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Notations

• F2 is Z/2Z, the field exclusively composed of the two elements 0 and 1 which we sometimes
refer to as bits.

• For an integer n, Fn
2 is the F2–vector space with n coordinates in F2. In general, a vector will

be written with a bold symbol and the indexing will start from 0: x = (x0, . . . , xn−1).

• Polynomial variables are denoted by uppercase letters like X, Y, K. When there are several
polynomial variables X0, . . . , Xn−1, X is the entire tuple of variables Xi, i ∈ [0, n − 1] and
XI is the tuple of variables Xi, i ∈ I.

• F2[X0, . . . , Xn−1] is the ring of polynomials over F2 with n variables.

• x � y when x, y ∈ Fn
2 means that ∀i ∈ [0, n− 1], yi = 0⇒ xi = 0. x ≺ y means that x � y

and x 6= y.

• Prec (u) is the set {x ∈ Fn
2 | x � u }.

• supp (x) is the set { i ∈ [0, n− 1] | xi = 1 }, called the support of the vector x ∈ Fn
2 .

• wt (x) is the Hamming weight of x, i.e. the integer #supp (x).

• ei denotes the vector (0, . . . , 0,

i
↓
1, 0, . . . , 0) where the length depends on the context. Similarly,

eS where S is a set of indices is the vector such that supp (eS) = S.

• (u|v) denotes the concatenation of the vectors u and v.

• 0 and 1 are the vectors (0, 0, . . . , 0) and (1, 1, . . . , 1). If needed, the size of the vector, n, is
added: 1n.

• X ∼ L means that the random variable X follows the law of probability L.

• U (X ) is the uniform law of probability on the set X .
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Présentation des travaux

La cryptographie est une science qui fournit des composants algorithmiques, appelés cryptosystèmes,
essentiels à la sécurité de toute infrastructure numérique. La diversité des objectifs cryptographiques

— confidentialité, intégrité et authentification — implique naturellement une grande diversité dans
les prérequis et le fonctionnement des cryptosystèmes. Un objectif très ancien est par exemple
l’échange de messages chiffrés à travers un canal de communication peu sûr entre deux interlocuteurs
qui partagent une clef de chiffrement. Les cryptosystèmes qui remplissent cet objectif sont appelés
algorithmes de chiffrement symétrique. Certains cryptosystèmes, dits asymétriques, permettent par
ailleurs le partage de clefs de chiffrements via un canal de communication public, ce qui est très
utile pour chiffrer le traffic entre deux ordinateurs connectés à Internet.

La sécurité des cryptosystèmes repose sur celle de composants algorithmiques plus simples, les
primitives cryptographiques. En particulier, de nombreux chiffrements symétriques sont construits
autour d’une primitive appelée chiffrement par bloc. Il est cependant souvent impossible de prouver
mathématiquement la sécurité d’une primitive. Ainsi, la confiance accordée à une primitive a un
prix, celui de son analyse constante et transparente par une communauté académique dédiée. Cette
thèse est une modeste contribution à l’effort de cryptanalyse de primitives symétriques comme les
chiffrements par bloc ou les générateurs pseudo-aléatoires.

J’ai étudié dans un premier temps une famille de distingueurs fondés sur la propagation de
sous-espaces vectoriels différentiels dans les chiffrements par bloc de construction SPN. Je me
suis ensuite tourné vers la création de méthodes permettant aux cryptographes de modéliser un
problème de cryptanalyse de primitive symétrique en problème MILP, afin d’exploiter certains
logiciels solutionneurs de problèmes MILP très performants. Je me suis aussi intéressé à l’analyse
algébrique des primitives symétriques, notamment au calcul d’une partie de leur forme algébrique
normale, utile dans les attaques de type cube. Enfin, j’ai travaillé vers le début de ma thèse sur un
sujet relativement éloigné des primitives symétriques avec l’étude d’une primitive de chiffrement
asymétrique fondée sur les codes correcteurs d’erreur et la métrique rang.

Chapitres 1 et 2 – Introduction à la cryptographie moderne et à la
cryptanalyse différentielle

Je commence par introduire les concepts centraux de la cryptographie moderne au chapitre 1, avec
la relation entre preuve de sécurité et cryptanalyse comme fil conducteur, et avec le chiffrement
symétrique comme sujet principal.

Sécurité calculatoire. Pour prétendre qu’un cryptosystème est sûr, il faut d’abord définir contre
quelles menaces l’analyse est valide. Dans le modèle calculatoire, on considère l’adversaire comme

11



12 PRÉSENTATION DES TRAVAUX

R R Rp c

k

k(0) k(1) k(2) k(r−1) k(r)

expansion de clef maître

Figure 0.1 – Chiffrement par bloc itératif.

ayant une certaine capacité de calcul et un accès bien défini à la donnée produite par le cryptosystème.
D’autres modèles considèrent que l’adversaire peut mesurer certaines caractéristiques physiques de
l’exécution d’un algorithme cryptographique, comme le temps de calcul ou la consommation d’énergie,
ou que l’adversaire peut altérer l’exécution d’un cryptosystème. On parle alors d’attaques par canaux
cachés ou par injection de fautes. Dans cette thèse, je n’étudie la sécurité des cryptosystèmes que
dans le cadre du modèle calculatoire.

Dans ce modèle, les cryptosystèmes ont souvent une preuve de sécurité qui repose sur une ou
plusieurs conjectures. Parmi ces conjectures, on peut trouver le fait qu’un chiffrement par bloc ne
peut pas être distingué d’une permutation aléatoire plus rapidement qu’en devinant la clef, ou encore
qu’il est impossible d’inverser une fonction à trappe (sans la connaissance de la trappe) en-deçà
d’une certaine complexité de calcul.

Chiffrements par bloc. Un chiffrement par bloc est une primitive cryptographique utilisée dans
les chiffrements symétriques. C’est une application

B :
{

Fm
2 × Fn

2 −→ Fn
2

(k, p) 7−→ c = Bk(p),

où k est appelée la clef, p le message clair et c le message chiffré.
Pour que l’exécution de cette application soit rapide en pratique tout en assurant le niveau de

sécurité désiré, ces primitives sont souvent construites selon une structure itérative : des clefs de
tour sont dérivées de la clef maître puis s’appliquent en alternance sur le message clair une fonction
de tour R et l’addition d’une clef de tour (voir figure 0.1).

La fonction de tour R est elle-même souvent construite selon les principes de confusion et de
diffusion de Shannon [Sha49], qui stipulent respectivement que la relation entre l’entrée et la sortie
d’une telle fonction doit être complexe et que chaque bit de sortie doit être fonction d’un maximum
de bits d’entrée. En particulier, dans les chiffrements dits SPN et toujours dans un souci d’équilibre
entre légèreté et sécurité, la fonction de tour possède deux couches : la première applique de petites
fonctions complexes et non-linéaires en parallèle, les Sbox, pour apporter de la confusion et la
seconde applique une fonction linéaire sur tout l’état pour apporter de la diffusion efficacement (voir
figure 0.2).

Le chiffrement par bloc par excellence, l’Advanced Encryption Standard (AES) [Nisa], probable-
ment la primitive cryptographique qui chiffre le plus important volume de données sur Internet, suit
une structure SPN. Sa taille de bloc n est de 128 bits et il en existe trois variantes pour des clefs de
128, 192 ou 256 bits. Chaque variante a respectivement 10, 12 et 14 tours.

Le nombre de tours d’un chiffrement itératif sera, encore une fois, choisi pour l’équilibre qu’il
promet en termes d’efficacité et de sécurité. Il existe par exemple des attaques sur chaque variante
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Figure 0.2 – Fonction de tour d’un chiffrement par bloc SPN.

de l’AES réduite respectivement à 7 (/10), 8 (/12) et 9 (/14) [Jea13] tours mais l’AES conserve
encore une marge de sécurité de plusieurs tours dans chacune de ses variantes.

Cryptanalyse différentielle. Le but de la cryptanalyse différentielle est de distinguer un chif-
frement par bloc d’une permutation aléatoire en étudiant les statistiques de propagation d’une
différence d’entrée a vers une différence de sortie b. On cherche en particulier un couple (a, b) tel
que la probabilité sur x et k d’avoir

Bk(x + a) + Bk(x) = b

est grande.
Dans une fonction linéaire L, typiquement la couche de diffusion d’une fonction de tour, une

différence a se propage de façon déterministe vers la différence b = L(a). Au contraire dans une
fonction non-linéaire F , comme une Sbox, une différence d’entrée a peut donner plusieurs différences
de sortie, et toutes ces possibilités sont regroupées au sein de la DDT (Difference Distribution
Table) :

DDT : (a, b) ∈ F2n
2 7→ |{x ∈ Fn

2 | F (x + a) + F (x) = b }| .

Étudier les propriétés différentielles d’une primitive symétrique, et d’un chiffrement par bloc SPN en
particulier, revient souvent à étudier les interactions entre la couche linéaire et les DDT des Sbox.

La cryptanalyse différentielle connaît de nombreuses variantes comme les différentielles tronquées
[Knu95] ou les différentielles impossibles [BBS99]. Ces notions sont abordées au chapitre 2.

Chapitre 3 – Propagation de sous-espaces différentiels dans les
chiffrements SPN

Ce chapitre reprend un travail effectué avec Anne Canteaut et Christina Boura et publié dans ToSC
2019, numéro 1 [BCC19].

Nous nous sommes intéressés au distingueur sur 5 tours d’AES présenté par Grassi, Rechberger
et Rønjom à Eurocrypt 2017 [GRR17]. Ce distingueur repose sur l’existence de deux sous-espaces
vectoriels V et W de F128

2 tels que pour tout espace affine de direction V , le nombre de paires
d’éléments x, x′ de cet espace affine qui vérifient

AES(5) (x) + AES(5) (x′) ∈W
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est un multiple de 8, où AES(5) désigne cinq tours d’AES. La structure de V et W ne permettant
pas d’étendre ce distingueur en un recouvrement de clef, Grassi proposa peu de temps après [Gra18]
des distingueurs sur 4 tours, inspirés de la preuve du distingueur multiple-de-8, et extensibles en un
recouvrement de clef sur 5 tours très performant.

Les preuves originales de ces distingueurs étaient cependant peu satisfaisantes par leur redondance
et par la difficulté d’en tirer des enseignements utiles à la cryptanalyse sur plus de tours, ou sur
d’autres chiffrements SPN, avec une technique similaire. Nous avons donc proposé des preuves
alternatives plus compactes et mieux structurées qui s’adaptent à d’autres chiffrements SPN.

Plus précisément, ces distingueurs sont des conséquences de deux faits indépendants. Le premier
est qu’il existe des propagations de sous-espaces vectoriels sur 2 tours d’AES. Le second — et c’est
là qu’est la nouveauté et que nous introduisons une nouvelle formulation — est que pour au moins
un espace W en fin de propagation et pour chacun des espaces affines qu’il dirige, la fonction{

p0, p1
}
7→ R

(
p0
)

+ R
(
p1
)

,

qui à chaque paire de vecteurs dans cet espace affine, associe la différence des images par la fonction
de tour, est invariante par une relation d’équivalence entre paires de vecteurs. À partir de cette
formulation par relation d’équivalence, nous pouvons prouver ce second point pour l’AES et, pour
tout SPN, caractériser les espaces W pour lesquels la propriété est vraie.

En conjonction avec le travail de Leander, Tezcan et Wiemer sur la recherche de propagation de
sous-espaces [LTW18], nos travaux donnent une méthode pour analyser la menace posée par ce type
de distingueurs pour tout chiffrement SPN, comme nous le montrons sur les exemples de Midori,
KLEIN, LED et SKINNY [Ban+15 ; GNL12 ; Guo+11 ; Bei+16].

Chapitre 4 – Modèles MILP efficaces pour la cryptographie
symétrique
Ce chapitre reprend un travail effectué avec Christina Boura et publié dans ToSC 2020, numéro 3
[BC20]. Nous nous sommes intéressés à la modélisation de problèmes de cryptanalyse différentielle
en problème MILP (pour Mixed-Integer Linear Programming).

En effet, conduire une cryptanalyse peut nécessiter d’effectuer des calculs spécifiques à la primitive
étudiée et donc d’écrire les programmes qui effectueront ces calculs efficacement. L’élaboration de
tels programmes efficaces peut se révéler extrêmement chronophage, si bien que de plus en plus
de cryptographes se tournent vers l’utilisation de logiciels solutionneurs de problèmes MILP très
performants et déjà disponibles. La condition d’utililisation d’un tel solutionneur est donc de pouvoir
traduire un problème de cryptanalyse en problème MILP efficacement résoluble.

Problème MILP. Un problème MILP est de la forme

maximiser
n∑

i=0
cixi sous les contraintes

n∑
i=0

ai,jxi 6 bj , j ∈ [0, m− 1],

où ai,j , bj , ci sont des nombres réels et où les variables xi doivent prendre des valeurs entières ; n
est le nombre de variables et m le nombre d’inégalités ou contraintes. Nous nous intéresserons
essentiellement à des variables xi dans {0, 1} ⊆ Z et notre but sera, en première approximation
dans cette présentation, de minimiser le nombre de variables et de contraintes nécessaires à la
modélisation d’un problème cryptographique donné.
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Modéliser au niveau des bits. Le premier problème de cryptanalyse à être modélisé en problème
MILP [Mou+11] fut le calcul du nombre minimum de Sbox actives dans un SPN défini par des
opérations sur des mots (de 4 ou 8 bits), comme l’AES par exemple, et nécessitait peu de variables et
une modélisation élémentaire. Néanmoins, certaines spécifications manipulant chaque bit individuel-
lement, ou certains problèmes plus compliqués comme la recherche de différentielles impossibles, ont
besoin de modèles beaucoup plus volumineux en variables et en contraintes. Plus généralement, pour
que la modélisation en problème MILP puisse couvrir un large champ d’applications en cryptographie
symétrique, il est important de pouvoir modéliser le comportement des primitives au niveau des bits.
C’est précisément dans ce cadre que nos travaux prennent place.

Modélisation des Sbox. En particulier, la modélisation des propriétés différentielles ou linéaires
d’une Sbox est un problème ardu pour obtenir des modèles de SPN entiers efficacement résolubles.
En effet, dans le cas de la cryptanalyse différentielle et de ses variantes, il faut pouvoir modéliser
la DDT. Par exemple, pour minimiser un nombre de Sbox actives ou rechercher des différentielles
impossibles, il faut pouvoir modéliser la contrainte booléenne

(a, b) 7→
{

0 si DDT(a, b) = 0,
1 sinon,

par des inégalités à coefficients réels et des variables entières.
Sun et al. [Sun+14b ; Sun+14a] furent les premiers à proposer des modèles MILP pour l’analyse

des SPN au niveau des bits, avec notamment deux méthodes de modélisation pour les Sbox de
4 bits. Pour modéliser les Sbox de 8 bits, Abdekhalek et al. [Abd+17] utilisèrent un algorithme de
minimisation de la représentation en produit de sommes d’une fonction booléenne. Si leur technique
fut un succès pour la Sbox de SKINNY-128 avec 372 inégalités, elle fut moins probante pour celle de
l’AES avec 8302 inégalités, ce qui est souvent trop pour construire des modèles utiles en pratique.

Nous proposons donc trois nouvelles méthodes de modélisation MILP de contrainte booléenne qui
peuvent servir, entre autres, à la modélisation des DDT. Soit F : Fn

2 → F2 une contrainte booléenne
à modéliser. Chaque élément de Fn

2 est aussi vu comme un point de l’hypercube {0, 1}n ⊂ Rn.
Notre première méthode, inspirée de celle de Sun et al., repose sur le calcul de l’enveloppe

convexe des antécédents de 1 par F , qui dans notre exemple correspondent aux transitions possibles
de la DDT. En effet, l’enveloppe convexe prend la forme d’une liste d’inégalités qui caractérise cet
ensemble de points. En revanche, cette liste contient des inégalités redondantes car nous avons aussi
pour contrainte que les variables sont à valeurs dans {0, 1}. Si Sun et al. calculent directement un
sous-ensemble d’inégalités minimal, nous choisissons de grossir cette liste avec de nouvelles inégalités
issues des premières avant minimisation. Plus précisément, k inégalités

a0,0x0 + · · ·+ a0,n−1xn−1 6 b0,

...
a(k−1),0x0 + · · ·+ a(k−1),n−1xn−1 6 bk−1,

issues de l’enveloppe convexe et qui partagent un antécédent de 1 sur leur bord, sont susceptibles de
fournir, par leur somme ∑

j

aj,0

x0 + · · ·+

∑
j

aj,n−1

xn−1 6
∑

j

bj ,
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une nouvelle inégalité correcte et discriminant un ensemble de points différent. Cette méthode toute
simple donne des résultats nettement meilleurs que les méthodes précédentes pour les Sbox de 4 bits
mais elle est limitée aux Sbox de 6 bits par le calcul de l’enveloppe convexe.

Notre seconde méthode, inspirée de celle d’Abdelkhalek et al., est basée sur la couverture des
antécédents de 0 par des ensembles de la forme a⊕ Prec (u) , où

Prec (u) def= {x ∈ Fn
2 | ∀i ∈ [0, n− 1], ui = 0⇒ xi = 0 } .

En effet, l’ensemble a ⊕ Prec (u) (avec supp (a) ∩ supp (u) = ∅) peut être éliminé par la seule
inégalité

−
∑

i∈supp(a)
xi +

∑
i 6∈supp(a+u)

xi > 1− wt (a) .

Cette méthode offre des résultats légèrement meilleurs que ceux d’Abdelkhalek et al. mais son
utilisation est plus rapide sans nécessiter d’utiliser en « boîte noire » un programme de minimisation
d’une représentation en produit de sommes.

Notre troisième méthode couvre les antécédents de 0 par des boules en métrique de Hamming.
En effet, la boule de centre c et de rayon d, B(d, c), peut être éliminée par la seule inégalité

n∑
i=0

(1− ci)xi + ci(1− xi) > d + 1.

De plus, on peut généraliser cette inégalité dans le cas où quelques antécédents de 1 rapprochés
appartiennent au bord de la boule. Enfin, à partir d’inégalités éliminant trois boules voisines de
rayon 1, on peut obtenir une nouvelle inégalité correcte. L’utilisation conjointe des méthodes 2 et 3
donne de très bons résultats, avec par exemple un nombre d’inégalités de 2882 pour la DDT de la
Sbox de l’AES.

Modélisation des couches linéaires. Modéliser les propriétés différentielles d’une couche linéaire
revient dans de nombreux cas à modéliser une contrainte A ·x = 0 où A est une matrice à coefficients
dans F2. La méthode naturelle est de modéliser les contraintes données par chaque ligne de la matrice :

aj,0x0 ⊕ · · · ⊕ aj,n−1xn−1 = 0.

Cependant, nous montrons qu’une contrainte de la forme x0⊕· · ·⊕xn−1 = 0 nécessite 2n−1 inégalités
à coefficients dans R pour être modélisée. Notre méthode consiste donc, en s’inspirant de la théorie
des codes correcteurs d’erreur, à changer la matrice A pour diminuer le poids de ses lignes. Les
résultats sont assez inégaux d’une couche linéaire à l’autre.

Recherche de différentielles impossibles. Afin de démontrer les capacités de nos nouvelles
méthodes de modélisation MILP sur des problèmes complexes, nous avons poursuivi le travail de
Sasaki et Todo [ST17b] sur la recherche de différentielles impossibles. Nous prouvons en particulier
que toutes les différentielles (a, b) avec un octet actif en entrée et un octet actif en sortie sont
possibles pour 5 tours d’AES et 13 tours de SKINNY-128.
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Chapitre 5 – Analyse des formes algébriques normales
Dans ce chapitre, je m’intéresse à la représentation d’un chiffrement comme polynôme à coefficients
dans F2. En effet, toute fonction booléenne F : Fn

2 → F2 admet une représentation de la forme

F (X) =
∑

u∈Fn
2

auXu, où Xu def=
n−1∏
i=0

Xi,

appelée forme algébrique normale ou ANF. De plus, le coefficient au peut être calculé par la
transformée de Möbius, exponentielle en le poids de u, wt (u) :

au =
∑

xPrec(u)
F (x).

Une coordonnée d’une primitive de chiffrement peut alors être de la forme F (X, K) où
X0, . . . , Xn−1 sont des variables publiques et K0, . . . , Km−1 sont des variables secrètes. Dans ce cas,
l’ANF de F s’écrira

F (X, K) =
∑

u∈Fn
2

Pu(K)Xu

où les polynômes Pu(K) sont appelés superpoly et les ensembles Prec (u) leurs cubes respectifs, car

Pu(K) =
∑

x∈Prec(u)
F (x, K).

Attaques cube. Certaines attaques algébriques exploitent des structures ou des faiblesses dans les
ANF à différents niveaux dans un chiffrement. Parmi elles, les attaques de type cube [DS09], surtout
appliquées aux générateurs pseudo-aléatoires, cherchent à construire des systèmes polynomiaux de
la forme

Pu(K) = cu, u ∈ U

tels que pour tout u ∈ U , cu = Pu(k) où k est la clef secrète, et tels que l’on puisse résoudre ce
système, ou à défaut en tirer une information sur la clef secrète. Ces attaques connurent quelques
développements avec les testeurs de cubes et les attaques cube dynamiques [Aum+09 ; DS11], mais
leur dépendance à la transformée de Möbius limite l’analyse aux cubes de dimension atteignable par
les moyens de calcul actuels.

Chemins de monômes. L’élaboration du concept de chemin de monômes, à la suite des travaux
de Todo [Tod15] sur les distingueurs intégraux, permirent à Todo et al. [Tod+17] de proposer des
attaques cube théoriques bien au-delà des dimensions atteignables en pratique par la transformée
de Möbius. Les chemins de monômes suivent l’existence d’un monôme XuKv tout au long des
opérations d’une primitive et leur énumération complète permet de calculer la valeur du coefficient
de XuKv dans l’ANF de F (X, K).

Dans ce chapitre, après un état de l’art sur les attaques cube et les chemins de monômes, je
propose une idée alternative pour analyser la structure d’une ANF. L’idée de base est la suivante :
dans un circuit qui permet d’évaluer une fonction booléenne F : Fn

2 → F2, le remplacement de
l’addition et de la multiplication sur F2 par les mêmes opérations sur Z crée un nouvel objet, une
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fonction FZ : Zn → Z, dont l’analyse peut réveler des informations sur l’ANF de F . Je propose en
particulier un algorithme pour calculer une ANF avec peu de coefficients non nuls quand on a accès
à un circuit d’évaluation.

Chapitre 6 – Étude d’un code à trappe en métrique rang

Ce chapitre, en marge de mon sujet de thèse, reprend un travail effectué avec Alain Couvreur et
publié dans Designs, Codes and Cryptography en 2020 [CC20]. Il propose une analyse de sécurité
d’une fonction à trappe à la McEliece publiée par Pierre Loidreau [Loi17]. Cette fonction à trappe
est construite à partir des codes de Gabidulin et leur décodage en métrique rang.

Codes de Gabidulin et métrique rang. Soient m, n tels que m > n et q une puissance d’un
nombre premier. Dans ce contexte, le poids rang d’un vecteur x ∈ Fn

qm est la dimension sur Fq de
l’espace engendré par ses coordonnées dans Fqm :

|x|R = dim vectFq (x0, . . . , xn−1) .

Un code C est un sous-espace vectoriel de Fn
qm et sa distance minimale est le plus petit poids rang

parmi ses vecteurs non nuls. Soit a ∈ Fn
qm de poids rang maximal (égal à n) et k 6 n. Le code de

Gabidulin de support a et de dimension k, Gk (a), est le code engendré par les lignes de la matrice


a1 . . . an

aq
1 . . . aq

n
...

...
aqk−1

1 . . . aqk−1
n

 .

Une propriété importante des codes de Gabidulin est qu’il existe un algorithme efficace, dit de
décodage, qui, étant donnés a et un vecteur y ∈ Fn

qm , retrouve la décomposition (unique si elle
existe) de y comme somme y = c + e avec c ∈ Gk (a) et |e|R 6 (n− k)/2. Au contraire, pour un
code tiré aléatoirement et avec la donnée d’une matrice génératrice, le décodage est un problème
difficile.

Fonction à trappe de Pierre Loidreau. La primitive de Loidreau exploite justement cet écart
important. Soient b de rang plein et k 6 n. Soient λ 6 m un paramètre entier, V un sous-espace sur
Fq de Fqm et P une matrice à coefficients dans V et inversible dans Mn (Fqm). On définit

Gpub
def= G · P −1 et t

def=
⌊

n− k

2λ

⌋
.

La clef publique est alors la paire (Gpub, t) et la clef privée est la décomposition de Gpub, (b, P ).
Pour chiffrer un message m ∈ Fk

qm , on tire un vecteur d’erreur e de rang inférieur à t et on calcule
c = m ·Gpub + e. Pour déchiffrer, on utilise la décomposition de Gpub pour calculer c · P et le
décodage efficace pour Gk (b) donne m.
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Cryptanalyse pour λ = 2. En s’inspirant des cryptanalyses d’Overbeck [Ove08] contre les
systèmes antérieurs fondés sur les codes de Gabidulin, nous proposons un distingueur pour la
primitive de Loidreau quand les paramètres λ et k vérifient

n

(
1− 1

λ

)
+ 1 < k < n− λ.

Nous montrons ensuite comment forger une clef privée à partir de la clef publique pour les paramètres
λ = 2 et k vérifiant la contrainte ci-dessus.





Chapter 1

Modern cryptography

Cryptography is about trust and freedom in the information era. It empowers people with the choice
of who exactly they share information with over a network they cannot control. Cryptography aims
at creating an ideal world where information only makes sense for its legitimate recipient, where
malicious attempts of distorsion are hopeless and where the bond between an identity in the world
of humans and a cryptographic one cannot be suspected. For now, it is a major keystone of our
trust in the Internet.

1.1 Trusting the Internet

In this section, we first give a schematic view of how the Internet is organized. This is a useful
example to illustrate how cryptography is used today by millions of people.

1.1.1 The basics of Internet

A network is a group of two or more devices which share a connection. For example, a local area
network (LAN) can be built with a few computers all connected to a network switch with Ethernet
cables. A switch is a device whose goal is precisely to transfer data to and from the connected
devices thanks to their unique identifier, the media access control (MAC) address. If all the devices
connected through the switch are mere computers, these computers live in closed LAN. If however
one of the connected devices is a router connected to another switch, the LAN can communicate with
the network of this other switch through the router (Figure 1.1). The standard way for connected
devices to transfer data is by cutting this data in small pieces called packets before independently
sending those packets through switches and routers.

Internet stands for interconnected networks. The major components the Internet connects are
called autonomous systems (AS). An AS is a large network, i.e. a large group of routers and switches,
controlled by a single organization like an Internet service provider (ISP), a company or a public
institution. For example in France, the Renater network connects many French universities and
research labs. It is also an AS connected to other ASes, thus being a part of the Internet and allowing
French universities to access services provided on other ASes. There are many different kinds of ASes:
some like Renater connect end users and servers, others like tier 1 networks specialize in physical
infrastructure to rent transit... An AS A can connect with another AS B with a direct physical
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switch

client

router

server

LAN

Figure 1.1 – The router creates a network connecting two LANs.

connection or by renting transit or borrowing transit from a third AS C, recursively connected with
the AS B. The Internet counted nearly 100 000 ASes worldwide in February 2021 [Mai21]. In order
to transfer data from the AS A to the AS B despite this decentralized architecture of the Internet,
ASes need to build a map of how they interconnect. They do so with the Border Gateway Protocol
(BGP).

A protocol is an agreed upon way of formatting and processing data. It is key to making devices
communicate coherently. Every device that connects to the Internet needs an address to locate the
device on the map of ASes. The Internet Protocol (IP) is the standard for formatting this address
(IP address) and for providing packets sent over a network with source and destination addresses (IP
header). Indeed, a router needs the IP addresses to forward a packet to another router in the right
direction, but it also needs to know what is the right direction. Edge routers, which connect ASes
to others, can get this knowledge through BGP: they publish information about the IP addresses
controlled by their AS or about the ASes their AS is connected with. This information helps edge
routers from other ASes to build a map of the Internet and to forward packets one step closer to
their destination. Another well known protocol is the Transmission Control Protocol (TCP) which
is responsible for ordering packets, retransmitting lost packets and checking errors to reconstruct
the data after an IP transfer through the network.

Routing denotes the decisions taken by routers to forward packets, to compute a route for them.
At the network layer, i.e. the connections between ASes, routing needs the information exchanged
with BGP, and routers have no choice but to trust the information is correct. Of course organizations
behind ASes can choose to advertize some routes and hide others for commercial, strategic or political
purposes, thus distorting the map of ASes. More than that, there are risks of “BGP hijacking” if a
router pretends to control IP addresses which belong to another AS. Attackers can reroute traffic to
overload a website or to redirect users to a fake website and steal their credentials. This happened
in 2018 to steal from cryptocurrency wallets for example [Poi18]. Routing is not the only weak spot
of the Internet functioning as other dangers exist: spoofing, DNS leaks...
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Figure 1.2 – A schematic view of the internet. IXP stands for Internet exchange point, a physical
location where ASes can interconnect routers.

1.1.2 Cryptographic protocols

We have just seen that when we send data through the Internet, this data travels through the routers
of our own AS, through the routers of other ASes and can even be rerouted to a fake destination. In
order to use the Internet with confidence, we want to make sure we connect with the right person or
service and we want to make sure our data cannot be read or modified by an attacker who controls
the network. Those goals, formalized by the concepts of authentication, confidentiality and integrity,
are those achieved by a cryptographic protocol like Transport Layer Security (TLS) [Res18].

Confidentiality is the property that makes the data readable by its legitimate owners and
recipients only. It is obtained through encryption and algorithms which perform encryption are
called ciphers. In TLS, the stream should look random to the attacker and should not leak any
information but the length of the data. Section 1.3 and Section 1.6 explore ciphers in more details.

Authentication allows users to be confident that no identity has been usurped thanks to digital
signatures. For instance, TLS always authenticates the server side, which should prevent users from
trusting fake websites, and optionnally authenticates the client.

Integrity asserts that the data cannot be modified by an attacker without a legitimate user
detecting the modification. Indeed, even if an attacker cannot get any information from an encrypted
stream, he could manage to modify the stream and hence its decryption. Integrity is obtained through
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IP = 123...
IP = 96...data = ???

trusted certification authority

X.509

sign certificatecheck server
certificate

shared secret key
to 96...
from 123...

Figure 1.3 – TLS creates a secure channel between the client and the server thanks to the trusted
certification authority. Packets of encrypted and authenticated data are transmitted through the
network with the classical Internet Protocol.

the authentication of the data. It can be performed by algorithms called message authentication
codes or by digital signatures. Message authentication codes are briefly presented in Section 1.5.2.

The protocol, the cryptosystems and the keys. We see that each goal is fulfilled by an
algorithm, a cryptosystem. TLS is the protocol which specifies which cryptosystems to use, how to
use them and how to handle the data associated with those cryptosystems. Building secure protocols
and implementing them without flaws raise difficult questions and form an active field of research.
Thanks to a correct use of well-studied cryptosystems, TLS creates a secure channel between a client
and a server: it authenticates the server for the client and encrypts and authenticates the data
that will be sent through TCP/IP (Figure 1.3). This way, an attacker with complete control of the
network cannot inject forged data into the stream nor distinguish the data stream from random
bytes. But TLS is an industrial standard used all over the Internet and the attacker is well aware
of the tiniest details of both the protocol and the cryptosystems. It might seem counter-intuitive
that such a public system can provide any kind of security given that security should require some
sort of secrecy somewhere. This problem is tacled with the use of cryptographic keys: although
cryptosystems have public specifications, they can carry out their cryptographic duties as long as a
short parameter, the key, stays secret. We will elaborate on the security of systems with public
specifications in the next section.

In its specification [Res18], the state-of-the-art version of TLS (1.3) is cut in two protocols.

The handshake is the first part of TLS where the client and the server are securely introduced
to one another and where decisions on how to secure the following data stream are taken. The
handshake already needs communication through the network and an attacker should not be able to
have any influence or get any meaningful information from this preliminary communication. During
the handshake, the client and the server perform a key exchange, i.e. they build a shared secret key
together (Section 1.6), choose a cipher suite for protecting the data, exchange signed certificates and
check them thanks to a trusted third party.
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Figure 1.4 – Cryptosystems have public specifications and can be used by anyone. Their security
relies on the secret key, only known by legitimate users.

The record protocol encrypts and authenticates the data exchanged between the client and the
server with the cipher suit agreed in the handshake. Authenticated encryption is briefly presented
in Section 1.5.3.

1.2 Cryptosystems, security notions and primitives
As we saw with the example of TLS, there are different cryptographic needs — confidentiality,
integrity and authentication — and each one of those needs will be met with different algorithms.
Now the question is how to build these cryptosystems? In this section, we draw a general picture of
how modern cyptosystems are designed and analysed by their dedicated scientific community. We
first present in Section 1.2.1 the most basic principles about the design of modern cryptosystems. We
then explain the central concept of security notion in Section 1.2.2. Finally, we sketch in the other
sections how cryptosystems are built on two pillars: primitives and computational assumptions.

1.2.1 Foundations

Kerckhoffs’ principles. We explained in the previous section that the security of public cryp-
tosystems relied on secret keys. This idea was already present in the foundational work of Auguste
Kerckhoffs in 1883 [Ker83]. Kerckhoffs listed requirements for the design of ciphers, known today as
Kerckhoffs’ principles. In particular, the first two principles state that a cipher should be mathemat-
ically impossible to break even for someone who knows its design. As we saw, cryptographers abide
by those principles by moving the needed secrecy from the whole specification of the cipher to a
parameter of the cipher called the key (Figure 1.4). Other principles insist that the key should be
short enough to be remembered and changed, and to make the system easy to use.

Computational security. Claude Shannon gave in 1949 [Sha49] a precise meaning of “math-
ematically impossible to break” with the introduction of his new information theory, now at the
heart of modern cryptography. In particular, Shannon proved that a cipher which is perfectly secure
needs as much key material as message material, which is very impractical and in contradiction with
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Figure 1.5 – A security game has rules to explain how the game master behaves and how much
power the adversary is given, i.e. which queries to the game master are allowed.

Kerckhoffs’ principles. As an example, Shannon proved that the one-time pad (see Section 1.3.1)
achieves perfect security under this condition. Cryptographers then focus on designing practically
impossible to break ciphers: an attacker has to use huge computational resources to break such a
cipher. For example, if a key is chosen at random among 128-bit words, guessing the key needs an
average number of 2127 trials with one cipher evaluation each, which is way beyond what the most
powerful computers can do. Then a cipher will typically be designed to be unbreakable unless the
key has been guessed, which we saw is practically impossible. The expression “break a cryptosystem”
we used so far still needs to be defined.

1.2.2 Security notions

To precisely define the security of cryptosystems, cryptographers agree on worst-case scenarios where
cryptosystems still have to ensure that the cryptographic goal holds. They then derive criteria and
reasonings to build systems which resist a powerful adversary in these worst-case scenarios. In the
computational model, where consequences of the system’s implementation — like computation times

— are not taken into account, a security notion is precisely a scenario where an attacker is challenged
to threaten a cryptosystem with his computational power only. A security notion is formally defined
by the rules of a one player game with only two possible outcomes: win or lose. The player, called
the adversary, is modeled by a probabilistic Turing machine. The game usually has a game master
(or challenger) whose role mainly consists in drawing bits at random, eventually keeping them secret,
performing computations with those random bits and calling available oracles (see Section 1.2.4).
Finally, the cryptosystem is a parameter of the game (Figure 1.5). This section, which summarizes



1.2. CRYPTOSYSTEMS, SECURITY NOTIONS AND PRIMITIVES 27

important aspects of security notions, is inspired by the teaching of Pointcheval [Poi05; Poi21].

Adversaries. When a cryptographer studies how a system performs against a security notion,
he essentially studies the possible strategies to win the game with the given cryptosystem. Since
an adversary is a probabilistic algorithm that interacts with the game, she has the following
characteristics:

• a probability of success,

• complexities in time and memory,

• complexities in interactions with the game (queries sent to the challenger, answers received
from the challenger, queries to available oracles...)

The time complexity is the entire number of operations, including those needed to compute answers
to queries, and thus dominates all other types of complexities.

Computational games. Some security games — like key-recovery games — pose a computational
challenge to the adversary: the adversary has to compute a value — like a secret key — among
many possibilities. The success probability is then a good measurement for the performance of the
adversary. The maximum success probability an adversary can get for a given complexity is denoted
by Succname of the game

cryptosystem (complexity) .

Decisional games. Other security games — like distinguishing games — pose a decisional
challenge to which the adversary has to answer “yes” or “no”, knowing that both answers have the
same probability 1

2 . In that case, a trivial attack with success probability 1
2 is to answer “yes” or

“no” uniformly at random. Therefore, to measure the performance of an adversary, cryptographers
estimate the distance between her success probability and 1

2 . This distance is called the advantage
of the adversary:

Advname of the game
cryptosystem (adversary) def= |2 · P (adversary outputs the right answer)− 1| .

We can always turn an algorithm with success probability lower than 1
2 to an algorithm with success

probability higher than 1
2 by systematically reversing its output. The absolute value in the definition

of the advantage is therefore superficial. The maximum advantage an adversary can get for a given
complexity is denoted by Advname of the game

cryptosystem (complexity) .

Probabilities and complexities. The success probability (or the advantage) and the complexities
can balance: an adversary can repeat the same strategy (with independent randomness) to increase
the success probability but this will also increase the complexities. This is not a problem in practice
and in general, when cryptographers only talk about the complexity of a strategy, its success
probability is implicitly close to 1.

Names for security notions. As hinted in the informal definitions above, security notions have
names. In fact, they are usually named after two characteristics.

• The goal of the adversary: what she has to compute or decide.
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• The allowed queries of the adversary to the challenger.

For example, when studying encryption schemes, a typical goal is to recover the decryption key and
it is common to choose whether the adversary can query the decryption of chosen ciphertexts when
the game master knows the decryption key. In this setting, the name could be “key-recovery under
adaptively-chosen ciphertexts”, condensed to KR-ACC.

Cryptanalysis. For a given cryptosystem and a security notion, the term cryptanalysis can refer
to the search for a strategy or to the found strategy itself. Obviously, exhibiting a cryptanalysis
gives an upper bound on the complexity of the best possible strategy (or a lower bound on the
success probability).

Since cryptosystems operate on finite data, there always exists a strategy to win the game with
good probability and its complexity depends directly on the size of the data, especially on the
size of the key material. This strategy might even be independent from the specific cryptosystem
under study, in which case it is called generic. For example, if the game master gives a pair
plaintext/ciphertext and the goal is to find the key, trying all keys is a generic strategy whose
expected complexity is 2size of the key−1 queries.

Now for each cryptosystem, or family of cryptosystems, cryptographers agree on a security
threshold. It defines the complexity under which a cryptanalysis is considered to break the cryp-
tosystem and such a cryptanalysis is called an attack. The security threshold can be expressed in
two equivalent ways: we can give the plain complexity t but cryptographers like using log2(t) which
they call the number of bits of security of the system. This definition remains theoretical as an
attack could still have an unpractical complexity. Indeed, typical numbers of bits of security are 64,
80, 128 and 256.

For a symmetric-key cryptosystem, the threshold is often quite natural as it is the complexity of
the best generic strategy (which is often guessing the key). For a public-key cryptosystem, things
are a bit more complicated as generic strategies are much less obvious to determine, as well as their
link with the key size.

1.2.3 Proofs and conjectures

We saw in the previous section that cryptographers agree on worst-case scenarios and formalize them
into security games. Of course what they want to do now is to prove that with the cryptosystems
they design, attacks cannot be found and adversaries with good complexities and success probabilities
do not exist. Unfortunately, cryptographers never found how to design both practical and provably
secure cryptosystems in the computational model 1. However, they have invented design strategies
to build practical systems with a conjectured security. They built a science for designing real-world
cryptosystems for which they both have no complete proof of security and no found attack despite
their best efforts to overthrow this status quo.

There are schematically two paradigms for studying the security of a cryptosystem (for a given
security notion).

1. Relentlessly try to find attacks to stay convinced the system is secure.
1 In this sentence, we consider the one-time pad as impractical and other information-theoretically secure schemes

— like the one given in [AR99] — as impractical because they need a big shared source of randomness.
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2. Prove that an attack on the cryptosystem could be used to solve a simpler problem we
relentlessly try to solve.

Of course, complex cryptosystems will follow the second paradigm and the underlying problem
will be at the heart of the cryptosystem’s design. For example, symmetric systems are often built
around a cryptographic primitive and asymmetric systems are always built around a computational
assumption.

1.2.4 Primitives

Some cryptosystems are built with a specific architecture and abstract components. When we want to
use these systems, concrete algorithms have to instantiate the abstract components: they are called
primitives. Among them we find hash functions (Section 1.5.1) and block ciphers (Section 1.4.1).

Security of primitives. Cryptographic primitives have security notions as well. The security of a
primitive is conjectured and its analysis usually follows the first paradigm. In fact, the computational
complexity of a formal proof of security would be of the same magnitude as the complexity of a
generic attack. Therefore, if we want the primitive to be out of reach from practical attacks, we
have to design it such that it is out of reach from a formal security proof. For instance, the size of a
secret key has to be big enough to avoid exhaustive key search. In a nutshell, the security analysis
of a primitive is convincing when all known cryptanalysis techniques fail and when the design of the
primitive allows to explicit how far the primitive is from an attack. This is usually done by finding
attacks on more or less simpler versions of the primitive (see “Security margins” in Section 1.4.1
and Section 1.3.4). Decreasing this distance from an attack for existing primitives is a full domain
of cryptography to which this thesis is a modest contribution.

The security proof of a cryptosystem can be an unequivoval consequence of the conjectured
security of some primitives and a more heuristic consequence for other primitives.

Security reductions. “Unequivocal consequence” means that the performance (the success
probability or the advantage) of an adversary against the system’s security is bounded by the
performance of the best adversaries against the primitives’ security. In this case, the proof that the
overall cryptosystem is secure often consists in building an adversary against the security notion of
the primitive that uses the adversary of the cryptosystem’s security game (see Figure 1.6). This looks
like an algorithmic reduction but there is a major difference: cryptographers are mostly interested
in the computational efficiency of the reduction rather than its asymptotic complexity. For example,
an encryption scheme built with a mode of operation is proved secure under the assumption that
the block cipher is indistinguishable from a random family of permutations (Section 1.4.4).

Ideal models. “Heuristic consequence” means that the system is proved secure under the as-
sumption that the primitive behaves ideally: in the proof, the primitive is completely replaced
with an ideal oracle that the adversary and the challenger can query. This kind of abstraction
for primitives in security proofs gives less power to the adversary as she cannot benefit from the
potential weaknesses of the primitives. Unfortunately, the security proof for a strong cryptosystem
should cover powerful adversaries. To explicit this drawback in their proofs, cryptographers make
the distinction between the standard model, where no such assumption on primitives is made, and
the weaker models like the random oracle model [BR93] (for hash functions) or the ideal cipher
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Figure 1.6 – The cryptosystem built with an abstract primitive is studied against a security notion.
The corresponding security game is simulated by an adversary of the primitive. The proof that the
cryptosystem is secure works by showing that an adversary of the primitive can use an adversary of
the cryptosystem to win the primitive security game with a similar advantage. Consequently, if the
primitive is conjectured secure, so is the cryptosystem.

model [Sha49] (for block ciphers). However, when a system is only proved secure in a weaker model,
its potential weaknesses remain located around the primitives: if an attack is found against the
scheme instantiated with a reasonable primitive, changing the primitive for a stronger one may fix it.
Using these weaker models essentially comes with trade-offs. Is it worth downgrading to a weaker
model to get a security proof for a stronger security notion? Do we prefer an efficient cryptosystem
proved secure in a weaker model to a much less efficient one proved secure in the standard model?
Those discussions are way beyond the scope of this thesis and a nice overview is given by John Black
in [Bla06].

1.2.5 Computational assumptions

The security of asymmetric cryptosystems like signature schemes always relies on an acceptable
computational assumption. This assumption may be the fact that a given function is one-way or
more frequently the fact that a given bijection is one-way except for those who know a trapdoor
(see Section 1.6), which is why these systems are called asymmetric. At the basis of the most used
public-key cryptosystems like RSASSA-PSS [Mor+16] or ECDSA [Nisc], notably used in TLS, there
are two main families of computational assumptions, each relying on an elementary hard problem.

Factorization. The product N = p · q of two prime integers p and q is hard to factor when we
just know N . In other words, (p, q) 7→ N = p · q is a one-way function.

Discrete Logarithm. If g generates a group of prime order q and x ∈ [0, q − 1], it is hard to
compute the logarithm gx 7→ x: the map x 7→ gx is one-way. Of course, the hardness of this
problem depends on the particular instantiation of the cyclic group. Common choices are
multiplicative subgroups of finite fields and subgroups of elliptic curves.

The proof that the overall cryptosystem is secure then consists in bounding the performance of
an adversary of the system’s security by the performance of an algorithm solving the computational
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Figure 1.7 – The cryptosystem built upon a computational assumption is studied against a security
notion. The corresponding security game is simulated by an adversary of the assumption. The
proof that the cryptosystem is secure works by showing that an adversary of the assumption can
use an adversary of the cryptosystem to win the game of the assumption with a similar advantage.
Consequently, if the assumption holds, the cryptosystem is secure.

problem. This is usually done by building an algorithm that uses the adversary of the security
game to solve the computational problem of the assumption (Figure 1.7). This is very similar to
the way cryptosystems are proved secure with abstract primitives in the standard model. Again,
the computational cost of the reduction is very important and the fact that the computational
assumption holds has to be studied with the same dedication as the security of a primitive.

Cryptosystems can use both a computational assumption and abstract primitives, ideal or not.
In that case, the reduction of breaking the computational assumption (or breaking a primitive’s
security) to an attack on the cryptosystem security usually needs several steps to progressively
take the different assumptions into account. Such complex proofs in the computational model need
elaborate techniques and are a full domain of modern cryptography.

1.3 Symmetric-key encryption
Confidentiality is the oldest and most natural cryptographic goal. Cryptosystems which fill that
goal are called ciphers or encryption schemes as the process of turning a plaintext — the meaningful
message — into a ciphertext — the scrambled message — is called encryption. Since legitimate users
usually want to get back the plaintext at some point, there is a necessary inverse operation called
decryption. A major difference between both operations is that encryption may be — and often is —
probabilistic whereas decryption has to be deterministic. Consequently, encryption and decryption
are not necessarily inverse bijections mathematically speaking but decryption undoes encryption.

There are different security notions to define what a secure encryption is and different algorithms
which answer different needs. In this section, we explore the traditional yet useful symmetric-key
setting. The symmetric-key setting is defined by an assumption: all legitimate users already share a
secret key. The word symmetric comes from the fact that encryption and decryption use the same
key: the encryption key and the decryption key are symmetric (Figure 1.8).
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Figure 1.8 – In the symmetric-key setting, the same secret key is used for encryption and decryption.

Definition 1.1 (Symmetric-key cipher). In this setting, a cipher is a pair of algorithms

E :
{
K × P −→ C
(k, p) 7−→ c

and D :
{
K × C −→ P
(k, c) 7−→ p

such that ∀k, p, D(k, E(k, p)) = c.

K, P and C are respectively the key, plaintext and ciphertext spaces.

The plaintext and the ciphertext spaces are often the same and we will denote them by M, the
message space. In this text, we define by default K def= Fm

2 and M def=
⋃N

i=1 Fi
2 where m, N ∈ N. The

key size is fixed to m but messages can have different lengths up to N . Note that E is not a map,
in the sense that it can be probabilistic and one input (k, p) can give different outputs.

This basic setting gave birth to many ciphers throughout human history but we start with the one-
time pad, patented by Vernam in 1919, to introduce stream ciphers and the concept of Initialization
Values in Section 1.3.1. Then in Section 1.3.2, we define one-wayness and indistinguishability as the
main security notions for symmetric-key encryption (SKE). We finally present dedicated keystream
generators, a possible design paradigm for SKE schemes, in Section 1.3.3. Another important design
paradigm, based on block ciphers, will be presented in details in Section 1.4.

1.3.1 From the one-time pad to Nonce-based encryption.

The goal of this section is to briefly introduce the role of an Initialization Value IV, or a Nonce N, in
a symmetric-key encryption algorithm. We first need to present the one-time pad.

The one-time pad. To encrypt a message p, the one-time pad needs a key of the same length.
With the above notation, this means that m > N . The ciphertext is then simply c = p + k0,...,|p|−1
where the addition is performed in F2. Decryption and encryption are thus identical. The interesting
thing about the one-time pad is that Claude Shannon proved in 1949 that it achieves perfect secrecy
with perfectly random keys [Sha49]. More precisely, this means that knowing the ciphertext cannot
improve our knowledge of the plaintext: if the plaintext, the key and the ciphertext are random
variables P , K, and C with values in Fn

2 (of same length n) and if the key is chosen uniformly
at random — K ∼ U (Fn

2 ) — then the plaintext and the ciphertext are independent variables —
∀p, c, P (P = p |C = c) = P (P = p). The problem with the one-time pad is that it needs keys as
long as messages themselves and those keys can only be used once, which is very impractical and in
contradiction with Kerckhoffs’ principles. The idea is then to use the one-time pad with a keystream
generator rather than a long random key.
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Stream ciphers. A keystream generator is an algorithm which turns an initial value IV and a
short key k into a random-looking keystream s of arbitrary length:

S :
{
K × Fν

2 −→ M
(k, IV) 7−→ s

With + being the addition between vectors of F2, an encryption algorithm of the form

choose IV; s← S(k, IV); c← p + s; output (IV, c)

is called a stream cipher. The IV is chosen first then shared with the rest of the ciphertext. Indeed,
since the decryption operation needs to compute the keystream S(k, IV), it needs the IV used for
encryption and the encrypted part c has to be associated with its IV. The IV is thus strictly speaking
a part of the ciphertext but we will often keep the notation c for the part which depends on the
plaintext: (IV, c) ∈ C and C = Fν

2 ×M. Note that the key k is secret and does not change — unless
the protocol which uses the cipher specifies otherwise — whereas the IV is public and must change
for each encryption.

Indeed, it is important to change IVs for each use of the keystream generator with the same
key to avoid scenarios where an attacker tricks the user in encrypting a message of his choice p(1).
Indeed, this allows the attacker to collect (IV, p(1) + S(k, IV)) and hence s = S(k, IV). If the user
later encrypts another message p(2) with the same IV, the attacker will know it by comparing IVs
and he will remember that this IV gave the keystream s. Finally, knowing the keystream will allow
him to recover p(2).

Choosing IVs. How to choose the IV should be specified in the cipher specification and, when
the cipher follows Definition 1.1, a classical choice is to draw the IV uniformly at random and
idependently for each encryption. Some ciphers will need the IV to be chosen this way to be secure
but others only need the IV to be never repeated. In this case, the IV is called a Nonce — for number
only used once — and Definition 1.1 needs to be adapted.

Definition 1.2 (Nonce-based cipher). A Nonce-based cipher is a pair of deterministic algorithms

E :
{
K × P ×N −→ C

(k, p, N) 7−→ c
and D :

{
K × C ×N −→ P

(k, c, N) 7−→ p

such that ∀k, p, N, D(k, E(k, p, N), N) = p.

N is the Nonce space and by default N def= Fν
2 .

1.3.2 Security notions for symmetric-key encryption

Now that we have properly defined SKE schemes, we can present the main security notions against
which they will be analyzed: one-wayness and indistinguishability in the chosen-plaintext scenario.

1.3.2.1 One-wayness

One-wayness is one of the most basic security requirements. It means that encryption is hard to
invert for someone who does not know the key. In other words, the plaintext should not be recovered
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from the ciphertext. One of the security notions which formalizes one-wayness is called OW-CPA,
where OW stands for One-Wayness and CPA stands for Chosen Plaintext Attack: in the related
security game, the adversary is allowed to query the encryption of plaintexts of his choice to the
game master. This power granted to the adversary might seem pessimistic but it captures the above
scenario and cryptographers prefer taking extra caution. Moreover, it makes the security notion
simpler and easier to study.

