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1. INTRODUCTION 

1.1 AUTOIMMUNE DISEASES: a chemist’s point of view 

1.1.1 Immune system and autoimmune diseases  

 

The immune system is the host system composed of physical, biological, and chemical 

barriers and mechanisms whose purpose is to avoid the penetration and the subsequent 

damages caused by several types of exogenous molecules, e.g. pathogens such as 

viruses or bacteria. An immune response is based on a complex interplay of highly 

specialized components and can be humoral (antibody-mediated), cell-mediated, or 

both. In many species such as humans, there are two subtypes of immune system: innate 

and adaptive.  

The innate immune system consists of the first response mechanisms against most 

exogenous factors, thanks to its ability to recognize common non-self molecular 

profiles, e.g., carbohydrates moieties belonging to the cell wall of pathogens. 

Conversely, the adaptive immune system, which is found only in vertebrates, is 

characterized by a slower but much higher specific response against a given pathogen. 

It can produce an immunological memory after the first contact with the exogenous 

agent in order to increase its protective efficacy in case of subsequent encounters with 

the same pathogen. The clonal expansion of a specific subset of leukocytes, B and T 

lymphocytes (cell-mediated response), produced by stem cells in the bone marrow, 

composes the adaptive immune system. T lymphocytes (or T cells) expose T cell 

receptors (TCRs) on their surface and can recognize the pathogen only with the 

assistance of the antigen-presenting cells (APC), such as dendritic cells. T cells carry 

out their action by producing and releasing cytokines (CD4+ T cells) in order to 

enhance the immune response or by destroying infected cells (CD8+ T cells). 

Differently, B lymphocytes (or B cells) act through B cell receptors (BCRs) that are 

able to recognize the pathogen by detecting linear or conformational portions of it, 

called epitopes. They produce antibodies that specifically interact with pathogenic 

antigens, subsequently remaining in the immune system for several years leading to 

immunological memory.  

In a healthy organism, the adaptive immune system must correctly distinguish self- 

from non-self. The adaptive immune system is partially supported in this recognition 

by the Major Histocompatibility Complex (MHC), or Human Leukocyte Antigen 
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(HLA) in humans, a set of polymorphic genes which encode for several cell-surface 

proteins or peptides. These molecules can be classified as MHC class I and II. MHC 

class I molecules are short peptides (8-9 amino acid residues) exposed on the cell 

surface and presented in order to indicate a possible intracellular infection to CD8+ T 

cells and leading eventually to the apoptosis. MHC class II molecules, expressed by 

APCs, are longer than those of class I (15-30 amino acid residues). After a proteolytic 

cut of a non-self antigen, its epitope fragment is presented by these molecules to the 

CD4+ T cells in order to activate B cells and produce specific antibodies.  

On the other hand, B cells are capable of distinguishing self- and non-self without the 

assistance of MHC proteins, thanks to the specificity of their BCRs. The interaction 

between B cells and the corresponding non-self antigen plus the additional signal from 

CD4+ leads to the production of specific antibodies[1,2]. 

When the immune system loses the ability to correctly recognize self, unharmful 

molecules, leading to the autoreactivity against self-antigens, the outcome is the onset 

of an autoimmune condition. The production of autoantibodies and/or the appearance 

of activated lymphoid cells against the organism itself can cause critical damages to 

organs and tissues, ultimately promoting the dysregulation of numerous endogenous 

biochemical processes.  

Autoimmune diseases are estimated to affect about 3-5% of the world population, with 

high variability in gender, age, and geographic distribution[3]. Autoimmune thyroid 

disease and type I diabetes are the most common of these conditions, but other critically 

disabling autoimmune diseases include multiple sclerosis, systemic lupus 

erythematosus, rheumatoid arthritis, demyelinating monoclonal gammopathies, and 

many more. They can be organ-specific or systemic, but the molecular mechanisms and 

the triggering causes underpinning the breaking of immune tolerance remain unclear 

for most autoimmune pathologies. Generally, autoimmune diseases are acknowledged 

as multifactorial diseases, including both genetic predisposition and environmental 

factors as possibly involved in their pathogenesis (Figure 1) [3].  
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Figure 1 - Environmental factors in autoimmunity. Multiple environmental factors have been implicated 

in the development of autoimmune diseases. ‘Molecular mimicry’ is the most common mechanism that 

activates autoreactive T and B cells. ‘Epitope spreading’ is a mechanism that results in the generation 

of multiple neo‐epitopes. In addition, by modulating innate and adaptive immunity, microbiota and 

nutrition (e.g. vitamin D, iodine and gluten) may also contribute to loss of tolerance.[3] 

 

1.1.2 Infections and clinical relevance of molecular mimicry 

 

Despite the tremendous ongoing research efforts in the field of immune-mediated 

diseases, little is known about the precise molecular mechanisms triggering the 

disruption of immune tolerance and misrecognition of “self” epitopes as foreign 

antigens[3,4]. Nonetheless, there is increasing evidence about the crucial role played by 

glycans and glycoproteins in the pathophysiology of several antibody-mediated 

diseases, and an association between alterations of the serum glycome and 

autoimmunity has been proposed[5]. More and more studies show the relevance of 

glycosylation to pathogen recognition, to the immune system control and immune cell 

homeostasis. Equally critical and maybe even connected is the glycans-antibodies 

interaction in the development of immune-diseases, including autoimmunity and cancer 

[6,7].  

The occurrence of carbohydrate-protein interactions as the first cell surface flags of 

cell-cell communication in case of infections and many other processes involving the 
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immune response plays a crucial role in the discrimination between “self” and “non-

self” recognition[8].  

Genetic predisposition is not sufficient alone to elicit the complex mechanisms at the 

base of many pathologies. It is now accepted that environmental factors such as 

infections have been implicated in the onset and/or promotion of aberrant immune 

response[9] [10] [11].  

Among the various biological processes that could break the physiological balance, i.e., 

tolerance, resulting in autoimmunity, the most relevant one is the so-called ‘molecular 

mimicry’ effect. Many eukaryotic and prokaryotic pathogens express glycoconjugates 

on their surface or secreted products. Glycans expressed by pathogens can include 

terminal glycostructures, that mimicking human biomolecules trigger an immune 

response to the pathogen leading to cross-reactive antibodies. The best-studied 

examples of pathogen-induced autoimmune conditions are Guillain-Barré syndrome 

(GBS) and its variant Miller Fisher syndrome [12].  

GBS patients present antibodies against gangliosides, i.e., sialic acid-containing 

glycolipids and major constituents of the nerve cell membrane. The molecular mimics 

are glycans expressed on lipooligosaccharides (LOS) of preceding infectious 

organisms, in particular Campylobacter jejuni, that can induce an antibody response to 

these carbohydrate antigens[13] [14]. The specificity of the anti-ganglioside 

autoantibodies is closely related to the nature of the preceding infections in GBS. 

Specific anti-ganglioside GM1, GM1b GD1a, and GalNAc-GD1a antibodies are related 

to a GBS form affecting only motor nerves, whereas antibodies against ganglioside 

GQ1b are associated with the Miller Fisher syndrome. The Miller Fisher syndrome is a 

subform of GBS affecting predominantly the nerves that innervate muscles governing 

eye movements. Other identified ganglioside mimetics are sialyllactose derivatives in 

non-typeable Haemophilus influenzae and Haemophilus influenzae b-type[15] [16].  

Despite many epidemiological and animal studies supporting the mimicry 

hypothesis[17], the role of autoantibodies and the connection with exogenous infective 

agents remains only speculative for most autoimmune diseases. For some of them, such 

as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), self-antigens 

recognized by the host immune system have been identified but the etiology has not 

been clarified[4][18]. However, the crucial role of infective agents in triggering 

autoimmunity is highly suspected, yet the lack of a cross-reactive exogenous antigen 

hampers the assessment of a precise response pathway[19] [20].  
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The initial host response to a viral or microbial infection can alternatively produce a 

cross-reaction with an appropriate host-antigen, leading to a “molecular mimicry” 

mechanism that may degenerate in an autoimmune disease. Molecular mimicry was 

firstly postulated because of the evidence of existing cross-reactivities between 

exogenous elements and host ‘self’ determinants while generating monoclonal 

antibodies towards viral proteins[21]. Other epidemiologic and clinical evidence, such 

as infections often preceding autoimmune diseases or homozygote twins seldom 

suffering from the same autoimmune disorders, also contributed to developing the 

hypothesis of a mimicry mechanism. In fact, many pieces of biological evidence 

support the existence of a mismatch between exogenous pathogen antigens and “self” 

cellular components. Therefore, molecular mimicry is highly contemplated as the 

primary cause for many autoimmune pathologies and is a proof-of-concept to uncover 

its etiologic agents[22].  

 

1.1.3 Autoantibodies as biomarkers  

 

Autoantibodies with pathogenic potential targeting extracellular protein domains have 

been associated with a vast plethora of diseases of both the central nervous system 

(CNS)[23] and the peripheral one (PNS)[15]. Their isolation and characterization are 

crucial to understanding their role in a specific disease and would provide a 

fundamental achievement both for diagnostics and therapeutics. 

In general, antibodies (Abs) or immunoglobulins (Igs), that are secreted by B 

lymphocytes, have two distinct functions: one involves the specific non-covalent 

binding to their target antigens (Ags); the other is to elicit an immune response against 

the bound Ag by recruiting other cells and molecules[24]. 

From a structural point of view, an Ig molecule is a quaternary, Y-shaped protein 

composed of two identical light chains (L, ≈ 25 kDa) coupled to two identical heavy 

chains (H, ≈ 55 kDa) through disulfide bridges. Each chain has a variable (V) region 

that interacts with the antigen and a constant (C) region. The two N-terminal portions 

of the Ab are called antigen-binding fragments (Fab), and they are composed of one 

constant and one variable domain of each of the heavy and the light chain (VL, CL, 

VH1, CH1). The C-terminal fraction of the Ig molecule is the crystallizable fragment 

(Fc), which is composed of two or three (depending on Ab isotype) identical 

polypeptide chains (Figure 2).  
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Functionally, the CH domains of Fc region confer effector properties such as 

complement binding, half-life length, interactions with Fc receptors, and the class, or 

isotype, of the Ig. In contrast, the V domains provide specificity to the Ig molecule by 

functioning as the direct contact between the Ig and its Ags. In fact, the terminal part 

of Fab region contains the six hypervariable loops commonly termed complementarity 

determining regions (CDRs), that are often thought to contain the paratope, i.e., the 

portion of the Ab which specifically interacts with the epitope of the corresponding 

antigen, even though recent studies suggested that this clear functional separation 

between the V and C regions may be an oversimplification[24,25].  

 

 

Figure 2 - Crystal structure of intact IgG1 (PDB code: 1IGY)[25] 

 

The reversible Ag-Ab interaction is non-covalent, and when the equilibrium is reached, 

the rate of [Ab-Ag] complex formation is equal to the rate of dissociation into its 

components [Ab] + [Ag]. The ratio of the reaction rate constants kon/koff can be used to 

define an equilibrium or affinity constant (KA =1/KD), between the antibody and its 

antigen. The KD value relates to the concentration of antibody and so the lower the 

KD value (lower concentration) and thus the higher the affinity of the antibody. When 

describing the strength of the antigen-antibody complex, affinity and avidity are always 

mentioned. 

Affinity is the strength of binding between an epitope and an antibody’s antigen binding 

site. It is typically measured and reported by the equilibrium dissociation constant (KD), 
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which is used to evaluate and rank order strengths of bimolecular interactions. The 

binding of an antibody to its antigen is a reversible process, and the rate of the binding 

reaction is proportional to the concentrations of the reactants. KD and affinity are 

inversely related. 

Avidity gives a measure of the overall strength of an antibody-antigen complex and 

depends on the affinity of the antibody for the epitope, the valency of both the antibody 

and antigen and the structural arrangement of the parts that interact. 

All antibodies are multivalent, and the greater an immunoglobulin’s valency (number 

of antigen binding sites), the greater the amount of antigen it can bind. Similarly, 

antigens can demonstrate multivalency because they can bind to more than one 

antibody. Multimeric interactions between an antibody and an antigen help their 

stabilization. 

A favorable structural arrangement of antibody and antigen can also lead to a more 

stable antibody-antigen complex. Many immunoassays like Western blotting and 

ELISA exploit this principle, and therefore they are routinely used in autoimmune 

research.  

 

 

Figure 3 - An immobilized antigen (a high local concentration of available epitopes) provides more 

opportunity for the antibody-antigen complex to form than free antigen in solution over the same time 

period. Once the first antigen binding arm of an antibody attaches to an antigen on a solid support, the 

chances of a bivalent interaction are greatly improved[26].  

 

Since most Ags are highly complex and may present numerous epitopes, Abs are also 

classified as polyclonal and monoclonal. Whereas polyclonal Abs are produced by 

different B cell lines and target the same antigen by interacting with different epitopes, 

monoclonal Abs are secreted by a single B lymphocyte clone that reacts against a 

unique epitope of a specific antigen[27].  
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Additionally, immunoglobulins are produced against intact antigens in soluble form, 

and thus preferentially identify surface epitopes that can represent conformational 

structures that are non-contiguous in the antigen’s primary sequence. This ability to 

identify components of the antigen independently of the rest makes it possible for the 

B cell to discriminate between two closely related antigens, each of which can be 

viewed as a collection of epitopes. It also permits the same antibody to bind different 

antigens that share equivalent or similar epitopes, a phenomenon that is named “cross-

reactivity”[28]. 

The overall abundance of Igs in the serum of most individuals is approximately 20 

mg/mL, but the presence of each isotype varies greatly depending on several conditions. 

In humans, the antibody isotypes consist of four immunoglobulin G (IgG) subclasses 

(IgG1, IgG2, IgG3, and IgG4), two IgA subclasses (IgA1, IgA2), IgM, IgD, and IgE.  

All the different isotypes are assembled with the similar Ig basic unit consisting of two 

heavy chains and two light chains, but both IgM and IgA can form multimers. IgM 

molecules are usually secreted as pentamers (more rarely as hexamers), in which single 

Ig units are linked to each other by disulfide bonds in the CH4 region, while an 

additional polypeptide chain (J-chain), which is bound to two of the monomers through 

disulfide bonds, facilitates secretion at mucosal surfaces. IgA is normally present as a 

dimer, whereas IgG subtypes and IgE differ only slightly in their conformation (Figure 

4). Noteworthy, the constant domains of the H chain can be switched to allow altered 

effector function while maintaining antigen specificity. 

 

 

Figure 4 – Antibody isotypes and their important properties. 

 

Autoantibodies, especially IgG and IgM types, are found in many autoimmune 

disorders, including diseases affecting the peripheral nervous system (e.g. Guillain–

Barr e syndrome and other peripheral neuropathies), the central nervous system (e.g. 
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neuromyelitis optica, multiple sclerosis and limbic encephalitis) and the neuromuscular 

junction (e.g. myasthenia gravis), as well as in neuropsychiatric disorders and in 

paraneoplastic syndromes. Some of these antibodies are likely to play an important 

pathogenic role in disease development, whereas in some cases others might be merely 

useful biomarkers for the disease, without direct pathological relevance[29]. The 

antibody isotype and the target antigen against which the antibody is directed are 

essential aspects of an autoantibody and they must be thoroughly unveiled while 

considering its pathogenicity. Pathogenic autoantibodies may act through different 

mechanisms, including antibody-mediated cell lysis, opsonization of target proteins for 

attack by macrophages, crosslinking of Fc receptors, blocking or destroying receptors 

involved in neurotransmission or cellular homeostasis, and blocking of repair 

mechanisms such as remyelination. 

Functionally, IgM is the very first Ab class produced by the immune system following 

the infection. 

Generally, while monomeric IgM molecules have low affinity due to their immaturity, 

high avidity can be attained by means of multimeric interactions between the 

pentameric secreted antibody and the antigen, especially if that antigen contains 

multiple repeating epitopes itself. IgM act by opsonizing (coating) antigen for 

destruction and anchoring complement. The pentameric nature of the antibody renders 

it very efficient in this process. IgM antibodies are associated with a primary immune 

response and are frequently used to diagnose acute exposure to an immunogen or 

pathogen. IgM antibodies tend to be more poly-reactive than other isotypes, which 

allows IgM-bearing B cells to respond quickly to a variety of antigens. Some of these 

relatively low-affinity IgM antibodies not only participate as a first line of defense but 

are also thought to play a protective regulatory role in several diseases[30,31]. In fact, 

some studies suggested that despite the greatly elevated levels of autoreactive IgM in 

various autoimmune diseases, they are questionably responsible for pathogenesis. 

Rather, this effect is hinted to reflect a compensatory mechanism by which the 

increased IgM might diminish systemic chronic inflammation, accumulation of 

autoantigens, and/or the potential for increased exposure of antigen-reactive B and T 

cells to self-antigens. According to this hypothesis, the presence of autoantibodies of 

the IgM isotype seem to be protective, while antibodies with similar specificity, but of 

the IgG isotype, are often pathogenic[32,33].  
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In other words, even though IgG and IgM autoantibodies in patients with autoimmune 

disease have similar specificities and can bind to the same antigens, mostly the self-

reactive IgG antibody is considered to be pathogenic. This conclusion is in accordance 

with the thesis that the Fc region, rather than the antigen-specificity of Fab region, is 

the real responsible of the biological functions of Abs, probably through binding to 

specific Fc receptors. Even though it is still speculative, pathogenic autoantibodies tend 

to be drawn from the somatically mutated, high affinity IgG population.  

During the secondary immune response, the most stable IgG become the major Igs class 

produced by the immune system, about 75% of the circulating Igs, becoming the most 

abundant class of antibodies in serum. It has the longest serum half-life of all 

immunoglobulin isotypes. It is also the most extensively studied class of 

immunoglobulins. Based on structural, antigenic and functional differences in the 

constant region of the heavy chain, particularly CH1 and CH3, we can distinguish four 

IgG subclasses (IgG1, IgG2, IgG3 and IgG4). IgG1 and IgG3 antibodies are generally 

induced in response to protein antigens whereas IgG2 and IgG4 are associated with 

polysaccharide antigens. 

Pathogenic or not, the characterization of autoantibodies as biomarkers of an 

autoimmune condition is in any case a major goal toward which many efforts still need 

to be done in order to unveil the biomolecular mechanisms and to obtain diagnostic and 

therapeutic improvements. 

When investigating these autoantibodies, it is important to choose appropriate methods 

to detect them, to check the isotype of the antibody, as well as the specificity, as that 

will determine the functional role that the antibody could play, and to think about the 

normal function of the target antigen, and consider how the antibody could cause the 

clinical symptoms and signs shown by the patients[29]. 

 

 

1.1.4 Peptide-based approaches in autoimmune diseases 

 

An epitope is defined as the portion of the antigen interacting with the paratope of the 

antibody. This definition is strictly operational[34] and includes the concept of cross-

reacting epitopes, i.e., two different molecules recognized by the same antibody. At the 

immunological level, the concept of “molecular mimicry”, underpinned by this 

definition, has been used to explain the break of immunological tolerance leading to 
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autoimmune disorders. A molecule, such as a peptide, which mimics the structure of an 

epitope is called “mimotope”. This term was coined by H.M. Geysen in 1986 referring 

to peptide sequences causing an antibody response similar to the one elicited by the 

discontinuous protein antigenic determinant[35].  

 

 

Figure 5 – Cartoon representing antibody paratopes and the concept of cross-reactivity. Two structurally 

unrelated molecules can be recognized by the same antibody, as in the case of the synthetic probe 

CSF114(Glc) cross-reacting with bacterial hyperglucosylated HMW1 adhesin (up) and a cyclic 

octapeptide that binds the murine monoclonal antibody specific for HNK-1 trisaccharide (down).[36] 

 

Peptides represent unique chemical tools because of the amino acid diversity and of the 

different type of synthetic modifications, which can affect the chemical structure, the 

spatial conformation and the biological activity. Thanks to their ability to mimic 

proteins, glycans and/or glyconjugates, several “peptide mimetics” have been used as 

synthetic immunological probes to mimic the native antigens, especially when post‐

translational modifications are supposed to trigger the autoimmune response[37]. In this 

perspective, the development of synthetic peptides interacting with high affinity with 

autoantibodies, biomarkers of autoimmune diseases, can help the set up of 

diagnostic/prognostic peptide‐based immunoassays particularly useful to guide 

therapeutic treatments[38].  

Additionally, peptide-based immunotherapy has been evaluated with success in several 

appropriate experimental animal models, although very few peptides are currently 

evaluated in clinical trials for the treatment of human autoimmune diseases[39]. 
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Glycans are now emerging as preferred epitopes being involved in many processes such 

as cell-cell communication and pathogenic recognition. Because of the intrinsic 

difficulty in obtaining pure carbohydrate derivatives both by isolation from a natural 

source and via chemical, and/or enzymatic synthesis, alternative strategies to 

experimentally reproduce and investigate glycan-protein interactions are 

challenging[36].  

The exploitation of peptides and glycopeptides reproducing antigen-antibody 

interactions holds the great potential to answer many unresolved questions in chemical 

immunology. Compared to proteins and glycans, peptides are more accessible to 

produce and to modify, i.e., efficiently managing their molecular structure to fine-

tuning biological activity and stability. Rational design of mimetic molecules as 

antibody binders can include the incorporation of non-proteinogenic amino acids and 

altered backbones, providing an expanding list of different peptidomimetics, such as 

peptoids, β-peptides, retro-inverso peptides, etc.[40–42]. 

These peptide mimetics may be very precious at different levels:  

1) to investigate the molecular nature of the antibody-antigen interaction, to reveal the 

actual epitope and to understand the underlying mechanisms of the immune tolerance 

disruption; 

2) as probes for diagnostic applications and to monitor the disease activity;  

3) to produce peptide drugs either blocking glycan-protein interactions or stimulating 

the immune system for vaccine purposes (internal use); 

4) as molecular “baits” to fish out specific autoantibodies from patients’ sera (external 

use for immunoaffinity columns). 

 

1.1.5 Isolation of antibodies and plasmapheresis 

 

Unravelling the multi-layered network architecture of the immune system in diseases, 

by elucidating the intricate communication between immune cells and the cryptic 

interactions between antigen epitopes and antibodies, is the ultimate ambition for 

immunologists. Despite the tremendous advances that have been achieved in the last 

decades, the goal of decoding the mechanisms and the causes underlying the disruption 

of immune tolerance remains unfulfilled for most of autoimmune pathologies. 

Therefore, it is not surprising that basically none of them has a cure. However, for many 

diseases, treatments based on the control of the overactive immune response and the 
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reduction of pain and inflammation are currently available. Along with physical 

therapy, immunosuppressants, corticosteroids, anti-inflammatory drugs, and cell or 

tissue transplantation can all contribute to alleviate the symptoms, but they do not alter 

the overall chronic course of diseases[43]. For example, immunosuppressants (i.e., 

cyclosporine A) inhibit the activity of the immune system by reducing the proliferation 

and function of cells associated with immune reactions and show partial efficacy in 

many autoimmune diseases. However, their therapeutic effects are dependent on 

chronic drug administration that can lead to systemic immune suppression, with the 

potential risk of development of cancer and infections[44].  

An alternative that could be able to modify the outcome of the diseases by restoring 

self-tolerance toward autoantigens may be found in antigen-specific immunotherapy 

(ASI). With a similar approach to vaccines, ASI is based on the introduction of low 

levels of stimulatory autoantigens to antigen presenting cells (APCs) in order to correct 

the immune responses[45,46]. The great advantage of this intervention is specificity, since 

ASI selectively targets disease-relevant T cells, acting directly through T cell receptor 

(TCR) on effector T cells and/or via regulatory T cells that secrete anti-inflammatory 

cytokines, while leaving the normal immune system intact. Many initial experimental 

approaches, such as oral antigen administration, particulate autoantigen delivery, 

altered peptide ligands, and dose escalating immunotherapy, have shown efficacy in 

preclinical models, but the results were not as encouraging in human clinical trials. 

However, the modification of autoantigen through functional conjugation to antibodies, 

polymers, nanoparticles (NPs), or small molecules have already been successfully 

applied in vaccines, hence it may hold promising potential for clinical translation also 

for autoimmune diseases. Therefore, there is an increasing interest in developing 

bioconjugate strategies to incorporate additional immunomodulatory functions into 

autoantigens, with the final aim to induce autoantigen-specific tolerance even in 

humans[44].  

Nevertheless, skepticisms about the disease specificity, mechanistic underpinnings, 

developability and translational potential in autoimmune conditions for most of these 

approaches persist[47]. So, to date, no FDA-approved ASI is available for treating 

patients with autoimmune diseases and induction of antigen-specific tolerance to 

dominant immune responses driving autoimmunity remains an unmet challenge. 

Considering antibody-mediated autoimmune diseases, another striking triumph would 

be the selective removal of pathogenic autoantibodies. The tremendous flaw of current 
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therapies that aim to deplete pathogenic autoantibodies, decrease expanded 

autoantibody-producing B-cell clones, and/or interfere with antibody-effector 

mechanisms, is the lack of efficiency and selectivity. Therefore, so far very few 

satisfactory treatments are available. A more efficient and safer therapy might be 

achieved with antigen-specific agents that selectively target the autoantibodies. In 

general, there is a strong need for personalized, new disease-specific therapy to avoid 

nonspecific immunosuppression. An effective demonstration of autoantibody-specific 

treatments could be achieved by the preparation of specific autoantigens-grafted 

columns for plasmapheresis devices. 

Plasmapheresis or therapeutic apheresis (TA) is a technique consisting in separating the 

plasma from the cellular part of the blood and then either replacing or cleaning it. For 

therapeutic purposes, plasma centrifugation or membrane-based plasma filtration are 

used in a variety of diseases to remove plasma components such as antibodies, proteins, 

cryoprecipitates and circulating immune complexes[48]. 

Therapeutic plasma exchange (TPE) surely represents a valid treatment option in 

patients with systemic autoimmune diseases because most of their clinical 

manifestations are related to the presence of antibodies or immune complex 

deposition[49]. More and more retrospective studies assess that TPE is safe and effective 

in patients with severe manifestations of several autoimmune diseases, such as 

myasthenia gravis, neuromyelitis optica, Guillain‐Barré variants[50,51]. However, this 

procedure is usually nonselective, leading to the removal of all the key plasma 

components that are discarded and replaced with some combination of plasma 

substitutes such as albumin, donor plasma or colloids. Moreover, the administration of 

these compounds could expose patients to potential side effects. 

Aiming to selectively remove any pathogenic substances, immunoadsorption (IAS) 

therapy was suggested as an alternative to plasma exchange for removing pathogenic 

substances from the plasma of patients with autoimmune diseases refractory to 

conventional treatments[52]. Unlike TPE, IAS is a blood-purification technique that 

enables the selective removal of immunoglobulins from separated plasma through high-

affinity adsorbents, without removing plasma proteins such as albumin and clotting 

factors. IAS is currently used for treatment of a large variety of antibody-mediated or 

immunological diseases (e.g., humoral transplant rejection, lupus nephritis, multiple 

sclerosis, Guillain-Bare syndromes)[53–55]. Adsorption generally is based on columns 
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containing nanoparticles linked to the high affinity absorber, but also alternative 

adsorbents such as membranes, monoliths and cryogels have been developed[56,57]. 

During the last years, tremendous efforts have been made to develop more and more 

selective apheresis procedures, targeting a specific molecule, antibody, or cellular 

element, thereby preserving plasma proteins and avoiding replacement solutions. In 

particular, columns containing immobilized antigens can be designed to remove only 

the pathogenic autoantibodies that are reactive toward that specific antigen, leaving all 

other immunoglobulins and plasma constituents untouched (Figure 6). The greatest 

limitation of these therapies is that many of the developed plasma processing 

technologies are still investigational, costly and not currently approved for clinical use, 

mainly because of the uncertainty of shelf life and stability of immunoadsorption 

columns[48].  

 

Figure 6 – Schematic representation of  antigen-specific immunoadsorption therapy, where the patient’s 

plasma separated with a plasma separator flows into a plasma adsorption column which selectively 

removes harmful substances.[58] 

 

However, the antigen-specific immunoadsorption would provide the selective depletion 

of only the pathogenic autoantibodies, reducing the possibility of side effects while 

maximizing the benefit. Therefore, developing such a system, i.e. antigen-grafted 

nanoparticles, membranes or gels for the stationary phase of high affinity columns, 

could be of great impact for the treatment of antibody-mediated autoimmune diseases.  
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Of course, an essential feature is the knowledge of the antigen recognized by 

autoantibodies in a certain autoimmune condition, which is unfortunately not granted 

yet for the vast majority of them. Nevertheless, few studies going in this direction 

reported very promising initial results of this proof-of-concept applied to autoimmune 

diseases such as Miller Fisher syndrome and other GBS variants[56,59], membranous 

nephropathy[60], myasthenia gravis[61]. 
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1.2 MULTIPLE SCLEROSIS: a complicate puzzle 

1.2.1 Overview of Multiple Sclerosis 

 

Multiple sclerosis (MS) is a chronic inflammatory demyelinating and 

neurodegenerative disorder of the central nervous system (CNS). It is the most frequent 

cause of nontraumatic neurological disability among young adults in the developed 

countries. MS is an autoimmune disease, but indeed has a very complex 

pathophysiology, with a highly heterogeneous clinical presentation and course. 

According merely to phenomenological evidences, it is currently classified into three 

main types of clinical subsets: relapsing–remitting (RRMS), primary progressive 

(PPMS), and secondary progressive (SPMS). In the majority of cases (85–90%), MS 

presents with a relapsing-remitting course, characterized by discrete episodes of 

neurological dysfunction (relapses or exacerbations) separated by clinically quiescent 

periods (remissions). The frequency of relapses can vary widely among patients as well 

as during different periods in an individual patient’s disease course. The rate, severity, 

and symptoms of relapses are highly variable and unpredictable. At present no clinical 

features or biomarkers that are predictive of relapse rate have been identified. The signs 

and symptoms that occur during relapses are also diverse and unpredictable, since 

lesions can form at any site in the CNS, spanning the cerebrum, brainstem, cerebellum, 

optic nerves, and spinal cord. MS lesions are readily visualized in CNS white matter 

via magnetic resonance imaging (MRI). Symptomatic lesions generally occur in 

locations where nerve fibers converge to subserve a common function. During RRMS, 

relapses decrease in frequency over time and sometimes disappear completely. 

However, most of the times a gradual accumulation of disability leads to the secondary 

progressive (SP) stage, with different symptoms and signs that characterize 

neurological decline. The current management of SPMS involves alleviation of 

symptoms, optimization of residual functions, and prevention of complications.  

PPMS is distinguished from SPMS by the absence of an antecedent RR phase, but the 

clinical features are the same. However, PPMS tends to appear later in age and without 

a distinction between male and females. 

The hallmark of MS pathology is the focal demyelinated lesion, or “plaque,” with 

perivascular inflammatory infiltration and BBB breakdown. Inflammation, 

demyelination, remyelination, neurodegeneration and glial scar formation occur either 

focally or diffusely affecting both the white and grey matter in the brain and spinal cord. 
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These pathological features are present in both RRMS and SPMS, as well as in PPMS, 

although they vary over time both quantitatively and qualitatively between these three 

forms of MS and among individuals with the same form of the disease, thus contributing 

to the heterogeneity in phenotypic expression of the disease and response to 

therapies.[62] 

 

1.2.2 Cause and pathogenesis 

 

Although the aetiology of MS unknown, evidence suggests that the disease may result 

from a complex interaction between the environmental factors, the genetic background 

that defines individual susceptibility, and the immunological and physiological settings 

of the individual. The majority of MS susceptibility loci map to regions containing 

genes implicated in immunological pathways, including human leukocyte antigen 

(HLA) class II molecules, the interleukin-2 (IL-2) receptor, and the IL-17 receptor. 

Relapse rates decline during the third trimester of pregnancy, in association with high 

serum levels of estriol. Environmental risk factors include low vitamin D levels, 

exposure to foreign pathogens in adulthood, cigarette smoking, and childhood obesity.  

Although MS is indeed a heterogenous disease with disparate inflammation processes 

throughout its progression, autoimmune component, i.e. T- and B-cell responses, 

against CNS antigens remain a central feature in the current view of MS pathogenesis.  

Mechanisms of the pathophysiology of MS involve mainly three physiological 

compartments: 1) the peripheral blood, in which immune processes mainly take place; 

2) the blood brain barrier (BBB), which breaks down to a point so that immune cells 

can pass into the CNS; and 3) the CNS, in which lesions mark acute sites of 

inflammation and neural damage, leading to the phenotypic displayed symptoms of 

disability. 

