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Title : Analysis and controllability of some fluid-structure models

Abstract : This PhD dissertation deals with the study of some fluid-structure
interaction models in shallow water regimes. Particularly, the manuscript brings
contributions on interactions between a fluid with fixed and floating rigid bodies. In
a first part, we start by studying the mathematical modelling and simulations of an
oscillating water column. In this device, the waves come from shore, find a bottom
step, and then reach a chamber to change the air volume to drive a turbine to produce
electricity. In this first approach, constant atmospheric pressure is assumed on the
free surface of the fluid inside the chamber. Waves governed by the one-dimensional
shallow water equations in the presence of this device are essentially reformulated
as two transmission problems: the first one is associated with a step in front of the
structure, and the second one is related to the wave structure interaction. On the
other hand, by considering the notion of Riemann invariants to obtain the discretized
version of the transmission conditions, we implement the Lax-Friedrichs scheme to get
numerical solutions of the model. Furthermore, by using the concept of nodal profile
controllability, we address the problem of boundary controllability for the introduced
model. Finally, we close the first part of the thesis by proposing a second nonlinear
model of an oscillating water column device involving a transmission condition that
describes a time-dependent air pressure flow inside the chamber,which is obtained by
considering the free surface Bernoulli’s equation and properties relative to the shallow
water regime. In a second part of the manuscript, we study some models describing
the vertical motion of a solid floating at the free surface of a viscous shallow fluid.
The rigid structure involved is assumed to be controlled by a vertical force exerted
via an actuator. We start by proving the well-posedness of the model, which is
obtained by considering adequate function spaces and convenient operators between
them. Furthermore, by obtaining an explicit form of the transfer function associated,
we prove some results on the input-output stability of the system. Finally, we study
a Cummins type integro-differential equation describing the motion of a partially
immersed structure floating in a viscous fluid in an unbounded domain. Relying on
the stability results of Matignon for fractional systems, the explicit solutions of the
system are established, leading to an explicit knowledge of the long-time behaviour
of them.

Keywords : Nonlinear shallow water equations - Viscous shallow water equations
- Fluid-structure models - Oscillating water column device - Boundary controllability
- Cummins-type equations
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Titre : Analyse et contrôlabilité de certains modèles fluide-structure

Résumé : Cette thèse porte sur l’étude de certains modèles d’interaction fluide-
structure dans des régimes d’eau peu profonde. En particulier, le manuscrit apporte
des contributions sur les interactions entre un fluide et des corps rigides fixes et
flottants. Dans une première partie, nous commençons par étudier la modélisation
mathématique et les simulations d’une colonne d’eau oscillante. Dans ce dispositif, les
vagues viennent du rivage, heurtent une marche basse, puis atteignent une chambre
pour changer le volume d’air et entraîner une turbine qui produit de l’électricité.
Dans cette première approche, une pression atmosphérique constante est supposée
sur la surface libre du fluide à l’intérieur de la chambre. Les vagues régies par les
équations unidimensionnelles des eaux peu profondes en présence de ce dispositif
sont essentiellement reformulées sous la forme de deux problèmes de transmission
: le premier est associé à une marche devant la structure, et le second est lié à
l’interaction vagues-structure. D’autre part, en considérant la notion d’invariants
de Riemann pour obtenir la version discrétisée des conditions de transmission, nous
implémentons le schéma de Lax-Friedrichs pour obtenir des solutions numériques
du modèle. De plus, en utilisant le concept de contrôlabilité du profil nodal, nous
abordons le problème de la contrôlabilité frontière du système. Enfin, nous clôturons
la première partie de la thèse en proposant un deuxième modèle non linéaire d’un
dispositif à colonne d’eau oscillante impliquant une condition de transmission qui
décrit un flux de pression d’air dépendant du temps à l’intérieur de la chambre, qui est
obtenu en considérant l’équation de Bernoulli à surface libre et les propriétés relatives
au régime des eaux peu profondes. Dans la deuxième partie, nous étudions quelques
modèles décrivant le mouvement vertical d’un solide flottant à la surface libre d’un
fluide visqueux peu profond. Cette structure rigide est supposée être contrôlée par
une force verticale exercée via un actionneur. Nous commençons par prouver que
le modèle est bien posé en considérant des espaces fonctionnels adéquats et des
opérateurs convenables entre eux. En obtenant une forme explicite de la fonction de
transfert associée, nous prouvons quelques résultats sur la stabilité input-output du
système. Enfin, nous étudions une équation intégro-différentielle de type Cummins
décrivant le mouvement d’une structure partiellement immergée flottant dans un
fluide visqueux sur un domaine non-borné. Sur la base des résultats de stabilité
de Matignon pour les systèmes fractionnaires, on trouve des solutions explicites du
système, conduisant à une description precise de leur comportement en temps long.

Mots-clés : Équations non linéaires en eau peu profonde - Équations visqueuses en
eau peu profonde - Modèles fluide-structure - Colonne d’eau oscillante - Contrôlabilité
frontière - Équations de type Cummins
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Introduction (Français)

Dans cette brève introduction, nous présentons les principales motivations et
résultats qui seront abordés dans la thèse. Pour une discussion plus en détail sur le

sujet, nous renvoyons au chapitre suivant.

Dans ce manuscrit, nous étudions quelques aspects de l’analyse et de la contrôla-
bilité de certains modèles fluide-structure. En général, les problèmes d’interaction
fluide-structure peuvent être décrits par un ensemble d’équations différentielles et de
conditions au bord, qui décrivent la dépendance mutuelle entre la dynamique du flu-
ide et de la structure. Dans cette thèse nous nous concentrons sur certains systèmes
du EDP’s décrivant la présence d’un corps rigide partiellement immergé en régime
d’eau peu profonde, qui sont généralement appliquée pour modéliser, par exemple, un
convertisseur d’énergie houlomotrice ou un navire. Ces interactions fluide-structure
ont été intensément étudiées dans différents scénarios au cours des derniers siècles.
Par exemple, l’une des premières approches à ce sujet est due à Froude, qui publia
en 1864 un article sur le roulement des navires [26]. L’une des premières approches
pour traiter le cas d’un fluide non-visqueux a été proposée par John dans deux ar-
ticles célèbres [38, 39]. Dans ses recherches, il développe une théorie linéaire, où les
variations temporelles de la surface mouillée du corps immergé sont négligées et le
mouvement du corps solide est supposé être de faible amplitude. En complément,
nous renvoyons aux articles de Lannes et al. [35, 48, 46] pour la description d’une
approche non linéaire. Dans [46], Lannes étudie un système vague-structure qui con-
sidère deux problèmes de frontières libres; le premier consiste à décrire l’évolution
dans le temps de la surface lorsqu’elle est en contact avec l’air, et un second qui
provient de la description de l’évolution dans le temps de la portion de frontière du

3



Introduction (Français) 4

solide en contact avec le fluide. La pression exercée par le fluide sur le fond de la
structure flottante, qui est une inconnue du système, est vue comme le multiplicateur
de Lagrange associé à la contrainte que sous la surface de l’objet, la surface du fluide
doit coïncider avec le fond de la structure fixe et partiellement immergée.

Par contre, le cas d’un corps rigide partiellement immergé dans un fluide visqueux
en régimes d’eau peu profonde, à notre connaissance, a été beaucoup moins étudié
dans la littérature, du moins, d’un point de vue mathématique. Cette lacune a été
partiellement comblée par le papier récents [57] de Maity, San Martín, Tucsnak et
Takahashi, qui présentent un système d’EDP modélisant le mouvement couplé d’un
fluide visqueux à surface libre. Leur approche suppose que l’écoulement obéit à un
régime d’eau peu profonde (modélisé par les équations visqueuses de Saint-Venant
dans une dimension spatiale) et en utiliser un formalisme Hamiltonien.

Dans l’esprit des travaux récents sur ce domaine dus à Tucsnak et al. et Lannes et
al., ce manuscrit, present des recherches sur deux approches différentes du problème
d’interaction fluide-structure, en considérant les interactions entre des objets rigides
et des fluides visqueux ou non-visqueaux. Ensuite, nous présenterons brièvement
l’organisation et les principales contributions de la thèse.

Ce manuscrit est composé de deux parties. La première traite de la modélisation,
de la simulation et de la contrôlabilité frontière de structures partiellement immergées
dans un régime d’eau peu profonde. Plus précisément :

• Dans le Chapitre 1 nous présentons le modèle mathématique et les simula-
tions d’une colonne d’eau oscillante sur une configuration simplifiée. Dans ce
dispositif, les vagues modélises par les équations d’eaux peu profondes non
linéaires unidimensionnelles arrivent du large, rencontrent une marche dans le
fond puis arrivent dans une chambre pour changer le volume d’air et activer
la turbine. Le système est reformulé en deux problèmes de transmission : l’un
est lié au mouvement des vagues sur la topographie en gradins et l’autre est
lié à l’interaction vagues-structure à l’entrée de la chambre. Nous utilisons
enfin les équations caractéristiques des invariants de Riemann pour obtenir
les conditions de transmission discrétisées et nous implémentons le schéma de
Lax-Friedrichs pour obtenir des solutions numériques.
Le chapitre 1 est basé sur :

– Modelling and simulation of a wave energy converter.
En collaboration avec Edoardo Bocchi et Jiao He.
Publié dans ESAIM: Proceedings and Surveys, 70, pp. 68-83, 2021.
https://doi.org/10.1051/proc/202107005

• Dans le Chapitre 2, nous abordons le problème de la contrôlabilité frontière
pour le système d’eau peu profonde non linéaire unidimensionnel, décrivant
l’écoulement de surface libre de l’eau ainsi que l’écoulement sous une structure
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fixe et partiellement immergée. Le système d’équations différentielles consid-
éré peut être interprété comme un modèle simplifié d’un type particulier de
convertisseur d’énergie houlomotrice appelé colonne d’eau oscillante. Les ex-
igences physiques conduisent naturellement au problème de la contrôlabilité
exacte dans une région prescrite. En particulier, nous utilisons le concept de
contrôlabilité du profil nodal dans lequel à un point donné (le nœud) des profils
temporels pour les états doivent être accessibles par des contrôles frontière. En
réécrivant le système dans un système hyperbolique avec des conditions aux
limites non locales, nous nous établissons d’abord les solutions classiques semi-
globales du système, puis obtenons la contrôlabilité locale et le profil nodal en
utilisant une méthode constructive. De plus, sur la base de ce processus con-
structif, nous fournissons un concept algorithmique pour calculer la fonction
de contrôle frontière requise pour générer une solution qui résout ces problèmes
de contrôle.
Le chapitre 2 est basé sur :

– Boundary controllability of a system modelling a partially immersed ob-
stacle.
En collaboration avec Güenter Leugering et Yue Wang.
Publié dans ESAIM: Control, Optimisation and Calculus of Variations,
paper No. 80, 27, 2021.
https://doi.org/10.1051/cocv/2021076

• Dans le Chapitre 3 nous proposons un nouveau modèle mathématique non
linéaire d’une colonne d’eau oscillante. Les équations unidimensionnelles des
eaux peu profondes en présence de ce dispositif sont essentiellement reformulées
sous forme de deux problèmes de transmission : le premier est associé à une
discontinuité devant le dispositif et le second est lié à l’interaction entre les
vagues et une structure fixe et partiellement immergée. En tirant parti de
l’équation de Bernoulli à surface libre, nous fermons le système en dérivant une
condition de transmission qui implique une pression d’air dépendante du temps
à l’intérieur de la chambre de l’appareil, au lieu d’une pression atmosphérique
constante. Nous montrons alors que le deuxième problème de transmission
peut être réduit à un problème de valeur limite initiale hyperbolique quasi-
linéaire avec une condition aux limites semi-linéaire déterminée par une EDO
qui dépend de la trace de la solution de l’EDP au bord.
Le chapitre 3 est basé sur :

– Well-posedness of a nonlinear shallow water model for an oscillating water
column with time-dependent air pressure.
En collaboration avec Edoardo Bocchi et Jiao He.
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Soumis.
https://arxiv.org/pdf/2104.11570

Dans la seconde partie du manuscrit, nous abordons l’étude d’un modèle décrivant
la dynamique d’une structure rigide flottant sur un fluide visqueux en régime d’eau
peu profonde. En particulier

• Dans le Chapitre 4, nous étudions la version linéarisée du modèle d’EDP in-
troduit par Maity et al. [57] pour décrire le mouvement vertical d’un solide
flottant à la surface libre d’un fluide visqueux peu profond. Le solide est con-
trôlé par une force verticale exercée via un actionneur. Cette force est l’entrée
du système, tandis que la sortie est la distance du solide au fond. La première
nouveauté que nous apportons est que nous prouvons que les équations en jeu
définissent un système linéaire bien posé. Ceci est fait en considérant des es-
paces de fonction adéquats et des opérateurs entre eux. Une autre contribution
de ce travail est d’établir la stabilité entrée-sortie du système. Pour cela, nous
donnons une forme explicite de la fonction de transfert et nous montrons qu’elle
se situe dans l’espace de Hardy H∞ du demi-plan droit.

Le chapitre 4 est basé sur :

– Well-posedness and input-output stability for a system modelling rigid
structures floating in a viscous fluid.
En collaboration avec Denis Matignon et Marius Tucsnak.
Publié dans IFAC-PapersOnLine 53 (2), pp. 7491-7496, 2020.
https://doi.org/10.1016/j.ifacol.2020.12.1311

• Dans le Chapitre 5, nous étudions l’équation intégro-différentielle de type Cum-
mins pour les domaines non-bornés, qui survient lorsque le système d’EDP
introduit par Maity et al. [57] qui décrit l’interaction des ondes de surface
avec un solide flottant, en tenant compte de la viscosité du fluide, est linéarisé
autour des conditions d’équilibre. Une preuve de la stabilité entrée-sortie du
système est donnée, grâce à une représentation diffusive de l’opérateur fraction-
naire généralisé

√
1 + µs. De plus, en s’appuyant sur les résultats de stabilité

de Matignon pour les systèmes fractionnaires [59], des solutions explicites sont
établies à la fois dans les domaines fréquentiel et temporel, conduisant à une
connaissance explicite du vitesse de décroissance de la solution. Enfin, des
simulations numériques illustrent de la transition entre différents vitesses de
décroissance en fonction de la viscosité µ.

Le chapitre 5 est basé sur :
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– Asymptotic behaviour of a system modelling rigid structures floating in a
viscous fluid.
En collaboration avec Denis Matignon et Marius Tucsnak.
Publié dans IFAC-PapersOnLine 54 (9), pp. 205-212, 2021.
https://doi.org/10.1016/j.ifacol.2021.06.146
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Shallow water regimes
Modelling free surface flows is a classical research domain with important applica-
tions in science and engineering, such as studying the atmosphere, design of ocean
wave energy devices, coastal exploitation, and ocean circulation, for instance. The
main issue of a free surface flow consists of providing an analytical description of
the flow conditions and determining the free surface position by imposing dynamic
and kinematic boundary conditions on the free surface. The description of the al-
ready mentioned flow conditions are achieved by determining the velocity vector field
and the scalar field corresponding to the intensity of the pressure. A usual manner
to get a complete description of this type of flow problems in a fluid mechanics
framework is by considering the classical Navier-Stokes equations under assumptions
relative to the incompressibility, irrotationality, homogeneity and viscosity of the
fluid. However, from a computational point of view, the numerical resolution of the
Navier-Stokes equations for a free surface flow is known to be dramatically expen-
sive. For instance, in the three-dimensional case, the complete resolution typically
involves numerical complexities on implementing the discretization methods and the
meshing procedures. A usual alternative to deal with these difficulties is by deriv-
ing asymptotic models coming from the governing equations. In the literature, it is
possible to find several of this kind of reduced models. The variety is determined by
different aspects, such as the regimes where these are valid and the approximation
orders. These different regimes are obtained by introducing two dimensionless pa-
rameters, the so called nonlinearity parameter and the shallowness parameter, which

9
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Figure 1 – Characteristic scales for the water waves problem.

are defined respectively by

ε = asurf

h0
, µ = h2

0
L2 , (1)

where we consider the length scales of the water waves given by

1. The typical wavelength L,

2. The order of the free surface amplitude asurf ,

3. The typical water depth h0.

More specifically, by considering different assumptions on these dimensionless pa-
rameters, one obtained different regimes; for instance, assuming that the nonlinear-
ity parameter is small, one gets a regime with small amplitude waves. A graphical
sketch of these length scales, including the nonlinearity and shallowness parameters,
is presented in Figure 1.

In this manuscript we focus our attention on water waves models in shallow water
regimes. More precisely, we will study some mathematical problems that involved
the nonlinear shallow water equations, also called Saint-Venant equations, in its
viscous and inviscid version. These kind of systems can be deduced from dimen-
sionless forms of the Navier-Stokes equations in the viscous case [30], and from the
Craig-Sulem-Zakharov (CSZ) equations in the inviscid case [46], by assuming the
shallowness parameter small, i.e. µ � 1, and different assumptions on the nonlin-
earity parameter. For instance, by considering a small amplitude ε ∼ µ into the
dimensionless CSZ equations, we get the Boussinesq system which is a system that
describes water waves with a (weakly nonlinear) second order approximation, if we
consider a medium amplitude ε ∼ √µ, we obtain the Serre equations with O(µ2/ε),
and if we assume a large amplitude ε ∼ 1, we can get the Green-Naghdi equations
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O(µ2) and nonlinear shallow water equations O(µ). This last set of equations was
derived originally in 1871 by Barré de Saint-Venant in [17, 18], and conform a PDE
system that describes the free surface flow of an incompressible fluid affected by
gravity in cases where the horizontal scale is assumed to be greater than the verti-
cal scale. In the literature of inviscid shallow water flows, we highlight the recently
paper review of Lannes [47], where he presents a careful and unified derivation of
the classical asymptotic models, such as the nonlinear shallow water, the Boussinesq
equations and the Serre–Green–Naghdi (SGN) equations. These models are treated
by considering an asymptotic analysis of the water waves equations in a horizontal
discharge formulation. Hence, by removing the terms of order O(µ) in the dimen-
sionless CSZ equations, and assuming by simplicity that ε = 1, Lannes obtains the
nonlinear shallow water equations in the horizontal discharge formulation, which in
one (space) dimension read as

∂tζ + ∂xq = 0,

∂tq + ∂x

(1
h
q2
)

+ h∂xζ = 0,
(2)

where ζ denotes the surface elevation, h = h0 +ζ, with h0 is the height of the fluid in
equilibrium respect to a flat bottom, and q is the horizontal discharge. The equation
(2) will be very relevant in the first part of this manuscript, where we deal with
fluid-structure interactions in shallow water, as it will allow us to manipulate the
transmission conditions in the traces of the contact areas between the fluid and the
rigid object immersed in it.

On the other hand, Lannes in [47] presents less known approaches on shallow
water flows, such as multi-layer models, which appears as an alternative to the
Boussinesq or SGN models for numerical implementations, and the Isobe–Kakinuma
model, which consists of a system of Euler–Lagrange equations for an approximate
Lagrangian, derived by approximating the velocity potential in the Lagrangian ap-
propriately. For details on the multi-layer models, we recommend to the reader see
the seminal work of Bai and Cheung [3], and the article of Casulli and Stelling [13],
while in the case of the Isobe–Kakinuma model, we recommend seeing the seminal
papers of Isobe [37], and Kakinuma [40], and the recent article of Kazakova and
Richards [42].

In the literature on viscous Saint-Venant equations, we can mention different
approaches, derivations and well-posedness results. For instance, in 1985 Kloeden in
[43], by using the energy methods of Matsumura and Nishida, he proves the global
temporal existence of classical solutions in the dissipative shallow water equations
on a spatially periodic horizontal domain. In 1991 Bernardi and Pironneau in [15]
by studying the vertical averages of the incompressible Navier-Stokes equations from
the point of view of numerical analysis present results on the existence in cases
when the Reynolds number is small and convergence of algorithms. In 1995, Orenga
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in [64] deals with a model for the evolution of two-dimensional viscous flows and
prove results relative to the existence of solutions under constraints of smallness
for the initial data. In 1996, under the assumption that the external force field
derives from potential, and by adapting the methods of Matsumura and Nishida to
prove the existence of solutions of a system of equations modelling the motion of a
compressible, viscous, heat-conducting fluid, Sundbye in [76], prove the existence of
global-in-time strong solutions of a viscous shallow system for small enough initial
velocities, initial heights, and small external force fields. In 2001, Gerbeau and
Perthame in [30], derive one of the most commonly used Saint-Venant system that
considers small friction, viscosity and Coriolis-Boussinesq factor departing from the
Navier-Stokes system with a free moving boundary, which is validated by considering
numerical comparisons between their model and direct Navier-Stokes simulations.
More precisely, the authors recover a vertical distribution of the velocity field, which
leads to a model that includes viscosity, which is given by

∂h

∂t
+ ∂hu

∂x
= 0

∂hu

∂t
+ ∂hu2

∂x
+ g

2
∂h2

∂x
= − κu

1 + κh
3µ

+ 4µ ∂

∂x

(
h
∂u

∂x

)
,

(3)

where µ > 0 and κ ≥ 0 denote the viscosity and a friction of the fluid, respectively,
u denote the horizontal component of the velocity field and h is the fluid height
respect to the flat bottom. In 2005, Rodríguez and Taboada-Vázquez in [74], by
introducing a small adimensional parameter related to the depth of the fluid domain
and studying the asymptotic behaviour of it in the case when tending to zero, they
derive a shallow water model which includes a novel diffusion term. In 2009, Bresch
published an interesting and complete chapter in [10], where he reviews the results
from derivations of shallow-water systems, which depend on several mathematical
and physical aspects, where we mention, for example, apriori conditions, oscillating
topography and boundary effects and the compressible-incompressible limit around
a constant or inconstant height profile.

Fluid-structure interactions in shallow water
In this section, we present some recently introduced models on the dynamics of fluids
in the presence of a partially immersed rigid body in shallow water, which typically
are applied to describe, for example, a wave energy converter or a ship. The wave-
structure interaction problem describes the motion of a mechanical system formed
by a fluid delimited by a free surface and a partially immersed solid body. This
wave-structure system involves two free boundary problems; the first one describes
the evolution in time of the surface when it is in contact with the air, and a second
one describes the evolution in time of the portion of the boundary of the solid in
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Figure 2 – Configuration.

contact with the fluid, i.e. describes the dependence in time of the “wetted surface”
∂wC(t).

One of the first approaches to deal with this problem was proposed by John in
two famous articles [38, 39]. In his works, time variations of the wetted surface of the
immersed body are neglected, and the motion of the solid body is assumed to be with
a small amplitude. Nowadays, this approach is still used in different fields of science
and engineering, for instance, to treat simulations of wave-structures interactions.
However, despite John’s approach take into account nonlinear effects, the numerical
resolution of the Laplace equation for the velocity potential, on time-dependent fluid
domains that at the contact line contains wedges or corners, produces an expensive
computational cost (see for instance [12]). Recently, Lannes proposed a general ap-
proach to describe interactions between water waves and partially immersed floating
structures in [46]. In his work, Lannes assumes that the projection of the immersed
part of the object is an interval I(t) = (x−(t), x+(t)), with x−(t) < x+(t), called in-
terior domain. Its complement interval with respect to R is called exterior domain,
and is explicitly defined by

E(t) = E−(t) ∪ E+(t), where E−(t) = (−∞, x−(t)) , and E−(t) = (x+(t),∞) . (4)

In the following, we focus on describing the water waves in a shallow water regime
with a first-order approximation in the presence of a partially immersed fixed body.
For a graphical sketch of the configuration considered see Figure 2. By denoting
by qi(t) the horizontal discharge defined on the interior domain I(t), the nonlinear
shallow water equations with an immersed structure [46], reads as

∂tζ + ∂xq = 0,

∂tq + ∂x

(1
h
q2
)

+ h∂xζ = 0,
on E(t), (5)
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with 
∂xqi = 0,

∂tqi + ∂x

( 1
hw
q2

i

)
+ gh∂xζw = −h

ρ
∂xP i,

on I(t). (6)

The equations (5)-(6), are complemented with the following two equations; the
first one relative to the continuity of the pressure at the free surface P , which is given
by

P i (t, x) = Patm on {x−(t), x+(t)}, (7)
and, the second one about the continuity of the free surface elevation ζ, which reads
as

ζ (t, x) = ζw (x) on {x−(t), x+(t)}. (8)
In order to close the system, a third coupling condition about the continuity of

the horizontal discharge is considered. This condition is a natural consequence of the
smoothness of the vector field U on the fluid domain, which follows by considering
the constraints of incompressibility and irrotationality of the fluid and some elliptic
estimates (see [46] for details). This coupling condition reads

q (t, x) = qi(t) on {x−(t), x+(t)}. (9)

In summary, the wave-structure interaction problem, in this case, consists in to find
(ζ, q), (qi, P i) and x−(t), x+(t) such that equations (5)-(9) follow.

We remark the fact that the coupling conditions (7)-(8) defined at the contact
lines follow if and only if, in the neighbourhoods of {x−(t), x+(t)}, the boundaries
of the partially immersed body are not vertical. Hence, in the presence of a partially
immersed object with vertical walls, the coupling conditions (7)-(8) need to be cor-
rectly modified. A natural manner to deals with it is by relaxing the continuity of
the free surface elevation (8). Consequently, the continuity of the pressure at the free
surface P needs to be replaced by an adequate and general expression. This general-
ization has been treated by Lannes in [46], in the cases of a partially immersed body
with vertical walls floating freely and with prescribed motion in a shallow regime.
Similarly, Bocchi deals with a generalization of an immersed body with vertical walls
floating freely on a two-dimensional spatial domain in [6]. In the first part of this
manuscript, we deal with a new generalization of the coupling conditions (7)-(8) on
the configuration of a partially immersed and fixed object, which is motivated by
some applications of this topic in ocean wave energy, see Chapters 1, 2 and 3 for
more details.

On the other hand, a model of a rigid structure with vertical walls floating in
a viscous fluid in a shallow water regime was proposed recently in the literature
by Maity, San Martín, Takahashi and Tucsnak in [57]. In order to describe their
model, let us introduce some notations. We denote by ρ the density of the fluid,
which is supposed to be constant, by g the constant of gravity acceleration, and by
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µ and M the positive constants relative respectively, to the viscosity of the fluid and
the mass of the rigid body. Furthermore, we denote by v(x, t), h(x, t) and p(x, t)
denote respectively, the velocity and the height of the free surface of the fluid and
the pressure force exerted by the fluid on the solid, by hS(t) the height from the
bottom of the cylinder with respect to the horizontal bottom of the fluid container.
All these functions are defined on times t ≥ 0 and on positions x ∈ [0, `], for ` > 0.
An important constrain that defines the model that we introduce below is that the
body moves only vertically. Hence, similarly to the modelling process described in
the section below, the spatial domain is split into two disjoint subdomains defined
by the projection of the cylinder on the flat bottom (a, b), with a, b ∈ [0, `], which
is denoted by I, and its complement E = (0, `) \ I. For a graphical sketch of the
configuration considered see Figure 3.

[f ]a := f
(
a+
)
− f

(
a−
)
, [f ]b := f

(
b+
)
− f

(
b−
)
.

With this notation, the model of a rigid structure floating in a viscous fluid is

∂h

∂t
+ ∂q

∂x
= 0 (t > 0, x ∈ I ∪ E), (10)

∂

∂t

(
q

h

)
+ ∂

∂x

(
q2

2h2 + gh+ p

)
− µ ∂

∂x

(
1
h

∂q

∂x

)
= 0 (t > 0, x ∈ I ∪ E), (11)

MḧS(t) = −Mg +
ˆ b

a

p(x, t)dx (t > 0), (12)

with
p(x, t) = 0 (t > 0, x ∈ E), (13)

h(x, t) = hS(t) (t > 0, x ∈ I), (14)
and with transmission conditions given by

[q(·, t)]a = [q(·, t)]b = 0 (t > 0), (15)[
p(·, t) + q2(a, t)

2h2(·, t) + gh(·, t)− µ

h

∂q

∂x
(·, t)

]
a

= 0 (t > 0), (16)
[
p(·, t) + q2(b, t)

2h2(·, t) + gh(·, t)− µ

h

∂q

∂x
(·, t)

]
b

= 0 (t > 0). (17)

How is usual, the system above is complemented with the following initial and bound-
ary conditions

q(0, t) = q(`, t) = 0 (t > 0), (18)
h(0, x) = h0(x) (x ∈ E), (19)
q(0, x) = q0(x) (x ∈ [0, `]), (20)
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Figure 3 – Configuration.

hS(0) = hS0. (21)

In the second part of the manuscript, we will study some stability issues related
to two different linearized versions of the fluid-structure system (10)-(21). For more
details, see Chapter 4 and 5.
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The contributions of this thesis are motivated by applications on ocean wave
energy of some recently introduced fluid-structure models. More specifically, we
study some aspects relative to the modelling, analysis and controllability of some
mathematical systems in the spirit of the works of Lannes [46], and Tucsnak et al.
[57]. The results presented in this manuscript are presented in two parts, which will
be described in the following sections.

