, if K, L P

T share a face K|L, then the vector x L ´xK is orthogonal to K|L. (iv) For the boundary faces σ Ă BΩ, we assume that either σ Ă Γ D or σ Ă Γ N . For σ Ă BΩ with σ P E K for some K P T , we assume additionally that there exists x σ P σ such that x σ ´xK is orthogonal to σ. 

d σ " # |x K ´xL | if σ " K|L P E int , d K,σ if σ P E K X pE D ext Y E N ext q (2.1.1)
where, for all pair pK, σq such that σ P E K , d K,σ " |x K ´xσ |, with x K the cell center and x σ the face center, which is chosen as the intersection of rx K , x L s with σ. Moreover, for each cell K, we denote by m K its Lebesgue measure, and by m σ the measure of a face σ. The time discretization is given by a vector of values pt N q 0ď1ďN with 0 " t 0 ă t 1 ă ¨¨¨ă t N " T , and we denote by t n ´tn´1 " ∆t n , 1 ď n ď N , the time steps. At initial time t " 0, s 0 is discretized into

s 0 K " 1 m K ż K s 0 dx.
We finally introduce the following notation: considering a generic variable w we define the mirror value w n Kσ of w n K across σ by

w n Kσ " $ ' ' ' & ' ' ' % w n L if σ " K|L P E int , w K if σ P E K X E N ext , w n σ " 1 ∆t n m σ ż t n t n´1 dt ż σ u D dγ if σ P E D ext .
(2.1.2)

Implicit TPFA discretization of the model

Assuming that the mesh meets the requirement of Definition 2.1.1, let us write down the discretized equations for the Kirchhoff transform-saturation formulation first, after which those for the pressuresaturation formulation will follow in a similar fashion.

Kirchhoff transform-saturation formulation. We first put system (1.2.17) under the form 

B t pφsq `∇ ¨v " 0 in Ω ˆp0, T q, ( 2 
F n K,σ " 1 ∆t n ż t n t n´1 dt ż σ q N dγ.
(2.1.7)

Let us now consider the cases σ " K|L P E K X E int and σ P E K X E ext . We define the transmissibilities pA σ q σPE by

A σ " $ ' ' & ' ' % m σ µ λ K λ L λ L d K,σ `λK d L,σ if σ " K|L P E K X E int , m σ µ λ K d K,σ if σ P E K X E ext , (2.1.8)
where m σ is the pd ´1q-Lebesgue measure of the edge

σ P E , λ K " 1 m K ş K λ dx and d K,σ " # |x K ´xL | if σ " K X L P E int , distpx K , σq if σ P E ext .
(2.1.9)

The TPFA scheme is then defined thanks to the approximations

´1 µ ż σ λ∇u ¨νK,σ dγ » # A σ pu K ´uL q if σ " K|L P E K X E int , A σ pu K ´uσ q if σ P E K X E D ext , (2.1.10) 
and

´1 µ ż σ λk r ps n q∇ψ ¨νK,σ dγ » # A σ k n,up r,σ pψ K ´ψL q if σ " K|L P E K X E int , A σ k n,up r,σ pψ K ´ψσ q if σ P E K X E D ext (2.1.11)
where the edge relative permeability is upwinded according to the sign of the difference in ψ, viz.,

k n,up r,σ " # k r ps n K q if ψ K ´ψK,σ ě 0, k r ps n Kσ q if ψ K ´ψK,σ ă 0, (2.1.12)
in which s n Kσ stands for the mirror value of s n K as defined in (2.1.2) inside the domain. At the boundary,

s n Kσ " # s n L if σ " K|L P E K X E int , s n σ " S pu n σ q if σ P E K X E D ext ,
Gathering the previous approximations, we obtain the approximate flux

F n K,σ " $ & % A σ ru n K ´un Kσ `kn,up r,σ pψ K ´ψK,σ qs if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n t n´1 dt ż σ q N dγ if σ P E K X E N ext . (2.1.13) 
This numerical flux is then consistent under the orthogonality assumption on the mesh in the sense that, for any regular function ϕ P C 8 c pΩq, we have

ˇˇˇ´1 µ ż σ λ∇ϕ ¨νK,σ dσ ´FK,σ ˇˇˇď m σ C ϕ,λ,µ h
for all K P T , C ϕ,λ,µ P R `depends on ϕ, λ and µ and h " maxtdiampKq, K P T u. Note that, from equation (2.1.13), the local conservation property

F K,σ `FL,σ " 0,
holds for σ " K|L. We also point out that, for an inner or Dirichlet face, the flux (2.1.13) can be recast under the form

F n K,σ " A σ ru n K ´un Kσ `kr ps n K qpψ K ´ψKσ q ``k r ps n K,σ qpψ K ´ψKσ q ´s (2.1.14)
with a `" maxpa, 0q and a ´" minpa, 0q. Our discrete equation finally reads

m K φ K s n K ´sn´1 K ∆t n `ÿ σPE K F n K,σ " 0, (2.1.15a) s n K ´S pu n K q " 0, (2.1.15b) 
for all K P T and n ě 1, where F n K,σ is defined by (2.1.13). This discretized scheme has been studied in [START_REF]The finite volume method for Richards equation[END_REF] where a convergence proof is stated.

Pressure-saturation formulation. Following the same procedure, the discretized scheme for the pressure-saturation formulation system (1.2.13) is

m K φ K s n K ´sn´1 K ∆t n `ÿ σPE K F n K,σ " 0, (2.1.16a) s n K ´Spp n K q " 0, (2.1.16b) with F n K,σ " $ & % A σ k n,up r,σ rϑ n K ´ϑn Kσ s if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n t n´1 ż σ q N dγ if σ P E K X E N ext , (2.1.17) 
where the edge relative permeability

k n,up r,σ " # k r ps n K q if ϑ n K ´ϑn Kσ ě 0, k r ps n Kσ q if ϑ n K ´ϑn Kσ ă 0, (2.1.18) 
is now upwinded according to the sign of the difference in the hydraulic head

ϑ n " p n `ψ. (2.1.19) 
In Chapter 3 we study this discretized scheme establishing the existence of a unique solution for this scheme and providing a rigorous mathematical convergence proof.

Parametrization of the characteristic laws

Let us recall the motivations behind the choice of the primary variable τ . Choosing the pressure as the primary variable is known to be inefficient for dry soils s ! 1. On the other hand, the knowledge of the saturation is not sufficient to describe the pressure in saturated regions where s " 1 ´srn . This motivated the introduction of schemes based on variable switching between s and p in [START_REF]On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF][START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF]. Indeed, throughout this thesis, we adopt a formulation that is close to the original variable switch since our new variable τ behaves either as s or as p (or u) up to a linear function.

Pressure-saturation formulation. Our approach is based on [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF] and can be seen as a reformulation of the variable switch which makes its implementation much easier. The idea is to choose a parametrization of the graph tp, Sppqu, i.e. to choose two functions

s : I Ñ rs rw , 1 ´srn s, p : I Ñ R,
such that spτ q " Spppτ qq, 0 ă s 1 pτ q `p1 pτ q ă 8, for all τ P I Ă R. Such a parametrization is not unique: one can for instance choose I " R, p " Id and s " S, or p " pId `Sq ´1 and s " pId `S´1 q ´1. The difficulty lies in finding the optimal formulation. In the pressure-saturation formulation, we take I " ps rw , `8q and pspτ q, ppτ qq "

$ & % pτ, S ´1pτ qq if τ ď s s , ´S´p s `τ ´ss S 1 pp ś q ¯, p s `τ ´ss S 1 pp ś q ¯if τ ě s s , (2.2.1) 
where S 1 pp ś q denotes the limit of S 1 ppq as p tends to p s from below. pp s , τ s q is the inflection point of S, which is convex and then concave in both the Brooks-Corey model and van Genuchten-Mualem settings, cf. Section 1.2.3. Thus both s and p are C 1 and concave, and even C 2 if S is given by (1.2.27). Moreover, for all p P R, there exists a unique τ P ps rw , `8q such that pp, Sppqq " pppτ q, spτ qq.

The discretized equations (2.1.16)-(2.1.18) become

m K φ K spτ n K q ´spτ n´1 K q ∆t n `ÿ σPE K F n K,σ " 0, (2.2.2) 
with

F n K,σ " $ & % A σ k n,up r,σ rϑpτ n K q ´ϑpτ n Kσ qs if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n t n´1 dt ż σ q N dγ if σ P E K X E N ext (2.2.3)
where

k n,up r,σ " # k r pspτ n K qq if ϑpτ n K q ´ϑpτ n Kσ q ě 0, k r pspτ n K,σ qq if ϑpτ n K q ´ϑpτ n Kσ q ă 0, (2.2.4)
is the upwinded edge relative permeability and

ϑpτ n K q " ppτ n K q `ψK , ϑpτ n Kσ q " ppτ n Kσ q `ψKσ , (2.2.5) 
are the hydraulic heads.

Kirchhoff transform-saturation formulation. Similarly to the above approach, the idea is to consider a parametrization of the graph tu, S puqu by means of two functions s : I Ñ rs rw , 1 ´srn s and u : I Ñ R such that spτ q " S pupτ qq for all τ P I Ă R. Again, even subject to the speed-control condition s 1 pτ q `u1 pτ q " 1, such a parametrization is not unique. In the spirit of the variable-switching method, we set I " ps rw , `8q and pspτ q, upτ qq "

$ & % pτ, S ´1pτ qq if τ ď τ s , ´S ´us `τ ´ss S 1 pu s q ¯, u s `τ ´ss S 1 pu s q ¯if τ ě τ s , (2.2.6) 
with τ s " s s the switch value obtained by imposing s s " S pu s q. We recall that this Kirchhoff transform-saturation formulation, and consequently this parametrization, is not always usable since, depending on the chosen model for the characteristic laws, the Kirchhoff transform may not be analytically computed. In our work this parametrization using the Kirchhoff transform formulation is used only when the Brooks-Corey model is employed. The discretized equations (2.1.17)-(2.1.18) become

m K φ K spτ n K q ´spτ n´1 K q ∆t n `ÿ σPE K F n K,σ " 0, (2.2.7) 
with

F n K,σ " $ ' & ' % A σ rupτ n K q ´upτ n Kσ q `kn,up r,σ pψ K ´ψKσ qs if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n t n´1 dt ż σ q N dγ if σ P E K X E N ext , (2.2.8) 
where

k n,up r,σ " # k r pspτ n K qq if ψ K ´ψKσ ě 0, k r pspτ n Kσ qq if ψ K ´ψKσ ă 0.
(2.2.9)

Remark 2.2.1. If we define s n K " spτ n K q and p n K " ppτ n K q -resp. u n K " upτ n K q-then the equation s n K " Spp n K q -resp. s n K " S pu n K q-is automatically satisfied.

Iterative solver for the nonlinear system 2.3.1 Classical Newton-Raphson method

At each time-step, both systems (2.2.7)-(2.2.8) and (2.2.2)-(2.2.3) can be rewritten abstractly as

F n pτ n q :" pf n K pτ n qq KPT " 0, (2.3.1) 
which consists of #T nonlinear equations, each component of which is defined as

f n K pτ n q " m K φ K spτ K q ´spτ n´1 K q ∆t n `ÿ σPE K F n K,σ , K P T . (2.3.2)
Solving (2.3.1) with Newton's method amounts to constructing a sequence tτ n,k u kě0 defined by

τ n,0 " τ n´1 , (2.3.3a) τ n,k`1 " τ n,k ´rJ Fn pτ n,k qs ´1F n pτ n,k q, (2.3.3b) 
where

J Fn pτ n,k q " BF n Bτ pτ n,k q " ˆBf n K Bτ n L pτ n,k q ˙KPT ,LPT . 
is the Jacobian matrix of F n at τ n,k , assumed to be nonsingular. Let us now detail the procedure for both formulations.

Kirchhoff transform-saturation formulation. The left-hand side of the discrete equation (2.2.8) can be transformed, for all K P T , into

f n K pτ q " m K φ K spτ K q ´spτ n´1 K q ∆t n `ÿ σPE int YE D ext A σ rupτ K q ´upτ Kσ q `kr pspτ K qqpD K,σ ψq ``k r pspτ Kσ qqpD K,σ ψq ´s `ÿ σPE N ext 1 ∆t n ż t n t n´1 dt ż σ q N dγ, (2.3.4) 
where

D K,σ ψ " ψ K ´ψKσ . (2.3.5)
For this scheme, the Jacobian matrix is defined by

rJ Fn s K,K pτ q " m K φ K ∆t n s 1 pτ K q `ÿ σPE int YE D ext A σ ru 1 pτ K q `k1 r pspτ K qqs 1 pτ K qpD K,σ ψq `s, (2.3.6a) rJ Fn s K,L pτ q " A σ r´u 1 pτ L q `k1 r pspτ L qqs 1 pτ L qpD K,σ ψq ´s, (2.3.6b) 
for all L P T such that σ " K|L P E K .

Pressure-saturation formulation. The left-hand side of the discrete equation (2.2.3) can be transformed, for all K P T , into

f n K pτ n q " m K φ K spτ n K q ´spτ n´1 K q ∆t n `ÿ σPE int YE D ext A σ rk r pspτ n K qqpD K,σ ϑ n q ``k r pspτ n Kσ qqpD K,σ ϑ n q ´s `ÿ σPE N ext 1 ∆t n ż t n t n´1 dt ż σ q N dγ, (2.3.7) 
where

D K,σ ϑ n " ϑ n K ´ϑn Kσ . (2.3.8)
For this scheme, the Jacobian matrix is defined by

rJ Fn s K,K pτ q " m K φ K ∆t n s 1 pτ K q `ÿ σPE int YE D ext A σ rk up r,σ p 1 pτ K q `k1 r pspτ K qqs 1 pτ K qpD K,σ ϑq `s, (2.3.9a) rJ Fn s K,L pτ q " A σ r´k up r,σ p 1 pτ Kσ q `k1 r pspτ Kσ qqspτ Kσ qpD K,σ ϑq ´s, (2.3.9b) 
for all L P T such that σ " K|L P E K .

Enhancements of the Newton-Raphson method

The Newton's algorithm we have implemented is detailed in Algorithm 1. It includes some additional functionalities, listed below, whose aim is to treat the difficulties presented by the constitutive laws.

• truncatepq Since F n is not necessarily C 1 (S BC is not C 1 in the Brooks-Corey case), following [START_REF]Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions[END_REF][START_REF]Trust-region based solver for nonlinear transport in heterogeneous porous media[END_REF], the Newton increment is truncated near the inflection point s s .

• decreaseDeltaTimepq and increaseDeltaTimepq In our numerical tests, we increase the time step in such a way that ∆t n`1 " minp∆t max , α ∆t ∆t n q, α ∆t ą 1,

Initialization: k " 0; τ n,0 " τ n´1 ;
while r}F n pτ n,k q} 8 ě and k ď k max s do solve Jpτ n,k qδ n,k `Fn pτ n,k q " 0;

for K P T do truncatepq; τ n,k`1 K " maxps rw , τ n,k K `δn,k K q; end k " k `1; end if k ą k max then decreaseDeltaTimepq; else τ n " τ n,k ; n " n `1; increaseDeltaTimepq; end Algorithm 1: Practical resolution of the system F n pτ n q " 0.
and decrease it in such a way that ∆t n`1 " maxpα ∆t ∆t n , ∆t min q, α ∆t ă 1.

If ∆t min is reached, the simulation stops.

Moreover, an approximation of the law of the relative permeability k r in the van Genuchten-Mualem case (1.2.27) is required because it presents very large derivative's values, which can be equal to 8, for s Ñ 1 ´srn . We detail the approximation in the following. Let us now explain why we introduced the truncation procedure. When we have presented the constitutive laws for the Brooks-Corey and van Genuchten-Mualem models, we have pointed out that S BC , S BC are not C 1 and that the derivative of the relative permeability function k rvGM blows up at s " 1 ´srn . Thus, as well as the possibly very large value of the derivative of k r affects the conditioning of the Jacobian matrix, during Newton's iterations, the presence of corner points may lead to wrong gradient directions, resulting in a non-convergence of the method. Here we show how we have handled these difficulties.

Truncation method to treat corner points. Let us assume that the function f pτ q has a corner point in τ " τ s . The truncation procedure is activated in the two following cases.

1. τ n,k K ą τ s and the expected τ n,k`1 K ď τ s . Then, we set τ n,k`1 K " τ s ´ δ , where 0 ă δ ! 1 is a fixed threshold. This is illustrated in Figure 2.2. 2. τ n,k K ă τ s and the expected τ n,k`1 K ą τ s . Then, we set τ n,k`1 K " τ s ` δ .
This case is the symmetric of the previous one, as illustrated in Figure 2.3.

The procedure is summarized in the pseudocode Algorithm 2. 

2.2: Case τ n,k K ą τ s , τ n,k`1 K ď τ s . Figure 2.3: Case τ n,k K ă τ s , τ n,k`1 K ą τ s . τ n,k`1 " τ n,k ´J´1 Fn pτ n,k qF n pτ n,k q ; for K P T do if pτ n,k K ´τs qpτ n,k`1 K ´τs q ď 0 then if τ n,k K ą τ s then τ n,k`1 K " τ s ´ δ ; else τ n,k`1 K " τ s ` δ ; end end
Algorithm 2: Pseudocode for the truncation procedure.

Chord slope method using a second degree polynomial. The idea is to smooth the relative permeability law in the area where the derivative blows up by approximating it locally with a polynomial. Its form is chosen in order to allow us to preserve the convexity of the real law. Let us consider k r psq whose derivative tends to infinite when s Ñ 1 ´srn . We fix a value s lim ă 1 and, to interpolate the law between this point and s " 1, we use a quadratic polynomial, namely, ℘psq " k 2 r ps lim q 2 ps ´slim q 2 `k1 r ps lim qps ´slim q `kr ps lim q.

Consequently the approximated law reads

r k r psq " # k r psq if s ď s lim ℘psq if s ą s lim .
In Figure 2.4 we can see the profile of the relative permeability law and of the modified one. This technique has already been applied, for instance, in [START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF]. But, contrary to us, in this work, the approximation is applied not only to the relative permeability but also to the capillary pressure law.

In [START_REF]Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF] we propose the same approximation with the only difference that interpolations are updated during the iterations and the converge is reached with the original laws. 

Numerical results

We now present different tests for the numerical resolution of the Richards equation in the homogeneous case using the pressure-saturation formulation and the Kirchhoff transform-saturation one. We first test the robustness of the Kirchhoff transform-saturation formulation under different test settings. While the linearization property of the Kirchhoff-transform-saturation formulation is advantageous, it is not always the best option. Firstly, the Kirchhoff transform cannot always be calculated analytically, e.g., in the case of the van Genuchten-Mualem model. Secondly, when considering a domain composed of different rock types (heterogeneous case), transmissivity conditions are imposed at the interfaces between different lithologies to ensure pressure continuity. In this case, it is more natural to work directly with pressures. This motivates our interest in working in pressure-saturation formulation. With this in mind, a test comparing the use of the two formulations is presented, followed by other tests aimed at showing the advantage of using the parametrization technique rather than solving the problem solely in the pressure or saturation variable.

Kirchhoff transform-saturation formulation

For the numerical validation of the Kirchhoff transform-saturation formulation (2.2.7)-(2.2.8) , using the parametrized laws (2.2.6), we consider two test cases inspired from those proposed in [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF]. For the simulations we take the following parameters: " 10 ´12 , i max " 500, δ " 10 ´7. The time-step is taken constant during each simulation.

Robustness

Let us consider a two-dimensional domain Ω " r0, 1s ˆr0, 1s (in meters) which is initially very dry with s 0 " 10 ´6. Water is injected trough the portion of the upper boundary Γ D " tpx, yq | x P r0, 0.3s, y " 1u (in meters) imposing u D " 1. A zero flux boundary condition is prescribed on Γ N . The configuration of the domain is shown in Figure 2.5. The goal of this test is challenge the robustness of the scheme. For this reason, some parameters are taken equal to one for seek of simplicity: the gravity vector is chosen in such a way that g " ´ey , the porosity of the medium and its permeability are considered equal to one (φ " 1, λ " 1m 2 ) as well as the wetting phase viscosity (µ " 1Pa¨s). We consider the Brooks-Corey model defined in (1.2.30) with s rn " s rw " 0. In order to test the robustness of the parametrization, we set p b " 10 ´2 and let the parameter n take values in t1, 2, 4, 8, 16u. The curves of the characteristic laws, evaluated for each n, are reported in Figure 2.6. For each value of n, we compute a reference solution denoted by pτ ref q taking for the tolerance of Newton's method n,ref " 10 ´12 . Then, for each value of n, we perform calculations taking as tolerance P t10 ´2, 10 ´4, 10 ´6, 10 ´8, 10 ´10 u. We call these solutions pτ n, q and measure the average number of iterations per time-step for each value of . Then we compute the deviation of the observable variables u and s from the reference solution. The error committed is measured by the quantities:

err u n, "
}upτ n, q ´upτ n,ref q} 

0 1 2 3 4 5 ´8 ´6 ´4 ´2 0 Newton's iteration log 10 (err s n ) n " 1 n " 2 n " 4 n " 8 n " 16 0 1 2 3 4 5 ´8 ´6 ´4 ´2 0 
Newton's iteration The simulation is performed on a mesh composed of 32 ˆ32 cells during a time interval r0, T s with T " 0.7 s. The time-step is equal to ∆t " 0.01 s. The truncation procedure is activated during Newton's iterations. The profile of saturation and Kirchhoff transform of the reference solution, using n " 16, at different moments of the simulation are reported in Figure 2.7. Finally the error profiles for err u n, and err s n, are reported in Figure 2.8. We can notice that the number of iterations required to reach the tolerance remains constant with respect to the parameter n.

log 10 (err u n ) n " 1 n " 2 n " 4 n " 8 n " 16

Remark 2.4.1. It is very important to underline that if we solve the problem without the variable switch, Newton's method does not converge because of the infinite derivative of the saturation-

Kirchhoff transform curve at point p0, 0q (see left panel in Figure 2.6).

Filling the domain

In this test, we simulate the filling of an initially very dry domain of sand Ω " r0, 1s ˆr0, 1s (in meters), see Figure 2.5. The hydraulic properties of this rock type are given in Table 2.1. The initial saturation is set to

s 0 " 10 ´6 in Ω. (2.4.2)
The water is injected at pressure u D " 500 ą u b " 454 through a portion of the upper boundary Γ D " tpx, yq | x P r0, 0.3s, y " 1u (in meters) and a no flux boundary condition is imposed on BΩzΓ D . For simplicity the gravity vector is chosen in such a way thatµ " 10 ´3 Pa¨s, ρ " 1 Kg¨m The values of saturation and Kirchhoff transform obtained at different times are shown in Figure 2.9. During the simulation we have registered 4 iterations for Newton's method on average with a maximum of 17 iterations. Figure 2.10 shows the evolution of the average Newton's convergence rate given, for a time-step n, by

CV n rate " 1 N n iter N n iter ´1 ÿ k"0 log 10 › › F n pτ n,k`1 q › › 8 log 10 }F n pτ n,k q} 8 .
Remark 2.4.2. Notice that, just on the Dirichlet boundary at the beginning and then progressively in the whole domain, pressures are higher than the entry pressure u b and the saturation-pressure relationship is a graph. If we solve the problem in Kirchhoff transform variable, Newton's method does not converge. On the other hand, is not possible to solve the problem in saturation variable because we have u ą u b . The problem can still be solved thanks to the use of the parametrization technique that permits to select the suitable primary variable for each cell of the mesh depending on its saturation-pressure value.

In order to further illustrate the robustness of our approach, let us now perform the same simulation in just one time-step with ∆t " T " 1.76 ¨10 5 s. To achieve the convergence, 60 Even though one starts from an initial guess τ 0 which is very different from the solution, the Newton method still converges. As expected, the use of a very large time-step introduces an error in the solution. Figure 2.12 shows the distribution over the domain at the final time of the absolute difference between the saturation/Kirchhoff transform values obtained with one single time-step or with several ones. The maximal absolute difference obtained for the saturation is about 10 ´1 and about 10 2 for the Kirchhoff transform. 

Draining the domain

In this test, we consider a two-dimensional porous domain Ω " r0, 1s ˆr0, 1s (in meters), made up of sand which is initially dry in one part of the domain and partially saturated in another one. More precisely we have

s 0 " # 1 in Ω 1 " r0, 0.5s ˆr0.5, 1s, 10 ´6 in Ω 2 " ΩzΩ 1 .
The hydraulic properties of this rock type are the ones given in Table 2.1. During the simulation, water spreads into the domain and leaks out through a portion of the lower boundary Γ D " tpx, yq | x P r0, 0.3s, y " 0u where we impose u D " 0 (which corresponds to a null saturation).

A no flux boundary condition is imposed on BΩzΓ D . As for the filling test, for simplicity, the gravity vector is still chosen as g " ´ey , ρ " 1 and we take water viscosity as µ " 10 ´3 Pa ¨s . The configuration of the domain is shown in Figure 2.13. The simulation is performed on a mesh composed of 32 ˆ32 cells during a time interval r0, T s with T " 10 6 s. The time-step is equal to ∆t " 2.5 ¨10 4 s. The truncation procedure is activated during Newton's iterations. The values of saturation and Kirchhoff transform obtained at different times are shown in Figure 2.15. Note that this test is very challenging because the Kirchhoff transform varies from values equal to the entry pressure to a null value corresponding to a null saturation. During the simulation we have registered 3 Newton's iterations on average with a maximum of 16 iterations. Figure 2.14 shows the evolution of the average Newton's convergence rate.

Let us now perform the same simulation in just one time-step with ∆t " T " 10 6 s. To achieve the convergence, 43 Newton iterations are required. The evolution of the saturation profile during Newton's iteration is reported in Figure 2.16. As expected, the use of a very large time-step introduces an error in the solution. Figure 2.17 shows the distribution over the domain at the final time of the absolute dfference between the saturation/Kirchhoff transform values obtained with one single time-step or with several ones. The maximal absolute difference obtained for the saturation is about 10 ´1 and about 5 for the Kirchhoff transform.

Comparison between different formulations of Richards' equation

In this section, we want to highlight the differences in using the capillary pressure variable ( 2 3) that we have previously solved using the Kirchhoff transform formulation. In the cited tests, a boundary condition on the Kirchhoff transform variable is stated. For the following test we choose boundary conditions values on water pressure obtained using the Kirchhoff transform equation (1.2.16) in order to replicate faithfully the test settings of the previous section.