In the OW-CPA security game, the challenger first draws a key k and a plaintext p∗ uniformly at
random. He then encrypts and publishes c∗ = E(k, p∗). The goal of the adversary is to compute p∗

— this is a computational game — and she is allowed queries p 7→ E(k, p). When the strategy boils
down to guessing the key k with the allowed queries to decrypt c∗, we call it a key-recovery attack.

We dropped the IV in the previous paragraph because when the cipher follows Definition 1.1, the
IV management is part of the encryption algorithm and the adversary has no control over the IV.
However, in the Nonce variant, the adversary is allowed to choose the Nonce N for each encryption.
In this case, the queries will be pairs (p, N) and the adversary will not be allowed to make two
queries with the same Nonce and different plaintexts. This rule gives the variant OW-CPA-N and
avoids trivial attacks like the one above on the one-time pad with a keystream generator.

The generic attack against OW-CPA is the exhaustive search for the secret key. The adversary
sends one query p 7→ E(k, p) = (IV, c) with p ∈ Fn

2 , n > m and computes E(kguess, p, IV) for as
many guesses kguess ∈ Fm

2 as she can. If the functions p ∈ Fn
2 7→ E(k, p, IV) are different for each

k, the success probability is 2−m for each guess. Then for any cipher E and for a limited time
complexity 2t:

SuccOW-CPA
E

(
2t
)
> 2t−m.

1.3.2.2 Indistinguishability

Indistinguishability is a much harder requirement for ciphers to fulfill: a cipher satifies indistin-
guishability when an adversary cannot make the difference between two ciphertexts of two chosen
plaintexts. This requires the encryption algorithm to be non deterministic or Nonce-based: when
the same message is encrypted twice with the same key, we get different ciphertexts.

Indistinguishability is measured through equivalent decisional games which give the IND-CPA
security notion — IND stands for indistinguishability. IND-CPA was formalized for the symmetric-key
setting by Bellare, Desai, Jokipii and Rogaway in [Bel+97]. An attack on an IND-CPA game is
called a distinguisher and its performance is measured through its advantage. We only expose the
Real or Random (RoR) flavor but the equivalent security games (Left-or-Right, Find-then-Guess,
Semantic Security) and the proofs that they are indeed equivalent can be found in [Bel+97].

The challenger uniformly draws a random bit c (for choice) and a random key k at the beginning
of the game. If c = 0, the challenger goes into the Real mode (explained below) and if c = 1, he goes
into the Random mode. The adversary sends requests with a plaintext p to which the challenger
answers depending on the chosen mode. In Real mode, the challenger answers queries with a real
encryption of p. In Random mode, he draws a plaintext p′ of the same length as p uniformly
at random and answers with the encryption of p′. The adversary’s goal is to guess the bit c, i.e.
whether the game is in real or random mode. The advantage of the distinguisher D can be computed
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with

AdvIND-CPA
E (D) = 2 · P (D outputs c)− 1

= P (D outputs 0 | c = 0)− P (D outputs 0 | c = 1) .

There exists a stronger notion called IND$-CPA — $ stands for random — which is not really a
requirement but sometimes more convenient for proofs. This notion was first introduced in [Rog+01].
For a given encryption scheme, the IND$-CPA game challenges an adversary to distinguish an
encrypted plaintext of his choice from a random vector with the same length as the ciphertext.
More precisely, the Real mode is unchanged but in Random mode, the challenger answers with
a uniformly random string with the same length as E(k, p). Proposition 1.1 formally states that
IND$-CPA is stronger than IND-CPA.

Proposition 1.1 (IND$-CPA ⇒ IND-CPA).

AdvIND$-CPA
E (t) > 1

2 ·AdvIND-CPA
E (t) .

Relations between advantages (or success probabilities) like the one of Proposition 1.1 allow
cryptographers to partially order security notions: “IND$-CPA is stronger than IND-CPA”, denoted
by IND$-CPA⇒ IND-CPA, means that if there exists an attack on IND-CPA then there automatically
exists an attack on IND$-CPA. The IND$-CPA security notion is easier to break than IND-CPA and
we can get into a situation where the IND$-CPA security of a cipher is broken but IND-CPA is not.
The stronger the security notion, the more powerful the adversary is, the easiest it is to break the
cipher and the more secure the cipher is when there is no attack.

The generic attack against IND-CPA runs an exhaustive search for the key. If the key is not
found, the adversary answers Real or Random uniformly at random.

AdvIND-CPA
E

(
2t
)
> 2 · SuccOW-CPA

E

(
2t
)
> 2t−m+1.

The factor 2 comes from the constant in the definition of the advantage.

IND-CPA is stronger than OW-CPA. Indeed, if we can break the one-wayness of an encryption
scheme, i.e. recover the plaintext from the ciphertext, we can obviously distinguish the Real mode
from the Random mode. Again, we can have the situation where there exists an attack on IND-CPA
but not on OW-CPA. In general, decisional games are easier to win (from the adversary’s point of
view) than computational games and if a cipher has no distinguisher, it can be considered more secure
than a cipher with a distinguisher but no key recovery. One might argue that distinguishers break
ciphers in rather unrealistic scenarios. First, remember that cryptographers focus on worst-case
scenarios and we can imagine a scenario where the adversary does not need to know the exact content
of the plaintext but just needs to extract a very small amount of information on the plaintext.
Second, security relies on conjectures. Distinguishers usually disclose serious weaknesses that could
help to mount key recoveries or other attacks in even more realistic scenarios. Consequently, we can
have more confidence in the conjecture that the key-recovery resistance holds when the conjecture
on distinguishability resistance also holds.
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1.3.3 Dedicated keystream generators

As explained in Section 1.3.1, keystream generators are used to build stream ciphers. Some of them,
dedicated keystream generators, are designed as primitives, in the sense that they have no security
proof and that their security analysis follows the first paradigm of Section 1.2.3.

Chosen IV attacks. From the IND$-CPA-N game applied to a stream cipher, we can derive a
security notion for keystream generators. More specifically, the chosen plaintext setting — i.e. the
allowed queries (p, IV) 7→ E(k, p, IV) — and the stream cipher definition — E(k, p, IV) = S(k, IV)+p

— imply that an adversary has access to the keystream S(k, IV). Besides, the Nonce-based variant
implies that the adversary can choose the IV but cannot repeat it. We then get the IND$-CIV
game, where the adversary has to distinguish between a given keystream generator S and a random
generator which outputs bits uniformly at random with allowed queries IV 7→ S(k, IV) in the Real
mode. The fact that the adversary cannot repeat the IV can also be modeled in the Random mode
with a random oracle which gives the same answer if the same IV is queried. Moreover, we have the
weaker notion of the key recovery where the adversary can perform the same chosen IV queries.

In practice. There is a wide variety of design strategies for dedicated keystream generators
because of the variety of use cases. Some software-oriented generators like Salsa20 [Ber08] look like
the CTR mode (Section 1.4.4.2) and output the keystream in chunks. The differences are that the
permutation is unkeyed and public and that the key is mixed with the IV in the counter.

Hardware-oriented generators like Grain-v1 (Section 1.3.4) usually output keystream bits
individually and sequentially. In that case, these keystream bits are computed from the bits of an
internal state with a filtering function. The internal state is first computed from the IV and the key
by an initialization function. During keystream generation, the internal state is updated for each
keystream bit by a transition function.

Famous stream ciphers with dedicated keystream generators.

• Salsa20 [Ber08] is a software-oriented member of the eSTREAM portfolio and its variant
ChaCha20 [NL18] is notably used in TLS 1.3.

• Trivium [DCP08] from the eSTREAM portfolio for hardware has a 80-bit key and IV and a 288-
bit internal state. Notably, Trivium has been shown to be a good candidate for homomorphic
encryption applications in [Can+18].

• A5/1 is an encryption algorithm of the GSM standard and its description used to be secret
until its reverse-engineering in 1999 by Briceno, Golberg and Wagner [BGW99]. It has a 64-bit
key and a 64-bit internal state. These small numbers allow devastating time-memory trade-off
attacks [BD00; BSW01] and other attacks exploit some structural weaknesses [EJ03; MJB04;
BB06].

• SNOW 3G is a standard stream cipher from the 3GPP, an organization in charge of developping
protocols for mobile telecommunications [For06]. The key and the IV are both 128-bit long
and the internal state is composed of 608 bits.
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Figure 1.9 – A feedback shift register with a feedback function F .

• E0 is the stream cipher used to encrypt communications made with the Bluetooth protocol
[pro19]. It has a 128-bit key, a 64-bit IV and a 128-bit internal state. The security of E0 is
limited due to several attacks [GBM02; LV04; ZXF13].

Stream ciphers with CTR. We will see in Section 1.4.4.2 that we can build a block-cipher-based
stream cipher with the CTR mode. In that case, the security analysis of the stream cipher follows
the second paradigm from Section 1.2.3: we can prove that the security of the scheme holds as long
as the underlying primitive, the block cipher, is a good PRP.

1.3.4 Example: the Grain-v1 stream cipher

The stream ciphers of the Grain family have dedicated keystream generators. We give the example
of Grain-v1 which is a hardware-oriented member of the eSTREAM portfolio [Hel+08]. The key
size and IV size of Grain-v1 are respectively 80 bits and 64 bits. The internal state of the generator
is composed of two 80-bit feedback shift registers (FSR).

Feedback shift registers. A feedback shift register of length ` over F2 is a `-bit register r with
an output end r0 and an input end r`−1 which is updated with the following steps.

1. Compute a value v depending on the bits of the register with a given feedback function
F : F`

2 → F2: v = F (r0, . . . , r`−1);

2. Possibly publish the bit of the output end;

3. Shift all the bits of the register by one towards the output end: ri ← ri+1;

4. Assign the feedback value to the input end bit: r`−1 ← v.

Those steps, illustrated by Figure 1.9, define in fact a recurrent sequence (ut)t∈N ∈ FN
2 whose

recurrence relation is given by the feedback function: ut+` = F (ut, . . . , ut+`−1). If the feedback
function is F2-linear, we get a linear FSR (LFSR). Otherwise, we have a non-linear FSR (NFSR).

In Grain-v1, one register is a LFSR, whose sequence is denoted by s ∈ FN
2 , and the other one is

an NFSR whose sequence is b ∈ FN
2 . Both registers have to be initialized with the key and the IV

before being used for generating the keystream.

Initialization. The register of the NFSR is first filled with the 80-bit key while the register of the
LFSR is filled with the 64-bit IV padded with ones.

(s0, . . . , s79)← (IV | 1), (b0, . . . , b79)← k.
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Figure 1.10 – Initialization of Grain-v1.

There is a third sequence z ∈ FN
2 that we call the output sequence. zt is derived from st, . . . , st+79

and bt, . . . , bt+79 with

zt =
∑
j∈J

bt+j + H(st+3, st+25, st+46, st+64, bt+63) (1.1)

where J = {1, 2, 4, 10, 31, 43, 56} and H : F5
2 → F2, called the filter function, is defined by:

H(x) def= x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3 + x0x2x4 + x1x2x4 + x2x3x4.

The LFSR feedback during this initialization is given by the linear recurrence relation st+80 =
zt + F (st, . . . , s79) where

F (x) = x62 + x51 + x38 + x23 + x13 + x0.

The NFSR feedback is given by bt+80 = st + zt + G(bt, . . . , bt+79) where

G(x) =
6∑

d=1
Gd(x), Gd(x) =

∑
(i1,...,id)∈Id

d∏
j=1

xij

and

I1 = {0, 9, 14, 21, 28, 33, 37, 45, 52, 60, 62}, I2 = {(9, 15), (33, 37), (60, 63)},
I4 = {(15, 21, 60, 63), (33, 37, 52, 60), (9, 28, 45, 63)}, I3 = {(21, 28, 33), (45, 52, 60)},
I5 = {(9, 15, 21, 28, 33), (37, 45, 52, 60, 63)} and I6 = {(21, 28, 33, 37, 45, 52)}.

Both FSRs are clocked 160 times to mix the key and the IV and the output stream (zt) is not
published. After these 160 clocks, the registers are properly initialized with the values s160, . . . , s239
and b160, . . . , b239.
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Figure 1.11 – Computing the keystream (zt)t∈N for Grain-v1.

Keystream generation. Once the registers have been initialized, generating the keystream z is
very similar to generating the output stream of the initialization. Indeed, the only change is in the
recurrence relations of s and b: the output bit zt does no longer contribute to st+80 and bt+80. More
precisely,

st+80 = F (st, . . . , s79)
and bt+80 = st + G(bt, . . . , bt+79).

Security margin. The security of a keystream generator like the one of Grain-v1 mainly comes
from the number of initialization clocks. Indeed, the higher this number, the more complicated the
first keystream bits. The security margin of a dedicated keystream generator is then given by the
difference between the number of initialization clocks of the design and the highest number of clocks
after which publishing the output stream allows to attack it. Of course, as for the number of rounds
of block ciphers, the performance is impacted by the chosen number of initialization clocks.

1.4 Block-cipher-based encryption

In this section, we present a popular way of building SKE schemes: the combination of a block
cipher and a mode of operation. The block cipher is usually a primitive with a conjectured security
and the mode of operation specifies how to use this primitive to get the full SKE scheme as defined
in Definitions 1.1 and 1.2.
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1.4.1 Block ciphers

A block cipher is a primitive which can be seen as a deterministic (no IV) encryption scheme for
fixed-size plaintexts and ciphertexts:

B :
{

Fm
2 × Fn

2 −→ Fn
2

(k, p) 7−→ c,

where n is called the block size and is typically chosen in {64, 128, 256}. Once a key k is chosen,
the map p 7→ B(k, p), sometimes denoted by Bk, is a permutation of Fn

2 because the block cipher
encryption has to have the inverse operation of decryption:

B−1 (k, B(k, p)) = p.

Ideal ciphers. Mathematically, a block cipher is a family of 2m permutations indexed by the
keys: (Bk)k∈Fm

2
where ∀k, Bk : Fn

2 → Fn
2 is bijective. The ideal block cipher with block size n

and key size m is then a family taken uniformly at random among the (2n!)2m possible families of
permutations [Sha49]. The ideal block cipher would then need a description with size

log2

(
(2n!)2m

)
= 2m

2n∑
i=2

log2 (i) > 2m+n bits.

However, a real-world block cipher is an algorithm which has to be implemented and thus cannot
have such a huge description. When a proof needs the assumption that a block cipher is ideal, which
we just saw is a very strong assumption, we say that the proof is valid in the ideal-cipher model.

Pseudo-random permutations. For proofs in the standard model, we want block ciphers
to be pseudo-random permutations (PRP). A pseudo-random permutation is a keyed family of
permutations which satisfies the PRP security notion. The game for a block cipher B is as follows.
The challenger draws uniformly at random a Real or Random mode c ∈ F2. In Real mode, he
draws uniformly at random k ∈ Fm

2 and answers queries with p 7→ B(k, p). In Random mode, he
draws a permutation R : Fn

2 → Fn
2 uniformly at random and answers queries with p 7→ R(p). This

game is similar to IND$-CPA but adapted to permutations. There is a stronger security notion:
sPRP where s stands for strong. In the sPRP game, the adversary is also allowed to access the
inverse permutation. In other words the additional possible queries in Real and Random modes
are respectively c 7→ B−1(k, c) and c 7→ R−1(c). These games are decisional games but we can also
study block ciphers against classical key-recovery games.

In practice: iterative ciphers. For a real-world block cipher, security in the PRP game is
one primary concern but efficiency is also a major requirement. One popular way of achieving
efficiency is to apply several key-dependent permutations T (i), called round transformations, to the
input. Indeed, round transformations are chosen to be efficient and easily implementable and if
their individual security is usually very weak, composing several well-chosen round functions should
provide strong security. An iterative block cipher is then a construction of the form

B (k, p) = T
(r)
k(r) ◦ · · · ◦ T

(1)
k(1) (p) ,
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Figure 1.13 – The key-alternating architecture.

where the k(i), i ∈ [1, r] are called round keys. Round keys are derived from the master key k through
a key-expansion algorithm, also called the key schedule. A typical key-expansion architecture is
given in Figure 1.12. The number of rounds r is usually chosen by the designers after a careful
security analysis of the construction. Finally, is important for the maps x 7→ T

(i)
k(i) (x) to be different

to avoid slide attacks [BW99], but the transformations (k, x) 7→ T
(i)
k (x) can be the same, in which

case the block cipher is called iterated.

Key-alternating ciphers. Among iterative block ciphers we find the family of key-alternating
ciphers. As illustrated in Figure 1.13, a key-alternating block cipher first runs a key-expansion
algorithm to derive enough round keys k(i) from the master key k. It then loads the plaintext p
into the state x and updates the state alternatively with adding a round key or applying the round
functions R(i). The round transformations are then T (i) (x) = R(i) (x) + k(i) — or R(i)

(
x + k(i−1)

)
— and the round keys k(0) and k(r) are called whitening keys. It is very common for round functions
to be the same — i.e. to combine the key-alternating and the iterated constructions — for better
hardware performance and easier security analysis.

SPN ciphers. The heuristic criteria to design round transformations, given by Shannon in [Sha49],
are confusion and diffusion.

• Confusion means that the relation between the output, the input and the key should be as
complex as possible.
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Figure 1.14 – Round function of an SPN cipher.

• Diffusion means that each ciphertext bit should be highly dependent on each plaintext bit
and each key bit. Typically, changing only one plaintext bit should output a very different
ciphertext.

SPN block ciphers [DR01b] are key-alternating ciphers for which the round functions perform two
different steps: one providing confusion and the other providing diffusion. The substitution step
applies local confusion thanks to small permutations called Sboxes. The permutation step applies a
broad and efficient diffusion with a F2-linear bijection. The generic round function of an SPN cipher
is illustrated in Figure 1.14 and a simple typical SPN block cipher, PRESENT, is described in details
in Section 1.4.2 as an example.

Famous block ciphers.

• The Data Encryption Standard (DES) [Nisb] was designed by IBM in the 1970s with an
iterated Feistel architecture. Its block size is 64 and its key size is 56. This low key size
makes it badly vulnerable to brute-force key-recovery attacks: Diffie and Hellman already
argued in that sense in 1977 [DH77] and in 1998, the nonprofit Electronic Frontier Foundation
built a dedicated machine which could perform key recoveries on DES in less than three
days [Fou98]. The DES has been definitively withdrawn by the NIST in 2005 but it is still
used as a component of a derived block cipher, Triple DES (3DES or TDEA) [BM17].

• The Advanced Encryption Standard (AES) [Nisa; DR01a] was designed by Joan Daemen and
Vincent Rijmen in 1997 as a part of the submission called Rijndael. It is designed with an
SPN architecture, has block size 128 and exists in three versions for key sizes 128, 192 and 256.
At the end of an open competition, in 2000, Rijndael was chosen by the NIST as a successor
to the DES among 15 proposals. A description of the AES is given in Section 1.4.3.
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Table 1.1 – Value table of the 4-bit Sbox of PRESENT. Values are given in hexadecimal notation:
a = (0, 1, 0, 1) for example.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f
Sbox(x) c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

Security margin. The security of a key-alternating block cipher like the AES comes from the
complementarity between the strength of the components (Sbox, linear layer, update function in the
key schedule) and the number of rounds applied to the state where the plaintext is loaded. This
implies that after choosing components, designers have to find the right balance for the number of
rounds: too many rounds can result in poor performance and not enough rounds can result in broken
security. No proof can give an upper bound on the necessary number of rounds. For example, if
the round functions were linear, any number of rounds would fail to give any security. Instead,
cryptographers establish the security margin of the block cipher by exhibiting an attack (i.e. a
distinguisher or a key-recovery) on the highest number of rounds possible. If an attack breaks a
number of rounds close to the choice of the designers, the cipher should be revised or discarded.

1.4.2 Example: the PRESENT block cipher

The block cipher PRESENT was proposed by Bogdanov et al. in 2007 [Bog+07] as a first attempt
to design an ultra-lightweight block cipher. Its block size is 64 bits and its key size is either 80
either 128 bits depending on the variant. It is a key-alternating block cipher which follows an SPN
construction.

PRESENT has 31 rounds and the substitution step in the round function applies the same 4-bit
Sbox (see Table 1.1) on 16 different chunks of the state. The linear layer is very simple as it is a bit
permutation on the full 64-bit state. More precisely,

y = P (x) ⇐⇒ ∀i, j, k ∈ [0, 3], y16k+4i+j = x16i+4j+k.

Consequently, the round functions are identical and difference between rounds comes from the key
schedule (i.e. the key-expansion algorithm).

The key schedule of PRESENT follows the classical design of Figure 1.12 except the round-key
sequence is only composed of the 64 bits (k0, . . . , k63) for each round whereas the update function
works on 80 bits. The update functions for the 80-bit key variant are given by the following steps

1. (k0, . . . , k79)← (k19, . . . , k79, k0, . . . , k18);

2. (k76, . . . , k79)← Sbox (k76, . . . , k79);

3. (k15, . . . , k19)← (k15, . . . , k19)⊕ i where i is the round index written on five bits (i ∈ [1, 31]).

An overall schema of PRESENT is given in Figure 1.15.

1.4.3 The Advanced Encryption Standard

We briefly introduced the AES in Section 1.4.1 as the block cipher standardized by the NIST in
2001 [Nisa]. For all its standardized modes of operation, the NIST recommends the AES as the first
choice, which has made the AES the most used block cipher for symmetric-key encryption schemes.



44 CHAPTER 1. MODERN CRYPTOGRAPHY

Sbox

Sbox

Sbox

P

p63

p0

k

p

k(0) k(1)

Sbox

Sbox

Sbox

P

k(2) k(30)

1

Sbox

Sbox

Sbox

P

k(31)

c

64 bits 64 bits 64 bits 64 bits 64 bits

F

2

F F

31

Figure 1.15 – A schematic view of the PRESENT block cipher.

The AES follows the SPN construction described in Section 1.4.1. It has a block size of 128 bits
and its number of rounds r varies with the possible key sizes.

Key size 128 192 256
r 10 12 14

The 128-bit state is often represented as a 4 × 4 matrix of bytes. In other words, we consider
depending on the context that the state is an element

x =


x0 x4 x8 x12
x1 x5 x9 x13
x2 x6 x10 x14
x3 x7 x11 x15

 =


x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 ∈M4 (K) where K def= F28 .

To describe the components (Sbox, linear layer, update function) of the AES, we need to fix the
field multiplication of F28 . It is defined by the irreducible polynomial P (X) def= X8 +X4 +X3 +X +1
over F2: F28

def= F2[X]/P (X). The vector x ∈ F8
2 and the field element x ∈ F28 are linked through

the isomorphism x 7→
∑7

i=0 xiX
i. Moreover, we define the notation 2 def= X and then 3 = X + 1.

Confusion. The round function first applies the non-linear part, called SubBytes, which applies
in parallel the same 8-bit Sbox.

y = SubBytes (x) ⇐⇒ ∀i ∈ [0, 15], yi = Sbox (xi) .

The AES Sbox is the composition A ◦ Inv of the extended inverse of F28 — Inv (0) = 0 and
Inv (x) = x−1 for all x 6= 0 — and an affine transformation A such that for all i ∈ [0, 7],

Ai (x) = xi + x(i+4) mod 8 + x(i+5) mod 8 + x(i+6) mod 8 + x(i+7) mod 8 + ci,

where c = (1, 1, 0, 0, 0, 1, 1, 0).
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Algorithm 1 Update function for the key expansion of the AES-128.
1: function F 128(i, x)
2: input
3: i is the iteration number of the update function.
4: x is the round-key k(i−1).
5: output
6: y is the round-key k(i).

7: z` ← Sbox (x`+1 mod 4, 3) ∈ F28 for all ` ∈ [0, 3].
8: z0 ← z0 + 2i−1

9: y`,0 ← x`,0 + z` for all ` ∈ [0, 3].
10: for j from 1 to 3 do
11: y`,j ← x`,j + y`,j−1 for all ` ∈ [0, 3].
12: return y

Diffusion. Then the linear part applies the ShiftRows operation, which shifts the byte at position
(i, j) in the state matrix to the position (i, j − i mod 4).

y = ShiftRows (x) ⇐⇒ ∀i, j ∈ [0, 3], yi,(j−i) mod 4 = xi,j

⇐⇒ ∀i, j ∈ [0, 3], yi,j = xi,(j+i) mod 4.

Finally, the linear part also applies the MixColumns operation (except for the last round) which
is a left multiplication of the state matrix by a constant matrix M .

M
def=


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


By definition, the matrix multiplication applies in parallel on each column.

y = MixColumns (x) ⇐⇒ y = M · x ⇐⇒ ∀j ∈ [0, 3], y∗,j = M · x∗,j .

The full round function R is then the composition

R
def= MixColumns ◦ ShiftRows ◦ SubBytes.

Key expansion. The key expansion of the AES follows the general architecture of Figure 1.12
and we give as an example the update function of AES-128 (i.e. for a 128-bit key) in Algorithm 1.
For the 196- and 256-bit versions, the update functions are very similar and given in [Nisa]. The
addition of a round-key k(i) is denoted by the operation AddRoundKeyi.

Finally, AES-128 is for example the composition

AddRoundKey10 ◦ ShiftRows ◦ SubBytes ◦ AddRoundKey9 ◦R ◦ AddRoundKey8 ◦ · · ·
◦ AddRoundKey1 ◦R ◦ AddRoundKey0.

Note that the MixColumns operation is omitted in the last round.
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1.4.4 Modes of operation

The construction which turns a block cipher into a full encryption scheme is called a mode of
operation. It is usually proven secure under the assumption that the block cipher is a pseudo-random
function.

Pseudo-random functions. Similarly to the definition of a PRP, a pseudo-random function
(PRF) is a keyed family of functions F : K ×X → Y which satisfies the PRF security notion where
an adversary has to distinguish x 7→ F (k, x) for a random k from a random function R : X → Y.
The PRP/PRF Switching Lemma asserts that a PRP is also a PRF up to the birthday bound.

Lemma 1.1 (PRP/PRF Switching [BR04]). Let B be a block cipher with block size n and A be an
adversary against PRP or PRF that makes q queries. Then∣∣∣AdvPRP

B (A)−AdvPRF
B (A)

∣∣∣ 6 q(q − 1)
2n+1 .

The main idea behind the proof of this lemma is that when q elements y0, . . . , yq−1 of Fn
2 are

drawn independently and uniformly at random with replacement, which is the case when querying a
random function,

P (∃i 6= j : yi = yj) 6
∑
i<j

P (yi = yj) 6 q(q − 1)
2 · 1

2n
, (1.2)

whereas when y0, . . . , yq−1 are drawn without replacement, which is the case when querying a random
permutation, P (∃i 6= j : yi = yj) = 0. A formal proof of Lemma 1.1 is given by Bellare and Rogaway
in [BR04].

The birthday bound. We see in Lemma 1.1 that when q is near 2n/2, a PRP-secure block cipher
cannot be considered to be PRF-secure. The value 2n/2 is called the birthday bound, named after
the famous birthday paradox.

Proposition 1.2 (Birthday paradox). In a set of N elements, we draw independently and uniformly
at random q elements x0, . . . , xq−1 with replacement. Then

P (∃i 6= j : xi = xj) > 1− exp
(
−q(q − 1)

2N

)
.

Consequently, for all p ∈ [0, 1[, if q − 1 >
√

2N · (−log (1− p)), the probability that we draw at least
one element twice is bigger than p.

For example, if we draw q = 1 + 1.5 ·
√

N elements, we draw at least one element twice with
probability higher than 2

3 . In particular, with N = 2n and approximately 2n/2 queries, the birthday
paradox asserts that a block cipher cannot be PRF-secure.

Section 1.4.4.1 and Section 1.4.4.2 give the famous examples of CBC and CTR, both described in
[Dwo01]. There are other modes of operation and we redirect to Chapter 2 in the thesis of Ferdinand
Sibleyras [Sib20] for a quick overview over the main modes of operation and to the report of Phillip
Rogaway [Rog11] for an in-depth and more exhaustive study.
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Figure 1.16 – The CBC mode of operation.

1.4.4.1 The CBC mode

The Cipher Block Chaining (CBC) mode is an important historical standard but, according to
Rogaway in [Rog11], there are no situations where using CBC rather than CTR makes any sense.
However, CBC still gives a typical and instructive example of a secure mode of operation.

Description. Figure 1.16 gives a schematic view of CBC. The key k of the overall encryption scheme
is used as a key for the block cipher B. The IV is chosen uniformly at random and independently
for each encryption. Since a message p can have a length which is not a multiple of n, an invertible
padding like p 7→ (p | 1 | 0(−length(p)−1) mod n) is required. c0 = B (k, IV ⊕ p0) and for all i > 1,
ci = B (k, ci−1 ⊕ pi). The decryption operation will need an implementation of the inverse B−1:
pi = ci−1 ⊕B−1 (k, ci). Moreover, encryption has to perform block cipher evaluations sequentially.

Security proof. Let n be the block size and q be the total number of calls to the block cipher B
that the challenger would need to answer queries in the Real mode. More precisely, if the adversary
makes Q queries with respective bit lengths N1, . . . , NQ, q

def= 1
n

∑Q
i=1 Ni. One can show that

AdvIND$-CPA
CBC−B (q queries to B) 6 2 ·AdvPRP

B (q) + q2 · 21−n. (1.3)

Equation (1.3) means that if the block cipher B is PRP-secure, then CBC instantiated with B is
IND$-CPA-secure against adversaries who cannot make a number of queries beyond the birthday
bound.

Here is the idea of the proof. Informally, if Bk behaves like a random function and if the plaintext
p = (p0 | . . . | p`) is fixed, then for any i such that ci−1 ⊕ pi is a new input to Bk, the output
ci = Bk(ci−1 ⊕ pi) and hence ci ⊕ pi+1 are uniformly distributed. Therefore, as in Equation (1.2),
the probability that there exists i such that ci ⊕ pi+1 is not a new input is bounded by q22−n−1.
Finally, if Bk behaves like a random function — which is measured by AdvPRF

B (q) — and if the
inputs to Bk are all different — which is the case with probability higher than 1− q22−n−1 — then
the outputs of CBC cannot be distinguished from random strings. A formal proof would give

AdvIND$-CPA
CBC−B (q queries to B) 6 2 ·AdvPRF

B (q) + q2 · 2−n

We can then derive Equation (1.3) from Lemma 1.1. Equation (1.3) was first shown in [Bel+97] for
IND-CPA then reaffirmed by Rogaway for IND$-CPA in [Rog11].



48 CHAPTER 1. MODERN CRYPTOGRAPHY

N

Bk

N + 1 N + 2 N + `

p0 p1 p2

c0 c1 c2 c`

p`

Bk BkBk

Figure 1.17 – The CTR mode of operation.

Matching distinguisher. In fact, there exists a distinguisher when q = Ω
(
2n/2

)
. As explained

in Chapter 6 of [Jou09], we can expect thanks to the birthday paradox that we will get two equal
ciphertext blocks ci = cj with i 6= j — this is called a collision — and since the block cipher
is a family of permutations, we consequently have that ci−1 ⊕ cj−1 = pi ⊕ pj . In a IND$-CPA
game, the adversary can request the encryption of a plaintext p with length n2n/2. The challenger
answers with c and upon detection of a collision in the blocks of c, the attacker can check whether
pi⊕pj = ci−1⊕cj−1. Indeed, this is not expected to occur if c is a random string, independent from
p but it is expected for CBC as we just saw. This distinguisher is then called a matching distinguisher
as it matches the security bound and shows that it is tight.

Interestingly, this distinguisher can be used to recover the plaintext information pj if pi is
known. This simple fact was used by Bhargavan and Leurent in [BL16] to mount practical attacks in
real-world scenarios when the CBC mode is used with a 64-bit block cipher like 3DES, a combination
still supported for backwards compatibility by TLS 1.2 [RD08]. Indeed, with such a combination,
the birthday bound involves only 32 GigaBytes of data (232 blocks).

1.4.4.2 The CTR mode

CBC is however not secure in the Nonce variant and random IVs are harder to implement securely
than just non repeated chosen Nonce. In TLS 1.3, the only available mode of operation is the
Counter (CTR) mode inside its authenticated variants CCM and GCM (see Section 1.5.3).

Description. CTR builds a keystream generator with a Nonce and a block cipher as illustrated
in (Figure 1.17). There can be different ways of initializing the counter with the Nonce N or
incrementing the counter. The most important thing is that the produced keystreams and hence the
sequences of the incremented counters should not overlap for two different Nonces. Typically, the
Nonce will be n

2 -bit long and take the first half of the block while the counter will start from 0 in
the second half of the block: for all i, ci = pi ⊕B (k, (N | i)) where i is encoded in base 2. CTR has
many advantages: decryption is the same as encryption, both operations can be performed with
parallel and unordered block cipher evaluations, no padding is required and the inverse of the block
cipher does not need to be implemented.

Security proof. An elementary security proof (first given in [Bel+97]) gives that

AdvIND$-CPA-N
CTR−B (q queries to B) 6 2 ·AdvPRF

B (q) .
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With Lemma 1.1, we finally have that

AdvIND$-CPA-N
CTR−B (q queries to B) 6 2 ·AdvPRP

B (q) + q2 · 2−n.

CTR is then secure in the Nonce variant up to the birthday bound.

Matching distinguisher. Again, when q = Ω
(
2n/2

)
, the birthday paradox applied on the

sequence xi = pi ⊕ ci gives a chosen plaintext distinguisher on CTR when used with a block cipher
rather than a PRF. If this particular distinguisher is less devastating than the one against CBC,
Leurent and Sibleyras exhibited in [LS18] an attack to recover an unknown plaintext block with
complexity Õ

(
2n/2

)
.

Block ciphers with CTR vs. dedicated generators. The general opinion (exposed in [Bog+07]
for example) is that CTR instantiated with a secure block cipher like the AES offers a more convincing
security argument than the security analysis of a dedicated keystream generator against IND$-CIV.
There are basically two reasons for this opinion.

• The block cipher is a more basic primitive than the keystream generator because the block
size n is fixed and the set of permutations of Fn

2 is relatively small.

• Cryptographers have traditionnally put more effort in the study of block ciphers and the
trust we have in a security conjecture grows with the amount of cryptanalysis effort. In
particular, classical attacks on block ciphers are well understood and benefit from the continuous
developement of both theoretical and computational tools.

However, dedicated keystream generators have non-negligeable benefits: they can be simpler to
implement, faster to run and more energy efficient. Those characteristics are game changers in
constrained environments where speed is important or where energy resources are limited. Statistics
on the performance of AES-CTR and stream ciphers with dedicated generators like ChaCha20 can be
found in [BL].

1.5 Symmetric-key authentication
In this section, we briefly present how integrity is adressed in the symmetric-key setting with hash
functions and message authentication codes (MACs). Hash functions are designed and analyzed
similarly to block ciphers or dedicated keystream generators and MACs are necessary to any modern
symmetric-key authenticated encryption scheme.

1.5.1 Hash functions

A cryptographic hash function

H :
{
M −→ Fn

2
m 7−→ h,

M =
N⋃

i=1
Fi

2, N > n,

is a basic primitive which deterministically outputs a rather small footprint h of a possibly large mes-
sage m. This footprint is called the hash digest or value. We typically have that n ∈ {128, 256, 512}
and N ∈

{
264, 2128}. Some hash functions, called universal hash functions (UHF), need a secret key:

h = H(k, m) with k ∈ F128
2 for example.



50 CHAPTER 1. MODERN CRYPTOGRAPHY

Collision resistance. The main notion which defines the security of a hash function is collision
resistance.

More precisely, for a UHF, for each message pair (x, y), the probability that H(k, x) = H(k, y)
when k is chosen uniformly at random in F128

2 should be 2−128. This behaviour is captured by
this simple game: the game master draws a random key k and keeps it secret. Without further
knowledge than the public specification of the UHF, the adversary has to output two different
messages x and y such that H(k, x) = H(k, y).

For a plain unkeyed hash function, the adversary just has to exhibit x and y such that
H(x) = H(y). In this case, it is obvious that since N > n, there always exists such a pair (x, y)
for any hash function H and an adversary who knows such a pair breaks the collision resistance of
H in constant time. Consequently, secure hash functions do not really exist but cryptographers
consider a hash function for which no collision has been found so far to be secure. The best generic
strategies to compute collisions are based on the birthday paradox and cycle-finding algorithms (see
for example Chapters 6 and 7 in [Jou09]). They have a complexity of 2

n
2 queries x 7→ H(x).

Preimage resistance. Collision resistance implies the security notions of preimage resistance.
First-preimage resistance captures the fact that the hash function is one-way. For a given h ∈ Fn

2 ,
it should be hard to find x ∈ M such that H(x) = h. The corresponding security game has
straightforward rules: the master of the game draws h ∈ Fn

2 uniformly at random and publishes it.
The best generic strategy needs 2n queries x 7→ H(x). Second-preimage resistance is a bit stronger.
This time the attacker is given x ∈M and has to find y such that H(x) = H(y). Again, the generic
bound is 2n queries.

Random oracles. We just saw that collision resistance is hard to formally define for unkeyed
hash functions. In fact, security proofs for systems built with such primitives often need the ideal
model of an unkeyed hash function, the random oracle. The random oracle is mathematically defined
as a function chosen uniformly at random among the functions from M to Fn

2 . Equivalently, each
new query x 7→ H(x) is answered by the random oracle with a random element from Fn

2 .

In practice. UHF are essentially used as building blocks for MACs and they are much less common
than unkeyed hash functions. Unkeyed hash functions are used to build many cryptosystems and for
other security-oriented tasks, like storing passwords or doing basic data-integrity checks. However,
different hash functions are needed for the different use-cases. For example, storing passwords is
better with a hash function for which computing a digest is long — say 100 ms rather than 1 ms: the
speed difference is not noticeable for the legitimate user who wants to log in but it makes brute-force
or dictionary attacks more difficult. Here are some common hash functions.

• The Message Digest family with the very fast MD5 (1992) [Riv92] which outputs 128-bit digests.
Its collision resistance is broken since 2004 [Wan+04]. Therefore, MD5 cannot be used in
cryptographic schemes but it is still in use for computing checksums.

• The Secure Hash Algorithm family:

– SHA-1 [Nisd] which outputs 160-bit digests was deprecated by the NIST in 2011 [Nisf]
because of the theoretical attacks by Wang, Yin and Yu against its collision resistance
[WYY05]. Stevens, Bursztein, Karpman, Albertini and Markov managed to implement
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this attack to exhibit a collision in 2017 [Ste+17]. The recent implementation of a
more powerful attack by Leurent and Peyrin [LP20] now threatens real-world protocols
depending on SHA-1.

– The SHA-2 family [Nisd] proposes different sizes for digests from 224 to 512. The most
used variants are probably SHA-256 and SHA-512.

– Finally, the SHA-3 family [Nise] offers an alternative to SHA-2 with completely different
design strategies but the same sizes for digests. Indeed, the design of SHA-2 is similar to
the ones of SHA-1 and MD5 and even if SHA-2 is not expected to be broken any time soon,
a sense of caution encouraged the NIST to launch a competition in 2007 to provide a
supplement for SHA-2 [Cha+12]. The Keccak proposal by Bertoni, Daemen, Peeters and
Van Assche was chosen among 5 finalists and 64 candidates.

• The original BLAKE family was a finalist candidate for the SHA-3 competition designed by
Aumasson, Henzen, Meier and Phan [Cha+12]. In 2012, Aumasson, Neves, Wilcox-O’Hearn
and Winnerlein proposed the BLAKE2 family to achieve the best software performance possible
[SA15]. Thanks to this good performance, BLAKE2 is notably used in the Noise protocol
framework by Perrin [Per18], used in turn in modern cryptographic protocols like WireGuard
[Don20].

1.5.2 Message authentication codes

Message authentication codes (MAC) are cryptosystems which ensure data integrity in the symmetric-
key setting. They allow a legitimate user, i.e. an owner of a secret key, to be confident that some
data cannot be altered by an attacker who does not known the secret key. As for encryption, this
data can be a message m sent over a network or a file on a hard drive, but it does not need to be
kept private. For example, it can be interesting to authenticate the header of an IP packet to avoid
spoofing or to authenticate an executable file before running it.

Definition. Let M def=
⋃N

i=1 Fi
2 be the message space, K = Fm

2 be the key space and T = Fτ
2 . A

MAC is a pair of algorithms (S, V ) such that

S :
{
K ×M −→ T
(k, m) 7−→ t

and V :
{
K ×M× T −→ {accept, reject}

(k, m, t) 7−→ accept or reject.

S can be probabilistic and is called the signing algorithm. Its output t is called a tag. V is
deterministic and is called the verification algorithm. A MAC (S, V ) must verify the correctness
property

∀k, m, V (k, m, S(k, m)) = accept.

Security notion. The main security notion for MACs is called EUF-CMA for Existential Un-
Forgeability against Chosen Message Attacks. In the security game, the challenger first draws a
secret key k uniformly at random. The adversary can then query the signature of messages of her
choice mi 7→ ti = S(k, mi), which explains “chosen-message attack”. Her goal is to forge a valid
pair (m, t) such that (m, t) 6= (mi, ti) for all i. Note that the adversary does not know whether she
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Figure 1.18 – The CMAC mode of operation. m ∈ Fw
2 for some length w and n is the block

size. In the subkey generation, the multiplication by e1 in F2n is defined by a constant p and
∀x ∈ Fn

2 , e1 · x = (0, x0, . . . , xn−2) + xn−1 · p. It is in fact the multiplication by X in F2[X]/P (X)
where P = Xn +

∑
i<n piX

i is an irreducible polynomial over F2 to be specified. ∀x ∈ Fn
2 ,

MSBτ (x) = (xn−τ , . . . , xn−1).

succeeded the game. The performance of an adversary A against EUF-CMA for a MAC M = (S, V )
is given by its success probability

SuccEUF-CMA
M (A) = P (A outputs a new pair (m, t) s.t. V (k, m, t) = accept) .

The probability space is given by the uniform distribution of k and the random coins used by S and
A.

In practice. As for encryption, there are different strategies for building MACs and the report of
Rogaway [Rog11] provides an in-depth review of many of those strategies. We focus here on the
example of CMAC, the Cipher-based MAC standardized by the NIST in [Dwo05] and described in
Figure 1.18. It is a mode of operation for block ciphers and it is proved EUF-CMA-secure if the
underlying block cipher is PRF-secure. The signing algorithm of CMAC is deterministic, therefore its
verification algorithm is as simple as running the signature and comparing the result with the input
tag. A security proof of CBC-MAC is given in [BR04] for example.

CMAC is based on the CBC-MAC family of PRFs illustrated in Figure 1.19. CBC-MAC is a secure PRF
for same length messages but it cannot be a secure MAC: if m1 ∈ Fn

2 and t = CBC-MAC(k, m1) =
Bk (m1) then t = CBC-MAC(k, (m1, m2)) where m2 = m1 ⊕ t. The subkeys of CMAC and their use
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2 to Fn

2 .

with the padding are essentially what allows CMAC to be a secure MAC for messages of any length.
CMAC was first proposed and proved secure by Iwata and Kurosawa in [IK03] as OMAC1. Finally, the
truncation of the tag to τ bits through the function MSBτ allows to choose a size/security trade-off.

1.5.3 Authenticated encryption

In Section 1.3.2.2, we presented the IND-CPA game where the adversary can query the encryption
of a chosen plaintext, to ensure that a ciphertext could not leak any bit of information about the
underlying plaintext. However, we can imagine scenarios where an attacker knows how to modify a
ciphertext, even if it looks random, to change the underlying plaintext, even if it remains unknown.
This is easy to do with a stream cipher for example: any bit flipped in the ciphertext c = S(k, IV)⊕p
will result in the same bit being flipped in the plaintext and the recipient will not detect such a
malicious tampering. Consequently, the SKE schemes presented in Section 1.3 are not secure in such
scenarios and IND-CPA-secure encryption schemes do not provide enough resistance against that
kind of adversary. In this section, we define AE schemes, a family of SKE schemes which address
this issue and the security notions they should satisfy.

AE schemes. An authenticated encryption (AE) scheme is a SKE scheme such that its decryption
algorithm can output reject for some input ciphertexts. This behaviour models the fact that an AE
scheme can detect whether a ciphertext has been tampered with. Of course, an AE scheme should
be IND-CPA-secure but another security notion is needed if we want to consider scenarios where the
adversary can benefit from modified ciphertexts. The different security notions for AE schemes were
exhaustively investigated by Bellare and Namprempre in [BN00].

Ciphertext unforgeability. One of these security notions, called ciphertext integrity in [BN00],
is EUF-CPA. In its security game, the challenger first draws a random key k, then the adversary can
query the encryption of chosen plaintexts and she must finally output a string m different from the
received ciphertexts such that D(k, m) 6= reject. In other words, the adversary must forge a new
valid ciphertext. As chosen in [Rog+01] for example, an AE scheme can be defined secure when it is
satisfies both IND-CPA and EUF-CPA.

Generic constructions. Given the similarity between EUF-CMA for MACs and EUF-CPA for
AE schemes, it is natural to use an IND-CPA-secure cipher together with a secure MAC through a
generic construction. We only present the encrypt-then-mac (EtM) construction as it is generically
secure but a survey of the different possibilities is given in [BN00]. The EtM construction builds a
secure AE scheme (EEtM, DEtM) from an IND-CPA-secure cipher (E, D) and an EUF-CMA-secure
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MAC (S, V ).

EEtM :
{

(KE ×KS)×M −→ M× T
(k1, k2), p 7−→ (c, t) where c = E(k1, p) and t = S(k2, c),

DEtM :


(KE ×KS)×M× T −→ M∪ {reject}

(k1, k2), (c, t) 7−→
{

D(k1, c) if V (k2, c) = accept,
reject otherwise.

The security proof of EtM, quite elementary and given in [BN00], needs the MAC key k2 to be
independent from the encryption key k1. It gives that

AdvIND-CPA
EtM (t) 6 AdvIND-CPA

(E,D) (t) and SuccEUF-CPA
EtM (t) 6 SuccEUF-CMA

(S,V ) (t) .

Having different keys for E and S is a pity when both cryptosystems are built with the same block
cipher B since two key expansions have to be computed. Designers thus decided to blend ciphers
and MACs together in specific and more compact constructions like CCM and GCM to use only one
block-cipher key.

Nonce and associated data. AE schemes can be built in the Nonce variant. Indeed, as explained
for SKE schemes in Section 1.3.1, this variant is often easier to implement securely and may provide
better security. In the Nonce variant, the encryption algorithm is deterministic and it has a third
input after the key and the plaintext, the Nonce, which is also an input of the decryption algorithm.
With EtM for example, this implies that in the Nonce variant, the construction should authenticate
the Nonce together with the ciphertext but it should not encrypt the Nonce. The Nonce is then a
piece of public data which is neither plaintext, neither ciphertext but the decryption will answer
reject if the Nonce has been altered. This property can be very interesting to securely link any kind
of public data to a ciphertext, like IP headers or any necessarily public metadata. An AE scheme
which supports the addition of authenticated public data is said to perform authenticated encryption
with associated data (AEAD). Since this functionality adds very little overhead compared to plain
AE schemes, AE schemes are often considered to support associated data by default. Definitions,
generic constructions and properties of AEAD schemes were first given by Rogaway in [Rog02].

In practice. Standardized by the NIST, CCM [Dwo04] and GCM [Dwo07] are block-cipher modes of
operation which perform AEAD. They both encapsulate the Nonce-based CTR mode but they have
different MAC constructions. In particular, CCM’s MAC is built with the CBC-MAC PRF. Rogaway
gives a detailed review for both modes in his report [Rog11]. They are notably used in TLS 1.3
[Res18] with the AES as underlying block cipher.

1.6 Public-key encryption

In the public-key setting, the assumption that users already share a secret key does not hold anymore.
Instead, the recipient keeps the decryption key private (or secret) and publishes the public encryption
key. This setting is also called asymmetric since the keys for encryption and decryption are different.
It is not hard to imagine how interesting public-key encryption (PKE) schemes can be: for example,
once we know someone’s public key, we can send him or her encrypted information without previous
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Figure 1.20 – In the public-key setting, a key-generation algorithm has to build a pair of encryp-
tion/decryption keys.

nor further interaction2. Moreover, each user needs only one key pair to share information with
other users. It might be harder to imagine that public-key encryption schemes can satisfy the
requirements of a secure encryption and still be practical because of the following observations.

1. Decryption still has to deterministically undo encryption, which implies that the public and
the secret key are related somehow. In fact, besides encryption and decryption algorithms, a
PKE scheme is composed of a key-generation algorithm to forge public and secret keys. This
is illustrated in Figure 1.20.

2. The public key (and the public specification of the cryptosystem) should not leak any informa-
tion that could threaten one-wayness or indistinguishability security notions. This means in
particular that the link between the two keys should be hard to compute or hidden.

In order to answer this second point, PKE schemes are built around a computational assumption
which can take two forms: the one-wayness of a family of trapdoor functions or the security of a
key-exchange protocol. We only present the former.

1.6.1 One-way trapdoor functions

These special objects can be understood as the counterparts of block ciphers in the asymmetric
world. Indeed, as block ciphers perform the most basic form of symmetric key encryption, one-way
trapdoor functions (OWTF) perform the most basic form of public-key encryption.

Let X be the plaintext space, Y be the ciphertext space, Kpub be the public-key space and Ksec
be the secret-key space. A OWTF is a trio of efficient algorithms (G, F, F −1).

G :
{

Ft
2 −→ Kpub ×Ksec
r 7−→ (kpub, ksec)

2 The link between a public key and an identity has to be trusted as well. Establishing this link is in fact a
keystone in many protocols like TLS. It is often taken care of through a Public Key Infrastructure (PKI) which heavily
relies on digital signatures.
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is the key generator where r models random coins — key generation has to be probabilistic — and
kpub and ksec are encryption/decryption public and secret keys.

F :
{
K ×X × Ft′

2 −→ Y
(kpub, p, r′) 7−→ c

and F −1 :
{
Ksec × Y −→ X
(ksec, c) 7−→ p

are such that
(
∃r : G(r) = (kpub, ksec)

)
⇒ ∀p, r′, F −1(ksec, F (kpub, p, r′)) = p.

F performs a possibly probabilistic encryption — hence the random coins r′ — and F −1 performs
the deterministic decryption for a matching secret key.

The necessary requirement for (G, F, F −1) to be an OWTF is that the map p 7→ F (kpub, p, r′)
should be hard to invert when we do not know the secret key ksec — hence called the trapdoor of
this map. This one-wayness requirement is captured by a classical computational security game.
The challenger uniformly draws random coins r and runs the key generation G(r) to get a key
pair (kpub, ksec). Then he uniformly draws a plaintext p ∈ X and random coins r′, computes
c = F (kpub, p, r′) and sends (kpub, c) to the adversary. The adversary has to guess the plaintext p.

1.6.2 RSA one-way trapdoor functions

RSA-based cryptosystems originate from the seminal work of Rivest, Shamir and Adleman in
1978 [RSA78]. Their underlying assumption is that the factorization of N = p · q where p and q
are two `-bit primes is hard to compute when ` is big enough. As an example, Boudot, Gaudry,
Guillevic, Heninger and Thomé reported in 2020 the factorization of a 829-bit number from the
RSA challenge [Bou+20] while RSA moduli are typically 2048- or 4096-bit long. We explicit in
Algorithm 2 the RSA trapdoor functions. The RSA encryption is a deterministic permutation for
which the key size is roughly 3` bits and the plaintext and ciphertext size is 2` bits.

Explanation for Algorithm 2. φ(N) is the cardinality of the multiplicative group (Z/NZ)?. φ
is called the totient Euler function. For a prime p, φ(p) = p− 1 and since (Z/NZ)? is isomorphic
to (Z/pZ)? × (Z/qZ)?, we have φ(N) = (p− 1) · (q − 1). Since e is coprime with p− 1 and q − 1,
the inverse d of e in (Z/φ(N)Z)? is well defined and can be efficiently computed with the extended
Euclidian algorithm. Finally, the probability distributions which define how e, p and q are drawn
raise subtle questions which are out of our scope. Encryption and decryption are identical and given
by F in Algorithm 2. The domain of F varies with the key pair, which is not consistent with our
definition of a OWTF. This is however not a problem in practice for building PKEs.

Trapdoor. The definition of φ(N) and basic group theory ensure that ∀x ∈ (Z/NZ)?, xφ(N) = 1.
If y = xe mod N then yd = xed = x mod N . This means that the exponent d allows to inverse
the function x 7→ xe: it is a trapdoor.

One-way. In [RSA78], the authors define the RSA problem as attacking the security game where the
challenger runs G on random coins r, publishes kpub = (e, N) and a ciphertext y and challenges
the adversary to compute x such that xe = y mod N . Obviously, if the adversary finds the
factorization N = p · q then she can compute d as if she had run G herself. Factorization is
then harder than the RSA problem. If the converse has never been proved, the best way to
solve the RSA problem for now is indeed to factor N .
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Algorithm 2 Pseudocode for the RSA one-way trapdoor functions.
1: Key generation G
2: input
3: `: integer security parameter.
4: r: random coins.
5: output
6: (kpub, ksec): matching key pair.

7: Draw e > 3 at random.
8: Draw an `-bit prime p coprime with e.
9: Draw an `-bit prime q 6= p coprime with e.

10: N ← p · q.
11: d← e−1 mod φ(N) with extended Euclidian algorithm.

12: kpub ← (e, N).
13: ksec ← (d, N).
14: return (kpub, ksec).

15: Encryption F
16: input
17: k = (e, N): public key.
18: x ∈ (Z/NZ)?: plaintext.
19: output
20: y ∈ (Z/NZ)?: ciphertext.

21: y ← xe mod N with fast modular exponentiation.
22: return y.

1.6.3 McEliece one-way trapdoor functions

Let q be a prime power, n ∈ N?, k < n. In 1978, Berlekamp, McEliece and van Tilborg showed
that for a full-rank matrix G ∈ Fk×n

q , a weight w ∈ [1, n] and a vector y ∈ Fn
q , deciding whether

there exists x ∈ Fk
q and e ∈ Fn

q such that wt (e) 6 w and y = x ·G + e is an NP-complete problem
[BMT78]. The associated computational problem is known as the generic decoding problem: given
G, w and y, the goal is to compute e and x such that y = x ·G + e and wt (e) 6 w.

The same year, McEliece proposed a cryptosystem based on the hardness of generic decoding
[McE78]. Actually, despite the fact that cryptographers mostly care about computational concrete
security, an NP-complete problem may be considered a good place to start to build a reasonable
computational assumption. Algorithm 3 gives the algorithms for the generic McEliece OWTF
(G, F, F −1) with X = Fk

q , Y = Fn
q and Kpub = Fk×n

q × [1, n]. The McEliece encryption is a
probabilistic injection from Fk

2 to Fn
2 and the generic key size is roughly k · n bits. This big key size

is a major drawback compared to RSA, which partly explains why RSA is much more deployed
than McEliece in practice.
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Explanation for Algorithm 3. Although generic decoding is a hard problem, some families of
structured matrices have efficient decoding algorithms. In particular, McEliece used binary Goppa
codes in his original proposal [McE78]. Let (Gi)i∈I be a family of matrices and t be an integer for
which decoding is efficient and well defined up to t: for all y ∈ Fn

2 , there exists at most one x ∈ Fk
2

such that wt (y − x ·Gi) 6 t and this x can be efficiently computed from Gi and y by a decoding
algorithm D.

D :


I × Fn

q −→ Fk
q ∪ {reject}

(i, y) 7−→
{

x such that wt (y − x ·Gi) 6 t,
reject if x does not exist.

The idea of McEliece in [McE78] is to allow the use of the decoding algorithm D when the secret
key is known and to deny it otherwise by hiding the structure which allows this efficient decoding.

Trapdoor. P and P −1 are both permutation matrices, i.e. matrices with only one non-zero element
per line and per column. The action of P −1 on a vector e is just a shuffling of its coordinates and
keeps the Hamming weight constant: wt

(
eP −1

)
= wt (e). Since y = cP −1 = pSGi + eP −1,

the decoding algorithm D outputs x = pS. Decryption is correct and the decomposition
(S, i, P ) is indeed a trapdoor.

One-way. The security of McEliece highly depends on the family of matrices being used. Obviously,
the security also depends on how hiding the structure is performed. Even if Algorithm 3 shows
the original proposition of McEliece to hide the structure of the secret Gi into the public
Gpub with matrices S and P , there are other possibilities. In a nutshell, the one-wayness of
McEliece can be considered to hold as long as there is no better way to perform decoding for a
public key (Gpub, t) than the generic decoding and as long as the lenght n and the dimension
k make the generic decoding infeasible in practice.

1.6.4 PKE security notions and designs

Like symmetric-key encryption schemes, the main security notions for PKE schemes are based
on distinguishing games. There is one big difference though. In the symmetric-key IND-CPA for
example, the challenger draws a secret key at random at the very beginning of the game and waits
for the queries of the adversary. In the asymmetric-key setting, he will rather run the key-generation
algorithm and publish the public key at the beginning of the game. Moreover, for the asymmetric
IND-CPA game, the chosen plaintext queries are not really granted to the adversary as she can
encrypt as much as she likes with the public key without querying the challenger. Cryptographers
say that semantic security implies CPA security in the public-key setting.

As we said at the beginning of Section 1.6, PKE schemes are built around a one-way trapdoor
function or a basic key-exchange protocol. More precisely, a scheme which aims at encrypting
possibly large messages will follow a hybrid construction involving a key-encapsulation mechanism
and a symmetric-key cipher. For instance, it will draw some random nonce, encrypt the nonce with
the OWTF (or with some algorithm derived from a key-exchange), derive a symmetric session key
from the nonce with a hash function (see Section 1.5.1) and finally encrypt the message with a
secure symmetric-key cipher under the computed key. The security proof will be made under the
assumptions that the OWTF is one-way (which assumes in turn that some computational problem
is hard), that the symmetric-key cipher is secure and that the hash function is secure as well.
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Algorithm 3 Pseudocode for McEliece one-way trapdoor functions.
1: Key generation G
2: input
3: n, k: integer security parameters.
4: r: random coins.
5: output
6: (kpub, ksec): matching key pair.

7: Draw i at random in I.
8: Draw an invertible matrix S ∈ GLk (Fq).
9: Draw a permutation matrix P ∈ Fn×n

q .

10: Gpub ← S ·Gi · P . . Hide the structure of Gi with S and P .

11: kpub ← (Gpub, t).
12: ksec ← (S, i, P ).
13: return (kpub, ksec).

14: Encryption F
15: input
16: kpub = (Gpub, t): public key.
17: p ∈ Fk

2: plaintext.
18: r: random coins.
19: output
20: c ∈ Fn

2 : ciphertext.
21: Draw e at random such that wt (e) = t.
22: c← p ·Gpub + e.
23: return c.

24: Decryption F −1

25: input
26: ksec = (S, i, P ): private key.
27: c ∈ Fn

2 : ciphertext. . c = pSGiP + e.
28: output
29: p ∈ Fn

2 : plaintext.
30: y ← c · P −1. . y = pSGi + eP −1.
31: x← D(i, y). . Use the decoding algorithm for the secret Gi.
32: p← x · S−1.
33: return p.
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In short, a hybrid PKE scheme is like a small protocol which starts with a key exchange and
encrypts messages with a symmetric-key cipher. However, for bigger protocols with interaction
between parties, it would be a computational shame to perform a key exchange for each message.
As we saw in Section 1.1.2 for TLS, protocols rather perform just one key exchange at the beginning
of the conversation. This is why there is another flavour of PKE schemes, called padding schemes,
whose role is to turn a OWTF into a key exchange. In other words, a padding scheme is a PKE
scheme for encrypting short messages — typically nonces and symmetric secret keys — and does
not need a symmetric-key cipher. Well known padding schemes for RSA include PKCS 1 by RSA
Laboratories and OAEP by Bellare and Rogaway [Mor+16; BR95].

1.7 Conclusion
In this chapter, we presented a famous use-case of cryptography with the example of the TLS
protocol, the formalism of security in the computational model and several encryption-scheme designs
with a clear emphasis on the symmetric-key setting. However, this chapter is not enough to give a
full explanation of how TLS achieves its cryptographic goals. Indeed, there are other important
cryptosystems like key exchanges and digital signatures, other important security notions for PKE
schemes like non-malleability or CCA security but their study is quite far from the scope of this
thesis. The goal of this introduction to modern cryptography was mainly to explain how trusting
primitives allows to trust complex cryptosystems and how these primitives are built in practice.

This thesis mainly focuses on studying security conjectures of symmetric-key primitives like
block ciphers. In Chapter 3, we explore a family of distinguishers on SPN ciphers. In Chapter 4, we
provide techniques to turn a MILP solver into an automated cryptanalysis tool for SPN ciphers. In
Chapter 5, we try to enhance a family of algebraic attacks mostly suited to keystream generators.
Finally in Chapter 6, we study the security of a rank-metric-based McEliece one-way trapdoor
function.

The next chapter is dedicated to a presentation of differential cryptanalysis, which will be useful
for Chapters 3 and 4.



Chapter 2

Differential cryptanalysis

As explained in Section 1.4.1, block ciphers are primitives in the sense that their PRP security is
conjectured. Moreover, we saw in Sections 1.4.4, 1.5.2 and 1.5.3 that they are the central building-
blocks for most symmetric-key cryptosystems and that these cryptosystems’ security actually relies
on the conjectured PRP security of the underlying block cipher. In other words, to trust these
cryptosystems used daily by millions of people worldwide, we have to keep confidence in the PRP
conjecture of the block cipher. It is therefore of crucial importance to steadily enlarge our knowledge
on the possible attacks against classical block-cipher architectures, like the SPN construction
introduced in Section 1.4.1 and illustrated in Section 1.4.2 on the example of the PRESENT block
cipher. In this chapter, we present a famous family of attacks called differential cryptanalysis and
how it applies to SPN constructions with an emphasis on the Advanced Encryption Standard (AES).

2.1 Distinguishing with differentials

Let B : Fm
2 × Fn

2 → Fn
2 be a block cipher. Statistical attacks aim at winning the PRP game by

exhibiting a predicate which holds with good probability when the secret key is uniformly distributed.
This predicate will be central in the strategy of the adversary and it has to be found before playing
the game. This kind of computation prior to the game is often called an offline phase while the
strategy of the adversary during the game is called the online phase. In the particular case of
differential cryptanalysis, introduced by Biham and Shamir in [BS91], the predicate is of the form

Bk(x + a) + Bk(x) = b

for a specific pair of input and output differences (a, b) and a random x.
In Section 2.1.1, we give a basic analysis of how differentials appear in random functions and we

sketch in Section 2.1.2 the idea of how differential cryptanalysis can give a strategy to win a PRF
game.

2.1.1 Differentials in random functions

We first recall some well-known results on the links between the Kullback-Leibler divergence and the
tails of binomial distributions. We then properly define differentials and we study the probability
that a random function verifies a given differential.

61
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Definition 2.1 (Kullback-Leibler divergence). Let (p, q) ∈]0, 1[2. The Kullback-Leibler divergence
between p and q is defined by

D (p || q) def= p log p

q
+ (1− p) log 1− p

1− q
.

Remark 2.1. D (p || p) = 0 and since log is strictly concave, D (p || q) > 0 if p 6= q.

Proposition 2.1 (Chernoff-Hoeffding bound). Let X be a random variable with binomial distribution
(N, p). Then for all k > N · p,

P (X > k) 6 exp
(
−N ·D

(
k

N

∣∣∣∣∣∣∣∣ p)) .

Proof. This result has been proved by Hoeffding in [Hoe62] as Theorem 1 for sums of independent
variables. We give here a succint proof for our specific case.

We can write X =
∑N

i=1 Xi where the (Xi)i are independent Bernoulli variables with probability
p. For all y > 0,

P (X > k) = P (exp (yX) > exp (yk))
6 E (exp (yX)) · exp (−yk) (Markov inequality)

6

(
N∏

i=1
E (exp (yXi))

)
· exp (−yk) by independence.

For all i, E (exp (yXi)) = (1− p) + p exp y. Therefore, P (X > k) 6 f(y)N where

f(y) = ((1− p) + p exp y) · exp
(
−y

k

N

)
then f ′(y) =

(
− k

N
(1− p) + p

(
1− k

N

)
exp y

)
· exp

(
−y

k

N

)
.

f ′(y0) = 0 ⇐⇒ y0 = log k/N
p ·

1−p
1−k/N . With such a y0, we have that log f(y0) = −D

(
k
N

∣∣∣∣∣∣ p), which
ends the proof.

Proposition 2.2. Let X be a random variable with binomial distribution (N, p). Then for all
k > N · p,

P (X > k) > P (X = k) >
√

2π

e2 ·
(

k

(
1− k

N

))−1/2
exp

(
−N ·D

(
k

N

∣∣∣∣∣∣∣∣ p)) .

Proof. Robbins gives in [Rob55] useful bounds for the Stirling formula. In particular for all n > 2,

√
2π <

n!
nn+1/2e−n

< e and
(

N
k

)
>

√
2π

e2 ·
Nk(

1− k
N

)N−k
·
(

k

(
1− k

N

))−1/2
.

From there, we can deduce the result with P (X = k) =
(

N
k

)
pk(1− p)N−k.
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Table 2.1 – Lower and upper bounds for P
(
p (F, a→ b) > 2t−n

)
when F is a random function and

n > 96.

t 2 3 4 5 6 7

Lower bound 2−3.90 2−9.52 2−24.24 2−61.20 2−150.62 2−360.95

Upper bound 2−1.83 2−6.95 2−21.17 2−57.63 2−146.55 2−356.38

Definition 2.2 (Differential). Let F : Fn
2 → Fn

2 and a, b ∈ Fn
2 . We define

p (F, a→ b) def= 2−n ·
∑

x∈Fn
2

δ (F (x + a) + F (x) , b)

where δ is the Kronecker symbol: δ(x, y) = 1 if x = y, 0 otherwise. p (F, a→ b) is essentially the
probability that F (x + a) + F (x) = b for a uniformly random x but the equation above gives a
more rigorous definition when F itself is a random variable. The pair of differences (a, b) is called a
differential.

Remark 2.2. We have that p (F, 0→ 0) = 1, p (F, a→ 0) = 0 if a 6= 0 and p (F, 0→ b) = 0 if
b 6= 0. Let a 6= 0 and b 6= 0. Since we can partition Fn

2 in S ∪ (S + a) for some set S such that
x ∈ S ⇒ x + a 6∈ S,

2n−1 · p (F, a→ b) =
∑
x∈S

δ (F (x + a) + F (x) , b) ∈ N.

Let (a, b) be a fixed non-zero differential, S ∪ (S + a) be a partition of Fn
2 and F be a uniformly

random function. The δ-terms δ (F (x + a) + F (x), b) for x ∈ S are thus independent Bernoulli
variables with probability 2−n. Moreover, we have with Remark 2.2 that 2n−1p (F, a→ b) is a sum
of independent and identically distributed Bernoulli variables and has thus a binomial distribution
(N, p) = (2n−1, 2−n).

Now, let t ∈ [1, n] and f(n, t) def= exp
(
−2n−1 ·D

(
2t−n

∣∣∣∣ 2−n
))

. We have with Proposition 2.1
and Proposition 2.2 that

√
2π

e2 ·
(
2t−1

(
1− 2t−n

))−1/2
· f(n, t) 6 P

(
p (F, a→ b) > 2t−n

)
6 f(n, t).

When t is fixed,
lim

n→+∞
log2 f(n, t) = −t · 2t−1 + 1

log 22t−1 − 1
2 log 2 .

We give numerical evaluations of both sides for various values of t in Table 2.1. It seems through
simple numerical experiments that f(n, t) and the lower bound are very close to their respective
limits for t 6 7 and n > 96. In fact, for bigger values of n, it is more precise to use the limit than
the computations on big floats.

2.1.2 Differentials for PRF adversaries.

In this section, we study how the knowledge of a differential in a block cipher can be used to build
an adversary against its PRF-security. We chose the PRF- rather than PRP-security because we
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studied the behaviour of differentials in random functions in Section 2.1.1. Indeed, with random
functions, the different outputs are probabilistically independent, which makes the analysis with
binomials accurate.

Let B be a block cipher with block size n. We assume that we know a differential (a, b) for
B such that p (Bk, a→ b) > 2tB−n for a non-negligeable fraction of the keys and for some tB > 2.
Then we can build an adversary able to distinguish between Bk for a random key k and a random
function F . The adversary with 2N queries will query the encryptions of x and x+a for N elements
x ∈ S and count the number of times the corresponding output difference is b. Then the adversary
will answer that the challenger is in Real mode if and only if this number is bigger than 2tB .

Let k be a key such that pB
def= p (Bk, a→ b) > 2tB−n and F be a function such that pF

def=
p (F, a→ b) < 2tF −n for some tF < tB. We fix k and F to avoid mixing probabilities because the
adversary is itself probabilistic. In [BGT11], Blondeau, Gérard and Tillich estimate the necessary
number of queries N for this adversary to make the correct guess with those fixed k and F . It is easy
to see that the non-detection probability, i.e. the probability that the adversary answers Random
instead of Real while interacting with Bk, is less than 1

2 . Let β be a chosen false alarm probability,
i.e. the probability with which we allow the adversary to answer Real instead of Random while
interacting with F . Easy computations give

D (pB || pF ) > D
(
2tB−n

∣∣∣∣∣∣ 2tF −n
)

and

lim
n→+∞

2nD
(
2tB−n

∣∣∣∣∣∣ 2tF −n
)

= (tB − tF )2tB log 2 + 2tF − 2tB .

Theorem 2 in [BGT11] shows we can estimate an upper bound on N with

− log(2
√

πβ)
D (2tB−n || 2tF −n) ∼

n→+∞

− log(2
√

πβ)
(tB − tF )2tB log 2 + 2tF − 2tB

2n.

A numerical evaluation with tF = 6, tB = 70 and β = 2−32 shows that N = 2n−71 allows the
adversary to distinguish between Bk and F . As shown in Table 2.1, tF = 6 ensures that when F is
drawn uniformly at random, then pF > 2tF −n with probability less than 2−146. Therefore, if the
differential (a, b) has probability bigger than 270−n for all the keys and the block size is n = 128,
this differential allows to distinguish the block cipher from a random function more efficiently than
the birthday paradox. The formulation of the problem in [BGT11] slightly differs from ours since
they consider the classical goal of recovering the key rather than distinguishing the block cipher from
a random permutation. Actually, since the original work of Biham and Shamir [BS91], differentials
have mostly been used to mount key-recoveries.

We have just presented a complexity estimation of the online phase but we still need techniques
to find good probability differentials during the offline phase. In Section 2.2, we explain the basic
exhaustive search and in Section 2.3, we explain the classical strategy for finding differentials in
iterative block ciphers.

2.2 Exhaustive knowledge of differentials

Let F : Fn
2 → Fn

2 be an arbitrary map. The goal of this section is to introduce the tools and
techniques to compute the value p (F, a→ b) for all a, b ∈ Fn

2 .
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Algorithm 4 Compute the DDT of a function F : Fn
2 → Fn

2 .
1: Create a table DDT of dimensions 2n × 2n for n-bit integers initialized to 0.
2: for all a ∈ Fn

2 do
3: for all x ∈ Fn

2 do
4: Increment DDT (a, F (x + a) + F (x)) by 1.
5: return DDT

The Difference Distribution Table (DDT) of F is the mapping

(a, b) ∈ F2n
2 7→

∑
x∈Fn

2

δ (F (x + a) + F (x) , b) .

Thus, DDT (a, b) = 2n · p (F, a→ b) ∈ 2 ·N. A basic algorithm to compute the DDT from the value
table of F is given as Algorithm 4. It needs 22n evaluations of F and the memory to store the
DDT, 22n n-bit integers. If we do not need to know the whole DDT but we need to go over all its
values, Algorithm 4 can be easily adapted to store just the current line of the DDT. In that case,
the memory complexity is just 2n n-bit integers. In fact, this can be useful if we are only interested
in the maximum of the DDT for non-zero differentials, called the differential uniformity.

Definition 2.3 (Differential uniformity [Nyb94]). Let F : Fn
2 → Fn

2 . Its differential uniformity
DU (F ) is defined by

DU (F ) def= max
a6=0,b

DDT (a, b) .

Remark 2.3. It follows from Remark 2.2 that for any function F , its differential uniformity is even
and at least 2. Besides, the differential uniformity is not changed by the composition of additive
isomorphisms [Nyb94, Prop. 1].

The DDT is in fact the most basic tool to understand the differential properties of Sboxes. Indeed,
Sboxes are small (up to n = 8 bits in general) and the basic Algorithm 4 is enough to compute their
DDTs. In particular, the AES Sbox has differential uniformity 4. Actually, it has been shown by
Nyberg in [Nyb94, Prop. 6] that the extended inverse of any finite field has differential uniformity
4. On the contrary, block ciphers have a block size n = 128 and it is impossible in practice to go
through the values of the DDT of a block cipher.

Example 2.1. The Sbox of PRESENT, given in Table 1.1, has the DDT given in Section A.1.

2.3 Differential characteristics
Differential characteristics, also called differential trails, are a powerful tool to find good-probability
differentials in an iterative block cipher. In this section, we first define what they are and then explain
how the AES is, by design, resistant to the existence of good-probability differential characteristics.

2.3.1 Definition and estimation

For a key-alternating cipher like the AES, with round-function R, let us imagine that we can
trace the possible differences in the state from a chosen input difference a = a(0) to a chosen
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x(r)
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k, x(0)
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Figure 2.1 – The states during the encryptions of x(0) and y(0) = x(0) + a verify the differential
characteristic

(
a(0), . . . , a(r)

)
.

output difference b = a(r). We denote by Rk
(i) the map x 7→ R

(
k(i−1) + x

)
and by Bk

(i) the map
x 7→ Rk

(i) ◦ · · · ◦Rk
(1) (x).

Definition 2.4 (Differential characteristic). With the above notation, we call an (r + 1)-uple(
a(0), . . . , a(r)

)
a differential characteristic and we define

pk

(
a(0), . . . , a(r)

) def= 2−n ·
∑

x∈Fn
2

r∏
i=1

δ
(
Bk

(i) (x + a) + Bk
(i) (x) , a(i)

)
.

pk

(
a(0), . . . , a(r)

)
is essentially the probability that for all i ∈ [1, r], the states after round i of the

encryptions of a random x and x + a have a difference a(i). This is illustrated in Figure 2.1

What makes differential characteristics interesting is the relation

p (Bk, a→ b) =
∑(

a(1),...,a(r−1)
) pk

(
a, a(1), . . . , a(r−1), b

)
.

This relation means that if an attacker can find a differential characteristic such that its pk value is
high enough, then the input end a and the output end b of the characteristic make a good pair of
differences to win the PRP game with a differential cryptanalysis.

To find a good differential characteristic and estimate its pk value, it is common to assume that

P
(
y(i+1) + x(i+1) = a(i+1)

∣∣∣y(i) + x(i) = a(i) ∩ · · · ∩ y(1) + x(1) = a(1)
)

= P
(
y(i+1) + x(i+1) = a(i+1)

∣∣∣y(i) + x(i) = a(i)
)

= p
(
Rk

(i+1), a(i) → a(i+1)
)

where x is random, x(i) = Bk
(i) (x) and y(i) = Bk

(i) (x + a). In their seminal work [LMM91], Lai,
Massey and Murphy call this assumption the Markov cipher model because the sequence of random
variables

(
x(i) + y(i)

)
i>1

is a Markov chain. In particular, this assumption holds if the round-keys
of the key-alternating cipher are independent and uniformly distributed. It is obviously not the case
in practice as round-keys are derived from the master key through the key expansion, but the goal
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of making this assumption is mainly to give an estimation of the value pk

(
a(0), . . . , a(r)

)
. Indeed,

with independent and uniform round-keys, we have that

pk

(
a(0), . . . , a(r)

)
=

r−1∏
i=0

p
(
R, a(i) → a(i+1)

)
. (2.1)

A major advantage of this estimation of pk

(
a(0), . . . , a(r)

)
is that it is independent of the key k,

making the analysis of differential characteristics a bit simpler. Moreover, Daemen and Rijmen write
in Chapter 8 of [DR01a] that such an estimation is quite accurate when the round-function provides
good confusion and diffusion and when the value of the estimation is not below 2−n+1. Indeed, an
estimation below 2−n+1 would not really have much sense as 2n−1pk

(
a(0), . . . , a(r)

)
is an integer.

Equation (2.1) finally highlights the importance of studying the propagation of differences through
successive applications of the round-function.

2.3.2 The wide-trail strategy

From a designer’s point of view, we want our design to resist differential cryptanalysis. Consequently,
we want to avoid the existence of good probability differential characteristics. In [DR01b], Daemen
and Rijmen explain their wide-trail design strategy (first presented in [Dae95]) to bound the quantity
p
(
a(0), . . . , a(4)

)
for 4 rounds of a key-alternating cipher assumed to behave like a Markov cipher.

In particular, they used this strategy to design the AES. In this section, we briefly illustrate their
ideas with the design of the AES and we first need the definition of the differential branch number.

Definition 2.5 (Hamming weight). Let x ∈ KN for some field K and a positive integer N . The
support and the Hamming weight of x with respect to K are respectively defined by

suppK (x) def= { i | xi ∈ K\{0} } and wtK (x) def= |suppK (x)| .

Definition 2.6 (Differential branch number [Dae95]). The differential branch number of the K-linear
function x 7→M · x with respect to K is

min
x6=0

wtK (x) + wtK (M · x)

We now explicit how to bound the probability of characteristics from the SubBytes operation to
4 full rounds. The different bounds will be of the form

(
DU (Sbox) · 2−8)W where W is called the

number of active Sboxes.

Characteristics in SubBytes.

Since SubBytes is a parallel application of the Sbox, we have for all a, b ∈M4 (K) that

p (SubBytes, a→ b) =
3∏

i,j=0
p (Sbox, ai,j → bi,j) .
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Moreover, the Sbox is a permutation of K and then for all a ∈ K?, p (Sbox, a→ 0) = p (Sbox, 0→ a) =
0 and p (Sbox, 0→ 0) = 1. Finally,

p (SubBytes, a→ b) = δ(suppK (a) , suppK (b)) ·
∏

(i,j)∈suppK(a)
p (Sbox, ai,j → bi,j)

6
(DU (Sbox)

28

)wtK(a)
.

To reduce the probability of the differential, the Sbox should have a minimum differential uniformity
and since for an 8-bit Sbox, the best known differential uniformity is 4, the AES Sbox has been
chosen to verify DU (Sbox) = 4. For a given differential (a, b) with suppK (a) = suppK (b), the
bytes at position (i, j) ∈ suppK (a) are called active Sboxes.

Characteristics in R.

Since ShiftRows and MixColumns are linear operations, they propagate differences deterministically
and it is clear that for all (a, b),

p (R, a→ b) = p
(
SubBytes, a→ ShiftRows−1 ◦ MixColumns−1(b)

)
6
(
DU (Sbox) · 2−8

)wtK(a)
.

Characteristics in AES(2).

Let
(
a(0), a(1), a(2)

)
∈M4 (K)3 and b(i) = MixColumns−1

(
a(i)

)
. Then

p
(
a(0), a(1), a(2)

)
= p

(
R, a(0) → a(1)

)
· p
(
R, a(1) → a(2)

)
6
(
DU (Sbox) · 2−8

)wtK
(

b(1)
)

+wtK
(

a(1)
)

.

The quantity

W
def= wtK

(
b(1)

)
+ wtK

(
a(1)

)
=

∑
j: wtK

(
b

(1)
∗,j

)
>1

wtK
(
b

(1)
∗,j

)
+ wtK

(
M · b(1)

∗,j

)

is then the number of active Sboxes of this 2-round trail. In fact, since we want to avoid the existence
of a good probability characteristic, the MixColumns matrix M of the AES is specifically chosen to
minimize the maximum over x of the quantity

(
DU (Sbox) · 2−8

)wtK(x)+wtK(M ·x)

as much as possible with a maximum differential branch number. As a square matrix of size 4, the
AES MixColumns matrix M reaches the maximum possible branch number of 5.
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a(0) b(1) a(1) b(2) a(2)

a(2) b(3) a(3) b(4) a(4)

MC

MCSRMCSR

SR MC SR

Figure 2.2 – 4-round trail with 25 active Sboxes with suppK

(
b(2)

)
= {(0, 0)}.

Characteristics in AES(4).

Let
(
a(0), a(1), a(2), a(3), a(4)

)
∈M4 (K)5, b(i) = MixColumns−1

(
a(i)

)
and

W =
∑

j: wtK
(

b
(1)
∗,j

)
>1

wtK
(
b

(1)
∗,j

)
+ wtK

(
M · b(1)

∗,j

)
+

∑
j: wtK

(
b

(3)
∗,j

)
>1

wtK
(
b

(3)
∗,j

)
+ wtK

(
M · b(3)

∗,j

)
.

Then with the case of AES(2) we have that

p
(
a(0), a(1), a(2), a(3), a(4)

)
= p

(
a(0), a(1), a(2)

)
· p
(
a(2), a(3), a(4)

)
6
(
DU (Sbox) · 2−8

)W
.

W is then the number of active Sboxes for this 4-round trail. Since M has branch number 5, we
have that

W > 5 ·
∣∣∣{ j

∣∣∣ wtK
(
b

(1)
∗,j

)
> 1

}∣∣∣+ 5 ·
∣∣∣{ j

∣∣∣ wtK
(
b

(3)
∗,j

)
> 1

}∣∣∣ .
Moreover, since the number of active columns is not changed by the MixColumns operation, we have
as much active columns in b(1) as in a(1). Let j0 be the index of an active column of a(2). Then with
the branch number of M , wtK

(
a

(2)
∗,j0

)
+wtK

(
b

(2)
∗,j0

)
> 5. Now the ShiftRows operation sends all the

active bytes of a
(2)
∗,j0

to different columns of b(3). With ShiftRows−1, there is the same phenomenon
from b

(2)
∗,j0

to a(1). Finally, W > 25 which is the square of the branch number of M . Note that this
minimum for the number of active Sboxes can be reached by following the above proof, as shown
in Figure 2.2. In this figure, the support of a difference in the state matrix is represented by gray
squares and the number of active Sboxes in the trail can be counted on the number of gray squares
in a(i) for i ∈ [0, 3].

To summarize, we have the following proposition.

Proposition 2.3. For all
(
a(0), . . . , a(4)

)
∈M4 (K)5 with a(i) 6= 0,

p
(
a(0), . . . , a(4)

)
6 2−150

when AES(4) is assumed to behave as a Markov cipher.

Proof. DU (Sbox) = 4 and p
(
a(0), . . . , a(4)

)
6
(
DU (Sbox) · 2−8)−25.
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Table 2.2 – [Mou+11, Table 4] Minimum number W of active Sboxes for r rounds of AES.

r 1 2 3 4 5 6 7 8 9 10 11 12 13 14
W 1 5 9 25 26 30 34 50 51 55 59 75 76 80

2.3.3 Minimizing the number of active Sboxes

As we saw in the proof of Proposition 2.3, the differential uniformity of the Sbox (i.e. the maximum
non-trivial value of its DDT) and the minimum number of active Sboxes are the two main ingredients
for estimating the probability of a characteristic. In fact, the main benefit of the wide-trail design
strategy is to build a round function for which the minimum number of active Sboxes can be
explicitly computed. However, for more than 4 rounds, it is not clear whether the minimum number
of active Sboxes derived from the minimums over 1, 2, 3 or 4 rounds is tight or whether they just
provide lower bounds. Mouha, Wang, Gu and Preneel proposed in [Mou+11] to explicitly compute
this minimum number of active Sboxes for any number of rounds by modeling ShiftRows and the
branch number of MixColumns as Mixed-Integer Linear Programming (MILP) constraints. Then,
they could use a MILP solver to compute the exact minimum number of active Sboxes very easily.
We give their results for completeness in Table 2.2. Interestingly, for an even number of rounds
r = 4r4 + 2r2 6 14, the branch number bounds for 2 and 4 rounds are tight: W = 25r4 + 5r2.

This success of Mouha et al. in [Mou+11] stimulated the use of MILP solvers to get more
accurate bounds on the probability of characteristics but also for many other uses in cryptanalysis.
In particular, Sun et al. proposed in [Sun+14a] MILP-based methods to compute accurately the
minimum number of active Sboxes by taking the internals of DDTs of 4-bit Sboxes into account.
The designers of the SKINNY block cipher [Bei+16] used these approaches to provide lower bounds
on the number of active Sboxes in their design. Abdelkhalek et al. went further in [Abd+17] by
extending the work of Sun et al. in two directions.

• They proposed the first efficient method to model the DDT of an 8-bit Sbox.

• By splitting the DDT with respect to its different values, they proposed a method to bound
the probability of characteristics directly and without the differential uniformity.

These works (among others) demonstrated how useful modeling cryptographic problems into MILP
problems could be in studying symmetric-key primitives.

In Chapter 4, we aim at making the use of MILP solvers even more efficient and practical for
cryptographers with an emphasis on differential and impossible differential cryptanalysis.

2.4 Impossible differential cryptanalysis
We saw in Section 2.1 that differential cryptanalysis allowed to mount distinguishers on the basis
of a good probability differential holding for a non-negligeable fraction of the keys. Impossible
differential cryptanalysis, on the contrary, uses the distinguishing property that a differential (a, b)
has probability zero for all keys. More precisely, if p (Bk, a→ b) = 0 for all k, then (a, b) is called
an impossible differential. Since for a random function F ,

lim
n→+∞

P (p (F, a→ b) = 0) = exp (−1/2) > 0.6,
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Figure 2.3 – 4-round impossible truncated differential in the AES.

a(0) MixColumns−1
(
a(2)
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Figure 2.4 – 2-round truncated differential trails. Cells with the same color have to be non-active
together.

impossible differentials usually offer a better distinguishing property when they are clustered.
Typically for SPN ciphers, as we saw in Figure 2.2, differential characteristics are naturally

clustered around the active Sboxes; in the sense that, over a few rounds, two differentials (a, b)
and (a′, b′) such that suppK (a) = suppK (a′) and suppK (b) = suppK

(
b′) will be composed of very

similar trails.
Knudsen introduced the study of clustered differentials, called truncated differential cryptanalysis,

in [Knu95] and performed the first impossible differential attack on his AES candidate DEAL in
[Knu98]. Impossible differential cryptanalysis was soon formalized by Biham, Biryukov and Shamir
in [BBS99]. Biham et al. notably introduced the miss-in-the-middle technique to find impossible
differentials. On the example of the AES, the 4-round truncated differentials with exactly one active
byte in the input difference and at least one inactive column when applying the last SubBytes
operation are impossible, as shown in Figure 2.3. This is a miss-in-the-middle: in the middle of
the 4 rounds, we have a contradiction between necessarily active bytes because of the input and
necessarily non-active bytes because of the output. Bahrak and Aref were the first ones to apply
impossible differential cryptanalysis to the AES in [BA08] and improvements came with the works
of Lu et al. [Lu+08], Mala et al. [Mal+10] and Boura et al. [Bou+18] for example. All these attacks
were based on the same kind of 4-round impossible truncated differential like the one of Figure 2.3.

In 2016, Grassi, Rechberger and Rønjom rephrased the classical 2-round truncated differential
trails of Figure 2.4 as subspace trails [GRR16]. They also exhibited that using these subspace trails
twice gives several 4-round impossible differential distinguishers. The one of Figure 2.3 is one of
them. Their new formulation led them to the best chosen plaintext distinguisher on 5-round AES
[GRR17] and to the best key-recovery attack on 5-round AES [Gra18]. We present and generalize
these attacks to any SPN in Chapter 3.





Chapter 3

Subspace-trail cryptanalysis

Contributions brought forward in this chapter were published in ToSC 2019, Issue 1, and are a joint
work with Christina Boura and Anne Canteaut. [BCC19].

3.1 Introduction
Originally designed to withstand against differential and linear statistical attacks and basic algebraic
attacks, the AES has inspired the developpement and the improvement of many cryptanalysis
techniques like integral attacks [Fer+01; GM00], meet-in-the-middle attacks [DS08] and impossible
differential attacks [BA08]. These attacks traditionally aim at performing a key recovery on rkr
rounds thanks to a distinguisher on rdis rounds with rdis < rkr. For all those attacks, the distinguisher
affects at most 4 AES rounds — rdis 6 4 — and the key recovery is more efficient than the exhaustive
search of the 128, 192 or 256-bit key for respectively 7, 8 and 9 rounds [Jea13].

In the years 2016-2018, distinguishers on 5 AES rounds were found [Sun+16a; GRR17; RBH17;
Gra18], revealing unknown properties of this reduced version of the AES. In particular, Grassi,
Rechberger and Rønjom demonstrated at Eurocrypt 2017 [GRR17] that there exist two specific
linear subspaces V and W of F128

2 such that for any coset of V , the number of pairs of elements
x, x′, x 6= x′ in this coset satisfying

AES(5) (x) + AES(5) (x′) ∈W

is always a multiple of 8, where AES(5) is the AES block cipher reduced to 5 rounds, including the
whitening key. They named this distinguishing behaviour the multiple-of-8 property. Unfortunatly,
the structure of V and W did not allow to extend this 5-round distinguisher to a key recovery on
more rounds, as with classical integral or impossible differential distinguishers. To overcome this
issue, Grassi derived new 4-round distinguishers from the proof of the multiple-of-8 property that he
could turn into a key recovery [Gra18]. He called them mixture-differential distinguishers. His key
recovery was soon improved by Baron, Dunkelman, Keller, Ronen and Shamir to give the best key
recovery on AES(5) [Bar+18].

The proof of the multiple-of-8 property given in [GRR17] suffers from two major drawbacks.
First, it is divided in many cases proved separately despite being very close. Second, although Grassi
et al. could adapt their proof to other subspaces, this adaptation came at the cost of another yet
very similar proof. Third, these redundant proofs were very specific to the AES construction and
could not allow to discriminate the properties of its components which are essential to the proofs.

73
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Consequently, the question whether other SPN block ciphers could be vulnerable to the multiple-of-8
property remained open and the same issues could be raised for mixture-differential distinguishers.

The goal of this chapter is to present a general formulation and alternative proofs of both
properties for SPN block ciphers. This new formulation allows in particular to study their resistance
against multiple-of and mixture-differential distinguishers in a systematic way.

Our contributions. The multiple-of-8 property of [GRR17] and the mixture-differential distin-
guishers of [Gra18] are the consequences of two facts.

• There exist 2-round subspace trails for the AES. This was already shown by Grassi, Rechberger
and Rønjom in 2016 [GRR16].

• For at least one subspace of state elements W at the end of a subspace trail and any of its
coset, the map from pairs of vectors from this coset to the difference between their images
through the AES round function{

p0, p1
}
7→ R

(
p0
)

+ R
(
p1
)

is invariant under an equivalence relation between pairs. This formulation is new and comes
from the work presented here.

We provide a simple and compact proof for the second fact and for both the multiple-of-8 property
and the mixture differential distinguishers. Our proofs clarify which properties of the AES round
function enable these attacks. In order to generalize these attacks to other SPN ciphers, we also
explicit the form of linear subspaces W for which the second fact holds. Combining this generalization
with an algorithm by Leander, Tezcan and Wiemer dedicated to the search for subspace trails in
SPN ciphers [LTW18], we show how to find the same kind of property in any SPN cipher with the
examples of Midori [Ban+15], KLEIN [GNL12], LED [Guo+11] and SKINNY [Bei+16].

Organization of the chapter. Basic definitions on subspace trails are recalled in Section 3.2.
Section 3.3 describes the multiple-of-8 property from [GRR17] and the mixture-differential distin-
guishers from [Gra18]. In Section 3.4, we exhibit an equivalence relation between pairs of AES
states, which leads to a new proof of the above properties and we discuss the influence of the branch
number of the MixColumns matrix on these results. Then, an adaptation to any SPN and other
linear subspaces is presented in Section 3.5. Finally, applications on different ciphers are provided
in Section 3.6.

3.2 Subspace trails in the AES
We recall in this section the basic notation on subspace-trail cryptanalysis of AES, first introduced
in [GRR16] and we will reuse the notation introduced in Section 1.4.3.

Let d be the degree of the extension over F2 on which the Sbox operates and K = F2d . As we
saw in Section 1.4.3, d = 8 for the AES but since the results do not depend on the Sbox or the
MixColumns matrix, we can choose an arbitrary d. Moreover, simulations are often performed on
small-scale variants of the AES with a 4-bit S-box (see e.g. Section 5.2 in [Gra18]). Let (ei,j)i,j∈[0,...,3]
be the canonical basis of M4 (K). In the following, vectK (v0, . . . , vk−1) denotes the linear space
formed by all linear combinations with coefficients in K of the vectors v0, . . . , vk−1 ∈M4 (K). As
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in [GRR16; GRR17], we define the following subspaces of M4 (K) for i ∈ [0, . . . , 3], with indices
computed modulo 4.

• The column spaces: Ci = vectK (e0,i, e1,i, e2,i, e3,i),

• The diagonal spaces: Di = vectK (e0,i, e1,i+1, e2,i+2, e3,i+3) = ShiftRows−1(Ci),

• The anti-diagonal spaces: IDi = vectK (e0,i, e1,i−1, e2,i−2, e3,i−3) = ShiftRows(Ci),

• The mixed spaces: Mi = MixColumns(IDi).

For example, if x0, x1, x2, x3 ∈ K,
x0 0 0 0
x1 0 0 0
x2 0 0 0
x3 0 0 0

 ∈ C0,


x0 0 0 0
0 x1 0 0
0 0 x2 0
0 0 0 x3

 ∈ D0,


2 · x0 x1 x2 3 · x3

x0 x1 3 · x2 2 · x3
x0 3 · x1 2 · x2 x3

3 · x0 2 · x1 x2 x3

 ∈M0,


x0 0 0 0
0 0 0 x1
0 0 x2 0
0 x3 0 0

 ∈ ID0.

For I ⊆ {0, 1, 2, 3}, we also define:

CI =
∑
i∈I

Ci, DI =
∑
i∈I

Di, IDI =
∑
i∈I

IDi, MI =
∑
i∈I

Mi.

Now that we have linear subspaces of M4 (K), we define their cosets as affine subspaces
of M4 (K). More precisely, a coset of the linear subspace V ⊆ M4 (K) is a set of the form
V + a = {v + a | v ∈ V } where a ∈M4 (K). Moreover, we are going to pay attention to subspaces
that satisfy a specific property defined below.

Definition 3.1 (Subspace trail [GRR16]). Let F : KN → KN be any map. Two linear subspaces
U, V ⊆ KN form an F -subspace trail if

∀a ∈ KN , ∃b ∈ KN : F (U + a) ⊆ V + b, (3.1)

which is denoted by U
F
⇒ V . The negation is denoted by U

F
6⇒ V . An (r + 1)-tuple of subspaces(

U (0), . . . , U (r)
)

is called a subspace trail over r rounds
(
F (1), . . . , F (r)

)
if

∀i ∈ [1, . . . , r], U (i−1) F (i)

⇒ U (i).

For example, we have the trivial subspace trails {0}
F
⇒ {0} and U

F
⇒ KN . In this chapter, we

only consider exact subspace trails, i.e., for which equality holds in (3.1). If F is a bijection, this
means that dim U = dim V .
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3.3 Distinguishers based on subspace trails

We describe in this section three distinguishers based on subspace trail cryptanalysis in order to
have a complete understanding of the context in which our contribution lies. The first one, describes
the multiple-of-8 property presented by Grassi, Rechberger and Rønjom at Eurocrypt 2017 [GRR17],
while the other two are based on the mixture differential property and were published by Grassi
in [Gra18].

3.3.1 The multiple-of-8 property

We first describe the distinguisher presented in [GRR17]. We begin with this easy-to-verify lemma
describing a two-round subspace trail for the AES and illustrated in Figure 2.4.

Lemma 3.1 ([GRR16]). Let I ⊆ {0, 1, 2, 3}, then DI

R
⇒ CI

R
⇒MI .

Now comes a more subtle lemma which is the keystone of Theorem 3.1. In the whole chapter,
as in [GRR17], we always consider unordered pairs of elements and denote them as pair sets, i.e.
{a, b}.

Lemma 3.2 ([GRR17]). Let a ∈M4 (K) , i ∈ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}. We define

n =
∣∣∣{ {p0, p1} with p0, p1 ∈Mi + a

∣∣∣ R
(
p0
)

+ R
(
p1
)
∈ DJ

}∣∣∣ .
Then n ≡ 0 mod 8.

A proof of Lemma 3.2 is given in Section 6 of [GRR17] but we provide in Section 3.4 a much
more compact proof of this same result. A direct consequence of Lemmas 3.1 and 3.2 is the following
theorem.

Theorem 3.1 ([GRR17]). Let a ∈M4 (K) , i ∈ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3}. We define

n =
∣∣∣{ {p0, p1} with p0, p1 ∈Mi + a

∣∣∣ AES(5)
(
p0
)

+ AES(5)
(
p1
)
∈MJ

}∣∣∣ .
Then n ≡ 0 mod 8.

Theorem 3.1 directly provides a distinguisher for five rounds of the AES independent of the secret
key. Indeed, given an oracle simulating either five rounds of the AES, either a random permutation,
one can compute the number n from Theorem 3.1 with only the 232 plaintexts belonging to the
same coset of Di. This distinguisher is fully described in [GRR17].

Exploiting the above distinguisher for mounting a key-recovery attack on more rounds revealed
to be however a difficult task because of the form of the output subspaceMJ . Indeed, asMJ affects
the whole AES-state, a key-recovery attack requires the guess of the entire subkey in the last round.
For this reason, Grassi presented in [Gra18] new distinguishers that exploit similar properties but
have a description that is more adapted to a key-recovery attack. The counterpart is that these
distinguishers cover one round less than in [GRR17].
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3.3.2 Mixture-differential distinguishers

In the following, we use the notation from [Gra18]: for a given basis (g0, . . . , gk−1) and a given element
a ∈M4 (K), a vector p in the affine subspace a+vectK

(
g0, . . . , gk−1

)
defined by p = a+

∑k−1
i=0 xigi

with xi ∈ K is denoted by p ≡ (x0, . . . , xk−1).

Theorem 3.2 ([Gra18]). Let a ∈ M4 (K) , i ∈ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3} and let p0, p1, q0, q1 ∈
vectK (e0,i, e1,i) + a. Suppose that

p0 ≡ (x0, x1), p1 ≡ (y0, y1), q0 ≡ (x0, y1), q1 ≡ (y0, x1).

Then
AES(4)

(
p0
)

+ AES(4)
(
p1
)
∈MJ ⇐⇒ AES(4)

(
q0
)

+ AES(4)
(
q1
)
∈MJ .

We will provide an alternative proof of Theorem 3.2 in Section 3.5. The following variant of the
distinguisher, involving another input subspace, is also exhibited in [Gra18].

Theorem 3.3 ([Gra18]). Let a ∈ M4 (K) , i ∈ {0, 1, 2, 3}, J ⊆ {0, 1, 2, 3} and let p0, p1 ∈ Ci + a.
Suppose that p0 ≡ (x0, x1, x2, x3) and that p1 ≡ (y0, y1, y2, y3). Then,

AES(4)
(
p0
)

+ AES(4)
(
p1
)
∈MJ ⇐⇒ AES(4)

(
q0
)

+ AES(4)
(
q1
)
∈MJ ,

for all sets of plaintexts {q0, q1} with q0, q1 ∈ Ci + a of the following form:

1. q0 ≡ (y0, x1, x2, x3), q1 ≡ (x0, y1, y2, y3),
2. q0 ≡ (x0, y1, x2, x3), q1 ≡ (y0, x1, y2, y3),
3. q0 ≡ (x0, x1, y2, x3), q1 ≡ (y0, y1, x2, y3),
4. q0 ≡ (x0, x1, x2, y3), q1 ≡ (y0, y1, y2, x3),

5. q0 ≡ (x0, x1, y2, y3), q1 ≡ (y0, y1, x2, x3),
6. q0 ≡ (x0, y1, x2, y3), q1 ≡ (y0, x1, y2, x3),
7. q0 ≡ (x0, y1, y2, x3), q1 ≡ (y0, x1, x2, y3),

We will provide a proof of Theorem 3.3 in Section 3.4.

3.4 A more concise and general proof

This section is dedicated to our proof of Lemma 2 from [GRR17] (Lemma 3.2 here). This new proof
is a much more concise version of the case-by-case proof given in the original paper. To be more
precise, instead of proving Lemma 2, we prove directly a more general variant. This generalisation
is present in the original paper but its proof is only sketched in Appendix A of [GRR17]. Indeed,
the proof framework of Lemma 2 in [GRR17] does not allow a compact proof of this generalisation.

Our approach for proving Lemma 3.2 can be divided into three steps:

• there exists an equivalence relation between pairs of elements in a certain subspace of M4 (K)
(Definition 3.3);

• some function on those pairs derived from the round function is invariant under this equivalence
relation (Theorem 3.4);

• the cardinality of the equivalence classes is always a multiple of 8 (Proposition 3.1).
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In the following, we fix a ∈ M4 (K), I ⊆ {0, 1, 2, 3} and J ⊆ {0, 1, 2, 3}. Here it might help to
remind that

IDI = vectK (ek,i−k | k ∈ {0, 1, 2, 3} , i ∈ I) = vectK (ei−k,k | k ∈ {0, 1, 2, 3} , i ∈ I) ,

MI = MixColumns(IDI) = vectK (MixColumns(ei−k,k) | k ∈ {0, 1, 2, 3} , i ∈ I) .

3.4.1 An equivalence relation between pairs of states

Definition 3.2 (Information set). Let
{
p0, p1} be a set of elements in MI + a, written as

p0 =
3∑

k=0

∑
i∈I

p0
i,k · MixColumns(ei−k,k) + a and p1 =

3∑
k=0

∑
i∈I

p1
i,k · MixColumns(ei−k,k) + a

for some (uniquely defined) p0
i,k, p1

i,k ∈ K, i ∈ I, 0 6 k 6 3. The information set K of
{
p0, p1} is

defined as
K =

{
k ∈ {0, 1, 2, 3}

∣∣∣ ∃i ∈ I : p0
i,k 6= p1

i,k

}
.

Definition 3.3 (Equivalence relation). Let P =
{
p0, p1} and Q =

{
q0, q1} with p0, p1, q0, q1

∈MI + a. We say that P ∼ Q if:

•
{
p0, p1} and

{
q0, q1} have the same information set K.

• ∀k ∈ K,∃b ∈ {0, 1} : ∀i ∈ I, q0
i,k = pb

i,k and q1
i,k = p1−b

i,k .

Clearly, ∼ is an equivalence relation on unordered pairs of MI + a.

Example 3.1. The following two sets
{
p0, p1} and

{
q0, q1}, with p0, p1, q0, q1 ∈M0 are equivalent

and their information set K has cardinality |K| = 2.

{
p0, p1

}
=




2 · x0 x1 z2 3 · z3
x0 x1 3 · z2 2 · z3
x0 3 · x1 2 · z2 z3

3 · x0 2 · x1 z2 z3

 ,


2 · y0 y1 z2 3 · z3

y0 y1 3 · z2 2 · z3
y0 3 · y1 2 · z2 z3

3 · y0 2 · y1 z2 z3




∼

{
q0, q1

}
=




2 · x0 y1 w2 3 · w3
x0 y1 3 · w2 2 · w3
x0 3 · y1 2 · w2 w3

3 · x0 2 · y1 w2 w3

 ,


2 · y0 x1 w2 3 · w3

y0 x1 3 · w2 2 · w3
y0 3 · x1 2 · w2 w3

3 · y0 2 · x1 w2 w3




Now that we have the right definitions, we can state and prove the following key theorem that
has also other applications than just proving Lemma 3.2. It is worth noticing that, in the original
proof of Lemma 3.2, the authors split the proof procedure in several cases, each case corresponding
to a different size of the information set. In our approach we assemble all cases together by using
the above introduced equivalence relation.

Theorem 3.4. For any a ∈M4 (K), the function ∆ operating on unordered pairs of elements in
MI + a and defined by

∆ :
{
p0, p1} 7−→ R

(
p0)+ R

(
p1)

is constant over the equivalence classes for ∼.
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Proof. Let P =
{
p0, p1} and Q =

{
q0, q1} with p0, p1, q0, q1 ∈MI + a such that P ∼ Q. We write

as in Definition 3.2

p0 =
3∑

k=0

∑
i∈I

p0
i,kMixColumns(ei−k,k) + a and p1 =

3∑
k=0

∑
i∈I

p1
i,kMixColumns(ei−k,k) + a.

We also write the MixColumns matrix MMixColumns = (m`,k)06`,k63. Hence

p0 =
∑
k,`

∑
i∈I

p0
i,km`,i−ke`,k + a =

∑
k,`

(∑
i∈I

p0
i,km`,i−k + a`,k

)
e`,k.

Then SubBytes
(
p0) =

∑
k,` Sbox

(∑
i∈I p0

i,km`,i−k + a`,k

)
e`,k and

SubBytes
(
p0
)

+ SubBytes
(
p1
)

=
∑
k,`

[
Sbox

(∑
i∈I

p0
i,km`,i−k + a`,k

)
+ Sbox

(∑
i∈I

p1
i,km`,i−k + a`,k

)]
e`,k . (3.2)

It is now clear with Definition 3.3 and Equation (3.2) that SubBytes
(
p0)+ SubBytes

(
p1) and

SubBytes
(
q0)+ SubBytes

(
q1) are equal in M4 (K). Indeed, with K the information set of P and

Q,

SubBytes
(
q0
)

+ SubBytes
(
q1
)

=
∑

k,`∈{0,1,2,3}

[
Sbox

(∑
i∈I

q0
i,km`,i−k + a`,k

)
+ Sbox

(∑
i∈I

q1
i,km`,i−k + a`,k

)]
e`,k

=
∑

`∈{0,1,2,3},

k∈K

[
Sbox

(∑
i∈I

q0
i,km`,i−k + a`,k

)
+ Sbox

(∑
i∈I

q1
i,km`,i−k + a`,k

)]
e`,k

=
∑

`∈{0,1,2,3},

k∈K

[
Sbox

(∑
i∈I

q
b(k)
i,k m`,i−k + a`,k

)
+ Sbox

(∑
i∈I

q
1−b(k)
i,k m`,i−k + a`,k

)]
e`,k

=
∑

`∈{0,1,2,3},

k∈K

[
Sbox

(∑
i∈I

p0
i,km`,i−k + a`,k

)
+ Sbox

(∑
i∈I

p1
i,km`,i−k + a`,k

)]
e`,k

= SubBytes
(
p0
)

+ SubBytes
(
p1
)

.

Therefore,

∆(P ) = R
(
p0
)

+ R
(
p1
)

= MixColumns ◦ ShiftRows
(
SubBytes

(
p0
)

+ SubBytes
(
p1
))

= MixColumns ◦ ShiftRows
(
SubBytes

(
q0
)

+ SubBytes
(
q1
))

= ∆(Q).
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We would like to adapt in Section 3.5 the previous theorem to any SPN structure and any linear
space. For this, it is important to identify the key argument that makes the proof work. Looking at
the proof carefully, it appears that it relies on the fact that the coordinates pi,k of the elements inMI

can be decomposed into disjoint sets, in such a way that each individual S-box involves only one
coordinate subset. Here, the four subsets correspond to the coordinates pi,k sharing the same index k.
Indeed, the Sbox at Row ` and Column k involves all pi,k, i ∈ I. This particular structure then makes
possible to exchange between the two pairs

{
p0, p1} and

{
q0, q1} the coordinates corresponding to

one of the subsets. This is exactly the property that we will consider in the generalisation presented
in Section 3.5.

3.4.2 Multiple-of-8 equivalence classes

The multiple-of-8 property presented in Lemma 3.2 is then a direct consequence of the previous
theorem. It is derived by combining the theorem with the following proposition, which computes
the cardinality of the equivalence classes.

Proposition 3.1. Let C be an equivalence class with information set K. The cardinality of C is

|C| = 2|K|−1+d|I|(4−|K|).

It is always a multiple of 8.

Proof. Since for a given set
{
p0, p1} with information set K, we have that ∀k 6∈ K,∀i ∈ I, p0

i,k = p1
i,k,

we have (2d)|I|×(4−|K|) choices for the shared coordinates in a pair of C. Those coordinates fixed, we
have to make for all k ∈ K the choice b = 0 or b = 1, i.e. 2|K| choices. Since we are counting unordered
pairs, we have 2|K|−1+d|I|(4−|K|) elements in C. Obviously, the exponent |K| − 1 + d|I|(4− |K|) is
minimal for |K| = 4. We deduce that

|K| − 1 + d|I|(4− |K|) > 3 ,

leading to |C| ≡ 0 mod 8.

By combining Proposition 3.1 and Theorem 3.4, we deduce the following corollary which
generalises Lemma 3.2 in the sense that we are not restricted to the case |I| = 1 as in Lemma 3.2.

Corollary 3.1. Let

n =
∣∣∣{ {p0, p1

}
with p0, p1 ∈MI + a

∣∣∣ R
(
p0
)

+ R
(
p1
)
∈ DJ

}∣∣∣ .
Then, n ≡ 0 mod 8.

Proof. Let P2(MI + a) denote the set of all unordered pairs of elements in MI + a, and P2(MI +
a)
/
∼ denote the set of all equivalence classes for ∼. Since the equivalence classes form a partition

of P2(MI + a), we have that

n =
∣∣∣∆−1(DJ)

∣∣∣ =
∑

C∈P2(MI+a)
/

∼

∣∣∣∆−1(DJ) ∩ C
∣∣∣ .
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We know from Theorem 3.4 that ∆ is constant on the equivalence classes, implying that(
∆−1(DJ) ∩ C

)
equals either 0 or |C|. In other words, there exists a function δ from P2(MI + a)

/
∼

into {0, 1} such that ∣∣∣∆−1(DJ) ∩ C
∣∣∣ = δ(C)× |C| .

It follows that
n =

∑
C∈P2(MI+a)

/
∼

δ(C)× |C| ≡ 0 mod 8,

since, by Proposition 3.1, all equivalence classes have a cardinality divisible by 8.

3.4.3 Influence of the branch number

In [GRR17], the proof of Lemma 2 uses the fact that the differential branch number of MixColumns
denoted by b is maximal and equal to 5 but as we have seen, the branch number b does not have any
importance for this lemma. It affects the exact value of n, but not the fact that it is a multiple of 8.

Indeed, in the formula given in the proof of Corollary 3.1 for computing n, we can distinguish
between the different equivalent classes according to the size of their information set:

n =
∑

C∈P2(MI+a)
/

∼

δ(C)× |C| =
4∑

h=0

∑
C:|K(C)|=h

δ(C)× |C| .

Obviously, for any
{
p0, p1} with information set K,

p0 + p1 =
3∑

k=0

∑
i∈I

(p0
i,k + p1

i,k)MixColumns(ei−k,k)

=
∑
k∈K

∑
i∈I

(p0
i,k + p1

i,k)MixColumns(ei−k,k) ∈ CK ,

implying, by Lemma 3.1, that (R
(
p0)+ R

(
p1)) belongs to MK .

However, it has been proved in [GRR16, Lemma 5] that, for any two sets I, J ⊆ {0, . . . , 3} such
that |I|+ |J | < b where b is the branch number of MixColumns, we have DI ∩MJ = {0}. It then
follows that, if K has size h < b − |J |, then R

(
p0) + R

(
p1) 6∈ DJ unless p0 = p1. We can then

express the influence of the branch number on n with the formula

n =
4∑

h=b−|J |

∑
C:|K(C)|=h

δ(C)× |C| ,

which does not affect the multiple-of-8 property.

3.4.4 An alternative proof of Theorem 3.3

The multiple-of-8 property is a consequence of Theorem 3.4, which states that the function ∆ is
constant over each equivalence class. However, this invariance can be directly used as a distinguishing
property. This is actually what is done by the second mixture-differential distinguisher exhibited
in [Gra18] and detailed in Theorem 3.3: Theorem 3.3 is nothing else than the combination of
Theorem 3.4 with the subspace trail given by Lemma 3.1. Indeed, consider p0 and p1 in Ci + a with
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p0 ≡ (x0, x1, x2, x3) and p1 ≡ (y0, y1, y2, y3). Then, from Lemma 3.1, R
(
p0) and R

(
p1) belong to

the same coset of Mi and their decompositions over the basis
(
MixColumns(ei−j,j)j∈[0,3]

)
are given

by

R
(
p0
)
≡ (Sbox(x0 + a0,i), . . . , Sbox(x3 + a3,i))

R
(
p1
)
≡ (Sbox(y0 + a0,i), . . . , Sbox(y3 + a3,i)) .

It follows that, if the two pairs
{
p0, p1} and

{
q0, q1} satisfy one of the relations given in Theorem 3.3,

then
{
R
(
p0) , R

(
p1)} and

{
R
(
q0) , R

(
q1)} belong to the same equivalence class for ∼. We then

deduce from Theorem 3.4 that ∆ takes the same value on these two pairs, i.e.,

AES(2)
(
p0
)

+ AES(2)
(
p1
)

= AES(2)
(
q0
)

+ AES(2)
(
q1
)

.

Consequently,

AES(2)
(
p0
)

+ AES(2)
(
p1
)
∈ DJ ⇐⇒ AES(2)

(
q0
)

+ AES(2)
(
q1
)
∈ DJ .

Moreover, we know from Lemma 3.1 that DJ

R
⇒ CJ

R
⇒MJ , implying that

AES(4)
(
p0
)

+ AES(4)
(
p1
)
∈MJ ⇐⇒ AES(4)

(
q0
)

+ AES(4)
(
q1
)
∈MJ .

3.5 Adaptation to a general SPN construction
We provide in this section an extensive version of the equivalence relation and the multiple-of-8
property for a more general SPN cipher than the AES. A natural question for this extension is to
find out what is the particular property of the subspaces MI for Theorem 3.4 and Lemma 3.2 to
work and whether these spaces could be replaced by others without altering the result. For a general
SPN cipher, we analyse the form of such subspaces with respect to the non-linear layer of the cipher
and provide the necessary conditions for their successful combination.

3.5.1 A more general setting for Theorem 3.4 and Lemma 3.2

Consider a general SPN cipher working on a state of N words, where the size of each word equals
the cipher’s S-box size. Suppose that the cipher is iterated for an arbitrary number of rounds and
that the round-keys as well as the internal state are represented as word-vectors in KN (and not as
matrices). An SPN round R is the composition LinearLayer ◦ SubCells where:

• SubCells is the substitution layer applying an invertible Sbox : K→ K to each word of the
internal state in a certain basis

(
f0, . . . , fN−1

)
of KN . It is important to notice that we define

SubCells and the basis together.

• LinearLayer is the linear layer, a bijective F2-linear map of KN .

We now want to describe a more general subspace V of KN that could play the role of MI in
an adaptation of Theorem 3.4 to the previously described SPN. As we have already noticed in the
previous section, the proof of Theorem 3.4 relies on the fact that the coordinates of the elements in
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the input subspace V can be decomposed into several subsets in such a way that each Sbox involves
only one coordinate subset. This property is captured by the following definition: it requires the
existence of a basis of V which can be decomposed over the original basis

(
f0, . . . , fN−1

)
by a

block-diagonal matrix.

Definition 3.4. Let V be a subspace of KN . We say that V is compatible with SubCells if there
exists a basis of V whose elements written in the basis

(
f0, . . . , fN−1

)
form a block-diagonal matrix

(with blocks having potentially different dimensions) for a certain order of the elements in both
bases. We call such a basis of V a compatibility basis.

Given an arbitrary basis of a subspace V , it is quite easy to check whether V is compatible with
SubCells by computing the unique reduced-echelon form of the corresponding matrix. If, for a
given ordering of the rows, this matrix has a reduced-echelon form which is block-diagonal, then V is
compatible with SubCells and the reduced-echelon form provides a compatibility basis. Otherwise,
V is not compatible with SubCells.

We provide now the necessary notation for describing a compatibility basis g of a compatible
subspace V . For this notation to be as clear as possible, we first give a representation of g as a
collection of column vectors written in the basis f .



∗ · · · ∗
... λ0,`,i

... 0 0
∗ · · · ∗

∗ · · · ∗

0
... λk,`,i

... 0
∗ · · · ∗

∗ · · · ∗

0 0
... λh−1,`,i

...
∗ · · · ∗

0 0 0



← coordinate on f j0+`

← jk + `

← jh−1 + `

↑ ↑ ↑
g0,i gk,i gh−1,i

i < i0 i < ik i < ih−1

• We denote by h the number of blocks. The number of basis vectors in the k-th block, 0 6 k < h
will be denoted by ik. It must obviously hold that

∑h−1
k=0 ik = dim V .

• The basis of V will be denoted by (gk,i)k<h,i<ik
∈ (KN )dim V , which means that V =

vectK
{

gk,i

∣∣∣ k < h, i < ik

}
. The index k of a basis element gk,i stands for the block-number,

while i represents the position of the vector inside the block k.

• There exist (h + 1) integers j0, . . . , jh, with j0 = 0 and jh 6 N , such that for all vectors inside
the k-th block, all coordinates outside the interval {jk, . . . , jk+1 − 1} are zero.
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Then, each basis vector gk,i can be written as

gk,i =
jk+1−jk−1∑

`=0
λk,`,if jk+` (3.3)

for some λk,`,i ∈ K with 0 6 k < h and 0 6 i < ik.

Example 3.2. For the AES, we have N = 16 and the original basis (f0, . . . , f15) is formed by the
vectors ei,j with i, j ∈ {0, . . . , 3}. Let I = {t0, . . . , tr−1} be a subset of size r of {0, . . . , 3}. Then,
MI is compatible with the AES S-box layer. A compatibility basis of MI is given by

gk,i = MixColumns(eti−k,k) for 0 6 k < 4 and 0 6 i < r .

Indeed, when the elements of the original basis are ordered by f4j+i = ei,j for i, j ∈ {0, . . . , 3},(
g0,0, . . . , g3,r−1

)
is obtained by multiplying (f0, . . . , f15) by a matrix with h = 4 blocks, all of size

r. This comes from the fact that, for jk = 4k, we have

gk,i = MixColumns(eti−k,k) =
3∑

`=0
m`,ti−ke`,k =

jk+1−jk−1∑
`=0

m`,ti−kf jk+` ,

where mi,j are the coefficients of the 4 × 4 matrix defining MixColumns. This is exactly the
block-diagonal form described by Equation (3.3).

For example, a basis of M0 can be written as follows, where . corresponds to 0.
A . . .
. B . .
. . C .
. . . D

 where A =


2
1
1
3

 , B =


1
1
3
2

 , C =


1
3
2
1

 , D =


3
2
1
1

 .

From now on, we fix a ∈ KN and a subspace V compatible with SubCells with compatibility
basis g. The notion of information set and the equivalence relation between pairs of elements
in (a + V ) now involve the decomposition of the elements in V over the basis

{
gk,i

}
, where the

coordinates corresponding to the same k are gathered together. The next definition adapts the
notion of information set to this context.

Definition 3.5 (Information set). Let
{
p0, p1} be an unordered pair of elements from V +a, written

as

p0 =
h−1∑
k=0

ik−1∑
i=0

p0
i,kgi,k + a and p1 =

h−1∑
k=0

ik−1∑
i=0

p1
i,kgi,k + a

for some (uniquely defined) p0
i,k, p1

i,k ∈ K. The information set K of
{
p0, p1} is defined as

K =
{

k ∈ {0, . . . , h− 1}
∣∣∣ ∃i < ik : p0

i,k 6= p1
i,k

}
.

Similarly, we define an equivalence relation between pairs of inputs by considering all pairs of
elements in (a + V ) obtained by exchanging the sets of coordinates corresponding to the same k.

Definition 3.6 (Equivalence relation). Let P =
{
p0, p1} and Q =

{
q0, q1} with p0, p1, q0, q1

∈ (V + a). We say that P ∼ Q if:
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•
{
p0, p1} and

{
q0, q1} have the same information set K.

• ∀k ∈ K,∃b ∈ {0, 1} : ∀i < ik, q0
i,k = pb

i,k and q1
i,k = p1−b

i,k .

∼ is an equivalence relation on the set of unordered pairs of elements in (V + a).

The next theorem is an adaptation of Theorem 3.4 to any subspace V compatible with SubCells.

Theorem 3.5. For any a ∈ KN , the function ∆ operating on unordered pairs of elements in
(V + a) and defined by

∆ :
{
p0, p1} 7−→ R

(
p0)+ R

(
p1)

is constant over the equivalence classes for ∼.

Proof. Let P =
{
p0, p1} , Q =

{
q0, q1} such that P ∼ Q. We have with the previously introduced

notation

p0 =
h−1∑
k=0

ik−1∑
i=0

p0
i,kgi,k + a =

h−1∑
k=0

jk+1−jk−1∑
`=0

ik−1∑
i=0

p0
i,kλi,k,` + ajk+`

f jk+`

where the last equality is obtained by replacing each gi,k by its decomposition on the basis(
f0, . . . , fN−1

)
given by Equation (3.3). Then

SubCells
(
p0
)

=
h−1∑
k=0

jk+1−jk−1∑
`=0

Sbox

ik−1∑
i=0

p0
i,kλi,k,` + ajk+`

f jk+`

and the difference SubCells
(
p0)+ SubCells

(
p1) can be written as:

∑
k,`

Sbox

ik−1∑
i=0

p0
i,kλi,k,` + ajk+`

+ Sbox

ik−1∑
i=0

p1
i,kλi,k,` + ajk+`

f jk+` (3.4)

It is now clear with Definition 3.6 and Equation (3.4) that SubCells
(
p0)+ SubCells

(
p1) and

SubCells
(
q0)+ SubCells

(
q1) are equal in KN . Therefore,

∆(P ) = R
(
p0
)

+ R
(
p1
)

= LinearLayer
(
SubCells

(
p0
)

+ SubCells
(
p1
))

= LinearLayer
(
SubCells

(
q0
)

+ SubCells
(
q1
))

= ∆(Q).

From this invariance theorem, we can derive, as in the case of the AES distinguisher, some
information on the number of unordered pairs

{
p0, p1} such that ∆(

{
p0, p1}) belongs to a given

set E . This consequence is similar to the multiple-of-8 property, but the divisibility of this number
depends on the structure of the subspace V we consider. This comes from the sizes of the equivalence
classes, which are determined in the following proposition.
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Proposition 3.2. Let C be an equivalence class with information set K. The cardinality of C is

|C| = 2|K|−1+d
∑

k 6∈K
ik .

It is always a multiple of 2h−1.

Proof. We have
∏

k 6∈K(2d)ik choices for the shared coordinates in a pair of C. Those coordinates
fixed, we have to make for all k ∈ K the choice b = 0 or b = 1, i.e. 2|K| choices. Since we are
counting unordered pairs, we have 2|K|−1+d

∑
k 6∈K

ik pairs in C. The exponent
(
|K| − 1 + d

∑
k 6∈K ik

)
is minimal for |K| = h. Indeed,

|K| − 1 + d
∑
k 6∈K

ik = d · dim V − 1−
∑
k∈K

(d · ik − 1)

which obviously decreases as K gets bigger. Hence |C| ≡ 0 mod 2h−1.

We then deduce the following generalisation of the multiple-of-8 property.

Corollary 3.2. Let E be any subset of KN and

n =
∣∣∣{ {p0, p1

}
with p0, p1 ∈ (V + a)

∣∣∣ R
(
p0
)

+ R
(
p1
)
∈ E

}∣∣∣ .
Then n ≡ 0 mod 2h−1.

The proof is the same as the proof of Corollary 3.1, but we detail it for the sake of completeness.

Proof. We denote by P2(V + a) the set of all unordered pairs of elements in V + a and by
P2(MI +a)

/
∼ the set of all equivalence classes for ∼. Since the equivalence classes form a partition

of P2(MI + a), we have that

n =
∣∣∣∆−1(E)

∣∣∣ =
∑

C∈P2(MI+a)
/

∼

∣∣∣∆−1(E) ∩ C
∣∣∣ .

We know from Theorem 3.4 that ∆ is constant on the equivalence classes, implying that∣∣∣∆−1(E) ∩ C
∣∣∣ = δ(C)× |C|

for some function δ from P2(MI + a)
/
∼ into {0, 1}. It follows that

n =
∑

C∈P2(MI+a)
/

∼

δ(C)× |C| ≡ 0 mod 2h−1,

since, by Proposition 3.2, all equivalence classes have a cardinality divisible by 2h−1.



3.5. ADAPTATION TO A GENERAL SPN CONSTRUCTION 87

3.5.2 A new proof of Theorem 3.2

As a first illustration, we now show that the mixture-differential distinguisher described by Theo-
rem 3.2 and originally stated in [Gra18] can be seen as a direct application of Theorem 3.5. In this
case, the compatible subspace V is

vectK (MixColumns(e0,i), MixColumns(e1,i)) =Mi ∩ C0,1 with i ∈ {0, . . . , 3} .

The proof of Theorem 3.2 is then similar to the one presented in Section 3.4.4, but for a different
subspace V . We fix a ∈M4 (K) for the rest of this section.

Proof. Let V
def= Mi ∩ C0,1. A basis of this subspace is composed of the two column vectors

g0,0 = MixColumns(e0,i) and g1,0 = MixColumns(e1,i) and its decomposition over the canonical basis
is 

A .
. B
. .
. .

 where A =


2
1
1
3

 and B =


1
1
3
2

 .

This justifies that V is compatible with the AES substitution layer. Let p0, p1, q0, q1 ∈
vectK (e0,i, e1,i) + a such that

p0 ≡ (x0, x1), p1 ≡ (y0, y1) and q0 ≡ (x0, y1), q1 ≡ (y0, x1) .

Then,

R
(
p0
)
≡ (Sbox (x0 + a0,i) , Sbox (x1 + a1,i))

and R
(
p1
)
≡ (Sbox (y0 + a0,i) , Sbox (y1 + a1,i)) .

This exactly means that
{
R
(
p0) , R

(
p1)} and

{
R
(
q0) , R

(
q1)} are equivalent pairs of a coset of V .

Theorem 3.5 then gives that AES(2) (p0)+ AES(2) (p1) = AES(2) (q0)+ AES(2) (q1). Consequently,

AES(2)
(
p0
)

+ AES(2)
(
p1
)
∈ DJ ⇐⇒ AES(2)

(
q0
)

+ AES(2)
(
q1
)
∈ DJ .

Since DJ

2R
⇒MJ , this equivalently means that

AES(4)
(
p0
)

+ AES(4)
(
p1
)
∈MJ ⇐⇒ AES(4)

(
q0
)

+ AES(4)
(
q1
)
∈MJ .

Obviously the same result also holds for any subspace V formed by the intersection between Mi

and another subset (unless the matrix defining the corresponding basis has a single block).
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3.6 Applications
In this section we provide some applications of Theorem 3.5 to SPN ciphers other than the AES. The
goal is to show in practice that the mixture-differential distinguishers and the multiple-of property
are not proper to the AES but that they hold for many other SPN constructions. Furthermore,
as a result of the adaptation provided in the previous section, the application to other ciphers
is almost straightforward. Therefore, we adapt Theorem 3.1 to the SPN ciphers LED [Guo+11],
Midori [Ban+15], KLEIN [GNL12] and SKINNY [Bei+16] and discuss why the result does not adapt
to CRYPTON [Lim99] or PRINCE [Bor+12].

In practice, for finding a multiple-of property for some cipher, two conditions must be met. The
first one is the existence of a subspace V compatible with the substitution layer for the multiple-of
property through one round to hold. This condition is described through Corollary 3.2, which can
be seen as a general replacement of Lemma 3.2. The second condition is the existence of exact
subspace trails covering some rounds before and after the central round on which the multiple-of
property is found. For this, we need a result equivalent to Lemma 3.1 for each analysed cipher. For
searching for subspace trails that can replace the subspaces DI , CI and MI in Lemma 3.1, we use
an algorithm proposed by Leander, Tezcan and Wiemer in [LTW18] as Algorithm 2.

3.6.1 Finding the longest exact subspace trails

In this section, we briefly recall the method of Leander et al. in [LTW18, Section 4] to find subspace
trails in an SPN cipher. We reuse the notation of Section 3.5 describing a general SPN cipher. In
particular,

(
f0, . . . , fN−1

)
is the basis of KN defined by SubCells.

Notation 3.1. Let I ⊆ [0, N − 1], we denote the vector space vectK (f i | i ∈ I) by EI .

We have for all I that EI

SubCells
⇒ EI . In fact, Proposition 3.3 says that this is optimal for some

Sboxes like the AES Sbox.

Definition 3.7 (Linear structures). Let F : K→ K. The set of linear structures of F is

LS (F ) def= { (α, u) ∈ K | ∃cα,u ∈ F2 : ∀x, 〈α | F (x + u) + F (x) 〉 = cα,u } .

The set of trivial linear structures is ({0} ×K) ∪ (K× {0}).

In particular, the Sboxes of the AES, KLEIN and PRINCE only have trivial linear structures.

Proposition 3.3 (Proposition 2 in [LTW18]). Let U, V ⊆ KN such that U
SubCells

⇒ V . Then if the
Sbox has no non-trivial linear structures, ∃I ⊆ [0, N − 1] : U = EI and EI ⊆ V .

Algorithm 2 in [LTW18] then exhaustively computes all subspace trails of the form

EI

R
⇒ EJ (3.5)

for which we necessarily have that LinearLayer (EI) ⊆ EJ . We rewrite it here as Algorithm 5. From
the 1-round trails given by Algorithm 5, we can exhaustively compute the exact subspace trails of
any length ` of the form

EI0

R
⇒ · · ·

R
⇒ EI`−1

R
⇒ LinearLayer

(
EI`−1

)
.
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Algorithm 5 [LTW18, Algorithm 2]. Exhaustive computation of the trails of the form of
Equation (3.5).

1: input
2: LinearLayer
3: output
4: Table Tab such that ∀I ⊂ [0, N−1], Tab[I] is the smallest set J such that LinearLayer (EI) ⊆
EJ .

5: Create a table Tab indexed by subsets of [0, N − 1].
6: for all I ⊂ [0, N − 1] do
7: J ← ∅
8: for all i ∈ I do
9: x← LinearLayer (f i)

10: J ← J ∪ suppK (x).
11: Tab[I]← J .
12: return Tab

Algorithm 5 also works when the Sbox has linear structures but it is not necessarily optimal
as Proposition 3.3 does not apply anymore. Leander et al. study this case in [LTW18, Section 5]
where they give an algorithm to upper bound the length of subspace trails which do not end with
the full space KN . Applying these methods did not give more interesting results than the ones of
Algorithm 5 in our setting where we are interested in exact subspace trails. In particular, the Sboxes
of LED (which is the same as PRESENT), Midori and SKINNY have non-trivial linear structures but
we equally used Algorithm 5 to find subspace trails.

3.6.2 The cases of AES, LED, Midori, KLEIN and SKINNY

AES. First of all, a natural idea would be to use our adaptation with a longer subspace trail than
the ones of Lemma 3.1 for the AES. However, as shown in [LTW18], the exact trails

DI

R
⇒ CI

R
⇒ MI (3.6)

are the longest possible trails for this cipher, which means that Corollary 3.2 cannot give any
improvement for the AES.

LED. LED is a lightweight block cipher proposed by Guo et al. [Guo+11]. Its round function has
the same structure as the AES and exhibits the same two-round subspace trails of Equation (3.6),
leading to a 5-round distinguisher.

Midori. Midori is a lightweight block cipher designed by Banik et al. [Ban+15], optimized with re-
spect to the energy consumption. The round function RMidori is the composition LinearLayerMidori◦
SubCellsMidori, where LinearLayerMidori = MixColumnsMidori ◦ ShuffleCells. MixColumnsMidori
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applies the binary involutive matrix 
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


to the columns of the state. The branch number of the above matrix is 4. ShuffleCells permutes
the words of the state as follows:

(s0, s1, . . . , s15)← (s0, s7, s14, s9, s5, s2, s11, s12, s15, s8, s1, s6, s10, s13, s4, s3)

where the words are numbered column-wise. As in Section 3.2, we define the following subspaces
depending on the linear components of Midori’s round-function. If i ∈ {0, 1, 2, 3} ,

Ci = vectK (e0,i, e1,i, e2,i, e3,i) ,
DMidori

i = ShuffleCells−1(Ci),
MMidori

i = LinearLayerMidori(Ci).

Applying Algorithm 5 gives that the longest exact subspace trails are the two-round trails of the
form

DMidori
I

RMidori
⇒ CI

RMidori
⇒ MMidori

I .

Besides,MMidori
I has a basis whose matrix is block-diagonal with four blocks. For example,MMidori

0
has a basis whose representation as a collection of column vectors is given in Figure 3.1a. We then
have by Corollary 3.2 that for all I, J ⊆ {0, 1, 2, 3} , a ∈ F16

2d ,

∣∣∣{ {p0, p1
}

with p0, p1 ∈ DMidori
I + a

∣∣∣ Midori(5)
(
p0
)

+ Midori(5)
(
p1
)
∈MMidori

J

}∣∣∣
≡ 0 mod 8,

which gives a 5-round distinguisher similar to the AES-one. It is worth noticing that the property
holds even if the branch number of the MixColumns operation in Midori is only 4.

KLEIN. KLEIN is a lightweight block cipher proposed in 2011 by Gong et al. [GNL12]. The round
function of KLEIN RKLEIN = LinearLayerKLEIN ◦ SubCellsKLEIN can be seen as the application of
a non-linear layer SubCellsKLEIN followed by a linear layer LinearLayerKLEIN. The linear layer
LinearLayerKLEIN = MixNibbles ◦ RotateNibbles is the composition of RotateNibbles, which
rotates the state two bytes to the left and MixNibbles. This last operation applies the AES
MixColumns transformation to each half of the state. We denote the canonical basis of F16

24 by
(f i)06i<16 and then define the following subspaces for i ∈ {0, 1} :

Ci = vectK (fk | 0 6 k < 8) ,
DKLEIN

i = RotateNibbles−1(Ci),
MKLEIN

i = LinearLayerKLEIN(Ci).

Algorithm 5 gives that the longest exact subspace trails are two-round trails of the form

DKLEIN
i

RKLEIN
⇒ Ci

RKLEIN
⇒ MKLEIN

i .
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

0 . . .
1 . . .
1 . . .
1 . . .
. 1 . .
. 1 . .
. 1 . .
. 0 . .
. . 1 .
. . 0 .
. . 1 .
. . 1 .
. . . 1
. . . 1
. . . 1
. . . 0


(a) MMidori

0 basis



2 . 3 . . . . .
. 2 . 3 . . . .
1 . 2 . . . . .
. 1 . 2 . . . .
1 . 1 . . . . .
. 1 . 1 . . . .
3 . 1 . . . . .
. 3 . 1 . . . .
. . . . 1 . 1 .
. . . . . 1 . 1
. . . . 3 . 1 .
. . . . . 3 . 1
. . . . 2 . 3 .
. . . . . 2 . 3
. . . . 1 . 2 .
. . . . . 1 . 2


(b) MKLEIN

0 basis



1 . . . .
. 1 . . .
1 1 . . .
1 . . . .
. . 1 . .
. . 1 . .
. . . . .
. . 1 . .
. . . 1 .
. . . . 1
. . . 1 1
. . . 1 .
. . . . .
. . . . .
. . . . .
. . . . .


(c) W0 basis

Figure 3.1 – Compatibility basis representations for Midori (left) and KLEIN (right).

Besides, MKLEIN
i has a basis whose matrix is block-diagonal with two blocks. For example, MKLEIN

0
has a basis whose representation as a collection of column vectors is given in Figure 3.1b. We then
have by Corollary 3.2 for all i, j ∈ {0, 1} , a ∈ F16

4 ,∣∣∣{ {p0, p1
}

with p0, p1 ∈ DKLEIN
i + a

∣∣∣ KLEIN(5)
(
p0
)

+ KLEIN(5)
(
p1
)
∈MKLEIN

j

}∣∣∣
≡ 0 mod 2 ,

meaning that KLEIN has a multiple-of-2 property for 5 rounds. Note that even if we get only a
multiple of 2 in the case of KLEIN, as the pairs are not ordered, this can still be considered as a
distinguishing property.

SKINNY. SKINNY is a family of tweakable lightweight block ciphers, designed in 2016 by Beierle et
al. [Bei+16]. The round function follows a classical SPN construction RSKINNY = LinearLayerSKINNY ◦
SubCellsSKINNY where LinearLayerSKINNY = MixColumnsSKINNY ◦ ShiftRowsSKINNY. The operation
ShiftRowsSKINNY is similar to the AES ShiftRows operation, with the only difference that the shift is
performed to the right. In MixColumnsSKINNY, each column of the state is multiplied by the following
binary matrix of branch number 2: 

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0


Applying here again Algorithm 5 gives as result that the longest exact subspace trails are

two-round-long. There are 1294 such trails. A Gaussian elimination on the last subspace of each
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trail gives that among these trails, 1282 end with a subspace compatible with the substitution layer.
This allows to adapt Theorem 3.1 for 5-round SKINNY, concluding that 5-round SKINNY always has
the multiple-of-2h−1 property. However, it is interesting to note here that depending on the trail,
the value of h varies. More precisely, h ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14}.

We now give an example of such a distinguisher for h = 3. For SKINNY, the internal state is
classically represented as an element of M4 (K). We first exhibit two 2-round subspace trails,

Ui

RSKINNY
⇒ Vi

RSKINNY
⇒ Wi

for i ∈ {0, 1} where

U0 = vectK (e1,1, e1,2, e1,3, e3,1, e3,3) ,
U1 = vectK (e0,3, e1,0, e1,2, e1,3, e2,1, e2,3, e3,0, e3,1, e3,2, e3,3) ,
Vi = LinearLayerSKINNY(Ui),

Wi = LinearLayerSKINNY(Vi)

Moreover, W0 is compatible with h = 3. One of its compatibility basis is represented in Figure 3.1c.
We then have that∣∣∣{ {p0, p1

}
with p0, p1 ∈ U0 + a

∣∣∣ SKINNY(5)
(
p0
)

+ SKINNY(5)
(
p1
)
∈W1

}∣∣∣
≡ 0 mod 4 .

Finally, we recall that this section only aims at giving examples of how Theorem 3.1 can be
adapted to other SPN ciphers and does not claim new cryptanalytic results. In particular, this
property on 5 rounds does not threaten the overall security of the cipher that is composed of 32
rounds.

3.6.3 The cases of CRYPTON and PRINCE

CRYPTON. The block cipher CRYPTON [Lim98], designed by Lim in 1998 was among the candidates
to the NIST AES competition. It has a structure very similar to the one of AES and this is
why we considered it as a natural candidate for the multiple-of property. Indeed, the round
function of CRYPTON is naturally decomposed as RCRYPTON = LinearLayerCRYPTON ◦ SubCellsCRYPTON,
where LinearLayerCRYPTON is the composition of a byte transposition of columns into rows with
respect to the anti-diagonal of the internal state and a permutation at the bit level applied column-
wise. Algorithm 5 gives two-round exact subspace trails. However, the problem here is that
LinearLayerCRYPTON is only F2-linear and not F28-linear and this implies that the last subspaces in
the subspace trails are not F28-vector subspaces and cannot verify the compatibility hypothesis of
Corollary 3.2. As a consequence, Theorem 3.1 cannot be adapted to 5-round CRYPTON.

However, CRYPTON has 1-round exact subspace trails that end with subspaces of the form
vectK (ei,j |i ∈ I, j ∈ {0, 1, 2, 3}). Those subspaces are obviously compatible with the substitution
layer, and we have a 4-round version of Theorem 3.1 for CRYPTON: the first round is a 1-round exact
subspace trail ending with a compatible subspace, the second round exploits Corollary 3.2 and the
last two rounds are a 2-round exact subspace trail. Indeed, the trail used after Corollary 3.2 does
not need to end with a compatible subspace.
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PRINCE. PRINCE [Bor+12] is a block cipher proposed by Borghoff et al. in 2012 with a specific
structure named α-reflection. The main parts of this structure follow the SPN construction. As
for CRYPTON, the round function is defined as RPRINCE = LinearLayerPRINCE ◦ SubCellsPRINCE with
LinearLayerPRINCE a F2-linear map which is not F24-linear. Again, as for CRYPTON, PRINCE exhibits
two-round exact subspace trails but the last subspaces of those trails are not F24-linear subspaces.
We then cannot mount a 5-round distinguisher by adapting Theorem 3.1. However, one-round exact
subspace trails ending with compatible diagonal F24-linear subspaces allow to have a 4-round version
of Theorem 3.1 for PRINCE.

3.7 Conclusion
We have presented a general result which allows cryptanalysts to search for mixture-differential
distinguishers, or multiple-of properties, in a systematic way, for any SPN. This result then avoids
the redundant proofs which were previously needed for each new occurrence of these distinguishing
properties. Also, it highlights the properties of the ciphers which have to be taken into account for
establishing the existence of such distinguishers and it shows that mixture-differential distinguishers
directly apply to a more general class of SPNs than what was previously believed. As shown in the
previous examples, all these distinguishing properties can be exhibited by combining our framework
with the search for subspace trails, which is investigated in [LTW18]. Since our result, exploiting an
appropriate equivalence relation, applies in many situations, it appears that the main limitation for
finding efficient distinguishers is the existence of long subspace trails for the ciphers.





Chapter 4

Efficient MILP models for symmetric
primitives

Contributions brought forward in this chapter were published in ToSC 2020, Issue 3, and are a joint
work with Christina Boura [BC20].

4.1 Introduction

In symmetric-key cryptography, a popular technique for proving resistance against classical attacks
is to model the behaviour of the cipher as a Mixed Integer Linear Programming (MILP) problem and
solve it by some MILP solver. This method was applied for the first time by Mouha et al. [Mou+11]
and by Wu and Wang [WW11] for finding the minimum number of differentially and linearly active
Sboxes and provides in such a way a proof of resistance against these two classical attacks. Since
then, the use of MILP not only by designers but also by cryptanalysts has increased, the advantage
being that it is relatively easy to translate the cryptanalytic problem into linear constraints and use
the available solvers to solve it.

4.1.1 MILP problems

MILP problems are linear optimization problems — also called linear programming (LP) problems
— for which some variables are constrained to integer values. As for all mathematical optimization
problems, a linear optimization problem is defined by a set of variables, a set of constraints and
eventually an objective function. In the case of linear optimization,

• the variables can take values in R,

• the constraints are linear equations or linear inequalities between variables,

• the objective function is a linear function of the variables.

A solution to the problem will be an assignment of the variables to some values such that the
constraints are satisfied. When the problem has an objective function, the goal is to compute
a solution which optimizes (i.e. maximizes or minimizes) the output of the objective function.

95
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2x + 4y − 5 = 0

2x + y − 2 = 0

3x− y + 2 = 0

−6x− 2y + 23 = 0

2x− 8y + 27 = 0

−8x + 6y + 9 = 0

0

4

3
x

y

−x + 5y
maximize

best solution

Figure 4.1 – A linear optimization problem.

Otherwise, the problem is just to exhibit a solution or to list some solutions. The general form of a
linear optimization problem of dimension n (i.e. with n variables) is

maximize 〈 c | x 〉 subject to A · x 6 b

where x is the variable vector, c ∈ Rn defines the linear objective function, 〈 . | . 〉 denotes the canon-
ical scalar product in Rn and A ∈Mm,n (R) and b ∈ Rm define m linear constraints 〈Ai,∗ | x 〉 6 bi.
The set {x ∈ Rn | A · x 6 b } is called the feasible region and it is by definition a convex polyhedron
of Rn, possibly unbounded.

Example 4.1. The linear optimization problem in Figure 4.1 can be written as

maximize −x + 5y

subject to 2x + 4y − 5 > 0, 2x + y − 2 > 0, 3x− y + 2 > 0,

2x− 8y + 27 > 0, −6x− 2y + 23 > 0, −8x + 6y + 9 > 0.

The best solution is given by the edge point (2.5, 4) for which the objective function has the maximum
value 17.5.

Linear optimization problems are rather easy to solve. Dantzig invented in 1947 the first efficient
algorithm, called the simplex method, but with worst-case exponential time. Khachiyan proved
in 1979 that LP problems were solvable in polynomial-time and Karmarkar proposed in 1984 a
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0

4

3
x

y

−x + 5y
maximizebest solution

Figure 4.2 – An integer linear optimization problem.

practically efficient and polynomial time algorithm [Kar84]. However, many problems cannot be
reduced to LP problems with real variables and a common need is to constrain some variables to
integer values. We then get Mixed-Integer LP (MILP) problems.

Example 4.2. We can turn the LP problem in Example 4.1 into a MILP problem by simply adding
the constraints that x and y are in Z. As shown in Figure 4.2, the best solution in this case is given
by the interior point with coordinates (1, 3). Interestingly, the point (2, 3) is closer to the best LP
solution (2.5, 4) for the Euclidian distance but it does not maximize the objective function.

For cryptographic applications, we will mostly be interested in the binary variants of MILP
problems for which all variables are constrained to take values in {0, 1} ⊆ Z. Contrarily to LP
problems, the decisional version of MILP problems is NP-complete but the resolution of MILP
problems has so many industrial applications that academics and companies developped solvers with
very good performances. In particular, all of our MILP experiments were done with the Gurobi
optimizer [GO20].

Reducing cryptographic problems to MILP problems then allows cryptographers to leverage the
high performance of MILP solvers. Naturally, the reduction (or modeling) method has an important
influence on the running time of the MILP solver or even on its ability to solve a given cryptographic
problem. Exploring modeling methods for differential cryptanalysis is the goal of the present chapter.

4.1.2 Word-oriented models

For SPN block ciphers, it is possible to get easy and relatively small models when searching for
properties at the word level. For example, we saw in Section 2.3.3 that the first MILP models used
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in cryptanalysis were created by Mouha, Wang, Gu and Preneel [Mou+11] to minimize the number
of active Sboxes for a given number of rounds of an SPN. In such models, the MILP variables
represent together a truncated differential trail with respect to the Sbox layer (see Section 2.4) and
the constraints represent the action of the linear layer on truncated differentials.

More precisely, the state (active or not) of each word (or cell) in a truncated differential trail is
encoded in a binary MILP variable x

(r)
i where i is the cell index and r is the round index.

Example 4.3. In this example, we want to use a MILP solver to compute the minimum number of
active Sboxes in 4 AES rounds, which is known to be 25 thanks to the wide-trail strategy. We also
want to compute a truncated differential trail which atteins this minimum, like the one in Figure 2.2.

• We have 4 rounds and 16 bytes per round, which makes 64 MILP variables
(
x

(r)
i,j

)
r,i,j∈[0,3]

.

• The branch number of each MixColumns operation adds constraints on the possible values of(
x

(r−1)
i,j

)
i∈[0,3]

and
(
x

(r)
i,j

)
i∈[0,3]

for r ∈ [1, 3] and j ∈ [0, 3]. It is modeled by Mouha et al. by
the inequality

3∑
i=0

x
(r−1)
i, i+j mod 4 +

3∑
i=0

x
(r)
i,j > 5 · tr,j

where 5 is the branch number of MixColumns and tr,j is a dummy binary MILP variable. Its
meaning would be that the column j during round r is active. This inequality also takes the
action of ShiftRows into acount thanks to the indexing (i, i + j mod 4) in the terms of the
left sum.

• Since we want to minimize the number of active Sboxes, the objective function is simply the
sum of all the variables.

We finally have the following MILP problem.

minimize
∑

r,i,j∈[0,3]
x

(r)
i,j

subject to
3∑

i=0
x

(r−1)
i, i+j mod 4 +

3∑
i=0

x
(r)
i,j > 5 · tr,j for all r ∈ [1, 3], j ∈ [0, 3].

Such models are simple and efficient as there is a reasonable amount of MILP integer variables.
They have nonetheless a few drawbacks. First, they are restricted to SPN ciphers with a word-
oriented linear layer. We saw for example in Section 1.4.2 that the linear layer of the PRESENT
block cipher is a bit permutation. Although it is a very elementary linear layer, the framework
of [Mou+11] does not apply to it. Second, they are much less accurate than models at bit level.
For example, modeling the propagation of the differences bitwise and looking inside the Sboxes
could yield longer impossible differentials than those discovered when only truncated differences are
analyzed [ST17b].

4.1.3 Bit-oriented models

Sun et al. [Sun+14b; Sun+14a] were the first to propose bit-oriented modelings for the cryptanalysis
of SPN ciphers. A non-trivial problem in doing so is to find an efficient representation of the valid
differential propagations through an Sbox.
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Sbox modeling. Indeed, Sboxes are non-linear Boolean vectorial functions, therefore modeling
their differential properties with R-linear inequalities is not natural. Several approaches have been
suggested to solve this problem. In the original works of Sun et al. [Sun+14a; Sun+14b] two
different methods were notably proposed for modeling an Sbox. The first of them is a geometrical
approach that consists in representing all possible transitions a→ b through an n-bit Sbox as points
(a, b) ∈ R2n and then computing the H-representation of the convex hull of this set, that is all the
geometric faces of the smallest convex containing it. This permits to remove all impossible differential
transitions through the Sbox. However, as this method yields a high number of (possibly redundant)
inequalities, the authors further developed a greedy algorithm for selecting a representative number
of inequalities among them. The second method, based on a logical condition approach, consists in
representing by linear inequalities some conditional differential properties of the Sbox. Unfortunately,
the problem of these two methods is that they are not efficient for large (e.g. 8-bit) Sboxes.

To solve this problem for large Sboxes, Abdelkhalek et al. [Abd+17] observed that generating a
minimal number of constraints in logical condition modeling can be converted into the problem of
minimizing the product-of-sum representation of Boolean functions. This last problem is well-studied
and algorithms for solving it exist, for example the Quine-McCluskey (QM) [Qui52; Qui55; McC56]
or the Espresso [Bra+84] algorithms. In this way, Abdelkhalek et al. managed for the first time
to generate linear constraints for 8-bit Sboxes, notably for the Sboxes of AES and SKINNY-128
[Bei+16]. While the number of linear constraints for the Sbox of SKINNY-128 provided in [Abd+17]
is as low as 372, the same method yields 8302 linear inequalities for the Sbox of AES, a modeling
that is often too heavy to be used in practice.

Linear layer modeling. Efficiently representing the Sboxes is a crucial part of the modeling
process. But a bad modeling of the diffusion layer can render the optimization process very slow or
even impractical. Indeed, with the exception of some ciphers, e.g. PRESENT, where the linear layer is
just a bit-permutation, the diffusion is usually ensured by xor gates. Yet, the xor operation, while
linear in F2 models very badly in R. So, bitwise modeling of heavy linear layers, that need many
xors to be represented, can lead to impractical systems with many linear inequalities or with many
dummy variables.

Dummy variables. We saw that Mouha et al. used a dummy variable to model the branch
number of the MixColumns operation in a word-oriented model. In bit-oriented models, the use of
dummy variables is also possible and actually quite popular. Indeed, one can model x1⊕· · ·⊕xn = 0
with a dummy integer variable t as x1 + · · · + xn = 2 · t or use a dummy binary variable a for
recording an intermediate state in the computation. For example, the variable a could record
the value of x1 ⊕ · · · ⊕ xk and we could model the above computation with x1 ⊕ · · · ⊕ xk ⊕ a = 0
and a ⊕ xk+1 ⊕ · · · ⊕ xn = 0. For Sbox modelings, when the construction of the Sbox is known
and well-suited, only the latter can be helpful. Typically, a complex Sbox with a known circuit
to compute it could be modeled with variables recording intermediate computations. However in
general, in order to minimize the running time of the MILP solver, it is important to minimize the
number of integer variables. In this paper we study bitwise modelings which need by definition
many MILP integer variables. We hence restricted ourselves to not introducing dummy variables
and leave the use of dummy integer variables for improving performance as an open problem.



100 CHAPTER 4. EFFICIENT MILP MODELS

4.1.4 Our Contributions

In this chapter, we propose several new bitwise MILP modelings for the propagation of differential
properties through both Sboxes and linear layers. Our methods permit to efficiently model the
exact differential propagation through an SPN cipher and can be applied to prove resistance against
differential cryptanalysis and its variants or to search for new differential-type attacks. Besides, the
methods used for modeling the DDT of an Sbox are general enough for modeling an LAT or any
Boolean function.

Modelings for large Boolean functions and Sboxes. We introduce three different modeling
methods for Boolean functions, based on algebraic or geometrical approaches. With our techniques
we manage to decrease significantly the number of inequalities needed to model large Sboxes. While
Sasaki and Todo showed in [ST17a] that reaching the minimal number of inequalities is not necessarily
the best approach for decreasing the solving time, yet a big difference in the number of inequalities
leads to a real difference for the optimization process, as we demonstrate with experiments. We
managed notably to represent the AES Sbox with 2882 inequalities, dividing by three the number of
inequalities needed in the best previous approach.

Modeling matrices with entries in F2. We provide efficient modelings for linear layers without
the use of dummy variables. We first explain why modeling the xor of several binary variables,
which is the central operation in most of the matrix/vector products over F2, needs many inequalities.
Then, we introduce new algorithms inspired from coding theory that change the modeled matrix to
significantly decrease this number.

Applications to impossible differential cryptanalysis from the designer’s point of view.
We complete the work of Sasaki and Todo in [ST17b] and we use our modeling techniques for proving
partial resistance against impossible differential cryptanalysis for the AES and SKINNY-128. More
precisely, we show for both ciphers that, even when the Sbox details are taken into account, there
are no impossible differentials with one active input/output byte for 5-round AES and 13-round
SKINNY-128.

Organization. The rest of the chapter is organized as follows. Section 4.2 is dedicated to our
different methods for modeling Boolean functions and Sboxes. Then, in Section 4.3 we present an
algorithm to efficiently model linear layers. In Section 4.4, we run an experiment for illustrating the
effectiveness of the previously-introduced methods. Finally, we apply our new models to impossible
differential cryptanalysis in Section 4.5.

4.2 MILP Modeling for Boolean functions and Sboxes

The methods to be introduced in this section can be applied to characterize any set P ⊂ {0, 1}m
with R-linear inequalities. As any such subset P ⊂ {0, 1}m can be seen as the support of some
Boolean function FP : Fm

2 → F2 operating on m bits, the inequalities representing P model the
constraint FP(x0, . . . , xm−1) = 1. However, as our main target is the modeling of differential, linear
or other behaviours through an Sbox : Fn

2 → Fn
2 , and such behaviours can be represented (as will be
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explained below) by some Boolean function, we will describe some of our techniques, without loss of
generality, through the spectrum of the differential behaviour of an Sbox.

In what follows, a (differential) transition x→ y through the Sbox will be seen as a vector of
Fm

2 , involving m = 2n binary variables and will be represented, depending on the context, either as
(x0, . . . , xn−1, y0, . . . , yn−1) or as (x0, . . . , xm−1).

4.2.1 Modeling Boolean functions and DDTs

For many problems, as for example the search for good differential characteristics, bitwise modelings
are better than wordwise ones, as they are more precise and permit to follow information propagation
at the bit level. In such models, a binary variable is assigned to each bit of a differential characteristic.
A variable has the value 1 if the corresponding bit has a difference in the characteristic — in which
case it is called active — and 0 otherwise. In a MILP model, in order to follow how the information
is propagated through the different components of the cipher, each different layer has to be efficiently
modeled. For Sboxes, this is typically done by looking at their DDT (see Section 2.2). When one
only cares whether a differential propagation is possible or not, it is enough to model the Boolean
function {

F2n
2 −→ F2

(x, y) 7−→ 1 if and only if DDT(x, y) 6= 0.

However, if one wants to take into account the different integer values of the DDT, the authors
of [Abd+17] propose to encode this information by modeling instead the Boolean functions{

F2n
2 −→ F2

(x, y) 7−→ 1 if and only if DDT(x, y) = p,

for each value p > 0 such that ∃(a, b) : DDT(a, b) = p.
As one can see, modeling a DDT is equivalent to modeling some specific Boolean function. From

now on, we will focus on modeling general Boolean functions but all our examples and applications
will be focused on DDTs. In all these examples we will be only interested in whether differential
propagations are possible or not, without caring about their concrete probability. However, one has
to remember, that all these methods can be applied to any other Boolean function and in particular
to other cryptanalysis techniques whose properties can be described through some table, like the
linear and the boomerang cryptanalysis [Wag99].

Example 4.4. Let us take the example of the 3-bit Sbox of Table 4.1a used inside the block cipher
PrintCipher [Knu+10]. Then, by denoting by x0, x1, x2 the three bits of the input difference x
and by y0, y1, y2 the three bits of the output difference y, where x0 and y0 are the least significant
bits of x and y respectively, the system of 7 inequalities in Table 4.1b is satisfied by all the valid
transitions while removing the 35 impossible transitions x→ y for which DDT (x, y) = 0.

4.2.2 State of the art

Given the truth table of a Boolean function F , the question is how to efficiently model the constraint
F (x) = 1 by a system of R-linear inequalities. This problem can then be divided into two sub-
problems:
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Table 4.1 – Value table, DDT and MILP modeling of the possible transitions of the Sbox of
PrintCipher.

(a) Value table

x 0 1 2 3 4 5 6 7
Sbox(x) 0 1 3 6 7 4 5 2

(b) MILP modeling

−2x0 − 2x1 + x2 − 2y0 − 2y1 + y2 + 6 > 0
−2x0 + x1 − 2x2 − 2y0 + y1 − 2y2 + 6 > 0

x0 − 2x1 − 2x2 + y0 − 2y1 − 2y2 + 6 > 0
x0 + 2x1 + 4x2 + 3y0 + 2y1 − 4y2 > 0
−3x0 + 2x1 − x2 + 4y0 + 2y1 + 4y2 > 0

4x0 − 2x1 + x2 − 2y0 + 4y1 + 3y2 > 0

(c) DDT

b

a 0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0
1 0 2 0 2 0 2 0 2
2 0 0 2 2 0 0 2 2
3 0 2 2 0 0 2 2 0
4 0 0 0 0 2 2 2 2
5 0 2 0 2 2 0 2 0
6 0 0 2 2 2 2 0 0
7 0 2 2 0 2 0 0 2

Inequality generation. How to generate a (possibly large) set of inequalities on variables
x0, . . . , xm−1 that correctly models F (x) = 1?

Efficient subset. How to choose a (typically much smaller) subset of this set of inequalities that
still correctly models F (x) = 1 but leads to more efficient MILP models?

For differential cryptanalysis, the above general problem corresponds to modeling the fact that
(x0, . . . , xn−1)→ (xn, . . . , x2n−1) is a possible transition in a DDT. To solve the Inequality generation
problem, two different approaches were proposed in 2014 by Sun et al. [Sun+14b; Sun+14a]. The
first is a geometrical one and consists in computing the H-representation of the convex hull of the
set of possible transitions. The second one is based on logical condition modeling. Below, we briefly
explain these two methods.

Convex hull inequalities. The method of the H-representation of the convex hull consists, as its
name suggests, in computing the H-representation of the convex hull of all possible points a ∈ Fm

2
such that F (a) = 1 seen as vectors of Rm. Taking then the (m− 1)-dimensional faces of the convex
hull yields a correct set of inequalities. The H-representation can be for example computed through
an algebra computer system such as Sage [The20] and gives a system of linear inequalities excluding
all impossible points (e.g. all points a such that F (a) = 0).

Logical inequalities. The second method proposed by Sun et al. and called logical condition
modeling is based on the idea that each impossible point can be removed by a single inequality in a
simple way. Indeed, consider an impossible point a = (a0, . . . , am−1). Then, the inequality

m−1∑
i=0

(1− ai)xi + ai(1− xi) > 1 (4.1)



4.2. MILP MODELING FOR BOOLEAN FUNCTIONS AND SBOXES 103

only discards this point a. Lets take as example the DDT of PrintCipher. As it can be seen from
Table 4.1c, (0x1,0x6) is an impossible transition through the DDT. By writing the input and output
in a bitwise manner we have that (100) 9 (011). The above formula gives the inequality

−x0 + x1 + x2 + y0 − y1 − y2 > −2

that is satisfied by all points in F6
2 but (0x1, 0x6). This method can then be applied to all impossible

transitions x→ y and yields easily a system of inequalities containing as many constraints as the
number of impossible transitions through the DDT, or as the number of zeros of the Boolean function
in the general case.

Towards modeling 8-bit Sboxes. However, as mentioned in [Abd+17], both these methods that
provide a solution for the Inequality generation problem have the disadvantage of not being efficient
for modeling 8-bit Sboxes. For the first one, computing the H-representation of the convex hull for
such big Sboxes is nearly impossible, while the second method yields a very large number of initial
inequalities which, by construction, cannot have a strict subset as a solution to the Efficient subset
problem. For example, the SKINNY-128 Sbox has 54067 impossible transitions and this number of
inequalities is too high to represent the Sbox for any related MILP problem.

In 2017, Abdelkhalek et al. [Abd+17] made an important step forwards in the logical-condition-
modeling direction, by translating the problem of searching for good inequalities for 8-bit Sboxes into
the classical problem of minimization of the product-of-sum representation of the related Boolean
function and by using the Quine-McCluskey (QM) algorithm to solve it. This method permits to
solve at once the two steps of the Sbox modeling: Find many good inequalities (the prime implicants
in the QM vocabulary) and keep among them a good representative set. In the case of QM this
representative set corresponds to the minimal number of equations. The problem however of QM is
that in practice it needs high memory ressources and it can be slow. For this reason, Abdelkhalek
et al. used another algorithm, called the Espresso algorithm, a heuristic method for minimizing
the number of terms in a product-of-sum representation. Espresso is not guaranteed to find the
minimum, and it usually doesn’t in the case of 8-bit Sboxes, but its solutions are good enough to be
used in practice.

The Efficient subset problem. No matter the method used for solving the Inequality genera-
tion problem, one must choose among the initial set of inequalities a good representative set for
representing the support of the Boolean function. This is what we called the Efficient subset problem.
As mentioned in [ST17a], determining how many and which inequalities to keep is not an evident
decision. This step is however necessary, as in both methods from [Sun+14b; Sun+14a] and all the
new methods that we are going to present, the number of generated inequalities is high and has an
important impact on the optimization time. For example, in the convex-hull method, the number
of linear inequalities that Sage returns is typically quite high, containing notably many redundant
ones. The authors of [Sun+14a] applied then a greedy algorithm for solving the Efficient subset
problem. At each step, this algorithm adds to the solution set the best possible inequality, that
is the inequality removing the highest number of points among those that have not been removed
yet. A nice approach for solving this step was later given by Sasaki and Todo in [ST17a]. They
proposed to model the problem of minimizing the set of inequalities that remove all the impossible
propagation points as a MILP problem itself and solve it by some solver. More precisely, their
method consists in assigning a binary variable zi to each inequality found by solving the Inequality
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generation problem. Then for each impossible point a, it is required that at least one inequality
removing a is chosen with ∑

i s.t. ineq. i removes a

zi > 1.

Finally the MILP solver is used for minimizing
∑

i zi and { i | zi = 1 } gives a solution of the Efficient
subset problem.

Efficient subset: greedy or minimum? It appears however in [ST17a] that the smallest subset
of inequalities found by this approach that correctly models a DDT, will not necessarily provide
the overall best performance when running a complete cipher modeling. Moreover, this auxiliary
MILP problem can be too heavy when the initial set of inequalities is large. In our experiments, we
have found the greedy approach from [Sun+14a] to provide better subsets for performance even if
they are a bit larger. We hence used it in the applications. However, we consider the minimization
approach from [ST17a] in solving the Efficient subset problem to be a good benchmarking indicator
for methods solving the Inequality generation problem.

Focusing on Inequality generation with minimum. In the remaining part of the section we
analyze in depth the problem of efficiently modeling a Boolean function with MILP inequalities
and we concentrate on the Inequality generation problem. Indeed, our goal is to generate efficient
algorithms for modeling a Boolean function by using the smallest number of inequalities as an
indicator for the quality of the method.

We propose different methods for doing so. The first method, based on generating better
inequalities from the H-representation is applicable for up to 12-bit Boolean functions and gives
better results than all previous methods for up to 6-bit Sboxes. Unfortunately, this method is not
applicable for 8-bit Sboxes. For this reason, we develop other methods for larger Boolean functions
and Sboxes. With these methods, described in Sections 4.2.4 and 4.2.5 we manage to model 8-bit
Sboxes with a much smaller number of inequalities than what was done before.

In the remaining part of this section, and to facilitate comprehension, all methods will be described
through the DDT modeling application. Nevertheless, none of these techniques is DDT-specific and
they can be applied directly for modeling any Boolean function.

4.2.3 Inequalities derived from the convex hull

When the computation of the H-representation of the convex hull of all possible transitions in a
DDT is computationally feasible, this H-representation provides by definition a set of inequalities
modeling the possible differential transitions through the Sbox. However, as we will show, it is
possible to compute many other linear inequalities from this initial set by simply adding up some of
them. The reason for doing so is to generate potentially better inequalities than the ones directly
given by the convex hull, where better means that the new inequalities remove more impossible
transitions than the initial ones do.

Indeed, if a possible differential transition z = (x | y) ∈ {0, 1}m , with m = 2n satisfies the k
inequalities C1, . . . , Ck, e.g.

c`
0z0 + · · ·+ c`

m−1zm−1 + b` > 0 with ` ∈ [1, k],
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Figure 4.3 – Example of the convex hull of a set of possible transitions. Since in practice transitions
only lie on the hypercube {0, 1}m, this figure is just a sketch to give intuition about our method.

then it obviously also satisfies the inequality(
k∑

i=1
ci

0

)
z0 + · · ·+

(
k∑

i=1
ci

m−1

)
zm−1 +

k∑
i=1

bi > 0

produced by simply summing up the initial k inequalities and denoted in the sequel as Cnew =
C1 + . . . + Ck.

Of course, most of the inequalities produced by randomly summing k inequalities from the
H-representation of the convex hull, do not present any interest, as they will very probably be
satisfied by the whole space {0, 1}m. In order to produce meaningful new linear inequalities from the
H-representation of the convex hull, we noticed that if k hyperplanes of the H-representation share
a vertex on the cube {0, 1}m, (i.e. a possible transition), then the addition of the k corresponding
inequalities will probably yield an interesting new constraint, given that its hyperplane intersects
with the cube at least on this particular vertex. By "interesting" we mean here that the new
inequality Cnew will remove a different (potentially larger) set of impossible transitions than the
original inequalities. This idea is illustrated in Figure 4.3 and described by Algorithm 6.

Algorithm 6 takes as input a set Spos corresponding to the possible transitions through an
Sbox and a parameter k that indicates the number of inequalities to be added together each
time. Then it starts by generating the convex hull corresponding to Spos by using for example the
inequality_generator() function of the sage.geometry.polyhedron class of the Sage computer
algebra system [The20]. This gives us an initial set of inequalities Cset of the form

c0x0 + · · ·+ cm−1xm−1 + b` > 0.

Then, for every point a in Spos we add together any k inequalities C1, . . . , Ck that this point satisfies
with a zero left-hand side, i.e. p belongs to the hyperplanes defined by those inequalities. We add in
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Algorithm 6 Compute a set of inequalities from possible transitions.
1: input
2: Spos a set of possible points.
3: k the number of constraints to sum to get a new constraint.
4: output
5: Cset, a set of R-linear constraints.

6: H ← Hull(Spos)
7: Cset ← H
8: for all p ∈ Spos do
9: for all {C1, . . . , Ck} ∈ P(H) such that p belongs to the hyperplanes of C1, . . . , Ck do

10: Cnew = C1 + . . . + Ck

11: if Cnew removes a new set of impossible transitions then
12: Cset ← Cset ∪ {Cnew}
13: return Cset

Cset the new inequality only if it is meaningful, in the sense that it removes a new set of impossible
transitions.

In practice, Algorithm 6 is rather fast for 4-bit Sboxes — a few minutes for k = 2 and a few
hours at most for k = 3 — and the set of constraints Cset obtained that way does not have too many
elements, which allows fast minimization in solving the Efficient subset problem. For example, Sage
returns 327 linear inequalities for the Sbox of PRESENT. By applying Algorithm 6 with k = 2 we get
a little bit less than 500 inequalities, and for k = 3 we get a little bit less than 700 inequalities.

Application to DDTs of 4-bit Sboxes

We applied Algorithm 6 to solving the Inequality generation problem for different Sboxes from the
literature and benchmarked it by solving the Efficient subset problem with the method of [ST17a]
to obtain a minimal modeling. The results are summarized in Table 4.2. We took k = 2 to run
Algorithm 6, apart for TWINE, PRIDE, Serpent S3 and Serpent S7 where taking k = 3 gave slightly
better results. The case k = 1, corresponds to the method of [ST17a]. Even as already said, the
exact minimum is not necessarily what one has to take to minimize the solving time of the global
problem, it is however a good indicator of the quality of the method used to solve the Inequality
generation problem and permits to compare the different methods between them. We nonetheless
also give the results with the greedy approach from [Sun+14b] and k = 1 for completeness. As can
be seen from Table 4.2 but also for all the Sboxes we tested for n 6 6, running the algorithm with
k > 1 always gave better results than with k = 1.

Unfortunately, for larger Sboxes, and notably for n = 8 computing the convex hull is computa-
tionally hard. For this reason, we describe in the following sections, alternative methods that can be
used for modeling 8-bit Sboxes.

4.2.4 Inequalities to remove logical sets a⊕ Prec (u)
In this first section, we show that one can easily derive simple inequalities to remove spaces of the
form a⊕ Prec (u) inside the DDT. Let again m = 2n where n is the bit-size of the Sbox.
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Table 4.2 – Number of inequalities to model differential transitions for various 4-bit Sboxes

# Inequalities

Sbox [Sun+14b] [ST17a] Alg. 6

PRESENT 22 21 17
KLEIN 22 21 19
TWINE 23 23 19
PRINCE 26 22 19
Piccolo 23 21 16
MIBS 27 23 20
LBlock S0 28 24 17
LBlock S1 27 24 17
LBlock S2 27 24 17
LBlock S3 27 24 17
LBlock S4 28 24 17
LBlock S5 27 24 17
LBlock S6 27 24 17
LBlock S7 27 24 17
LBlock S8 28 24 17
LBlock S9 27 24 17

# Inequalities

Sbox [Sun+14b] [ST17a] Alg. 6

Serpent S0 23 21 17
Serpent S1 24 21 17
Serpent S2 25 21 18
Serpent S3 31 27 20
Serpent S4 26 23 19
Serpent S5 25 23 19
Serpent S6 22 21 17
Serpent S7 30 27 20
Lilliput − 23 21
Minalpher − 22 19
Midori S0 − 21 16
Midori S1 − 22 20
RECTANGLE − 21 17
SKINNY − 21 16
GIFT − − 17
PRIDE − − 16

Notation 4.1. Prec (u) denotes the linear space

Prec (u) def= {x ∈ Fm
2 | x � u } ,

where x � u means that xi 6 ui for all i ∈ [0, m− 1].

Proposition 4.1. Let a ∈ Fm
2 and u ∈ Fm

2 such that supp (a)
⋂

supp (u) = ∅ and let I = [0, m−
1] \ (supp (a)

⋃
supp (u)). Then, for all x ∈ Fm

2 ,

−
∑

i∈supp(a)
xi +

∑
i∈I

xi > 1− wt (a) ⇐⇒ x 6∈ a⊕ Prec (u) .

Proof. Let x ∈ Fm
2 . If x ∈ a⊕ Prec (u) ,

−
∑

i∈supp(a)
xi +

∑
i∈I

xi = −
∑

i∈supp(a)
ai = −wt (a) .

Otherwise x⊕ a � u, so there exists some ` ∈ supp (a) ∪ I such that x` = 1− a`.

• If ` ∈ supp (a) then x` = 0 and
∑

i∈supp(a) xi 6 wt (a)− 1.

• If ` ∈ I, then x` = 1 and
∑

i∈I xi > 1.

In both cases,
−

∑
i∈supp(a)

xi +
∑
i∈I

xi > 1− wt (a) .
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Example 4.5. We show how the above method can be applied to remove some invalid transitions
for the Sbox of the block cipher PRESENT (see Section 1.4.2). The Sbox used in PRESENT is given in
Table 1.1 and its DDT is given in Section A.1.

Here m = 2×4 = 8. For better visualizing points in the DDT, we will see F8
2 as F4

2×F4
2. Further,

we will use the following bit ordering. For a point (x, y) ∈ F4
2 × F4

2, the index 0 will correspond to
the least significant bit (LSB) of x, 3 will correspond to the most significant bit (MSB) of x, 4 to
the LSB of y and 7 to the MSB of y. Let a = [0,1], u = [9,4] ∈ F4

2 × F4
2. Then

Prec (u) = {[0, 0], [0, 4], [1, 0], [1, 4], [8, 0], [8, 4], [9, 0], [9, 4]} .

Further, as supp (a) = {4} and supp (u) = {0, 3, 6}, I = {1, 2, 5, 7}. Therefore the equation

−x4 + x1 + x2 + x5 + x7 > 0

removes exactly the 8 points in the space

a⊕ Prec (u) = {[0, 1], [0, 5], [1, 1], [1, 5], [8, 1], [8, 5], [9, 1], [9, 5]} .

We can verify from the DDT in Section A.1 that all these points correspond indeed to invalid
transitions through the DDT.

Algorithmic aspects

Given a set of impossible transitions I, Algorithm 7 finds all subsets of the form a ⊕ Prec (u)
excluding those that are subsets of others. For each a ∈ I, it builds spaces a ⊕ Prec (u) ⊆ I by
progressively incrementing the weight of u, with u such that a⊕u ∈ I and supp (u)∩ supp (a) = ∅
and checking for all v � u, wt (v) = wt (u)− 1 whether a⊕ Prec (v) has already been identified as
a subset of I.

We show next that Algorithm 7 and the Quine-McCluskey algorithm are strongly related. The
Quine-McCluskey algorithm has two steps. Given a set of points I, the first step finds a set S of
subspaces a⊕ Prec (u) ⊆ {0, 1}m such that

I =
⋃

a⊕Prec(u)∈S
a⊕ Prec (u) , ∀ (a⊕ Prec (u)) ⊆ I,∃E ∈ S : a⊕ Prec (u) ⊆ E ,

and ∀E ,F ∈ S, E 6⊆ F . (4.2)

This is exactly what does Algorithm 7. The second step of QM then searches for a minimal set
S ′ ⊆ S, in the sense that:

I =
⋃

a⊕Prec(u)∈S′

a⊕ Prec (u) and ∀E ,F ,G ∈ S ′, E 6⊆ F ∪ G.

This formulation of the Quine-McCluskey algorithm is very different from the one encountered in
the literature and in the best of our knowledge, it is the first time that this algorithm is presented in
this way. We use this presentation as it is well-suited for understanding the link between the two
methods.

The important thing for us is that we principally need this first step to find good modelings since
it corresponds to solving the Inequality generation problem. Besides, the second step of the QM
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Algorithm 7 Find a⊕ Prec (u) sets included in the set I ⊂ {0, 1}m.
1: input
2: Set of impossible transitions I ⊂ {0, 1}m.
3: output
4: Sout, set of subsets of I of the form a⊕ Prec (u) satisfying Equation (4.2).

5: Sout ← ∅
6: for all a ∈ I do
7: Sint ← ∅ . Set of interesting new inequalities of the form a⊕ Prec (u)
8: for all i ∈ [0, m] do
9: Si ← ∅

10: Ui ← ∅
. We start by grouping all u such that a⊕ Prec (u) ⊆ I

. and supp (a) ∩ supp (u) = ∅ by their weight in sets U .
11: for all p ∈ I do
12: u← a⊕ p
13: if supp (a) ∩ supp (u) = ∅ then
14: Uwt(u) ← Uwt(u) ∪ {u}

. If U1 6= ∅, a⊕ Prec (0) is no longer interesting
. since ∀u ∈ U1, a ∈ a⊕ Prec (u) .

15: if U1 = ∅ then
16: Sint ← {a⊕ Prec (u) | u ∈ U0 }
17: else
18: Sint ← {a⊕ Prec (u) | u ∈ U1 }

. a⊕ Prec (u) ∈ Sk ⇐⇒ wt (u) = k and a⊕ Prec (u) ⊆ I
19: S0 ← {a⊕ Prec (u) | u ∈ U0 }
20: S1 ← {a⊕ Prec (u) | u ∈ U1 }
21: for k ∈ [2, m] do
22: for u ∈ Uk do
23: if ∀v � u st. wt (v) = k − 1, a⊕ Prec (v) ∈ Sk−1 then
24: Sk ← Sk ∪ {a⊕ Prec (u) }
25: for all v � u st. wt (v) = k − 1 do

. Remove a⊕ Prec (v) since a⊕ Prec (v) ⊂ a⊕ Prec (u)
26: Sint ← Sint \ {a⊕ Prec (v)}
27: Sint ← Sint ∪ Sk

28: Sout ← Sout ∪ Sint
29: return Sout
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Table 4.3 – Number of inequalities to exactly exclude the set of impossible differential transitions I
for two 8-bit Sboxes with the methods of [Abd+17] and Algorithm 7.

# Inequalities

[Abd+17]

Sbox |I| QM Espresso
Algorithm 7 with

MILP minimization

AES 33150 − 8302 7461
SKINNY-128 54067 372 376 372

algorithm provides a solution for the Efficient subset problem by minimizing the number of terms.
However, the objective of this second step is to find a good circuit for a Boolean function, but not
necessarily a good MILP modeling. Moreover, this second step is computationally harder than the
first one and acts as a bottleneck when using QM as a black box inequality generator for MILP
modelings. Indeed, it is much faster to use Algorithm 7 alone for solving the Inequality generation
problem together with a greedy algorithm or a MILP-based algorithm for solving the Efficient subset
problem. This is not only faster but can also provide a significantly lower number of inequalities.

Application to the AES and SKINNY-128

We notably applied Algorithm 7 for generating an initial set of inequalities for the 8-bit Sboxes of
AES and SKINNY-128. We then obtained 70336 initial inequalities for AES and 8829 for SKINNY-128.
The running time was of around 15 minutes for AES and 2 hours for SKINNY-128 where 90% of the
time was spent not for finding new inequalities but for removing not interesting ones (lines 25 – 26
in Algorithm 7). The difference in these running times is explained by the fact that as the DDT
of SKINNY-128 is very sparse, there are many more possible spaces a⊕ Prec (u) than for the DDT
of AES. After this, to find a representative set among these initial inequalities (i.e. to solve the
Efficient subset problem) we set up a minimization problem and solved it with Gurobi. While for
SKINNY-128 the problem was solved in just a few seconds providing us with the global minimum
(which is thus the same as the QM algorithm), for AES the problem didn’t reach the minimum
even after 22 days of search on an 8-core laptop. However, the solution provided by Gurobi, even if
not the minimal one is much better than the one given by Espresso, as it can be seen in Table 4.3.
Furthermore, according to the authors of [Abd+17], QM itself cannot be applied to AES because of
its memory complexity.

While for Sboxes with sparse DDTs, as the one of SKINNY-128, the method of this section
provides a quite compact modeling, for Sboxes with low differential uniformity (i.e. highest value
in the DDT), as the one of AES the number of obtained inequalities is quite high for practical
applications. For this reason, we provide in the following sections new methods for modeling large
Sboxes that outperform in most of the cases the methods provided up to now.

4.2.5 Inequalities to remove Hamming balls B(d, c)

We saw in the previous section that each set of impossible transitions of the form a ⊕ Prec (u)
provided a single inequality for removing all points in the set. What we learned in particular from
this is that it is interesting to group impossible transitions in sets having a particular algebraic
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description and get inequalities out of them. In this section, we investigate a different type of sets
and show how to use their mathematical description to get nice inequalities. More precisely, we
show that points lying in a ball B(d, c) of radius d centered at a point c ∈ Fm

2 , can be removed
together by a simple inequality.

Definition 4.1 (Hamming ball). A ball of Fm
2 of radius d centered at c ∈ Fm

2 is the subset of all
points whose Hamming distance from the center c is at most d:

B(d, c) def= {x ∈ Fm
2 | wt (x⊕ c) 6 d } .

Furthermore, by S(d, c) we will denote the sphere of radius d centered on c, that is the set of points
x ∈ B(d, c) for which wt (x⊕ c) = d.

To illustrate this idea, we start with an example of the simplest case — balls of radius 1.

Example 4.6. Consider m = 4 and let B(1, c) be a ball of radius 1 centered at c = (1, 0, 0, 0) ∈ F4
2

: B(1, c) = {(1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}. It can be checked that all five
points of the above ball can be removed by

(1− x0) + x1 + x2 + x3 > 2.

We can construct similar examples for any ball of dimension d > 1. As we will show now, for
any dimension m and any point c ∈ Fm

2 , it is possible to construct an inequality that removes all
points of the ball B(d, c).

Proposition 4.2. Let c ∈ Fm
2 . Then

m−1∑
i=0

(1− ci)xi + ci(1− xi) > d + 1 ⇐⇒ x 6∈ B(d, c). (4.3)

Proof. Notice here that

m−1∑
i=0

(1− ci)xi + ci(1− xi) =
m−1∑
i=0

xi ⊕ ci = wt (x⊕ c) .

For any point u ∈ B(d, c), we thus have

m−1∑
i=0

(1− ci)ui + ci(1− ui) = wt (u⊕ c) 6 d.

On the other side, for any point u ∈ Fm
2 \ B(d, c), wt (u⊕ c) > d.

Distorted balls

When searching for inequalities removing impossible transitions for a DDT, we have to be sure that
the corresponding ball does not contain any possible transitions that we would mistakenly remove.
In Sboxes used in practice, notably those with a low differentially uniformity, as the number of
non-zero coefficients is usually large, removing entire balls does not usually work, as the number
of balls for which all points correspond to impossible transitions is typically very small. While the
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above method works well for sparse DDTs as the one of SKINNY-128, for the Sbox of PRESENT, no
plain ball, even of radius 1, can be removed with this method.

We will show now, that we can still extract an inequality from a ball for which we have removed
from its edge all possible transition points. We call such a ball distorted.

Example 4.7. Consider again Example 4.6. Inequality

(1− x0) + x1 + x2 + x3 > 2

removed all five points of the ball B(1, (1, 0, 0, 0)). Suppose now that we want to remove all the
above points except from (0, 0, 0, 0) and (1, 0, 1, 0). Then, intuitively it is enough to increase a little
bit the coefficient a0 corresponding to point (0, 0, 0, 0), that is the coefficient of (1− x0), to be sure
that when x0 = 0 then a0(1− x0) > 2. As for the other points of the ball x0 = 1, this change does
not have any impact on them. In the same way, we can increase the coefficient a2 before x2, to be
sure to keep (1, 0, 1, 0). One can check that

2(1− x0) + x1 + 2x2 + x3 > 2

removes indeed the three remaining points of the ball.

The next proposition formalizes the previous example to distorted balls of dimension d.

Proposition 4.3. Let B(d, c) ⊂ Fm
2 be a ball of radius d from which we remove the set of points

Q = (c⊕ Prec (q)) ∩ S(d, c)

for some q ∈ Fm
2 . Here p ∈ Q represents a possible transition towards the edge of the ball. We

define a ∈ Qm such that

ai =
{

d+1
d if qi = 1,

1 otherwise.

Then
m−1∑
i=0

ai
[
(1− ci)xi + ci(1− xi)

]
> d + 1 ⇐⇒ x 6∈ B(d, c) \ Q.

Proof. First note that since x, c ∈ Fm
2 ,

ai
[
(1− ci)xi + ci(1− xi)

]
= ai(xi ⊕ ci) for all i ∈ [0, m− 1].

• If x 6∈ B(d, c), then

m−1∑
i=0

ai(xi ⊕ ci) >
m−1∑
i=0

xi ⊕ ci > wt (x⊕ c) > d + 1.

• If x ∈ B(d− 1, c), then
m−1∑
i=0

ai(xi ⊕ ci) 6
d + 1

d
(d− 1) 6 d.

• Let x ∈ S(d, c).
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– If x ∈ Q then x⊕ c � q and
m−1∑
i=0

ai(xi ⊕ ci) = d + 1
d

wt (x⊕ c) = d + 1.

– If x 6∈ Q then x⊕ c � q and there exists some j such that xj 6= cj , qj = 0 and aj = 1.
Then

m−1∑
i=0

ai(xi ⊕ ci) = 1 +
∑
i 6=j

ai(xi ⊕ ci)

6 1 + d + 1
d

∑
i 6=j

xi ⊕ ci = 1 + d + 1
d

(wt (x⊕ c)− 1) = 1 + d + 1
d

(d− 1)

< d + 1.

Remark 4.1. For d = 1, Proposition 4.3 implies that for any ball of radius 1 and for any subset Q of
points on its edge, it is possible to create an inequality that removes the points in the ball minus
the set Q. For d > 1 the situation is a little bit different, as removing some points from the edge
can also remove other points that we would like to keep. Despite this, inequalities created this way
are usually interesting as they can permit to remove different points together.

Example 4.8. Consider again the example of PRESENT and let B(1, c) be the ball centered at
c = [0, 1] :

B(1, c) = {[0, 1], [0, 0], [0, 3], [0, 5], [0, 9], [1, 1], [2, 1], [4, 1], [8, 1]} .

By looking at the corresponding DDT (given in Section A.1), one can see that all the points in B(1, c)
correspond to impossible transitions, except [0, 0]. Then, if q = [0, 1], we have that Q = {[0, 0]} and

x0 + x1 + x2 + x3 + 2(1− y0) + y1 + y2 + y3 > 1

removes B(1, c) \ Q.

The inequalities provided up to now can remove points in a single ball. While this provides a
simple and fast algorithm by itself by simply going through all balls into a DDT and writing down
the corresponding inequalities, in practice we only used this method in combination with a more
powerful method that we detail in the next section. This new method permits us to remove points
belonging to the union of three different balls of radius 1. We call this process merging.

4.2.6 Inequalities to remove merged distorted Hamming balls

This method has similarities with the adding-inequalities method used in Algorithm 6, except that
we combine inequalities obtained with the distorted balls approach. We start by computing distorted
balls of radius 1 centred on impossible transitions. However, simply adding inequalities obtained
from neighbouring distorted balls often results in “bad” inequalities, in the sense that they do
not discard many impossible transitions. To get a more efficient method, we found that when
slightly changing one of the distorted balls, adding 2 to the right-hand side of the sum of the three
inequalities gives a better inequality. We now present in detail how to get such an inequality.

Let I be the set of all impossible transitions through the Sbox and let a, b and c be three distinct
points in I such that
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• wt (a⊕ b) = wt (a⊕ c) = 1,

• b 6= c,

• a⊕ b⊕ c ∈ I.

Let B(1, a),B(1, b) and B(1, c) be the corresponding balls of radius 1. We denote by

Pa = B(1, a) \ I ⊆ S(1, a) Pb = B(1, b) \ I ⊆ S(1, b)
Pc = B(1, c) \ I ⊆ S(1, c)

the possible transition points inside each ball. Finally, consider the sets

Q1 = Pa ⊕ a⊕ b ⊆ S(1, b) Q2 = Pa ⊕ a⊕ c ⊆ S(1, c)
Q3 = Pb ⊕ b⊕ c ⊆ S(1, c)

and let
Q def= Pa ∪ Pb ∪ Pc ∪Q1 ∪Q2 ∪Q3.

With Proposition 4.3, one can compute the inequalities A(x) > 2, B(x) > 2 and C(x) > 2 that
remove respectively B(1, a) \ (Q ∪ {c}),B(1, b) \ Q and B(1, c) \ Q. With the above notation, we
have the following proposition.

Proposition 4.4. Let x ∈ {0, 1}m, then

A(x) + B(x) + C(x) > 8 ⇐⇒ x 6∈ (B(1, a) ∪ B(1, b) ∪ B(1, c)) \ Q.

A proof for Proposition 4.4 is provided on Page 116. The method is summarized in Algorithm 8.
The sets Ra,Rb and Rc in Algorithm 8 correspond to the points inside each ball that have

to be kept when writing down the equation for the corresponding distorted ball. More precisely,
Ra = Pa ∪ {c} ,Rb = Pb ∪ Q1 and Rc = Pc ∪ Q2 ∪ Q3. It is interesting to note that there is no
symmetry between b and c: if one changes the roles of b and c, then the new inequality created will
remove a different subset of points from the three balls, giving thus a different inequality for our
collection.

Example 4.9. Let a = [0, 11], b = [0, 15] and c = [0, 10] be three impossible transition points for
the Sbox of PRESENT.

B(1, [0, 11]) = {[0, 11], [0, 10], [0, 9], [0, 15], [0, 3], [1, 11], [2, 11], [4, 11], [8, 11]} ,

B(1, [0, 15]) = {[0, 15], [0, 14], [0, 13], [0, 11], [0, 7], [1, 15], [2, 15], [4, 15], [8, 15]}
B(1, [0, 10]) = {[0, 10], [0, 11], [0, 8], [0, 14], [0, 2], [1, 10], [2, 10], [4, 10], [8, 10]} .

Here, Pa = {[8, 11]}, Pb = {[8, 15]} and Pc = {[2, 10], [4, 10]}. These sets correspond to all possible
transitions inside each ball and therefore they should not be removed by the final inequality.

Then we also compute the three sets Q1, Q2 and Q3, each one containing possible transitions but
also impossible transition points that will unfortunatly not be discarded by the new inequality. By
following notation we get that Q1 = {[8, 15]}, Q2 = Q3 = {[8, 10]}. With the set Q, we construct
the following distorted balls

B(1, [0, 11]) \ (Q∪ {[0, 10]}) , B(1, [0, 15]) \ Q and B(1, [0, 10]) \ Q.
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Algorithm 8 Create new inequalities from all possible triples of distorted balls.
1: input
2: Set of impossible transitions I ⊂ {0, 1}m.
3: output
4: C, a set of inequalities satisfied by all points in {0, 1}m \ I.

5: C ← ∅ . Initialize the set of inequalities.
. For all triple of neighbouring distorted Hamming balls...

6: for all (a, b, c) ∈ I s.t. wt (a⊕ b) = wt (a⊕ c) = 1 and b 6= c do
. Initialize some sets.

7: Pa ← B(1, a) \ I, Pb ← B(1, b) \ I
8: Ra ← Pa ∪ {c}, Rb ← Pb, Rc ← B(1, c) \ I
9: for all p ∈ Pa do

10: Rb ←Rb ∪ {p⊕ a⊕ b}
11: Rc ←Rc ∪ {p⊕ a⊕ c}
12: for all p ∈ Pb do
13: Rc ←Rc ∪ {p⊕ b⊕ c}

14: Let A(x) > 2 removing B(1, a) \ Ra . with Proposition 4.3.
15: Let B(x) > 2 removing B(1, b) \ Rb.
16: Let C(x) > 2 removing B(1, c) \ Rc

. New and correct inequality with Proposition 4.4.
17: Cnew ← A(x) + B(x) + C(x) > 8
18: C ← C ∪ {Cnew}

Following the technique of Proposition 4.3 for each of the three distorted balls, we get the
following three linear constraints:

x0 + x1 + x2 + 2x3 + 2(1− y0) + (1− y1) + y2 + (1− y3) > 2
x0 + x1 + x2 + 2x3 + (1− y0) + (1− y1) + (1− y2) + (1− y3) > 2

x0 + 2x1 + 2x2 + 2x3 + y0 + (1− y1) + y2 + (1− y3) > 2

Directly adding the three inequalities, while mathematically correct, usually yields inequalities
that remove a smaller subset of impossible transitions than what we could get. For this reason, we
use the following subtlety: we add 2 to the right-hand side of the sum. By doing so we get that

3x0 + 4x1 + 4x2 + 6x3 + 2(1− y0) + 3(1− y1) + y2 + 3(1− y3) > 6

removes the 17 points in the set

(B(1, a) ∪ B(1, b) ∪ B(1, c)) \ {[2, 10], [4, 10], [8, 10], [8, 11], [8, 15]}
= {[0, 2], [0, 3], [0, 7], [0, 8], [0, 9], [0, 10], [0, 11], [0, 13], [0, 14][0, 15], [1, 10], [1, 11], [1, 15]}

∪ {[2, 11], [2, 15], [4, 11], [4, 15]} .



116 CHAPTER 4. EFFICIENT MILP MODELS

Table 4.4 – Comparing upper bounds on the number of inequalities needed to model the corresponding
Sboxes. The combination of Algorithms 7 and 8 generates an initial set of inequalities.

# Inequalities

Sbox [Abd+17] Alg. 7 and 8

SKINNY-128 372 302
AES 8302 2882

Application to the AES and SKINNY-128

We applied Algorithm 8 together with Algorithm 7 and Proposition 4.3 to create a large set of
inequalities for the Sboxes of SKINNY-128 and AES and applied a MILP minimization problem to
find a small set of inequalities to represent each Sbox. The results can be visualized in Table 4.4. The
resulting MILP problem took only a few seconds to terminate for SKINNY-128 while the optimization
could not be terminated for AES. Even though, the number of inequalities that we got by stopping
the optimization process after a few days of computation provided us with a much lower number
than the best previous result. Of course, by pushing the optimization further, it is possible to get
even fewer inequalities for AES but one has to remember that obtaining the absolute minimum does
not usually lead to the quickest solving time.

Last, we also applied the combination of Algorithms 7 and 8 to all 4-bit Sboxes of Table 4.2 and
for all of them we obtained the same number of inequalities as with Algorithm 6.

Proof for Proposition 4.4

We recall that a, b, c, a⊕ b⊕ c ∈ I, b 6= c, wt (a⊕ b) = wt (a⊕ c) = 1,

Pa = B(1, a) \ I ⊆ S(1, a), Pb = B(1, b) \ I ⊆ S(1, b),
Pc = B(1, c) \ I ⊆ S(1, c), Q1 = Pa ⊕ a⊕ b ⊆ S(1, b),
Q2 = Pa ⊕ a⊕ c ⊆ S(1, c), Q3 = Pb ⊕ b⊕ c ⊆ S(1, c),

A(x) > 2, B(x) > 2 and C(x) > 2 remove respectively B(1, a)\ (Q∪{c}),B(1, b)\Q and B(1, c)\Q
and we introduce the notation

A(x) =
m−1∑
i=0

αi(xi ⊕ ai), B(x) =
m−1∑
i=0

βi(xi ⊕ bi), C(x) =
m−1∑
i=0

γi(xi ⊕ ci).

We also denote the basis vectors as

ei = (0, . . . , 0,

i
↓
1, 0 . . . , 0)

for all i ∈ [0, m− 1]. Finally, jb and jc will denote the indices such that a⊕ b = ejb
and a⊕ c = ejc .

We then have the following two lemmas:

Lemma 4.1. The points a, b, c and a⊕ b⊕ c do not belong to Q.
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Proof. First, since those points are impossible transitions, they cannot belong to Pa ∪ Pb ∪ Pc by
definition. Then if a ∈ Q1, then b ∈ Pa which as said above is impossible. For all the other cases
we have:

a ∈ Q2 ⇒ c ∈ Pa, a ∈ Q3 ⇒ a⊕ b⊕ c ∈ Pb,

b ∈ Q2 ⇒ a⊕ b⊕ c ∈ Pa, b ∈ Q3 ⇒ c ∈ Pb,

c ∈ Q1 ⇒ a⊕ b⊕ c ∈ Pa.

Lemma 4.2. It holds that αjc = 2 and αjb
= βjb

= βjc = γjb
= γjc = 1.

Proof. From Proposition 4.3 in the case d = 1, we have for all i ∈ [0, m− 1]:

• αi = 1 +

(ci ⊕ ai) ∨
∨

q∈Q∩B(1,a)
qi ⊕ ai

 because A(x) > 2 removes B(1, a) \ (Q∪ {c}),

• βi = 1 +
∨

q∈Q∩B(1,b)
qi ⊕ bi,

• γi = 1 +
∨

q∈Q∩B(1,c)
qi ⊕ ci.

Since by definition, a ⊕ c = ejc , αjc = 2. If αjb
= 2, ∃q ∈ Q ∩ B(1, a) : qjb

6= ajb
, i.e.

q = a⊕ ejb
= b but b 6∈ Q. Hence αjb

= 1. In the same way,

βjb
= 2 ⇐⇒ b⊕ ejb

= a ∈ Q, βjc = 2 ⇐⇒ b⊕ ejc = a⊕ b⊕ c ∈ Q,

γjb
= 2 ⇐⇒ c⊕ ejb

= a⊕ b⊕ c ∈ Q and γjc = 2 ⇐⇒ c⊕ ejc = a ∈ Q.

We are ready now to give a proof of Proposition 4.4.

Proof. Let x 6∈ B(1, a) ∪ B(1, b) ∪ B(1, c).

• If xjb
= ajb

and xjc = ajc . Then x 6∈ B(1, a) ⇒ ∃i1, i2 6∈ {jb, jc} : xi1 6= ai1 and xi2 6= ai2 .
Hence A(x) > αi1 + αi2 > 2, B(x) > βi1 + βi2 + βjb

> 3 and C(x) > γi1 + γi2 + γjc > 3.

• If xjb
= ajb

and xjc 6= ajc . Then xjb
= cjb

and xjc = cjc and x 6∈ B(1, c)⇒ ∃i1, i2 6∈ {jb, jc} :
xi1 6= ai1 and xi2 6= ai2 . Hence A(x) > αi1 + αi2 + αjc > 4, B(x) > βi1 + βi2 + βjb

+ βjc > 4
and C(x) > γi1 + γi2 > 2.

• If xjb
6= ajb

and xjc = ajc . Then xjb
= bjb

and xjc = bjc and x 6∈ B(1, b)⇒ ∃i1, i2 6∈ {jb, jc} :
xi1 6= ai1 and xi2 6= ai2 . Hence A(x) > αi1 + αi2 + αjb

> 3, B(x) > βi1 + βi2 > 2 and
C(x) > γi1 + γi2 + γjb

+ γjc > 4.

• If xjb
6= ajb

and xjc 6= ajc . Then x 6∈ B(1, b) ∪ B(1, c) ⇒ ∃i1, i2 6∈ {jb, jc} : xi1 6= ai1 and
xi2 6= ai2 .

– If ib 6= ic, A(x) > 4, B(x) > 3 and C(x) > 3.
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– Otherwise, A(x) = αib
+ αic + αjc > 4, B(x) = βib

+ βjc > 2 and C(x) = γib
+ γjb

> 2.

Therefore, in all the above cases the inequality A(x) + B(x) + C(x) > 8 is verified.
Let now x ∈ (B(1, a) ∪ B(1, b) ∪ B(1, c)) ∩Q.

• If x ∈ B(1, a), since a, b, c 6∈ Q, ∃i 6∈ {jb, jc} : x = a⊕ ei. It immediatly follows that αi = 2.
Moreover, b ⊕ ei = x ⊕ a ⊕ b ∈ B(1, b) ∩ Q so βi = 2 and c ⊕ ei = x ⊕ a ⊕ c ∈ B(1, c) ∩ Q
and thus γi = 2. Hence A(x) = αi = 2, B(x) = βi + βjb

= 3 and C(x) = γi + γjc = 3. Finally,
A(x) + B(x) + C(x) = 8.

• If x ∈ B(1, b), since a, b, a⊕ b⊕ c 6∈ Q, ∃i 6∈ {jb, jc} : x = b⊕ ei. We have A(x) = αi + αjb
,

B(x) = βi = 2 and C(x) = γi + γjb
+ γjc . Since x = a⊕ ei ⊕ ejb

= c⊕ ei ⊕ ejb
⊕ ejc , x ∈ Q

but x 6∈ S(1, a) ∪ S(1, c). Hence x ∈ Pb or x ∈ Q1.

– If x ∈ Pb, c⊕ ei = x⊕ b⊕ c ∈ Q3 ⊆ Q ∩ B(1, c) so γi = 2.

– If x ∈ Q1, a⊕ ei = x⊕ a⊕ b ∈ Pa ⊆ Q ∩ B(1, a) so αi = 2.

In both cases, A(x) + B(x) + C(x) > 8.

• If x ∈ B(1, c), since a, c, a⊕ b⊕ c 6∈ Q, ∃i 6∈ {jb, jc} : x = c⊕ ei. We have A(x) = αi + αjc =
αi + 2, B(x) = βi + βjb

+ βjc and C(x) = γi = 2. Hence A(x) + B(x) + C(x) > 8.

Finally, let x ∈ (B(1, a) ∪ B(1, b) ∪ B(1, c)) \ Q.

• If x ∈ {a, b, c, a⊕ b⊕ c}, one can easily check that A(x) + B(x) + C(x) 6 7.

• If x ∈ B(1, a) \ {a, b, c}, ∃i 6∈ {jb, jc} : x = a⊕ ei. A(x) = αi, B(x) = βi + βjb
= βi + 1 and

C(x) = γi + γjc = γi + 1. Since x = a⊕ ei 6∈ Q, we have A(x) = αi = 1.

• If x ∈ B(1, b) \ {a, b, a⊕ b⊕ c}, ∃i 6∈ {jb, jc} : x = b ⊕ ei. A(x) = αi + αjb
= αi + 1,

B(x) = βi = 1 and C(x) = γi + γjb
+ γjc = γi + 2. If αi = 2, a⊕ ei ∈ Q then a⊕ ei ∈ Pa and

x = (a⊕ ei)⊕ a⊕ b ∈ Q1 ⊆ Q. Hence αi = 1.

• If x ∈ B(1, c) \ {a, b, a⊕ b⊕ c}, ∃i 6∈ {jb, jc} : x = b ⊕ ei. A(x) = αi + αjc = αi + 2,
B(x) = βi + βjb

+ βjc = βi + 2 and C(x) = γi = 1. If αi = 2, a⊕ ei ∈ Q then a⊕ ei ∈ Pa and
x = (a⊕ ei)⊕ a⊕ c ∈ Q2 ⊆ Q. Hence αi = 1. If βi = 2 then b⊕ ei ∈ Q.

– If b⊕ ei ∈ Pb, x ∈ Q3 ⊆ Q.

– If b⊕ ei ∈ Q1, a⊕ ei ∈ Pa and x = (a⊕ ei)⊕ a⊕ c ∈ Q2 ⊆ Q.

Hence βi = 1.

In conclusion, we always have in this last case that A(x) + B(x) + C(x) 6 7.
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Table 4.5 – Number of inequalities for modeling various 5 and 6-bit Sboxes with four different
methods.

# Inequalities

n Sbox Citation Convex Hull Alg. 7 Alg. 6 Alg. 7 and 8

5

Keccak [Nise] 46 46 34 36
ASCON [Dob+19] 40 59 32 49
Fides-5 [Bil+13] 79 124 64 61
SC2000-5 [Shi+02] 82 123 66 64

6
APN-6 † [Bro+10] 195 288 167 179
Fides-6 [Bil+13] 223 455 180 194
SC2000-6 [Shi+02] 241 567 218 214

†The concrete function analyzed here is the one given through its table
representation by John Dillon in his talk at Fq09 [Dil09].

4.2.7 Comparing different techniques for Sbox modeling

Using 5 or 6-bit Sboxes inside a cipher is less common than using 4-bit and 8-bit ones. However,
some designs, e.g. Keccak, ASCON or Fides among others, use such Sboxes for different reasons
each: good masking properties or optimal resistance against differential cryptanalysis among others.
Indeed, APN permutations — i.e. permutations which have DDTs only composed of 0s and 2s and
which consequently have the best possible differential properties — exist for 5 and 6 bits. We tested
our algorithms on some Sboxes of this size, mainly for permitting comparison between the different
developed methods. Indeed, these sizes, not as small as 4 bits and not as large as 8 bits are ideal
for permitting all of the algorithms to run (even the ones based on the computation of the convex
hull) and for providing non-trivial comparisons. The results are summarized in Table 4.5. The first
method, that we note as Convex Hull, corresponds to the method based on the H-representation of
the convex hull provided by Sun et al. in [Sun+14b].

As one can see from the above table, Algorithm 6 and the combination of Algorithm 7 and
Algorithm 8 are the ones giving always the best results. Algorithm 6 is almost always better but it
has the disadvantage that it cannot be applied to larger dimensions.

4.3 Linear layer modeling

As seen in the previous section, modeling propagations through 8-bit Sboxes may lead to large
systems of R-linear inequalities. One would think that modeling a linear layer is much easier.
While this is true for simple linear layers as the ones of PRESENT or GIFT that consist in simple
bit-permutations, modeling other linear layers can also lead to large systems of R-linear inequalities.
This is in particular due to the difficulty of efficiently modeling the xor operation that is the major
component of most diffusion layers.



120 CHAPTER 4. EFFICIENT MILP MODELS

4.3.1 xor modeling

Modeling a linear layer is often related to how the xor operation is modeled. The following proposition
gives an idea of how difficult it can be to efficiently model a linear layer without dummy variables.

Proposition 4.5. The equation x0 ⊕ x1 ⊕ . . .⊕ xn−1 = 0 needs at least 2n−1 R-linear inequalities
of the form

n−1∑
i=0

cixi + d > 0, c ∈ Rn, d ∈ R

to characterize the set of its solutions in Fn
2 .

Proof. First, we can exhibit such a set of inequalities. Indeed, for each a ∈ Fn
2 such that a0 ⊕

a1 ⊕ . . . ⊕ an−1 = 1, we have seen in Section 4.2 that we can write down an inequality that only
eliminates a from the set of possible solutions. Since there are exactly 2n−1 such points, we have
2n−1 inequalities modeling {x ∈ Fn

2 | x0 ⊕ . . .⊕ xn−1 = 0 } .
Let us suppose now that there exists an inequality 〈 c | x 〉+ d > 0 that eliminates at the same

time two points a and b such that ai = 0 and bi = 1 for some i ∈ [0, n− 1]. Then,

• if ci 6 0, 〈 c | a⊕ ei 〉+ d = 〈 c | a 〉+ d + ci < 0.

• Otherwise, if ci > 0, 〈 c | b⊕ ei 〉+ d = 〈 c | b 〉+ d− ci < 0.

This means that if an inequality eliminates two different points on the cube {0, 1}n, it necessarily
also eliminates two points at Hamming distance 1.

Moreover, two points a and b such that wt (a⊕ b) = 1 cannot both be solutions of x1⊕. . .⊕xn = 0.
This explains why we need as many R-linear inequalities as points to eliminate, i.e. 2n−1.

Therefore, a naive way to model a linear layer is to model each xor operation in the way showed
in Proposition 4.5. We will often refer to this as the naive method. The rest of this section is
dedicated to the presentation of more efficient ways for modeling general linear layers.

4.3.2 Modeling matrices over F2

When modeling a mathematical operation for MILP with a system of linear inequalities, the input
and output variables play the same role inside each inequality. This shows that modeling a matrix
M means modeling the kernel of A = (M |I), where I is the identity matrix. Indeed, for any matrix
M with entries in F2,

Mx = y ⇐⇒ Mx⊕ y = 0 ⇐⇒ A

(
x
y

)
= 0.

One can then model the equation given by each row of A with the xor modeling. But as we have just
seen, the number of constraints for modeling one xor operation grows exponentially with the number
of involved variables. Since our goal is to model the kernel of A and since it is known that for any
invertible matrix P ∈ GLn (F2) , ker(P ·A) = ker A, the idea is to find a matrix P ∈ GLn (F2) such
that the rows of P ·A have minimum Hamming weight and induce thus a minimal number of xor
operations. More precisely, this means finding an invertible matrix P that minimizes

n∑
i=1

2wt((P ·A)i,∗)−1, (4.4)
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where wt ((P ·A)i,?) corresponds to the Hamming weight of the i-th row of P ·A. The question is
now how to find such a matrix P . A first idea would be to search for minimum-weight codewords
in the linear code generated by the rows of A, as this is done when computing the linear branch
number of the matrix M . For example, consider the matrix

MMidori =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 (MMidori|I) =


0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


used in the linear layer of Midori. This matrix has branch number 4, which means that for all
x ∈ F4

2, wt (x · (M |I)) > 4. Hence we cannot hope for a better modeling of this linear operation
based on the xor modeling than the one given by (M |I). However, let us take the example of the
SKINNY MixColumns operation given by the matrix MSKINNY below. In that case, the code generated
by (MSKINNY|I) has minimum distance 2 and it is equivalently generated by the matrix ASKINNY
obtained by adding in F2 the fourth line to the first line of (M |I).

MSKINNY =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 ASKINNY =


0 0 0 1 1 0 0 1
1 0 0 0 0 1 0 0
0 1 1 0 0 0 1 0
1 0 1 0 0 0 0 1

 .

While the naive xor modeling of (MSKINNY|I) would have needed 23 + 2 + 22 + 22 = 18 inequalities,
using the above matrix for the xor modeling only requires 14 inequalities.

To demonstrate that this representation is more efficient in practice compared to the naive
approach, we computed the time it takes for the Gurobi Optimizer [GO20] to reach the minimum
number of active Sboxes over several rounds of SKINNY-128 for the two different modelings of
MixColumns. In this experiment, in order to emphasize the impact of the linear layer modeling and
to avoid correlations with the modelings of the other parts of the cipher, we used a very simple
modeling for the 8-bit Sbox. This Sbox modeling, introduced in [ST17b] under the name of arbitrary
Sbox mode, needs only 2n inequalities for the whole Sbox but only models the following behaviour:
if at least one input bit is active then at least one output bit has to be active and vice versa. The
timings (in seconds) of this experiment can be visualised in Table 4.6. We emphasize that the
reported timings is the time for the solver to reach what we already know to be the minimum
number of active Sboxes. Indeed, as even with the improved modeling the number of inequalities
still remains high, our MILP solver takes too long for terminating and thus proving that the found
upper bound on the minimum number of active Sboxes is tight. The minimum number of active
Sboxes for SKINNY has been computed by its designers in [Bei+16] thanks to wordwise modelings.

It is obvious from this table that the new modeling of the SKINNY linear layer reduces importantly
the solving time. We propose now a new algorithm, Algorithm 9, that given the matrix A = (M | I),
finds a matrix P that minimizes Equation (4.4). First, the matrix P is initialized to the identity
matrix. Then, the algorithm proceeds in a row-wise manner and searches at each step to replace
the current row with a better one. To start with, it searches to replace the first row of A with a
codeword of the form

m ·A, m ∈ {x ∈ Fn
2 | x1 = 1 } and wt (m ·A) < wt (A1,∗) .
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Table 4.6 – Computation time in seconds for the Gurobi solver to find the minimum number of
active Sboxes over r rounds for SKINNY-128 with two different modelings for MixColumns.

Number of rounds 6 7 8 9 10

Minimum number of active Sboxes 16 26 36 41 46
Time to reach this minimum with the new modeling 0 0 0 16 5200

Lowest upper bound with naive linear layer or - if the
minimum was reached

- - - - 47

Time at which we stopped the experiment or time after
which the minimum was reached

16 35 30 1862 14600

After this first step, the matrix P is updated as

P =


1 m2 · · · mn

1
. . .

1

 .

The algorithm then searches for a replacement for the second row of the matrix P ·A in the same
way and updates the matrix P if a lower weight codeword has been found.

Algorithm 9 Given a binary matrix A of size n×N returns P ∈ GLn (F2) minimizing Equation (4.4).
1: procedure FindP(A)
2: Amut ← A
3: P ← In

4: for ` ∈ {1, . . . , n} do
5: mbest ← Amut

`

6: for all m ∈ {x ∈ Fn
2 | x` = 1 } do

7: if wt
(
m ·Amut) < wt (mbest) ·Amut then

8: mbest ←m

9: Amut
` ←mbest ·Amut

10: P ←



1
. . .
mbest

. . .
1


· P

11: return P

Algorithm 9, whose time complexity is n2n−1 multiplications of a n-bit binary vector with a
matrix with n rows and an arbitrary number of N columns, finds notably the previous result for
SKINNY (14 inequalities). We also applied Algorithm 9 to the AES MixColumns. The naive xor
modeling gives 2176 inequalities for this matrix and Algorithm 9 does not improve this quantity.
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We develop now a different idea that permits in some cases to significantly improve the number
of inequalities needed for modeling the linear layer, compared to both the naive approach and
Algorithm 9.

4.3.3 Changing the Sbox modeling for improving the linear modeling

The idea of this approach consists in changing the Sbox modeling. Indeed, if we find an invertible
block-diagonal matrix (with blocks having the size of the Sbox)

Q =


Q1

Q2
. . .

Q2b


where b is the number of words on which MixColumns operates (e.g. b = 4 for the AES, SKINNY or
Midori), then changing the modeling of the Sbox into the modelings of Q−1

i ◦ Sbox ◦Q−1
i+b for all

i ∈ [1, b] allows for a new, potentially better xor modeling of the MixColumns operation with the
equation (M |I) ·Q ·x = 0. Once a convenient matrix Q has been found, modeling (M |I) ·Q ·x = 0
can be done using Algorithm 9. In summary, with this method, the problem of finding a good xor
modeling for the linear layer boils down to finding a matrix P ∈ GLn (R) and a block-diagonal
matrix Q ∈ GL2n (R) which minimize

n∑
i=1

2wt((P ·(M |I)·Q)i,∗)−1. (4.5)

We propose Algorithm 10 for finding such matrices P and Q. The idea of this algorithm is to
iterate alternating searches for P and Q, hoping that modifying one of P or Q will allow further
optimization. This algorithm then takes as a parameter the number of desired iterations p ∈ N. In
practice however, for all of our experiments, we have never needed p > 2.

Applying Algorithm 10 on the AES MixColumns operation with parameter p = 1 gives P and Q
such that the quantity of Equation (4.4) initially at 2176 drops down to 1088. However, Algorithm 10
does not give better results for Midori or Algorithm 9 for SKINNY. Matrices P and Q for the AES
are given in Appendix A.2.

To measure at which point such a change in the modeling of the linear layer can be an improvement
for the running time, we ran an experiment for the AES similar to the one above for SKINNY-128.
One important difference is that wordwise modelings for the AES have not been able to provide
tight lower bounds for the minimum number of active Sboxes because of byte multiplications needed
in the MixColumns operation. For example in [Mou+11], the authors used the branch number of
the MixColumns operation to obtain lower bounds. In Table 4.7, we hence give the lowest upper
bound on the minimum number of active Sboxes reached with the improved linear-layer modeling
after a given number of seconds and the same upper bound reached with the naive linear layer after
a given number of seconds.

On the complexity of Algorithms 9 and 10

For our implementation of Algorithms 9 and 10, we represented binary matrices as vectors of 64-bit
integers, each integer representing a row. The multiplication of an n-bit binary vector with a n×N



124 CHAPTER 4. EFFICIENT MILP MODELS

Algorithm 10 Given a matrix A of size n × N , find P ∈ GLn (F2) and block-diagonal Q with
2b blocks such that (P , Q) minimizes

∑n
i=1 wt ((P ·A ·Q)i).

1: procedure FindQ(A, p, b)
2: P ← FindP(A)
3: Amut ← P Amut

4: Q← I2n

5: loop p times
6: for all i ∈ [1, 2b] do

7: Ci ← columns n · i
b

, · · · ,
n · (i + 1)

b
− 1 of Amut

8: Qi ← FindP(CT
i )T

9: Q← Q ·


Q1

Q2
. . .

Q2b



10: Amut ← Amut ·


Q1

Q2
. . .

Q2b


11: P ← FindP(Amut)·P
12: Amut ← P Amut

13: return P , Q

Table 4.7 – Time in seconds to reach the lowest upper bound for the minimum number of active
Sboxes for the AES.

Number of rounds 5 6 7 8

Lowest upper bound with improved linear layer 28 35 47 65
Time needed to reach this upper bound 105 117 5547 6900

Lowest upper bound with naive linear layer 31 40 49 69
Time at which we stopped the experiment 2300 2200 8200 10000

matrix then takes at most n xors of 64-bit integers when N 6 64. With this implementation, the
running time of Algorithm 9 on the AES MixColumns matrix on a single core is 929 seconds. In
Algorithm 10, the computation of Q applies Algorithm 9 on 2b matrices with n

b rows. The complexity
is then

2b ·
(

n

b

)2
· 2

n
b

−1 XORs of 64-bit integers.

The running time of this computation is then negligible compared to the computation of P in
practice. Indeed, the computation of P applies Algorithm 9 on a matrix with n rows, which has a
complexity of

n2 · 2n−1 XORs of 64-bit integers.
Finally, the running time of Algorithm 10 is (p + 1) times the running time of Algorithm 9.
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Table 4.8 – Number of inequalities to model a diffusion matrix for MILP without dummy variables
with the naive way, and with the two algorithms developed in this section.

# Inequalities

Cipher Naïve Alg. 9 Alg. 10

Midori 32 32 32
SKINNY 18 14 14
AES 2176 2176 1088
Aria 2048 2048 2048
Anubis 7168 2032 1680
Saturnin 5632 352 352

Modeling of affine equivalent Sboxes

As seen in this section, to apply Algorithm 10, instead of modeling the cipher’s original Sbox
(denoted here as Sboxorigin), one will need to model one or more Sboxes that are linearly equivalent
to Sboxorigin. Therefore, it is necessary to ensure that the modeling of these linearly equivalent
Sboxes is not (much) worse than the modeling for Sboxorigin. This leads to the following more
general question: “How does the modeling of an Sbox gets affected by affine equivalence?” In our
experiments with AES, the only needed affine equivalent Sbox — SboxAES ◦Q0 where Q0 is given
in Appendix A.2 — had a very similar modeling to the original SboxAES, leading notably to almost
the same number of final inequalities. It is however not clear for us what happens in the general
case and we believe that this constitutes an interesting open problem. For example, it could be
useful to know for any given Sboxorigin whether one can compute an affine equivalent Sboxequiv that
can be modeled with much fewer inequalities. A related question is whether a lower bound on the
number of needed inequalities in the modeling can be found accross the equivalence class of an Sbox.

4.3.4 Other applications

Besides AES, SKINNY and Midori we also applied Algorithms 9 and 10 to the linear layers of some
other block ciphers. The obtained results are summarized in Table 4.8 and the linear layers of
Anubis, Aria and Saturnin are briefly described below.

Anubis is a 128-bit block cipher designed by Barreto and Rijmen in 2000 in the context of the
NESSIE project. Anubis follows the SPN construction and uses an involutive MixColumns operation,
based on an MDS matrix

H =


1 2 4 6
2 1 6 4
4 6 1 2
6 1 2 4

 ∈M4 (F28) .

Each entry of H is an element
∑

xiX
i of the finite field F2[X]/(X8 + X4 + X3 + X2 + 1) represented

by the integer
∑

xi2i. For the Anubis’s MixColumns operation, the quantity of Equation (4.4)
initially at 7168 drops to 2032 after applying Algorithm 9 and to 1680 after applying Algorithm 10.
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Saturnin is a 2-round candidate of the NIST Lightweight Crypto Competition, designed by
Canteaut et al. [Can+19]. Its main component is a block cipher with a MixColumns operation
applying the transformation M :

(
F2

4)4 → (
F4

2
)4 (see Section A.3) to different parts of the state.

Algorithm 9 allows the quantity of Equation (4.4) initially at 5632 to drop down to 352 but
Algorithm 10 does not permit to reduce this quantity further.

Aria. Presented at ICISC in 2003 by Kwon et al. [Kwo+04], Aria is an SPN block cipher whose
diffusion layer consists in applying a 16× 16 binary matrix (given in Section A.3) to different parts
of the state. The quantity of Equation (4.4) is 2048 and is not improved by our algorithms.

4.4 Impact of the new modelings on the solving time
In this section we analyze the impact of our new modelings on the running time of a MILP
optimization problem. We chose to perform our experiments on the problem of deciding whether a
differential (a, b) is possible, which in practice consists in finding a possible differential characteristic,
if this one exists. This kind of computation is used in practice for impossible differential cryptanalysis.
We will provide more details on the full problem in Section 4.5.

Description of the experiment. The goal of these experiments is to quantify in terms of solver
computation time the impact of both the Sbox and the MixColumns modelings. For this, we
considered two different modelings for the Sbox: the logical method of Section 4.2.4 removing sets of
the form a⊕ Prec (u) and a combination of this method and the method of Section 4.2.5 removing
merged distorted Hamming balls. For the linear layer we also considered two cases: in the first case
we model the MixColumns matrix via the naïve xor modeling and in the second we model it with
the improved xor modeling given by Algorithms 9 and 10. We then considered all four different
combinations of these Sbox and MixColumns modelings. For launching the experiment, we chose
a random set of input and output difference pairs (a, b) and asked Gurobi to verify whether the
differential (a, b) is possible.

First observations. We ran this experiment for SKINNY-128 and the AES and present in Table 4.9
basic statistics on the computation times for each cipher. One can see in those experiments that
the computation can be very long and that the standard deviation is huge. We do not have any
explanation for this fact. However, the means and quantiles behave coherently with each other,
which shows that a different MILP modeling does have a clear influence on the solving time. For
the AES, the computation time is dramatically higher when the input and output are sparse (have
much more zeros than ones) than when they are dense, hence the need for two different tables. Our
intuition for this fact is that there are many more possible differential characteristics inside the
differential when the input and the output are dense, which makes it easy for the solver to find
one in a few seconds. For the application on AES with sparse ends, we also indicate to our models
which bytes are active and inactive in the first two and last two rounds. This reduces the running
time of the solver by approximately a factor 10.

The case of SKINNY-128. As we can see, for SKINNY-128 the change of modeling for the linear
layer has a much bigger impact on the running time than the change of the Sbox modeling. There
are in our opinion three possible reasons for that: First, the number of rounds under study for
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Table 4.9 – Statistics on the computation time in seconds for 32 rounds of SKINNY-128 and 5 rounds
of AES.

(a) 32-round SKINNY-128 on a sample of 1975 input/output pairs.

Sbox Alg. 7 Alg. 7 and 8

MixColumns Naïve Improved Naïve Improved

Mean 185 21 172 29
Std 359 26 364 34
Min 5 5 5 5
25 % 6 6 6 6
50 % 61 6 7 6
75 % 106 7 104 63
Max 1876 120 2084 292

(b) 5-round AES on a sample of 4594 dense input/output pairs.

Sbox Alg. 7 Alg. 7 and 8

MixColumns Naïve Improved Naïve Improved

Mean 43 40 16 25
Std 2 7 4 28
Min 22 17 8 8
25 % 40 40 11 19
50 % 42 41 13 20
75 % 44 44 20 22
Max 55 53 52 379

(c) 5-round AES on a sample of 259 sparse input/output pairs.

Sbox Alg. 7 Alg. 7 and 8

MixColumns Naïve Improved Naïve Improved

Mean 1599 1944 441 662
Std 1560 2051 166 274
Min 17 24 7 11
25 % 983 1047 382 460
50 % 1194 1465 424 702
75 % 2036 2347 488 822
Max 18237 23566 1062 2824
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SKINNY-128, 32, is high enough for the modeling of the linear layer to have impact. Then, as one
can see from Table 4.4, the difference between the two Sbox modelings is not significant. Finally,
the number of inequalities per Sbox is rather low (< 400), which gives the linear layer modeling
more impact as well.

The case of the AES. For the AES, the inverse phenomenon happens: the linear layer modeling
does not have an important impact whereas the Sbox modeling divides the running time by 2. Again,
we think that a possible explanation of this is that the number of rounds, 5, is too low for the linear
layer to have an important impact, the difference between the two Sbox modelings is significant (see
Table 4.4) and the number of inequalities per Sbox is rather high (≈ 3000) making that the Sbox
contraints have a higher proportion in the global process.

4.5 Applications on impossible differential cryptanalysis

Impossible differential cryptanalysis, presented in Section 2.4, consists in finding impossible dif-
ferentials, i.e. an input difference a and an output difference b that cannot be connected. Any
impossible differential attack starts with the discovery of an impossible differential (a, b) covering
a maximal number of rounds. Traditionally this was done with the U-method [Kim+03] or its
extensions [Luo+14; WW12]. However, in 2017, Sasaki and Todo [ST17b], showed that MILP can
be successfully used to prove resistance against impossible differential attacks or for discovering new
impossible differential distinguishers. For proving (partial) resistance against impossible differential
cryptanalysis with MILP, and as briefly explained in Section 4.4, one can choose a set of input
and output pairs and then solve a MILP differential propagation problem with the given cipher
model for each of those pairs. The chosen set is typically composed of all possible inputs and
outputs with exactly one active byte, i.e. for which exactly one byte has a difference. When all of
those computations result in a valid differential transition, showing thus that the input and output
differences can be connected, we consider that resistance against impossible differential cryptanalysis
has been partially proven, where partially applies to the fact that the input and output spaces are
restricted. However, as seen in Section 4.4, a single computation with a fixed input and output
difference can be too long for permitting to do such kind of proofs for a large meaningful enough set
of input/output pairs. To overcome this problem Sasaki and Todo introduced in [ST17b, Section
5], the Differential Possibility Equivalence technique. This technique reduced the number of MILP
instances to solve and permitted to drastically reduce the overall running time of this process. In
what follows we briefly present this technique. Then we show how to further improve this method
for decreasing the running time further. We applied this technique to prove partial resistance against
differential cryptanalysis for 5-round AES and 13-round SKINNY-128.

4.5.1 The Differential Possibility Equivalence technique

We consider for the rest of this section that an r-round MILP model is composed of r non-linear
layers and begins and ends with a non-linear layer. It is then also obviously composed of r− 1 linear
layers.

Suppose that we search for r-round impossible differentials for an SPN cipher. Suppose further
that the pairs of input and output differences are restricted in a set S and that we have computed
a possible differential characteristic for r rounds x0

r−→ y0. The idea of the Differential Possibility
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Equivalence technique is to exploit this possible differential characteristic to discard other possible
transitions (x, y) ∈ S without computing at each time a new r-round differential characteristic
x

r−→ y from scratch. To do so, one chooses rin and rout such that rin + rout < r and gets the
differences x′ and y′ in the already computed path

x0
rin−−→ x′ r−rin−rout−−−−−−−→ y′ rout−−→ y0.

One then discards all (x, y) ∈ S such that the transitions x
rin−−→ x′ and y′ rout−−→ y are possible, which

means computing two smaller differential paths on rin and rout rounds. Sasaki and Todo introduced
this technique in [ST17b] with x′ and y′ respectively right before and right after the first and last
non-linear layers (hence with rin = rout = 1), finding x and y by directly looking at the DDT of the
Sboxes used in those non-linear layers. However, it can be interesting to try the same with other
values for rin and rout, using MILP models for checking differential paths x

rin−−→ x′ and y′ rout−−→ y.
The choice of rin and rout for finding a minimal running time depends on the cipher and

the running times for computing differential characteristics for respectively r, rin and rout rounds.
Moreover, one should avoid to check differential transitions x

rin−−→ x′ and y′ rout−−→ y when they have
a low probability to be possible. In the search for impossible differentials with exactly one active
input and one active output byte, it appears that it is rather efficient to restrain the checks for (x, y)
such that x shares the same active byte as x0 and y shares the same active byte as y0. Indeed,
for the AES with r = 5, rin = rout = 2, the computation of one r-round differential characteristic
x0

r−→ y0 allows to discard all the other pairs (x, y) with the same active bytes. For SKINNY-128
with r = 13, rin = rout = 2, for 2 checks x

2−→ x′ or y′ 2−→ y, one possible transition gets discarded on
average.

4.5.2 Applications to SKINNY-128 and AES

In [ST17b] the authors used MILP for proving the maximal number of rounds for which impossible
differentials exist for many different designs, if the input and output differences are restricted inside
one word (bit, nibble or byte, depending on the design). Most of the analyzed ciphers are based on
4-bit Sboxes while for the analyzed designs using 8-bit Sboxes the details of the Sboxes are not taken
into account. The only exception is Midori but whose Sboxes are constructed from two 4-bit ones.

Our new modelings for both big Sboxes and linear layers and the above generalization of the
Differential Possibility Equivalence technique permitted us to complement the work done in [ST17b]
for 8-bit-based ciphers, by taking in particular the Sbox details into account. For both 5-round
AES and 13-round SKINNY-128 1, for each pair of input/output bytes (i, j), we ran our models with
the Differential Possibility Equivalence technique on the set with 255× 255 elements with byte i
active in input and byte j active in output. Those computations provide us with proofs for partial
resistance against impossible differential cryptanalysis.

The case of SKINNY-128. For the parameters r = 13, rin = rout = 2, the proof for each pair of
input/output active byte has been completed in an average time of 15 minutes on 2 cores of Intel
XEON E3-1240 v5. To the best of our knowledge, this proof is a new result.

1 There is an ambiguity in the literature over the number of rounds on which impossible differentials are found for
SKINNY-128. For us, 13 rounds means that there are 13 Sbox layers and 12 linear layers.
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The case of the AES. For the parameters r = 5, rin = rout = 2, the proof for each pair of
input/output active byte completed in an average time of 10 hours on 2 cores of Intel XEON E3-1240
v5. Sun et al. proved in [Sun+16b] without any restriction on the number of active input or output
bytes, that there are no 5-round impossible differentials for the AES, unless the details of the Sbox
are taken into account. By taking the details of the Sbox into account, we provide an extension of
Sun et al.’s proof, in the case of one active input and one active output byte. Note however that
Wang and Jin gave recently in [WJ19] a theoretical proof for 5 rounds of AES. Indeed, they proved,
that for any number of active input/output bytes, all differentials are possible if round-keys are
taken uniformly at random.

4.6 Conclusion
In this chapter, we presented new techniques for improving MILP models simulating differential
properties through Sboxes and MixColumns operations. We found better modelings for various
Sboxes with sizes ranging from 4 to 8 bits with three different approaches: adding inequalities given
by the H-representation of the convex hull of possible transitions, packing impossible transitions
in affine subspaces of the form a ⊕ Prec (u) or packing them in (possibly “merged”) distorted
balls. Our techniques for Sbox modeling are very general: they basically give efficient algorithms to
represent any subset of {0, 1}n with a small number of inequalities. Those techniques could then
have applications beyond differential cryptanalysis. We also introduced a link between the modeling
of F2-linear operations and the search for a basis with minimal-weight codewords inside F2-linear
codes. We gave algorithms based on this link to reduce the inequality cost of MixColumns modelings.

We then gave insights on how those techniques impact the performance of computing a differential
characteristic with a fixed input and output for SKINNY-128 and the AES. Those two cases
respectively demonstrate the benefits of better modelings for the MixColumns operations and for the
Sboxes. Finally, we applied those techniques to proving partial resistance of 13-round SKINNY-128
and 5-round AES against impossible differential cryptanalysis with the specific properties of the
Sboxes fully taken into account.

Lastly, our techniques could be applied in a straightforward manner to the search for best
differential characteristics in various ciphers as explained in [Abd+17] and to similar problems of
linear cryptanalysis. The optimal way of solving the Efficient subset problem to improve performance
remains an open question.



Chapter 5

Algebraic Normal Form analysis

The work presented in this chapter is the result of personal work and experiments that have not
been published elsewhere.

5.1 Introduction
Almost any symmetric primitive can be seen as a map E : Fn

2 × Fm
2 → Fs

2 with public and private
inputs, respectively denoted by x ∈ Fn

2 and k ∈ Fm
2 . As will be explained in Section 5.2, a coordinate

of such a map — called a Boolean function — can be seen as a polynomial over F2 with public
variables X0, . . . , Xn−1 and private variables K0, . . . , Km−1. In chosen-plaintext attacks for example,
we want to recover some information on the key k — the private input — when we can query the
value E(x, k) on the public input x of our choice. Each coordinate Ei (X0, . . . , Xn−1, K0, . . . , Km−1)
is a Boolean function and its polynomial representation is called its Algebraic Normal Form (ANF).

Algebraic attacks. For E(X, K) to be indistinguishable from random or to resist key-recovery
attacks, it is important to understand the behaviour of its ANF. For example, if E is a random
function, each coefficient in the ANFs of its coordinates Ei follows a uniform law of probability
over F2. Therefore, detecting a biased property in some ANF, like a small degree, can lead to
distinguishing attacks or even to key recoveries. However, since knowing (and storing) an ANF
is equivalent to knowing the entire code-book of a Boolean function (see Proposition 5.1), many
algebraic attacks try to avoid a precise analysis of the ANF. Indeed, here are a few examples of
algebraic attacks.

• In classical algebraic attacks [CP02; CM03], the knowledge of the internals of the cipher and
the knowledge of plaintext/ciphertext pairs provide a large multivariate polynomial system.
The degrees of the equations and the number of variables will be very important for estimating
the complexity of solving the polynomial system with Gröbner-basis algorithms like F4 [Fau99]
or F5 [Fau02]. These attacks are hardly successful in general as either one of those two
quantities grows rapidly with the number of rounds and since Gröbner-basis algorithms, while
efficient, remain impractical in this situation.

• High-order differential cryptanalysis [Lai94; Knu95] aims at building an integral distinguisher
by bounding the algebraic degree of the primitive under study: if F : Fn

2 → F2 has degree at
most d, then for all subspaces V ⊆ Fn

2 of dimension strictly bigger than d,
∑

u∈V F (x + u) = 0

131
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for all x ∈ Fn
2 . This family of attacks usually affects block ciphers whose round function has a

relatively low algebraic degree.

• In their original form, interpolation attacks [JK97] aim at computing the coefficients of a
sparse polynomial Q ∈ F2n [X] such that for all known plaintext/ciphertex pairs (p, c) ∈ F2

2n ,
Q(p) = c.
In more elaborate variants over F2 [Din+15], interpolation attacks leverage a family of integral
distinguishers ∑

x∈X`

Gi(k, x) = 0


`

on one intermediate state bit Gi in the block cipher Ek = Fk ◦Gk. Then by writing y = Ek(x),
Gi(k, x) =

(
F −1

k

)
i
(y) and the ANF of

(
F −1

k

)
i

as
(
F −1

k

)
i
(y) =

∑
u∈Fn

2
cu(k)yu, the equations

∑
u∈Fn

2

cu(k) ·
∑

y∈Ek(X`)
yu = 0


`

make a linear system in the unknown coefficients cu(k). Consequently, if the number of these
coefficients is low enough — i.e. the ANF of F −1

k is sparse enough — a resolution of the
system gives the values of the secret coefficients cu(k) and some of them should give useful
information about the key.

Cube attacks. In 2009, Dinur and Shamir proposed generic key recovery attacks, called cube
attacks [DS09], mostly suited for stream ciphers and based on ANF analysis. Indeed, in its original
version, the intermediate goal of a cube attack is to build a solvable polynomial system verified by
the key with equations being of the form

Pi,u(K) = Pi,u(k) where Ei(X, K) =
∑

u∈Fn
2

Pi,u(K)Xu.

Statistical variants of cube attacks, cube testers [Aum+09] and dynamic cube attacks [DS11],
pushed the applications of ANF analysis further but all known techniques relied on some practical
computations of the Möbius transform (see Proposition 5.1). This had the major drawback of making
the security analysis of stream ciphers against cube attacks only possible in the range of practically
feasible computations.

Monomial trails. With the developpement of the division property, originally introduced by
Todo in [Tod15] to build integral distinguishers, new techniques dedicated to ANF analysis emerged.
In particular, their application to cube attacks, first proposed in [Tod+17], finally allowed more
convincing security analysis against cube attacks beyond practical range. Following the terminology
of [Hu+20], these techniques are based on the computation of monomial trails, which trace the
existence of a given monomial in input variables XuKv through the successive rounds and operations
of the primitive. If monomial trails can be considered as the algebraic counterpart of differential or
linear trails, there is a notable difference: when computing some ANF coefficients with monomial
trails, all the corresponding monomial trails have to be computed.
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Our contributions. In this chapter, we propose a coherent state of the art about cube attacks
and we investigate a new idea for ANF analysis which could help to surpass the limit of monomial
trails. In a circuit evaluating a Boolean function F : Fn

2 → F2, replacing the addition and the
multiplication of F2 by the addition and the multiplication of the ring of integers Z builds a new
object, a callable function FZ : Zn → Z, whose analysis might reveal valuable information on the
ANF of the original F . In particular, we adapt the Möbius transform to this new object but practical
applications of this new idea have not been investigated so far.

Organization of the chapter. Section 5.2 goes through the important definitions, properties
and algorithms about Boolean functions and their ANFs. Section 5.3 presents cube attacks and
proposes a bird’s eye view on their variants. In Section 5.5, we explore how transposing a Boolean
circuit to the ring of integers could help to exploit a potential structural weakness of ANFs, low
density, that could also be applied in cube attacks.

5.2 Preliminaries on Boolean functions

5.2.1 Algebraic definition of Boolean functions

Definition 5.1 (Boolean function). We call a Boolean function of n variables any polynomial
P ∈ F2[X0, X1, . . . , Xn−1].

Since the base field of Boolean functions is F2 and that we only intend to use them on Fn
2 —

where each scalar verifies x2 + x = 0 — , Boolean functions are mostly considered modulo X2
i + Xi

for each variable Xi. This leads to the following notation for binary monomials.

Notation 5.1. For any u ∈ Fn
2 , we define the binary monomial

Xu def=
n−1∏
i=0

Xui
i .

It is useful to note that for all u, x ∈ Fn
2 , xu = 1 ⇐⇒ u � x.

Definition 5.2 (ANF). The Algebraic Normal Form of a Boolean Function P is its representation
as a sum of binary monomials.

P =
∑

u∈Fn
2

puXu.

It equivalently refers to the binary vector of length 2n of the coefficients pu. The degree of P is
then defined as

deg P
def= max {wt (u) | pu = 1 } .

As a polynomial, a Boolean function P can be evulated on any vector x ∈ Fn
2 and with

Notation 5.1, we explicitly have that

P (x) =
∑

u∈Fn
2

puxu =
∑
u�x

pu.

Definition 5.3 (Value vector). The value vector of a Boolean function P is the binary vector of
length 2n of all values P (x) when x ∈ Fn

2 . It is also called the truth table of P .
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Table 5.1 – Example of a Boolean function P of 3 variables.

(a) ANF of P

u 0 1 2 3 4 5 6 7

u0 0 1 0 1 0 1 0 1
u1 0 0 1 1 0 0 1 1
u2 0 0 0 0 1 1 1 1

pu 1 1 0 0 1 0 1 1

(b) Value vector of P

x 0 1 2 3 4 5 6 7

x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1
x2 0 0 0 0 1 1 1 1

P (x) 1 0 1 0 0 1 1 1

Example 5.1. The ANF vector and the value vector of the Boolean function P ∈ F2[X0, X1, X2]
defined by

P = 1 + X0 + X2 + X1X2 + X0X1X2

are given in Table 5.1.

The following proposition defines a very important bijection between ANFs and value vectors,
which means that Boolean functions are uniquely defined by their value vector as well. It also means
that we can interpolate — recover the coefficients of — the ANF of a Boolean function given its
value vector.

Proposition 5.1 (Möbius transform). The map

Φ :
{

F2n

2 −→ F2n

2
a 7−→ b with bu =

∑
x�u ax for all u ∈ Fn

2

is an involution. It is called the Möbius transform.

Proof. Indeed, let a ∈ F2n

2 and b = Φ(a). Let u ∈ Fn
2 .

Φ(b)u =
∑
x�u

bx =
∑
x�u

∑
y�x

ay

=
∑
y�u

ay ·# {x ∈ Fn
2 | y � x � u } =

∑
y�u

ay · 2wt(u+y)

= au because 2wt(u+y) = 1⇔ y = u.

Hence Φ ◦ Φ(a) = a.

5.2.2 Computing the Möbius transform

5.2.2.1 The fast Möbius transform

Consider we have the vector a ∈ F2n

2 and we want to compute the Möbius transform of a. The
straightforward approach would be to apply the formula of Proposition 5.1 for each output bit.
Computing bu costs 2wt(u) Boolean operations hence computing the entire output vector b costs

n∑
i=0

(
n
i

)
2i = 3n operations.
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Algorithm 11 Möbius transform algorithms.
Recursive Möbius transform

1: function Φ(a, n) . a ∈ F2n

2
2: if n = 0 then
3: return a
4: else
5: bleft ← Φ(aleft, n− 1) . aleft

def= (a0, a1, . . . , a2n−1−1)
6: bright ← bleft + Φ(aright, n− 1)
7: return ( bleft | bright )

In-place imperative Möbius transform
1: procedure Φ(a, n) . a ∈ F2n

2
2: for k from 1 to n do . k is the depth.
3: for i from 0 to 2n−k − 1 do . i is the index of a 2k-size chunk of a
4: . Add the left-hand side of chunk i to its right-hand side
5: start← i · 2k

6: for j from start to start + 2k−1 − 1 do
7: bj+2k−1 ← bj+2k−1 + bj

However, we can use the recursive divide-and-conquer approach sketched in Algorithm 11 (more
details can be found in [Jou09, Chapter 9]). When written as an in-place imperative algorithm we
get a complexity of n · 2n−1 xor operations.

5.2.2.2 Partial Möbius transform

Let P be a Boolean function. We have access to an oracle that evaluates P on input x ∈ Fn
2 . If n

is too large, we cannot store the ANF vector of P of length 2n but we could still be interested in
computing a small part of it. More precisely, if u ∈ Fn

2 , we want to compute the coefficients pv for
all v such that u � v under the assumption that we can store 2n−wt(u) bits.

We note m
def= wt (u) and we suppose without loss of generality that ui = 1⇔ i 6 m− 1. Our

problem is equivalent to computing the ANF of the Boolean function Pu ∈ F2[Xm,...,n−1] defined by

Pu =
∑

v: u�v

pvXu+v or P = Pu ·Xu +
∑

w: u 6�w

pwXw.

First we can verify that if there exists i such that ui = 1 and wi = 0, i.e. u 6� w,

∑
u′∈Fm

2

(
u′ ∣∣ Xm,...,n−1

)w =
∑

u′: u′
i=0

(
u′ ∣∣ Xm,...,n−1

)w +
∑

u′: u′
i=1

(
u′ ∣∣ Xm,...,n−1

)w
=

∑
u′: u′

i=0

(
u′ ∣∣ Xm,...,n−1

)w +
(

u′ + ei

∣∣ Xm,...,n−1
)w

= 0 since wi = 0.



136 CHAPTER 5. ALGEBRAIC NORMAL FORM ANALYSIS

Then we have the following relation.

∑
u′∈Fm

2

P
(

u′ ∣∣ Xm,...,n−1
)

=
∑

u′∈Fm
2

Pu ·

1 if u′=(1,...,1), else 0︷ ︸︸ ︷(
u′ ∣∣ Xm,...

)u +
∑

w: u6�w

pw ·
(

u′ ∣∣ Xm,...
)w


= Pu +
∑

w: u 6�w

pw

∑
u′∈Fm

2

(
u′ ∣∣ Xm,...

)w
︸ ︷︷ ︸

0

= Pu(Xm, . . . , Xn−1).

Therefore we can call the oracle that evaluates P 2m times to evaluate Pu. We can then compute the
entire value vector of Pu of length 2n−m with 2n evaluations of P . Then the fast Möbius transform
computes the ANF vector of Pu in (n −m)2n−m−1 operations. This means that we actually use
the oracle to compute the entire value vector of P but since it is too large to be stored, we have to
perform the first steps of the Möbius transform online.

5.2.2.3 Parallel algorithm on shared memory

When several processes have access to a shared memory, it can be useful to adapt the imperative
procedure of Algorithm 11. Let 2m be the number of processes with m 6 n.

Basically, during the fast Möbius transform, processes just have to perform xor operations on
halves of chunks. At step k in Algorithm 11, chunks have size 2k. Then there are two cases.

• k 6 n−m. The number of chunks of size 2k, 2n−k, is then bigger than the number of processes
2m. Hence processes can operate independently on independent chunks. Each process will
serially xor left-hand sides on right-hand sides of 2n−k−m chunks.

• k > n −m. The number of chunks is smaller than the number of processes. If we want to
continue taking advantage of all the processes, we will rather operate on chunks one after
another: for each chunk — of size 2k > 2n−m — each process will xor 2k−n+m−1 bits of the
left-hand side to the 2k−n+m−1 corresponding bits of the right-hand side.

This gives Algorithm 12. Of course this algorithm can be optimized: the two cases can be easily
adapted to any number of processes (some will just have a bit more work than others). Finally, the
first steps in the second case could be easily written as more cache-friendly with a hybrid approach
with the first case.

5.3 Cube attacks

In the context of a symmetric cryptographic scheme

E :
{

Fn
2 × Fm

2 −→ Fs
2

(x, k) 7−→ (E0(x, k), . . . , Es−1(x, k)) , Ei =
∑

u∈Fn
2

Pi,u(K0,...,m−1)Xu,
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Algorithm 12 Parallel Möbius transform on shared memory.
1: procedure Φ(a, n, processes p0, . . . , p2m−1−1) . a ∈ F2n

2 , m 6 n
2: for k from 1 to n−m do
3: for ` ∈ [0, 2m−1 − 1], in parallel for each process p` do
4: for i from ` · 2n−k to (` + 1) · 2n−k − 1 do
5: Same as lines 4 – 7 in Algorithm 11.
6: for k from n−m + 1 to n do
7: for i from 0 to 2n−k − 1 do
8: for ` ∈ [0, 2m−1 − 1], in parallel for each process p` do
9: start← i · 2k + ` · 2k−n+m

10: for j from start to start + 2k−n+m−1 − 1 do
11: bj+2k−n+m−1 ← bj+2k−n+m−1 + bj

cube attacks aim at finding a set S of pairs (i, u) where i ∈ [0, s− 1] is an output coordinate and
u ∈ Fn

2 is the exponent of a monomial in public variables, such that we can solve the polynomial
system

Pi,u(K0,...,m−1) = Pi,u(k), (i, u) ∈ S

with m unknown variables K0, . . . , Km−1 and a secret value k fixed. More precisely, cube attacks
are chosen plaintext/IV attacks that have two phases.

1. The preprocessing phase, also called the offline phase, consists in finding a nice set S of pairs
(i, u) and in computing the corresponding polynomials Pi,u(K).

2. The online phase consists of a game where the challenger chooses a private value k and answers
to queries x 7→ E(x, k). We have seen in Section 5.2.2.2 that for all i and u,

Pi,u(k) =
∑
x�u

Ei(x, k).

Hence, with the allowed queries of the online phase, the adversary can compute the value
Pi,u(k) even if k remains secret. However, this computation takes 2wt(u) queries and xor
operations. The adversary then has to find the secret k by solving the polynomial system.

Remark 5.1. In practice, solving the polynomial system does not give a unique solution but rather
gives a search space much smaller than the original key space. For example, if the polynomial
system does not have enough linear or balanced equations — which are interesting because once the
value (Pi,u(k) here) of a balanced equation is known, half the keys are discarded. The attacker will
then have to complete the online phase with an exhaustive search in that smaller search space.
The dual approach to cube attacks would be to find a set S ′ of pairs (i, x) such that we can solve
the polynomial system

Ei(x, K0,...,m−1) = Ei(x, k), (i, x) ∈ S ′

for a fixed secret value k. It is unfortunately impractical because the polynomials Ei(x, K) that
compose this system are too big to allow solving the system with complexity less than exhaustive
search or even too big to be stored. This is why in cube attacks we accept the trade-off of those
2wt(u) queries to try to build systems with simpler polynomials.
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Therefore, a basic requirement for a cube attack to be practical is that we have to be able to
compute the ANF of Pi,u which can have as many as 2m monomials in K0, . . . , Km−1. Moreover,
even when the polynomials occuring in the system are entirely known, solving an arbitrary system
of polynomial equations over F2 is very hard. For example, solving quadratic systems with N
unknowns over F2 is an NP-complete problem even if the size of the system is O

(
N2) [Bou+10].

When cube attacks were introduced in [DS09] by Dinur and Shamir, they searched for polynomials
Pi,u of degree 1 to get a solvable linear system. The next section explains parts of this original work.

5.3.1 Cube attacks on black-box polynomials

Dinur and Shamir published the first cube attacks in 2009 [DS09]. They applied them in a specific
setting they called “tweakable black-box polynomial” in which the internal details of a cipher E are
hidden to the adversary — hence the “black box” — but in which the adversary has the possibility
to query the value E(x, k) for a chosen pair (x, k) during the preprocessing phase. The polynomials
Ei(X, K) are then said “tweakable” because giving values x to the public variables X gives many
different polynomials Ei(x, K), all derived from the original Ei(X, K). In order to show a generic
practical setting, they also require that the polynomials Ei(X, K) under study have a degree d in
public and private variables X and K of practical size d / 40. Since E(X, K) is given as a black box,
the exact value of d is unknown. Since the ideas presented here do not depend on which coordinate
of E(X, K) we work on, we denote by F (X, K) one of the Boolean functions Ei(X, K), i ∈ [0, s− 1].

We consider in the rest of this section that F (X, K) is an unknown Boolean function of unknown
degree d / 40. In this setting, the (intermediate) goal of the adversary is to find linear expressions
L(K) such that, from queries x 7→ F (x, k), she can compute L(k) for the unknown value k
chosen by the challenger. This allows the adversary to build a linear system with equations
L(K0, . . . , Km−1) = L(k). The adversary is allowed to make queries (x, k) 7→ F (x, k) during the
preprocessing — before the challenger chooses a random value k.

The authors introduce in this work the following terminology. We have used a vector-based
notation from the beginning of this chapter but it is sometimes easier to understand the following
concepts with an index-based notation: if u ∈ Fn

2 compactly represents the monomial Xu, sometimes
working with the indices in supp (u) is easier.

Definition 5.4 (Cube). Cube variables are public variables chosen by the adversary. The set of
their indices will often be denoted by I. Static variables are the other public variables, to which a
(Boolean) value is given by the adversary. The index set of static variables with value 1 will often
be denoted by J . Of course we must have I ∩ J = ∅.

The Cube C of (I,J ) is the set eJ + Prec (eI), i.e. the set

{x ∈ Fn
2 | xi = 1 if i ∈ J , xi = 0 if i 6∈ I ∪ J } .

The dimension of C is |I|.

Example 5.2. Consider the function H : F5
2 → F2 from Section 1.3.4 with the first three variables

public and the last two private.

H(X0, X1, X2, K0, K1) = K1 + K0K1 + X0K0 + X1 + X2(K0 + K0K1) + X0X2(K0 + K1)
+ X1X2K1 + X0X1X2.
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The cube C1 of (I1,J1) with I1
def= {2} and J1

def= {0} is the set {(1, 0, 0), (1, 0, 1)}. The cube C2 of
(I2,J2) with I2

def= {0, 2} and J2
def= ∅ is the set {(0, 0, 0), (1, 0, 0), (0, 0, 1), (1, 0, 1)}.

Remark 5.2. Since the set eJ + Prec (eI) characterizes (I,J ), the word cube can also point to the
pair (I,J ).

Definition 5.5 (Superpoly). Given a cube C = (I,J ), its superpoly in F (X, K) is the polynomial

PC(K) =
∑

x∈eJ +Prec(eI)
F (x, K).

Another notation useful for Section 5.3.2 and Section 5.4.5 is

σ−1
C :

{
eJ + Prec (eI) −→ F|I|

2
x 7−→ y where y` = xi`

if i` ∈ I.

Then
PC(K) =

∑
y∈F|I|

2

F (σC(y), K).

Remark 5.3. With the above definition, we see that the superpoly of the cube Prec (u) in Ei(X, K)
is the polynomial Pi,u(K) defined in the introduction of Section 5.3. In practice, the adverary will
give the value 0 by default to static variables as we expect the superpoly to be simpler that way.
Indeed, PC(K) =

∑
w�eJ

PPrec(eI+w). But there can be exceptions for which fixing some variables
to the value 1 is interesting, as explained in the paragraph Section 5.3.1.4.

Definition 5.6. (I,J ) is called a maxterm of F (X, K) when deg PC(K) = 1, i.e. when the cube
gives a non-constant affine superpoly.

Example 5.3. Going back to Example 5.2, we have that the superpolys of the cubes C1 and C2 are
respectively PC1(K) = K0 + K0K1 + K0 + K1 = K1 + K0K1 and PC2(K) = K0 + K1. Both C1 is not
a maxterm but C2 is a maxterm. Since the superpoly of C3

def= ({0, 1} , ∅) is the constant 0, C3 is not
a maxterm.

5.3.1.1 Finding maxterms

Maxterms will have to be found and their superpolys will have to be computed during the prepro-
cessing phase for building a system of linear equations in the secret variables. The idea of Dinur and
Shamir is that if F (X, K) has degree d in the variables X0, . . . , Xn−1, K0, . . . , Km−1 then for any
cube C of dimension d− 1, deg PC(K) 6 1. Therefore, as long as 2d queries are possible, there is hope
to find maxterms — from cubes of dimension d− 1 — and to compute their degree 1 superpolys.
There is a subtlety here that if deg PC = 0, it will not give any information on the private variables
and will not be useful for building the linear system. Since the attacker does not know d, the authors
propose the following steps for estimating it in the preprocessing phase. It is based on the linearity
test BLR [BLR93] and needs a starting guess for d: h ∈ [1, n− 1]. We give more details on the BLR
test in Section 5.3.2.1.

1. Choose I ⊂ [0, n− 1] at random with #I = h− 1 and fix J = ∅.
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2. Run a linearity BLR test on PC(K) where you can evaluate k 7→ PC(k) =
∑

x�eI
F (x, k) with

queries (x, k) 7→ F (x, k).

3. The results of the test can be interpreted as follows.

• If h < d − 1, then PC(K) is likely to have degree strictly greater than 1 and fail the
linearity test.
• If h > d− 1, PC(K) will be constant. The linearity test will pass but the queries used for

the test allow to detect that case.
• If the linearity test passes and PC is not constant, you can assume h = d − 1 and a

maxterm I has been found.

Therefore, there are different actions depending on the output of the test.

• If the test fails, choose i 6∈ I, replace I by I ∪ {i} and go back to Step 2.
• If the test gives constant, choose i ∈ I, replace I by I\{i} and go back to Step 2. It is

important to vary the consecutive choices of index in this Step 3 to avoid getting stuck
to the pathological case where the polynomial PC(K) is constant despite #I = d − 1.
The authors note that in this pathological case, it can be useful to use a cube (I,J ) with
J 6= ∅ to make the superpoly non-zero.
• If the test passes and gives non constant, return #I + 1 as a good guess for the degree d

and the maxterm I.

Once d is known, the attacker can easily compute maxterms and their superpolys, build an invertible
linear system of equations in private variables and even precompute the inverse matrix for solving
the system. Of course the degree d, the number of variables n and m should allow the existence of
enough maxterms to build such a system.

Finally, we note that this generic setting with F (X, K) having a practically low degree d allows
to be confident that there exist maxterms of dimension at most d − 1 and that the steps above
will explicit one of them. However, one can easily imagine that maxterms of practical dimension
h exist (h / 40) even if the degree d is too high for 2d−1 to be practical. This means that finding
maxterms is in fact the major challenge of cube attacks. In that respect, maxterms in cube attacks
play a similar role as good-probability characteristics in differential/linear cryptanalysis. There
is a major difference though: it is impossible at that point to have any information on maxterms
and superpolys beyond the practical range since they need to be explicitly computed. This means
cube attacks are purely experimental attacks and fail to provide a meaningful security analysis of a
non-black-box cipher if the attacker cannot find maxterms experimentally. This caveat has begun
to find answers in 2017 with the use of division property to get information on superpolys [Tod+17].
We will elaborate on this technique in Section 5.4.5. We will see in Section 5.3.1.4 the first ideas
that have been explored to guess cubes of maxterms when the polynomials are not black box.

5.3.1.2 Block or stream ciphers for cube attacks

Cube attacks can theoretically be applied to block ciphers to mount chosen-plaintext key-recovery
attacks: public variables are plaintext variables and private variables are key variables. Actually, a
cube attack on a block cipher would be very similar to a high-order differential attack. However
the authors of [DS09] note that in a block cipher, the degree grows exponentially and a practical
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application is hard to obtain. Therefore they prefered applying cube attacks to stream ciphers to
mount chosen-IV attacks where public variables are IV variables. In particular, they successfully
applied it on Trivium with 767 initialization rounds out of 1152. They found 35 maxterms of
dimension at most 31. Since the key has 80 bits, the corresponding superpolys define a vector space
of solutions of dimension 45. The overall complexity is then dominated by the exhaustive search for
the 245 remaining possibilities.

5.3.1.3 Directions

In Appendix A of [DS09], Dinur and Shamir propose a few directions for future work. They write
that attackers cannot only recognize affine superpolys but also quadratic superpolys, and more
generally low-degree superpolys with the tests given in [Alo+03]. This direction has been followed
by Mroczkowski and Szmidt who used linearity and quadraticity tests to mount a key recovery on
Trivium with 709 initialization rounds [MS11] and by Fouque and Vannet who also interpolated
quadratic superpolys to mount key recoveries on Trivium with up to 799 initialization rounds [FV14].
Dinur and Shamir also write that the attacker can exploit any non-linear superpoly he can find and
compactly represent. This last idea is at the heart of the work presented in Section 5.5.1.

5.3.1.4 Choosing cubes for non-black-box polynomials

In a subsequent work [Aum+09], Aumasson, Dinur, Meier and Shamir mounted a key-recovery
attack on 14 rounds of the hash function MD6 with 222 queries and operations and showed how to
use the knowledge on the circuit that evaluates the polynomials to choose the cubes carefully.

Let us assume that we know a decomposition

E(X, K) = E′ (fmix(X<n′ , K) + fpub(X>n′) + fkey(K) + (1 + X0) · g(X, K))

thanks to the knowledge of the circuit that evaluates E, where

fmix : Fn′+m
2 → Fs′

2 , fpub : Fn−n′

2 → Fs′
2 , fkey : Fm

2 → Fs′
2 , g : Fn+m

2 → Fs′
2 ,

describe the initial diffusion rounds and E′ : Fs′
2 → Fs

2 is the rest of the circuit. The authors give
two ideas to make a good guess for maxterms.

• The cube variables should not mix with the private variables in the initial rounds. In our
example, this means the cube variables should have indices in [n′, n− 1].

• The static variables should be assigned constant values that help limiting the diffusion. In our
example, this means that X0 should be set to 1.

With our notation, this means that good guesses for cubes should be of the form eJ + Prec (eI)
with J = {0} and I ⊆ [n′, n− 1]. The authors used the same ideas to find cubes for competitive
cube-based distinguishers on reduced-round Trivium. They used those cubes with a technique they
named cube testers.

5.3.2 Cube testers

In Section 5.3.1 the BLR linearity test was used in the preprocessing phase to detect the linearity
of superpolys in private variables. The other main idea of [Aum+09] was to use property-testing
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Algorithm 13 BLR linearity test [BLR93].
1: input
2: Oracle that answers queries x 7→ F (x)
3: ε: distance parameter.
4: output
5: true with probability 1 if F is linear;
6: false with probability higher than 2/3 if F is ε-far from linear functions;

7: for i from 1 to
⌈
ε−1⌉ do

8: Draw (x, y) uniformly at random in Fn
2 × Fn

2 .
9: Query F (x) and F (y).

10: if F (x + y) 6= F (x) + F (y) then
11: return false
12: return true

on superpolys to detect a non-random behaviour of the cipher or to mount distinguishers. Indeed,
linearity or even low degree are very strong properties and outside the generic setting of a practical-
degree polyomial, such superpolys might not even exist and, if they exist, will be very hard to find.
Hence the idea of testing more common properties which are rare enough not to be verified by a
random Boolean function. We first explain the basics of property testing before explaining how cube
testers work in Section 5.3.2.3.

5.3.2.1 Property testing

For any two functions F, G : Fn
2 → F2, their relative distance is defined by

d (F, G) = |{x ∈ Fn
2 | F (x) 6= G(x) }|

2n
.

Let ε ∈]0, 1[. For a function F and a family of functions P, we say that F is ε-far from P if

∀G ∈ P, d (F, G) > ε.

With a query access to a function F and a distance parameter ε, a tester for the family P is a
probabilistic algorithm which returns true with probability at least 2/3 if F ∈ P and false with
probability at least 2/3 if F is ε-far from P. When the tester returns true with probability 1 if
F ∈ P, it is called a one-sided tester. The BLR test (Algorithm 13) is a one-sided tester for linear
functions with query complexity O

(
ε−1).

As explained in [Aum+09], the following properties for Boolean functions are similarly testable.

• Balance: |{x ∈ Fn
2 | F (x) = 0 }| = 2n−1.

• Constantness: |{x ∈ Fn
2 | F (x) = 0 }| ∈ {0, 2n}.

• Low degree: deg F 6 d (with the tester of [Alo+03]).

• Presence of linear or neutral variables: respectively

∃i : F (X) = Xi +
∑

u∈Fn
2 : ui=0

puXu and ∃i : F (X) =
∑

u∈Fn
2 : ui=0

puXu.
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5.3.2.2 Testing superpolys for non randomness

In [Aum+09], the authors used property-testing on superpolys to observe the non-randomness of a
Boolean function given as an oracle. Let F ∈ F2[X0, . . . , Xn−1]. In this setting, the variables are all
public and as in Section 5.3.1, we can choose cube variables and static variables among them. But
to define a superpoly on such a cube C, we will need to specify which variables it has since private
variables do not exist anymore. The authors hence introduce a third category of variables called
superpoly variables whose indices define a new set S. To be more explicit, we choose without loss of
generality the variables X0, . . . , Xm−1 for some m < n, i.e. S = [0, m− 1]. We also have to choose
cube variables with indices in [m, n− 1]. Those indices define the set I. Finally, we can write that

F (X) = P (X0,...,m−1) ·XeI +
∑

w:(0|eI) 6�w

awXw,

and P (X0,...,m−1) =
∑

x�eI

F (X0,...,m−1|x) .

This defines the superpoly P in the public variables X0, . . . , Xm−1. We can of course fix non-zero
values for public variables outside cube and superpoly variables if relevant. We sum that up in the
following formal definition of superpolys.

Definition 5.7 (Superpoly of public variables). Let S ⊂ [0, n − 1] be a set of indices of public
variables. Let C = (I,J ) be a cube such that S ∩ (I ∪ J ) = ∅. In order to organize the public
variables with respect to the sets of C and S, we need

σ−1
C,S :

{
eJ + Prec (eI∪S) −→ F|I|

2 × F|S|
2

x 7−→ (y, z) where y` = xi`
, i` ∈ I and z` = xj`

, j` ∈ S
.

The superpoly (C,S) in the Boolean function F (X) is the polynomial

PC,S(XS) def=
∑

y∈F|I|
2

F (σC,S(y, XS)) .

When the context is clear, we can write PC(XS).

The strategy of Aumasson, Dinur, Meier and Shamir to observe the non randomness of F (X) is
to find a cube C and a superpoly PC(XS) for some set of variables S that verify a testable property P .

Definition 5.8 (Cube tester). A cube tester for a Boolean function F (X0, . . . , Xn−1) is the collection
of a superpoly of public variables in F , PC(XS), and a testable property P such that PC(XS) verifies
P whereas a random Boolean function f(XS) does not verify P with good probability.

For example, they found many coordinate functions in a round-reduced version of MD6 for which
a carefully chosen superpoly — with the ideas described in Section 5.3.1.4 — is strongly unbalanced.
Moreover, they experimented the same ideas in a non-realistic scenario on reduced-round Trivium:
they allowed themselves to choose some superpoly variables among key variables and fixed the rest
of the key either to a random value, either to zero which is much weaker. They found for example
that the key bits 0, 3 and 4 are neutral in the superpoly PC(X[0,79]\C , K0,3,4) after 885 initialisation
rounds with the other key bits fixed to 0 and a cube C of dimension 27.

The authors then went to a more realistic scenario for ciphers to mount distinguishers based on
cube testers.
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5.3.2.3 Distinguishers with keyed superpolys

In Section 5.3.1, these attacks needed a difference between public and private variables. To get
polynomial equations in the private variables, some public variables would then be used as cube
variables. For distinguishers based on cube testers, we will not try to get polynomial equations in the
private variables but we will test a property on a keyed Boolean function of some public variables.
As in Section 5.3.2.2, the idea is then to create a third category of public variables — the superpoly
variables — that will play the role of private variables. More precisely, we now consider F (X, k) as a
keyed Boolean function, i.e. a member of the family of Boolean functions {F (X, k) ∈ Fn

2 | k ∈ Fm
2 }

rather than a polynomial F (X, K) with private variables. A keyed superpoly is then defined as a
superpoly of public variables in the keyed function F (X, k):

PC,S(XS , k) def=
∑

y∈F|I|
2

F (σC,S(y, XS), k)

is the keyed superpoly in variables XS of the cube C.
To mount a distinguisher on the family {F (X, k) | k ∈ Fm

2 }, the idea of Aumasson, Dinur,
Meier and Shamir is to find a superpoly PC,S such that testing a well-chosen property provides a
distinguisher on the family {PC(XS , k) | k ∈ Fm

2 }. More precisely, the tested property P and the
keyed superpoly PC,S should be such that

P (PC(XS , k) verifies P |k ∼ U (Fm
2 )) is far from P

(
f verifies P

∣∣∣ f ∼ U (F|S|
2 → F2

))
.

For example in Trivium, the authors found that for a specific cube C with 30 variables and after
790 initialization rounds, the superpoly PC(X[0,79]\C , k) is constant.

It is important to understand for Section 5.3.2.4 that the chosen property tester could succeed
for most of the keys k but still fail for a non-negligeable proportion of the keys.

5.3.2.4 Dynamic cube attacks

In 2011, Dinur and Shamir published in [DS11] a generic method for turning a cube-tester-based
distinguisher into a key-recovery attack. They called this method a dynamic cube attack. The
motivation is that cube testers, which only gave distinguishers at best, have the strength of working
with a wide choice of properties to test on superpolys. On the contrary cube attacks, which are
key-recovery attacks, mostly work with linearity. Dynamic cube attacks are then key-recovery
attacks that benefit from this strength of cube testers. They however need a careful analysis of the
cipher.

With this method, Dinur, Güneysu, Paar, Shamir and Zimmermann published in [Din+11] a
key-recovery attack on the full stream cipher Grain-128 [Hel+06] with 128-bit keys in approximatly
290 queries which succeeds for 7.5% of the keys. In [Hao+20a], Hao, Jiao, Li, Meier, Todo and Wang
proposed another dynamic cube attack on the same cipher in 2125 queries which succeeds for 99.83%
of the keys. Their analysis of the cipher used methods based on the division property introduced in
the next section.

Note that with dynamic cube attacks, cryptographers can show the existence of an attack with
complexity beyond their limited computational power but better than exhaustive search.
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5.4 Monomial trails

Differential and linear cryptanalysis heavily rely on trails and their probabilities. The goal of this
section is to define the equivalent of differential and linear trails for ANF analysis, monomial trails,
for which there will be no probabilities involved.

5.4.1 Motivation

A very important trend to mount cube attacks or distinguishers since 2017 is to use algorithms based
on the division property to analyze ANFs of superpolys. The division property was first introduced
by Todo in 2015 [Tod15] as a generalization of the integral property balance to propose new integral
distinguishers which take advantage of the algebraic degrees of the components of a cipher. In a
nutshell, the set X ∈ Fn

2 has the balance integral property if
∑

x∈X x = 0. If there exists a set of
plaintexts X such that for all keys k the set {E(x, k) | x ∈ X } has the balance property, we have
an integral distinguisher on the cipher E. The generalisation of the balance property given by the
division property basically allows to compute an integral property on a set of ciphertexts from an
initial integral property on the set of chosen plaintexts by following the propagation of the division
property through the rounds of the cipher. In 2016, Xiang, Zhang, Bao and Lin [Xia+16] showed
how to model the propagation of the division property in MILP to automate the search for integral
distinguishers. In 2017, Todo, Isobe, Hao and Meier [Tod+17] applied those techniques to cube
attacks for the first time: their idea was to detect neutral private variables in the superpoly of a
given cube by modeling the propagation of the division property in the cipher under study as a
MILP problem. That allowed them to work with another family of superpolys — superpolys which
depend on just a few private variables — and to propose security analysis for the stream ciphers
Trivium, Grain-128a and Acorn beyond practical complexities. These work paved a way for the
use of the division property and MILP models as tools for the analysis of ANFs.

Our personal grasp on the subject mostly comes from the work of Boura and Canteaut in [BC16]
who presented the division property in a more ANF-oriented way and from the work of Hebborn,
Lambin, Leander and Todo in [Heb+20b] who propose division-property- and MILP-based methods
to compute lower bounds on the degree of block ciphers. It converged with the one of Hu, Sun,
Wang and Wang in [Hu+20] and we will use a similar terminology as it is more consistent with this
chapter even if it is not widespread. We will not present how the division property evolved since the
original work of Todo in 2015 [Tod15] nor the different variants that have been used to mount cube
attacks. What we present as monomial trails is equivalent to the most precise variants: the parity
sets from [BC16] or the three-subset division property without unknown subset from [Hao+20b].

5.4.2 Basic definitions and properties

Let us start with an example on a Boolean function F : Fn
2 → F2 of which we do not know the ANF

but we know a decomposition F = H ◦ G with G : Fn
2 → Fm

2 and H : Fm
2 → F2. We assume we

know the ANFs of G and H.

G(X) =
∑

u∈Fn
2

gu ·Xu and H(Y ) =
∑

v∈Fm
2

hv · Y v.

The question is: does a given monomial Xu appear in the ANF of F ? The study of monomial trails
will be a tool that allows to answer this question without using classical coefficient computations
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with the Möbius transform in 2wt(u) operations, which could indeed be too heavy in cryptographic
applications. Instead, we will write

F (X) = H(G(X)) =
∑

v∈Fm
2

hv ·Gv(X)

and compute the set V of vectors v such that the monomial Xu belongs to the ANF of Gv(X).
In cryptographic applications, this kind of computation may be possible because the ciphers are
built with small components. Finally, we know that Xu appears in the ANF of F if and only if
the number of vectors v from V such that hv = 1 is odd. Indeed, the coefficient of Xu in F is
equal to

∑
v∈V hv. In the following, we formalize this idea for more complex constructions and

introduce the notation Xu ∈ G (X)v if v ∈ V, Xv ∈ H (X) if hv = 1 and ` ((G, H), u→ 1) =
|{v ∈ Fm

2 | Xu ∈ G (X)v and Xv ∈ H (X) }|.

Notation 5.2. Let F : Fn
2 → Fm

2 , u ∈ Fn
2 and v ∈ Fm

2 . If the monomial Xu appears in the ANF of
the Boolean function F v(X) =

∏m−1
i=0 Fi(X)vi then we write Xu ∈ F (X)v.

Example 5.4 (Propagation rules). We illustrate Notation 5.2 with a few elementary functions. The
relations between vectors u and v are called propagation rules.

• xor(X0, . . . , Xn−1) = X0 + · · ·+ Xn−1.

Xu ∈ xor (X)v ⇐⇒
{

v = 0 and u = (0, 0, . . . , 0) or
v = 1 and wt (u) = 1.

• xor with a constant: F (X) = X + 1.

Xu ∈ F (X)v ⇐⇒ u = 0 or u = v = 1.

• and(X0, . . . , Xn−1) = X0X1 · · ·Xn−1.

Xu ∈ and (X)v ⇐⇒ u = (v, v, . . . , v).

• copy(X) = (X, X, . . . , X). Since copy(X)v = X for all v 6= 0,

Xu ∈ copy (X)v ⇐⇒ u = v0 ∨ v1 ∨ · · · ∨ vn−1

• Concatenation with constant F (X0, . . . , Xn−1) = ( X | c ).

Xu ∈ F (X)( v | v′ ) ⇐⇒ u = v and v′ � c.

Definition 5.9 (Boolean circuit). Let r ∈ N∗ and n(i) ∈ N for i ∈ [0, r]. A Boolean circuit F of
depth r is an r-tuple of composable maps(

F (i) : Fn(i−1)
2 → Fn(i)

2

∣∣∣ i ∈ [1, r]
)

.

F can also denote the map F (r) ◦ · · · ◦ F (1).
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Example 5.5. The architecture of a key-alternating block cipher naturally corresponds to a Boolean
circuit. Let n be the block size, m the master-key size, R(i) : Fn

2 → Fn
2 , i ∈ [1, r] the r round

transformations and Z : Fm
2 → Fn(r+1)

2 the key expansion. The first map of the circuit is

F (1) :
{

Fm+n
2 −→ Fn(r+2)

2
( k | x ) 7−→ ( Z(k) | x ) .

Then

F (2) :

 Fn(r+2)
2 −→ Fn(r+1)

2(
k(0)

∣∣∣ · · · ∣∣∣ k(r)
∣∣∣ x

)
7−→

(
k(1)

∣∣∣ · · · ∣∣∣ k(r)
∣∣∣ k(0) + x

)
,

and for all i ∈ [1, r],

F (i+2) :

 Fn(r−i+2)
2 −→ Fn(r−i+1)

2(
k(i)

∣∣∣ · · · ∣∣∣ k(r)
∣∣∣ x

)
7−→

(
k(i+1)

∣∣∣ · · · ∣∣∣ k(r)
∣∣∣ R(i) (x) + k(i)

)
.

Definition 5.10 (Monomial trail). Let r ∈ N∗, F be a Boolean circuit of depth r and u(i) ∈ Fn(i)
2

for i ∈ [0, r]. If Xu(i−1) ∈ F (i) (X)u(i)
for all i then we call the tuple

(
u(0), . . . , u(r)

)
a monomial

trail for the circuit F .
Moreover, if u ∈ Fn(0)

2 and v ∈ Fn(r)
2 , ` (F, u→ v) will denote the number of monomial trails

between u and v:

` (F, u→ v) def=
∣∣∣{ (u(1), · · · , u(r−1)

) ∣∣∣ (u, u(1), . . . , u(r−1), v
)

is a monomial trail
}∣∣∣ .

Finally, we define the convention that if F is a circuit of depth 1, then for all u, v,

` (F, u→ v) ∈ {0, 1} and ` (F, u→ v) = 1 ⇐⇒ Xu ∈ F (X)v . (5.1)

It is then easy to check that if F is a circuit of depth r > 1, we have the following recurrence
relation for all u, v,

` (F, u→ v) =
∑

w: Xw∈F (r)(X)v

`
((

F (1), . . . , F (r−1)
)
, u→ w

)
. (5.2)

Proposition 5.2. Let F be a Boolean circuit of any depth. It holds for all u, v that

Xu ∈ F (X)v ⇐⇒ ` (F, u→ v) ≡ 1 mod 2.

Proof. The proof will work by induction on r where r is the depth of F . The initialization case of
the induction is given by Equation (5.1). Let us assume that Proposition 5.2 holds for all circuits of
depth r − 1. We have by definition of F that

F v(X) =
∑

w: Xw∈F (r)(X)v

(
F (r−1) ◦ · · · ◦ F (1)

)w
(X). (5.3)

Let u ∈ Fn(0)
2 , v ∈ Fn(r)

2 and

S def=
{

w ∈ Fn(r−1)
2

∣∣∣ `
((

F (1), . . . , F (r−1)
)
, u→ w

)
is odd and Xw ∈ F (r) (X)v

}
.
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We know from the induction hypothesis that for all w such that Xw ∈ F (r) (X)v,

Xu ∈
(
F (r−1) ◦ · · · ◦ F (1)

)
(X)w ⇐⇒ w ∈ S.

We also deduce from Equation (5.2) that |S| ≡ ` (F, u→ v) mod 2. With Equation (5.3), this
implies that Xu appears in the ANF of F v(X) if and only if ` (F, u→ v) is odd.

Corollary 5.1. Let F be a Boolean circuit, u ∈ Fn(0)
2 and v ∈ Fn(r)

2 . If ` (F, u→ v) = 0 then
Xu 6∈ F v (X).

5.4.3 Practical circuits for monomial trails

Proposition 5.2 and Corollary 5.1 will be useful if we can indeed compute ` (F, u→ v) or prove that
it is zero. However, this computation needs the knowledge of the ANFs of all the maps of the circuit
F (i) and all the ANFs F (i)v for all v ∈ Fn(i)

2 . Depending on the maps F (i) and on the dimensions
n(i), these ANFs might be too large to allow any computation in practice. In this section, we define
a family of Boolean circuits, parallel-map circuits, based on parallel applications of maps with small
ANFs, for which such a computation may be practical.

Lemma 5.1. Let n, m, d ∈ N∗, nj , mj ∈ N∗ such that
∑d−1

j=0 nj = n and
∑d−1

j=0 mj = m. Let
Fj : Fnj

2 → Fmj

2 for j ∈ [0, d− 1]. When a map F applies the maps Fj in parallel, i.e.

F ( x0 | · · · | xd−1 ) = ( F0(x0) | · · · | Fd−1(xd−1) ) ,

then for all u = ( u0 | · · · | ud−1 ) ∈ Fn
2 and v = ( v0 | · · · | vd−1 ) ∈ Fm

2 ,

Xu ∈ F (X)v ⇐⇒ ∀j ∈ [0, d− 1], Xuj ∈ Fj (X)vj .

Lemma 5.1 has a straightforward proof and it shows that when a map F applies in parallel
smaller maps with small ANFs (and whose coordinate products have small ANFs), we can deduce
the relations Xu ∈ F (X)v for all (u, v) ∈ Fn

2 × Fm
2 from the small ANFs, even if n and m are too

big for enumerating elements of Fn
2 × Fm

2 .

Definition 5.11 (parallel-map circuit). A Boolean circuit F of depth 2r−1 is a parallel-map circuit
of depth r if it is a tuple of maps of the form(

F (1), π(1), F (2), π(2), . . . , π(r−1), F (r)
)

where:

• each F (i) : Fn(i−1)
2 → Fn(i)

2 applies the maps F
(i)
j : F

n
(i−1)
j

2 → F
m

(i)
j

2 , with
∑

j m
(i)
j = n(i) in

parallel;

• each π(i) : Fn(i)
2 → Fn(i)

2 is a bit permutation.

Remark 5.4. For a bit permutation π : Fn
2 → Fn

2 , we have that

∀u, v ∈ Fn
2 , Xu ∈ π (X)v ⇐⇒ v = π (u) .
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Any Boolean circuit can be considered as a parallel-map circuit with d(i) = 1 for all i but defining
parallel-map circuits is useful when the dimensions n

(i)
j are small enough (typically up to 16) for

practical exhaustive enumerations of (u, v) ∈ F
n

(i−1)
j

2 × F
n

(i)
j

2 such that Xu ∈ F
(i)
j (X)v. Indeed, with

Lemma 5.1, these small enumerations give the relations Xu ∈ F (i) (X)v for all (u, v) ∈ Fn(i−1)
2 ×Fn(i)

2 .
Therefore, computing the value ` (F, u→ v) for all (u, v) ∈ Fn(0)

2 × Fn(r)
2 may become possible with

Equation (5.2) for example.

Example 5.6 (Grain-v1). Following Section 1.3.4, we have the following parallel-map circuit for
the initialization of Grain-v1. The first map is a concatenation with a constant (see Example 5.4)
and the first bit permutation switches places between the two “registers” of the LFSR and the NFSR
to be consistent with the description given in Section 1.3.4.

F (1) :
{

F80+64
2 −→ F80+80

2
( k | x ) 7−→ ( k | x | 116 ) ,

π(1) ( b | s ) = ( s | b ) .

Then, before computing the first bit of the output sequence, some bits have to be copied and placed
to the right position.

F (2) :
{

F80+80
2 −→ F80+80+12

2
( s | b ) 7−→ ( s0,...,2 | copy(s3) | s4,...,24 | copy(s25) | · · · ) ,

π(2) ( s0,...,2
∣∣ s3, s′

3
∣∣ · · · ) =

(
s
∣∣∣ b

∣∣∣ b′
J ∪63

∣∣∣ s′
{3,25,46,64}

)
.

The following function computes the first bit of the output sequence with the ANF given by
Equation (1.1).

F (3) :
{

F80+80+12
2 −→ F80+80+1

2(
s
∣∣∣ b

∣∣∣ b′
J ∪{63}

∣∣∣ s′
{3,25,46,64}

)
7−→ ( s | b | z0 ) .

Clocking the FSRs is given by

( s | b | z0 ) π(4)◦F (4)◦π(3)
7−−−−−−−−−→

(
s1,...,79

∣∣∣ ( z′
0

∣∣∣ s′
{0,13,23,38,51,62}

) ∣∣∣ b1,...,79
∣∣∣ ( s0, z0

∣∣ b′ ) )
F (5)
7−−→

(
s1,...,79

∣∣ z′
0 + F (s′)

∣∣ b1,...,79
∣∣ s0 + z0 + G(b′)

)
,

where F (4) is composed of copy operations. The rest of the circuit repeats the sequence from F (2).

At each step i of the parallel-map circuit given in Example 5.6, Lemma 5.1 allows to deduce
whether Xu ∈ F (i) (X)v for all u ∈ Fn(i−1)

2 and v ∈ Fn(i)
2 with:

• the propagation rules for copy and the concatenation (given in Example 5.4),

• the ANFs of the Boolean functions F , G and with the one given by Equation (1.1).

Interestingly, all involved ANFs are small enough to make this deduction with practical computational
resources even if we always have at least 280+80 pairs (u, v) at each step i.
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Example 5.7 (PRESENT). The specification of PRESENT gives natural parallel-map circuits. For
example, following Section 1.4.2 and Figure 1.15, the first round-key addition is given by

F (1) :
{

F80+64
2 −→ F80+64+64

2
( k | x ) 7−→ ( copy2(k0), . . . , copy2(k63) | k64, . . . , k79 | x ) ,

π(1) ( k0, k′
0, k1, k′

1, . . . , k63, k′
63, k64, . . . , k79

∣∣ x
)

=
(

k0, . . . , k79
∣∣ k′

0, . . . , k′
63
∣∣ x

)
,

F (2) :
{

F80+64+64
2 −→ F80+64

2(
k
∣∣∣ k(0)

∣∣∣ x
)
7−→

(
k
∣∣∣ k(0) + x

)
.

Then the first step of the update function gives the permutation

π(2) ( k | x ) = ( ( ki+19 | i ∈ [0, 79] ) | x ) .

Now comes the two other steps of the update function and the Sbox layer:

F (3) ( k | x ) = (( k0,...,14 | k15,...,19 ⊕ 1 | k20,...,75 | Sbox (k76,...,79) ) |
( Sbox (x0,...,3) | · · · | Sbox (x60,...,63) )).

Finally, the linear layer of PRESENT is a bit permutation P :

π(3) ( k | x ) = ( k | P (x) ) .

The rest of the circuit repeats the above sequence with a small change for the round-constant in
F (3).

In Example 5.6, the most complex operations F
(i)
j (with the notation of Definition 5.11) are

Boolean functions with exactly one output bit. Applying Lemma 5.1 in that case only requires the
ANFs of the functions F

(i)
j . Things are a bit more complex for the parallel-map circuit of PRESENT

given in Example 5.7 because of the Sboxes. Indeed, Lemma 5.1 says that we need to know whether
Xu ∈ Sbox (X)v for all (u, v) ∈ F4

2 × F4
2. Equivalently, we need to compute the ANF of Sbox(X)v

for all v ∈ F4
2. As explained in [BC16], the map

(u, v) 7→
{

1 if Xu ∈ F (X)v ,
0 otherwise,

is the counterpart of the DDT for studying monomial trails in circuits with Sboxes. We call it the
ANF table.

5.4.4 MILP models for monomial trails

Let F be a parallel-map circuit of depth 2r − 1. Instead of using Equation (5.2) to compute the
number of monomial trails for a given input/output pair (u, v), we can see propagation rules and
ANF tables as constraints that characterize the set{(

u(0), u(1), · · · , u(2r−1)
) ∣∣∣ (u(0), u(1), · · · , u(2r−1)

)
is a monomial trail for F

}
. (5.4)

If we have a tool which can enumerate the elements of this set — these elements are monomial
trails — we can use it to compute ` (F, u→ v) for a chosen input/output pair of exponents (u, v)
by adding the constraints u(0) = u and u(2r−1) = v.
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MILP-based enumeration tool. In practice, the propagation rules are often modeled by R-
linear expressions which will be used as MILP constraints (see Chapter 4). This MILP model
together with a MILP solver will then be able to perform that enumeration. MILP models for
propagation rules are given in Appendix F of [Heb+20a] and we give below the models corresponding
to the rules of Example 5.4. The MILP variable corresponding to an exponent coordinate ui ∈ F2 is
xui ∈ {0, 1} ⊂ Z. This distinction is important because the addition is not the same in both cases.

Xu ∈ xor (X)v ⇐⇒ xu0 + · · ·+ xun−1 = xv,

Xu ∈ xor(X, 1)v ⇐⇒ xu 6 xv,

Xu ∈ and (X)v ⇐⇒ ∀i, xui = xv,

Xu ∈ copy (X)v ⇐⇒
{

xu 6 xv0 + · · ·+ xvn−1

∀i, xu > xvi ,

Xu ∈ ( X | c )( v | v′ ) ⇐⇒
{
∀i, ci = 0⇒ xv′

i
= 0

∀i, xui = xvi .

For more complex operations like Sboxes, ANF tables can be modeled thanks to the techniques
presented in Section 4.2.

Using the enumeration tool. Let F be a parallel-map circuit of depth 2r − 1. With the
enumeration tool and the constraints u(0) = u and u(2r−1) = ei ∈ F2, we can answer the question
“Does Xu belong to the ANF of Fi(X)?” by “yes” or “no”. Indeed, we know thanks to Proposition 5.2
that the answer is yes if and only if this constrained enumeration returns an odd number.

Here is another useful example. With a program which outputs whether the set in Equation (5.4)
has any element and the constraints u(0) � u, u(2r−1) = ei, we can answer the question “Does a
given monomial Xu have multiples, i.e. Xv with u � v, in the ANF of Fi(X)?” by “no” or “don’t
know”. Indeed, Corollary 5.1 ensures that if there is no trail, the answer is no but if there exists at
least one trail the answer can’t be better than “don’t know”.

5.4.5 Superpoly recovery with monomial trails

Let F denote a Boolean function with public variables X and private variables K for which a
parallel-map circuit exists. In the first application of the division property to cube attacks, Todo,
Isobe, Hao and Meier [Tod+17] model the propagation of the bit-based division property (introduced
in [TM16]) as a MILP problem to answer the question “Does a given monomial Xu have multiples in
the ANF of F (X)”? by “no” or “don’t know” efficiently. With such a tool, they can query whether
the monomial XeI K` has multiples in the function

F (σC(XI), K0, . . . , Km−1)

for a chosen cube C = (I,J ), a chosen private variable K` and where σC is defined in Definition 5.5.
If the answer is “no”, they have a proof that the variable K` is not involved in the superpoly
PC(K). This way they can compute a set K of variables possibly involved in the superpoly PC(K).
Computing the value vector of this superpoly then requires 2|I|+|K| queries to the function F . Once
the value vector is known, the ANF of PC(KK) can be efficiently computed with the fast Möbius
transform.
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This was the preprocessing phase of the cube attack during which several superpolies can be
computed. Let N be the number of computed superpolys. For the online phase, they classically
compute the secret-key-dependent constants PC(k) for each superpoly in 2|I| queries. Assuming the
superpolies are balanced and that their sets {k | PC(k) = 0 } are independent when k is chosen at
random, the polynomial equations are satisfied by 2m−N keys. An exhaustive search among those
2m−N keys finishes the attack. The total complexity is N · (2|I|+|K| + 2|I|) + 2m−N , where N is
the number of superpolys considered in the attack. In practice, 2|I|+|K| queries is too expensive
to compute the superpoly in the preprocessing phase, but this gives a bound on the complexity.
Nonetheless, since the superpoly is not really computed, the balance assumption may not hold. In
particular, there may be a degenerate case where the superpoly is constant. To better estimate
the complexity, the authors then estimate the probability p that PC(KK) is balanced by studying
reduced versions of the cipher for which 2|I|+|K| becomes practical. Let us sum up their attack.

Cryptographer’s study.

• Estimate the probability p that superpolys in the cipher are balanced by studying the superpolys
on reduced-round versions of the cipher.

• Compute N · p−1 cubes and sets C,K such that the superpoly PC(K) only depends on variables
KK with the bit-based division property.

Preprocessing.

• For N · p−1 pairs (C,K), compute superpolys PC(K) in 2|I|+|K| queries for each superpoly and
keep N balanced superpolys.

Online phase.

• Compute the N constants PC(k) in 2|I| queries for each constant.

• Exhaustively search for the secret key k among the 2m−N solutions of the polynomial system

PC(K) = PC(k).

Assuming the N cubes and sets have the same sizes, the total complexity is then bounded by

N ·
(1

p
· 2|I|+|K| + 2|I|

)
+ 2m−N .

The authors notably applied their attack to Trivium and Acorn for which they got the parameters of
Table 5.2 in their best attacks. For those attacks with parameters N = 1 and p = 1, the complexity is
dominated by the final exhaustive search in 2m−1 queries. This family of cube attacks first proposed
in [Tod+17] seems to be perfectly suited to provide a theoretical security analysis for stream ciphers
and their resistance to cube attacks. Indeed, for a given number of rounds of initialization, only one
cube is needed to claim a theoretical attack that calls for more rounds of initialization.

A lot of work and effort has been made since the publication of [Tod+17] to push the attack
further: Wang, Todo, Li, Isobe and Meier in [Wan+18] claimed a key-recovery attack on 839-round
Trivium, later proved a mere distinguishing attack by Ye and Tian in [YT19] by showing that
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Table 5.2 – Parameters of two attacks from [Tod+17] with p = 1 and N = 1.

cipher attacked # rounds key size |I| |K|

Trivium 832/1152 80 72 5
Acorn 704/1792 128 64 58

the superpoly used in the claimed key-recovery attack was constant. This is an example of a
degenerate case where the estimation of the probability p is not enough to claim a key recovery.
In the same work, Ye and Tian managed to compute the superpoly of the attack on 832-round
Trivium for which we gave parameters in Table 5.2. Indeed, this superpoly is much simpler than
what the division-property-based analysis of [Tod+17] could tell. Wang, Hu, Guan, Zhang and
Shi independently arrived to the same conclusions in [Wan+19]. They also showed that using the
three-subset division property introduced in [TM16] could clear the cryptographer from the balance
assumption. Finally, Hao, Leander, Meier, Todo and Wang went a step further with the introduction
of the three-subset division property without unknown subset in [Hao+20b]. This division property
variant is equivalent to monomial trails. It allowed them to have an enumeration tool for monomial
trails and to consequently answer the question “Does a given monomial Xu belong to the ANF of
F (X)?” by “yes” or “no” with a MILP solver. Even better, using the enumeration tool, they can
ask for the enumeration of all the monomial trails for a given output exponent (usually ei for some
output coordinate i). More precisely for a Boolean function F (X), this enumeration provides at the
same time

1. all the possible input exponents u such that ` (F, u→ 1) > 1,

2. for each possible input u, all the monomial trails starting with u and hence the exact value
for ` (F, u→ 1).

In other words, they can compute any superpoly such that all its monomial trails can be enumerated
by the MILP solver. They are not restricted to superpolys that only depend on a few variables
anymore but rather on superpolys that have not too many monomials. They could completely
recover balanced superpolys for 840-round and 841-round Trivium with 78 cube variables (over
80 public variables). This selection of works using the propagation of the division property for
cube attacks since [Tod+17] is not exhaustive. Moreover, it should be noted that the surrounding
algorithms and strategies that use division-property propagations are a major part of these works
although we chose not to develop about them.

5.5 A new technique to compute low-density ANFs

In this section, we first explore a new technique to compute the ANF of a Boolean circuit. This
technique is based on the evaluation of Boolean circuits over Z rather than F2 and on an adaptation
of the Möbius transform to integer coefficients. We then explain how this technique could be used
for computing superpolys and mounting cube attacks. Finally we compare it with monomial trails
and give first hints on how to blend the two techniques.
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5.5.1 Computing ANFs of low density with Z-compatible circuits

We define in this section a family of parallel-map circuits, Z-compatible circuits, and we propose an
algorithm to compute the ANF of a Z-compatible circuit when it is sparse enough. This algorithm
is not based on monomial trails but on the evaluation of ANFs over the ring of integers Z.

5.5.1.1 Z-compatible circuits

Definition 5.12 (Z-compatible circuits). A Boolean circuit F of depth 3r is a Z-compatible circuit
of depth r if it is a tuple of maps of the form(

C(1), π(1), F (1), C(2), π(2), F (2), . . . , C(1), π(1), F (1)
)

where:

• each C(i) : Fn(i−1)
2 → Fm(i)

2 only applies copy operations (in parallel);

• each π(i) : Fm(i)
2 → Fm(i)

2 is a bit permutation;

• each F (i) : Fm(i)
2 → Fn(i)

2 applies the maps F
(i)
j : F

m
(i)
j

2 → F2 in parallel.

Comparison with parallel-map circuits. A Z-compatible circuit is essentially a parallel-map
circuit for which all maps with small ANFs F

(i)
j have exactly one output bit except the copy

operations. Conversely, a parallel-map circuit G can be transformed into a Z-compatible circuit F

by isolating copy operations and creating copy operations before the maps G
(i)
j with several output

bits. More precisely, let G(i) : Fn
2 → Fm

2 such that m > 2. We assume that G(i) has no parallel
components to ease the notation without loss of generality. Let V be the set of v ∈ Fm

2 such that
the product Xv appears in the ANFs of the next step G(i+1). Then with the copy operations

C :
{

Fn
2 −→ F|V|·n

2
x 7−→ ( x | · · · | x )

applied just before, we can replace G(i) by

F (i) :

 F|V|·n
2 −→ F|V|

2
( xe0 | · · · | xv | · · · ) 7−→

(
G

(i)
0 (x)

∣∣∣ · · · ∣∣∣ G(i)(x)v
∣∣∣ · · · )

and the monomials Xv, v ∈ V in the ANFs of G(i+1) by the corresponding output bit of F (i). The
resulting Z-compatible circuit F evaluates the same map as the original parallel-map circuit G but
F cannot be better than G for computing monomial trails and for using Proposition 5.2.

Evaluation over Z. Let F be a Z-compatible circuit of depth r. Evaluating F means applying
the ANFs of the successive operations F

(i)
j to an input vector x ∈ Fn(0)

2 . Since the ANFs are
only composed of additions and multiplications, we can evaluate the circuit F for an input vector
xZ ∈ Zn(0) by replacing the operations (+,×) of F2 by the operations (+,×) of the ring Z. We then
get a map FZ : Zn(0) → Zn(r) .
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We highlight that the output FZ(x) depends on the circuit F in the sense that two circuits
evaluating the same Boolean map over F2 can give different output values when evaluated over Z. For
example, the circuit F =

(
F (1), F (2)

)
, with F (1)(X1, X2) = (X1 + X2, 1 + X1) and F (2)(Y1, Y2) =

Y1Y2, evaluates the same map as G =
(
G(1)

)
, with G(1)(X1, X2) = X2 + X1X2. However, when

evaluated over Z, FZ(1, 1) = 4 and GZ(1, 1) = 2.
Since we will essentially query FZ on vectors with 0 or 1 values, we allow ourselves the notation

FZ(x) for x ∈ Fn
2 . It is clear that FZ(x) ≡ F (x) mod 2.

Definition 5.13 (Z-value vector). Let P be a Z-compatible circuit. With the above notation, we
define the Z-value vector of P by

vPZ
def=
(

PZ(x)
∣∣∣ x ∈ Fn

2

)
.

Proposition 5.3 (Z-Möbius transform). The map

Φ :
{

Z2n −→ Z2n

a 7−→ b with bu = (−1)wt(u) ·
∑

x�u(−1)wt(x)ax for all u ∈ Fn
2

is bijective. We call it the Z-Möbius transform. Its inverse is

Φ−1 :
{

Z2n −→ Z2n

b 7−→ a with au =
∑

x�u bx for all u ∈ Fn
2 .

Proof. Indeed, let a ∈ Z2n , b = Φ(a) and u ∈ Fn
2 . Then

∑
x�u

bx =
∑
x�u

(−1)wt(x) ∑
y�x

(−1)wt(y)ay =
∑
y�u

ay ·

 ∑
x�u+y

(−1)wt(x)

 = au.

Definition 5.14 (Z-ANF). Let P be a Z-compatible circuit. We define the Z-ANF of P by(
pZu

∣∣∣ u ∈ Fn
2

) def= Φ (vPZ) .

If the Z-ANF of P has only non-negative elements, then so does the Z-value vector. However,
the converse does not hold. For example, the Z-value vector (0, 1, 1, 1) corresponds to the Z-ANF
(0, 1, 1,−1). We will then say that P is non-negative when its Z-ANF only has non-negative elements.
Since we defined the evaluation of a Z-compatible circuit over Z with positive constants and additions,
the Z-ANF of a Z-compatible circuit will always be non-negative.

It is easy to check that for all u ∈ F2, pZu ≡ pu mod 2. Hence, if we can compute the Z-ANF
of P , we consequently can compute the ANF of P . Moreover, the Z-Möbius transform can be
performed by a fast algorithm very similar to Algorithm 11 in n2n−1 operations over Z. Of course
in practice, n is too large and we want a more clever algorithm when the ANF of P is rather sparse.
We next propose such an algorithm that benefits from using the ring Z under the assumption that
the Z-ANF is sparse.
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5.5.1.2 The algorithm

Let P be a Z-compatible circuit of depth r such that n(r) = 1 and let n
def= n(0). Our goal is to build

an algorithm which computes the non-zero monomials in the ANF of P . This algorithm will be
referred to as Algorithm 14 for which we give the pseudo code on Page 158. We first explain the
ideas behind Algorithm 14.

Evaluating Boolean circuits over Z is interesting because there is the property of positivity on Z:
for an arbitrary set U ,∑

u∈U
pZu = 0 and ∀u ∈ U , pZu > 0 ⇒ pZu = 0 for all u ∈ U .

The strategy will then be to compute values v equal to a sum of coefficients pZu — i.e. v =
∑

u∈U pZu
— to discard entire sets U of u when the value v is zero. For example, we have that

PZ(1, . . . , 1) =
∑

u∈Fn
2

pZu.

If PZ(1, . . . , 1) = 0, then we can conclude with only one evaluation that PZ = 0 and P = 0. Similarly,
if PZ(1, . . . , 1, 0) = 0, we know that we can write PZ(X) = Xn−1 ·QZ(X) because

PZ(1, . . . , 1, 0) =
∑

u: un−1=0
pZu.

The general formula we are going to use in the algorithm is, for any u ∈ F`
2,

PZ(1n−`|u) =
∑

v′�(1n−`|u)
pZv′ =

∑
v�u

∑
w∈Fn−`

2

pZ(w|v).

If we define S
(`)
u

def=
∑

w∈Fn−`
2

pZ(w|u) — and consistently S
(n)
u = pZu — then we have the following

formula that will be extensively used in the algorithm:

S(`)
u = PZ(1n−`|u)−

∑
v≺u

S(`)
v . (5.5)

Besides, S
(`)
u > 0 if and only if there exists w ∈ Fn−`

2 such that pZ(w|u) > 0. Consequently, for all
` < n, `′ > `, u ∈ F`

2 and w ∈ F`′−`
2 , we have that

S(`)
u = 0⇒ S

(`′)
( w | u ) = 0.

The idea of Algorithm 14 is to compute the sums S
(`)
u with Equation (5.5) without computing

sums that are already known as being 0. The top of the tree computed by the algorithm is illustrated
in Figure 5.1. Algorithm 14 starts with the computation of S(0) = PZ(1n), the root of the tree in
Figure 5.1. The algorithm then computes the other nodes in a breadth-first way. Indeed, according
to Equation (5.5), the computation of S

(`)
u needs one evaluation of PZ and the sums S

(`)
v for v ≺ u.

In other words, to compute the value of a node, we need some values from nodes on the left at the
same level in the tree.

Of course this tree has 2n+1 − 1 nodes and can quickly become too big to be computed. But
remember that if a node has the value zero, then all the nodes of its sub-tree are also zero and do
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S
(0)
()

S
(1)
(0)

S
(2)
(0,0)

S
(3)
(0,0,0)

S
(4)
(0,0,0,0) · · ·

S
(2)
(1,0,0)

S
(2)
(1,0)

S
(3)
(0,1,0) S

(3)
(1,1,0)

S
(1)
(1)

S
(2)
(0,1)

S
(3)
(0,0,1) S

(3)
(1,0,1)

S
(2)
(1,1)

S
(3)
(0,1,1) S

(3)
(1,1,1)

Figure 5.1 – Top of the tree computed by Algorithm 14. The nodes carry the values S
(`)
u =∑

w∈Fn−`
2

pZ(w|u) and the Z-ANF of PZ is then given by the leafs S
(n)
u = pZu.

S
(0)
()

S
(1)
(0)

0 S
(2)
(1,0)

0 S
(3)
(1,1,0)

S
(1)
(1)

0 S
(2)
(1,1)

S
(3)
(0,1,1) S

(3)
(1,1,1)

Figure 5.2 – Top of the tree computed by Algorithm 14 when S
(2)
(0,0) = S

(2)
(0,1) = S

(3)
(0,1,0) = 0

not need to be computed. For example, if it is found that S
(2)
(0,0), S

(2)
(0,1) and S

(3)
(0,1,0) are zero, the tree

computed by Algorithm 14 looks like the one in Figure 5.2.

Now that we understand what we need to compute a new node S
(`)
u , we need to know how we can

apply Equation (5.5). It is obvious that we first need to compute PZ ( 1 | u ) with the given circuit
but we also have to compute

∑
v≺u S

(`)
v . We just explained that the breadth-first computation of

the tree made all the values of this sum available at that point: they are either non-zero, in which
case they have been explicitely computed, either zero, in which case they belong to a non-computed
zero sub-tree. Hence, to compute this sum, we just have to fetch the values with a depth-first search
in the tree restricted to values v ≺ u and ignoring the zero sub-trees.

A small improvement to Algorithm 14 is to use a fast Z-Möbius transform to directly compute a
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Algorithm 14 Compute the Z-ANF of a Z-compatible circuit when it is sparse.

Binary tree. In this algorithm, a node N in a binary tree structure is a tuple (Nlabel, Nleft, Nright)
where Nlabel ∈ N is a label, Nleft is another node called the left child of N and Nright is another
node called the right child of N . The empty node is denoted by nil.

Lists. A list is a data structure with two methods: push adds an element at the end of the list
and pop outputs and deletes an element in the list. If the list is a FIFO (First-In-First-Out),
pop outputs the first element in the list, shifting all other elements in the list toward the first
position. If the list is a LIFO (Last-In-First-Out), pop outputs the last element in the list.
The empty list is denoted by nil.

1: procedure Main(P ) . Main procedure of the algorithm.
2: input
3: P : a Z-compatible circuit with input size n and output size 1.
4: output
5: The Z-ANF of P under the form

{(
u, pZu

)
∈ Fn

2 × N
∣∣∣ pZu 6= 0

}
.

6: zanf← nil.

7: S
(0)
() ← PZ (1n).

8: root←
(
S

(0)
() , nil, nil

)
.

9: fifo← nil; fifo.push (root).

10: while fifo 6= nil do
11: Let N = fifo.pop(); let

(
S

(`)
u , nil, nil

)
= N .

12: if ` < n then
13: left-eval← PZ ( 1n−`−1 | 0 | u ).
14: left-sum← Compute-sum(( 0 | u )).

15: S
(`+1)
( 0 | u ) ← left-eval− left-sum. . Equation (5.5)

16: S
(`+1)
( 1 | u ) ← S

(`)
u − S

(`+1)
( 0 | u ).

17: if S
(`+1)
( 0 | u ) 6= 0 then

18: Nleft ←
(
S

(`+1)
( 0 | u ), nil, nil

)
.

19: fifo.push (Nleft)

20: if S
(`+1)
( 1 | u ) 6= 0 then

21: Nright ←
(
S

(`+1)
( 1 | u ), nil, nil

)
.

22: fifo.push (Nright)
23: else
24: zanf.push

((
u, S

(n)
u

))
.

25: return zanf.
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26: procedure Compute-sum(root, `, u) . Auxiliary procedure for Algorithm 14.
27: input
28: root: root of the tree.
29: `, u ∈ F`

2: the vector u defines a path of depth ` in the tree.
30: output
31: The value

∑
v≺u S(`)v.

32: sum ← 0 ∈ N.
33: lifo← nil; lifo.push (root).
34: while lifo 6= nil do
35: Let N = lifo.pop(); let

(
S

(i)
v , Nleft, Nright

)
= N .

36: if Nleft = Nright = nil then
37: if i = ` then . We only add S

(`)
v if the depth i is the same as the depth `.

38: sum← sum + S
(`)
v .

39: else
40: if ui = 1 and Nright 6= nil then
41: lifo.push (Nright).
42: lifo.push (Nleft).
43: return sum.

starting level of the tree ` > 0. Indeed, the values S
(`)
u , u ∈ F`

2 form the Z-ANF of

PZ
(

1n−`

∣∣∣ X[n−`,n−1]
)

=
∑

u∈F`
2

S(`)
u ·Xu

[n−`,n−1].

5.5.1.3 Complexity

Let D ∈ N be an upper bound on the number of non-zero coefficients of the Z-ANF. Then at each
level ` of the tree from Figure 5.1, there are at most D nodes since a given non-zero coefficient pZu
appears in exactly one S

(`)
u′ such that u = ( w | u′ ). For each of the nD nodes, one evaluation of

PZ is needed. For each node at depth ` and position d ∈ [1, D], the computation of the sum in
Equation (5.5) with the depth-first search needs to visit d− 1 leaves (at that point in the algorithm)
at depth `, hence a cost bounded by ` · d comparisons (to navigate the tree) and d additions in
Z. By summing over d and `, we get O

(
n2D2) comparisons and O

(
nD2) additions. For superpoly

recovery, the time complexity will be dominated by the evaluations of PZ anyway.
To the best of our knowledge, this is the first time that such an upper bound on the complexity

of computing an ANF as a function of its density (or number of non-zero coefficients) and a number
of circuit evaluations. However, it is not clear how far D is from the number of non-zero coefficients
in the F2-ANF. This will depend on how much the circuit wrongly diffuses monomials with an even
coefficient: a low-depth circuit built with complex ANFs will keep this wrong diffusion low whereas
a high-depth circuit built with basic operations is expected to give a significant gap between the
two notions of density.

In practice, the integers computed by the evaluation of PZ can be huge and we prefer performing
these operations not in Z but rather Z/2rZ for a suitable power of two (64 is good for modern
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Algorithm 15 Compute the superpoly of the cube C in FZ if its Z-ANF is sparse.
1: input
2: F : the Z-compatible circuit.
3: C = (I,J ): the cube of which we want to recover the superpoly.
4: output
5: The Z-ANF of PZ

C (K).
6: return Main

(
k ∈ Fm

2 7→ (−1)|I| ·
∑

x�eI
(−1)wt(x)FZ(eJ + x, k)

)
.

processors). This comes with a small loss of precision: there is a risk that 2r is considered to be 0
but the probability is only 2−r if PZ behaves randomly. We just have to choose r such that nD · 2−r

is negligeable.

5.5.2 Superpoly recovery with Möbius transforms

Let F be a Z-compatible circuit with n public variables X0, . . . , Xn−1, m private variables
K0, . . . , Km−1 and only one output bit. In this section, we propose a method to find and compute
superpolys in F (X, K) which only works on cubes of practical size. FZ is the function we get when
we evaluate the circuit F over Z rather than F2.

5.5.2.1 Recovery on a given cube

We first explicit how to recover the superpoly of a given cube C = (I,J ). We want to use
Algorithm 14 for the superpoly PC(K) but we do not have a Z-compatible circuit for this Boolean
function. Nonetheless, what Algorithm 14 really needs is an access to queries of the form k 7→ PZ

C (k),
and Proposition 5.3 gives the formula that allows to compute PZ

C (k) with the values FZ (x, k),
x ∈ C. More precisely, we have that

PZ
C (K) = (−1)|I| ·

∑
x�eI

(−1)wt(x)FZ(eJ + x, K). (5.6)

Therefore, we can compute k 7→ PZ
C (k) for all k ∈ Fm

2 with 2|I| evaluations of F over Z. The
complexity of the recovery will then be dominated by m ·D · 2|I| evaluations of FZ where D is the
number of non-zero monomials in the superpoly PZ

C (K). We highlight that Equation (5.6) does not
artificially add any monomial with an even coefficient to PZ

C — which is a risk when performing
evaluations over Z in general — and that D is really the density of the polynomial

PZ
C (K) =

∑
w�eJ

PZ
w+eI (K)

when PZ
u (K) is defined through the Z-ANF of FZ by

∀(x, k) ∈ Fn+m
2 , FZ(x, k) =

∑
u∈Fn

2

PZ
u (k) · xu.

We sum up this method in Algorithm 15.
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5.5.2.2 Finding cubes

Now we have to find cubes that might carry a sparse superpoly. To explain our method, we fix
J = ∅ since a different choice whould come from an analysis similar to the one of Section 5.3.1.4
and our method does not give any improvement in that respect. Our method simply consists in
defining a “search-window” for cube variables and testing the sparsity of superpoly ANFs with the
Möbius transform for all cubes in the search-window.

In the following, we write the F2-ANF of F as

F (X, K) =
∑

u∈Fn
2

Psupp(u)(K) ·Xu, Psupp(u)(K) =
∑

v∈Fm
2

psupp(u),v ·Kv.

Partial superpoly ANF. The goal is to find a cube I such that the superpoly

PI(K) =
∑

v∈Fm
2

pI,v ·Kv.

has a small number of non-zero coefficients pI,v. Let m′ < m and D ∈ N. We have that

PI
(

K[0,m′−1]

∣∣∣ 1m−m′

)
=

∑
v∈Fm′

2

 ∑
w∈Fm−m′

2

pI,(v|w)

 ·Kv
[0,m′−1].

Therefore, if PI
(

K0,...,m′−1
∣∣ 1m−m′

)
has D non-zero coefficients, then PI(K) has at least D non-

zero coefficients. This means that from the ANF of PI
(

K0,...,m′−1
∣∣ 1m−m′

)
, with size 2m′ bits, we

can discard the cube I if this ANF has too many non-zero coefficients. Counting the number of
non-zero coefficients in the ANF of PI

(
K[0,m′−1]

∣∣∣ 1m−m′

)
is similar to a one-sided tester for the

sparsity of the superpoly PI(K).

Search-window for cube variables. The search-window is defined by two sets Isup and Iinf ⊂
Isup as we will search for potential cube variables I between those sets: Iinf ⊆ I ⊆ Isup. An analysis
similar to the one of Section 5.3.1.4 can give ideas on how to choose the search-window. We also
choose a set of private variables K. For an easier notation, let us assume without loss of generality
that we chose Iinf = [0, ninf − 1], Isup = [0, nsup − 1] and K = [0, m′ − 1].