Contributions of the first part

In a first part of the manuscript, we deal with the modelling, simulation and bound-
ary controllability of partially immersed structures in a shallow water regime. The
contribution of these topics are presented in the following 3 subsection.
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Contributions of Chapter 1
In Chapter 1 we study the mathematical configuration of a particular kind of wave
energy converter. More precisely, we derive a mathematical model and present sim-
ulations of an oscillating water column. In this device, waves governed by the one-
dimensional nonlinear shallow water equations arrive from offshore, encounter a step
in the bottom and then arrive into a chamber to change the volume of the air to
activate a turbine. For simplicity, in this first chapter, we assume that the surface
pressure inside the chamber is given by the constant atmospheric pressure. The sys-
tem proposed is formulated as two transmission problems: one is related to the wave
motion over the stepped topography (located at x = 0), and the other is related to
the wave-structure interaction at the chamber entrance. Hence, by considering as
spacial domain the interval (−l, l1), with l, l1 > 0, the subintervals

E0 = (−l, 0), E1 = (0, l0 − r), I = (l0 − r, l0 + r), E2 = (l0 + r, l1),

and denoting by ζ(t, x) the free surface elevation, h(t, x) the fluid height, by ρ the
fluid density, by P the surface pressure of the fluid and by q(t, x) the horizontal
discharge, the first transmission problem defined reads as


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

h = hs + ζ in E0, h = h0 + ζ in E1, (22)

with transmission conditions at x = 0 given by

ζ|x=0−
= ζ|x=0+ , q|x=0−

= q|x=0+ . (23)

The second transmission problem in E1 ∪ E2 reads as
∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

h = h0 + ζ, (24)

with transmission conditions at x = l0 ± r given by

q|x=l0−r
= q|x=l0−r

, −α d
dt
qi =

(
q2

2h2 + gζ

)
|x=l0−r

−
(
q2

2h2 + gζ

)
|x=l0+r

, (25)

where α = 2r
hw

, hw = h0 + ζw and ζw constant (see Subsection 1.1 for the rigorous
statements of these quantities). To derive the transmission conditions relative to
the first transmission problem, we consider the continuity of the surface elevation
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Oscillating Water Column

Turbine
Incident Waves

Figure 4 – Sketch of an oscillating water column.

and continuity of the horizontal discharge at the step located at x = 0, whereas the
transmission conditions involved in the second transmission problem are obtained
from the continuity of the horizontal discharge at the walls of the device (see Figure
4 for a graphical idea of this device) and under the assumption that the total fluid-
structure energy at time t is equal to the integral between 0 and t of the sum between
the energy flux at the entry of the domain and the difference of the energy fluxes at
the step. As we have already said, we close the chapter by using the characteristic
equations of Riemann invariants to obtain the discretized version of the transmission
conditions and hence, we implement a finite difference scheme with a Lax-Friedrichs
numerical flux to get numerical simulations.

Chapter 1 is based on:

• Modelling and simulation of a wave energy converter.
In collaboration with Edoardo Bocchi et Jiao He.
Published in ESAIM: Proceedings and Surveys, 70, pp. 68-83, 2021.
https://doi.org/10.1051/proc/202107005

Contributions of Chapter 2
In Chapter 2 we address the problem of boundary controllability for a nonlinear
model describing the interaction between waves in a shallow water regime with a
partially immersed and fixed structure. More precisely, we consider the transmission
problems introduced in Chapter 1 on an equivalent physical configuration (see Figure
2.1 for a graphical sketch of this idea) with a boundary control related to the surface
elevation. In order to deal with it, the nonlinear shallow water equations

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

for x ∈ E0 ∪ E1 ∪ E2, (26)
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with
E0 = (−l, 0), E1 = (0, l0 − r), E2 = (l0 + r, l1), (27)

are coupled with boundary conditions given by

x = −l : ζ0 = f(t), (28)

x = l1 : q2 = 0, (29)
where f(t) denotes a prescribed boundary function or a boundary control to be de-
termined. In addition, we couple the system above with the transmission conditions
developed in [8], which read as

x = 0 :
{
ζ0(t, 0) = ζ1(t, 0),
q0(t, 0) = q1(t, 0),

(30)

x = l0 ± r :


q2(t, l0 + r) = q1(t, l0 − r) = qw(t),[
q2

2
2h2

2
+ gζ2

]∣∣∣∣∣∣
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]∣∣∣∣∣∣
x=l0−r

= −α d
dt
qw(t),

(31)

where qw(t) is the horizontal discharge on the domain (l0 − r, l0 + r), the subscript
i making mention to the restriction of the respective function to the spacial domain
Ei and α = 2r

hw
.

The aim of the exact controllability for system (26) is looking for a boundary
control f(t) acting at x = −l though the boundary condition (28), such that the
prescribed final data (ζiT (x), qiT (x)), is attained in the entire shallow water regime
at a given time T :

Ui(T, x) := (ζi, qi)(T, x) = (ζiT (x), qiT (x)), x ∈ Ei, i = 0, 1, 2, (32)

where the Ui is generated by the control f as a solution of system (26)-(29) with the
initial condition:

(ζi, qi)(0, x) = (ζi0(x), qi0(x)), x ∈ Ei, i = 0, 1, 2. (33)

To ensure the existence and uniqueness of a piecewise C1 semi-global solution for
this problem, we give below some assumptions on the initial data and final data: for
each i = 0, 1, 2,

(S1) ζi0(x), qi0(x) are C1 functions with small norm ‖(ζi0, qi0)‖C1[Ei]×C1[Ei],
(S2) ζi0(x), qi0(x) satisfy the C1 compatibility at the points

(t, x) ∈ {(0,−l), (0, l1)},

and the piecewise C1 compatibility at the adjoint points

(t, x) ∈ {(0, 0), (0, l0 − r), (0, l0 + r)}.
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Accordingly,
(S1’) ζiT (x), qiT (x) are C1 functions with small norm ‖(ζiT , qiT )‖C1[Ei]×C1[Ei],
(S2’) ζiT (x), qiT (x) satisfy the C1 compatibility at the points

(t, x) ∈ {(T,−l), (T, l1)},

and the piecewise C1 compatibility at the adjoint points

(t, x) ∈ {(T, 0), (T, l0 − r), (T, l0 + r)}.

To study this control problem, we start by rewriting the governing equations as
into a hyperbolic system with nonlocal boundary conditions, and we establish the
semi-global classical solutions of the system, i.e. the classical solutions on the time
interval [0, T0], where T0 > 0 is a preassigned and possibly quite large number. This
preliminary result read as

Theorem .1. Let T > 0 be given. For any given initial data (ζi0, qi0) with small
norm ‖(ζi0(·), qi0(·))‖C1[Ei]×C1[Ei] (i = 0, 1, 2) and boundary function f(t) with small
norm ‖f(·)‖C1[0,T ], satisfying the conditions (S1)-(S2), the forward mixed initial-
boundary value problem of the shallow water system (26) on the connected water
regime with the initial condition (33), the boundary conditions (28)-(29) and the
interface conditions (30)-(31) admits a unique semi-global piecewise C1 solution Ui =
(ζi(t, x), qi(t, x)), (i = 0, 1, 2) with small norm

2∑
i=0
‖(ζi(·, ·), qi(·, ·))‖C1[Ri(T )]×C1[Ri(T )],

on the domain

R(T ) =
2⋃
i=0
Ri(T ) =

2⋃
i=0
{(t, x) | 0 ≤ t ≤ T, x ∈ Ei}.

We remark the fact that the backward case is analogous. The proof of theorem
above is based on Riemann invariants associated with the nonlinear shallow water
equations and on the results of Li and Xi in [55], about mixed initial-boundary
value problem with non-local boundary condition. See Section 2.3.1 for the rigorous
statements of the proof.

The following result states the existence of solutions for the boundary control
problem, which can be constructed explicitly (see Subsection 2.3.2 for the rigorous
statements of this constructive method.)

Theorem .2. (Exact Controllability).Let

T > 2
 l√

gh0

+ l1 − 2r√
gh1

 . (34)
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For any given initial data (ζi0, qi0) and final data (ζiT , qiT ) satisfying the assump-
tions (S1)-(S2) and (S1’)-(S2’), respectively, there exists a boundary control f(t)
with small norm ‖f(t)‖C1[0,T ], such that mixed initial-boundary value problem for
equation (26) with the initial condition (33), the boundary conditions (28)-(29) and
the transmission conditions (30)-(31) admits a unique piecewise C1 solution (ζi, qi) =
(ζi, qi)(t, x), (i = 0, 1, 2) with small piecewise C1 × C1 norm on the domain

Ri(T ) = {(t, x)|0 ≤ t ≤ T, x ∈ Ei},

which exactly satisfies the desired final condition (32).

We note that in the theorem above, we just considered the steady-state at rest,
however, we can easily establish the corresponding local exact controllability in the
neighbourhood of a stationary subsonic continuously differentiable. On the other
hand, a second controllability problem is considered by using the concept of nodal
profile controllability. This kind of exact boundary controllability was recently intro-
duced by Gugat, Herty and Schleper, in [33]. The nodal profile controllability does
not ask the solution to exactly attain any given final state at a suitable time t = T
by means of boundary controls. Instead it asks the state to exactly fit any given
profile on a node after a suitable time t = T utilizing boundary controls.

For system (26), we consider a given demand in fluid height and horizontal dis-
charge at the end x = l1 by:

U2(t, l1) := (ζ2, q2)(t, l1) = (h2 + ζB(t), qB(t)), t ∈ [T, T ]. (35)

It is worth to mention that the given nodal profile function UB := (h2 + ζB(t), qB(t))
should be compatible with the boundary condition (29) in the time interval [0, T ] at
the node x = l1, which implies that the demand qB must be set as 0. While, the
other one, ζB(t), can be chosen as any given C1 function of time after a finite time
T .

In the following, we present our result on the exact controllability of nodal profile:

Theorem .3. (Exact Controllability of Nodal Profile).Let

T >

 l√
gh0

+ l1 − 2r√
gh1

 (36)

and let T be an arbitrarily given number satisfying T > T . Then for any given
initial data (ζi0, qi0) satisfying assumptions (S1)-(S2), and for any given demand
of the surface elevation ζB(t) with small norm ‖ζB‖C1[T,T ], there exists a boundary
control f(t) ∈ C1[0, T ], such that the mixed initial-boundary value problem for equa-
tion (26) with initial condition (33), boundary conditions (28)-(29) and transmission
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conditions (30)-(31) admits a unique piecewise C1 solution (ζi, qi) = (ζi, qi)(t, x) (i =
0, 1, 2) with small C1 × C1 norm on the domain

Ri(T ) = {(t, x)|0 ≤ t ≤ T , x ∈ Ei},

which exactly satisfies the given nodal profile condition at the end x = l1:

ζ2(t, l1) = ζB(t), ∀t ∈ [T, T ]. (37)

Chapter 2 is based on:

• Boundary controllability of a system modelling a partially immersed obstacle.
In collaboration with Güenter Leugering and Yue Wang.
Published in ESAIM: Control, Optimisation and Calculus of Variations, paper
No. 80, 27, 2021.
https://doi.org/10.1051/cocv/2021076

Contributions Chapter 3

In Chapter 3 we propose a nonlinear model given by 1D nonlinear shallow water
equations in the presence of an oscillating water column device. The one-dimensional
shallow water equations in the presence of this device are essentially reformulated as
two transmission problems: the first one is associated with a step, located at x = 0,
in front of the device and the second one is related to the interaction between waves
and a fixed partially-immersed structure with vertical walls, located at x = l0 ± r.
In order to present here these transmission problems, let us introduce the main
notations involved in them. We divide the spatial domain (−∞, l1) into the exterior
domain, and the interior domain is given respectively by

I := (l0 − r, l0 + r) and E = E− ∪ E+

where E− := (−∞, 0) and E+ = E+
l ∪E+

r := (0, l0−r)∪(l0+r, l1).On the other hand we
denote by ζ(t, x) the free surface elevation, by ζw the height of bottom of the partially-
immersed structure, by h(t, x) the fluid height, by q(t, x) the horizontal discharge,
by P (t, x) the surface pressure of the fluid, by Pch(t) the time-dependent variation
of Pair inside the OWC chamber, by Patm the constant atmospheric pressure, and by
hs, h0 the fluid heights at rest in E− and E+, respectively. Hence, the transmission
problem derived in this chapter reads as
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

∂tζ + ∂xq = 0 in (0, T )× E− ∪ E+
l ∪ E+

r ,

∂tq + ∂x

(
q2

hs + ζ

)
+ g(hs + ζ)∂xζ = 0 in (0, T )× E−,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0 in (0, T )× E+

l ∪ E+
r ,

P = Patm in (0, T )× E− ∪ E+
l ,

P = Patm + Pch(t) in (0, T )× E+
r ,

with transmission conditions over the step

ζ|x=0−
= ζ|x=0+ , q|x=0−

= q|x=0+ ,

and transmission conditions across the structure side-walls

JqK = 0, 〈q〉 = qi,

where qi and Pch satisfies
dqi
dt

= − 1
α

s
gζ + q2

2(h0 + ζ)2

{
− 1
αρ
Pch,

dPch

dt
= −γ1Pch + γ2qi,

with some constants α, γ1, γ2 and

JqK = q|x=l0+r − q|x=l0−r
and 〈q〉 = 1

2

(
q|x=l0−r

+ q|x=l0+r

)
.

The boundary condition at x = l1 is given by the wall boundary condition q = 0 for
x = l1.

To the author is knowledge, this is the first nonlinear model for the interaction
between shallow water waves and an OWC involving a time-dependent air pressure
inside the chamber of the device, instead of a constant atmospheric pressure as in [8].
It turns out that, since the air pressure is time-dependent and space-independent,
there is no direct influence of the new air pressure on the fluid equations. It is
only involved in the transmission conditions that couple the fluid equations before
and after the structure side-walls. This is established by using a simple but new
idea: considering an irrotational fluid, we take advantage of free surface Bernoulli’s
equation for the fluid velocity potential. Indeed, evaluating it at the surface elevation
and writing the equation at the precision of the nonlinear shallow water regime, we
are able to derive a condition where the difference between the surface pressure inside
and outside the OWC chamber appears. This represents a substantial improvement,
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and a generalisation of the previous nonlinear model derived in [8], as it recovers the
same transmission condition in the case of a constant air pressure inside the chamber.

By taking advantage of the free surface Bernoulli’s equation, we close the system
by deriving a transmission condition that involves a time-dependent air pressure
inside the chamber of the device instead of a constant atmospheric pressure. We
then show that the second transmission problem can be reduced to a quasilinear
hyperbolic initial boundary value problem with a semilinear boundary condition
determined by an ODE depending on the trace of the solution to the PDE at the
boundary.

Chapter 3 is based on:

• Well-posedness of a nonlinear shallow water model for an oscillating water
column with time-dependent air pressure.
In collaboration with Edoardo Bocchi and Jiao He.
Submitted.
https://arxiv.org/pdf/2104.11570

Contributions of the second part
In the second part of the manuscript, we deal with the study of a model describing
the dynamic of a rigid structure floating in a viscous fluid in a shallow water regime.
In order to present the main contributions of this part, let us start by introducing
some general notations. Given t > 0, we denote by h(t, x) the height of the free
surface of the fluid, by q(t, x) the flux of viscous fluid in the direction x and by hS(t)
the distance from the bottom of the rigid body to the bottom of the fluid, supposed
to be horizontal. With this notations, the contributions of this second part of the
thesis are described in the following two subsections.

Contributions of Chapter 4
In Chapter 4 we study the linearized version of the PDE model introduced by Maity
et al. [57] for describes the vertical motion of a solid floating at the free surface of a
shallow viscous fluid. In this linear model, the motion of the solid is assumed to be
controlled by a vertical force exerted via an actuator, which defines the input of the
system, whereas the output is defined as the distance from the solid to the bottom.
Hence, the model reads as

∂h

∂t
+ ∂q

∂x
= 0, (x ∈ E), (38)

∂q

∂t
+ ∂h

∂x
− µ∂

2q

∂x2 = 0, (x ∈ E), (39)
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h(t, a−)− µ∂q
∂x

(t, a−) = p(t, a+) + hS(t)− µ∂q
∂x

(t, a+), (40)

h(t, b+)− µ∂q
∂x

(t, b+) = p(t, b−) + hS(t)− µ∂q
∂x

(t, b−), (41)

ḣS(t) + ∂q

∂x
= 0 (x ∈ I), (42)

∂q

∂t
+ ∂p

∂x
= 0 (x ∈ I), (43)

ḧS(t) =
ˆ b

a

p(t, x)dx+ u(t) (t > 0), (44)

where p is a Lagrange multiplier, similar to a pressure term (which is obtained in
the Hamiltonian modelling process), u is the input function, whereas the output is

y(t) = hS(t) (t ≥ 0). (45)

The first novelty we bring in is that we prove that the governing equations define
a well-posed linear system in the sense of Weiss (for details see [77] or [84]). This
is done by considering adequate function spaces and convenient operators between
them.

In fact, by considering

X := C×H1(E)× L2(E)× C× C, (46)

we present the following reformulation of the linear system.

Theorem .4. Equations (38)-(45) can be recast as

ż = Az +Bu
y = Cz,

(47)

where the components of the state trajectory z(t) are hS(t), h(t, ·), q(t, ·), q(t, a)
and q(t, b), B is in L(C, X), C is in L(X,C) and A is a generator of an analytic
semigroup on X.

Then, by using the classical definition of well-posed linear systems (see, for in-
stance, [77]), the above theorem implies the following result

Corollary .5. Equations (38)-(45) define a well-posed linear system with state space
X defined in (46) and input and output spaces U = Y = C.

Another contribution of this work is establishing that the system is input-output
stable. In order to present this result, we remember that a well-posed linear system
of the form (47) is said input-output stable if equations (47) define, for z(0) = 0
a bounded map u 7→ y from L2([0,∞);U) to L2([0,∞);Y ). Considering this our
second main result can be stated as:
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Theorem .6. The system described by (38)-(45) is input-output stable.

The proof of the theorem below is based on founding the explicit form of the
transfer function and showing that it lies in the Hardy space H∞ of the right-half
plane. In fact by proving that the resolvent set ρ(A) contains C0 = {s ∈ C : < (s) >
0}, it follows that the transfer function

G(s) = C(sI − A)−1B,

of the system (38)-(45) is defined for every s ∈ C0. Moreover, by computing the
Laplace transform of the solution of (38)-(45) with zero initial data, we obtain the
following result

Proposition .7. The transfer function of the system (38)-(45) is given by

G(s) := 1(
1 + l3

12

)
s2 + l2

2 s
√

1 + µs+ µls+ l
(s ∈ C0). (48)

Hence, the Theorem .6 follows by consider the following Lemma, which is proved
by using basic arguments of complex analysis and roots of polynomials.

Lemma .8. Let F be the function defined by

F (s) =
(

1 + l3

12

)
s2 + l2

2 s
√

1 + µs+ µls+ l, (49)

and let C0 = {s ∈ C : < (s) > 0}. Then there exists a neighborhood O of C0 such
that F is holomorphic on O. Moreover, F does not vanish on C0.

Chapter 4 is based on:

• Well-posedness and input-output stability for a system modelling rigid struc-
tures floating in a viscous fluid.
In collaboration with Denis Matignon and Marius Tucsnak.
Published in IFAC-PapersOnLine 53 (2), pp. 7491-7496, 2020.
https://doi.org/10.1016/j.ifacol.2020.12.1311

Contributions of Chapter 5
In Chapter 5 we study an integro-differential equation of Cummins type that arises
when the nonlinear PDE system introduced by Maity et al. [57] is linearized around
equilibrium in an unbounded domain. More specifically, by considering some as-
sumptions on the pressure term involved in the linear system described above and
using the Laplace transform on it, we derive an integro-differential equation which
is stated in the following proposition (for a rigorous statement of this result see
Proposition 5.2.2).
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Proposition .9. The vertical movement of a floating object, in an unbounded viscous
fluid that is initially at rest, is described by the following integro-differential equation(

1 + l3

12

)
ḧS(t) = − l

2

2

ˆ t

0
F (σ)ḣS(t− σ)dσ − l

(
hS(t) + µḣS(t)

)
, (50)

with initial conditions
hS(0) = h0, ḣS(0) = 0,

and where l is a constant parameter associated with the floating body and F is the
causal distribution, such that F̂ (s) =

√
1 + µs in <(s) > −1/µ.

Relying on Matignon stability results for fractional systems [59], explicit solutions
of equation (50) are established both in the frequency and the time domains, leading
to an explicit knowledge of the decay rate of the solution. A key step in this proce-
dure is by studying the distributions on the complex plane C of the roots of a real
polynomial associated with the equation (50), which we called Viscous polynomial.
This polynomial reads as

PT (λ) =
(

1 + l3

12

)
λ4 + l2

√
µλ3 +

(
lµ− 2

µ

(
1 + l3

12

))
λ2 − l2

√
µ
λ+ 1

µ2

(
1 + l3

12

)
.

(51)
Thus, by computing the set of roots {λ1, λ2, λ3, λ4} of PT (λ) and considering the
following modification of the two parametric Mittag-Leffler function [31],

Eα(λ, t) = tα−1
∞∑
k=0

(λtα)k´∞
0 tαk+αe−tdt

,

the explicit solution of the equation (50) in the time domain is presented in the
following theorem (for a rigorous statement of this result see Theorem 5.4.6).

Theorem .10. The solution of the equation (50) is given by

hS(t) = exp
(
− 1
µ
t

)( 4∑
i=1

Θi E 1
2

(λi, t)
)
, (52)

with constants Θi := ri h0 + r̃i ḣ0.

As we already mentioned, thanks to this explicit solution and by considering the
approaches of Matignon on the long-time behaviour of the Mittag-Leffler functions
in [59, 61], we obtain the following stability result.

Theorem .11. For the solution (52) of the equation (50), for a given value of the
viscosity µ, two cases may occur, depending of the location of the four roots λi of the
viscous polynomial PT :
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(a) (b)

Figure 5 – Evolution of the four roots λi in the complex plane C, as a function of µ. (a): global
picture with 4 trajectories. (b): zoom in the right-half plane <(σ) > 0, 2 trajectories crossing the
segment Re(λ) = |=(λ)| for a critical value µc of the viscosity.

• either there is at least one root with <(λj) > |=(λj)| then the asymptotics is of
exponential type, with rate δ(µ) := 1

µ
−<(λ2) > 0

hS(t) ∼
∑
j

Cj exp
((

λ2
j −

1
µ

)
t

)
, (53)

• or all the four roots lie in | arg(λ) |> π
4 , then the asymptotics is of mixed type,

hS(t) ∼ C t−
3
2 exp

(
− 1
µ
t

)
. (54)

We close the chapter by providing numerical evidence that both situations stated
by Theorem .11 may occur in practice. In fact, in figure 5 the trajectory of the four
roots λi is drawn as a function of µ in the σ-plane: two roots belong to the left half-
plane and will have no counterpart in the Laplace plane; the two other roots belong
to the right half-plane and will give rise to a pole in the Laplace plane; picture (b)
provides a zoom on these two, which cross the segments <(λ) = |=(λ)| for a critical
value µc of the viscosity.
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Figure 6 – Damping rate δ(µ) = <(λ2)− 1
µ as a function of the viscosity term µ.

On the other hand, we illustrate in Figure 6 the transition between the two
possible regimes, as the viscosity µ of the fluid increases. Note that above the critical
value µc, δ(µ) = 1/µ, meaning that we are in the mixed type regime. Indeed, the
two roots λ1,2 now fulfill | arg(λ1,2)| > π

4 .
Chapter 5 is based on:

• Asymptotic behaviour of a system modelling rigid structures floating in a viscous
fluid.
In collaboration with Denis Matignon and Marius Tucsnak.
Published in IFAC-PapersOnLine 54 (9), pp. 205-212, 2021.
https://doi.org/10.1016/j.ifacol.2021.06.146

Perspectives
In this section, we present some conclusions and perspectives, related to the contri-
butions presented in this manuscript, which we believe merit in-depth research.

As we said above, the research aimed in this thesis presents contributions on the
modelling, analysis and control of some water waves-rigid body interactions. Hence,
in the first part, we developed the modelling, simulation and boundary controllability
of partially immersed structures in a shallow water regime, which has been motivated
by a particular kind of wave energy converter (WEC), the so-called oscillating water
column (OWC). These contributions constitute a significant and novelty point of
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view that allows understanding the behaviour of this waves-structure interaction,
and in consequence, to handle a general description of the phenomenons involved in
the OWC device. More precisely, these issues are reached by describing the features
of the interaction between this kind of WEC and the water waves by taking into
account in the modelling process nonlinear effects of the fluid, by developing explicit
transmission conditions and by studying a problem of the exact controllability of
nodal profile for one of the nonlinear models proposed. These results could allow
engineers and oceanographers, to have a better comprehension of the hydrodynamic
involved in the OWC device, which may guarantee an effective implementation and
maximize the ratio of the produced energy to the energy used in the implementation
process.

In what follows, we present some perspectives and future directions of research
related to the first part of this dissertation. In particular, we note that the following
issues remain open:

• To study the modelling of an OWC device taking into account waves that
includes dispersive effects, wich are neglected by the nonlinear shallow water
equations. This could be studied by considering waves governed by the one
dimensional nonlinear Boussinesq equations:


∂tζ + ∂xq = 0(

1− h2
0

3 ∂
2
x

)
∂tq + ∂x

(1
2gh

2 + 1
h
q2
)

= 0, (h = h0 + ζ) .

Another possible contribution of this research’s perspective, is the study of new
methods for the numerical implementation of this dispersive OWC model. This
idea can be based on a reformulation of the system and the resolution of the dis-
persive boundary layer that appears at the boundary when non-homogeneous
boundary conditions are considered [48].

• To study the configuration of the OWC device taking into consideration the
viscosity of the fluid in the modelling process. This could be done supposing
that the flow obeys a shallow water regime (modelled by the viscous Saint-
Venant equations in one space dimension) and by using a Hamiltonian for-
malism inspired in the approach introduced in [67] for the inviscid case with
the methodology used in [29] in the case of the Navier-Stokes-Fourier system.
Another possible contribution of this idea is the study of the well-posedness of
the obtained PDEs/ODEs system in function spaces similar to the standard
ones for strong solutions of viscous shallow water equations.

• To study the modelling, analysis and control of the OWC device in a two-
dimensional setting.
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• To study the boundary controllability of nodal profile for the nonlinear system
introduced in the Chapter 3.

• By considering the PDE-based OWC models proposed in the first part of the
manuscript, to design ad hoc optimal control strategies to implement the sys-
tem for wave energy extraction purposes, and compare its efficiency with the
classical models utilized by ocean wave energy researchers.

In the second part of the manuscript, we studied two different linearized versions
of a PDE system introduced by Maity et al. in [57], which describe the dynamics
of a rigid structure with vertical walls floating in a viscous fluid in a shallow water
regime. Our contributions in this second part, begin by providing results on the
well-posedness in the sense of Weiss (see [77]) and on the input-output stability
of a first linear model, where the motion of the solid is assumed to be controlled
by a vertical force exerted via an actuator, which defines an input for the system,
whereas the output is defined as the distance from the solid to the fluid bottom. On
the other hand, we derived via a Laplace transform argument on a second linearized
version of the model of Maity et al., an integro-differential equation of Cummins
type that describes the vertical movement of a floating object, in an unbounded
viscous fluid that is initially at rest. We closed our contributions, relying on classical
results on fractional differential equation systems, by establishing explicit solutions
for the Cummins type equation, which lead us present results about the asymptotic
behaviour of the solutions. Thus, and similarly to the motivations mentioned above,
the contributions recently described can be utilized as novelty and significant tools to
improve the performance of heaving buoys devices, which correspond to a particular
kind of WECs called wave-activated bodies, which the main characteristics are that
their motion is created by the wave and move essentially vertically [2].

