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mathématiques, et je lui dois beaucoup. Sa façon intuitive, libre et large de voir la matière a
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Abstract

For a smooth algebraic varietyX defined over a number fieldK, one could ask several questions
about the abundance of its rational points.

This thesis revolves, in particular, around the following three properties: Hilbert Property,
weak approximation and strong approximation. The first concerns, more or less, the question of
extending the Hilbert Irreducibility Theorem to an arbitrary X (in the sense that the parameters
of the Theorem are allowed to vary through rational points of this variety), the interesting case
being when X is non-rational, for otherwise one recovers precisely the original theorem of Hilbert.
The other two concern the question of density of rational points of X in the adelic ones (possibly
with some places removed). The adjective “weak” is more commonly used when talking about
proper varieties, and the adjective “strong” is used otherwise.

In the first original work that is part of this thesis, we prove that, under a technical assumption,
a proper algebraic surface X, with Zariski-dense rational points, that is endowed with two or more
genus 1 fibrations, has the Hilbert Property. This result generalizes an earlier result of Corvaja
and Zannier, who proved the Hilbert Property for the Fermat surface x4 + y4 = z4 + w4. The
technique used is similar to theirs, the main idea being that of transporting rational points around
the surface using the elliptic fibers of the various fibrations.

In the second part of the thesis, we prove that on an arbitrary homogeneous space X, under
some technical assumptions, the étale-Brauer–Manin obstruction is the only one to strong approx-
imation. This obstruction is obtained by applying the more classical Brauer–Manin obstruction
on all finite étale torsors over X. The proof is basically a reduction to a theorem of Borovoi
and Demarche, who proved that (again under technical assumptions) strong approximation up to
Brauer–Manin obstruction holds on homogeneous spaces with connected stabilizers.

In this part of the thesis we also prove a compatibility result, suggested to be true by work of
Cyril Demarche, between Brauer pairing and the so-called abelianization map, for homogeneous
spaces of the form G/H, with H connected and linear.

Finally, in the third and last part of the thesis, we explore the problem of “ramified descent”,
or, in other words, the question of which adelic points of X may be lifted to (a desingularization
of a twist of) a fixed geometrically integral and geometrically Galois cover ϕ : Y → X, with
commutative geometric Galois group (although in some parts of the work this commutativity
assumption is not needed). The case where the cover is unramified is already well-studied, and,
therefore, the interest lies in the ramified case (whence the terminology “ramified descent”). We
prove that a certain naturally defined “descent set” provides an obstruction to Hasse principle
and weak approximation on X (the main difficulty in proving this lies in showing that rational
points that lie on the branch locus of ϕ are unobstructed).

Moreover, in analogy with the classical unramified case, we construct a subgroup Bϕ of the
Brauer group of X such that the the descent set associated to ϕ lies in the Brauer–Manin set
associated to Bϕ. Interestingly enough, the transcendental part of Bϕ may provide a non-trivial
obstruction, contrary to what happens in the unramified case. It seems reasonable to expect that
this Bϕ is the only obstruction to the “ramified descent” problem.
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Résumé

Pour une variété algébrique lisse X définie sur un corps de nombres K, on peut se poser
plusieurs questions sur l’abondance de ses points rationnels.

En particulier, cette thèse s’intéresse aux trois propriétés suivantes : propriété de Hilbert,
l’approximation faible et l’approximation forte. La première concerne plus ou moins la question
de l’extension du théorème d’irréductibilité de Hilbert à uneX arbitraire (par quoi nous entendons
que les paramètres du théorème peuvent varier parmi les points rationnels de cette variété), le
cas intéressant étant lorsque X est non rationnel, car sinon on retrouve précisément le théorème
originel de Hilbert. Les deux autres concernent la question de la densité des points rationnels de X
dans les points adéliques (possiblement en dehors d’ensemble finis de places). L’adjectif “faible”
est normalement utilisé pour parler de variétés propres, et l’adjectif “fort” est utilisé autrement.

Dans le premier travail original qui fait partie de cette thèse, nous montrons que, sous une
hypothèse technique, une surface algébrique X propre, avec les points rationnels Zariski-denses,
et qui est dotée de deux ou plusieurs fibrations de genre 1, a la propriété de Hilbert. Ce résultat
généralise un résultat antérieur de Corvaja et Zannier, qui ont prouvé la propriété de Hilbert pour
la surface de Fermat x4+y4 = z4+w4. La technique utilisée est similaire à la leur, l’idée principale
étant de transporter les points rationnels autour de la surface à l’aide des fibres elliptiques des
différentes fibrations.

Dans la deuxième partie de la thèse, nous montrons que pour tous les espaces homogènes
X, sous certaines hypothèses techniques, l’obstruction de Brauer–Manin étale est la seule à
l’approximation forte. Cette obstruction est notamment obtenue en appliquant l’obstruction
de Brauer–Manin sur tous les torseurs étales finis sur X. Notre preuve est essentiellement une
réduction à un théorème de Borovoi et Demarche, qui ont montré que (toujours sous des hy-
pothèses techniques) pour les espaces homogènes avec stabilisateurs connexes l’obstruction de
Brauer–Manin est la seule à l’approximation forte.

Dans cette partie de la thèse, nous prouvons aussi un résultat de compatibilité, suggéré par des
travaux de Cyril Demarche, entre l’accouplement de Brauer et l’application dite d’abélianisation,
pour des espaces homogènes de la forme G/H, avec H connexe et linéaire.

Enfin, dans la troisième et dernière partie de la thèse, nous explorons le problème de la
“descente ramifiée”, ou, en d’autres termes, la question de quels points adéliques de X peu-
vent être relevés à (une désingularisation d’un tordu d’) un revêtement (possiblement ramifié)
géométriquement intègre et géométriquement de Galois ϕ : Y → X fixé, avec un groupe de Galois
géométrique commutatif (bien que dans certaines parties du travail cette hypothèse de commuta-
tivité ne soit pas nécessaire). Le cas où le revêtement est non ramifié étant déjà bien étudié, on est
intéressé principalement au cas ramifié (d’où la terminologie “descente ramifiée”). Nous prouvons
qu’un certain “ensemble de descente”, défini naturellement, fournit une obstruction au principe
de Hasse et à l’approximation faible sur X (la difficulté principale pour prouver cela réside dans
la démonstration que les points rationnels de X qui se trouvent sur le lieu de ramification de ϕ
ne sont pas obstrués).

De plus, par analogie avec le cas classique non ramifié, on construit un sous-groupe Bϕ du
groupe de Brauer de X tel que l’ensemble de descente associé à ϕ se trouve dans l’ensemble
de Brauer–Manin associé à Bϕ. On prouve aussi, à l’aide d’un exemple explicite, que la partie
transcendante de Bϕ peut fournir une obstruction non triviale, contrairement à ce qui se passe
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dans le cas non ramifié. Il semble raisonnable de s’attendre à ce que le groupe Bϕ soit la seule
obstruction au problème de la “descente ramifiée”.



Synthèse en français

Pour une variété algébrique X définie sur un corps de nombres K, on peut s’intéresser à
l’abondance des ses points rationnels X(K). Dans cette thèse, ce thème, ainsi que les questions
qui s’y rattachent, seront la principale motivation des différents problèmes que nous analyserons.
Commençons, avant d’entrer dans les détails de ce travail, par motiver brièvement un tel intérêt
au lecteur.

Bien sûr, l’exemple le plus simple d’une propriété d’abondance serait la question de la Zariski-
densité de X(K) dans X. Bien que cette question puisse déjà être engageante, une réponse
positive n’est souvent pas suffisante pour les applications.

Notamment, c’est le cas pour les applications au problème inverse de Galois, c’est-à-dire la
question “Est-ce que tout groupe fini est un groupe de Galois sur Q?”. Ce vieux problème pas
encore résolu peut par contre être abordé via la “propriété de Hilbert”, une certaine propriété
d’abondance pour les points rationnels qui est plus forte que la Zariski-densité et sur laquelle nous
reviendrons plus loin.

Un autre problème qui pourrait motiver le lecteur est la question de l’approximation faible,
que nous énonçons ici dans sa forme la plus simple, pour le cas d’une hypersurface projective
X : {f = 0}, sur K = Q. Supposons que le polynôme homogène f possède des coefficients entiers.
On dit que X satisfait l’approximation faible si, pour tout entier positif n, pour toute solution non
nulle mod n de X et tout point réel de X(R), il existe une solution entière de f = 0 telle qu’elle se
réduit à la solution mod n donnée, et telle qu’elle se rapproche arbitrairement bien à celle réelle.
Lorsque X est birationnelle à un espace projectif (ces variétés sont appelées rationnelles), alors on
peut facilement prouver que l’approximation faible est vérifiée. On sait d’autre part que en général
la question a une réponse négative, mais on peut quand même s’intéresser à obtenir une réponse
positive dans certains cas spécifiques (préférablement non rationnels). Nous décrirons infra plus
en détail ce que l’on sait de cette question (et d’autres qui y sont liées, comme le “principe de
Hasse” et l’“approximation forte”).

La propriété d’approximation faible est loin d’être déconnectée de la propriété Hilbert. En
fait, elle implique la propriété de Hilbert pour une variété projective donnée. Malheureusement,
la première a l’inconvénient d’être peu commune, même parmi les variétés unirationnelles (même
si, au moins conjecturalement, dans ce cas elle devrait être vérifiée sous une forme “plus faible”),
mais surtout d’être beaucoup plus difficile à prouver que la dernière.

Dans la suite de cette synthèse, nous décrivons plus en détail le contexte et les travaux de
cette thèse.

1 Diverses propriétés d’abondance

Propriété de Hilbert

Définition. Une variété X/K satisfait la propriété de Hilbert (HP) si, pour chaque morphisme
surjectif fini π : Y → X avec Y irréductible, l’ensemble des points rationnels P ∈ X(K) tels que
π−1(P ) est irréductible est Zariski-dense.

Le théorème d’irréductibilité de Hilbert se traduit alors dans cette terminologie en disant que
An
K a la propriété de Hilbert.
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Le lien avec le problème inverse de Galois découle de la proposition suivante (voir [Ser08, Cor.
3.3.2], qui était déjà implicite dans [CTS87b, Rmk. 7.12]) :

Proposition. Soit X une variété définie sur un corps K, dotée d’une action génériquement libre
d’un groupe fini G. Si le quotient X/G a la propriété de Hilbert, alors G est un groupe de Galois
sur K.

Comme on peut facilement le voir, la propriété de Hilbert est un invariant birationnel, donc
encore une autre façon de reformuler le théorème d’irréductibilité de Hilbert est de dire que les
variétés rationnelles ont la propriété de Hilbert.

Un exemple négatif sont les variétés abéliennes : c’est une simple et bien connue conséquence
du théorème de Mordell-Weil faible qu’ils ont pas la HP.

Principe de Hasse et approximation faible

Définition (Principe de Hasse). On dit que X satisfait le principe de Hasse si l’implication
suivante est vérifiée : “Si X(Kv) 6= ∅ pour toutes les places v de K, alors X(K) 6= ∅”. On dit
qu’une famille de variétés satisfait le principe de Hasse si tous ses membres le font.

Un exemple classique où le principe de Hasse est vérifié est celui des quadriques projectives
lisses (en toute dimension), c’est-à-direX = {f = 0} projective, où f est un polynôme quadratique
homogène non dégénéré. C’est le fameux théorème de Hasse et Minkowski.

On note par MK l’ensemble des places de K.

Définition. Supposons que X(K) 6= ∅. On dit que X a la propriété d’approximation faible
(WA) si, pour tout sous-ensemble fini S ⊆ MK , les points rationnels X(K) sont denses dans∏

v∈S X(Kv). On dit que X a la propriété d’approximation faible faible (WWA) s’il existe un
S0 ⊆ MK fini tel que, pour tout sous-ensemble fini S ⊆ MK disjoint de S0, les points rationnels
X(K) sont denses dans

∏
v∈S X(Kv).

La propriété WA est satisfaite par les espaces projectifs (c’est une conséquence du théorème
des restes chinois).

Ekedahl [Eke90] et Colliot-Thélène [Ser08, Sec. 3.5] ont montré que toute variété X/K qui a
la WWA satisfait aussi la propriété d’Hilbert.

Approximation forte Adèles et points adéliques.
Pour fixer la notation, on note, pour un sous-ensemble fini S ⊆MK :

Notation Dénomination Définition

M∞
K - ensemble des places

archimédiennes de K

M fin
K - ensemble des places finies de K

KΩ -
∏

v∈MK
Kv

KS -
∏

v∈SKv

AK anneau d’adèles
∏′

v∈MK
Kv, où le produit restreint

est pris par rapport à Ov ⊆ Kv

AS
K anneau d’S-adèles

∏′
v∈MK\SKv

Notez que AK et AS
K sont des extensions de K. Ainsi, on peut parler de AK-points de X,

c’est-à-dire de points de X avec des coordonnées dans AK . Les AK-points de X sont appelés les
points adéliques de X et leur ensemble est noté X(AK). De manière analogue, X(AS

K) désigne les
points S-adéliques, ou AS

K-points.
Un point adélique (resp. S-adélique) de X est, de manière équivalente, défini par la donnée

suivante : un Kv-point Pv de X pour chaque v ∈ MK (resp. MK \ S) tel que Pv est entier pour
presque toutes les v par rapport à un modèle pris X . Cette définition est indépendante du modèle.
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Définition S.1 (Approximation forte). Une variété X définie sur un corps de nombres K, avec
X(K) 6= ∅, est dite satisfaire l’approximation forte hors d’un sous-ensemble fini S ⊆MK si X(K)
est adéliquement dense dans X(AS

K) =
∏′

v/∈S X(Kv), où le produit restreint est pris par rapport
à X (Ov) ⊆ X(Kv).

LorsqueX est propre, la définition d’approximation forte coincide avec la définition de l’approximation
faible “hors S”. Par conséquent, généralement l’approximation forte est étudiée dans le contexte
des variétés affines, mais pas exclusivement, voir par exemple [CLX19].

L’approximation forte en dehors d’un quelconque ensemble des places non vide fini est satisfaite
par les espaces affines An

K (c’est, comme pour la WA, une conséquence du théorème des restes
chinois).

Notamment, l’approximation forte a été prouvée pour les groupes semi-simples simplement
connexes satisfaisant une certaine hypothèse de non-compacité (voir [PRR93, Thm. 7.12]). Le
résultat est très sophistiqué : la preuve de Platonov utilise la conjecture de Kneser-Tits, qu’il a
prouvée dans [Pla69].

2 Fibrations elliptiques et la propriété de Hilbert

Nous sommes prêts à introduire le premier résultat original qui fait partie de cette thèse. Ce
résultat concerne la recherche d’une condition suffisante pour obtenir la propriété de Hilbert d’une
surface.

Le premier résultat dans cette direction était un théorème récent de Corvaja et Zannier [CZ17,
Thm. 1.4], qui ont prouvé que la propriété de Hilbert est vraie pour la surface de Fermat x4+y4 =
z4 + w4.

Avant leur résultat, on ne savait rien de l’abondance des points rationnels (dans un sens plus
fort que la densité Zariski ou réelle) dans les surfaces K3 (ou, en fait, toute variété qui n’est pas
unirationnelle ou abélienne).

Nous démontrons le théorème suivant, qui généralise le résultat de Corvaja et Zannier.

Theorème S.2. Soit E une surface algébrique projective lisse géométriquement connexe, définie
sur un corps de nombres K. Supposons qu’il existe n ≥ 2 fibrations de genre un π1, . . . , πn : E →
P1, telles que les faisceaux de fibres associés soient deux à deux différents. Soit F ⊂ E l’union des
diviseurs de E contenus, pour chaque i = 1, . . . , n, dans une fibre de πi. Si E \ F est simplement
connexe et E(K) est Zariski-dense dans E, alors E a la propriété de Hilbert.

L’idée principale derrière la preuve du théorème ci-dessus est inspirée de celle de [CZ17, Thm.
1.4]. À savoir, on peut utiliser les fibrations elliptiques pour “déplacer les points rationnels”
autour de la variété X. Une esquisse de la façon dont cela est fait est la suivante : étant donné
un point P ∈ E(K), on peut construire des diviseurs de degré 0 sur les courbes de genre un
π−1
i (P ), i = 1, . . . , n. On montre, en utilisant le théorème de Merel-Parent [Mer96], que, si P est

choisi de manière suffisamment générique (d’où l’hypothèse que E(K) est Zariski-dense), alors ces
diviseurs ne sont pas de torsion, ce qui permet de construire une infinité de points K-rationnels
sur les courbes π−1

i (P ). Pour chacun de ces points, on peut redémarrer le processus. Pour
montrer qu’après avoir itéré indéfiniment, la propriété de Hilbert est effectivement vérifiée, on
utilise comme ingrédients fondamentaux le théorème de Faltings et le théorème d’irréductibilité
de Hilbert (ou, de manière équivalente, la propriété de Hilbert pour P1

K).

Après, nous utilisons le Théorème S.2 pour donner des exemples explicites de surfaces K3 avec
la propriété de Hilbert. Certains des exemples sont produits à partir d’une construction présentée
dans [GS19], par Garbagnati et Salgado. D’autres sont des surfaces de Kummer, pour lesquelles
la propriété de Hilbert a été suggérée être vraie par Corvaja et Zannier [CZ17] :
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Theorème S.3. Soient E1 et E2 des courbes elliptiques sur K avec une infinité de points ra-
tionnels. La propriété de Hilbert est vérifiée pour le quotient (E1 ×E2)/ < ι >, où ι : E1 ×E2 →
E1 × E2 est l’involution ([−1], [−1]).

3 Obstructions aux propriétés d’approximation

Pour parler des autres travaux de cette thèse, nous devons introduire quelques obstructions,
bien connues, aux propriétés d’approximation.

L’obstruction de Brauer–Manin Le groupe de Brauer deX est le groupe BrX := H2
ét(X,Gm).

On rappelle que, lorsque X est une variété définie sur un corps de nombre K, il existe un
accouplement canonique (appelé accouplement de Brauer–Manin) :

BrX ×X(AK) −→ Q/Z,
(b, x) 7−→ 〈b, x〉,

qui est défini comme suit : si x = (xv)v∈MK
, alors 〈b, x〉 :=∑v∈MK

invv(x
∗
vb), où x

∗
vb ∈ H2(ΓKv , Kv

∗
)

désigne le tiré en arrière de b par xv : SpecKv → X, et invv : H2(ΓKv , Kv
∗
) = Br(Kv) → Q/Z

désigne l’invariant usuel (voir par exemple [Har20, Thm. 8.9] pour une définition). L’accouplement
est continu en x et additif en b. Si x ∈ X(K) ⊂ X(AK) ou b provient de BrK, alors 〈b, x〉 = 0 (voir
[Sko01, Sec. 5] pour une preuve, qui est essentiellement une conséquence du théorème classique
d’Albert-Brauer-Hasse-Noether).

On rappelle par ailleurs que l’accouplement (étant continu sur X(AK), et prenant valeurs dans
un groupe discret) est constant sur les composantes connexes archimédiennes de X, donc il induit
un accouplement :

BrX ×X(AK)• −→ Q/Z,

oùX(AK)• désigne le quotient topologique deX(AK) où toute composante connexe archimédienne
est écrasée sur un point.

Nous renvoyons le lecteur à [Sko01, Sec. 5] pour plus de détails sur l’accouplement.

On note X(AK)
BrX le sous-ensemble (fermé) suivant de X(AK) :

{x ∈ X(AK) | 〈b, x〉 = 0 ∀b ∈ BrX}.

On a alors que X(K) ⊆ X(AK)
BrX ⊆ X(AK), c’est-à-dire que BrX obstrue l’existence et la

densité (adélique) de K-points rationnels.

Notez que cela signifie que, lorsque X est propre, BrX obstrue le principe de Hasse et
l’approximation faible.

Définition. On dit qu’une variété propre X satisfait le principe de Hasse et l’approximation
faible jusqu’à l’obstruction de Brauer–Manin si X(K) = X(AK)

BrX , où la clôture est pris par
rapport à la topologie adélique.

Conjecture S.4 (Colliot-Thélène et Sansuc, version forte). Toutes les variétés K-unirationnelles
satisfont la propriété d’approximation faible jusqu’à l’obstruction de Brauer–Manin. C’est-à-dire
que si X/K est unirationnel, alors X(K) = X(AK)

BrX .

La conjecture ci-dessus est connue pour certaines classes de variétés, nous renvoyons à [CTS21,
Sec. 14.11] pour une exposition sur certaines d’entre eux.



3. OBSTRUCTIONS AUX PROPRIÉTÉS D’APPROXIMATION 15

Descente Étant donné un schéma en groupes fini G/K, un cocycle σ ∈ Z1(K,G), et un G-
torseur ϕ : Y → X, on peut tordre leK-schéma Y par le cocycle σ et obtenir ainsi un schéma tordu
Y σ. Nous renvoyons à [Sko01, Sec. 2.2] pour la définition de ce schéma. Le schéma tordu Y σ induit
une forme tordue ϕσ : Y σ → X du torseur. Si les images de deux cocycles σ, σ′ ∈ Z1(K,G) sont
les mêmes dans H1(K,G), alors il existe un isomorphisme (non canonique) de torseurs Y σ ∼= Y σ′

sur X sous G.
Rappelons que, pour tout torseur ϕ : Y

G−→ X sous un groupe algébrique G/K, on a que :

X(K) ⊆
⋃

[σ]∈H1(K,G)

ϕσ(Y σ(K)), (3.1)

où [σ] désigne la classe de σ dans H1(K,G). Pour un torseur ϕ : Y
G−→ X, nous définissons

l’ensemble de descente de f comme :

X(AK)
ϕ :=

⋃

[σ]∈H1(K,G)

ϕσ(Y σ(AK)) ⊆ X(AK).

Cao, Demarche et Xu dans [CDX19, Prop. 6.4] prouvent que l’ensemble à gauche est fermé
dans X(AK).

Skorobogatov [Sko01, Thm. 6.1.2(a)], suivant une version antérieure par Colliot-Thélène et
Sansuc [CTS80] [CTS87a], a prouvé ce qui suit (supposons X propre) :

Theorème S.5. Supposons que G/K soit de type multiplicatif, c’est-à-dire une extension com-
mutatif d’un schéma en groupes commutatif fini par un K-tore. On a alors X(AK)

ϕ = X(AK)
Bϕ

avec Bϕ = Im(H1(K,G′)
−∪[Y ]−−−→ H2

ét(X,Gm) = BrX), où G′ est le dual de Cartier de G et
[Y ] ∈ H1

ét(X,G) est la classe correspondant au G-torseur Y → X.

En utilisant ce théorème, qui constitue en quelque sorte le cœur de ce qu’on appelle habituelle-
ment la “théorie de la descente” ou la “méthode de la descente”, plusieurs succès vers la Conjecture
S.4 ont été obtenus.

Il vaut peut-être la peine d’esquisser ici l’idée de la “méthode de la descente”. En appliquant
le Théorème S.5, on montre ce qui suit : étant donné un torseur ϕ : Y → X sous un certain
groupe multiplicatif G/K, si tous les tordus de Y satisfont le principe de Hasse et la propriété
d’approximation faible lorsqu’ils ont un point rationnel, alors la Conjecture S.4 est vraie pour X.
Donc, tout revient à construire un tel torseur Y . Heureusement qu’on n’a pas besoin de deviner :
il y en a un dit “universel” (qui était aussi le premier pour lequel le Théorème S.5 a été prouvé)
dès que l’ensemble X(AK)

BrX est non vide, et donc ce torseur est généralement choisi.

Descente et obstruction de Brauer–Manin-étale En raison de (3.1), on a les deux inclu-
sions suivantes :

X(K) ⊆ X(AK)
ét,Br :=

⋂

f :Y
G−→X

G schéma en groupes
fini

⋃

[σ]∈H1(K,G)

fσ(Y σ(AK)
BrY σ),

et
X(K) ⊆ X(AK)

desc :=
⋂

f :Y
G−→X

G linéaire

X(AK)
f .

Par conséquent, X(AK)
ét,Br et X(AK)

desc obstruent l’existence de points K-rationnels. De
plus, comme mentionné ci-dessus, il suit de [CDX19, Prop. 6.4] que ces ensembles sont fermés
dans X(AK). Par conséquent, X(AK)

ét,Br et X(AK)
desc fournissent également des obstructions à
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la densité (adélique) de points K-rationnels, qui est liée à l’approximation forte. De plus, dans
[CDX19] les auteurs prouvent que les deux obstructions sont en fait la même, soit X(AK)

ét,Br =
X(AK)

desc .
L’obstruction de Brauer–Manin-étale a été étudiée pour la première fois (pas avec ce nom)

dans [Sko99] où Skorobogatov l’a utilisée pour trouver une surface X/Q (propre, lisse) telle que

∅ = X(Q) = X(AQ)
ét,Br ( X(AQ)

BrX .

Comme l’obstruction de Brauer-Manin, l’obstruction de Brauer–Manin-étale fournit une ob-
struction aussi dans l’espace quotient X(AK)•, soit :

X(K) ⊆ X(AK)
ét,Br
• ,

où ce dernier est défini de manière similaire à X(AK)
ét,Br.

Poonen a montré que l’obstruction de Brauer–Manin-étale n’est pas la seule au principe de
Hasse [Poo10]. Par contre, nous prouverons que c’est la seule obstruction à (le principe de Hasse
et) l’approximation forte pour les espaces homogènes. Ce résultat est le cœur du deuxième travail
original qui fait partie de cette thèse, que nous décrivons dans la section suivante.

4 Propriétés d’approximation sur les espaces homogènes

Cette section présente la deuxième partie originale de cette thèse.
Pour ce que sont exactement Gsc, Gscu et Gab (utilisés infra), nous renvoyons au Chapitre 3.

Obstruction de Brauer– Manin-étale et espaces homogènes Le but principal de ce travail
est de prouver que l’obstruction de Brauer–Manin-étale est “la seule” pour les espaces homogènes,
bien que d’autres résultats qui pourraient être d’intérêt indépendant soient obtenus.

En effet, comme déjà prouvé par Demarche dans [Dem17], l’obstruction de Brauer–Manin
à l’approximation forte n’est en général pas la seule lorsque les stabilisateurs géométriques de
X ne sont pas connexes. En particulier, Demarche a montré qu’il existe une obstruction de
Brauer–Manin-étale non triviale à l’approximation forte pour certains espaces homogènes avec
stabilisateurs finis. D’autre part, dans ce travail, nous nous appuyons sur un résultat de Borovoi
et Demarche [BD13, Thm. 1.4] pour prouver ce qui suit :

Theorème S.6. Soit G un groupe algébrique connexe sur un corps de nombres K. On suppose
que le groupe de Tate-Shafarevich X(K,Gab) est fini. Soit X un espace homogène sous G. Soit
S ⊇ M∞

K un ensemble fini de places de K. On suppose que Gsc(K) est dense dans Gsc(AS
K).

Définissons Sf := S ∩ M fin
K = S \ M∞

K . Alors l’ensemble X(AK)
ét,Br
• est égal à la clôture de

l’ensemble Gscu(KSf ) ·X(K) ⊆ X(AK)• par rapport à la topologie adélique.

La condition que Gsc(K) est dense dans Gsc(AS
K) est équivalente, par un théorème de Kneser

et Platonov [PRR93, Thm. 7.12], à la condition que pour chaque composante simple Gi de G
sc il

existe une v ∈ S tel que Gi(Kv) ne soit pas compact.
Nous prouverons ensuite également un autre théorème, à savoir le Théorème 3.6.5 qui est un

analogue du Théorème S.6 où l’on enlève un ensemble fini supplémentaire de places de K. C’est
donc ce deuxième théorème qu’est proprement le résultat sur l’approximation forte, dans le sens
de la Définition S.1.

L’idée principale de la preuve du Théorème S.6 est de montrer que, s’il n’y a pas d’obstruction
de Brauer–Manin-étale à l’existence de points K-rationnels sur X, alors il y a un espace homogène
Z sous G, avec des stabilisateurs géométriques connexes, et un morphisme G-équivariant fini
Z → X qui fait de Z un torseur sur X (sous un schéma en groupes fini). Cela permet d’appliquer
le résultat de Borovoi et Demarche susmentionné à Z. Pour obtenir le torseur Z → X nous
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nous appuyons de manière cruciale sur [CDX19, Lemme 7.1], un résultat qui est apparu pour la
première fois (dans le cas propre) dans [Sto07a].

Comme nous l’avons mentionné, dans ce travail, nous prouvons également une variante (voir le
Théorème 3.6.5) du théorème ci-dessus où l’on enlève un ensemble fini supplémentaire de places.
Afin de prouver le Théorème 3.6.5, nous aurons besoin d’une description détaillée des valeurs des
éléments de Br(XKv) surX(Kv), que nous obtiendrons en utilisant la construction d’abélianisation
de Demarche [Dem13] (qui à son tour s’appuie sur les travaux antérieurs de Borovoi [Bor96]). La
description explicite dont nous aurons besoin est donnée dans le Théorème 3.5.1, qui semble
être nouveau, et peut-être aussi d’intérêt indépendant. Les méthodes de dévissage standards ne
semblent pas donner de preuve du Théorème 3.5.1, donc notre approche repose plutôt sur un
calcul de cocycle de Galois explicite (et pas très excitant).

Une partie des résultats de cet travail ont aussi été obtenus indépendamment et presque
simultanément par Francesca Balestrieri [BalMS]. À savoir, elle prouve le Théorème S.6 dans le
cas où X a un point rationnel et est un espace homogène sous un groupe linéaire. Les résultats de
ce travail qui ne sont pas couverts par le sien sont le Théorème 3.1.1 dans le cas où X(K) = ∅ (en
particulier, la gestion de ce cas est ce qui nous oblige à utiliser certains arguments de restriction
de Weil, qui apparaissent dans la Section 3.4), les Théorèmes 3.6.1 et 3.6.5 (qui traitent de la
question de l’approximation forte après l’enlèvement de quelques places non archimédiennes), et
le Théorème de compatibilité 3.5.1, qui vise à relier [Dem13, Cor. 6.3] avec [BD13, Thm. 1.4].

5 Descente ramifiée

Nous parlons maintenant du dernier travail qui fait partie de cette thèse.
Le but de ce travail est d’étudier si le lien entre l’obstruction de Brauer–Manin et l’ensemble

de descente (pour les torseurs de type multiplicatif) décrit dans le Théorème S.5 peut être étendu
aux revêtements ramifiés.

SoitX/K une variété géométriquement connexe et ψ : Y → X un revêtement géométriquement
intègre, c’est-à-dire un morphisme surjectif fini avec Y normale et géométriquement intègre. Sup-
posons que ψ soit génériquement un torseur sous un schéma en groupes fini G/K, soit U ⊆ X
une sous-variété ouverte sur laquelle ψ est étale (et donc un G-torseur), et soit V := ψ−1(U).
L’ensemble de descente du revêtement ramifié ψ : Y → X est défini comme :

X(AK)
ψ :=

⋃

ξ∈H1(K,G)

ψξ(Vξ(AK)) ⊆ X(AK),

où la clôture est adélique. Même si nous avons donné la définition en général, nous nous
intéresserons principalement au cas où X est propre, où l’on a que X(AK) = X(KΩ). Nous
prouvons le théorème suivant, qui, dans le cas où X est propre, prouve que cet ensemble de
descente fournit une obstruction au principe de Hasse et à l’approximation faible.

Theorème S.7. On a que X(K) ⊆ X(AK)
ψ, où la clôture est adélique.

En fait, ce que nous prouvons est encore plus précis : à savoir que tous les points rationnels
de X peuvent être relevés aux points rationnels d’une tordue d’une désingularisation Y sm de Y .
Notez que, pour les points K-rationnels en U , l’existence de ces relèvements est immédiat (et bien
connu).

La preuve de ce théorème est assez rapide. La première preuve de l’auteur reposait sur une
réduction au cas des courbes, où elle se réduit au fait bien connu que les groupes de décomposition
absolus des anneaux de valuation discrète R ⊆ K(X) sont des produits semi-directs de leur sous-
groupe d’inertie et leur quotient non ramifié, fait qui est vrai en général pour tous les anneaux de
valuation discrète de caractéristique résiduelle 0. Très gentiment, Olivier Wittenberg a suggéré
une preuve alternative beaucoup plus simple, qui est présentée dans cette thèse.
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La motivation de l’auteur pour le sujet de la descente ramifiée a été suscitée par la question
parallèle suivante, posée par David Harari lors d’un workshop :

Question S.8. L’ensemble de descente des revêtements ramifiées pourrait-il être lié à une obstruc-
tion de Brauer-Manin non algébrique ?

On rappelle que le sous-groupe de Brauer-Manin algébrique est le noyau du morphisme BrX →
BrXK .

La curiosité derrière la question réside dans le fait que dans les contextes “classiques” (non
ramifiés), le groupe de Brauer Bϕ est toujours algébrique (rappelons le Théorème S.5).

Nous répondons affirmativement à la question de Harari. Plus précisément, nous construisons
un sous-groupe (non algébrique) BrψX ⊆ BrX (bien que ce soit l’exemple principal à garder à
l’esprit, la définition n’exige pas que G soit commutatif) tel que :

Theorème S.9. On a une inclusion X(AK)
ψ ⊆ X(AK)

Brψ X . De plus, même lorsque G est
commutatif, le groupe BrψX n’est pas nécessairement algébrique, et la partie transcendante peut
fournir une obstruction non triviale.

Le sous-groupe BrψX est défini comme

BrX ∩ ImH2(Γ, µ∞) ⊆ H2(ΓK(X), K(X)
∗
) = Br(K(X)),

où Γ désigne le groupe de Galois (profini) de l’extension K(Y )/K(X), et “Im” fait référence

à l’image sous le morphisme naturel H2(Γ, µ∞) → H2(ΓK(X), K(X)
∗
). Après avoir donné la

définition, la preuve de la première partie du théorème n’est la plupart du temps qu’une vérification.
Nous donnons ensuite un exemple où le groupe BrψX est entièrement transcendant (c’est-à-

dire BrψX ∩ Br1X = Br0X, l’image de BrK, qui notoirement ne donne aucune obstruction) et
fournit une obstruction non triviale. Ici X est une compactification d’un quotient SLn/G, où G
est un groupe nilpotent de classe 2, et ψ est une compactification de SLn/G

′ → SLn/G.
De plus, cela semble n’être que le deuxième exemple connu d’obstruction transcendante à

l’approximation faible pour les quotients SLn/G, ou, en d’autres termes (voir [Har07, Sec. 1.2]),
à ce qu’on appelle le Problème de Grunwald pour un groupe fini G. Le premier exemple de ce
type est le Théorème 1.2 de [DAN17]. Notre exemple semble beaucoup plus explicite que celui de
[DAN17].

Puisque le Théorème 4.1.1 prouve que X(AK)
ψ ⊆ X(AK)

Brψ X , et X(K) est contenu dans les
deux, il peut être intéressant de comparer ces deux ensembles obstruants, ce qui peut conduire à
poser la question suivante (en supposant que X/K soit propre, lisse, géométriquement connexe) :

Question S.10. Soit ψ : Y → X, comme ci-dessus, un revêtement géométriquement intègre qui
est génériquement un torseur sous un schéma en groupes commutatif fini G/K. A-t-on que
X(AK)

ψ = X(AK)
Brψ X ? Qu’en est-il de la question analogue lorsque G est résoluble ?

La question ci-dessus fera l’objet d’études de travaux futurs de l’auteur, où des réponses
partielles devraient être obtenues.

Notez qu’une réponse positive à la question ci-dessus garantirait, par exemple, que, si Y est
une variété dont toutes les G-tordues satisfont le principe de Hasse, alors X satisfait le principe
de Hasse jusqu’à l’obstruction de Brauer–Manin.

Mentionnons que, lorsque Y est une compactification équivariante de SLn et G est hyper-
résoluble et il agit comme un sous-groupe de SLn, on sait déjà que la question ci-dessus a une
réponse positive, car dans ce cas elle découle de l’approximation faible (jusqu’à l’obstruction de
Brauer–Manin) sur la variété SLn/G et la trivialité de H1(Kv, SLn) pour toutes les complétés
locales Kv de K. Que SLn/G satisfasse la propriété d’approximation faible jusqu’à l’obstruction
de Brauer–Manin lorsque G est hyper-résoluble est prouvé dans le travail récent de Harpaz et
Wittenberg [HW20, Thm. B].



Chapter 1

Introduction and Overview

In an algebraic varietyX defined over a number fieldK, one can be interested in the abundance
of rational points. In this thesis, this theme, along with questions connected to it, will be the
main motivation for the various problems we will be analyzing. Let us start, before delving in the
specifics of the work, by briefly motivating such an interest to the reader.

Of course, the simplest example of an abundance property would just be the question of
whether X(K) is Zariski-dense in X. Although this question can already be engaging, a positive
answer to it is often not enough for applications.

Notoriously, this is the case for applications to the Inverse Galois Problem, i.e. the question
“Is every finite group a Galois group over Q?”. This old unsolved problem in mathematics can
instead be approached via the “Hilbert Property”, a particular abundance property for rational
points which is stronger than Zariski-density and on which we will say more later.

Another issue which might motivate the reader is the question of weak approximation, which
we enunciate here in its simplest form, in the case of a projective hypersurface X : {f = 0}, over
K = Q. Let us assume that the homogeneous polynomial f has integral coefficients. We say that
X satisfies weak approximation if, for every positive integer n and for every non-zero solution
mod n of X and every real point in X(R), there exists an integral solution of f = 0 such that it
reduces to the given mod n solution, and such that it approximates arbitrarily well the real one.
When X is birational to a projective space (these varieties are called rational), then one may
easily prove that weak approximation holds. However, the general question is well-known to have
a negative answer, but one can still be interested in obtaining a positive answer in some specific
instances (preferably non-rational). We will later describe in more detail what is known about
this question (and related ones, the so-called “Hasse principle” and “strong approximation”).

This approximation property is far from disconnected from the Hilbert Property. In fact,
the weak approximation property implies the Hilbert Property for a given projective variety.
Unfortunately, the former has the disadvantage of not being very common, even among unirational
varieties (although, at least conjecturally, in this case it should hold in a “weaker” form), but
especially of being much harder to prove than the latter.

In the rest of this introduction we describe in more detail the context and work of this thesis.
Specifically, in Section 1.1 we describe the various abundance properties to which we have hinted
at and some basic facts concerning them. In Section 1.2 we describe the first original work that
is part of this thesis. In this work the author proves the Hilbert Property of some projective
surfaces with multiple elliptic fibrations. In Section 1.3 we describe some well-known obstructions
to the approximation properties mentioned above. We also spend here some words on the so-
called “descent” technique. In Section 1.4 we describe the second original work that is part of this
thesis, which concerns the strong approximation property on homogeneous spaces. In Section 1.5
the last original work that is part of this thesis is described. This concerns the matter of “descent
on ramified covers” (“classical” descent is done on unramified covers).
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1.1 Various abundance properties

Hilbert Property Let us start by formulating the aforementioned inverse Galois Problem:

Question (Inverse Galois Problem over Q). Is every finite group a Galois group over Q?

Hilbert was the first to purposefully analyze this question [Hil92]. He proved that the answer
is positive for An and Sn for all n. In order to do so, he proved his famous Irreducibility Theorem
(more on this later).

Later, his idea was used again by Emmy Noether [Noe17], who observed that the Hilbert
Irreducibility Theorem could be used to deduce a positive answer to the Inverse Galois Problem
for all groups, if one was able to obtain a positive answer to the following question (which we
formulate here in modern terminology):

Question (Noether’s Problem). Is the quotient An
Q/G (where the action of G on An

Q is faithful and
linear) a rational variety for all finite (constant) groups G?

Let us recall that a variety X, of dimension n, defined over a field k, is said to be rational if
there exists a birational map X 99K Pnk .

As is now very well-known, the above problem has a negative answer in general (see [Swa69]
for the first counterexample and [Sal84] for the first counterexample over C). Noether’s idea was
therefore abandoned for some time. It was then around the 1980’s that the idea was somehow
revived. It was noted that, in fact, even if hoping for the quotients An

Q to be rational would be too
much, it might be possible that the variety An

Q/G would still contain “a lot of” rational points. To
be precise, one can make sense here of the vague concept of “containing a lot of rational points”
by introducing so-called thin sets and the Hilbert Property. The definitions that we are about
to give are due to Serre [Ser08] (thin sets) and Colliot-Thélène and Sansuc [CTS87b] (Hilbert
Property, which they call “being of Hilbert type”).

Definition 1.1.1 (Thin sets). Let X be a geometrically irreducible variety defined over a field
K. A subset S of the rational points X(K) is said to be thin if it is contained in a union of two
types of sets:

(T1) the rational points Z(K) of a proper subvariety of X;

(T2) the rational points coming from a non-trivial cover, i.e. sets of the form π(Y (K)), where
π : Y → X is a finite morphism of degree > 1, and Y is irreducible.

A variety X/K satisfies the Hilbert Property (HP) if X(K) is not thin.
The Irreducibility Theorem of Hilbert translates then into this terminology into saying that

An
K has the Hilbert Property when K is a number field.
The connection with the Inverse Galois Problem stems from the following proposition (see

[Ser08, Cor. 3.3.2], which was already implicit in [CTS87b, Rmk. 7.12]):

Proposition 1.1.2. Let X be a variety defined over a field K, endowed with a generically free
action of a finite group G. If the quotient X/G has the Hilbert Property, then G is a Galois group
over K.

As one may easily see, the Hilbert Property is a birational invariant, hence yet another way
of rephrasing Hilbert’s Irreducibility Theorem is to say that rational varieties have the Hilbert
Property.

Let us also mention a negative example: abelian varieties do not have the Hilbert Property.
This is because all rational points on an abelian variety A may be lifted to a cover defined
by A → A,P 7→ [2]P + R, where R is one of finitely many representatives for the quotient
A(K)/[2]A(K). Note that the finiteness of this quotient, or, in other words, the weak Mordell-
Weil theorem, is used in an essential way here!
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The following conjecture, posed by Colliot-Thélène and Sansuc [CTS87b, p. 190], would imply
that, for every finite group G and every embedding G →֒ SLn,K , the variety SLn/G, which is
unirational, has the Hilbert Property. By the proposition above, this in turn would imply a
positive answer to the Inverse Galois Problem for all finite groups G.1

Conjecture 1.1.3. All unirational varieties over number fields satisfy the Hilbert Property.

Recall that a variety is unirational if it is dominated, as a K-variety, by a rational one.
A more powerful conjectural link between geometry of a variety and HP was suggested by

Corvaja and Zannier [CZ17]. Namely, they proved in [CZ17, Theorem 1.6] that every smooth
proper variety with the Hilbert Property is geometrically simply connected, and then posed the
following concerning the converse:

Question 1.1.4. Does every geometrically simply connected variety X/K with Zariski-dense
rational points satisfy the Hilbert Property?

Corvaja and Zannier answer the above question affirmatively for the Fermat quartic x4+ y4 =
z4 + w4 = 0. The first original work that is part of this thesis (see Section 1.2 and Chapter 2)
contains generalizations of this result.

Hasse principle and weak approximation Weak approximation is an abundance property
for rational points, and it is stronger than the Hilbert Property. The Hasse principle is not an
abundance property, rather it concerns the existence of rational points, but it goes hand in hand
with weak approximation, so we introduce it as well.

Let X ⊆ Pn be a projective algebraic variety defined over Q, defined by the system of homo-
geneous polynomial equation: 




f1(x0, . . . , xn) = 0
...

fk(x0, . . . , xn) = 0

,

which we may assume to have integer coefficients.

Definition 1.1.5 (Hasse principle, I). We say that X satisfies the Hasse principle if the following
implication holds: “If there exists a non-zero mod n solution to the system above for all natural
numbers n > 0, and a non-zero real solution, then there exists a non-zero rational solution to the
system”. A family of varieties is said to satisfy the Hasse principle if all of its members do.

This definition is independent of the choice of equations. In fact, we give below a reformulation
that does not depend on this choice.

A classical example where the Hasse principle holds is that of smooth quadrics (in any dimen-
sion), i.e., for X = {f = 0}, with f quadratic and non-degenerate. This is the famous theorem of
Hasse-Minkowski.

Another, more abstract, way to define the Hasse principle is the following, which makes sense
for all varieties X defined over a number field K.

Definition 1.1.6 (Hasse principle, II). We say that X satisfies the Hasse principle (HaP) if the
following implication holds: “If X(Kv) 6= ∅ for all places v of K, then X(K) 6= ∅”. A family of
varieties is said to satisfy the Hasse principle if all of its members do.

Again, by the Hasse-Minkowski theorem, this property is satisfied by smooth quadrics.
We formulate now the weak approximation property (we just give the abstract definition here,

as the “concrete” one was already hinted at at the very beginning of this introduction).

1In the article of Colliot-Thélène and Sansuc the conjecture is left more as a curiosity: “It would certainly
be of interest to discuss the existence of k-unirational varieties which are not of Hilbert type.” However, it is
now widely believed that these “k-unirational varieties [...] of interest” should not exist, especially in view of a
(stronger) version of Conjecture 1.1.3 that followed it, i.e., Conjecture 1.3.4.
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Definition 1.1.7. Assume that X(K) 6= ∅. We say that X has the weak approximation (WA)
property if, for all finite subsets S ⊆MK , the rational points X(K) are dense in

∏
v∈S X(Kv). We

say that X has the weak weak approximation (WWA) property if there exists a finite S0 ⊆ MK

such that, for all finite subsets S ⊆ MK disjoint from S0, the rational points X(K) are dense in∏
v∈S X(Kv).

The WA property is satisfied by projective spaces (with this formulation, this is a consequence
of the Chinese Remainder Theorem).

The WWA property is strictly related to the Hilbert Property, by the following result, due to
Ekedahl [Eke90] and Colliot-Thélène [Ser08, Section 3.5].

Theorem 1.1.8 (Ekedahl, Colliot-Thélène). Every variety X/K with WWA satisfies the Hilbert
Property.

Colliot-Thélène in fact conjectured, in an unpublished letter (see [Ser08, Sec. 3.5]), that the
WWA would hold on all unirational varieties. Note that, by the result above, this conjecture is
stronger than Conjecture 1.1.3. He would then make, with Sansuc, an even stronger and more
precise conjecture (more on this in Section 1.3, see also [CTS80, p. 228][CTS21, Sec. 14.1]).

Strong approximation The Hasse principle and weak approximation are properties that con-
cern rational points (and that is why we formulated them for projective varieties). There exists an
analogue property, called strong approximation that concerns, in a certain sense, integral points,
and this is relevant only for open varieties (for proper varieties it reduces to weak approximation).

We give two definitions, which are actually not equivalent, the second is stronger than the
first. The second one, which is more technical, is the one that is usually used in the literature.
But the first one, more concrete, is much more intuitive and therefore might spark more interest.

Definition 1.1.9 (Strong Approximation for integral points). An affine variety X ⊆ An
Q, defined

by a system of polynomial equations:





f1(x1, . . . , xn) = 0
...

fk(x1, . . . , xn) = 0

,

which we assume to have integral coefficients is said to satisfy the strong approximation property
for integral points if, for every positive integer n and every solution mod n of the system, there
exists an integral solution of the system that lifts the mod n one.

For the second definition, it is convenient to make use of the formalism of adeles and adelic
points.

