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Résumé

Cette thèse est consacrée aux propriétés métriques et topologiques des ensembles liés aux bêta-développements introduits par Rényi.

Dans une première partie, on étudie les propriétés topologiques des ensembles irréguliers obtenus à partir de propriétés de longueurs d'intervalles fondamentaux des bêta-développements. Plus précisément, pour x ∈ [0, 1), notons I n (x) l'intervalle fondamental d'ordre n contenant x. Nous prouvons que l'ensemble extrêmement irrégulier contenant des points dont la limite supérieure Dans une deuxième partie, on étudie la taille des ensembles exceptionnels constitués des points dont les limites supérieure et inférieure de rn(x,β) ϕ(n) sont des valeurs différentes, où r n (x, β) est la fonction run-length définie par la longueur maximale du nombre de zéros consécutifs parmi les n premiers chiffres du bêta-développement de

x ∈ [0, 1) et ϕ est une suite positive croissante. Nous prouvons que les ensembles extrêmement divergents dont les limites supérieure et inférieure de rn(x,β) ϕ(n) sont respectivement 0 et infini, sont vides ou de dimension de Hausdorff plaine et résiduel selon du taux de croissance de la fonction ϕ. Notre résultat généralise les résultats de Li et Wu pour le cas β = 2. Comme la longeur des intervalles fondamentaux est plus difficile à estimer, notre construction des ensembles de Cantor est plus delicate que celle de Li et Wu.

Dans une troisième partie, nous montrons que la limite supérieure (respectivement inférieure) de rn(x,β) n est liée à l'approximation diophantienne classique (respectivement l'approximation diophantienne uniforme). Nous calculons la dimension de Hausdorff des ensembles de niveau contenant des points dont les limites supérieure et inférieure de rn(x,β) n sont prescrites. De plus, nous étudions aussi les propriétés topologiques de ces ensembles de niveau. Les mêmes problèmes dans l'espace des paramètres sont également examinés.

Enfin, nous étudions les propriétés de récurrence uniforme de l'orbite d'un point

x ∈ [0, 1) sous la bêta-transformation vers lui-même de manière uniforme. La mesure de Lebesgue et la dimension de Hausdorff des ensembles avec le taux de récurrence iii uniforme prescrit sont obtenues. Notre résultat est une généralisation de cului de Shen et Wang sur la récurrence asymptotique des orbites des bêta-transformations.

Mot-clés : Dimension de Hausdorff, bêta-développements, résiduel, approximation diophantienne, approximation diophantienne uniforme, fonction run-length, récurrence uniforme.

Abstract

This thesis is devoted to the metric and topological properties of the sets related to beta-expansions introduced by RWnyi.

The first part is to investigate the topological property of the irregular set on the lengths of basic intervals in beta-expansions. More precisely, for each x ∈ [0, 1), denote by I n (x) the basic interval of order n containing x. We prove that the extremely irregular set containing points x in [0, 1) whose upper limit of is not an ergodic average of Birkhoff, so our research is different from that of Olsen on extremely irregular sets.

In the second part, we study the size of the exceptional set consisting of points whose limit superior and limit inferior of rn(x,β) ϕ(n) are different prescribed values, where r n (x, β) is the run-length function defined by the maximal length of consecutive zeros amongst the first n digits in the beta-expansion of x ∈ [0, 1) and ϕ is an increasing function. It is proved that the extremely divergence set whose limit superior and limit inferior of rn(x,β) ϕ(n) are 0 and infinity respectively, is either empty or of full Hausdorff dimension and residual in [0, 1] according to the increasing rate of ϕ. Our result generalizes the results of Li and Wu Li and Wu for the case β = 2. As the length of fundamental intervals is more difficult to estimate, our construction of Cantor sets is more difficult than that of Li and Wu.

In the third part, we prove that the limit superior (respectively limit inferior) of rn(x,β) n is linked to the classical Diophantine approximation (respectively uniform Diophantine approximation). We calculate the Hausdorff dimension of the sets of points whose limit superior and limit inferior of rn(x,β) n are prescribed. Furthermore, we also study the topological properties of these sets. The same problems in the parameter space are also examined.

Finally, we study the uniform recurrence properties of the orbit of a point x ∈ [0, [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF] under the beta-transformation to the point itself in a uniform way. The Lesbesgue measure and Hausdorff dimension of the set of points with prescribed uniform recurrence rate are obtained. Our result is a generalization of Shen and Wang on the sets of points with asymptotic recurrence property. v 
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Chapitre 1 Introduction (version française)

1.1 Bêta-transformation et bêta-développements

Soit β > 1 un réel. La β-transformation sur [0, 1) est définie par

T β (x) = βx -βx = {βx},
où ξ signifie la partie entière de ξ. En 1957, Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] a montré que, tout nombre réel x ∈ [0, 1) peut être développé de manière unique comme une série Bien que 1 n'est pas dans l'ensemble de définition de T β , on peut étendre la définition de β-transformation à x = 1. Soit T β (1) = β -β . On peut écrire 1 comme une série : oe ω ∞ = (ω, ω, . . .). Si la série de 1 n'est pas finie, notons ε * (β) = ε(1, β). Dans les deux cas, on a

x = ε 1 (x, β) β + ... + ε n (x, β) β n + • • • , où ε n (x, β) = βT n-1 β (x)
1 = ε 1 (1, β) β + • • • + ε n (1, β) β n + • • • , où ε n (1, β) = βT n-1 β ( 
1 = ε * 1 β + • • • + ε * n β n + • • • ,
La suite ε * (β) est en conséquence appelée le β-développement infini de 1.

Le bêta-développement de l'unité 1 joue un rôle important non seulement dans la recherche des propriétés dynamiques de l'orbite de 1, mais aussi, dans l'estimation de la longueur de I n (x) ( [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]). Pour chaque entier n ≥ 1, on note par t n = t n (β) la longueur maximale de zéros consécutifs après le n-ième chiffre du β-développement infini de 1.

C'est-à-dire,

t n = t n (β) := max{k ≥ 1 : ε * n+1 = ε * n+2 = ... = ε * n+k = 0}. (1.1.2)
Si l'entier k n'existe pas, posons t n = 0. Soit

λ(β) = lim sup n→+∞ Γ n (β) n , où Γ n = Γ n (β) := max 1≤k≤n t k (β). (1.1.3) 
L'estimation sur les longueurs des intervalles fondamentaux est un outil important dans la recherche sur les propriétés fractales des β-développements : les propriétés diophantiennes des orbites [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF], le problème shrinking target [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF], les propriétés de récurrence d'un β-développement [START_REF] Tan | Quantitative recurrence properties for betadynamical system[END_REF] etc. Fan et Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] ont établi une relation entre la longueur de I n (x) et le β-développement infini de 1 et ont donné une méthode afin de calculer la longueur I n (x), voir Théorème 3.2.5 pour plus de détails. De plus, ils ont introduit et étudié des quantités qui décrivent la décroissance de la longueur de I n (x). Plus précisémment, pour tout x ∈ [0, 1), on définit la densité inférieure et la densité supérieure de x respectivement par,

D(x) = lim inf n→+∞ -log β |I n (x)| n and D(x) = lim sup n→+∞ -log β |I n (x)| n .
Il est remarqué dans [START_REF] Li | Beta-expansion and continued fraction expansion[END_REF] que pour tout x ∈ [0, 1), nous avons L'ensemble de ces β avec λ(β) = 0 dans (1, +∞) est de mesure de Lebesgue pleine [START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF].

D(x) = 1, 1 ≤ D(x) ≤ 1 + λ(β), ( 1 
Nous nous intéressons, pour tout cas λ(β) > 0, aux ensembles exceptionnels des points avec la densité supérieure prescrite. Pour tout 1 < δ < 1 + λ(β), on définit

D δ = {x ∈ [0, 1) : D(x) = δ}.
Les points dans D δ avec 1 < δ ≤ 1 + λ(β) sont appelés δ-irréguliers. Fan et Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] ont montré que

dim H D δ = λ(β) + 1 -δ δ • λ(β) , (1.1.5) 
pour tout 1 < δ ≤ 1 + λ(β).

Il est naturel de poser la question sur la taille des ensembles D δ d'un point de vue topologique. Étant motivés par ce point, au chapitre 3, nous établissons le théorème suivant qui illustre que l'ensemble extrêmement irrégulier

D := D 1+λ(β) = {x ∈ [0, 1) : D(x) = 1 + λ(β)}
est résiduel (grand du point de vue topologique) pour tout λ(β) > 0. Ce que nous devrons remarquer, est que non seulement la mesure de Lebesgue est nulle sur D mais aussi la dimension de Hausdorff. Ce résultat est quelque peu similaire à celui de Olsen [START_REF] Olsen | Extremely non-normal numbers[END_REF] sur les nombres extrêmement non-normaux. En effet, il existe des ensembles irréguliers de mesure de Lebesgue nulle, mais résiduels, ce qui implique que de tels ensembles peuvent être volumineux au sens de la topologie. Par exemple, il est prouvé que les ensembles contenant certains types de points irréguliers associés aux développements en base entières sont résiduels [START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF][START_REF] Hyde | Iterated Cesàro averages, frequencies of digits and Baire category[END_REF][START_REF] Olsen | Extremely non-normal numbers[END_REF]. Il est montré par Baek et Olsen [5] que l'ensemble des points extrêment non-normaux d'un ensemble auto-similaire est résiduel. Madritsch [START_REF] Madritsch | Non-normal numbers with respect to Markov partitions[END_REF] a étendu et généralisé les résultats en [5] aux partitions de Markov. De plus, les nombres nonnormaux dans un système dynamique satisfaisant la propriété de spécification sont résiduels (voir Madritsch et Petrykiewicz [START_REF] Madritsch | Non-normal numbers in dynamical systems fulfilling the specification property[END_REF]). Cependant, dans la recherche des nombres non-normaux, les fréquences des chiffres et des blocs ont été étudiées. Dans notre cas, la densité supérieure D(x) ne peut pas être exprimée sous forme de fréquences.

Fonction run-length

Pour tout nombre rWel x ∈ [0, 1), et entier naturel n ≥ 1, la fonction run-length notée par r n (x, β) est la longueur maximale du nombre de zéros consécutifs parmi

(ε 1 (x, β), . . . , ε n (x, β)), c'est-à-dire, r n (x, β) = max{j ≥ 1 : ε i+1 (x, β) = ... = ε i+j (x, β) = 0 pour certain 0 ≤ i ≤ n -j}.
Posons r n (x, β) = 0 lorsqu'un tel j n'existe pas. Pour la base β = 2, Erdös et Rényi [START_REF] Erdös | On a new law of large numbers[END_REF] ont montré que Lebesgue presque partout sur [0, 1),

lim n→+∞ r n (x, 2) log 2 n = 1. (1.2.1)
La taille des ensembles déterminés par la fonction r n (x, 2) a été beaucoup étudiée. 

E max = x ∈ [0, 1) : lim inf n→+∞ r n (x, 2) ϕ(n) = 0, lim sup n→+∞ r n (x, 2) ϕ(n) = +∞ .
Ils ont montré que la dimension de Hausdorff de E max est 1 et que E max est résiduel sur [0, 1] lorsque la fonction ϕ est strictement croissante et satisfaisant lim [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF] pour plus de détails). Après, dans [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF], ils ont montré que E max est de dimension de Hausdorff 1 et que E max est résiduel sous la condition lim n→+∞ n ϕ(n) = +∞. Naturellement, il est intéressant de déterminer la taille des ensembles ci-dessus quand la base 2 est substituée par un nombre réel général β > 1. En effet, Tong, Yu et Zhao [START_REF] Tong | On the maximal length of consecutive zero digits of β-expansions[END_REF] ont abouti au même résultat que [START_REF] Erdös | On a new law of large numbers[END_REF] : pour Lebesgue presque tout x ∈ [0, 1), on a

n→+∞ n ϕ(n 1+α ) = +∞ pour tout 0 < α ≤ 1 (voir
lim n→+∞ r n (x, β) log β n = 1.
Ainsi, l'ensemble 

E = x ∈ [0, 1) : lim inf n→+∞ r n (x, β) log β n < lim sup n→+∞ r n (x,
E ϕ max = x ∈ [0, 1) : lim inf n→+∞ r n (x, β) ϕ(n) = 0, lim sup n→+∞ r n (x, β) ϕ(n) = +∞ . (1.2.2)
Nous étendons les résultats de Li et Wu ( [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF]) en généralisant la base 2 à tout nombre réel β > 1 dans les théorèmes suivants. 

ϕ(n) = +∞. Soit E ϕ max l'ensemble défini par (1.2.2), alors (1) Si lim sup n→+∞ n ϕ(n) < +∞, on a E ϕ max = ∅ ; (2) Si lim sup n→+∞ n ϕ(n) = +∞, on a dim H E ϕ max = 1.
Remarque 1.2.1. Le résultat de (1) dans le théorème 1.2.1 est trivial puisque si

lim sup n→+∞ n ϕ(n) < +∞, d'après le fait r n (x, β) ≤ n, pour tout n ∈ N et tout x ∈ [0, 1), on a lim sup n→+∞ r n (x, β) ϕ(n) = lim sup n→+∞ r n (x, β) n • n ϕ(n) < +∞.
Ainsi, E ϕ max = ∅. Donc il suffit de montrer (2) dans le théorème 1.2.1.

Nous nous intéressons aussi à la taille de l'ensemble E ϕ max au sens topologique. Nous établissons le théorème suivant.

Théorème 1.2.2. Soit ϕ : N → R + une fonction strictement croissante avec lim n→+∞ ϕ(n) = +∞. Soit E ϕ max l'ensemble défini en (1.2.2). Alors, E ϕ max est résiduel lorsque lim sup n→+∞ n ϕ(n) = +∞.
En fixant ϕ(n) = log β n dans la formule (1.2.2) de la définition de l'ensemble E ϕ max et en combinant les résultats de Tong, Yu et Zhao [START_REF] Tong | On the maximal length of consecutive zero digits of β-expansions[END_REF], on arrive immédiatement le corollaire suivant. Ce résultat montre qu'un ensemble peut être très petit au sens de la topologie mais être volumineux du point de vue de la théorie de la mesure et de la dimension.

Corollaire 1.2.1. L'ensemble {x : lim n→+∞ rn(x,β) log β n = 1} est à la fois de mesure de Lebesgue pleine et de première catégorie.

Un point important à noter ici est que lorsque β est un entier, on retrouve le résultat de Li et Wu (voir [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF]) pour la dimension de Hausdorff et la catégorie de E max . En effet, les intervalles fondamentaux d'ordre n étant de longueur égale à β -n , tous les mots admissibles peuvent être concaténés les uns avec les autres. Lorsque β n'est pas un entier, les comportements dynamiques seront beaucoup plus compliqués pour différentes classes de β > 1 ; par exemple, une classe est l'ensemble de β > 1 pour lequel le sous-décalage correspondant satisfait à la propriété de spécification, l'autre est le complément de cet ensemble. Pour β > 1 dans la première classe, l'admissibilité de la concaténation de mots admissibles peut être garantie en ajoutant un nombre fini de zéros uniformément. Dans ces cas, la longueure des intervalles fondamentaux d'ordre n est équivalente à β -n . Cependant, pour β > 1 dans la deuxième classe, les propriétés cidessus des mots admissibles et des intervalles fondamentaux disparaissent, ce qui pose de nombreuses difficultés pour la construction des ensembles de Cantor et des ensembles denses contenus dans E ϕ max et pour la vérification de la condition du principe modifié de distribution de masse (voir Lemme 3.1.8). Il y a beaucoup de résults liés à la fonction run-length, voir [START_REF] Gao | A result on the maximal length of consecutive 0 digits in β-expansions[END_REF][START_REF] Liu | Hausdorff dimension of some sets arising by the runlength function of β-expansions[END_REF][START_REF] Liu | On the exceptional sets in Erdös-Rényi limit theorem of β-expansion[END_REF][START_REF] Sun | A remark on exceptional sets in Erdös-Rényi limit theorem[END_REF] et dans les références données dans ces articles.

Fonction run-length en lien avec l'approximation diophantienne

Dans la section 1.2, on voit que alors l'ensemble des points extrêmement divergents

E ϕ max = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) ϕ(n) = +∞ est vide si lim sup n→∞ n ϕ(n) < +∞, et est de dimension de Hausdorff 1 et résiduel dans [0, 1) sinon. Pour tout 0 ≤ a ≤ b ≤ +∞, on définit E ϕ a,b = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = a, lim sup n→∞ r n (x, β) ϕ(n) = b .
De fait, l'aticle [START_REF] Fang | Exceptional sets related to the run-length function of beta-expansions[END_REF] nous fournit un résultat plus général sur l'ensemble E ϕ a,b . En effet, cet ensemble est de dimension de Hausdorff 1 lorsque lim sup En effet, le comportement asymptotique de rn(x,β) n est en lien direct avec l'approximation diophantienne des β-développements. Pour tout x ∈ [0, 1), Bugeaud et Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] ont définit l'exposant v β (x) comme le supremum des nombres réels v pour lesquels l'équation

T n β x ≤ β -nv admet une infinité de solutions n ∈ N. Ils ont également définit l'exposant vβ (x) comme le supremum des nombres réels v pour lesquels, pour tout N 1, il existe une solution

n avec 1 ≤ n ≤ N , telle que T n β x ≤ β -N v. Nous verrons (Lemmes 6.1.1 et 6.1.2) que pour tout 0 < a < 1, 0 < b < 1, lim inf n→∞ r n (x, β) n = a ⇔ vβ (x) = a 1 -a et lim sup n→∞ r n (x, β) n = b ⇔ v β (x) = b 1 -b .
Grace à ces équivalences, nous obtenons le résultat suivant. 

< a ≤ 1, 0 < b ≤ 1, alors E a,b = ∅. Sinon, on a dim H E a,b = 1 - b 2 (1 -a) b -a . Soit 0 ≤ a ≤ 1 et 0 ≤ b ≤ 1.
Nous étudons les ensembles de niveau suivants

E a := E a (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = a et F b := F b (β) = x ∈ [0, 1) : lim sup n→∞ r n (x, β) n = b . (1.3.2)
En utilisant le Théorème 1.3.1, nous obtenons le résultat suivant concernant la dimen-

sion de Hausdorff de E a et F b . Corollaire 1.3.1. (1) Lorsque 0 ≤ a ≤ 1 2 , on a dim H E a = (1 -2a) 2 .
Sinon, E a = ∅.

(

) Pour tout 0 ≤ b ≤ 1, on a dim H F b = 1 -b. 2 
On remarque que l'assertion (2) du Théorème 2.3.2 a aussi été obtenu dans [53, Theorem 1.1] (voir [START_REF] Zou | Hausdorff dimension of the maximal run-length in dyadic expansion[END_REF] pour le cas β = 2).

Similaire aux résultats de [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF], l'ensemble des points extrêmements divergents est résiduel, et est donc grand au sens de la topologie. 

E := E(ϕ, β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) n = 1 est aussi résiduel dans [0, 1].
Le β-développement de 1 caractérise complètement tous les mots admissibles dans le β-système dynamique (voir Théorème 3.2.4 dans la section 3 pour plus de détails).

Nous étudions aussi la function run-length r n (β) des β-développement de 1 lorsque β varie dans l'espace de paramètres {β ∈ R : β > 1}, i.e.,

r n (β) = max{1 ≤ j ≤ n : ε i+1 (1, β) = • • • = ε i+j (1, β) = 0 pour certain 0 ≤ i ≤ n -j}.
Il existe des résultats concernant r n (β) qui sont similaires à ceux obtenus pour r n (x, β).

Dans [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1 [J][END_REF], Hu, Tong et Yu ont prouvé que pour Lebesgue presque tout 1 < β < 2, on a

lim n→∞ r n (β) log β n = 1.
Cao et Chen [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] ont montré que pour toute fonction ϕ :

N → R + strictement croissante avec lim n→+∞ ϕ(n) = +∞ et lim inf n→+∞ ϕ(n) n = 0, pour tout 0 ≤ a ≤ b ≤ +∞, l'ensemble β ∈ (1, 2) : lim inf n→∞ r n (β) ϕ(n) = a, lim sup n→∞ r n (β) ϕ(n) = b
est de dimension de Hausdorff pleine. On remarque que les résultats dans [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] et [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1 [J][END_REF] peuvent facilement être généralisés à l'espace de paramètres {β ∈ R : β > 1}. Par soucis de simplicité, nous considérons l'espace de paramètres [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF][START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF].

Pour tout 0 ≤ a ≤ b ≤ 1, soit E P a,b = β ∈ [1, 2] : lim inf n→∞ r n (β) n = a, lim sup n→∞ r n (β) n = b . (1.3.3) 
Nous avons le théorème suivant. dim

H E P a,b = 1 - b 2 (1 -a) b -a .
De la même façon, pour tout 0 ≤ a ≤ 1 et 0 ≤ b ≤ 1, définissons

E P a = β ∈ [1, 2] : lim inf n→+∞ r n (β) n = a , et 
F P b = β ∈ [1, 2] : lim inf n→+∞ r n (β) n = b .
Nous avons le résultat suivant.

Corollaire 1.3.2. (1) Quand 0 ≤ a ≤ 1 2 , on a dim H E P a = (1 -2a) 2 . Sinon E P a = ∅. (2) Pour tout 0 ≤ b ≤ 1, on a dim H F P b = 1 -b.
De plus, de la même façon qu'au théorème 1.3.2, on a le résultat suivant. 

X i avec H α (X i ) < +∞, pour tout i ∈ N), alors on a lim inf n→+∞ n 1 α d(T n x, x) < +∞ pour µ-presque tout x ∈ X. Si H α (X) = 0, alors lim inf n→+∞ n 1 α d(T n x, x) = 0 pour µ-presque tout x ∈ X.
Plus tard, de nombreux comportements asymptotiques ont également été étudiés. Beaucoup de recherches sont motivés par le théorème de rWcurrence de Poincaré, tels que, les temps de premier retour [7], le lemme de Borel-Cantelli dynamique [START_REF] Chernov | Dynamical Borel-Cantelli Lemma for Gibbs measures[END_REF], les temps d'attentes [START_REF] Galatolo | Dimension via waiting time and recurrence[END_REF], les problèmes de shrinking targets [START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Hill | The shrinking target problem for matrix transformations of tori[END_REF][START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF] 

T n θ x -x = nθ , où T θ : R/Z :→ R/Z, T θ x → x + θ.
Le théorème de Dirichlet peut ainsi être vu comme une propriété de récurrence uniforme du système dynamique (R/Z, T θ ). Certains résultats concernant l'approximation uniforme peuvent être trouvés dans [START_REF] Bugeaud | Exponents of Diophantine approximation and Sturmian continued fractions[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF][START_REF] Bugeaud | Metrical results on the distribution of fractional parts of powers of real numbers[END_REF][START_REF] Khintchine | Über eine Klasse linearer diophantischer Approximationen[END_REF][START_REF] Kim | Dirichlet uniformly well-approximated numbers[END_REF] et dans les références données dans ces articles.

Le théorème de Dirichlet incite à étudier les points de [0, 1) qui sont uniforméments récurrents pour le système dynampique ([0, 1), T β ). On décrira la taille de ces ensembles du point de vue de la mesure et du point de vue de la dimension. On considère les exposants d'approximations suivants, l'un étant relié à le récurrence asymptotique et l'autre à le récurrence uniforme par les orbites de T β : Définition 1.4.1. Soit β > 1. Pour tout x ∈ [0, 1), on définit r β (x) comme le supremum des réels r tels que l'équation :

|T n β x -x| < (β n ) -r
admet une infinité de solutions n ∈ N. On définit également rβ (x) comme le supremum des réels r tels que pour tout N ∈ N assez grand, l'équation :

|T n β x -x| < (β N ) -r a une solution n ∈ N, avec 1 ≤ n ≤ N .
Les exposants r β (x) et rβ (x) sont les analogues des exposants introduits dans [3] (voir aussi [START_REF] Bugeaud | Exponents of Diophantine approximation and Sturmian continued fractions[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF]). L'exposant r β est relié aux propriétés de récurrence asymptotique et l'exposant r β (x) et rβ (x), à celles de récurrence uniforme. Remarquons que, par définition, 0 ≤ r β (x) ≤ +∞ et 0 ≤ rβ (x) ≤ +∞. On peut également vérifier que rβ (x) ≤ r β (x). L'exposant asymptotique r β a été étudié par Tan et Wang [START_REF] Tan | Quantitative recurrence properties for betadynamical system[END_REF], qui ont

montré que dim H {x ∈ [0, 1) : r β (x) ≥ r} = 1 1 + r .
On établit des résultats similaires pour l'exposant rβ . Où 1 +∞ = 0.

Théorème 1.4.1. L'ensemble {x ∈ [0, 1) : r β (x) = 0} est de mesure de Lebesgue pleine.

Si

r > 1, l'ensemble {x ∈ [0, 1) : rβ (x) ≥ r} est dénombrable. Si 0 ≤ r ≤ 1, on a dim H {x ∈ [0, 1) : rβ (x) ≥ r} = dim H {x ∈ [0, 1) : rβ (x) = r} = 1 - r 1 + r 2 .
Le théorème 1.4.1 est en fait une conséquence d'un résultat plus général qui donne la dimension de Hausdorff de l'ensemble des points x ∈ [0, 1) à r β et rβ fixés. Plus

précisément pour 0 ≤ r ≤ +∞ et 0 ≤ r ≤ +∞, notons R β (r, r) := {x ∈ [0, 1) : r β (x) = r, rβ (x) = r} .
Nous avons le théorème suivant. Théorème 1.4.2. L'ensemble R β (0, 0) est de mesure de Lebesgue pleine. Si 0 ≤ r 1+r < r ≤ +∞, l'ensemble R β (r, r) est dénombrable. Si r ≤ r 1+r et 0 < r ≤ +∞, on a

dim H R β (r, r) = r -(1 + r)r (1 + r)(r + r) .
Où 

Chapitre 2 Introduction (English version)

2.1 Beta-transformation and beta-expansions

Let β > 1 be a real number. The β-transformation on [0, 1) is defined by

T β (x) = βx -βx = {βx},
where ξ means the integer part of ξ. In 1957, Rényi showed (see [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]) that, every real number x ∈ [0, 1) can be uniquely expanded as a series

x = ε 1 (x, β) β + • • • + ε n (x, β) β n + • • • , where ε n (x, β) = βT n-1 β (x) for all n ≥ 1. We call ε n (x, β) the n-th digit of x and ε(x, β) := (ε 1 (x, β), . . . , ε n (x, β), . . .) the β-expansion of x.
For an admissible word ω = (ω 1 , . . . , ω n ), that is, a prefix of the digit sequence for some x ∈ [0, 1) (see Section 2.2.2 for details). The basic interval of order n associated to ω, denoted by I n (ω), is defined by

I n (ω) = I n (ω 1 , . . . , ω n ) := {x ∈ [0, 1) : ε 1 (x, β) = ω 1 , . . . , ε n (x, β) = ω n }. (2.1.1)
The basic interval of order n containing x is written as I n (x). We can check that the basic interval I n (x) a left-closed and right-open interval (see Lemma 3.2.5). We denote the length of I n (x) by |I n (x)|. In some papers, the basic interval I n (ω) is also called the cylinder of order n associated to ω.

Although 1 is not in the domain of T β , we extend the definition of the β-transformation

to x = 1. Let T β (1) = β -β , we have 1 = ε 1 (1, β) β + • • • + ε n (1, β) β n + • • • , where ε n (1, β) = βT n-1 β (1)
. Specially, if the β-expansion of 1 is finite, that is, there is an integer m ≥ 1 such that ε m (1, β) > 0 and ε k (1, β) = 0 for all k > m, β is called a simple Parry number. In this case, we set

ε * (β) := (ε * 1 , ε * 2 , . . .) = (ε 1 (1, β), ε 2 (1, β), . . . , ε m (1, β) -1) ∞ ,
where ω ∞ = (ω, ω, . . .). If the β-expansion of 1 is not finite, set ε * (β) = ε(1, β). In both cases, we have

1 = ε * 1 β + • • • + ε * n β n + • • • .
The sequence ε * (β) is consequently called the infinite β-expansion of 1. The β-expansion of the unit 1 plays an important role not only in researching the dynamical properties of the orbit of 1, but also in estimating the length of I n (x) ( [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]). For each integer n ≥ 1, denote by t n = t n (β) the maximal length of consecutive zeros after the n-th digit of the β-expansion of 1. That is,

t n = t n (β) := max{k ≥ 0 : ε * n+1 = ε * n+2 = • • • = ε * n+k = 0}. (2.1.2)
If such k does not exist, let t n = 0. Let

λ(β) = lim sup n→∞ Γ n (β) n ,
where

Γ n = Γ n (β) := max 1≤k≤n t k (β). (2.1.3) Remark 2.1.1.
By the definition of t n , we have

I n (ε * 1 , . . . , ε * n ) = I n+tn (ε * 1 , . . . , ε * n , 0 tn ).
The estimation on the lengths of basic intervals is a useful tool to research on the fractals in β-expansion such as the the Diophantine problem [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF], the shrinking target problem [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF], the recurrence properties [START_REF] Tan | Quantitative recurrence properties for betadynamical system[END_REF] and so on. Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] established a relationship between the length of I n (x) and the β-expansion of 1 and gave a way to calculate the length of I n (x), see Theorem 3.2.9 for more details. Furthermore, they introduced and studied the quantities which describe the growth of the length of I n (x). More precisely, for any x ∈ [0, 1), define the lower and upper density at x for β-expansion respectively as follows :

D(x) = lim inf n→∞ -log β |I n (x)| n and D(x) = lim sup n→∞ -log β |I n (x)| n .
It is known [START_REF] Li | Beta-expansion and continued fraction expansion[END_REF] that for any x ∈ [0, 1), we have exists for all x ∈ [0, 1). The set of such β with λ(β) = 0 in (1, +∞) is of full Lebesgue measure [START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF]. Then we turn to focus on the exceptional set with respect to the upper density for the case λ(β) > 0. For any 1 < δ ≤ 1 + λ(β), define

D(x) = 1, 1 ≤ D(x) ≤ 1 + λ(β). ( 2 
D δ = {x ∈ [0, 1) : D(x) = δ},
which is a Lebesgue null set. The points in D δ with 1 < δ ≤ 1 + λ(β) are called δ-irregular. Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] showed that

dim H D δ = λ(β) + 1 -δ δ • λ(β) , (2.1.5) 
for every 1

< δ ≤ 1 + λ(β).
It is natural to ask what the size of the sets D δ are in the topological viewpoint.

Motivated by this, in Chapter 3, we establish the following theorem which illustrates that the extremely irregular set

D := D 1+λ(β) = {x ∈ [0, 1) : D(x) = 1 + λ(β)}
is residual (i.e., is large from a topological viewpoint) for every λ(β) > 0. What we should notice is that not only the Lebesgue measure of D is 0, but also its Hausdorff dimension is 0. This result is somewhat similar to Olsen's work [START_REF] Olsen | Extremely non-normal numbers[END_REF] on the extremely non-normal number. In fact, there are some irregular sets with zero measure, but residual, which implies that such sets can be large in the sense of topology. For instance, the sets containing some kinds of irregular points associated with integer expansion are proved to be of residue [START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF][START_REF] Hyde | Iterated Cesàro averages, frequencies of digits and Baire category[END_REF][START_REF] Olsen | Extremely non-normal numbers[END_REF]. It is shown in Baek and Olsen [5] that the set of extremely nonnormal points is residual. Madritsch [START_REF] Madritsch | Non-normal numbers with respect to Markov partitions[END_REF] extended and generalized the results in [5] to non-normal numbers with respect to Markov partitions. Also, the non-normal numbers in dynamical system fulfilling the specification property are residual (see Madritsch and Petrykiewicz [START_REF] Madritsch | Non-normal numbers in dynamical systems fulfilling the specification property[END_REF]). However, in the research of non-normal number, the frequencies of digits and blocks were investigated. In our case, the upper density D(x) cannot be expressed as some frequencies.

Run-length function

For every real number x ∈ [0, 1), and every integer n ≥ 1, the run-length function, denoted by r n (x, β), is the maximal length of consecutive zeros amongst the first ndigits of the β-expansion of x which is deonted by (ε 1 (x, β), . . . , ε n (x, β)), that is,

r n (x, β) = max{j ≥ 1 : ε i+1 (x, β) = • • • = ε i+j (x, β) = 0 for some 0 ≤ i ≤ n -j}.
We set r n (x, β) = 0 if such j does not exist. For the base β = 2, Erdös and Rényi [START_REF] Erdös | On a new law of large numbers[END_REF] showed that for Lebesgue almost all x ∈ [0, 1),

lim n→∞ r n (x, 2) log 2 n = 1. (2.2.1)
The size of sets about the function r n (x, 2) has raised much attention. Ma, Wen and

Wen [START_REF] Ma | Egoroff's theorem and maximal run length[END_REF] proved that the set of points violating (2.2.1) is of full dimension. Subsequently, Li and Wu [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF] replaced the function n → log 2 n in (2.2.1) by a monotonically increasing function ϕ : N → R + with lim n→∞ ϕ(n) = +∞, and they introduced the extremely exceptional set related to ϕ which contains worst divergence points as

E max = x ∈ [0, 1) : lim inf n→∞ r n (x, 2) ϕ(n) = 0, lim sup n→∞ r n (x, 2) ϕ(n) = +∞ .
They first got a weaker conclusion that the Hausdorff dimension of E max is 1 and

E max is residual in [0, 1]
when the monotonically increasing function ϕ(n) satisfying lim n→∞ n ϕ(n 1+α ) = +∞ for some 0 < α ≤ 1, see [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF] for more details. After that, in [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF], they showed that E max has Hausdorff dimension 1 and is of residue under the condition [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF] is somewhat surprising since this set is much smaller than the set which was studied by Ma, Wen and Wen [START_REF] Ma | Egoroff's theorem and maximal run length[END_REF]. Naturally, it is of interest to consider whether the above properties will be true if 2 is substituted for a general real number β > 1. As a matter of fact, Tong, Yu and Zhao [START_REF] Tong | On the maximal length of consecutive zero digits of β-expansions[END_REF] gave a similar result as Erdörs and Rényi [START_REF] Erdös | On a new law of large numbers[END_REF] that for Lebesgue almost all x ∈ [0, 1), we have

lim n→∞ n ϕ(n) = +∞. If we let ϕ(n) = log 2 n in E max , the result that dim H E max = 1 in
lim n→∞ r n (x, β) log β n = 1.
Thus, the set

E = x ∈ [0, 1) : lim inf n→∞ r n (x, β) log β n < lim sup n→∞ r n (x, β) log β n
has null Lebesgue measure. By using the monotonically increasing function ϕ : N → R + with lim n→∞ ϕ(n) = +∞ instead of the function n → log β n, we take the exceptional set containing the worst divergence points as follows into consideration, that is,

E ϕ max = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) ϕ(n) = +∞ . (2.2.2)
We extend Li and Wu's results (see [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF]) by generalizing the base 2 into every real number β > 1, which can be expressed as the following theorems.

Theorem 2.2.1. Let ϕ : N → R + be an increasing function with

lim n→∞ ϕ(n) = +∞. Let E ϕ max be the set defined as (2.2.2), then (1) If lim sup n→∞ n ϕ(n) < +∞, we have E ϕ max = ∅ ; (2) If lim sup n→∞ n ϕ(n) = +∞, we have dim H E ϕ max = 1. Remark 2.2.2. The result of (1) in Theorem 2.2.1 is obvious since if lim sup n→∞ n ϕ(n) < +∞, the fact that r n (x, β) ≤ n for all n ≥ 1 and x ∈ [0, 1) gives that lim sup n→∞ r n (x, β) ϕ(n) = lim sup n→∞ r n (x, β) n • n ϕ(n) ≤ lim sup n→∞ n ϕ(n) < +∞.
Thus, E ϕ max = ∅. So we only need to show (2) in Theorem 2.2.1 in this paper.

It occurs naturally to know how large the set E ϕ max is in the topological sense. Hence, we establish the following theorem.

Theorem 2.2.3. Let ϕ : N → R + be an increasing function with lim n→∞ ϕ(n) = +∞. Let E ϕ max be the set defined as (2.2.2), we have E ϕ max is residual when lim sup n→∞ n ϕ(n) = +∞. Setting ϕ(n) = log β n in the set E ϕ max given as (2.2.
2) and combining the results of Tong, Yu and Zhao [START_REF] Tong | On the maximal length of consecutive zero digits of β-expansions[END_REF], we have the following corollary. This result gives an example that a set can be very small in the sense of topology but be large from the measuretheoretical and dimensional points of view. An important point should be noticed here is that when β is an integer, we find that Li and Wu's results (see [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF]) for the Hausdorff dimension and category of E max can be extended. This is because the basic intervals of order n equal to β -n which implies that all of the admissible words can be concatenated with each other.

When β is not an integer, the dynamical behaviors will be much more complicated for different classes of β > 1, for example, one class is the set of β > 1 for which the corresponding subshift satisfies specification property, the other one is the complement of such set. For β > 1 in the first class, the admissibility of concatenating admissible words can be ensured by adding uniformly finitely many zeros and the basic intervals of order n are equivalent to β -n . However, for β > 1 in the second class, the above properties of admissible words and basic intervals vanish, which causes lots of difficulties in constructing Cantor sets and dense sets contained in E ϕ max and checking the condition of modified mass distribution principle (see Lemma 3.1.8). There are many results related to run-length function, see [START_REF] Gao | A result on the maximal length of consecutive 0 digits in β-expansions[END_REF][START_REF] Liu | Hausdorff dimension of some sets arising by the runlength function of β-expansions[END_REF][START_REF] Liu | On the exceptional sets in Erdös-Rényi limit theorem of β-expansion[END_REF][START_REF] Sun | A remark on exceptional sets in Erdös-Rényi limit theorem[END_REF] and the references given there.

Run-length function related to Diophantine approximation

In section 2.3, we can see that the set with extremely worst divergence points

E ϕ max = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) ϕ(n) = +∞
is either empty or of full Hausdorff dimension and residual in [0, 1) according to lim sup

n→∞ n ϕ(n) < +∞ or not. For all 0 ≤ a ≤ b ≤ +∞, let E ϕ a,b = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = a, lim sup n→∞ r n (x, β) ϕ(n) = b .
In fact, [START_REF] Fang | Exceptional sets related to the run-length function of beta-expansions[END_REF] provides a more general results on the set E ϕ a,b that dim H E ϕ a,b = 1 where the strictly increasing function ϕ satisfies that lim inf

n→∞ ϕ(n) n = 0 and ϕ(n)
n is non-increasing. It naturally occurs to a problem that what the size of the set E ϕ a,b when the function ϕ has the same order of n (i.e., lim

n→∞ ϕ(n) n = c for some 0 < c < ∞).
For all 0 ≤ a ≤ b ≤ 1, we are going to consider the size of the set

E a,b := E a,b (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = a, lim sup n→∞ r n (x, β) n = b . (2.3.1)
Actually, the asymptotic behavior of rn(x,β) n is directly related to the Diophantine approximation of β-expansions. For all x ∈ [0, 1), Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] defined the exponent v β (x) to be the supremum of the real numbers v for which the equation

T n β x ≤ β -nv
has infinitely many positive solutions with integer n. They also defined the exponent vβ (x) to be the supremum of the real numbers v for which, for all N 1, there is a solution with 1 ≤ n ≤ N , such that

T n β x ≤ β -N v.
We will see (Lemmas 6.1.1 and 6.1.2) that for all 0

< a < 1, 0 < b < 1, lim inf n→∞ r n (x, β) n = a ⇔ vβ (x) = a 1 -a and lim sup n→∞ r n (x, β) n = b ⇔ v β (x) = b 1 -b .
By this relationship, we provide the following result.

Theorem 2.3.1. The set E 0,0 has full Lebesgue measure. If b 1+b < a ≤ 1, 0 < b ≤ 1, then E a,b = ∅. Otherwise, we have dim H E a,b = 1 - b 2 (1 -a) b -a .
Let 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. We can further study the level sets

E a := E a (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = a
and

F b := F b (β) = x ∈ [0, 1) : lim sup n→∞ r n (x, β) n = b . (2.3.2)
Using Theorem 2.3.1, we obtain the following results of the Hausdorff dimensions of

E a and F b . Corollary 2.3.2. (1) When 0 ≤ a ≤ 1 2 , we have dim H E a = (1 -2a) 2 .
Otherwise, E a = ∅.

(2) For all 0 ≤ b ≤ 1, we have

dim H F b = 1 -b.
We remak that the statement (2) of Corollary 2.3.2 was also been obtained in [53, Theorem 1.1] (see [START_REF] Zou | Hausdorff dimension of the maximal run-length in dyadic expansion[END_REF] for the case β = 2).

Similar to the results of Li and Wu [START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF], the set of extremely divergent points is residual, and thus is large in the sense of topology.

Theorem 2.3.3. The set E 0,1 is residual in [0, 1].
It is worth noting that the set E 0,1 is negligible with respect to the Lebesgue measure and Hausdorff dimension. However, the sets considered in [START_REF] Fang | Exceptional sets related to the run-length function of beta-expansions[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF] 

E := E(ϕ, β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) ϕ(n) = 0, lim sup n→∞ r n (x, β) n = 1 is also residual in [0, 1].
The β-expansion of 1 completely characterizes all of the admissible words in the β-dynamical system (see Theorem 3.2.4 in Section 3 for more details). We also study the run-length function r n (β) of the β-expansion of 1 as β varies in the parameter space

{β ∈ R : β > 1}, i.e., r n (β) = max{1 ≤ j ≤ n : ε i+1 (1, β) = • • • = ε i+j (1, β) = 0 for some 0 ≤ i ≤ n -j}.
There are some results on r n (β) which are similar to those of r n (x, β). In [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1 [J][END_REF], Hu, Tong and Yu proved that for Lebesgue almost all 1 < β < 2, we have

lim n→∞ r n (β) log β n = 1.
Cao and Chen [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] showed that for any ϕ which is a monotonically increasing function

with lim n→∞ ϕ(n) = +∞ and lim inf n→∞ ϕ(n) n = 0, for all 0 ≤ a ≤ b ≤ +∞, the set β ∈ (1, 2) : lim inf n→∞ r n (β) ϕ(n) = a, lim sup n→∞ r n (β) ϕ(n) = b
is of full Hausdorff dimension. Remark that the results of [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] and [START_REF] Hu | On consecutive 0 digits in the β-expansion of 1 [J][END_REF] can be easily generalized to the whole parameter space {β ∈ R : β > 1}. For simplicity, in this paper, we will also consider the parameter space [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF][START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF]. For all 0 ≤ a ≤ b ≤ 1, let

E P a,b = β ∈ (1, 2) : lim inf n→∞ r n (β) n = a, lim sup n→∞ r n (β) n = b . (2.3.3)
We have the following theorem.

Theorem 2.3.4. The set E P 0,0 has full Lebesgue measure. If b 1+b < a ≤ 1, 0 < b ≤ 1, then E P a,b = ∅. Otherwise, we have dim H E P a,b = 1 - b 2 (1 -a) b -a .
Similarly, for every 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1, we consider the set

E P a = β ∈ (1, 2) : lim inf n→∞ r n (β) n = a , and 
F P b = β ∈ (1, 2) : lim sup n→∞ r n (β) n = b . Corollary 2.3.5. (1) When 0 ≤ a ≤ 1 2 , we have dim H E P a = (1 -2a) 2 .
Otherwise,

E P a = ∅. (2) For every 0 ≤ b ≤ 1, we have dim H F P b = 1 -b.
In addition, similar to Theorem 2.3.3, we have the following theorem.

Theorem 2.3.6. The set

E P 0,1 is residual in [1, 2].

Uniform Recurrence Properties

Poincaré Recurrence Theorem is one of the most fundamental results in dynamical system. It is stated that there is a non-trivial recurrence to a measurable set with positive measure in any measure-theoretical dynamical system. Let (X, B, µ, T ) be a measure-preserving dynamical system with a finite Borel measure µ. Let d be a metric on X. The well-known Poincaré Recurrence Theorem shows that typically the orbit of a point asymptotically approaches to the point itself. More precisely,

lim inf n→∞ d(T n x, x) = 0
for µ-almost all x ∈ X. Boshernitzan [START_REF] Boshernizan | Quantitative recurrence results[END_REF] described the speed of such asymptotic recurrence. In fact, he proved that if there is some α > 0 such that the α-dimensional

Hausdorff measure H α is σ-finite on X (i.e., X can be written as a countable union of

subsets X i with H α (X i ) < ∞ for all i = 1, 2, . . .), then lim inf n→∞ n 1 α d(T n x, x) < ∞ for µ-almost all x ∈ X. Moreover, if H α (X) = 0, then lim inf n→∞ n 1 α d(T n x, x) = 0 for µ-almost all x ∈ X.
There are also many other studies on the asymptotic behavior of the orbits motivated by Poincaré Recurrence Theorem including the first return time [7], dynamical Borel-Cantelli Lemma [START_REF] Chernov | Dynamical Borel-Cantelli Lemma for Gibbs measures[END_REF], waiting time [START_REF] Galatolo | Dimension via waiting time and recurrence[END_REF], shrinking target problems [START_REF] Hill | The ergodic theory of shrinking targets[END_REF][START_REF] Hill | The shrinking target problem for matrix transformations of tori[END_REF][START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF] and so on.

Different to the asymptotic way of approximation, the famous Dirichlet Theorem provides another point of view of the study on the approximation of the orbits : a uniform way. The Dirichlet Theorem states that for any positive irrational real number θ, for all real number N ≥ 1, there is an integer n with 1

≤ n ≤ N satisfying nθ < N -1 , (2.4.1)
where • denotes the distance to the nearest integer. The uniformity lies in that (2.4.1)

has an integer solution for any sufficiently large N . Note that nθ = T n θ x -x where T θ : R/Z → R/Z is defined by T θ x = x + θ. Thus, the Dirichlet Theorem can be explained as that under the dynamical system (R/Z, T θ ), all points x uniformly return to the point itself with the speed 1 N . Motivated by the Dirichlet Theorem, some results of the uniform approximation properties have already appeared in [START_REF] Bugeaud | Exponents of Diophantine approximation and Sturmian continued fractions[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF][START_REF] Bugeaud | Metrical results on the distribution of fractional parts of powers of real numbers[END_REF][START_REF] Khintchine | Über eine Klasse linearer diophantischer Approximationen[END_REF][START_REF] Kim | Dirichlet uniformly well-approximated numbers[END_REF].

In our paper, we want to investigate the uniform recurrence property of a point to itself in the beta-dynamical system. We aims at giving the sizes (Lebesgue measure and Huasdorff dimension) of the sets of points with prescribed uniform recurrence rate.

In our paper, we consider the following two exponents of recurrence, one is for asymptotic recurrence, and the other is for uniform recurrence.

Definition 2.4.1. Let β > 1. For all x ∈ [0, 1), define r β (x) := sup{0 ≤ r ≤ +∞ : |T n β x -x| < (β n ) -r for infinitely many n ∈ N} and rβ (x) := sup{0 ≤ r ≤ +∞ : for all N 1, there is n ∈ [1, N ], s.t. |T n β x-x| < (β N ) -r }.
The exponents r β (x) and rβ (x) are analogous to the exponents introduced in [3], see also [START_REF] Bugeaud | Exponents of Diophantine approximation and Sturmian continued fractions[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF]. By the definitions of r β (x) and rβ (x), it can be checked that rβ (x) ≤ r β (x) for all x ∈ [0, 1). Actually, applying Philipp's result [START_REF] Philipp | Some metrical theorems in number theory[END_REF], we can deduce that the set {x : r β (x) = 0} is of full Lebesgue measure (see Section 7.1.1). The asymptotic exponent r β (x) has been studied by Tan and Wang [START_REF] Tan | Quantitative recurrence properties for betadynamical system[END_REF] who showed that

for all 0 ≤ r ≤ +∞, dim H {x ∈ [0, 1) : r β (x) ≥ r} = 1 1 + r , (2.4.2) 
where dim H denotes the Hausdorff dimension and 1 +∞ = 0. We refer the readers to Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF] for more properties of Hausdorrf dimension. Our main result is as follows.

Theorem 2.4.2. Let β > 1. The set {x ∈ [0, 1) : rβ (x) = 0} is of full Lebesgue measure. When r > 1, the set {x ∈ [0, 1) : rβ (x) ≥ r} is countable. When 0 ≤ r ≤ 1, we have dim H {x ∈ [0, 1) : rβ (x) ≥ r} = dim H {x ∈ [0, 1) : rβ (x) = r} = 1 - r 1 + r 2 .
Actually, Theorem 2.4.2 follows from the following more general result which gives the Hausdorff dimension of the set of points whose exponents r β (x) and rβ (x) are both prescribed. For all 0 ≤ r ≤ +∞, 0 ≤ r ≤ +∞, let

R β (r, r) := {x ∈ [0, 1) : rβ (x) = r, r β (x) = r} . Theorem 2.4.3. Let β > 1. The set R β (0, 0) is of full Lebesgue measure. When 0 ≤ r 1+r < r ≤ +∞, the set R β (r, r) is countable. When 0 ≤ r ≤ r 1+r , 0 < r ≤ +∞, we have dim H R β (r, r) = r -(1 + r)r (1 + r)(r -r) .
Where +∞ (+∞)(+∞) = 0 By Theorem 2.4.3, the following new result related to the asymptotic exponent

r β (x) is immediate. Corollary 2.4.4. Let β > 1. For all 0 ≤ r ≤ +∞, we have dim H {x ∈ [0, 1) : r β (x) = r} = 1 1 + r .
Chapitre 3 Preliminaries

Measure and dimension

The notion of fractal dimensions (Hausdorff dimension, boxing dimension, packing dimension and so on) are of great importance in the study of fractal geometry (see Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). Roughly speaking, dimension determines the size of space that a set occupies near to each of its points. In this section we first recall briefly the definitions of Hausdorff dimension, boxing dimension, packing dimension and give some properties of these dimensions. In the final of this section, we will give a classical technique to calculate the Hausdorff dimension of a set. For more information of dimensions and measures, we refer the readers to see Falconer [START_REF] Falconer | Rondom fractals[END_REF][START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF][START_REF] Falconer | The multi-fractal spectrum of statistically self-similar measures [J][END_REF][START_REF] Falconer | Techniques in Fractal Geometry[END_REF], Falconer and Howroyd [START_REF] Falconer | Packing dimesions of projections and dimension profiles[END_REF], Federer [START_REF] Federer | Geometric Measure Theory[END_REF][START_REF] Federer | Fractal Geometry[END_REF], Howroyd [START_REF] Howroyd | Box and packing dimensions of projections and dimension profiles[END_REF], Mattila [START_REF] Mattila | Geometry of Sets and Measures in Euchidean Space[END_REF], Rogers [START_REF] Rogers | Haudorff mearsure[END_REF] and the references therein.

Hausdorff measure and Hausdorff dimension

Hausdorff dimension has the advantage of being defined for any set since it is based on the Hausdorff measure which is relatively easy to operate. We first give the definition of Hausdorff measure and then give the definition of Hausdorff dimension.

Let U ⊆ R n be non-empty where R n is the n-dimensional Euclidean space. The diameter of U is the largest distance between any pair of points in U , that is

|U | = sup{|x -y| : x, y ∈ U }.
Let s be a non-negative real number and E ⊆ R n . For each δ > 0, the δ-covering of

E, written as {U i } ∞ i=1 , is a countable (or finite) family of sets of diameter less than δ which covers E, that is, E ⊆ ∞ i=1 U i and |U i | ≤ δ. Let H s δ (E) = inf ∞ i=1 |U i | s : ∞ i=1 U i is the δ -covering of E .
Consequently, H s δ (E) is the minimum of the sum of the sth powers of the diameters of the sets covering E whose diameter is less than δ. A quick calculation shows that the infimum H s δ (E) increases when δ tends to 0. The s-dimensional Hausdorff measure of F is defined by

H s (E) = lim δ→0 H s δ (E).
This limit exists for any E ⊆ R n and the limit can be (and generally is) 0 or ∞. We can check that H s is a measure. Hausdorff measure satisfies the propeties as follows.

Proposition 3.1.1 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). Let E and F be two subsets of R n .

(1) We have H s (∅) = 0.

(

) If E ⊆ F , then H s (E) ≤ H s (F ). (3) Let {E i } ∞ i=1 be a countable sequence of subsets in R n , then H s ∞ i=1 E i ≤ ∞ i=1 H s (E i ). ( 2 
) If E is a Borel subset of R n , there is a constant c such that H s (E) = vol n (E) c 4 
where vol n (E) is the n-dimensional Lebesgue measure (i.e., the usual n-dimensional volume).

(5) (Scaling property) Let f be a similarity function with scale factor λ > 0. Then

H s (f (E)) = λ s H s (E).
(6) Let f be the function mapping from E to R n such that

|f (x) -f (y)| ≤ c|x -y| α , ∀ x, y ∈ E,
for some constants c > 0 and α > 0. It holds that for all s,

H s α (f (E)) ≤ c s α H s (E).
(7) (Translation and rotation invariant) Let f be an isometry (i.e., |f

(x) -f (y)| = |x -y|), then H s (f (E)) = H s (E).
Hence,

H s (E + z) = H s (E)
where E + z = {y + z : y ∈ E}.

(8) (Criticality) Let 0 ≤ s < t < ∞. We have the following results.

(I) If H s (E) < +∞, then H t (E) = 0. (II) If H t (E) > 0, then H s (E) = +∞.
For all E ⊆ R n , the criticality of Hausdorff measure (Proposition 3.1.1) shows that there exits a critical value of s such that H s (E) "jumps" from infinity to 0. We call this critical value, denote by dim H (E), the Hausdorff dimension of E. Namely,

dim H E = inf {s : H s (E) = 0} = sup {s : H s (E) = ∞} = inf {s : H s (E) < ∞} = sup {s : H s (E) > 0} .
Now we display some properties of Hausdorff dimension which is important to the calculation of Hausdorff dimension.

Proposition 3.1.2 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). Let E, F ⊆ R n .

(

) (Monotonicity) If E ⊆ F , we have dim H E ≤ dim H F . ( 1 
) (Countable stability) Let {E i } ∞ i=1 be a countable collection of sets, then dim H ∞ i=1 E i = sup {dim H E i : 1 ≤ i ≤ ∞} . ( 2 
) (Countable sets) If E is countable then dim H E = 0. (4) (Open sets) If E is open, then dim H E = n. 3 
(

) (Smooth sets) If E is a continuously differentiable m-dimensional submanifold (i.e. m-dimensional surface) of R n , then dim H E = m. ( 5 
) (Transformation property) Let E ⊆ R n . Assume that f : E → R m be the function verifies |f (x) -f (y)| ≤ c|x -y| α , ∀ x, y ∈ E for constants c > 0 and α > 0. Then dim H f (E) ≤ 1 α dim H E. Furthermore, if f is a Lipschitz transformation satisfying that there is a constant c, such that |f (x) -f (y)| ≤ c|x -y| for any x, y ∈ E, then dim H f (E) ≤ dim H E. If f is a bi-Lipschitz transformation, that is, c 1 |x -y| ≤ |f (x) -f (y)| ≤ c 2 |x -y|, ∀ x, y ∈ E for some 0 < c 1 ≤ c 2 < ∞, then dim H f (E) = dim H E. 6 

Box-counting dimension and packing dimension

Box-counting, also called Minkowski dimension or MinkowskiõBouligand dimension, is introduced by Bouligand [START_REF] Bouligand | Ensembles impropres et nombre dimensionnel [J][END_REF] in 1929. It is one of the most popular dimensions using in fractal geometry. It is used widely since it is relatively easy to calculate mathematically and estimate empirically. For all r > 0 and any non-empty bounded set E ⊆ R N . Suppose that N r (E) is the smallest number of balls with radius r in Euclidean metric which can cover E. The upper and lower box-couting dimension of E, written as dim B E and dim B E respectively, is given by

dim B E = lim sup r→0 log N r (E) -log r ,
and

dim B E = lim inf r→0 log N r (E) -log r . If dim B E = dim B E, the common value, denoted by dim B E, is called the box-counting dimension of E.
There are some equivalent definitions of box-countable dimensions, for instance, N r (E) can be defined as the greatest number of disjoint closed balls of radius r with center in E, see [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF] for more details. Ir can be checked that, for all

E ⊆ R n , we have dim H E ≤ dim B E ≤ dim B E.
Box-counting dimension verifies the following properties.

Proposition 3.1.3 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). Let E, F ⊆ R n .

(

) (Monotonicity) If E ⊆ F , then dim B E ≤ dim B F, dim B E ≤ dim B F. 1 
(

) (Smooth sets) If E is a smooth m-dimensional submanifold of R n , then dim B F = m. 2 
(3) (Finite stability) The upper box-counting dimension is finitely stable, that is

dim B (E ∪ F ) = max dim B E, dim B F .
What should be noted here is that the corresponding identity does not hold for lower box-counting dimension and both the upper and lower box-counting dimensions do not have countable stability.

(

) (Transformation property) Both dim B and dim B are bi-Lipschitz invariant. That is, if f is a bi-Lipschitz, then dim B f (E) = dim B E, dim B f (E) = dim B E. 4 
(5) Denote the closure of E (i.e., the smallest closed subset of R n containing E) by E.

We have

dim B E = dim B E, dim B E = dim B E.

Packing measure and packing dimension

Packing measure and packing dimension on (R n , | • |) were first introduced by

Tricot [START_REF] Tricot | Two definitions of fractional dimension[END_REF] and then studied by Taylor and Tricot [START_REF] Taylor | The packing measure of rectifiable subsets of the plane[END_REF] in the early 1980s which play a dual role to Hausdorff measure and Hausdorff dimension. Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF] and Mattila [START_REF] Mattila | Geometry of Sets and Measures in Euchidean Space[END_REF] contain systematic accounts between the Hausdorff measure and packing measure, Hausdorff dimension and packing dimension.

Let E ⊆ R n and δ > 0. The δ-packing of set E is a family of disjoint open balls of radius smaller than δ with center in E. For all s ≥ 0, let

P s δ (E) = sup i≥1 |U i | s : {U i } ∞ i=1 is a δ -packing of E. .
Note that P s δ (E) decreases when δ goes to 0, the limit of P s δ (E) exists, let

P s 0 (F ) = lim δ→0 P s δ (F ).
We can see that P s 0 is not a measure since σ-additive property does not hold. We define the s-packing measure of E by

P s (E) = inf ∞ i=1 P s 0 (E i ) : E ⊆ ∞ i=1 E i .
Thus, the packing dimension of E is defined by dim P E = inf {s : P s (E) = 0} = sup {s : P s (E) = ∞} = inf {s : P s (E) < ∞} = sup {s : P s (E) > 0} .

Similar to Hausdorff dimension, packing dimension also has the following elementary properties.

Proposition 3.1.4 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). Let E, F ⊆ R n .

(

) (Monotonicity) If E ⊆ F , we have dim P E ≤ dim P F . ( 1 
) (Countable stability) Let {E i } ∞ i=1 be a countable collection of sets, then dim P ∞ i=1 E i = sup {dim P E i : 1 ≤ i ≤ ∞} . ( 2 
) (Countable sets) If E is countable then dim P E = 0. (4) (Open sets) If E is open, then dim P E = n. 3 
(

) (Smooth sets) If E is a continuously differentiable m-dimensional submanifold (i.e. m-dimensional surface) of R n , then dim P E = m. ( 5 
) (Transformation property) If f is a Lipschitz transformation, then dim P f (E) ≤ dim P E. If f is a bi-Lipschitz transformation, then dim P f (E) = dim P E. 6 
The relationship of Hausdorff dimension, boxing dimension and packing dimension is as follows.

Proposition 3.1.5 (Falconer [27]). For all F ⊆ R N , we have

dim H F ≤ dim P F ≤ dim B F.
We also have the following basic facts on the boxing dimension and packing dimension.

Proposition 3.1.6 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]).

(1) If a set F ⊂ R n is of second category, then

dim P F = n.
(2) If a set F ⊂ R n is dense, then dim P F = n.

Calculation of Hausdorff dimension

As is discussed in Section 2. Theorem 3.1.7 (Falconer [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]). (Mass distribution principle) Let E ⊆ R n . Let µ be a mass distribution on E and suppose that for some s, there exists real numbers c > 0 and > 0 satisfying that

µ(U ) ≤ c|U | s
for all sets U with radius less than . Then

H s (F ) ≥ µ(F ) c and dim H E ≥ s.
Furthermore, Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] provided the following modified mass distribution principle which is of great importance in estimating the lower bound of the Hausdorff dimension of sets considered in the β dynamical system. For convenience, denote by I n for all basic intervals of order n.

Theorem 3.1.8 (Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]). Let µ be a Borel measure and E be a Borel measurable set with µ(E) > 0. Assume that there is a constant c > 0 and an integer N ≥ 1 such that for all n ≥ N and each basic interval I n , the inequality

µ(I n ) ≤ c|I n | s is valid. Then, dim H E ≥ s.

β-dynamical system

The representation of real numbers is one of the most important tool in the research of Number Theory and Dynamical Systems. The well-known representations of numbers include decimal expansions, binary expansions, continued fraction and so on. The beta-

expansion is what we are concerned about in this thesis. We now give some fundamental result on the the β-dynamical system. It can be found in [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF][START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] and the references therein.

Equivalence of β-dynamical system

In section 2.1, we have already know the β-transformation given by Rényi. Another typical β-transformation is given by

T β x = βx -βx + 1 (0 < x ≤ 1),
where x stands for the smallest integer no less than x. Similarly, by the iteration of T β , every x ∈ (0, 1] can be written as :

x = ε 1 (x, β) β + • • • + ε n (x, β) + T n β x β n = ∞ n=1 ε n (x, β) β n ,
where, for each n ≥ 1,

ε n (x, β) = βT n-1 β x -1.
The transformation T β guarantees that every x ∈ (0, 1] has an infinite series expansion, i.e., ε n (x, β) = 0 for infinitely many n ∈ N. This is because T β (x) is strictly larger than 0. As a mater of fact, the β-expansions under the above two transformation coincide except at the points with a finite expansion under the algorithm T β . As a consequence, the results will be consistent when we consider the Lebesgue measure, Hausdorf dimension or topological properties under the two transformations. The transformation T β generates the beta-dynamical system ([0, 1), T β ).

It is proved by Rényi [68] that the dynamical system ([0, 1), T β ) admits log β as its topological entropy as the following theorem. Here and subsequently, we denote by the cardinality of a finite set.

Theorem 3.2.1 (Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]). For any n ≥ 1, we have

β n ≤ Σ n β ≤ β n+1 β -1 , lim n→∞ Σ n β n = log β.
Moreover, Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] showed that there is an invariant measure in the β-dynamical system as follows.

Theorem 3.2.2 (Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]). There exists a unique invariant ergodic measure ν β which is equivalent to the Lebesgue measure. More precisely, there is a constant c β := 1 -1 β such that, for any Borel measurable set B, we have

c β ν β (B) ≤ L(B) ≤ 1 c β ν β (B). (3.2.1)

Admissibility

The definition of β-expansion gives the fact that every digit ε n (x, β) lies in the set

A = {0, 1, • • • , β -1}.
We can check that not every word in A n is the β-expansion of some x ∈ [0, 1). For example, when

β = √ 5+1 2
which is the golden mean, there is not Similarly, an infinite sequence (ε 1 , . . . , ε n , . . .) ∈ A N is called admissible with respect to β if there is a real number x ∈ [0, 1) whose β-expansion is (ε 1 , . . . , ε n , . . .).

x ∈ [0, 1) such that its β-expansion is (1, 1, 0 ∞ ) ∈ A N .
For convenience, denote by Σ n β the set of all β-admissible words of length n, i.e.,

Σ n β = {(ε 1 , . . . , ε n ) ∈ A n : ∃ x ∈ [0, 1), s.t. ε j (x, β) = ε j , ∀ 1 ≤ j ≤ n}.
Denote by Σ * β the set of all β-admissible words of finite length, i.e., Σ *

β = ∞ n=0 Σ n β . The set of β-admissible sequences is denoted by Σ β , i.e., Σ β = {(ε 1 , ε 2 , . . .) ∈ A N : ∃ x ∈ [0, 1), s.t. ε(x, β) = (ε 1 , ε 2 , . . .)}.
In order to characterize the admissible words and sequence. We endow the space A N with the lexicographical order < lex :

(ω 1 , ω 2 , . . .) < lex (ω 1 , ω 2 , . . .)

if ω 1 < ω 1 or there exists an integer j > 1, such that, for all 1 ≤ k < j, ω k = ω k but ω j < ω j . The symbol ≤ lex means = or < lex . Moreover, for all n, m ≥ 1, (ω 1 , . . . , ω n ) < lex (ω 1 , . . . , ω m ) stands for (ω 1 , . . . , ω n , 0 ∞ ) < lex (ω 1 , . . . , ω m , 0 ∞ ).

The following theorem due to Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF] yields that the β-dynamical system is totally determined by the infinite β-expansion of 1. For all ω = (ω 1 , ω 2 , . . .) ∈ A N , let σ be the shift transformation such that σω = (ω 2 , ω 3 , . . .). Theorem 3.2.4 (Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]). (1) For every n

≥ 1, ω = (ω 1 , . . . , ω n ) ∈ Σ n β if and only if (ω j+1 , . . . , ω n ) ≤ lex (ε * 1 , . . . , ε * n-j ) f or all 0 ≤ j < n. (2) For any k ≥ 1, σ k ε(1, β) < lex ε(1, β). (3) For all 1 < β 1 < β 2 , it holds that ε * (1, β 1 ) < lex ε * (1, β 2 ). Consequently, for every n ≥ 1, we have Σ n β 1 ⊆ Σ n β 2 and Σ β 1 ⊆ Σ β 2 .

Basic intervals

Recall the definition of basic interval defined by (2.1.1), it is shown in Fan and

Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] that the basic interval is left-closed and right-open as follows.

Lemma 3.2.5.

Let ω = (ω 1 , . . . , ω n ) ∈ Σ n β with n ≥ 1. We have I(ω 1 , . . . , ω n ) is a left-closed and right-open interval with ω 1 β + • • • + ωn β n as its left endpoint.
We can check that |I n (ω)| ≤ β -n for all ω ∈ Σ n β (n ≥ 1), now we give the definition of full basic intervals which plays a vital part of the estimation of the length of the basic interval with order n as follows. Definition 3.2.6. Let N ∈ N. For any ω ∈ Σ n β (n ≥ 1). The basic interval I n (ω) is said to be full if |I n (ω)| = β -n . Moreover, the word ω is also called a full word if I n (ω) is full.

Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] gives the characterization of full intervals as follow.

Theorem 3.2.7 (Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]). Let ω = (ω 1 , . . . , ω n ) ∈ Σ n β with n ≥ 1. Then the followings are equivalent :

(1) The basic interval I n (ω 1 , . . . , ω n ) is full. The full intervals also have the following properties which is given by Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]. For any ≥ 0, let 0 be the empty word when = 0, and otherwise, let 0 = 0, . . . , 0 . The concatenation ω * ∅ is defined by ω. Theorem 3.2.8 (Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]).

Let ω = (ω 1 , . . . , ω n ) ∈ Σ n β with n ≥ 1. (1) If (ω 1 , . . . , ω n-1 , ω n ) with ω n > 0 is admissible, then I n (ω 1 , . . . , ω n-1 , ω n ) is full for any 0 ≤ ω n < ω n .
(2) If I N (ω 1 , . . . , ω n ) is full, then for any (ω 1 , . . . , ω m ) ∈ Σ m β , we have

|In + m(ω 1 , . . . , ω n , ω 1 , . . . , ω m )| = |I n (ω 1 , . . . , ω n )| • |I m (ω 1 , . . . , ω m )|.
(3) The basic intervals I n+Γn+1 (ω 1 , . . . , ω n , 0 Γn+1 ) and I n+tn+1 (ε * 1 , . . . , ε * n , 0 tn+1 ) are full.

The following inequalities on the estimation of the lengths of basic intervals will be used which follows from Theorem 3.2.8(3) (see also [START_REF] Li | Beta-expansion and continued fraction expansion[END_REF]). For all word (ω 1 , ..., ω n ) ∈ Σ n β , we have

β -(n+Γn+1) ≤ |I(ω 1 , . . . , ω n )| ≤ β -n , β -(n+tn+1) ≤ |I(ε * 1 , . . . , ε * n )| ≤ β -(n+tn) . (3.2.2)
The following theorem in Fang and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF] gives a way to evaluate the length of an arbitrary basic interval I n (ω 1 , . . . , ω n ) by comparing the suffixes of (ω 1 , . . . , ω n )

with the prefixes of β-expansion of the unit 1. For all ω = (ω 1 , . . . ,

ω n ) ∈ Σ n β . Define k * n (ω) = inf{0 ≤ k < n : (ω k+1 , . . . , ω n ) = (ε * 1 , . . . , ε * n-k )}.
If such k does not exist, let k * n (ω) = n. For all x ∈ [0, 1), let

k * n (x) = k * n (ε 1 (x, β), . . . , ε n (x, β)). (3.2.3)
Theorem 3.2.9 (Fan and Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]). For each ω = (ω 1 , . . . , ω n ) ∈ Σ n β , the length of

I n (ω) satisfies |I n (ω)| = β -k * n (ω) • |I n-k * n (ω) (ε * 1 , . . . , ε * n-k * n (ω) )|.
Moreover, we will apply the following theorem due to Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF] which is a useful tool to estimate the number of full basic intervals.

Theorem 3.2.10 (Bugeaud and Wang [START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF]). There is at least one full basic interval for all n + 1 consecutive basic intervals of order n.

Classic and uniform Diophantine Approximation on βdynamical system

Diophantine approximation research the quantitative properties of the distribution of the orbits in a dynamical system. It devotes to studying the size of dynamically defined limsup sets in the sense of measure and dimension. In this section, we will provide some results on classic and uniform Diophantine approximation on the βdynamical system. For more information of the classical Diophantine Approximation, the readers can refer to [START_REF] Bugeaud | Exponents of Diophantine approximation and Sturmian continued fractions[END_REF][START_REF] Cassels | An Introduction to Diophantine Approximation[END_REF][START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF][START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF] and the references therein. The readers can also refer to [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF][START_REF] Bugeaud | Metrical results on the distribution of fractional parts of powers of real numbers[END_REF][START_REF] Kim | Dirichlet uniformly well-approximated numbers[END_REF] for more properties of the uniform Diophantine approximation.

The following result due to Philipp [START_REF] Philipp | Some metrical theorems in number theory[END_REF] will give a useful result related to the Diophantine approximation.

Theorem 3.2.11 (Philipp [START_REF] Philipp | Some metrical theorems in number theory[END_REF]). Let {B n } ∞ n=1 be an arbitrary sequence of intervals contained in [0, 1). For any positive integer N and x ∈ [0, 1), denote by A(N, x) the number of positive integer n ≤ N such that

T n β x ∈ B n . Put φ(N ) = n≤N ν β (B n ).
Then

A(N, x) = φ(N ) + O φ 1 2 (N ) log 3 2 + φ(N ) , > 0
for almost all x ∈ [0, 1) where the constant implied by O is an absolute constant.

Let ϕ : N → R + be a function with ϕ(n) → 0 as n → +∞. Let B n = B(x, ϕ(n))
which is an interval whose center is x with radius ϕ(n). By the equivalence between ν β and L (see (3.2.1)), the following corollary is straightforward.

Corollary 3.2.12. The set {x ∈ [0, 1) :

|T n β x -x| ≤ ϕ(n) for infinitely many n ∈ N} is of full Lebesgue measure if ∞ n=1 ϕ(n) = +∞. Otherwise, it is of null Lebesgue measure.
Recall the definition of the exponents v β (x) and vβ (x) related to the classic and uniform Diophantine Approximation respectively (see Section 2.4). Shen and Wang gave the following dimensional result on the sets of points with classic Diophantine Approximation.

Theorem 3.2.13 (Shen and Wang [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF]). Let

β > 1. Let 0 ≤ v ≤ +∞. Then dim H {x ∈ [0, 1) : v β (x) ≥ v} = 1 1 + v .
Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] studied the set of points with uniform Diophantine properties and established the theorem as follows.

Theorem 3.2.14 (Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF]). Let

β > 1. Let 0 < v < 1 and v > 0. If v < v 1-v , then the set U β (v, v) := {x ∈ [0, 1) : vβ (x) = v, v β (x) = v} is empty. Otherwise, we have dim H U β (v, v) = v -(1 + v)v (1 + v)(v -v) .
Moreover,

dim H {x ∈ [0, 1) : vβ (x) = v} = 1 - v 1 + v 2 .

Approximation of β

Let β > 1. Recall that the infinite β-expansion of 1 is ε * (1, β) = (ε * 1 , ε * 2 , .
. .). We will apply the approximation of β to construct the Cantor subset as follows. For all N with ε * N > 0, let β N > 1 be the unique solution of the equation :

1 = ε * 1 x + • • • + ε * N x N . Then ε * (β N ) = (ε * 1 , . . . , ε * N -1) ∞ .
Hence 1 < β N < β and β N is increasing to β as N goes to infinity. The number β N is called an approximation of β. Moreover, by Theorem 3.2.4(3), Σ n β N ⊆ Σ n β for all n ≥ 1 and Σ β N ⊆ Σ β . We therefore have the following facts. Proposition 3.2.15 (Shen and Wang [START_REF] Shen | Shrinking target problems for beta-dynamical system[END_REF]). For every ω ∈ Σ n β N , when regarding ω as an element of Σ n β , we have

β -(n+N ) ≤ |I n (ω, β)| ≤ β -n . (3.2.4)
Moreover, every ω ∈ Σ n β N (n ≥ N ) end with 0 N is full when regarding ω as an element of Σ n β .

Results of β-expansion in the parameter space

In this section, we will recall some important results of β-expansion in the parameter space {β ∈ R : β > 1}. The readers can refer to [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF][START_REF] Hu | On consecutive 0 digits in the β-expansion of 1 [J][END_REF][START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF] for more information.

Definition 3.2.16. We call a word ω = (ω 1 , . . . , ω n ) self-admissible if for all 1 ≤ i < n, (ω i+1 , . . . , ω n ) ≤ lex (ω 1 , . . . , ω n-i ).

An infinite sequence ω = (ω 1 , ω 2 , . . .) is called self-admissible if σ i ω < lex ω for all i ≥ 1.

Denote by Λ n the set of all self-admissible words with length n, i.e.,

Λ n = {ω = (ω 1 , ω 2 , . . . , ω n ) : for every 1 ≤ i < n, σ i ω ≤ lex (ω 1 , . . . , ω n-i )}.
For convenience, for all 1 < β 1 < β 2 , let

Λ n (β 1 , β 2 ) = {ω = (ω 1 , . . . , ω n ) ∈ Λ n : ∃ β ∈ (β 1 , β 2 ] : s.t. ε 1 (β) = ω 1 , . . . , ε n (β) = ω n }. (3.2.5)
The definition of self-admissible word immediately gives the following result. The proof is evident and will be omitted.

Proposition 3.2.17.

For any m ≥ n ≥ 1, let ω ∈ Λ n . Let β > 1 whose infinite β- expansion of 1 satisfy (ε * 1 , . . . , ε * n ) < lex ω. Then for all v 1 , v 2 , . . . , v i ∈ Σ m β (i ≥ 1), the concatenation ω * v 1 * • • • * v j is still self-admissible for all 1 ≤ j ≤ i.
The characterization of the the β-expansion of 1 was given by Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]. Theorem 3.2.18 (Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]). An infinite sequence (ω 1 , ω 2 , . . .) is the β-expansion of 1 for some β > 1 if and only if it is self-admissible. Now we consider the cylinders in the parameter space {β ∈ R : β > 1}. Definition 3.2.19. For any ω = (ω 1 , . . . , ω n ) ∈ Λ n . The cylinder I P n (ω) associated to ω in the parameter space is the set of β ∈ (1, +∞) whose β-expansion of 1 has the prefix (ω 1 , . . . , ω n ), i.e.

I P n (ω) := {β ∈ (1, +∞) : ε 1 (1, β) = ω 1 , . . . , ε n (1, β) = ω n }.
The cylinders in the parameter space are intervals (see [START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF]Lemma 4.1]). The length of the cylinders of ω ∈ Λ n in the parameter space is denoted by |I P n (ω)|. For simplicity, the left endpoint and right endpoint of I P n (ω) are written as β(ω) and β(ω) respectively.

To estimate the length of cylinders in the parameter space, we need the notion of recurrence time τ (ω) (see [START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF]) of the self-admissible word ω

= (ω 1 , . . . , ω n ) ∈ Λ n . Define τ (ω) := inf{1 ≤ k < n : σ k (ω 1 , . . . , ω n ) = (ω 1 , . . . , ω n-k )}.
If we cannot find such an integer k, we set τ (ω) = n. In this case, the self-admissible word ω is said to be non-recurrent.

The above definition of recurrence time immediately provides the following properties. For all integer k ≥ 0, let ω k = (ω, . . . , ω k ) where ω 0 = ∅. Then we have

(ω 1 , . . . , ω n ) = (ω 1 , . . . , ω τ (ω) ) n τ (ω)
, ω 1 , . . . , ω t(ω) .

(2) If ω = (ω 1 , . . . , ω n ) is non-recurrent, then the word (ω 1 , . . . , ω n , 0 ) is still non-recurrent for all ≥ 1.

The following result gives the upper and lower bounds of the length of the cylinder

I P n (ω).
Lemma 3.2.21 (Schemling [START_REF] Schmeling | Symbolic dynamics for the β-shifts and self-normal numbers[END_REF], Li, Persson, Wang and Wu [START_REF] Li | Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions[END_REF]). Let ω = (ω 1 , . . . , ω n ) ∈ Λ n . We have the following inequalities :

(1)

|I P n (ω)| ≤ β(ω) -n+1 ; (2) |I P n (ω)| ≥      C(ω)β(ω) -n , when t(ω) = 0; C(ω)β(ω) -n ω t(ω)+1 β(ω) + • • • + ω τ (ω) + 1 β(ω) τ (ω)-t(ω) , otherwise,
where

C(ω) := (β(ω) -1) 2 β(ω) . (3.2.6)
The study of the parameter space usually concerns on the set of parameters with respect to which the approximation properties of the orbit of 1 are prescribed. Persson and Schmeling [START_REF] Persson | Dyadic Diophantine approximation and Katok's horseshoe approximation[END_REF] proved the following result.

Theorem 3.2.22 (Persson and Schmeling [START_REF] Persson | Dyadic Diophantine approximation and Katok's horseshoe approximation[END_REF]). Let v ≥ 0. Then

dim H {β ∈ (1, 2) : v β (1) ≥ v} = 1 1 + v .
Analogous to Theorem 3.2.14, Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] obtained the following theorem in the parameter space.

Theorem 3.2.23 (Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF]). Let 0 < v < 1 and v > 0.

If v < v 1-v , then the set U (v, v) := {β ∈ (1, 2) : vβ (1) = v, v β (1) = v} is empty. Otherwise, we have dim H U (v, v) = v -(1 + v)v (1 + v)(v -v) .
Moreover,

dim H {β ∈ (1, 2) : vβ (1) = v} = 1 - v 1 + v 2 .

Chapitre 4 Irregular sets on the lengths of basic intervals

In topology, the notion of residual set is usually used to describe a set being large.

In a metric space X, a set R is said to be residual if its complement is of the first category. Moreover, in a complete metric space a set is residual if it contains a dense G δ set, see [START_REF] Oxtoby | Measure and Category [M[END_REF]. Hence, in order to prove Theorem 2.1.2, it suffices to construct a set U ⊆ [0, 1] verifying the following three conditions :

(1) U ⊆ E;

(2) U is dense in [0, 1] ; (3) U is a G δ set.
As is discussed in Section 1.2, We are interested in the size of the irregular sets on the lengths of basic intervals in the topological sense. We will prove that the extremely irregular set is residual in this section.

Accumulation points related to the irregular sets

To state our results, we begin by introducing some notation. For all x ∈ [0, 1), the set of accumulation points of

-log β |In(x)| n as n ∞ is denoted by A(D(x)) , that is, A(D(x)) = y ∈ [1, 1 + λ(β)] : lim k→∞ -log β |I n k (x)| n k = y for some {n k } k≥1 ∞ .
For an integer n ≥ 1, denote by k * n (x) the largest length of the suffixes of (ε 1 (x, β), . . . , ε n (x, β)) agreeing with the prefix of the digit sequence of the unit 1. In other words,

k * n (x) = k * n (x, β) := inf{k ≥ 0 : (ε k+1 (x, β), . . . , ε n (x, β)) = (ε * 1 , . . . , ε * n-k )}. (4.1.1) Define ρ(x) = ρ(x, β) := lim sup n→∞ t n-k * n (x) n .
where t n is defined as (2.1.2). Since n-k * n (x) ≤ n and by the definition of Γ n (see 2.1.3), we know that t n-k * n (x) ≤ Γ n which implies ρ(x) ≤ λ(β) for any x ∈ [0, 1). Actually, we will show the upper density D(x) is exactly equal to 1 + ρ(x) as the following theorem which is key to check which points the set A(D(x)) contains. Proof. On the one hand, by the definition of k * n (x) (3.2.3) and Theorem 3.2.9, we have

|I n (x)| = β -k * n (x) I n-k * n (x) ε * 1 , . . . , ε * n-k * n (x) . (4.1.2)
It immediately follows from Theorem 3.2.8(3) that 3), we get

I n-k * n (x) ε * 1 , . . . , ε * n-k * n (x) ≥ I n-k * n (x)+t n-k * n (x) +1 ε * 1 , . . . , ε * n-k * n (x) , 0 t n-k * n (x) +1 = β -(n-k * n (x)+t n-k * n (x) +1) .
D(x) ≤ lim sup n→∞ n + t n-k * n (x) + 1 n = 1 + ρ(x). (4.1.4)
One the other hand, we need to find a sequence {n i } i≥1 satisfying D(x) = 1+τ (x).

In fact, by the definition of ρ(x), we can find a sequence

{n i } i≥1 such that ρ(x) = lim i→∞ t n i -k * n i (x) n i
. In addition, by (3.2.2),

β -n i -k * n i (x)+t n i -k * n i (x) +1 ≤ |I(ε * 1 , . . . ε * n-k * n (x) )| ≤ β -n i -k * n i (x)+t n i -k * n i (x) . (4.1.5) 
Consequently, applying (4.1.2) and (4.1.5), we deduce that 

n i + t n i -k * n i (x) n i ≤ -log β |I n i (x)| n i ≤ n i + t n i -k * n i (x) + 1 n i , that is, lim i→∞ -log β |I n i (x)| n i = 1 + ρ(x). ( 4 
{n k } k≥1 tending to ∞ as k → ∞ such that -log β |I n k +1 (x)| n k + 1 ≤ a ≤ -log β |I n k (x)| n k . Note that |I n k (x)| ≥ |I n k +1 (x)|. We have -log β |I n k (x)| n k ≤ -log β |I n k +1 (x)| n k = -log β |I n k +1 (x)| n k + 1 • n k + 1 n k . Therefore, -log β |I n k +1 (x)| n k + 1 ≤ a ≤ -log β |I n k +1 (x)| n k + 1 • n k + 1 n k , which implies lim k→∞ -log β |I n k +1 (x)| n k +1 = a. Thus [1, 1 + ρ(x)] ⊆ A(D(x)).
Moreover, D(x) = 1 and

D(x) = 1 + ρ(x) indicate that A(D(x)) ⊆ [1, 1 + ρ(x)]. Therefore, A(D(x)) = [1, 1 + ρ(x)].
The above theorem indicates that the set D δ can be written as {x ∈ [0, 1) : Recall that ε * (β) = (ε * 1 , . . . , ε * n , . . .) is the infinite β-expansion of 1 and t n is defined as (2.1.2), we give a property of the full intervals as the following lemma. 

A(D(x)) = [1, δ]}. An extreme case is that δ = 1 + λ(β)
I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ) ⊆ int(I n (ω 1 , . . . , ω n ))
where int(I n (ω)) denotes the interior of 

I n (ω) ⊆ [0, 1]. Proof. If I n (ω 1 , . . . , ω n ) is
, . . . , ε * k , 0 t k +1 ) ∈ Σ * β .
Now we only need to show that the left and right endpoints of 

I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ) lie in int(I n (ω 1 , . . . , ω n )) respectively. Case I : Since ε * 1 (β) = β -1 ≥ 1, we have ω 1 β + • • • + ω n β n + ε * 1 β n+1 + • • • + ε * k β n+k > ω 1 β + • • • + ω n β n .
I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k , 1
) belongs to int(I(ω 1 , . . . , ω n )), that is,

x 0 := ω 1 β + • • • + ω n β n + ε * 1 β n+1 + • • • + ε * k β n+k + 1 β n+k+t k +1 ∈ int(I(ω 1 , . . . , ω n )).
Now we prove that x 0 is the right endpoint of

I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1
). As a matter of fact, for every

x ∈ I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ), we easily get that x = ω 1 β + • • • + ωn β n + ε * 1 β n+1 + • • • + ε * k β n+k + ε * n+k+t k +2 β n+k+t k +2 + • • • ≤ ω 1 β + • • • + ωn β n + ε * 1 β n+1 + • • • + ε * k β n+k + 1 β n+k+t k +1 = x 0 , Now let x i = ω 1 β + • • • + ωn β n + ε * 1 β n+1 + • • • + ε * k β n+k + ε * 1 β n+k+t k +2 + • • • + ε * i β n+k+t k +i+1 ∈ I(ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ).
Note that

1 = ε * 1 β + ε * 2 β 2 + • • • .
We deduce that lim i→∞

x i = x 0 . So x 0 is the right endpoint of I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ).
Now we devote to constructing a set U with the desired properties. From Fan and

Wang [START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF], we know that λ(β) can also be written as

λ(β) = lim sup n→∞ t n n ,
where t n is defined as (2.1.2). For each k ≥ 1, recall that Σ k β is the set of all admissible words of length k and Γ k is defined as (2.1.3). Define

U := ∞ n=1 ∞ k=n (ε 1 ,...,ε k )∈Σ k β int I k+Γ k + k i=1 (m i +tm i +1) (ε 1 , . . . , ε k , 0 Γ k +1 , v 1 , . . . , v k ) , where v k = (ε * 1 , . . . , ε * m k , 0 tm k +1 ), (4.2.1) 
and m k is chosen to be a fast increasing sequence such that

λ(β) = lim k→∞ t m k m k , k + Γ k + 1 + k-1 j=1 (m j + t m j + 1) m k . (4.2.2)
We can see that U is well defined. This is because, for any ε

= (ε 1 , . . . , ε k ) ∈ Σ k β , the interval I k+Γ k +1 (ε 1 , . . . , ε k , 0 Γ k +1
) is full by Theorem 3.2.8(3) and it follows from Theorem 3.2.7 that (ε 1 , . . . , ε k , 0 Γ k +1 ) can concatenate any β-admissible word.

Analogously, I m + tm k +1 (v k ) is full by Theorem 3.2.8(3) and v k can concatenate any admissible word by Theorem 3.2.7 for each k ≥ 1.

Clearly, U is a G δ set since int(I n (ω)) is open for all ω ∈ Σ n β .
For convenience, we rewrite the basic interval I n (ω) as I ω for each ω ∈ Σ n β . Next we will show that U is a subset of E and is dense in

[0, 1]. Lemma 4.2.2. U is dense in [0, 1].
Proof. Given x ∈ [0, 1) and r > 0, we only need to find y ∈ U such that |x -y| ≤ r.

Let the β-expansion of x be ε(x, β) = (ε 1 (x), ε 2 (x), ...), specially, if x = 0, let ε(x, β) = (0, 0, . . . , 0, . . .). Clearly there exists ∈ N such that β -≤ r.

Let ω k be defined as (4.2.1). Take

u 1 = (ε 1 (x), ..., ε (x), 0 Γ +1 , v 1 , ..., v ) ∈ Σ 1
β , where 1 = + Γ + 1 + j=1 (m j + t m j + 1),

u 2 = (u 1 , 0 Γ 1 +1 , v 1 , ..., v 1 ) ∈ Σ 2 β , where 2 = 1 + Γ 1 + 1 + 1 j=1
(m j + t m j + 1), . . .

u k = (u k-1 , 0 Γ k-1 +1 , v 1 , ..., v k-1 ) ∈ Σ k β , where k = k-1 + Γ k-1 + 1 + k-1 j=1 (m j + t m j + 1), . . . Let S := ∞ k=1 int(I(u k )).
For each k ≥ 1, we have

int(I(u k+1 )) ⊆ I(u k+1 ) ⊆ int I(u k , 0 Γ k +1 , v 1 , . . . , v k -1 ) ⊆ I(u k ) ⊆ I(u k ),
where the second inclusion relation follows from Lemma 4.2.1. Thus, it follows that

∞ k=1 int(I(u k )) = ∞ k=1 I(u k ).
Note that I(u k+1 ) ⊆ I(u k ), it is obvious that Proof. For every x ∈ U, we only need to prove that there exists a sequence

{n k } k≥1 such that lim k→∞ -log β |I n k | n k = 1 + λ(β).
Then it follows that D(x) = 1 + λ(β) since D(x) ≤ 1 + λ(β). As a consequence, U ⊆ E.

In fact, for all x ∈ U , by the construction of U , there exist infinitely many k, such that the β-expansion of x starts with ε 1 , . . . , ε k ,

0 Γ k +1 , ω 1 , . . . , ω k , where ε 1 , . . . , ε k ∈ Σ k β and ω i is defined as (4.2.1) for all 1 ≤ i ≤ k. Let n k = k +Γ k +1+ k-1 j=1 (m j +t m j +1)+m k ,
for convenience, we denote n k as

n k = h k +m k where h k = k+Γ k +1+ k-1 j=1 (m j +t m j +1)
m k by (4.2.2). A simple observation on I n (x) : if n = n k + t m k + 1, by the construction of U , we have 

I n (x) = I(ε 1 , . . . , ε h k , ε * 1 , . . . , ε * m k , 0 tm k +1 ), ( 4 
I(ε * 1 , . . . , ε * m k ) = I(ε * 1 , . . . , ε * m k , 0 tm k ), so I n k (x) = I(ε 1 , . . . , ε h k , ε * 1 , . . . , ε * m k , 0 tm k ) by Remark 2.1.1. Hence, we have I n k (x) = I n k +tm k (x). Since I n k +tm k +1 (x) is full, we have β -(n k +tm k +1) ≤ |I n k (x)| = |I n k +tm k (x)| ≤ β -(n k +tm k ) . By (4.2.2), it immediately follows that lim k→∞ -log β |I n k | n k = lim k→∞ n k + t m k n k = lim k→∞ h k + m k + t m k h k + m k = 1 + λ(β).

Further results

Noting that D ∩ D δ = ∅ for all 1 < δ < 1 + λ(β), we have the following corollary.

Corollary 4.3.1. Let β > 1 with λ(β) > 0, then D δ is of the first category for every Let F be the irregular set which contains the points of x ∈ (0, 1] whose limit of

1 < δ < 1 + λ(β).
-log β |In(x)| n
does not exist, i.e.,

F = {x ∈ (0, 1] : D(x) < D(x)}.
The set of irregular points is negligible from the measure-theoretical point of view [START_REF] Thompson | Irregular sets, the β-transformation and the almost specification property[END_REF].

For every 1 < δ ≤ 1 + λ(β), we have D δ ⊆ F , so by (2.1.5), it follows that

dim H F ≥ dim H D δ = λ(β) + 1 -δ δ • λ(β) → 1 as δ → 1 which implies dim H F = 1. It follows from Proposition 3.1.5 that dim H F = dim P F = dim B F = 1.
Thus, we obtain that the set F has full dimension if λ(β) > 0, i.e., the set D can be large from the viewpoint of dimension theory. The next result shows that F is large from a topological point of view as well which follows immediately from D ⊆ F . Step I Fixed β > 1. Let 

h = min{k ≥ 2 : (1, 0 k-2 , 1) is β -admissible}. ( 5 
ϕ(n) = +∞
give that there exists a subsequence

{n k } ∞ k=1 ⊆ N satisfying lim k→∞ n k ϕ(n k ) = +∞ (5.1.2)
with n 1 ≥ e h+1 and

n k ≥ ϕ(n k ) ≥ kn k-1 (5.1.3) for all k ≥ 2, k ∈ N.
Let G 1 = {(10 n 1 -1 )} be a singleton. Then the basic interval I n 1 (10 n 1 -1 ) is full since

n 1 ≥ e h+1 . For every k ≥ 1, let d k = log n k . Write M d k = {(ε 1 , . . . , ε d k ) ∈ Σ d k β : ε 1 = 1 and I d k (ε 1 , . . . , ε d k ) is full}. (5.1.4)
Then the choice of n 1 ≥ e h+1 ensures that d k > h for every k ≥ 2. For any j ∈ Z + , let

t 2j = n 2j -n 2j-1 d 2j-1 , t 2j+1 = p-1 p n 2j+1 -n 2j d 2j .
As a result from the choice of n k in (5.1.3), we get that t k ≥ 1 for each k ≥ 1. Next, for all k ≥ 1, define

G k = {u k = (u (1) 
k-1 , . . . , u

(t k ) k-1 , 0 n k -n k-1 -d k-1 t k ) : u (i) k-1 ∈ M d k-1 for all 1 ≤ i ≤ t k }.
Then, we have for each 

u k ∈ G k , the length of u k satisfies that |u k | = n k -n k-1 .
D k = {(u 1 , . . . , u k ) : u i ∈ G i , for all 1 ≤ i ≤ k} .
(5.1.5)

Step II For each u = (u 1 , . . . , u k ) ∈ D k , note that the length of u, denoted by |u|,

satisfying that |u| = |u 1 | + |u 2 | + • • • + |u k | = n 1 + (n 2 -n 1 ) + • • • + (n k -n k-1 ) = n k . Set E p = k≥1 u∈D k I n k (u).
The following lemma provides a detailed exposition of showing E p ⊆ E ϕ max for every p ∈ N, p > 1. Proof. On the one hand, the construction of E p yields that the word u ∈ D k verifies the following properties :

(1) The character of u

(i) k-1 ∈ M d k-1 (1 ≤ i ≤ t k )
beginning with 1 ensures that the maximal length of zeros in every word u ∈ D k only appears at the tail of u k ∈ G k for all k ≥ 1 ;

(2) The maximal length of zeros in every word u 2j+1 ∈ G 2j+1 for all j ≥ 0 is increasing with respect to j. Thus, for large enough j ≥ 1, noticing that

n 2j -n 2j-1 -d 2j-1 t 2j + d 2j-1 = n 2j -n 2j-1 -d 2j-1 n 2j -n 2j-1 d 2j-1 + d 2j-1 ≤ 2d 2j-1 ,
we have

r n 2j (x, β) ≤ max{n 2j-1 -n 2j-2 -d 2j-2 t 2j-1 +d 2j-2 , n 2j -n 2j-1 -d 2j-1 t 2j +d 2j-1 } < 2n 2j-1 .
Therefore,

lim inf n→∞ r n (x, β) ϕ(n) ≤ lim inf j→∞ r n 2j (x, β) ϕ(n 2j ) ≤ lim inf j→∞ 2n 2j-1 ϕ(n 2j ) ≤ lim j→∞ 2n 2j-1 2jn 2j-1 = 0,
where the last inequality follows from (5.1.3).

On the other hand, we note that there are at least 

n k -n k-1 -d k-1 t k zeros in every word u ∈ D k . So it holds that r n 2j+1 (x, β) ≥ n 2j+1 -n 2j -d 2j t 2j+1 ≥ n 2j+1 -n 2j -d 2j p-1 p n 2j+1 -n 2j d 2j + 1 > 1 p n 2j+1 .
p k =              n 2j - 1 p j i=1 n 2i-1 - 2j-1 i=1 d i , when k = 2j, for some j ∈ N; p -1 p n 2j+1 - 1 p j i=1 n 2i-1 - 2j i=1 d i , when k = 2j + 1, for some j ∈ N.
Proof. We first give the lower bound of a k . Recall h defined as (5.1.1), for any k ≥ 1, let

M d k = {(ε 1 , . . . , ε d k ) ∈ Σ d k β : (ε 1 , . . . , ε h ) = (1, 0 h-1 ) and I d k -h (ε h+1 , . . . , ε d k ) is full}.
Then, from the comparison of the definition of

M d k and M d k , it holds that M d k ⊆ M d k which implies M d k ≤ M d k . Theorem 3.2.1 indicates that Σ d k -h β ≥ β d k -h .
Furthermore, note that M d k is just the number of the full words in Σ d k -h β . Hence, by Theorem 3.2.10, we obtain

a k ≥ M d k ≥ β d k -h d k -h .
It follows that there exists an integer k(β) depending on β such that for every k > k(β),

we have

β d k -h d k -h ≥ β d k .
Thus,

a k = M d k ≥ M d k ≥ β d k for every k ≥ k(β). Now we estimate b k . For all j ≥ k(β) 2 + 1 k (β)
, by the construction of G 2j and G 2j+1 , we have

G 2j = ( M d 2j-1 ) t 2j ≥ β d 2j-1 t 2j ≥ β n 2j -n 2j-1 -d 2j-1 ,
and

G 2j+1 = ( M d 2j ) t 2j+1 ≥ β d 2j t 2j+1 ≥ β p-1 p n 2j+1 -n 2j -d 2j .
Then it follows from the relationship between D k and G k that for each j ≥ k(β)

2 + 1, b 2j = D 2j = 2j i=1 G i ≥ 2j i=k (β) G i ≥ β j i=k (β) (n 2i -n 2i-1 -d 2i-1 ) β j i=k (β) ( p-1 p n 2i-1 -n 2i-2 -d 2i-2 ) ≥ c(β)β j i=1 (n 2i -n 2i-1 -d 2i-1 ) β j i=1 ( p-1 p n 2i-1 -n 2i-2 -d 2i-2 ) = c(β)β n 2j -1 p j i=1 n 2i-1 - 2j-1 i=1 d i , (5.1.6)
where

c(β) = β - k (β) i=1 (n 2i -n 2i-1 -d 2i-1 )+ k (β) i=1 ( p-1 p n 2i-1 -n 2i-2 -d 2i-2 )
.

Here c(β) is a constant depending on β. The same way as (5.1.6) shows that, for all 1 < β < β. To complete our proof, it falls naturally into three parts.

b 2j+1 = D 2j+1 = 2j+1 i=1 G i ≥ c(β)β p-1 p n 2j+1 -1 p j i=1 n 2i-1 - 2j i=1 d i . ( 5 
(1) Distribute a probability measure µ supported on E p . Let µ([0, 1)) = 1, and

µ(I n 1 (u)) = 1, for u ∈ D 1 .
For all k ≥ 1, and u = (u 1 , . . . , u k+1 ) ∈ D k+1 , we set

µ(I n k+1 (u)) = µ(I n k (u 1 , . . . , u k )) G k . (5.1.8) 
The Kolmogorov's consistency theorem guarantees that µ we defined above can be uniquely extended to a Borel measure supported on E p .

(2) Estimate the exponent of µ(I n ) for any basic intervals I n of order n with ). By (5.1.8) and Lemma 5.1.2, we get that

I n ∩ E p = ∅ in [0,1
µ(I n i ) = 1 b i ≤ 1 c(β)β p i , (5.1.9) 
for every i > k(β), where k(β) is an integer depending on β given in Lemma 5.1.2. For n ≥ 1, there exists k ≥ 0 such that n k < n ≤ n k+1 . Then, we distinguish four cases to get the lower bound of µ(I n ).

Case 1. k = 2j and

n 2j + d 2j-1 ≤ n < n 2j + ( + 1)d 2j-1 for some 0 ≤ ≤ t 2j -1.
Notice that the number of

I n containing I n 2j+1 (u) (u ∈ D 2j+1 ) is larger than a 2j-1 .
Then

µ(I n ) ≤ µ(I n 2j + d 2j-1 ) ≤ µ(I n 2j )a - 2j-1 ≤ 1 c(β)β p 2j β d 2j-1 ,
where the last inequality follows from (5.1.9) and Lemma 5.1.2. Moreover, Theorem

3.2.8(2) implies

|I n | ≥ |I n 2j +( +1)d 2j | = 1 β n 2j +( +1)d 2j . Consequently, log µ(I n ) log |I n | ≥ log β p 2j +d 2j-1 + log c(β) log β n 2j +( +1)d 2j . Case 2. k = 2j and n 2j + t 2j d 2j-1 ≤ n < n 2j+1 . Then µ(I n ) = µ(I n 2j+1 ) ≤ 1 c(β)β p 2j+1 ,
by (5.1.9) and Lemma 5.1.2. Moreover, Theorem 3.2.8(2) forces that

|I n | ≥ |I n 2j+1 | = 1 β n 2j+1 . Hence, log µ(I n ) log |I n | ≥ log β p 2j+1 + log c(β) log β n 2j+1 . Case 3. k = 2j +1 and n 2j+1 + d 2j ≤ n < n 2j+1 +( +1)d 2j for some 0 ≤ ≤ t 2j -1.
Similarly, it follows that

log µ(I n ) log |I n | ≥ log β p 2j+1 +d 2j + log c(β) log β n 2j+1 +( +1)d 2j+1 . Case 4. k = 2j + 1 and n 2j+1 + t 2j+1 d 2j ≤ n < n 2j+2 . Analogously, log µ(I n ) log |I n | ≥ log β p 2j+2 + log c(β) log β n 2j+2 .
From the above discussion, by letting n → ∞, we get that lim inf n→∞ log µ(In)

log |In| ≥ p-1 p log β log β
for all I n ∩ E p = ∅. We immediately get that, for every η > 0, there exits an integer n 0 such that for every n ≥ n 0 and basic interval I n with order n,

µ(I n ) ≤ |I n | p-1 p log β log β -η .
(3) Use the modified mass distribution principle to get the lower bound of dim H E p .

By [START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF], it follows from Theorem 3.1.8 that dim

E p ≥ p-1 p log β log β -η. The arbitrariness of η > 0 and 1 < β < β demonstrates that dim E p ≥ p-1 p . Proof of Theorem 2.2.1 Applying Lemma 5.1.1, it holds that E p ⊆ E ϕ max for every p ∈ N, p > 1. By setting p → ∞, we get that dim H E ϕ max ≥ lim p→∞ dim H E p ≥ lim p→∞ p -1 p = 1
where the second inequality follows from Lemma 5.1.

3. It is obvious that dim H E ϕ max ≤ 1. Thus, dim H E ϕ max = 1.

Proof of Theorem 2.2.3

For every integer n ≥ 1, let Γ n be defined as (2.1.3) and h be given as (5.1.1).

Since lim sup n→∞ n ϕ(n) = +∞ and ϕ(n) → +∞ as n → +∞, we can choose an increasing subsequence

{n i } ∞ i=1 ⊆ N satisfying lim i→∞ n i ϕ(n i ) = +∞ (5.2.1) with n i -n i-1 > max{2h, i + G i } and ϕ(n i ) ≥ (i -1)n i-1 . Fix (ε 1 , . . . , ε k ) ∈ Σ k β , let ω (k) i =    (1, 0 n k+i -n k+i-1 -1
), when i is odd;

(1, 0 h-1 )

n k+i -n k+i-1 h h , 0 n k+i -n k+i-1 -n k+i -n k+i-1 h h , when i is even, (5.2.2) 
for every 1 ≤ i ≤ 2k. Now we define

U := ∞ n=1 ∞ k=n (ε 1 ,...,ε k )∈Σ k β int I n 3k (ε 1 , . . . , ε k , 0 n k -k , ω (k) 1 , . . . , ω (k) 2k 
, where int(I |ε| (ε)) denotes the interior of I |ε| (ε) for every ε ∈ Σ * β .

Remark 5.2.1. U is well defined. This is because, for all (ε 1 , . . . , ε k ) ∈ Σ k β , it follows from Theorem 3.2.8(3) that the interval 

I k+Γ k +1 (ε 1 , . . . , ε k , 0 Γ k +1 ) is full. Since n k > k + Γ k

It is obvious that

U is a G δ set since int(I |ω| (ω)) is open for all ω ∈ Σ * β . So it remains to show that U is a subset of E ϕ max and is dense in [0, 1]. Lemma 5.2.2. U ⊆ E ϕ max .
Proof. For every x ∈ U, by the construction of U , there exist infinitely many k, such that the β-expansion of x starts with (ε 1 , ..., ε k ,

0 n k -k , ω (k) 1 , . . . , ω (k) 2k ), where (ε 1 , ..., ε k ) ∈ Σ k β and ω (k) i
is defined as (5.2.2) for all 1 ≤ i ≤ 2k. Now we are concentrating on finding out the upper limit and lower limit of rn(x,β) ϕ(n) . When n = n 3k , the construction of U gives that the maximal length of zeros can only appear in the tail of ω (k) i (1 ≤ i ≤ 2k) defined as (5.2.2). Moreover, n k is increasing as k increases. Consequently, it comes to the conclusion that, for large enough k, Proof. It suffices to show the following two cases. The details are left to the readers.

r n 3k (x, β) ≤ max{k + Γ k , 2h, n 3k-1 -n 3k-2 } ≤ n 3k-1 .
On the one hand, suppose that vβ (x) < a 1-a , then we have

v 0 = a 2(1-a) + vβ (x) 2 > vβ (x)
. By the definition of vβ (x), there is a sequence {n k } ∞ k=1 such that, for all 1 ≤ n ≤ n k ,

T n β x > β -v 0 n ≥ β -( v 0 n +1) .
So it holds that

r n k + v 0 n k (x, β) < v 0 n k + 1. This implies lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k + v 0 n k (x, β) n k + v 0 n k ≤ lim k→∞ v 0 n k + 1 n k + v 0 n k . Note that lim k→∞ v 0 n k + 1 n k + v 0 n k = v 0 1 + v 0 = 2a + vβ (x)(1 -a) -a 2 + vβ (x)(1 -a) -a < a,
where the last inequality follows from

a -x b -x < a b
, for all 0 ≤ a < b, x > 0.

We deduce that lim inf n→∞ r n (x, β) n < a.

A contradiction. Therefore, vβ (x) ≥ a 1-a , On the other hand, suppose that vβ (x) > a 1-a , then

v 0 = a 2(1-a) + vβ (x) 2 < vβ (x).
The definition of vβ (x) implies that for all N 1, there exists 1 ≤ n ≤ N , such that

T n β x ≤ β -v 0 N .
Then for all k = N + v 0 N + 1 1, we have

r k (x, β) ≥ v 0 N . This implies lim inf k→∞ r k (x, β) k ≥ lim N →∞ v 0 N N + v 0 N + 1 = v 0 1 + v 0 = 2a + vβ (x)(1 -a) -a 2 + vβ (x)(1 -a) -a > a,
where the last inequality follows from

a + x b + x > a b
for all 0 ≤ a < b, x > 0. (

This contradicts with lim inf n→∞ rn(

= a. Consequently, vβ (x) ≤ a 1-a . Thus, we conclude that lim inf We will first show when

a > b 1+b , 0 < b ≤ 1, E a,b = ∅. In fact, if lim sup n→∞ rn(x,β) n = b,
then for all δ > 0, there exits a sequence {n k } ∞ k=1 such that r n k (x, β) ≤ (b + δ)n k and ε n k (x, β) > 0. Thus, when we consider the prefix at the position n k + bn k , there are

at most (b + δ)n k consecutive 0's. Immediately, r n k + bn k (x, β) ≤ (b + δ)n k . Hence, a = lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k + bn k (x, β) n k + bn k ≤ lim k→∞ (b + δ)n k n k + bn k = b + δ 1 + b .
Letting δ → 0, we have

a ≤ b 1 + b . (6.1.2) Therefore, E a,b is empty when a > b 1+b , 0 < b ≤ 1. When 0 < a ≤ b 1+b , 0 < b < 1, Lemmas 6.
1.1 and 6.1.2 give the fact that the sets we consider here are essentially the same as the sets studied in Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF],

that is

E a,b = x ∈ [0, 1) : vβ (x) = a 1 -a , v β (x) = b 1 -b = U β a 1 -a , b 1 -b .
Consequently, we can apply Theorem 3.2.14 to obtain

dim H E a,b = dim H U β a 1 -a , b 1 -b = 1 - b 2 (1 -a) b -a .
However, Theorem 3.2.14 cannot be applied for the cases a = 0, 0 < b < 1 and 0

< a ≤ 1 2 , b = 1. Remark that E a,1 ⊆ F 1 where F 1 is defined by (2.3.2) and dim H F 1 = 0 by [53, Theorem 1.1]. So dim H E a,1 = 0 (0 < a ≤ 1
2 ) and there is nothing to prove. For the other case, we have

E 0,b ⊆ x ∈ [0, 1) : v β (x) ≥ b 1 -b .
Then we can use Theorem 3.2.13 to obtain the upper bound of dim H E 0,b which is 1 -b for all 0 < b < 1. Hence it remains to give the lower bound of dim H E 0,b for all 0 < b < 1.

Lower bound of dim

H E 0,b (0 < b < 1)
Now we give the lower bound of dim H E 0,b for the case 0 < b < 1. In fact, we can also include the proof of the lower bound of dim H E a,b for the case 0 < a ≤ b 1+b , 0 < b < 1, though the later case has already been given in the end of Section 5.1.1.

For all k ≥ 1 and N > 1 with ε * N (β) > 0, choose two sequences {n k } ∞ k=1 and {m k } ∞ k=1 which satisfy n k < m k < n k+1 with n 1 > 2N , and

m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N . Moreover, {n k } ∞ k=1 and {m k } ∞ k=1 can be chosen to satisfy lim k→∞ m k -n k n k+1 + m k -n k = a (6.1.3) 
and

lim k→∞ m k -n k m k = b. (6.1.4) 
In fact, such sequences do exist by the following arguments.

(

) If 0 < a ≤ b 1+b , 0 < b < 1, let n k = b(1 -a) a(1 -b) k and m k = 1 1 -b b(1 -a) a(1 -b) k . Note that a < b, so b(1-a) a(1-b) > 1. 1 
Then both sequences {n k } ∞ k=1 and {m k } ∞ k=1 are increasing to infinity as k tends to infinity. A small adjustment can attain the required sequences.

(2) If a = 0, 0 < b < 1, let

n k = k k and m k = 1 1 -b k k .
We can adjust these sequences to make sure that

m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N .
Now let us construct a Cantor subset of E a,b .

For all d > 2N , let

M d = {ω = (1, 0 N -1 , ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-N ) ∈ Σ d-2N β N }. (6.1.5) 
Remark that (1, 0 N -1 , ω 1 , . . . , ω d-N , 0 N ) ∈ Σ d β N ends with 0 N . Thus, by Proposition 3.2.15, every word belonging to M d is full when regarding it as an element of

Σ d β . Now let G 1 = {ω : ω ∈ M n 1 }. Next, for all k ≥ 1, let n k+1 = (m k -n k )t k + m k + p k where 0 ≤ p k < m k -n k . Define G k+1 = {u k+1 = (1, 0 m k -n k -1 , u (1) 
k , . . . , u

(t k ) k , u (t k +1) k ) : u (i) k ∈ M m k -n k for all 1 ≤ i ≤ t k } where u (t k +1) k =    0 p k , when p k ≤ 2N ; ω ∈ M p k , when p k > 2N.
It follows from Theorem 3.2.8 (1) and ( 3) that every u k ∈ G k is full which means that every word in G k can be concatenated by any β-admissible word. Hence, we can define the set D k as :

D k = {(u 1 , . . . , u k ) : u i ∈ G i , for all 1 ≤ i ≤ k} . (6.1.6)
Notice that the length of

u k ∈ G k satisfies |u k | = n k -n k-1 . For each u = (u 1 , . . . , u k ) ∈ D k , we have |u| = |u 1 | + |u 2 | + • • • + |u k | = n 1 + (n 2 -n 1 ) + • • • + (n k -n k-1 ) = n k . Define E N = ∞ k=1 u∈D k I n k (u).
The following lemma shows that E N is a subset of E a,b . Proof. For every integer n ≥ 1, there exists a k ≥ 1 such that n k < n ≤ n k+1 . We distinguish three cases.

(

) If n k < n ≤ n k + m k-1 -n k-1 + 2N , we have m k-1 -n k-1 -1 ≤ r n (x, β) ≤ m k-1 -n k-1 + 2N by the construction of E N . It follows that m k-1 -n k-1 -1 n k + m k-1 -n k-1 + 2N ≤ r n (x, β) n ≤ m k-1 -n k-1 + 2N n k . (2) If n k + m k-1 -n k-1 + 2N < n ≤ m k , the construction of E N gives r n (x, β) = 1 
n -n k . By (6.1.1), we have

m k-1 -n k-1 + 2N n k + m k-1 -n k-1 + 2N ≤ r n (x, β) n ≤ m k -n k m k . (3) If m k ≤ n ≤ n k+1 , we deduce from the construction of E N that m k -n k -1 ≤ r n (x, β) ≤ m k -n k + 2N . Consequently, m k -n k -1 n k+1 ≤ r n (x, β) n ≤ m k -n k + 2N m k .
Combining the above three cases, by (6.1.3) and ( 6 Now we complete our proof by finding the subsequences such that the limit inferior and limit superior are reached. In fact, by (6.1.3), we get

lim k→∞ r n k +m k-1 -n k-1 n k + m k-1 -n k-1 ≤ lim k→∞ m k-1 -n k-1 + 2N n k + m k-1 -n k-1 = a.
It follows from ( 6 Moreover, the fact that m k -n k is increasing and tends to +∞ as k → +∞ ensures that we can find a large enough integer k(β, β N ) satisfying that, for all k ≥ k(β, β N ),

q k ≥ c (β, β N )c(β, β N ) k β k-1 i=1 (n i+1 -m i ) . ( 6 
M m k -n k ≥ β m k -n k -2N N ≥ β m k -n k . (6.1.9)
Then, when p k ≤ 2N , we have

G k+1 ≥ ( M m k -n k ) t k ≥ β (m k -n k )t k ≥ 1 β 2N β n k+1 -m k .
When p k > 2N , we deduce that

G k+1 ≥ ( M m k -n k ) t k • M p k ≥ β (m k -n k )t k • β p k -2N N = 1 β N d β (m k -n k )t k β N p k -2N +d .
Note that p k -2N + d > d . By (6.1.8), we have

G k+1 ≥ 1 β N d β (m k -n k )t k β p k +d = β d β N d β n k+1 -m k . Let c(β, β N ) := min{ 1 β 2N , β d β N d }. It follows that for all k ≥ k(β, β N ), G k+1 ≥ c(β, β N )β n k+1 -m k .
Immediately, by the relationship between D k and G k , for any k ≥ k(β, β N ), it comes to the conclusion that

q k = D k = k i=1 G k ≥ k i=k(β,β N ) G i ≥ c(β, β N ) k-k(β,β N ) β k-1 i=k(β,β N ) (n i+1 -m i ) ≥ c (β, β N )c(β, β N ) k β k-1 i=1 (n i+1 -m i )
, where

c (β, β N ) = β - k(β,β N )-1 i=1 (n i+1 -m i )
. Now we divide into three parts to complete our proof of the lower bound of dim H E a,b by using the modified mass distribution principle (Theorem 3.1.8).

(1) Define a probability measure µ supported on E N . Set µ([0, 1)) = 1 and µ(I

n 1 (u)) = 1 G 1 , for u ∈ D 1 .
For each k ≥ 1, and u = (u 1 , . . . , u k+1 ) ∈ D k+1 , let

µ(I n k+1 (u)) = µ(I n k (u 1 , . . . , u k )) G k+1 .
For any u / ∈ D k (k ≥ 1), let µ(I n k (u)) = 0. It is routine to check that µ is well defined on E N and it can be extended to a probability measure on [0, 1).

(2) Calculate the local dimension lim inf n→∞ log µ(In) log |In| for any x ∈ E N . For convenience, we denote I n (x) by I n without ambiguity. Then we have 

µ(I n i ) = 1 q i ≤ 1 c (β N , β)c(β N , β) i β i-1 j=1 (n j+1 -m j ) (6 
µ(I n ) = µ(I n k ) ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (n j+1 -m j )
. Furthermore, Theorem 3.2.8(2) implies

|I n (x)| ≥ |I m k (x)| = 1 β m k .
As a consequence,

log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) log β + k log c(β N , β) + log c (β N , β) m k log β .
Case 2. n = m k + i(m k -n k ) + for some 0 ≤ i < t k and 0 ≤ < m k -n k . In this case, when 0 ≤ ≤ N , by (6.1.9) and (6.1.10), we have

µ(I n ) = µ(I m k +i(m k -n k )+ ) ≤ µ(I m k ) • 1 ( M m k -n k ) i ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (n j+1 -m j )+i(m k -n k ) . When N < < m k -n k , we similarly see that µ(I n ) = µ(I m k +i(m k -n k )+ ) ≤ µ(I m k ) • 1 ( M m k -n k ) i • 1 Σ -2N β N ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (n j+1 -m j )+i(m k -n k ) β N -+2N .
Moreover, by (3.2.4), it holds that

|I n | ≥ |I m k +i(m k -n k )+ | ≥ 1 β m k +i(m k -n k )+ +2N . Therefore, log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) + i(m k -n k ) log β + ( -N ) log β N + k log c(β N , β) + log c (β N , β) (m k + i(m k -n k ) + + N ) log β . Case 3. n = m k + t k (m k -n k ) + where 0 ≤ ≤ p k . When 0 ≤ ≤ 2N , we have µ(I n ) = µ(I m k +t k (m k -n k ) ) = µ(I m k (x)) • 1 ( M m k -n k ) t k ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (n j+1 -m j )+t k (m k -n k ) . When 2N < ≤ p k , we get µ(I n ) = µ(I m k +t k (m k -n k )+ ) ≤ µ(I m k (x)) • 1 ( M m k -n k ) t k • 1 Σ -2N β N ≤ c (β N , β) -1 c(β N , β) -k β - k-1 j=1 (n j+1 -m j )+t k (m k -n k ) β N -+2N .
In addition, by (3.2.4),

|I n | ≥ |I m k +t k (m k -n k )+ | ≥ 1 β m k +t k (m k -n k )+ +N . Hence, log µ(I n ) log |I n | ≥ k-1 j=1 (n j+1 -m j ) + t k (m k -n k ) log β + ( -2N ) log β N + k log c(β N , β) + log c (β N , β) (m k + t k (m k -n k ) + + N ) log β .
In all three cases, using (6. (n j+1 -m j )

m k = lim k→∞ n k+1 -m k m k+1 -m k = lim k→∞ n k+1 m k -1 m k+1 m k -1 = 1 - b 2 (1 -a) b -a .
As a consequence, lim inf

n→∞ log µ(I n ) log |I n | ≥ 1 - b 2 (1 -a) b -a log β log β .
(3) Use the modified mass distribution principle (Theorem 3.1.8). We first let β → β N , and then let N → ∞. Applying Theorem 3.1.8, we finish our proof.

6.1.3 Proof of Corollary 2.3.2

Note that when 1 2 < a ≤ 1, the inequality (6.1.2) implies E a = ∅. We only need to consider the case 0 ≤ a ≤ 1 2 . By Lemma 6.1.1, we have

E a = x ∈ [0, 1) : vβ (x) = a 1 -a .
Thus, applying Theorem 3.2.14, we have, for all 0

< a ≤ 1 2 , dim H E a = dim H x ∈ [0, 1) : vβ (x) = a 1 -a = (1 -2a) 2 .
When a = 0, by noting that E 0,0 ⊆ E 0 , we deduce that E 0 has full Lebesgue measure and thus has Huasdorff dimension 1.

Proof of Theorem 2.3.3

Let β > 1. Define M = min{i > 1 : ε * i (β) > 0}. For all k ≥ 1, let Γ k be defined by (2.1.3). We choose two sequences {n k } ∞ k=1 and {m k } ∞ k=1 such that n k < m k < n k+1 with

n k > 2k + Γ k and m k -n k > max{2(m k-1 -n k-1 ), n k -k, M }. In addition, {n k } ∞ k=1 and {m k } ∞ k=1 satisfy lim k→∞ m k -n k n k+1 + m k -n k = 0,
and

lim k→∞ m k -n k m k = 1.
In fact, let

n k = (2k + Γ k ) 2k and m k = (2k + 2 + Γ k+1 ) 2k+1 .
Then by small adjustments, we can obtain the required sequences.

For all k ≥ 1, write

n k+1 = (m k -n k )t k + n k + p k where 0 ≤ p k < m k -n k . Now we define U := ∞ n=1 ∞ k=n (ε 1 ,...,ε k )∈Σ k β int I n k+1 (ε 1 , . . . , ε k , 0 n k -k , (1, 0 m k -n k -1 ) t k , 0 p k ) ,
where int(I |ω| (ω)) stands for the interior of I |ω| (ω) for all ω ∈ Σ * β .

Remark 6.2.1. For all (ε 1 , . . . , ε k ) ∈ Σ k β , it follows from Theorem 3.2.8(3) that (ε 1 , . . . , ε k , 0 n k -k ) is full since n k > 2k + Γ k . Note that m k -n k ≥ M . Then the word (1, 0 m k -n k -1 ) is full. By Theorem 3.2.8 (1), the word 0 p k is full. Therefore, (ε 1 , . . . , ε k , n k -k, (1, 0 m k -n k -1 ) t k , 0 p k ) can be concatenated by any β-admissible word.

Thus U is well defined.

The set int(I |ω| (ω)) is open for all ω ∈ Σ * implies that U is a G δ set. Consequently, it suffices to show that U is a subset of E 0,1 and is dense in [0, 1]. Lemma 6.2.2. The set U is a subset of E 0,1 .

Proof. For any x ∈ U, it follows from the construction of U that there exist in-

finitely many k such that ε(x, β) = (ε 1 , . . . , ε k , 0 n k -k , (1, 0 m k -n k -1 ) t k , 0 p k ) for some (ε 1 , . . . , ε k ) ∈ Σ k
β . Now we are going to give the upper limit and lower limit of rn(x,β) n .

Let

n = n k+1 + m k -n k -1. Since m k -n k > max{2(m k-1 -n k-1 ), n k -k, M },
we obtain

r n k+1 +m k -n k -1 (x, β) = m k -n k -1.
As a result,

lim inf n→∞ r n (x, β) n ≤ lim k→∞ r n k+1 +m k -n k -1 (x, β) n k+1 + m k -n k -1 = lim k→∞ m k -n k -1 n k+1 + m k -n k -1 = 0. Let n = m k . Note that m k -n k > max{2(m k-1 -n k-1 ), n k -k, M }. The definition of r n (x, β) shows that r m k (x, β) = m k -n k -1.
It therefore follows that

lim sup n→∞ r n (x, β) n ≥ lim k→∞ r m k (x, β) m k = lim k→∞ m k -n k -1 m k = lim k→∞ m k -n k -1 m k = 1.
By the above discussion, we conclude that lim inf n→∞ r n (x, β) n = 0 and lim sup n→∞

r n (x, β) n = 1.
Hence, x ∈ E 0,1 which gives U ⊆ E 0,1 .

Proof of Theorem 2.3.3 It remains to show that for all n ≥ 1, the set

U n = ∞ k=n (ε 1 ,...,ε k )∈Σ k β int I n k+1 ε 1 , . . . , ε k , 0 n k -k , (1, 0 m k -n k ) t k , 0 p k is dense in [0,1]
. Now we will concentrate on finding a real number y ∈ U such that |x-y| ≤ r for every x ∈ [0, 1) and r > 0. Assume ε(x, β) = (ε 1 (x, β), ε 2 (x, β), . . .). Let where the last equality follows from Theorem 3.2.22. Letting v → +∞, we have dim H F P 1 ≤ 0. This implies dim H E P a,1 ≤ 0. In conclusion, dim H E P a,1 = 0 for any 0 < a ≤ 1 2 . For the other case, we have

E P 0,b ⊆ β ∈ (1, 2) : v β (1) ≥ b 1 -b .
By Theorem 3.2.22, we deduce that the upper bound of dim H E P 0,b is 1 -b for all 0 < b < 1. Hence, we only need to give the lower bound of dim H E 0,b for all 0 < b < 1.

We also include our proof of the case 0 < a ≤ b 1+b , 0 < b < 1. For every 1 < β 1 < β 2 < 2, instead of dealing with the Hausdorff dimension of the set E P a,b directly, we will technically investigate the Hausdorff dimension of the following set. For all 0 ≤ a ≤ b 1+b , 0 < b ≤ 1, let

E P a,b (β 1 , β 2 ) = β ∈ [β 1 , β 2 ) : lim inf n→∞ r n (β) n = a, lim sup n→∞ r n (β) n = b . (6.3.1)
Let β N be an approximation of β 2 and N is large enough such that β N ≥ β 1 .

For every k ≥ 1, similar to what we did in Section 3.2, we take two sequences

{n k } ∞ k=1 and {m k } ∞ k=1 such that n k < m k < n k+1 with n 1 > 2N and m k -n k > m k-1 -n k-1 with m 1 -n 1 > 2N . In addition, lim k→∞ m k -n k n k+1 + m k -n k = a and lim k→∞ m k -n k m k = b.
We can choose such two sequences by the same way in Section 3.2. Now let us construct a Cantor set contained in E P a,b (β 1 , β 2 ) as follows. For any integer d > 2N , we set

M d = {ω = (ε 1 (β 2 ), . . . , ε N (β 2 ) -1, ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-2N ) ∈ Σ d-2N β N }. (6.3.2) Let G 1 = {(ε 1 (β 2 ), . . . , ε N (β 2 ), ω 1 , . . . , ω d-2N , 0 N ) : (ω 1 , . . . , ω d-2N ) ∈ Σ d-2N β N }. Note that ε * 1 ( β N ), . . . , ε * N ( β N ) < lex (ε 1 (β 2 ), . . . , ε N (β 2 )
). Now we give some observations on the elements in G 1 as follows. . By Lemma 3.2.17, the word ω * u is still self-admissible for every all ω ∈ G 1 .

For every

k ≥ 1, write n k+1 = (m k -n k )t k + m k + p k with 0 ≤ p k < m k -n k , then define G k+1 = {u k+1 = ε 1 (β 2 ), . . . , ε N (β 2 ) -1, 0 m k -n k -N , u (1) 
k , . . . , u

(t k ) k , u (t k +1) k : u (i) k ∈ M m k -n k , 1 ≤ i ≤ t k }, where u (t k +1) k =    0 p k , when p k ≤ 2N ; ω ∈ M p k , when p k > 2N. Let D k = {(u 1 , . . . , u k ) : u i ∈ G i , 1 ≤ i ≤ k} . (6.3.3)
Notice that every u k ∈ G k ends with 0 N . This guarantees that (u 1 , . . . , u k ) can concatenate with any u k+1 to be a new self-admissible word. As a result, the set D k is well-defined.

As the classical technique of constructing a Cantor set, let

E(β 1 , β 2 ) = ∞ k=1 u∈D k I P n k (u).
Similar to the process of Section 3, we now give the following result which means that E(β 1 , β 2 ) is a subset of E P a,b (β 1 , β 2 ). Lemma 6.3.2. For every

1 < β 1 < β 2 < 2, E(β 1 , β 2 ) ⊆ E P a,b (β 1 , β 2 ) for all 0 ≤ a ≤ b 1+b and 0 < b < 1.
Proof. The proof is just as the same as the proof of Lemma 6.1.3 by dividing into three cases. We omit it here.

Analogously, we now focus on the estimation of the cardinality of the set D k . Let q k := D k . We obtain the following lemma.

Lemma 6.3.3. For every 1 < β 1 < β 2 < 2, let β N be the real number defined in this section. Then there exist an integer k(β 1 , β N ) and real numbers c(β 1 , β N ), c (β 1 , β N ) such that, for every k ≥ k(β 1 , β N ), we have

q k ≥ c (β 1 , β N )c(β 1 , β N ) k β k-1 i=1 (n i+1 -m i ) 1 . (6.3.4)
Proof. We use the similar method as Lemma 6.1.4, the details are left to the readers.

Let

C(β 1 ) = (β 1 -1) 2 β 1 . Notice that β(u) ≥ β 1 > 1 for any u = (u 1 , . . . , u n ) ∈ Λ n (β 1 , β 2 ) where Λ n (β 1 , β 2 ) is defined by (3.2.5). Then C(β(u)) = (β(u) -1) 2 β(u) ≥ C(β 1 ).
The following lemma gives the estimation of the length of the cylinders with non-empty intersection with the Cantor set E(β for any n ≥ 1.

Proof. For any n ≥ 1, we are going to take the word (u 1 , . . . , u n , 0 N ) into account. We claim that the word (u 1 , . . . , u n , 0 N ) is non-recurrent.

In fact, by the construction of E(β 1 , β 2 ), for any 1 ≤ i < n, we have

σ i (u 1 , . . . , u n , 0 N ) ∈ Σ n-i+N β N . Notice that ω ≤ lex (ε 1 (β 2 ), . . . , ε N (β 2 ) -1) < lex (ε 1 (β 2 ), . . . , ε N (β 2 )) for any ω ∈ Σ n β N with n ≥ N . It comes to the conclusion that σ i (u 1 , . . . , u n , 0 N ) < lex (ε 1 (β 2 ), . . . , ε N (β 2 ))
for any 1 ≤ i < n + N which implies that (u 1 , . . . , u n , 0 N ) is non-recurrent. Thus, by Lemma 3.2.21(2), we have

|I P n (u 1 , . . . , u n )| ≥ |I P n+N (u 1 , . . . , u n , 0 N )| ≥ C(u 1 , . . . , u n , 0 N )β(u 1 , . . . , u n , 0 N ) -(n+N ) .
It follows from the fact β(u 1 , . . . , u n , 0 N ) ≤ β 2 that

|I P n (u 1 , . . . , u n )| ≥ C(β 1 )β -(n+N ) 2 
.

Let us now focus on giving the lower bound of dim H E(β 1 , β 2 ). As the conventional process, we define a measure supported on E(β 1 , β 2 ) which is similar to Section 5.1.2 by distributing the mass uniformly. We will give the local dimension lim inf n→∞ log µ(I P n (u)) log |I P n (u)|

for any cylinder I P n (u) which has non-empty intersection with E(β 1 , β 2 ). Without any confusion, here and subsequently, I P n stands for the cylinder I P n (u) for all u ∈ Λ n .

(1) Define a probability measure supported on E(β 1 , β 2 ). Let

µ([β 1 , β 2 )) = 1 and µ(I P n 1 (u)) = 1 G 1 , for u ∈ D 1 .
For all k ≥ 1, and u = (u 1 , . . . , u k+1 ) ∈ D k+1 , define

µ(I P n k+1 (u)) = µ(I P n k (u 1 , . . . , u k )) G k+1 . 
( 

i ) = 1 q i ≤ 1 c (β 1 , β N )c(β 1 , β N ) i β i-1 j=1 (n j+1 -m j ) 1 , (6.3 
P n ) = µ(I P n k ) ≤ c (β 1 , β N ) -1 c(β 1 , β N ) -k β - k-1 j=1 (n j+1 -m j ) 1 .
Furthermore, by the construction of E(β 1 , β 2 ), the word (u 1 , . . . , u m k ) is non-recurrent.

Thus, by Lemma 3.2.21, we have

|I P n | ≥ |I P m k | ≥ C(u 1 , . . . , u m k )β(u 1 , . . . , u m k ) -m k ≥ c(β 1 )β -m k 2 .
As a consequence, log µ(I

P n ) log |I P n | ≥ log c (β 1 , β N ) + k log c(β 1 , β N ) + k-1 j=1 (n j+1 -m j ) log β 1 log c(β 1 ) + m k log β 1 . Case 2. n = m k + i(m k -n k ) + for some 0 ≤ i < t k and 0 ≤ < m k -n k . On
the one hand, when 0 ≤ ≤ 2N , we have

µ(I P n ) = µ(I P m k +i(m k -n k )+ ) ≤ µ(I P m k ) • 1 ( M m k -n k ) i ≤ c (β 1 , β N ) -1 c(β 1 , β N ) -k β 1 - k-1 j=1 (n j+1 -m j )+i(m k -n k )
.

On the other hand, when 2N < < m k -n k , we have

µ(I P n ) = µ(I P m k +i(m k -n k )+ ) ≤ µ(I P m k ) • 1 ( M m k -n k ) i • 1 Σ -2N β N ≤ c (β 1 , β N ) -1 c(β 1 , β N ) -k β 1 - k-1 j=1 (n j+1 -m j )+i(m k -n k ) β -+2N N .
where the last inequalities is guaranteed by the fact that β(ω) ≥ β 1 for any ω ∈ Λ n (β 1 , β 2 ). By Lemma 6.3.4, we have

|I P n | ≥ C(β 1 )β -(n+N ) 2
.

As a result, the ball B(β, r) intersects no more than 2 C(β 

log µ (B(β, r)) log r ≥ lim inf n→∞ log 2 C(β 1 ) -1 β N 2 β 2 β 1 n-1 + 2 + log µ I P n log |I P n | • log |I P n | -log C(β 1 ) + (n + 1 + N ) log β 2 ≥ lim inf n→∞ (n -1)(log β 2 -log β 1 ) -log C(β 1 ) + (n + N ) log β 2 + log µ I P n log |I P n | • (n -1) log β 1 -log C(β 1 ) + (n + 1 + N ) log β 2 ≥ log β 2 -log β 1 log β 2 + 1 - b 2 (1 -a) b -a log β 1 log β 2 log β 1 log β 2 .
Therefore, by the mass distribution principle and letting β 1 → β 2 , we get our desired result.

Proof of Theorem 2.3.6

Akin to Section 5, we need to find a subset of E P 0,1 which is a dense G δ set in the interval [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF][START_REF] Albeverio | Topological and fractal properties of subsets of real numbers which are not normal[END_REF]. Since the process of our proof is almost the same as Section 5. We only provide the construction of the required set V in this section.

For all k ≥ 1, we first choose the sequences Before our proof, we will give some useful lemmas.

{n k } ∞ k=1 and {m k } ∞ k=1 such that m k -n k > max{2(m k-1 -n k-1 ), n k -k} and n k < m k < n k+1 . In addition, the sequences {n k } ∞ k=1 and {m k } ∞ k=1 is chosen to satisfy lim k→∞ m k -n k n k+1 + m k -n k = 0,
Lemma 7.1.1. For any x ∈ [0, 1) whose β-expansion is not periodic and r β (x) > 0,

there exist two sequences {n k } ∞ k=1 and {m k } ∞ k=1 such that r β (x) = lim sup k→∞ m k -n k n k (7.1.1)
and

rβ (x) = lim inf k→∞ m k -n k n k+1 . (7.1.2) 
Proof. Assume that ε(x, β) = (ε 1 , ε 2 , . . .). Let

n 1 = min{n ≥ 1 : ε n+1 = ε 1 }, m 1 = max{n ≥ n 1 : |T n 1 β x -x| < β -(n-n 1 ) }.
Suppose that for all k ≥ 1, n k and m k have been defined. Set

n k+1 = min{n ≥ n k : ε n+1 = ε 1 }, m k+1 = max{n ≥ n k+1 : |T n k β x -x| < β -(n-n k ) }.
Note that r β (x) > 0. We always can find the position n k such that ε n k +1 returns to ε 1 which means n k is well defined. Since β -n is decreasing to 0 as n goes to infinity and ε(x, β) is not periodic, m k is well defined. By the definitions of n k and m k , for all k ≥ 1, we have

β -(m k -n k )-1 ≤ |T n k β x -x| < β -(m k -n k ) .

Now we choose two subsequences {n

i k } ∞ k=1 and {m i k } ∞ k=1 of {n k } ∞ k=1 and {m k } ∞ k=1 such that {m i k -n i k } ∞ k=1 is not decreasing. Let i 1 = 1. Assume that i k has been defined. Let i k+1 = min{i > i k : m i -n i > m i k -n i k }.
Since r β (x) > 0, it follows that m k -n k goes to infinity as k → +∞. So i k+1 is well defined. Then we have the sequence {m i k -n i k } ∞ k=1 is not decreasing. Without causing any confusion, we still use the same symbols {n k } ∞ k=1 and {m k } ∞ k=1 to substitute the subsequences {n i k } ∞ k=1 and {m i k } ∞ k=1 . We claim that

r β (x) = lim sup k→∞ m k -n k n k and rβ (x) = lim inf k→∞ m k -n k n k+1 .
In fact, assume that lim sup

k→∞ m k -n k n k = c.
On the one hand, there is a subsequence

{j k } ∞ k=1 such that lim k→∞ m j k -n j k n j k = c.
This implies that for all δ > 0, there is an integer k

0 , for each k ≥ k 0 , m j k -n j k ≥ (c -δ)n j k . So |T n j k β x -x| < β n j k -m j k ≤ β -(c-δ)n j k . Consequently, r β (x) ≥ c -δ
for all δ ≥ 0. On the other hand, there is an integer k 0 , for any k ≥ k 0 , we have m k -n k ≤ (c + δ)n k . So for all n ≥ n k 0 , there is an integer k such that n k ≤ n < n k+1 . This means

|T n β x -x| ≥ β -(m k -n k )-1 ≥ β -(c+δ)n k .
Hence, r β (x) < c + δ for any δ > 0. Immediately, r β (x) = c. The same argument can deduce the equality (7.1.2), we leave it to the readers.

Lemma 7.1.2. For all x ∈ [0, 1) whose β-expansion is not periodic and r β (x) > 0, let {m k } ∞ k=1 and {n k } ∞ k=1 be defined in Lemma 7.1.1. Then there is a sequence {t k } ∞ k=1 such that when t k ≥ m k , we have 

(ε 1 , . . . , ε m k ) = (ε 1 , . . . , ε n k , ε 1 , . . . , ε m k -n k ) . (7.1.3) When t k < m k , we have (ε 1 , . . . , ε m k ) = ε 1 , . . . , ε n k , ε 1 , . . . , ε t k -n k , ε t k -n k +1 -1, ε * 1 , . . . , ε * m k -t k -1 . (7.1.4) or (ε 1 , . . . , ε m k ) = (ε 1 , . . . , ε n k , ε 1 , . . . , ε t k , ε t k -n k +1 + 1, 0 m k -n k -t k -1 ). (7.1.5) Proof. Let t k = max{n > n k : (ε n k +1 . . . , ε n ) = (ε 1 , . . . , ε n-n k )}. ( 7 
) = (ε 1 , . . . , ε n k , ε 1 , . . . , ε t k -n k ) , ε t k +1 = ε t k -n k +1 . (7.1.7)
Then T n k β x and x belong to the interval

I t k -n k (ε 1 , . . . , ε t k -n k ) which implies β -(m k -n k )-1 ≤ |T n k β x -x| ≤ |I t k -n k (ε 1 , . . . , ε t k -n k )| ≤ β -(t k -n k ) . Thus, t k ≤ m k + 1. When t k ≥ m k , it follows from (7.1.7) that (ε 1 , . . . , ε m k ) = (ε 1 , . . . , ε n k , ε 1 , . . . , ε m k -n k ) . When t k < m k and |ε t k +1 -ε t k -n k +1 | ≥ 2
, by (7.1.7), there is a full basic interval of order t k -n k + 1 between x and T n k β . As a consequence,

|T n k β x -x| ≥ β -(t k -n k +1) ≥ β -(m k -n k ) ,
which contradicts with the definition of m k . Hence,

|ε t k +1 -ε t k -n k +1 | = 1. When ε t k -n k +1 = ε t k +1 + 1.
By the definition of t k , we have

x = ε 1 β + • • • + ε t k -n k β t k -n k + ε t k -n k +1 β t k -n k +1 + • • • ≥ ε 1 β + • • • + ε t k -n k β t k -n k + ε t k +1 + 1 β t k -n k +1 . Noting that |T n k β x -x| = x -T n k β x < β -(m k -n k ) , we have T n k β x > x -β -(m k -n k ) ≥ ε 1 β + • • • + ε t k β t k -n k + ε t k +1 + 1 β t k -n k +1 - 1 β m k -n k Note that 1 β t k -n k +1 - 1 β m k -n k = ε t k +1 β t k -n k +1 + ε * 1 β t k -n k +2 + • • • + ε * m k -n k -t k -1 -1 β m k -n k + • • • .
Thus,

T n k β x > ε 1 β + • • • + ε t k -n k β t k -n k + ε t k +1 β t k -n k +1 + ε * 1 β t k -n k +2 + • • • + ε * m k -n k -t k -1 -1 β m k -n k + • • • . Then, (ε 1 , . . . , ε m k ) = ε 1 , . . . , ε n k , ε 1 , . . . , ε t k -n k , ε t k -n k +1 -1, ε * 1 , . . . , ε * m k -t k -1 .
When ε t k +1 = ε t k -n k +1 + 1, we have

x = ε 1 β + • • • + ε t k -n k β t k -n k + ε t k -n k +1 β t k -n k +1 + • • • ≤ ε 1 β + • • • + ε t k -n k β t k -n k + ε t k +1 β t k -n k +1 . Noticing that |T n k β x -x| = T n k β x -x < β -(m k -n k )
, we have

T n k β < x + β -(m k -n k ) ≤ ε 1 β + • • • + ε t k -n k β t k -n k + ε t k +1 β t k -n k +1 + 1 β m k -n k .
This implies (ε 1 , . . . , ε m k ) = (ε 1 , . . . , ε n k , ε 1 , . . . , ε t k , ε t k -n k +1 + 1, 0 m k -n k -t k -1 ).

Remark 7.1.3. The two sequences {n k } ∞ k=1 and {m k } ∞ k=1 chosen here are exactly the same sequences in Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF]. However, the property that n k+1 > m k = t k > n k which always holds in [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] fails in our case. Then uncertainty of the relationship between m k , t k and n k+1 makes the construction of ε(x, β) of all x ∈ R β (r, r) be much more complicated. Now we will investigate the relationship between m k and n k for the case 0 ≤ r 1+r < r ≤ +∞. Proof. Since r > r 1+r , by (7.1.1) and (7.1.2), there is a positive number ε > 0 and an integer k , such that for any k ≥ k , we have

m k -n k n k+1 ≥ r 1 + r + ε 1 1 -ε .
By (7.1.1), we obtain

r 1 + r = 1 - 1 1 + r = 1 - 1 1 + lim sup k→∞ m k -n k n k = lim sup k→∞ m k -n k m k .
Consequently, there is an integer k ≥ k , such that for all k ≥ k ,

m k -n k n k+1 ≥ r 1 + r + ε 1 1 -ε ≥ 1 1 -ε • m k -n k m k , which implies n k+1 ≤ (1 -ε)m k .
The following lemma gives the sequences we will use to construct the covering of R β (r, r) when proving the upper bound of dim H R β (r, r) for the case 0 ≤ r ≤ r 1+r , 0 < r ≤ +∞. Proof. For all x ∈ R β (r, r) 0 ≤ r ≤ 1, r 1-r ≤ r < +∞ , the β-expansion of x is not periodic and r β (x) > 0. Let {n k } ∞ k=1 and {m k } ∞ k=1 be the sequences defined in Lemma 7.1.1. By (7.1.2), for any 0 < δ 1 < rβ (x) 2 , for sufficiently large k, we have m k -n k ≥ (r β (x) -δ 1 )n k+1 , that is, m k ≥ n k+1 + (r β (x) -δ 1 )n k ≥ (1 + rβ (x) -δ 1 )n k . , there are infinitely many k ≥ k 0 such that

m k -n k+1 ≤ δ 2 • n k+1 m k m k -n k ≤ δ 2 • n k+1 m k (r β (x) -δ 1 )n k+1 = δ 2 rβ (x) -δ 1 • m k ,
where the last inequality follows from the first part of (7.1.8).

Therefore, by (7.1.8) and the choice of δ 2 ,

n k+1 ≥ 1 - δ 2 rβ (x) -δ 1 m k ≥ 1 - δ 2 rβ (x) -δ 1 (1+r β (x)-δ 1 )n k ≥ 1 + rβ (x) 2 n k .
Letting δ = δ 2 rβ (x)-δ 1 , we obtain the claim. Now we choose the subsequence {n j k } ∞ k=1 and {m j k } ∞ k=1 of {n k } ∞ k=1 and {m k } ∞ k=1 satisfying (7.1.9). For simplicity, let n k = n j k and m k = m j k . Then {n k } ∞ k=1 increases at least exponentially since

n k+1 ≥ 2 + rβ (x) rβ (x) n k .
In conclusion, the new sequences satisfy that, there is a large enough k 0 and a positive real number C such that for all k ≥ k 0 , we have k ≤ C log n k .

We now give an estimation of the numbers of the sum of all the lengths of the blocks which are "fixed" in the prefix of length m k (m k is defined in Lemma 7.1.5) of the infinite sequence ε(x, β) where x ∈ R β (r, r) 0 ≤ r ≤ 1, r 1-r ≤ r < +∞ for all sufficiently large k. -.

We will prove Theorem 2.4.3 by dividing into three cases : r = r = 0, 0 ≤ r 1+r < r ≤ +∞ and 0 ≤ r ≤ r 1+r , 0 < r ≤ +∞. where is a small enough real number. By Theorem 3.2.1, we deduce that, for every blocks with length d i , there are no more than

β β -1 β d i
ways of the words can be chosen. Thus, there are at most

β β -1 k β k i=1 d i ≤ β β -1 k β n k (1-rr r-r + )
choices of the "free" blocks in total. Notice that there are at most n k possible choices for the first index of the k blocks. This indicates that there are at most n k k possible choices for the position of the "free" blocks. For the "fixed" block, it follows from (7.1.3), (7.1.4), Then for any s > s 0 , we have

H s (R β (r, r)) ≤ ∞ n=1 β 2(r + )n 2 β 2 β -1 C log n
β -(1+r-)ns+n(1-rr r-r + ) < +∞.

Letting → 0, we conclude that dim H R β (r, r) ≤ r -(1 + r)r (r -r)(r + 1) .

which is a contradiction. Note that n ≥ 2M . Assume that (ε n+1 , . . . , ε n+j ) = (ε 1 , . . . , ε j ), ε n+j+1 = ε j+1 .

Without loss of generality, suppose that ε n+j+1 > ε j +1. Notice that both (ε n+1 , . . . , ε n+j+1 ) and (ε 1 , . . . , ε j+1 ) belong to Σ M β N . Then

|T n β x -x| = T n β x -x ≥ ε n+1 β + • • • + ε n+j β j + ε n+j+1 β j+1 - ε n+1 β + • • • + ε n+j β j + ε j β j+1 + ε * 1 β j+2 + • • • + ε * N -1 β j+N +1 ≥ β -j+N +1 . (7.1.25)
Hence, for any m k ≤ n < n k+1 , we have

|T n β x -x| ≥ β -(2M +N +1) .
We now show that r β (x) = r.

On the one hand, for any δ > 0, notice that

lim k→∞ m k -n k + N n k = r.
Then there exits k 0 large enough such that for all k ≥ k 0 , we have m k -n k + N < (r + δ)n k . For all n ≥ n k 0 , there is k ≥ k 0 , such that n k ≤ n < n k+1 . Note for every n with m k ≤ n < n k+1 , we have (ε n+1 , . . . , ε n+2M ) = (ε 1 , . . . , ε 2M . By the construction of E N , for any n k ≤ i ≤ m k , we have (ε i+1 , . . . , ε m k +2M ) = (ε 1 , . . . , ε m k -i+2M ).

The same argument as (7.1.25) gives

|T n β x -x| ≥ β -(m k -n k +2M +N +1) > β -(r+δ)n k ≥ β -(r+δ)n .
By the definition of r β (x), it holds that r β (x) < r + δ for all δ > 0. So r β (x) ≤ r.

On the other hand, for all δ > 0, there is k 0 such that for any k ≥ k 0 . Thus, we have m k -n k ≥ (r -δ)n k . When n = n k , we obtain

|T n k β x -x| < β -(m k -n k ) ≤ β -(r-δ)n k .
As a consequence, r β (x) ≥ r -δ for any δ > 0, which implies r β (x) ≥ r.

The proof of rβ (x) = r is similar to the argument of r β (x) = r. We leave the details to the readers.

Our Cantor set is therefore constructed.

In gerneral n ≥ 1, there is an integer k ≥ 1 such that m k < n ≤ m k+1 . We distinguish two cases to estimate µ(I n ).

Case 1. When m k < n ≤ n k+1 , write n = m k + tM + q with 0 ≤ t ≤ t k and 0 ≤ q < M . then for all sufficient large enough N .

µ(I n ) ≤ µ(I m k ) • 1 ( M) t ≤ c -k β -(1-δ) k-1 j=1 (n j+1 -m j ) • 1 β M (1-δ)t .

-

  log β |In(x)| n est égale à 1+λ(β) est résiduel, où λ(β) est une constante dépendant de β. Notre objet d'étude log β |In(x)| n n'est pas une moyenne ergodic de Birkhoff, notre recherche est donc différente de celle d'Olsen sur les ensembles extrêmement irréguliers.

-

  log β |In(x)| n equals to 1 + λ(β) is residual, where λ(β) is a constant depending on β. Our object of study -log β |In(x)| n
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  pour tout n ∈ N. Nous appellons ε n (x, β) le n-ième chiffre de x et ε(x, β) := (ε 1 (x, β), . . . , ε n (x, β), . . .) le bêta-développement de x.Pour un mot admissible ω = (ω 1 , . . . , ω n ), c'est-à-dire, un préfixe du bêta développement d'un certain x ∈ [0, 1) (voir Section 3.2.2 pour plus de détails). L'intervalle fondamental d'ordre n associé à ω, noté I n (ω), est défini parI n (ω) = I n (ω 1 , ..., ω n ) := {x ∈ [0, 1) : ε 1 (x, β) = ω 1 , ..., ε n (x, β) = ω n }. (1.1.1) L'intervalle fondamental d'ordre n contenant x s'écrit comme I n (x). Nous pouvons vérifier que l'intervalle fondamental I n (x) est un intervalle fermé à gauche et ouvert à droite (voir Lemme 3.2.5). On note la longueur de I n (x) par |I n (x)|.

  1) . Spécialement, si le β-développement de 1 est finie, c'est-àdire, qu'il existe un entier m ≥ 1 tel que ε m (1, β) > 0 et ε k (1, β) = 0 pour tout k > m, β est appelé un nombre de Parry simple. Dans ce cas, on noteε * (β) = (ε * 1 , ε * 2 , . . .) = (ε 1 (1, β), ε 2 (1, β), . . . , ε m (1, β) -1) ∞ ,

.1. 4 )

 4 où λ(β) est une constante depandant de β. En appliquant le théorème de Shannon-McMillan-Breiman [79] à la mesure de Parry [65], on obtient D(x) = D(x) = 1 Lebesgue presque partout sur [0, 1). Un cas spécifique est λ(β) = 0, où on obtient D(x) = D(x) = 1. Ceci implique que la limite de -log β |In(x)| n existe pour tout x ∈ [0, 1).

Théorème 1 . 1 . 1 .

 111 Soit β > 1 avec λ(β) > 0. Alors l'ensemble D est résiduel, c'est-àdire que [0, 1]\D est de première catégorie.

  ) < +∞. Cela nous amène à considérer le problème de la taille de l'ensemble E ϕ a,b lorsque la fonction ϕ est d'ordre n (i.e., lim n→∞ ϕ(n) n = c pour certain c avec 0 < c < ∞). Pour tout 0 ≤ a ≤ b ≤ 1, nous allons étudier la taille de l'ensemble E a,b := E a,b (β) = x ∈ [0, 1) : lim inf n→∞ r n (x, β) n = a, lim sup n→∞ r n (x, β) n = b . (1.3.1)

Théorème 1 . 3 . 3 .

 133 L'ensemble E P 0,0 est de mesure de Lebesgue pleine. Si b 1+b < a ≤ 1, 0 < b ≤ 1, alors E p a,b = ∅. Sinon on a :

+∞(Théorème 1 . 4 . 3 .

 143 +∞)(+∞) = 0. En utilisant le Théorèm 1.4.1, nous obtenons le résult suivant concernant l'exponsant asympotique r β . Pour tout 0 ≤ r ≤ +∞, on a dim H {x ∈ [0, 1) : r β (x) = r} = 1 1 + r .

.1. 4 )

 4 Applying Shannon-McMillan-Breiman Theorem [79] to Parry measure [65], we obtain D(x) = D(x) = 1 for Lebesgue almost all x ∈ [0, 1). A special case is λ(β) = 0. When λ(β) = 0, we have D(x) = D(x) = 1 which indicates that the limit of -log β |In(x)| n

Theorem 2 . 1 . 2 .

 212 Let β > 1 with λ(β) > 0. Then the set D is residual, in other words, [0, 1] \ D is of the first category.

Corollary 2 . 2 . 4 .

 224 The set {x : lim n→∞ rn(x,β) log β n = 1} is both of full measure and of the first category.

  This leads to the definition of admissible words and sequences. Definition 3.2.3. A word (ε 1 , . . . , ε n ) ∈ A n is called admissible with respect to β if there exists an x ∈ [0, 1) such that the β-expansion of x begins with (ε 1 , . . . , ε n ).

( 2 )

 2 It holds that T n β I n (ω 1 , . . . , ω n ) = [0, 1).(3) For any m ≥ 1 and any ω = (ω 1 , . . . , ω m ) ∈ Σ m β , the concatenation ω * ω = (ω 1 , . . . , ω n , ω 1 , . . . , ω m ) is admissible.

Remark 3 . 2 . 20 .

 3220 [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF] Writet(ω) := n -n τ (ω) τ (ω).

Lemma 4 . 1 . 1 .

 411 For all x ∈ [0, 1), we have D(x) = 1 + ρ(x).

.1. 6 )Lemma 4 . 1 . 2 .

 6412 Combination of (4.1.4) and (4.1.6) gives the desired result. Now we devote to proving that the set A(D(x)) is always a closed interval as the following result. For any x ∈ [0, 1), we haveA(D(x)) = [1, 1 + ρ(x)].Proof. We divide the proof into two cases by showing that A(D(x)) = {1} whenρ(x) = 0 and A(D(x)) = [1, 1 + ρ(x)] when ρ(x) > 0.Case I : ρ(x) = 0. Note that D(x) = 1 by (2.1.4) and D(x) = 1 + ρ(x) by Lemma 4.1.1, then D(x) = D(x) = 1. So A(D(x)) = {1}. Case II : ρ(x) > 0. It follows from (2.1.4) and Lemma 4.1.1 that D(x) = 1 and D(x) = 1 + ρ(x), for any 1 < a < 1 + ρ(x), we can choose an increasing sequence

2 For

 2 which means that the accumulation points of -log β |In(x)| n can contain any possible value in [1, 1 + λ(β)]. So the points in D is said to be extremely irregular. 4.2 Proof of Theorem 2.1.ω = (ω 1 , ω 2 , . . . , ω n ) ∈ A n and a positive integer m with m ≤ n, or for (ω 1 , ω 2 , . . . , ω n , . . .) ∈ A N and a positive integer m, let ω| m = (ω 1 , ω 2 , ..., ω m ).

Lemma 4 . 2 . 1 .

 421 Let k ≥ 1 be an integer. If I n (ω 1 , . . . , ω n ) is full, we have

  k ) is nonempty. The intersection ∞ k=1 int(I(u k )) is therefore nonempty which gives the fact that S = ∅. For every y ∈ S, we get y ∈ U by the construction of U and S. Moreover, we have |x -y| ≤ β -≤ r since both the β-expansions of x and y begin with ε 1 (x), ..., ε (x). Therefore, U is dense in [0, 1]. Lemma 4.2.3. U ⊆ D.

Furthermore, Theorem 2 . 1 .

 21 2 implies D = [0, 1] where D denote the closure of D, so dim B D = dim B D = 1 by Proposition 3.1.3(5). Hence, we easily get the following corollary which implies 0 = dim H D < dim B D = 1. Corollary 4.3.2. If λ(β) > 0, then dim B D = 1.

Corollary 4 . 3 . 3 .

 433 Let β > 1 with λ(β) > 0, then F is residual, therefore F is of second category.

Lemma 5 . 1 . 1 .

 511 Assume that lim sup n→∞ n ϕ(n) = +∞. For every p ∈ N, p > 1, we have E p ⊆ E ϕ max .

2 Lemma 5 . 1 . 2 .

 2512 Hausdorff dimension of E ϕ max We first give the lower bound of dim H E p , we technically show that given β > 1, dim H E p ≥ log β log β p -1 p for all 1 < β < β. For all k ≥ 2, recall that M d k and D k are defined as (5.1.4) and (5.1.5) respectively. Let a k := M d k and b k := D k . Fixed β > 1, for each 1 < β < β, there exist integers k(β), c(β) relying on β such that for every k > k(β), such that a k ≥ β d k and b k ≥ c(β)β p k where

  by the choice of n k , we have the basic interval I n k (ε 1 , . . . , ε k , 0 n k -k ) is full by Theorem 3.2.8(3). So the word (ε 1 , . . . , ε k , 0 n k -k ) can concatenate any β-admissible word by Theorem 3.2.7. Similarly, ω (k) i (1 ≤ i ≤ 2k) can concatenate any admissible word by the choice of n k satisfying n k -n k-1 > 2h for all k ≥ 2 and it is full for each k ≥ 1 by Theorem 3.2.8(1).

Chapitre 6

 6 Diophantine approximation and run-length function In this section, we devote to showing the size of sets considered in Section 1.4. We are first show the relationship between the exponents of the classic and uniform Diophantine Approximation and run-length function. And give the size of the set E a,b (in the sense of Lesbegue measure, Hausdorff dimension, topological property).

6. 1

 1 Proof of Theorem 2.3.1 6.1.1 Run-length function and Diophantine approximation Lemma 6.1.1. Let β > 1. For all x ∈ [0, 1), for any 0 < a < 1, we have lim inf n→∞ rn(x,β) n = a if and only if vβ (x) = a 1-a .

Lemma 6 . 1 . 2 .

 612 Let β > 1. For all x ∈ [0, 1), for each 0 < b < 1, we have lim sup n→∞ rn(x,β) n = b if and only if v β (x) = b 1-b . Proof. It can be deduced by the same arguments as the proof of Lemma 6.1.1. Now we can give part of the proof of Theorem 2.3.1.

Lemma 6 . 1 . 3 .

 613 We have E N ⊆ E a,b for every 0 ≤ a ≤ b 1+b and 0 < b < 1.

  .1.4), we have lim inf n→∞ r n (x, β) n ≥ a and lim sup n→∞ r n (x, β) n ≤ b.

  Now we estimate the cardinality of the set D k defined by(6.1.6). Write q k := D k . Lemma 6.1.4. Let β > 1. Let β N be an approximation of β. For every β < β N , there exist an integer k(β, β N ) and real numbers c(β, β N ), c (β, β N ) such that, for all k ≥ k(β, β N ), we have

.1. 7 )

 7 Proof. Recall the definition of M d as (6.1.5). Theorem 3.2.1 impliesM d ≥ β d-2N N for all d ≥ N . Since β < β N ,there exists an integer d which depends on β and β N such that, for every d ≥ d , we have β d-2N N ≥ β d . (6.1.8)

  .1.10) for every i > k(β N , β), where k(β N , β) is an integer given in Lemma 6.1.4. For all n ≥ 1, there is an integer k ≥ 1 such that n k < n ≤ n k+1 . By the construction of E N and the definition of µ, it is natural to estimate the lower bound of log µ(In) log |In| by dividing into the following three cases. Case 1. n k < n ≤ m k . It follows from (6.1.10) that

Remark 6 . 3 . 1 .

 631 [START_REF] Addison | Fractals and Chaos-An Illustrated Course[END_REF] For all ω ∈ G 1 , since ω 1 , . . . , ω d-2N , 0 N ∈ Σ d-N β N (d > 2N ), byProposition 3.2.17, ω is self-admissible.(2) For every u ∈ M d (d > 2N ), we have u ∈ Σ d β N

and lim k→∞ m k -n k m k = 1 .

 1 Actually, letn k = k 2k and m k = (k + 1) 2k+1 .Chapitre 7 Uniform recurrence properties of beta-expansions 7.1 Proof of Theorems 2.4.3

Lemma 7 . 1 . 4 .

 714 For each x ∈ R β (r, r) with 0 ≤ r 1+r < r ≤ +∞, let m k and n k be defined in Lemma 7.1.1. Then there is an integer k such that n k+1 < m k for all k ≥ k .

Lemma 7 . 1 . 5 .

 715 For all x ∈ R β (r, r) with 0 ≤ r ≤ 1, r 1-r ≤ r < +∞, there are two sequences {n k } ∞ k=1 and {m k } ∞ k=1 such that for any large enough k, there is a positive real number C satisfyingn k+1 ≥ (1 -δ)m k , n k+1 ≥ 2 + rβ (x) rβ (x)n k and k ≤ C log n k .

( 7 . 1 . 8 )-n k n k+1 -lim sup k→∞ m k -n k m k = lim inf k→∞ m k -n k n k+1 - m k -n k m k ≤ 0 .

 7180 Note that rβ (x) ≤ r β (x) 1+r β(x) . It follows from (7.1.1) and (7.1.We claim that, for all δ > 0, there are infinitely many k, such thatn k+1 ≥ (1 -δ)m k and n k+1 ≥ 1 + rβ (x) 2 n k = 2 + rβ (x) 2 n k . (7.1.9) In fact, notice that m k -n k > 0, n k+1 m k > 0 for all k ≥ 1. When lim inf k→∞ m k -n k n k+1 -m k -n k m k = lim inf k→∞ (m k -n k )(m k -n k+1 ) n k+1 m k < 0, by(7.1.8), we haven k+1 > m k ≥ (1 + rβ (x) -δ 1 )n k ≥ 1 -n k )(m k -n k+1 ) n k+1 m k = 0,then for all 0 < δ 2 ≤ (r β (x)-δ 1 )(r β (x)-2δ 1 ) 2(1+r β (x)-δ 1 )

Lemma 7 . 1 . 6 .(m i -n i ) ≥ k i=k 1 (.

 7161 For all x ∈ R β (r, r) with 0 ≤ r ≤ 1, r 1-r ≤ r < +∞, let {m k } ∞ k=1 and {n k } ∞ k=1 be the sequences defined in Lemma 7.1.5. Then for all large enough integer k, we havek i=1 (m i -n i ) ≥ n k+1 rβ (x)r β (x) r β (x) -rβ (x) -(7.1.10) Proof. By Lemma 7.1.5, the sequences {n k } ∞ k=1 and {m k } ∞ k=1 are the subsequences of{n k } ∞ k=1 and {m k } ∞ k=1 , the equalities (7.1.1) and (7.1.2) become : r β (x) ≥ lim sup k→∞ m k -n k n k (7.1.11) and rβ (x) ≤ lim inf k→∞ m k -n k n k+1 . (7.1.12) By (7.1.11) and (7.1.12), for any real number 0 < < rβ (x) 2 , there exits a large enough k 1 , such that for all k ≥ k 1 , m k -n k ≤ (r β (x) + )n k (7.1.13) and m k -n k ≥ (r β (x) -)n k+1 . (7.1.14) By (7.1.13) and (7.1.14), we haven k ≥ m k -n k r β (x) + ≥ rβ (x)r β (x) + n k+1 . r β (x) -)n i+1 ≥ (r β (x) -Note that rβ (x)- r β (x)+ < 1. There exists k ≥ k such that for all ≥ k , we haven k+1 rβ (x)r β (x) + < 1 1.[START_REF] Bouligand | Ensembles impropres et nombre dimensionnel [J][END_REF], for any small enough real number > 0, there is a sufficiently large integerk ≥ {k , k 1 } such that k i=1 (m i -n i ) ≥ (r β (x) -)n k+1 k-1 i=0 rβ (x)r β (x) + i = (r β (x) -)n k+1 ∞ i=0 rβ (x)r β (x) + i -n ≥ n k+1 rβ (x)r β (x) r β (x) -rβ (x)

7. 1 . 1 1 i=1(m i -n i ) ≤ n k 1

 1111 Case for r = r = 0 Note that rβ (x) ≤ r β (x) for all x ∈ [0, 1). Then{x ∈ [0, 1) : r β (x) = 0} ⊆ {x ∈ [0, 1) : rβ (x) = 0}.So if we prove that r β (x) = 0 for L-almost all x ∈ [0, 1), we have rβ (x) = 0 for L-almost all x ∈ [0, 1).Hence, we only need to proveL{x ∈ [0, 1) :r β (x) > 0} = 0. Since ∞ n=1 β -1 k n < ∞ for all k ≥ 1, it follows from Corollary 3.2.12 thatL{x ∈ [0, 1) :|T n β x -x| ≤ β -1 k n for infinitely many n ∈ N} = 0. Moreover, we have {x ∈ [0, 1) : r β (x) > 0} = ∞ k=1 x ∈ [0, 1) : r β (x) > 1 k By (7.1.10), it holds that k i=1 (n i -m i-1 ) = n k -k-

( 7 . 1 . 5 ) 1 k 2 β - 1 C

 715121 that the block (ε 1 , . . . , ε m k -n k ) has at most 2 β (m k -n k +1) ≤ 2β(m k -n k +1)choices which means there are at most (2β(m k -n k + 1)) k choices of the "fixed" blocks in total. By Lemma 7.1.5 and (7.1.18), for all sufficient large k, the set of all real number belonging to R β (r, r) is contained in a union of no more than2(m k -n k )n k β 2 β -β n k (1-rr r-r + ) ≤ 2(r + )n k 2 β log n k β n k (1-rr r-r + )basic intervals of order m k whose length is at mostβ -m k ≤ β (1+r-)n k ,where the last inequalities follows from (7.1.18). Denote s 0 = r -(1 + r)r + (r -r) (r -r)(r + 1 -) .

Case 2 .

 2 When n k+1 < n ≤ m k+1 , by the construction of E N , it follows thatµ(I n ) ≤ µ(I n k+1 ) = µ(I m k+1 ) ≤ c -(k+1) β -(1-δ) k j=1 (n j+1 -m j ). By (3.2.4), in both two cases,|I n | ≥ 1 β n+N . I n ) log |I n | ≥ (1 -δ) • r -(1 + r)r (1 + r)(r -r) .Let δ → 0. The modified mass distribution principle (Theorem 3.1.8) gives dim H E N ≥ r -(1 + r)r (1 + r)(r -r) .

  Ma, Wen et Wen[START_REF] Ma | Egoroff's theorem and maximal run length[END_REF] ont prouvé que l'ensemble des points violants (1.2.1) est de dimension de Hausdorff pleine. Par la suite, Li et Wu[START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem[END_REF][START_REF] Li | On exceptional sets in Erdös-Rényi limit theorem revisited[END_REF] ont remplacé la fonction

n → log 2 n dans (1.2.1) par une fonction strictement croissante ϕ : N → R + avec lim n→+∞ ϕ(n) = +∞, et ont introduit l'ensemble extrêmement exceptionnel par rapport à ϕ :

  Théorème 1.3.1. L'ensemble E 0,0 est de mesure de Lebesgue pleine. Si b 1+b

  combining Theorems 2.3.3 and 2.2.3, we deduce that the smaller set

have Hausdorff dimension 1. Let ϕ be a monotonically increasing function with lim n→∞ ϕ(n) = +∞ and lim inf n→∞ ϕ(n) n = 0. Since the intersection of two residual sets is still residual, by

  This inequality andI n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1 ) ⊆ I n (ω 1 , . . . , ω n ) imply that the left endpoint of I n+k+t k +1 (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k +1) belongs to int(I n (ω 1 , . . . , ω n )). Case II : By the definition of t k , we have (ε * 1 , . . . , ε * k , 0 t k , 1) is admissible. Besides, the fullness of I(ω 1 , . . . , ω n ) ensures that (ω 1 , . . . , ω n , ε * 1 , . . . , ε * k , 0 t k , 1) ∈ Σ *

	β
	by Theorem 3.2.7. The same argument as Case I gives that the left endpoint of

  Proof of Theorem 2.1.2 Since U is dense in [0, 1] and it is a G δ set, we easily get that U is residual in [0, 1] by Baire Category Theorem. Moreover, Lemma 4.2.3 ensures that D is residual in [0, 1].

  = +∞, we suppose this condition is true in the remainder of this paper without otherwise specified. For any sufficiently large integer p, we can always construct a set E p ⊆ E ϕ max with Hausdorff dimension being larger than p-1 p . Then by letting p → +∞, the relationship between E p and E ϕ max gives that E ϕ max is of full dimension.

	Chapitre 5 Extremely Exceptional Sets of
		Run-length function
	Before proving Theorem 2.2.1, we introduce our method of getting the Hausdorff
	dimension of the set E ϕ max . By Remark 2.2.2, we only need to consider the case that
	lim sup n→∞	n ϕ(n)

5.1 Proof of Theorem 2.2.1 5.1.1 Construction of Cantor subset E p of E ϕ max Let p ∈ N, p > 1. Now we are going to construct the desired set E p ⊆ E ϕ max whose Hausdorff dimension is larger than p-1 p . Our construction of the set E p is divided into two steps.

  Now we give the lower bound of dim H E p as the following result. Lemma 5.1.3. For each p ∈ N, p > 1. The Hausdorff dimension of E p satisfies that

	dim H E p ≥	p -1 p	.
	Proof. It suffices to show that		
	dim H E p ≥	p -1 p	log β log β

.1.7) Combining (5.1.6) and (5.1.7), we finish our proof.

  1 , β 2 ) which will be useful to estimate the local

	dimension lim inf n→∞	log µ(B(β,r)) log |r|	for any r > 0 and β ∈ E(β 1 , β 2 ).

Lemma 6.3.4

. For any β ∈ E(β 1 , β 2 ), suppose that ε(1, β) = (u 1 , u 2 , . . .). Then we have

|I P n (u 1 , . . . , u n )| ≥ C(β 1 )β -(n+N ) 2

  ) Estimate the local dimension lim inf

	n→∞	log µ(I P n ) log |I P n | where I P n ∩ E(β 1 , β 2 ) = ∅. It
	follows from the definition of the measure that	
	µ(I P n	

  1 ) -1 β N

			2	β 2 β 1	n-1	+ 2 cylin-
	ders of order n. Moreover, it follows from Lemma 6.3.4 that	
	r ≥ |I P n+1 | ≥ C(β 1 )β	-(n+1+N ) 2	.		(6.3.7)
	Immediately, the combination of (6.3.6) and (6.3.7) gives	
	lim inf r→0			

  .1.6)That is, the position t k is chosen to make sure that (ε n k +1 , . . . , ε t

k ) is the maximal block after position n k which returns to (ε 1 , . . . , ε t k -n k ). Since ε(x, β) is not periodic, t k is well defined. By the definition of t k , it holds that (ε 1 , . . . , ε t k

Acknowledgments

grateful to Chinese Scholarship Council, South

= 0.

When n = n 3k-1 , by the observation on U , there are at least n 3k-1 -n 3k-2 zeros in ω

2k-1 which is defined as (5.2.2). We therefore obtain r n 3k-1 (x, β) ≥ n 3k-1 -n 3k-2 . As a result, we get

In conclusion, it immediately holds that x ∈ E ϕ max , so U ⊆ E ϕ max .

Proof of Theorem 2.2.3 Now we check that the set

1 , . . . , ω

is dense in [0,1]. That is, for all real number x ∈ [0, 1] and r > 0, we need to find out a real number y ∈ U satisfying |x -y| ≤ r. Assume that the β-expansion of x is ε(x, β) = (ε 1 (x), ε 2 (x), . . .). Let be an integer such that β -≤ r. We get that (ε 1 (x), . . . , ε (x)) ∈ Σ β . Then let y ∈ I 3n (ε 1 (x), . . . , ε (x), 0 n -, ω ( ) 1 , ..., ω

where ω

is defined as (5.2.2) for all 1 ≤ i ≤ 2 . Thus |x -y| ≤ β -≤ r since both the β-expansions of x and y begin with (ε 1 (x), ..., ε (x)). Hence, the set

1 , . . . , ω

By the Baire category theorem, we consequently have U is residual in [0, 1]. To sum up, E ϕ max is residual in [0, 1] by Lemma 5.2.2.

be an integer satisfying β -≤ r. Let = max{n, }. Since (ε 1 (x, β), . . . , ε (x, β)) ∈ Σ β , we choose a point

Then it holds that |x -y| ≤ β -≤ r and y ∈ U n . To sum up, the set

Thus, we can conclude by the Baire Category Theorem that U is residual in [0, 1].

Then, E 0,1 is residual in [0, 1] by Lemma 6.2.2.

Proof of Theorem 2.3.4

As the same discussion at the first part of Section 3, it holds that dim H E P 0,0 is of full Lebesgue measure by using the result of Cao and Chen [START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF] that the set

is of full Lebesgue measure. By the same argument as the proof of Theorem 2. 

Then by Theorem 3.2.23, it holds that

But Theorem 3.2.23 is not applicable for the case of a = 0, 0 < b < 1 and

Note that E P a,1 ⊆ F P 1 where F P 1 is defined by (2.3.2). So we first give the Hausdorff dimension of F P 1 . Since

Moreover, by Lemma 6.3.4,

Hence, log µ(

we have

Furthermore, we conclude from Lemma 6.3.4 that

Therefore, we have

Just proceeding as the same analysis in Section 3.2, for all the above three cases, we obtain lim inf

(3) Use the mass distribution principle (see [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]Page 60]). Now we take any B(β, r)

with center β ∈ E(β 1 , β 2 ) and sufficiently small enough r verifying

We can obtain the required sequences with some adjustments.

) for all k ≥ 1. By Lemma 3.2.17, the set V is well defined. and

x ∈ [0, 1) :

Thus,

) is periodic, we have r = r = +∞ and the set with such ε(x, β) is countable.

When ε(x, β) is not periodic, let m k and n k be defined in Lemma 7.1.1. We will construct a countable set D such that ε(x, β) ∈ D for all x ∈ R β (r, r) with 0 ≤ r 1+r < r ≤ +∞. By Lemma 7.1.4, there is an integer k , such that for all k ≥ k , we have n k+1 < m k . Let t k be defined by (7.1.6). Suppose that

where

(7.1.17)

By comparing the equalities (7.1.7), (7.1.16) and (7.1.17), we can check that n k+1 = a n k for all integer 1 ≤ a ≤ a. Suppose that there are two integers 1 ≤ a ≤ a and

When t k < n k+1 < m k , by (7.1.4), (7.1.5) and (7.1.16), it follows that

Now we will construct the countable set D. For all ω = (ω 1 , . . . , ω n ) ∈ Σ n β , define

Suppose that s k (ω) and t k (ω) have been defined, let

where ω a , u, ω t k (ω)+1 -1, ε * 1 , . . . , ε * j = ω a , u, ω t k (ω)+1 -1 when j = 0, and

where ω a , u, ω t k (ω)+1 + 1, 0 j = ω a , u, ω t k (ω)+1 + 1 when j = 0. When k(ω) = 0, let

where ω a , ω 1 -1, ε * 1 , . . . , ε * j = (ω a , ω 1 -1) when j = 0, and

where (ω a , ω 1 + 1, 0 j ) = (ω a , ω 1 + 1) when j = 0.

Then we have M k (ω) < ∞ for all k ≥ 1 and we also have

By the former analysis in this section, for any x ∈ R β (r, r) with 0 ≤ r 1+r < r ≤ +∞, we have ε(x, β) ∈ D and the set D is countable.

As a consequence, the set R β (r, r) 0 ≤ r 1+r < r ≤ +∞ is countable. Consequently, letting r → +∞, we conclude that dim H {x ∈ [0, 1) : r β (x) = +∞} = 0.

By the fact that R β (r, r) ⊆ {x ∈ [0, 1) : r β (x) = +∞}, we have dim R β (r, r) = 0.

When 0 ≤ r ≤ r 1+r , 0 < r < +∞. Our proof is divided into two parts.

The upper bound of dim H R β (r, r)

We now construct a covering of the set R β (r, r) with 0 ≤ r ≤ r 1+r , 0 < r < +∞. Let {n k } ∞ k=1 and {m k } ∞ k=1 be the sequences such that

Given k ≥ 1, we collect all of the points x with rβ (x) ≥ r and r β (x) = r. We first calculate the possible choices of digits among the m k prefix of (ω 1 , ω 2 , . . .). For the "free" blocks in the prefix of length m k of the infinite sequence ε(x, β). Write their lengths as d 1 , • • • , d k . It follows immediately that d i = 0 when n i < m i-1 and

By (7.1.10) and the choice of m k and n k , it follows from Lemma 7.1.5 that, for any

Applying Lemma 7.1.5, we have

(m i-1 -n i ) < +∞. By (7.1.13) and Lemma 7.1.5, we have

Construction of Cantor Set

We construct a Cantor subset of R β (r, r) 0 ≤ r ≤ r 1+r , 0 < r < +∞ as follows. Fix δ > 0. Let β N be the approximation of β which is defined in Section 2. Notice that β N → β as N → ∞, we can choose sufficiently large integer N with ε * N (β) > 0 and M large enough such that

and

Actually, we can choose the following sequences.

(1) When r = 0, 0 < r < +∞, let

By a small adjustment, we can obtain the required sequences.

(2) When 0 < r ≤ r 1+r , 0 < r < +∞, let

Note that r < r. Both of the sequences {n k } ∞ k=1 and {m k } ∞ k=1 increase to infinity as k increases. We can adjust these sequences to make sure that they satisfy the required properties. Without any ambiguity, the statement that ω ∈ Σ * β N is full means that ω is full when regarding it as an element of Σ

where ω| i = (ω 1 , . . . , ω i ). Then a p k (ω) is full when regarding it as an element of Σ * β . For convenience, denote

We can see that all of the words in M, G k and D k are full when regarding them as an element of Σ * β . Hence, by Theorem 3.2.7, every word in M, G k and D k can concatenated all β-admissible word.

Now define

We claim that E N is a subset R β (r, r).

In fact, for any x ∈ E N , suppose that ε(x, β) = (ε 1 , ε 2 , . . .). We first prove that for every n with m k ≤ n < n k+1 , we have

where the last equality follows from the fact that n 1 > 2M and the construction of

This implies

The lower bound of dim H R β (r, r)

The rest of this section is devoted to estimating the lower bound of Hausdorff dimension of E N by the modified mass distribution principal.

As the classical method of giving the lower bound of dim H E N , we first define a

Borel probability measure µ on E N . Set µ([0, 1)) = 1, and µ (I 

where the sum is taken over all the basic intervals associate to u k+1 ∈ G k+1 contained in I n . We can see that µ satisfies the consistency property which ensures that it can be uniquely extended to a Borel probability measure on E N . Now we will estimate the local dimension lim inf n→∞ log µ(In)

log |In| for all basic cylinder I n with I n ∩ E N = ∅. We claim that, there exists k 0 , for all k ≥ k 0 , we have

for all k ≥ k 0 . Combining Theorems 3.2.1, 3.2.10 and the definition of M, by (7.1.22), we have

Immediately, for any k ≥ 1, the relationship between M and D k gives

, where c = β -M (1-δ) . As a consequence,

.

Therefore, for all i ≥ 2, that, for all θ > 0,

Now considering the final part of (7.2.1) as a function of r, we can find that

x ∈ [0, 1) : rβ (x) ≥ r, i + j -1 n ≤ r β (x) ≤ i + j n .

By the σ-stability of Hausdorff dimension (see [START_REF] Falconer | Fractal Geometry : Mathematical Foundations and Applications [M[END_REF]), we have dim H {x ∈ [0, 1) : rβ (x) ≥ r} ≤ 1 -r 1 + r 2 +

1 n

(1 -r) 2 r2 .

Letting n → +∞, we therefore conclude that

Finally, we use the maximization method of Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to β-ary and β-expansion[END_REF] for the estimation of the lower bound of dim H {x ∈ [0, 1) : rβ (x) = r}. In fact, fix 0 < r ≤ 1, the function r → dim H R β (r, r) is continuous and reaches its maximum at the unique point r = 2r 1-r . By calculation, we conclude that the maximum is exactly equal to