
HAL Id: tel-03515566
https://theses.hal.science/tel-03515566

Submitted on 6 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sur la syntaxe de la sémantique quantitative
Lionel Vaux

To cite this version:
Lionel Vaux. Sur la syntaxe de la sémantique quantitative. Logique en informatique [cs.LO]. Aix-
Marseille Université, 2021. �tel-03515566�

https://theses.hal.science/tel-03515566
https://hal.archives-ouvertes.fr


Université d’Aix-Marseille

Sur la syntaxe de la sémantique
quantitative

Mémoire présenté par

Lionel Vaux Auclair

en vue d’obtenir

l’Habilitation à Diriger des Recherches
(spécialité : Mathématiques)

le 18 novembre 2021 devant le jury composé de :

Robin Cockett University of Calgary
Ugo Dal Lago Università di Bologna
Delia Kesner Université de Paris
Guy McCusker University of Bath
Paul-André Melliès Université de Paris
Myriam Quatrini Université d’Aix-Marseille
Laurent Regnier Université d’Aix-Marseille

après avis des rapporteurs :

Robin Cockett University of Calgary
Delia Kesner Université de Paris
Guy McCusker University of Bath



Version du 22 novembre 2021.



À Vir, encore.





[. . . ]

speak white

parlez-nous production, pro�ts et pourcentages

speak white

c’est une langue riche

pour acheter

mais pour se vendre

mais pour se vendre à perte d’âme

mais pour se vendre

[. . . ]

Michèle Lalonde, Speak White, 1974

Ce mémoire, rédigé en français, est essentiellement constitué de l’inclusion de trois articles
de recherche, en anglais donc.

Il présente mes travaux des dernières années, suivant une ligne directement issue de préoc-
cupations datant de ma thèse de doctorat, mais qui a porté ses premiers fruits au milieu des
années 2010. Il s’agit :

— de ra�ner l’analyse de la normalisation o�erte par le développement de Taylor des λ-
termes pour la ramener au niveau de la β-réduction (l’étape élémentaire de la procédure
de normalisation) ;

— d’étendre cette analyse dans un cadre non-uniforme, susceptible de prendre en compte
par exemple une forme de non-déterminisme calculatoire ;

— le tout en conservant la nature quantitative du développement de Taylor.

Le premier point est un pré-requis pour les suivants car, dans un cadre non-uniforme, la
normalisation peut engendrer des sommes in�nies de coe�cients, susceptibles de diverger. Ce
phénomène disparait si on se restreint à la β-réduction, dont l’analyse par le développement de
Taylor est toujours �nitaire.

Les trois articles inclus dans le mémoire constituent une forme d’aboutissement de cette
ligne de recherche :

— le premier, paru en 2019 [5], résout la question pour le λ-calcul algébrique, qui étend le
λ-calcul ordinaire avec des combinaisons linéaires �nies de λ-termes ;

— le second, écrit avec Jules Chouquet [6], permet d’adapter ces résultats à la syntaxe, bien
plus permissive, des réseaux de démonstration de la logique linéaire ;
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— le troisième, écrit avec Federico Olimpieri [7] revisite les résultats originels d’Ehrhard et
Regnier sur la combinatoire du développement de Taylor en λ-calcul et montre comment,
en se concentrant sur la β-réduction, on peut à la fois simpli�er une partie de leur
démarche et l’étendre à un λ-calcul non-déterministe à peu de frais.

Chaque article est inclus comme un chapitre du mémoire. Le tout est précédé d’un chapitre
d’introduction, rédigé à la première personne et en français, qui présente le contexte scienti�que
dans lequel ces résultats s’insèrent.

La bibliographie qui clôt le mémoire est structurée en trois parties : d’abord les publications
dont je suis le coauteur, suivies des thèses soutenues que j’ai coencadrées, et en�n le reste
des sources citées dans le mémoire. Dans le texte du mémoire, les références numériques (par
exemple [5]) renvoient aux deux premières catégories, tandis que les références alphabétiques
(par exemple [ER03]) renvoient à la dernière.
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Chapitre 1

Introduction

1.1 Un peu de contexte

Mon domaine de prédilection est la théorie de la démonstration, éclairée par la correspon-
dance de Curry–Howard entre preuves et programmes. Cette approche consiste en l’établisse-
ment d’une sorte de dictionnaire bilingue logique–programmation :

formule ∼ type
preuve ∼ programme

règle d’inférence ∼ règle de formation syntaxique
normalisation ∼ évaluation

· · ·

Le procédé de normalisation des preuves le plus célèbre est l’élimination des coupures du calcul
des séquents, due à Gentzen pour démontrer la cohérence de l’arithmétique par des moyens
élémentaires (sans bien sûr violer les théorèmes d’incomplétude de Gödel) ; mais c’est seulement
à la �n des années 1960 qu’une correspondance précise apparait, entre la déduction naturelle (un
système introduit par Gentzen, comme le calcul des séquents, mais plus proche du raisonnement
usuel) et le λ-calcul (un formalisme introduit par Church pour capturer la notion de fonction
calculable, et le paradigme de référence pour la programmation fonctionnelle).

La principale qualité de cette correspondance est de servir de véhicule pour des pollinisations
croisées entre logique et programmation. Par exemple, elle a permis l’adaptation à la logique de
techniques d’analyse des programmes. C’est notamment le cas de la sémantique dénotationnelle,
qui consiste à regarder les programmes comme représentant des fonctions, et à étudier les
propriétés des fonctions ainsi représentables. La logique linéaire de Girard est le fruit d’une
telle analyse en logique : elle re�ète dans un système logique la structure �ne de la sémantique
quantitative, initialement introduite par Girard comme modèle du système F , c’est-à-dire du
λ-calcul typé avec polymorphisme paramétré.

Sémantique quantitative. La notion de sémantique quantitative consiste en l’interprétation
des termes du λ-calcul par des séries entières généralisées. L’idée est de voir un programme
comme une superposition de monômes, chacun capturant une approximation �nie de son
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comportement calculatoire : le degré du monôme est relié au nombre de fois où le programme
utilise son argument dans cette approximation.

Par la correspondance de Curry-Howard entre preuves et programmes, les démonstrations
de la logique intuitionniste peuvent ainsi être vues comme des fonctions analytiques, auxquelles
un opérateur de dérivation permet d’associer des approximations linéaires : par ra�nements
successifs, cette interprétation a mené Girard à l’introduction de la logique linéaire, un paradigme
aujourd’hui devenu incontournable en théorie de la démonstration.

La présentation originale du concept de sémantique quantitative par Girard au début des
années 1980 [Gir88] reposait sur des outils catégoriques assez délicats, à la suite de ses travaux
sur les dilatateurs. Au début des années 2000, Ehrhard a introduit de nouveaux modèles dénota-
tionnels [Ehr05] permettant de reformuler cette sémantique quantitative pour la logique linéaire
et le λ-calcul typé, dans un cadre algébrique plus standard : les types sont des espaces vectoriels
topologiques particuliers, les preuves de la logique linéaire sont des morphismes linéaires et
continus, et les termes du λ-calcul sont dé�nis par des séries entières.

Développement de Taylor des programmes et des preuves. Avec ces nouveaux modèles,
il devient aisé de transposer aux objets de la logique et du calcul les outils et techniques du
calcul di�érentiel. En particulier, les morphismes sont in�niment di�érentiables et admettent
un développement de Taylor en tout point. En relisant ces propriétés au niveau syntaxique,
Ehrhard et Regnier ont introduit le λ-calcul di�érentiel, une extension du λ-calcul avec un
opérateur formel de dérivation [ER03]. Dans cette théorie, le développement de Taylor devient
un opérateur traduisant les λ-termes purs en sommes pondérées de λ-termes à ressources
(des λ-termes di�érentiels ne comportant plus que des applications au terme nul) obtenues en
remplaçant chaque application par son développement de Taylor en 0 [ER08]. Du fait de leur
linéarité, les termes à ressources conservent une dynamique, mais celle-ci est très simple et
�nitaire : la taille des termes décroit avec la réduction, et les termes à ressources sont donc tous
fortement normalisables.

Cette approche a été très fructueuse. Ehrhard et Regnier ont en particulier montré que le
développement de Taylor d’un λ-terme pur est toujours normalisable, et que sa forme normale
correspond exactement à l’arbre de Böhm du λ-terme — une notion généralisée de forme
normale pour les λ-termes [ER06a].

Une des retombées les plus notables de cette approche est qu’elle permet d’établir des
caractérisations de propriétés opérationnelles (typiquement de normalisabilité) en raisonnant
inductivement sur les éléments du développement de Taylor [Ehr12a ; BM20], alors que l’état
de l’art précédent nécessitait un raisonnement par réductibilité par exemple. Les termes à
ressources (du moins ceux dont la forme normale est non nulle) peuvent d’ailleurs être vus
comme des dérivations de typage dans un système de types avec intersection non idempotente
[Car07 ; Car18a]. 1

Le développement de Taylor est ainsi une structure intermédiaire entre la syntaxe des termes

1. Au passage, cette remarque de de Carvalho a renouvelé l’intérêt pour les systèmes de types avec intersection
non idempotente. En s’a�ranchissant du lien avec le développement de Taylor mais en a�nant la relation entre
typage et temps d’exécution, cette ligne de travail a produit des systèmes qui encadrent très précisément le nombre
d’étapes de réduction menant à une forme normale suivant une certaine stratégie [BG13 ; BKV17 ; AGK20].
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et leur sémantique (en particulier celle des arbres de Böhm), intimement liée à la dynamique du
λ-calcul en tant que langage de programmation.

1.2 Travaux

Thèse : Logique linéaire di�érentielle et polarisation. Au cours de ma thèse j’ai étu-
dié la logique linéaire di�érentielle, une extension de la logique linéaire due à Ehrhard et
Regnier[ER06b], qui introduit une symétrie sur les règles structurelles.

Les règles structurelles sont celles qui permettent d’utiliser une hypothèse autant de fois que
nécessaire : en logique linéaire ces règles sont restreintes à certaines formules, dites exponen-
tielles. Les versions duales de ces règles, introduites par Ehrhard et Regnier, sont issues d’une
structure particulière sur formules exponentielles dans le modèle des espaces de �nitude dû à
Ehrhard [Ehr05] : les règles costructurelles sont celles qui permettent de dériver formellement
les λ-termes [ER03].

En appliquant un procédé de polarisation à la manière d’Olivier Laurent [Lau02], j’ai pu
proposer une interprétation calculatoire de règles costructurelles généralisées, sous la forme
d’un produit de convolution sur les continuations (une abstraction des piles d’exécution pour
les programmes), re�étant la dynamique de l’élimination des coupures en logique linéaire
di�érentielle [9 ; 11].

Je n’ai plus travaillé sur cet axe de recherche depuis 2009. Si on peut reprocher à ces travaux
une forme d’idiosyncrasie, certaines contributions techniques ont eu une descendance. Par
exemple, dans une première étape consistant à étendre au λµ-calcul de Parigot le principe
syntaxique de dérivation [1], j’ai simpli�é la syntaxe du λ-calcul di�érentiel d’Ehrhard et
Regnier, et c’est cette présentation qui fait maintenant référence. Mais la retombée la plus
notable est la suivante.

Non déterminisme quantitatif. La notion de dérivée n’a de sens qu’en présence de sommes,
et plus généralement de combinaisons linéaires. Le traitement de ces combinaisons linéaires
dans la syntaxe du λ-calcul di�érentiel posait un certain nombre de di�cultés techniques,
qui n’avaient en fait pas grand chose à voir avec la dérivation. Ces di�cultés m’ont poussé à
développer une théorie de la réécriture d’ordre supérieur en présence de combinaisons linéaires
de termes, en introduisant le λ-calcul algébrique [10 ; 2]. 2 J’ai ainsi pu démontrer que les
propriétés essentielles de con�uence et de terminaison de l’évaluation en λ-calcul ne pouvaient
être préservées qu’au prix de certaines restrictions : en l’absence de contrainte, toute extension de
la β-réduction (la relation de réécriture dé�nissant l’évaluation en λ-calcul) rendue compatible
avec les équations d’espace vectoriel est triviale.

Au moment de leur développement, j’avais considéré ces travaux comme assez secondaires,
de l’ordre du simple nettoyage, car l’essentiel de la nouveauté de la logique linéaire di�érentielle
était ailleurs. Ils ont cependant joué un rôle important dans le développement d’une de mes
principales direction de recherche par la suite : l’étude du non-déterminisme calculatoire dans
un cadre quantitatif. On peut en e�et considérer la somme de deux termes comme un choix

2. Celui-ci est bien mal nommé : il aurait été plus éclairant et honnête de l’appeler λ-calcul vectoriel ou λ-calcul
avec combinaisons linéaires par exemple. Il est malheureusement un peu tard pour revenir là-dessus.
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non-déterministe : au lieu d’étudier les comportements possibles d’un objet comme de simples
alternatives, on cherche à quanti�er la part de chacun des comportements atomiques qui
constituent le comportement global. 3 Le λ-calcul algébrique en est en quelque sorte le langage
universel, sans contraindre a priori la structure ni la signi�cation de l’opérateur de choix.

À peu près à la même époque, Arrighi et Dowek avaient d’ailleurs introduit un calcul
très similaire [AD08], avec une motivation toute di�érente : la représentation d’algorithmes
quantiques. Ce qui distingue les deux approches, c’est le traitement de la linéarité, qui re�ète le
paradigme d’évaluation sous-jacent : appel par nom ou par valeur [Ass+14].

Propriétés opérationnelles en λ-calcul algébrique. C’est dans cette ligne de recherche
que s’inscrivent plusieurs des travaux d’étudiants que j’ai accompagnés. Ainsi, un des apports
de la thèse de Michele Alberti [23] était une étude �ne du phénomène de dégénérescence de
la β-réduction en présence de coe�cients négatifs, qui lui a permis d’en proposer un premier
contournement. S’appuyant sur une idée esquissée par Ehrhard et Regnier [ER03, Section 5], il
a introduit une notion de normalisabilité plus robuste, neutralisant les identités problématiques
entre combinaisons linéaires. Il a pu en déduire que la restriction de la β-réduction aux termes
canoniques (c’est-à-dire ceux pour lesquels les combinaisons linéaires sont systématiquement
mises sous forme canonique), bien que non con�uente en général, permet bien d’atteindre ces
formes normales, qui sont uniques lorsqu’elles existent.

Au passage, il a identi�é un défaut de standardisation de laβ-réduction duλ-calcul algébrique
[23, Section 3.2]. En λ-calcul, toute suite de réductions peut être standardisée : on peut exiger que
les réductions les plus externes (les réductions dites de tête) soient e�ectuées en premier. Ceci
échoue en λ-calcul algébrique car une réduction interne peut, modulo les équations algébriques,
faire apparaitre une somme en tête, dont on peut ensuite ne réduire qu’un des membres.

La thèse de Thomas Leventis [24] était consacrée au λ-calcul probabiliste, qu’on peut voir
comme un sous-système du λ-calcul algébrique à coe�cients réels positifs. Il a développé une
notion d’arbre de Böhm probabiliste, dont il a démontré qu’elle capturait l’équivalence observa-
tionnelle probabiliste. Ce travail nécessitait entre autres d’obtenir un résultat de standardisation
pour le λ-calcul probabiliste. L’obstacle mentionné plus haut persiste, mais il se trouve qu’une
forme a�aiblie de standardisation su�t : toute suite de réductions peut être prolongée en une
suite de réductions standardisable. Leventis a en fait pu établir ce dernier résultat dans le cadre
général du λ-calcul algébrique [Lev19] : sa preuve repose sur une analyse pointue de la réduction
en λ-calcul algébrique, mettant en jeu un choix précis de règles de réécriture des combinaisons
linéaires.

Une conséquence directe de la standardisation faible est que, pour tout terme normalisable,
la forme normale de ce terme est atteinte par la réduction gauche (la réduction de tête suivie,
inductivement, de la réduction gauche dans les arguments de la variable de tête). En particulier
l’équivalence induite par la normalisation sur les λ-termes usuels (sans sommes) est la même
en λ-calcul algébrique que dans le λ-calcul pur. C’est un résultat de conservativité faible : la
conservativité forte serait que la β-équivalence (l’équivalence induite par la réduction) soit la
même pour les λ-termes purs dans les deux calculs.

3. C’est l’idée qu’on trouve dans le premier papier de Girard sur la sémantique quantitative [Gir88].
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Il se trouve que ce résultat est également valide sous certaines conditions mais son histoire
est mouvementée. Ehrhard et Regnier l’avaient annoncée dans le λ-calcul di�érentiel comme
une conséquence directe de la con�uence [ER03, Proposition 19], mais c’est contredit dans le
cas général par la dégénérescence de la β-équivalence en présence de coe�cients négatifs, sans
nier la con�uence. Dans le cas où on se restreint à des coe�cients positifs, j’avais cru régler la
question pour le λµ-calcul di�érentiel et repris le même argument verbatim pour le λ-calcul
algébrique ; malheureusement, cette « preuve » est irrémédiablement fausse. 4

Ce n’est que récemment, durant le stage de recherche d’Axel Kerinec en 2019, que nous
avons �nalement établi la conservativité forte avec la seule hypothèse de positivité. J’ai présenté
ce résultat aux journées 2019 du groupe de travail Scalp du GDR-IM, mais il nous reste à le
mettre en forme pour publication.

Modèle relationnel et �nitaire pour les types de données. En parallèle de l’approche
syntaxique du non-déterminisme quantitatif, j’ai débuté en 2008 une collaboration avec Christine
Tasson visant à étendre l’interprétation de la logique linéaire et du λ-calcul dans les espaces de
�nitude à des langages permettant de calculer sur les types de données usuels (entiers, listes,
etc.). La di�culté provient du fait que cette interprétation est limitée à un cadre simplement
typé : or les astuces usuelles pour coder les types de données dans le λ-calcul ou la logique
linéaire sortent de ce cadre. Il faut donc les introduire explicitement.

J’ai établi un premier résultat en ce sens, en démontrant que l’interprétation du système
T de Gödel (programmation fonctionnelle avec un type des entiers naturels) dans un modèle
relationnel avec entiers paresseux était �nitaire [15 ; 3].

En cherchant à étendre cette approche à d’autres types de données, Tasson et moi-même
avons mis au jour une construction très générale d’espace de �nitude [4] : notre résultat
permet non seulement de construire explicitement les objets représentant les types de données
usuels, mais il assure également la fonctorialité de cette construction et, sous des conditions
raisonnables, l’existence de plus petits points �xes pour les foncteurs obtenus. Or une solution
standard pour interpréter les types de données est de considérer les plus petits points �xes de
foncteurs polynomiaux, qui se trouvent être des instances de notre construction.

Normalisabilité du développement de Taylor en λ-calcul algébrique. La propriété
centrale qui assure la pertinence du développement de Taylor des λ-termes est sa compatibilité
avec la normalisation :

— le développement de Taylor d’un λ-terme est toujours normalisable ;

— si le terme lui-même est normalisable, alors la forme normale du développement de Taylor
est le développement de Taylor de la forme normale du terme ;

— et dans le cas général, la forme normale du développement de Taylor est le développement
de Taylor de l’arbre de Böhm du terme.

La preuve de ce résultat par Ehrhard et Regnier [ER08 ; ER06a] dépend fortement d’une propriété
d’uniformité qui est validée par le λ-calcul pur, mais violée par ses extensions non-déterministes.

4. Pour la lectrice curieuse : le problème est le cas du redex, dans le lemme de conservativité de la β-réduction
[1, Lemma 3.30] [2, Lemma 3.20].
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D’ailleurs, en général, le développement de Taylor d’un terme algébrique n’est pas normali-
sable : le long d’un chemin de réduction in�ni, on peut accumuler des sommes non convergentes
de coe�cients. Un premier contournement de cette limitation a été établi par Ehrhard, qui a
démontré que, dans un cadre typé (y compris au second ordre, dans une extension du système F ),
le développement de Taylor des λ-termes algébriques reste normalisable [Ehr10]. Il a introduit
une structure de �nitude sur les ensembles de termes du λ-calcul à ressources telle que : pour
toute combinaison linéaire in�nie de termes à ressources avec un support �nitaire, on peut
calculer une forme normale. Il démontre ensuite par une méthode de réductibilité que les termes
typables ont un développement de Taylor à support �nitaire.

Ceci vient soutenir l’intuition que la �nitude caractérise l’absence de réductions in�nies.
Avec Michele Pagani et Christine Tasson, nous avons d’ailleurs adapté cette approche pour
obtenir une correspondance exacte : on peut ra�ner la notion de �nitude de sorte qu’un λ-terme
est fortement normalisable si et seulement si son développement est �nitaire [12].

Reste qu’à la fois travail d’Ehrhard et le nôtre se limitent à établir la normalisabilité du
développement de Taylor sous certaines hypothèses : ils ne disent rien de sa possible commuta-
tion avec la normalisation. La preuve d’Ehrhard et Regnier reposait sur un calcul explicite des
coe�cients dans la forme normale des termes à ressources issus du développement de Taylor :
en l’absence d’uniformité, cette technique devient inaccessible.

Simulation de la β-réduction dans le développement de Taylor. Établir la commutation
dans le cas général demande de changer de point de vue : il s’agit d’établir que la forme normale
du développement de Taylor, dans les cas où elle existe, dé�nit une sémantique dénotationnelle,
c’est-à-dire qu’elle est invariante par β-réduction.

Là où la normalisation est a priori un processus in�nitaire, qui doit être maîtrisé par le
typage, l’uniformité, ou d’autres contraintes pour converger, j’ai pu montrer que la β-réduction
est essentiellement �nitaire et qu’on peut la simuler à travers le développement de Taylor [13 ;
5]. Plus précisément, j’ai considéré une notion de réduction parallèle sur les termes à ressources
et montré que :

— étant donné un terme à ressources t et un λ-terme algébrique M , il y a un nombre �ni
d’éléments s du support du développement de Taylor de M tels que t apparait dans un
réduit parallèle de s ;

— on peut donc étendre cette réduction parallèle aux combinaisons linéaires in�nies que
sont les développements de Taylor, sans aucune restriction sur les λ-termes algébriques
considérés ;

— pour tout pas de β-réduction de M à N (et on peut même considérer la β-réduction
parallèle ici), le développement de Taylor de M se réduit en celui de N .

Il s’ensuit directement que, sur les termes normalisables, le développement de Taylor est com-
patible avec la normalisation.

Mieux : on peut a�aiblir la notion de �nitude introduite par Ehrhard sur les termes à res-
sources, pour capturer exactement le fait que la normalisation d’une combinaison linéaire in�nie
ne produit que des sommes �nies de coe�cients. Les termes dont le développement de Taylor
est �nitaire en ce sens incluent à la fois tous les λ-termes purs et les termes algébriques norma-
lisables. Sur ces termes, la normalisation du développement de Taylor induit une sémantique
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dénotationnelle qui est une généralisation commune des arbres de Böhm pour le λ-calcul pur et
du modèle des espaces de �nitude pour le λ-calcul algébrique typé. Ces travaux constituent le
Chapitre 2 du présent mémoire.

Développement de Taylor dans les réseaux de la logique linéaire. La technique que j’ai
mise au point pour établir la compatibilité du développement de Taylor avec la réduction est
su�samment robuste pour être exploitée dans un cadre plus large. Avec Jules Chouquet, nous
l’avons étendue aux réseaux de démonstration de la logique linéaire : ces derniers admettent un
développement de Taylor dans les réseaux à ressources, qui forment le fragment multilinéaire
de la logique linéaire di�érentielle [ER06b ; Ehr18]. Il est à noter que, même en l’absence de non
déterminisme, les réseaux sont fondamentalement non uniformes : Tasson a montré qu’on ne
peut pas dé�nir de relation de cohérence sur les réseaux à ressources telle que le développement
de Taylor d’un réseau forme toujours une clique [Tas09, Section V.4.1]. Il aurait donc été
impossible d’adapter la technique d’Ehrhard et Regnier dans ce cadre.

Pour simuler l’élimination des coupures en logique linéaire à travers le développement de
Taylor, il faut là encore considérer une version parallèle de la réduction dans le langage cible.
Et à nouveau, la première étape consiste à démontrer que, étant donné un réseau à ressources
q et un réseau de la logique linéaire R, il y a un nombre �ni d’éléments r du développement
de Taylor de R tels que q apparait dans un réduit parallèle de r. Nous avons d’abord établi
ce résultat pour les réseaux sans a�aiblissements [14], ce qui permettait une simpli�cation
technique : notre approche repose sur une analyse de l’évolution des chemins de correction 5 à
travers l’élimination parallèle des coupures, qui sont plus simples à décrire dans ce cas. Dans le
cas général, que nous avons traité ensuite [6] et qui constitue le Chapitre 3 du présent mémoire,
il faut introduire une structure supplémentaire de sauts depuis les a�aiblissements.

Nos résultats permettent donc d’étendre l’élimination parallèle des coupures aux combinai-
sons linéaires in�nies de réseaux à ressources obtenus par développement de Taylor, ce qui est
la notion adéquate pour simuler celle de la logique linéaire. Chouquet a e�ectivement complété
la commutation [25] en établissant les identités nécessaires sur les coe�cients : là encore on
obtient un modèle dénotationnel à travers lequel se factorisent les sémantiques quantitatives de
la logique linéaire qui valident le développement de Taylor.

Un groupoïde de permutations sur les termes à ressources. La dernière décennie a vu
se développer une convergence entre d’une part l’approche de la sémantique quantitative du
λ-calcul et de la logique linéaire, et d’autre part la notion d’espèce de structures initialement
introduite par Joyal comme une approche catégorique de la combinatoire [Joy86]. La sémantique
quantitative de Girard était basée sur une notion de foncteurs normaux tout-à-fait similaire
à celle des foncteurs analytiques de Joyal, un lien déjà exploité par Hasegawa [Has02]. Plus
récemment, Fiore, Gambino, Hyland et Winskel ont introduit un modèle bicatégorique du
λ-calcul, basé sur une généralisation des espèces de structures [Fio+08].

On peut voir ces espèces de structures généralisées comme formant une version bicatégo-
rique du modèle relationnel du λ-calcul. Les liens étroits qu’entretiennent le modèle relationnel,
le développement de Taylor et les systèmes de types avec intersections sont connus depuis les

5. C’est-à-dire les chemins dans les graphes de correction du critère de Danos–Regnier.
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travaux de de Carvalho sur la caractérisation du temps d’exécution en λ-calcul [Car07 ; Car18a].
Il semblait donc naturel d’explorer ces liens dans le cadre bicatégorique o�ert par les espèces
généralisées : c’était le sujet de thèse de Federico Olimpieri.

Il se trouve que Tsukada, Asada et Ong avaient déjà établi un lien entre espèces généralisées
et développement de Taylor [TAO17], en introduisant une notion de développement de Taylor ri-
gide sur lequel agissent des isomorphismes de types : ils démontrent que le modèle bicatégorique
du λ-calcul ainsi obtenu est naturellement isomorphe à celui des espèces de structures. Leur
approche est limitée à un cadre typé ; de plus, elle s’éloigne du λ-calcul à ressources standard en
imposant de nommer explicitement chaque occurrence de variable (en particulier l’abstraction
est polyadique) ; en�n, pour prendre en compte une forme de non-déterminisme, ils équipent les
approximations linéaires que sont les termes à ressources de marqueurs explicites pour chaque
branche de l’opérateur de choix.

Avec Olimpieri, nous avons exploité certaines de ces idées en les adaptant au développement
de Taylor standard [18 ; 7]. Nous avons introduit une version rigide du λ-calcul à ressources
qui se contente de �xer l’ordre des copies d’arguments dans les applications. Les termes de
ce calcul sont les objets d’un groupoïde d’arbres de permutations : ces arbres agissent sur les
termes en permutant les copies d’arguments, de sorte qu’un terme à ressources usuel n’est rien
d’autre qu’une composante connexe de ce groupoïde. Ceci nous permet de revisiter les résultats
combinatoires établis par Ehrhard et Regnier pour caractériser les coe�cients du développement
de Taylor : en particulier, le coe�cient d’un terme est l’inverse du cardinal du groupe d’isotropie
de chacun de ses représentants rigides. Par ailleurs, nous avons montré que la présence de
marqueurs du choix restaurait la possibilité d’exploiter la propriété d’uniformité du λ-calcul
pour établir la compatibilité du développement de Taylor avec la normalisation.

Ces travaux forment le Chapitre 4 du présent mémoire. Ils apportent un éclairage intéressant
sur la version originelle du développement de Taylor des λ-termes, sans toutefois donner
directement un modèle bicatégorique du λ-calcul pur dans les espèces généralisées. Dans sa
thèse [26], Olimpieri a poursuivi une autre piste, avec succès : il a construit un objet ré�exif
dans la bicatégorie des espèces généralisées, ainsi qu’un système de types avec intersections
dont les dérivations décrivent le modèle du λ-calcul pur construit sur cet objet ré�exif. Il a
ensuite dé�ni un développement de Taylor rigide polyadique enrichi avec des morphismes, qui
donne une syntaxe de termes pour les dérivations de typage précédentes : la réduction de ces
termes décrit exactement les 2-morphismes associés à la β-réduction.

Cette contribution d’Olimpieri résonne particulièrement avec certains résultats obtenus par
Zeinab Galal dans sa thèse [27]. Celle-ci développe une approche bicatégorique des techniques
d’orthogonalité pour les modèles de la logique linéaire. Plus précisément, elle introduit et étudie
des extensions par orthogonalité du modèle des profoncteurs, qui est le modèle bicatégorique
de la logique linéaire sous-jacent au modèle des espèces généralisées pour le λ-calcul pur.
Ces extensions comprennent une version bicatégorique des espaces de �nitude, ainsi qu’une
version fonctorielle des fonctions stables. Les résultats les plus prospectifs de la thèse de Galal
concernent une relation d’orthogonalité entre espèces symétriques et espèces cartésiennes : il
se trouve que la construction d’Olimpieri est elle-même paramétrée par une pseudo-monade
qui induit un opérateur d’intersection sur les types, non-idempotent dans le cas symétrique
et idempotent dans le cas cartésien. Ceci laisse entrevoir une possible connexion entre les
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deux systèmes de types, analogue dans ce cadre bicatégorique de l’écrasement extensionnel du
modèle relationnel sur le modèle de Scott [Ehr12b ; Ehr12a].

1.3 Interlude subjectif : ce qui me meut

On a vu que, pour justi�er l’étude de systèmes qui mettent en jeu des sommes, voire
des combinaisons linéaires, de termes ou de preuves, on peut brandir l’argument du non-
déterminisme :

— la somme représente un choix non-déterministe — et si la somme n’est pas idempotente,
on garde une trace du nombre de choix pouvant mener à un certain résultat ;

— une distribution de probabilités discrètes à support �ni n’est qu’un cas particulier de
combinaison linéaire à coe�cients réels positifs ;

— la superposition d’états quantiques est généralement vue comme un vecteur à coe�cients
complexes.

Ces motivations sont excellentes, et on les retrouve souvent dans les introductions d’articles du
domaine, mais je ne serais pas honnête en prétendant que ces applications potentielles sont
essentielles dans mon travail.

Mon propre intérêt pour ces questions provient initialement de la nécessité de les traiter
proprement dans le cadre du λ-calcul di�érentiel et de la logique linéaire di�érentielle. Je
trouve enthousiasmante la possibilité o�erte par certains modèles, jouissant de structures
mathématiques riches, d’appliquer à l’étude de la logique et du calcul les méthodes de la
combinatoire, de l’algèbre et de l’analyse, plutôt que de se cantonner à des variations sur les
notions d’ordre partiel ou de graphe. Explorer le langage sous-jacent à ces structures me semble
une entreprise essentielle.

Au �l de mes travaux, j’ai également pu constater que la prise en compte de ces aspects
dans une syntaxe, telle que le λ-calcul algébrique, qui conserve l’exigence d’une approche
contextuelle, produit toutes sortes d’e�ets intéressants. Pris dans toute sa généralité, le λ-calcul
algébrique est une sorte de continent sauvage, c’est-à-dire incohérent a priori : toute paire
de termes admet un antécédent commun par β-réduction. On peut en domestiquer certains
territoires par diverses contraintes appliquées a posteriori : stratégies de réduction, typage,
réalisabilité, contraintes sur les coe�cients, sur la forme des termes, etc.

Le cas de la normalisation est emblématique :

— dans le cas général tout terme est réductible et donc, dans le sens usuel, aucun terme n’est
normalisable ;

— si on écarte les coe�cients négatifs, les termes typés sont normalisables, et les formes
normales obtenues étendent conservativement celles du λ-calcul ;

— on peut neutraliser temporairement les coe�cients, normaliser si c’est possible, puis
restaurer les coe�cients dans le résultat : les travaux d’Alberti montrent que la forme
normale obtenue ne dépend pas du représentant « neutralisé » qu’on a choisi ;

— si on se restreint aux combinaisons probabilistes, les arbres de Leventis donnent une
solution sans typage ;
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— si on ne restreint pas la forme des termes ni les coe�cients, mais qu’on se place dans un
cadre typé, l’existence de modèles comme les espaces de �nitude fournit au moins une
notion sémantique de forme normale ;

— et pour les termes Taylor-normalisables, c’est-à-dire ceux dont le développement de Taylor
est �nitaire au sens mentionné plus haut, la forme normale du développement de Taylor
généralise la notion d’arbre de Böhm.

Ainsi, là où la pureté du λ-calcul usuel tend à uni�er les notions, le caractère sauvage du
λ-calcul algébrique tend à les hiérarchiser, de sorte que conserver de bonnes propriétés demande
d’identi�er les dé�nitions et techniques les plus robustes. C’est cette exigence qui m’a permis
de mettre au point une méthode pour simuler la réduction à travers le développement de Taylor,
en toute généralité, puis d’étendre cette méthode aux réseaux de démonstration avec Chouquet.

1.4 La suite

Les travaux mentionnés plus hauts peuvent susciter nombre de prolongements. Je détaille
ici trois pistes parmi celles qui m’occupent le plus aujourd’hui, chacune liée à un projet de thèse
débutant ou en cours.

Développement de Taylor pour le λ-calcul in�nitaire. Les premiers travaux de la thèse
de Rémy Cerda, débutée en 2020, semblent indiquer que la simulation de la réduction à travers
le développement de Taylor reste pertinente dans un cadre in�nitaire : on peut approcher les
termes du λ-calcul in�nitaire [Ken+97] par les mêmes termes à ressources que pour le λ-calcul
usuel, 6 et donc conserver des approximations �nies ; alors on peut simuler non seulement la β-
réduction en un pas mais aussi les suites convergentes de réductions à travers le développement
de Taylor.

Dans ce cadre, nous travaillons à obtenir au moins les retombées suivantes :

— une preuve de la standardisation in�nitaire, basée sur le développement de Taylor, et
peut-être plus simple que la généralisation coinductive de l’approche classique [EP13] ;

— la caractérisation, à travers leur développement de Taylor, de termes dont la réduction est
sûre, c’est-à-dire évitant certains phénomènes pathologiques du λ-calcul in�nitaire (non
con�uence dans le cas général, nécessité d’introduire une réduction spéci�que pour les
termes non solvables, etc.) — par exemple par une propriété de �nitude.

Élimination des coupures parallèles dans les réseaux de démonstration. Le point
de vue apporté par l’élimination parallèle des coupures permet d’envisager une approche
nouvelle des propriétés opérationnelles des réseaux de démonstration : con�uence, factorisation,
standardisation, normalisation par niveaux, etc. En e�et, en étendant la notion d’élimination
parallèle des coupures aux réseaux de la logique linéaire, on pourra par exemple adapter la
technique de Tait et Martin-Löf pour la con�uence.

6. Ce point ne vaut que pour le fragment Λ001 du λ-calcul in�nitaire, qui restreint la coinduction aux positions
d’arguments dans les applications. Il faut adapter le calcul à ressources dans les autres cas.
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La di�culté principale est de formaliser cette élimination parallèle en présence des boîtes
exponentielles. De premiers résultats ont été obtenus dans le cadre des réseaux ?-canoniques, 7

durant le stage de M2 de Giulia Manara, que j’ai dirigé en collaboration avec Giulio Guerrieri.
La poursuite de ce programme est l’un des axes du projet de thèse de Manara, qui débute sous
la direction conjointe de Thomas Ehrhard et moi-même.

On sait en tout cas que les résultats de �nitude déjà obtenus avec Chouquet constituent une
brique essentielle pour produire une notion de normalisation par évaluation pour la logique
linéaire [17].

Développement de Taylor et sémantique des jeux. Le rapprochement entre développe-
ment de Taylor et sémantique des jeux est dans l’air du temps. Il est par exemple explicitement
mentionné par Tsukada, Asada et Ong, comme une intuition sous-jacente à leur travail sur les
espèces généralisées [TAO17].

Avec Lison Blondeau-Patissier et Pierre Clairambault, nous cherchons à formaliser la relation
entre l’interprétation d’un λ-terme comme une stratégie et la normalisation de son développe-
ment de Taylor. Notre approche consiste à ra�ner cette relation au niveau des approximations
�nies :

— on peut développer une stratégie en un ensemble d’augmentations [BC21], qui en sont
des approximations �nies ;

— les augmentations satisfaisant certaines contraintes (automatiquement valides dans l’in-
terprétation d’un λ-terme) correspondent exactement à des termes à ressources en forme
normale ;

— modulo cette correspondance, la stratégie interprétant un terme est exactement la forme
normale de son développement de Taylor.

C’est sur cette prémisse que s’appuie le projet de thèse de Blondeau-Patissier, qui débute sous la
direction conjointe de Clairambault et moi-même. Outre l’établissement de cette correspondance,
il s’agit d’en tirer les �ls : par exemple en en déduisant une notion de développement de Taylor
pour des langages typés, avec ordre supérieur et références, pour lesquels la sémantique des jeux
est actuellement le principal moyen d’étude ; ou bien en révélant la correspondance entre les
arbres de Böhm probabilistes de Leventis [24 ; Lev18], le développement de Taylor probabiliste
de Dal Lago et Leventis [LL19] et les jeux innocents probabilistes de Clairambault et Paquet
[CP18].

Une étape préliminaire est de proposer une notion de développement compatible avec les
arbres de Nakajima, qui sont la version in�niment η-développée des arbres de Böhm. En e�et, la
sémantique des jeux est intrinsèquement extensionnelle, tandis que le développement de Taylor
usuel ne valide pas la règle η. L’inspiration fournie par les augmentations nous a déjà permis
de proposer un langage de termes à ressources qui sont des approximations �nies de termes
in�niment η-développés. Toute la théorie du développement de Taylor semble pouvoir s’adapter
dans ce cadre : calcul des coe�cients dans le cas uniforme, compatibilité avec la réduction,
correspondance entre arbre de Nakajima et forme normale du développement, etc.

7. Il s’agit des réseaux de ce qu’on appelait la nouvelle syntaxe, quand elle était nouvelle.
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Chapter 2

Normalizing the Taylor expansion of
non-deterministic λ-terms, via
parallel reduction of resource vectors

This chapter is essentially the inclusion of the article of the same name [5], published
in Logical Methods in Computer Science in 2019.

Abstract: It has been known since Ehrhard and Regnier’s seminal work on the Taylor expan-
sion of λ-terms that this operation commutes with normalization: the expansion of a λ-term is
always normalizable and its normal form is the expansion of the Böhm tree of the term.

We generalize this result to the non-uniform setting of the algebraic λ-calculus, i.e., λ-
calculus extended with linear combinations of terms. This requires us to tackle two di�culties:
foremost is the fact that Ehrhard and Regnier’s techniques rely heavily on the uniform, deter-
ministic nature of the ordinary λ-calculus, and thus cannot be adapted; second is the absence
of any satisfactory generic extension of the notion of Böhm tree in presence of quantitative
non-determinism, which is re�ected by the fact that the Taylor expansion of an algebraic λ-term
is not always normalizable.

Our solution is to provide a �ne grained study of the dynamics of β-reduction under
Taylor expansion, by introducing a notion of reduction on resource vectors, i.e. in�nite linear
combinations of resource λ-terms. The latter form the multilinear fragment of the di�erential
λ-calculus, and resource vectors are the target of the Taylor expansion of λ-terms. We show
the reduction of resource vectors contains the image of any β-reduction step, from which we
deduce that Taylor expansion and normalization commute on the nose.

We moreover identify a class of algebraic λ-terms, encompassing both normalizable algebraic
λ-terms and arbitrary ordinary λ-terms: the expansion of these is always normalizable, which
guides the de�nition of a generalization of Böhm trees to this setting.
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2.1 Introduction

Quantitative semantics was �rst proposed by Girard [Gir88] as an alternative to domains
and continuous functionals, for de�ning denotational models of λ-calculi with a natural in-
terpretation of non-determinism: a type is given by a collection of “atomic states”; a term of
type A is then represented by a vector (i.e. a possibly in�nite formal linear combination) of
states. The main matter is the treatment of the function space: the construction requires the
interpretation of function terms to be analytic, i.e. de�ned by power series.

This interpretation of λ-terms was at the origin of linear logic: the application of an analytic
map to its argument boils down to the linear application of its power series (seen as a matrix)
to the vector of powers of the argument; similarly, linear logic decomposes the application of
λ-calculus into the linear cut rule and the promotion operator. Indeed, the seminal model of
linear logic, namely coherence spaces and stable/linear functions, was introduced as a qualitative
version of quantitative semantics [Gir86, especially Appendix C].

Dealing with power series, quantitative semantics must account for in�nite sums. The
interpretations of terms in Girard’s original model can be seen as a special case of Joyal’s analytic
functors [Joy86]: in particular, coe�cients are sets and in�nite sums are given by coproducts.
This allows to give a semantics to �xed point operators and to the pure, untyped λ-calculus.
On the other hand, it does not provide a natural way to deal with weighted (e.g., probabilistic)
non-determinism, where coe�cients are taken in an external semiring of scalars.

In the early 2000’s, Ehrhard introduced an alternative presentation of quantitative semantics
[Ehr05], limited to a typed setting, but where types can be interpreted as particular vector spaces,
or more generally semimodules over an arbitrary �xed semiring; called �niteness spaces, these
are moreover equipped with a linear topology, allowing to interpret linear logic proofs as linear
and continuous maps, in a standard sense. In this setting, the formal operation of di�erentiation
of power series recovers its usual meaning of linear approximation of a function, and morphisms
in the induced model of λ-calculus are subject to Taylor expansion: the application ϕ(α) of

the analytic function ϕ to the vector α boils down to the sum
∑

n∈N
1
n !

(
∂nϕ
∂xn

)
x=0
· αn where(

∂nϕ
∂xn

)
x=0

is the n-th derivative of ϕ computed at 0, which is an n-linear map, and αn is the

n-th tensor power of α.
Ehrhard and Regnier gave a computational meaning to such derivatives by introducing

linearized variants of application and substitution in the λ-calculus, which led to the di�erential
λ-calculus [ER03], and then the resource λ-calculus [ER08] — the latter retains iterated deriva-
tives at zero as the only form of application. They were then able to recast the above Taylor
expansion formula in a syntactic, untyped setting: to every λ-term M , they associate a vector
τ(M) of resource λ-terms, i.e. terms of the resource λ-calculus.

The Taylor expansion of a λ-term can be seen as an intermediate, in�nite object, between the
term and its denotation in quantitative semantics. Indeed, resource terms still retain a dynamics,
if a very simple, �nitary one: the size of terms is strictly decreasing under reduction. Furthermore,
normal resource terms are in close relationship with the atomic states of quantitative semantics
of the pure λ-calculus (or equivalently with the elements of a re�exive object in the relational
model [BEM07]; or with normal type derivations in a non-idempotent intersection type system
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[Car18a]), so that the normal form of τ(M) can be considered as the denotation of M , which
allows for a very generic description of quantitative semantics.

Other approaches to quantitative semantics generally impose a constraint on the computa-
tional model a priori. For instance, the model of �niteness spaces [Ehr05] is, by design, limited
to strongly normalizing computation. Another example is that of probabilistic coherence spaces
[DE11], a model of untyped λ-calculi extended with probabilistic choice, rather than arbitrary
weighted superpositions. Alternatively, one can interpret non-deterministic extensions of PCF
[Lai+13; Lai16], provided the semiring of scalars has all in�nite sums. By contrast, the “normal-
ization of Taylor expansion” approach is more canonical, as it does not rely on a restriction on
the scalars, nor on the terms to be interpreted.

Of course, there is a price attached to such canonicity: in general, the normal form of a
vector of resource λ-terms is not well de�ned, because we may have to consider in�nite sums
of scalars. Ehrhard and Regnier were nonetheless able to prove that the Taylor expansion τ(M)
of a pure λ-term is always normalizable [ER08]. This can be seen as a new proof of the fact
that Girard’s quantitative semantics of pure λ-terms uses �nite cardinals only [Has96]. They
moreover established that this normal form is exactly the Taylor expansion of the Böhm tree
BT(M) of M [ER06a] (BT(M) is the possibly in�nite tree obtained by hereditarily applying
the head reduction strategy in M ). Both results rely heavily on the uniformity property of the
pure λ-calculus: all the resource terms in τ(M) follow a single syntactic tree pattern. This is a
bit disappointing since quantitative semantics was introduced as a model of non-determinism,
which is ruled out by uniformity.

Actually, the Taylor expansion operator extends naturally to the algebraic λ-calculus [2]: a
generic, non-uniform extension of λ-calculus, augmenting the syntax with formal �nite linear
combinations of terms. Then it is not di�cult to �nd terms whose Taylor expansion is not
normalizable. Nonetheless, interpreting types as �niteness spaces of resource terms, Ehrhard
[Ehr10] proved by a reducibility technique that the Taylor expansion of algebraic λ-terms typed
in a variant of system F is always normalizable.

2.1.1 Main results

In the present paper, we generalize Ehrhard’s result and show that all weakly normalizable
algebraic λ-terms have a normalizable Taylor expansion (Theorem 2.8.21, p.67). 1

We moreover relate the normal form of the expansion of a term with the normal form of the
term itself, both in a computational sense (i.e. the irreducible form obtained after a sequence
of reductions) and in a more denotational sense, via an analogue of the notion of Böhm tree:
Taylor expansion does commute with normalization, in both those senses (Theorem 2.8.22, p.67;
Theorem 2.9.14, p.74).

When restricted to pure λ-terms, Theorem 2.9.14 provides a new proof, not relying on
uniformity, that the normal form of τ(M) is isomorphic to BT(M). In their full extent, our

1. We had already obtained such a result for strongly normalizable λ-terms in a previous work with Pagani
and Tasson [12]: there, we further proved that the �niteness structure on resource λ-terms could be re�ned to
characterize exactly the strong normalizability property in a λ-calculus with �nite formal sums of terms. Here we
rely on a much coarser notion of �niteness: see subsection 2.8.1.
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results provide a generalization of the notion of non-deterministic Böhm tree [LP95] in a
weighted, quantitative setting.

Let us stress that neither Ehrhard’s work [Ehr10] nor our own previous work with Pagani
and Tasson [12] addressed the commutation of normalization and Taylor expansion. Indeed,
in the absence of uniformity, the techniques used by Ehrhard and Regnier [ER08; ER06a] are
no longer available, and we had to design another approach. 2 Our solution is to introduce a
notion of reduction on resource vectors, so that: (i) this reduction contains the translation of
any β-reduction step (Lemma 2.7.6, p.60); (ii) normalizability (and the value of the normal form)
of resource vectors is preserved under reduction (Lemma 2.8.3, p.63). This approach turns out
to be quite delicate, and its development led us to two technical contributions that we deem
important enough to be noted here:

— the notion of reduction structure (subsection 2.5.3) that allows to control the families of
resource terms simultaneously involved in the reduction of a resource vector: in particular
this provides a novel, modular mean to circumvent the inconsistency of β-reduction in
presence of negative coe�cients (a typical de�ciency of the algebraic λ-calculus [2]);

— our analysis of the e�ect of parallel reduction on the size of resource λ-terms (Section 2.6):
this constitutes the technical core of our approach, and it plays a crucial rôle in establishing
key additional properties such as con�uence (Lemma 2.6.17, p.52, and Corollary 2.6.29,
p.58) and conservativity (Lemma 2.7.14, p.61, and Lemma 2.8.23, p.68).

2.1.2 Structure of the paper

The paper begins with a few mathematical preliminaries, in section 2.2: we recall some
de�nitions about semirings and semimodules (Subsection 2.2.1), if only to �x notations and
vocabulary; we also provide a very brief review of �niteness spaces (Subsection 2.2.2), then
detail the particular case of linear-continuous maps de�ned by summable families of vectors
(subsection 2.2.3), the latter notion pervading the paper.

In Section 2.3 we review the syntax and the reduction relation of the resource λ-calculus, as
introduced by Ehrhard and Regnier [ER08]. The subject is quite standard now, and the only new
material we provide is about minor and unsurprising combinatorial properties of multilinear
substitution.

Section 2.4 contains our �rst notable contribution: after recalling the Taylor expansion
construction, we prove that it is compatible with substitution. This result is related with the
functoriality of promotion in quantitative denotational models and the proof technique is quite
similar. In the passing, we recall the syntax of the algebraic λ-calculus and brie�y discuss the
issues raised by the contextual extension of β-reduction in presence of linear combinations of
terms, as evidenced by previous work [10; AD08; 2, etc.].

2. It is in fact possible to re�ne Ehrhard and Regnier’s approach, via the introduction of a rigid variant of
Taylor expansion [TAO17], which can then be adapted to the non-deterministic setting. This allows to describe the
coe�cients in the normal form of Taylor expansion, like in the uniform case, and then prove that Taylor expansion
commutes with the computation of Böhm trees. It does not solve the problem of possible divergence, though, and
one has to assume the semiring of coe�cients is complete, i.e. that all sums converge. See Subsection 2.1.3 on related
work for more details.
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In Section 2.5, we discuss the possible extensions of the reduction of the resource λ-calculus
to resource vectors, i.e. in�nite linear combinations of resource terms, and identify two main
issues. First, in order to simulate β-reduction, we are led to consider the parallel reduction of
resource terms in resource vectors, which is not always well de�ned. Indeed, a single resource
term might have unboundedly many antecedents by parallel reduction, hence this process might
generate in�nite sums of coe�cients: we refer to this phenomenon as the size collapse of parallel
resource reduction (Subsection 2.5.2). Second, similarly to the case of the algebraic λ-calculus,
the induced equational theory might become trivial, due the interplay between coe�cients in
vectors and the reduction relation. To address the latter problem we introduce the notion of
reduction structure (Subsection 2.5.3) which allows us to modularly restrict the set of resource
terms involved in a reduction: later in the paper, we will identify reduction structures ensuring
the consistency of the reduction of resource vectors (Subsection 2.8.4).

In Section 2.6, we introduce successive restrictions of the parallel reduction of resource
vectors, in order to avoid the abovementioned size collapse. We �rst observe that, to bound the
size of a term as a function of the size of any of its reducts, it is su�cient to bound the length of
chains of immediately nested �red redexes in a single parallel reduction step (Subsection 2.6.1).
This condition does not allow us to close a pair of reductions to a common reduct, because it
is not stable under unions of �red redexes. We thus tighten it to bounding the length of all
chains of (not necessarily immediately) nested �red redexes (Subsection 2.6.2): this enables us
to obtain a strong con�uence result, under a mild hypothesis on the semiring. An even more
demanding condition is to require the �red redexes as well as the substituted variables to occur
at a bounded depth (subsection 2.6.3): then we can de�ne a maximal parallel reduction step
for each bound, which entails strong con�uence without any additional hypothesis. Finally,
we consider reduction structures involving resource terms of bounded height (Subsection
2.6.4): when restricting to such a bounded reduction structure, the strongest of the above three
conditions is automatically veri�ed.

We then show, in Section 2.7, that the translation of β-reduction through Taylor expansion
�ts into this setting: the height of the resource terms involved in a Taylor expansion is bounded
by that of the original algebraic λ-term, and every β-reduction step is an instance of the
previously introduced parallel reduction of resource vectors. As a consequence of our strongest
con�uence result, we moreover obtain that any reduction step from the Taylor expansion of a
λ-term can be extended into the translation of a parallel β-reduction step.

We turn our attention to normalization in Section 2.8. We �rst show that normalizable
resource vectors are stable under reduction. We moreover establish that their normal form is
obtained as the limit of the parallel left reduction strategy (Subsection 2.8.1). Then we introduce
Taylor normalizable algebraic λ-terms as those having a normalizable Taylor expansion, and
deduce from the previous results that they are stable under β-reduction (Subsection 2.8.2): in
particular, the normal form of Taylor expansion does de�ne a denotational semantics for that
class of terms. Then we establish that normalizable terms are Taylor normalizable (subsection
2.8.3): it follows that normalization and Taylor expansion commute on the nose.

We conclude with Section 2.9, showing how our techniques can be applied to the class
of hereditarily determinable terms, that we introduce ad-hoc: those include pure λ-terms as
well as normalizable algebraic λ-terms as a particular case, and we show that all hereditarily
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determinable terms are Taylor normalizable and the coe�cients of the normal form are given
by a sequence of approximants, close to the Böhm tree construction.

2.1.3 Related and future work

Besides the seminal work by Ehrhard and Regnier [ER08; ER06a] in the pure case, we have
already cited previous approaches to the normalizability of Taylor expansion based on �niteness
conditions [Ehr10; 12].

A natural question to ask is how our generic notion of normal form of Taylor expansion
compares with previously introduced notions of denotation in non-deterministic settings: non-
deterministic Böhm trees [LP95], probabilistic Böhm trees [24], weighted relational models
[DE11; Lai+13; Lai16], etc. The very statement of such a question raises several di�culties,
prompting further lines of research.

One �rst obstacle is the fact that, by contrast with the uniform case of the ordinary λ-
calculus, the Taylor expansion operator is not injective on algebraic λ-terms (see Subsection
2.4.5), not even on the partial normal forms that we use to introduce the approximants in section
2.9. This is to be related with the quotient that the non-deterministic Böhm trees of de’Liguoro
and Piperno [LP95] must undergo in order to capture observational equivalence. On the other
hand, to our knowledge, �nding su�cient conditions on the semiring of scalars ensuring that
the Taylor expansion becomes injective is still an open question.

Also, we de�ne normalizable vectors based on the notion of summability: a sum of vectors
converges when it is componentwise �nite i.e., for each component, only �nitely many vectors
have a non-zero coe�cient (see subsection 2.2.3). If more information is available on scalars,
namely if the semiring of scalars is complete in some topological or order-theoretic sense, it
becomes possible to normalize the Taylor expansion of all terms.

Indeed, Tsukada, Asada and Ong have recently established [TAO17] the commutation
between computing Böhm trees and Taylor expansion with coe�cients taken in the complete
semiring of positive reals [0,+∞] where all sums converge. Let us precise that they do not
consider weighted non-determinism, only formal binary sums of terms, and that the notion of
Böhm tree they consider is a very syntactic one, similar to the partial normal forms we introduce
in section 2.9. Their approach is based on a precise description of the relationship between the
coe�cients of resource terms in the expansion of a term and those in the expansion of its Böhm-
tree, using a rigid Taylor expansion as an intermediate step: this avoids the ambiguity between
the sums of coe�cients generated by redundancies in the expansion and those representing
non-deterministic superpositions.

Tsukada, Asada and Ong’s work can thus be considered as a re�nement of Ehrhard and
Regnier’s method, that they are moreover able to generalize to the non-deterministic case
provided the semiring of scalars is complete. By contrast, our approach is focused on β-
reduction and identi�es a class of algebraic λ-terms for which the normalization of Taylor
expansion converges independently from the topology on scalars. It seems only natural to
investigate the connections between both approaches, in particular to tackle the case of weighted
non-determinism in a complete semiring, as a �rst step towards the treatment of probabilistic
or quantum superposition, as also suggested by the conclusion of their paper.

18



In the probabilistic setting, though, the Böhm tree construction [24] relies on both the
topological properties of real numbers and the restriction to discrete probability subdistributions.
Relying on this, Dal Lago and Leventis have recently shown [LL19] that the sum de�ning the
normal form of Taylor expansion of an arbitrary probabilistic λ-term always converges with
�nite coe�cients, and that this normal form is the Taylor expansion of its probabilistic Böhm
tree, in the non-extensional sense [24, section 4.2.1]. To get a better understanding of the shape
of Taylor expansions of probabilistic λ-terms and their stability under reduction, a possible �rst
step is to investigate probabilistic coherence spaces [DE11] on resource λ-terms: these would be
the analogue, in the probabilistic setting, of the �niteness structures ensuring the summability
of normal forms in the non-deterministic setting (see Subsection 2.8.3).