Adeles and adelic points. We recall that the ring of adeles (resp. S-adeles, for some subset S ⊆
MK) AK (resp. AS

K) of K is defined to be the restricted product
∏′

v∈MK
Kv (resp.

∏′
v∈MK\SKv),

with respect to Ov ⊆ Kv. Note that AK and AS
K are extensions of K. So, it makes sense to talk

of AK-points of X, i.e., points of X with coordinates in AK . The AK-points of X are called the
adelic points of X and their set is denoted by X(AK). Analogously, X(AS

K) denotes S-adelic, or
AS
K- points.
An adelic (resp. S-adelic) point of X is, equivalently, given by the following data: a Kv-point

Pv of X for each v ∈MK (resp. MK \ S) such that Pv is integral
∗ in X for almost all v.

∗ When X is quasi-projective, by integral we mean the following (for the general case one has
to resort to scheme-theoretic models). Let X ′ be the closure of X in projective space, and let
D := X ′ \ X, then a v-adic point of X is integral if it does not reduce to D modulo v. Since
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the integrality condition was imposed on almost all v, one can easily prove that this definition
depends just on the K-variety X and not the chosen embedding in projective space. Note that,
when X is affine, a v-adic point is integral if and only if it has integral coordinates.

Definition 1.1.10 (Strong Approximation). A variety X defined over a number field K, with
X(K) 6= ∅ is said to satisfy strong approximation off a finite subset S ⊆MK if X(K) is adelically
dense in X(AS

K) =
∏′

v/∈S X(Kv), where the restricted product is taken with respect to X(Ov) ⊆
X(Kv).

Using the Chinese Remainder Theorem, one proves that the two definitions connect in the
following way: if an affine vareity X/Q has strong approximation (according to the second defi-
nition) off ∞, then it has strong approximation according to the first definition as soon as it has
solutions in Zp for all primes p. This is because, in the adelic terminology, the first definition is
asking for the density of X(Z) in

∏
p primeX(Zp), while the second is asking (in this case) for the

density of X(Q) in
∏′

p primeX(Qp). Since X(Q) ∩∏p primeX(Zp) = X(Z), the second condition
implies the first, i.e., the second definition is stronger.

As mentioned above, when X is proper, Definition 1.1.10 above gives back the definition of
weak approximation“off S”. Therefore, usually strong approximation is studied in the context of
affine varieties, but not exclusively, see e.g. [CLX19].

It is worth mentioning that, when X is affine and of positive dimension, one cannot have
“strong approximation off the empty set”, or, in other words, X(K) is never dense in X(AK).
This is because, in the affine case, X(K) is actually discrete in X(AK) (because K is discrete in
the adeles AK).

Strong approximation holds on affine spaces An
K by the Chinese Remainder Theorem.

Notoriously, strong approximation has been proven for the semisimple simply connected groups
satisfying a certain non-compactness assumption (see [PRR93, Theorem 7.12]). The result is very
sophisticated: Platonov’s proof makes use of the Kneser-Tits conjecture, which he proved in
[Pla69].

Advantages and disadvantages of the various properties Of course stronger properties are
usually harder to prove. In particular, strong approximation is known for very few varieties, with
the most important class being the aforementioned semisimple simply connected linear groups
(for instance, SLn and the spin groups Spn(f), for an indefinite quadratic form f). On the other
hand weak approximation and the Hasse principle have been proven for slightly more varieties.
These include, for instance, compactifications of some principal homogeneous spaces of tori (when
there is no Brauer–Manin obstruction, which we will define later).

The Hilbert Property is known for some K3 surfaces (see next section).

Schematic summary of the implications among the various properties For proper
geometrically connected smooth X/K:

WWA HP

Unirational π1,ét(X) = 1 and X(K)
Zar

= X

CT, Ekedahl

CZConjecture by CTS

Conjecture by CZ

where: CT=Colliot-Thélène, S=Sansuc; CZ=Corvaja, Zannier.

Any of the conjectures ⇒ would imply the HP for the quotients SLn/G (G finite) for all
G, hence a positive answer to the Inverse Galois Problem by the argument presented before
Conjecture 1.1.3.
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1.2 Elliptic fibrations and the Hilbert Property

We are ready to introduce the first original result that is part of this thesis. This result concerns
the search for a sufficient condition for obtaining the Hilbert Property of a surface (defined over
a number field). We will be particularly interested in K3 surfaces. To explain why, we start by
recalling (in spirit of analogy) the now well-known complete qualitative description of rational
points on algebraic curves.

On rational curves, rational points are of course very abundant. On curves of genus ≥ 2,
there are only finitely many rational points (by Faltings’ Theorem). On genus 1 curves, which
represent somehow a limit case, rational points are (potentially) Zariski-dense, but they are not
that abundant: for instance the Hilbert Property does not hold on elliptic curves (as mentioned
before, this is essentially a consequence of the weak Mordell-Weil theorem).

The behaviour of rational points on surfaces (actually, varieties in general), is thought, by
analogy, to be similar. In particular, rational points are expected to be abundant on varieties
that are geometrically rational (as soon as there is at least one), while, on the other end of the
spectrum, they are expected to not be Zariski-dense on surfaces of general type (see the famous
Bombieri-Lang conjecture). The limiting case would be surfaces of Kodaira dimension 0. These are
divided, by the Enriques–Kodaira classification, into abelian varieties, Enriques surfaces, bielliptic
surfaces (and in all three classes the surfaces are not geometrically simply connected, hence the
Hilbert Property never holds by a result of Corvaja and Zannier [CZ17, Theorem 1.6]), and K3
surfaces. So, K3 surfaces represent a sort of “limiting case” where the HP could still hold.

The first result in this direction was a recent theorem of Corvaja and Zannier [CZ17, Theorem
1.4], who proved that the Hilbert Property holds for the Fermat surface x4 + y4 = z4 + w4.

Before their result, nothing was known about abundance of rational points (in any sense that is
stronger than Zariski or real density) in K3 surfaces (or, in fact, any variety that is not unirational
or abelian).

We prove the following theorem, which generalizes their result.

Theorem 1.2.1. Let E be a projective smooth geometrically connected algebraic surface, defined
over a number field K. Suppose that there exist n ≥ 2 genus one fibrations π1, . . . , πn : E → P1,
such that their associated pencils of fibers are pairwise different. Let F ⊂ E denote the union of
the divisors of E that are contained, for each i = 1, . . . , n, in a fiber of πi. If E \ F is simply
connected and E(K) is Zariski-dense in E, then E has the Hilbert Property.

The main idea behind the proof of Theorem 1.2.1 is inspired from that of [CZ17, Theorem 1.4].
Namely, one can use the elliptic fibrations to “move points around” the variety X. A sketch of
how this is done is the following: given a point P ∈ E(K), one may construct degree zero divisors
on the genus one curves π−1

i (P ), i = 1, . . . , n. One shows, using Merel-Parent’s Theorem [Mer96],
that, if P is chosen in a sufficiently generic way (hence the assumption that E(K) is Zariski-dense),
then these divisors are not torsion, which allows to construct infinitely many K-rational points
on the curves π−1

i (P ). For each of these points, one can restart the process. To show that, after
iterating indefinitely, the Hilbert Property actually holds, one uses as fundamental ingredients
Faltings’ Theorem and the Hilbert Irreducibility Theorem (or, equivalently, the Hilbert Property
for P1

K).
We use Theorem 1.2.1 to give explicit examples of K3 surfaces with the Hilbert Property. Some

of the examples are produced starting from a construction presented in [GS19], by Garbagnati
and Salgado. Others are Kummer surfaces, for which the Hilbert Property was suggested to be
true by Corvaja and Zannier [CZ17]:

Theorem 1.2.2. Let E1 and E2 be elliptic curves over K with infinitely many rational points.
The Hilbert Property holds for the quotient (E1×E2)/ < ι >, where ι : E1×E2 → E1×E2 is the
involution ([−1], [−1]).
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1.3 Obstructions to approximation properties

The other original works in this thesis are more related to obstructions to approximation
properties.

Brauer group Let us recall the two possible definitions of Brauer group of a smooth variety
X/K. The reason we are interested in this group is that it provides obstructions to all the
approximation properties (and the Hasse principle) described in Section 1.1. Sometimes it is even
the “only obstruction” (see Conjecture 1.3.4 below and the discussion that follows)!

The first definition we give is more explicit, but it is “the correct one” only in the smooth
and proper case. The second definition we give is in fact valid for any scheme X (so, for that
definition, there is no need to assume that X is a smooth K-variety).

We recall that the Brauer group of a field F is defined as the group of central simple algebras
over F , quotiented by the equivalence relation generated by the relations A ∼Mn(A) for all n ≥ 1
and all central simple algebras A/F , and with group law defined by (A1, A2) 7→ A1 ⊗F A2.

Recall that, for a complete DVR R with perfect residue field κ and fraction field k, we have
the following short exact sequence [CTS21, Thm. 3.6.2]:

1→ Brκ→ Br k
res−→ H1(κ,Q/Z)→ 1.

We refer to [CTS21, Sec. 3.6] for a definition of the various morphisms involved (and especially
of the residue map res, which plays an important role in the first definition of BrX).

Definition 1.3.1 (Brauer group, I). Assume X is smooth and proper over a field K of charac-
teristic 0. The Brauer group BrX of X is the subgroup of the Brauer group of K(X) of elements
such that, for all DVRs R containing K whose fraction field is K(X), they lie in the kernel of the
following residue map:

resR : Br(K(X)) = Br(Frac(R))→ Br(Frac(R̂))
res−→ H1(κ,Q/Z),

where R̂ is the completion of R at its maximal ideal, κ is its residue field. The elements that lie
in BrX are also called the unramified elements of Br(K(X)).

Note that, as is clear from the definition, the Brauer group is a birational invariant among
proper smooth varieties.

Definition 1.3.2 (Brauer group, II). The Brauer group of X is the group H2
ét(X,Gm).

As mentioned before, the “correct” definition (i.e., the one usually presented as definition in
the literature, and that we will adopt in the rest of this thesis) is the second one. The equivalence
of it to the first definition in the smooth case is a deep result that follows from the purity theorem
(see [CTS21, Theorem 3.7.1]). Moreover, another well-known consequence of the purity theorem
is that for a central simple algebra A/K(X) (again with charK = 0), A is unramified if and only
if resR(A) = 0 for all DVRs R equal to OX,η ⊆ K(X), for some codimension 1 point η ∈ X. In
other words, the unramifiedness condition in the first definition may be checked just on the DVRs
associated to codimension 1 points on X.

The Brauer–Manin obstruction We recall that, when X is a variety defined over a number
field K, and there exists a canonical pairing (called the Brauer–Manin pairing):

Br(X)×X(AK) −→ Q/Z,
(b, x) 7−→ 〈b, x〉,

which is defined as follows: if x = (xv)v∈MK
, then 〈b, x〉 =

∑
v∈MK

invv(x
∗
vb), where x∗vb ∈

H2(ΓKv , Kv
∗
) denotes the pullback of b along xv : SpecKv → X, and invv : H2(ΓKv , Kv

∗
) =
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Br(Kv) → Q/Z is the usual invariant map (see e.g. [Har20, Thm 8.9] for a definition). The
pairing is continuous in x and additive in b. If x ∈ X(K) ⊂ X(AK) or b comes from BrK,
then 〈b, x〉 = 0 (see [Sko01, Sec. 5] for a proof, this is essentially a consequence of the classical
Albert–Brauer–Hasse–Noether Theorem).

We recall, moreover, that the pairing (being continuous on X(AK), and taking values in a
discrete group) is constant on the archimedean connected components of X, hence it induces a
pairing:

Br(X)×X(AK)• −→ Q/Z,

where X(AK)• denotes the topological quotient of X(AK) where the archimedean connected
components are collapsed to a point.

We will describe in the next paragraph how the pairing above is explicitly computable, using
quadratic reciprocity, for quaternion algebras in BrX. Apart from that, we refer the reader to
[Sko01, Section 5] for more details on the pairing.

We denote by X(AK)
BrX the following (closed) subset of X(AK):

{x ∈ X(AK) | 〈b, x〉 = 0 ∀b ∈ Br(X)}.

We then have that X(K) ⊂ X(AK)
BrX ⊂ X(AK), i.e. Br(X) provides an obstruction to the

existence and (adelic) density of K-rational points.
Note that this means that, when X is proper, BrX obstructs both the Hasse principle and

weak approximation.

Definition 1.3.3. One says that a proper varietyX satisfies the Hasse principle and weak approx-
imation up to the Brauer–Manin obstruction if the rational points X(K) are dense in X(AK)

BrX ,
i.e., X(K) = X(AK)

BrX .

Warning. Even when X satisfies the Hasse principle and WA up to the Brauer–Manin obstruc-
tion, it does not necessarily mean that it has “a lot of” rational points. This essentially happens
because BrX/BrK (the “obstructing set”) may well be infinite. For instance, all smooth curves
with a rational point are conjectured to satisfy X(K) = X(AK)

BrX
• [Sto07b, Conj. 9.1] (and the

conjecture is known when, for instance, the Jacobian of the curve has finitely many rational points
and its Tate-Shafarevich group is finite [Sko01, Cor. 6.2.5] [Sch99]). However, for curves of genus
g ≥ 1, BrX/BrK is infinite, and, when g ≥ 2, the rational points are finitely many by Faltings’
Theorem.

On the other hand, when X is rationally connected, then one has that BrX/BrK is finite (this
follows from [CTS21, Theorem 5.5.2] since in this case PicX is torsion-free and H i(X,OX) = 0
for i ≥ 1). In this case, X(AK)

BrX is described, as a subset of X(AK), by finitely many conditions
(corresponding to the elements of BrX/BrK), and these conditions factor through

∏
v∈S X(Kv)

for some finite S. Moreover, in this case, X(AK)
BrX is adelically open. In particular, if one knows

that the Brauer–Manin obstruction is the only one to the Hasse principle and weak approximation
on X, then, if X(Kv) 6= ∅ for all v ∈ MK , it satisfies weak weak approximation (since it satisfies
weak approximation “off S”).

In particular, by the Theorem 1.1.8 of Ekedahl-Colliot-Thélène, this implies that the following
conjecture, found in [CTS80, p. 228], is stronger than Conjecture 1.1.3:

Conjecture 1.3.4 (Colliot-Thélène and Sansuc, strong version). All K-unirational varieties sat-
isfy the weak approximation property up to the Brauer–Manin obstruction. I.e., if X/K is unira-
tional, then X(K) = X(AK)

BrX .

The conjecture above is known for some classes of varieties, let us just mention two of these:
pencils in conics with at most 5 singular fibers (among which there are various unirational surfaces)
[CT90] [SS91], and smooth compactifications of homogeneous spaces under linear connected group
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with connected stabilizers [Bor95] (see also the discussion in [CTS21, p. 350]). For more examples,
we refer to [CTS21, Sec. 14.11].

The Brauer group also provides an obstruction to strong approximation, in the following two
senses.

Obstruction to strong approximation off S. Not the whole Brauer group obstructs approxima-
tion off S for all S. So, we need to define the subgroup that provides the correct obstruction.

For a K-variety X we define the S-modified Brauer–Manin group of X to be the following:

BrS X := Ker

(
BrX →

∏

v∈S

BrXKv

)
.

We define the Brauer–Manin set outside S of X as follows:

X(AS
K)

BrS X :=

{
{x ∈ X(AS

K) : 〈x,B〉 = 0 for all B ∈ BrS X} if X(KS) 6= ∅,
∅ otherwise. (1.3.1)

We have an inclusion X(K)
S ⊂ X(AS

K)
BrS X , where ⋆S denotes the closure in the S-adeles. In

other words BrS X obstructs strong approximation off S. That was the first sense.
Obstruction to density of X(K) in X(AK)•. We already discussed how the Brauer group

provides an obstruction to this density. We still call this an obstruction to strong approximation,
because adelic density of X(K) in X(AK)• could be thought of as strong approximation off
archimedean places “except that we are keeping track of the connected components on the real
places”.

An explicit example: Brauer Manin obstruction associated to quaternion algebras
To the reader that has never encountered the Brauer–Manin obstruction before, we hope that this
paragraph can shed some light on its computability.

It is quite easy to compute the Brauer–Manin obstruction associated to unramified quater-
nion algebras in Br(K(X)). (By a deep theorem of Merkurjev these algebras actually generate
Br(K(X))[2], but this does not really interest us now.)

Recall that a quaternion algebra over a field F of characteristic 6= 2 is an algebra defined as:

F < u, v > /(u2 − f, v2 − g, uv + vu),

where f, g are elements of F ∗. The algebra above is denoted by (f, g)F , or simply (f, g).
For a quaternion algebra (f, g) ∈ Br(K(X))[2] and a DVR R containing K with fraction field

K(X), one can compute that its residue resR((f, g)) (defined as in Definition 1.3.1) is equal to
the reduction of

(−1)abf bg−a ∈ R∗ (1.3.2)

in κ∗/(κ∗)2 ∼= H1(κ, 1
2
Z/Z) ⊆ H1(κ,Q/Z), where a (resp. b) is the v-valuation of f (resp. g).

This makes it very easy to check if (f, g) is unramified.
For an unramified quaternion algebra (f, g) the associated Brauer–Manin pairing computes:

((f, g),−) : X(AK)• −→ Q/Z, (Pv)v∈MK
7→

∑

v∈MK

(f(Pv), g(Pv))v,

when this is well-defined (i.e. outside div(f) ∪ div(g)). Here (−,−)v : K∗
v ×K∗

v → {±1} ∼= 1
2
Z/Z

denotes the v-adic Hilbert symbol, defined, for odd v, by the formula:

(a, b)v := (−1)αβǫ(v)
(
x

p

)β (
y

p

)α
, with ǫ(v) = (Nv−1)/2, Nv = cardinality of the residue field of Kv
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for a = pαx, and b = pβy, with x and y v-adic integers coprime to v. We omit the formula for even
v, which can be found e.g. in [Ser73, Chapter III]. Since the Brauer–Manin pairing is continuous,
its value on adelic points that are supported on div(f) ∪ div(g) can be inferred from the formula
above by continuity.

Example 1.3.5. Let us give a famous example of a curve (due to Reichardt and Lind in the 40’s)
where the Hasse principle does not hold, and explain how this is explained by the Brauer–Manin
obstruction. The curve X/Q is defined to be the smooth completion of the rational affine curve
X0 : 2y2 = x4 − 17. Indeed, consider the quaternion algebra B := (17, y) ∈ Br(Q(X))[2]. One
computes using the formula (1.3.2) that B ∈ BrX. Moreover, one has that:

• invp((17, y)) = 0 for all p 6= 17 and all (x, y) ∈ X0(Qp) (we take by definition Q∞ = R);

• inv17((17, y)) =
1
2
for all (x, y) ∈ X0(Q17).

It follows that (B,−) : X0(AQ) → Q/Z is constantly equal to 1/2. By the continuity of the
Brauer–Manin pairing, we infer that (B,−) : X(AQ)→ Q/Z is the constant function 1/2 as well.
Since X(Q) ⊆ X(AQ)

BrX ⊆ X(AQ)
B = ∅, it follows that X(Q) = ∅.

We now turn onto describing the so-called “étale-Brauer–Manin” obstruction, which is in
general finer than the former. To describe this obstruction, it is necessary to first define so-called
“descent sets”.

While we are defining the “descent sets”, we will also take the opportunity to mention how
these sets may be completely characterized, in specific instances, in terms of a Brauer–Manin
obstruction. We do so because the third original work of this thesis will look in direction of an
“analogue” of this characterization in the context of finite ramified covers.

Descent We are going to assume that the reader is familiar with the notion of algebraic group.
We give [Mil17] for a reference on this.

Recall that, whenever we have an étale cover ϕ : Y → X, of proper geometrically integral
K-varieties that is geometrically Galois (or, in other words, an étale torsor, which we will define
in a second, under a finite group scheme), then (by a standard consequence of the Chevalley-Weil
theorem) there are finitely many twists ϕi : Yi → X, i = 1, . . . , r of ϕ such that Yi has points
everywhere locally, and these lift all K-rational points of X:

X(K) = ∪iϕi(Yi(K)).

When Y → X is the isogeny [2] : E → E of an elliptic curve, the finiteness of the number of twists
with all local points is basically (a consequence of the proof of) the classical weak Mordell-Weil
theorem.

One deduces the following “restriction” on X(K):

X(K) ⊆ X(AK)
ϕ := ∪iϕi(Yi(AK)).

In complete analogy, one may define a similar descent set even when X is not proper (although
the finiteness of twists with all local points does not hold anymore), and when Y → X is not
finite, but we need to require though that it is a torsor under some algebraic group G/K.

Namely, recall that, for an algebraic group G/K, a torsor under G is a morphism ϕ : Y → X
of K-schemes such that Y is endowed with a G-action commuting with projection to X, whose
action restricted to the fibers of ϕ is free and transitive. In other words, there exists an action

m : Y ×KG→ Y that commutes with projection to X and such that the morphism Y ×KG
(id,m)−−−→

Y ×X Y is an isomorphism.
Given a cocycle σ ∈ Z1(K,G), and a torsor ϕ : Y → X, we may twist the K-scheme Y ,

which is endowed with a G-action, by the cocycle σ and thus obtain a twisted scheme Y σ. We
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refer to [Sko01, Sec 2.2] for the definition of this twist. The twisted scheme Y σ induces a twisted
form ϕσ : Y σ → X of the torsor. If the images of two cocycles σ, σ′ ∈ Z1(K,G) are the same in
H1(K,G), then there is a (non-canonical) isomorphism of torsors Y σ ∼= Y σ′

over X under G.

For any torsor ϕ : Y
G−→ X under an algebraic group G/K, one has that:

X(K) ⊂
⋃

[σ]∈H1(K,G)

ϕσ(Y σ(K)), (1.3.3)

where [σ] denotes the class of σ in H1(K,G). For a torsor ϕ : Y
G−→ X, we define the descent

set for f as:

X(AK)
ϕ :=

⋃

[σ]∈H1(K,G)

ϕσ(Y σ(AK)) ⊆ X(AK).

When X is proper, the union on the left is still finite even when G is not finite (when G is
finite this reduces to the discussion at the beginning of this paragraph). On the other hand, when
X is not proper, the union on the right is not necessarily finite, but it is locally finite (i.e., over
each locally compact open in X(AK)

ϕ, we can restrict to a finite number of σ), as proven by Cao,
Demarche and Xu in [CDX19, Prop. 6.4]. In particular, this proves that this union is closed.

Historically, there has been an interest in comparing the descent set X(AK)
ϕ with the Brauer–

Manin obstruction, or in other words, investigating about the existence of a Bϕ ⊆ BrX such that
X(AK)

ϕ = X(AK)
Bϕ . This was done for two reasons, somehow lying “in opposite directions”.

The first was to use this comparison to “produce rational points”. Namely, Skorobogatov
[Sko01, Theorem 6.1.2(a)], following an earlier version of this theorem by Colliot-Thélène and
Sansuc [CTS80] [CTS87a] proved the following (assume X proper):

Theorem 1.3.6. Assume that G/K is of multiplicative type, i.e., a commutative extension of
a finite abelian group scheme by a K-torus. We then have X(AK)

ϕ = X(AK)
Bϕ with Bϕ =

Im(H1(K,G′)
−∪[Y ]−−−→ H2

ét(X,Gm) = BrX), where G′ is the Cartier dual of G and [Y ] ∈ H1
ét(X,G)

is the class corresponding to the G-torsor Y → X.

Using this theorem, which constitutes somehow the bulk of what is usually referred to as
“descent theory” or the “descent method”, several successes towards Conjecture 1.3.4 were ob-
tained: the examples that we mentioned after stating the conjecture all use somehow the descent
technique.

It might be worth sketching here the idea of the “descent method”. Applying Theorem 1.3.6,
one shows the following: given a torsor ϕ : Y → X under some multiplicative group G/K, if all
twists of Y satisfy the Hasse principle and the weak approximation property when they have a
rational point, then Conjecture 1.3.4 holds for X. So, it all boils down to constructing such a Y .
Luckily one does not have to guess: there is a so-called “universal” one (which was also the first
one for which Theorem 1.3.6 was proven) as soon as the set X(AK)

BrX is non-empty, and so this
torsor is usually chosen.

The second reason for investigating the existence of Bϕ was to find an obstruction “finer than
Brauer–Manin”. This is explained in more detail in the next paragraph.

Descent and étale-Brauer–Manin obstructions Because of (1.3.3), one has the following
two inclusions:

X(K) ⊂ X(AK)
ét,Br :=

⋂

f :Y
G−→X

G finite
group scheme

⋃

[σ]∈H1(K,G)

fσ(Y σ(AK)
BrY σ),
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and
X(K) ⊂ X(AK)

desc :=
⋂

f :Y
G−→X

G linear

X(AK)
f .

Hence, both X(AK)
ét,Br and X(AK)

desc provide obstructions to the existence of K-rational
points. Moreover, as remarked above, it follows by [CDX19, Prop. 6.4] that the sets on the right
are closed in X(AK). Hence both X(AK)

ét,Br and X(AK)
desc provide obstructions to (adelic)

density of K-rational points as well. Moreover, in [CDX19] the authors prove that the two
obstructions are in fact equal, i.e. X(AK)

ét,Br = X(AK)
desc.

The étale-Brauer–Manin obstruction was first investigated (not with this name) in [Sko99]
where Skorobogatov used it to find X/Q a (proper, smooth) surface such that

∅ = X(Q) = X(AQ)
ét,Br ( X(AQ)

BrX .

As for the Brauer–Manin obstruction, the étale-Brauer–Manin obstruction provides an ob-
struction to strong approximation in two senses.

Obstruction to strong approximation off S.
As with the Brauer–Manin obstruction, it is necessary here to give a new definition:

X(AS
K)

ét,BrS =
⋂

f :Y
F−→X

F finite
group scheme

⋃

[σ]∈H1(K,F )

fσ(Y σ(AS
K)

BrS Y σ). (1.3.4)

Using [CDX19, Prop. 6.4], one again proves that X(AS
K)

ét,BrS is closed, hence X(K)
S ⊆

X(AS
K)

ét,BrS . In other words, the set just defined provides an obstruction to strong approximation
off S.

Obstruction to density of X(K) in X(AK)•. We have:

X(K) ⊆ X(AK)
ét,Br
• ,

where the latter is defined in a completely analogous way as X(AK)
ét,Br. As explained above, we

still think of density in X(AK)• as a form of strong approximation “except that we are keeping
track of connected components at real places”.

The étale-Brauer–Manin obstruction is known to not be the only obstruction to the Hasse
principle [Poo10]. In the case of strong approximation for homogeneous spaces, we will, however,
prove that this is the only obstruction. This is the second original work that is part of this thesis,
which we describe in the next section.

1.4 Approximation properties on Homogeneous spaces

This section presents the second original part of this thesis, which constitutes Chapter 3. We
start by giving a bit of historical context to the results of this paper.

Previously known results on homogeneous spaces The first known results for approxi-
mation properties on homogeneous spaces concern simply connected semisimple algebraic groups.
We state them here in their completeness, as they are particularly simple to state, and constitute
the “building blocks” of all later results.

Theorem 1.4.1 (Chernousov-Harder-Kneser-Platonov). Let G/K be a semisimple simply con-
nected algebraic group. The following hold:

(HaP) Principal homogeneous spaces of G satisfy the Hasse principle.
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(WA) Any smooth compactification of G/K satisfies weak approximation.

(SA) G/K satisfies strong approximation off a finite nonempty S if and only if, for every simple
factor Gi of G,

∏
v∈S Gi(Kv) is not compact.

Since, for almost all v ∈ MK , G(Kv) is not compact, the last statement of the theorem is
non-empty. Moreover, using this non-compactness fact, one can actually easily prove that the
second statement of the theorem is implied by the last.

The Hasse principle is due to Kneser (classical groups) [Kne66a], Harder [Har65][Har66] (ex-
ceptional groups other than E8), and Chernousov [Che89] (E8) , and the strong approximation is
due to Kneser [Kne66b] and Platonov [Pla69], who provided an independent proof, based on his
proof of the Kneser-Tits conjecture. All of these results can be found in the book [PRR93]. A
more uniform proof of weak approximation has also been given by Harari [Har94, Theorem 5.3.1].

In addition to the above theorem, one also has the important result of Kneser [Kne65] [Kne69],
who proved that all principal homogeneous spaces under G over a non-archimedean local comple-
tion Kv of K are actually trivial, i.e., are Kv-isomorphic to GKv . In particular, combining this
with the first statement of the theorem above, one has that the following morphism:

H1(K,G)→
∏

v∈M∞
K

H1(Kv, G)

is injective. [This is actually even bijective, see [PRR93, Theorem 6.6].]

The strong approximation theorem of Kneser and Platonov has then been generalized several
times, for example by Harari [Har08], Colliot-Thélène and Xu [CTX09], and, most recently, by
Borovoi and Demarche [BD13], whose results encompass all the previous ones. In [BD13], the
authors study the case of a homogeneous space under a connected (not necessarily linear) group
G with connected geometric stabilizers, and prove that, under some technical assumptions, the
Brauer–Manin obstruction to strong approximation is the only one. A precise statement follows:

Theorem 1.4.2 (Borovoi-Demarche-’13). Let G be a connected algebraic group over a number
field K. We assume that the Tate-Shafarevich group X(K,Gab) is finite, where Gab denotes the
maximal abelian quotient of G. Let X be a left homogeneous space under G. Let S ⊃ M∞

K be a
finite set of places of K. We assume that Gsc(K) is dense in Gsc(AS

K). Set Sf := S ∩M fin
K =

S \M∞
K . Then the set X(AK)

ét,Br
• is equal to the closure of the set Gscu(KSf ) ·X(K) ⊂ X(AK)•

for the adelic topology.

For what exactly Gsc and Gscu are, we defer to Chapter 3.

The finiteness of the Tate-Shafarevich group of Gab is of course, just conjectured to be true
(and known for some specific cases of modular abelian varieties). It is, however, by now standard
in the field to assume this conjecture to be true.

Étale-Brauer–Manin obstruction and homogeneous spaces Now we can finally talk
about the second original work that is part of this thesis. The main purpose of this work is
to prove that the étale-Brauer–Manin obstruction is “the only one” on homogeneous spaces, al-
though other results which might be of independent interest are obtained.

Indeed, as already proved in [Dem17], the Brauer–Manin obstruction to strong approximation
is in general not the only one when the geometric stabilizers of X are not connected. In par-
ticular, Demarche showed that there is a non-trivial étale-Brauer–Manin obstruction to strong
approximation for some homogeneous spaces with finite stabilizers. Hence, the “connectedeness
of stabilizers” hypothesis in the theorem of Borovoi and Demarche 1.4.2 is necessary. On the
other hand, in this work, we build on [BD13, Thm 1.4] to prove the following:
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Theorem 1.4.3. Let G be a connected algebraic group over a number field K. We assume
that the Tate-Shafarevich group X(K,Gab) is finite. Let X be a homogeneous space under G.
Let S ⊃ M∞

K be a finite set of places of K. We assume that Gsc(K) is dense in Gsc(AS
K).

Set Sf := S ∩ M fin
K = S \ M∞

K . Then the set X(AK)
ét,Br
• is equal to the closure of the set

Gscu(KSf ) ·X(K) ⊂ X(AK)• for the adelic topology.

The condition that Gsc(K) is dense in Gsc(AS
K) is equivalent, by the strong approximation

Theorem 1.4.1 (SA) of Kneser and Platonov, to the condition that, for each simple component
Gi of G

sc, there exists a v ∈ S such that Gi(Kv) is not compact.
Note that the above theorem says that the étale-Brauer–Manin obstruction is the only obstruc-

tion (at least, when each simple component of Gsc is non-compact at at least one archimedean
component) to strong approximation “in the second sense”, as we previously defined it. We will
then also prove another theorem, namely Theorem 3.6.5 where the analogue for strong approxi-
mation “in the first sense”, i.e. off a finite S0 (possibly different from S) is proven.

The main idea of the proof of Theorem 3.1.1 is to show that, if there is no étale-Brauer–Manin
obstruction to the existence ofK-rational points on X, then there is a homogeneous space Z under
G, with connected geometric stabilizers, and a finite G-equivariant morphism Z → X that makes
Z a torsor over X (under some finite group scheme). This allows one to apply the aforementioned
result of Borovoi and Demarche to Z. To obtain the torsor Z → X we crucially rely on [CDX19,
Lemma 7.1], a result that first appeared (in the proper case) in [Sto07a].

As we mentioned, in this work we also prove a variant (see Theorem 3.6.5) of the Theorem
above where one removes an additional finite set of places. In the course of proving Theorem
3.6.5 we will also obtain Theorem 3.6.1, which is an analogue of the strong approximation result
by Borovoi and Demarche [BD13] (so, in the context of connected stabilizers) with a finite set of
places removed. This appears to be new, and, as it will be remarked, does not seem to follow
directly by projection from [BD13, Thm 1.4], as one may think at first sight.

In order to prove Theorem 3.6.5, we will need a detailed description of the values of elements
of Br(XKv) on X(Kv), which we will obtain by using the abelianization construction of Demarche
[Dem13] (that in turn builds on earlier work of Borovoi [Bor96]). The explicit description that we
will need is given in Theorem 3.5.1, which appears to be new, and possibly also of independent
interest. Standard dévissage methods seem not to yield a proof of Theorem 3.5.1, so our approach
relies on an explicit (and not very exciting) Galois cocycle computation instead.

Part of the results of this work were also obtained independently and almost simultaneously
by Francesca Balestrieri [BalMS]. Namely, she proves Theorem 3.1.1 in the case that X has a
rational point and is a homogeneous space under a linear group. The results of this work that are
not covered by hers are Theorem 3.1.1 in the case that X(K) = ∅ (in particular, handling this case
is what forces us to use some Weil restriction arguments, that appear in Section 3.4), Theorems
3.6.1 and 3.6.5 (which deal with the question of strong approximation after removing some non-
archimedean places), and the compatibility Theorem 3.5.1, which aims to connect [Dem13, Cor.
6.3] with [BD13, Thm 1.4].

1.5 Ramified descent

We talk now about the last work that is part of this thesis.
The purpose of this paper is to study whether the link between the Brauer–Manin obstruction

and descent set (for groups of multiplicative type) described in Theorem 1.3.6 can be extended to
the setting of covers. I.e., restrict to the case where Y → X is finite (and hence, so is the group
scheme G), but, importantly, allow for ramification (of course, Y → X will no longer be a torsor,
it will be so only generically), and ask whether the “descent set” of Y → X, which we will define
in a second, can be described by a Brauer–Manin condition. The long-term interest for doing
so would be that some varieties have a particularly easy-to-describe finite abelian ramified cover.
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For instance, this is the case with Kummer surfaces, that have a 2 : 1 cover that is a principal
homogeneous space under an abelian variety. If one is able to obtain a good description of the
descent set (for instance, in terms of a Brauer–Manin condition), one might hope to use these
covers to deduce information on the rational points on X.

Let X/K be a smooth geometrically connected variety and let ψ : Y → X be a geometrically
integral cover (generally speaking, we use the letter ϕ for torsors and ψ or π for possibly ramified
covers), i.e., a finite surjective morphism with Y normal and geometrically integral. Assume that
ψ is generically a torsor under a finite group scheme G/K, let U ⊆ X be an open subvariety over
which ψ is étale (and hence a G-torsor), and let V := ψ−1(U). The descent set for the ramified
cover ψ : Y → X is defined to be the set:

X(AK)
ψ :=

⋃

ξ∈H1(K,G)

ψξ(Vξ(AK)) ⊆ X(AK).

Even though we give the definition in general, we will mainly be interested in the case where X
is proper, where one has that X(AK) = X(KΩ).

We prove the following theorem, which, in the case where X is proper, proves that this descent
set provides an obstruction to the Hasse principle and weak approximation.

Theorem 1.5.1. The inclusion X(K) ⊆ X(AK)
ψ holds.

Actually, what we prove is even more precise: namely that all rational points of X may be
lifted to rational points of a twist of a desingularization Y sm of Y . Note that, for K-rational
points in U , the existence of such lifts is immediate (and well-known). However, it is less so for
points lying in the branch locus of Y → X.

The proof of this theorem is quite quick. The author’s first proof relied on a reduction to the
case of curves, where it reduces to the well-known fact that the absolute decomposition groups
of the DVRs R ⊆ K(X) are semi-direct products of their inertia subgroup and their unramified
quotient, which holds in general for all DVRs of residual characteristic 0. Very kindly, Olivier
Wittenberg has suggested an alternative and much cleaner proof, that is presented in this thesis.

The author’s motivation towards the matter has been sparked by the following side question,
posed by David Harari in a workshop:

Question 1.5.2. Could the descent set for ramified covers be linked to a non-algebraic Brauer–
Manin obstruction?

The curiosity behind the question lies in the fact that in “classical” (non-ramified) contexts,
the Brauer group Bϕ is always algebraic (recall Theorem 1.3.6).

We answer the question of Harari affirmatively. More specifically, we construct a (non-
algebraic) subgroup BrψX ⊆ BrX (although this is the main example to keep in mind, the
definition does not require that G is commutative) such that:

Theorem 1.5.3. The inclusion X(AK)
ψ ⊆ X(AK)

Brψ X holds. Moreover, even when G is com-
mutative, the group BrψX is not necessarily algebraic, and the transcendental part may provide
non-trivial obstruction.

The subgroup BrψX is defined as

BrX ∩ ImH2(Γ, µ∞) ⊆ H2(ΓK(X), K(X)
∗
) = Br(K(X)),

where Γ denotes the (profinite) Galois group of the extension K(Y )/K(X), and “Im” refers to

the image under the natural morphism H2(Γ, µ∞)→ H2(ΓK(X), K(X)
∗
). Once the definition has

been given, the proof of the first part of the theorem is mostly just a verification.
We then provide an example where the group BrψX is entirely transcendental (i.e., BrψX ∩

Br1X = Br0X, the image of BrK, which notoriously does not give any obstruction) and provides
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a non-trivial obstruction. HereX is a compactification of a quotient SLn/G, whereG is a nilpotent
group of class 2, and ψ is a compactification of SLn/G

′ → SLn/G.
Moreover, this appears to be only the second known example of transcendental obstruction

to weak approximation for quotients SLn/G, or, in other words (see [Har07, Section 1.2]), to
the so-called Grunwald Problem for a finite group G. The first such example is Theorem 1.2 of
[DAN17]. Our example seems to be much more explicit than that of [DAN17]. Indeed, in the
latter, the authors provide an example of a quotient SLn/G where weak approximation holds up
to Brauer-Manin obstruction but such that the algebraic obstruction is trivial, which indirectly
proves that the transcendental obstruction is non-trivial. By contrast, we prove that some explicit
classes of the transcendental Brauer group of the varieties in question provide an obstruction to
weak approximation. As in [DAN17], also in our example the algebraic obstruction vanishes.

Since Theorem 4.1.1 proves that X(AK)
ψ ⊆ X(AK)

Brψ X , and X(K) is contained in both of
them, it might be interesting to compare these two obstruction sets, which might lead one to ask
the following (assume X/K is proper, smooth, geometrically connected):

Question 1.5.4. Let ψ : Y → X be, as above, a geometrically integral cover that is generically a tor-
sor under a finite commutative group scheme G/K. Does one have thatX(AK)

ψ = X(AK)
Brψ X?

What about the analogue question when G is solvable?

The question above will be the object of study of future work of the author, where partial
answers should be obtained.

Note that a positive answer to the question above would, for instance, guarantee that, if Y is
a variety all of whose G-twists satisfy the Hasse principle, then X satisfies the Hasse principle up
to Brauer–Manin obstruction.

Let us mention that, when Y is an equivariant compactification of SLn and G is supersolvable
and acts as a subgroup, the question above is already known to have a positive answer, as in this
case it follows from weak approximation (up to the Brauer–Manin obstruction) on the variety
SLn/G and the triviality of H1(Kv, SLn) for all local completions Kv of K. That SLn/G satisfies
the weak approximation property up to the Brauer–Manin obstruction when G is supersolvable
is proven in the recent work of Harpaz and Wittenberg [HW20, Théorème B].

Another case where the question is already answered is when ψ is unramified and G is com-

mutative, as in this case, as we will prove in Section 4.4.4, BrψX ⊇ Bψ = Im(H1(K,G′)
−∪[Y ]−−−→

H2
ét(X,Gm) = BrX), and this implies that the sequence of inclusions X(AK)

ψ ⊆ X(AK)
Brψ X ⊆

X(AK)
Bψ must be an equality by Theorem 1.3.6.



Chapter 2

Elliptic Fibrations and the Hilbert
Property

2.1 Introduction

Recall that, motivated by the search for varieties with the Hilbert Property, in this chapter
we prove the following:

Theorem 2.1.1. Let E be a projective smooth geometrically connected algebraic surface, defined
over a number field K. Suppose that there exist n ≥ 2 genus one fibrations π1, . . . , πn : E → P1,
such that their associated pencils of fibers are pairwise different. Let F ⊂ E denote the union of
the divisors of E that are contained, for each i = 1, . . . , n, in a fiber of πi. If E \ F is simply
connected and E(K) is Zariski-dense in E, then E has the Hilbert Property.

The pencil of fibers associated to a fibration f : E → P1 is the pencil of divisors on E that are
fibers of f . In other words, this is f ∗|O(1)|.

The condition of Theorem 2.1.1 that the “associated pencils of fibers are pairwise different” is
equivalent to “πi is different from ψ ◦ πj for every i 6= j and every automorphism ψ of P1”.

The first to have used multiple elliptic fibrations to prove the Hilbert Property are Corvaja
and Zannier, who proved it for the Fermat surface x4 + y4 = z4 + w4 [CZ17, Theorem 1.4]. Our
proof basically develops from their ideas.

We also use our theorem to give explicit examples of K3 surfaces with the Hilbert Property.

2.2 Background

This section contains some preliminaries, including reminders on the Hilbert Property. More-
over, we shall take care here of most of the notation that will be used in the chapter.

Notation Throughout this chapter, except when stated otherwise, k denotes a perfect field and
K a number field. A (k-)variety is an algebraic quasi-projective variety (defined over a field k),
not necessarily irreducible or reduced. Unless specified otherwise, we will always work with the
Zariski topology.

Given a morphism f : X → Y between k-varieties, and a point s : Spec(k(s))→ Y , we denote
by f−1(s) the scheme-theoretic fibered product Spec(k(s)) ×Y X, and call it the fiber of f in s.
Hence, with our notation, this is not necessarily reduced.

A geometrically integral k-variety X is a k-variety such that Xk̄ is integral.
A morphism f : Y → X between normal k-varieties is a cover if it is finite.
When k ⊂ C, a smooth k-variety X is simply connected if XC, with its euclidean topology, is

a simply connected topological space.

35
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Given a morphism f : Y → X between integral k-varieties, with Y normal, we will make use
of the notion of relative normalization of X in Y . We refer the reader to [Sta20, Tag 0BAK]
or [Liu02, Definition 4.1.24] for its definition, and recall here the properties that are needed in
this thesis. Namely, we will need that the relative normalization of X in Y is a finite morphism
n : X̂ → X such that X̂ is normal, and such that there exists a factorization f = ϕ ◦ n, where
ϕ : Y → X̂ has a geometrically integral generic fiber. The normalization of an integral variety X
is the usual normalization X̂ of X [Liu02, Sec. 4.1.2].

The domain Dom(f) of a rational map f : Y 99K X between integral k-varieties is the
maximal open Zariski subset U ⊂ Y such that f |U extends to a morphism on U .

Given a rational map f : Y 99K X between integral k-varieties, and a birational transformation
b : Y ′ 99K Y , we will denote with abuse of notation, when there is no risk of confusion, the map
f ◦ b by f . We say that f is well-defined on Y ′ if Dom(f ◦ b) = Y ′.

Ramification We say that a morphism f : Y → X between k-varieties is unramified at a closed
point y ∈ Y if its differential dfy : TyY → Tf(y)X ⊗k(f(y)) k(y) is injective. Otherwise we say that
f is ramified at y.

Since k is perfect, [Vak, Exercise 21.6.I] implies that our definition of unramifiedness at a
closed point coincides with the more standard one saying that f : Y → X is unramified at y ∈ Y
if y /∈ SuppΩ1

Y/X .

The set of closed points where f is ramified are the closed points of a (reduced) closed sub-
scheme of Y , and we will refer to this closed subscheme as the ramification locus. The image of
the ramification locus under f is the branch locus. We recall that, by Zariski’s Purity Theorem
(see [Zar58] or [Sta20, Tag 0BMB]), when f is finite, Y is normal and X is smooth, the branch
locus of a finite morphism f : Y → X is a divisor. Hence, in this case, we will also refer to
the branch locus as the branch divisor. We remark that the ramification locus of f : Y → X
is also the locus cut out by the 0-th Fitting ideal of ΩY/X , and, as such, is invariant under base
change (see [Tei77, Ch.1] or [Sta20, Tag07Z6,Tag 0C3H] for more details on Fitting ideals). A
simply connected variety X does not have any geometrically integral cover of degree > 1 which
is unramified in codimension 1.

Cubic hypersurfaces Cubic hypersurfaces are hypersurfaces in Pn defined by a cubic homo-
geneous polynomial. We recall the following:

Theorem 2.2.1 (Segre). Let X be a smooth cubic projective hypersurface, defined over a field k
of characteristic 0, with a k-rational point. Then X is unirational.

Hilbert Property For a more detailed exposition of the basic theory of the Hilbert Property
and thin sets we refer the interested reader to [Ser08, Ch. 3]. We limit ourselves here to recalling
the most common definition (which is not the one given in the introduction), and some recent
results.

Definition 2.2.2. Let X be a geometrically integral variety, defined over a field k. A thin subset
S ⊂ X(k) is any set contained in a union D(k) ∪ ⋃i=1,...,n πi(Ei(k)), where D ( X is a closed
subvariety, and πi : Ei → X are generically finite morphisms of degree > 1, and the Ei’s are
irreducible.

Remark 2.2.3. When X is normal, one can substitute “generically finite morphisms” with “covers”
in Definition 2.2.2 to get an equivalent definition. In fact let, for each i = 1, . . . , n, π′

i : E
′
i → X

be the relative normalization of X in πi : Ei 99K X, and let bi : E
′
i 99K Ei be a birational map

such that π′
i = πi◦bi. We have that D(k)∪⋃i(πi(Ei(k))) ⊂ (D(k) ∪⋃i πi(Yi(k)))∪

⋃
i(π

′
i(E

′
i(k))),

where Yi ⊂ Ei denotes the (closure of the) locus where b−1
i is not an isomorphism. Moreover,

since any closed subvariety D ( X is contained in a divisor, one can substitute in Definition 2.2.2
“closed subvariety” with “divisor”.
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Recall that a geometrically integral k-variety X has the Hilbert Property (HP) if and only if
X(k) is not thin.

Theorem 2.2.4 (Bary-Soroker, Fehm, Petersen). Let f : X → S be a morphism of geometrically
integral K-varieties. Suppose that there exists a non-thin subset A ⊂ S(K) such that, for each
s ∈ A, f−1(s) has the HP. Then X/K has the HP.

Proof. See [BSFP14, Theorem 1.1].

Definition 2.2.5. Let E be a normal projective algebraic K-surface. We say that a morphism
π : E → P1 is an elliptic fibration if its generic fiber is a smooth, geometrically connected, genus
1 curve.

