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Calibration of a thermo-mechanical constitutive model using the VFM and a heterogeneous test. To be submitted.

This work also leaves a few contributions in terms of software tools, which constitute a solid base for future work. These contributions include subroutines written in fortran for the different inverse methods, Matlab scripts for post-processing of experimental data and UMAT subroutines for anisotropic elasto-plasticity models and thermo-elasto-plasticity models.

Structure of the thesis

Following this general introduction, this thesis is organized in five main chapters. Chapter 2 consists of a paper presenting an overview of four well-known inverse analysis methods, namely the Finite Element Model Updating, the Constitutive Equation Gap Method, the Equilibrium Gap Method, and the Virtual Fields Method [P1]. This paper provides a detailed discussion on the advantages and disadvantages of these methods, implementation details and a comparative study in the framework of infinitesimal strains for linear elasticity and non-linear plasticity. Chapter 3 is composed of three papers. The first section consists of a comparative study on the Finite Element Model Updating and the Virtual Fields Method, in the framework of finite strains for non-linear plasticity [P2]. The second and third sections focus exclusively on the Virtual Fields Method. In the second section, a single biaxial test and the Virtual Fields Method are analysed in the calibration of anisotropic plasticity models [P3]. In the third section, the combination of the Virtual Fields Method and a previously optimised heterogeneous test is also evaluated in the calibration of an anisotropic plasticity model [P4]. Chapter 4 is dedicated to the calibration of thermo-mechanical constitutive models using a thermo-mechanical heterogeneous test and two inverse analysis methods, the Virtual Fields Method and the Finite Element Model Updating. Two papers compose this chapter. The first section consists of a virtual analysis on the application of the Finite Element Model Updating to explore this heterogeneous test [P5]. The second section presents an experimental database obtained from this heterogeneous test. Its combination with the Virtual Fields Method to calibrate a modified version of the well-known Johnson-Cook model is analysed [P6]. Chapter 5 presents the conclusions and perspectives for future work on the topic of calibration of constitutive models.

keywords

Elasto-plasticity; Thermo-elasto-viscoplasticity; Anisotropy ; Calibration of constitutive models; Heterogeneous tests abstract Nowadays, simulation tools, like the finite element method, are essential to design and optimise sheet metal forming processes. These tools use constitutive models to describe the thermo-mechanical behaviour of the material and their success is inherently dependent on the quality of the models and, consequently, on its calibration. Recent calibration procedures rely on fullfield measurements, heterogeneous tests, and inverse analysis methods. The combination of these three elements leads to more information extracted from a single mechanical test when compared to classical procedures that use homogeneous tests. This new concept of calibration has the potential to reduce the number of tests required and simplify the process.

This thesis contributes to the calibration process of thermo-mechanical constitutive models by proposing new calibration methodologies based on this new concept. An overview of four inverse methods, namely the Finite Element Model Updating (FEMU), the Constitutive Equation Gap Method, the Equilibrium Gap Method and the Virtual Fields Method (VFM) is the starting point for this work. Details on the algorithms and implementation of each method are given, as well as a discussion on strengths and weaknesses. A comparative study in the framework of infinitesimal strains, on linear elasticity and non-linear plasticity, under the same conditions, is presented. This overview shows that FEMU is the most straightforward method to implement. The comparative study also shows that the other three methods outperform it in terms of computational efficiency. The VFM presents a balanced response in terms of accuracy and computational efficiency when compared to the other methods. An additional analysis of the accuracy of VFM and FEMU for plasticity models within finite strains framework is also presented. The results indicate that FEMU is sensitive to the distribution of the strain values present in the database of the test. The strain values with more representation in the database have more impact on the calibration results. In the same conditions, the VFM shows a more robust response when compared to FEMU.

Two heterogeneous tests are then evaluated as potential databases to combine with the VFM. The aim is to propose a single test calibration methodology for anisotropic plasticity models. The first test is a biaxial tension test of a cruciform specimen. Three cruciform geometries are analysed as potential candidates to combine with the VFM. The analysis of the geometries shows that the inclusion of geometric perturbations in the specimen creates additional heterogeneity and enhances the information of this test. Accurate results are reached for the calibration of two anisotropic plasticity models. The second heterogeneous test is a uniaxial standard test with an optimized specimen shape. The calibration results show a good description of the material behaviour for the loading direction. However, a test in a single loading direction seems insufficient to accurately calibrate an anisotropic plasticity model. Moreover, the sensitivity of the VFM to the number of virtual fields is revealed in this study.

The last part of this work focuses on the calibration of thermo-elastoviscoplasticity models. A heterogeneous thermo-mechanical test performed on a Gleeble machine is proposed to generate the experimental database. The analysis of the test shows a considerable range of temperatures, strain values and strain-rates. A first methodology that combines the FEMU with this heterogeneous test is evaluated using virtual data. A detailed sensitivity analysis of the Johnson-Cook material parameters is performed. The simultaneous calibration of all the parameters in the model is achieved with reasonable success. In a second methodology, the test is coupled with the VFM to calibrate a modified version of the Johnson-Cook model. The experimental database is then generated for a high strength steel. The calibration results show that a reasonable description of the flow stress evolution is attained. Overall, the two methodologies are promising alternatives to classical procedures.
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mots clés

Élasto-plasticité; Thermo-élasto-viscoplasticité; Anisotropie; Calibration de modèles mécaniques; Essais mécaniques hétérogènes résumé De nos jours, les outils de simulation, comme la méthode des éléments finis, sont devenus essentiels pour concevoir et optimiser les procédés de mise en forme des tôles métalliques. Ces outils utilisent des modèles pour décrire le comportement thermo-mécanique du matériau et leur succès dépend de façon intrinsèque de la qualité du modèle et, par conséquent, de sa calibration. Les procédures récentes de calibration reposent sur des mesures de champ, des essais hétérogènes et des méthodes d'analyse inverse. La combinaison de ces trois éléments permet d'extraire davantage d'informations d'un essai mécanique par rapport aux procédures classiques, qui utilisent des essais homogènes. Ce nouveau concept de calibration a le potentiel de réduire le nombre d'essais requis et de simplifier l'identification des paramètres.

Cette thèse contribue au processus de calibration des modèles de comportement thermo-mécanique en proposant de nouvelles méthodologies de calibration fondées sur ce nouveau concept. Un aperçu de quatre méthodes inverses, à savoir Finite Element Model Updating (FEMU), Constitutive Equation Gap Method, Equilibrium Gap Method et Virtual Fields Method (VFM) est le point de départ de ce travail. Les algorithmes et la mise en oeuvre de chaque méthode sont détaillés et une discussion sur les points forts et les points faibles est menée. Une étude comparative dans le cadre des déformations infinitésimales, pour l'élasticité linéaire et la plasticité non linéaire, est présentée. Cet aperçu montre que la méthode FEMU est la plus simple à mettre en oeuvre. L'étude comparative montre également que les trois autres méthodes la surpassent quand l'efficacité du calcul est considérée. La méthode VFM présente une réponse équilibrée au regard de la précision et de l'efficacité du calcul par rapport aux autres méthodes. Une analyse supplémentaire sur la précision des méthodes VFM et FEMU pour les modèles de plasticité dans le cadre de transformations finies est également présentée. Les résultats indiquent que la méthode FEMU est sensible à la distribution des valeurs des déformations présentes dans la base de données expérimentale. En effet, les valeurs de déformations les plus représentées ont un impact plus important sur les résultats de la calibration. Dans les mêmes conditions, la méthode VFM montre une réponse plus robuste par rapport à FEMU.

Deux tests hétérogènes sont ensuite évalués en tant que bases de données potentielles à combiner avec la méthode VFM. L'objectif est de proposer une méthodologie de calibration à partir d'un test mécanique unique pour les modèles de plasticité anisotrope. Le premier essai est un test de traction biaxiale d'un échantillon cruciforme. Trois géométries sont analysées en tant que candidats potentiels à combiner avec la méthode VFM. L'analyse des géométries montre que l'intégration de perturbations géométriques dans l'échantillon crée une hétérogénéité supplémentaire et améliore les informations de ce test. Des résultats précis sont obtenus pour la calibration de deux modèles de plasticité anisotrope. Le second test hétérogène est un test standard de traction uniaxiale avec une forme d'échantillon optimisée. Les résultats de la calibration montrent une bonne description du comportement du matériau dans la direction de la force appliquée. Cependant, un test dans une seule direction de chargement semble insuffisant pour calibrer avec précision un modèle de plasticité anisotrope. De plus, cette étude révèle la sensibilité de la méthode VFM au nombre de champs virtuels.

La dernière partie de ce travail se concentre sur la calibration d'un modèle de thermo-élasto-viscoplasticité. Un essai hétérogène en déformations et en température réalisé avec une machine Gleeble est proposé pour générer la base de données expérimentale. L'analyse de l'essai montre une gamme importante de températures, de valeurs de déformation et de vitesse de déformation. Une première méthodologie qui combine la méthode FEMU avec cet essai hétérogène est évaluée à l'aide de données virtuelles. Une analyse de sensibilité détaillée des paramètres du modèle de Johnson-Cook est effectuée. La calibration simultanée de tous les paramètres du modèle est réalisée avec un succès raisonnable. Dans une seconde méthodologie, le test est couplé avec la méthode VFM pour calibrer une version modifiée du modèle de Johnson-Cook. La base de données expérimentale est alors obtenue pour un acier à haute résistance. Les résultats de la calibration montrent qu'une description raisonnable de l'évolution de la contrainte d'écoulement est obtenue. Dans l'ensemble, les deux méthodologies sont des alternatives prometteuses aux procédures classiques.
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palavras-chave

Elasto-plasticidade; Termo-elasto-viscoplasticidade; Anisotropia; Calibração de modelos constitutivos; Testes mecânicos heterogêneos resumo Atualmente, as ferramentas de simulação numérica, como o método dos elementos finitos, são essenciais para projetar e otimizar processos de estampagem de chapas metálicas. Estas ferramentas de simulação utilizam modelos constitutivos para descrever o comportamento termomecânico do material, estando o seu sucesso dependente da qualidade destes modelos e consequentemente da sua calibração. Os processos mais recentes de calibração têm como base medições de campo total, testes heterogêneos e métodos de análise inversa. A combinação destes três elementos permite extrair mais informação de um ensaio mecânico quando comparado com os procedimentos clássicos de calibração que usam testes homogéneos. Deste modo, este novo conceito de calibração tem o potencial de reduzir o número de testes necessários e simplificar o processo.

Esta tese pretende assim contribuir para o processo de calibração de modelos termomecânicos propondo novas metodologias baseadas neste novo conceito. O ponto de partida para este trabalho é a revisão geral de quatro métodos inversos, designadamente o método Finite Element Model Updating (FEMU), o Constitutive Equation Gap Method, o Equilibrium Gap Method e o Virtual Fields Method (VFM). Os algoritmos e o processo de implementação de cada método são apresentados detalhadamente nesta revisão, assim como uma discussão dos pontos fortes e fracos de cada método. É também apresentado um estudo comparativo, considerando uma formulação para pequenas deformações, para modelos de elasticidade linear e plasticidade não linear, adotando as mesmas condições para cada método. Esta revisão mostra que o método FEMU é o método de análise inversa mais simples de implementar. O estudo comparativo mostra que os outros três métodos apresentam um desempenho superior em termos de eficiência computacional. Quando comparado com os outros métodos, o VFM apresenta uma resposta equilibrada em termos de precisão dos resultados de calibração e eficiência computacional. No seguimento desta revisão é apresentada uma análise á precisão do VFM e FEMU para modelos de plasticidade considerando uma formulação para grandes deformações. Os resultados obtidos indicam que o método FEMU é sensível à distribuição dos valores de deformação presentes na base de dados do teste heterogéneo, uma vez que os valores de deformação com maior representatividade na base de dados têm um impacto superior nos resultados da calibração. Para as mesmas condições, o VFM apresenta uma resposta mais robusta quando comparado com o FEMU.

Dois testes heterogéneos são avaliados como potenciais bases de dados a combinar com o VFM. O objetivo desta avaliação é propor uma metodologia de um só teste para calibração de modelos anisotrópicos de plasticidade. O primeiro teste a ser estudado é um teste de tração biaxial de um provete cruciforme. São analisadas três geometrias para o provete como possíveis candidatas a combinar com o VFM. Esta análise mostra que a inclusão de perturbações geométricas na geometria do provete leva a um aumento da heterogeneidade e informação criada pelo teste. Além disso, os resultados obtidos com o teste biaxial na calibração de dois modelos anisotrópicos de plasticidade são bastante precisos. O segundo teste avaliado consiste num teste de tração uniaxial num provete com geometria otimizada. Os resultados da calibração com este provete mostram uma boa descrição do comportamento do material para a direção de carregamento. No entanto, os resultados indicam que um teste com apenas uma direção de carregamento é insuficiente para uma calibração precisa de um modelo anisotrópico de plasticidade. Além desta análise, este estudo também revela que o VFM é sensível ao número de campos virtuais selecionados.

A última parte deste trabalho incide sobre a calibração de modelos de termoelasto-viscoplasticidade. É proposto um teste heterogéneo termomecânico realizado num equipamento de testes Gleeble para criar uma base de dados experimental. A análise deste teste mostra que são atingidas gamas consideráveis de temperatura, deformação e velocidade de deformação. A primeira metodologia proposta combina este teste heterogéneo e o método FEMU, a sua avaliação é efetuada usando uma base de dados virtual. Esta avaliação incluí a análise detalhada da sensibilidade de cada parâmetro do modelo Johnson-Cook. Os resultados mostram que a calibração simultânea de todos os parâmetros pode ser alcançada com razoável sucesso através desta metodologia. Numa segunda metodologia proposta, o mesmo teste heterogéneo é usado juntamente com o VFM para calibrar uma versão modificada do modelo de Johnson-Cook. A base de dados experimental é gerada para um aço de alta resistência. Os resultados do processo de calibração mostram que é possível obter uma descrição razoável da tensão de escoamento do material. Globalmente, os resultados das duas metodologias mostram que estas são alternativas bastante promissoras aos métodos clássicos de calibração.
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Motivation and background

Numerical simulation and its accuracy Numerical simulation tools have assumed a preponderant role in the engineering development process of a new product. These tools are indispensable to virtually test new concepts, select the best materials, and optimise, with the advantage of avoiding the time and costs of physical prototyping. This reduction of time and costs is crucial in a variety of industries such as automotive, aerospace and electronics. For instance, in the automotive industry, a common application of numerical simulation tools, namely the finite element method, aims the feasibility evaluation of body car parts by sheet metal forming [1]. Currently, the technical and economic impact of these tools is considerable and seems likely to increase further in the near future. Therefore, it is mandatory to improve their reliability. The accuracy and robustness of these tools are controlled by many aspects, ranging from continuum mechanics, contact and friction, material behaviour modelling to numerical analysis. However, the quality of simulation results is strongly dependent on the accuracy of constitutive models to describe the thermo-mechanical behaviour of materials [2].

Constitutive modelling

Constitutive models provide the link between the deformations that a material undergoes and the resultant stresses. In the case of metal sheets, the thermo-mechanical behaviour is commonly described by phenomenological constitutive models which are of easy access in commercial simulation software. The complexity of these models depends on the type of phenomena they represent (e.g. hardening, anisotropy, temperature, and strain-rate dependence) and their flexibility to capture the exact behaviour of the material [3]. Therefore, phenomenological models can be complex non-linear equations with a large number of material-dependent parameters. Furthermore, constitutive models are not turn-key tools ready to be used in a numerical simulation tool. Indeed, a calibration process needs to be performed for the selected material, i.e. the material-dependent parameters need to be identified. As a result, the calibration process dictates the final accuracy of the constitutive model.

Calibration

The calibration process corresponds to the fitting of the response of the selected constitutive model to the experimental data representing the thermo-mechanical behaviour of the material. Consequently, the accuracy of the calibrated constitutive model is strictly related to the experimental data available for the process [4,5]. In the context of non-linear constitutive models for the mechanical behaviour of 2 1.Introduction metal sheets, the classical procedures to acquire experimental data include tests of uniaxial tension, biaxial tension or hydraulic bulging and simple shear [2]. These tests are designed to have a single welldefined homogeneous strain state over a region of interest. Accordingly, it is straightforward to obtain the stress state that the material undergoes during the test. The main disadvantage of using these homogeneous tests is the required number of tests to collect a comprehensive experimental database. For example, anisotropic constitutive models or models that consider temperature and strain-rate effects require tests at different material orientations, or under different temperatures and strain-rates [6]. As a result, classical methods make the calibration process time consuming and costly. It is possible to resort to robot-assisted testing systems [7] to reduce the time, but this type of solutions requires a high initial investment and is not yet widespread in the field. Consequently, the unavailability of efficient procedures may precipitate numerical simulation software users to adopt erroneous solutions, such as using material parameters from a different material or material parameters from a calibration process with an insufficient amount of data. These solutions deteriorate the capabilities of constitutive models to represent the selected material and, consequently, the reliability of the simulation results [8].

New concept for calibration

There have been significant efforts to bring more efficient solutions to the problem of constitutive model calibration. The most promising solutions are based on the combination of full-field measurement techniques, heterogeneous tests, and inverse analysis [9]. This strategy relies on the fact that full-field measurement techniques have the ability to record the evolution of the displacements and strain fields at the surface of the specimens during a test. Additionally, heterogeneous tests, due to the non-uniform geometries or boundary conditions, may induce a large range of strains, strain-rates and temperatures in a specimen within a single test. The combination of full-field measurements and heterogeneous tests leads to more information on the thermo-mechanical behaviour of a material extracted from a single heterogeneous test when compared to classical procedures that use homogeneous tests. However, the analysis of heterogeneous displacements or strain fields requires inverse analysis methods to calibrate a constitutive model. These methods often rely on numerical simulation or principles from solid mechanics to transform the calibration process in an optimization problem [9,10]. In addition to reducing the long experimental campaigns, this combination expands the analysis of experimental tests to higher levels of strain. This aspect is particularly important for accurate simulations in sheet metal forming processes. In this type of processes, the material undergoes high levels of deformation that go beyond the typical levels reached in homogeneous tests [11].

Challenges

Although significant progress has been made to prove the feasibility of this new calibration solution, there are still some challenges to be tackled in order to achieve widespread use in the scientific and industrial communities. The development of an efficient strategy to design heterogeneous tests is one of the challenges [12]. The objective is to reduce the number of experimental tests needed to calibrate a constitutive model without compromising the accuracy. Although some tests already presented in the literature offer a solution with reasonable results, there is still room for improvement and this is a research topic of growing interest [13][14][15]. The quantification of the sensitivity to measurement errors and how these errors propagate along the chain of the calibration process is also a challenge that remains unresolved. Finding a solution for this challenge is also an important aspect for the development of new tests and the assessment of the robustness of inverse analysis methods [16,17]. In the case of non-linear constitutive models, the calibration process ends with an optimisation problem, which typically is an ill-posed problem. Insufficient information in the experimental database contributes to this problem, but also the formulation of the constitutive models. In some cases, the universe of possible solutions for the material-dependent parameters includes solutions that violate physical constraints or represent homothetic solutions. Therefore, the identification of constraints to increase 1.Introduction 3 the stability and robustness of the calibration results is also a problem that needs to be considered. The widespread of this solution is also hampered by complex implementation procedures in inverse methods and the absence of practical information. Currently, the inverse methods with the greatest impact are those that were born from simple ideas or those that the authors championed with the availability and dissemination of practical information on their implementation. Therefore, the development of practical guidelines and information on inverse methods is a topic of high importance to disseminate and have more acceptance in the scientific and industrial communities. Moreover, proving the relevance of this solution for constitutive models with increasing complexity, such as models that consider temperature and strain-rate effects, is also an open topic. To the best of author's knowledge, the combination of displacement or strain field measurements with temperature field measurements has not been largely explored.

Objectives and achievements

The driving force for the present thesis is the enhancement of the calibration process of constitutive models through the combination of full-field measurements, heterogeneous tests, and inverse analysis. Within this context, the aim of this thesis is the development of a calibration methodology for constitutive models that consider temperature and strain-rate effects on the mechanical behaviour of sheet metals. A thermo-mechanical heterogeneous test is analysed and coupled with two different inverse analysis methods, the Virtual Fields Method and Finite Element Model Updating. However, on the way towards the main objective, some of the challenges mentioned above have been met. Therefore, this thesis also aims at contributing to the global issue of calibration of constitutive models with insights on the implementation and comparison of inverse analysis methods in the framework of linear elasticity and non-linear plasticity models. Furthermore, more focused on a specific inverse method, the Virtual Fields Method, this thesis aims at contributing to improve and expand the frontiers of application of this method. A new methodology to calibrate anisotropic plasticity models with a single biaxial test and the Virtual Fields Method is analysed. The application of constraints on constitutive models is also addressed in this analysis. Moreover, the selection of the number of virtual fields, a critical aspect of the method, is explored in the calibration of anisotropic plasticity models. A previously optimized heterogeneous test is coupled with the Virtual Fields Method to calibrate an anisotropic plasticity model.

List of publications and developed tools

This thesis is composed of six papers that represent contributions to the scientific community made via international journals and conference proceedings. These are listed below:

[P1] J.M.P. Martins, A. Andrade-Campos, S. Thuillier, Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements, International Journal of Mechanical Sciences, 145, 330-345, 2018.

[P2] J.M.P. Martins, S. 

State-of-the-art on inverse analysis methods

The development of inverse analysis methods for the calibration of constitutive models has been a prolific research area, and as a result, an interesting number of methods based on full-field measurements was proposed. However, the dissemination and widespread use of inverse analysis methods need to be reinforced by bridging the gap between theory and implementation procedure. Moreover, a performance evaluation study under the same conditions is essential to guide the end-users in the selection of the proper method.

2.1 Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements

Introduction

With the innovation surge currently happening in industry, reliable and fast solutions for engineering problems are more important than ever. Numerical simulation has been a valuable tool for their resolution and is now well-established. However, it is essential for these tools to keep a continuous improvement of their predictive capabilities. One of the areas for potential improvement is mechanical modelling of materials and the respective calibration procedure. The quest for more accurate models has been particularly intense regarding the elasto-plastic behaviour of sheet metals. Indeed, many advanced and more complex mechanical models have been developed to accurately describe phenomena such as hardening and anisotropy. However, this increase in complexity usually means a tedious process of parameter calibration, due to long experimental campaigns. For example, the yield criterion Yld2000 [1] depends on 8 material parameters, which requires three uniaxial yield stresses and three uniaxial anisotropy coefficients, the biaxial yield stress and anisotropy coefficient. Consequently, in industrial practice, simpler models are still preferred to avoid such experimental campaign and complex identification process [2] . Therefore, there is a clear demand for new processes of calibration that can simplify the experimental campaign without compromising the accuracy of the models.

Nowadays, there are two main approaches to conduct the identification process: a classical approach and a more recent one based on full-field measurements [3,4] . The classical approach relies on simple tests, that provide near homogeneous strain and stress states over the zone of interest. It is taken advantage of this homogeneity to retrieve the material parameters from simple analytical solutions. This kind of approach has several drawbacks, i.e.: (i) the limited exploitation of experimental tests, since homogeneous stress and strain state assumption can no longer be used after the onset of necking; (ii) the large number of tests required when complex constitutive models have to be calibrated; and (iii) the stress and strain fields do not resemble the ones obtained in forming operations.

The second approach is increasingly being used, mainly because of the rapid development of full-field measurements techniques, such as digital image correlation [5] . These techniques allow a more flexible design of mechanical tests and take advantage of the heterogeneous displacement/strain fields [6] . Indeed, due to the heterogeneity, each material point experiences a different stress and strain history, hence the number of material parameters governing the field is generally greater than those driving homogenous strain fields [7] . Therefore, this second approach enables to reduce the number of experiments required to calibrate a model. Furthermore, it enables to extend the exploitation limits of a test, since the heterogeneous fields are no longer a problem. However, effective inverse strategies to extract the material parameters from full-field measurements are required.

Accordingly, the development of inverse strategies in computational mechanics has evolved rapidly in recent years, leading to an interesting number of strategies based on full-field measurements, e.g. [3,4,8,9] . The most well-known methods are the Finite Element Model Updating (FEMU) [10] , the Constitutive Equation Gap Method (CEGM) [11] , the Equilibrium Gap Method (EGM) [12,13] and the Virtual Fields Method (VFM) [14] . These four strategies prove to be effective in identifying parameters associated with linear and non-linear models and, therefore, these will be the focus of this work. However, it should also be mentioned that more strategies have emerged recently with promising results, such as the Constitutive Compatibility Method (CCM) [15] , the Dissipation Gap Method [16] , the Self-Optimizing Method (Self-OPTIM) [17] and the Integrated Digital Image Correlation Method (Integrated-DIC) [18] .

To the best of the authors knowledge, studies on the implementation aspects of these strategies, as well as comparative studies, are rare, specially in elasto-plasticity. Since the mentioned strategies rely on different principles, it is interesting to evaluate their performance in the same conditions, as well as their sensitivity to noise. Thus, the aim of this study is to introduce the four strategies mentioned above, discuss the implementation details and finally, present a comparative study for quasi-static loading conditions. For the sake of simplicity, the scope of this study lies within the framework of infinitesimal small strains. The extension to large strains can be tedious [19,20] , with the exception of FEMU, and is out of the scope of this article.

The outline of this work is as follows. A brief description of the inverse problem and the constitutive models used in this study is presented in Section 2 . The four inverse strategies selected, FEMU, CEGM, EGM and VFM, are presented in Section 3 , as well as flowcharts for each one and a discussion of the main advantages and drawbacks. Finally, in Section 4 , the performance of these strategies is compared for two different constitutive models. This performance study starts with a simple case of an isotropic linear elastic model that is afterwards extended for an elasto-plastic model with isotropic non-linear hardening. Moreover, the comparative studies are performed with and without noise.

Identification/inverse problem

Consider a continuum solid body whose reference configuration occupies the domain Ω and is bounded by 𝜕Ω (see Fig. 1 ). It is assumed that the material within the domain Ω is homogeneous. The boundary of this body is composed of two sub-boundaries Γ f and Γ u , such that 𝜕Ω = Γ 𝑓 ∪ Γ 𝑢 and Γ 𝑓 ∩ Γ 𝑢 = ∅. A surface external force is prescribed over Γ f , possibly with a null value, and a displacement field is prescribed over Γ u . Neglecting the body forces and assuming static equilibrium, a linear elastic behaviour and infinitesimally small displacements, the mechanical state of the body is governed by three sets of equations: the equilibrium equations,

{ div 𝝈 = 0 in Ω, 𝝈 ⋅ 𝐧 = f on Γ 𝑓 , (1) 
the kinematic compatibility equations,

{ 𝜺 = 1 2 ( 𝛁 𝐮 ( 𝐱) + 𝛁 T 𝐮 ( 𝐱) ) in Ω, 𝐮 = ū on Γ 𝑢 , ( 2 
)
and the constitutive equation,

𝝈 = 𝐂 ∶ 𝜺 in Ω, (3) 
where 𝝈 denotes the Cauchy stress tensor, f is the prescribed vector of external forces over Γ f , u is the displacement vector field, ū is the prescribed displacement vector field over Γ u , 𝜺 is the infinitesimal strain tensor and n the unit normal vector to 𝜕Ω.

The stress and strain are related through Eq. ( 3) , for which C is the constitutive material tensor. It is assumed to be function of a vector that gathers all the unknown constitutive material parameters 𝝃 = { 𝜉 1 , … , 𝜉 𝑛 } ( n is the number of material parameters). In case of isotropic linear elastic behaviour, C ( 𝝃) represents the Hooke's elasticity tensor and 𝝃 contains two parameters: Poisson's ratio 𝜈 and Young's modulus E , 𝝃 = { 𝜈, 𝐸} , respectively.

For the direct problem of continuum mechanics, the initial shape of the solid body, the material parameters and the set of boundary conditions, f and ū , are assumed to be known. Accordingly, the unknowns are the fields ( u, 𝜺 , 𝝈), which must satisfy the three previous sets of Eqs. ( 1) , ( 2) and ( 3 ). For the inverse problem of parameter identification using full-field measurements, the aim is to retrieve the material parameters given a discrete observation of the displacement field û and information concerning the boundary conditions, f and ū . The measured displacement field û can be obtained, for instance, through a non-contact measurement technique, such as DIC, and the strain field required to calculate the stress field can be calculated using Eq. ( 2) . The idea behind the inverse problem is to explore an implicit relationship between the measured displacement field and the parameters of the constitutive model.

Typically, full-field measurements are performed on the surface of the body and this limits the identification through the volume. Therefore, the inverse problem in linear and non-linear cases is usually seen as a in-plane problem, for which the plane stress assumption can be adopted. This assumption implies that the body with domain Ω is a thin flat body, with volume V and a constant thickness t that is assumed much smaller than the other dimensions. Furthermore, the body only undergoes in-plane loading.

For the case of non-linear elasto-plastic behaviour, the linear relationship between stress and strain is no longer valid, and the constitutive equations are obtained within the classical incremental theory of plasticity. In the following, these equations are briefly recalled.

Consider the additive decomposition of the total strain tensor increment d 𝜺 , in terms of elastic d 𝜺 e and plastic d 𝜺 p components, which can be written as

𝑑 𝜺 = 𝑑 𝜺 e + 𝑑 𝜺 p . ( 4 
)
Moreover, consider an hypoelastic relationship to describe the stressstrain relation, as follows

𝑑 𝝈 = 𝐂 ∶ ( 𝑑 𝜺 -𝑑 𝜺 p ) , ( 5 
)
where d 𝝈 is the stress increment. The plastic strain increment d 𝜺 p can be defined by means of three key concepts: a yield criterion, a hardening law and a plastic flow rule. The von Mises yield criterion is adopted here, thus the yield condition can be expressed as

𝑓 ( 𝝈, ε p ) = σ( 𝝈) -𝜎 𝑦 ( ε p ) = 0 , ( 6 
)
where 𝜎 𝑦 ( ε p ) is the yield stress as a function of the equivalent plastic strain ε p and σ( 𝝈) is the equivalent von Mises stress, which under plane stress conditions assumes the following form

σ( 𝝈) = √ 3 2 𝝈 ′ ( 𝝈) ∶ 𝝈 ′ ( 𝝈) = √ 𝜎 2 𝑥𝑥 + 𝜎 2 𝑦𝑦 -𝜎 𝑥𝑥 𝜎 𝑦𝑦 + 3 𝜎 2 𝑥𝑦 , ( 7 
)
where 𝝈′ ( 𝝈) is the deviatoric stress tensor and 𝜎 xx , 𝜎 yy and 𝜎 xy are the components of the stress tensor. The evolution of the yield stress is governed by the Swift's isotropic hardening law, with the following form

𝜎 𝑦 ( ε p ) = 𝐾 ( 𝜀 0 + ε p ) 𝑛 , ( 8 
)
which depends on three material parameters, K , 𝜀 0 and n . The classical associated flow rule is adopted, which can be introduced as

𝑑 𝜺 p = 𝑑𝜆 𝜕𝑓 𝜕 𝝈 , ( 9 
)
it defines the plastic strain increment. The direction of the plastic flow is defined by the term 𝜕 f / 𝜕 𝝈 and the magnitude is given by the plastic multiplier d 𝜆. Based on this, Eq. ( 5) , which gives the stress increment, can be updated to

𝑑 𝝈 = 𝐂 ∶ ( 𝑑 𝜺 -𝑑𝜆 𝜕𝑓 𝜕 𝝈 ) . ( 10 
)
For the von Mises yield criterion, the plastic multiplier is equivalent to the increment in the equivalent plastic strain 𝑑 ε p [21] , which is defined as

𝑑 ε p = √ 2 3 𝑑 𝜺 p ∶ 𝑑 𝜺 p . ( 11 
)
The plastic multiplier is explicitly determined using the consistency condition, which imposes that the current stress state remains on the yield surface after yielding and can be written as

𝑑 𝑓 = 𝜕𝑓 𝜕 𝝈 ∶ 𝑑 𝝈 + 𝜕𝑓 𝜕 ε p ∶ 𝑑 ε p = 0 . ( 12 
)
By replacing the stress increment ( Eq. ( 10) ) in the consistency condition ( Eq. ( 12) ) and after some algebra manipulation, the plastic increment can be explicitly obtained:

𝑑𝜆 = 𝜕𝑓 𝜕 𝝈 ∶ 𝐂 ∶ 𝑑 𝜺 𝜕𝑓 𝜕 𝝈 ∶ 𝐂 ∶ 𝜕𝑓 𝜕 𝝈 -𝜕𝑓 𝜕 ε p √ 2 3 𝜕𝑓 𝜕 𝝈 ∶ 𝜕𝑓 𝜕 𝝈 (13)
Finally, Eq. ( 10) for the stress increment can be updated and gives

𝑑 𝝈 = ⎛ ⎜ ⎜ ⎜ ⎝ 𝐂 - 𝜕𝑓 𝜕 𝝈 ∶ 𝐂 ⊗ 𝐂 ∶ 𝜕𝑓 𝜕 𝝈 𝜕𝑓 𝜕 𝝈 ∶ 𝐂 ∶ 𝜕𝑓 𝜕 𝝈 -𝜕𝑓 𝜕 ε p √ 2 3 𝜕𝑓 𝜕 𝝈 ∶ 𝜕𝑓 𝜕 𝝈 ⎞ ⎟ ⎟ ⎟ ⎠ ∶ 𝑑 𝜺 ( 14 
)
or

𝑑𝛔 = 𝐂 ep ∶ 𝑑𝛆 , ( 15 
)
where C ep is the so-called elasto-plastic tangent stiffness matrix. This matrix is a function of the unknown material parameters, so it can be defined as function of the material parameters C ep ( 𝝃). For this elastoplastic model, the material parameters vector gathers five parameters 𝝃 = { 𝜈, 𝐸, 𝐾, 𝜀 0 , 𝑛 } . In this case, the inverse problem must take into account the history dependent behaviour of plasticity. Therefore, deformation history during the experiment must be acquired, which means measurements of displacement field for different time instants û ( 𝐱, 𝑡 ) (for which t ∈ [0, T ]) must be performed and used to solve the inverse problem. Thus, the total strain is discretized along the time, as well as the boundary conditions.

Inverse strategies based on full-field measurements

Finite element model updating

Among all inverse strategies available for identifying material parameters, Finite Element Model Updating (FEMU) is the most used. Since the introduction of this strategy by Kavanag and Clough [10] , a significant number of studies have been published. It was used with a wide range of models, e.g. elasticity [22,23] , plasticity with emphasis on sheet metal forming [3,[24][25][26] and viscoplasticity [27,28] .

The idea behind this strategy is to infer the unknown material parameters after comparing numerical predictions with experimental measurements. Therefore, it requires a finite element (FE) model of the mechanical test, to generate numerical predictions of the response of the material. Based on the comparison between experimental and numerical data and by means of an optimization method, the material parameters are adjusted iteratively until the numerical results match the experimental ones as closely as possible.

The data used with this strategy can be of different kinds: displacements, strains, force, temperatures, etc. FEMU is easily adapted to the available experimental data. In fact, it is not mandatory to use full-field measurements with FEMU, partial measurements of the complete field can also be used. The choice of the data has been a widely discussed subject on this strategy and the literature reveals a lack of consensus [3] . Another widely discussed point is how the experimental data are compared with the numerical data. This comparison is usually performed using an objective function that evaluates the gap between experimental and numerical results. However, this objective function can assume different formulations [29,30] . An example of an objective function based on the measured strains on the surface of the sample can be defined as

 FEMU ( 𝝃) = 𝑛 s ∑ 𝑖 =1 𝑛 p ∑ 𝑗=1 [ ( ε 𝑥𝑥 -𝜀 𝑥𝑥 ( 𝝃) ) 2 𝑗 + ( ε 𝑦𝑦 -𝜀 𝑦𝑦 ( 𝝃) ) 2 𝑗 + ( ε 𝑥𝑦 -𝜀 𝑥𝑦 ( 𝝃) ) 2 𝑗 ] 𝑖 . ( 16 
)
This objective function is formulated based on the sum of the squares of the gap between experimental ( ε 𝑥𝑥 , ε 𝑦𝑦 , ε 𝑥𝑦 ) and numerical ( 𝜀 xx , 𝜀 yy , 𝜀 xy ) data, considering the different components of the in-plane strain tensor. The experimental data (full strain field) are usually made of a discrete number of values representing the measurement points on the surface of the sample for different time instants ( ε ( 𝐱, 𝑡 ) ) . The variables n p and n s , in Eq. ( 16) , represent the number of measurement points on the surface of the sample and the number of time instants for which measurements are performed, respectively.

It is a common practice to use weighting coefficients in the formulation of the objective function (e.g. [31] ), but their selection is not intuitive and usually depends on the user [30] . Therefore, the use of weights will be avoided in this work.

Another important remark regarding the evaluation of the objective function is that the numerical data must be calculated at the exact same locations as the experimental points. Otherwise, the numerical data must be interpolated to match these locations.

A detailed flowchart for FEMU strategy is presented in Fig. 2 . In the flowchart, B.C. stands for boundary conditions. It starts with an initial set of material parameters ( 𝝃 i ) arbitrarily chosen used to run the first FE analysis. The evaluation of the objective function is then performed. If the value of the objective function is above a threshold value, the iterative process starts and the optimization method generates a new (or updated) set of material parameters ( 𝝃 u ). The process is repeated until the value of the objective function reaches a value below the threshold or until the set of parameters stagnates. The threshold value is defined by the user and represents the admissible global gap between numerical and experimental results.

Within the iterative cycle of FEMU, the update of the material parameters is performed by searching for a minimum in the objective func-332 8 2.State-of-the-art on inverse analysis methods J.M.P. Martins tion. Coupling an optimization method with the objective function is the usual way to do it. The type of optimization methods used in this kind of problem lies within two main families: (i) the gradient-based methods (e.g. the Gauss-Newton method or the Levenberg-Marquardt method) and (ii) the direct methods (e.g. evolutionary and simplex) [3,30,32] . The first family of methods is the most used. It requires the value of the objective function and its gradient to take a decision, whereas the direct methods only use the value of the objective function. The use of gradient-based methods is related to its computational efficiency, since they usually require less evaluations of the objective function. However, this type of methods has a major disadvantage. They do not guarantee the location of the global minimum and depend on the initial set of material parameters chosen to initiate the identification procedure [25] .

Other methods that will be described also require the coupling with optimization methods, so whenever invoked in the context of other methods the reader can review this section. As mentioned before, FEMU is not limited to full-field measurements, which gives an even wider range of applications. Another important feature of FEMU is that it can be adapted to complex specimen shapes and loads. For instance, a curved sample cut from a coil steel [33] . These advantages and the ease of the implementation make FEMU very attractive. However, the major drawback that has been pointed out over the years and that motivated researchers to develop other strategies is the excessive computational cost (e.g. [34] ), consequence of the FE analysis at each evaluation of the objective function. In addition, the analysis requires a FE model that represents the experimental test as close as possible to reality, which can be difficult to attain depending on the geometry and load conditions. However, it is strictly necessary to avoid undesired errors. Moreover, the results can also be mesh sensitive, which is an aspect inherent to every method that makes use of FE analysis.

Constitutive equation gap method

The Constitutive Equation Gap Method (CEGM) (also called as, Error in the Constitutive Equation) was first proposed by Ladevèze and Leguillon [11] , as an error estimation procedure for FE analysis. It was applied in a variety of fields [START_REF] Bui | Spatial localization of the error of constitutive law for the identification of defects in elastic bodies[END_REF][START_REF] Roux | A stress scale in full-field identification procedures: a diffuse stress gauge[END_REF] , before being adapted to identify material parameters of an elastic isotropic model based on full-field measurements [START_REF] Geymonat | Identification of elastic parameters by displacement field measurement[END_REF] , with significant efforts for heterogeneous materials [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF][START_REF] Florentin | Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations[END_REF] . More recently, Guchhait and Banerjee [START_REF] Guchhait | Anisotropic linear elastic parameter estimation using error in the constitutive equation functional[END_REF] extended it for anisotropic elasticity. Moreover, it has also been used in the field of plasticity [START_REF] Latourte | Elastoplastic behavior identification for heterogeneous loadings and materials[END_REF] and damage [START_REF] Merzouki | Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method[END_REF] .

CEGM objective function is based on the evaluation of the error between a statically admissible stress field, denoted 𝝉, and a stress field calculated from a measured displacement/strain field ε = 𝜺 ( û ) and a chosen constitutive model. This error is quantified by means of an energy norm. In the case of linear elasticity, it leads to the following objective function

 CEGM ( 𝝉, 𝝃) = 1 2 ∫ Ω [ 𝝉 -𝐂 ( 𝝃) ∶ ε ] ∶ 𝐂 -1 ( 𝝃) ∶ [ 𝝉 -𝐂 ( 𝝃) ∶ ε ] dΩ, (17) 
If the statically admissible stress field describes correctly the stress state of the body and the material parameters fit the description of the material behaviour, the objective function value should be close to zero. The flowchart for the CEGM is presented in Fig. 3 . The first step is to define an initial set of material parameters ( 𝝃 i ), followed by the determination of a statically admissible stress field with this initial set of material parameters. Then, the objective function is evaluated. If its value is above a threshold the optimization method generates a new set of material parameters ( 𝝃 u ). This process is repeated until the value of the objective function reaches a value below the threshold or until the process stagnation. After that, the statically admissible stress field is updated. It is updated in accordance with a user-defined criterion and using the new set of material parameters. The whole process is repeated again for the new statically admissible stress field. The convergence criterion for the statically admissible stress field can be checked by comparing the stress in the current and the last iteration [START_REF] Latourte | Elastoplastic behavior identification for heterogeneous loadings and materials[END_REF] .

The statically admissible stress field 𝝉 is a key requisite of this strategy. This stress field must verify the force boundary conditions of the experimental test, as well as the equilibrium equation ( Eq. ( 1) ). It can be determined, for specific geometries and boundary conditions, by an an-Fig. 3. Detailed flowchart for the CEGM. alytic solution or, in a more general way, through a FE model [START_REF] Merzouki | Direct identification of nonlinear damage behavior of composite materials using the constitutive equation gap method[END_REF] . Special techniques have also been developed to determine it when heterogeneous materials are analyzed [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF][START_REF] Florentin | Using constitutive equation gap method for identification of elastic material parameters: technical insights and illustrations[END_REF] . In the present work, a FE model is adopted and the determination of the statically admissible stress field is performed before the minimization of the objective function ( Fig. 3 ) . Note that, in case of homogeneous materials the admissible stress field is uniquely determined by the force boundary conditions, i.e. , it is independent of the material parameters. Therefore, it is not required to update it along the process.

Regarding the implementation of the CEGM, Eq. ( 17) can be converted into a more practical form which benefits from the discrete nature of experimental measurements acquired, for example, by DIC. In fact, displacements or strain fields are measured in a discrete number of points, which are usually associated with a mesh that results from a non-overlapping decomposition of the surface of the domain Ω. Therefore, each measurement point is representative of a small area or small element in this mesh. Moreover, measurements are acquired for a finite number of time instants during the experimental test. Considering this discrete nature of experimental measurements, the objective function ( Eq. ( 17) ) can be rewritten as follows

 CEGM ( 𝝉, 𝝃) = 1 2 𝑛 s ∑ 𝑖 =1 [ 𝑡 𝑛 p ∑ 𝑗=1 𝐴 𝑗 {[ 𝝉 𝑗 -𝐂 ( 𝝃) ∶ ε 𝑗 ] ∶ 𝐂 -1 ( 𝝃) ∶ [ 𝝉 𝑗 -𝐂 ( 𝝃) ∶ ε 𝑗 ]} ] 𝑖 , ( 18 
)
where A i is the representative area of each measurement point. Eq. ( 17) is integrated over the volume, but as plane stress conditions are assumed, the stress distribution is considered constant through the thickness t of the body. Note that the same mesh can be used to determine the statically admissible stress field, thus preventing an additional step for interpolation. Until now CEGM has been described with focus on linear elasticity. Concerning the identification of material parameters for non-linear models, the determination or reconstruction of the stress field from the measured displacement/strain field is more challenging than in linear elasticity, due to the history dependent behaviour. In this case, a stress update algorithm to reconstruct the actual stress field is required. It is a common point with other identification strategies and FE codes, thus, different algorithms have been proposed, e.g. [9,20,[START_REF] Coppieters | Identification of post-necking hardening phenomena in ductile sheet metal[END_REF] . Here, considering the assumptions of Section 2 for plane stress elasto-plasticity, it will be adopted an implicit backward-Euler algorithm presented in [START_REF] Crisfield | Non-Linear finite element analysis of solids and structures[END_REF] . This step is included in the evaluation of the objective function, hence the flowchart presented in Fig. 3 is also valid for the non-linear case. However, the objective function ( Eq. ( 17) ) assumes a different form, as follows

 CEGM ( 𝝉, 𝝃) = 𝑛 s ∑ 𝑖 =1 ( 1 2 ∫ Ω [ 𝝉 -𝝈( 𝝃, ε ) ] ∶ 𝐂 -1 ∶ [ 𝝉 -𝝈( 𝝃, ε ) ] dΩ ) 𝑖 . ( 19 
)
The stress field 𝝈( 𝝃, ε ) is now calculated by the stress update algorithm, taking into account the history dependent behaviour of plasticity. This formulation differs from the ones presented in [START_REF] Latourte | Elastoplastic behavior identification for heterogeneous loadings and materials[END_REF] , because it uses the inverse of the elastic stiffness matrix instead of the elasto-plastic tangent/secant stiffness matrices. This kind of formulation can be used when elastic material parameters are known a priori . Specimen's surface and measurement grid with the localization of the calculation points (adapted from [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF] ).

Regarding the advantages of CEGM, it can be applied to any constitutive model, although proper algorithms must be implemented to reconstruct the stress field from the measured data. Moreover, as FEMU, it is not restricted to full-field measurements [32] . The major drawback of CEGM is the calculation of a statically admissible stress field. It can be a laborious task, particularly when a heterogeneous distribution of the material properties is considered. When a FE model is used to generate this stress field, CEGM is affected by the same drawbacks related to the construction of a FE model. Compared with FEMU, it requires a lower number of simulations. Consequently, in terms of computational cost, CEGM is more efficient than FEMU. However, the implementation of the algorithm ( Fig. 3 ) is not so intuitive as the one of FEMU ( Fig. 2 ).

Equilibrium gap method

The Equilibrium Gap Method (EGM) was first proposed by Claire et al. [12,13] with the aim of identifying isotropic damage fields in heterogeneous materials resorting only to full-field measurements (the force boundary conditions were not taken into account). In this first attempt, the degradation of the elastic stiffness depended on a damage scalar variable [12,13] . Roux and Hild extended this method to more complex damage laws [START_REF] Roux | Digital image mechanical identification (DIMI)[END_REF] . Later, Périé et al. [START_REF] Périé | Digital image correlation and biaxial test on composite material for anisotropic damage law identification[END_REF] have proposed the extension of EGM to anisotropic damage. Moreover, Florentin and Lublineau [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF] have used EGM as a reference to compare with CEGM in the identification of isotropic elastic parameters in heterogeneous materials. Although it has not yet been extended to elasto-plasticity, it could be performed by means of a method that captures the history dependent behaviour of non-linear models [START_REF] Roux | Digital image mechanical identification (DIMI)[END_REF] .

The implementation of the EGM can be performed following two different frameworks: finite-difference or finite element based formulations [START_REF] Amiot | Equilibrium gap method[END_REF] . In this work, it is adopted a finite-difference version inspired from [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF] , which is adapted to homogeneous isotropic material behaviour.

To better describe the EGM, consider that the surface of a specimen is discretized in small subdomains that represent a measurement grid, as shown in Fig. 4 . It is assumed that the experimental strain field ( ε = 𝜺 ( û ) ) is provided at the nodes of each subdomain (circles in Fig. 4 ). The EGM consists on the minimization of the gap in local equilibrium on the boundaries of each subdomain. The local equilibrium is expressed by assessing the continuity of the stress vector at the interfaces. For instance, considering the two subdomains Ω ⊕ and Ω ⊖ represented in Fig. 4 , the local equilibrium for the boundary Γ ⊕⊖ can be expressed as

𝝈 ⊕ ⋅ 𝐧 ⊕ + 𝝈 ⊖ ⋅ 𝐧 ⊖ = 𝟎 , ( 20 
)
where n ⊕ and n ⊖ are the unit normal vectors to the boundaries of Ω ⊕ and Ω ⊖ , respectively. 0 is the zero vector. For the elasticity case, 𝝈 ⊕ and 𝝈 ⊖ are calculated with Eq. ( 3) and the given measured strain field. Note that Eq. ( 20) results in two equations for each interface, one for each direction x and y .

A key point is that the strain measurements must be interpolated for the locations where the equilibrium is prescribed, i.e. the interfaces of the subdomains. In Fig. 4 , the interface of each subdomain is marked with triangular and quadrangular marks. The interpolation can be performed using finite element shape functions [START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF] .

In case of a boundary where a force boundary condition 𝐟 is prescribed, the equilibrium is prescribed as

𝝈 ⋅ 𝐧 = 𝐟 . ( 21 
)
This condition can be difficult to impose since the distribution of the force needs to be known. However, there are other ways to verify the local equilibrium that, for example, make use of a weak form of Eq. ( 21) .

The weak form allows to use the resultant of the force 𝐟 , but the left-hand side of Eq. ( 21) must be integrated over the boundary Γ f [START_REF] Amiot | Equilibrium gap method[END_REF] .

In case of a free boundary, the force boundary condition is equal to zero ( 𝐟 = 𝟎 ). For the boundaries with prescribed displacements (the imposed force is unknown), the stress vector continuity cannot be evaluated, hence these boundaries are not taken into account. Finally, the objective function can be written in a least-square based formulation, as follows

 EGM ( 𝝃) = 𝑛 s ∑ 𝑖 =1 [ 𝑛 d ∑ 𝑗=1 { ( 𝝈 ⊕ ⋅ 𝐧 ⊕ + 𝝈 ⊖ ⋅ 𝐧 ⊖ ) 𝑗 ⋅ ( 𝝈 ⊕ ⋅ 𝐧 ⊕ + 𝝈 ⊖ ⋅ 𝐧 ⊖ ) 𝑗 } ] 𝑖 + 𝑛 s ∑ 𝑖 =1 [ 𝑛 b ∑ 𝑖 =1 { ( 𝝈 ⋅ 𝐧 -𝐟 ) 𝑗 ⋅ ( 𝝈 ⋅ 𝐧 -𝐟 ) 𝑗 } ] 𝑖 , ( 22 
)
where n d and n b are the number of interface/interior nodes within the domain Ω and at the boundary Γ, respectively. Fig. 5 shows a flowchart for this strategy. The algorithm starts with an initial set of material parameters ( 𝝃 i ) that can be arbitrarily chosen. Follows the interpolation of the strain field to the interface boundaries of each subdomain, which can be performed using finite element shape functions. Then, the equilibrium equations are written for each boundary and the objective function is evaluated. In case of reaching a minimum value of the objective function or the process stagnation, the algorithm is interrupted and the set of material parameters ( 𝝃 f ) is determined. Otherwise, a new iteration is initiated and, by means of an optimization method, a new set of material parameters ( 𝝃 u ) is determined.

Unlike the other methods, the EGM will not be extended to nonlinear models. However, as mentioned before, the key point behind this process is to adopt a method that captures the history dependent behaviour of non-linear models, such as the stress update algorithm adopted for CEGM.

The EGM has a major advantage compared with FEMU and CEGM, it does not require the costly computations of a FE model. Consequently, it is less time consuming. Nevertheless, the implementation of this method is more laborious than in FEMU strategy. It also requires the availability of a strain field within the whole solid body (full-field measurements). Therefore, it is not so flexible as the FEMU and CEGM. In addition, the applied force distribution must be known, as for FEMU and CEGM, which can be difficult to obtain, unless the weak form of Eq. ( 21) is used.

Virtual fields method

The Virtual Fields Method (VFM) has received significant attention from the scientific community in the recent years. It was first introduced by Grédiac [14] and since then its effectiveness has been proved in a large range of applications. The complete theory of VFM and its applications can be found in [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] . The most recent applications, organized by constitutive behaviours, are: anisotropic thermo-elasticity [START_REF] Ma | Inversion and decoupling of thermo-mechanical deformation in anisotropic materials using the virtual fields method[END_REF] , hyperelasticity [START_REF] Zhang | Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo[END_REF] , plasticity (anisotropic hardening, non-linear kinematic hardening and damage) [34,[START_REF] Fu | Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels[END_REF][START_REF] Notta-Cuvier | An innovative procedure for characterising a coupled elastoplastic damage model of behaviour using the virtual fields method[END_REF] , viscoplasticity [START_REF] Notta-Cuvier | Identification of Johnson-Cook's viscoplastic model parameters using the virtual fields method: application to titanium alloy ti6al4v[END_REF] and temperature dependent viscoplasticity using isothermal tests [START_REF] Valeri | Determining the tensile response of materials at high temperature using DIC and the virtual fields method[END_REF] .

The key elements behind VFM are the Principle of Virtual Work and a suitable choice of virtual fields. For the solid body shown in Fig. 1 , in the absence of body-forces and assuming infinitesimal small displacements, the Principle of Virtual Work expresses that the internal virtual work must equal the external virtual work performed by the external forces and can be written as follows

∫ Ω 𝝈( 𝝃, ε ) ∶ 𝜺 ⋆ 𝑑𝑉 ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ Internalwork = ∫ Γ 𝑓 f ⋅ 𝐮 ⋆ 𝑑𝑆 ⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟ Externalwork , ( 23 
)
where 𝜺 ⋆ is a virtual strain field and u ⋆ is a virtual displacement field. dV and dS are the infinitesimal volume and area for the current domain of the solid body, respectively. The principle of virtual work is independent of any constitutive model, which, theoretically, allows to apply VFM to all types of constitutive models. Furthermore, the force distribution ( f ) is not required. Instead, the resultant of the applied force can be used with a suitable choice of virtual fields. Thus, the only unknown of the problem is the Cauchy stress tensor 𝝈( 𝝃, ε ) , which depends on the set of material parameters. Considering elasticity case, the Cauchy stress tensor is computed using Eq. ( 3) and the measured displacement/strain field ( ε = 𝜺 ( û ) ) . For this case, the material parameters can be evaluated directly from a system of equations. The system of equations has the same number of equations as number of unknown material parameters of the model.

For simplicity's sake, a different notation for the Eq. ( 3) is considered here [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF][START_REF] Grediac | The virtual fields method for extracting constitutive parameters from full-field measurements: a review[END_REF] . Thus 𝝈 can be written in the matrix notation as

⎧ ⎪ ⎨ ⎪ ⎩ 𝜎 𝑥𝑥 𝜎 𝑦𝑦 𝜎 𝑥𝑦 ⎫ ⎪ ⎬ ⎪ ⎭ = ⎡ ⎢ ⎢ ⎣ 𝑄 𝑥𝑥 𝑄 𝑥𝑦 0 𝑄 𝑦𝑥 𝑄 𝑦𝑦 0 0 0 𝑄 𝑠𝑠 ⎤ ⎥ ⎥ ⎦ ⎧ ⎪ ⎨ ⎪ ⎩ ε 𝑥𝑥 ε 𝑦𝑦 ε 𝑥𝑦 ⎫ ⎪ ⎬ ⎪ ⎭ , ( 24 
)
Replacing Eq. ( 24) in the principle of virtual work ( Eq. ( 23) ) and after some algebraic manipulation, it can be written

𝑄 𝑥𝑥 ∫ Ω ε 𝑥𝑥 𝜀 ⋆ 𝑥𝑥 𝑑 𝑉 + 𝑄 𝑦𝑦 ∫ Ω ε 𝑦𝑦 𝜀 ⋆ 𝑦𝑦 𝑑 𝑉 + 𝑄 𝑥𝑦 ∫ Ω ε 𝑦𝑦 𝜀 ⋆ 𝑥𝑥 𝑑 𝑉 + 𝑄 𝑦𝑥 ∫ Ω ε 𝑥𝑥 𝜀 ⋆ 𝑦𝑦 𝑑 𝑉 + 𝑄 𝑠𝑠 ∫ Ω ε 𝑥𝑦 𝜀 ⋆ 𝑥𝑦 𝑑 𝑉 = ∫ Γ 𝑓 f 𝑥 ⋅ 𝑢 ⋆ 𝑥 𝑑𝑆 + ∫ Γ 𝑓 f 𝑦 ⋅ 𝑢 ⋆ 𝑦 𝑑𝑆, ( 25 
)
where the variables Q xx , Q yy , Q xy , Q yx , Q ss have been moved out of the integrals, since these are assumed as constants. In case of isotropic linear elasticity, the following relation exists between the terms: 𝑄 𝑦𝑦 = 𝑄 𝑥𝑥 , 𝑄 𝑦𝑥 = 𝑄 𝑥𝑦 and 𝑄 𝑠𝑠 = ( 𝑄 𝑥𝑥 -𝑄 𝑥𝑦 ) ∕2 . Accordingly, the Poisson's ratio and the Young's modulus can be expressed as 𝜈 = 𝑄 𝑥𝑥 ∕ 𝑄 𝑥𝑦 and 𝐸 = 𝑄 𝑥𝑥 ∕(1 -𝜈 2 ) .

In order to retrieve the two unknown material parameters ( 𝝃 = { 𝜈, 𝐸} ) , it is required two independent virtual fields. The number of virtual fields must be equal to the number of unknown material parameters and Eq. ( 25) must be written for each selected virtual field. The calculation of integrals in Eq. ( 25) can be approximated by discrete sums, as performed for the CEGM ( Section 3.2 ). The result is a linear system of two equations with two unknowns, Q xx and Q xy , respectively. Fig. 6. Detailed flowchart for the VFM. Note that the red path is exclusive for non-linear constitutive models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) Provided that the measured strain field is heterogeneous and the chosen virtual fields are independent, the system of equations is linearly independent and can be written as

𝐀𝐪 = 𝐏 , ( 26 
)
where A is a square matrix composed by the strain terms, q is a vector of the unknown material coefficients { Q xx , Q xy } and P is the vector of virtual external work of the applied forces. This linear system of equations is solved with a low computational cost.

For the case of a non-linear model, it is no longer possible to derive the linear system of equations and the identification process turns into an iterative procedure, which relies on the minimization of an objective function [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF][START_REF] Pierron | Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening[END_REF] . This objective function expresses the gap between the internal and the external virtual works and can be defined in a least square based formulation as

 VFM ( 𝝃) = 𝑛 s ∑ 𝑖 =1 ( ∫ Ω 𝝈( 𝝃, ε ) ∶ 𝜺 ⋆ 𝑑 𝑉 -∫ Γ 𝑓 f ⋅ 𝐮 ⋆ 𝑑 𝑆 ) 2 𝑖 , ( 27 
)
The calculation of the stress field is performed through a stress update algorithm, as the one adopted for CEGM [START_REF] Crisfield | Non-Linear finite element analysis of solids and structures[END_REF] .

A detailed flowchart for VFM is presented in Fig. 6 . Two different paths are represented. The first one (black lines) includes the main steps for the identification of material parameters of linear models. As mentioned above, for linear constitutive models the material parameters are retrieved after solving a system of linear equations ( Eq. ( 26) ). The second path (red lines) corresponds to non-linear constitutive models. In this case, the material parameters are retrieved after the cost function value reached a minimum or the process stagnation. The search for the minimum value is performed by means of an optimization method.

The choice of the virtual fields is part of the VFM identification process. An infinite number of virtual fields can be used, but a proper choice facilitates the identification process and can improve the quality of the final set of parameters. The suitable choice of the virtual fields has been pointed out as the major weakness of VFM, specially in non-linear cases [3,25] . It should be emphasized that, the virtual displacement and strain fields are just mathematical test functions and can be seen as weights [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF][START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] . Moreover, they can be defined independently of the measured displacement/strain strain field [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] . However, due to a matter of convenience, the virtual fields are usually defined in accordance with two conditions. First, the displacement boundary conditions must be satisfied, i.e. , at the boundary Γ u the virtual displacement field must be zero ( 𝐮 ⋆ = 𝟎 ) [32,[START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] . The second condition is related to the use of the resultant of the applied force, instead of its distribution. Therefore, the virtual displacement fields must be chosen in order to be constant along the boundary Γ f and, to eliminate the components of the resultant force that are unknown, u ⋆ must be collinear with f [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF][START_REF] Notta-Cuvier | An innovative procedure for characterising a coupled elastoplastic damage model of behaviour using the virtual fields method[END_REF] . Moreover, it is required that the virtual fields assure a C 0 continuity. Regarding the use of the applied force in VFM, in special cases such as dynamic testing, obtaining accurate measurements of the applied force can be difficult. A different formulation of Eq. (23) , which includes the virtual work of the inertial forces, can then be used and the external virtual work term can be cancelled out using suitable virtual fields [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF][START_REF] Louëdec | Identification of the dynamic properties of al 5456 FSW welds using the virtual fields method[END_REF][START_REF] Leem | Identification of dynamic flow stress curves using the virtual fields methods: theoretical feasibility analysis[END_REF] . This approach has been exclusively applied to the identification of dynamic mechanical characteristics, thus it will not be addressed in this work.

A great effort has been made to suppress the major weakness of VFM and currently there are three strategies available for the choice of the virtual fields, which are: (i) Manually defined virtual fields : This procedure is the most used in non-linear cases [34,[START_REF] Fu | Identification of nonlinear kinematic hardening constitutive model parameters using the virtual fields method for advanced high strength steels[END_REF][START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] . Usually, polynomials or sine/cosine functions are used [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] . This strategy is the easiest to implement, but it is user-dependent. Therefore, the search for a function that meet the conditions mentioned above depends on the expertise of the user. Moreover, there is no guarantee that the chosen virtual fields produce the best results. (ii) Stiffness-based virtual fields : This second procedure has been a great step to overcome the previous drawbacks. It was first proposed by Avril et al. [START_REF] Avril | Sensitivity of the virtual fields method to noisy data[END_REF] for anisotropic elasticity and then extended to elasto-plasticity [START_REF] Pierron | Extension of the virtual fields method to elasto-plastic material identification with cyclic loads and kinematic hardening[END_REF] . In this case, the calculation of the virtual fields requires the derivation of the tangent stiffnessmatrix (in elasto-plasticity, the tangent elasto-plastic stiffness matrix ( Eq. ( 14)). This strategy relies on a statistical approach to quantify the uncertainty of the identified parameters due to noise on the measurements. Based on this, an automatic procedure to derive virtual fields that minimizes the effect of noise is designed. However, the implementation is a cumbersome task due to the calculation of the tangent elasto-plastic stiffness matrix. (iii) Sensitivity-based virtual fields : Recently proposed by Marek et al. [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] , this strategy offers an easier implementation procedure. In this case, the virtual fields are determined according to a sensitivity stress map, i.e., the virtual fields are determined to give more weight to the locations of the specimen where more information about a parameter is encoded [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] . Thus, the sensitivity of the stress field to each parameter must be tested to define a virtual field for each unknown material parameter.

The major advantage of VFM is that it does not need FE analysis. Therefore, when compared with strategies such as FEMU and CEGM, a superior computational efficiency is expected. Indeed, Zhang et al. [START_REF] Zhang | Verification of a virtual fields method to extract the mechanical properties of human optic nerve head tissues in vivo[END_REF] reported a significant drop on the time required to retrieve the material parameters. In their case, the VFM was 125 faster than the FEMU. Another important advantage of VFM is that it does not require the exact distribution of the applied force on the boundary Γ f . With a proper choice of virtual fields, it only requires the force resultant in one direction, which is usually measured during experiments.

Like EGM, the main disadvantage of VFM is that it requires fullfield experimental data over the entire domain, which is not as flexible as FEMU and CEGM. Moreover, in non-linear cases, like CEGM, VFM requires a tool for the calculation of the stress field from the measured strain field, often based on return-mapping algorithm.

Comparison of the different inverse strategies

The aim of this section is to compare the inverse strategies described in Section 3 . Robustness in the presence of noisy data and computational efficiency are the two main aspects to be evaluated. Full-field measurements are generated with the aid of the FE method and a single numerical test with a heterogeneous strain field is used.

This section is presented in two parts. In the first part, the different strategies are evaluated in isotropic linear elasticity, for which Young's modulus and Poisson's ratio ( 𝝃 = { 𝐸, 𝜐} ) are the unknown material parameters. In the second part, the different strategies are evaluated in isotropic elasto-plasticity for the model presented in Section 2 , and the set of parameters 𝝃 = { 𝐾, 𝜀 0 , 𝑛 } is identified. For this last part, the elastic parameters are considered to be known a priori .

The analysis was carried out with a standard computer, with an Intel(R) Core(TM) i7-4770 (3.40 GHz) processor and 8.00 GB of RAM memory. The computational time presented for each strategy is the walltime or real-time clock , which means the total time of a task including input/output activities.

Heterogeneous test

In order to easily and clearly compare the different strategies, a numerical test is designed to be simple, but also to generate a heterogeneous strain field. It consists of a solid with dimensions 3 × 3 mm 2 in-plane and thickness of 𝑡 = 0 . 1 mm. The solid is discretized with 4node bilinear elements, making a total of 9 plane-stress elements and 16 nodes. Fig. 7 (a) presents the initial geometry and the boundary conditions, as well as the finite element mesh. x and y are the local coordinates along the horizontal and vertical axes, according to the reference system. The boundaries 𝑥 = 0 and 𝑦 = 0 are fixed and the force boundary condition is applied on the boundary 𝑥 = 3 mm. The force boundary condition has a non-uniform distribution along the 𝑦 -coordinate and a single component in the 𝑥 -direction. The distribution of this load changes linearly with y , as: 𝑓 𝑥 ( 𝑦 ) = 𝑚𝑦 + 𝑏 . The variables m and b control the distribution. Although tension is the main stress state corresponding to this load, the other components of the stress tensor are also active. Regarding the identification process, the force distribution is assumed to be known. This is useful to build up the FE model for FEMU and CEGM, and also for the EGM, since to establish the local equilibrium at the boundary Γ f , Eq. ( 21) must be determined. In contrast, VFM does not require the force distribution, which is an important aspect to alleviate constraints in the design of a mechanical test.

Identification of material parameters using full-field measurements in linear elasticity

In this part, the reference material assumed for the model of Fig. 7 (a) is considered homogeneous and isotropic linear elastic. The reference material parameters, Poisson's ratio and Young's modulus, are 𝜈 = 0 . 3 and 𝐸 = 210 . 00 GPa, respectively. The distribution of the force boundary condition is defined by 𝑚 = 10 Nmm -1 and 𝑏 = 50 N. The numerical results are generated using an in-house FE code dedicated to linear elastic problems. The distribution of the components of the infinitesimal strain tensor are shown in Fig. 7 (b), (c) and (d). It can be seen that the test is heterogeneous, which results from the non-uniform distribution of the applied force. The strain tensor, used in the different strategies, is derived from the displacement field using the derivatives of the FE shape functions. It is calculated at the integration points and output at the nodes. This leads to an information at 16 points, instead of 9 if the centroid of the elements was used.

To perform the identification using FEMU, CEGM and EGM, an initial set of material parameters is required, so the following set was defined: 𝝃 = { 𝐸, 𝜐} = {0 . 2 , 100 . 00 GPa } . Regarding the determination of a statically admissible stress field for CEGM, the same initial set of material parameters is used. This stress field is not updated during the process, since the material properties are homogeneous over the body. A gradient-based optimization algorithm, called Generalized Reduced Gradient (GRG) [START_REF] Lasdon | Design and testing of a generalized reduced gradient code for nonlinear programming[END_REF] , is chosen. The threshold value for the cost function and for the variation of each parameter between iteration is set to 1 × 10 -8 .

In contrast to the former strategies, VFM does not require an optimization method, but requires a suitable choice of virtual fields. Following the manual approach (see Section 3.4 ), two different virtual fields are chosen, which can be written as

𝐮 ⋆ (1) = { 𝑢 ⋆ (1) 𝑥 = 𝑥 𝑢 ⋆ (1) 𝑦 = 0 } ⇒ 𝜺 ⋆ (1) = ⎧ ⎪ ⎨ ⎪ ⎩ 𝜀 ⋆ (1) 𝑥𝑥 = 1 𝜀 ⋆ (1) 𝑦𝑦 = 0 𝜀 ⋆ (1) 𝑥𝑦 = 0 ⎫ ⎪ ⎬ ⎪ ⎭ , ( 28 
)
𝐮 ⋆ (2) = { 𝑢 ⋆ (2) 𝑥 = 0 𝑢 ⋆ (2) 𝑦 = 𝑦 } ⇒ 𝜺 ⋆ (2) = ⎧ ⎪ ⎨ ⎪ ⎩ 𝜀 ⋆ (2) 𝑥𝑥 = 0 𝜀 ⋆ (2) 𝑦𝑦 = 1 𝜀 ⋆ (2) 𝑥𝑦 = 0 ⎫ ⎪ ⎬ ⎪ ⎭ . ( 29 
)
The selected virtual fields have the simplest possible form. Both virtual fields satisfy the displacement boundary conditions and the first one reduces the use of the applied force to its resultant along the 𝑥 -direction. It is also noteworthy that, with the selected virtual fields, the same weight is given to each measurement point ( 𝜀 ⋆ (1) 𝑥𝑥 = 1 and 𝜀 ⋆ (2) 𝑦𝑦 = 1 ). The results of the identification process for each strategy are presented in Table 1 . FEMU, CEGM and VFM accurately retrieve the material parameters. EGM leads to good results for Young's modulus, but the deviation for Poisson's ratio is around 4% . This small error can be attributed to the interpolation process. According to the presented results, it is possible to conclude that the four strategies were implemented correctly.

The number of iterations for each method is also evaluated and is presented in Table 1 . CEGM requires a larger number of iterations than the other strategies. However, when compared with FEMU, CEGM requires a single FE simulation to determine the admissible stress field, whereas FEMU needs a FE simulation at each evaluation of the cost function. This is reflected in the normalized wall-time, also presented in Table 1 . The wall-time of the FEMU strategy is used for normalization, since it has the highest value. The normalization is adopted here because the values are too low. In terms of the iterative strategies (FEMU, CEGM and EGM), EGM presents the lowest value for the wall-time. The wall-time for VFM is close to zero, indeed, it just requires time for the inversion of a 2 × 2 matrix and its multiplication by the vector of virtual external work ( Eq. ( 26) ), which are simple operations.

Experimental measurements acquired by DIC are inevitably affected by errors from different sources, such as out-of-plane movements, quality of the speckle, interpolation errors and so on. These errors have an important effect on the measured displacement field and then on the computed strain field. This affects the quality of the identified material parameters. Therefore, testing the robustness and stability of the identification strategies when fed with data corrupted with errors is an important aspect. To this purpose, Rossi et al. [START_REF] Rossi | Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM[END_REF] proposed a simulator able to numerically reproduce the entire chain of acquisition of experimental measurements with DIC, which can be used to identify the effect of this errors in the identification process. Here, a simple approach, though enough to evaluate the performance of the identification strategies in the presence of errors, is adopted, which consists in adding a random error to the computed strain field. The random error with a zero-mean Gaussian distribution and standard deviation of 1 is added to the reference strain field used above. The magnitude of the error is of the order 1 × 10 -6 . The results with noisy data are presented in Table 2 .

It is also presented the relative error for each parameter, which is calculated relatively to the reference values. The CPU normalized times for each strategy are similar to the one presented in Table 1 .

Table 2 shows that EGM presents the highest level of error for both parameters, with almost 21% of error for Poisson's ratio and 7% for Young's modulus. EGM has the highest sensitivity to noise in this case. The other three strategies give similar results, with an error lower than 3% for Young's Modulus and lower than 10% for Poisson's ration. Nev-339 2.State-of-the-art on inverse analysis methods ertheless, VFM presents the lowest level of error for both parameters, followed by CEGM and finally, FEMU. In conclusion, for this specific case, VFM is the most robust strategy in the presence of noisy data and EGM is the least robust.

Although not addressed in this study, it should be mentioned that the results obtained for noisy data with VFM, according to [START_REF] Pierron | The virtual fields method: extracting constitutive mechanical parameters from full-field deformation measurements[END_REF] , could be improved through the use of stiffness-based virtual fields, which are specially designed to minimize the effect of noise (see Section 3.4 ).

Identification of material parameters using full-field measurements in elasto-plasticity

In this second part, it is addressed the identification of the material parameters for non-linear models, namely the isotropic elasto-plastic model presented in Section 2 . The material parameters for the elastic part are the same of the last section ( 𝐸 = 210 GPa and 𝜈 = 0 . 3 ) and it is assumed that they are known a priori . Thus, the material parameters to be identified are the parameters of the Swift's Law ( Eq. ( 8) ), for which the following reference values are adopted: 𝝃 = { 𝐾, 𝜀 0 , 𝑛 } = {565 MPa , 7 . 81 × 10 -3 , 0 . 26} . The numerical results are generated using the FE code ABAQUS standard. The numerical model is built up using an element CPS4 (bilinear shape functions and full integration) along with the mesh of Fig. 7 (a). A small displacement formulation is also adopted. Regarding the force boundary condition applied to the model, the following parameters are adopted: 𝑚 = 10 Nmm -1 and 𝑏 = 270 N.

The input data for all the methods is still the strain field, but the strain tensor is output at the centroid of the elements. Therefore, only 9 points are available. The force resultant is extracted on the boundary Γ f .

The FE analysis is discretized in five equal increments, with a constant increment size of 0.2. As a result, five strain fields are available for the identification. For the first two increments, the body undergoes only elastic deformations and the yielding process starts in the third increment. The distributions of the von Mises stress and the equivalent plastic strain field at the end of the test are shown in Fig. 8 .

Due to the non-linearity of the model, VFM assumes the form of the objective function presented in Section 3.4 . Nevertheless, it requires the selection of a virtual field to write the principle of virtual work. Only one virtual field is chosen in order to keep the process as simple as possible. Hence, the first virtual field presented in Eq. ( 28) ( u ⋆ (1) ) is adopted.

The objective functions of the different methods (FEMU, CEGM and VFM) are minimized with the Levenberg-Marquardt optimization method [START_REF] Marquardt | An algorithm for least-squares estimation of nonlinear parameters[END_REF] . This is a least-square gradient-based optimization method which requires the derivative of the objective functions. Forward differences are adopted for the calculation of the derivatives. The convergence criterion is similar to the one used in Section 4.2 , but with a value of 1 × 10 -5 . Generally, constraints on the domain of the material parameters are assigned a priori . However, in this work, this will be avoided, unless required for a strategy to achieve a solution. Fig. 9. Flow stress evolution according to the Swift's law for the initial sets of material parameters listed in Table 3 .

Table 3

Initial sets of material parameters for the Swift's law (1-Set and 2-Set) used to start the identification process. CEGM and VFM require the reconstruction of the stress field from the numerically generated strain field. For both strategies, it is adopted an implicit backward-Euler stress update algorithm presented in [START_REF] Crisfield | Non-Linear finite element analysis of solids and structures[END_REF] .

Such an identification is a more difficult process than the previously performed one, mainly due to the non-linear nature of the model, the coupling between the parameters and also the number of parameters. The presence of local minima in the objective function is one of the aspects that can stop the process and lead to erroneous solutions. Therefore, in order to evaluate the robustness of the presented strategies, two different initial sets of material parameters are arbitrarily selected. The two sets are presented in Table 3 and the respective flow stress curves given by Swift's law are presented in Fig. 9 .

The results of the identification process for the different strategies are summarized in Table 4 . CEGM and VFM correctly retrieve the three parameters, independently of the initial set of parameters. This indicates that the reference solution is a global minimum within the interval delimited by the selected initial sets (see Table 3 ). Figs. 10 and 11 present the evolution of the material parameters along the identification process, as well as the evolution of the value of the objective functions, 340 16 2.State-of-the-art on inverse analysis methods J.M.P. Martins for both strategies. These figures reveal that both strategies have fast convergence.

FEMU strategy is able to retrieve the material parameters when the identification starts from the 2-Set of initial parameters. However, for the 1-Set, the presence of a local minimum in the cost function for the values of the parameters 𝐾 = 386 . 691 MPa and 𝑛 = 0 . 113 leads to negative values of the parameter 𝜀 0 , which is not admissible for Swift's law. The presence of this local minimum can be seen in Fig. 12 . Therefore, in order to guarantee positive values for the solution parameters, a constraint on the material parameters domain must be added and kept through the remaining part of this study. Besides, the convergence of FEMU is not so fast as in the case of CEGM and VFM, as can be observed in Fig. 13 .

The iterations and wall-time are also presented in Table 4 . VFM provides the lowest wall-time, with an average of 0.48 s per iteration. CEGM is more than 3 times slower than VFM and has an average of 1.7 s per iteration. FEMU presents the worst results for the wall-time. For the 1-Set, VFM is almost 428 times faster than FEMU and for the 2-Set, VFM is 263 times faster than FEMU, which are significant differences. The choice of the initial set of parameters strongly affects the wall-time in the case of FEMU, a consequence of the required number of iterations. The identification which starts from 1-Set is clearly hampered by the presence of local minima, which led to an increase of the iterations number and, consequently, to the increase of the wall-time.

As performed for the elastic case, the effect of noise on the identification process is also addressed in this case and the sensitivity of the different strategies is evaluated. A random error with a zero-mean Gaussian distribution and standard deviation of 1 is added to the reference strain fields used in the previous results. Two levels of noise are tested, the first one with a magnitude of order 1 × 10 -5 and the other with a magnitude of order 1 × 10 -4 . The results for each noise level are presented in Tables 5 and6 .

For the first level of noise (magnitude of order 1 × 10 -5 , Table 5 ), the three strategies retrieve the material parameters with a good accuracy, independently of the initial set of parameters. This indicates that the reference set of parameters gives a global minimum. Nevertheless, VFM has a slight deviation on the parameter 𝜀 0 , but the error is below 1.4%.

For the second level of error (magnitude of order 1 × 10 -4 , Table 6 ), FEMU correctly retrieves the material parameters, with errors below 0.5%. The initial set has no influence on the accuracy of the results. CEGM underestimates the values of the three parameters for both initial sets and has the highest error for the parameter 𝜀 0 , with an error around 97%. VFM has reasonable results for the parameters K and n , with errors below 4%. Nevertheless, it overestimates the parameter 𝜀 0 .

The parameter 𝜀 0 dictates the beginning of the plastic regime, i.e., it defines the initial yield stress ( 𝜎 0 = 𝐾𝜀 𝑛 0 ). As the number of time steps used is reduced and these do not capture the exact instant of transition between elastic and plastic regime, it can be difficult to retrieve this parameter. Nevertheless, using the results obtained with VFM to calculate the initial yield stress, the following values are obtained: 162.71 MPa and 162.84 MPa for the 1-Set and 2-Set, respectively. Comparing these with the reference value, which is 160 MPa, gives an error around 0.02%, which is admissible. It is also possible to see in Fig. 14 that the identified material parameters capture the correct evolution of the reference yield stress curve. In the case of CEGM, the obtained values for the initial yield stress are: 105.98 MPa and 107.87 MPa for the 1-Set and 2-Set, respectively. The errors for these two values are around 33%, which continues to be a significant difference. Moreover, the solutions obtained are also plotted in Fig. 14 . It is possible to see the difference for the reference solution in the initial yield stress, but for higher values of equivalent plastic strain, the evolution of Swift's law is close to the reference one. For the case of FEMU the results are in good agreement with the reference, which is also highlighted in Fig. 14 .

In Tables 5 and6 is also presented the objective function value for the obtained solutions. Comparing the values of Table 5 with their counterparts in Table 6 , an increase in the objective function value and parameters deviation with increasing values of noise can be observed. This is expected because the strain fields used as input data are no longer ex- 

Table 5

Identification results in elasto-plasticity (isotropic hardening described by Swift's law) with noisy data (magnitude of order 1 × 10 -5 ). * Constraint on the material parameters domain. act solutions of the direct problem and move away from this solution with the noise increase. The question that arises here is, for noisy data, whether the reference set remains a minimizer of the objective functions and whether the solutions obtained are only local minima. The results in Table 5 indicate that the reference set remains the global minimizer for the noise magnitude of 1 × 10 -5 , since the reference set has been retrieved by the three strategies with small values of error, independently of the initial set of parameters. However, for Table 6 , the results of CEGM and VFM have a higher error, particularly for CEGM. Therefore, in order to understand whether the reference solution remains a minimizer for this level of noise, the objective functions have been evaluated for the reference set and the values are:

 FEMU = 1 . 284 × 10 -6 ,  CEGM = 3 . 243 × 10 -3 N ⋅ mm and  VFM = 2031 . 2 N 2 ⋅ mm 2 .
The result for the objective function of FEMU is close to the ones presented in Table 6 , which supports that for FEMU the reference set remains a minimizer for this level of error. For the other two strategies, these values of the objective functions are higher than the final values presented in Table 6 , indicating that the reference set of material parameters is no longer the global minimizer in both strategies and the obtained results are the new ones. It means that higher values of noise can modify the objective functions of CEGM and VFM, thus preventing the correct parameters from being retrieved. As mentioned at the end of Section 4.2 , the results of VFM could be improved if stiffness-based or sensitivity-based virtual fields had been used [START_REF] Marek | Sensitivity-based virtual fields for the non-linear virtual fields method[END_REF] .

In conclusion, it seems that FEMU exhibits the lowest sensitivity to the presence of noisy data, in this example. The CEGM revealed the highest sensitivity to noise. The higher sensitivity to noise presented by CEGM and VFM when compared with FEMU, can be explained by Fig. 14. Flow stress evolution according to Swift's law, for the identified sets of material parameters listed in Table 6 .

the fact that, with FEMU the strain field is used directly to build up the objective function, whereas with CEGM and VFM, it is required the computation of the stress field that may lead to an amplification of the noise effect.

In terms of computational efficiency, the VFM has reached the best results with a significant margin for the other strategies, particularly for FEMU.

Conclusions

The calibration of constitutive models performed with full-field measurements is an increasingly used approach. Over the years, several strategies have been reported with successful results for linear and nonlinear models. Therefore, it is important to understand and realize the advantages and drawbacks of each strategy, as well as their implementation aspects. This work is focused on four identification strategies based on full-field measurements, namely the Finite Element Model Updating (FEMU), the Constitutive Equation Gap Method (CEGM), the Equilibrium Gap Method (EGM) and the Virtual Fields Method (VFM). A brief overview of these strategies is presented, including their flowcharts and implementation details.

A comparative study is then performed. Two types of constitutive models are used: an isotropic linear elastic model and an elasto-plastic model with isotropic hardening described by Swift's law. In order to identify the material parameters of these two models, a FE model with a simple geometry is designed. The heterogeneous response of the FE model is generated by applying a non-uniform load distribution. The strain fields resultant from the solution of the direct problem are used as input for the different strategies. Hence, the four strategies are compared in the same conditions. Moreover, for both models, the robustness of the different strategies is tested against noisy data.

The results show an accurate performance of the different methods in elasticity, with the exception of EGM, which reveals a higher sensitivity to noise than the other methods. For the case of elasto-plasticity, FEMU achieves the most accurate results in the presence of data polluted with noise. Nevertheless, the computational time is significantly higher for FEMU. Moreover, in this specific case, it requires the use of constrains on the parameters domain to obtain admissible solutions. CEGM shows the highest sensitivity to noise, but in terms of computational cost, it is more efficient than FEMU. VFM has reasonable results in the presence of noise, and the best results for the computational cost. Moreover, improvements on VFM concerning noise sensitivity have already been performed and the results presented in this article could be further improved through the use of more advanced virtual fields. Therefore, VFM can be a perfect candidate when is expected a reasonable balance between quality of the identification procedure and computational cost. 

Final Remarks

This overview reveals some of the strengths and weaknesses of the four inverse methods analysed. The Finite Element Model Updating relies on an intuitive idea and therefore, it is often an easy choice. Though the other three methods outperform it in terms of computational efficiency, the complex algorithms hamper the use of these methods. Moreover, the Finite Element Model Updating, which relies on the comparison of experimental and numerical data, seems to be less affected by noise. Therefore, the other three methods require more careful treatment of experimental data. The Virtual Fields Method presents reasonable results in terms of accuracy and a minimal computational expense when compared to the Finite Element Model Updating. Moreover, the Virtual Fields Method is an interesting option when the distribution of the load along the boundary of the specimen is unknown. The Virtual Fields Method seems the best option to avoid the high computational expense of the Finite Element Model Updating.

Chapter 3

VFM -Single test calibration methodology

The interest in the Virtual Fields Method has increased in recent years. The Virtual Fields Method presents an interesting balance between the accuracy of the calibration results and computational cost. Therefore, it is often pointed out as an efficient alternative to Finite Element Model Updating. For the Virtual Fields Method to be a solid alternative to Finite Element Model Updating, the complexity of the method must be overcome by the pluses. Computational efficiency is an asset and not requiring the exact knowledge of boundary conditions is another plus. Nevertheless, it continues to be difficult to rank the robustness of these two methods even in the case of simple plasticity models. Moreover, the calibration of anisotropic plasticity models due to a large number of material parameters worsens the computational expense of Finite Element Model Updating. The Virtual Fields Method can play an important role here. On the other hand, it is crucial to find a test that can generate the experimental database to perform the simultaneous identification of the multiple parameters that constitute these models and lead the process to a minimum number of tests. The biaxial test in a cruciform specimen is a strong candidate, the test presents a variety of strain paths with a large range of strain values. Nevertheless, it has never been combined with the Virtual Fields Method in this context. Similarly, a recently developed heterogeneous test, called the butterfly test, must be considered.

Identification of Material Parameters for Plasticity Models: A Comparative Study on the Finite Element Model Updating and the Virtual Fields Method

This section presents a comparative study focused on the accuracy of the Virtual Fields Method and the Finite Element Model Updating in plasticity models. The two methods are tested in the finite strain framework. A simple uniaxial test with varying cross-section is chosen. Swift's isotropic hardening law is the selected model.

Identification of Material Parameters for Plasticity Models: A Comparative Study on the Finite Element Model Updating and the Virtual Fields Method INTRODUCTION

The reduction of the time and the costs to bring a new material or product to market is of primary importance for any industry. Numerical simulation tools have been exploited in this sense and nowadays, they play an important role in the design of a new component or manufacturing process. One of the key points for the success of the predictions of these tools has been the use of appropriate constitutive models and the respective calibration.

The description of the material behaviour has been an utmost problem for the community of solid mechanics and materials science and consequently, there is a wide range of material models available on the literature, especially for modelling the plastic response of a material. However, the accuracy of these models is strictly connected with the calibration process. The objective of the calibration process is to estimate the set of material parameters, which make part of the chosen model, to adjust the best as possible the model to the real response of the material.

The use of full-field measurements techniques (e.g. Digital Image Correlation) with the aim of calibrating material models is becoming more and more popular and one of the main advantages of using these techniques is the capability of exploring heterogenous strain or displacements fields. For an appropriate test geometry, the information contained in the measured heterogenous fields can be enough to identify several material parameters, thus reducing the number of required tests to calibrate a model. Consequently, different strategies to deal with this kind of data have emerged in 24 3.VFM -Single test calibration methodology the recent years [1]. Among them, the ones that received more attention have been the Finite Element Model Updating and the Virtual Fields Method. These two strategies have been applied in the identification of different constitutive models, especially in the framework of plasticity (eg. [2,3]). However, studies on the comparison of their performance in the framework of plasticity are rare. Therefore, when it comes time to choose which is the best strategy to deal with the conditions of a given application, there is no support. Thus, the objective of this work is to compare both strategies in the framework of plasticity and provide insight on the details of their application.

INVERSE METHODS

Finite Element Model Updating

The identification of material parameters with the Finite Element Model Updating (FEMU) relies on an intuitive idea, which is to adjust the material parameters from a Finite Element model in order to minimize the difference between experimental and numerical strain/displacements fields over a large area. This method has several advantages, but mainly its widespread application is due to the ease of implementation and the flexibility that it offers. It can easily be adapted to complex geometrical shapes and different kinds of data, e.g. displacements, strains or loads. In fact, this strategy does not require full-field measurements to be used, it can be used with just local measures. As for the disadvantages, this method requires a numerical model with a proper representation of the experimental test and for each evaluation of the objective function, it requires at least one run of this model, which can be time-consuming.

In the literature, a variety of objective function definitions can be found. It depends on the type of experimental test, the application and availability of experimental data. Some authors prefer the minimization of the gap between displacements, whereas others between strains. These can also be combined with the minimization of the gap between forces [3,4]. Here, a combination of strain components and forces is adopted. These two quantities have different units, which should not affect the optimization process, therefore these quantities are normalized. The chosen objective function can be written in a least-square sense as: 
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where ξ is the vector of material parameters, xx  , yy  and xy  are the in-plane components of the strain tensor and F is the force. The superscripts num and exp define the numerical and experimental data, respectively. s n and p n are the number of time steps and the number of in-plane measurement points, respectively.

Virtual Fields Method

The Virtual Fields Method (VFM) is based on the Principle of Virtual Work, which establishes the weak form of the equilibrium equations. This strategy allows the estimation of the material parameters through the minimization of the gap between internal and external virtual works. Both quantities are calculated based on the experimental measurements, therefore it avoids the use of numerical simulation tools. This is an advantage when compared with FEMU, because the computational cost of VFM is substantially lower. VFM requires the availability of full-field measurements to calculate the internal virtual work and as the full-field measurements are usually available for the surface of a specimen, it is necessary to assume that these measurements are known along the thickness. According to that, plane stress conditions are assumed. Moreover, in order to compute the external virtual work, it is required the knowledge of the resultant in-plane loading applied to the body. In this study, the framework of finite strains theory is adopted, thus the Principle of Virtual Work is written using a Lagrangian (or material) description. Assuming static conditions and neglecting the body forces, the cost function has the following form
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where exp ( , ) P ξε is the first Piola-Kirchhoff stress tensor, which is a function of ξ and of the strain tensor exp ε . This last one is derived from the measured displacement exp u . The internal work is computed for the volume V occupied by the domain of the body 0  , in the reference configuration. T is the prescribed first Piola-Kirchhoff traction vector on the boundary surface 0  , thus it is the measured force per unit of reference surface area.  u is the virtual displacement field defined on the reference configuration. The Lagrangian description is a convenient description to write the Principle of Virtual Work, since for the computation of the internal and external work the geometric quantities are defined on the reference configuration. For more details on this formulation see [5,6].

The reconstruction of the stress field from the strain field is a key point for the calculation of the internal virtual work. Due to the non-linearity of the model, the stress reconstruction is performed recurring to an algorithm of the type Backward-Euler return [8].

The other key point of VFM is the selection of suitable virtual fields  u . This is frequently performed empirically, based on the experience of the user. However, it has been proposed recently an automatic strategy for the non-linear case [7]. Regarding the empiric approach, the virtual fields are selected in a convenient way. First, displacement boundary conditions must be satisfied, so they must be kinematically admissible ( 0   u on the boundary with prescribed displacements). Moreover, to simplify the Principle of Virtual Work and calculate the external virtual work from the resultant of the applied force, the selected virtual field must be collinear with the applied force and constant on the boundary of application [6].

FEMU AND VFM COMPARISON: IDENTIFICATION OF THE PLASTIC RESPONSE Material Model

For the present study, the material model chosen encompasses the following assumptions: (i) isotropic elastic behaviour described by the generalized Hooke's Law; (ii) isotropic von Mises yield criterion associated to isotropic hardening described by the Swift's law. Since the objective is the identification of the material parameters related with the plastic response, the elastic parameters, Young's modulus and Poisson's ratio are assumed as known quantities and take the following values:  210 GPa E and   0.3 , respectively. The remaining material parameters are the ones which govern the Swift's Law, given by:
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where y  is the flow stress, K is the hardening coefficient, n is the hardening exponent, 0  the initial yield stress and p

 denotes the equivalent plastic strain. The material parameters to be determined are K , n and 0  .

Numerical Test

In order to compare the performance of the two inverse strategies, numerically emulated data are used. A specimen with varying cross-section is chosen [2]. The geometry of the specimen is depicted in Fig. 1 (a). This kind of geometry offers a heterogeneous strain field over a large area.   and it is localized in the centre of the specimen. The gradient of deformation is mainly along the y direction.

Optimization Procedures and Implementation Details

Both FEMU and VFM strategies require an optimization method to minimize the objective functions and consequently, find the best parameter set. In the literature, there is no consensus on each method should be used, but one of the most popular, belonging to the family of least-square gradient-based methods, is the Levenberg-Marquardt algorithm. Its low CPU cost and ease of implementation are the main advantages. However, it is common to reach a local minimum instead of a global one.

In this study, the Levenberg-Marquardt method is adopted to minimize the objective function of both inverse strategies. The Jacobian matrix is calculated by forward finite differences. A convergence criterion of 10 1 10   is chosen.

Regarding the implementation details of FEMU, the strain field used as input is extracted from the same mesh presented in Fig. 1 (b). The centroid of the elements is chosen as the location for the calculation of the logarithmic strain tensor. For VFM, the displacements field is the input data. However, the determination of the internal virtual work requires the derivation of the logarithmic strain tensor, which in this case, is calculated at the centroid of the finite elements by means of bilinear shape functions. All the calculations required for VFM are performed using the same mesh (see Fig. 1), avoiding extra interpolation errors. The reconstruction of the stress field, which is required for VFM, is performed through a user subroutine. Regarding the selection of the virtual fields, the empirical approach is chosen, and the simplest virtual field is selected   

Results and Discussion

The numerical data generated by the model presented in Fig. 1 is used as representing the experimental data, thus the reference parameters are known a priori (

  ref 0 565 [MPa], 0.26, 160 [MPa] Kn      ξ
). It should be mentioned that the reference simulation was run with the automatic increment control technique, provided by ABAQUS, resulting in a total of 30 increments (or time steps) to complete the simulation.

In order to evaluate the performance of both strategies and verify that the estimated solution is a global minimum, two initial sets of parameters are arbitrarily chosen to start the optimization process, namely

  sup 0 965 [MPa], 0.35, 234 [MPa] Kn      ξ and   inf 0 165 [MPa], 0.08, 100 [MPa] Kn      ξ
. The results for both strategies are presented in Table 1, with the respective error for each parameter. It is also presented the final value of the objective function for each identification. VFM strategy is able to retrieve the reference parameters with an error lower to 0.5% for the parameters K and 0  . The parameter n has a higher error, around 2%, but still reasonable. These results are reached for the two initial sets, suggesting a global minimum for the set of parameters estimated. FEMU strategy reaches different solutions for the two initial sets of parameters, indicating the presence of local minima. Moreover, when Swift's law is plotted for the different sets of parameters (see Fig. 2 (a)), it is possible to observe that both sets give a good description at small values of the equivalent plastic strain. This suggests that points with a low value of the equivalent plastic strain have a higher weight on the value of the objective function. This is in good agreement with Fig. 1 (b), where the spatial distribution of the equivalent plastic strain shows that most of the points have a low value of equivalent plastic strain at the end of the test. Fig. 2 (b) shows the evolution of the equivalent von Mises stress along the test for the centroid of the nearest element to the centre of the specimen (where the specimen has the highest values of equivalent plastic strain) and in this case, it is also possible to verify that more points are located within the interval from 0 to 0.05 of logarithmic strain than in other intervals. This last distribution of data points is a consequence of the automatic increment control technique. Therefore, the same test is simulated for a fixed increment size, much smaller, thus increasing the number of points and favouring an even distribution of the strain values in the input data of FEMU. In this case, the result FEMU strategy has succeeded in the identification process (see Table 1, FEMU (fixed increment size)), for both initial sets of material parameters. The maximum error is reached 28 3.VFM -Single test calibration methodology for the parameter n , with a value of 3.7%, whereas the for the other parameters the error was lower than 2.2%. It highlights the influence of the cost function definition, where the relatively huge amount of considered data introduces indirectly weights.

(a) (b)

FIGURE 2.
Swift's law plotted for the solutions obtained with FEMU strategy (see Table 1) (a) and stress-strain curve obtained with the reference set of parameters for the nearest element to the centre of the specimen presented in Fig. 1(b).

CONCLUSIONS

FEMU and VFM inverse strategies have been compared in the framework of plasticity. In this case, the parameters of Swift's hardening law were identified with input data numerically generated. The results showed that VFM strategy was able to accurately retrieve the reference parameters for the given conditions, whereas FEMU strategy revealed sensitivity to the distribution of the input data for different levels of strain. For a more accurate identification with FEMU, equally distributed data for the different levels of strain should be used. 

Calibration of anisotropic plasticity models using a biaxial test and the Virtual Fields Method

In this section, the combination of the Virtual Fields Method and a cruciform specimen in biaxial tension is explored. It is intended to propose a calibration methodology to simultaneously calibrate an isotropic hardening law and an anisotropic yield criterion. Three cruciform geometries are analysed as potential candidates to combine with the Virtual Fields Method. The study is performed with virtual experimental data and the reference parameters are known a priori, which allows to compare directly with the identification results and evaluate the quality of the information obtained from the test.

Introduction

The development of accurate and efficient models for the plastic behaviour of sheet metals has been crucial to improve components performance and to validate manufacturing processes through numerical simulation. In the last years, effort s have been oriented to provide models with more realistic descriptions of phenomena such as hardening and anisotropy ( Bruschi et al., 2014 ). In the case of phenomenological models, which are usually preferred for Finite Element (FE) simulations, the improvement in accuracy has been associated to increased flexibility in the mathematical formulation, which has consequently led to an increase in the number of material parameters of the most recent models [START_REF] Rabahallah | Parameter identification of advanced plastic strain rate potentials and impact on plastic anisotropy prediction[END_REF]. The increase in the number of parameters brought additional challenges for the identification of these parameters (or calibration process). The main challenge has been to gather the required data to properly identify the material parameters, which usually implies a time-consuming experimental campaign [START_REF] Bandyopadhyay | Robust multi objective optimization of anisotropic yield function coefficients[END_REF]. Furthermore, the required data should be representative of the stress and strain states of the application that is intended to be simulated ( Cooreman et al., 2008;[START_REF] Prates | A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test[END_REF]. These challenges have hampered the widespread use of more recent and accurate models ( Bruschi et al., 2014 ).

The calibration process is the first step before any practical application of a constitutive model and it is directly related to its accuracy ( Réthoré e t al., 2013 ). Generally, a constitutive model to predict the plastic flow of sheet metals is defined by a hardening law and a yield criterion, within the framework of the associated flow rule. The calibration of both components is usually performed separately. For example, in the case of isotropic hardening, Swift's law [START_REF] Swift | Plastic instability under plane stress[END_REF] is traditionally calibrated by adjusting its prediction to stress-strain curves from uniaxial tensile tests or, when desired to extend the strain range, from hydraulic bulge tests [START_REF] Tardif | Determination of anisotropy and material hardening for aluminum sheet metal[END_REF]. Regarding the yield criterion, modelling the anisotropic plastic behaviour of sheet metals has been a very active field and consequently, a large spectrum of yield criteria with different levels of complexity is available now. However, the criterion proposed by Hill (1948) (Hill'48 yield criterion) is still referred to as the most used yield criterion, a fact directly connected to the simplicity of both the formulation and the calibration process. In plane stress conditions, this criterion depends only on 4 parameters which can be analytically calculated using the plastic anisotropy coefficient (or Lankford's parameter) https://doi.org/10.1016/j.ijsolstr.2019.05.019 0020-7683/© 2019 Elsevier Ltd. All rights reserved.
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in three different orientations i.e. rolling, diagonal and transverse ones, and the initial yield stress in the rolling direction. To collect this data, three uniaxial tensile tests at the three orientations are required. Nevertheless, its formulation lacks flexibility which restricts the representation of the mechanical behaviour of certain materials [START_REF] Pearce | Some aspects of anisotropic plasticity in sheet metals[END_REF], and also cannot predict both the initial yield stresses and the plastic anisotropy coefficients with the same accuracy ( Banabic, 2010 ). Therefore, more flexible formulations have been proposed. Among others, the criterion proposed by Barlat et al. (2003) (YLD2000-2d) can be given as an example. The calibration of this yield criterion requires more information than Hill'48 yield criterion, namely, the plastic anisotropy coefficients and the yield stresses in different orientations of the sheet and also, the plastic anisotropic coefficient and yield stress from an equi-biaxial test. Moreover, the material parameters are identified using an optimisation procedure.

The examples presented above illustrate classical calibration procedures for the different components of a constitutive model. Nevertheless, the combination of full-field measurement techniques, such as digital image correlation (DIC), and the inverse methods developed to take full advantage of such data can simplify the calibration of classical plasticity models ( Avril et al., 2008;Martins et al., 2018a ). In this combined strategy, complex specimen geometries can be used in order to produce heterogeneous displacements/strain fields. An ideal geometry should produce heterogeneous displacement/strain fields that contain the required experimental data to calibrate a model and thereby, reduce the number of tests of the experimental campaign. Accordingly, the cruciform geometry has been investigated over the years ( Prates et al., 2016 ). This type of geometry in biaxial tension is known for producing strain paths ranging from biaxial tension, at the centre of the specimen, to uniaxial tension, in the arms of the specimen [START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF][START_REF] Souto | Design of an indicator to characterize and classify mechanical tests for sheet metals[END_REF]. Moreover, Zhang et al. (2014) through numerical analysis, showed that the prediction of the strain distribution in the central area of the specimen is dependent of the yield criterion selected.

The studies conducted on the biaxial test with the cruciform geometry are often based on inverse methods of a FEMU-based type. This type of inverse methods determines the best set of material parameters through the minimisation of a function representing the gap between numerical and experimental results. This function can be built based on strain or displacement fields or force values, or it can be a combination of these quantities. In the framework of plasticity, a thorough review of the combination of the biaxial test with the cruciform geometry and FEMU-based inverse methods can be found in ( Prates et al., 2016 ). As an example of such studies, it can be mentioned the work of [START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF] . These authors proposed a geometry for a cruciform specimen and succeeded to identify the material parameters of Bron and Besson yield criterion [START_REF] Bron | A yield function for anisotropic materials application to aluminum alloys[END_REF] ) (criterion with a total of 13 parameters). The function to be minimised was built using the major and minor strain distributions along a diagonal path in the central area of the specimen captured for a single time instant of the test. More recently, Coppieters et al. (2018) used a perforated cruciform specimen ( Lecompte et al., 2007 ) to study the influence of boundary conditions, number of time instants and settings of DIC system on the identification of Hill'48 criterion's parameters using a FEMU inverse method. This study also reveals that such an inverse approach can give better results than a conventional identification procedure for Hill'48 yield criterion.

Although FEMU-based inverse methods can be considered a feasible tool for parameter identification, these are excessively time-consuming, a drawback attributed to the FE simulations required within the iterative process of identification. The virtual fields method (VFM) is an alternative to overcome this drawback ( Martins et al., 2018a ). This inverse method relies on the princi-ple of virtual work and on the choice of a set of virtual fields ( Pierron and Grédiac, 2012 ). In the framework of plasticity, the most recent applications of the VFM have been the simultaneous calibration of isotropic hardening and anisotropic yield criteria ( Rossi et al., 2016;[START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF], the calibration of kinematic hardening law ( Fu et al., 2016 ) and a distortional hardening model ( Fu et al., 2017 ). Rossi et al. Rossi et al. (2016) used a notched specimen to perform the simultaneous calibration of Swift's law and two criteria, namely i.e. Hill'48 yield criterion and YLD20 0 0-2d yield criterion ( Barlat et al., 2003 ). The obtained results were reasonable, although the authors suggested that a different specimen could improve the results. Marek et al. [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF] focused on the validation of a new strategy to automatically determine an optimal set of virtual fields for the calibration process. The results have been improved, but the same notched specimen was used.

The purpose of the present study is to explore the combination of the VFM and a cruciform specimen tested in biaxial tension for the simultaneous calibration of an isotropic hardening law and an anisotropic yield criterion. This combination has already been tested, but for the framework of hyperelasticity [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF]. In that case, the number of material parameters was just two, corresponding to the Mooney's hyperelastic model in plane stress conditions, and a linear version of the VFM was used ( Pierron and Grédiac, 2012 ). The good results obtained proved the feasibility of this combination. Nevertheless, any study on this combination has been performed in the framework of anisotropic plasticity. The present study is performed with virtual experimental data and the reference parameters are known a priori , which allows to compare directly with the identification results and evaluate the quality of the information obtained from the test. In this first analysis, the evaluation of DIC settings and noise effect are out of the scope, though it will be required in further analysis. The outline of the article is as follows. Section 2 presents the VFM and a set of virtual fields that can be used with a cruciform specimen submitted to biaxial tension. Section 3 introduces the constitutive models addressed in this study, namely Swift's hardening law and the yield criteria Hill'48 and YLD20 0 0-2d. In Section 4 , three cruciform geometries are evaluated as potential candidates to combine with the VFM. A thorough evaluation of the generated strain and stress fields in these geometries is performed. Section 5 provides a detailed discussion regarding the identification results obtained, namely a comparison of the three cruciform geometry and the performance of the best geometry in the calibration of YLD20 0 0-2d and Swift's law.

The virtual fields method

Theoretical background

The VFM is an inverse method for parameter identification based on full-field measurements which relies on the principle of virtual work, written in the framework of large strains in this study. This large strains formulation has been firstly applied to the calibration of hyperelastic models by [START_REF] Promma | Application of the virtual fields method to mechanical characterization of elastomeric materials[END_REF] and subsequently, adopted in several studies for the calibration of plasticity models ( Rossi et First, reference and current configurations of a continuum solid body must be distinguished. Consider the reference or undeformed configuration 0 occupied by the solid body at the beginning of the deformation process (time instant t = 0 ) and delimited by 0 . Also, consider that the boundary 0 is composed of two sub-boundaries u 0 and after the deformation process at the time instant t . The position of a particle in the reference configuration 0 is described by X relative to a reference frame and x ( X , t ) gives the position of this same particle in the current configuration t . The displacement field which relates the position of this particle in the reference configuration and its position in the current configuration is given by u (X , t ) = x (X , t ) -X .

f 0 , such that 0 = u 0 ∪ f 0 and 32 
Assuming quasi-static conditions and neglecting body forces, the principle of virtual work can be expressed in the reference configuration as:

- 0 P : grad U * d V W int + f 0 T • U * d S W ext = 0 . ( 1 
)
Here, P is the first Piola-Kirchhoff stress tensor, U * is the virtual displacement vector defined in the reference configuration X , as well as grad U * ( Holzapfel, 20 0 0 ). T is the first Piola-Kirchhoff stress vector prescribed on the boundary f 0 with reference surface area S . Similarly, the first integral of Eq. ( 1) has to be computed over the reference volume V . The virtual displacement field ( U * ) must be a continuous and differentiable function and it is assumed, for a matter of convenience ( Pierron and Grédiac, 2012; Holzapfel, 20 0 0 ), that it vanishes on the boundary of applied displacements u 0 (condition 1). It is also useful to establish the link between reference and current configurations. Thus, the first Piola-Kirchhoff stress tensor can be defined in terms of the Cauchy stress tensor σ as

P = det (F ) σF -T , (2) 
where det( F ) is the determinant of the deformation gradient F and F -T is the transpose of its inverse. The deformation gradient can be defined as

F = ∂x ∂X = I + ∂u ∂X , ( 3 
)
where I is the second order unity tensor. According to Eq. ( 1) , the principle of virtual work states, for a body in equilibrium and for a continuous virtual field, that the internal virtual work W int equals the external virtual work W ext and this should be satisfied for every time instant t . The computation of the internal virtual work is, therefore, a key point that requires a constitutive model to establish the link between the stress field and the strain field. In the framework of elasto-plasticity, the relation between the stress field and the strain field is non-linear and history-dependent or path-dependent. Elasto-plastic constitutive models are commonly formulated in terms of the Cauchy stress tensor σ. Therefore, the stress field corresponding to a defined time instant t is usually a function of the material parameters (consider ξ as the vector that gathers all material parameters) and the history of deformation, here denoted by ε | 0 → t , and can be defined as

σ t = σ t ξ, ε | 0 → t . ( 4 
)
The principle of virtual work is the foundation for the VFM. In non-linear cases, to solve the inverse problem and find the best set of material parameters, the main idea behind the VFM is the minimisation of the difference between internal and external virtual work. The objective function is written in a least-square form as

ϕ ξ = W int ξ -W ext 2 .
(

) 5 
In practice, the internal and external virtual works are computed from measured quantities, namely the displacement fields and the resultant of the applied loads. The internal virtual work results from the reconstruction of the stress field, which in turn is performed using the strain fields and the adopted constitutive model. The strain fields are computed from the measured displacement fields u by means of the deformation gradient. Using the theorem of polar decomposition, the deformation gradient can be decomposed as

F = VR (6) 
with V the left Cauchy stretch tensor and R is the orthogonal rotation tensor. The strain field can be computed for each time instant as the Hencky's strain tensor

ε = ln V . ( 7 
)
Moreover, the computation of the stress field is conventionally expressed in a local material frame free of rigid body rotations, thus the strain tensor in this local co-rotational frame can be computed as

ˆ ε = R T ε R . ( 8 
)
Full-field measurements are generally presented as a discrete number of measurements points on the surface of the specimen, and to apply the VFM, these points are usually fitted to a mesh of elements. Strain and stress tensors are then calculated at the centroid of these elements and become representative of the average strain and stress field in a specific element. This calculation can be performed, for example, by means of shape functions. This discrete form of the data allows to approximate the integral of the internal virtual work by a discrete sum as follows

W int ξ, t = n e i =1 P ξ, t : grad U * A i e i . ( 9 
)
where n e represents the number of elements and A i and e i represent the area and the thickness of each element. The elemental area A i and elemental thickness e i do not depend on time, these quantities refer to the reference configuration 0 . This is one of the advantages of formulating the principle of virtual work in the reference configuration.

The formulation presented can be applied to three dimensional data. Indeed, there are a few attempts to use it with three dimensional measurements, such as ( Rossi and Pierron, 2012;[START_REF] Rossi | Evaluation of volume deformation from surface DIC measurement[END_REF][START_REF] Rahmani | In-situ mechanical properties identification of 3d particulate composites using the virtual fields method[END_REF]. Nevertheless, as mentioned before, full-field measurements are commonly available just on the surface of the specimen. To overcome the lack of information throughthickness, plane stress conditions are generally assumed which is reasonable when the specimen thickness is much smaller compared to the other dimensions. Nevertheless, the determination of the first Piola-Kirchhoff stress tensor requires additional assumptions [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF], namely the determinant of the deformation gradient det( F ), which can be seen as the local ratio of current to reference volume [START_REF] Reddy | An Introduction to Continuum Mechanics[END_REF]. The determinant of the deformation gradient can be determined as

det ( F ) = F 33 • ( F 11 F 22 -F 12 F 21 ) . ( 10 
)
According to [START_REF] Marek | Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity[END_REF] , the determination of the component F 33 of the deformation gradient for each instant can be calculated as (11) which leaves the increment of the out-of-plane strain component ε 33 to be calculated. In elasto-plasticity, assuming isotropic elastic behaviour, this component can be determined using Hooke's law and taking advantage of the isochoric character of plasticity as follows

F 33 ( t ) = 1 + ε 33 ( t ) = 1 + t 0 ε 33 d t,
ε 33 = - ν 1 -ν ( ε e 11 + ε e 22 ) -ε p 11 + ε p 22 , (12) 
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where ε e 11 and ε e 22 and ε p 11 and ε p 22 are the components of the elastic and plastic strain tensor, respectively, and ν is the Poisson's ratio. The external virtual work is calculated based on the measured force during the test and constitutes a great asset for the VFM, because it is not required the distribution of the force. Choosing a virtual field constant along the boundary f 0 (condition 2) simplifies the computation of the external virtual work as follows

W ext ( U * ) = U * • f 0 T d S = U * • F load . ( 13 
)
Another important aspect in the calibration of non-linear constitutive models, such as elasto-plastic models, is the number of time instants taken into account to reconstruct the stress field. An accurate reconstruction of the stress field requires the use of several measures of the displacement field along the test. Therefore, Eq. ( 5) must be written as a sum of the principle of virtual work for each time instant. This is also a way to enrich the objective function. Finally, Eq. ( 5) can be written for different virtual fields in order to enrich the objective function and to explore the most relevant information from the reconstructed stress field. Hence, the objective function for the VFM can be written in a general form as

ϕ ξ = n v k =1 n t j=1 W int ξ, U * (k ) , t j -W ext U * (k ) , t j 2 , ( 14 
)
where n v is the number of virtual fields selected and n t the number of time steps considered. The identification of the material parameters is performed through the minimisation of Eq. ( 14) . The minimum of the objective function is found when the identified material parameters in the selected constitutive model give rise to stress fields that minimise the difference between W int and W ext over the considered time instants. Generally, the reconstruction of the stress field for an elasto-plastic constitutive model requires an integration algorithm, in the same way as a finite element solver.

There are several options for the integration algorithm, the classical one is based on the backward-Euler scheme combined with an elastic predictor/plastic corrector method to update the stress state. Examples of this kind of algorithm can be found in ( Crisfield, 1991;[START_REF] Simo | Computational Inelasticity[END_REF]. Nevertheless, other algorithms can be used, for instance, the one proposed by Rossi et al. ( 2016) , called direct algorithm, which provides a faster reconstruction of the stress field.

Virtual fields definition and identification procedure

Defining a set of virtual fields is one of the main tasks before using VFM. In the framework of plasticity, three main strategies are currently available to select a suitable set of virtual fields ( Marek et al., 2017 ). The most commonly used strategy is manually defined virtual fields. In this strategy, the user has to develop a continuous function adapted to the problem in hands (that depends on the experimental geometry and boundary conditions), that generates the value of the virtual field over the considered domain. Usually, the functions are of polynomial or periodical basis. This approach has the disadvantage of relying on the experience of the user to develop the function. Nevertheless, this approach is easy to implement. The other two strategies were developed to overcome the disadvantage of the previous one, allowing to obtain the virtual field set automatically with some user inputs ( Pierron et al., 2010;Marek et al., 2017 ). Nevertheless, these two automatic strategies have the disadvantage of being more difficult to implement than the manual strategy and require a higher computational effort. Theref ore, in the present study, the manual approach is chosen. The set of virtual fields that will be presented can be used with any cruciform specimen. This set was developed to meet the above-mentioned conditions: to be null over the fixed boundaries (condition 1), where the prescribed displacement is zero, and constant over the boundaries at which the resultant of the applied force is known (condition 2). Consider the illustrative example of a general cruciform specimen under biaxial loading presented in Fig. 1 . The set of developed virtual fields meets the above-mentioned conditions considering the zone of interest (ZOI) represented in Fig. 1 , which corresponds to one-fourth of the central zone of the specimen. The boundaries with prescribed displacements ( u x = u y = 0) are considered symmetry boundaries. For the boundaries marked with F x and F y , the resultant of the applied force is considered to be known for the respective direction.

The developed set of virtual field is the following:

U * (1) = U * x = X W U * y = 0 , ( 15 
)
U * (2) = U * x = 0 U * y = Y H , ( 16 
)
U * (3) = U * x = U * y = sin X W π sin Y H π . ( 17 
)
The constants W and H represent the height and width of the ZOI. X and Y represent the material coordinates in the global frame regarding the initial configuration. With this set of virtual fields, the objective function presented in Eq. ( 14) is written for n v = 3 . The first two virtual fields Eqs. ( 15) and ( 16) allow to writing the external virtual work for the applied force in the xand y -directions, which makes possible to use the force applied in each arm of the specimen. The third virtual field activates all the components of the stress tensor in the calculation of the internal virtual work since grad U * (3) contains all the components active. Similar virtual fields can be found, for example, in ( Rossi et The objective function Eq. ( 14) is commonly normalised by the W ext , but due to the selected virtual fields, this is not possible because the third virtual field Eq. ( 17) does not include the contribution of the W ext . Therefore, Eq. ( 14) is normalised by the maximum W int .

The theoretical background presented in this section, as well as the presented set of virtual fields, were implemented in an inhouse code using the programming language Fortran. This code includes a gradient-based Levenberg-Marquardt optimisation method ( Marquardt, 1963 ) used to minimise the objective function. The low computational cost and ease of implementation are the main assets of this gradient-based method. However, it is prone to reach local minima instead of a global one. In this study, the required Jacobian matrix for the Levenberg-Marquardt method is calculated by forward finite differences. The convergence criterion for this method was established as: the objective function becomes lower than a tolerance or the relative difference between parameters in consecutive iterations is lower than or equal to = 1 × 10 -10 .

Material model

This section is dedicated to the elasto-plastic constitutive models used in this study. Two yield criteria are presented, Hill'48 and YLD20 0 0-2d. In addition, as the present study is performed with virtual experimental data generated with two models which differ from each other in the adopted yield criterion, after presenting each yield criterion, the respective set of material parameters is also presented.

In this study, the elasto-plastic behaviour of sheet metals is modelled assuming additive decomposition of the strain rate tensor and associated flow rule [START_REF] Cazacu | Plasticity-Damage Couplings: From Single Crystal to Polycrystalline Materials[END_REF]. It is considered isotropic linear elastic behaviour described by Hooke's law and anisotropic plastic behaviour. The remaining elements, the yield surface and the hardening law, are presented below. It should be mentioned that all equations are presented in the orthogonal anisotropic frame (or material frame), which axes coincide with rolling, transverse and normal directions of the sheet plane. Moreover, the anisotropy frame is assumed to have a constant angle regarding the co-rotational frame along the deformation process.

The yield surface in plasticity, assuming isotropic hardening, can be written as

f = σ ( σ) -σ y ε p = 0 . ( 18 
)
where σ ( σ) is the equivalent stress defined by a yield criterion and σ y ε p defines the flow stress. σ y ε p is assumed as a function of a single internal variable, the equivalent plastic strain ε p . Here, it is chosen the classical phenomenological Swift's law to describe the evolution of σ y ε p , which can be written as

σ y ε p = K ε 0 + ε p n , ε 0 = σ 0 K ( 1 /n ) ( 19 
)
σ 0 , K and n are material parameters which must be identified according to the material. σ 0 is the initial yield stress and is assumed as a material parameter instead of ε 0 , because when ε 0 is taken as the material parameter to be identified, the errors are usually high, due to the small order of magnitude of this parameter, but without significant impact on the initial yield stress ( Martins et al., 2018a;[START_REF] Kim | Characterization of the post-necking strain hardening behavior using the virtual fields method[END_REF]. The first anisotropic yield criterion adopted is the quadratic criterion proposed by [START_REF] Hill | A theory of the yielding and plastic flow of anisotropic metals[END_REF] , which is commonly called Hill'48 yield criterion. Assuming plane stress condition, this criterion has the following form

σ 2 = H ( σ xx -σ yy ) 2 + Gσ 2 xx + F σ 2 yy + 2 Nσ 2 xy . ( 20 
)
H, G, F and N are the material parameters. σ xx , σ yy and σ xy are the components of the Cauchy stress tensor in the anisotropic frame. It is often assumed, for matters of convenience, that the yield stress in the rolling direction corresponds to σ y , leading to the condition G + H = 1 . Following a direct procedure, the parameters G, F and N can be identified with closed-form solutions either as a function of the yield stresses or the plastic anisotropy coefficients. However, each approach gives different results ( Banabic, 2010 ). The most common approach makes use of the plastic anisotropy coefficients ( r α ) in directions 0 • , 45 • and 90 • from the rolling direction.

In this case, G, F and N are determined as

G = 1 1 + r 0 ; F = r 0 r 90 ( 1 + r 0 ) ; N = ( r 0 + r 90 ) ( 2 r 45 + 1 ) 2 r 90 ( 1 + r 0 ) . ( 21 
)
In this study, Hill'48 yield criterion is combined with Swift's law to describe the behaviour of a typical mild steel. The reference material parameters associated with this model are presented in Table 1 . The values of the elastic parameters are: Young's modulus E = 210 GPa and Poisson's ratio ν = 0 . 3 . Moreover, the normalised yield stress values ( σ α ) and the plastic anisotropy coefficients ( r α ) for different angles between the tensile and rolling direction ( α = 0 • , 45 • and 90 • ) are also presented in Table 1 .

The second yield criterion adopted in this study is nonquadratic and was proposed by Barlat et al. (2003) . Named YLD20 0 0-2d, this yield criterion was formulated for plane stress conditions and can be expressed as

2 σ a = | X 1 -X 2 | a + | 2 X 2 + X 1 | a + | 2 X 1 + X 2 | a , ( 22 
)
where a is a material parameter that usually assumes the value of 6 or 8, depending on the crystallographic structure of the material. X 1 , X 2 and X 1 , X 2 are the principal values of the tensors X and X obtained after two linear transformations on the deviatoric stress tensor. In a simple way, these can be determined directly from the Cauchy stress tensor as

X = L σ; X = L σ, ( 23 
)
where L and L can be defined based on eight parameters as

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ L 11 L 12 L 21 L 22 L 66 ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ = ⎡ ⎢ ⎢ ⎣ 2 / 3 0 0 -1 / 3 0 0 0 -1 / 3 0 0 2 / 3 0 0 0 1 ⎤ ⎥ ⎥ ⎦ α 1 α 2 α 7 and (24) 
⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ L 11 L 12 L 21 L 22 L 66 ⎫ ⎪ ⎪ ⎪ ⎪ ⎬ ⎪ ⎪ ⎪ ⎪ ⎭ = 1 9 ⎡ ⎢ ⎢ ⎣ -2 2 8 -2 0 1 -4 -4 4 0 4 -4 -4 1 0 -2 8 2 -2 0 0 0 0 0 9 ⎤ ⎥ ⎥ ⎦ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ α 3 α 4 α 5 α 6 α 8 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ , ( 25 
)
where α k ( k = 1 , . . . , 8 ) are the parameters to be identified. The identification of the α k parameters is conventionally performed
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with the method proposed by Barlat et al. (2003) which requires the yield stresses σ 0 , σ 45 and σ 90 and the plastic anisotropic coefficients r 0 , r 45 and r 90 . Moreover, it also requires the biaxial yield stress σ b and the biaxial anisotropy coefficient r b . Using this data, α k ( k = 1 , . . . , 8 ) can be identified using an optimisation method, such as the Newton-Raphson method as suggested by Barlat et al. (2003) .

Similar to Hill'48, assuming σ y as the yield stress in the rolling direction leads to the following condition

1 2 2 α 1 + α 2 3 a + 2(α 3 -α 4 ) 3 a + 4 α 5 -α 6 3 a (1 /a ) = 1 . ( 26 
)
This condition is not usually imposed, to the best of the authors' knowledge, except in [START_REF] Guner | Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld20 0 0-2D yield function[END_REF]. The YLD20 0 0-2d is combined with Swift's law to model the behaviour of an aluminium alloy AA6016 in T4 state [START_REF] Yoon | Plane stress yield function for aluminum alloy sheets -part II: fe formulation and its implementation[END_REF]. The material parameters for this model are presented in Table 2 . The elastic parameters are: E = 70 GPa and ν = 0 . 33 .

Moreover, the normalised yield stress values and the plastic anisotropy coefficients are also presented [START_REF] Yoon | Plane stress yield function for aluminum alloy sheets -part II: fe formulation and its implementation[END_REF].

Cruciform geometries

In this section, three cruciform geometries used in biaxial tension are presented as well as the respective numerical models. Stress and strain fields are analysed for each geometry. In order to simplify the notation, the three geometries used in this work are called Cr1, Cr2 and Cr3. The first geometry selected was proposed by [START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF] to identify the material parameters of Bron and Besson yield criterion [START_REF] Bron | A yield function for anisotropic materials application to aluminum alloys[END_REF]. The results of this study showed that the proposed geometry gives enough information for an accurate identification of a yield criterion. The dimensions and geometry of this specimen are presented in Fig. 2 a. The other two geometries are adaptations of Cr1. The second ). For the third specimen ( Fig. 2 ), the rounding radius at the intersection of the arms has been changed.

The three geometries are numerically tested in the same conditions. Due to the material and geometrical symmetries, the FE models represent one fourth of the respective specimen geome-try (grey areas in Fig. 2 ). Moreover, plane stress conditions and constant thickness of the sheet are assumed. The simulation is displacement-driven, with a displacement of 2 mm applied to each arm of the specimen and symmetry boundary conditions. ABAQUS standard software is used to perform the numerical analysis. The element CPS4 (bilinear shape functions, full integration) is used, as well as a large strain formulation. The mesh density for the three geometries is selected based on a convergence study. High mesh densities have been tested without significant effect on the strain and stress distributions. Therefore, the chosen mesh density has an average size of the elements of 0.5 mm, which results in a total number of elements: 2480, 2089 and 2102 for Cr1, Cr2 and Cr3, Fig. 3. Equivalent plastic strain distribution for the last increment and deformed FE mesh for the three geometries.
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respectively. Indeed, similar mesh densities have been used in different works with cruciform specimens, for example [START_REF] Prates | A new strategy for the simultaneous identification of constitutive laws parameters of metal sheets using a single test[END_REF][START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF][START_REF] Schmaltz | Comparison of different biaxial tests for the inverse identification of sheet steel material parameters[END_REF].

The simulations are run with adaptive time stepping. The model composed by Swift's law and Hill'48 yield criterion is used, the material parameters for this constitutive model are presented in Table 1 . For all the geometries it is assumed that rolling direction coincides with the x -axis represented in Fig. 2 .

The equivalent plastic strain distribution at the last increment and the deformed FE meshes for the three geometries are presented in Fig. 3 . Cr1 ( Fig. 3 a) contains the largest quasihomogeneous area in the centre of the specimen, even though with lower values of equivalent plastic strain, which is a common characteristic of this kind of tests ( Bruschi et Cr2 ( Fig. 3 b) loses completely the homogeneous area in the centre and has the highest concentration of equivalent plastic strain in the diagonal direction near the rounding radius at the intersection of the two arms and in the vicinity of the hole. The highest value is ε p = 0 . 29 , slightly lower than for Cr1. In the case of Cr3 ( Fig. 3 c), a quasi-homogeneous area develops in the centre of the specimen, still with a smaller area than Cr1. The maximum value of equivalent plastic strain is lower in this case with ε p = 0 . 24 . The range of plastic strain obtained in a specimen generally influences the identification results, specifically the identification of the hardening law.

The diversity of strain or stress states is also an important factor for an accurate calibration of a constitutive model, specially when a complex yield criterion has to be calibrated [START_REF] Souto | Design of an indicator to characterize and classify mechanical tests for sheet metals[END_REF]Pottier et al., 2011;[START_REF] Kim | Determination of anisotropic plastic constitutive parameters using the virtual fields method[END_REF]. Therefore, the plot of the strain and stress states in the principal axes (in-plane) for the three geometries is presented in Fig. 4 . ε 1 and ε 2 represent the major and minor strains, and σ 1 and σ 2 the major and minor stresses. It should be noted that in the three cases the whole specimen's surface is considered for these plots and for the remaining analysis. In the three cases, the stress states close to tension are predominant and the first quadrant in the principal stress space ( σ 1 > 0 and σ 2 > 0) is the most populated one. Nevertheless, Cr3 (see Fig. 4 (ef)) shows the widest distribution of strain and stress states. It is possible to see an increase of points in the fourth quadrant in the principal stress space ( σ 1 > 0 and σ 2 < 0) compared with the other two geometries, which gives weight to shear components in the identification procedure. In terms of spatial distribution, the region of equi-biaxial tension is located in the specimen centre, in the case of Cr1 and Cr3, whereas for Cr2, this region is divided in two and can be found near the vicinity of the hole. Along the arms of the specimens Cr1 and Cr2, the stress state evolves from equi-biaxial to tension, whereas for Cr3, stress states between simple shear and tension are also observed. A common feature of the three geometries is the equi-biaxial tension state represented by low values of strain, which is in accordance with the literature. Moreover, Fig. 5 shows the rotation angle ( θ ) between the principal stress base and material frame for Cr3. This measure can be used to highlight the sensitivity of the test to anisotropy. It can be seen that the cruciform specimen exhibits a rather wide distribution of the rotation angle. In particular, in the arms, where the equivalent plastic strain is the highest, values close to 0 • and 90 • are well represented, as well as two areas with values close to 45 • . Such a distribution highlights the richness of the test for the prediction of the parameters related to anisotropy. Note that similar distributions of the rotation angle are obtained for the two other geometries.

The evolution of the force applied to the arms of the cruciform specimen is also presented in Fig. 6 for the three geometries. Due to the anisotropic behaviour of the material, there is a difference on the force applied to the horizontal and vertical arms. For the three geometries, the force applied in the y -direction is higher than in the x -direction.

Results

Hill'48 identification

In this first subsection, the three geometries presented in Section 4 are evaluated. The FE meshes presented in Fig. 3 are used with the VFM for the identification procedure. The model composed by Hill'48 yield criterion and Swift's law is selected to be calibrated. This model contains a total of 6 material parameters that are identified simultaneously using the displacement fields obtained for each cruciform geometry with the material parameters of Table 1 . The accurate calibration of such a model can be hampered by the presence of local minima in the objective function, as reported by [START_REF] Kim | Determination of anisotropic plastic constitutive parameters using the virtual fields method[END_REF] . Hence, to check the presence of local minima, two initial sets of parameters are tested to initiate the optimisation problem. For the sake of simplicity, they are called Sup_set and Inf_set and are presented in Table 3 . The two sets differ on the values of the hardening parameters, whereas the material parameters of Hill'48 yield criterion always start from the isotropic case. The two sets of hardening parameters represent flow curves above and below the reference one. The number of time steps n t considered is the same required by ABAQUS to solve the FE simulation, which corresponds to 17, 19, and 17, for Cr1, Cr2 and Cr3, respectively. The distribution of the loading steps along the evolution of the applied displacement is represented in Fig. 6 by squares and circles. Note that the distribution of time steps is non-uniform. Nevertheless, it was shown previously that the VFM is not sensitive to the distribution of the time steps along the test, in contrast to the FEMU strategy ( Martins et al., 2018b ). Furthermore, the integration of the constitutive model for the reconstruction of the stress field in the VFM is performed using a backward-Euler algorithm, which was also implemented in a UMAT subroutine for ABAQUS standard. The results of the identification process are presented in Table 4 , as well as the absolute error calculated for each parameter. Regardless of the errors achieved, the identification process proved to be robust in finding a global minimum. Indeed, for each geometry, the two initial sets of parameters reach identical solutions.

The hardening parameters ( σ 0 , n and K ) are accurately retrieved regardless of the geometry selected. Despite the fact that the three geometries reach different levels of equivalent plastic strain, there is no influence on the hardening behaviour identification, considering that the absolute error for σ 0 , n and K is always lower than 1%. In certain cases, the range of equivalent plastic strain attained can be important for the identification process ( Jones et al., 2018 ). Fig. 7 presents a comparison between the evolution of the applied force, shown in Fig. 6 , and the computed force calculated on the basis of the internal virtual work and the material parameters identified. In this case, the solutions obtained with the Inf_set are used. The force can be calculated from the internal virtual work, since at the end of the optimisation, W int ≈ W ext ; combining this with Eq. ( 13) , gives W int ≈ W ext ≈ U * • F load ( Rossi et al., 2016 ). Considering the definition of the virtual fields 1 and 2, Eqs. ( 15) and ( 16) , W int ≈ F load . For the three geometries, there is a clear agreement between this load calculation and FE predictions, which means the identified material parameters are able to describe the force in x and y directions.

Nevertheless, the highest absolute errors come from the yield criterion parameters, particularly from the parameter N which is strictly related to the in-plane shear component σ xy . The identifications performed with the data from Cr1 and Cr2 have the largest errors for parameter N , above 25% and 5%, respectively. Since the same identification procedure is used for the three geometries, the only thing that makes the difference, in this case, is the range of strain paths provided by each geometry. Looking back to Fig. 4 , it is possible to see that Cr2 has a wider dispersion of strain and stress states than Cr1. Consequently, the error is reduced from 25% to 5% for the parameter N . Cr3 gives the lowest error for the parameter N , around 1%, which is a reasonable result. This can be explained by the fact that Cr3 has the widest dispersion in the fourth quadrant ( σ 1 > 0 and σ 2 < 0) of the principal stress space (see Fig. 4 f), which gives a higher weight to the shear component and, consequently, improves the identification of the parameter N .

In order to verify the validity of the identified yield criterion parameters presented in Table 4 , the evolution of the normalised yield stress and plastic anisotropy coefficient ( r α ) value as a function of α is assessed in Fig. 8 . The results for each geometry are obtained with the solution corresponding to the parameter set Inf_set . Both the normalised yield stresses and plastic anisotropy coefficients are well described with the identified parameters from Cr3. However, it is possible to observe a slight underestimation of the normalised yield stress for the angles 30 is observed for the other two sets of parameters obtained with Cr1 and Cr2. In the case of the plastic anisotropy coefficient, the parameters obtained with the Cr1 and Cr2 overestimate this coefficient for the angles 30 • , 45 • and 60 • , but tend to give better estimations near the angles 0 • and 90 • . Since the results of Cr3 are the most accurate, the remaining analysis is focused on these results. Regarding the optimisation results, Fig. 9 presents the evolution of the material parameters during the iteration process, the evaluations of the objective function required for the Jacobian matrix calculation are not included. De-spite the optimisation process stopped just after 12 and 16 iterations depending on the initial set of parameters, most of the parameters reach a convergence plateau after 10 iterations. The evolution of the parameter N shown in Fig. 9 f, presents the most oscillating evolution. This fact can be caused by a lower sensitivity of the objective function to the parameter N .

Moreover, the identifications presented in this study were carried out with a standard computer, with an Intel(R) Core(TM) i7-6700 (2.60 GHz) processor and 16.00 GB of RAM memory. Depending on the initial set of parameters, the computational time is 57 s
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Fig. 10. Equivalent plastic strain distribution for the last increment and the deformed FE mesh for Cr3 using the YLD20 0 0-2d yield criterion and the material parameters of Table 2 .

for the Sup_set and 86 s for the Inf_set . The computational time is significantly low, because it is used just one test in the virtual database and regarding that test, the number of time steps and the number of spatial points for the computation of internal work are reasonable.

YLD20 0 0-2d identification

In this section, the combination of the VFM with the cruciform specimen is tested in a model with a more complex yield criterion, the YLD20 0 0-2d. This yield criterion is combined with Swift's hardening law, resulting in a total of 11 parameters to be identified. Once again, the identification of the hardening and yield criterion parameters is performed simultaneously. The reference material parameters, which correspond to an aluminium alloy AA6016 in T4 state [START_REF] Yoon | Plane stress yield function for aluminum alloy sheets -part II: fe formulation and its implementation[END_REF], are presented in Table 2 . Cr3 provided the best results for the Hill'48 yield criterion, hence it is chosen for this analysis. The same FE model of Fig. 3 c is used here. The simulation is displacement-driven, and 1 mm of displacement is applied to each arm of the specimen. This value is reduced in the present case to avoid exceeding the maximum force value. By means of a three-dimensional model, it has been confirmed that after the maximum force value, the normal stress through thick-ness exhibits a sudden increase, which invalidates the plane stress condition and consequently, limits the application of the VFM beyond this point. The number of elements is increased up to 3226 to better describe the strain gradients developed in the arms of the specimen. The methodology adopted in the VFM procedure uses shape functions and the displacement fields extracted from the FE model at the nodes, to compute the strain tensor at the centroid of the element (as explained in Section 2.1 ), which leads to an average strain tensor over the element. Thus, an increase in the number of elements mitigates the loss of information on the gradients present in the elements. In this case, an even finer mesh could be adopted, but no significant improvements in the results are noticed, whereas the computational time increases. Therefore, to have a computationally efficient mesh it is necessary to find a balance between identification results and computational time.

In this case, the integration of the constitutive model in the VFM is performed using a forward-Euler algorithm, which was also implemented in a UMAT subroutine for ABAQUS standard. This kind of integration scheme, despite requiring less computational time, requires a reduced increment size to prevent errors. Therefore, the number of time steps used in this simulation is 214. These are also the number of time steps n t used in the identification process. The equivalent plastic strain distribution for the last increment and the deformed FE mesh are presented in Fig. 10 . It is possible to observe that deformation concentrates on the smallest section of the specimen. The maximum equivalent plastic strain value is around ε p = 0 . 198 . The plot of the principal strains and stresses for the last increment is presented in Fig. 11 . The equivalent plastic strain distributions and the principal strain plots (respectively Figs. 10 and 11 a for the aluminium alloy and Figs. 3 c and 4 e for the mild steel) exhibit significant differences for the two materials. It comes from the very beginning of the test, due to a strong localisation in the arms for the aluminium alloy, that would also appear for the mild steel if a large displacement was applied (above 4 mm). Therefore, the strain paths close to the shear region shown in Fig. 3 c can no longer be seen in Fig. 11 a. This tendency to localize is very strong for the aluminium alloy and starts almost at the beginning of plastic yielding. Indeed, for a maximum plastic strain of 0.01, the principal strain plots for the aluminium alloy and mild steel display some similarities in the shear-tension quadrant, though, for the aluminium alloy, there are already strain states in the tension-plane strain quadrant, due to a tendency to strain localisation. It emphasises the fact that the design of a heterogeneous test for material parameter should be checked against an instability criterion to limit the range of deformation, to avoid excessive localisation. In order to test the stability of geometry Cr3, material parameters for YLD20 0 0-2d for the mild steel have been identified from the plastic anisotropy coefficients and stress ratios given in Table 1 , with a calculated biaxial coefficient [START_REF] Yoon | Plane stress yield function for aluminum alloy sheets -part II: fe formulation and its implementation[END_REF]. A similar equivalent plastic strain distribution as in Fig. 3 c is obtained. Moreover, for the aluminium alloy, two sets of Hill'48 coefficients have been identified, either from the plastic anisotropy coefficients or from the normalised stress ratios given in Table 4 . As for the mild steel, the equivalent plastic strain distribution is close to the one obtained with YLD20 0 0-2d model. These results highlight the fact that the test is more sensitive to the material than to the mechanical model. However, it is interesting to note that for the numerical simulation with Hill'48 model, with parameters identified from the stress ratios, the projection of the yield surface in the ( σ xx , σ yy ) plane (material frame) is such that the plane strain point corresponds to a higher stress than the prediction based on Hill'48 model with parameters identified from the plastic anisotropy coefficients. This emphasises that the tendency to excessive localisation is also dependent on the model. It can be concluded that excessive localisation (or not) depends more significantly on the material than on the constitutive model. As a consequence of the reduction of the applied displacement and strain localisation in the arms, a significant part of the stress points presented in Fig. 11 b remains in the elastic regime or corresponds to a low value of equivalent plastic strain. The evolution of the resultant of the applied force for the two directions is presented in Fig. 12 . The anisotropy effect is visible on the evolution of the force of the two arms. In this case, the force in the y -direction has the lowest value in the plastic regime.

As performed before, to check the presence of local minima in the objective function, two initial sets of parameters are tested which are presented in Table 5 . The two sets differ on the values of the hardening parameters, whereas the α i (i = 1,..,8) parameters always start from 1.0, corresponding to the isotropic case. The elastic parameters are considered to be known a priori .

The condition described by Eq. ( 26) is imposed on YLD200-2d, as a constraint added to the optimisation problem, by means of a penalty function. Therefore, the objective function becomes

f = ϕ( ξ) + δ • ( ξ) , ( 27 
)
where the parameter δ is a penalty coefficient which assumes the value 1 × 10 4 . The function ( ξ) can be written as

( ξ) = 1 2 2 α 1 + α 2 3 a + 2(α 3 -α 4 ) 3 a + 4 α 5 -α 6 3 a (1 /a ) -1 -tol 2 . ( 28 
)
The parameter tol is a tolerance added to the constraint in order to prevent errors in this specific case, since using the reference parameters in Eq. ( 26) the value of 1 is not exactly reached. tol assumes the value of 1 × 10 -4 . It should be mentioned that the absence of this condition leads to multiple solutions and its adoption reveals essential to avoid this problem. This particular behaviour of YLD20 0 0-2d yield criterion was also reported by [START_REF] Guner | Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld20 0 0-2D yield function[END_REF] and solved imposing the same constraint. Nevertheless, Guner et al. (2012) imposed exactly the constraint of Eq. ( 26) which allowed to reduce the number of optimisation variables.

The results obtained with the constrained objective function are presented in Table 6 . The first thing to note is the fact that there is no sensitivity to the initial set of parameters, the two sets Sup_set and Inf_set converge on an identical solution, which suggests that the obtained set represents a global minimum. The results also show a good prediction of the initial yield stress σ 0 , this is due to the constrained imposed. The remaining hardening parameters have higher errors, specially the hardening exponent. A plot of Swift's law for the reference and identified parameters as well as the force predicted based on the internal virtual work are presented in Fig. 13 . The results for the force show a good match between the predicted and the reference (FE analysis). Moreover, despite the errors in the parameters K and n , the reference and the identified Swift's law have a good match. Even when the results are extrapolated to ε p = 0 . 50 1 , there is only a slight overestimation of the flow stress.

For the yield criterion, the highest errors are reached for the parameters α 2 , α 8 and above all α 7 , the remaining have errors lower than 3%. The errors in the parameters α 7 and α 8 follow a similar tendency as the results presented for Hill'48 yield criterion since these parameters are strictly connected to the shear components. This is coherent with the results presented in Fig. 11 b,which show the lack of information on the fourth quadrant ( σ 1 > 0 and σ 2 < 0). This lack of data corresponds to lower weight of the shear stress state in the optimisation. In order to better understand the quality of these identifications, the results of the predicted yield locus with the identified parameters ( Sup_set ) for different values of the ratio σ xy / σ 0 in the normalised plane ( σ xx / σ 0 , σ yy / σ 0 ) are presented in Fig. 14 . The results show an accurate fit of the predicted yield locus for σ xy /σ 0 = 0 . 0 , revealing that the error of 4.7% in the parameter α 2 has a minor influence on the results. Nevertheless, with the increase of σ xy / σ 0 , the identified parameters underestimate the form of the yield locus, a consequence of the overestimation of the parameters α 7 and α 8 . Moreover, the predicted normalised yield stress and the plastic anisotropy 1 Note that the cruciform test only reaches a maximum value of equivalent plastic strain of ε p = 0 . 19 . 

Table 7

Results of the identification process for Swift's law and YLD20 0 0-2d yield criterion using the constitutive parameters for the mild steel. coefficient ( r α ) with the identified parameters for different angles of the tension axis are presented in Fig. 15 . Similarly to the results obtained for Hill'48 yield criterion, the normalised yield stress is well predicted for 0 • and 90 • , whereas it is underestimated for the remaining angles between 0 • and 90 • . Regarding the prediction of the plastic anisotropy coefficient, there is a significant error and the tendency is to overestimate, with the exception of the angle 0 • . These results for the plastic anisotropy coefficient can be explained by the intrinsic nature of the VFM. The method per se searches the best stress field for each step to minimise the difference between internal and external virtual works, whereas the plastic deformation prediction is a result of this process of minimisation.

Finally, the capacity of Cr3 to retrieve a large number of material parameters, for YLD20 0 0-2d criterion, is also investigated for the mild steel. As previously mentioned, YLD20 0 0-2d parameters are calculated from the plastic anisotropy coefficients and normalised yield stress ratios given in Table 1 and are presented in Table 7 as the reference values. It should be emphasised that the equivalent plastic strain distribution and the stress and strain states in principal axes are very close to the ones presented in Figs. 3 c, 4 e and 4 f. Therefore, the same procedure for the identification with the VFM is repeated. Two initial sets of parameters are used. The initial values for the hardening parameters are the ones presented in Table 2 and isotropic values are chosen for the yield criterion parameters. The results of these identifications are presented in Table 7 .

As can be concluded from Table 7 , the relative error in the retrieved material parameters is significantly lower compared to the aluminium alloy, specially for the parameters α 2 , α 7 and, α 8 . The predicted normalised yield stresses and the plastic anisotropy coefficients ( r α ) with the retrieved parameters ( Sup_set ) for different angles of the tension axis are presented in Fig. 16 . The results show a very good agreement with the reference values. These results obtained for 2 materials show that the quality and richness of the information encoded in the heterogeneous strain fields provided by Cr3 leads to a very good prediction of material parameters for YLD20 0 0-2d criterion, as long as the excessive strain localisation is not reached.

Concerning the computation time, it depends slightly on the initial set of parameters, respectively 944 s and 827 s for Sup_set and Inf_set . Comparing to the identification of the model composed by Hill'48 yield criterion, there is an increase of one order of magnitude in the computational time. This can be attributed to the increase in the number of time steps and spatial integration points in the optimisation process.

3.VFM -Single test calibration methodology

Fig. 16. Evolution of (a) the normalised yield stress and (b) plastic anisotropy coefficient according to the tension axis angle from the rolling direction for the parameters identified with Cr3 and mild steel.

Conclusion

The purpose of this study is to explore the cruciform specimen under biaxial tension as a potential test for the simultaneous identification of the parameters that govern an anisotropic yield criterion and a hardening law using the virtual fields method.

In a first step, three cruciform geometries are tested in the identification of the constitutive parameters of Hill'48 yield criterion and Swift's hardening law for a mild steel. The base for this study is the geometry proposed by [START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF] and the other two geometries are inspired by the first one, with simple geometrical adaptations to increase the strain and stress field heterogeneity. The comparison of the three geometries shows that the geometry proposed by [START_REF] Zhang | Calibration of anisotropic yield criterion with conventional tests or biaxial test[END_REF] , despite providing a wide spread of stress states, lacks on information for shear stress states. This affects the identification of the yield criterion parameters, namely the parameter related to the shear component. Therefore, the increase of heterogeneity with special emphasis on the presence of the shear stress states is essential to identify accurately the material parameters of Hill'48 yield criterion. Thus, the other two geometries present better results, especially the third geometry which produces a wider dispersion of stress states and gives more information in the shear region. Moreover, all the identifications performed reached a single solution for the 6 parameters with a single test, independently of the initial set of parameters. Nevertheless, from this comparison, it is concluded that the third geometry provides the best results, with a maximum error of 1% for all the parameters.

The second step addresses the identification of the material parameters of a more complex yield criterion, namely YLD20 0 0-2d yield criterion, simultaneously with Swift's law. The third geometry analysed in the first step is chosen for this analysis. A reference set of constitutive parameters representing an aluminium alloy is selected. In this case, the objective function is modified to include a constraint on the YLD20 0 0-2d criterion. In terms of the information provided by the test, it is observed that the test is sensitive to the material used. The plastic behaviour of the aluminium alloy leads to strain localization in the smallest section of the specimen, which increases the information near plane strain, but reduces the information in the shear region. Nevertheless, the identification results prove to be insensitive to the initial set of parameters. The hardening curve is identified with reasonable accuracy, but the yield criterion parameters, specially the ones directly related to shear, contain high errors. A detailed analysis of the results shows that the error in the yield criterion parameters is not significant for the prediction of the initial yield stresses, but it has a more pronounced effect on the plastic anisotropy coefficient prediction. Moreover, a second identification is performed for the same model but with the parameters of the mild steel used in the first step. In this case, the identification results have a reasonable error (maximum error lower than 2%), which emphasises the dependence on the chosen material.

In summary, the results of this second step show that is possible to identify all the material parameters from a constitutive model with a single test, but the accuracy of the identification is much dependent on the capability of the test to generate strain fields with relevant information. Moreover, it is highlighted that the information given by heterogeneous tests can be dependent on the material selected and this can affect the accuracy of the identification results. Therefore, the design methodologies of new heterogeneous tests should take into account the stability of the test when using different materials.

Finally, the computational cost should be highlighted. The combination of a single cruciform test, the VFM and the Levenberg-Marquardt method presented a reasonable computational time, difficult to achieve with other strategies, especially if compared with a FEMU-based inverse method. Even for a more complex model, such as YLD20 0 0-2d yield criterion, the maximum time required for the simultaneous identification of all parameters was 944 s. 

Calibration of anisotropic plasticity models with an optimized heterogeneous test and the Virtual Fields Method

In this section, a previously designed heterogeneous test is combined with the Virtual Fields Method. The heterogeneous test consists of a uniaxial standard test with an optimized specimen shape called butterfly shape. The sensitivity of the Virtual Fields Method to the number of virtual fields is analysed. The performance of this calibration methodology is analysed with experimental data previously acquired for a mild steel.
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Introduction

The use of numerical simulation tools to support the mechanical design of a manufacturing process or a part has long been employed by the industry. The demands for better accuracy of these tools led to the development of more and more complex constitutive models to mimic the real mechanical behaviour of materials. Nevertheless, before using any of these models, a calibration phase is required, in which the material parameters of the model are adjusted to have a close prediction of the material in hands. The predictive capabilities of constitutive models largely depend on this phase. Moreover, the applicability of the models is also dependent on the experimental effort required for this phase. Frequently, the need for a large and diversified set of experimental tests to calibrate a constitutive model restrains the use of more advanced and accurate constitutive models [1]. The advent of full-field measurement techniques (e.g. Digital Image Correlation, DIC in short [2]) is changing significantly the calibration process of constitutive models. These techniques allow access to dense maps of data (displacements, strains, etc.) from a single mechanical test, which after post-treatment can be used to retrieve the material parameters of a selected constitutive model. Moreover, these techniques enable the use of complex sample geometries to test the mechanical behaviour of materials, which, if correctly designed, produce heterogeneous strain fields with enough information to extract several material parameters from a single test. However, to extract the material parameters from this type of data, it is required to solve an inverse problem that is time-consuming. Therefore, the quest for both efficient inverse methods and appropriate test geometries has been intense in the past few years. Nevertheless, inverse methods and new test geometries for mechanical testing are usually developed and validated separately and consequently, the symbiosis between these two is not fully explored.

In this work, a heterogeneous test specially optimized to calibrate constitutive models [3,4] for sheet metal plasticity is combined with the Virtual Fields method (VFM) [5]. This heterogenous test, called butterfly test, is firstly presented as well as the experimental data previously acquired for a DC04 mild steel [4]. This study focuses on the selection of a set of virtual fields suitable for the above-mentioned test, as well as the influence of the number of virtual fields used. Finally, the performance of the VFM combined with the data acquired from a single butterfly test is assessed. An anisotropic model composed by Hill'48 yield criterion and Swift's hardening law is selected to be calibrated.

The Virtual Fields Method

The virtual fields method is an inverse method which relies on the principle of virtual work and kinematic full-field measurements to retrieve constitutive material parameters. Due to the nature of the principle of virtual work, this method can be applied to any constitutive model. In the case of non-linear models, such as elasto-plastic models, the inverse problem is solved by minimizing the squared difference of the gap between internal and external virtual work, with respect to the sought constitutive parameters and for different time steps. The objective function, in the large strain framework and assuming static equilibrium, can be written as:

ϕ ξ ξ ξ ξ ε ε ( ) = ( ) - ⋅    = = * * ∑ ∑ ∫ ∫ 1 1 1 1 0 0 n n V S i n j n v t v t f , Grad d d Ω Γ P U T U exp :       2 ,
(5.1

)
where P is the first Piola-Kirchhoff stress tensor that is a function of the constitutive parameters ξ and the experimental strain field ε exp . T is the first Piola-Kirchhoff stress vector calculated on the boundary Γ 0 f where surface forces are applied. U * can be any kinematically admissible virtual field and GradU * is the respective gradient calculated with respect to the reference coordinates of the body. dV and dS are the infinitesimal volume and area of the body in the reference configuration Ω 0 . n v and n t are the number of virtual fields selected and time steps considered, respectively. This large strain formulation is a convenient description to write the principle of virtual work, since for the computation of the internal and external work the geometric quantities are defined on the reference configuration. More details on this formulation can be found in [6].

One of the key parts of this method are the virtual fields selected to build the objective function, which can be any continuous and differentiable function. Nevertheless, these functions are usually selected from a set of kinematically admissible functions, i.e. it is required that the virtual fields vanish on the boundaries of prescribed displacement. In this work, the virtual fields are developed manually, which is addressed in the section Manually Defined Virtual Fields. The other key part of this method is the reconstruction of the stress field from the strain field ε exp , which is derived from the measured displacement field. Usually, the displacement field is acquired on the surface of the specimen and, therefore, to reconstruct the stress field, the plane stress conditions are assumed. Moreover, to reconstruct the stress field, it is necessary to adopt a priori a constitutive model to make the link between strains and stresses. In this work, the adopted constitutive model is defined by: (1) linear isotropic elastic behavior (generalized Hooke's law) and; (2) plastic behaviour described by the orthotropic Hill'48 yield criterion and isotropic hardening (Swift's law). The calibration of the plastic part of the model is the focus of the present work, whereas the material parameters that govern elastic part are assumed to be known. Regarding the plastic behaviour, the equivalent Hill'48 yield criterion assumes the following form in plane stress conditions:

σ σ σ σ σ σ 2 2 2 2 2 2 = + + - ( ) + F G H N yy xx xx yy xy , (5.2) 
where σ xx , σ yy and σ xy are the components of the stress tensor with respect to the anisotropic material axes. F, G, H and N are the constitutive parameters that must be calibrated. Nevertheless, the relation G + H = 1 is assumed which leaves only F, G and N to be identified. The isotropic hardening law (Swift's law) has the following form:

σ ε ε ε ε σ y n n K K p p ( ) = + ( ) =       ( ) 0 0 0 1 , / (5.3) 
where σ 0 , K and n are the material parameters. ε p is the equivalent plastic strain. Thus, the adopted model contains 6 material parameters which must be identified according to the studied material.

The methodology presented in this section was implemented in an in-house code using the programming language Fortran. This code contains bilinear shape functions to derive the strain field from the measured displacement field. Due to the non-linearity of the model, the stress reconstruction is performed using an algorithm of the type Backward-Euler return [7]. The minimization of the objective function is conducted by the gradient-based Levenberg-Marquardt optimization method.

The Butterfly Test

The butterfly test was first proposed by Souto et al. [3]. The geometry of the specimen was numerically designed through a shape optimization procedure which aimed a heterogeneous test to calibrate complex constitutive models for sheet metals. The optimization process was governed by an objective function that rated the information provided by the test in terms of range and diversity of strain states and strain level reached. The final geometry was able to produce a spectrum of strain states ranging from simple shear to plane strain. More recently, this final geometry was adapted by Aquino et al. [4] to facilitate the cutting process of the specimen. This adapted specimen was experimentally validated using special grips (Fig. 5.1a), and an attempt to calibrate a complex anisotropic constitutive model was performed through the inverse method FEMU. The specimen was obtained from 0.7 mm thick sheet metal of a DC04 mild steel. The tests were performed on a common tensile machine. The DIC-system employed to carried out the measurements was the ARAMIS 3D 5M system developed by GOM. Figure 5.1b shows the strain distribution in the principal strain space for a displacement of the tool equal to 7.1 mm. As can be seen, the adapted geometry produces a range of strains from simple shear to plane strain. 

3.VFM -Single test calibration methodology

In this work, the same experimental data used by Aquino et al. [4] is adopted. The displacement fields acquired for the specimen with the rolling direction orientated along the traction axis are used. These displacements fields are projected onto a 2D mesh generated by the Abaqus software (Fig. 5.2a) that represents one-fourth of specimen, in order to be processed by the VFM. A total of 398 steps from the load/displacement history of the grip are considered (Fig. 5.2b). Only the load history between the two red dots is considered, because most of the points in the early stages of the test have a low value of strain and were highly affected by noise. Yet, larger load histories were analysed, and the results were not significantly affected.

Manually Defined Virtual Fields

In non-linear cases, the VFM relies on the minimization of Eq. ( 5.1) to retrieve the constitutive parameters. As mentioned before, the virtual fields selected to build the objective function have a fundamental role in the results of the identification. Currently, there are three main approaches to select a suitable set of virtual fields, two of them rely on automatic procedures to select the virtual fields and require a low-level of user's intervention [6,8]. The other approach, called manually defined virtual fields, depends exclusively on the user's intervention, since it is the user that must develop the suitable set according to the boundary conditions of the test. This last strategy has been the most used and its main advantages are the computational cost and the ease of implementation. For these reasons, this is the strategy adopted in the present work.

Generally, the manually defined virtual fields are developed using polynomial and/or periodic functions. These functions are manipulated to generate kinematically admissible virtual fields [5]. In terms of objective function, the components of the virtual field gradient can be seen as weights for the components of the stress tensor. Specially in anisotropic plasticity, all the components of the stress tensor contain information about the yield criterion, hence must be considered within the identification process. Based on these considerations, a set of 8 virtual fields is developed and the influence of the number of virtual fields on the identification results is assessed. The developed virtual fields can be written as: 

U * ( ) * * = = =      1 0 U U Y L x y , (5.4) 
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where W and L are the maximum value of the width and length of the zone of interest (ZOI) of the specimen surface in the reference configuration (see Fig. 5.2a). X and Y are the coordinates in the reference configuration. In case of static equilibrium, the first virtual field is the only one that gives a non-zero value of internal virtual work, which should be balanced with the external virtual work. It also gives maximum weight to the normal component of the stress tensor in the y-direction and neglects the remaining components. The other virtual fields distribute the weight between two components, normal and shear components.

In order to assess the influence of the number of virtual fields in the identification process, virtual experimental data generated by finite element (FE) analysis is used. A two-dimensional FE model representing one-fourth of the butterfly test is built assuming plane stress conditions. A displacement of 1.5 mm is prescribed to a rigid tool, which is modelled assuming tie contact with the irregular boundary on top of the specimen (see Fig. 5.2a). A reference set of material parameters representing a mild steel is adopted and its values are listed in Table 5.1. The test is simulated in Abaqus standard software and the displacement field of a total of 375 load steps is retrieved to build the objective function (Eq. (5.1)).

A total of 8 identifications with an increasing number of virtual fields are performed. The presented virtual fields are added to the objective function in order to enrich the identification process. The results are presented in Fig. 5.3, in which the value of the optimized parameter is normalised by the respective reference value. The results show that for one virtual field (Eq. (5.4)) the errors are the highest, particularly for the yield criterion parameters. Nevertheless, the results are significantly improved when the second virtual field (Eq. (5.5)) is added and tend to stabilize for 5 virtual fields. For a total of 8 virtual fields, the maximum error attained is lower than 1.5% and corresponds to the parameter n.

This confirms that the number of virtual fields plays an important role in the accuracy of the VFM. Moreover, the set of the developed virtual fields is able to retrieve simultaneously the hardening law and yield criterion parameters using a single virtual butterfly test. This also demonstrates that the butterfly test provides a heterogenous strain field that contains enough information to identify the present model.

Identification of Material Parameters: Results and Analysis

In this section, it is assessed the performance of the VFM combined with the experimental database acquired from the butterfly test to calibrate the constitutive model composed by Hill'48 yield criterion and Swift's hardening law. According to the results of the previous section, the 8 virtual fields presented are used to build the objective function. Moreover, since the optimization method is a gradient-based, the sensitivity to the initial set of parameters given to start the optimization process is also assessed. The initial sets are arbitrarily chosen.

The obtained set of parameters is presented in Table 5.2. Regardless of the initial set of parameters, the results converged always for the same solution set shown in Table 5.2. Moreover, Table 5.2 also shows the yield stress values and plastic anisotropic parameters calculated based on the retrieved parameters. The plastic anisotropic coefficient at 0 degrees (rolling direction) presents a value characteristic of mild steel [9], whereas the other two coefficients present values lower than the characteristic ones of this material.

The evolution of the internal virtual work calculated using the parameters of Table 5.2 and the first virtual field (Eq. (5.4)), and the evolution of the external virtual work calculated based on the measured load are presented in Fig. 5.4a. The evolutions of the internal and external virtual works show a good agreement. Nevertheless, the internal virtual work evolution suffers from minor oscillations, which can result from the presence of noise in the full-field measurements.

In order to check the validity of the retrieved parameters, the butterfly test is simulated with a two-dimensional FE model assuming plane stress conditions and using the retrieved parameters. The results of the force evolution for the FE model are compared with the measured load in Fig. 5.4b. Note that the results are plotted for the displacement of point A (see Fig. 5.4b), in order to minimise the impact of a possible sliding under the grips. Figure 5.4b shows a good agreement between the two load curves and a slight overestimation of the displacement at the end of the test. These results confirm that the material behaviour for the rolling direction is well captured by the constitutive model and its retrieved material parameters. 

Conclusions

The present work is a first attempt to link an optimized heterogenous mechanical test with VFM. The aim is to propose a strategy to identify all the parameters of an anisotropic constitutive model using a single test. A set of manually defined virtual fields to link the VFM and the butterfly test is proposed. This set is analysed using virtual experimental data, generated according to the adopted constitutive model. The analysis shows the dependence of the VFM on the number of virtual fields used to build the objective function. In this specific case, for a number superior to 5 virtual fields, there is a reasonable error (maximum error lower than 1.5%) in the identification results. Finally, the constitutive model composed by Hill'48 yield criterion and Swift's hardening law is calibrated using experimental data from a single test on a mild steel. The results revealed insensitivity of the VFM to the initial set of parameters used to start the identification process. Regarding the retrieved parameters, its performance is assessed through the predicted anisotropic plastic coefficients and FE analysis of the test. The predicted anisotropic plastic coefficient for the rolling direction is characteristic of mild steel, but the remaining coefficients suggest that the model was unable to predict them. The FE analysis of the test with the retrieved material parameters confirm this conclusion. The load curve predicted by the FE model shows a good agreement with the experimentally measured load, meaning that the overall behaviour of the material for the rolling direction was well captured.

Nevertheless, a thorough study on the influence of the DIC parameters on the acquired data from the butterfly test should be performed. 

Final Remarks

The present chapter is mainly dedicated to the Virtual Fields Method. It is shown that this method offers more than a reduced computational cost when compared to the Finite Element Model Updating. Its combination with two complex heterogeneous tests is analysed . On the overall, the Virtual Fields Method presented a robust response in the simultaneously calibration of the complete set of parameters of an anisotropic plasticity model. Moreover, as it does not require the exact knowledge of the boundary conditions eases the process of exploring a heterogeneous test. On the other hand, the selection of a suitable set of virtual fields is a downside. The design of a set of virtual fields to link the method with the butterfly test revealed that the number of virtual fields matters. An aspect that must be explored in the future. Apart form that, the calibration of complex anisotropic plasticity models revealed that constitutive models need to be prepared with constraints to reduce the non-uniqueness problem. This can also improve the convergence of the methods. Regarding the heterogeneous tests, the biaxial tension test in a cruciform specimen provides a large range of strain states and different levels of strain. Still, the geometry of a cruciform specimen can be enhanced to provide more information. The results from the optimised butterfly test show a good description of the material behaviour for the loading direction. Nevertheless, a test in a single loading direction seems insufficient to accurately capture the plastic anisotropy coefficients.

J.M.P. Martins .
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Chapter 4

Contributions to the calibration of thermo-mechanical constitutive models

The calibration of thermo-mechanical constitutive models is a demanding challenge that requires long experimental campaigns to create a database for a broad range of temperatures and strain rates. Moreover, the complexity of this process increases with the complexity of the constitutive model. Accordingly, the development of innovative calibration methodologies aiming at reducing the experimental campaigns is fundamental.

Calibration of Johnson-Cook Model Using Heterogeneous Thermo-Mechanical Tests

This section presents a calibration methodology based on the Finite Element Model Updating and a heterogeneous thermo-mechanical test performed on a Gleeble machine. The methodology is tested using virtually generated data.

Introduction

The mechanical behaviour of metals is typically sensitive to strain, strain rate and temperature. In recent years, temperature and strain rate effects have gained more impact due to the increasing use of heat-assisted manufacturing processes (e.g. hot and warm forming [1,2]) and due to new generations of high strength steels, which, due to the heat generated by plastic deformation, reach higher temperatures than traditional steels during the deformation process [3,4]. Therefore, an accurate prediction of the mechanical behaviour of metals under a wide range of temperatures and strain rates is essential for virtual manufacturing processes, crashworthiness tests, etc. Phenomenological thermo-elasto-viscoplastic constitutive models are usually applied to predict such behaviour. This type of models can be strongly non-linear and contains a large number of material parameters which often hamper their applicability.

According to classical calibration procedures, the identification of the material parameters of this type of models requires a long experimental campaign to create a database for a broad range of temperatures and strain rates. These classical procedures rely on uniaxial tests, whose strain and stress fields are analysed under the assumption of homogeneous conditions. As a consequence, a large number of tests is required to cover a wide range of temperatures and strain rates [5]. Moreover, the assumption of homogeneous strain/stress is very limiting in terms of maximum strain value and does not mimic the complex heterogeneous strain/stress fields which occur in real manufacturing processes.

Therefore, the solid mechanics' community has done a remarkable effort to reduce these long experimental campaigns using full-field measurement techniques, heterogeneous tests Available online at www.sciencedirect.com ScienceDirect
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According to classical calibration procedures, the identification of the material parameters of this type of models requires a long experimental campaign to create a database for a broad range of temperatures and strain rates. These classical procedures rely on uniaxial tests, whose strain and stress fields are analysed under the assumption of homogeneous conditions. As a consequence, a large number of tests is required to cover a wide range of temperatures and strain rates [5]. Moreover, the assumption of homogeneous strain/stress is very limiting in terms of maximum strain value and does not mimic the complex heterogeneous strain/stress fields which occur in real manufacturing processes.

Therefore, the solid mechanics' community has done a remarkable effort to reduce these long experimental campaigns using full-field measurement techniques, heterogeneous tests and inverse methods. The main advantage of full-field measurement methods, such as Digital Image Correlation (DIC), is that complete deformation maps can be recorded from the surface of a specimen during a test. In the case of heterogeneous tests, a complete deformation map corresponds to a set of spatial points under different strain states, strain levels and strain rates. This information can also be enriched with temperature measurements, through thermographic cameras, for example. This data can be utilised as input for inverse methods and thus, used to retrieve the unknown material parameters. Currently, the Finite Element Model Updating (FEMU) method and the Virtual Fields Method (VFM) are the most used inverse methods [6,7]. For example, Kajberg and Wikman [8] used a FEMU-based approach to calibrate the strain rate term of the Johnson-Cook model for high strain rates. Notta-cuvier et al. [9] proposed a methodology based on VFM and two tests to calibrate the same model. The calibration process was divided into two phases: first, the strain hardening term is calibrated resorting to a quasistatic test and then, the strain rate term is calibrated resorting to a dynamic test. Valeri et al. [10] have also proposed a methodology based on VFM to calibrate the temperature and strain rate terms of the Johnson-Cook model, using the data of several tensile tests performed at different temperatures. More recently, Jones et al. [11] analysed the simultaneous calibration of all parameters in a viscoplastic model using VFM. The nonuniqueness of the solution led the authors to analyse different strategies to tackle this issue. In this work, a FEMU-based methodology is introduced to calibrate simultaneously the three terms of the Johnson-Cook model regarding strain hardening, strain rate and temperature. This methodology relies on heterogeneous thermo-mechanical tests performed for three different average strain rates. Fullfield strain measurements and load signals are gathered in a database and combined with an accurate Finite Element (FE) model of the test. It is expected that this combination gathers sufficient information for the calibration of a thermo-elastoviscoplastic model. Therefore, the sensitivity of the proposed methodology to the parameters of the Johnson-Cook model is assessed. This analysis is performed with virtual experiments that mimic the real ones. The real experiments were performed on Gleeble 3500 tensile testing machine and are detailed in [12].

Heterogeneous thermo-mechanical test: virtual experimental database

The experimental database is a key aspect of any constitutive model calibration. Gather all the essential information in the experimental database usually implies a lengthy experimental campaign. Nevertheless, full-field measurements and heterogeneous tests offer a different solution, eventually less lengthy. Based on this idea, an experimental database which relies on heterogeneous thermomechanical tests is proposed. These tests are performed on a Gleeble equipment and consist of tensile tests with a heterogeneous temperature field, which are performed at different average strain-rates. The Gleeble equipment contains a direct resistance heating system that allows to control the temperature in the centre of the specimen and hold it constant during the test, whereas the remaining part of the specimen undergoes a temperature gradient due to the water cooling system of the machine's grips. The asset of this procedure is the temperature gradient that triggers a heterogeneous deformation process and consequently, provides information on the mechanical behaviour of the material for different temperatures and strain rates.

In order to analyse the information encoded in the strain fields and load signals from these tests, it is used a virtual database generated by a FE model of the tests. The same specimen's geometry, represented in Fig. 1, is used in all the tests. Thus, the FE model represents the zone of interest (ZOI) in the tensile specimen and has the geometry depicted in Fig. 1. The thickness of the specimen is 1.75 mm. Abaqus standard [13] is adopted to perform the FE analysis. An eight-node solid element with reduced integration is adopted to mesh the ZOI presented in Fig. 1. The final mesh is composed of a total of 1680 elements. The tests are performed for three different loading conditions in terms of time, which consist of different average strain rates; 10 -4 , 10 -3 and 10 -2 s -1 . The boundary conditions are the displacements imposed on the boundaries 30 mm x =-and 30 mm x = , based on the displacements measured with DIC during real tests for a DP980 steel sheet.

Generally, the temperature field generated during a test in the Gleeble equipment has a characteristic shape, which is symmetrical about the centre of the specimen and assumes a parabolic shape. An example of an experimental measurement of such a temperature field is presented in Fig. 2. The temperature value along a line on the specimen's surface (blue line in Fig. 2 a)) is presented in Fig. 2 b), as well as the measurements of three thermocouples, which confirm an approximate symmetrical and parabolic shape of the temperature profile along the length of the specimen. Moreover, it was confirmed that the temperature field is approximately constant during the test. Therefore, the measured temperature field is imposed in the FE model as an input variable and is considered constant for each node of the mesh along the deformation process. The temperature range investigated is then approximately [360°C,500°C].

Regarding the constitutive model, the widely used Johnson-Cook model is adopted. This model has a multiplicative formulation which decomposes the flow stress evolution in three terms regarding strain hardening, temperature and strain rate. It can be written in the following form: 
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where A, B and n are the material parameters which control the strain hardening effect, m, tr T and m T the temperature sensitivity and C and 0  the strain rate sensitivity. m T is usually defined as the melting temperature and tr T as the transition temperature at or below which there is no temperature effect. 0  is a threshold for strain-rate dependence, at or below which there is no strain-rate effect. In order to create the virtual experimental database, a reference set of material parameters is adopted. This reference set is characteristic of DP980 steel and is shown in Table 1 [14]. Anisotropic effects are not considered, and von Mises yield criterion is adopted. Moreover, isotropic elastic behaviour is defined. The calibration of the elastic constants is not part of this work and these are assumed to be known a priori, namely Young's modulus of 210 GPa and Poisson's ratio of 0.3. The virtual load signals for the three tests performed at different average strain rates (10 -4 , 10 -3 and 10 -2 s -1 ) are shown in Fig. 3. Note that 29 time instants are selected to build the virtual database and their position is illustrated in Fig. 3 by the dots. The distribution of points gives a low weight to the beginning of the test. Nevertheless, it will be shown that, due to the heterogeneity of the test, even with such distribution of time instants, low values of strain and strain rate are also present in the database. Moreover, as can be seen from Fig. 3, the load signal is sensitive to the strain rate level. The increase in strain rate leads to an increase in the load value. In Fig. 4, the equivalent plastic strain distribution is presented for the last instant of each test, which correspond to 958 s, 107s and 11.75 s. The increase in average strain rate leads to lower values of equivalent plastic strain and delays the strain localization. In Fig. 5, a map of the occurrences in terms of equivalent plastic strain rate versus equivalent plastic strain for the complete deformation process shows the diversity of information available in these virtual tests. Fig. 5 highlights the fact that, independent of the average strain rate of each test, a significant range of equivalent plastic strain rate values are covered in each test, which is a consequence of the heterogeneity of the tests. The virtual database is built with the complete strain fields for the ZOI (in-plane components of the strain tensor , and xx yy xy    ) and load signals of 29 instants of three average strain-rates. It should be noted that only the in-plane strains at the top surface of the specimen are considered since only the strains at the surface of the specimen can be measured in a real experiment. Moreover, the strain fields are extracted from the centroid of each element.

FEMU-based approach and optimisation method

The Finite Element Model Updating (FEMU) relies on the simple idea of adjusting the unknown material parameters of a Finite Element (FE) model to minimise the difference between experimental and numerical results. Due to this straightforward idea, combined with the ease of implementation and flexibility in terms of usable data, this method has widespread adoption in many different applications.

The objective function that represents the idea behind FEMU can be built with different data, namely strain/displacements fields or load signals, or even a combination of both types of data. This flexibility in terms of data has contributed to increase the number of formulations presented in the literature. Nevertheless, it should be highlighted that the most recent ones have in common taking advantage of full-field measurements. In the present work, the adopted objective function relies on this common point and can be written as 
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χ is the vector of unknown material parameters and F is the load signal. The superscripts "num" and "exp" define the numerical and experimental data, respectively. tests n , ti n and p n are the number of tests, time instants and number of inplane measurement points, respectively. exp max F is the maximum load value for each test and exp max  is the maximum strain value of all in-plane components for each test.

The Levenberg-Marquardt optimisation method is selected to minimise the objective function (Eq. 2). This method is a gradient-based method which resorts to the information of the approximated Hessian and Jacobian matrixes. The Levenberg-Marquardt method has the following form
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is the increment of the parameter vector   H χ  is the Hessian matrix and   r χ  is the residuals vector computed for the current solution of the material parameters set χ  .  is a damping parameter used to stabilise the method in the vicinity of a minimum. Note that the residuals vector    r χ contains a number of lines equal to the number of residuals of each strain component, for each spatial point and time instant of each test, plus the number of load residuals for each time instant of each test. The Hessian matrix is approximated by

      T         H χ J χ J χ (4) 
where   J χ  is the Jacobian matrix, that is computed by forward finite-differences [15]. The new set of material parameters for the iteration 1

  is obtained through the updating of the previous one
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The optimisation process stops when one of the following convergence criteria is attained: the objective function value is below 12 1 10

tol   
or the parameter set reaches a stagnation plateau 4.Contributions to the calibration of thermo-mechanical constitutive models
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Results

Fig. 5. Equivalent plastic strain rate versus equivalent plastic strain for the complete deformation process of the heterogeneous tests. Three different average strain rates: a) 10 -4 s -1 , b) 10 -3 s -1 and c) 10 -2 s -1 .

In this section, the proposed methodology is analysed. The virtual database described in section 2 is combined with the objective function of section 3, to calibrate the Johnson-Cook model (Eq. 2). This analysis is structured into two subsections. In the first subsection, the Johnson-Cook model is calibrated using the virtual database without noise. The reference parameter set of Table 1, which represents the minimum of the objective function, is expected to be retrieved in this phase.

In the second subsection, the virtual database is polluted with normally distributed random noise, which includes both the strain fields and the load signals. In this case, the robustness of the present methodology is assessed.

Regarding the material parameters to be calibrated, only the parameters A, B, n, m and C are defined as optimisation variables, whereas the melting temperature m T , the transition temperature tr T and the parameter 0  are considered known variables and kept fixed during the optimisation process. These three parameters are kept fixed because the first two have specific physical meaning and the third one may increase the problem of non-uniqueness of the solution [9]. In both subsections, the calibration results are presented for two initial sets of parameters. The two sets are named Inf_set and Sup_set and correspond to the reference parameters with 50% of their value subtracted or added, respectively. Fig. 6. Results for the identification with a virtual database without noise: a) evolution of the objective function for two different initial sets, b) and c) evolution of the material parameters for the Inf_set and Sup_set initial sets, respectively.

Virtual database without noise

The results for the virtual database without noise are presented in Fig. 6. The evolution of the objective function during the optimisation process is presented in Fig. 6 3.97 10   , respectively. The final values are different which reveals the sensitivity to the initial parameter set. Moreover, none of the solutions is exactly the reference set of parameters, which indicates the presence of local minima or low sensitivity of the parameters in the vicinity of the minimum. Figs. 6 b) andc) show the evolution of the material parameters from the initial set to the final solution. Note that the actual value is normalized by the reference one. In both cases, the parameter A is the last one to converge to a stagnation value and retains the highest absolute error value: 5% and 42%, depending on the initial set. Moreover, in both cases, the parameters m and C reach the reference solution with an error below 1.5%. In both cases, the parameter n shows a comparatively stable convergence behaviour, whilst the parameter B presents some oscillations for the initial iterations.

According to these results, the identification of parameters n, m and C seems easier when compared to the other parameters, which means that the proposed database contains enough information for these three parameters. Nevertheless, the parameter A appears to be the most difficult to identify. This parameter represents the initial yield stress value, which seems to have a low impact on the objective function value in the vicinity of the minimum. Moreover, the identification process of the parameter B reveals also an unstable convergence behaviour, which means low sensitivity of the objective function to this parameter.

The approximate Hessian matrix (Eq. 4) can also be used to extract more information on the objective function's sensitivity to the material parameters. This matrix is symmetrical and represents the second order-partial derivative of the objective function with respect to the material parameters in the following order
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. Below, it is presented the Hessian matrix (Eq. 4) computed for the reference set (Table 1 
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The diagonal terms of this matrix have differences of several orders of magnitude. The highest values, This means that the sensitivity of the last two parameters in the vicinity of the reference values is much lower than for the other three parameters. According to this, more difficulties are expected in the identification of A and B. Moreover, the condition number of the Hessian matrix is 10 1.97 10  , which means the problem is ill-conditioned and sensitive to small perturbations in the input data. The results for the virtual database polluted with noise are presented in Fig. 7. The evolution of the objective function value is presented in Fig. 7 a), which at the end of the optimisation process, has approximately the same value, around , for both initial sets. Due to the presence of noise, this value is much higher than the values obtained in the previous subsection. Fig. 7 b) and c) show the evolution of the material parameters for the Inf_set and Sup_set, respectively. Once again, the parameter A has the highest error, around 77% and 100% for the Inf_set and Sup_set, respectively. C and m have the lowest errors. In addition, although the two solutions have the same final value of the objective function, parameters A, B and n have different final values for the two solutions, which suggests the presence of local minima.

Virtual database with noise

Based on these analyses, one can conclude that the results of this methodology are sensitive to noise, especially because there is no unique solution. The non-uniqueness of the solution is a major obstacle because it raises the question of what would Temperature and strain-rate have a significant influence on the flow stress of sheet metals. A precise description of their role is essential for numerical simulation of manufacturing processes, e.g. in the simulation of hot and warm forming processes [1,2]. Furthermore, in standard manufacturing processes, new generations of high strength steels reach high temperatures due to the heat generated by plastic deformation, 5 which turns the effects of temperature and strain-rate imperative to be known [3,4]. Phenomenological thermo-elasto-viscoplastic constitutive models are usually applied to predict the thermomechanical behaviour of metals. Different formulations can be assumed depending many aspects, such as material behaviour, the range of strain, strain-rate and temperature, the computational cost, etc. A comprehensive review of these models can be found at [4]. Typically, phenomenological thermo-elasto-viscoplastic 10 models are strongly non-linear and contain many material parameters that need to be calibrated. Classical calibration procedures at low to medium strain-rates usually rely on tensile tests performed at different strain-rates and temperatures [5,6]. Other less used tests are strain-rate jump tests [4,7] or torsion tests [8]. * Corresponding author Email addresses: joao.martins52@ua.pt (J.M.P. Martins), sandrine.thuillier@univ-ubs.fr (S. Thuillier), gilac@ua.pt (A. Andrade-Campos) November 9, 2020 4.Contributions to the calibration of thermo-mechanical constitutive models In classical procedures, the data collected from tensile tests are analysed under the assumption of homogeneous strain in the gage length, leading to a single stress-strain curve output from each test, corresponding to a given temperature and strain-rate. To cover a certain number of temperatures and strain-rates, at least an equal number of tests is required, which leads to long experimental campaigns. Therefore, there has been a remarkable effort to reduce the number of tests by replacing classic procedures with a combination of full-field measurement techniques, heterogeneous tests and inverse methods. Full-field measurement techniques, such as Digital Image Correlation (DIC), allow to record complete displacement/strain maps at the surface of a specimen during a test, which combined with heterogeneous tests, can provide a set of spatial points under different strain states, strain levels and strain rates. This information can also be enriched with temperature measurements from the same test, obtained with a thermographic camera, for example. Thus, the experimental database that used to be obtained through long experimental campaigns can now be collected from a few heterogeneous tests. Nevertheless, the complexity of the loading conditions and the heterogeneity implies a new way of analysing this data. The calibration of a constitutive model using data from a heterogeneous test requires inverse methods [9,10]. Currently, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM) are the most used inverse methods. In FEMU, a finite element (FE) model of the heterogeneous test configuration is built up, and through an iterative procedure that consists in minimizing the difference between experimental and numerical fields, the selected constitutive model is calibrated. Although this method is quite popular, it has a major drawback. The large number of FE analyses required leads to a high computational cost. Alternatively, the VFM provides a more efficient solution in terms of computational cost [11,12,13]. This inverse method, derived from the principle of virtual works, drives the calibration process through the balance between internal and external work, quantities computed from the measured displacements field and measured load [11]. Since the pioneering work of Grédiac [14] to characterize material properties of composites materials, the VFM has been explored and consequently adapted to calibrate different types of constitutive models. Nowadays, it is an appealing solution for calibrating non-linear constitutive models, such as plasticity [15,16,17] and viscoplasticy [18,19,20] constitutive models. In the framework of low strain-rate values, the work of Gramma et al. [18] aims at the simultaneous calibration of all the parameters of the Anand model with a single test. The authors analyse the sensitivity of the procedure to different loading ratios and rates in order to design a test with the necessary information. Jones et al. [19] investigated the calibration of the Bammann-Chiesa-Johnson viscoplastic model using a heterogeneous test with a specimen geometry similar to a capital letter "D". The simultaneous calibration of the full set of parameters raise the problem of non-uniqueness of the solution. Nevertheless, the authors have reached valid solutions, which were considered functionally equivalent for the loading conditions present in the test. Enrichment of the database with more tests was the solution pointed out by the authors to mitigate the non-uniqueness problem. Valeri et al. [20] proposed a methodology based on the VFM to calibrate the thermo-viscoplastic Johnson-Cook model. In the proposed methodology, the strain-hardening term is calibrated following a classical procedure and then only the temperature and strain-rate terms are calibrated using the VFM.

The temperature, the averaged strain and strain-rate obtained from uniaxial tests performed at uniform temperatures composed the experimental database. The authors reached accurate descriptions of the flow stress from room temperature up to 900 °C. In the present work, it is intended to step forward in the calibration of thermo-mechanical constitutive models. Therefore, the VFM is combined with a heterogeneous thermo-mechanical test. The heterogeneous thermo-mechanical test is performed on a Gleeble thermo-mechanical simulator. At this early stage, the objective lies more on the proof of concept regarding the combination of the VFM and this test and less on reaching bulletproof identifications. As will be shown, more experimental data and a more complex constitutive model would be required. Section 2 presents the heterogeneous thermo-mechanical test. The test was performed for three different average strain-rates, which are analysed in terms of strain, strain-rate and temperature fields. The selected constitutive model is presented in section 3. The VFM and the selected virtual fields, along with the calibration procedure are presented in Section 4. In Section 5, the combination of VFM and the three tests is analysed. This last section is divided into two parts. In the first part, the model is calibrated using a single test and in the second part, the model is calibrated using the three tests. In section 6, concluding remarks close the article. 

Heterogeneous thermo-mechanical test

To accurately calibrate a thermo-viscoplasticity model for a given material, information on the mechanical behaviour of the material for different temperatures and strain-rates is required. This would imply a laborious experimental campaign if classical methods were used. Fortunately, the combination of full-field measurements and heterogeneous tests offers a more efficient alternative. In this case, the heterogeneous test must include an overlap of heterogeneous temperature and strain fields. With this idea in mind, a heterogeneous thermo-mechanical test performed on Gleeble 3500 thermo-mechanical simulator is explored in this work. It is expected that this test can provide information on the mechanical behaviour of the material for a considerable range of temperatures and strain-rates.

Gleeble machine

The Gleeble 3500 thermo-mechanical simulator combines a hydraulic servo system able to impose tension or compression forces and a direct resistance heating system. The direct resistance heating system is controlled using a thermocouple signal that provides accurate temperature control in a region of the specimen.

Usually, the temperature is imposed at the centre of the specimen and held constant during the mechanical test, whereas a temperature gradient is developed from the centre to the extremities of the specimen due to the water-cooled jaws carriers [21]. This gradient, frequently deemed as adverse, is an asset for the present work. It triggers a heterogeneous deformation process that generates information on the mechanical behaviour of the material for different temperatures and strain rates.

Material and specimen geometry

A Dual-phase steel DP980 was considered for this study [22]. Tensile specimens from a rolled sheet with thickness 1.75 mm were used, the geometry of the specimen is depicted in Fig. 1. The longitudinal direction (x-direction in Fig. 1) of the specimens was aligned with the rolling direction of the sheet.

Experimental procedure and data acquisition

The specimens were loaded under constant displacement rate. Three displacement rates evenly distributed in the logarithmic scale were selected to conduct the tensile test: 0.006, 0.06 and 0.6 mm s -1 . According to the length of the region with constant cross-section, these displacement rates correspond respectively to nominal strain-rates of 1.0 • 10 -4 , 1.0 • 10 -3 and 1.0 • 10 -2 s -1 . For the thermal field, 500 °C was the chosen temperature to impose at the centre of the specimens. Note that the displacement is imposed after a heating phase which ensures that the reference value of 500 °C has been reached in the specimen centre. The local kinematic measurements were acquired through a DIC system GOM-Aramis. Regarding the temperature field, monitored through three thermocouples (TC1, TC2 and TC3), which were welded in the specimens as depicted in Fig. 1, were used to monitor the temperature, as well as a FLIR thermal camera X6580SC. This last equipment gives the spatial distribution of the temperature through the complete surface of the specimens. To help the post-treatment of temperature field, the thermocouples (see Fig. 1) were used as references for the coordinate system as well as to determine the emissivity of the surface of the specimens.

Experimental results

Fig. 2 presents the load vs displacement curves up to rupture for the three displacement rates. These tests are named V1, V2 and V3, which correspond to 0.006, 0.06 and 0.6 mm s -1 , respectively. The material shows a significant sensitivity to strain-rate. The maximum load value indicated by the black circles corresponds to 22.3, 27.0 and 30.5 kN, for the tests V1, V2 and V3, respectively. The displacement (u x ) was calculated as the difference of the average displacement value at the boundaries x= -30 mm and x= 30 mm of the region of interest (ROI) (see Fig. 1). The displacement values at maximum load are 1.56, 1.48 and 2.0 mm. Note that, although only a single curve is presented for each displacement rate, the tests were repeated three times and reproducibility was observed.

The temperature measurements for the three thermocouples (TC1, TC2 and TC3) for each test are shown in Fig. 3. Throughout the duration of each test, the temperature remains nearly the same. This is a result of Gleeble's very precise control system, which preserves the temperature at the TC1 thermocouple, and due to the thermal conductivity of the material, the other two thermocouples maintain approximately the same temperature. The spatial distribution of the temperature varies mainly along the longitudinal direction of the specimen (x-direction), while the high conductivity of the steel leads to meaningless differences along the transversal direction (y-direction), less than 2 %. Therefore, these differences will be neglected in the analysis of the tests, as well as in the calibration procedure. Fig. 4 shows the spatial distribution of temperature for the beginning of each test for a line passing through mid-plane of the specimens (y = 0 mm), as shown in Fig. 5. The red squares represent the thermocouples measurements, and the colour dots represent the thermal camera measurements. For the positions of the thermocouples, the measurements of the thermal camera show abrupt temperature drops. This is caused by the different emissivity of the thermocouples when compared with the surface of the specimens. For the three cases, the temperature field reaches its maximum value at the centre of the specimens. From the centre to the boundaries of the specimens, it is observed the decrease of temperature that leads to values around 360 °C for the boundaries of the ROI (x = -30 and x = 30 mm). This temperature distribution can be described by a 2 nd order polynomial, as can be seen in Fig. 4. The squared values of the correlation coefficient (R 2 ) are around 1, which shows a very good agreement of the 2 nd order polynomial.

During the tensile tests, the temperature gradient undergone by each specimen triggers a heterogeneous deformation process. The evolution of this process ends with strain localization at the centre of the specimen, which can be observed for the test V2 in Fig. 6. These three steps presented in this figure are beyond the maximum load value for the test V2, and it can be observed that the strain is localized in a small region [23,24]. Using such an extension of data can lead to inaccuracies in the computation of the stress field since the strain field computation can be degraded. Additionally, the plane stress condition, which is required for the stress computation in VFM, can cause deviations in the computation. Therefore, for the VFM calibration, it is only considered the data up to the maximum load value, which is analysed in the following. The evolution of the major strain along the mid-plane y = 0 mm is presented in Fig. 7 a1, b1 and c1 in the ROI, up to the maximum load. The spatial distribution shows a maximum strain value at the centre of the specimen and a decreasing trend from the centre to the ends of the ROI. The maximum values of major strains are 0.093, 0.086 and 0.109 for the tests V1, V2 and V3, respectively. Moreover, it seems that after a displacement of 0.8 mm the evolution of the strains field occurs only between x = -15 and x = 15 mm, which reduces the information for the thermo-viscoplastic regime in terms of strain and temperature. In terms of temperature, the range is between 460 to 500 °C. Moreover, in Fig. 7 a2, b2 and c2, it is shown the major vs minor strain distribution for the three tests at the instant of maximum load value, the strain state is mainly a uniaxial tensile state. The strain-rate field can be considered as another source of information for the calibration of a constitutive model that takes into account the strain-rate effect. Fig. 8 shows the evolution of the strain-rate field ( εxx ) up to the maximum load value for the same mid-plane. It was computed from the logarithmic strain in the x-direction through forward finite-differences. The maximum values of strain-rate are 4.13 • 10 -4 , 3.69 • 10 -3 and 4.16 • 10 -2 s -1 . These are in the same order of magnitude as the nominal strain-rate of each test. The heterogeneity of the tests provides a wide dispersion of points, with a spatial distribution similar to the strain field. A stress evaluation for the central region of the specimen is presented in Fig. 9 4.Contributions to the calibration of thermo-mechanical constitutive models stress state with homogeneous deformation for the central section of the specimens in between x = -2 and x = 2 mm. Based on that, the stress Cauchy (σ) was computed from the measured load and considering the actual cross-sectional area of the specimen. The actual cross-sectional area was computed assuming volume conservation. ε xx is the average logarithmic strain tensor component for that central region. It can be assumed that these curves correspond to the temperature of 500 °C. It is also plotted in the same figure the stress curve for the same material at room temperature for a strain-rate of 1.0 • 10 -3 s -1 . The room temperature curve was obtained from a homogeneous tensile test in the same material [22]. From the beginning of the deformation process, the three curves at 500 °C show a positive sensitivity to strain-rate, which is also observed in the load curves, Fig. 2. The negative sensitivity to temperature is also clear when these curves are compared with the one at room temperature.

In conclusion, the three tests conducted for a DP980 compose the database to be used with VFM. It is observed that the three tests provide a collection of points with different temperatures ranging from 360 °C to approximately 500 °C for the ROI. The strain and strain-rate fields present different magnitudes with localization of the highest values at the centre of the specimen. The material behaviour has a positive sensitivity to strain-rate and a negative sensitivity to temperature. It must be mentioned that the effect of temperature on the kinematic measurements is not explored in this work, but its impact can be important and should be analysed in the future.

Constitutive model

The purpose of this work is to evaluate the combination of an experimental database composed by heterogenous thermo-mechanical tests and the VFM to fully calibrate a thermo-elasto-viscoplastic constitutive model. For this purpose, a modified version of the phenomenological Johnson-Cook (J-C) model is selected. The original version of J-C model [8] is widely adopted to represent the response of metals under a wide range of temperatures and strain-rates. However, the original formulation of the J-C model lacks flexibility and several modifications have been proposed [25]. Instead of the original power term to describe the strain-hardening behaviour, many authors have proposed a combined Swift-Voce term [4,3]. Therefore, the modified version of the J-C model selected for this work assumes the following form

σ y = H (ε p ) • G (T ) • F εp , (1) 
where,

H (ε p ) = α • [K • (ε 0 + εp ) n ] + (1 -α) • [σ 0 + (σ sat -σ 0 ) • (1 -exp (-C y • εp ))] , (2) 
G (T ) = 1 - T -T tr T m -T tr m , (3) 
and

F εp = 1 + C ln εp ε0 . (4) 
According to this modified version of the J-C model, the flow stress (σ y ) is composed by three functions, H (ε p ), G (T ) and F εp , which represent the strain-hardening, temperature and strain-rate effects. These three terms are governed by the internal variables: equivalent plastic strain εp , temperature T and equivalent plastic strain-rate εp . The strain-hardening term contains seven material parameters, α, K, ε 0 , n, σ 0 , σ sat and C y . Nevertheless, ε 0 is assumed as a function of σ 0 , the initial yield stress, and can be computed from ε 0 = (σ 0 /K) 1/n . The term G (T ) contains three parameters T tr , T m and m, and it is only active when the actual temperature T is above the transition temperature T tr . The term F εp contains two parameters C and ε0 . To have this term active, εp must be above ε0 .

A common approach to calibrate the J-C model is to divide the process into three steps, each corresponding to the individual calibration of one term. In this work, the simultaneous calibration of the three terms is analysed. Nevertheless, some parameters are assumed to be known a priori. T tr is fixed to 25 and T m to 1000 • C which is common value for DP980 [3]. Moreover, the assumed value for T tr was selected with the 10 78 4.Contributions to the calibration of thermo-mechanical constitutive models intent of reaching a model calibration for a large range of temperatures. The parameter ε0 is also fixed to the value of 1.0 • 10 -5 s -1 . Such a low value was defined because the positive effect of strain-rate occurs very early in the deformation process of DP980, which implies the activation of the strain-rate term for low values of the equivalent plastic strain-rate. Moreover, it also mitigates the problem of multiple solutions [26].

The value of α is defined to be equal to 0.5. Note that setting α as a parameter to be identified is useless because K also weights the hardening terms.

Moreover, the models is developed within the framework of associated flow rule, the von Mises yield criterion and isotropic linear elasticity described by the generalized Hooke's law. The identification of the elastic parameters is not part of this work, thus based on the literature the value of 0.3 is assumed for the Poisson's ratio [22]. Concerning Young's modulus, a dependence on the temperature was observed. An average value of 106 GPa is determined at 500 • C using the curves presented in Fig. 9 and for room temperature the value determined is 185 GPa. Since no other values were available in this range of temperatures, it was defined a bilinear-piecewise equation for the Young's modulus. The objective was to have a better fit of the beginning of the load curves of the heterogeneous tests.

Virtual fields method

The idea behind the VFM is to use the principle of virtual work (PVW) and combine it with full field kinematic measurements and the load acquired during a mechanical test, to calibrate a constitutive model. This is performed through the enforcement of the equilibrium condition between the external and internal virtual work. In the framework of finite strain theory, assuming body forces as null and quasi-static conditions, the PVW can be written in the reference configuration as follows

Ω 0 P : grad U * dV W int - Γ f 0 T • U * dS W ext = 0, (5) 
where P is the first Piola-Kirchhoff stress tensor, U * is the virtual displacement vector expressed in the reference configuration (U * = U * (X)), as well as grad U * . T is the first Piola-Kirchhoff stress vector prescribed on the boundary Γ f 0 with the reference surface area S. Similarly, the first integral of Eq. 5 is written over the reference volume V . The virtual displacement field (U * ) must be kinematically admissible, continuous and differentiable [11,27]. The first Piola-Kirchhoff stress tensor P is obtained through the Piola transformation as

P = det(F)σF -T , (6) 
where det(F) is the determinant of the deformation gradient F and F -T is the transpose of its inverse. The Cauchy stress tensor σ is computed from the strain tensor ε, which is determined through the kinematic full-field measurements, and by means of previously selected constitutive model with an initial set of material parameters ξ. In the present case, the assumed thermo-viscoplastic constitutive model (Eq. 1) takes into account temperature and strain-rate effects, which brings to the problem two more variables, time t and temperature T . Therefore, σ = σ (ε, ξ, t, T ) .

The strain fields are computed from the measured displacement fields u by means of the deformation gradient F. Using the theorem of polar decomposition, the deformation gradient can be decomposed as

F = VR, (8) 
where V is the left Cauchy stretch tensor and R is the orthogonal rotation tensor. The strain field can be computed for each time instant as the Hencky strain tensor ε = lnV. Moreover, the computation of the Cauchy stress tensor is conventionally expressed in a local material frame free of rigid body rotations, thus the strain tensor in this local co-rotational frame can be computed as

ε = R T εR. (10) 
Full-field measurements are usually obtained as a discrete number of material points in a ROI belonging to the surface of the specimen. The computation of kinematic quantities can then be carried out using, for example, shape functions for discrete points in the ROI. The stress tensor and the virtual fields are also computed for the same locations and become representative of the average quantities for small regions. Moreover, as the through thickness information is not usually available, a plane stress state is assumed. The thickness estimation, which is required for the Piola transformation, is computed through the Poisson's ratio and the assumption of incompressible plasticity. For further details on these assumptions, the reader is referred to [28,29].

Based on this discrete form of the data, the integral of the internal virtual work (Eq. 5) is approximated by a discrete sum as follows

W int (ξ) = n e i=1 P (ε i , ξ, t, T i ) : grad U * i A i e i , (11) 
where n e represents the number of points and A i and e i are the representative area and the thickness of these points. Note that adopting the reference configuration brings the advantage that the area A i and thickness e i do not need to be updated as the deformation process evolves. The same happens with the computation of the virtual fields that is only performed for the reference configuration.

The external virtual work is computed from the load acquired during the mechanical test. This computation can be simplified through the proper choice of the virtual fields. The selected virtual fields must be constant on the boundary Γ f 0 , which simplifies the computation of the second integral in Eq. 5 as follows

W ext = U * • Γ f 0 TdS = U * • F load , (12) 
where F load is the resultant of the force acting on the boundary. This simplification is a major asset of VFM 205 because it is not required the distribution of the force vector on the boundary.

Objective function

The PVW can be written for different time steps and also for different virtual fields in order to enrich the objective function. Relevant information from the history of the mechanical test and from different points in the spatial domain of the ROI can thus be explored. Hence, the objective function for the VFM can be written in a least-square framework as

ϕ (ξ) = n vf k=1 1 n vf    n t j=1 1 n t n e i=1 P (ε ij , ξ, t j , T ij ) : grad U * ik A i e ij -U * k • F load j    2 , (13) 
where n vf is the number of virtual fields selected and n t the number of time steps considered. The calibration of the constitutive model is performed through the minimisation of the cost function given by Eq. 13. The 210 material parameters ξ are found when the stress fields minimise the difference between W int and W ext for all time steps and virtual fields. Moreover, several tests be used, and in that case, the objective function is the sum of Eq. 13 computed for the different tests.
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Virtual fields selection and identification procedure

One of the key elements of VFM is the selection of a set of virtual fields. The virtual fields must be kinematically admissible and can be any continuous and differentiable function. However, for practical reasons these should be constant on the boundaries where forces are applied. For the calibration of nonlinear constitutive models, there are three approaches to select a suitable set of virtual fields. Two of these approaches are automatic strategies and require a low level of user intervention [30,28]. The other approach, called manual defined virtual fields, depends exclusively on user intervention, since it is the user who must develop the appropriate set according to the boundary conditions of the test. Compared to the other strategies, manually defined virtual fields strategy has the main advantages of low computational cost and ease of implementation. For these reasons, this is the strategy adopted in the present work. Recently, it was confirmed that the number of virtual fields plays an important role in the accuracy of the VFM [31,17]. Increase the number of virtual fields in Eq. 13 is just a way of improving the objective function with more information on the stress fields that are computed from a set of parameters. A total of 9 virtual fields are selected for this work. Note that n vf > dim(ξ). The selected set is defined as the following

U * 1 = U * X = X L U * Y = 0 U * 2 = U * X = 0 U * Y = cos πX 2L U * 3 = U * X = 0 U * Y = Y W cos πX 2L U * 4 = U * X = sin πX L sin πY L U * Y = sin πX L sin πY L ( 14 
) U * 5 = U * X = 0 U * Y = sin πX L sin πY L U * 6 = U * X = 0 U * Y = Y (|X|-L) W L U * 7 = U * X = Y (X 2 -L 2 ) L 2 W U * Y = 0 U * 8 = U * X = 0 U * Y = Y 2 W 2 sin πX L U * 9 = U * X = exp H 2 -X 2 H 2 -1 sin πX L U * Y = 0 .
The constants L and W represent half the length and width of the ROI, respectively. X and Y are the coordinates in the reference frame. Note that the reference frame is located in the specimen centre as shown in Fig. 1.

In the case of static equilibrium, the first virtual field is the only one that gives a non-zero value in the internal virtual work. The component ∂U * X /∂X of the gradient for this virtual field is the only one with non-zero value and constant distribution in ROI (∂U * X /∂X = 1/L). In this case, the internal virtual work is balanced with the external virtual work computed from the measured load. The other virtual fields have non-constant spatial distributions and distribute the weight between normal and shear components.

Another key element of the VFM is the reconstruction of the stress field. In case of non-linear constitutive models, such as the case of the model under study, it is required a stress integration algorithm. There are several options for the integration algorithm. The classical one is based on a backward-Euler scheme combined with a predictor/corrector method to update the stress state. Examples of this kind of algorithms can be found in [32,33]. An in-house code for VFM was developed using Fortran programming language. A gradient-based Levenberg-Marquardt optimisation method [34] is used to solve the optimisation process. The required Jacobian matrix for the Levenberg-Marquardt method is calculated by forward finite differences. The convergence criteria for this method were established as: the objective function becomes lower than a tolerance or the relative difference between parameters in consecutive iterations is lower than or equal to 1.0 • 10 -10 . Regarding the treatment of the experimental data, the raw full-field displacements data obtained by DIC, using the ARAMIS system, are post-treated into Matlab. The displacement fields corresponding to each time step are interpolated onto a rectangular grid covering the entire area of the ROI. The grid is divided into regular elements with an area of 1 mm 2 , which makes a total of 1769 data points for the spatial domain 4.Contributions to the calibration of thermo-mechanical constitutive models corresponding to the nodes of the grid. After interpolation, the displacements are smoothed through space and time. The spatial smoothing is performed through a moving average method and the temporal smoothing is performed using the Savitzky-Golay method. After completing this procedure, a reduced number of time steps, up to the maximum load value, is selected for each test and become the input data for VFM computations. The reduced number of time steps decreases the computational time and increases the size of the strain increments, which mitigates the impact of strain noise on the computation of the stress field. The strain field is computed for the centre of the elements using shape functions. The temperature field is also an input for the reconstruction of the stress field. The polynomial functions presented in Fig. 4 are employed to impose the measured temperature values to each element of the grid. Note that only the gradient along the longitudinal direction (x-direction) of the specimen is considered. Moreover, as shown in Fig. 3, the temperature for the positions of the thermocouples is almost constant during the tests. Therefore, it is assumed that the elements of the grid hold the same temperature value for all the selected time steps.
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Results of the calibration of the modified J-C model

In this section, the calibration of the modified J-C model performed with the VFM and the experimental data from the heterogeneous thermo-mechanical tests is presented. This analysis is divided into two parts. In the first part, the model is calibrated using each test individually, to capture the mechanical behaviour of the material for the specific conditions of each test and hence understand if the calibration process and the chosen constitutive model lead to a good description of these conditions. In the second part, the modified J-C model is calibrated using the three tests simultaneously. In this case, the model is calibrated for a wider range of conditions, and once again the validity of the obtained parameters is analysed. A finite element (FE) model of the heterogeneous test [31] is also presented and used to analyse the validity of the obtained parameters sets.

Note that a total of 7 parameters need to be identified, namely σ 0 , K, n, σ sat , C y , m and C, whereas the remaining parameters are known a priori: α = 0.5, T tr = 25 °C, T m = 1000 °C and ε0 = 1.0 • 10 -5 s -1 . In the optimisation procedure, only one constraint is applied. This constraint concerns the universe of solutions for each parameter, limiting the admissible solutions to positive values only.

Calibration with a single test

The same initial set of parameters is used for the three calibrations, this set has characteristic parameter values for high strength steels, except for the parameter C, to which is attributed the zero value as an initial guess. The results of the identifications are presented in Table 1. The obtained parameters show significant differences from the initial set, which reveals that the objective function and experimental database provide information sensitive to the parameters during the optimisation process. The exception is the parameter C, whose values are very close to zero, the initial value. The value close to zero means that the strain-rate term (Eq. 4) in the modified J-C has a null impact. The values of objective function computed with the initial set (ϕ ini ) and the final set (ϕ fin ) are also shown in Table 1. The initial values have been reduced by around 90 % for the tests V2 and V3 and 68 % for the test V1. The number of iterations for the test V1 is higher than for the 2 other tests. Fig. 10 shows the evolution of the parameters and objective function value for the three cases during the calibration process. As can be seen, for the three cases, after 60 evaluations the process is stable and almost reached stabilised values.

Fig. 11 presents a comparison between internal and external virtual works. The internal virtual work is computed for the first virtual field U * 1 and using the initial (IVW ini) and the finial (IVW fin) sets of parameters. The external virtual work is computed using the measured load. It is notorious the difference between the initial solution and the final one and it is shown that the obtained parameters provide a good match between internal and external virtual works. In Fig. 12 each term of the modified J-C model is individually plotted for the initial set and the final sets of parameters. Fig. 12a shows the strain-hardening term (Eq. 2) evolution with the increase in the equivalent plastic strain value (ε p ). The obtained parameters lead to distinct strain-hardening curves which, in terms of stress values, are ordered according to the displacement rate of the test used in the calibration. Hence, the highest stress values are found for the strain-hardening curve obtained with V3. The three curves have high strain-hardening rates for low values of equivalent plastic deformation and tend to a stress saturation value for high values of equivalent plastic deformation. Fig. 12b presents the temperature term (Eq. 3) evolution up to 500 °C. This term shows a considerable impact of the temperature on the flow stress evolution. For example at 500 °C, this term reaches values of about 0.50, which means that the stress values are reduced to almost an half with an increase of temperature from 25 to 500 °C. This is consistent with the curves presented in Fig. 9. Moreover, similarly to the strainhardening term, the impact of this term is ordered according to the displacement rate of the test used in the calibration. As mentioned before, the obtained values for the parameter C are almost zero, thus the strain-rate term (Eq. 4) becomes equal to 1.0 for the three cases as can be confirmed in Fig. 12c. This means that the range of strain-rates found in each test is not sufficient to activate this term, and the positive effect of the strain-rate seen in Fig. 2 is not captured in any of the calibrations with a single test. Note that a different choice of initial value for the parameter C, would lead to a different solution for the remaining parameters, but the sensitivity to C would not change and positive effect of the strain-rate would be conditioned by this initial value. Fig. 13 presents the strain-hardening term affected by the temperature term at 500 °C. As the predominant stress state is uniaxial tension in the three tests, Fig. 13 and 9 can be compared. The level of flow stress for each curve is similar to the level of stress for the respective counterpart in Fig. 9. According to this result, the magnitude of the flow stress for each test seems to be well described by the respective set of parameters.

To analyse the validity of the final sets of parameters presented in Table 1, these should be tested as input data for the simulation of the heterogeneous tests. The parameters should give at least a good representation of the test that provided the information for calibration. Therefore, a 3D FE model of the heterogeneous tests was built in Abaqus ® standard. This model was previously presented in [31]. The FE model represents the ROI in the tensile specimen, as the geometry depicted in Fig. 1. An eight-node solid element with reduced integration (C3D8R) is adopted for the mesh, which is composed by 60 × 28 × 3 regular elements. The modified J-C model presented in section 3 was implemented in a UMAT subroutine. The simulations of the tests are performed for the respective loading conditions in terms of time, which consist of different average strain rates: 1.0 • 10 -4 , 1.0 • 10 -3 and 1.0 • 10 -2 s -1 . The boundary conditions are the displacements imposed on the boundaries x = -30 and x = 30 mm, which were extracted from the DIC measurements of each test.

The temperature maps used in the calibrations are also imposed on the models. The simulation of each test 1: (a) strain-hardening term (Eq. 2), (b) temperature term (Eq. 3) and (c) strain-rate term (Eq. 4). 
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Figure 13: Evolution of the strain-hardening term (Eq. 3) affected by the temperature term (Eq. 3) at 500 °C for the final sets of parameters presented in Table 1.

is performed with the respective set of parameters (Table 1). Moreover, it is included in these simulations the time steps beyond the maximum load value to evaluate the accuracy of the parameters when the results are extrapolated. Fig. 14 presents the comparison of the numerical and the experimental load curves for the three tests. The three sets of parameters provide reasonable results up to the maximum load value. The parameters of the test V3 (Fig. 14c) provide the best results, even in the extrapolation domain. In the other two cases (Fig. 14a and b), there is a slight overestimation for the maximum load value that propagates for the extrapolation domain.

In Fig. 15, the results for the logarithmic strain in the x-direction are presented for the three tests. The experimental results are labelled as Exp and the numerical ones as Num. Mload and Rup represent the time steps of maximum load and the last step before rupture (the last step of the simulation). The results for the test V3 (Fig. 15 c) are the most accurate ones. In this case, the finite element model and the parameters describe very well the bell-shaped curve of the strain distribution. In the extrapolation domain, the maximum strain value is overpredicted and the strain localisation is more severe than in the experimental results. Regarding Fig. 15 a and b, the localisation of strain is underestimated and a more uniform distribution of the strain field is obtained, but the trend is well captured. In the extrapolation domain, in both cases V1 and V2, the strain value at the centre of the specimen is overestimated.

Calibration with multiple tests

In this part, the results for the calibration of the modified J-C model using the three tests simultaneously are presented. Here, the goal is to reach a set of parameters that enables the representation of the conditions of the three tests through the modified J-C model. This is a more demanding problem than the previous one because the strain-rate range is enlarged by the inclusion of the three tests in the same experimental database and the model is forced to capture the positive sensitivity of the material to strain-rate.

The results for a single initial set are presented in Table 2. All the parameters were activated in the optimisation and the initial value of the objective function decreased by 54%. The number of iterations for the optimisation Levernberg-Marquardt method is 12. The evolution of the parameters and objective function value along the calibration is presented in Fig. 16. In this case, the problem seems more stable for the beginning of the optimisation. Fig. 17 shows the comparison between internal and external virtual works. The internal virtual work is computed for the first virtual field U * 1 and using the initial (IVW ini) and the final (IVW fin) parameters set. The external virtual work is computed from the measured load. An underestimation of the IVW fin for 2: (a) strain-hardening term (Eq. 2), (b) temperature term (Eq. 3) and (c) strain-rate term (Eq. 4).
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V2 is observed, which is not observed in Fig. 11. There is also a slight underestimation for V3 in the final time steps. Fig. 18 shows the individual plot of the terms of the modified J-C model. In this case, the strainhardening term (Fig. 18a) converges quickly to the stress saturation value, a consequence of the low value of the parameter n and the high value of the parameter C y . The impact of the temperature continues to be significant (Fig. 18b), and the strain-rate has now an important role. Since the strain-hardening term converges to the saturation value very quickly, the strain-rate term assumes the leading role in the hardening process, imposing the increase in the flow stress through the positive effect of strain-rate. The validity of the obtained set of parameters is tested in the numerical simulation of the three tests. Fig. 19 presents the results for the load prediction using the FE model previously described and the obtained set of parameters. From these figures, it is possible to conclude that parameter C captures the positive effect of strain-rate. Nevertheless, the results for the test V1 (Fig. 19a) and V2 (Fig. 19b) are overestimated. Although a slight overestimation for the higher values of displacement occurs, the results for the test V3 (Fig. 19c) are the most accurate ones.

In terms of strain field, the results presented in Fig. 20 4.Contributions to the calibration of thermo-mechanical constitutive models the best results are achieved for the test V3 (Fig. 20c). The predictions show a strain distribution more uniformly distributed and less localized. Consequently, the maximum strain value is underestimated. In the extrapolation domain, the numerical predictions tend to underestimate the strain localisation and present much lower strain values at the centre of the specimen.

Discussion

The results for the first part of this section include the calibration of the model using each test individually, which resulted in three distinct parameters sets. The validation of the obtained sets shows a reasonably well prediction of the numerical load, which means that the stress level is well predicted. However, the obtained sets have almost zero values for the parameter C, which means that the strain-rate effect was not captured by the strain-rate term. The results suggest that the effect of strain-rate, for the conditions of each test, is captured by the other two terms, which lead to significant differences in the obtained parameters from test to test. This limits the applicability of the these sets of parameters only to the conditions present in the respective test used in the calibration. Furthermore, for the test with the highest strain-rate (V3), the prediction of the strain field is in very good agreement with the experimental measurements, but in the other two cases, the maximum strain value is underestimated and the distribution is less localised at the centre of the specimen. The temperature plays an important role in the strain localisation and these results suggest that the impact of the temperature term is underestimated for the tests with the lowest strain-rates. In the second part of this section, the three tests were combined in a single database to calibrate the modified J-C model. The results show that three tests bring sufficient information to calibrate the parameter C, and the positive effect of strain-rate is captured through the strain-rate term. Nevertheless, the results show a lack of flexibility of the model to fit the experimental data provided by the three tests. This is observed directly by the results in the internal virtual work computation at the end of the optimisation (Fig. 17). Moreover, there is a significant deterioration of the strain field prediction. The high impact of the strain-rate term, which brings a positive effect on the flow stress, balances the negative effect of the temperature term.

Consequently, the localisation of the deformation at the centre of the specimen is attenuated and more uniform distributions of the strain field are obtained. Regarding the optimisation process, in both analyses, just one set of initial parameters was presented. Nevertheless, it was observed that the problem is sensitive to the initial set of parameters and multiple solutions are found. This reveals that the experimental database lacks information for some of the parameters. There are two potential solutions, the parametrisation of the model can be reduced, or the experimental database can be improved with more tests. Regarding the first solution, some parameters of the model have a specific meaning, like σ 0 that represents the initial yield stress. This parameter can be identified a priori, helping to reduce the number of variables in the optimisation process. For the second solution, including more tests in the database is also the path to more accurate results and to expand the validity of the obtained parameters.

Moreover, the lack of flexibility of the model implies that more parameters are required to fit the mechanical behaviour of this material, thus it is reasonable to explore this solution. The obtained results also give some indications that the chosen model needs to be enhanced to accurately describe the mechanical behaviour of the DP980 under such temperature and strain-rate conditions. The actual formulation of the J-C model can be a limitation. This formulation is usually called decoupled formulation because each term corresponds to an isolated effect (e.g. strain-hardening, temperature or strain-rate). However, coupled formulations in which the different effects interact with each other may be more suitable for the material and conditions under study. The results for the single test calibrations showed that all the parameters of the model could depend on the strain-rate effect, and also show a monotonic evolution for almost all parameters (except for the parameter σ 0 ). Therefore, the parameters n and C y could be a function of the strain-rate effect.

Conclusions

The purpose of this work is to present a calibration methodology for thermo-mechanical constitutive models. This methodology combines a thermo-mechanical heterogenous test and the VFM. A modified J-C 25 4.Contributions to the calibration of thermo-mechanical constitutive models 93 model model is selected to test this methodology. The heterogenous test is performed on a Gleeble thermomechanical simulator and the material is a DP980. In order to capture different orders of magnitude in terms of strain-rate, the test is performed for three displacement rates. The first part of this work presents the analysis of the test in terms of temperature, strain and strain-rate information. The analysis shows that the test provides a range of temperatures from 360 °C to 500 °C. The temperature field is nearly constant during the test. The highest values of the strain field are localised at the centre of the specimen due to the temperature distribution. The strain field distribution gives a wide range of values at each instant of the test. Nevertheless, due to the localised strain distribution, the information for the viscoplastic regime is reduced in terms of temperature. The strain-rate field presents a similar shape to the strain field. The strain-rate range of each test is in the same order of magnitude as the nominal strain-rate of the test.

Regarding the calibration results, these are analysed in two parts. In the first part, the calibration with a single test is analysed. Thus, the calibration is performed for each test corresponding to a different displacement rate. The results suggest that the flow stress is well described for the three cases. Nevertheless, the results also reveal that the experimental database composed by a single test performed for a displacement rate lacks information to calibrate the three terms of the modified J-C model. In the second part, the calibration is performed using the information of the three displacement rates. The combination of these three tests increases the range of strain-rate and consequently, provides sufficient information to calibrate the three terms of the model. The positive sensitivity of the material to strain-rate is captured by the strain-rate term. However, the results expose the lack of flexibility of the modified J-C model to capture the material behaviour under such range of strain-rates. The numerical simulations of the tests show overestimation of the load and underestimation of the strain localisation. The proposed methodology presents reasonable results and represents a potential alternative to classical procedures. The main advantage is that a considerable range of temperatures and strain-rates is collected from a single test. Nevertheless, there is substantial room for improvement. For instance, the experimental database can be enhanced with different temperature ranges. Moreover, the lack of flexibility of the modified J-C model demands for a more complex model to describe the thermo-mechanical behaviour of the DP980 steel. Therefore, more information for different temperatures and strain-rates will be essential. 

Final Remarks

This chapter proposes two methodologies for the calibration of thermo-mechanical constitutive models. Both rely on the same heterogeneous test, which is performed on a Gleeble machine. This test presents a considerable range of temperatures, strain values and strain-rates. The thermo-mechanical behaviour of the material is then exposed to a wide range of conditions, which results in a robust experimental database. The first methodology, which combines this test and the Finite Element Model Updating, is tested with virtually generated data. A detailed analysis of the sensitivity of the material parameters of the Johnson-Cook model shows that the complete calibration of the model is possible. Nevertheless, the initial yield stress revealed a low sensitivity. The second methodology is evaluated with experimental data obtained for a high strength steel. The Virtual Fields Method is combined with this experimental database. The results show that the experimental database information is sufficient to have reasonable results in the calibration of a thermo-elasto-viscoplasticity model. Nevertheless, the sensitivity of some parameters seems reduced. Although the results are very promising, there is plenty of room for improvement. In conclusion, both methodologies constitute potential candidates to replace classical procedures. The thermo-mechanical test covers a range of information that in classical procedures would require a large number of tests, that represents an important aspect to simplify the calibration of thermo-mechanical models.

J.M.P. Martins .
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Conclusions

The ultimate objective of this thesis is to propose an efficient calibration methodology for thermomechanical models. This methodology is intended to be an alternative to classical procedures. It relies on full-field measurements, heterogeneous tests, and inverse analysis. These three elements all together form a new concept in the field of calibration of constitutive models, which has the potential to reduce the experimental campaigns and simplify the process. Consequently, this new concept has attracted a growing interest in the field. Full-field measurement techniques reached a level of maturity that allowed the shift of focus to the other two elements. A remarkable number of inverse analysis methods were proposed over the years. The selection of a proper heterogeneous test has also assumed a preponderant role. Thereby, the present thesis can also be seen as a collection of works focused on the simplification of the calibration process in different frameworks, in which different inverse methods are explored, as well as complex heterogeneous tests. The starting point of this thesis is an overview of four inverse analysis methods, the Finite Element Model Updating (FEMU), the Constitutive Equation Gap Method (CEGM), the Equilibrium Gap Method (EGM) and the Virtual Fields Method (VFM). These seem the most promising methods so far. The focus is to understand the advantages and disadvantages of each strategy, as well as their implementation aspects. This study culminates in a comparative study of the different methods, in which two types of constitutive models are used: an isotropic linear elasticity model and an isotropic elasto-plasticity model. The sensitivity of the methods to the presence of noise in the full-field data is analysed. This overview shows that the CEGM, the EGM, and the VFM have algorithms significantly more complex than the FEMU. Thereby, FEMU continues to be the most used method. The results of the comparative study show similar performances in elasticity. The exception is the EGM, which presents a higher sensitivity to noise than the other methods. In elasto-plasticity, FEMU achieves the most accurate results in the presence of noise. Nevertheless, this superior performance in terms of accuracy has a considerable computational expense. The CEGM presents the highest sensitivity to noise, but in terms of computational cost, it is more efficient than FEMU. The VFM reaches reasonable results in the presence of noise, and the best results for the computational performance. These results suggest that among the four methods, the VFM provides the best balance between the quality of the calibration procedure and the computational cost. A second study focused on the comparison between FEMU and VFM in more complex conditions is presented. The formulation is extended to finite strains. The goal is the comparison of the accuracy of the two methods in the calibration of an isotropic plasticity model. The results indicate that FEMU is sensitive to the distribution of the input data. The strain values with more representation in the database of the test have more impact on the calibration results. Thus, a more accurate identification with FEMU requires equally distributed data for the different levels of strain. Nevertheless, in the same conditions, the VFM does not show this sensitivity and presents a more accurate response. This suggest that VFM can offer more than a lower computational cost when compared to FEMU. 100
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Following this analysis, the VFM is combined with a biaxial tension test of a cruciform specimen. The objective of this study is to propose a single test calibration methodology for anisotropic plasticity models. The biaxial tension test of a cruciform specimen brings valuable mechanical information for sheet metals, due to the variety of strain paths and a large range of strain values reached during the test. Three geometries of the cruciform test are explored in this study. These geometries include simple geometric perturbations that promote heterogeneity in the strain fields. The analysis of the respective strain and stress fields reveal that the simplest geometry has less information for the shear stress component, which leads to a less accurate calibration in the yield criterion. Nevertheless, the inclusion of geometric perturbations brings more heterogeneity and enhances the information for that component. Moreover, the calibration results demonstrate that the geometry with the widest distribution of stress and strain states provides sufficient information to calibrate all the parameters of the Hill'48 yield criterion and Swift's law with a maximum error of 1%. Although the analysis is based on virtual experimental data, the results are very promising. The test is also analysed for a different material, which exposes the material sensitivity of the test. The information provided by the test is affected by the material under study. Regarding the calibration process, a more complex yield criterion, with a higher number of material parameters, is also tested. An additional constraint is required to mitigate the problem of multiple solutions. This constraint establishes in the yield criterion, that the yield stress in the rolling direction must equal the flow stress described by the hardening law. This leads to the conclusion that constitutive models need to be prepared with additional constraints for this new concept. With the same objective of proposing a single test calibration methodology for anisotropic plasticity models, the VFM is combined with an optimised heterogeneous test. Contrary to the biaxial test, this test can be performed on a classical tensile machine and offers a wide range of strain states. Nevertheless, the results of the calibration indicate that a heterogeneous test performed in a single orientation of the material seems insufficient to accurately capture the plastic anisotropy coefficients. In the same study, the analysis of the number of virtual fields proves the dependence of the method. The results show that a number superior to 5 virtual fields stabilises the error in the calibrated parameters below 1.5%, for a constitutive model composed by Hill'48 yield criterion and Swift's hardening law. The last part of this thesis concerns the calibration of thermo-mechanical constitutive models. A thermo-mechanical heterogeneous test performed on a Gleeble thermo-mechanical is proposed to generate the experimental database. The analysis of the test shows that a range of temperatures from 360 to 500 °C is covered and this temperature field is nearly constant during the test. The strain field distribution contains a wide range of values at each instant of the test. Nevertheless, the temperature distribution promotes localisation of the strain field at the centre of the specimen, which reduces the information for the viscoplastic regime in terms of the temperature range. The strain-rate field presents a similar shape to the strain field and the range of values is in the same order of magnitude of the nominal strain-rate of the test. The FEMU is combined with a virtual database of the test and the calibration of the Johnson-Cook model is analysed. The results show that the parameters related to temperature and strain rate are easily calibrated. However, low sensitivity to the parameter representing the initial yield stress is observed. This low sensitivity to the initial yield stress leads to the appearance of local minima. A possible solution to mitigate this scenario is studied, which considers the initial yield stress as a know variable. This also improves the robustness of the proposed methodology in the presence of noise. The test is also explored with the VFM to calibrate the modified J-C model. In a first attempt, only the information of a single test performed at a constant displacement rate is used. The results suggest a good description of the flow stress of the material, but only for the same conditions of the test. This means that the experimental database composed by a single test lacks information to calibrate the three terms of the modified J-C model, more specifically the strain-rate term. To improve these results, a second analysis with data of three tests at different displacement rates is performed. The combination of these three tests increases the range of strain-rate and consequently, provides sufficient information to calibrate the three terms of the model. The positive effect of the strain-rate on the flow J.M.P. Martins Calibration of thermo-mechanical constitutive models for sheet metals from full-field measurements Jo� o Miguel Peixoto Martins 2020 5.Conclusions and Perspectives 101 stress of the material is captured. However, the results suggest a lack of flexibility from the modified J-C model to capture the material behaviour of DP980 steel under such range of strain-rates. Overall, the results obtained with this heterogeneous thermo-mechanical test are very positive and a more efficient alternative to long experimental campaigns can be envisaged. Both the VFM and FEMU analysis demonstrate the potential of the test. It would be interesting, as future work, to combine different ranges of temperature to enhance the experimental database and test more complex constitutive models.

Perspectives for future work

It is expected that in the near future the topic of calibration of constitutive models receives more attention due to the exciting challenges that remain to be dealt with. Some of the works initiated during this PhD intended to tackle some of the challenges in this field, and therefore deserve to be further studied. Moreover, several tools that were developed constitute a solid base for future work. For further research, the following recommendations are given:

• Regarding the inverse methods, the overview presented at the beginning of this thesis shows that FEMU has a major disadvantage compared to the remaining methods, which is the computational cost. This is caused by the excessive number of FE simulations that are required. However, if the convergence of this method is improved, this problem will be attenuated. It can be achieved by combining the FEMU with another inverse method in a single objective function. This can also bring benefits in the case of multiple solutions and ill-posedness of the inverse problem.

• The objective of identifying simultaneously all the parameters of an anisotropic plasticity model remains one of the most challenging topics in the field. Despite the complexity and variables that affect the problem, it should not be discarded. The biaxial test on a cruciform specimen shows interesting results. Therefore, the study initiated in this PhD should be experimentally validated.

• Moreover, the calibration of complex constitutive models frequently raises the problem of multiple solutions. Some of these solutions have no physical meaning or represent homothetic solutions that must be excluded from the universe of admissible solutions. This can be accomplished by employing optimisation constraints, which consider the formulation of the constitutive model. Formulate such constraints will require an individual analysis of each constitutive model.

• The VFM is a method with a growing interest in the community of solid mechanics. The recent progress in the method aimed at the development of automatic strategies to define the virtual fields. Nevertheless, the developed automatic strategies have some downsides, such as complex implementation procedures or high computational cost. Therefore, the development of an automatic strategy that mitigates those problems remain to be dealt with. The sensitivity of the method to the number of virtual fields can be a starting point to developed a new strategy.

• The work initiated in this thesis on the calibration of thermo-mechanical models has plenty of room for improvement. In terms of experimental measurements, heat waves may influence the accuracy of the displacement/strain measures. That should be analysed in the case of the proposed heterogeneous test. Moreover, the evolution of the deformation process leads to highly localised strain fields. The 3D effects may have an important role here, which must be understood in the future.

J.M.P. Martins
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 1 Fig. 1. Domain Ω with prescribed displacement and traction boundary conditions.
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 2 Fig. 2. Detailed flowchart for the FEMU.
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 24 Fig. 4.Specimen's surface and measurement grid with the localization of the calculation points (adapted from[START_REF] Florentin | Identification of the parameters of an elastic material model using the constitutive equation gap method[END_REF] ).
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 5 Fig. 5. Detailed flowchart for the EGM.
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 7 Fig. 7. Heterogeneous test: (a) initial geometry, mesh and boundary conditions of the test; and components of the infinitesimal strain tensor; (b) 𝜀 xx , (c) 𝜀 yy and (d) 𝜀 xy .
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 8 Fig. 8. (a) von Mises stress distribution and (b) equivalent plastic strain field at the end of the test.
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 10112 Fig. 10. Results of the identification process for VFM strategy: (a) objective function evolution; parameters (b) K ; (c) 𝜀 0 and (d) n evolutions.

Fig. 12 .

 12 Fig. 12. Plots of the objective function of FEMU for: (a) 𝐾 = 386 . 691 MPa; (b) 𝑛 = 0 . 113 .

Fig. 13 .

 13 Fig. 13. Results of the identification process for FEMU strategy: (a) objective function evolution; parameters (b) K ; (c) 𝜀 0 and (d) n evolutions.
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 2 State-of-the-art on inverse analysis methods

FIGURE 1 ..

 1 FIGURE 1. Specimen geometry (a) and corresponding finite element model (b). Equivalent Plastic strain distribution after a displacement of 3 mm Exploiting the symmetries of the problem, only one-fourth of the sample is represented in the finite element model. The model is built up with ABAQUS standard assuming plane stress conditions and a large strain formulation. The mesh is defined as regular and the element CPS4 (bilinear shape functions and full integration) is chosen. A total of 112 elements are used. Symmetry boundary conditions are applied to the boundaries 0 x  and 0 y  . A displacement boundary condition, with a total displacement of 3 mm y u  , is applied along the y direction to the top boundary of the specimen. In order to emulate the full-field measurements, a reference set of material parameters is chosen for the Swift's law with the following values: 565 MPa K  , 0.26 n  and 0 160 MPa   . The mesh is shown in Fig. 1 (b) as well as the equivalent plastic strain distribution at the maximum displacement. The maximum value of plastic deformation is p 0.252  and it is localized in the centre of the specimen. The gradient of deformation is mainly along the y direction.
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Fig. 1 .

 1 Fig.1. Illustrative example of a biaxial test with a cruciform specimen and the respective zone of interest (ZOI) selected for the present study.

Fig. 2 .

 2 Fig. 2. Cruciform geometries: (a) Cr1 has been proposed by Zhang et al. (2014) , (b) Cr2 and (c) Cr3 are adaptations of Cr1. The grey areas represent the geometry of the FE model.
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 4 Fig. 4. Plot of the principal strain and stress fields at the end of the tests: (a) and (b) Cr1, (c) and (d) Cr2, and (c) and (d) Cr3.
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 3 VFM -Single test calibration methodology intersection of the two arms, with a maximum value of ε p = 0 . 31 .
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 56 Fig. 5. Rotation angle between principal stress base and material frame for Cr3.
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 7 Fig. 7.Comparison between computed force from the identified parameters (Fx_Ident and Fy_Ident) and the resultant force from the FE analysis for the three geometries (Fx_FEA and Fy_FEA) for x and y -directions.
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 8 Fig. 8. Evolution of the (a) normalised yield stress and (b) plastic anisotropy coefficient according to the tension axis angle from the rolling direction for the identified parameters with Cr1, Cr2 and Cr3.
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 9 Fig. 9. Evolution of the identified parameters for Cr3 during the optimisation process.
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 1112 Fig. 11. Plot of the strain (a) and stress (b) fields at the end of the test in the principal axes, corresponding to the model of Fig. 10 .
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 13 Fig. 13. Results obtained with the identified parameter set Sup_set of Table 6 : (a) plot of Swift's law and (b) force prediction based on the internal work.
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 1415 Fig. 14. Comparison of the reference yield locus with the identified yield locus for different levels of σ xy / σ 0 .
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 51 Fig. 5.1 (a) Grips and specimen used for the adapted butterfly test and (b) principal strains distribution for a tool displacement of 7.1 mm

Fig. 5 .

 5 Fig. 5.2 (a) Zone of interest (ZOI) and regular mesh used for the VFM identification. (b) Load history for the butterfly test
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 54 Fig. 5.4 (a) Evolution of the internal (virtual field of Eq. (5.4)) and external virtual work and (b) comparison of the measured load with the predicted load using FE analysis and the retrieved parameters presented in Table 5.2
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Fig. 1 .

 1 Fig. 1. Schematic representation of the specimen for the heterogeneous thermo-mechanical test and its respective ZOI.
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  are the equivalent plastic strain and strain rate, respectively.

Fig. 2 .

 2 Fig. 2. Temperature field obtained during a test in a Gleeble equipment: a) thermographic camera measurement and b) temperature along a line and thermocouples measurements on the specimen's surface.

Table 1 .

 1 Reference set of material parameters[14].

Fig. 3 .

 3 Fig. 3. Load signals of the heterogeneous thermo-mechanical tests performed at three different average strain rates: a) 10 -4 s -1 , b) 10 -3 s -1 and c) 10 -2 s -1 .
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Fig. 4 .

 4 Fig. 4. Equivalent plastic strain (PEEQ) distribution for the last instant of each test, which correspond to 958 s, 107s and 11.75 s. Three different average strain rates: a) 10 -4 s -1 , b) 10 -3 s -1 and c) 10 -2 s -1 .
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 7 Fig.7. Results for the identification with a virtual database with noise: a) evolution of the objective function for two different initial sets, b) and c) evolution of the material parameters for the Inf_set and Sup_set initial sets, respectively.
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70 4 .Figure 1 :

 41 Figure 1: Geometry of the tensile specimen, region of interest (ROI) and position of the thermocouples.

3 4 .Figure 2 :

 42 Figure2: Load vs displacement (u x ) curves for the three displacement rates: 0.006, 0.06 and 0.6 mm s -1 , which correspond to V1, V2 and V3, respectively.
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72 4 .Figure 3 :

 43 Figure 3: Temperature measurements acquired by the three thermocouples TC1, TC2 and TC3, for the tests: a) V1, b) V2 and c) V3.
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Figure 4 :

 4 Figure 4: Spatial temperature distribution along a line passing through the mid-plane of the specimen(y = 0 mm) (see Fig. 5) for each test: a) V1, b) V2 and c) V3.

Figure 5 :

 5 Figure 5: Temperature field for the test V2 captured by the thermal camera. The highest temperatures are represented in yellow and the lowest by the violet. The line passing through the mid-plane of the specimen (y = 0 mm) is represented in blue and the thermocouples position by the red circles.
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Figure 6 :

 6 Figure 6: Major strain distribution for the test V2.

Figure 7 :

 7 Figure 7: Major strain distribution and major strain vs minor strain along the mid-plane y =0 mm for the ROI, for the tests a) V1, b) V2 and c) V3.
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Figure 8 :

 8 Figure 8: Strain-rate ( εxx ) distribution along the mid-plane y =0 mm in the ROI and, for the tests a) V1, b) V2 and c) V3.

Figure 9 :

 9 Figure9: Stress vs strain curves computed for a central section of the specimens. The colour lines correspond to 500 °C. The black curve (T RT) corresponds to room temperature obtained from a homogeneous tensile test[22].
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 410 Figure 10: Evolution of the material parameters and objective function value (objf) during the calibration process: (a) V1, (b) V2 and (c) V3. The value of the parameters and objective function are normalised by the initial value, except for the case of the parameter C.
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Figure 12 :

 12 Figure12: Evolution of three terms that compose the modified J-C model using the obtained sets of parameters presented in Table1: (a) strain-hardening term (Eq. 2), (b) temperature term (Eq. 3) and (c) strain-rate term (Eq. 4).
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 1520416 Figure 15: Comparison of experimental (Exp) and numerical (Num) spatial distribution of the logarithmic strain along the x-direction. The numerical results are obtained through FE analysis with the obtained sets of parameters presented in Table 1: (a) V1, (b) V2 and (c) V3.

Figure 17 : 21 4.

 1721 Figure 17: Internal virtual work (IVW) vs external virtual work (EVW). The IVW is plotted for the initial (IVW ini) and final (IVW fin) sets of parameters using the first virtual U * 1 .

Figure 18 :

 18 Figure18: Evolution of three terms that compose the modified J-C model using the final set of parameters presented in Table2: (a) strain-hardening term (Eq. 2), (b) temperature term (Eq. 3) and (c) strain-rate term (Eq. 4).

Figure 19 :

 19 Figure 19: Comparison of experimental (Exp) and numerical (Num) load curves. The numerical load curves are obtained through FE analysis with the final set of parameters presented in Table 2: (a) V1, (b) V2 and (c) V3.
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Figure 20 :

 20 Figure 20: Comparison of experimental (Exp) and numerical (Num) spatial distribution of the logarithmic strain in the xdirection. The numerical results are obtained through FE analysis with the final set of parameters presented in Table 2: (a) V1, (b) V2 and (c) V3.
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Table 1

 1 Identification results in elasticity.

		E [GPa]	𝜈	Iterations	Normalized wall-time
	Reference parameters	210.00	0.3000		
	FEMU	210.00	0.3000	10	1.000
	CEGM	210.00	0.2993	12	0.444
	EGM	210.97	0.2874	9	0.167
	VFM	210.00	0.3000	( -)	( -)

Table 2 Identification results in elasticity with noisy data (error magnitude of 1 × 10 -6 ).

 2 

		E [GPa]	𝜈	E -Error[%]	𝜈 -Error[%]
	Reference parameters	210.00	0.3000		
	FEMU	203.90	0.2706	2.90	9.798
	CEGM	204.55	0.2728	2.59	9.058
	EGM	195.10	0.2356	7.09	21.436
	VFM	205.14	0.2753	2.31	8.207

Table 4

 4 Identification results in elasto-plasticity (isotropic hardening described by Swift's law).

		Parameters	K [MPa]	𝜀 0	n	Iterations	Wall-time [s]
		Reference	565	7 . 810 × 10 -3	0.260		
	FEMU	1-Set *	564.998	7 . 809 × 10 -3	0.259	41	4407.5
		2-Set	565.000	7 . 808 × 10 -3	0.260	20	2048.9
	CEGM	1-Set	564.317	7 . 761 × 10 -3	0.259	22	38.5
		2-Set	564.985	7 . 819 × 10 -3	0.260	23	36.9
	VFM	1-Set	565.080	7 . 795 × 10 -3	0.260	19	10.3
		2-Set	565.085	7 . 795 × 10 -3	0.260	18	7.8

* Constraint on the material parameters domain.

Table 6

 6 Identification results in elasto-plasticity (isotropic hardening described by Swift's law) with noisy data (magnitude of order 1 × 10 -4 ). * Constraint on the material parameters domain.

		Parameters	K [MPa]	𝜀 0	n	Iterations	Obj. Func.
		Reference	565	7 . 810 × 10 -3	0.260		
	FEMU	1-Set *	564.128	7 . 783 × 10 -3	0.259	38	1 . 29 × 10 -6
	Error		0.154%	0.345%	0.385%		
		2-Set	564.127	7 . 783 × 10 -3	0.259	16	1 . 29 × 10 -6
	Error		0.154%	0.345%	0.385%		
	CEGM	1-Set	441.906	1 . 838 × 10 -4	0.166	62	2 . 96 × 10 -3 N ⋅ mm
	Error		21.787%	97.646%	36.309%		
		2-Set	464.445	2 . 617 × 10 -4	0.177	143	3 . 08 × 10 -3 N ⋅ mm
	Error		17.797%	96.649%	31.954%		
	VFM	1-Set	576.854	9 . 203 × 10 -3	0.269	11	1796.1 N 2 • mm 2
	Error		2.098%	17.839%	3.826%		
		2-Set	577.413	9 . 212 × 10 -3	0.270	10	1795.1 N 2 • mm 2
	Error		2.197%	17.951%	3.866%		

TABLE 1 .

 1 Identified parameters for both strategies (FEMU and VFM) and for both initial solutions

	Initial sets		K	[MPa]	n		0 [MPa]	Objective Func.
								VFM
	sup ξξ and	inf	564.24	0.265		160.72	5 2.29 10 N mm   
	Error [%]	0.134	2.084		0.456
								FEMU
	ξ	sup		686.23	0.343		174.99	f	7.62 10 	2 
	Error [%]	21.457	32.072	9.371
	ξ	inf		524.36	0.245		153.25	f	9.12 10 	3 
	Error [%]	7.192	5.739		4.216
						FEMU (fixed increment size)
	ξ	sup		568.74	0.2633		160.36	f	5.97 10 	6 
	Error [%]	0.662	1.270		0.228
	ξ	inf		552.77	0.250		159.7	f	7.95 10 	5 
	Error [%]	2.164	3.729		0.187

sup ξ and inf ξ .

Table 1

 1 Parameters for Swift's law and Hill'48 yield, and normalized yield stress values ( σ α ) and plastic anisotropy coefficients ( r α ) for 0 • , 45 • and 90 • according to the axis angle ( α) between the rolling and tensile directions.

	Swift's law			Hill'48 parameters	
	σ 0 [MPa]	n	K [MPa]	F	G	N
	160	0.26	565	0.2782	0.3731	1.5568
	σ α			r α		
	σ 0	σ 45	σ 90	r 0	r 45	r 90
	1.0 0 0	1.030	1.051	1.680	1.890	2.253

Table 2

 2 Parameters for Swift's law and YLD20 0 0-2d yield criterion and normalized yield stress values ( σ α ) and plastic anisotropy coefficients ( r α ) for 0 • , 45 • and 90 • according to the axis angle ( α) between the rolling and tensile directions. Fig.2 b) has the same dimensions as Cr1, but contains a hole in the centre. The hole has the particular role of increasing the strain field heterogeneity and thus, increasing the sensitivity of the strain field to the material parameters. The inclusion of a hole in the geometry with this aim was reported in several studies such as,( Lecompte et al., 2007; Pottier et al., 2011; Schmaltz and Willner, 2014; Denys et al., 2016

	Swift's law			σ α			r α		
	σ 0 [MPa]	n	K [MPa]	σ 0	σ 45	σ 90	r 0	r 45	r 90
	212.03	0.239	385.47	1.0	0.984	0.944	0.94	0.39	0.64
	YLD20 0 0-2d parameters						
	α 1	α 2	α 3	α 4	α 5	α 6	α 7	α 8	m
	0.9580	1.045	0.9485	1.0568	0.9938	0.9397	0.9200	1.1482	8.0
	geometry (								

Table 3

 3 Reference parameters and two initial sets of parameters.

		σ 0 [MPa]	n	K [MPa]	F	G	N
	Reference	160	0.26	565	0.2782	0.3731	1.5568
	Sup_set	234	0.35	965	0.5	0.5	1.5
	Inf_set	100	0.08	165	0.5	0.5	1.5

Table 5

 5 Reference parameters and initial parameter for Swift's law and YLD20 0 0-2d yield criterion.

	3.VFM -Single test calibration methodology						
	Swift's law									
		σ 0 [MPa]	n	K [MPa]						
	Reference	212.03	0.239	385.47						
	Sup_set	312	0.339	585						
	Inf_set	112	0.139	185						
	YLD20 0 0-2d yield criterion								
		α 1	α 2	α 3	α 4	α 5	α 6	α 7	α 8	m
	Reference	0.9580	1.045	0.9485	1.0568	0.9938	0.9397	0.9200	1.1482	8.0
	Sup_set & Inf_set	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	8.0

Table 6

 6 Results of the identification process for Swift's law and YLD20 0 0-2d yield criterion.

	Swift's law								
		σ 0 [MPa]	n	K [MPa]					
	Reference	212.03	0.239	385.47					
	Sup_set	212.40	0.260	398.07					
	Error	0.17 %	10.77%	3.27%					
	Inf_set	212.40	0.260	398.07					
	Error	0.17 %	10.77%	3.27%					
	YLD20 0 0-2d yield criterion (m = 8)						
		α 1	α 2	α 3	α 4	α 5	α 6	α 7	α 8
	Reference	0.9580	1.045	0.9485	1.0568	0.9938	0.9397	0.9200	1.1482
	Sup_set	0.9860	0.9959	0.9378	1.0647	0.9946	0.9491	1.0458	1.1963
	Error	2.92%	4.70%	1.13%	0.75 %	0.08%	1.00%	13.67%	4.19%
	Inf_set	0.9860	0.9958	0.9378	1.0647	0.9956	0.9491	1.0459	1.1962
	Error	2.92%	4.71%	1.13%	0.75%	0.08%	1.00%	13.69%	4.19%
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	Swift's hardening law			Hill'48 yield criterion
	σ 0 (MPa)	n	K (MPa)	F		G	N
	160	0.26	565	0.2782	0.3731	1.5568
	Fig. 5.3 Influence of the				1.2	
	number of virtual fields on the				
	identification results					
				Normalised parameter value	0.9 1 1.1	1_VF 5_VF	2_VF 6_VF	3_VF 7_VF	4_VF 8_VF
					0.8	
					σ 0	n	K	F	G	N
						Material parameter
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Table 5 . 2

 52 Identification results for Swift's hardening law and Hill'48 yield criterion

	Swift's hardening law			Hill'48 yield criterion		
	σ 0 (MPa)	n	K (MPa)	F	G	N
	166.4	0.31	593.9	0.5503	0.3439	1.4797
	Normalised yield stresses σ α		Plastic anisotropic coefficients r α	
	σ 0	σ 45	σ 90	r 0	r 45	r 90
	1.0	1.02	0.91	1.90	1.15	1.19
	Normalised yield stress values and plastic anisotropic coefficients calculated based on the obtained parameters	

Table 5 . 2 5

 52 Calibration of Anisotropic Plasticity Models with an Optimized Heterogeneous Test and the Virtual Fields Method

	3.VFM -Single test calibration methodology

  ).

	  ref									
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  . It was assumed a uniaxial

		0.12				0.12
	Major strain [-]	0.02 0.04 0.06 0.08 0.1		0.1 mm 0.4 mm 0.8 mm 1.26 mm 1.56 mm	Major strain [-]	0.03 0.06 0.09	Uniaxial tension (Isotropy)
		0				0
		-36 -24 -12	0	12 24 36		-0.06 -0.045 -0.03 -0.015	0
		Reference coordinate x [mm]			Minor strain[-]
		(a1)					(a2)
		0.12				0.12
				0.1 mm		
	Major strain [-]	0.02 0.04 0.06 0.08 0.1		0.5 mm 0.8 mm 1.2 mm 1.48 mm	Major strain [-]	0.03 0.06 0.09	Uniaxial tension (isotropy)
		0				0
		-36 -24 -12	0	12 24 36		-0.06 -0.045 -0.03 -0.015	0
		Reference coordinate x [mm]			Minor strain[-]
		(b1)					(b2)
		0.12		0.1 mm		0.12
	Major strain [-]	0.02 0.04 0.06 0.08 0.1		0.4 mm 0.8 mm 1.6 mm 2 mm	Major strain [-]	0.03 0.06 0.09	Uniaxial tension (isotropy)
		0				0
		-36 -24 -12	0	12 24 36		-0.06 -0.045 -0.03 -0.015	0
		Reference coordinate x [mm]			Minor strain [-]
		(c1)					(c2)

Table 1 :

 1 Results of the calibration with a single test. ϕ ini , ϕ fin are the initial and final values of the objective function and Iter. is number of iterations in the Levenberg-Marquardt method.

	6 [-]•10 6	[-]

  Internal virtual work (IVW) vs external virtual work (EVW).The IVW is plotted for the initial (IVW ini) and final (IVW fin) sets of parameters using the first virtual field U * 1 .

	Virtual work [kN•mm]			EVW_V1 IVW_ini_V1 IVW_fin_V1 EVW_V2 IVW_ini_V2 IVW_fin_V2 EVW_V3 IVW_ini_V3 IVW_fin_V3	
	.8	1.6	2.4	3.2	4.0	4.8
			u x [mm]			
	Figure 11:					

  Figure 14: Comparison of experimental (Exp) and numerical (Num) load curves. The numerical load curves are obtained through FE analysis with the final sets of parameters presented in Table 1: (a) V1, (b) V2 and (c) V3.
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Table 2 :

 2 Results of the calibration with three tests. ϕ ini , ϕ fin are the initial and final of values of the objective function and Iter. is number of iterations in the Levenberg-Marquardt method.
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  show a deterioration of the predictions. Still, 22 90 4.Contributions to the calibration of thermo-mechanical constitutive models
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This section provides an overview of four inverse analysis methods, namely the Finite Element Model Updating, the Constitutive Equation Gap Method, the Equilibrium Gap Method and the Virtual Fields Method. The implementation of each method is presented with the aid of flowcharts representing the algorithms. The pros and cons of each method are also discussed, and a comparative study on linear elasticity and non-linear plasticity under the same conditions is presented. This comparative study focuses on the accuracy of each method, with and without the presence of noise, and on computational performance. A simple numerical example is introduced to compare the methods.
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J.M.P. Martins be the best parameter set to extrapolate the model capabilities. Therefore, a common strategy to overcome this obstacle is to exclude the parameters with the lowest sensitivities from the calibration process. Based on the previous results, the parameter A is the obvious candidate and can be assumed as a known variable.

Fig. 8. Results for the identification with a virtual database with noise, assuming a fixed value for parameter A: a) evolution of the objective function for two different initial sets, b) and c) evolution of the material parameters for the Inf_set and Sup_set initial sets, respectively.

In the following analysis, the parameter A is fixed to the reference value, 205.21 MPa (see Table 1). Fig. 8 shows the results for this case. In Fig. 8 a), the final value of the objective function for the two solutions is approximately the same: . The significant improvement is shown in Fig. 8 b) and c). In both cases, the material parameters converge for similar values, which are very close to the reference ones. The maximum error value is 7% for the parameter m. Moreover, the convergence behaviour of the material parameters is substantially more stable and faster for all material parameters.

Excluding parameter A of the calibration process solves the non-uniqueness problem and improves the stability of the problem. In addition, the retrieved parameters are closer to the reference set, which means an improvement of the robustness of the methodology.

Conclusions

In this work, a methodology to calibrate thermo-elastoviscoplastic constitutive models based on full-field data combined with a FEMU-based approach is proposed. The goal of this methodology is to reduce the number of tests involved in this type of calibration and make the process more straightforward. Therefore, heterogeneous thermo-mechanical tests performed at different average strain rates on a Gleeble tensile testing equipment are utilised to build the database required for the calibration process.

The analysis of this new methodology based on virtual tests revealed that the simultaneous calibration of all the terms in the Johnson-Cook model is possible. The temperature and strain rate terms are easily calibrated. Nevertheless, low sensitivity to parameter A (initial yield stress) has been revealed, which also has led to the non-uniqueness of the final solution. Therefore, the possibility of considering this parameter as a known variable was tested, which indeed solved the obstacle of nonuniqueness of the solution. Moreover, this scenario improves the robustness of the proposed methodology in the presence of noise.

Based on these promising results, the next step is to evaluate the performance of the proposed methodology with real experimental data. 
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