Computing F2-ANFs. Finally, for all I in the search-window, we compute the F2-ANF of the
Boolean function PI

(
K0,...,m′−1

∣∣ 1m−m′
)
. This is equivalent to computing the ANF of

G(X[ninf ,nsup−1], K[0,m′−1])
def=

∑
y∈Fninf

2

F
((

y
∣∣∣ X[ninf ,nsup−1]

∣∣∣ 0
)

,
(

K[0,m′−1]

∣∣∣ 1
))

. (5.7)

Indeed, the ANF of G is

G(X, K) =
∑

I: Iinf⊆I⊆Isup

PI
(

K[0,m′−1]

∣∣∣ 1
)
·XeI ,

Note that we explained a similar idea in Section 5.2.2.2 in a raw setting with Isup = [1, n].
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Algorithm 16 Search for cubes with a sparse superpoly.
1: input
2: Query access to F : (x, k) 7→ F (x, k).
3: Iinf , Isup: search-window for cube variables.
4: m′: number of private variables; determines the sparsity threshold 2m′−2, over which a

superpoly ANF is considered too dense.
5: output
6: A list of cubes with potentially sparse superpolys.

7: Compute the value vector of G
(
XIsup\Iinf , K0,m′−1

)
with queries to F and Equation (5.7).

8: Compute the ANF vector of G from the value vector with the Möbius transform.

9: For all I ⊆ Isup \Iinf , add I ∪Iinf to the output set if the ANF-vector of PI∪Iinf

(
K[0,m′−1]

∣∣∣ 1
)
,

which is a sub-vector of the ANF-vector of G, has weight smaller than 2m′−1.

Sparsity threshold and complexity. To find a cube C which carries a sparse superpoly, we go
over those sets I and look at the ANF of PI

(
K0,...,m′−1

∣∣ 1
)
. If this ANF has strictly less than

2m′−1 monomials, there is a bias towards the entire superpoly being sparse. We personnally often
used 2m′−2 as a sparsity threshold, with m′ = D + 2 and D the maximum weight of ANF-vectors
we tolerate in the superpolys we want to recover. Such parameters ensure we do not miss sparse
superpolys during our search. We sum up this method in Algorithm 16.

This computation needs 2nsup+m′ evaluations of F and a memory of 2ninf+m′ bits. The fast
Möbius transform will need (ninf + m′) · 2ninf+m′−1 operations.

Application to Trivium. We applied Algorithm 16 to 11 output bits of Trivium after 800
initialization rounds with the parameters m′ = 15, ninf = 7, nsup = 27 and well-chosen potential
cube variables Isup. We found approximately 600 candidate cubes out of 11 · 227−7.

5.5.3 Link with monomial trails

5.5.3.1 Equality only for depth-1 circuits.

Le F be a Z-compatible circuit of depth 1 such that π(1) ◦ C(1)(x) = ( x | · · · | x ). Then, if au,v is
the coefficient of Xu in the Z-ANF of FZ(X), we have that

` (F, u→ v) = au,v. (5.8)

Indeed, for all x ∈ Fn(0)
2 ,

FZ(x)v =
∏

i∈supp(v)

 ∑
u: Xu∈F

(1)
i (X)

xu

 =
∑(

u′
i

∣∣ i∈supp(v)
)

:

∀i, Xu′
i ∈F

(1)
i (X)

∏
i∈supp(w)

xu′
i ,
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hence for all u, v,

au,v =
∣∣∣∣∣
{ (

u′
i

∣∣ i ∈ supp (v)
) ∣∣∣∣∣ ∀i, Xu′

i ∈ F
(1)
i (X) and

∨
i

u′
i = u

}∣∣∣∣∣ .
Besides,

` (F, u→ v) =

∣∣∣∣∣∣∣
u′ ∈

(
Fn(0)

2

)n(1)

∣∣∣∣∣∣∣
∀i ∈ supp (v) , Xu′

i ∈ F
(1)
i (X)

∀i 6∈ supp (v) , u′
i = 0

and
∨

i u′
i = u


∣∣∣∣∣∣∣ ,

hence Equation (5.8). However, the relation of Equation (5.8) does not generalize to Z-compatible
circuits with higher depths. Indeed, the coefficients of FZ grow much faster than numbers of
monomial trails because of the multiplication over Z.

Consider for example the following Z-compatible circuit of depth 2.

(
X1
X2

)
π◦C7−−→


X ′

1
X ′

2
X ′

3
X ′

4

 F (1)
7−−→

(
1 + X ′

1X ′
2

X ′
3X ′

4

) (
Y1
Y2

)
π◦C7−−→


Y ′

1
Y ′

2
Y ′

3
Y ′

4

 F (2)
7−−→

(
1 + Y ′

1 + Y ′
2

Y ′
3Y ′

4

)
.

Then for all x ∈ F2
2,

FZ(x)(1,1) = 3x1 + 3x2 + 14x1x2,

and for all u,
` (F, u→ (1, 1)) = 3 · `

((
π ◦ C, F (1)

)
, u→ (1, 1)

)
,

and in particular ` (F, (1, 1)→ (1, 1)) = 6 6= 14.

5.5.3.2 Semi-evaluated circuits.

Let F be a Boolean circuit
(
F (1), . . . , F (r)

)
of depth r and such that F (1) operates on two different

sets of variables X0, . . . , Xn−1 and K0, . . . , Km−1. Let k ∈ Fm
2 . We build a new circuit Gk from F

such that ∀x ∈ Fn
2 , Gk(x) = F (x, k) with a natural recursive approach. The coordinate functions

of G
(1)
k will have the ANFs of the coordinate functions of F (1)(X, k). We suppose G

(1)
k , . . . , G

(r−1)
k

already built and we denote by I the set of coordinates of G
(r−1)
k with constant ANFs. Let

σ :
{

Fn
2 −→ Fn

2
x 7−→ ( ( xi | i 6∈ I ) | ( xi | i ∈ I ) ) ,

then we define

G
(r)
k

def= F (r) ◦ σ−1
(

X0, . . . , Xn(r−1)−|I|−1

∣∣∣ (G
(r−1)
k,i

∣∣∣ i ∈ I
) )

.

With such a construction, we have Gk(X) = F (X, k). Then, considering F has exactly one output
bit and writing F (X, K) =

∑
u∈Fn

2
Pu(K)Xu, we have with Proposition 5.2 that, for all u ∈ Fn

2 and
k ∈ Fm

2 ,
Pu(k) = 1 ⇐⇒ ` (Gk, u→ 1) ≡ 1 mod 2.
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In other words, the vector
( ` (Gk, u→ 1) | k ∈ Fm

2 ) (5.9)

is a consistent Z-value vector for the superpoly Pu(K).
To recover the ANF of this superpoly, it would be tempting to use Algorithm 14 with the query

access k 7→ PZ
u (k) given by the computation of the quantity ` (Gk, u→ 1) with the techniques

discussed in Section 5.4.4. Indeed, when the method from [Hao+20b], discussed in Section 5.4.5 and
based on the computation of

{uK | ` (F, (uX , uK)→ 1) 6= 0 }

for a given cube Prec (uX), is impractical for the enumeration tool, the same enumeration tool could
be used several times on the simpler circuits Gk by the queries of Algorithm 14. The problem is that
the Z-value vector of Equation (5.9) was not obtained through the evaluation of a Z-compatible
circuit. Then the corresponding Z-ANF could have negative coefficients and we could encounter the
situation where S

(`)
w < S

(`+1)
( 0 | w ) for some ` ∈ N and w ∈ F`

2. Therefore, Algorithm 14 is not correct
in this situation.

It is not clear for the moment whether Algorithm 14 could be adapted to a non-negative Z-value
vector with possibly negative Z-ANF coefficients. Meanwhile, the enumeration of monomial trails in
a semi-evaluated circuit Gk is a potential tool to evaluate superpolys on big-size cubes for which the
Möbius transform is impractical. This could be interesting to mount cube testers or dynamic cube
attacks as those attacks mostly require the evaluation of superpolys.

5.6 Conclusion

In this chapter, we gave an overview of the different techniques used to analyze ANFs and their
applications to cube attacks. We have seen that their are two families of techniques for ANF
analysis: those based on the computation of Möbius transforms and those based on the enumeration
of monomial trails.

Techniques based on Möbius transform computations are limited to the computational power
available to the cryptanalyst, and thus fail at providing strong and convincing security arguments
against algebraic attacks beyond the practical range. Indeed, computing an ANF with the Möbius
transform requires a time and data complexity exponential in the number of involved variables
whatever the number of non-zero coefficients in the ANF. We then proposed a new technique based
on Möbius transform computations and evaluations of circuits over Z to challenge this natural
limitation. In particular, for cube attacks, our technique seems to improve the recovery of sparse-ANF
superpolys but it is still limited to practical-size cubes because of Möbius transform computations.
If it might be interesting to investigate this technique further and to find applications, there remains
a major theoretical uncertainty: the gap between the density of a Z-ANF and the density of the
corresponding F2-ANF. Indeed, this gap highly depends on the circuit evaluated over Z.

Techniques based on monomial trails — or division property — have allowed more precise
analysis for big-size cubes. Indeed, the paradigm of monomial trails is completely different from
Möbius transform computations as it relies on tracing the existence of monomials through the rounds
of a cipher, or through the gates of a circuit. If monomial trails have allowed cryptographers to
provide much better ANF-analysis than Möbius transform-based techniques so far, the enumeration
of monomial trails remains a heavy computation highly dependent on the circuit under study.
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Moreover, similarly to our new Möbius transform-based technique, the unknown gap between the
complexity of the enumeration of monomial trails and the density of the ANF brings uncertainty
when the enumeration exceeds practical computational resources.

Finally, the enumeration of monomial trails in semi-evaluated circuits could help to surpass the
current limitations of monomial trails in two directions. First, it could allow to mount property-
testing-based cube attacks since they allow to evaluate superpolys of big-size cubes. Second, with our
views on ANFs with integer coefficients, it could help to exhibit a new superpoly-recovery algorithm
for big-size cubes.





Chapter 6

Study of a McEliece trapdoor function
with rank metric

Contributions brought forward in this chapter were published in DCC 2020 and are a joint work
with Alain Couvreur [CC20].

6.1 Introduction

To instantiate a McEliece encryption scheme (see Section 1.6.3), one needs a family of codes with
random-looking generator matrices and an efficient decoding algorithm. While the original proposal
due to McEliece himself [McE78] relies on classical Goppa codes endowed with the Hamming metric,
one can actually consider codes endowed with any other metric. The use of Fqm–linear rank metric
codes, first suggested by Gabidulin et al. [GPT91] is of particular interest, since the Fqm–linearity
permits a very “compact” representation of the code and hence permits to design a public-key
encryption scheme with rather short keys compared to the original McEliece proposal.

Compared to the Hamming-metric world, only a few families of codes with efficient decoding
algorithms are known in rank-metric. Basically, the McEliece scheme has been instantiated with
two general families of rank metric codes, namely Gabidulin codes [Del78; Gab85] and LRPC codes
[Gab+13].

In [Loi17], Loidreau proposed the use of codes which can in some sense be regarded as an
intermediary version between Gabidulin codes and LRPC codes. These codes are obtained by
right multiplying a Gabidulin code with an invertible matrix whose entries are in Fqm and span an
Fq–subspace of small dimension λ. This approach can be regarded as a “rank metric” counterpart of
the BBCRS scheme [Bal+16] in Hamming metric.

In the present chapter, we explain why Loidreau’s scheme is weak when λ = 2 and the dimension
of the public code Cpub is bigger than half the length n: dim Cpub > n/2. We finally describe a
polynomial-time key-recovery attack in this situation.

6.1.1 Rank metric codes

In this article m, n denote positive integers and q a prime power. A code of dimension k is an
Fqm–subspace of Fn

qm whose dimension as an Fqm–vector space is k. Given a vector x ∈ Fn
qm , the

rank weight or rank of x, denoted as |x|R is the dimension of the Fq–vector subspace of Fqm spanned

167
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by the entries of x. The support of a vector x ∈ Fn
qm , denoted suppR (x) is the Fq–vector space

spanned by the entries of x. Hence the rank of x is nothing but the dimension of its support. The
rank distance or distance of two vectors x, y ∈ Fn

qm is defined as

dR (x, y) def= |x− y|R .

Given a linear code C ⊆ Fn
qm , the minimum distance of C is defined as

dmin (C ) def= min
x∈C \{0}

|x|R .

Finally, given a code C ⊆ Fn
qm , the dual code of C , denoted by C ⊥, is the orthogonal of C with

respect to the canonical inner product in Fqm :{
Fn

qm × Fn
qm −→ Fqm

(x, y) 7−→ 〈x | y 〉 =
∑n

i=1 xiyi.

6.1.2 q–polynomials and Gabidulin codes

A q–polynomial or a linearized polynomial is an Fqm–linear combination of monomials

X, Xq, Xq2
, . . . , Xqs

, . . .

Such a polynomial induces a function Fqm → Fqm which is Fq–linear. The q–degree of a q-polynomial
P , denoted by degq P is the integer s such that the degree of P is qs. In short:

P =
degq P∑

i=0
piX

qi
, pi ∈ Fqm , pdegq P 6= 0.

The space of q-polynomials is denoted by L and, given a positive integer s, the space of q-polynomials
of degree less than s is denoted by

L<s
def=
{

P ∈ L
∣∣∣ degq P < s

}
.

Given positive integers k, n with k 6 n 6 m and an n-tuple a = (a1, . . . , an) of Fq-linearly
independent elements of Fqm , the Gabidulin code Gk (a) is defined as

Gk (a) def= { (f(a1), . . . , f(an)) | f ∈ L<k } .

This code has a generator matrix of the form:
a1 . . . an

aq
1 . . . aq

n
...

...
aqk−1

1 . . . aqk−1
n

 .

Such codes are known to have minimum distance n− k + 1 and to benefit from a decoding algorithm
correcting up to half the minimum distance (see [Loi06]).

Note that the vector a is not unique as shown by the following lemma which will be useful for
our attack.



6.2. DISTINGUISHING GABIDULIN CODES 169

Lemma 6.1 ([Ber03, Theorem 2]). Let α ∈ F∗
qm. Then Gk (a) = Gk (αa) .

Proof. Let P ∈ Fqm [X] be a q–polynomial of q–degree < k and Q ∈ Fqm [X] be the q–polynomial of
the same degree defined by Q(X) = P (α−1X). Then the codeword (P (a1), . . . , P (an)) ∈ Gk (a) is
equal to the codeword (Q(αa1), . . . , Q(αan)) ∈ Gk (αa). This proves that Gk (g) ⊆ Gk (αg) and the
converse inclusion is proved in a similar fashion.

6.1.3 The component-wise Frobenius map

In what follows, we will frequently apply the component-wise Frobenius map or its iterates to vectors
or codes. Hence, we introduce the following notation. Given a vector v ∈ Fn

qm and a non-negative
integer s, we denote by v[s] the vector:

v[s] def=
(
vqs

1 , . . . , vqs

n

)
.

Similarly, given a code C ⊆ Fn
qm and a positive integer s, the code C [s] denotes the code

C [s] def=
{

c[s]
∣∣∣ c ∈ C

}
.

C [s] is an Fqm–linear code of the same dimension as C since x 7→ x[s] is an Fq–linear bijection.

6.2 Distinguishing Gabidulin codes
In [Ove08], Overbeck proposes a general framework to break cryptosystems based on Gabidulin
codes. Since the work presented in this chapter was inspired by this framework, we briefly explain
his fundamental ideas in Section 6.2.1 and we redirect the interested reader to [Ove08] for a more
in-depth study.

6.2.1 Overbeck’s distinguisher

The core of Overbeck’s attack is that a simple operation allows us to distinguish Gabidulin codes
from random ones. Indeed, given a random code C ⊆ Fn

qm of dimension k < n/2, the expected
dimension of the code C + C [1] equals 2k and, equivalently C ∩ C [1] is likely to be equal to 0. More
generally, we have the following statement.

Proposition 6.1. If Crand is a code of length n and dimension k chosen uniformly at random, then
for a non-negative integer a and for a positive integer s < k, we have

P
(
dimFqm Crand + Crand

[1] + · · ·+ Crand
[s] 6 min (n, (s + 1)k)− a

)
= O

(
q−ma) .

Proof. See Section 6.2.2.

On the other hand, for a Gabidulin code, the behaviour with respect to such operations is
completely different, as explained in the following statement.

Proposition 6.2. Let a ∈ Fn
qm be a word of rank n, k 6 n and s be an integer. Then,

Gk (a) ∩ Gk (a)[1] = Gk−1
(
a[1]

)
; (6.1)

Gk (a) + · · ·+ Gk (a)[s] = Gk+s (a) . (6.2)
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Proof. We first prove Equation (6.2). Note that for all i, Gk (a)[i] = Gk

(
a[i]
)

is spanned by{
a[i+j]

∣∣∣ j ∈ [0, k − 1]
}

. Therefore, Gk (a) + · · ·+ Gk (a)[s] is spanned by

s⋃
i=0

{
a[i+j]

∣∣∣ j ∈ [0, k − 1]
}

=
{

a[i]
∣∣∣ i ∈ [0, k + s− 1]

}
and hence is equal to Gk+s (a).

For Equation (6.1), we have that

Gk−1
(
a[1]

)
⊆ Gk (a) ∩ Gk (a)[1]

because the generators a[i] for i ∈ [1, k − 1] of Gk−1
(
a[1]

)
are in Gk (a) ∩ Gk (a)[1]. Conversely, the

two codes have the same dimension because, with Equation (6.2) and s = 1, we have that

2k − dimGk (a) ∩ Gk (a)[1] = dimGk (a) + Gk (a)[1] = dimGk+1 (a) = k + 1.

Example 6.1. We illustrate in this example the difference of behaviour between Gabidulin codes and
random codes. If G is a Gabidulin code of length n and dimension k < n/2, then dim G +G [1] = k+1.
For a random code Crand of the same length and dimension,

lim
m→+∞

P
(
dimFqm Crand + Crand

[1] = 2k
)

= 1.

6.2.2 Proof of Proposition 6.1

Since we could not find any proof for Proposition 6.1 in the literature, we propose one here for
completeness. We begin with a classical combinatorial result on subspaces of Fqm .

Preliminaries on Gaussian binomial coefficients

Notation 6.1. In what follows, we denote by
[
a
b

]
qm

the Gaussian binomial coefficient representing

the number of subspaces of dimension b of a vector space of dimension a over Fqm .

Lemma 6.2. There exists a positive constant C such that for any pair of positive integers n, k such
that n > k, we have

qk(n−k) 6

[
n
k

]
q

6 C · qk(n−k).

Proof. By definition of Gaussian binomials, we have[
n
k

]
q

=
k−1∏
t=0

qn − qt

qk − qt
= qk(n−k)

k−1∏
t=0

1− qt−n

1− qt−k
·

Since n > k, we get
k−1∏
t=0

1− qt−n

1− qt−k
> 1,
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which yields the left-hand inequality. To get the other equality, we need to bound from above the
product:

k−1∏
t=0

1− qt−n

1− qt−k
6

k−1∏
t=0

1
1− qt−k

=
k−1∏
j=0

1
1− 1

qj+1
,

where the last equality is obtained by applying the change of variables j = k − 1− t. Set

ak
def=

k−1∏
j=0

1
1− 1

qj+1
·

The sequence ak is increasing and converges. Indeed,

log(ak) =
k−1∑
j=0
− log

(
1− 1

qj+1

)

and the series with general term − log(1 − 1/qj+1) converges. As a conclusion, the right-hand
inequality is obtained by taking

C
def=

∞∏
j=0

1
1− 1

qj+1
·

Remark 6.1. A finer analysis would permit to prove that C 6
(

q
q−1

) q
q−1 . In particular, since q > 2,

we have that C 6 4.

Lemma 6.3. Let Crand be an Fqm–linear code of length n and dimension k chosen uniformly at
random and A be a subspace of Fn

qm of dimension t 6 k. Then

P (A ⊆ Crand) 6 C · q−mt(n−k),

where C is the constant of Lemma 6.2.

Proof. We have

P (A ⊆ Crand) =
[
n− t
k − t

]
qm

·
[
n
k

]−1

qm

·

Using Lemma 6.2 we get the upper bound,

P (A ⊆ Crand) 6 C · qm(k−t)(n−k) · q−mk(n−k) = C · q−mt(n−k).

Expected dimension of Crand + Crand
[1] + · · ·+ Crand

[s]

Let Crand be a subspace of Fn
qm chosen uniformly at random among its subspaces of dimension k.

From Crand we build the map

Ψ :
{

Crand
s+1 −→ Fn

qm

(c0, . . . , cs) 7−→ c0 + c1
[1] + · · ·+ cs

[s].
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The image of this map is Crand + Crand
[1] + · · ·+ Crand

[s] and hence the dimension of Crand + Crand
[1] +

· · ·+ Crand
[s] is related to the dimension of the kernel of Ψ. Therefore, our approach will consist in

estimating E (|ker Ψ|). We have

E (|ker Ψ|) =
∑

x0, . . . , xs ∈ Fn
qm s.t.

x0 + x1
[1] + · · · + xs

[s] = 0

P (x0, . . . , xs ∈ Crand) . (6.3)

For any 0 6 t 6 s + 1, we introduce the set

St
def=
{

(x0, . . . , xs) ∈
(
Fn

qm

)s
∣∣∣∣∣ x0 + x1

[1] + · · ·+ xs
[s] = 0

dimFqm 〈x0, . . . , xs〉 = t

}
·

Thanks to Equation (6.3) and Lemma 6.3, we can write that

E (|ker Ψ|) 6 C ·
s+1∑
t=0

q−mt(n−k) |St| . (6.4)

Lemma 6.4. Let 1 6 t 6 k − 1. Then |St| 6 C · q(mt+n)(s+1−t)+mn(t−1).

Proof. Let (x0, . . . , xs) ∈ St. Since the xi’s span a space of dimension t, there exists a unique
(s + 1− t)× (s + 1) full-rank matrix M in reduced echelon form with entries in Fqm such that

M ·


x0

...

xs

 = 0. (6.5)

Let us count the number of possible (s + 1)–tuples (x0, . . . , xs) satisfying Equation (6.5) and such
that x0 + x1

[1] + · · ·+ xs
[s] = 0. For any 1 6 i 6 n, we have

x0,i + xq
1,i + · · ·+ xqs

s,i = 0 (6.6)

and M ·

x0,i
...

xs,i

 = 0 (6.7)

Let us label the columns of M from 0 to s. Let P ⊆ [0, s] be the set of indices of columns which are
pivots for M and Pc its complementary. We denote by a the smallest element of Pc. Notice that

|Pc| = t and a 6 s + 1− t. (6.8)

In Equation (6.6), we can eliminate any xj,i where j ∈ P using Equation (6.7). By this manner
we get an expression depending only on the xj,i’s for j ∈ Pc. If we fix the value of the xr,i’s for any
r ∈ Pc \ {a}, we obtain an equation of the form

Q(xa,i) = 0,
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where Q is a q–polynomial of q–degree at most a. There are then at most qa possible values for xa,i

for any choice of the elements xr,i with r ∈ Pc \ {i}. Using Equation (6.8) we deduce that there are
at most

qm(t−1)+a 6 qm(t−1)+s+1−t

possible choices for the tuple (x0,i, . . . , xs,i). Consequently, Equation (6.5) has at most qmn(t−1)+n(s+1−t)

solutions.
Finally, since the full-rank (s + 1− t)× (s + 1) matrices in row echelon form are in one–to–one

correspondence with t–dimensional subspaces of Fs+1
qm there are

[
s + 1

t

]
qm

possible choices for M .

Using Lemma 6.2, we deduce the result.

Combining Equation (6.4) and Lemma 6.4, we get

E (|ker Ψ|) 6 C2 ·
s+1∑
t=0

q−mt(n−k)+(mt+n)(s+1−t)+mn(t−1)

6 C2 · qm(k(s+1)−n) ·
s+1∑
t=0

q(s+1−t)(mt+n−mk).

By assumption (in the statement of Proposition 6.1), we have s < k. Next, since n 6 m, we see that
the exponents in the above sum are all less than or equal to 0. More precisely,

s+1∑
t=0

q(s+1−t)(mt+n−mk) 6 2 +
s−1∑
t=0

q(s+1−t)(mt+n−mk)

6 2 +
s−1∑
t=0

q−m(s+1−t)

6 2 +
s−1∑
i=0

q−m(i+2) 6 2 + q−2m

1− q−m
·

Consequently, we have the following result.

Corollary 6.1. There is a positive constant C ′ such that

E (|ker Ψ|) 6 C ′ · qm(k(s+1)−n).

End of the proof

To conclude the proof of Proposition 6.1, we have from the rank theorem that

dimFqm Crand + Crand
[1] + · · ·+ Crand

[s] 6 min {k(s + 1), n} − a

⇒ dimFqm ker Ψ > max {0, k(s + 1)− n}+ a.

Using Markov inequality together with Corollary 6.1, we get

P
(
|ker Ψ| > qm(max{0,k(s+1)−n}+a)

)
6 C ′ · qm(k(s+1)−n)

qm(max{0,k(s+1)−n}+a) 6 C ′ · q−ma.
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6.3 Loidreau’s scheme
In order to mask the structure of Gabidulin codes and to resist Overbeck’s attack, Loidreau suggested
in [Loi17] the following construction. Denote by G a random generator matrix of a Gabidulin code
Gk (b). Fix an integer λ 6 m and an Fq–vector subspace V of Fqm of dimension λ. Let P ∈ GLn (Fqm)
whose entries are all in V. Then, let

Gpub
def= GP −1.

We have the following encryption scheme.

Public key. The pair (Gpub, t) where t
def=
⌊

n− k

2λ

⌋
.

Private key. The pair (b, P ).

Encryption. Given a plain text m ∈ Fk
qm , choose a uniformly random vector e ∈ Fn

qm of rank
weight t. The cipher text is

c
def= mGpub + e.

Decryption: Compute cP = mG + eP . Since the entries of P are all in V, then the entries of
e · P are in the product space

suppR (e) · V def= vectFq {u · v | u ∈ suppR (e) , v ∈ V} .

The dimension of this space is bounded from above by tλ 6 n−k
2 . Therefore, using a classical

decoding algorithm for Gabidulin codes, one can recover m.

Remark 6.2. Loidreau’s scheme can be considered as a generalization of the GPT cryptosystem
proposed in [GO01], for which the parameter λ would be equal to 1. This cryptosystem was broken
by Overbeck in [Ove08] thanks to the distinguishers presented in Section 6.2.1. The hope of Loidreau
in [Loi17] is that higher values of λ, while increasing the key size, could counter this kind of attacks.

6.4 A distinguisher against Loidreau’s scheme

6.4.1 Context

The goal of this section is to establish a distinguisher for Loidreau’s cryptosystem instantiated with
λ = 2 and a public code Cpub of dimension k > n

2 . Similar to Overbeck’s attack, this distinguisher
relies on Propositions 6.1 and 6.2. As for the attacks against the BBCRS system [Cou+14; Cou+15],
it is more convenient to work on the dual of the public code (defined in Section 6.1.1) because of the
following lemmas.

Lemma 6.5 ([Gab85, Theorem 7]). Let b ∈ Fn
qm of rank n. The code Gk (b)⊥ is a Gabidulin code

Gn−k (a) for some a ∈ Fn
qm of rank n.

Lemma 6.6. Any full-rank generator matrix Hpub of Cpub
⊥ can be decomposed as

Hpub = HsecP
T

where Hsec is a parity-check matrix of the Gabidulin code Gk (b).
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Proof. Let Hpub be a full–rank generator matrix of Cpub
⊥. Since Cpub = CsecP

−1, there exists a
full-rank generator matrix Gsec of Csec such that

Hpub
(
GsecP

−1
)T

= 0 or equivalently Hpub
(
P −1

)T
GT

sec = 0.

Which means that Hpub
(
P −1)T is a parity-check matrix of Csec = Gk (b).

The convenient aspect of the previous lemma is that the matrix P has its entries in a small
vector space, while its inverse does not.

6.4.2 The case λ = 2
We suppose in this section that the vector space V ⊆ Fn

qm in which the matrix P has all its entries
has dimension 2:

λ = dimFqV = 2.

Note that, w.l.o.g, one can suppose that 1 ∈ V . Indeed, if V is spanned over Fq by α, β ∈ Fqm \ {0},
then one can replace Hsec by H ′

sec = αHsec which spans the same code, P ′ = α−1P has entries in
V ′ = vectFq

(
1, α−1β

)
, and Hpub = H ′

secP
′T .

Thus, from now on, we suppose that V = vectFq (1, γ) for some γ ∈ Fqm \ Fq. Consequently, P T

can be decomposed as
P T = P 0 + γP 1,

where P 0, P 1 are square matrices with entries in Fq. We have seen that Csec
⊥ = Gn−k (a) for some

a ∈ Fn
qm with |a|R = n. We define

g
def= aP 0 and h

def= aP 1.

Lemma 6.7. The code Cpub
⊥ is spanned by

g + γh, g[1] + γh[1], . . . , g[n−k−1] + γh[n−k−1].

Proof. For any c ∈ Cpub
⊥ there exists P ∈ L<n−k such that

c = P (a)P T = P (a)P 0 + γP (a)P 1 = P (g) + γP (h),

which yields the result.

We can now state a crucial result.

Theorem 6.1. The dual of the public code satisfies:

dimFqm Cpub
⊥ + Cpub

⊥[1] + Cpub
⊥[2]

6 2 dimFqm Cpub
⊥ + 2.

Proof. Thanks to Lemma 6.7, we prove that Cpub
⊥ + Cpub

⊥[1] is spanned by

g + γh, . . . , g[n−k−1] + γh[n−k−1] and g[1] + γqh[1], . . . , g[n−k] + γqh[n−k].
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Equivalently, Cpub
⊥ + Cpub

⊥[1] is spanned by:

g + γh and g[1], h[1], . . . , g[n−k−1], h[n−k−1] and g[n−k] + γqh[n−k].

Finally, a similar reasoning allows us to show that Cpub
⊥ + Cpub

⊥[1] + Cpub
⊥[2] is spanned by

g + γh and g[1], h[1], . . . , g[n−k], h[n−k] and g[n−k+1] + γq2
h[n−k+1],

and hence has dimension at most 2(n− k) + 2.

As a conclusion, thanks to Proposition 6.1, we deduce that Cpub
⊥ is distinguishable in polynomial

time from a random code as soon as 2k − 2 > n and k < n− 2.

6.4.3 The case λ > 2
In the general case, the approach consists in computing

Cpub
⊥ + Cpub

⊥[1] + · · ·+ Cpub
⊥[λ]

.

A similar reasoning permits to prove that the dimension of this space is bounded from above by
λ dim Cpub

⊥ + λ. Thanks to Proposition 6.1, such a code is distinguishable from a random one if

λ dim Cpub
⊥ + λ < min

{
n, (λ + 1) dim Cpub

⊥
}

.

That is to say

λ(n− k + 1) < n and λ(n− k + 1) < (λ + 1)(n− k).

In summary, the public code is distinguishable from a random one if its dimension k satisfies:

n

(
1− 1

λ

)
+ 1 < k < n− λ.

6.5 The attack
In this section, we derive an attack from the distinguisher defined in Section 6.4. In what follows, we
suppose that λ = 2 and the public code has rate larger than 1/2 so that the distinguisher introduced
in Section 6.4 works on it. Recall that Cpub

⊥ = Gn−k (a) P for some a ∈ Fn
qm whose entries are

Fq–independent and P is of the form P 0 + γP 1 for P 0, P 1 ∈ Mn (Fq) and γ ∈ Fqm \ Fq. Finally,
recall that

g
def= aP 0 and h

def= aP 1.

In addition, we make the following assumptions:

(1) Gn−k+2 (g) ∩ Gn−k+2 (h) = {0}, |g|R > n− k + 2 and |h|R > n− k + 2;

(2) m > 2 and γ is not contained in any subfield of Fqm .
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Comments on the assumptions. According to our experiments using Magma [BCP97], As-
sumption (1) holds with a high probability. For instance, we ran 1000 tests for parameters:
q = 2, m = n = 30 and k = 17. The average rank of g, h is 29.1 and their minimum rank is 27.
In addition, for these 1000 tests, the intersection Gn−k+2 (g) ∩ Gn−k+2 (h) was always {0}. Finally,
Assumption (2) is reasonable in order to prevent against possible attacks based on an exhaustive
search for γ.

The aim of the attack is to recover the triple (γ, g, h), or more precisely, to recover a triple
(γ′, g′, h′) such that

Cpub
⊥ = vect

{
g′[i] + γ′h′[i]

∣∣∣ i ∈ [0, n− k − 1]
}

. (6.9)

Actually, the triple (γ, g, h) is far from being unique and any other triple satisfying Equation (6.9)
allows us to decrypt messages (see further Section 6.5.3). Let us describe an action of PGL (2,Fq)
on such triples.

Proposition 6.3. Let a, b, c, d ∈ Fq such that ad− bc 6= 0 and δ ∈ Fqm such that γ = aδ+b
cδ+d . Then,

the triple (δ, dg + bh, cg + ah) satisfies Equation (6.9).

Proof. It suffices to observe that for any i > 0,

g[i] + aδ + b

cδ + d
h[i] = 1

cδ + d

(
(dg + bh)[i] + δ (cg + ah)[i]

)
.

6.5.1 Step 1: using the distinguisher to compute some subcodes

As shown in the proof of Theorem 6.1, Cpub
⊥ + Cpub

⊥[1] is spanned by:

g + γh and g[1], h[1], . . . , g[r], h[r] and g[r+1] + γqh[r+1],

where r
def= n− k − 1.

Lemma 6.8. Under Assumption (1), we have that(
Cpub

⊥ + Cpub
⊥[1]

)
∩
(

Cpub
⊥[1] + Cpub

⊥[2]
)

is spanned by:

g[1] + γqh[1] and g[2], h[2], . . . , g[r], h[r] and g[r+1] + γqh[r+1].

Proof. Indeed, if a vector x belongs to this intersection, we have that

x = x0,0(g + γh) +
r∑

i=1

(
x0,ig

[i] + y0,ih
[i]
)

+ x0,r+1
(
g[r+1] + γqh[r+1]

)
= x1,0

(
g[1] + γqh[1]

)
+

r∑
i=1

(
x1,ig

[i+1] + y1,ih
[i+1]

)
+ x1,r+1

(
g[r+2] + γq2

h[r+2]
)

.



178 CHAPTER 6. STUDY OF A TRAPDOOR RANK METRIC CODE

Hence

x0,0g + (x0,1 − x1,0)g[1] +
r∑

i=2
(x0,i − x1,i−1)g[i] + (x0,r+1 − x1,r)g[r+1] − x1,r+1g[r+2]

= −x0,0γh + (γqx1,0 − y0,1)h[1] +
r∑

i=2
(y1,i−1 − y0,i)h[i] + (y1,r − x0,r+1γq)h[r+1]

+ x1,r+1γq2
h[r+2].

Since by Assumption (1) Gr+3 (g) ∩ Gr+3 (h) = {0}, both sides of this equation are zero and in
particular, x0,0 = x1,r+1 = 0 and x0,1 = x1,0 = γ−qy0,1. This finally gives that

x ∈ vect
(
g[1] + γqh[1], g[2], h[2], . . . , g[r], h[r], g[r+1] + γqh[r+1]

)
.

Then, a proof by induction shows that iterating intersections(
Cpub

⊥ + Cpub
⊥[1]

)
∩
(

Cpub
⊥[1] + Cpub

⊥[2]
)
∩ · · · ∩

(
Cpub

⊥[r] + Cpub
⊥[r+1]

)
,

yields the code spanned by

g[r] + γqr
h[r] and g[r+1] + γqh[r+1].

Applying the inverse of the r–th Frobenius, we get the code spanned by

g + γh and g[1] + γq1−r
h[1].

Next, one can compute

Cpub
⊥ ∩ vect

(
g + γh, g[1] + γq1−r

h[1]
)

= vect (g + γh) , (6.10)

Indeed, if x ∈ Cpub
⊥ ∩ vect

(
g + γh, g[1] + γq1−r

h[1]
)
, we can write for some x and y,

x =
r∑

i=0
xi

(
g[i] + γh[i]

)
= y0(g + γh) + y1

(
g[1] + γq1−r

h[1]
)

.

Assumption (1) gives that x1 = y1 and x1γ = y1γq1−r . Finally with Assumption (2), we deduce
y1 = 0 and hence x ∈ vect (g + γh).

Now, we can compute

vect
(
g + γh, g[1] + γq1−r

h[1]
)

+ vect (g + γh)[1]

= vect
(
g + γh, g[1] + γq1−r

h[1], g[1] + γqh[1]
)

= vect
(
g + γh, g[1], h[1]

)
.
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Similarly, we compute the intersection with Cpub
⊥[−1] def= Cpub

⊥[m−1] and get with Assumptions (1)
and (2)

Cpub
⊥[−1] ∩ vect

(
g + γh, g[1], h[1]

)
= vect

(
g[1] + γqm−1

h[1]
)

. (6.11)

Applying the inverse Frobenius to the last code, we get vect
(
g + γqm−2

h
)
. Since, from Equa-

tion (6.10), we also know vect (g + γh), one can compute

vect (g + γh) + vect
(
g[1] + γqm−1

h[1]
)[−1]

= vect
(
g + γh, g + γqm−2

h
)

= vect (g, h) . (6.12)

Next, for any i ∈ [0, r], one can compute

Cpub
⊥ ∩ vect (g, h)[i] = vect

(
g[i] + γh[i]

)
.

By applying the i–th inverse Frobenius to the previous result, we obtain the space generated by
g + γq−i

h for any i ∈ [0, r]. In summary, we know the spaces

vect (g + γh) , vect
(
g + γq−1

h
)

, . . . , vect
(
g + γq−r

h
)

.

In addition, from Lemma 6.1, the vector a and hence the pair (g, h) is determined up to some
multiplicative constant. Therefore, one can choose an arbitrary element of vect (g + γh) and suppose
that this element is g + γh.

6.5.2 Step 2: Finding γ

In summary, the vector g + γh and the spaces vect
(
g + γqi

h
)

for any i ∈ [−1,−r] are known. To
compute γ, we will use the following lemma.

Lemma 6.9. For i, j ∈ [1, r], i 6= j, there exists a unique pair

(uij , vij) ∈ vect
(
g + γq−i

h
)
× vect

(
g + γq−j

h
)

such that uij + vij = g + γh.

Proof. It suffices to observe that vect (g, h) = vect
(
g + γq−i

h
)
+vect

(
g + γq−j

h
)

and vect
(
g + γq−i

h
)
∩

vect
(
g + γq−j

h
)

= {0}.

The pairs of vectors (uij , vij) can be easily computed. Thus, from now on, we suppose we know
them. In addition, despite γ, g + γq−i

h and g + γq−j
h being unknown, a computation allows us to

show that uij , vij have the following expressions.

uij = γq−j − γ

γq−j − γq−i · (g + γq−i
h) and vij = γ − γq−i

γq−j − γq−i · (g + γq−j
h). (6.13)
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Consider the vectors u12 and u13. They are collinear since, from Equation (6.13), they are both
multiples of g + γq−1

h. Therefore, one can compute the scalar α such that u12 = α · u13. From
Equation (6.13) we deduce that γ satisfies the following relation.

γq−2 − γ

γq−2 − γq−1 = α · γq−3 − γ

γq−3 − γq−1 · (6.14)

Or equivalently, γ is a root of the polynomial

Qγ(X) def= (Xq −Xq3)(X −Xq2)− αq3(X −Xq3)(Xq −Xq2).

Moreover (Xq −X)q+1 divides Qγ . Indeed, Xq −X divides Xq2 −X and Xq3 −X then (Xq −X)q

divides Xq3 −Xq and Xq2 −Xq.
We now set

Pγ(X) def= Qγ

(Xq −X)q+1 ·

Since the element γ we look for is not in Fq, it is not a root of Xq −X and hence is a root of Pγ .
Next, the forthcoming Proposition 6.4 provides the description of the other roots. We first need a
technical lemma.

Lemma 6.10. Let a, b, c, d ∈ Fq, let i, j be two non-negative integers and set A(X) = Xqi −Xqj ∈
Fq[X]. Then,

A

(
aX + b

cX + d

)
= ad− bc

(cX + d)qi+qj ·A(X).

Proposition 6.4. The set of roots of Pγ equals the orbit of γ under the action of PGL (2,Fq).
Equivalently, any root of Pγ is of the form aγ+b

cγ+d for a, b, c, d ∈ Fq such that ad− bc 6= 0.

Proof. First, notice that deg Qγ = q3 + q2 and hence

deg Pγ = deg Qγ − q(q + 1) = q3 − q = |PGL (2,Fq)| .

Second, for any
(

a b
c d

)
∈ PGL (2,Fq), Lemma 6.10 entails

Pγ

(
aX + b

cX + d

)
= 1

(cX + d)q3−q
· Pγ(X).

Since γ ∈ Fqm \ Fq, then cγ + d 6= 0 and hence, Pγ

(
aγ+b
cγ+d

)
= 0.

We proved that any element in the orbit of γ under PGL (2,Fq) is a root of Pγ . To conclude,
we need to prove that the orbit of γ under PGL (2,Fq) has cardinality deg Pγ = q3− q which means
that the stabiliser of γ with respect to this group action is trivial. Indeed, suppose that

γ = aγ + b

cγ + d
, for some

(
a b
c d

)
∈ PGL (2,Fq) \

{(
1 0
0 1

)}
.

Then γ is a root of the polynomial

X(cX + d)− (aX + b) = cX2 + (d− a)X + b ∈ Fq[X].
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This polynomial is nonzero. Indeed, if it was, we would have b = c = 0 and a = d which means(
a b
c d

)
∼
(

1 0
0 1

)
in PGL (2,Fq) .

Next, this nonzero polynomial cancelling γ has degree at most 2, while from Assumption (2) the
minimal polynomial of γ over Fq has degree m > 2.

Thanks to Propositions 6.3 and 6.4, we deduce that choosing an arbitrary root γ′ of Pγ provides
a candidate for γ and there remains to compute g′, h′ providing our triple. Since γ = aγ′+b

cγ′+d for some
a, b, c, d ∈ Fq, then, g + γh = g′ + γ′h′ where

g′ def= 1
(cγ′ + d) · (dg + bh) and h′ def= 1

(cγ′ + d) · (cg + ah).

Considering Equation (6.13) and using Lemma 6.10, we get

u12 = γ′q−2 − γ′

γ′q−2 − γ′q−1 · (g′ + γ′q−1
h′).

Consequently, we know γ′ and the vectors g′ + γ′h′ = g + γh and u12. Thus, we can also compute

g′ + γ′q−1
h′ = γ′q−2 − γ′q−1

γ′−2 − γ′ u12.

Knowing γ′, g′ + γ′h′ and g′ + γ′q−1
h′ allows us to recover (g′, h′).

6.5.3 End of the attack

Choose an arbitrary support vector a′ ∈ Fn
qm of rank n. Let Q0 (resp. Q1) be the unique n × n

matrix with entries in Fq such that a′Q0 = g′ (resp. a′Q1 = h′). Then, by setting Q
def= QT

0 + γ′QT
1 ,

we have
Cpub

⊥ = Gn−k

(
a′) ·QT

and the matrix Q is nonsingular. Indeed, it sends the full rank vector a′ onto g′+γ′h′ = g+γh = aP .
Therefore, using Lemma 6.6 we get another representation of the public code as

Cpub = Gk

(
b′) ·Q−1,

where b′ ∈ Fn
qm is so that Gk

(
b′) = Gn−k (a′)⊥. Then, any ciphertext is of the form c + e with

c ∈ Cpub and e ∈ Fn
qm of rank less than or equal to n−k

4 . Then eQ has rank weight at most n−k
2 and

hence, the vector (c + e)Q can be decoded as a corrupted codeword of Gk

(
b′) in order to recover e

and deduce the plaintext.

6.5.4 Complexity of the attack

Let us conclude with a short complexity analysis of the attack. Let ω be the exponent of the
complexity of linear algebra operations. Additions, multiplications will be considered as elementary
operations in Fqm that we will count. The evaluation of the Frobenius map costs O(log q) operations.
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Table 6.1 – Timings for our implementation. For any parameter, the attack has been run 100 times
and the last column gives the average timing.

q m n k Average time

2 50 50 32 0.6 s
2 80 70 41 1.2 s
2 120 110 65 9.5 s

Step 1. The computation of the dual public code Cpub
⊥ costs O(nω) operations. Next, the

computation of Cpub
⊥[1] costs O

(
n2 log q

)
operations in Fqm and the iterative computation of Cpub

⊥[i]

for i ∈ [1, n− k + 1] costs O
(
n3 log q

)
operations in Fqm . The computation of Cpub

⊥ + Cpub
⊥[1] boils

down to a Gaussian elimination and hence costs O(nω) operations in Fqm . Since we compute O(n)
intersections of spaces, the overall cost of the computation of(

Cpub
⊥ + Cpub

⊥[1]
)
∩
(

Cpub
⊥[1] + Cpub

⊥[2]
)
∩ · · · ∩

(
Cpub

⊥[r] + Cpub
⊥[r+1]

)
,

is of O
(
nω+1) operations in Fqm . As a conclusion, the overall cost of the first step is O

(
n3 log q + nω+1).

Step 2. The computation of a pair (uij , vij) represents the resolution of a linear system with 2
unknowns and n equations, which costs O(n) operations. This computation should be performed
O(n) times, yielding an overall cost of O

(
n2) operations in Fqm , which is negligible compared to the

previous step.
Next, the computation of a root of Pγ can be computed using the Cantor–Zassenhaus algorithm

whose complexity is in Õ
(
(deg Pγ)2 m log q

)
operations in Fqm (see for instance [Bos+17, Théorème

19.20]), where Õ(·) means that the factors in log (deg Pγ) are neglected. Furthermore, since deg Pγ =
q3 − q we get a complexity of Õ

(
mq6) for the calculation of γ′.

The remainder of the attack consists in a finite number of linear systems solving, i.e. a cost of
O(nω), which is negligible compared to Step 1.

Summary. This yields an overall cost of O
(
n3 log q + nω+1)+ Õ

(
mq6). Classically, one chooses q

small and n close to m, for instance q = 2 and m = O(n). In this situation, we get an overall cost
of O

(
nω+1).

6.5.5 Implementation

The attack has been implemented using Magma and permits to recover a 4–tuple(
a′, γ′Q0, Q1

)
such that Cpub

⊥ = Gn−k

(
a′) · (Q0 + γ′Q1)T .

The attack ran on a personal machine1 and succeeded in a few seconds for parameters of cryptographic
size as illustrated by Table 6.1. Our implementation is only a proof of concept and could be
significantly optimized.

1 Processor: Intel R© CoreTM i5-8250U CPU @ 1.60GHz.
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6.6 Conclusion
We provided a distinguisher à la Overbeck for the public keys of Loidreau’s scheme when λ = 2 and
the public code has rate Rpub > 1

2 . From this distinguisher, we are able to derive a polynomial-time
key-recovery attack. For small values of q, the attack runs in O(nω+1) operations in Fqm and a
Magma implementation succeeds to recover the hidden structure of the public key in a few seconds.

For larger values of λ, the distinguisher holds when the dimension of the code satisfies

n

(
1− 1

λ

)
+ 1 < k < n− λ (6.15)

but generalizing the key recovery should require more work. Indeed, the fact that the distinguisher
holds should allow to easily generalize the first step (Section 6.5.1) to larger values of λ but
generalizing the second step (Section 6.5.2) should require a harder analysis with multivariate
polynomials. Besides, the parameters λ, k, n proposed by Loidreau in [Loi17] avoid the weak case
of Equation (6.15) anyway. Here, an analogy with Hamming metric and the original McEliece
encryption scheme can be drawn. Indeed, similarly to Loidreau’s public keys, high-rate alternant
codes have been proved to be distinguishable from random codes in polynomial time [Fau+10].





Conclusions

In an effort to gain some measure of hindsight over my contributions, the first chapter of this
document explained the context and the relevance of cryptanalysis in general, for both symmetric
and asymmetric primitives. In particular, it shared the view of cryptographers on computational
security and it drew a parallel between studying symmetric-key primitives like block-ciphers and
studying public-key primitives like one-way trapdoor functions. Indeed, even if this thesis was mostly
dedicated to the cryptanalysis of symmetric-key primitives, I dabbled in the public-key setting with
an analysis of a rank-metric code-based encryption scheme in Chapter 6.

My thesis started with the analysis of recent distinguishers on the most used block-cipher, the
AES. This work showed that these distinguishers were not likely to be improved, which is a rather
unfavourable perspective for cryptanalysis enthusiasts. However, we provided a valuable tool for
designers: a systematic method for testing the resistance of a general SPN cipher against these
distinguishers.

Providing valuable tools would become the heart of another contribution on MILP modelings.
Block-cipher design and cryptanalysis, especially with the quest for lightweight primitives, seem to
be more and more subject to computational power and programming skills. In this context, MILP
modelings allow cryptographers to enhance their cryptanalysis capabilities without increasing their
programming effort unreasonably. Therefore, the modeling methods presented in Chapter 4 are
more a contribution to the cryptographer’s workflow than a contribution to cryptanalysis itself.
Naturally, our modeling methods may be improved but, as we saw with the MILP-aided search
for impossible differentials, the algorithmic thinking about how and when to use MILP models will
retain the most significant part of the cryptographer’s work.

Independently, I tried to approach algebraic attacks creatively to overcome the limitations of
the Möbius transform over F2. This attempt eventually reached the concept of Z-ANF, and an
elegant algorithm to compute sparse ANFs when an evaluation circuit is known. However, the prior
detection of possibly-sparse superpolys with the Möbius transform proved to be a non-trivial task,
which kept me from exhibiting any valuable application of Z-ANFs. Either way, the development
of monomial trails for ANF analysis, to which Chapter 5 aims at contributing with a consistent
presentation, may well surpass the Z-ANF. Notably, enumerating monomial trails in semi-evaluated
circuits might revive property-testing-based cube attacks.
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Appendix A

A.1 DDT of the Sbox of PRESENT

b

a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0
2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0
3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0
4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0
5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0
6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4
7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4
8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4
9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

10 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0
11 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0
12 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0
13 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0
14 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0
15 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4

A.2 MixColumns MILP model for the AES

Algorithm 10 applied on the AES MixColumns outputted the matrices below. The lines are repre-
sented as hexadecimal numbers with the first column element being the least significant bit (i.e. the
rightmost one). Moreover, the matrix Q is given by

Q =



Q0
Q0

Q0
Q0

I
I

I
I


.
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A P Q0 P · A · Q
101018180
202028381
404040602
808088c84

1010109888
2020203010
4040406020
808080c040

10001818001
20002838102
40004060204
800088c8408

100010988810
200020301020
400040602040
800080c04080

1000081800101
2000083810202
4000006020404
800008c840808

10000098881010
20000030102020
40000060204040
800000c0408080

100000080010181
200000081020283
400000002040406
80000008408088c

1000000088101098
2000000010202030
4000000020404060
80000000408080c0

10101
2
4

8000808
10
20
40
80

1010001
200
400

8080800
1000
2000
4000
8000

1010100
20000
40000
80808

100000
200000
400000
800000

1000101
2000000
4000000
8080008

10000000
20000000
40000000
80000000

81
2
4

88
10
20
40
80

1010101000080
202020301
404040602

8000808840c0000
1010101808
2020203010
4040406020
808080c040

101000100800100
20002030102
40004060204

80808000000840c
100010180810
200020301020
400040602040
800080c04080

101010000008001
2000003010202
4000006020404
808080c000084

10000018081010
20000030102020
40000060204040
800000c0408080

100010180010000
200000001020203
400000002040406
808000800840c00

1000000008101018
2000000010202030
4000000020404060
80000000408080c0

A.3 Linear layers of Saturnin and Aria

Saturnin’s M transformation is given by

M :


a
b
c
d

 7→


α2(a)⊕ α2(b)⊕ α(b)⊕ c⊕ d
a⊕ α(b)⊕ b⊕ α2(c)⊕ c⊕ α2(d)⊕ α(d)⊕ d

a⊕ b⊕ α2(c)⊕ α2(d)⊕ α(d)
α2(a)⊕ a⊕ α2(b)⊕ α(b)⊕ b⊕ c⊕ α(d)⊕ d



where α(x) =


0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

 · x.
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Aria’s diffusion layer matrix is given by

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1



.
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