Filling the domain

Using the test settings presented in §2.4.1.2, we simulate the filling of an initially very dry domain of sand Ω, characterized by s 0 " 10 ´6 as imposed in (2.4.2), in which water is injected through Γ D at pressure p D " ´3.45761 ¨10 3 Pa ą ´pb " ´3.5036 ¨10 3 Pa and a no flux boundary condition is imposed on BΩzΓ D . In Figure 2.5 is shown the domain configuration and in Table 2.1 are reported The values of saturation and water pressure obtained at different times are shown in Figure 2.18. During the whole simulation, the Newton method has required 4 iterations on average with a maximum of 46 iterations to converge. Figure 2.19 shows the evolution of the average Newton's convergence rate. The test converges also in case the simulation is carried out using a single step of time (∆t " T ). In this case 103 Newton's iterations are required to converge.

Let us now compare these results with the ones obtained using the Kirchhoff transform formulation in 2.4.1.2. Looking the the saturation profile of both simulations (Figure 2.9 for the Kirchhoff transform formulation and Figure 2.18 for the water pressure one), we can notice that no difference can be remarked. Indeed, we are solving the same problem but using different formulations.

Concerning the computational cost, in Table 2.2 we report data on required Newton's iterations to converge for both formulations and in Figure 2.20 we show the cumulative iteration number evo- lution over the whole simulation. We can notice that the evolution profiles of the two formulations follow the same trend. The only difference is that the water pressure formulation requires proportionally more iterations to converge w.r.t. the Kirchhoff transform formulation which benefits of effect of the linearization of the gradient term. Considering the case in which the simulation is performed in one time step, the pressure formulation still required more iterations (almost the double) to converge with respect to the Kirchhoff formulation (103 vs 60 iterations). Finally, observing Figures 2.10 and 2.19, we note that both formulations present almost the same convergence rate trend. More precisely, up to half simulation, Kirchhoff transform formulation has a convergence rate slightly higher than the one of the pressure formulation. Inversely, in the second half of the simulation the pressure formulation has a convergence rate slightly higher than the one characterizing the Kirchhoff transform formulation. 2.21. During the simulation, the Newton method has required 4 iterations on average with a maximum of 44 iterations to converge. Figure 2.22 shows the evolution of the average Newton's convergence rate. This test still converges if we try to solve it in one time iteration (∆t " T ). In this case, the Newton method require 65 iterations to converge.

We now compare these results with the ones obtained using the Kirchhoff transform formulation in §2.4.1.3. Scrutinizing Figures 2.15 and 2.21, we can notice that the saturation profile follows the same evolution in both formulations. We can notice that on Γ D and the cells in its neighbourhood, the saturation value is greater for the simulation using the Kirchhoff transform formulation than the value for the simulation in water pressure one. We think this is because the water pressure imposed at the edge is proportionally lower than the value imposed for the Kirchhoff transform. Considering the pressure, the water pressure profile evolution is steeper w.r.t. the one of the Kirchhoff transform.

Regarding the computational cost, we report in Table 2.3 the data on required Newton's iterations to converge for both formulation. Moreover, in Figure 2.23, we show the cumulative iteration number required to converge over the entire simulation. We can notice that its evolution profile has the same trend for both formulation, but the iterations required for the water pressure formulation are always higher than those with Kirchhoff transform formulation, as for the filling test case. Considering the case in which the simulation is performed in one time step, the pressure formulation still required a few more iterations to converge with respect to the Kirchhoff formulation. Finally, in view of Figures 2.14 and 2.22, both formulations present almost the same convergence rate and it evolution follows the same trend. We observe that at the beginning of the simulation, for t P r0, 10 ¨∆ts, the Kirchhoff transform formulation is characterized by a convergence rate slightly higher than the one of the other formulation. 

Formulation

Comparison between different primary variables: saturation, pressure, switching

We wish to show the advantage of using the parametrization technique rather than solving the problem in saturation or pressure variable. Let us recall that, as explained earlier, choosing the pressure as the primary variable is known to be inefficient for dry soils s ! 1; on the other hand, the knowledge of the saturation is not sufficient to describe the pressure in saturated regions where s " 1 ´srn . We now replicate the filling and drainage test cases in water pressure formulation ( §2.4. 

Filling the domain

As already said in the remark in §2.4.1.2, the filling test case cannot be solved in saturation variable because the pressure value imposed on the boundary and then, progressively, the pressure value in the whole domain, are greater than the entry pressure vale p b . We recall that when the saturation reaches value one (so p ě p b ), the saturation law is no more invertible. For this reason in saturated regions the saturation variable is not sufficient to describe the pressure profile. On the other hand, solve the problem in pressure variable leads to a non convergence of the Newton method. In Figure 2.24 we report the evolution of the L 8 norm of the residual at the first time iteration. As expected, the norm of the residual explodes and Newton does not converge. On the other hand, the problem can still be solved using the parametrization technique as previously shown ( §2.4.2.1).

Figure 2.24: Filling test in pressure variable: Evolution of the L 8 residual norm during the first time step before blow-up.

Draining the domain

In the drainage test case, a part of the domain is saturated (s " 1 and p " p b ) and the rest is dry. Let us recall that the convenient choice as primary unknown to solve the Richards equation in non-saturated region is the saturation variable. This is because if we perform this simulation in pressure variable it fails: the Newton method does not converge because the L 8 norm of the residual at the first time iteration explodes. We report its evolution in Chapter 3

Upstream mobility finite volumes for the Richards equation in heterogeneous domains

The text of this chapter is replicated from [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF].

The Richards equation [START_REF]Capillary conduction of liquids through porous mediums[END_REF] is one of the most well-known simplified models for water filtration in unsaturated soils. While it has been extensively studied in the case of a homogeneous domain, the heterogeneous case seems to have received less attention in the literature, at least from the numerical perspective. The purpose of this chapter is to investigate a class of discretization scheme for a special instance of heterogeneous domains, namely, those with piecewise-uniform physical properties. Our first contribution is to rigorously prove convergence toward a weak solution of cell-centered finite-volume schemes with upstream mobility and without Kirchhoff's transform.

Our second contribution is to numerically demonstrate the relevance of locally refining the grid at the interface between subregions, where discontinuities occur, in order to preserve an acceptable accuracy for the results computed with the schemes under consideration. Before stating our objectives in a precise manner, a few prerequisites must be introduced regarding the model in §3.1- §3.2 and the scheme in §3.4.1- §3.4.2. The goal of this chapter is fully described in §3.3, in relation with other works.

Richards' equation in heterogeneous porous media

Let Ω Ă R d , where d P t2, 3u, be a connected open polyhedral domain with Lipschitz boundary BΩ. A porous medium defined over the region Ω is characterized by -the porosity φ : Ω Ñ p0, 1s; -the permeability λ : Ω Ñ R ˚;

-the mobility function η : r0, 1s ˆΩ Ñ R `; -the saturation law S : R ˆΩ Ñ r0, 1s function of the water pressure and the space location.

The conditions to be satisfied by φ, λ, η and S will be elaborated on later. In a homogeneous medium, these physical properties are uniform over Ω, i.e., φpxq " φ 0 , λpxq " λ 0 , ηps, xq " η 0 psq, Spp, xq " S 0 ppq for all x P Ω. In a heterogeneous medium, the dependence of φ, λ, η and S on x must naturally be taken into account. The quantity s, called saturation, measures the relative volumic presence of water in the medium. The quantity p is the water pressure, which in our case is the opposite of the capillary pressure. Let T ą 0 be a finite time horizon. We designate by Q T " p0, T qˆΩ the space-time domain of interest. Our task is to find the saturation field s : Q T Ñ r0, 1s and the pressure field p : Q T Ñ R so as to satisfy

• the interior equations

φpxq B t s `∇ ¨v " 0 in Q T , (3.1.1a) v `λpxq ηps, xq ∇pp ´ g ¨xq " 0 in Q T , (3.1.1b) s ´Spp, xq " 0 in Q T ; (3.1.1c)
• the boundary conditions

v ¨νpxq " 0 on p0, T q ˆΓN , (3.1.1d) ppt, xq " p D pxq on p0, T q ˆΓD ; (3.1.1e) • the initial data sp0, xq " s 0 pxq in Ω. (3.1.1f)
The partial differential equation (3.1.1a) expresses the water volume balance. The flux F involved in this balance is given by the Darcy-Muskat law (3.1.1b), in which g is the gravity vector and is the known constant density of water, assumed to be incompressible. It 

BΩ " Γ N Y Γ D , Γ N X Γ D " H, (3.1.3)
where Γ N is open and Γ D is closed, the latter having a positive pd ´1q-dimensional Hausdorff measure m d´1 pΓ D q ą 0. The no-flux Neumann condition (3.1.1d) is prescribed on p0, T q ˆΓN , where νpxq is the outward normal unit vector at x P Γ N . The Dirichlet condition (3.1.1e) with a known Lipschitz function p D P W 1,8 pΩq is imposed on p0, T q ˆΓD . Note that, in our theoretical development, the function p D is assumed to be defined over the whole domain Ω, which is stronger than a data p D P L 8 pΓ D q given only on the boundary. The assumption that p D does not depend on time can be removed by following the lines of [START_REF]Convergence and a posteriori error analysis for energy-stable finite element approximations of degenerate parabolic equations[END_REF], but we prefer here not to deal with timedependent boundary data in order to keep the presentation as simple as possible. Finally, the initial data s 0 P L 8 pΩ; r0, 1sq in (3.1.1f) is also a given data.

In this work, we restrict ourselves to a specific type of heterogeneous media, defined as follows. We assume that the domain Ω can be partitioned into several connected polyhedral subdomains Ω i , 1 ď i ď I. Technically, this means that if Γ i,j denotes the interface between Ω i and Ω j (which can be empty for some particular choices of ti, ju), then

Ω i X Ω j " H, Ω i X Ω j " Γ i,j , if i ‰ j, Ω " ´ď 1ďiďI Ω i ¯Y Γ, (3.1.4) 
with Γ " Ť i‰j Γ i,j . Each of these subdomains corresponds to a distinctive rocktype. Inside each Ω i , the physical properties are homogeneous. In other words, φpxq " φ i , λpxq " λ i , ηps, xq " η i psq, Spp, xq " S i ppq for all x P Ω i . Therefore, system (3.1.1) is associated with

φpxq " ÿ 1ďiďI φ i 1 Ω i pxq, ηps, xq " ÿ 1ďiďI η i psq 1 Ω i pxq, (3.1.5a) λpxq " ÿ 1ďiďI λ i 1 Ω i pxq, Spp, xq " ÿ 1ďiďI S i ppq 1 Ω i pxq, (3.1.5b) 
where 1 Ω i stands for the characteristic function of Ω i . For all i P t1, . . . , Iu, we assume that φ i P p0, 1s and λ i ą 0. Furthermore, we require that

η i is increasing on r0, 1s, η i p0q " 0, η i p1q " 1 µ , (3.1.6a) 
where µ ą 0 is the (known) viscosity of water. In addition to the assumption that Sp¨, xq, defined in (3.1.5b), is absolutely continuous and nondecreasing, the functions S i are also subject to some generic requirements commonly verified the models available in the literature: for each i P t1, . . . , Iu, there exists p i ď 0 such that is monotone, and bounded on r0, 1s as a consequence of the integrability of S i . For technical reasons that will appear clearly later on, we further assume that a η i ˝Si P L 1 pR ´q, @i P t1, . . . , Iu.

(3.1.8) Let Q i,T " p0, T q ˆΩi be the space-time subdomains for 1 ď i ď I. The interior equations (3.1.1a)-(3.1.1c) then boil down to

φ i B t s `∇ ¨v " 0 in Q i,T , (3.1 
.9a) v `λi η i ∇pp `ψq " 0 in Q i,T , (3.1.9b 
)

s ´Si ppq " 0 in Q i,T . (3.1.9c)
At the interface Γ i,j between Ω i and Ω j , i ‰ j, any solution of (3.1.1a)-(3.1.1c) satisfies the matching conditions v i ¨νi `vj ¨νj " 0 on p0, T q ˆΓi,j ,

p i ´pj " 0 on p0, T q ˆΓi,j .

(3.1.10b)

In the continuity of the normal fluxes (3.1.10a), which is enforced by the conservation of water volume, ν i denotes the outward normal to BΩ i and F i ¨νi stands for the trace of the normal component of

F | Q i,T
on p0, T q ˆBΩ i . In the continuity of pressure (3.1.10b), which also results from (3.1.1a)-(3.1.1c), p i denotes the trace on p0, T q ˆBΩ i of the pressure p

| Q i,T
in the i-th domain.

Stability features and notion of weak solutions

We wish to give a proper sense to the notion of weak solution for problem (3.1.1). To achieve this purpose, we need a few mathematical transformations the definition of which crucially relies on a fundamental energy estimate at the continuous level. The calculations below are aimed at highlighting this energy estimate and will be carried out in a formal way, in constrast to those in the fully discrete setting. Multiplying (3.1.9a) by p ´pD , invoking (3.1.7), integrating over Ω i and summing over i, we end up with

d dt I ÿ i"1 ż Ω i e i ps, xq dx `I ÿ i"1 ż Ω i p∇ ¨vqpp ´pD q dx " 0. (3.2.1)
We now integrate by parts the second term. Thanks to the matching conditions (3.1.10) and the regularity of p D , we obtain A :"

I ÿ i"1 ż Ω i p∇ ¨vqpp ´pD q dx " ´I ÿ i"1 ż Ω i v ¨∇pp ´pD q dx.
It follows from the flux value (3.1.9b) that A "

I ÿ i"1 ż Ω i λ i η i psq∇pp `ψq ¨∇pp ´pD q dx " I ÿ i"1 ż Ω i λ i η i psq|∇p| 2 dx ´I ÿ i"1 ż Ω i λ i η i psq∇ψ ¨∇p D dx `I ÿ i"1 ż Ω i λ i η i psq∇p ¨∇pψ ´pD q dx.
Young's inequality, combined with the boundedness of ∇p D , ∇ψ, λ and η, yields

A ě 1 2 I ÿ i"1 ż Ω i λ i η i psq|∇p| 2 dx ´C
for some C ě 0 depending only on λ, η, ψ, µ, Ω and p D .

Let us define the energy E : r0, T s Ñ R `by

Eptq "

I ÿ i"1 ż Ω i e i pspt, xq, xq dx, 0 ď t ď T.
Integrating (3.2.1) w.r.t. time results in EpT q `1 2

I ÿ i"1 żż Q i,T λ i η i psq|∇p| 2 dx dt ď Ep0q `CT. (3.2.2) Estimate (3.2.
2) is the core of our analysis. However, it is difficult to use in its present form since η i psq " η i pS i ppqq vanishes as p tends to ´8, so that the control of ∇p degenerates. To circumvent this difficulty, we resort to the nonlinear functions (customarily referred to as the Kirchhoff transforms) Θ i : R Ñ R, Φ i : R Ñ R, and Υ : R ˆΩ Ñ R respectively defined by

Θ i ppq " ż p 0 a λ i η i ˝Si pπq dπ, p P R, (3.2.3a) 
Φ i ppq "

ż p 0 λ i η i ˝Si pπq dπ, p P R, (3.2.3b) 
Υppq "

ż p 0 min 1ďiďI a λ i η i ˝Si pπq dπ, p P R, (3.2.3c) 
the notion of Υ being due to [START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF]. Bearing in mind that EpT q ě 0, estimate (3.2.2) implies that

I ÿ i"1 żż Q i,T
|∇Θ i ppq| 2 dx dt ď 2pEp0q `CT q ă `8.

(3.2.4)

As Φ i ˝Θ´1 i is Lipschitz continuous, this also gives rise to a L 2 pQ i,T q-estimate on ∇Φ i ppq. The functions ř i Θ i ppq1 Ω i and ř i Φ i ppq1 Ω i are in general discontinuous across the interfaces Γ i,j , unlike Υppq. Since the functions Υ ˝Θ´1 i are Lipschitz continuous, we can readily infer from (3.2.4) that żż

Q T |∇Υppq| 2 dx ď C (3.2.5)
for some C depending on T , Ω, ∇p D 8 , the S i L 1 pR ´q's and

λ " λ L 8 pΩq " max 1ďiďI λ i , η " η L 8 pΩq " max 1ďiďI η i L 8 pΩq " 1 µ ,
the last equality being due to (3.1.6a). Moreover, Υppq ´Υpp D q vanishes on p0, T q ˆΓD . Poincaré's inequality provides a L 2 pQ T qestimate on Υppq since Γ D has positive measure and since Υpp D q is bounded in Ω. In view of assumption (3.1.8), the functions Θ i and Υ are bounded on R ´. Besides, for p ě 0, η i ˝Si ppq " 1{µ, so that Θ i ppq " p a λ i {µ and Υppq " min 1ďiďI p a λ i {µ. It finally comes that

Θ i ppq ď Cp1 `Υppqq, @p P R, 1 ď i ď I, (3.2.6) 
from which we infer a L 2 pQ i,T q-estimate on Θ i ppq. Putting

V " u P H 1 pΩq | u | Γ D " 0 ( ,
the above estimates suggest the following notion of weak solution for our problem. 

Θ i ppq P L 2 pp0, T q; H 1 pΩ i qq, for 1 ď i ď I, (3.2 

.7a)

Υppq ´Υpp D q P L 2 pp0, T q; V q (3.2.7b)

and if for all ϕ P C 8 c pr0, T q ˆpΩ Y Γ N qq, there holds żż

Q T φ Spp, xqB t ϕ dx dt `żΩ φ s 0 ϕp¨, 0q dx `żż Q T F ¨∇ϕ dx dt " 0, (3.2.7c) with v " ´∇Φ i ppq `λi η i pS i ppqq g in Q i,T , 1 ď i ď I. (3.2.7d)
The expression (3.2.7d) is a reformulation of the original one (3.1.9b) in a quasilinear form which is suitable for analysis, even though the physical meaning of the Kirchhoff transform Φ i ppq is unclear. While the formulation (3.2.7c) should be thought of as a weak form of (3.1.9a), (3.1.10a), (3.1.1f), and (3.1.1d), the condition Υppq ´Υpp D q P L 2 pp0, T q; V q contains (3.1.10b) and (3.1.1e).

Goal and positioning of this chapter

We are now in a position to clearly state the two objectives of this chapter.

The first objective is to put forward a rigorous proof that, for problem (3.1.1) with heterogeneous data (3.1.5), cell-centered finite-volume schemes with upstream mobility such as described in §3.4.2, do converge towards a weak solution (in the sense of Definition 3.2.1) as the discretization parameters tend to 0. Such mathematically assessed convergence results are often dedicated to homogeneous cases: see for instance [START_REF]A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media[END_REF][START_REF]The finite volume method for Richards equation[END_REF][START_REF]Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation[END_REF] for schemes involving the Kirchhoff transforms for Richards' equation, [START_REF] H O | Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy[END_REF] for a upstream mobility CVFE approximation of Richards' equation in anisotropic domains, [START_REF]Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media[END_REF][START_REF]Fully discrete finite element analysis of multiphase flow in groundwater hydrology[END_REF][START_REF]Degenerate two-phase incompressible flow. III. Sharp error estimates[END_REF] for schemes for two-phase flows involving the Kirchhoff transform, and [START_REF]Mathematical study of a petroleum-engineering scheme[END_REF][START_REF]Convergence of a finite element method for degenerate two-phase flow in porous media[END_REF] for upstream mobility schemes for two-phase porous media flows. For flows in highly heterogeneous porous media, rigorous mathematical results have been obtained for schemes involving the introduction of additional interface unknowns and Kirchhoff's transforms (see for instance [START_REF]Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF]Nonlinear parabolic equations with spatial discontinuities[END_REF][START_REF]Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities[END_REF][START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF]), or under the non-physical assumption that the mobilities are strictly positive [START_REF]Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies[END_REF][START_REF] Lions | Gradient schemes for two-phase flow in heterogeneous porous media and richards equation[END_REF]. We also refer the reader to [START_REF]Numerical methods for the simulation of flow in root-soil systems[END_REF][START_REF]Convergence analysis for a mixed finite element scheme for flow in strictly unsaturated porous media[END_REF] where the assumption of the non-degeneracy of the mobility has been made. It was established very recently in [START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF] that cell-centered finite-volumes with (hybrid) upwinding also converge for two-phase flows in heterogeneous domains, but with a specific treatment of the interfaces located at the heterogeneities. Here, the novelty lies in the fact that we do not consider any specific treatment of the interface in the design of the scheme.

Finite-volume discretization

The scheme we consider in this chapter is based on two-point flux approximation (TPFA) finitevolumes. Hence, it is subject to some restrictions on the mesh [START_REF] Tp | that is the question[END_REF][START_REF]Why do we need Voronoi cells and Delaunay meshes?[END_REF]. We first review the requirements on the mesh in §3.4.1. Next, we construct the upstream mobility finite-volume scheme for Richards' equation in §3.4.2. The main mathematical results of this chapter, which are the well-posedness of the nonlinear system corresponding to the scheme and the convergence of the scheme, are then summarized in §3.4.3.

Admissible discretization of Q T

Let us start by discretizing w.r.t. space. Definition 3.4.1. An admissible mesh of Ω is a triplet pT , E , px K q KPT q such that the following conditions are fulfilled: (i) Each control volume (or cell) K P T is non-empty, open, polyhedral and convex, with positive d-dimensional Lebesgue measure m K ą 0. We assume that

K X L " H if K, L P T with K ‰ L, while ď KPT K " Ω.
Moreover, we assume that the mesh is adapted to the heterogeneities of Ω, in the sense that for all K P T , there exists i P t1, . . . , Iu such that K Ă Ω i . (ii) Each face σ P E is closed and is contained in a hyperplane of R d , with positive pd ´1qdimensional Hausdorff measure m d´1 pσq " m σ ą 0. We assume that m d´1 pσ X σ 1 q " 0 for σ, σ 1 P E unless σ 1 " σ. For all K P T , we assume that there exists a subset E K of E such that BK " Ť σPE K σ. Moreover, we suppose that

Ť KPT E K " E .
Given two distinct control volumes K, L P T , the intersection K X L either reduces to a single face σ P E denoted by K|L, or its pd ´1q-dimensional Hausdorff measure is 0.

(iii) The cell-centers px K q KPT are pairwise distinct with x K P K, and are such that, if K, L P

T share a face K|L, then the vector x L ´xK is orthogonal to K|L. (iv) For the boundary faces σ Ă BΩ, we assume that either σ Ă Γ D or σ Ă Γ N . For σ Ă BΩ with σ P E K for some K P T , we assume additionally that there exists x σ P σ such that x σ ´xK is orthogonal to σ.

In our problem, the standard Definition 3.4.1 must be supplemented by a compatibility property between the mesh and the subdomains. By "compatbility" we mean that each cell must lie entirely inside a single subregion. Put another way,

@K P T , D! ipKq P t1, . . . , Iu | K Ă Ω ipKq . (3.4.1)
This has two consequences. The first one is that, if we define

T i " tK P T | K Ă Ω i u, 1 ď i ď I, (3.4.2) then T " Ť I i"1 T i .
The second one is that the subdomain interfaces Γ i,j for i ‰ j coincide necessarily with some edges σ P E . To express this more accurately, let 

Ť σPE Γ σ, while Γ D " Ť σPE D ext σ and Γ N " Ť σPE N ext σ.
For later use, it is also convenient to introduce the subset E i Ă E consisting of those edges that correspond to cells in T i only, i.e.,

E i " ˆď KPT i E K ˙zE Γ , 1 ď i ď I, (3.4.3a)
and the subset E int of the internal edges, i.e.,

E int " E zpE D ext Y E N ext q " ď K,LPT
tσ " K|Lu.

(3.4.3b)

Note that E Γ Ă E int .

To each edge σ P E , we associate a distance d σ by setting

d σ " # |x K ´xL | if σ " K|L P E int , |x K ´xσ | if σ P E K X pE D ext Y E N ext q.
(3.4.4)

We also define d Kσ " distpx K , σq for all K P T and σ P E K . The transmissivity of the edge σ P E is defined by

a σ " m σ d σ . (3.4.5)
Throughout this chapter, many discrete quantities u will be defined either in cells K P T or on Dirichlet boundary edges σ P E D ext , i.e. w " ppw K q KPT , pw σ q σPE D ext q P X T YE D ext , where X can be either R , ě 1, or a space of functions. Then for all K P T and σ P E K , we define the mirror value w Kσ by

w Kσ " $ ' & ' % w L if σ " K|L P E int , w K if σ P E K X E N ext , w σ if σ P E K X E D ext . (3.4.6) 
The diamond cell ∆ σ corresponding to the edge σ is defined as the convex hull of tx K , x Kσ , σu for K such that σ P E K , while the half-diamond cell ∆ Kσ is defined as the convex hull of tx K , σu. Denoting by m ∆σ the Lebesgue measure of ∆ σ , the elementary geometrical relation m ∆σ " d m σ d σ where d stands for the dimension will be used many times in what follows.

Another notational shorthand is worth introducing now, since it will come in handy in the sequel. Let

f p¨, xq " ÿ 1ďiďI f i p¨q1 Ω i pxq (3.4.7a)
be a scalar quantity or a function whose dependence of x P Ω is of the type (3.1.5). Then, for K P T , we slightly abuse the notations in writing

f K p¨q :" f p¨, x K q " f ipKq p¨q, (3.4.7b)
where the index ipKq is defined in (3.4.1). The last equality in the above equation holds by virtue of the compatibility property. For example, we will have not only φ K " φpx K q, λ K " λpx K q, η K psq " ηps, x K q, S K ppq " Spp, x K q but also e K psq " eps, x K q. Likewise, we shall be writing f Kσ p¨q " f p¨, x Kσ q for the mirror cell without any ambiguity:

if σ P E int Y E N ext , then x Kσ is a cell-center; if σ P E D
ext , then x Kσ lies on the boundary but does not belong to an interface between subdomains.

The size h T and the regularity ζ T of the mesh are respectively defined by

h T " max KPT diampKq, ζ T " min KPT ˆ1 Card E K min σPE K d Kσ diampKq ˙. (3.4.8)
The time discretization is given by pt n q 0ď1ďN with 0 " t 0 ă t 1 ă ¨¨¨ă t N " T . We denote by ∆t n " t n ´tn´1 for all n P t1, . . . , N u and by ∆t " p∆t n q 1ďnďN .