More and more evidences indicate that B cells, plasma cells, and, in particular, 

antibodies contribute to development and progression of MS. Critical goals of the MS 

research community at present are to better define the cellular and molecular 

mechanisms that link neuroinflammation to demyelination and axonopathy and to 

elucidate the pathogenic pathways that underlie clinical progression. Myelin antigens 

are the prevalent putative targets studied in the field due to the often primarily 

demyelinating nature of inflammatory CNS lesions. Within candidate myelin antigens, 

myelin oligodendrocyte glycoprotein (MOG) is probably the one that is most 
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investigated due to its extracellular location on the outermost myelin lamellae, which 

makes it an exposed target accessible to an initial autoimmune attack against properly 

myelinated axons. To date, no conclusive understanding exists on possible CNS target 

antigens against which the antibody response may be raised in MS. Empirical support 

for a pathogenic role of antibodies derives from the therapeutic approach of plasma 

exchange, which was found to be beneficial in a subgroup of MS patients with severe 

therapy-refractory relapses and antibody deposition within inflammatory CNS lesions. 

These data suggest that, in a subgroup of patients, peripherally produced CNS-directed 

antibodies may indeed contribute to MS pathogenesis. Besides these findings in MS 

patients, several observations derived from experimental CNS autoimmunity suggest 

that B cells and CNS reactive antibodies contribute in a pathogenic manner. 

In parallel to autoantibody studies, many researchers have reported on elevated 

antibody titers to a broad range of pathogens in MS patients. Along with the 

autoimmune hypothesis, it is assumed that infectious agents may play a significant role 

in the pathogenesis of MS. The antibody reactivities against various numbers of 

pathogens have been investigated in CSF and serum of MS patients.[63] 

Beside the prevalence of specific antibodies in MS, it is crucial to demonstrate a 

biological consequence of antibodies and their participation in one effector function 

leading to demyelination.  

 

1.2.3 Diagnosis 

 

The most widely used guideline for diagnosing MS is the McDonald criteria[64], 

although there is a desperate lack of univocal clinical features or biomarkers. 

Biomarkers are measurable indicators of normal biological and pathogenic processes, 

or pharmacological responses to a therapeutic intervention. A good biomarker should 

be precise and reliable, able to distinguish between MS disease and control, can detect 

inflammatory activity, as well as the degree of neurodegeneration and 

demyelination/remyelination, in order to get a more accurate picture of the disease 

status. Unfortunately, the absence of validation is a common problem with biomarkers 

of complex diseases such as MS. This could be due to a bias in statistical analysis or a 

scarcity of available data, but it also indicates difficulties in performing clinical 

validation studies. 
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In MS, most studies search for biomarkers within the CSF with the view that this is 

more likely to reflect CNS disease. The presence of unique oligoclonal bands and/or 

elevated IgG index in the cerebrospinal fluid CSF, indicative of primary antibody 

production in the CNS, supports a diagnosis of MS, but those findings are observed in 

a wide range of different neuroinflammatory conditions. However, blood-based 

biomarkers are of great clinical value, because of the ease with which blood can be 

obtained in a minimally invasive manner. 

Blood biomarkers may exist in MS if there is a systemic component of the disease, or 

if peripheral changes mimic central disease. Peripheral blood biomarkers can give 

important information regarding immune triggers of MS, as well as therapeutic efficacy 

of drugs administered. Additionally, blood has two properties that make it attractive for 

the search for biomarkers: 1) it is more easily accessible than other body tissues; and 2) 

the perfusion of blood through different organs and tissues can result in the addition of 

new proteins, or modification of existing proteins, which may vary according to specific 

physiological or pathological conditions. Thus, the blood can carry molecules derived 

from other tissues, reflecting the biological status of the body.  

For decades, self-reactive antibodies have been implicated to participate in the 

pathogenesis of multiple sclerosis (MS). A plethora of investigations attempted to 

identify the target antigens which these antibodies may be raised against. Some findings 

implicated that antibodies within the inflamed CNS may eventually recognize 

components of the myelin sheath; however, no unequivocal evidence of such CNS 

reactivity has been established to date. Pathophysiological and clinical complexity of 

MS inevitably leads to a great variety of potential biomarkers specific for diagnostics, 

prediction of disease course and optimization of therapeutic responses.[65] 

 

1.2.4 Current therapies 

 

Despite the tremendous research in the field and the massive improvements achieved, 

there is no definitive cure for MS. Nevertheless, with the approval of interferon-β1b by 

the US Food and Drug Administration (FDA) in 1993 for the management of MS, a 

new era of treatment of this incurable disease began. Before that date, corticosteroids 

were the only class of drugs available to treat MS. Corticosteroids can often accelerate 

the rate of recovery from multiple sclerosis (MS) relapses, but there is little evidence 

that they impact the ultimate degree of recovery or the future clinical course.  
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Nowadays, several different disease-modifying agents (DMAs) for patients with MS 

with different mechanisms of action and side effect profiles exist. Most of these drugs 

act on the immune system and suppress immune cells so that auto-reactive immune 

cells will be unable to attack myelin sheaths of neurons (Table 1and Table 2). They 

contributed significantly to reduce the annualized relapse rate and the frequency of 

gadolinium enhancing (acutely inflamed) MRI lesions. However, in spite of the clinical 

efficacy of these drugs, numerous and severe adverse effects have been reported in 

experimental studies and clinical trials. Therefore, the choice of DMAs must be 

customized on an individual basis, taking into account disease activity and risk 

tolerance. These medications include interferon-β1a intramuscular (Avonex), 

interferon-β1a subcutaneous (Rebif), interferon-β1b subcutaneous 

(Betaseron/Extavia), glatiramer acetate (Copaxone), natalizumab (Tysabri), fingolimod 

(Gilenya), teriflunomide (Aubagio), and mitoxantrone (Novantrone). Moreover, 

several clinical trials are being conducted to test various experimental agents in patients 

with MS, including alemtuzumab, dimethyl fumarate, laquinimod, rituximab, 

daclizumab, and cladribine[66–68]. 

 

Table 1 – Features of clinical usage of MS drugs (mechanism of action, form, dosage, route 

and frequency)[69,70] 

Drug name Usage Mechanism  Dosage 

Interferon beta 

1a  

Indicated for first line 

treatment of RRMS 

Effects on the 

endothelial cells 

of BBB 

 

Injection, 30 µg 

I.M. once a 

week or 44 µg 

S.C. three times 

a week 

Interferon beta 

1b 

Indicated for first line 

treatment of RRMS, 

SPMS 

Effects on the 

endothelial cells 

of BBB 

Injection, 250 

µg S.C. every 

other day 

Mitoxantrone  Immunosuppressive agent 

for second line treatment 

of RRMS, SPMS and 

PPMS 

Intercalating with 

DNA repair and 

inhibiting the 

topoisomerase II 

 

Injection, 12 

mg/m2 I.V. 

every three 

months or 8 

mg/m2 I.V. 

every month 

Natalizumab Immunosuppressive agent 

for second line treatment 

of RRMS 

Targeting the α4-

chain of α4β1 

integrin 

Injection, 300 

mg I.V. every 

month 

Fingolimod Immunosuppressive agent 

for second line treatment 

of RRMS 

Sphingosine 1-

phosphate (S1P) 

receptor 

modulator 

Cap.0.5 mg PO 

Qid, every day 
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Glatiramer 

Acetate 

Immunomodulatory agent 

for first line treatment of 

RRMS 

Binding to the 

major 

histocompatibility 

complex class II 

molecules 

Injection, 20 

mg S.C. every 

day 

Alemtuzumab Immunosuppressive agent 

for second or third line 

treatment of RRMS, 

SPMS and PPMS 

Humanized 

monoclonal 

antibody of the 

IgG1 subclass 

against CD52 

Injection, 12 

mg/d I.V. for 

five days 

followed by 12 

mg/d I.V. for 

three days one 

year after the 

first course 

Dimethyl 

Fumarate 

Immunomodulatory agent 

for first line treatment of 

RRMS 

It’s unclear by 

inducing 

lymphocytopenia 

Cap. Starting 

dose: 120 mg 

Bid for 7 days. 

P.O 

maintenance 

dose 240 mg 

Bid. P.O 

Terifluonomide Immunomodulatory agent 

for first line treatment of 

RRMS 

A 

noncompetitively 

and reversibly 

inhibition of 

mitochondrial 

enzyme dihydro-

orotate 

dehydrogenase 

(DHODH) 

Coated tab.14 

mg P.O every 

day 

Laquinimod Immunomodulatory agent 

for first line treatment of 

RRMS and SPMS 

Protection of 

neurons by 

decreases IL-17 

levels and 

migration of 

leucocytes to 

CNS 

Cap, 0.6-1.2 mg 

P.O once daily 

for every day 

Rituximab  Immunosuppressive agent 

for second line treatment 

of RRMS 

Depleting CD20+ 

B lymphocytes 

via cell mediated 

and complement-

dependent 

cytotoxic effects 

Infusion, 4×375 

mg/m2 or 1000 

mg at week 

Daclizumab Immunosuppressive agent 

for second or third line 

treatment of RRMS and 

SPMS 

Inhibiting of 

activation of 

lymphocytes 

(anti-CD25) 

S.C injection, 5 

ml once 

monthly 

Cladribine Immunomodulatory agent 

for first line treatment of 

RRMS 

Depleting both 

CD4+ and CD8+ 

lymphocytes 

0.07 mg/kg/day 

sc. 5 days/ 

month or 0.1 

mg/kg/day iv 
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days for 4 

months 
BBB: blood-brain barrier, RRMS: relapsing-remiting multiple sclerosis, PPMS: Primary-progressive 

multiple sclerosis, SPMS: secondary-progressive multiple sclerosis, SC: sub cutaneous, IV: intra 

venous, IM: intra muscular, Amp: ampule, Cap: capsule, CNS: central nervous system, P.O: per os, 

Qid: quater in die. 

 

Table 2 – Most common adverse effects of MS drugs. For less common adverse effects see 

references [69,70] 

Drug name Adverse effects 

Interferon beta 1a  Headache, flu-like symptoms, muscle aches, nausea, 

fever, asthenia, chills and diarrhea, injection site reactions, 

autoimmune phenomena 

Interferon beta 1b Leukopenia, flu-like symptoms, elevated hepatic 

transaminases, injection site reactions, headache, fever, 

malaise and myalgia, autoimmune phenomena 

Mitoxantrone  Cardiotoxicity, malignancy and hepatotoxicity 

Natalizumab Headache, fatigue, urinary tract infection, lower 

respiratory infection, arthralgia, gastroenteritis, vaginitis, 

diarrhea, and hypersensitivity reactions 

Fingolimod Cardiac abnormalities such as dose dependent 

bradycardia, blood pressure effects, macular edema, some 

laboratory abnormalities in the liver, enzymes level in 

blood and possible infection risks 

Glatiramer Acetate Injection site reactions or symptoms of a systemic 

immediate post-injection reaction including flushing, 

chest pain, palpitations, anxiety, dyspnea, tachycardia, 

throat constriction and urticarial 

Alemtuzumab Infusion related symptoms, cytokine storm, increased risk 

of autoimmune diseases and increased risk of infections 

Dimethyl Fumarate Gastrointestinal symptoms and flushing 

Terifluonomide Gastrointestinal symptoms, hair thinning, neutropenia and 

lymphopenia 

Laquinimod Elevation of ALT, abdominal pain, back pain, cough, 

respiratory tract infections, headache, asthenic conditions, 

insomnia, nausea and vomiting, dizziness, arthralgia, and 

diarrhea 

Rituximab  fever, chills, headache, urticarial and infections 

Daclizumab Transient elevation of liver enzymes, infections and 

cutaneous AEs 

Cladribine lymphopenia, leucopenia, upper respiratory infection, 

muscle weakness, hypertonia, purpura, rhinitis, ataxia, 

Injection site pain, injury, dizziness, and tremor 

 

MS has been considered for a long time as a T cell-dominated disease, mainly because 

of the T cell-driven animal model of experimental autoimmune encephalomyelitis 

(EAE). Instead, thanks to the success of B cell-directed therapies and emerging 
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experimental evidence of antibody production involvement, the crucial role B cells is 

now recognized, allowing for more diverse and personalized treatment options for MS 

patients. In fact, newer generation DMAs either deplete lymphocytes, inhibit their 

expansion, or block their migration to the CNS[71]. 

Based on the evidence that B-cell-derived antibodies against CNS autoantigen are 

important in the pathogenesis of certain MS subtypes, plasma exchange has also been 

proposed as a therapeutic strategy to remove or reduce self-reactive antibodies in 

treatment of acute MS relapses[63,72,73]. Interestingly, the respective MS subtype appears 

to be a predictor for the achievable benefit from plasma exchange. This technique was 

also successfully used to treat fulminant demyelinating attacks  with MS patients 

unresponsive to steroids, and therapy-responsive patients were distinguished by 

histopathological analysis of antibody deposition and enrichment of B cells within the 

CNS[74]. Taken all together, the data evidence the urgent need of personalized 

treatments and the strong demand for intravital biomarkers distinguishing individual 

MS subtypes. Moreover, this finding strongly supports the hypothesis that in a subgroup 

of patients CNS-directed autoantibodies indeed contribute to MS pathogenesis. Finally, 

whereas the introduction of DMAs has represented a major advance in the treatment of 

MS, currently available drugs have global effects on lymphocytes, thereby 

compromising the whole immune system and increasing the risk of infection. 

Developing tools or drugs that specifically target pathogenic and/or autoreactive 

molecules will be a critical goal for the future[63,75]. 

 

1.2.5 N-glucosylation and HMW1 adhesin 

 

Nowadays, a large number of protein post-translational modifications have been 

identified and characterized in bacteria. Compared to eukaryotes, most post-

translational protein modifications occur in a relatively low number of bacterial 

proteins, with substoichiometric levels of modification, hampering their structural and 

functional analysis[76].  In particular, bacterial protein glycosylation is emerging as a 

key player for many vital functions including virulence[77]. 

When bacterial structures mimicking host molecules elicit an immune response leading 

to autoantibody production, the result is the onset of autoimmunity. As already 

discussed in previous chapters, the relevance of saccharide misrecognition by the 

antibodies in the development of many autoimmune diseases can be ascribed to several 
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mechanisms such as molecular mimicry and epitope spreading[9,78]. Moreover, the 

chemical modifications of proteins, i.e. aberrant glycosylations resulting from bacterial 

or viral infections, could trigger pathological reactions of the immune system, thus 

leading to the production of circulating antibodies directed towards “self” 

antigens.[12,79–81] 

Among the many pathogen-related autoimmune diseases, only a few of them has been 

directly associated with bacterial glycosylation patterns, and yet for most of these the 

corresponding human antigen has not been depicted. Nevertheless, among the identified 

bacteria producing surface glycoconjugates that mimic host structures, there are many 

pathogenic organisms possibly involved in autoimmune diseases, such as 

Campylobacter jejuni, Helicobacter pylori, and Haemophilus influenzae[12].  

The identification and optimization of glycosylated synthetic peptides as antigenic 

probes able to detect circulating autoantibodies in MS was achieved for the first time 

in the Laboratory of Peptide and Protein Chemistry and Biology (PeptLab) of the 

University of Florence, following a “Chemical Reverse Approach”. This experimental 

mindset is based on the screening of focused libraries of aberrantly modified peptide 

sequences, with the aim to develop optimized peptide antigens to detect autoantibodies 

specific of the autoimmune disease under investigation. Peptide epitopes designed by 

this approach, if selectively and specifically recognizing autoantibodies in a statistical 

significant number of patients, can be used as antigenic probes in immunoenzymatic 

assays to detect disease biomarkers in an efficient way. The strategy was defined 

“Reverse” because the screening of the synthetic antigenic probe is guided by 

autoantibodies circulating in autoimmune disease patients’ blood. “Chemical” because 

autoantibody recognition drives selection and optimisation of the “chemical” structure 

from defined peptide libraries[37]. Specifically, while investigating the possible role of 

MOG glycosylation in pathogenic autoantibodies generation, it was found that a very 

simple glucosyl moiety of a MOG peptide encompassing the immunodominant region 

and containing the native glycosylation site resulted in improved detection of specific 

autoantibodies in humans in a number of MS patients[82]. The MOG-derived peptide 

[Asn31(N-β-Glc)]hMOG(30−50), with sequence  

K30N(Glc)ATGMEVGWYRPPFSRVVHL50, was the first sequence described to detect 

putative demyelinating autoantibodies in humans and it was used as a template for the 

design of a new generation of peptide drugs with the aim to block circulating 

autoantibodies in patients affected by MS. From these following investigations, the 
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response to antibodies correlating with MS progression was proven to be even more 

specific for a synthetic N-glucosyl asparagine (N-Glc) glucopeptide, named 

CSF114(Glc), which was successfully used to detect, isolate, and characterize 

antibodies in a subpopulation of patients[83–85]. The IgM antibody level to CSF114(Glc) 

was significantly increased in MS patients versus healthy donors or versus other 

autoimmune diseases (p<0.001). The IgG response was restricted to the subclass IgG2. 

Antibodies to CSF114(Glc) were found in 30% of diagnosed RRMS patients and, at 

lower levels, in subjects affected by meningitis/encephalitis. The high specificity and 

affinity with which the CSF114(N-Glc) is recognized by antibodies in MS patient sera 

were ascribed to two crucial features of the biomarker: the N-linked β-D-

glucopyranosyl moiety and a β-hairpin structure, which optimally exposes the minimal 

Asn(Glc) epitope, both essential for autoantibody recognition[41,86–88]. 

The discovery of this 21-aminoacid antigenic probe 

TPRVERN(Glc)GHSVFLAPYGWMVK (Figure 7) strengthened the hypothesis that 

an aberrant asparagine-glucosylation might be implicated in triggering formation of 

autoantibodies in MS. However, with the only exception of an identified N-glucose 

moiety in mammalian laminin, an extracellular basement membrane glycoprotein[89], 

the presence of Asn(Glc) in eukaryotic proteins was virtually unknown at that time in 

eukaryotes, and found only rarely in archaea[90].  

 

Figure 7 - Ribbon diagram of the lowest energy conformer of 200 calculated structures of 

TPRVERN(Glc)GHSVFLAPYGWMVK sequence, named CSF114(Glc), derived from NMR data [85]. 
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Therefore, when this unusual post-translational modification was found on cell-surface 

adhesin HMW1 protein of the  pathogen non-typeable Haemophilus influenzae 

(NTHi)[91], the rationale that bacterial infections are pivotal in many autoimmune 

conditions encouraged to evaluate a connection between NTHi infection and MS.  

The NTHi HMW1 adhesin is a high-molecular weight protein that undergoes N-linked 

glycosylation at multiple asparagine residues with simple glucose units rather than N-

acetyl glucose units, revealing an unusual N-glycosidic linkage and a new 

glycosyltransferase activity. The enzyme responsible for glycosylation of HMW1 is a 

protein called HMW1C, which shares homology with a group of bacterial proteins that 

are generally associated with two-partner secretion systems[92]. Glucosylation of 

HMW1 adhesin is necessary for protein stability, secretion, and efficient adherence of 

NTHi to host cells, hence vital to assure infectivity of the bacterium[91]. 

 

 

Figure 8 – Schematic representation of the enzymatic reaction by the N-glycosyl transferase HMW1C 

and the 12 N-glucosylation sites on HMW1ct with the relevant glycosylation sites 1, 2, 5, 6 in magenta, 

and remaining sites in blue[93]. 
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By using the simultaneous co-expression system of adhesin C-terminal fragment 

HMW1(1205-1536), named HMW1ct, and N-glucosyltransferase HMW1C in E. coli, 

hyperglucosylated HMW1ct(Glc) was obtained (Figure 8). It was revealed that the 

expression using this biosynthetic machinery provided HMW1ct(Glc) as a mixture of 

three N-glucosylated variants containing seven, eight, and nine glucose moieties on Asn 

out of twelve NX(S/T) glycosylation sites, in a 1:1:1 ratio. This N-Glc protein antigen 

was essential for the detection of high affinity antibody binding in a subpopulation of 

MS patients and  allowed to purify IgG antibodies from MS patient sera cross-reacting 

with anti-CSF114(Glc) antibodies[93].  

Immunohistochemistry experiments on mouse spinal cord preparations showed that 

when anti-hyperglucosylated HMW1ct antibodies from MS patients were incubated 

with spinal cord sections of naïve healthy mice and grade 4 of the MS mouse model 

EAE, selective staining was observed compared to controls. NTHi glucosylated adhesin 

is the first example of an N-Glc antigen that can be considered a relevant candidate for 

triggering demyelinating antibodies in MS, supporting the hypothesis of a strong 

connection between MS and exogenous pathogens. Therefore, the groundwork was 

established for determining the nature of the molecular mimicry mechanism, and for 

elucidating the human protein target(s), which could be cryptic mimics recognized by 

anti-hyperglucosylated adhesin antibodies in Multiple Sclerosis[93].  
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2. SCOPE OF THE PROJECT AND THESIS 

OUTLINE 

 

In the context of glycopeptide-based research in autoimmunity, the main purpose of 

this thesis project, started in January 2017, is to develop high-affinity molecular tools 

to detect and isolate antibodies from sera of patients suffering from autoimmune 

diseases. In particular, most of my Ph.D. work was focused on MS disease that is a 

neurodegenerative disease presumably involving an antibody-mediated mechanism in 

the damage of myelin sheath surrounding the axons in the central nervous system. 

Although the disease-specific autoantigen still remains elusive, the hypothesis that a 

bacterial infection (NTHi) may play a role in the etiopathogenesis of some sub-forms 

of MS has been recently investigated. The presence of N-linked glucose epitopes in 

NTHi C-terminal adhesin fragment HMW1ct (1205-1526) was proven to be essential 

for the identification of the highest affinity antibodies in MS, showing a very specific 

recognition.  Moreover, the anti-adhesin antibodies that are present in human sera were 

shown to cross-react with anti-CSF114Glc antibodies, previously characterized as MS 

specific biomarkers. Finally, the sugar-specific IgG fraction isolated from MS patients’ 

sera was used to confirm myelin specificity by immunohistochemistry. Hence, a 

correlation between NTHi and MS was established, and hyperglucosylated HMW1ct is 

the first example of an N-glucosylated antigen that can be considered a relevant 

candidate for triggering pathogenic antibodies in MS[93].  

The debated hypothesis is that IgM antibodies could be reminiscent of an early 

triggering infection event, but their level tends to decrease with the evolution of the 

disease, in favour of IgGs that may have a prognostic value instead. Therefore, the 

challenging task of isolating the specific IgM antibodies is a major goal to understand 

and treat this complex pathology. In this frame, the relevance of this project is dual.  

On one hand, evaluating antibody recognition by specific epitopes and collecting 

additional information about the role of N-glucosyl asparagine role may provide a great 

step forward in the comprehension of MS. Therefore, with the aim to identify novel 

peptide antigens in MS to assess their possible exploitation in antibody binding and 

trapping, in the following two chapters (3 4) the synthesis of differently glucosylated 

sequences derived from an adhesin fragment is presented. 
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On the other hand, the achievement of multivalent, antigen-decorated polymers ideally 

able to snare circulating antibodies appeared compelling with the future perspective to 

develop an apheresis-based device for the selective removal of autoantibodies from 

patients’ plasma. Therefore, chapter 5 is focused on the development of glucopeptide-

grafted polymers for the selective isolation of circulating autoantibodies, especially the 

IgM type, in MS patients’ sera (Figure 9).  

 

Figure 9 – Schematic representation of the antigen-specific immunoadsorption concept supported in this 

thesis: the stationary phase of immunoaffinity columns can be equipped with polymer-grafted antigen 

mimetics, ultimately leading to the selective depletion of specific antibodies, even the elusive IgMs. 

 

As discussed in the introduction, plasma exchange was initially proposed as a valid 

cotreatment for patients suffering from acute autoimmune attacks. The development of 

immunoadsorbent columns able to deplete only the antibodies (for example the 

complete depletion of IgG by grafting protein A or G onto the stationary phase) was a 

major improvement because it avoids replacement solutions, leaving the other 

components of the plasma virtually untouched. However, the critical goal nowadays is 

to achieve more and more selective membranes for the specific isolation of pathogenic 

antibodies, without compromising the remaining part of the protecting immune 

components. Finding an alternative to the current treatments with expensive and 

debilitating combinations of anti-inflammatory and immunosuppressive drugs would 

have great therapeutic impact. With the intention to emphasize that this concept, 

supported throughout the thesis, goes beyond MS and can be applied to many anti-

glycan antibody-mediated immune disorders, in chapter 6 the synthesis of relevant 



34 
 

glycosyl precursors and the synthetic strategies for the site-specific glycosylation of 

peptide sequences are discussed. 
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3. HMW1(1347-1354)-DERIVED PEPTIDES 

3.1 INTRODUCTION 

The investigation of the possible role of myelin proteins glycosylation in pathogenic 

autoantibody generation led to the identification of an antigenic probe named 

CSF114(Glc), which was used to detect antibodies in a subpopulation of MS patient 

sera[83–85]. This was the first report that an aberrant asparagine-glucosylation (N-Glc) 

was implicated in triggering formation of autoantibodies in MS.  

After that discovery, many attempts have been made to optimize the binding to 

antibodies and develop new peptide probes which could be used for the diagnosis and 

therapy of MS. [94,95] The challenging task to increase specificity and affinity in MS 

autoantibody recognition by designing peptides mimicking linear and/or 

conformational epitopes paved the way for the obtainment of many different analogues 

of CSF114(Glc)[96], but an unique structure that could outrun the original synthetic 

peptide was not furtherly employed. Therefore, CSF114(Glc) remains the gold standard 

peptide probe used in PeptLab, being able to discriminate a group of positive patients, 

with ca 36% sensitivity and 95% specificity[38]. 

Nevertheless, a new piece was added to the complex puzzle when the presence of N-

Glucosyl epitopes on asparagine residues in consensus sites (N-X-T/S) in non-typeable 

H. influenzae (NTHi) adhesin HMW1ct, corresponding to the C-terminal fragment 

HMW1(1205-1526), was proven to be essential for the identification of the antibodies 

in a similar percentage of MS patients. Also, MS antibodies were shown to target the 

epitope shared by CSF114(Glc) and HMW1(Glc). Glucosylated HMW1ct is the first 

example of a native N-glucosylated antigen that can be considered a relevant candidate 

for triggering demyelinating antibodies in MS, supporting the hypothesis of a strong 

connection between MS and exogenous pathogens[93]. 

After this ground-breaking finding, we intended to identify novel peptide antigens in 

MS derived from NTHi HMW1(Glc) and assess their possible exploitation in antibody 

detection and binding. From a fundamental point of view, finding a minimal epitope 

recognized with high affinity by antibodies is a crucial task for the investigation of 

chemical interactions and molecular mechanisms underlying the development of the 

pathology. From an operational point of view, peptides are more manageable compared 

to proteins, therefore the long-term search for a potent peptide-based tool might provide 

unprecedented improvements in diagnostics and therapeutics.  
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Out of twelve glycosylation sites in HMW1ct, only sites 1,2,3,5,6,7 and 8 are 

glucosylated in all the variants of HMW1(Glc) when the adhesin HMW1ct and N-

glucosyltransferase HMW1C are co-expressed in E. coli[93]. This is also in accordance 

with the computational model of the protein, since not all the N-glucosylation sites 

appear to be exposed on turns and/or on the protein surface (Figure 10). It is 

hypothesized that sites 1,2,5,6 constitute a relevant cluster of N-glucosyl containing 

epitopes. In virtue of their spatial proximity and their optimal exposition on the same 

side of the protein, they could be preferentially targeted by anti-HMW1(Glc) 

antibodies. Also, as shown in protein primary sequence, sites 5 and 6 are the closest of 

all and therefore comprise an appealing fragment to start the research for a peptide 

candidate able to detect MS antibodies, allowing the possibility to synthesize differently 

glucosylated peptides based on the same epitope sequence. 

Based on this assumption, we selected the adhesin fragment HMW1(1347-1354), 

corresponding to the sequence ANVTLNTT, containing the glycosylation sites 5 and 6 

of HMW1ct (Figure 10). 

 

 

Figure 10 – Structural model of HMW1ct fragment calculated by I-TASSER server[97] (right) and the 

corresponding amino acid sequence (left), with the twelve N-glycosylation sites in evidence. The short 

sequence containing sites (5) and (6) discussed in this thesis is highlighted in yellow squares. 

 

An N-terminal lysine was envisaged to provide a reactive moiety for conjugation 

purposes, either to soluble scaffolds or solid supports, as discussed in chapter 5. This 
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residue is also useful to increase solubility, that is crucial for further characterization 

such as NMR analysis. Therefore the following peptides were synthesized: 

Sequence Name 

Ac-KANVTLNTT-NH2 Peptide 1 

Ac-KAN(Glc)VTLNTT-NH2 Peptide 2 

Ac-KANVTLN(Glc)TT-NH2 Peptide 3 

Ac-KAN(Glc)VTLN(Glc)TT-NH2 Peptide 4 

TPRVERN(Glc)GHSVFLAPYGWMVK CSF114(Glc) 

 

 

3.2 RESULTS AND DISCUSSION 

3.2.1 Glycosylated peptide synthesis 

 

Solid Phase Peptide Synthesis (SPPS) methodology has now reached such a level that 

routinely producing modified peptide sequences has become more and more accessible. 

Among the orthogonal protection schemes developed in peptide synthesis, the (9H-

fluoren-9-ylmethoxy)carbonyl (Fmoc) strategy to protect the Nα position of the amino 

acid, as temporary protecting group, has definitely gained the widest success.  

Fmoc-based SPPS is based on the following steps:  

1) anchoring of the first amino acid to an insoluble support via the C-terminal 

carboxyl group 

2)  elongation of the peptide chain through alternate steps of coupling with suitable 

carboxyl-activating group and Fmoc deprotection in basic conditions (20% 

piperidine in DMF) 

3) final cleavage of the peptide from the resin and contemporary deprotection of 

acid labile side-chain protecting groups 

To prepare glycosylated peptides (Figure 11), it is necessary to prepare a conveniently 

protected building block to be used in solid phase peptide synthesis (SPPS) based on 

fluorenylmethyloxycarbonyl/tert-butyl (Fmoc/tBu) strategy. In the case of glucosylated 

peptides, the most common employed hydroxyl-protecting group for the glucosyl 

moiety is the acetyl group.  
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Figure 11 – General procedure for the synthesis of glucosylated peptides on solid-support. After the final 

acidic cleavage and amino side-chain deprotection, acetylated glucopetide (schematically represented 

as a green coil exposing two N-linked pink glucose moieties) is deprotected in basic conditions. 

 

To obtain in large quantity the building block (2,3,4,6-Tetra-O-Acetyl-N-[N-Fmoc-L-

aspart-4-oyl])-β-D-Glucopyranosylamine, i.e. Fmoc-Asn[Glc(OAc4)]-OH, different 

method can be envisaged[98]. In any case, they are based on the protection of the 

hydroxyl functions of glucose bearing amino group on the anomeric position free for 

the coupling with carboxyl group of amino acids. This can be conveniently achieved 

starting from glucose to obtain fully protected pentaacetate glucose. Then, the anomeric 

function was transformed into α-bromo group via SN1 with bromhydric acid in acetic 

acid and acetic anhydride at 0 °C. The corresponding β-azide I was obtained via SN2 

by sodium azide. Conversion to the β-amine II was accomplished in excellent yield by 

reduction catalysed by Pd/C in H2 atmosphere. 
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Figure 12 – Reaction scheme for the synthesis of Fmoc-Asn[Glc(OAc4)]-OH. a) Ac2O in pyridine, b) 

HBr 33% in AcOH, c) NaN3 in acetone/H2O 6:1 ; d) H2 on Pd/C in THF ; e) Na2CO3 in H2O, Fmoc-OSu 

in THF, f) Ac2O, Δ ; g) DMSO 

 

The fully acetylated glucosyl amine II can react with a conveniently protected and 

activated aspartic acid derivative to obtain the desired building block. In our case, we 

chose to adopt a previously described method[99] that is based on the straightforward 

production of N-Fmoc protected L-Aspartic anhydride III starting from the low-cost 

unprotected L-Aspartic acid (Asp) via a two steps reaction that proceeds easily and with 

satisfactory yields. This allowed us to obtain large quantities of product III which was 

coupled to product II to obtain the desired building block. Contrary to other solvents, 

the opening of the five-membered anhydride ring is described to be selective in DMSO, 

and the reaction at room temperature proceeds rapidly to termination as revealed by 

TLC. However, while the addition of MeOH to reaction mixture is described to provoke 

the precipitation of the desired product, several attempts to obtain a solid by adding 

MeOH to reaction mixture failed. Instead, water instantly caused the precipitation of an 

off-white, slimy aggregate. which was filtered on a frit washing with water for several 

hours. Any attempt to recrystallize the obtained crude in pure methanol was not 

effective, hence the dried precipitate was redissolved in the minimum of MeOH and 

drop-wise addition of H2O afforded the desired compound Fmoc-Asn[Glc(OAc4)]-OH 

as a white powder. This compound was used to synthesize all the glucosylated 

sequences discussed in this thesis. Glucose deprotection occurs via a base-mediated 

process that leads to the hydrolysis of acetyl groups, and can be performed either on 

resin or in solution after final cleavage[96]. In our case, we opted for the second strategy. 