Apart from relating our version of quantitative semantics with pre-existing notions of
denotation for non-deterministic λ-calculi, we plan to investigate possible applications to other
proof theoretic or computational frameworks: namely, linear logic proof nets [Gir87] and
in�nitary λ-calculus [Ken+97].

The Taylor expansion of λ-terms can be generalized to linear logic proof nets: the case
of linear logic can even be considered as being more primitive, as it is directly related with
the structure of those denotational models that validate the Taylor expansion formula [Ehr18].
Proof nets, however, do not enjoy the uniformity property of λ-terms: no general coherence
relation is satis�ed by the elements of the Taylor expansion of a proof net [Tas09, section V.4.1].
This can be related with the non-injectivity of coherence semantics [Tor03]. In particular, it is
really unclear how Ehrhard and Regnier’s methods, or even Tsukada, Asada and Ong’s could be
transposed to this setting. By contrast, our recent work with Chouquet [14] shows that our
study of reduction under Taylor expansion can be adapted to proof nets.

It is also quite easy to extend the Taylor expansion operator to in�nite λ-terms, at least for
those of Λ001, where only the argument position of applications is treated coinductively. For
in�nite λ-terms, it is no longer the case that the support of Taylor expansion involves resource
λ-terms of bounded height only. Fortunately, we can still rely on the results of subsection
2.6.2, where we only require a bound on the nesting of �red redexes: this should allow us to
give a counterpart, through Taylor expansion, of the strongly converging reduction sequences
of in�nite λ-terms. More speculatively, another possible outcome is a characterization of
hereditarily head normalizable terms via their Taylor expansion, adapting our previous work
on normalizability with Pagani and Tasson [12].

2.2 Technical preliminaries

We write:

— N for the semiring of natural numbers;

— P(X) for the powerset of a set X : X ∈ P(X) i� X ⊆ X ;

— #X for the cardinal of a �nite set X ;

— !X for the set of �nite multisets of elements of X ;

— [x1, . . . , xn] ∈ !X for the multiset with elements x1, . . . , xn ∈ X (taking repetitions into
account), and then #[x1, . . . , xn] = n for its cardinality;
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—
∏
i∈I Xi and

∑
i∈I Xi respectively for the product and sum of a family (Xi)i∈I of sets:

in particular
∑

i∈I Xi =
⋃
i∈I {i} ×Xi;

— XI =
∏
i∈I X for the set of applications from I to X or, equivalently, for the set of I

indexed families of elements of X .

Throughout the paper we will be led to consider various categories of sets and elements
associated with a single base set X : elements of X , subsets of X , �nite multisets of elements
of X , etc. In order to help keeping track of those categories, we generally adopt the following
typographic conventions:

— we use small latin letters for the elements of X , say a, b, c ∈ X ;

— for subsets of X , we use cursive capitals, say A,B, C ∈ P(X);

— for sets of subsets of X , we use Fraktur capitals, say A,B,C ⊆ P(X);

— for (possibly in�nite) linear combinations of elements of X , we use small greek letters,
say α, β, γ ∈ SX , where S denotes some set of scalar coe�cients;

— we transpose all of the above conventions to the set !X of �nite multisets by overlining:
e.g., we write a = [a1, . . . , an] ∈ !X , A ⊆ !X or α ∈ S!X .

In the remaining of this section, we introduce basic mathematical content that will be used
throughout the paper.

2.2.1 Semirings and semimodules

A semiring 3 S is the data of a carrier set S, together with commutative monoids (S,+S, 0S)
and (S, ·S, 1S) such that the multiplicative structure distributes over the additive one, i.e. for
all a, b, c ∈ S, a ·S 0S = 0S and a ·S (b+S c) = a ·S b+S a ·S c.

We will in general abuse notation and identify S with its carrier set S. We will moreover omit
the subscripts on symbols +, ·, 0 and 1, and denote multiplication by concatenation: ab = a · b.
We also use standard notations for �nite sums and products in S, e.g.

∑n
i=1 ai = a1 + · · ·+ an.

For any semiring S, there is a unique semiring morphism (in the obvious sense) from N to S:
to n ∈ N we associate the sum

∑n
i=1 1 ∈ S that we also write n ∈ S, although this morphism

is not necessarily injective. Consider for instance the semiring B of booleans, with B = {0, 1},
+B = max and ·B = ×.

We �nish this subsection by recalling the de�nitions of semimodules and their morphisms.
A (left) S-semimoduleM is the data of a commutative monoid (M, 0M,+M) together with an
external product .M : S×M→M subject to the following identities:

0.Mm = 0M 1.Mm = m

(a+ b).Mm = a.Mm+M b.Mm a.M(b.Mm) = ab.Mm

a.M0M = 0M a.M(m+M n) = a.Mm+M a.Mn

3. The terminology of semirings is much less well established than that of rings, and one can �nd various
non equivalent de�nitions depending on the presence of units or on commutativity requirements. Following
Golan’s terminology [Gol13], our semirings are commutative semirings, which is required here because we consider
multilinear applications between modules.
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for all a, b ∈ S and m,n ∈M.
Again, we will in general abuse notation and identifyM with its carrier setM, and omit

the subscripts on symbols +, . and 0.
LetM and N be S-semimodules. We say φ :M→N is linear if

φ

(
n∑
i=1

ai.mi

)
=

n∑
i=1

ai.φ(mi)

for all m1, . . . ,mn ∈M and all a1, . . . , an ∈ S. If moreoverM1, . . . ,Mn are S-semimodules,
we say ψ :M1 × · · · ×Mn → N is n-linear if it is linear in each component.

Given a set X , SX is the semimodule of formal linear combinations of elements of X : a
vector ξ ∈ SX is nothing but an X-indexed family of scalars (ξx)x∈X , that we may also denote
by
∑

x∈X ξx.x. The support |ξ| of a vector ξ ∈ SX is the set of elements ofX having a non-zero
coe�cient in ξ:

|ξ| := {x ∈ X ; ξx 6= 0}.

We write S[X] for the set of vectors with �nite support:

S[X] :=
{
ξ ∈ SX ; |ξ| is �nite

}
.

In particular S[X] is the semimodule freely generated by X , and is a subsemimodule of SX .

2.2.2 Finiteness spaces

A �niteness space [Ehr05] is a subsemimodule of SX obtained by imposing a restriction on
the support of vectors, as follows.

If X is a set, we call structure on X any set S ⊆ P(X), and then the dual structure is

S⊥ := {X ′ ⊆ X ; for all X ∈ S, X ∩ X ′ is �nite}.

A relational �niteness space is a pair (X,F), where X is a set (the web of the �niteness space)
and F ⊆ P(X) is a structure on X such that F = F⊥⊥: F is then called a �niteness structure,
and we say X ⊆ X is �nitary in (X,F) i� X ∈ F. The �niteness space generated by (X,F),
denoted by S〈X,F〉, or simply S〈F〉, is then the set of vectors on X with �nitary support:
ξ ∈ S〈F〉 i� |ξ| ∈ F.

By this de�nition, if ξ ∈ S〈F〉 and ξ′ ∈ S
〈
F⊥
〉

then the sum
∑

x∈X ξxξ
′
x involves �nitely

many nonzero summands.
Finitary subsets are downwards closed for inclusion, and �nite unions of �nitary subsets are

�nitary, hence S〈X,F〉 is a subsemimodule of SX . Moreover, the least (resp. greatest) �niteness
structure on X is the set Pf (X) of �nite subsets of X (resp. the powerset P(X)), generating
the �niteness space S[X] (resp. SX ).

We do not describe the whole category of �niteness spaces and linear-continuous maps here.
In particular we do not recall the details of the linear topology induced on S〈X,F〉 by F: the
reader may refer to Ehrhard’s original paper [Ehr05] or his survey presentation of di�erential
linear logic [Ehr18].

21



In the following, we focus on a very particular case, where the �niteness structure on base
types is trivial (i.e. there is no restriction on the support of vectors): linear-continuous maps are
then univocally generated by summable functions.

We started with the general notion of �niteness space nonetheless, because it provides a
good background for the general spirit of our contributions: we are interested in in�nite objects
restricted so that, componentwise, all our constructions involve �nite sums only. Also, the
semimodule of normalizable resource vectors introduced in section 2.8 is easier to work with
once its �niteness space structure is exposed.

2.2.3 Summable functions

Let
−→
ξ = (ξi)i∈I ∈

(
SX
)I be a family of vectors: write ξi =

∑
x∈X ξi,x.x. We say

−→
ξ

is summable if, for all x ∈ X , {i ∈ I ; x ∈ |ξi|} is �nite. In this case, we de�ne the sum∑−→
ξ =

∑
i∈I ξi ∈ SX in the obvious, pointwise way: 4

(∑−→
ξ
)
x

:=
∑
i∈I

ξi,x.

Of course, any �nite family of vectors is summable and, �xing an index set I and a base set
X , summable families in

(
SX
)I form an S-semimodule, with operations de�ned pointwise.

Moreover, if (ξi)i∈I ∈
(
SX
)I is summable, then it follows from the inclusion |ai.ξi| ⊆ |ξi|

that (ai.ξi)i∈I is also summable for any family of scalars (ai)i∈I ∈ SI . Whenever the n-ary
function f : X1 × · · · × Xn → SY (i.e. the family (f(x1, . . . , xn))(x1,...,xn)∈X1×···×Xn ) is
summable, we can thus de�ne its extension 〈f〉 : SX1 × · · · × SXn → SY by

〈f〉(ξ1, . . . , ξn) :=
∑

(x1,...,xn)∈X1×···×Xn

ξ1,x1 · · · ξn,xn .f(x1, . . . , xn).

Note that we can consider f : X → SY as a Y × X matrix: fy,x = f(x)y . Then if f is
summable and ξ ∈ SX , 〈f〉(ξ) is nothing but the application of the matrix f to the column ξ:
the summability hypothesis ensures that this is well de�ned.

It turns out that the linear extensions of summable functions are exactly the linear-continuous
maps, de�ned as follows:

De�nition 2.2.1. Let ϕ : SX1 × · · · × SXn → SY . We say ϕ is n-linear-continuous if,
for all summable families

−→
ξ1 = (ξ1,i)i∈I1 ∈

(
SX1

)I1 , . . . ,−→ξn = (ξn,i)i∈In ∈
(
SXn

)In , the

4. The reader can check that the family
−→
ξ is summable i� the support set

{(i, x) ∈ I ×X ; ξi,x 6= 0}

is �nitary in the relational arrow �niteness space (I × X,P(I) ( P(X)) as de�ned by Ehrhard [Ehr05, see
in particular Lemma 3]. Then

∑−→
ξ is the result of applying the matrix (ξi,x)i∈I,x∈X to the vector (1)i∈I ∈

S〈P(I)〉 = SI .
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family (ϕ(ξ1,i1 , . . . , ξn,in))(i1,...,in)∈I1×···×In is summable and, for all families of scalars, −→a1 =

(a1,i)i∈I1 ∈ SI1 , . . . ,−→an = (an,i)i∈In ∈ SIn , we have

ϕ

∑
i1∈I1

a1,i1 .ξ1,i1 , . . . ,
∑
in∈In

an,in .ξn,in

 =
∑

(i1,...,in)∈I1×···×In

a1,i1 · · · an,in .ϕ(ξ1,i1 , . . . , ξn,in).

Lemma 2.2.2. If ϕ : SX1 × · · · × SXn → SY is n-linear-continuous then its restriction
ϕ�X1×···×Xn is a summable n-ary function and ϕ = 〈ϕ�X1×···×Xn〉. Conversely, if f : X1 ×
· · · ×Xn → SY is a summable n-ary function then 〈f〉 is n-linear-continuous.

Proof. It is possible to derive both implications from general results on �niteness spaces. 5 We
also sketch a direct proof.

The �rst implication follows directly from the de�nitions, observing that each diagonal
family of vectors (x)x∈Xi is obviously summable.

For the converse: let
−→
ξ1 = (ξ1,i)i∈I1 ∈

(
SX1

)I1 , . . . ,−→ξn = (ξn,i)i∈In ∈
(
SXn

)In be
summable families. We �rst prove that the family

(ξ1,i1,x1 · · · ξn,in,xn .f(x1, . . . , xn))(i1,...,in)∈I1×···×In,(x1,...,xn)∈X1×···×Xn

is summable. Fix y ∈ Y . If y ∈ |ξ1,i1,x1 · · · ξn,in,xn .f(x1, . . . , xn)| then in particular y ∈
|f(x1, . . . , xn)|: since f is summable, there are �nitely many such tuples (x1, . . . , xn) ∈ X1 ×
· · · ×Xn. For each such tuple (x1, . . . , xn) and each k ∈ {1, . . . , n}, since

−→
ξ k is summable,

there are �nitely many ik’s such that ξk,ik,xk 6= 0. The necessary equation then follows from
the associativity of sums.

From now on, we will identify summable functions with their multilinear-continuous
extensions. Moreover, it should be clear that multilinear-continuous maps compose.

2.3 The resource λ-calculus

In this section, we recall the syntax and reduction of the resource λ-calculus, that was
introduced by Ehrhard and Regnier [ER08] as the multilinear fragment of the di�erential λ-
calculus [ER03]. The syntax is very similar to that of Boudol’s resource λ-calculus [Bou93]
but the intended meaning (multilinear approximations of λ-terms) as well as the dynamics is
fundamentally di�erent.

5. One might check that a map ϕ : SX1 × · · · × SXn → SY is n-linear-continuous in the sense of De�nition
2.2.1 i� it is n-linear and continuous in the sense of the linear topology of �niteness spaces, observing that the
topology on SX = S〈P(X)〉 is the product topology (S being endowed with the discrete topology) [Ehr05, Section
3]. Moreover, n-ary summable functions f : X1 × · · · × Xn → SY are the elements of the �niteness space
S〈P(X1)⊗ · · · ⊗P(Xn)( P(Y )〉. As a general fact, the linear-continuous maps S〈F〉 → S〈G〉 are exactly the
linear extensions of vectors in S〈F( G〉. But linear-continuous maps from a tensor product of �niteness spaces
correspond with multilinear-hypocontinuous maps [Ehr05, Section 3] rather than the more restrictive multilinear-
continuous maps. In the very simple setting of summable functions, though, both notions coincide, since SX is
always locally linearly compact [Ehr05, Proposition 15].
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We also recall the de�nitions of the multilinear counterparts of term substitution: partial
di�erentiation and multilinear substitution.

In the passing, we introduce various quantities on resource λ-terms (size, height, and number
and maximum depth of occurrences of a variable) and we state basic results that will be used
throughout the paper.

Finally, we present the dynamics of the calculus: resource reduction and normalization.

2.3.1 Resource expressions

In the remaining of the paper, we suppose an in�nite, countable set V of variables is �xed:
we use small letters x, y, z to denote variables.

We de�ne the sets ∆ of resource terms and !∆ of resource monomials by mutual induction
as follows: 6

∆ 3 s, t, u, v, w ::= x | λx s | 〈s〉 t
!∆ 3 s, t, u, v, w ::= [] | [s] · t.

Terms are considered up to α-equivalence and monomials up to permutativity: we write
[t1, . . . , tn] for [t1] · (· · · · ([tn] · [])) and equate [t1, . . . , tn] with

[
tf(1), . . . , tf(n)

]
for all permu-

tation f of {1, . . . , n}, so that resource monomials coincide with �nite multisets of resource
terms. 7 We will then write s · t for the multiset union of s and t, and #[s1, . . . , sn] := n.

We call resource expression any resource term or resource monomial and write (!)∆ for
either ∆ or !∆: whenever we use this notation several times in the same context, all occurrences
consistently denote the same set. When we make a de�nition or a proof by induction on resource
expressions, we actually use a mutual induction on resource terms and monomials.

De�nition 2.3.1. We de�ne by induction over a resource expression e ∈ (!)∆, its size s(e) ∈ N
and its height h(e) ∈ N:

s(x) := 1 h(x) := 1

s(λx s) := 1 + s(s) h(λx s) := 1 + h(s)

s
(
〈s〉 t

)
:= 1 + s(s) + s

(
t
)

h
(
〈s〉 t

)
:= max

{
h(s), 1 + h

(
t
)}

s([s1, . . . , sn]) :=

n∑
i=1

s(si) h([s1, . . . , sn]) := max {h(si) ; 1 ≤ i ≤ n}.

It should be clear that, for all e ∈ (!)∆, h(e) ≤ s(e). Also observe that s(s) > 0 and
h(s) > 0 for all s ∈ ∆, and s(s) ≥ #s for all s ∈ !∆. In the application case, we chose not to
increment the height of the function: this is not crucial but it will allow to simplify some of

6. We use a self explanatory if not standard variant of BNF notation for introducing syntactic objects:

!∆ 3 s, t, u, v, w ::= [] | [s] · t

means that we de�ne the set !∆ of resource monomials as that inductively generated by the empty monomial,
and addition of a term to a monomial, and that we will denote resource monomials using overlined letters among
s, t, u, v, w, possibly with sub- and superscripts.

7. Resource monomials are often called bags, bunches or poly-terms in the literature, but we prefer to strengthen
the analogy with power series here.
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our computations in Section 2.6. In particular, in the case of a redex we have h
(
〈λx s〉 t

)
=

1 + max
{
h(s),h

(
t
)}

.
For all resource expression e, we write fv(e) for the set of its free variables. In the remaining

of the paper, we will often have to prove that some set E ⊆ (!)∆ is �nite: we will generally use
the fact that E is �nite i� both {s(e) ; e ∈ E} and fv(E) :=

⋃
e∈E fv(e) are �nite.

Besides the size and height of an expression, we will also need �ner grained information on
occurrences of variables, providing a quantitative counterpart to the set of free variables:

De�nition 2.3.2. We de�ne by induction over resource expressions the number nx(e) ∈ N of
occurrences and the set dx(e) ∈ N of occurrence depths of a variable x in e ∈ (!)∆:

nx(y) :=

{
1 if x = y

0 otherwise

nx(λy s) := nx(s) (choosing y 6= x)

nx
(
〈s〉 t

)
:= nx(s) + nx

(
t
)

nx([s1, . . . , sn]) :=
n∑
i=1

nx(si)

and

dx(y) :=

{
{1} if x = y

∅ otherwise
dx(λy s) := {d+ 1 ; d ∈ dx(s)} (choosing y 6= x)

dx([s1, . . . , sn]) :=
⋃n
i=1 dx(si)

dx
(
〈s〉 t

)
:= dx(s) ∪

{
d+ 1 ; d ∈ dx

(
t
)}
.

We then write mdx(e) := maxdx(e) for the maximal depth of occurrences of x in e.

Again, it should be clear that nx(e) ≤ s(e) and mdx(e) ≤ h(e). Moreover, x ∈ fv(e) i�
nx(e) 6= 0 i� dx(e) 6= ∅ i� mdx(e) 6= 0.

2.3.2 Partial derivatives

In the resource λ-calculus, the substitution e[s/x] of a term s for a variable x in e admits a
linear counterpart: this operator was initially introduced in the di�erential λ-calculus [ER03]
in the form of a partial di�erentiation operation, re�ecting the interpretation of λ-terms as
analytic maps in quantitative semantics.

Partial di�erentiation enforces the introduction of formal �nite sums of resource expressions:
these are the actual objects of the resource λ-calculus, and in particular the dynamics will act on
�nite sums of terms rather than on simple resource terms (see Subsection 2.3.4). We extend all
syntactic constructs to �nite sums of resource expressions by linearity: if σ =

∑n
i=1 si ∈ N[∆]

and τ =
∑p

j=1 tj ∈ N[!∆], we set λxσ :=
∑n

i=1 λx si, 〈σ〉 τ :=
∑n

i=1

∑p
j=1 〈si〉 tj and

[σ] · τ :=
∑n

i=1

∑p
j=1 [si] · tj .

This linearity of syntactic constructs will be generalized to vectors of resource expressions
in the next section. For now, up to linearity, it is already possible to consider the substitution
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e[σ/x] of a �nite sum of terms σ for a variable term x in an expression e: in particular e[0/x] = 0
whenever x ∈ fv(e). This is in turn extended to sums by linearity: ε[σ/x] =

∑n
i=1 ei[σ/x]

when ε =
∑n

i=1 ei. Observe that this is not linear in σ, because x may occur several times in e:
for instance, with a monomial of degree 2, [x, x][t+ u/x] = [t, t] + [t, u] + [u, t] + [u, u].

Partial di�erentiation is then de�ned as follows:

De�nition 2.3.3. For all u ∈ ∆ and x ∈ V , we de�ne the partial derivative ∂e
∂x · u ∈ N[(!)∆]

of e ∈ (!)∆, by induction on e:

∂y

∂x
· u :=

{
u if x = y

0 otherwise

∂λy s

∂x
· u := λy

(
∂s

∂x
· u
)

(choosing y 6∈ {x} ∪ fv(u))

∂〈s〉 t
∂x

· u :=

〈
∂s

∂x
· u
〉
t+ 〈s〉

(
∂t

∂x
· u
)

∂ [s1, . . . , sn]

∂x
· u :=

n∑
i=1

[
s1, . . . ,

∂si
∂x
· u, . . . , sn

]
.

Partial di�erentiation is extended to �nite sums of expressions by bilinearity: if ε =∑n
i=1 ei ∈ N[(!)∆] and σ =

∑p
j=1 sj ∈ N[∆], we set

∂ε

∂x
· σ =

n∑
i=1

p∑
j=1

∂ei
∂x
· sj .

Lemma 2.3.4 ([ER08, Lemma 2]). If x 6∈ fv(u) then

∂

∂y

(
∂e

∂x
· t
)
· u =

∂

∂x

(
∂e

∂y
· u
)
· t+

∂e

∂x
·
(
∂t

∂y
· u
)
.

If moreover y 6∈ fv(t), we obtain a version of Schwarz’s theorem on the symmetry of second
derivatives:

∂

∂y

(
∂e

∂x
· t
)
· u =

∂

∂x

(
∂e

∂y
· u
)
· t.

If x 6∈ fv(si) for all i ∈ {1, . . . , n}, we write

∂ne

∂xn
· (s1, . . . , sn) :=

∂

∂x

(
· · · ∂e

∂x
· s1 · · ·

)
· sn.

More generally, we write

∂ne

∂xn
· (s1, . . . , sn) :=

(
∂ne[y/x]

∂yn
· (s1, . . . , sn)

)
[x/y]

for any y 6∈
⋃n
i=1 fv(si) ∪ (fv(e) \ {x}): it should be clear that this de�nition does not depend

on the choice of such a variable y. By the previous lemma,

∂ne

∂xn
· (s1, . . . , sn) =

∂ne

∂xn
·
(
sf(1), . . . , sf(n)

)
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for any permutation f of {1, . . . , n} and we will thus write

∂ne

∂xn
· s :=

∂ne

∂xn
· (s1, . . . , sn)

whenever s = [s1, . . . , sn].
An alternative, more direct presentation of iterated partial derivatives is as follows. Suppose

nx(e) = m, and write x1, . . . , xm for the occurrences of x in e. Then:

∂ne

∂xn
· [s1, . . . , sn] =

∑
f :{1,...,n}→{1,...,m}

f injective

e
[
s1, . . . , sn/xf(1), . . . , xf(n)

]
More formally, we obtain:

Lemma 2.3.5. For all monomial u = [u1, . . . , un] ∈ !∆ and all variable x ∈ V : 8

∂ny

∂xn
· u =


y if n = 0

u1 if x = y and n = 1

0 otherwise

∂nλy s

∂xn
· u = λy

(
∂ns

∂xn
· u
)

(choosing y 6∈ {x} ∪ fv(u))

∂n〈s〉 t
∂xn

· u =
∑

(I,J) partition of {1,...,n}

〈
∂#Is

∂x#I
· uI
〉
∂#J t

∂x#J
· uJ

∂n[s1, . . . , sk]

∂xn
· u =

∑
(I1,...,Ik) partition of {1,...,n}

[
∂#I1s1

∂x#I1
· uI1 . . . ,

∂#Iksk
∂x#Ik

· uIk
]

where uI denotes
[
ui1 , . . . , uip

]
whenever I = {i1, . . . , ip} with p = #I .

Proof. Easy, by induction on n.

Lemma 2.3.6. For all e ∈ (!)∆, s ∈ !∆, x 6= y ∈ V and e′ ∈
∣∣ ∂ne
∂xn · s

∣∣ with n = #s, moreover
assuming that x 6∈ fv(s):

— nx(e) ≥ n and nx(e′) = nx(e)− n;
— ny(e

′) = ny(e) + ny(s);
— dx(e′) ⊆ dx(e);
— dy(e) ⊆ dy(e

′) ⊆ dy(e) ∪ {d+ d′ − 1 ; d ∈ dx(e), d′ ∈ dy(s)};
— s(e′) = s(e) + s(s)− n;
— h(e) ≤ h(e′) ≤ max {h(e),mdx(e) + h(s)− 1}.

Proof. Each result is easily established by induction on e, using the previous lemma to enable
the induction.

8. In this de�nition and in the remaining of the paper, we say a tuple (I1, . . . , In) ∈ P(I)n is a partition of I if
I =

⋃n
i=1 Ik , and the Ik’s are pairwise disjoint. We do not require the Ik’s to be nonempty. Hence a partition of I

into a n-tuple is uniquely de�ned by a function from I to {1, . . . , n}.
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2.3.3 Multilinear substitution

Recall that Taylor expansion involves iterated derivatives at 0. If n = #s and x 6∈ fv(s) we
write

∂xe · s :=

(
∂ne

∂xn
· s
)

[0/x].

Observe that by Lemma 2.3.6: if n > nx(e) then ∂ne
∂xn · s = 0; and if n < nx(e) then x ∈ fv(e′)

for all e′ ∈
∣∣ ∂ne
∂xn · s

∣∣, and then e′[0/x] = 0. In other words,

∂xe · s =

{
∂ne
∂xn · s if n = nx(e)

0 otherwise
.

We say ∂xe · s is the n-linear substitution of s for x in e. More generally, we write

∂xe · s := (∂ye[y/x] · s)[x/y]

for any y 6∈ fv(s)∪ (fv(e) \ x) and it should again be clear that this de�nition does not depend
of the choice of such a y. By a straightforward application of Lemma 2.3.6, we obtain:

Lemma 2.3.7. For all e ∈ (!)∆, s ∈ !∆, x 6= y ∈ V and e′ ∈ |∂xe · s|, assuming x 6∈ fv(s):

— nx(e) = #s and nx(e′) = 0;

— ny(e
′) = ny(e) + ny(s);

— dx(e′) = ∅;

— dy(e) ⊆ dy(e
′) ⊆ dy(e) ∪ {d+ d′ − 1 ; d ∈ dx(e), d′ ∈ dy(s)};

— s(e′) = s(e) + s(s)−#s;

— h(e) ≤ h(e′) ≤ max {h(e),mdx(e) + h(s)− 1}.

In particular, fv(e′) = (fv(e) \ {x}) ∪ fv(s), and max {s(e), s(s)} ≤ s(e′) ≤ s(e) + s(s).
Again, we can give a direct presentation of multilinear substitution. Suppose nx(e) = m,

and write x1, . . . , xm for the occurrences of x in e. Then:

∂xe · [s1, . . . , sn] =
∑

f :{1,...,n}→{1,...,m}
f bijective

e
[
s1, . . . , sn/xf(1), . . . , xf(n)

]
.

More formally, as a consequence of Lemma 2.3.5:

28



Lemma 2.3.8. For all monomial u = [u1, . . . , un] ∈ !∆ and all variable x ∈ V :

∂xy · u =


y if y 6= x and n = 0

u1 if y = x and n = 1

0 otherwise

∂xλy s · u = λy (∂xs · u) (choosing y 6∈ {x} ∪ fv(u))

∂x〈s〉 t · u =
∑

(I,J) partition of {1,...,n}
s.t. #I=nx(s) and #J=nx(t)

〈∂xs · uI〉 ∂xt · uJ

∂x[s1, . . . , sk] · u =
∑

(I1,...,Ik) partition of {1,...,n}
s.t. ∀j, #Ij=nx(sj)

[∂xs1 · uI1 , . . . , ∂xsk · uIk ]

where the conditions on cardinalities of subsets of {1, . . . , n} in the application and monomial
cases may be omitted.

A similar result is the commutation of multilinear substitutions:

Lemma 2.3.9. If x 6∈ fv(u) then:

∂y
(
∂xe · t

)
· u =

∑
(I,J) partition of {1,...,#u}

s.t. #I=nx(e) and #J=nx(t)

∂x(∂ye · uI) ·
(
∂yt · uJ

)
.

Proof. Write n = #t and p = #u. It is su�cient to prove

∂p

∂yp

(
∂ne

∂xn
· t
)
· u =

∑
(I,J) partition of {1,...,p}

∂n

∂xn

(
∂#Is

∂y#I
· uI
)
·
(
∂#J t

∂y#J
· uJ

)

by induction on n and p, using Lemma 2.3.4.

2.3.4 Resource reduction

If→ is a reduction relation, we will write→? (resp.→+;→∗) for its re�exive (resp. transitive;
re�exive and transitive) closure.

In the resource λ-calculus, a redex is a term of the form 〈λx t〉u ∈ ∆ and its reduct is
∂xt · u ∈ N[∆]. The resource reduction→∂ is then the contextual closure of this reduction
step on �nite sums of resource expressions. More precisely:

De�nition 2.3.10. We de�ne the resource reduction relation→∂ ⊆ (!)∆×N[(!)∆] inductively
as follows:

— 〈λx s〉 t→∂ ∂xs · t for all s ∈ ∆ and t ∈ !∆;

— λx s→∂ λxσ
′ as soon as s→∂ σ

′;

— 〈s〉 t→∂ 〈σ′〉 t as soon as s→∂ σ
′;
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— 〈s〉 t→∂ 〈s〉 τ ′ as soon as t→∂ τ
′;

— [s] · t→∂ [σ′] · t as soon as s→∂ σ
′.

We extend this reduction to �nite sums of resource expressions: write ε→∂ ε
′ if ε =

∑n
i=0 ei

and ε′ =
∑n

i=0 ε
′
i with e0 →∂ ε

′
0 and, for all i ∈ {1, . . . , n}, ei →?

∂ ε
′
i.

Observe that we allow for parallel reduction of any nonzero number of summands in a �nite
sum. This reduction is particularly well behaved. In particular, it is con�uent in a strong sense:

Lemma 2.3.11. For all ε, ε0, ε1 ∈ N[(!)∆], if ε→∂ ε0 and ε→∂ ε1 then there is ε′ ∈ N[(!)∆]
such that ε0 →?

∂ ε
′ and ε1 →?

∂ ε
′.

Proof. The proof follows a well-trodden path for proving con�uence.
One �rst proves by induction on s that if s→∂ σ

′ then ∂xs · t→?
∂ ∂xσ

′ · t, and if t→∂ τ
′

then ∂xs · t →?
∂ ∂xs · τ ′. Note that the re�exive closure is made necessary by the possibility

that ∂xs · t = 0, and the transitive closure is not needed because there is no duplication of the
redexes of t in the summands of the multilinear substitution ∂xs · t.

One then proves that if e→∂ ε0 and e→∂ ε1 then there is ε′ ∈ N[(!)∆] such that ε0 →?
∂ ε
′

and ε1 →?
∂ ε
′. The proof is straightforward, by induction on the pair of reductions e→∂ ε0 and

e→∂ ε1, using the previous result in case e is a redex which is reduced in ε0 but not in ε1 (or
vice versa).

In other words,→?
∂ enjoys the diamond property. 9 Moreover, the e�ect of reduction on the

size of terms is very regular. First introduce some useful notation: write e �∂ e′ if e→∂ ε
′ with

e′ ∈ |ε′|.

Lemma 2.3.12. Let e �∂ e′. Then fv(e′) = fv(e), and s(e′) + 2 ≤ s(e) ≤ 2s(e′) + 2.

Proof. By induction on the reduction e→∂ ε
′ with e′ ∈ |ε′|. The inductive contextuality cases

are easy, and we only detail the base case, i.e. e = 〈λx t〉u and ε′ = ∂xt · u.
Write n = nx(t). The result then follows from Lemma 2.3.7, observing that s(e′) =

s(t) + s(u)− n = s(e)− 2− n and n ≤ s(u) ≤ s(e′).

We will write ≥∂ (resp. >∂ ) for �∗∂ (resp. �+
∂ ). Observe that e ≥∂ e′ (resp. e >∂ e′) i� there

is ε′ ∈ N[(!)∆] such that e′ ∈ |ε′| and e →∗∂ ε′ (resp. e →+
∂ ε′). Moreover, {e′ ; e ≥∂ e′} is

always �nite and >∂ de�nes a well-founded strict partial order. A direct consequence is that
→∂ always converges to a unique normal form:

Lemma 2.3.13. The reduction →∂ is con�uent and strongly normalizing. Moreover, for all
ε ∈ N[(!)∆], the set {ε′ ; ε→∗∂ ε′} is �nite.

Proof. Con�uence is a consequence of Lemma 2.3.11. By Lemma 2.3.12, the transitive closure�+
∂

is a well-founded strict partial order. Observe that the elements of N[(!)∆] can be considered as
�nite multisets of resource expressions: then→+

∂ is included in the multiset ordering induced

9. This strong con�uence result was not mentioned in Ehrhard and Regnier’s papers about resource λ-calculus
[ER08; ER06a] but they established a very similar result for di�erential nets [ER06b, Section 4]: Lemma 2.3.11 can be
understood as a reformulation of the latter in the setting of resource calculus.
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by �+
∂ , and it follows that→+

∂ de�nes a well-founded strict partial order on N[(!)∆], i.e.→∂ is
strongly normalizing.

The �nal property follows from strong normalizability applying König’s lemma to the tree
of possible reductions, observing that each ε has �nitely many→∂-reducts.

If ε ∈ N[(!)∆], we then write NF(ε) for the unique sum of normal resource expressions
such that ε→∗∂ NF(ε). A consequence of the previous lemma is that any reduction discipline
reaches this normal form:

Corollary 2.3.14. Let→ ⊆ N[(!)∆]×N[(!)∆] be such that→ ⊆→∗∂ . Moreover assume that,
for all non normal ε ∈ N[(!)∆] there is ε′ 6= ε such that ε → ε′. Then ε →∗ NF(ε) for all
ε ∈ N[(!)∆].

2.4 Vectors of resource expressions and Taylor expansion of
algebraic λ-terms

2.4.1 Resource vectors

A vector σ =
∑

s∈∆ σs.s of resource terms will be called a term vector whenever its set of
free variables fv(σ) :=

⋃
s∈|σ| fv(s) is �nite. Similarly, we will call monomial vector any vector

of resource monomials whose set of free variables is �nite. We will abuse notation and write
S∆ for the set of term vectors and S!∆ for the set of monomial vectors. 10

A resource vector will be any of a term vector or a monomial vector, and we will write S(!)∆

for either S∆ or S!∆ : as for resource expressions, whenever we use this notation several times
in the same context, all occurrences consistently denote the same set.

The syntactic constructs are extended to resource vectors by linearity: for all σ ∈ S∆ and
σ, τ ∈ S!∆ , we set

λxσ :=
∑
s∈∆

σs.λx s,

〈σ〉 τ :=
∑

s∈∆,t∈!∆

σsτ t.〈s〉 t,

and [σ1, . . . , σn] :=
∑

s1,...,sn∈∆

(σ1)s1 · · · (σn)sn .[s1, . . . , sn].

This poses no problem for �nite vectors: e.g., if |σ| is �nite then �nitely many of the vectors
σs.λx s are non-zero, hence the sum is �nite. In the general case, however, we actually need to

10. The restriction to vectors with �nitely many free variables is purely technical. For instance, it allows us
to assume that a sum of abstractions σ =

∑
i∈I λxi si can always use a common abstracted variable: σ =∑

i∈I λx (si[x/xi]), with x 6∈ ∪i∈Ifv(λxi si). Working without this restriction would only lead to more contorted
statements and tedious bookkeeping: consider, e.g., what would happen to the de�nition of the substitution of a
term vector for a variable (De�nition 2.4.4), especially the abstraction case.
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prove that the above sums are well de�ned: the constructors of the calculus de�ne summable
functions, which thus extend to multilinear-continuous maps. 11

Lemma 2.4.1. The following families of vectors are summable:

(λx s)s∈∆ ,
(
〈s〉 t

)
s∈∆,t∈!∆

, ([s])s∈∆ and
(
s · t
)
s,t∈!∆

.

Proof. The proof is direct, but we detail it if only to make the requirements explicit.
For all u ∈ ∆ there is at most one s such that u ∈ |λx s| (in which case u = λx s) and at

most one pair (s, t) such that u ∈
∣∣〈s〉 t∣∣ (in which case u = 〈s〉 t).

For all u ∈ !∆ there is at most one s such that u ∈ |[s]| (in which case u = [s]), and there
are �nitely many s and t such that u ∈

∣∣s · t∣∣ (those such that u = s · t).

For each term vector σ, we then write σn for the monomial vector

[

n times︷ ︸︸ ︷
σ, . . . , σ].

2.4.2 Partial di�erentiation of resource vectors.

We can extend partial derivatives to vectors by linear-continuity (recall that, via the unique
semiring morphism from N to S, we can consider that N[(!)∆] ⊆ S(!)∆ ).

Lemma 2.4.2. The function

(!)∆ × !∆ → S(!)∆

(e, [s1, . . . , sn]) 7→ ∂ne

∂xn
· [s1, . . . , sn]

is summable.

Proof. Let e′ ∈ (!)∆ and assume that e′ ∈
∣∣ ∂ne
∂xn · s

∣∣ with #s = n. By Lemma 2.3.6, fv(e) ⊆
fv(e′) ∪ {x}, fv(s) ⊆ fv(e′), s(e) ≤ s(e′) and s(s) ≤ s(e′): e′ being �xed, there are �nitely
many (e, s) satisfying these constraints.

The characterization of iterated partial derivatives given in Lemma 2.3.5 extends directly to
resource vectors, by the linear-continuity of syntactic constructs and partial derivatives. For
instance, given term vectors σ, ρ1, . . . , ρn ∈ S∆ and a monomial vector τ ∈ S!∆ , we obtain:

∂n〈σ〉 τ
∂xn

· [ρ1, . . . , ρn] =
∑

(I,J) partition of {1,...,n}

〈
∂#Iσ

∂x#I
· ρI
〉
∂#Jτ

∂x#J
· ρJ .

Now we can consider iterated di�erentiation along a �xed term vector ρ: ∂nε
∂xn · ρ

n. We obtain:

11. The one-to-one correspondence between summable n-ary functions and multilinear-continuous maps was
established for semimodules of the form SX , i.e. the semimodules of all vectors on a �xed set. Due to the restriction
we put on free variables, S(!)∆ is not of this form: it should rather be written

⋃
V ∈Pf (V) S

(!)∆V where (!)∆V :=

{e ∈ (!)∆ ; fv(e) ⊆ V }. So when we say a function is multilinear-continuous on S(!)∆ , we actually mean that its
restriction to each S(!)∆V with V ∈ Pf (V) is multilinear-continuous. In the present case, keeping this precision
implicit is quite innocuous, but we will be more careful when considering the restriction to bounded vectors in
Subsection 2.6.4, and to normalizable vectors in Section 2.8.
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Lemma 2.4.3. For all σ, τ1, . . . , τn, ρ ∈ S∆ and all τ ∈ S!∆ ,

∂k〈σ〉 τ
∂xk

· ρk =

k∑
l=0

[
k

l, k − l

]〈
∂lσ

∂xl
· ρl
〉
∂k−lτ

∂xk−l
· ρk−l and

∂k[τ1, . . . , τn]

∂xk
· ρk =

∑
k1,...,kn∈N
k1+···+kn=k

[
k

k1, . . . , kn

][
∂k1τ1

∂xk1
· ρk1 , . . . ,

∂knτn
∂xkn

· ρkn
]
.

Proof. First recall that, if k =
∑n

i=1 ki, the multinomial coe�cient
[

k
k1,...,kn

]
:= k!∏n

i=1 ki!
is

nothing but the number of partitions of {1, . . . , k} into n sets I1, . . . , In such that #Ij = kj
for 1 ≤ j ≤ n [DLMF, §26.4]. Then both results derive directly from Lemma 2.3.5.

2.4.3 Substitutions

Since |∂xe · s| ⊆
∣∣ ∂ne
∂xn · s

∣∣, multilinear substitution also de�nes a summable binary function
and we will write

∂xε · σ :=
∑

e∈(!)∆,s∈!∆

εeσs.∂xe · s.

By contrast with partial derivatives, the usual substitution is not linear, so the substitution
of resource vectors must be de�ned directly.

De�nition 2.4.4. We de�ne by induction over resource expressions the substitution e[σ/x] ∈
S(!)∆ of σ ∈ S∆ for a variable x in e ∈ (!)∆:

x[σ/x] :=

{
σ if x = y

y otherwise

(λy s)[σ/x] := λy s[σ/x] (choosing y 6∈ fv(σ) ∪ {x})
[s1, . . . , sn][σ/x] := [s1[σ/x], . . . , sn[σ/x]](

〈s〉 t
)
[σ/x] := 〈s[σ/x]〉 t[σ/x]

Lemma 2.4.5. For all e ∈ (!)∆, x ∈ V and σ ∈ S∆ :
— if σ ∈ ∆ then e[σ/x] ∈ ∆;
— if σ ∈ S[∆] then e[σ/x] ∈ S[(!)∆];
— if x 6∈ fv(e) then e[σ/x] = e;
— if x ∈ fv(e) then e[0/x] = 0;
— for all e′ ∈ |e[σ/x]|, fv(e) \ {x} ⊆ fv(e′) ⊆ (fv(e) \ {x}) ∪ fv(σ) and s(e′) ≥ s(e).

Proof. Each statement follows easily by induction on e.

A consequence of the last item is that the function

(!)∆ → S(!)∆

e 7→ e[σ/x]
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is summable: we thus write
ε[σ/x] :=

∑
e∈S(!)∆

εe.e[σ/x].

2.4.4 Promotion

Observe that the family (σn)n∈N is summable because the supports |σn| for n ∈ N are
pairwise disjoint. We then de�ne the promotion of σ as σ! :=

∑
n∈N

1
n! .σ

n.
For this de�nition to make sense, we need inverses of natural numbers to be available: we

say S has fractions if every n ∈ N \ {0} admits a multiplicative inverse in S. This inverse
is necessarily unique and we write it 1

n . Observe that S has fractions i� there is a semiring
morphism from the semiring Q+ of non-negative rational numbers to S, and then this morphism
is unique, but not necessarily injective: consider the semiring B of booleans. Semi�elds, i.e.
commutative semirings in which every non-zero element admits an inverse, obviously have
fractions: Q+ and B are actually semi�elds. In the following, we will keep this requirement
implicit: whenever we use quotients by natural numbers, it means we assume S has fractions.

Lemma 2.4.6. For all σ and τ ∈ S∆ , σ![τ/x] = (σ[τ/x])!.

Proof. By the linear-continuity of ε 7→ ε[σ/x], it is su�cient to prove that

σn[τ/x] = (σ[τ/x])n

which follows from the n-linear-continuity of (σ1, . . . , σn) 7→ [σ1, . . . , σn] and the de�nition
of substitution.

Lemma 2.4.7. The following identities hold:

∂xx · ρ! = ρ

∂xy · ρ! = y

∂xλy σ · ρ! = λy
(
∂xσ · ρ!

)
(choosing y 6∈ {x} ∪ fv(ρ))

∂x〈σ〉 τ · ρ! =
〈
∂xσ · ρ!

〉
∂xτ · ρ!

∂x[σ1, . . . , σn] · ρ! =
[
∂xσ1 · ρ!, . . . , ∂xσn · ρ!

]
Proof. Since each syntactic constructor is multilinear-continuous, it is su�cient to consider
the case of ∂xe · ρ! for a resource expression e ∈ (!)∆. First observe that, if k = nx(e) then
∂xe · ρ! = 1

k! .
∂ke
∂xk
· ρk. In particular the case of variables is straightforward.

The case of abstractions follows directly, since ∂kλx s
∂xk

· ρk = λx
(
∂ks
∂xk
· ρk
)

.

If e = 〈s〉 t, write l = nx(s) and m = nx
(
t
)
. It follows from Lemma 2.4.3 that ∂xe · ρk =[

k
l,m

]
.
〈
∂xs · ρl

〉
∂xt · ρm and then 1

k! .∂xe · ρ
k =

〈
1
l! .∂xs · ρ

l
〉

1
m! .∂xt · ρ

m.

Similarly, if e = [t1, . . . , tn], write ki = nx(ti) for all i ∈ {1, . . . , n}. It follows from

Lemma 2.4.3 that ∂xe · ρk =
[

k
k1,...,kn

]
.
[
∂xt1 · ρk1 , . . . , ∂xtn · ρkn

]
and then 1

k! .∂xe · ρ
k =[

1
k1!∂xt1 · ρ

k1 , . . . , 1
kn!∂xtn · ρ

kn
]
.
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Lemma 2.4.8. For all ε ∈ S(!)∆ an σ ∈ S∆ ,

ε[σ/x] = ∂xε · σ!.

Proof. By the linear-continuity of ε 7→ ∂xε · σ! and ε 7→ ε[σ/x], it is su�cient to show that

e[σ/x] = ∂xe · σ!

for all resource expression e. The proof is then by induction on e, using the previous Lemma in
each case.

By Lemma 2.4.6, we thus obtain

∂xσ
! · τ ! =

(
∂xσ · τ !

)!

which can be seen as a counterpart of the functoriality of promotion in linear logic. To our
knowledge it is the �rst published proof of such a result for resource vectors. This will enable
us to prove the commutation of Taylor expansion and substitution (Lemma 2.4.10), another
unsurprising yet non-trivial result.

2.4.5 Taylor expansion of algebraic λ-terms

Since resource vectors form a module, there is no reason to restrict the source language of
Taylor expansion to the pure λ-calculus: we can consider formal �nite linear combinations of
λ-terms.

We will thus consider the terms given by the following grammar:

ΣS 3 M,N,P ::= x | λxM | (M)N | 0 | a.M |M +N

where a ranges in S. 12 For now, terms are considered up to the usual α-equivalence only: the
null term 0, scalar multiplication a.M and sum of terms M +N are purely syntactic constructs.

De�nition 2.4.9. We de�ne the Taylor expansion τ(M) ∈ S(!)∆ of a term M ∈ ΣS inductively
as follows:

τ(x) := x τ(0) := 0

τ(λxM) := λx τ(M) τ(a.M) := a.τ(M)

τ((M)N) := 〈τ(M)〉 τ(N)! τ(M +N) := τ(M) + τ(N).

Lemma 2.4.10. For all M,N ∈ ΣS, and all variable x,

τ(M [N/x]) = ∂xτ(M) · τ(N)! = τ(M)[τ(N)/x].

12. We follow Krivine’s convention [Kri90], by writing (M)N for the application of term M to term N . We
more generally write (M)N1 · · ·Nk for (· · · (M)N1 · · ·)Nk . Moreover, among term constructors, we give sums
the lowest priority so that (M)N + P should be read as ((M)N) + P rather than (M) (N + P ).
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Proof. By induction on M , using Lemmas 2.4.7 and 2.4.8.

Let us insist on the fact that, despite its very simple and unsurprising statement, the previous
lemma relies on the entire technical development of the previous subsections. Again, to our
knowledge, it is the �rst proof that Taylor expansion commutes with substitution, in an untyped
and non-uniform setting, without any additional assumption.

By contrast, one can forget everything about the semiring of coe�cients and consider only
the support of Taylor expansion. Recall that B denotes the semiring of booleans. Then we can
consider that B(!)∆ = P((!)∆) and write, e.g., λxS = {λx s ; s ∈ S} for all set S of resource
terms.

De�nition 2.4.11. The Taylor support T (M) ⊆ ∆ of M ∈ ΣS is de�ned inductively as
follows: 13

T (x) := {x} T (0) := ∅
T (λxM) := λx T (M) T (a.M) := T (M)

T ((M)N) := 〈T (M)〉 T (N)! T (M +N) := T (M) ∪ T (N).

It should be clear that |τ(M)| ⊆ T (M), but the inclusion might be strict, if only because
T (0.M) = T (M). By contrast with the technicality of the previous subsection, the following
qualitative analogue of Lemma 2.4.10 is easily established:

Lemma 2.4.12. For all M,N ∈ ΣS, and all variable x,

T (M [N/x]) = ∂xT (M) · T (N)! = T (M)[T (N)/x].

Proof. The qualitative version of Lemma 2.4.7 is straightforward. The result follows by induction
on M .

The restriction of T to the set Λ of pure λ-terms was used by Ehrhard and Regnier [ER08]
in their study of Taylor expansion. They showed that if M ∈ Λ then T (M) is uniform: all
the resource terms in T (M) have the same outermost syntactic construct and this property
is preserved inductively on subterms. They moreover proved that τ(M), and in fact M itself,
is entirely characterized by T (M): in this case, τ(M) =

∑
s∈T (M)

1
m(s)s where m(s) is an

integer coe�cient depending only on s. Of course this property fails in the non uniform setting
of ΣS.

Now, let us consider the equivalence induced on terms by Taylor expansion: write M 'τ N
if τ(M) = τ(N).

13. One might be tempted to make an exception in case a = 0 and set T (0.M) = ∅ but this would only
complicate the de�nition and further developments for little bene�t: what about T (a.M + b.M) (resp. T (a.b.M))
in a semiring where a 6= 0, b 6= 0 and a+ b = 0 (resp. ab = 0)? If we try and cope with those too, we are led to
make T invariant under the equations of S-module, which is precisely what we want to avoid here: see the case of
τ in the remaining of the present section.
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Lemma 2.4.13. The following equations hold:

0 +M 'τ M M +N 'τ N +M (M +N) + P 'τ M + (N + P )

0.M 'τ 0 1.M 'τ M a.M + b.M 'τ (a+ b).M

a.0 'τ 0 a.(b.M) 'τ (ab).M a.(M +N) 'τ a.M + a.N

λx 0 'τ 0 λx (a.M) 'τ a.λxM λx (M +N) 'τ λxM + λxN

(0)P 'τ 0 (a.M)P 'τ a.(M)P (M +N)P 'τ (M)P + (N)P

Moreover, 'τ is compatible with syntactic constructs: if M 'τ M ′ then λxM 'τ λxM ′,
(M)N 'τ (M ′)N , (N)M 'τ (N)M ′, a.M 'τ a.M ′, M +N 'τ M ′ +N and N +M 'τ
N +M ′.

Proof. Up to Taylor expansion, these equations re�ect the fact that S(!)∆ forms a semimodule
(�rst three lines), and that all the constructions used in the de�nition of τ are multilinear-
continuous, except for promotion (last two lines). Compatibility follows from the inductive
de�nition of τ .

Let us write 'v for the least compatible equivalence relation containing the equations of
the previous lemma, and call vector λ-terms the elements of the quotient ΣS/'v: these are the
terms of the previously studied algebraic λ-calculus [2; 23]. 14

It is clear that ΣS/'v forms a S-semimodule. In fact, one can show [2] that ΣS/'v is freely
generated by the 'v-equivalence classes of base terms, i.e. those described by the following
grammar:

Σb
S 3 B ::= x | λxB | (B)M.

Hence we could write ΣS/'v = S
[
Σb
S/'v

]
.

Notice however that Taylor expansion is not injective on vector λ-terms in general.

Example 2.4.14. We can consider that ΣB/'v = Pf

(
Σb
B/'v

)
and τ(M) ⊆ ∆ for allM ∈ ΣB.

It is then easy to check that, e.g., τ((x) ∅) ⊆ τ((x)x), hence (x) ∅+B (x)x 'τ (x)x. 15

This contrasts with the case of pure λ-terms, for which τ is always injective: in this case, it
is in fact su�cient to look at the linear resource terms in supports of Taylor expansions.

Fact 2.4.15. For all M,N ∈ Λ, `(M) ∈ |τ(N)| i� M = N , where ` is de�ned inductively as
follows:

`(x) := x `(λxM) := λx `(M) `((M)N) := 〈`(M)〉 [`(N)].

14. In those previous works, the elements of ΣS/'v were called algebraic λ-terms, but here we reserve this name
for another, simpler, notion.

15. This discrepancy is also present in the non-deterministic Böhm trees of de’Liguoro and Piperno [LP95]: in
that qualitative setting, they can solve it by introducing a preorder on trees based on set inclusion. They moreover
show that this preorder coincides with that induced by a well chosen domain theoretic model, as well as with the
observational preorder associated with must-solvability. This preorder should be related with that induced by the
inclusion of normal forms of Taylor expansions (which are always de�ned since we then work with support sets
rather than general vectors).
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To our knowledge, �nding su�cient conditions on S ensuring that τ becomes injective on
ΣS/'v is still an open question.

Observe moreover that the S-semimodule structure of ΣS/'v gets in the way when we
want to study β-reduction and normalization: it is well known [10; AD08; 2] that β-reduction
in a semimodule of terms is inconsistent in presence of negative coe�cients.

Example 2.4.16. Consider δM := λx (M + (x)x) and∞M := (δM ) δM . Observe that∞M β-
reduces toM+∞M . SupposeS is a ring. Then any congruence' on ΣS containing β-reduction and
the equations ofS-module is inconsistent: 0 ' ∞M+(−1).∞M ' (M+∞M )+(−1).∞M 'M .

The problem is of course the identity 0 ' ∞M + (−1).∞M . Another di�culty is that, if S
has fractions then, up to S-semimodule equations, one can split a single β-reduction step into
in�nitely many fractional steps: if M →β M

′ then

M ' 1
2 .M+1

2 .M →β
1
2 .M+1

2 .M
′ '

(
1
4 .M + 1

4 .M
)
+1

2 .M
′ →β

(
1
4 .M + 1

4 .M
′)+1

2 .M
′ ' · · ·

It is not our purpose here to explore the various possible �xes to the rewriting theory of
β-reduction on vector λ-terms. We rather refer the reader to the literature on algebraic λ-calculi
[2; AD08; 23; Día11] for various proposals. Our focus being on Taylor expansion, we propose to
consider vector λ-terms as intermediate objects: the reduction relation induced on resource
vectors by β-reduction through Taylor expansion contains β-reduction on vector terms — which
is mainly useful to understand what may go wrong.

We still need to introduce some form of quotient in the syntax, though, if only to allow
formal sums to retain a computational meaning: otherwise, for instance, no β-redex can be �red
in (λxM + λxN)P ; and more generally there are β-normal terms whose Taylor expansion is
not normal, and conversely (consider, e.g., (λx 0)P ).

Write ΛS for the quotient of ΣS by the least compatible equivalence '+ containing the
following six equations:

λx 0 '+ 0 λx (a.M) '+ a.λxM λx (M +N) '+ λxM + λxN

(0)P '+ 0 (a.M)P '+ a.(M)P (M +N)P '+ (M)P + (N)P

We call algebraic λ-terms the elements of ΛS. We will abuse notation and denote an algebraic
λ-term by any of its representatives.

Observe that T (M) is preserved under'+ so it is well de�ned on algebraic terms, although
not on vector terms.

Fact 2.4.17. An algebraic λ-term M is β-normal (i.e. each of its representatives is β-normal) i�
T (M) contains only normal resource terms.

We do not claim that '+ is minimal with the above property (for this, the bottom three
equations are su�cient) but it is quite natural for anyone familiar with the decomposition of
λ-calculus in linear logic, as it re�ects the linearity of λ-abstraction and the function position
in an application. Moreover it retains the two-level structure of vector λ-terms, seen as sums of
base terms.
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It is indeed a routine exercise to show that orienting the de�ning equations of '+ from
left to right de�nes a con�uent and terminating rewriting system. We call canonical terms the
normal forms of this system, which we can describe as follows. The sets Σc

S of canonical terms
and Σs

S of simple canonical terms are mutually generated by the following grammars:

Σs
S 3 S, T ::= x | λxS | (S)M

Σc
S 3 M,N,P ::= S | 0 | a.M |M +N

so that each algebraic term M admits a unique canonical '+-representative.
In the remaining of this paper we will systematically identify algebraic terms with their

canonical representatives and keep '+ implicit. Moreover, we write Λs
S for the set of simple

algebraic λ-terms, i.e. those that admit a simple canonical representative.

Fact 2.4.18. Every simple term S ∈ Λs
S is of one of the following two forms:

— S = λx1 · · ·λxn (x)M1 · · ·Mk: S is a head normal form;

— S = λx1 · · ·λxn (λxT )M0 · · ·Mk: (λxT )M0 is the head redex of S.

So each algebraic λ-term can be considered as a formal linear combination of head normal
forms and head reducible simple terms, which will structure the notions of weak solvability
and hereditarily determinable terms in section 2.9.

2.5 On the reduction of resource vectors

Observe that

τ((λxM)N) = 〈λx τ(M)〉 τ(N)! =
∑
s∈∆
t∈!∆

τ(M)sτ(N)!
t.〈λx s〉 t

and
τ(M [N/x]) = ∂xτ(M) · τ(N)! =

∑
s∈∆
t∈!∆

τ(M)sτ(N)!
t.∂xs · t

In order to simulate β-reduction through Taylor expansion we might be tempted to consider
the reduction given by ε→ ε′ as soon as ε =

∑
i∈I ai.ei and ε′ =

∑
i∈I ai.ε

′
i with ei →∂ ε

′
i for

all i ∈ I . 16

Observe indeed that, as soon as (ai.ei)i∈I ∈ (!)∆ is summable (i.e. for all e ∈ (!)∆, there
are �nitely many i ∈ I such that ai 6= 0 and ei = e), the family (ai.ε

′
i)i∈I is summable

too: if e′ ∈ |ai.ε′i| then ai 6= 0 and e′ ∈ |ε′i| hence by Lemma 2.3.12, fv(ei) = fv(e′) and
s(ei) ≤ 2s(e′) + 2; e′ being �xed, there are thus �nitely many possible values for ei hence for i.
So we do not need any additional condition for this reduction step to be well de�ned.

This reduction, however, is not suitable for simulating β-reduction because whenever the
reduced β-redex is not in linear position, we need to reduce arbitrarily many resource redexes.

16. We must of course require that
⋃
i∈I fv(ei) is �nite but, again, we will keep such requirements implicit in

the following.
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Example 2.5.1. Observe that

τ((y) (λxx) z) =
∑

n,k1,...,kn∈N

1

n!k1! · · · kn!
〈y〉
[
〈λxx〉 zk1 , . . . , 〈λxx〉 zkn

]
and

τ((y) z) =
∑
n∈N

1

n!
〈y〉 zn.

Then the reduction from
[
〈λxx〉 zk1 , . . . , 〈λxx〉 zkn

]
to zn if each ki = 1 (resp. to 0 if one ki 6= 1)

requires �ring n independent redexes (resp. one of those n redexes).

2.5.1 Parallel resource reduction

One possible �x would be to replace→∂ with→∗∂ in the above de�nition, i.e. set ε→ ε′ as
soon as ε =

∑
i∈I ai.ei and ε′ =

∑
i∈I ai.ε

′
i with ei →∗∂ ε′i for all i ∈ I , but then the study of

the reduction subsumes that of normalization, which we treat in Section 2.8, and this relies on
the possibility to simulate β-reduction steps.

A reasonable middle ground is to consider a parallel variant⇒∂ of→∂ , where any number
of redexes can be reduced simultaneously in one step. The parallelism involved in the translation
of a β-reduction step is actually quite constrained: like in the previous example, the redexes that
need to be reduced in the Taylor expansion are always pairwise independent and no nesting is
involved. However, in order to prove the con�uence of the reduction on resource vectors, or
its conservativity w.r.t. β-reduction, it is much more convenient to work with a fully parallel
reduction relation, both on algebraic λ-terms and on resource vectors. Indeed, parallel reduction
relations generally allow, e.g., to close con�uence diagrams in one step or to de�ne a maximal
parallel reduction step: the relevance of this technical choice will be made clear all through
Section 2.6.

De�nition 2.5.2. We de�ne parallel resource reduction⇒∂ ⊆ (!)∆ ×N[(!)∆] inductively as
follows:

— x⇒∂ x;

— 〈λx s〉 t⇒∂ ∂xσ
′ · τ ′ as soon as s⇒∂ σ

′ and t⇒∂ τ ′;

— λx s⇒∂ λxσ
′ as soon as s⇒∂ σ

′;

— 〈s〉 t⇒∂ 〈σ′〉 τ ′ as soon as s⇒∂ σ
′ and t⇒∂ τ

′;

— [s1, . . . , sn]⇒∂ [σ′1, . . . , σ
′
n] as soon as si ⇒∂ σ

′
i for each i ∈ {1, . . . , n}.

We extend this reduction to sums of resource expressions by linearity: ε⇒∂ ε
′ if ε =

∑n
i=1 ei

and ε′ =
∑n

i=1 ε
′
i with ei ⇒∂ ε

′
i for all i ∈ {1, . . . , n}.

It should be clear that→∂ ⊆ ⇒∂ ⊂ →∗∂ , Moreover observe that, because all term construc-
tors are linear, the reduction rules extend naturally to �nite sums of resource expressions: for
instance, λxσ ⇒∂ λxσ

′ as soon as σ ⇒∂ σ
′.

We will prove in Sections 2.6 and 2.7 that this solution is indeed a good one: parallel resource
reduction is strongly con�uent, and there is a way to extend it to resource vectors so that not
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only the resulting reduction is strongly con�uent and allows to simulate β-reduction, but any
reduction step from the Taylor expansion of an algebraic term can be completed into a parallel
β-reduction step. There are two pitfalls with this approach, though.

2.5.2 Size collapse

First, parallel reduction⇒∂ (like iterated reduction→∗∂ ) lacks the combinatorial regularity
properties of→∂ given by Lemma 2.3.12: write e Ï∂ e

′ if e ⇒∂ ε
′ with e′ ∈ |ε′|; e′ ∈ (!)∆

being �xed, there is no bound on the size of the⇒∂-antecedents of e′, i.e. those e ∈ (!)∆ such
that e Ï∂ e

′.

Example 2.5.3. Fix s ∈ ∆. Consider the sequences −→u (s) and −→v (s) of resource terms given by:{
u0(s) := s

un+1(s) := 〈λy y〉 [un(s)]
and

{
v0(s) := s

vn+1(s) := 〈λy vn(s)〉 []
.

Observe that for all n ∈ N, un+1(s)→∂ un(s) and vn+1(s)→∂ vn(s), and more generally, for
all n′ ≤ n, un(s) ⇒∂ un′(s) and vn(s) ⇒∂ vn′(s). In particular un(s) ⇒∂ s and vn(s) ⇒∂ s
for all n ∈ N.

Reducing all resource expressions in a resource vector simultaneously is thus no longer
possible in general: consider, e.g.,

∑
n∈N un(x). As a consequence, when we introduce a

reduction relation on resource vectors by extending a reduction relation on resource expressions
as above, we must in general impose the summability of the family of reducts as a side condition:

De�nition 2.5.4. Fix an arbitrary relation→ ⊆ (!)∆×N[(!)∆]. For all ε, ε′ ∈ S(!)∆ , we write
ε →̃ ε′ whenever there exist families (ai)i∈I ∈ SI , (ei)i∈I ∈ (!)∆I and (ε′i)i∈I ∈ N[(!)∆]I

such that:

— (ei)i∈I is summable and ε =
∑

i∈I ai.ei;

— (ε′i)i∈I is summable and ε′ =
∑

i∈I ai.ε
′
i;

— for all i ∈ I , ei →? ε′i.

The necessity of such a side condition forbids con�uence. Indeed:

Example 2.5.5. Let σ =
∑

n un(vn(x)). Then σ ⇒̃∂
∑
un(x) and σ ⇒̃∂

∑
vn(x), but since

the only common reduct of up(x) and vq(x) is x, there is no way 17 to close this pair of reductions:
(x)n∈N is not summable.

These considerations lead us to study the combinatorics of parallel resource reduction
more closely: in Section 2.6, we introduce successive variants of parallel reduction, based on
restrictions on the nesting of �red redexes, and provide bounds for the size of antecedents of a
resource expression. We moreover consider su�cient conditions for these restrictions to be
preserved under reduction.

17. In fact, this argument is only valid if S is zerosumfree (i.e. if a+ b = 0 ∈ S entails a = b = 0; see below, in
particular Lemma 2.5.7), for instance if S = N: we rely on the fact that if

∑
i∈I ai.si =

∑
n∈N un(x) then for all

i ∈ I such that ai 6= 0, there is n ∈ N such that si = un(x).
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We then observe in Section 2.7 that, when applied to Taylor expansions, parallel reduction
is automatically of the most restricted form, which allows us to provide uniform bounds and
obtain the desired con�uence and simulation properties.

2.5.3 Reduction structures

The other, a priori unrelated pitfall is the fact that the reduction can interact badly with
the semimodule structure of S(!)∆ : we can reproduce Example 2.4.16 in S(!)∆ through Taylor
expansion (see the discussion in Section 2.7, p.58). Even more simply, we can use the terms of
Example 2.5.3:

Example 2.5.6. Let s ∈ ∆ and σ =
∑

n∈N un+1(s) ∈ S∆ . Assuming S is a ring: 0 =
σ + (−1).σ ⇒̃∂

∑
n∈N un(s) + (−1).σ = s.

Of course, this kind of issue does not arise when the semiring of coe�cients is zerosumfree:
recall that S is zerosumfree if a + b = 0 implies a = b = 0, which holds for all semirings of
non-negative numbers, as well as for booleans. This prevents interferences between reductions
and the semimodule structure:

Lemma 2.5.7. Assume S is zerosumfree and �x a relation→ ⊆ (!)∆ ×N[(!)∆]. If ε →̃ ε′ then,
for all e′ ∈ |ε′| there exists e ∈ |ε| and ε0 ∈ N[(!)∆] such that e→? ε0 and e′ ∈ |ε0|.

Proof. Assume ε =
∑

i∈I ai.ei and ε′ =
∑

i∈I ai.ε
′
i with ei →? ε′i for all i ∈ I . If e′ ∈ |ε′| then

there is i ∈ I such that e′ ∈ |ai.ε′i| hence ai 6= 0 and e′ ∈ |ε′i|. Then, since S is zerosumfree,
ei ∈ |ε|.

Various alternative approaches to get rid of this restriction in the setting of the algebraic
λ-calculus can be adapted to the reduction of resource vectors: we refer the reader to the
literature on algebraic λ-calculi [2; AD08; 23; Día11] for several proposals. The linear-continuity
of the resource λ-calculus allows us to propose a novel approach: consider possible restrictions
on the families of resource expressions simultaneously reduced in a →̃-step.

De�nition 2.5.8. We call resource support any set E ⊆ (!)∆ of resource expressions such that
fv(E) =

⋃
e∈E fv(e) is �nite. Then a resource structure is any set E ⊆ P((!)∆) of resource

supports such that:

— E contains all �nite resource supports;

— E is closed under �nite unions;

— E is downwards closed for inclusion.

The maximal resource structure is (!)Ffv := {E ⊆ (!)∆ ; fv(E) is �nite}, which is also a
�niteness structure [Ehr10]. Observe that any �niteness structure F ⊆ (!)Ffv is a resource
structure: all three additional conditions are automatically satis�ed.

De�nition 2.5.9. Fix a relation→ ⊆ (!)∆ ×N[(!)∆]. For all resource support E , we write
→̃E for ⇀̃E where ⇀E denotes→∩ (E ×N[(!)∆]). For all resource structure E, we then write
→̃E for

⋃
E∈E →̃E .
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We have →̃E ⊆ →̃ ∩ (SE × S(!)∆), but in general the reverse inclusion holds only if S is
zerosumfree: in this latter case ε ⇒̃∂ ε

′ i� ε ⇒̃∂ |ε| ε
′.

De�nition 2.5.10. We call→-reduction structure any resource structure E such that if E ∈ E
then

⋃{
|ε′| ; e ∈ E and e→? ε′

}
∈ E.

We will consider some particular choices of reduction structure in the following, but the
point is that our approach is completely generic. The results of Section 2.7 will imply that
if S ⊆ P

(
S∆
)

is a ⇒∂-reduction structure containing |τ(M)| then one can translate any
⇒β-reduction sequence from M into a ⇒̃∂S-reduction sequence from τ(M). Additional
properties such as the con�uence of ⇒̃∂S, its conservativity over⇒β , or its compatibility with
normalization will depend on additional conditions on S.

2.6 Taming the size collapse of parallel resource reduction

In this section, we study successive families of restrictions of the parallel resource reduction
⇒∂ . Our purpose is to enforce some control on the size collapse induced by⇒∂ , so as to obtain
a con�uent restriction of ⇒̃∂ , all the while retaining enough parallelism to simulate parallel
β-reduction on algebraic λ-terms, ideally in a conservative way.

First observe that parallel resource reduction itself is strongly con�uent as expected: follow-
ing a classic argument, we de�ne F(e) as the result of �ring all redexes in e and then, whenever
e⇒∂ ε

′, we have ε′ ⇒∂ F(e). Formally:

De�nition 2.6.1. For all e ∈ (!)∆ we de�ne the full parallel reduct F(e) of e by induction on e
as follows:

F(x) := x

F(λx s) := λxF(s)

F
(
〈λx s〉 t

)
:= ∂xF(s) · F

(
t
)

F
(
〈s〉 t

)
:= 〈F(s)〉F

(
t
)

(if s is not an abstraction)

F([s1, . . . , sn]) := [F(s1), . . . ,F(sn)].

Then if ε =
∑n

i=1 ei ∈ N[(!)∆], we set F(ε) =
∑n

i=1 F(ei).

Lemma 2.6.2. For all ε, ε′ ∈ N[(!)∆], if ε⇒∂ ε
′ then ε′ ⇒∂ F(ε).

Proof. Follows directly from the de�nitions.

In general, however, if we �x e′ ∈ (!)∆ then there is no bound on those e ∈ (!)∆ such that
e′ ∈ |F(e)|, so we cannot extend F on S(!)∆ , nor generalize Lemma 2.6.2 to ⇒̃∂ . Indeed, we
have shown that ⇒̃∂ is not even con�uent.

In order to understand what restrictions are necessary to recover con�uence, we �rst provide
a close inspection of the combinatorial e�ect of⇒∂ on the size of resource expressions: we
show in subsection 2.6.1 that bounding the length of chains of immediately nested �red redexes
is enough to bound the size of⇒∂-antecedents of a �xed resource expression.
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In order to close a pair of reductions e⇒∂ ε
′ and e⇒∂ ε

′′, we have to reduce at least the
residuals in ε′ of the redexes �red in the reduction e⇒∂ ε

′′ (and vice versa). So we want the
above bounds to be stable under taking the unions of sets of redexes in a term: it is not the
case if we consider chains of immediately nested redexes. In Subsection 2.6.2, we extend the
boundedness condition to all chains of nested �red redexes and introduce the family

(
⇒(b)

)
b∈N

of boundedly nested parallel reductions. We then show that this family enjoys a kind of diamond
property (Lemma 2.6.14), which can then be extended to ⇒̃(∂) =

⋃
b∈N ⇒̃(b). We must require

that S enjoys an additional additive splitting property (see De�nition 2.6.15), in order to “align”
the⇒(b)-reductions involved in both sides of a pair of ⇒̃(b)-reductions from the same resource
vector (see the proof of Lemma 2.6.17).

To get rid of the additive splitting hypothesis we must further restrict resource reduction so
as to recover a notion of full reduct at bounded depth. It is not su�cient to bound the depth of
�red redexes because this is not stable under reduction. In Subsection 2.6.3, we rather introduce
the parallel reduction⇒bdc where substituted variables occur at depth at most d. We then show
that ⇒̃b∂c =

⋃
d∈N ⇒̃bdc is strongly con�uent by proving that any⇒bdc-step from ε can be

followed by a⇒bd′c-reduction to Fbdc(ε), where Fbdc(ε) is obtained by �ring all redexes in ε for
which the bound variables occur at depth at most d, and d′ depends only on d.

Finally, we consider resource vectors of bounded height: these contain the Taylor expansions
of algebraic λ-terms. We show that all the above restrictions actually coincide with ⇒̃∂ on
bounded resource vectors. In this particular case, we can actually extend F by linear-continuity
and obtain a proof of the diamond property for ⇒̃∂ . 18

At this point of the discussion, it is worth noting that, if we extend a relation → ⊆
(!)∆ ×N[(!)∆] to a binary relation on �nite sums of resource expressions so that ε → ε′

i� ε =
∑n

i=1 ei and ε′ =
∑n

i=1 ε
′
i with ei → ε′i for all i ∈ {1, . . . , n}, then for all→-reduction

structure E and all resource vectors ε, ε′ ∈ S(!)∆ , we have ε →̃E ε′ i� there exist a set I of
indices, a resource support E ∈ E, a family (ai)i∈I ∈ SI of scalars and families (εi)i∈I ∈ N[E ]I

and (ε′i)i∈I ∈ N[(!)∆]I such that:
— (εi)i∈I is summable and ε =

∑
i∈I ai.εi;

— (ε′i)i∈I is summable and ε′ =
∑

i∈I ai.ε
′
i;

— for all i ∈ I , εi → ε′i.
We will use this fact for con�uence proofs:⇒∂ and its variants are all of this form.

18. Note that, although they involve increasing constraints on parallel reduction, Subsections 2.6.1 to 2.6.3 are
essentially pairwise independent. Moreover, we obtain the diamond property for ⇒̃∂ on bounded resource vectors
as a consequence of the results of Subsection 2.6.3, but it could as well be proved directly, using similar techniques
(see Footnote 21, p.58). So, the reader who only wants the proofs necessary for the main results of the paper can
skip Subsections 2.6.1 and 2.6.2; the reader who is not interested in checking proofs can also skip subsection 2.6.3.

We chose to present the successive families of restrictions anyway, because their construction provides a
precise understanding of the combinatorics of parallel resource reduction, and of the various ingredients involved in
designing a strongly con�uent version of ⇒̃∂ : we start by avoiding the size collapse by putting a restriction on
families of redexes that can be �red in parallel; then we ensure that this restriction is stable under reduction.

This understanding plays a key rôle in enabling the generalization of our approach to linear logic proof nets or
in�nitary λ-calculus: with Chouquet, we have recently established that our restrictions on the nesting of redexes, as
well as their preservation under reduction, can be adapted to the setting of proof nets [14]; and preliminary work on
in�nitary λ-calculus indicates that it could be amenable to the technique of Subsection 2.6.2, whereas it does not
make sense to restrict the depth of substituted variables in this setting.
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2.6.1 Bounded chains of redexes

De�nition 2.6.3. We de�ne a family of relations⇒(m|k) ⊆ (!)∆ ×N[(!)∆] for m ≤ k ∈ N
inductively as follows:

— x⇒(m|k) x for all m ≤ k ∈ N;

— λx s⇒(m|k) λxσ
′ if m ≤ k and s⇒(m1|k) σ

′ for some m1 ≤ k;

— 〈s〉 t ⇒(m|k) 〈σ′〉 τ ′ if m ≤ k, s ⇒(m1|k) σ
′ and t ⇒(m2|k) τ ′ for some m1 ≤ k and

m2 ≤ k;

— [s1, . . . , sr]⇒(m|k) [σ′1, . . . , σ
′
r] if si ⇒(m|k) σ

′
i for all i ∈ {1, . . . , r};

— 〈λx s〉 t⇒(m|k) ∂xσ
′ · τ ′ if 0 < m ≤ k, s⇒(m−1|k) σ

′ and t⇒(m−1|k) τ ′.

Intuitively, we have e ⇒(m|k) ε
′ i� e ⇒∂ ε

′ and that reduction �res chains of redexes of
length at most k, those starting at top level being of length at most m. In particular, it should
be clear that if e⇒(m|k) ε

′ then e⇒∂ ε
′, and e⇒(m′|k′) ε

′ as soon as m ≤ m′ ≤ k′ and k ≤ k′.
Moreover, e⇒∂ ε

′ i� e⇒(h(e)|h(e)) ε
′.

De�nition 2.6.4. We de�ne gbk(l,m) ∈ N for all k, l,m ∈ N, by induction on the lexico-
graphically ordered pair (l,m):

gbk(0, 0) := 0

gbk(l + 1, 0) := gbk(l, k) + 1

gbk(l,m+ 1) := 4gbk(l,m).

We then write gbk(l) := gbk(l, k).

For all k, l,m ∈ N, the following identities follow straightforwardly from the de�nition
and will be used throughout this subsection:

gbk(l,m) = 4mgbk(l, 0)

gbk(0,m) = 0

gbk(1,m) = 4m.

Lemma 2.6.5. For all k, l, l′,m ∈ N, gbk(l + l′,m) ≥ gbk(l,m) + gbk(l
′,m).

Proof. By induction on l′. The case l′ = 0 is direct. Assume the result holds for l′, we prove it
for l′ + 1:

gbk
(
l + l′ + 1,m

)
= 4m

(
gbk

(
l + l′ + 1, 0

))
= 4m

(
gbk

(
l + l′, k

)
+ 1
)

≥ 4m
(
gbk(l, k) + gbk

(
l′, k
)

+ 1
)

= 4m
(

4kgbk(l, 0) + gbk
(
l′ + 1, 0

))
≥ 4mgbk(l, 0) + 4mgbk

(
l′ + 1, 0

)
= gbk(l,m) + gbk

(
l′ + 1,m

)
.

45



The following generalization follows directly:

Corollary 2.6.6. For all l1 . . . , ln ∈ N

gbk

(
n∑
i=1

li,m

)
≥

n∑
i=1

gbk(li,m).

Lemma 2.6.7. For all k, l,m ∈ N, gbk(l,m) ≥ l.

Proof. By Corollary 2.6.6, gbk(l,m) ≥ l × gbk(1,m) = l × 4m.

Lemma 2.6.8. For all k, k′, l, l′,m,m′ ∈ N if k ≤ k′, l ≤ l′ and m ≤ m′, then:

gbk(l,m) ≤ gbk′
(
l′,m′

)
.

Proof. We prove the monotonicity of gbk(l,m) in m, l and then k, separately.
First, if m ≤ m′ then gbk(l,m) = 4mgbk(l, 0) ≤ 4m

′
gbk(l, 0) = gbk(l,m

′).
By Lemma 2.6.5, if l ≤ l′, gbk(l′,m) ≥ gbk(l,m) + gbk(l

′ − l,m) ≥ gbk(l,m).
Finally, we prove that if k ≤ k′ then gbk(l,m) ≤ gbk′(l,m) by induction on the lexico-

graphically ordered pair (l,m):

gbk(0, 0) = 0

= gbk′(0, 0)

gbk(l + 1, 0) = gbk(l, k) + 1

≤ gbk′(l, k) + 1

≤ gbk′
(
l, k′
)

+ 1

= gbk′(l + 1, 0)

gbk(l,m+ 1) = 4gbk(l,m)

≤ 4gbk′(l,m)

= gbk′(l,m+ 1)

Write e Ï(m|k) e
′ if e⇒(m|k) ε

′ with e′ ∈ |ε′|.

Lemma 2.6.9. If e Ï(m|k) e
′ then s(e) ≤ gbk(s(e

′),m).

Proof. By induction on the reduction e⇒(m|k) ε
′ such that e′ ∈ ε′.

If e = x = ε′ then e′ = x and s(e) = 1 = gb0(1, 0) ≤ gbk(s(e
′),m).

If e = λx s, ε′ = λxσ′, m ≤ k and s ⇒(m1|k) σ
′ with m1 ≤ k, then e′ = λx s′ with

s Ï(m1|k) s
′. We obtain:

s(e) = s(s) + 1

≤ gbk
(
s
(
s′
)
,m1

)
+ 1 (by induction hypothesis)

≤ gbk
(
s
(
s′
)
, k
)

+ 1

= gbk
(
s
(
s′
)

+ 1, 0
)

≤ gbk
(
s
(
e′
)
,m
)
.
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If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, m ≤ k, s ⇒(m1|k) σ
′ and t ⇒(m2|k) τ ′ with mi ≤ k for all

i ∈ {1, 2}, then e′ = 〈s′〉 t′ with s Ï(m1|k) s
′ and t Ï(m2|k) t′. We obtain:

s(e) = s(s) + s
(
t
)

+ 1

≤ gbk
(
s
(
s′
)
,m1

)
+ gbk

(
s
(
t′
)
,m2

)
+ 1 (by induction hypothesis)

≤ gbk
(
s
(
s′
)
, k
)

+ gbk
(
s
(
t′
)
, k
)

+ 1

≤ gbk
(
s
(
s′
)

+ s
(
t′
)
, k
)

+ 1

= gbk
(
s
(
s′
)

+ s
(
t′
)

+ 1, 0
)

≤ gbk
(
s
(
e′
)
,m
)
.

If e = [s1, . . . , sr], ε′ = [σ′1, . . . , σ
′
r] and si ⇒(m|k) σ

′
i for all i ∈ {1, . . . , r}, then e′ =

[s′1, . . . , s
′
r] with si Ï(m|k) s

′
i for all i ∈ {1, . . . , r}. We obtain:

s(e) =

r∑
i=1

s(si)

≤
r∑
i=1

gbk
(
s
(
s′i
)
,m
)

(by induction hypothesis)

≤ gbk

(
r∑
i=1

s
(
s′i
)
,m

)
= gbk

(
s
(
e′
)
,m
)
.

If e = 〈λx s〉 t, ε′ = ∂xσ
′ · τ ′, 0 < m ≤ k, s⇒(m−1|k) σ

′ and t⇒(m−1|k) τ ′, then there are

s′ ∈ |σ′| and t′ ∈
∣∣τ ′∣∣ such that e′ ∈

∣∣∣∂xs′ · t′∣∣∣. In particular, s Ï(m−1|k) s
′ and t Ï(m−1|k) t′

and we obtain:

s(e) = s(s) + s
(
t
)

+ 2

≤ gbk
(
s
(
s′
)
,m− 1

)
+ gbk

(
s
(
t′
)
,m− 1

)
+ 2 (by induction hypothesis)

≤ 2gbk
(
s
(
e′
)
,m− 1

)
+ 2 (s

(
e′
)
≥ max

{
s
(
s′
)
, s
(
t′
)}

)

≤ 4gbk
(
s
(
e′
)
,m− 1

)
(s
(
e′
)
≥ s
(
s′
)
≥ 1)

= gbk
(
s
(
e′
)
,m
)
.

As a direct consequence, for all m ≤ k ∈ N, for all summable family (ei)i∈I and all family
(ε′i)i∈I such that ei ⇒(m|k) ε

′
i for all i ∈ I , (ε′i)i∈I is also summable: we can thus drop the side

condition in the de�nition of ⇒̃(m|k).
Observe however that those reduction relations are not stable under taking the unions of

�red redexes in families of reduction steps: using, e.g., the terms un(s) from Example 2.5.3, for
all n ∈ N, we have u2n(s)⇒(1|1) un(s) by �ring all redexes at even depth, u2n(s)⇒(0|1) un(s)
by �ring all redexes at odd depth, and u2n(s) ⇒(2n|2n) s by �ring both families, but there is
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obviously no k ∈ N such that u2n(s)⇒(k|k) s uniformly for all n ∈ N. Although we can close
the induced critical pair∑

n∈N u2n(s) ⇒̃(0|1)

∑
n∈N un(s) and

∑
n∈N u2n(s) ⇒̃(1|1)

∑
n∈N un(s)

trivially in this case, this phenomenon is an obstacle to con�uence:

Example 2.6.10. Fix s ∈ ∆ and consider the sequence−→w (s) of resource terms given byw0(s) = s
and:

w2n+1(s) = 〈λy y〉 [w2n(s)]

w2n+2(s) = 〈λy w2n+1(s)〉 []

Then for all n ∈ N, w2n(s) ⇒(1|1) un(s), w2n+1(s) ⇒(0|1) un(s), w2n(s) ⇒(0|1) vn(s), and
w2n+1(s)⇒(1|1) vn(s). Then for instance∑

n∈N
w2n(s) ⇒̃(1|1)

∑
n∈N

un(s) and
∑
n∈N

w2n(s) ⇒̃(0|1)

∑
n∈N

vn(s)

but we know from Example 2.5.5 that this pair of reductions cannot be closed in general.

2.6.2 Boundedly nested redexes

From the previous subsection, it follows that bounding the length of chains of immediately
nested redexes allows to tame the size collapse of resource expressions under reduction, but we
need to further restrict this notion in order to keep it stable under unions of �red redex sets. A
natural answer is to require a bound on the depth of the nesting of �red redexes, regardless of
the distance between them:

De�nition 2.6.11. We de�ne a family of relations
(
⇒(b)

)
b∈N inductively as follows:

— x⇒(b) x for all b ∈ N;

— λx s⇒(b) λxσ
′ if s⇒(b) σ

′;

— 〈s〉 t⇒(b) 〈σ′〉 τ ′ if s⇒(b) σ
′ and t⇒(b) τ ′;

— [s1, . . . , sr]⇒(b) [σ′1, . . . , σ
′
r] if si ⇒(b) σ

′
i for all i ∈ {1, . . . , r};

— 〈λx s〉 t⇒(b) ∂xσ
′ · τ ′ if b ≥ 1, s⇒(b−1) σ

′ and t⇒(b−1) τ ′.

Intuitively, we have e ⇒(b) ε
′ i� e ⇒∂ ε

′ and every branch of e (seen as a rooted tree)
crosses at most b �red redexes. In particular it should be clear that if e⇒(b) ε

′ then e⇒(b|b) ε
′,

and moreover e⇒(b′) ε
′ for all b′ ≥ b. Moreover observe that e⇒(h(e)) ε

′ whenever e⇒∂ ε
′,

hence⇒∂ =
⋃
b∈N⇒(b).

Write e Ï(b) e
′ if e ⇒(b) ε

′ with e′ ∈ |ε′|. If e Ï(b) e
′, then e Ï(b|b) e

′ and we thus know
that s(e) ≤ gbb(s(e

′)). In this special case, we can in fact provide a much better bound:

Lemma 2.6.12. If e Ï(b) e
′ then s(e) ≤ 4bs(e′).
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Proof. By induction on the reduction e⇒(b) ε
′ such that e′ ∈ |ε′|.

If e = x = ε′ then e′ = x and s(e) = 1 ≤ 4b = 4bs(e′).
If e = λx s and ε′ = λxσ′ with s ⇒(b) σ

′, then e′ = λx s′ with s Ï(b) s
′. By induction

hypothesis, s(s) ≤ 4bs(s′). Then s(e) = s(s) + 1 ≤ 4bs(s′) + 1 ≤ 4b(s(s′) + 1) = 4bs(e′).
If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, s ⇒(b) σ′ and t ⇒(b) τ ′, then e′ = 〈s′〉 t′ with s Ï(b) s′

and t Ï(b) t′. By induction hypothesis, s(s) ≤ 4bs(s′) and s
(
t
)
≤ 4bs

(
t′
)
. Then s(e) =

s(s) + s
(
t
)

+ 1 ≤ 4bs(s′) + 4bs
(
t′
)

+ 1 ≤ 4b
(
s(s′) + s

(
t′
)

+ 1
)

= 4bs(e′).
If e = [s1, . . . , sr], ε′ = [σ′1, . . . , σ

′
r] and si ⇒(b) σ

′
i for all i ∈ {1, . . . , r}, then e′ =

[s′1, . . . , s
′
r] with si Ï(b) s

′
i for all i ∈ {1, . . . , r}. By induction hypothesis, s(si) ≤ 4bs(s′i) for

all i ∈ {1, . . . , r} and then s(e) =
∑r

i=1 s(si) ≤
∑r

i=1 4bs(s′i) = 4bs(e′).
If e = 〈λx s〉 t, ε′ = ∂xσ

′ · τ ′, b > 0, s⇒(b−1) σ
′ and t⇒(b−1) τ ′, then there are s′ ∈ |σ′|

and t′ ∈
∣∣τ ′∣∣ such that e′ ∈

∣∣∂xs′ · t′∣∣. In particular, s Ï(b−1) s
′ and t Ï(b−1) t′ and, by

induction hypothesis, s(s) ≤ 4b−1s(s′) and s
(
t
)
≤ 4b−1s

(
t′
)
. Writing n = nx(s′) = #t′, we

have:

4bs
(
e′
)

= 4b
(
s
(
s′
)

+ s
(
t′
)
− n

)
= 4b−1

(
s
(
s′
)

+ s
(
t′
)

+ 3s
(
s′
)

+ 3s
(
t′
)
− 4n

)
(n ≤ s

(
s′
)

and n ≤ s
(
t′
)
)

≥ 4b−1
(
s
(
s′
)

+ s
(
t′
)

+ 2s
(
s′
))

(s
(
s′
)
≥ 1)

≥ 4b−1
(
s
(
s′
)

+ s
(
t′
))

+ 2

≥ s(s) + s
(
t
)

+ 2

= s(e).

Like for parallel reduction (De�nition 2.5.2), we extend each ⇒(b) to sums of resource
expressions by linearity: ε ⇒(b) ε

′ if ε =
∑n

i=1 ei and ε′ =
∑n

i=1 ε
′
i with ei ⇒(b) ε

′
i for all

i ∈ {1, . . . , n}. Again, because all term constructors are linear, the reduction rules extend
naturally to �nite sums of resource expressions: for instance,〈λxσ〉 τ ⇒(b) ∂xσ

′ · τ ′ as soon as
b ≥ 1, σ ⇒(b−1) σ

′ and τ ⇒(b−1) τ ′.
The relations⇒(b) are then stable under unions of families of �red redexes, avoiding pitfalls

such as that of Example 2.6.10.

Lemma 2.6.13. If e⇒(b0) ε
′ and u⇒(b1) υ′ then ∂xe · u⇒(b0+b1) ∂xε

′ · υ′.

Proof. Write u = [u1, . . . , un]. Then we can write υ′ = [υ′1, . . . , υ
′
n] with ui ⇒(b1) υ

′
i for all

i ∈ {1, . . . , n}. Recall that whenever I = {i1, . . . , ik} ⊆ {1, . . . , n} with #I = k, we write
uI = [ui1 , . . . , uik ] and υ′I =

[
υ′i1 , . . . , υ

′
ik

]
.

The proof is by induction on the reduction e⇒(b0) ε
′. If e = y = ε′ then:

— if y = x and n = 1 then ∂xe · u = u1 ⇒(b1) υ
′
1 = ∂xε

′ · υ′′;

— if y 6= x and u = [] then ∂xe · u = y ⇒(0) y = ∂xε
′ · υ′;

— otherwise, ∂xe · u = 0⇒(0) 0 = ∂xε
′ · υ′.
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If e = λy s (choosing y 6= x and y 6∈ fv(u)), ε′ = λy σ′ and s ⇒(b0) σ
′ then, by in-

duction hypothesis, ∂xs · u ⇒(b0+b1) ∂xσ
′ · υ′. We obtain: ∂xe · u = λy (∂xs · u) ⇒(b0+b1)

λy
(
∂xσ

′ · υ′
)

= ∂xε
′ · υ′.

If e = 〈s〉 t, ε′ = 〈σ′〉 τ ′, s ⇒(b0) σ
′ and t ⇒(b0) τ ′ then, by induction hypothesis, ∂xs ·

uI ⇒(b0+b1) ∂xσ
′ · υ′I and ∂xt · uI ⇒(b0+b1) ∂xτ ′ · υ′I , for all I ⊆ {1, . . . , n}. We obtain:

∂xe·u =
∑

(I, J) partition
of {1, . . . , n}

〈∂xs · uI〉 ∂xt · uJ ⇒(b0+b1)

∑
(I, J) partition
of {1, . . . , n}

〈
∂xσ

′ · υ′I
〉
∂xτ ′ · υ′J = ∂xε

′·υ′.

If e = [s1, . . . , sr], ε′ = [σ′1, . . . , σ
′
r] and si ⇒(b0) σ

′
i for all i ∈ {1, . . . , r} then, by induction

hypothesis, ∂xsi · uI ⇒(b0+b1) ∂xσ
′
i · υ′I for all i ∈ {1, . . . , r} and all I ⊆ {1, . . . , n}. We

obtain:

∂xe · u =
∑

(I1, . . . , Ir) partition
of {1, . . . , n}

[∂xs1 · uI1 , . . . , ∂xsr · uIr ]

⇒(b0+b1)

∑
(I1, . . . , Ir) partition

of {1, . . . , n}

[
∂xσ

′
1 · υ′I1 , . . . , ∂xσ′r · υ′Ir

]
= ∂xε

′ · υ′.

If e = 〈λy s〉 t (choosing y 6= x and y 6∈ fv
(
t
)
∪ fv(u)), ε′ = ∂yσ

′ · τ ′, b0 ≥ 1, s⇒(b0−1) σ
′

and t ⇒(b0−1) τ ′ then, by induction hypothesis, ∂xs · uI ⇒(b0+b1−1) ∂xσ
′ · υ′I and ∂xt ·

uI ⇒(b0+b1−1) ∂xτ ′ · υ′I , for all I ⊆ {1, . . . , n}. We obtain:

∂xe · u =
∑

(I, J) partition
of {1, . . . , n}

〈λy ∂xs · uI〉 ∂xt · uJ

⇒(b0+b1)

∑
(I, J) partition
of {1, . . . , n}

∂y
(
∂xσ

′ · υ′I
)
·
(
∂xτ ′ · υ′J

)
= ∂x

(
∂yσ

′ · τ ′
)
· υ′ = ∂xε

′ · υ′

using Lemma 2.3.9.

Lemma 2.6.14. Let K be a �nite set, and assume ε ⇒(bk) ε
′
k for all k ∈ K . Then, setting

b =
∑

k∈K bk, there is ε′′ such that ε′k ⇒(2bk b)
ε′′ for all k ∈ K .

Proof. By the linearity of the de�nition of reduction on �nite sums, it is su�cient to address the
case of ε = e ∈ (!)∆. The proof is then by induction on the family of reductions e⇒(bk) ε

′
k.

If e = x = ε′k for all k ∈ K , then we set ε′′ = x.
If e = λx s, and ε′k = λxσ′k with s⇒(bk) σ

′
k for all k ∈ K then, by induction hypothesis,

we have σ′′ such that σ′k ⇒(2bk b)
σ′′ for all k ∈ K , and then we set ε′′ = λxσ′′.

If e = [s1, . . . , sr] and ε′k =
[
σ′1,k, . . . , σ

′
r,k

]
with sj ⇒(bk) σ

′
j,k for all j ∈ {1, . . . , r}

and k ∈ K then, by induction hypothesis, we have σ′′j such that σ′j,k ⇒(2bk b)
σ′′j for all

j ∈ {1, . . . , r} and k ∈ K , and then we set ε′′ = [σ′′1 , . . . , σ
′′
r ].

Finally, assume K = K0 +K1, e = 〈λx s〉 t and:
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— for all k ∈ K0, ε′k = 〈λxσ′k〉 τ ′k with s⇒(bk) σ
′
k and t⇒(bk) τ ′k;

— for all k ∈ K1, bk ≥ 1 and ε′k = ∂xσ
′
k · τ ′k with s⇒(bk−1) σ

′
k and t⇒(bk−1) τ ′k.

Write b′ = b − #K1. By induction hypothesis, there are σ′′ and τ ′′ such that, for all k ∈
K0, σ′k ⇒(2bk b′) σ′′ and τ ′k ⇒(2bk b′) τ ′′, and for all k ∈ K1, σ′k ⇒(2(bk−1)b′

) σ′′ and

τ ′k ⇒(2(bk−1)b′
) τ ′′.

If K1 = ∅ then b = b′ and we set ε′′ = 〈λxσ′′〉 τ ′′: we obtain ε′k ⇒(2bk b)
ε′′, for all

k ∈ K = K0.
Otherwise, b > b′ and we set ε′′ = ∂xσ

′′ · τ ′′ so that:

— for all k ∈ K0, ε′k = 〈λxσ′k〉 τ ′k ⇒(2bk b′+1)
σ′k with 2bkb′ + 1 ≤ 2bkb;

— for all k ∈ K1, by the previous lemma, ε′k = ∂xσ
′
k · τ ′k ⇒(2bk b′) σ

′
k and 2bkb′ < 2bkb.

We already know ⇒̃∂ is not con�uent, and the counter examples we provided actually show
that no single ⇒̃(b) is con�uent either. Setting 19

⇒̃(∂) :=

(⋃
b∈N
⇒̃(b)

)
⊆ S(!)∆ × S(!)∆

however, we will obtain a strongly con�uent reduction relation, under the assumption that S
has the following additive splitting property: 20

De�nition 2.6.15. We say S has the additive splitting property if: whenever a1 + a2 =
b1 + b2 ∈ S, there exists c1,1, c1,2, c2,1, c2,2 ∈ S such that ai = ci,1 + ci,2 and bj = c1,j + c2,j

for i, j ∈ {1, 2}.

This property is satis�ed by any ring, but also by the usual semirings of non-negative
numbers (N, Q+, etc.) as well as booleans. We will in fact rely on the following generalization
of the property to �nite families of �nite sums of any size:

Lemma 2.6.16. Assume S has the additive splitting property. Let a ∈ S, J1, . . . , Jn be �nite
sets and, for all i ∈ {1, . . . , n}, let (bi,j)j∈Ji ∈ SJi be a family such that a =

∑
j∈Ji bi,j . Write

J = J1 × · · · × Jn and, for all i ∈ {1, . . . , n}, write J ′i = J1 × · · · × Ji−1 × Ji+1 × · · · × Jn.
Whenever −→ ′ = (j1, . . . , ji−1, ji+1, . . . , jn) ∈ J ′i and ji ∈ Ji, write −→ ′ ·i ji = (j1, . . . , jn) ∈ J .
Then there exists a family

(
c−→
)
∈ SJ such that, for all i ∈ {1, . . . , n} and all j ∈ Ji, bi,j =∑

−→ ′∈J ′i
c−→ ′·ij .

Proof. By induction on n, and then on #Jn for n > 0, using the binary additive splitting
property to enable the induction.

19. Our notation is somehow abusive as ⇒̃(∂) is not of the form described in De�nition 2.5.9: there should not be
any ambiguity as we have not de�ned any relation⇒(∂). Similarly, we may also write ⇒̃(∂)E

for
⋃
b∈N ⇒̃(b)E

in
the following.

20. The additive splitting property was previously used by Carraro, Ehrhard and Salibra [CES10; Car11] in their
study of linear logic exponentials with in�nite multiplicities. There is no clear connection between that work and
our present contributions, though.
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Lemma 2.6.17. Assume S has the additive splitting property and �x a⇒∂-reduction structure E.
For all �nite set K and all reductions ε ⇒̃(∂)E

ε′k for k ∈ K , there is ε′′ such that ε′k ⇒̃(∂)E
ε′′ for

all k ∈ K .

Proof. For all k ∈ K , there are bk ∈ N, a resource support Ek ∈ E, a set Ik of indices, a family
(ak,i)i∈Ik of scalars, and summable families (ek,i)i∈Ik ∈ E

Ik
k and

(
ε′k,i

)
i∈Ik
∈ N[(!)∆]Ik such

that ε =
∑

i∈Ik ak,i.ek,i, ε
′
k =

∑
i∈Ik ak,i.ε

′
k,i and ek,i ⇒(bk) ε

′
k,i for all i ∈ Ik.

Write E = {ek,i ; k ∈ K, i ∈ Ik}: since E ⊆
⋃
k∈K Ek and E is a resource structure, we

have E ∈ E. Write E ′ =
⋃{∣∣∣ε′k,i∣∣∣ ; k ∈ K, i ∈ Ik

}
: since E is a reduction structure, we also

have E ′ ∈ E.
Now �x e ∈ (!)∆ and write a = εe. For all k ∈ K , the set Ie,k = {ik ∈ Ik ; ek,ik = e} is

�nite, and then
∑

ik∈Ie,k ak,ik = a. Write Ie =
∏
k∈K Ie,k and, for all k ∈ K , K ′k = K \ {k}

and I ′e,k =
∏
l∈K′k

Ie,l. If −→ı = (il)l∈K′k
∈ I ′e,k and ik ∈ Ie,k, write −→ı ·k ik = (ik)k∈K ∈ Ie.

By Lemma 2.6.16, we obtain a family of scalars
(
a′
e,−→ı

)
−→ı ∈Ie

such that, for all k ∈ K and all

ik ∈ Ie,k, ak,ik =
∑
−→ı ∈I′e,k

a′
e,−→ı ·kik

. Moreover, a =
∑
−→ı ∈Ie a

′
e,−→ı .

Since each Ie is �nite, the family (e)e∈(!)∆,−→ı ∈Ie is summable. Moreover, if we �x k ∈ K
and ik ∈ Ik, there are �nitely many e ∈ (!)∆ and −→ı ∈ I ′e,k such that −→ı ·k ik ∈ Ie: indeed

in this case e = ek,ik . Since
(
ε′k,ik

)
ik∈Ik

is summable too, it follows that
(
ε′k,ik

)
e∈(!)∆,−→ı ∈Ie

is

summable. By associativity, we obtain

∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .e =
∑
e∈(!)∆

∑
−→ı ∈Ie

a′e,−→ı

e = ε

and ∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .ε
′
k,ik

=
∑
ik∈Ik

 ∑
−→ı ∈I′ek,ik ,k

a′ek,ik ,
−→ı ·kik

ε′k,ik = ε′k

for all k ∈ K .
Write b =

∑
k∈K bk. For all e ∈ (!)∆ and all −→ı = (ik)k∈K ∈ Ie, we have e ⇒(bk) ε

′
k,ik

for all k ∈ K hence Lemma 2.6.14 gives ε′′
e,−→ı ∈ N[(!)∆] such that ε′k,ik ⇒(2bk b)

ε′′
e,−→ı for all

k ∈ K . Moreover, for all k ∈ K and e′′ ∈ (!)∆, if e′′ ∈
∣∣∣ε′′e,−→ı ∣∣∣ then there is e′ ∈

∣∣∣ε′k,ik ∣∣∣ such that

e′ Ï
(2bk b)

e′′, and then e Ï(bk) e
′: it follows that s(e) ≤ 4bk+2bk bs(e′′) and fv(e) = fv(e′′).

Since each Ie is �nite, there are �nitely many pairs (e,−→ı ) ∈
∑

e∈(!)∆ Ie such that e′′ ∈
∣∣∣ε′′e,−→ı ∣∣∣.

Hence the family
(
ε′′
e,−→ı

)
e∈(!)∆,−→ı ∈Ie

is summable. Recall moreover that ε′k,ik ∈ N[E ′] for all

k ∈ K and ik ∈ Ik: we obtain

ε′k ⇒̃(2bk b)E ′

∑
e∈(!)∆
−→ı ∈Ie

a′e,−→ı .ε
′′
e,−→ı
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for all k ∈ K , which concludes the proof.

2.6.3 Bounded depth of substitution

In the previous subsection, we relied on the additive splitting property to establish the
con�uence of ⇒̃(∂) : this is because there is no maximal way to ⇒̃(b)-reduce a resource vector,
hence we must track precisely the di�erent redexes that are �red in each reduction of a critical
pair.

We can get rid of this hypothesis by considering a more uniform bound on reductions. A
�rst intuition would be to bound the depth at which redexes are �red, but as with⇒(m|k) this
boundedness condition is not preserved in residuals: rather, we have to bound the depth at
which variables are substituted. First recall from De�nition 2.3.2 that mdx(s) = maxdx(s) is
the maximum depth of an occurrence of x in s. Then:

De�nition 2.6.18. We de�ne a family of relations
(
⇒bdc

)
d∈N inductively as follows:

— e⇒b0c e for all e ∈ (!)∆;

— x⇒bd+1c x for all x ∈ V ;

— λx s⇒bd+1c λxσ
′ if s⇒bdc σ′;

— 〈s〉 t⇒bd+1c 〈σ′〉 τ ′ if s⇒bd+1c σ
′ and t⇒bdc τ ′;

— [s1, . . . , sr]⇒bd+1c [σ′1, . . . , σ
′
r] if si ⇒bd+1c σ

′
i for all i ∈ {1, . . . , r};

— 〈λx s〉 t⇒bd+1c ∂xσ
′ · τ ′ if mdx(s) ≤ d, s⇒bdc σ′ and t⇒bdc τ ′.

It should be clear that if e ⇒bdc ε′ then e ⇒(d) ε
′, and moreover e ⇒bd′c ε′ for all d′ ≥ d.

We also have e⇒bh(e)c ε
′ as soon as e⇒∂ ε

′.

De�nition 2.6.19. For all e ∈ (!)∆ we de�ne the full parallel reduct Fbdc(e) at substitution
depth d of e by induction on the pair (d, e) as follows:

Fb0c(e) := e

Fbd+1c(x) := x

Fbd+1c(λx s) := λxFbdc(s)

Fbd+1c
(
〈λx s〉 t

)
:= ∂xFbdc(s) · Fbdc

(
t
)

(if mdx(s) ≤ d)

Fbd+1c
(
〈s〉 t

)
:=
〈
Fbd+1c(s)

〉
Fbdc

(
t
)

(in the other cases)

Fbd+1c([s1, . . . , sn]) :=
[
Fbd+1c(s1), . . . ,Fbd+1c(sn)

]
Then if ε =

∑n
i=1 ei ∈ N[(!)∆], we set Fbdc(ε) :=

∑n
i=1 Fbdc(ei).

Lemma 2.6.20. For all e ∈ (!)∆, e⇒bdc Fbdc(e).

Proof. By a straightforward induction on d then on e.

It follows that e ⇒(d) Fbdc(e), hence if e′ ∈
∣∣Fbdc(e)∣∣ then s(e) ≤ 4ds(e′). In particular

Fbdc de�nes a linear-continuous function on S(!)∆ .
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Lemma 2.6.21. If e ⇒bd0c ε
′, u ⇒bd1c υ

′ and d ≥ max ({d0} ∪ {dx + d1 − 1 ; dx ∈ dx(e)})
then ∂xe · u⇒bdc ∂xε′ · υ′.

Proof. Write n = #u, u = [u1, . . . , un] and υ′ = [υ′1, . . . , υ
′
n] so that ui ⇒bd1c υ

′
i for i ∈

{1, . . . , n}.
The proof is by induction on the reduction e⇒bd0c ε

′. We treat the cases d0 = 0 and d0 > 0
uniformly by a further induction on e, setting d′0 = max {0, d0 − 1}.

If d0 = d′0 + 1, e = 〈λy s〉 t and ε′ = ∂yσ
′ · τ ′ with y 6∈ {x} ∪ fv

(
t
)
∪ fv(u), mdy(s) ≤ d′0,

s⇒bd′0c σ
′ and t⇒bd′0c τ

′, then we have

∂xe · u =
∑

(I,J) partition of {1,...,n}

〈λy (∂xs · uI)〉 ∂xt · uJ

and
∂xε
′ · υ′ =

∑
(I,J) partition of {1,...,n}

∂y
(
∂xs · υ′I

)
·
(
∂xt · υ′J

)
.

Observe that d > 0 and d−1 ≥ max {d′0}∪
{
d′x + d1 − 1 ; d′x ∈ dx(s) ∪ dx

(
t
)}

. By induction
hypothesis, we obtain ∂xs ·uI ⇒bd−1c ∂xσ

′ ·υ′I and ∂xt ·uJ ⇒bd−1c ∂xτ
′ ·υ′J , and we conclude

since mdy(∂xs · uI) = mdy(s) ≤ d′0 ≤ d− 1.
If e = y = ε′, with y 6= x, then ∂xe · u = ∂xε

′ · υ′ = y and we conclude directly by the
de�nition of⇒bdc.

If e = x = ε′, then dx(e) = {1} hence d ≥ d1 and we conclude since ∂xe · u = u,
∂xε
′ · υ′ = υ′ and u⇒bd1c υ

′.
If e = λy s and ε′ = λy σ′ with y 6∈ {x}∪fv(u) and s⇒bd′0c σ

′, then write d′ = max {d′0}∪
{d′x + d1 − 1 ; d′x ∈ dx(s)}. By induction hypothesis, we obtain ∂xs·u⇒bd′c ∂xσ′ ·υ′. Observe
that either d = d′ + 1 or d = d′ = 0 (in that latter case, ∂xs · u = ∂xσ

′ · υ′), and then we
conclude since ∂xe · u = λy (∂xs · u) and ∂xε′ · υ′ = λy (∂xσ

′ · υ′).
If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′, with s⇒bd0c σ

′ and t⇒bd′0c τ
′, then we have

∂xe · u =
∑

(I,J) partition of {1,...,n}

〈∂xs · uI〉 ∂xt · uJ

and
∂xε
′ · υ′ =

∑
(I,J) partition of {1,...,n}

〈
∂xs · υ′I

〉 (
∂xt · υ′J

)
.

Write d′ = max {d′0} ∪
{
d′x + d1 − 1 ; d′x ∈ dx

(
t
)}

. By induction hypothesis, we obtain
∂xs · uI ⇒bdc ∂xσ′ · υ′I and ∂xt · uJ ⇒bd′c ∂xτ ′ · υ′J . Then we conclude observing that
d = d′ + 1 or d = d′ = 0 (in that latter case, ∂xs · uI = ∂xσ

′ · υ′I and ∂xt · uJ = ∂xτ
′ · u′J ).

If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ
′
k], with si ⇒bd0c σ

′
i for i ∈ {1, . . . , k}, then we have

∂xe · u =
∑

(I1,...,Ik) partition of {1,...,n}

[∂xs1 · uI1 . . . , ∂xsk · uIk ]
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and
∂xε
′ · υ′ =

∑
(I1,...,Ik) partition of {1,...,n}

[
∂xσ

′
1 · υ′I1 . . . , ∂xσ′k · υ′Ik

]
.

By induction hypothesis, we obtain

[∂xs1 · uI1 . . . , ∂xsk · uIk ]⇒bdc
[
∂xσ

′
1 · υ′I1 . . . , ∂xσ′k · υ′Ik

]
for all partition (I1, . . . , Ik) of {1, . . . , n} and we conclude.

Lemma 2.6.22. If e⇒bdc ε′ and e′ ∈ |ε′| then mdx(e′) ≤ 2d max {d,mdx(e)}.

Proof. By induction on the reduction e⇒bdc ε′.
If d = 0, then e′ = ε′ = e and the result is trivial. For the other inductive cases, write

d = d′ + 1.
If e = 〈λy s〉 t and ε′ = ∂yσ

′ · τ ′ with mdy(s) ≤ d′, s ⇒bd′c σ′ and t ⇒bd′c τ ′, choosing
y 6∈ {x} ∪ fv

(
t
)
, then e′ ∈

∣∣∂ys′ · t′∣∣ with s′ ∈ |σ′| and t′ ∈ |τ ′|. By induction hypothesis,
mdz(s

′) ≤ 2d
′
max {d′,mdz(s)} and mdz(t

′
) ≤ 2d

′
max

{
d′,mdz

(
t
)}

for any z ∈ V . By
Lemma 2.3.7,

mdx
(
e′
)
≤ max

(
dx
(
s′
)
∪
{
d′y + d′x − 1 ; d′y ∈ dy

(
s′
)
, d′x ∈ dx(t

′
)
})

≤ max
{

2d
′
max

{
d′,mdx(s)

}
, 2d

′
max

{
d′,mdy(s)

}
+ 2d

′
max

{
d′,mdx

(
t
)}}

≤ 2d
′+1 max

{
d′,mdx(s),mdy(s),mdx

(
t
)}

≤ 2d max {d,mdx(e)}.

If e = λy s and ε′ = λy σ′ with s⇒bd′c σ′, choosing y 6= x, then e′ = λx s′ with s′ ∈ |σ′|.
By induction hypothesis, mdx(s′) ≤ 2d

′
max {d′,mdx(s)}. Then mdx(e′) ≤mdx(s′) + 1 ≤

2d
′
max {d′,mdx(s)}+ 1 ≤ 2d max {d,mdx(s)} ≤ 2d max {d,mdx(e)}.
If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′ with s⇒bdc σ′ and t⇒bd′c τ ′, then e′ = 〈s′〉 t′ with s′ ∈ |σ′|

and t′ ∈ |τ ′|. By induction hypothesis, mdx(s′) ≤ 2d max {d,mdx(s)} and mdx(t
′
) ≤

2d
′
max

{
d′,mdx

(
t
)}

. Then:

mdx
(
e′
)
≤ max

{
mdx

(
s′
)
,mdx

(
t
′)

+ 1
}

≤ max
{

2d max {d,mdx(s)}, 2d′ max
{
d′,mdx

(
t
)}

+ 1
}

≤ 2d max
{
d,mdx(s),mdx

(
t
)}

≤ 2d max {d,mdx(e)}.

If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ
′
k], with si ⇒bdc σ′i for all i ∈ {1, . . . , k}, then e′ =

[s′1, . . . , s
′
k] with s′i ∈ |σ′i| for all i ∈ {1, . . . , k}. By induction hypothesis, for all i ∈ {1, . . . , k},

mdx(s′i) ≤ 2d max {d,mdx(si)}, hence

mdx
(
e′
)

= max
{
mdx

(
s′1
)
, . . . ,mdx

(
s′k
)}

≤ 2d max {d,mdx(s1), . . . ,mdx(sk)}
= 2d max {d,mdx(e)}.
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Lemma 2.6.23. If e⇒bdc ε′ then ε′ ⇒b2ddc Fbdc(e).

Proof. By induction on the reduction e⇒bdc ε′.
If d = 0, then ε′ = e and the result follows from Lemma 2.6.20. For the other inductive

cases, set d = d′ + 1.
If e = 〈λx s〉 t and ε′ = ∂xσ

′ · τ ′ with mdx(s) ≤ d′, s ⇒bd′c σ′ and t ⇒bd′c τ ′ then by
induction hypothesis, we have σ′ ⇒b2d′d′c Fbd′c(s) and τ ′ ⇒b2d′d′c Fbd′c

(
t
)
. By the previous

lemma, we moreover have mdx(σ′) ≤ 2d
′
max {d′,mdx(s)} = 2d

′
d′. It follows that 2dd ≥

2d
′
d′ and 2dd ≥ mdx(σ′) + 2d

′
d′ − 1 hence we can apply Lemma 2.6.21 to obtain ε′ ⇒b2ddc

∂xFbd′c(s) · Fbd′c
(
t
)

= Fbdc(e).
If e = λy s and ε′ = λy σ′ with s ⇒bd′c σ′, then by induction hypothesis, σ′ ⇒b2d′d′c

Fbd′c(s), hence ε′ ⇒b2d′d′+1c λxFbd′c(s) = Fbdc(e) and we conclude since 2d
′
d′ + 1 ≤ 2dd.

If e = 〈s〉 t and ε′ = 〈σ′〉 τ ′ with s⇒bdc σ′ and t⇒bd′c τ ′, there are two subcases:

— If moreover s = λxu and mdx(u) ≤ d′ then σ′ = λxυ′ with u ⇒bd′c υ′. Then
by induction hypothesis, υ′ ⇒b2d′d′c Fbd′c(u), and τ ′ ⇒b2d′d′c Fbd′c

(
t
)
. By the pre-

vious lemma, we moreover have mdx(υ′) ≤ 2d
′
max {d′,mdx(u)} = 2d

′
d′, hence

ε′ = 〈λxυ′〉 τ ′ ⇒b2d′d′+1c ∂xFbd′c(u) · Fbd′c
(
t
)

= Fbdc(e), and we conclude since

2d
′
d′ + 1 ≤ 2dd.

— Otherwise s is not an abstraction or s = λxuwithmdx(u) > d′. By induction hypothesis,
σ′ ⇒b2ddc Fbdc(σ′), and τ ′ ⇒b2d′d′c Fbd′c

(
t
)
. Since 2d

′
d′ < 2dd, we obtain τ ′ ⇒b2dd−1c

Fbd′c
(
t
)

and then ε′ ⇒b2ddc
〈
Fbdc(s)

〉
Fbd′c

(
t
)

= Fbdc(e).

If e = [s1, . . . , sk] and ε′ = [σ′1, . . . , σ
′
k], with si ⇒bdc σ′i for all i ∈ {1, . . . , k}, then by

induction hypothesis, for all i ∈ {1, . . . , k}, σ′i ⇒b2ddc Fbdc(si) and we conclude directly.

Lemma 2.6.24. For all⇒∂-reduction structure E, if ε ⇒̃bdcE ε
′ then ε′ ⇒̃b2ddcE Fbdc(ε

′).

Proof. Assume there is E ∈ E, summable families (ei)i∈I ∈ EI and (ε′i)i∈IN[(!)∆]I , and a
family of scalars (ai)i∈I such that ε =

∑
i∈I ai.ei, ε

′ =
∑

i∈I ai.ε
′
i and ei ⇒bdc ε′i for all

i ∈ I . Write E ′ =
⋃
i∈I |ε′i|: since E is a reduction structure, we obtain E ′ ∈ E. The family(

Fbdc(ei)
)
i∈I is summable, and by the previous lemma, ε′i ⇒b2ddc Fbdc(ei) for all i ∈ I . We

conclude that ε′ ⇒̃b2ddc
∑

i∈I ai.Fbdc(ei) = Fbdc(ε).

Similarly to ⇒̃(∂) , we set

⇒̃b∂c :=
⋃
d∈N
⇒̃bdc

and we obtain:

Corollary 2.6.25. For all ⇒∂-reduction structure E and all ε, ε′1, . . . , ε
′
n ∈ S(!)∆ such that

ε ⇒̃b∂cE ε
′
i for i ∈ {1, . . . , n}, there exists d ∈ N such that ε′i ⇒̃b∂cE Fbdc(ε) for i ∈ {1, . . . , n}.
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2.6.4 Parallel reduction of resource vectors of bounded height

Recall that we have e⇒∂ ε
′ i� e⇒(h(e)|h(e)) ε

′ i� e⇒(h(e)) ε
′ i� e⇒bh(e)c ε

′.

De�nition 2.6.26. We say a resource vector ε ∈ S(!)∆ is bounded if {h(e) ; e ∈ |ε|} is �nite.
We then write h(ε) = max {h(e) ; e ∈ |ε|}.

If E ⊆ (!)∆, we also write h(E) := {h(e) ; e ∈ E} and then

(!)B := {E ⊆ (!)∆ ; h(E) and fv(E) are �nite}

which is a resource structure (see De�nition 2.5.8). Indeed, (!)B ⊆ (!)Ffv, and if we write

(!)∆h,V := {e ∈ (!)∆ ; h(e) ≤ h and fv(e) ⊆ V }

for all h ∈ N and all V ⊆ V , we have (!)B = {(!)∆h,V ; h ∈ N and V ∈ Pf (V)}⊥⊥: this is a
consequence of a generic transport lemma [4]. The semimodule of bounded resource vectors is
then S〈(!)B〉.

Lemma 2.6.27. For all h ∈ N and V ∈ Pf (V), (F(e))e∈(!)∆h,V
is summable. Moreover, for all

ε ∈ S〈(!)B〉, we have |ε| ⊆ (!)∆h(ε),fv(ε) and then, setting F(ε) :=
∑

e∈|ε| εe.F(e), we obtain
ε ⇒̃∂ |ε| F(ε).

Proof. Follows from Lemmas 2.6.20 and 2.6.12 using the fact that, if h(e) ≤ h then F(e) =
Fbhc(e).

If S is zerosumfree, we have: ε ⇒̃∂ ε
′ i� ε ⇒̃bh(ε)c ε

′ as soon as ε is bounded. More generally,
without any assumption on S, we have ε ⇒̃∂(!)∆h,V

ε′ i� ε ⇒̃bhc(!)∆h,V
ε′. We can moreover

show that bounded vectors are stable under ⇒̃∂(!)B:

Lemma 2.6.28. If e Ï∂ e
′ then h(e′) ≤ 2h(e)h(e).

Proof. The proof is by induction on the reduction e⇒∂ ε
′ such that e′ ∈ |ε′|, and is very similar

to that of Lemma 2.6.22. We detail only the base case.
If e = 〈λx s〉 t and ε′ = ∂xσ

′ · τ ′ with s ⇒∂ σ
′ and t ⇒∂ τ

′. Then e′ ∈
∣∣∂xs′ · t′∣∣ with

s′ ∈ |σ′| and t′ ∈ |τ ′|. By induction, h(s′) ≤ 2h(s)h(s) and h
(
t′
)
≤ 2h(t)h

(
t
)
. By Lemma

2.3.6,

h
(
e′
)
≤ h

(
s′
)

+ h
(
t′
)

≤ 2h(s)h(s) + 2h(t)h
(
t
)

≤ 2× 2max{h(s),h(t)}max
{
h(s),h

(
t
)}

< 2max{h(s),h(t)}+1
(
max

{
h(s),h

(
t
)}

+ 1
)

= 2h(e)h(e).
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It follows that (!)B is a⇒∂-reduction structure: since ⇒̃∂(!)B coincides with ⇒̃b∂c(!)B,
Corollary 2.6.25 entails that ⇒̃∂(!)B is strongly con�uent. We can even re�ne this result following
Lemma 2.6.27. First, let us call bounded reduction structure any⇒∂-reduction structure E such
that E ⊆ (!)B. Then Lemma 2.6.24 entails:

Corollary 2.6.29. For all bounded reduction structure E, and all reduction ε ⇒̃∂E ε
′, ε′ ⇒̃∂E F(ε).

It should moreover be clear that τ(M) is bounded for all M ∈ ΛS. In the next section, we
show that ⇒̃∂(!)B allows to simulate parallel β-reduction via Taylor expansion. 21

2.7 Simulating β-reduction under Taylor expansion

From now on, for all M,N ∈ ΛS, we write M ⇒̃∂ N if τ(M) ⇒̃∂ τ(N). More generally,
for all M ∈ ΛS and all σ ∈ S(!)∆ , we write M ⇒̃∂ σ (resp. σ ⇒̃∂ M ) if τ(M) ⇒̃∂ σ (resp.
σ ⇒̃∂ τ(M)). We will show in Subsection 2.7.1 that M ⇒̃∂ N as soon as M ⇒β N where⇒β

is the parallel β-reduction de�ned as follows:

De�nition 2.7.1. We de�ne parallel β-reduction on algebraic terms⇒β ⊆ ΛS × ΛS by the
following inductive rules:

— x⇒β x;

— if S ⇒β M
′ then λxS ⇒β λxM

′;

— if S ⇒β M
′ and N ⇒β N

′ then (S)N ⇒β (M ′)N ′;

— if S ⇒β M
′ and N ⇒β N

′ then (λxS)N ⇒β M
′[N ′/x];

— 0⇒β 0;

— if M ⇒β M
′ then a.M ⇒β a.M

′;

— if M ⇒β M
′ and N ⇒β N

′ then M +N ⇒β M
′ +N ′.

In particular, if 1 ∈ S admits an opposite element −1 ∈ S then ⇒̃∂(!)B is degenerate.
Indeed, we can consider⇒β up to the equality of vector λ-terms by setting M ⇒

β̃
N if there

are M ′ 'v M and N ′ 'v N such that M ′ ⇒β N
′. Since 'τ subsumes 'v, the results of

Subsection 2.7.1 will imply that M ⇒̃∂(!)B N as soon as M ⇒
β̃
N . If −1 ∈ S, we have

M ⇒∗
β̃
N for all M,N ∈ ΛS by Example 2.4.16, hence M ⇒̃∂

∗
(!)B N .

Using reduction structures, we will nonetheless be able to de�ne a consistent reduction rela-
tion containing β-reduction, but restricted to those algebraic λ-terms that have a normalizable
Taylor expansion, in the sense to be de�ned in Section 2.8.

On the other hand, even assuming S is zerosumfree, Taylor expansions are not stable under
⇒̃∂ : if M ⇒̃∂B σ′, we know from the previous section that σ′ is bounded and M ⇒̃b∂c σ′, but
there is no reason why σ′ would be the Taylor expansion of an algebraic λ-term.

21. Observe that it is possible to establish Corollary 2.6.29 quite directly, following the proof of Lemma 2.6.24,
and using only Lemma 2.6.28 and a variant of Lemma 2.6.12 (replacing b with h(e)). This is the path adopted in the
extended abstract [13] presented at CSL 2017.
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We do know, however, that σ′ ⇒̃∂B F(τ(M)), which will allow us to obtain a weak con-
servativity result w.r.t. parallel β-reduction: for all reduction M ⇒̃∂

∗
B σ′ there is a reduction

M ⇒∗β M ′ such that σ′ ⇒̃∂
∗
B M ′, i.e. any ⇒̃∂B-reduction sequence from a Taylor expan-

sion can be completed into a parallel β-reduction sequence (Subsection 2.7.2). Restricted to
normalizable pure λ-terms, this will enable us to obtain an actual conservativity result.

2.7.1 Simulation of parallel β-reduction

We show that ⇒̃∂(!)B allows to simulate⇒β on S(!)∆ , without any particular assumption
on S.

Lemma 2.7.2. If σ ⇒̃∂S σ
′ and τ ⇒̃∂T τ

′ then 〈λxσ〉 τ ⇒̃∂〈λxS〉 T ∂xσ
′ · τ ′.

Proof. Assume there are summable families (si)i∈I , (σ′i)i∈I ,
(
tj
)
j∈J and

(
τ ′j

)
j∈J

, and families

of scalars (ai)i∈I ∈ SI and (bj)j∈J ∈ T
J

such that:

— σ =
∑

i∈I ai.si, σ
′ =

∑
i∈I ai.σ

′
i and si ⇒∂ σ

′
i for all i ∈ I ;

— τ =
∑

j∈J bj .tj , τ
′ =

∑
j∈J bj .τ

′
j , and tj ∈ T and tj ⇒∂ τ

′
j for all j ∈ J .

By multilinear-continuity, the families
(
〈λx si〉 tj

)
i∈I,j∈J and

(
∂xσ

′
i · τ ′j

)
i∈I,j∈J

are summable,

〈λxσ〉 τ =
∑

i∈I,j∈J aibj .〈λx si〉 tj and ∂xσ′ ·τ ′ =
∑

i∈I,j∈J aibj .∂xσ
′
i ·τ ′j . It is then su�cient

to observe that 〈λx si〉 tj ⇒∂ ∂xσ
′
i · τ ′j for all (i, j) ∈ I × J .

The additional requirement on resource supports is straightforwardly satis�ed, since
〈λx si〉 tj ∈ 〈λxS〉 T for all (i, j) ∈ I × J .

Lemma 2.7.3. If σ ⇒̃∂S σ
′ then λxσ ⇒̃∂λxS λxσ

′. If moreover τ ⇒̃∂T τ
′ then 〈σ〉 τ ⇒̃∂〈S〉 T

〈σ′〉 τ ′.

Proof. Similarly to the previous lemma, each result follows from the multilinear-continuity of
syntactic operators, and the contextuality of⇒∂ .

Lemma 2.7.4. If σ ⇒̃∂S σ
′ then σ! ⇒̃∂S! σ′

!.

Proof. Assume there are summable families (si)i∈I and (σ′i)i∈I , and a family of scalars (ai)i∈I
such that σ =

∑
i∈I ai.si, σ

′ =
∑

i∈I ai.σ
′
i and si ⇒∂ σ

′
i for all i ∈ I .

Then by multilinear-continuity of the monomial construction, for all n ∈ N, the families
([si1 , . . . , sin ])i1,...,in∈I and

([
σ′i1 , . . . , σ

′
in

])
i1,...,in∈I

are summable, and

σn =
∑

i1,...,in∈I
ai1 · · · ain [si1 , . . . , sin ]

and
σ′
n

=
∑

i1,...,in∈I
ai1 · · · ain .

[
σ′i1 , . . . , σ

′
in

]
.
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Since the supports of the monomial vectors σn (resp. σ′n) for n ∈ N are pairwise disjoint,
we obtain that the families ([si1 , . . . , sin ]) n∈N

i1,...,in∈I
and

([
σ′i1 , . . . , σ

′
in

])
n∈N

i1,...,in∈I
are summable,

and

σ! =
∑
n∈N

1

n !
.σn =

∑
n∈N

i1,...,in∈I

ai1 · · · ain
n !

.[si1 , . . . , sin ]

and

σ′
!
=
∑
n∈N

1

n !
.σ′

n
=

∑
n∈N

i1,...,in∈I

ai1 · · · ain
n !

.
[
σ′i1 , . . . , σ

′
in

]
which concludes the proof since each [si1 , . . . , sin ]⇒∂

[
σ′i1 , . . . , σ

′
in

]
.

Lemma 2.7.5. If ε ⇒̃∂E ε
′ and ϕ ⇒̃∂F ϕ

′ then a.ε ⇒̃∂E a.ε
′ and ε+ ϕ ⇒̃∂E∪F ε

′ + ϕ′.

Proof. Follows directly from the de�nitions, using the fact that summable families form a
S-semimodule.

Lemma 2.7.6. If M ⇒β M
′ then M ⇒̃∂T (M) M

′.

Proof. By induction on the reduction M ⇒β M
′ using Lemmas 2.7.2 to 2.7.4 in the cases of

reduction from a simple term, and Lemma 2.7.5 in the case of reduction from an algebraic
term.

Recalling that T (M) ∈ B we obtain:

Corollary 2.7.7. If M ⇒β M
′ then M ⇒̃∂B M ′.

Observe that these results hold on Taylor supports as well, which will be useful in the
treatment of Taylor normalizable terms in Section 2.8:

Lemma 2.7.8. If M ⇒β M
′ then T (M) ⇒̃∂T (M) T (M ′) in B∆ .

Proof. The proof is again by induction on the reduction M ⇒β M
′ using Lemmas 2.7.2 to

Lemma 2.7.5 in B∆ .

2.7.2 Conservativity

De�nition 2.7.9. We de�ne the full parallel reduct of simple terms and algebraic terms induc-
tively as follows:

F(x) := x F(0) := 0

F(λxS) := λxF(S) F(a.M) := a.F(M)

F((λxS)N) := F(S)[F(N)/x] F(M +N) := F(M) + F(N)

F((S)N) := (F(S))F(N) (if S is not an abstraction).

60



As can be expected, we have M ′ ⇒β F(M) as soon as M ⇒β M
′. In this subsection, we

will show that a similar property holds for ⇒̃∂(!)B.
Recall that, by Lemma 2.6.27, the full reduction operator F on resource expressions extends

to bounded resource vectors. We obtain:

Lemma 2.7.10. For all bounded σ0 ∈ S∆ , τ ∈ S!∆ , ε, ϕ ∈ S(!)∆ ,

F(x) = x F
(
σ!
)

= F(σ)!

F(λxσ) = λxF(σ) F(a.ε) = a.F(ε)

F(〈λxσ〉 τ) = ∂xF(σ) · F(τ) F(ε+ ϕ) = F(ε) + F(ϕ)

F(〈σ0〉 τ) = 〈F(σ0)〉F(τ) (if there is no abstraction term in |σ0|).

Proof. The proofs of those identities are basically the same as those of Lemmas 2.7.2 to 2.7.5,
the necessary summability conditions following from Lemma 2.6.27.

Lemma 2.7.11. For all M ∈ ΛS, F(τ(M)) = τ(F(M)).

Proof. We know that τ(M) is bounded. The identity is then proved by induction on simple
terms and algebraic terms, using the previous lemma in each case.

Lemma 2.7.12. For all bounded term reduction structure S and all M ∈ ΛS, if M ⇒̃∂S σ′ then
σ′ ⇒̃∂S F(M).

Proof. By Corollary 2.6.29, σ′ ⇒̃∂S F(τ(M)) and we conclude by the previous lemma.

This result can then be generalized to sequences of ⇒̃∂ -reductions.

Lemma 2.7.13. For all bounded term reduction structure S and all M ∈ ΛS, if M ⇒̃∂
n
S σ′ then

σ′ ⇒̃∂
n
S Fn(M).

Proof. By induction on n. The case n = 0 is trivial, and the inductive case follows from the
previous lemma and strong con�uence of ⇒̃∂S: if M ⇒̃∂

n
S σ′ ⇒̃∂S τ then by induction

hypothesis σ′ ⇒̃∂
n
S Fn(M), hence by strong con�uence, there exists τ ′ such that τ ⇒̃∂

n
S τ ′

and Fn(M) ⇒̃∂S τ ′; by the previous lemma, τ ′ ⇒̃∂ Fn+1(M).

We have thus obtained some weak kind of conservativity of ⇒̃∂B w.r.t. β-reduction, but it
is not very satisfactory: the same result would hold for the tautological relation S〈B〉 × S〈B〉,
which is indeed the same as ⇒̃∂B if 1 has an opposite element in S. Even when S is zerosumfree,
the converse to Lemma 2.7.6 cannot hold in general if only because there can be distinct β-
normal forms M 6'v N such that M 'τ N (see Example 2.4.14). Under this hypothesis, we can
nonetheless obtain an actual conservativity result on normalizable pure λ-terms as follows.

We write 'β for the symmetric, re�exive and transitive closure of⇒β . Similarly, if E is a
reduction structure, we write '∂ E for the equivalence on S〈E〉 induced by ⇒̃∂E.

Lemma 2.7.14. Assume S is zerosumfree. Let M,N ∈ Λ be such that M is normalizable. Then
M '∂B N i� M 'β N .
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Proof. Corollary 2.6.29 entails that, if E is a bounded reduction structure, then ε '∂ E ε′ i�
ε ⇒̃∂

∗
E Fn(ε′) for some n ∈ N. Now assume M ∈ ΛS is normalizable and write NF(M) for its

normal form: in particular M ⇒̃∂
∗
B NF(M), by Corollary 2.7.7. If M '∂B N , we thus have

NF(M) '∂B N , hence NF(M) ⇒̃∂
∗
B Fn(N) for some n ∈ N. In particular, if S is zerosumfree,

we obtain NF(M) 'τ Fn(N). If moreover M,N ∈ Λ, we deduce M 'β N by the injectivity
of τ on Λ.

The next section will allow us to establish a similar conservativity result, without any
assumption on S, at the cost of restricting the reduction relation to normalizable resource
vectors.

2.8 Normalizing Taylor expansions

Previous works on the normalization of Taylor expansions were restricted a priori, to a
strict subsystem of the algebraic λ-calculus:

— the uniform setting of pure λ-terms [ER08; ER06a];

— the typed setting of an extension of system F to the algebraic λ-calculus [Ehr10];

— a λ-calculus extended with formal �nite sums, rather than linear combinations [12;
TAO17].

In all these, pathological terms were avoided, e.g. those involved in the inconsistency Example
2.4.16. Moreover observe that the very notion of normalizability is not compatible with 'v, and
in particular the identity 0 'v 0.M : those previous works circumvented this incompatibility,
either by imposing normalizability via typing, or by excluding the formation of the term 0.M .

Our approach is substantially di�erent. We introduce a notion of normalizability on resource
vectors such that:

— both pure λ-terms and normalizable algebraic λ-terms (in particular typed algebraic
λ-terms and normalizable λ-terms with sums) have a normalizable Taylor expansion;

— the restriction of ⇒̃∂ to normalizable resource vectors is a consistent extension of both
β-reduction on pure λ-terms and normalization on algebraic λ-terms, without any as-
sumption on the underlying semiring of scalars.

2.8.1 Normalizable resource vectors

We say ε ∈ S(!)∆ is normalizable whenever the family (NF(e))e∈|ε| is summable. In this
case, we write NF(ε) :=

∑
e∈(!)∆ εe.NF(e).

Normalizable vectors form a �niteness space. Recall indeed from Subsection 2.3.1 that
e ≥∂ e′ i� e →∗∂ ε′ with e′ ∈ |ε′|. If e ∈ (!)∆, we write ↑e := {e′ ∈ (!)∆ ; e′ ≥∂ e}. Then
ε is normalizable i� for each normal resource expression e, |ε| ∩ ↑e is �nite: writing (!)N =
{e ∈ (!)∆ ; e is normal} and (!)N = {↑e ; e ∈ (!)N}⊥ ∩ (!)Ffv, we obtain that S〈(!)N〉 is the
set of normalizable resource vectors. Observe that NF is de�ned on all S〈(!)N〉 but is guaranteed
to be linear-continuous only when restricted to subsemimodules of the form SE with E ∈ (!)N.

For our study of hereditarily determinable terms in Section 2.9, it will be useful to decompose
(!)N into a decreasing sequence of �niteness structures.
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De�nition 2.8.1. We de�ne the monomial depth d(e) ∈ N of a resource expression e ∈ (!)∆
as follows:

d(x) := 0 d
(
〈s〉 t

)
:= max(d(s),d

(
t
)
)

d(λx s) := d(s) d([t1, . . . , tn]) := 1 + max {d(ti) ; 1 ≤ i ≤ n}

We write (!)Nd = {e ∈ (!)N ; d(e) ≤ d} so that (!)N =
⋃
d∈N(!)Nd. We then write

(!)Nd = {↑e ; e ∈ (!)Nd}⊥ ∩ (!)Ffv so that (!)N =
⋂
d∈N(!)Nd. Each �niteness structure

(!)Nd is moreover a reduction structure for any reduction relation contained in→∗∂ (and so is
(!)N). Indeed, writing ↓e = {e′ ∈ (!)∆ ; e ≥∂ e′} and ↓E =

⋃
e∈E ↓e, we obtain:

Lemma 2.8.2. If E ∈ (!)Nd then ↓E ∈ (!)Nd.

Proof. Let e′′ ∈ (!)Nd and e′ ∈ ↓E ∩ ↑e′′. Necessarily, there is e ∈ E such that e ≥∂ e′. Then
e ∈ E ∩ ↑e′′: since E ∈ (!)Nd, there are �nitely many values for e hence for e′ by Lemma
2.3.13.

It follows that normalizable vectors are stable under reduction:

Lemma 2.8.3. If ε ⇒̃∂(!)N ε′ then ε′ ∈ S〈(!)N〉 and NF(ε) = NF(ε′).

Proof. Assume there exists E ∈ (!)N and families (ai)i∈I ∈ SI , (ei)i∈I ∈ (!)∆I and (ε′i)i∈I ∈
N[(!)∆]I such that:

— (ei)i∈I is summable and ε =
∑

i∈I ai.ei;

— (ε′i)i∈I is summable and ε′ =
∑

i∈I ai.ε
′
i;

— for all i ∈ I , ei ∈ E and ei ⇒̃∂ ε
′
i.

We obtain that E ′ :=
⋃
i∈I |ε′i| ∈ (!)N by Lemma 2.8.2, hence ε′ ∈ S〈(!)N〉 since |ε′| ⊆ E ′.

Then, by the linear-continuity of NF on SE
′
,

NF(ε) =
∑
i∈I

ai.NF(ei) =
∑
i∈I

ai.NF
(
ε′i
)

= NF

(∑
i∈I

ai.ε
′
i

)
= NF

(
ε′
)
.

As a direct consequence, we obtain that '∂ (!)N is consistent, without any additional condi-
tion on the semiring S:

Corollary 2.8.4. If ε '∂ (!)N ε′ (in particular ε, ε′ ∈ S〈(!)N〉) then NF(ε) = NF(ε′).

We can moreover show that the normal form of a Taylor normalizable term is obtained as
the limit of the parallel left reduction strategy. Let us �rst precise the kind of convergence we
consider. With the notations of Subsection 2.2.3, we say a sequence

−→
ξ = (ξn)n∈N ∈

(
SX
)N

of vectors converges to ξ′ if, for all x ∈ X there exists nx ∈ N such that, for all n ≥ nx,
ξn,x = ξ′x. In other words we consider the product topology on SX , S being endowed with
the discrete topology. Similarly to the notion of summability, this notion of convergence
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coincides with that induced by the linear topology on SX associated with the maximal �niteness
structure P(X) on X : in this particular case, a base of neighbourhoods of 0 is given by the
sets

{
ξ ∈ SX ; |ξ| ∩ X ′ = ∅

}
for X ′ ∈ P(X)⊥ = Pf (X), or equivalently by the the sets{

ξ ∈ SX ; x 6∈ |ξ|
}

for x ∈ X .
The parallel left reduction strategy on resource vectors is de�ned as follows.

De�nition 2.8.5. We de�ne the left reduct of a resource expression inductively as follows:

L(λx s) := λx L(s)

L([t1, . . . , tn]) := [L(t1), . . . , L(tn)]

L
(
〈x〉 t1 · · · tn

)
:= 〈x〉 L

(
t1
)
· · · L

(
tn
)

L
(
〈λx s〉 t0 t1 · · · tn

)
:=
〈
∂xs · t0

〉
t1 · · · tn.

This is extended to �nite sums of resource expressions by linearity: L(
∑n

i=1 ei) =
∑n

i=1 L(ei).

Lemma 2.8.6. For all resource expression e ∈ (!)∆, e⇒(1) L(e).

Proof. Easy by induction on e.

In particular NF(e) = NF(L(e)) for all e ∈ (!)∆. By Lemma 2.6.12, we moreover obtain
that if e′ ∈ |L(e)| then s(e) ≤ 4s(e′) and fv(e) = fv(e′). As a consequence (L(e))e∈(!)∆ is

summable. For all ε ∈ S(!)∆ , we set

L(ε) :=
∑
e∈(!)∆

εe.L(e)

and obtain a linear-continuous map on resource vectors.
For all ε ∈ S(!)∆ , we write ε�(!)N for the projection of ε on normal resource expressions:

ε�(!)N :=
∑

e∈(!)N εe.e ∈ S(!)N . We obtain:

Theorem 2.8.7. For all normalizable resource vector ε ∈ S〈(!)N〉,
(
Lk(ε)�(!)N

)
k∈N converges to

NF(ε) in S(!)N .

Proof. Fix e′ ∈ N . Since |ε| ∈ (!)N, E := |ε| ∩ ↑e′ is �nite. Let k′ be such that Lk
′
(e) is normal

for all e ∈ E . Then NF(ε)e′ =
∑

e∈|ε| εe.NF(e)e′ =
∑

e∈E εe.NF(e)e′ =
∑

e∈E εe.L
k′(e)e′ .

Moreover, by the linear-continuity of Lk on resource vectors,
(
Lk(ε)�(!)N

)
e′

= Lk(ε)e′ =∑
e∈∆ εe.L

k(e)e′ =
∑

e∈E εe.L
k(e)e′ =

∑
e∈E εe.L

k′(e)e′ .

Observe that the projection on normal expressions is essential:

Example 2.8.8. Consider the looping term Ω := (λx (x)x)λx (x)x: one can check thatNF(τ(Ω)) =
τ(Ω)�N = 0, but it will follow from the results of subsection 2.8.2 that Lk(τ(Ω)) = τ(Ω) 6= 0 for
all k ∈ N.

Analyzing this phenomenon was fundamental in the characterization of strongly normalizable
λ-terms by a �niteness structure on resource terms, obtained by Pagani, Tasson and the author [12].
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2.8.2 Taylor normalizable terms

It is possible to transfer some of the good properties of reduction on normalizable vectors
to those algebraic λ-terms that have a normalizable Taylor expansion. More precisely, we say
M ∈ ΛS is Taylor normalizable if T (M) ∈ (!)N. Then:

Lemma 2.8.9. Assume M,M ′ ∈ ΛS are such that M ⇒β M
′. Then M is Taylor normalizable

i� M ′ is Taylor normalizable.

Proof. First observe that by Lemma 2.7.8, we have T (M) ⇒̃∂T (M) T (M ′) in B∆ . Moreover
observe that B〈N〉 is nothing but N.

Assume M is Taylor normalizable, i.e. T (M) ∈ N: by Lemma 2.8.3, T (M ′) ∈ B〈N〉, i.e.
M ′ is Taylor normalizable.

Conversely, assume M ′ is Taylor normalizable and let s′′ ∈ N and S := T (M) ∩ ↑s′′:
we prove S is �nite. Fix an enumeration (sk)k∈K ∈ SK of S : S = {sk ; k ∈ K}. Since
T (M) ⇒̃∂T (M) T (M ′), we have T (M) = {ti ; i ∈ I} and T (M ′) =

⋃
i∈I |τ ′i | with ti ⇒∂ τ

′
i

for all i ∈ I . Now for all k ∈ K , there exists i ∈ I such that sk = ti. Since sk ≥∂ s′′, τ ′i 6= 0
and we can �x s′k ∈ |τ ′i | ⊆ T (M ′) such that sk Ï∂ s

′
k ≥∂ s′′. Since T (M ′) ∈ N, the set

{s′k ; k ∈ K} is �nite. Then S ⊆
{
s ∈ ∆ ; k ∈ K , s Ï(h(M)) s

′
k

}
which is �nite by Lemma

2.6.12.

The consistency of β-reduction on Taylor normalizable terms follows.

Theorem 2.8.10. AssumeM,M ′ ∈ ΛS are such thatM 'β M ′. ThenM is Taylor normalizable
i� M ′ is Taylor normalizable, and in this case NF(τ(M)) = NF(τ(M ′)). 22

Proof. The �rst part is a direct corollary of Lemma 2.8.9. By Lemma 2.7.6, it follows that
M '∂ (!)N M ′, and then we conclude by Corollary 2.8.4.

In other words, when restricted to Taylor normalizable terms, the normal form of Taylor
expansion is a valid notion of denotation. Remark that, in general, it is not possible to generalize
this result to those terms M such that τ(M) is normalizable because of the interaction with
coe�cients: consider, e.g., 0 'τ (I)∞x + (−1).(I)∞x ⇒β ∞x + (−1).(I)∞x, and observe
that τ(∞x + (−1).(I)∞x) 6∈ S〈N〉.

De�nition 2.8.11. We de�ne the left reduct of an algebraic λ-term inductively as follows:

L(λxS) := λx L(S) L(0) := 0

L((x)M1 · · ·Mn) := (x) L(M1) · · · L(Mn) L(a.M) := a.L(M)

L((λxS)M0M1 · · ·Mn) := (S[M0/x])M1 · · ·Mn L(M +N) := L(M) + L(N)

Observe that this de�nition is exhaustive by Fact 2.4.18. It should be clear thatM ⇒β L(M)
for all term M , and that L(M) = M when M is in normal form (although the converse may
not hold). Now we can establish that L commutes with Taylor expansion.

22. In the standard terminology of denotational semantics, Theorem 2.8.10 expresses the soundness of NF(τ(·))
on Taylor normalizable terms.
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Lemma 2.8.12. For all σ ∈ S∆ , L
(
σ!
)

= L(σ)!.

Proof. First observe that by the de�nition of L and the linear-continuity of both L and the
monomial construction, for all σ1, . . . , σn ∈ S∆ , we have L([σ1, . . . , σk]) = [L(σ1), . . . , L(σk)].
In particular, L

(
σk
)

= L(σ)k. We deduce that L
(
σ!
)

= L
(∑

k∈N
1
k ! .σ

k
)

=
∑

k∈N
1
k ! .L(σ)k =

L(σ)!, by the linear-continuity of L.

Lemma 2.8.13. For all M ∈ ΛS, L(τ(M)) = τ(L(M)).

Proof. By induction on the de�nition of L(M): in addition to the inductive hypothesis and the
linear-continuity of L, we use Lemma 2.8.12 in the case of a head variable, and Lemmas 2.4.7,
2.4.10 and 2.8.12 in the case of a head β-redex.

As a direct corollary of Theorem 2.8.7, we obtain:

Theorem 2.8.14. For all Taylor normalizable term M , the sequence of normal resource vectors(
τ
(
Lk(M)

)
�N
)
k∈N converges to NF(τ(M)) in SN .

This property is very much akin to the fact that the Böhm tree BT(M) of a pure λ-term
M is obtained as the limit (in an order theoretic sense) of normal form approximants of the
left reducts of M . This analogy will be made explicit in Section 2.9. Before that, we apply our
results to normalizable algebraic λ-terms.

2.8.3 Taylor expansion and normalization commute on the nose

By a general standardization argument, we can show that parallel reduction is a normaliza-
tion strategy:

Lemma 2.8.15. An algebraic λ-termM is normalizable i� there exists k ∈ N, such that Lk(M) =
NF(M).

Proof. Recall that we consider algebraic λ-terms up to '+ only. Then one can for instance use
the general standardization technique developed by Leventis for a slightly di�erent presentation
of the calculus [24].

A direct consequence is thatM normalizes i� the judgementM ⇓ can be derived inductively
by the following rules: 23

S ⇓
λxS ⇓

M1 ⇓ · · · Mn ⇓
(x)M1 · · ·Mn ⇓

(S[M0/x])M1 · · ·Mn ⇓
(λxS)M0M1 · · ·Mn ⇓ 0⇓

M ⇓
a.M ⇓

M ⇓ N ⇓
(M +N)⇓

In the remaining of this subsection, we prove that normalizable algebraic λ-terms are
Taylor normalizable, using a reducibility technique: like in Ehrhard’s work for the typed case
[Ehr10], or our previous work for the strongly normalizable case [12], (!)N is the analogue
of a reducibility candidate. We prove each key property (Lemmas 2.8.16 to 2.8.20) using the
family of structures (!)Nd rather than (!)N directly: this will be useful in section 2.9, while the
corresponding results for (!)N are immediately derived from those.

23. Moreover, it seems natural to conjecture that if M ⇓ then M (or, rather, its 'v-class) is normalizable in the
sense of Alberti [23], and then the obtained normal forms are the same (up to 'v).
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Lemma 2.8.16. If S ∈ Nd then λxS ∈ Nd.

Proof. Let t′ ∈ Nd and t ∈ (λxS) ∩ ↑t′. Necessarily, t = λx s and t′ = λx s′ with s ∈ S ∩ ↑s′
which is �nite by assumption.

Lemma 2.8.17. If S ∈ Nd then S ! ∈ !Nd+1.

Proof. Let t′ ∈ !Nd+1 and t ∈ S ! ∩ ↑t′. Write n = #t
′. Without loss of generality, we can write

t = [t1, . . . , tn] and t′ = [t′1, . . . , t
′
n] so that ti ≥∂ t′i and t′i ∈ Nd, for all i ∈ {1, . . . , n}. Since

t ∈ S !, each ti ∈ S . Since S ∈ Nd, t′i being �xed, there are �nitely many possible values for
each ti.

Lemma 2.8.18. If T 1, . . . , T n ∈ !Nd then 〈x〉 T 1 · · · T n ∈ Nd.

Proof. Let t′ ∈ Nd and t ∈
(
〈x〉 T 1 · · · T n

)
∩ ↑t′. Necessarily, t = 〈x〉 t1 · · · tn and t′ =

〈x〉 t′1 · · · t
′
n and, for each i ∈ {1, . . . , n}, ti ∈ T i, ti ≥∂ t

′
i and t′i ∈ !Nd: since T i ∈ !Nd, there

are �nitely many possible values for each ti.

Corollary 2.8.19. If T1, . . . , Tn ∈ Nd then 〈x〉 T1
! · · · Tn! ∈ Nd+1.

Lemma 2.8.20. If
〈
∂xS · T 0

〉
T 1 · · · T n ∈ Nd then 〈λxS〉 T 0 T 1 · · · T n ∈ Nd.

Proof. Let u′ ∈ Nd, and let u ∈
(
〈λxS〉 T 0 T 1 · · · T n

)
∩ ↑u′. In other words, u′ ∈ |NF(u)|

and we can write u = 〈λx s〉 t0 t1 · · · tn with s ∈ |S| and ti ∈
∣∣T i∣∣ for i ∈ {0, . . . , n}. Write v =〈

∂xs · t0
〉
t1 · · · tn: Corollary 2.3.14 entails v ≥∂ u′, hence we have v ∈

(〈
∂xS · T 0

〉
T 1 · · · T n

)
∩

↑u′. By assumption, there are �nitely many possible values for v. Then, v being �xed, by Lemma
2.3.12, we have fv(u) = fv(v) and s(u) ≤ 2s(v) + 2, hence there are �nitely many possible
values for u.

Theorem 2.8.21. If M is normalizable, then T (M) ∈ N, and τ(M) ∈ S〈N〉.

Proof. By induction on the derivation of M ⇓: Lemma 2.8.16, Corollary 2.8.19 and Lemma 2.8.20
respectively entail the translation of the �rst three inductive rules through Taylor expansion.
The other three follow from the fact that N is a resource structure (because it is a �niteness
structure).

It remains to prove that in this case, τ(NF(M)) is indeed the normal form of τ(M).

Theorem 2.8.22. If M is normalizable, then NF(τ(M)) = τ(NF(M)).

Proof. By Theorem 2.8.21,M is Taylor normalizable. Then Theorem 2.8.10 entails NF(τ(M)) =
NF(τ(NF(M))) = τ(NF(M)).
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2.8.4 Conservativity

The restriction to normalizable vectors allows us to prove an analogue of Lemma 2.7.14,
without any assumption on the semiring of scalars.

Lemma 2.8.23. Let M,N ∈ Λ be normalizable. Then M '∂N N i� M 'β N .

Proof. AssumeM '∂N N . By Corollary 2.8.4, we have NF(τ(M)) = NF(τ(M ′)). By Theorem
2.8.22, we obtain NF(M) 'τ NF(M ′). Since M and N are pure λ-terms, we deduce NF(M) =
NF(N) from the injectivity of τ on Λ.

The reverse direction is similar to Theorem 2.8.10 and does not depend on M and N being
pure λ-terms: apply Lemmas 2.7.6, 2.8.3 and 2.8.9 to the reduction path from M to N

We can adapt this result to non-normalizing pure λ-terms thanks to previous work by
Ehrhard and Regnier: 24

Theorem 2.8.24 ([ER08; ER06a]). For all pure λ-term M ∈ Λ, T (M) ∈ N and NF(τ(M)) =
τ(BT(M)) where BT(M) denotes the Böhm tree of M .

Here Böhm tree is to be understood as generalized normal form for left β-reduction. In
particular it does not involve η-expansion. More formally, the Böhm tree of a λ-term is the
possibly in�nite tree obtained coinductively as follows:

— if M is head normalizable and its head normal form is λx1 · · ·λxn (x)N1 · · ·Nk then
BT(M) := λx1 · · ·λxn (x)BT(N1) · · ·BT(Nk)

— otherwise BT(M) := ⊥, where ⊥ is a constant representing unsolvability.

Taylor expansion can be generalized to Böhm trees [ER06a], setting in particular τ(⊥) = 0: this
is still injective.

Lemma 2.8.25. If M,N ∈ Λ and M '∂N N then BT(M) = BT(N).

Proof. By Corollary 2.8.4, we have NF(τ(M)) = NF(τ(M ′)). By Theorem 2.8.24, we obtain
τ(BT(M)) = τ(BT(N)). We conclude since τ is injective on Böhm trees.

In the next and �nal section, we prove a generalization of Theorem 2.8.24 to the non-uniform
setting which is made possible by the results we have achieved so far.

2.9 Normal form of Taylor expansion, façon Böhm trees

The Böhm tree construction is often introduced as the limit of an increasing sequence
(BTd(M))d∈N of �nite normal form approximants, aka �nite Böhm trees, where BTd(M) is
de�ned inductively as follows:

— BT0(M) = ⊥;

— if M is head normalizable and its head normal form is λx1 · · ·λxn (x)N1 · · ·Nk then
BTd+1(M) := λx1 · · ·λxn (x)BTd(N1) · · ·BTd(Nk)

24. We could as well rely on Theorem 2.9.14, to be proved in the next section.
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— otherwise BTd+1(M) := ⊥;

and the order on Böhm trees is the contextual closure of the inequality ⊥ ≤M for all M .
In this �nal section of our paper, we show that the normal form of Taylor expansion operator

generalizes this construction to the class of hereditarily determinable terms: these encompass
both all pure λ-terms and all normalizable algebraic λ-terms, but exclude terms such as∞x, that
produce unbounded sums of head normal forms. More precisely, we show that any hereditarily
determinable term M is Taylor normalizable, and moreover admits a sequence of approximants
(NAd(M))d∈N, such that each NAd(M) is an algebraic λ-term in normal form, and the sequence
of normal term vectors (τ(NAd(M)))d∈N converges to NF(τ(M)).

The results in this section should not hide the fact that the more fundamental notion is that
of Taylor normalizable term, which arises naturally by combining Taylor expansion with the
normalization of resource terms, subject to a summability condition. We believe this approach
is quite robust, and may be adapted modularly following both parameters: to other systems
admitting Taylor expansion; and to variants of summability, possibly associated with topological
conditions of the semiring of scalars.

By contrast, the de�nition of hereditarily determinable terms is essentially ad-hoc. Its only
purpose is to allow us to generalize Theorem 2.8.24 and support our claim that: the normal form
of Taylor expansion extends the notion of Böhm tree to the non-uniform setting.

2.9.1 Taylor unsolvability

In the ordinary λ-calculus, head normalizable terms are exactly those with a non trivial
Böhm tree. This is re�ected via Taylor expansion: it is easy to check that NF(τ(M)) = 0 i� M
has no head normal form. In the non uniform setting, a similar result holds, although we need
to be more careful about the interplay between reduction and coe�cients.

De�nition 2.9.1. We say an algebraic λ-term M (resp. simple term S) is weakly solvable if the
judgement M ⇓w can be derived inductively by the following rules:

(x)M1 · · ·Mn ⇓w

S ⇓w

λxS ⇓w

(S[M0/x])M1 · · ·Mn ⇓w

(λxS)M0M1 · · ·Mn ⇓w

M ⇓w

a.M ⇓w

M ⇓w

M +N ⇓w

N ⇓w

M +N ⇓w

It should be clear that, if M is a pure λ-term, M ⇓w i� M is head normalizable. In the
general case, we show that M ⇓w i� normalizing the Taylor expansion of M yields a non trivial
result. More formally:

De�nition 2.9.2. We say an algebraic λ-term M ∈ ΛS is Taylor unsolvable and write M ⇑ if
NF(s) = 0 for all s ∈ T (M).

In particular, if M ⇑ then τ(M) ∈ S〈N〉 and NF(τ(M)) = 0: indeed, |τ(M)| ⊆ T (M).
Beware that the reverse implication does not hold in general. We can then show that M ⇓w i�
M is Taylor solvable (Lemmas 2.9.3 and 2.9.4).

Lemma 2.9.3. If there exists s ∈ T (M) such that NF(s) 6= 0 then M ⇓w.
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Proof. We prove by induction on k ∈ N then on M ∈ ΛS that if
∣∣Lk(s)∣∣ contains a normal

resource term and s ∈ T (M) then M ⇓w.
If M = (x)M1 · · ·Mn we conclude directly.
If M = λxT then s = λx t with t ∈ T (T ): necessarily

∣∣Lk(t)∣∣ contains a normal resource
term and by induction hypothesis we obtain T ⇓w hence M ⇓w.

If M = (λxT )M0M1 · · ·Mn then s = 〈λx t〉 s0 s1 · · · sn with t ∈ T (T ) and si ∈ T (Mi)
!

for i ∈ {0, . . . , n}. Necessarily k > 0 and there is s′ ∈ |L(s)| = |〈∂xt · s0〉 s1 · · · sn| such that∣∣Lk−1(s′)
∣∣ contains a normal resource term. By Lemma 2.4.12, s′ ∈ T ((T [M0/x])M1 · · ·Mn):

we obtain (T [M0/x])M1 · · ·Mn ⇓w by induction hypothesis, and then M ⇓w.
If M = a.N , M = N + P or M = P + N with s ∈ T (N) then we obtain N ⇓w by

induction hypothesis, and then M ⇓w.

Lemma 2.9.4. If M ⇓w, then there exists s ∈ T (M) such that NF(s) 6= 0.

Proof. By induction on the derivation of M ⇓w.
If M = (x)M1 · · ·Mn, set s = 〈x〉 [] · · · [] (x applied n times to the empty monomial):

s ∈ T (M) and s is normal.
If M = λxT with T ⇓w: by induction hypothesis, we obtain t ∈ T (T ) with NF(t) 6= 0 and

set s = λx t.
If M = λxTM0M1 · · ·Mn and M ′ = (T [M0/x])M1 · · ·Mn with M ′ ⇓w, the induction

hypothesis gives s′ ∈ T (M ′) such that NF(s′) 6= 0. By Lemma 2.4.12, there exist t ∈ T (T )
and ui ∈ T (Mi)

! for i ∈ {0, . . . , n} such that s′ ∈ |〈∂xt · u0〉u1 · · ·un|. We then set s =
〈λx t〉u0 · · ·un.

If M = a.N , M = N + P or M = P + N with N ⇓w: the induction hypothesis gives
s ∈ T (N) ⊆ T (M) with NF(s) 6= 0 directly.

Taylor unsolvable terms are thus exactly those that are not weakly solvable. 25 They are
moreover stable under 'β :

Lemma 2.9.5. If M ⇒β M
′ then M ⇑ i� M ′ ⇑.

Proof. If E ⊆ (!)∆, we write NF(E) :=
⋃
{|NF(e)| ; e ∈ E}. We leave as an exercise to the

reader the proof that NF(T (M)) = NF(T (M ′)) as soon as M ⇒β M
′: this is the analogue of

Lemma 2.8.3 on Taylor supports (in particular there is no summability condition, and scalars
play absolutely no rôle).

2.9.2 Hereditarily determinable terms

The Böhm tree construction is based on the fact that, for a pure λ-term M , either M is
unsolvable, or it reduces to a head normal form; and then the same holds for the arguments of
the head variable. We will be able to follow a similar construction for the class of hereditarily
determinable terms: intuitively, a simple term is in determinate form if it is either unsolvable or a

25. If we restrict to non-deterministic λ-terms (i.e. only add a sum operator to the usual λ-term constructs)
then we obtain M ⇑ i� NF(T (M)) = ∅, which states the adequacy of NF(T (·)) for the observational equivalence
associated with may-style head normalization.

70



head normal form; and a term is hereditarily determinable if it reduces to a sum of determinate
forms, and this holds hereditarily in the arguments of head variables. Formally:

De�nition 2.9.6. Let M ∈ ΛS be an algebraic λ-term. We say M is d-determinable if the
judgement M ⇓d can be derived inductively from the following rules:

M ⇓0

M ⇑
M ⇓d

S ⇓d
λxS ⇓d

M1 ⇓d · · · Mn ⇓d
(x)M1 · · ·Mn ⇓d+1

M ⇓d
a.M ⇓d

M ⇓d N ⇓d
M +N ⇓d

(S[M0/x])M1 · · ·Mn ⇓d
(λxS)M0M1 · · ·Mn ⇓d

We say M is hereditarily determinable and write M ⇓ω if M ⇓d for all d ∈ N. We say M is
in d-determinate form and write M dfd if M ⇓d is derivable from the above rules excluding the
last one.

It should be clear that M ⇓ implies M ⇓ω . Observing that M ⇑ for all unsolvable pure
λ-terms (i.e. those pure λ-terms having no head normal form), we moreover obtain M ⇓ω for
all M ∈ Λ.

We can already prove that hereditarily determinable terms are Taylor normalizable: 26

Lemma 2.9.7. If M ⇓d then T (M) ∈ Nd. If moreover M ⇓ω then T (M) ∈ N.

Proof. The second fact follows directly from the �rst one, which we prove by induction on
the derivation of M ⇓d: we use the de�nition of M ⇑ for the base case, and rely on Lemma
2.8.16, Corollary 2.8.19, Lemma 2.8.20, or the fact that Nd is a resource structure to establish the
induction in the other cases.

On the other hand, there are Taylor normalizable terms that do not follow this pattern:
intuitively, hereditarily determinable terms rule out any representation of an in�nite sum of
head normal forms, whereas Taylor normalizability allows to represent an in�nite sum of normal
forms as long as their Taylor expansions are pairwise disjoint. More formally:

Example 2.9.8. Write s0 := λxx, and sn+1 := λx sn. Let Mstep = λy λz z + λy λz λx (y) y z
and thenMloop = (Mstep)Mstep λxx. Write u = λy λz z and vn,k = λy λz λx 〈y〉 yn zk so that
T (Mstep) = {u}∪{vn,k ; n, k ∈ N}. Let s ∈ T (Mloop) be such that NF(s) 6= 0: a simple inspec-
tion shows that either s = 〈u〉 [] [s0] and then NF(s) = s0, or s = 〈vn,1〉 [v0,1, . . . , vn−1,1, u] [s0]
and then NF(s) = sn+1. It follows that Mloop is Taylor normalizable. On the other hand, ob-
serve that L2(Mloop) = λxx + λxMloop, which is not 1-determinate: hence no L2k(Mloop) is
1-determinate and it will follow from Lemma 2.9.10 that Mloop is not 1-determinable.

Hence hereditarily determinable terms form a strict subclass of Taylor normalizable terms,
containing both pure λ-terms and normalizable algebraic λ-terms. For each level d ∈ N,
the class of d-determinable terms (resp. of d-determinate terms) is moreover stable under left
reduction:

26. Observe that this fails if we replace T (M) with |τ(M)| in the de�nition ofM ⇑: write I := λxx and consider,
e.g., M = (λx (I) (x+ (−1).∞y))∞y which head-reduces to (I) (∞y + (−1).∞y) 'τ (I) 0, with (I) 0⇑ but of
course τ(M) 6∈ N0. The very same problem would occur if we were to consider terms up to 'v .
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Lemma 2.9.9. If M ⇓d (resp. M dfd) then L(M)⇓d (resp. L(M) dfd).

Proof. We give the proof for d-determinable terms, by induction on the derivation of M ⇓d: the
case of d-determinate terms is similar, except that we do not consider head redexes.

If d = 0 the result is direct. Otherwise, write d = d′ + 1.
If M ⇑ then L(M)⇑ by Lemma 2.9.5, and we conclude directly.
If M = λxS with S ⇓d: by induction hypothesis L(S)⇓d, and then λx L(S)⇓d.
If M = (x)M1 · · ·Mn with Mi ⇓d′ for i ∈ {1, . . . , n}: by induction hypothesis L(Mi)⇓d′

for i ∈ {1, . . . , n}, and then (x) L(M1) · · · L(Mn)⇓d.
If M = (λxS)M0M1 · · ·Mn with (S[M0/x])M1 · · ·Mn ⇓d then we conclude directly

since L(M) = (S[M0/x])M1 · · ·Mn.
If M = a.N with N ⇓d: by induction hypothesis L(N)⇓d, and then a.L(N)⇓d.
If M = N + P with N ⇓d and P ⇓d: by induction hypothesis L(N)⇓d and L(P )⇓d, and

then L(N) + L(P )⇓d.

Now we can formally prove that applying the parallel left reduction strategy to d-determinable
terms does reach d-determinate forms.

Lemma 2.9.10. If M ⇓d then there exists k ∈ N such that Lk(M) dfd.

Proof. By induction on the derivation of M ⇓d.
If d = 0 or M ⇑, then M dfd.
If M = λxS with S ⇓d: by induction hypothesis, we have k ∈ N such that Lk(S) dfd and

then Lk(M) = λx Lk(S) hence Lk(M) dfd.
If M = (x)M1 · · ·Mn with d > 0 and Mi ⇓d−1 for each i ∈ {1, . . . , n}: by induction

hypothesis, we obtain ki ∈ N such that Lki(Mi) dfd−1 for each i ∈ {1, . . . , n}. Let k =
max {ki ; 1 ≤ i ≤ n}: by Lemma 2.9.9, we also have Lk(Mi) dfd−1 for all i ∈ {1, . . . , n}. Since
Lk(M) = Lk((x)M1 · · ·Mn) = (x) Lk(M1) · · · Lk(Mn) we conclude that Lk(M) dfd.

If M = (λxS)M0M1 · · ·Mn with (S[M0/x])M1 · · ·Mn ⇓d: by induction hypothesis, we
have k0 ∈ N such that Lk0((S[M0/x])M1 · · ·Mn) dfd. It is then su�cient to observe that
L(M) = (S[M0/x])M1 · · ·Mn and set k = k0 + 1.

If M = a.N with N ⇓d: by induction hypothesis, we have k ∈ N such that Lk(S) dfd and
then Lk(M) = a.Lk(S) hence Lk(M) dfd.

If M = N + P with N ⇓d and P ⇓d: by induction hypothesis, we have k0, k1 ∈ N such
that Lk0(N) dfd and Lk1(P ) dfd and then, setting k = max(k0, k1), Lk(M) = Lk(N) + Lk(P )
hence Lk(M) dfd by the previous lemma.

2.9.3 Approximants of the normal form of Taylor expansion

Now we introduce the analogue of �nite Böhm trees for hereditarily determinable terms:

De�nition 2.9.11. IfM ⇓d then we de�ne the normal d-approximant NAd(M) ofM inductively
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as follows: NAd(M) := 0 if d = 0 or M ⇑, and

NAd(λxS) := λxNAd(S)

NAd((x)M1 · · ·Mn) := (x)NAd−1(M1) · · ·NAd−1(Mn)

NAd((λxS)M0M1 · · ·Mn) := NAd((S[M0/x])M1 · · ·Mn)

NAd(a.M) := a.NAd(M)

NAd(M +N) := NAd(M) + NAd(N)

otherwise.

First observe that d approximants are stable under parallel left reduction:

Lemma 2.9.12. If M ⇓d then NAd(M) = NAd(L(M)).

Proof. Recall indeed that, by Lemma 2.9.9, L(M)⇓d so that NAd(L(M)) is well de�ned. The
proof is then straightforward, by induction on M ⇓d.

We do not prove here that d-determinable terms and the associated d-approximants are stable
under arbitrary reduction: if M ⇓d and M ⇒β M

′ then M ′ ⇓d and then NAd(M) = NAd(M
′).

We believe it is a very solid conjecture, but it would require us to develop a full standardization
argument: in our non-deterministic setting, this is known to be tedious at best [23; 24]. Since
we introduced hereditarily determinable terms ad-hoc, only to be able to de�ne normal d-
approximants, we feel that the general study of their computational behaviour is not worth the
e�ort.

Our next step is to show that if M is in d + 1 determinate form, then τ(M)�Nd depends
only on NAd+1(M).

Lemma 2.9.13. If M dfd+1 then, for all s ∈ Nd, τ(M)s = τ(NAd+1(M))s.

Proof. By induction on the derivation of M dfd+1, writing M ′ = NAd+1(M).
If M ⇑ then M ′ = 0 and τ(M)s = 0 for all s ∈ N , hence the result holds.
If M = λxT with T dfd+1 then M ′ = λxNAd+1(T ) and we can assume s = λx t:

otherwise τ(M)s = 0 = τ(M ′)s. Then t ∈ Nd and by induction hypothesis τ(M)s = τ(T )t =
τ(NAd+1(T ))t = τ(M ′)s.

If M = (x)N1 · · ·Nn with Ni dfd for all i ∈ {1, . . . , n} then M ′ = (x)N ′1 · · ·N ′n with
N ′i = NAd(Ni) and we can assume s = 〈x〉 t1 · · · tn: otherwise τ(M)s = 0 = τ(M ′)s.
If d = 0, s ∈ N0, hence n = 0 and then M = x = M ′. Otherwise write d = d′ + 1.
For each i ∈ {1, . . . , n},

∣∣ti∣∣ ⊆ Nd′ . By induction hypothesis we obtain τ(Ni)u = τ(N ′i)u
for all u ∈

∣∣ti∣∣: it follows that τ(Ni)
!
ti

= τ(N ′i)
!
ti

by the de�nition of promotion. Then
τ(M)s =

∏n
i=1 τ(Ni)ti =

∏n
i=1 τ(N ′i)ti = τ(M ′)s.

If M = a.N with N dfd+1 then τ(M)s = a.τ(N)s = a.τ(NAd+1(N))s = τ(M ′)s by
induction hypothesis.

Similarly, if M = N + P with N dfd+1 and P dfd+1 then τ(M)s = τ(N)s + τ(P )s =
τ(NAd+1(N))s + τ(NAd+1(P ))s = τ(M ′)s by induction hypothesis.

We obtain our �nal theorem:
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Theorem 2.9.14. For all hereditarily determinable term M , the sequence (τ(NAd(M)))d∈N of
normal vectors converges to NF(τ(M)) in SN .

Proof. First observe that each τ(NAd(M)) ∈ SN , because NAd(M) is in normal form. Let
s ∈ N and �x d ≥ d(s) + 1: by Lemmas 2.9.9, 2.9.10 and 2.9.12, there exists k0 ∈ N such
that Lk(M) dfd and NAd

(
Lk(M)

)
= NAd(M) whenever k ≥ k0. By Lemma 2.9.13, we more-

over have τ(NAd(M))s = τ
(
NAd

(
Lk(M)

))
s

= τ
(
Lk(M)

)
s
. It follows that τ(NAd(M))s =

NF(τ(M))s, by Theorem 2.8.14. Since this holds for any d ≥ d(s) + 1, we have just proved
that (τ(NAd(M))s)d∈N converges to NF(τ(M))s, for the discrete topology.

In the case of pure λ-terms, by identifying 0 with the unsolvable Böhm tree ⊥, it should
be clear that the sequence (NAd(M))d∈N is nothing but the increasing sequence of �nite
approximants of BT(M): Theorem 2.9.14 is thus a proper generalization of Theorem 2.8.24 of
which it provides a new proof.
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Chapter 3

An application of parallel cut
elimination in multiplicative linear
logic to the Taylor expansion of proof
nets

This chapter is essentially the inclusion of the article of the same name [6], co-authored
with Jules Chouquet. This much expanded version of our CSL 2018 contribution [14]
was accepted for publication in Logical Methods in Computer Science.

Abstract: We examine some combinatorial properties of parallel cut elimination in multi-
plicative linear logic (MLL) proof nets. We show that, provided we impose a constraint on some
paths, we can bound the size of all the nets satisfying this constraint and reducing to a �xed
resultant net. This result gives a su�cient condition for an in�nite weighted sum of nets to
reduce into another sum of nets, while keeping coe�cients �nite. We moreover show that our
constraints are stable under reduction.

Our approach is motivated by the quantitative semantics of linear logic: many models have
been proposed, whose structure re�ect the Taylor expansion of multiplicative exponential linear
logic (MELL) proof nets into in�nite sums of di�erential nets. In order to simulate one cut
elimination step in MELL, it is necessary to reduce an arbitrary number of cuts in the di�erential
nets of its Taylor expansion. It turns out our results apply to di�erential nets, because their cut
elimination is essentially multiplicative. We moreover show that the set of di�erential nets that
occur in the Taylor expansion of an MELL net automatically satis�es our constraints.

Interestingly, our nets are untyped: we only rely on the sequentiality of linear logic nets
and the dynamics of cut elimination. The paths on which we impose bounds are the switching
paths involved in the Danos–Regnier criterion for sequentiality. In order to accommodate
multiplicative units and weakenings, our nets come equipped with jumps: each weakening node
is connected to some other node. Our constraint can then be summed up as a bound on both
the length of switching paths, and the number of weakenings that jump to a common node.
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3.1 Introduction

3.1.1 Context: quantitative semantics and Taylor expansion

Linear logic takes its roots in the denotational semantics of λ-calculus: it is often presented,
by Girard himself [Gir87], as the result of a careful investigation of the model of coherence
spaces. Since its early days, linear logic has thus generated a rich ecosystem of denotational
models, among which we distinguish the family of quantitative semantics. Indeed, the �rst
ideas behind linear logic were exposed even before coherence spaces, in the model of normal
functors [Gir88], in which Girard proposed to consider analyticity, instead of mere continuity,
as the key property of the interpretation of λ-terms: in this setting, terms denote power series,
representing analytic maps between modules.

This quantitative interpretation re�ects precise operational properties of programs: the
degree of a monomial in a power series is closely related to the number of times a function
uses its argument. Following this framework, various models were considered — among which
we shall include the multiset relational model as a degenerate, boolean-valued instance. These
models allowed to represent and characterize quantitative properties such as the execution
time [Car18a], including best and worst case analysis for non-deterministic programs [Lai+13],
or the probability of reaching a value [DE11]. It is notable that this whole approach gained
momentum in the early 2000’s, after the introduction by Ehrhard of models [Ehr02; Ehr05] in
which the notion of analytic maps interpreting λ-terms took its usual sense, while Girard’s
original model involved set-valued formal power series. Indeed, the keystone in the success of
this line of work is an analogue of the Taylor expansion formula, that can be established both
for λ-terms and for linear logic proofs.

Mimicking this denotational structure, Ehrhard and Regnier introduced the di�erential
λ-calculus [ER03] and di�erential linear logic [ER06b], which allow to formulate a syntactic
version of Taylor expansion: to a λ-term (resp. to a linear logic proof), we associate an in�nite
linear combination of approximants [ER08; Ehr18]. In particular, the dynamics (i.e. β-reduction
or cut elimination) of those systems is dictated by the identities of quantitative semantics. In
turn, Taylor expansion has become a useful device to design and study new models of linear
logic, in which morphisms admit a matrix representation: the Taylor expansion formula allows
to describe the interpretation of promotion — the operation by which a linear resource becomes
freely duplicable — in an explicit, systematic manner. It is in fact possible to show that any
model of di�erential linear logic without promotion gives rise to a model of full linear logic in
this way [Car07]: in some sense, one can simulate cut elimination through Taylor expansion.

3.1.2 Motivation: reduction in Taylor expansion

There is a di�culty, however: Taylor expansion generates in�nite sums and, a priori, there is
no guarantee that the coe�cients in these sums will remain �nite under reduction. In previous
works [Car07; Lai+13], coe�cients were thus required to be taken in a complete semiring: all
sums should converge. In order to illustrate this requirement, let us �rst consider the case of
λ-calculus.

The linear fragment of di�erential λ-calculus, called resource λ-calculus, is the target
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. . . . . . . . .

· · ·

Figure 3.1 – Taylor expansion of a promotion box (thick wires denote an arbitrary number of
wires)

of the syntactic Taylor expansion of λ-terms. In this calculus, the application of a term
to another is replaced with a multilinear variant: 〈s〉[t1, . . . , tn] denotes the n-linear sym-
metric application of resource term s to the multiset of resource terms [t1, . . . , tn]. Then, if
x1, . . . , xk denote the occurrences of x in s, the redex 〈λx.s〉[t1, . . . , tn] reduces to the sum∑

f :{1,...,k}∼→{1,...,n} s[tf(1)/x1, . . . , tf(k)/xk]: here f ranges over all bijections {1, . . . , k} ∼→
{1, . . . , n} so this sum is zero if n 6= k. As sums are generated by reduction, it should be noted
that all the syntactic constructs are linear, both in the sense that they commute to sums, and in
the sense that, in the elimination of a redex, no subterm of the argument multiset is copied nor
erased. The key case of Taylor expansion is that of application:

T (MN) =
∑
n∈N

1

n!
〈T (M)〉T (N)n (3.1)

where T (N)n is the multiset made of n copies of T (N) — by n-linearity, T (N)n is itself an
in�nite linear combination of multisets of resource terms appearing in T (N). Admitting that
〈M〉[N1, . . . , Nn] represents the n-th derivative of M , computed at 0, and n-linearly applied to
N1, . . . , Nn, one immediately recognizes the usual Taylor expansion formula.

From (3.1), it is immediately clear that, to simulate one reduction step occurring in N , it
is necessary to reduce in parallel in an unbounded number of subterms of each component of
the expansion. Unrestricted parallel reduction, however, is ill de�ned in this setting. Consider
the sum

∑
n∈N〈λxx〉[· · · 〈λxx〉[y] · · ·] where each summand consists of n successive linear

applications of the identity to the variable y: then by simultaneous reduction of all redexes in
each component, each summand yields y, so the result should be

∑
n∈N y which is not de�ned

unless the semiring of coe�cients is complete in some sense.
Those considerations apply to linear logic as well as to λ-calculus. We will use proof nets

[Gir87] as the syntax for proofs of multiplicative exponential linear logic (MELL). The target of
Taylor expansion is then in promotion-free di�erential nets [ER06b], which we call resource nets
in the following, by analogy with the resource λ-calculus: these form the multilinear fragment
of di�erential linear logic.

In linear logic, Taylor expansion consists in replacing duplicable subnets, embodied by
promotion boxes, with explicit copies, as in Figure 3.1: if we take n copies of the box, the main
port of the box is replaced with an n-ary !-link, while the ?-links at the border of the box collect
all copies of the corresponding auxiliary ports. Again, to follow a single cut elimination step
in P , it is necessary to reduce an arbitrary number of copies. And unrestricted parallel cut
elimination in an in�nite sum of resource nets is broken, as one can easily construct an in�nite
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Figure 3.2 – Example of a family of nets, all reducing to a single net p, by the parallel elimination
of axiom cuts.

family of nets, all reducing to the same resource net p in a single step of parallel cut elimination:
see Figure 3.2.

3.1.3 Our approach: taming the combinatorial explosion of antireduction

The problem of convergence of series of linear approximants under reduction was �rst
tackled by Ehrhard and Regnier, for the normalization of Taylor expansion of ordinary λ-terms
[ER08]. Their argument relies on a uniformity property, speci�c to the pure λ-calculus: the
support of the Taylor expansion of a λ-term forms a clique in some �xed coherence space of
resource terms. This method cannot be adapted to proof nets: there is no coherence relation on
di�erential nets such that all supports of Taylor expansions are cliques [Tas09, Section V.4.1].

An alternative method to ensure convergence without any uniformity hypothesis was �rst
developed by Ehrhard for typed terms in a λ-calculus extended with linear combinations of terms
[Ehr10]: there, the presence of sums also forbade the existence of a suitable coherence relation.
This method can be generalized to strongly normalizable [12], or even weakly normalizable
[13] terms. One striking feature of this approach is that it concentrates on the support (i.e. the
set of terms having non-zero coe�cients) of the Taylor expansion. In each case, one shows that,
given a normal resource term t and a λ-term M , there are �nitely many terms s, such that:

— the coe�cient of s in T (M) is non zero; and

— the coe�cient of t in the normal form of s is non zero.

This allows to normalize the Taylor expansion: simply normalize in each component, then
compute the sum, which is component-wise �nite.

The second author then remarked that the same could be done for β-reduction [13], even
without any uniformity, typing or normalizability requirement. Indeed, writing s⇒ t if s and t
are resource terms such that t appears in the support of a parallel reduct of s, the size of s is
bounded by a function of the size of t and the height of s. So, given that if s appears in T (M)
then its height is bounded by that of M , it follows that, for a �xed resource term t there are
�nitely many terms s in the support of T (M) such that s⇒ t: in short, parallel reduction is
always well-de�ned on the Taylor expansion of a λ-term.

Our purpose in the present paper is to develop a similar technique for MELL proof nets:
we show that one can bound the size of a resource net p by a function of the size of any of its
parallel reducts, and of an additional quantity on p, yet to be de�ned. The main challenge is
indeed to circumvent the lack of inductive structure in proof nets: in such a graphical syntax,
there is no structural notion of height.

We claim that a side condition on switching paths, i.e. paths in the sense of Danos–Regnier’s
correctness criterion [DR89], is an appropriate replacement. Backing this claim, there are �rst
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Figure 3.3 – Evanescent cuts: here each (+) node can denote a tensor unit 1 or a coweakening (a
nullary !-link), and then the corresponding (−) node should be the dual unit ⊥ or a weakening
(a nullary ?-link). Then the depicted net reduces to p in one parallel cut elimination step.

some intuitions:

— the main culprits for the unbounded loss of size in reduction are the chains of consecutive
cuts, as in Figure 3.2;

— we want the validity of our side condition to be stable under reduction so, rather than
chains of cuts, we should consider the length of switching paths;

— indeed, if p reduces to q via cut elimination, then the switching paths of q are somehow
related with those of p;

— and the switching paths of a resource net in T (P ) are somehow related with those of P .

In the following we will establish precise formulations of those last two points: we study
the structure of switching paths through cut elimination in Section 3.4; and we describe the
switching paths of the elements of T (P ) in Section 3.7.

In presence of multiplicative units, or of weakenings (nullary ?-links) and coweakenings
(nullary !-links), we must also take special care of another kind of cuts, that we call evanescent
cuts: when a cut between such nullary links is eliminated, it simply vanishes, leaving the rest of
the net untouched, as in Figure 3.3, which is obviously an obstacle for our purpose. 1

In order to deal with nullary links, a well known trick is to attach each weakening (or
⊥-link) to another node in the net: switching paths can then follow such jumps, which is useful
to characterize exactly those nets that come from proof trees [Gir96, Appendix A.2]. Here we
will rely on this structure to control the e�ect of eliminating evanescent cuts on the size of a
net.

In all our exposition, we adopt a particular presentation of nets: we consider n-ary expo-
nential links rather than separate (co)dereliction and (co)contraction, as this allows to reduce
the dynamics of resource nets to that of multiplicative linear logic (MLL) proof nets. 2

3.1.4 Outline

In Section 3.2, we �rst introduce MLL proof nets formally, in the term-based syntax of
Ehrhard [Ehr14]. We de�ne the parallel cut elimination relation ⇒ in this setting, that we
decompose into multiplicative reduction⇒m, axiom-cut reduction⇒a and evanescent reduction

1. The treatment of weakenings is indeed the main novelty of the present extended version over our conference
paper [14].

2. In other words, we adhere to a version of linear logic proof nets and resource nets which is sometimes called
nouvelle syntaxe, although it dates back to Regnier’s PhD thesis [Reg92]. For the linear logic connoisseur, this is
already apparent in Figure 3.1. See also the discussion in our conclusion (Section 3.8).
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⇒e. We also present the notion of switching path for this syntax, and introduce the two
quantities that will be our main objects of study in the following:

— the maximum number jd(p) of ⊥-links that jump to a common target;

— the maximum length ln(p) of any switching path in the net p.

Let us mention that typing plays absolutely no role in our approach, so we do not even consider
formulas of linear logic in our exposition: we will rely on the geometrical structure of nets only.

We show in Section 3.3 that, if p ⇒m q, p ⇒a q or p ⇒e q then the size of p is bounded
by a function of ln(p), jd(p), and the size of q. In order to be able to iterate this combinatorial
argument, we must show that, given bounds for ln(p) and jd(p), we can infer bounds on ln(q)
and jd(q): this is the subject of Sections 3.4 and 3.5.

Section 3.4 is dedicated to the proof that we can bound ln(q) by a function of ln(p): the
main case is the multiplicative reduction, as this may create new switching paths in q that we
must relate with those in p. In this task, we concentrate on the notion of slipknot: a pair of
residuals of a cut of p occurring in a path of q. Slipknots are essential in understanding how
switching paths are structured after cut elimination: this analysis is motivated by a technical
requirement of our approach, but it can also be considered as a contribution to the theory of
MLL nets per se.

In Section 3.5, we show that jd(q) is bounded by a function of ln(p) and jd(p): the critical
case here is that of chains of jumps between evanescent cuts.

We leverage all of the above results in Section 3.6, to generalize them to a reduction p⇒ q,
or even an arbitrary sequence of reductions. In particular, if p⇒ q then the size of p is bounded
by a function of the size of q and of ln(p) and jd(p). Again, this result is motivated by the study
of quantitative semantics, but it is essentially a theorem about MLL.

We establish the applicability of our approach to the Taylor expansion of MELL proof nets
in Section 3.7: we show that if p is a resource net of T (P ), then ln(p) is bounded by a function
of the size of P , and jd(p) is bounded by the size of P .

Finally, we discuss the scope of our results in the concluding Section 3.8.

3.2 De�nitions

We provide here the minimal de�nitions necessary for us to work with MLL proof nets. As
stated before, let us stress the fact that the choice of MLL is not decisive for the development of
Sections 3.2 to 3.6. The reader can check that we rely on three ingredients only:

— the de�nition of switching paths;

— the fact that multiplicative reduction amounts to plug bijectively the premises of a ⊗-link
with those of `-link (in the nullary case, evanescent cuts simply vanish);

— the de�nition of jumps and how they are a�ected by cut elimination.

The results of those sections are thus directly applicable to resource nets, thanks to our choice
of generalized exponential links: this will be done in Section 3.7.

80



⊥ `

ax

cut

1

⊗

ax

⊥ cut

⊥

1

cut

⊥ 1

Figure 3.4 – An example of multiplicative net

3.2.1 Nets

A proof net is usually presented as a graphical object such as that of Figure 3.4. Following
Ehrhard [Ehr14; Ehr18], we will rely on a term syntax for denoting such nets. This is based on
a quite standard trichotomy: a proof net can be divided into a top layer of axioms, followed by
trees of connectives, down to cuts between the conclusions of some trees.

We will represent the conclusions of axiom rules by variables: the duality between two
conclusions of an axiom rule is given by an involution x 7→ x over the set V of variables. Our
nets will be �nite families of trees and cuts, where trees are inductively generated from variables
by the application of MLL connectives, of arbitrary arity: ⊗(t1, . . . , tn) and`(t1, . . . , tn). A tree
thus represents a conclusion of a net, together with the nodes above it, up to axiom conclusions.
A cut is then given by the pair of trees 〈t1|t2〉, whose conclusions it cuts together. In order to
distinguish between various occurrences of nullary connectives 1 = ⊗() and ⊥ = `(), we will
index them with labels taken from sets U1 and U⊥.

Formally, the set of raw trees (denoted by s, t, etc.) is generated as follows:

t ::= x | 1λ | ⊥µ | ⊗(t1, . . . , tn) | `(t1, . . . , tn)

where x ranges over V, λ ranges over U1, µ ranges over U⊥ and we require n 6= 0 in the
two last cases. We assume V, U1 and U⊥ are pairwise disjoint and all three are denumerably
in�nite. We will always identify a nullary connective tree 1λ or ⊥µ with its label λ or µ, so
that A = V ∪U1 ∪U⊥ is just the set of atomic trees. We will generally use letters x, y, z for
variables, µ for the elements of U⊥, λ for the elements of U1, and s, t, u, v for arbitrary raw
trees.

We write T(t) for the set of subtrees of a given raw tree t, which is de�ned inductively
in the natural way : if t ∈ A, then T(t) = {t}; if t = �(t1, . . . , tn) with � ∈ {⊗,`}, then
T(t) = {t}∪

⋃
i∈{1,...,n}T(ti). We moreover write V(t) for T(t)∩V, and similarly for U1(t),

U⊥(t) and A(t). A tree is then a raw tree t such that if �(t1, . . . , tn) ∈ T(t) then the sets A(ti)
for 1 ≤ i ≤ n are pairwise disjoint: in other words, each atom occurs at most once in t. As a
consequence, each subtree u ∈ T(t) occurs exactly once in a tree t.

A cut is an unordered pair c = 〈t|s〉 of trees such that A(t) ∩A(s) = ∅, and then we set
T(c) = T(t)∪T(s), and similarly for V(c), U1(c), U⊥(c) and A(c). Note that, in the absence
of typing, we do not put any compatibility requirement on cut trees.

Given a set A, we denote by −→a any �nite family (ai)i∈I ∈ AI of elements of A. In general,
we abusively identify −→a with any enumeration (a1, . . . , an) ∈ An of its elements, and we may
even write−→a = a1, . . . , an in this case; moreover, we simply write−→a ,

−→
b for the concatenation
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of families −→a and
−→
b (whose index set is implicitly the sum of the index sets of −→a and

−→
b ).

We may also write, e.g., ai ∈ −→a , identifying the family −→a with its support set. Since we only
consider families of pairwise distinct elements, such abuse of notation is generally harmless: in
this case, the only di�erence between (ai)i∈I and its support set {ai | i ∈ I} is whether the
bijection i 7→ ai is part of the data or not. If f is a function from A to any powerset, we extend
it to families in the obvious way, setting f(−→a ) =

⋃
a∈−→a f(a). E.g., if −→γ is a family of trees or

cuts we write V(−→γ ) =
⋃
γ∈−→γ V(γ).

An MLL bare proof net is a pair p = (−→c ;
−→
t ) of a �nite family−→c of pairwise distinct cuts and

a �nite family
−→
t of pairwise distinct trees such that: for all distinct cuts or trees γ, γ′ ∈ −→c ∪−→t ,

A(γ) ∩A(γ′) = ∅; and V(p) = V(−→c ) ∪V(
−→
t ) is closed under the involution x 7→ x. We

write C(p) = −→c for the family of cuts of p. For any tree, cut or bare proof net γ, we de�ne the
size of γ as size(γ) = #T(γ): graphically, size(p) is nothing but the number of wires in p.

Remark 3.2.1. In a graphical structure such as that of Figure 3.4, the interface ( i.e. the set of
extremities of dangling wires, which represent the conclusions of the net) is relevant: in particular,
cut elimination preserves this interface. So, in p = (−→c ;

−→
t ), −→t is intrinsically a family, whose

index set is precisely the interface of the structure.
On the other hand, the rest of the net should be considered up to isomorphism: in our case, this

amounts to the reindexing of cuts, and the renaming of atoms, preserving the duality involution on
variables. We may call α-equivalence the corresponding equivalence relation on bare proof nets,
as it has the very same status as the renaming of bound variables in the ordinary λ-calculus. In
particular, −→c should be considered as a set, although we introduce it as a family here, just because
it will be convenient to treat the concatenation −→c ,−→t as a family of cuts and trees in the following.

The reader may check that bare proof nets quotiented by α-equivalence, as introduced above,
are exactly the usual (untyped) proof structures for MLL (with connectives of arbitrary arity). We
keep this quotient implicit whenever possible in the remaining: in any case, α-equivalence preserves
the size of nets, as well as the length of paths to be introduced later. 3

As announced in our introduction, our nets will be equipped with jumps from ⊥ nodes to
other nodes. An MLL proof net will thus be the data of a bare proof net p and of a jump function
 : U⊥(p)→ T(p). We will often identify a proof net with its underlying bare net p, and then
write p for the associated jump function. Figure 3.5 presents such a net, whose underlying
graphical structure is that of Figure 3.4.

We can already introduce the �rst of our two key quantities: the jump degree jd(p) of a
net p. We �rst de�ne the jump degree of any tree t ∈ T(p), setting jdp(t) = #{µ ∈ U⊥(p) |
p(µ) = t}. We will often write jd(t) instead of jdp(t) if p is clear from the context. Then we
set jd(p) = max{jd(t) | t ∈ T(p)}.

Remark 3.2.2. Originally, jumps were introduced as pis aller for the characterization of se-
quentializable proof nets [Gir96, Appendix A.2]. Indeed, in presence of multiplicative units and

3. Note that this situation di�ers slightly from the case of interaction nets [Laf90], where explicit axioms and cuts
links are missing and there is no top-down orientation a priori. Term syntaxes have been proposed for those [MS08;
FM99, among others] but the correspondence is less immediate: it must be restricted to deadlock-free interaction nets
and, in addition to α-equivalence, one must introduce some mechanism to deal with implicit axiom-cut elimination
in the application of reduction rules.
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Figure 3.5 – The net p0 = (〈`(x, x)|⊗(1λ1 , y)〉, 〈y|⊥µ3〉, 〈1λ2 |⊥µ4〉;⊥µ1 ,⊥µ2 ,1λ3) with p0 :
µ1 7→ `(x, x), µ2 7→ y, µ3 7→ λ2, µ4 7→ λ3.

without jumps, Danos–Regnier’s correctness criterion, requiring the connectedness and acyclicity
of switching graphs, fails to accept some proof nets corresponding to proof trees using the ⊥-rule.
So, to characterize all sequentializable nets, one has to require the existence of a jump function
that makes all the switching graphs connected and acyclic. This additional structure is somewhat
arbitrary, and it restores a form of bureaucratic sequentiality: distinct jumping functions on the
same bare net may yield equivalent sequentializations. And there is no satisfactory solution to that
issue: if a notion of proof net could capture proof equivalence in MLL with units, then deciding the
identity of proof nets in that setting would not be tractable, simply because proof equivalence is
PSPACE-complete [HH16].

A simple, consensual alternative is to forget about jumps and drop the connectedness require-
ment: the acyclicity criterion characterizes exactly those nets that are sequentializable using an
additional mix-rule, corresponding to the parallel juxtaposition of nets. In particular, this weaker
requirement is su�cient to avoid the problematic cases of cut elimination. This is the approach
we adopt: after de�ning switchings and paths in Subsection 3.2.3, we will restrict our attention to
acyclic nets only.

We associate jump functions with nets nonetheless, but for a di�erent purpose: bounding the
jump degree in a net will allow us to control the combinatorics of the elimination of evanescent
cuts, in situations such as that of Figure 3.3. Since switching paths can follow jumps, and those
paths will be our main focus throughout the remaining of the paper, we chose to consider proof
nets as equipped with jumps by default. Still, the reader should be aware that the main subject of
interest is the underlying structure of bare proof nets.

3.2.2 Cut elimination

A reducible cut is a cut 〈t|s〉 such that:

— t is a variable and t 6∈ V(s) (axiom cut);

— or t ∈ U1 and s ∈ U⊥, and (s) 6∈ {t, s} (evanescent cut);

— or we can write t = ⊗(t1, . . . , tn) and s = `(s1, . . . , sn) (multiplicative cut).

The substitution γ[t/x] of a tree t for a variable x in a tree (or cut, or family of trees and/or
cuts) γ is de�ned in the usual way, with the additional assumption that A(t) and A(γ) are
disjoint. By the de�nition of trees, this substitution is essentially linear: each variable x appears
at most once in γ.
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There are three basic cut elimination steps de�ned for bare proof nets, one for each kind of
reducible cut:

— the elimination of a multiplicative cut yields a family of cuts: we write

〈⊗(t1, . . . , tn)|`(s1, . . . , sn)〉 →m 〈t1|s1〉, . . . , 〈tn|sn〉

that we extend to nets by setting (c,−→c ;
−→
t )→m (−→c ′,−→c ;

−→
t ) whenever c→m

−→c ′;
— the elimination of an axiom cut generates a substitution: we write (〈x|s〉,−→c ;

−→
t ) →a

(−→c ;
−→
t )[s/x] whenever x 6∈ V(s);

— the elimination of an evanescent cut just deletes that cut: we write (〈λ|µ〉,−→c ;
−→
t ) →e

(−→c ;
−→
t ) whenever p(µ) 6∈ {µ, λ}. 4

Then we write p → p′ if p →m p′ or p →a p
′ or p →e p

′. Observe that if p → p′ then
A(p′) ⊆ A(p).

In order to de�ne cut elimination between proof nets (and not bare proof nets only), we
need to modify the jump function. Indeed, assume p = (〈t|s〉,−→c ;

−→
t ) and p′ is obtained from p

by reducing the cut 〈t|s〉. Then U⊥(p′) ⊆ U⊥(p), but if µ ∈ U⊥(p′) and p(µ) = t, we need
to rede�ne p′(µ), as in general t 6∈ T(p′). This is done as follows:

— if 〈t|s〉 = 〈⊗(t1, . . . , tn)|`(s1, . . . , sn)〉 then for all µ ∈ U⊥(p) = U⊥(p′) such that
p(µ) = ⊗(t1, . . . , tn) (resp. `(s1, . . . , sn)), we set p′(µ) = t1 (resp. s1); 5

— if 〈t|s〉 = 〈t|x〉 and p′ is obtained from p by substituting t for x, then for all µ ∈ U⊥(p) =
U⊥(p′) such that p ∈ {x, x}, we set p′(µ) = t;

— if 〈t|s〉 = 〈µ|λ〉, then for all µ′ ∈ U⊥(p′) = U⊥(p) \ {µ} such that p(µ′) ∈ {µ, λ}, we
set p′(µ′) = p(µ).

The result of eliminating the multiplicative cut (resp. axiom cut; evanescent cut) of the net p0

of Figure 3.5 is depicted in Figure 3.6 (resp. Figure 3.7; Figure 3.8).
We are in fact interested in the simultaneous elimination of any number of reducible cuts,

that we describe as follows. We write p⇒ p′ if

p = (c1, . . . , ck, 〈x1|t1〉, . . . , 〈xn|tn〉, 〈µ1|λ1〉, . . . , 〈µl|λl〉,−→c ;
−→
t )

and
p′ = (−→c ′1, . . . ,−→c ′k,

−→c ;
−→
t )[t1/x1] · · · [tn/xn],

assuming that:

— ci →m
−→c ′i for 1 ≤ i ≤ k,

4. Since the cuts of a net are given as a family rather than a sequence, the order in which we write cuts in this
de�nition is not relevant: despite our abusive notation, the reduced cut need not be the �rst in the enumeration,
because this enumeration is not �xed.

5. We arbitrarily redirect the jumps to the �rst subtree to simplify the presentation, but we could equivalently
have set p′(µ) to be any of the immediate subtrees of p(µ), non deterministically: in fact, this slight generalization
is necessary to deal with cut elimination in resource nets.

Other strategies for choosing the destination of a jump exist in the literature: for instance, one may be tempted
to systematically redirect jumps to atoms, as it is done by Tortora de Falco [Tor00, De�nition 1.3.3]. But this kind of
transformation is not local and it would certainly complicate our arguments.
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Figure 3.6 – The net p′m = (〈x|1λ1〉, 〈x|y〉, 〈y|⊥µ3〉, 〈1λ2 |⊥µ4〉;⊥µ1 ,⊥µ2 ,1λ3) with p′m : µ1 7→
x, µ2 7→ y, µ3 7→ λ2, µ4 7→ λ3, so that p0 →m p′m.

⊥
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⊥
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cut

⊥
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Figure 3.7 – The net p′a = (〈`(x, x)|⊗(1λ1 ,⊥µ3〉, 〈1λ2 |⊥µ4〉;⊥µ1 ,⊥µ2 ,1λ3) with p′a : µ1 7→`(x, x), µ2 7→ µ3, µ3 7→ λ2, µ4 7→ λ3, so that p0 →a p
′
a.

— xi 6∈ {x1, . . . , xn} and xi 6∈ V(tj) for 1 ≤ i ≤ j ≤ n, and

— p(µi) 6∈ {µj , λj} for 1 ≤ i ≤ j ≤ l.
It should be clear that p′ is then obtained from p by successively eliminating the particular cuts
we have selected, thus performing k steps of→m, n steps of→a, l steps of→e, in no particular
order: indeed, one can check that any two elimination steps of distinct cuts commute on the
nose. The resulting jump function p′ can be described directly, by inspecting the possible cases
for p(µ′) with µ′ ∈ U⊥(p′):

— if ci = 〈⊗(u1, . . . , ur)|`(v1, . . . , vr)〉 and, e.g., p(µ′) = ⊗(u1, . . . , ur) then p′(µ′) =
u1[t1/x1] · · · [tn/xn];

— if p(µ′) ∈ {xi, xi} then p′(µ′) = ti[ti+1/xi+1] · · · [tn/xn];

— if p(µ′) ∈ {µi, λi} then p′(µ′) = ρ(i)[t1/x1] · · · [tn/xn], where ρ : {1, . . . , l} → T(p)
is the redirection function inductively de�ned by ρ(j) = ρ(i) if p(µj) ∈ {µi, λi} (in
which case i < j) and ρ(j) = p(µj) otherwise;

— otherwise p′(µ′) = p(µ
′)[t1/x1] · · · [tn/xn].

The result of simultaneously eliminating all the cuts of the net p0 of Figure 3.5 is depicted in
Figure 3.9.

This general description of parallel cut elimination is obviously not very handy. In order not
to get lost in notation, we will restrict our attention to the particular case in which only cuts of
the same nature are simultaneously eliminated: we write p⇒m p′ if n = l = 0 (multiplicative
cuts only), p⇒a p if k = l = 0 (axiom cuts only), and p⇒e p

′ if n = k = 0 (evanescent cuts
only). Then we can decompose any parallel reduction p ⇒ p′ into three separate steps: e.g.,
p⇒m ·⇒a ·⇒e p

′. 6

6. Of course, the converse does not hold: for instance the reductions (〈`(x, x)|⊗(y, z)〉; y, z) ⇒m
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Figure 3.8 – The net p′e = (〈`(x, x)|⊗(1λ1 , y)〉, 〈y|⊥µ3〉;⊥µ1 ,⊥µ2 ,1λ3) with p′e : µ1 7→`(x, x), µ2 7→ y, µ3 7→ λ3, so that p0 →e p
′
e.
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Figure 3.9 – The net p′ = (〈x|1λ1〉, 〈x|⊥µ3〉;⊥µ1 ,⊥µ2 ,1λ3) with p′ : µ1 7→ x, µ2 7→ µ3, µ3 7→
λ3, so that p0 ⇒ p′.

3.2.3 Paths

In order to control the e�ect of parallel reduction on the size of proof nets, we rely on a side
condition involving the length of switching paths, i.e. paths in the sense of Danos–Regnier’s
correctness criterion [DR89].

Let us write T`(p) (resp. T⊗(p)) for the set of the subtrees of p of the form `(t1, . . . , tn)
(resp. ⊗(t1, . . . , tn)). In our setting, a switching of a net p is a map I : T`(p) → T(p) such
that, for each t = `(t1, . . . tn) ∈ T`(p), I(t) ∈ {t1, . . . , tn}. Given a net p and a switching I
of p, the associated switching graph is the unoriented graph with vertices in T(p) and edges
given as follows:

— one axiom edge ∼{x,x} for each axiom {x, x} ⊆ V(p), connecting x and x;

— one ⊗-edge ∼t,ti for each pair (t, ti) with t = ⊗(t1, . . . , tn) ∈ T⊗(p), connecting t and
ti;

— one `-edge ∼t for each t ∈ T`(p), connecting t and I(t);

— one jump edge ∼µ for each µ ∈ U⊥(p), connecting µ and p(µ);

— one cut edge ∼c for each cut c = 〈t|s〉 ∈ C(p), connecting t and s.

Whenever necessary, we may write, e.g., ∼pe or ∼p,Ie for the edge ∼e to make the underlying
net and switching explicit. On the other hand, we will often simply write e instead of ∼e for
denoting an edge. Each edge e induces a symmetric relation, involving at most two subtrees of p:
we write t ∼e u, and say t and u are adjacent whenever t and u are connected by e. A priori, it
might be the case that distinct edges induce the same relation: for instance, if c = 〈x|x〉 ∈ C(p),

(〈x|y〉, 〈x|z〉; y, z)⇒a (〈y|z〉; y, z) cannot be performed in a single step, as the cut 〈x|y〉 was newly created.
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⊗ `
ax axx x y

|

y

Figure 3.10 – A path in (;⊗(x, y),`(y, x)) for switching I : `(y, x) 7→ x (we strike out the
other premise).

we have x ∼c x as well as x ∼{x,x} x; and if p(µ) = µ′ and p(µ′) = µ, we have µ ∼µ µ′ as
well as µ ∼µ′ µ′. Avoiding such cycles is precisely the purpose of the correctness criterion.

Given a switching I in p, an I-path is the data of a tree t0 ∈ T(p) and of a sequence
(e1, . . . , en) of pairwise distinct consecutive edges starting from t0: in other words, we re-
quire that there exist t1, . . . , tn ∈ T(p) such that, for each i ∈ {1, . . . , n}, ti−1 ∼ei ti. 7

For instance, if p = (;⊗(x, y),`(y, x)) and I(`(y, x)) = x, then the chain of adjacencies
`(x, y) ∼`(x,y) x ∼{x,x} x ∼⊗(x,y),x ⊗(x, y) ∼⊗(x,y),y y ∼{y,y} y de�nes a maximal I-path
in p (see Figure 3.10).

We write P(p, I) for the set of all I-paths in p. We write χ : t0  p,I tn whenever
χ = t0 ∼e1 · · · ∼en tn is an I-path from t0 to tn in p: with these notations, we say χ visits the
trees t0, . . . , tn, and χ crosses the edges e1, . . . , en; moreover we write ln(χ) = n for the length
of χ. A subpath of χ is any I-path of the form ti ∼ei+1 · · · ∼ei+k ti+k. We write χ† for the
reverse I-path: χ† = tn ∼en · · · ∼e0 t0. The empty path from t ∈ T(p) is the only εt : t p,I t
of length 0. We say I-paths χ and χ′ are disjoint if no edge is crossed by both χ and χ′. Observe
that disjoint paths can visit common trees: in particular, if χ : t p,I s and χ′ : s p,I u are
disjoint, we write χχ′ : t p,I u for the concatenation of χ and χ′.

We call path in p any I-path for I a switching of p, we write P(p) for the set of all paths in p,
and we denote by ln(p) = max{ln(χ) | χ ∈ P(p)} the maximal length of a path in p. We then
write χ : t p s if χ ∈ P(p) is a path from t to s in p, and we write t p s, or simply t s,
whenever such a path exists. This relation on T(p) is re�exive (via the empty path εt : t t)
and symmetric (via reversing paths). Observe that if χ1, · · · , χn ∈ P(p) are pairwise disjoint,
then there exists I such that χi ∈ P(p, I) for 1 ≤ i ≤ n. This does not make the relation p

transitive: for instance, if p = (;x,`(x, y), y), we have paths x `(x, y) and `(x, y) y,
but both cross `(x, y) for di�erent switchings, and indeed, there is no path x y.

We say a net p is acyclic if, for all χ ∈ P(p) and t ∈ T(p), χ visits t at most once: in other
words, there is no (non-empty) cycle χ : t t. Notice that, given any family of pairwise distinct
cuts in an acyclic net p, it is always possible to satisfy the side conditions on free variables and
on jumps necessary to reduce these cuts in parallel (provided each cut in the family has the
shape of a multiplicative, axiom or evanescent cut). Moreover, it is a very standard result that
acyclicity is preserved by cut elimination:

Lemma 3.2.3. If p′ is obtained from p by cut elimination and p is acyclic then so is p′.

Proof. It su�ces to check that if p→ p′ then any cycle in p′ induces a cycle in p. 8

7. In standard terminology of graph theory, an I-path in p is a trail in the switching graph induced by p and I .
8. We do not detail the proof as it is quite standard. We will moreover generalize this technique to all paths (and

87



From now on, we consider acyclic nets only.

3.3 Bounding the size of antireducts: three kinds of cuts

In this section, we show that the loss of size during a parallel reduction p⇒m q, p⇒a q
or p⇒e q is directly controlled by ln(p), jd(p) and size(q): more precisely, we show that the
ratio size(p)

size(q) is bounded by a function of ln(p) and jd(p) in each case.

3.3.1 Elimination of multiplicative cuts

The elimination of multiplicative cuts cannot decrease the size by more than a half:

Lemma 3.3.1. If p⇒m q then size(p) ≤ 2size(q).

Proof. Since the elimination of a multiplicative cut does not a�ect the rest of the (bare) net, it is
su�cient to observe that if c→m

−→c then size(c) = 2 + size(−→c ) ≤ 2size(−→c ). 9

So in this case, ln(p) and jd(p) actually play no rôle.

3.3.2 Elimination of axiom cuts

Observe that:

— if x ∈ V(γ) then size(γ[t/x]) = size(γ) + size(t)− 1;

— if x 6∈ V(γ) then size(γ[t/x]) = size(γ).

It follows that, in the elimination of a single axiom cut p→a q, we have size(p) = size(q) + 2.
But we cannot reproduce the proof of Lemma 3.3.1 for⇒a: as depicted in Figure 3.2, a chain of
arbitrarily many axiom cuts may reduce into a single wire. We can bound the length of those
chains by ln(p), however, and this allows us to bound the loss of size during reduction.

Lemma 3.3.2. If p⇒a q then size(p) ≤ (ln(p) + 1)size(q).

Proof. Assume p = (〈x1|t1〉, . . . , 〈xn|tn〉,−→c ;−→s ) and q = (−→c ;−→s )[t1/x1] · · · [tn/xn] with xi 6∈
{x1, . . . , xn} and xi 6∈ V(tj) for 1 ≤ i ≤ j ≤ n. To establish the result in this case, we make
the chains of eliminated axiom cuts explicit.

Due to the condition on free variables, we can partition 〈x1|t1〉, . . . , 〈xn|tn〉 into tuples
−→c 1, . . . ,

−→c k of the shape −→c i = (〈xi0|xi1〉, . . . , 〈xini−1|xini〉, 〈x
i
ni |t

i〉) so that:

— xij ∈ {x1, . . . , xn} for 1 ≤ i ≤ k and 0 ≤ j ≤ ni;

— xij ∈ {t1, . . . , tn} for 1 ≤ i ≤ k and 1 ≤ j ≤ ni;

— ti ∈ {t1, . . . , tn} for 1 ≤ i ≤ k;

— each −→c i is maximal with this shape, i.e. xi0 6∈ {t1, . . . , tn} and ti 6∈ {x1, . . . , xn}.

not only cycles) in the next section.
9. This is due to the fact that we distinguish between strict connectives and their nullary versions, that are

subject to evanescent reductions.
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Without loss of generality, we can moreover require that, if i < i′, then 〈xini |t
i〉 occurs before

〈xi′ni′ |t
i′〉 in the tuple (〈x1|t1〉, . . . , 〈xn|tn〉). Moreover observe that, by the condition on free

variables, the order of the cuts in each −→c i is necessarily the same as in (〈x1|t1〉, . . . , 〈xn|tn〉).
By a standard result on substitutions, if x 6= y, x 6∈ V(v) and y 6∈ V(u) then γ[u/x][v/y] =

γ[v/y][u/x]:

— if i 6= i′, we have xij 6= xi
′
j′ for 0 ≤ j ≤ ni and 0 ≤ j′ ≤ ni′ , so the substitutions [xij+1/x

i
j ]

and [xi
′
j′+1/x

i′
j′ ] always commute for 1 ≤ i < i′ ≤ k, 0 ≤ j < ni and 0 ≤ j′ < nj′ ;

— if i < i′ and 〈xi′j′ |xi
′
j′+1〉 occurs before 〈xini |t

i〉 in (〈x1|t1〉, . . . , 〈xn|tn〉), the condition
on free variables imposes that xi

′
j′ 6∈ V(ti) so the substitutions [ti/xini ] and [xi

′
j′+1/x

i′
j′ ]

commute in this case.

By iterating those two observations, we can reorder the substitutions in q and obtain:

q = (−→c ;−→s )[t1/x1] · · · [tn/xn]

= (−→c ;−→s )[x1
1/x

1
0] · · · [x1

n1
/x1

n1−1][t1/x1
n1

] · · · [xk1/xk0] · · · [xknk/x
k
nk−1][tk/xknk ]

= (−→c ;−→s )[t1/x1
0] · · · [tk/xk0].

It follows that size(q) = size(−→c ) + size(−→s ) +
∑k

i=1 size(ti)− k. For 1 ≤ i ≤ k,−→c i induces
a path x0

i  ti of length 2ni + 2 (ni + 1 cuts and ni + 1 axioms). Hence 2ni ≤ ln(p)− 2 and:

size(p) = size(−→c ) + size(−→s ) +
k∑
i=1

(size(ti) + 2ni + 1)

≤ size(−→c ) + size(−→s ) +
k∑
i=1

size(ti) + k(ln(p)− 1)

≤ size(q) + kln(p).

To conclude, it will be su�cient to prove that size(q) ≥ k. For 1 ≤ i ≤ k, let Ai = {j >
i | xj0 ∈ V(ti)}, and then let A0 = {i | xi0 ∈ V(−→c ,−→s )}. It follows from the construction that
{A0, . . . , Ak−1} is a partition (possibly including empty sets) of {1, . . . , k}. By construction,
for each j ∈ Ai, x

j
0 is a strict subtree of ti: it follows that size(ti) > #Ai. Now consider

qi = (−→c ;−→s )[t1/x1
0] · · · [ti/xi0] for 0 ≤ i ≤ k so that q = qk. For 1 ≤ i ≤ k, we obtain

size(qi) = size(qi−1) + size(ti) − 1 ≥ size(qi−1) + #Ai. Also observe that size(q0) =
size(−→c ;−→s ) ≥ #A0. Then we can conclude: size(q) = size(qk) ≥

∑k
i=0 #Ai = k.

3.3.3 Elimination of evanescent cuts

We now consider the case of a reduction p ⇒e q: we bound the maximal number of
evanescent cuts appearing in p by a function of ln(p), jd(p) and size(q).

We rely on the basic fact that if t ∈ T(q) ⊆ T(p), then there are at most jd(p) evanescent
cuts of p that jump to t. The main di�culty is that an evanescent cut of p can jump to another
evanescent cut of p, that is also eliminated in the step p⇒e q. See Figure 3.11 for a graphical
representation of the critical case. To deal with this phenomenon, we observe that a sequence
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Figure 3.11 – Evanescent reductions : critical case

of cuts 〈µ1|λ1〉, . . . , 〈µn|λn〉 with p(µi) ∈ {λi+1, µi+1} for all i ∈ {1, . . . , n− 1}, induces a
path of length at least n: hence n ≤ ln(p).

De�nition 3.3.3. We de�ne for all n ∈ N and all t ∈ T(p), In(t) as follows : I0(t) = −1
p (t) =

{µ ∈ U⊥(p) | p(µ) = t}, and Im+1(t) = {µ′ ∈ U⊥(p) | p(µ′) ∈ {µ, λ}, 〈µ|λ〉 ∈ C(p), µ ∈
Im(t)}.

We can already observe that #I0(t) = jd(t). This de�nition is parametrized by p, and may
we write Inp (t) to make the underlying net explicit.

Lemma 3.3.4. Let p, q be two nets such that p⇒e q. Then:

1. for all t ∈ T(p), #
(⋃

i∈N Iip(t)
)
≤ (2jd(p))ln(p)+1;

2. there are at most size(q)× (2jd(p))ln(p)+1 evanescent cuts in C(p).

Proof. We �rst establish that the set {n ∈ N | In(t) 6= ∅} is �nite for all t. Indeed, for each
µn ∈ In(t), there is a sequence of cuts c0, . . . , cn−1 such that, writing ci = 〈λi|µi〉, the unique
path from µn to t is χ = χn · · ·χ1(µ0 ∼µ0 t) where, for 1 ≤ i ≤ n:

— either p(µi) = λi−1 and χi = µi ∼µi λi−1 ∼ci−1 µi−1;

— or p(µi) = µi−1 and χi = µi ∼µi µi−1.

We observe that ln(χ) ≥ n+ 1, and then we deduce n < ln(p) as soon as In(t) 6= ∅.
Now we bound the size of each Inp (t): we show that #Inp (t) ≤ (2jd(p))n+1, by induction

on n. We already have #I0
p(t) = jd(t) ≤ jd(p). Now assume the result holds for n ≥ 0. Then,
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for each c = 〈µ|λ〉 ∈ C(p) such that µ ∈ Inp (t), the number of µ′ such that p(µ′) ∈ c is at most
jd(µ) + jd(λ) ≤ 2jd(p). We obtain: #In+1

p (t) ≤ 2jd(p)#Inp , which enables the induction.

We thus get #
(⋃

i∈N Iip(t)
)
≤
∑ln(p)−1

i=0 (2jd(p))i+1 ≤ (2jd(p))ln(p)+1 which entails (1).
To deduce (2) from (1), it will be su�cient to show that, for each µ ∈ U⊥(p), there exists
t ∈ T(q) such that µ ∈ Ikp(t) for some k ∈ N: indeed the number of evanescent cuts in p is
obviously bounded by #U⊥(p).

For that purpose, write µ0 = µ and let (ci)i∈{1,...,k} be the longest sequence of cuts ci =
〈λi|µi〉 ∈ C(p) such that, for all i ∈ {0, . . . , k − 1}, p(µi) ∈ {µi+1, λi+1}: such a maximal
sequence exists by acyclicity. Necessarily, p(µk) is not part of an evanescent cut in C(p), so
p(µk) ∈ T(q): we conclude since µ0 ∈ Ikp(p(µk)).

Writing ψ(i, j, k) = i(1 + 2(2j)k+1), we obtain:

Lemma 3.3.5. If p⇒e q, then size(p) ≤ ψ(size(q), jd(p), ln(p)).

Proof. Writing p = (〈µ1|λ1〉, . . . , 〈µn|λn〉,−→c ;
−→
t ) and q = (−→c ;

−→
t ), we obtain

size(p) = size(q) + 2n ≤ size(q)(1 + 2(2jd(p))ln(p)+1)

by Lemma 3.3.4.

3.3.4 Towards the general case

Recall that any parallel cut elimination step p ⇒ q can be decomposed into, e.g.: p ⇒e

p′ ⇒m p′′ ⇒a q. We would like to apply the previous results to this sequence of reductions,
in order to bound the size of p by a function of size(q), ln(p) and jd(p). Observe however
that this would require us to infer a bound on ln(p′′) from the bounds on p, in order to apply
Lemma 3.3.2.

More generally, to be able to apply our results to a sequence of reductions p⇒ · · ·⇒ q, we
need to ensure that for any reduction p⇒ p′, we can bound ln(p′) and jd(p′) by functions of
ln(p) and jd(p). This is the subject of the following two sections.

3.4 Variations of ln(p) under reduction

Here we establish that the possible increase of ln(p) under reduction is bounded. It should
be clear that:

Lemma 3.4.1. If p⇒a q or p⇒e q, then ln(q) ≤ ln(p).

Indeed axiom and evanescent reductions only shorten paths, without really changing the
topology of the net.

In the case of multiplicative cuts however, cuts are duplicated and new paths are created.
Consider for instance a net r, as in Figure 3.12, obtained from three nets p1, p2 and q, by forming
the cut 〈⊗(t1, t2)|`(s1, s2)〉 where t1 ∈ T(p1), t2 ∈ T(p2) and s1, s2 ∈ T(q). Observe that,
in the reduct r′ obtained by forming two cuts 〈t1|s1〉 and 〈t2|s2〉, we may very well form a path
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Figure 3.12 – A cut, the resulting slipknot, and examples of paths before and after reduction

that travels from p1 to q then p2; while in p, this is forbidden by any switching of `(s1, s2).
For instance, if we consider I(`(s1, s2)) = s1, we may only form a path between p1 and p2

through ⊗(t1, t2), or a path between q and one of the pi’s, through s1 and the cut.
In the remainder of this section, we �x a reduction step p ⇒m q, and we show that the

previous example describes a general mechanism: a path χ in q that is not already in p must
involve a subpath χ′ between two residuals of a cut of p that was eliminated in p⇒m q. We
refer to this situation as a slipknot in χ.

More formally, consider c = 〈t0|s0〉 ∈ C(p) with t0 = ⊗(t1, . . . , tn) and s0 = `(s1, . . . , sn)
and assume c is eliminated in the reduction p⇒m q: then the residuals of c in q are the cuts
〈ti|si〉 ∈ C(q) for 1 ≤ i ≤ n. For any edge e, we write (e) for any length 1 path t ∼e s. If
χ ∈ P(q), a slipknot of χ is any subpath (d)ξ(d′) where d and d′ are (necessarily distinct)
residuals of the same cut in p. In the remaining of this section, we show that a path in q is
necessarily obtained by alternating paths (essentially) in p and slipknots in q, that recursively
consist of such alternations. This will allow us to bound ln(q) depending on ln(p), by reasoning
inductively on these paths.

3.4.1 Preserved paths

Notice that T(q) ⊆ T(p) and, given a switching J of q, it is always possible to extend J
into a switching I of p: to determine I uniquely amounts to select a premise for each `-tree in
an eliminated cut.

Let J be a switching of q and I an extension of J on p. Observe that if t ∼p,Ie t′ and neither
t nor t′ is an element of an eliminated cut, then e is also an edge of q that is not a residual cut;
conversely, if t ∼q,Je t′ and e is not a residual cut, then e is also an edge of p. We then say the
edge e is preserved by the reduction p⇒m q. If a preserved edge e is a cut, an axiom, a ⊗-edge
or a `-edge, then e has the same endpoints in p and in q: t ∼p,Ie t′ i� t ∼q,Je t′. If e = µ is a
jump, one endpoint might be changed: indeed, µ ∼pe p(µ) and µ ∼qe q(µ), and we might have
p(µ) 6= q(µ) when p(µ) is part of an eliminated cut. In this case, we say e is a redirected jump.
We say u ∈ T(p) is an anchor of v ∈ T(q), if either u = v or u is involved in an eliminated cut
c = 〈u|u′〉, and either u = ⊗(

−→
t ) and v ∈ −→t or u = `(−→s ) and v ∈ −→s .

Lemma 3.4.2. Assume (d)χ(d′) ∈ P(q) and d and d′ are residuals. Then χ is non empty, and its
�rst and last edges are preserved.
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Proof. This is a direct consequence of the fact that if (c)(e) is a path and c is a cut then e is not
a cut.

Observe that even if a path χ ∈ P(q) crosses preserved edges only, it is not su�cient to have
χ ∈ P(p), because the endpoints of redirected jumps might change. We say χ is a preserved
path if χ crosses preserved edges only, and we can write either χ = χ′ or χ = (t ∼µ ⊥µ)χ′ or
χ′(⊥µ′ ∼µ′ t′) or χ = (t ∼µ ⊥µ)χ′(⊥µ′ ∼µ′ t′) where χ′ crosses no redirected jump.

Lemma 3.4.3. Any non empty preserved path χ : t  q t
′ induces a unique preserved path

χ− : s p s
′ with the same sequence of edges: in particular, χ− ∈ P(p, I) as soon as χ ∈ P(q, J)

and I is an extension of J ; and s (resp. s′) is an anchor of t (resp. t′’). Moreover, if χ1χ2 is a
preserved path then (χ1χ2)− = χ−1 χ

−
2 ∈ P(p).

Proof. The �rst part is a direct consequence of the de�nition. If moreover χ1χ2 is a preserved
path, and neither χ1 nor χ2 is an empty path, then neither the last edge of χ1 nor the �rst edge
of χ2 can be a redirected jump.

By convention, if χ is empty, we set χ− = χ. We say χ− is the path of p generated by χ. In
the next two subsections, we extend the generation of paths in p from paths in q, �rst to paths
without slipknots, then to arbitrary paths.

3.4.2 Bridges and straight paths

Let c = 〈t0|s0〉 ∈ C(p) with t0 = ⊗(
−→
t ) and s0 = `(−→s ). We say an edge e is bound to c if

either e = c, or e = (t0, t) with t ∈ −→t , or e = s0. And we say χ ∈ P(p) is bound to c if all the
edges crossed by χ are bound to c. Observe that e ∈ P(p) is a preserved edge i� it is not bound
to an eliminated cut.

Lemma 3.4.4. Let c = 〈t0|s0〉:

— if χ ∈ P(p) is bound to c = 〈t0|s0〉 and s0 = `(−→s ) then there exists s ∈ −→s such that
χ ∈ P(p, I) whenever I(s0) = s;

— if χ ∈ P(p, I) does not cross any edge bound to c then χ ∈ P(p, I ′) whenever I and I ′

di�er only on s0.

Proof. It is su�cient to observe that the edge s0 is bound to c; and the only edge e ∈ T`(p)
that may be visited by a path bound to c is s0.

A c-bridge is a path χ that is bound to c and that crosses c. Observe that χ is a c-bridge i�
either χ or the reverse path χ† is a subpath of some t ∼(t0,t) t0 ∼c s0 ∼s0 s with t ∈ −→t and
s ∈ −→s . Moreover, given t ∈ {t0} ∪

−→
t and s ∈ {s0} ∪ −→s there is a unique c-bridge t s.

Lemma 3.4.5. Assume χ1ξχ2 ∈ P(q) and ξ = t ∼〈t|s〉 s, where χ1 and χ2 are preserved paths,
t ∈ −→t and s ∈ −→s . Then there exists a c-bridge ξ' such that χ−1 ξ

'χ−2 ∈ P(p).
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Proof. Write χ1 : v1  q,J t and χ2 : s  q,J v2: by Lemma 3.4.3, we obtain χ−1 : u1  p,I t
′

and χ−2 : s′  p,I u2 where u1, t′, s′ and u2 are anchors of v1, t, s and v2 respectively, for any
extension I of J . In particular, t′ ∈ {t, t0} and s′ ∈ {s, s0} and we can �x ξ' : t′  s′ to be
the only c-bridge with those endpoints. Observe indeed that ξ' ∈ P(p, I) as soon as I(s0) = s.
Then by Lemmas 3.4.3 and 3.4.4, we can concatenate χ−1 ξ

'χ−2 : u1  p,I u2.

Despite the notation, the de�nition of ξ' does depend on χ1 and χ2: whenever we use
Lemma 3.4.5, however, the values of χ1 and χ2 should be clear from the context.

We say a path χ ∈ P(q) is a straight path if it has no slipknot. Such a path is essentially a
path of p, up to replacing residuals with bridges:

Lemma 3.4.6. If χ is a straight path, there exists a unique sequence of pairwise distinct elim-
inated cuts c1, . . . , cn ∈ C(p) \ C(q), such that we can write χ = χ1(d1) · · ·χn(dn)χn+1

where each di is a residual of ci and χ crosses no other residual. Moreover we can form χ− =
χ−1 (d1)' · · ·χ−n (dn)'χ−n+1 ∈ P(p).

Proof. The �rst part is straightforward reformulation of the absence of slipknots. The second
part follows by applying Lemma 3.4.5 to each χi(di)χi+1 (or the reverse path): the concatenation
of preserved paths and bridges in the de�nition of χ− is allowed by Lemmas 3.4.3 and 3.4.4.

We say two paths χ1, χ2 ∈ P(q) are independent if they are disjoint and there is no
eliminated cut c such that both χ1 and χ2 cross a residual of c.

Lemma 3.4.7. Assume χ1, . . . , χn ∈ P(q, J) are pairwise independent straight paths and
c1, . . . , ck ∈ C(p) \ C(q) are such that no χi crosses a residual of cj , for 1 ≤ i ≤ n and
1 ≤ j ≤ k. Then for any ξ1, . . . , ξk ∈ P(p) such that ξi is bound to c for 1 ≤ i ≤ k, there exists
an extension I of J such that χ−i ∈ P(p, I) for 1 ≤ i ≤ n and ξj ∈ P(p, I) for 1 ≤ j ≤ k.

Proof. It is su�cient to observe that if χ− crosses an edge bound to an eliminated cut c then χ
crosses a residual of c. Then the result is a direct consequence of the de�nition of χ−i , together
with Lemmas 3.4.3 and 3.4.4.

The generation of a path is thus compatible with the concatenation of independent straight
paths:

Lemma 3.4.8. If χ1 : v  q u and χ2 : u  q t are independent straight paths then χ1χ2 is a
straight path and (χ1χ2)− = χ−1 χ

−
2 .

Proof. Thatχ1χ2 is a straight path follows directly from the hypotheses. Writeχi = χi1(di1) · · ·χini(d
i
ni)χ

i
ni+1:

it is then su�cient to apply the de�nition ofχ−i and observe that (χ1
n1+1χ

2
1)− = (χ1

n1+1)−(χ2
1)−

by Lemma 3.4.3.

3.4.3 Bounces and slipknots

Let c = 〈t0|s0〉 ∈ C(p) with t0 = ⊗(
−→
t ). A c-bounce is a path χ that is bound to c, that

does not cross c and that visits t0: χ is either the empty path εt0 , or t0 ∼t0,t t or t ∼t0,t t0 with
t ∈ −→t , or t ∼(t0,t) t0 ∼(t0,t′) t

′ with t 6= t′ ∈ −→t . Given t, t′ ∈ {t0}∪
−→
t , such that either t = t0

or t′ = t0 or t 6= t′, there is a unique c-bounce t t′.
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Figure 3.13 – Schematic shape of slipknots on a path (axiom and cut nodes ommited)

Lemma 3.4.9. Assume χ1ξχ2 ∈ P(q) and ξ = (t1 ∼〈t1|s1〉 s1)ξ′(s2 ∼〈t2|s2〉 t2), where χ1 and
χ2 are preserved paths, t1, t2 ∈

−→
t and s1, s2 ∈ −→s . Then there exists a c-bounce ξ∨ such that

χ−1 ξ
∨χ−2 ∈ P(p).

Proof. Necessarily, 〈t1|s1〉 6= 〈t2|s2〉, hence t1 6= t2. Write χ1 : v1  q t1 and χ2 : t2  q v2:
we obtain χ−1 : u1  p t

′
1 and χ−2 : t′2  p u2 where u1, t′1, t′2 and u2 are anchors of v1, t1, t2

and v2 respectively, for any extension I of J . In particular, t′1 ∈ {t1, t0} and t′2 ∈ {t2, t0} with
t1 6= t2, and we can �x ξ∨ : t′1  t′2 to be the only the only c-bounce with those endpoints.
Then we can concatenate χ−1 ξ

∨χ−2 : u1  p u2 by Lemmas 3.4.3 and 3.4.4.

Again, the de�nition of ξ∨ does depend on χ1 and χ2 but these should be clear from the
context when we use Lemma 3.4.9.

We are now ready to prove that paths in q are alternations of straight paths and slipknots,
and generate paths in p by replacing slipknots with bounces:

Theorem 3.4.10. For each path χ ∈ P(q), there exists a unique sequence of pairwise distinct
eliminated cuts c1, . . . , cn ∈ C(p) \C(q), such than we can write χ = χ1ξ1 · · ·χnξnχn+1 where:

— each χi is a straight path that crosses no residual of cj for 1 ≤ j ≤ n;

— χi and χj are independent when i 6= j;

— each ξi is a slipknot (di)ξ
′
i(d
′
i) : ti  t′i where di and d′i are residuals of ci, and ti and t′i

are distinct premises of the ⊗-tree of ci.

Moreover χ− = χ−1 ξ
∨
1 · · ·χ−n ξ∨nχ

−
n+1 ∈ P(p).

Figure 3.13 illustrates the relationship between χ− and χ, in the simple case where each cut
is between binary connectives, and no redirected jump is involved: each χ−i bounces on the ⊗
side of ci and joins χ−i+1 directly instead of crossing the cut.
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The proof of Theorem 3.4.10 is by induction on the length of χ. We break it down into a
series of intermediate results. Formally, given χ ∈ P(q):

— we �rst establish Lemma 3.4.11 for all paths such that Theorem 3.4.10 holds;

— we deduce Lemma 3.4.12 for χ from Theorem 3.4.10 and Lemma 3.4.11 applied to χ;

— Lemma 3.4.13 for χ is a direct consequence of Lemma 3.4.12 applied to strict subpaths of
χ;

— we prove Lemma 3.4.14 for χ by applying Theorem 3.4.10, Lemma 3.4.11 and Lemma 3.4.13
to strict subpaths of χ;

— then we prove Theorem 3.4.10 for χ by applying Lemmas 3.4.13 and 3.4.14 to χ, and
Lemma 3.4.11 to strict subpaths of χ.

Lemma 3.4.11. Assume χ1, . . . , χn ∈ P(q, J) are pairwise disjoint paths, and c1, . . . , ck ∈
C(p) \C(q), are such that no χi crosses a residual of cj , for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then for
any ξ1, . . . , ξk ∈ P(p) such that ξi is bound to c for 1 ≤ i ≤ k, there exists an extension I of J
such that χ−i ∈ P(p, I) for 1 ≤ i ≤ n and ξj ∈ P(p, I) for 1 ≤ j ≤ k.

Proof. This is a direct consequence of the de�nition of χ−i in Theorem 3.4.10, together with
Lemma 3.4.7.

Lemma 3.4.12. Assume d = 〈t|s〉 and d′ = 〈t′|s′〉 are distinct residuals of the same cut c =
〈t0|s0〉 with t0 = ⊗(

−→
t ), s0 = `(−→s ), t, t′ ∈ −→t and s, s′ ∈ −→s . If u ∈ d, u′ ∈ d′ and χ : u q u

′

crosses no residual of c then u = s and u′ = s′.

Proof. Write χ = χ1ξ1 · · ·χnξnχn+1 as in Theorem 3.4.10, and χ− : v  p,I v
′ where v (resp.

v′) is an anchor of u (resp. u′). Observe that χ is non empty because u 6= u′. Moreover, the
�rst edge of χ is a preserved edge: if χ = (u ∼e v)χ′ then e cannot be a cut, as otherwise we
would have e = d and χ would cross a residual of c. It follows that χ−1 is non empty, hence χ−

is non empty. Since χ− is non empty, there is no path ζ : v  v′ bound to c: otherwise, by
Lemma 3.4.11, we could form a non empty cycle ζ†χ− : v′  p v

′ .
If u = t and u′ = t′, we have v ∈ {t, t0} and v′ ∈ {t′, t0} with t 6= t′, and we obtain

a c-bounce v  v′, hence a contradiction. If u = t and u′ = s′, we have v ∈ {t, t0} and
v′ ∈ {s′, s0}, and we obtain a c-bridge v  v′, hence a contradiction. We rule out the case
u = s and u′ = t′ symmetrically.

Lemma 3.4.13. If χ ∈ P(q) and c = 〈⊗(
−→
t )|`(−→s )〉 ∈ C(p) \C(q), then χ crosses at most two

residuals of c, and in this case we can write χ = χ1(t ∼〈t|s〉 s)χ2(s′ ∼〈t′|s′〉 t′)χ3 with t, t′ ∈ −→t
and s, s′ ∈ −→s .

Proof. If χ = χ1(d)χ2(d′)χ3, where d = 〈t|s〉 and d′ = 〈t′|s′〉 are residuals of c with t, t′ ∈ −→t
and s, s′ ∈ −→s , and if χ2 crosses no residual of c, then by Lemma 3.4.12 applied to χ2, we obtain
χ = χ1(t ∼〈t|s〉 s)χ2(s′ ∼〈t′|s′〉 t′)χ3. If moreover χ1 (resp. χ3) crossed another residual of c,
we would obtain a contradiction by applying Lemma 3.4.12 to a strict subpath of χ1 (resp. χ3)
hence of χ.
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Lemma 3.4.14. Slipknots are well-bracketed in the following sense: there is no path χ =
(d1)χ1(d2)χ2(d′1)χ3(d′2) ∈ P(q) such that, for 1 ≤ i ≤ 2, di and d′i are residuals of the same cut.

Proof. Assume χ = (d1)χ1(d2)χ2(d′1)χ3(d′2) ∈ P(q) such that, for 1 ≤ i ≤ 2, di and d′i are
residuals of the same cut. We can assume w.l.o.g. that χ1 and χ3 are independent: otherwise
there is a pre�x of χ with this additional property.

For 1 ≤ i ≤ 2, let ci = 〈ti0|si0〉, with ti0 = ⊗(
−→
t i) and si0 = `(−→s i), and assume di =

{ti, si} and d′i = {t′i, s′i}, with ti, t′i ∈
−→
t i and si, s′i ∈

−→s i. By Lemma 3.4.13, we must have
χ = (t1 ∼d1 s1)χ1(t2 ∼d2 s2)χ2(s′1 ∼d′1 t

′
1)χ3(s′2 ∼d′2 t

′
2).

By Theorem 3.4.10, we obtain χ−1 : u1  p v2 and χ−3 : v1  p u2, where u1 ∈ {s1, s
1
0},

v2 ∈ {t2, t20}, v1 ∈ {t′1, t10} and u2 ∈ {s′2, s2
0}. Write ζ1 : v1  p u1 (resp. ζ2 : v2  p u2) for

the only c1-bridge (resp. c2-bridge) with those endpoints. Then we obtain a non empty cycle
χ−1 ζ2(χ†3)−ζ1 : u1  p u1: the concatenation is allowed by Lemma 3.4.11 applied to χ1 and
χ†3.

Proof of Theorem 3.4.10. By Lemma 3.4.14, we can writeχ = χ1ξ1 · · ·χnξnχn+1 where ξ1, . . . , ξn
are the slipknots of χ that are maximal (i.e. not strict subpaths of other slipknots) and this
writing is unique. Let c1, . . . , cn be the associated eliminated cuts. By Lemma 3.4.13, the cj ’s
are pairwise distinct, and ξj : tj  p t

′
j where tj and t′j are distinct premises of the ⊗-tree of cj .

Moreover, since each slipknot of χ is a subpath of some ξj :

— each χi is a straight path and it crosses no residual of any cj ;

— the χi’s are pairwise independent.

If n = 0, we can set χ− = χ−1 . Otherwise, we apply Lemma 3.4.11 to the χi’s, which are strict
subpaths of χ, which allows to concatenate χ− = χ−1 ξ

∨
1 · · ·χ−n ξ∨nχ

−
n+1 ∈ P(p).

Again, the construction of χ− is compatible with the concatenation of independent paths:

Lemma 3.4.15. If χ1χ2 ∈ P(q) and χ1 and χ2 are independent, then (χ1χ2)− = χ−1 χ
−
2 .

Proof. As for Lemma 3.4.8, this is a direct consequence of the de�nition of (χ1χ2)−, χ−1 and
χ−2 , this time using Lemma 3.4.8 to concatenate a straight su�x of χ1 and a straight pre�x of
χ2.

3.4.4 Bounding the growth of ln

Now we show that we can bound ln(q) depending only on ln(p). We �rst need some basic
properties relating the length of χ− with that of χ.

Lemma 3.4.16. Let χ, ξ ∈ P(q) and ζ ∈ P(p):

1. if χ is preserved then ln(χ−) = ln(χ);

2. if ζ is a bridge then 1 ≤ ln(ζ) ≤ 3;

3. if ζ is a bounce then ln(ζ) ≤ 2;

4. if χ is straight, then ln(χ) ≤ ln(χ−) ≤ 3ln(χ);

5. if ξ is a pre�x of χ and χ is straight then ξ− is a pre�x of χ−;
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6. if ξ is a slipknot then ln(ξ) ≥ 3 and ln(ξ∨) < ln(ξ);

7. in general ln(χ−) ≤ 3ln(χ).

Proof. The �rst three properties are direct consequences of the de�nitions. Item (4) follows
from (1) and (2). Item (5) follows from Lemma 3.4.8. Item (6) follows from Lemma 3.4.2 and (3).
And item (7) follows from (4) and (6).

Observe that in general, we do not have ln(ζ−) ≤ ln(χ−) when ζ is a pre�x of χ: ζ may
enter an arbitrarily long slipknot of χ that is replaced by a single bounce in χ−. For this reason,
we introduce the following notion: if χ ∈ P(q), we de�ne the width of χ (relative to the
reduction p⇒m q we consider) by width(χ) = max{ln(ζ−) | ζ pre�x of χ}.

Lemma 3.4.17. For any path χ ∈ P(q), ln(χ−) ≤ width(χ) ≤ ln(p) and width(χ) ≤
3ln(χ). Moreover, if ζ is a pre�x of χ, we have width(ζ) ≤ width(χ). If moreover χ is straight,
width(χ) = ln(χ−) ≥ ln(χ).

Proof. We obtain ln(χ−) ≤ width(χ) ≤ ln(p) and width(ζ) ≤ width(χ) directly from
the de�nition of width. Item (7) of Lemma 3.4.16 gives width(χ) ≤ 3ln(χ). If χ is straight
width(χ) = ln(χ−) ≥ ln(χ) follows from items (4) and (5) of Lemma 3.4.16.

De�ne ϕ : N → N inductively by ϕ(0) = 0 and ϕ(n) = n + (n + 1)(ϕ(n − 1) + 2) if
n > 0. Observe that n ≤ ϕ(n) ≤ ϕ(n+ 1).

Lemma 3.4.18. If χ ∈ P(q) then ln(χ) ≤ ϕ(width(χ)).

Proof. The proof is by induction on width(χ). If χ is straight then, by Lemma 3.4.17, ln(χ) ≤
width(χ) ≤ ϕ(width(χ)).

Write χ = χ1ξ1 · · ·χnξnχn+1 as in Theorem 3.4.10: we have ln(χ) =
∑n+1

i=1 ln(χi) +∑n
j=1 ln(ξj). Since χ− = χ−1 ξ

∨
1 · · ·χ−n ξ∨nχ

−
n+1, we have

∑n+1
i=1 ln(χ−i ) ≤ ln(χ−). Since each

χi is straight, we obtain ln(χ) ≤ ln(χ−) +
∑n

j=1 ln(ξj) from the previous inequality, by
applying item (4) of Lemma 3.4.16.

Moreover observe that, by Lemma 3.4.2, χi is non empty for 1 < i < n + 1. Hence
ln(χ−) ≥ n− 1, and we obtain n ≤ width(χ) + 1.

It remains to bound ln(ξj) for 1 ≤ j ≤ n. We can write ξj = (dj)χ
′
j(d
′
j) where dj

and d′j are the residuals of the cut cj associated with ξj . Let ζ ′j be a pre�x of χ′j and write
ζj = χ1ξ1 · · ·χj(dj)ζ ′j which is a pre�x of χ. Observe that, by Theorem 3.4.10, cj has no
residual in ζj other than dj , and χ1ξ1 · · ·χj(dj) and ζ ′j are independent. Hence χj(dj) is
straight and ζ−j = χ−1 ξ

∨
1 · · ·χ

−
j d
'
j (ζ ′j)

− follows by Lemma 3.4.15. Since ln(d'j ) ≥ 1, we obtain
ln((ζ ′j)

−) ≤ ln(ζ−j )− 1 ≤ width(χ)− 1.
Hencewidth(χ′j) ≤ width(χ)−1: we apply the induction hypothesis and obtain ln(χ′j) ≤

ϕ(width(χ′j)) ≤ ϕ(width(χ) − 1) because ϕ is monotonous. It follows that ln(ξj) ≤
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Figure 3.14 – A cyclic counterexample to Corollary 3.4.19

ϕ(width(χ)− 1) + 2, and we conclude:

ln(χ) ≤ ln(χ−) +

n∑
j=1

ln(ξj)

≤ width(χ) + (width(χ) + 1)(ϕ(width(χ)− 1) + 2)

≤ ϕ(width(χ)).

Using Lemma 3.4.17 again, we obtain:

Corollary 3.4.19. Let p⇒m q. Then, ln(q) ≤ ϕ(ln(p)).

Notice that the previous result can be seen as a quantitative version of the preservation of
acyclicity in proof nets under reduction. In the following example, we illustrate how acyclicity
is mandatory for the existence of a function ϕ as in Corollary 3.4.19.

Example 3.4.20. Let p = (〈t|s〉; ) with t = ⊗(x0, . . . , xn) and s = `(x1, . . . , xn, x0): by
setting I(s) = xi, we obtain a cycle xi ∼{xi,xi} xi ∼s s ∼〈t|s〉 t ∼t,xi xi. Since each path
χ ∈ P(p) can cross each of s and 〈t|s〉 at most once, it is easy to check that ln(p) = 6.

But p ⇒m q = (〈x0|x1〉, . . . , 〈xn−1|xn〉, 〈xn|x0〉; ) hence ln(q) = 2(n + 1). The situation
is illustrated in Figure 3.14.
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3.4.5 Erratum

In the extended abstract of the present paper, the analogue [14, Subsection 3.2] of Subsec-
tion 3.4.4 claimed to establish similar results for another measure on paths: rather than the
length ln(ξ) of a path ξ, we considered the number cc(ξ) of all the cuts 〈t|s〉 such that ξ visits
t or s.

It is easy to check that Lemma 3.3.2 still holds if we replace the maximal length of a path
with the maximum number of cuts in a chain of axiom cuts in the sense of Figure 3.2. Given
the situation depicted in Figure 3.13, however, it is evident that a bound on the number of cuts
crossed by a path cannot be preserved: the path on the left hand side crosses no cut, while
the path in the reduct crosses an arbitrary number of (possibly axiom) cuts. We introduced
cc(ξ) in our previous attempt, precisely to capture this example: if ξ is the path following the
tensors of the left hand side, then cc(ξ) ≥ n. But this �x is actually not su�cient: if we replace
each ci = 〈ti|si〉 in Figure 3.13, with 〈⊗(ti, si)|`(xi, xi)〉, a path in the obtained net can visit
at most two of these new cuts, but it reduces to the left hand side, with ξ such that cc(ξ) ≥ n.

It might be possible to adapt our method for dealing with a relaxed de�nition of visited cut:
for instance, we might consider the number of cuts c such that ξ visits a tree t ∈ T(c) (instead
of t ∈ c). But this notion is no longer local, and would introduce further technicalities: for
that reason, we decided to focus on the length of paths instead, which is a more intuitive and
standard notion, without any ad hoc reference to cuts.

3.5 Variations of jd(p) under reduction

For establishing that jd(q) is bounded as a function of jd(p) and ln(p) we examine the
reductions separately.

Lemma 3.5.1. Let p, q two proof nets. If p⇒m q, then jd(q) ≤ 2jd(p).

Proof. For all t ∈ T(q) the only case in which −1
q (t) 6= −1

p (t) is that of redirected jumps: there
must be µ ∈ U⊥(q) such that t is part of a residual 〈t|s〉 of an eliminated cut 〈t0|s0〉 ∈ C(p),
with p(µ) = t0. In this case we have jdq(t) = jdp(t) + jdp(t0) ≤ 2jd(p).

Lemma 3.5.2. Let p, q two proof nets. If p⇒e q, then jd(q) ≤ (2jd(p))ln(p)+1.

Proof. Fix t ∈ T(q). For any µ ∈ U⊥(q), if q(µ) = t, then µ ∈ Inp (t) for some n ∈ N:
this is precisely the purpose of the de�nition of Inp . We obtain jdq(t) ≤ #

(⋃
n∈N Inp (t)

)
≤

(2jd(p))ln(p)+1 by Lemma 3.3.4 (1).

Lemma 3.5.3. Let p, q two proof nets. If p⇒a q, then jd(q) ≤ (ln(p) + 1)jd(p).

Proof. As in the proof of Lemma 3.3.2, we can write p = (−→c1 , . . . ,
−→ck ,−→c ;−→s ) and q = (−→c ;−→s )[t1/x1

0] · · · [tk/xk0]
where −→c i = (〈xi0|xi1〉, . . . , 〈xini−1|xini〉, 〈x

i
ni |t

i〉).
By the de�nition of cut elimination, for all µ ∈ U⊥(q) we have:

q(µ) =

{
ti[ti+1/xi+1

0 ] · · · [tk/xk0] if p(µ) ∈ {xi0, xi0, xi1, . . . , xini , t
i}

q(µ)[t1/x1
0] · · · [tk/xk0] otherwise

.
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It follows that:

— jdq(t
i[ti+1/xi+1

0 ] · · · [tk/xk0]) = jdp(t
i) +

∑ni
j=0(jdp(x

i
j) + jdp(x

i
j)) ≤ (2ni + 3)jd(p);

— if t ∈ T(p) \
⋃k
i=1{xi0, xi0, xi1, . . . , xini , t

i}, then jdq(t[t
1/x1

0] · · · [tk/xk0]) = jdp(t).

To conclude, it is su�cient to observe that 2ni + 2 ≤ ln(p): indeed each −→c i induces a path
alternating between ni + 1 axioms an ni + 1 cuts.

3.6 Bounding the size of antireducts: general and iterated case

The previous results now allow us to treat the general case of a reduction p⇒ q.

Theorem 3.6.1. If p⇒ q then size(p) ≤ ψ (2(ln(p) + 1)size(q), ln(p), jd(p)).

Proof. Consider q′, q′′ such that p⇒e q
′ ⇒a q

′′ ⇒m q. We have:

size(p) ≤ ψ(size(q′), jd(p), ln(p)) (by Lemma 3.3.5)

≤ ψ((ln(q′) + 1)size(q′′), jd(p), ln(p)) (by Lemma 3.3.2)

≤ ψ((ln(p) + 1)size(q′′), jd(p), ln(p)) (by Lemma 3.4.1)

≤ ψ(2(ln(p) + 1)size(q), jd(p), ln(p)) (by Lemma 3.3.1) .

Corollary 3.6.2. If q is an MLL net and n,m ∈ N, then

{p | p⇒ q, jd(p) ≤ m and ln(p) ≤ n}

is �nite.

Of course, that result holds only up to the α-equivalence mentioned in Remark 3.2.1: then it
is easy to check that the cardinality of {p | size(p) ≤ k} is bounded by a function of k ∈ N.
Also recall from Remark 3.2.2 that we are actually interested in bare nets rather than nets with
jumps, so Corollary 3.6.2 should be read as follows: given a bare net q and n,m ∈ N there are
�nitely many bare nets p such that p⇒ q and that can be equipped with a jump function p
satisfying jd(p) ≤ m and ln(p) ≤ n. More precisely, Theorem 3.6.1 entails that the number of
such bare nets p can be bounded by a function of m, n and size(q).

It follows that, given an in�nite linear combination
∑

i∈I ai.pi, assuming that we can equip
each pi with a jump function pi so that {ln(pi) | i ∈ I} ∪ {jd(pi) | i ∈ I} is �nite, we
can always consider an arbitrary family of reductions pi ⇒ qi for i ∈ I and form the sum∑

i∈I ai.qi: this is always well de�ned. But if we want to iterate this process and perform a
reduction from

∑
i∈I ai.qi to

∑
i∈I ai.ri, when qi ⇒ ri for i ∈ I , we need to ensure that a

similar side condition holds for the qi’s. Again, this is a consequence of our previous results,
which we sum up in the following two theorems.

Theorem 3.6.3. Let p⇒ q. Then ln(q) ≤ ϕ(ln(p)).
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Proof. Consider q′, q′′ such that p⇒m q′ ⇒e q
′′ ⇒a q. We have:

ln(q) ≤ ln(q′′) (by Lemma 3.4.1)

≤ ln(q′) (by Lemma 3.4.1)

≤ ϕ(ln(p)) (by Corollary 3.4.19) .

Theorem 3.6.4. There exists a function θ : N→ N such that jd(q) ≤ θ(ln(p), jd(p)) whenever
p⇒ q.

Proof. Consider q′, q′′ such that p⇒a q
′ ⇒e q

′′ ⇒m q. We have

jd(q) ≤ 2jd(q′′) (by Lemma 3.5.1)

≤ 2(2jd(q′))ln(q′)+1 (by Lemma 3.5.2)

≤ 2(2(ln(p) + 1)jd(p))ln(q′)+1 (by Lemma 3.5.3)

≤ 2(2(ln(p) + 1)jd(p))ln(p)+1 (by Lemma 3.4.1) .

By the previous results, we can iterate Corollary 3.6.2 and obtain:

Corollary 3.6.5. If q is an MLL net and k, n,m ∈ N, then

{p | p⇒k q, jd(p) ≤ m and ln(p) ≤ n}

is �nite.

3.7 Taylor expansion

We now show how the previous results apply to Taylor expansion. For that purpose, we
must extend our syntax to MELL proof nets. Our presentation departs from Ehrhard’s [Ehr18]
in our treatment of promotion boxes: instead of introducing boxes as tree constructors labelled
by nets, with auxiliary ports as inputs, we consider box ports as 0-ary trees, that are related
with each other in a box context, associating each box with its contents. This is in accordance
with the usual presentation of promotion as a black box, and has two motivations:

— in Ehrhard’s syntax, the promotion is not a net but an open tree, for which the trees
associated with auxiliary ports must be mentioned explicitly: this would complicate the
expression of Taylor expansion;

— since we consider a single class of ?-links instead of having a separate dereliction, we
must impose constraints on auxiliary ports, that are easier to express when these ports
are directly represented in the syntax.

Then we show that if p is a resource net in the support of the Taylor expansion of an MELL
proof net P , then ln(p) and jd(p) are bounded by functions of P .

Observe that we need only to consider the support of Taylor expansion, so we do not
formalize the expansion of MELL nets into in�nite linear combinations of resource nets: rather,
we introduce T (P ) as a set of approximants.
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3.7.1 MELL nets

In addition to the set of variables, we �x a denumerable set B of box ports: we assume given
an enumeration B = {abi | i, b ∈ N}. We call principal ports the ports ab0 and auxiliary ports
the other ports. Instead of separate contractions and derelictions, we consider a uni�ed ?-link
of arbitrary arity; auxiliary ports of boxes must be premises of such links (or of auxiliary ports
of outer boxes, that must satisfy this constraint inductively).

The weakenings (and coweakenings, in the resource nets yet to be introduced) are not
essentially di�erent from the multiplicative units in our untyped nets. Indeed, we will see that
the geometrical and combinatorial behaviour of the ?-link (resp. the !-link) is identical to that
of the ` (respectively, of the ⊗). This will be re�ected in our use of labels: in addition to U1

and U⊥, we will use labels from denumerable sets U! and U? (now assuming V, B, U1, U⊥,
U! and U? are pairwise disjoint), and write U+ = U1 ∪U! and U− = U⊥ ∪U?.

We introduce the corresponding term syntax. Raw pre-trees (S◦, T ◦, etc.) and raw trees (S,
T , etc.) are de�ned by mutual induction as follows:

T ::= x | 1λ | ⊥µ | ⊗(T1, . . . , Tn) | `(T1, . . . , Tn) | ab0 | ?µ′() | ?(T ◦1 , . . . , T
◦
n)

T ◦ ::= T | abi+1

where x ranges over V, λ ranges over U1, µ ranges over U⊥, µ′ ranges over U?, b and i range
over N and we require n 6= 0 in each of ⊗(T1, . . . , Tn), `(T1, . . . , Tn) and ?(T ◦1 , . . . , T

◦
n). The

set T◦(S) of the sub-pre-trees of S is de�ned in the natural way, as well as the set T(S) of
sub-trees of S, from which we derive the de�nitions of V(S), B(S), U⊥(S), etc. The set A(S)
of atoms of S is then V(S) ∪B(S) ∪U1(S) ∪U−(S).

A tree (resp. a pre-tree) is a raw tree (resp. raw pre-tree) in which each atom occurs at most
once. A cut is an unordered pair of trees C = 〈T |S〉 with disjoints sets of atoms. Pre-trees and
cuts only describe the surface level of MELL nets: we also have to introduce promotion boxes.

We now de�ne box contexts and pre-nets by mutual induction as follows. A box context Θ is
the data of a �nite set BΘ ⊂ N, and of a pre-net of the form Θ(b) = (Θb;

−→
C b;Tb,

−→
S ◦b ; b), for

each b ∈ BΘ. We then write arΘ(b), or simply ar(b) for the length of the family
−→
S ◦b , which we

call the arity of the box b. A pre-net is a tuple P ◦ = (Θ;
−→
C ;
−→
S ◦; ) where:

— Θ is a box context;

— the jump function  is a function U−(
−→
C ,
−→
S ◦)→ T(

−→
C ,
−→
S ◦);

— each atom occurs at most once in
−→
C ,
−→
S ◦;

— abi ∈ B(
−→
C ;
−→
S ◦) i� b ∈ BΘ and 0 ≤ i ≤ ar(b);

— V(
−→
C ,
−→
S ◦) is closed under the involution x 7→ x.

Then a net is a pre-net of the form P = (Θ;
−→
C ;
−→
S ; ), i.e. without auxiliary ports as conclusions.

In the following, we may write, e.g., ΘP for Θ in this case. An example is illustrated in
Figure 3.15.

Remark 3.7.1. To be formal, in the de�nition of a box context Θ, we should also �x an enumeration
of the family

−→
S ◦b in Θ(b). Indeed, when we write ab0, a

b
1, . . . , a

b
ar(b) for the ports of a box b, and
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Θ(b) = (Θb;
−→
C b;Tb, S

◦
b,1, . . . , S

◦
b,ar(b); b) for the contents of the box, we implicitly assume a

bijection which maps each pre-tree S◦b,i to the auxiliary port abi of which it is a premise (which
leaves T to be mapped to ab0). We prefer to keep this information implicit in the following, as the
notations should allow to recover it, whenever necessary.

On the other hand, an analogue of Remark 3.2.1 applies in this new setting, as pre-nets and nets
should be considered up to some notion of isomorphism preserving the interface, which amounts to:

— reindexing cuts, so that
−→
C is considered as a set;

— reordering premises of ?-links, which accounts for the associativity and commutativity of
the underlying binary contraction;

— renaming atoms and boxes and, simultaneously, changing the enumeration of the family
−→
S ◦b in each box, all this preserving the duality involution on variables, the partition {abi |
i ∈ N}b∈N of B, the jump functions, and the association of each S◦b,i+1 to abi+1.

We still consider this as a form of α-equivalence as it only involves particular renamings of atoms
or indices, preserving the rest of the structure. Again, we keep this quotient implicit whenever
possible in the remaining.

Also, as already mentioned in Remark 3.2.2, we rely on jumps to control the combinatorics of
the elimination of evanescent cuts: we need nets to be equipped with jumps only to ensure that
the resource nets in the Taylor expansion can also be equipped with jumps, that moreover enjoy
uniform bounds. More precisely, we will show that if an MELL net P can be equipped with P that
satis�es the acyclicity criterion, then each p ∈ T (P ) can be equipped with p, satisfying uniform
bounds on ln(p) and jd(p) .

The existence of such a jump function P should be understood as side condition only: we keep
it in the de�nition of nets by default because we rely on it everywhere in the following, but in the
end we are actually interested in the compatibility of Taylor expansion with cut elimination for nets
without jumps. And the reader may check that, without jumps, our pre-nets (up to α-equivalence)
are essentially the same as, e.g., the in-PS’s (up to the names of internal ports) de�ned by de
Carvalho [Car16] for his proof of the injectivity of Taylor expansion.

Given a pre-net P ◦ = (Θ;
−→
C ;
−→
S ◦; ), we write V(P ◦) = V(

−→
C ;
−→
S ◦), T(P ◦) = T(

−→
C ;
−→
S ◦),

etc. We de�ne the toplevel size of MELL pre-nets by size0(P ◦) = #T◦(P ◦). We write
depth(P ◦) for the maximum level of nesting of boxes in P ◦, i.e. the inductive depth in
the above de�nition of pre-nets. The size of MELL pre-nets includes that of their boxes: we
set size(P ◦) = size0(P ◦) +

∑
b∈BΘ

size(Θ(b)) — this de�nition is of course by induction on
depth(P ◦).

Notice that, by the above de�nition, for all µ ∈ U−(
−→
C ,
−→
S ◦), P ◦(µ) must be at the same

depth as µ, and cannot be an auxiliary port.
We extend the switching functions of MLL to ?-links: for each T = ?(T ◦1 , . . . , T

◦
n) ∈ T(P ◦),

I(T ) ∈ {T ◦1 , . . . , T ◦n}, which induces a ?-edge T ∼P
◦,I

T I(T ). We also consider box edges
ab0 ∼P

◦
b,i a

b
i for b ∈ BΘ and 1 ≤ i ≤ ar(b): w.r.t. paths, a box b behaves like ar(b) axiom links

having the principal port of the box as a common vertice, and the content is not considered.
Finally, jump edges also include the case of weakenings: µ ∼P ◦µ (µ) for µ ∈ U−(P ◦).
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cut

ax⊥

?

!

??

x x

y y

µ

µ′

12

123 b

b′

Figure 3.15 – Representation of the net (Θ; ; ?(ab3), ?(ab2, a
b
1), ab0; ) where BΘ = {b}, ar(b) = 3

and Θ(b) = (Θ′; 〈ab′0 |µ〉; y, y, ab
′

1 , ?(ab
′

2 ); ′) where BΘ′ = {b′}, ar(b′) = 2, ′(µ) = y and
Θ′(b′) = (Θ′′; ;x, x, µ′; ′′) where BΘ′′ = ∅ and ′′(µ′) = x.

We write P(P ◦, I) (resp. P(P ◦)) for the set of I-paths (resp. paths) in P ◦. We say a pre-net
P ◦ is acyclic if there is no cycle in P(P ◦) and, inductively, each Θ(b) is acyclic. From now on,
we consider acyclic pre-nets only.

3.7.2 Resource nets and Taylor expansion

The Taylor expansion of a net P will be a set of resource nets: these are the same as the
multiplicative nets introduced before, with the addition of term constructors for ! and ?. Raw
trees are given as follows:

t ::= x | 1λ | ⊥µ | ⊗(t1, . . . , tn) | `(t1, . . . , tn) | !λ′() | ?µ′() | !(t1, . . . , tn) | ?(t1, . . . , tn).

where x ranges in V, λ ranges over U1, µ ranges over U⊥, λ′ ranges over U!, µ′ ranges over
U?, and we require n 6= 0 in each case. In resource nets, we extend switchings to ?-links and
jumps from weakenings as in MELL nets, associated with ?-edges and jump edges. Moreover,
for each t = !(t1, . . . , tn), we have !-edges t ∼t,ti ti for 1 ≤ i ≤ n. Observe that, except for the
notation of the root constructor, the trees !λ(), ?µ(), !(t1, . . . , tn) and ?(t1, . . . , tn), are exactly
the same as 1λ, ⊥µ, ⊗(t1, . . . , tn) and `(t1, . . . , tn) respectively: in particular they induce the
same geometry for paths.

During Taylor expansion, we need to replace a box in a pre-net with an arbitrary number
of approximants of this box. Let us call box replacement of arity n the data r = (−→s 0, . . . ,

−→s n)
of n+ 1 families of pairwise distinct resource trees −→s 0, . . . ,

−→s n, such that A(s) ∩A(s′) = ∅
whenever s ∈ −→s i and s′ ∈ −→s i′ , and i 6= i′ or s 6= s′. A family −→r = (rb)b∈B of box
replacements such that A(rb) ∩A(rb′) = ∅ for b 6= b′ ∈ B is applicable to the pre-term T ◦ if
A(T ◦) ∩A(−→r ) = ∅ and, for each abi ∈ B(T ◦), b ∈ B and rb is of arity at least i.

De�nition 3.7.2. Let−→r be aB-indexed family of box replacements, and write rb = (−→s b0, . . . ,
−→s bnb)

for each b ∈ B. Assuming that −→r is applicable to the tree S (resp. the pre-tree S◦), the substitu-
tion of −→r for the boxes of S (resp. of S◦) is the tree S[−→r ] (resp. the family of pre-trees S◦{−→r })
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de�ned by mutual induction on pre-trees and trees as follows:

x[−→r ] = x λ[−→r ] = λ µ[−→r ] = µ ab0[−→r ] =

{
λb if −→s b0 is empty

!(−→s b0) otherwise

⊗(T1, . . . , Tn)[−→r ] = ⊗(T1[−→r ], . . . , Tn[−→r ])

`(T1, . . . , Tn)[−→r ] = `(T1[−→r ], . . . , Tn[−→r ])

?(T ◦1 , . . . , T
◦
n)[−→r ] =

{
µ?(T ◦1 ,...,T

◦
n) if T ◦1 {

−→r }, . . . , T ◦n{−→r } is empty

?(T ◦1 {
−→r }, . . . , T ◦n{−→r }) otherwise

T{−→r } = T [−→r ] abi+1{−→r } = −→s bi+1

where each λb ∈ U! and each µ?(T ◦1 ,...,T
◦
n) ∈ U? is chosen fresh (not in A(S) nor A(S◦) nor

A(−→r )) and unique. 10

We are now ready to introduce the expansion of MELL nets depicted in Figure 3.1. 11 During
the construction, we need to track the conclusions of copies of boxes, in order to collect copies
of auxiliary ports in the external ?-links: this is the role of the intermediate notion of pre-Taylor
expansion.

First, recall that we write Tb, S◦b,1, . . . , S
◦
b,ar(b) for the trees of Θ(b) that are respectively

mapped to ab0, a
b
1, . . . , a

b
ar(b). Also, in this case, let us write

−→
S ◦b = (S◦b,1, . . . , S

◦
b,ar(b)).

De�nition 3.7.3. Given a closed pre-net P ◦ = (Θ;
−→
C ;
−→
S ◦; ), a pre-Taylor expansion of P ◦ is

any pair (p, f) of a resource net p = (−→c ;
−→
t ; p), together with a function f :

−→
t →

−→
S ◦ such

that f−1(T ) is a singleton whenever T ∈
−→
S ◦ is a tree, obtained as follows:

— for each b ∈ BΘ, �x a number kb ≥ 0 of copies;

— for 1 ≤ j ≤ kb, �x inductively a pre-Taylor expansion (pbj , f
b
j ) of Θ(b), renaming the

atoms so that the sets A(pbj) are pairwise disjoint, and also disjoint from A(
−→
C )∪A(

−→
S ◦);

— write pbj = (−→c bj ; tbj ,
−→s bj ; bj) so that f bj (tbj) = Tb;

— write −→r = (rb)b∈BΘ
for the family of box replacements rb = (−→u b0, . . . ,

−→u bar(b)), where
−→u b0 = (tb1, . . . , t

b
kb

) and each −→u bi is an enumeration of
⋃kb
j=1(f bj )−1(S◦b,i) for 1 ≤ i ≤

ar(b);

— set
−→
t =

−→
S ◦{−→r } and −→c =

−→
C [−→r ],−→c ′ where −→c ′ is the concatenation of the families −→c bj

for b ∈ BΘ and 1 ≤ j ≤ kb

10. So, formally, this construction should be parametrized by suitable injections {ab0 ∈ T(S◦)} → U! and
{?(T ◦1 , . . . , T

◦
n) ∈ T(S◦)} → U? to ensure this linearity constraint. We keep this implicit in the following, but will

rely on the fact that, given t ∈ T(S◦{−→r }), one can recover unambiguously one of the following: either T ∈ T(S◦)
such that t = T [−→r ]; or b and j such that t ∈ T(−→s bj).

11. More extensive presentations of the Taylor expansion of MELL nets exist in the literature, in various styles
[PT09; GPT16; Car16, among others]. Our only purpose here is to introduce su�cient notations to present our
analysis of the jump degree and the length of paths in T (P ) w.r.t. the size of P .
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— for t ∈ −→t , set f(t) = abi if t ∈ −→u bi with 1 ≤ i ≤ ar(b), otherwise let f(t) be the tree
T ∈
−→
S ◦ such that t = T [−→r ];

— for each µ ∈ U−(p), p(µ) is de�ned as follows:

— if µ ∈ U−(pbj) then we set p(µ) = pbj
(µ).

— if µ = µ?(T ◦1 ,...,T
◦
n) then each T ◦i {

−→r } is empty; then we select any i ∈ {1, . . . , n}
and set p(µ) = ab0[−→r ] where b ∈ BΘ is the box such that T ◦i = abj for some
1 ≤ j ≤ ar(b);

— otherwise µ ∈ U−(
−→
C ;
−→
S ◦), and then we set p(µ) = (µ)[−→r ] (note that (µ) is a

tree so this is a valid application of De�nition 3.7.2).

The Taylor expansion of a net P is then T (P ) = {p | (p, f) is a pre-Taylor expansion of P}.

Example 3.7.4. Given the net P = (Θ; ; ?(ab3), ?(ab2, a
b
1), ab0; ) of Figure 3.15, we construct an

element p of T (P ) as follows. First, we take two copies of box b, �xing kb = 2. Recall that
Θ(b) = (Θ′; 〈ab′0 |µ〉; y, y, ab

′
1 , ?(ab

′
2 ); ′) where BΘ′ = {b′}. Hence, to construct (pbj , f

b
j ) we must

�rst �x a number kb′,j of copies of the box b′: we set kb′,1 = 0 and kb′,2 = 1, and it remains
to select a single pre-Taylor expansion (p′, f ′) of Θ′(b′) for the only copy of b′ in (pb2, f

b
2). Since

Θ′(b′) = (Θ′′; ;x, x, µ′; ′′) contains no box, we must have p′ = (;x, x, µ′; ′′) with f ′(x) = x,
f ′(x) = x and f ′(µ′) = µ′.

Since kb′,1 = 0, we construct pb1 =
(
〈ab′0 |µ〉{rb′,1}; (y, y, ab

′
1 , ?(ab

′
2 )){rb′,1}; b1

)
where rb′,1

is the empty replacement: we obtain pb1 = (〈λ|µ〉; y, y, µ′′) where λ ∈ U! and µ′′ ∈ U? are
fresh, and we set f b1(y) = y, f b1(y) = y, f b1(µ′′) = ?(ab

′
2 ), and also b1(µ) = ′(µ)[rb′,1] = y and

b1(µ′′) = ab
′

0 [rb′,1] = λ.
Having de�ned (p′, f ′) as above, we must set rb′,2 = ((x), (x), (µ′)) and we de�ne pb2 =(

〈ab′0 |µ〉{rb′,2}; (y, y, ab
′

1 , ?(ab
′

2 )){rb′,2}; b2
)
: we thus obtain pb2 = (〈!(x)|µ〉; y, y, x, ?(µ′)), with

f b2(y) = y, f b2(y) = y, f b2(x) = ab
′

1 and f b2(?(µ′)) = ?(ab
′

2 ), and we set b2(µ) = ′(µ)[rb′,2] = y
and b2(µ′) = ′′(µ′) = x.

We rename the atoms in both pre-Taylor expansions as follows: pb1 = (〈λ1|µ1〉; y1, y1, µ
′′
1) and

pb2 = (〈!(x2)|µ2〉; y2, y2, x2, ?(µ′2)), also rede�ning f b1 , b1, f b2 and b2 accordingly.
Finally, we set −→c = 〈λ1|µ1〉, 〈!(x2)|µ2〉 and −→t = (?(ab3), ?(ab2, a

b
1), ab0){rb} where rb =

((y1, y2), (y1, y2), (x2), (µ′′1, ?(µ′2))). We obtain:

p = (〈λ1|µ1〉, 〈!(x2)|µ2〉; ?(µ′′1, ?(µ′2)), ?(x2, y1, y2), !(y1, y2); p)

with p(µ1) = y1, p(µ2) = y2, p(µ′′1) = λ1 and p(µ′2) = x2, which is depicted in Figure 3.16.

3.7.3 Paths in Taylor expansion

In the following, we �x a pre-Taylor expansion (p, f) of P ◦ = (Θ;
−→
C ;
−→
S ◦; ) and we

describe the structure of paths in p. We show that the critical case depicted in Figure 3.17 is
maximal, so that a path of p passes through at most two copies of each box of P ◦.
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Figure 3.16 – Representation of the resource net p ∈ T (P ) where P is the net of Figure 3.15,
kb = 2, kb′,1 = 0 and kb′,2 = 1.

· · ·
pb1 · · · pbkb

· · ·

? ? !

. . . . . . . . .

· · ·

Figure 3.17 – Box paths in Taylor expansion of P ◦: critical case

Observe that

T(p) = {T [−→r ] | T ∈ T(
−→
C ,
−→
S ◦)} ∪

⋃
b∈BΘ

kb⋃
j=1

T(pbj)

(using the notations of De�nition 3.7.3). It follows that, for each t ∈ T(p):

— either t is in a copy of a box, i.e. (up to α-equivalence) t ∈ T(pbj) for some b ∈ BΘ and
1 ≤ j ≤ kb, and then we say t is inner and write β(t) = b and ι(t) = (b, j);

— or there exists a unique T ∈ T(P ◦) such that t = T [−→r ], and then we say t is outer, and
write t∗ = T .

We further distinguish the cocontractions of p, i.e. the outer trees !(tb1, . . . , t
b
kb

) for b ∈ BΘ,
which we denote by !b, so that !∗b = ab0.

We say an edge t ∼p,Ie s of p is an inner edge (resp. an outer edge) if t and s are both inner
(resp. outer) trees. We say a path ξ ∈ P(p) is an inner path (resp. an outer path) if it crosses
inner edges (resp. outer edges) only.
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If t ∼p,Ie s is an inner edge then ι(t) = ι(s) and we also have t ∼
pbj ,I

b
j

e s where (b, j) = ι(t)
and Ibj is the restriction of I to U−(pbj). In this case, we also set β(e) = b and ι(e) = (b, j). If
ξ is an inner path, we set β(ξ) (resp. ι(ξ)) for the common value of β (resp. ι) on the edges
crossed by ξ, and we obtain:

Lemma 3.7.5. If ξ is an inner path then ξ ∈ P(pbj , I
b
j ) where (b, j) = ι(ξ).

The classi�cation of the outer edges of p is more delicate. First, we associate a switching I∗

of P ◦ with each switching I of p as follows:

— if I(`(T1[−→r ], . . . , Tn[−→r ])) = Ti[
−→r ], we set I∗(`(T1, . . . , Tn)) = Ti;

— if I(?(T ◦1 {
−→r }, . . . , T ◦n{−→r })) ∈ T ◦i {

−→r }, we set I∗(?(T ◦1 , . . . , T
◦
n)) = T ◦i ;

— if ?(T ◦1 , . . . , T
◦
n)[−→r ] = µ, T ◦i = abj and p(µ) = !b, we set I∗(?(T ◦1 , . . . , T

◦
n)) = T ◦i . 12

If t ∼p,Ie s is an outer edge then, in each of the following cases, we can de�ne an I∗-edge e∗

of P ◦ such that e = e∗[−→r ] and t∗ ∼P
◦,I∗

e∗ s∗:

— e is an axiom edge, and we set e∗ = e;

— e is a ⊗-edge, e.g. t = ⊗(t1, . . . , tn) and s = ti, and we set e∗ = (t∗, t∗i );

— e is a `-edge or a ?-edge, e.g. t = `(t1, . . . , tn), s = ti and I(t) = s, and we set e∗ = t∗;

— e = 〈t|s〉 is a cut edge, and we set e∗ = 〈t∗|s∗〉;
— e = µ ∈ U−(P ◦) ⊂ U−(p) and we set e∗ = e (observe that in this case we have
P ◦(µ) = p(µ)∗).

If any of the above cases holds, we say the outer edge e is super�cial.
If e is an outer edge that is not super�cial then e must be a created jump: e = µ ∈

U?(p)\
(
U?(P ◦)∪

⋃
b∈BΘ

⋃kb
j=1 U?(pbj)

)
. If, e.g., t = µ, then we can write t∗ = ?(T ◦1 , . . . , T

◦
n)

and s = p(t) = !b where b is such that I∗(t∗) = abi with 1 ≤ i ≤ ar(b). In this case, we obtain
a path ê = t∗ ∼P

◦,I∗

t∗ abi ∼
P ◦,I∗

b,i ab0 = s∗.

Lemma 3.7.6. If ξ is an outer I-path in p, then there exists an I∗-path ξ∗ in P ◦ with ln(ξ∗) ≥
ln(ξ).

Proof. It is su�cient to replace each outer edge e crossed by ξ with:

— either e∗ if e is super�cial,

— or the path ê or ê† if e is a created jump.

Observe indeed that if t ∼p,Ie s and t′ ∼p,Ie′ s
′ are outer paths of length 1 with e 6= e′ then the

paths (t ∼p,Ie s)∗ : t∗  P ◦,I∗ s
∗ and (t′ ∼p,Ie′ s

′)∗ : t′∗  P ◦,I∗ s
′∗ thus de�ned are disjoint, and

of length at least 1.

Some edges are neither inner nor outer: a boundary edge is an edge t ∼p,Ie s such that t is
outer and s is inner, in which case we set ι(e) = ι(s). There are two kinds of boundary edges:

12. Observe that there might be several possible choices for T ◦i so I∗ is not uniquely de�ned in this manner: our
following constructions thus depend on the choices we make for I∗.
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— the principal boundary of the box copy (b, j) is the !-edge (!b, t
b
j);

— an auxiliary boundary e of the box copy (b, j) is any ?-edge t ∼p,It swhere I(t) = s ∈ −→s bj
is such that f bj (s) = S◦b,i with 1 ≤ i ≤ ar(b), in which case we must have I∗(t∗) = abi ,
and then we write dee = i for the index of the corresponding auxiliary port.

We call box path any path of the form χ = (e)ξ(e′) where e and e′ are boundaries and ξ is
an inner path: in this case, we write β(χ) = β(ξ) and ι(χ) = ι(ξ). Obviously, any path ξ
with outer endpoints is obtained as an alternation of outer paths and box paths: we can write
uniquely ξ = ξ0χ1ξ1 · · ·χnξn where each ξi is an outer path, and each χi is a box path.

Let χ = (e)ξ(e′) : t p s be a box path with ι(χ) = (b, j). Since e 6= e′, then at most one
of e and e′ is the principal boundary, and if both e and e′ are auxiliary boundaries, then we
must have dee 6= de′e: indeed e is the only ?-edge whose premises include abdee{

−→r }. We can
thus de�ne χ∗ : t∗  P ◦ s

∗ as follows:

— if e and e′ are auxiliary boundaries then χ∗ = t∗ ∼t∗ abdee ∼b,dee a
b
0 ∼b,de′e abde′e ∼s∗ s

∗

— otherwise, e.g. e′ is principal and we set χ∗ = t∗ ∼t∗ abdee ∼b,dee a
b
0 = s∗.

Lemma 3.7.7. Assume ξ = ξ0χ1ξ1 · · ·χnξn : t p,I s where each ξi is an outer path, and each
χi is a box path. Then, setting ξ∗ = ξ∗0χ

∗
1ξ
∗
1 · · ·χ∗nξ∗n we obtain ξ∗ : t∗  P ◦,I∗ s

∗. Moreover, if
β(χi) = β(χj) = b and i < j, then j = i+ 1, ξi = ε!b , and ι(χi) 6= ι(χj).

Proof. We have already observed in the proof of Lemma 3.7.6 that if ξ and ξ′ are disjoint outer
paths then ξ∗ and ξ′∗ are also disjoint. Similarly, if ξ is outer and χ is a box path, it follows
directly from the de�nitions that ξ∗ and χ∗ are disjoint. And if χ and χ′ are box paths with
disjoint boundaries, again χ∗ and χ′∗ are disjoint paths by construction. It follows that, if
ξ = ξ0χ1ξ1 · · ·χnξn : t  p,I s, each ξi is an outer path, and each χi is a box path, then the
concatenation ξ∗ = ξ∗0χ

∗
1ξ
∗
1 · · ·χ∗nξ∗n is well de�ned.

Write χi = (ei)ξ
′
i(e
′
i) : ti  si for 1 ≤ i ≤ n. Assume β(χi) = β(χj) = b, and

moreover β(χk) 6= b for i < k < j. We obtain a path ξ′ = (ξiχi+1 · · · ξj−1)∗ : s∗i  P ◦ t
∗
j :

by construction, ξ′ does not cross any box edge (b, l) for 1 ≤ l ≤ ar(b). If (e′i) and (ej) were
both auxiliary, we could form a cycle ξ′(t∗j ∼t∗j a

b
deje ∼b,deje a

b
0 ∼b,de′ie a

b
de′ie
∼s∗i s

∗
i ), since

ξ′ would cross neither t∗j nor s∗i . If, e.g., (e′i) was principal and (ej) was auxiliary, we could
form a cycle ξ′(t∗j ∼t∗j a

b
deje ∼b,deje a

b
0), as ξ′ would not cross t∗j . So both must be principal

and we have s∗i = t∗j = ab0: since P ◦ has no non empty cycle, we must have ξ′ = εab0
hence

ξiχi+1 · · · ξj−1 = ε!b and then j = i + 1 and ξi = ε!b . Since e′i 6= ej , we moreover obtain
ι(χi) 6= ι(χj).

It remains only to prove that, in general, we never have β(χi) = β(χj) with j > i + 1:
otherwise, by iterating our previous argument, we would obtain β(χk) = β(χi) whenever
i ≤ k ≤ j, and both ek and e′k would both be principal boundaries whenever i < k < j.

It follows that p is acyclic as soon as P ◦ is. Indeed, if ξ is a cycle in p:

— either ξ contains an outer tree, and we can apply Lemma 3.7.7 to obtain a cycle in P ◦;

— or ξ is an inner path, and we proceed inductively in Θ(β(ξ)).
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Our next result is a quantitative version of this property: not only there is no cycle in p but
the length of paths in p is bounded by a function of P ◦ (whereas the size of p is obviously not
bounded in general).

Theorem 3.7.8. If p ∈ T (P ◦) and ξ ∈ P(p) then ln(ξ) ≤ 2depth(P ◦)size(P ◦).

Proof. The proof is by induction on depth(P ◦).
First assume that ξ = ξ0(e1)χ1(e′1)ξ1 · · · (en)χn(e′n)ξn where each ξi is an outer path, and

each (ei)χi(e
′
i) is a box path. Write (bi, ji) = ι(χi): by applying the induction hypothesis

to χi ∈ P(pbiji), we obtain ln(χi) ≤ 2depth(Θ(bi))size(Θ(bi)). Moreover observe that 2n +∑n
i=0 ln(ξ∗i ) ≤ ln(ξ∗) ≤ size0(P ◦). By Lemma 3.7.6, it follows that 2n +

∑n
i=0 ln(ξi) ≤

size0(P ◦). We obtain:

ln(ξ) = 2n+
n∑
i=0

ln(ξi) +
n∑
i=1

ln(χi) ≤ size0(P ◦) +
n∑
i=1

2depth(Θ(bi))size(Θ(bi)).

By Lemma 3.7.7, each b ∈ BΘ occurs at most twice in the sequence (b1, . . . , bn), hence we
obtain:

ln(ξ) ≤ size0(P ◦) + 2
∑
b∈BΘ

2depth(Θ(b))size(Θ(b)).

hence

ln(ξ) ≤ 2depth(P ◦)
(
size0(P ◦) +

∑
b∈BΘ

size(Θ(b))
)
.

since depth(Θ(b)) < depth(P ◦) for each b ∈ BΘ. We conclude recalling that size(P ◦) =
size0(P ◦) +

∑
b∈BΘ

size(Θ(b)).
The other possible cases are those of paths χ0(e′0)ξ, ξ(en+1)χn or χ0(e′0)ξ(en+1)χn where

ξ is as above e′0 and en+1 are boundaries and χ0 and χn are inner paths. Reasonning as in the
proof of Lemma 3.7.7, we also obtain that each b ∈ BΘ occurs at most twice in the sequence,
e.g., (b0, . . . , bn+1), and then the proof follows similarly.

In particular, we obtain ln(p) ≤ 2depth(P ◦)size(P ◦), In the following lemma, we show
that our measure on jumps in the Taylor expansion of P ◦ is also entirely determined by P ◦.

Lemma 3.7.9. If p ∈ T (P ◦) then jd(p) ≤ size(P ◦).

Proof. We show that if t ∈ T(p) then jd(t) ≤ size(P ◦). The proof is, again, by induction on
depth(P ◦). If t is inner with ι(t) = (b, j), then we conclude directly by applying the induction
hypothesis to pbj and Θ(b): indeed in this case, −1

p (t) = −1
pbj

(t), and size(Θ(b)) ≤ size(P ◦).

So we can assume that t is outer. In this case, observe from De�nition 3.7.3 that if p(µ) = t
then µ = T [−→r ] for some T ∈ T(P ◦). It follows that #−1

p (t) ≤ #T(P ◦) ≤ size(P ◦).
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3.7.4 Cut elimination and Taylor expansion

In resource nets [ER06b], the elimination of the cut

〈?(t1, . . . , tn)|!(s1, . . . , sm)〉

yields the �nite sum ∑
σ:{1,...,n}∼→{1,...,m}

〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉.

It turns out that the results of Sections 3.3 to 3.6 apply directly to resource nets: setting

〈?(t1, . . . , tn)|!(s1, . . . , sn)〉 → 〈t1|sσ(1)〉, . . . , 〈tn|sσ(n)〉

for each permutation σ, we obtain an instance of multiplicative reduction, as the order of
premises is irrelevant from a combinatorial point of view — this is all the more obvious because
no typing constraint was involved in our argument. In other words, Corollary 3.6.5 also applies
to the parallel reduction of resource nets. With Theorem 3.7.8 and Lemma 3.7.9 we obtain:

Corollary 3.7.10. If q is a resource net and P is an MELL net and k ∈ N, {p ∈ T (P ) | p⇒k q}
is �nite.

As for Corollaries 3.6.2 and 3.6.5, this holds only up to α-equivalence. And, again, it should
be read keeping in mind that jumps are only an additional control structure on top of the
underlying net. Indeed, if P is a bare MELL net (i.e. an MELL net without a jump function) then
we can de�ne T (P ) as a set of bare resource nets. Then, given k ∈ N, a bare resource net q, a
bare MELL net P , and a jump function  such that (P, ) acyclic, there are �nitely many bare
resource nets p ∈ T (P ) such that p⇒k q: it su�ces to construct p from .

Beware that Corollary 3.7.10 depends on the acyclicity of the original MELL net. The
following example shows how a cyclic net can induce in�nite sets of antireducts.

Example 3.7.11. Let P = (Θ; 〈?(ab1)|ab0〉; ; ) with Θ(b) = (Θ′; ;x, x; ; ) where the domain of
Θ′,  and ′ is empty. Then, by de�nition,

T (P ) = {p = (〈λ|µ〉; )} ∪ {pn = (〈?(x0, . . . , xn)|!(x0, . . . , xn)〉; ) | n ∈ N}

where p(λ) = µ. Then, for each n ∈ N, we have

pn → (〈x0|xσ(0)〉, . . . , 〈xn|xσ(n)〉; )

for each permutation σ of {0, . . . , n}. In particular, if we set σ(i) = i + 1 mod (n + 1), then
we obtain pn → qn = (〈x0|x1〉, . . . , 〈xn|x0〉; )⇒a (〈x0|x0〉; ), and it follows that {q ∈ T (P ) |
q ⇒2 (〈x0|x0〉; )} is in�nite. This situation is illustrated in Figure 3.18.
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Figure 3.18 – Resource nets pn of T (P ) reducing to a single net

3.8 Conclusion

Recall that our original motivation was the de�nition of a reduction relation on in�nite linear
combinations of resource nets, simulating cut elimination in MELL through Taylor expansion.
We claim that a suitable notion is as follows:

De�nition 3.8.1. Write
∑

i∈I aipi ⇒
∑

i∈I aiqi as soon as:

— each pi is a resource net and each qi is a �nite sum of resource nets such that pi ⇒ qi;

— for any resource net p, {i ∈ I | pi = p} is �nite;

— for any resource net q, {i ∈ I | q is a summand of qi} is �nite.

In particular, if
∑

i∈I aipi is a Taylor expansion, then Corollary 3.7.10 ensures that the
last condition of the de�nition of⇒ is automatically valid. The details of the simulation in a
quantitative setting remain to be worked out, but the main stumbling block is now over: the
necessary equations on coe�cients are well established, as they have been extensively studied
in the various denotational models; it only remained to be able to form the associated sums
directly in the syntax.

Another incentive to publish our results is the normalization-by-evaluation programme that
we develop with Guerrieri, Pellissier and Tortora de Falco [17]. This approach is restricted to
connected MELL proof nets, i.e. MELL proof nets without weakening, and whose switching
graphs are not only acyclic but also connected: 13

— in this setting, a netP is entirely determined by the point of order 2 of its Taylor expansion,
i.e. the unique resource net p ∈ T (P ) with binary cocontractions only [GPT16];

— moreover, given two cut-free η-expanded nets Q and R, both the size of the normal form
of a cut between Q and R and the number of cut elimination steps necessary to reach it
can be bounded by a function of the relational semantics of Q and R [CPT11];

13. These are su�ciently expressive to simulate the λI-calculus, which is Turing-complete.
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— from this data, we obtain a bound on the size of the point p0 of order 2 of the normal form
of the cut, as well as a bound on the number of parallel cut elimination steps necessary to
obtain p0 from its antecedent p in the Taylor expansion of the cut.

Our results in the present paper then provide a bound on the size of p: to �nd p it is then
su�cient to compute the relational semantics of all the elements of the Taylor expansion of
the cut whose size does not exceed this bound, and to check which one gives a semantics of
order 2; then we can compute p0 as the normal form of p, and this is su�cient to determine the
normal form of the cut.

The restriction to connected nets is necessary to apply the injectivity result of Guerrieri,
Pellissier and Tortora de Falco [GPT16], based on a �xed order of Taylor expansion. The
injectivity of Taylor expansion and thus of the relational semantics of full MELL has been proved
by de Carvalho [Car18b]: to determine P from T (P ), this result relies on a k-heterogeneous
expansion ofP , i.e. an expansion ofP for which the number of copies of each box is a power of k,
and those degrees of expansion are chosen pairwise distinct. For the result to apply, the value of
the parameter k must be su�ciently large: such a k may be computed from the linear expansion
of P , obtained by taking exactly one copy of each box; but the degrees of expansion of boxes
cannot be bounded in advance, and it is thus not clear if the above normalization-by-evaluation
procedure could be adapted in this setting.

Let us conclude with a remark about a possible adaptation of our results to a (maybe) more
standard representation of nets, including separate derelictions and coderelictions, with a �ner
grained cut elimination procedure. This introduces additional complexity in the formalism but it
essentially requires no new concept or technique: the di�culty in parallel reduction is to control
the chains of cuts to be simultaneously eliminated, and decomposing cut elimination into �ner
reduction steps can only decrease the length of such chains. On the other hand, in that setting, it
is well known that cut elimination alone is not enough to capture the β-reduction of λ-calculus,
and it must be extended with additional rewriting rules accounting for structural identities (e.g.,
associativity and commutativity of contraction). The details of the Taylor expansion analysis of
cut elimination up to these identities are worked out in the PhD thesis of the �rst author [25,
Chapter 2], 14 including the treatment of coe�cients as mentioned above.

14. In French.
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Chapter 4

On the Taylor expansion of λ-terms
and the groupoid structure of their
rigid approximants

This chapter is essentially the inclusion of the article of the same name [7], co-authored
with Federico Olimpieri, and accepted for publication in Logical Methods in Computer
Science. It is a follow-up on preliminary work presented at the TLLA workshop in
2018 [18].

Abstract: We show that the normal form of the Taylor expansion of a λ-term is isomorphic
to its Böhm tree, improving Ehrhard and Regnier’s original proof along three independent
directions.

First, we simplify the �nal step of the proof by following the left reduction strategy directly
in the resource calculus, avoiding to introduce an abstract machine ad hoc.

We also introduce a groupoid of permutations of copies of arguments in a rigid variant of
the resource calculus, and relate the coe�cients of Taylor expansion with this structure, while
Ehrhard and Regnier worked with groups of permutations of occurrences of variables.

Finally, we extend all the results to a nondeterministic setting: by contrast with previous
attempts, we show that the uniformity property that was crucial in Ehrhard and Regnier’s
approach can be preserved in this setting.

4.1 Introduction

4.1.1 Quantitative semantics

The �eld of quantitative semantics, in the sense originally introduced by Girard [Gir88], is
currently very lively within the linear logic community and beyond. The basic idea is to interpret
λ-terms as generalized power series, associated with analytic maps — instead of continuous
maps, à la Scott. The concept predates linear logic, and in fact it provided the foundations for it,
via its simpler, qualitative counterpart: coherence spaces [Gir87]. It was later revisited, e.g. by
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Lamarche [Lam92] and Hasegawa [Has02], to provide a denotational interpretation of linear
logic proofs as matrices; but the current momentum originates in the more recent introduction
by Ehrhard [Ehr05] of models of linear logic, based on a particular class of topological vector
spaces, and thus accommodating di�erentiation.

In that setting, the analytic maps associated with λ-terms are also smooth maps, i.e. they
are in�nitely di�erentiable. This led to the di�erential extensions of λ-calculus [ER03] and
linear logic [ER06b] by Ehrhard and Regnier. The keystone of this line of work is an analogue
of the Taylor expansion formula, which allows to translate terms (or proofs) into in�nite linear
combinations of �nite approximants [ER08]: in the case of λ-calculus, those approximants are
the terms of a resource calculus, in which the copies of arguments of a function must be provided
explicitly, and then consumed linearly, instead of duplicated or discarded during reduction.

This renewed approach to quantitative semantics served as the basis of a considerable
amount of recent work: either as a framework for denotational models accommodating linear
combinations of maps [Lai+13; Lai16; TAO17; Ong17, etc.], possibly in contexts where sums are
constrained to a particular form, such as the probabilistic setting [DE11; TAO18, etc.]; or as a
tool for characterizing computational properties of programs via those of their approximants
[MP11; 12; LL19; BM20, etc.].

Indeed, by contrast with denotational semantics, resource approximants retain a dynamics,
albeit very simple and �nitary: the size of terms is strictly decreasing under reduction. The
seminal result relating the reduction of λ-terms with that of their approximants is the commu-
tation between Taylor expansion and normalization: Ehrhard and Regnier have shown that the
Taylor expansion M∗ of a λ-term M can always be normalized, and that its normal form is
nothing but the Taylor expansion of the Böhm tree BT (M) of M [ER08; ER06a]. In particular,
the normal form of Taylor expansion de�nes a proper denotational semantics.

4.1.2 Contributions

Ehrhard and Regnier’s proof of the identity BT (M)∗ = NF (M∗) can be summed up as
follows:

Step 1: The non-zero coe�cients of resource terms in M∗ do not depend on M . More precisely,
we can write M∗ =

∑
s∈T (M)

1
m(s)s, where T (M) is the support set of Taylor expansion

and m(s) is an integer coe�cient depending only on the resource term s.

Step 2: The set T (M) is a clique for the coherence relation obtained by setting s ¨ s′ i� s and
s′ di�er only by the multiplicity of arguments in applications.

Step 3: The respective supports of NF (s) and NF (s′) are disjoint whenever s ¨ s′ and s 6= s′.
Then one can set NF (M∗) =

∑
s∈T (M)

1
m(s)NF (s), the summands being pairwise

disjoint.

Step 4: If s is uniform, i.e. s ¨ s, and t is in the support of NF (s) (the normal form of s, which
is a �nite sum of resource terms) thenm(t) dividesm(s) and the coe�cient of t inNF (s)

is m(s)
m(t) .

Step 5: By Step 1, BT (M)∗ =
∑

t∈T (BT (M))
1

m(t) t. To deduce the identity BT (M)∗ =

NF (M∗) from the previous results, it is then su�cient to prove that t ∈ T (BT (M)) i�
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there exists s ∈ T (M) such that t is in the support of NF (s).

The �rst two steps are easy consequences of the de�nitions. For Step 3, it is su�cient to follow
a well chosen normalization strategy, and check that it preserves coherence and that if two
coherent terms share a reduct then they are equal [ER08, Section 3]. Step 4 relies on a careful
investigation of the combinatorics of substitution in the resource calculus: this involves an
elaborate argument about the structure of particular subgroups of the group of permutations of
variable occurrences [ER08, Section 4]. Finally, Ehrhard and Regnier establish Step 5 by relating
Taylor expansion with execution in an abstract machine [ER06a].

In the present work, we propose to revisit this seminal result, along three directions.

(i) We largely simplify Step 5, relying on a technique introduced by the second author [13].
We consider the hereditary head reduction strategy (a slight variant of leftmost reduction,
underlying the construction of Böhm trees) and show that it can be simulated directly
in the resource calculus, through Taylor expansion. We thus avoid the intricacies of an
abstract machine with resource state.

(ii) We extend all the results to a model of nondeterminism, introduced as a formal binary
choice operator in the calculus. By contrast with previous proposals to nondeterminism
from Ehrhard [Ehr10], or Pagani, Tasson and Vaux Auclair [12; 13], we show that unifor-
mity can still be relied upon, provided one keeps track of choices in the resource calculus:
the coherence associated with nondeterministic choice is then that of the with connective
(&) of linear logic.

(iii) We analyse coe�cients in the Taylor expansion by introducing a groupoid whose objects
are rigid resource terms, i.e. resource terms in which multisets of arguments are replaced
with lists, and whose isomorphisms are permutation terms, i.e. terms equipped with
permutations that act on lists of arguments. This is more in accordance with the intuition
that m(s) is the number of permutations of arguments that leave s (or rather, any rigid
representation of s) invariant: Ehrhard and Regnier rather worked on permutations of
variable occurrences, which allowed them to consider groups rather than a groupoid.

Although we implement all three contributions together, they are essentially independent of
each other. Indeed, the simpli�cation of Step 5 brought by our contribution (i) only concerns the
compatibility of Taylor expansion with normalization at the level of support sets, which does
not involve coe�cients; and it does not rely on uniformity, so its extension to nondeterministic
superpositions is straightforward.

Moreover, while our contribution (ii) enables us to enforce the uniformity condition of
Steps 2 to 4 in presence of a choice operator, it also ensures that distinct branches of a choice have
disjoint supports in the Taylor expansion. This treatment of nondeterminism makes it completely
transparent in the computation of coe�cients. In particular, one could straightforwardly extend
all steps of Ehrhard and Regnier’s proof in this setting, ceterit paribus.

Our contribution (iii) is thus not needed for that endeavour: it only o�ers an alternative
viewpoint on the combinatorics of substitution and normalization in the resource calculus, in a
uniform setting. Nonetheless, we consider it to be the main contribution of the paper, precisely
because of the new light it sheds on this dynamics, which in turn reveals possible connections
with other approaches.
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4.1.3 Scope and related works

Our contribution (i) establishes that, although it is interesting in itself, Ehrhard and Regnier’s
study of the relationship between elements in the Taylor expansion of a term and its execution
in an abstract machine is essentially super�uous for proving the commutation theorem.

Barbarossa and Manzonetto have independently proposed another technique which amounts
to show that any reduction from an element of T (M) can be completed into a sequence of
reductions simulating a β-reduction step [BM20, Section 4.1]. The strength of our own proposal
is that, rather than a mere simulation result, we establish a commutation on the nose: hereditary
head reduction commutes with Taylor expansion, at the level of supports. Moreover, the Böhm
tree of a λ-term is the limit of its hereditary head reducts, which ensures that this commutation
extends to normalization (Step 5). The same path was followed by Dal Lago and Leventis [LL19]
for the probabilistic case. Let us mention that the commutation with hereditary head reduction
actually holds not only at the level of supports, but also taking coe�cients into account [13], in
the more general setting of the algebraic λ-calculus [2] and without any additional condition:
then, whenever the convergence of the sum de�ning the normal form of Taylor expansion
is assured, the main commutation theorem ensues directly. This o�ers an alternative to the
method of Ehrhard and Regnier that is the focus of the present paper.

As stated before, our proposal (ii) to restore uniformity in a nondeterministic setting is
valid only because the resource calculus keeps a syntactic track of choices. The corresponding
constructors are exactly those used by Tsukada, Asada and Ong [TAO17] who were interested
in identifying equivalent execution paths of nondeterministic programs, but those authors do
not mention, nor rely upon any coherence property: this forbids Steps 1 to 4 and, instead, they
depend on in�nite sums of arbitrary coe�cients to be well de�ned. By contrast, Dal Lago and
Leventis have independently proposed nearly the same solution as ours [LL19, Section 2.2],
with only a minor technical di�erence in the case of sums.

The previous two proposals (i) and (ii) may be considered as purely technical improvements
of the state of the art in the study of Taylor expansion. What we deem to be the most meaningful
contribution of the present paper is our study of the groupoid of rigid resource terms. This
provides us with a new understanding of the coe�cients in the Taylor expansion of a term,
in which we can recast the proof of the commutation theorem, especially Step 4: apart from
this change of focus, the general architecture of our approach does not depart much from that
of Ehrhard and Regnier, but we believe the obtained combinatorial results are closer to the
original intuition behind the de�nition ofm. In fact, a notable intermediate result (Lemma 4.5.11,
p.140) is that the function that maps each permutation term to the permutation it induces on
the occurrences of a �xed variable is functorial: one might understand Ehrhard and Regnier’s
proof of Step 4 as the image of ours through that functor. Moreover, our study suggests
interesting connections with otherwise independent approaches to denotational semantics
based on generalized species of structures [Fio+08; TAO17] and rigid intersection type systems
[MPV18].

It is indeed most natural to compare our proposals to the line of work of Tsukada, Asada
and Ong [TAO17; TAO18]. On the one hand, Tsukada et al. thrive to develop an abstract
understanding of reduction paths in a nondeterministic λ-calculus. They are led to consider
a polyadic calculus à la Mazza [Maz12; MPV18] with syntactic markers for nondeterministic
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choice, moreover obeying linearity, typing and η-expansion constraints: in particular, in that
polyadic setting, λ-abstractions bind lists of variables, each bound variable occurring exactly
once. Then, to each simple type, they associate a groupoid of intersection types: an isomorphism
in this groupoid acts on polyadic rigid terms by permuting variables bound in abstractions and
lists of arguments in applications, in such a way that terms in its source intersection type yield
terms in its target. They show that the obtained collection of groupoids form a bicategorical
model of the simply typed λY-calculus, the interpretation being given by a polyadic rigid
variant of Taylor expansion. This interpretation is moreover isomorphic to the one obtained in
generalized species of structures [Fio+08].

On the other hand, our contribution (ii) shows that Ehrhard and Regnier’s technique can
already be adapted to the same kind of nondeterminism as the one considered by Tsukada et al.,
without introducing any new concept. Also, besides having markers for nondeterministic choice,
the only di�erence between our rigid terms and the ordinary resource terms is that arguments
are linearly ordered: we do not consider a polyadic version. In fact, the same rigid terms were
already used by Tsukada et al. as intermediate representations of resource terms, in order to
recover Ehrhard and Regnier’s commutation theorem as a by-product of their construction
[TAO17, Section VI]. Moreover, our permutation terms are similar to their typed isomorphisms
and this suggests directions for further investigations.

A natural follow-up to the present work would thus be to explore possible variations on
our groupoid of permutation terms, and in particular adapt it to a polyadic setting, also taking
free variables into account. We expect this study to yield a bicategorical model of the pure,
untyped λ-calculus, similarly induced by rigid Taylor expansion à la Tsukada–Asada–Ong.
Then potential connexions between the obtained model and the construction of various re�exive
objects in the bicategory of generalized species of structures [Fio+08, Section 6.2] should be
investigated.

Another possible route to the untyped setting, actively developed by the �rst author, is
to construct a category satisfying a domain-like equation in the model of generalized species
[Oli21]. The objects in this category are very much like intersection types, except that the
usual identities between types (commutativity and, possibly, idempotency) are made explicit as
morphisms, which allows to develop a bicategorical treatment of intersection type systems.

4.1.4 Structure of the paper

In the very brief Section 4.2, we review some results from group theory that will be useful
later.

In Section 4.3 we extend the ordinary untyped λ-calculus with a generic nondeterministic
choice operator, and present its operational semantics, inspired from that of the algebraic
λ-calculus, as well as the corresponding notion of (non extensional) Böhm trees.

Section 4.4 recalls and adapts the de�nitions of the resource calculus and Taylor expansion.
We obtain Step 2 as a straightforward consequence of the de�nitions and Step 5 by showing
that the support of Taylor expansion is compatible with hereditary head reduction — this is
our contribution (i). We moreover complete Step 1, making prominent the rôle played by
permutations acting on lists of resource terms.
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Section 4.5 is the core of the paper, developing our main contribution (iii): we introduce the
rigid version of resource terms, and the isomorphisms between them, given by permutation
terms; then we explore the relationship between the groupoid thus formed and the combinatorics
of Taylor expansion. We �rst show that the coe�cient m(s) is nothing but the cardinality
of the group of automorphisms of any rigid version of s. Then we study the structure of
permutation terms between substitutions, �rst in the general case, then in the uniform case —
which is allowed in our nondeterministic setting thanks to our contribution (ii). We leverage the
obtained results to determine the coe�cient of any resource term in the symmetric multilinear
substitution associated with a reduction step issued from a uniform redex.

The �nal Section 4.6 builds on the study of rigid resource terms and permutation terms to
achieve Steps 3 and 4. We conclude the paper with the commutation theorem.

4.2 Some basic facts on groups and group actions

Let G be a group, X be a set, and write (g, a) ∈ G ×X 7→ [g]a ∈ X for a left action of G on
X . If a ∈ X , then the stabilizer of a under this action is St(a) := {g ∈ G | [g]a = a}, which is
a subgroup of G (also called the isotropy group of a); and the orbit of a is the set [G]a := {[g]a |
g ∈ G} ⊆ X . If H,K ⊆ G, we write HK := {hk | h ∈ H, k ∈ K}. If f : X → Y , X ′ ⊆ X
and Y ′ ⊆ Y we write f(X ′) := {f(x) | x ∈ X ′} and f−1(Y ′) := {x | f(x) ∈ Y ′}.

Assuming that G is �nite, the following three facts are standard results of group theory.

Fact 4.2.1. For any a ∈ X ,

Card([G]a) =
Card(G)

Card(St(a))
.

Proof. [Lan02, Proposition 5.1].

Fact 4.2.2. LetH and K be any subgroups of G. Then

Card(HK) =
Card(H)Card(K)

Card(H ∩K)
.

Proof. [Suz82, §(3.11)].

Fact 4.2.3. Let f : G → H be a group homomorphism and K be a subgroup ofH. Then

Card(G)

Card(f−1(K))
=

Card(f(G))

Card(f(G) ∩ K)
.

Proof. By the theorem of correspondence under homomorphisms [Suz82, Theorem 5.5 (1)],
observing that f(G) ∩ K = f(f−1(K)).
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4.3 A generic nondeterministic λ calculus

4.3.1 λ⊕-terms

We consider a nondeterministic version of the λ-calculus in a pure, untyped setting. The
terms are those of the pure λ-calculus, augmented with a binary operator ⊕ denoting a form of
nondeterministic superposition: 1

Λ⊕ 3M,N,P,Q ::= x | λx.M |MN |M ⊕N.

As usual λ⊕-terms are considered up to renaming bound variables, and we write M [N/x] for
the capture avoiding substitution of N for x in M . We give precedence to application over
abstraction, and to abstraction over ⊕, and moreover associate applications on the left, so that
we may write λx.MNP ⊕Q for (λx.((MN)P ))⊕Q. We write λ~x.M for a term of the form
λx1. · · ·λxn.M (possibly with n = 0).

Rather than specifying the computational e�ect of ⊕ explicitly, by reducing M ⊕M ′ to
either M or M ′, we consider two reductions rules

(M ⊕N)P →MP ⊕NP and λx.(M ⊕N)→ λx.M ⊕ λx.N

in addition to the β-reduction rule. This is in accordance with most of the literature associated
with the Taylor expansion of λ-terms [ER03; Ehr10; 12; 13] and quantitative denotational
semantics [Ehr05], where nondeterministic choice is modelled by the sum of denotations: rather
than the current state of a nondeterministic computation, a term represents a superposition of
possible results. 2 In particular, this approach allows to keep standard rewriting notions and
techniques such as con�uence, standardization, etc. Formally,→ is de�ned inductively by the
inference rules of Figure 4.1: we simply extend the three base cases contextually.

Observe that neither the de�nition of terms nor that of reduction make the choice operator
commutative, associative nor idempotent: e.g., x⊕ y and y ⊕ x are two distinct normal forms.
It is possible to extend the reduction relation to validate the structural properties associated
with various kinds of superpositions (plain nondeterministic choice, probabilistic choice or a
more general quantitative superposition) while retaining good rewriting properties: we refer
the reader to the work of Leventis [Lev19] for an extensive study of this approach.

By contrast, for our purposes, it is essential to keep ⊕ as a free binary operator: following
Tsukada, Asada and Ong [TAO17], we keep track of the branching structure of choices along
the reduction. This information will be re�ected in the Taylor expansion to be introduced in
Section 4.4: this is the key to recover the uniformity property while allowing for nondeterministic
superpositions of terms.

1. Throughout the paper, we use a self explanatory if not standard variant of BNF notation for introducing
syntactic objects: here we de�ne the set Λ⊕ as that inductively generated by variables, λ-abstraction, application
and sum, and we will denote terms using letters among M,N,P,Q, possibly with sub- and superscripts.

2. In fact, only the rule (M ⊕N)P →MP ⊕NP is really necessary in order to enable the potential redexes
that can occur ifM orN is an abstraction: in the setting of quantitative semantics, term application is left-linear. The
other reduction rule can be derived in case one admits extensionality in the models or the η-rule in the calculus (here
we don’t, though): having it in the calculus means that we follow a call-by-name interpretation of nondeterministic
evaluation, which amounts to λ-abstraction being linear [Ass+14]. The results of the paper could be developed
similarly without it. We chose to keep it nonetheless, because it simpli�es the underlying theory of Böhm trees and
allows us to obtain Ehrhard and Regnier’s results [ER08; ER06a] as a particular case of our own.
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(λx.M)N →M [N/x] (M ⊕N)P →MP ⊕NP λx.(M ⊕N)→ λx.M ⊕ λx.N

M →M ′

λx.M → λx.M ′
M →M ′

MN →M ′N

M →M ′

NM → NM ′
M →M ′

M ⊕N →M ′ ⊕N
M →M ′

N ⊕M → N ⊕M ′

Figure 4.1 – Reduction rules of the λ⊕-calculus

In fact we will not really consider the reduction relation→ in the present paper, and rather
focus on the hereditary head reduction strategy obtained by de�ning the function L : Λ⊕ → Λ⊕
inductively as follows:

L(M ⊕N) := L(M)⊕ L(N)

L(λ~x.λy.(M ⊕N)) := λ~x.(λy.M ⊕ λy.N)

L(λ~x.(M ⊕N)PQ1 · · ·Qk)) := λ~x.(MP ⊕NP )Q1 · · ·Qk
L(λ~x.yQ1 · · ·Qk) := λ~x.yL(Q1) · · ·L(Qk)

L(λ~x.(λy.M)NQ1 · · ·Qk)) := λ~x.M [N/y]Q1 · · ·Qk .

Observe that this de�nition is exhaustive because any term in Λ⊕ is either of the form M ⊕N
or of the form λ~x.λy.(M ⊕ N) or of the form λ~x.RQ1 · · ·Qk with R = (λy.M)N or R =
(M ⊕N)P or R = y.

It should be clear that M →∗ L(M) and that L(M) = M whenever M is normal 3 but the
converse does not necessarily hold. It can moreover be shown that any normalizable term M
reaches its normal form by repeatedly applying the function L, for instance by adapting the
standardization techniques of Leventis [24; Lev19], but this is not the focus of the present paper.
Indeed, we are only interested in the construction of Böhm trees, and we rely on the fact that
the Böhm tree of a term M can be understood as the limit of the sequence (Ln(M))n∈N, in a
sense that we detail below. In particular, M and L(M) have the same Böhm tree (Lemma 4.3.3).

4.3.2 Böhm trees

We �rst de�ne the set Λ⊥⊕ of term approximants as follows:

Λ⊥⊕ 3M,N,P,Q ::= ⊥ | x | λx.M |MN |M ⊕N

then we consider the least partial order ≤ ⊆ Λ⊥⊕ × Λ⊥⊕ that is compatible with syntactic
constructs and such that ⊥ ≤M for each M ∈ Λ⊥⊕. Formally, ≤ is de�ned inductively by the
rules of Figure 4.2.

The set N ⊂ Λ⊥⊕ of elementary Böhm trees is the least set of approximants such that:

— ⊥ ∈ N ;

3. If one considers ⊕ as a nondeterministic choice operator, normalizability is meant in its must �avour here.
Indeed, we do not perform the choice within the reduction relation itself, soM ⊕N is normal i�M andN both are.
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⊥ ≤M M ≤M
M ≤ N N ≤ P

M ≤ P
M ≤M ′

λx.M ≤ λx.M ′
M ≤M ′ N ≤ N ′

MN ≤M ′N ′
M ≤M ′ N ≤ N ′

M ⊕N ≤M ′ ⊕N ′

Figure 4.2 – The approximation order on Λ⊥⊕.

— λ~x.xN1 · · ·Nn ∈ N as soon as N1, . . . , Nn ∈ N ; 4 and

— N1 ⊕N2 ∈ N as soon as N1, N2 ∈ N .

For each λ⊕-term M , we construct an elementary Böhm tree N (M) as follows:

N (M ⊕N) := N (M)⊕N (N)

N (λ~x.xQ1 · · ·Qk) := λ~x.xN (Q1) · · · N (Qk)

N (M) := ⊥ in all other cases.

Lemma 4.3.1. For any M ∈ Λ⊕, N (M) ≤ N (L(M)).

Proof. By induction on M . If M = M1 ⊕M2 then N (M) = N (M1)⊕N (M2) and L(M) =
L(M1)⊕L(M2), henceN (L(M)) = N (L(M1))⊕N (L(M2)) and we conclude by induction
hypothesis. The caseM = λ~x.xQ1 · · ·Qk is similar. Otherwise,N (M) = ⊥ ≤ N (L(M)).

Hence for a �xed λ⊕-term M , the sequence (N (Ln(M)))n∈N is increasing, and we call
its downwards closure in N the Böhm tree of M , which we denote by BT (M): i.e. we set
BT (M) := {N ∈ N | ∃n ∈ N, N ≤ N (Ln(M))}.

Example 4.3.2. LetM = Θλy.(y⊕x) where Θ is Turing’s �xpoint combinator, so thatL3(M) =
M⊕x. We can think of BT (M) as the in�nite tree ((· · ·⊕x)⊕x)⊕x: formally, BT (M) = {⊥⊕
nx | n ∈ N} where we de�ne inductively M ⊕ 0N = M and M ⊕ (n+ 1)N = (M ⊕nN)⊕N .

It could be shown that Böhm trees de�ne a denotational semantics: if M → M ′ then
BT (M) = BT (M ′). 5 Here we just observe that Böhm trees are invariant under hereditary
head reduction, which follows directly from the de�nition:

Lemma 4.3.3. Let M ∈ Λ⊕. Then BT (M) = BT (L(M)).

It will be su�cient to follow this strategy in order to establish Step 5, i.e. the qualitative
version of the commutation between normalization and the Taylor expansion of λ⊕-terms, to
be de�ned in the next section.

4. Here the sequence λ~x of abstractions can be empty, and we can have n = 0, in which case the body of the
term is just the head variable.

5. Again, this would require the adaptation of standardization techniques to λ⊕, similar to those developed by
Leventis for the probabilistic λ-calculus [Lev19].
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4.4 Taylor expansion in a uniform nondeterministic setting

In order to de�ne Taylor expansion, we need to introduce an auxiliary language: the resource
calculus.

4.4.1 Resource terms

We call resource expressions the elements of ∆⊕ ∪∆!
⊕, where the set ∆⊕ of resource terms

and the set ∆!
⊕ of resource monomials are de�ned by mutual induction as follows: 6

∆⊕ 3 s, t, u, v ::= x | λx.s | 〈s〉t̄ | s⊕ • | • ⊕ s ∆!
⊕ 3 s̄, t̄, ū, v̄ ::= [s1, . . . , sn]

and, in addition to α-equivalence, we consider resource expressions up to permutations of
terms in monomials, so that [s1, . . . , sn] denotes a multiset of terms. We give precedence to
application and abstraction over−⊕• and •⊕−, and we write 〈s〉t̄1 · · · t̄n for 〈· · · 〈s〉t̄1 · · · 〉t̄n,
so that we may write λx.〈s〉t̄ ū⊕• for (λx.(〈〈s〉t̄〉ū))⊕•. We write λ~x.s for a term of the form
λx1. · · ·λxn.s. We moreover write s̄ · t̄ for the multiset union of s̄ and t̄, and if s̄ = [s1, . . . , sn]
then we write |s̄| := n for the size of s̄; in particular |s̄| = 0 i� s̄ is the empty multiset [], which
is neutral for multiset union.

If X is a set, we write N[X] for the freely generated commutative monoid over X : formally,
this is the same as the set of �nite multisets of elements of X but we choose to consider its
elements as �nite linear combinations of elements of X with coe�cients in N. In the following,
we write ∆

(!)
⊕ for either ∆⊕ or ∆!

⊕, so that N[∆
(!)
⊕ ] is either N[∆⊕] or N[∆!

⊕]: when we consider
a sum E of resource expressions, we always require E to be a sum of terms or a sum of
monomials, i.e. E ∈ N[∆

(!)
⊕ ]. Then we write supp(E) ⊆ ∆

(!)
⊕ for the support set of E, which is

�nite. We extend the syntactic constructs of the resource calculus to �nite sums of resource
expressions by linearity, so that:

— if S =
∑n

i=1 si then λx.S =
∑n

i=1 λx.si, •⊕S =
∑n

i=1 •⊕si and S⊕• =
∑n

i=1 si⊕•;
— if moreover T̄ =

∑m
j=1 t̄j then 〈S〉T̄ =

∑n
i=1

∑m
j=1〈si〉t̄j and [S] · T̄ =

∑n
i=1

∑m
j=1[si] ·

t̄j .

For any resource expression e ∈ ∆
(!)
⊕ , we write nx(e) for the number of occurrences of

variable x in e. If moreover ū = [u1, . . . , un] ∈ ∆!
⊕, we introduce the symmetric n-linear

substitution ∂xe · ū ∈ N[∆
(!)
⊕ ] of ū for the variable x in e, which is informally de�ned as follows:

∂xe · ū :=


∑
σ∈Sn

e[uσ(1)/x1, . . . , uσ(n)/xn] if nx(e) = n

0 otherwise

where x1, . . . , xnx(e) enumerate the occurrences of x in e. 7

6. Recall that the cartesian product of vector spaces is given by the disjoint union of bases: this is the intuition
behind the operators−⊕• and •⊕−, which will serve in the Taylor expansion of the operator⊕ of Λ⊕. Again, we
leave the exact computational behavior of ⊕ unspeci�ed, and we treat it generically as a pairing operator (without
projections): in this we follow Tsukada et al. [TAO17].

7. Enumerating the occurrences of x in e only makes sense if we �x an ordering of each monomial in e: the rigid
resource calculus to be introduced later in the paper will allow us to give a more formal account of this intuitive
presentation. For now we stick to the alternative de�nition given in the next paragraph.
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〈λx.s〉t̄→∂ ∂xs · t̄ 〈s⊕ •〉t̄→∂ 〈s〉t̄⊕ • 〈• ⊕ s〉t̄→∂ • ⊕ 〈s〉t̄

λx.(s⊕ •)→∂ λx.s⊕ • λx.(• ⊕ s)→∂ • ⊕ λx.s

s→∂ S
′

λx.s→∂ λx.S
′

s→∂ S
′

〈s〉t̄→∂ 〈S′〉t̄
s̄→∂ S̄

′

〈t〉s̄→∂ 〈t〉S̄′

s→∂ S
′

s⊕ • →∂ S
′ ⊕ •

s→∂ S
′

• ⊕ s→∂ • ⊕ S′
s→∂ S

′

[s] · t̄→∂ [S′] · t̄

Figure 4.3 – Reduction rules of the resource calculus with sums

Formally, ∂xe · ū is de�ned by induction on e, setting:

∂xy · ū :=


y if y 6= x and n = 0

u1 if y = x and n = 1

0 otherwise

∂xλy.s · ū := λy.(∂xs · ū)

∂x(s⊕ •) · ū := ∂xs · ū⊕ •
∂x(• ⊕ s) · ū := • ⊕ ∂xs · ū

∂x〈s〉t̄ · ū :=
∑

(I1,I2)∈Q2(n)

〈∂xs · ūI1〉∂xt̄ · ūI2

∂x[t1, . . . , tk] · ū :=
∑

(I1,...,Ik)∈Qk(n)

[∂xt1 · ūI1 , . . . , ∂xtn · ūIk ]

where Qk(n) denotes the set of k-tuples (I1, . . . , Ik) of (possibly empty) pairwise disjoint
subsets of {1, . . . , n} such that

⋃k
j=1 Ij = {1, . . . , n}, 8 and we write ū{i1,...,ij} := [ui1 , . . . , uij ]

whenever 1 ≤ i1 < . . . < ij ≤ n. It is easy to check that ∂xe · t̄ 6= 0 i� nx(e) = |t̄|.
The reduction of the resource calculus is the relation from resource expressions to �nite

formal sums of resource expressions induced by the rules of Figure 4.3: the �rst rule is the
counterpart of β-reduction in the resource calculus; the next four rules implement the com-
mutation of ⊕ with abstraction and application to a monomial; the �nal six rules ensure the
contextuality of the resulting relation. It is extended to a binary relation on N[∆

(!)
⊕ ] by setting

e+ F →∂ E
′ + F whenever e→∂ E

′. As in the case of the original resource calculus [ER08],
the reduction relation→∂ is con�uent and strongly normalizing. Con�uence may be proved
following the same technique as for the original resource calculus [13, Section 3.4]: we do not
provide any detail, because we will soon focus on a reduction strategy, which is functional. For
strong normalization, slightly more care is needed, because the size of expressions does not
necessarily decrease under reduction:

8. Note that this data is equivalent to a function {1, . . . , n} → {1, . . . , k}.
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Lemma 4.4.1. The reduction→∂ ⊆ N[∆
(!)
⊕ ]× N[∆

(!)
⊕ ] is strictly normalizing.

Proof. If e ∈ ∆
(!)
⊕ , we write nλ(e) ∈ N (resp. n⊕(e) ∈ N) for the number of abstractions (resp.

of ⊕) occurring in e. Let #⊕(e) denote the multiset of natural numbers containing a value
n⊕(s) for each occurrence of a subterm λx.s or 〈s〉t̄ in e. Formally:

#⊕(x) := [] #⊕(λx.s) := [n⊕(s)] ·#⊕(s) #⊕(s⊕ •) := #⊕(s) #⊕(• ⊕ s) := #⊕(s)

#⊕(〈s〉t̄) := [n⊕(s)] ·#⊕(s) ·#⊕(t̄) #⊕([s1, . . . , sn]) := #⊕(s1) · · · · ·#⊕(sn)

where we use the same notations for multisets as for monomials.
We �rst establish that, for all e ∈ ∆

(!)
⊕ , t̄ ∈ ∆!

⊕ and e′ ∈ supp(∂xe · t̄), we have nλ(e′) =
nλ(e)− 1: the proof is by a straightforward induction on e.

Then, whenever e→∂ E
′ and e′ ∈ supp(E′), we have n⊕(e′) = n⊕(e), and:

1. either nλ(e′) = nλ(e)− 1;

2. or nλ(e′) = nλ(e), and we can write #⊕(e) = n̄ · [n+ 1] and #⊕(e′) = n̄ · [n].

The proof is by induction on the derivation of e →∂ E
′: the β-redex case holds using the

previous result on multilinear substitution to obtain (1); the other four base cases yield (2); and
each other case follows straightforwardly by the induction hypothesis.

Now, for each E = e1 + · · · + en ∈ N[∆
(!)
⊕ ], we write #λ(E) = [nλ(e1), . . . , nλ(en)]

and #⊕(E) = #⊕(e1) · · · · · #⊕(en). By the previous result and the de�nition of →∂ on
sums of resource expressions: if E →∂ E

′ then either #λ(E) < #λ(E), or #λ(E) = #λ(E)
and #⊕(E) < #⊕(E), considering the multiset order. We conclude since the latter is well-
founded.

We write NF (E) for the unique normal form of E ∈ N[∆
(!)
⊕ ], which is a linear operator:

NF (
∑k

i=1 ei) =
∑k

i=1 NF (ei). As stated before, we do not focus on the reduction relation
itself, and we rather consider the hereditary head reduction strategy obtained by de�ning the
function L : ∆

(!)
⊕ → N[∆

(!)
⊕ ] inductively as follows:

L(s⊕ •) := L(s)⊕ • L(• ⊕ s) := • ⊕ L(s)

L(λ~x.λy.(s⊕ •)) := λ~x.(λy.s⊕ •) L(λ~x.λy.(• ⊕ s)) := λ~x.(• ⊕ λy.s)
L(λ~x.〈〈s⊕ •〉t̄〉ū1 · · · ūk) := λ~x.〈〈s〉t̄⊕ •〉ū1 · · · ūk
L(λ~x.〈〈• ⊕ s〉t̄〉ū1 · · · ūk) := λ~x.〈• ⊕ 〈s〉t̄〉ū1 · · · ūk

L(λ~x.〈y〉s̄1 · · · s̄k) := λ~x.〈y〉L(s̄1) · · ·L(s̄k)

L([s1, . . . , sk]) := [L(s1), . . . , L(sk)]

L(λ~x.〈λy.s〉t̄ ū1 · · · ūk) := λ~x.〈∂ys · t̄〉ū1 · · · ūk

extended to sums of resource expressions by linearity, setting L(
∑k

i=1 ei) :=
∑k

i=1 L(ei).
Again, it should be clear that e →∗∂ L(e): if e contains a redex (i.e. the left-hand side of

any of the �rst �ve rules of Figure 4.3) in head position, then L(e) is obtained by �ring this
redex; otherwise each term in a monomial argument of the head variable is reduced, following
the same strategy inductively. Moreover, e = L(e) i� e is normal: we obtain an equivalence
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because→∂ is strongly normalizing on sums of resource expressions and, if e is not normal,
L(e) is obtained by �ring at least one redex in e.

Due to the de�nition of→∂ on sums and the linearity of L, these properties extend directly:
E →∗∂ L(E) and E = L(E) i� E is normal (i.e. it is a sum of normal expressions). It moreover
follows that L is normalizing: for all E ∈ N[∆

(!)
⊕ ], there is n such that Ln(E) = NF (E).

4.4.2 Taylor expansion of λ⊕-terms

The Taylor expansion of a λ⊕-term will be an in�nite linear combination of resource terms:
to introduce it, we �rst need some preliminary notations and results.

IfX is a set, we write Q+〈X〉 for the set of possibly in�nite linear combinations of elements
of X with non negative rational coe�cients (in fact we could use any commutative semi�eld):
equivalently, Q+〈X〉 is the set of functions from X to the set of non negative rational numbers.
We write A =

∑
a∈X Aa a ∈ Q+〈X〉 and then the support set of A is supp(A) = {a ∈ X |

Aa 6= 0}.
All the syntactic constructs of resource expressions are extended to in�nite linear combina-

tions, componentwise:

— if S ∈ Q+〈∆⊕〉 then

λx.S :=
∑
s∈∆⊕

Ss(λx.s) , S⊕• :=
∑
s∈∆⊕

Ss(s⊕•) and •⊕S :=
∑
s∈∆⊕

Ss(•⊕s) ;

— if moreover T̄ ∈ Q+〈∆!
⊕〉 then

〈S〉T̄ :=
∑
s∈∆⊕

∑
t̄∈∆!

⊕

SsT̄t̄(〈s〉t̄) ;

— and if S1, . . . , Sn ∈ Q+〈∆⊕〉 then

[S1, . . . , Sn] :=
∑

(s1,...,sn)∈∆n
⊕

( n∏
i=1

Sisi
)
[s1, . . . , sn] .

Observe indeed that each of these in�nite sums is �nite in each component: e.g., for each
s̄ ∈ ∆!

⊕, there are �nitely many tuples (s1, . . . , sn) ∈ ∆n
⊕ such that s̄ = [s1, . . . , sn].

Similarly we extend syntactic constructs to sets of resource expressions:

— if S ⊆ ∆⊕ then

λx.S := {λx.s | s ∈ S} , S⊕• := {s⊕• | s ∈ S} and •⊕S := {•⊕s | s ∈ S} ;

— if moreover T̄ ⊆ ∆!
⊕ then

〈S〉T̄ := {〈s〉t̄ | s ∈ S, t̄ ∈ T̄} ;

— and if S1, . . . , Sn ⊆ ∆⊕ then

[S1, . . . , Sn] := {[s1, . . . , sn] | si ∈ Si for 1 ≤ i ≤ n} .
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Considering subsets of ∆
(!)
⊕ as in�nite linear combinations of resource expressions with boolean

coe�cients, this is just a variant of the previous construction (which can be carried out in any
commutative semi�eld). Moreover, syntactic constructs commute with the support function:
e.g., λx.supp(S) = supp(λx.S).

Let S ∈ Q+〈∆⊕〉. We de�ne Sn ∈ Q+〈∆!
⊕〉 by induction on n: S0 = [] and Sn+1 = [S]·Sn.

Then we de�ne the promotion of S as the series S! =
∑∞

n=0
1
n!S

n: because the supports of Sn

and Sp are disjoint when n 6= p, this sum is componentwise �nite. If S ⊆ ∆⊕ is a set of terms,
we may also write S! = {[s1, . . . , sn] | s1, . . . , sn ∈ S} for the set of monomials of terms in S,
so that supp(S!) = supp(S)! for any S ∈ Q+〈∆⊕〉.

We de�ne the Taylor expansion M∗ ∈ Q+〈∆⊕〉 of M ∈ Λ⊕ inductively as follows:

x∗ := x

(λx.N)∗ := λx.N∗

(PQ)∗ := 〈P ∗〉(Q∗)!

(P ⊕Q)∗ := (P ∗ ⊕ •) + (• ⊕Q∗) .

Note that this de�nition follows the one for the ordinary λ-calculus given by Ehrhard and
Regnier [ER08], in the form described in their Lemma 18. We extend it to ⊕ by encoding the
pair of vectors (P ∗, Q∗) as the sum vector (P ∗ ⊕ •) + (• ⊕Q∗). 9

Example 4.4.2. We have (x⊕ x)∗ = (x⊕ •) + (• ⊕ x) hence

(λx.(x⊕ x))∗ = λx.((x⊕ •) + (• ⊕ x)) = (λx.(x⊕ •)) + (λx.(x⊕ •))

and

(y(x⊕ x))∗ =
∑
n∈N

1

n!
〈y〉[(x⊕ •) + (• ⊕ x)]n =

∑
n∈N

n∑
i=0

1

i!(n− i)!
〈y〉[x⊕ •]i · [• ⊕ x]n−i .

Writing T (M) := supp(M∗) for the support of Taylor expansion, we obtain:

T (x) = {x}
T (λx.N) = λx.T (N) = {λx.t | t ∈ T (N)}
T (PQ) = 〈T (P )〉T (Q)! = {〈s〉[t1, . . . , tn] | s ∈ T (P ) and t1, . . . , tn ∈ T (Q)}

T (P ⊕Q) = (T (P )⊕ •) ∪ (• ⊕ T (Q)) = {s⊕ • | s ∈ T (P )} ∪ {• ⊕ t | t ∈ T (Q)}

so that M∗ =
∑

s∈T (M)M
∗
s s.

We can immediately check that Step 2 still holds for our extension of Taylor expansion to
λ⊕-terms: we prove that T (M) is always a clique for the coherence relation ¨ ⊆ ∆

(!)
⊕ ×∆

(!)
⊕

inductively de�ned by the rules of Figure 4.4. The �rst four rules are exactly those for the

9. Note that the original notion of Taylor expansion for nondeterministic λ-terms (considered as algebraic
λ-terms without coe�cients) interprets nondeterministic choice directly as a sum, setting (M ⊕N)∗ = M∗ +N∗

[Ehr10; 12; 13]. Following Tsukada, Asada and Ong [TAO17], we can recover this notion, by erasing the markers
−⊕• and •⊕−, with one caveat: in general, this might yield in�nite sums of coe�cients, because a single resource
term without markers may be obtained from in�nitely many terms with markers. De�ne for instance x⊕ n• by
analogy with Example 4.3.2: x⊕ 0• = x and x⊕ (n+ 1)• = (x⊕ n•)⊕ •. Then forgetting markers in the sum∑∞
i=0 x⊕ n• yields

∑∞
i=0 x. And it turns out that normalizing the Taylor expansion of nondeterministic terms

does yield such sums: see Example 4.4.6.
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x ¨ x
s ¨ s′

λx.s ¨ λx.s′
s ¨ s′ t̄ ¨ t̄′

〈s〉t̄ ¨ 〈s′〉t̄′
ti ¨ tj for 1 ≤ i, j ≤ n+m

[t1, . . . , tn] ¨ [tn+1, . . . , tn+m]

s ¨ s′

s⊕ • ¨ s′ ⊕ •
s ¨ s′

• ⊕ s ¨ • ⊕ s′ s⊕ • ¨ • ⊕ s′

Figure 4.4 – Rules for the coherence relation on ∆
(!)
⊕ .

ordinary resource calculus [ER08, Section 3], while the last three rules are reminiscent of
the de�nition of the cartesian product of coherence spaces [Gir87, De�nition 5]. Again, this
is consistent with the fact that we treat ⊕ as a pairing construct, denoting an unspeci�ed
superposition operation.

Observe that the relation ¨ is automatically symmetric, but not re�exive: e.g., [s, t] 6¨ [s, t]
when s 6¨ t. We say a resource expression e is uniform if e ¨ e, so that uniform expressions
form a coherence space in the usual sense. 10 We call clique any set E of resource expressions
such that e ¨ e′ for all e, e′ ∈ E. In particular, the elements of a clique are necessarily uniform.

We obtain the expected result by a straightforward induction on λ⊕-terms:

Theorem 4.4.3 (Step 2). The Taylor support T (M) is a clique.

4.4.3 Multiplicity coe�cients

We now generalize Step 1 in our generic nondeterministic setting: we can de�ne a multi-
plicity coe�cient m(s) ∈ N for each s ∈ ∆⊕ so that M∗s = 1

m(s) whenever s ∈ T (M).

Given any set X and n ∈ N, we consider the left action of the group Sn of all permutations
of {1, . . . , n} on the set Xn of n-tuples, de�ned as follows: if ~a = (a1, . . . , an) and σ ∈ Sn

then [σ]~a = (aσ−1(1), . . . , aσ−1(n)). Writing [σ]~a = (a′1, . . . , a
′
n), we obtain a′σ(i) = ai. Let us

recall that if ~a ∈ Xn, then the stabilizer of ~a is St(~a) = {σ ∈ Sn | [σ]~a = ~a}.
If ~s = (s1, . . . , sn) ∈ ∆n

⊕ and S ∈ Q+〈∆⊕〉, we write S~s =
∏n
i=1 Ssi : observe that this

does not depend on the ordering of the si’s, so if s̄ = [s1, . . . , sn] ∈ ∆!
⊕, we may as well write

S s̄ = S(s1,...,sn). We obtain:

Lemma 4.4.4. Let S ∈ Q+〈∆⊕〉 and s̄ ∈ supp(S!). If ~s = (s1, . . . , sn) is an enumeration of s̄,

i.e. [s1, . . . , sn] = s̄, then (S!)s̄ =
S s̄

Card(St(~s))
.

10. Note that, by contrast with the coherence relation considered by Dal Lago and Leventis for the Taylor
expansion of probabilistic λ-terms [LL19], e ¨ e′ does not imply the uniformity of e nor e′: we have s⊕ • ¨ • ⊕ s′
without any condition on s and s′. We could adapt our main results with a �ner coherence, similar to theirs, requiring
s ¨ s and s′ ¨ s′ for s ⊕ • ¨ • ⊕ s′ to hold: uniform expressions and cliques are the same for both relations.
Nonetheless, we �nd it interesting that this additional hypothesis is not needed for Step 3.
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Proof. By the de�nition of promotion, and by linearity, we obtain

S! =
∞∑
n=0

1

n!

∑
(s1,...,sn)∈∆n

⊕

S(s1,...,sn)[s1, . . . , sn] .

If |s̄| = n, we thus obtain:

(S!)s̄ = Card({(s1, . . . , sn) | [s1, . . . , sn] = s̄})S
s̄

n!
.

Observing that {(s1, . . . , sn) | [s1, . . . , sn] = s̄} is the orbit of any enumeration of s̄ under the
action of Sn, and that Card(Sn) = n!, we conclude by Fact 4.2.1.

Let s ∈ ∆⊕. We inductively de�ne m(s), the multiplicity coe�cient of s, as follows:

m(x) := 1

m(λx.s)
m(s⊕ •)
m(• ⊕ s)

 := m(s)

m(〈s〉t̄) := m(s)m(t̄)

m([t1]n1 · · · · · [tn]nn) :=

n∏
i=1

ni! m(ti)
ni

assuming the ti’s are pairwise distinct in the case of a monomial. Again, this de�nition extends
straightforwardly the one given by Ehrhard and Regnier for their resource calculus [ER08,
Section 2.2.1], given that−⊕• and •⊕− are both linear. Observe that, considering the function
m as a vector m ∈ Q+〈∆(!)

⊕ 〉, if ~s is an enumeration of s̄ then m(s̄) = ms̄Card(St(~s)).

Theorem 4.4.5 (Step 1). Let s ∈ T (M). Then M∗s =
1

m(s)
.

Proof. The only interesting case is that of an application: M = PQ. Assume s ∈ T (M);
then s = 〈u〉v̄ with u ∈ T (P ) and v̄ = [v1, . . . , vn] ∈ T (Q)!. By de�nition, M∗s =
(〈P ∗〉(Q∗)!)〈u〉v̄ = P ∗u (Q∗)!

v̄ . Setting~v = (v1, . . . , vn), we obtainM∗s = P ∗u (Q∗)v̄/Card(St(~v))
by Lemma 4.4.4. By the induction hypothesis applied to P and Q, we obtain 1/P ∗u = m(u) and
1/Q∗vi = m(vi) hence 1/M∗s = m(u)mv̄Card(St(~v)) = m(u)m(v̄) = m(s).

We can as well obtain Step 4 following Ehrhard and Regnier’s study of permutations of
variables occurrences, but here we choose to depart from their approach. At this point, indeed,
we hope the reader will share our opinion that the combinatorics of Taylor expansion is more
intimately connected with the action of permutations on the enumerations of monomials
occurring in resource expressions.

In the upcoming Section 4.5, we propose to �esh out this viewpoint, and to recast resource
expressions as equivalence classes of their rigid (i.e. non-commutative) representatives, up
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to the isomorphisms of a groupoid of permutation terms inductively de�ned on the syntactic
structure.

The other remaining Steps 3 and 5 are purely qualitative properties of the Taylor support.
We choose to treat also Step 3 in the rigid setting, to be introduced later, because it is essentially
a property of rigid reduction. On the other hand, the commutation of Step 5 can be established
directly.

4.4.4 Taylor expansion of Böhm trees

The Taylor expansion of a Böhm tree is obtained as follows. First we extend the de�nition
of Taylor expansion from Λ⊕ to Λ⊥⊕ by adding the inductive case ⊥∗ := 0, hence T (⊥) = ∅.
Then we set T (BT (M)) :=

⋃
B∈BT (M) T (B).

We can already observe that if B ∈ N and s ∈ T (B) then s is normal: indeed, the
absence of redexes is preserved by the inductive de�nition of Taylor expansion. It follows
that any s ∈ T (BT (M)) is normal. Moreover, it is clear that Theorem 4.4.5 extends to term
approximants, hence B∗s = 1

m(s) whenever s ∈ T (B). Thus, it makes sense to de�ne the Taylor

expansion of a Böhm tree as: BT (M)∗ :=
∑

s∈T (BT (M))
1

m(s)s.

Example 4.4.6. Recall from Example 4.3.2 that if we set M = Θλy.(y ⊕ x) then BT (M) =
{⊥⊕nx | n ∈ N}. Observe that T (⊥⊕nx) = {(•⊕x)⊕i• | 0 ≤ i < n} so that T (BT (M)) =
{(• ⊕ x)⊕ n• | n ∈ N} and BT (M)∗ =

∑∞
i=0(• ⊕ x)⊕ n•, because m((• ⊕ x)⊕ n•) = 1 for

each n ∈ N.

We shall achieve Step 5 by showing that the parallel left strategy in Λ⊕ can be simulated in
the support of Taylor expansion, and that T (BT (M)) is formed by accumulating the normal
forms reached from T (M) by this strategy.

First, we extend the operations ∂x − ·−, L(−) and NF (−) to sets of resource expressions
in the following way:

∂xE · T̄ :=
⋃
e∈E

⋃
t̄∈T̄

supp(∂xe · t̄)

L(E) :=
⋃
e∈E

supp(L(e))

NF (E) :=
⋃
e∈E

supp(NF (e))

whenever E ⊆ ∆
(!)
⊕ and T̄ ⊆ ∆⊕. 11

11. In contrast with the case of syntactic constructors in Section 4.4.2, extending these operations to in�nite
linear combinations rather than sets requires some work.

In the case of ∂x− ·−, we can show that each expression e′ is in the support of �nitely many sums of the shape
∂xe · t̄, by observing that the size of the antecedents e and t̄ is at most that of e′ [13, Lemma 3.7]. Then one can
exploit the fact that the redexes �red in the reduction from e to L(e) are pairwise independent, to deduce that each
e′ is in the support of �nitely many sums of the shape L(e): this is a particular case of a result established by the
second author for parallel reduction [13, Section 6.2].
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Lemma 4.4.7. Let M be a λ⊕-term. Then L(T (M)) = T (L(M)).

Proof. The proof is the same as for λ-terms [13], the case of ⊕ being direct. The base case
requires to prove that T (M [N/x]) = ∂xT (M) · T (N)!, which is done by a straightforward
induction on M .

Lemma 4.4.8. Let A,B ∈ Λ⊥⊕. If A ≤ B then T (A) ⊆ T (B).

Proof. By straightforward induction on the derivation of A ≤ B.

Lemma 4.4.9. For any M ∈ Λ⊕, T (N (M)) = {s ∈ T (M) | s is normal}.

Proof. We have T (N (M)) ⊆ T (M) by Lemma 4.4.8 and the obvious fact that N (M) ≤ M .
We deduce the inclusion⊆, recalling that the Taylor support of elementary Böhm trees contains
normal terms only.

Conversely, if s ∈ T (M) and s is normal, then either M = N ⊕ P and s = t ⊕ • or
s = • ⊕ u with t ∈ T (N) or u ∈ T (P ); or M = λ~x.xQ1 · · ·Qk and s = λ~x.〈x〉q̄1 · · · q̄k
with q̄i ∈ T (Qi)

! for 1 ≤ i ≤ k. We obtain inductively t ∈ T (N (N)) or u ∈ T (N (P )) or
q̄i ∈ T (N (Qi))

! for 1 ≤ i ≤ k, and then s ∈ T (N (M)).

Step 5 then follows, using the fact that BT (M) is the downwards closure of {N (Ln(M)) |
n ∈ N}:

Theorem 4.4.10 (Step 5). Let M ∈ Λ⊕. Then T (BT (M)) = NF (T (M)).

Proof. Recall that NF (T (M)) =
⋃
s∈T (M) supp(NF (s)). The proof is by double inclusion.

(⊆) Let t ∈ T (BT (M)), i.e. t ∈ T (B) for someB ∈ BT (M). By the de�nition of BT (M),
there exists n ∈ N such that B ≤ N (Ln(M)), and then by Lemma 4.4.8 t ∈ T (N (Ln(M))).
By Lemma 4.4.9, t is normal and t ∈ T (Ln(M)). By Lemma 4.4.7, t ∈ Ln(T (M)), hence there
exists s ∈ T (M) such that t ∈ supp(Ln(s)). Since t is normal, t ∈ supp(NF (s)).

(⊇) If t ∈ NF (T (M)) we can �x s ∈ T (M) such that t ∈ supp(NF (s)). Then there
exists n ∈ N such that NF (s) = Ln(s), hence t ∈

⋃
s∈T (M) supp(Ln(s)) = Ln(T (M)). By

Lemma 4.4.7, t ∈ T (Ln(M)) and since t is normal, Lemma 4.4.9 entails that t ∈ T (N (Ln(M))).
By the de�nitions of BT (M) and T (BT (M)), we have N (Ln(M)) ⊆ BT (M) and then
T (N (Ln(M))) ⊆ T (BT (M)), and we obtain t ∈ T (BT (M)).

The case of NF (−) is even more intricate because, given an in�nite linear combination S of resource terms, the
sum

∑
s∈∆⊕

SsNF (s) is not well de�ned in general — indeed, it is easy to �nd an in�nite family of resource terms,
all having the same nonzero normal form. Uniformity is one solution to this issue: if the support of S is a clique
then the summands NF (s) for s ∈ supp(S) have pairwise disjoint supports. This result is the main ingredient
of Step 3: it will be our Theorem 4.6.8 below. For a survey of alternative approaches we refer to the study of this
subject by the second author [13].
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xC x
aC s

λx.aC λx.s
aC s

a⊕ •C s⊕ •
aC s

• ⊕ aC • ⊕ s

cC s ~dC t̄

〈c〉~dC 〈s〉t̄

a1 C t1 · · · an C tn

(a1, . . . , an)C [t1, . . . , tn]

Figure 4.5 – Rules for the rigid representation relation

4.5 The groupoid of permutations of rigid resource terms

4.5.1 Rigid resource terms and permutation terms

We introduce the set D of rigid resource terms and the set D! of rigid resource monomials by
mutual induction as follows:

D 3 a, b, c, d ::= x | λx.a | 〈a〉~b | • ⊕ a | a⊕ • D! 3 ~a,~b,~c, ~d ::= (a1, . . . , an) .

Rigid resource terms are considered up to renaming of bound variables: the only di�erence with
resource terms is that rigid monomials are ordered lists rather than �nite multisets. We write
|(a1, . . . , an)| := n, and (a1, . . . , an) :: (an+1, . . . , an+m) := (a1, . . . , an+m). We write D(!)

for either D or D! and call rigid resource expression any rigid term or rigid monomial. Again,
for any r ∈ D(!), we write nx(r) for the number of free occurrences of the variable x in r, and
we use notations and priority conventions similar to those for non rigid expressions: e.g., we
may write λ~x.〈a〉~b~c⊕ • for (λx1. . . . .λxn.(〈〈a〉~b〉~c))⊕ •.

As we have already stated, rigid resource expressions are nothing but resource expressions
for which the order of terms in monomials matter. To make this connexion formal, consider
the representation relation C ⊆ D(!) × ∆

(!)
⊕ de�ned by the rules of Figure 4.5. Observe that

the relation C is the graph of a surjection D(!) → ∆
(!)
⊕ : if r ∈ D(!), there exists a unique

e ∈ ∆
(!)
⊕ such that r C e, and then we write ‖r‖ := e; and any e ∈ ∆

(!)
⊕ has at least one rigid

representation rC e. Moreover observe that, if ~aC t̄ and |~a| = n then for any σ ∈ Sn, [σ]~aC t̄,
i.e. ‖[σ]~a‖ = ‖~a‖.

We now introduce a syntax for the trees of permutations that can act on monomials at any
depth in a rigid expression. The language of such permutation expressions is given as follows:

D 3 α, β, γ, δ ::= idx | λx.α | 〈α〉β̃ | α⊕ • | • ⊕ α D! 3 α̃, β̃, γ̃, δ̃ ::= (σ, (α1, . . . , αn))

where x ranges over variables and σ ranges over Sn in the pair (σ, (α1, . . . , αn)). In other
words, a permutation term (resp. permutation monomial) is nothing but a rigid term (resp. rigid
monomial), with a permutation attached with each list of arguments. In general, we will simply
write (σ, α1, . . . , αn) for the permutation monomial (σ, (α1, . . . , αn)).

We say ε ∈ D(!) maps r ∈ D(!) to r′ ∈ D(!) if the statement ε : r ∼= r′ is derivable from the
rules of Figure 4.6. We then write r ∼= r′ if there exists some ε ∈ D(!) such that ε : r ∼= r′. As a
direct consequence of the de�nitions, we obtain that ∼= is nothing but the equivalence kernel of
the function r ∈ D(!) 7→ ‖r‖ ∈ ∆

(!)
⊕ :
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idx : x ∼= x
α : a ∼= a′

λx.α : λx.a ∼= λx.a′

γ : c ∼= c′ δ : ~d ∼= ~d′

〈γ〉δ : 〈c〉~d ∼= 〈c′〉~d′

α : a ∼= a′

α⊕ • : a⊕ • ∼= a′ ⊕ •
α : a ∼= a′

• ⊕ α : • ⊕ a ∼= • ⊕ a′

σ ∈ Sn α1 : a1
∼= a′σ(1) · · · αn : an ∼= a′σ(n)

(σ, α1, . . . , αn) : (a1, . . . , an) ∼= (a′1, . . . , a
′
n)

Figure 4.6 – Permutation expressions as morphisms between rigid expressions

Lemma 4.5.1. For all r, r′ ∈ D(!), r ∼= r′ i� ‖r‖ = ‖r′‖.

The equivalence classes for ∼= are thus exactly the sets of rigid representations of each
resource expression. We can moreover organize the permutation expressions witnessing this
equivalence relation into a groupoid, whose objects are resource expressions. Observe indeed
that, for each ε ∈ D(!) there is exactly one pair (r, r′) of rigid expressions such that ε : r ∼= r′.
Given r, r′ ∈ D(!), the set of morphisms from r to r′ is then D(!)(r, r′) = {ε | ε : r ∼=
r′}. The composition ε′ε ∈ D(!)(r, r′′) of ε ∈ D(!)(r, r′) and ε′ ∈ D(!)(r′, r′′) is de�ned by
induction on the syntax of rigid resource expressions in the obvious way: the only interesting
case is that of permutation monomials, for which we set (σ′, α′1, . . . , α

′
n)(σ, α1, . . . , αn) :=

(σ′σ, α′σ(1)α1, . . . , α
′
σ(n)αn). And the identity idr on r is the same as r, with each variable

occurrence x replaced with idx, and with the identity permutation attached with each monomial.
Inverses are also de�ned inductively, the key case of monomials being: (σ, α1, . . . , αn)−1 :=
(σ−1, α−1

σ−1(1)
, . . . , α−1

σ−1(n)
).

If ~a = (a1, . . . , an) and ~a′ = (a′1, . . . , a
′
n), we set ~D(~a,~a′) :=

∏n
i=1 D(ai, a

′
i): with rigid

monomials as objects, we obtain a groupoid ~D, which is the free strict monoidal category over D.
Moreover, D!(~a,~a′) =

∑
σ∈Sn

~D(~a, [σ−1]~a′): D! is the free symmetric strict monoidal category
over D. We call quasi-stabilizer of ~a the subgroup of Sn de�ned by

St∼=(~a) := {σ ∈ Sn | for 1 ≤ i ≤ n, ai ∼= aσ(i)} .

Observe that St∼=(~a) = St((‖a1‖, . . . , ‖an‖)) and σ ∈ St∼=(~a) i� ~D(~a, [σ−1]~a) 6= ∅.
Let us write D(!)(r) for the group of automorphisms of r: D(!)(r) := D(!)(r, r). Similarly,

we will write ~D(~a) := ~D(~a,~a).

Lemma 4.5.2. For any ~a = (a1, ..., an) ∈ D!, Card(D!(~a)) = Card(St∼=(~a)× ~D(~a)).

Proof. Since D(!) is a groupoid, for any morphism ε : r ∼= r′, postcomposition by ε de-
�nes a bijection from D(!)(r) to D(!)(r, r′). It follows that D!(~a) =

∑
σ∈Sn

~D(~a, [σ−1]~a) =∑
σ∈St∼=(~a)

∏n
i=1 D(ai, aσ(i)) is in bijection with

∑
σ∈St∼=(~a)

∏n
i=1 D(ai) = St∼=(~a)×~D(~a).

We are then able to formalize the interpretation of the multiplicity of a resource term s as
the number of permutations of monomials in s leaving any of its writings a C s unchanged:
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Lemma 4.5.3. Let e ∈ ∆
(!)
⊕ and let r C e. Then m(e) = Card(D(!)(r)).

Proof. By induction on the structure of e. We prove the multiset case. Assume e = s̄ and
~a = (a1, . . . , an) C s̄. Then we can write s̄ = [s1, . . . , sn] so that ai C si and the induction
hypothesis gives m(si) = Card(D(!)(ai)) for 1 ≤ i ≤ n. Then

m(e) = Card(St((s1, . . . , sn)))

n∏
i=1

Card(D(!)(ai)) = Card(St∼=(~a))× Card(~D(~a)),

and we conclude by Lemma 4.5.2.

4.5.2 Rigid substitution

For any r ∈ D(!) and~b ∈ D! such that |~b| = nx(r) = n, we de�ne the n-linear substitution
r[~b/x] of~b for x in r inductively as follows:

x[(b)/x] := b

y[()/x] := y

(a⊕ •)[~b/x] := a[~b/x]⊕ •

(• ⊕ a)[~b/x] := • ⊕ a[~b/x]

(λz.a)[~b/x] := λz.a[~b/x]

〈c〉~d [~b0 :: ~b1/x] := 〈c[~b0/x]〉~d [~b1/x]

(a1, . . . , an)[~b1 :: · · · :: ~bn/x] := (a1[~b1/x], . . . , an[~bn/x]})

where we assume that y 6= x, z /∈ {x} ∪ FV (~b), |~b| = nx(a), |~b0| = nx(c), |~b1| = nx(~d), and
|~bi| = nx(ai) for 1 ≤ i ≤ n.

Observe that this substitution is only partially de�ned. In order to deal with the general case,
we will use the nullary sum of rigid expressions 0 ∈ N[D(!)]: again, we consider all the syntactic
constructs to be linear so that we may write, e.g., λx.a for a ∈ D ∪ {0} with λx.0 = 0. We
call partial rigid expressions the elements of D(!) ∪ {0}: we generally use the same typographic
conventions for partial expressions as for regular ones.

Whenever r ∈ D(!) ∪ {0} and~b ∈ D! ∪ {0}, we de�ne the rigid substitution r[~b/x] of~b for
the variable x in r as above if r ∈ D(!),~b ∈ D! and nx(r) = |~b|, and set r[~b/x] := 0 otherwise.

This rigid version of multilinear substitution will allow us to provide a more formal account
of the intuitive de�nition of the symmetric multilinear substitution ∂xe · ū, given in Section 4.4.1:
having �xed rigid representations r C e and~bC t̄ = [t1, . . . , tn] with n = nx(e), instead of the
ambiguous ∑

σ∈Sn

e[tσ(1)/x1, . . . , tσ(n)/xn]

we can write ∑
σ∈Sn

∥∥r[[σ]~b/x]
∥∥ .
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To prove that this coincides with the inductive de�nition of ∂xe · ū, we need to study how the
elements of~b are routed to subexpressions of r in the substitution r[[σ]~b/x].

For this, we will rely on the following constructions on permutations. First, if σ ∈ Sn and
τ ∈ Sp, we de�ne the concatenation σ ⊗ τ ∈ Sn+p by:

(σ ⊗ τ)(i) := σ(i) and (σ ⊗ τ)(n+ j) := n+ τ(j)

for 1 ≤ i ≤ n and 1 ≤ j ≤ p. This operation is associative and, more generally, we obtain
τ1 ⊗ · · · ⊗ τn ∈ Sk1+···+kn whenever τ1 ∈ Sk1 , . . . , τn ∈ Skn . The tensor product notation is
justi�ed since, in the category P of natural numbers and permutations, the concatenation of
permutations de�nes a tensor product (which is the sum of natural numbers on objects).

Moreover, for each (I1, . . . , In) ∈ Qn(k), writing Ij = {ij1, . . . , i
j
kj
} with ij1 < · · · < ijkj ,

we set γI1,...,In(ijl ) := l +
∑j−1

r=1 kr: then γI1,...,In is the unique permutation γ ∈ Sk such that
the map (j, l) 7→ γ(ijl ) is strictly increasing, considering the lexicographic order on pairs.

Given a weak n-composition of k, i.e. a tuple (k1, . . . , kn) ∈ Nn such that k =
∑n

j=1 kj ,

we write Qk1,...,kn
n (k) for the set of those (I1, . . . , In) ∈ Qn(k) such that Card(Ii) = ki for

1 ≤ i ≤ n. We obtain:

Lemma 4.5.4. For any weak n-composition (k1, . . . , kn) of k, the function

Qk1,...,kn
n (k)×

n∏
j=1

Skj → Sk

((I1, . . . , In), (σ1, . . . , σn)) 7→ (σ1 ⊗ · · · ⊗ σn)γI1,...,In

is bijective.

Proof. The inverse function is as follows: given σ ∈ Sk, we �x Ij := {i ∈ {1, . . . , k} |∑j−1
r=1 kr < σ(i) ≤

∑j
r=1 kr}; then, using the above notations for the elements of Ij , for

each l ∈ {1, . . . , kj}, we �x σj(l) ∈ {1, . . . , kj} to be the unique l′ such that σ(ijl ) = l′ +∑j−1
r=1 kr .

Now we can show that the two de�nitions of symmetric multilinear substitution coincide:

Lemma 4.5.5. If r C e and ~b C t̄ then nx(r) = nx(e) and |~b| = |t̄|. Moreover ∂xe · t̄ =∑
σ∈S|~b|

∥∥r[[σ]~b/x]
∥∥.

Proof. The �rst two identities follow directly from the de�nitions. If nx(r) 6= |~b| then both
sides of the third identity are 0. Otherwise, it is proved by induction on r.

Let us treat the case of a monomial: write r = (a1, . . . , an) and e = [s1, . . . , sn] with aiCsi
for 1 ≤ i ≤ n. Then

∂xe · t̄ =
∑

(I1,...,In)∈Qn(|~b|)

[∂xs1 · t̄I1 , . . . , ∂xsn · t̄In ]

=
∑

(I1,...,In)∈Qk1,...,kn
n (|~b|)

[∂xs1 · t̄I1 , . . . , ∂xsn · t̄In ]
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where we write ki = nx(si) for 1 ≤ i ≤ n.
If I ⊆ {1, . . . , |~b|} then we write~bI = (bi1 , . . . , bik) where i1 < · · · < ik enumerate I . By

induction hypothesis we obtain

∂xe · t̄ =
∑

(I1,...,In)∈Qk1,...,kn
n (|~b|)

[ ∑
σ1∈Sk1

∥∥a1[[σ1]~bI1/x]
∥∥ , . . . , ∑

σn∈Skn

∥∥an[[σn]~bIn/x]
∥∥]

=
∑

(I1,...,In)∈Qk1,...,kn
n (|~b|)

∑
σ1∈Sk1

· · ·
∑

σn∈Skn

∥∥r[[σ1]~bI1 :: · · · :: [σn]~bIn/x
]∥∥

and we conclude, observing that [σ1]~bI1 :: · · · :: [σn]~bIn = [(σ1⊗ · · · ⊗ σn)γI1,...,In ]~b, hence the
families (

[σ1]~bI1 :: · · · :: [σn]~bIn
)

(I1,...,In)∈Qk1,...,kn
n (|~b|), (σ1,...,σn)∈Sk1

×···×Skn

and
(
[σ]~b

)
σ∈S|~b|

coincide up to reindexing via the bijection of Lemma 4.5.4.

Informally, everything thus works out as if [s1, . . . , sn] =
∑

σ∈Sn(s1, . . . , sn), which is to
be related with the 1

n! coe�cient in the Taylor expansion, cancelling out the cardinality of Sn.
Forgetting about coe�cients, we obtain:

Corollary 4.5.6. If r C e and~bC t̄ with nx(e) = |t̄|, then supp(∂xe · t̄) = {
∥∥r[[σ]~b/x]

∥∥ | σ ∈
S|~b|}.

Conversely, any rigid representative of a symmetric substitution is obtained as a rigid
substitution:

Lemma 4.5.7. If r′ C e′ ∈ supp(∂xe · t̄) then nx(e) = |t̄| and there exist r C e and~bC t̄ such
that r′ = r[~b/x].

Proof. By induction on e. If e = x then t̄ = [t] for some t ∈ ∆⊕ and e′ = t. If r′ C e′ = t then
we can set r = x and~b = (r′). If e = y 6= x then t̄ = [] and we can set r = y and~b = (). The
abstraction and sum cases follow immediately from the induction hypothesis.

If e = 〈s〉v̄, we write t̄ = [t1, . . . , tn] and obtain

∂xe · t̄ =
∑

(I1,I2)∈Q2(n)

〈∂xs · t̄I1〉∂xv̄ · t̄I2 .

Then e′ = 〈s′〉v̄′ with s′ ∈ supp(∂xs · t̄I1) and v̄′ ∈ supp(∂xv̄ · t̄I2) for some (I1, I2) ∈ Q2(n).
It follows that r′ = 〈a〉~d with a C s′ and ~d C v̄′. By induction hypothesis, we obtain c1 C s,
~b1 C t̄I1 , ~c2 C v̄ and ~b2 C t̄I2 such that a = c1[~b1/x] and ~d = ~c2[~b2/x]. Then we conclude by
setting r = 〈c1〉~c2 C 〈s〉v̄ = e and~b = ~b1 :: ~b2 C t̄I1 · t̄I2 = t̄.

The case of monomials is similar.

137



4.5.3 Substitution for permutation expressions

The key intermediate result for Step 4 is the fact that if e ¨ e and e′ ∈ supp(∂xe · t̄)
then (∂xe · t̄)e′ = m(e)m(t̄)

m(e′) : this will be established in Lemma 4.5.20, which concludes the
present section. With that goal in mind, and having characterized m(e) as the cardinality
of the group D(!)(r) for any r C e, it becomes essential to study how the automorphisms of
r′ C e′ ∈ supp(∂xe · t̄) are related with those of some r C e and ~b C t̄: by Lemma 4.5.7, we
can choose r and ~b such that r′ = r[~b/x]. Then it seems natural to consider some form of
substitution for permutation expressions, following the structure of rigid substitution.

We de�ne the substitution of permutation terms for a variable as follows. Given ε ∈ D(!)(r, r′)
and ~β ∈ ~D(~b,~b′) with |~b| = nx(r), we construct ε[~β/x] by induction on ε:

(idx)[(β)/x] := β

(idy)[()/x] := idy

(λy.α)[~β/x] := λy.α[~β/x]

(α⊕ •)[~β/x] := α[~β/x]⊕ •

(• ⊕ α)[~β/x] := • ⊕ α[~β/x]

(〈γ〉δ̃)[~β1 :: ~β2/x] := 〈γ[~β1/x]〉δ̃[~β2/x]

(σ, (α1, . . . , αn))[~β1 :: · · · :: ~βn/x] := (σ, (α1[~β1/x], . . . , αn[~βn/x]))

where we assume that y 6= x, z /∈ {x}∪FV (~β), |~β1| = nx(γ), |~β2| = nx(δ), and |~βi| = nx(αi)
for 1 ≤ i ≤ n.

If ε ∈ D(!)(r, r′) and ~β ∈ ~D(~b,~b′), the source of ε[~β/x] is obviously r[~b/x] but describing
its target is more intricate: in general, ε[~β/x] 6∈ D(!)(r[~b/x], r′[~b′/x]).

Example 4.5.8. Consider the rigid monomials ~a = (x, x) and~b = (〈z〉(), 〈z〉(z)). Writing τ for
the unique transposition of S2, we obtain α = (τ, idx, idx) ∈ D!(~a). Let ~β = (id〈z〉(), id〈z〉(z)) ∈
~D(~b). Then α[~β/x] = (τ, id〈z〉(), id〈z〉(z)), hence α[~β/x] : a[~b/x] ∼= (〈z〉(z), 〈z〉()) 6= a[~b/x].

To describe the image of r[~b/x] through ε[~β/x], we �rst introduce another operation on
permutations. If σ ∈ Sn and τi ∈ Ski for 1 ≤ i ≤ n, we de�ne the multiplexing σ ·(τ1, ..., τn) ∈
Sk1+...+kn by:

(σ · (τ1, ..., τn))

(
l +

i−1∑
j=1

kj

)
:= τi(l) +

σ(i)−1∑
j=1

kσ−1(j)

for 1 ≤ i ≤ n and 1 ≤ l ≤ ki. Multiplexing may be described in the category P of natural
numbers and permutations, which is symmetric strict monoidal, as follows: σ · (τ1, ..., τn) =
σk1,...,kn ◦ (τ1 ⊗ · · · ⊗ τn) where σk1,...,kn is the canonical symmetry map k1 + · · · + kn →
kσ−1(1) + · · · + kσ−1(n) = k1 + · · · + kn associated with the left action of σ on n-ary tensor
products in P. This decomposition of multiplexing is depicted in Figure 4.7.

Multiplexed permutations compose as follows:
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τ1

k1︷ ︸︸ ︷
1 + · · ·+ 1( ) +

τn

kn︷ ︸︸ ︷
1 + · · ·+ 1+ ( )· · ·

σk1,...,kn

1 + · · ·+ 1︸ ︷︷ ︸
kσ−1(1)

( ) + 1 + · · ·+ 1︸ ︷︷ ︸
kσ−1(n)

+ ( )· · ·

Figure 4.7 – Graphical representation of σ · (τ1, . . . , τn)

Lemma 4.5.9. If σ, σ′ ∈ Sn, τi ∈ Ski and τ ′i ∈ Skσ−1(i)
for 1 ≤ i ≤ n, then

(
σ′ · (τ ′1, ..., τ ′n)

)(
σ · (τ1, ..., τn)

)
= (σ′σ) · (τ ′σ(1)τ1, . . . , τ

′
σ(n)τn)

and (
σ · (τ1, ..., τn)

)−1
= σ−1 · (τ−1

σ−1(1)
, . . . , τ−1

σ−1(n)
) .

Proof. We detail the proof only in case the result is not obvious to the reader from the above
categorical presentation of multiplexing. Let α = σ · (τ1, ..., τn) and α′ = σ′ · (τ ′1, ..., τ ′n). For
1 ≤ i ≤ n and 1 ≤ l ≤ ki:

α′
(
α
( i−1∑
j=1

kj + l
))

= α′
( σ(i)−1∑

j=1

kσ−1(j) + τi(l)

)

=

σ′(σ(i))−1∑
j=1

k′
σ′−1(j)

+ τ ′σ(i)(τi(l)) (writing k′i = kσ−1(i))

=

(σ′σ)(i)−1∑
j=1

k(σ′σ)−1(j) + (τ ′σ(i)τi)(l)

which establishes the �rst identity. The second identity follows directly.

The action of multiplexed permutations on sequences is as follows:

Lemma 4.5.10. Let ~b,~b1, . . . ,~bn ∈ D!, σ ∈ Sn and τi ∈ S|~bi| for all i ∈ {1, . . . , n}. If
~b = ~b1 :: · · · :: ~bn then [σ · (τ1, ..., τn)]~b = [τσ−1(1)]~bσ−1(1) :: · · · :: [τσ−1(n)]~bσ−1(n).
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Proof. Again, we detail the proof only in case the result is not obvious from the categorical
presentation. Set |~bi| = ki, so that |~b| =

∑n
i=1 ki. Write ~b′ = [σ · (τ1, ..., τn)]~b. For 1 ≤

p ≤ |~b′| = |~b| =
∑n

j=1 kσ−1(j), we can write p =
∑i−1

j=1 kσ−1(j) + l with i ∈ {1, ..., n} and

l ∈ {1, . . . , kσ−1(i)}. Then, by Lemma 4.5.9, (σ · (τ1, ..., τn))−1(p) =
∑σ−1(i)−1

j=1 kj + τ−1
σ−1(i)

(l)

and b′p = b(σ·(τ1,...,τn))−1(p) = (~bσ−1(i))τ−1

σ−1(i)
(l) = ([τσ−1(i)]~bσ−1(i))l.

We can now de�ne the restriction ε�x ∈ Snx(r) of ε ∈ D(!)(r, r′) to the occurrences of x in
r, by induction on ε:

idx�x := id{1}

idy�x := id∅

(λy.α)�x
(α⊕ •)�x
(• ⊕ α)�x

 := α�x

(〈γ〉δ̃)�x := γ�x ⊗ δ̃�x
(σ, α1, . . . , αn)�x := σ · (α1�x, · · · , αn�x)

where we assume x 6= y. Intuitively ε�x is the permutation induced by ε on the occurrences
x1, . . . , xnx(r) of x in r, taken from left to right.

We recall that P denotes the category of �nite cardinals and permutations. For any variable
x, we de�ne an application Fx from D(!) to P as follows: Fx(r) := nx(r) and Fx(α) := α�x.

Lemma 4.5.11. Fx is a functor from D(!) to P.

Proof. By induction on permutation expressions. We focus on the composition condition for
the list case. Let α̃ : ~a = (a1, . . . , an) ∼= ~b = (b1, . . . , bn) and β̃ : ~b ∼= ~c = (c1, ..., cn).
By de�nition α̃ = (σ, α1, · · · , αn) and β̃ = (τ, β1, . . . , βn), for some σ, τ in Sn and with
αi : ai ∼= bσ(i) and βi : bi ∼= cτ(i). The composition β̃α̃ is then de�ned as the isomorphism
(τσ, βσ(1)α1, . . . βσ(n)αn).

We have to prove that (β̃α̃)�x = β̃�xα̃�x, that is

(τσ) ·
(
(βσ(1)α1)�x, . . . , (βσ(n)αn)�x

)
= (τ · (β1�x, . . . , βn�x))(σ · (α1�x, · · · , αn�x))

which is a direct consequence of the inductive hypothesis, (βσ(i)αi)�x = βσ(i)�xαi�x for
1 ≤ i ≤ n, via Lemma 4.5.9.

In particular, the restriction of Fx to the automorphism group of some rigid expression r
is a group homomorphism from D(!)(r) to Snx(r): its image D(!)(r)�x is thus a subgroup of
Snx(r). This homomorphism will play a crucial rôle in Section 4.5.4.

This operator allows us to describe the image of ε[~β/x] as follows:

Lemma 4.5.12. If ε : r ∼= r′ and ~β ∈ ~D(~b,~b′) with |~β| = nx(r) then ε[~β/x] : r[~b/x] ∼=
r′[[ε�x]~b′/x].
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x ¨ x
a ¨ a′

λx.a ¨ λx.a′
c ¨ c′ ~d ¨ ~d′

〈c〉~d ¨ 〈c′〉~d′
bi ¨ bj for 1 ≤ i, j ≤ n+m

(b1, . . . , bn) ¨ (bn+1, . . . , bn+m)

a ¨ a′

a⊕ • ¨ a′ ⊕ •
a ¨ a′

• ⊕ s ¨ • ⊕ s′ a⊕ • ¨ • ⊕ a′ .

Figure 4.8 – Rules for the coherence relation on D(!).

Proof. By induction on the structure of r. The interesting case is the list case. Assume r =
(a1, . . . , an), r′ = (a′1, . . . , a

′
n), ε = (σ, α1, . . . , αn) and ~β = ~β1 :: · · · :: ~βn, with αi : ai ∼=

a′σ(i),
~b = ~b1 :: · · · :: ~bn, ~b′ = ~b′1 :: · · · :: ~b′n, |~βi| = nx(ai) and ~βi ∈ ~D(~bi,~b

′
i). By de�nition,

we have α[~β/x] = (σ, α1[~β1/x], . . . , αn[~βn/x]). Since αi : ai ∼= a′σ(i), we obtain αi[~βi/x] :

ai[~bi/x] ∼= a′σ(i)[[αi�x]~b′i/x] by induction hypothesis.
We obtain

α[~β/x] : r[~b/x] ∼=
(
a′1
[
[ασ−1(1)�x]~b′σ−1(1)/x

]
, . . . , a′n

[
[ασ−1(n)�x]~b′σ−1(n)/x

])
= r′

[
[ασ−1(1)�x]~b′σ−1(1) :: · · · :: [ασ−1(n)�x]~b′σ−1(n)/x

]
and we conclude by Lemma 4.5.10.

4.5.4 The combinatorics of permutation expressions under coherent substitu-
tion

Substitution is injective on parallel permutation expressions, in the following sense:

Lemma 4.5.13. Let r, r′ ∈ D(!) and ~b,~b′ ∈ D! with |~b| = nx(r) and |~b′| = nx(r′), and let
ε, ε′ ∈ D(!)(r, r′) and ~β, ~β′ ∈ ~D(~b,~b′). If ε[~β/x] = ε′[~β′/x] then ε = ε′ and ~β = ~β′.

Proof. By a straightforward induction on the structure of r.

On the other hand, surjectivity does not hold in general, because the substitution might
enable new morphisms r[~b/x] ∼= r′[~b′/x], not induced by morphisms in D(!)(r, r′) and ~D(~b,~b′):

Example 4.5.14. Let a = 〈〈y〉(x)〉〈z〉(x), a′ = 〈〈x〉(y)〉〈z〉(x) and~b = (y, z). Then a[~b/x] =
a′[~b/x] but a 6∼= a′.

Observe that, in the above example, ‖a‖ 6̈ ‖a′‖. Indeed, in the following, we will establish
that coherence allows to restore a precise correspondence between the permutation expressions
on a substitution r[(b1, . . . , bn)/x] and the (1 + n)-tuples of permutation expressions on r and
each of the bi’s respectively. It will be useful to consider the coherence relation de�ned on rigid
expressions by the rules of Figure 4.8, so that r ¨ r′ i� ‖r‖ ¨ ‖r′‖. Then we obtain:

Lemma 4.5.15. Let r, r′ ∈ D(!) and ~b,~b′ ∈ D! with |~b| = nx(r) and |~b′| = nx(r′). If r ¨ r′

then for all φ ∈ D(!)(r[~b/x], r′[~b′/x]) there exist ε ∈ D(!)(r, r′) and ~β ∈ ~D(~b, [ε�−1
x ]~b′) such that

φ = ε[~β/x].
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Proof. By induction on the structure of r: the coherence hypothesis r ¨ r′ induces that r and
r′ are of the same syntactic nature.

If r = x then r′ = x and we can write ~b = (b), ~b′ = (b′) with φ : b ∼= b′. Then we set
ε = idx and ~β = (φ). If r = y 6= x then r′ = y and φ = idy , and we set ε = idy and ~β = (). The
abstraction, application and sum cases follow straightforwardly from the induction hypotheses.
We detail the list case.

We have r = (a1, . . . , an) and r′ = (a′1, . . . , a
′
m). Since φ : r[~b/x] ∼= r′[~b′/x] we must

have m = n, ~b = ~b1 :: · · · :: ~bn, ~b′ = ~b′1 :: · · · :: ~b′n and φ = (σ, γ1, . . . , γn) with γi ∈
D(!)(ai[~bi/x], a′σ(i)[

~b′σ(i)/x]). Since r ¨ r′ we have in particular ai ¨ a′σ(i) for 1 ≤ i ≤ n.

By the induction hypothesis, we obtain γi = αi[~βi/x] with αi ∈ D(!)(ai, a
′
σ(i)) and ~βi ∈

~D(~bi, [αi�−1
x ]~b′σ(i)). Then by de�nition ε := (σ, α1, . . . , αn) : r ∼= r′ and

~β := ~β1 :: · · · :: ~βn : ~b ∼= [α1�
−1
x ]~b′σ(1) :: · · · :: [αn�

−1
x ]~b′σ(n)

= [σ−1 · (ασ−1(1)�
−1
x , . . . , ασ−1(n)�

−1
x )]~b′ (by Lemma 4.5.10)

and it remains only to prove that σ−1 · (ασ−1(1)�
−1
x , . . . , ασ−1(n)�

−1
x ) = ε�−1

x , which follows
from Lemma 4.5.9.

In particular, we obtain (ε�x, ~β) ∈ D!(~b,~b′), hence:

Corollary 4.5.16. If r ¨ r′ and r[~b/x] ∼= r′[~b′/x] then r ∼= r′ and~b ∼= ~b′.

Given r C e,~bC t̄ and e′ ∈ supp(∂xe · t̄) such that r[~b/x]C e′, we are about to determine
the coe�cient of e′ in ∂xe · t̄ by enumerating the permutations σ such that r[[σ]~b/x]C e′, i.e.
r[[σ]~b/x] ∼= r[~b/x]. We thus de�ne Hx(r,~b) := {σ ∈ Snx(r) | r[~b/x] ∼= r[[σ]~b/x]} whenever
|~b| = nx(r).

Lemma 4.5.17. Let r ∈ D(!) and ~b ∈ D! with |~b| = nx(r). If r ¨ r then Hx(r,~b) =
D(!)(r)�xSt∼=(~b).

Proof. Let τ ∈ St∼=(~b): by de�nition, we obtain ~β ∈ ~D(~b, [τ ]~b). If moreover ε ∈ D(!)(r) then,
by Lemma 4.5.12, ε[~β/x] ∈ D(!)(r[~b/x], r[[ε�xτ ]~b/x]) hence ε�xτ ∈ Hx(r,~b). It remains only to
show that the function (ε, τ) ∈ D(!)(r)× St∼=(~b) 7→ ε�xτ ∈ Hx(r,~b) is surjective.

If σ ∈ Hx(r,~b), there exists φ ∈ D(!)(r[~b/x], r[[σ]~b/x]). Since r ¨ r, we can apply
Lemma 4.5.15 and obtain ε ∈ D(!)(r) and ~β ∈ ~D(~b, [ε�−1

x σ]~b): in particular, ε�−1
x σ ∈ St∼=(~b),

and we conclude since σ = ε�x(ε�−1
x σ).

Our argument will moreover rely on the following construction: if |~b| = nx(r), we set
Kx(r,~b) := {ε ∈ D(!)(r) | ε�x ∈ St∼=(~b)} = F−1

x (St∼=(~b)), which is a subgroup of D(!)(r)
because Fx is a group homomorphism from D(!)(r) to Snx(r) by Lemma 4.5.11.

Lemma 4.5.18. Let r ∈ D(!) and~b ∈ D! with |~b| = nx(r). If r ¨ r then Card(D(!)(r[~b/x])) =
Card(Kx(r,~b))Card(~D(~b)).
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Proof. By Lemma 4.5.12, if ε ∈ D(!)(r) and ~β ∈ ~D(~b, [ε�−1
x ]~b) then ε[~β/x] ∈ D(!)(r[~b/x]). If

moreover ε ∈ Kx(r,~b) then ε�−1
x ∈ St∼=(~b): as already remarked in the proof of Lemma 4.5.2,

this entails that Card(~D(~b, [ε�−1
x ]~b)) = Card(~D(~b)). It is thus su�cient to establish that the

substitution operation (ε, ~β) 7→ ε[β/x] de�nes a bijection from
∑

ε∈Kx(r,~b)
~D(~b, [ε�−1

x ]~b) to

D(!)(r[~b/x]). This fact derives immediately from Lemma 4.5.13 (injectivity) and Lemma 4.5.15
(surjectivity).

Lemma 4.5.19. Let r ∈ D(!) and~b ∈ D! with r ¨ r and |~b| = nx(r). Then

Card(Hx(r,~b)) =
Card(D(!)(r))Card(D!(~b))

Card(D(!)(r[~b/x]))
.

Proof. Write k = nx(r). We know that St∼=(~b) and D(!)(r)�x are subgroups of Sk . Lemma 4.5.17
and Fact 4.2.2 entail that

Card(Hx(r,~b)) =
Card(D(!)(r)�x)Card(St∼=(~b))

Card(D(!)(r)�x ∩ St∼=(~b))
.

Using Lemma 4.5.18, it will thus be su�cient to prove:

Card(D(!)(r))Card(D!(~b))

Card(Kx(r,~b))Card(~D(~b))
=

Card(D(!)(r)�x)Card(St∼=(~b))

Card(D(!)(r)�x ∩ St∼=(~b))

which simpli�es to
Card(D(!)(r))

Card(Kx(r,~b))
=

Card(D(!)(r)�x)

Card(D(!)(r)�x ∩ St∼=(~b))

by Lemma 4.5.2. We conclude by Fact 4.2.3, recalling that D(!)(r)�x = Fx(D(!)(r)) and
Kx(r,~b) = F−1

x (St∼=(~b)).

Lemma 4.5.20. Let e ∈ ∆
(!)
⊕ be such that e ¨ e and let t̄ ∈ ∆!

⊕. If e′ ∈ supp(∂xe · t̄) then

(∂xe · t̄)e′ =
m(e)m(t̄)

m(e′)
.

Proof. Let r′Ce′ and k = nx(e). By Lemma 4.5.7 there exists rCe and~bCt̄ such that r′ = r[~b/x].
Then, by Lemma 4.5.5, (∂xe · t̄)e′ = Card({σ ∈ Sk | r[[σ]~b/x]C e′}) = Card(Hx(r,~b)). Then
we conclude by Lemmas 4.5.19 and 4.5.3.

4.6 Normalizing the Taylor expansion

In this �nal section we leverage our results on the groupoid of rigid expressions and
permutation expressions in order to achieve Steps 3 and 4. This allows us to complete the proof
of commutation between Taylor expansion and normalization.
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4.6.1 Normalizing resource expressions in a uniform setting

Lemma 4.5.20 is almost su�cient to obtain Step 4, as it �xes the coe�cients in a hereditary
head reduction step from a uniform expression:

Lemma 4.6.1. Let e ∈ ∆
(!)
⊕ with e ¨ e. If e′ ∈ supp(L(e)) then (L(e))e′ =

m(e)

m(e′)
.

Proof. By induction on the structure of e applying Lemma 4.5.20 in the redex case: observe
indeed that if e = λ~x.〈λy.s〉t̄ ū1 · · · ūk then e′ = λ~x.〈v〉ū1 · · · ūk with v ∈ supp(∂ys · t̄), and
then (L(e))e′ = (∂ys · t̄)v = m(s)m(t̄)

m(v) and we conclude since m(e)
m(e′) = m(s)m(t̄)

m(v) . All the other
cases follow directly from the induction hypothesis by multilinearity.

To iterate Lemma 4.6.1 along the reduction sequence to the normal form, we �rst need to
show that uniformity is preserved by L. As before, we prefer to focus on the rigid setting �rst,
and we will only consider the hereditary head reduction de�ned as follows: 12

L(a⊕ •) := L(a)⊕ • L(• ⊕ a) := • ⊕ L(a)

L(λ~x.λy.(a⊕ •)) := λ~x.(λy.a⊕ •) L(λ~x.λy.(• ⊕ a)) := λ~x.(• ⊕ λy.a)

L(λ~x.〈〈a⊕ •〉~b〉~c1 · · ·~ck) := λ~x.〈〈a〉~b⊕ •〉~c1 · · ·~ck
L(λ~x.〈〈• ⊕ a〉~b〉~c1 · · ·~ck) := λ~x.〈• ⊕ 〈a〉~b〉~c1 · · ·~ck

L(λ~x.〈y〉~a1 · · ·~ak) := λ~x.〈y〉L(~a1) · · ·L(~ak)

L((a1, . . . , ak)) := (L(a1), . . . , L(ak))

L(λ~x.〈λy.a〉~b~c1 · · ·~ck) := λ~x.〈a[~b/y]〉~c1 · · ·~ck

extended to partial rigid expressions by setting L(0) := 0. By an analogue of Lemma 4.4.1, for
any r ∈ D(!), there exists k ∈ N such that Lk(r) is normal, and then we write NF (r) = Lk(r).
Moreover, r is in normal form i� L(r) = r.

Lemma 4.6.2. If e ∈ ∆
(!)
⊕ then:

1. supp(L(e)) = {‖L(r)‖ | r C e and L(r) 6= 0};
2. supp(NF (e)) = {‖NF (r)‖ | r C e and NF (r) 6= 0}.

Proof. We �rst prove that r′ C e′ ∈ supp(L(e)) i� there exists r C e with r′ = L(r), which
gives the �rst result: this is done by a straightforward induction on the structure of e, using
Corollary 4.5.6 for the β-redex case.

Now �x k ∈ N such that NF (e) = Lk(e): by iterating the previous result, we obtain
r′ C e′ ∈ supp(NF (e)) i� there exists r C e with r′ = Lk(r). Then we conclude, observing
that if r′ C e′, then r′ is in normal form i� e′ is.

12. Note that the reduction from 〈λx.a〉~b to a[~b/x] is not well behaved in general: its contextual extension is not
even con�uent, because it forces the order in which variable occurrences are substituted. Consider for instance the
term (λx.〈λy.〈y〉(x)〉(x))(z1, z2) which has two distinct normal forms: 〈z1〉z2 and 〈z2〉z1. This rigid calculus is
thus not very interesting per se, and we only consider it as a tool to analyze the dynamics of the resource calculus.
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Lemma 4.6.3. If r ¨ r′ and~b ¨ ~b′ with nx(r) = |~b| and nx(r′) = |~b′| then r[~b/x] ¨ r′[~b′/x].

Proof. By a straightforward induction on the derivation of r ¨ r′.

Lemma 4.6.4. For all r, r′ ∈ D(!) such that r ¨ r′:
1. if L(r) 6= 0 and L(r′) 6= 0 then L(r) ¨ L(r′);
2. if NF (r) 6= 0 and NF (r′) 6= 0 then NF (r) ¨ NF (r′).

Proof. The �rst item is easily established by induction on r, using Lemma 4.6.3 in the case of a
β-redex. Having �xed k such that both NF (r) = Lk(r) and NF (r′) = Lk(r′), the second item
follows by iterating the �rst one.

We have thus established that L preserves coherence of rigid expressions. It follows that L
preserves cliques of resource expressions:

Lemma 4.6.5. If E ⊆ ∆
(!)
⊕ is a clique, then both L(E) and NF (E) are cliques.

Proof. As a direct consequence of Lemmas 4.6.2 and 4.6.4, we obtain that: if e ¨ e′ then, for all
e0 ∈ supp(L(e)) and e′0 ∈ supp(L(e′)) (resp. e0 ∈ supp(NF (e)) and e′0 ∈ supp(NF (e′))), we
have e0 ¨ e′0. The result follows straightforwardly.

Step 3 amounts to the fact that distinct coherent expressions have disjoint normal forms. In
other words, if the normal forms of two coherent expressions intersect on a common element,
then they must coincide. This result will follow from the following rigid version, which states
that coherent rigid expressions with isomorphic normal forms are isomorphic:

Lemma 4.6.6. For all r, r′ ∈ D(!) such that r ¨ r′:
1. if L(r) ∼= L(r′) then r ∼= r′;
2. if NF (r) ∼= NF (r′) then r ∼= r′.

Proof. Observe that ∼= is de�ned on rigid expressions only so that if, e.g., L(r) ∼= L(r′) then
in particular L(r) 6= 0 6= L(r′). The �rst item is established by induction on r, using Corol-
lary 4.5.16 in the case of a β-redex. Having �xed k such that both NF (r) = Lk(r) and
NF (r′) = Lk(r′), the second item follows by iterating the �rst one, thanks to Lemma 4.6.4.

Note that the converse does not hold, even in the uniform case: two uniform, isomorphic
and coherent rigid expressions may yield normal forms that are not isomorphic.

Example 4.6.7. Consider a = 〈λx.〈x〉(x)〉(y ⊕ •, • ⊕ z) and a′ = 〈λx.〈x〉(x)〉(• ⊕ z, y ⊕ •).
We have a ¨ a′ and a ∼= a′ but NF (a) = L(a) = 〈y ⊕ •〉(• ⊕ z) and NF (a′) = L(a′) =
〈• ⊕ z〉(y ⊕ •), hence NF (a) 6∼= NF (a′).

Theorem 4.6.8 (Step 3). Let e, e′ ∈ ∆
(!)
⊕ be such that e ¨ e′. If supp(NF (e))∩supp(NF (e′)) 6=

∅ then e = e′.

Proof. Let e0 ∈ supp(NF (e))∩ supp(NF (e′)). By Lemma 4.6.2, there are rCe and r′Ce′ such
that e0 = ‖NF (r)‖ = ‖NF (r′)‖. Since e ¨ e′, we have r ¨ r′ and, since NF (r) ∼= NF (r′),
we obtain r ∼= r′ by Lemma 4.6.6, hence e = e′.
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By Lemma 4.6.5, L preserves coherence; and thanks to Theorem 4.6.8 we can iterate
Lemma 4.6.1 to obtain:

Theorem 4.6.9 (Step 4). Let e ∈ ∆
(!)
⊕ with e ¨ e and let e′ ∈ supp(NF (e)). Then

(NF (e))e′ =
m(e)

m(e′)
.

Proof. Fix n such that NF (e) = Ln(e): since supp(NF (e)) = Ln({e}), there exists a sequence
e0, . . . , en such that e0 = e, en = e′ and ei ∈ supp(L(ei−1)) for 1 ≤ i ≤ n. We prove by
induction on n that, given such a sequence, we have NF (e0)en = m(e0)/m(en).

If n = 0 the result is trivial. Otherwise, Lemma 4.6.1 gives L(e0)e1 = m(e0)/m(e1).
Moreover, Lemma 4.6.5 ensures that supp(L(e0)) is a clique, and in particular e1 ¨ e1 and the
induction hypothesis entails NF (e1)en = m(e1)/m(en). Finally, since en ∈ supp(NF (e1)),
Theorem 4.6.8 entails NF (e′)en = 0 for each e′ ∈ supp(L(e0)) \ {e1}. We obtain

NF (e0)en = NF (L(e0))en = L(e0)e1NF (e1)en =
m(e0)

m(e1)

m(e1)

m(en)
=
m(e0)

m(en)
.

4.6.2 Commutation

By assembling all our previous results, we obtain the desired commutation theorem:

Theorem 4.6.10. Let M ∈ Λ⊕. Then BT (M)∗ = NF (M∗).

Proof. By Theorem 4.4.5

M∗ =
∑

s∈T (M)

1

m(s)
s

and by Theorem 4.4.3 and Theorem 4.6.8 we are allowed to form

NF (M∗) =
∑

s∈T (M)

1

m(s)
NF (s) =

∑
s∈T (M)

∑
u∈supp(NF (s))

NF (s)u
m(s)

u

the inner sums having pairwise disjoint supports. Then, if u ∈ supp(NF (M∗)), there is a
unique s ∈ T (M) such that u ∈ supp(NF (s)) and we obtain NF (M∗)u = NF (s)u

m(s) = 1
m(u) by

Theorem 4.6.9. We conclude since supp(NF (M∗)) = T (BT (M)) by Theorem 4.4.10.
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Résumé Le développement de Taylor des λ-termes et des preuves de la logique linéaire est
le fruit d’une relecture syntaxique par Ehrhard et Regnier de la sémantique quantitative de
Girard : il associe à chaque terme ou preuve une combinaison linéaire in�nie d’approximations
multilinéaires et �nies de l’objet de départ. Il matérialise une correspondance étroite entre le
comportement calculatoire des termes, dé�ni par la β-réduction, et leur interprétation dans cer-
tains modèles dénotationnels : le développement de Taylor d’un terme est toujours normalisable,
et sa forme normale correspond exactement à l’arbre de Böhm du terme. Cette correspondance
se retrouve dans le fait que, pour de nombreux modèles de la logique linéaire, la promotion
d’un morphisme s’obtient comme une superposition d’opérations multilinéaires, faisant du
développement de Taylor des preuves une structure sous-jacente de ces modèles.

Ce mémoire présente quelques avancées récentes visant à ra�ner l’analyse de la normalisa-
tion (qui est un processus potentiellement in�ni) o�erte par le développement de Taylor pour
la ramener au niveau de la β-réduction ou de l’élimination des coupures (qui correspond à un
calcul �ni).

On démontre que cette approche permet d’étendre l’analyse à un cadre non-uniforme,
susceptible de prendre en compte par exemple une forme de non-déterminisme calculatoire —
alors que la normalisation peut échouer dans ce cadre. On démontre également que la même
approche peut être appliquée aux réseaux de démonstration de la logique linéaire. En�n les
techniques développées précédemment permettent de revisiter et simpli�er le résultat originel
d’Ehrhard et Regnier pour la normalisation dans le cas uniforme, tout en l’adaptant à une forme
restreinte de non-déterminisme.

Abstract The Taylor expansion of λ-terms, and of linear logic proof trees, was devised by
Ehrhard and Regnier after a syntactic reinterpretation of Girard’s quantitative semantics : to each
term or proof, it associates an in�nite linear combination of �nite, multilinear approximations
of the original object. It embodies a tight correspondence between the computational behavior
of terms, as de�ned by β-reduction, and their interpretation in some particular denotational
models : the Taylor expansion of a term is always normalizable, and its normal form is isomorphic
to the Böhm tree of that term. This correspondence also shows in the fact that, for many models
of linear logic, the promotion of a morphism is obtained by a superposition of multilinear
operations : the Taylor expansion of proofs underlies the structure of those models.

The Taylor expansion of terms and proofs thus o�ers an analysis of normalization — which
is a potentially in�nite process : in this thesis, we present some recent advances, re�ning
this analysis to the level of a single β-reduction or cut-elimination step — which is always
computationally �nite.

We show that this approach allows to extend the analysis to a non-uniform setting, which
can accommodate a form of computational non-determinism — by contrast, normalization can
fail in this setting. We also show that the same approach can be applied to linear logic proof nets.
Finally, the previous techniques allow us to revisit the original result of Ehrhard and Regnier
for normalization in the uniform case, and to adapt it to a controlled form of non-determinism.
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