Upstream mobility TPFA Finite Volume scheme

Given a discrete saturation profile ps n´1 K q KPT P r0, 1s T at time t n´1 , n P t1, . . . , N u, we seek for a discrete pressure profile pp n K q KPT P R T at time t n solution to the following nonlinear system of equations. Taking advantage of the notational shorthand (3.4.7b), we define

s n K " S K pp n K q, K P T , n ě 1. (3.4.9)
The volume balance (3.1.9a) is then discretized into

m K φ K s n K ´sn´1 K ∆t n `ÿ σPE K F n Kσ " 0, K P T , n ě 1, (3.4.10) 
using the approximation

F n Kσ " m σ d σ λ σ η n σ pϑ n K ´ϑn Kσ q, σ P E K , K P T , n ě 1, (3.4.11a) 
for the flux (3.1.1b), with

ϑ n K " p n K `ψK , ϑ n Kσ " p n Kσ `ψKσ , (3.4.11b) 
where the mirror values p n Kσ and ψ Kσ are given by (3.4.6). In the numerical flux (3.4.11a), the edge permeabilities pλ σ q σPE are set to

λ σ " $ & % λ K λ L d σ λ K d L,σ `λL d K,σ if σ " K|L P E int , λ K if σ P E K X E ext ,
while the edge mobilities are upwinded according to

η n σ " $ ' & ' % η K ps n K q if ϑ n K ą ϑ n Kσ , 1 2 pη K ps n K q `ηKσ ps n Kσ qq if ϑ n K " ϑ n Kσ , η Kσ ps n Kσ q if ϑ n K ă ϑ n Kσ .
(3.4.11c)

In practice, the definition of η n σ when ϑ n K " ϑ n Kσ has no influence on the scheme. We choose here to give a symmetric definition that does not depend on the orientation of the edge σ in order to avoid ambiguities.

The boundary condition p D is discretized into

# p D K " 1 m K ş K p D pxq dx for K P T , p D σ " 1 mσ ş σ p D pxq dm d´1 pxq for σ P E D ext , (3.4.12) 
whereas the initial condition is discretized into In what follows, we denote by p n " pp n K q KPT for 1 ď n ď N , and by s n " ps n K q KPT for 0 ď n ď N . Besides, we set p D " ppp D K q KPT , pp D σ q σPE D q.

s 0 K " 1 m K ż K s 0 pxq dx, for K P T . ( 3 

Main results and organization of this chapter

The theoretical part of this chapter includes two main results. The first one, which emerges from the analysis at fixed grid, states that the schemes admits a unique solution pp n q 1ďnďN . Theorem 3.4.2. For all n P t1, . . . , N u, there exists a unique solution p n to the scheme ( We also define the approximate saturation as

s T ,∆t " Spp T ,∆t , xq. (3.4.15b)
The second main result guarantees the convergence towards a weak solution of the sequence of approximate solutions as the mesh size and the time-steps tend to 0. Let pT m , E m , px K q KPTm q mě1 be a sequence of admissible discretizations of the domain Ω in the sense of Definition 3.4.1 such that h Tm ÝÑ mÑ8 0, sup

mě1 ζ Tm ": ζ ă `8, (3.4.16) 
where the size h Tm and the regularity ζ Tm are defined in (3.4.8). Let p∆t m q mě1 be time discretizations of p0, T q such that lim The rest of this chapter is outlined as follows. Section §3.5 is devoted to the numerical analysis at fixed grid. This encompasses the existence and uniqueness result stated in Theorem 3.4.2 as well as a priori estimates that will help proving Theorem 3.4.3. The convergence of the scheme, which is taken up in §3.6, relies on compactness arguments, which require a priori estimates that are uniform w.r.t. the grid. These estimates are mainly adaptations to the discrete setting of their continuous counterparts that arised in the stability analysis sketched out in §3.2. These estimates are shown in §3.6.1 to provide some compactness on the sequence of approximate solutions. In §3.6.2, we show that these compactness properties together with the a priori estimates are sufficient to identify any limit of an approximate solution as a weak solution to the problem.

Remark 3.4.4. Theorem 3.4.3 only states the convergence of the scheme up to a subsequence. In the case where the weak solution is unique, then the whole sequence of approximate solutions would converge towards this solution. As far as we know, uniqueness of the weak solutions to Richards' equation is in general an open problem for heterogeneous media where x Þ Ñ Spp, xq is discontinuous. Uniqueness results are however available in the one-dimensional setting for a slightly more restrictive notion of solutions, cf. [START_REF]Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities[END_REF], or under additional assumptions on the nonlinearities η i , S i , cf. [START_REF]Nonlinear parabolic equations with spatial discontinuities[END_REF].

Writing ϑ " p `ψ and expanding each summand of (3.5.3b), we can split B into

B " B 1 `B2 `B3 , with B 1 " N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ pp n K ´pn Kσ q 2 , B 2 " N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ pp n K ´pn Kσ qpψ K ´ψKσ ´pD K `pD Kσ q, B 3 " ´N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ pψ K ´ψKσ qpp D K ´pD Kσ q.
It follows from [START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF]Lemma 9.4] and from the boundedness of η that there exists a constant C depending only on λ, µ, ζ T and Ω such that

ÿ σPE a σ λ σ η n σ pp D K ´pD Kσ q 2 ď C ∇p D 2 L 2 pΩq d , (3.5.5a) 
ÿ σPE a σ λ σ η n σ pψ K ´ψKσ q 2 ď C ∇ψ 2 L 8 pΩq d . (3.5.5b) 
Thanks to these estimates and to the Cauchy-Schwarz inequality, we have

B 3 ě ´CT ∇p D L 2 pΩq d ∇ψ L 8 pΩq d .
On the other hand, Young's inequality provides

B 2 ě ´1 2 B 1 ´CT ` ∇p D 2 L 2 pΩq d ` ∇ψ 2 L 8 pΩq d ˘.
Hence,

B ě 1 2 N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ pp n K ´pn Kσ q 2 ´CB , (3.5.6) 
by setting

C B " CT p ∇p D 2 L 2 pΩq d ` ∇ψ 2 L 8 pΩq d ` ∇p D L 2 pΩq d ∇ψ L 8 pΩq d q.
Inserting (3.5.4) and (3.5.6) into (3.5.2), we recover (3.5.1a) with C 1 " 2pC A `CB q. From (3.5.1a), we can deduce (3.5.1b) by elementary manipulations.

So far, we have not used the upwind choice (3.4.11c) for the mobilities η n σ . This will be done in the next lemma, where we derive a more useful variant of estimate (3.5.1a), in which η n σ is replaced by η n σ defined below. In a homogeneous medium, η n σ ě η n σ so that the new estimate (3.5.8) seems to be stronger than (3.5.1a).

We begin by introducing the functions q η σ : R Ñ p0, 1{µs defined for σ P E by q η σ ppq " min η K ˝SK ppq, η Kσ ˝SKσ ppq ( , @p P R.

(3.5.7a)

By virtue of assumptions (3.1.6), each argument of the minimum function is nondecreasing and positive function of p P R. As a result, q η σ is also a nondecreasing and positive function of p P R.

Note that q η σ " η i ˝Si for all σ P E i , while for interface edges σ Ă Γ i,j , the mere inequality q η σ ď η i ˝Si holds. Next, we consider the intervals

J n σ " rp n K Kp n Kσ , p n K Jp n Kσ s, for σ P E K , K P T , 1 ď n ď N, (3.5.7b) 
with the notations aKb " minpa, bq and aJb " maxpa, bq. At last, we set Proof. We partition the set E of edges into three subsets, namely,

η n σ " max pPJ n σ q η σ ppq, for σ P E , 1 ď n ď N. ( 3 
E n `" σ | ϑ n K ą ϑ n Kσ ( , E n ´" σ | ϑ n K ă ϑ n Kσ ( , E n 0 " σ | ϑ n K " ϑ n Kσ ( .
Invoking q η σ " minpη K ˝SK , η Kσ ˝SKσ q, we can minorize the left-hand side of (3.5.1a) to obtain

N ÿ n"1 ∆t n " ÿ σPE n `aσ λ σ q η σ pp n K qpp n K ´pn Kσ q 2 `ÿ σPE n ´aσ λ σ q η σ pp n Kσ qpp n K ´pn Kσ q 2 `ÿ σPE n 0 a σ λ σ 1 2 pq η σ pp n K q `q η σ pp n Kσ qqpp n K ´pn Kσ q 2 ı ď C 1 .
Starting from this inequality and using the boundedness of η i and ψ, we can readily show that there exists a constant C depending on the same data as C 1 such that

D 1 :" N ÿ n"1 ∆t n " ÿ σPE n `aσ λ σ q η σ pp n K qpp n K ´pn Kσ qpϑ n K ´ϑn Kσ q `ÿ σPE n ´aσ λ σ q η σ pp n Kσ qpp n K ´pn Kσ qpϑ n K ´ϑn Kσ q ı ď C,
in which the sum over E n 0 was omitted because all of its summands vanish. Simlarly to what was pointed out in equation 2.9 in [START_REF] H O | Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy[END_REF], we notice that since η σ is nondecreasing w.r.t. p, it is straightforward to check that the definition

q η n σ :" $ ' & ' % q η σ pp n K q if ϑ n K ą ϑ n Kσ , 1 2 pq η σ pp n K q `q η σ pp n Kσ qq if ϑ n K " ϑ n Kσ , q η σ pp n Kσ q if ϑ n K ă ϑ n Kσ (3.5.9)
exactly amounts to

q η n σ " $ ' & ' % max pPJ n σ q η σ ppq if pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q ą 0, 1 2 pq η σ pp n K q `q η σ pp n Kσ qq if pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q " 0, min pPJ n σ q η σ ppq if pp n K ´pn Kσ qpϑ n K ´ϑn
Kσ q ă 0.

(3.5.10)

Taking advantage of this equivalence, we can transform D 1 into

D 1 " N ÿ n"1 ∆t n " ÿ σPE n ą a σ λ σ max J n σ q η σ pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q `ÿ σPE n ă a σ λ σ min J n σ q η σ pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q ı ď C, (3.5.11)
where

E n ą " tσ | pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q ą 0u and E n ă " tσ | pp n K ´pn Kσ qpϑ n K ´ϑn
Kσ q ă 0u. The second sum over E n ă contains only negative summands and can be further minorized if min J n σ q η σ is replaced by max J n σ q η σ . In other words,

D 2 :" N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ pp n K ´pn Kσ qpϑ n K ´ϑn Kσ q ď D 1 ď C.
Writing ϑ " p `ψ, expanding each summand of D 2 and applying Young's inequality, we end up with 1 2

N ÿ n"1 ∆t n ÿ σPE a σ λ σ η n σ rpp n K ´pn Kσ q 2 ´pψ n K ´ψn Kσ q 2 s ď D 2 ď C.
Estimate (3.5.8) finally follows from the boundedness of η, 1{λ and ψ.

The above lemma has several important consequences for the analysis. Let us start with discrete counterparts to estimations (3.2.4) and (3.2.5).

Corollary 3.5.3. Let C 3 be the constant in Lemma 3.5.2. Then,

N ÿ n"1 ∆t n I ÿ i"1 ÿ σPE i a σ pΘ i pp n K q ´Θi pp n Kσ qq 2 ď C 3 , (3.5.12a) 
N ÿ n"1 ∆t n ÿ σPE a σ pΥpp n K q ´Υpp n Kσ qq 2 ď C 3 . (3.5.12b)
Moreover, there exists two constants C 4 , C 5 depending on the same data as C 1 and additionnally on ?

η i ˝Si L 1 pR ´q, 1 ď i ď I, such that N ÿ n"1 ∆t n ÿ KPT m K |Υpp n K q| 2 ď C 4 , (3.5.13a) N ÿ n"1 ∆t n I ÿ i"1 ÿ KPT i m K |Θ i pp n K q| 2 ď C 5 . (3.5.13b)
Proof. Consider those edges σ P E i -defined in (3.4.3a)-corresponding to some fixed i P t1, . . . , Iu, for which q η σ " η i ˝Si " |Θ for some C depending only on Ω, T and the mesh regularity ζ T .

Existence of a solution to the scheme

The statements of the previous section are all uniform w.r.t. the mesh and are meant to help us passing to the limit in the next section. In contrast, the next lemma provides a bound on the pressure that depends on the mesh size and on the time-step. This property is needed in the process of ensuring the existence of a solution to the numerical scheme. Proof. From (3.5.13a) and from Υppq " p a min i λ i {µ for p ě 0, we deduce that

p n K ď c µC 4 ∆t n m K min i λ i , @K P T , 1 ď n ď N.
Hence, the upper-bound C 8 is found by maximizing the right-hand side over K P T and n P t1, . . . , N u.

To show that p n K is bounded from below, we employ a strategy that was developed in [START_REF]Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations[END_REF] and extended to the case of Richards' equation in [START_REF] H O | Numerical analysis of a nonlinearly stable and positive Control Volume Finite Element scheme for Richards equation with anisotropy[END_REF]Lemma 3.10]. From (3.4.12), (3.4.14) and the boundedness of p D , it is easy to see that

p n σ ě inf xPBΩ p D pxq, @σ P E D ext .
Estimate (3.5.8) then shows that for all K P T such that E K X E D ext ‰ H, we have

p n K ě p n σ ´d C 3 ∆t n a σ q η σ pp n σ q ": π n K , @σ P E K X E D ext .
The quantity π n K is well-defined, since q η σ pp n σ q ą 0 for p n σ ą ´8, and does not depend on time, as p D does not either. Furthermore, if p n K is bounded from below by some π K , then the pressure in all its neighboring cells L P T such that σ " K|L P E K is bounded from below by

p n L ě π n K ´d C 3 ∆t n a σ q η σ pπ n K q ": π n L .
Again, π n L is well-defined owing to q η σ pπ n K q ą 0. Since the mesh is finite and since the domain is connected, only a finite number of edge-crossings is required to create a path from a Dirichlet boundary edge σ P E D ext to any prescribed cell K P T . Hence, the lower bound C 7 is found by minimizing π n K over K P T and n P t1, . . . , N u.

Lemma 3.5.5 is a crucial step in the proof of the existence of a solution p n " pp n K q KPT to the scheme (3.4.9)-(3.4.14). Proposition 3.5.6. Given s n´1 " ps n´1 K q KPT P r0, 1s T , there exists a solution p n P R T to the scheme (3.4.9)- (3.4.14).

The proof relies on a standard topological degree argument and is omitted here. However, we make the homotopy explicit for readers' convenience. Let γ P r0, 1s be the homotopy parameter. We define the nondecreasing functions η pγq i : r0, 1s Ñ R `by setting η pγq i psq " p1 ´γq{µ `γη i psq for s P r0, 1s, and we seek a solution p pγq " pp pγq K q KPT to the problem

γm K φ K S K pp pγq K q ´sn´1 K ∆t n `ÿ σPE K F pγq Kσ " 0, K P T , γ P r0, 1s, (3.5.17a) 
where the fluxes F pγq Kσ are defined by

F pγq Kσ " m σ d σ λ σ η pγq σ `ϑpγq K ´ϑpγq Kσ ˘, σ P E K , K P T , γ P r0, 1s (3.5.17b) 
with ϑ pγq " p pγq `ψ and using the upwind mobilities " p D σ . For γ " 0, the system is linear and invertible, while for γ " 1, system (3.5.17) coincides with the original system (3.4.9)-(3.4.14). A priori estimates on p pγq that are uniform w.r.t. γ P r0, 1s (but not uniform w.r.t. T nor ∆t n ) can be derived on the basis of what was exposed previously, so that one can unfold Leray-Schauder's machinery [START_REF]Nonlinear functional analysis[END_REF]105] to prove the existence of (at least) one solution to the scheme.

η pγq σ " $ ' & ' % η pγq K pS K pp pγq K qq if ϑ pγq K ą ϑ pγq Kσ , 1 

Uniqueness of the discrete solution

To complete the proof of Theorem 3.4.2, it remains to show that the solution to the scheme is unique. This is the purpose of the following proposition. Proposition 3.5.7. Given s n´1 " ps n´1 K q KPT P r0, 1s Let r p n " pr p n K q KPT be another solution to the system (3.4.9)-(3.4.14), i.e.,

H n K pr p n K , pr p n Kσ q σPE K q " 0, @K P T .

(3.5.19)

The nonincreasing behavior of H n K w.r.t. all its variables except the first one implies that

H n K pp n K , pp n Kσ Jr p n Kσ q σPE K q ď 0, H n K pr p n K , pp n Kσ Jr p n Kσ q σPE K q ď 0,
for all K P T , where aJb " maxpa, bq. Since p n K Jr p n K is either equal to p n K or to r p n K , we infer from the above inequalities that

H n K pp n K Jr p n K , pp n Kσ Jr p n Kσ q σPE K q ď 0, @K P T . (3.5.20)
By a similar argument, we can show that

H n K pp n K Kr p n K , pp n Kσ Kr p n Kσ q σPE K q ě 0, @K P T , (3.5.21) 
where aKb " minpa, bq. Subtracting (3.5.21) from (3.5.20) and summing over K P T , we find

ÿ KPT m K φ K |s n K ´r s n K | ∆t n `ÿ σPE D ext a σ λ σ R n σ ď 0, (3.5.22) 
where

s n K " S K pp n K q, r s n K " S K pr p n K q and R n σ " η K ps n K Jr s n K qpϑ n K J r ϑ n K ´ϑn σ q `´η K ps n σ qpϑ n σ ´ϑn K J r ϑ n K q ὴK ps n K Kr s n K qpϑ n K K r ϑ n K ´ϑn σ q ``η K ps n σ qpϑ n σ ´ϑn K K r ϑ n K q `, (3.5.23) 
with s n σ " S K pp n σ q. The top line of (3.5.23) expresses the upwinded flux of (3.5.20), while the bottom line of (3.5.23) is the opposite of the upwinded flux of (3.5.21). Note that, since p n σ " p D σ is prescribed at σ P E D ext , we have

ϑ n σ " ϑ n σ J r ϑ n σ " ϑ n σ K r ϑ n σ . Upon inspection of the rearrangement R n σ " rη K ps n K Jr s n K q ´ηK ps n K Kr s n K qspϑ n K J r ϑ n K ´ϑn σ q ὴK ps n K Kr s n K qrpϑ n K J r ϑ n K ´ϑn σ q `´pϑ n K K r ϑ n K ´ϑn σ q `s `ηK ps n σ q " pϑ n σ ´ϑn K K r ϑ n K q `´pϑ n σ ´ϑn K J r ϑ n K q `‰, (3.5.24) 
it is trivial that R n σ ě 0. As a consequence, (3.5.22) implies that R n σ " 0 for all σ P E D ext and that s n K " r s n K for all K P T . At this stage, however, we cannot yet claim that p n K " r p n K , as the function S K is not invertible.

Taking into account s n K " r s n K , the residue (3.5.24) becomes

R n σ " η K ps n K qrpϑ n K J r ϑ n K ´ϑn σ q `´pϑ n K K r ϑ n K ´ϑn σ q `s `ηK ps n σ q " pϑ n σ ´ϑn K K r ϑ n K q `´pϑ n σ ´ϑn K J r ϑ n K q `‰, (3.5.25) 
which can be lower-bounded by

R n σ ě minpη K ps n K q, η K ps n σ qq|ϑ n K ´r ϑ n K | (3.5.26)
thanks to the algebraic identities a `´p´aq `" a and aJb ´aKb " |a ´b|. In view of the lower-bound on the discrete pressures of Lemma 3.5.5, we deduce from (3.1.6b) that s n K ą 0 and r s n K ą 0. The increasing behavior of η K implies, in turn, that η K ps n K q ą 0 and η K pr s n K q ą 0. Therefore, the conjunction of R n σ " 0 and (3.5.26) yields ϑ n K " r ϑ n K and hence p n K " r p n K for all cells K having a Dirichlet boundary edge, i.e., E K X E D ext ‰ H. It remains to check that p n K " r p n K , or equivalently ϑ n K " r ϑ n K for those cells K P T that are far away from the Dirichlet part of the boundary. Subtracting (3.5.19) from (3.5.18) and recalling that s n K " r s n K , we arrive at ÿ

σPE K a σ λ σ ! η K ps n K q " pϑ n K ´ϑn Kσ q `´p r ϑ n K ´r ϑ n Kσ q `‰ `ηKσ ps n Kσ q " p r ϑ n Kσ ´r ϑ n K q `´pϑ n Kσ ´ϑn K q `‰)
" 0.

(3.5.27)

Consider a cell K P T where ϑ n K ´r ϑ n K achieves its maximal value, i.e.,

ϑ n K ´r ϑ n K ě ϑ n L ´r ϑ n L , @L P T . (3.5.28)
This entails that

ϑ n K ´ϑn Kσ ě r ϑ n K ´r ϑ n Kσ , @σ P E K ,
so that the two brackets in the right-hand side of (3.5.27) are nonnegative. In fact, they both vanish by the positivity of η K ps n K q and η Kσ ps n Kσ q. As a result, ϑ n K ´ϑn Kσ " r ϑ n K ´r ϑ n Kσ for all σ P E K . This implies that ϑ n K ´r ϑ n K " ϑ n L ´r ϑ n L for all the cells L P T sharing an edge σ " K|L with K, and thus that the cell L also achieves the maximality condition (3.5.28). The process can then be repeated over and over again. Since Ω is connected, we deduce that ϑ n K ´r ϑ n K is constant over K P T . The constant is finally equal to zero since ϑ n K " r ϑ n K on the cells having a Dirichlet edge.

Convergence analysis

Once existence and uniqueness of the discrete solution have been settled, the next question to be addressed is the convergence of the discrete solution towards a weak solution of the continuous problem, as the mesh-size and the time-step are progressively refined. In accordance with the general philosophy expounded in [START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF], the proof is built on compactness arguments. We start by highlighting compactness properties in §3.6.1, before identifying the limit values as weak solutions in §3.6.2.

Compactness properties

Let us define G Em,∆tm : Proof. We know from Corollary 3.5.3 that Θ i pp Tm,∆tm q and Υpp Tm,∆tm q are bounded w.r.t. m in L 2 pQ i,T q and L 2 pQ T q respectively, while G Em,∆tm and J Em,∆tm are respectively bounded in L 2 pQ i,T q d and L 2 pQ T q d . In particular, there exist p Θ i P L 2 pQ i,T q, p Υ P L 2 pQ T q, J P L 2 pQ i,T q d , and J P L 2 pQ T q d such that The key points of this proof are the identification p Θ i " Θ i ppq and p Υ " Υppq for some measurable p, as well as the proofs of the almost everywhere convergence property (3.6.3a). The identification of the limit and the almost everywhere convergence can be handled simultaneously by using twice [12, Theorem 3.9], once for Θ i ppq and once for Υppq. More precisely, Lemma 3.5.4 provides a control on the time variations of the approximate saturation s Tm,∆tm , whereas Corollary 3.5.3 provides some compactness w.r.t. space on Θ i pp Tm,∆tm q and Υpp Tm,∆tm q. Using further that s Tm,∆tm " S i ˝Θ´1 i `Θi pp Tm,∆tm q ˘with S i ˝Θ´1 i nondecreasing and continuous, then one infers from [12, Theorem 3.9] that s Tm,∆tm ÝÑ mÑ`8

Q T Ñ R d and J Em,∆tm : Q T Ñ R d by G Em,∆tm pt, xq " $ & % d Θ i pp n Kσ q ´Θi pp n K q d σ n Kσ , if
Θ i pp Tm,∆tm q ÝÑ mÑ`8 p Θ i weakly in L 2 pQ i,T q, ( 3 
S i ˝Θ´1 i p p Θ i q a.e. in Q i,T .
Let p " Θ ´1 i p p Θ i q. Then, (3.6.3a) and (3.6.3b) hold. Proving (3.6.3a) and (3.6.3c) is similar, and the properties (3.6.3) can be assumed to hold for the same function p up to the extraction of yet another subsequence.

Finally, by applying the arguments developed in [30, §4.2], we show that Υppq and Υpp D q share the same trace on p0, T q ˆΓD , hence Υppq ´Υpp D q P L 2 pp0, T q; V q. ηpSpp, xqq in L q pQ T q, 1 ď q ă `8.

Let us now define

(3.6.6)

Proof. Because of (3.6.3a), η Tm,∆tm " ηps Tm,∆tm , xq converges almost everywhere to ηpSpp, xq, xq. Since η is bounded, Lebesgue's dominated convergence theorem ensures that the convergence holds in L q pQ T q for all q P r1, `8q. The reconstruction η Em,∆tm of the mobility is also uniformly bounded, so we have just to show that η Tm,∆tm ´ηEm,∆tm L 1 pQ T q Ñ 0 as m Ñ `8. Letting ∆ Kσ " K X ∆ σ denote the half-diamond cell, we have for σ P E i,m , 1 ď n ď N m , could be proven to converge to 0 almost everywhere in Q i,T , then it would also be the case for r Em,∆tm and R i,m as m Ñ `8, thanks to Lebesgue's dominated convergence theorem. Now, it follows from (3.5.12a) and from the elementary geometric relation

η Tm,∆tm ´ηEm,∆tm L 1 pQ T q ď Nm ÿ n"1 ∆t n m ÿ KPTm ÿ σPE K m ∆ Kσ |η K ps n K q ´ηn σ | ď Nm ÿ n"1 ∆t n m ÿ σPEm m ∆σ |η K ps n K q ´ηKσ ps n Kσ q| ď I ÿ i"1 R i,m `RΓ,m , where R i,m " Nm ÿ n"1 ∆t n m ÿ σPE i,m m ∆σ |η K ps n K q ´ηKσ ps n Kσ q|, R Γ,m " Nm ÿ n"1 ∆t n m ÿ σPE Γ,m m ∆σ |η K ps n K q ´ηKσ
m ∆σ " a σ d d 2 σ ď 4 a σ d h 2 Tm , that q E i,m ,∆tm 2 
L 2 pQ i,T q " Nm ÿ n"1 ∆t n m ÿ σPE i,m m ∆σ |Θ i pp n K q ´Θi pp n Kσ q| 2 ď 4C 3 d h 2 Tm .
Therefore, q E i,m ,∆tm Ñ 0 in L 2 pQ i,T q, thus also almost everywhere up to extraction of a subsequence. This provides the desired result.