The following theorem is included just for completeness. In fact, Theorem 2.1.1, which we are
going to prove in Section 2.4, is a stronger version of it.

Theorem 2.2.6. Let K be a number field, and E be a projective smooth simply connected algebraic
K-surface, endowed with two elliptic fibrations πi : E → P1/K, i = 1, 2, such that π1 × π2 : E →
P1 × P1 is a finite morphism. Suppose moreover that the following hold:

(a) The K-rational points E(K) are Zariski-dense in E;

(b) Let η1 ∼= SpecK(λ) be the generic point of the codomain of π1. All the branch points (i.e.
the images of the ramification points) of the morphism π2|π−1

1 (η1)
are non-constant in λ, and

the same holds upon inverting π1 and π2.

Then the surface E/K has the Hilbert Property.

Proof. See [Dem20, Theorem 1.4].

2.3 Hilbert Property for cubic hypersurfaces

Theorem 2.3.1. Let X ⊂ Pn/K, n ≥ 3 be a smooth cubic projective hypersurface, with a K-
rational point. Then X has the Hilbert Property.

In this section our base field will always be a number field K.
We need the following lemma, which is implicit in [Lui12].

Lemma 2.3.2. Let π : E → P1 be an elliptic fibration, defined over a number field K. Then,
there exists a non-empty open Zariski subset Uπ ⊂ E such that, for any P ∈ Uπ(K), π−1(π(P )) is
smooth and #π−1(π(P ))(K) =∞.

Proof. Let pλ be the generic point of P1 and U ∋ pλ be a Zariski neighborhood of pλ such that
πU := π|π−1(U)

is a smooth morphism, and such that there exists a divisor H of π−1(U) which

is flat and relatively ample over U . We notice that such a couple (U,H) always exists: in fact
it suffices to choose an ample divisor Hλ on the generic fiber Eλ := π−1(pλ), and then define H
to be the Zariski closure of Hλ in π−1(U), where U is defined to be a sufficiently small Zariski
neighborhood of pλ.

Let J : E0 → U ⊂ P1 be the Jacobian, or “Pic0”-, fibration corresponding to πU (see [SI13,
II.10.3] or [Kle05, Definition 4.1, Theorem 4.8, Sec. 5] for a definition and basic functoriality
properties, which we are implicitly going to use). For p ∈ U , we denote by Jp the Spec k(p)-
scheme J−1(p). We note that, by functoriality [Kle05, Definition 4.1], J−1(p) may be canonically
identified with the Jacobian variety of π−1(p).

Let now
ψλ : Eλ → Jλ
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be the morphism defined, pointwise, by ψλ(Q) := [(degHλ) ·Q−Hλ], and

Ψ : π−1(U ′)→ J−1(U ′)

be an extension of ψλ to a Zariski neighbourhood U ′ ⊂ U of pλ. By functoriality [Kle05,
Definition 4.1], we know that, for each p ∈ U ′, and each Q ∈ π−1(p), Ψ(Q) = [(degH) ·Q−Hp],
where Hp = H|π−1(p)

, and [(degH) ·Q−Hp] ∈ Jp .
Let N be the least common divisor of the orders of torsion of the groups Ẽ(K), where Ẽ

varies in the set of elliptic curves defined over the number field K. This is a finite number by the
Mazur-Merel-Parent Theorem (see e.g. the article by Parent [Par99]). The claim of the lemma is
then satisfied with Uπ := π−1(U) \ ([N ] ◦Ψ)−1(O), where O denotes, with abuse of notation, the
image of the zero section of J .

Proof of Theorem 2.3.1. We note that X is K-unirational by Theorem 2.2.1, in particular it has
Zariski-dense K-rational points.

We prove the result by induction on n.
Case n = 3.
We assume by contradiction that X does not have the HP. By Remark 2.2.3, there exist then

irreducible covers ϕi : Yi → X, i = 1, . . . ,m of degree degϕi > 1 and a divisor D ⊂ X such
that X(K) ⊂ ⋃i ϕi(Yi(K))∪D(K). We may assume, without loss of generality, that the Yi’s are
geometrically integral (see the Remark on irreducible varieties in [Ser08, p. 20]), and that the
ϕi’s are finite morphisms (see Remark 2.2.3). Let us denote now by Ri the branch divisor of ϕi.
Since X is a smooth cubic, it is isomorphic to a (smooth) hyperplane section of the image of the
(cubic) Veronese embedding Pn →֒ P(n+3

3 )−1. Hence, by Lefschetz’ hyperplane Theorem [Mil63,

Theorem 7.4], it is simply connected. It follows that the Ri’s are non-empty for each i = 1, . . . ,m.
Let us denote by A∗

4 the dual affine space of A4, minus the origin. To each element h ∈ A∗
4

corresponds a hyperplane H(h) := {x ∈ P3 | h(x) = 0} ⊂ P3. Let (h1, h2) ∈ A∗
4(K) × A∗

4(K) be
such that:

i. H(h1)∩H(h2)∩X has three distinct K̄-points (and hence, as a direct consequence, H(h1)∩
H(h2) is a line), and it is disjoint from the union of the Ri’s;

ii. H(h1) ∩X and H(h2) ∩X are smooth curves.

We note that all conditions contain an open and non-empty subvariety of A∗
4×A∗

4 as a consequence
of Bertini’s Theorem [Har77, Corollary III.10.9] applied to the linear system of hyperplanes of P3.
Hence such a couple (h1, h2) always exists.

We notice that the morphism [h1 : h2] : X \H(h1) ∩H(h2) → P1 is non-constant on each of
the irreducible components of the Ri’s. In fact, if it were constant on an irreducible component
Rj
i ⊂ Ri, we would have that there exist α, β ∈ K such that αh1+βh2 = 0 on Rj

i , with at least one
between α and β being non-zero. We assume, without loss of generality, that α 6= 0. We would
then have that the intersection H(h1)∩H(h2)∩Rj

i = H(h2)∩H(αh1+βh2)∩Rj
i = H(h2)∩Rj

i 6= ∅,
which gives a contradiction.

Let {P1, P2, P3} be the intersection H(h1) ∩H(h2) ∩X, and let π : X \ {P1, P2, P3} → P1 be
the following morphism:

P 7−→ [h1(P ) : h2(P )].

The map π extends naturally to a morphism π̂ : X̂ → P1, where X̂ = BlP1+P2+P3 X denotes
the blowup of X in the (smooth) subscheme P1 + P2 + P3 ⊂ X. We note that, since X is a cubic
surface, the morphism π̂ is an elliptic fibration.

We claim now that the morphisms π ◦ ϕi : Yi \ ϕ−1
i ({P1, P2, P3}) → P1 have geometrically

integral generic fiber for each i = 1, . . . ,m. In fact, let us assume by contradiction that there
existed an i ∈ {1, . . . ,m} such that this is not true. Let

π ◦ ϕi : Yi \ ϕ−1
i ({P1, P2, P3}) π′

−→ C
r−→ P1 (2.3.1)
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be the relative normalization factorization of π◦ϕi|Yi\ϕ−1
i ({P1,P2,P3})

. We would have that deg r > 1.

The factorization 2.3.1 yields a morphism ϕ′
i : Yi \ ϕ−1

i ({P1, P2, P3}) → X \ {P1, P2, P3} ×P1 C,
and a factorization:

ϕi : Yi \ ϕ−1
i ({P1, P2, P3})

ϕ′
i−→ ̂X \ {P1, P2, P3} ×P1 C

α−→ X \ {P1, P2, P3},

where ̂X \ {P1, P2, P3} ×P1 C denotes the normalization of X \ {P1, P2, P3} ×P1 C.
Hence the branch locus of ϕi would contain the branch locus of α, which would be non-empty

if deg r > 1 (since X \ {P1, P2, P3} is simply connected) and contained in a finite union of fibers
of π. This contradicts our choice of (h1, h2).

Let us denote now by Ŷi the desingularization of Y ′
i = Yi ×X X̂, and by ψi : Ŷi → P1 the

composition of the desingularization morphism Ŷi → Y ′
i , the projection Y ′

i → X̂ and the map
π̂ : X̂ → P1. By the Theorem of generic smoothness [Har77, Corollary III.10.7] we know that
there exists a non-empty open subset Vi ⊂ P1 such that, for each t ∈ Vi(K), ψ−1

i (t) is smooth
(and we may assume, by further restricting Vi, geometrically connected as well, because ψi has a
geometrically integral generic fiber). Let us denote now by D′ ⊂ X̂ the proper subvariety, which
is the union of all the following:

i. the fibers π̂−1(x), for each x /∈ Vi, for each i = 1, . . . ,m;

ii. the proper transform of D ⊂ X, and the exceptional locus of X̂ → X;

iii. the proper transform of X \ U , where U is defined as in Lemma 2.3.2 for (E , π) = (X̂, π̂).

Let us choose now a K-rational point P ∈ (X̂ \ D′)(K), and let us denote by EP the fiber
π̂−1(π̂(P )). We know, by Lemma 2.3.2, that EP has infinitely many K-rational points. We have
assumed, however, that X(K) ⊂ ⋃i ϕi(Yi(K)) ∪D(K), and hence

EP (K) ⊂
⋃

i

ϕi(ψ
−1
i (π̂(P ))(K)) ∪ (EP ∩D′)(K). (2.3.2)

We claim that the right hand side of 2.3.2 is finite. In fact, for each i = 1, . . . ,m, the morphism
ψ−1
i (π̂(P ))→ EP is ramified by the invariance of the ramification locus under base change, and,

since the curve ψ−1
i (π̂(P )) is a smooth geometrically connected complete curve, by Riemann-

Hurwitz theorem, it is of genus > 1. As a consequence, by Faltings’ theorem, ψ−1
i (π̂(P ))(K) is

finite for each i = 1, . . . ,m. Moreover, (EP ∩D′) is obviously finite, hence we have proved that
the right hand side of 2.3.2 is finite. As we noted before, however, EP (K) is infinite. We have
obtained a contradiction, proving the theorem in the case n = 3.

Case n ≥ 4.
First of all we note that, for each P ∈ X(K̄), the generic hyperplane of Pn passing through P

cuts X in a smooth irreducible cubic of dimension n− 2. In fact, the smoothness outside of P is
a direct consequence of Bertini’s theorem [Har77, Remark III.10.9.2], while the smoothness at P
follows from the fact that the generic hyperplane at P is transversal to the tangent plane TPX of
X at P .

We choose now a K-rational point P ∈ X(K) , and two K-rational (distinct) hyperplanes
H0 := {h0 = 0}, H∞ := {h∞ = 0} passing through P , such that H0 ∩ X is smooth. Let
L := H0 ∩H∞.

Let us consider the following morphism:

ϕ : X \ L ∩X −→ P1, p 7−→ [h0(p) : h∞(p)],

which extends naturally to a morphism ϕ̂ : BlL∩X X → P1. For t = [t1 : t2] ∈ P1, the scheme-
theoretic fiber ϕ̂−1(t) is isomorphic to the intersection Ht ∩X, where Ht denotes the hyperplane
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t1h0+ t2h∞ = 0 in Pn. Since H0∩X is smooth, the intersection Ht∩X is smooth for t in a Zariski
open subset V ⊂ P1(K̄), containing 0. For x ∈ V (K), the fiber ϕ̂−1(x) is a smooth cubic in an
(n − 1)-dimensional projective space, with a K-rational point in it (namely, P ). Hence, by the
induction hypothesis, this fiber has the HP, and hence, since P1/K has the HP, BlL∩X X (and,
therefore, X) has the HP as well by Theorem 2.2.4.

Remark 2.3.3. As Colliot-Thélène has pointed out to the author, Theorem 2.3.1, in the dimX = 2
case, follows from [SD01], where Swinnerton-Dyer proves that a cubic surface X/K with a K-
rational point has the weak weak approximation property (see [Ser08, Definition 3.5.6]), which
is stronger than the Hilbert Property loc. cit.. One can then apply the induction argument
used in the proof of 2.3.1 to prove that the Hilbert Property holds in general for smooth cubic
hypersurfaces X/K with a K-rational point.

2.4 Surfaces with the Hilbert Property

The proof of Theorem 2.1.1 uses the following lemma, which is Lemma 3.2 of [CZ17].

Lemma 2.4.1. Let G be a finitely generated abelian group of positive rank. Let n ∈ N and
{hu+Hu}u=1,...,n be a collection of finite index cosets in G, i.e. hu ∈ G, Hu < G and [G : Hu] <∞
for each u = 1, . . . , n. If G \⋃u=1,...,n(hu +Hu) is finite, then

⋃
u=1,...,n(hu +Hu) = G.

Notation 2.4.2. Let E be a smooth projective geometrically connected k-surface, endowed with
fibrations π1, . . . , πn : E → P1, n ≥ 2. We call the fixed locus of π1, . . . , πn the following reduced
subvariety of E:

Fix(π1, . . . , πn) =
⋃
{D : D is a divisor in E and πi|D is constant ∀i = 1, . . . , n}

Remark 2.4.3. The subvariety F ⊂ E described in Theorem 2.1.1 is exactly Fix(π1, . . . , πn).

Proof of Theorem 2.1.1. Suppose by contradiction that there exist m ∈ N, irreducible covers ϕi :
Yi → E, i = 1, . . . ,m and a proper subvariety D ( E, such that E(K) ⊂ D(K) ∪⋃i ϕi(Yi(K)),
and degϕi ≥ 2. We may assume, without loss of generality, that the Yi’s are smooth and
geometrically connected.

We say that a cover Yi, and the corresponding i, is {j1, . . . , jk}-unramified, where {j1, . . . , jk} ⊂
{1, . . . ,m}, if, for each j ∈ {j1, . . . , jk}, the branch divisor of ϕi is contained in a finite union
of fibers of πj. We say that it is {j1, . . . , jk}-ramified otherwise. By the simply connectedness
hypothesis, no cover is {1, . . . ,m}-unramified.

We say that a point P ∈ E(K) is j-good if the fiber π−1
j (πj(P )) is smooth and geometrically

connected of genus 1, and #π−1
j (πj(P ))(K) = ∞. By Lemma 2.3.2, there exists a non-empty

open subset U ⊂ E such that, for each P ∈ U(K), P is j-good for each j = 1, . . . ,m. We assume
moreover, without loss of generality, that U ∩D = ∅.

For each 1 ≤ i ≤ m, 1 ≤ j ≤ n, let

πj ◦ ϕi : Yi
rij−→ Cij → P1

be the relative normalization factorization of πj ◦ ϕi. We have that the geometric generic fiber of
rij is irreducible, Cij is a smooth complete geometrically connected curve and Cij → P1 is a finite

morphism. Let ̂E ×P1 Cij → E ×P1 Cij be a desingularization of E ×P1 Cij. Then there exists a
commutative diagram as follows:

Ŷi ̂E ×P1 Cij E

Yi

bi

ψij

ϕi
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where bi : Ŷi → Yi is the composition of a finite sequence of blowups.
When i is j-ramified, since the branch locus of ϕi contains at least one component transverse

to the fibration πj, and the morphism ̂E ×P1 Cij → E is j-unramified, ψij must have at least one

irreducible component of the branch locus which is transverse to the fibration ̂E ×P1 Cij → Cij.
Hence, by the invariance of the ramification locus under base change, when i is not j-unramified,
the geometric generic fiber of Ŷi → Cij, which is isomorphic to the geometric generic fiber of rij,

is ramified over the geometric generic fiber of ̂E ×P1 Cij → Cij, which has genus 1. Therefore, it is
a curve of genus > 1. Hence, when i is j-ramified, the geometric generic fiber of πj ◦ ϕi is a finite
union of curves of genus > 1. When i is j-unramified one shows analogously that the geometric
generic fiber of πj ◦ ϕi is a finite union of curves of genus 1.

We have that, for each P ∈ U(K):

P ∈ π−1
n (πn(P ))(K) ∩ U ⊂

⋃

i n−unramified

ϕi(Yi(K)) ∩ π−1
n (πn(P )) ∪

⋃

i n−ramified

ϕi(Yi(K)) ∩ π−1
n (πn(P )) =

⋃

i n−unramified

ϕi((πn ◦ ϕi)−1(πn(P )(K))) ∪
⋃

i n−ramified

ϕi((πn ◦ ϕi)−1(πn(P )(K))).

Hence, as noted before, when i is n-ramified, after restricting (without loss of generality) U to a
smaller (non-empty) Zariski open subset, (πn ◦ ϕi)−1(πn(P )) is a curve of genus > 1. Therefore,
by Falting’s Theorem, we deduce that:

π−1
n (πn(P ))(K) ⊂

⋃

i n−unramified

ϕi((πn ◦ ϕi)−1(πn(P )(K))) ∪ A0(P ),

where A0(P ) is a finite set. Moreover, when i is n-unramified, after restricting (without loss
of generality) U to a smaller (non-empty) Zariski open subset, (πn ◦ ϕi)−1(πn(P )) is a curve of
genus 1. Therefore, by the weak Mordell-Weil theorem, we have that, for each i = 1, . . . ,m,
(πn ◦ ϕi)−1(πn(P ))(K) ⊂ π−1

n (πn(P ))(K) is either empty or a finite index coset.
Hence, by Lemma 2.4.1, we deduce that:

P ∈ π−1
n (πn(P ))(K) ⊂

⋃

i n−unramified

ϕi(Yi(K)).

Therefore we have that

E(K) ⊂
⋃

i n−unramified

ϕi(Yi(K)) ∪ (E \ U).

We have now reduced to the case where all the covers Yi are n-unramified. Proceeding with an
easy induction on n, we may reduce to the case where all the covers Yi are {1, . . . , n}-unramified.
But there are no such covers by hypothesis, whence we deduce that E(K) is not Zariski-dense in
E, leading to the desired contradiction.

2.4.1 A family of K3 surfaces with the Hilbert Property

As an application of Theorem 2.1.1 we describe now a family of K3 surfaces with the Hilbert
Property.1

1K3 surfaces (and, in general, Calabi-Yau varieties) represent a “limiting case” for the study of rational points,
at least conjecturally. In fact, the conjectures of Vojta suggest that on algebraic varieties there should be “less”
rational points as the canonical bundle gets “bigger”. Hence, since for K3 surfaces the canonical bundle is trivial
by definition, we expect the rational points here not to be “too many”, yet their existence (and Zariski-density) is
not precluded. In fact, proving the HP, we are providing some examples of abundance of rational points in such
surfaces.
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For λ ∈ K∗, and c1, c2 ∈ K[x, y, z] cubic homogeneous polynomials, let

X ′
λ(c1, c2) := {([w0 : w1], [x : y : z]) ∈ P1 × P2 | w2

0c1(x, y, z) = λw2
1c2(x, y, z)}. (2.4.1)

The surfaces X ′
λ(c1, c2) are, up to a birational transformation, endowed with multiple elliptic

fibrations, usually defined over K̄, whose construction we recall in the next paragraphs. In some
particular cases, when enough of these fibrations are defined over K, this allows us to use Theorem
2.1.1 to prove the Hilbert Property of these varieties.

Remark 2.4.4. When c1(x, y, z) = f1(x, z) does not depend on y, c2(x, y, z) = f2(y, z) does not
depend on x, and both f1 and f2 do not have multiple roots, equation (2.4.1) describes a Kummer
surface (i.e. a quotient of an abelian surface by the group of isomorphisms {±1}).

In fact, in this case, equation (2.4.1) describes, up to a birational transformation, the quotient
of E1 × E2 by the group {±1}, where E1 and E2 are the elliptic curves defined by the following
Weierstrass equations:

E1 : w
2 = f1(x, z), E2 : w

2 = f2(y, z). (2.4.2)

Construction of the Elliptic Fibrations We give now an explicit construction of a smooth
model of of X ′

λ(c1, c2) and of the elliptic fibrations it is endowed with, under a genericity assump-
tion on c1 and c2. We avoid going into detail, as these constructions are described thoroughly by
Garbagnati and Salgado in [GS19].

Let P1, . . . , P9 be 9 (distinct) points in P2(K̄) such that:

i. P1, . . . , P4 are the four points of intersection of two smooth conics Q1
1 := {q11 = 0}, Q1

2 :=
{q12 = 0} in P2, defined over K;

ii. P5, . . . , P8 are the four points of intersection of two smooth conics Q2
1 := {q21 = 0}, Q2

2 :=
{q22 = 0} in P2, defined over K;

iii. The eight points P1, . . . , P8 are in generic position, in the sense that no three of these points
lie on a line, and no six of these points lie on a conic;

iv. P1, . . . , P9 are the nine points of intersection of two smooth cubics C1 := {c1 = 0}, C2 :=
{c2 = 0} in P2, defined over K.

Definition 2.4.5. We say that a 9-tuple (P1, . . . , P9) ∈ P2(K̄)9 is good if it satisfies the four
conditions above.

We note that, by choosing two sufficiently Zariski generic 4-tuples p1, . . . , p4 and p5, . . . , p8
such that both p1 + · · · + p4 and p5 + · · · + p8 are defined over K, and letting p9 be the unique
ninth intersection of the pencil of cubics through p1, . . . , p8, the 9-tuple p1, . . . , p9 is good.

We assume hereafter that a choice of a good 9-tuple of points P1, . . . , P9, of the two cubics
C1, C2 and of the conics Qi

j, i, j = 1, 2 has been made.
Let R := BlP1+···+P9 P2 be the blowup of P2 in the nine points P1, . . . , P9. The two cubics

C1, C2 define an elliptic fibration on R, which we denote by C, defined as C(p) = [c1(p) : c2(p)].
The fibers of C are by construction the proper transforms of the elements of the pencil generated

by C1, C2.
For λ ∈ K∗, let fλ : P1 → P1 be the morphism defined by fλ([w0 : w1]) = [w2

0 : λw2
1]. Let also

Xλ(c1, c2) be the smooth surface defined as the fibered product R ×C,fλ P1, αλ : Xλ(c1, c2) → R
be the projection on the first factor, and ϕλ : Xλ → P1 be the projection on the second factor.
The surface Xλ(c1, c2) is a K3 surface.

Note 1. We observe that, by construction, Xλ(c1, c2) is birational to X
′
λ(c1, c2).
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The surface Xλ(c1, c2) is endowed with at least three elliptic fibrations. The first one is ϕλ.

The second and third one, which we denote by Q̃1 and Q̃2, are the proper transforms of the two
pencils of conics generated, respectively, by {Q1

1, Q
1
2} and by {Q2

1, Q
2
2}. I.e., Q̃i = Qi ◦ αλ, where

the maps Qi : R→ P1 are defined as Qi(p) = [qi1(p) : q
i
2(p)], i = 1, 2.

Proposition 2.4.6. Let P1, . . . , P9 ∈ P2(K̄) be a good 9-tuple of points, and C1 := {c1 = 0}, C2 :=
{c2 = 0} be two smooth cubics such that C1 ∩ C2 = {P1, . . . , P9}. If Xλ(c1, c2) has Zariski-dense
K-rational points, then it has the Hilbert Property.

Proof. Since Fix(ϕλ, Q̃1, Q̃2) = ∅, this is an immediate consequence of Theorem 2.1.1 applied to

Xλ(c1, c2) (which, being a K3 surface, is simply connected), with fibrations ϕλ, Q̃1 and Q̃2.

Remark 2.4.7. One can show that, given cubic polynomials c1, c2 satisfying the hypothesis of
Proposition 2.4.6, there exist always infinitely many λ ∈ K∗ such that Xλ(c1, c2) has Zariski-
dense K-rational points. To show this one can use a result of Van Lujik, namely [Lui12, Theorem
2.2], where he shows that under some mild hypothesis a surface V/K endowed with two elliptic
fibrations has Zariski-dense K-rational points as soon as it posses one K-rational point outside
a specific Zariski-closed subvariety (for V = Xλ(c1, c2) we will denote the latter with Dλ (
Xλ(c1, c2)). Moreover, the resulting Zariski-closed subvariety is invariant by “twists” of the variety
that preserve, in a specific sense, the fibrations. We notice that the variety Xλ(c1, c2) is a twist
of the variety X1(c1, c2), in fact the morphism

ϕλ : Xλ(c1, c2)K̄ −→ X1(c1, c2)K̄ ,

((x : y : z), w) 7−→ ((x : y : z),
√
λw)

(2.4.3)

(we are using the notation of 2.4.1, the reader may easily verify that the rational map defined
through 2.4.3 is indeed a morphism) is a K̄-isomorphism. The interested reader may now verify
that the hypothesis of [Lui12, Theorem 2.2] are satisfied with (V, f1, f2) = (X1(c1, c2), Q̃1, Q̃2),
(W, g1, g2) = (Xλ(c1, c2), Q̃1, Q̃2), ϕ = ϕλ, and with the rational maps α1, α2, β1, β2 intended to
be the ones constructed in [Lui12, Remark 2.4]. One may easily check now that there exists a
Zariski-closed subvariety Z of P2 such that, if P = (x : y : z) /∈ Z, the point ((x : y : z), 1) ∈
Xλ(c1, c2) \ Dλ, where λ = c1(x, y, z)/c2(x, y, z). Since, for (x : y : z) ∈ P2(K) \ Z, the rational
function c1(x, y, z)/c2(x, y, z) assumes infinitely many values, one has, as a direct consequence
of [Lui12, Theorem 2.2], that Xλ(c1, c2) has Zariski-dense K-rational points for infinitely many
λ ∈ K∗.

2.4.2 Kummer surfaces

The following proposition is another application of Theorem 2.1.1.

Proposition 2.4.8. Let E1 and E2 be two elliptic curves defined over a number field K, with
positive Mordell-Weil rank. The Kummer surface S := E1 × E2/{±1} has the Hilbert Property.

Proof. A desingularization of S, which we denote by S̃, may be obtained as the quotient by {±1}
of the blow up Ê1 × E2 of E1 × E2 in the 16 2-torsion points. We denote the set of the images
of these points in S with T , and the corresponding exceptional lines in S̃ with L. Moreover, we
denote by b : S̃ → S the just described desingularization morphism, and by q : E1 × E2 → S the
quotient map.

The surface S̃ has at least three elliptic fibrations, defined over K. Two of these, which we
denote by πi, i = 1, 2 are the following compositions:

S̃ → S = E1 × E2/{±1} → Ei/{±1} ∼= P1, i = 1, 2.
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If E1 := {y21z1 = f1(x1, z1)} and E2 := {y22z2 = f2(x2, z2)}, then, as noted in Remark 2.4.4, S is
birational to the surface defined by the following equation for ([x : y : z], [w1 : x2]) ∈ P2 × P1:

w2
1f2(x, z) = w2

2f1(y, z).

We have that:

[w1 : w2] ◦ q = [y1z2 : y2z1]. (2.4.4)

We then define the third fibration, π3, to be the extension (as a rational map) to S̃ of the map
([x : y : z], [w1 : w2]) → [w1 : w2]. Let us check that Dom(π3) = S̃. The map [y1z2 : y2z1] is

well-defined on Ê1 × E2. Moreover, since [y1z2 : y2z1] : Ê1 × E2 → P1 is invariant by the action

of {±1}, it induces indeed a well-defined morphism on the quotient S̃ = Ê1 × E2/{±1}.
We have that, since yi is a local parameter at points of order 2 in Ei, and zi is a local parameter

at O ∈ Ei, the morphism [y1z2 : y2z1] : Ê1 × E2 → P1 is non-constant on the exceptional lines
lying over the points (T1, T2), when both T1 and T2 have order 2 or both have order 0, and it is
constant on the other exceptional lines.

It follows that Fix(π1, π2, π3) is the union of the 6 exceptional lines in S̃ lying over the points
(T1, T2), when exactly one of T1, T2 has order 2 and the other is O. We denote the union of these
6 points in S with T b, and the corresponding lines in S̃ with Lb := b−1(T b). Since, by hypothesis,
S(K) ⊃ q(E1(K)×E2(K)) is Zariski-dense in S, the proposition follows from Theorem 2.1.1 and
the following lemma.

Remark 2.4.9. In Proposition 2.4.8 the hypothesis that the two curves E1, E2 have positive
Mordell-Weil rank is just used to guarantee that K-rational points are Zariski-dense in S. How-
ever, one can remove this hypothesis in the case that the j-invariants of E1 and E2 are not both
equal to 0 or 1728. In fact, under these assumptions, Kuwata and Wang showed in [WK93] that
K-rational points are always Zariski-dense. (They work in the specific case K = Q, but the part
of their paper where they prove Zariski-density of rational points can be rephrased ad litteram
over any number field.)

Lemma 2.4.10. The surface (S̃ \ Lb)/C is (topologically) simply connected.

Proof. Let Λ1 =< e1, e2 > and Λ2 =< e3, e4 > be lattices in C such that E1
∼= C/Λ1, and

E2
∼= C/Λ2 as analytic spaces. We observe that the universal cover of S̃ \ L = S \ T is the

following composition

C2 \ 1
2
(Λ1 × Λ2)→ C/Λ1 × C/Λ2 \ q−1(T ) ∼= E1 × E2 \ q−1(T ) q−→ S \ T .

Therefore

π1(S \ T , p0) ∼= (Λ1 × Λ2)⋊ < ι >,

where p0 denotes a point infinitesimally near to q((O,O)) ∈ S, the action of ι on Λ1×Λ2 is given
by (a, b)→ (−a,−b), and the element ι corresponds to a (single) loop around q((O,O)) ∈ S (and
hence ι2 = 1). For any 2-torsion point T in E1 × E2, let ιT ∈ π1(S \ T , p0) denote the element
corresponding to a (single) loop around the point q(T ) ∈ S. A priori this element is well-defined
only after a choice of a path between q(p0) and a point infinitesimally near to q(T ) has been made.
This choice can be done arbitrarily and it is in fact irrelevant for our purposes. We will assume
anyway that the path chosen is the geodetic, using the distance induced by the universal cover

R4 (e1|e2|e3|e4)−−−−−−−→ C× C→ C/Λ1 × C/Λ2
∼= E1 × E2

q−→ S,

where the R4 on the left is endowed with the Euclidean metric.
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We have that, if T =
∑4

i=1
ǫi
2
ei, where ǫi ∈ {0, 1}, then

ιT =

(
4∑

i=1

ǫiei

)
ι.

Let H ⊂ (Λ1 × Λ2) ⋊ Z/2Z denote the minimal normal subgroup containing the ιT ’s, for T ∈
T g := T \ T b. We note that (e1 + e4)/2, (e1 + e3)/2, (e1 + e3 + e4)/2 ∈ T g, and hence e1 =
(e1 + e4) + (e1 + e3)− (e1 + e3 + e4) ∈ H. Analogously one has that ei ∈ H for every 1 ≤ i ≤ 4.
Therefore, H = (Λ1 × Λ2)⋊ < ι >.

We now observe that, in the blown-up surface S̃ \Lb, the loop ιT becomes trivial for any point
T ∈ T g. In fact, a small topological neighborhood LǫT of the exceptional line LT := b−1(T ) ⊂ S̃
is retractible on LT itself, which is simply connected.

Therefore, by Van Kampen’s Theorem applied to S̃ \ Lb = (S̃ \ L) ∪⋃T∈T g L
ǫ
T , we have that

π1(S̃ \ Lb) ∼= (Λ1 × Λ2)⋊ < ι >�H
∼= {1},

as we wanted to prove.

Remark 2.4.11. Corvaja and Zannier proved in [CZ17] that there are Zariski-dense K-rational
points in E1 × E1/{±1} that are not image of K-rational points in E1 × E2. It is possible that
combining the technique presented in [CZ17] with other results, for instance the ones contained in
[Zan10], one may obtain a different proof of Proposition 2.4.8, at least in the case where E1 = E2.
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Chapter 3

The étale Brauer–Manin obstruction to
strong approximation on homogeneous
spaces

3.1 Introduction

Recall that in this chapter, we want to prove that the étale-Brauer–Manin obstruction is the
only one on homogeneous spaces. More precisely:

Theorem 3.1.1. Let G be a connected algebraic group over a number field K. We assume that
the Tate-Shafarevich group X(K,Gab) is finite. Let X be a left homogeneous space under G.
Let S ⊃ M∞

K be a finite set of places of K. We assume that Gsc(K) is dense in Gsc(AS
K).

Set Sf := S ∩ M fin
K = S \ M∞

K . Then the set X(AK)
ét,Br
• is equal to the closure of the set

Gscu(KSf ) ·X(K) ⊂ X(AK)• for the adelic topology.

We will then also prove Theorem 3.6.5, which is an analogue of the Theorem above with
finitely many places removed. In the course of doing so we will also prove Theorem 3.6.1, which
is an analogue of the result of Borovoi and Demarche [BD13, Thm. 1.4] with finitely many places
removed. This appears to be new, and, as it will be remarked, does not seem to follow directly
by projection from [BD13, Thm 1.4], as one may think at first sight. So, to prove this, we will
need a “Brauer pairing compatibility” result, which is Theorem 3.5.1.

3.1.1 Structure of the chapter

In Section 3.2 and Section 3.3 we set up the notation and recall some of the preliminaries for
the results that are proved in this chapter. In Section 3.4 we prove Theorem 3.1.1. In Section 3.5,
we prove Theorem 3.5.1, which we use to prove the equivalence of [Dem13, Cor. 6.3] with [BD13,
Thm. 1.4], so that we can then use this equivalence in Section 3.6 to prove Theorem 3.6.1, and
then use this last to prove Theorem 3.6.5. We also remark that the proof of Theorem 3.6.5 is
logically independent from the proof of Theorem 3.1.1, and reproves it completely. However, since,
to prove Theorem 3.6.5, we use Theorem 3.5.1 with its long calculation, we preferred keeping the
two theorems separate in the exposition. Finally, the appendices contain no new results, but just
facts that are recalled for convenience, or because they did not appear explicitly in the literature.
We include a diagram of the logical implications of this chapter and a couple of results in the
literature that play an essential role:

47
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Thm 3.1.1 Thm 3.6.5 Thm 3.6.1

[BCTS08, Thm A.1] or Thm 3.B.1

Thm 3.5.1

[BD13, Thm. 1.4] [Dem13, Cor. 6.3]

In the diagram above, a non-dotted arrow between X and Y indicates that X is used (either in
the current mathematical literature or in this thesis) to prove Y . An arrow from X pointing to
another arrow indicates that X gets used (again, either in the current mathematical literature or
in this thesis) to prove the implication it points to. A dotted arrow indicates that it is possible
to prove Y using X (without using any of the other results appearing in the diagram, except at
most the ones pointing to the dotted arrow from X to Y ).

3.2 Notation

Unless specified otherwise, k will always denote a field of characteristic 0 and K a number
field. For a field k, k will always denote a (fixed) algebraic closure of k, and Γk the profinite group
Gal(k/k). For a number field K, MK will denote the set of places of K, M fin

K (resp. M∞
K ) the

finite (resp. archimedean) places. For a place v ∈ MK , Kv will denote the v-adic completion of
K, and, for v ∈ M fin

K , Ov ⊂ Kv will denote the v-adic integers. The topological ring of adeles of
K, i.e. the ring

∏′
v∈MK

Kv (the restricted product being on Ov ⊂ Kv) is denoted by AK . For a

finite subset S ⊂MK , AS
K denotes the topological ring of S-adeles, i.e. the ring

∏′
v∈MK\SKv, KS

denotes the product
∏

v∈SKv, and Sf will denote the intersection S ∩M fin
K .

When ϕ : X → Y is a morphism defined over K, we will denote by ϕv : XKv → YKv the
induced morphism among the base-changed varieties XKv = X ×K Kv and YKv = Y ×K Kv.

All schemes appearing are separated, therefore, we tacitly always assume this hypothesis
throughout the chapter.

A variety over a field k is an integral scheme of finite type over k.
When X is a variety defined over K, the notation X(AK)• will denote the adelic points where

each archimedean component is collapsed to the (discrete) topological space of its connected
components.

An adelic-like object is a product
∏′

v∈MK
Pv, where Pv (parametrized by the places v ∈ MK)

are sets, such that almost all of them have an integral version POv (endowed with a natural
morphism POv → Pv), and the restricted product is taken with respect to these integral versions.

For a subset Y ⊂ ∏′
v∈MK

Pv of an adelic-like object and a set S ⊂ MK , we denote by YS the

set (πS)−1(πS(Y )), where πS :
∏′

v∈MK
Pv →

∏′
v∈MK\S Pv is the standard projection.

Group actions (and, correspondingly, homogeneous spaces) will be assumed to be left actions
unless specified otherwise. In particular, most of the torsors appearing will, instead, be right
torsors. This will be specified each time.

Let G be a connected algebraic group (not necessarily linear) over k. Then, according to
Chevalley’s Theorem (see [Con02] for a proof), G fits into a (canonical) short exact sequence:

1→ Glin → G→ Gab → 1,

where Glin is a connected linear k-group, and Gab is a k-abelian variety.
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For a connected algebraic group G over k, we will use the following notation (borrowing it
from [BD13]):

Gu is the unipotent radical of Glin;

Gred = Glin/Gu is the reductive k-group associated with G;

Gant the maximal anti-affine subvariety of G (we refer to [Mil17, Ch. 10] for the definition and
main properties);

Gss = [Gred, Gred] ⊂ Gred is the commutator subgroup of Gred (it is a semisimple k-group);

Gsc is the universal cover of Gss, a simply connected semisimple k-group (we say that a k-group
is simply connected if it is geometrically simply connected);

Gssu is the inverse image of Gss under the projection Glin → Gred, which fits into an exact
sequence:

1→ Gu → Gssu → Gss → 1;

Gscu is the fibered product Gsc ×Gred Glin (with its canonical group structure), which fits into
an exact sequence:

1→ Gu → Gscu → Gsc → 1.

We have a canonical homomorphism Gscu = Gsc ×Gred Glin → Glin →֒ G.

For a field k, Schk will denote the category of quasi-projective Spec k-schemes.

When X is defined over L, a finite extension of k, we denote by RL/kX the Weil restriction to
k of X (see [Sch94, Ch. 4] for the definition and basic properties of the functor RL/k). When L is
Galois over k, with Galois group Γ (which we consider naturally endowed with its left action on
L/k), there is an action of Γ on SchL, which may be described as follows. If (X, pX) ∈ SchL, where
X is a scheme and pX : X → SpecL is the structural morphism, then (X, pX)

γ := (X, γ ◦ PX),
where γ : SpecL → SpecL denotes (the map induced by) conjugation by γ (we refer to [Sch94,
4.11.1] for more details).

Whenever we have two functors F : C → D and G : C → D, and a collection of morphisms
FY : F (Y ) → G(Y ), indexed by the objects Y ∈ C, we say that such a collection is a natural
transformation if, for every morphism f : Y1 → Y2 in C, we have that G(f) ◦ FY1 = FY2 ◦ F (f).
We also say, with a slight abuse of notation, that the morphisms are a natural transformation
when their collection is.

For a product
∏

i∈I Xi and a subset J ⊂ I we denote (when there is no risk of confusion) by
πJ the projection

∏
i∈I Xi →

∏
i∈J Xi.

If A is a topological abelian group, A∧ will denote its completion with respect to open finite
index subgroups. When A is discrete, A∧ is the profinite completion.

For a torsion abelian group A, AD will denote the dual Hom(A,Q/Z) endowed with the
compact-open topology. This is a profinite group. If A is a profinite abelian group, AD will
denote the torsion group Homcont(A,Q/Z), where Q/Z is endowed with its discrete topology.

If G is a group, and M is an abelian group, we will say that a set-morphism G→ Aut(M) is a
group pseudo-action of G on M . We will keep using the term “group action” when G→ Aut(M)
is a group-homomorphism.

When [H → G] is a crossed module, and there is no risk of confusion, we will use the notation
gh to denote the left action of g ∈ G on h ∈ H. We remind the reader that this action is
compatible with the left action of H by conjugation on itself.

If G/k is an algebraic group, and k ⊂ F is a field extension, we will use the notation H i(F,G)
(with i ∈ N and i = 0, 1 if G is not abelian) to denote the cohomology group/pointed set
H i(ΓF , G(F )). If G is not abelian we assume that the cohomological set H1(ΓF , G(F )) is the
one of right cocycles (i.e. those that correspond to left F -torsors under G through [Sko01, p.18,
2.10]). We will use the notation H1

lt(ΓF , G(F )) to denote left cocycles instead.

If η ∈ H1(K,G), we use the notation Gη to denote the inner twist of G by η, and Gη (resp.
Gη′) to denote the left (resp. right) principal homogeneous space of G obtained by twisting G by
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η (resp. η′ = η−1, which is a right cocycle). This twist is naturally endowed with a right (resp.
left) action of Gη. See [Sko01, p. 12-13] for more details on these constructions.

If Z is a k-variety endowed with a right G-action, and η ∈ H1(K,G), we use the notation
Zη to denote the twisted k-variety (Z ×G Gη) [Sko01, p. 20]. This is naturally endowed with
a right Gη-action. Analogously, one can twist with respect to a left action and a left cocycle
η′ ∈ H1

lt(K,G).

3.3 Reminders

Even though we already reminded in the introduction what the Brauer–Manin obstruction
and the étale-Brauer–Manin obstruction are, for convenience, let us recall their definitions here
as well.

We recall that, when X is a variety defined over a number field K, the Brauer group Br(X) is
defined as H2(Xét,Gm), and there exists a canonical pairing (called the Brauer Manin pairing):

Br(X)×X(AK) −→ Q/Z,
(b, x) 7−→ 〈b, x〉,

which is defined as follows: if x = (xv)v∈MK
, then 〈b, x〉 =

∑
v∈MK

invv(x
∗
vb), where x∗vb ∈

H2(ΓKv , Kv
∗
) denotes the pullback of b along xv : SpecKv → X, and invv : H2(ΓKv , Kv

∗
) =

Br(Kv) → Q/Z is the usual invariant map (see e.g. [Har20, Thm 8.9] for a definition). The
pairing is continuous in x and additive in b. If x ∈ X(K) ⊂ X(AK) or b comes from BrK,
then 〈b, x〉 = 0 (see [Sko01, Sec. 5] for a proof, this is essentially a consequence of the classical
Albert–Brauer–Hasse–Noether Theorem).

We recall, moreover, that the pairing (being continuous on X(AK), and taking values in a
discrete group) is constant on the archimedean connected components of X, hence it induces a
pairing:

Br(X)×X(AK)• −→ Q/Z.

We refer the reader to [Sko01, Section 5] for more details on the Brauer–Manin pairing.
We denote by X(AK)

BrX the following (closed) subset of X(AK):

{x ∈ X(AK) | 〈b, x〉 = 0 ∀b ∈ Br(X)}.

We then have that X(K) ⊂ X(AK)
BrX ⊂ X(AK), i.e. Br(X) provides an obstruction to the

existence and (adelic) density of K-rational points.

We also recall that, for an algebraic group G/K, and for all (right) torsors f : Y
G−→ X under

G, one has that:

X(K) ⊂
⋃

[σ]∈H1
lt(K,G)

fσ(Y σ(K)), (3.3.1)

where, for any cocycle σ ∈ Z1(K,G), fσ : Y σ Gσ−→ X denotes the torsor f twisted by σ (see

[Sko01, Sec 2.2]), and [σ] denotes the class of σ in H1
lt(K,G). For a right torsor f : Y

G−→ X, we
define:

X(AK)
f :=

⋃

[σ]∈H1
lt(K,G)

fσ(Y σ(AK)).

Because of (3.3.1), one has the following two inclusions:

X(K) ⊂ X(AK)
ét,Br :=

⋂

f :Y
G−→X

G finite
group scheme

⋃

[σ]∈H1
lt(K,G)

fσ(Y σ(AK)
BrY σ),
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and
X(K) ⊂ X(AK)

desc :=
⋂

f :Y
G−→X

G linear

X(AK)
f .

Hence, both X(AK)
ét,Br and X(AK)

desc provide obstructions to the existence of K-rational
points. Less obviously, Cao, Demarche and Xu [CDX19, Prop. 6.4] prove, through a Chevalley-
Weil-like argument, that both X(AK)

ét,Br and X(AK)
desc are closed in X(AK), hence they provide

an obstruction to (adelic) density of K-rational points as well. Moreover, they prove that the two
obstructions are in fact equal, i.e. X(AK)

ét,Br = X(AK)
desc.

The question of strong approximation asks whether, for a K-variety X (where X is not nec-
essarily proper), and a finite subset S ⊂ MK , X(K) is dense in X(AS

K) (where it is embedded
through its diagonal image). Unfortunately, when S = ∅ one does not expect in general to have
strong approximation for affine varieties. This is mainly because of a compactness issue. Namely,
in the affine case, X(K) is closed in X(AK) (since An(K) is closed in An(AK)), so there is no
chance for X(K) to be dense in it, unless X(K) = X(AK), which can never happen if dimX ≥ 1
and X(AK) 6= ∅. Using the same argument, one sees that, in order for an affine variety X with
X(AS

K) 6= ∅ to satisfy strong approximation outside S, there must exist at least one v ∈ S for
which X(Kv) is not compact.

3.3.1 Reminders on Galois cocycles

Let Γ be a profinite group, and D• = [· · · → 0 → M−n
f−n−−→ . . .

fn−1−−→ Mn → 0 → · · · ] be a
complex of discrete (left) Γ-modules, where Mi is in degree i.

For a (left) Γ-module M , we employ the following notation for its cohomology, which we
compute through the standard resolution (see, for instance, [NSW08, Sec. 1.2]):

i. for j ≥ 0, Cj := Cj(Γ,M) denotes the abelian group Fun(Γj,M) (and we will denote
functions in Fun(Γj,M) with the notation ασ1,...,σj), for j < 0 we set Cj := 0;

ii. Xj := Xj(Γ,M) denotes the (acyclic) Γ-module Fun(Γj+1,M) (and we will denote functions
in Xj(Γ,M) = Fun(Γj+1,M) with the notation α(σ0, . . . , σj)), for j < 0 we set Xj := 0;

iii. ∂j : Cj → Cj+1 denotes the morphism

(
∂jα
)
σ1,...,σj+1

:= σ1ασ2,...,σj+1
+

j∑

i=1

(−1)iασ1,...,σi−1,σiσi+1,...,σj+1
+ (−1)j+1ασ1,...,σj ,

and ∂jX : Xj → Xj+1 denotes the morphism

(
∂jα
)
(σ0, . . . , σj+1) :=

j+1∑

i=0

(−1)iα(σ0, . . . , σ̂i, . . . , σj+1);

iv. Zj := Zj(Γ,M) := Ker(∂j), and Bj := Im(∂j−1) (and B0 := 0), and Hj(Γ,M) := Zj
�Bj;

v. for an element β ∈ Zj we denote by [β] its image in Hj;

vi. For a pairing ⋆ · ⋆ :M ×M ′ →M ′′, α ∈ Cj(Γ,M) and β ∈ Ck(Γ,M ′), α∪ β ∈ Cj+k(Γ,M ′′)
denotes the cocycle (α ∪ β)σ1,...,σj+k = ασ1,...,σj · σ1···σjβσj+1,...,σj+k .

We recall that, for each j ≥ 0, there is an isomorphism (Xj(Γ,M))Γ ∼= Cj(Γ,M), to be found,
for instance in [NSW08, p. 14]. These isomorphisms commute with the differentials ∂j/∂jX .
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Remark 3.3.1. When Γ pseudo-acts on M (instead of acting, see Section 3.2), we still use the
above notation, which keeps making sense (even though in this case it is not directly related to
any cohomology construction, at least to the author’s knowledge).