In the following, we present some perspectives and future directions of research
related to the second part of this manuscript. In particular, we remark that the
following issues remain open:

• To study the modelling of the case of partially immersed structures with non-
vertical walls floating in viscous fluids in a shallow water regime. Two powerful
strategies to attack this problem is by using the Hamiltonian argument intro-
duced in [67] and the approach developed by Maity et al. in [57].

• To extend the modelling and analysis process considered by Maity et al. in
[57], to two-dimensional configurations in cases where the partially immersed
object has vertical and non-vertical walls.

• By considering the fluid-structure nonlinear model introduced by Maity et al.
in [57], to derive an integro-differential equation of Cummins type describing
the motion of a body in the return to equilibrium problem including nonlinear
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effects. Another possible contribution of this idea is the study of the asymptotic
behaviour of the ideally obtained Cummins type equation.

• By considering the integro-differential equation of Cummins type studied in
the second part of the manuscript to describe the motion of a heaving buoys
device, to design and implement an optimal control strategy for wave energy
extraction, and compare the productivity obtained with the classical models
considered in the ocean wave energy community.
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1.1 Introduction

1.1.1 General setting
This chapter is devoted to model and simulate an on-shore oscillating water column
(OWC), which is a particular type of wave energy converter (WEC) that transforms
the energy of waves reaching the shore into electric energy. The structure is installed
at the shore in such a way that the water partially fills a chamber, which is connected
with the outside through a hole where a turbine is placed (see Figure 1.1). Incoming
waves collide with the exterior part of the immersed wall and, after the collision,
one part of the wave is reflected while the other part passes below the fixed partially
immersed wall and enters the chamber. This increases the water volume inside the
chamber and consequently, it creates an airflow that actives the turbine by passing
through it and the same occurs when the volume of water reduces inside the chamber.
The perpetuation of the incoming waves makes the water inside the chamber oscillate
and act as a liquid piston, whose oscillations create electric energy. In this work
the wave energy converter is deployed with a stepped bottom, which means that
incoming waves encounter a step in the bottom topography just before reaching the
structure. The influence of such step in the OWC device will be discussed later in
Section 1.4. The present research is essentially motivated by a series of works by
Rezanejad and collaborators on the experimental and numerical study of nearshore
OWCs, in particular, we refer to Rezanejad and Soares [72], where the authors
used a linear potential theory to do simulations and showed the improvement of
the efficiency when a step is added. Our goal is to numerically study this type
of WEC considering as the governing equations for this wave-structure interaction
the nonlinear shallow water equations derived by Lannes in [46], whose local well-
posedness was obtained by Iguchi and Lannes in [35] in the one-dimensional case
and by Bocchi in [6] in the two-dimensional axisymmetric case. In the Boussinesq
regime and for a fixed partially immersed solid, similar equations were studied by
Bresch, Lannes and Métivier in [11] and in the shallow water viscous case by Maity,
San Martín, Takahashi and Tucsnak in [57] and by Vergara-Hermosilla, Matignon,
and Tucsnak in [80].

We consider an incompressible, irrotational, inviscid and homogeneous fluid in
a shallow water regime, which occurs in the region where the OWC is installed.
Following [46], the motion of the fluid is governed by the 1D nonlinear shallow water
equations 

∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP

for x ∈ (−l, l1), (1.1)

where ζ(t, x) is free surface elevation, h(t, x) is the fluid height, ρ is the fluid density,
P is the surface pressure of the fluid and q(t, x) is the horizontal discharge defined
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ζ(t, x)
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Figure 1.1 – Configuration of the OWC

by

q(t, x) :=
ˆ ζ(t,x)

−h0

u(t, x, z)dz,

where u(t, x, z) is the horizontal component of the fluid velocity vector field.
Let us first give the boundary conditions related to (1.1). The relevance of these
boundary conditions will be explained in Section 2.2. The boundary conditions on
the horizontal discharge are

q is continuous at x = 0, x = l0 ± r,
q = 0 at x = l1,

(1.2)

and the boundary conditions on the surface elevation are

ζ = f at x = −l,
ζ is continuous at x = 0,

(1.3)

where f is a prescribed function depending only on time. The surface pressure is
given by the constant atmospheric pressure where the fluid is directly in contact with
the air, i.e.

P = Patm in (−l, l0 − r) ∪ (l0 + r, l1) (1.4)

and no surface tension is considered here. On the other hand, under the partially
immersed structure, the fluid surface elevation is constrained to be equal to the
parametrization of the bottom of the solid ζw, i.e.

ζ = ζw := ζ + hw in (l0 − r, l0 + r). (1.5)

To complete the system, we consider an initial configuration where the fluid is at
rest,

ζ(0, x) =

0 in (−l, l0 − r) ∪ (l0 + r, l1)
ζw in (l0 − r, l0 + r)

and q(0, x) = 0. (1.6)
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1.1.2 Organization of the chapter
In Section 1.2, we derive the model used in the numerical simulations following
[6, 11, 35]. In particular, we show that the equations (1.1) can be reformulated
as two transmission problems, one related to the step in the bottom topography
and one related to the wave-structure interaction at the entrance of the chamber.
Furthermore, the equations in the exterior domain are written as two transport
equations on Riemann invariants. In Section 1.3, we discretize the equations in
conservative form using the Lax-Friedrichs scheme and use the Riemann invariants to
derive the discretization of the entry condition and boundary conditions. In Section
1.4, we give several computations showing the numerical solutions of the model and
compare the OWC device with and without stepped bottom. At the end of this
section, we show the accuracy of the numerical scheme to validate our computations
and we discuss the absorbed power and the efficiency of the OWC.

Notations

We divide the domain of the problem (−l, l1) into two parts. The interval I =
(l0 − r, l0 + r) is called interior domain, which is the projection onto the line of the
wetted part of the structure, and its complement E = (−l, l1) \ I, called exterior
domain, which is the union of three intervals E0 ∪ E1 ∪ E2 with

E0 = (−l, 0), E1 = (0, l0 − r) and E2 = (l0 + r, l1),

where l1 is the position of the end of the chamber and l0 and r are respectively the
position of the center and the half length of the partially immersed structure. From
the nature of the problem, l1 > l0 > r. Moreover, the boundary of I is formed by
the contact points {l0 ± r}, which are the projections on the real line of the triple
contact points between fluid, solid and air. For any function f defined in the real
line, its restrictions on the interior domain and the exterior domain are respectively
denoted by

fi := f|I and fe := f|E .

1.2 Presentation of the model

1.2.1 Governing equations
In this section, we present the mathematical model that describes the oscillating
water column process considered in this work. The model can be essentially divided
in three parts: the wave motion over a discontinuous topography represented by the
step, the wave-structure interaction at the entrance of the chamber and the wave
motion in the chamber. In the exterior domain E , where the fluid is in contact
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with the air, the surface pressure P e is constrained and is assumed to be equal to
the constant atmospheric pressure Patm, while the surface elevation ζe is not known.
Contrarily, in the interior domain I, that is the region under the partially immersed
structure, the surface elevation ζi is constrained to coincide with the parametrization
of the wetted surface, which is assumed to be the graph of some function ζw. The
surface pressure P i is unknown and it turns out to be a Lagrange multiplier associated
with the constraint on ζi. For more details on this approach for the study of wave-
structure interaction, we refer to [46]. In this work we consider a partially immersed
fixed structure with vertical side walls, the parametrization ζw is a constant both
in time and space. Summing up, we have an opposite behaviour for the surface
elevation and the surface pressure under the structure and elsewhere, that is

ζi = ζw, P i is unknown and ζe is unknown, P e = Patm.

For the exterior domain, we distinguish the region before the step, denoted by E0
and the region after the step, denoted by E1 ∪ E2. The fluid heights are defined
respectively by

he = hs + ζe in E0, he = h0 + ζe in E1 ∪ E2,

where hs and h0 are the fluid heights at rest before the step and after the step
respectively. Denoting by s the height of the step, we have hs = h0 + s.
Therefore the nonlinear shallow water equations (1.1) can be written as the following
three systems:

1. for x ∈ E0, 
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0

and he = hs + ζe, (1.7)

2. for x ∈ E1 ∪ E2
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0

and he = h0 + ζe, (1.8)

3. for x ∈ I, 
∂xqi = 0,

∂tqi = −hw
ρ
∂xP i

and hw = h0 + ζw. (1.9)
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1.2.2 Derivation of the transmission conditions
The following section is devoted to showing that the motion over the stepped bottom
and the wave-structure interaction can be reduced to two transmission problems
for the nonlinear shallow water equations. To do that, we derive the transmission
conditions relating the different parts of the model, respectively at the step in the
bottom topography and at the side walls of the partially immersed structure.

At the topography step

We consider the problem before the entrance of the chamber not as one shallow
water system with a discontinuous topography but rather as a transmission problem
between two shallow water systems with flat bottoms where the fluid heights are
respectively hs + ζe and h0 + ζe.
The first transmission condition is given by the continuity of the surface elevation at
the step, namely

ζe|x=0−
= ζe|x=0+ , (1.10)

where the traces at x = 0− and at x = 0+ are the traces at x = 0 of the unknowns
before the step and after the step respectively.
The second transmission condition is given by the continuity of the horizontal dis-
charge at the step, namely

qe|x=0−
= qe|x=0+ . (1.11)

At the structure side-walls

The transmission conditions at the side-walls of the partially immersed structure
are derived from the continuity of the horizontal discharge at the side-walls and the
assumption that the total fluid-structure energy is equal to the integral in time of the
energy flux at the entry of the domain. The continuity of the horizontal discharge at
x = l0 ± r together with the fact that ∂xqi = 0 gives the first transmission condition
between the E1 and E2, which reads

JqeK := qe|x=l0+r
− qe|x=l0−r

= 0. (1.12)

Let us now derive the second transmission condition at x = l0 ± r. To do that, we
show the local conservation of the fluid energy in the exterior domain and in the
interior domain as in [11] .

Exterior domain. Considering the nonlinear shallow water equations in E , multi-
plying the first equation in (1.7)-(1.8) by ρgζe and the second equation by ρ qe

he
, and
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considering the fact that ∂the = −∂xqe, we obtain
∂t

(
ρ
q2
e

2he

)
+ ρgζe∂xqe = 0,

∂t

(
ρ
q2
e

2he

)
− ρ q

2
e

2h2
e

∂xqe + ρ
qe
he
∂x

(
q2
e

he

)
+ ρgqe∂xζe = 0.

(1.13)

Adding both equations in (1.13), we obtain

∂t

(
ρg
ζ2
e

2 + ρ
q2
e

2he

)
+ ρgζe∂xqe + ρgqe∂xζe − ρ

q2
e

2h2
e

∂xqe + ρ
qe
he
∂x

(
q2
e

he

)
= 0.

We compute that

gζ∂xq + gq∂xζ = ∂x(gζq) and − q2

2h2∂xq + q

h
∂x

(
q2

h

)
= ∂x

(
q3

2h2

)
,

and, denoting by eext and by fext respectively the local fluid energy and the local flux

eext = ρ
q2
e

2he
+ gρ

ζ2
e

2 and fext = ρ
q3
e

2h2
e

+ gρζeqe,

we obtain the local conservation of the fluid energy in the exterior domain

∂teext + ∂xfext = 0. (1.14)

Interior domain. Let us remark that from the first equation in (1.9) one gets that
qi ≡ qi(t) in the interior domain. Multiplying the second equation in (1.9) by qi

hw
,

we obtain
∂t

(
ρ
q2
i

2hw

)
+ ∂x (qiP i) = 0,

and, denoting by eint and by fint respectively the local fluid energy and the local flux

eint = ρ
q2
i

2hw
+ ρg

ζ2
w

2 and fint = qiPi,

we obtain the local conservation of the fluid energy in the interior domain,

∂teint + ∂xfint = 0. (1.15)

Inspired in [11], now we assume that the total fluid-structure energy at time t
is equal to the integral between 0 and t of the sum between the energy flux at the
entry of the domain and the difference of the energy fluxes at the step, i.e.

Efluid + Esolid =
ˆ t

0

(
fext|x=−l

+ fext|x=0+ − fext|x=0−

)
,
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with the fluid energy defined by

Efluid =
ˆ
I
eint +

ˆ
E
eext.

This assumption is an adaptation to a bounded domain case of the conservation of
total fluid-structure energy assumed in [11]. We remark that the difference of the
energy fluxes at the step fext|x=0+ − fext|x=0−

does not vanish due to the discontinuity
of the fluid height at x = 0 in the presence of the step. The fact that the structure
is fixed

(
d
dt
Esolid = 0

)
yields

d

dt
Efluid =

ˆ
I
∂teint +

ˆ
E
∂teext = fext|x=−l

+ fext|x=0+ − fext|x=0−
.

From (1.14) and (1.15) we have

−
ˆ
I
∂xfint −

ˆ
E
∂xfext = fext|x=−l

+ fext|x=0+ − fext|x=0−
.

Using the boundary conditions (1.2) and (1.3) we get

JfintK = JfextK,

where the brackets J·K are defined as in (1.12). By definition of the fluxes it follows

JqiP iK = ρ

s
q3
e

2h2
e

+ gζeqe

{

and from (1.2) and (1.12) we obtain

JP iK = ρ

s
q2
e

2h2
e

+ gζe

{
.

Integrating on (l0 − r, l0 + r), the second equation in (1.9) yields

−ρ 2r
hw

d

dt
qi = JP iK.

Combining the last two equalities, we get the following transmission condition

− 2r
hw

d

dt
qi =

s
q2
e

2h2
e

+ gζe

{
. (1.16)
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1.2.3 Reformulation as two transmission problems
Coupling the governing equations (1.7)-(1.9) with the conditions derived in the pre-
vious section, we have therefore reduced the problem of the OWC essentially to two
transmission problems. The first one in E0 ∪ E1 reads:

∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0,

he = hs + ζe in E0, he = h0 + ζe in E1,

(1.17)
with transmission conditions at x = 0

ζe|x=0−
= ζe|x=0+ , qe|x=0−

= qe|x=0+ . (1.18)

The second transmission problem in E1 ∪ E2 reads:
∂tζe + ∂xqe = 0,

∂tqe + ∂x

(
q2
e

he

)
+ ghe∂xζe = 0,

he = h0 + ζe, (1.19)

with transmission conditions at x = l0 ± r

JqK = 0, −α d
dt
qi =

s
q2
e

2h2
e

+ gζe

{
, (1.20)

where α = 2r
hw

and hw = h0 + ζw.

1.2.4 Riemann invariants
Let us now rewrite the nonlinear shallow water equations (1.7) and (1.8) in the
exterior domain E in a compact form by introducing the couple U = (ζe, qe)T :

∂tU + A(U)∂xU = 0, (1.21)

where
A(U) =

( 0 1
ghe − q2

e

h2
e

2qe
he

)
.

The eigenvalues λ+(U) and −λ−(U) of the matrix A(U) and the associated eigen-
vectors e+(U) and e−(U) are given by

λ+(U) = qe
he

+
√
ghe, −λ−(U) = qe

he
−
√
ghe,
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e+(U) =
(√

ghe −
qe
he
, 1
)T

, e−(U) =
(
−
√
ghe −

qe
he
, 1
)T

.

Notice that λ+ > 0 and λ− > 0. Taking the scalar product of (1.21) and eigenvectors,
we obtain

∂t

(
2
√
ghe ±

qe
he

)
±
(√

ghe ±
qe
he

)
∂x

(
2
√
ghe ±

qe
he

)
= 0.

Let us introduce the right and the left Riemann invariant R and L associated to the
nonlinear shallow water equations, respectively

R(U) := 2
(√

ghe −
√
gh0

)
+ qe
he
, L(U) := 2

(√
ghe −

√
gh0

)
− qe
he
. (1.22)

Hence we can write the 1D nonlinear shallow water equations in the exterior domain
as the two following transport equations on R and L:

∂tR(U) + λ+(U)∂xR(U) = 0, ∂tL(U)− λ−(U)∂xL(U) = 0. (1.23)

We will see that these two transport equations of Riemann invariants are help-
ful when we solve our model by numerical method. More details about Riemann
invariants of the nonlinear shallow water equations can be found in [48].

1.3 Discretization of the model
We have reformulated in the previous section the mathematical model of the os-
cillating water column as two transmission problems. This section is devoted to
discretize the nonlinear shallow water equations (1.7)-(1.9) at the level of the nu-
merical scheme. More precisely, we will use the Lax-Friedrichs scheme to solve our
main equations and use Riemann invariants to address the entry conditions and all
boundary conditions.

Numerical notations

We use the following notations throughout this subsection:
• in our system, the whole numerical domain [−l, l0] is composed of four parts:

[−l, 0], [0, l0− r], [l0− r, l0 + r] and [l0 + r, l1]. Each interval is divided into cells
(Ai)1≤i≤nx with Ai = [xi−1, xi]1≤i≤nx of size δx. More precisely, we have

x0 = −l, ..., xi = −l + iδx, ..., xn1,x = 0;
xn1,x+1 = δx, ..., xn1,x+i = iδx, ..., xn1,x+n2,x = l0 − r;
xn1,x+n2,x+1 = l0 − r + δx, ..., xn1,x+n2,x+i = l0 − r + iδx, ..., xn1,x+n2,x+n3,x = l0 + r;
xn1,x+n2,x+n3,x+1 = l0 + r + δx, ..., xn1,x+n2,x+n3,x+i

= l0 + r + iδx, ..., xn1,x+n2,x+n3,x+n4,x = l1,
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with l = n1,xδx, l0 − r = n2,xδx, 2r = n3,xδx and l1 − (l0 + r) = n4,xδx;

• we denote by δt the time step. According to the CFL condition, time step δt
can be specified by δx;

• for any quantity U , we denote by Um
i its value at the position xi at time

tm = mδt. For instance, the variables ζmi denotes the value of the free surface
elevation ζ at the position xi at time tm = mδt.

1.3.1 Discretization of the equation
The finite difference method is a standard discretization approach for partial differ-
ential equations, especially those that arise from conservation laws. We first rewrite
equation (1.21) as the following conservative form :

∂tU + ∂x(F (U)) = 0, (1.24)

with

F (U) =
(
qe,

1
2g
(
h2
e − h2

0

)
+ q2

e

he

)T
.

By means of a finite difference approach, equation (1.24) can be discretized as

Um+1
i − Um

i

δt
+
Fm
i+1/2 − Fm

i−1/2

δx
= 0,

where the flux F is discretized with cell centres indexed as i and cell edge fluxes
indexed as i ± 1/2. The choice of Fm

i±1/2 depends on the numerical scheme. We
consider here the well-known Lax–Friedrichs scheme proposed by Lax [49] to get the
discrete flux

Fm
i−1/2 = 1

2
(
Fm
i + Fm

i−1

)
− δx

2δt

(
Um
i − Um

i−1

)
, (1.25)

where i ≥ 1 and Fm
i = F (Um

i ).

1.3.2 Discretization of the entry condition
At the entrance of our system, the surface elevation is given by a prescribed function
f depending only on time,

ζm|x=−l = fm := f (tm) .

In order to express the entry condition for the horizontal discharge, let us first recall
that from (1.22) one has

qe = he
2 (R− L) , R + L = 4

(√
ghe −

√
gh0

)
,
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where R and L are respectively the right and the left Riemann invariant associated
to the nonlinear shallow water equations. We get

qe = he

(
2
(√

ghe −
√
gh0

)
− L

)
.

Hence, the value of qe at x = −l is given by

qe|x=−l = (h0 + f(t))
(

2
(√

g(h0 + f(t))−
√
gh0

)
− L|x=−l

)
.

On the right-hand side of the relation above, L|x=−l is unknown. First we have to
determine L|x=−l in order to determine qe|x=−l. This can be achieved by the transport
equation for L in (1.23). After discretizing it as in [58], we get

Lm0 − Lm−1
0

δt
− λ−

Lm−1
1 − Lm−1

0
δx

= 0, (1.26)

where Lm0 is the value of L at x = −l at time tm and λ− is computed as a linear
interpolation between λ−,0 and λ−,1 following [48], namely

λ− = βλ−,0 + (1− β)λ−,1

with 0 ≤ β ≤ 1 such that λ−δt = βδx. Moreover, we can compute λ− as

λ− = λ−,1
1 + δt

δx
λ−,1 − δt

δx
λ−,0

.

Thus, we have

Lm0 =
(

1− λ−
δt
δx

)
Lm−1

0 + λ−
δt
δx
Lm−1

1 , (1.27)

which gives Lm0 in terms of its values at the previous time step and in terms of interior
points.

1.3.3 Discretization of the boundary conditions
Since our system is composed by four parts, it remains three boundary conditions
should be taken into consideration besides the entry condition at x = −l. When wave
arrives from the offshore, it will encounter a step in the bottom and then arrive into
a chamber, and finally arrive to the wall (see the configuration 1.1). More precisely,
the first boundary condition is at the discontinuity of the topography located at
x = 0 and the second is at the partially immersed structure side-walls located at
x = l0 ± r. The last boundary condition is at the end of the chamber, located at
x = l1.
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At the topography step

Let us first consider the shallow water wave equations with discontinuous topography,
namely, it is a system with depth hs on R− = {x < 0} and depth h0 on R+ = {x > 0}.
Our equation turns out to be

∂tU + ∂x (F (U)) = 0,

with

F (U) =



(
qe,

1
2g
(
(hs + ζe)2 − h2

s

)
+ q2

e

hs + ζe

)T
, in (0, T )× R−,(

qe,
1
2g
(
(h0 + ζe)2 − h2

0

)
+ q2

e

h0 + ζe

)T
, in (0, T )× R+.

From transmission conditions (1.10) and (1.11), we have the continuity of the
surface elevation ζe and of the horizontal discharge qe at x = 0:

ζ le|x=0 = ζre |x=0, qle|x=0 = qre |x=0. (1.28)

Let us denote the right Riemann invariant in the domain R− by Rl and the left
Riemann invariant in the domain R+ by Lr. We then find two expressions of qe
describing qle|x=0 and qre |x=0, respectively,

qle|x=0 =
(
hs + ζ le|x=0

)(
Rl|x=0 − 2

(√
g(hs + ζ le|x=0)−

√
ghs

))
,

qre |x=0 = (h0 + ζre |x=0)
(

2
(√

g(h0 + ζre |x=0)−
√
gh0

)
− Lr|x=0

)
.

(1.29)

According to the relations (1.28), we observe that (1.29) is a system of two nonlinear
equations on the two unknowns ζ le|x=0 (respectively ζre |x=0) and qle|x=0 (respectively
qre |x=0). We write it in the compact form

F (x1, x2) = 0, (1.30)

where x1 = ζ le|x=0, x2 = qle|x=0 and the vector F = (F1, F2) is given by

F1 = (hs + x1)
(
Rl|x=0 − 2

(√
g(hs + x1)−

√
ghs

))
− x2,

F2 = (h0 + x1)
(

2
(√

g(h0 + x1)−
√
gh0

)
− Lr|x=0

)
− x2.

In the case hs = h0 (without step) we can derive from (1.29) a third degree equa-
tion on

√
h0 + ζ le|x=0 and take the unique solution that gives ζ le|x=0 = 0 when

Rl|x=0, L
r|x=0 = 0 (we refer to [46] for this case). Here, since hs 6= h0, we use
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MATLAB nonlinear system solver fsolve with initial point (0, 0) to solve (1.30). Be-
fore doing that, we have to determine the values of the two Riemann invariants Rl|x=0
and Lr|x=0. The transport equations for Rl and Lr are the following:

∂tR
l + λl+(U)∂xRl = 0, ∂tL

r − λr−(U)∂xLr = 0, (1.31)

where the corresponding eigenvalue λl+ in the domain R− is given by

λl+(U) = qe
hs + ζe

+
√
g(hs + ζe), (1.32)

and the corresponding eigenvalue −λr− in the domain R+ is given by

− λr−(U) = qe
h0 + ζe

−
√
g(h0 + ζe). (1.33)

Let us emphasize that we use here the same interpolation for λ+ and λ− as in [58].
After discretization of equations (1.31), we get

(Rl)mn1,x − (Rl)m−1
n1,x

δt
+ λl+

(Rl)m−1
n1,x − (Rl)m−1

n1,x−1

δx
= 0,

(Lr)mn1,x − (Lr)m−1
n1,x

δt
− λr−

(Lr)m−1
n1,x+1 − (Lr)m−1

n1,x

δx
= 0,

where λl+, λr− are as in (1.32)-(1.33) and we recall that (Rl)mn1,x is the value of Rl at
xn1,x and tm (see Notations 1.3). Hence, we have

(Rl)mn1,x =
(

1− λl+
δt
δx

)
(Rl)m−1

n1,x + λl+
δt
δx

(Rl)m−1
n1,x−1,

(Lr)mn1,x =
(

1− λr−
δt
δx

)
(Lr)m−1

n1,x + λr−
δt
δx

(Lr)m−1
n1,x+1, (1.34)

which give (Rl)mn1,x and (Lr)mn1,x in terms of their values at the previous time step and
in terms of interior points.

Gathering the relations (1.28), (1.29) and (1.34), we can solve ζ le|x=0 (respectively
ζre |x=0) and qle|x=0 (respectively qre |x=0), which give us the boundary conditions at the
step.

At the structure side-walls

Compared with the derivation of the boundary conditions near the step, the idea to
derive the boundary condition near the fixed partially immersed structure is almost



51 Chapter 1

the same. There are two differences between them. The first one is that, since the
depth is always h0, the eq. (1.29) becomes

qle|x=l0−r = (h0 + ζ le|x=l0−r)
(
Rl|x=l0−r − 2

(√
g(h0 + ζ le|x=l0−r)−

√
gh0

))
,

qre |x=l0+r = (h0 + ζre |x=l0+r)
(

2
(√

g(h0 + ζre |x=l0+r)−
√
gh0

)
− Lr|x=l0+r

)
,

(1.35)

where we denote the horizontal discharge in the exterior domain on the left-hand side
of the object by qle and on the right-hand side of the object by qre . Let us recall that
qi is the horizontal discharge in the interior domain I. From the first transmission
condition in (1.20), we know that

qle|x=l0−r = qi = qre |x=l0+r.

The second difference is that, unlike in the previous subsection, we do not have the
continuity condition of ζe at the structure side-walls. Nevertheless, we consider the
discretization of the second transmission condition in (1.20), hence we get

−α
(qe)ml0−r − (qe)m−1

l0−r

δt
=

(
(qle)m−1

l0+r

)2

2
(
h0 + (ζ le)m−1

l0+r

)2 +g(ζ le)m−1
l0+r−

(
(qre)m−1

l0−r

)2

2
(
h0 + (ζre )m−1

l0−r

)2−g(ζre )m−1
l0−r .

where for the sake of clarity (qe)ml0−r = (qe)mn1,x+n2,x and (qe)ml0+r = (qe)mn1,x+n2,x+n3,x

(analogously for (ζe)ml0−r and (ζe)ml0+r). Then, qe at x = l0 − r is expressed as

(qe)ml0−r = (qe)m−1
l0−r −

δt

α


(
(qle)m−1

l0+r

)2

2
(
h0 + (ζ le)m−1

l0+r

)2 −

(
(qre)m−1

l0−r

)2

2
(
h0 + (ζre )m−1

l0−r

)2


− δt

α
g
(
(ζ le)m−1

l0+r − (ζre )m−1
l0−r

)
, (1.36)

which gives (qe)ml0−r in terms of its values at the previous time step and in terms of
interior points. Now we can solve (qe)ml0−r immediately. Once the value of (qe)ml0−r is
obtained, we can find the values of ζ le|x=l0−r and ζre |x=l0+r by using equations (1.35)
and the transport equations for the Riemann invariants as the strategy in Section
1.3.3.

At the end of the chamber

The corresponding boundary condition at the end of the chamber, located at x = l1,
is given by

qe|x=l1
= 0.

Hence, recalling the definition of the right-going Riemann invariant R, we recover
the surface elevation ζe at x = l1, namely

ζe|x=l1
= 1
g

(
R|x=l1

2 +
√
gh0

)2

− h0.
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1.4 Numerical validations
In this section, we use the scheme introduced in Section 1.3 to simulate our model.
For the fluid, we always consider the density of water ρ = 1000 kg/m3 and the
gravitational acceleration g = 9.81 m/s2. The entry of the domain is set at x = −l =
−30 m and the prescribed function f is given by

f(t) = sin
(2π
T
t
)
,

where T = 1.5 s is the period. Using the notations as before, we consider l0 = 11 m,
r = 1 m and l1 = 17 m and the fluid height at rest before the step hs = 15 m. We
compute the solution by using the Lax-Friedrichs scheme in the exterior domain
[−30, 10]∪ [12, 17], with a refined mesh with Nx = 2300 and a time step δt = 0.7√

ghs
δx

with space step δx = 0.02 m. Here, the CFL number is 0.7, which is commonly used to
prescribe the terms of the finite-difference approximation of a PDE (see for instance
[65]). In the interior domain, the solution can be computed using the transmission
conditions (1.20) with hw = h0 + ζw and ζw = −7.5 m.

1.4.1 Numerical solutions
In real applications, an OWC device can be deployed on a stepped sea bottom in
order to improve its performance. It is important then to have a good understanding
of the impact of a step in the topography. Here, we test and compare the case without
step s = 0 m. (h0 = 15 m) to the case with a step of height s = 5 m (h0 = 10 m )
considering the previous physical parameters. The numerical solutions are plotted
in Figure 1.2 at times t = 1.7 s, t = 3.3 s and t = 5 s. The plots (a), (c), (e) show the
solutions without stepped bottom, while the plots (b), (d), (f) show the solutions
with stepped bottom.

We find that, before the waves encounter the step, there is no significant difference
between the OWC model without stepped bottom and with stepped bottom (see (a)
and (b)). But when the waves encounter the step in the bottom and arrive into the
chamber, we can see that, the waves in the OWC model without stepped bottom
move significantly faster than the waves in the OWC model with stepped bottom.
In particular, at t = 3.3 s the waves in the OWC model without stepped bottom
has already arrived to the chamber and will begin to change the water level in the
chamber, while the waves in the OWC model with stepped bottom have not reached
yet and the water will rise inside the chamber later (see (c) and (d)). As the step at
bottom is a sort of obstacle for the incoming wave, this phenomenon is reasonable.

As one may expect, the incoming wave split into two parts when it touches the left
wall of the partially immmersed structure. One part enters the chamber and changes
the volume of the air that makes the turbine rotate. The other part is reflected and
becomes an outgoing wave, as we can see in Figure 1.2. At t = 5 s, the reflected wave
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Figure 1.2 – Comparisons between the numerical results without step (left) and with step (right)
at times t = 1.7 s, t = 3.3 s and t = 5 s.
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in the OWC model without stepped bottom already reaches x = −10 m, while the
reflected wave in the OWC model with stepped bottom has not reached x = −10 m
(see (e) and (f)). This shows that the reflected waves in the OWCmodel with stepped
bottom move slower than the waves in the OWC model without stepped bottom.

This difference can be explained by the fact that more incident wave energy is
converted when a step is added. In other words, the OWC with stepped bottom
would be more efficient than the one without stepped bottom, which is in agreement
with the result by Rezanejad and Soares in [72].

1.4.2 Accuracy analysis

In numerical validations, accuracy analysis is of importance. As we can see in Figure
1.1, the configuration of OWC device is essentially constituted from three parts:
the domain before the step in the sea bottom, the domain after the step and the
chamber. We implement our algorithms by gathering together the three parts. It is
worth mentioning that one compact algorithm is also actionable.

In order to make it possible to verify our algorithm, we do the following accuracy
analysis. Under the same initial wave and physical parameters, we compare the
free surface elevation ζe of the classical nonlinear shallow water wave model with
our model without discontinuous topography. Figure 1.3 shows that there is no
significant difference between the two cases. Moreover, we also find that the error is
of order 10−3 (see Figure 1.4), which is acceptable since the Lax-Friedrichs method
is first-order accurate in space.

1.4.3 Absorbed power and efficiency

Designing a WEC of high efficiency is nowadays a hot topic in all regions and coun-
tries over the world. In this regard, we present in this section the method to calculate
the absorbed power as well as the efficiency of the OWC considered in this work.

The primary efficiency ηReg of the device is defined by the ratio of the absorbed
power from the waves to the incident wave power. From the seminal work of Evans
in [22], we know that in the linear time-harmonic theory the volume flux Q(t) =
Re{qe−iωt} is assumed linearly proportional to the pressure in the chamber P (t) =
Re{pe−iωt}. Using this assumption, the average power absorbed from regular waves
over one wave period, denoted by PReg, is given by

PReg = 1
2λ|p|

2, (1.37)

where p is the time independent and λ is a positive constant associated with linear air
turbine characteristics. On the other hand, following [72] in experiments the average
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Figure 1.3 – Comparison between classical NSW model and our model without step in
different times considering δx = L/1500 m and L = 30 m.
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power absorbed from regular waves can be determined by:

PReg = 1
T

ˆ T

0
PQdt, (1.38)

where T is the duration of the test. The incident wave power Pinc is defined as the
product of total energy per wave period Einc and the group velocity cg (see [19]):

Pinc = Einc cg,

with
Einc = 1

2ρgLA
2, cg = ω

2k

(
1 + 2khs

sinh(2khs)

)
,

and the dispersion relation given by

ω2 = gk tanh(khs),

where ω is the frequency, k is the wave number, hs is the fluid height at rest before
the step, ρ is the density of the fluid, g is the gravitational acceleration and L is the
projected width of the WEC perpendicular to the incident wave direction, A is the
amplitude of the wave. In the shallow water regime khs � 1 and the group velocity
reduces to cg =

√
ghs. Thus, the primary efficiency of the device in regular wave is

given by
ηReg = PReg

Pinc
.

We notice that in both (1.37) and (1.38) the absorbed power (hence the primary
efficiency) strongly depends on the air pressure in the chamber. In our model, it is
considered to be a constant, namely the atmospheric pressure Patm. However, when
the waves arrive into the chamber and change the volume of the air, the air pressure
in the chamber will certainly change as well. In this case, the pressure will no more
be a constant, but depends on time. Hence, to study more rigorously the absorbed
power and the primary efficiency of the OWC, this fact must be taken into account in
the model. This will be addressed in our future work. Analogously, the improvement
of the efficiency of an OWC device deployed on a stepped sea bottom can be also
investigated with a better knowledge of the air pressure in the chamber. From the
results in Section 1.4.1, we can expect that significant improvements in the efficiency
can be achieved by adding a step at the bottom of the sea.
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This work is in collaboration with Günter Leugering and Yue Wang.
It is based on [79].

2.1 Introduction

2.1.1 Context
Free surface interactions with fixed or floating structures have been intensively stud-
ied by the mathematical community in the last years; modelling, well-posedness,
numerical simulations, etc. Recently, Lannes proposed in [46] a new formulation of

57
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the water-waves problem in order to take into account the presence of a floating
body. More precisely, in his work Lannes implemented a method for the full water
waves equations and for reduced asymptotic models, such as the Boussinesq and the
nonlinear shallow-water equations, where the pressure exerted by the fluid on the
partially immersed structure appears as a Lagrange multiplier associated to the con-
straint that under the floating structure, the surface of the fluid coincides with the
bottom of the structure. In the case of the nonlinear shallow water equations, the
resulting fluid-structure model with vertical lateral walls case has been studied in [46]
and in the more general case of non vertical walls in [35]. An extension to a system
modelling a floating structure on a viscous shallow water regime has been recently
studied by Maity et al. in [57], and by Matignon, Tucsnak and Vergara-Hermosilla
in [80] and [81].

Bresch, Lannes and Métivier in [11] treat on the derivation and mathematical
analysis of a fluid-structure interaction problem with a configuration where the mo-
tion of the fluid is governed by the Boussinesq system, which is a dispersive pertur-
bation of the hyperbolic nonlinear shallow water equations, and in the presence of a
fixed partially immersed obstacle. They showed that the fluid-structure interaction
problem can be reduced to a transmission problem.

Similarly and motivated for mathematical modeling and simulations of a specific
type of wave energy converting device, the so-called oscillating water column (OWC)
device, Bocchi, He and Vergara-Hermosilla discuss in [8] the interaction between a
inviscid fluid with the partially submerged fixed wall structure of a OWC device,
considering the nonlinear shallow water equations to describe the fluid motion, and
obtaining explicit transmission conditions for the system and respective reduced
transmission problems. Hence, by considering their results, in this work we deep on
a particular kind of boundary controllability on the transmission problems studied
in [8] on an equivalent physical configuration. More precisely, we deal with the
exact boundary controllability of nodal profile on a system modelling a structure
partially immersed in a fluid governed by the nonlinear shallow water equations [46],
considering a discontinuity in the height of the fluid bottom and the transmission
conditions developed in [8]. This physical situation is presented in a graphical sketch
in Figure 1.

This kind of boundary controllability was motivated by practical applications on
gas networks and introduced recently in the literature by Gugat, Herty and Schleper,
in [33]. Their new approach was almost immediately generalized by Li to general 1-D
first order quasilinear hyperbolic systems with general nonlinear boundary conditions
in [52].

As is well known, the usual exact boundary controllability that asks on the so-
lution to the system under certain boundary controls to satisfy a given final state
at a suitably large time t = T , however, the exact boundary controllability of nodal
profile, requires that the value of solution satisfies the given profiles on one or more
nodes for t ≥ T by using boundary controls. This approach can be established
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by means of a constructive method with modular structure, by using the following
three ingredients: existence and uniqueness of semi-global classical solution to the
mixed initial-boundary value problem, exchanging the role of the the space variable
x and time variable t, and the uniqueness of classical solution to the one-sided mixed
initial-boundary value problem. This approach was synthesized in a systematic way
in the book of Li et al. [53], where their also deal with the local exact boundary
controllability of nodal profile on a tree-like network with general topology. For more
details, see [32], [82] and [83].

2.1.2 General settings

Mathematically speaking, in this work we consider an incompressible, irrotational,
inviscid and homogeneous fluid in a shallow water regime. The motion of the fluid
is governed by the 1D nonlinear shallow water equations [46], which are given by


∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0,

(2.1)

where ζ(t, x) is free surface elevation, h(t, x) is the fluid height given by hb + ζ with
hb denoting the height of the bottom of the fluid, q(t, x) is the horizontal discharge
defined by

q(t, x) :=
ˆ ζ(t,x)

−hb
u(t, x, z)dz, (2.2)

with u(t, x, z) denoting the horizontal component of the fluid velocity vector field.
In the following, we consider the interval (−l, l1) as spacial domain, and we assume
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that the height from the bottom hb is given by

hb =
{
h0, x ∈ (−l, 0),
h1, x ∈ [0, l1),

where h1 and h0 are real and positive constants such that h1 = h0 + s, with s > 0.
Furthermore, we assume that ∣∣∣∣ qh

∣∣∣∣ < √
gh. (2.3)

For our analysis, we divide the domain of the problem (−l, l1) into two parts:
the interior domain I = (l0 − r, l0 + r), and its complement E = (−l, l1)\I, called
exterior domain, and which is the union of three intervals E0 ∪ E1 ∪ E2 with

E0 = (−l, 0), E1 = (0, l0 − r), E2 = (l0 + r, l1). (2.4)

Let
ζ(t, x) =

{
ζi(t, x), x ∈ Ei, i = 0, 1, 2,
ζw ∈ R, x ∈ I.

(2.5)

where ζw is the parameterization of the bottom of the solid. With this, the fluid
heights respect to the flat bottom are defined by

h(t, x) =
{
hi(t, x) := hi + ζi(t, x), x ∈ Ei, i = 0, 1, 2,
hw ∈ R, x ∈ I,

(2.6)

where hi (i = 0, 1, 2) are the fluid height at rest with h1 = h2 = h1, h0 = h0 and
hw = h1 + ζw. We note that from (2.6), the horizontal discharge on I defines just a
time-dependent function, and therefore the horizontal discharge can be written as

q(t, x) =
{
qi(t, x), x ∈ Ei, i = 0, 1, 2,
qw(t), x ∈ I,

(2.7)

where ∂tqw(t) = −hw
ρ
∂xPw with the fluid density ρ and an unknown surface pressure

Pw. Thus, the coupled system of nonlinear shallow water equations for x ∈ Ei can
be written as 

∂tζi + ∂xqi = 0,

∂tqi + ∂x

(
q2
i

hi

)
+ ghi∂xζi = 0,

i = 0, 1, 2, (2.8)

with the boundary conditions given as

x = −l : ζ0 = f(t), (2.9)

x = l1 : q2 = 0, (2.10)
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where f(t) denotes a prescribed boundary function or a boundary control to be
determined.

In addition, we consider the transmission conditions developed in [8], which read
as follows:

x = 0 :
{
ζ0(t, 0) = ζ1(t, 0),
q0(t, 0) = q1(t, 0),

(2.11)

x = l0 ± r :


q2(t, l0 + r) = q1(t, l0 − r) = qw(t),[
q2

2
2h2

2
+ gζ2

]∣∣∣∣∣∣
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]∣∣∣∣∣∣
x=l0−r

= −α d
dt
qw(t),

(2.12)

where α = 2r
hw

.
The initial data of the system is given at rest,

ζ(0, x) =
{

0, x ∈ E ,
ζw, x ∈ I,

and q(0, x) = 0. (2.13)

2.1.3 Outline of the chapter
In Section 2 we present the main results about exact controllability of final data
given on the whole or a part of fluid domain at a given finite time T > 0 (see in
Subsection 2.1), and exact controllability of nodal profile for a given demand at one
end x = l1 (See in Subsection 2.2). In Subsection 3.1 we prove some results relative
to the well- posedness result of semi-global C1 solutions, and finally in Subsection
3.2 we prove the main theorems of the paper by considering a constructive method
with modular structure.

2.2 Main results
Now we come to our results about boundary controllability controllability for the
system (2.8)-(2.13). In order to ensure the well-posedness of quasilinear system (2.8)
with (2.9)-(2.12), we consider the exact controllability problem in the neighbourhood
of the equilibrium state. In the following, Theorem 2.2.1 and Theorem 2.2.4 show the
local exact controllability and the exact controllability of nodal profile near the rest
state given as (2.13), respectively. The corresponding results near other equilibrium
state can be obtained in a similar way, how we explain with some words in Remark
2.2.2.

2.2.1 Exact controllability with one boundary control.
The aim of exact controllability for system (2.8) is looking for a boundary control
f(t) acting at x = −l though the boundary condition (2.9), such that the prescribed
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final data (ζiT (x), qiT (x)) is attained in the entire water regime at a given time T :

Ui(T, x) := (ζi, qi)(T, x) = (ζiT (x), qiT (x)), x ∈ Ei, i = 0, 1, 2, (2.14)

where the Ui is generated by the control f as a solution of system (2.8)-(2.12) with
the initial condition:

(ζi, qi)(0, x) = (ζi0(x), qi0(x)), x ∈ Ei, i = 0, 1, 2. (2.15)

In order to ensure the existence and uniqueness of piece-wise C1 semi-global
solution for this problem, here we give some assumptions on the initial data and
final data in advance: for each i = 0, 1, 2,

(S1) ζi0(x), qi0(x) are C1 functions with small norm ‖(ζi0, qi0)‖C1[Ei]×C1[Ei],
(S2) ζi0(x), qi0(x) satisfy the C1 compatibility at the points

(t, x) ∈ {(0,−l), (0, l1)},

and the piecewise C1 compatibility at the adjoint points

(t, x) ∈ {(0, 0), (0, l0 − r), (0, l0 + r)}.

Accordingly,
(S1’) ζiT (x), qiT (x) are C1 functions with small norm ‖(ζiT , qiT )‖C1[Ei]×C1[Ei],
(S2’) ζiT (x), qiT (x) satisfy the C1 compatibility at the points

(t, x) ∈ {(T,−l), (T, l1)},

and the piecewise C1 compatibility at the adjoint points

(t, x) ∈ {(T, 0), (T, l0 − r), (T, l0 + r)}.

The following result states the existence of such a control, which can be con-
structed explicitly in Section 3.

Theorem 2.2.1. (Exact Controllability). Let

T > 2
 l√

gh0

+ l1 − 2r√
gh1

 . (2.16)

For any given initial data (ζi0, qi0) and final data (ζiT , qiT ) satisfying the assumptions
(S1)-(S2) and (S1’)-(S2’), respectively, there exists a boundary control f(t) with
small norm ‖f(t)‖C1[0,T ], such that mixed initial-boundary value problem for equation
(2.8) with the initial condition (2.15), the boundary conditions (2.9)-(2.10) and the
transmission conditions (2.11)-(2.12) admits a unique piecewise C1 solution (ζi, qi) =
(ζi, qi)(t, x), (i = 0, 1, 2) with small piecewise C1×C1 norm on the domain Ri(T ) =
{(t, x)|0 ≤ t ≤ T, x ∈ Ei}, which exactly satisfies the desired final condition (2.14).
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In the above result, we consider only the steady-state at rest, but we can eas-
ily establish the corresponding local exact controllability in the neighborhood of a
stationary subsonic continuously differentiable state.

Remark 2.2.2. The exact controllability result given in Theorem 2.2.1 still holds
for initial states in a C1-neighborhood of a stationary subsonic continuously differ-
entiable state (qis, ζis), i = 0, 1, 2. For x ∈ Ei, i = 0, 1, 2, the stationary solutions
(qis(x), ζis(x)) are given by

qis(x) = const, (2.17)
d

dx

(
q2
is

hi + ζis

)
+ g(hi + ζis)

d

dx
(ζis) = 0. (2.18)

Remark 2.2.3. The result given in Theorem 2.2.1 illustrates that after a finite time,
the control given at one end x = −l can effect the state functions ζ and q in the entire
space horizon x ∈ E. In fact, this result can be generalized to a special case, where
the final condition (2.14) is replaced by a demand given on a part of the horizon:

U2(T, x) := (ζ2, q2)(T, x) = (ζ2T (x), q2T (x)), x ∈ E2, (2.19)

where ζ2T (x), q2T (x) are regarded as given final state functions in the “indoor water
regime” E2. Now, the infimum controllability time (2.16) should be modified by a
smaller lower bound:

T >
l√
gh0

+ 2l1 − l0 − 3r√
gh1

. (2.20)

A limit case, with a given demand only at the end node x = l1, suggests a con-
trollability problem of nodal profile, which will be shown in details in the following
subsection.

2.2.2 Exact controllability of nodal profile: a given demand
at the end x = l1.

Stimulated by some practical applications, Gugat et al. [33] and Li [52] proposed in
2010 another kind of exact boundary controllability, called the nodal profile control.
This kind of controllability does not ask the solution to exactly attain any given final
state at a suitable time t = T by means of boundary controls, instead it asks the
state to exactly fit any given profile function w.r.t time on a node after a suitable
time T .

For equation (2.8), we consider a given demand in fluid height and horizontal
discharge at the end x = l1 by

U2(t, l1) := (ζ2, q2)(t, l1) = (h2 + ζB(t), qB(t)), t ∈ [T, T ]. (2.21)
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It’s worth to mention that the given nodal profile function UB := (h2 + ζB(t), qB(t))
should be compatible with the boundary condition (2.10) in the time interval [0, T ]
at the node x = l1, which implies that the demand qB must be set as 0. While, the
other one, ζB(t), can be chosen as any given C1 function of time after a finite time
T .

In the following, we give a positive answer to the exact controllability of nodal
profile:

Theorem 2.2.4. (Exact Controllability of Nodal Profile). Let

T >

 l√
gh0

+ l1 − 2r√
gh1

 (2.22)

and let T be an arbitrarily given number satisfying T > T . Then for any given ini-
tial data (ζi0, qi0) satisfying assumptions (S1)-(S2), and for any given demand of the
surface elevation ζB(t) with small norm ‖ζB‖C1[T,T ], there exists a boundary control
f(t) ∈ C1[0, T ], such that the mixed initial-boundary value problem for equation (2.8)
with initial condition (2.15), boundary conditions (2.9)-(2.10) and transmission con-
ditions (2.11)-(2.12) admits a unique piecewise C1 solution (ζi, qi) = (ζi, qi)(t, x)(i =
0, 1, 2) with small C1×C1 norm on the domains Ri(T ) = {(t, x)|0 ≤ t ≤ T , x ∈ Ei},
which exactly satisfies the given nodal profile condition at the end x = l1:

ζ2(t, l1) = ζB(t), ∀t ∈ [T, T ]. (2.23)

Remark 2.2.5. In the above results, we consider only the steady state at rest,
but we can easily replace it with any other steady state that is compatible with the
boundary and transmission conditions (2.10)-(2.12) and establish local exact con-
trollability of nodal profile near a given subsonic continuously differentiable station-
ary state (qis(x), ζis(x)), x ∈ Ei, i = 0, 1, 2: There exists a C1-neighborhood of the
stationary state such that for all initial data in this neighborhood that satisfies the
C1-compatibility conditions and for any given smooth subsonic desired fluid height
h2 + ζB(t, l1) and discharge profile qB(t, l1) at the end x = l1 that is in a sufficiently
small C1-neighborhood of the boundary data corresponding to the stationary state we
can construct a continuously differentiable control f = f(t) such that the demand
is fulfilled exactly for all t ∈ [T, T ]. Moreover, this control generates a continuously
differentiable system state in the entire domain.
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2.3 Proofs

2.3.1 Existence and uniqueness of semi-global C1 solution
We reduce the system in the exterior domain E to a compact form by introducing
the couple Ui = (ζi, qi)T , i = 0, 1, 2:

∂tUi + Ai(Ui)∂xUi = 0, x ∈ Ei, (2.24)

with

Ai(Ui) =

 0 1

ghi −
q2
i

h2
i

2qi
hi

 , (2.25)

which has two distinct eigenvalues:

λ−i = qi
hi
−
√
ghi < 0 < λ+

i = qi
hi

+
√
ghi (2.26)

and the corresponding left eigenvectors can be taken as

l−i =
(
−
√
ghi −

qi
hi
, 1
)T

, l+i =
(√

ghi −
qi
hi
, 1
)T

. (2.27)

In this part, by recalling that hi denote the height of the fluid at rest in the domain
Ei, we introduce the Riemann invariants to the nonlinear shallow water equations,
which read as 

Li = 2
(√

ghi(t, x)−
√
ghi

)
− qi
hi
,

Ri = 2
(√

ghi(t, x)−
√
ghi

)
+ qi
hi
,

for i = 0, 1, 2. (2.28)

Then, (2.28) can be equivalently rewritten in
√
ghi = Ri + Li

4 +
√
ghi,

qi
hi

= Ri − Li
2 ,

for i = 0, 1, 2, (2.29)

and then, we obtain
ζi =

(
Ri+Li

4 +
√
ghi

)2

g
− hi,

qi = Ri − Li
2

(
Ri+Li

4 +
√
ghi

)2

g
,

for i = 0, 1, 2. (2.30)
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Thus, the 1D nonlinear shallow water equations in E can be rewritten as the
following form 

∂tLi + λ−i ∂xLi = 0,

∂tRi + λ+
i ∂xRi = 0,

for i = 0, 1, 2. (2.31)

Obviously, for each i = 0, 1, 2, Li(t, x) is the Riemann invariant corresponding to the
negative eigenvalue λ−i , while Ri(t, x) is the Riemann invariant corresponding to the
positive eigenvalue λ+

i . λ−i (resp. λ+
i ) is the entering (resp. departing) characteristic

on the right-side boundary, while λ−i (resp. λ+
i ) is the departing (resp. entering)

characteristic on the left-side boundary. In order to guarantee the well-posedness
of the mixed initial-boundary value problem on this coupled network, the boundary
conditions on each boundary must satisfy (see [51]):

1. the number of the boundary conditions must be equal to that of the entering
characteristics;

2. the boundary conditions can be written in the form that the Riemann invariants
corresponding to the entering characteristics can be explicitly expressed by all
other Riemann invariants (corresponding to the departing characteristics).

We can see that the boundary conditions (2.9) and (2.10) can be rewritten in
terms of the Riemann invariants as

x = −l : R0 = 2
(√

g(f + h0)−
√
gh0

)
− R0 − L0

2 , (2.32)

and
x = l1 : R2 − L2 = 0, (2.33)

which imply that

x = −l : L0 = 3R0 − 4
(√

g(f + h0)−
√
gh0

)
(2.34)

and
x = l1 : R2 = L2, (2.35)

where R0 and L2 are the Riemann invariants corresponding to entering characteristic
on x = −l and x = l1, respectively. We note that

‖f‖C1[0,T ] small⇐⇒
∥∥∥∥√g(f + h0)−

√
gh0

∥∥∥∥
C1[0,T ]

small. (2.36)

At x = 0, the Riemann invariants corresponding to entering characteristic are R0
and L1. Let {

F1 = ζ0 − ζ1,

F2 = q0 − q1.
(2.37)
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By a direct calculation and considering (2.29)-(2.30), we have

∂F1

∂R0
= ∂ζ0

∂R0
= 1
g
· 2
(
L0 +R0

4 +
√
gh0

)
· 1

4 =
√
gh0

2g . (2.38)

Similarly,

∂F1

∂L1
= − ∂ζ1

∂L1
= −
√
gh1

2g ,

∂F2

∂R0
= ∂q0

∂R0
= h0

2 + q0

2h0g

√
gh0 =

√
h0

2√g

(√
gh0 + q0

h0

)
> 0,

∂F2

∂L1
= − ∂q1

∂L1
= h1

2 + q1

2h1g

√
gh1 =

√
h1

2√g

(√
gh1 + q1

h1

)
> 0.

(2.39)

Thus,∣∣∣∣∣∣ ∂(F1, F2)
∂(R0, L1)

∣∣∣∣∣∣
(R0,L1)=(0,0)

=
[√

h0h1

4g

(√
gh1 + q1

h1

)
+
√
h0h1

4g

(√
gh0 + q0

h0

)]
(ζ0,ζ1,q0,q1)=(0,0,0,0)

=

√
h0h1

4g

(√
gh1 +

√
gh0

)
6= 0,

(2.40)
then by implicit function theorem, in a neighborhood of (R0, L1) = (0, 0), the trans-
mission conditions (2.11) can be equivalently rewritten asR0 = F̂1(R1, L0),

L1 = F̂2(R1, L0)
(2.41)

with F̂1(0, 0) ≡ F̂2(0, 0) ≡ 0.
Similarly, at x = l0 ± r, the Riemann invariants corresponding to entering char-

acteristic are R1 and L2. Using the initial data and integral from 0 to t, the second
transmission condition in (2.12) can be replaced by a nonlocal condition as follows

−αqw(t) = −αq1(0, l0 − r) +
ˆ t

0

[
q2

2
2h2

2
+ gζ2

]
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]
x=l0−r

dτ

=
ˆ t

0

[
q2

2
2h2

2
+ gζ2

]
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]
x=l0−r

dτ.

(2.42)

Then, by the first transmission condition in (2.12), we rewrite (2.12) into
q1(t, l0 − r) = q2(t, l0 + r),

− αq1(t, l0 − r) =
ˆ t

0

[
q2

2
2h2

2
+ gζ2

]
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]
x=l0−r

dτ.
(2.43)
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Now, let us introduce the two boundary functions G1 and G2 as follow:


G1 := q1(t, l0 − r)− q2(t, l0 + r),

G2 := αq1(t, l0 − r) +
ˆ t

0

[
q2

2
2h2

2
+ gζ2

]
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]
x=l0−r

dτ.
(2.44)

In fact, by substituting (2.30) into (2.44), G1 and G2 can be also regarded as
functions with respect to Riemann invariants R1, L1, R2, L2. For simplicity, we denote
R1(t, l0−r), L1(t, l0−r) and R2(t, l0+r), L2(t, l0+r) byR1, L1 and R2, L2, respectively,
in the following expression:

G1 = G1(R1, L1, R2, L2)

=R1 − L1

2

(
R1+L1

4 +
√
gh1

)2

g
− R2 − L2

2

(
R2+L2

4 +
√
gh2

)2

g
,

(2.45)

G2 = G2

(
R1, L1,

ˆ t

0
G(R1, L1, R2, L2) dτ

)

=α

R1 − L1

2

(
R1+L1

4 +
√
gh1

)2

g

+
ˆ t

0
G(R1, L1, R2, L2) dτ,

(2.46)

where G is the function determined by
[
q2

2
2h2

2
+ gζ2

]
x=l0+r

−
[
q2

1
2h2

1
+ gζ1

]
x=l0−r

, and
´ t

0 G(R1, L1, R2, L2) dτ is regarded as a new variable of G2.
Thus, if the Jacobian

∣∣∣∣∣∣∂(G1, G2)
∂(R1, L2)

∣∣∣∣∣∣
(R1,L2)=(0,0)

6= 0, (2.47)

then by implicit function Theorem, (2.43) can be solved as


R1(t) = Ĝ1

(
L1, R2,

ˆ t

0
G(L1, R1, L2, R2)dτ

)
,

L2(t) = Ĝ2

(
L1, R2,

ˆ t

0
G(L1, R1, L2, R2)dτ

)
.

(2.48)
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Indeed, by calculation, we obtain

∂G1

∂R1
= ∂q1

∂R1
=
√
h1

2√g

(√
gh1 + q1

h1

)
> 0,

∂G1

∂L2
= − ∂q2

∂L2
=
√
h2

2√g

(√
gh2 + q2

h2

)
> 0,

∂G2

∂R1
= α

∂q1

∂R1
= α

√
h1

2√g

(√
gh1 + q1

h1

)
> 0,

∂G2

∂R2
= 0.

(2.49)

Therefore, ∣∣∣∣∣∣∂(G1, G2)
∂(R1, L2)

∣∣∣∣∣∣ = −α
√
h1h2

4g

(√
gh1 + q1

h1

)(√
gh2 + q2

h2

)
< 0, (2.50)

which implies (2.47).
Using the results and methods in [51, Chapter 4], we get the existence and unique-

ness of piecewise local C1 solution to the mixed initial-boundary value problem (2.8)
and (2.9)-(2.12). And then, by considering a method similar to [50], [54], and the
generalized result for a kind of non-local boundary condition as Lemma 4.1 in [55],
we can obtain the corresponding results on existence and uniqueness of piecewise
semi-global C1 solution.

Theorem 2.3.1. Let T > 0 be given. For any given initial data (ζi0, qi0) with small
norm ‖ζi0(·), qi0(·)‖C1[Ei]×C1[Ei] (i = 0, 1, 2) and boundary function f(t) with small
norm ‖f(·)‖C1[0,T ], satisfying the conditions (S1)-(S2), the forward mixed initial-
boundary value problem of the shallow water system (2.8) on the connected water
regime with the initial condition (2.15), the boundary conditions (2.9)-(2.10) and the
interface conditions (2.11)-(2.12) admits a unique semi-global piecewise C1 solution
Ui = (ζi(t, x), qi(t, x))(i = 0, 1, 2) with small norm

2∑
i=0
‖(ζi(·, ·), qi(·, ·))‖C1[Ri(T )]×C1[Ri(T )],

on the domain

R(T ) =
2⋃
i=0
Ri(T ) =

2⋃
i=0
{(t, x) | 0 ≤ t ≤ T, x ∈ Ei}.

Similarly, for the backward mixed initial-boundary value problem, we have
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Theorem 2.3.2. Let T > 0 be given. For any given initial data (ζi0, qi0) with small
norm ‖ζi0(·), qi0(·)‖C1[Ei]×C1[Ei] (i = 0, 1, 2) and boundary function f(t) with small
norm ‖f(·)‖C1[0,T ], satisfying the conditions (S1’)-(S2’), the backward mixed initial-
boundary value problem of shallow water system (2.8) with the final condition (2.14),
the boundary conditions (2.9)-(2.10) and the interface conditions (2.11)-(2.12) admits
a unique semi-global piecewise C1 solution Ui = (ζi(t, x), qi(t, x)), (i = 0, 1, 2) with
small norm

2∑
i=0
‖(ζi(·, ·), qi(·, ·))‖C1[Ri(T )]×C1[Ri(T )],

on the domain

R(T ) =
2⋃
i=0
Ri(T ) =

2⋃
i=0
{(t, x) | 0 ≤ t ≤ T, x ∈ Ei}.

2.3.2 Proof of exact controllability. Constructive method.
In order to prove Theorem 2.2.1, by means of the constructive method with modular
structure, it suffices to prove the following.

Lemma 2.3.3. Let T > 0 be defined by (2.16). For any given initial data (ζi0, qi0)
and final data (ζiT , qiT ) with small norm ‖(ζi0, qi0)‖C1[Ei]2 and ‖(ζiT , qiT )‖C1[Ei]2, the
nonlinear system (2.8)-(2.12) admits a piecewise C1 solution (ζi, qi) = (ζi, qi)(t, x),
(i = 0, 1, 2) with small C1 ×C1 norm on the domain Ri(T ), which satisfies simulta-
neously the initial condition (2.15) and the final condition (2.14).

Proof. By (2.16) and h1 = h2, there exists an ε0 > 0 so small (see [50] for details)
such that

1
2T > sup

|ζ0|+|q0|≤ε0

l√
gh0

+ sup
|ζ1|+|q1|≤ε0

l0 − r√
gh1

+ sup
|ζ2|+|q2|≤ε0

l1 − l0 − r√
gh2

. (2.51)

Let

T1 = sup
|ζ0|+|q0|≤ε0

l√
gh0

, T2 = sup
|ζ1|+|q1|≤ε0

l0 − r√
gh1

, T3 = sup
|ζ2|+|q2|≤ε0

l1 − l0 − r√
gh2

. (2.52)

Step 1:
On the domains

Rf = {(t, x) | 0 ≤ t ≤ T1 + T2 + T3, x ∈ E},

and Rb = {(t, x) | 0 ≤ t ≤ T − (T1 + T2 + T3), x ∈ E},

we proceed by solving the corresponding forward and backward mixed problem (2.8)
with the initial data (2.15) (or the final data (2.14)), boundary condition (2.10)
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at x = l1, transmission conditions (2.11)-(2.12) and artificial boundary condition
(2.9) at x = −l (in which f can be taken as any C1 function with small C1 norm).
By Theorem 2.3.1 and Theorem 2.3.2, there exist unique piecewise C1 solutions
Uif = (ζif , qif )(t, x) and Uib = (ζib, qib)(t, x), (i = 0, 1, 2), respectively. Furthermore,
we get the trace ζ2f (t, l1), q2f (t, l1) and ζ2b(t, l1), q2b(t, l1) at x = l1.

Step 2:
We will solve the following leftward problem from x = l1 to x = l0 + r to get the
solution U2 = U2(t, x) in the domain {0 ≤ t ≤ T, x ∈ E2}:

∂tU2 + A2(U2)∂xU2 = 0,
x = l1 : U2 = (ζ2(t), 0), 0 ≤ t ≤ T,

t = 0 : q2(0, x) = 0, x ∈ E2,

t = T : ζ2(T, x) = ζ2T (t), x ∈ E2,

(2.53)

where ζ(t) is a C1 function satisfying

ζ2(t) =
{
ζ2f (t, l1), 0 ≤ t ≤ T1 + T2 + T3,

ζ2b(t, l1), T − T1 − T2 − T3 ≤ t ≤ T,
(2.54)

and ζ2T (t) is given by the final data (2.14).
The problem (2.53) is well-posed (by exchanging the role of t and x in hyperbolic

system) and admits a solution U2 = (ζ2, q2)(t, x) on the domain

R2 := {(t, x) | 0 ≤ t ≤ T, x ∈ E2}.

Then, we get the value of trace ζ2(t, l0 + r) and q2(t, l0 + r) at x = l0 + r.

Step 3:
With the known functions ζ2(t, l0 + r) and q2(t, l0 + r), we try to determine the
ζ1(t, l0 − r) and q1(t, l0 − r) by the transmission conditions (2.12) at x = l0 ± r.

At first, by the continuity condition, we have

q1(t, l0 − r) = q2(t, l0 + r) (2.55)

and
d

dt
qw(t) = d

dt
q2(t, l0 + r). (2.56)

Substituting the value of q1(t, l0 − r), q2(t, l0 + r), d
dt
qw(t) and ζ2(t, l0 + r) into the

second formula of (2.12), it becomes an equation for ζ1(t, l0 − r) that

F (ζ1(t, l0 − r)) = 0 (2.57)
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with
∂F

∂ζ1
= −g − q2

1
h3

1
= − 1

h1

(
gh1 + q2

1
h2

1

)
6= 0, t ∈ [0, T ], (2.58)

provided with the hyperbolicity near the rest state. Thus, we can solve (2.57) near
the rest state and uniquely determine ζ1(t, l0 − r) by implicit function Theorem.

We denote the values of ζ1(t, l0 − r) and q1(t, l0 − r) obtained in above as ζ1(t)
and q1(t). Hence, we can verify that

• ζ1(t) and q1(t) are both C1 functions,

• U1 = (ζ1(t), q1(t)) is compatible with the value of U1f (t, l0−r) and U1b(t, l0−r)
on the corresponding intervals.

Step 4:
Solve the following leftward problem from x = l0 − r to x = 0 to get the solution
U1 = U1(t, x) in the domain {0 ≤ t ≤ T, x ∈ E1}:

∂tU1 + A1(U1)∂xU1 = 0,
x = l0 − r : U1 = (ζ1(t), q1(t)), 0 ≤ t ≤ T,

t = 0 : q1(0, x) = 0, x ∈ E1,

t = T : ζ1(T, x) = ζ1T (t), x ∈ E1,

(2.59)

where (ζ1(t), q1(t)) is obtained from Step 3 and ζ2T (t) is given by the final data
(2.14).

The problem (2.59) is well-posed and admits a solution U1 = (ζ1, q1)(t, x) on the
domain R1 := {(t, x)|0 ≤ t ≤ T, x ∈ E1}. Then, we get the values of trace ζ1(t, 0)
and q1(t, 0).

Step 5:
By the transmission conditions (2.11) at x = 0, it is easy to get

(ζ0, q0) := (ζ0(t, 0), q0(t, 0)) = (ζ1(t, 0), q1(t, 0)). (2.60)

Similarly, we solve the leftward problem from x = 0 to x = −l to get the solution
U0 = U0(t, x) in the domain {0 ≤ t ≤ T, x ∈ E0}:

∂tU0 + A1(U0)∂xU0 = 0,
x = 0 : U0 = (ζ0(t), q0(t)), 0 ≤ t ≤ T,

t = 0 : q0(0, x) = 0, x ∈ E0,

t = T : ζ0(T, x) = ζ1T (t), x ∈ E0.

(2.61)

Then we take the boundary control f(t) as the trace ζ0(t,−l). We can verify
that the solutions Ui = Ui(t, x), i = 0, 1, 2 constructed in the steps 2, 4, 5 satisfy all
requirements of the Lemma.
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2.3.3 Proof of Theorem 2.2.4.
Proof. The prescribed boundary data ζB(t) and a fixed control function f(t) in (2.8)
would generate an overdetermined initial-boundary value problem. To prove The-
orem 2.2.4, we will find a piecewise C1 solution (ζi(t, x), qi(t, x)) for system (2.8)
on the domain R(T ), which satisfies simultaneously the initial condition (2.15), the
interface conditions (2.11)-(2.12), the null flux boundary condition (2.10), and the
given nodal profile (2.23). Substituting this solution into the boundary condition
(2.9), we obtain the desired boundary control f(t).

We construct a solution to the control problem using the following steps explained
in more detail below, where T1, T2 and T3 are defined as in (2.52).
Step 1: We construct the solution Uif = (ζif , qif )(t, x) on the domain

Rf = {(t, x) | 0 ≤ t ≤ T1 + T2 + T3, x ∈ E}

by solving system (2.8) with the initial data (2.15), null flux boundary condition
(2.10) at x = l1, transmission conditions (2.11)-(2.12) and the boundary condi-
tion ζ0(t,−l) = F (t), where F is an artificial given function satisfying the C1-
compatibility condition at (t, x) = (0,−l).
Step 2: From the forward solution Uif , we denote the trace at x = l1 as

(ζ2(t, l1), q2(t, l1)) = (ζBf (t), 0),

thus ζBf is a C1 function in the time interval [0, T1 + T2 + T3] and q2(t, l1) ≡ 0 is
determined by the boundary condition. Thus, we can find a C1 function ζ2(t) ∈
C1[0, T ] such that

ζ2(t) =
{
ζBf (t, l1), 0 ≤ t ≤ T1 + T2 + T3,

ζB(t), T ≤ t ≤ T ,
(2.62)

where ζB is the given demand.
Step 3: We first solve the leftward problem (2.53) in the domain R2 to get the
solution U2 = (ζ2, q2)(t, x) and then do the same construction procedure shown as
the Step 3, Step 4 and Step 5 in the proof of Lemma 2.3.3 to get solution Ui =
(ζi, qi)(t, x), i = 1, 0 in the domain R1 and R0, respectively.
Step 4: Using the trace ζ0(t,−l) from the solution U0 = (ζ0, q0)(t, x), we finally
compute the control function f(t) = ζ0(t,−l).
Step 5: Using the uniqueness theorem, we verify that: at time t = 0, Ui(0, x) ≡
Uif (0, x), x ∈ Ei. Thus, the solution Ui (i = 1, 2, 3) is the piecewise C1 solution to
solve the overdetermined initial-boundary value problem.
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This work is in collaboration with Edoardo Bocchi and Jiao He.
It is based on [9].

3.1 Introduction

3.1.1 General settings.
This article is devoted to the modelling and the mathematical analysis of a partic-
ular wave energy converter (WEC) called oscillating water column (OWC). In this

75



Chapter 3 76

device, incoming waves arrive from the offshore, collide against a partially-immersed
fixed structure. The incident wave rebounds but part of the water passes below the
structure and enters a partially-closed chamber, whose boundaries are the partially-
immersed structure at the left, a solid wall at the right and a solid wall with a hole
at the top. The water volume inside the chamber increases and compress air at the
upper end of the chamber, forcing it through the hole where a turbine is installed
and creates electrical energy. Viceversa, when the water volume decreases, the air
outside the chamber enters, activates the turbine and increases the air volume inside
the chamber. The name OWC comes from the fact that it behaves like an oscillating
liquid piston, a water column, that compresses air inside the chamber. Therefore,
this device allows to convert the energy (both kinetic and potential) associated with
a moving wave into useful energy. For mode details on the transformation of wave
energy to electric energy in this type of WEC we refer to [66]. OWCs are one ex-
ample of a large variety of WECs that can be found in hydrodynamical engineering.
For their classification and description, we refer the interested readers to [2].
Among all these devices, floating structures and their interaction with water waves
have been particularly studied in the last years. In [46] Lannes derived a model for
the interaction between waves and floating structures taking into account nonlinear
effects, which have been neglected in previous analytical approaches in the literature
(see for instance [38, 39] where floating structures first were modelled). He de-
rived the model in the general multidimensional case considering a depth-averaged
formulation of the water waves equations and then the shallow water asymptotic
models for the fluid motion given by the nonlinear shallow water equations and the
Boussinesq equations. In [35] Iguchi and Lannes proved the local well-posedness of
the one-dimensional nonlinear shallow water equations in the presence of a freely
moving floating structure with non-vertical side-walls. In [6] Bocchi showed local
well-posedness of the nonlinear shallow water equations in the two-dimensional ax-
isymmetric without swirl case for a floating object moving only vertically and with
vertical side-walls. In [11] Bresch, Lannes and Métivier considered the case when
the structure is fixed with vertical walls and the fluid equations are governed by
the one-dimensional Boussinesq equations. Local well-posedness was obtained in the
same time scale as in the absence of an object, that is O(1/ε) where ε is the nonlin-
earity parameter. Recently, Beck and Lannes in [4] extended the previous analysis
to the case of a floating structure with vertical or non-vertical side-walls having only
a vertical motion, for which a shorter time scale O(ε−1/2) is obtained. In [57] Maity,
San Martín, Takahashi and Tucsnak considered one-dimensional viscous shallow wa-
ter equations and a solid with vertical side-walls moving vertically. In this viscous
case, they showed local well-posedness for every initial data and global if the ini-
tial data are close to an equilibrium state. Furthermore, a particular configuration
has been investigated, called the return to equilibrium, where the floating structure
is dropped from a non-equilibrium position with zero initial velocity into the fluid
initially at rest and let evolve towards its equilibrium state. This problem can be
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easily done experimentally in wave tanks and is used to determine important char-
acteristics of floating objects. Engineers assume that the solid motion is governed by
a linear integro-differential equation, the Cummins equation, that was empirically
derived by Cummins in [16] and the experimental data coming from this configura-
tion are used to determine the coefficients of this equation. A nonlinear Cummins
equation in the one-dimensional case was derived by Lannes in [46] and a nonlinear
integro-differential Cummins equation was derived in the two dimensional axisym-
metric without swirl case by Bocchi in [7]. Recently, in [4] the authors derived in the
one-dimensional case an abstract general Cummins equation that takes an explicit
simple form in the nonlinear non-dispersive and the linear dispersive cases. More
recently, Vergara-Hermosilla, Matignon and Tucsnak treated a viscous version of the
Cummins equation in the one-dimensional case in [81].

In the last decades oscillating water columns have been widely investigated both
experimentally and numerically in the hydrodynamical engineering literature for the
sake of understanding how to increase the performance of these wave energy con-
verters in order to facilitate a real installation. For instance, we refer to [20, 23, 24,
56, 71, 73, 72] and references therein. In particular, in [71] Rezanejad, Bhattacharjee
and Soares showed that the inclusion of an artificial step at the sea bottom may
lead to a significantly increased efficiency, that is the capacity of power absorption
of a wave energy converter. All these works were essentially based on the linear
water wave theory introduced by Evans in [21, 22], in which the wave motion is
assumed time-harmonic. Motivated by the lack of a nonlinear analysis for this type
of wave energy converter, we modelled and simulated an OWC in a first paper [8]
taking into account the nonlinear effects following the series of works in the case
of floating structures presented before. We included in the model a discontinuous
topography by considering a step in the sea bottom in front of the device, inspired by
[71] and because it represents an interesting mathematical problem itself. In this first
and simpler approach, a constant air pressure were considered inside the chamber,
although it does not seem realistic since the variations of the fluid volume cause vari-
ations of the air volume inside the chamber. Recently, Vergara-Hermosilla, Leugering
and Wang treated in [79] the exact boundary controllability of this simplified OWC
model introduced in [8].

This chapter is a direct continuation of a first approach established by the authors
in [8] and its aim is derive a nonlinear model that describes the interaction between
waves and the OWC by taking into account time-variations of the air pressure inside
the chamber.

3.1.2 Organization of the chapter
The outline of the chapter is as follows. We present in Section 3.2 the nonlinear
mathematical model of an oscillating water column in the shallow water regime. In
Subsection 3.2.1 we first introduce the different domains involved in the model and
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present the one-dimensional nonlinear shallow water equations in the presence of a
partially-immersed structure. After showing the duality property of constraints and
unknowns, we split the equations into three different systems corresponding to the
region before the step, after the step and under the structure. Moreover, bound-
ary conditions are given to complete the model. Subsection 3.2.2 is devoted to the
air pressure dynamics. We assume that the air pressure is equal to the constant
atmospheric pressure outside the chamber and we consider it as a time-dependent
variation of the atmospheric pressure inside the chamber. We explicitly show the
evolution equation of the air pressure variation and rewrite it in terms of the hori-
zontal discharge under the partially-immersed structure.
In Section 3.3 we essentially reformulate the model as two transmission problems. In
Subsection 3.3.1 we derive the transmission problem associated with the step in front
of the OWC and the corresponding transmission conditions are given by the continu-
ity of the surface elevation and the horizontal discharge over the step. In Subsection
3.3.2 we derive the transmission problem related to the wave-structure interaction
at the side-walls of the partially-immersed object. The continuity of the horizontal
discharge at the side-walls gives one transmission condition. However, due to the
lack of continuity for the surface elevation at the side-walls, one additional condition
is necessary to close the system and guarantee the well-posedness of this problem.
Therefore in Subsection 3.3.3 we take advantage of free-surface Bernoulli’s equation
to derive a second transmission condition that takes into account the influence of
the time-dependent variation of the air pressure inside the chamber. We show in
Subsection 3.3.4 that the second transmission problem, that is the one across the
structure side-walls, can be reduced to a 4× 4 initial boundary value problem with
a semilinear boundary condition. In Subsection 3.3.5 we show that the interaction
of waves with the solid wall at the end of the OWC chamber can be described by a
2× 2 IBVP with a wall boundary condition for the horizontal discharge.

3.2 Derivation of the model

3.2.1 Fluid equations
We consider an incompressible, irrotational, inviscid and homogeneous fluid that
interacts with an on-shore oscillating water column device in a shallow water regime.
This means that characteristic fluid height is small with respect to the characteristic
horizontal scale in the longitudinal direction. Let us denote by ζ(t, x) the free surface
elevation, which is assumed to be a graph, and by −hs and −h0 (with hs, h0 > 0)
the parametrization of the flat bottom before and after the step, respectively. The
step is located at x = 0 with size s = hs−h0 > 0. The two-dimensional fluid domain
is Ω(t) = Ωl(t) ∪ Ωr(t) where the fluid domain before the step is

Ωl(t) = {(x, z) ∈ (−∞, 0)× R : −hs < z < ζ(t, x)}
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and the fluid domain after the step is

Ωr(t) = {(x, z) ∈ (0, l1)× R : −h0 < z < ζ(t, x)}.

The partially-immersed structure is centered at x = l0, with horizontal length
2r and vertical walls located at x = l0 ± r. Its presence permits to divide the
horizontal projection of the fluid domain into two domains: the exterior domain
(−∞, l0 − r) ∪ (l0 + r, l1), where the fluid is not in contact with the structure, and
the interior domain (l0 − r, l0 + r), where the contact occurs. We denote them by E
and I, respectively. We divide the exterior domain into E− = (−∞, 0), the subset
of E before the step, and E+ = (0, l0 − r)∪ (l0 + r, l1), the subset of E after the step.
Furthermore, later in the analysis we will need to distinguish the part of E+ outside
the chamber and inside the chamber. Hence we denote by E+

l and E+
r the subsets

(0, l0 − r) and (l0 + r, l1), respectively.
Due to the difference between the fluid heights before and after the step, the hori-
zontal discharge q(t, x) is defined by

q(t, x) =



ˆ ζ(t,x)

−hs
u(t, x, z)dz for (t, x) ∈ (0, T )× E−,

ˆ ζ(t,x)

−h0

u(t, x, z)dz for (t, x) ∈ (0, T )× E+ ∪ I,

where u(t, x, z) is the horizontal component of the fluid velocity. It follows that
q = hu where u(t, x) is the vertically averaged horizontal fluid velocity and h(t, x) is
the fluid height, equal to hs + ζ before the step and to h0 + ζ after the step. After
integrating over the fluid height the horizontal component of the free surface Euler
equations, adimensionalizing the equations and truncating at precision O(µ), where
µ is the shallowness parameter, one can obtain the nonlinear shallow water equations
in the presence of a structure. We refer to [46, 47] for the derivation of the equations
in the multi-dimensional case and [6] in the two-dimensional axisymmetric with no
swirl case. Here we consider the one-dimensional nonlinear shallow water equations
in the presence of a partially-immersed structure:

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −h

ρ
∂xP ,

in (0, T )× (−∞, l1), (3.1)

where P (t, x) is the surface pressure of the fluid, g is the gravitational constant and
ρ is the constant fluid density. Here we are not interested neither in viscous nor
capillary effects (in the scale considered for OWCs they are negligible). Therefore,
we do not consider any influence of the viscosity on the momentum equation and
of the surface tension on the surface pressure, assuming continuity with the air (or
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Figure 3.1 – Configuration of the oscillating water column device.

an upper-fluid whose density is negligible with respect to the lower-fluid density)
pressure outside the fluid domain. In general, it is assumed that the air pressure
is equal to the constant (both in time and space) atmospheric pressure. In a first
and simpler approach, the authors modelled the oscillating water column device in
[8] with a constant air pressure, both outside and inside the chamber. A novelty of
this work is that we consider an air pressure function which is not constant through
all the domain. Indeed, while outside the chamber it is reasonable to consider a
constant air pressure, inside the chamber the motion of the waves produce variations
of the air pressure and this fact must be taken into consideration to describe more
precisely the behaviour of a wave energy converter of this type.
Let us now talk about the partially-immersed structure. We assume that the bottom
of the structure can be parametrized as graph of a function ζw and for the sake of
simplicity we consider a solid with a flat bottom, yielding ζw = ζw(t). We remark
that the same theory holds in the case of objects with non-flat bottom. The fact
that in an oscillating water column device the partially-immersed structure is fixed
implies that ζw is a constant of the problem both in space and time. Dealing with
floating structures leads to consider a time-dependent function ζw related to the ve-
locity of the moving object (see [6, 46] for nonlinear shallow water equations, [4] for
Boussinesq equations).

Constraints and unknowns The interaction between floating or fixed structures
and water waves, inherits a duality property. On the one hand, in the exterior
domain the surface pressure is constrained to be equal the air pressure while the
surface elevation is free, i.e.P (t, x) = Pair(t, x),

ζ(t, x) is unknown,
for (t, x) ∈ (0, T )× E , (3.2)
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where Pair(t, x) is the known air pressure function. On the other hand, in the inte-
rior domain the surface elevation matches the bottom of the solid while the surface
pressure is free, i.e.ζ(t, x) = ζw,

P (t, x) is unknown,
for (t, x) ∈ (0, T )× I. (3.3)

It has been shown in [46] that the P in the interior domain can be seen as a La-
grange multiplier associated with the contact constraint ζ(t, x) = ζw (it holds also
for the water waves equations in the presence of a floating structure). Injecting the
constraints (3.2)-(3.3) and making explicit the difference between the fluid height
before the step and after the step, the equation (3.1) can be split into the following
three systems



∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

hs + ζ

)
+ g(hs + ζ)∂xζ = −hs + ζ

ρ
∂xPair,

P = Pair,

in (0, T )× E−, (3.4)



∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = −h0 + ζ

ρ
∂xPair,

P = Pair,

in (0, T )× E+, (3.5)

and 
q = qi(t),
dqi
dt

= −hw
ρ
∂xP ,

ζ = ζw,

in (0, T )× I, (3.6)

where qi is a time-dependent function that coincides with the horizontal discharge
in the interior domain.

Boundary conditions Let us discuss here the boundary conditions that couple
with (3.5)-(3.6). It is reasonable to assume that free surface elevation is continuous
at the step if this is far enough from the crest of the waves. Moreover, considering
the slip (or impermeability) condition at the step for the velocity field, the elliptic
regularity for the potential in the interior of the fluid domain and the continuity of
the surface elevation, one gets the continuity of the horizontal discharge at the step
(see [46]). Therefore we have

ζ|x=0−
= ζ|x=0+ , q|x=0−

= q|x=0+ .
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Concerning the vertical walls of the partially-immersed structure, for the same reason
as for the step we get the continuity of the horizontal discharge. Of course, since the
structure have vertical walls, the continuity of the surface elevation at the solid walls
and of the surface pressure fails (this would not be the case for instance in the case
of a boat, see [35, 46]), we therefore have

ζ|x=(l0±r)±
6= ζw, P |x=(l0∓r)±

6= Pair, q|x=(l0±r)+ = q|x=(l0±r)−
. (3.7)

We will see in the next section how to supply the lack of continuity for the both
the pressure and the surface elevation at the structure walls and derive a condition
which will close the system. Finally, at the end the chamber we consider a solid wall
condition, that is

q|x=l1
= 0. (3.8)

Remark 3.2.1. In the case of a bounded fluid domain, as in [8, 48], with a left
boundary at x = −l one should add the boundary condition

ζ|x=−l = f,

where f = f(t) is a given time-dependent entry function. This is necessary dealing
with numerical applications and f can be determined from experimental data. Indeed,
during experiments in wave tanks it is usual to create waves with a lateral piston that
permits to know the exact entry value of the surface elevation at any given time.
Moreover, in [48] the authors showed that the knowledge of the entry value of the
surface elevation allows to get the entry value of the horizontal discharge using the
existence of Riemann invariants for the 1d nonlinear shallow water equations.

3.2.2 Air pressure dynamics
In this subsection we focus on the air pressure, which is not in general a constant
function. In particular, we distinguish the cases of the air outside the chamber and
inside the chamber. On the one hand, in E− ∪ E+

l the variations of the air pressure
are negligible and it can be considered equal to the constant atmospheric pressure.
i.e.

Pair(t, x) = Patm for (t, x) ∈ (0, T )× E− ∪ E+
l , (3.9)

On the other hand, in E+
r , where the air is partially trapped inside the chamber and

pushed by the waves motion, a constant air pressure is no more realistic. However,
if we consider the air behaving as an incompressible fluid (there is a hole on the
top of the chamber) we can reasonably assume that air pressure inside the chamber
is uniform. Therefore we deal with a time-dependent air pressure function and in
particular we write it as a variation of the atmospheric pressure, i.e.

Pair(t, x) = Patm + Pch(t) for (t, x) ∈ (0, T )× E+
r , (3.10)
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where Pch(t) is the time-dependent variation. With this type of hypothesis on the
air pressure inside the chamber, it is possible to find in ocean engineering literature
an evolution equation governing the dynamics the pressure variation Pch(t). For
instance, we refer to [20, 24]. It is derived for oscillating water column with Wells
turbines [70], for which the relation between the pressure drop and the velocity of
the air in the resistance layer is linear. Assuming this characteristics of the device,
we have that Pch satisfies the following linear ODE:

dPch

dt
+ γPatm

hchK
Pch = γPatm

hch

dζ

dt
, (3.11)

where γ is the polytropic expansion index for air (γ = 1.4), hch is the height of the
chamber and K is a resistance parameter. Despite these known parameters of the
device, the spatially averaged free surface elevation ζ over E+

r is unknown. In general
in ocean engineering and marine energy literature, authors determine this value from
experimental data calculated by gauges located inside the chamber. In our analytic
approach, we rewrite it in terms of the horizontal discharge at the entrance of the
chamber, at x = l0 + r. Indeed, using the continuity equation in (3.5) we have

dζ

dt
= d

dt

(
1
|E+
r |

ˆ
E+
r

ζ(t, x)dx
)

= 1
|E+
r |

ˆ
E+
r

∂tζ(t, x)dx =
q|x=(l0+r)+

|E+
r |

= qi
|E+
r |
, (3.12)

where in the last two equalities we have used the wall condition (3.8) and the conti-
nuity condition (3.7) for the horizontal discharge. Therefore (3.11) reads

dPch

dt
= −γ1Pch + γ2qi,

where γ1 and γ2 are constants depending on the device parameters as in (3.11). This
equation in fact shows that the dynamics of the air pressure variation inside the
chamber is determined by the value of the horizontal discharge under the partially-
immersed structure.

3.3 Reformulation of the model as transmission
problems

This section is devoted to the reformulation of the model that we have previously
derived. More precisely, we show that (3.5)-(3.6) can be written as one transmission
problem over the step and one transmission problem across the structure side-walls
and we reduce them to two 4×4 initial boundary value problems (IBVP). Moreover,
at the end of the OWC chamber, the interaction of waves with the solid wall can be
recast as a 2× 2 IBVP.
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3.3.1 Transmission problem over the step
The first transmission problem is associated with the discontinuity in the bottom
topography, located at x = 0, in front of the OWC device. In the region E− ∪ E+

l ,
the air pressure is assumed to be the constant atmospheric pressure (see (3.9)), so
together with (3.4)-(3.5), the equations in the domain near the step are written as
follows:

∂tζ + ∂xq = 0 in (0, T )× E− ∪ E+
l ,

∂tq + ∂x

(
q2

hs + ζ

)
+ g(hs + ζ)∂xζ = 0 in (0, T )× E−,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0 in (0, T )× E+

l ,

P = Patm in (0, T )× E− ∪ E+
l ,

ζ = ζ0, q = q0 in E− ∪ E+
l

(3.13)

with transmission conditions

ζ|x=0−
= ζ|x=0+ , q|x=0−

= q|x=0+ .

where ζ0 and q0 are the initial data for the surface elevation and the horizontal
discharge in E− ∪ E+

l .
A rigorous study of such kind of transmission problem for 1d nonlinear shallow

water equations with a discontinuous topography has been already treated by Iguchi
and Lannes in [35] (see Section 6.1 therein) in the full line. More precisely, they
showed that this problem can be written as a 4× 4 quasilinear hyperbolic IBVP on
the half line and they obtained a local well-posedness result. For this reason, we
omit the well-posedness theory for the transmission problem that involve the step
localized at x = 0 since, without loss of generality, it can be reduced to the same
problem as in [35].

3.3.2 Transmission problem across the structure side-walls
The second transmission problem is associated with the wave-structure interaction at
the vertical side-walls of the partially-immersed object. Recall that the air pressure
is assumed to be the constant atmospheric pressure in E+

l and a time-dependent
variation of the atmospheric pressure in E+

r (see (3.9)-(3.10)), so together with (3.4)-
(3.5), the equations in the domain E+

l ∪ E+
r are written as follows:

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0,

P = Patm,

in (0, T )× E+
l , (3.14)
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and 

∂tζ + ∂xq = 0,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0,

P = Patm + Pch(t),

in (0, T )× E+
r , (3.15)

coupled with the transmission condition given by the continuity of q across the side-
walls

q|x=(l0−r)−
= q|x=(l0+r)+ . (3.16)

In the interior domain one has
q = qi(t),
dqi
dt

= −hw
ρ
∂xP ,

ζ = ζw,

in (0, T )× I. (3.17)

Notice that the source term vanishes in (3.15) since it is the spatial derivative of the
time-dependent air pressure inside the chamber.

We will see later that, after doing a change of variable, the 2 × 2 transmission
problem (3.14)-(3.16) can be recast as a 4×4 hyperbolic quasilinear initial boundary
value problem (IBVP). It is known that a necessary condition to ensure the well-
posedness of this type of problems is that the number of boundary conditions must
be equal to the number of positive eigenvalues of the system (see [5]). In our case
we will have two positive eigenvalues, the positive eigenvalue of A(U) in E+

r and the
opposite of the negative eigenvalue of A(U) in E+

l . Unfortunately, the continuity
of q across the side-walls only give us one transmission condition and an additional
transmission condition is indispensable. This will be derived in the next subsection.

3.3.3 Derivation of the second transmission condition
In the case of a boat as in [35], it turns out to be the situation of non-vertical
lateral walls and the second transmission is determined by the continuity of the
surface elevation at the contact points where the waves, the air and the solid meet.
Contrarily in the presence of vertical side-walls, which is the case considered in
this paper, this condition ceases to hold. Fortunately, from (3.17) we know that the
horizontal discharge q in the interior domain is equal to qi that depends only on time.
Therefore the second transmission condition reads q|x=(l0±r)±

= qi or equivalently

〈q〉 = qi with 〈q〉 = 1
2

(
q|x=(l0−r)−

+ q|x=(l0+r)+

)
.
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When the air pressure is assumed to be constant both outside and inside the chamber,
the fluid-structure system can be assumed to be isolated, yielding that the total fluid-
structure energy is a conserved quantity. Then, using local conservation of energy
derived from the equations, one obtains an evolution equation on qi depending on the
traces of the ζ and q at both side walls. This has been done in [8] for the nonlinear
shallow water equations and in [11] for the Boussinesq system. This approach cannot
be used in our case because there is no direct influence of the air pressure variation
on the momentum equations in (3.14)-(3.15). As mentioned previously, one novelty
of this article is the derivation of a more general evolution equation that takes into
account the influence of the time-dependent variation of the air pressure inside the
chamber. To do this, we use free surface Bernoulli’s equation coupled in the presence
of a partially-immersed structure

∂tΦ + 1
2 |∇Φ|2 + 1

ρ
P + gz = C(t) in Ω(t),

∇Φ ·N = 0 at fluid-structure interface,
(3.18)

where Φ(t, x, z) : (0, T ) × (−∞, l1) × R → R is a scalar velocity potential such
that the velocity field U(t, x, z) = ∇Φ(t, x, z) in Ω(t), C(t) is a time-dependent
constant and N is the normal vector to the fluid-structure interface pointing inwards.
This equation is derived from free surface Euler’s equation in the presence of a
structure using the irrotationality condition for the fluid velocity vector field. Let us
introduce the notation f(t, x) = f(t, x, ζ(t, x)). By evaluating (3.18) at the points
(l0 − r − ε, ζ(t, l0 − r − ε)) and (l0 + r + ε, ζ(t, l0 + r + ε)) for some small ε > 0, we
thus get

1
2 |∇Φ|x=l0−r−ε

|2 + 1
ρ
P |x=l0−r−ε

+ gζ|x=l0−r−ε

= 1
2 |∇Φ|x=l0+r+ε|

2 + 1
ρ
P |x=l0+r+ε + gζ|x=l0+r+ε + ∂tΦ|x=l0+r+ε

− ∂tΦ|x=l0−r−ε
. (3.19)

We write the difference of ∂tΦ as

∂tΦ|x=l0+r+ε
− ∂tΦ|x=l0−r−ε

=
ˆ (l0−r)−

l0−r−ε
∂x∂tΦdx−

ˆ ζ(t,(l0−r)−)

ζ(t,(l0−r)+)
∂t∂zΦdz

+
ˆ (l0+r)−

(l0−r)+
∂x∂tΦdx+

ˆ ζ(t,(l0+r)+)

ζ(t,(l0+r)−)
∂t∂zΦdz +

ˆ l0+r+ε

(l0+r)+
∂x∂tΦdx.

(3.20)
We notice first that, applying the chain rule inside the third integral in (3.20), we
have ˆ (l0+r)−

(l0−r)+
∂x∂tΦdx =

ˆ (l0+r)−

(l0−r)+

(
∂t∂xΦ + ∂t∂zΦ ∂xζ

)
dx =

ˆ (l0+r)−

(l0−r)+
∂t∂xΦdx
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where the second term in the integral vanishes due to the impermeability condition
in (3.18) at the bottom of the solid parameterized by ζw. Indeed, it reads

0 = ∇Φ ·Nw = −∂zΦ

with Nw = (−∂xζw,−1)T = (0,−1)T since the bottom of the solid is flat (ζw does
not depend on the spatial variable) and we have ∂t∂zΦ = ∂zΦ in the interior domain
since the structure is fixed (ζw does not depend on the time variable).

In the absence of the solid, it is known that the horizontal and the vertical
component of the fluid velocity, respectively u and w, satisfy the following identities:

u(x, z) = ∂xΦ(x, z) = u(x) +O(µ), w(x, z) = ∂zΦ(x, z) = O(µ), (3.21)

where u(x) is the vertically averaged horizontal velocity and µ is the shallowness
parameter (see [45]). Then, under the nonlinear shallow water approximation, i.e.
µ� 1 and precision O(µ), it yields u ∼ u and w ∼ 0. To the authors’ knowledge this
property has not been proven yet in the presence of a partially-immmersed object
and it seems not direct to obtain such a result. Therefore, in order to derive the
transmission condition, we consider (3.21) as an assumption on the fluid velocity in
the presence of a structure. Under this hypothesis and the nonlinear shallow water
approximation, the second and the fourth integrals in (3.20) vanish. Then, taking
the limit as ε→ 0 of (3.19) and by smoothness of the fluid velocity in the intervals
(l0− r−ε, l0− r) and (l0 + r, l0 + r+ε) and the fact that |∇Φ|2 ∼ u2 in the nonlinear
shallow water approximation, we obtain

1
2u

2
|x=(l0−r)−

+ 1
ρ
P |x=(l0−r)−

+ gζ|x=(l0−r)−

= 1
2u

2
|x=(l0+r)+ + 1

ρ
P |x=(l0+r)+ + gζ|x=(l0+r)+

+
ˆ (l0+r)−

(l0−r)+
∂tudx.

Writing the averaged horizontal velocity in terms of the horizontal discharge q, that
is u = q

h
, we get

1
2

q2

(h0 + ζ)2
|x=(l0−r)−

+ 1
ρ
P |x=(l0−r)−

+ gζ|x=(l0−r)−

= 1
2

q2

(h0 + ζ)2
|x=(l0+r)+

+ 1
ρ
P |x=(l0+r)+ + gζ|x=(l0+r)+ +

ˆ (l0+r)−

(l0−r)+
∂t

(
q

h0 + ζ

)
dx,
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where we have used the fact that h = h0 + ζ under the structure and next to its
side-walls. Finally, from the first and the third equations in (3.17) we obtain the
ODE

− 2r
hw

d2qi
dt

=
s
gζ + q2

2(h0 + ζ)2

{
+ JP K

ρ

where JfK = f|x=(l0+r)+ − f|x=(l0−r)−
is the jump between the side-walls of a function

f defined on E+. Recall that 2r is the length of the partially-immersed structure.
Using the constraints on the surface pressure in (3.14)-(3.15), we explicitly write the
jump as

JP K = Patm + Pch(t)− Patm

and we conclude that

− αdqi
dt

=
s
gζ + q2

2(h0 + ζ)2

{
+ Pch(t)

ρ
(3.22)

with α = 2r
hw
.

Remark 3.3.1. The ODE (3.22) is a generalization of the one derived in [8] by
the authors. Indeed, considering the air pressure equal to the constant atmospheric
pressure also inside the chamber, one has Pch ≡ 0 and the same equation as in [8] is
recovered.

Then the transmission problem (3.14)-(3.16) reads

∂tζ + ∂xq = 0 in (0, T )× E+
l ∪ E+

r ,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0 in (0, T )× E+

l ∪ E+
r ,

P = Patm in (0, T )× E+
l ,

P = Patm + Pch(t) in (0, T )× E+
r ,

ζ = ζ0, q = q0 in E+
l ∪ E+

r ,

(3.23)

with transmission conditions

JqK = 0, 〈q〉 = qi (3.24)

and qi, Pch satisfying

dqi
dt

= − 1
α

s
gζ + q2

2(h0 + ζ)2

{
− Pch

αρ

dPch

dt
= −γ1Pch + γ2qi

qi(0) = qi,0, Pch(0) = Pch,0.

(3.25)
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where ζ0 and q0 are the initial data for the surface elevation and horizontal discharge
in E+

l ∪E+
r , qi,0 and Pch,0 are the initial data for the horizontal discharge in I structure

and for the air pressure variation inside the chamber. We recall that the second
equation in (3.25) is borrowed from (3.12).

3.3.4 Reduction of the transmission problem across the struc-
ture to an IBVP

In this subsection we show how the 2× 2 transmission problem (3.23)-(3.25) can be
reduced to a 4 × 4 one-dimensional quasilinear IBVP with a semilinear boundary
condition. Since we are interested in the analysis of the wave-structure interaction
at the side-walls of the partially-immersed structure, without loss of generality we
consider the transmission problem on the full line and we ignore the presence of the
step and of the solid wall at the end of the chamber, which have been both already
treated in [35] as mentioned previously. Furthermore, for the sake of simplicity we
consider the transmission problem over the boundaries x = 0± . This change does
not affect the mathematical structure of the transmission problem and the same
analysis can be developed considering the physical boundaries x = l0± r determined
by the object side-walls.
Therefore we rewrite (3.23)-(3.25) in the full line under the compact form


∂tU + A(U)∂xU = 0 in (0, T )× R− ∪ R+,

U|t=0 = U0(x) in R− ∪ R+,

M+U|x=0+ −M−U|x=0−
= V (G(t)) in (0, T ).

(3.26)

with U = (ζ, q)T , U0 = (ζ0, q0)T ,

A(U) =


0 1

g(h0 + ζ)− q2

(h0 + ζ)2
2q

h0 + ζ

 , M± =
(

0 1
0 ±1

2

)
,

and G = (qi, Pch)T satisfying the evolution equation

Ġ = Θ
(
G,U|x=0−

, U|x=0+

)
,

G(0) = G0,
(3.27)

Writing U = (U1, U2)T , G = (G1, G2)T and Θ = (Θ1,Θ2)T , we have that V (G) =
(0, G1)T and
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Θ1
(
G,U|x=0−

, U|x=0+

)
=

− 1
α

[
(gU1 + U2

2
2(h0 + U1)2 )|x=0+ − (gU1 + U2

2
2(h0 + U1)2 )|x=0−

]
− G2

αρ
,

Θ2
(
G,U|x=0−

, U|x=0+

)
= −γ1G2 + γ2G1.

Equation (3.27) has the same form of the kinematic-type evolution equation con-
sidered in [35] where the authors dealt with a free boundary transmission problem.
Here, although we consider a fixed boundary transmission problem, the same situa-
tion occurs: the derivative of G has the same regularity as the trace of the solution
at the boundary. The boundary condition is semilinear, in the sense that the evolu-
tion equation (3.27) is nonlinear only on the trace of the solution at the boundary
and not on its derivatives. This would be the case when considering a boat-type
structure, which turns out to be a free boundary hyperbolic problem. A kinematic-
type evolution equation for the moving contact points x±(t) can be derived after
time-differentiating the boundary condition U(t, x±(t)) = Ui(t, x±(t)), where Ui is a
known function. In the nonlinear equation obtained, there are terms involving traces
of derivatives ∂U|x=0±

and the boundary condition is fully nonlinear because there is
a loss of one derivative in the estimates (see[35]). Here we deal with a less singular
evolution equation.

Let us now recast (3.26)-(3.27) as an IBVP by introducing a change of variable
x′ = −x in R− and writing

u+(t, x) = U(t, x), u−(t, x) = U(t,−x),
u+

0 (x) = U0(x), u−0 (x) = U0(−x),
Thus, the system (3.26) is equivalent to the following 4 × 4 quasilinear hyperbolic
system in ΩT := (0, T )× R+

∂tu+A(u)∂xu = 0 in ΩT ,

u|t=0 = u0(x) n R+,

Mu|x=0 = V (G(t)) in (0, T ),

(3.28)

where u = (u−, u+)T , u0 = (u−0 , u+
0 )T are R4-valued functions and

A(u) = diag
(
−A(u−) A(u+)

)
, M =

(
−M− M+

)
are respectively 4× 4 and 2× 4 matrices. Moreover, the ODE (3.27) readsĠ = Θ

(
G, u|x=0

)
,

G(0) = G0.
(3.29)
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In order to study the wellposedness of our proposed model in this chapter (which
is not included in this manuscript), we present the IBVP associated with the presence
of a solid wall at the end of the OWC chamber.

3.3.5 IBVP at the end of the OWC chamber
We have already seen that the presence of a solid wall at the end of the chamber leads
to consider the wall boundary condition for the horizontal discharge (3.8). Therefore,
the problem associated with the interaction of waves with this physical boundary can
be recast as the following IBVP:

∂tζ + ∂xq = 0 in (0, T )× E+
r ,

∂tq + ∂x

(
q2

h0 + ζ

)
+ g(h0 + ζ)∂xζ = 0 in (0, T )× E+

r ,

P = Patm + Pch(t) in (0, T )× E+
r ,

ζ = ζ0, q = q0 in E+
r ,

(3.30)

with boundary condition
q = 0 in x = l1, (3.31)

where Pch is the solution to (3.23)-(3.25), and ζ0 and q0 are the initial data for the
surface elevation and the horizontal discharge in E+

r . Without loss of generality
(3.30)-(3.31) can be seen as a particular case of the interaction between waves and a
moving lateral piston treated in [35] (see Section 4 therein). Indeed, when the lateral
piston is fixed the same situation as at the end of the chamber of the oscillating
water column occurs. While the authors introduced a Lagrangian diffeomorphism in
equations in a fixed domain, here we already have it. Therefore one can directly use
the theory in [35] to derive a well-posedness result for (3.23)-(3.31) which we will
omit in the present chapter.
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This work is in collaboration with Denis Matignon and Marius Tucsnak.
It is based on [80].

4.1 Introduction
In this work, we consider an infinite-dimensional system describing the vertical mo-
tion of a solid floating at the free surface of a viscous fluid with finite depth and a flat
bottom. This system is motived by the growing interest of wave energy extractors
that float on the sea and extract energy by activating a hydraulic pump, which in
turn, drives a hydraulic motor connected to a generator. In such an arrangement, the
torque on the generator can be controlled, leading to a controllable vertical force on
the floating object, see for instance [44] or [66]. The input of the considered system
is the force acting on the solid by an actuator, whereas the output is the distance
from the solid to the sea bottom. The novelty brought by this work is twofold:

95
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• The viscous effects are taken in consideration from the beginning of the mod-
elling process, by adapting a method describing viscous free boundary value
flows which has been introduced in [57].

• We give an explicit form of the transfer function, allowing, in particular, to
establish the input-output stability of the system. In a future work we aim
using this explicit form to implement simple feedback laws.

The leading assumptions on the fluid are that it is one dimensional and unbounded
in the horizontal direction, that the flow can be described within the shallow water
approximation(this mean that the horizontal length scale of motion L is much greater
than the perpendicular fluid depth D, i.e. D/L� 1) and that the viscosity effects
cannot be neglected. Concerning the solid, we assume that it has vertical walls, that
it can move only vertically and that it is subject to a vertical control force. The
output signal is the distance from the bottom of the solid to the sea bottom. More
precisely, we consider the model introduced in [57], with the particularity that the
fluid is supposed to be infinite in the horizontal direction, denoting I := (a, b) the
projection on the fluid bottom of the solid domain and setting E := R \ [a, b]. The
floating solid is supposed, without loss of generality, to have mass M = 1 and it
is constrained to move only in the vertical direction. Given t > 0, we denote by
h(t, x) the height of the free surface of the fluid, by q(t, x) the flux of viscous fluid in
the direction x and by hS(t) the distance from the bottom of the rigid body to the
bottom of the fluid, supposed to be horizontal, as described in Fig. 4.1. We denote

a b

hS(t)

h(x, t)h(t, x)

x

M

Figure 4.1 – Graphical sketch of the model. The function h(t, x) denote the height of the free
surface of the fluid, and hS(t) is the function which describes the distance from the bottom of the
rigid body to the bottom of the fluid.

by h and hS the equilibrium height for the fluid and the solid, respectively. Then,
following [57], we have

h = hS + 1
b− a

,



97 Chapter 4

and for simplicity, we assume that

h = 1, g = 1, p = 1
b− a

.

Hence, by linearizing the nonlinear fluid-structure model introduced by Maity et
al. in [57], around the trajectory (in the equilibrium positions described above)
(hS, h, q, p) = (hS, h, 0, p), we obtain the linear systems given by

∂h

∂t
+ ∂q

∂x
= 0, (x ∈ E), (4.1.1)

∂q

∂t
+ ∂h

∂x
− µ∂

2q

∂x2 = 0, (x ∈ E), (4.1.2)

h(t, a−)− µ∂q
∂x

(t, a−) = p(t, a+) + hS(t)− µ∂q
∂x

(t, a+), (4.1.3)

h(t, b+)− µ∂q
∂x

(t, b+) = p(t, b−) + hS(t)− µ∂q
∂x

(t, b−), (4.1.4)

ḣS(t) + ∂q

∂x
= 0 (x ∈ I), (4.1.5)

∂q

∂t
+ ∂p

∂x
= 0 (x ∈ I), (4.1.6)

ḧS(t) =
ˆ b

a

p(t, x)dx+ u(t) (t > 0), (4.1.7)

where p is a Lagrange multiplier, similar to a pressure term (which is obtained in the
Hamiltonian modelling process), u is the input function whereas the output function
is defined as

y(t) = hS(t) (t ≥ 0). (4.1.8)

Our first main result is the following reformulation of the system, where we
consider the state space defined by

X := C×H1(E)× L2(E)× C× C. (4.1.9)

Theorem 4.1.1. Equations (4.1.1)-(4.1.8) can be recast as

ż = Az +Bu
y = Cz,

(4.1.10)

where the components of the vector z(t) are hS(t), h(t, ·), q(t, ·), q(t, a) and q(t, b),
B is in L(C, X), C is in L(X,C) and A is a generator of an analytic semigroup on
X.
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Using the classical definition of well-posed linear systems in the sense of Weiss
(for details see [77] or [84]), the above theorem implies the following result:
Corollary 4.1.2. Equations (4.1.1)-(4.1.8) define a well-posed linear system with
state space X defined in (4.1.9) and input and output spaces U = Y = C.
Remark 4.1.3. From the above results it follows, in particular, that for every

z0 =


hS,0
h0
q0
qa,0
qb,0

 ∈ X

and every u ∈ L2[0,∞), the initial value problem formed of (4.1.1)-(4.1.8) and the
initial condition z(0) = z0 admits a unique solution

z(t, x) =


hS(t)
h(t, x)
q(t, x)
q(t, a)
q(t, b)

 ,

in C([0,∞);X). Moreover, it is easily checked that z̃ defined by

z̃(t, x) =


hS(t)

h(t, a+ b− x)
−q(t, a+ b− x)
−q(t, b)
−q(t, a)

 ,

satisfies (4.1.1)-(4.1.8). Moreover, if we assume that
q0(x) = −q0(a+ b− x), h0(x) = h0(a+ b− x) (x ∈ E), (4.1.11)

then z̃(0, ·) = z0, thus z̃ satisfies the same initial value problem as z. Using the
uniqueness of solutions of this initial value problem we deduce that z̃ = z. This
means, in particular, that for initial data satisfying (4.1.11) we have

q(t, a) = −q(t, b), h(t, a) = h(t, b) (t > 0).
Continuing with our results, we remember that a well-posed linear system of

the form (4.1.10) is said input-output stable if equations (47) define, for z(0) = 0,
a bounded map u 7→ y from L2([0,∞);U) to L2([0,∞);Y ). Considering this our
second main result can be stated as:
Theorem 4.1.4. The system described by (4.1.1)-(4.1.8) is input-output stable.

The remaining part of this chapter is organized as follows. In Section 4.2 we
prove Theorem 4.1.1. Finally, Section 4.3 is devoted to the proof of our second main
result, asserting the input-output stability of the considered system.
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4.2 Proof of Theorem 4.1.1
For t ≥ 0, we set qa(t) := q(t, a) and qb(t) := q(t, b). Since (4.1.5) implies that q is a
linear function of x on I, for every t ≥ 0 and x ∈ I,

ḣS(t) = −qb(t)− qa(t)
b− a

, (4.2.1)

q(t, x) = qa(t)
(
x− b
a− b

)
+ qb(t)

(
x− a
b− a

)
, (4.2.2)

∂q

∂x
(t, x) = qb(t)− qa(t)

b− a
. (4.2.3)

We differentiate (4.1.6) with respect to x and use (4.1.3)-(4.1.5) to arrive at

∂2p
∂x2 (t, x) = ḧS(t) (x ∈ I),
p (t, a+) = pa(t), p (t, b−) = pb(t),

(4.2.4)

where
pa(t) := h

(
t, a−

)
− µ∂q

∂x

(
t, a−

)
− hS(t)− µḣS(t), (4.2.5)

pb(t) := h
(
t, b+

)
− µ∂q

∂x

(
t, b+

)
− hS(t)− µḣS(t). (4.2.6)

Moreover, the first equation in (4.2.4) implies that, for every t ≥ 0, p(t, x) is a second
order polynomial in x. Hence, by recalling that for all polynomial g(x) of degree 2,
defined on a real interval [c, d], the following formulas follow:

ˆ d

c

g(x)dx = g(c)(d− c) + g′(c)(d− c)2

3 + g′(d)(d− c)2

6 ,ˆ d

c

g(x)dx = g(d)(d− c)− g′(c)(d− c)2

6 − g′(d)(d− c)2

3 ,

we conclude that
ˆ b

a

p(t, x) dx = p(t, a)l − q̇a(t)
l2

3 − q̇b(t)
l2

6

= p(t, b)l + q̇a(t)
l2

6 + q̇b(t)
l2

3 ,

where we set l := b− a. Combining this with (4.1.7) and (4.2.1) we deduce that[
1 + l3

3

]
q̇a(t)−

[
1− l3

6

]
q̇b(t) = p(t, a)l2 + lu(t),

−
[
1− l3

6

]
q̇a(t) +

[
1 + l3

3

]
q̇b(t) = −p(t, b)l2 − lu(t).
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Inverting the above linear system, we get[
q̇a(t)
q̇b(t)

]
= M

[
p(t, a)
−p(t, b)

]
+ 1
l
M

[
u(t)
−u(t)

]
, (4.2.7)

where M is the matrix given by

M := 1
l(1 + l3

12)

 1 + l3

3 1− l3

6

1− l3

6 1 + l3

3

 . (4.2.8)

Considering equation (4.1.3)-(4.1.4) together with (4.2.3) we deduce that

p(t, a) = h(t, a−)− µ∂q
∂x

(t, a−)− hS(t) + µ
qb − qa
b− a

, (4.2.9)

and
p(t, b) = h(t, b+)− µ∂q

∂x
(t, b+)− hS(t) + µ

qb − qa
b− a

. (4.2.10)

Therefore, by using the approach developed above, the system (4.1.1)-(4.1.7)
writes in the equivalent form1

ḣS(t) = −qb(t)− qa(t)
b− a

(t ≥ 0), (4.2.11)

∂h

∂t
+ ∂q

∂x
= 0 (x ∈ E), (4.2.12)

∂q

∂t
+ ∂h

∂x
− µ∂

2q

∂x2 = 0 (x ∈ E), (4.2.13)

[
q̇a(t)
q̇b(t)

]
= M

b− a

[
u(t)
−u(t)

]
+M

 h(t, a−)− µ∂q
∂x

(t, a−)− hS(t) + µ qb−qa
b−a

−h(t, b+) + µ
∂q

∂x
(t, b+) + hS(t)− µ qb−qa

b−a

 .
(4.2.14)

Let X be defined by (4.1.9), set

W := C×H1(E)×H2(E)× C× C,

and denote by z :=
[
hS h q qa qb

]T
a generic element of X. Consider the oper-

ator A : D(A)→ X defined by

D(A) := {z ∈ W | q(t, a) = qa(t), q(t, b) = qb(t)} , (4.2.15)
1where by considering the equations (4.2.7), (4.2.9) and (4.2.10) we have reformulated the equa-

tions (4.1.3)-(4.1.4) and (4.1.7).
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Az :=


− q(b)−q(a)

b−a
− dq
dx

−dh
dx

+ µ d
2q
dx2

R1z
R2z

 , (4.2.16)

where [
R1z
R2z

]
:= M

 h(a−)− µdq
dx

(a−)− hS + µ qb−qa
b−a

−h(b+)− µdq
dx

(b+)− hS + µ qb−qa
b−a

 .
In the situation when E is supposed to be bounded (which means that the fluid is

contained in a container), it has been proved in [57, Section 6] that the corresponding
version of A defined in (4.2.15)-(4.2.16) generates an analytic semigroup. This proof
can be transposed with obvious modifications to our case so that the operator A
generates an analytic semigroup on X. We set

Bu := [0, 0, 0, lu

2
(
1 + l3

12

) ,− lu

2
(
1 + l3

12

) ]T and Cz := hS, (4.2.17)

and we observe that B ∈ L(C, X) and C ∈ L(X,C). Hence the proof of Theorem
4.1.1 is completed.

4.3 Proof of Theorem 4.1.4
It has been shown in [57] that in the case of a bounded container, the linearized
system describing the motion of the floating body is exponentially stable. It is not
difficult to check that in our case we have that 0 lies in the spectrum of A, thus
the system is no longer exponentially stable. However, we have the following result
where C0 denotes the open right-half plane

C0 := {s ∈ C : < s > 0}. (4.3.1)

Proposition 4.3.1. The resolvent set ρ(A) contains C0.

Proof. Let λ ∈ C0 and F = [f1, f2, f3, f4, f5]T in X. The equation (λI−A)z = F for
z ∈ D(A) reads

λhS + q(b)− q(a)
b− a

= f1, (4.3.2)

λh(x) + dq

∂x
= f2(x) (x ∈ E), (4.3.3)

λq(x) + dh

dx
− µd

2q

dx2 = f3(x) (x ∈ E), (4.3.4)
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M

 h(a−)− µdq
dx

(a−)− hS + µ q(b)−q(a)
b−a

−h(b+) + µ
q

dx
(b+) + hS − µ q(b)−q(a)

b−a

 =
[
f4
f5

]
− λ

[
qa
qb

]
, (4.3.5)

lim
x→−∞

q(x) = lim
x→∞

q(x) = 0, (4.3.6)

q(a) = qa, q(b) = qb. (4.3.7)

From (4.3.5) and (4.2.14), it follows that

µ
q(b)− q(a)

l
+h

(
a−
)
−hS−µ

dq
dx

(
a−
)

=
[
1 + l3

3

]
(λqa,0 − f4)

l2
+
[
1− l3

6

]
(f5 − λqb,0)

l2
,

(4.3.8)

−µq(b)− q(a)
l

−h
(
b+
)
+hS+µdq

dx
(
b+
)

=
[
1− l3

6

]
(f4 − λqa,0)

l2
+
[
1 + l3

3

]
(λqb,0 − f5)

l2
.

(4.3.9)
We next transform (4.3.2)-(4.3.7) into a boundary value problem for q by eliminating
h, hS, qa, qb from the above mentioned equations. First, from (4.3.3) and (4.3.4), we
deduce

λq −
(
µ+ 1

λ

) d2q

dx2 = φ1 (x ∈ E), (4.3.10)

where
φ1 := f3 −

1
λ

df2

dx ∈ L
2(E).

Next, using (4.3.2), (4.3.3) and (4.3.7) in (4.3.8) and (4.3.9) it follows that
(
µ+ 1

λ

) dq
dx

(
a−
)

=
(
µ+ 1

λ
+ λ

l

)
q(b)− q(a)

l
− λl

6 (2q(a) + q(b)) + φ2 (4.3.11)

(
µ+ 1

λ

) dq
dx

(
b+
)

=
(
µ+ 1

λ
+ λ

l

)
q(b)− q(a)

l
+ λl

6 (q(a) + 2q(b)) + φ3 (4.3.12)

with

φ2 :=
(
f2 (a−)
λ

− f1

λ

)
+
[
1 + l3

3

]
f4

l2
−
[
1− l3

6

]
f5

l2
,

φ3 :=
(
f2 (b+)
λ

− f1

λ

)
+
[
1− l3

6

]
f4

l2
−
[
1 + l3

3

]
f5

l2
.

We first prove the existence of a weak solution to (4.3.10)-(4.3.12) with the con-
dition (4.3.6) at infinity. We thus set V := H1(E). The weak formulation of (4.3.10)-
(4.3.12) with the condition (4.3.6) is to find q ∈ V such that

Bλ(q, ψ) =
ˆ
E
φ1ψdx+ φ2ψ(a)− φ3ψ(b) (ψ ∈ V ), (4.3.13)
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where

Bλ(q, ψ) :=
ˆ
E

[
λqψ +

(
µ+ 1

λ

) dq
dx

dψ
dx

]
dx

−
[(

1
λ

+ µ+ λ

l

)
q(b)− q(a)

l
− λl

6 [2q(a) + q(b)]
]
ψ(a)

+
[(

1
λ

+ µ+ λ

l

)
q(b)− q(a)

l
+ λl

6 [q(a) + 2q(b)]
]
ψ(b). (4.3.14)

For q, ψ ∈ V ,

Bλ(q, ψ) =
ˆ
E

[
λqψ+

(
µ+ 1

λ

) dq
dx

dψ
dx

]
dx

+
(

1
λ

+ µ+ λ

l

)
(q(b)− q(a)) (ψ(b)− ψ(a)

l
+

λl

6
[
q(a)ψ(a) + q(b)ψ(b) + (q(b) + q(a)) (ψ(b) + ψ(a))

]
. (4.3.15)

From the above formula, it follows that for any λ ∈ C0 we can consider positive
constants C = C(λ), α = min{Re λ, Re 1/λ} such that

|Bλ(q, ψ)| 6 C‖q ‖V ‖ψ ‖V ,ReBλ(q, q) > α‖ q‖2
V (4.3.16)

where q, ψ ∈ V , thus Bλ is a bounded and coercive form on V . Moreover, the
right hand side of (4.3.13) clearly defines a bounded linear functional on V . Thus,
the conclusion follows by the complex version of the Lax-Milgram Lemma (see, for
instance, Lemma 5.4 on [1]).

4.3.1 Transfer function
From Proposition 4.3.1 it follows that the transfer function

G(s) = C(sI − A)−1B,

of the system (4.1.1)-(4.1.8) is defined for every s ∈ C0. In this subsection we
compute this transfer function and we show that it lies in the Hardy space H∞(C0)
and thus obtain the main ingredient of the proof of Theorem 4.1.4. In other terms,
we compute the Laplace transform of the solution of (4.1.1)-(4.1.8) with zero initial
data. More precisely, we have:

Proposition 4.3.2. The transfer function of the system (4.1.1)-(4.1.8) is given by

G(s) := 1(
1 + l3

12

)
s2 + l2

2 s
√

1 + µs+ µls+ l
(s ∈ C0). (4.3.17)
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Proof. We first express h (t, a−)− µ ∂q
∂x

(t, a−) in terms of hS and ḣS. To this end, for
x ∈ I, we first note that

q(t, b)− q(t, a) = −lḣS(t). (4.3.18)

Moreover, using Remark 4.1.3 we obtain

h(t, a−) = h(t, b+), −q(t, a−) = q(t, b+), (4.3.19)

thus
q(t, a) = l

2 ḣS, q(t, b) = − l2 ḣS. (4.3.20)

From equations (4.2.11)-(4.2.12) it follows that for x ∈ (−∞, a] we have

∂2q

∂t2
− ∂2q

∂x2 − µ
∂3q

∂t∂x2 = 0,

q(t, x)→ 0 as x→ −∞, q(t, a) = b− a
2 ḣS(t),

q(0, x) = ∂q
∂t

(0, x) = 0.

(4.3.21)

For f ∈ L1[0,∞], we denote by f̂ the Laplace transform of f . Applying the Laplace
transform to both sides of (4.3.21), we obtain

s2q̂ − (1 + sµ) ∂2q̂
∂x2 = 0

q̂(s, x)→ 0 as x→ −∞, q̂(s, a) = b−a
2
̂̇
hS, Re(s) > 0.

(4.3.22)

Hence we can conclude that

q̂(s, x) = b− a
2 e

−sa√
1+sµ e

sx√
1+sµ ̂̇hS(s) (4.3.23)

and
ĥ
(
s, a−

)
− µ∂q̂

∂x

(
s, a−

)
= − l2

(1
s

+ µ
)

s√
1 + sµ

̂̇
hS(s)

= − l2(
√

1 + µs)̂̇hS(s).
(4.3.24)

In a similar way, we obtain

ĥ
(
s, b+

)
− µ∂q̂

∂x

(
s, b+

)
= − l2

(√
1 + µs

) ̂̇
hS(s). (4.3.25)

Moreover, applying the Laplace transform to (4.3.20) we obtain

q̂(s, a) = l

2sĥS, q̂(s, b) = − l2sĥS. (4.3.26)
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Finally, applying Laplace transform to (4.2.14), we obtain

[
sq̂a(s)
sq̂b(s)

]
= M

b− a

[
û(s)
−û(s)

]
+M

 ĥ(s, a−)− µ∂q̂
∂x

(s, a−)− ĥS(s) + µ q̂b−q̂a
b−a

−ĥ(s, b+) + µ
∂q̂

∂x
(s, b+) + ĥS(s)− µ q̂b−q̂a

b−a

 .
(4.3.27)

Hence, using (4.3.24) and (4.3.26) in (4.3.27), we conclude(
1 + l3

12

)
s2ĥS = l

[
− ls
√

1 + µs

2 − 1− µs
]
ĥS + û.

The above relation implies that

ĥS(s) = G(s)û(s),

where G is given by (4.3.17), which ends the proof.

Lemma 4.3.3. Let F be the function defined by

F (s) =
(

1 + l3

12

)
s2 + l2

2 s
√

1 + µs+ µls+ l, (4.3.28)

and let C0 be the open right-half plane, as defined in (4.3.1). Then there exists a
neighborhood O of C0 such that F is holomorphic on O. Moreover, F does not
vanish on C0.

Proof. The fact that F is holomorphic on a neighborhood of C0 follows from the
corresponding property of each term is the right-hand side of (4.3.28) (including the
one involving the square-root, for which we take the principal determination).

Let s ∈ C0.We set z :=
√

1 + µs. Since z2 = 1 + µs we have

Re(z2 − 1) ≥ 0. (4.3.29)

In particular Re(z2) > 0, which implies that arg(z2) ∈ (−π/2, π/2). Consequently,
we have

arg(z) ∈ (−π/4, π/4). (4.3.30)
As s = z2−1

µ
, F (s) = 0 is equivalent to(

1 + l3

12

)(
z2 − 1
µ

)2

+ l2

2

(
z2 − 1
µ

)
z + lz2 = 0. (4.3.31)

Multiplying (4.3.31) by µ2

1+ l3
12
, we obtain

(z2 − 1) + 2 l2µ

4
(
1 + l3

12

)(z2 − 1)z + l4µ2z2

16
(
1 + l3

12

)2 + lµ2z2

16
(
1 + l3

12

)2

(
16 + l3

3

)
= 0,
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and then z2 − 1 + l2µz

4
(
1 + l3

12

)
2

+ lµ2z2

16
(
1 + l3

12

)2

(
16 + l3

3

)
= 0. (4.3.32)

Hence equation (4.3.31) is equivalent to P (z)Q(z) = 0, where

P (z) := z2 − 1 + l2µz

4
(
1 + l3

12

) + iz
µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 (4.3.33)

Q(z) := z2 − 1 + l2µz

4
(
1 + l3

12

) − iz µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 . (4.3.34)

Let us prove that P (z) 6= 0 and Q(z) 6= 0. To this aim we write z = x + iy with
x > 0 (due to (4.3.29) and (4.3.30)) and y ∈ R. We note that:

Re(P (z)) = µRe(s) + l2µx

4
(
1 + l3

12

) − y µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 ,

Im(P (z)) = y
(

2x+ l2µ

4
(
1 + l3

12

))+ x
µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 ,

Re(Q(z)) = µRe(s) + l2µx

4
(
1 + l3

12

) + y
µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 ,

Im(Q(z)) = y
(

2x+ l2µ

4
(
1 + l3

12

))− x µ
√
l

4
(
1 + l3

12

)
√

16 + l3

3 .

If Im(P (z)) = 0, since l, µ, x are positive, then y < 0. But since Re(z2 − 1) ≥ 0,
this implies that Re(P (z)) > 0. Therefore P (z) 6= 0.

If Re(Q(z)) = 0, since Re(z2 − 1) ≥ 0 and x > 0 are positive we conclude that
y < 0. This implies that Im(Q(z)) < 0. Therefore Q(z) 6= 0.

Thus F (s) 6= 0 on C0, which concludes the proof of the lemma.

4.3.2 Proof of Theorem 4.1.4
By Lemma 4.3.3 we know that the function F defined in (4.3.28) is not vanishing on
C0. Moreover, since

lim
|s|→∞

|F (s)| = +∞,

we have that the map s 7→ |F (s)| is bounded from below on C0. We conclude that
the transfer function G defined in (4.3.17) is such that

sup
s∈C0

|G(s)| <∞.
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By the Paley-Wiener theorem (see, for instance, [75, Chapter 19.2]), this implies that
(4.1.1)-(4.1.8) is input-output stable, so that the proof of the theorem is complete.

4.4 Further work
Another issues that we do not mention in this work, but that are interesting for our
future research are the following:

• We will study the sectorial properties of the resolvent of the operator A de-
fined in eq. (4.2.16), in order to establish results related to the existence and
uniqueness of strong solutions and strong stability of the system.

• We will consider as output the vertical velocity, instead of the height, and
we will study if it would be a well-posed system in some suitable state space.
Moreover, we will explore the stability properties of this new system and its
applications to energy wave extractors.
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This work is in collaboration with Denis Matignon and Marius Tucsnak.
It is based on [81].

5.1 Introduction
In this work we consider the return to the equilibrium problem of a model describing
the vertical motion of a solid floating at the free surface of a viscous fluid with
finite depth and flat bottom. This problem concerns a particular configuration of a
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system of coupling the free surface motion of a fluid and a partially immersed floating
structure.

More precisely, it consists of situation where a partially submerged solid body is
released at zero velocity from a non-equilibrium position.

The return to equilibrium problem (also called free decay test) consists in describ-
ing the large time behavior of the oscillation amplitude of the solid. The interest of
this problem is that it can easily be used numerically or experimentally, and is useful
to determine important characteristics of floating objects, from an engineering point
of view.

For inviscid fluids filling an unbounded domain, the motion of the solid is often
described in the literature by a linear integro-differential equation, known as the
Cummins equation, which has been obtained empirically by [16]. In his paper the
Cummins equation for vertical displacements of a floating structure reads as

(M + a∞) ḧS(t) = c hS(t) +K ∗ ḣS(t), (5.1.1)

where hS(t) denotes the displacement of the structure from the equilibrium position,
M denotes the mass of the structure, a∞ denotes the added mass at infinite frequency,
c is the hydrostatic stiffness, and K(t) denotes the radiation force impulse response
function. An equation with similar characteristics but including non-linear effects
has been developed in [46].

As far as we know, the only work using a viscous model for the fluid is [57],
where an equation of Cummins type is obtained, even in cases in which the fluid
could be bounded by vertical walls; here, we are interested in describing the model
of Cummins type in an unbounded viscous domain. More precisely, we study the
correct version of this model for vertical displacements of a floating structure, which
now reads:(

1 + (b− a)3

12

)
ḧS(t) = −(b− a)2

2 F ∗ ḣS(t)

− µ(b− a) ḣS(t)− (b− a)hS(t), (5.1.2)

where µ is the viscosity coefficient of the fluid, (b − a) is the width of the interval
I = (a, b) obtained by projecting the floating object (supposed symmetric around
the axis x = 1

2(a + b)) on the flat horizontal bottom, and E = R \ [a, b] denotes the
viscous fluid domain. Moreover, F is the causal distribution with Laplace transform
F̂ (s) =

√
1 + µ s.

The novelties brought in by this work are:

• the correct form of an equation of Cummins type for an unbounded viscous
domain,

• the proof of stability of the system, and its asymptotic behaviour at infinity,
using a diffusive representation,
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• an explicit form of the solutions of the system in the time domain, and the
large time behaviour of these, recovering another stability proof,

• numerical evidence of the transition between the differents decay rates of the
system as a function of the viscosity coefficient µ of the fluid.

This work is a companion to [80], where this system with force as input, and
distance from the solid to the sea bottom as output was first recast as a linear
well-posed system and second proved to be input-to-output stable.

The outline of the chapter is as follows: in Section 5.2, the physical model and
its linearization around a steady state are recalled; in Section 5.3, an equivalent dif-
fusive representation of the system is provided, which helps prove stability and even
compute refined asymptotics in some cases; in Section 5.4, the analytical solution
of the system is provided thanks to Mittag-Leffler special functions, the asymptotic
behaviour are provided in full generality, helping to recover the previous stability
property; finally a conclusion is drawn and future works are investigated in Section
5.5.

5.2 Recalls on the linearized physical model
In this Section the floating solid is supposed, without loss of generality, to have mass
M = 1 and it is constrained to move only in the vertical direction. Given t > 0,
we denote by h(t, x) the height of the free surface of the fluid, by q(t, x) the flux of
viscous fluid in the direction x and by hS(t) the distance from the bottom of the
rigid body to the bottom of the fluid, supposed to be horizontal, as described in Fig.
5.1.

a b

hS(t)

h(x, t) h(t, x)

x

M

Figure 5.1 – Graphical sketch of the model. The function h(t, x) denote the height of the free
surface of the fluid and hS(t) is the function which describes the distance from the bottom of the
rigid body to the bottom of the fluid.
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We consider the model introduced in [57], with the particularity that the fluid is
supposed to be infinite in the horizontal direction, denoting I := (a, b) the projection
on the fluid bottom of the solid domain and setting E := R \ [a, b]. Then, following
[57], we have

h = hS + 1
b− a

,

and for simplicity, we assume that

h = 1, g = 1, p = 1
b− a

.

Hence, by linearizing the nonlinear fluid-structure model introduced by Maity et
al. in [57], around the trajectory (in the equilibrium positions described above)
(hS, h, q, p) = (hS, h, 0, p) we obtain the equations

∂h

∂t
+ ∂q

∂x
= 0, (x ∈ E), (5.2.1)

∂q

∂t
+ ∂h

∂x
− µ∂

2q

∂x2 = 0, (x ∈ E), (5.2.2)

h(t, a−)− µ∂q
∂x

(t, a−) = p(t, a+) + hS(t)− µ∂q
∂x

(t, a+), (5.2.3)

h(t, b+)− µ∂q
∂x

(t, b+) = p(t, b−) + hS(t)− µ∂q
∂x

(t, b−), (5.2.4)

ḣS(t) + ∂q

∂x
= 0 (x ∈ I), (5.2.5)

∂q

∂t
+ ∂p

∂x
= 0 (x ∈ I), (5.2.6)

ḧS(t) =
ˆ b

a

p(t, x)dx (t > 0), (5.2.7)

where p is a Lagrange multiplier, similar to a pressure term (which is obtained in
the Hamiltonian modelling process),

Remark 5.2.1. In particular, for initial data satisfying

q0(x) = −q0(a+ b− x), h0(x) = h0(a+ b− x) (x ∈ E), (5.2.8)

we have
q(t, a) = −q(t, b), h(t, a) = h(t, b) (t > 0).
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By rewriting the pressure term p in system (5.2.1)-(5.2.7) as p = p1 + p2, where
p1 and p2 solve

∂2p1

∂x2 = ḧS, p1(t, a) = p1(t, b) = 0, (5.2.9)

∂2p2

∂x2 = 0, p2(t, a) = pa(t), p2(t, b) = pb(t), (5.2.10)

respectively, with

pa(t) := h
(
t, a−

)
− µ∂q

∂x

(
t, a−

)
− hS(t)− µḣS(t), (5.2.11)

pb(t) := h
(
t, b+

)
− µ∂q

∂x

(
t, b+

)
− hS(t)− µḣS(t), (5.2.12)

then, by solving equations (5.2.9) and (5.2.10), it follows that

p1(t, x) = ḧS

(
x2

2 −
b+ a

2 x+ ab

2

)
, (5.2.13)

and
p2(t, x) = pa(t) + (pb(t)− pa(t))

x− a
l

, (5.2.14)

where l := b− a. Substituting these values of p1 and p2 in (5.2.7), we obtain(
1 + l3

12

)
ḧS(t) = pa(t)l + (pb(t)− pa(t))

l

2

= l

2 (pa(t) + pb(t)) .

Considering the values of pa and pb from (5.2.11) and (5.2.12) respectively, the equa-
tion above can be rewritten as(

1 + l3

12

)
ḧS(t) = −l

(
hS(t) + µḣS(t)

)
+ l

2

(
h
(
t, a−

)
− µ∂q

∂x

(
t, a−

)
+ h

(
t, b+

)
− µ∂q

∂x

(
t, b+

))
. (5.2.15)

We first express h (t, a−)− µ ∂q
∂x

(t, a−) in terms of hS and ḣS. To this end, for x ∈ I,
we first note that

q(t, b)− q(t, a) = −lḣS(t). (5.2.16)

Moreover, using Remark 5.2.1 we obtain

h(t, a−) = h(t, b+), −q(t, a−) = q(t, b+), (5.2.17)
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thus
q(t, a) = l

2 ḣS, q(t, b) = − l2 ḣS. (5.2.18)

For t ≥ 0, we set qa(t) := q(t, a) and qb(t) := q(t, b). Since (5.2.5) implies that q is a
linear function of x on I, for every t ≥ 0 and x ∈ I,

ḣS(t) = −qb(t)− qa(t)
b− a

(t ≥ 0). (5.2.19)

From equations (5.2.19) and (5.2.1) it follows that for x ∈ (−∞, a] we have
∂2q

∂t2
− ∂2q

∂x2 − µ
∂3q

∂t∂x2 = 0,

q(t, x)→ 0 as x→ −∞, q(t, a) = b− a
2 ḣS(t),

q(0, x) = ∂q
∂t

(0, x) = 0.

(5.2.20)

For f ∈ L1[0,∞], let f̂ the Laplace transform of f . Applying the Laplace transform
to both sides of (5.2.20), we obtain

s2q̂ − (1 + sµ)∂
2q̂

∂x2 = 0,

q̂(s, x)→ 0 as x→ −∞, q̂(s, a) = b−a
2 ĥS, <(s) > 0.

(5.2.21)

Hence we can conclude that

q̂(s, x) = b− a
2 e

−sa√
1+sµ e

sx√
1+sµ ĥS(s), (5.2.22)

and
ĥ
(
s, a−

)
− µ∂q̂

∂x

(
s, a−

)
= − l2

(1
s

+ µ
)

s√
1 + sµ

̂̇
hS(s)

= − l2(
√

1 + µs)̂̇hS(s).
(5.2.23)

In a similar way, we obtain

ĥ
(
s, b+

)
− µ∂q̂

∂x

(
s, b+

)
= − l2

(√
1 + µs

) ̂̇
hS(s). (5.2.24)

By considering Remark 5.2.1 and the inverse of Laplace transform of equations
(5.2.23) and (5.2.24), we obtain the following result:
Proposition 5.2.2. The vertical movement of a floating object, in an unbounded
viscous fluid that is initially at rest, is described by the following integro-differential
equation(

1 + l3

12

)
ḧS(t) = − l

2

2

ˆ t

0
F (σ)ḣS(t− σ)dσ − l

(
hS(t) + µḣS(t)

)
. (5.2.25)

with initial conditions
hS(0) = h0, ḣS(0) = 0,

and where F is the causal distribution, such that F̂ (s) =
√

1 + µs in <(s) > −1/µ.
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5.3 Diffusive representation, stability proof and
asymptotic behaviour

The main idea of this section is to get rid of the F term. First since its Laplace
transform is not bounded in any right-half plane, it does not correspond to a causal
function, but rather a causal distribution: indeed, when µ → ∞, the term

√
s

appears, which is related to the fractional derivative of order 1/2, see e.g. [62]
and references therein. On the contrary, 1/

√
s is bounded and corresponds to the

fractional integration of order 1/2, this is the reason why we shall be interested rather
in

Ĝ(s) := F̂ (s)− 1
s

= µ

1 +
√

1 + µs
, for <(s) > −1/µ . (5.3.1)

This extra transfer function is of so-called diffusive type, and enjoys nice properties,
see e.g. [63]: it is a completely monotone function, i.e. G(t) :=

´∞
0 g(ξ) exp(−ξ t) dξ

for some appropriate positive and real-valued weight function g to be computed, or
equivalently Ĝ(s) :=

´∞
0 g(ξ) (s + ξ)−1 dξ, for <(s) > 0. Following e.g. [61], we can

compute g explicitly as:

g(ξ) := lim
ε→0+

1
2iπ (Ĝ(−ξ − iε)− (Ĝ(−ξ + iε)) , (5.3.2)

= 1
π

√
µξ − 1
µξ

, for ξ > 1/µ . (5.3.3)

This weight is indeed real valued, positive, and fulfills the well-posedness condition
ˆ ∞
µ−1

g(ξ)
1 + ξ

dξ <∞ (5.3.4)

that is required for the functional setting to make sense.

5.3.1 Extended diffusive representation
For the G transfer function above with input v := ḣ and output y := G∗v, a diffusive
realization is of the form:

∂tφ(t, ξ) = −ξ φ(t, ξ) + v(t), φ(0, ξ) = 0 (5.3.5)

y(t) =
ˆ ∞
µ−1

g(ξ)φ(t, ξ) dξ . (5.3.6)

The formal proof is straightforward and relies on the fact that ∂t(e−ξ t∗v) = −ξ (e−ξ t∗
v) + v(t).
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Now for the F transfer function with input v and new output z := F ∗ v, since
F̂ (s) = 1 + s Ĝ(s), the following extended diffusive realisation can be proposed:

∂tϕ(t, ξ) = −ξ ϕ(t, ξ) + v(t), ϕ(0, ξ) = 0 (5.3.7)

z(t) =
ˆ ∞
µ−1

g(ξ) ∂tϕ(t, ξ) dξ + 1 v(t) . (5.3.8)

Indeed, defining as energy Eϕ(t) := 1
2

´∞
µ−1 ξg(ξ) |ϕ(t, ξ)|2 dξ, one can easily compute

the following balance:

d

dt
Eϕ(t) = +v(t) z(t)− 1 (v(t))2 −

ˆ ∞
µ−1

g(ξ) |∂tϕ(t, ξ)|2 dξ . (5.3.9)

This latter energy balance will play a key role when analyzing the stability of the
coupled system. Note that the whole rigourous functional analytic setting needed to
address this problem is fully detailed in [63], both for standard and extended diffusive
realizations.

5.3.2 Energy balance and new stability proof
Consider the original system (5.2.15), set ḣ := v and z := F ∗ ḣ, it can then be
viewed as a coupled system

(
1 + l3

12

)
ḧS + z(t) + lḣS + lµhS = 0

v(t) = ḣS(t)
∂tϕ(t, ξ) = −ξϕ(t, ξ) + v(t); ϕ(0, ξ) = 0

z(t) =
ˆ ∞
µ−1

g(ξ)∂tϕ(t, ξ) dξ + v(t).

(5.3.10)

The mechanical energy of the oscillator is defined by

E(t) := 1
2

(
1 + l3

12

)
(ḣS)2(t) + 1

2 lµ (hS)2(t) .

Its energy balance reads

d

dt
E(t) = −l(ḣS)2(t)− ḣS(t) (F ∗ ḣS)(t) ;

while the first term is indeed negative, the second has no definite sign; however it
reads −v(t) z(t) and compensates exactly with v(t) z(t) in (5.3.9).