Identification of the limit

So far, we have exhibited some "limit" value p for the approximate solution p Tm,∆tm in Proposition 3.6.1. Next, we show that the scheme is consistent with the continuous problem by showing that any limit value is a weak solution. where we have set

A m " Nm ÿ n"1 ÿ KPTm m K φ K ps n K ´sn´1 K qϕ n´1 K , (3.6.10a) B m " Nm ÿ n"1 ∆t n m ÿ σPEm a σ λ σ η n σ pϑ n K ´ϑn Kσ qpϕ n´1 K ´ϕn´1 Kσ q. (3.6.10b)
The quantity A m in (3.6.10a) can be rewritten as Let us now turn our attention to the quantity B m of (3.6.10b), which can be split into

A m " ´Nm ÿ n"1 ∆t n m ÿ KPTm m K φ K s n K ϕ n K ´ϕn´1 K ∆t n m ´ÿ KPTm m K φ K s 0 K ϕ 0 K " ´żż
B m " B 1 m `B2 m using B 1 m " Nm ÿ n"1 ∆t n m ÿ σPEm a σ λ σ η n σ pp n K ´pn Kσ qpϕ n´1 K ´ϕn´1 Kσ q, B 2 m " Nm ÿ n"1 ∆t n m ÿ σPEm a σ λ σ η n σ pψ K ´ψKσ qpϕ n´1 K ´ϕn´1 Kσ q.
Consider first the convective term B 2 m . It follows from the definition of the discrete gravitational potential

ψ K " ´ g ¨xK , ψ σ " ´ g ¨xσ , K P T m , σ P E D ext,m
and from the orthogonality of the mesh that

ψ K ´ψKσ " d σ g ¨νKσ , @σ P E K zE N ext , K P T m .
Therefore, B 2 m can be transformed into The capillary diffusion term B 1 m appears to be the most difficult one to deal with. Taking inspiration from [START_REF]Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations[END_REF], we introduce the auxiliary quantity

B 2 m " Nm ÿ n"1 ∆t n m ÿ σPEm m ∆σ λ σ η n σ d ϕ n´1 K ´ϕn´1 Kσ d σ n Kσ ¨ g " ´żż Q T λ Em η Em,∆tm
r B 1 m " I ÿ i"1 r B 1 i,m " I ÿ i"1 Nm ÿ n"1 ∆t n m ÿ σPE i,m a σ a λ i η n σ pΘ i pp n K q ´Θi pp n Kσ qqpϕ n´1 K ´ϕn´1 Kσ q.
Analogously to [START_REF]The asymmetric gradient discretisation method[END_REF], we can define a piecewise-constant vector field Therefore, to finish the proof of Proposition 3.6.3, it only remains to check that B 1 m and r B 1 m share the same limit. To this end, we observe that, by the triangle inequality, we have

|B 1 m ´r B 1 m | ď R Γ,m `I ÿ i"1 R i,m , (3.6.15) 
where

R Γ,m " Nm ÿ n"1 ∆t n m ÿ σPE Γ,m a σ λ σ η n σ |p n K ´pn Kσ ||ϕ n´1 K ´ϕn´1 Kσ |, R i,m " Nm ÿ n"1 ∆t n m ÿ σPE i,m a σ a λ i η n σ |Θ i pp n K q ´Θi pp n Kσ q ´aλ i η n σ pp n K ´pn Kσ q||ϕ n´1 K ´ϕn´1 Kσ |.
Applying the Cauchy-Schwarz inequality and using Proposition 3.5.1, we find

|R Γ,m | 2 ď C 1 Nm ÿ n"1 ∆t n m ÿ σPE Γ,m a σ λ σ η n σ |ϕ n´1 K ´ϕn´1 Kσ | 2 ď 2C 1 T ∇ϕ 2 8 max i λ i µ m d´1 pΓqh Tm , so R Γ,m Ñ 0 as m Ñ `8.
Besides, we also apply the Cauchy-Schwarz inequality to R i,m in order to obtain

|R i,m | 2 ď C 1 Nm ÿ n"1 ∆t n m ÿ σPE i,m a σ λ i ˇˇa η n σ ´ar η n σ ˇˇ2 ˇˇϕ n´1 K ´ϕn´1 Kσ ˇˇ2 ď dλ i C 1 ∇ϕ 2 8 Nm ÿ n"1 ∆t n m ÿ σPE i,m m ∆σ |η n σ ´r η n σ | ,
where we have set

r η n σ " $ ' & ' % η i ps n K q if p n K " p n Kσ , " Θ i pp n K q ´Θi pp n Kσ q ? λ i pp n K ´pn Kσ q  2 otherwise. Define r η Em,∆tm pt, xq " # r η n σ if pt, xq P pt n´1 m , t n m s ˆ∆σ , σ P Ť I i"1 E i,m , 0 otherwise.
Reproducing the proof of Lemma 3.6.2, we can show that r η Em,∆tm ÝÑ mÑ8 ηpSpp, xqq in L q pQ T q, 1 ď q ă `8.

Therefore, R i,m Ñ 0 as m Ñ `8. Putting things together in (3.6.15), we conclude that B 1 m and r B 1 m share the same limit, which completes the proof of Proposition 3.6.3.

Chapter 4

Numerical strategies to solve Richards' equation in heterogeneous media

The text of this chapter is a reproduction of [START_REF] Fuhrmann | On several numerical strategies to solve Richards' equation in heterogeneous media with Finite Volumes[END_REF].

Introduction

The Richards equation [START_REF]Capillary conduction of liquids through porous mediums[END_REF] is a popular model for underground water flow in the vadose zone. It consists in a simplification of the incompressible immiscible two-phase Darcy flow model, assuming that the pressure of the gas phase is known and equal to the atmospheric pressure, see for instance [START_REF]Introduction to modeling of transport phenomena in porous media[END_REF]. Besides, Richards' equation also attracts an important interest from scientists as it provides a relatively simple model that already accounts for many difficulties occurring in complex porous media flows, like degeneracies when one phase (air or water) vanishes, or strong material heterogeneities with severe changes in the physical parameters at the interface between different rocks. We formalize mathematically in §4.1.1 the problem under consideration in this chapter, namely, Richards' equation in heterogeneous domains, before discussing on possible numerical strategies in §4.1.2.

The Richards equation in heterogeneous domains

Let Ω Ă R d , 1 ď d ď 3, be a connected open polyhedral domain, representing the porous matrix in which water flows. The porous matrix is assumed to be heterogeneous, and we particularly focus on severe variations of the rock characteristics at the interface between different rock-types. More precisely, we assume that there exist polyhedral connected and disjointed open subsets pΩ i q 1ďiďI such that Ω "

ď 1ďiďI Ω i .
Each subdomain Ω i represents a rock-type, and is assumed to be homogeneous for simplicity. We denote by Γ i,j " Ω i X Ω j , 1 ď i, j ď I, the interface between Ω i and Ω j and by Γ "

ď 1ďi‰jďI Γ i,j
the set containing all these interfaces. Let T ą 0 be an arbitrary finite time horizon, then Richards' equation in Q i,T " p0, T q ˆΩi writes φ i B t s `∇ ¨v " 0, 3) links the saturation to the pressure. In the above system, φ i stands for the porosity of the i-th rock and λ i ą 0 for its intrinsic permeability (isotropy of the porous medium is assumed here), while stands for the water density which is assumed to be constant, and g denotes the gravity vector. The mobility η i psq is nonnegative and nondecreasing with respect to the saturation, while the function S i relating the water pressure and saturation is nondecreasing and takes its values in r0, 1s. In accordance with the classical models of the literature -see §4.4.1.3 for the precise description of the models to be used in practice in the numerical simulations -we assume that water is always mobile, i.e., that η i pS i ppqq ą 0 for all p P R. Water becomes immobile in the dry asymptote, i.e. lim pÑ´8 η i pS i ppqq " 0, leading to a degeneracy of hyperbolic type. On the other hand, positive pressures correspond to saturated regimes, i.e. S i ppq " S i p0q for all p ě 0, leading to a degeneracy of elliptic type. At the interface Γ i,j , pressure and flux are continuous. More precisely, denote by p i the trace at p0, T q ˆΓi,j of the pressure p | Ω i in Q i,T , and by F i the trace at p0, T q ˆΓi,j of the flux T , then the transmission conditions across Γ i,j write v i ¨νi `vj ¨νj " 0, (4.1.4)

F | Ω i in Q i,
p i ´pj " 0, (4.1.5)
where ν i (resp. ν j ) denotes the normal to Γ i,j outward w.r.t. Ω i (resp. Ω j ). Note that since the pressure is continuous, and since S i ‰ S j in general, the saturation is discontinuous across Γ i,j . The pressure continuity (4.1.5) has to be relaxed in the case where the water mobility could vanish for finite p. We refer for instance to [START_REF]Analysis of oil trapping in porous media flow[END_REF][START_REF]Two-phase flows involving capillary barriers in heterogeneous porous media[END_REF][START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF] for formulations with such relaxed pressure continuity conditions at the interfaces. Let us stress that our work can be extended without further difficulties to this more involving setting. Concerning the boundary conditions, the external boundary BΩ, the outward normal of which being denoted by ν, is split into a portion called Γ D where a constant Dirichlet boundary condition is imposed, and Γ N " BΩzΓ D where a Neumann boundary condition is fixed, that is, v ¨ν " q N on p0, T q ˆΓN , (4.1.6)

p " p D on p0, T q ˆΓD . (4.1.7)

Finally, the initial saturation profile is prescribed, sp0, xq " s 0 pxq in Ω. 

Motivation and positioning of our work

Richards' equation is interesting in itself for modeling the infiltration of water in the near subsurface. This motivated the development of many numerical approaches with the aim of being robust while preserving accuracy, especially with respect to mass conservation. For numerical schemes approximating the solutions to Richards equation, we refer for instance to [START_REF]A general mass-conservative numerical solution for the unsaturated flow equation[END_REF] for finite differences, to [START_REF] Wriggers | A control volume finite element approach to NAPL groundwater contamination[END_REF] for control volume finite elements, to [START_REF]Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies[END_REF][START_REF]The finite volume method for Richards equation[END_REF] for two-point flux approximation (TPFA) finite volumes and to [START_REF] V -D | A gradient scheme for the discretization of the Richards equation, in Finite volumes for complex applications[END_REF][START_REF]Convergence of MPFA on triangulations and for Richards' equation[END_REF][START_REF]Second-order accurate finite volume schemes with the discrete maximum principle for solving Richards' equation on unstructured meshes[END_REF] for more advanced finite volume methods, to [START_REF]Mixed finite elements and Newton-type linearizations for the solution of Richards' equation[END_REF][START_REF]Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation[END_REF][START_REF]Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media[END_REF] for mixed finite elements, or to [START_REF]Local discontinuous Galerkin approximations to Richards' equation[END_REF] for discontinuous Galerkin approaches. The above reference list is far from being exhaustive, and we refer to [START_REF]Numerical solution of Richards' equation: A review of advances and challenges[END_REF] for a review. The problem being nonlinear and degenerate, an important part of the research effort has been assigned to the design of efficient iterative linearization procedures. Two main approaches then emerge: a first one based on (modified) Picard type fixed point strategies, and second one relying on Newton's method. Suitably designed Picard iteration based methods are known to enjoy robustness at the price of a mere linear convergence speed, see for instance [START_REF]A general mass-conservative numerical solution for the unsaturated flow equation[END_REF]107,[START_REF]Mixed finite elements for the Richards' equation: linearization procedure[END_REF][START_REF]A robust and efficient linearization scheme for doubly nonlinear and degenerate parabolic problems arising in flow in porous media[END_REF]. On the other hand, a crude Newton's algorithm may face severe difficulties to converge, see for instance [START_REF]Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[END_REF]107] for comparison of different approaches. This motivated the introduction of methods based on variable switch [START_REF]On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF][START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF], nested Newton loops [START_REF]A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF], or nonlinear preconditioning techniques [START_REF]Acceleration of Newton's method using nonlinear Jacobi preconditioning[END_REF] to increase robustness. Our approach, which is described in §4.2.3 and [START_REF]Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF], relies on the so-called parametrization approach introduced in [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF][START_REF]Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media[END_REF], which can be interpreted as a generalization of the variable switch approach as well as a (diagonal) nonlinear preconditioning technique.

The second main difficulty to be addressed is the strong heterogeneity of the domain Ω with discontinuous physical characteristics across Γ. Since the pressure is continuous, cf. (4.1.5), schemes that are based on formulations involving the Kirchhoff transform θ i " ş p 0 η i pS i paqqda, which is known to be a powerful tool for the mathematical [START_REF]On nonstationary flow through porous media[END_REF] and numerical [START_REF]The finite volume method for Richards equation[END_REF][START_REF]Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equation[END_REF][START_REF]Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media[END_REF] study of Richards equation, will require a specific treatment at the interfaces to maintain the continuity of the pressure. We refer for instance to [START_REF]Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF]Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities[END_REF][START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF][START_REF]Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures[END_REF][START_REF]Numerical methods for flows in a porous medium with internal boundary[END_REF][START_REF] Dodge | Implicit hybrid upwinding for two-phase flow in heterogeneous porous media with buoyancy and capillarity[END_REF] for methods built in this spirit. A more natural approach consists in using discrete fluxes expressed directly in the form (4.1.2), with degrees of freedom localized on the interface Γ to enforce the continuity of the pressure, as done for instance in [START_REF]A discontinuous Galerkin method for two-phase flow in a porous medium enforcing Hpdivq velocity and continuous capillary pressure[END_REF][START_REF] Fuhrmann | Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media[END_REF][START_REF] Lions | Gradient schemes for two-phase flow in heterogeneous porous media and richards equation[END_REF][START_REF]Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures[END_REF][START_REF]Interface condition and linearization schemes in the Newton iterations for two-phase flow in heterogeneous porous media[END_REF]. Let us also mention [START_REF]Splitting-based domain decomposition methods for two-phase flow with different rock types[END_REF][START_REF]Space-time domain decomposition for two-phase flow between different rock types[END_REF][START_REF]A linear domain decomposition method for partially saturated flow in porous media[END_REF] where the authors solve the transmission condition (4.1.4)-(4.1.5) thanks to an iterative procedure stemming from domain decomposition. In the case of cell centered methods, like for instance TPFA finite volumes, convergence can also be assessed without any specific treatment of the interface, as for example done in our recent contribution [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF]. However, the pressure continuity is only imposed at convergence w.r.t. grid refinement, leading to possible loss in the accuracy. Therefore, specific treatments of the interface are needed. As highlighted in [START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF], the specific treatment of the interface Γ may have a major impact on the Newton's method behavior. The purpose of this chapter is to compare several approaches described in §4.3 to deal with the interface transmission condition (4.1.4)-(4.1.5) and to depict their pros and cons when confronted to different physical settings described in §4.4.

Problem discretization

Space-time discretization

Let pT , E q be a finite-volume space discretization of Ω satisfying the classical orthogonality condition required for the consistency of the Two Point Flux Approximation (TPFA), see [START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF]Definition 9.1] for more details. Here T denotes the set of cells and E the set of faces. We assume that the mesh is consistent with the geometry in the sense that, for all K P T , there exists i P t1, . . . , Iu such that K Ă Ω i . We denote by T i " tK P T | K Ă Ω i u. Then for all f P tS, λ, φ, . . . u that depends on the rock-type, we set f K " 

f i if K P T i .
d σ " # |x K ´xL | if σ " K|L P E int , d K,σ if σ P E K X pE D ext Y E N ext q (4.2.1)
where, for all pair pK, σq such that σ P E K , d K,σ " |x K ´xσ |, with x K the cell center and x σ the face center, which is chosen as the intersection of rx K , x L s with σ. Moreover, for each cell K, we denote by m K its Lebesgue measure, and by m σ the measure of a face σ. The time discretization is given by a vector of values pt n q 0ďtďN with 0 " t 0 ă t 1 ă ¨¨¨ă t N " T , and we denote by t n ´tn´1 " ∆t n , 1 ď n ď N , the time-steps.

Upstream TPFA finite-volume scheme

The two-point flux approximation of a diffusive flux, F Kσ , related to the gradient of an unknown w and coming out a cell K through the face σ, is defined by

F Kσ " a σ pw Kσ ´wK q,
where the transmissivity on the face σ P E is defined by

a σ " m σ d σ
and the mirror value w Kσ by

w Kσ " $ ' & ' % w L if σ " K|L P E int , w K if σ P E K X E N ext , w σ if σ P E K X E D ext .
The saturation capillary-pressure relationship (4.1.3) and the volume balance (4.1.1) are discretized into

m K φ K s n K ´sn´1 K ∆t n `ÿ σPE K F n Kσ " 0, K P T i , n ě 1, (4.2.2a) s n K ´SK pp n K q " 0, K P T i , n ě 1, (4.2.2b)
where the flux

F n Kσ " $ & % a σ λ K η n σ rϑ n K ´ϑn Kσ s if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n t n´1 dt ż σ q N dγ, if σ P E K X E N ext , (4.2.3)
is an approximation of ş σ v n ¨νK,σ dγ, with the hydraulic head being defined as

ϑ n " p n `ψ " p n ´ g ¨x.
In (4.2.3), the face mobilities are upwinded in the following way

η n σ " # η K ps n K q if ϑ n K ´ϑn Kσ ě 0, η Kσ ps n Kσ q otherwise. (4.2.4)
The initial condition (4.1.8) is discretized into 

s 0 K " 1 m K ż K s 0 , @K P T i , ( 4 

Switch of variable and parametrization technique

Let us now detail the resolution strategy for problem (4.2.2b)-(4.2.6). A natural approach to solve this nonlinear system is to choose the pressure pp K q KPT as primary unknown and to solve it via an iterative method such as Newton's one. However, the pressure variable is known to be an inefficient choice for dry soils s ! 1, because of the degeneracy of Richards' equation, where schemes in which saturation is the primary variable outperform. On the other hand, the knowledge of the saturation is not sufficient to describe the pressure curve in saturated regions where the pressure-saturation relation cannot be inverted. This motivated the design of schemes which introduce a switch of variable [START_REF]On the primary variable switching technique for simulating unsaturated-saturated flows[END_REF][START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF]. Our approach is based on the technique proposed by Brenner and Cancès [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF], in which a third generic variable τ is introduced to become the primary unknown of the system. Then, removing the subscript i related to the rock-type for convenience, the idea is to choose a parametrization of the graph tp, Sppqu, i.e., to construct two monotone functions

s : I Ñ rs rw , 1 ´srn s, p : I Ñ R,
such that spτ q " Spppτ qq, 0 ă s 1 pτ q `p1 pτ q ă 8, (4.2.7) for all τ P I Ă R. The latter non-degeneracy assumption ensures that for all p P R, there exists a unique τ P R such that pp, Sppqq " pppτ q, spτ qq. Such a parametrization is not unique, for instance we can choose I " R, p " Id which is equivalent to solving the system always in pressure, but this is not recommended as seen before. Here, we set I " R and

spτ q " $ ' & ' % Spκpτ ´τ˚q `p˚q if τ ď τ ˚, s rw `τ p1 ´srn ´srw q if τ ˚ď τ ď τ s , Spp s `ςpτ ´τs qq if τ ě τ s , (4.2.8a) ppτ q " $ ' & ' % κpτ ´τ˚q `p˚i f τ ď τ ˚,
S ´1ps rw `τ p1 ´srn ´srw qq if τ ˚ď τ ď τ s , p s `ςpτ ´τs q if τ ě τ s .

(4.2.8b)

In the above formulas, pp s , s s q " pppτ s q, spτ s qq is referred later on as the switching point, at which one passes from τ behaving as the saturation to τ behaving as the pressure (recall that Newton's iterations are not sensitive to linear changes of variables). Another switch is incorporated at pp ˚, s ˚q " pppτ ˚q, spτ ˚qq to improve Newton's robustness in presence of heterogeneities. The parameter τ ˚is chosen so small that the solution pp n K , s n K q KPT to the scheme is always larger that pp ˚, s ˚q. The parameters κ and ς are chosen so that p is C 1 , leading to the expressions κ "

1 ´srn ´srw

S 1 pp `q
, and ς "

1 ´srn ´srw S 1 pp s ´q , (4.2.9)
where S 1 pp `q and S 1 pp ś q respectively denote the limits of S 1 ppq as p tends to p ˚and p s from above and below. Then if S is C 1 , so is s " S ˝p. When S is convex then concave, as in the Brooks-Corey and van Genuchten-Mualem settings detailed in §4.4.1.3, then choosing τ s such that pp s , s s q is the inflection point of the graph of S ensures that both p and the restriction of s to rτ ˚, `8q are concave. Moreover, if S belongs to C 2 pRq as in the van Genuchten-Mualem setting, then so do the restrictions of p and s to pτ ˚, `8q. An example of parametrized curves p, s corresponding to van Genuchten-Mualem pressure-saturation laws is shown in 4.2 . The green dot indicate the value for τ " τ ˚and the magenta one τ " τ s .

Applying the parametrization to our equations, we obtain the parametrized system:

m K φ K s K pτ n K q ´sK pτ n´1 K q ∆t n `ÿ σPE K F n Kσ " 0, K P T i , n ě 1, (4.2.10) 
where the fluxes (4.2.3) become

F n Kσ " $ ' & ' % a σ λ K η n σ rϑ K pτ n K q ´ϑKσ pτ n Kσ qs if σ P E K X pE int Y E D ext q, 1 ∆t n ż t n`1 t n dt ż σ q N dγ if σ P E K X E N ext , (4.2.11) 
with ϑ K pτ q " p K pτ q `ψK " p K pτ q ´ g ¨xK , (4.2.12)

and the upwinded face mobilities turn into

η n σ " # η K ps K pτ n K qq if ϑ K pτ n K q ´ϑKσ pτ n Kσ q ě 0, η Kσ ps K pτ n Kσ qq otherwise. (4.2.13) 
Finally, we rewrite the initial condition as

τ 0 K " s ´1 K ˆ1 m K ż K s 0 ˙, @K P T i , (4.2.14) 
and the Dirichlet boundary condition as

τ D σ " p ´1 K ˆ1 m σ ż σ p D ˙, @σ P E D ext . (4.2.15) 
So far, We have not specified yet how the interface fluxes F n Kσ for σ " E Γ are treated. This specification is the purpose of §4.3. In the case of a homogeneous domain where Γ " H, the resulting system F n pτ n q " 0 which is fully equivalent to (4.2.2b)-(4.2.6), admits a unique solution τ n (for details see [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF]). Remark 4.2.1. The practical resolution of the nonlinear system relies on Newton's method. In the homogeneous setting, the method we use is the one that is presented in [18, Section 2] with some differences. The first one concerns the approximation of the k r law by the van Genuchten-Mualem model, that we explain in §4.4.1.3. Another one is related to the values of τ : here I " R, so no projection of τ after each Newton iteration to avoid τ ă s rw is required. Then, when we treat dry zones, we risk to manage a singular Jacobian matrix. In order to avoid this we impose that k r ps rw q " 10 ´33 when evaluating J to allow the pressure-gravity motor not to be zero. Finally, to help Newton's algorithm recover the good direction when the 8 norm of the residual exceeds 10 2 , a relaxation is activated with 0.3 as relaxing constant.

Numerical treatment of the interface

This section is devoted to the presentation of different strategies to approximate the transmission conditions (4.1.4)-(4.1.5) across the faces σ P E Γ located at an interface between to different rocktypes. We propose four schemes, referred to as methods A to D. For the last one, two different iterative Newton-based solvers are proposed.

Method A

This method basically consists in treating the interfaces as standard bulk faces, leading to the formula

F n Kσ " a σ λ σ η n σ rp K pτ n K q ´pL pτ n L q ´ g ¨px K ´xL qs, σ " K|L P E Γ , (4.3.1) 
where the face permeabilities pλ σ q σPE Γ are given by

λ σ " λ K λ L d σ λ K d L,σ `λL d K,σ , σ " K|L P E Γ , (4.3.2) 
and the upwind face mobilities turn into

η n σ " # η K ps K pτ n K qq if p K pτ n K q ´pL pτ n L q ´ g ¨px K ´xL q ě 0, η L ps L pτ n L qq otherwise. (4.3.3) 
Therefore, the continuity of the normal flux (4.1.4) is exactly transposed into the local conservation condition

F n Kσ `F n Lσ " 0, σ " K|L P E Γ , n ě 1. (4.3.4) 
On the other hand, p n K ‰ p n L in general. The pressure continuity (4.1.5) is recovered asymptotically as d σ tends to 0 from (4.3.1). More precisely, assuming that |F n Kσ | ď Cm σ , then we deduce from (4.3.1) that |p K pτ n K q ´pL pτ n L q| ď Cd σ , where the constant C has been updated and further depends on λ σ , max i }η i ˝Si } 8 and g.

The scheme (4.2.10)-(4.2.13), complemented by the interface fluxes (4.3.1)-(4.3.3), has been shown in [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF] to be well-posed in the sense that the corresponding nonlinear system admits a unique solution pτ n K q KPT . Further, the rigorous convergence of the scheme as the mesh size and the time-steps tend to 0 is also established. However, the numerical results presented in [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF] (as well as those presented in what follows) show that the expected first order convergence can be lost in presence of heterogeneities. Methods B, C, and D have been designed as remedies to this loss of accuracy, which takes its origin in the poor approximation of the pressure continuity (4.1.5) by Method A.