At first, the obtained crudes of peptides 2 and 3 were divided in two and then 

deacetylated by using two already described protocols:  

a) Treatment with MeOH/THF/30% NH3 aq. (2:2:1) 

b) Treatment with methanolic solution of MeONa (0,05 M) 
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The reaction mixtures were stirred at room temperature and monitored by HPLC, as 

described in the experimental section. 

In the case of peptide 2, using method a the reaction was considered over after 6h, but 

the chromatogram showed the presence of two main peaks. Mass analysis by MALDI-

TOF revealed that the most intense one is correctly deacetylated peptide 2, while the 

other peak mass (+42) suggests the presence of an acetyl group that is probably linked 

to the lysine (in fact chromatogram of reaction mixture didn’t change even after 24h 

and the addition of a stronger base). It was hypothesized that the spatial proximity 

between Lys and acetylated glucose moiety on Asn residue makes the unprotonated 

lysine an optimal competitor of the (weak and diluted) base NH3.  

When harsher deprotection conditions were used (method b with the remaining half of 

the crude), only the main peak corresponding to desired product was found, and reaction 

proceeded faster. In fact, the peak corresponding to acetylated peptide completely 

disappeared in less than two hours. 

 

 

Figure 13 – RP-HPLC chromatograms of deacetylation reaction of peptide 2 by using method a. 

 

In the case of peptide 3, both methods led to desired peptide. The absence of the 

monoacetylated peptide peak could be due to the larger distance between Lys and 

Asn(Glc), strengthening the hypothesis that an intramolecular rearrangement may 

occur. 
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Figure 14 – Comparison of RP-HPLC chromatograms of peptide 3 after cleavage and after deacetylation 

reactions by using method a and b. Minor peaks were ascribed to sequence deletions or unknown 

adducts, whereas no acetylated compound was found by MALDI-TOF analysis. 

 

Therefore, for the crude resulting from peptide 4 synthesis only method b was used, 

and again no presence of acetylated peptide was detected. 

Semipreparative RP-HPLC of obtained crudes afforded pure peptides, that were 

subsequently evaluated by competitive ELISA tests in comparison with CSF114(Glc). 

 

3.2.2 Immunological Assays 

 

Immunoassays are based on an antigen/antibody interaction to identify a target 

compound or a class of compounds. These techniques can exploit the capability of 

antibodies to detect selectively to a target antigen present in a sample matrix and 

characterized by a specific chemical structure. 

One of the most used immunoassay technique is the Enzyme Linked ImmunoSorbent 

Assay (ELISA), a technique introduced by Engvall and Perlmann[100], where the 

detection of antigens or antibodies is based on the use of enzymes, such as alkaline 

phosphatase (ALP). The antigen from a solution is immobilized on a solid phase, such 

as a microtiter plate made of rigid polystyrene. Subsequently, the specific antibody-

antigen reaction is detected by an enzyme-labeled antibody. The development of color 

using a chromogenic substrate corresponds to the presence of the antigen. The 

concentration of the analyte depends on the Lambert-Beer equation and is thus 

determined by the intensity of colour in the sample. ALP hydrolyzes p-nitrophenyl 
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phosphate to produce p-nitrophenol, resulting in a bright yellow colour that can be 

detected at 405 nm using a microtiter plate reader. The enzyme–substrate reactions are 

typically completed within 15–60 min, and the reaction is stopped with the addition of 

an appropriate solution, e.g., sodium hydroxide. 

Different types of ELISA have been developed, i.e., direct methods, where the antibody 

reacting with the antigen is directly linked to the enzyme, or indirect ones, in which an 

enzyme-linked secondary antibody is employed. Indirect solid-phase (SP) ELISA 

systems have been demonstrated to be particularly useful to detect the presence of 

antibodies in sera of patients suffering from antibody-mediated diseases[37]. After 

coating the plate with a known or putative antigen involved in a disease, the key step 

of this system is the two-binding process of the primary antibody and enzyme-labeled 

secondary antibody directed to the Fc fragment of human IgGs or IgMs. With the use 

of sera as source of the primary antibodies, the presence of a disease-associated 

antibody in the serum can be evaluated; therefore, indirect SP-ELISA can be effectively 

used to diagnose autoimmune diseases. 

Indirect competitive ELISA, or inhibition ELISA, involves the combination of indirect 

ELISA and competitive ELISA. A specific antigen is immobilized on the solid phase 

of the microtiter plate. Subsequently, free target antigen at various concentrations is 

allowed to incubate together with constant concentration of antibody (or serum), 

resulting in a competition between the immobilized antigen and free antigen against 

antibodies. After washing steps, the primary antibodies bound to the immobilized 

antigen are detected by the enzyme-labeled secondary antibody. Therefore, in 

competitive ELISA, the signal decreases with increasing amount of the free competitive 

antigen and the concentration required to obtain 50% inhibition of maximum signal 

(IC50, generally expressed as -log or pIC50) is a crucial parameter for estimating the 

relevance of a target antigen. Indeed, these assays are particularly useful and to assess 

the affinity and specificity of target antigens, providing invaluable insights for their 

optimization and immunological relevance. As discussed in the introduction, the 

dissociation constant of the circulating antibodies is suggested to be proportional to the 

partial concentrations of these antibodies in blood serum in equilibrium[101]. 

IC50 is inversely related to the KA, which describes how much antibody-antigen 

complex exists at the point when equilibrium is reached. The time taken for this to occur 

depends on rate of diffusion and is similar for every antibody isotype. However, high-

affinity antibodies will bind a greater amount of antigen in a shorter period of time than 
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low-affinity antibodies. KA can therefore vary widely for antibodies from below 105 

mol-1 to above 1012 mol-1, and can be influenced by factors including pH, temperature 

and buffer composition. The affinity of monoclonal antibodies can be measured 

accurately because they are homogeneous and selective for a single epitope. Serum 

contains a mixture of heterogeneous polyclonal antibodies of different affinities 

recognizing several epitopes, hence only an average affinity can be determined[26]. 

The autoantibody recognition by HMW1ct derived peptides 1-4 as antigens was firstly 

evaluated by competitive ELISA on four relevant different patients’ sera (MS1, MS2, 

MS3, MS4). The selection of sera was based on previous titration by indirect SP-ELISA 

with CSF114(Glc). MS1, MS2 and MS3 were found to have a high titer of anti-

CSF114(Glc) IgG antibodies, while lacking in IgMs. Serum MS4 was found to possess 

a high IgM titer instead, and therefore was used for IgM inhibition assays.  

As shown in Table 3 and Figure 15-17, glucosylated peptides 2-4 exhibited lower IC50 

values compared to CSF114(Glc), up to nanomolar concentration. On the other hand, 

nonglucosylated peptide 1 completely failed to compete for the antibody binding, 

therefore demonstrating once again the crucial importance of the N-glycosylic bond 

between the sugar and the amino acid and the role of the sugar moiety for autoantibody 

recognition in MS patients’ sera. 

 

Table 3 - Calculated pIC50 values for inhibitors toward anti-CSF114(Glc) IgG antibodies. Values are 

reported as 95% confidence intervals for the calculated mean pIC50 of the adhesin derived peptide 

antigens 1-4 used as inhibitors of anti-CSF114(Glc) IgG antibodies in 3 representative MS sera. 

Inhibitor MS 1 MS 2 MS 3 

Peptide 1 ---- ---- ---- 

Peptide 2 9.28 ± 0.55 7.00 ± 0.22 8.02 ± 0.47 

Peptide 3 8.04 ± 0.67 7.80 ± 0.56 7.36 ± 0.33 

Peptide 4 9.62 ± 0.71 7.51 ± 0.17 8.39 ± 0.36 

CSF114(Glc) 7.21 ± 0.29 6.90 ± 0.15 7.93 ± 0.23 



44 
 

 

Figure 15 – Inhibition curves of anti-CSF114(Glc) IgG antibodies in serum MS1 with HMW1 

nonapeptides 1-4 in a competitive indirect ELISA, in comparison with the glucopeptide CSF114(Glc). 

 

 

Figure 16 - Inhibition curves of anti-CSF114(Glc) IgG antibodies in serum MS2 with HMW1 

nonapeptides 1-4 in a competitive indirect ELISA, in comparison with the glucopeptide CSF114(Glc). 
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Figure 17 - Inhibition curves of anti-CSF114(Glc) IgG antibodies in serum MS3 with HMW1 

nonapeptides 1-4 in a competitive indirect ELISA, in comparison with the glucopeptide CSF114(Glc). 

 

The results of IgG competitions showed that adhesin based peptides are generally more 

active to bind antibodies in patients’ sera. Although very promising, they also show that 

the recognition is not dependent on the specific position of the sugar moiety. In fact, 

whereas diglucosylated peptide 4 and N3 monoglucosylated peptide 2 displayed an 

excellent inhibitory potency in MS1 (Figure 15), peptide 4 and N7 monoglucosylated 

peptide 5 were the ones exhibiting the best activity in MS2 (Figure 16). In MS3, only 

peptide 4 resulted in a slightly improved activity compared to CSF114(Glc) (Figure 17). 

The differences in pIC50 values among different sera, especially compared to the 

reference probe CSF114(Glc), may be explained by the presence of glucoprotein-

targeting antibodies and their polyclonal nature. In other words, patients differently 

producing similar but distinct antibodies directed to corresponding N(Glc) epitopes of 

a protein may present specific predilection toward a glucosylated antigen. 

Though able to capture IgM-type antibodies in indirect SP-ELISA, the peptide 

CSF114(Glc) was never able to inhibit IgMs in competitive ELISA. This is the case 

also for the numerous antigenic sequences that have been previously developed and 

investigated in structure-affinity studies aiming to improve antibody recognition. The 

evidence that only competition tests for IgGs had success may be due to two different 

reasons. From a practical point of view, anti-N(Glc) IgGs, which possess higher affinity 

compared to IgMs, are often present in sera of MS patients, therefore hampering the 

outcome by binding free target antigens and preventing IgM inhibition. Secondly, high-
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avidity, pentameric IgM, possessing ten identical antigen binding sites, may be difficult 

to undermine without a very high affinity ligand. Surprisingly, all the glucosylated 

peptides 2-4 were able to inhibit anti-CSF114(Glc) IgM binding in serum MS4, 

although with a low pIC50 (Table 4 and Figure 18).  

 

Table 4 - Calculated pIC50 value for inhibitors toward anti-CSF114(Glc) IgM antibodies. Values are 

reported as 95% confidence interval for the calculated mean pIC50 of the adhesin derived peptide 

antigens used as inhibitors of anti-CSF114(Glc) IgM antibodies in a representative serum.  

Inhibitor MS 4 

Peptide 2 4.69 ± 0.36 

Peptide 3 4.90 ± 0.54 

Peptide 4 5.15 ± 0.10 

CSF114(Glc) ---- 

 

 

Figure 18 - Inhibition curves of anti-CSF114(Glc) IgM antibodies in serum MS4 with HMW1 

nonapeptides 1-4 in a competitive indirect ELISA, in comparison with the glucopeptide CSF114(Glc). 

 

Peptide 4 was found the best candidate for IgM competition, displaying a half maximal 

inhibiting concentration in the µM range, and therefore providing a compelling scaffold 

to develop higher affinity probes.  
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3.2.3 NMR and CD-based conformational investigations 

 

In solution, most of the peptides assume multiple flexible conformations. Theoretical 

and experimental methods play complementary roles in peptide conformational studies 

for the determination of the dominant conformers and evaluation of their 

population[102].  

A major goal of conformational investigations is to determine the relationship between 

conformation and activity of biologically important peptides. Numerous biological 

results are strongly supported by conformational investigations, clearly indicating that 

biological peptide activity is determined not only by the presence of specific functions 

binding to a target protein, but dramatically depends on the conformational properties 

of the whole peptide structure, too. 

The impact of post-translational modifications such as glycosylation on amino acid 

sequences has been investigated but not fully elucidated yet, and in most cases remains 

unclear specifically how the carbohydrate moiety interacts with the residues to 

influence the backbone conformation. Given the tremendous relevance of 

glycoproteins, which have been implicated in many different cellular processes such as 

immune response, intracellular targeting, and intermolecular recognition[36,103,104], the 

ultimate goal of researchers in the field is to understand the significance of 

glycosylation. This challenging and always trendy topic is closely related to the 

structural effects that saccharide moieties have on aminoacidic scaffold. In the case of 

asparagine-linked glycosylation, pioneering studies investigated the wide variety of 

structural and functional roles that N-glycosylation accomplishes with proteins and 

peptides. The modification of the asparagine inserted in a consensus sequence was 

hinted to influence protein rearrangement by altering the local secondary structure 

proximal to the glycosylation site, facilitating the folding process and stabilizing the 

mature chain[105–107]. A short nonapeptide based on the critical A285 glycosylation site 

of the hemagglutinin glycoprotein from influenza virus was used as a model system to 

study the effects of N- glycosylation. Derivatization of this peptide with short 

carbohydrates revealed that subtle changes in the structure of the carbohydrate have a 

dramatic impact on peptide conformation[108].  The NMR analysis of the chitobiose-

linked nonapeptide and its nonglycosylated analogue in water demonstrated that that 

N-linked glycosylation induces a change in the backbone conformation even for a short 

sequence, causing the switch from an Asx-turn to a type I β-turn conformation[109]. 
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Aiming to further explain the differences in antibody recognition and unveil the 

structural consequences of glucosylation, we performed nuclear magnetic resonance 

(NMR) and circular dichroism (CD) experiments to explore the conformational 

preferences of the model sequence Ac-KANVTLNTT-NH2 containing the two 

glycosylation sites (peptides 1-4). 

Unfortunately, all these peptides resulted too flexible to provide a reliable 

tridimensional model. The structural analysis of peptides 1-4 was based on 1H, 13C and 

15N chemical shifts, ROE correlations, vicinal coupling constants (see experimental 

part). The structural data for all these peptides confirmed that they do not possess a 

defined secondary structure.  

The chemical shift analysis of 13Cα and 1Hα, expressed in terms of chemical shift 

deviations (CSDs) compared to reported random coil shifts, reveals dynamic features 

for all the sequences. Also, no significant differences (Δδ 1H < 0.02 and 13C < 0.1 ppm) 

were found by comparing the α 1H and 13C chemical shifts between peptides 2-4 and 

the unglucosylated sequence 1, with the only exception of modified asparagine, 

indicating that they have the same conformational flexibility of the non-glucosylated 

analogue (Figure 19). 
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Figure 19 – Chemical Shift Deviation (CSD) for Hα (up) and Cα (down) of peptides 2,3 and 4 compared 

to the chemical shift of the corresponding residues in the non-glucosylated peptide 1. 

 

NMR analysis of glucopeptides in water previously revealed that the presence of 

glucose has a detectable effect only when other constrains such as a disulphide bridge 

is present, while its impact tends to be more elusive for linear sequences.[96][4] 

Therefore, the lack of a definite conformational effect resulting from the presence of 

glucose is not surprising for the analysed nonamers. Nevertheless, acquired data may 

be useful in saturation transfer difference (STD) NMR experiments[110] in presence of 

purified antibodies to gain invaluable information about the epitope-paratope 

interactions. 
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CD spectroscopy, which is based on the differential absorption of left- and right-handed 

circularly polarized light, is widely used to determine the structure of macromolecules, 

especially the secondary structure of proteins. Within the UV region from 180 up to 

240 nm each of the structures α-helices, β-sheets, and the remaining, unordered part of 

the polypeptide backbone, usually referred as random coil, contribute in different ways 

to the peptide spectrum.  

Analyzing peptides 1-4, the CD experiments confirmed that the peptides have the same 

random-coil behavior in water, no matter the position or the number of glucoses. In 

fact, all the spectra showed a deep negative band at 201 nm that is characteristic of a 

random coil structure. This confirmed that the effect of glucosylation on the structural 

arrangements of these short sequences is clearly minimal, meaning that the 

conformation in water cannot be correlated with their reactivity towards antibodies. 

Notably, when a secondary structure inducer such as 2,2,2-trifluoroethanol (TFE) is 

used as cosolvent, the transition to a more ordered configuration occurred to be more 

prominent in absence of the glucose moieties. In fact, a more marked appearance of the 

negative band in the range 205-225 nm and of the positive band in the far UV range 

(≈190 nm) typical of structured peptides was revealed for peptide 1, compared to 

peptides 2 and 3. The impact of TFE addition was even lower in the case of 

diglucosylated peptide 4. TFE/water mixtures are considered biomimetic because TFE 

can displace water, hence removing the solvent hydrogen-bonding molecules and 

providing a low dielectric environment that promotes intrapeptide hydrogen bonds[111].  
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Figure 20 – CD spectra of peptides 1-4 at different concentrations of TFE. 

 

To compare the different peptides, we also used two concentration‐independent CD 

parameters, namely R1 and R2,  which are sensitive probes of helix/sheets formation 

[112,113], and the outcome is a distinct propension to avoid secondary structures formation 

for peptides 2, 3 and 4. R1, the ratio between the intensity of the maximum between 190 

and 195 nm and the intensity of the minimum between 195 and 210 nm), is positive for 

random coils and ≤-2 for fully structured peptides. R2, more specific for α-helices, is 

the ratio between the ellipticity at 222 nm and the minimum between 195-210 nm, and 

it is ≈0 for unstructured sequences, up to 1 for predominantly helical peptides. 

In the case of nonglucosylated peptide 1, the addition of only 20% TFE provoke the 

change of the R1 sign, and the effect is even more marked as TFE concentration 

increases. Instead, calculated R1 for diglucosylated peptide 4 become ≈0 only when 

TFE is the major solvent, with water in minority. Also R2 trend hints toward similar 

conclusions, increasing for peptide 1 with higher slope compared to glucosylated 

sequences. 
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Figure 21 – Bar graphs displaying R1 (left) and R2 (right) values versus TFE concentration. R1 is positive 

for unstructured peptides while R2 ≈ 1 for α-helices. 

 

3.3 CONCLUSIONS 

 

This chapter is focused on the complex, long-term research for the structure-activity 

relationship of peptide epitopes involved in antibody recognition. This challenging task 

can be instrumental to develop mimetic peptide-based molecules improving antibody 

affinity and specificity to protein antigens. Here, we reported the synthesis and 

characterization of the HMW1 derived peptides 1-4 containing differently glucosylated 

consensus sequences. Competitive ELISA tests were performed in order to assess their 

cross-reactivity with antibodies in patients’ sera, using as coating agent the 

glucopeptide CSF114(Glc), previously designed as a β-turn sequence able to 

characterize with high specificity and high affinity the antibodies in the sera of a 

subpopulation of MS patients. The short unstructured nonamers carrying either one or 

two N-glucosyl moieties were found to be powerful competitive agents for the 

interaction with IgG antibodies, displaying IC50 between 10-10 and 10-8 M with relevant 

patients’ sera. Conversely, the non-glucosylated peptide 1 was not able to inhibit the 

binding. Up to now, these peptides are among the shortest sequences that have been 

found to have such a low IC50 in competitive ELISA tests for anti-N(Glc) IgG 

recognition. Moreover, they are the first short peptides that can compete for IgM 

binding affinity, even though with a high IC50 (≈10 µM). 

However, the recognition of Ab does not appear to be connected to the position of 

glucose or to the number of glucoses in the peptide sequence. Also, the structural 

insights reveal high flexibility for all the sequences, without a definite impact of the 

glucosyl moiety on the secondary structure formation. Hence the reason of antibody 



53 
 

recognition must lay in the presence of Asn(Glc) inserted in a suitable amino acid 

environment, able to adapt to the structural binding site of the antibodies in the different 

sera. Since any attempt to cyclize or add some structure inducing constrain was not 

effective to improve the potency of previously developed sequences[96], this work 

supports the evidence that antibody binding is not easily correlated to a fixed 3D 

conformation. More likely it is based on other effects, with Asn(Glc) being the 

indispensable requisite for the recognition. Therefore, a determined conformation (at 

least in water) is not necessarily related to the binding properties of the antigens. 

Although all the sequences show very high mobility and dynamic propensity, the 

presence of the glucosyl moieties was proven to have an impact in the secondary 

structure rearrangements in a less hydrophilic environment obtained by the addition of 

TFE as cosolvent. CD analysis revealed that diglucosylated peptide 4 maintain an 

extended coil behavior in solutions containing up to 60% TFE, whereas glucose-lacking 

peptide 1 displayed a clear structure propensity. 

With the aim to increase affinity towards anti-Asn(Glc) IgM antibodies, adhesin 

HMW1(1347-1354) diglucosylated epitope was selected as the best peptide candidate. 
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4. PEPTIDE HOMODIMERS AND HMW1(Glc) 

EXPRESSION 

 

Since the NTHi cell-surface adhesins are extensively glycosylated, the N-glucosyl 

residues are likely to be presented in a multivalent manner, which would potentially 

favor the emergence of a robust immunologic response. According to the hypothesis 

that hyperglucosylated HMW1ct expose different clusters of relevant glucosylated Asn 

residues, HMW1ct variants were previously prepared by using site-directed 

mutagenesis[93]. All the less-glucosylated forms were able to inhibit IgG binding 

towards the antibody found in MS sera. Hyperglucosylated HMW1ct and mutants 

possessing up to four glucose moieties displayed comparable IC50 values as inhibitors 

toward anti-CSF114(Glc) IgG antibodies in five MS patients’ sera. However, a drop in 

IgG affinity was observed when the glucosylation sites where diminished from four to 

two, with IC50 decreasing from nM range to ≈10-1 µM. Based on these evidences, it 

was suggested that the introduction of at least four N-glucosyl moieties on HMW1ct 

was essential for the identification of the highest affinity antibodies in MS[93]. 

Intrigued by the possibility that a sequence exposing four N-glucosyl moieties could 

mimic to a greater degree the activity of the bacterial protein, a homodimer based on 

di-glucosylated HMW1(1347-1354) fragment was prepared.  

Copper (I) catalyzed alkyne-azide cycloaddition (CuAAC), the most known example 

of “click” reaction[114], was envisaged to introduce a triazolyl linker, isostere of amide 

bond, connecting two identical sequences bearing two Asn(Glc) each. Fmoc-protected 

propargylglycine (Pra) and lysine azide (Lys(N3)) are commercially available building 

blocks that can be conveniently used in the SPPS route to produce “clicked” peptides.  

Therefore, with the same synthetic strategy discussed in the previous chapter, we 

prepared the two 11-mer sequences Ac-Lys-Ala-Asn(Glc)-Val-Thr-Leu-Asn(Glc)-Thr-

Thr-Gly-Pra-NH2 (peptide 5) and Ac- Ac-Lys-Ala-Asn(Glc)-Val-Thr-Leu-Asn(Glc)-

Thr-Thr-Gly-Lys(N3)-NH2 (peptide 6). These sequences are very similar to peptide 4 

but each of them contains in addition the native glycine residue of HMW1 sequence, as 

a short spacer between the two relevant glycosylated sites and the grafting moiety. 

After SPPS synthesis, the obtained crudes were deacetylated with basic treatment by 

NaOMe (0.05 M in MeOH). Interestingly, while deacetylation of peptide 5 provided 

the desired product as the major component, in the case of peptide 6 the conspicuous 
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formation of a secondary by-product was encountered. In fact, the RP-HPLC analysis 

of reaction crude after two hours showed the presence of two main peaks with similar 

intensities (Figure 22). 

 

 

Figure 22 – RP-HPLC chromatogram of deacetylated crude 6, showing the presence of two major peaks. 

ESI-MS analysis revealed that one (tr = 3.92 min) corresponds to desired deacetylated peptide 6, whereas 

the other (tr = 3.13 min) may derive from the SN2 by-product, in which a methoxide group has replaced 

the azide group. Other minor peaks were ascribed to sequence deletions or unidentified by-products. 

(Analytical RP-HPLC gradient 20-80% B in 5 min at 0.6 mL min-1; solvent system A: 0.1% TFA in H2O, 

B: 0.1% TFA in MeCN) 

 

Beside the desired peptide 6, it is present a side-product peak whose mass corresponds 

to that of the methoxy-derivative. In fact, it is hypothesized that in virtue of its good 

leaving group properties, azide group is substituted by the abundant nucleophile MeO- 

during deacetylation, resulting the SN2 product. To avoid this side-reaction, several 

parameters may be changed in deacetylation conditions. For example, shorter reaction 

times may result in a decrease of SN2 reaction occurrence. Also, diluted methoxide 

solution could help to prevent such a massive formation of side-product. Finally, 

changing deacetylation reagents may provide a better yield in desired product. 

Nevertheless, the obtained amount of pure peptide 6 was sufficient for our purposes, 

therefore no other deprotection condition was tested. The pure by-product was also 

collected, and further analysis could confirm its structure.  
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The purified peptides 5 and 6 were solubilized in water and tert-butanol in presence of 

CuI to catalyse the regioselective alkyne-azide cycloaddition, providing quantitatively 

(by HPLC reaction analysis) peptide 7 (Figure 23). 

 

Figure 23 – Scheme of the CuAAC “click” reaction performed to obtain homodimer peptide 7, starting 

from Pra-containing monomer 5 and Lis(N3)-containing peptide 6. Diglucosylated HMW1(1347-1354) 

sequence is indicated in red. 

 

Copper is often easily complexed by proteins and peptides and its removal is crucial for 

biological applications. EDTA, a strong chelating agent for copper, was added at the 

end of the reaction to avoid peptide complexes formation. After a two-step purification 

process, pure peptide 7 was obtained and used in ELISA experiments. 

Additionally, we compared peptide 7 exposing four N-Glc moieties with the two-

branched homodimer 8 that is carrying one Asn-linked β-D-glucopyranosyl function 

on each “arm” (Figure 24).  

 

Figure 24 – Sequence of peptide 8, a two-branched sequence synthesised using non-canonical Fmoc-

Lys(Fmoc)-OH in standard SPPS procedure. Wang resin is represented as a blue sphere, whereas in red 

is highlighted the HMW1(1347-1354) sequence shared by all the adhesin-derived peptides discussed in 

this thesis.  

 

Homodimers 7 and 8 share the repeated primary sequence of HMW1(1347-1354) 

fragment, that is dimerized with two different strategies. With a similar approach to the 
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synthesis of multiple antigen peptide (MAP) dendrimers[115], the synthesis of peptide 8 

was based on double N-Fmoc protected Lys as the starting point for the ramification 

and the concurrent growth of the two branches directly on resin. The sequence includes 

a Pra for the CuAAC conjugation to peptides able to penetrate the blood brain barrier 

(BBB)[116] that will be performed at the Institut for Research in Biomedicine (IRB, 

Barcelona, Spain) in collaboration with the group of Dr Meritxell Teixidó. For this 

project, peptide 8 and a Pra-containing derivative of CSF114(Glc), as well as their non-

glucosylated analogues, were synthesised. Conjugation to molecular BBB 

“shuttles”[117] and their evaluation in a human BBB cell-based model may lead to small 

peptide-probes for the detection of antibodies directly in the CNS. This achievement 

could provide important insights for the comprehension of MS, however the 

experiments are still ongoing and therefore they will not be discussed in this thesis. 

Nevertheless, it is important to mention that in competitive indirect ELISAs for anti-

N(Glc) antibody binding, peptide 7 and 8 displayed the same inhibition curves with 

identical IC50.  

For these experiments, both CSF114(Glc) and hyperglucosylated HMW1ct, i.e. 

HMW1(Glc), were used as coating antigens.  

The peptide probe CSF114(Glc) has similar number of residues, i.e. sequence length 

(21 amino acids), and display only one glucosyl-asparagine residue inserted a β-turn 

conformation.  

The protein HMW1(Glc) was expressed according to a previously described protocol, 

resulting in a mixture of variants that was shown to bear an average of eight N-Glc[97]. 

Expression of HMW1(Glc) was performed by growing cultures of E. coli cells (strain 

BL21) previously transfected with two plasmid vectors (Figure 25). One contained the 

genes encoding for the protein fragment HMW1(1205 – 1536) and the gene for 

carbenicillin resistance. A second plasmid encoded for the glucosyltransferase enzyme 

ApHMW1C and contained the gene for a different antibiotic (kanamycin) resistance.  
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Figure 25 – Representation of HMW1(Glc) expression and purification starting from recombinant 

E.Coli. Adhesin sequence is indicated in the red square: His-tag, inserted Trp residue for concentration 

determination, and the twelve Asn residues in glycosylation sites are highlighted. 

 

A nucleotide sequence encoding for a His6-tag, i.e., a N-terminal six-histidine fusion 

tag, is contained in the vector for HMW1ct expression. Polyhistidine tags are the most 

widely used affinity tags for purifying recombinant proteins because of the great 

affinity of histidine toward Ni2+ that allows purification by affinity chromatography, 

and display advantages such as low immunogenicity and small size[118]. A tryptophane 

residue is also inserted after the His6-tag (replacing G1204 of HMW1ct) to provide a UV-

active moiety for protein quantification. 

Due to the poor efficiency of transformation process, the first step is the selection of 

those cells containing both desired plasmid vectors through mild growth steps in 

presence of antibiotics. Bacterial glycerol stocks were initially plated on Luria-Bertani 

(LB) agar plates soils containing both carbenicillin and kanamycin, allowing the growth 

of isolated colonies on solid media. This process ensures that each cell in a population 

is descended from a single founder cell, and thus to help ensure that each cell in the 

culture has the same genetic makeup. Only those populations of cells containing both 

plasmids (each encoding the gene for antibiotic resistance) are able to grow.  

Colony picking was performed manually, transferring cells in small-volume (5 mL) 

liquid LB media and allowing the overnight growth by shaking at 37°C. This pre-

culture step is necessary to avoid cell stress that would originate by the passage from 

the solid soil to a large volume liquid soil, resulting in cell death and precipitation. Cell 

cultures were then incubated at 37°C in 1 L media and the optical density at 600 nm 

(OD600) was checked to assess bacterial growth. Typically, bacterial growth curve 
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displays an initial phase (Lag phase) where cells growing in nutrient rich media are 

increasing in size but not in number, therefore the OD600 is low and almost constant. 

This stage can last for several hours (4-5 h for cells expressing both HMW1ct and the 

enzyme, whereas was shorter when cultures of cells expressing only the adhesin protein 

were grown). It is followed by an exponential phase (Log phase), where cell division 

and expansion provide a rapid increase of the optical density. However, bacterial cell 

growth reaches a plateau, or stationary phase, where the number of dividing cells equal 

the number of dying cells, because of the depletion of the available nutrients and the 

accumulation of waste product. Eventually, in the death phase, the number of living 

cells decreases exponentially and population growth (and OD600) experiences a sharp 

decline.  

Massive production of heterologous proteins would hamper bacterial growth, therefore 

the optimal stage to induce desired protein expression is in the mid-late exponential 

phase when the OD600 ≈ 0.6 and bacterial cells have not started to die yet. In our case, 

this occurred after 6-7 h since the initial incubation (4-5 h when only non-glucosylated 

HMW1ct adhesin was expressed). 

The induction of HMW1ct and HMW1C expression is activated through isopropyl β- 

D-1-thiogalactopyranoside. This lactose analogue is able to stimulate the operon lac 

transcription machinery, which ultimately controls the plasmid gene expression. After 

induction, cell suspensions are left stirring overnight at 16°C and harvested by 

centrifugation. Mechanical lysis of the cell membrane was obtained by using an 

ultrasonic processor that disrupt lipid layers and provoke the release of soluble 

components, including overexpressed HMW1(Glc) adhesin.  

The purification of the obtained solution was performed by FPLC using prepacked 

columns in two steps. The first one, by immobilized metal affinity chromatography 

(IMAC), is based on the high affinity of His tag toward divalent nickel ions.  

Supports such as beaded agarose can be derivatized with chelating groups to 

immobilize the desired metal ions, which then function as ligands for binding and 

purification of biomolecules of interest. One of the most commonly used chelators as 

ligands for IMAC is nitrilotriacetic acid (NTA), which is then "loaded" with Ni2+, 

providing Ni-NTA resins[119]. These solid supports are able to selectively retain polyHis 

containing proteins, that are subsequently eluted by increasing concentrations of 

imidazole, which competes with His residues for nickel binding. By flowing the 

obtained solution after cell lysis through the column, theoretically only HMW1(Glc), 
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being the only protein with fusion His-tag, should remain bound to the resin. However, 

when a concentrate solution imidazole was used to remove HMW1(Glc), the eluted 

fractions analyzed by SDS-PAGE were found to contain a mixture of adhesin protein 

and HMW1C enzyme (Figure 26). This not surprising[97] evidence results from the 

formation of a stable complex between the two proteins.  

 

Figure 26 – Picture of stained fractions after SDS-PAGE: a) fraction after Ni affinity column 

containing both the enzyme HMW1C (71.7 kDa) and hyperglucosylated adhesin (35.8 kDa); b) fraction 

after anion exchange column containing HMW1(Glc); c) fraction after anion exchange column 

containing only HMW1C. 

 

Therefore, the separation of HMW1ct(Glc) from HMW1C was obtained in a second 

purification step through anion exchange chromatography. In this case, cross-linked 

agarose beads constituting the stationary phase of the prepacked column are 

functionalized with cationic groups and therefore retains negatively charged molecules 

by coulombic interaction. The bound molecules are eluted with an anion gradient. 

Through the increase of ionic strength that breaks the electrostatic interactions between 

the two proteins, the complex was separated and purified HMW1(Glc) was collected. 

Obtained fractions were analyzed through SDS-PAGE and protein concentration was 

determined by UV analysis after buffer exchange and sample concentration. 

Hyperglucosylated HMW1ct, CSF114(Glc), peptide 7 and peptide 8 were compared in 

competitive indirect ELISAs for anti-N(Glc) antibody binding. IgG inhibition was 

evaluated using representative serum MS1 (Figure 27), whereas for IgM competition 

serum MS4 was used (Figure 28). 
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Figure 27 - Inhibition curves of anti-N(Glc) IgG antibodies in serum MS1 in a competitive indirect 

ELISA, using CSF114(Glc) (up) or HMW1(Glc) (down) as coating antigen. 

 

The inhibition curves in Figure 27 show that the HMW1(1347-1355) homodimers have 

higher affinity for IgGs compared to the previously developed probe CSF114(Glc), 

despite they do not retain the nanomolar IC50 of HMW1(Glc) protein. When a 

multiepitope displaying antigen is presented to polyclonal antibodies that are contained 

in serum, multivalent interactions may lead to the formation of large, stable (high 

avidity) structures. This is because the same antigen may be bound by several 

antibodies, each recognizing a different epitope, and it is probably the case for 

HMW1(Glc), while peptide 7 and 8 did not display any similar tendency. This clearly 

highlights that the two epitopes in peptide 7 (or in peptide 8) are too close to interact 

with two different paratopes, and therefore only one is used to bind an antibody, 

hampering the availability of the adjacent one. 

Moreover, peptides 7 and 8 present the same affinity, meaning that the presence of the 

two additional N-linked glucoses in peptide 7 is not affecting the interaction with 
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antibodies. In other words, the higher affinity IgGs are probably recognizing the epitope 

shared by the two peptides, that is also the same of peptide 2 and 4 (see Figure 15 for 

IgG competition in the same serum).  

 

 

Figure 28 - Inhibition curves of anti-N(Glc) IgM antibodies in serum MS4 with homodimers 7 and 8 in 

a competitive indirect ELISA, using CSF114(Glc) (up) or HMW1(Glc) (down) as coating antigen. 

 

IgM competition experiments also confirmed that peptides 7 and 8 display the same 

trend as the corresponding monomers (peptides 4 and 2 respectively, compare Figure 

28 and Figure 18). In particular, peptide 7 and peptide 4 have the same IC50 toward anti-

CSF114(Glc) antibodies, which is only slightly better than the one displayed by 

peptides 2 and 8.  

Calculated mean pIC50 values for the two novel homodimers are reported in Table 5. 

When HMW1(Glc) protein was used as coating antigen, these peptides failed to 

compete for anti-N(Glc) IgM binding in the tested range of concentration (up to 10-5 
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M) and displayed a pIC50 for IgGs that is lower than the one obtained when 

CSF114(Glc) is coated.  

 

Table 5 - Calculated pIC50 value for inhibitors toward anti-N(Glc) IgG and IgM antibodies. Values are 

reported as 95% confidence interval for the calculated mean pIC50 of the four antigens used as inhibitors 

of anti-CSF114(Glc) and anti-HMW1(Glc) antibodies in representative sera MS1 and MS4. 

Antigen 
CSF114(Glc) coated HMW1(Glc) coated 

pIC50 IgG pIC50 IgM pIC50 IgG pIC50 IgM 

HMW1(Glc) 9,12 ± 0.17 7.97 ± 0.62 8.42 ± 0.22 6.95 ± 0.68 

Peptide 7 8.28 ± 0.13 6.08 ± 0.71 7.43 ± 0.26 ---- 

Peptide 8 8.23 ± 0.16 5.55 ± 0.64 7.42 ± 0.20 ---- 

CSF114(Glc) 7.06 ± 0.37 ---- 5.93 ± 0.15 ---- 

 

As found for glucosylated peptides 2, 3, and 4, they are better peptide candidates for 

antibody detection than CSF114(Glc), but they do not reach HMW1(Glc) protein 

performances in antibody binding. Moreover, they do not attain an improvement over 

the previously described corresponding monomers, probably because the two important 

epitopes are spatially too close. Therefore, a longer spacing linker or multiple repeated 

units grafted onto a polymer scaffold may be critical to improve the efficacy in antigen 

presentation. This pushed us to develop a peptide-polymer conjugate that will be 

discussed in the next chapter. 
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5. DEXTRAN-BASED TENTACLES 

5.1 INTRODUCTION 

 

Biosynthetic polymers are materials that combine polymeric scaffolds with bio-

oligomers or moieties prepared as mimics of those found in nature. They are now used 

for a multitude of applications such as novel biomolecule stabilizers, drug-delivery 

vehicles, therapeutics, biosensors, biomedical adhesives, antifouling materials, and 

biomimetic scaffolds[120]. Biomolecules conjugated to synthetic or natural polymers 

produced by various grafting strategies enable more and more precise control over 

advanced architectures, functionalization, and subsequently dynamic function. These 

bioinspired or fully synthetic polymers act as biopolymer surrogates, executing similar 

functions and occasionally exceeding the performance of the molecules they mimic[120].  

In particular, peptide–polymer conjugates can be designed either to benefit from the 

synergistic behaviour of both the components or to overcome shortcomings inherent to 

the elements alone. Currently, among the best studied examples of this class of hybrid 

materials are conjugates of peptides or proteins with poly(ethylene glycol) (PEG). 

Indeed, PEGylation is now established as a powerful strategy to improve the in vivo 

properties of therapeutic peptides/proteins, such as solubility, circulation half-life, 

stability, immunogenicity, and so on[121]. Peptide-polymer conjugates make up a new 

class of soft matter comprising natural and synthetic building blocks. They have the 

potential to combine the advantages of peptides and synthetic polymers, i.e. the precise 

chemical structure and diverse functionalities of peptides and the stability and 

processability of synthetic polymers. The variety of biomolecule-polymer conjugates is 

immense, as there is flexibility in the length and complexity of the amino acid sequence, 

the chemical nature, the length and architecture of the polymer, and the overall 

architecture of the conjugate. The era of “click”-type chemistries[122,123], i.e. CuAAC 

reaction, oxime, Staudinger ligation, thiol−ene, Glaser reaction, and many more 

biorthogonal and biomimetic coupling reactions, promoted the access to complex and 

well-defined peptide−polymer conjugates. Numerous innovative and elegant 

applications of this class of materials found their way in a huge variety of fields[124–126]. 

However, in spite of the tremendous advances in biopolymer conjugates synthesis, that 

allowed the generation of conjugates of various sizes, compositions, and architectures 

described in literature[120,121,127], a few synthetic hurdles still remain to prepare hybrid 
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conjugate materials. Achieving complex conjugates is challenging, mainly because 

they are difficult to purify, which limits the quantity and yield of the target conjugate 

and increases the cost and time of production[121]. In particular, standard purification 

and characterization methods, such as RP-HPLC and MALDI-TOF or ESI MS, 

respectively, are not trivial for large and sophisticated conjugates[121].  

The development of a tentacle-like, antigen-decorated polymer is a promising 

stratagem for the isolation and characterization of reactive antibodies found in the sera 

of patients suffering from autoimmune diseases. Specifically, the synthesis of peptide-

grafted polymers could finally provide the purification of IgM from patients’ sera, that 

is an unmet need in chemical immunology. These antibodies are considered promising 

tools for therapy and diagnostic approaches in many pathologies[128]. However, the 

commercial success of IgMs is hampered due to bottlenecks in recombinant production 

and downstream processing. IgMs are large, complex and highly glycosylated proteins 

that are only stable in a limited range of conditions. Because of the antibody size and 

complexity, IgM purification is much more difficult than IgG. The industrial processes 

of IgG purification from human serum are mainly focused on Protein A or Protein G 

affinity chromatography, whereas traditional methods for IgM purification are based 

on the combination of precipitation and chromatographic techniques, including size-

exclusion chromatography, ion-exchange chromatography and others, but with scarcity 

in yields and purity[129]. Therefore, prompt efforts are required to investigate these 

sensitive IgM antibodies. 

Although the coating of a solid support with native antigenic proteins or peptides could 

be envisaged in the effort of detecting and isolating antibodies, a synthetically 

accessible microarchitecture that is able to snare circulating autoantibodies has 

enormous advantages and may provide a great step forward both in the treatment and 

in the comprehension of many autoimmune diseases. Since antibodies are at least 

bivalent, higher affinity recognition can be achieved through avidity effects in which a 

construct containing two or more copies of the ligand engages both arms of the 

monomeric immunoglobulin simultaneously. The immobilization of multivalent 

antibody ligands at high density on solid surfaces, such as ELISA plates or affinity 

column stationary phases, is of pivotal interest in medicine and immunology. 

Regarding MS disease, an urgent commitment is to fish out and characterize IgM from 

sera, since these antibodies are reckoned as potent diagnostic tools and their therapeutic 

value must be elucidated[83,85]. With this aim, the synthetical task required for the 
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construction of antigen-based tentacles consists of three steps: 1) functionalization of 

the polymer with selectively reactive moieties 2) functionalization of the peptides by 

adding a sticky end and 3) the final coupling reaction between the two components. 

The primary goal is to exploit multivalent interactions between antibodies and 

glucosylated asparagine in candidate antigens. Conjugating a macromolecular scaffold 

to short peptide sequences could increase the affinity of antibodies towards these 

constructs. In fact, this system could roughly reproduce the native framework of 

membrane-exposed hyperglucosylated proteins, with the crucial, additional advantage 

that the epitopes are not installed on a fixed, conformationally stabilized tertiary 

structure but instead the global arrangement is completely free to adapt to antibodies, 

ideally exposing glucosylated asparagines on side-branches. Moreover, the lack of a 

protein core could, on the one hand, increase stability and resistance to proteases and 

on the other hand dramatically reduce nonspecific interactions with the multitude of 

antibodies and proteins present in patients’ sera. 

To fulfill this goal, the polymeric scaffold must meet several essential features. First, 

hydrophilicity and high solubility are required for both experimental and biomimetic 

purposes. Plus, low viscosity and minimum jellification are desirable for free diffusion 

of antibodies and macromolecules through the ‘tentacles-rich’ environment. Indeed, the 

macromolecular arrangement must be stable as longer as possible, i.e. resistant to 

proteases and other degrading enzymes present in complex biological media. To reduce 

nonspecific interactions, charges should be avoided. For entropy reasons, the polymer 

should not be excessively flexible like PEG, but still readily adaptable to paratope 

shape. 

Finally, readily accessible in large molecular weight polymers (i.e. either easily 

synthesizable or commercially available) are desirable for antibody trapping and 

isolation.  

Among the commercially available polymeric scaffolds that can be found in large size 

and can be easily functionalized for the conjugation to reactive groups on peptide 

epitopes, we selected dextran because is a high molecular weight, inert, water-soluble 

polymer that has already been used in a wide variety of bio-medical applications. 

Traditionally, dextran has been used for decades for plasma extenders, cell/organelle 

separation, protein precipitation, platelet aggregation inhibitor. More recently this class 

of polysaccharide has found substantial applicability in modern biotechnological 

investigations such as drug delivery and imaging[130–132]. Dextran is a natural polymer 
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of glucose, composed of approximately 95% linear alpha-D-(1-6) linkages. The 

remaining α(1-3) linkages account for the branching of dextran. Dextrans are found as 

bacterial extracellular polysaccharides. They are synthesized from sucrose by beneficial 

lactic acid bacteria, such as Leuconostoc mesenteroides and Lactobacillus brevis, but 

also by the dental plaque-forming species Streptococcus mutans. Bacteria employ 

dextran in biofilm formation or as protective coatings, e.g., to evade host phagocytes in 

the case of pathogenic bacteria. These highly water-soluble polymers are available 

commercially as different molecular weights (MW), from 1 to 2000 kDa, with a 

relatively narrow MW distribution. Additionally, dextrans contain a large number of 

hydroxyl groups which can be easily conjugated to drugs and proteins by either direct 

attachment or through a linker[133]. 

Interestingly, conjugation of three different ligands to dextran provided an 

approximately 1000-fold increase in affinity of the dextran conjugate for the specific 

antibody compared to each monomer, whereas ligand dimers with PEG spacers were 

shown to be unreliable as high affinity ligands [134]. 

With the aim to develop a general and reliable method to rapidly transform modest 

affinity anti-N(Glc) antibody ligands into much higher affinity constructs by taking 

advantage of avidity effects, the part of work discussed in this chapter is focused on the 

preparation and characterization of antigen-carrying, dextran-based tentacles.  

 

5.2 RESULTS AND DISCUSSION 

5.2.1 Functionalization of dextran 

 

Dextran can be functionalized in several ways to obtain reactive moieties onto which 

different types of cargos, i.e. peptides, proteins, cyclodextrins and small molecules can 

be grafted [135–137].  

We decided to start from dextran with an average molecular weight of 40 kDa (in the 

middle of the range of soluble dextrans), that could ideally adapt to IgM structure. For 

the multivalent presentation of the N-Glc epitopes, we opted for CuAAC reaction 

between glycidyl-propargyl functionalized dextran (Dex40-GP) and azide derivatives 

of glucosylated HMW1(1347-1355) fragment. 

The choice of alkyne-grafted dextran and azido-bearing peptides was more attractive 

than the reverse since alkyne groups are more stable and it is possible to prepare and 
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store a large amount of polymer onto which different azido-substituted molecules can 

be attached.  

Dextran of 40 kDa was activated with alkynes trough the epoxide opening of glycidyl 

propargyl ether (GPE) in basic aqueous solution (Figure 29), according to a procedure 

already described in literature[136]. The glycidyl spacer does not impair the solubility 

and the linker is sufficiently long to presumably provide a suitable distance between 

the grafted peptides and the glucan backbone. Moreover, the ether bond is 

hydrolytically stable. Basic water is used as solvent to avoid homopolymerization of 

the GPE, which is applied in excess due to a competing hydrolysis by hydroxide ions. 

 

 

Figure 29 – Reaction scheme for the functionalization of dextran with glycidyl-propargyl groups. Out of 

simplicity, final product (Dex40-GP) is represented as a homogeneously O3-modified construct. 

 

Approximating dextran as a linear polymer composed of α-1,6 linked glucose units, 

GPE can react with one of the three free hydroxyl functions (O2, O3, O4), and the 

literature is not unanimous about which of those is the one carrying the new ether 

bond[136,138,139]. The less hindered position should be O3, however the H1 chemical shift 

of the newly modified units likely corresponds to O2/O4 functionalized glucose (Figure 

30). Nevertheless, for simplicity’s sake the modified dextran is always represented as 

in Figure 29. 
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Figure 30 – Superimposition of 1H-NMR spectra of commercial dextran 40 kDa (blue spectrum) and 

functionalized Dex40-GP (red spectrum) evidences new signals appearance that were assigned to 

corresponding protons of the GP-functionalized glucose units. 

 

The degree of substitution (DS) was calculated by 1H-NMR (Figure 31). By the ratio of 

integrated signals of alkyne proton (2.98 ppm) and anomeric protons (5.60 - 4.95 ppm 

range), it was possible to retrieve the percentage of propargyl moieties (terminal 

alkynes) per dextran molecule, that is 29%. The DS in modified units was calculated 

by the ratio of new H1 signals of modified glucoses and total anomeric protons area, 

showing a DS of 31%. This tiny discrepancy indicates that not all the modified units 

include a terminal alkyne in the hanging moiety. Moreover, the area of signal at 4.29 

ppm (methylene protons of propargyl group) and the total area of peaks between 4.15-

3.35 ppm are both higher than expected. This unreported outcome was ascribed to the 

minor presence of GPE oligomerization and alkyne-alkyne coupling.  
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Figure 31 – 1H-NMR spectrum of Dex40-GP, with the integral of relevant signals that were used to 

characterize the novel scaffold. 

 

Although it is unlikely that terminal alkyne is deprotonated in reaction conditions (pKa 

≈ 26), our hypothesis is that the GP alkynes partially reacted together, possibly because 

of the presence of highly reactive epoxide groups or thanks to favorable steric 

conditions (Figure 32) . Therefore, we concluded that the area of signal at 4.29 ppm 

accounts for methylene groups linked to both terminal and coupled alkynes, and from 

its value we could retrieve another fundamental parameter: the average number of GP 

groups/glucose-GP unit (nGP = 1,8). This value is also in agreement with the integration 

of peaks in the 4.15-3.35 ppm range (see experimental section, chapter 7.4.3 for further 

information). 
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Figure 32 – Example of minor forms of modified units that can result from oligomerization of GP groups 

(n = 2, 3..) and alkyne-alkyne coupling. 

 

Moreover, the 13C-NMR spectrum evidenced the presence of shifted minor signal that 

may be due to the presence of different types of alkynes (Figure 33). Although the exact 

assignment is only hypothetical, the number of 13C signals is in agreement with forms 

such as those in Figure 32, and this is a further evidence supporting our conclusions. 

 

Figure 33 – 13C-NMR spectrum of Dex40-GP (in red, superimposed to Dex40 spectrum in blue) shows 

that beside mono-GP modified units other forms do exist. The presence of shifted 13C signals supports 

the hypothesis that a minor occurrence of oligo-GP modified units and/or alkyne-alkyne coupling is 

present. 
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Considering that each molecule of dextran contains an average of 246.9 glucose units, 

and that it is unlikely that more than one GP groups reacted with the same unit, 170.4 

units remains as simple α-1.6 glucoses (MW=162 Da) and 76.5 units are α-1,6 glucoses 

modified with 1.8 GP groups (MW= 113 Da) each on average. Among these, 71.6 

terminal alkyne protons are present. The estimated molecular weight of Dex40-GP, 

according to these conclusions, is 55.2 kDa.  

 

5.2.2 Dextran-peptide conjugates 

 

With the aim to graft peptide sequences to alkyne-functionalized dextran, azide-bearing 

peptides were prepared to be used as substrates in CuAAC “click” reaction. The 

selected sequence is the diglucosylated HMW1A (1347-1354) peptide (peptide 4) 

already discussed in chapter 3, as it provided the best binding abilities for IgG and IgM 

antibodies. 

At first, we envisaged to prepare N-terminal 4-azido-benzoylated peptides. Instead of 

acetic anhydride, commercial 4-azido-benzoyc acid (pN3Bz-OH) activated with 

HATU/DIPEA was used to perform the N-terminus capping prior to final deprotection 

and cleavage. This strategy, which has never been described before for peptides, 

allowed the obtainment of peptides 9 and 10. An advantage of obtaining such 

compounds are the low-price availability of pN3Bz-OH compared to azide-modified 

amino acid such as the commercially available but more expensive Fmoc-Lys(N3)-OH. 

Moreover, the aromatic ring can be exploited as UV-active probe as an additional 

characterization for conjugates. 
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Figure 34 – Structure of peptides 9 (pN3Bz-KANVTLNTT-NH2) and 10 (pN3Bz-KAN(Glc)VTLN(Glc)TT-

NH2). N-terminal 4-azido-benzoyl group is colored in red. 

 

We also synthesized 4-azido-N-(3-hydroxypropyl)-benzamide (IV) with a double 

purpose: on one hand, the compound was used in a CuAAC reaction model with 

propargyl alcohol, leading to the obtainment of 4-(4-(hydroxymethyl)-1H-1,2,3-triazol-

1-yl)-N-(3-hydroxypropyl)benzamide (V).  

This compound, whereas critically far from the polymer structure we aimed to obtain, 

has the same triazolyl-benzamide moiety as peptide-grafted dextran, thus providing a 

compelling model for UV analysis.  

Secondly, IV was clicked to Dex40-GP to optimize the CuAAC reaction conditions 

with the prepared polymer, both to maintain the amide bond as in peptides 9 and 10 and 

to avoid the presence of negative charges by using pN3BzOH. 

 

 

Figure 35 – Synthesis of compounds IV and V starting from commercial 4-azido-benzoyc acid 

(pN3BzOH). (EDC = 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide; DMAP = 4-

Dimethylaminopyridine; NaAsc = Sodium Ascorbate) 
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Since its discovery in 2002[140,141], the success of CuAAC has been outstanding for 

myriad of applications, thanks to its selectivity, efficiency and simplicity. Indeed, this 

type of ‘click’ reaction is highly versatile and can be performed under a variety of 

reaction conditions including various solvents, a wide pH and temperature range, using 

different copper sources, with or without additional ligands or reducing agents, and in 

the presence of other functional moieties. For bioconjugation purposes, this powerful 

ligation method has been reported to address the numerous challenges of dealing with 

peptides, proteins, glycans and polynucleotides. However, in spite of the many 

advancements that have been made in the field, in some cases several issues must be 

taken into account to optimize CuAAC reaction, especially when dealing with 

biomolecules, mainly because of their fragile nature and the low amounts at which they 

are generally manipulated[142,143]. Difficulties in CuAAC involve undesired side-

reactions such as alkyne cross-couplings by Glaser, Straus, or Eglinton mechanisms, 

azido stability to reaction conditions, the formation of highly reactive oxygen species 

(ROS). Steric factors and electronic effects are also reckoned to play a role in the 

performance of this click chemistry[144]. 

Several attempts to produce dextran conjugates by using the aryl azide derivatives 

(compound IV, peptides 9 and 10) lead to disappointing results.  

Different conditions were used to optimize the reaction conditions, including different 

solvent mixtures (DMF/H2O 1:1, DMSO/H2O 1:1 or 2:1 ratio) and increasing excess of 

CuSO4/sodium ascorbate catalyst. Unfortunately, prompt formation of sticky 

aggregates and unknown precipitation was always observed. Different work-up 

procedures, such as centrifugation, dialysis and size-exclusion chromatography, were 

also employed, but none of the obtained products could be fully characterized by UV, 

MALDI-TOF or NMR analysis. 

The reason of this lack of success could be ascribed to the formation of highly reactive 

species such as nitrenes. Azido compounds are known to fragment under light or at 

elevated temperature and to generate nitrenes[145,146]. Moreover, aryl azides were 

observed to undergo a copper-catalyzed reduction through the formation of a nitrene 

intermediate, leading to formation of a mixture of amines and sulfoxide conjugates, 

when an excess amount of DMSO was present[147].  In our experience, aggregate 

precipitation was observed even performing reaction in the dark. Future attempts could 

involve the use of additives and Cu(I) stabilizers, such as nitrogen-type donors, 
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including bases such as DIPEA and 2,6-lutidine and cosolvents such as acetonitrile, that 

may help to prevent degradation of CuI by oxidation or disproportionation[144]. 

Conversely, when peptide 6 was used for CuAAC conjugation to Dex40-GP, no 

precipitation occurred (Figure 36). The reaction proceeded smoothly in previously tested 

conditions that were found not suitable for aryl-azide compounds. Peptide 6 was the 

limiting reactant in anticipation of exploiting the unreacted alkyne moieties of the 

dextran-peptide conjugate for the CuAAC reaction to azido-functionalized surfaces or 

molecules.  

 

Figure 36 - Click reaction scheme involving the conjugation of diglucosylated peptide 6 to Dex40-GP, 

leading to the obtainment of Dex40-Pept6 

 

After a thorough work-up for copper removal, the obtained Dex40-Pept6 was 

characterized by NMR spectroscopy. To facilitate peaks assignment and spectra 

interpretation, 1H and 13C-NMR of peptide 6 were also recorded (see experimental part 

for further information). 1H-NMR spectra of Dex40-pept6 provides crucial information 

(Figure 37). 
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Figure 37 – 1H-NMR of Dex40-pept6. Important signals and areas used to characterize the novel 

conjugate are indicated by colored circles. 

 

By comparing the integrals of the newly formed triazole proton signal (8.10 ppm) and 

other isolated signals originating from peptide 6 protons, such as Hβ of valine (2.18 

ppm) or methyl protons of acetyl group, threonines, leucine and valine, it is clear that 

all the peptide component in the sample is covalently linked to dextran backbone (Figure 

37). This evidence is important to prove that peptide has not been simply enveloped by 

the polymer, but the reaction has successfully carried out.  

Triazole formation is also evidenced from the shift of Hε signal of Lys(N3) from 3.35 

ppm to 1.98 ppm. Instead, the signal due to methylene protons of propargyl group (4.29 

ppm) decrease in intensity without disappearing, while the new signal of triazole-linked 

methylene appears at 4.50 ppm. Terminal alkynes signal (2.98 ppm) also decreases 

without disappearing completely, as expected (see Figure 58 in the experimental section 

for further information). 

Most importantly, using the isolated triazole proton as reference signal, the DS in 

peptide can be calculated by comparing it with integrals of relevant peaks/ranges, such 

as H1 proton of modified dextran units. The peptide loading is calculated between 19% 

and 20%, meaning that ≈ 10% terminal alkynes remain and can be exploited for future 

applications (see experimental part, chapter 7.4.3 for further information). According 

to these considerations, each molecule of Dex40-pept6 carries on average 48 peptide 

branches and it has a final estimated MW of ≈129 kDa (Figure 38). 
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Figure 38 – Schematic representation of the novel conjugate Dex40-Pept6, carrying HMW1(1347-1354) 

diglucosylated epitopes shared by peptides 4, 5, 6, 7 and 10 discussed in this thesis. On the right, main 

features of dextran and dextran derivatives, based on NMR characterization, are summarized. 

 

5.2.3 Applications to antibody detection and capture 

 

The novel peptide-dextran conjugate was used in competitive ELISA tests for a 

preliminary assessment of antibody binding, using HMW1(Glc) as coating antigen.  

As shown in Figure 39, anti-HMW1(Glc) antibody affinity of Dex40-Pept6 is even 

greater than the protein itself. Both for IgGs and IgMs, the conjugate displays lower 

IC50, while commercial dextran 40 kDa (Dex40) and its alkyne-functionalized version 

(Dex40-GP) do not compete for antibody binding (Figure 39), which can hence be 

ascribed only to peptide 6. 
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Figure 39 – Inhibition curves of anti-HMW1(Glc) IgG and IgM antibodies in competitive indirect 

ELISAs. 

 

Although testing more sera will be crucial to assess if this trend is conserved among 

different patients, this is a first experimental evidence that an octopus-like 

macromolecule grafted with N-glucosylated peptides can be useful to increase affinity 

and detect antibodies, acting as a protein surrogate with even better performances. 

Especially for IgMs, the difference between the two IC50 (Table 6) can be ascribed to 

an increased avidity because of a multivalency effect. This hypothesis is strongly 

supported because diglucosylated peptide 4, though displaying the identical epitope of 

the dextran conjugate, is not able to compete for anti-HMW1(Glc) binding. 
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Table 6 - Calculated pIC50 value for HMW1(Glc) and Dex40-Pept6 toward anti-HMW1(Glc) IgG and 

IgM antibodies. Values are reported as 95% confidence interval for the calculated mean pIC50 of in 

representative sera MS1 (IgG) and MS4 (IgM). 

Antigen pIC50 (IgG) pIC50 (IgM) 

HMW1(Glc) 8.14 ± 0.45 7.07 ± 0.72 

Dex40-Pept6 9.70 ± 0.21 9,03 ± 0.39 

 

It is also important to evaluate the possibility to exploit Dex40-pept6 in SP-ELISA for 

the detection of anti-N(Glc) antibodies in patients’ sera. Therefore, preliminary tests 

were carried out with the aim to find the best conditions to perform indirect SP-ELISA 

screening of a larger batch of sera. The novel antigenic polymer was successfully coated 

on polystyrene plates and efficiently detected both IgG and IgM-type antibodies, with 

similar results regardless of the conditions tested. (see experimental part 7.7). 

Phosphate buffer saline (PBS) has been selected as the best coating buffer and fetal 

bovine serum (FBS) diluted 1:10 in NaCl 0,09% solution has been chosen as blocking 

buffer for future tests involving dextran-peptide conjugates. Measured absorbance 

values at 405 nm using these same conditions for peptide 4, peptide 7 and Dex40-pept6 

are reported in Figure 40.  

Five MS sera were used: MS1 and MS2, already tested for IgG competition, were 

previously found to have high titer of anti-HMW1(Glc) IgG antibodies, whereas 

lacking in IgMs. Conversely, MS4 and MS5 were found to have lower IgG titer 

compared to the IgM one. Finally, MS6 had high titer of both types of antibodies in 

experiments where HMW1(Glc) was the coated antigen. 
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Figure 40 – Comparison of igG (up) and IgM (down) detection in five MS sera using the three different 

antigens (diglucosylated peptide 4, homodimer peptide 7, and Dex40-pept6) , as determined by SP-

ELISA using PBS buffer as coating buffer and FBS buffer as blocking solution. Mean absorbance values 

at 405 nm are reported, and standard deviation for n=3 independent measures at the same conditions is 

indicated by error bars. 

 

The results for the three antigens based on diglucosylated HMW1(1347-1354) are in 

accordance with the previous titration, except for anti-N(Glc) IgG levels in MS4 that 

were found unexpectedly high. Noteworthy, while IgG detection ability is comparable 

among the three antigens, IgM capture appears to benefit significantly from the use of 

a multivalent structure. As already found for short sequences mimicking 

CSF114(Glc)[148], peptides 4 and 7 were able to detect IgG-type antibodies, but 

unfortunately displayed a drop in IgM antibodies recognition. 
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The screening of a larger batch of sera is required to assess the potentiality of dextran-

peptide conjugates for IgM detection in SP-ELISA. 

Nevertheless, all the experimental evidences strengthen the hypothesis that Dex40-

Pept6 is an optimal candidate that can be used to bind antibodies, especially the IgMs. 

Therefore, anti-N(Glc) IgM-rich serum MS5 was selected to perform preliminary 

attempts of antibody depletion.  

The first step to achieve this goal was the immobilization of Dex40-Pept6 onto CNBr-

preactivated sepharose resin beads, allowing to set up the stationary phase for an 

immunoaffinity-based column. Ideally, the gel substance forming the stationary phase 

should exhibit mechanical and chemical stability to the coupling and elution conditions, 

minimal nonspecific interactions with proteins and other sera components and assemble 

a loose porous network which allows the free flow of large molecules. Polysaccharides 

such as cross-linked dextran (Sephadex) and derivatives of agarose (Sepharose) have 

many of these features and therefore are widely used as coupling gels[149,150]. CNBr 

sepharose is a tradename for a crosslinked, beaded-form of agarose, which exposes 

cyanate ester groups on its surface without an intermediate spacer arm[151]. This pre-

activated resin is stable in a wide range of pH (2-11) and can be used for coupling 

peptides or proteins containing primary amino groups by forming an isourea derivative 

in basic conditions. The coupling reaction is spontaneous and easy to carry out, 

providing a very convenient way to immobilize ligands through multipoint attachment 

and resulting in a chemically stable product[152]. However, it is important that these 

multipoint connections do not affect the epitope presentation and thus compromise the 

effectiveness of the interaction of the immobilized antigen with the antibodies.  

CNBr sepharose was successfully used to immobilize both non-glucosylated and 

hyperglucosylated HMW1ct proteins for sequential immunoaffinity purification of IgG 

antibodies from sera[97].  

By adopting a similar strategy, we incubated 1 mg/mL solution of the novel conjugate 

/100 mg of beads in basic salted buffer (pH=8.3), allowing the mixture shaking (directly 

in the column) at room temperature overnight. Each peptide sequence grafted onto 

dextran chain (48 peptides/chain according to the NMR results) contains a N-terminal 

lysine residue, therefore ca 0.4 µmol of primary amine group/mg of compound. 

Because of the difficulty of quantitative measurements at 210-220 nm in the presence 

of interfering substances, and due to the lack of aromatic residues or UV active 

moieties, it was not possible to calculate the exact amount of dextran-peptide that was 
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successfully linked to the beads. . With the aim to elucidate critical features such as the 

exact percentage of functionalization and, most importantly, the local arrangement of 

the dextran-peptide conjugate in the gel, future attempts must be done to optimize the 

control of the coupling reaction step. However, the success of immobilization was 

assessed by comparing UV spectra of initial solution and eluted reacted mixture. 

Although the analysis of the solution of Dex40-pept6 before coupling showed the 

absence of clear peaks (i.e., points of maximum intensity), the absorbance in the same 

range resulting from the same solution after coupling dropped to zero, and this allowed 

us to consider the reaction completed. 

Unreacted cyanate sites were blocked with a basic saline solution containing an excess 

of glycine (0.2 M, pH=8). 

After thorough washings and equilibration of the functionalized stationary phase, serum 

MS5 (1 mL diluted 1:10 in saline buffer at pH=7.2) was eluted twice through the 

column and a small volume of collected fraction was kept for analysis (FT1). The third 

time, eluted serum was incubated in the column for 1 h at room temperature to promote 

the binding of kinetically slow antibodies, then final flow through fraction was collected 

(FT2). Retained antibodies were eluted from the column by using acid glycine solution 

(pH=2.3). which was immediately neutralized by addition of NaHCO3 buffer, and their 

activities were determined by SP-ELISA (Figure 41).  

 

 

Figure 41 – Immunoaffinity purification of antibodies from serum MS5. Measured SP-ELISA mean 

absorbances (±standard deviation for n = 3 independent experiments) of IgG and IgM of the fractions 

obtained by using a sepharose column containing the immobilized Dex40-pept6. Serum MS5, the initial 

flow through (FT1), the final flow through (FT2) were tested respecting the same dilution ratio, whereas 
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eluted fraction containing isolated antibodies (Elution) is approximately 5 times more concentrated. 

Coated antigen is Dex40-pept6 in PBS buffer; 10% FBS was used as blocking buffer. 

 

Although highly encouraging, these preliminary results have strengths and weaknesses. 

Both FT1 and FT2 fractions displayed a remarkable decrease in antibody titer. 

Particularly FT2 fraction was almost completely depleted from both IgG and IgM 

antibodies. This assessed the importance of a third, longer-time loading cycle to allow 

most of the antibodies binding the antigens in the column. Most importantly, it 

constituted the proof-of-concept that the selective depletion of the anti-N(Glc) antibody 

component, including IgM type, can be achieved by using Dex40-Pept6. 

Unfortunately, antibody content in the eluted fraction was only a small part of the initial 

component. In fact, initial serum and flow-through fractions were analyzed at the same 

dilution ratio (1:100 in each well of the plates). Conversely, eluted antibody fraction in 

each well is ≈ 5:100 v:v (see experimental section 7.8 for further information). 

Additionally, in contrast to the detected immunoglobulin content in MS5, the eluted 

antibody fraction contained more active IgGs than IgMs. This suggests that the elution 

conditions are not suitable for IgM elution, that are known to be very sensitive to buffer 

alterations. Their structure could be affected by the strong acidity of the eluent, 

hampering their activity and hence their detection. Alternatively, they could have 

remained strongly attached to the stationary phase of the column, because of the great 

affinity displayed by Dex40-Pept6 towards anti N-Glc antibodies. In this case, even 

hasher conditions would be required to isolate and characterize the antibody fraction. 

Future experiments will confirm the versatility of this novel conjugate as molecular 

“bait” to fish antibodies from patients’ sera, however these preliminary attempts 

provided promising hints of its value. 

 

5.3 CONCLUSIONS 

 

In this chapter, we reported the synthesis and characterization of a new dextran-peptide 

conjugate that holds great potential for future applications. Since multiple interactions 

are fundamental in many biological processes, the display of bioactive peptides in the 

polymer side chain can be beneficial for cooperative binding events. Therefore, the 

assembly of multiple N-glucosylated peptide moieties along a polymer backbone is of 

crucial interest for the detection and capture of antibodies in sera of MS patients. 
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Peptide 6, containing the diglucosylated HMW1(1347-1354) epitope, was loaded onto 

an alkyne-modified dextran (initial MW = 40 kDa, ≈ 247 glucose units/molecule) by 

CuAAC click chemistry. Quantitative NMR characterization allowed to measure the 

loading in peptides (19.5%), meaning that each peptide-grafted dextran molecule 

contains ≈ 48 modified units, hence ≈ 96 N(Glc) moieties. The concept of these 

polymeric multiple antigenic peptides was clearly demonstrated. This novel polymeric 

structure was shown to dramatically increase the binding potency of IgG and IgM in 

MS sera. The effect of cooperativity resulted in an increase in antigenicity when 

compared to the free epitope by competitive ELISA tests. Also, the best coating 

conditions to use Dex40-Pept6 in SP-ELISA were selected, and the comparison with 

the analogue peptide 4 and peptide 7 highlighted the enhancement in IgM binding 

ability. 

The natural evolution of this project points toward the exploitation of this synthetic 

polymer for the isolation and characterization of antibodies. Antibodies from a 

representative MS serum were successfully depleted on a sepharose resin specifically 

modified with the adhesin peptide-dextran conjugate, as confirmed by SP-ELISA. This 

preliminary result is a proof-of-concept of the selective entrapment of circulating 

autoantibodies (possibly perpetuating nonself recognition) that could hopefully lead to 

develop a specific apheresis-based device.  

However, in order to exploit and characterize the antibody fraction for biological 

assays, the optimization of the immunoaffinity purification procedure is required since 

the antibody content in the recovered fraction was disappointingly low. 

A critical step is the purification of single-isotype antibodies. As expected, the 

conjugate Dex40-Pept6 exhibits weak capability to distinguish between IgGs and IgMs 

when they are both present. Therefore, with the final aim to purify and characterize 

IgMs from MS sera, the first step should be IgG removal, by using protein A- or protein 

G-based media[153]. Once the serum is cleaned from IgGs, anti-N(Glc) IgMs could be 

isolated from the other immunoglobulin and protein components thanks to this novel 

functionalized resin. On the other hand, recovering intact antibodies is a pivotal issue. 

Many improvements must be achieved to isolate active autoantibodies and especially 

the IgMs. Recently, investigational studies of adsorption selectivity of IgM, IgA and 

IgG by mixed-mode chromatography with specially-designed ligands were performed 

to improve adsorption selectivity and process efficiency of IgM purification from 

complex feedstock such as human serum[129]. Resin adsorption capacity was 
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demonstrated to depend critically from pH and a method for IgM, IgA and IgG selective 

separation was developed by controlling the loading and elution pH. Notably, the 

presence of elution additives such as 1 M arginine addition was proposed to help 

improving the selectivity and maintaining the antibody activity of IgM after 

purification[129].  

In our case, human serum containing higher titer of IgM than IgG was flowed through 

the antigen-functionalized column, and SP-ELISA analysis of the resulting fraction 

confirmed the depletion of the specific antibody component. However, elution in acid 

glycine buffer (pH=2.3) afforded a poorly active antibody fraction, meaning either that 

the antibodies lost their structure during elution (i.e., their activity toward the coated 

antigens in the plates) or that most of the antibody component remained tightly bound 

to the column. Moreover, the eluted fraction was richer in IgG than IgM antibodies. In 

solid-phase, IgM may interact with several peptide-dextran forming a high-avidity 

antibody-antigen complex that is not trivial to break.  

With the aim to set up antigen-specific matrixes for plasmapheresis columns, recycling 

the stationary phase is a main issue. To regenerate the column by releasing the bound 

anti-N(Glc) immunoglobulins, harsh pH variations can be used, in the range of the solid 

phase stability (pH=2-11). Acid treatments to elute the retained components and then 

basic washings with diluted NaOH allow the reusability of the column for clinical 

practice. To disrupt the non-covalent antigen-antibody interactions, also non-ionic 

detergents or denaturing solvents, such as urea and guanidine hydrochloride, can be 

envisaged since the dextran-peptide conjugate is chemically stable.  

Conversely, if the goal is to characterize the specific antibodies by recovering intact 

and functional immunoglobulins, precautions must be taken, especially when IgM are 

targeted. The release of immunoglobulins may be achieved in alternative by selectively 

targeting the dextran scaffold of the antigen-based column, using dextran-hydrolyzing 

enzymes[154]. However, the use of dextranases or other reagents such as sodium 

periodate would lead to the destruction of the stationary phase and the obtainment of a 

complex mixture of eluted substances that must be subsequently purified. 

Also, quantitative mono-dimensional 1H-NMR allowed us to characterize the peptide 

content per macromolecule, but thermal and biophysical properties must be 

investigated to assess the suitability of the dextran conjugate. When applying these 

classes of materials to translational medicine, it is important to engineer well-defined 

materials whose structure and behaviour are well characterized.  
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A detailed structural characterization may also be important to correlate the three-

dimensional conformation of the peptide-polymer chain with antibody binding activity. 

With fundamental structural and behavioral properties understood, the knowledge 

gained can then be used to rationally design peptide-polymer conjugates with desired 

properties. Many parameters can be tailored to achieve a target, including the peptide 

sequence and length, the chemical nature of the polymer, the length of the polymer, the 

solvent, and the architecture of the conjugate[121]. This first achievement paves the way 

for future developments involving the production and characterization of new 

conjugates with different peptide distribution (i.e., the degree of substitution) and 

polymer size (i.e., dextran molecular weight). 

Finally, it is important to note that CuAAC reaction between peptide 6 and Dex40-GP 

was intentionally performed in order to preserve a minor percentage of unreacted 

alkynes that could be useful for future applications. The use of 0.8 eq of azide (i.e., 

peptide)/ alkyne group lead to the obtainment of Dex40-Pept6 containing 19.5 peptide 

chains and 9.5 terminal alkynes/ molecule.  

Each peptide sequence contains a N-term lysine carrying a primary amine moiety useful 

for bioconjugation purposes. In our preliminary attempts, we exploited the primary 

amine groups for the immobilization of Dex40-Pept6 to CNBr-activated sepharose 

beads, and this approach allowed us to verify the efficacy our conjugate for antibody 

removal. Alternatively, the remaining alkynes can be coupled to azide-bearing surfaces 

or membranes, hopefully providing more favourable antibody-peptide interactions 

because of the lower steric hindrance around the peptides.  

However, the reactivity of alkyne-terminal groups is not restricted to the development 

of stationary phases for immunoaffinity purification. Several bioconjugation strategies 

can take advantage of the orthogonality between the alkyne and the amino groups. 

Indeed, the reaction with other molecules could in principle provide multifunctional 

architectures. For example, we can envisage the use of lipids for 

immunostimulation[155], thiol containing molecules for gold nanoparticle-based 

delivery[156] or gold surface functionalization in sensor chips[157], as well as biotin, 

maleimide and many other functionally reactive derivatives that can be exploited for 

the detection and characterization of anti-N(Glc) antibodies. In summary, Dex40-Pept6 

represents a chemical playground that allows to conceive complex molecular systems 

with new and exciting applications in chemical immunology. 
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6. S-ALKYLATION: TOWARD NEW 

GLYCOPEPTIDE CONJUGATES 

6.1 INTRODUCTION 

 

In the large frame of glycans and glycoproteins involved in autoimmune diseases, the 

scope of this thesis project was to evaluate the antibody-antigen recognition in patients’ 

sera by exploiting glycopeptide probes, and ultimately to develop a synthetic structure 

able to trap antibodies with high affinity. As discussed in previous chapters, this general 

conception was validated in the case of selected MS patients, whose sera contain 

antibodies targeting N-linked glucosyl moieties on Asn residues.  

Nonetheless, anti-glycan antibodies are an abundant subpopulation of serum antibodies 

with critical functions in many immune processes[158] and several glycostructures are 

known to be specifically recognized in immune disorders[36]. Establishing a correlation 

between antibodies to certain defined mono, di and oligosaccharide conjugates that are 

common in bacterial, fungal and parasite cells and their relevance in human sera holds 

a compelling value for diagnosis, prognosis, and therapeutic implications[36,159]. As a 

result, achieving synthetic high-affinity probes to detect and capture specific antibodies 

would be a great success.  

Glycosylation of proteins is the most complex form of co- and posttranslational 

modification. The determination of structure-function relationships, however, remains 

problematic because of both the microheterogeneity of glycoproteins that exist in many 

different glycoforms and their accessibility for investigational studies[160]. As it is very 

difficult to obtain them from natural sources, the chemical synthesis of glycoproteins 

and glycopeptides with defined glycan structures plays a pivotal role for the detailed 

determination of the role of protein glycosylation and the design of efficient and 

reproducible immunoassays. Yet, getting access to large amounts of pure 

glycoconjugates remains one of the most critical issues in translational research. 

Although the impressive progresses in chemical and enzymatic methods that allowed 

the generation of relevant glycoproteins and glycoconjugates, the field is still 

expanding, responding to the ever-growing demands and challenges of 

glycoscience[161]. Chemical synthesis of glycopeptides is a powerful tool because it 

allows the large-scale production of homogeneous structures that are able to mimic 

glycoconjugates’ bioactivity. This concept inspired the “chemical reverse approach”, 
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already discussed in the introduction, and its ultimate aim to select and optimize 

synthetic peptide probes in immune diseases. With the idea that mimicking 

immunogenic modifications could be even more effective and specific than using native 

molecules in antibody detection,  the screening of focused libraries of unique modified 

sequences exposing the minimal epitope with the relevant modification may be crucial 

to detect at the best autoantibodies specific of the autoimmune disease under 

investigation. 

Unfortunately, even the chemical synthesis of glycoconjugates is seldom trivial and 

expeditious, and the obtainment of large quantities necessary to address the critical 

medical needs require a lot of efforts. The design of glycopeptides requires a 

combination of sugar and peptide chemistry, a substantial part being the installation of 

the glycosidic bond between carbohydrate units and between the saccharide and the 

peptide chain[162]. In fact, the real bottleneck is the obtainment of complex 

oligosaccharides and their conjugation to the peptide scaffold, since the developments 

in peptide synthesis has now made readily accessible the large-scale production of 

amino acid sequences, thanks to the optimizations of solid-phase strategies and to the 

expansion of powerful methods of fragment condensations of deprotected peptides, i.e. 

the chemical ligation approaches[163–165].  

The synthetic route commonly used for the synthesis of N-glycosides exploits the 

formation of a peptidic bond between a glycosylamine and a protected aspartic acid 

derivative. As glycosylamine precursors, usually glycosylazides are employed, which 

can be obtained with the strategy already shown in chapter 3.2.1, by treatment of 

glycosyl halides with azide salts.However, the obtainment of glycopeptides fully 

synthesized through SPPS strategy is not trivial for complex conjugates. Peracylated 

monosaccharides are stable to acid conditions, and Fmoc-Asn[Glc(OAc)4]-OH is a 

suitable building block, as already shown. Also many other N-Glycosyl peptides are 

accessible through SPPS in the case of monosaccharides or simple disaccharides[41,98]. 

Conversely, when dealing with more complex disaccharide or oligosaccharides, two 

main problems are faced: the chemical incompatibility between sugar and peptide 

chemistry, such as the poor stability of the inter-glycosidic bond in strongly acid 

conditions during final cleavage or the presence of moieties sensitive to other SPPS 

conditions, and the necessity of large quantities of precious glycosylated amino-acid, 

because of the considerable excess of the activated residue during the coupling. 

Therefore, different strategies are more often envisaged[161,166,167]. These involve the 
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combination of chemical synthesis, chemoenzymatic synthesis, and bioconjugation 

strategies to obtain desired glycan targets.  As example, the insertion of the first 

monosaccharide to peptide chain and the enzymatic extension of the glycan moiety is 

one of the several “mixed” approaches that can be conceived[162]. Nevertheless, enzyme 

accessibility, the small quantities obtained and the impossibility to study aberrant 

glycosylations that may be involved in immune disfunctions (i.e. the non-native 

sequences linked to native saccharides or vice-versa), are all critical issues to consider.  

In the chemical solution-phase synthesis of N-glycopeptides, it is practical to employ a 

block glycosylation approach in which the full-length carbohydrate is coupled to 

peptide side chains[160]. Starting from non-glycosylated peptides, the final glycosylation 

in solution cannot be performed selectively with the acylation of aspartic acid, since 

most of the times other reactive functions are present. Alternatively, the coupling of 

glycans to peptides requires the exploitation of selective “click-type” chemistry[122]. For 

example, an often used strategy consists in starting from glycosyl-azides and peptide 

sequences in which propargylglycine is replacing asparagine to enable CuAAC 

conjugation[168]. Although triazole ring linker is suggested to be isostere of the amide 

bond[143], the CSF114(Glc) analogue, i.e. [Gly7(CH2triazolylGlc)]CSF114 displayed 

negligible inhibitory activity in competitive ELISA and failed to detect autoantibodies 

in MS sera by SP-ELISA[41]. Therefore, synthetic strategies for glycopeptide 

exploitation in chemical immunology must be carefully assayed, especially when the 

linkage between peptide backbone and sugar moiety is important for antibody 

recognition. Nonetheless, with the purpose to use azide-bearing peptides for the 

development of polymer conjugates through CuAAC conjugation, an additional degree 

of orthogonality must be envisaged to couple complex glycans to peptide sequences. 

Thiol substitution to halogen derivatives is another “click” strategy (Figure 42) that 

offers various practical advantages as it reduces dramatically the synthetic steps and 

gives an easy access to glycopeptide libraries through a copper-free reaction. Bromo-

acetamido derivatives are interesting building blocks to link a glycan residue to a 

peptide sequence by forming a thioether linkage with a free thiol (Cys) residue[169][170]. 

The glucosylated thioether product is not a real mimetic of a glycosyl asparagine, as 

the distance between the sugar and the peptide backbone is increased, but it retains the 

essential glycosylated amide function. Moreover, the reaction is compatible with the 

presence of other functionalities, i.e. it is selective and orthogonal to other conjugation 

strategies such as CuAAC. 
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Figure 42 – Three examples of synthetic strategies to obtain N-glycosylated peptide mimetics. For sugars 

such as Glc, Gal or other simple mono and disaccharides, conveniently protected glycosyl-Asn can be 

directly inserted into the peptide sequence following the SPPS cyclic scheme. When more sensitive 

saccharide moieties are employed, e.g. sulphated or branched glycans, other approaches must be 

considered. These include the replacement of Asn residue with Cys or Pra for site-selective “click” 

modifications. 

 

With these considerations in mind, in the present final chapter we present our 

investigational studies to optimize the conditions for this synthetic strategy, together 

with the synthesis of relevant saccharide building blocks for the development of new 

glycan mimetics. For their conjugation to peptide or polymer scaffolds, the 

aforementioned orthogonal schemes will be necessary. 

 

6.2 RESULTS AND DISCUSSION 

 

6.2.1 Synthesis of relevant glycosyl building blocks 

 

With the aim to optimize reaction conditions for the S-alkylation of cysteine residue in 

peptide chains, we synthesized the bromo-acetamido derivative of glucose (Glc) and 

galactose (Gal). The fastest way to synthesize these novel building blocks is a method 

described in literature based on the use of MsOH and MeCN (v/v 1:4) as solvents for 
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the obtainment of N-(2,3,4,6-Tetra-O-acetyl-β-D-glycosyl) acetamides [171]. 

Unfortunately, in our case starting from peracetylated monosaccharides and following 

the described protocol using BrCH2CN instead of MeCN, the reaction did not produce 

characterizable products by TLC and NMR analysis. Thus, we envisaged to use a multi-

step but more reliable synthesis to obtain the bromo-acetamido derivatives. This 

protocol involves the well-known carbodiimide activation[172] of carboxylic group to 

form an amide bond with glycosyl amines (Figure 43).  

 

 

Figure 43 – Synthetic scheme adopted for the synthesis of bromo-acetamide derivatives of Glc (VI) and 

Gal (IX). a) H2,Pd/C in MeOH; b) 2-Br-acetic acid, DCC, DMAP in DCM 

 

Large-quantity production of glucose derivative VI was useful not only to explore the 

selectivity of the reaction with Cys residue in our model peptide sequence, but also to 

assess the mimicking ability of thio-glucosylated peptides in reproducing the N-

linkage, as discussed in the next paragraph. Galactose derivative IX can be useful for 

comparison in immunological experiments, but its true relevance lies as starting 

building block for other glycan structures. In fact, some derivatives of galactose are 

associated to immune disorders. These include several O3-linked derivatives such as 

HSO3-3Gal (sulfatide epitope), in which the sulphated form of galactose plays as 

fundamental target of prevention of and therapy for nervous disorders, diabetes 

mellitus, immunological diseases, cancer, and infectious diseases[173]. Gal-α1,3-Gal (α-

Gal epitope) is a nonhuman carbohydrate structure that is known to induce a strong 

immune response in humans. This disaccharide was identified in several therapeutic 

monoclonal antibodies and therefore holds potential in establishing correlation with 

adverse effects of antibody therapies, that may lead to allergies and autoimmunity[174]. 

 

 

 

 

I II 
VI 
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Gal is also an essential unit of the the human natural killer-1 (HNK-1) carbohydrate 

epitope, a unique saccharide possessing sulfated glucuronic acid in a non-reducing 

terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-) that is highly expressed in the nervous 

system[175]. This HNK-1 carbohydrate is the putative autoantigen associated with 

peripheral demyelinating neuropathy, which relates to IgM paraproteinemia 

(monoclonal gammopathy), reacting with serum autoantibodies in IgM anti-MAG 

(myelin-associated glycoprotein) antibody-associated neuropathy patients[176–178]. 

 

Figure 44 – Examples of epitopes containing Galß1-unit that have modified O3 positions. Many other 

complex glycans and glycoconjugates include galactose in their terminal moieties, such as branched N-

glycans and gangliosides. 

 

These important epitopes share the Galß1-unit (Figure 44) that is contained in compound 

IX. However, to obtain the selective O3 modification and reproduce the essential 

terminal structures, an orthogonal protecting group scheme must be adopted. In fact, 

the most reactive hydroxyl groups are OH-3 and OH-6, with the axial OH-4 being the 

least nucleophilic one, but this general consideration is highly dependent on protecting 

group features and on the donor nature[179]. The purification of product mixture obtained 

in non-selective conditions, whenever possible, can be tedious and lead to a huge loss 

of precious material. Therefore, we synthesized the 2,6-O-protected compound X, that 

serves as promising building block for future reactions, e.g. the selective sulfation or 

the formation of glycosydic bonds. Compound X was synthesized starting from fully 
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deprotected β-D-galactopyranosyl-azide that can be obtained uneventfully by 

deacetylating compound VII in presence of MeONa catalytic amount. Notably, initial 

attempts to selectively protect O6 (in virtue of its less hindered position) with bulky 

pivaloyl (Piv) or benzoyl (Bz) groups leaded to a mixture of products that could not be 

purified, with O3 and O6 being the most abundant ones as evidenced by 1H-NMR. 

 

 

Figure 45 – Synthetic scheme that led to obtainment of 2,6-O-benzyl-β-D-galactopyranosylazide X. a) 

CSA, 2,2-dimethoxypropane, 48 h RT; Et3N, 15 min RT; MeOH/H2O 10:1, 2 h reflux. b) BzCl, pyridine, 

16 h RT. c) AcOH 80%, 1h 80°C. 

 

So, we adopted to a more reliable method to selectively protect O-6, which is based on 

a multi-step scheme developed by Catelani[180]. By acidic catalysis in 2,2-

dimethoxypropane as solvent, the selective protection of of OH-3 and OH-4 of starting 

β-D-galactopyranosyl-azide was obtained. The hydroxyl groups at the 2 and 6 positions 

were protected as benzoyl esters, then final acetal hydrolysis afforded compound X. 

This longer but very effective synthetic strategy allowed the obtainment of large 

quantities of pure compound X with remarkably good yields (70-78% over three steps 

in which only one purification step by column chromatography is involved).  

This galactose derivative contains a 1-β-linked azide moiety that can be either exploited 

for CuAAC reaction, or may be reduced through hydrogenation to a primary amine 

group for the subsequent conjugation to carboxyl functions, e.g. bromoacetic acid for 

Cys alkylation. It is protected on O2 and O6 positions by benzoate groups (that can be 

removed by saponification in basic conditions), hence the O3 modification is likely to 

be selective in controlled conditions. Alternatively, a two-step protocol involving a 

orthoester-mediated protection to form of the 3,4-orthobenzoate intermediate, which is 

then hydrolyzed by aqueous AcOH with quantitative yield, can be envisaged to 

selectively protect axial O4 position[181].  

Thanks to these features, compound X is a promising building block to be used for the 

obtainment of sulfatide epitope mimetics, or as galactosyl acceptor in glycosidic bond 

formation. For this purpose, during my Ph.D. research a major effort was devoted also 

to the synthesis of a challenging but crucial monosaccharide building block (compound 
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XIV). This fully protected glucuronic acid (GlcA) moiety represents the essential 

scaffold to synthesise glycomimetics of the HNK-1 epitope, ultimately leading to the 

obtainment of terminal HSO3-3GlcAß1- unit (Figure 46). 

 

  

Figure 46 – Eight-step reaction scheme to obtain building block XIV, a crucial unit for HNK-1 mimetics 

synthesis. a) BnBr, NaH, 2h RT in DMF. b) TFA 50%, 1 h RT. c) TBDMSCl, 2h RT in pyridine. d) BzCl, 

16 h RT in pyridine. e) Jones’reagent, 1 h RT in acetone. f) MeI, KHCO3, 16 h RT in DMF.  g) H2, Pd/C, 

3 h RT in THF. h) LevOH, DCC, DMAP, 16 h RT in DCM. 

 

Compound XIV had already been synthesised by our group before[182], whereas several 

groups in the field have reported the synthesis of similar precursors to obtain HNK1-

related oligosaccharides[177,181,183,184]. Although challenging, the synthesis of this 

glucuronyl donor and the subsequent glycoside-bond formation with galactosyl-

containing acceptors is pivotal for the large-scale production of specific HNK-1 

mimetics and their exploitation in bioassays.  

As a result, we performed a multi-step synthesis starting from commercially available 

diacetone-D-glucose, whose free OH-3 was benzylated in the presence of sodium 

hydride and benzyl bromide in DMF. The fully protected furanoside intermediate was 

converted into 3-O-benzyl-D-glucopyranose (compound XI, mixture of α/β anomers) 

in acidic conditions. In the next two steps, the primary alcohol function (O6) was 

protected by bulky acid-labile t-butyldimethylsilyl chloride (TBDMSCl) and the 

remaining free hydroxyls were benzoylated, obtaining complex crudes that were 

purified by column chromatography to afford desired product XII with variable  and 

disappointingly low yields (30%-48%). After oxidation using Jones’ reagent (CrO3 and 

sulfuric acid) in acetone and methylation by methyl iodide in the presence of potassium 
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hydrogenocarbonate in DMF, compound XIII was obtained. The benzyl group was 

removed by hydrogenolysis and replaced by levulinate protecting group. 

This not always straightforward synthetic procedure was introductory for the 

obtainment of conveniently protected compound XIV. This precursor can be converted 

into the 1β-azide derivative for subsequent click-type reactions with various scaffolds 

to elaborate innovative architectures based on the terminal sulfated HNK1 

monosaccharide. Otherwise, it can be employed as glucuronyl donor for the glycoside 

bond formation with galactosyl acceptor X, allowing the achievement of a disaccharide 

building block that could interact better with antibodies[177], hence holding more 

potential for the development of high-affinity probes. 

Both scenarios envisage the involvement of an intermediate activated form, i.e. the 1-α 

-bromo derivative XV, that is unstable and not suitable for long-term storage.  

In a preliminary attempt, we performed bromination of anomeric carbon on a small 

quantity of compound XIV, and we obtained the final activated α-donor XV with an 

excellent purity but a less comforting yield (48%). Unfortunately, the subsequent 

reaction to obtain the desired disaccharide by coupling pure glucuronyl donor XV and 

galactosyl derivative X was not successful (Figure 47). 

 

 

Figure 47 – Reaction scheme of the glycoside bond formation between the saccharides XV and X. By 

using AgOTf as promoter and anhydrous DCM as solvent, the reaction did not occur. 

  

Lewis acid activation by silver triflate in anhydrous dichloromethane at 0°C did not 

lead to the formation of expected disaccharide. Instead, the TLC plate evidenced the 

disappearance of compound XV but no other spots could be clearly identified. 

Purification was also pointless, and even NMR analysis of obtained fractions failed in 

providing relevant hints to determine the nature of product mixture. 

As a result,future efforts must be directed toward the optimization of the glycosidic 

bond formation, with the crucial interest of developing HNK1 disaccharide analogues. 
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Different activating groups could be envisaged, such as trichloroacetoimidates or 

thioglycosides[185]. These schemes in HNK-1 related synthesis were not found suitable 

for oligosaccharide linkage[182] ,  whereas they have been used in the case of galactosyl 

acceptors [186][187]. 

Through a multi-step synthesis, the glycomimetics based on the final monosaccharide 

HSO3-3GlcA- and the final disaccharide HSO3-3GlcAß1-3Gal- moieties can be 

synthesized, however the procedure is time consuming and skill-demanding. 

With the aim to conjugate these valuable sugars to peptides and peptide-based 

polymers, eventually leading to form the stationary phase of columns for 

plasmapheresis, large-scale production of precious conjugates shall be achieved, 

therefore the optimization of current synthetic strategies is crucial. 

 

6.2.2 Alkylation of a model cysteinyl peptide 

 

Cysteine carbamidomethylation is a deliberate post-translational modification 

introduced to cysteine residues by reacting with a haloacetamide. This modification is 

mainly used in proteomics studies for the identification and characterization of proteins 

and peptides by mass spectrometry or to prevent cysteine from oxidation by treating 

proteins in basic aqueous buffer[188].  

For our investigational studies, we synthesised Ac-KACVTLNTT-NH2 (peptide 11) 

analogue of peptide 2 previously discussed in chapter 3, where native Asn1348 of 

HMW1(1347-1354) fragment is replaced by a thiol containing Cys. The synthesis holds 

a double purpose. On one hand, we aim to assess the thioether derivative ability to 

inhibit anti-N(Glc) antibodies binding to CSF114(Glc). In fact, no similar compound 

was ever tested before with human sera, and evaluating the capability of the 

glucosylated derivative to mimic Asn(Glc) containing peptides could provide insights 

about the specificity of the antibody recognition. On the other hand, optimizing reaction 

conditions is important for the future plan of conjugating more complex 

oligosaccharides to peptides. 

Purified compound VI was used for the selective glucosylation of peptide 11 (Figure 

1Figure 48).  
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Figure 48 – Reaction scheme for the synthesis of acetylated peptide 12. Reaction conditions are 

described in the experimental section. 

 

There are few reports in literature involving the S-alkylation on cysteine residues 

reacting with glycosyl haloacetamides for the synthesis of N-linked glycoprotein 

mimetics. A solid-phase coupling method using iodoacetamides for protein 

semisynthesis was described[169], while in-solution methods for thiol alkylation of 

biomolecules[170,189,190] reported the use of aqueous buffers to perform the reaction.  

The model reaction is therefore of great interest because it allows exploring reaction 

conditions in presence of a competing nucleophile, i.e. the amine moiety of N-terminal 

Lys side chain. First attempts to couple peptide 11 to compound VI envisaged the use 

of DIEA (pKa=10.75) as base (from 0 up to 4 eq), in virtue of its poor nucleophilicity. 

Small amounts of peptide were dissolved in the minimum amount of MeCN/H2O (3:1 

vv, final concentration ca 3 mg peptide/mL) and an excess the glucose derivative was 

added (from 2 up to 8 eq).  

In neutral environment, reaction proceeded very slowly during one day stirring and did 

not get to completion (with the pH stabilized ≈6-7, as assessed by pH paper), yet the 

mass of the new peak found in the chromatogram corresponded to the desired product 

(tr = 5.38 min, found m/z = 1378.17, calculated 1378.63) (Figure 49).  
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Figure 49 – RP-HPLC chromatogram of the S-alkylation of peptide 11 (tr = 4.50 min) to form acetylated 

peptide 12 (tr = 5.38 min), after 24 h reaction without the addition of base. Analytical RP-HPLC gradient 

5-100% B in 10 min at 1 mL min-1; solvent system A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN 

  

Disappointingly, any small addition of DIEA (pH =9-10 by pH paper) caused the 

disappearance of the starting peptide but also leaded to a crowded chromatogram with 

several peaks due to side-reactions. In particular, a peak of comparable intensity at tr = 

6.09 min was ascribed to a second alkylation, on lysine side chain (found m/z = 

1764.94, calculated 1765.65). The several other peaks presumably resulted from the 

loss of one or more acetyl groups bound to the glycan moiety, and possibly disulfide 

bridge formation, however the mass analysis by MALDI-TOF of corresponding 

fractions was not trivial.  

Therefore, we performed the reaction in already reported pH-controlled conditions by 

two different aqueous buffers, i.e. phosphate buffer (100 mM, pH = 7)[190] and NH4CO3 

buffer (pH=8 )[191]. In both cases, the peptide 11 peak disappearance correlated with the 

formation of a major peak, corresponding to acetylated peptide 12 by MALDI-TOF 

analysis. However, the insolubility of both the Br-acetamido derivative IV and the 

acetylated peptide 12 in saline buffers, required the dilution in acetonitrile and longer 

reaction times. Conversely, by the addition of 3 equivalents of a weak organic base 

(lutidine, pKa = 6.72) to a 3 mg/mL solution of peptide 11 in 50:50 MeCN/H2O, HPLC 

chromatogram showed the quantitative conversion in less than three hours. These 

conditions were selected as the best ones to perform the S-alkylation reaction between 

free Cys-containing peptides and acyl-protected glycosylamides. In alternative, the 

preliminary deprotection of sugar derivatives could be performed before the coupling 
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reaction, but this could lead to the partial loss of Br-acetamido glycosyl donors that is 

detrimental in the case of precious saccharides. 

This was separated from remaining excess of compound VI (that can be in this way 

recuperated free of salts), then deacetylation and semi-preparative RP-HPLC afforded 

pure peptide 12.  

By coating CSF114(Glc) in ELISA plates, the competition for IgG binding was 

evaluated by using serum MS1. Peptides 11 and 12 were compared with peptide 1 and 

2, respectively, as they represent their Cys-containing analogues (Figure 50). 

 

 

Figure 50 - Inhibition curves of anti-CSF114(Glc) IgG antibodies in serum MS1 with nonapeptides 1-2 

and analogues 11-12 in a competitive indirect ELISA, in comparison with the glucopeptide CSF114(Glc). 

 

Table 7 – Calculated pIC50 values for inhibitors toward anti-CSF114(Glc) IgG antibodies. Values are 

reported as 95% confidence intervals for the calculated mean pIC50 of the peptide antigens 1-2 and 11-

12 used as inhibitors of anti-CSF114(Glc) IgG antibodies in MS1 sera. 

Inhibitor MS 1 

Peptide 1 ---- 

Peptide 2 9.28 ± 0.55 

Peptide 11 ---- 

Peptide 12 5.32 ± 0.21 
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CSF114(Glc) 7.21 ± 0.29 

 

 

As already reported for other glycopeptides lacking the native N-glucosyl function[41], 

Peptide 12 failed to display a satisfactory IC50 in competitive ELISA tests using MS1, 

decreasing in almost four orders of magnitude compared to its Asn(Glc) analogue 

peptide 3 (Table 7). Although other sera should be tested, and different antibody 

isotypes, these experiments confirmed the high specificity of IgG antibodies targeting 

Asn(Glc). The recognition is likely driven by direct interactions of the antibody binding 

site with the Asn-linked sugar moiety. Therefore, possessing a glucosyl-amide portion 

is not enough to make this aberrantly modified residue a good surrogate of glucosyl-

asparagine. 

However, S-alkylation on cysteine residues with bromoacetamides to obtain N-linked 

glycoprotein mimetics as probes in autoimmunity was successfully performed in the 

case of a simple glucose moiety. The found conditions will be useful for the linkage of 

complex and precious saccharides that cannot be used in SPPS, whenever the specific 

Asn-glycan distance is less critical for the paratope interaction. 

 

6.3 CONCLUSIONS 

 

This concluding chapter evaluates the exploitation of selective and efficient synthetic 

strategies that will hopefully lead soon to produce large quantities of neoglycopeptide 

epitopes. Here, we reported the use of bromo-acetamido derivative of glucose as 

alkylating reagent for the obtainment of a novel glycosylated peptide. 

Glycosylation is a crucial modification that is supposed to be involved in the disruption 

of immune tolerance for many immune-mediated pathologies, not only in the case of 

β-glucosyl asparagine residues that have been associated to MS, and, more recently, to 

Rett Syndrome[192,193]. Glycopeptide synthesis can be extremely challenging, often 

resulting in the obtainment of small quantities of product and limited to robust, simple 

glycosides. It is important to widen our chemical tools in order to obtain sequences 

modified with more complex saccharides, such as 3-O-sulfogalactose (sulfatide 

epitope) to trap anti-sulfatide antibodies that are associated to various neuropathies an 

diabetes[173], and 3-O sulfoglucuronyl β-1,3- galactose (HNK1 disaccharide epitope) 
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that is related to monoclonal neuropathies[175,178]. The synthesis of very complex targets 

is still a challenge and it usually is the speed of glycan synthesis that is rate 

limiting[160][182,194]. Then, efficient conjugation strategies must be adopted to obtain 

glycan conjugates in large amount for clinical applications, e.g., to develop stationary 

phases for plasmapheresis columns. 

We performed the synthesis of fundamental glycosyl precursors, but the final 

saccharides have not been achieved yet. However, our goal to produce a glycopeptide 

library fuelled the exploration of robust chemical site-selective modification strategies, 

with the future aim to obtain and apply homogeneous conjugates with improved 

properties to antibody binding and capture in human sera.  

By using the bromo-acetamido derivative of glucose (VI) we performed the thiol 

alkylation on a Cys containing peptide and selected our best conditions to perform the 

reaction, that offers useful advantages. First, the alkylation of peptide 11 using the 

bromoacetamide derivative VI in acetonitrile/water solution with only 2-3 eq of lutidine 

was found simple, fast and effective. Aqueous salted buffers can also be used, but prior 

deprotection of glycosyl moieties is required for solubility. Also, the attachment of 

bromoacetamide derivatives is selective to cysteine residues in neutral or slightly basic 

pH. When pH was increased above 8-9, nucleophilic competition by the deprotonated 

amine of Lys side chain resulted in the formation of the di-glucosylated adduct, and 

other side-products. Therefore, this method of conjugating a defined oligosaccharide to 

cysteine side chains on a peptide backbone provides a compelling fine-tuned strategy 

for synthetic glycosylation of peptides to reproduce glyconeoepitopes. The synthesis of 

novel glycopeptide and glycoprotein mimetics with this method would allow for 

structure–activity relationship studies, providing many practical applications as well. 

Thioethers are stable and have not been shown to be immunogenic or antigenic[191].The 

formation of a stable S-linkage generates compounds with longer half-lives and 

simplifies their preparation by “click-type” assembly strategies. There is yet no simple 

biological or chemical means of obtaining glycoproteins with homogeneous 

carbohydrate structures attached. Although pioneering studies assessed that the 

resultant thioether linkage does not appear to change the conformation of the sugar 

moieties[189] and that oligosaccharide-linked glycoproteins obtained by using this 

method maintained their activity in lectin- and antibody-binding assays[191], our current 

preliminary investigations showed that synthetic cysteine linkage is not equivalent to 

natural N-linkage, as the extension by an extra CH2-S group in glucose-backbone 
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linkage caused a dramatic decrease in IgG-type antibody affinity in a MS serum. 

However, in the case of oligosaccharide-linked structures the epitope-paratope 

interaction is unlikely to be affected by such a little alteration. As a result, the scope of 

producing neoglycopeptides by this approach is still valid and the preparation of native 

haloacetamidyl monosaccharide and oligosaccharides is now very essential for mimetic 

glycopeptide engineering. With this strategy we added a third level of orthogonality to 

the possible conjugation schemes, meaning that complex glycopeptide libraries 

possessing an azide and a free amine could be prepared and grafted to previously 

discussed Dex40-GP or other types of architectures, and this will allow expanding our 

plethora of glycopeptides probes in autoimmune research. 
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7. EXPERIMENTAL PART 

7.1 ORGANIC SYNTHESIS 

7.1.1 Materials 

 

All the chemicals and solvents were obtained from Acros Organics, Carlo Erba, SDS, 

Merck, Iris Biotech GmbH, Novabiochem, and VWR and used without further 

purification.  

NMR spectra of compounds were recorded on a Bruker spectrometer (300 MHz 

spectrometer was used for 1H spectra and 75 MHz for 13C spectra), with solvent 

resonance used as reference.  

Thin layer chromatography (TLC) was performed using Macherey-Nagel AlugramSil 

G/UV254 plate. Spots revelation was performed in three ways: (a) UV (254nm); (b) 

10% sulfuric acid in ethanol; (c) ninhydrin in acetone. 

 

7.1.2 (2,3,4,6-Tetra-O-Acetyl)-β-D-Glucopyranosyl-Azide (I) 

To a stirring solution of α/β-D-Glucose (11 g, 

61 mmol, 1 eq) in Pyridine (60 mL) under Ar, 

Acetic Anhydride (30 mL, 318 mmol, 5.5 eq) 

was added dropwise. The mixture was left 

stirring over night at RT. Then solvent was 

evaporated and the residue was dissolved in DCM, then washed with HCl 1M, NaHCO3 

sat., NaCl sat. The organic layer was finally dried over MgSO4, filtered and solvent is 

evaporated under vacuum. The obtained residue was then crystallized in EtOH, 

obtaining 19 g (80% yield) of (1,2,3,4,6-Penta-O-Acetyl)-α/β-D-Glucopyranose as 

white crystals. 

The obtained compound (19 g, 49 mmol) was dissolved and stirred in anhydrous DCM 

(30 mL) at 0°C under Ar, then HBr (33% in AcOH, 60 mL) was added dropwise. The 

solution was left stirring for 2 h while slowly heating up to RT. Then solvent was 

evaporated under vacuum and the residue was neutralized with NaHCO3 sat., then 

DCM was added and extracted twice with NaHCO3 sat., once with NaCl sat., dried over 

MgSO4 and filtered. Organic layer was evaporated under vacuum to give 19.4 g 

(2,3,4,6-Tetra-O-Acetyl)-α-D-Glucopyranosyl bromide (96% yield) as a foaming 

sticky residue which was used without further purification.  
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Previous crude was dissolved in acetone (90 mL) and then water (15mL) was added. 

NaN3 (5,6 g, 1.6 eq) was finally added and the suspension was left stirring overnight. 

In the morning, acetone was evaporated under vacuum and residue was extracted in 

DCM, washed with water, brine and dried over MgSO4. After evaporating solvent, 

desired product I was crystalized from EtOH (14.9 g as white crystals, 84% yield). 

TLC Rf 0.45 [CHCl3—MeOH 97/3; revealed with (b)]. IR: 2119 (N3) cm-1. 1H NMR 

(300 MHz, Chloroform-d) δ 5.21 (t, J = 9.4 Hz, 1H, H3), 5.09 (t, J = 9.7 Hz, 1H, H4), 

4.95 (t, J = 9.1 Hz, 1H, H2), 4.64 (d, J = 8.8 Hz, 1H, H1), 4.27 (dd, J = 12.4, 4.7 Hz, 

1H, H6), 4.16 (dd, J = 12.5, 2.4 Hz, 1H, H6’), 3.79 (ddd, J = 10.0, 4.8, 2.4 Hz, 1H, H5), 

2.09 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.02 (s, 3H, OAc), 2.00 (s, 3H, OAc). 

Data are in agreement with those reported in literature[195]. 

 

7.1.3 (2,3,4,6-Tetra-O-Acetyl-)-β-D-Glucopyranosyl-Amine (II) 

Crystals of I (3.7 g, 10 mmol) were 

dissolved in 20 mL THF, NEt3 (1,5 mL, 

1.1 eq) was added and finally Pd/C. 

Suspension was left stirring under H2 

atmosphere (6 bar) for 1-2 h at RT, then it 

was filtered through celite and evaporated. The pale-yellow residue (3,5 g) was 

recrystallized in MeOH, yielding white crystals of product II (3.1 g, 89% yield). 

TLC Rf = 0.37 [AcOEt/CyHex 4:1; revealed with (b), (c)]. 1H NMR (300 MHz, 

Chloroform-d) δ 5.23 (t, J = 9.5 Hz, 1H, H3), 5.03 (dd, J = 10.0, 9.4 Hz, 1H, H4), 4.82 

(dd, J = 9.7, 9.0 Hz, 1H, H2), 4.22 (dd, J = 12.3, 4.8 Hz, 2H, H6), 4.17 (superimposed 

d, 1H, H1), 4.09 (dd, J = 12.3, 2.4 Hz, 1H, H6’), 3.68 (ddd, J = 10.0, 4.8, 2.3 Hz, 1H, 

H5), 2.08 (s, 3H, OAc), 2.06 (s, 3H, OAc), 2.01 (s, 3H, OAc), 2.00 (s, 3H, OAc). 

Data are in agreement with those reported in literature[98]. 

 

7.1.4 N-Fmoc-L-Aspartic Anhydride (III) 

To a solution of Fmoc-OSu (5 g, 15 mmol) in THF 

(25 mL) was added a solution of Asp (2.2 g, 15 

mmol) in 30 mL water containing Na2CO3 (3.5 g, 33 

mmol) and the mixture was left stirring vigorously 

for 20-24 h at RT, then washed with ether (2x20 mL). 

The aqueous phase was acidified to pH 2 using HCl, and then extracted with EtOAc 
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(2x40 mL). The organic phase was dried with MgSO4 and evaporated. The white solid 

(4.7 g, 89% yield) was suspended in Ac2O (15 mL). By using a heating gun with rapid 

heating and shaking for around 1 min, the residue was dissolved and solution was 

quickly cooled to RT to give a white foaming precipitate that was filtered off, washed 

with dry and cold ether and finally dried under vacuum for 24 h (4.5 g, 70% yield over 

two steps). 

TLC Rf 0.39 [AcOEt/CyHex 4:1; revealed with (a)]. 1H NMR (300 MHz, DMSO-d6) δ 

8.21 (d, J = 7.7 Hz, 1H), 7.89 (d, J = 7.5 Hz, 2H), 7.67 (d, J = 7.4 Hz, 2H), 7.48 – 7.36 

(m, 2H), 7.33 (tt, J = 7.4, 1.5 Hz, 2H), 4.65 (ddd, J = 10.0, 7.7, 6.2 Hz, 1H), 4.40 (dd, 

J = 6.6, 3.0 Hz, 2H), 4.25 (t, J = 6.5 Hz, 1H), 3.24 (dd, J = 18.5, 10.0 Hz, 1H), 2.85 (dd, 

J = 18.5, 6.2 Hz, 1H). 

Data are in agreement with those reported in literaure[99]. 

 

7.1.5 (2,3,4,6-Tetra-O-Acetyl-N-[N-Fmoc-L-aspart-4-oyl])-β-D-

Glucopyranosylamine (Fmoc-Asn[Glc(OAc)4]-OH) 

Compound III (1.75 g, 5 mmol) was 

added to a stirred solution of 

compound II (1.8 g, 5 mmol) in 3 mL 

of DMSO under argon atmosphere. 

The reaction mixture was kept at RT 

for 3 h and then water was added. The 

white, sticky precipitated solid was washed thoroughly with water and dried over-night. 

Recrystallization in MeOH/H2O 2:1 afforded 2.4 g (69% yield) of desired product.  

TLC Rf 0.19 [AcOEt—CyHex 2:1; revealed with (a) and (b)]. 

1H NMR (300 MHz, CDCl3) δ 7.75 (d, J = 7.4 Hz, 2H, fluorenyl H4 and H5), 7.58 (d, J 

= 7.4 Hz, 2H fluorenyl H1 and H8), 7.39 (t, J = 7.3 Hz, 2H, fluorenyl H3 and H6), 7.30 

(t, J = 7.4 Hz, 2H f fluorenyl H2 and H7), 6.89 (d, J = 9.2 Hz, 1H, glucose -NH ), 6.18 

(d, J = 8.2 Hz, 1H Fmoc -NH), 5.33 (t, J = 9.5 Hz, 1 H, glucose H1), 5.29 (t, J = 9.4 Hz, 

1H, glucose H3), 5.08 (t, J = 9.7 Hz, 1H,  glucose H4), 4.95 (t, J = 9.6 Hz, 1H, glucose 

H2), 4.59 (dd, J = 8.0, 4.8 Hz, 1H, Hα), 4.37 (t, J = 7.6 Hz, 2H, Fmoc CH2–O), 4.29 (dd, 

J = 12.6, 4.3 Hz, glucose H6), 4.21 (t, J = 7.1 Hz, 1H, fluorenyl H9), 4.06 (dd, J = 12.6, 

2.2 Hz, glucose H6’), 3.83 (ddd, J = 10.2, 4.3, 2.1 Hz, glucose H5), 2.98 – 2.69 (m, 2H, 

Hβ), 2.04 (s, 3H, OAc), 2.03 (s, 6H, 2x OAc), 2.01 (s, 3H, OAc). 
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13C NMR (75 MHz, CDCl3) δ 173.10, 171.43, 170.71, 170.02, 169.60, 156.36, 143.73, 

141.27, 127.78, 127.13, 125.15, 120.03, 78.04, 77.46, 77.04, 76.62, 73.76, 72.66, 70.61, 

68.01, 67.48, 61.62, 50.32, 47.04, 40.35, 37.65, 20.72, 20.61. 

Data are in agreement with those reported in literaure[98,99]. 

 

7.1.6 4-azido-N-(3-hydroxypropyl)-benzamide (IV)  

 

To synthesize compound IV we used a 

protocol described for a similar 

compound[196]. 

1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide 

(1,01 g, 5.3 mmol) and 4-dimethylaminopyridine (645 mg, 5.3 mmol) were added to a 

stirring solution of 4-azidobenzoic acid (812 mg, 5.0 mmol) in dichloromethane (15 

mL) at room temperature. After 30 min, 3-aminopropan-1-ol (465 µL, 6.0 mmol) was 

added and the mixture was left stirring overnight at room temperature.  

Then solvent was removed under vacuum and obtained crude was dissolved in ethyl 

acetate (30 mL), washed with HCl 1M (15 mL), NaHCO3 sat. (15 mL) and NaCl sat., 

and finally dried over MgSO4. Organic layer was evaporated under vacuum and 

obtained crude (a yellow pasty solid) was purified by silica gel chromatography (ethyl 

acetate/cyclohexane 4:1).  

The pale orange solid IV obtained after flash chromatography (456 mg, 41% yield) was 

characterized by NMR and FT-IR. 

TLC Rf = 0,20 [EtOAc/CyHex 1:4 ; revealed with (a)] 

FT-IR (cm-1) : 3400-3200 (with a sharp peak at 3287, secondary amide N-H / primary 

alcohol O-H stretching) , 2957-2877 (aromatic and aliphatic C-H stretching), 2130 

(N=N stretching of azido moiety), 1627 (amide C=O stretching) 

1H-NMR (300 MHz, CDCl3) δ 7.77 (d, J = 8.6 Hz, 2H, H2), 7.05 (d, J = 8.6 Hz, 2H, 

H3), 6.75 (s, broad, 1H, HN), 3.73 (m, 2H, C-CH2-OH), 3.63 (q, J = 6.0 Hz, 2H, N-CH2-

C), 1.80 (m, 2H, C-CH2-C) 

13C-NMR (75 MHz, CDCl3) δ 167.5 (C=O), 143.6 (C-N3), 130.8 (C-CONH), 128.9 (C-

H2), 119.2 (C-H3), 60.2 (CH2-OH), 37.7 (CH2-NH), 32.0 (CH2) 
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7.1.7 Synthesis of 4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)-N-(3-

hydroxypropyl)benzamide (V) 

 

To a stirring solution of compound IV (21 mg, 

95 µmol) in DMSO (300 µL), propargyl 

alcohol (6 µL, 110 µmol, 1.2 eq) was added. 

H2O (150 µL) was then added, followed by 

the addition of the catalyst mixture (50 µL 

CuSO4 1 M, 0.5 eq, and 100 µL sodium 

ascorbate 1 M, 1 eq). The mixture was stirred at room temperature and monitored by 

TLC. After 1h, 10 mL 0.1 EDTA solution were added. Desired product was extracted 

in ethyl acetate (2 x 10 mL). The organic layer was dried over MgSO4 and the solvent 

was removed on a rotary evaporator, affording pure compound V as an orange powder 

(20 mg, 75% recovered product). 

TLC Rf : 0,18 [1:10 MeOH/EtOAc; revealed with (a)] 

1H-NMR (300 MHz, Methanol-d4) δ 8.56 (s, 1H, HTriaz), 8.12 - 7.92 (m, 4H, HPhen), 

4.79 (s, 2H, triaz-CH2-OH), 3.68 (t, J = 6.3 Hz, 2H, C-CH2-OH), 3.52 (t, J = 7.0 Hz, 

2H, HN-CH2-C), 1.87 (p, J = 6.6 Hz, 2H, C-CH2-C) 

13C-NMR (75 MHz, Methanol-d4) δ 168.9 (C=O), 140.5 (C-Ntriaz), 136.0 (C-CONH), 

130.1 (CHAr), 122.2 (CAr), 121.2(CHAr), 60.6 (CH2-OH), 56.5 (CH2-OH) 38.3 (CH2-

NH), 33.2 (C-CH2-C) 

 

7.1.8 (2,3,4,6-Tetra-O-Acetyl-)- β-D-Glucopyranosyl- (2’-Br)-N-Acetyl-

Amine (VI) 

 

 Compound II (1,3 g, 3 mmol) is dissolved in 

anhydrous DCM (20 mL), and a previously 

prepared solution of 2-bromo-acetic acid (1.66 g, 

12 mmol, 4 eq) and DCC (2.47 g, 12 mmol, 4 eq) 

is added with DMAP (73 mg, 0.2 eq). The mixture 

is left stirring at RT. After 1 h, TLC showed the completion of the reaction. Obtained 

suspension is filtered through Celite, and collected solution is then washed with HCl 

1M, NaHCO3 sat, NaCl sat and dried over MgSO4. After evaporating solvent, residue 

is purified by column chromatography using EtOAc/CyHex (3:7) as eluents. Pure 
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fractions rapidly crystallized in eluent mixture, affording product VI (1.12 g, 80% 

yield) as white crystals. 

TLC Rf = 0.5 [3:2 EtOAc/CyHex, revealed with (b)] 

[M+Na]+ m/z = 490.31 (calc. 490.03) 

1H NMR (300 MHz, Chloroform-d) δ 7.15 (d, J= 8.9 Hz, 1H, HN), 5.31 (t, J = 9.5 Hz, 

1H, H3), 5.18 (t, J = 9.2 Hz, 1H, H1), 5.07 (t, J = 9.7 Hz, 1H, H4), 4.99 (t, J = 9.4 Hz, 

1H, H2), 4.29 (dd, J = 12.5, 4.3 Hz, 1H, H6), 4.08 (dd, J = 12.5, 2.4 Hz, 1H, H6’), 3.85-

3.78 (m, 3H, H5 + CH2Br), 2.07 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 

2.01 (s, 3H, OAc). 

13C NMR (75 MHz, CDCl3) δ 170.82 (CO Ac), 170.60 (CO Ac), 169.87 (CO Ac), 

169.51 (CO Ac), 166.49 (NHCOCH2Br), 78.72 (C1), 73.76 (C5), 72.53 (C3), 70.15 (C2), 

68.05 (C4), 61.56 (C6), 28.11 (CH2Br), 20.73 (CH3 Ac), 20.63 (CH3 Ac), 20.58 (CH3 

Ac). 

 

7.1.9 (2,3,4,6-Tetra-O-Acetyl)-β-D-Galactopyranosyl-Azide (VII) 

 

 β-D-Galactose pentaacetate (15 g, 38 mmol) was 

dissolved and stirred in anhydrous DCM (50 mL) 

at 0°C under Ar, then HBr (33% in AcOH, 60 mL) 

was added dropwise. The solution was left stirring 

for 2 h while slowly heating up to RT. Then 

solvent was evaporated under vacuum and the residue was neutralized with NaHCO3 

sat., then DCM was added and extracted twice with NaHCO3 sat., once with NaCl sat., 

dried over MgSO4 and filtered. Organic layer was evaporated under vacuum to give 

12,5 g (2,3,4,6-Tetra-O-Acetyl)-α-D-Glucopyranosyl bromide (79% yield) which was 

used without further purification.  

Previous crude was dissolved in acetone (55 mL) and then water (10 mL) was added. 

NaN3 (3,3 g, 1.5 eq) was added and the suspension was left stirring overnight. In the 

morning, acetone was evaporated under vacuum and residue was extracted in DCM, 

washed with water, brine and dried over MgSO4. After evaporating solvent, desired 

product I was crystalized from EtOH (7,5 g as white crystals, 53% yield over two steps). 

TLC Rf 0.5 [ 1:1 EtOAc/CyHex; revealed with (b)].  

1H NMR (300 MHz, Chloroform-d) δ 5.43 (dd, J = 3.3, 1.1 Hz, 1H, H4), 5.18 (dd, J = 

10.3, 8.7 Hz, 1H, H2), 5.05 (dd, J = 10.4, 3.3 Hz, 1H, H3), 4.61 (d, J = 8.7 Hz, 1H, H1), 
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4.18 (dd, J = 6.5, 2.1 Hz, 2H, H6 + H6’), 4.03 (pseudo-t, J = 6.5 Hz, 1H, H5), 2.18 (s, 

3H, OAc), 2.10 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.00 (s, 3H, OAc). 

Data are in agreement with those reported in literature[195]. 

 

7.1.10 (2,3,4,6-Tetra-O-Acetyl-)-β-D-Galactopyranosyl-Amine (VIII) 

 

 Compound VII (4.0 g, 10.7 mmol) were 

dissolved in 20 mL THF, NEt3 (1,5 mL, 1.1 eq) 

was added and finally Pd/C. Suspension was left 

stirring under H2 atmosphere (6 bar) for 2 h at RT, 

then it was filtered through celite and evaporated. 

The off-white residue (3,7 g) slowly recrystallized in MeOH, yielding white crystals of 

product VIII (2,1 g, 57% yield). 

TLC Rf = 0.4 [AcOEt—cyclohexane 1/1; revealed with (b), (c)].  

1H NMR (300 MHz, Chloroform-d) δ 5.46 – 5.34 (m, 1H, H1), 5.10 – 4.97 (m, 2H, H2 

+ H3), 4.21 – 4.07 (m, 4H, H4 + H5 + H6), 2.16 (s, 3H, OAc), 2.09 (s, 3H, OAc), 2.06 

(s, 3H, OAc), 1.99 (s, 3H, OAc) 

Data are in agreement with those reported in literature[197]. 

 

7.1.11 (2,3,4,6-Tetra-O-Acetyl-)- β-D-Galactopyranosyl- (2’-Br)-N-Acetyl-

Amine (IX) 

 

 Compound VIII (671 mg, 1.9 mmol) is 

dissolved in anhydrous DCM (7 mL), and a 

previously prepared solution of 2-bromo-

acetic acid (950 mg, 6.8 mmol) and DCC (1.41 

g, 6.8 mmol) is added with DMAP (50 mg, 0.4 

mmol). The mixture is left stirring at RT in the dark. After 1 h, TLC showed the 

completion of the reaction. Obtained suspension is filtered through Celite, and collected 

solution is then washed with HCl 1M, NaHCO3 sat, NaCl sat and dried over MgSO4. 

After evaporating solvent, residue is purified by column chromatography with a linear 

gradient of EtOAc/CyHex as eluents. Pure fractions are collected, and solvent is 

evaporated, affording product IX (410 mg, 46% yield) as a white powder. 

TLC Rf = 0.6 [3:2 EtOAc/CyHex, revealed with (b)] 
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1H NMR (300 MHz, Chloroform-d) δ 7.15 (d, J= 7.9 Hz, 1H, HN), 5.44 (pseudo-d, J = 

2.7 Hz, 1H, H3), 5.22 – 5.11 (m, 3H, H1 + H2 + H3), 4.17 - 4.01 (m, 3H, H5 + H6), 3.90-

3.77 (m, 2H, CH2Br), 2.15 (s, 3H, OAc), 2.07 (s, 3H, OAc), 2.03 (s, 3H, OAc), 2.00 (s, 

3H, OAc). 

13C NMR (75 MHz, CDCl3) δ 171.2 (CO Ac), 170.5 (CO Ac), 170.1 (CO Ac), 169.9 

(CO Ac), 166.5 (NHCOCH2Br), 79.2 (C1), 72.7 (C5), 70.8 (C3), 68.0 (C2), 67.2 (C4), 

61.2 (C6), 28.3 (CH2Br), 20.86 (CH3 Ac), 20.81 (CH3 Ac), 20.75 (CH3 Ac), 20.68 (CH3 

Ac). 

 

7.1.12 2,6-di-O-benzoyl- β-D-Galactopyranosyl-Azide (X) 

 

 Camphorsulfonic acid (350 mg, 1.5 mmol) was 

added to a solution of β-D-galactopyranosyl-Azide 

(7.0 g, 34.1 mmol) in 2,2-dimethoxypropane (350 

mL). The mixture was stirred for 48 h at RT under 

argon atmosphere. Et3N (4.5 mL, 32.5 mmol) was 

then added and the mixture was stirred for 15 min. The mixture was concentrated to 

dryness, adding toluene (10 mL x3) to remove completely Et3N. The residue was 

dissolved in MeOH/H2O (10:1 v/v, 220 mL) and refluxed for 2 hours, until TLC 

(CycloHex/EtOAc 3:2) showed complete conversion of the intermediate 6-O-(2-

methoxy-2-propyl)-3,4-O-isopropylidene-β-D-galactopyranosyl-azide (Rf = 0.47) to 

the desired product 3,4-O-Isopropylidene-β-D-Galactopyranosyl-Azide (Rf = 0.11). 

Then the solution was concentrated, adding toluene (10 mL x3) to remove residual 

water. After complete dryness, a crude of 3,4-O-Isopropylidene-β-D-

Galactopyranosyl-Azide (8.6 g, quantitative yield) is obtained as an off-white powder. 

This was dissolved in pyridine (100 mL), and benzoyl chloride (10 mL, 86 mmol, 2.5 

eq) was added dropwise. After 16 h stirring, solvent was evaporated under vacuum, and 

the resulting 2,6-di-O-benzoyl-3,4-O-isopropylidene- β-D-Galactopyranosyl-Azide 

crude was dissolved in DCM (50 mL) and washed with diluted HCl (30 mL x2), 

NaHCO3 sat (30 mL x2), NaCl sat (30 mL x2), dried over MgSO4 and filtered. DCM 

was evaporated and the crude was then stirred in acetic acid (80 mL) at 80°C for 5 

minutes. Water (20 mL) was added to the solution that was stirred for an additional 

hour at 80°C. Solvent mixture was concentrated, and desired product was extracted in 

DCM/water (50 mL/40 mL). Organic layer was washed with NaHCO3 sat (30 mL x2), 
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NaCl sat (30 mL x2), dried over MgSO4, filtered, and dried under vacuum. Resulting 

oily crude (13.3 g) was purified by column chromatography (30% EtOAc in CyHex) 

affording pure compound X (11.13 g, 78% yield over three steps), that easily crystalize 

by concentrating in eluted fractions.  

TLC Rf = 0,15 (EtOAc/CyHex 3:7) [reaveled with (a) and (b)] 

1H NMR (300 MHz, Chloroform-d) δ 8.13 – 7.96 (m, 4H, HBz arom), 7.69 – 7.53 (m, 

2H, HBz arom), 7.51 – 7.38 (m, 4H, HBz arom), 5.23 (dd, J = 9.6, 8.8 Hz, 1H, H2), 4.80 

– 4.70 (superimposed dd, 1H, H6), 4.74 (d, J = 8.8 Hz, 1H, H1), 4.56 (dd, J = 11.6, 6.5 

Hz, 1H, H6’), 4.08 (pseudo-d, J = 3.5 Hz, 1H, H4), 3.98 (td, J = 6.5, 1.1 Hz, 1H, H5), 

3.87 (dd, J = 9.6, 3.5 Hz, 1H, H3), 3.52 (broad s, 1H, OH), 3.36 (broad s, 1H, OH). 

 

7.1.13 3-O-Benzyl-α/β-D-Glucose (XI) 

 

25 g of 1,2,5,6-Di-O-isopropylidene-α-D-

glucofuranose (diacetone-D-glucose, 96 mmol, 1 

eq) were dissolved in 250 mL of anhydrous DMF 

under Ar atmosphere. 22.8 mL of benzyl bromide 

(BnBr, 192 mmol, 2 eq) were added to the stirring 

solution that was cooled down to 0°C in an ice bath. Then 7.67 g of sodium hydride 

(NaH, 60% in mineral oil, 192 mmol, 2 eq) were added, and the mixture was stirred for 

2 h at room temperature. When TLC showed reaction completion (Rf = 0,40, ethyl 

acetate/cyclohexane 1:4), 10 mL of anhydrous methanol were added dropwise at 0°C, 

and solution was stirred for 1 h at room temperature. The solvent was evaporated, and 

the residue was diluted in diethyl ether (60 mL). The organic layer was washed with 

water (100 mL x 3), dried over MgSO4, filtered and evaporated, affording 3-O-Bn 

derivative as a honey-like oil (32.3 g, 95% crude yield). 

100 mL of H2O/TFA solution (1:1 v/v) were added to obtained crude and the mixture 

was stirred at room temperature overnight. The solvent was evaporated to dryness and 

the residue was then dissolved in water (100 mL). The obtained solution was washed 

with a mixture of ethyl acetate and ether (5:1 v/v, 30 mL x 2).  Solvent was evaporated 

to dryness to give XI as a white foam (17.5 g, 68% yield over two steps). 

TLC Rf = 0,20 (DCM/MeOH 9:1) [revealed with (a) and (b)] 
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1H NMR (300 MHz, Deuterium Oxide) δ 7.44 – 7.27 (m, HAr Ph group), 5.13 (d, J = 

3.7 Hz, H1 α anomer), 4. 79 (s, H PhCH2O), 4.56 (d, J = 7.9 Hz, H1 β anomer), 3.86 – 

3.19 (m, H glucose). 

NMR data are not reported in literature; however, they are in agreement with the desired 

structure and evidence the disappearance of isopropylidene signals of starting 

compound. 

 

7.1.14 1,2,4-Tri-O-Benzoyl-3-O-Benzyl-6-O-tert-butyldimethylsilyl-α/β-D-

Glucopyranose (XII) 

 

Tert-butyldimethylsilyl chloride (TBDMSCl, 

600 mg, 4 mmol, 1.3 eq) was added to a stirred 

solution of XI (820 mg, 3 mmol, 1 eq) in pyridine 

(10 mL) at 0°C under Ar. The mixture was stirred 

at room temperature and monitored by TLC. After 2 h, benzoyl chloride (BzCl, 2.7 mL, 

21 mmol, 2.3 eq/OH) was added dropwise at room temperature. After one night at RT, 

solvent was removed in vacuum. The residue was diluted with DCM (10 mL), washed 

with HCl 1M, sat. NaHCO3, brine, then dried with MgSO4 and evaporated in vacuum. 

Resulting dark yellow oil was purified by flash chromatography (EtOAc/CyHex) to 

afford XII as a white powder (1.012 g, 48% yield). 

TLC Rf = 0,34 (EtOAc/CyHex 1:4) [revealed with (a) and (b)] 

1H NMR (300 MHz, Chloroform-d) δ 8.43 – 6.99 (m, H arom.), 6.80 (d, J = 3.7 Hz,, 

H1 α anomer), 6.20 (d, J = 7.8 Hz, H1 β anomer), 5.74 (dd, J = 8.8, 7.8 Hz), 5.68 – 5.52 

(m), 4.86 – 4.57 (m), 4.50 (t, J = 9.6 Hz), 4.22 (t, J = 8.8 Hz), 4.01 – 3.85 (m), 0.88 (s, 

Si-C(CH3)3), 0.86 (s, Si-C(CH3)3), 0.03 (s, Si(CH3)2), 0.00 (s, Si(CH3)2). 

Data are in accordance with those reported in literature[182]. 

 

7.1.15 Methyl 1,2,4-Tri-O-Benzoyl-3-O-Benzyl-α/β-D-Glucopyranosuronate

  (XIII) 

 10 mL solution of Jones’ reagent (1.56 g CrO3 

in 10 mL H2SO4 3,5 M, 4 eq) were added 

dropwise to a stirred solution of XII (1.9 g, 2.7 

mmol, 1 eq) in acetone (30 mL) at 0°C. The 

mixture was warmed at RT and stirred for 5 h. H2O was added and extracted three times 
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with DCM. Combined organic fractions were dried (MgSO4), filtered and the solvent 

was removed in vacuum. The residue was dissolved in DMF (15 mL), CH3I (1.2 mL, 

20 mmol) and KHCO3 (2.4 g, 24 mmol) were added and the mixture was stirred 

overnight at RT. The suspension was filtered through Celite, the filtrate was diluted 

with H2O (20 mL) and extracted three times with AcOEt/Et2O 2:1 (15 mL), dried over 

MgSO4 and evaporated under vacuum. The residue was purified by flash 

chromatography (EtOAc/CyHex 1:4) to afford XIII (1.26 g, 76% yield over two steps) 

as a white powder. 

TLC Rf = 0,20 (EtOAc/CyHex 1:4) [revealed with (a) and (b)] 

1H NMR (300 MHz, Chloroform-d) δ 8.09 – 7.88 (m, HAr), 7.69 – 7.31 (m, HAr), 7.21 

– 7.08 (m, HAr), 6.83 (d, J = 3.5 Hz, H1 α anomer), 6.25 (d, J = 6.1 Hz, H1 β anomer), 

5.82 (t, J = 7.4 Hz), 5.68 – 5.55 (m), 4.82 – 4.63 (m), 4.52 (d, J = 7.4 Hz), 4.48 (d, J = 

9.0 Hz), 4.24 (t, J = 7.3 Hz), 3.67 (s, COOCH3 α anomer), 3.51 (s, COOCH3 β anomer). 

Data are in accordance with those reported in literature[182]. 

 

7.1.16 Methyl 1,2,4-Tri-O-Benzoyl-3-O-Levulinyl-α/β-D-

Glucopyranosuronate (XIV) 

 

  Compound XIII (4.2 g, 6.9 mmol) was 

solubilized in 10 mL anhydrous DCM and 

hydrogenated in the presence of 10% Pd/C 

(400 mg) for 2 h under H2 pressure (6 bar). The suspension was filtered through Celite 

and dried under vacuum. The oily residue was dissolved in anhydrous DCM (40 mL), 

then levulinic acid (3.15 mL, 24 mmol), DCC (4.96 g, 24 mmol) and DMAP (293.2 

mg, 2.4 mmol) were added in this order and the mixture was stirred at RT overnight. 

Suspension was filtered through celite with DCM, washed with HCl 1 M (30 mL), 

NaHCO3 sat. (30 mL x2), and brine (30 mL x2). The organic layer was dried over 

MgSO4, filtered and evaporated. The residue was purified by flash chromatography 

(EtOAc/CyHex 1:3) to afford XIV (3.65 g, 84% yield over two steps) as a white 

powder. 

TLC Rf = 0,20 (EtOAc/CyHex 1:3) [revealed with (a) and (b)] 

1H NMR (300 MHz, Chloroform-d) δ 8.17 – 7.90 (m, HBz arom.), 7.72 – 7.36 (m, HBz 

arom.), 6.88 (d, J = 3.7 Hz, H1 α anomer), 6.24 (d, J = 7.3 Hz, H1 β anomer), 6.09 (t, J 

= 9.9 Hz, H3 α anomer), 5.82 (t, J = 8.9 Hz, H3 β anomer), 5.76 – 5.51 (m), 4.70 (d, J = 



114 
 

10.1 Hz), 4.53 (d, J = 9.0 Hz), 3.70 (s, COOCH3 α anomer), 3.65 (s, COOCH3 β 

anomer), 2.60 – 2.38 (m, CH2 levulinate), 1.96 (s, CH3 levulinate). 

Data are in accordance with those reported in literature[182]. 

 

7.1.17 Methyl 1-bromo-2,4-di-O-Benzoyl-3-O-Levulinyl-α-D-

Glucopyranosuronate (XV) 

 

 HBr 33% in AcOH (10 mL) was added to a stirred 

solution of XIV (1.2 g, 2 mmol) in anhydrous DCM 

(10 mL) at 0°C under argon atmosphere. The mixture 

was immediately warmed up to RT and stirred for 2 h. 

NaHCO3 sat. (20 mL) was slowly added to neutralize the solution, then organic layer 

was collected and washed with H2O, dried over MgSO4, filtered and evaporated in 

vacuum. The residue was purified by column chromatography (EtOAc/CyHex 1:4) to 

afford XV (550 mg, 48% yield) as a colorless foam. Pure starting compound XIV (α 

anomer, 210 mg, 16%) was also recovered. 

TLC Rf = 0,45 (EtOAc/CyHex 1:3) [revealed with (a) and (b)] 

1H NMR (300 MHz, Chloroform-d) δ 8.01 – 7.91 (m, 4H, HAr Bz group), 7.61 – 7.48 

(m, 2H, HAr Bz group), 7.45 – 7.35 (m, 4H, HAr Bz group), 6.76 (d, J = 4.0 Hz, 1H, H1), 

5.94 (t, J = 9.8 Hz, 1H, H3), 5.48 (dd, J = 10.2, 9.8 Hz, 1H, H4), 5.12 (dd, J = 10.0, 4.0 

Hz, 1H, H2), 4.70 (d, J = 10.2, 1H, H5), 3.60 (s, 3H, COOCH3), 2.49 – 2.43 (m, 2H, 

CH2 levulinate), 2.34 (m, 2H, CH2 levulinate), 1.85 (s, 3H, CH3 levulinate). 

Data are in accordance with those reported in literature[182]. 

 

7.2 PEPTIDE SYNTHESIS 

7.2.1 General procedure for peptides synthesis 

 

All peptides were synthesized on a manual batch synthesizer (PLS 44, Advanced 

ChemTech) by Fmoc-based solid phase strategy in fritted syringes.  

Generally, peptide chains were assembled by sequential coupling of activated Fmoc-

amino acid (5 equiv) in DMF (1 mL x 100 mg resin) in the presence of HBTU (4.5-5 

equiv) and DIEA (7-10 equiv) for 20 min at room temperature. Resins were then 

washed with DMF (x2) and CH2Cl2 (x2) and the completeness of each coupling was 
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ascertained by the Kaiser’s test. Fmoc deprotection was carried out twice (5 min, 10 

min) by treatment with piperidine (20% v/v in DMF) followed by washing with DMF, 

DCM, and DMF. Fmoc-Asn[Glc(OAc4)]-OH,  Fmoc-Lys(N3)-OH and Fmoc-Pra-OH 

couplings (2.5 eq) were performed in DMF (1 mL x 100 mg resin) in the presence of 

HATU (2.5 equiv) and DIEA (5 equiv) for 60 min at room temperature. N-terminus 

acetylation reactions were performed by double treatment for 10 min in DMF/Ac2O 

(4:2), 1 mL/100 mg resin. After complete elongation of the peptide chains, the resins 

were washed with DCM, then methanol, and finally dried. 

The final cleavage from the resin and side-chain deprotection were performed by 

treatment for 3 h with TFA/TIS/H2O (95:2.5:2.5), 1 mL/ 100 mg resin. Precipitation in 

diethyl ether at 4°C and lyophilization afforded crude peptides.  

The removal of the acetyl protecting groups of the β-D-glucopyranosyl moiety linked 

to the asparagine residue side chain was carried out by two different protocols[41,148]: 

a) treatment with MeOH/THF/30% NH3 aq. (2:2:1 ratio, 5 mg lyophilized crude/mL 

solution, pH 9). The reaction was quenched by adding conc. HCl to neutrality and the 

solvents were evaporated under vacuum. Water was added and the residue was 

lyophilized. 

b) treatment with 0.05 M MeONa in dry MeOH (pH 12, 5-10 mg lyophilized crude/mL 

solution, 2-3 h). The reaction was quenched by adding conc. HCl to neutrality, the 

solvent was evaporated under vacuum and the residue lyophilized. 

All peptides were purified through semipreparative RP-HPLC (>95%) to be used for 

autoantibody detection and characterized through RP-HPLC and mass spectrometry 

using methods and solvent system reported in tables.  

Peptides 1-4 and 9-11 were purified by RP-HPLC on a ACE 5 C18-300" (250 × 10 

mm) column (Waters, Saint Quentin en Yvelines, France) at 28°C using a Waters 

instrument (Sepation Module 2695, detector diode array 2996) working at 10 mL/min, 

with the indicated linear gradients. The solvent systems used were: A (0.1% TFA in 

H2O) and B (0.1 % TFA in MeCN). Characterization was performed by RP-HPLC 

(UltiMate, Thermo Scientific) equipped with  a ACE 5 C18-300" (250 × 4.6 mm) 

column working at 1 mL/min, with UV detection at 220 and 280 nm. The solvent 

systems used were: A (0.1% TFA in H2O) and B (0.1 % TFA in MeCN).  Mass spectral 

analysis was performed by MALDI-TOF (Voyager-DETM PRO Workstation, Applied 

Biosystems) in positive ion reflector mode using the matrix α-Cyano-4-

hydroxycinnamic acid (CHCA).  
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For peptides 5-8, 12 and CSF114(Glc), semi-preparative purifications via RP-HPLC 

were performed by a Phenomenex Jupiter C-18 (250 × 4.6 mm) column at 28 °C using 

a Waters instrument (Sepation Module 2695, detector diode array 2996) working at 4 

mL/min. The solvent systems used were: A (0.1% TFA in H2O) and B (0.1 % TFA in 

MeCN). Characterization was performed by RP-HPLC ESI-MS. HPLC system is an 

Alliance Chromatography (Waters) with a Phenomenex Kinetex C-18 column 2.6μm 

(100 × 3.0 mm) working at 0.6 mL/min, with UV detection at 215nm, coupled to a 

single quadrupole ESI-MS (Micromass ZQ). The solvent systems used were: A (0.1% 

TFA in H2O) and B (0.1 % TFA in MeCN).  

The products were lyophilized with an Edwards apparatus, model Modulyo. 

 

7.2.2 Synthesis of Peptides 1-4 

Peptides were synthesized manually in a fritted syringe as described in the general 

procedure, on a Rink amide (p-methylbenzhydrylamine)-resin (MBHA-resin, 100–200 

mesh, 0.62 mmol/g), in 0.05 mmol scale. 

The conditions used for the purification and analysis of peptides 1-4, corresponding 

found MS values (calculated in square brackets) and yields are reported in table Table 

8 

 

Table 8 – Analytical data for peptides 1-4 

Peptide Purification Method tr (min)a [M+H]+ 

m/z 

Mass 

(mg) 

Yield 

1 5-40 % MeCN,  

10 mL/min in 10 min 

6.32b 1002.28 

[1002.55] 

36 66% 

2 10-30 % MeCN,  

10 mL/min in 10 min 

5.80b 1186.18 

[1164.60] 

14 22% 

3 10-30 % MeCN,  

10 mL/min in 10 min 

5.95b 1326.35 

[1326.66] 

17 24% 

4 10-30 % MeCN,  

10 mL/min in 10 min 

5.90b 1164.37 

[1164.60] 

23 36% 

aAnalytical RP-HPLC gradients at 1 mL min-1 in 10 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 10-30% B in 10 min. 
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7.2.3 Synthesis of Peptides 5-6 

Peptides 5 and 6 were synthesized manually in a fritted syringe as described in the 

general procedure, on a Rink amide (p-methylbenzhydrylamine)-resin (MBHA-resin, 

100–200 mesh, 0.62 mmol/g), in 0.1 mmol scale. 

The conditions used for the purification and analysis of peptides 5 and 6, corresponding 

found MS values (calculated in square brackets) and yields are reported in Table 9. 

 

Table 9 – Analytical data for peptides 5 and 6 

Peptide Purification Method tr (min)a m/z Mass 

(mg) 

Yield 

5 20-40 % MeCN,  

4 mL/min in 30 min 

3.28b 1478.9 

[1478.7] 

40 25% 

6 20-35 % MeCN,  

4 mL/min in 30 min 

3.90b 1538.2 

 [1537.8] 

22 13% 

aAnalytical RP-HPLC gradients at 0.6 mL min-1 in 5 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 10-60% B in 5 min. 

 

7.2.4 Synthesis of Peptide 7 

Peptide 5 (5.1 mg, 3.4 mmol) and peptide 6 (5.2 mg, 3.4 mmol) were dissolved in 2 mL 

of water and then 1 mL of tBuOH was added. 100 µL of 1 M ascorbic acid solution and 

50 µL of 1M copper sulfate solution were added, and the mixture was stirred at room 

temperature. The reaction was monitored by RP-HPLC and stopped after 3 h. 0.1 M 

EDTA solution was added to chelate copper and the resulting solution was freeze-dryed. 

Lyophilized crude was dissolved in 3 mL of water and absorbed through a 10 mL C18 

column, previously equilibrated with water. The column was washed with increasing 

concentrations of MeCN in water (0-50% v/v), and eluted fractions were analyzed by 

RP-HPLC. Fractions containing desired product (25% and 30%) were collected and 

lyophilized. Obtained peptide 7 (9 mg) was furtherly purified by semi-preparative RP-

HPLC.  

The conditions used for the purification and analysis of peptide 7, corresponding found 

MS value (calculated in square brackets) and yield are reported in Table 10. 
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Table 10 – Analtycal data for peptide 7 

Peptide Purification Method tr (min)a [M+3H]3+ 

m/z 

Mass 

(mg) 

Yield 

7 20-40 % MeCN,  

4 mL/min in 30 min 

3.50b 1006.5 

[1006.2] 

7 70% 

aAnalytical RP-HPLC gradients at 0.6 mL min-1 in 5 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 10-60% B in 5 min. 

 

7.2.5 Synthesis of Peptide 8 

Peptide 8 was synthesized manually in a fritted syringe as described in the general 

procedure, on a Fmoc-βAla-Wang resin (100–200 mesh, 0.7 mmol/g), in 0.1 mmol 

scale. 

The conditions used for the purification and analysis of peptide 8, corresponding found 

MS value (calculated in square brackets) and yield are reported in Table 11. 

 

Table 11 – Analytical data for peptide 8 

Peptide Purification Method tr (min)a [M+2H]2+ 

m/z 

Mass 

(mg) 

Yield 

8 20-35 % MeCN,  

4 mL/min in 30 min 

2.82b 1296.9 

[1296.6] 

25 9% 

aAnalytical RP-HPLC gradients at 0.6 mL min-1 in 5 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 20-80% B in 5 min. 

 

7.2.6 Synthesis of Peptide 9-10 

Peptides 9-10 were synthesized manually in a fritted syringe as described in the general 

procedure, on a Rink amide (p-methylbenzhydrylamine)-resin (MBHA-resin, 100–200 

mesh, 0.62 mmol/g), in 0.05 mmol scale. Instead of N-terminal acetylation, after the 

final Fmoc group removal 4-azido-benzoic acid (6 eq), HBTU (5 eq) and DIEA (10 eq) 

in 2 mL DMF were added for 1 h. The resins were dried and final cleavage was 

performed according to the general procedure. 

Peptide 10 was then deacetylated as described in the general procedure. Peptide crudes 

were purified and analytical data are reported in Table 12. 

. 
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Table 12 – Analytical data for peptide 9 and 10 

Peptide Purification Method tr (min)a [M+H]+ 

m/z 

Mass 

(mg) 

Yield 

9 20-50 % MeCN,  

10 mL/min in 10 min 

6.63b 1105.10 

[1105.57] 

24 42% 

10 20-50% MeCN, 

10 mL/min in 10 min 

4.81c 1429.25 

[1429.67] 

14 18% 

aAnalytical RP-HPLC gradients at 1 mL min-1 in 10 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 15-45% B in 10 min. c 5-

90% B in 10 min. 

 

7.2.7 Synthesis of Peptide 11-12 

Peptides 11 was synthesized manually in a fritted syringe as described in the general 

procedure, on a Rink amide (p-methylbenzhydrylamine)-resin (MBHA-resin, 100–200 

mesh, 0.62 mmol/g), in 0.05 mmol scale. For the final cleavage, a mixture of 

TFA/TIS/H2O/EDT (94:2:2:2) was used to prevent Cys oxidation.  

Peptide crude was purified, and analytical data are reported in  

Peptide 11 (6.2 mg, 6.2 µmol) was solubilized in 800 µL H2O/MeCN (1:1 vv, 3 mg/mL) 

and 200 µL of a solution 60 mM of compound VI in MeCN (12 µmol) was added. 

2 µL of 2,6-lutidine (17 µmol, pH≈7-8 by pH paper) were added and the solution 

monitored by RP-HPLC. After 3 h, water (≈10 mL) was added to freeze-dry. 

Lyophilized crude was dissolved in minimum of H2O/MeCN (1:1) and absorbed 

through a 10 mL C18 column, previously equilibrated with water. The column was 

washed with increasing concentrations of MeCN in water (0-100% v/v). Obtained 

peptide fraction (5 mg) was deacetylated as described in the general procedure and 

purified by semi-preparative RP-HPLC, affording pure peptide 12 (2 mg, 27% yield).  

 

Table 13 – Analytical data for peptides 11-12 

Peptide Purification Method tr (min)a [M+H]+ 

m/z 

Mass 

(mg) 

Yield 

11 5-40 % MeCN,  

10 mL/min in 10 min 

5.96b 991.43 

[991.52] 

23 42% 
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12 20-50% MeCN, 

4 mL/min in 30 min 

3.95c 1210.30 

[1210.59] 

2 27% 

aAnalytical RP-HPLC gradients; solvent system A: 0.1% TFA in H2O, B: 

0.1% TFA in MeCN. b 15-45% B at 1 mL min-1 in 10 min. c 10-90% B in 

at 0.6 mL min-1 in 5 min. 

 

Synthesis of CSF114(Glc) 

CSF114(Glc) was synthesized manually in a fritted syringe as described in the general 

procedure, using a Fmoc-Lys(Boc)-Wang resin (100–200 mesh, 0.24 mmol/g), in 0.05 

mmol scale. 

The conditions used for the purification and analysis of deacetylated CSF114(Glc), 

corresponding found MS value (calculated in square brackets) and yields are reported 

in Table 14. 

 

Table 14 – Analytical data for CSF114(Glc) 

Peptide Purification Method tr (min)a [M+3H]3+ 

m/z 

Mass 

(mg) 

Yield 

CSF114(Glc) 20-35 % MeCN,  

4 mL/min in 30 min 

2.80b 869.9 

[870.0] 

27 21% 

aAnalytical RP-HPLC gradients at 0.6 mL min-1 in 5 min; solvent system 

A: 0.1% TFA in H2O, B: 0.1% TFA in MeCN. b 20-80% B in 5 min. 

 

7.3 PEPTIDE CONFORMATIONAL ANALYSIS 

 

NMR and CD experiments of peptides 1-4 were conducted under the supervision of 

Prof. Olivier Lequin (Laboratoire de Biomolécules) at the Sorbonne Université 

scientific campus (Jussieu, Paris).  

 

7.3.1 NMR of peptides 1-4 

 

NMR spectra were recorded on a Bruker Avance III spectrometer (Wissembourg, 

France) equipped with a TCI cryoprobe at a 1H frequency of 500 MHz. Lyophilized 

peptides were dissolved in 550 µL of 90% H2O/10% D2O at ≈ 5 mM concentration. 

The pH was set to 5.0 using a buffered solution of sodium succinate (25 mM final 
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concentration). Sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS, 0.1 mM) was 

used as an internal reference for chemical shift calibration. 1H, 13C, and 15N resonances 

of all atoms were assigned by recording 2D 1H–1H TOCSY (72 ms mixing time), 2D 

1H–1H ROESY (400 ms), 2D 1H–1H NOESY (300 ms), heteronuclear 2D 1H–13C 

HSQC, 2D 1H-13C HSQC-TOCSY, 2D 1H–15N HSQC and 2D 1H–13C HMBC spectra 

(Table 15).  

NMR experiments were processed with TOPSPIN software (Bruker). Spectra were 

analyzed using Sparky software[198]. Exact peptide concentrations were calculated on 

1D 1H WATERGATE (D1=15s) by integration of 9 HN x 110% in 8.65-8.08 ppm 

region or 4 Me L/V in 0.99-0.80 ppm region. Identified non-sequential ROESY 

correlation are reported in Table 16.  3JHN-Hα
 and 3JHα-Hβ coupling constants were 

measured on 1D 1H WATERGATE spectra (Table 17). The chemical shift deviations of 

Hα protons and Cα carbons were calculated as the differences between observed 

chemical shifts and random coil values reported in water.  

 

Table 15 - Complete 1H, 13C, 15N NMR assignments of peptides 1-4. 

Residue Atom Nucleus PEPTIDE 1 PEPTIDE 2 PEPTIDE 3 PEPTIDE 4 

Ac C 13C 177.2 177.2 177.2 177.2 

Ac CA 13C 24.4 24.5 24.4 24.5 

Ac HA 1H 2.03 2.03 2.03 2.03 

K1 C 13C 176.8 176.8 176.8 176.8 

K1 CA 13C 56.4 56.4 56.4 56.4 

K1 CB 13C 33.3 33.3 33.3 33.3 

K1 CD 13C 29.2 29.2 29.2 29.2 

K1 CE 13C 42.2 42.2 42.1 42.1 

K1 CG 13C 24.8 24.8 24.8 24.8 

K1 HA 1H 4.26 4.25 4.25 4.26 

K1 HB2 1H 1.81 1.81 1.80 1.81 

K1 HB3 1H 1.71 1.72 1.72 1.72 

K1 HD 1H 1.69 1.69 1.69 1.69 

K1 HE 1H 3.00 3.00 3.00 3.00 

K1 HG 1H 1.45 1.45 1.45 1.45 

K1 HN 1H 8.32 8.32 8.32 8.32 
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K1 HZ 1H 7.57 7.57 7.57 7.57 

K1 N 15N 127.2 127.2 127.2 127.2 

K1 NZ 15N 62.8 62.8  62.8 62.8 

A2 C 13C 177.5 177.5 177.5 177.6 

A2 CA 13C 52.5 52.5 52.4 52.5 

A2 CB 13C 19.3 19.4 19.3 19.3 

A2 HA 1H 4.31 4.30 4.31 4.30 

A2 HB 1H 1.38 1.38 1.38 1.38 

A2 HN 1H 8.45 8.44 8.45 8.44 

A2 N 15N 125.3 125.3 125.3 125.3 

Glc3 C1 13C --- 82.1 --- 82.0 

Glc3 C2 13C --- 74.6 --- 74.6 

Glc3 C3 13C --- 79.4 --- 79.3 

Glc3 C4 13C --- 71.9 --- 72.0 

Glc3 C5 13C --- 80.3 --- 80.3 

Glc3 C6 13C --- 63.3 --- 63.3 

Glc3 H1 1H --- 4.94 --- 4.95 

Glc3 H2 1H --- 3.40 --- 3.39 

Glc3 H3 1H --- 3.54 --- 3.54 

Glc3 H4 1H --- 3.44 --- 3.43 

Glc3 H5 1H --- 3.49 --- 3.49 

Glc3 H6A 1H --- 3.73 --- 3.74 

Glc3 H6B 1H --- 3.86 --- 3.87 

Glc3 HN 1H --- 8.99 --- 8.98 

Glc3 N 15N --- 132.2 --- 132.4 

N3 C 13C 175.3 175.2 175.3 175.2 

N3 CA 13C 53.3 53.0 53.3 53.0 

N3 CB 13C 38.7 39.1 38.8 39.1 

N3 CG 13C 177.2 175.5 177.2 175.5 

N3 HA 1H 4.70 4.74 4.69 4.74 

N3 HB2 1H 2.83 2.91 2.75 2.91 

N3 HB3 1H 2.75 2.81 2.83 2.81 

N3 HD21 1H 7.67 --- 7.67 --- 
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N3 HD22 1H 6.97 --- 6.96 --- 

N3 HN 1H 8.52 8.55 8.52 8.55 

N3 N 15N 118.7 118.7 118.7 118.7 

N3 ND2 15N 113.1 --- 113.2 --- 

V4 C 13C 176.3 176.3 176.3 176.3 

V4 CA 13C 62.4 62.4 62.3 62.3 

V4 CB 13C 32.9 32.9 32.9 32.9 

V4 CG1 13C 21.2 21.1 21.1 21.2 

V4 CG2 13C 20.4 20.4 20.4 20.4 

V4 HA 1H 4.20 4.20 4.20 4.21 

V4 HB 1H 2.12 2.12 2.11 2.11 

V4 HG1 1H 0.93 0.94 0.93 0.93 

V4 HG2 1H 0.93 0.93 0.93 0.93 

V4 HN 1H 8.16 8.15 8.16 8.14 

V4 N 15N 120.7 120.4 120.7 120.4 

T5 C 13C 174.4 174.3 174.3 174.3 

T5 CA 13C 62.1 62.2 62.0 62.0 

T5 CB 13C 69.8 69.8 69.8 69.8 

T5 CG2 13C 21.7 21.7 21.7 21.7 

T5 HA 1H 4.33 4.32 4.35 4.32 

T5 HB 1H 4.17 4.15 4.17 4.16 

T5 HG2 1H 1.20 1.21 1.21 1.21 

T5 HN 1H 8.37 8.39 8.37 8.40 

T5 N 15N 119.1 119.4 119.2 119.4 

L6 C 13C 176.9 176.9 176.9 176.9 

L6 CA 13C 55.2 55.2 55.1 55.1 

L6 CB 13C 42.5 42.5 42.6 42.6 

L6 CD1 13C 24.8 23.5 24.8 24.8 

L6 CD2 13C 23.5 21.7 23.5 23.5 

L6 CG 13C 27.0 27.0 27.0 27.0 

L6 HA 1H 4.38 4.38 4.37 4.37 

L6 HB2 1H 1.64 1.65 1.64 1.64 

L6 HB3 1H 1.60 1.60 1.57 1.59 
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L6 HD1 1H 0.92 0.93 0.92 0.92 

L6 HD2 1H 0.86 0.87 0.86 0.86 

L6 HG 1H 1.61  1.61 1.61 1.61 

L6 HN 1H 8.37 8.39 8.38 8.40 

L6 N 15N 125.5 125.6 125.6 125.7 

Glc7 C1 13C --- --- 82.0 82.0 

Glc7 C2 13C --- --- 74.6 74.6 

Glc7 C3 13C --- --- 79.3 79.2 

Glc7 C4 13C --- --- 72.0 72.0 

Glc7 C5 13C --- --- 80.3 80.3 

Glc7 C6 13C --- --- 63.3 63.3 

Glc7 H1 1H --- --- 4.94 4.94 

Glc7 H2 1H --- --- 3.38 3.38 

Glc7 H3 1H --- --- 3.53 3.53 

Glc7 H4 1H --- --- 3.41 3.41 

Glc7 H5 1H --- --- 3.49 3.50 

Glc7 H6a 1H --- --- 3.71 3.73 

Glc7 H6b 1H --- --- 3.87 3.86 

Glc7 HN 1H --- --- 8.98 8.97 

Glc7 N 15N --- --- 132.0 132.0 

N7 C 13C 175.6 175.6 175.7 175.7 

N7 CA 13C 53.3 53.3 52.9 52.9 

N7 CB 13C 38.8 38.8 39.1 39.1 

N7 CG 13C 177.2 177.2 175.5 175.5 

N7 HA 1H 4.80 4.79 4.84 4.83 

N7 HB2 1H 2.88 2.88 2.84 2.97 

N7 HB3 1H 2.78 2.78 2.97 2.84 

N7 HD21 1H 7.67 7.67 --- --- 

N7 HD22 1H 6.95 6.96 --- --- 

N7 HN 1H 8.58 8.57 8.61 8.61 

N7 N 15N 120.2 120.2 120.5 120.4 

N7 ND2 15N 113.0 113.0 --- --- 

T8 C 13C 174.9 174.9 175.0 175.0 
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T8 CA 13C 61.9 61.9 61.9 61.9 

T8 CB 13C 69.7 69.6 69.6 69.6 

T8 CG2 13C 21.5 21.5 21.5 21.6 

T8 HA 1H 4.43 4.43 4.42 4.42 

T8 HB 1H 4.33 4.33 4.35 4.35 

T8 HG2 1H 1.20 1.20 1.21 1.21 

T8 HN 1H 8.27 8.27 8.31 8.31 

T8 N 15N 114.7 114.7 114.7 114.6 

T9 C 13C 177.3 177.3 177.3 177.4 

T9 CA 13C 61.9 61.9 62.0 62.0 

T9 CB 13C 69.8 69.8 69.7 69.7 

T9 CG2 13C 21.6 21.6 21.6 21.6 

T9 HA 1H 4.34 4.34 4.33 4.33 

T9 HB 1H 4.28 4.28 4.28 4.28 

T9 HG2 1H 1.22 1.22 1.22 1.22 

T9 HN 1H 8.18 8.18 8.22 8.22 

T9 HT1 1H 7.63 7.63 7.60 7.60 

T9 HT2 1H 7.23 7.23 7.25 7.25 

T9 N 15N 116.2 116.2 116.3 116.3 

T9 NT 15N 109.8 109.8 109.8 109.8 

 

Table 16 - ROESY i/i+2 correlations. Beside sequential Hα-HN and HN-HN ROESY correlations, ROESY i/i+2 weak 

correlations, indicative of turn propensity, were detected. 

Peptide 1 Peptide 2 Peptide 3 Peptide 4 

A2HB - V4HN A2HB - V4HN A2HB - V4HN A2HB - V4HN 

N3HA - T5HN --- N3HA - T5HN N3HA - T5HN 

T5HB - N7HN T5HB - N7HN T5HB - N7HN T5HB - N7HN 

T5HG2 - N7HN T5HG2 - N7HN T5HG2 - N7HN T5HG2 - N7HN 

L6HB3 - T8HN L6HB3 - T8HN --- --- 

 

Table 17 - 3J(HN-Hα) measured on 1D 1H WATERGATE. Superimposed signals provided less certainty in the 

measurement, and corresponding values are reported in red. 
 

Peptide 1 Peptide 2 Peptide 3 Peptide 4 

K1 6,6 6,7 7 6,4 
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A2 5,7 5,6 5,7 5,6 

Glc3 --- 8,7 --- 8,7 

N3 7,1 7 7,1 7,1 

V4 8 7,7 7,8 7,7 

T5 7,9 7,9 7,9 7,9 

L6 6,7 6,7 6,8 6,7 

Glc7 --- --- 8,8 8,7 

N7 7,3 7,3 7,3 7,3 

T8 7,9 7,9 8,0 7,9 

T9 8,0 8,0 8,0 7,2 

 

 

7.3.2 CD of peptides 1-4 

 

All CD spectra were recorded on a Jasco J-810 spectropolarimeter using cells of 1 mm 

path length. Peptide buffered solutions (exactly titrated by 1H-NMR) were diluted in 

TFE 0%, 20%, 40% and 60% in water, to obtain a final peptide concentration of 85-

100 µM. 

Spectra were the average of ten scans from 185 to 260 nm, recorded with a band width 

of 0.5 nm at scan rate of 5 nm/min. Collected data were normalized considering the 

concentration and the number of amide bonds for each peptide (Figure 51). 
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Figure 51 – Normalized CD spectra of peptides 1-4 recorded between 185-260 nm at increasing 

concentrations of TFE in water (0%-60%) 

 

7.4 DEXTRAN CONJUGATES 

7.4.1 Synthesis of Dex40-GP  

To a stirring solution of dextran 40 kDa (1 g, 25 µmol dextran, 6.2 mmol glucose units) 

in 0.1 M aq. NaOH (7 mL) was added glycidyl propargyl ether (1 mL, 9.3 mmol). The 

mixture was stirred at 35°C for 20 h then added dropwise in isopropyl alcohol (100 

mL). The white precipitated compound was thoroughly filtered through a sintered glass 

filter and washed with 1-propanol. The crude solid was dissolved in water (≈ 9 mL) and 

dialyzed in a cassette (Slide-A-Lyzer 10K MWCO, Thermo Fisher Scientific) against 

Milli-Q water until the conductivity of the solution was ≈ 0 (48 h). The alkyne dextran 

(1.103 g, Final estimated MW ≈ 55 kDa, 80% recovery yield) was obtained as a white 

dense powder after lyophilization. The degree of substitution (DS) was determined by 

1H-NMR. 

 

7.4.2 Synthesis of Dex40-Pept6 

To a stirring solution of Dex40-GP (10 mg, 13.0 µmol propargyl groups, 1 eq) and 

peptide 6 (15 mg, 9.8 µmol, 0.75 eq) in DMSO (800 µL) and water (500 µL), a mixture 

of 100 µL of CuSO4 1M (5 eq) and 200 µL Ascorbic acid 1M (10 eq) was added. 
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The pale-orange solution was left under stirring overnight. Then 20 mL of a solution 

EDTA 10 mM were added and the solution was lyophilized. The dried crude was 

dissolved in 15 mL H2O Milli-Q and centrifuged with Amicon Ultra Centrifugal Filters 

(MWCO = 30 kDa), then buffer-exchange steps with H2O Milli-Q were performed to 

remove all EDTA (final washing volume ≈100 mL, Dex40-Pept6 ≈1 mL in H2O). After 

lyophilization the desired product is obtained as a white powder (23 mg, Degree of 

Substitution = 19.5 % (e.g. 1 peptide chain / 5 glucose units), Final estimated MW ≈ 

130 kDa, 89% yield). The degree of substitution (DS) was determined by proton NMR.  

 

7.4.3 NMR analysis of dextran-based conjugates 

 

NMR analysis for substitution degree calculations were conducted in collaboration with 

Dr Monica Bertoldo and Dr Paolo Dambruoso at the Institute of Organic Synthesis and 

Photoreactivity (ISOF) in Bologna, Italy.  

NMR spectra of Dex40, Dex40-GP, Peptide 6 and Dex40-Pept6 were acquired in D2O 

(15-25 mg/mL) with a Bruker 500 MHz spectrometer. Preliminary inversion recovery 

experiments were conducted for each sample in order to find the maximum longitudinal 

relaxation time (T1) and set the appropriate delay time (d1) for quantitative 1H-NMR 

analyses. 1H spectra were calibrated using the residual water signal in accordance with 

literature[199]. 13C chemical shifts were calibrated indirectly based on the 1H calibration.  

 

1.1.1.1 NMR of Dextran 40 kDa (Dex40) 

 

NMR spectra of Dex40 present the main peaks originating from protons and carbons of 

the α-1,6 linked glucoses (most abundant form). Other minor peaks are assigned in 

Figure 52. 

1H NMR (500 MHz, Deuterium Oxide) δ 5.00 (d, J = 3.6 Hz, 1H, H1), 4.01 (dd, J = 

11.5, 4.6 Hz, 1H, H6), 3.93 (ddd, J = 10.2, 4.5, 2.2 Hz, 1H, H5), 3.77 (pseudo-d, J = 

11.5 Hz, 1H, H6’), 3.74 (pseudo-t, J = 10.0 Hz, 1H, H4), 3.59 (dd, J = 9.9, 3.7 Hz, 1H, 

H2), 3.54 (pseudo-t, J = 9.5 Hz, 1H, H3). 

13C NMR (126 MHz, d2o) δ 100.5 (C1), 76.2 (C3), 74.2 (C2), 73.0 (C4), 72.3 (C5), 68.4 

(C6) ppm. 
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Figure 52 – Recorded NMR spectra (1H up and 13C down) of Dex40 with relevant found signals. 

 

1.1.1.2 NMR of Dex40-GP 

 

NMR spectra of Dex40-GP show the success of alkyne functionalization of dextran 

molecules. Proton spectrum was used to characterize the novel construct which was 

found to carry a minor component of oligomerized and alkyne-alkyne coupled GP 

groups. 

Considering the area of H1 signals as 100 (total glucose units): 
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• Percentage of ether-modified glucose units/dextran molecule: DSGP = 30.9/100 

≈ 31%  

• Percentage of terminal alkynes/dextran molecule: DSalk = 28.7/100 ≈ 29% 

• Average number of GP groups/glucose-GP unit: nGP = (109.6/2)/30.9 ≈ 1.8 

 

These calculations can be used to estimate the expected area of 4.15 – 3.38 ppm range: 

6*(69.1 + 31.9) + 5* (30.9*1.77) = 873.5. This value is in accordance with the observed 

one. 

 

1H NMR (500 MHz, Deuterium Oxide) δ 5.52 – 4.95 (H1 signals), 4.29 (≡C–CH2 –O– 

signals), 4.15 – 3.38 (remaining signals), 2.98 (HC≡C– signals). 

 

 

Figure 53 – 1H-NMR spectrum of Dex40-GP with relevant areas used for the characterization, as 

described in the results section 

 

13C NMR (126 MHz, d2o) δ 100.51, 98.58, 82.42, 79.02, 76.19, 75.30, 74.59, 74.53, 

74.21, 73.57, 73.52, 72.99, 72.32, 72.08, 71.85, 71.76, 71.66, 68.35, 61.09 ppm. 
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Figure 54 – 13C-NMR spectrum of Dex40-GP. As discussed in the results section, hypothetical 

assignment of several minor peaks is in agreement with the presence of GP oligomers and alkyne-alkyne 

couplings. 

 

1.1.1.3 NMR of peptide 6 

 

1H and 13C spectra of peptide 6, whose structure is shown in Figure 55, were acquired 

to allow the spectra interpretation of Dex40-Pept6. 

 

 

Figure 55 – Structure of peptide 6:  Ac – Lys – Ala – Asn (Glc) – Val – Thr – Leu – Asn (Glc) – 

Thr – Thr – Gly – Lys(N3) – NH2 

 

The peptide has 80 non-exchangeable protons, but the sum of the integrated signals in 

1H spectrum is 78 because the Hα signal from the two Asn(Glc) falls in the solvent range 

( ≈ 4.70 ppm) (Figure 56).  
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1H NMR (500 MHz, D2O) δ 4.97 (d, J = 9.2 Hz, 2H, H1 Glc), 4.49 – 4.14 (superimposed 

signals, 11H, Hα area + Hβ Thr), 4.00 (s, 2H, Hα Gly), 3.87 (superimposed dd, 2H, H6 

Glc), 3.74 (dd, J = 12.4, 5.1 Hz, 2H, H6’ Glc), 3.56 (t, J = 9.1 Hz, 2H, H3 Glc), 3.50 (m, 

2H, H5 Glc), 3.44 (t, J = 9.4 Hz, 2H, H4 Glc), 3.40 (t, J = 9.2 Hz, 2H, H2 Glc), 3.35 (t, 

J = 6.8 Hz, 2H, Hε Lys(N3) ), 3.05 – 2.80 (superimposed signals, 6H, t Hε Lys + dd Hβ 

Asn), 2.14 (h, J = 6.8 Hz, 1H, Hβ Val), 2.05 (s, 3H, -CH3 Ac), 1.94 – 1.57 (m, 11H, 

Hβ1,2 Hδ Lys + Hβ1,2 Hδ Lys(N3) + Hβ1,2 Hγ Leu), 1.54 – 1.41 (m, 4H, Hγ Lys + Hγ 

Lys(N3)), 1.40 (d, J = 7.2 Hz, 3H, Hβ Ala), 1.27-1.22 (superimposed d, J  ≈ 6.4 Hz, 9H, 

Hγ2 Thr), 0.97-0.93 (superimposed d, 9H, Hδ2 Leu + Hγ Val), 0.89 (d, J = 5.6 Hz, 3H, 

Hδ1 Leu). 

 

 

Figure 56 – 1H-NMR spectrum of Peptide 6 

 

Peptide 6 possesses 62 Carbons, each one originating a distinct signal in 13C-NMR 

spectrum, except C1 and C2 of the two glucoses (superimposed signals) (Figure 57). 

13C NMR (126 MHz, d2o) δ 179.5 – 174.0 (14 C, Camides) , 80.0 (2 C, C1 glucoses), 78.3 

– 69.9 (8 C, C2,3,4,5 glucoses) , 67.6 (3 C, Cβ Thr), 61.3 – 59.9 (6 C, C6 glucoses + Cα 
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Thr + Cα Val),  56.3 – 52.4 (7 C, Cα area + Cε Lys(N3)), 45.3 – 39.1 (5 C, Cα Gly + Cε 

Lys + Cβ Lys + Cβ Asn), 33.3 – 19.4 (17 C, remaining signals) ppm. 

 

 

Figure 57 – 13C-NMR spectrum of Peptide 6. 

 

1.1.1.4 NMR of Dex40-Pept6 

 

Peaks assignment of 1H-NMR spectrum for Dex40-Pept6 was based on previous 

spectra (Figure 58).  

1H NMR (500 MHz, Deuterium Oxide) δ 8.10 (s, 1H, H triazole), 5.31 – 4.95 (m, H1 

area), 4.54 - 4.19 (m), 4.10 – 3.40 (m), 3.12 – 2.84 (m), 2.20 – 2.16 (m, 1H, Hβ Val), 

2.09 (s, 3H, -CH3 Ac), 2.04 – 1.35 (m, 18H, Hβ1,2 Hδ Hγ Lys + Hβ1,2 Hδ Hγ Lys(N3) + 

Hβ1,2 Hγ Leu + Hβ Ala), 1.33-1.23 (m, 9H, Hγ2 Thr), 1.01-0.88 (m, 12H, Hδ1,2 Leu + Hγ 

Val). 

 



134 
 

 

Figure 58 – Superimposition of 1H-NMR spectra of Dex40-GP (red), Peptide 6 (green) and Dex40-Pept6 

(violet). The zoom of relevant ppm ranges shows the diagnostic changes in the spectra after the CuAAC 

rection (down). 

 

Relevant integral ratios were used to calculate the DS in peptide and in unreacted 

alkynes, as discussed in the results section, chapter 5.2.2. 
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Specifically, ratio between the area of triazole proton (8.10 ppm) and the area of other 

ranges (Figure 59) were used to calculate X (DSpept6): 

A) 0.62/1.00 = X/0.31    → X = 19.22 % 

B) 0.14/1.00 = X/(1+2X)   → X = 19.44 % 

C) 0.06/1.00 = X/(2*0.31*1.77 +11X) → X = 19.42 % 

 

 

Figure 59 – Zoom of relevant ppm ranges in 1H-NMR spectrum of Dex40-Pept6 used for peptide DS 

calculation, with corresponding integration values. Triazole proton signal (8.10 ppm) was used as 

reference in comparison to: A) H1 of modified glucose units (5.60-5.15 ppm); B) H1 of total glucoses, 

i.e., glucose units of dextran and N-(βGlc) moieties of peptide 6 (5.60-4.95 ppm); C) the range containing 

8 Hα + 3Hβ of peptide residues and methylene protons of GP linkers (4.55-4.20 ppm). 
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By reasonably varying spectrum parameters such as baseline, phase and integration 

limits, obtained values for DSpeptide6 are always between 19% and 20%, therefore 19.5% 

was used as practical value for further calculations. Consequently, 9.5% is accepted as 

a good estimation of remaining terminal alkynes. 

 

13C NMR (126 MHz, d2o) δ 179.2 – 173.9 (14 C, Camides) , 146.7 (1C, Ctriaz), 127.7 (1C, 

Ctriaz), 100.5 – 61.1 (glucose signals, glycidyl signals, propargyl signals, Cα Cβ Thr, Cα 

Val), 56.3 -19.4 (peptide signals). 

 

 

Figure 60 – 13C-NMR spectrum of Dex40-Pept6. The two isolated peaks at 146.7 and 127.7 originate 

from the triazole ring and are diagnostic for the success of the reaction. 

 

7.5 PROTEIN EXPRESSION 

7.5.1 General procedure for protein expression  

 

Protein fragment HMW1ct and the enzyme HMW1C were expressed similarly to a 

described protocol[97], using E. coli BL21 cells previously engineered with plasmid 

pET-45b (+) (Novagen), encoding for the fragment HMW1ct and equipped with the 
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gene for carbenicillin resistance, and plasmid pET-24a (+) (Novagen), encoding for the 

glucosyltransferase enzyme ApHMW1C and equipped with the gene for kanamicin 

resistance. Cells cultures were prepared using Luria-Bertani (LB) culture soils; the LB 

medium (SOC) liquid soil was composed by 10 g of tryptone, 5 g of yeast extract and 

10 g of NaCl dissolved in 1 L of H2O Milli-Q, while the LB Agar Plates soil was 

composed by 2 g of tryptone, 1 g of yeast extract, 2 g of NaCl and 3 g of Agar dissolved 

in 200 ml of H2O Milli-Q. Stock solutions of antibiotics were prepared in H2O Milli-

Q and stored at -20°C. Working concentration in cell media is 50 μg/mL for kanamycin 

(only for hyperglucosylated HMW1ct(Glc) and 100 μg/mL for carbenicillin. Lysis 

buffer (pH 7.5) was composed by 5.96 g of HEPES (50 mM), 2.92 g of NaCl (100 mM) 

and 50 ml of glycerol (10%) dissolved in 0.5 L of H2O Milli-Q. Cell were coated on 

Petri dishes (Nunc, ThermoFisher Scientific) with LB Agar Plates soil, containing the 

antibiotic(s), and incubated overnight at 37°C to allow the growth of the bacterial 

colonies. The pre-culture phase was performed by picking up one single circular and 

isolated colony and transferring it in 5 ml of LB medium (SOC) liquid soil containing 

the antibiotic(s). The solution was incubated overnight at 37°C under shaking. The pre-

culture solution was then transferred in 1 L of the same LB medium (SOC) liquid soil 

containing the antibiotic(s). The solution was incubated under shaking at 37 °C. Cells 

growth was monitored measuring the optical density at 600 nm (OD600) with an UV 

instrument (Amersham Biosciences, Little Chalfont, UK). The same LB medium 

(SOC) liquid soil was used as blank. When the OD value reached 0.6, the induction of 

the expression was performed adding 1 mL of isopropyl-β-D-1-thiogalactopyranoside 

(IPTG) (1 mg/mL solution). Cell suspension was incubated overnight at 16°C under 

shaking. Cells were recovered through centrifugation at 4000 rpm for 30 min at 4°C. 

The supernatant was removed, and the pellet was suspended in 20 mL of lysis buffer, 

recentrifuged again and stored at -20°C after supernatant removal. 

 

7.5.2 General procedure for protein purification 

The pellet was suspended in 30 ml of lysis buffer adding 10 μL/g of cells of protease 

inhibitor (cocktail Set III EDTA-free, Merk). Mechanical lysis of the cell membrane 

was obtained by using an ultrasonic processor. The lysis solution was then centrifuged 

for 110 min at 35000 rpm and the supernatant containing the product(s) was recovered. 

The purification was performed using an Äkta FPLC system. During the first 

purification step a Hi Trap-His column (HisTrap HP 5 mL, GE Healthcare) was used 
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with the binding buffer A1 for Hi Trap-His (20 mM Tris buffer, 0.5 M NaCl, 30 mM 

imidazole, pH 7.4) and the elution buffer B1 for Hi Trap-His (20 mM Tris buffer, 0.5 

M NaCl, 0.5 M imidazole, pH 7.4). 

The conditioning of the column was performed using buffer A1 for 10 minutes. The 

supernatant containing the products was then injected and eluted with a gradient from 

0% to 100% of buffer B1. The UV detector was set to 280 nm and 215 nm. All the 

fraction obtained were analyzed through Sodium Dodecyl Sulphate - PolyAcrylamide 

Gel Electrophoresis technique (SDS-PAGE). 

The separation of HMW1ct(Glc) from ApHMW1C was obtained in the second 

purification step through the ion exchange technique. A Hi Trap Q-FF column was 

used. A buffer exchange in order to substitute buffer B1 with binding buffer A2 (20 

mM Tris buffer, 20 mM NaCl, pH 8) for Hi Trap Q-FF was performed using Amicon 

Ultra Centrifugal Filters (MWCO = 10 kDa). The Hi Trap Q-FF column was then 

conditioned with buffer A2 for 10 minutes. The sample was injected and eluted using 

a gradient from 0% to 100% of elution buffer B2 (20 mM Tris buffer, 1 M NaCl, pH 8) 

for Hi Trap Q-FF. The UV detector was set to 280 nm and 215 nm. All the fraction 

obtained were analyzed through Sodium Dodecyl Sulphate - PolyAcrylamide Gel 

Electrophoresis technique (SDS-PAGE). 

Both HMW1ct and HMW1ct(Glc) were stocked in PBS buffer (8 g of NaCl, 0.2 g of 

KCl, 1.44 g of Na2HPO4 e 0.24 g of KH2PO4 dissolved in 1 L of H2O Milli-Q) at -

20°C. Their concentration was calculated using the Lambert-Beer law after an 

absorption measure performed using an UV spectrometer set to a range from 320 and 

240 nm. 

 

7.5.3 General procedure for SDS-PAGE 

The SDS-PAGE gel was prepared by depositing between two glasses the running gel 

16% solution, composed by 1.6 ml H2O Milli-Q, 4.27 ml 30% acrylamide, 2 ml 1.5M 

tris buffer pH 8.8, 80 μl 10% SDS, 80 μl 10% ammonium persulfate (APS), 10 μl 

tetramethylethylenediamine (TEMED). After the polymerization, the stacking gel 4% 

solution (1.8 ml H2O Milli-Q, 0.4 ml 30% acrylamide, 0.750 ml 0.5M tris buffer pH 

6.8, 30 μl 10% SDS, 30 μl 10% APS, 6 μl TEMED) was deposited above the previous 

one inserting the comb for the formation of the wells. After the polymerization, the gel 

was positioned inside the SDS-PAGE apparatus and the tank buffer 1x (100 mL of Tris 

buffer/Glycine/SDS (10x) in 1 L) was added. 10 μL of each sample were combined 
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with 5 μL of loading buffer 5x (200mM of Tris-Cl (pH 6,8), 400mM of DTT, 8% of 

SDS, 0,4% of bromophenol blue and 40% of glycerol), treated to 100°C for a few 

minutes and centrifuged. Each sample was then loaded in the dedicate well. The 

commercial marker PageRuler Plus Prestained Protein Ladder, 10 to 250 kDa, was used 

as reference. The electrophoresis was performed for 90 min at 140 mV and 

subsequently the gel subjected to stain using a Comassie solution (25 ml H2O Milli-Q, 

20 ml MeOH, 5 ml AcOH, 0.05 g Comassie blue dye) for 30 min. In order to remove 

the excess dye, the stained gel was treated overnight with a destaining solution (700 ml 

H2O Milli-Q, 200 ml MeOH, 100 ml AcOH) under gentle shaking. 

 

7.6 INDIRECT COMPETITIVE ELISA 

 

Coating antigen was dissolved in H2O (1 mg/mL) and then diluted 1:100 in carbonate 

buffer 0.05 M (pH 9.6). 100 µL of coating antigen solution were added to each well (1 

µg antigen/well) of a 96-Well activated Polystyrene ELISA plate (Limbro Titertek, ICN 

Biomedicals, Inc., Aurora, Ohio, USA), and left to incubate overnight at 4°C. The plate 

was then emptied, washed three times with 0,9% w/w saline solution containing 0.05% 

v/v Tween 20, then emptied again. 100 µL of Fetal Bovine Serum solution (FBS 10% 

in saline Tween) /well were added and the plate was left to incubate 2 h at room 

temperature. Then plate was emptied and a mixture of sera and competing antigen was 

added in each well. Serum concentration was constant (dilution 1:300) while competing 

antigen concentration was between 10-14 and 10-5.  

The plate was incubated 1h at room temperature, then emptied, washed three times, and 

emptied again. 

100 µL of secondary antibody solution (alkaline phosphatase conjugated anti human 

IgM or IgG Fab2-specific affinity purified antibodies) /well were added and incubated 

3 h at room temperature. Each plate was emptied, washed three times then emptied.  

100 µL/well of substrate solution (p-nitrophenylphosphate 0.1% w/v in carbonate 

buffer and MgCl2 10 mM) were added and absorbance was measured at regular 

intervals with a plate reader (Tecan-Sunrise spectrophotometer working at 405 nm). 

After 30-60 min, the reaction was blocked by adding 50 µL NaOH 1M/well and the 

final absorbance value was measured. 

Each competing antigen was tested in triplicates (three rows/plate), and each 

experiment was performed at least twice in different days. Within-assays and between-
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assays coefficient of variations were below 10%. Peptides concentration-absorbance 

relationship was represented graphically as signal inhibition percentage, and half-

maximal response concentration values (IC50) were calculated with GraphPad Prism.  

 

7.7 INDIRECT SP-ELISA 

To find the best conditions in order to perform indirect SP-ELISA screening of a larger 

batch of sera, preliminary tests were carried out for peptides 4 and 7, and Dex40-Pept6.  

The following parameters were evaluated:  

• Presence or absence of the coated antigen 

• Coating buffer (Na2CO3 0.05 M buffer pH 9.6 or PBS buffer pH 7.2) 

• Blocking buffer (10% fetal bovine serum (FBS) or 5 % bovine serum albumin 

(BSA)) 

• IgG and IgM detection 

• 5 different representative sera + no serum (blank) 

ELISA plates, sera dilutions and incubation times were not tested, and used according 

to previously optimized procedures employing glucosylated antigens for the detection 

of antibodies in MS sera[83,97]. 

Briefly, 96-Well activated Polystyrene ELISA plates (Limbro Titertek, ICN 

Biomedicals, Inc., Aurora, Ohio, USA) were coated with 1 µg/100 µL/well of antigen 

in coating buffer (or pure coating buffer without antigen) and incubated at 4 °C 

overnight. After 3 washes with 0,9% w/w saline solution containing 0.05% v/v Tween 

20, non-specific binding sites were blocked with blocking buffer at r.t. for 60 minutes. 

Sera diluted 1:100 in blocking buffer (100 µL/well) were applied at 4 °C for 16 h. After 

3 washes, 100 µL/well of secondary antibody solution (alkaline phosphatase conjugated 

anti human IgM or IgG Fab2-specific affinity purified antibodies diluted in blocking 

buffer) were added. After 3 h incubation at room temperature, plates were washed 3 

times and then 100 µL/well of substrate solution (p-nitrophenylphosphate 0.1% w/v in 

carbonate buffer and MgCl2 10 mM) were added. After 15 minutes (IgG plates) or 40 

minutes (IgM plates), the reaction was blocked with 50 µL of 1 M NaOH and the 

absorbance read in a plate reader (SUNRISE, TECAN, Austria) at 405 nm.  

Median absorbance values at 405 nm are reported and differentiated according to the 

different parameters. 
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7.8 IMMUNOAFFINITY COLUMN 

 

Preliminary attempts of antibody purification were performed similarly to a previously 

described method[97] using CNBr-Sepharose resin (Sigma). The resin (100 mg) was 

washed twice with 1 mL HCl 1 mM and centrifuged at 4000 rpm for 3 minutes. The 

washing step was repeated three times with H2O Milli-Q and once with coupling buffer 

(NaHCO3 0.1 M, NaCl 0.5 M, pH = 8.3). Resin was then transferred in a fritted column 

and washed one last time with coupling buffer (gravity flow). Dex40-Pept6 (1 mg) was 

dissolved in 1 mL of coupling buffer and the solution was applied to the resin overnight 

at room temperature and vigorous shaking. Then the resin was washed with coupling 

buffer twice, and 1 mL glycine solution (0.2 M, pH = 8.0) was applied to the resin for 

2 h at room temperature. The resin was then washed twice with 1 mL coupling buffer, 

twice with 1 mL acetate buffer (sodium acetate 0.1 M, NaCl 0.5 M, pH = 4.3) and 

equilibrated with Dulbecco’s phosphate buffer saline (D-PBS) at pH = 7.2. Serum MS5 

(1 mL) was diluted 1:10 in D-PBS, passed through a 0.22 µm filter and applied to the 

sepharose column. 10 mL eluted fraction by gravity flow was recirculated one more 

time through the column and 50 µL from the eluted fraction were taken for ELISA test 

(FT1 fraction in the results section). The eluted fraction was then applied a third time 

and left to incubate for 1 h. Final flow through fraction was collected (FT2 fraction in 
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the results section) and then column was washed thoroughly with D-PBS (10 mL) and 

coupling buffer (10 mL). Adsorbed antibodies were eluted using 10 mL of glycine 0.2 

M at pH=2.6. Eluted fraction was immediately neutralized drop-by-drop by adding 10% 

of NaHCO3 0.5 M, constantly monitoring the pH with pH paper. The final volume of 

neutralized eluted fraction is ≈ 15 mL, which is then concentrated by centrifuging with 

Amicon ultracentrifugal filter units (Merck, MWCO = 50 kDa) and recovered in D-

PBS pH = 7.2 (≈1 mL final volume, A280 = 0.909). 50 µL of eluted fraction were diluted 

up to 1 mL in FBS and their activity was checked by SP-ELISA (Elution fraction in the 

results section). 

After use, the column was thoroughly washed with additional glycine 0.2 M at pH=2.6 

(5 mL), D-PBS buffer (10 mL), coupling buffer (10 mL) and finally with EtOH 20% 

solution in water, then stored at 4°C to be reused. 
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8. ABBREVIATIONS 

 

Amino acids: 

A  (Ala)  Alanine 

C  (Cys)  Cysteine 

D  (Asp)  Aspartic acid 

E  (Glu)  Glutamic acid 

F (Phe) Phenylalanine 

G (Gly) Glycine 

H (His) Histidine 

I (Ile) Isoleucine 

K (Lys) Lysine 

L (Leu) Leucine 

M (Met) Methionine 

N (Asn) Asparagine 

P (Pro) Proline 

Q (Gln) Glutamine 

R (Arg) Arginine 

S (Ser) Serine 

T (Thr) Threonine 

V (Val) Valine 

 Pra Propargylglycine 

 

Ab: antibody; Ac: Acetyl; AcOH: Acetic Acid; Ag: Antigen; AP: alkaline 

phosphatase; APC: Antigen presenting cell; Boc: tert-butoxy carbonyl; BSA: 

bovine serum albumin; CD: Circular Dichroism; CNS: Central Nervous System; 

DCM: dichloromethane; DIC:  N,N'-diisopropylcarbodiimide; DIEA/DIPEA:  N,N-

Diisopropylethylamine; DMF  Dimethylformamide; DMSO  Dimethyl sulfoxide; 

DS: degree of substitution; EDC: 3-(Ethyliminomethyleneamino)-N,N-

dimethylpropan-1-amine; EDT: ethanedithiol; EDTA: ethylenediaminetetraacetic 

acid; ELISA: enzyme-linked immunosorbent assay; ESI-MS: electrospray 

ionization-mass spectrometry; Fab: fragment antigen-binding; Fc : fragment 

crystallizable; FBS: fetal bovine serum; FDA: Food and Drugs Administration 

agency; Fmoc: 9-H-fluoren-9-ylmethoxycarbonyl; Gal: galactose; Glc: glucose; 
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GlcA: glucuronic acid; HATU: 1-[Bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate; HBTU: 3-

[Bis(dimethylamino)methyliumyl]-3H-benzotriazol-1-oxide hexafluorophosphate; 

HLA: human leukocyte antigen; HMW1: high molecular weight adhesin 1; HOBt: 

1-hydroxybenzotriazole; HPLC: high performance liquid chromatography; Ig: 

immunoglobulin (IgG, IgM, etc.); MALDI-TOF: matrix-assisted laser desorption 

ionization- time of flight; MAP: mutiple antigenic peptide; MeCN (or CH3CN or 

ACN): acetonitrile; MeOH: methanol; MHC: major histocompatibility complex; 

MOG: myelin oligodendrocyte glycoprotein; MS: Multiple Sclerosis; MW: 

microwaves; MWCO: molecular weight cut-off; NMM: N-methyl morpholine; 

NMR: nuclear magnetic resonance; OGT: oligoglycosyl transferase; Pbf: 2,2,4,6,7-

Pentamethyldihydrobenzofuran-5-sulfonyl; PBS: phosphate buffered saline; PDB: 

protein data bank; PEG: polyethylene glycol; PNPP: para-nitrophenylphosphate; 

PS: polystyrene; RP-HPLC: Reverse-Phase  High-performance Liquid 

Chromatography; SDS-PAGE: Sodium Dodecyl Sulphate - PolyAcrylamide Gel 

Electrophoresis; SP-ELISA: solid-phase enzyme-linked immunosorbent assay; 

SPPS: solid phase peptide synthesis; tBu: tert-butyl; TBDMS (or TBS): tert-Butyl 

dimethyl silyl; TFA: trifluoroacetic acid; TIS: triisopropylsilane; THF: 

tetrahydrofurane; TLC: Thin layer chromatography; Trt: trityl. 
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ABSTRACT 

 

The main purpose of this thesis was to develop peptide probes to detect and isolate specific 

and high affinity antibodies from sera of patients suffering from multiple sclerosis (MS). We 

selected a di-glucosylated adhesin HMW1 peptide as the shortest sequence up to now able 

to compete with the highest affinity with anti-N(Glc) IgM binding. 40 kDa dextran was 

modified with propargyl groups and used as a scaffold to conjugate by CuAAC the di-

glucosylated peptide. This novel polymeric structure was proven to dramatically increase 

binding potency of IgGs and IgMs in MS sera. Abs from a representative MS serum, were 

successfully purified on a sepharose resin specifically modified with the adhesin peptide-

dextran conjugate, as confirmed by ELISA. This result appears promising as a proof-of-

concept of the selective removal of circulating autoantibodies (possibly perpetuating 

nonself recognition) that could likely lead to develop a specific apheresis-based device. 
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RÉSUMÉ 

 

Le but principal de ce travail de thèse a été de développer des sondes peptidiques pour 

détecter et isoler des auto-anticorps spécifiques à haute affinité à partir du sérum de 

patients souffrant de sclérose en plaques (SEP). Nous avons sélectionné un peptide di-

glucosylé de l’adhésine HMW1 comme séquence minimale capable de détecter les anti-

N(Glc) IgM. Ainsi, un dextrane de 40 kDa a été modifié avec des groupes propargyle et a 

été utilisé comme échafaudage pour conjuguer par CuAAC le peptide N-glucosylée. On a 

prouvé que ce nouveau polymère augmente considérablement la puissance de la liaison 

des IgG et IgM caractéristique de la forme de SEP que nous venons de caractériser. Les 

anticorps d'un sérum représentatif ont été purifiés avec succès, comme confirmé par test 

ELISA. Ce résultat semble prometteur en tant que preuve de concept de la possible 

déplétion sélective des auto-anticorps circulants dans la SEP, qui pourrait conduire à 

développer un dispositif thérapeutique spécifique basé sur aphérèse. 
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