This is the reason why we shall define a global energy functional E(t) := E(t) +
Eϕ(t) for the augmented system with state variables (hS, ω, ϕ) in the state space
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R×R× H̃, where H̃ =
{
ϕ ∈ L2

loc (R+, dg) ,
´∞

0 ξ|ϕ|2dg(ξ) <∞
}
. Indeed, the global

energy balance reads, at least formally:
d

dt
E(t) = −(1 + l)(ḣS)2(t)−

ˆ ∞
µ−1

g(ξ) |∂tϕ(t, ξ)|2 dξ ≤ 0 .

This decay of the global energy is the starting point to the following asymptotic
stability result.

Proposition 5.3.1. For all (hS,0, ω0) ∈ C2, the solution of the coupled system
(5.3.10), with initial condition (hS,0, ω0, 0), satisfies

(hS, ḣS, ϕ)(t)→t→∞ 0 in C2 × H̃.

Proof. Indeed, since the weight g(ξ) is positive and satisfies the well-posedness con-
dition (5.3.4), Theorem 3.7 in [63] applies directly to our problem.

5.3.3 Asymptotic behaviour (special case)
Thanks to the diffusive representation of F̂ , involving a branch cut on (−∞,− 1

µ
] on

R−, following e.g. [61], it is known thanks to the Watson lemma that the branchpoint
at s = − 1

µ
with local behaviour

√
µ

π

√
ξ − 1

µ
translates into

√
µ

π
Γ(3

2) e−
t
µ t−3/2 as t →

+∞ by inverse Laplace transform.
But as usual, apart from the branchcut, other singularities of the transfer function

like poles sk can appear, giving rise to rk esk t terms in the time domain. At this stage
however, we are not in a position to state whether or not <(sk) ≤ − 1

µ
, so our result

is only a partial one.

Proposition 5.3.2. If all the poles sk of the transfer function lie in the left halfplane
<(s) < − 1

µ
, then the asymptotic behaviour of the solution hS of the system (5.3.10)

reads
hS(t) ∼ K e−

t
µ t−3/2 , as t→ +∞ .

Hence, there is a need to inspect the location of the poles more thoroughly in
order to analyze the asymptotic behaviour of the solution in the general case, i.e.
whatever the location of those poles.

5.4 Analytical solution and asymptotic behaviour
For simplicity in this subsection, we use the following notations: l = b−a, A = 1+ l3

12 ,
B = l2

2 and C = lµ; all are positive constants. In Section 5.4.1, the case of the inviscid
fluid µ = 0 is recalled, while in Section 5.4.2, the general case of the viscous fluid
µ > 0 is examined. Finally in Section 5.4.3, numerical evidence is provided of the
possible transition between different asymptotic regimes, as the viscosity µ increases.



Chapter 5 118

5.4.1 Case µ = 0
If we consider µ = 0 in (5.2.15), the model reduces to an ODE:{

AḧS +BḣS + lhS = 0,
hS(0) = h0, ḣS(0) = ḣ0.

(5.4.1)

This model has the form of a simple mechanical oscillator, free of external forces,
which we shall call free oscillation.

Applying Laplace transform to the equation (5.4.1), and after simplifications, we
get [

As2 +Bs+ l
]
ĥS(s) = [As+B] h0 + A ḣ0. (5.4.2)

By calculating the inverse of the Laplace transform of the rational function ap-
pearing implicitely in (5.4.2), we obtain that the solution for the model (5.4.1) is
given by

hS(t) = (C1 cos(ωdt) + C2 sin(ωdt)) e−δt, (5.4.3)

when B2 < 4Al, where

δ = B

2A, ω0 =
√
l

A
, ωd =

√
ω2

0 − δ2 =
√

4Al −B2

2A , (5.4.4)

are the damping coefficient, the undamped natural angular frequency and the damped
angular frequency, respectively. The constants C1 and C2, are given by

C1 = h0, C2 = ḣ0 + h0δ

ωd
= h0B + 2ḣ0A√

4Al −B2
. (5.4.5)

Remark 5.4.1. If (b − a) > 3
√

6, the free oscillation is overdamped, that is, if
δ > ω0, then ωd is imaginary. In this situation, B2 > 4Al, the general solution for
the model (5.4.1) is a linear combination of two real, decaying exponential functions,
with explicit form given by

hS(t) = (C1 cosh(ωdt) + C2 sinh(ωdt)) e−δt, (5.4.6)

where C2 = h0B+2ḣ0A√
|4Al−B2|

and ωd =
√
|Al−B2|

2A .

5.4.2 Case µ > 0
Considering µ > 0 and applying Laplace transform to the equation (5.2.15), setting
B := √µB, and ε := 1

µ
, we obtain after simplifications

[
As2 +B s

√
s+ ε+ Cs+ l

]
ĥS(s) =

[
As+B

√
s+ ε+ C

]
h0 + A ḣ0, (5.4.7)
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Remark 5.4.2. In the case ε = 0, which corresponds to an infinitely viscous fluid,
the above equation is a Fractional Differential Equation (FDE) of order 1/2.

When ε > 0, this is a Generalized Fractional Differential Equation (GFDE),
originally studied in [60]; to tackle this, we proceed in 4 steps:

1. perform a change of variables in order to work with polynomials,

2. decompose the rational functions of interest into simple elements,

3. apply the inverse Laplace transform, using Mittag-Leffler special functions of
fractional calculus,

4. make use of the adapted algebraic stability criterion to get the asymptotic
behaviour of the solution, and conclude to stability.

Change of variables

Let us denote σ :=
√
s+ ε, then the pseudo polynomials appearing in (5.4.7) can be

equivalently transformed thanks to the algebraic relation s = −ε+ σ2.

n0(s) := As+B
√
s+ ε+ C

= Aσ2 +Bσ + (C − εA) := N0(σ) , (5.4.8)

d(s) := As2 +B s
√
s+ ε+ Cs+ l ,

= Aσ4 +Bσ3 + (C − 2εA)σ2 − εB σ + ε2A ,

:= PT (σ) . (5.4.9)

The viscous polynomial PT is real valued, of degree 4, and has 4 complex roots,
called λi, which can be found analytically in Appendix B, PT (σ) = A

∏4
i=1(σ − λi);

alternatively, they can be computed numerically as in Section 5.4.3 to study their
parametric depence w.r.t. µ.

Remark 5.4.3. One has to be careful with this change of variables. Indeed, as
is usual with multivalued complex functions, a cut has to be performed first on the
branch cut (−∞,−ε], then ∀s ∈ C\(−∞,−ε], ∃!σ ∈ C+

0 , defined by σ :=
√
s+ ε,

that is with positive real part. But care must be taken that a complex number σ with
negative real part has no counterpart s in the Laplace plane C\(−∞,−ε] given by
this relation.
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Decomposition into simple elements

From (5.4.7), we get

ĥS(s) = n0(s)
d(s) h0 + A

d(s) ḣ0 ,

= N0(σ)
PT (σ) h0 + A

PT (σ) ḣ0 ,

=
( 4∑
i=1

ri
σ − λi

)
h0 +

( 4∑
i=1

r̃i
σ − λi

)
ḣ0 .

Each ri and r̃i are to the residues of the rational function of interest at the pole λi:
they correspond either to the response to initial displacement h0, or to the response
to initial velocity ḣ0. Their algebraic expression can be found in Appendix C.

Time-domain solution

The key issue here is to identify L−1
(

1√
s+ ε− λ

)
in some right-half plane to be

determined later, for ε ≥ 0 and λ ∈ C. The easiest way to proceed is to use the
shift theorem for Laplace transform, and identify the eigenfunctions of the fractional
derivative operators, which are Mittag-Leffler functions.
Definition 5.4.4. Let us denote Eα(λ, t) the function for which

L[Eα(λ, .)](s) = 1
sα − λ

, for <(s) > aλ . (5.4.10)

This special function is related to the so-called two parametric Mittag-Leffler
functions,

Eα(λ, t) := tα−1Eα,α(z = λ tα) ,
where we have used
Definition 5.4.5. The two-parametric Mittag-Leffler function is the complex-valued
function defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β) , (5.4.11)

where α > 0, β ∈ C and Γ(z) =
´∞

0 tz−1e−tdt is the Euler Gamma function.
See for instance [68] or [62] for many useful properties of these functions.
Thanks to the shift theorem for Laplace transforms, we are now in a position to

identify the useful elementary functions,

L−1
(

1√
s+ ε− λ

)
= exp(−ε t) E 1

2
(λ, t) ,

and state the following result in the time domain:
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Theorem 5.4.6. The solution of the GFDE (5.4.7) is given by

hS(t) = exp(−ε t)
( 4∑
i=1

Θi E 1
2

(λi, t)
)
, (5.4.12)

with constants Θi := ri h0 + r̃i ḣ0.

Thanks to this explicit solution, we are now in a position to examine the asymp-
totic behaviour more in depth.

Asymptotic behaviour (general case)

Indeed, let us recall the following seminal results about the long time behaviour of
the Mittag-Leffler functions:

Theorem 5.4.7 (Matignon 1996,[59]). We have the following asymptotic equivalents
for Eα (λ, t) as t reaches +∞ :

• for | arg(λ) |≤ απ2 ,

Eα (λ, t) ∼ 1
α
λ

1
α
−1eλ

1
α t, (5.4.13)

• for | arg(λ) |> απ2 ,
Eα (λ, t) ∼ α

Γ(1− α)λ
−2t−1−α, (5.4.14)

which belongs to Lr([1,+∞),R), for all r ≥ 1.

Recently, some higher order asymptotics have been provided to all sorts of Mittag-
Leffler functions, see [69, Section 1.4].

For our purpose, the following asymptotics are needed:

Theorem 5.4.8 (Matignon 1998, [61]). We have the following asymptotic equivalents
for exp(−ε t) E1/2 (λ, t) as t reaches +∞ :

• for | arg(λ) |≤ π
4 ,

e−ε t E1/2 (λ, t) ∼ 2λ exp((λ2 − ε) t), (5.4.15)

• for | arg(λ) |> π
4 ,

e−ε t E1/2 (λ, t) ∼ 1
2Γ(1/2)λ

−2t−
3
2 exp(−ε t) . (5.4.16)
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(a) (b)

Figure 5.2 – Evolution of the four roots λi in the σ-plane, as a function of µ. (a): global picture
with 4 trajectories. (b): zoom in the right-half plane <(σ) > 0, 2 trajectories crossing the segment
Re(λ) = |=(λ)| for a critical value µc of the viscosity.

Indeed, with (5.4.16), the case of Proposition 5.3.2 is recovered as a special case,
which occurs if and only if all the roots λi fulfill | arg(λi) |> π

4 .
Otherwise, if but one λ0 lies in the sector | arg(λ) |< π

4 , then a very different
asymptotic behaviour is to be found, namely a purely exponentially decaying one,
with decay rate δ := ε − <(λ2) > 0 (it must be positive indeed, since asymptotic
stability has already been proved in Proposition 5.3.1). To be more specific from a
geometric viewpoint, by decomposing λ into its real and imaginary parts, the new
zone of interests lies between the sector <(λ) > |=(λ)| and the hyperbola <(λ)2 <
ε+ =(λ)2.

We are now in a position to state the general stability theorem:

Theorem 5.4.9. For the solution (5.4.12) of the GFDE (5.4.7), for a given value
of the viscosity µ, two cases may occur, depending of the location of the four roots λi
of the viscous polynomial PT :

• either there is at least one root with <(λj) > |=(λj)| then the asymptotics is of
exponential type, with rate δ(µ) := 1

µ
−<(λ2) > 0

hS(t) ∼
∑
j

Cj exp
((

λ2
j −

1
µ

)
t

)
, (5.4.17)
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• or all the four roots lie in | arg(λ) |> π
4 , then the asymptotics is of mixed type,

hS(t) ∼ C t−
3
2 exp

(
− 1
µ
t

)
. (5.4.18)

Proof. Using the explicit solution (5.4.12), and the asymptotic results of Theo-
rem 5.4.8 for one root λi, upon selecting between these roots, we obtain the desired
asymptotic result.

5.4.3 Evolution of the asymptotic behaviour with viscosity
The goal of this last part is to provide numerical evidence that both situations
stated by Theorem 5.4.9 may occur in practise. In particular, we shall illustrate the
transition between the two possible regimes, as the viscosity µ of the fluid increases.

In Figure 5.2 the trajectory of the four roots λi is drawn as a function of µ in the
σ-plane: two roots belong to the left half-plane and will have no couterpart in the
Laplace plane; the two other roots belong to the right half-plane and will give rise to
a pole in the Laplace plane; picture (b) provides a zoom on these two, which cross
the segments <(λ) = |=(λ)| for a critical value µc of the viscosity.

Figure 5.3 – Plot of the poles sj = λ2
j − 1

µ in the Laplace plane.

Figure 5.3 shows the 2 conjugate poles sj = λ2
j − 1

µ
in the Laplace corresponding

to the 2 roots λ1,2: starting from the case µ = 0, and increasing µ, there is some more
damping up to some value µ∗, then the damping reduces monotonically towards 0.
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Figure 5.4 – Damping rate δ(µ) = <(λ2)− 1
µ as a function of the viscosity term µ

Figure 5.4 shows the damping rate δ(µ) as a function of µ, as can be forecast
from Figure 5.3. Note that above the critical value µc, δ(µ) = 1/µ, meaning that we
are in the mixed type regime. Indeed, the two roots λ1,2 now fulfill | arg(λ1,2)| > π

4

5.5 Conclusion
In this work, we have given an analytic solution and computed the refined asymptotic
estimates of solution the return to the equilibrium problem of a model describing the
vertical motion of a solid floating at the free surface of a viscous fluid with finite
depth and flat bottom. Moreover, numerical evidence has been provided of the
possible transition between different asymptotic regimes when the viscosity of the
fluid increases.
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APPENDIX A

On a dual to the properties of Hurwitz
polynomials

This appendix is based on [78].

A.1 Introduction
In this appendix we present the first part, of a series of three works, on a new approach
about the classification of the roots of real polynomials in one variable in the right half
complex plane. This new idea arises from the need to obtain simple explicit criteria
for the area of the complex plane not covered by the theory of Hurwitz polynomials
(also known as stable polynomials). In fact, our results are natural extensions of the
classical Theorems of Routh-Hurwitz and Hermite-Biehler for the complement zone;
C+ = {z ∈ C : Re (z) > 0}.

In the literature we highlight as main references for the study of roots of real
polynomials on the left half complex plane and its applications to system theory in
a general framework the books of Gantmacher [27] and [28], and the book of Iooss
and Joseph [36]. Chappellat, Mansour and Brattacharyya present classic stability
criteria with elementary demonstrations in their article [14] while new and interesting
ideas about the demonstration of these results have been developed by Holtz in [34].
For a generalization to real polynomials in several variables we mention the work
of Fettweis in [25]. The approach introduced in this work consist of a systematic
use of the linear transformation z 7→ −z, on the properties that define the Hurwitz
polynomials, which leads us to use and explore the notion originally introduced
by Vergara-Hermosilla et al. in [81] about anti-Hurwitz polynomials. This notion
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can be recast as a dual result to the main necessary and sufficient conditions on
stable polynomials. What is more, our Theorems and Propositions also depend on
the coefficients of the polynomial in question which makes it more manipulable for
applications in science and engineering. With this preamble„ we are in a position of
establish the main result, which read as:

Proposition A.1. Let f(X) = a0X
n+a1X

n−1+· · · an−1X+an ∈ R[X] of degree ≥ 3.
Then f(X) is an anti-Hurwitz polynomial, if and only if it satisfies the conditions:

1. (−1)iai > 0, for all i ∈ {0, . . . , n}.

2. (−1)b i+1
2 c∆i > 0, for all i ∈ {1, . . . , n}.

The outline of the appendix is organized as follow. In Section A.2 we state the
main definitions and properties that describe the Hurwitz polynomials emphasizing
the Hurwitz matrix and the Theorem of Routh-Hurwitz. In Section A.3 we define the
anti-Hurwitz polynomials, demonstrate our first main result, and establish explicit
criteria for real polynomials of less than or equal order 4 and derivatives.

A.2 Hurwitz polynomials
For n ∈ N we denote by Pn the set of all degree n polynomials with real coefficients.

Definition A.1. A polynomial f(X) ∈ R[X] is Hurwitz if the real part of all its
complex roots is negative i.e., <(u) < 0 for any u ∈ C satisfying f(u) = 0.

Let H denote the set of all Hurwitz polynomials, and we set Hn = H ∩ Pn. The
set of all Hurwitz polynomials in Hn with positive coefficients is denoted by H+

n .

Theorem A.2 (Stodola condition). If a polynomial f(X) ∈ R[X] is Hurwitz, then
all its coefficients are of the same sign.

Proof. The roots of a real polynomial are symmetric with respect to the real line.
For f(X), we can write

f(X) = a0
∏
k

(X − sk)
∏
j

(X − αj − iβj)
∏
j

(X − αj + iβj), (A.1)

where each sk are real roots, and αj ± iβj are complex roots of f(X) with nonzero
imaginary part. Note that sj, αj are negative. Since the expressions (X − sk) and
X2−2αjX+(α2

j +β2
j ) have positive coefficients, their product has the same property.
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Let f(X) = a0X
n+· · ·+an−1X+an ∈ Pn be a polynomial. The Hurwitz matrix of

a polynomial, denoted as H(f(X)), is the square matrix of size n defined as follows:

a1 a3 a5 · · · 0 0 0
a0 a2 a4 · · · 0 0 0
0 a1 a3 · · · 0 0 0
0 a0 a2 · · · 0 0 0
0 0 a1 · · · 0 0 0
0 0 a0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · an−2 an 0
0 0 0 · · · an−3 an−1 0
0 0 0 · · · an−4 an−2 an


(A.2)

For every k ∈ {1, . . . , n}, let Hk(f(X)) denote the square matrix of size k obtained
from the first k rows and columns of H(f(X)), and we set:

∆k = det(Hk(f(X))), (A.3)

where det(Hk) denotes the determinant of the square matrix Hk.

Theorem A.3 (Routh-Hurwitz). A polynomial f(X) = a0X
n+· · ·+an−1X+an ∈ Pn

with a0 > 0 is Hurwitz if and only if ∆k > 0 for all k ∈ {1, . . . , n}.

For a proof of this result see for instance [27],[34] or [36].

A.3 Anti-Hurwitz Polynomials
In this section we establish the definition of anti-Hurwitz polynomials and a dual
criterion to the Theorem of Routh-Hurwitz. To this end, we introduce the following
definition.

Definition A.1. A polynomial f(X) ∈ Pn is said to be anti-Hurwitz if the real part
of all its complex roots is positive, i.e., <(u) > 0 for all u ∈ C satisfying f(u) = 0.

Lemma A.2. A polynomial f(X) ∈ Pn is anti-Hurwitz if and only if f(−X) is
Hurwitz.

Proof. Let f(X) be an anti-Hurwitz polynomial and u a complex root of f(−X).
Then f(−u) = 0 and <(−u) > 0, i.e., <(u) < 0. Therefore f(−X) is Hurwitz. On
the other hand, if f(−X) is a Hurwitz polynomial and u a complex root of f(X),
then f(u) = f(−(−u)) = 0. In this case, <(−u) < 0, i.e., <(u) > 0. Hence, f(X) is
anti-Hurwitz.
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Lemma A.3. Let f(X) ∈ R[X] be a polynomial of degree n and ∆i the determinant
of the Hurwitz submatrix Hi(f(X)), for 1 ≤ i ≤ n. Then we have

∆−i = (−1)b
i+1

2 c∆i, (A.1)

where ∆−i is the determinant of i-th Hurwitz submatrix Hi(f(−X)).

Proof. The matrix for Hi(f(−X)) is written as

−a1 −a3 −a5 · · · 0 0 0
a0 a2 a4 · · · 0 0 0
0 −a1 −a3 · · · 0 0 0
0 a0 a2 · · · 0 0 0
0 0 −a1 · · · 0 0 0
0 0 a0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · an−2 an 0
0 0 0 · · · −an−3 −an−1 0
0 0 0 · · · an−4 an−2 an


. (A.2)

Comparing it with the matrix of Hi(f(X)), we immediately see that

∆−i = (−1)b
i+1

2 c∆i. (A.3)

Proposition A.4. Let f(X) = a0X
n+a1X

n−1+· · · an−1X+an ∈ R[X] of degree ≥ 3.
Then f(X) is an anti-Hurwitz polynomial, if and only if it satisfies the conditions:

1. (−1)iai > 0, for all i ∈ {0, . . . , n}.

2. (−1)b i+1
2 c∆i > 0, for all i ∈ {1, . . . , n}.

Proof. By lemma (A.2), we know that f(X) is an anti-Hurwitz polynomial if and
only if f(−X) is a Hurwitz polynomial. In this case, the coefficient of X i in f(−X) is
(−1)ian−i. Without loss of generality, we may suppose that a0 > 0. Now the Stodola
Condition (A.2) and Theorem (A.3), gives us that (−1)ian−i > 0, for i ∈ {0, 1, ..., n}
and ∆−i > 0. Hence, we conclude by Lemma (A.3).

In the following we establish simple criteria on the property of anti-Hurwitz,
applicable to real polynomials of less than or equal order 4 and derivatives of poly-
nomials. To this end we consider a polynomial p(X) ∈ R[X] and the necessary and
sufficient conditions developed in the Proposition A.4. The criteria read as:

• The polynomial p(X) = X2 + a1X + a2 is an anti-Hurwitz polynomial, if and
only if

− a1, a2 > 0. (A.4)
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• The polynomial p(X) = X3 + a1X
2 + a2X + a3 is an anti-Hurwitz polynomial,

if and only if
− a1, a2, −a3 > 0 and a2 − a1a2 > 0. (A.5)

• The polynomial p(X) = X4 + a1X
3 + a2X

2 + a3X + a4 is an anti-Hurwitz
polynomial, if and only if

− a1, a2, −a3, a4 > 0 and a1a2a3 − a2
3 − a2

1a4 > 0. (A.6)

• Let p(X) be an anti-Hurwitz polynomial of degree n and let P ′(X) denote
the first-order derivative of p(X) with respect to X. Then −p′(X) is again an
anti-Hurwitz polynomial.
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APPENDIX B

Analysis of the viscous polynomial

In this appendix we develop explicit formulas for the roots and its distribution in the
complex plane of the so-called Viscous polynomial in the variable λ, which is given
by

PT (λ) =
(

1 + l3

12

)
λ4 + l2

√
µλ3 +

(
lµ− 2

µ

(
1 + l3

12

))
λ2 − l2

√
µ
λ+ 1

µ2

(
1 + l3

12

)
,

(B.1)
where l and µ are real and positive numbers.

B.1 Roots
By combine terms in the Viscous polynomial (B.1), we obtain an equivalent form
given by

PT (λ) =
(

1 + l3

12

)(
λ2 − 1

µ

)2

+ l
√
µλ

(
lλ2 +√µλ− l

µ

)
. (B.1)

Multiplying this by 1/λ2, denoting by y = λ − 1
λµ

and suppose that λµ 6= 0, we
conclude that solve the equation PT (λ) = 0 is equivalent to solve

Q(y) =
(

1 + l3

12

)
y2 + l2

√
µy + lµ = 0. (B.2)

This means that we can actually compute the roots via a nested sequence of two
quadratic equations. In fact, the roots of Q(y) = 0 are given by

y1,2 =
−l2√µ±

√
lµ(l3 − (1 + l3/12))

2(1 + l3/12) , (B.3)
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then, like y1,2 = λ2µ−1
λµ

, we see that the roots of the equation (B.1) follows of solve

µλ2 − y1,2µλ− 1 = 0. (B.4)

Therefore, the explicit roots of eq. (B.1) are given by

λ1,2,3,4 =
y1,2µ±

√
y2

1,2µ
2 + 4µ

2µ ∈ C. (B.5)

Remark B.1. If l ≥ 3
√

6 then all the roots of Viscous polynomial are reals. In fact,
the discriminat of the polynomial (B.2) is given by ∆Q = l4µ− 4lµ(1 + (l3/12)). We
see that ∆Q is positive if and only if l ≥ 3

√
6. If the roots of equation (B.2) are reals,

then the discriminant of equation (B.4) is positive, and hence the result follow.

B.2 Distribution of roots
In this section, we study how the roots of the Viscous polynomial (B.1) are distributed
on C. To this end, we introduce the notion of anti-Hurwitz polynomial. Morevover,
we denote by Λ = {λ1, λ2, λ3, λ4} the set of roots of the polynomial PT (λ) defined
in eq. (5.4.9) and we consider the following set

L1/2 = {z ∈ C : z 6= 0, | arg z| ≤ π/2}.

Definition B.1. A real polynomial f(X) in the complex variable X is said to be
Hurwitz if the real part of all its roots is negative, that is <(u) < 0 for all u ∈ C
such that f(u) = 0.

The following result attributed to A. Stodola (see for instance pp. 81 in [41]), is
a well-known necessary condition for a real polynomial to be Hurwitz.

Theorem B.2 (Stodola condition). If a polynomial with real coeficients is Hurwitz,
then all its coeficients are of the same sign.

Remark B.3. Since there are different signs in the coefficients of the Viscous poly-
nomial pT (λ), we conclude that it is not Hurwitz, i.e. Λ ∩ L1/2 6= ∅.

Definition B.4. A real polynomial f(X) in the complex variable X is a anti-Hurwitz
polynomial if and only if, the real part of all its complex roots is posititive, that is;
<(u) > 0 for all u ∈ C such that f(u) = 0.

Lemma B.5. A real polynomial f(X) is anti-Hurwitz if and only if f(−X) is Hur-
witz.
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Proof. If f(X) is anti-Hurwitz and u is a complex root of f(−X), since f(−u) = 0,
we conclude that <(−u) > 0. Hence <(u) < 0 and therefore f(−X) is Hurwitz.
Similarly, if f(−X) is Hurwitz and u is a root of f(X), since f(u) = f(−(−u)) = 0
we conclude that <(−u) < 0. Hence <(u) > 0 and then f(X) is an anti-Hurwitz
polynomial.

Remark B.6. Since there are different signs in the coefficients of the polynomial
pT (−λ), by Lemma B.5 we conclude that pT (λ) is not anti-Hurwitz, i.e. Λ∩C\L1/2 6=
∅.
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APPENDIX C

Residues

In this appendix, our aim is show the explicit form of each ri and each r̃i involved
in Chapter 5, which correspond to the partial-fraction decomposition of the rational
functions present in the equation (5.4.9). To this end, if Λ is the set of the four roots

of the viscous polynomial PT , with λi ∈ Λ and d(s) = A
4∏
i=1

(
√
s+ ε− λi), then

A

PT (σ) =
4∑
i=1

r̃i
(σ − λi)

,

where

r̃1 = −
(
λ2

1 λ2 + λ2
1 λ3 + λ2

1 λ4 − λ3
1 − λ1 λ2 λ3 − λ1 λ2 λ4 − λ1 λ3 λ4 + λ2 λ3 λ4

)−1
,

(C.1)

r̃2 = −A
(
λ1 λ

2
2 + λ2

2 λ3 + λ2
2 λ4 − λ3

2 − λ1 λ2 λ3

−λ1 λ2 λ4 + λ1 λ3 λ4 − λ2 λ3 λ4)−1 , (C.2)

r̃3 = −A
(
λ1 λ

2
3 + λ2 λ

2
3 + λ2

3 λ4 − λ3
3 − λ1 λ2 λ3

+λ1 λ2 λ4 − λ1 λ3 λ4 − λ2 λ3 λ4)−1 , (C.3)

r̃4 = −A
(
λ1 λ

2
4 + λ2 λ

2
4 + λ3 λ

2
4 − λ3

4 + λ1 λ2 λ3

−λ1 λ2 λ4 − λ1 λ3 λ4 − λ2 λ3 λ4)−1 . (C.4)
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Moreover,
Aσ2 +Bµ1/2σ + (C − A/µ)

PT (σ) =
4∑
i=1

ri
(σ − λi)

,

where
r1 = (µA)−1(C µ− A+ λ2

1Aµ+ λ1B µ3/2)r̃−1
1 , (C.5)

r2 = Aµ−1(C µ− A+ λ2
2Aµ+ λ2B µ3/2)r̃−1

2 , (C.6)

r3 = Aµ−1(C µ− A+ λ2
3Aµ+ λ3B µ3/2)r̃−1

3 , (C.7)

r4 = Aµ−1(C µ− A+ λ2
4Aµ+ λ4B µ3/2)r̃−1

4 . (C.8)
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