Method B

This method, introduced in [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF] consists in adding two thin cells, denoted by I σ,K and I σ,L , of thickness δ B ! d σ on both sides of each face σ " K|L P E Γ located at a rock-type interface, as depicted in Figure 4.2. This leads to the adjunction of two additional unknowns τ n σ,K and τ n σ,L per interface σ " K|L P E Γ , that will allow for a more precise approximation of the pressure continuity condition (4.1.5). Define pF n Kσ q σPE Γ to be used in (4.2.10) by setting, for σ " K|L P E Γ and n ě 1,

F n Kσ " a σ,K λ K η n σ,K rp K pτ n K q ´pK pτ n σ,K q ´ g ¨px K ´xσ,K qs, (4.3.5a) F n Lσ " a σ,L λ L η n σ,L rp L pτ n L q ´pL pτ n σ,L q ´ g ¨px L ´xσ,L qs, (4.3.5b) 
where we have set

a σ,K " m σ d K,σ ´δB {2 , x σ,K " x K `dK,σ ´δB {2 d σ px L ´xK q, (4.3.6a) 
a σ,L " m σ d L,σ ´δB {2 , x σ,L " x L `dL,σ ´δB {2 d σ px K ´xL q, (4.3.6b) 
and

η n σ,K " # η K ps K pτ n K qq if p K pτ n K q ´ g ¨xK ě p K pτ n σ,K q ´ g ¨xσ,K , η K ps K pτ n σ,K qq otherwise.
Two equations are required to determine τ n σ,K and τ n σ,L . These equations are local conservation laws in the thin cells I σ,K and I σ,L . Denote by m σ,K and m σ,L the Lebesgue measure of the thin cells I σ,K and I σ,L respectively (m Kσ " m σ δ B for Cartesian grids as depicted in Figure 4.2), then pτ n Kσ , τ n Lσ q are determined by

m σ,K φ K s K pτ n σ,K q ´sK pτ n´1 σ,K q ∆t `F n σ ´F n Kσ " 0, (4.3.7a) 
m σ,L φ L s L pτ n σ,L q ´sL pτ n´1 σ,L q ∆t ´F n σ ´F n Lσ " 0, (4.3.7b) 
where F n σ is the flux from I σ,K to I σ,L defined by

F n σ " m σ δ B λ σ η n σ rp K pτ n σ,K q ´pL pτ n σ,L q ´ g ¨px σ,K ´xσ,L qs, (4.3.8) 
with λ σ given by (4.3.2) and

η n σ " # η K ps K pτ n σ,K qq if p K pτ n σ,K q ´ g ¨xσ,K ě p L pτ n σ,L q ´ g ¨xσ,L , η L ps L pτ n σ,L qq otherwise. (4.3.9) 
Assuming that |F n σ | ď Cm σ , then we deduce from (4.3.8) that |p K pτ n σ,K q ´pL pτ n σ,L q| ď Cδ B , improving the pressure continuity with respect to Method A since δ B ! d σ . On the other hand, summing (4.3.7a) and (4.3.7b) yields

|F n Kσ `F n Lσ | ď C m σ δ B ∆t ÝÑ δ B Ñ0 0. (4.3.10) 
Note that even if (4.3.10) can be interpreted as a defect in the approximation of (4.1.4), Method B is still conservative since we keep track of this defect thanks to the discrete conservation laws (4.3.7a)-(4.3.7b). The volume m K of the cell K is updated into

m K Ð m K ´ÿ σPE K XE Γ m σ,K (4.3.11) 
in (4.2.10) for all K having interface edges. 

Method C

This method takes inspiration from [START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF][START_REF]Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media[END_REF] and consists in adding only one thin cell, I σ , of thickness δ C ! d σ , which overlaps the rock-type interface as shown in Figure 4.3.

For σ " K|L P E Γ , we denote by m σ,K and m σ,L the Lebesgue measures of I σ,K :" I σ X K and I σ,L :" I σ X L respectively. The system is enriched with only one extra unknown τ n σ per face σ P E Γ , in opposition to Method B where two additional unknowns where needed. The new cell I σ is shared by two subcells I σ,K and I σ,L corresponding to different lithologies. To enforce one single pressure in the cell, we introduce a second parametrization and define monotone functions

ω σ,K , ω σ,L with ω 1 σ,K `ω1 σ,L ą 0 such that p K pω σ,K pτ qq " p L pω σ,L pτ qq, @τ. (4.3.12) 
As for the parametrization pp, sq of the graph of S, an infinite number of admissible pω σ,K , ω σ,L q satisfying (4.3.12) can be built. We further investigate two choices. The first possibility, named with exponent 1, consists in setting ω 1 σ,K pτ q " τ, ω 1 σ,L pτ q " p ´1 L ˝pK pτ q, (4. Our second proposition, named with exponent 2, is tailored to maintain control on the derivatives of ω 2 σ,K and ω 2 σ,L . To this end, keeping the same orientation K|L of the interface σ, we set 

ω 2 σ,K pτ q " # p ´1 K ˝pL pτ q if τ ď β L , τ `βK ´βL if τ ě β L . (4.3.14a) ω 2 σ,L pτ q " # τ if τ ď β L , p ´1 L ˝pK pτ `βK ´βL q if τ ě β L . (4.3.14b) 
the parameters β K and β L are uniquely determined by the conditions thanks to (4.3.12). The discrete volume conservation on I σ then reads where the fluxes F n Kσ and F n Lσ from K to I σ and from L to I σ are given by

p K pβ K q " p L pβ L q, p 1 K pβ K q " p 1 L pβ L q, since p K ,
m σ,K φ K s K pω σ,K pτ n σ qq ´sK pω σ,K pτ n´1 σ qq ∆t n `mσ,L φ L s L pω σ,L pτ n σ qq ´sL pω σ,L pτ n´1 σ qq ∆t n ´F n Kσ ´F n Lσ " 0, (4.3.16) 
F n Kσ " m σ d K,σ λ K η n σ,K rp K pτ n K q ´pn σ ` g ¨px K ´xσ qs, (4.3.17a) 
F n Lσ " m σ d L,σ λ L η n σ,L rp L pτ n L q ´pn σ ` g ¨px L ´xσ qs, (4.3.17b) 
with

η n σ,K " # η K ps K pτ n K qq if p K pτ n K q ´ g ¨xK ě p n σ ´ g ¨xσ , η K ps K pω σ,K pτ n σ qqq otherwise. (4.3.18) 
In (4.3.17)-(4.3.18), p n σ is given by (4.3.15), which should be thought as the discrete counterpart to the pressure continuity (4.1.5) across the interface. Concerning the continuity of the fluxes (4.1.4), it follows from (4.3.16) that

|F n Kσ `F n Lσ | ď C m σ δ C ∆t ÝÑ δ C Ñ0 0, (4.3.19) 
meaning that (4.1.4) is recovered only asymptotically. Nevertheless, with δ C small, flux continuity is captured in an accurate way. Moreover, as for Method B, Method C is locally conservative if one corrects the cell size m K as prescribed by (4.3.11).

Method D

The last method we propose, referred to as Method D, consists in enforcing both the pressure continuity and the flux continuity across the interface, at the price of one edge unknown τ n σ on each σ P E Γ on the interface between different rocks. Such an approach has already been proposed for instance in [START_REF]Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF][START_REF]Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities[END_REF][START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF]. Letting δ C tend to 0 in Method C (cf. Figure 4.8, and more precisely in (4.3.16)), one recovers the flux continuity

F n Kσ `F n Lσ " 0, σ " K|L P E Γ , (4.3.20) 
with F n Kσ and F n Lσ respectively defined by (4.3.17) and (4.3.17b), whereas pressure continuity is still ensured by (4.3.15). We propose then two numerical strategies, later referred to as Methods D 1 and D 2 to solve the resulting nonlinear system. With the rock-type face unknowns the obtained system is made of #T `#E Γ equations

Fpτ n T , τ n E Γ q " " F T pτ n T , τ n E Γ q F E Γ pτ n T , τ n E Γ q  " 0 (4.3.21)
where τ n T " pτ n K q KPT , τ n E Γ " pτ n σ q σPE Γ , and where F T corresponds to the volume conservation laws (4.2.10) and F E Γ to the flux conservation across the interfaces (4.3.20).

In what follows, we are interested in the resolution of the system (4.3.21) at a prescribed time-step n. For notation convenience, the superscript n is dropped in this section. Denote by pτ T , τ E Γ q ě0 a sequence of approximation of pτ T , τ E Γ q given by iterations of Newton's method. The Jacobian matrix of F at pτ T , τ E Γ q, ě 0, can be split into four blocks as

J F pτ T , τ E Γ q " " A B C D  , (4.3.22) 
where

A " BF T Bτ T pτ T , τ E Γ q, B " BF T Bτ n E Γ pτ T , τ E Γ q, (4.3.23a) 
C " BF E Γ Bτ n T pτ T , τ E Γ q, D " BF E Γ Bτ n E Γ pτ T , τ E Γ q. (4.3.23b) 
Then the matrix D is diagonal with negative diagonal entries because of the monotonicity of

F n Kσ , F n
Lσ with respect to τ n σ that can be deduced from the monotonicity of p K , p L and ω σ,K , ω σ,L . Therefore, D can be inverted for free.

A Newton iteration to solve (4.3.21) then computes an increment δ " pδ T , δ E Γ q T that solves

J F pτ T , τ E Γ qδ " ´Fpτ T , τ E Γ q " ´"F T pτ T , τ E Γ q F E Γ pτ T , τ E Γ q  " ´"F T F E Γ  , or equivalently pA ´B pD q ´1C qδ T " ´F T `B pD q ´1F E Γ , (4.3.24a) 
D δ E Γ " ´F E Γ ´C δ T . (4.3.24b) 
After solving the linear system (4.3.24a) of size #T ˆ#T for δ T , inferring δ E Γ by (4.3.24b), the unknowns are updated by τ `1 " τ `δ .

Method D 2 : face unknowns elimination thanks to a bisection method

We present here an alternative approach to solve the nonlinear system (4.3.21). The strategy consists here in computing increments of the cell unknowns via Newton's method and updating the face unknowns by solving exactly the flux conservation (4.3.20) on each interface and at each Newton iteration . More specifically, instead of (4.3.24), the algorithm reads

pA ´B pD q ´1C qδ T " ´F T `B pD q ´1F E Γ , (4.3.25a) 
τ `1 T " τ T `δ T , (4.3.25b 
)

F E Γ pτ `1 T , τ `1 E Γ q " 0. (4.3.25c) 
In the last step, we solve the nonlinear equation (4.3.25c) for τ `1 E Γ with a known value of τ `1 T . This can be achieved with the help of a bisection method.

We now further detail how to solve (4.3.25c) knowing pτ K q KPT . For each σ P E Γ and for all outer Newton loop iteration , we build a sequence pϑ ,k σ q kě0 " pp ,k σ ´ g ¨xσ q kě0

approximating the interface hydraulic head at the interface. More precisely, define

ϑ K " p K pτ K q ´ g ¨xK (4.3.26) 
for K P T and

F K,σ pϑ σ q " m σ d K,σ λ K η σ,K pϑ σ qrϑ K ´ϑσ s, (4.3.27a) 
F L,σ pϑ σ q " m σ d L,σ λ L η σ,L pϑ σ qrϑ L ´ϑσ s, (4.3.27b) 
for σ " K|L P E Γ , with

η σ,K pϑ σ q " # η K ˝sK ˝p´1 K pϑ K ` g ¨xK q if ϑ σ ď ϑ K , η K ˝sK ˝p´1 K pϑ σ ` g ¨xσ q otherwise (4.3.28)
and a similar definition for η σ,L . Then, one readily checks that F K,σ is decreasing w.r.t. ϑ σ , and that

F K,σ pminpϑ K , ϑ L qq ě 0 ě F K,σ pmaxpϑ K , ϑ L qq.
Therefore, the continuous and decreasing function G σ : R Ñ R defined by

G σ pϑ σ q " F K,σ pϑ σ q `F L,σ pϑ σ q a σ µ ´1pλ K `λL qp|ϑ K | `|ϑ L |q
vanishes at some ϑ σ P " minpϑ K , ϑ L q, maxpϑ K , ϑ L q ‰ , from which one deduces

τ σ " ω ´1 σ,K ˝p´1 K pϑ σ ` g ¨xσ q " ω ´1 σ,L ˝p´1 
L pϑ σ ` gx σ q with pω σ,K , ω σ,L q being a double parametrization as introduced in §4.3.3. Then we solve the nonlinear equation G σ pϑ σ q " 0 thanks to the classical bisection method, stopping the iterations over k when either |G σ pϑ k σ q| ă bis or |ϑ k

0 ´ϑk 1 | ă γ minp|ϑ k 0 |, |ϑ k 1 |q
with bis " 10 ´16 and γ " 10 ´15 in our simulations. We can finally remark that Method D 2 does not depend on the choice of the double parametrization.

Numerical results

We now present numerical results obtained for different test cases. In all cases, we consider a twodimensional layered domain Ω " r0, 5s ˆr´3, 0s (in meters) made up of two rock types denoted by RT0 and RT1 respectively, RT1 being less permeable than RT0. The domain Ω is partitioned into three connected subdomains: Ω 1 " r1, 4s ˆr´1, 0s, Ω 2 " r0, 5s ˆr´3, ´2s (in meters) and Ω 3 " Ωz pΩ 1 Y Ω 2 q, as depicted in Figure 4.9. 

Description of the test cases

Both filling and drainage configurations are considered along with the two classical Brooks-Corey and van Genuchten-Mualem hydraulic models. These analytical models are first used in a setting where the pressure-saturation relationship and its inverse have moderate derivatives (nonsteep cases). We then only consider the Brooks-Corey model and coefficients where the pressuresaturation dependence has sharp variations (steep cases).

Filling case

This test case has already been considered in [START_REF]A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF][START_REF]Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media[END_REF][START_REF]Algorithms for solving Richards equation for variably saturated soils[END_REF][START_REF]Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries[END_REF]. The rock-type repartition is reported in Figure 4.10. Starting from an initially dry domain Ω, where the initial capillary pressure is set to ´47.088 ¨10 5 Pa, water flows from a portion Γ N " tpx, yq | x P r1, 4s, y " 0u (in meters) of the top boundary at a constant rate of 0.5 m/day. A no-flow boundary condition is applied elsewhere. The simulation stops after 1 day.

Water flows according to the following dynamics. It starts invading the dry porous space in Ω 1 . When it reaches the interface with Ω 3 , capillary forces create a suction force on water from Ω 1 to Ω 3 . But, on the other hand, the low permeability value in RT1 is set against this water flow through Ω 3 . The simulation ends before water reaches the bottom part corresponding to Ω 2 .

Drainage case

This test case is designed as a two-dimensional extension of a one-dimensional test case proposed by [START_REF]Semianalytical solution to Richards equation for layered porous media[END_REF] and addressed in [START_REF]A nested Newton-type algorithm for finite volume methods solving Richards' equation in mixed form[END_REF][START_REF]Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries[END_REF]. We simulate a vertical drainage starting from saturated initial and boundary conditions during 105 ¨10 4 s. The initial pressure is hydro-static, that is p 0 pzq " ´ρgz. A Dirichlet boundary condition p D " 0 Pa is imposed on the bottom boundary, Γ D " tpx, yq | x P r0, 5s, y " ´3u (in meters). The rock-type distribution of Ω is shown in Figure 4.11 along with the bottom boundary condition. Note that rock types RT0 and RT1 are here reversed compared to the previous case. Thus, at the top interface between Ω 1 and Ω 3 , capillarity acts in opposition to gravity and to the evolution of the system towards a dryer configuration. The interface between Ω 2 and Ω 3 acts in the opposite way: both capillarity and gravity contribute to the drainage of the RT0 subdomain.

Hydraulic models

For two-phase problems, water saturation and capillary pressure are linked through the relation s " Sppq. Here S : R Ñ r0, 1s is nondecreasing. It satisfies Sppq " 1 ´srn if p ě p b and Sppq Ñ s rw as p Ñ ´8, with s rw (resp. s rn ) the residual wetting (resp. non-wetting) saturation. In the following, we define the effective saturation

s eff " Π r0,1s ˆs ´srw p1 ´srn q ´srw ˙, (4.4.1) 
where Π r0,1s is the projection on r0, 1s. To model the two-phase flow characteristics for both rock types, we use

• either the Brooks-Corey [START_REF]Hydraulic properties of porous media[END_REF] model:

k r psq " s 3`2{n eff , (4.4.2a) 
Sppq "

$ ' & ' % s rw `p1 ´srn ´srw q ˆ´p p b ˙´n if p ď ´pb , 1 ´srn if p ą ´pb , (4.4.2b) 
• or the van Genuchten-Mualem [START_REF]A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[END_REF] model:

k r psq " s 1{2 eff 1 ´"1 ´s1{m eff ‰ m ( 2 , (4.4.3a) 
Sppq "

$ ' & ' % s rw `p1 ´srn ´srw q " 1 `ˇˇˇξ p g ˇˇˇn  ´m if p ď 0, 1 ´srn if p ą 0, (4.4.3b) 
with m " 1 ´1{n.

In both models, we have denoted by k r p¨q the relative permeability which, with the water viscosity µ " 10 ´3 Pa ¨s, defines the water mobility thanks to ηp¨q " k r p¨q{µ. The parameters used for both rock types are given in Table 4.1 for cases using the Brooks-Corey model and in Table 4.2 for the other ones. These parameters have been chosen in such a way that water is more likely to be in RT1 than in RT0: indeed, at a fixed pressure, the water saturation is higher in RT1 than in RT0. This can be observed on the plots of the capillary-pressure functions depicted in Figures 4.12-4.14. On these figures, the relative permeability functions are also shown. Let us, in particular, remark the non-Lipschitz character of the relative permeability in the van Genuchten-Mualem case. Thus, in order to avoid infinite values for the derivative of k r psq when s Ñ 1 ´srn , we approximate it for s P rs lim , 1 ´srn s using a second degree polynomial r k r psq. This polynomial satisfies the conditions k r ps lim q " r k r ps lim q, r k 1 r ps lim q " k 1 r ps lim q, r k r p1 ´srn q " 1, where s lim is chosen so that s eff " 0.998. In the drainage case (see Table 4.9), methods B and C turn out to be more precise and to converge faster that Method A. On the other hand, Methods B and C require more Newton iterations than Method A and D that almost have the same iterations' cost. Moreover we observe that all methods require an important maximum number of iterations to converge which is greater than 50 (reaching the number of 100 iteration for the finer meshes.) Throughout all these non-steep tests we can also notice that the number of Newton iterations to reach convergence with method B is larger than for the other ones.

Let us now make one last comment on the results obtained using the two proposed double parametrizations (see Eq. (4.3.13)-(4.3.14)) in Method D: they provide the same solutions with the same accuracy in all tests. They only differ in terms of Newton iterations which slightly vary from one parametrization to the other one according to the test case.

Tests with Brooks-Corey model and steep capillary-pressure curves

The aim of this section is to evaluate the robustness of Newton's algorithm when used with the four previous methods and steep capillary-pressure curves. We use the same filling and drainage cases with Brooks-Corey model as in the previous section. We here only change the value of the parameter n which is now equal to 120 for rock-type RT0 and 60 for RT1, making the problem (4.1.1)-(4.1.8) close to a strongly-degenerate parabolic case. The corresponding capillary pressure curves are represented in Figure 4.16. The time evolution for these tests is adaptive:

• Filling case Minimal, maximal and initial time-steps are such that ∆t min " 10 ´6s, ∆t max " 10 4 s, ∆t 0 " 10 ´6s and, for n ě 0, ∆t n`1 " minp∆t max , 1.2∆t n q in case of Newton's convergence or ∆t n`1 " maxp∆t min , ∆t n {2q in the absence of convergence. In the latter case, for ∆t " ∆t min , the simulation stops.

N max " 30 is taken as maximal number of Newton's iterations. • Drainage case Minimal, maximal and initial time-steps are such that ∆t min " 1s, ∆t max " 10 5 s, ∆t 0 " 1s and, for n ě 0,

∆t n`1 " # 2.5∆t n if ∆t ă 500s, minp∆t max , 1.2∆t n q otherwise,
in case of a successful time-step, or

∆t n`1 " # maxp∆t min , ∆t n {5q if ∆t ă 500s, ∆t n {2 otherwise,
in the absence of convergence with N max " 30 iterations. If Newton does not converge for ∆t " ∆t min the simulation stops.

Comparison of the results

Table 4.4 shows that only methods A, B, C 2 , D 2 1 and D 2 converge for all test cases. Here and hereafter, the exponents 1 or 2 refer to the choice of the double parametrization presented in §4.3.3. Figure 4.23 reports on the evolution of the cumulated number of Newton iterations for the filling case with the 50 ˆ30 cells mesh. Apart from method D which faces difficulties at the beginning, all curves evolve in the same way. These conclusions remain valid for the 400 ˆ240 cells mesh with an exception for method B whose number of iterations increased as it can be observed in Figure 4. 24. Figures 4.26 and 4.27 show the results obtained on the drainage case with meshes of resolutions 50 ˆ30 and 400 ˆ240 respectively. In both cases, the methods C 1 and D 1 1 face more difficulties to converge than the other ones around time t " 348500s. It corresponds to the moment at which the cells line in Ω 2 below the interface between Ω 3 and Ω 2 starts to empty. Note that the number of Newton iterations also increases for method B at that particular time on the finer mesh too. Method C 2 also encounters difficulties on the coarser mesh but at a earlier time (when the cells line in Ω 1 below the interface between Ω 1 and Ω 3 starts to empty) and to a lesser extent. On the whole, the results on this last case show a higher degree of robustness for methods A and the second proposition of the double parametrization which has been designed with the aim of controlling and bounding its derivatives, as it can be seen in Figures 4.17 

Overall method evaluation

Using this glossary and the results obtained in the steep and non-steep cases, we proceed, in the following of this section, to a general evaluation of the five studied methods.

Let us start with Method A. In this approach, rock-type interface faces are treated like classical inner faces and the pressure continuity on these interfaces is not enforced. Nevertheless, if the simulation is performed on a sufficiently refined mesh, a good approximation of this condition can be obtained. In the previous tests, and in particular in the steep ones (see §4.4.3), this method turns out to be very robust. On fine meshes its accuracy is, in general, close to the ones of other methods. In the filling case with the Brooks-Corey model (see Table 4.6), this method is even the most accurate one on coarse meshes. A noticeable drawback of this method is the loss of the linear convergence rate when used with the Brooks-Corey model (see .

Method B is the first approach we propose with a specific treatment for the rock-type interfaces, which only entails moderate changes in terms of implementation compared to method A. We here just add two thin cells around the rock-type interfaces and neglect, for these new cells, the fluxes through the faces with small measures. It features a rather good robustness since it also converges in the steep cases (see §4.4.3). For non-steep cases, it always provides a rather accurate solution and good robustness. Compared to method A, the linear convergence rate is recovered at the price of about 10% extra Newton iterations.

Method C is the first method which strongly enforces the pressure continuity on the rock-type interfaces. Here, the interfaces are thickened in thin cells and the pressure continuity is ensured by introducing a second parametrization (4.3.12) for which we propose two different forms detailed in Equations (4.3.13)- (4.3.14). This parametrization should be calculated beforehand and depends on the chosen petro-physical model. Thus, this method involves more changes for its implementation with respect to the previous one. In non-steep simulations, the two proposed double parametrizations provide the same solutions with the same accuracy with just a slight difference in the required number of iterations. Moreover it behaves as Method B in all non-steep simulations in terms of error. In the steep tests a remarkable difference of performance between the use of the two proposed parametrizations for the pressure continuity at interfaces arises: the first proposition of parametrization converges only in drainage case while the second one always converges showing, generally, a competitive robustness.

The last studied method Method D guarantees the flux conservation between all cells of the initial meshes and pressure continuity at rock-type interfaces. As for Method C, it also uses a double parametrization (4.3.12). In the non-steep cases, the application of the two proposed second parametrizations, as in Method C, provides the same solutions with the same accuracy with just a slight difference in the required number of iterations, as already remarked in §4.4.2. Moreover, Methods D 1 and D 2 show in all tests a good robustness and the same rather good accuracy: in drainage cases their accuracy is fairly better than Method A when using the Brooks-Corey model and, when employing the van Genuchten-Mualem model, they show a relative error almost halved with respect to the one of Method A. In filling cases they have almost the same accuracy as Method A. Methods D 1 and D 2 always recover a first-order convergence except for the drainage test case with the van Genuchten-Mualem model in which the convergence rate is slightly degraded. The fact that Methods D 1 and D 2 show the same accuracy is not surprising: the only difference between the two methods is how we solve the system that, for its part, does not change. In steep tests both double parametrizations employed in Method D 1 and D 2 make the simulation converge, apart for the filling test case in which Method D 1 1 fails, just showing in some cases a difference of behaviour in terms of robustness as detailed in §4.4.3.1.

Finally we can conclude that if we want to perform simulation for test cases with steep pressure curves, we can choose between Method A or B or, if one does not mind making larger code changes, methods C 2 , D 2 1 or D 2 can also be used. If it is not the case, for coarse meshes, Method A ensures a good robustness and an accurate solution without any particular treatment for interfaces. For more refined meshes, even if its accuracy is slightly lower or comparable -it depends on the specific test case-to that of Method D, Method B is easier to implement and the least intrusive with respect to methods introducing a treatment for interfaces. So, if the choice is based on an accuracy criterion actually Method B, C and D are almost equivalent; in terms of ease of implementation the best choice is Method B. 

Figures and data related to the non-steep cases

Filling case using Brooks-Corey model

Filling case using van Genuchten-Mualem model

Drainage case using van Genuchten-Mualem model

Finite volume scheme and numerical strategies to solve two-phase Darcy flows in heterogeneous domains

Relying on the ideas developed in the previous chapters for the Richards equation, we are now in a position to cope with the more difficult case of the more difficult model, namely, the immiscible incompressible two-phase system (1.2.1)-(1.2.6) -also known as the isotherm Dead Oil model in the reservoir engineering community-in a heterogeneous domain.

After introducing the finite volume discretization ( §5.1) and extending the specific techniques addressing stiffness and interface transmission to the two-phase system ( §5.2), we perform three CO 2 injection test cases ( §5.3) that are representative of realistic operating conditions in order to validate the numerical strategies proposed.

Finite volume scheme for the two-phase system

State of the art

Similarly to the Richards equation, it is useful to be aware of the vast amount of literature on the numerical resolution of the immiscible incompressible two-phase flow system. The review below is in no way exhaustive.

For a homogeneous capillary pressure function, we can cite the seminal work of Chen and Ewing [START_REF]Fully discrete finite element analysis of multiphase flow in groundwater hydrology[END_REF][START_REF]Degenerate two-phase incompressible flow. III. Sharp error estimates[END_REF] and the analysis of Radu et al. [START_REF]A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities[END_REF] using finite elements, the contribution of Eymard et al. [START_REF]Mathematical study of a petroleum-engineering scheme[END_REF] using finite volumes, or the more recent multinumerics method by Doyle et al. [START_REF]A multinumerics scheme for incompressible two-phase flow[END_REF].