For the complex D•, we may compute its hypercohomology using the acyclic resolution D• →
Tot•(X•(Γ, D•)), where the latter denotes the totalizing complex of the double complexX•(Γ, D•).
We recall that, for a bicomplex C = C•,• (with differentials ∂1 : C

•,• → C•+1,•, ∂2 : C
•,• → C•,•+1),

the totalizing complex (see e.g. [Wei94, p. 8]) Tot•(C) is defined through Totn(C) := ⊕i+j=nC i,j,
with differential (−1)j∂1 + ∂2. This resolution realizes the hypercohomology Hj(Γ, C) as the
cohomology of a complex (Cj(Γ, C), ∂j)j∈Z, defined as follows.

i. For j ∈ Z, Cj := Cj(Γ, D•) := Cj−n(Γ,M−n)
⊕ · · ·⊕Cj+n(Γ,Mn); we indicate an element

α ∈ Cj with the notation α = (α−n;α−n+1; · · · ;αn),

ii. ∂j : Cj → Cj+1 denotes the morphism

∂j(α−n;α−n+1; · · · ;αn) = (∂jαn; (−1)j−nf−n(α−n)+∂
j+n−1α−n+1; · · · ; (−1)j+n−1fn−1(αn−1)+ ∂j+nαn);

We also employ the following notation:

iii. the j-cocyles are Zj := Zj(Γ, D•) := Ker(∂j), the j-coboundaries are Bj := Im(∂j−1), the

j-hypercohomology is Hj(Γ, D•) := Zj
�Bj;

iv. for an element β ∈ Zj we denote by [β] its image in Hj.

Notation 3.3.2. When α, β ∈ Cj(Γ, D•) we use the notation α , β to mean that α − β ∈
Bj(Γ, D•).

Notation 3.3.3. To avoid having too many subscripts, in the course of the proof of Theorem
3.5.1 we will use σ, η instead of σ1, σ2.

Remark 3.3.4. LetM [2]
i−→ C := [M−2

f2−→M−1
f1−→M0] be a morphism of complexes of Γ-modules

that is a quasi-isomorphism, and α = (aσ1,σ2 , bσ, c) ∈ Z0(Γ, C). Let b′σ ∈ Fun(Γ,M−2) be such
that f2(b

′
σ) = bσ − (∂c′), where c′ ∈M−1 is such that f1(c

′) = c. Let β ∈ Z2(Γ,M) = Z0(Γ,M [2])
be such that i∗(β) = aσ1,σ2 + (∂b′σ) ∈ Z0(Γ, C), then it satisfies that i∗[β] = [α] ∈ H0(Γ, C).

The following lemma is well-known (since it basically just unravels the definition of derived
cup product in a special case), however the author was not able to find a reference with the
explicit signs, which will be needed for the computation in the proof of Theorem 3.5.1.

Lemma 3.3.5. Let C := [· · · → Cn
d−→ Cn+1 → . . . ] and C ′ := [. . .

d−→ C ′
n → C ′

n+1 → . . . ] be two
bounded complexes of Γk-modules, and let

Ci ⊗ C ′
−i

(.)−→ k̄∗, i ∈ Z, (3.3.2)

be compatible pairings of Γk-modules, i.e. such that the following pairing diagrams are commutative
for all i ∈ Z:

Ci × C ′
−i k̄∗

Ci+1 × C ′
−i−1 k̄∗

d d .

Then, we have a (canonical) pairing:

Hi(k, C)⊗Hj(k, C ′) ∪−→ Hi+j(k, k̄∗),
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that is induced from the following map on the level of cochains:

C i(k, C) ⊗ Cj(k, C ′) ∪−→ C i+j(k, k̄∗),

(αh)h∈Z ⊗ (α′
h)h∈Z 7→ ∑

h∈Z(−1)jh+(
h
2)αh ∪ α−h.

(3.3.3)

Moreover, the pairing induced by (3.3.3) coincides with the derived cup-product associated with
the derived pairing C ⊗L C ′ → Tot•(C• ⊗ C ′•)→ k

∗
[0] induced by the pairings (3.3.2).

Proof. This is basically just unraveling the definitions of derived cup-product. We recall that, if we
have a morphism Tot•(C•⊗C ′•)→ K• , this induces a morphism C•⊗LC ′• → Tot•(C•⊗C ′•)→ K•.
We denote by R•Γ : D(AbΓk) → D(Ab) the functor that computes group cohomology of ΓK-
modules through the standard resolution (so, as recalled in Subsection 3.3.1). The derived cup-
product is then defined (in this case) as the following composition:

Tot•(H•(R•ΓC)⊗H•(R•ΓC ′))→ H•(Tot•(R•ΓC⊗R•ΓC ′))→ H•(R•Γ(Tot•(C⊗C ′)))→ H•(R•Γ(K•)).

Unraveling the morphisms above with the correct signs, reveals that the pairing is exactly the
one in (3.3.3) (the correct signs can also be found by checking that (3.3.3) is the only choice of
signs compatible with the Leibniz rule for cup products, and with trivial signs at the degree 0
level).

3.3.2 Reminders on abelian(ized) cohomology

We briefly recall here a construction of Demarche [Dem13], as well as his main result in loc.
cit.. We refer the reader to his paper for a more detailed exposition and for proofs of the results
that follow.

In what follows X will always denote a quotient G/H, where G is a connected k-group, and
H is a connected linear k-closed subgroup.

Construction of abelianized cohomology We assume first that Glin is reductive. Let

Hsc
ρ′H−→ Hred and Gsc ρG−→ G be as in Section 3.2, let s : Hred → H be a section of the pro-

jection H → Hred, and let ρH be the composition Hsc
ρ′H−→ Hred s−→ H. Let TH ⊂ TG be two

maximal tori in, respectively, s(Hred) and G. Let SAG be a maximal semi-abelian subvariety of
G containing TG, and let T scH and T scG be, respectively, the tori TH ×H Hsc and SAG ×G Gsc.

Let CX be the cone of the following morphism of complexes:

[T scH
ρH−→ TH ]

[ιsc,ι]−−−→ [T scG
ρG−→ SAG],

where both complexes start in degree−1, ι : H → G denotes the closed embedding and ιsc : Hsc →
Gsc denotes the unique morphism of groups such that ρG ◦ ιsc = ι◦ρH . We call CX the abelianized
complex of X. Moreover, we set the notation CH := [T scH

ρH−→ TH ] and CG := [T scG
ρG−→ SAG].

For a field F ⊃ k, we denote the (Galois) hypercohomology of CX by Hi
ab(F,X) := Hi(F,CX),

and we refer to it as the abelianized cohomology of X.
When Glin is not reductive, let G′ := G/Gu, where Gu ⊂ G denotes the unipotent radical of G,

let H1 := ι(H)/(ι(H)∩Gu), and let X ′ := G′/H1. There exists a natural surjection X → X ′. One
can repeat the above “abelianization” construction for X ′, and defines Hi

ab(F,X) := Hi(F,CX′).
We refer to [Dem13] for more details on this.

Abelianization morphism For each field F ⊃ k, there exists an abelianization map [Dem13]:

ab0
F : X(F )→ H0(F,CX). (3.3.4)
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The map (3.3.4) factors (by construction) throughX ′(F ) as follows: X(F )→ X ′(F )→ H0(F,CX′).
When F is a local field there is a natural topology on H0(F,CX), see [Dem13, p. 20].

With the above notation, let k = K be a number field. We choose smooth group-scheme
models, over SpecOK,S, where S is some finite set of primes of K, ι̃ : H → G, for H, G and the
closed embedding ι. We define X := G/H, and define CX to be the abelianized complex of X .
This is a complex of fppf sheaves on SpecOK,S, see [Dem13, Sec. 2.4.1] for the construction of CX

and of the abelianization map X (Z) ab0Z−−→ H0
fppf (Z,CX ) := H0

fppf (Z, p
∗
ZCX ) for an OK,S-scheme

pZ : Z → SpecOK,S. Importantly, ab0
Z is functorial in Z. Note that H0

fppf (Z,CX ) = H0
ét(Z,CX ),

since CX is a complex of smooth group schemes.
We use the notation Pi(K,C) :=

∏′
v∈MF

Hi(Fv, C)•, where the restricted product is taken over
Hi(Ov, C)→ Hi(Fv, C) (after an implied choice of an integral model for C has been made) , and
Hi(Fv, C)• denotes the usual hypercohomology for v ∈M fin

K and hypercohomology modified à la
Tate (as defined in [HS05, p. 103]) for v ∈M∞

K .
The following lemma is implicit in [Dem13]:

Lemma 3.3.6. The following hold:

i. For a non-archimedean v ∈ MK, and F = Kv, the local abelianization map (3.3.4) ab0Kv is
surjective;

ii. For all v ∈MK, F = Kv, ab
0
Kv is continuous and open, and for v /∈ S∪M∞

K , (ab0Kv)(X (Ov)) =
ImH0(Ov, CX ) ⊂ H0(Kv, CX);

Moreover we have that the restricted product morphism ab0 : X(AK)• → P0(K,CX) is contin-
uous and open.

Proof. The last statement is an immediate consequence of the points above. For the first point
and the first part of the second point above see [Dem13, Cor. 2.21] and [Dem13, p. 21]. We have
the following commutative diagram:

X (Ov) H0(Ov, CX )

X(Kv) H0(Kv, CX)

ab0Ov

ab0Kv

.

The inclusion ab0
Ov(X (Ov)) ⊂ ImH0(Ov, CX ) follows. For the identity, see the following diagram

(which is commutative by [Dem13, Thm. 2.9]) with exact (as pointed-sets) rows:

H(Ov) G(Ov) X (Ov) H1(Ov,H)

H0(Ov, CH) H0(Ov, CG) H0(Ov, CX ) H1(Ov, CH)

,

and the following short exact sequence of pointed sets:

G(Ov)→ H0(Ov, CG)→ H1(Ov,Gsc)

and notice that H1(Ov,H) = 0, H1(Ov,Gsc) = 0 by [PRR93, Thm 6.1]. Moreover, by [PRR93,
Thm 6.1] again, H1(Ov, TH) = 0 and H1(Ov, THsc) = 0. We also have H2(Ov, THsc) = 0 because
H2(Ov, (THsc)tor) ։ H2(Ov, THsc), where, for a commutative algebraic group scheme G → S the
subscript tor defines the increasing limit limn→∞G[n] (the limit here is taken with respect to
the partial order n ≺ m if n|m), and H2(Ov, (THsc)tor) = 0 because the cohomological dimension
of SpecFv is 1. Hence H1(Ov, CH) = H1(Ov, [THsc → TH]) = 0. Hence, the surjectivity of
X(Ov)→ H0(Ov, CX ) follows.
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Relation to the Brauer–Manin obstruction Let Cd
X be the dual complex of CX (this com-

plex is described explicitly in [Dem13, Sec. 5], and its definition will be recalled in Subsection
3.5.1, diagram (3.5.6)). We have, for every field F ⊃ k, a pairing (see Lemma 3.3.5):

H0(F,CX)×H2(F,Cd
X)→ H2(F, F

∗
) = Br(F ). (3.3.5)

When F is a local field, (3.3.5) induces, through the local invariant invv : Br(F ) → Q/Z, a
pairing:

H0(F,CX)
∧ ×H2(F,Cd

X)→ Q/Z, (3.3.6)

which is perfect when v ∈M fin
K (since CX is a cone of a complex of 1-motives, this basically follows

by devissage from [HS05, Thm 0.1], and is proved explicitly in Lemma 3.6.9). For a number field
K, the local pairing (3.3.6) on its completions, induces a morphism (see [Dem13, p.21]):

P0(K,CX)
∧ ϑ−→ H2(K,Cd

X)
D. (3.3.7)

Demarche [Dem11] defined a morphism

α : H2(k, Cd
X)→ Bra(Xk, G), (3.3.8)

where Br1(X,G) := Ker(Br(X) → Br(Ḡ)) ⊂ Br(X) and Bra(X,G) := Br1(X,G)/Br(k) (we
refer to loc. cit. or to Subsection 3.5.1 for more details). We will often tacitly identify Bra(X,G)
with Ker(e∗ : Br1(X,G)→ Br(k)), where e : Spec k → G/H is the trivial element.

Moreover, Demarche proved that α sits in the following exact sequence (which will not be
needed in this thesis, but is included for completeness):

NS(Ḡab)Γk → H2(k, Cd
X)

α−→ Bra(X,G)→ H1(k,NS(Ḡab)).

In Section 3.5 we will prove Theorem 3.5.1, which proves that α is compatible with the Brauer–
Manin and local pairings.

The following is the main theorem of [Dem13].

Theorem 3.3.7 (Demarche). Let K be a number field, G a connected K-group, S a finite set
of places of K. Let H be a connected linear K-subgroup of G, and let X := G/H. We assume
that the group Gsc satisfies strong approximation outside S, and that X(K,Gab) is finite. Let Cd

X

and ϑ : X(AK)• → H2(K,Cd
X)

D be defined as above. Then the kernel of ϑ (i.e. ϑ−1({0})) is the
closure of Gscu(KSf ) ·X(K) in X(AK)•.

Remark 3.3.8. As remarked by Demarche in [Dem13, Rmq 6.4], Theorem 3.3.7 implies the main
theorem of [BD13], once a suitable compatibility of Brauer and local duality pairings is proven.
The compatibility needed is exactly the one proven in Theorem 3.5.1. In fact, in Section 3.6, this
connection will be made explicit in Theorem 3.6.1 and Remark 3.6.4.

3.3.3 Reminders on the morphism α

In this subsection we recall part of the construction of α (see (3.3.8)), given in [Dem11], of
which we borrow the notation. Throughout H will be a linear connected subgroup of a connected
algebraic group G with Glin reductive, both defined over a field k.

We fix a Levi decomposition of H = Hu ·Hred, such that ZHred is contained in the maximal
torus TG of Glin (keeping the notation of Subsection 3.3.2). We put Z ′ := TG/ZHred , Z1 :=

G/ZHred , H ′ := Hred /ZHred , H̃ := Ker (H → H ′) = Hu · ZHred , and Z := G/H̃. We have a
natural morphism Z1 → Z that gives Z1 the structure of a Hu-torsor over Z. We notice that
X = Z/H ′, and that we have the following commutative diagram with exact rows and columns:
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Hu H̃ ZHred

Hu H Hred

H ′ H ′

We use the following notation

Qgeom := [k̄(Z)∗ → Div(Z̄)→ Pic′(Z̄/X̄)],

where the complex ends in degree 2. We refer to [Dem11, p. 4] for the definition of Pic′(Z̄/X̄),
which we remind being isomorphic to Pic(H ′).

Remark 3.3.9. We recall from [Dem11, p. 5, Rmk. 1.3] that we may define the complex Qgeom

(in the same way as above) letting Z be, instead of the quotient G/H̃, any form of the (right)

H
′
-torsor G/H̃ → X.

The following proposition is the first step in Demarche’s construction of the aforementioned
morphism α. We refer to [Wei94, p. 9] for a definition of the truncation operator. The following
is consequence of [Dem11, Thm. 2.1, Prop. 2.2]:

Proposition 3.3.10 (Demarche). We keep the above notation. Let p : Z → X denote the natural
projection, and pX : X → Spec k the structural morphism. There exists a natural morphism

τ≤2RpX∗
GmX ← Qgeom, (3.3.9)

which induces an isomorphism:

H2(k,Qgeom)
∼−→ Br1(X,G). (3.3.10)

The second step is a morphism H2(k, Cd
X)→ H2(k,Qgeom)/Br k ∼= Bra(X,G), but this will be

recalled in detail in the Section 3.5, so we skip its construction for now.

3.4 Sufficiency of the étale-Brauer–Manin obstruction

In this section, we prove Theorem 3.1.1.

Remark 3.4.1. In the proof of Theorem 3.1.1 we are going to use the aforementioned result of
Borovoi and Demarche. Their main theorem in [BD13] can be stated exactly as Theorem 3.1.1, but
restricting to the case when X has connected geometric stabilizers, and substituting X(AK)

ét,Br
•

with X(AK)
BrX
• .

Example 3.4.2. This example is borrowed from [Dem17, Thm 2.1]. Let p be a prime, and H a
finite constant non-commutative group of order pn, such that the pn+1-roots of unity are contained
in a number field K. Let X := G/H, where G/K is any semisimple simply connected algebraic

group, and H →֒ G is any embedding. Then, for any S, one has that πS(X(AK)
BrX) 6= X(K)

S

(where X(K)
S
denotes the closure of X(K) in X(AS

K), and π
S : X(AK) → X(AS

K) denotes the
projection). In particular, in general, one could not hope for the statement of Theorem 3.1.1 to
be true with X(AK)

ét,Br
• replaced by X(AK)

BrX
• , i.e. the Brauer–Manin obstruction is not the

only one to strong approximation for homogeneous space.

Remark 3.4.3. In view of the example above, it would be interesting to know if, for a general ho-
mogeneous space X, there are any intermediate obstructions X(AK)

ét,Br
• ⊂ X(AK)

?
• ⊂ X(AK)

BrX
•

such that Gscu(KSf ) ·X(K) is dense in X(AK)
?
•.
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Remark 3.4.4. The group X(K,Gab) is defined as the kernel of the map

H1(K,Gab)→
∏

v∈MK

H1(Kv, G
ab).

It is strongly conjectured to be always finite, and it is known to be in some specific cases, for
instance, when Gab is an elliptic curve of analytic rank 0 or 1 defined and K = Q (see [Kol88]).

Remark 3.4.5. We remind the reader of the aforementioned Theorem of Platonov [PRR93, The-
orem 7.12], which states that Gsc(K) is dense in Gsc(AS

K) if and only if Gsc has no K-simple
component Gi ⊂ Gsc with Gi(KS) compact. This makes the hypothesis “Gsc(K) is dense in
Gsc(AS

K)” of Theorem 3.1.1 easily verifiable.

Remark 3.4.6. We note that, if x ∈ X(AK)• is in X(AK)
ét,Br
• , then Theorem 3.1.1 tells us that it

lies in the closure of Gscu(KSf ) ·X(K). Hence, its projection xSf to X(A
Sf
K )• lies in the closure

of X(K) in X(A
Sf
K )• (since the projection of Gscu(KSf ) is trivial). Therefore, Theorem 3.1.1 may

be seen as a theorem saying that, under its assumptions, the étale-Brauer–Manin obstruction to
strong approximation is the only one for homogeneous spaces.

Remark 3.4.7. We notice that, although, by the previous remark, we have that, for a finite

S ⊂ M fin
K large enough, X(K)

S ⊃ πS(X(AK)
ét,Br
• ) (where πS : X(AK)• → X(AS

K)• denotes the
standard projection and ⋆S denotes the closure in the S-adeles), this is not necessarily an equality,
as the example presented in Proposition 3.4.8, which follows, clearly points out. However, one

can still aim to describe the set X(K)
S ⊂ X(AS

K)•, although it becomes a less trivial consequence
of Theorem 3.1.1. This is done in Section 3.6.

Proposition 3.4.8. Keeping the notation of the above remark, let K = Q, X = Gm/Q and

S = {2}. We have that X(AK)
ét,Br
• = X(AQ)

BrX
• = X(Q) = X(Q) = Q∗, while X(Q)

S ⊂ X(AS
Q)•

is not countable.

Proof. We have the following inclusions:

X(AQ)
BrX
• ⊃ X(AQ)

ét,BrX
• ⊃ X(Q) = Q∗.

Moreover, by [Har08, Thm. 4] (applied to the case X = Gm), we have that X(AQ)
BrX
• =

Gm(AQ)
BrGm
• ⊂ Q∗ = Q∗ (the closure being in the idelic topology of (IQ)• = (Gm)(AQ)•). Hence

we have that all the inclusions above are equalities.

On the other hand, we have that X(Q)
S
, being the closure of Q∗ in (ISQ)•, is equal to Q∗ · 2Ẑ,

where the embedding 2Ẑ →֒ (ISQ)• is defined as described in the next paragraph.
The morphism

2⋆ : Z→ (ISQ)•, n 7→ 2n,

is continuous if we endow Z with the profinite topology (i.e. the one induced by the embedding

Z →֒ Ẑ, where Ẑ is endowed with its profinite topology) and (ISQ)• with its natural topology.

Therefore, since (ISQ)• is complete, there is a unique continuous extension of 2⋆ to Ẑ, which defines

an embedding 2Ẑ →֒ (ISQ)•.

3.4.1 Preliminaries for the proof of Theorem 3.1.1

We shall need the following more or less standard facts about Weil restriction (we recall that,
according to our notation, Schk denotes quasi-projective Spec k-schemes):

Proposition 3.4.9. Let L/k be a finite Galois extension with Galois group Γ.
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(i) The functor RL/k : SchL → Schk is right-adjoint to the base-change functor Schk → SchL.

(ii) For every k-variety X ∈ Schk there exists a closed embedding ιX : X →֒ RL/kXL. Moreover,
the collection ι⋆, ⋆ ∈ Schk is a natural transformation between the identity functor on Schk
and RL/k ◦ (⋆×SpecK SpecL).

(iii) For every L-variety Y ∈ SchL there is an isomorphism:

ψY = (ψYγ ) : (RL/kY )L −→
∏

γ∈Γ

Y γ.

Moreover, these morphisms form a natural transformation between the functors Y 7→ (RL/kY )L
and Y 7→∏

γ∈Γ Y
γ.

(iv) For every X ∈ Schk, one has that ψXL ◦ (ιX)L = ∆XL, where ∆XL : XL →
∏

γ∈Γ(XL)
γ

denotes the diagonal embedding.

In point (iv) we are implicitly using the fact that, since X is defined over k, then, for every
γ ∈ Γ, there is a natural identification between XL

γ and XL.

Proof.

(i) This is the definition of Weil restriction, which exists by [Sch94, Cor. 4.8.1].

(ii) See [Sch94][4.2.5].

(iii) See [Sch94][4.11.3].

(iv) The morphism π : XL → X induces a base changed morphism πL : (XL)L → XL. Since L/k
is Galois, one may identify (XL)L with

∐
γ∈Γ(XL)γ, which may again be naturally identified with∐

γ∈Γ(XL). Using this identification, the morphism πL corresponds to the codiagonal morphism.
This identification induces the following commutative diagram:

Homk(X,RL/kXL) Homk(XL, RL/kXL) HomL(XL, (RL/kXL)L) HomL(XL,
∏

γ∈Γ(XL)
γ)

HomL(XL, XL) HomL((XL)L, XL) HomL(
∐

γ∈Γ(XL)
γ−1

, XL),

π∗ (ψXL )∗

π∗
L ∼

(3.4.1)
where the first two vertical morphisms are the ones induced from the definition of RL/k. The

commutativity of the first square follows from the definition of RL/k, while the commutativity of
the second square is the definition of ψXL (see [Sch94][4.11.3]).

Point (iv) now follows from considering the identity morphism in the bottom left corner of
(3.4.1), and looking at its image in the top right corner of the same diagram following the two
distinct paths up-right-right and right-right-up.

Remark 3.4.10. By Proposition 3.4.9(i) the functor RL/k preserves (fibered) products. Hence, for

every couple (Y1, Y2) of L-varieties, the morphism RL/k(Y1×LY2)
RL/kπ1×RL/kπ2−−−−−−−−−→ RL/kY1×kRL/kY2

is an isomorphism.

Remark 3.4.11. We observe that, if m : GL×L Y → Y is an action of GL on Y , there is a natural
action of RL/kGL on RL/kY defined by the following composition:

RL/kGL ×k RL/kY
(RL/kπ1×RL/kπ2)

−1

−−−−−−−−−−−−→ RL/k(GL ×L Y )
RL/km−−−−→ RL/kY.
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Moreover, by functoriality of RL/k, this induced action has the property that, for each GL-
equivariant morphism f : Y1 → Y2 between GL-varieties, the morphism RL/kf is a RL/kGL-
equivariant morphism.

Let G be a k-algebraic group, L/k be a finite Galois extension, with Galois group Γ, and
let Y/L be an L-variety endowed with a (left) GL-action. We observe that Proposition 3.4.9(ii)
(applied on G) gives a natural embedding G →֒ RL/kGL, which one can easily verify (using the
fact that the collection of morphisms ι⋆, ⋆ ∈ Schk is a natural transformation) to be a group
homomorphism (and, hence, embedding).

Proposition 3.4.12. With the above notation, the following hold:

(i) If Y = XL, with X defined over k, and the action of GL is induced by base change from one
of G on X, then the natural embedding:

ιX : X →֒ RL/kXL

is G-equivariant (where the G-action on RL/kXL is the one induced from the action of
RL/kGL on RL/kXL, defined as in Remark 3.4.11, restricted to G through the embedding
ιG : G →֒ RL/kGL).

(ii) There exists a natural GL-equivariant isomorphism:

ψY :=
∏

γ∈Γ

ψYγ : (RL/kY )L −→
∏

γ∈Γ

Y γ,

where the action of GL on (RL/kY )L is the one induced from the action of RL/kGL on RL/kY ,
defined as in Remark 3.4.11, restricted to G through the embedding ιG : G →֒ RL/kGL, and
the action on

∏
γ∈Γ Y

γ is induced from the diagonal embedding ∆GL : GL →
∏

γ∈ΓG
γ
L
∼=∏

γ∈ΓGL.

Proof.

(i) Let mX : G×kX → X be the morphism defining the action of G on X. Then, (i) follows from
the commutativity of the following diagram:

G×k X G×k X X

RL/kGL ×k RL/kXL RL/k(GL ×L XL) RL/kXL,

ιX×ιG ιX×G

mX

ιX

(RL/kπ1×RL/kπ2)
−1 RL/kmX

which, in turn, is a consequence of the fact that, for X ∈ Schk, the morphisms ιX : X →
RL/kXL introduced in Proposition 3.4.9[(i)] are a natural transformation.

(ii) Let mY : GL ×L Y → Y be the morphism defining the action of GL on Y . Then, (ii) follows
from the commutativity of the following diagram:

GL ×L (RL/kY )L (RL/kGL)L ×L (RL/kY )L (RL/k(GL ×L Y ))L (RL/kY )L

∏
γ∈ΓGL ×L Y γ

∏
γ∈Γ(GL)

γ ×L
∏

γ∈Γ Y
γ

∏
γ∈Γ(GL ×L Y )γ

∏
γ∈Γ Y

γ.

(ιG)L×id

ι×ψY ψGL×ψY

(RL/kπ1×RL/kπ2)
−1 (RL/kmY )L

ψ(GL×LY ) ψY

(∆GL )×id ∼
∏
γ∈Γm

γ

The commutativity of the first square follows from the equality ∆GL = ψGL ◦ (ιG)L, which
was proven in Proposition 3.4.9[(iv)]. The commutativity of the central and last square is a
consequence of the fact that, for Y ∈ SchL, the morphisms ψY introduced in Proposition 3.4.9[(ii)]
are a natural transformation.
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Notation 3.4.13. For a group G/k acting on a variety Y , and a point y ∈ Y (k̄), we denote by
StabḠ y the stabilizer of y in Ḡ := Gk̄.

Let G be an algebraic k-group and let Y be a GL-variety (i.e. an L-variety endowed with a left
GL-action). We know by Remark 3.4.11 and the discussion following it that G acts on (RL/kY )
through the diagonal embedding.

Corollary 3.4.14. Keeping the notation of Proposition 3.4.12(ii), we have that, for each x̄ ∈
(RL/kY )(k̄):

StabḠ(x̄) = ∩γ∈Γ StabḠ(ψ
Y
γ (x)).

Proof. This immediately follows from Proposition 3.4.12(ii).

Proposition 3.4.15. Let π : Z → X be a finite surjective G-equivariant morphism of k-varieties
endowed with a (left) G-action. If X is a homogeneous space under G and Z is geometrically
integral, then Z is a homogeneous space as well.

Proof. Let z̄ ∈ Z̄(k̄) be any geometric point, and let Y = Ḡ · z̄ be its Ḡ-orbit. We assume that Y is
endowed with the k̄-variety structure that comes from the natural isomorphism Ḡ/StabḠ z̄ ∼= Y .
In particular, we have by [Mil17, Lemma 9.30] that Y is locally closed in Z̄.

Since X is a homogeneous space, we have that π(Y (k̄)) = π(Ḡ · z̄(k̄)) = π(z̄) · Ḡ(k̄) = X(k̄).
Hence, the morphism π|Y : Y → X is surjective on k̄-points, hence dominant (by Nullstellensatz).

Therefore, if Y ′ ⊂ Z̄ denotes the Zariski-closure of Y in Z̄ (which coincides with the Zariski-closure
of Y (k̄) in Z̄ by Nullstellensatz), we have that dimX = dim Z̄ ≥ dimY ′ ≥ dimY ≥ dimX, and,
hence, since Z̄ is irreducible, Y ′ = Z̄.

We want to show that actually Y = Z̄. Since Y is locally closed in Z̄ and Z̄ is reduced, it
is enough, by the Nullstellensatz, to show that Z̄(k̄) = Y (k̄). We assume, by contradiction, that
there exists a s̄ ∈ Z̄(k̄) \ Y . We have, as before, that Ḡ · s̄ is dense in Z̄. Therefore, since both
Ḡ · s̄ (which we give again a k̄-variety structure as before) and Y are constructible and dense in Z̄,
they both contain some non-empty Zariski open subset of Z̄, and their intersection is non-empty.
This is a contradiction because we assumed s̄ /∈ Y = Ḡ · z̄, hence Ḡ · s̄ ∩ Ḡ · z̄ = ∅.

3.4.2 Proof of Theorem 3.1.1

The lemmas that follow play a major role (especially Lemma 3.4.17) in the proof of Theorem
3.1.1.

Lemma 3.4.16. Let G be a connected algebraic group over k, X be a k-scheme of finite type
endowed with a G-action, and X0 ⊂ X be a connected component of X. Then the G-action on X
induces one on X0 (i.e. there exists a unique action on X0 that makes the embedding X0 →֒ X
G-equivariant).

Proof. The proof is straightforward.

We recall that, if F is a group acting on the right on a k-variety Z, and G acts on the left
with an action that commutes with the one of F , and η ∈ H1

lt(K,F ), there is a natural left action
of G on Zη, commuting with the right F η-action.

Lemma 3.4.17. Let G be a connected algebraic group over K and X a left G-homogeneous
space, and assume that there exists a finite group scheme F/ SpecK, and a right F -torsor ϕ :
Z → X such that Z is endowed with a left G-action, commuting with the F -action, with connected
geometric stabilizers and such that ϕ is G-equivariant. Suppose that X(AK)

ét 6= ∅. Then, there
exists a η ∈ H1

lt(K,F ) and a connected component Z ′ of Zη such that Z ′, endowed with the G-
action of Lemma 3.4.16, is a G-homogeneous space with connected stabilizers. Moreover, there is
a finite subgroup F ′ ⊂ F η such that Z ′ → X is a right F ′-torsor.
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Proof. By [CDX19, Lemma 7.1] there exists an element η ∈ H1
lt(K,F ) and a connected component

Z ′ of Zη such that Z ′ is geometrically connected. Since G is connected, we have by Lemma 3.4.16
that there is a left G-action on Z ′ that makes the embedding Z ′ →֒ Zη G-equivariant.

Let us now prove that Z ′ is a homogeneous space. We know that X is a homogeneous space,
and that Z ′ is smooth (because Z ′ → X is étale and X is smooth) and geometrically connected.
Hence, since Z ′ → X is finite and G-equivariant, Z ′ is a homogeneous space by Proposition 3.4.15.
Moreover, by our assumption, the geometric stabilizers of the G-action are connected on Z, so,
in particular, they are on Z ′.

Letting F ′ be the stabilizer of Z ′ under the F η-action, the last part is straightforward.

Lemma 3.4.18. Let X be a (left) homogeneous space under a connected K-group G. There
exists a finite group scheme F/ SpecK, and a right F -torsor ϕ : Z → X such that Z is endowed
with a left G-action with connected geometric stabilizers and such that ϕ and the F -action are
G-equivariant.

Proof. Let L/K be a Galois extension such that there exists a point x̄ ∈ X(L). Let H =
StabGL(x̄) and let H0 ≤ H be the connected component of H in which lies the identity. We have,
by [Mil17, Proposition 1.39], that H0 is a normal subgroup of H. We denote by Hf the (finite)
quotient H/H0. Let Y := GL/H

0. We have a GL-equivariant morphism:

ψ : Y = GL/H
0 → GL/H ∼= XL, (3.4.2)

where the last isomorphism is induced from the map GL → XL, g 7→ g · x̄. The identifications
of (3.4.2) make Y a right Hf -torsor over XL (see [Sko01, Section 3.2]), and the right Hf -action
commutes with the right GL action. Hence the induced morphism

Rψ : RL/KY → RL/KXL,

makes RL/KY a right F := RL/KHf -torsor over RL/KXL. The left F -action commutes with the left
RL/KGL-action on RL/KY (defined as in Remark 3.4.11). We endow RL/KY with the left G-action
given by restricting the RL/KGL-action to a G-action through the embedding ιG : G →֒ RL/KGL.

Let ιX : X → RL/KXL be the morphism of Proposition 3.4.9(iii). Let Z be the fibered product
X ×RL/KXL RL/KY . We notice that, since, by functoriality of RL/K and Proposition 3.4.12(i), Rψ

and ιX are both G-equivariant, the k-variety Z is equipped with a natural left G-action. Moreover,
the projection Z → X can be endowed with the structure of a right RL/KHf -torsor over X (since
Z → X is just a base change of the right RL/KHf -torsor Rϕ : RL/KY → RL/KXL) .

Lastly, we prove that the geometric stabilizers of Z are connected. Let z̄ ∈ Z̄ be a geometric
point. Since Z̄ →֒ RL/KYK (where the morphism is Ḡ-equivariant), we have that, by Corollary
3.4.14, there exists a g ∈ G(K̄) such that S̄ := StabḠ(z̄) ⊂ gH̄0g−1, where H̄0 = H0

K̄
. Moreover,

since dim S̄ = dim Ḡ − dim Z̄ = dim Ḡ − dim X̄ = dim H̄0, and H̄0 is integral and algebraic
subgroups are always closed, we actually have that S̄ = gH̄0g−1, which is connected.

Lemma 3.4.19. Let X be a (left) homogeneous space under a connected K-group G, with linear
stabilizers. Suppose there is no étale Brauer–Manin obstruction for the variety X, i.e. that there
exists

(Pv)v∈MK
∈ X(AK)

ét,Br

Then, there exists a homogeneous space Z under G with geometrically connected stabilizers, an
adelic point (Qv) ∈ Z(AK)

BrZ, and a G-equivariant morphism ψ : Z → X such that (ψv(Qv)) =
(Pv). Moreover, Z is a (right) torsor over X under a finite group scheme.

Proof. We know by Lemma 3.4.17 (whose hypothesis hold by Lemma 3.4.18) that there exists a
finite group scheme F and a right F -torsor ψ′ : Z ′ → X, where Z ′ is a homogeneous space with
geometrically connected stabilizers and ψ′ is G-equivariant. Since (Pv)v∈MK

∈ X(AK)
ét,Br, we
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know that there exists an element η ∈ H1
lt(K,F ) and an element (Qv)v∈MK

∈ Z(AK)
BrZ , where

Z := Z ′
η, such that (ψv(Qv))v∈MK

= (Pv)v∈MK
, where ψ := (ψ′)η : Z → X. We observe that

Z = Z ′
η is still a G-homogeneous space (since it is a twist of a G-homogeneous space, with respect

to an action that commutes with the G one) and Z → X is a right torsor under F η.

Lemma 3.4.20. Let X and Y be connected k̄-varieties, with Y simply connected, and let y0 ∈
Y (k̄). Let ϕ : Y → X ×k̄ Y be an étale cover such that there exists a section σy0 : X ×k̄ {y0} →
Y|X×k̄{y0}

to the restricted cover ϕ|X×k̄{y0}
. There exists then a unique section σ : X ×k̄ Y → Y

to ϕ extending σy0.

Proof. We can assume, without loss of generality, that Y is connected (otherwise we can restrict
ϕ to the connected component containing the image of σy0).

Let x0 ∈ X(k̄) be any point, which we are going to use as a “basepoint”. We have a canonical
embedding ι : π1(Y, y0) →֒ π1(X × Y, (x0, y0)). Since Y is simply connected and we are in char-
acteristic 0, we have that π1(X × Y, (x0, y0)) ∼= π1(X, x0)× π1(Y, y0) ∼= π1(X, x0) through natural
isomorphisms (this follows from GAGA-like theorems, see [Gro71, XIII 4.6], whose hypothesis
hold by [EH02]). Hence, the natural embedding ι is an isomorphism.

Let now P := σy0((x0, y0)) ∈ Y . By construction P is π1(X, x0)-, and, hence, π1(X ×
Y, (x0, y0))-invariant. By the standard theory of étale covers, this means that the connected
étale cover Y → X × Y has degree 1, and, hence, is an isomorphism. In particular, the cover
Y → X × Y has a unique section.

The following lemma is a slightly more general case of [HW20, Prop. 5.1].

Lemma 3.4.21. Let G be a simply connected (recall from Section 3.2 that this means that G
is geometrically simply connected) linear k-group, X be a k-variety endowed with a G-action,
and ϕ : Z → X be an étale cover. There exists then a unique G-action on Z such that ϕ is
G-equivariant.

Proof. It is sufficient, by Galois descent, to prove the existence and uniqueness over k̄. So we can
assume without loss of generality that k = k̄. Let mX : G×k X → X be the G-action on X. We
consider the following diagram:

G×k̄ Z Z

G×k̄ X X

mZ

mX

, (3.4.3)

which we would like to complete with a (unique) group action mZ on the first row that makes
it commute.

Let us consider the following commutative diagram:

G×k̄ Z Z

G×k̄ X X

(ϕ,idG) mZ ϕ

ι:=(e,idZ)

mX

, (3.4.4)

We claim that there is a unique mZ that makes diagram (3.4.4) above commute with all but
ι, and such that ι is a section of it. From this, and the fact that mX is a group action, it is a
straightforward verification to see that mZ is a group action itself.

We enlarge the commutative diagram above to the following:
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W

G×k̄ Z Z

G×k̄ X X

(πG×k̄Z
) πZ

(ϕ,idG)

σ

mZ
ϕ

ι:=(idZ ,e)

f=(ι,idZ)

mX

, (3.4.5)

where W := (G×k̄Z)×X Z , and hence the square [Z,X,G×k̄Z,W ] is cartesian by definition.
The existence and uniqueness of the sought morphismmZ (such that the lower trapezoid commutes
and ι is a section of it) is equivalent to the existence and uniqueness of a morphism σ : G×k̄Z → W
such that it is a section of (idG×k̄Z

, ϕ) and such that πZ ◦ σ ◦ ι = idZ . Lemma 3.4.20 implies that
the existence and uniqueness of such a section is equivalent to the existence and uniqueness of
a morphism f : Z → W such that (idG×k̄Z

, ϕ) ◦ f = ι and such that it is a section of πZ . The
morphism (ι, idZ) is the unique morphism that satisfies these properties.

Lemma 3.4.22. Let G be a simply connected linear k-group and X a k-variety endowed with a
G-action. Let B ∈ BrX be an element of the Brauer group of X, and let P ∈ X(k). Then, for
every element g ∈ G(k), we have an equality B(P ) = B(g · P ) ∈ Br k.

Proof. We know that the Brauer group of G is constant, i.e. BrG = Br k [Gil09]. Let mX :
G×kX → X be the G-action, let mP : G→ X denote the morphism defined by g 7→ mX(g, P ) =
“g · P”, and let BP = (mP )

∗B ∈ BrG = Br k. It is now immediate that, for every g ∈ G(k),
B(mX(g, P )) = BP (g) = BP (e) = B(P ), as wished.

Proof of Theorem 3.1.1. We start by showing that X(AK)
ét,Br
• ⊂ Gscu(KSf ) ·X(K). Let (Pv) ∈

X(AK)
ét,Br
• .

We know by Lemma 3.4.19 that there exists a right torsor ϕ : Z → X, under some finite
group scheme, such that Z is a left homogeneous space under G with connected geometric sta-
bilizers, with ϕ being G-equivariant, and such that there exists (Qv) ∈ Z(AK)

BrZ
• such that

(ϕv(Qv)) = (Pv). A theorem of Borovoi and Demarche, [BD13, Theorem 1.4], tells us that
(Qv) ∈ Gscu(KSf ) · Z(K). Since (ϕv) : Z(AK)• → X(AK)• is continuous, this implies that

(Pv) = (ϕv(Qv)) ∈ Gscu(KSf ) · ϕ(Z(K)) ⊂ Gscu(KSf ) ·X(K).

We now prove that X(AK)
ét,Br
• ⊃ Gscu(KSf ) ·X(K). Since X(AK)

ét,Br
• is closed, it suffices to

prove that X(AK)
ét,Br
• ⊃ Gscu(KSf ) ·X(K). Let P ∈ X(K) and (gv)v∈Sf ∈ Gscu(KSf ), and let

P1 = (P1v)v∈MK
∈ X(AK)• be the adelic point defined as P1v = Pv if v /∈ Sf and P1v = gv · Pv if

v ∈ Sf . Let ψ : W → X be a left torsor under a finite group scheme F . We know that there exists
a twist ψσ : W σ → X, for some σ ∈ H1(K,F ) such that P = ψσ(P ′), for some P ′ ∈ W σ(K).
Since Gscu is simply connected, by Lemma 3.4.21, we know that there exists a right Gscu-action
on W σ such that ψσ is Gscu-equivariant.

Letting P′
1
= (P ′

1v)v∈MK
∈ W σ(AK)• be the adelic point defined by P ′

1v = P ′
v if v /∈ Sf and

P ′
1v = gv ·P ′

v if v ∈ Sf , it follows from Lemma 3.4.22 that P′
1
∈ W σ(AK)

BrWσ

• . Since ψ(P′
1
) = P1,

this proves that P1 ∈ X(AK)
ψ
• . Since the argument works for any finite torsor ψ : W → X, we

have that P1 ∈ X(AK)
ét,Br
• , as wished.

This concludes the proof of Theorem 3.1.1.
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3.5 Compatibility of the abelianization and the Brauer–

Manin pairing

In this section X denotes a quotient G/H, where G is a connected K-group, and H is a
connected linear K-closed subgroup (which implies that H̄ is connected as well).

Recall that Cd
X is defined as the dual complex of the cone of the morphism

[T scH
ρH−→ TH ]

[ιsc,ι]−−−→ [T scG
ρG−→ SAG],

where both complexes start in degree −1 (see Section 3.3.2). Note that, since CX = Cone([THsc →
TH ] → [TGsc → SAG])

∼←− Cone([ZHsc → ZHred ] → [TGsc → SAG]), we may also identify Cd
X with

the dual of this latter complex, i.e. (as a complex of étale group sheaves over K):

Cd
X =

[
T̂G

(λ,−ρ̂G ,̂ι)−−−−−→ Pic0
(
Gab
)
⊕ T̂Gsc ⊕ ẐHred

(0,ι̂sc,ρ̂H)−−−−−→ ẐHsc

]
,

where the morphism λ : T̂G → Pic0
(
Gab
)
is the morphism arising from the construction of the

dual motive of SAG (see e.g. [HS05, Sec. 1] for details on this construction). Note that the
degrees on which Cd

X is supported are 0, 1, 2.
The goal of this section is to prove the following theorem with an explicit computation.

Theorem 3.5.1. Let v ∈ MK, x ∈ X(Kv) be a local point, and B ∈ H2(Kv, C
d
X). Then one has

that:
〈x, α(B)〉 = −〈ab0Kv(x), B〉, (3.5.1)

where:

• the first pairing is the local Brauer pairing;

• the second pairing is the one induced by the local pairing (3.3.6).

3.5.1 Proof of Theorem 3.5.1

For convenience of the reader we start by recalling some standard notations that we will use
in the course of the computation.

For the following discussion, and the two lemmas below, let us fix an algebraically closed field
k.

For any algebraic group H/k, and any k-variety Y , endowed with a H-action m : H×Y → Y ,
we use the following notation (introduced by Borovoi and van Hamel [BvH06]):

UPicH(Y )1 :=

{
(D, z) ∈ Div(Y )× k(H × Y )∗ :

{
zh1h2(y) = zh1 (h2 · y) · zh2(y)
div(z) = m∗D − pr∗Y D

}
,

where zh(y) stands for z(h, y).

We have a natural morphism k(Y )∗/k∗
d→ UPicH(Y )1, defined by d(f) :=

(
div(f), m

∗f
pr∗Y f

)
.

Moreover, we define:
PicH(Y ) := UPicH(Y )1/d(k∗(Y )).

Note that there is a natural map PicH(Y )→ Pic(Y ).

We anticipate a lemma that we are going to need in the proof.

Lemma 3.5.2. Let Z := G/H be a homogeneous space over k, where H ⊂ Glin is a subgroup
of the maximal linear subgroup Glin of a connected k-group G. Let Gant ⊂ G be the maximal
anti-affine subgroup of G, and let Y := Z/Gant (this makes sense as Gant is normal in G). We
denote by π′ : Z → Y , and by π : Z → Gab := G/Glin = Z/Glin, the two natural projections. We
then have that PicZ = π∗ PicGab + (π′)∗ PicY .



3.5. COMPATIBILITY OF THE ABELIANIZATION AND THE BRAUER–MANIN PAIRING65

Proof. For an algebraic group D/k, we denote by χ(D) its group of characters Homk,gr(D,Gm,k).
We denote by ι′ the inclusion H →֒ Glin, by η the inclusion Glin/H →֒ G/H, by h the morphism
Glin → Glin/H.

Applying [Bri11, Prop. 3.10] to H ⊂ G and H ⊂ Glin we obtain the two exact rows of the
following commutative diagram:

χ(Glin) Pic(Gab)× χ(H) Pic(G/H) Pic(Glin)

χ(Glin) χ(H) Pic(Glin/H) Pic(Glin)

(c
Gab

,(ι′)∗)

=

(π∗,E)

pr2

h∗◦η∗

η∗ =

(ι′)∗ E h∗

, (3.5.2)

where pr2 denotes the projection on the second coordinate, cGab is the characteristic homomor-
phism of G (see [Bri11, p. 7]), and we refer the reader to [KKV89, Sec. 3] for the morphisms
E .

A simple diagram chase on (3.5.2) gives the following exact sequence:

Pic(Gab)
π∗

−→ Pic(G/H) = Pic(Z)
η∗−→ Pic(Glin/H). (3.5.3)

Lemma 3.5.3, which follows, shows that the morphism

Pic(Y ) = Pic(G/(Gant ·H)) = Pic(Glin/(B ·H))→ Pic(Glin/H),

where B := Ker(Glin → G/Gant) = Glin ∩ Gant, is surjective, which, together with the exact
sequence (3.5.3), is sufficient to conclude the proof of this lemma.

Lemma 3.5.3. Let G be a connected linear k-group, let B ⊂ G be a central algebraic subgroup,
and let H ⊂ G be an algebraic subgroup. We have that the following morphism is surjective:

Pic
(
G�B ·H

)
→ Pic

(
G�H

)
.

Proof. Let π : G̃ → G be a central isogeny such that Pic(G̃) = 0 (this exists by [Pop74, Thm
3]). Let H̃ := π−1(H), and B̃ := π−1(B). We then have the following two natural surjections (by
[Pop74, Thm 4]):

χ(H̃)։ Pic(G/H), χ(B̃ · H̃)։ Pic
(
G�B ·H

)
.

To conclude the proof of the lemma it is therefore enough to show that the following morphism
is a surjection:

χ(B̃ · H̃)→ χ(H̃).

The above surjection follows from the three points below:

i. For all algebraic groups D/k, we have that χ(D) = χ
(
D�[D,D]

)
.

ii. The morphism

H̃�[H̃, H̃]→
B̃ · H̃�[B̃ · H̃, B̃ · H̃] (3.5.4)

is an injection: this follows from the fact that B̃ is central in G̃, as we now prove. We have
that [B̃, G̃] ⊂ Ker(π), which is finite. By connectedness of G̃, this implies that [B̃, G̃] =
[B̃, ẽ] = ẽ, i.e. that B̃ is central in G̃.
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iii. If G1 →֒ G2 is an injection of commutative linear k-groups, then the induced morphism,
between group of multiplicative type, G1/G

u
1 → G2/G

u
2 is injective (and, hence, the map

χ(G2) = χ(G2/G
u
2) → χ(G1) = χ(G1/G

u
1) is surjective by [Mil17, Thm. 14.9]). To prove

this, note that applying the snake lemma to the following commutative diagram with exact
rows:

1 Gu
1 G1 G1/G

u
1 1

1 Gu
2 G2 G2/G

u
2 1

,

whose first two colums are exact, we obtain an injection Ker(G1/G
u
1 → G2/G

u
2)→ Gu

2/G
u
1 .

Since the latter is unipotent, and the former is of multiplicative type, we deduce that this
morphism is 0. Hence Ker(G1/G

u
1 → G2/G

u
2) = 0.

Lemma 3.5.4. Let [A1
ι1−→ . . .

ιN−1−−−→ AN ] be a complex, with the Ai belonging to some abelian
category C and, for some integer 1 ≤ n ≤ N , A′

n ⊂ An be such that A′
n → An/ιn−1(An−1) is

an epimorphism. Then the following is a quasi-isomorphism (the complexes being the horizontal
ones):

A1 . . . An−2 A′
n−1 A′

n An+1 . . . AN

A1 . . . An−2 An−1 An An+1 . . . AN

, (3.5.5)

where A′
n−1 := A′

n ×An An−1 →֒ An−1.

Proof. This follows immediately from a diagram chasing.

Proof of Theorem 3.5.1. The proof will essentially follow the simple idea of making everything
as explicit as possible in terms of Galois cocycles. The two expressions that arise from this
computation are, respectively, 3.5.32 for the LHS, and 3.5.24 for the RHS of Equation (3.5.1).
These two expressions are unfortunately not equal in an “obvious” manner. Hence, after these first
two computations, the rest of the proof will be dedicated to show that the two obtained expressions
are, in fact, equivalent in H2(Kv, Kv

∗
). We set k = Kv (so k is no longer an algebraically closed

field here), and Γ = Γk.

We recall some quasi-isomorphisms (see diagram 3.5.6 below), borrowed from [Dem11] (in
the figure the complexes are the 3-term horizontal ones, and the vertical morphisms define the
quasi-isomorphisms between them, and the complexes end in degree 2), which will serve to make
the isomorphism α mentioned above as explicit as possible. Let Div0(Z) := Ker(Div(Z) →
Pic(SAG)

∼←− Pic(Ḡab)→ NS(Ḡab)) (i.e. the kernel of that composition).

The vertical morphisms between the second, third and fourth row are the natural ones (see

[Dem11, Sec 1.2.1] for the morphism Pic(H
′
) → Pic′(Z/X)), and the ones between the first and

second row are recalled below (see the proof of Lemma 3.5.6), and they are actually isomorphisms
(as proven in [Dem11]). The horizontal arrows (forming the complexes) are always the natural
ones (in the first two rows these might appear with a changed sign, so we indicated the correct

signs in the picture), except for the morphism T̂G → Pic
(
Ḡab
)
, which factors through T̂G →

Pic0
(
Ḡab
)
→ Pic

(
Ḡab
)
and is the one arising from the construction of the dual motive of SAG
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(see e.g. [HS05, Sec. 1] for details on this construction).

Q′
X : T̂G Pic

(
Ḡab
)
⊕ T̂Gsc ⊕ ẐH̄red ẐHsc

Qmix1 : T̂G Pic
(
Ḡab
)
⊕ PicTG

(
Ḡlin

)
⊕ PicTG(Z

′) Pic(H ′)

Qmix : T̂G ⊕ k̄(Z)∗/k̄∗ UPicTG(Z̄)
1 Pic(H ′)

Q′
geom : k̄(Z)∗/k̄∗ Div(Z̄) Pic′(Z̄/X̄)

(−,−,+) (0,+,+)

∼

(−,+,+)

= ∼ ∼

∼

∼ ∼

= . (3.5.6)

From the quasi-isomorphisms above follows that

H2(k,Q′
X)
∼= H2(k,Q′

geom)
∼= Bra(X,G), (3.5.7)

where the last isomorphism is a direct consequence of (3.3.10) (note that k̄(Z)∗ ∼= k̄(Z)∗/k̄∗⊕
k̄∗, the splitting being provided by the k-rational point e ∈ Z(k)).

We also need the following quasi-isomorphisms, compatible with those appearing in the dia-
gram above:

Cd
X : T̂G Pic0

(
Ḡab
)
⊕ T̂Gsc ⊕ ẐH̄red ẐHsc

Q0
mix1 : T̂G Pic0

(
Ḡab
)
⊕ PicTG

(
Ḡlin

)
⊕ PicTG(Z

′) Pic(H ′)

Q0
mix : T̂G ⊕ k̄(Z)∗/k̄∗ UPic0

TG
(Z̄)1 Pic(H ′)

Q0′
geom : k̄(Z)∗/k̄∗ Div0(Z̄) Pic′(Z̄/X̄)

(−,−,+) (0,+,+)

∼

(−,+,+)

= ∼ ∼

∼

∼ ∼

= , (3.5.8)

where Div0(Z) := Ker(Div(Z) → Pic(SAG)
∼←− Pic(Gab) → NS(Gab)) and UPic0

TG
(Z̄)1 =

{(D, f) ∈ UPicTG(Z̄)
1 : D ∈ Div0(Z)}.

The morphism α cited in (3.3.8) is the composition H2(k, Cd
X)→ H2(k,Q′

X)
∼= H2(k,Q′

geom)
∼=

Bra(X,G) (see [Dem11, Thm 2.1]).
An easy computation of non-abelian Galois cohomology, using, for instance, the explicit de-

scription of non-abelian cocycles given in Proposition 3.C.3 below (or, equivalently, using the
formulas appearing in [Dem09, Sec. 4.2.1.6], which lead to the same description), gives that (us-
ing the notation of Subsection 3.3.1):

ab0(x) = [(∂h̄σ; zσ, tσ; ξ)] ∈ H2(k, CX), (3.5.9)

where:

• for a non-abelian 1-cochain ασ ∈ Fun(Γ, D(k)) (where D denotes some k-algebraic group)
we use the notation ∂(ασ) := α−1

ση ·ασ · (σαη), and, for a non-abelian 0-cochain α ∈ D(k) we
use the notation ∂α := α−1 · σα;
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• g ∈ G(k) is such that its projection to X is the point x;

• for all σ ∈ Γ, hσ := g−1 · σg, with hσ ∈ Hred(k) (we can assume wlog that hσ ∈ Hred(k)
because Hu and all of its twists are cohomologically trivial, see also [Dem13, Lem. 2.7]);

• g = ρG(ḡ) · ξ, with ḡ ∈ Gsc(k) and ξ ∈ SAG(k);

• for all σ ∈ Γ, hσ = ρH(h̄σ) · zσ, with zσ ∈ ZHred(k), and h̄σ ∈ Hsc(k);

• for all σ ∈ Γ, tσ := ḡ−1 · gh̄−1
σ · σḡ ∈ TGsc(k).

Formula (3.5.9) can also be inferred from the formulas of [Dem09, Sec. 4.2.1.6], which yield

ab0(x) = [(h̄−1
ση

hσσh̄ηh̄σ; zσ, ḡ
−1 · gh̄−1

σ · σḡ; ξ)]. In virtue of the identity
z
h̄ = h̄ for all z ∈

Z(Hred)(k̄), h̄ ∈ Hsc(k̄), this coincides with (3.5.9).
We observe that the following identity holds:

∂ξ = zσ · ρG(tσ)−1 ∈ C1(Γ, TG(k̄)), ιsc(∂h̄σ)
−1 = ∂tσ (3.5.10)

We fix the notation for the element B ∈ H2(k, CX
d) as follows. Let β ∈ Z2(k,Q0

mix) be such
that its class in H2(k,Q0

mix) corresponds to B via the quasi-isomorphism between first and second-
last rows in (3.5.8). Using the standard notation for Galois cocycles, as defined in Subsection 3.3.1,
we put:

β = ((χσ,η, fσ,η); (Dσ, fσ);L), (3.5.11)

where fσ,η(e) = e (we use the notation e to denote the identity element in G, and its projection
to Z), after identifying k̄(Z)∗/k̄∗ with {f ∈ k̄(Z)∗ : f(e) = 1} ⊂ k̄(Z)∗.

Because of Lemma 3.5.2, applied to Z = G/(Hu · ZHred), and Lemma 3.5.4 we may assume
without loss of generality (after changing β by a coboundary), that, for every σ ∈ Γk, Dσ ∈
π∗ Div0(G

ab
) + (π′)∗ Div(Y ) (recall that Y = Z/Gant, that π : Z → Gab and that π′ : Z → Y ).

By definition of DivTG(Z), we have that the following identities hold:

div((fσ)t) = t∗Dσ −Dσ ∀t ∈ TG(k), (3.5.12)

(fσ)t1t2 = (fσ)t1 · t∗1(fσ)t2 ∀t1, t2 ∈ TG(k). (3.5.13)

Moreover, by definition of cocycle, we have the following identities:

div fσ,η = −∂Dσ, (3.5.14)

[Dσ|H̄′
] = ∂L, (3.5.15)

χσ,η(t) ·
t∗fσ,η
fσ,η

= (∂fσ)
−1
t . (3.5.16)

We start the computation of the RHS of (3.5.1).
Before delving in the computation, we recall (one of) the construction(s) of the duality pairing

for semi-abelian varieties.
Let S be a semiabelian variety over k, e be the identity element in S, A := Sab and T :=

Ker(S → A). We denote by Z(S̄) the degree 0 zero-cycles on S̄ := S ×k k̄, and by Z0(S̄) the
degree 0 zero-cycles

∑N
i=0 ni(Pi) such that

∏
P ni
i = e ∈ S(k̄). Moreover, let:

Zab(S̄) :=
Z(S̄)�〈(t · P )− (P )− (t) + (e), t ∈ T (k̄), P ∈ SAG(k̄)〉 (3.5.17)

There is a natural morphism:

Z(S̄) → S(k̄),∑N
i=0 ni(Pi) 7→

∏
P ni
i ∈ S(k̄),

(3.5.18)
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which factors through Zab(S̄). We define then

Z0
ab(S̄) := Ker(Zab(S̄)→ S(k̄)) ∼= Z0(Ā). (3.5.19)

The following morphisms of complexes are quasi-isomorphisms:

[Z0
ab(S̄)→ Zab(S̄)]→ [Z0(S̄)→ Z(S̄)]→ [0→ S(k̄)].

Let k̄(S)∗vert be the group of rational functions on S̄ such that their divisor is vertical with respect
to the projection ν : S̄ → Ā. The following morphism (that exists only in the derived category)
is a quasi-isomorphism as well:

[k̄(S)∗vert/k̄
∗ → Div0(Ā)]→ [T̂ → A∗(k̄) = Pic0(Ā)],

(f,D) 7−→ (f |T , [D]).

Lemma 3.5.5. The pairing [T̂ → A∗(k̄)]⊗L [0→ S(k̄)]→ Gm[−1] := [k̄∗][−1] of [HS05, Sec. 1]
is induced by the following pairing:

[k̄(S)∗vert/k̄
∗ → Div0(Ā)]⊗ [Z0

ab(S̄)→ Zab(S̄)]→ Gm[−1], (3.5.20)

where
k̄(S)∗vert/k̄

∗ ⊗ Zab(S̄)→ k̄∗ (3.5.21)

is the pairing induced by the evaluation of a function, and the “Poincaré pairing”::

Div0(Ā)⊗ Z0
ab(S̄)→ k̄∗ (3.5.22)

is defined as:
Div0(Ā)⊗ Z0

ab(S̄)→ Div0(Ā)⊗ Z0(Ā)→ k̄∗,

where the last arrow is defined as in [PS99, Sec. 3.2].

Proof. When S is an abelian variety, this is well-known (see [PS99, Sec. 3]). When S = T is a
torus, then the pairing (3.5.20) reduces to the upper row of the following commutative (in the
derived category of abelian groups) diagram:

[k̄(T )∗/k̄∗ → Div0 T̄ ] ⊗ [Z0
ab(T̄ )→ Zab(T̄ )] Gm[−1]

T̂ [0] ⊗ T (k̄)[−1] Gm[−1]

∼ ∼ = .

The commutativity of the above diagram shows that the pairing coincides with that of [HS05, Sec.
1] when S = T . (Indeed, compare with [HS05, Rmk. 1.1]: employing the notations of that remark

and the previous discussion, one has that, when M = [0 → T ] = T [0], then M∗ = Y ∗[1] = T̂ [1]

and ΦM : T [0] ⊗ T̂ [1] → Gm[1] is the pairing induced by the fact that T̂ represents the functor
Schk → Ab, S ′ 7→ HomS′(T,Gm). The induced pairing on k̄-points coincides, up to a shift, with
the second row of the above diagram.)

The proof of the general case uses a devissage argument, as follows.
Indeed, note that each of the two pairings defines a morphism, in the derived category of

Shét,k, S(k) → RHom([T̂ → A∗(k)],Gm[−1]), and hence a morphism S(k) → τ≤0 RHom([T̂ →
A∗(k)],Gm[−1]). By [Jos09, Theorem 1.3.1(1)], this morphism is an isomorphism for the pairing
of Harari and Szamuely. Hence, the composition:

α : S(k)→ τ≤0 RHom([T̂ → A∗(k)],Gm[−1])← S(k),



70 CHAPTER 3. STRONG APPROXIMATION ON HOMOGENEOUS SPACES

where the first morphism comes from pairing (3.5.20) and the second from pairing [HS05, Sec. 1],
is an endomorphism of S(k). Such endomorphism leaves, by functoriality, T (k) ⊆ S(k) invariant,
and, since the two pairings coincide in the cases S = T and S = A, it induces the identity on T (k)
and on S(k)/T (k). It follows that α − id : S(k) → S(k) induces a morphism A(k) → T (k). To
conclude the proof by devissage, we would like to infer that this morphism is 0. Unfortunately,
Hom(A, T ) is not necessarily 0 in the small étale site, where G denotes the (abelian) sheaf asso-
ciated to the algebraic commutative group G (i.e., G(k) in this case, but below we will use the
same notation in other sites). However, since Hom(A, T ) = 0 in the big étale site (after applying
Yoneda’s lemma this holds because A is proper and T is affine), it would suffice to show that the
pairing

[T̂ → A∗(k̄)]⊗L [0→ S(k̄)]→ Gm(k)[−1]
induced by (3.5.20) can be extended to the big site (we already know that the one defined in
[HS05, Sec. 1] does, see loc. cit.), because then the morphism A(k) → T (k) above would come
from an algebraic morphism A → T , and hence it would necessarily be 0. Since extending to
the whole big site seems to be difficult, we extend instead to a slightly smaller site, which we
call big integral, and is defined to be the étale site on the full subcategory of integral k-schemes.
This makes the sought extension easier to obtain, and, in this subcategory one still has that
Hom(A, T ) = 0 (indeed both A and T are integral, so this just follows from Yoneda’s lemma and
the fact that of course, even in the integral category, Hom(A, T ) = 0).

To show that this extension exists, we show that there are natural extensions of the various
objects involved in formula (3.5.20). The extensions of the evaluation pairing (3.5.21) and the
“Poincaré pairing” (3.5.22) are then completely natural.

We extend the sheaves as follows:

k(S)∗vert/k
∗
 (V 7→ Frac′vert(V ×k S)/O(V )∗), (3.5.23)

where Frac denotes the function field of the variety, vert indicates that the divisor of the function
is vertical with respect to the projection V ×k S → V ×k A, and the ′ indicates that the divisor
of the function is horizontal with respect to the projection V ×k S → V (note that imposing this
“horizontality” condition is what makes (3.5.23) a (pre)sheaf),

Div0(Ā) (V 7→ Div
′0(V ×k A)),

where the prime ′ indicates that the divisor is horizontal with respect to the projection V×kA→ V ,
and the 0 indicates that the divisor restricts to Div0(k(s′)×kA) for all points s′ ∈ V (analogously
as before, this horizontality is what grants what we defined is a (pre)sheaf);

Zfull
ab (S) :=

(
(V 7→ ZHom(V,S))/((t · P )− (P )− (t) + (e), t ∈ Hom(V, T ), P ∈ Hom(V, S))

)sh
,

Zab(S) Zab(S) := Ker(Zfull
ab (S)

deg−−→ Z),

Z0
ab(S) Z0

ab(S) := Ker(Zab(S)→ S),

where the latter morphism is defined just as (3.5.18).

We will assume throughout the rest of the proof that all the specializations of functions at the
specific points appearing are 6= 0. This may always be done without loss of generality.

Lemma 3.5.6. The following identity holds:

〈ab0(x), B〉 =
[
χ̃σ,η(ξ) ·

(
(σfη)zσ(�)

−1 · (σfη)tσ(⋆) ·
σǫη(⋆)

σǫη(tσ ·⋆)

)
·
(σηψ((∂h̄′σ)

−1x)
σηψ(x)

)]
,

(3.5.24)
for any � ∈ TG(k̄), ⋆ ∈ Gsc(k̄), for any Eσ ∈ Div0 Ḡab, for any χ̃σ,η ∈ k̄(SAG)∗vert/k̄∗, and for
any ψ ∈ k̄(H̄sc)∗ such that:
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• χ̃σ,η|TG = χσ,η,

• [ν∗Eσ] =
[
Dσ|SAG

]
in PicSAG, where ν : SAG → Ḡab denotes the projection,

• div χ̃σ,η = ∂Eσ,

• ψ ∈ k̄(H̄sc)∗ is such that there exists a L ∈ Div(H̄ ′) such that [L] = L and divψ = ρ∗HL.

Proof. The isomorphisms appearing between the first and second lines in the diagram (3.5.6) are
the following (we refer to [Dem11] for the proof that these are (iso)morphisms):

PicTG(Z
′) ∼= ẐHred

[(D, f)] 7→ (z 7→ fz(e))
(3.5.25)

PicTG(G
lin
) ∼= T̂Gsc

[(D, f)] 7→
(
t 7→ ft(⋆)

−1 · ǫ(t·⋆)
ǫ(⋆)

)

(3.5.26)

Pic(H ′) ∼= ẐHsc

[D] 7→
(
z 7→ z∗ϕ

ϕ

)

(3.5.27)

where ǫ ∈ k̄(Gsc)∗ is such that div ǫ = ρ∗GD, ⋆ is any element in Ḡsc(k), and ϕ ∈ k̄(H̄sc)∗ is
such that divϕ = ρ∗HD. We denote by ẑσ, t̂σ and w the images of respectively, (Dσ, fσ) under the
isomorphism (3.5.25), (Dσ, fσ) under (3.5.26), and L under (3.5.27).

We have the following quasi-isomorphism:

Cd
X : T̂G Pic0

(
Ḡab
)
⊕ T̂Gsc ⊕ ẐH̄red ẐHsc

C ′
X
d : k(SAG)

∗
vert/k

∗
Div0(G

ab
)⊕ T̂Gsc ⊕ ẐHred ẐHsc

η , (3.5.28)

where the first vertical morphism is restriction to TG ⊂ SAG. We remark that technically η is
only defined in the derived category.

We also have the following quasi-isomorphism:

C ′
X : ZHsc(k̄) ZHred(k̄)⊕ TGsc(k̄)⊕ Z0

ab(SAG) Zab(SAG)

CX : ZHsc(k̄) ZHred(k̄)⊕ TGsc(k̄) SAG(k̄)

v . (3.5.29)

We notice that [η((χ̃σ,η;−Eσ, ẑσ, t̂σ;w))] = B ∈ H2(Γk, C
d
X), and v((∂h̄σ; zσ, tσ, O; (ξ))) =

ab0(x), hence, in view of (3.5.9), (3.5.25), (3.5.26), (3.5.27) and Lemma 3.5.5, Lemma 3.3.5
(applied to C = C ′

X and C ′ = C ′
X
d) gives:

ab0(x) ∪ B =

[
χ̃σ,η(ξ) ·

(
(σfη)zσ(�)

−1 · (σfη)tσ(⋆) ·
σǫη(⋆)

σǫη(tσ ·⋆)

)
·
(σηψ((∂h̄′σ)

−1x)
σηψ(x)

)]
.

This concludes the proof of this lemma.

To use (3.5.24) for our comparison purposes we make specific choices of Eσ and χ̃σ,η, that will
lead us to identity (3.5.30) below.

We notice that, since SAG → Gab defines a Gn
m-torsor (for some n ≥ 0) on Gab that is Zariski

locally trivial, there exists, for each σ ∈ Γk, a gσ ∈ k(SAG)∗ such that gσ(t) = (fσ)t(e), ∀t ∈ TG(k)
and div(gσ) = Dσ − ν∗Eσ, where Eσ ∈ Div(Gab).

We now define χ̃σ,η := f−1
σ,η · (∂gσ)−1. We notice that, by (3.5.16), fσ,η · (∂gσ) restricts to χ−1

σ,η

on TG ⊂ SAG.
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We have that, for any t ∈ T (k̄), div(t∗gσ/gσ) = t∗Dσ −Dσ = div((fσ)t)|SAG (since t∗ν∗Eσ =
ν∗Eσ). From this we deduce that

t∗gσ/gσ = (fσ)t|SAG · (χ̃σ)t,

for some (χ̃σ)t(⋆) ∈ k(TG × SAG)
∗ such that (χ̃σ)t ∈ k[SAG]

∗ for every t ∈ T (k̄) where the
specialization makes sense. One may easily see that (χ̃σ)e = 1 and (χ̃σ)t(e) = 1, from which it
follows that (χ̃σ)t = 1 ∈ k(TG × SAG)∗.

Noticing that ∂gσ(ξ) = ∂(gσ(ξ)) · σgη(σξ)−1 · σgη(ξ), we can rewrite χ̃σ,η(ξ)
−1, up to a 2-

coboundary as follows (we remind the reader of Notation 3.3.2):

χ̃σ,η(ξ)
−1 , fσ,η(ξ) · σgη(σξ)−1 · σgη(ξ) = fσ,η(ξ) · (σfη)(∂ξ)(ξ)−1. (3.5.30)

To (hopefully) smoothen the computation of the LHS of (3.5.1) we introduce a second Galois
pseudo-action (as defined in Section 3.2) on k̄(Hsc)∗ and Div(Hsc). It is defined as follows:

(σ
†

f)(x) := (σf)(h̄−1
σ · x), σ†

D := (h̄−1
σ )∗(σD), (3.5.31)

where σ⋆ denotes the usual Γk-action on k̄(Hsc)∗ and Div(Hsc). We refer to this pseudo-action
as the “twisted” Γk-pseudo-action (as it will be the only non-standard one appearing). To avoid
confusion, we will use the notation ∂† to denote a coboundary morphism taken with respect
to the twisted Galois action. We notice that the restriction of the pseudo-actions (3.5.31) to
k̄(H ′)∗ ⊂ k̄(Hsc)∗ and Div(H̄ ′) ⊂ Div(Hsc) are actual actions of Γk. In fact, they are exactly the

ones obtained by pullbacking via the isomorphism H̄ ′ g·−→ Zx, where Zx := Z×X x →֒ Z, the usual
Γk-actions on k̄(Zx)

∗ and Div(Zx).

Lemma 3.5.7. Let t̃ ∈ TG(k) and a ∈ Gant(k) be such that ξ = t̃a (note that such t̃ and a always
exist, as one can easily prove using that Gant ⊂ SAG and that Gant → Gab is surjective). Then
x∗(α(B)) ∈ H2(Γk, k

∗
) is represented by the following cocycle:


fσ,η(g · ρH(x′)) · ∂†


ǫσ

(
ξ−1

ḡ · ιsc(x′)
)
· (fσ)t̃(ξ−1ḡξ · ρH(x′)) ·

(
σ†

ψ(x′)

ψ(x′)

)−1




x′=e

∈ Z2(Γk, k
∗
),

(3.5.32)
where the terms appearing on the right hand side should be thought of as functions in x′ ∈ Hsc,
the pedix x′ = e denotes specialization at x′ = e ∈ Hsc(k̄), and ψ is as in Lemma 3.5.6.

Proof. Let Hx ⊂ G be the stabilizer of x ∈ X(k). Note that x is a (trivial) left homogeneous
space under Hx, and that Zx → x is a right torsor under H ′, and this torsor is a form of the

H̄ ′
x-torsor Hx/H̃x → x̄. In particular, Zx → x is a “Z for the trivial Hx-homogeneous space x” in

the sense of Remark 3.3.9.
It then follows immediately from the fact that the morphism (3.3.9) is natural that we have

the following commutative diagram:

τ≤2RpX∗
GmX Qgeom

τ≤2R(pZx)∗GmZx Qgeom(x, Zx),

(3.5.33)

where vertical morphisms are defined through pullback via the inclusion Zx →֒ Z, and
Qgeom(x, Zx) denotes the complex defined in Section 3.3.3 associated to the left Hx-homogeneous
space x, and the H ′-torsor Zx → x “as Z”.

Recall that we are assuming that Dσ ∈ π∗ Div0(Ḡab) + (π′)∗ Div Ȳ (where π : Z → Gab

and π′ : Z → Y ). Let, for each σ ∈ Γk, E
′
σ ∈ Div0(Ḡab) and D′

σ ∈ Div Ȳ be such that
Dσ = π∗E ′

σ + (π′)∗D′
σ.
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We claim that

div


ǫσ

(
ξ−1

ḡ · ιsc(x′)
)
· (fσ)t̃(ξ−1ḡξ · ρH(x′)) ·

(
σ†

ψ(x′)

ψ(x′)

)−1

 =

ρ∗H(g
∗Dσ − ∂†L) ∈ ρ∗H Div(H ′) ⊂ Div(Hsc), (3.5.34)

where the term in bracket square on the LHS should be thought of as a function in x′ ∈ H
sc
,

which we denote by gσ. To obtain the above equality, note that, letting g′ = a−1g:

div


ǫσ

(
ξ−1

ḡ · ιsc(x′)
)
· (fσ)t̃(ξ−1ḡξ · ρH(x′)) ·

(
σ†

ψ(x′)

ψ(x′)

)−1

 = ρ∗H

(
((g′)∗Dσ − ∂†L)|H̄′

)
,

and that

π∗(π(a)∗Eσ − Eσ) = (a∗ − id)π∗Eσ = (a∗ − id)[π∗Eσ + (g′)∗(π′)∗D′
σ]

= (a∗ − id)[(g′)∗π∗Eσ + (π′)∗D′
σ] = g∗Dσ − (g′)∗Dσ, (3.5.35)

where the terms should be thought as divisors on Z, the third equality follows from the fact that
a commutes with g′ and that a∗π′ = π′, and the fourth follows from the fact that (g′)∗π = π. As
a consequence of (3.5.35), we have that (g∗Dσ − (g′)∗Dσ) |H̄′ = (π∗(π(a)∗Eσ −Eσ))|H̄′ = 0, which
proves the claim.

We notice that we have the following isomorphism of complexes:

Qgeom(x, Zx) = [k̄(Zx)
∗ → Div(Zx)→ Pic(H̄ ′)]

g∗−→ [k̄(H ′)∗ → Div(H̄ ′)→ Pic(H̄ ′)], (3.5.36)

where the action on the LHS is the usual one, and the one on the RHS is the twisted one. It then
follows now from Remark 3.3.4, in view of the commutativity of (3.5.33) and the isomorphism

(3.5.36) that, for any choice (g′σ) ∈ Fun(Γk, k̄(H
′)∗) and L′ ∈ Div(H̄ ′) such that div(g′σ) =

g∗Dσ − ∂†L′
and [L′

] = L ∈ Pic(H̄ ′), we have that f ′
σ,η = fσ,η · (∂†g′σ) ∈ Z2(Γk, k̄

∗) is a cocycle

representing x∗α. By (3.5.34) we have that, for any such choice with L′
= L, there exists

cσ ∈ Fun(Γk, k̄
∗) such that ρ∗Hg

′
σ = cσ · gσ. Lemma 3.5.7 follows.

In the calculations that follow we use the following notation: any = sign with references under
it stands for an equality that is justified by the operations or references under it. Most of the
references will refer to Lemma 3.5.8, which appears just after the calculations, and is basically
just a collection of easy-to-prove identities.

We have the following, where M := ξ−1
ḡ ∈ Gsc(k):

RHS =


fσ,η(g · x′) · ∂†


ǫσ

(
ξ−1

ḡx′
)
· (fσ)t̃(ξ−1ḡξx′) ·

(
σ†

ψ(x′)

ψ(x′)

)−1




x′=e

(3.5.37)

= (fσ,η(ξ ·M) · (∂fσ)t̃(M)(∂ǫσ)(M)) ·
(

(σfη)t̃(M)

(σfη)σ t̃
(
σM · h̄−1

σ

) ·
σǫη(M)

σǫη
(
σM · h̄−1

σ

)
)−1

· ∂†
(
σ†

ψ(x)

ψ(x)

)−1

(3.5.38)

=
3.5.8(4)

(
fσ,η(ξ ·M)

fσ,η(M)
· (∂fσ)t̃(M)

)
·
(

(σfη)t̃(M)

(σfη)σ t̃
(
σM · h̄−1

σ

) ·
σǫη(M)

σǫη
(
σM · h̄−1

σ

)
)−1

· ∂†
(
σ†

ψ(x)

ψ(x)

)−1

(3.5.39)

=
3.5.8(6)

(
fσ,η(ξ ·M)

fσ,η(M)
· (∂fσ)t̃(M)

)
·
(
(σfη)∂a(e) · (σfη)∂ξ−1(M) ·

σǫη(M)
σǫη
(
σM · h̄−1

σ

)
)−1

· ∂†
(
σ†

ψ(x)

ψ(x)

)−1

.

(3.5.40)
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On the other hand we have that:

LHS =χ̃σ,η(ξ) ·
(
(σfη)zσ(�)

−1 · (σfη)tσ(⋆) ·
σǫη(⋆)

σǫη(tσ ·⋆)

)
·
(σηψ((∂h̄′σ)

−1x)
σηψ(x)

)
(3.5.41)

,
(3.5.30)

fσ,η(ξ)
−1 · (σfη)∂ξ(ξ) ·

(
(σfη)zσ(�)

−1 · (σfη)tσ(⋆) ·
σǫη(⋆)

σǫη(tσ ·⋆)

)
·
(σηψ((∂h̄′σ)

−1x)
σηψ(x)

)

(3.5.42)

=
⋆ 7→e,� 7→e

(3.5.10),(3.5.13)

(
fσ,η(ξ)

−1 · (∂fσ)t̃(e)−1
)
· (∂fσ)t̃(e) · (σfη)∂ξ(ξ) ·

(
(σfη)∂ξ−1(e) ·

σǫη(e)
σǫη(tσ)

)
·
(σηψ((∂h̄′σ)

−1x)
σηψ(x)

)
.

(3.5.43)

In view of points 5., 8., 1., and 7. (appearing in the order they are being used) of Lemma
3.5.8, we obtain LHS , RHS−1, as wished.

Lemma 3.5.8. The following hold:

i. The function

(σfη)∂ξ−1(⋆) ·
σǫη(⋆)

σǫη(tσ · (z
−1
σ ⋆))

,

is constant in ⋆ ∈ Gsc(k) (we remind the reader of the convention of our notation gh, when
[C → P ] is a crossed module, as are [Hsc → H] and [Gsc → G]).

ii. We have that:
σM · h̄−1

σ = tσ · z
−1
σ M.

iii. For any (f,D) ∈ UPicTG(Z̄)
1, with D ∈ π∗ Div(Ḡab) + (π′)∗ Div(Ȳ ), we have that a∗ft = ft

for any a ∈ Gant(k̄). Moreover, for any a ∈ (TG ∩ Gant)(k̄) and t ∈ TG(k), we have that
fa(t) = fa(e).

iv. fσ,η(⋆) = (∂ǫσ)
−1(⋆), for any ⋆ ∈ Gsc(k̄).

v. We have the following:

fσ,η(ξ ·⋆)

fσ,η(⋆)
· (∂fσ)t̃(⋆) =

fσ,η(ξ)

fσ,η(e)
· (∂fσ)t̃(e) = fσ,η(ξ) · (∂fσ)t̃(e),

for any ⋆ ∈ Gsc(k̄) such that all the quantities appearing above are 6= 0.

vi. We have the following:

(σfη)t̃(M)

(σfη)σ t̃
(
σM · h̄−1

σ

) = (σfη)∂t̃−1(M) = (σfη)∂ξ−1(M) · (σfη)∂a(M) = (σfη)∂a(e) · (σfη)∂ξ−1(M).

vii. We have the following:

∂†

(
σ†

ψ(x)

ψ(x)

)
=

σηψ((∂h̄′σ)
−1x)

σηψ(x)
,

where the pseudo-action of Γk on the RHS is the one defined in (3.5.31).

viii. We have the following equality:

(∂fσ)t̃(e) · (σfη)∂ξ(ξ) , (σfη)∂a(e).
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Proof. i. The divisor of this function is null, so the first point follows from the fact that
k̄[Gsc]∗ = k̄∗.

ii. We have
σM · h̄−1

σ =
σξ−1

(σḡ) · h̄−1
σ ,

and

tσ = ḡ−1 · g(h̄−1
σ ) · σḡ = ḡ−1 ·

σg
(h̄−1

σ ) · σḡ = ḡ−1 · σḡ ·
σξ
(h̄−1

σ ) =
σξ−1

ḡ−1 · σξ−1

(σḡ) · h̄−1
σ ,

where the first equality follows from the following:

σg
(h̄−1

σ ) =
ghσ(h̄−1

σ ) =
g·ρH(h̄σ)·zσ(h̄−1

σ ) =
g
(h̄−1

σ ),

and the third equality follows from the fact that tσ and σξ commute. Hence:

σM · h̄−1
σ =

σξ−1

ḡ · tσ = (∂ξ)−1

M · tσ = tσ · z
−1
σ M,

as wished.

iii. Let A := Gant and T := TG, mA : A×Z → Z (resp.mT : T×Z → Z) be the restriction of the
G-action to A (resp. to T ). Let u be the morphism A×T ×Z → T ×Z, (a, t, z) 7→ (t, az),
pr : A × T × Z → T × Z be the projection, and let f̃ ∈ k̄(A × T × Z)∗ be defined as
u∗ft/pr

∗ft. Note that, for every a ∈ A(k̄), t ∈ T (k̄), the restiction of f̃ to {a} × {t} × Z
is well-defined (i.e. {a} × {t} × Z intersects the domain of f̃) and equal to a∗ft/ft, and
div(f̃ |{a}×{t}×Z) = div(a∗ft/ft) = (a∗ − id)(t∗ − id)D = 0. It follows that the divisor of f̃ is

trivial. Since the restriction of f̃ to {1} × Z is fe/fe = 1, it follows by Rosenlicht’s lemma
that f̃ ∈ k̄[A × T ]∗ ⊂ k̄[A × T × Z]∗. Since A is antiaffine, k̄[A]∗ = k̄∗, and we deduce,
again by Rosenlicht’s lemma, that k̄[A× T ]∗ = k̄[T ]∗. Since f̃(1, t,−) = 1 ∈ k̄[Z]∗ for every
t ∈ T (k̄), we deduce that f̃ ≡ 1. Hence a∗ft = ft for all a, t.

For the second part, we have: ft(e) · fa(e) = ft(a) · fa(e) = fat(e) = fa(t) · ft(e).

iv. We have that div(fσ,η · (∂ǫσ)−1) = 0. Since k̄[Gsc]∗ = k̄∗ and (fσ,η · (∂ǫσ)−1)(e) = 1, we
conclude the sought equality.

v. It is enough to notice that the divisor of the LHS (as a function in ⋆ ∈ Gsc), which is
(−ξ∗(∂Dσ) + t̃∗(∂Dσ))|Gsc , is trivial since (−ξ

∗(∂Dσ) + t̃∗(∂Dσ)) is the pullback of a divisor

from Gab.

vi. All equalities are a consequence of Point 3. of this lemma (plus Point 2. for the first equality).

vii. This follows immediately by expanding the LHS.

viii.
(∂fσ)t̃(e) · (σfη)∂ξ(ξ) , (σfη)∂a(e).

We have

(∂fσ)t̃(e) = ∂((fσ)t̃)(e) · (σfη)σt(e)−1 · (σfη)t(e) , (σfη)σt(e)
−1 · (σfη)t(e) = (σfη)∂t(t)

−1,

and
(σfη)∂ξ(ξ) = (σfη)∂ξ(t) = (σfη)∂t(t) · (σfη)∂a(t) = (σfη)∂t(t) · (σfη)∂a(e),

where the first and middle equalities follow from Point 3.
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3.6 Removing places

In what follows we are going to give a version of Theorem 3.1.1 for strong approximation
outside some set of (finite) places S, see Theorem 3.6.5. As usual, we fix a number field K, and
a set of finite places S ⊂M fin

K .
Let us recall, from the introduction of the thesis, that for a K-variety X we define the S-

modified Brauer–Manin group of X to be the following:

BrS X := Ker

(
BrX →

∏

v∈S

BrXKv

)
.

We define the Brauer–Manin set outside S of X as follows:

X(AS
K)

BrS X :=

{
{x ∈ X(AS

K) : 〈x,B〉 = 0 for all B ∈ BrS X} if X(KS) 6= ∅,
∅ otherwise. (3.6.1)

We clearly have an inclusion X(K)
S ⊂ X(AS

K)
BrS X , where ⋆S denotes the closure in the S-adeles.

We recall that the étale Brauer–Manin obstruction to strong approximation outside S on X
is defined as follows:

X(AS
K)

ét,BrS =
⋂

f :Y
F−→X

F finite
group scheme

⋃

[σ]∈H1(K,F )

fσ(Y σ(AS
K)

BrS Y σ). (3.6.2)

Since, by [CDX19, Proposition 6.4], X(AS
K)

ét,BrS is closed, we have thatX(K)
S ⊂ X(AS

K)
ét,BrS .

Theorem 3.6.1. Let G be a connected K-group, X be a G-homogeneous space with geometrically
connected linear stabilizers, and S be a finite set of places of K, and S0 ⊂ S ∩M fin

K := Sf . We
assume that the Tate-Shafarevich group X(K,Gab) is finite and that Gsc(K) is dense in Gsc(AS

K)

. We then have that Gscu(KSf\S0) ·X(K)
S0

= X(AS0
K )BrS0 X

• .

Remark 3.6.2. In Theorem 3.6.1 above one can also substitute BrS0 X ⊂ BrX with its quotient by
constant elements instead; i.e. the quotient BrS0 X/BrS0 K ⊂ BrX/BrK. Moreover, if we denote

by BrS0
loc(X) := Ker

(
BrX →∏

v∈S0
BrXKv/BrKv

)
, we have that X(AS0

K )BrS0 X = X(AS0
K )Br

S0
loc(X)

(and the same holds for X(AK)•). This follows from the surjectivity BrK ։ ⊕v∈S0 BrKv, which
is an immediate consequence of the Albert-Brauer-Hasse-Noether Theorem.

Remark 3.6.3. In the case that S0 = S ∩ M fin
K , Theorem 3.6.1 yields the equality X(K)

S0
=

X(AS0
K )BrS0 X

• , i.e. a result of strong approximation on X, without the “Gscu error”.

Remark 3.6.4. In the case that S0 = ∅, Theorem 3.6.1 reproves the main theorem of [BD13].
However, it does use [Dem13, Cor. 6.3], and Theorem 3.5.1, itself somehow a complement to
[Dem11]. As mentioned before, Demarche remarks in [Dem13, Rmq 6.4] that the compatibility of
Theorem 3.5.1 is enough to re-prove Theorem 3.3.7 in this case.

We notice that Theorem 3.6.1 does not follow immediately from Theorem 3.1.1 by projecting
on X(AS

K), as shown in Remark 3.4.7 and Proposition 3.4.8.
The following will follow from Theorem 3.6.1 using an argument similar to that of the proof of

Theorem 3.1.1. We notice that, when S0 = ∅, Theorem 3.6.5 is a reformulation of Theorem 3.1.1.

Theorem 3.6.5. Let G be a connected K-group, X be a G-homogeneous space with linear sta-
bilizers, and S be a finite set of places of K, and S0 ⊂ S ∩M fin

K . We assume that the Tate-
Shafarevich group X(K,Gab) is finite and that Gsc(K) is dense in Gsc(AS

K). We then have that

Gscu(KSf\S0) ·X(K)
S0

= X(AS0
K )ét,BrS0

• .



3.6. REMOVING PLACES 77

3.6.1 Lemmas on complexes

Definition 3.6.6. A good complex is a complex of commutative algebraic K-groups [M−2
f−2−−→

M−1
f−1−−→ M0] such that M−2 and M−1 are groups of multiplicative type, M0 is a semi-abelian

variety, Ker f−2 is a finite group, and Mi is in degree i.

For a good complex C of commutative algebraic K-groups, and a field F ⊃ K, we denote by
Hi(F,C) the F -hypercohomology of the complex C. When F is a local field, we endow the groups
Hi(F,C) with their natural topologies as in [Dem13, Sec 5.1].

We remind the reader that we are using the notation Pi(K,C) :=
∏′

v∈MF
Hi(Fv, C)•, where

the restricted product is taken over Hi(Ov, C)→ Hi(Fv, C) (after an implied choice of an integral
model for C has been made), and Hi(Fv, C)• denotes the usual hypercohomology for v ∈ M fin

K

and hypercohomology modified à la Tate (as defined in [HS05, p. 103]) for v ∈M∞
K .

Lemma 3.6.7. Let C be a good complex. The topological group P0(K,C)/H0(K,C) is quasi-
compact. As a direct consequence, P0(K,C)/H0(K,C) is compact, where H0(K,C) denotes the
closure of H0(K,C) in P0(K,C).

Proof. We follow a devissage used by Demarche in [Dem13]. We first prove the result when the

complex C is middle exact, i.e. if C = [M−2
f−2−−→M−1

f−1−−→M0] with Ker f−1 = Im f−2.
We have a commutative diagram:

Ker f−2 0 0

M−2 M−1 M0

0 0 Coker f−1.

(3.6.3)

Denoting Ker f−2 by F and Coker f−1 by M , the commutative diagram (3.6.3) induces the fol-
lowing distinguished triangle:

F [2]→ C →M → F [3], (3.6.4)

where, for an abelian group A, we also use the letter A, with a slight abuse of notation, to denote
the complex [· · · → 0 → A → 0 → · · · ], where A lies in degree 0. We notice that, because of
the assumption that C is good, M is a semi-abelian variety (being the quotient of a semi-abelian
variey by a subgroup of multiplicative type) and both F [2] and M =M [0] are good.

The triangle (3.6.4) induces the following commutative diagram with exact rows:

H2(K,F ) H0(K,C) H0(K,M) H3(K,F )

P 2(K,F ) P0(K,C) P 0(K,M) P 3(K,F ).α

(3.6.5)

All the morphisms of (3.6.5) are continuous by construction, and α is open (this easily follows
from a computation of the long exact sequence associated with the distinguished triangle F [2]→
C → M → F [3], where F , C,M are integral models of F,C and M over a ring of S0-integers
OK,S0 , for S0 sufficiently large).

The Poitou-Tate theorem [Har20, Thm. 17.13] implies that the last vertical arrow of (3.6.5)
is an isomorphism of finite groups. Since H0(K,M)→ P 0(K,M) is injective, a diagram chasing
of (3.6.5) yields the following exact sequence:

P 2(K,F )/H2(K,F )→ P0(K,C)/H0(K,C)
ᾱ−→ P 0(K,M)/H0(K,M)→ F ′, (3.6.6)
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where F ′ is some finite discrete group (this follows from the finiteness of P 3(K,F )). Moreover,
all the morphisms of (3.6.6) are continuous, and ᾱ is open. As proven in [Har08, Lemme 4],
the quotient P 0(K,M)/H0(K,M) is quasi-compact (actually Harari proves the compactness of
P 0(K,M)/H0(K,M), but, because of Lemma 3.A.5, this is equivalent to what we want). We also
have that P 2(K,F )/H2(K,F ) ∼= H0(K,F d)D (as topological groups) by the Poitou-Tate exact
sequence. Since H0(K,F d)D is a finite discrete set, we deduce that P 2(K,F )/H2(K,F ) is one as
well. Therefore, applying Lemma 3.A.7, we deduce that P0(K,C)/H0(K,C) is quasi-compact, as
wished.

We now turn to the case of a general good C. Let p :M−1/ Im(f−2)→ P be an embedding of
the quotient M2/ Im(f−2) into a quasitrivial torus P , and let C ′ be the complex [M−2 →M−1 →
M0 ⊕ P ], which is middle exact. We have the following distinguished triangle:

P → C ′ → C → P [1], (3.6.7)

which induces the following commutative diagram with exact rows and continuous morphisms:

H0(K,P ) H0(K,C ′) H0(K,C) H1(K,P )

P 0(K,P ) P0(K,C ′) P0(K,C) P 1(K,P ).

(3.6.8)

Hilbert’s Theorem 90 and Shapiro’s lemma imply that the last column is zero, hence we get the
surjectivity of:

P0(K,C ′)→ P0(K,C),

which induces a (continuous) surjective morphism P0(K,C ′)/H0(K,C ′) → P0(K,C)/H0(K,C).
It follows now from the quasi-compactness of P0(K,C ′)/H0(K,C ′) that P0(K,C)/H0(K,C) is
quasi-compact as well, thus concluding the proof.

Corollary 3.6.8. Let C be a good complex. The groups P0(K,C) and (P0(K,C))∧ have same
image in H2(K,Cd)D, under the morphism ϑ : (P0(K,C))∧ → H2(K,Cd)D defined by local duality
(we recall that ϑ is the map induced from local duality as in (3.3.7)).

Proof. The compactness of P0(K,C)/H0(K,C) implies that its image in P0(K,C)∧/H0(K,C)
∧
is

closed. Since it is also, by the definition of profinite completion, dense, we see that its image is
the whole quotient P0(K,C)∧/H0(K,C)

∧
.

The corollary now follows from the following commutative diagram:

H0(K,C) P0(K,C) H2(K,Cd)D

(H0(K,C))∧ (P0(K,C))∧ H2(K,Cd)D

ϑ

ϑ

,

of which both rows are complexes and the second one is exact.

Lemma 3.6.9. Let C be a good complex, defined over a local field Kv. Then, the pairing:

H0(Kv, C)
∧
• ×H2(Kv, C

d)• → H2(Kv, Kv
∗
)→ Q/Z, (3.6.9)

is perfect.

Proof. We focus on the proof for non-archimedean v, the proof when v is archimedean follows the
same pattern with regular cohomology replaced by Tate cohomology. The proof follows the same
devissage as the one in Lemma 3.6.7, described in diagram (3.6.3) and (3.6.7), of which we borrow
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the notation. We start with the case that C is middle exact. We have the following distinguished
triangles:

F [2]→ C →M → F [3],

and
F d[−3]→Md → Cd → F d[−2].

We deduce that the rows of the following commutative diagram are exact:

H−1(Kv,M) H2(Kv, F ) H0(Kv, C) H0(Kv,M) H3(Kv, F )

H3(Kv,M
d)D H0(Kv, F

d)D H2(Kv, C
d)D H2(Kv,M

d)D H−1(Kv, F
d)D.

(3.6.10)
SinceH2(Kv, F ) andH

3(Kv, F )(∼= 0) are finite groups, H0(Kv, C) and H0(Kv,M) are endowed
with their profinite topologies, and H−1(Kv,M) = H−1

∧ (Kv,M) ∼= 0 (see [HS05, Sec. 2] for the
definition of H−1

∧ ), we deduce that the first row of the following diagram is exact:

H−1
∧ (Kv,M) H2(Kv, F ) H0(Kv, C)

∧ H0(Kv,M)∧ H3(Kv, F )

H3(Kv,M
d)D H0(Kv, F

d)D H2(Kv, C
d)D H2(Kv,M

d)D H−1(Kv, F
d)D

.

(3.6.11)
Since the first and fourth columns are isomorphisms by [HS05, Thm 0.1], and the second and fifth
columns are isomorphisms by local duality for finite Galois modules, we deduce that the middle
column is an isomorphism as well, concluding the proof of the middle exact case. For the general
case, we use the following distinguished triangle (again, we borrow the notation used in the proof
of the previous lemma):

P → C ′ → C → P [1], (3.6.12)

from which we deduce the exactness of the rows of the following commutative diagram:

H0(Kv, P ) H0(Kv, C
′) H0(Kv, C) H1(Kv, P )

H2(Kv, P
d)D H2(Kv, (C

′)d)D H2(Kv, C
d)D H1(Kv, P

d)D.

(3.6.13)

Since P is quasi-trivial, we deduce that the last column is 0. Moreover, since all groups appearing
on the upper row are endowed with their profinite topologies, and profinite completion is a right
exact functor, we deduce the exactness of the rows of the following commutative diagram:

H0(Kv, P )
∧ H0(Kv, C

′)∧ H0(Kv, C)
∧ 0

H2(Kv, P
d)D H2(Kv, (C

′)d)D H2(Kv, C
d)D 0.

(3.6.14)

Since the second column is an isomorphism by the previous case, and the first is an isomorphism
by local duality for tori, we deduce that the third column is an isomorphism as well.

3.6.2 Main theorem with connected stabilizers and removed places

Let B∞(X) ⊂ Br1,ur(X) be defined as:

B∞(X) := Ker


Br1(X)→

∏

v∈Mfin
K

Br(XKv)/BrKv


 . (3.6.15)
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Proof of Theorem 3.6.1. We claim that we may assume, without loss of generality thatX(K) 6= ∅.
In fact, we have the following inclusion:

X(AK)
BrS0 X ⊂ X(AK)

B∞(X).

In particular, if X(AK)
BrS0 X 6= ∅, then X(AK)

B∞(X) 6= ∅, and, by Theorem 3.B.1, we deduce
that X(K) 6= ∅. On the other hand, if X(AK)

BrS0 X = ∅, then, since X(K) ⊂ X(AK)
BrS0 X , there

is nothing to prove. So this concludes the proof of the claim. From now on, we can and will
assume that X = G/H, with H linear and connected. We may and will use all the abelianization
paraphernalia of sections 3.3.2 and 3.3.3 (in particular Theorem 3.5.1), of which we borrow the
notation as well.

We notice the following:

X(K)
S0

= πS(X(K)S0), (3.6.16)

where we are using the notations introduced in Section 3.2 for adelic-like objects.
We have the following commutative diagram of Hausdorff topological spaces, where the rows

are exact (the first is exact in a set-wise sense, in fact the middle term is even a direct product of
the other two here) and every morphism is continuous:

X(KS0) X(AK)• X(AS0
K )•

H0(KS0 , CX) P0(K,CX) P0
S0
(K,CX)

H2(KS0 , C
d
X)

D H2(K,Cd
X)

D H2
S0
(K,Cd

X)
D

abS0

πS0

ab
ϑ abS0

ϑS0

ϑ′S0

ι

ϑ′

πDS0

, (3.6.17)

where H0
S0
(K,Cd

X) := Ker(H2(K,Cd
X) → H2(KS0 , C

d
X)). We remind the reader that there is a

natural morphism H2
S0
(K,Cd

X)
α−→ BrS0(X), and that this is compatible with the Brauer–Manin

obstruction in the sense of Theorem 3.5.1 . We hence have the following sequence of inclusions:

X(AK)
α(H2

S0
(K,CdX))

• ⊃ X(AK)
BrS0 (X)
• ⊃ Gscu(KSf\S0) ·X(K)S0 .

Therefore, because of (3.6.16), to prove Theorem 3.6.1 it is enough to prove that Ker(ϑS0 ◦
πS0) = X(AK)

α(H2
S0

(K,CdX))

• ⊂ Gscu(KSf\S0) ·X(K)S0 (we use, with slight abuse of notation, the
symbol Ker to denote the fiber of 0). We have that

i. Gscu(KSf\S0) ·X(K)S0 = (Kerϑ)S0 by Theorem 3.3.7,

ii. (Kerϑ)S0 = ab−1((Kerϑ′)S0), as it easily follows from the commutativity of (3.6.17), the
fact that abS0 is surjective by [Dem13, Prop. 2.18] and Lemma 3.A.2,

iii. (Kerϑ)S0 ⊃ ab−1
(
(Kerϑ′)S0

)
by the point above, the openness (proved in Lemma 3.3.6) of

ab : X(AK)• → P0(K,CX) and Lemma 3.A.3,

iv. Ker(ϑS0 ◦ πS0) = ϑ−1(Im(πDS0
)) = ab−1(ϑ′−1(Im(πDS0

))) by the commutativity of (3.6.17) and
the exactness of its third row.

Hence, by the points above, it is sufficient that we prove that ϑ′−1(Im(πDS0
)) = (Kerϑ′)S0 .

We have the following factorization of the morphism ϑ′:

P0(K,CX)→ P0(K,CX)�H0(KS0 , CX)
→ P0(K,CX)�Kerϑ′

ϑ′′−֒→ H2(K,Cd
X)

D. (3.6.18)
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We have that:

ϑ′
(
ι(H0(KS0 , CX)) · (Kerϑ′)

)
= ϑ′′

(
ι(H0(KS0 , CX)) · (Kerϑ′)/(Kerϑ′)

)

= ϑ′′ ((ι(H0(KS0 , CX)) · (Kerϑ′)) /(Kerϑ′))

= πDS0

(
ϑ′
S0
(H0(KS0 , CX))

)
= πDS0

(
ϑ′
S0
(H0(KS0 , CX))

)

= πDS0

(
H2(KS0 , C

d
X)

D
)
= Im(πDS0

),

(3.6.19)

where the second and fourth identity follow from Lemma 3.A.4 (whose hypothesis hold by
Lemma 3.6.7 and Corollary 3.6.8 for the second identity and by the fact that the dual of a torsion
group is profinite, hence compact, for the fourth identity) , the third by the commutativity of the
lower-left square of (3.6.17), and the fifth one follows from the fact that ϑ′

S0
has dense image in

H2(KS0 , C
d
X)

D (by 3.3.6). Now, it easily follows from (3.6.19) that ϑ′−1(Im(πDS0
)) = (Kerϑ′)S0 .

Proof of Theorem 3.6.5. The inclusion Gscu(KSf\S0) ·X(K)
S0 ⊂ X(AS0

K )
étS0 ,BrS0
• follows from the

fact that Gscu(KSf ) ·X(K) ⊂ X(AS0
K )

étS0 ,BrS0
• (which follows from Lemmas 3.4.21 and 3.4.22 as in

the proof of Theorem 3.1.1) and the fact that the latter is closed.

The inclusion Gscu(KSf\S0) ·X(K)
S0 ⊃ X(AK)

étS0 ,BrS0
• can be proven as follows. Let α ∈

X(AK)
étS0 ,BrS0
• , using Lemmas 3.4.17 and 3.4.18 as in the proof of Theorem 3.1.1, we know that

there is a (right) torsor Z
ϕ−→ X under a finite group scheme F , such that Z is a (left) homogeneous

space underG with geometrically connected stabilizers. Since α ∈ X(AK)
étS0 ,BrS0
• , we may assume,

up to twisting Z by some cocycle ∈ H1
lt(K,F ), that there is a β ∈ Z(AK)

BrS0 Z such that ϕ(β) =

α. Since we know, by Theorem 3.6.1, that β ∈ Gscu(KSf\S0) · Z(K)
S0
, we deduce that α ∈

ϕ
(
Gscu(KSf\S0) · Z(K)

S0
)
⊂ Gscu(KSf\S0) ·X(K)

S0
.

With the same method of proof, one may obtain the following, which is, in some sense, a limit
of Theorem 3.6.5 as S0 grows to the whole M fin

K (putting S = S0 ∩M fin
K ):

Proposition 3.6.10. Let G be a connected K-group, X be a (left) G-homogeneous space with
linear stabilizers. We assume that the Tate-Shafarevich group X(K,Gab) is finite. We then have

that X(K) 6= ∅ if and only if X(AK)
ét,B(X)
• 6= ∅.

Proof. The implication X(K) 6= ∅ ⇒ X(AK)
ét,B(X)
• 6= ∅ is clear, since X(K) ⊂ X(AK)

ét,B(X)
• .

On the other hand, assume that X(AK)
ét,B(X)
• 6= ∅, then combining Lemma 3.4.17 and Lemma

3.4.18, we know that there exists a finite group scheme F , a right F -torsor ϕ : Y → X such that
Y is (left) homogeneous space with geometrically connected stabilizers. Moreover, since there

exists a (Pv) ∈ X(AK)
ét,B(X)
• , we may assume (up to twisting Y ) that there exists an adelic point

(Qv) ∈ Y (AK)
B(Y ). Hence, by Theorem 3.B.4 (see also the discussion that follows the theorem)

there exists a Q ∈ Y (K), hence ϕ(Q) ∈ X(K) 6= ∅.

3.A Appendix: Topological and set-theoretic lemmas

In this appendix, we will use the following notation:

Notation 3.A.1. Let X and A be non-empty sets, if Y ⊂ X × A, we denote by YA the set
π−1
A (πA(Y )), where πA : X × A→ A is the projection on the second factor.

We warn that this notation is similar to one defined in Section 3.2, which was referring to the
particular case of adele-like sets. We believe that there should be no risk of confusion, since 3.A.1
is only used in this appendix.
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Lemma 3.A.2. Let X, Y,A,A′ be non-empty sets and assume we have functions f : X → Y ,
p : A′ → A, and a subset Z ⊂ Y × A. If p is surjective, we have that:

((f × p)−1(Z))A′ = (f × p)−1(ZA),

where we are using the notation 3.A.1.

Proof. The proof is straightforward.

Lemma 3.A.3. Let f : X → Y be an open morphism of topological spaces. We have that, for
any subset Z ⊂ Y , f−1(Z) ⊃ f−1(Z).

Proof. For any U ⊂ X disjoint from f−1(Z), the image f(U) ⊂ Z is open and disjoint from Z,
hence from Z. Unraveling the definitions, the lemma follows.

Lemma 3.A.4. Let α : X → Y be a continuous map of topological spaces, with X compact and
Y Hausdorff. Then, for any subset S ⊂ X we have that α(S) = α(S).

Proof. This is common knowledge.

Lemma 3.A.5. Let B be a topological abelian group (not necessarily Hausdorff), let 0 ∈ B be the
unit element, and let D = {0} be its closure. Then, B is quasi-compact if and only if the quotient
B/D, which is Hausdorff, is compact.

Proof. If B is quasi-compact, then B/D, being a quotient of it, is clearly quasi-compact as well.
If B/D is compact, we are going to prove the quasi-compactness of B by showing that, if

C = {Ci}i∈I is a collection of closed subsets of B such that ∩i∈ICi = ∅, then there exists a finite
subset of indexes I0 ⊂ I such that ∩i∈I0Ci = ∅. In fact we notice that, whenever P ∈ Ci, then
π−1(π(P )) = P + D = P ⊂ Ci, where π : B → B/D denotes the projection. Hence, for each
i ∈ I, we have that Ci = π−1(π(Ci)). Therefore, ∩i∈Iπ(Ci) = ∅, and there exists a finite I0 ⊂ I
such that ∩i∈I0π(Ci) = ∅. It follows that ∩i∈I0Ci = ∩i∈I0π−1(π(Ci)) = π−1(∩i∈I0π(Ci)) = ∅, as
wished.

Lemma 3.A.6. Let B be a topological group, and let D and K be two subsets of B, where D is
closed and K is quasi-compact. Then the sum D +K is closed in B.

Proof. Since D is closed, we know that the topological quotient B/D is Hausdorff. Let π :
B → B/D be the projection. We have that D + K = π−1(π(K)). Since K is quasi-compact,
π(K) ⊂ B/D is as well. Hence, since B/D is Hausdorff, π(K) is closed. Therefore π−1(π(K)),
i.e. D +K is closed as well.

Lemma 3.A.7. Let A
ϕ−→ B

ψ−→ C
α−→ F be an exact sequence of topological groups, where all the

morphisms are continuous. Assume that F is finite and discrete, ψ is open, and A and C are
quasi-compact. Then B is quasi-compact as well.

Proof. First of all we may assume, up to changing C with Kerα, without loss of generality, that
F = {1}.

Let us now prove that the morphism ψ is closed. Let D ⊂ B be a closed subset, and let
D′ := A′ + D be the sum of the image A′ under ϕ of A and D. Since A is quasi-compact, so
is A′. Hence, by Lemma 3.A.6, D′ := A′ + D is closed. Since ψ(D) = ψ(D′), and ψ(B \ D′) =
C \ ψ(A′ +D) = C \ ψ(D), and the former is open, one has that ψ(D) is closed, as wished.

We now prove the compactness of B. Let I be a set of indices, and B = ∪i∈IUi be a covering
of B. Let, for each c ∈ C, {U c

1 , . . . , U
c
n(c)} be a finite subcovering of U such that ψ−1(c) ⊂ ∪n(c)i=1U

c
i
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(the subcovering may always be assumed to be finite since ψ−1(c), being a translate of A′ is
quasi-compact). Let now,

Vc :=



c

′ ∈ C | ψ−1(c′) ⊂
n(c)⋃

i=1

U c
i



 = C \ ψ

(
B \ ∪n(c)i=1U

c
i

)
,

which is open (since ψ is closed).
Since C is compact and ∪c∈CVc = C, there exist a finite number n ∈ N and c1, . . . , cn ∈ C

such that ∪nj=1Vcj = C. It is straightforward to verify that then ∪nj=1 ∪
n(cj)
i=1 U

cj
i = B.

3.B Appendix: Hasse principle

The following result is basically already present in [BCTS08, Appendix A]. However, since it
is not explicitly stated there, we represent it here for completeness, with a proof that is just a
simplified version of the proof of [BCTS08, Theorem A.1].

Theorem 3.B.1. Let K be a number field and X be a left homogeneous space under a connected
algebraic group G/K, satisfying X(K,Gab) finite. We assume that the G-action on X has con-
nected geometric stabilizers. We then have that X(K) 6= ∅ if and only if X(AK)

B∞(X) 6= ∅ (see
(3.6.15) for the definition of B∞(X)).

We also include a second formulation, which seems less interesting per se, but it gives a cleaner
version of Proposition 3.6.10. For this second formulation, let us define by Xab the maximal
abelian torsor quotient of X. I.e., the (GIT) quotient X/Glin. Note that there is a natural
morphism πX : X → Xab.

Theorem 3.B.2. In Theorem 3.B.1, the condition X(K) 6= ∅ is also equivalent to X(AK)
B(X) ∩

π−1
X (Xab(AK)

ét) 6= ∅.
Note that the above condition holds, for instance, when X(AK)

ét,B(X) 6= ∅ (indeed we have
that πX(X(AK)

ét) ⊆ Xab(AK)
ét).

Remark 3.B.3. i. For any smooth geometrically connected variety X/K (3.6.15) describes the
Brauer set that is locally constant on non-archimedean places. We notice that, if B ∈ Br(X)
is locally constant for all v /∈ S (with S finite), then, since there exists a smooth model X
for X over some SpecOK,S′ (with S ′ ⊃ S finite), such that B ∈ Br(X ), and, by enlarging
S ′, we may assume, by Lang-Weil estimates, that X (Ov) 6= ∅ for all v /∈ S ′ ∪M∞

K , we have
that B is necessarily 0 for all v /∈ S ′∪M∞

K (since it is constant, and its value on the integral
points is automatically 0).

ii. We notice that B∞(X) differs from the classical B(X) just by the behaviour at M∞
K . In

particular, if K is totally imaginary, then B∞(X) = B(X). So, in this case, Theorem 3.B.1
reduces to [BCTS08, Thm 3.4], so it is already stated explicitly in the paper [BCTS08].

iii. We notice that, by [Har94, Thm. 2.1.1] and the first point of this remark, for any smooth
geometrically connected variety Y/K, all elements of B∞(Y ) are unramified elements of
Br(Y ).

We will actually prove the following stronger result, which is, however, a bit more involuted
in its formulation. This does not simplify the proof of the theorem, so the only reason we do so
is because this stronger result is needed in Proposition 3.6.10.

We use the notation Xab to denote the maximal abelian torsor quotient of X. I.e., the quotient
X/Glin. Note that there is a natural morphism πX : X → Xab. Moreover, we define:

BweirdX := {b ∈ B∞(X) | bv ∈ π∗
X BrXab

Kv ∀v ∈M∞
K }.
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Theorem 3.B.4. In the setting of Theorem 3.B.1, the condition X(K) 6= ∅ is equivalent to
X(AK)

Bweird(X) 6= ∅.

For the application to Proposition 3.6.10, we need the following lemma.

Lemma 3.B.5. X(AK)
ét,B ⊆ X(AK)

Bweird(X).

Proof. To prove this, we may assume that X(AK)
ét,B 6= ∅. In this case, we deduce by functoriality

that Xab(AK)
ét,B 6= ∅, hence Xab(AK)

B(Xab) 6= ∅. By [Har06] this implies that Xab(K) 6= ∅, or,
in other words, Xab ∼= Gab. In particular, there exists an isogeny [2] : Xab → Xab, defined just
by translating the isogeny [2] : Gab → Gab.

Recall that, for a principal homogeneous space Y of an abelian variety A defined over a field
F with H3(F, F

∗
) = 0 (such as global or local fields), one has that Br1 Y/ ImBrF ∼= H1(F,A′),

where A′ is the dual abelian variety, and the isomorphism is functorial in Y . Moreover, when F is
a real field, note that one has that H1(F,A′) is 2-torsion (by a standard restriction-corestriction

argument), and hence is annihilated by the morphismH1(F,A′)
[2]−→ H1(F,A′), where [2] : A′ → A′

denotes multiplication by 2.
It follows that the cover [2] : Gab → Gab satisfies the following property: for every b ∈ Br1G

ab
Kv

,
with v real, and every twist [2]σ : Gab

Kv ,σ
→ Gab

Kv
by a σ ∈ Z1(Kv, G

ab[2]), we have that [2]∗σb is
constant.(The same holds also for v complex, but it is trivial.) It follows that, for every twist fσ of
the Gab[2]-étale cover f : X ×Xab,[2]X

ab → X (by a σ ∈ Z1(K,Gab[2])), the pullback f ∗
σBweird(X)

is contained in B(X). Hence:

X(AK)
ét,B ⊆

⋃

σ∈Z1(K,Gab[2])

fσ(X(AK)
B(X)) ⊆

⋃

σ∈Z1(K,Gab[2])

fσ(X(AK)
f∗σBweird(X)) ⊆ X(AK)

Bweird(X),

as wished.

Proof of Theorem 3.B.4. As said before, we follow step-by-step the reductions of [BCTS08, The-
orem A.1].

If X(K) 6= ∅, then ∅ 6= X(K) ⊂ X(AK)
Bweird(X). So we focus now on proving the other

direction. Namely, we assume X(AK)
Bweird(X) 6= ∅.

We do a first reduction to show that it is enough to prove the result for G such that Glin is
reductive.

Let Y := Gu\X, G′ := G/Gu, so that Y is aG′ homogeneous space (this is becauseGu is normal
in G). Let ϕG : G→ G′ be the standard projection. We have a canonical morphism ϕ : X → Y ,
that is ϕG-equivariant. We assume that we already know the result for (Y,G′). We notice that
ϕ∗

Bweird(Y ) ⊂ Bweird(X). In particular, if (xv) ∈ X(AK)
Bweird(X), then (ϕ(xv)) ∈ Y (AK)

Bweird(Y ).
So, we deduce, from the reduction assumption, that Y (K) 6= ∅. Let y0 ∈ Y (K). We then have
that Xy0 → y0 ∼= SpecK is a homogeneous space of Gu. In particular, by [Bor95, Lem 3.2], we
deduce that Xy0(K) 6= ∅, concluding the proof of this reduction step.

For the second reduction step, we know by [BCTS08, Proposition 3.1] that there exists a
group G̃ such that X may be regarded as a homogeneous space under G̃, with linear connected
stabilizers and such that G̃ss is semisimple simply connected. Moreover, by [BCTS08, Lemma
A.3] we still have that X(K, G̃ab) is finite. So we can and will assume from now on that G is
such that Gu = {1}, G̃ss is semisimple simply connected, and the geometric stabilizer H̄ ⊂ Glin

is connected.
The homogeneous space X defines a K-form M of H̄mult = H̄/H̄ssu (see [Bor95, Sec. 4.1]),

the largest quotient of H̄ of multiplicative type, and a natural homomorphism χX :M → Gsab :=
G/Gss.

We treat the case where χX is injective first (i.e. H̄ssu = Ḡ∩Ḡss). In this case, let Y ′ := X/Gss,
and ψ : X → Y ′ be the standard projection. We have that Y ′ is a homogeneous space with linear
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stabilizers under Gsab = G/Gss, a semi-abelian variety, and is therefore, a torsor under a semi-
abelian variety G′′ itself. Moreover, since Y ′ has linear stabilizers by the Gsab-action, we have
that Gab ∼= (G′′)ab, and, consequently X((G′′)ab) ∼= X(Gab), so that X(G′′) is finite.

Let (xv) ∈ X(AK)
Bweird(X), and let U ⊂ X(AK)

Bweird(X) be the open subset defined as∏′

v∈Mfin
K

X(Kv) ×
∏

v∈M∞
K
Cxv , where

∏′ denotes the usual restricted product defining the adele

sets (see Section 3.2), and Cxv ⊂ X(Kv) denotes, for an archimedean v, the connected component
in which lies xv. Since the Brauer–Manin pairing is constant on the connected components of
the archimedean places, we have that U ⊂ X(AK)

Bweird(X). We have by [BCTS08, Lem. A.2],
that, for each v ∈ M∞

K , ψ(Cxv) ⊂ Y (Kv) is a connected component of Y (Kv). So, if we define
V ⊂ Y (AK) to be

∏′

v∈Mfin
K

Y (Kv)×
∏

v∈M∞
K
ψ(Cxv), we have that ∅ 6= V ⊂ Y (AK)

Bweird(Y ) (since

ψ∗
Bweird(Y ) ⊂ Bweird(X)). By the lemma below this implies that ∅ 6= V ⊂ Y (AK)

B∞(Y ), and, by
[Har06], there exists a y1 ∈ V ∩ Y (K).

Lemma 3.B.6. We have that Bweird(Y ) = B∞(Y ).

Proof. According with our notation, we denote by πY : Y → Y ab the maximal abelian torsor
quotient of Y .

Taking the long exact sequence of cohomology associated to the following exact triangle:

[K(Y ab)∗/K
∗ → Div Y ab]

π∗
Y−→ [K(Y )∗/K

∗ → Div Y ] ∼= [K(Y )∗vert/K
∗ → Divvert Y ]

→ [T̂ → 0]→ [K(Y ab)∗/K
∗ → Div Y ab][1],

where vert stands for vertical with respect to πY , and the second morphism is defined by restriction
on the fibers of πY , and using the isomorphism [HS08, Lemma 2.1] for Y and Y ab, we deduce that
there is an exact sequence

Bra(Y
ab)

π∗
Y−→ Bra Y

α−→ H2(K, T̂ ).

Note that α(B∞(Y )) ⊆X
2
∞(K, T̂ ) := Ker(H2(K, T̂ )→∏

v∈Mfin
K

H2(Kv, T̂ )).

We claim that X2
∞(K, T̂ ) = X

2(K, T̂ ). This follows from a more-or-less standard Chebotarev

argument, which we present for the sake of completeness. Since H2(K, T̂ ) = limLH
2(L/K, T̂ ),

where L varies among finite Galois extension ofK that split T , we may prove thatX2
∞(L/K, T̂ ) =

X
2(L/K, T̂ ) (the notation here is the intuitive one). Since H2(F, T̂ ) ∼= H1(F, T̂ ⊗Q/Z), functori-

ally in the field F , we have to prove that X1
∞(L/K, T̂⊗Q/Z) = X

1(L/K, T̂⊗Q/Z). Letting Γ :=

Gal(L/K), we have that X1(L/K, T̂ ⊗Q/Z) = Ker(H1(Γ, T̂ (L)⊗Q/Z)→∏
v∈MK

H1(Γv, T̂ (L)⊗
Q/Z)), where Γv denotes the decomposition group of L/K at v. We may express X1

∞ analogously
by replacing

∏
v∈MK

with
∏

v∈Mfin
K

. For all archimedean places v, Γv is a cyclic subgroup of Γ. It

follows by Chebotarev’s density theorem that there are infinitely many unramified finite places
w such that Γw = Γv. In particular, it immediately follows that X1

∞ = X
1, thus concluding the

proof of the claim.
It follows that for all b ∈ B∞(Y ), α(bv) = 0 for all v ∈ M∞

K , and hence bv ∈ ImBr1(Y
ab
Kv

) for

these v. Hence, since certainly bv ∈ ImBrKv for all v ∈M fin
K , b ∈ Bweird(Y ). We have just proves

the inclusion B∞(Y ) ⊆ Bweird(Y ). Since the other inclusion is clear, this concludes the proof.

The fiber Xy1 is a homogeneous space under the semisimple simply connected group Gss, with
geometric stabilizers isomorphic to H̄ssu. Moreover, by construction, Xy1 has real points in all
real places. Hence, by [Bor93, Cor. 7.4], there exists a rational point x′ ∈ Xy1(K), concluding
this case.

We turn now to the general case.
We construct as in the proof of [BCTS08, Theorem A.5] a quasi-trivial torus P , a P -torsor

ϕ : Z → X, such that Z is a G× P homogeneous space, and ϕ is equivariant by π : G× P → G.
Moreover, as in [BCTS08, Theorem A.5], we may and will assume that (Z,G × P ) satisfies
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all of the reductions above, that the geometric stabilizers are still isomorphic to H̄, and that
the homomorphism M ∼= MZ → (G × P )sab ∼= Gsab × P is injective (here MZ denotes the
K-form of H̄mult defined by Z, which happens to be, in this case, isomorphic to M). Since,
by Hilbert Theorem 90 and Shapiro’s Lemma, the PKv -torsors Zxv → xv are trivial for each
v ∈MK , there exists an adelic point (zv) ∈ Z(AK) such that (ϕ(zv)) = (xv). Moreover, combining
Lemma 3.B.7 with the fact that Xab = Zab, we deduce that ϕ∗ : Bweird(X) → Bweird(Z) is an
isomorphism, hence, (ϕ(zv)) ∈ Z(AK)

Bweird(Z). Since Z satisfies the assumption of the previous
case, we already know that there exists a point z0 ∈ Z(K). In particular, ϕ(z0) ∈ X(K), from
which we conclude.

The following lemma is a slightly modified version of [BCTS08, Lemma A.4]:

Lemma 3.B.7. Let ϕ : Z → X be a torsor under a quasi-trivial torus P , where Z and X
are smooth geometrically connected varieties over a number field K. Then there is an induced
homomorphism ϕ∗ : B∞(X)→ B∞(Z) and it is an isomorphism.

Proof. Let ϕc : Zc → Xc be smooth compactifications of ϕ, Z and X. We have the following
commutative diagram (see Remark 3.B.3(ii) for the rows), where the columns are defined by the
pullback (ϕc)∗:

0 B∞(X) Br1(X
c)

∏
v∈Mfin

K
Br1(X

c
Kv

)/BrKv

0 B∞(Z) Br1(Z
c)

∏
v∈Mfin

K
Br1(Z

c
Kv

)/BrKv,

∼ ∼ (3.B.1)

where the last two columns are isomorphisms by [BCTS08, Lemma A.4]. Hence the morphism in
the first column is an isomorphism as well, concluding the proof of the lemma.

3.C Appendix: 2-torsors

In this appendix, let ι : H →֒ G be an embedding of connected groups, defined over a field k
of characteristic 0, such that H is linear and reductive and Glin is reductive. We use the notation
CH := [Hsc → H], and CG := [Gsc → G]. Let H (resp. G) be the k-group stack associated (in
the sense of [Bre07, p. 419]) to the crossed module CH (resp. CG). For a k-group stack C, we let
TORS(C) denote the 2-category of left C-torsors (in the sense of [Bre07, Sec. 6.1]).

We recall the following definition (present e.g. in [Dem13]):

Definition 3.C.1. The set H0(k, [CH → CG]) is the set of couples (D, r : D∧H G ∼−→ G) ∈
TORS(H)×Mor(TORS(G)) up to the following equivalence. Two elements (D1, r1 : D1

∧H G ∼−→
G) and (D2, r2 : D2

∧H G ∼−→ G) are equivalent if there exists a morphism Mor(TORS(H)) ∋ s :
D1

∼−→ D2 and a 2-morphism α ∈ Mor2(TORS(G)):

G

D2

∧H G

r2

;;

α

KS

D1

∧H G.
s
∧H G

oo

r1

cc

The formulas appearing in Proposition 3.C.3 below are just the ones coming from making
Definition 3.C.1 explicit using cocycle formulas, such as the ones that one may find in [Bre07,
Sec. 6] (see especially subsections 6.2 and 6.3 of loc. cit.).

Before coming to Proposition 3.C.3, giving an explicit description of the set H0(k, [CH → CG])
in terms of cocyles, we recall the following notation (which is in essence borrowed from [Bor96]).
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We define T := Spec k, S := Spec k̄ and Γ := Γk. We are going to denote by Sn the scheme
S ×T . . .×T S, where the product is taken n times.

We recall that we have isomorphisms ϕn : Sn
∼−→ ⊔

(γ1,...,γn−1)∈Γn−1 S defined as follows:

ϕ−1
n |S(γ1,...,γn−1)

: S → Sn is the map (id, γ1, γ1 · γ2, . . . , γ1 · · · γn−1);

where S(γ1,...,γn−1) denotes the copy of S in
⊔

(γ1,...,γn−1)∈Γn−1 S indexed by (γ1, . . . , γn−1) ∈ Γn−1,

and γi : S
γi−→ S denotes the Spec k-morphism Spec(Spec γi⋆ : Spec k → Spec k). We notice that ϕn

is a morphism of S-schemes, if we endow
⊔

(γ1,...,γn−1)∈Γn−1 S with its natural S-scheme structure,
and Sn with the S-scheme structure coming from the projection on the first coordinate.

For an a T -scheme Y , sometimes we denote, with a slight abuse of notation, the elements of
Y (Sn) by yγ1,...,γn−1 ∈ Fun(Γn−1, Y (S)), to actually denote the composition:

Sn
ϕn−→

⊔

(γ1,...,γn−1)∈Γn−1

S
yγ1,...,γn−1−−−−−−→ Y.

For a crossed module

C := [
−1

C
ρ−→

0

P ]

we define C1
C(S) := C(S3) × P (S2), C0

C(S) := C(S2) × P (S), and C−1
C (S) := C(S). Using the

notation above, we denote elements of C1
C(S) (resp. C

0
C(S), C

−1
C (S)) by (cσ,η, pσ) (resp. (c̄σ, p̄), c̃).

For each of C i
C(S), i = −1, 0, 1, we denote by e ∈ C i

C(S) the trivial cocycle. We recall that C0
C(S)

and C−1
C (S) have group operations (denoted by ◦1 and ◦2) defined as follows:

(c̄1σ, p̄
1) ◦1 (c̄2σ, p̄2) := (

p̄1 c̄2σ · c̄1σ, p̄1 · p̄2), (3.C.1)

c̃1 ◦2 c̃2 := c̃1 · c̃2. (3.C.2)

We define Z1
C(S) as follows:

Z1
C(S) :=

{
(cσ,η, pσ) ∈ C1

C(S),

{
pση = ρ(cσ,η)pσ

σpη,

cση,νcσ,η = cσ,ην
pσσcη,ν .

}
(3.C.3)

We have a right action of C0
C(S) on Z

1
C(S), and one of C−1

C (S) on C0
C(S) × Z1

C(S), defined as
follows:

⋆1 : Z
1
C(S)×C0

C(S)→ Z1
C(S), (cσ,η, pσ)⋆1(c̄σ, p̄) :=

(
p̄−1[

c̄ση · cσ,η · pσσ c̄−1
η · c̄−1

σ

]
, p̄−1 · ρ(c̄σ) · pσ · σp̄

)
,

(3.C.4)
⋆0 : (C0

C(S)× Z1
C(S))× C−1

C (S) → C0
C(S)× Z1

C(S),
((c̄σ, p̄), (cσ,η, pσ)) ⋆0 c̃ := ((c̃−1 · c̄σ · pσσ c̃, ρ(c̃)−1 · p̄), (cσ,η, pσ)) . (3.C.5)

We also use the notation (a, x) ⋆0 b =: (a ⋆x0 b, x).
The actions above satisfy the following properties:

(a ◦1 b) ⋆x0 c = (a ⋆x0 c) ◦1 b, (a ⋆1 b) = a ⋆1 (b ⋆
a
0 c). (3.C.6)

Remark 3.C.2. When C and P are commutative, we may identify C i
C(S) with C i(Γ, C(S)) (see

Subsection 3.3.1), where C(S) := [
−1

C(S)
ρ−→

0

P (S)]. Under these identifications Z1
C(S) corresponds

to Z1(Γ, C(S)). In this case, the actions ⋆1 and ⋆0 correspond to the following operations:

a ⋆1 b = a+ ∂(ξ1b), (a, c) ⋆0 b = (a− ξ1∂ξ0b, c),

where the ∂ on the right hand sides is the one appearing in Subsection 3.3.1, and ξ1 (resp. ξ0)
: C(S2)× P (S)→ C(S2)× P (S) (resp. : C(S)→ C(S)) is the map (−id, id) (resp. −id).
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Proposition 3.C.3. Keeping the notation above, T = Spec k, S = Spec k, we have a natural
isomorphism between H0(k, [CH

ι∗−→ CG]) and the following set:

(uσ,η, ψσ, aσ, g) ∈ Z1
CH

(S)× C0
CG

(S) = Hsc(S3)×H(S2)×Gsc(S2)×G(S),

s.t.





ψση = ρH(uσ,η)ψσ
σψη,

uση,νuσ,η = uσ,ην
ψσσuη,ν ,

g · ι(ψσ) = ρG(aσ) · σg,
g[ιsc(uσ,η)] = aση · (σaη)−1 · aσ−1.

, i.e. with α = (uσ,η, ψσ) and β = (aσ, g), ι(α) ⋆1 β
−1 = e;

quotiented by the following equivalence relation:

(α1, β1) ∼ (α2, β2) ∈ Z1
CH

(S)× C0
CG

(S), if there exists

(c, d) ∈ C0
CH

(S)× C−1
CG

(S), s.t.

{
α1 = α2 ⋆1 c,

β1 = (β2 ◦1 ι(c)) ⋆e0 d.

Moreover, the image under the natural morphism H0(k, [H
ι−→ G]) → H0(k, [CH

ι−→ CG]) of the
element (hσ, g) ∈ Z1

[1→H](S) × C0
[1→G](S) = H(S2) × G(S) (where g · hσ = σg) is represented by

(e, hσ, e, g) (where the e’s denote constant cocyles valued in the identity element).

Sketch of Proof. A more detailed proof may appear in a future version of this work or in other
work. However, the proof is in essence an easy calculation from [Bre07, Sec. 6] (keeping in mind
that, since we are over the étale site of the spectrum of a field, the hypercoverings appearing in
[Bre07, Sec. 6] may always be dominated by Čech coverings by [AM69, Example 9.11]).

Remark 3.C.4. Our definitions coincide with those of Demarche [Dem09, Sec. 4.2.1.4], in the
following sense. Our definitions of Z1, C0 coincide with those in [Dem09, Sec. 4.2.1.4] with
[F → G] = [C → P ], and our C−1

C coincides with Demarche’s F (K̄). His Definition 4.2.5
coincides (under the identifications M1 = CH and M2 = CG) with our explicit cocycle description
of Z1

CH
(S)× C0

CG
(S) appearing in the proposition above.

Moreover, his action

∗ : Z0(K, [M1 →M2])×
(
C0(K,M1)× F2(K̄)

)
→ Z0(K, [M1 →M2])

in [Dem09, p. 150] coincides (under the identifications CH = M1, CG = M2 and Z0(K, [M1 →
M2]) = Z1

CH
(S)× C0

CG
(S)), with:

(α2, β2), (c, d) 7→ (α2 ⋆1 c, (β2 ◦1 ι(c)) ⋆e0 d),

which the reader may easily verify to be a group action using the properties (3.C.6).



Chapter 4

Ramified descent

4.1 Introduction

Recall that in this chapter we look for a link between the Brauer–Manin obstruction and
“ramified descent”. In particular, for a cover ψ : Y → X of K-varieties (K being a number
field) that is generically a torsor under a finite group scheme G/K, we construct a subgroup
BrψX ⊆ BrX (see Definition 4.4.5) such that the following holds.

Theorem 4.1.1. The inclusion X(AK)
ψ ⊆ X(AK)

Brψ X holds. Moreover, even when G is com-
mutative, the group BrψX is not necessarily algebraic, and the transcendental part may provide
non-trivial obstruction.

The motivation for this theorem comes, apart from its interest in the matter of “ramified
descent”, also from the following question of Harari:

Question 4.1.2. Could the descent set for ramified covers be linked to a non-algebraic Brauer–
Manin obstruction?

Moreover, we also prove:

Proposition 4.1.3. Let X be a smooth, geometrically connected variety over K. Then X(K) ⊆
X(AK)

ψ, the closure being in X(AK).

Note that, in particular, when X is proper, the above proposition says that the (ramified)
descent set X(AK)

ψ provides an obstruction to the Hasse principle and weak approximation.

Structure of the chapter In Section 4.2 we settle our notation. In Section 4.3 we formally
define the “descent set” of a ramified cover, show some basic properties, and then show how this
connects to the question of Harari mentioned in the introduction. In Section 4.4, we introduce
the Brauer subgroup BrψX, prove that this provides an obstruction to ramified descent, and
then compare it with the “classical” algebraic descent obstruction (showing, in particular, that
BrψX contains the “classical” algebraic obstruction). In Section 4.5, we prove that the descent
set provides an obstruction to the Hasse Principle and weak approximation on the whole X. In
Section 4.6, we provide an example where BrψX is purely transcendental. Appendix 4.A contains
some elementary lemmas that are used in Section 4.6. Appendix 4.B talks briefly about other
already existing works containing the idea of “ramified descent”.

4.2 Notation

Fields Unless specified otherwise, F will always denote a perfect field, k a field of characteristic
0 and K a number field.

89
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MK (resp. M f
K ,M

∞
K ) denotes the set of (non-archimedean, archimedean) places of K.

For a place v ∈ MK (resp. v ∈ M f
K), Kv (resp. Ov) denotes the v-adic completion of K

(resp. the v-adic integers).
AK (resp. AS

K , for a subset S ⊂ MK) denotes the topological ring of adeles of K (resp. S-
adeles), i.e. the topological ring

∏′
v∈MK

Kv (resp.
∏′

v∈MK\SKv), the restricted product being on
Ov ⊆ Kv.

For a finite subset S ⊆MK , KS denotes the product
∏

v∈SKv. We let KΩ denote the product∏
v∈MK

Kv

For a Galois extension L/K, Gal(L/K) denotes the Galois group of the extension. For a field
k with algebraic closure k, Γk := Gal(k/k).

Abelian groups For a group M of multiplicative type over a field k (i.e. a commutative group

scheme, which is an extension of a finite group by a torus), M̂ := Homk(Mk,Gm,k) denotes the
Γk-module of characters.

For a torsion abelian group A, AD will denote the profinite abelian group Hom(A,Q/Z)
endowed with the compact-open topology. If A is a profinite abelian group, AD will denote the
torsion group Homcont(A,Q/Z), where Q/Z is endowed with its discrete topology. We recall that,
by Pontryagin duality, if A is torsion or profinite, there is a canonical isomorphism A ∼= (AD)D.

Geometry All schemes appearing in this chapter are separated, therefore, we always tacitly
assume this hypothesis throughout the chapter.

A variety X over a field k is a scheme of finite type over a field k (not necessarily integral).
If X is an integral scheme, we denote by ηX or η(X) its generic point.
For a k-scheme X, we denote the residue field of a point ξ ∈ X by k(ξ).

Groups and torsors Group actions will be assumed to be right actions unless specified other-
wise. Let S be a scheme, G be a group scheme over S and X be an S-scheme. A right G-torsor
over X is an X-scheme Y → X, endowed with a right G-action m : Y ×S G → Y , that is
X-equivariant (i.e. such that the composition Y ×S G m−→ Y → X is equal to the composition

Y ×S G pr1−−→ Y → X) such that there exists an étale covering X ′ → X and an X ′-isomorphism
Y ×X X ′ ∼= G×X X ′ that is G-equivariant.

For an abstract group N , and a scheme S (resp. a field F ), we denote by NS (resp. NF ) the
S-scheme (resp. F -scheme) ⊔n∈NS, endowed with the natural S(resp. F )-group scheme structure
endowed from the group structure of N . If X is an S-scheme, a torsor Y → X under an abstract
group G is a torsor under the constant group GS.

If G/k is an algebraic group, and k ⊆ F is a field extension, we will use the notation
H i(F,G) (with i ∈ N and i = 0, 1 if G is not commutative) to denote the cohomology group/set
H i(ΓF , G(F )) = Zi(ΓF , G(F ))/B

i(ΓF , G(F )) (where B
i(ΓF , G(F )) is a subgroup when G is com-

mutative and is just an equivalence relation otherwise).
If G is not commutative the set of cocycles Z1(ΓF , G(F )) is the one of non-abelian (1-)cocycles,

i.e., those functions gσ : ΓF → G(F ) that satisfy gστ = gσ
σgτ . The set H1(ΓF , G(F )) is the

quotient of 1-cocycles by the equivalence relation B1(ΓF , G(F )) : gσ ∼ g′σ if there exists g ∈ G(F )
such that g′σ = g−1gσ

σg. Note that these cocycles correspond to (right) G-torsors through the
standard correspondence [Sko01, p.18, 2.10].

If ξ ∈ Z1(K,G), we use the notation Gξ to denote the inner twist of G by ξ, and Gξ to denote
the left principal homogeneous space of G obtained by twisting G by the cocycle ξ. This twist
is naturally endowed with a right action of Gξ. See [Sko01, p. 12-13] for more details on these
constructions.

If X is a quasi-projective k-scheme endowed with a (left) G-action, and ξ ∈ Z1(k,G), we use
the notation Xξ to denote the twisted k-variety (Gξ×GX). [We refer the reader to [Sko01, p. 20],
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[Ser94, Sec. I.5.3] and [Ser94, Sec. III.1.3] for the existence of the twist and immediate properties
of the twisting operation]. The variety Xξ is naturally endowed with a (left) Gξ-action. We recall
that there exists always an isomorphism Xξ ×k k ∼= X ×k k.

If X is endowed with a right G-action we may still do the twisting operations, by taking the
corresponding left action, using the canonical isomorphism G ∼= Gop, g 7→ g−1.

Brauer group Recall that the Brauer group of a schemeX is defined to be the étale cohomology
group H2

ét(X,Gm), and that, when X is a variety defined over a number field K, this provides an
obstruction, known as the Brauer–Manin obstruction to local-global principles, in the following
sense. There is a pairing (the Brauer–Manin pairing):

X(AK)× BrX → Q/Z,

defined as sending ((Pv), B) to ((Pv), B) :=
∑

v invv B(Pv), where invv : H
2(ΓKv , Kv

∗
)→ Q/Z is

the usual invariant map (see e.g. [Har20, Thm 8.9] for a definition). Whenever B ∈ ImBrK or
(Pv) ∈ X(K) (diagonally immersed in X(AK)), we have that the pairing ((Pv), B) is zero by the
Albert-Brauer-Noether-Hasse theorem. In particular, it follows that X(K) is a subset of

X(AK)
BrX := {(Pv) | ((Pv, B)) = 0 for all B ∈ BrX}.

For a scheme X over a field F , we adopt the usual notation Br1X := Ker(BrX → BrXF )
and Br0X := Im(p∗ : BrF → BrX), where p : X → SpecF denotes the structural morphism,
and BraX := Br1X/Br0X.

To avoid too cumbersome notation, we will usually identify, when X is a smooth variety over a
characteristic 0 field k, the group BrX with its image in Br k(X) under the pullback map, which
is injective by [CTS21, Theorem 3.5.5]. Accordingly, for any open subscheme U ⊆ X, we will,
with a slight abuse of notation, denote the pullback BrX → BrU with an inclusion BrX ⊆ BrU
(⊆ Br k(X)). We will say that an element β ∈ Br(k(X)) is unramified over X if resX(β) = 0,
where resX denotes the residue map (defined e.g. in [CTS21, Theorem 3.7.3]):

BrK(X)
resX−−→

⊕

D⊆X
D irreducible divisor

H1(k(D),Q/Z),

or, equivalently, if it belongs to BrX ⊆ Br k(X). We say that β is unramified if β ∈ BrXc,
for one (or, equivalently, all, by [CTS21, Prop. 3.7.10]) smooth compactification(s) Xc of X. We
denote the subgroup of unramified elements by Brnr(k(X)) or BrnrX.

Cohomology For a scheme X, an étale sheaf F on X and every n ≥ 0, the notation Hn(X,F)
will always denote the étale cohomology Hn

ét(X,F).

Equivariant commutative diagrams Let S be a scheme. For S-group schemes G1, G2,
equipped with a morphism G1 → G2 (usually this morphism will be implicit) and torsors

Z1
G1−→ W1, Z2

G2−→ W2, we will say that a diagram

Z1 Z2

W1 W2

G1 G2
(4.2.1)

commutes if the underlying commutative diagram is commutative and if the morphism Z1 → Z2

is (G1 → G2)-equivariant.
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4.3 Basic definitions and properties

4.3.1 Descent set

Descent set for torsors Let K be a number field, G be a finite group scheme over K, W be
a smooth geometrically connected variety over K, and ϕ : Z → W be a G-torsor.

To recall the definition of the descent set of a torsor, let us first recall the definition (and
immediate properties) of the twist of a torsor by a cocycle.

For every cohomological class ξ ∈ H1(K,G), there exists a twisted torsor ϕξ : Zξ → W of
the torsor ϕ under the twisted form Gξ of G. The class [ϕξ] ∈ H1(K,Gξ) is given by the image
of [ϕ] ∈ H1(K,G) under the well-known isomorphism H1(K,G) → H1(K,Gξ), [Z] 7→ [Zξ] (see
e.g. [Sko01, p.20, 21]). When G is commutative, we have that Gξ ∼= G (canonically), and the
morphism H1(K,G)→ H1(K,Gξ), [Z] 7→ [Zξ] becomes [Z] 7→ [Z]− [ξ].

Recall that the descent obstruction set W (AK)
ϕ associated to ϕ is defined as follows:

W (AK)
ϕ :=

⋃

ξ∈H1(K,G)

ϕξ(Zξ(AK)) ⊆ W (AK), (4.3.1)

As proven in [CDX19, Prop. 6.4], W (AK)
ϕ is closed in W (AK) in the adelic topology. More-

over, for completeness, we remind the reader that there is an inclusion W (K) ⊆ W (AK)
ϕ (see

e.g. [Sko01, Section 5.3]), although this inclusion is irrelevant for the purpose of this thesis.
We are interested in defining and studying an analogue set of (4.3.1), when the morphism ϕ

is a G-cover rather than a G-torsor (this means that we will allow ramification but demand the
harmless assumption that Z is integral). We introduce the suitable setting in the next paragraph.

Covers and G-covers A morphism ψ : Y → X is a cover if X and Y are normal (we do not
include integrality in our definition of normality), ψ is finite, X is integral and every connected
component of Y surjects ontoX. If G is a finite étale group scheme over a perfect field F (étaleness
is automatic if charF = 0), a G-cover ψ : Y → X is a cover where both X and Y are F -varieties
and such that there is a X-invariant G-action Y ×k G→ Y such that there is a non-empty open
subscheme U ⊂ X over which ψ is an (étale) G-torsor.

Remark 4.3.1. Equivalently, a cover ψ : Y → X of a normal F -variety X is a G-cover if the
generic fiber is a torsor under GF (X). Indeed, Y is the relative normalization of X in the generic
fiber YF (X) [Sta20, Tag 0BAK], hence a G-torsor structure on the generic fiber extends uniquely
to a G-action on the whole Y by the universal property of relative normalization [Sta20, Tag
035I]. This is clear if G is constant and follows by étale descent in general.

Descent set for G-covers Let X be a smooth geometrically connected K-variety, and let
ψ : Y → X be a G-cover.

Let U ⊂ X be an open subscheme such that ψ−1(U)→ U is an étaleG-torsor. Let V := ψ−1(U)
and let ϕ = ψ|V : V → U . We have a descent set U(AK)

ϕ in U(AK), defined as in (4.3.1).
Recall from the introduction:

Definition 4.3.2. We define the descent set for the G-cover Y → X as the closure X(AK)
ψ :=

U(AK)ϕ in X(AK).

Note that the topology here is the adelic one for X(AK) (X might not be proper). However,
in the end, we will use all of this mainly in the proper setting, where the adelic topology coincides
with the product topology on X(AK) = X(KΩ) =

∏
v∈MK

X(Kv).
We show in Lemma 4.3.4 below that Definition 4.3.2 is independent from the choice of U .

Before proving that, let us remark why there is no conflict of notation with (4.3.1) (which might
arise when Y → X itself is an étale G-torsor).
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Remark 4.3.3. When the morphism Y → X itself is étale (and, hence, an étale G-torsor), let
X(AK)

ψ,1 be the set X(AK)
ψ defined through (4.3.1) applied to the G-torsor Y → X, and

X(AK)
ψ,2 be the set defined in Definition 4.3.2. Taking U = X in Definition 4.3.2 (recall that

we are going to show, in Lemma 4.3.4, that this definition is independent from the choice of U),
we see that X(AK)

ψ,2 = X(AK)ψ,1. However, by [CDX19, Prop. 6.4], X(AK)
ψ,1 is closed, hence

X(AK)
ψ,1 = X(AK)

ψ,2 and the notation X(AK)
ψ is unambiguous.

Warning. Note that, as the continuous map U(AK) →֒ X(AK) is not a topological immersion,
the set X(AK)

ψ ∩ U(AK) might very well be bigger than U(AK)
ϕ. The reader may verify that,

in the example given in Section 4.6, this is exactly the case.

The following lemma shows that the above definition does not depend on the choice of U :

Lemma 4.3.4. Let ν : Y sm → Y be a G-equivariant desingularization of Y , and let r be the
composition ψ ◦ ν : Y sm → X. Note that, for every ξ ∈ H1(K,G), there is a twisted form of
r : Y sm → X with respect to ξ, which we denote by rξ : Y

sm

ξ → X. We have that:

X(AK)
ψ =

⋃

ξ∈H1(K,G)

rξ(Y sm

ξ (AK)).

Note that, when Y is smooth, the above identity holds then with Y instead of Y sm.

Proof. First of all, note that a G-equivariant desingularization ν : Y sm → Y always exists because
of the existence of strong resolution of singularities in characteristic 0, see e.g. [EH02].

Let V ′ := ν−1(V ), note that V ′ ν−→ V is an isomorphism (since V is regular). We claim that:

⋃

ξ∈H1(K,G)

ϕξ(Vξ(AK)) =
⋃

rξ(V ′
ξ (AK)) =

⋃
rξ(V ′

ξ (AK)) =
⋃

rξ(V ′
ξ (AK)) =

⋃

ξ∈H1(K,G)

rξ(Y sm
ξ (AK)),

where the union is over ξ ∈ H1(K,G) everywhere, and in the third term, V ′
ξ (AK) denotes the

closure in Y sm
ξ (AK)). In fact, the first two identities are immediate, the third follows from the

fact that rξ is proper, and the fourth holds because, for each v ∈MK , V
′
ξ (Kv) is dense in Y

sm
ξ (Kv)

(keeping in mind that Y sm
ξ is smooth, this follows from [CTS21, Theorem 10.5.1]).

Setting From now on we fix, until Section 4.5 (included), a number field K, a finite group
scheme G/K, a G-cover ψ : Y → X, an open subscheme U ⊆ X such that V := ψ−1(U) → U is
étale. We denote this last G-torsor by ϕ : V → U .

We are interested in giving an explicit description (for instance, in terms of a Brauer–Manin
obstruction) of the setX(AK)

ψ. As explained in the introduction, ideally, we would like a (possibly
explicit) answer to the following question:

Question 4.3.5. Does there exist a B ⊆ Br(X) such that X(AK)
ψ = X(AK)

B?

We will mainly be interested in the question above in the case when X is proper. In this
work we will not answer the question in any specific instance, but rather, in the end, provide a
non-algebraic B such that X(AK)

ψ ⊆ X(AK)
B (and also, for which it might seem conjecturally

reasonable that the inclusion is actually an equality, at least when G is commutative).

Obstruction to existence and weak density of rational points Note that it easily follows
from the definition that X(AK)

ψ provides an obstruction to the existence and (weak) density of
K-rational points on U . In fact, we have, by standard descent theory, that:

U(K) ⊆ U(AK)
ϕ,



94 CHAPTER 4. RAMIFIED DESCENT

and, hence:
U(K) ⊆ U(AK)ϕ = X(AK)

ψ,

where the closure is taken inside X(AK) (so, when X happens to be proper, this is the closure
with respect to the weak topology).

Remark 4.3.6. We will prove in Section 4.5 that actually, we even have that X(K) ⊆ X(AK)
ψ,

proving that the subset X(AK)
ψ ⊆ X(AK) provides an obstruction to the Hasse principle and

weak approximation not only on U , but on the whole X as well. Let us remark that, although
the “ramified descent set” was already implicitly defined in [CS20, Section 13], it seems that the
authors do not prove that this set contains the whole X(K), and that thus defines an obstruction
to the Hasse principle and weak approximation for K-points on X (and not just those of U).

By the Zariski purity theorem (see [Sza09, Theorem 5.2.13]), whenever a cover Y → X, with
X regular, is unramified, it is étale. Since, as we have seen in Remark 4.3.3, in this case the set
X(AK)

ψ reduces to the well-studied set defined through (4.3.1), the real interest resides in the
case where Y → X is ramified. For this reason, we refer to the question above as the “ramified
descent problem” for the G-cover ψ.

4.3.2 A reformulation in terms of Galois cohomology

In this subsection, we reformulate the setting as that of a question asked by David Harari at
the “Rational Points 2019 workshop” in 2019.

We assume for this subsection that G is commutative and that X is proper. Let [ϕ] ∈ H1(U,G)
be the element representing the G-torsor V → U . For any v ∈ MK , there is a map U(Kv) →
H1(Kv, G), sending a point P : SpecKv → U to the class [ϕ|P ] ∈ H1(Kv, G) of the restricted
(pullback) torsor ϕ|P . We define:

Ev := Im([ϕ|−] : U(Kv)→ H1(Kv, G)).

We have the following, which gives a more cohomological description of the set X(AK)
ϕ (and

is the main proposition of this subsection), in terms of the sets Ev just defined:

Proposition 4.3.7. Let (Pv) ∈ U(KΩ) =
∏

v∈MK
U(Kv). For any β ∈ H1(K,G), we denote by

βv the image of β in H1(Kv, G). The following are equivalent:

i. (Pv) ∈ X(AK)
ϕ;

ii. For every finite S ⊆MK there exists β ∈ H1(K,G) such that:

{
βv = [ϕ|Pv ] ∀ v ∈ S,
βv ∈ Ev ∀ v /∈ S. (4.3.2)

This connects us to the problem of Harari, which we represent here.
The question is the following:

Question 4.3.8 (Harari). Let S be a finite subset ofMK , and let, for each v ∈ S, αv be an element
of Ev. Assuming the necessary condition (NC) below, does there exist a β ∈ H1(K,G) such that

{
βv = αv ∀ v ∈ S,
βv ∈ Ev ∀ v /∈ S ?

Necessary condition (NC). Let G′ be the Cartier dual of G. We are going to formulate the
necessary condition (NC) in three equivalent ways:

(NC)1 there exists a β ∈ H1(K,G) such that βv = αv for v ∈ S, and βv ∈< Ev > for v /∈ S;
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For the other two equivalent formulations, we recall a well-known consequence of the Poitou-
Tate sequence. We define:

H1(K,G)S := {α ∈ H1(K,G) | αv ∈< Ev > for all v /∈ S} (4.3.3)

H1(K,G′)S := {α ∈ H1(K,G′) | αv ∈< Ev >
⊥ for all v /∈ S}. (4.3.4)

Lemma 4.3.9. There is an exact sequence:

H1(K,G)S →
∏

v∈S

H1(Kv, G)→ H1(K,G′)DS , (4.3.5)

where the pairing ∏

v∈S

H1(Kv, G)×H1(K,G′)S → Q/Z (4.3.6)

that defines the last map in (4.3.5) is defined by ((αv)v∈S, γ) 7→
∑

v∈S invv(αv ∪ γv), where γv
is the image of γ under H1(K,G′) → H1(Kv, G

′), and the cup product is − ∪ − : H1(Kv, G) ×
H1(Kv, G

′)→ H2(Kv, Kv
∗
).

Proof. Note that the fact that the sequence (4.3.5) is a complex follows simply from the fact that,
if there exists α ∈ H1(K,G) with restriction αv for all v ∈ S, then:

∑

v∈S

invv(αv ∪ γv) =
∑

v∈MK

invv(αv ∪ γv) =
∑

v∈MK

invv(α ∪ γ)v = 0,

where the first follows from the fact that, for v /∈ S, αv ∈< Ev > and γv ∈< Ev >
⊥, and

hence invv(αv ∪γv) = 0, while the last follows from the Albert-Brauer-Hasse-Noether theorem (as
formulated e.g. in [Har20, Theorem 14.11]).

The exactness of the sequence (4.3.5) may be easily inferred from the long exact sequence of
Poitou-Tate (which can be found e.g. in [NSW08, Theorem 8.6.10]).

The other two equivalent formulations are:

(NC)2 Ev 6= ∅ (i.e., U(Kv) 6= ∅) for all v /∈ S and (αv)v∈S is orthogonal to H1(K,G′)S (via the
pairing (4.3.6));

(NC)3 U(Kv) 6= ∅ for all v /∈ S and, if (Pv)v∈S is such that ([ϕ|Pv ])v∈S = (αv)v∈S, then for one, or,
equivalently, all adelic points (Qv)MK

such that Qv = Pv for v ∈ S, the point (Qv) ∈ U(KΩ)
is Brauer–Manin-orthogonal to the intersection of BrK+(H1(K,G′)S ∪ [V ]) ⊆ Br1(U) with
BrX (or, in other words, the “relevant” part of Br1(U) for the obstruction to this problem),
where the cup product refers to the map

H1(K,G′)×H1(U,G)
(p∗,id)−−−→ H1(U,G′)×H1(U,G)

−∪−−−−→ H2(U,Gm),

where p : U → SpecK denotes the projection map.

Proposition 4.3.10. The “one, or, equivalently, all” in (NC)3 holds, and the three formulations
(NC)1, (NC)2 and (NC)3 are equivalent.

Proof. The equivalence of (NC)2 with (NC)1 is a direct consequence of the exactness of (4.3.5)
(so, basically, of Poitou-Tate’s long exact sequence).

For the equivalence of (NC)2 with (NC)3 and the “one, or, equivalently, all” bit in (NC)3 , we
notice that the following diagram and the corresponding collection of local diagrams commute:

∏′
v∈MK

H1(Kv, G) × H1(K,G′) Q/Z

U(AK) × Br1(U) Q/Z

−∪[V ] =[ϕ|−] . (4.3.7)
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This follows by the commutativity of the local diagrams, which itself can be deduced by the
functoriality of cup product.

The “one, or, equivalently, all” in (NC)3 now holds because, for γ ∈ H1(K,G′)S, γv ∈< Ev >
⊥

for all v /∈ S, and hence, by the commutativity of (4.3.7), γ ∈ [V ] ∈ Br1 U gives local constant
pairings for all v /∈ S.

The equivalence of (NC)2 with (NC)3 is an immediate consequence of the commutativity of
(4.3.7).

Remark 4.3.11. If (H1(K,G′) ∪ [V ]) ∩ Brnr U is finite, then, for S big enough, this is equal to
H1(K,G′)S ∪ [V ] ⊆ Br1(U). This is a consequence of Harari’s formal lemma. In fact, by Harari’s
formal lemma [Har94, Thm. 2.1.1] (see also the remark following the theorem in loc.cit.), for

γ ∈ H1(K,G′), B = γ ∪ [V ] is unramified if and only if the local pullback function U(Kv)
B|−−−→

BrKv
∼= Q/Z is constantly zero for v >> 0, which, by the compatibility (4.3.7), happens if and

only if Ev
γv∪−−−−→ BrKv

∼= Q/Z is constantly zero for v >> 0 which happens if and only if γv ∈<
Ev >

⊥ for v >> 0. The just proven equivalence γ ∪ [V ] ∈ Brnr U ⇔ γv ∈< Ev >
⊥ for v >> 0

implies that we always have an inclusion H1(K,G′)S ∪ [V ] ⊆ (H1(K,G′) ∪ [V ]) ∩Brnr U . On the
other hand, when the latter is finite, the equivalence proves that the other inclusion holds as well
if S is big enough.

We denote the subgroup (H1(K,G′) ∪ [V ]) ∩ BrnrX ⊆ Br1(X) by BraϕX. In Section 4.6
we will prove that the answer to Question 4.3.8 is negative, giving an explicit counterexample.
More precisely, we will define (see Remark 4.4.15) an adelic point (Pv) ∈ U(KΩ)

BraϕX \X(AK)
ϕ.

In particular, by Proposition 4.3.7 this proves that there exists a finite S ⊆ MK for which the
collection of local cohomological classes (αv)v∈S, αv := [ϕ|Pv ] does not satisfy the condition of
question 4.3.8. On the other hand, since (Pv) ∈ X(AK)

BraϕX , we have that (Pv) is orthogonal to
(H1(K,G) ∪ [V ]) ∩ BrX ⊆ Br1(X). By Remark 4.3.11 (in the counterexample BraϕX = 0, so
the required finiteness certainly holds), this means that, after possibly enlarging S again, (αv)v∈S
satisfies the “necessary condition” (in the form (NC)3) of Question 4.3.8.

We turn back to proving Proposition 4.3.7.
We recall a useful and easy lemma:

Lemma 4.3.12. Let F be a perfect field and H be a smooth group scheme over F . For an H-torsor
Y → SpecF , of class [Y ] ∈ H1(F,H), and for every ξ ∈ H1(F,H), the class [Yξ] ∈ H1(Kv, H

ξ)
(representing the Hξ-torsor Yξ) is trivial if and only if ξ = [Y ].

Proof. See [Ser94, Proposition 35].

Lemma 4.3.13. i. For each v ∈MK, we have that Ev = {ξ ∈ H1(Kv, G) | Vξ(Kv) 6= ∅}

ii. Let S be a finite subset of M f
K, such that there exists a smooth model U → SpecOK,S

for U → SpecK and an étale group-scheme model G → SpecOK,S for the étale group

scheme G → SpecK. For almost all v ∈ M f
K, the image of U(Ov) ⊆ U(Kv) under [ϕ|−] is

H1(Ov,G) ⊆ H1(Kv, G).

Proof. i. We have that P lies in ϕξ(Vξ(F )) if and only if theGξ-torsor Vξ|P = (V |P )ξ
ϕξ|P=(ϕ|P )ξ−−−−−−−→

P is trivial, which, by Lemma 4.3.12, holds if and only if ξ = [ϕ|P ]. Now point i. is an im-
mediate consequence.

ii. After enlarging S we may assume that there exists a model ψ : V/ SpecOK,S → U/ SpecOK,S

for ϕ and that the morphism V → SpecOK,S is smooth with geometrically integral fibers.
For v /∈ S, and X = U ,V or G, we denote by Xv the Ov-scheme X ×SpecOK,S SpecOv. For
any v /∈ S and ξ ∈ H1(Ov,G) we denote by ι(ξ) the image of ξ in H1(Kv, G), and by (Vv)ξ
the twist of the Gv-torsor Vv → Uv by ξ.
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We claim that, for almost all v ∈ M f
K and any ξ ∈ H1(Ov,G), (Vv)ξ(Ov) 6= ∅. To prove

the claim note that, since, for any v /∈ S and ξ ∈ H1(Ov,G), (Vv)ξ ×Ov Fv ∼= Vv ×Ov Fv =
V×OK,S Fv, and the latter is integral, a standard argument through Lang-Weil bounds shows
that (Vv)ξ(Fv) 6= ∅ when v is large enough. Since (Vv)ξ → SpecOv is a smooth morphism,
the fact that (Vv)ξ(Fv) 6= ∅ implies that (Vv)ξ(Ov) 6= ∅, finishing the proof of the claim.

The same argument as in point i. (substituting “F -point” with “Ov-section”) shows that, if
P ∈ U(Ov) ⊂ U(Kv) lies in the image of (Vv)ξ(Ov) → U(Ov), then ξ is equal to [ψ|P ]. In
particular Im([ψ|−] : U(Ov) → H1(Ov, G)) contains {ξ ∈ H1(Ov, G) | (Vv)ξ(Ov) 6= ∅}. By

the claim above, this last set is equal to the whole H1(Ov, G) for almost all v ∈M f
K .

By the commutativity of the following diagram:

U(Ov) H1(Ov,G)

U(Kv) H1(Kv, G),

[ψ|−]

[ϕ|−]

it follows that Im([ϕ|−] : ImU(Ov) → H1(Kv, G)) = Im(Im([ψ|−] : U(Ov) → H1(Ov, G))).
We showed in the last paragraph that Im([ψ|−] : U(Ov) → H1(Ov, G)) = H1(Ov, G) for v
large enough, so this concludes the proof of point ii.

Proof of Proposition 4.3.7. We divide the proof in two steps.
Step 1. Let us prove that (Pv) ∈ U(AK)

ϕ ⇔ ∃β ∈ H1(K,G) | (βv)v∈MK
= ([ϕ|Pv ])v∈MK

This is standard (compare e.g. with Definition 5.3.1 in [Sko01]). However, the proof is quite
short, so we include it.

We claim that for any point (Pv) ∈ U(AK) and β ∈ H1(K,G), (Pv) ∈ ϕβ(Vβ(AK)) if and only
if for all v, [ϕ|Pv ] = βv. In fact, for every v ∈MK , Lemma 4.3.12 (recall also the proof of Lemma
4.3.13.i) implies that Pv ∈ ϕβ(Vβ(Kv)) if and only if [ϕ|Pv ] = βv. Hence (Pv) ∈ ϕβ(Vβ(KΩ)) if and
only if for all v, [ϕ|Pv ] = βv. On the other hand, since ϕβ : Vβ → U is finite, hence proper, the
induced morphism Vβ(AK)→ U(AK) is proper as well, hence this tells us that (Pv) ∈ ϕβ(Vβ(KΩ))
if and only if (Pv) ∈ ϕβ(Vβ(AK)).

Using the claim above, we deduce that

(Pv) ∈ U(AK)
ϕ ⇔ ∃β ∈ H1(K,G) | (Pv) ∈ Vβ(AK)⇔ ∃β ∈ H1(K,G) | (βv)v∈MK

= ([ϕ|Pv ])v∈MK
.

This concludes the proof of Step 1.
Step 2. Proof of the proposition. We first show that i. implies ii.L̇et (Pv) ∈ X(AK)

ϕ, and let
(Qv,n)v∈MK ,n∈N be a sequence of adelic points such that for each n ∈ N, (Qv,n)v ∈ U(AK)

ϕ, and
(Qv,n)v → (Pv)v in the adelic topology ofX as n→∞. In particular, for each finite S ⊆MK , there
exists an n0 ∈ N such that Qv,n0 is arbitrarily near to Pv for all v ∈ S. Since (Qv,n0) ∈ U(AK)

ϕ,
we deduce by the first step that there exists β ∈ H1(K,G) such that for all v, βv = [ϕ|Qv,n0 ]. In
particular, βv = [ϕ|Qv,n0 ] = [ϕ|Pv ] for all v ∈ S (as Qv,n0 is arbitrarily near to Pv and the function
[ϕ|−] : U(Kv) → Ev ⊆ H1(Kv, G) is locally constant), and βv ∈ Ev for all v /∈ S. This finishes
the proof of this implication.

Let us show now that ii. implies i.L̇et (Pv)v, S and β be as in ii.. Let for all v /∈ S,
Qv ∈ U(Kv) be such that βv = [ϕ|Qv ]. By Lemma 4.3.13.ii. we may assume that for almost all

v ∈M f
K , Qv ∈ U(Ov) (where, as usual U → SpecOK,S′ is a model for U → SpecK).

Let (P ′
v(S))v ∈ U(AK) (we want to emphasize the dependence on the set S) be the adelic

point defined by {
P ′
v(S) = Pv for v ∈ S;
P ′
v(S) = Qv for v /∈ S.



98 CHAPTER 4. RAMIFIED DESCENT

Note that, by Step 1, (P ′
v(S))v ∈ U(AK)

ϕ. As S becomes bigger we have that (P ′
v(S))v tends to

(in the adelic topology of X) the point (Pv), thus proving that (Pv) ∈ U(AK)ϕ, and concluding
the proof of the implication and the proposition.

4.3.3 A case where Ev = H1(Kv, G)

In this subsection we want to give an example (actually, a family of these) where the identity
Ev = H1(Kv, G) holds. We will not really use this in this work, so it is included mostly for
curiosity.

For all this subsection, let k be a completion of the number field K at a non-archimedean
valuation v.

Remark 4.3.14. Note that, if U ′ ⊆ U is non-empty, then:

Im([ϕ|−] : U ′(k)→ H1(k, F )) = Im([ϕ|−] : U(k)→ H1(k, F )).

In fact, we have that [ϕ|−] : U(k)→ H1(k, F ), being a continuous map into a discrete set, is locally
constant. Since U is k-smooth, any element of U(k) can be approximated through elements of
U ′(k). It follows that the two images above are the same. As a consequence, the definition of Ev
given in (4.3.8) does not depend on the choice of U .

In this subsection, we work in the following setting. Let k be a local field (of characteristic 0),
and let µn be the finite k-group scheme of nth-roots of unity. Let X be a smooth k-variety and
ψ : Y → X be a µn-cover. Let us assume that Y is geometrically integral (and hence so is X).
Note that then Y → X is a µn,k-cover where µn,k := µn ×k k.

Let U ⊆ X be a non-empty open subscheme such that ψ−1(U)→ U is an étale µn-torsor. We
denote this µn-torsor by ϕ.

Recall that we have a map:

U(k)→ H1(k, µn), [ϕ|−] : P 7→ [ϕ|P ]

Similarly to Subsection 4.3.2, we define:

E := Im[ϕ|−]. (4.3.8)

The following is the main result of the subsection.

Theorem 4.3.15. Assume that there exists a geometrically integral divisor D ⊆ X, with generic
point η, such that, denoting with a bar the base change to the algebraic closure k:

§. the divisor D ⊆ X is totally ramified in the µn(k)-cover Y → X, i.e., the inertia group of
the DVR ring OX,η ⊆ k(X) in the µn(k)-Galois field extension k(X) ⊆ k(Y ) is equal to

µn(k) (see [Ser79, Sec. I.7] for the definition and basic properties of inertia groups, note
that this inertia group is well-defined because µn(k) is commutative);

§. Dreg(k) 6= ∅, where Dreg denotes the (open) subscheme of regular points of D.

Then E = H1(k, µn).

We denote by a the class [ϕ] ∈ H1(U, µn). Kummer’s exact sequence gives the following exact
sequence:

H0(U,Gm)
n̂−→ H0(U,Gm)

δ−→ H1(U, µn)→ H1(U,Gm)[n]. (4.3.9)

Let a′ be the image of a under H1(U, µn)→ H1(U,Gm)[n]. Since H
1(U,Gm) = PicU , and every

element of PicU is Zariski-locally trivial, we may assume, restricting U to an open subscheme,
that a′ = 0 and we may also assume that U is affine. Let f ∈ k[U ]∗ = H0(U,Gm) be an element
such that δ(f) = a.

The theorem will follow almost immediately from the following proposition.
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Proposition 4.3.16. The composition U(k)→ k∗ → k∗/(k∗)n, Q 7→ f(Q) 7→ [f(Q)] is surjective.

Proof. First of all, note that to prove the proposition, we may always restrict X to an open
subscheme as long as D still intersects it (because then the first hypothesis of our proposition will
be trivially satisfied by the restriction as well, and the second will be still satisfied because, since
k is a local field, the fact that Dreg(k) is non-empty, actually implies, by the implicit function
theorem, that it is Zariski-dense in D). So, after restricting X to an open subscheme, we may
assume that the only irreducible component of the divisor of f is D. Moreover, we may also
assume that U = X \D.

Lemma 4.3.17. The vanishing order of f at D (taken to be negative if f has a pole) is coprime
with n.

Proof. Note that the vanishing order of f (the pullback of f to X) at D is equal to the vanishing
order of f at D. So, it suffices to prove that the former is coprime with n.

Let R ⊆ k(X) be the DVR OX,η ⊆ k(X). Pulling back the exact sequence (4.3.9) to the

generic point of X, we obtain an exact sequence:

k(X)∗
n̂−→ k(X)∗

δ−→ H1(k(X), µn)→ 0

(the last 0 follows from Hilbert 90), and, by functoriality of the objects involved, we have that
the element α ∈ H1(k(X), µn) corresponding to the µn(k)-Galois field extension k(X) ⊆ k(Y ) is
equal to the image of a = [ϕ] in H1(k(X), µn), and we also have that δ(f) = α. By a standard
application of Kummer theory, we deduce that k(Y ) = k(X)( n

√
f).

Let v : k(X)→ Z∪{∞} be the valuation associated to R. The fact that k(X) ⊆ k(Y ) is totally
ramified implies that there is only one extension of the valuation v to k(Y ) (keeping in mind that
DVRs are just local Dedekind domains, we refer the reader to [Ser79], especially Sections I.4,7
and II.2,3 for the basic theory of discrete valuations, finite extensions and ramification) and that,
if we denote this extension by w, the extension of local fields k(X)v ⊆ k(Y )w is a totally ramified
extension of degree n. Since k(Y ) = k(X)( n

√
f), we have that k(Y )w = k(X)v(

n
√
f), and since the

residual characteristic of v is 0, the latter is totally ramified if and only if v(f) is coprime with
n.

Let (f) = rD, where r ∈ Z, which we know by the lemma above to be coprime with n, and
let P be a regular k-point of D. Let u1 be a uniformizer for D at P . After possibly restricting X
again to a neighbourhood of P , we may assume that (u1) = D.

Since (r, n) = 1, by Bezout’s identity there exist s, k ∈ Z such that rs − kn = 1. Let
u := f su−kn1 ∈ k(X)∗. Note that (u) = D on X.

To finish the proposition we use the following lemma.

Lemma 4.3.18. Let X/k be an algebraic integral variety, and let u be a regular function on X,
such that the divisor D := (u) contains a regular k-point P . Then there exists an ǫ > 0 such that
the image of the function

(X \D)(k)
u()−→ k∗

contains the punctured disk {x ∈ k∗ | |x| ≤ ǫ}.
Proof. Let P be the regular point of D = (u). The differential d u does not vanish at P . Hence, by
the inverse function theorem in the k-adic setting, we deduce that there exist local analytic func-
tions u2, . . . , un, a k-adic neighbourhood A ⊆ X(k) of P , a ǫ > 0 and an analytic diffeomorphism
(with an analytic inverse):

χ : A
∼−→ Dn, q 7→ (u(q), u2(q), . . . , un(q)),

where D ⊆ k denotes the ǫ-disk {a ∈ k | |a| ≤ ǫ}. Noting that the image of A ∩ D under χ is
{0} × Dn−1, and that the restriction of the function u() on A \ D is equal to the composition
pr1 ◦ χ concludes the proof.
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Note that the above lemma implies that the composition U(k) → k∗ → k∗/(k∗)n, Q 7→
u(Q) 7→ [u(Q)] is surjective. From this the proposition follows immediately using the fact that
elevation to the r in k∗/(k∗)n is invertible (since r is invertible modn), and the fact that [f(Q)] =
[u(Q)]r ∈ k∗/(k∗)n for all Q ∈ U(k).

Proof of Theorem 4.3.15. Finally, let us show that E = H1(k, µn). Since Kummer’s exact se-
quence is functorial, we have that the following diagram commutes:

U(k) × H1(U, µn) H1(k, µn)

U(k) × H0(U,Gm) H0(k,Gm),

= δ δ

where both rows are defined as (Q,α) 7→ Q∗α, and both δ’s represent the boundary of the Kummer
long exact sequence.

Since a = δ(f), we deduce from the commutativity of the above diagram that the following
commutes as well:

U(k) H1(k, µn) H1(k, µn)

U(k) H0(k,Gm) H0(k,Gm)/nH
0(k,Gm)

=

Q 7→Q∗a =

Q 7→f(Q)

δ δ

Using Proposition 4.3.16 we proved, we know that the lower composition is surjective. Since

the morphism H0(k,Gm)/nH
0(k,Gm)

δ−→ H1(k, µn) is surjective (this is well-known and follows
immediately from Hilbert’s 90 Theorem), we deduce, with a simple diagram chase, that the
morphism U(k)→ H1(k, µn), Q 7→ Q∗a is surjective, finishing the proof of the lemma.

4.4 A subgroup B ⊆ BrX such that X(AK)
ψ ⊆ X(AK)

B

Let us briefly recall the setting. We have a commutative diagram:

Y sm

V Y

U X

ν

⊆

ϕG ψG

⊆

where ϕ : V → U is an (étale) G-torsor, Y → X is a G-cover (in particular, ψ is finite, Y is normal
and X is smooth), the horizontal morphisms are G-equivariant open inclusions, and Y sm → Y is
a G-equivariant desingularization.

We defined:

X(AK)
ψ =

⋃

ξ∈H1(K,G)

ϕξ(Vξ(AK)) =
⋃

ξ∈H1(K,G)

νξψξ(Y sm
ξ (AK)).

We describe in this subsection an explicit subgroup BrψX ⊆ BrX of the Brauer group of X
such that X(AK)

ψ ⊆ X(AK)
Brψ X (see Theorem 4.4.7 below). This provides a first partial answer

to Question 4.3.5.
In Section 4.6 (the one with the “counterexample”) we will be mostly interested in the case

where G is commutative, and show that BrψX is not necessarily algebraic (see Section 4.6), and
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that the transcendental elements may indeed provide a non-trivial obstruction. This shows that
the obstruction can not be reconstructed from the classical Brauer–Manin descent obstruction (see
e.g. Subsection 4.4.4 for what exactly are we referring to here), which is only algebraic. I.e., to
be precise, we will provide an example of a (geometrically integral) cover ψ, where X(AK)

Brψ X (
X(AK), and where BrψX ∩ BraX is contained in the constant elements BrK.

4.4.1 A map from group cohomology to étale cohomology

In all this subsection, we fix a perfect field F and a finite group scheme H over F .
Let W be an F -scheme and Z → W be an H-torsor, and let L/F be a finite Galois extension

splitting H (i.e. such that H(L) = H(F )).
Note that there is a natural structure of (H(L)⋊Gal(L/F ))-torsor on ZL → W (since H(L)⋊

Gal(L/F ) is an abstract group and not an F -group, recall from our convention in Section 4.2,
that a (H(L) ⋊ Gal(L/F ))-torsor is just a (H(L) ⋊ Gal(L/F ))F -torsor), defined by the action
(defined in S-point notation, where S is a general object in the category of F -schemes):

(Z ×F L)× (H(L)⋊Gal(L/F ))→ Z ×F L, ((z, ξ), (h(−), σ)) 7→ (zh(ξ), ξσ), (4.4.1)

where z (resp. ξ) is an S-point in Z (resp. SpecL), the notation h(−) indicates the natural
transformation of S-points associated to the morphism h : SpecL → H. We leave to the reader
the easy verification that the map defined above is indeed a group action.

We recall that, for an étale torsor Y1 → Y2 under a constant group g, and an étale sheaf F
over Y2, the Hochschild-Serre spectral sequence writes down as follows:

H i(g,Hj(Y1,F)) => H i+j(Y2,F).

In particular, this spectral sequence induces, for each n ≥ 0, a morphism Hn(g,F(Y1)) →
Hn(Y2,F).

For an étale sheaf F overW , applying the construction above to the (H(L)⋊Gal(L/K))-torsor
ZL → W , we obtain a morphism:

ǫL : Hn(H(L)⋊Gal(L/F ),F(ZL))→ Hn(W,F).

Since we do not want to carry this L throughout all the text, we introduce the following notations,
which just serve the purpose of setting “L = F”.

Notation 4.4.1. We use the notation ΓH to indicate the group H(F )⋊ ΓF , where the external
action is the Galois one.

Moreover, we denote the limit of the morphisms ǫL, where L varies along all finite subfields
of F that split H, ordered by inclusion, and the transition morphisms of the groups Hn(H(L)⋊
Gal(L/K),F(ZL)) are the inflation maps, as:

ǫZ/W : Hn(ΓH ,F(ZF ))→ Hn(W,F), (4.4.2)

where we are using the following notation:

Notation 4.4.2. For an étale sheaf F on an F -variety Y , we use the notation F(YF ) to indicate
the direct limit

F(YF ) := lim
→
L

F(YL),

where L varies over all finite field extensions of K contained in K, ordered by inclusion.

When there is no risk of confusion, we will feel free to change the subscript “Z/W” in ǫZ/W
to “W” (or to avoid using it completely).
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4.4.2 Definition of Brψ(X)

We put ourselves in the setting of Section 4.3. We are finally ready to define the group Brψ(X)
to which we alluded at at the beginning of this section. Although we will give the definition without
assuming that X is proper, the main application that the reader has to keep in mind is precisely
this case. For instance, in the counterexample of Section 4.6 X is proper.

Applying the construction (4.4.2) to the G-torsor V → U with F = K, H = G and F = Gm,
we obtain a morphism:

H2(ΓG,Gm(VK))
ǫV /U−−−→ H2(U,Gm). (4.4.3)

Note that Gm(VK) = K[V ]∗, and that the implied ΓG-action restricts to the inflation (along
the projection ΓG → ΓK) of the ΓK-action on K

∗
. Hence there is a natural morphism:

H2(ΓG, K
∗
)→ H2(ΓG, K[V ]∗) = H2(ΓG,Gm(VK)),

where the implied action on the LHS is the one described above.

Definition 4.4.3. We define the subgroup Brϕ(U) of BrU as the image of the composition

H2(ΓG, K
∗
)→ H2(ΓG, K[V ]∗)

ǫV /U−−−→ H2(U,Gm) = BrU.

It will be convenient to have a notation for the composition in Definition (4.4.3):

Notation 4.4.4. Let H be a finite étale group scheme over a perfect field F , W be an F -variety
and ϕ : Z → W be an H-torsor. We denote the composition

H2(ΓH , F
∗
)→ H2(ΓH , F [Z]

∗)
ǫZ/W−−−→ H2(W,Gm)

with uϕ,F or just uϕ.

Definition 4.4.5. We define Brψ(X) ⊆ Br(X) as the intersection Br(X) ∩ Brϕ(U).

Note that the above definition is independent from U , indeed we even have that Brψ(X) =

Br(X) ∩ Brϕ(K(X)), where Brϕ(K(X)) ⊆ BrK(X) is defined as the image of H2(ΓG, K
∗
) in

H2(K(X),Gm) through the morphism:

H2(ΓG, K
∗
)→ H2(ΓG, K(Y )∗)→ H2(K(X),Gm),

where the second morphism is defined, after identifying H2(K(X),Gm) with H
2(ΓK(X), K(X)

∗
),

the Hochshild-Serre spectral sequence associated to the ΓG-Galois field extension K(X) ⊆ K(Y ).

Remark 4.4.6. By [...], the edge map H2(ΓG, K(Y )∗)→ H2(ΓK(X), K(X)
∗
) described above coin-

cides with the inflation map along the natural morphism ΓK(X) → ΓG. Moreover, the morphism
H2(ΓG, µ∞) → H2(ΓG, K(Y )∗) is an isomorphism, as the ΓG-module K(Y )∗/µ∞ is uniquely di-
visible. It follows that the image in BrK(X) of Brϕ U is equal to Im(infΓGΓK(X)

(H2(ΓG, µ∞))),

and

BrψX = BrX ∩ Im(infΓGΓK(X)
(H2(ΓG, µ∞))) ⊆ H2(ΓK(X), K(X)

∗
),

which was the definition that we gave in the introduction.

We will prove the following theorem in the next section.

Theorem 4.4.7. We have an inclusion X(AK)
ψ ⊆ X(AK)

Brψ(X).
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4.4.3 Proof of Theorem 4.4.7

We start by fixing some notation and proving some easy statements that we will need in the
proof of Theorem 4.4.7.

To introduce these notations and to prove these statements, we put ourselves again in the
general setting that follows (chosen in accordance with Subsection 4.4.1). Let F be a perfect field
and let H be a finite étale group scheme over F .

H1 and sections of ΓH → ΓF We recall that ΓH was defined as H(F )⋊ΓF . We have a (split)
short exact sequence of groups:

1→ H(F )→ ΓH → ΓF → 1. (4.4.4)

We denote the set of sections ΓF → ΓH of the projection ΓH → ΓF by Sec(ΓH).
There is a well-know canonical bijection of pointed sets (see [NSW08, Section 1.2, Exercise

1]):
ℵ : Sec(ΓH)/ ∼ ←→ H1(F,H), (4.4.5)

where ∼ denotes conjugation by an element in ΓH , i.e. γ1, γ2 : ΓF → ΓH are equivalent if there
exists a b ∈ H(F ) such that γ2(−) = bγ1(−)b−1. If s ∈ Sec(ΓH), and, for σ ∈ ΓF , we write
s(σ) = (hs(σ), σ) ∈ H(F )⋊ΓF , then ℵ(s) is the image in H1(F,H) = H1(ΓF , H(F )) of the cocyle
σ 7→ hs(σ).

A (non-bilinear) pairing Let M be a ΓF -module. We endow M with the ΓH-action induced
by pulling back the ΓF -action along the morphism ΓH → ΓF .

Lemma 4.4.8. For each n ≥ 0, there exists a unique map (of sets):

(.) : Hn(ΓH ,M)×H1(F,H)→ Hn(ΓF ,M), (4.4.6)

that satisfies, for each α ∈ Hn(ΓH ,M), γ ∈ Sec(ΓH), the equation (α,ℵ(γ)) = γ∗α.

Proof. Since ℵ is surjective, uniqueness is clear. It remains to show that there exists one such
map.

It suffices to show that, for every α, γ1, γ2 (in H
n(ΓH ,M), Sec(ΓH) and Sec(ΓH) respectively),

if ℵ(γ1) = ℵ(γ2), then γ∗1α = γ∗2α.
Since (4.4.5) is a bijection, ℵ(γ1) = ℵ(γ2) implies that there exists a b ∈ H(F ) such that,

if c(b) : ΓH → ΓH denotes conjugation by b, then γ2 : ΓF → ΓH is equal to the composition

ΓF
γ1−→ ΓH

c(b)−−→ ΓH . Hence γ∗2α = γ∗1(c(b)
∗α) ∈ Hn(ΓF ,M). However, by [NSW08, Prop. 1.6.3],

we have that c(b)∗α = α ∈ Hn(ΓH ,M), hence γ∗1α = γ∗2α, as wished.

The following simple lemma is key in the proof of Theorem 4.4.7. As in Subsection 4.4.1, let
W be an F -scheme, and ϕ : Z → W be an H-torsor.

Lemma 4.4.9. Let F be a sheaf on SpecF (just as a reminder, recall that such a sheaf always
arises from a ΓF -module), and p : W → SpecF be the structural projection. For each n ≥ 0, the
following diagram commutes:

Hn(ΓH ,F(F )) × H1(ΓF , H) Hn(ΓF ,F(F ))

Hn(W, p∗F) × W (F ) Hn(F,F)

ǫZ/W ǫ∼[ϕ|−] , (4.4.7)

where the morphism W (F ) → H1(ΓF , H) is the one sending a point P to the class of the torsor
[ϕ|P ], the second row is (α,Q : SpecF → W ) 7→ Q∗α, and the first row is the pairing (α,ℵ(ξ)) 7→
ξ∗α defined in Lemma 4.4.8.



104 CHAPTER 4. RAMIFIED DESCENT

Proof. We fix a geometric point w → W . Since each point P ∈ W (F ) defines a section
P : SpecF → W of the structural morphism p : W → SpecF , to such point corresponds
a map P∗ : ΓF = π1,ét(SpecF, SpecF ) → π1,ét(W,w), that is a section of p∗ : π1,ét(W,w) →
π1,ét(SpecF, SpecF ) = ΓF .

We recall that the connected ΓH-(étale) torsor Z ×F F → W (ΓH is not a finite group, it is
just profinite, so the word “étale-torsor” does not really make sense, what we mean is that there is
a compatible system of étale-torsors under all quotients of ΓH by an open subgroup, whose limit
is Z ×F F ) induces a surjective map (see e.g. [Sza09, Cor. 5.4.8]):

π1,ét(W,w)→ ΓH ,

and the composition π1,ét(W,w)→ ΓH → ΓF is equal to p∗.
Combining the maps from the two paragraphs above we obtain a map δ : W (F ) → Sec(ΓH).

We leave to the reader the easy verification that ℵ ◦ δ = [ϕ|−] (δ(P ) can be computed to be, up
to equivalence, σ 7→ (hσ, σ), where hσ ∈ Z1(ΓF , H(F )) is a cocyle representing the torsor ϕ|P ),
i.e. the second vertical morphism appearing in Diagram (4.4.7).

We fix now a point P ∈ W (F ) and a b ∈ Hn(ΓH ,F(F )). We have that there exists a
commutative diagram:

SpecF Z

SpecF W

ΓF ΓH

P

,

where the implied morphism ΓF → ΓH is δ(P ). The diagram above induces by functoriality of
the Hochschild-Serre spectral sequence, the following commutative diagram:

Hn(ΓH ,F(F )) Hn(ΓF ,F(F ))

Hn(W, p∗F) Hn(F,F).
ǫ

δ(P )∗

ǫ∼

P ∗

Hence ǫ(δ(P )∗b) = ǫ(b)(P ). Since, as noticed above, ℵ(δ(P )) = [ϕ|P ], and the calculations above
hold for any P ∈ W (F ) and b ∈ Hn(ΓH ,F(F )), this proves the sought commutativity.

Proof of Theorem 4.4.7. We start with applying Lemma 4.4.9 to the context in which we need it.
We do so in the following lemma.

Lemma 4.4.10. Let F be a field containing K, and let ΓF,G := G(F )⋊ΓF . We have the following
commutative diagram:

H2(ΓF,G, F
∗
) × H1(F,G) H2(ΓF , F

∗
)

BrUF × U(F ) BrF,

uϕF ∼[ϕF |−]

where the upper horizontal map comes from Lemma 4.4.8, and the lower one is just evaluation.

Proof. We denote the projection UF → SpecF by p. The lemma immediately follows from
Lemma 4.4.9 with n = 2, H = G,Z = VF ,W = UF ,F = Gm, the (immediate) commutativity of
the following diagram

H2 (UF , p
∗Gm) × U (F ) BrF

BrUF × U(F ) BrF,

= =
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where H2 (UF , p
∗Gm)→ H2 (UF ,Gm) = BrUF is the map induced by the morphism p∗Gm → Gm

(note that we are working on the small site, so p∗Gm is not Gm), and the commutativity of
the following diagram (the commutativity of the square follows from the functoriality of the
Hochschild-Serre spectral sequence, while the lower triangle commutes by definition):

H2 (UF , p
∗Gm) H2(ΓG, F

∗
)

H2 (UF ,Gm) H2(ΓG, F [V ]∗).

ǫV /U

uϕ,F

ǫV /U

We now conclude the proof of Theorem 4.4.7.
Let us first prove the following framed claim:

U(AK)
ϕ ⊆ U(AK)

Brϕ(U) . Let (Pv)v∈MK
∈ U(AK)

ϕ, and let ξ ∈ H1(K,G) be such that

(Pv)v∈MK
∈ ϕξ−1(Vξ−1(AK)). By Lemma 4.3.12 this implies that, for every v ∈MK , ξv = [ϕ|Pv ].

Let B ∈ H2(ΓG, K
∗
), and let v be a place inMK . Let ΓG be the semidirect product G(K)⋊ΓK ,

and let ΓvG be the fibered product G(Kv) ⋊ ΓKv (i.e. the Galois group of the cover Z ×K Kv →
W ×KKv). By Lemma 4.4.10 (with F = Kv), we deduce that P

∗
v uϕ,Kv(Bv) = (Bv.[ϕ|Pv ]) ∈ BrKv.

Hence we have that (uϕ,K(B), (Pv)v)BM =
∑

v∈MK
invv P

∗
v uϕ,Kv(Bv) =

∑
v∈MK

invv(Bv.[ϕ|Pv ]) =∑
v∈MK

invv(B.ξ)v = 0, the latter by the Albert-Brauer-Hasse-Noether theorem. This concludes
the proof of the framed claim.

We have X(AK)
ψ = U(AK)ϕ ⊆ U(AK)Brϕ(U) ⊆ X(AK)Brψ(X) = X(AK)

Brψ(X), where the last
equality follows from the fact that, for any B ⊆ Br(X), X(AK)

B is closed in X(AK).

Example 4.4.11. Let G be a finite group. Then, an example in which we fall in the above
described setting is that of U = SLn/G, V = SLn/G

′ (here G′ ⊆ G denotes a subgroup containing
the derived subgroup of G), and X = U c (a smooth compactification of U). The example 4.6.9
that we will produce in Section 4.6 will fall under this setting, in the specific case of a solvable
group G.

4.4.4 Comparison with classical abelian descent obstruction

The classical abelian descent theory We assume in this paragraph that G is commutative,
so, for clarity, we use the letter A to denote it. I.e. A = G. Let A′ = Hom(A,Gm,K) be the
Cartier dual of A.

We define Braϕ(U) as the image of the composition:

p∗(−) ∪ [ϕ] : H1(K,A′)
p∗−→ H1(U,A′)

−∪[ϕ]−−−→ H2(U,Gm) = Br(U),

where − ∪ [ϕ] denotes the specialization of the second variable of the cup product H1(U,A′) ×
H1(U,A)→ H2(U,Gm) to [ϕ] ∈ H1(U,A). Note that actually Braϕ(U) ⊆ Br1(U).

Lemma 4.4.12. We have:
U(AK)

ϕ = U(AK)
Braϕ(U). (4.4.8)

Proof. An adelic point (Pv) ∈ U(AK) belongs to U(AK)
ϕ if and only if the family ([ϕ|Pv ])v∈MK

is global (i.e. comes by specializing a single α ∈ H1(K,A)), which, by the Poitou-Tate exact
sequence holds if and only if ([ϕ|Pv ])v∈MK

is orthogonal to H1(K,A′), with respect to the pairing
P 1(K,A)×H1(K,A′)→ Q/Z arising from the Poitou-Tate exact sequence. By the compatibility
of this pairing with the Brauer–Manin pairing (in the way described in 4.3.7), we deduce that
this orthogonality is equivalent to the (Brauer–Manin-)orthogonality of (Pv)v∈MK

with Braϕ(U) =
H1(K,A′) ∪ [V ].
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Note that the lemma above immediately implies that X(AK)
ϕ ⊆ X(AK)

Braϕ(U)∩BrX . We refer
to this as the “classical” descent obstruction for the cover ψ : Y → X.

The following proposition is the main result of this subsection:

Proposition 4.4.13. The inclusion Braϕ(U) ⊆ Brϕ U holds.

Letting, Braψ(X) := Braϕ(U) ∩ BrX, we immediately get, as a corollary, that:

Corollary 4.4.14. The inclusion Braψ(X) ⊆ BrψX holds. In particular, we have the following
series of inclusions:

X(AK)
ψ ⊆ X(AK)

Brψ X ⊆ X(AK)
Braψ(X).

However, in contrast with what happens on U (where the inclusions U(AK)
ϕ ⊆ U(AK)

Brϕ U ⊆
U(AK)

Braϕ(U) are actually equalities by (4.4.8)), the last inclusion in the corollary above may well
be strict!

Remark 4.4.15. Example 4.6.9 will also prove the following (slightly stronger) statement: for a
point (Pv) ∈

∏
v U(Kv) it is not enough to be orthogonal to Braψ(X) to infer that it lies in X(AK)

ψ

(or, equivalently, that it satisfies condition ii of Proposition 4.3.7). In fact, in this example,
BrX/BrK will be finite, hence U(KΩ)

Braψ(X) will be dense in X(AK)
Braψ(X), and U(KΩ)

Brψ(X)

will be dense in X(AK)
Brψ(X). Since, moreover, we will have that X(AK)

Brψ X ( X(AK)
Braψ(X),

it follows that U(KΩ)
Brψ(X) ( U(KΩ)

Braψ(X). Hence there exists an element (Pv) ∈ U(KΩ)
Braψ(X) \

U(KΩ)
Brψ(X) ⊆ U(KΩ)

Braψ(X) \X(AK)
ψ, as wished. It follows, in particular, keeping in mind the

results of Subsection 4.3.2 and especially the discussion following Remark 4.3.11, that the answer
to Harari’s Question 4.3.8 is “No”.

Proof of Proposition 4.4.13. To prove the proposition, we are going to prove that the morphism
H1(K,A′)→ BrU (whose image is Braϕ(U)) decomposes as follows:

H1(K,A′)→ H2(ΓA, K
∗
)
uϕ−→ BrU. (4.4.9)

Note that this immediately implies the proposition. The existence of the desired factorization is
actually an immediate consequence of the following claim.

We claim that the following diagram commutes:

H2(ΓA, K
∗
)

H1(ΓK , A
′(K)) = H1(K,A′) BrU,

uϕζ

p∗U (−)∪[ϕ]

where pU : U → SpecK denotes the structural projection, and ζ is defined as the following
composition:

ζ : H1(ΓK , A
′(K))

inf−→ H1(ΓA, A
′(K))

−∪α−−→ H2(ΓA, µ∞)→ H2(ΓA, K
∗
),

where α ∈ H1(ΓA, A) is the element represented by the cocycle A(K)⋊ΓK = ΓA → A(K), (a, σ) 7→
a. To prove the claim, recall that we have morphisms:

ǫ : H1(ΓA, A)→ H1(U,A), ǫ : H1(ΓA, A
′)→ H1(U,A′), ǫ : H2(ΓA, µ∞)→ H2(U, µ∞),

that are compatible with cup product, i.e. ǫ(a∪b) = ǫ(a)∪ǫ(b), for a ∈ H1(ΓA, A), b ∈ H1(ΓA, A
′),

a ∪ b ∈ H2(ΓA, µ∞), where µ∞ ⊆ K
∗
denotes the subgroup of roots of unity.

Note that the commutativity of the diagram above is equivalent to saying that, for every
γ ∈ H1(ΓK , A

′(K)),

ι(ǫ(inf(γ) ∪ α)) = uϕ(ζ(γ)) = p∗U(γ) ∪ [ϕ] ∈ H2(U,Gm),
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where ι denotes the morphism H2(U, µ∞)→ H2(U,Gm). Noting that p∗U(γ)∪ [ϕ] = ι(p∗U(γ)∪ [ϕ])
(in the sense that the first cup product sign refers to the map H1(U,A′)×H1(U,A)→ H2(U,Gm)
while the second refers to H1(U,A′) × H1(U,A) → H2(U, µ∞) , and the former is the image of
the latter under ι), to prove the desired equality it is sufficient that we prove that

ǫ(inf(γ) ∪ α) = p∗U(γ) ∪ [ϕ] ∈ H2(U, µ∞), for all γ ∈ H1(ΓK , A
′(K)).

Note that ǫ(inf(γ) ∪ α) = ǫ(inf(γ)) ∪ ǫ(α) (compatibility of ǫ with cup product), and now the
above equality follows from the following two facts.

• The following diagram commutes:

H1(ΓK , A
′(K)) H1(K,A′)

H1(ΓA, A
′(K) = A′(V )) H1(U,A′)

ǫ=id

inf p∗U

ǫ

,

where, with a slight abuse of notation, we are using the letter A′ to denote both the K-group
it represents and the étale sheaf p∗UA

′ on U . (The ǫ in the first line of the diagram happens
to be the identity through the standard identification H1(ΓK , A

′(K)) = H1(K,A′)). The
commutativity of the diagram follows from the functoriality of the Hochschild-Serre spectral
sequence, and it immediately implies that ǫ(inf(γ)) = p∗U(γ) for all γ ∈ H1(ΓK , A

′(K)).

• ǫ(α) = [ϕ]. This follows from an easy cocycle computation that we leave to the interested
reader.

4.5 Obstruction to rational points on X

Let us recall the setting: X is a smooth (not necessarily proper, even though this is the main
example to keep in mind) geometrically connected variety over K, G/K is a finite group scheme
and ψ : Y → X is a G-cover. In particular, Y is normal.

In this subsection, we prove that X(K) ⊆ X(AK)
ψ (the closure being in X(AK)). Note that,

as previously remarked, one easily sees that U(K) ⊆ X(AK)
ψ (the closure again being in X(AK)),

however, in general, one may well have that U(K) is strictly smaller than X(K). This is the case,
for instance, when U(K) is empty, while (X \ U)(K) is non-empty.

Let ν : Y sm → Y be a G-equivariant desingularization of Y , and let r be the composition
ψ ◦ ν : Y sm → X. We will actually prove the stronger:

Proposition 4.5.1. We have that

X(K) ⊆
⋃

ξ∈H1(K,G)

rξ(Y
sm

ξ (K)). (4.5.1)

Corollary 4.5.2. The inclusion X(K) ⊆ X(AK)
ψ holds. I.e., Proposition 4.1.3 is true.

Proof. Just use Lemma 4.3.4.

The following proof is due to Olivier Wittenberg, which kindly suggested a proof for Proposi-
tion 4.5.1 that is much simpler than the previous one I had.
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Proof of Proposition 4.5.1 (Olivier Wittenberg). Recall that U ⊆ X is an open subscheme such
that V = ψ−1(U) → U is a(n étale) G-torsor. Let P ∈ X(K) be a rational point, and let
C ⊆ X be an integral (closed) curve such that P ∈ C(K), P is a smooth point of C, and
C ∩ U 6= ∅. Note that such a curve always exists. In fact, it suffices to take uniformizing
parameters u1, . . . , ud forX at P (where d = dimX), that satisfy the condition that the subvariety
{u1 = 0, . . . , ud−1 = 0} (defined in a small Zariski-open neighbourhood UP of P in X) is not
contained in X \ U (this condition may always be attained by taking a sufficiently general K-
linear invertible transformation of the parameters u1, . . . , ud), and then define C to be the closure
in X of the subvariety {u1 = 0, . . . , ud−1 = 0} ⊆ UP (note that we may assume that the latter is
a smooth curve, after possibly restricting UP ).

Choosing a local parameter t for C at P , we get a morphism SpecK[[t]]→ C that specializes
to P (in the sense that the morphism sends the special point of SpecK[[t]] to P ). This morphism
induces a morphism SpecK((t)) → X, whose set-theoretic image is the generic point of C. In
particular, by construction of C, it belongs to U . Hence the G-torsor V → U gives a class in
H1(ΓK((t)), G), which we may push to H1(K((t

1
∞ )), G).

The inclusion K ⊆ K((t
1
∞ )) induces an identification Γ

K((t
1
∞ ))

= ΓK (this follows from the

algebraic-closedness of K((t
1
∞ )) [Ser79, Proposition 8, Chapter IV]), and hence an identification

H1(K((t
1
∞ )), G) = H1(K,G). Hence, after replacing Y with a twist, we may assume that the

class in H1(K((t
1
∞ )), G) is trivial. Therefore it has to be trivial already in H1(K((t

1
n )), G) for

some n ≥ 1. Translated, this means that the G-torsor SpecK((t
1
n ))×U V → SpecK((t

1
n )) has a

section. This section induces a commutative diagram as follows:

V

SpecK((t
1
n )) U.

By the valuative criterion of properness (applied to Y sm → X), we may extend the diagram above
to the following:

Y sm

SpecK[[t
1
n ]] X.

Since the lower morphism specializes to P , the specialization of the oblique morphism provides
the sought lift of P .

4.6 An example where BrψX is purely transcendental

In this section we prove the following theorem:

Theorem 4.6.1. There exists a smooth geometrically connected proper variety X, a finite com-
mutative group scheme A/K, an open subscheme U ⊆ X, and an A-cover ψ : Y → X such
that

X(AK)
Brψ X 6= X(AK), (4.6.1)

and Br1X = Br0X. In particular, BrψX is purely transcendental.

Note that an immediate consequence of the theorem is that, for the X in the theorem:

X(AK)
Brψ X ( X(AK)

Braψ(X), (4.6.2)
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where we recall that, denoting by ϕ : V → U an open subcover of ψ that is an étale torsor,

BrψX = Brϕ U ∩ BrX, and Braψ(X) = BrX ∩ Im(H1(K,A′) → H1(U,A′)
−∪[ϕ]−−−→ H2(U,Gm) =

BrU). Indeed, the inclusion always holds, as proven in the last section, but, since, Braψ(X) ⊆
Brψ(X)∩Br1(X) (this was proved in the last section as well), and, in this case, Brψ(X)∩Br1(X) ⊆
Br0X, there cannot be equality by the theorem above.

First part of the proof of Theorem 4.6.1: desired properties. In this short part of the proof, we
list some desidered properties on X and ψ that would immediately imply the theorem. The rest
of the section will be dedicated to proving that there actually exists an X that satisfies said
properties. Properties:

i. Br1X = Br0X

ii. X(AK) 6= ∅;

iii. There exists a v ∈ MK and a b ∈ BrψX such that the function X(Kv) → Q/Z, P 7→
invv(b(P )) is non-constant.

Let us prove that any X that satisfies the above properties does indeed satisfy (4.6.2). Property
i implies that Brψ(X) is purely transcendental. On the other hand, since X(AK) is non-empty
(property ii), property iii guarantees that X(AK)

b ( X(AK), and hence that X(AK)
Brψ X (

X(AK), which concludes (this part of) the proof.

Note that, as a corollary, we prove Theorem 4.1.1:

Proof of Theorem 4.1.1. The first part follows from Theorem 4.4.7. The second part follows from
Theorem 4.6.1.

A morphism Hom(Λ2A,B)→ H2(A,B) Let A and B be finite commutative groups such that
#B is odd.

We define a morphism:

ι : Hom(Λ2A,B) → H2(A,B)
β 7→ [(a, a′) 7→ 1

2
β(a′ ∧ a)],

where the A-action on B is trivial, and [⋆] denotes the element in H2(A,B) represented by the
cocycle ⋆ ∈ Z2(A,B) (we leave to the reader the easy verification that the one above is indeed a
cocycle).

Remark 4.6.2. The definition of the morphism ι above can be easily made without appealing to
cocycles when B is isomorphic to Fp (p is an odd prime), and A is of exponent p (note that, when
B = Fp this is the only relevant case anyway, as Hom(Λ2A,B) = Hom(Λ2(A/pA), B)). Infact,
in this case, an easy cocycle computation shows that the map ι above coincides with the cup
product:

Λ2H1(A,Fp)→ H2(A,Fp),

under the identification Λ2H1(A,Fp) = Λ2 Hom(A,Fp) = Λ2AD = (Λ2A)D = Hom(Λ2A,Fp). In
fact, this is exactly what motivated us to choose the normalization of ι. The case of a general B
is just a natural generalization.

Remark 4.6.3. Let us remark that ι defines a section of the morphism ωC defined in [CTS07,
p. 35] (with Γ = A and C = B). In fact, combining the explicit description of ωC in loc. cit. with
[Bro94, Thm. IV.3.12] (keeping in mind equation (3.3) in [Bro94, Ch. IV]), this becomes an easy
verification that we leave to the interested reader. In particular, this shows that ι is injective.
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Description of our setting In this paragraph we define a number field K, a smooth geomet-
rically connected proper variety X/K, a constant finite commutative K-group scheme A, and an
A-torsor ϕ : V → U ⊆ X, and we will show in the next paragraphs that the pair (X,ϕ) does
satisfy properties i-iii.

Let K be a number field and p ≥ 5 be a prime number such that µp ⊆ K. We let A and B
be finite (abstract) abelian groups of exponent p, and r1 and r2 be their rank, i.e. A ∼= (Z/pZ)r1

and B ∼= (Z/pZ)r2 . We let β be an element of Hom(Λ2A,B), and β = ι(β) ∈ H2(A,B). We let
G be a central extension of class β, so that we have the short exact sequence:

1→ B → G→ A→ 1.

We assume that the injection B →֒ G is an inclusion. We denote the projection G → A with π.
One way to describe the extension G is the following (see [Bro94, Section IV.3]):

as a set G = B×A, and the multiplication law is (b1, a1)·(b2, a2) =
(
b1 + b2 +

1

2
β(a2 ∧ a1), a1 + a2

)
.

We assume that β is surjective. Note that this implies that Gab = A.
Throughout the proof we will gradually make more assumptions on A, B and β, but we prefer

to postpone these to the points in the proof where they are actually used.
We identify, with a slight abuse of notation, the abstract groups A,B and G with the constant

groups AK , BK and GK .
We choose an embedding of G in SLn,K and we define U as SLn,K/G, V as SLn,K/B and ϕ

as the natural projection SLn,K/B → SLn,K/G. Note that, as B is normal in G with quotient
A, ϕ has a natural structure of A-torsor: the one defined by the A-action (in S-point notation)
SLn,K/B ×K A→ SLn,K/B, (xB, a) 7→ xaB for all x ∈ SLn,K(S) and a ∈ A(S).

We let X be a smooth compactification of the K-variety U .

A morphism Λ2AD → Brϕ U We denote, as usual, by ΓA the group ΓAK
def
= A(K)⋊ΓK = A×ΓK

(recall that A is constant).
We remind the reader that Brϕ U is defined as the image of the composition

uϕ : H2(ΓA, K
∗
)→ H2(ΓA, K

∗
[V ])

ǫ−→ H2(U,Gm) = BrU,

where the second morphism is defined through the Hochshild-Serre spectral sequence applied to
the ΓA-cover V → U as in (4.4.2) and the second one is the morphism jU : H2(U, p∗UGm)→ BrU .
Let us also recall that the restriction of the ΓA-action on K

∗
to A is trivial.

Note that we have a morphism:

c : Λ2AD = Λ2 Hom(A,Z/pZ) ∼= Λ2H1(A,Z/pZ)
−∪−−−−→

H2(A,Z/pZ)
χ−→ H2(A, µp)

infAΓA−−−→ H2(ΓA, µp)→ H2(ΓA, K
∗
), (4.6.3)

where χ is a fixed isomorphism Z/pZ ∼= µp.
The morphism Λ2AD → Brϕ U that we referred to in the title of this paragraph is just the

composition

Λ2AD
c−→ H2(ΓA, K

∗
)
uϕ−→ BrU.

Description of the values of ImΛ2AD ⊆ BrU at local points Let v ∈ Mfin
K and p be an

odd prime. We have an antisymmetric bilinear pairing on (ΓabKv/(Γ
ab
Kv

)p)D, defined through the
following composition:

Λ2
(
ΓabKv/(Γ

ab
Kv)

p
)D ∼= Λ2H1(ΓKv ,Z/pZ)

∪−→ H2 (ΓKv ,Z/pZ)
χ−→ H2 (ΓKv , µp)

invv−−→ 1

p
Z/Z,
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which is perfect by [NSW08, Thm. 7.2.9]. We denote the above composition by Bv.
We define a pairing (linear only on the left):

W∧ : Λ2AD × Hom(Γab
Kv , A)→

1

p
Z/Z, (β, ξ) 7→ Bv(ξ

∗β).

Lemma 4.6.4. We have the following commutative diagram:

Λ2AD × H1(Kv, A) Q/Z

Brϕ(U) × U(Kv) Q/Z

uϕ◦c

W∧

[ϕ|−] = ,

where the first row is, after the identification H1(Kv, A) = H1(ΓKv , A) = Hom(Γab

Kv
, A), the

pairing W∧, and the second one is (B,P ) 7→ invv(B(P )) (i.e. the usual v-adic component of the
Brauer–Manin pairing).

Proof. Let ξ be an element of H1(Kv, A), which we think also of an element of Hom(ΓKv , A)
and Hom(Γab

Kv
, A) through the identifications H1(Kv, A) = Hom(ΓKv , A) = Hom(Γab

Kv
, A) (these

groups are isomorphic because A is constant).
Let g = ΓKv . We set, ΓvA := A×g, and we remind the reader that to the element ξ ∈ H1(Kv, A)

we may associate a section of ΓvA → g, which is unique up to conjugation by an element of A;
since A is central in A × g, such conjugation is always the identity. So this section is uniquely
defined, and we denote it by ℵ(ξ) (in accordance with the notation in (4.4.5)).

Let ℵv(ξ) : g → ΓA be the composition of g
ℵ(ξ)−−→ ΓvA with the the injection ΓvA = A × g →֒

A× ΓK = ΓA.
We have the following commutative diagram:

c : Λ2AD Λ2H1(A,Z/pZ) H2(A,Z/pZ) H2(A,K∗) H2(ΓA, K
∗
)

Λ2((gab)/(gab)p)D Λ2H1(g,Z/pZ) H2(g,Z/pZ) H2(g,K∗) H2(g,Kv
∗
)

∼=

ξ∗

∪

ξ∗

χ

ξ∗ξ∗

infAΓA

ξ∗ ℵv(ξ)∗

∼= ∪ χ

.

The commutativity is obvious except for the last square, for which it suffices to notice that, if we
denote by π the projection ΓA → A, then the morphism infAΓA is exactly π∗. Since π ◦ χv(ξ) = ξ,
the last square commutes.

Now the commutativity of the external part of the above diagram for every ξ ∈ H1(Kv, A)
implies the commutativity of the following diagram:

W∧ : Λ2AD × H1(Kv, A) H2(g,Kv
∗
) Q/Z

(.) : H2(ΓA, K
∗
) × H1(Kv, A) H2(g,Kv

∗
) Q/Z

c

invv
∼

= =

invv
∼

= ,

where (.) is the pairing (α, ξ′) 7→ (ℵ−1(ξ′))∗α defined in Lemma 4.4.8. Combining the above
diagram with Lemma 4.4.10 with F = Kv, we obtain the commutativity of the diagram appearing
in the statement of the lemma.

Description of Ev in our setting We recall that Ev ⊆ Hom(ΓKv , A) is defined as the image

of U(Kv)
[ϕ|−]−−−→ H1(Kv, A).
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Lemma 4.6.5. We have that:

Ev = {ξ ∈ Hom(ΓKv , A) | the composition
1

p
Z/Z

BDv−−→ Λ2(ΓabKv/(Γ
ab
Kv)

p)
Λ2ξ−−→ Λ2A

β−→ B is 0}.

Moreover, for all v, we have that < Ev >= Hom(ΓKv , A).

Proof. Remember that U = SLn,K/G, and that V = SLn,K/B. We denote by ϕ′ the G-torsor
SLn,K → SLn,K/G. Note that ϕ is the contracted product (SLn,K) ×G A, so we have the com-
mutative diagram:

(SLn,K/G)(F ) H1(F,G) H1(F,A)
[ϕ′|−]

[ϕ|−]

.

Recall that we have, for each field F containing K, an exact sequence of pointed sets:

1→ G(F )→ SLn,K(F )→ (SLn,K/G)(F )
[ϕ′|−]−−−→ H1(F,G)→ H1(F, SLn,K),

hence the map (SLn,K/G)(F )
[ϕ′|−]−−−→ H1(F,G) is surjective (indeed, we have that H1(F, SLn,K) =

0 by [PRR93, Lemma 2.3]). It follows that, for each v ∈ MK , Ev = Ev(ϕ) = Im(H1(Kv, G) →
H1(Kv, A)). Therefore, since there is an exact sequence of pointed sets:

Hom(ΓKv , G)→ Hom(ΓKv , A)
ξ 7→(ξ∗β)−−−−−→ H2(ΓKv , B),

(see e.g. [Bro94, Thm. 3.12], keeping in mind that the correspondence in loc.cit. is functorial),
we infer that the following sequence of pointed sets is exact:

1→ Ev → H1(Kv, A) = Hom(ΓKv , A)
ξ 7→(ξ∗β)−−−−−→ H2(ΓKv , B).

Let us now fix a decomposition B ∼= Fr2p , and let us denote by πi : B → Fp, i = 1, . . . , r2 the
projections to the different factors. Let us write β =

∑
i π

∗
i βi, with βi ∈ Hom(Λ2A,Fp) = Λ2AD.

We denote by βi the image of βi under ι : Hom(Λ2A,Fp) → H2(A,Fp). Note that β =
∑

i π
∗
i βi.

Hence we have the following commutative diagram:

H2 (A,Fp) H2
(
Γab
Kv
,Fp
)

H2 (ΓKv ,Fp)

Λ2AD ∼= Λ2H1(A,Fp) Λ2
(
ΓabKv/(Γ

ab
Kv

)p
)D ∼= Λ2H1(ΓKv ,Z/pZ)

1
p
Z/Z

ξ∗

ξ∗

inf

∼ invv ◦χ∪

Λ2(ξ′)D

∪

Bv

,

(4.6.4)
where for the first morphism in the first row we are actually taking the pullback along the
corresponding to ξ under the identification Hom(ΓKv , A) = Hom(ΓabKv , A). For the first mor-
phism in the second row, ξ′ denotes the element corresponding to ξ under the identification
Hom(ΓabKv , A) = Hom(ΓabKv/(Γ

ab
Kv

)p, A).
Note that the morphism ∪ : Λ2AD → H2 (A,Fp) is equal to ι, as noticed in Remark 4.6.2.
From (4.6.4), keeping in mind that ι is injective (see Remark 4.6.3) we deduce that ξ∗βi = 0 ∈

H2 (ΓKv ,Fp) if and only if the composition:

1

p
Z/Z

BDv−−→ Λ2(ΓabKv/(Γ
ab
Kv)

p)
Λ2ξ−−→ Λ2A

βi−→ Fp
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is 0. Since this equivalence holds for any i = 1, . . . , r, the first part of the lemma follows.
To prove that, for all v, < Ev >= Hom(ΓKv , A), note first of all that, by the first part of the

lemma, for every cyclic subgroup C ⊆ A, we have that the subset Hom(ΓKv , C) ⊆ Hom(ΓKv , A) is

contained in Ev. Indeed, for ξ ∈ Hom(ΓKv , C) we have that the image of Λ2(ΓabKv/(Γ
ab
Kv

)p)
Λ2ξ−−→ Λ2A

is contained in Λ2C, which is 0 because C is cyclic. Writing a direct sum decomposition into cyclic
subgroups A = C1⊕. . .⊕Cr, and noticing that Hom(ΓKv , C1)⊕. . .⊕Hom(ΓKv , Cr) = Hom(ΓKv , A),
and that all of these summands are contained in Ev, we see that < Ev >= Hom(ΓKv , A), as
wished.

Description of BrψX in our setting

Definition 4.6.6. We define Bic(G,A) ⊆ Λ2A as:

Bic(G,A) = {π(g1) ∧ π(g2), g1 and g2 commute},

where we recall that G is a central extension of A by B, and π denotes the projection G→ A.

Warning. Note thatBic(G,A) ⊆ Λ2A is only a subset (made, by definition, only of pure wedges),
and not a subgroup in general.

Remark 4.6.7. Since ι is injective and functorial, we have, by [Bro94, Thm. IV.3.12] that:

Bic(G,A) = {a1 ∧ a2, β(a1 ∧ a2) = 0}.

Lemma 4.6.8. Let b ∈ Λ2AD. Let c′ = uϕ ◦ c : Λ2AD → BrU . We have that c′(b) ∈ BrU is
unramified if and only if b(a1 ∧ a2) = 0 for all a1 ∧ a2 ∈ Bic(G,A).

Proof. Using Lemma 4.6.4 and [Har94, Thm. 2.1.1], we see that c′(b) is unramified if and only if,
for almost all v,W∧(b, ⋆) is constant for ⋆ ∈ Ev. Since 0 ∈ Ev for almost all v (by Lemma 4.3.13.ii)
and W∧(b, 0) = 0, we see that W∧(b, ⋆) is constant (for ⋆ ∈ Ev) if and only if W∧(b, Ev) = 0.

So, to prove the lemma, it suffices to prove that this last condition is equivalent to b(a1∧a2) = 0
for all wedges a1 ∧ a2 ∈ Bic(G,A). To do so, we are now going to study more closely the pairing
W∧ when v ∤ p.

We fix a non-archimedean v ∤ p. We have that Γab
Kv
/(Γab

Kv
)p = Γab

Kv ,tame
/(Γab

Kv ,tame
)p ∼= (Z/pZ)2

(see [Iwa55, Thm. 2]), where ΓKv ,tame is the tame Galois group of Kv, i.e. the Galois group of
the maximal tame extension of Kv, and Γab

Kv ,tame
is its maximal abelian quotient. It follows that

Z/pZ ∼= Λ2Γab
Kv
/(Γab

Kv
)p. Hence BD

v : (1/p)Z/Z → Λ2Γab
Kv
/(Γab

Kv
)p, being injective (as follows from

the fact that the pairing Bv is perfect), and an injective morphism between two Fp-vector spaces
of dimension 1, is an isomorphism.

SinceA is abelian and of exponent p, we have an isomorphism Hom(ΓKv , A)
∼−→ Hom(Γab

Kv
/(Γab

Kv
)p, A).

We let γ1, γ2 be a basis for the two-dimensional Fp-vector space Γab
Kv
/(Γab

Kv
)p. We define an iso-

morphism Ξv : Hom(ΓKv , A)→ A2, as the composition

Ξv : Hom(ΓKv , A)
∼−→ Hom(Γab

Kv/(Γ
ab
Kv)

p, A)
m 7→(m(γ1),m(γ2))−−−−−−−−−−→ A2.

Since BD
v is an isomorphism, Lemma 4.6.5 implies that:

Ev = {ξ ∈ Hom(ΓKv , A) | the composition Λ2(ΓabKv/(Γ
ab
Kv)

p)
Λ2ξ−−→ Λ2A

β−→ B is 0}.

Hence:

Ξv(Ev) = {(a1, a2) ∈ A2 | a1 ∧ a2 ∈ Ker(β : Λ2A→ B)}. (4.6.5)
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We denote by ζ the isomorphism Z/pZ ∼= Λ2Γab
Kv
/(Γab

Kv
)p given by 1 7→ a1 ∧ a2. Consider now

the following commutative diagram, where, to spare space, we use the notations g := ΓKv and
g/p := ΓabKv/(Γ

ab
Kv

)p:

W∧ : Λ2AD × Hom(g, A) = Hom(g/p, A) Λ2(g/p)D 1
p
Z/Z

Λ2AD × A2 Z/pZ

∼ Ξv

Bv
∼

ζD∼
ζD◦B−1

v

∼= ,

where the last row is defined as (f ′, (a1, a2)) 7→ f ′(a1 ∧ a2). For the commutativity, note that,
if λ1 ∧ λ2 ∈ Λ2AD, ξ ∈ Hom(g, A), and (a1, a2) := Ξv(ξ) = (ξ(γ1), ξ(γ2)) ∈ A2, then we have
that the pairing on the first row yields ξ∗λ1 ∧ ξ∗λ2 ∈ Λ2(g/p)D, whose image under ζD is (ξ∗λ1 ∧
ξ∗λ2)(γ1 ∧ γ2), while the pairing on the second row yields

(λ1 ∧ λ2)(a1 ∧ a2) = (λ1 ∧ λ2)(ξ(γ1) ∧ ξ(γ2)) = (ξ∗λ1 ∧ ξ∗λ2)(γ1 ∧ γ2).

We saw at the beginning of the proof that c′(b) is unramified if and only if W∧(b, Ev) = 0 for
almost all v. Since v | p for only finitely many v, combining the above commutative diagram with
(4.6.5) and Remark 4.6.7, we see that the condition W∧(b, Ev) = 0 is equivalent to b(a1 ∧ a2) = 0
for all a1 ∧ a2 ∈ Bic(G,A), as wished.

Lemma 4.A.1 gives a family of examples of A, B and β : Λ2A → B such that, if 1 → B →
G → A → 1 is the extension corresponding to ι(β), then Bic(G,A) = 0. By Lemma 4.6.8 this
implies that, for such a G, Im c′ ⊆ Brnr U = BrX.

For all these examples the following assumption is satisfied.

Assumption (“Unramified” assumption). Im c′ ⊆ Brnr U .

We say that the Brauer pairing of B ⊆ BrX is non-constant on X(Kv) (for some v ∈ MK) if
there exists a b ∈ B such that the local pairing (b.−)v : X(Kv)→ Br(Kv) is non-constant.

Proposition 4.6.9. Let v be a place dividing p, and let r := dimFp

(
ΓabKv/(Γ

ab
Kv

)p
)
. We assume

that r ≥ 5 (since µp ⊆ K ⊆ Kv, [NSW08, Thm. 7.5.11(ii)] guarantees that this holds if p ≥ 5).
For a central extension G as described in the setting paragraph, let r1 := dimFp A, r2 := dimFp B.
There exists a function D : N → N such that, for G that satisfies the “unramified” assumption,
the inequality r1 > D(r) and the inequality r2 ≤ 2r1 − 3, there exists an element b ∈ Λ2AD such
that the map

(SLn/G)(Kv)→
1

p
Z/Z, P 7→ invv c

′(b)(P )

(i.e. the v-adic component of the Brauer–Manin pairing computed on the Brauer element c(b)) is
non-constant.

Before the proof, let us pause to say that the assumptions p ≥ 5, r1 > D(r), r2 ≤ 2r1 − 3
are satisfied by infinitely many examples such as in Lemma 4.A.1. Indeed, Lemma 4.A.1 gives
examples, for every odd prime p and every (finite) Fp-vector space A of dimension ≥ 4, of
extensions 1 → A → G → B → 1 that satisfy the “unramified” assumption, and all these
examples satisfy r2 = 2r1 − 3.

Proof. Let v ∈ MK be a place dividing p. We define Cv := {ξ ∈ Hom(ΓKv , A) | W∧(−, ξ) :
Λ2AD → 1

p
Z/Z is zero}. We divide the proof in several steps (represented by the framed boxes

below, each box contains the statement that we will prove in the step that follows it). The purpose
of the first three steps is proving that Ev 6= Cv (the first two steps are auxiliary to the third). We
then show, in the fourth, how this concludes proof of the proposition.
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#Ev has p-adic valuation ≥
⌈
r1r−2r2

2

⌉
and <∞.

We choose isomorphisms ΓabKv/(Γ
ab
Kv

)p ∼= Frp, A ∼= Fr1p and B ∼= Fr2p (we want to think about
these p-torsion abelian groups as Fp-vector spaces, that is why the notation Fp is being used).
Note that, using these isomorphisms, we may identify Hom(ΓKv , A) = Hom(ΓabKv/(Γ

ab
Kv

)p, A) with
r1 × r-matrices with coefficients in Fp.

Moreover, using the isomorphism ΓabKv/(Γ
ab
Kv

)p ∼= Frp, we may identify the morphism

Fp ∼=
1

p
Z/Z

BDv−−→ Λ2(ΓabKv/(Γ
ab
Kv)

p) ∼= Λ2Frp

with an antisymmetric r×r matrix, which we denote byMP . Finally, we may identify β : Λ2A→ B
with a morphism Λ2Fr1p → Fr2p . Identifying Λ2Fr1p with antisymmetric r1 × r1-matrices (with
coefficients in Fp), this last morphism gives rise to a morphism β′ from the vector space of
(r1 × r1)-Fp matrices to Fr2p .

Let ξ be an element of Hom(ΓKv , A), and Mξ the corresponding r1 × r-matrix.
The condition (equivalent, by Lemma 4.6.5, to ξ ∈ Ev)

“ the composition Fp ∼=
1

p
Z/Z

BDv−−→ Λ2(ΓabKv/(Γ
ab
Kv)

p)
Λ2ξ−−→ Λ2A

β−→ B is 0′′

is easily seen to be equivalent to:
β′(MξMPM

t
ξ) = 0. (4.6.6)

In particular, if we think of Mξ ∈Mr1×r(Fp) as a variable, we see that this condition is described
by the zero-set of a system of r2 quadratic (homogeneous) equations.

To conclude the proof of this step, we use the Ax-Katz theorem [Kat71]. Recall that this says
that, given a system of polynomial equations:





f1(x1, . . . , xn) = 0,
...

fm(x1, . . . , xn) = 0,

where x1, . . . , xm are variables in a finite field Fq, the p-adic (where p is the radical of q) valuation
of the number of solutions is:

≥
⌈
n−∑j dj

d

⌉
,

where, for j = 1, . . . ,m, dj is the degree of fj and d := maxj dj.
Applying the Ax-Katz theorem to the system (4.6.6), which has r1r variables (the entries of

the matrix Mξ) varying in Fp and r2 equations, all of degree 2, we deduce that the number of
solutions of this system has p-adic valuation ≥

⌈
r1r−2r2

2

⌉
. Moreover, note that this set of solutions

is always non-empty as it contains Mξ = 0, so the p-adic valuation is < ∞. This concludes the
proof of this step.

In the next step, we prove that there is a function C(r) of r such that:

if r1 > vp(C(r)), #Cv has p-adic valuation = vp(C(r)).

We let C(r) : N→ N be the function defined in Lemma 4.A.3 of the appendix.
Note that, for each ξ ∈ Hom(ΓKv , A), the morphism W∧(−, ξ) : Λ2AD → 1

p
Z/Z is, by defini-

tion, the composition Λ2AD
Λ2ξ∗−−→ Λ2(ΓabKv/(Γ

ab
Kv

)p)
Bv−→ 1

p
Z/Z.

Hence, for each ξ ∈ Hom(ΓKv , A), we have that the morphism W∧(−, ξ) is zero if and only if

the image of 1 under Fp → Λ2(ΓabKv/(Γ
ab
Kv

)p)
Λ2ξ−−→ Λ2A is zero. Using the matrix identifications as

above, this last condition is equivalent to MξMPM
t
ξ = 0. If r1 > vp(C(r)), Lemma 4.A.3 (next

section) shows that the number of matrices M such that MMPM
t = 0 has p-adic valuation equal



116 CHAPTER 4. RAMIFIED DESCENT

to vp(C(r)). Remembering that Hom(ΓKv , A) → Mr1×r(Fp), ξ 7→ Mξ is a 1 : 1-correspondence,
the framed claim follows.

Cv ( Ev
Recall that Cv := {ξ ∈ Hom(ΓKv , A) | W∧(−, ξ) : Λ2AD → 1

p
Z/Z is zero}. Note that, using

the matrix notation from above, ξ ∈ Cv if and only if MMPM
t = 0, while ξ ∈ Ev if and only if

β′(MξMPM
t
ξ) = 0. In particular, Cv ⊆ Ev.

Recall that r ≥ 5. Hence, choosingD(r) accordingly, we may assume that r1r−2r2
2
≥ (r−4)r1+6

2
>

vp(C(r)) and r1 > vp(C(r)). In particular, by the first two framed boxes, vp(#Cv) < vp(#Ev).
This implies that the Cv 6= Ev. Since Cv ⊆ Ev, we deduce the framed claim.

Conclusion Note that, by Lemma 4.6.4, the statement of (point ii of) the lemma we are trying
to prove is equivalent to the fact that there exists a b ∈ Λ2AD such that W∧(b,−) : Ev → 1

p
Z/Z

is not constant. This is equivalent to saying that the set W∧(b, Ev) has at least two elements.
By the last framed box, we deduce that there exists a ξ ∈ Ev such that W∧(−, ξ) : Λ2AD →

1
p
Z/Z is not zero. I.e. there exists a b ∈ Λ2AD such that W∧(b, ξ) 6= 0.

Note that we have that the trivial cohomological class 0 belongs to Ev (as is clear from Lemma
4.6.5), so the set W∧(b, Ev) certainly contains the element W∧(b, 0) = 0. Since W∧(b, ξ) 6= 0, we
see that W∧(b, Ev) contains at least the two elements 0 and ξ, thus concluding the proof.

Proof of Theorem 4.6.1. Returning to properties i., ii. and iii. of the first part of the proof, note
that property ii. is trivial, while property iii. has been proven in Proposition 4.6.9. The only one
that is missing is property i. (i.e. the fact Br1X ∩ BrψX = Br0X).

We are actually going to prove that Br1X = Br0X = BrK (recall that Br0X is defined to be
the image of the morphism BrK → BrX, which is injective because X(K) 6= ∅). To do this, we
apply [Har07, Proposition 4] to U , thus deducing that:

Br1X/BrK = Br1,ur U/BrK ∼= {α ∈ H1(K,M) | αv ⊥ Ev for almost all v},

where we recall that Ev = Im([ϕ|−] : U(Kv) → H1(Kv, A)), and the ⊥ sign refers to the local
pairing, and M := Hom(G,Gm) = Hom(Gab,Gm) = Hom(A,Gm) = A′ (for the penultimate
identity recall from the setting paragraph that the assumption that β was surjective implied that
Gab = A). Note that the condition αv ⊥ Ev is equivalent to αv ⊥< Ev >. However, as proved
in Lemma 4.6.5, we have that < Ev >= Hom(ΓKv , A) for all v. We deduce by local duality
that Br1,ur U/BrK ∼= X

1
ω(K,A

′). Since µp ⊆ K∗, and A is constant, A′ is constant, therefore,
by Chebotarev’s theorem, X1

ω(ΓK , A
′) = 0. This proves the desired identity Br1X = Br0X =

BrK.

4.A Elementary counting facts

The following lemma is an example of calculations presented in [CTS07, p. 37].

Lemma 4.A.1. Let p 6= 2 be a prime. For every Fp-vector space A of dimension 4 ≤ a < ∞,
there exists an Fp-vector space B, of dimension b = 2a− 3, and a (surjective) morphism

β : Λ2A→ B, (4.A.1)

such that, if 1 → B → G
π−→ A → 1 is the extension corresponding to ι(β), we have that

Bic(G,A) = 0.

We recall that Bic(G,A) is defined to be the set:

{π(g1) ∧ π(g2) | g1, g2 ∈ G commute}.
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Proof. Let X ⊆ PFp(Λ
2A) be the scheme-theoretic image of the morphism −∧− : P(A)× P(A) \

∆→ P(Λ2A). This image is isomorphic to the Grassmanian variety Gr(2, A). Hence, since X(Fp)
parametrizes two-dimensional Fp-subspaces of A:

#X(Fp) =
(pa − 1)(pa−1 − 1)

(p2 − 1)(p− 1)
. (4.A.2)

By Remark 4.6.7, it suffices to show that there exists a (2r1− 3)-codimensional subspace L in
P(Λ2A) such that L ∩X(Fp) = ∅, and choose β such that Λ2A ⊇ Fp · L = Ker β. Noting that:

(pr1 − 1)(pr1−1 − 1)

(p2 − 1)(p− 1)
<

(pr1 − 1)(pr1−1 − 1)

(p+ 1)(p− 1)
≤ (p2r1−2 − 1)(p+ 1)

(p+ 1)(p− 1)
= #P2r1−3(Fp),

such a subspace always exists by the following lemma.

Lemma 4.A.2. Let X ⊆ PN(Fq) be a set of points, and let 0 ≤ n ≤ N be such that #X < Pn(Fp).
There exists then an n-codimensional subspace L ⊆ PN such that X ∩ L = ∅.
Proof. Let k ≥ 0 be the smallest integer such that X intersects every k-dimensional subspace in
PNFp . If k = 0, then there is nothing to prove. Otherwise, let L ⊆ PNFp be a (k − 1)-dimensional

subspace such that L∩X = ∅. Let πL : PN \L→ PN−k be a projection outside of L. We know by
the “smallest” assumption that πL(X(Fp)) = PN−k(Fp), hence #X(Fp) ≥ #PN−k(Fp)⇒ N −k <
n, i.e. k ≥ N − n+1. Hence the dimension of L is ≥ N − n and it can be taken to be the sought
subspace.

Lemma 4.A.3. Let V/Fp be a r-dimensional vector space, endowed with an alternating non-
degenerate bilinear form b : V × V → Fp. We assume that p 6= 2. Let A/Fp be an a-dimensional
vector space (1 ≤ a <∞). We then have that:

Ξ(A, V ) := #{ξ ∈ Hom(A, V ) | ξ∗b = 0} ≡ C(r) mod pa,

where C(r) is a non-zero integer depending only on r.

Proof. Let
Md := #{isotropic d-dimensional subspaces in V },

Id := #{surjective homomorphisms from A to a d-dimensional Fp-vector space}.
We then have that:

Ξ(A, V ) =

min(a, r
2
)∑

d=0

IdMd.

(note that the fact that V is endowed with a non-degenerate alternating linear form and p 6= 2
implies that r is even). One can easily see that:

Id = (pa − 1) · (pa − p) · · · (pa − pd−1), for every d ≤ a,

Md =
(pr − 1) · (pr−1 − p) · · · (pr−d+1 − pd−1)

(pd − 1) · (pd − p) · · · (pd − pd−1)
, for every d ≤ r/2.

In particular, Ξ(A, V ) = Ξ′(a, r) depends only on a and r. Note that, for a fixed r, Ξ′(a, r)
converges, as a→∞, p-adically to the following sum:

Ξ′(∞, r) :=
r/2∑

d=0

(−1)d (p
r − 1) · (pr−1 − p) · · · (pr−d+1 − pd−1)

(p− 1) · (p2 − 1) · · · (pd − 1)
.

Denoting by a(d) the term multiplying the (−1)d appearing above, we notice that the sequence

a(0), . . . , a(r/2) is strictly increasing, as follows by induction from the fact that pr−d+1−pd−1

pd−1
> 1

for all d ∈ {0, . . . , r/2}. In particular, a standard elementary calculus argument (à la Leibniz’
rule) shows that Ξ′(∞, r) 6= 0.
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4.B Other works where ramified descent appears

Let us mention two works where the idea of “ramified descent” has appeared. One is that of
[HS16] (successor to [SSD05]), where the authors use the cyclic covers of some specific Kummer
surfaces (those defined by a quotient of the product X of two genus 1 curves C1, C2) to prove that,
under certain technical assumptions, these satisfy the Hasse principle. What they prove is that, if
ψ : X → S is the µ2-cover defining the Kummer surface, there exists an a ∈ k∗/(k∗)2 = H1(k, µ2)
such that the twist Xa has a K-rational point. They do this by first finding an a such that Xa

has an adelic point, and this is equivalent to proving, with our terminology, that S(Ak)
ψ 6= ∅ “in

an explicit way”, and then they modify the a in such a way that some X-groups associated to
Xa are 0 (namely, the Tate-Shafarevich groups of the Jacobians of the two curves C1

a and C2
a),

which then grants that Xa has a K-point.
The second work that we wanted to mention is [CS20], where the authors build upon Poo-

nen’s example [Poo10] to show (employing one specific S4-cover) that the following obstruction is
stronger than the étale-Brauer–Manin obstruction:

X(AK)
Br,ram,sol =

⋂

ψ:Y→X
G−cover
G solvable

⋃

ξ∈H1(K,G)

ψ′
ξ(Y

sm
ξ (AK))

BrY smξ ,

where the ψ′
ξ is the composition Y sm

ξ → Yξ
ψξ−→ X, on the variety X of Poonen’s example.
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stabilisateurs finis nilpotents. Bull. Soc. Math. France, 145(2):225–236, 2017.

[Dem20] Julian L. Demeio. Non-rational varieties with the Hilbert property. Int. J. Number
Theory, 16(4):803–822, 2020.

[EH02] Santiago Encinas and Herwig Hauser. Strong resolution of singularities in characteristic
zero. Commentarii Mathematici Helvetici, 77(4):821–845, 2002.

[Eke90] Torsten Ekedahl. An effective version of Hilbert’s irreducibility theorem. In Séminaire
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