The case of a heterogeneous medium has received a lot of attention with various methods of the discontinuous Galerkin family [START_REF]Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures[END_REF][START_REF]A hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media[END_REF][START_REF]Maximum-principle-satisfying discontinuous Galerkin methods for incompressible two-phase immiscible flow[END_REF]111], the finite element [START_REF]Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures[END_REF][START_REF]Adaptive mixed-hybrid and penalty discontinuous Galerkin method for two-phase flow in heterogeneous media[END_REF][START_REF]A vertex scheme for two-phase flow in heterogeneous media[END_REF] and the finite volume one [START_REF]Finite volume approximation for an immiscible two-phase flow in porous media with discontinuous capillary pressure[END_REF][START_REF]Numerical approximation of a two-phase flow problem in a porous medium with discontinuous capillary forces[END_REF][START_REF] Lions | Gradient schemes for two-phase flow in heterogeneous porous media and richards equation[END_REF]. In particular, the treatment of discontinuity in capillary pressure has been the subject of extensive researches in the VAG (Vertex Approximate Gradient) community [START_REF]Total-velocity-based finite volume discretization of two-phase Darcy flow in highly heterogeneous media with discontinuous capillary pressure[END_REF][START_REF]Immiscible two-phase Darcy flow model accounting for vanishing and discontinuous capillary pressures: application to the flow in fractured porous media[END_REF][START_REF] Fuhrmann | Vertex approximate gradient discretization preserving positivity for two-phase Darcy flows in heterogeneous porous media[END_REF]. This occurs in conjunction with a renewed interest in the HU (Hybrid Upwiding) paradigm [START_REF]Finite-volume simulation of capillarydominated flow in matrix-fracture systems using interface conditions[END_REF][START_REF] Dodge | Implicit hybrid upwinding for two-phase flow in heterogeneous porous media with buoyancy and capillarity[END_REF] for matrix-fracture systems.

In the sequel, only the TPFA finite volume scheme will be needed to illustrate how our numerical strategies can be deployed. This polynomial satisfies the conditions k r,w ps nw,lim q " r k r,w ps nw,lim q, (5.2.4a) r k 1 r,w ps nw,lim q " k 1 r,w ps nw,lim q, (5.2.4b) r k r,w ps rn q " 1, (5.2.4c) where s nw,lim is chosen so that r s eff " 0.002. Let us now adapt the parametrization presented in our article [START_REF] Fuhrmann | On several numerical strategies to solve Richards' equation in heterogeneous media with Finite Volumes[END_REF] to the two-phase flow case. Removing the subscript i related to the rock-type for convenience, the idea is to choose a parametrization of the graph tp c , Spp c qu, i.e., to construct two monotone functions

s nw : I Ñ rs rn , 1 ´srw s, p c : I Ñ R,
such that s nw pτ q " S nw pp c pτ qq, 0 ă s 1 nw pτ q `p1 c pτ q ă 8, (5.2.5) for all τ P I Ă R. The latter non-degeneracy assumption ensures that for all p P R, there exists a unique τ P R such that pp c , S nw pp c qq " pp c pτ q, s nw pτ qq. With respect to the parametrization proposed in [START_REF] Fuhrmann | On several numerical strategies to solve Richards' equation in heterogeneous media with Finite Volumes[END_REF], basically we have to reverse the order of the switch points to follow the behaviour where S 1 nw pp ´q and S 1 nw pp s q respectively denote the limits of S 1 nw ppq as p tends to p ˚and p s from below and above. Then if S nw is C 1 , so is s nw " S nw ˝pc . Unfortunately, we lose the concavity of p c because S ´1 nw is convex. An example of parametrized curves p, s corresponding to Brooks-Corey and van Genuchten-Mualem capillary pressure-(non-wetting) saturation law is shown in Figures 5.3 Applying this parametrization to the previous equations, we obtain the parametrized system m K φ K s w pτ n K q ´sw pτ n´1 K q ∆t `ÿ σPE K pF w q n Kσ " 0, (5.2.8a)

m K φ K s nw pτ n K q ´snw pτ n´1 K q ∆t `ÿ σPE K pF nw q n Kσ " 0, (5.2 

.8b)

p c pτ n K q ´rpp nw q n K ´pp w q n K s " 0, (5.2.8c)

s nw pτ n K q ´pS nw q K pp c pτ n K qq " 0, (5.2.8d) 
does not change for the two-phase flow case. On the contrary, as we have done for the parametrization, a permutation of the two branches is necessary, i.e.

ω 2 σ,K pτ q " # τ `βK ´βL if τ ď β L , p ´1 K ˝pL pτ q if τ ě β L .
(5.2.14a) The behaviour of ω σ,K , ω σ,L using the Brooks-Corey model and the van Genuchten-Mualem one are reported in Figures 5.5-5.6. As we can notice in the plot, the first and the second propositions overlap for τ ą β L for both models but, for τ ă β L , functions behave differently. Considering the Brooks-Corey model, this difference is not relevant because τ remains non-negative all along the simulations. It is no longer the case with the van Genuchten-Mualem model for which the value of β L is positive. Nevertheless the functions slope for τ P r0, β L s remains finite and limited in both cases. Since we are not interested in performing simulations with steep capillary pressure curves, we postulate that both proposition yield similar numerical behaviors. For sake of simplicity, we will employ just the first proposition, namely ω 1 σ,K , ω 1 σ,L .

ω 2 σ,L pτ q " # p ´1 L ˝pK pτ `βK ´βL q if τ ď β L , τ if τ ě β L . ( 5 
Remark 5.2.1. Regarding the resolution of the obtained system considering Method D, in this chapter we only consider the numerical strategy based on the elimination of the face unknowns via the Schur complement (the so-called Method D 1 ). Consequently, from now on, we remove the index 1 and we will just denote it as Method D. The resolution of the system based on the face unknowns elimination thanks to a bisection method is a perspective (see §6.2.2).

Numerical validation

We now validate the different approaches we have presented in §5.2.2 to treat the transmission conditions across interfaces when solving the two-phase Darcy flows system in heterogeneous domain via different numerical tests.

CO 2 injection in geological formation

This test is a simplified simulation of the CO 2 physical trapping in a geological formation.

Description of the test case

We consider a two-dimensional layered domain Ω " r0, 800s ˆr´600, 0s (in meters) made up of two rock types denoted by RT0 and RT1 respectively, RT1 (which plays the role of cap rock) being less permeable than RT0. Details are reported in The domain Ω is partitioned into three connected subdomains: Ω 1 " r0, 800s ˆr´200, 0s, Ω 2 " r0, 800s ˆr´400, ´200s and Ω 3 " r0, 800s ˆr´600, ´400s (in meters), as depicted in Figure 5.7. The subdomains Ω 1 , Ω 3 are characterized by RT0; Ω 2 by RT1.

Starting from an initially water saturated domain, s 0 nw " 10 ´6, CO 2 is leaking into the domain through the bottom boundary Γ D 1 " tpx, yq | y " ´600 mu on which we impose the boundary conditions pp c q D 1 " 10 7 Pa, pp w q D 1 " 0 Pa.

(5.3.1) We take ∆t n`1 " # minp∆t max , 1.2∆t n q for a successful time-step, maxp∆t min , 0.5∆t n q otherwise.

In the latter case, for ∆t " ∆t min , the simulation stops. We choose ∆t min " ∆t 0 and ∆t max " T ¨10 ´2. We set N max " 20 as the maximal number of Newton's iterations. The simulation is performed on three structured squared meshes of different resolutions: 20 ˆ15, 40 ˆ30 and 80 ˆ60 cells. It allows us to study the evolution of the solution error measured using the L 2 pΩqnorm of the relative difference at final time between the saturations obtained on a given mesh and the ones computed with Method B and a mesh of resolution 160 ˆ120. For this test the classical Brooks-Corey model ( §5.2.2) is considered. In Table 5.5 we report the numerical parameters used. 5.5: Numerical parameters used in the examples.

τ ˚ δ B δ C 10 ´10 10 ´11 10 ´1 2 ¨10 ´1 Table

Numerical results

We now analyze the results obtained. In Figure 5.8, we report the evolution of the saturation profile at different times obtained on mesh 40 ˆ30 using Method B.

Observing Table 5.6 we can remark that Methods A,B,C and D have essentially the same accuracy on this test case, but they present a different behaviour in terms of computational cost. The method that requires the lowest number of Newton iterations is Method A. Method B requires a slightly higher number of iterations but its cost remains comparable to that of Method A. On the other hand the computational cost increases considerably for Methods C and D. Looking at the evolution of the number of iterations for these methods, we notice that it decreases by refining the mesh. For Method C we guess that this behaviour has a connection with the ratio between the size of a cell and the size of the cell introduced on the interface.

Let us better analyze this phenomenon by rerunning the test for Method B and C using different thickness for the interface cell(s). More precisely, using the 40 ˆ30 grid, we have considered the thickness values δ B P t10 ´1, 10 ´2, 10 ´3u for Method B and δ C P t2 ¨10 ´1, 2 ¨10 ´2, 2 ¨10 ´3u for Method C. In Table 5.7, we report data regarding these simulations. As we expected, we can see that the number of iterations and failures increase considerably when δ B and δ C decrease. The L 2 pΩq-norm reported in this table is the relative difference at final time between the saturations obtained using the two coarser values for δ B (δ C respectively) and the ones computed with the finer one, always employing Method B (Method C respectively) and the mesh of resolution 40 ˆ30. We conclude that the thickness chosen for the tests, reported in the Table 5.5, is a good compromise between solution accuracy and computational cost. The key role played by the added mass to the interface unknowns has also an impact on Method D, which is the only one method without mass on the variable interface. Even if mesh refinements yield smaller number of iterations compared to Methods B and C, we notice that it reports a greater number of failures during simulation than the latter two.

Let us try to isolate the behaviour of the different methods analyzing Figure 5.9. This image shows the evolution of the cumulative number of iterations demanded from the Newton method to converge for the simulation carried out on the mesh 40 ˆ30. We have already remarked that Methods A and B have a comparable computational cost. Indeed if we look at Figure 5.10, which report the iterations evolution profile for these two methods, we can see that before the CO 2 flux meets the first barrier between Ω 3 and Ω 2 at t « 1.5 ¨10 6 , the two curves overlap. Arrived at this point Method B requires lower time steps which implies an increase of the cumulative number of iterations required to converge. Once the non-wetting phase begins to infiltrate Ω 2 , the evolution curves for Method A and B follow the same trend until the end of the simulation. The passage of the barrier is also a difficult step for Methods C and D. In Figure 5.9 we see that the number of cumulated iterations increase at t « 1.5 ¨10 6 . After the two methods have a different behaviour. Thanks to Figure 5.11 we see that, once the CO 2 flux has crossed the barrier, Method C still encounters some difficulties in converging. Nevertheless it behaves better than Method D. Indeed the latter still encounters important difficulties in converging after the passage of the barrier requiring an average time step around ∆t « 5000 s, almost one twentieth of the maximum time step. At the end of the simulation the time step increases a little bit but remains lower than the one employed by Method B at the same time. are the entry pressures of the two lithologies characterizing the domain: rock type 0 and 1 respectively (cf. Table 5.3). Then we take the thickness of Ω 3 slightly greater than the height h acc . On boundaries, no-flux boundary conditions are fixed. The simulation lasts T " 116 days and we adopt an adaptive time-stepping strategy with ∆t 0 " 100 s. We take ∆t n`1 " # minp∆t max , 1.2∆t n q for a successful time-step, maxp∆t min , 0.5∆t n q otherwise.

In the latter case, for ∆t " ∆t min , the simulation stops. We choose ∆t min " ∆t 0 and ∆t max " T . We set N max " 20 as the maximal number of Newton's iterations. The simulation is performed on three structured squared meshes of different resolutions: 

Numerical results

We now analyze the obtained results. In Figure 5.13, we report the evolution of the saturation profile at different times obtained on mesh 40 ˆ30 using Method B. Observing Table 5.9 we can immediately remark that the relative L 2 error committed w.r.t. the reference solution using Method Figure 5.13: Evolution of the saturation profile for t P t0 s, 2.04593¨10 5 s, 8.81363¨10 5 s, 1.828131 0 6 s, 10.022400 ¨10 6 su using the Brooks-Corey model, Method B and the 32 ˆ24 cells mesh.

A is greater than the one committed by methods which introduce a treatment of the interface. This lack of accuracy is motivated by the fact that the entrapped height h acc for Methods A is calculated from the center of the cells above the interface between Ω 2 and Ω 3 , while, for the other methods, it is calculated from the interface. Therefore the amount of trapped CO 2 is underestimated using Method A and a lack of accuracy at the interface level arises. It implies that, if a coarse mesh is considered, Method A is less accurate than the other methods. Looking at Table 5.9 we can observe that method B is the most accurate. Even though method C shows a better accuracy with respect to method A, it is slightly degraded with respect to that of method B.

In the above cited table, data, regarding the simulation using Method D, are not reported because, even if we allow time-steps smaller than the prescribed ∆t min , the simulation does not converge. We recall that Method D is the only approach in which an interface variable is added to the system without giving it mass. In the test presented previously ( §5.3.1), we had noticed that the addition of mass to the interface variable had an obvious stabilization effect on the simulation (see Table 5.7 and the corresponding analysis performed by refining the thickness of the interface cells). Therefore, the fact that with Method D the simulation does not converge confirms our observation.

Concerning the computational cost, looking at Figure 5.14 we almost observe the same behaviours as in the previous test. More precisely, Methods A and B follow the same trend but Method B requires more iterations at the beginning to converge (passage of the barrier between Ω 2 and Ω 3 ). It justifies the gap in the cumulated iterations profile between these two methods. Method C is the most expensive one: it suffers from convergence problems during the whole simulation leading to an explosion of the required total number of iterations. 

Method

CO 2 migration in layered formation

Let us consider another test case inspired from a test presented in [START_REF]Sequential implicit Vertex Approximate Gradient discretization of incompressible two-phase Darcy flows with discontinuous capillary pressure[END_REF]. This test simulates the CO 2 migration in a two-dimensional basin with two barriers.

Description of the test case

Let us consider the domain Ω " r0, 800s ˆr0, 800s (in meters) discretized via a uniform mesh of size 40 ˆ80. The domain is composed a drain rock sliced by two horizontal barrier layers. More precisely, Ω is partitioned into three connected subdomains: Ω 2 " r0, 700s ˆr400, 500s, Ω 3 " r100, 800sˆr200, 300s and Ω 1 " Ωz pΩ 2 YΩ 3 q, as depicted in Figure 5.15. The subdomains Ω 2 , Ω 3 are characterized by RT1; Ω 1 by RT0. The rock type porosities are φ P t0.2, 0.2u and their absolute permeabilities are λ P t10 ´11 m 2 , 10 ´13 m 2 u respectively. Details of the constitutive laws' parameters are reported in Table 5.1 and 5.2. The reservoir is initially water saturated and the non-wetting phase (the parameters of wetting and non-wetting phases are reported in Table 5.10) is injected through Γ D 1 " tpx, yq | y " 0 mu via the Dirichlet conditions pp c q D 1 " 10 7 Pa, pp w q D 1 " 0 Pa. The simulation lasts T " 116 days and an adaptive time-stepping strategy is adopted using: ∆t min " 1 s, ∆t max " T . Simulation starts with ∆t " ∆t 0 , then for n ě 0, ∆t n`1 " # minp∆t max , 1.2∆t n q for a successful time-step, maxp∆t min , 0.5∆t n q otherwise.

In the latter case, for ∆t " ∆t min , the simulation stops. N max " 30 is taken as maximal number of Newton's iterations. 

Test using the Brooks-Corey model

Let us perform the simulation applying the Brooks-Corey model using, for the lithologies, values in Table 5.1. Figure 5.16 shows the saturation profile at the final time using the four methods.

To better visualize the differences between the four profiles, cross sections along the y-axis at the extremities of the two barriers and at the middle of the x-axis are provided in Figure 5.17.

As expected, the various profiles show differences mainly at the barrier level. Leaving aside the areas where the flow can contour the end of a barrier, we can see that in Ω 3 (see Figures 5.17b,5.17c) the amount of CO 2 that penetrates the barrier is higher with Method A than with the other methods. This is because method A does not have a specific treatment for the barrier: if the mesh is not fine enough, the effect of the capillary barrier is weakened. On the contrary, with the same mesh, the other approaches allow to simulate more accurately the capillary barrier by introducing interface unknowns. Because of the stronger capillary effect with Methods B, C, D, the CO 2 tends to go around the barrier rather than through it. This explains why in Figure 5.17a a higher amount of CO 2 at the extremity of the Ω 3 barrier is obtained with these methods rather with Method A. These comments are also valid for the barrier Ω 2 too.

From the computational-cost point of view, the highlighted behavior of the various methods is consistent with what has been observed in previous tests (cf. Table 5.12). More precisely, Method B requires a slightly larger number of iterations than Method A. But, as shown in Figure 5.18, the evolution of the cumulative number of Newton iterations follows the same trend. Method C encounters more difficulties in converging when crossing the barrier and then stabilizes its number of iterations. In contrast, Method D struggles to converge during the whole simulation. Table 5.12: Statistics on the required Newton's iterations to converge for test with the Brooks-Corey model. 

Test using the van Genuchten-Mualem model

Let us now perform simulations with the van Genuchten-Mualem model. Lithology data are given in Table 5.2. Figure 5.19 shows the saturation profile at the final time using Methods A,B,C. The lack of results for method D is related to Newton's algorithm which could not converge even by using a time step smaller than ∆t min . This problem of robustness has already been found out when analyzing the results of the previous tests and the explanations, we then provided, here still apply.

To better visualize the differences between the three profiles, cross sections along the y-axis at the extremities of the two barriers and at the middle of the x-axis are provided in Figure 5.20. We can notice that the saturation profiles obtained with Methods B and C almost completely overlap and correspond to the saturation profile obtained using Method A. Indeed, going back to the results obtained for the filling test case with Richards equation in §4. 

Overall method evaluation

We conclude this chapter by drawing conclusions on the behavior of methods B, C and D compared to method A. During the previous tests, it turned out that methods B and C, which add a mass conservation law related to the interface variables are more robust than method D which only uses the flux conservation. For some cases ( §5.3.2- §5.3.3.3), Method D was not able to provide the final solution. Moreover, we have observed (Table 5.7) that the amount of added mass influences Newton's convergence: the more the ratio between the mass of the interface cell and the mass of an internal cell is small, the more Newton iterations are required.

Regarding the accuracy of the provided solutions, the test presented in §5.3.1 has shown that a specific treatment of the transmission conditions at the interface allows for a more accurate solution even in case of coarse meshes. Without specific treatment, i.e., using Method A, it is necessary to consider a relative fine mesh to obtain the same order of accuracy. From the standpoint of computational times, methods C and D are quite costly, in particular method D. Method B, on the other hand, exhibits a slight surplus in computational cost compared to Method A but can give more accurate solutions. It therefore seems to be the best option for solving two-phase Darcy flows in heterogeneous domains. Moreover, it entails moderate changes in existing codes in terms of implementation compared to methods C and D.

Chapter 6

Conclusion and perspectives

Summary of key results

In response to the numerical difficulties stated in §1.3.1, we have conducted works along two lines of research, which have given rise to several presentations at conferences. Besides the FVCA-9 proceeding [START_REF]Robust Newton solver based on variable switch for a finite volume discretization of Richards equation[END_REF], two scientific publications [START_REF] Fuhrmann | On several numerical strategies to solve Richards' equation in heterogeneous media with Finite Volumes[END_REF][START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF] have been submitted. The first one [START_REF]Upstream mobility Finite Volumes for the Richards equation in heterogenous domains[END_REF] has been accepted and is about to appear in ESAIM: Mathematical Modelling and Numerical Analysis. Below we summarize the most salient results.

Improvement of robustness for Newton's method

As underlined in §1.3.1.1, the numerical resolution of the Richards equation is made challenging not only by the fact that it is a nonlinear, degenerate elliptic-parabolic partial differential equation, but also by a bad choice of the primary unknown for the resolution, which leads to ill-conditioning.

To overcome these difficulties, we have adopted an approach based on a reformulation of the variable switch technique as a parametrization of the graph tp, Sppqu proposed by Brenner and Cancès [START_REF] Fuhrmann | Improving Newton's method performance by parametrization: The case of the Richards equation[END_REF]. Keeping in mind realistic closure laws for which analytical calculation is no longer feasible, we have expanded their idea beyond the Kirchhoff transform-saturation formulation and have primarily focused on the pressure-saturation formulation. Furthermore, to deal with the numerical difficulties introduced by the constitutive laws (blow-up in k 1 r psq for the van Genuchten-Mualem model and kink in Sppq for the Brooks-Corey model), we have enriched the Newton method specific features to handle such issues.

Numerical tests presented in chapter §2 validated the potentiality of the new parametrization technique. This allows the Richards equation to be solved without caring about the choice of the primary unknown and without any convergence problems due to the selected constitutive laws or the degeneracy of the equation.

Improvement of accuracy for heterogeneous domains

In §1.3.1.2, we highlighted the additional difficulties in the numerical resolution caused by an strong contrast in the constitutive laws' parameters at interface between different lithologies. Using the classical upstream mobility TPFA scheme without any specific treatment for heterogeneities, not only we observe a lack of the accuracy in the predicted results, but also the order of convergence is degraded. The discontinuities in the capillary pressure function between different media are at the basis of the phenomenon of the capillary barrier, which has a crucial role for flows in porous media. These is why the introduction of specific treatements for interfaces is so important.

In chapter §3, we proved that standard upstream mobility finite volume schemes for variable saturated porous media flows still converge in highly heterogeneous contexts without any specific treatment of the rock type discontinuities. The scheme is indeed shown to satisfy some energy stability which provides enough a priori estimates to carry out its numerical analysis. First, the existence of a unique solution to the nonlinear system stemming from the scheme is established thanks to a topological degree argument and from the monotonicity of the scheme. Besides, a rigorous mathematical convergence proof is conducted, based on compactness arguments. No error estimate can then be deduced from our analysis.

Motivated by the need for a dedicated numerical treatment for the interfaces to enhance the accuracy of the solution and its convergence order, we put forward four methods in chapter §4. The basic the idea is to add unknowns to the system in correspondence/on of the interfaces endowing them with mass or not. The different strategies are compared on filling and drainage test cases with standard nonlinearities of Brooks-Corey and van Genuchten-Mualem type, as well as with challenging steep nonlinearities. The numerical experiments show that the proposed methods allow the lost first-order accuracy to be recovered and the accuracy of the solution to be improved in comparison to that of a naive scheme without any specific treatment for heterogeneities.

Finally, in chapter §5, we successfully extended the parametrization technique and the strategies to treat heterogeneities to the Darcy two-phase flow model. Numerical tests show, as expected, an improved solution accuracy using these strategies compared to that obtained using the scheme without specific treatments for heterogeneities. Nevertheless, contrary to the Richards equation, we have observed that the amount of added mass to interface unknowns plays a very important role in the robustness of the method.

Recommendations for future research 6.2.1 More advanced models and schemes

The immiscible incompressible two-phase system is barely the most affordable representative of a larger catalog of models, in which more and more physical effects are taken into account. It is natural to move into more advanced models in order to improve the prediction quality of the simulations. The first step would be to incorporate compressibility of both phases. This amounts to considering the interior system B t pφρ α s α q `∇ ¨pρ α v α q " 0, (6.2.1a) v α `λ k r,α ps α , xq µ α p∇p α ´ α gq " 0, (6.2.1b) s nw ´Snw pp nw ´pw , xq " 0, (6.2.1c) s w `snw " 1, (6.2.1d) ρ α ´r ρ α pp α q " 0, (6.2.1e) in which the densities ρ α are now given functions of the pressures p α . Next in the complexity scale is the compressible two-phase model with a notion of temperature and an energy equation in order to reflect thermal effects. Last but not least, the most realistic one is the multiphase compositional model with a full thermodynamics involving dynamic appearance and disappearance of phases. Likewise, the TPFA scheme is the least expensive member of a wider family of finite volume methods. It would be interesting to combine our parametrization technique with more sophisticated schemes such as MPFA (Multi-Point Flux Approximation) [START_REF] Florence | Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media[END_REF][START_REF]Convergence of finite volume MPFA-O type schemes for heterogeneous anisotropic diffusion problems on general meshes[END_REF] for more accuracy on general meshes or nonlinear TPFA [START_REF]Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes[END_REF] for the maximum principle.

Bisection method for the two-phase system

In chapter §5, we did not consider Method D 2 introduced in §4.3.4.2 for the heterogeneous case of the Richards equation. In this method, a face unknown on interfaces is inserted and the system obtained is solved via the face unknowns elimination, thanks to a bisection method. More precisely, the idea is to update the cell unknowns pτ K q KPT at each Newton iteration via a linear Schur complement system and then update the interface unknowns pτ σ q σPE Γ by solving exactly the nonlinear wetting flux conservation F K,σ pϑ σ q `F L,σ pϑ σ q " 0, where ϑ K " p K pτ K q ´ g ¨xK and F K,σ pϑ σ q " m σ d K,σ λ K η σ,K pϑ σ qrϑ K ´ϑσ s, F L,σ pϑ σ q " m σ d L,σ λ L η σ,L pϑ σ qrϑ L ´ϑσ s, via a bisection method on each interface. While this was possible for Richards' equation, because the wetting flux conservation is monotone w.r.t. ϑ σ , things became much more intricate when we turned to the two-phase Darcy flow model. Below we formalize some thoughts in order to circumvent the difficulties encountered.

Let us consider and interface σ " K | L shared by two different rock types. In cell K -resp. L, the flux is characterized by the wetting pressure pp w q K -resp. pp w q L , the capillary pressure pp c q K -resp. pp c q L -and the non-wetting pressure pp nw q K " pp w q K `pp c q K -resp. pp nw q L " pp c q L `pp w q L . We look for the pressure values pp w q σ , pp c q σ and pp nw q σ " pp w q σ `pp c q σ on the interface to ensure flux continuity for each phase, i.e., pF w q Kσ `pF w q Lσ " 0, (6.2.2a) pF nw q Kσ `pF nw q Lσ " 0. (6.2.2b)

The precise expression of the wetting and non-wetting flux F w , F nw is plugged into equations (5.2.9)-(5.2.10). From these equations, we deduce that if pp w q σ verifies (6.2.2a), then minppp w q K , pp w q L q ď pp w q σ ď maxppp w q K , pp w q L q. (6.2.3) Analogously, if pp nw q σ " pp w q σ `pp c q σ satisfies (6.2.2b), it verifies minppp nw q K , pp nw q L q ď pp nw q σ ď maxppp nw q K , pp nw q L q.

Taking advantage of relation (6.2.3), from (6.2.2a) we can explicit pp w q σ as pp w q σ " α Kσ ppp c q σ qpp w q K `αLσ ppp c q σ qpp w q L , where α Kσ and α Lσ are Lipschitz functions taking values in r0, 1s. Both functions are monotone, respectively increasing and decreasing if the wetting motor pϑ w q K ´pϑ w q L given by (5.1.5a) is positive, inversely if negative. The obtained value for pp w q σ can be substituted in the non-wetting flux conservation equation (6.2.2b) and we get that the function Ψ σ : pp c q σ Þ Ñ pF nw q Kσ ppp c q σ q `pF nw q Lσ ppp c q σ q is strictly decreasing and Lipschitz. Finally, depending on the sign of the non-wetting motor pϑ nw q K ´pϑ nw q L given by (5.1.5b), we can find the range of values in which search the capillary pressure pp c q σ via the bisection method. Moreover, the sign of the fluxes guarantees the existence and uniqueness of pp c q σ in the previously found interval. It would be interesting to test this method and analyze its behavior to see if it brings advantages over the Method D 1 .
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 12 Figure 1.2: Example of media characterized by high and low porosities.
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 13 Figure 1.3: Physical trapping of the injected CO 2 due to the stratigraphic structure of the formation [86].
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 14 Figure 1.4: Residual trapping of CO 2 due to the pore structure of the formation. The CO 2 plume movement is indicated by the arrows [86].
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 15 Figure 1.5: Young-Laplace's equation: definition of the capillary pressure in a tube.
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 16 Figure 1.6: Schematic figure of contact angle.
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 17 Figure 1.7: Water, CO 2 and mineral surface system illustrating different contact angles measured through the water phase.

  (a) Brooks-Corey model. (b) van Genuchten-Mualem model.
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 19 Figure 1.9: Plot of the capillary pressure curve using the Brooks-Corey model and the van Genuchten-Mualem model.
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 110 Figure 1.10: Plot of the wetting and non-wetting relative permeability curve using the Brooks-Corey model and the van Genuchten-Mualem model.

  .30) with u b " ´pb {p3n `1q. The behavior of such a function is illustrated in Figure1.13.
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 113 Figure 1.13: Profile of the wetting saturation-global pressure graph for Brooks-Corey model using parameters reported inTable 1.1.
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 114 Figure 1.14: Relative permeability law k r (left) and saturation-pression relationship Sppq (right).

  (a) Blow-up in k 1 r psq for van Genuchten-Mualem. (b) Kink in Sppq for Brooks-Corey.
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 1 Figure 1.15: Close-up on the severe stiffness of the constitutive laws k r psq and Sppq.
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 3116 Figure 1.16: L 2 pQ T q relative error in saturation for a filling test case using the Brooks-Corey model for a domain with two rock types: sand and clay.

  The set of edges E is then subdivided into: the set of internal faces shared by two cells E int " tσ " K|L P E | K, L P T u, and the set of boundary edges E ext " tσ P E | σ Ă BOmegau. This last set includes the set of Dirichlet faces E D ext " tσ P E | σ Ă Γ D u and the set of Neumann faces E N ext " tσ P E | σ Ă Γ N u. We also introduce the local set E K " tσ P E | σ Ă BKu containing all the faces surrounding a cell K. To each face σ P E we associate a distance d σ defined by
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 21 Figure 2.1: Example of admissible mesh and detail of two cells K, L sharing a face σ P E int .
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  Figure 2.2: Case τ n,k K ą τ s , τ n,k`1
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 24 Figure 2.4: Shape of the relative permeability law and of the modified one for s lim " 1´s rw ´10 ´5.
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 25 Figure 2.5: Configuration of the domain Ω for the filling test.
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 26 Figure 2.6: Profiles of the saturation-Kirchhoff transform relationship and relative permeability law for n P t1, 2, 4, 8, 16u.
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 27 Figure 2.7: Profile of the saturation (top) and Kirchhoff transform (below) for t P t0.1, 0.5, 0.7u (in seconds).
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 28 Figure 2.8: Relative errors given by (2.4.1) as functions of the average number of Newton iterations per time-step for each value of P t10 ´2, 10 ´4, 10 ´6, 10 ´8, 10 ´10 u.
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  and water viscosity is set equal to µ " 10 ´3 Pa ¨s. The configuration of the domain is shown in Figure2.5. The simulation is performed on a mesh composed of 32 ˆ32 cells during a time interval r0, T s with T " 1.76 ¨10 5 s. The time-step is equal to ∆t " 4 ¨10 3 s. The truncation procedure is activated during Newton's iterations.
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 29 Figure 2.9: Saturation and Kirchhoff transform profiles, on the left and right columns respectively, for t P t1 ¨∆t, 5 ¨∆t, 15 ¨∆t, 25 ¨∆t, T u
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 2 Figure 2.10: Filling test using Kirchhoff transform: evolution of the average Newton's convergence rate during time iterations.
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 211 Figure 2.11: Evolution of the saturation profile at Newton's iteration i " 2, 10, 20, 30, 40, 60.
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 2 Figure 2.12: Distribution of the absolute error for the saturation values (left) and for the Kirchhoff transform values (right).
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 2 Figure 2.13: Configuration of the domain Ω for the drainage test.

  Time iterations Average Newton's convergence rate

Figure 2 . 14 :

 214 Figure 2.14: Drainage case using Kirchhoff transform: Evolution of the average Newton's convergence rate during time iterations.
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 2 Figure 2.15: Saturation and Kirchhoff transform profiles, on the left and right columns respectively, for t P t0 ¨∆t, ∆t, 5 ¨∆t, 20 ¨∆t, T u.
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 216 Figure 2.16: Evolution of the saturation profile at nonlinear iteration number 0, 1, 10, 20, 30, 43.
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 217 Figure 2.17: Distribution of the absolute error for the saturation values (left) and Kirchhoff transform values (right).
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 2 Figure 2.18: Saturation and water pressure profiles, on the left column and right columns respectively, for t P t∆t, 5 ¨∆t, 15 ¨∆t, 25 ¨∆t, T u
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 2 Figure 2.20: Evolution of the Newton's cumulative iterations number required to converge for the filling test case.
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 221 Figure 2.21: Saturation and water pressure profiles, on the left column and right columns respectively, for t P t0 ¨∆t, ∆t, 5 ¨∆t, 20 ¨∆t, T u.

Figure 2 . 22 :

 222 Figure 2.22: Drainage test using water pressure: evolution of the average Newton's convergence rate during time iterations.

Figure 2 . 23 :

 223 Figure 2.23: Evolution of the Newton's cumulative iterations number required to converge for the drainage test case.

  Figure 2.25. On the other hand, solving the problem in saturation variable is possible because, during the whole simulation, water pressure assumes values smaller (p " p b only at the initial condition) than the entry pressure.
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 225 Figure 2.25: Drainage test in pressure variable: Evolution of the L 8 residual norm during the first time step before blow-up.
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 321 A measurable function p : Q T Ñ R is said to be a weak solution to the problem (3.1.9a)-(3.1.9c) if

  E Γ " tσ P E | σ Ă Γu be the set of the interface edges, E D ext " tσ P E | σ Ă Γ D u be the set of Dirichlet boundary edges, and E N ext " tσ P E | σ Ă Γ N u be the set of Neumann boundary edges. Then, Γ "

.4. 13 )

 13 The Dirichlet boundary condition is encoded in the fluxes (3.4.11a) by settingp n σ " p D σ , @σ P E D ext , n ě 1. (3.4.14) Bearing in mind the definition (3.4.6) of the mirror values for σ P E N ext , the no-flux boundary condition across σ P E N ext is automatically encoded, i.e., F n Kσ " 0 for all σ P E K X E N ext , K P T and n ě 1.

Theorem 3 . 4 . 3 .

 343 There exists a weak solution p : Q T Ñ R in the sense of Definition 3.2.1 such that, up to a subsequence, s Tm,∆tm ÝÑ mÑ8 Spp, xq a.e. in Q T ,(3.4.18a)Υpp Tm,∆tm q ÝÑ mÑ8 Υppq weakly in L 2 pQ T q.(3.4.18b)

.5.7c) Lemma 3 . 5 . 2 .

 352 There exists a constant C 3 depending on the same data as C 1 such that

  boundary edges, we still set p pγq σ

Proposition 3 . 6 . 3 .

 363 The function p whose existence is guaranteed by Proposition 3.6.1 is a weak solution of the problem (3.1.9a)-(3.1.9c) in the sense of Definition 3.2.1. Proof. Let ϕ P C 8 c ptΩ Y Γ N u ˆr0, T qq and denote by ϕ n K " ϕpt n m , x K q, for all K P T m and all n P t0, . . . , N m u. We multiply (3.4.10) by ∆t n m ϕ n´1 K and sum over n P t1, . . . , N m u and K P T m to obtain A m `Bm " 0, m ě 1, (3.6.9)

v

  `λi η i psq ∇pp ´ g ¨xq " 0, (4.1.2) s ´Si ppq " 0. (4.1.3) The unknowns are the water saturation s, the water velocity v and the water pressure p. Equation (4.1.1) encodes the local conservation of the water volume (since water is described as an incompressible fluid). The Darcy-Muskat relation (4.1.2) relates the water flux to the gradient of the hydraulic head, whereas the last equation (4.1.

  (4.1.8) 

  The set E is then subdivided into: the set of internal faces shared by cells of the same subdomain E i " tσ " K|L P E | K, L P T i u, the set of the internal faces shared by cells belonging to different subdomains E Γ " tσ P E | σ Ă Γu " Ť i‰j tσ " K|L P E | K P T i , L P T j u, the set of Dirichlet faces E D ext " tσ P E | σ Ă Γ D u and the set of Neumann faces E N ext " tσ P E | σ Ă Γ N u. Let us call E int " E i Y E Γ the set of all internal faces. We also introduce the local set E K " tσ P E | σ Ă BKu containing all the faces surrounding a cell K. To each face σ P E we associate a distance d σ defined by
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 41 Figure 4.1: Plot of saturation and pressure parametrized van Genuchten-Mualem curves, using values of rock type 1 reported in Table4.2 . The green dot indicate the value for τ " τ ˚and the magenta one τ " τ s .
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 42 Figure 4.2: Method B: introduction of two thin cells on both sides of a face located between two rock types.

Figure 4 . 3 :

 43 Figure 4.3: Method C: one extra thin cell I σ overlaps the interface located between two rock types.

  3.13) the orientation of the cell being such that ω 1 σ,L is concave (choose K and L such that p b,K ą p b,L or ξ K ą ξ L in the Brooks-Corey and van Genuchten-Mualem settings described in §4.4.1.3 respectively), hence so does p L ˝ω1 σ,L . As it appears on figures 4.4 and 4.5, the derivative of ω 1 σ,Lmight blow up (the value of κ K defined by (4.2.9) is very large in practice).
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 44 Figure 4.4: Behaviour of ω 1 σ,K p¨q and ω 1 σ,L p¨q functions using the Brooks-Corey model.
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 45 Figure 4.5: Behaviour of ω 1 σ,K p¨q and ω 1 σ,L p¨q functions using the van Genuchten-Mualem model.

  p L are increasing and concave. This yields 1-Lipschitz continuous functions ω 2 σ,K and ω 2 σ,L as depicted on Figures 4.6 and 4.7.
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 46 Figure 4.6: Behaviour of ω 2 σ,K p¨q and ω 2 σ,L p¨q functions using the Brooks-Corey model. With a double parametrization pω σ,K , ω σ,L q σPE Γ at hand, Method C then consists in writing a discrete conservation law in I σ . While in Method B, the sub-cells I σ,K and I σ,L had different pressures generating an in-between flux F n σ (4.3.8), here the two sub-cells share the same pressure p n σ " p K pω σ,K pτ n σ qq " p L pω σ,L pτ n σ qq, σ " K|L P E Γ , (4.3.15)
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 47 Figure 4.7: Behaviour of ω 2 σ,K p¨q and ω 2 σ,L p¨q functions using the van Genuchten-Mualem model.
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 4843411 Figure 4.8: Method D: introduction of a face unknown τ n σ with no associated volume.
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 49 Figure 4.9: Simulation domain Ω " r0m, 5ms ˆr´3m, 0ms.
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 410 Figure 4.10: Boundary condition for the filling case.
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 411 Figure 4.11: Boundary condition for the drainage test.
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 412 Figure 4.12: Water pressure and relative permeability curves for the Brooks-Corey model.
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 413 Figure 4.13: Parametrized saturation and pressure functions using the Brooks-Corey model and parameters of Table4.1. The green dot indicates the value for τ " τ ˚and the magenta one τ " τ s .
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 414 Figure 4.14: Water pressure and relative permeability curves for the van Genuchten-Mualem model.
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 416 Figure 4.16: Steep cases: water pressure and relative permeability curves for the Brooks-Corey model.
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 417 Figure 4.17: Comparison between ω 11 σ,K p¨q, ω 11 σ,L p¨q (above) and ω 12 σ,K p¨q, ω 12 σ,L p¨q (below) when using steep capillary pressure curves.
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 45 -Corey 500 10 ´10 10 ´12 10 ´16 10 ´15 10 ´6 2 ¨10 ´6 Filling -van Genuchten-Mualem 500 10 ´8 10 ´12 10 ´16 10 ´15 10 ´6 2 ¨10 ´6 Drainage -Brooks-Corey 1000 10 ´10 10 ´12 10 ´16 10 ´15 10 ´6 2 ¨10 ´6 Drainage -van Genuchten-Mualem 1000 10 ´8 10 ´12 10 ´16 10 ´15 10 ´6 2 ¨10 Numerical parameters used in the examples.
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 418 Figure 4.18: Evolution of the saturation profile for t P t0 s, 21.5 ¨10 3 s, 41.5 ¨10 3 s, 86.4 ¨10 3 su for the non-steep filling case, using Brooks-Corey model, Method B and the 50 ˆ30 cells mesh.
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 420 Figure 4.20: Evolution of the saturation profile for t P t0 s, 21.5 ¨10 3 s, 41.5 ¨10 3 s, 86.4 ¨10 3 su for the non-steep filling case using van Genuchten-Mualem model, Method B and the 50 ˆ30 cells mesh.
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 421 Figure 4.21: Evolution of the saturation profile for t P t0s, 35 ¨10 4 s, 70 ¨10 4 s, 105 ¨10 4 su for the non-steep drainage case using the van Genuchten-Mualem model, Method B and the 50 ˆ30 cells mesh.
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 6461422423424462 Figure 4.22: Evolution of the saturation profile for t P t0 s, 5422.843 s, 37844.5 s, 86.4 ¨10 3 su for the steep filling case using Brooks-Corey model, Method B and the 50 ˆ30 cells mesh
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 425 Figure 4.25: Evolution of the saturation profile for t P t0 s, 81593.8 s, 308776 s, 105 ¨10 4 su for the steep drainage case using Brooks-Corey model, Method B and the 50 ˆ30 cells mesh
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 426427 Figure 4.26: Steep drainage case: Evolution of the cumulated number of Newton's iterations for the 50 ˆ30 cells mesh

1 ´srn s rw p b rPas n RT0 1

 1 

Figure 5 . 1 :

 51 Figure 5.1: Plot of S nw pp c q curve for the Brooks-Corey model (left) and for the van Genuchten-Mualem model (right).
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 53 Figure 5.3: Plot of p c and s nw for the Brooks-Corey model, using rock types of Table 5.1.
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 54 Figure 5.4: Plot of p c and s nw for the van Genuchten-Mualem model, using rock types of Table 5.2.

  Figure 5.4: Plot of p c and s nw for the van Genuchten-Mualem model, using rock types of Table 5.2.

  Figure 5.4: Plot of p c and s nw for the van Genuchten-Mualem model, using rock types of Table 5.2.
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 55 Figure 5.5: Behaviour of ω 1 σ,K p¨q, ω 1 σ,L p¨q and ω 2 σ,K p¨q, ω 2 σ,L p¨q functions using the Brooks-Corey model.
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 56 Figure 5.6: Behaviour of ω 1 σ,K p¨q, ω 1 σ,L p¨q and ω 2 σ,K p¨q, ω 2 σ,L p¨q functions using the van Genuchten-Mualem model.
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 57 Figure 5.7: Simulation domain Ω " r0m, 800ms ˆr´600m, 0ms.
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 58 Figure 5.8: Evolution of the saturation profile for t P t0 s, 1.14732 ¨10 6 s, 2.45023 ¨10 6 s, 5.45695 10 6 s, 1.00224 ¨10 7 su using the Brooks-Corey model, Method B and the 40 ˆ30 cells mesh.
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 59 Figure 5.9: Evolution of the average Newton's convergence rate during time iterations for simulation with the Brooks-Corey model on 40 ˆ30 cells mesh.

Figure 5 . 10 :

 510 Figure 5.10: Evolution of the average Newton's convergence rate during time iterations for simulation with the Brooks-Corey model on 40 ˆ30 cells mesh for Methods A and B.

Figure 5 . 12 :

 512 Figure 5.12: Simulation domain Ω " r0m, 1ms ˆr´0.6m, 0ms.

Figure 5 . 14 :

 514 Figure 5.14: Evolution of the average Newton's convergence rate during time iterations for simulation with the Brooks-Corey model on 16 ˆ12 cells mesh.

( 5 . 3 . 3 )

 533 On the top boundary ΓD 2 " tpx, yq | y " 800 mu the Dirichlet conditionsps nw q D 2 " 0, pp w q D 2 " 0 Pa (5.3.4) are imposed. On the other boundaries, no-flux boundary conditions are fixed. rkg ¨m´3 s µ rPa ¨ss wetting phase 1000 10 ´3 non-wetting phase 1.795 1.495 ¨10 ´3 Table 5.10: Parameters used for the wetting and non-wetting phases.

Figure 5 . 15 :

 515 Figure 5.15: Configuration of the domain for the non-wetting injection test case.

10 ´10´1Table 5 . 11 :

 10511 10 ´12 10 ´1 2 ¨10 ´1 van Genuchten-Mualem 100 5 ¨10 ´5 10 ´8 10 ´12 10 ´1 2 ¨10 Numerical parameters used in the examples.

Figure 5 . 16 :

 516 Figure 5.16: Wetting saturation profile at final time of the non-wetting injection simulation with the Brooks-Corey model using Methods A, B, C and D.

Figure 5 . 17 :

 517 Figure 5.17: Vertical cross-sections of the wetting saturation profile at final time of the simulation t " 116 days using the Brooks-Corey model.

Figure 5 . 18 :

 518 Figure 5.18: Evolution of the average Newton's convergence rate during time iterations for simulation with the Brooks-Corey model.

  4.1.1, methods A, B and C almost exhibit the same accuracy. Considering the computational cost and observing Table 5.13 and Figure 5.21, the methods behave in the same way as in the previous tests.

Figure 5 . 19 :

 519 Figure 5.19: Wetting saturation profile at final time of the non-wetting injection simulation with the van Genuchten-Mualem model using Methods A, B, C.

Figure 5 . 20 :Table 5 . 13 :

 520513 Figure 5.20: Vertical cross-sections of the wetting saturation profile at final time of the simulation t " 116 days using the van Genuchten-Mualem model.

Figure 5 . 21 :

 521 Figure 5.21: Evolution of the average Newton's convergence rate during time iterations for simulation with the van Genuchten-Mualem model.

  

  

  

Table 1 .

 1 1: Parameters used for the Brooks-Corey model.

	1 ´srn s rw	p b rPas	n λ rm 2 s	φ
		1.0	0.1 1.4708 ¨10 3 3.0 10 ´11 0.35
	1 ´srn	s rw	n		λ rm 2 s	ξ rm ´1s	φ
	1.0	0.0782 2.239 6.3812 ¨10 ´12	2.8	0.3658

Table 1 . 2

 12 

: Parameters used for the van Genuchten-Mualem model.

  In a heterogeneous domain, the quantities s rw pxq, s rn pxq, npxq, mpxq, p b pxq, ξpxq depend on the coordinate x through the local rock type. Plugging their known values into (1.2.19) and (1.2.21)-(1.2.22), we obtain r s eff ps nw , xq, k r,w ps nw , xq, k r,nw ps nw , xq, S nw pp c , xq.

Table 1

 1 

.1.

Table 2 .

 2 

		1 ´srn s rw	n	λ rm 2 s	p b rPas	φ
	Sand	1.0	0	2.239 6.3812 ¨10 ´12 3.5036 ¨10 3 0.3658

1: Hydraulic properties of the porous medium.

  .2.2)-(2.2.3) or the Kirchhoff transform variable (2.2.7)-(2.2.8), employing the parametrized laws (2.2.1)

Table 2 .

 2 2: Statistics on the required Newton's iterations to converge for filling test using pressuresaturation and Kirchhoff transform-saturation formulation.Considering the test settings presented in §2.4.1.3, we simulate the draining of the domain Ω, made of sand, which is initially saturated in one part of the domain ( §2.4.3), Ω 1 , and dry elsewhere, Ω 2 . The configuration of the domain is reported in Figure2.13 and in Table2.1 are reported the hydraulic properties of the chosen rock type. During the simulation, water radiates into the domain and leaks out through the portion of the lower boundary Γ D where pressure p D " ´8 ¨10 8 Pa.

	Formulation	# total iterations # avg iterations # max iterations
	Water pressure	297	4	46
	Kirchhoff transform	217	4	17
	2.4.2.2 Draining the domain			

The values of saturation and water pressure obtained at different times are shown in Figure

Table 2 .

 2 

		# total iterations # avg iterations # max iterations
	Water pressure	200	4	44
	Kirchhoff transform	150	3	16

3: Statistics on the required Newton's iterations to converge for drainage test using pressuresaturation and Kirchhoff transform-saturation formulation.

  2.1- §2.4.2.2) always considering consider the system (2.2.2)-(2.2.3) and solving it with a fix variable (saturation/pressure) or via a variable switch employing the parametrized laws (2.2.1).

  We further assume that for all i P t1, . . . , Iu the function S i is bounded in L 1 pR ´q, or equivalently, that S ´1 i P L 1 p0, 1q. It thus makes sense to consider the capillary energy density functions e i : R ˆΩi Ñ R `defined by e i ps, xq "

	ż s		
	S i pp D pxqq	φ i pS ´1 i pςq ´pD pxqq dς.	(3.1.7)
	For all x P Ω		

S i is increasing on p´8, p i s, lim pÑ´8 S i ppq " 0, S i " 1 on rp i , `8q. (3.1.6b) This allows us to define an inverse S ´1 i : p0, 1s Ñ p´8, p i s such that S i ˝S´1 i psq " s for all s P p0, 1s. i , the function e i p¨, xq is nonnegative, convex since S ´1 i

  With Theorem 3.4.2 at hand, we define the approximate pressure p T ,∆t by p T ,∆t pt, xq " p n K for pt, xq P pt n´1 , t n s ˆK.

	3.4.9)-
	(3.4.11c).
	(3.4.15a)

  The conclusion(3.5.14) is then reached by means of the property (see[START_REF]A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs[END_REF] Section 4.4])

	N				
	ÿ	∆t n	ÿ	a σ pϕ n K	´ϕn Kσ q 2 ď C ∇ϕ 2 L 8 pQ T q d
	n"1		σPE		

1 i | 2 and η n σ " max J n σ |Θ 1 i | 2 due to (3.2.

3a). By summing the elementary inequality

pΘ i pp n K q ´Θi pp n Kσ qq 2 ď η n σ pp n K ´pn Kσ q 2 ,

  There exists a measurable function p : Q T Ñ R such that Υppq ´Υpp D q P L 2 pp0, T q; V q and Θ i ppq P L 2 pp0, T q; H 1 pΩ i qq, 1 ď i ď I, such that, up to a subsequence,

	s Tm,∆tm ÝÑ mÑ`8	Spp, xq	a.e. in Q T ,	(3.6.3a)
	G Em,∆tm ÝÑ mÑ`8	∇Θ i ppq	weakly in L 2 pQ i,T q d ,	(3.6.3b)
	J Em,∆tm ÝÑ mÑ`8	∇Υppq	weakly in L 2 pQ T q d .	(3.6.3c)
			pt, xq P pt n´1 m , t n m s ˆ∆σ ,	(3.6.1)
	0		otherwise,	

for σ P E i,m , 1 ď n ď N m and, respectively,

J Em,∆tm pt, xq " d Υpp n Kσ q ´Υpp n K q d σ n Kσ , if

pt, xq P pt n´1 m , t n m s ˆ∆σ , (3.6.2) for σ P E m , 1 ď n ď N m . We remind that s Tm,∆tm " Spp Tm,∆tm , xq is the sequence of approximate saturation fields computed from that of approximate pressure fields p Tm,∆tm by (3.4.15b). Proposition 3.6.1.

  Em,∆tm is uniformly bounded by η 8 " 1{µ. Therefore, and bounded, hence uniformly continuous. This provides the existence of a modulus of continuity i : R `Ñ R `with i p0q " 0 such that

	R Γ,m ď	T µ	ÿ σPE Γ,m	m ∆σ ď	2T m d´1 pΓq µd	h Tm
	r n σ :" |η ˝S ˝Θ´1 i pΘ n K q ´η ˝S ˝Θ´1 i pΘ n Kσ q| ď i p|Θ n K	´Θn Kσ |q	(3.6.7)
	#	|Θ i pp n K q ´Θi pp n Kσ q| if pt, xq P pt n´1 m , t n m s ˆ∆σ , 0 otherwise,	(3.6.8a)

ps n Kσ q|. Let us define r Em,∆tm pt, xq " |η n K ´ηn Kσ | " r n σ if pt, xq P pt n´1 m , t n m s ˆ∆σ , then r where h Tm is the size of T m as defined in (3.4.8). Besides, for i P t1, . . . , Iu, η i ˝Si ˝Θ´1 i is continuous, monotone for σ P E i,m . Therefore, if the function q E i,m ,∆tm pt, xq "

  Thanks to the regularity of ϕ, the function δϕ Tm,∆tm converges uniformly to B t ϕ on Ω ˆr0, T s. Moreover, by virtue of (3.6.3a) and the boundedness of s Tm,∆tn we can state that Tm,∆tm δϕ Tm,∆tm dx dt ÝÑ

		Q T	φ s Tm,∆tm δϕ Tm,∆tm dx dt	´żΩ	φ s 0 Tm ϕ 0 Tm dx
	where				
	δϕ Tm,∆tm pt, xq "	ϕ n K	´ϕn´1 K m ∆t n	,	if pt, xq P pt n´1 m , t n m q ˆK,
				ϕ 0 Tm " ϕp0, x K q	if x P K.
	żż					żż
	Q T	φ s mÑ`8	Q T	φ Spp, xqB t ϕ dx dt,
	and, in view of the definition (3.4.13) of s 0 Tm and of the uniform convergence of ϕ 0 Tm towards
	ϕp0, ¨q,				
			ż			ż
			Ω	φ Tm s 0 Tm ϕ 0 Tm dx ÝÑ mÑ`8	Ω	φ s 0 ϕp0, ¨q dx.
	From the above, we draw that
	lim mÑ`8	A m "	´żż

Q T φ Spp, xqB t ϕ dx dt ´żΩ φ s 0 ϕp0, ¨q dx. (3.6.11)

  Em,∆tm converges uniformly towards ∇ϕ on Q T . Under these circumstances, Em,∆tm G Em,∆tm ¨HEm,∆tm dx dtwhere Ω i,m " Ť σPE i,m ∆ σ Ă Ω i .The strong convergence of ? η Em,∆tm in L 2 pQ i,T q towards a η i pS i ppqq directly follows from the boundedness of η i combined with (3.6.3a).

	r B 1 i,m reads				
				ż T ż
		r B 1 i,m "	0	Ω i,m	a	λ i η Combining this
	with (3.6.3b) results in			
		żż				żż
	r B 1 i,m ÝÑ mÑ`8	Q i,T a	λ i η i pS i ppqq∇Θ i ppq ¨∇ϕ dx dt "	Q i,T ∇Φ i ppq ¨∇ϕ dx dt.	(3.6.14)

H Em,∆tm such that H Em,∆tm pt, xq ¨νKσ " ϕ n´1 Kσ ´ϕn´1 K , if pt, xq P rt n´1 m , t n m q ˆ∆σ , σ P E m , and such that H

Table 4 .

 4 1: Parameters used for the Brooks-Corey model.

		1 ´srn s rw	p b rPas	n λ rm 2 s	φ
	RT0	1.0	0.1 1.4708 ¨10 3 3.0 10 ´11 0.35
	RT1	1.0	0.2 3.4301 ¨10 3 1.5 10 ´13 0.35
		1 ´srn	s rw	n	λ rm 2 s	ξ rm ´1s	φ
	RT0 (Sand)	1.0	0.0782 2.239 6.3812 ¨10 ´12		2.8	0.3658
	RT1 (Clay)	1.0	0.2262 1.3954 1.5461 ¨10 ´13		1.04	0.4686

Table 4 .

 4 2: Parameters used for the van Genuchten-Mualem model.

Table 4 .

 4 3: Summary of methods' robustness (R) and accuracy (A) classification. Method D 1 and Method D 2 denote Method D with Schur complement and bisection method respectively. Color legend: green= good, orange= passing, red=bad.

Table 4 .

 4 p¨q, ω 12 σ,L p¨q (below) when using steep capillary pressure curves. 4: Summary of methods' robustness classification for steep tests. Method D 1 and Method D 2 denote Method D with Schur complement and bisection method respectively. Color legend: green= good, orange= passing, red=not converge.

		Method A Method B	Method C	Method D 1	Method D 2
		Mesh	dp 1	dp 2	dp 1	dp 2	dp 1 dp 2
	Filling case	50 ˆ30 400 ˆ240				
	Drainage case	50 ˆ30 400 ˆ240				

Table 4 .

 4 6: Results for the non-steep filling case using Brooks-Corey model. For methods C and D 1 , we specify within parentheses the number of iterations corresponding to the second choice of double parametrization when it differs from the one obtained with the first choice, which is reported without parentheses.

		9.60719e-2 8.08028e-2 6.41616e-2 5.18869e-2
	Rate of convergence	´0.25	0.333	0.306
	# total iterations	647	777	1074	1236
	# avg iterations	3	4	6	7
	# max iterations	18	21	168	32
	Method B	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.43731e-1 1.0421e-1	6.3325e-2	2.76736e-2
	Rate of convergence	´0.464	0.719	1.194
	# total iterations	835	959	1279	1428
	# avg iterations	4	5	7	8
	# max iterations	19	21	168	38
	Method C	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.46706e-1 1.06227e-1 6.45985e-2 2.84733e-2
	Rate of convergence	´0.465	0.7156	1.182
	# total iterations	690	796p794q	1106p1102q 1253p1247q
	# avg iterations	3	4	6	7
	# max iterations	20p18q	21	168	29
	Method D 1	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.7701e-1	1.26129e-1 7.75469e-2 3.66345e-2
	Rate of convergence	´0.489	0.702	1.082
	# total iterations	620p634q	721p734q	1001p1018q 1140p1146q
	# avg iterations	3	4	5	6
	# max iterations	17	20	155	32
	Method D 2	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.7701e-1	1.26129e-1 7.75469e-2 3.66345e-2
	Rate of convergence	´0.489	0.702	1.082
	# total iterations	590	714	999	1140
	# avg iterations	3	4	5	6
	# max iterations	17	20	155	32
	# avg it. bisection per face 16	15	15	14

4.

5.2 Drainage case using Brooks-Corey model

  Figure 4.19: Evolution of the saturation profile for t P t0 s, 35 ¨10 4 s, 70 ¨10 4 s, 105 ¨10 4 su for the non-steep drainage case, using Brooks-Corey model, Method B and the 50 ˆ30 cells mesh.

	Method A	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	4.48867e-2 2.60531e-2 1.64213e-2 1.110698e-2
	Rate of convergence	´0.785	0.666	0.564
	# total iterations	2598	2848	3258	3819
	# avg iterations	2	2	3	3
	# max iterations	21	24	29	32
	Method B	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.80469e-2 9.9613e-3	4.83626e-3 1.77811e-3
	Rate of convergence	´0.857	1.042	1.443
	# total iterations	2845	3056	3448	3918
	# avg iterations	2	2	3	3
	# max iterations	20	24	20	32
	Method C	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.81634e-2 1.00638e-2 4.92295e-3 1.84945e-3
	Rate of convergence	´0.851	1.032	1.412
	# total iterations	2659p2653q 2893p2887q 3304p3298q 3804p3798q
	# avg iterations	2	2	3	3
	# max iterations	20p21q	24	28p29q	32
	Method D 1	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3
	Rate of convergence	´0.898	0.915	1.046
	# total iterations	2659p2665q 2919p2905q 3329p3324q 3863p3861q
	# avg iterations	2	2	3	3
	# max iterations	21p20q	24	29p30q	32
	Method D 2	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	3.03634e-2 1.62917e-2 8.64114e-3 4.18359e-3
	Rate of convergence	´0.898	0.915	1.046
	# total iterations	2614	2894	3320	3856
	# avg iterations	2	2	3	3
	# max iterations	21	24	29	32
	# avg it. bisection per face 35	34	33	32

Table 4 .

 4 7: Results for the non-steep drainage case using Brooks-Corey model. For methods C and D 1 , we specify within parentheses the number of iterations corresponding to the second choice of double parametrization when it differs from the one obtained with the first choice, which is reported without parentheses.

Table 4 .

 4 8: Results for the non-steep filling case using van Genuchten-Mualem model. For methods C and D 1 , we specify within parentheses the number of iterations corresponding to the second choice of double parametrization when it differs from the one obtained with the first choice, which is reported without parentheses.

		1.05534e-1 7.48124e-2 4.55216e-2 2.1125e-2
	Rate of convergence	´0.496	0.717	1.108
	# total iterations	575	667	782	930
	# avg iterations	3	3	4	5
	# max iterations	9	12	15	18
	Method B	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.23187e-1 8.67715e-2 5.30592e-2 2.40712e-2
	Rate of convergence	´0.506	0.71	1.14
	# total iterations	836	900	959	1076
	# avg iterations	4	5	5	6
	# max iterations	9	12	15	18
	Method C	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.23321e-1 8.68681e-2 5.31222e-2 2.41106e-2
	Rate of convergence	´0.509	0.706	1.14
	# total iterations	571p573q	678p675q	779p800q	934p960q
	# avg iterations	3	3	4	5
	# max iterations	9	12	15	18
	Method D 1	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.50856e-1 1.0295e-1	6.20923e-2 2.91945e-2
	Rate of convergence	´0.551	0.729	1.089
	# total iterations	579p581q	677p676q	785p814q	933p985q
	# avg iterations	3	3	4	5
	# max iterations	9	12	15	18
	Method D 2	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	1.50856e-1 1.0295e-1	6.20923e-2 2.91945e-2
	Rate of convergence	´0.551	0.729	1.089
	# total iterations	579	674	783	933
	# avg iterations	3	3	4	5
	# max iterations	9	12	15	18
	# avg it. bisection per face 15	13	12	11

Table 4 .

 4 9: Results for the non-steep drainage case using van Genuchten-Mualem model. For methods C and D 1 , we specify within parentheses the number of iterations corresponding to the second choice of double parametrization when it differs from the one obtained with the first choice, which is reported without parentheses.

		1.50494e-2 7.3434e-3	3.57016e-3 1.66693e-3
	Rate of convergence	´1.035	1.04	1.099
	# total iterations	2333	2330	2325	2326
	# avg iterations	2	2	2	2
	# max iterations	65	67	67	72
	Method B	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	6.52099e-3 3.11282e-3 1.35196e-3 4.53001e-4
	Rate of convergence	´1.064	1.203	1.577
	# total iterations	2949	3006	3028	3236
	# avg iterations	2	2	2	3
	# max iterations	97	96	96	100
	Method C	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	6.52104e-3 3.11287e-3 1.35201e-3 4.53048e-4
	Rate of convergence	´1.067	1.203	1.577
	# total iterations	2855	2818p2817q 2904p2902q 2970p2962q
	# avg iterations	2	2	2	2
	# max iterations	99	98p97q	97p95q	101p93q
	Method D 1	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3
	Rate of convergence	´0.886	0.926	0.893
	# total iterations	2349	2351p2350q 2350	2367
	# avg iterations	2	2	2	2
	# max iterations	76	77p76q	80	84
	Method D 2	50 ˆ30	100 ˆ60	200 ˆ120 400 ˆ240
	}s´s ref } L 2 pr0,T s,Ωq }s ref } L 2 pr0,T s,Ωq	6.58861e-3 3.56638e-3 1.87745e-3 1.01069e-3
	Rate of convergence	´0.886	0.923	0.893
	# total iterations	2348	2345	2350	2367
	# avg iterations	2	2	2	2
	# max iterations	76	76	80	84
	# avg it. bisection per face 34	33	32	31

Table 5 .

 5 1: Parameters used for the Brooks-Corey model.

		1 ´srn	s rw	n	ξ rm ´1s
	RT0 (Sand)	1.0	0.0782 2.239	2.8
	RT1 (Clay)	1.0	0.2262 1.3954	1.04

Table 5 . 2

 52 

: Parameters used for the van Genuchten-Mualem model.

Table 5 .

 5 1 and 5.3. As wetting and non-wetting phases we consider water and CO 2 , characterized by the parameters reported in Table5.4.

			λrm 2 s	φ
		RT0	10 ´11	0.2
		RT1	10 ´13	0.2
	Table 5.3: Parameters of relative permeability and porosity used for RT0 and RT1 with the Brooks-
	Corey model.		
			rkg ¨m´3 s µ rPa ¨ss
	Water	1000	10 ´3
	CO 2	1.795	1.495 ¨10 ´3

Table 5 .

 5 4: Parameters used for the wetting (water) and non-wetting phase (CO 2 ).

Table 5 .

 5 6: Results using the Brooks-Corey model.¨10 ´1 δ C " 2 ¨10 ´2 δ C " 2 ¨10

	Method A	20 ˆ15	40 ˆ30	80 ˆ60
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	6.24516e-2 3.77878e-2 1.70673e-2
	Rate of convergence ´0.72	1.15
	# total iterations	473	479	563
	# avg iterations	3	3	3
	# max iterations	5	5	5
	# failures	0	0	0
	Method B	20 ˆ15	40 ˆ30	80 ˆ60
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	6.66594e-2 4.11436e-2 1.80111e-2
	Rate of convergence ´0.72	1.2
	# total iterations	502	494	581
	# avg iterations	3	3	3
	# max iterations	7	8	8
	# failures	2	0	1
	Method C	20 ˆ15	40 ˆ30	80 ˆ60
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	6.5432e-2	3.93114e-2 1.69376e-2
	Rate of convergence ´0.76	1.21
	# total iterations	4005	3507	2973
	# avg iterations	8	7	6
	# max iterations	20	20	20
	# failures	111	111	108
	Method D	20 ˆ15	40 ˆ30	80 ˆ60
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	6.85773e-2 4.29154e-2 2.07104e-2
	Rate of convergence ´0.68	1.05
	# total iterations	60602	8873	1472
	# avg iterations	3	3	4
	# max iterations	19	20	20
	# failures	4561	578	62
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: Evolution of the required Newton iterations w.r.t. the thickness of the interfaces cells for Methods B and C using the Brooks-Corey model with mesh 40 ˆ30.
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 5 8 ˆ6, 16 ˆ12 and 32 ˆ24 cells. A study of the evolution of the solution error measured using the L 2 pΩq-norm of the relative difference at final time between the saturations obtained on a given mesh and the ones computed with Method B and a mesh of resolution 64 ˆ48. For this test the classical Brooks-Corey (cf. §5.2.2) model is considered. In Table5.8 we report the numerical parameters used in the test. 8: Numerical parameters used in the examples.

	τ ˚	δ B	δ C
	Brooks-Corey 10 ´10 10 ´12 10 ´3 2 ¨10

´3

Table 5 .

 5 9: Results using the Brooks-Corey model.

	A	8 ˆ6	16 ˆ12	32 ˆ24
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	3.40626e-1 1.61846e-1 8.92542e-2
	Rate of convergence ´1.07	0.88
	# total iterations	251	241	256
	# avg iterations	4	4	4
	# max iterations	8	7	8
	# failures	0	0	0
	Method B	8 ˆ6	16 ˆ12	32 ˆ24
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	2.85001e-2 1.64425e-2 7.98564e-3
	Rate of convergence ´0.79	1.04
	# total iterations	298	334	272
	# avg iterations	5	4	4
	# max iterations	8	14	15
	# failures	0	4	0
	Method C	8 ˆ6	16 ˆ12	32 ˆ24
	}s N ´sN ref } L 2 pΩq }s N ref } L 2 pΩq	3.58215e-2 2.50147e-2 1.51162e-2
	Rate of convergence ´0.51	0.73
	# total iterations	33020	16007	13950
	# avg iterations	16	14	12
	# max iterations	20	20	20
	# failures	517	281	271
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Analysis at fixed grid

Some uniform a priori estimates

In this section, our aim is to derive a priori estimates on the solutions to the scheme (3.4.9)- (3.4.13). These estimates will be at the core of the existence proof of a solution to the scheme. They will also play a key role in proving the convergence of the scheme.

The main estimate on which our analysis relies is a discrete counterpart of (3.2.2). We recall that a σ is the transmissivity introduced in (3.4.5). In (3.5.1), the relationship between σ and K is to be understood as follows. For an inner edge σ P E int , although it can be written as σ " K|L or L|K, only one of these contributes to the sum. For a boundary edge σ P E ext , there is only one cell K such that σ P E K , so there is no ambiguity in the sum.

Proof. Multiplying (3.4.10) by ∆t n pp n K ´pD K q, summing over K P T and n P t1, . . . , N u, and carrying out discrete integration by parts yield A `B " 0, (3.5.2)

where we have set

The discrete energy density function e K : r0, 1s Ñ R `, defined by means of the notation (3.4.7) from the functions f i " e i introduced in (3.1.7), is convex by construction. Consequently,

Therefore, the quantity A of (3.5.3a) can be bounded below by

the last inequality being a consequence of the boundedness of e K on r0, 1s.

over σ P E i , i P t1, . . . , Iu and n P t1, . . . , N u using appropriate weights, we get

whose right-hand side is obviously less than C 3 , thanks to (3.5.8). This proves (3.5.12a).

Similarly, the respective definitions of η n σ and Υ have been tailored so that max

for all σ P E . As a consequence,

Summing these inequalities over σ P E and n P t1, . . . , N u with appropriate weights and invoking (3.5.8), we prove (3.5.12b). The argument for (3.5.13a) is subtler. Starting from the basic inequality

we apply the discrete Poincaré inequality of [73, Lemma 9.1] -which is legitimate since Γ D has positive measure-followed by [START_REF]Finite volume methods, in Solution of Equation in R n (Part 3)[END_REF]Lemma 9.4] to obtain The purpose of the next lemma is to work out a weak estimate on the discrete counterpart of B t s, which will lead to compactness properties in §3.6.1. For ϕ P C 8 c pQ T q, let

Lemma 3.5.4. There exists a constant C 6 depending on the same data as C 1 such that

Proof. Multiplying (3.4.10) by ∆t n ϕ n K , summing over K P T and n P t1, ¨¨¨, N u and carrying out discrete integration by parts, we end up with

Applying the Cauchy-Schwarz inequality and using (3.5.1b), we get 4.2. The green dot indicate the value for τ " τ ˚and the magenta one τ " τ s .

Comparison of the results in non-steep cases

We now analyze the results obtained on the test cases which were previously introduced. We use uniform time discretizations. The time-step ∆t depends on the test case and is reported in Table 4.5 together with the others numerical parameters used for these simulations. The detailed results for the different cases, methods and meshes along with figures of the solutions are reported in Appendix §4.5. In Table 4.3 we present a brief classification of the proposed methods based on both robustness (R) and accuracy (A) criteria. For each criterion, the colour choice corresponds to the following glossary: green for good, orange for average, red for bad. Regarding the robustness, a non-convergent method is classified as red; orange is used if a method faces many times difficulties during Newton's resolution (maximal number of iterations reached, a much larger number of total iterations in comparison to other methods...); the green label is used in other cases. Thus, a method, having a relative error in the same order as the best performing one, is tagged as green; if an error has one (resp. several) order(s) of magnitude more than the best performing one, the label of the corresponding method is taken as orange (resp. red).

Let us discuss each test case in details, starting with the filling test case simulated with the Brooks-Corey model. Table 4.6 shows that Method A has the smallest saturation relative error with the coarsest mesh. Subsequent refinements then enable to reduce the error related to methods B, C, D at a higher convergence rate, leading to errors on the finest grid that are smaller than the one obtained with the classical scheme A. All the methods face difficulties in the Brooks-Corey filling case for the third mesh and the first time-step. This is due to our non-optimal choice of a uniform time discretization. A simple time-step adaptation strategy similar to the one used in the steep case would fix this issue.

Keeping the Brooks-Corey model, if we now analyze the results reported in Table 4.7 for the drainage case, we notice that methods B, C and D always have a smaller error than method A that converges again at a slower rate. Concerning Method C, it behaves as Method A in terms of accuracy and is fairly cheaper in terms of iterations with respect to this one.

We now consider the results obtained with the van Genuchten-Mualem model. Table 4.8 summarizes the results obtained with the filling case. We can notice that all methods have approximately the same errors and convergence rates. Regarding Newton's cost, the conclusions are similar to the ones made for the Brooks-Corey tests.

Implicit TPFA discretization of the model

Let us first rewrite the system (1.2.1)-(1.2.6) under the slightly more condensed form

)

)

(5.1.1e) Being implicitly understood that s w " 1 ´snw , the resulting scheme reads

Kσ " 0, (5.1.2b) pp c q n K ´rpp nw q n K ´pp w q n K s " 0, (5.1.2c) ps nw q n K ´pS nw q K ppp c q n K q " 0, (5.1.2d)

for each cell K P T , where the numerical fluxes

)

are implicit TPFA approximations of ş σ v w ¨νK,σ dγ and ş σ v nw ¨νK,σ dγ. We recall that

is the transmissibilty, as was defined in (2.1.8), while w Kσ stands for the mirror value of w K as defined in the previous chapters. In (5.1.3), the face mobilities are upwinded according to the sign of the difference in the hydraulic heads pϑ w q n " pp w q n `ψw " pp w q n ´ w g ¨x, (5.1.5a) pϑ nw q n " pp nw q n `ψnw " pp nw q n ´ nw g ¨x.

(5.1.5b)

In other words, pk r,w q n σ " # pk r,w q K pps w q n K q if pϑ w q n K ´pϑ w q n Kσ ě 0, pk r,w q Kσ pps w q n Kσ q if pϑ w q n K ´pϑ w q n Kσ ă 0.

(5.1.6a) pk r,nw q n σ " # pk r,nw q K pps w q n K q if pϑ nw q n K ´pϑ nw q n Kσ ě 0, pk r,nw q Kσ pps w q n Kσ q if pϑ nw q n K ´pϑ nw q n Kσ ă 0.

(5.1.6b)

Application of previously developed techniques

Parametrization by variable switching

Let us recall the hydraulic model for the two-phase flow (1.2.21)-(1.2.22) presented in §1. Setting the effective saturation as r s eff :" r s eff ps nw q " Π r0,1s ˆp1 ´srw q ´snw p1 ´srw q ´srn ˙" Π r0,1s ˆsw ´srw p1 ´srn q ´srw ˙, (

where Π r0,1s stands for the projection on r0, 1s, we have

• for the Brooks-Corey model: k r,w ps nw q " r s 3`2{n eff , (5.2.2a) k r,nw ps nw q " p1 ´r s eff q 2 p1 ´r s 1`2{n eff q, (5.2.2b)

´"s rw `p1 ´srn ´srw q

(5.2.2c)

• for the van Genuchten-Mualem model:

k r,nw ps nw q " p1 ´r s eff q 1{2 " 1 ´r s 1{m eff ‰ 2m , (5.2.3b)

´"s rw `p1 ´srn ´srw q ˆ1 `ˇˇˇξ p c w g

with m " 1 ´1{n.

As we did in §4.4.1.3, in order to avoid infinite values for the derivative of k r,w ps nw q when s nw Ñ s rn , we approximate it for s P rs lim , 1 ´srn s using a second degree polynomial r k r,w p¨q. of law S nw . We set I " R and

In the above formulas, pp s , s s q " pppτ s q, spτ s qq is referred later on as the switching point, at which one passes from τ behaving as the saturation to τ behaving as the pressure (recall that Newton's iterations are not sensitive to linear changes of variables). Another switch is incorporated at pp ˚, s ˚q " pppτ ˚q, spτ ˚qq to improve Newton's robustness in presence of heterogeneities. The parameter τ ˚, such that s ˚" 1´s rw ´ ˚« 1´s rw , is chosen so that the solution pp c n K , s nw n K q KPT to the scheme is always smaller that pp ˚, s ˚q. The parameters κ and ς are chosen so that p is C 1 , leading to the expressions

, and ς "

where the numerical fluxes become

(5.2.9a)

with pϑ w q n K ´pϑ w q n Kσ " pp w q n K ´pp w q n Kσ `pψ w q K ´pψ w q Kσ , (5.2.10a) pϑ nw q n K ´pϑ nw q n Kσ " pp nw q n K ´pp nw q n Kσ `pψ nw q K ´pψ nw q Kσ (5.2.10b)

" pp w q n K ´pp w q n Kσ `pc pτ n K q ´pc pτ n Kσ q `pψ nw q K ´pψ nw q Kσ and the face mobilities turn into pk r,w q n σ " # pk r,w q K ps nw pτ n K qq if pϑ w q n K ´pϑ w q n Kσ ě 0, pk r,w q Kσ ps nw pτ n Kσ qq if pϑ w q n K ´pϑ w q n Kσ ă 0.

(5.2.11a) pk r,nw q n σ " # pk r,nw q K ps nw pτ n K qq if pϑ nw q n K ´pϑ nw q n Kσ ě 0, pk r,nw q Kσ ps nw pτ n Kσ qq if pϑ nw q n K ´pϑ nw q n Kσ ă 0.

(5.2.11b)

Treatment of the interface

As in the Richards' equation case, at the interface Γ i,j , pressures and flux are continuous. More precisely, denote by p wi , p ci the traces at p0, T q ˆΓi,j of the wetting and the capillary pressures

, and by v wi , v nwi the traces at p0, T q ˆΓi,j of the wetting and non-wetting velocity vectors v w|Ω i , v nw|Ω i in Q i,T , then the transmission conditions across Γ i,j write v wi ¨νi `vwj ¨νj " 0, (5.2.12a)

v nwi ¨νi `vnwj ¨νj " 0, (5.2.12c)

where ν i (resp. ν j ) denotes the normal to Γ i,j outward w.r.t. Ω i (resp. Ω j ). To approximate these conditions, we can apply the four schemes detailed in §4.3. Concerning the second parametrization introduced in order to enforce the pressure continuity (4.3.12) for Methods C and D, also in this case we need to define monotone functions ω σ,K , ω σ,L , with ω σ,K `ωσ,L ą 0, such that p cK pω σ,K pτ qq " p cL pω σ,L pτ qq, @σ P Γ.

(5.2.13)

Choosing K and L such that p b,K ă p b,L for the Brooks-Corey and ξ K ą ξ L for the van Genuchten-Mualem settings described in (5.2.2)-(5.2.3) respectively, we can choose between the two propositions presented in (4.3.13)-(4.3.14) for functions ω σ,K , ω σ,L . The form of the first proposition (4.3.13) ω 1 σ,K pτ q " τ, ω 1 σ,L pτ q " p ´1 L ˝pK pτ q, 

CO 2 migration towards surface

Thanks to the test case proposed in §5.3.1 we have analyzed the robustness of the proposed strategies to treat heterogeneities in the domain but we have not noticed major improvements in the accuracy of the solution. Thus, to put the different methods to the test and show that, considering the same grid, approaches that introduce an interface-specific treatment provide a more accurate solution than the classical TPFA scheme, we now introduce a second test case. The idea is to consider a case of CO 2 trapping and simulate the migration of CO 2 to the surface through a poorly permeable layer as only an effect of capillarity. Let us detail this test case.

Description of the test case

We consider a two-dimensional layered domain Ω " r0, 1s ˆr´0.6, 0s (in meters) made up of two rock types denoted by RT0 and RT1 respectively, RT1 (which plays the role of cap rock) being less permeable than RT0. Details are reported in Table 5.1 and 5.3. As wetting and non-wetting phases we consider water and CO 2 , characterized by the parameters reported in Table 5.4. The domain Ω is partitioned into three connected subdomains: Ω 1 " r0, 1s ˆr´0.2, 0s, Ω 2 " r0, 1s ˆr´0.3, ´0.2s and Ω 3 " r0, 1s ˆr´0.6, ´0.3s (in meters), as depicted in Figure 5.12. The subdomains Ω 1 , Ω 3 are characterized by RT0; Ω 2 by RT1.

Initially, subdomains Ω 1 , Ω 2 are water saturated and Ω 3 is gradually CO 2 saturated. More precise we set the initial capillary pressure profile: