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“Rien ne sert de penser, il faut réfléchir avant.”

Pierre Dac

“Une civilisation sans la Science, ce serait aussi absurde qu’un poisson sans bicyclette.”

Pierre Desproges
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Abstract

This thesis aims for a better understanding of supersymmetry breaking mechanisms
in string theory, their low-energy effective descriptions, and their role in cosmological
applications. We first review indispensable supersymmetry tools, before addressing the
issue of partial N = 2 → N = 1 global supersymmetry breaking. In this context, we
study the most general deformation of a vector multiplet and show that it corresponds to
the magnetic dual of a triplet of Fayet-lliopoulos parameters. The study of non-linear re-
alizations of partial breaking leads to the analysis of the details of supersymmetric Dirac-
Born-Infeld actions and their uniqueness, in particular through explicit computations of
their fermionic contributions. In a second part, we review string theory elements with a
particular accent on type IIB compactification ingredients. We then study the inflation-
ary possibilities of a type IIB string theory moduli stabilization scenario with D7-branes
using logarithmic quantum corrections to the Kähler potential. We show that a new type
of inflationary scenario can successfully be implemented near a metastable de Sitter vac-
uum. The value of the vacuum energy in this scenario is nevertheless imposed by the
inflationary stage. We discuss the possibility of fitting hybrid inflation with this mod-
uli stabilization inflationary scenario. We show how to construct waterfall fields at the
D7-brane intersections, study their effective theory description and explain how they can
drive the end of inflation and lower the global minimum of the scalar potential towards
the almost vanishing value describing our Universe.

Résumé

Cette thèse a pour but d’avancer dans la compréhension des mécanismes de brisure de
supersymétrie en théorie des cordes, de leur descriptions effectives à basse énergie et de
leurs applications cosmologiques. Dans un premier temps, nous rappelons certaines no-
tions indispensables à l’étude des théories supersymétriques et en particulier de la brisure
partielle N = 2 → N = 1 en supersymétrie globale. Dans ce contexte, nous étudions la
déformation la plus générale d’un multiplet vectoriel et montrons qu’elle correspond au
dual magnétique d’un triplet de paramètres de Fayet-Iliopoulos. L’étude des réalisations
non-linéaires de la supersymétrie brisée nous conduit à l’analyse détaillée des actions
Dirac-Born-Infeld supersymétriques et de leur unicité, en particulier à travers le calcul
détaillé des contributions fermioniques. Dans une seconde partie, nous introduisons des
éléments de théorie de cordes, en mettant l’accent sur les compactifications en théorie de
type IIB. Nous étudions alors les possibilités d’inflation d’un modèle de stabilisation des
modules en type IIB, utilisant des D7-branes et des corrections quantiques logarithmiques
au potentiel de Kähler. Nous exposons un scénario d’inflation d’un genre nouveau, réalisé
au voisinage d’un vide de de Sitter métastable. Dans ce modèle, la valeur de l’énergie du
vide est fixée par la phase inflationniste. Cela motive la mise en oeuvre d’inflation hybride
dans notre modèle : nous montrons comment construire des champs de cascade aux inter-
sections des D7-branes et étudions leur théorie effective. Nous expliquons que ces champs
provoquent la fin de l’inflation et permettent d’abaisser l’énergie du vide jusqu’à la valeur
qui décrit notre Univers.
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Chapter 1

Introduction

Modern theoretical physics is based on two major discoveries of the beginning of the
twentieth century: quantum mechanics and general relativity. Their simultaneous devel-
opment led to great advances in our understanding of the laws of Nature, from subatomic
to extragalactic scales. Quantum field theory developed as a compelling framework to de-
scribe relativistic quantum phenomena and showed the immeasurable power of the use
of symmetries in theoretical physics. The use of quantum field theory and symmetries
led in the ’70s to the formulation of what is now known as the Standard Model of particle
physics, which describes almost perfectly all the particles we detect in collider experi-
ments. In some cases, predictions of the existence of a particle came even before it was
observed, almost fifty years before in the case of the Higgs boson. In parallel, general rel-
ativity paved the ground for huge progress in our understanding of physics of the large
scales of our Universe. Discoveries made thanks to general relativity go from cosmic ex-
pansion to astrophysical objects such as black holes, by way of gravitational waves. These
general relativity predictions have been successfully tested experimentally. In the last few
years, international collaborations were even able to take the first black hole picture. The
study of cosmic expansion led to the Standard Model of Cosmology, called ΛCDM. When
associated with the inflation scenario, it explains very precisely observations such as the
cosmic microwave background or the distribution of galaxy clusters.

Unfortunately, both these Standard Models suffer from theoretical and experimental
inconsistencies. Some of their problems are intimately related. For instance, the Standard
Model of particle physics is unable to describe the dark matter and dark energy content
of the Standard Model of cosmology. Supersymmetry emerged as a strikingly powerful
theory to tackle some of these problems, such as the hierarchy of high energy scales, the
gauge coupling unification, or yet the existence of dark matter, through the prediction of
new weakly interacting elementary particles. On the theoretical side, supersymmetry is
a key ingredient for the consistency of string theory, that we introduce hereafter. Even if
supersymmetry holds at high energies, it must nevertheless break below a certain energy
scale, higher than our accessible energy scales, as we have observed no experimental evi-
dence of its existence yet. In particular, unbroken supersymmetry predicts superpartners
with the same masses as the Standard Model particles, that we should be able to detect.
Supersymmetry breaking is a central topic of this thesis, from its low-energy description
to some of its string theory realizations and their applications.

String theory is one of the best quantum gravity theory candidates. It naturally de-
scribes gravity and can produce chiral gauge theories in the same time. Nevertheless,
string theory predictive power is often criticized. Constructing predictive models for the
physics accessible at our energy scales is the main goal of string phenomenology. One of
the major issues is to describe how to go from properties of a ten-dimensional space-time,
essential for the consistency of supersymmetric strings theories, to predictions for our
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four-dimensional space-time. This question is resolved, through compactification mech-
anisms, with the idea that six of the initial dimensions are described by a compact mani-
fold, parametrized by moduli fields. For small compact manifold sizes, observers living
in the non-compact dimensions, at low energies, only have access to integrated compact
degrees of freedom, namely to the lowest level of the Kaluza-Klein tower of states, so that
they only feel the four non-compact dimensions. Phenomenologically interesting compact
manifolds must preserve some of the supersymmetries of the initial string theory spec-
trum. This is the case of Calabi-Yau manifolds or toroidal orbifolds, which provide a vast
choice of possible internal spaces associated with a vast number of possible low-energy
predictions and vacua, called the string theory landscape. Effective theory descriptions
of the low-energy regimes of string theory are mandatory to link with cosmological ob-
servables or scattering experiments observables, by keeping only the relevant degrees of
freedom among the infinity of the full string theory ones. Tentatives to reduce the number
of low-energy theories belonging to the string landscape have been developing these last
years under the name of the swampland program.

The work of this thesis is motivated by the desire of getting a better understanding
of supersymmetry breaking mechanisms in string theory and their early Universe conse-
quences. At its early stages, our Universe was hot and dense, hence ruled by the laws
of physics at very high energies. It is thus natural to try and build cosmological mod-
els, especially inflationary models, in the string theory framework. There are two rather
different parts in this thesis.

The first part of this thesis tackles N = 2 → N = 1 partial supersymmetry breaking
from the effective point of view of global supersymmetry. Partial supersymmetry studies
are motivated by the fact that type II string theories, convenient for string phenomenol-
ogy constructions, exhibit N = 2 supersymmetry in the bulk, whereas N = 1 supersym-
metry is preferred for phenomenological applications. In string theory this partial super-
symmetry breaking occurs naturally on D3 branes, non-perturbative objects spanning our
four space-time dimensions and localized in the internal space. Nevertheless, partial su-
persymmetry breaking realizations in global supersymmetry are not simple and require
some subtle elements such as deformations or electric and magnetic Fayet-Iliopoulos pa-
rameters. Interestingly, the study of non-linear realizations of supersymmetry in partially
breaking models naturally lead to the study of supersymmetric Dirac-Born-Infeld actions,
which precisely describe the string theory D3 branes. The main aspiration of the first part
of this thesis is to discover new effective theory partial supersymmetry breaking mecha-
nisms and unveil their string theory origin, following a “bottom-up” approach.

The second part of this thesis follows a rather opposite way, namely a “top-down”
approach, through string cosmology model building. If string theory is indeed the good
candidate for quantum gravity theory, its low-energy regime should be able to describe
the physics at play at the early stages of our Universe, namely during inflation. Supersym-
metry breaking at the string level plays an essential role in constructions of cosmologically
relevant de Sitter vacua, and can be intimately related to the problem of the stabilization
of internal space moduli. This approach allows us to tackle the question of the hierar-
chy between the diverse scales at play in our Universe, namely the relation between the
Planck, inflation, supersymmetry breaking or dark energy scales, and the string or com-
pact manifold scales. To use the slow-rolling scalar field inflation paradigm, one should
look for effective scalar potentials presenting a flat region, as well as a de Sitter minimum.
Both these two features are difficult to obtain in a controlled way in string theory, and
they impose careful checks of the validity of approximations, which often require large
internal volumes and small string coupling.
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This thesis is organized as follows. In Chapter 2, we first describe basic supersymme-
try ingredients necessary to study spontaneous supersymmetry breaking and non-linear
realizations, that we address in a second time. We make full use of these concepts to re-
view partial supersymmetry breaking from global N = 2 to N = 1 in the framework of
deformed vector multiplets. We analyze supersymmetry breaking through the introduc-
tion of the most generic deformation parameters and study the dual description of the
latter in terms of a triplet of Fayet-Ilopoulos parameters, as well as their consequences
when supersymmetry is non-linearly realized. In this context, we are naturally led to
study supersymmetric Dirac-Born-Infeld actions and the question of their uniqueness, in
particular through detailed computation of their fermionic contributions. In Chapter 3
we propel ourselves at higher energies and describe key elements of string theory, start-
ing from textbook material necessary for the discussions that come next. In particular, the
beginning of this chapter aims to discuss vacuum amplitudes, type IIB compactifications
on Calabi-Yau or toroidal orbifolds, and Dp branes. We particularly emphasize the impor-
tance of moduli stabilization scenarios leading to phenomenologically interesting de Sitter
spaces. At the end of the chapter, we show, on a particular model of toroidal compactifi-
cation with magnetic fluxes background, how to construct open string states sharing the
properties of waterfall fields. Such waterfall fields are key elements of hybrid inflation
scenarios, and we postpone their low-energy description until the next chapter. Chap-
ter 4 is devoted to the application of string theory model building to cosmology. After a
short introduction to the inflation paradigm, together with a discussion on its past imple-
mentations in string theory, we go on with a detailed study of the inflationary possibilities
in a type IIB moduli stabilization framework with D7 branes using logarithmic quantum
corrections to the Kähler potential. We expose a new inflationary mechanism near a de
Sitter minimum and explain how to tune the vacuum energy using the hybrid inflation
scenario. This scenario makes use of the waterfall field constructed before, which, living
at D7 branes intersections, fits perfectly the studied moduli stabilization framework.
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Chapter 2

Supersymmetry breaking and
non-linear realizations

2.1 Supersymmetry basics

Supersymmetry (SUSY) was first introduced to address unanswered aspects of the
Standard Model (SM) of particle physics, such as the unification of gauge couplings at
high energies. It then proved useful in broader theoretical contexts, from string theory to
dark-matter models. SUSY assumes the existence ofN symmetries relating fermionic and
bosonic fields and when N > 1, it is referred to as “extended” SUSY. Such a strong sym-
metry has an important number of theoretical consequences and assures a better control
of the theory, through non-renormalization theorems for instance. On the phenomenolog-
ical side, supersymmetry predicts superpartners for each particle of the Standard Model.
As these superpartners are not observed at our energy scales, even if SUSY exists at high
energies, it must necessarily “ break ” at a certain scale: this phenomenon is called spon-
taneous symmetry breaking. In analogy to Nambu-Goldstone bosons [5, 6] taking part
in the famous Brout-Englert-Higgs [7, 8] mechanism for electroweak symmetry breaking,
SUSY breaking models predict the existence of a massless fermion, called Goldstino, for
each broken SUSY generator.

This section is devoted to a short introduction to supersymmetric theories and La-
grangians. This is mostly textbook material, but we need to introduce key elements that
we will use repeatedly in the rest of this thesis. In section 2.1.1 we recall basic elements
of N = 1 SUSY theories constructions, before tackling in section 2.1.2 descriptions of the
aforementioned SUSY breaking phenomenon.

2.1.1 SUSY algebra, representations and Lagrangians

Algebra In relativistic quantum field theories, symmetries play an essential role and
are separated between Poincaré symmetries and internal symmetries, all implemented
through the introduction of bosonic charges. Supersymmetry can be defined through the
introduction of a new symmetry that exchanges fermionic and bosonic degrees of free-
dom, hence related to a fermionic charge. Together with the bosonic charges mentioned
above, they form a graded Lie algebra, which has been proven to be the only one compat-
ible with an S-matrix description of quantum field theories [9]. A supersymmetric theory
is thus a theory containing fields in specific representations of the supersymmetry algebra

{QA
α , Q̄Bβ̇} = 2σ

µ

αβ̇
PµδA

B , {QA
α , QB

β} = 0,

[Pµ, QA
α ] = [Pµ, QB

β ] = 0, [Mµν, QA
α ] = iσµν β

α QA
β , (2.1.1)
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where Pµ, Mµν are respectively the translation and Lorentz generators of the Poincaré
algebra. The A, B indices play a role for extended supersymmetry, when N ≥ 2 su-
persymmetric charges are included. Note that we considered vanishing central charges
ZAB = 0 in the above algebra, hence leading to an U(N ) R-symmetry group in extended
SUSY. In the following, we use Weyl spinors and conventions of [10], summarized in Ap-
pendix A.1.

Multiplets If SUSY is a symmetry of the theory, fields must lie in representations of the
SUSY algebra (2.1.1). As P2 is a Casimir operator and as Pµ commutes with the SUSY
generators, fields lying in the same representation of the superalgebra have the same
mass. We construct massless irreducible representations, called multiplets, in the stan-
dard way. We first boost to a reference frame with convenient momentum operator, and
then act with creation operators, related to the supercharges, on a lowest-spin Clifford
vacuum. Because of the commutation relations (2.1.1) between Lorentz and supersymme-
try charges, creation operators increase the spin by 1/2. Supersymmetry multiplets thus
contain states of different spins. Because of the fermionic nature of the SUSY charges,
creation operators cannot be applied twice on the vacuum, and only a finite number of
different spins are present in each representation. For N = 1 SUSY, the massless multi-
plets of interest for the rest of this thesis are chiral multiplets Φ = (φ, ψ,F), containing a
complex scalar, its fermionic partner, and a complex auxiliary field, together with vector
multiplets V = (λ, Aµ,D) containing a gauge vector, its fermionic partner called gaugino
and a real auxiliary field. The F and D auxiliary fields are necessary to assure that the
superalgebra closes on the entire multiplets, without the use of the equation of motions.
They are not physical and must be eliminated through their respective equation of motion.
By construction, the different fields of the multiplets are related through supersymmetry,
and their transformations can be expressed using supercharge representations. Namely,
the chiral multiplet components infinitesimal supersymmetry transformations read

δεφ ≡ (εQ + ε̄Q̄)φ =
√

2εψ,

δεψα ≡ (εQ + ε̄Q̄)ψ = i
√

2(σµε̄)α∂µφ +
√

2εαF, (2.1.2)

δεF ≡ (εQ + ε̄Q̄)F = −i
√

2∂µψσµε̄,

while those of the vector multiplet are

δελα = iDεα + (σµνε)αFµν,

δεFµν = 2i
(

εσ[ν∂µ]λ̄− ∂[µλσν]ε̄
)

, (2.1.3)

δεD = ε/∂λ̄− ∂µλσµε̄.

In the second line, we used the convention that a[µbν] =
1
2 (aµbν − aνbµ). One can check

that the r.h.s. of the last line is indeed real, as is required for a real D, by making use of
identities of Appendix A.1.

Superfields It is convenient to describe supersymmetry multiplets and Lagrangians
through the use of superfields and superspace. We do not enter the details of the con-
struction of superspace but only recall the main ingredients that we will use in the fol-
lowing. Superspace is implemented by the addition of Grassmann coordinates θ, θ̄ to the
space-time coordinates xµ. Because of the fermionic nature of Grassmann variables, any
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function of (xµ, θ, θ̄) can be power expanded exactly as

S(x, θ, θ̄) = s(x) + θλ(x) + θ̄ψ̄(x) + θθ f (x) + θ̄θ̄g(x) + θσµ θ̄Aµ(x)
+ θθθ̄χ̄(x) + θ̄θ̄θη(x) + θθθ̄θ̄h(x). (2.1.4)

The SUSY generators are expressed in terms of the Grassmann coordinates as

Qα =
∂

∂θα
− i(σµ θ̄)α∂µ, Q̄α̇ = − ∂

∂θ̄α̇
+ i(θσµ)α̇∂µ. (2.1.5)

One can then find the infinitesimal transformations of the superfield components by act-
ing with the above operators on S(x, θ, θ̄), through the definition

δεS(x, θ, θ̄) ≡ (εQ + ε̄Q̄)S(x, θ, θ̄)

= δεs(x) + θδελ(x) + θ̄δεψ̄(x) + θθδε f (x) + θ̄θ̄δεg(x) + · · · (2.1.6)

As the Grassmann derivatives ∂/∂θα are not covariant, they do not even generate su-
perfields when acting on superfields. It is thus useful to introduce covariant derivatives
Dα, D̄α̇ satisfying {Dα, Qβ} = {D̄α̇, Qβ} = 0 , called superderivatives, which will be used
to construct new superfields and Lagrangians. These derivatives can be expressed as

Dα ≡
∂

∂θα
+ i(σµ θ̄)α∂µ , D̄α̇ ≡ −

∂

∂θ̄α̇
− i(θσ̄µ)α̇∂µ , (2.1.7)

and satisfy the following anti-commutation relations

{Dα, D̄β̇} = −2iσµ

αβ̇
∂µ, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0. (2.1.8)

Chiral multiplets, introduced above, are described by chiral superfields Φ constructed
from the constraint

D̄α̇Φ = 0. (2.1.9)

This constraint eliminates some of the components of a generic superfield. The chiral
superfield Φ can be expressed as

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF(x) + iθσµ θ̄∂µφ(x)− i√
2

θθ∂µψ(x)σµ θ̄ +
1
4

θθθ̄θ̄2φ(x)

= φ(y) +
√

2θψ(y) + θθF(y). (2.1.10)

In the last line, we introduced the chiral coordinate

yµ = xµ + iθσµ θ̄, (2.1.11)

with the help of which we can rewrite the superderivatives as

Dα =
∂

∂θα
+ 2iσµ

αα̇ θ̄α̇ ∂

∂yµ
, D̄α̇ = − ∂

∂θ̄α̇
(2.1.12)

We can easily check that acting with εQ + ε̄Q̄ on Φ(x, θ, θ̄) and using relation (2.1.6), we
find back the transformation laws (2.1.2). An important property is that the product of
chiral superfields is a chiral superfield. Of course, antichiral superfields Φ̄ can be con-
structed the exact same way, with Dα instead of D̄α̇ in the constraint (2.1.9).
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Vector multiplets are described through real superfields V satisfying the constraint

V = V†. (2.1.13)

This constraint relates the diverse components of the real superfield. By applying a su-
pergauge transformation V → V + Φ + Φ† it can be brought to the Wess-Zumino gauge
[11], in which it reads

VWZ(x, θ, θ̄) = −θσµ θ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1
2

θθθ̄θ̄D(x), (2.1.14)

and where only λ, Aµ and D, introduced previously, are non-vanishing. The λ and D
components are supergauge invariant while Aµ transforms following the standard gauge
transformation Aµ → Aµ − i∂µ(φ − φ∗). As can be seen by acting with εQ + ε̄Q̄, the
Wess-Zumino gauge is not SUSY invariant. We can nevertheless construct the N = 1
field strength chiral superfield

Wα = −1
4

D̄2DαV = −1
4

D̄α̇D̄α̇DαV, (2.1.15)

which is invariant under supergauge transformations. When expressed in terms of the y
variable introduced in (2.1.11), it reads

Wα(y, θ, θ̄) = −iλα(y) + θαD(y)− i(σµνθ)αFµν(y) + θθ(σµ∂µλ̄(y))α , (2.1.16)

and only contains the gauge invariant fields. What’s more, one can check that the field
strength superfield satisfies the condition

DW = DαWα = D̄α̇W̄ α̇ = D̄W̄, (2.1.17)

which is related to the Bianchi identities of Fµν.

Lagrangians Supersymmetric Lagrangians can be constructed out of the above super-
fields by using components that are invariant under supersymmetry, up to a total deriva-
tive. This is the case of the top components, proportional to θθθ̄θ̄, of generic superfields or
the θθ components of chiral superfields. The general N = 1 SUSY invariant Lagrangians
can be put in the following form

L =
∫

d2θd2θ̄ V +

(∫
d2θ Φ

∣∣∣
θ̄=0

+ c.c.
)

, (2.1.18)

where V = V† is a real superfield and the complex conjugate of the chiral superfield Φ
integral is added because Lagrangians must be hermitian. We recall that the action is
obtained after space-time integration

S =
∫

d4xL, (2.1.19)

hence it is indeed sufficient for Lagrangians to be invariant up to a total derivative, jus-
tifying the use of the top components of the real and chiral superfields. When chiral
superfields are expressed in terms of xµ, the θ̄ = 0 condition of the second part of the
Lagrangian is necessary to select their θθ component. When expressed in terms of yµ,
introduced in (2.1.11), chiral superfields only contain θ components and this condition is
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not necessary. Hence, we will not use it in the rest of this thesis. This remark also ex-
plains why the θθ component of chiral superfields is sometimes called top component.
The first part of the Lagrangian (2.1.18) is called the D-part while the second is the F-part,
because they correspond to the D and F auxiliary fields of the superfields, as can be seen
in eqs. (2.1.10) and (2.1.14). We stress the fact that the V and Φ superfields in (2.1.18) can
be made of out of other superfields, resulting in composite superfields.

As already mentioned, a product of chiral superfields stays chiral, hence interaction
terms can be constructed by multiplying chiral superfields, and a general renormalizable
Lagrangian for chiral matter can be written as

L =
∫

d4θ Ki
jΦiΦ̄j +

(∫
d2θ ciΦi +

1
2

mijΦiΦj +
1
3

λijkΦiΦjΦk + c.c.
)

= −Ki
j

(
iψi/∂ψ̄j − ∂µφi∂

µφ∗j + FiF̄
j
)

+ ciFi + mij(φiFj −
1
2

ψiψj) + λijk(φiφjFk − ψiψjφk) + c.c. . (2.1.20)

The first part, containing kinetic terms, is the expansion of the Kähler potential K(Φi, Φ̄i)
while the second one, containing interaction terms, is the expansion of the superpotential
W(Φi). The superpotential is at most cubic in the fields in a renormalizable theory

W(Φi) = ciΦi +
1
2

mijΦiΦj +
1
3

λijkΦiΦjΦk. (2.1.21)

In the second line of (2.1.20) we expressed the Lagrangian explicitly in components, by
expanding the superfields and integrating. For diagonal K, this Lagrangian corresponds
to the Wess-Zumino model [11]. Note that the last line can be written as

LW(φi) =
∂W

∂φi
(φi)Fi +

∂2W

∂φi∂φj
(φi)ψiψj + c.c. . (2.1.22)

Lagrangians for vector superfields can be constructed in the same way, by making use
of the supergauge invariant field strength introduced in eq. (2.1.15). We first form the
composite chiral scalar superfield W2 = WαWα, then extract its top component

L =
1
4

∫
d2θW2 + c.c.

= −iλ/∂λ̄− 1
4

FµνFµν +
1
2
D2. (2.1.23)

The 1/4 factor is introduced to have canonically normalized kinetic terms for the field
strength and fermions. The second line is obtained through partial integration and the
equality holds up to a total derivative. The Lagrangian (2.1.23) is the supersymmetric ver-
sion of the Lagrangian of a free vector field, including the vector, the gaugino and auxil-
iary field D. As we mentioned already, the top component of the vector field is also invari-
ant under supersymmetry, hence nothing forbids us to add the so-called Fayet-lliopoulos
(FI) [12] Lagrangian to the theory

LFI = 2ξ
∫

d4θV = ξD, (2.1.24)

which will play a crucial role in supersymmetry breaking and in the rest of this thesis.
Gauge invariant Lagrangians, coupling chiral matter and gauge vector fields, can be

formed in a very simple way. We do not enter the details and directly write down the
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general Lagrangian for a chiral matter field with canonical Kähler potential, coupled to a
U(1) gauge vector as

L =
∫

d4θ ΦieqiVΦ̄i +

(∫
d2θ

1
4

W2 + ciΦi +
1
2

mijΦiΦj +
1
3

λijkΦiΦjΦk + c.c.
)

= −1
4

FµνFµν −DµφiDµφ∗i +
1
2
D2 − iλ /Dλ̄− iψi /Dψ̄i + FiF̄

i

+ i
√

2(qiφ
∗iψiλ− qiφiψ̄

∗iλ̄) + qiDφiφ
∗i + LW(φi), (2.1.25)

where here D are gauge invariant derivatives, and the various fields transform under
supergauge transformations as

Φi → e−iqiΛΦi, Φ̄i → e+iqiΛ̄Φ̄i, V → V + i(Λ− Λ̄). (2.1.26)

In (2.1.25), the LW(φi) part contains the chiral matter interactions introduced in (2.1.22).
The linear term of the superpotential ci can only be present for matter of vanishing charge,
since otherwise it is not gauge invariant. The other terms of the superpotential must also
be gauge invariant, hence they couple fields whose charges sum to zero. There exists a
straightforward non-abelian generalisation of the Lagrangian (2.1.25), making use of the
non-abelian field strength Wα = − 1

4 D̄D̄e−V DαeV .

2.1.2 Spontaneous supersymmetry breaking

Supersymmetry predicts equal masses for superpartners, i.e. physical fields lying in
the same representation of the superalgebra. As superpartners for SM particles have not
been observed in experiments, supersymmetry cannot be a symmetry of the theory at low
energies. One thus has to invoke mechanisms breaking supersymmetry spontaneously.

Global N = 1 SUSY theories have positive semi-definite hamiltonians. This is shown
by expressing P0 as a function of the supercharges, with the help of the superalgebra
(2.1.1) and the spinor identities of Appendix A.1

H = P0 =
1
4
(σ̄0)α̇α{Qα, Q̄α̇} =

1
4
(Q1Q̄1̇ + Q2Q̄2̇ + Q̄1̇Q1 + Q̄2̇Q2). (2.1.27)

Supersymmetric states are annihilated by all supercharges and thus have vanishing en-
ergy, while non-supersymmetric states have positive energies. This fact can also be un-
derstood by looking at the effective scalar potential of the theory. Consider for instance
a U(1) gauge theory of chiral matter coupled to a FI term, described by the sum of the
Lagrangians of eqs. (2.1.24) and (2.1.25). The scalar potential is simply

V =
1
2
D2 + FiF̄

i, (2.1.28)

where the auxiliary fields are expressed in terms of the scalar fields φi, through their
equations of motion

D = −qiφiφ
∗i − ξ, (2.1.29)

F̄
i
= − ∂W

∂Φi
(φi) = −ci −mijφj − λjkiφjφk, Fi = −

∂W̄

∂Φ̄i (φ
∗i) . (2.1.30)

As explained above, supersymmetry is broken if the vacuum energy is positive, hence if
the scalar potential is non-vanishing, which implies that at least one of the auxiliary fields
has a non-vanishing expectation value, i.e. 〈D〉 6= 0 or 〈Fi〉 6= 0. From the expressions of
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eqs. (2.1.29) and (2.1.30) for the auxiliary fields, we see that this can be achieved in several
ways, that we describe below.

F-term SUSY breaking The first possibility is to choose a chiral field content and a su-
perpotential such that 〈Fi〉 = 0 cannot be solved simultaneously for all φi. The simplest
case is the O’Raifeartaigh model [13] with three chiral superfields and superpotential

W(Φi) = c1Φ1 + m23Φ2Φ3 + λ122Φ1Φ2
2. (2.1.31)

The auxiliary fields

F̄
1
= −c1 − λ122φ2

2, F̄
2
= −m23φ3 − 2λ122φ1φ2, F̄

3
= −m23φ2, (2.1.32)

cannot vanish identically and SUSY is hence spontaneously broken. For −c1< (m23)2/2λ122

the global minimum is at 〈φ2〉 = 〈φ3〉 = 0 and has a flat direction for φ1. The auxiliary
field F̄

1 gets a non-vanishing VEV responsible for SUSY breaking, and the scalar potential
is simply V = (c1)2.

D-term SUSY breaking Another possibility is to have a non-vanishing FI parameter ξ,
in the absence of matter (i.e. only a SUSY vector field theory) or together with matter fields
arranged so as to forbid 〈D〉 = 0. The simplest method can be achieved for a vanishing
superpotential, hence vanishing Fi auxiliary fields. In this case, a non-zero ξ is mandatory
in order to have 〈D〉 6= 0, otherwise 〈φi〉 = 0 always lead to a supersymmetric minimum.
For instance, one can consider a theory of a single chiral field Φ of charge q such that
qξ > 0. The vacuum is at 〈φ〉 = 0, which leads to 〈D〉 = −ξ and a non-vanishing scalar
potential V = 1

2 ξ2.
An anomaly free theory requires nevertheless that ∑i q3

i = 0, demanding at least two
chiral fields of opposite charges. This is the famous Fayet-Iliopoulos model [12] contain-
ing two chiral superfields Φ+, Φ− of charges ±q with superpotential W = mΦ+Φ−. The
auxiliary fields equations (2.1.29) and (2.1.30) simply reduce to

D = −ξ − q|φ+|2 + q|φ−|2, F̄+ = −mφ−, F̄− = −mφ+, (2.1.33)

and lead to the scalar potential

V =
1
2

ξ2 + (m2 + qξ)|φ+|2 + (m2 − qξ)|φ−|2 +
1
2

q2(|φ+|2 − |φ−|2)2. (2.1.34)

Hence, when m2 > qξ, the minimum is obtained for vanishing matter field VEVs, in
which case only SUSY is broken, with a scalar potential V = 1

2 ξ2. When m2 < qξ, the
minimum is at 〈φ+〉 = 0 and 〈φ−〉 = v, with |v|2 ≡ −(m2 − qξ)/q2 > 0, and the scalar
potential constant term is V = m2/2q2(qξ −m2). In this second case, the gauge symmetry
is broken as well and one can study the new vacuum by expanding φ− around its VEV.
The Goldstone boson of the broken gauge symmetry is the imaginary part of φ− and is
eaten by the vector field which becomes massive.

The goldstino As we explained at the beginning of the current section, supersymmetry
is spontaneously broken each time an auxiliary field gets a non-vanishing VEV. This was
motivated by the form of the scalar potential (2.1.28), but it can also be seen by the fol-
lowing reasoning. If SUSY is broken in the vacuum, some fields should have expectation
values the SUSY transformations of which do not vanish. From the field transformations
eqs. (2.1.2) and (2.1.3) we see that the only Lorentz invariant possibilities are those for
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non-vanishing auxiliary fields VEVs. For both the chiral or the vector multiplets they
appear in the transformation laws of the fermion of the multiplet, namely

δεψα =
√

2εα〈F〉+ · · · , δελα = iεα〈D〉+ · · · . (2.1.35)

These non-linear transformations, or shifts of the fermions, are typical for Goldstone
fields of a broken symmetry. As supersymmetry is characterized by fermionic charges,
one should not be surprised by the fact that these fields are Goldstone fermions, called
goldstini. The linear shift of the goldstino is proportional to the scale of SUSY breaking,
parametrized by the VEV of the auxiliary field responsible for SUSY breaking, namely
〈F̄1〉 = c1 or 〈D〉 = ξ in the examples of F-term and D-term SUSY breaking described
above. In these cases, the goldstino is the sfermion or the gaugino but in more compli-
cated models, the goldstino can be a combination of the diverse fermions of the theory.

2.2 Non-linear realizations of supersymmetry

Spontaneous breaking of supersymmetry implies the appearance of a massless Gold-
stone mode, the goldstino, which we mentioned just above. It also generates masses
proportional to the SUSY breaking scale, hence removing the mass degeneracy between
superpartners of some of the multiplets. We now explain how the low energy dynamics
of the goldstino multiplet can often be studied by neglecting the other massive degrees of
freedom. As for the case of bosonic symmetry breaking, these dynamics can be described
through non-linear realizations, that we introduce hereafter.

2.2.1 Non-linear realizations and the Volkov-Akulov action

Non-linear realizations When a bosonic symmetry is spontaneously broken, the gauge
group G, leaving the whole action invariant, is reduced to a subgroup H leaving any
minimum invariant. One can go from one minimum to the other by acting with elements
of the coset G/H. Starting from a specific vacuum configuration, i.e. a field VEV φ0i, any
different vacuum configuration φj can thus be written through a group transformation as

φj = R(θ) i
j φ0i = exp

(
∑

a
iθa(ta)

i
j

)
φ0i, (2.2.1)

where R(θ) is in a linear representation R of G, and θ = θata is expressed in terms of the
generators ta of the complementary of the stabilizer H. From the dynamics of the initial
fields φj, one can extract the dynamics of the parameters θa, which are the Goldstone
modes, by rewriting the action for φi in terms of R(θ) i

j φ0i and expanding it in θa. This
action is highly non-linear, as the transformations of the θa coordinates. This can be seen
by rewriting δξφi = ξb(Tb)

j
i φj, where Tb are generators of the whole group G, as

δξφi = δξθa ∂R k
i

∂θa φ0k = ξb(Tb)
j

i R(θ) l
j φ0l , (2.2.2)

which can be generically rewritten as

δξθa = ξb f (θ) a
b . (2.2.3)

The f (θ) function generically depends non-linearly on θ, hence the name of non-linear
realization of the symmetry. The simplest example is θ-independent function, called shift,
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which already appeared in the goldstino transformations shown in eq. (2.1.35). Schemat-
ically, we understand that the symmetry goes from a linear to a non-linear realization
in the following way: while the orignal fields were freely traveling in Minkowski space,
after symmetry breaking the new fields of interest are restricted to the curved manifold
describing the different vacuum configurations.

Case of supersymmetry The above discussion was intended to give an effective theory
description of the spontaneous breaking of bosonic symmetries, and generally applies
to internal symmetries. When the superalgebra is broken, because we consider Lorentz-
invariant vacua, the unbroken symmetries must lie in the Lorentz group, identified to the
stabilizer H. The “coset” generators of interest are thus those of space-time translations
and supersymmetry transformations. Of course, the treatment is a bit more complicated
than in the previous case, because the physical fields of the theory depend on the space-
time coordinates xµ, while the superfields also depend on the superspace θ, θ̄ coordinates.
Keeping in mind that we are interested in the dynamics of the fields parametrizing the
coset space, we thus inspect the SUSY transformations of the aforementioned coordinates.
They can be derived from the multiplication of supergroup elements

G(0, ε, ε̄)G(xµ, θ, θ̄) = exp (i(εQ + ε̄Q̄)) exp
(
i(−xµPµ + θQ + θ̄Q̄)

)

= G(xµ + iθσµε̄− iεσµ θ̄, θ + ε, θ̄ + ε̄). (2.2.4)

The second line has been obtained using Hausdorff’s formula and the supersymmetry
algebra (2.1.1). It results in a finite expansion due to the fact that high order commutators
vanish. The group multiplication rule (2.2.4) leads to the following ε-parametrized SUSY
transformations

xµ → xµ + iθσµε̄− iεσµ θ̄, θ → θ + ε, θ̄ → θ̄ + ε̄. (2.2.5)

We see that θ undergoes a shift under the action of supersymmetry, typical of goldstino
fields, as already mentioned. Hence, following the strategy of Akulov and Volkov [14, 10],
one can generalize the transformations of θ for a fermionic field κλα(x) depending on the
space-time coordinates and proportional to the κ scale. This gives

λα(x)→ λ′α(x′) = λα(x) +
1
κ

εα, xµ → x
′µ = xµ + iκ

(
λσµε̄− εσµλ̄

)
, (2.2.6)

from which we deduce the local infinitesimal SUSY transformation

δελα(x) = λ′α(x)− λα(x) =
1
κ

εα − iκ(λσµε̄− εσµλ̄)∂µλα. (2.2.7)

Comparing eqs. (2.1.35) and (2.2.7) we see that κ−1 characterizes the SUSY breaking scale,
related to the 〈D〉 or 〈F〉 auxiliary fields VEVs in the SUSY breaking models of section 2.1.2.
The λα transformation was transposed from the θ one, which has been derived from the
group multiplication (2.2.4) and the SUSY algebra. It is thus not a surprise that this trans-
formation (non-linearly) realizes the SUSY algebra as well. We check it by computing the
commutator of two SUSY transformations of λα. It reads

(δεδξ − δξδε)λα = −2i(εσµ ξ̄ − ξσµε̄)∂µλα. (2.2.8)

The commutator of two SUSY transformations is thus indeed a translation, with a param-
eter given by the right hand side of eq. (2.2.8).
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The Volkov-Akulov Lagrangian In their original paper, Akulov and Volkov followed
the same strategy as the one described above for non-linear realization of SUSY. They ap-
plied it to derive an invariant Lagrangian. Invariant Lagrangians on Riemann surfaces
can be written with the help of volume forms, expressed as the product of invariant dif-
ferential forms. From eq. (2.2.5), we see that the canonical 1-forms transform as

dxµ → dxµ + idθσµε̄− iεσµdθ̄, dθα → dθ, dθ̄α̇ → dθ̄α̇, (2.2.9)

such that the following 1-form

f a = dxa − idθσa θ̄ + iθσadθ̄, (2.2.10)

is indeed invariant under non-linear transformations. As before, one can replace the θ
coordinate with the fermionic field κλα and use dθ = κdxµ∂λ/∂xµ to obtain the associated
1-form

ωa ≡ Aa
µdxµ, Aa

µ ≡ δa
µ + iκ2λσa∂µλ̄− iκ2∂µλσaλ̄. (2.2.11)

The A matrix is the vielbein associated with the non-linear realization of supersymmetry.
By construction, ωa is invariant under the non-linear SUSY transformation (2.2.7). It can
thus be used to form an invariant volume form, the integral of which is a natural candidate
for an invariant action

S = − 1
2κ2

∫
ω0 ∧ω1 ∧ω2 ∧ω3 = − 1

2κ2 ·
1
4!

∫
εabcd ωa ∧ωb ∧ωc ∧ωd

= − 1
2κ2 ·

1
4!

∫
εµνρσ det A dxµ ∧ dxν ∧ dxρ ∧ dxσ = − 1

2κ2

∫
d4x det A. (2.2.12)

To obtain the second line we used the definition (2.2.11) of the vielbein form and the
relation

εabcd Aa
µ Ab

ν Ac
ρ Ad

σ = εµνρσ det A. (2.2.13)

This action is the space-time integral of the famous goldstino Volkov-Akulov Lagrangian

LVA = − 1
2κ2 det A

= − 1
2κ2

(
1 + κ2iλ/∂λ̄ + κ2iλ̄/̄∂λ− 2κ4 ((λ/∂λ̄)(λ̄/̄∂λ) + λσµ∂νλ̄∂µλσνλ̄

))
+ O(λ6)

= − 1
2κ2 −

i
2

λ/∂λ̄− i
2

λ̄/̄∂λ− κ2

2
[
−(λ/∂λ̄)(λ̄/̄∂λ)− 2(λ/∂λ̄)2 − 2(λ̄/̄∂λ)2

+ ∂µ(λ
2)∂µ(λ̄2) + λ̄2λ2λ + λ2λ̄2λ̄

]
+ O(λ6) + total derivatives . (2.2.14)

Here we made use of the slash notation conventions shown in eq. (A.1.9). We see that the
overall constant in eqs. (2.2.12) and (2.2.14) is necessary to have canonically normalized
goldstino kinetic terms. The first term of the Lagrangian is the positive constant scalar
potential V = 1

2κ2 typical of SUSY breaking as explained in section 2.1.2 and observed in
the D-term and F-term breaking models with the identification 1/κ → 〈D〉, 〈F〉/

√
2.

Standard realizations Finally we comment on the fact that the so-called standard non-
linear realizations of supersymmetry can be implemented on other fields s (either bosonic
of fermionic) using the transformation law

δεs = −iκ(λσµε̄− εσµλ̄)∂µs, (2.2.15)
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similar to the goldstino transformation (2.2.7), except for the absence of shift. Space-time
derivatives must then be covariantized using the inverse vielbein A−1. It is indeed easy
to show that (A−1)

µ
a ∂µs transforms according to the standard realization law (2.2.15).

2.2.2 Non-linear realizations in superspace and constrained superfields

Superspace description of non-linear realizations In the previous section, the gold-
stino dynamics, described by non-linear realizations of supersymmetry, were stated in
component form. To apply the techniques described in section 2.1 to construct invariant
Lagrangians, it is useful to lift this description to superspace. The goldstino superfield
can be constructed from its lower component as any other superfield

Λα ≡ exp(θQ + θ̄Q̄)λα = λα +
1
κ

θα + · · · . (2.2.16)

Similarly, any field s in a non-linear realization can be lifted to a superfield

S(x, θ, θ̄) ≡ exp(θQ + θ̄Q̄)s(x) = s(x)− iκ(λσµ θ̄ − θσµλ̄)∂µs(x) + · · · , (2.2.17)

where we used the transformation law (2.2.15). In fact, composite fields in standard real-
izations can be constructed out of any arbitrary superfield S(x, θ, θ̄) by identifying the θα

coordinate with the goldstino κλα. The obtained composite field S (x) can then be lifted
back in superspace following the usual way. Hence, a superfield with lowest component
transforming in a standard realization is written as

S = exp(θQ + θ̄Q̄)S (x) = exp(θQ + θ̄Q̄) [exp(εQ + ε̄Q̄)s(x)]ε=−κλ . (2.2.18)

Equipped with the above tools, one can construct Lagrangians invariant under non-
linear realizations of SUSY through the use of superfields. Namely, following the methods
explained around eq. (2.1.18), one has to construct a scalar quantity corresponding either
to a real or chiral superfield, and can then extract the Lagrangian from its top component.
The first interesting Lagrangian is the one for the goldstino superfield Λα. We first con-
struct the chiral superfield Λ2. As its top component is a space-time derivative, it is not a
good Lagrangian candidate. The only natural possibility is then

LVA = −κ2

2

∫
d4θΛ2Λ̄2, (2.2.19)

which indeed gives back the Volkov-Akulov Lagrangian (2.2.14) once expressed in com-
ponents.

Starting from a linear SUSY Lagrangian L0 in component form, we construct a su-
perspace expression of a non-linear invariant Lagrangian containing matter to goldstino
interactions, in the following way. We first dress the fields of L0 with the goldstino
field, through (2.2.18), to obtain a superspace Lagrangian L0, and then write the final
Lagrangian as

L′ = κ4
∫

d4θΛ2Λ̄2L0 = det A L0. (2.2.20)

We can see from (2.2.16) that κ4Λ2Λ̄2 = θ2θ̄2 + · · · , so that the first term in the component
expansion of L′ is indeed the initial Lagrangian L0, while other terms in the expansion
contain the goldstino interactions. The low-energy effective Lagrangian can be obtained
by expanding the total Lagrangian of the theory, which is the sum of the two Lagrangians
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shown in eqs. (2.2.19) and (2.2.20). It reads

L = LVA + L′ = − 1
2κ2 − iλ/∂λ̄ +

i
κ2 λσµλ̄∂µL0 +

i
κ2 (λσµ∂νλ̄− ∂νλσµλ̄)Tµν + · · ·, (2.2.21)

and shows the universality of the goldstino coupling to the energy-momentum tensor Tµν

of the initial theory.

Constrained superfields We have seen that non-linear realizations of SUSY describe a
particle, the goldstino, decoupling from other fields which became massive after SUSY
breaking. When SUSY is preserved, particles are arranged in complete multiplets de-
scribed by superfields. After SUSY breaking, a convenient way to eliminate the massive
particles of the theory makes use of constrained superfields. Applying constraints elimi-
nate certain components of the superfields, which are then expressed with respect to the
remaining ones. This can indeed be explained in the case for the goldstino superfield
constructed above, which satisfies the constraints

DαΛβ =
1
κ

εβα + iκ(σµΛ̄)α∂µΛβ, D̄α̇Λβ = −iκ(Λσµ)α̇∂µΛβ. (2.2.22)

Starting from a fermionic field ψα and creating a superfield Ψα ≡ exp(θQ + θ̄Q̄)ψα by
use of the linear SUSY transformations of (2.1.2), one would have obtained a superfield
containing the fields of an entire chiral multiplet. The constraints (2.2.22) ensure that
only the goldstino remains in the final superfield, which is thus not an entire multiplet
anymore.

One may wonder if constraints different from (2.2.22) would allow to eliminate com-
ponents and create similar goldstino superfields. In fact, there exists indeed a whole col-
lection of constraints generating goldstino superfields, and one can go from one to the
other through simple manipulations [15, 16, 17, 18]. The simplest constraint is the nilpo-
tent constraint [16] on a chiral superfield Φ, which reads

Φ2 = 0. (2.2.23)

Expressing the chiral superfield Φ(y) through its component expansion (2.1.10) gives the
set of constraints

φ2 = 0, 2θθφF = 2(θψ)2, 2
√

2φθψ = 0, (2.2.24)

the second equality of which is solved, using (A.1.5), by

φ =
ψ2

2F
, (2.2.25)

which automatically satisfies the other constraints due to the fermionic nature of ψα. The
generic Lagrangian (2.1.20) for a single chiral superfield Φ subject to the nilpotent con-
straint only allows for a linear superpotential and reads

L =
∫

d4θ ΦΦ̄ +

(
1√
2κ

∫
d2θ Φ + c.c.

)

= −iψ/∂ψ̄ + FF̄+
ψ̄2

2F̄
∂2
(

ψ2

2F

)
+

(
F√
2κ

+ c.c.
)

. (2.2.26)
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The F and F̄ auxiliary fields’ equations of motion read

F = − 1√
2κ

+ f (ψ, ψ̄), F̄ = − 1√
2κ

+ f̄ (ψ, ψ̄), (2.2.27)

where the f (ψ, ψ̄) term contains goldstino interactions. They lead to the Lagrangian

LKS = − 1
2κ2 − iψ/∂ψ̄ +

κ2

2
ψ̄2∂2ψ2 − κ4

4
ψ2ψ̄2∂2ψ∂2ψ̄2, (2.2.28)

which can be related to the Volkov-Akulov Lagrangian LVA. Indeed, using a field redefi-
nition [19] of the form

ψα = λα + i
κ2

2
(σµλ̄)α∂µλ2 (1 + iκ2λ̄/̄∂λ

)
+ · · · , (2.2.29)

one can show the equivalence

LKS (ψα(λα)) = LVA. (2.2.30)

This expresses the fact that the simple Lagrangian for the nilpotent field Φ is on-shell
equivalent to the one for the Volkov-Akulov goldstino.

The nilpotent constraint (2.2.23) on the chiral multiplet Φ only eliminates the scalar
field. To eliminate the auxiliary field, instead of using its equations of motion, one can
add a second constraint [15] of the form

ΦD̄2Φ̄ =
2
√

2
κ

Φ. (2.2.31)

Note that with this additional constraint, the Lagrangian (2.2.26) then reads

L =
∫

d4θ ΦΦ̄ +

(
1√
2κ

∫
d2θ Φ + c.c.

)
=
∫

d4θ ΦΦ̄ +

(
1
4

∫
d2θ ΦD̄2Φ̄ + c.c.

)

= −
∫

d4θ ΦΦ̄. (2.2.32)

As nicely shown in [16] the two constraints eqs. (2.2.23) and (2.2.31) can be derived by
adding a term

Lγ =
1
2

γ(x)Φ2 (2.2.33)

to the Lagrangian (2.2.26) for an unconstrained chiral superfield Φ. The equations of
motion for the Lagrange multiplier γ(x) and for Φ are then

Φ2 = 0, −1
4

D̄2Φ̄2 = −∂W

∂Φ
(Φ) = −γΦ− 1√

2κ
. (2.2.34)

The second equality is just a superfield rewriting of the auxiliary field e.o.m. of (2.1.30).
Multiplying it by Φ gives back the constraint (2.2.31).

As mentioned in [18], a superfield Φ̃ can also be constructed from the goldstino super-
field Λα through

Φ̃ = − κ3

4
√

2
D̄2 (Λ2Λ̄2) = κ√

2
λ2 + · · · , (2.2.35)
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and satisfies both the two constraints of eqs. (2.2.23) and (2.2.31), together with the nice
property

Φ̃ ¯̃Φ =
κ2

2
Λ2Λ̄2. (2.2.36)

The superspace Volkov-Akulov Lagrangian (2.2.19) then reads

LVA = −κ2

2

∫
d4θΛ2Λ̄2 = −

∫
d4θΦ̃ ¯̃Φ, (2.2.37)

and gives back the Lagrangian (2.2.32) obtained for the nilpotent Φ after applying the
second constraint. Replacing the F auxiliary field by its solution (2.2.27) in the lowest
component (2.2.25) of the nilpotent superfield Φ, one indeed obtains the lowest compo-
nent of Φ̃ given in (2.2.35).

We conclude this section by mentioning that following [20], we can eliminate the low-
est component of any superfield S, i.e. we can express it as a combination of the other
components and of the goldstino field, through the constraint

Φ̄ΦS = 0, (2.2.38)

where Φ is the nilpotent superfield. For instance, we eliminate the scalar, fermion or
auxiliary field of a given chiral superfield X by taking respectively S = X, Sα = DαX or
S = D2X. Indeed, in each case, the lowest component of S is the field of interest. When
applied to the goldstino auxiliary superfield itself S = D̄2Φ̄, the constraint (2.2.38) can be
derived from the second constraint (2.2.31) after left multiplication by Φ̄.

2.3 Partial N = 2 global supersymmetry breaking and induced
FI terms

In this section, we tackle the problem of partial supersymmetry breaking in theN = 2
extended supersymmetry theory of a vector multiplet. As we explain below, this multiplet
can be written in terms of N = 1 multiplets, and will thus repeatedly use the elements
introduced in the two previous sections.

Partial breaking of N = 2 global supersymmetry to N = 1 requires a deformation of
supersymmetry transformations, implemented by the introduction of deformation con-
stants [21, 22, 23]. They modify the transformations of fermions but leave intact the su-
persymmetry algebra of infinitesimal transformations. Some of these constants can be
absorbed by shifting the auxiliary fields and do not correspond to genuine deformations.
One therefore expects that a general deformation contains the same number of parame-
ters as the number of real auxiliary fields in the SUSY multiplet. The general deformation
of N = 2 vector multiplets thus forms a triplet under its SU(2)R symmetry and consists
technically in constant imaginary part for the auxiliary fields triplet. The latter is formed
by the complex F and real D auxiliary components of the N = 1 chiral and vector multi-
plet composing theN = 2 double chiral vectorW = (X, W). The deformation associated
with F is known to give rise to a magnetic Fayet-Iliopoulos term proportional to the spe-
cial coordinate fX ≡ ∂X f , where f (X) is the holomorphic N = 2 prepotential [21]. We
extend this result to the D-auxiliary field, whose deformation modifies the Bianchi iden-
tity of W and we show that this modification is dual to the ordinary FI parameter under
electromagnetic duality, as in the case of the F auxiliary field.

Partial SUSY breaking implies a special relation among the deformation parameters
guaranteeing the existence of a linear combination of the two supersymmetries under
which all fermions of the multiplet transform linearly (without constants). Studying the
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general two-derivative effective action of a deformed N = 2 double chiral multiplet we
show that it exhibits a partial N = 2 → N = 1 breaking at the minimum of the scalar
potential for generic values of the parameter space. Special values may leave N = 2
unbroken or a runaway potential but one can never realize complete breaking of both
supersymmetries, unless trivially in a free theory. This result was expected since one
could obtain it by using a SU(2)R rotation from the cases studied in the literature [21, 24].
This analysis is however useful for unveiling the main properties of the D-deformation
γ, that are relevant in the context of Dirac-Born-Infeld (DBI) actions, that we study in
section 2.4.

2.3.1 N = 2 supersymmetry, general deformations and SUSY breaking

We first review the properties of an N = 2 vector multiplet and consider its most
general deformation, which can be parameterized by three real constants. We then expose
the criteria for SUSY breaking in presence of these deformations. These notions will be
useful to tackle partial SUSY breaking, studied in the next subsections.

N = 2 vector multiplet: structure, transformations and symmetries Off-shell N = 2
SUSY can be described in superspace in some specific cases, by introducing a second pair
of coordinates θ̃, ¯̃θ related to the second supersymmetry. One can create an N = 2 vector
multiplet starting with the following superfield

W(y, θ, θ̃) = X(y, θ) +
√

2iθ̃W(y, θ)− θ̃θ̃G(y, θ), yµ = xµ + iθσµ θ̄ + iθ̃σµ ¯̃θ , (2.3.1)

which is an extension of the chiral superfield Φ of (2.1.10) and is chiral with respect to
both supersymmetries

D̄W = ¯̃DW = 0 , (2.3.2)

where the D̃α, ¯̃Dα supercovariant derivatives are defined as in (2.1.7) with θ, θ̄ replaced
by θ̃, ¯̃θ. The transformations under the second supersymmetry, denoted δ̃, are similar to
those of eq. (2.1.2), namely

δ̃X =
√

2iε̃W ,

δ̃Wα =
√

2(σµ ¯̃ε)α∂µX +
√

2iGε̃α, (2.3.3)

δ̃G = −
√

2∂µWσµ ¯̃ε .

The superfield (2.3.1) is reducible and describes the degrees of freedom of aN = 2 vector
and tensor multiplet. To reduce them to those of a vector, one requires W to be the field-
strength superfield of a N = 1 vector multiplet, satisfying DW = D̄W̄ according to
(2.1.17). Furthermore, one can verify explicitly that 1

4 D̄2X̄ transforms in the same way as
G in (2.3.3). Therefore we can set

G =
1
4

D̄2X̄, (2.3.4)

without violating the N = 2 supersymmetry.
SinceW is chiral with respect to both supersymmetries, we can apply the same method

as in the N = 1 case of eq. (2.1.23), and construct a Lagrangian from its top component

LN=2W2+c.c =
1
4

∫
d2θd2θ̃W2 + c.c. =

1
4

∫
d2θ

(
W2 − 1

2
XD̄2X̄

)
+ c.c. . (2.3.5)
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We used expression (2.3.4) for G when expanding W . On the other hand, the N = 2
Maxwell theory, in terms of N = 1 language, is described by a chiral multiplet X and a
field strength multiplet W with action given by

LN=2 Maxwell =
∫

d2θd2θ̄X̄X +
1
4

∫
d2θW2 +

1
4

∫
d2θW̄2

=
1
4

∫
d2θ

(
W2 − 1

2
XD̄2X̄

)
+ c.c. (2.3.6)

We see that the above two actions are equivalent, implying that the extra constraint im-
posed onW is correct.

The N = 2 vector multiplet can thus be described with an N = 2 superfield of the
form

W(y, θ, θ̃) = X(y, θ) +
√

2iθ̃W(y, θ)− 1
4

θ̃θ̃D̄2X̄(y, θ) , (2.3.7)

where X, W are N = 1 chiral and vector multiplets, respectively. Their component forms
are similar to those already given in eqs. (2.1.10) and (2.1.16) and read

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α , (2.3.8)

X = x +
√

2θχ− θθF , (2.3.9)
1
4

D̄2X̄ = F̄−
√

2iθσµ∂µχ̄− θθηµν∂µ∂ν x̄ . (2.3.10)

Alternatively, theN = 2 vector multiplet (2.3.7) can be obtained from (2.3.1) by imposing
the following irreducibility conditions:

DiDjW = εi
kεj

lD̄kD̄lW̄ , i, j, k, l = 1, 2 , (2.3.11)

where D1 = D, D2 = D̃ correspond to the supercovariant derivatives of the first and
second supersymmetry and the antisymmetric symbol is defined through ε1

1 = ε2
2 = 0,

ε1
2 = −ε2

1 = 1.
We are especially interested in the auxiliary field part of the SUSY transformations of

fermions, that can be read off eqs. (2.1.2), (2.1.3) and (2.3.3), with G replaced as in (2.3.4).
The fermions transform under the N = 2 supersymmetries as

δχα = −
√

2Fεα + · · · , δ̃χα = iDε̃α + · · · ,

δλα = iDεα + · · · , δ̃λα = −
√

2F̄ε̃α + · · · , (2.3.12)

so that the full SUSY transformation of the fermions can be written as

δSUSY

(
χα

λα

)
=

(−
√

2F iD
iD −

√
2F̄

)(
εα

ε̃α

)
+ · · · . (2.3.13)

Of course, the N = 2 vector multipletW has SU(2)R invariance. A nice way to express
this symmetry in superspace is by defining the following SU(2)R doublets

ϑ1 = θ , ϑ2 = θ̃ , η1 = χ , η2 = λ , (2.3.14)

and expanding the vector superfield in components as

W(y, θ, θ̃) = x +
√

2(θχ + θ̃λ)− θθF− θ̃θ̃F̄+ i
√

2θθ̃D+ · · ·
= x +

√
2ϑiηi − ϑiϑjYij + · · · , (2.3.15)
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where we defined the auxiliary field matrix

Yij = Yji =
(

Y · σσ2

)
ij

, Y =
(

ImF, ReF,
D√

2

)
,

Y11 = F , Y22 = F̄ , Y12 = − i√
2
D, (2.3.16)

with the help of the standard Pauli matrices σ = (σ1, σ2, σ3). We also construct the follow-
ing triplet of fermionic coordinates transforming in the adjoint representation of SU(2)R

Θ =
(
θ θ̃

)
σσ2

(
θ
θ̃

)
=
(

i(θθ − θ̃θ̃), (θθ + θ̃θ̃),−2iθθ̃
)

. (2.3.17)

in order to express the last term of (2.3.15) as an SU(2)R scalar

Θ · Y = θθF+ θ̃θ̃F̄−
√

2iθθ̃D = ϑiϑjYij . (2.3.18)

Note that the SU(2)R symmetry can also be seen from the SU(2)R invariant reality condi-
tions

Y∗ij = εi
kεj

lYkl . (2.3.19)

General deformation In order to study deformations of SUSY, we modify Y by adding
a constant deformation Ydef. The real part of Ydef can be absorbed by a trivial shift of the
auxiliary fields in Y . Hence we only need to focus on a pure imaginary Ydef [24]. Using
the SU(2)R symmetry, we can rotate the vector Ydef to any specific direction. As we will
see, this just indicates that the model always hasN = 1 residual supersymmetry after de-
formation. However, the direction of the residual supersymmetry, which is important for
the purpose of total supersymmetry breaking, depends on the deformation parameters.
We therefore do not rotate the deformation vector Ydef and consider the following natural
parametrization

Ydef =
( i

4κ
cos φ,

i
4κ

sin φ,
iγ√

2

)
, γ, φ, κ ∈ R . (2.3.20)

It contains three deformation parameters, one for each auxiliary field, and as the real
part of the deformation vector has no physical effects, we can equivalently choose

Ydef =
( ieiφ

4κ
,

eiφ

4κ
,

iγ√
2

)
. (2.3.21)

In the remainder, we will use the second form (2.3.21) of the general deformation. The
deformation Ydef induces a deformationWdef of the superfieldW , which reads

Wdef = −Θ · Ydef = −
1

2κ
eiφ θ̃θ̃ −

√
2γθθ̃ , (2.3.22)

and modifies the irreducibility condition (2.3.11) to

DiDjW − εi
kεj

lD̄kD̄lW̄ = iγij , γij = 8
(

Im(Y) · σσ2

)
ij
∈ R . (2.3.23)



22 Chapter 2. Supersymmetry breaking and non-linear realizations

In particular, this modifies the standard Bianchi identity ofN = 1 vector multiplets given
in (2.1.17), and leads to the following equation

DW = D̄W̄ − 4iγ. (2.3.24)

Modifications similar to the one of (2.3.23) were obtained in [25] through eletromagnetic
duality transformations, which we discuss in the next section. The Bianchi identity mod-
ification (2.3.24) appeared first in [26].

The deformationWdef in (2.3.22) of theN = 2 vector multiplet leads to a deformation
of the N = 1 field strength auxiliary field, the components of which are expressed in
(2.3.8). The D auxiliary field is thus deformed to

D = d + iγ, d, γ ∈ R . (2.3.25)

Hence, D is now a complex field which includes γ, the deformation constant, together
with d, the auxiliary field that should be eliminated.

Deformed SUSY transformations and SUSY breaking In order to discuss supersym-
metry transformations and supersymmetry breaking, one should take into account both
the deformations and the dynamical parts sourced by the auxiliary fields. It is convenient
to redefine the following quantities

Y = Ydef + Ydynamic =
(

ImF+
i

4κ
eiφ, ReF+

1
4κ

eiφ,
d + iγ√

2

)
, (2.3.26)

Wauxiliary ≡ −Θ · Y ≡ Wdef +Wdynamic , (2.3.27)

where Ydynamic refers to the auxiliary fields vacuum expectation values in (2.3.16).
The deformed transformations of the second supersymmetry are given by

δ̃X =
√

2iε̃α
(

Wα + iγθα

)
, (2.3.28)

δ̃Wα =
√

2i
( 1

2κ
eiφε̃α+

1
4

ε̃αD̄2X̄− i(σµ ¯̃ε)α∂µX
)

. (2.3.29)

One can check that the N = 2 SUSY algebra is not affected by these constant defor-
mations. In the presence of deformations, the fermion transformation rules (2.3.13) get
modified as

δSUSY

(
χα

λα

)
=

( −
√

2F i(d + iγ)
i(d + iγ) −

√
2
(
F̄+ 1

2κ eiφ)
)(

εα

ε̃α

)
= −
√

2
(

Y2 + iY1 −iY3
−iY3 Y2 − iY1

)(
εα

ε̃α

)
,

(2.3.30)

with Y = (Y1, Y2, Y3) given in (2.3.26). One can also introduce the following parametriza-
tion of Y [24]

Y ≡
( i

2
(

A2 − B2) ,−1
2
(

A2 + B2) ,−iΓ
)

, (2.3.31)

so that
Wauxiliary = −Θ · Y = A2θθ + B2θ̃θ̃ + 2Γθθ̃ . (2.3.32)

If Γ = ±AB, or equivalently Y · Y = 0, Wauxiliary can be diagonalized and becomes a
complete square

Wauxiliary = (Aθ ± Bθ̃)2 . (2.3.33)
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This means that there is only partial supersymmetry breaking. Indeed, supersymmetry is
preserved, at least partially, if there exists a linear combination of the fermions which is
invariant under the SUSY transformation

δSUSY(c1χα + c2λα) = 0. (2.3.34)

This is possible if the transformation matrix (2.3.30) is not invertible, namely

det
( −

√
2F i(d + iγ)

i(d + iγ) −
√

2
(
F̄+ 1

2κ eiφ)
)
= 2F

(
F̄+

1
2κ

eiφ
)
+ (d + iγ)2 = 0 . (2.3.35)

It is easy to see that this is indeed equivalent to

Y · Y = 0, (2.3.36)

with Y given by (2.3.26). This is therefore the criteria for the existence of residual N = 1
SUSY, hence realizing partial supersymmetry breaking N = 2→ N = 1.

The residual supersymmetry can be found solving the coefficients of (2.3.34) through

r ≡ c2

c1
=

iY3

Y2 − iY1
=

Y2 + iY1

iY3
. (2.3.37)

The unbroken supercharge can then be defined as the linear combination

S = c1Q + c2Q̃ , (2.3.38)

which according to the supersymmetry algebra (2.1.1), with A = 1, 2 for Q, Q̃, indeed
satisfies the N = 1 algebra

{Sα, S̄α̇} = 2iσm
αα̇∂m , (2.3.39)

provided that |c1|2 + |c2|2 = 1. This condition can always be realized by a trivial rescaling
of c1, c2. One can also explicitly verify that

δS
ε λ = (εS + ε̄S̄)λ =

(
c1(Y2 + iY1)− ic2Y3

)
ε +

(
c̄1(Ȳ2 − iȲ1) + ic̄2Ȳ3

)
ε̄ = 0 , (2.3.40)

and similarly δS
ε χ = 0.

2.3.2 N = 2 electromagnetic duality

In this section, we derive electromagnetic (EM) duality fully at N = 2 level. In the
next subsection, we will show the essential role of EM duality in the understanding of the
mechanism of partial SUSY breaking. EM duality shows that the general deformations in-
troduced above are dual to the triplet of FI parameters for (ReF, ImF,D/

√
2), and can thus

be regarded as magnetic FI terms. Some points of this section were already made using
a different language in [25]. We use a strategy making full use of various “long”,“short”,
chiral, antichiral superfields introduced in [24].

“Long” and “short” multiplets We start by constructing the following N = 2 “long”
chiral-chiral superfield [24]

Ẑ = Y +
√

2θ̃χ− θ̃θ̃
(1

4
D̄2Ȳ +

i
2

Φ
)

, (2.3.41)
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where Y, χα, Φ are N = 1 chiral superfields. We can define related N = 2 “short”
antichiral-chiral superfield as

Z = − i
2

(
D̃2Ẑ − D̄2 ¯̂Z

)
, (2.3.42)

which can be expanded in components as

Z = Φ−
√

2i ¯̃θD̄L− 1
4

¯̃θ2D̄2Φ̄ , L ≡ D`+ D̄ ¯̀ . (2.3.43)

L is a real linear superfield, i.e. a multiplet satisfying the reality condition (2.1.13) together
with the additional constraint D2L = 0. Of course, the “short” multiplet contains less
degrees of freedom than the “long” one, hence the terminology.

Similarly, one could define the N = 2 “long” chiral-antichiral superfield

Ŵ = X +
√

2 ¯̃θΩ̄− ¯̃θ2
(1

4
D̄2Ū +

i
2

X
)

, (2.3.44)

where U, Ω̄α̇, X are chiral, i.e. annihilated by D̄β̇. In particular, Ω̄ can be written as Ω̄α̇ =

D̄α̇L with L a complex linear superfield, only satisfying D̄2L = 0. As for Z , we reduce it
to the N = 2 “short” chiral-chiral superfield

W = − i
2

(
¯̃D2Ŵ − D̄2 ¯̂W

)
, (2.3.45)

the component form of which reads

W = X +
√

2iθ̃W − 1
4

θ̃2D̄2X̄ , Wα = D̄α̇

(1
2

D̄α̇Ωα − DαΩ̄α̇
)
=

1
2

D̄2Dα

(
L + L

)
. (2.3.46)

It especially implies that Wα satisfies the standard SUSY Bianchi identity (2.1.17). This
enables us to define the potential associated with Wα, a real superfield V = −2(L + L)
satisfying Wα = − 1

4 D̄2DαV, as demanded by (2.1.15) for the field strength superfield.
Since both Ŵ and Z are chiral-antichiral, so is their product. As for the cases of

eqs. (2.1.23) and (2.3.5) we can thus construct a SUSY invariant Lagrangian extracting
their top component ∫

d2θd2 ¯̃θ ZŴ . (2.3.47)

Similarly we can construct a Lagrangian from the two chiral-chiral superfields Ẑ ,W
∫

d2θd2θ̃ WẐ . (2.3.48)

In fact, these two Lagrangians are equal when considered with imaginary couplings. In-
deed we have

i
∫

d2θd2 ¯̃θŴZ + c.c. =
1
2

∫
d2θd2 ¯̃θŴ

(
D̃2Ẑ − D̄2 ¯̂Z

)
+ c.c.

= −1
2
· 1

4

∫
d2θd2θ̃d2 ¯̃θŴẐ +

1
2
· 1

4

∫
d2θd2θ̄d2θ̃ ¯̂WẐ + c.c. (2.3.49)

=
1
2

∫
d2θd2θ̃

(
¯̃D2Ŵ − D̄2 ¯̂W

)
Ẑ + c.c. = i

∫
d2θd2θ̃ẐW + c.c. .
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EM duality without deformation To establish the electromagnetic duality, we first con-
sider the case without deformation, described by the following action

L =
∫

d2θd2θ̃F (Ẑ) + i
∫

d2θd2 ¯̃θ ZŴ + c.c. , (2.3.50)

where F is the holomorphic prepotential. The N = 2 EM duality can be shown by elimi-
nating different set of variables.

Electric side We first consider the electric side of the theory by integrating out Ŵ . The
equation of motion of Ŵ leads to

Z = 0 → Φ = 0, L = const. (2.3.51)

Actually one can further show that L = 0. Indeed from (2.3.49) we deduce the equality
∫

d2θ`W + c.c. =
∫

d2θ`α(−1
4

D̄2DαV) + c.c. . (2.3.52)

The r.h.s. can be written as −
∫

d2θd2θ̄V(D` + D̄ ¯̀) = −
∫

d2θd2θ̄ VL, which leads to
L = 0 from the equation of motion of V. We thus redefine the field ` = iZ such that

DZ− D̄Z̄ = −iL = 0 . (2.3.53)

The chirality of Z and the fact that it satisfies the above standard supersymmetric Bianchi
identity, show that Z is the field-strength superfield of a standard vector multiplet. Ẑ
becomes then the standard (short) N = 2 chiral-chiral superfield describing a vector
multiplet.

The original Lagrangian (2.3.50), which we call electric Lagrangian after integrating
out Ŵ , becomes

Le =
∫

d2θd2θ̃F (Ẑ) + c.c. =
∫

d2θ
(
− 1

4
D̄2ȲF ′ − 1

2
`2F ′′

)
+ c.c.

=
∫

d4θ ȲFY +
1
2

∫
d2θ F ′′Z2 + c.c. , (2.3.54)

where FY ≡ F ′(Y). It is then the standard N = 2 action of a vector multiplet with
prepotential F , written in terms of its N = 1 components.

Magnetic side We use eq. (2.3.49) to rewrite the original Lagrangian (2.3.50) as

L =
∫

d2θd2θ̃F (Ẑ) + i
∫

d2θd2θ̃ WẐ + c.c. . (2.3.55)

We now integrate out Ẑ , which has the following equation of motion

W = iF ′(Ẑ). (2.3.56)

The initial Lagrangian takes the new form

L =
∫

d2θd2θ̃
(
F (Ẑ)− ẐF ′

)
, (2.3.57)
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the integrand of which is nothing but the Legendre transformation of F . From (2.3.56),
one looks for an inverse function

Ẑ = −iH′(W) , (2.3.58)

such that
F (Ẑ)− ẐF ′ = H(W) . (2.3.59)

The construction is reminiscent of the relation between the Lagrangian and the Hamil-
tonian formulations in classical mechanics. The analogy is made through the identifica-
tions −iW ↔ p, Ẑ ↔ ẋ, F ↔ L, −H ↔ H. The dual magnetic theory is thus described
by the “Hamiltonian” ∫

d2θd2θ̃H(W) + c.c. . (2.3.60)

For clarity, we will write the magnetic theory in components. We expand the La-
grangian (2.3.55) in terms of N = 1 superfields

L =
∫

d2θ
( (
F ′ + iX

) (
−1

4
D̄2Ȳ− i

2
Φ
)
− i

4
YD̄2X̄− 1

2
F ′′`2 + `W

)
+ c.c. .(2.3.61)

We integrate out Φ and `, the equations of motion of which read

X = iF ′(Y) , `α =
Wα

F ′′(Y) . (2.3.62)

Substituting them back into eq. (2.3.61), we obtain the magnetic Lagrangian

Lm =
∫

d4θ ȲFY +
1
2

∫
d2θ

W2

F ′′ + c.c. . (2.3.63)

Defining a new functionH such that

X = iF ′(Y) , H′(X) = iY , F ′′H′′ = dF ′
dY

dH′
dX

=
idX
dY
−idY

dX
= 1 , (2.3.64)

enables us to rewrite the magnetic Lagrangian (or “Hamiltonian”) as

Lm =
∫

d2θd2θ̃H(W) + c.c. =
∫

d2θd2θ̄ X̄HX +
1
2

∫
d2θH′′W2 + c.c. . (2.3.65)

The form Lm matches exactly with the form of the electric theory Le. Thus, the electric
theory with chiral scalar Y and prepotential derivative iFY(Y) is equivalent, or dual, to
the magnetic theory with chiral scalar YD = X = iFY(Y) and prepotential derivative
iFD

YD(YD) = iHX(X) = −Y. This establishes the electromagnetic duality at fully N = 2
level.

EM duality with deformation We now turn to the case with SUSY deformations and
therefore modify the Lagrangian as follows

L =
∫

d2θd2θ̃F (Ẑ −
√

2θθ̃γ) + i
∫

d2θd2 ¯̃θ
(
Z +

i
κ

eiφ
)
Ŵ + c.c. . (2.3.66)

In order to find the magnetic duals of the deformation parameters, we study EM duality
in a similar fashion as above.
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Electric side We first integrate out the Ŵ superfield

Z +
i
κ

eiφ = 0 → Φ = − i
κ

eiφ, L = const ∈ R , (2.3.67)

and using the same argument as around eq. (2.3.52) we further find that L = 0. Defining
now `α = i(Zα − iθαγ), we expand

Ẑ −
√

2θθ̃γ = Y +
√

2iθ̃Z− θ̃θ̃
(1

4
D̄2Ȳ +

i
2

Φ
)

, (2.3.68)

where Z satisfies the constraint

DZ− D̄Z̄ = −4iγ . (2.3.69)

This is the modified Bianchi identity of Z. Note that Z is not affected by γ. One can
now obtain the electric action as

Le =
∫

d2θd2θ̃F (Ẑ −
√

2θθ̃γ) + c.c. =
∫

d2θ

((
− 1

4
D̄2Ȳ− i

2
Φ
)
F ′ + 1

2
F ′′Z2

)
+ c.c.

=
∫

d2θd2θ̄ ȲFY +
1
2

∫
d2θ F ′′Z2 − 1

2κ
eiφ
∫

d2θFY + c.c. , (2.3.70)

where Z must satisfy the generalized Bianchi identity (2.3.69).

Magnetic side Using identity (2.3.49), the deformed Lagrangian (2.3.66) can be written
as

L =
∫

d2θd2θ̃F (Ẑ −
√

2θθ̃γ) + i
∫

d2θd2θ̃ WẐ − 1
κ

eiφ
∫

d2θd2 ¯̃θ Ŵ + c.c.

=
∫

d2θd2θ̃F (Ẑ ′) + i
∫

d2θd2θ̃ WẐ ′

+ i
∫

d2θd2θ̃
√

2θθ̃γW − 1
κ

eiφ
∫

d2θd2 ¯̃θ Ŵ + c.c. , (2.3.71)

where we have trivially shifted the argument of F . The first two terms can be treated as
before and we arrive at the magnetic theory

Lm =
∫

d4θ ȲFY +
1
2

∫
d2θ

W2

F ′′ + γ
∫

d2θd2θ̃ θ2θ̃2D+
i

2κ
eiφ
∫

d2θX + c.c.

=
∫

d4θ X̄HX +
1
2

∫
d2θH′′W2 + 2γ

∫
d2θd2θ̄ V +

i
2κ

eiφ
∫

d2θX + c.c. .

(2.3.72)

We see that the magnetic theory therefore contains a triplet of FI terms

LFI = 2γ
∫

d2θd2θ̄ V +
i

2κ
eiφ
∫

d2θX + c.c.

= 2γD+
1
κ

sin φ ReF+
1
κ

cos φ ImF = −4iY · Ydef . (2.3.73)

Comparing the two actions (2.3.70) and (2.3.72), we clearly see the duality between
deformations and triplet of FI couplings: X ↔ FY and [modification of Bianchi identity
DZ − D̄Z̄ = −4iγ] ↔ [ FI D-term γD]. Additional elements on this deformed vector
multiplet can be found in [27].
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2.3.3 The APT model of partial SUSY breaking and beyond

In this part, we first recall the Antoniadis-Partouche-Taylor (APT) model [21] realizing
N = 2 → N = 1 partial SUSY breaking and then generalise it with the deformations
introduced above. To do so, we analyze the general N = 2 action based on an arbitrary
deformed vector superfield, we compute the scalar potential and we show that the only
non-trivial minima break SUSY partially from N = 2→ N = 1.

APT model Our construction of the APT model starts with the N = 2 chiral-chiral
superfield introduced in eq. (2.3.7), together with the deformation (2.3.22). The new vector
superfield reads

Wnew =W − 1
2κ

eiφ θ̃θ̃ −
√

2γθθ̃ = X +
√

2iθ̃W − 1
4

θ̃θ̃
(

D̄2X̄ + 4m
)

,

X = x +
√

2θχ− θθF , m ≡ 1
2κ

eiφ . (2.3.74)

The APT model corresponds to the case where the only non-vanishing deformation pa-
rameter is κ, hence we set γ = φ = 0. The APT Lagrangian, realizing the partial breaking,
is thus

L =−i
(∫

d2θd2θ̃ F (Wnew)− e
∫

d2θX
)
−
√

2ξ
∫

d4θV + c.c. (2.3.75)

=−i
(∫

d2θ
(
− 1

4
F ′(X)(D̄2X̄ + 4m) +

1
2
F ′′(X)W2

)
− e

∫
d2θX

)
−
√

2ξ
∫

d4θV + c.c.

=−i
(∫

d4θ X̄F ′(X)−
∫

d2θ
(

eX + mF ′(X)− 1
2
F ′′(X)W2

))
−
√

2ξ
∫

d4θV + c.c. ,

where the holomorphic function F is the prepotential and m, e, ξ ∈ R. As we explained
previously in section 2.3.2, eX and mF ′ are dual to each other. Adding them simultane-
ously into the Lagrangian is crucial for partial supersymmetry breaking. The action can
be further rewritten in a compact form as

L =
∫

d4θK(X, X̄) +
∫

d2θ W(X) +
∫

d2θ̄ W̄(X̄) (2.3.76)

+
(

i
∫

d2θ
F ′′(X)

2
W2 + c.c.

)
− 2
√

2ξ
∫

d4θV , (2.3.77)

where theN = 1 Kähler potential K(X, X̄) and superpotential W(X) where introduced in
eq. (2.1.20) and are related to the N = 2 prepotential F through

K(X, X̄) = −iX̄F ′(X) + iXF̄ ′(X̄), W(X) = ieX + imF ′(X) . (2.3.78)

We now study the scalar potential in order to find the vacuum of the theory. We first
define

τ(x) = τ1(x) + iτ2(x) ≡ F ′′(x) ∈ C, τ1, τ2 ∈ R, (2.3.79)

and derive the solutions of the N = 1 auxiliary fields equations of motion similar to the
simple case of eqs. (2.1.29) and (2.1.30). There are small differences with respect to the
simple case: KX̄X = ∂X∂X̄K is non-canonical, the gauge coupling is non-unitary g2 6= 1,
and the FI parameter ξ takes a factor −

√
2 with respect to the FI Lagrangian (2.1.24). The

Kähler metrics is derived from (2.3.78) and the gauge coupling is be obtained by com-
paring the term in front of the field strength kinetic terms W2 in eqs. (2.1.23) and (2.3.77).
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They read

KX̄X = −i
(
F ′′(x)− F̄ ′′(x∗)

)
= 2τ2(x),

1
g2 = Re(−2iF ′′(x)) = 2τ2(x). (2.3.80)

so that the equations of motion including the mentioned modifications are solved by

D = −g2(−
√

2ξ) =
ξ√
2τ2

, (2.3.81)

F = FX = −KXX̄ ∂W̄

∂X̄
=
−i(mτ̄ + e)

2τ2
, F̄ = F̄

X̄
= −KX̄X ∂W

∂X
=

i(mτ + e)
2τ2

. (2.3.82)

The scalar potential is expressed the same way as in (2.1.28), with modifications due to
the small differences mentioned above, and reads

V(x) =
1

2g2D
2 + KX̄XF̄

X̄
FX =

1
2g2D

2 + 2KX̄XF̄F =
|mτ(x) + e|2 + ξ2

2τ2
. (2.3.83)

We highlighted the fact that the scalar potential V depends on the scalar field x through
τ(x). To find the vacuum, namely the minimum of the scalar potential, we thus need
to extremize V with respect to the x. Equivalently, assuming ∂τ(x)/∂x 6= 0, we can
extremize with respect to τ1, τ2 and get the following solutions

〈τ1〉 = −
e
m

, 〈τ2〉 =
∣∣∣ ξ

m

∣∣∣. (2.3.84)

A negative τ2 also extremizes the scalar potential but is discarded by positivity of the ki-
netic term, hence the absolute value. This solution can be used in eqs. (2.3.81) and (2.3.82)
to find the auxiliary field VEVs

〈F〉 = 〈F̄〉 = −m
2

, 〈D〉 = m sgn(mξ)√
2

, (2.3.85)

which in turn gives the vacuum potential energy

V = |mξ| . (2.3.86)

From eq. (2.3.30) we deduce the fermions transformation laws

δλ = iDε = i
m sgn(mξ)√

2
ε, δ̃λ = −

√
2ε̃(F̄+ m) = − 1√

2
mε̃, (2.3.87)

δχ = −
√

2Fε =
m√

2
ε, δ̃χ = iε̃D = i

m sgn(mξ)√
2

ε̃ (2.3.88)

which show that
δSUSY(λ + i sgn(mξ)χ) = 0 , (2.3.89)

so that a linear combination of two supersymmetries is preserved. According to the dis-
cussion of the previous subsection this shows that the N = 2 supersymmetry is only
partially broken.

Generalization of APT model As we emphasized, the crucial point in APT model is the
simultaneous turning on of electric coupling eX and magnetic coupling mF ′(X). Since in
the previous sections we found three deformation parameters, it is natural to generalize
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the APT model by adding electric and magnetic couplings corresponding to the three
deformations.

The Lagrangian is thus almost the same as before

L = −i
(∫

d2θd2θ̃ F (Wnew)− e
∫

d2θX
)
−
√

2ξ
∫

d4θV + c.c. (2.3.90)

= −i
(∫

d2θd2θ̄ X̄F ′(X)−
∫

d2θ
(

eX + mF ′(X)− 1
2
F ′′(X)W2

))
−
√

2ξ
∫

d4θV + c.c. ,

with the difference that we now allow complex parameters m = mR + imI , D = d + iγ
with mR, mI , γ, ξ, e ∈ R. Note that e is taken to be real since its phase can be absorbed by
a rescaling of X. The auxiliary fields are solved as in eqs. (2.3.81) and (2.3.82) and read

F =
−i(m̄τ̄ + e)

2τ2
, F̄ =

i(mτ + e)
2τ2

, d =
ξ −
√

2γτ1√
2τ2

. (2.3.91)

As in (2.3.83) these solutions lead to the scalar potential

V =
|mτ + e|2 + ξ2 − 2

√
2ξγτ1 + 2γ2(τ2

1 + τ2
2 )

2τ2
. (2.3.92)

Extremizing the scalar potential, one finds that the vacuum sits at

〈τ1〉 =
−emR +

√
2γξ

|m|2 + 2γ2 , 〈τ2〉 =

√
(
√

2eγ + mRξ)2 + m2
I (e2 + ξ2)

|m|2 + 2γ2 , (2.3.93)

and that the auxiliary field VEVs are

〈F̄〉 =
2ieγ2 + i

√
2mγξ + emmI −m

√
(
√

2eγ + mRξ)2 + m2
I (e2 + ξ2)

2
√
(
√

2eγ + mRξ)2 + m2
I (e2 + ξ2)

, (2.3.94)

〈F〉 = F̄
∗ , (2.3.95)

〈d〉 = 2emRγ +
√

2|m|2ξ

2
√
(
√

2eγ + mRξ)2 + m2
I (e2 + ξ2)

, (2.3.96)

We can verify that with these values the following equality always holds

Y · Y = 0 , (2.3.97)

where we recall that Y is defined through eq. (2.3.26). As explained in subsection 2.3.1, the
above condition implies that there is always a residualN = 1 supersymmetry. We finally
emphasize that in what was just done, we excluded the singular points τ2 = 0,+∞, of
runaway behavior, and the trivial case of a free theory with quadratic prepotential.

More U(1)s towards the complete breaking of supersymmetry As we have just seen,
a theory with only one U(1) always has an N = 1 supersymmetric vacuum, indepen-
dent of the FI parameters and deformations as soon as τ2 6= 0,+∞, in an interacting
theory. Hence it seems impossible to completely break supersymmetry. However, note
that although N = 1 is always preserved, the residual supersymmetry, as a linear combi-
nation of the two original supersymmetries in N = 2, depends on the deformations and
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FI parameters. Therefore if the theory contains two or more U(1)s with different resid-
ual supersymmetries, the full system breaks supersymmetry completely. Of course, the
different sectors should communicate through matter (not necessarily charged) or gravi-
tational interactions.

More specifically, consider the Lagrangian with two decoupled U(1)s

L = L(1) + L(2) . (2.3.98)

The previous analysis applies individually to these two subsectors, described as in (2.3.26)
by their respective auxiliary fields vectors

Y (1) = Y (1)
def + Y (1)

dynamic , Y (2) = Y (2)
def + Y (2)

dynamic . (2.3.99)

The full system is characterized by

Y = Y (1) + Y (2) , (2.3.100)

for which, as we have seen in the last subsection, we always have

Y (1) · Y (1) = Y (2) · Y (2) = 0 . (2.3.101)

Hence, as long as the two vectors are not aligned, i.e. Y (2) 6= cY (1), which is true generi-
cally in the parameter space, we immediately have

Y · Y 6= 0 , (2.3.102)

meaning that N = 2 supersymmetry is broken completely.

2.4 Supersymmetric Dirac-Born-Infeld actions and Fayet-Iliopoulos
terms

In the current section we study the fate of generic deformations of N = 2 vector
multiplet in presence of non-linear realization of one of the two initial supersymme-
tries, describing the low-energy theory after (partial) SUSY breaking as explained in sec-
tion 2.2. This non-linear realization will be imposed through a nilpotent constraint on the
deformed vector multiplet, resulting in a generalized supersymmetric Dirac-Born-Infeld
(SDBI) action [22, 28, 23, 24]. In the bosonic sector, we find essentially the same result as
in the previous unconstrained case of a general prepotential. This time there is no scalar
potential but the parameters of the FI term and the general deformation can be absorbed
into a redefinition of the DBI couplings, namely the non-linear supersymmetry breaking
scale (related to the brane tension), the U(1) gauge coupling and the theta-angle. We no-
tice that, as in the unconstrained case, the D-deformation induces a FI D-term through the
theta-angle. The FI term is constant and the theory is not free. In principle, one would
expect that the presence of this term would break both supersymmetries but this is not
the case. Instead, one N = 1 linear supersymmetry remains but it changes direction. In
the string theory context, it corresponds to rotate the brane in the bulk. As in the previous
case, the complete breaking of supersymmetry can arise only in a system of at least two
DBI actions preserving different linear supersymmetries, corresponding to two branes at
angles. In the fermionic sector, things are more involved and

The fermionic sector of SDBI actions is richer, as it includes goldstino interactions. To
motivate its analysis, we recall that in the case of N = 1 non-linear supersymmetry, the
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Volkov-Akulov action [14] was shown to be unique up to field redefinitions that do not
change the theory on-shell, see e.g. [19]. We hence would like to tackle an equivalent
problem in N = 2 non-linear supersymmetry, namely the uniqueness of SDBI actions.
The latter describe the effective field theory of a D3 brane in an N = 2 supersymmet-
ric bulk, obtained for instance upon compactification of the ten-dimensional type II su-
perstrings on a Calabi-Yau threefold. Hence a natural arena to study their uniqueness is
within string theory, where a comparison of SDBI with the corresponding amplitudes was
done in [29, 30] at the level of mass dimension-8 interactions. Before going to string theory
setups, it is nevertheless important to have a better understanding of the uniqueness of
SDBI actions at the effective theory level. To study them, one can consider deformations
that do not change the form of the action bosonic part. As mentioned in the above para-
graph and shown in the current section, this can be achieved by adding FI terms and their
generalisations. The generation mechanisms and the effect of such FI terms constitute an
interesting open problem related to supersymmetry breaking, that becomes more restric-
tive in supergravity and even more in extended supersymmetric theories. New FI terms,
that do not require gauging the R-symmetry when coupled to supergravity, were written
recently within N = 1 [31, 32, 33, 34] and N = 2 [35] supersymmetry; their bosonic part
is identical to an ordinary constant FI term, while their fermionic dependence is highly
non-trivial.

The above discussion should convince us that, even before making use of complicated
FI terms, it is interesting to study carefully the fermionic contributions of standard or in-
duced FI terms. Indeed, the goldstino of the N = 2→ N = 1 partial breaking belongs to
a vector multiplet of the linear supersymmetry, that has non-trivial self-interactions due to
the non-linear supersymmetry. After solving the nilpotent constraint, the SDBI action can
be written as an integral over the N = 1 superspace, where non-linear supersymmetry is
not manifest [23]. In terms of components, upon superspace integration, the bosonic part
of the action can be written in a closed form, while it is not the case for the part involving
the U(1) gauginos. On the other hand, an explicit form of the whole action was given
within the formalism of non-linear supersymmetry, using variables where manifest linear
supersymmetry is lost [36, 18]. In section 2.4.3 we show the first computation of non-
trivial higher dimensional physical vertices corresponding to fermionic contributions in
the SDBI action, in the presence of a standard or induced FI terms. Such terms being lin-
ear in the N = 1 vector multiplet, they generate interactions containing an odd number
of gauge fields. As these terms are not present in the standard SDBI action, we expect
that they show the difference between the SDBI action and SDBI coupled to FI terms in
appropriate on-shell physical operators. Some terms are not physical and can be elimi-
nated by means of field redefinitions, others are constrained by the low-energy theorems
of supersymmetry breaking. These considerations motivate to compute dimension-10
physical mixed operators involving gauginos and gauge fields – either four gauginos and
two gauge bosons, or two gauginos and three gauge fields – in both cases of the SDBI
action with a standard or induced FI term, referred in the following to as SDBI+FI or
SDBI+γ, θ, respectively. In the first case of SDBI+FI, we use both the non-linear formalism
and the standard constrained superfield one with manifest linear supersymmetry, while
in the second case of SDBI+γ, θ we use only the constrained superfield method. Actually,
in the SDBI+FI case, using the formalism of non-linear supersymmetry, we also compute
a class of dimension-12 mixed operators with two gauginos and four bosons, of the form
(λ∂λ̄)F4.
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2.4.1 Deformed Dirac-Born-Infeld action

In order to implement the non-linear realization of one of the two initial supersym-
metries, we will impose a nilpotent constraint on the deformed N = 2 vector multiplet,
and obtain a generalized supersymmetric Dirac-Born-Infeld action. We will first study
the bosonic part of the action and find that it is almost identical to the standard bosonic
DBI up to some renormalization of coupling constants. This is quite similar to the case of
DBI+FI model where the FI parameter only renormalizes the coupling of the bosonic DBI
[23].

We will also study SUSY breaking in our model and find that, as in section 2.3.3, there
is always a residual N = 1 supersymmetry independently of the deformation param-
eters. However, this unbroken N = 1 supercharge, as a linear combination of N = 2
supercharges, depends on the deformation parameters.

In order to differentiate the deformed SDBI from the SDBI+FI model, the bosonic parts
of which are similar, we will then look at their fermionic part using the non-linear SUSY
formalism of [18].

Nilpotent constraint in N = 2 The SDBI action arises from the partial supersymmetry
breaking of N = 2 → N = 1. It was first constructed through the coset method by
Bagger and Galperin [22]. In [28], Rocek and Tseytlin found the same action through a
nilpotent constraint on the N = 2 superfield, similar to the N = 1 constraint (2.2.23) for
the goldstino superfield. We now explain this elegant nilpotent construction and discuss
the deformed SDBI.

Without phase deformation We effectively break the N = 2 supersymmetry by assuming
the presence of a Lorentz invariant condensate 〈W〉 = Wdef 6= 0, so that the vector
multiplet is described as in eq. (2.3.74) by

Wnew =W + 〈W〉 =W +Wdef = X +
√

2iθ̃W − 1
4

θ̃θ̃
(

D̄2X̄ +
2
κ

)
, (2.4.1)

where the deformation γ is implicit in W, and we took a vanishing phase deformation
φ = 0. To obtain a superfield with one non-linearized supersymmetry, we can apply a
nilpotent constraint [28] identical to eq. (2.2.23), namely

Wnew
2 = 0. (2.4.2)

When expressed in terms of the N = 1 superfields, this constraint reads

1
κ

X = WW − 1
2

XD̄2X̄ , (2.4.3)

and can be solved to eliminate X in terms of W [22], as was done for the goldstino
superfield in section 2.2.2. The solution reads

X = κW2 − κ3D̄2
[ W2W̄2

1 +A+
√

1 + 2A−B2

]
, (2.4.4)

where we have introduced

A =
κ2

2
(D2W2 + D̄2W̄2) = Ā, B = i

κ2

2
(D2W2 − D̄2W̄2) = B̄ . (2.4.5)
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Before imposing the constraint (2.4.2), the most general N = 2 supersymmetric two-
derivative action is given in (2.3.75) . It depends on a prepotential and contains two
(electric) FI terms linear in the N = 1 superfields X and V. After imposing the nilpo-
tent constraint, only the linear term of the prepotential expressed as a function ofWnew
remains, and it gives a vanishing contribution upon integration over the chiral super-
space. One is thus left only with the two FI terms leading to the SDBI action coupled to
the standard FI Lagrangian. The SDBI Lagrangian arises from the term linear in X

LSDBI =
1

4κg2

( ∫
d2θX +

∫
d2θ̄X̄

)
, (2.4.6)

which can more generally be considered with a complex coupling constant

LSDBI =
1

8πκ
Im
(

τ
∫

d2θX
)

, τ ≡ 4πi
g2 +

θ

2π
. (2.4.7)

In the absence of θ-angle and γ deformation, the above Lagrangian gives rise to the
standard SDBI Lagrangian.

With phase deformation In the presence of a phase deformation φ 6= 0, Wnew has the
exact form of (2.3.74) and the component form nilpotent constraint (2.4.4) is modified to

1
κ

eiφX = WW − 1
2

XD̄2X̄ . (2.4.8)

We absorb the phase into X by defining a new superfield X̃ = eiφX so that the constraint
reads

1
κ

X̃ =
1
κ
(eiφX) = WW − 1

2
(eiφX)D̄2(e−iφX̄) = WW − 1

2
X̃D̄2 ¯̃X , (2.4.9)

so that its solution is the same as (2.4.4), except that it is now expressed for the new
chiral superfield

X̃ = κW2 − κ3D̄2
[ W2W̄2

1 +A+
√

1 + 2A−B2

]
. (2.4.10)

The SDBI Lagrangian (2.4.7) can hence be written as

LSDBI =
1

8πκ
Im
(

τ
∫

d2θX
)
=

1
8πκ

Im
(

τ̃
∫

d2θX̃
)

, (2.4.11)

where τ̃ = e−iφτ is the new coupling constant. Therefore the only effect of a non-
vanshing phase deformation φ 6= 0 is to rotate the phase of the complex coupling con-
stant. In the following we will consider a general complex coupling constant having
already incorporated the phase φ.

Bosonic part We study the bosonic part of the deformed SDBI action, i.e. the deformed
DBI action. It turns out that in spite of the general deformations, the resulting bosonic
action takes the well-known form of the DBI action. To evaluate the SDBI Lagrangian
(2.4.7), we replace X by its solution (2.4.4) of the nilpotent constraint. To do so, we use the
component expression (2.3.8) for W, the N = 1 field strength superfield included in the
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N = 2 deformed vector multiplet, and compute the quantity

W2 = C + ψθ + θθE , (2.4.12)

C = −λ2 , ψβ = −2iDλβ + 2Fµνσµν
β

αλα , E = D2 − 1
2
(F2 + iFF̃)− 2iλσµ∂µλ̄ ,

where

F2 ≡ FµνFµν, FF̃ ≡ Fµν F̃µν =
1
2

εµνρσFµνFρσ , D = d + iγ. (2.4.13)

In the above equation we defined the dual field strengh F̃µν and recalled the deformed ex-
pression (2.3.25) for D, which contains the auxiliary field d together with the deformation
γ. In the pure bosonic case, i.e. for λ = λ̄ = 0, we have

W2∣∣
λ=λ̄=0 = θθE = θθ

[
D2 − 1

2
(F2 + iFF̃)

]
, W̄2∣∣

λ=λ̄=0 = θ̄θ̄Ē = θ̄θ̄
[
D̄

2 − 1
2
(F2 − iFF̃)

]
.

(2.4.14)
Hence in this bosonic case W2, W̄2 only have non-vanishing θθ component, so that the
A,B fields of (2.4.5) can only contribute through their lowest components

A ≡ A|θ=0 = A|λ=λ̄=0 = −2κ2(E + Ē) = 2κ2
(

F2 − 2(d2 − γ2)
)

, (2.4.15)

B ≡ B|θ=0 = B|λ=λ̄=0 = −2iκ2(E− Ē) = −2κ2
(

FF̃− 4dγ
)

. (2.4.16)

With these ingredients we compute the bosonic part of the integral of X as

∫
d2θX

∣∣∣
λ=λ̄=0

=
∫

d2θ

(
κW2 − κ3D̄2

[ W2W̄2

1 +A+
√

1 + 2A−B2

])∣∣∣∣
λ=λ̄=0

= κ
∫

d2θW2
∣∣∣
λ=λ̄=0

+ 4κ3
∫

d2θd2θ̄
W2W̄2

1 +A+
√

1 + 2A−B2

∣∣∣∣
λ=λ̄=0

= κE + 4κ3 EĒ
1 + A +

√
1 + 2A− B2

. (2.4.17)

that can be decomposed into real and imaginary parts as

2 Re
∫

d2θX
∣∣∣
λ=λ̄=0

= κ(E + Ē) +
8κ3 EĒ

1 + A +
√

1 + 2A− B2
=

1
2κ

(
1−

√
1 + 2A− B2

)
,

(2.4.18)

2 Im
∫

d2θX
∣∣∣
λ=λ̄=0

= −iκ(E− Ē) =
B
2κ

. (2.4.19)

The bosonic part of the SDBI Lagrangian (2.4.7) thus reads

L =
1

2g2κ
Re
∫

d2θX
∣∣∣
λ=λ̄=0

+
θ

16π2κ
Im
∫

d2θX
∣∣∣
λ=λ̄=0

=
1

8g2κ2

(
1−

√
1 + 2A− B2

)
+

θ

64π2κ2 B (2.4.20)

=
1

8g2κ2

(
1−

√
1 + 4κ2

(
F2 − 2(d2 − γ2)

)
− 4κ4

(
FF̃− 4dγ

)2
)
− θ

32π2

(
FF̃− 4dγ

)
.

Note the term θγd which is reminiscent of the standard FI term ξd and might provide
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an alternative realization of supersymmetry breaking when we are in presence of a γ
deformation together with a non-vanishing θ-angle. In the following we often refer to it
as the γ-induced FI term.

Solving the d auxiliary field gives

d =
2γFF̃κ2

8γ2κ2 + 1
−

γg2θ
√

1 + 4κ̃2F2 − 4κ̃4(FF̃)2

2
√

2
√

γ2κ2 (g4θ2 + 64π4) + 8π4
, κ̃2 ≡ κ2

1 + 8γ2κ2 , (2.4.21)

where we introduced the renormalized coupling κ̃, and replacing d by the above solution
one obtains the bosonic Lagrangian

L =
1

8g2κ2 −
θFF̃

32π2 (8γ2κ2 + 1)
− 1

8g2κκ̃

√
1 +

θ2g4γ2κ̃2

8π4

√
−det

(
ηµν + 2

√
2κ̃Fµν

)
. (2.4.22)

This Lagrangian takes the form of a standard bosonic DBI action, except that the couplings
are renormalized by the deformations. For a vanishing θ angle, it simply reads

L =
1

8g2κ2 −
1

8g2κκ̃

√
−det

(
ηµν + 2

√
2κ̃Fµν

)
. (2.4.23)

and if we furthermore set γ = 0, it of course reduces to the conventional DBI Lagrangian

L =
1

8κ2g2

[
1−

√
−det

(
ηµν + 2

√
2κFµν

)]
= − 1

4g2 FµνFµν + · · · . (2.4.24)

It is worth reminding that, as described around (3.1.106), in string theory this La-
grangian describes a D3 brane of tension T3 and gauge coupling g2

D3. These Dp brane
constants are related through eq. (3.1.108), which for p = 3 reads

gD3 =
1

2πα′
√

T3
, (2.4.25)

so that looking at the overall factor in the Lagrangan (2.4.24), κ can be related to α′ by

κ =
1

2gD3
√

2T3
=

πα′√
2

. (2.4.26)

SUSY breaking We investigate supersymmetry breaking in SDBI actions coupled to FI
terms, standard or induced by the deformations, using the formalism developed previ-
ously in section 2.3.1. We recall that SUSY breaking is studied through the determinations
of the VEVs of the different auxiliary fields. It is thus important to keep track of their
contributions, before solving them.

SUSY breaking in standard DBI+FI We start by considering the standard DBI+FI model,
restricting ourselves to the bosonic part. We look at the bosonic contribution to the
Lagrangian of (2.4.6) coupled to the FI Lagrangian (2.1.24). It reads

L =
1

4κg2

( ∫
d2θX +

∫
d2θ̄X̄

)
+

ξ√
2

∫
d2θd2θ̄V

=
1

8g2κ2

[
1−

√
1 + 4κ2

(
F2 − 2D2

)
− 4κ4

(
FF̃
)2
]
+

ξ√
8
D+ · · · . (2.4.27)
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The auxiliary field is solved by

D = −
g2ξ

√
1 + 4κ2F2 − 4κ4

(
FF̃
)2

√
8
√

1 + g4κ2ξ2
, 〈D〉 = − g2ξ√

8
√

1 + g4κ2ξ2
, (2.4.28)

which leads to the following bosonic Lagrangian

LDBI+FI =
1

8g2κ2 −
√

1 + g4κ2ξ2

8g2κ2

√
1 + 4κ2F2 − 4κ4

(
FF̃
)2

. (2.4.29)

We see that, just like the deformations, the FI parameter ξ renormalizes the couplings.
As explained in section 2.3.1, to study SUSY breaking we look at the fermion transfor-
mations (2.3.30) dependence in the auxiliary fields. In the present case it gives

δελ =
√

2iY3ε + · · · = iDε + · · · , (2.4.30)

δ̃ε̃λ = −
√

2(Y2 − iY1)ε̃ + · · · = −
√

2(F̄+
1

2κ
)ε̃ + · · · . (2.4.31)

In our case the auxiliary field F̄ is not independent and must be expressed in terms
of 〈D〉 using the constraint (2.4.4). We recall that, according to (2.3.38), the left-over
supersymmetry is a linear combination of the N = 2 supersymmetries, whose charge
is thus written as

S = c1Q + c2Q̃ , (2.4.32)

with eq. (2.3.37) giving the ratio r of the coefficients as

r =
c2

c1
=

iY3

Y2 − iY1
= − ig2κξ

1 +
√

1 + g4κ2ξ2
. (2.4.33)

Again, one can check that indeed the supersymmetry transformation associated with
S leaves the fermion invariant. We therefore see that the FI term does not break the
supersymmetry in the DBI action. Instead, it rotates the supercharges in the N = 2
space by an angle ϕ such that

tan ϕ = |r| = g2κξ

1 +
√

1 + g4κ2ξ2
, S = cos ϕ Q− i sin ϕ Q̃. (2.4.34)

SUSY breaking in deformed DBI We turn to the study of SUSY breaking in the case of the
DBI action with general deformation. As in the above case, from (2.4.4) we can solve the
auxiliary field in X in terms of the auxiliary field in W

− Fe−iφ = κD2 + 4κ3 D2D̄
2

1 + a +
√

1 + 2a− b2
, (2.4.35)

where

D = d + iγ , D̄ = d− iγ , a = −4κ2(d2 − γ2) , b = 8κ2dγ . (2.4.36)
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More explicitly, the F, F̄ and d solutions can be deduced from eq. (2.4.21) and their VEVs
are

F = −e−iφ 1 + 8iκ2dγ−
√
(1− 8d2κ2)(1 + 8κ2γ2)

4κ
, F̄ = F∗ (2.4.37)

d = − γg2θ

2
√

2
√

γ2κ2 (g4θ2 + 64π4) + 8π4
. (2.4.38)

This enables us to construct the Y vector defined in eq. (2.3.26) which reads

Y =
(F− F̄

2i
− 1

4iκ
eiφ,

F+ F̄

2
+

1
4κ

eiφ,
d + iγ√

2

)

=
(−
√
(1− 8d2κ2)(1 + 8κ2γ2) sin φ + (i− 8dκ2γ) cos φ

4κ
,

√
(1− 8d2κ2)(1 + 8κ2γ2) cos φ + (i− 8dκ2γ) sin φ

4κ
,

d + iγ√
2

)
. (2.4.39)

and we can check that it verifies
Y · Y = 0 . (2.4.40)

As explained in subsection 2.3.1, this implies that there is always a residual N = 1
supersymmetry. However, one sees that the following SU(2)R invariant quantity is not
zero

Y · Y∗ = 1
8κ2 + γ2 =

1
8κκ̃

, (2.4.41)

and that it defines the partial SUSY breaking scale of the theory. The unbroken super-
symmetry can be worked out as before

S = cos ϕ Q + sin ϕ Q̃ , tan ϕ = |r| =
√

1 + 8γ2κ2 −
√

1− 8d2κ2
√

1 + 8γ2κ2 +
√

1− 8d2κ2
. (2.4.42)

Note that all the possible phase factors have already been absorbed into the definition
of supercharges.

Thus, we see that we can only partially break the supersymmetry in N = 2. In order
to break the supersymmetry completely, we need to consider multiple DBIs correspond-
ing to several U(1)s, just like what we discussed in the generalized APT model. In fact,
the situation is similar to D-branes in string theory whose low energy effective action (for
a single D-brane) is the supersymmetric DBI, where half of the bulk supersymmetries
broken by the D-brane are realized non-linearly on the world-volume. When the bulk
has N = 2, for instance in type II superstring compactified on a Calabi-Yau threefold,
the worldvolume theory has one linear and one non-linear supersymmetry, as in our case
of study. A constant magnetic field along the internal directions induces an FI term that
one would naively expect to break the linear supersymmetry. However, in the absence of
other branes or orientifolds, the magnetic field just rotates the direction of linear super-
symmetry or equivalently, upon T-duality, it rotates the brane. In order to realize complete
supersymmetry breaking, one has to consider a system of at least two magnetized branes,
or equivalently branes at angles in the T-dual version [37, 38, 39].

Fermionic part As we have seen above, the bosonic part of the deformed DBI action
takes the standard form of the DBI action after eliminating the auxiliary field. The only
role of the deformations is to renormalize the coupling constants. This is quite similar to
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the standard DBI+FI model. So purely from the bosonic sector viewpoint, it seems that
our deformed DBI is the same as the standard DBI+FI model. In order to find a possible
difference, we should also analyze the fermionic part of the action.

The most straightforward way to consider the fermionic contributions is to directly
expand the superfields from the (2.4.7) action [2]. This will be shown in section 2.4.3. In-
stead, we try here to make use of the non-linear supersymmetry formalism described in
section 2.2.2. We will particularly use it in the form presented in [18], where the authors
found that in the standard DBI+FI model, the FI parameter generates an extra term be-
sides renormalizing the coupling constants. It is exactly this extra term that is responsible
for the gauging of R-symmetry when coupled to supergravity [40]. We will use this non-
linear supersymmetry formalism to obtain the fermionic part of the deformed DBI action.
A first analysis indicates that the extra term arising from the FI parameter does not appear
and all deformations can be absorbed in the parameters of the standard DBI, exactly as for
the bosonic part. This suggests that if we couple the deformed DBI action to supergravity,
it may not be necessary to gauge the R-symmetry.

Let us first review the non-linear supersymmetry formalism elaborated in [18], related
to the description given in section 2.2.2. Consider a Lagrangian of the type

L = FX + F̄X̄, (2.4.43)

transforming non-linearly as

δL = δFX + δF̄X̄ = −2i∂a(χσaε̄FX)− 2i∂a(εσaχ̄F̄X̄). (2.4.44)

Here χα is the goldstino in the chiral basis, transforming in the following way

δχα = εα − 2iχσµε̄∂µχα . (2.4.45)

This “chiral” goldstino χα is related via a field redefinition [41] to the Volkov-Akulov (VA)
goldstino, that we denote ψα, contrary to section 2.2.2, in order to avoid confusion with
the gaugino λα. The result of [18] is that up to boundary terms we can rewrite (2.4.43) as

L = det A(B + B̄), B = eδε FX
∣∣∣
ε=−ψ

. (2.4.46)

We recall that A was defined in eq. (2.2.11) and that det A is proportional to the Volkov-
Akulov Lagrangian. We now apply this formalism to obtain the fermionic parts of the
SDBI Lagrangian coupled to standard or γ-induced FI terms.

Standard SDBI+FI The standard DBI Lagrangian was constructed in eq. (2.4.6) from the
constrained X field. Its auxiliary field FX = −( 1

2κ + 1
4 D2X|) indeed transforms in the

proper way (2.4.44), as shown in [42, 18] and we can thus apply the above formalism.
Hence the Lagrangian eq. (2.4.6) can be rewritten as

L =
1

4κg2

(1
κ
+ FX + F̄X

)
=

1
4κg2

(1
κ
+ det A(B + B̄)

)
, (2.4.47)
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where

B + B̄ = eδ∗ε (FX + F̄X)
∣∣∣
ε=−ψ

= eδ∗ε
[
(FX + F̄X)bosonic

]∣∣∣
ε=−ψ

= eδ∗ε
1

2κ

[
− 2 + 1−

√
1 + 4κ2

(
F2 − 2D2

)
− 4κ4

(
FF̃
)2]∣∣∣

ε=−ψ

=
1

2κ

[
− 1−

√
1 + 4κ2

(
F 2 − 2D2

)
− 4κ4

(
FF̃

)2]
. (2.4.48)

Note that in the second equality, we used the property that the gaugino λ is related
to the VA goldstino through a field redefinition of the form λα = ψα + · · · and thus
satisfies eδ∗ε λ|ε=−ψ = 0. The rules to implement the operation eδ∗ε can be found in [18].
We also introduced the following quantities

D = eδ∗εD|ε=−ψ, Fab = (A−1)
µ
a (A−1)ν

b(∂µuν − ∂νuµ),

uµ = Aa
µeδ∗ε va|ε=−ψ = vµ + O(λ2), (2.4.49)

where va is the U(1) gauge field. Here D should be regarded as the new auxiliary field
although it is composite. Plugging eq. (2.4.48) in the general expression (2.4.46) we
deduce the standard supersymmetric DBI Lagrangian written in the non-linear super-
symmetry formalism

LSDBI =
1

8g2κ2

(
2− det A

[
1 +

√
1 + 4κ2

(
F 2 − 2D2

)
− 4κ4

(
FF̃

)2
])

. (2.4.50)

Note the constant term proportional to det A, in agreement with [36] and an updated
version of [18]. In the next section we show eq. (2.4.50) by a direct computation of the
DBI action expanded up to terms of dimension eight [2].

To obtain the coupling of the SDBI Lagrangian to an FI term, we proceed as usual
and add the FI Lagrangian (2.1.24) that we parametrize here as in (2.4.27). The non-
linear supersymmetry formalism methods used to rewrite the FI Lagrangian are more
involved than for the SDBI part, because the Lagrangian is the auxiliary field of a chiral
superfield. Nevertheless, upon decomposing the real superfield V into several con-
strained chiral superfields and making use of their properties, it was shown in [18] that
the FI term can be rewritten as

LFI =
1

2
√

2
ξ det AD

− i√
2

ξ det A εabcd[(A−1)ν
a∂νψ]σb[(A−1)

η
c ∂ηψ̄](A−1)

µ
d uµ . (2.4.51)

After eliminating the auxiliary field D the total SDBI+FI Lagrangian then reads

LSDBI+FI =
1

8g2κ2

[
2− det A

(
1 +

√
1 + g4κ2ξ2

√
1 + 4κ2F 2 − 4κ4

(
FF̃

)2
)]

− i√
2

ξ det A · εabcd[(A−1)a
n∂nψ]σb[(A−1)c

k∂kψ̄](A−1)d
mum . (2.4.52)

The second line is responsible for R-symmetry gauging when coupled to supergrav-
ity [18]. Indeed in the supergravity framework (A−1)

µ
a ∂µψα is replaced by D̂aψα =
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eµ
a Dµψα − 1

2MP
Ψα

a + . . . where Ψ denotes the gravitino. The second line of (2.4.52) gen-

erates the coupling − i
4
√

2
ξ

M2
P

εklmnΨkσlΨ̄mvn which charges the gravitino under the U(1)
gauge and indicates the gauging of R-symmetry.

Deformed SDBI We now turn to the case of the γ-deformed SDBI case. We would like
to use the same non-linear formalism as in the previous case to rewrite the deformed
action (2.4.6)

LSDBI+γ,θ =
1

8πκ
Im
(

τ
∫

d2θX
)
=

τ

16πκi
(−1

4
D2X|) + c.c. , (2.4.53)

in terms of the new variables. Although, naively, it seems that he non-linear supersym-
metry formalism applies in the presence of the γ deformation, a more careful analysis is
the scope of the next part. There, explicit calculations are made to check this assumption
and clarify the difference between the deformed DBI and the DBI+FI actions [2]. Assum-
ing for the moment that the non-linear supersymmetry formalism indeed applies also
in the presence of the γ-deformation and observing that

FX = − τ

16πκi

( 1
2κ

+
1
4

D2X|
)

(2.4.54)

transforms in the way like (2.4.44), we rewrite the Lagrangian as

LSDBI+γ,θ =
1

4κ2g2 + FX + F̄X =
1

4κ2g2 + det A(B + B̄) . (2.4.55)

We must thus compute

B + B̄ = eδ∗ε (FX + F̄X)
∣∣∣
ε=−ψ

= eδ∗ε
[
(FX + F̄X)bosonic

]∣∣∣
ε=−ψ

= eδ∗ε

[
1

8g2κ2

(
1−

√
1 + 4κ2

(
F2 − 2(d2 − γ2)

)
− 4κ4

(
FF̃− 4dγ

)2
)

− 1
4κ2g2 −

θ

32π2

(
FF̃− 4dγ

)]∣∣∣∣
ε=−ψ

=
1

8g2κ2

(
−1−

√
1 + 4κ2

(
F 2 − 2(d2 − γ2)

)
− 4κ4

(
FF̃ − 4dγ

)2
)

− θ

32π2

(
FF̃ − 4dγ

)
. (2.4.56)

The deformed D auxiliary field was dressed through

d = eδ∗ε d|ε=−ψ, γ = eδ∗ε γ|ε=−ψ, (2.4.57)
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where d is the new composite auxiliary field and γ being a constant, it is not modified.
The complete result thus takes the form

L =
1

4κ2g2 + det A(B + B̄)

=
1

4κ2g2 +
det A
8g2κ2

(
−1−

√
1 + 4κ2

(
F 2 − 2(d2 − γ2)

)
− 4κ4

(
FF̃ − 4dγ

)2
)

+ det A
θdγ

8π2 −
θ

32π2 det AFF̃ . (2.4.58)

Using the definition Fab = (A−1)m
a (A−1)n

b fmn, with fmn = ∂mun − ∂num the standard
field strength of un, together with relation (2.2.13) for A−1, the last term can be written
as

det AFF̃ = det A
1
2

εabcdFabFcd

=
1
2

det A εabcd(A−1)m
a (A−1)n

b (A−1)k
c(A−1)l

d fmn fkl

=
1
2

εmnkl fmn fkl = f f̃ . (2.4.59)

As this term is a total derivative it can be dropped from the Lagrangian, which after
elimination of the auxiliary field d becomes

LSDBI+γ,θ =
1

8κ2g2

[
2− det A

(
1 +

κ

κ̃

√
1 +

θ2g4γ2κ̃2

8π4

√
−det

(
ηµν + 2

√
2κ̃Fµν

))]
.

(2.4.60)

We see that the second term in (2.4.52) does not appear here, suggesting that there is
no need to gauge the R-symmetry in order to couple to supergravity. Thus this case with
deformation seems different from the SDBI+FI model.

2.4.2 On-shell Lagrangians and the use of field redefinitions

The goal of the next two parts is to understand if the physical SDBI fermionic contri-
butions are indeed different in the case with standard FI term, denoted SDBI+FI, and in
the case with γ-induced FI term, denoted SDBI+γ, θ.

The main strategy is to compute the components of the Lagrangians described in the
previous parts. We then use field redefinitions to eliminate various on-shell vanishing
unphysical terms and obtain the physical on-shell higher dimensional operators. The
S-matrix is invariant under field redefinitions. Thus, to eliminate an unphysical term
of certain dimension, we use a specific field redefinition and act it on terms of lower
dimension. However, the field redefinition also acts on other terms in the Lagrangian,
giving rise to many extra higher dimensional terms. Repeating this procedure allows us
to eliminate all unphysical terms and get the on-shell Lagrangian. In general, this process
is complicated and tedious.

Before performing the computations, it is worth pointing out a big simplification. At
any step, we will only be interested in the physical Lagrangian up to some dimension,
say dimension `, and thus will always neglect terms with dimension higher than `. The
simplification occurs if the term O under consideration is proportional to an equation of
motion of the free theory. In such a case, we must be able to eliminate O through certain
field redefinition acting on the free kinetic terms. If the dimension of O is close to `,
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acting the field redefinition on other terms of the Lagrangian may only generate terms
with dimension strictly higher than `. If this is indeed the case, we do not need to work
out the field redefinition explicitly and can simply discard the term O. This circumstance
brings us a big simplification.

2.4.3 Redefining the SDBI+FI Lagrangian

SDBI+FI from non-linear supersymmetry formalism The non-linear supersymmetry
formalism was applied to the SDBI+FI model in the previous parts to obtain the SDBI+FI
Lagrangian (2.4.52). For convenience we rewrite it here dropping the constant term

LSDBI+FI =−
1

8κ2g2 det A
(

1 +
√

1 + 16g4κ2ξ2
√

1 + 4κ2F 2 + 4κ4(FF̃ )2

)

+ 2
√

2i κ2ξ det Aεabcd[(A−1)ν
a∂νλ]σb[(A−1)

ρ
c ∂ρλ̄](A−1)

µ
d uµ . (2.4.61)

Here λ is the goldstino in the non-linear supersymmetry formalism, which is also the
gaugino in the linear one, through field redefinition. We use the same symbol λ to denote
both the goldstino in this section and the gaugino in section 2.4.4 for simplicity of notation.
As explained in the previous part, uµ is the gauge boson, and the composite gauge field
strength Fab is defined by

Fab = (A−1)
µ
a (A−1)ν

b Fµν, Fµν = ∂µuν − ∂νuµ, F 2 ≡ FabF ab, FF̃ ≡ FabF̃ ab, (2.4.62)

where again A is the vielbein matrix defined in (2.2.11).
We mention here that the two terms in the parenthesis of (2.4.61) have the same sign,

in agreement with [36] but in contrast to the opposite sign in [18]. The coupling constants
are related to those of [18] as follows: κ = 1/(2

√
2m) and g2 = m/β. The dual tensor F̃ is

defined as in (A.2.1) with a factor of i.
As shown in appendix B.1, the Lagrangian (2.4.61) can be further rewritten in a mani-

festly gauge invariant way as

LSDBI+FI = −
1

8κ2g2 det A
(

1 +
√

1 + 16g4κ2ξ2
√

1 + 4κ2F 2 + 4κ4(FF̃ )2

)

− 2
√

2 κ2ξ λσγ∂ρλ̄ F̃γρ . (2.4.63)

We will expand in components each part of the Lagrangian (2.4.63), up to terms of
dimension 12 – except for dimension-12 terms of the form (λ∂λ̄)2F2 which are more
involved. In the following, all equalities are written up to total derivatives, or terms
with mass dimension higher than 12, or (λ∂λ̄)2F2 terms. In order to facilitate the mass-
dimension counting of the various operators, we recall here the mass dimensions of vari-
ous fields and couplings

[u] = 1 , [F] = 2 , [λ] =
3
2

, [κ] = −2 , [g] = 0 , [ξ] = 2 . (2.4.64)

The det A part of (2.4.61) is related to the Volkov-Akulov action [14] describing goldstino
dynamics, already presented in (2.2.14). When expanding F 2 in (2.4.61), one finds the
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gauge boson kinetic term and higher order interactions

F 2 = ηacηbdFabFcd = ηacηbd(A−1)
µ
a (A−1)ν

b(A−1)
ρ
c (A−1)σ

d FµνFρσ

= ηacηbdFµνFρσδ
µ
a δν

b δ
ρ
c δσ

d + 4κ2ηacηbdFµνFρσ(−iλσµ∂aλ̄ + i∂aλσµλ̄)δν
b δ

ρ
c δσ

d + · · ·
= F2 + 4κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄)FµνFνρ + · · · . (2.4.65)

The same computation for (FF̃ )2 gives

(FF̃ )2 =
(

FF̃ + 4κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄)Fµν F̃νρ + O((λ∂λ̄)2F2)
)2

=
(

FF̃− κ2(iλ/∂λ̄ + iλ̄/̄∂λ)FF̃ + O((λ∂λ̄)2F2)
)2

= (FF̃)2 − 2κ2(iλ/∂λ̄ + iλ̄/̄∂λ)(FF̃)2 + O((λ∂λ̄)2F2) . (2.4.66)

This expansion is also obtained directly by noticing that FF̃ = det A−1FF̃. Collecting all
the above terms, the SDBI+FI Lagrangian becomes

LSDBI+FI = A
[
1 + κ2iλ/∂λ̄ + κ2iλ̄/̄∂λ− κ4(λ/∂λ̄)(λ̄/̄∂λ)− 2κ4(λ/∂λ̄)2 − 2κ4(λ̄/̄∂λ)2

+κ4λ̄2λ2λ + κ4λ2λ̄2λ̄ + κ4∂µ(λ
2)∂µ(λ̄2)

]
+ 2Bκ4(iλ/∂λ̄ + iλ̄/̄∂λ)F2

+ 8Bκ4 (iλσµ∂ρλ̄− i∂ρλσµλ̄
)

FµνFνρ − 16Bκ6 (iλσµ∂ρλ̄− i∂ρλσµλ̄
)

FµνFνρF2

+ 2Bκ2
(

F2 + κ2(FF̃)2 − κ2F4
)
+ Cκ2λσµ∂νλ̄ F̃µν + · · · . (2.4.67)

The constants A, B and C are defined as

A ≡ − 1
8κ2g2

(
1 +

√
1 + 16g4κ2ξ2

)
,

B ≡ − 1
8κ2g2

√
1 + 16g4κ2ξ2 , (2.4.68)

C ≡ −2
√

2ξ ,

and have mass dimensions [A] = [B] = 4 and [C] = 2.

Physical action with standard FI term As explained in section 2.4.2, we will proceed as
follows to obtain the physical SDBI+FI action: we first eliminate the lowest dimensional
non-physical operators, namely the dimension-6 ones, by means of field redefinitions act-
ing on kinetic terms. We then compute the higher dimensional contributions coming from
the field redefinitions acting on the other terms in the Lagrangian. We repeat this proce-
dure for operators with higher and higher dimensions.

In the computations, we will make full use of the identities given in appendix A.1. In
all equalities thereafter, ellipses “ · · · ” should be understood as total derivatives or higher
dimensional terms which we are not interested in.

Field redefinition 1© To eliminate the dimension-6 term contained in the last line of
(2.4.67) we apply the following field redefinition

1© λα → λα + ia(σµνλ)αFµν, a =
C

4A
∈ R, [a] = −2. (2.4.69)
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Note that due to the equality σργ = i
2 εργµνσµν, this field transformation is equivalent to

the one with Fµν replaced by F̃µν. The fermion kinetic terms transform as

iλ/∂λ̄ + c.c. −→
(2.4.69)

iλ/∂λ̄ + c.c.− 4aλσµ∂νλ̄F̃µν − 2aλσµλ̄∂νFνµ + 2a2iλσµλ̄F̃νµ∂ρFρν

+

(
2a2iλσµ∂νλ̄FµρFρ

ν +
a2

2
iλ/∂λ̄F2 + c.c.

)
+ total derivatives ,

(2.4.70)

and they indeed cancel the dimension-6 terms of (2.4.67) with the chosen parameter a.
The dimension-6 term itself transforms as

λσµ∂νλ̄F̃µν −→
(2.4.69)

1
2

λσµ∂νλ̄F̃µν − iaλσµ∂νλ̄FµρFρ
ν −

a
2

iλ/∂λ̄F2 − a
4

iλ/∂λ̄FF̃

+
a2

4
λσµ∂νλ̄

(
F̃µνF2 − FµνFF̃ + F̃µνFF̃− FµνF2)+ c.c. + · · · . (2.4.71)

Other terms in the Lagrangian transform as

iλσµ∂νλ̄FµρFρν + c.c. −→
(2.4.69)

iλσµ∂νλ̄FµρFρν − aλσµλ̄FανFνρ∂ρFα
µ +

a
2

λσµ∂νλ̄FµνFF̃

− i
a2

4
λσµλ̄F2∂µ(FF̃)− a2

2
iλσµ∂νλ̄FµρFρνF2 + c.c. + · · · , (2.4.72)

λ̄2λ2λ + c.c. −→
(2.4.69)

λ̄2λ2λ + 2iaλ̄2λσµν∂ρλ ∂ρFµν + c.c. + · · · . (2.4.73)

Field redefinition 2© Although the field redefinition (2.4.67) eliminates the original
dimension-6 term in (2.4.67), it introduces another dimension-6 operator in (2.4.70). Hence,
we must combine the field redefinition (2.4.67) with another field redefinition on the
gauge boson

2© uµ → uµ + bλσµλ̄ , b = − C
16B
∈ R, [b] = −2 . (2.4.74)

This is equivalent to the following field-strength redefinition

Fµν → Fµν + b∂µ(λσνλ̄)− b∂ν(λσµλ̄) ≡ Fµν + 2b∂[µ(λσν]λ̄) . (2.4.75)

The gauge boson kinetic term transforms as

F2 −→
(2.4.74)

F2 − 4bλσνλ̄∂µFµν + 4b2
[

λ̄2λ2λ + λ2λ̄2λ̄ (2.4.76)

+
1
2

∂µ(λ
2)∂µ(λ̄2) + (λ/∂λ̄)(λ̄/̄∂λ)− 1

2
(
(λ/∂λ̄)2 + (λ̄/̄∂λ)2)

]
+ total derivatives,
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and cancels the dimension-6 operator coming from (2.4.70). This field redefinition acts on
other terms in the Lagrangian as follows

F4 −→
(2.4.74)

F4 + 2b∂ν(λσµλ̄)FνµF2 + · · · , (2.4.77)

(FF̃)2 −→
(2.4.74)

(FF̃)2 + 2b∂ν(λσµλ̄)F̃νµFF̃ + · · · , (2.4.78)

λσµλ̄∂νFνµ −→
(2.4.74)

λσµλ̄∂νFνµ − b∂ρ(λ
2)∂ρ(λ̄2)− b∂µ(λσµλ̄)∂ρ(λσρλ̄) + · · · , (2.4.79)

iλσµλ̄F̃νµ∂ρFρν −→
(2.4.74)

iλσµλ̄F̃νµ∂ρFρν +
(

biλ̄2λσab∂ρλ ∂ρFab + c.c.
)
+ · · · , (2.4.80)

iλσµ∂ρλ̄FµνFνρ + c.c. −→
(2.4.74)

iλσµ∂ρλ̄FµνFνρ + ibλ̄2 λσab∂µλ ∂µFab + c.c. + · · · . (2.4.81)

After applying the field redefinitions 1© and 2©, the dimension-6 terms are eliminated
completely and the Lagrangian becomes

LSDBI+FI → A
(

1 + κ2iλ/∂λ̄ + κ2iλ̄/̄∂λ
)
+

(
Aκ4 + 4Bb2κ2 +

C
2

bκ2
)

∂µ(λ2)∂µ(λ̄
2)

+ #κ2(λ/∂λ̄)(λ̄/̄∂λ)− #κ2(λ/∂λ̄)2 − #κ2(λ̄/̄∂λ)2 + #κ2λ̄2λ2λ + #κ2λ2λ̄2λ̄

+ 2Aa2κ2 iλσµλ̄F̃ νµ∂ρFρν + 2Bκ2
(

F2 + κ2(FF̃)2 − κ2F4
)

+

(
2Bκ2 +

Aa2

2
− Ca

2

)
κ2iλ/∂λ̄F2 − Ca

4
κ2iλ/∂λ̄FF̃ + c.c. (2.4.82)

+

(
8Bκ2 − C2

8A

)
κ2iλσµ∂ρλ̄FµνFνρ + c.c.

+ 8Bbκ4λσµ∂νλ̄
(

F̃µνF2 + FµνF2 − F̃µνFF̃− FµνFF̃
)
+ c.c. .

− 16Bκ6(iλσµ∂ρλ̄− i∂ρλσµλ̄)FµνFνρF2 + 4Ba2κ4iλσµλ̄F2∂µ(FF̃) + · · · .

Note that the four-fermion/one-gauge-boson dimension-10 terms coming from (2.4.73),
(2.4.80) and (2.4.81) cancel each other. They are thus absent in Lagrangian (2.4.82).

Field redefinition 3© The second line of (2.4.82) contains goldstino self interactions
whose coefficients are not shown explicitly. They can actually be removed completely
by applying the field redefinition

3© λα → λα + mλα(λ/∂λ̄)− nλα(λ̄/̄∂λ) + pλσµλ̄∂µλα , [m] = [n] = [p] = 4 , (2.4.83)

Field redefinitions of this form were used [19] to demonstrate in components the on-shell
equivalence of the goldstino Lagrangians mentioned in eq. (2.2.30). Under the above re-
definition the kinetic terms transform as

iλ/∂λ̄ + iλ̄/̄∂λ −→
(2.4.83)

iλ/∂λ̄ + iλ̄/̄∂λ + 2i(m− p)(λ/∂λ̄)2 − 2i(m̄− p̄)(λ̄/̄∂λ)2 + ipλ2λ̄2λ̄

− i p̄λ̄2λ2λ− 2i(n− n̄− p + p̄)(λ/∂λ̄)(λ̄/̄∂λ) (2.4.84)

+ total derivatives + O(λ6).

We see that there are enough parameters in (2.4.84) to cancel any four-fermion terms ex-
cept for ∂µ(λ̄2)∂µ(λ2) which is thus the only physical dimension-8 contribution to the
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Volkov-Akulov Lagrangian. Under field redefinition 3©, other terms in the Lagrangian
generate dimension-12 terms of the form ∂2λ4F2, or terms with dimension higher than 12.

Field redefinition 4© The first term in the third line of (2.4.82) is proportional to the
equation of motion of a free gauge boson and thus can be eliminated. This is realized by
using the field redefinition of the gauge boson

4© uµ → uµ + f iλσρλ̄F̃µρ, f =
Aa2

4B
, [ f ] = −4 , (2.4.85)

or equivalently the field redefinition of the gauge field strength

Fµν → Fµν + 2 f ∂[µ

(
iλσρλ̄F̃ν]ρ

)
. (2.4.86)

Under this redefinition the gauge boson kinetic term becomes

F2 −→
(2.4.86)

F2 − 4 f iλσρλ̄F̃νρ∂µFµν + · · · , (2.4.87)

and thus the second term cancels with the first term in the third line of (2.4.82). The field
redefinition (2.4.85) also acts on other terms

F4 −→
(2.4.86)

F4 + 2 f iλσµλ̄F2∂µ(FF̃) + · · · , (2.4.88)

(FF̃)2 −→
(2.4.86)

(FF̃)2 + 2 f iλσµλ̄F2∂µ(FF̃)− 8 f i∂µ(λσνλ̄)FµρFρνFF̃ + · · · . (2.4.89)

Hence after applying the field redefinitions 3© and 4©, the Lagrangian further reduces to

LSDBI+FI → A
(

1 + κ2iλ/∂λ̄ + κ2iλ̄/̄∂λ
)
+

(
Aκ4 + 4Bb2κ2 +

C
2

bκ2
)

∂µ(λ2)∂µ(λ̄
2)

+ 2Bκ2
(

F2 + κ2(FF̃)2 − κ2F4
)
+

(
8Bκ2 − C2

8A

)
κ2iλσµ∂ρλ̄FµνFνρ + c.c.

+

(
2Bκ2 +

Aa2

2
− Ca

2

)
κ2iλ/∂λ̄F2 + c.c.− Ca

4
κ2iλ/∂λ̄FF̃ + c.c. (2.4.90)

− 16Bκ6iλσµ∂ρλ̄FµνFνρF2 + c.c.

+ 8Bb κ4λσµ∂νλ̄
(

F̃µνF2 + FµνF2 − F̃µνFF̃− FµνFF̃
)
+ c.c.

+
(
4Ba2 + 8B f

)
κ4iλσµλ̄F2∂µ(FF̃)− 16 f Bκ4i∂ν(λσµλ̄)FνρFρµFF̃ + · · · .

Field redefinition 5© The dimension-10 terms in the fifth line of (2.4.90) arrange in such
a way that they are eliminated through the field redefinition

5© λα → λα + (σµνλ)αh
(

FµνF2 − FµνFF̃
)

, h = −i
4Bb
A

κ2 ∈ iR, [h] = −6 . (2.4.91)

Indeed, just like (2.4.69), one can replace Fµν with F̃µν in (2.4.91), due to the identity σργ =
i
2 εργµνσµν. The goldstino kinetic terms transform under (2.4.91) as

iλ/∂λ̄ + iλ̄/̄∂λ −→
(2.4.91)

iλ/∂λ̄ + iλ̄/̄∂λ− 2
(
ihλσµ∂νλ̄− ih̄∂νλσµλ̄

) (
FµνF2 − F̃µνFF̃

)

− 2
(
ihλσµ∂νλ̄ + ih̄∂νλσµλ̄

) (
F̃µνF2 − FµνFF̃

)
, (2.4.92)
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and cancel exactly with the dimension-10 terms of (2.4.90). Acting (2.4.91) on other terms
in the Lagrangian, we only get dimension-14 or dimension-16 terms.

Therefore, no dimension-10 operator survives in the physical on-shell Lagrangian.

Field redefinition 6© We are still left with the dimension-8 terms of the form λ/∂λ̄FF̃ and
λ/∂λ̄F2 in the third line of (2.4.90). The first can be eliminated through the field redefinition

6© λα → λα + cλαFF̃, c =
Ca
8A
∈ R , [c] = −4 , (2.4.93)

which acts on the fermion kinetic terms as

iλ/∂λ̄ + c.c. −→
(2.4.93)

iλ/∂λ̄− ciλσµλ̄∂µ(FF̃)− ic2λσµ∂µ(λFF̃)FF̃ + c.c.

= iλ/∂λ̄ + 2ciλ/∂λ̄FF̃ + c.c. + · · · , (2.4.94)

and thus eliminates the dimension-8 terms containing λ/∂λ̄FF̃. The field redefinition
(2.4.93) also acts on other terms as

iλσµ∂ρλ̄FµνFνρ + c.c. −→
(2.4.93)

iλσµ∂ρλ̄FµνFνρ − icλσµλ̄∂ν(FF̃)FµρFρν + c.c. + · · · (2.4.95)

= iλσµ∂ρλ̄FµνFνρ + ic∂ν(λσµλ̄)FF̃FµρFρν +
ic
4

λσµλ̄F2∂µ(FF̃)

+ c.c. + · · · ,

iλ/∂λ̄F2 + c.c. −→
(2.4.93)

iλ/∂λ̄F2 − icλσµλ̄F2∂µ(FF̃) + c.c. + · · · , (2.4.96)

iλ/∂λ̄FF̃ + c.c. −→
(2.4.93)

iλ/∂λ̄FF̃ + c.c. + · · · . (2.4.97)

To get to the second line of (2.4.95) we integrated by part, used Bianchi identities of F, as
well as its antisymmetry.

Field redefinition 7© The other dimension-8 operator λ/∂λ̄F2 can be eliminated by the
following field redefinition

7© λα → λα + eλαF2, e = − B
A

κ2 − a2

4
+

Ca
4A
∈ R , [e] = −4 . (2.4.98)

Indeed for e ∈ R, the fermion kinetic terms transform as

iλ/∂λ̄ + iλ̄/̄∂λ −→
(2.4.98)

iλ/∂λ̄ + iλ̄/̄∂λ + 2e(iλ/∂λ̄ + iλ̄/̄∂λ)F2 +
[
ie2λσµ∂µ(λF2)F2 + c.c.

]

= iλ/∂λ̄ + iλ̄/̄∂λ + 2e(iλ/∂λ̄ + iλ̄/̄∂λ)F2 + · · · , (2.4.99)

and implements the desired cancellation. The dimension-8 term itself transforms under
(2.4.98) as

iλσµ∂ρλ̄FµνFνρ + c.c. −→
(2.4.98)

iλσµ∂ρλ̄FµνFνρ + 2eiλσµ∂ρλ̄FµνFνρF2 + c.c. + · · · .(2.4.100)
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Therefore, under combined field redefinitions 5©, 6© and 7© in the Lagrangian (2.4.90), we
arrive at

LSDBI+FI → A + Aκ2(iλ/∂λ̄ + iλ̄/̄∂λ) +

(
Aκ4 + 4Bb2κ2 +

C
2

bκ2
)

∂µ(λ
2)∂µ(λ̄2)

+ 2Bκ2
(

F2 + κ2(FF̃)2 − κ2F4
)
+

(
8Bκ2 − C2

8A

)
κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνFνρ

−
(

16Bκ4 +

(
8Bκ2 − C2

8A

)(
2B
A

κ2 +
a2

2
− Ca

2A

))
κ2(iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνFνρF2

+ O(λ2F6) + O(λ4F2) . (2.4.101)

Rescaling and final on-shell Lagrangian We see that most of the dimension-12 terms
cancelled in the Lagrangian (2.4.101). Kinetic terms can be brought to standard normal-
izations through the following rescaling

λλ̄ → − λλ̄

2Aκ2g2 , (2.4.102)

F2 → − F2

8Bκ2g2 . (2.4.103)

Using expressions (2.4.69), (2.4.74) for a, b and (2.4.68) for A, B and C and defining the
new constant κ̄

κ̄2 ≡ κ2
√

1 + 16g4κ2ξ2
, (2.4.104)

we can rewrite the Lagrangian (2.4.101) in a much simpler way

LSDBI+FI = −
1

8κ2g2

(
1 +

κ2

κ̄2

)
− 1

2g2 (iλ/∂λ̄ + iλ̄/̄∂λ)− κ̄2

g2 ∂µ(λ
2)∂µ(λ̄2)

− F2

4g2 −
κ̄2

4g2

(
(FF̃)2 − F4

)
− 2κ̄2

g2

(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνFνρ (2.4.105)

+
6κ̄4

g2

(
iλσµ∂ρλ̄− i∂ρλσµλ̄

)
FµνFνρF2 + O

(
(λ∂λ̄)2F2)+ O(dim 14).

We come back to our comment below eq. (2.4.62) on the sign of the first term “1” in (2.4.61),
different from the one of [18]. Changing it amounts to change the definition of A in (2.4.68)
and one gets the same on-shell action up to the order we consider, appart from the cos-
mological constant term, which has no role in global supersymmetry. However, with this
sign the limit ξ = 0 makes the redefinitions (2.4.91) and (2.4.98) singular, because A van-
ishes. This last fact justifies our choice of sign.

Below are a few comments on the dimension-8 operators present in (2.4.105). The four-
fermion term in the first line corresponds to the expansion of the Volkov-Akulov action
(2.2.14) with the redefined decay constant κ̄. The F4 in the second line corresponds to the
expansion of the bosonic DBI action with the same redefined tension. The two-fermion
two-boson term in the second line is a consequence of the low energy theorem (2.2.21)
for the goldstino coupling to matter. Here, the stress-energy tensor of the bosonic DBI
action is Tµν = FµλFν

λ − 1
4 ηµνF2 + · · · . The trace part ηµνF2 vanishes on-shell, hence to

leading order we are left with the dimension-8 operator at the end of the second line in
(2.4.105). The dimension-12 term in the third line can also be explained in a similar way.
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Nevertheless, the relative coefficient between the bosonic DBI action and the fermionic
terms, as well as the value of κ̄ cannot be obtained from the low energy theorem.

To summarize, by applying the following series of field redefinitions on (2.4.61),

λα −→
1© 3© 5© 6© 7©

√
− 1

2Ag2

(
λα + ia(σµνλ)αFµν + mλα(λ/∂λ̄)− nλα(λ̄/̄∂λ) + pλσµλ̄∂µλα

+ cλαFF̃ + eλαF2 + h(σµνλ)α

(
FµνF2 − FµνFF̃

) )
, (2.4.106)

uµ −→
2© 4©

− 1
8κ2g2B

(
uµ + bλσµλ̄ + f λσρλ̄F̃µρ

)
, (2.4.107)

we arrive at the low energy on-shell Lagragian (2.4.105).
The on-shell Lagrangian (2.4.105) has the same functional form whenever the FI pa-

rameter ξ is zero or not, except for the trivial constant piece. It follows that the FI param-
eter ξ enters the on-shell Lagrangian only through the renormalization of the coupling
constant κ. This suggests that (2.4.61) is on-shell equivalent to

L′SDBI+FI = −
1

8κ2g2

(
1− κ2

κ̄2

)
− 1

8g2κ̄2 det A
(

1 +
√

1 + 4κ̄2F 2 + 4κ̄4(FF̃ )2

)

= − 1
8κ2g2

(
1− κ2

κ̄2

)
− 1

8g2κ̄2 det A

(
1 +

√
−det

(
ηµν + 2

√
2κ̄Fµν

))
. (2.4.108)

It is easy to verify that by setting λ = 0 and thus det A = 1, (2.4.108) agrees with
the bosonic truncation of the SDBI+FI model (2.4.61). In the purely fermionic case F = 0,
(2.4.108) is reduced to the VA action. This is also consistent with the fact that the VA
action provides the low energy description of the supersymmetry breaking. Together
with our explicit computations, the above results provide strong evidence that (2.4.108)
is equivalent to (2.4.61) on-shell. So the standard FI term plays a trivial role in the SDBI
action by just redefining the coupling constant.

2.4.4 SDBI action with induced FI term from γ deformation

In the previous section, we started with the non-linear supersymmetry representation
of SDBI+FI model derived in [18], considered its low energy expansion and obtained the
on-shell physical Lagrangian with both bosons and fermions up to order of dimension
12 (the latter operators involving two gauginos). The non-linear supersymmetry formal-
ism makes the non-linear supersymmetry of SDBI action explicit. However, the linear
supersymmetry is obscure and rather invisible.

In this section, we start with the linear supersymmetry representation of the general-
ized SDBI+γ, θ action, with manifest N = 1 supersymmetry, and then compute the on-
shell physical Lagrangian by means of field redefinitions. To do so we first recall briefly
the construction of SDBI+γ, θ action and discuss how to recover the SDBI+FI as a par-
ticular limit. We then expand the action up to operators of dimension 10 (included) and
compute the on-shell physical Lagrangians of SDBI+γ, θ and SDBI+FI through field redef-
initions. The final result of our computations confirms what we obtained for SDBI+FI in
the previous section based on the non-linear supersymmetry formalism of [18].
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SDBI +γ, θ action from a non-linear constraint The deformed SDBI Lagrangian was
written in (2.4.7) as the integral the X superfield, solution of the N = 2 nilpotent con-
straint, which was given by (2.4.4). For simplicity we recall it here

LSDBI =
1

8πκ
Im
(

τ
∫

d2θX
)
=

1
4g2κ

(∫
d2θX + c.c.

)
− iθ

32π2κ

(∫
d2θX− c.c.

)
, (2.4.109)

where we used τ defined in (2.4.7) as τ = 4πi/g2 + θ/2π. Using the A, B superfields
introduced in eq. (2.4.5) the chiral half-superspace reads

1
κ

∫
d2θX =

∫
d2θ

(
W2 − κ2D2

[ W2W2

1 +A+
√

1 + 2A−B2

])

=
∫

d2θW2 + 4κ2
∫

d2θd2θ̄
W2W2

1 +A+
√

1 + 2A−B2

=
∫

d2θW2 +
4
κ2

∫
d2θd2θ̄

W2W2

D2W2D2W2

(
1 +A−

√
1 + 2A−B2

)
. (2.4.110)

For our computational convenience, we introduce the following chiral superfield Φ and
real superfieldM

Φ ≡ W2

D2W2 , M≡ 1 +A−
√

1 + 2A−B2, Dα̇Φ = 0, M =M, (2.4.111)

and we recall that the W2 expansion was given in (2.4.12).The SDBI Lagrangian (2.4.109)
can then be written as

LSDBI =
1

4g2

∫
d2θ W2 +

1
4g2

∫
d2θ̄ W2

+
2

g2κ2

∫
d4θ ΦΦM . (2.4.112)

We recall that its pure bosonic part (2.4.22), is written as

Lboson =
1

8g2κ2 +
iθFF̃

32π2 (8γ2κ2 + 1)
− 1

8g2κκ̃

√
1 +

θ2g4γ2κ̃2

8π4

√
−det

(
ηµν + 2

√
2κ̃Fµν

)
.

(2.4.113)
where κ̃ is the renormalized constant

κ̃2 =
κ2

1 + 8γ2κ2 . (2.4.114)

To prepare for the next subsection, we write down the free Maxwell piece of (2.4.112)
explicitly

L4 =
1

4g2 (D
2 + D̄

2
)− 1

2g2 (iλ/∂λ̄ + iλ̄/̄∂λ)− F2

4g2 +
θ

32π2

(
iFF̃ + i(D̄2 −D2)

)
, (2.4.115)

where D = d + iγ is the complex deformed field (2.3.25).
As already mentioned, the model obtained above with three deformation parameters

will be referred to as SDBI+γ, θ model. The SDBI+FI model we discussed in the previ-
ous section arises by setting the deformation parameter γ = 0, and adding the standard
FI term ξ

∫
d4θV ∝ ξd to (2.4.7) and (2.4.112). Actually SDBI+FI can be obtained from
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SDBI+γ, θ since the last term in (2.4.115) contains iθ(D̄2 − D2) ∼ γθd which is the stan-
dard FI term ξd with

ξ ≡ − θγ

8
√

2π2
. (2.4.116)

Moreover, in the limit γ → 0, the non-linear third term in (2.4.112) reduces to the one in
the standard SDBI. Hence we conclude that SDBI+FI Lagrangian can be obtained from the
SDBI+γ, θ one by taking the double scaling limit

LSDBI+γ,θ −→ LSDBI+FI + total derivative, when
{

γ→ 0
γθ = −8

√
2π2ξ fixed.

(2.4.117)

Of course, this limit is ill-defined at the non-perturbative level, since θ goes to infinity.

Component expansion We would like to find the physical on-shell action of (2.4.112)
including both bosonic and fermionic contributions, by performing a low energy pertur-
bative expansion in mass dimension. The non-linear interacting piece in (2.4.112) is

∫
d4θ ΦΦM = ΦΦ

∣∣
0 M|θθθ̄θ̄ + ΦΦ

∣∣
θ
M|θθ̄θ̄ + · · ·+ ΦΦ

∣∣
θθθ̄θ̄
M|0 . (2.4.118)

The relevant superfield expansions are shown in appendix B.2. In the following equations,
we expand explicitly the various contributions of the superfield multiplication shown in
(2.4.118) and keep terms up to dimension 10. As we will in eq. (2.4.128), the D auxiliary
field can be expanded as D = D0 + D4 + · · · , where D0 is constant, D4 has dimension 4,
etc. Hence we mention that the various terms in ∂µD have dimensions at least 5, a useful
fact to remember when keeping track of the mass dimension of the various terms in the
Lagrangian.

The terms important for the Lagrangian component expansion are shown below, where
the ∼ symbol indicates that equalities hold up to dimension-10 terms included or total
derivatives

ΦΦ
∣∣
0 M|θθθ̄θ̄ ∼ 0 , (2.4.119)

ΦΦ
∣∣
θ̄
M|θ̄θθ ∼ κ2λ2λ̄2λ̄

1
8D2

(
1− 1 + 8iκ2dγ√

Z

)
− iκ2D̄

4D2D̄
2 λ2λ̄σab∂µλ̄ ∂µFab, (2.4.120)

ΦΦ
∣∣
θ̄θ̄
M|θθ ∼

−κ2λ22(λ̄2)

8D2

(
1− 1 + 8iκ2dγ√

Z

)
+ #κ4(λ/∂λ̄)2, (2.4.121)

ΦΦ
∣∣
θθ̄
M|θθ̄ ∼ κ2 iψσµψ̄

8D2D̄
2

[
∂µ

(
E− +D2 − D̄

2
)(

1− 1√
Z

)
+ ∂µ

(
E+ +D2 + D̄

2
)8iκ2dγ√

Z

]

+ #κ4(λ/∂λ̄)(λ̄/̄∂λ), (2.4.122)

ΦΦ
∣∣
θ̄θ̄θ
M|θ ∼ κ2 iψ/∂ψ̄

4D2

(
1 +

F+2

D2

)[
1− 1 + 8iκ2dγ√

Z
− 2κ2E−

(
1√
Z
+

8iκ2dγ− 64κ4d2γ2

Z
√

Z

)

−2κ2E+
1 + 8iκ2dγ

Z
√

Z

]
− κ2

8D2 λ2λ̄2λ̄

(
1− 1 + 8iκ2dγ√

Z

)
+

iκ2D̄

4D2D̄
2 λ2λ̄σ̄ab∂µλ̄∂µFab

+ #κ4(λ/∂λ̄)(λ̄/̄∂λ) + #κ4(λ/∂λ̄)2, (2.4.123)
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ΦΦ
∣∣
θθθ̄θ̄
M|0 ∼

(
1− 4κ2(d2 − γ2)−

√
Z
) [ 1

32
+

iψ/∂ψ̄

16D2D̄
2

(
1 +

2F+2

D2

)
+

iψσµψ̄

8D2D̄
2

∂µD

D

+
1

32D2D̄
2 ∂µ(λ

2)∂µ(λ̄2)

]
− κ2 iψ/∂ψ̄

8D2D̄
2

(
E+
(

1− 1√
Z

)
+ E−
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−
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+
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+
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√

Z
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8iκ2dγ

Z
√

Z

)
,

+ #κ4(λ/∂λ̄)(λ̄/̄∂λ) + #κ4(λ/∂λ̄)2 + c.c. . (2.4.124)

The (anti-)self-dual tensors F± are defined in (A.2.1) while ψ, E±, and Z are introduced in
(B.2.3), (B.2.11) and (B.2.15). In particular, Z is given by

Z = (1 + 8κ2γ2)(1− 8κ2d2) = 1− 8κ2 (d2 − γ2)− (8κ2dγ)2. (2.4.125)

In (2.4.124) the final c.c. symbol refers to complex conjugation of the whole right-hand
side, even if some terms are real by themselves. We show (2.4.124) in this form to stress
the fact that this term is real. In equations (2.4.119) to (2.4.124), we put # in front of four-
gaugino terms to indicate that the corresponding coefficients can be calculated but their
specific values are not important. As we explain later, these terms can be eliminated in
the end by a field redefinition.

Collecting all the above terms, the SDBI Lagrangian (2.4.112) can be expanded up to
dimension 10 as

L =
1

8κ2g2
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1−
√

Z
)
+

θ

32π2 (iFF̃ + 4γd)− F2

4g2
√
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√
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+
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√
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√
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√
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+ c.c.− ψσµψ̄

g2D̄
2
D2
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+total derivatives + O(dim 12) , (2.4.126)

where each c.c. symbol indicates now complex conjugation of the first preceding term.
Again, # coefficients in front of the four-fermion dimension-8 terms are not important
since these terms can be removed through field redefinitions, as explained later. Note
that the dimension-8 and dimension-10 contributions of the form λ2λ̄2λ̄, λ2λ̄σ̄ab∂µλ̄∂µFab
present in (2.4.120) and (2.4.123) cancel each other in the Lagrangian (2.4.126), and so do
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their complex conjugates.

Physical action with γ deformation and θ angle We will now compute the physical
(on-shell) SDBI+γ, θ Lagrangian out of the off-shell one in (2.4.126), making use of re-
definitions as explained in section 2.4.2. It is clear from (B.2.16) that when 〈D〉 6= 0 the
SDBI Lagrangian (2.4.126) contains dimension-6 terms. As explained in section 2.4.3, these
terms are unphysical and can be eliminated by means of a field redefinition. This field re-
definition generates also extra higher dimensional operators when acting on other terms
in the Lagrangian.

Below, we proceed as follows. We first solve the equation of motion of D and use
it to obtain the D-solved Lagrangian. Since the Lagrangian is too complicated, we only
show explicitly the dimension-6 terms and the gaugino kinetic terms. Then we demon-
strate how to eliminate the dimension-6 terms through field redefinition and write down
the D-solved Lagrangian without dimension-6 terms. After discussing the elimination of
some other unphysical terms, we finally obtain the physical on-shell action of SDBI+γ, θ
Lagrangian up to dimension 10 (included).

i) Solving the D auxiliary field. We recall that, in the presence of γ deformation, the D
auxiliary field splits into its dynamic part d and deformed part γ [1], as shown in (2.3.25).
It is not real anymore and we get

D = d + iγ, D̄ = d− iγ. (2.4.127)

We expand D in terms of increasing dimensions and solve for the first two terms through
Euler-Lagrange equations applied in (2.4.126). The solution reads

D ≡ D0 +D4 + · · · , D0 = d0 + iγ,

d0 = − γg2θ

2
√

2
√

8π4 + γ2κ2(g4θ2 + 64π4)
,

D4 = − 2iκ2γFF̃
1 + 8κ2γ2 + d0

2κ2F2

1 + 8κ2γ2 + 8κ2(d0 − iγ)
1 + 8κ2γ2 + 2

√
Z0

(1 + 8κ2γ2 +
√

Z0)2
(iλ/∂λ̄ + iλ̄/̄∂λ),

Z0 = (1− 8κ2d2
0)(1 + 8κ2γ2) =

8π4(1 + 8κ2γ2)2

γ2κ2g4θ2 + 8π4(1 + 8κ2γ2)
, (2.4.128)

where Z0 is the lowest term in the expansion of Z defined in (2.4.125).
We then plug the above solutions for D0 and D4 back into (2.4.126). Especially, the

∂µd factor in (2.4.126) can be replaced with ∂µD4 at dimension-10 order. One can further
integrate by parts to transfer the derivative in ∂µD4 to other factors. The resulting terms
with bare D4 can be combined with other terms in the Lagrangian. We do not show the
whole D-solved Lagrangian but rather present it in schematic form

LD−solved = Lboson + L4
(
λ/∂λ̄, λ̄/̄∂λ

)
+ L6

(
λσµ∂νFµν, λσµ∂ν F̃µν

)

+ L8
(
λ/∂λ̄F2, ∂µλσµλ̄F2, λ/∂λ̄FF̃, ∂µλσµλ̄FF̃, λσµ∂νFµρFρ

ν

)

+ L10
(
λσµ∂νFµνF2, λσµ∂νFµνFF̃, λσµ∂ν F̃µνF2, λσµ∂ν F̃µνFF̃

)
+ · · · . (2.4.129)

In the above schematic Lagrangian we indicated the dimension of each term by a sub-
script, and showed each field dependence (in linearly independent operators up to total
derivatives).
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The dimension-4 term L4 contains the gaugino kinetic terms

L4 =− iλ/∂λ̄

2g2
√
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+

iλ/∂λ̄D0D̄0

2g2D2
0
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+ c.c.

= − 1 + 8κ2γ2

g2
√

Z0(1 + 8κ2 +
√

Z0)
iλ/∂λ̄ + c.c. + total derivatives . (2.4.130)

whileL6 can be obtained by inserting the expression (B.2.16) into the third line of (2.4.126),
replacing D→ D0 and keeping only the dimension-6 operators

L6 =
i ψ/∂ψ̄|6
2g2D̄

2
0D

2
0

(
D̄

2
0

(
1− 1 + 8iκ2dγ√

Z0

)
+

1
4κ2

(
1− 4κ2(d2

0 − γ2)−
√

Z0

))
+ c.c.

=
−4κ2(1 + 8κ2γ2)

g2
√

Z0(1 + 8κ2γ2 +
√

Z0)2

(
2D̄0λσµ∂νλ̄F+ν

µ − 2D0λσµ∂νλ̄F−ν
µ −D0λσµλ̄∂νFνµ

)

+ c.c. + · · · . (2.4.131)

ii) Eliminating dimension-6 terms. The dimension-6 part L6 shown in (2.4.131) can be
completely eliminated through the field redefinition

λ→ λ + aσµνλFµν , a = −i
4κ2

1 + 8κ2γ2 +
√

Z0
D̄0. (2.4.132)

Under (2.4.132) the gaugino kinetic term transforms as

iλ/∂λ̄ + c.c. −→
(2.4.132)

iλ/∂λ̄− 2iaλσν∂µλ̄F+
µν − 2iāλσν∂µλ̄F−µν − iāλσµλ̄∂νFνµ

+ 2iaāλσµ∂νλ̄F ρ
µ F ν

ρ +
aā
2

iλ/∂λ̄F2 + c.c. + · · · , (2.4.133)

and the last three terms in the first line indeed cancel the dimension-6 operator L6 of
(2.4.131). The field redefinition (2.4.132) also acts on operators present in L6 and L8 as
follows

iλσµ∂νλ̄FµρFρν −→
(2.4.132)

iλσµ∂νλ̄FµρFρν +
(

i
a
4

λσµ∂νλ̄(Fνµ − F̃ νµ)FF̃ + c.c.
)

(2.4.134)

− i
ā
4

∂ν(λσµλ̄)F∗νµF2 + i
((

ā
4
+

a
2

)
λσµ∂νλ̄− ā

4
∂νλσµλ̄

)
FµνF2 + · · · ,

iλ/∂λ̄F2 −→
(2.4.132)

iλ/∂λ̄F2 − i(a + ā)λσµ∂νλ̄FνµF2 − i(a− ā)λσµ∂νλ̄F̃νµF2 + · · · , (2.4.135)

iλ/∂λ̄FF̃ −→
(2.4.132)

iλ/∂λ̄FF̃− i(a + ā)λσµ∂νλ̄FνµFF̃− i(a− ā)λσµ∂νλ̄F̃νµFF̃ + · · · , (2.4.136)

λσµ∂νλ̄F̃νµ −→
(2.4.132)

λσµ∂νλ̄F̃ νµ +
a
4

λ/∂λ̄FF̃ +
a
2

λ/∂λ̄F2 +
(
aλσµ∂νλ̄FµρFρν + c.c.

)

+

(
aā
4

λσµ∂νλ̄(F̃νµF2 − FνµFF̃ + F̃νµFF̃− FνµF2) + c.c.
)
+ · · · , (2.4.137)

λσµ∂νλ̄Fνµ −→
(2.4.132)

λσµ∂νλ̄Fνµ +
a + ā

4
λ/∂λ̄FF̃−

(
aλσµ∂νλ̄FµρFρν − c.c.

)

+

(
aā
4

λσµ∂νλ̄(F̃νµF2 − FνµFF̃ + F̃νµFF̃− FνµF2)− c.c.
)
+ · · · , (2.4.138)

where various identities in appendix appendix A.1 are used and “· · · ” indicate either total
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derivatives, terms with dimension higher than 10, or dimension-10 terms proportional to
the free equations of motion. As we explained in section 2.4.2, these last ones can be
eliminated by means of field redefinition without introducing extra terms at this order.

iii) Eliminating terms containing four fermions. We also remark that under the field re-
definition (2.4.132) the four-gaugino dimension-8 terms indicated with # coefficients in
(B.2.16) transform as

(λ/∂λ̄)2 −→
(2.4.132)

(λ/∂λ̄)2 + #λ/∂λ̄“λ∂λ̄F” + · · · , (2.4.139)

(λ̄/̄∂λ)2 −→
(2.4.132)

(λ̄/̄∂λ)2 + #λ̄/̄∂λ“λ∂λ̄F” + · · · , (2.4.140)

(λ/∂λ̄)(λ̄/̄∂λ) −→
(2.4.132)

(λ/∂λ̄)(λ̄/̄∂λ) + #λ/∂λ̄“λ∂λ̄F” + #λ̄/̄∂λ“λ∂λ̄F” + · · · , (2.4.141)

where “λ∂λ̄F” schematically denotes a sum of various contractions containing one field
strength, two fermions and one derivative. Their specific form is not important but the
crucial point is that all these terms are proportional to the equation of a free fermion and
thus can be eliminated.

As we have shown in section 2.4.3, the pure four-fermion terms of dimension 8 in
(2.4.139), (2.4.140), (2.4.141) can be eliminated through the field redefinition (2.4.83)

λα → λα + mλα(λ/∂λ̄) + nλα(∂µλσµλ̄) + pλσµλ̄∂µλα , (2.4.142)

with constant coefficients m, n, p, under which the free fermion kinetic terms transform as
(2.4.84). It is easy to check that the above four-fermion terms can be eliminated completely
with appropriate constants m, n, p. Since the dimension-6 terms are eliminated through
(2.4.132), acting (2.4.142) on the remaining terms in the Lagrangian can only generate
terms with dimension strictly higher than 10 which we do not consider.

The field redefinition (2.4.132) also generates four fermion and one gauge boson mixed
terms with dimension 10 in (2.4.139), (2.4.140), (2.4.141). Since they are proportional to the
equation of free fermion, they can be eliminated through the following schematic field
redefinition

λα → λα + jλα“λ∂λ̄F” . (2.4.143)

Acting on the free fermion kinetic term, we have

λ/∂λ̄ −→
(2.4.143)

λ/∂λ̄ + jλ/∂λ̄“λ∂λ̄F” + j̄λ̄/̄∂λ“λ∂λ̄F” + · · · , (2.4.144)

which indeed allows us to remove the dimension-10 terms in (2.4.139), (2.4.140), (2.4.141)
with appropriate tensor structures and coefficients. In particular, no other dimension-10
terms would be generated due to this field redefinition (2.4.143).

To conclude, the four fermion terms in (2.4.126) with unspecified coefficients can be
completely eliminated at this order without introducing extra terms. The only leftover
four fermion operator of dimension 8 is the one written in the fifth line that corresponds
to the expansion of the VA action.

iv) D-solved Lagrangian after eliminating dimension-6 operators and non Voklkov-Akulov 4-
fermion terms. The field redefinition (2.4.132) used to eliminate L6 also acts on other terms
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as we see from (2.4.133) to (2.4.138). Collecting all these terms, we arrive at
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+
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√
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+
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√

Z0
(
1 + 8κ2γ2 +
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+
8κ4d2

0 λσµ∂νλ̄

g2D0
√

Z0(1 + 8κ2γ2 +
√

Z0)2

(
F̃ µνFF̃ + FµνFF̃− F̃ µνF2 − FµνF2)+ c.c. + . . . ,

(2.4.145)

where here c.c. indicate complex conjugation of entire lines. Several terms in the La-
grangian (2.4.145) still remain to be eliminated.

v) Eliminating dimension-8 and dimension-10 terms. The dimension-10 operators in the
last line of (2.4.145) can be eliminated through the field redefinition

λα → λα + h(σµνλ)α

(
FµνF2 − FµνFF̃

)
, h = −i

4κ4d2
0

D0(1 + 8κ2γ2 +
√

Z0)
, (2.4.146)

which is the analog to (2.4.91) used in section 2.4.3. The fermion kinetic terms transform
as in (2.4.92) and cancel the dimension-10 operators.

Dimension-8 terms in the fourth and fifth line of (2.4.145) can also be eliminated by
field redefinitions

λα → λα + bλαF2, λα → λα + cλαFF̃, (2.4.147)

with appropriate b, c coefficients. This is again analog to the field redefinitions (2.4.93)
and (2.4.98) in section 2.4.3. Acting (2.4.147) on fermion kinetic terms eliminates the above
dimension-8 operators. Additional terms generated by the field redefinitions (2.4.146) and
(2.4.147) have dimension at least 12. The leftover dimension-8 operators containing two
gauginos and two gauge bosons are those of the third line and correspond to the standard
goldstino coupling to the energy momentum tensor, foretold by the low energy theorems.

Therefore, we can discard the last three lines of (2.4.145) by using (2.4.146) and (2.4.147),
and the physical on-shell Lagrangian contains only the first three lines of (2.4.145).

vi) Rescaling and final result. Finally, to obtain canonical kinetic terms, we rescale

λλ̄ →
√

Z0
(
1 + 8κ2γ2 +

√
Z0
)

2(1 + 8κ2γ2)
λλ̄ , (2.4.148)

Fµν → Z1/4
0 Fµν . (2.4.149)
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As mentioned just above, the first three lines of (2.4.145) form the only remaining physical
part of the Lagrangian, and after applying the rescaling one gets the following on-shell
Lagrangian

LSDBI+γ,θ =
1

8g2κ2

(
1− κ2

κ̄2

)
+

iθFF̃κ̄2

32π2κ2 −
F2

4g2 +
κ̄2

4g2 F4 − κ̄2

4g2

(
FF̃
)2

− 1
2g2

(
iλ/∂λ̄ + c.c.

)
− κ̄2

g2 ∂µ(λ
2)∂µ(λ̄2) +

2κ̄2

g2 (iλσρ∂νλ̄− i∂νλσρλ̄)Fν
µFµ

ρ

+ O(dim 12), (2.4.150)

where we defined

κ̄2 = κ2
√

Z0

1 + 8κ2γ2 =
2
√

2π2κ2
√

8π4(1 + 8κ2γ2) + g4γ2κ2θ2
. (2.4.151)

This perturbative low energy expansion agrees with (2.4.105), up to an additive constant
which plays no role in global supersymmetry.

After dropping the total derivative term θFF̃, it is easy to see that this expansion agrees
on-shell with the low energy expansion of the action

L′SDBI+γ,θ =
1

8g2κ2

(
1 +

κ2

κ̄2

)
− 1

8g2κ̄2 det A
(

1 +
√
−det(ηµν + 2

√
2κ̄Fµν)

)
. (2.4.152)

One can also compare this action with the bosonic truncation given in (2.4.113) which can
be rewritten as follows

Lboson =
1

8g2κ2 −
1

8g2κ̄2

√
−det

(
ηµν + 2

√
2κ̄Fµν

)
. (2.4.153)

where we have rescaled F as Fµν → Z1/4
0 Fµν and dropped the total derivative term θFF̃. It

is obvious that (2.4.153) indeed agrees with the bosonic truncation of (2.4.152) by setting
λ = 0 and thus det A = 1. Instead, in the pure fermionic case F = 0, (2.4.152) becomes the
VA action, showing again that the VA action is the low energy description of spontaneous
supersymmetry breaking. Considering our explicit low energy expansion up to dimen-
sion 10 as well as the above limits, we conclude that (2.4.152) is indeed on-shell equivalent
to the original SDBI+γ, θ action.

To study the SDBI+FI model, we can consider the double scaling limit γ → 0 with
γθ = −8

√
2π2ξ fixed, as explained in (2.4.117). In this limit, the value of κ̄ in (2.4.151)

gives the value in (2.4.104). Hence the result (2.4.152) also agrees with the explicit compu-
tation (2.4.108) in the last section based on the non-linear formalism. Therefore, this also
provides a non-trivial test of the non-linear supersymmetric formalism of [18].

2.5 Summary

In this chapter, we first introduced the basic concepts of N = 1 supersymmetry, high-
lighting the superspace construction of SUSY Lagrangians and the study of spontaneous
SUSY breaking. We explained why non-linear supersymmetry realizations are very effi-
cient ways to describe the low-energy limit of theories with spontaneously broken sym-
metries. We then explained how this formalism applies toN = 1 supersymmetry, first re-
viewing the standard Volkov-Akulov Lagrangian construction and then discussing more
recent progress and tools such as constrained superfields. Motivated by the study of more
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generic SUSY breaking scenarios we then switched to the presentation of aspects of par-
tial N = 2 → N = 1 SUSY breaking. Theories with global N = 2 supersymmetries
are low-energy limits of N = 2 supergravity theories, which in turn naturally appear as
effective actions of compactified superstring theories.

We considered the general deformations ofN = 2 supersymmetry transformations for
a vector multiplet and have shown that they are dual to the triplet of FI parameters under
EM duality. We have then studied the effect of the deformations to the general N = 2
two-derivative action with generic prepotential, as well as to the DBI action realizing one
of the supersymmetries non-linearly. We computed the scalar potential and showed that
for generic FI terms and deformation parameters, the vacuum is always N = 1 super-
symmetric. The complete breaking of supersymmetry requires the presence of at least
two U(1)’s in analogy with the situation of branes at angles in string theory.

We also showed that the D-deformation induces an FI term proportional to the theta-
angle. However, within the bosonic sector of the theory, all deformations can be absorbed
to a redefinition of the DBI parameters (brane tension and coupling constants) after the
elimination of the auxiliary field. This is also the case of the standard DBI + FI action, im-
plying that the FI parameter and deformation are unobservable within the bosonic sector.
This property is reminiscent of a brane rotation in string theory. An important difference,
however, seemed at first to appear in the fermionic sector, where it was observed that the
FI term leads to an extra contribution to the action written explicitly in the formalism of
non-linear supersymmetry [18]. Applying this formalism in our case, where the FI term is
generated by the deformation via the theta-angle, we did not find any extra contribution.

This seemingly observed difference in the fermionic actions for the two FI terms is
important in the study of the uniqueness of SDBI actions. We thus studied the on-shell
SDBI action implemented with either a standard FI term or a γ-deformation induced FI
term. We have computed its low-energy expansion up to mass dimension-12 terms. The
first non-trivial computation started for operators of dimension 10 and we have shown
that these operators vanish on-shell and can be eliminated by field redefinitions. This
result suggests that in either case, the deformation or the FI parameter does not break
the linear supersymmetry but just modifies the goldstino decay constant by rotating the
remaining residual supersymmetry. Considering the nature of the SDBI action realizing
partial supersymmetry breaking with both linear and non-linear supersymmetry, it is not
surprising to see the trivial role of the deformation or the FI parameter on-shell. On the
other hand, the rotation modifies the field transformations of the linear supersymmetry in
a non-linear way, although without constant in the gaugino transformation, which makes
the result non-obvious even if the final result has a simple interpretation within string
theory. Obviously, the rotation argument breaks down in the presence of another referent
SDBI action and supersymmetry breaking should occur in this system.

Interesting questions remain, such as the existence of a deformation of the SDBI ac-
tion that breaks spontaneously the linear supersymmetry, the coupling to supergravity, as
well as its possible realization in string theory. Indeed, such terms are expected to modify
on-shell fermionic dependences of higher than dimension-8 operators, motivating corre-
sponding computations in string theory.
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Chapter 3

String theory vacua and magnetic
field SUSY breaking

3.1 String theory elements

String theory has been developing for more than five decades after pioneering works
in the late ’60s [43, 44, 45, 46, 47], which were at first not related to quantum gravity.
Nevertheless, its natural UV completion or the presence of the graviton in its low energy
spectrum, rapidly promoted string theory as one of the most reasonable candidates to de-
scribe quantum gravity. A complete review of advances in string theory is not the subject
of this thesis and would in practice be impossible considering the enormous amount of
discoveries developed through the past years. In this section, we will nevertheless make
reminders of basics string theory elements, used in the rest of the thesis, based on various
references [48, 49, 50, 51, 52].

We start with a quick review of the bosonic string, before switching to string theo-
ries including supersymmetry, superstring theories, and several useful ingredients such
as vacuum amplitudes and D branes. The bosonic string is not consistent on its own and
supersymmetry is necessary to construct consistent string theories. It leads to different
descriptions: type I, type IIA, type IIB or yet heterotic superstring theories. The sec-
ond string revolution showed that these theories are related through a web of dualities,
reviewed in [53, 54]. Hence, we will not enter the details of each superstring theory con-
struction but will rather recall some important points about type IIB string theory, which
will be the framework for the constructions in the rest of this thesis.

3.1.1 Bosonic string

String action, equations of motion, mode expansions We first introduce basic concepts
of string theory, through the description of bosonic string theory. Even if, as we will
explain in this section, this theory is not consistent, it is a natural and instructive theory
to start with. Fundamental degrees of freedom are those of open or closed strings of
length ls related to the Regge slope α′ = l2

s /2. When evolving in time, strings span a 2d
surface called worldsheet. The open string worldsheet possesses a boundary whereas the
closed string one does not. The worldsheet is embedded in the ambient space-time by
worldsheet coordinates Xµ(τ, σ), where µ = 0, . . . , D − 1 are the D-dimensional space-
time indices and τ, σ are the worldsheet parameters, with σ = 0, π corresponding to the
two extremities of the strings. In order to keep track of the nature of the extremities of the
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strings, one has to impose the following boundary conditions (b. c.)

Xµ(τ, σ + π) = Xµ(τ, σ), closed strings, (3.1.1)

Xµ(τ, 0) = Xµ
0 , Xµ(τ, π) = Xµ

1 , open strings, Dirichlet boundary conditions, (3.1.2)
∂Xµ

∂σ
(τ, 0) =

∂Xµ

∂σ
(τ, π) = 0, open strings, Neumann boundary conditions. (3.1.3)

The induced worldsheet metric can be constructed from the space-time metric

Gαβ = gµν∂αXµ∂βXν, α, β = τ, σ, (3.1.4)

and a natural worldsheet action is then the integral of its determinant, similar to the line
element integral in the point-particle case. This leads to the Nambu-Goto (NG) [55, 56]
worldsheet action

SNG = − 1
2πα′

∫
dτdσ

√
−det Gαβ. (3.1.5)

The square root being difficult to quantize, one can introduce an auxiliary metric hαβ, the
elimination of which gives back the NG action. The action with this auxiliary metric is the
Polyakov [57, 58, 59] action

SPolyakov = − 1
4πα′

∫
dσdτ

√
−det h hαβgµν∂αXµ∂βXν, (3.1.6)

which as explained above, has to be considered together with the constraint

δ

δhαβ
SPolyakov = 0, (3.1.7)

and the boundary conditions of eqs. (3.1.1) to (3.1.3). The equations of motion for ∂αXµ

and the constraint on hαβ read

∇α∇αXµ = ∇2Xµ = 0, Tαβ = ∂αX · ∂βX− 1
2

hαβhρλ∂ρX · ∂λX = 0, (3.1.8)

where ∇ is the worldsheet covariant derivative, and the central dots denote space-time
contractions X · X = XµXµ = gµνXµXν. The Polyakov action is invariant under local
worldsheet reparametrizations

σ, τ → σ′ = fσ(σ, τ), τ′ = fτ(σ, τ), Xµ(σ, τ)→ X
′µ, X′µ(σ′, τ′) = Xµ(σ, τ), (3.1.9)

local Weyl transformations

hαβ → ew(σ,τ)hαβ, Xµ → Xµ, (3.1.10)

and global Poincaré transformations xµ → aµ
ν xν + bµ leaving hαβ invariant. These sym-

metries can be used to gauge fix the Polyakov action through hαβ = ηαβ. It then reads

Sg. f. Polyakov =
1

4πα′

∫
dτdσ

(
Ẋ2 − X′2

)
, Ẋ ≡ ∂X

∂τ
, X′ ≡ ∂X

∂σ
, (3.1.11)
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and the equations of motion (3.1.8) become

∂2Xµ =

(
∂2

∂σ2 −
∂2

∂τ2

)
Xµ = 0, (3.1.12)

Tττ = Tσσ =
1
2
(
Ẋ2 + X′2

)
= 0, Tτσ = Tστ = Ẋ · X′ = 0. (3.1.13)

The first equation is a simple wave equation, solved as usual by introducing the left-
moving and right-moving coordinates σ±, given below in eq. (3.1.15). The wave equation
factorizes and is solved by a sum of independent left-moving and right-moving solutions.
Namely eqs. (3.1.12) and (3.1.13) transform to

∂+∂−Xµ = 0, T++ = ∂+X · ∂+X = 0, T−− = ∂−X · ∂−X = 0, T+− = 0, (3.1.14)

σ± = τ ± σ, ∂± =
1
2
(∂τ ± ∂σ), (3.1.15)

so that a general solution is written as

Xµ = Xµ
L(σ

+) + Xµ
R(σ

−). (3.1.16)

The left-moving and right-moving solutions can be expanded according to their boundary
conditions. For instance, for closed strings the expansion reads

Xµ
L(σ

+) =
1
2

xµ + α′pµσ+ + i

√
α′

2 ∑
n 6=0

α
µ
n

n
e−2inσ+

, (3.1.17)

Xµ
R(σ

−) =
1
2

xµ + α′pµσ− + i

√
α′

2 ∑
n 6=0

α̃
µ
n

n
e−2inσ− . (3.1.18)

For open strings with e.g. Neumann boundary conditions (3.1.3) at both ends, NN, which
mix XL and XR, the expansion is

Xµ(τ, σ) = xµ + 2α′pµτ + 2i

√
α′

2 ∑
n 6=0

α
µ
n

n
cos(nσ), (3.1.19)

and corresponds to standing waves solutions, the left-moving and right-moving sectors of
which are not independent. In the above expansions, the xµ and pµ quantities correspond
to the center-of-mass position and the momentum. For convenience we also define

α
µ
0 ≡

√
α′

2
pµ, (3.1.20)

so that derivatives of mode expansions similar to those of eqs. (3.1.17) to (3.1.19) can be
written with sums including n = 0 terms.

Light-cone quantization There is still a residual symmetry remaining after gauge fixing
of the worldsheet metric. As was explained in [60], there is a very convenient way to fix
it by using the so-called light-cone gauge, which makes use of the space-time light-cone
coordinates

X± =
1√
2
(X0 ± XD−1), Xi, i = 1, . . . , D− 2, (3.1.21)

η+− = η−+ = −1, η++ = η−− = 0, ηij = δij. (3.1.22)
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Namely, this procedure uses the left-over reparametrization symmetry to redefine the
worldsheet parameters through

σ+ → σ̂+(σ+) =
X+

L (σ
+)

α′p+
, σ− → σ̂−(σ−) =

X+
R (σ

−)
α′p+

, (3.1.23)

so that the worldsheet time goes to

τ =
1
2
(
σ+ + σ−

)
→ τ̂ =

X+(τ, σ)

2α′p+
=

X̂+(τ̂, σ̂)

α′p+
. (3.1.24)

This means that the ambiant and worldsheet times are identified, namely X̂+ reads

X̂+(σ̂, τ̂) = 2α′p+τ̂. (3.1.25)

It does not have oscillators anymore and only carries a non-vanishing momentum p+. Of
course, once this parametrization choice is realized, one can drop the hat symbols. The
energy-momentum constraints (3.1.13) can be combined and lead to

0 = Tσσ ± Tτσ =
1
2
(
Ẋ2 ± X′2

)2
= −(Ẋ+ ± X+′)(Ẋ− ± X−

′
) +

1
2 ∑

i
(Ẋi ± Xi′)(Ẋi ± Xi′)

= −2α′p+(Ẋ− ± X−
′
) +

1
2 ∑

i
(Ẋi ± Xi′)(Ẋi ± Xi′). (3.1.26)

The last line is obtained using the X+ expansion (3.1.25) and can be used to express the
α−, α̃− oscillators with respect to the αi, α̃i ones, so that only an integration constant,
corresponding to the center-of-mass degree of freedom x−(τ, σ), remains undetermined.
The conclusion is that, in the light-cone gauge, the only independent oscillators are αi, α̃i,
so that the quantization can be made in D− 2 dimension. In particular one finds

α′p−

2
=

√
α′

2
α−0 =

1
2p+ ∑

i

(
1
2

α′pi pi + ∑
n 6=0

αi
nαi
−n

)
, (3.1.27)

and a similar expression in terms of α̃i
n, so that the on-shell mass formula becomes

M2 = −pµ pµ = 2p−p+ −∑
i

pi pi =
1
α′ ∑

n 6=0
∑

i
(αi

nαi
−n + α̃i

nα̃i
−n). (3.1.28)

We can now follow the standard methods of the first quantization, implemented in
light-cone gauge. The center-of-mass position, momentum and oscillators can be pro-
moted to quantum operators satisfying the commutation relations

[xµ, pν] = iηµν, [αi
m, α

j
n] = [α̃i

m, α̃
j
n] = mηijδm+n,0, [αi

m, α̃
j
n] = 0. (3.1.29)

Annihilation and creation operators satisfying the standard commutation relations can
be defined as ai

n = αi
n/
√

n, a†i
n = αi

−n/
√

n, and similarly for right-moving oscillators.
The vacuum is annihilated by all annihilation operators and is labelled by its momentum
p. One generates the Hilbert space of states |φ〉 by acting on the vacuum with creation
operators. For instance, for closed strings, with vacuum state denoted

∣∣0, 0̃, p
〉
, these states
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can be written as

|φ〉 =
∞

∏
a=1

(αia
−a)

ma
∞

∏
b=1

(α̃ib
−b)

m̃b
∣∣0, 0̃, p

〉
, ∀n > 1 αi

n
∣∣0, 0̃, p

〉
= α̃i

n
∣∣0, 0̃, p

〉
= 0, (3.1.30)

where only a finite set of the oscillator “multiplicities” ma, m̃b, is non vanishing, so that
the products over a and b are finite.

Hamiltonian and energy-momentum expansion The Hamiltonian of the theory can be
computed from the gauge fixed action (3.1.11) and expanded using the wave equation
solutions as in eqs. (3.1.17) to (3.1.19). For closed strings, it gives in light-cone gauge

H =
1
2

∫ π

0
dσ(2πα′P2 +

1
2πα′

X′2) = ∑
i

pi pi

2p+
+

1
α′p+

(
∑

i
∑
n>0

(αi
−nαi

n + α̃i
−nα̃i

n) + E0 + Ẽ0

)
,

(3.1.31)

where E0, Ẽ0 are the zero point energies, on which we come back around eq. (3.1.37), and
the dot product is applied in the D − 2 space dimensions with indices i = 1, . . . , D −
2. The Pi are the momenta conjugate to Xi defined as usual from the derivatives of the
Lagrangian with respect to Ẋi.

The energy-momentum tensor can also be expanded, and for closed strings it reads

T++ = ∂+X · ∂+X = 2α′ ∑
n,m

αn · αme−2i(n+m)σ+ ≡ 4α′∑
p

Lpe−2ipσ+
, (3.1.32)

T−− = 4α′∑
p

L̃pe−2ipσ− , (3.1.33)

Lp ≡
1
2 ∑

n
αp−n · αn, L̃p ≡

1
2 ∑

n
α̃p−n · α̃n. (3.1.34)

The Virasoro generators Lp, L̃p thus correspond to the modes of the energy-momentum
tensor and it is easy to show from eq. (3.1.29) that they satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (3.1.35)

with central charge c = (D − 2)/12. The Virasoro generators are intended to be normal
ordered, a fact which only affects the L0 and L̃0 operators. The normal ordering reads

L0 =
1
2 ∑

n
α−n · αn =

1
2

α2
0 +

1
2 ∑

n>1
α−n · αn +

1
2 ∑

n>1
αn · α−n

=
α′p2

4
+ ∑

n>1
α−n · αn + E0, (3.1.36)

and similarly for L̃0. To obtain the last line we used the commutation relations (3.1.29)
and defined

E0 = Ẽ0 =
1
2

D−2

∑
i=1

∑
n>1

n ' −D− 2
24

. (3.1.37)

The last evaluation can be obtained in several ways; a common way is to use the zeta
function regularization. A usual convention is to define an already normal ordered L0
generator, thus differing from (3.1.36) by the E0 constant. We will apply this convention
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and redefine L0 as

L0 ≡
α′p2

4
+ N, N ≡ ∑

n>1
α−n · αn = ∑

n>1
αi
−nαi

n, (3.1.38)

where we also introduced the number operator N. The same holds for L̃0, Ñ.
Using the energy-momentum tensor mode expansion, the constraint (3.1.14) can be

expressed from the Lp, L̃p operators. The physical states |φ〉 are thus determined by im-
posing Lp |φ〉 = L̃p |φ〉 = 0 for p > 0 and (L0 + E0) |φ〉 = (L̃0 + E0) = 0 with our
newly defined L0, L̃0. Note that due to the algebra (3.1.35) and the presence of a non-
vanishing central charge c 6= 0, the constraint L−p |φ〉 = 0 cannot be imposed together
with Lp |φ〉 = 0 for p > 0.

The constraints (L0 + E0) |φ〉 = (L̃0 + E0) |φ〉 = 0 give the closed string level matching
condition N = Ñ. Finally, the closed string mass formula (3.1.28) can be normal ordered
as in eq. (3.1.36) and reads

M2 = −pµ pµ =
2
α′
(N + Ñ + E0 + Ẽ0), N = Ñ, (3.1.39)

which shows that the string spectrum contains a tower of states, the mass of which are
separated by 2/

√
α′. For the first level, with N = Ñ = 0, we find a negative square mass

M2 = 4E0/α′ < 0, which shows that the vacuum is tachyonic.

Critical dimension We conclude this part on bosonic string theory by stating that in
order for the theory to be self-consistent, a necessary condition is that the space-time di-
mension D takes a specific value, called critical dimension, D = 26. This critical value
can be obtained in several ways; the most obvious one is to require the cancellation of
the conformal anomaly, related to the UV behavior of string theory amplitudes. As any
anomaly, it would characterize the breaking of a symmetry at the quantum level, namely
the worldsheet conformal symmetry. Choosing an appropriate field content in the the-
ory is necessary to cancel this anomaly. Worldsheet fields are space-time coordinates, the
number of which is just de space-time dimension, so that the cancellation of conformal
anomaly requires the specific dimension D = 26. This value for the critical dimension
can be obtained in other related ways, e.g. through the computations of beta functions
in the background field methods, or by requiring Lorentz invariance in light-cone gauge
quantization.

3.1.2 Superstrings and type IIB spectrum

We just saw that the bosonic string theory contains a tachyon in the vacuum. What’s
more, it does not contain any fermion in its low energy spectrum, which is in direct con-
tradiction with our Standard Model of particle physics. A way to fix these two issues is
to consider supersymmetric string theories, which can be implemented in several ways,
with worldsheet [61, 62] or space-time [63, 64, 65, 66] supersymmetry. We will focus on
the worldsheet implementation of supersymmetry, in the way it was introduced by Ra-
mond, Neveu and Schwarz (RNS). In the following construction we will often keep the
space-time dimension D implicit, nevertheless we mention now that the superstring crit-
ical dimension, introduced for bosonic strings in the last paragraph of section 3.1.1, is
D = 10.
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Supersymmetric worldsheet action, mode expansions The first objective is to write a
supersymmetric equivalent of the bosonic worldsheet action. We thus introduce super-
symmetric partners to the worldsheet bosonic coordinates Xµ, corresponding to two Weyl
spinors ψ

µ
+, ψ

µ
−, implementing the N = 2 worldsheet supersymmetry. The natural super-

symmetric version of the gauge fixed action (3.1.11) can be written as

S =
1

4πα′

∫
dτdσ

(
∂αXµ∂αXµ + ψ̄µ/∂ψµ

)
, (3.1.40)

where

ψµ =

(
ψ

µ
+

ψ
µ
−

)
, ψ

µ
+ = (ψ

µ
+)
∗, ψ

µ
− = (ψ

µ
−)
∗, ψ̄µ = i(ψµ)†ρ0 = i(ψµ

+,−ψ
µ
−), (3.1.41)

/∂ = ρα∂α, ρτ =

(
0 −1
1 0

)
, ρσ =

(
0 1
1 0

)
, (3.1.42)

and the ρα matrices form a real representation of the Clifford algebra, implying that ψ+,
ψ− are real Majorana spinors. The worldsheet action is indeed invariant under the fol-
lowing SUSY transformations

δεXµ = ε̄ψµ, δεψµ = /∂Xµε. (3.1.43)

Redefining the worldsheet derivatives through the convenient coordinates of eq. (3.1.15),
one can rewrite this action as

S =
1

2πα′

∫
d2σ (∂−X · ∂+X− iψ− · ∂+ψ− − iψ+ · ∂−ψ+) , (3.1.44)

leading to the worldsheet fermions equations of motion

∂+ψ
µ
− = 0, ∂−ψ

µ
+ = 0, (3.1.45)

the solution of which are left and right-moving fermions ψ−(σ−), ψ+(σ+). As in the
bosonic case, the energy-momentum tensor can be derived from the action, together with
the supercurrent Jαβ related to the SUSY transformations of the Lagrangian. The super-
current is fermionic and thus carries worldsheet indices α = τ, σ, or yet α = +,− in the
coordinates (3.1.15), together with spinor indices β = +,−. Nevertheless, it has only two
independent components, as does the energy-momentum tensor, which read

J+ ≡ J++ = ψ+ · ∂+X = 0, J− ≡ J−− = ψ− · ∂−X = 0, (3.1.46)

T++ = ∂+X · ∂+X +
i
2

ψ+ · ∂+ψ+ = 0, T−− = ∂−X · ∂−X +
i
2

ψ− · ∂−ψ− = 0. (3.1.47)

In order the action to be invariant under field variations, worldsheet fermions have to
satisfy the equation of motions (3.1.45) together with boundary conditions coming from
the σ boundary variation of the action

δS = · · ·+
∫

dτ (ψ+ · δψ+ − ψ− · δψ−) |σ=π − (ψ+ · δψ+ − ψ− · δψ−) |σ=0 = 0. (3.1.48)

We see that this relation imposes the boundary constraints

ψ+(τ, 0) = ±ψ−(τ, 0), ψ+(τ, π) = ±ψ−(τ, π), open strings, (3.1.49)
ψ±(τ, σ + π) = ±ψ±(τ, σ), closed strings. (3.1.50)
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In the open string case, these conditions are imposed separately at each string end-
point. As the overall sign between the two spinors has no meaning, we can freely impose
the sign at one of the two ends, for instance ψ+(τ, 0) = ψ−(τ, 0) and are left with two
choices at the opposite end, corresponding to periodic or anti-periodic boundary condi-
tions

ψ+(τ, π) = +ψ−(τ, π), open strings Ramond (R) b. c., (3.1.51)
ψ+(τ, π) = −ψ−(τ, π), open strings Neveu-Schwarz (NS) b. c., (3.1.52)

which lead to the following expansions for the wave equations solutions

ψ
µ
−(σ

−) =
1√
2

∑
n∈Z

dµ
ne−inσ−, ψ

µ
+(σ

+) =
1√
2

∑
n∈Z

dµ
ne−inσ+

, R sector, (3.1.53)

ψ
µ
−(σ

−) =
1√
2

∑
r∈Z+ 1

2

bµ
r e−irσ−, ψ

µ
+(σ

+) =
1√
2

∑
r∈Z+ 1

2

bµ
r e−irσ+

, NS sector. (3.1.54)

These expansions correspond to two different sectors of the theory, namely the Ramond
(R) and Neveu-Schwarz (NS) sector. The Majorana condition (3.1.41) on the worldsheet
spinors implies that (dµ

n)
† = dµ

−n, so that the dµ
±n can be used as annihilation and creation

operators, and similarly for the bµ
±r. As in the bosonic case, we can write the world-

sheet fermions in light-cone gauge and use the residual worldsheet symmetries to set
ψ+

α (τ, σ) = 0 in the NS sector, while we must still keep its zero modes in the R sector.
Moreover, as in the bosonic case, writing the constraints of eqs. (3.1.46) and (3.1.47) in
light-cone gauge allows to express the ψ−α (τ, σ) oscillators with respect to the ψi

α ones.
Hence the first quantization can be done in light-cone gauge by lifting the transverse
(labelled by i) modes to quantum operators following the (anti-)commutation relations
analog to (3.1.29). These relations read

{bi
r, bj

s} = ηijδr+s,0, {di
n, dj

m} = ηijδm+n,0, (3.1.55)

such that the original spinors indeed satisfy {ψi
α(τ, σ), ψ

j
β(τ, σ′)} = iπηijδαβδ(σ− σ′).

In the closed string case, the boundary conditions

ψα(τ, σ + π) = +ψα(τ, σ) closed strings R b. c., (3.1.56)
ψα(τ, σ + π) = −ψα(τ, σ) closed strings NS b. c., (3.1.57)

correspond to the expansions

ψi
−(σ

−) =
1√
2

∑
n∈Z

di
ne−inσ−, ψi

+(σ
+) =

1√
2

∑
n∈Z

d̃i
ne−inσ+

, R sector, (3.1.58)

ψi
−(σ

−) =
1√
2

∑
r∈Z+ 1

2

bi
re−irσ−, ψi

+(σ
+) =

1√
2

∑
r∈Z+ 1

2

b̃i
re−irσ+

, NS sector. (3.1.59)

The boundary conditions can be chosen differently for the left-moving ψ−(σ−) and right-
moving ψ+(σ+) solutions, so that we are in presence of four different sectors: the NSNS,
NSR, RNS, and RR sectors. The d̃i

±n, b̃i
±r are promoted to quantum operators satisfying

anticommutation relations similar to those of eq. (3.1.55) while anti-commuting with the
left-moving operators d̃i

±n, b̃i
±r

In both the closed and open strings cases, string states are obtained by acting on the
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vacuum with the bosonic and fermionic creation operators of the sector under considera-
tion. Namely, the states of each sector are constructed as

|φ〉 =
∞

∏
a=1

(αia
−a)

ma
∞

∏
b=1

(dib
−b)

mb |0, p〉R , Ramond (R) sector, (3.1.60)

|φ〉 =
∞

∏
a=1

(αia
−a)

ma
∞

∏
r= 1

2

(bir
−r)

mr |0, p〉NS , Neveu-Scharz (NS) sector. (3.1.61)

The bosonic oscillators are of course identical in any sector. As their left and right-moving
periodicities can be chosen separately, close strings presents four different types of states,
corresponding to the sectors mentioned above

|φ〉RR = ∏
a>1

(αia
−a)

ma ∏
b>1

(α̃
jb
−b)

m̃b ∏
c>1

(djc
−c)

mc ∏
e>1

(d̃ ke
−e)

m̃e
∣∣0, 0̃, p

〉
RR , (3.1.62)

|φ〉RNS = ∏
a>1

(αia
−a)

ma ∏
b>1

(α̃
jb
−b)

m̃b ∏
c>1

(djc
−c)

mc ∏
s> 1

2

(b̃is
−s)

m̃s
∣∣0, 0̃, p

〉
RNS , (3.1.63)

|φ〉NSR = ∏
a>1

(αia
−a)

ma ∏
b>1

(α̃
jb
−b)

m̃b ∏
r> 1

2

(bir
−r)

mr ∏
e>0

(d̃ ie
−e)

m̃e
∣∣0, 0̃, p

〉
NSR , (3.1.64)

|φ〉NSNS = ∏
a>1

(αia
−a)

ma ∏
b>1

(α̃
jb
−b)

m̃b ∏
r> 1

2

(bjr
−r)

mr ∏
s> 1

2

(b̃is
−s)

m̃s
∣∣0, 0̃, p

〉
NSNS . (3.1.65)

NS and R vacua By definition, the vacua |0〉R, |0〉NS of each sector are annihilated by all
annihilation operators. This leads to a standard space-time scalar vacuum in the NS sec-
tor, whereas it is different in the R sector. The difference comes from the fact that |0〉R is in
particular annihilated by the dµ

0 . During the discussion on light-cone gauge quantization,
made before eq. (3.1.55), we mentioned that one must keep the ψ+

α zero modes in the Ra-
mond sector, hence indeed keeping the µ index on the dµ

0 and not only a transverse index i.
The dµ

0 also satisfy anti-commutators as in eq. (3.1.55), namely {dµ
0 , dν

0} = ηµν. This algebra
is similar, up to a factor of 2, to the space-time Clifford algebra of (Γµ)a

b matrices, showing
that |0〉R can be described by a Majorana space-time spinor ξa with 2D/2 real components.
We recall that spinor representations can be constructed by defining (D − 2)/2 creation
and (D − 2)/2 annihilation matrices Γi± satisfying standard anticommutation relations,
and by act with creation matrices on a Clifford vacuum |ξ〉. As usual, this vacuum state
is annihilated by all the annihilation matrices. A spinor ξa is thus constructed as

Γ0± =
1
2
(±Γ0 + Γ1), Γi± =

1
2
(Γ2i ± iΓ2i+1) for i 6= 0, (3.1.66)

ξa = (Γ
D−2

2 +)
s D−2

2
+ 1

2 · · · (Γ0+)s0+
1
2 ξ, ∀ i = 0, . . . , D−2

2 Γi−ξ = 0, (3.1.67)

a = (s0, s1, . . . , s D−2
2
) = (±1

2
,±1

2
, . . . ,±1

2
). (3.1.68)

The R vacuum ξa = |a〉R must thus be labelled by a spinor index a, defined as in eq. (3.1.68).
Note that in the case where D = 2, which is the string worldsheet case, the spinor index
a consists of only one spin s0 and can thus be written as a = ±. This justifies the (3.1.41)
definitions of the worldsheet spinors.

As all creation operators are space-time vectors, the spin-statistic of any state is iden-
tical to the spin-statistic of the vacuum it is constructed from. For instance, the closed
strings RR and NSNS states are space-time bosons while their RNS and NSR states are
space-time fermions.
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Supercurrents and energy-momentum tensor expansions The supercurrents and energy-
momentum tensors of eqs. (3.1.46) and (3.1.47) can be expanded as in the bosonic string
case, giving expressions similar to eqs. (3.1.32) to (3.1.34), with additional contributions to
the energy-momentum modes Lp coming from the worldsheet fermionic action and new
supercurrent mode expansions

Fm = ∑
n∈Z

: α−n · dn+m : (R), Gr = ∑
n∈Z

: α−n · br+n : (NS), (3.1.69)

where : : indicate normal ordering. For concreteness we also explicitly write the normal
ordered L0 (see the bosonic case discussion under eq. (3.1.36)) as

L0 =
1
2

α2
0 + N, N = ∑

n>0
α−n · αn + ∑

n>0
nd−n · dn, R sector, (3.1.70)

L0 =
1
2

α2
0 + N, N = ∑

n>0
α−n · αn + ∑

r> 1
2

rb−r · br NS sector. (3.1.71)

These operators satisfy the Super Virasoro algebra, and can be used to implement the
constraints and to obtain physical states |φ〉 which must satisfy

Lp |φ〉 = 0, ∀p > 0, L0 |φ〉R = E0 + E f R
0 |φ〉R , L0 |φ〉NS = E0 + E f NS

0 |φ〉NS , (3.1.72)
Fm |φ〉R = 0, ∀m ≥ 0, Gr |φ〉NS = 0, ∀r > 0, (3.1.73)

where E f NS
0 and E f R

0 are the fermionic contributions to the zero-point energy in the NS
and R sector, computed as in eqs. (3.1.36) and (3.1.37) by normal ordering the original L0
operator. As shown in eqs. (3.1.70) and (3.1.71) the original non-ordered operator contains
either a nd−n · dn sum in the R sector, which after regularization cancels exactly the bosonic
contribution E0, or a rb−r · br sum in the NS sector, which simply adds to E0. This results
in

ENS
0 = E0 + E f NS

0 = −(D− 2)/16, ER
0 = E0 + E f R

0 = 0. (3.1.74)

The mass formula (3.1.39) still holds in superstrings theory, using the new L0 and zero-
point energy ES

0 depending on the choice of sector S=R,NS. In particular, this formula
shows that the R vacuum is not tachyonic, whereas the NS vacuum is.

As usual, one finds the low-energy spectrum acting on the vacuum with creation gen-
erators. Doing so, it is easy to see that at integer levels, i.e. levels N ∈ N, the R sector
contains twice the number of degrees of freedom as the NS sector at the equivalent (hav-
ing the same mass) half-integer levels. Moreover, the R sector does not contain any state
at half-integer levels which could have paired with the existing NS sector states at integer
levels (for instance, the NS tachyonic vacuum). As mentioned earlier, the NS sector (in one
copy) generates space-time bosons whereas the R sector generates space-time fermions.
Hence, the aforementioned discrepancy in the number of degrees of freedom at each level
explicitly breaks the potential space-time supersymmetry.

GSO projection A way to solve this problem, together with the problem of having a
tachyonic vacuum, is to reduce the spectrum by projecting out the unwanted physical
states. A consistent way to do so was introduced by Gliozzi, Scherk and Olive [67] and is
known as the GSO projection. It uses the fermionic number operator

F =

{
∑∞

r= 1
2

b−r · br, NS sector

∑∞
n=1 d−n · dn R sector

, (3.1.75)
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to define the Gparity operator

Gparity =

{
(−1)F+1, NS sector
±Γ∗(−1)F, R sector

, (3.1.76)

with Γ∗ = i(D−2)/2Γ0Γ1 · · · ΓD−1 the chirality matrix made of out of the space-time Γi

matrices satisfying the Clifford algebra in the representation under consideration. The
GSO projection consists in keeping only states with Gparity = 1. In the R sector there is an
arbitrary in the definition of Gparity, as can be seen from the± sign in front of the Γ∗matrix,
corresponding to the choice of states with positive or negative chirality. This chirality
arbitrary is fixed after applying the GSO projection on the vacuum, i.e. after choosing a
definite chirality for the vacuum state. According to the discussion under eq. (3.1.65), the
vacuum is a priori described by a Majorana spinor having 2D/2 real components. The
GSO projection amounts to make a chirality choice, similar to a Weyl condition, for this
vacuum spinor, which then reduces to a Majorana-Weyl spinor with 2D/2−1 degrees of
freedom. To conclude, we see that the GSO projection eliminates half of the space-time
fermions and all the integer level space-time bosons. In particular, it eliminates the NS
tachyonic vacuum.

3.1.3 Massless spectra

Open strings For open strings, only one copy of the S=R,NS sector has to be considered
and the massless spectrum corresponds to the ei bi

−1/2 |0, p〉NS state coming from the NS
sector, and the R vacuum ea |a, p〉R, where ei and ea are polarizaton vectors and k indicates
that the vacuum has definite momentum given by the pi ∝ αi

0 eigenvalue. The physical
constraints eqs. (3.1.72) and (3.1.73) can be applied with L0 and G1/2 for the NS state and
with L0 and F0 for the R state. On the NS state, the constraints lead to pi pi = 0, ei pi = 0.
These two equations show that this state is invariant under ei → ei + pi, which suggests
that it is a gauge field state. It has D− 2 degrees of freedom coming from the i index. On
the R state the constraints lead pi pi = 0, pi(Γi)a

bea = 0. This last condition is nothing but
the Dirac equation for a massless spinor, which again reduces the degrees of freedom of
the Majorana-Weyl vacuum to 2D/2−2. For D = 10 we see that the numbers D− 2 = 8 and
2D/2−2 = 8 are identical, showing that there is the same number of degrees of freedom
for the R state and NS state. They correspond to a gauge field, in the 8V representation of
SO(D − 2) = SO(8) (the little group for massless particles), and its gaugino supersym-
metric partner, in the 8S representation. This massless spectrum suggests that worldsheet
supersymmetry induces space-time supersymmetry. We summarize this massless spec-
trum in the following table.

NS R

ei bi
−1/2 |0, p〉NS ea |a, p〉R

8V 8S

Ai ↔ Ai + ∂iλ λa

gauge boson gaugino

TABLE 3.1: Open superstrings massless spectrum



72 Chapter 3. String theory vacua and magnetic field SUSY breaking

Type II closed string In closed superstrings, the left-moving and right-moving degrees
of freedom decouple, hence one also has to impose a G̃parity = 1 condition on the right-
moving solution. As mentioned above eq. (3.1.76), there is an arbitrary in the choice of
the chirality of GSO projection, namely in the ± appearing in the R sector. This sign
can be chosen equal or opposite for left and right-movers, corresponding to a non-chiral
theory named type IIB or a chiral theory named type IIA. We focus on type IIB and ex-
pose its massless spectrum content. The massless states are tensor products of left and
right-movers’ massless states corresponding to the open string massless states. There
exist hence four possibilities coming from the NSNS, RR, NSR, RNS sectors which are
respectively written as bi

−1/2 ⊗ b̃j
−1/2

∣∣0, 0̃, p
〉

NSNS, |a, p〉R ⊗
∣∣b̃, p

〉
R, bi

−1/2 |0, p〉NS ⊗ |ã, p〉R,
|a, p〉R⊗ b̃i

−1/2

∣∣0̃, p
〉

NS. They respectively sit in the 8V ⊗ 8V , 8S⊗ 8S, 8V ⊗ 8S, 8S⊗ 8V repre-
sentations of the massless particles little group. These representations can be decomposed
into irreducible representations to extract the fundamental particles corresponding to the
above states.

We do not address the general product representations decomposition into irreducible
representations in detail. We only focus on the 8S⊗ 8S decomposition. Expressing spinors
as in eq. (3.1.67) the product |a, p〉R ⊗

∣∣b̃, p
〉

R can be written as

|a, p〉R ⊗
∣∣b̃, p

〉
R = ξa ⊗ ξ̃b =

D−2
2

∏
i=0

(Γi+)si+
1
2 ξ ⊗

D−2
2

∏
j=0

(Γj+)s̃j+
1
2 ξ̃ (3.1.77)

'
D

∑
i=0

αi
¯̃ξΓµ1µ2...µi ξ, (3.1.78)

where ¯̃ξ = ξ̃tC is built from the conjugation matrix C, and Γµ1 ...µm = Γ[µ1 · · · Γµm] with
m ≤ D form a basis of the Clifford algebra. The commutator in the exponents is justi-
fied by the fact that, due to the anticommutation relations of gamma matrices, symmetric
products reduce to products containing smaller numbers of matrices. As for the expan-
sion in the second line of eq. (3.1.78), it is justified by the fact that a product of two 2D/2

dimensional spinor representations is expected to transform as a 2D tensor, which can be
decomposed into lower-dimensional tensorial representations. The Γµ1 ...µm transforming
as anti-symmetric tensors, they are identified to p-forms denoted [p], and the fact that the
ξa, ξ̃b spinors are of the same chirality implies vanishing α2k+1 = 0 coefficients in the sec-
ond line expansion. Finally, Hodge duality allows to rewrite (D − p)-forms as p-forms,
such that we can write : 8S ⊗ 8S ' [0] + [2] + [4].

This massless spectrum forms the gravity multiplet of N = 2 SUSY in D = 10 dimen-
sion. We observe that, as in the open string case, worldsheet SUSY induces space-time
SUSY, here with respect to the 32 supercharges carried by two QL, QR Majorana-Weyl
supercharge spinors. We expose the type IIB spectrum in table 3.2.

NS NS RR NS R R NS

bi
−1/2 ⊗ b̃j

−1/2

∣∣0, 0̃, p
〉

NSNS |a, p〉R ⊗
∣∣b̃, p

〉
R bi

−1/2 |0, p〉NS ⊗ |ã, p〉R |a, p〉R ⊗ b̃i
−1/2

∣∣0̃, p
〉

NS

8V ⊗ 8V 8S ⊗ 8S 8V ⊗ 8S 8S ⊗ 8V

35sym + 28antisym + 1 [0] + [2] + [4] 8C + 56S 8C + 56S

gij Bij φ C0 C2 C4 λ1ȧ ψ1
ai λ2ȧ ψ2

ai

graviton B form dilaton axion 2, 4-forms dilatino gravitino dilatino gravitino

TABLE 3.2: Closed superstrings Type IIB massless spectrum
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One can show, for instance by using the background fields methods to express the
superstring action, that the string coupling constant is related to the expectation value of
the dilaton

gs = e〈φ〉, (3.1.79)

a fact that we use several times in the following.

3.1.4 Vacuum amplitudes

We can construct string theory vacuum amplitudes in analogy with the partition func-
tions in field theories, by considering a string propagating freely and closing onto itself.
Depending on the type of string and the specificity of the operation of gluing the string
onto itself, the worldsheet can have different topologies. For closed strings, they corre-
spond to a torus or a Klein bottle, when the string is glued back onto the original state
respectively without or with the action of the Ω worldsheet parity operator, i.e. without
our with orientation reversal. For open strings, these two possibilities correspond respec-
tively to the topologies of an annulus or a Möbius strip.

Bosonic strings vacuum amplitudes The amplitude describing the propagation of a sin-
gle closed string state |φ〉 during a certain time, parametrized by τ2, and closing onto itself
up to a translation of the σ worldsheet coordinate, parametrized by τ1, can be written as

Z(φ, τ) = 〈φ| e−(2πα′p+τ2)Hei(2πα′p+τ1)Pσ |φ〉 = 〈φ| e−τ2πα′ ∑i pi pi
qN+E0 q̄Ñ+Ẽ0 |φ〉 , (3.1.80)

with
q ≡ e2πiτ, q̄ = e−2πiτ̄ τ ≡ τ1 + iτ2, τ1, τ2 ∈ R. (3.1.81)

The Hamiltonian, of expansion shown in (3.1.31), is the time evolution operator. The σ-
translation operator Pσ = 1

2

∫ π
0 PiX′i is defined from the conjugate momenta Pi and simply

reads
Pσ = 1/α′p+(N − Ñ), (3.1.82)

for closed strings in light-cone gauge. The 2πα′p+ factors in the exponential of the first
equality of eq. (3.1.80) are introduced for convenience, in order to obtain the simple τ1, τ2
dependence in the last equality.

To obtain the total partition function, one then has to trace over the Hilbert space H
of physical states |φ〉 and integrate over the τ1, τ2 parameters. In fact, the τ1 integral
automatically selects physical states, satisfying the level matching condition, as can be
seen from the expression (3.1.82) of Pσ. The τ = τ1 + iτ2 parameter can be identified to the
torus Teichmüller parameter and in order to obtain distinct tori when integrating over τ,
one should restrict to the fundamental domain, defined for instance through the relation
F = {− 1

2 < τ1 ≤ 1
2 , |τ| ≥ 1}. As can be seen from eqs. (3.1.62) to (3.1.65), any state

|φ〉 =
∣∣pi, {oi

n}
〉

is characterized by its momenta pi and oscillators, denoted generically as
{oi

n}, so that the Hilbert space factorizes. Hence Z(φ, τ) of eq. (3.1.80) can be rewritten as
a product Zp(pi, τ) Zosc.({oi

n}, τ) and the integral over all the possible momenta simply
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gives

D−2

∏
i=1

∫ dpi

2π
Zp(pi, τ)Zosc.({oi

n}, τ) =
D−2

∏
i=1

∫ dpi

2π

〈
pi
∣∣∣ e−τ2πα′ ∑i pi pi

∣∣∣pi
〉

Zosc.({oi
n}, τ)

=

(∫ dp
2π
〈p| e−τ2πα′p2 |p〉

)D−2 D−2

∏
i=1

Zosc.({oi
n}, τ)

=
1

(4π2α′τ2)(D−2)/2

D−2

∏
i=1

Zosc.({oi
n}, τ). (3.1.83)

In the partition function, the sum over elements of the oscillators Hilbert space amounts
to trace Zosc.(τ) and the integral over the τ parameter space is made using the SL(2, Z)
invariant measure d2τ/τ2

2 , so that the final torus amplitude reads

T =
∫

F
dτ2

τ2
2

1
τ(D−2)/2

2

trHosc. Z(τ) =
∫

F
dτ2

τ2
2

1
τ(D−2)/2

2

trHosc.

(
qN+E0 q̄Ñ+Ẽ0

)
. (3.1.84)

The Hosc. trace can be written explicitely by expanding the state |φ〉 =
∣∣{oi

n}
〉

in terms of
its oscillators. When considering the bosonic string, this expansion is similar to eq. (3.1.30)
for both the left and right oscillation modes {oi

n} = {{αi
n}, {α̃i

n}}, so that the trace reads

trHosc. Zosc.(τ) = trHosc.

(
qN+E0 q̄Ñ+Ẽ0

)
= |q|2E0

D−2

∏
i=1

∑
{oi

n}∈Hosc.

〈
{oi

n}
∣∣∣ qN q̄Ñ

∣∣∣{oi
n}
〉

= |q|2E0
D−2

∏
i=1


 ∑
{αi

n}∈Hosc.

〈
{αi

n}
∣∣∣ qN

∣∣∣{αi
n}
〉



 ∑
{α̃i

n}∈Hosc.

〈
{α̃i

n}
∣∣∣ q̄Ñ

∣∣∣{α̃i
n}
〉



= |q|− D−2
12

∣∣∣∣∣∑{m}
〈0|∏

a>1
(α1

a)
ma qN ∏

b>1
(α1
−b)

mb |0〉
∣∣∣∣∣

2(D−2)

= |q|− D−2
12

∣∣∣∣∣∑{m}
∏
a>1

qmaa

∣∣∣∣∣

2(D−2)

= |q|− D−2
12

∣∣∣∣∣∏a>1

∞

∑
m=0

qma

∣∣∣∣∣

2(D−2)

= |q|− D−2
12

∣∣∣∣∣∏a>1

1
1− qa

∣∣∣∣∣

2(D−2)

=

∣∣∣∣∣q
1
24 ∏

a>1
(1− qa)

∣∣∣∣∣

−2(D−2)

= |η(τ)|−2(D−2). (3.1.85)

In the last line, we used the definition of the Dedekind η function given in eq. (A.3.4).
To go from the first to the last line, we used the definition of N given in eq. (3.1.38), the
value (3.1.37) of E0 and the oscillators commutation relations. We emphasize that the
oscillators contribution from one transverse space coordinate to the total amplitude thus
simply reads

1
η(τ)

: left-moving bosonic coordinate,

1
η̄(τ̄)

: right-moving bosonic coordinate . (3.1.86)

As mentioned at the beginning of this section, one can also consider the vacuum am-
plitude of a closed string propagating freely and glued back onto itself after orientation
reversal. Orientation reversal is described by the action of the Ω worldsheet parity op-
erator, which thus transforms the σ coordinate as σ → π − σ. Reversing the orientation
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of the string before gluing it back thus amounts to the insertion of Ω in the single state
amplitude (3.1.80). The worldsheet parity operator exchanges left and right sectors, i.e.
left and right oscillator modes, so that

Ω |φ〉 = Ω |φL, φR〉 = Ω
∞

∏
a=1

(αia
−a)

ma
∞

∏
b=1

(α̃ib
−b)

m̃b
∣∣0, 0̃, p

〉
=

∞

∏
b=1

(αib
−b)

mb
∞

∏
a=1

(α̃ia
−a)

m̃a
∣∣0, 0̃, p

〉

= |φR, φL〉 . (3.1.87)

We deduce that the commutation relations of the oscillators (their orthogonality) impose
that only left-right symmetric (or antisymmetric) states stay in the amplitude (3.1.80).
Indeed, these symmetric states satisfy 〈φ|Ω |φ〉 = 〈φL, φL|Ω |φL, φL〉 = 〈φL, φL|φL, φL〉 =
〈φ|φ〉 (for antisymmetric ones, there is a - sign), while for non left-right symmetric ones
we have 〈φ|Ω |φ〉 = 0. The total amplitude after insertion of the Ω operator can be written
in a way similar to the torus one (3.1.84) and, due to the above fact, it simplifies as follows

K =
1
2

∫

F ′
dτ2

τ2
2

1
τ(D−2)/2

2

trHosc.

(
qN+E0 q̄Ñ+Ẽ0 Ω

)
=

1
2

∫

F ′
dτ2

τ2
2

1
τ(D−2)/2

2

trHleft osc.(qq̄)N+E0 . (3.1.88)

We see that the Klein bottle amplitude only depends on τ2, appearing through qq̄, which
can be understood from the fact that 2iτ2 is the Teichmüller parameter of its covering
torus. The fundamental domain F ′ can be chosen to be F ′ = τ2 > 0.

In order to have a unoriented theory, i.e. a worldsheet parity invariant theory, one
should only keep invariant states. This can be achieved at the level of vacuum amplitudes
by introducing the worldsheet parity projector 1

2 (1 + Ω), so that the total unoriented am-
plitude is 1

2T+K.
Open strings vacuum amplitudes can be worked out in a similar way, propagating

the states using the Hamiltonian operator of open strings. However when gluing an open
string back onto itself, there is no possibility of σ coordinate translation, because the string
endpoints are references for this coordinate. Hence the amplitudes only depend on the τ2
parameter, and the annulus amplitude reads

A =
N2

2

∫

τ2>0

dτ2

τ2
2

1
τ(D−2)/2

2

trHosc. q
1
2 (N+E0), (3.1.89)

where the N2 factor comes from the trace over the ab endpoints U(N) Chan-Paton indices,
on which we come back in the next section, below eq. (3.1.103). Note the 1/2 factor in the
exponential, coming from the expression of the Hamiltonian in the open string case.

Unoriented open string theories can be constructed in the same way as unoriented
closed ones, acting with the Ω operator. This leads to the Möbius strip amplitude

M =
εN
2

∫

τ2>0

dτ2

τ2
2

1
τ(D−2)/2

2

trHosc.

(
q

1
2 (N+E0)Ω

)
, (3.1.90)

The εN comes from the trace over the Chan-Paton indices after the insertion of Ω, which
leads to an orthogonal, respectively symplectic (for even N), gauge group for ε = 1,
respectively ε = −1. These groups are of order N(N ∓ 1)/2 and correspond to the O−

and O+ projections.
The appearance of these groups can be understood in the following way. As Ω ex-

changes the open string endpoints, it also exchanges the Chan-Paton indices: an ab string
is transformed to a ba string. On a generic state, described via the Chan-Paton matrix λab,
the Ω action can be represented by a unitary matrix M such that Ω : λ → Mλt M−1. The
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transposition of λ expresses the endpoints exchange. As Ω2 = 1, the M matrix should
satisfy the constraint

λ = M(Mλt M−1)t M−1 = M(Mt)−1λMt M−1 = λ, i.e. M = ±Mt = εMt. (3.1.91)

For simplicity we follow our discussion supposing that the two possibilities for M are

ε = +1 : M = 1N , ε = −1 : M = i
(

0 1N/2
−1N/2 0

)
. (3.1.92)

In the open string case under consideration, Ω acts on oscillators as Ω : αi
n → (−1)nαi

n.
This can be seen from the wave equation solution (3.1.19), the fact that Ω : σ → π − σ
and the relation cos(nπ − nσ)) = (−1)n cos(nσ). Hence, we see that an open string state
is invariant under worldsheet parity if the combined action of Ω on both the Chan-Paton
matrix and the oscillators leaves the state invariant. Consider the αi

−1 |0, p〉 state, which
corresponds to a vector, as the bi

−1/2 |0, p〉 open superstring vector of (3.1). Under Ω, its
oscillator changes sign, and for ε = 1 the Chan-Paton matrix λ goes to Mλt M−1 = λt

according to (3.1.92), thus we should impose λ = −λt and only N(N − 1)/2 vectors are
kept by the projection, which corresponds to an orthogonal gauge group. For ε = −1 the
similar condition would keep the N(N + 1)/2 vectors of a symplectic gauge group.

Superstrings vacuum amplitudes Superstrings vacuum amplitudes are constructed as
in the bosonic case, tracing over the factorized Hilbert space. The factorized Hilbert space
consists of the product of the Hilbert space of momenta, bosonic oscillators and fermionic
oscillators, in the R or NS sector. Furthermore, one implements the GSO projection in
superstring amplitudes by introducing the GSO projector 1

2 (1+Gparity), where Gparity was
defined in eq. (3.1.76). In the NS sector, this projector is just 1

2 (1− (−1)F) while in the R
sector it can be written as 1

2 (1 ∓ (−1)F) depending on the choice of chirality of the R
vacuum, see the discussion below eq. (3.1.76).

The general formulae for the superstrings amplitudes are thus similar to the bosonic
expressions of eqs. (3.1.84) and (3.1.88) to (3.1.90), with the addition of the GSO projector
and with oscillator Hilbert spaces now comprising fermionic oscillators. Of course the
superstrings expressions of eqs. (3.1.70), (3.1.71) and (3.1.74) for N, E0, E f S

0 (S=R,NS) must
be used in the superstring amplitudes and depend on the sector under consideration.

We do not expose the computation of the oscillators traces but explain shortly the dif-
ferences between the fermionic coordinates and the bosonic coordinates oscillators con-
tributions. The derivation for the fermionic coordinates is similar to the one for bosonic
coordinates (3.1.85), except that due to the fermionic nature of the di

−n, bi
−r oscillators,

each oscillator “multiplicity” can only take the values mn, mr = 0, 1. Thus, in the second-
to-last line of (3.1.85), the term ∏a>1 ∑∞

m=0 qma must be replaced by ∏a>1(1+ qa−νS) where
νR = 0 and νNS = 1

2 depend on the sector S=R,NS. Using the fermionic dependences in
N and ES

0 , the computation of the oscillators traces then leads to the following fermionic
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coordinate contributions

ϑ
1
2
3

η
1
2
(τ) : fermionic coordinate, no Gparity insertion, NS sector, (3.1.93)

− ϑ
1
2
4

η
1
2
(τ) : fermionic coordinate, Gparity insertion, NS sector, (3.1.94)

− ϑ
1
2
2

η
1
2
(τ) : fermionic coordinate, no Gparity insertion, R sector, (3.1.95)

∓ ϑ
1
2
1

η
1
2
(τ) : fermionic coordinate, Gparity insertion, R sector, (3.1.96)

where the infinite products have been rewritten in terms of the modular ϑi functions de-
fined in eqs. (A.3.1) and (A.3.2). The total superstring amplitude is thus obtain by multi-
plying the momenta contribution, bosonic contribution and fermionic contribution, sum-
ming over the R and NS sectors with or without Gparity operator. Putting everything
together, and considering D− 2 transverse coordinates, we see that the total contribution
can be written in the R, NS sectors as

VD−2

τ
D−2

2
2 ηD−2

=
ϑ

D−2
2

3 − ϑ
D−2

2
4

2η
D−2

2 τ
D−2

2
2 ηD−2

: total GSO projected contribution, NS sector,

(3.1.97)

− (S/C)D−2

τ
D−2

2
2 ηD−2

=
−ϑ

D−2
2

2 ∓ ϑ
D−2

2
4

2η
D−2

2 τ
D−2

2
2 ηD−2

: total GSO projected contribution, R sector, (3.1.98)

where V, S and C are level-one so(2p) characters [48] defined in eq. (A.3.3). The choice of
the S or C character in the R sector corresponds to the arbitrary choice of chiraltiy for the
vacuum already mentioned several times. In Type IIB string theory, which has the same
chirality choice for the left and right R vacua, the torus amplitude thus reads

T =
∫

F
d2τ

τ2

|V8 − S8|2
τ4

2 |η|16
. (3.1.99)

Similar expressions can be obtained for the unoriented closed string amplitudes K and the
oriented and unoriented open strings ones A, M.

We conclude this short description of vacuum amplitudes by mentioning that by defi-
nition, amplitudes are traces over the Hilbert space of physical states, with insertion of the
exponential of the Hamiltonian. By expanding the vacuum amplitudes in powers of q, i.e.
by power expanding η(τ), ϑi(τ), one can extract the spectrum of the theory. Namely the
multiplicities of the states are expansion coefficients while the masses are related (up to a
factor) to the powers of q. For instance, the expansion of eq. (3.1.99) in terms of powers of
qq̄ starts as

T ∝
∫

F
d2τ

τ2
(1− 1)

(
64 (qq̄)0 + 2048 (qq̄)

1
2 + · · ·

)
, (3.1.100)

and we recover the 64 degrees of freedom of the massless spectrum of table 3.2 coming
from each sector, NSNS, RNS, NSR, RR.
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Tadpole cancellation and necessity of closed and open strings We conclude this part
with a short but essential comment on the consistency of unoriented superstrings theo-
ries. By inspecting the ultraviolet behavior of the above amplitudes for small time, one is
able to see that the Klein bottle, annulus and Möbius amplitudes present UV divergences.
The torus amplitude is protected by modular invariance. These UV divergences corre-
spond to transverse channel IR divergences originating from the exchange of tachyonic
and massless modes, the latter being impossible to regularize through the introduction of
a cutoff scale.

Cancellation of these divergences can be achieved by combining them with each other,
which leads to the so-called tadpole cancellation conditions. As open string amplitudes
include Chan-Paton factors, tadpole cancellation conditions are satisfied only for specific
gauge groups. In the bosonic case, the gauge group is SO(8192) [68, 69, 70]. In superstring
theories and their orientifold compactifications, see section 3.2, tadpole cancellation con-
ditions depend on the specificities of the theory but can be related in a very nice way to
the presence of Dp branes, which we introduce in section 3.1.5, and Op planes imple-
menting the orientifolding. These non-perturbative objects can be seen as the worldsheet
boundaries spanned by the open strings’ endpoints and carry charges under the massless
RR Cp forms (they also source NSNS fields). Tadpole cancellation conditions are thus
global RR charges neutrality conditions and ask for the simultaneous presence of both
Dp branes and Op planes. They thus impose specific relations between the numbers of
such non-perturbative objects, which are of great importance in superstring compactifica-
tion models. We highlight that the necessary presence of Dp branes to cancel Op branes
implies the need of open strings in any superstring theory containing unoriented closed
strings.

Finally, one striking fact is that tadpoles conditions are related to cancellations of the
effective action anomalies. The cancellation mechanism was discovered for type I super-
strings by Green and Schwarz [71] and similar mechanisms have been unveiled in more
generic superstring orientifold compactifications setups [72, 73, 74, 75, 76].

3.1.5 Dp branes

Construction Dp branes are extended objects spanning p spatial directions, called the
worldvolume of the brane. Their existence concretized in 1995 [77, 78, 79] and played a
major role in the “second revolution” of strings. Reviews on Dp branes can be found in
[80, 81, 82, 83]. As Dp branes do not span the entire space-time (except for D(D − 1)-
branes) they explicitly break the D dimensional Poincaré symmetry of the theory. Dp
branes are dynamical non-perturbative objects, the excitations of which are described by
open strings, with different boundary conditions on the directions spanned by the Dp
brane or the transverse directions. Namely, open string endpoints are attached to Dp
branes, i.e. constrained through Dirichlet boundary conditions (3.1.2), DD, in the trans-
verse directions, while they are free to move on the Dp brane, hence satisfying Neumann
boundary conditions (3.1.3), NN, on the worldwolume directions. Concretely, we describe
fluctuations of a Dp brane, taken for simplicity parallel to the first p + 1 space-time direc-
tion, µ = 0, . . . , p, and thus localized in the transverse directions j = p + 1, . . . , D− 1, by
open strings satisfying the following boundary conditions

X j(τ, σ = 0) = X j(τ, σ = π) = X j
Dp(τ), j = p + 1, . . . , D− 1, DD, (3.1.101)

∂σXµ(τ, σ = 0) = ∂σXµ(τ, σ = π) = 0, µ = 0, . . . , p NN, (3.1.102)
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where X j
Dp are the localizations of the Dp brane in the transverse directions. Similar

boundary conditions are applied to the fermionic partners of the bosonic coordinates.
One can solve the equation of motions from the superstring action and find the bosonic
and fermionic coordinates expansions. The NN bosonic coordinate expansion was for
instance shown in eq. (3.1.19). There is no momentum in the DD expansion because the
string’s center of mass is localized on the Dp brane. The oscillators structures are in fact
similar in both the sectors, and the massless states correspond to those described in ta-
ble 3.1. It thus consists in the R vacuum |a, p〉, which is a space-time fermion, and the NS
states bµ

−1/2 |0, p〉, bj
−1/2 |0, p〉, which from the worldvolume point of view correspond to a

gauge boson Aµ and D− 1− p scalars φj. This is the field content of a U(1) vector mul-
tiplet with 16 supercharges, in p + 1 dimensions. In fact, Dp branes preserve half of the
bulk supersymmetries described in type IIB at the end of section 3.1.3. Indeed the open
strings boundary conditions impose a relation between degrees of freedom of the left QL

and right QR SUSY charges of the bulk. Only a linear combination Q = QL + Γ(p)
∗ QR, is

preserved and this reduces the initial 32 degrees of freedom to only 16. Here Γ(p)
∗ is the

Dp-brane chirality matrix.

D-brane stacks and Chan-Paton indices One can also consider stacks of N parallel Dp
branes, i.e. Dp branes spanning the same worldvolume directions but localized at differ-
ent or equal points in the transverse directions. When branes are localized at the same
points, they are said to be coincident, and we expect the symmetry of this configuration
to reflected in the spectrum of the theory. Interactions between parallel branes vanish ex-
actly, an important fact is that allows to consider stable configurations with parallel stack
of branes, labeled by an index a. As explained before, open strings are attached to Dp
branes and in the case of parallel branes, their endpoints can sit on different branes. For
an open string stretching between two branes Dpa, Dpb, located at X j

a(τ), X j
b(τ), the DD

boundary conditions of (3.1.101) transform to

X j(τ, σ = 0) = X j
a, X j(τ, σ = π) = X j

b, j = p + 1, . . . , D− 1. (3.1.103)

Open strings should thus carry two a, b indices labeling the brane at which each end
is attached. These indices are called Chan-Paton indices and add additional degrees
of freedom to open string states. For N parallel branes, these indices take the values
a, b = 1, . . . , N and there are N2 possibilities for the ab couple of indices. A generic
open strings state can be described by an hermitian Chan-Paton matrix λab and written as
λab |φ, ab〉. The matrix λab is a representation of the U(N) gauge group formed by N coin-
cident branes. The U(1)N = U(1)1×U(1)2× · · · ×U(1)N Cartan subalgebra is generated
by strings with endpoints attached at the same brane, i.e. aa strings, each of these states
indeed generating a U(1) factor. Strings interactions rules show that open strings carry
+1 charge at one end and−1 charge at the other end, under the U(1)a, U(1)b groups asso-
ciated to the Dpa, Dpb branes they are attached to. In fact, writing U(N) = SU(N)×U(1),
they transform in the +1 × −1 adjoint representation of U(N). In the unoriented case
described in some detail under eq. (3.1.90), as the string endpoints are identified, the states

are in the ±1 × ±1 = + + 1 where the two first representations correspond to the
O− and the O+ projections.
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The expansion (3.1.103) leads to a mass formula similar to eq. (3.1.39), but for open
strings with separated endpoints, which reads

M2
ab =

D−1

∑
j=p+1

(
X j

a − X j
b

2πα′

)2

+
1
α′
(N + ES

0 ), (3.1.104)

where as usual, S=R,NS is the sector under consideration. For coincident branes, i.e. equal
X j

a for all a, we see that there exist massless states for each Chan-Paton states ab. Neverthe-
less if substacks of N1, . . . , Nm branes are separated in transverse space, the lowest-lying
ab states, with a and b in different stacks, acquire positive masses, while the lowest-lying
aa states remain massless. This is the signature of the U(N)→ U(N1)× · · · ×U(Np) sym-
metry breaking. Of course, when each of the N initial branes is at a different localization,
U(N) is maximally broken to U(1)N .

Effective action As for the fundamental string, one can consider a natural Dp brane
worldvolume action by simply integrating the square root of its worldvolume metric de-
terminant. One could express the transverse coordinates with respect to the ones spanned
by the Dp branes, but a more convenient way is to use worldvolume coordinates σα, α =
0, . . . , p and to embed the Dp brane into the total space-time through Xµ(σα). The natural
bosonic action would then be

S = −Tp

∫
dp+1σ

√
−det Gαβ, Gαβ ≡

∂Xµ

∂σα

∂Xν

∂σβ
gµν, (3.1.105)

which is similar to the Nambu-Goto action (3.1.5), and where Tp is the brane tension to
determine. We see that in a gauge where the σα coordnates are identified to the first
µ = 0, . . . , p space-time coordinates Xµ, this action will naturally describe the dynamics
of the X j transverse coordinates, identified to the D − 1− p scalars φi described below
eq. (3.1.102). One would thus expect that the worldvolume action also includes coupling
to the wolrd-volume gauge boson Aµ and to the other fields of the theory under consid-
eration, namely the Cp forms, dilaton φ and B2 in type IIB. A natural extension, to include
the φ, B2 and Aµ can be found using the background fields methods and lead to the Dirac-
Born-Infeld action

SDBI = −µP

∫
dp+1σ e−φ

√
−det(Gαβ + 2πα′Fαβ), µp =

1

(2π)pα′
p+1

2

, (3.1.106)

Bαβ ≡
∂Xµ

∂σα

∂Xν

∂σβ
Bµν, Fαβ = ∂[α Aβ], Fαβ ≡ Fαβ +

1
2πα′

Bαβ. (3.1.107)

We can easily extract the expression of the string tension from eq. (3.1.106). We can also
obtain the Yang-Mills action through the first terms of the Fαβ expansion. From this Yang-
Mills action we deduce the expression for the gauge coupling constant. These two con-
stants are

Tp = µpe−〈φ〉 =
µp

gs
=

1

gs(2π)pα′
p+1

2

, g2
Dp = gs(2π)p−2α′

p−3
2 =

1
(2πα′)2Tp

. (3.1.108)

We used the expression (3.1.79) relating the string coupling gs to the dilaton VEV. A second
natural action is the integral of the Cp+1 RR form over the p + 1 dimensional Dp brane
worldvolume. Indeed, the match in the dimension of this differential form with the one
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of the brane worldvolume allows to write

S = µp

∫
dp+1σ Cp+1. (3.1.109)

Moreover, one can also construct p+ 1 dimensional differential forms by combining lower
dimensional RR forms Cp−1, Cp−3, . . . with the F 2-form. This leads to the Chern-Simons
(CS) action (in flat space-time)

SCS = µp

∫
dp+1σ

(
C ∧ e2πα′F )

p+1, C ≡
p+1

∑
i=0

Ci, (3.1.110)

where ()p+1 indicates that only the p + 1 forms are extracted when expanding the wedge
product of C with the exponential term. Hence, the CS action contains a sum over terms
such as Cp−1 ∧ F , Cp−1 ∧ F , Cp−3 ∧ F 2, ..., which show that non-trivial F backgrounds
can indue lower dimensional D(p − 1), D(p − 3), ..., charges. The coupling of the RR
charges to the Dp branes is one of various arguments signaling that in type IIB theories,
only Dp branes with odd p are interesting, as only the Cp odd forms exist.

The full SUSY worldvolume action is the supersymmetric extension of S = SDBI + SCS.
We do not show explicitely its construction here. Of course, the case of a D3 brane was
studied in some detail in the previous sections, where partial N = 2 → N = 1 SUSY
breaking was studied.

T-duality and Wilson lines We conclude shortly by signaling the effect of T-duality on
Dp branes. We introduce compactifcation elements in section 3.2.1 but mention that, in
the case of circle compactification, T-duality along a compact direction Xn changes the
compact radius from R to α′/R, or similarly changes the sign of the Xn

R right coordinate,
i.e. Xn

R → −Xn
R. This last fact amounts to a change of the boundary condition, from

Dirichlet to Neumann, as can be seen from the solutions of the wave equation (which are
sine or cosine functions), and hence T-duality turns a Dp brane into a D(p − 1) brane.
It also brings type IIB theory to type IIA. T-duality is a very convenient way to describe
similar phenomena with different objects.

As an example, we explain how T-duality allows a natural interpretation of Wilson
lines as the T-dual of brane separations introduced previously. Open strings stretching
between two branes separated in the compact direction Xn can wind several times, but
as explained before, cannot carry momentum because their endpoints are fixed to the
branes. The mass formula (3.1.104) gets a contribution from the winding number similar
to the closed string one (3.2.3). The new mass formula reads

M(n)
ab

2
=

(
Rw
α′

+
Xn

a − Xn
b

2πα′

)2

+
1
α′
(N + ES

0 ), (3.1.111)

and we see that brane separations amount to shifts in winding number w, by (Xn
a −

Xn
b )/2πR. We now consider a T-duality over the compact direction Xn , hence chang-

ing the radius R to R′ = α′/R. Replacing R by R′ in the above mass formula, and writing
the brane positions Xn

a in terms of the radius R as Xn
a = θn

a R, it can be written as

M(n)
ab

2
=

(
w
R′

+
θn

a − θn
b

2πR′

)2

+
1
α′
(N + ES

0 ). (3.1.112)

This mass formula takes the exact same form as for open strings with NN boundary con-
ditions, as we expected from T-duality. These boundary conditions allow for momentum
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number k′ ≡ w, as in the closed string case (3.2.3), but no winding. This is understandable
because with NN boundary conditions, the string endpoints move freely in the compact
direction and one can unwind strings at no cost.

We see from eq. (3.1.112) that the T-dual of the brane separation implies a shift in the
momentum k′ = w by (θn

a − θn
b )/2π. This kind of shift has a natural interpretation in

terms of Wilson lines, which are (periodic) constant backgrounds for Aa
n, the gauge field

of the U(1)a factor of the Dpa brane. The effect of such gauge fields can be described in
the background field method by adding a term of the form

δS =
1

4πα′

[
q
∫

dτAµ∂τXµ

]σ=0

σ=π

=
1

4πα′

∫
dτ(Aa

n − Ab
n)∂τXn, (3.1.113)

to the worldsheet action (3.1.11). The last equality simply takes into account that the string
endpoints are charge ±1 under U(1)a and U(1)b, as mentioned earlier. This additional
term simply amounts to momentum shift pn = k/R + (Aa

n − Ab
n), as can be seen from the

equation of motions or the definition of the canonical momentum. Writing the periodic
Wilson line as Aa

n ≡ θa
n/2πR′, and using the open string mass formula gives exactly

(3.1.112). This shows that the T-dual of the brane separation is indeed a Wilson line on
the dual circle. As brane separations shift windings and Wilson lines shit momenta, this
duality could have been guessed from the fact that T-duality exchanges these numbers.
Of course, this holds for higher dimensional tori.

3.2 Type IIB compactifications and de Sitter vacua

The use of type II theories in string phenomenology is motivated by the fact that they
allow for a rather good understanding of moduli stabilization mechanisms, and appli-
cations to cosmology, on which we come back in some detail section 4.1. Total moduli
stabilization can be realized in type IIA superstrings at the classical level, by the inclusion
of fluxes. Nevertheless de Sitter (dS) solutions seem very difficult to find in this context
[84, 85, 86] and cosmological consequences are thus difficult to implement [87, 88]. More-
over the back reaction of the fluxes is difficult to evaluate in a controlled way and can go
against some of the hypotheses, such as the use of Calabi-Yau internal spaces [89]. On
the other hand, type IIB moduli stabilization makes use of quantum corrections, due to
the no-scale structure of its classical scalar potential, and this can in principle be done
in a controlled way through the large volume and small string coupling approximations.
Before introducing these quantum corrections in section 3.2.3, we first review the general
ideas behind string compactifications in section 3.2.1, as well as standard ways to stabilize
all closed strings moduli while obtaining de Sitter vacua, in section 3.2.2. Cosmological
motivations for dS vacua will be explained again in section 4.1.

3.2.1 Compactification

When considering phenomenological consequences of superstrings theory there is a
crucial need to go from the initial ten-dimensional space-time to the four-dimensional
Minkowski space-time M4 that describes our accessible world at low energies. The usual
way is to consider a six-dimensional compact space X6, with a compactification scale
small enough to generate high energy scales, so that these compact directions are invisible
at our scales. The X6 compact space is referred to as “internal” space whereas the M4
remaining dimensions are referred as “our” space-time. The total space-time is considered
to factorize as M4 × X6.
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Toroidal compactification Circle compactification Considering first only the Xn coordi-
nate compactified on a circle of radius R, i.e. taking the identification Xn ∼ Xn + 2πR,
one should allow for new string boundary conditions. For instance, closed strings can
wind the compact direction several times, namely

Xn(τ, σ + π) = Xn(τ, σ) + 2πRw ∼ Xn(τ, σ), w ∈ Z. (3.2.1)

Moreover, the momentum in the compact direction is now quantized,

pn =
k
R

, k ∈ Z. (3.2.2)

These two combined new features lead to a modification the mass formula (3.1.39), which
takes the new form

M2 =
k2

R2 +
R2 w2

α′2
+

2
α′
(N + Ñ + E0 + Ẽ0), (3.2.3)

where we see that a Kaluza-Klein (KK) tower of states is generated. The mass gap between
each KK level being inversely proportional to the compactification radius, only the zero
modes should be observable and thus for small internal radius. The above mass formula
can be understood from the field theory point of view by Fourier expanding the massless
particles wave functions and looking at the resulting action. Take for instance a scalar
field such that φ(xµ, xn + 2πR) = φ(xµ, xn + 2πR), with µ 6= n, and Fourier expand it
according to

φ(xµ, xn) = ∑
k∈Z

φk(xµ)eikxn/R, µ 6= n. (3.2.4)

The kinetic terms
∫

dDx(∂φ)2 generate kinetic terms for the zero modes φ0, as well as a
sum ∑k

∫
dD−1x(∂µφk∂φ−k +

k2

R φkφ−k), which gives kinetic terms and mass terms for the
higher Fourier modes. This gives exactly the KK mass of (3.2.3). On the other hand, the
winding number mass contribution is purely stringy. It is obtained in the same way as
the mass formula (3.1.39). The difference is that the mode expansion includes winding
contribution 2Rwσ, so that (3.2.1) is satisfied.

Toroidal compactification To go from ten to four dimensions, compactification should be
realized on more than one compact direction. A direct extension of circle compactification
is toroidal compactification, where the internal space is a d dimensional torus Td

Td ≡ Rd/2πΛd, Λd =

{
d

∑
i=1

qiRi ; qi ∈ Z

}
. (3.2.5)

The Ri are linearly independent vectors of Rd, of norm Ri, generating the Λd lattice. The
dual lattice Λ∗d is generated by the dual vectors R∗i satisfying

Rk ·R∗l = RM
k R∗lM = δl

k, (3.2.6)

where here the scalar product is the euclidean Rd scalar product. The torus metrics are
defined through

gij = Ri ·Rj, g∗ij ≡ gij = R∗i ·R∗j = (gij)
−1, R∗i = gijRj, (3.2.7)
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where the last equalities are obtained through eq. (3.2.6). The Td torus windings and
momenta are lattice and dual lattice vectors

L = nlRl ∈ Λd, nl ∈ Z, p = mkR∗k ∈ Λ∗d, mk ∈ Z, (3.2.8)

so that the closed string boundary condition, similar to the compact circle case (3.2.1), is

X(τ, σ + π) = X(τ, σ) + 2πL ∼ X(τ, σ), (3.2.9)

where here X denotes the torus coordinate vectors. Introducing left and right momenta

pL,R = p± L =
(

mk ± gklnl
)

R∗k, (3.2.10)

the generalization of the mass formula (3.2.3), in absence of B2 background, reads

M2 = p2
L + p2

R +
2
α′
(N + Ñ + E0 + Ẽ0), (3.2.11)

and the new level matching condition is Ñ = N + p · L. We also mention that due to the
momentum and winding discrete numbers, the momentum integral (3.1.83) of the torus
amplitude is replaced by a lattice sum Λ, so that the contribution for the d coordinates is
replaced as

1

τ
d
2

2 |η(τ)|2d
−→ Λ = ∑

m,n

q
α′
4 pL·pL q̄

α′
4 pR·pR

|η(τ)|2d . (3.2.12)

One can apply the above formalism to compact spaces X6 = T6, T2 × T2 × T2, . . ..
These kinds of compactifications are called toroidal compactifications and will be used in
the following to construct toroidal orbifolds, which reduce the number of supersymme-
tries of the compact theories.

Calabi-Yau compactification One should also consider more general internal spaces
than simple tori. Except in the last line of the above paragraph, we have not mentioned
supersymmetry in the two previous simple examples. Nevertheless, one usually would
like to keep at least N = 1 SUSY in the compactified low energy theory. This is justified
by phenomenological implications of SUSY, but also because SUSY theories are easier
to study and have many already mentioned interesting features such as the absence of
vacuum tachyons or nice stability properties. In order for the 4d low-energy theory to
conserve some supersymmetry, there must exist globally well-defined supercharges on
the X6 compact space. A globally well-defined supercharge is a local supercharge which
is not rotated upon parallel transport on X6. The rotations a local spinor undergoes under
parallel transport around closed loops on X6 form the holonomy group of X6. Hence, for
a 6d space, it is generally the SO(6) group, the spinor representation of which contains
no singlet. In order to preserve SUSY, the internal space X6 must thus be a manifold with
special holonomy, i.e. a manifold with holonomy group being a subgroup of SO(6) with
spinorial representation containing at least one singlet, associated to a conserved super-
charge. This is the case of manifolds with SU(3) holonomy. The spinorial SO(6) represen-
tation 4 decomposes as 4 = 3 + 1 so that the initial 16 spinorial representation of SO(10)
on X6 ×M4 decomposes as (3, 2) + (3̄, 2′) + (1, 2) + (1, 2′) under SU(3)× SO(3, 1). The
last two representations contain the preserved N = 1 supercharges of the 4d theory.
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CY spaces There are no generic ways to derive the metrics of compact manifolds with
SU(3) holonomy group, but the so-called Calabi-Yau condition is sufficient to ensure the
existence of metrics for manifolds with SU(N) holonomy. This condition asks the mani-
fold to be Kähler with vanishing first Chern class. We recall that a 2N-dimensional Kähler
manifold is a hermitian manifold with closed Kähler form J. A globally well-defined com-
plex structure J j

i on a complex manifold allows to define holomorphic coordinates zi, z̄i

for which J = diag(i, . . . , i,−i, . . . ,−i). For an hermitian manifold, the metric gi j̄ only
contains mixed terms. The Kähler condition then reads

dJ = 0, J ≡ Ji j̄ dzi ∧ dz̄j = Jk
i gkj̄ dzi ∧ dz̄j = igkj̄ dzi ∧ dz̄j, (3.2.13)

where J is the Kähler 2-form. The Kähler condition ensures that parallel transport does not
mix the zi and z̄j coordinates, hence reducing the generic SO(2N) holonomy group to the
U(N) group. The possible U(1) factor holonomy can be eliminated through the vanish-
ing of the first Chern class condition. 6d manifolds X6 satisfying the Calabi-Yau condition,
called Calabi-Yau (CY) threefolds, hence have special SU(3) holonomy. Calabi-Yau man-
ifolds can be classified through their topologically invariant Hodge numbers hp,q(X6).
Hodge numbers are the dimensions of the p, q Hodge cohomology classes entering the
Hodge decomposition, which for X6 Kähler manifolds reads

H3(X6) = H3,0(X6) + H2,1(X6) + H1,1(X6) + H1,2(X6) + H0,3(X6), (3.2.14)

where the p, q exponents denote respectively the number of holomorphic and antiholo-
morphic indices. For instance dz1 ∧ dz2 ∧ dz̄1̄ is a 2, 1 form. For CY threefolds, h2,1 = h1,2
and h3,0(X6) = dim H3,0(X6) = 1 and thus there exists only a unique holomorphic 3,0
form Ω. This form can be used to define the complex structure moduli in the following
way.

Consider a variation δgī j̄ of the diagonal metric terms. In order the new metric to
remain a Kähler manifold metric, it should be hermitian, and new coordinates cancelling
the above metric variation should be found. As this cannot be done by holomorphic
coordinate transformations, it should correspond to a change in the complex structure.
By using the holomorphic 3,0-form Ω, we can expand δgī j̄ on a base αK, K = 1, . . . , h2,1 of
2, 1-forms

Iijk̄ = Ωijl glm̄δgm̄k̄ =
h2,1

∑
K=1

uKαKijk̄. (3.2.15)

The uK complex coefficients are called complex structures moduli, because as explained
just above, they parametrize the possible changes of complex structures.

In a simpler way, the Kähler form J can be expanded on a base ωα, α = 1, . . . , h1,1 of
(real) 1,1-forms as

J =
h1,1

∑
α=1

tαωα, (3.2.16)

where the tα real coefficients are called Kähler moduli. The integral of J ∧ J ∧ J over X6
measures the internal volume, ans the integral Jp measures the size of 2p-cycles. Kähler
moduli are thus naturally related to the sizes of the even dimensional internal cycles,
similarly to the compact circle radius or the area of the internal tori described earlier.

In fact, once the CY three-folds Hodge numbers h1,1 and h2,1 are specified, fixing the
Kähler and complex structure moduli totally determines the geometry of X6

Massless modes In the case of circle compactifications, we mentioned how we could
Fourier expand wave functions in the compact direction. The same idea can be used in
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more complex internal geometries such as tori or CY manifolds, by first considering a
factorization ansatz and looking for the zero modes of Laplace or Dirac operators in the
internal manifold, which are related to the massless wave equations. We expose briefly
the effect of compactifiation on massless particles through two examples: the spinors and
the metric examples.

We first consider a 10d spinor wave function Ψ(xM), depending on the 10d coordinates
xM. We already mentioned that the spinor representation of SO(10) splits under SO(6)×
SO(1, 3) as 16 = (4, 2) + (4̄, 2′) so that the spinor compactification ansatz can be written
as

Ψ(xM) = ψ(xµ)χ(xn), µ = 0, . . . , 4, n = 5, . . . , 9, (3.2.17)

where ψ and χ are respectively 4d and 6d spinors. The initial 10d Dirac operator /D can
be decomposed into 4d and 6d ones when acting on the (4, 2) or (4̄, 2′) representations.
Hence, according to the factorization ansatz (3.2.17), the Dirac equation /DΨ(xM) = 0
splits and the number of solutions to the 6d Dirac equations /Dχ(xn) = 0, /D†χ(xn) = 0,
i.e. the dimension of the kernel of the Dirac operator, gives the number of left or right-
handed 4d spinors coming from each initial 10d spinor. In fact, the difference between the
dimensions of the left and right kernels, called the Dirac index, gives the number of chiral
fermions. This difference is non-zero when left and right Dirac operators are different,
which is for instance the case when magnetic fields are present in the internal directions.
The topologically invariant Dirac index is determined through index theorems depending
on the situation under study.

We now evoke the metric case. Each of the initial 10d metric gMN(xM) indices can
be taken either in the internal space X6 or in our 4d space-time M4. When both indices
are taken in M4, the compactification ansatz can be written as gµν(xM) = gµν(xµ)φ(xn),
and the internal scalar φ(xn) satisfies a Laplace equation, which has a unique solution in
compact space. Hence, the 10d metric generates a unique 4d metric gµν(xµ). The potential
4d vector gµn, which would be a gauge boson for X6 continuous isometries, is absent in CY
compactifications because such isometries do not exist. Finally, the gmn 4d scalars can be
decomposed using the complex coordinates of the CY threefold introduced before (3.2.13)
and they lead to h1,1 Kähler moduli parametrizing the gi j̄ degrees of freedom as well as
h2,1 complex structure moduli corresponding to the gij degrees of freedom.

We have shown in table 3.2 the type IIB spectrum. We have just described the 10d
massless spinors and metric dimensional reduction and do not enter the details for the
other massless particles. Nevertheless we expose the important result that the 4d massless
spectrum arranges in a N = 2 supergravity multiplet containing the metric gµν and the
Cijkµ vector, 2h2,1 vector multiplets containing the complex structure moduli and vectors
Cijk̄µ, h1,1 hypermultiplets containing the Kähler moduli, Bi j̄, Ci j̄, Ci j̄µν and the universal
hypermultiplet containing the dilaton φ, C0 and Bµν, Cµν. Of course the supersymmetric
partners are present in all the multiplets.

CY orientifolds For phenomenological reasons, one usually wants to reduce supersym-
metry of the CY compactified theory from N = 2 to N = 1. A common method is to
introduce orientifold projections that reduce the spectrum and keep only N = 1 SUSY.
Orientifold projections where introduced in section 3.1.4 when evoking the unoriented
strings amplitudes. Similarly to what was discussed there, the orientifolding operation
consists in quotienting the theory by a combination of the worldsheet parity operator and
a Z2 symmetry of X6. This symmetry cannot be chosen arbitrarily and must preserve
N = 1 SUSY. The details of CY orientifold procedures are beyond the scope of this sec-
tion. We nevertheless mention that they introduce Op orientifold planes located at the
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fixed point of the Z2 action, the RR charge of which must be cancelled by Dp branes. As
explained in section 3.1.5, excitations of these non-perturbative states are described by
open string states, and the CY orientifold theories are thus a good playground to imple-
ment phenomenological models with open string matter fields. Another key point is that
CY orientifolds allow for chiral spectra.

3.2.2 Moduli stabilization in type IIB

In the previous part, we introduced the notion of closed string moduli, which corre-
spond to massless scalar fields of the low-energy theory. Such massless scalars do not
seem to be present in our current world. Through their interactions with Standard Model
particles, they should change our observable physics drastically and they would even
be responsible for long-range interactions, fifth forces, which we do not observe. Hence,
phenomenologically interesting string theory models should come along with scenarios
that give a mass to these particles, i.e. stabilize them at a certain VEV. As massless par-
ticles do not have any associated energy scale, low-energy effective theories are natural
playgrounds to study moduli stabilization. We will thus be interested in ways leading to
the generation of a non-vanishing scalar potential for the closed string moduli fields.

Effective action The effective action of the low-energy theory, i.e. for the massless fields
described in the previous section, can be obtained from the 10d type IIB effective action
after reduction over a CY internal space X6. As we have seen, the diverse massless fields
arrange in supermultiplets and the 4d effective theory should be described within the
framework of local supersymmetry, supergravity [90]. We refer to [91] for a recent review
of supergravity constructions. Supergravity theories are described by a Kähler potential
K and superpotential W , similar to those introduced around eq. (2.1.21) for the case of
global supersymmetry. The Kähler potential for CY compactifications can be written at
leading order in α′ as

κ2K = − ln(S + S̄)− ln(i
∫

Ω ∧ Ω̄)− 2 ln(e−
3
2 φ
∫

J ∧ J ∧ J), (3.2.18)

where J and Ω are the Kähler form and 3,0-homomorphic form introduced in the previ-
ous section. As we have explained, they depend respectively on the Kähler and complex
structure moduli. In fact, the supergravity variables also include the RR p-forms and the
B2 2-form. For instance, the usual axio-dilaton field was defined as S = e−φ + iC0. The
Kähler potential (3.2.18) is the classical Kähler potential and computable leading correc-
tions should be added. We expose some of them in section 3.2.3. The term in the last
logarithm of (3.2.18) is proportional to the internal volume because, as discussed under
eq. (3.2.16), J ∧ J ∧ J is proportional to the CY volume form. We also mentioned there that
the cycle volumes can be related to real Kähler moduli. For instance, when the square
of the internal volume is a product of three 4-cycles Vi, with real Kähler moduli τi for
i = 1, 2, 3, the last term of eq. (3.2.18) can be rewritten as

κ2Kτi = −2 ln(
√

τ1τ2τ3). (3.2.19)

In toroidal compactifications, the Ω and J forms can be expanded explicitely in terms
of the tori data and the classical Kähler potential (3.2.18) takes a simple expression. For
instance for a factorized T6 = T2

1 × T2
2 × T2

3 it reads

κ2K = − ln(S + S̄)−
3

∑
i=1

ln(Ui + Ūi)−
3

∑
i=1

ln(Ti + T̄i), (3.2.20)
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where Ti = e−φ/α′2AjAk + i f (Cp), i 6= j, k. Here Ai are the areas of the tori and Ui their
complex structures, related to the angle between they lattice vectors, see eq. (3.3.13). We
do not show explicitly the RR dependent functions f . The structure of the Kähler potential
of eqs. (3.2.18) and (3.2.19) is called no-scale structure, for reasons explained below.

When RR and NSNS 3-form field strength F3 = dC2 and H3 = dB2 fluxes are present in
the 10d theory, their backreaction modifies the space-time geometry. Indeed, these fluxes
must obey quantization conditions, expressed by integrations over 3-cycles, and when
their 10d kinetic terms are integrated over X6, they affect the 4d metric. We do not enter
the details of the supergravity construction in presence of flux background but recall that
4d Poincaré invariance imposes the imaginary self-dual (ISD) condition, which reads

? G3 = iG3, G3 = F3 − iSH3, (3.2.21)

where ? denotes the 6d Hodge dual operator. The fluxes being quantized, this ISD con-
dition is in fact a condition on the moduli, which are thus fixed at specific values. In
the effective theory, this amounts to the generation of masses. These masses scale as the
flux densities, hence in 1/R3 where R6 is the scale of the compact X6. This scale can be
compared to the KK scale, which goes as 1/R, according to (3.2.3). Hence, in the large
volume limit, i.e. large R limit, we can indeed study the moduli stabilization consistently.
In the same limit, the fluxes are very diluted and the total metric stays close to the initial
one on M4 × X6 (without fluxes), so that we can keep using the supergravity low-energy
limit mentioned earlier. Of course, we need new terms taking into account the flux back-
ground, the dominant contributions of which have been shown [92, 93] to correspond to
a superpotentialW of the form

W =
∫

X6

G3 ∧Ω. (3.2.22)

As expected, the superpotential depends on the axio-dilaton S through G3 defined in
(3.2.21) and the complex structure moduli through Ω.

Complex structure moduli stabilization To study the stabilization of moduli, one can
look at the scalar potential of the 4d supergravity theory. The F-term scalar potential ex-
pression in supergravity is a generalization of the global supersymmetry one, shown in
eqs. (2.1.28) and (2.1.30). In supergravity, the Fi auxiliary fields depend on the Kähler
potential, and the F-term scalar potential gets an additional negative contribution, pro-
portional to the square modulus of the superpotential. It reads

VF = eκ2K


∑

i, j̄

Ki j̄DiWD j̄W̄ − 3κ2|W|2

 , Di = ∂i +Ki, (3.2.23)

where the sum over i, j̄ is over all the moduli. As the superpotential (3.2.22) does not de-
pend on the Kähler moduli, and due to the no-scale structure of eqs. (3.2.18) and (3.2.19),
the sum over the Kähler moduli in eq. (3.2.23) exactly cancels the −3κ2|W|2 part, and the
remaining contribution is only

VF = eκ2K
(

∑
a,b̄

Kab̄DaWDb̄W̄
)

. (3.2.24)

It depends only on the complex structure moduli and axio-dilaton S. Minimizing this pos-
itive definite potential leads to the conditions DaW = 0, which can be computed directly
and shown to be exactly equivalent to the ISD condition (3.2.21). This confirms that the
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introduction of a 3-form field strength flux through the superpotential is a good effective
theory description and indeed leads to the complex moduli and axio-dilaton stabilization.
After stabilization of these moduli, the superpotentialW is fixed to a constant valueW0.

Kähler moduli stabilization: KKLT and LVS From the above discussion, we deduce
that the Kähler moduli are not stabilized by the fluxes. Usual ways to stabilize them
require additional ingredients, namely non-perturbative contributions. In the next sec-
tion we expose a recently discovered way to stabilize these moduli in a fully perturbative
framework.

KKLT The main ingredient used to stabilize the Kähler moduli in the way introduced
by Kachru, Kallosh, Linde and Trivedi (KKLT) [?], is the presence of non-perturbative
contributions to the superpotential, coming from either D3-branes instantons (wrapping
internal 4-cycles) or gluino condensation on D7-brane stacks (also wrapping internal 4-
cycles). These non-perturbative contributions take a common form

WNP = Ae−2πcτ, (3.2.25)

where here τ is the Kähler modulus related to the size of the wrapped 4-cycle, and A
depends on the complex structure moduli, and is thus considered constant when these
last ones have been fixed by the fluxes. The constant c depends on the origin of the non-
perturbative term, for instance it is proportional to 1/Nc for gluino condensation.The
total superpotential after complex structures stabilization is thusW = W0 +WNP. As it
depends on the Kähler moduli, the no-scale structure is broken and the scalar potential
is minimized for DτW = 0. This condition, which can be computed using the Kähler
potential (3.2.19) moduli dependence with τi = τ, in the simple case where we neglect the
τi RR forms imaginary part, reads

W0 = −Ae−2πc〈τ〉
(

1 +
4πc〈τ〉

3

)
, τ = Re(τ). (3.2.26)

We can solve explicitly 〈τ〉 in terms of the real parametersW0, c, and A using the Lambert
function W0. Here we implicitly considered W0 to be negative. As mentioned under
eq. (3.2.21), the large volume limit is necessary to keep the supergravity effective theory
description, and in our context it is simply τ � 1. We see from the solution (3.2.26) that
this requires an exponentially small superpotential W0, which is not quite generic, as it
demands almost exact cancellations between all the fluxes contributions.

The resulting scalar potential at the minimum reads

Veff = −3eK|W0 +WNP|2 = −2π2c2A2e−4πc〈τ〉

3〈τ〉 , (3.2.27)

and its negative value leads to an AdS vacuum. This AdS vacuum can in theory be up-
lifted to a dS vacuum by addition of new ingredients such as D3 branes or magnetic
fluxes for D7-brane gauge fields [94], both breaking supersymmetry and generating pos-
itive contributions to the scalar potential. There are several issues with the D3 configu-
rations concerning their stablity, the need for a precise tuning of the fluxes, the quantum
corrections to the value of the positive contribution and hence the tuning of the global dS
minimum.

LVS One way to get around the tuning of W0 to an exponentially small value is to
consider the first α′ correction to the Kähler potential. This correction has good reasons to
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be included because, in concrete models, it is of the same magnitude as theWNP contri-
butions. Models [95, 96] using both the superpotential non-perturbative correctionsWNP
and the leading α′ correction ξ to the Kähler potential are called Large Volume Scenario
(LVS) models, as the stabilization is realized at exponentially large internal volume. The
first example considered two Kähler moduli, of real parts τb and τs, parametrizing the
sizes of one “big” and one “small” 4-cycles, this last one being wrapped by a D3 instan-
ton. A concrete example of a CY with such Kähler moduli was found before the LVS
scenario in [97, 98, 99]. The Kähler potential and superpotential in such a context take the
form

κ2K = −2 ln
(

1
9
√

2

(
τ

3
2

b − τ
3
2

s
)
+ ξ

)
, (3.2.28)

W =W0 + Ase−2πcsτs . (3.2.29)

We come back to the correction ξ in the next section. In the large volume limit, i.e. for
τ3/2

b − τ3/2
s ∼ τ3/2

b � 1, the scalar potential is minimized for τb, τs at

〈τs〉 ∼ ξ
2
3 , 〈τb〉 ∼ e

4πcs〈τs〉
3 , (3.2.30)

and we see that for cs not too small, we indeed have 〈τs〉 � 〈τs〉. The scalar potential has
a negative value at this minimum, as can be seen by looking at its asymptotic behavior
at large and small volumes, and hence leads to an AdS vacuum. As in the KKLT case,
additional ingredients can in principle be added to uplift the vacuum to a dS minimum.

3.2.3 Kähler potential constant and logarithmic quantum corrections

Quantum corrections We have not shown explicitly the 10d supergravity effective ac-
tion of type IIB superstring theory. It contains kinetic terms for the massless spectrum
fields of table 3.2 and local terms related to the sources of the various fluxes, as D3 branes.
In addition to the metric kinetic terms, described by the standard Einstein-Hilbert (EH)
term linear in the scalar curvatureR, one can also include the leading order gravitational
term, depending on the fourth power of the Riemann tensor. Such R4 terms are induced
from graviton scattering and do not receive any other perturbative corrections beyond
one-loop [100, 101].

As described in section 3.2.1, the low energy limit of type IIB theory is described by
its effective action obtained upon compactification to four dimension of the 10d space
M4 × X6. Under this dimensional reduction of the 10d action, the R4 couplings induce a
novel EH term localized in the bulk, denoted as R(4) in the following. The resulting 4d
effective action relevant to our discussion takes the form [102, 103]

Sgrav =
1

(2π)7α′4

∫

M4×X6

e−2φR+
χ

(2π)4α′

∫

M4

(
2ζ(3)e−2φ + 4ζ(2)

)
R(4) , (3.2.31)

where we used the Riemann ζ function, satisfying ζ(2) = π2/6. The proportionality
factor of theR(4) term depends on the Euler characteristic χ(X6) of the internal manifold
given by

χ(X6) =
3

4π3

∫

X6

R∧R∧R · (3.2.32)

From (3.2.31) and (3.2.32) it is readily inferred that the R(4) term only exists in four di-
mensions and that in the large volume limit, it is localized at points in the internal space
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where the Euler number is concentrated. This localized terms induce corrections to the
Kähler moduli part of the supergravity Kähler potential, proportional to the Euler char-
acteristic, that we show explicitly in the following. These corrections modify the dilaton
fixing procedure and the Kähler moduli normalisation [104], but in the end, they can be
written as constant shifts ξ in the Kähler potential. We come back to it below.

A second phenomenon takes place at the points of 4d localized gravity kinetic terms.
In the bulk, 10d gravitons, represented by closed strings, can be emitted from these points
towards distinct Dp brane and orientifold sources, leading to local tadpoles [105]. In a
geometric configuration with D7-brane stacks, as well as O7-orientifold planes, spanning
four out of the six internal dimensions, a novel type of radiative corrections emerge. More
concretely, by momentum conservation, gravitons emitted from the localizedR(4) vertices
and ending on D7 brane sources propagate effectively in the two dimensions transverse
to the D7 branes, acquiring a logarithmic propagator as a function of the distance. As
a result, for a generic distribution with three D7-brane stacks at the boundaries of the
compactified space, “far” away from the localized EH term, they give rise to corrections
depending logarithmically on the size of the bulk [106, 103]

δSgrav ∼ −
4ζ(2)
(2π)3 χ(X6)

∫

M4

(
3

∑
k=1

e2φTk ln(Rk
⊥/w)

)
R(4) . (3.2.33)

Here, Tk is the effective tension of the k-th D7-brane stack, Rk
⊥ stands for the size of its

2d transverse space, and w is the width of the R(4) localisation, playing the role of an ef-
fective ultraviolet cutoff for the graviton propagator in the bulk [103]. The localisation
width w can be evaluated in the large Euler characteristic limit and the above logarithmic
correction written in terms of the standard ξ correction [106]. Incorporating both these
corrections into the Kähler potential (3.2.19) , we obtain the following Kähler moduli de-
pendance

κ2K(τk) = −2 ln

(
√

τ1τ2τ3 + ξ + ∑
k

γk ln τk

)
= −2 ln (V + ξ + γ lnV) , (3.2.34)

where in the last equality we assumed for simplicity the same tension Tk ≡ T = e−φT0 for
all the brane stacks, which amounts to identical γk ≡ γ/2. The parameters ξ and γ are
then given by [103, 106]

γ ≡ −1
2

gsT0ξ , with ξ = −χ

4
×
{

π2

3 g2
s for orbifolds

ζ(3) for smooth CY
. (3.2.35)

In the above formulae we have also shown the case of toroidal orbifolds, where the loga-
rithmic correction is generated at one string loop order. The orbifold Euler characteristic
χorb is defined in analogy with the CY one, as the difference between the numbers of
closed string N = 2 hyper and vector multiplets, χorb = 4(nH − nV). A precise formula
is given in (4.4.1). From the supergravity formula (3.2.23) we check that these corrections
break the no-scale structure and induce a non-zero F-term effective potential VF. The in-
clusion of ξ was already involved in the LVS scenario described in the last paragraph of
section 3.2.2.

Fully perturbative moduli stabilization scenario Considering both the corrections de-
scribed above leads to a new fully perturbative moduli stabilization scenario [107] that we
describe shortly here. We describe it more precisely in section 4.2, where we also study its
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cosmological consequences. In addition to the above quantum corrected Kähler potential,
one can consider D-terms associated with magnetized U(1) factors of the D7-brane stacks
[94]. The D-term effective potential VD can be minimised to fix the ratios τi/τj. The sum
of F-term and D-term contributions constitutes the effective scalar potential Veff which,
after minimising the ratios in the large volume limit, can be cast in the form

Veff(V) = VF + VD '
3W2

0
2κ4V3 (2γ(lnV − 4) + ξ) +

d
κ4V2

≡ C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
. (3.2.36)

The constant d parametrizes the D-terms, κ =
√

8πGN is the reduced Planck length, and
we have defined

q ≡ ξ

2γ
= − 1

gsT0
, σ ≡ 2d

9W0
2γ

, C ≡ −3W0
2γ . (3.2.37)

HereW0 is the constant superpotential remaining after complex moduli stabilization ob-
tained in the way described in section 3.2.2. As will be explained in section 4.2, within the
above procedure, positive square masses are provided to all the Kähler moduli fields and
at the same time a local de Sitter vacuum is obtained at weak coupling and large volume
for γ and q negative, implying positive tension and negative Euler number, T0 > 0 and
χ < 0.

3.3 Orbifold compactifications with fluxes

We introduced the main ingredients used in string compactifications in section 3.2.1.
We explained the basics of Calabi-Yau compactifications and evoked quickly CY orien-
tifolds constructions used to reduce the number of supersymmetries. These constructions
are not easy and not generically solvable. We also mentioned the simpler case of toroidal
compactifications, and we now introduce new ingredients leading to solvable toroidal
orbifold compactifications. As they can be seen as singular limits of Calabi-Yau orien-
tifolds, they are very helpful to unveil some of the properties of the latter. We highlight
again that the main goal of these construction is to reduce supersymmetry and obtain
phenomenologically interesting models.

3.3.1 Orbifold compactifications

General ideas Toroidal orbifolds are obtained as quotients of tori by discrete symmetry
groups G such as Z2, Z2 ×Z2, Z3 . . . Namely this consists in identifying points through

X ∼ gX + 2πL, g ∈ G. (3.3.1)

This differs from the simple torus identification (3.2.9) by the action of the discrete sym-
metry group element g ∈ G. We recall that here, L ∈ Λd is a vector of the Td torus lattice.
Hence, for the above identification to be self-consistent, the θ action must preserve the
torus lattice, i.e. must be a symmetry of the torus lattice with gL = L′ ∈ Λd. The action of
the symmetry group on the worldsheet fermions is dictated by worldsheet supersymme-
try.

The orbifold identification (3.3.1) allows for new closed string boundary conditions

X(τ, σ + π) = gX(τ, σ) + 2πL. (3.3.2)
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When g = 1, this boundary condition is already allowed in the simple torus case and
leads to “untwisted” sector. The other elements of the symmetry group introduce new
sectors in the theory, called “twisted” sectors. They correspond to strings with center of
mass located at the orbifold fixed points

Xf.p. = gXf.p.(τ, σ) + 2πL, g ∈ G, (3.3.3)

which are singularities of the quotient space. States with these new boundary conditions
describe strings which close on themselves thanks to a θ action. The orbifold partition
function is then obtained by introducing a projector 1/|G|∑g∈G g, similar to the world-
sheet parity projector (1 + Ω)/2. This projector truncates the spectrum to orbifold invari-
ant states, and summing over the Hilbert spaces Hh of all the sectors of the theory, the
total partition function can be written as

Z =
1
|G| ∑

h,g∈G
Z[hg] =

1
|G| ∑

h,g∈G
trHh

(
ge−τ2πα′ ∑i pi pi

qNh+E0 q̄Ñh+Ẽ0
)

, (3.3.4)

where in the last equality we used the amplitude expression of eq. (3.1.80), and we high-
lighted that the number operators Nh are sector dependent.

To be concrete, we consider the bosonic Z2 action on the single compact coordinate
X9, i.e. for circle compactification of the X9 coordinate. The symmetry group is then G =
{1, g = −1} and the action of g on a bosonic coordinate is simply X9 → −X9. We deduce
from the X9 mode expansion that the action of g on a untwisted state (3.1.30), i.e. a state
satisfying untwisted b. c., with momentum and winding numbers k, w, is

g ∏
a
(α9
−a)

ma ∏
b
(α̃9
−b)

mb
∣∣0, 0̃, k, w

〉
= (−1)N+Ñ ∏

a
(α9
−a)

ma ∏
b
(α̃9
−b)

mb
∣∣0, 0̃,−k,−w

〉
.

(3.3.5)
Hence, when g is inserted, only the k = w = 0 states contribute in the trace over H1, so
that no lattice sum appear in the amplitude for the corresponding coordinate. The com-
putation of the trace is similar to the one of eq. (3.1.85), with the difference that there is a
(−1)N factor for left and right-moving sectors, changing the 1/(1− qa) term to 1/(1+ qa).
This results in a total contribution from the left and right moving closed strings sectors of
the form

1
2

∣∣∣∣
2η

ϑ2

∣∣∣∣ : untwisted bosonic coordinate , g insertion. (3.3.6)

The twisted sectors contributions can be found either through modular invariance or by
mode expanding the wave equation solutions with twisted boundary conditions. The
boundary condition X9(τ, σ + π) = −X9(τ, σ) does not allow for winding nor momen-
tum, and it forces the string center of mass to sit at one of the two fixed points of the
circular orbifold, at x9 = 0, π. The antiperiodic boundary condition induces half integer
modes, and the Hilbert spaces H0 and Hπ are constructed the usual way, by acting with
creation operators on the two vacuum states located at the two orbifold fixed points. The
Hilbert spaces traces computations can again be done as in eq. (3.1.85) and give for each
orbifold fixed point a combined left and right contribution of

1
2

∣∣∣∣
η

ϑ4

∣∣∣∣ : orbifold fixed point twisted bosonic coordinate , no g insertion, (3.3.7)

1
2

∣∣∣∣
η

ϑ3

∣∣∣∣ : orbifold fixed point twisted bosonic coordinate , g insertion. (3.3.8)
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We recall that the ϑi functions are given in eq. (A.3.1). Hence, by applying formula (3.3.4)
in our simple example, we express the circle orbifold bosonic torus amplitude as

T ∼ 1
2 ∑

m,n

q
α′
4 p2

L q̄
α′
4 p2

R

|η(τ)|2 +
1
2

∣∣∣∣
2η

ϑ2

∣∣∣∣+
2
2

∣∣∣∣
η

ϑ4

∣∣∣∣+
2
2

∣∣∣∣
η

ϑ3

∣∣∣∣ , (3.3.9)

where in the last two terms we took into account the sum over the two orbifold fixed
points Hilbert spaces H0 and Hπ. This gives the factor 2 in front of the single orbifold
fixed point contributions (3.3.7) and (3.3.8). The lattice sum of the first term is similar to
the one introduced in (3.2.12) for a d dimentional torus Td, except that it simplifies in the
circle case.

Of course, the above torus amplitude is multiplied by the non-compact coordinate
contributions, and must include the fermionic contributions as well. We do not enter
the details of the generic methods but rather expose, in the next paragraph, a particular
example that we use in the following.

A particular model: the T6/Z2 ×Z2 orbifold We describe below the construction of a
D7 brane configuration dual to a T6/Z2 ×Z2 orbifold and write its vacuum amplitudes.
We consider for simplicity a factorised 6-torus T6 = T2

1 × T2
2 × T2

3 with i = 1, 2, 3 indices
denoting the (45), (67) and (89) internal directions respectively. We use the general torus
Td definitions of (3.3.10) and below, that we recall here in our particular case. The i-th
torus T2

i is defined as

T2
i ≡ R2/2πΛi, Λi =

{
q Rix + r Riy; q, r ∈ Z

}
, (3.3.10)

with Rix, Riy two linearly independent vectors of norm Rix, Riy and relative angle αi. The
dual lattice Λ∗i is generated by the dual vectors R∗xi , R∗yi satisfying Rik ·R∗li = δl

k. The torus
metric reads

g(i)kl = Rik ·Ril =
Ai

Re(Ui)

(
1 Im(Ui)

Im(Ui) |Ui|2
)

, (3.3.11)

and its inverse can be used to raise the indices and express the dual vectors R∗ki = g(i)klRil .
In the above metric we have defined by Ai the unit cell area of the torus T2

i

Ai ≡
√

det g(i) =
vol(2πΛi)

(2π)2 = RixRiy sin αi, with Rix ·Riy = RixRiy cos αi, (3.3.12)

and by Ui, the torus complex structure modulus

Ui ≡ i
Riy

Rix
e−iαi =

1
Rix

2 (Ai + iRix ·Riy). (3.3.13)

The area Ai of the torus, which is a 2-cycle, is nothing but its Kähler modulus, real in
absence of B2 background.

The T6/Z2 ×Z2 orbifold is constructed by quotienting the factorized torus by a Z2 ×
Z2 action. The Z2 ×Z2 group contains four elements G = (1, g, f , h) which act on the
complexified torus coordinates Zi = X2+2i + iX3+2i, as

1 : (Z1, Z2, Z3)→ (Z1, Z2, Z3), α : (Z1, Z2, Z3)→ (Z1,−Z2,−Z3)

β : (Z1, Z2, Z3)→ (−Z1, Z2,−Z3), γ = α ◦ β : (Z1, Z2, Z3)→ (−Z1,−Z2, Z3)
(3.3.14)
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Each of the α, β, γ symmetry group elements leaves a torus invariant and has 4× 4 = 16
fixed points in the remaining two. O5 planes, spanning the torus left invariant by the sym-
metry group element α, β or γ, sit at these fixed points. Their RR charge is cancelled by
the presence of D5 branes. Moreover, orientifolding through the action of the Ω operator
requires the presence of D9 branes cancelling the RR charges of the O9 planes.

This T6/Z2 ×Z2 orbifold containing D9 and D5 branes was described in [108, 109].
For our future purpose we rather consider using T-duality, mentioned quickly at the end
of section 3.1.5, to describe the equivalent model containing D7 branes.

(45) (67) (89)
D71 · × ×
D72 × × ·
D73 × · ×

←−−−−−−−−−−−−−−−→
T-duality along (45)

(45) (67) (89)
D91 × × ×
D52 · × ·
D53 · · ×

In the above tables, a cross× represents the D7 worldvolume spanning the corresponding
torus, while a dot · indicates the transverse directions where the D7 brane is localized.
In the following we will introduce magnetic fields and circled crosses ⊗ will represent
directions of a magnetic flux for the worldvolume U(1) gauge fields.

The torus, Klein bottle, annulus and Möbius amplitudes are computed using standard
methods [110, 111, 48] generalizing to the superstring case what was described in the
previous paragraph for bosonic coordinates. The specific amplitudes for the T6/Z2 ×Z2
model can be found in e.g. [108]. The torus amplitude (without discrete torsion) reads

4T = |Too|2 Λ1Λ2Λ3 + 16
(∣∣Tog

∣∣2 Λ1 +
∣∣To f

∣∣2 Λ2 + |Toh|2 Λ3

) ∣∣∣∣
η2

ϑ2
2

∣∣∣∣
2

+ 16
(∣∣Tgo

∣∣2 Λ1 +
∣∣Tf o

∣∣2 Λ2 + |Tho|2 Λ3

) ∣∣∣∣
η2

ϑ2
4

∣∣∣∣
2

+ 16
(∣∣Tgg

∣∣2 Λ1 +
∣∣Tf f

∣∣2 Λ2 + |Thh|2 Λ3

) ∣∣∣∣
η2

ϑ2
3

∣∣∣∣
2

+ 64
(∣∣Tgh

∣∣2 +
∣∣Tg f

∣∣2 +
∣∣Tf g

∣∣2 +
∣∣Tf h

∣∣2 +
∣∣Thg

∣∣2 +
∣∣Th f

∣∣2
) ∣∣∣∣

η3

ϑ2ϑ3ϑ4

∣∣∣∣
2

, (3.3.15)

where ϑi’s are the Riemann theta-functions and η the Dedekind function, depending on
the world-sheet torus modular parameter τ, given in appendix A.3. The tori lattice sums
Λi are given in appendix A.4. There is a clash on notations with the defining torus lattice
of (3.3.10), but this should not cause any problem. The characters Tkj are expressed in
terms of the 16 Z2 ×Z2 characters τkl constructed from quadruple products of the four
level-one SO(2) characters, see Appendix A.3. The Tkj characters used for the T6/Z2×Z2
model are defined in [48, 108]

Tko = τko + τkg + τkh + τk f , Tkg = τko + τkg − τkh − τk f ,

Tkh = τko − τkg + τkh − τk f , Tk f = τko − τkg − τkh + τk f , (3.3.16)

for k = o, f , h, g. In the torus amplitude (3.3.15) we recognize the bosonic contributions
eqs. (3.3.6) to (3.3.8) of the orbifold amplitudes.

In the current D7-branes setup, the world-sheet involution Ω projection is imple-
mented by adding the Klein-bottle amplitude K to the half torus 1

2T of equation (3.3.15),
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following the conventions of [48]. The Klein-bottle amplitude reads

8K =
(

W1P2P3 + P1W2P3 + P1P2W3

)
Too + 2× 16

[
P1Tgo + P2Tf o + P3Tho

] ( η

ϑ4

)2

, (3.3.17)

where the Klein-bottle lattice sums Pi, Wi are given in Appendix A.4. The open string
spectrum can be obtained through the annulus and Möbius amplitudes; we describe them
in the following subsections, in the presence of magnetic fields. We then use (x, y, z)
arguments for the Tkj open-string characters referring to the internal oscillator shifts. For
instance, the first character of (A.3.5) reads

τoo(x, y, z) = V2(0)O2(x)O2(y)O2(z) + O2(0)V2(x)V2(y)V2(z)
−S2(0)S2(x)S2(y)S2(z)− C2(0)C2(x)C2(y)C2(z), (3.3.18)

and the Tkj(x, y, z) follow the same logic. Of course in the torus amplitude (3.3.15), Tkj
stand for Tkj(0, 0, 0).

3.3.2 Magnetic fluxes supersymmetry breaking

We now give a few elements of toroidal compactifications in the presence of worldvol-
ume magnetic fields, that we use in the following subsections. We generically denote by
H(i)

a a magnetic field introduced on the D7a stack, in the i-th internal plane, with i = 1, 2
and 3 for (45), (67) and (89) respectively.

Magnetic fields modify the world-sheet action by introducing boundary terms [112,
113]. The solution of the wave equations depends on the charge of the open string. Neu-
tral strings have standard oscillators while charged ones see their modes shifted by the
magnetic field through the theta function argument

ζ (i)
a =

1
π

Arctan(2πα′qaH(i)
a ). (3.3.19)

In the following we choose a normalisation for the U(1) charges at the endpoints of an
open string q = ±1, 0.

For NN boundary conditions, this argument appears through a factor η/ϑ1(ζ
(i)
a τ), re-

placing the standard P/η2 bosonic oscillators contribution of a (compact) complex coor-
dinate, which is the square of the single bosonic coordinate (3.1.86) and contains a lattice
sum P. The argument in ϑ1 contains in particular the field-theory Landau levels, replac-
ing the lattice momenta sums. For ND or DN boundary conditions, it gives an argument
to the ϑ4 function appearing in the η/ϑ4(ζ

(i)
a τ) factors. The dipole strings (with ends of

opposite charges, i.e. attached to the same D brane) have special quantised zero-modes
inducing “boosted” string momenta [112]

m̃(i)
a =

m(i)
a√

1 +
(

2πα′H(i)
a

)2
. (3.3.20)

The magnetic fields H(i)
a are quantized through the standard Dirac quantization on

fluxes
m
∫

T2
H = 2πn, (3.3.21)
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where m is the wrapping number and n the flux quantum. This leads to the magnetic field
quantization

2πH(i)
a Ai = k(i)

a , k(i)
a =

n(i)
a

m(i)
a
∈ Q , (3.3.22)

with k(i)
a the ratio of wrapping number m(i)

a and flux number n(i)
a of the D7a brane on the

i-th torus T2
i . We recall that the T2

i area is 4π2Ai, see (3.3.12). Note that due to the Z2

quotient, n(i)
a can take half-integer values. This does not change the allowed values for k(i)

a .
In the next sections we will extract the open string mass spectrum from the annulus

amplitude. The masses can also be extracted by looking at the different spins of the inter-
nal components of the massless states (without magnetic fields), through the mass shift
formula given in [113]

∆m2 =
1

2α′ ∑i

[
(2ni + 1)

∣∣ζ (i)
L + ζ (i)

R

∣∣+ 2Σi

(
ζ (i)

L + ζ (i)
R

)]
. (3.3.23)

The L, R subscripts indicate the string endpoints and have to be replaced by the corre-
sponding brane in the oscillator shift defined in (3.3.19). The first term with the sum corre-
sponds to the Landau levels, while the second one corresponds to the magnetic moments
for the internal Σi helicities. Landau levels appear only for NN boundary conditions.
This formula, which can be derived from the annulus amplitude, can be understood us-
ing the field theoretical description of the magnetized brane. We see from the above mass
formula that the spectrum is not supersymmetric anymore as it depends on the spin of
the considered state. Hence introducing magnetic fields on the internal tori is indeed a
way to break supersymmetry [113]. Models with magnetic fields can be also made in CY
compactifications, using e.g. D7 branes gauge fields, but we do not describe them here.

3.3.3 Toroidal model of matter waterfall field

In this section, we use all the above toroidal orbifold ingredients to implement a model
of matter waterfall field, which will be used in section 4.4 when constructing a type IIB
superstring inflationary model. We thus postpone the explanation of our motivations to
section 4.4 and we only expose the goal of the current section. Our objective is to construct
a matter field, at an intersection of the D7-branes stacks , whose mass-squared depends
non-trivially on the total internal volume and becomes negative below a certain volume.
To do so, we will construct states with positive and negative mass contributions, coming
respectively from brane separations and magnetic fields.

One magnetized stack We first consider a toy model with only one magnetic field. We
turn this magnetic field on the D72 stack and align it with the common U(1). Hence, the
whole stack is magnetized and there is no neutral D72 brane. We choose the magnetiza-
tion to be on the third torus T2

3 (i.e. in the (89) direction). Then, according to the notation
introduced in equation (3.3.22), we denote the magnetic field by H(3)

2 , and the associated
oscillator shift by ζ (3)

2 . The configuration is summarized in the following table:

(45) (67) (89)
D71 · × ×
D72 × · ⊗
D73 × × ·
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The annulus amplitude is computed using the techniques and conventions of [114, 48,
108]. For our D7-branes model, the different contributions to the annulus amplitude read

8A0 =
(

N1
2W1P2P3 + N3

2P1P2W3 + 2N2N̄2P1W2P̃3
)

Too(0, 0, 0)

+ 2N1N3P2 Tf o(0, 0, 0)
(

η

ϑ4(0)

)2

, (3.3.24)

8A1 =

(
−2iN1N2Tho(0, 0, ζ (3)

2 τ)
k(3)

2 η

ϑ1(ζ
(3)
2 τ)

+ 2iN1N̄2Tho(0, 0,−ζ (3)
2 τ)

k(3)
2 η

ϑ1(−ζ (3)
2 τ)

)(
η

ϑ4(0)

)2

+
(

2N3N2P1Tgo(0, 0, ζ (3)
2 τ) + 2N3N̄2P1Tgo(0, 0,−ζ (3)

2 τ)
) η

ϑ4(0)
η

ϑ4(ζ
(3)
2 τ)

, (3.3.25)

8A2 =− iN2
2P1W2Too(0, 0, 2ζ (3)

2 τ)
2k(3)

2 η

ϑ1(2ζ (3)
2 τ)

+ iN̄2
2P1W2Too(0, 0,−2ζ (3)

2 τ)
2k(3)

2 η

ϑ1(−2ζ (3)
2 τ)

,

(3.3.26)

where A0,A1,A2 correspond respectively to the neutral, charged±1 and charged±2 strings
with respect to the magnetized U(1). In the above expressions, Pi, Wi are the standard mo-
mentum and winding sums defined in Appendix A.4, while P̃3 is the sum over boosted

momenta m̃3 = m3/
√

1 + (2πα′H(3)
2 )2 coming along with dipole strings, as explained above

eq. (3.3.20). Note also that for notational simplicity, the parameter τ is used instead of the
direct channel annulus parameter i

2 Imτ.
The Tko characters were introduced in eq. (3.3.16) and Appendix A.3. Their depen-

dence in the magnetic fields is explained around eq. (3.3.18). As explained shortly in sec-
tion 3.3.2, it is easy to trace back the different state contributions to the amplitude: each of
ND or DN mixed boundary conditions contributes by a η/ϑ4 factor (instead of 1/η2 for
standard bosonic coordinates), with oscillator shift ζiτ when a magnetic field is present
on the N boundary, and each NN boundary condition with magnetic fields introduces
Landau levels through a η/ϑ1 factor with oscillator shifts.

We present hereafter the Möbius contributions M0 and M2, corresponding to neutral
and doubly charged strings. The Möbius amplitude identifies the string endpoints, hence
it does not contain simply charged contribution and its non-vanishing contributions read

8M0 =− (N1W1P2P3 + N3P1P2W3) T̂oo(0, 0, 0) + (N1W1 + N3P1) T̂og(0, 0, 0)
(

2η̂

ϑ̂2(0)

)2

+ (N1P2 + N3P2) T̂o f (0, 0, 0)
(

2η̂

ϑ̂2(0)

)2

+ (N1P3 + N3W3) T̂oh(0, 0, 0)
(

2η̂

ϑ̂2(0)

)2

,

(3.3.27)
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8M2 = iN2P1W2T̂oo(0, 0, 2ζ (3)
2 τ)

2k(3)
2 η̂

ϑ̂1(2ζ (3)
2 τ)

− iN̄2P1W2T̂oo(0, 0,−2ζ (3)
2 τ)

2k(3)
2 η̂

ϑ̂1(−2ζ (3)
2 τ)

,

− N2P1 T̂og(0, 0, 2ζ (3)
2 τ)

2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(2ζ (3)
2 τ)

− N̄2P1 T̂og(0, 0,−2ζ (3)
2 τ)

2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(−2ζ (3)
2 τ)

− N2W2 T̂o f (0, 0, 2ζ (3)
2 τ)

2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(2ζ (3)
2 τ)

− N̄2W2 T̂o f (0, 0,−2ζ (3)
2 τ)

2η̂

ϑ̂2(0)
2k(3)

2 η̂

ϑ̂2(−2ζ (3)
2 τ)

+

(
iN2 T̂oh(0, 0, 2ζ (3)

2 τ)
2k(3)

2 η̂

ϑ̂1(2ζ (3)
2 τ)

− iN̄2 T̂oh(0, 0,−2ζ (3)
2 τ)

2k(3)
2 η̂

ϑ̂1(−2ζ (3)
2 τ)

)(
2η̂

ϑ̂2(0)

)2

.

(3.3.28)

The Möbius amplitude modifies the unitary groups of the unmagnetized branes to orthog-
onal groups (branes on top of orientifolds). On the other hand, it acts on the magnetized
branes by forming states in the antisymmetric representation. The hatted T̂ij characters
and ϑ̂ functions are related as usual to the choice of a real basis of characters [48].

The different Chan-Paton multiplicities, the significance of which was explained in
section 3.1.5, are as follows: N1, N3 for the string endpoints aligned with the D71, D73
branes and N2, N̄2 for the D72 string endpoints aligned with the U(1) magnetic field, with
charge ±1. N1 and N3 are real because they index orthogonal groups. These Chan-Paton
multiplicities include the wrapping numbers factors so that they are in fact written as

Na = N′am(j)
a m(k)

a , a 6= j 6= k 6= a, (3.3.29)

where N′a is the true number of branes in the a-th stack. Replacing eq. (3.3.29) in the am-
plitudes of eqs. (3.3.24) to (3.3.28), one can read the chiral fermions multiplicities through
the ”intersection number” defined for each magnetized torus T2

j as

I(j)
ab = n(j)

a m(j)
b −m(j)

a n(j)
b . (3.3.30)

This intersection number Iab = ∏j I(j)
ab is the index of the Dirac operator of the charged

fermions. Taking a specific example, the total multiplicity of the doubly charged state
between the D72 brane and its orientifold image, described by the amplitude A2 given in
eq. (3.3.26), can be written as

N2
2 k(3)

2 − N̄2
2 k(3)

2 = 2N′2
2
(m(1)

2 m(3)
2 )2k(3)

2 = 2N′2
2m(1)

2
2
m(3)

2 n(3)
2 = N′2

2m(1)
2

2
I22′ . (3.3.31)

The N′2
2m(1)

2
2

is just the Chan-Paton multiplicity for the unmagnetized torus while I22′ is
related the chiral fermions multiplicity (which is then modified by the orientifold projec-
tion). This multiplicity can be understood from the field theoretical point of view as the
degeneracy of each Landau level [113].

As usual, the various multiplicities are subject to tadpole cancellation conditions, mod-
ified in general by the presence of 3-form fluxes needed for complex structure moduli
stabilization.

The massless states of the original orbifold model are modified by the magnetic field.
The charged states receive different contributions (according to the internal spins) result-
ing to the mass shift (3.3.23). We show in the following table the smallest mass shifts for
each state (i.e. the new lowest lying states after magnetic deformation). In the table, the
lines and columns entries represent the two possible string endpoints of each state.
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D71 D72 D73

D71 α′m2 = 0 α′m2 = 0 α′m2 = 0

D72 α′m2 = −2|ζ (3)
2 | α′m2 = −|ζ (3)

2 |
D73 α′m2 = 0

We see that tachyonic states can appear in the spectrum [113, 114]. In order to elim-
inate them, we introduce appropriate brane separations and/or Wilson lines. The brane
separation and Wilson lines contributions to the masses were described in section 3.1.5.
We recall that in the annulus amplitudes of equations (3.3.24) to (3.3.26), brane separa-
tions introduce shifts in Wi the winding numbers and Wilson lines introduce shifts of
the momentum numbers in Pi according to the endpoint charges of the strings. We then
introduce Wilson lines and separations as follows:

(45) (67) (89)
D71 · × ×
D72 × · ⊗
D73 × × ·

−−−−−−−−→
(45) (67) (89)

D71 · × ×
D72 × · ±x2 ⊗
D73 × A3 × ·

The index A3 indicates a U(1) Wilson line gauge field, that we take again along the diag-
onal abelian factor of the D73 stack and turned on within the torus T2

1 in the (45) internal
plan. The x2 index represents the brane positions of the D72 brane stack (and −x2 for its
orientifold image).

If the Wilson line modulus is projected out by the orbifolding procedure, the model
would generally only allow for discrete Wilson lines that can be expressed in the dual
lattice as

A3 = a3xR∗x1 + a3yR∗y1 , with a3x, a3y ∈ Q . (3.3.32)

For Z2 orbifolds we typically get a3x/y = 1
2 (if non-vanishing). This Wilson line gives

a mass for the charged fields of the which is a generalization of the circle contribution
(3.1.112) to the T2 torus case

α′m2 = α′A3 · A3 = α′a3ka3l g(1)kl =
α′

A1Re(U1)

∣∣a3y + iU1a3x
∣∣2 ≡ α′a2

3(U1)

A1
, (3.3.33)

where the dimensionful area A1, the dimensionless complex structure U1, and the torus
metric g(1) were defined in (3.3.12), (3.3.13) and (3.3.11). In the last equality we separated
the complex structure and Kähler modulus (A1) dependences.

Similarly, the D72 brane position x2 can be expressed as

x2 ≡ xx
2 R2x + xy

2 R2y with xx
2 , xy

2 ∈ Q, (3.3.34)

where we assumed again discretisation of the positions at symmetric points of the funda-
mental cell. We recall that Rx

2 and Ry
2 are the torus lattice vectors defined in (3.3.10). As

in the circle compactification case (3.1.111), the displacement x2 of the D72 stack from the
origin generates a mass for the strings stretched between the brane stack and its image
with respect to the orientifold plane located at the origin

α′m2 =
4 x2 · x2

α′
=

4 xk
2xl

2g(2)
kl

α′
=

4A2

α′Re(U2)

∣∣xx
2 − iU2xy

2

∣∣2 ≡ y(U2)A2

α′
. (3.3.35)

In the last equality we isolated again the complex structure modulus dependence from
the Kähler modulus one. For more general toroidal orbifolds, the point group symmetry
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has to be compatible with the stabilised complex structure moduli, so that the Wilson line
and brane separation quantization already incorporates the Ui dependence.

The new lowest lying mass states are shown in the table below.

D71 D72 D73

D71 α′m2 = 0 α′m2 = 0 α′m2 = 0

D72 α′m2 = −2|ζ (3)
2 |+

yA2
α′ α′m2 = −|ζ (3)

2 |+
α′a2

3
A1

D73 α′m2 = 0

In the small field approximation (induced by the large volume limit), the oscillator shift
reads

ζ (3)
2 =

1
π

Arctan(2πα′qH(3)
2 ) =

1
π

Arctan

(
α′k(3)

2
A3

)
≈ α′k(3)

2
πA3

. (3.3.36)

The Kähler moduli stabilization model we will use in section 4.2 fixes the Ai ratios and
the tori areas are power fractions of the total volume: Ai ≡ α′riV1/3, with r1r2r3 = 1.
Hence, the masses of the lowest-lying states read

α′m2
23 = −|ζ (3)

2 |+
α′a2

3
A1
≈ − |k(3)

2 |
πr3V1/3 +

a2
3

r1V1/3 , (3.3.37)

α′m2
22 = −2|ζ (3)

2 |+
yA2

α′
≈ − 2|k(3)

2 |
πr3V1/3 + yr2V1/3. (3.3.38)

Thus, when πr3a2
3 > r1|k(3)

2 | the m2
23 mass is positive for any value of the volume. For

instance, considering a3x = a3y = 1
2 and taking r1 = r3, as will be the case in the following,

the condition to eliminate the tachyon in the intersection of D72 and D73 branes is

4Re(U1)|k(3)
2 | < π|1 + iU1|2. (3.3.39)

For instance, in square torus this condition is reduced to |k(3)
2 | < π corresponding from

(3.3.22) to n(3)
2 < πm(3)

2 , i.e to a flux number smaller than the wrapping number. Concern-
ing the second lowest lying massive state on the D72 branes, we observe that

m2
22 −−−−→

lnV→±∞
±∞, (3.3.40)

hence, depending on the flux |k(3)
2 | and separation x, m22 turns negative when the volume

falls below a specific value, e.g. V−, as required for our waterfall field candidate.

Magnetic fields on each stack We now consider the following configuration with mag-
netic fields on each stack, again denoted by a circled cross ⊗.

(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·

The different contributions to the annulus amplitude A0, A1 and A2 corresponding to the
neutral, single and doubly charged strings, read

8A0 =
(

N1N̄1W1P̃2P3 + N2N̄2P1W2P̃3 + N3N̄3P̃1P2W3
)

Too(0, 0, 0), (3.3.41)
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4A1 =− i
(

N1N2Tf o(0, ζ (2)
1 τ, ζ (3)

2 τ) + N̄1N2Tf o(0,−ζ (2)
1 τ, ζ (3)

2 τ)
) k(3)

2 η3

ϑ4(0)ϑ4(ζ
(2)
1 τ)ϑ1(ζ

(3)
2 τ)

+ i
(

N1N̄2Tf o(0, ζ (2)
1 τ,−ζ (3)

2 τ) + N̄1N̄2Tf o(0,−ζ (2)
1 τ,−ζ (3)

2 τ)
) k(3)

2 η3

ϑ4(0)ϑ4(ζ
(2)
1 τ)ϑ1(−ζ (3)

2 τ)

− i
(

N1N3Tf o(ζ
(1)
3 τ, ζ (2)

1 τ, 0) + N1N̄3Tf o(−ζ (1)
3 τ, ζ (2)

1 τ, 0)
) k(2)

1 η3

ϑ4(ζ
(1)
3 τ)ϑ1(ζ

(2)
1 τ)ϑ4(0)

+ i
(

N̄1N3Tf o(ζ
(1)
3 τ,−ζ (2)

1 τ, 0) + N̄1N̄3Tf o(−ζ (1)
3 τ,−ζ (2)

1 τ, 0)
) k(2)

1 η3

ϑ4(ζ
(1)
3 τ)ϑ1(−ζ (2)

1 τ)ϑ4(0)

− i
(

N2N3Tgo(ζ
(1)
3 τ, 0, ζ (3)

2 τ) + N2N̄3Tgo(−ζ (1)
3 τ, 0, ζ (3)

2 τ)
) k(1)

3 η3

ϑ4(ζ
(1)
3 τ)ϑ4(0)ϑ1(ζ

(3)
2 τ)

+ i
(

N̄2N̄3Tgo(−ζ (1)
3 τ, 0,−ζ (3)

2 τ) + N̄2N3Tgo(ζ
(1)
3 τ, 0,−ζ (3)

2 τ)
) k(1)

3 η3

ϑ4(ζ
(1)
3 τ)ϑ4(0)ϑ1(−ζ (3)

2 τ)
,

(3.3.42)

8A2 =− iN2
1 W1P3Too(0, 2ζ (2)

1 τ, 0)
2k(2)

1 η

ϑ1(2ζ (2)
1 τ)

+ iN̄2
1 W1P3Too(0,−2ζ (2)

1 τ, 0)
2k(2)

1 η

ϑ1(−2ζ (2)
1 τ)

− iN2
2 P1W2Too(0, 0, 2ζ (3)

2 τ)
2k(3)

2 η

ϑ1(2ζ (3)
2 τ)

+ iN̄2
2 P1W2Too(0, 0,−2ζ (3)

2 τ)
2k(3)

2 η

ϑ1(−2ζ (3)
2 τ)

− iN2
3 P2W3Too(2ζ (1)

3 τ, 0, 0)
2k(1)

3 η

ϑ1(2ζ (1)
3 τ)

+ iN̄2
3 P2P3Too(−2ζ (1)

3 τ, 0, 0)
2k(1)

3 η

ϑ1(−2ζ (1)
3 τ)

. (3.3.43)

Exactly the same comments as those under eqs. (3.3.24) to (3.3.26) apply here. The Möbius
contributions have similar forms as those in eqs. (3.3.27) and (3.3.28), and are omitted
here since they play no role in our arguments. They act as for the single magnetized
brane of the previous paragraph, generating states in antisymmetric representations of
the gauge groups. They also modify the chiral fermion multiplicity described around
equation (3.3.30).

The masses of the lowest-lying states of the spectrum are shown in the following table

D71 D72 D73

D71 α′m2 = −2|ζ (2)
1 | α′m2 = |ζ (3)

2 | − |ζ (2)
1 | α′m2 = |ζ (2)

1 | − |ζ
(1)
3 |

D72 α′m2 = −2|ζ (3)
2 | α′m2 = |ζ (1)

3 | − |ζ (3)
2 |

D73 α′m2 = −2|ζ (1)
3 |

We see that two different kinds of states appear: the D7a–D7a (doubly charged) states,
and the mixed D7a–D7b ones, with a 6= b. The mass of the former can be uplifted as in
the previous subsection and will be explained below. We can use neither Wilson lines nor
brane separations to increase the mixed states masses, since these can be introduced only
in directions without magnetic fields, i.e. along both worldvolumes (for Wilson lines), or
transverse to both stacks (for separations). In the directions along the magnetic field, zero
modes of gauge potentials are gauge artifacts and thus unphysical. We must then specify
the fields H(i)

a in order to eliminate the tachyons, at least at large volumes. By a simple
inspection of the table above, it follows that the only way to eliminate all three potential
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tachyons in the D7a–D7b brane intersections is to choose

|ζ (2)
1 | = |ζ

(3)
2 | = |ζ (1)

3 |. (3.3.44)

The corresponding lowest-lying states then become massless.
As for a the single magnetized brane, to uplift the tachyons on the D7a–D7a sectors,

we can introduce distance separations between branes and their images (in the direction
orthogonal to their worldvolume), or Wilson lines i.e. constant background gauge fields
(on the unmagnetised worldvolume torus). We show below a configuration keeping only
one potential tachyonic state that can play the role of the waterfall field:

(45) (67) (89)
D71 · ⊗ ×
D72 × · ⊗
D73 ⊗ × ·

−−−−−−−−→
(45) (67) (89)

D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ ×A3 ·

Using the notation of the previous subsection, we introduce (discrete) Wilson lines along
the third torus T2

3 for the D71 stack and along the second torus T2
2 for the D73 stack, while

we separate the D72 stack from its orientifold image in its transverse directions. The
masses for the double charge states in the three brane stacks now become:

α′m2
11 = −2|ζ (2)

1 |+
α′a2

1
A3
≈ −2α′|k(2)

1 |
πA2

+
α′a2

1
A3
≈ − 2|k(2)

1 |
πr2V1/3 +

a2
1

r3V1/3 , (3.3.45)

α′m2
22 = −2|ζ (3)

2 |+
yA2

α′
≈ −2α′|k(3)

2 |
πA3

+
yA2

α′
= − 2|k(3)

2 |
πr3V1/3 + yr2V1/3, (3.3.46)

α′m2
33 = −2|ζ (1)

3 |+
α′a2

3
A2
≈ −2α′|k(1)

3 |
πA1

+
α′a2

3
A2
≈ − 2|k(1)

3 |
πr1V1/3 +

a2
3

r2V1/3 . (3.3.47)

To obtain the second equality of each equation we used large volume expansions for
ζ (j)

a as in eq. (3.3.36). The Wilson lines and brane position parameters are defined as in
eqs. (3.3.33) and (3.3.34). Similarly to the single magnetic field case, by choosing appro-
priately a1, a3, and the values of the magnetic fluxes |k(2)

1 | and |k(1)
3 |, one can eliminate the

D71–D71 and D73–D73 tachyons. For instance, as explained after eq. (3.3.38), for ai = 1/2
typical for Z2 orbifolds, this requires flux numbers smaller than wrapping numbers. On
the other hand, the D72–D72 state becomes tachyonic at and below a critical value of the
volume that can be chosen to be around V−, defined in (4.2.41)), as required for the wa-
terfall field.

Magnetic fields on entire worldvolumes In the previous case we saw that in order to
eliminate the mixed-state tachyons from brane intersections we had to impose condition
(3.3.44). We now relax this condition by introducing magnetic fields in all worldvolume
tori as shown below:

(45) (67) (89)
D71 · ⊗ ⊗
D72 ⊗ · ⊗
D73 ⊗ ⊗ ·

The masses of the potential tachyonic states can be extracted by computing the annulus
amplitude as done before and they are shown in the following table:
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D71 D72 D73

D71 α′m2 = −2
∣∣ζ (2)

1 + ζ (3)
1

∣∣ α′m2 =
∣∣ζ (3)

1 ± ζ (3)
2

∣∣−
∣∣ζ (2)

1 ± ζ (1)
2

∣∣ α′m2 =
∣∣ζ (2)

1 ± ζ (2)
3

∣∣−
∣∣ζ (3)

1 ± ζ (1)
3

∣∣

D72 α′m2 = −2
∣∣ζ (1)

2 + ζ (3)
2

∣∣ α′m2 =
∣∣ζ (1)

2 ± ζ (1)
3

∣∣−
∣∣ζ (3)

2 ± ζ (2)
3

∣∣

D73 α′m2 = −2
∣∣ζ (1)

3 + ζ (2)
3

∣∣

where the ± signs in the same equality have to be identical (e.g. if the first ± is a +, the
second is a + as well.)

The mixed states D7a–D7b, a 6= b can be eliminated by choosing an appropriate field
configuration, satisfying a system of inequalities defined by the positivity of the corre-
sponding mass expressions in the table:





∣∣ζ (3)
1 ± ζ (3)

2

∣∣−
∣∣ζ (2)

1 ± ζ (1)
2

∣∣ ≥ 0
∣∣ζ (2)

1 ± ζ (2)
3

∣∣−
∣∣ζ (3)

1 ± ζ (1)
3

∣∣ ≥ 0
∣∣ζ (1)

2 ± ζ (1)
3

∣∣−
∣∣ζ (3)

2 ± ζ (2)
3

∣∣ ≥ 0

(3.3.48)

This system is solved by the following configurations

(A−1) ζ (3)
1 = ζ (1)

2 = ζ (2)
3 , ζ (2)

1 = ζ (3)
2 = ζ (1)

3 ;

2) ζ (3)
1 = ζ (1)

2 = −ζ (2)
3 , ζ (2)

1 = ζ (3)
2 = −ζ (1)

3 ;

3) ζ (3)
1 = −ζ (1)

2 = ζ (2)
3 , ζ (2)

1 = −ζ (3)
2 = ζ (1)

3 ;

4) ζ (3)
1 = −ζ (1)

2 = −ζ (2)
3 , ζ (2)

1 = −ζ (3)
2 = −ζ (1)

3 ;

(B− 1) ζ (2)
1 = ζ (3)

1 , ζ (1)
2 = ζ (3)

2 , ζ (1)
3 = ζ (2)

3 ; (3.3.49)

2) ζ (2)
1 = −ζ (3)

1 , ζ (1)
2 = −ζ (3)

2 , ζ (1)
3 = −ζ (2)

3 ;

for which all inequalities are saturated and the lowest lying mixed states become massless.
For the solutions (A− i), all the doubly charged states D7a–D7a have identical tachy-

onic masses equal to α′m2 = −2
∣∣ζ (2)

1 + ζ (3)
1

∣∣, while for solution (B − 1) they can have
different masses. Solution (B− 2) is the supersymmetry preserving one, with all lowest
lying states remaining massless. In both (A − i) and (B − 1) cases, the study of tachy-
onic states and their elimination through Wilson lines and brane separations is identical
to what we did before. Nevertheless, we see that we are allowed to have more complex
configurations than with only one magnetic field on each brane.

3.4 Summary

In this chapter we reviewed crucial elements of string theory used in string phe-
nomenology. We started from a quick review of bosonic and superstring worldsheet
constructions, their light-cone gauge quantizations and the resulting mass formulae. We
described the massless spectrum of open strings and of the closed string sector of type
IIB superstrings. We then introduced the torus, Klein bottle, annulus and Möbius vac-
uum amplitudes and explained their role in constructions with unoriented strings, the
tadpole cancellation conditions they generate and their interpretations in terms of non-
perturbative objects, namely Dp branes and Op planes.

After this general introduction we focused on compactification mechanisms. They are
at the heart of string phenomenology models, as easily understood from the necessity
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to go from the ten dimensions of superstrings to our observed four-dimensional space-
time. We motivated that most of our discussions were done in the type IIB framework,
which is most convenient for string phenomenology applications, and explained the ba-
sic ingredients of circle, toroidal and Calabi-Yau compactifications, as well as the use of
orientifolding procedures to reduce supersymmetry. This led us to the subject of closed
string moduli and their stabilization, which we tackled in some detail. We recalled the im-
portance of a recently discovered quantum logarithmic correction to the Kähler potential
and motivated its use in moduli stabilization models involving D7 branes. We postponed
the cosmological implications of the low effective theory emerging from the quantum cor-
rected Kähler potential until chapter 4.

Finally, we introduced toroidal orbifold compactifications, which lead to deeper com-
prehension of the complicated Calabi-Yau compactifications. Toroidal orbifolds allow for
exact results and can be seen as singular limits (in moduli space) of CY spaces. A fa-
mous example is the T4/Z2 orbifold, which is the singular limit of K3 with moduli at the
boundary of the moduli space. General properties of toroidal orbifolds were reviewed
before exposing the explicit example of T6/Z2×Z2 and showing its vacuum amplitudes.
We then explained how internal U(1) magnetic fields can be used to break supersymme-
try through their interactions with internal spins, and lead to potential tachyons in the
spectrum.

In this context, we investigated the possibility of generating a “waterfall field”, which
we use for cosmological applications in chapter 4. This kind of field is characterized
by an internal-volume dependent mass, positive at large volumes and negative below a
certain volume. The existence of such a field comes from the combination of two types
of contributions to charged open string scalar masses: a positive supersymmetric con-
tribution corresponding to Wilson lines or brane separations, and a possibly negative
non-supersymmetric contribution coming from the presence of magnetic fields. The first
contribution can be described in the low-energy theory by a superpotential and its asso-
ciated F-term, while the second one is described by an appropriate FI term entering the
D-auxiliary component of the U(1). We come back on the effective theory description in
section 4.4.
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Chapter 4

String phenomenology and
cosmology

4.1 Early Universe Cosmology and String theory

The inflation paradigm was developed in the is 80’s [115, 116, 117] to answer sev-
eral issues of standard cosmology, i.e. cosmology with radiation and matter dominations.
Among others, the two most important ones are the horizon and the flatness problems.
The first one is related to the difficulty to explain why our Universe is so homogeneous
and isotropic, when standard cosmology tells us that we can observe points far away from
each other, in opposite directions, that have never been causally connected. Another way
to state this problem is by defining the horizon distance at some time as the distance trav-
eled by light since the Big Bang singularity. Regions of our Universe that, according to
standard cosmology, causally connect only today, or equivalently scales that “enter” the
horizon today, would then have no reason to share similar properties. The second prob-
lem is related to the small amount of curvature density observed today, which in standard
cosmology would necessarily be the result of an extreme fine-tuning of the curvature den-
sity in the past, hence the name of flatness problem.

A way to resolve these problems is called inflation and postulates a long period of
accelerated expansion of the Universe before the epoch of standard cosmology. During
this epoch, distances are blown up exponentially while the horizon is almost fixed, hence
scales exit horizon very quickly. They can then reenter it during the standard cosmology
eras. If inflation has lasted enough, scales that come back into the horizon today would
have already been inside the horizon during inflation, and this resolves the horizon prob-
lem. The flatness problem is also resolved by the fact that, during the inflationary stage,
the curvature density drops very fast. Hence, even if the curvature density started from a
large value, if inflation lasted enough, it would have reached the seemingly tuned value
needed for today’s observations. One can evaluate the minimum amount of inflation,
computed in terms of e-folds, necessary to solve these two problems.

It is easy to see, from the Friedmann equations, that inflation can be described by an
approximately constant energy density, leading to an exponential expansion in a quasi
de Sitter space. The pressure related to the source of energy must be negative in order
to have acceleration of the expansion rate. The most famous example is a scalar field,
called inflaton, rolling down a scalar potential at a sufficiently small speed. Models using
a slowly rolling scalar field are called slow-roll inflation models.

When inflation happens below the Planck scale, it can in principle be described by an
effective theory. Nevertheless, if inflation lasted for a certain amount of time, scales that
reentered the horizon today would have been sub-Planckian in the past and should thus
be described by a quantum gravity theory. The question of the description of inflation in a
UV complete quantum gravity theory, such as string theory, thus naturally arises. As we
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have explained in section 3.2.2, moduli scalar fields arise from string theory compactifica-
tions. We recall that moduli have vanishing flat scalar potential and one need to specify
moduli stabilization mechanisms in order to generate mass terms and scalar potential for
these fields. It is thus natural to study inflation in the context of moduli stabilization and
to search for an inflaton candidate between these moduli.

We will first introduce definitions and elementary facts used in scalar field inflation
models in section 4.1.1. We then review shortly in section 4.1.2 some of the problems one
has to face in string cosmology and then evoke various models studied in the past.

4.1.1 Scalar field inflation

In this section we expose general facts about scalar field inflation models. Rather than
entering the general concepts of inflation, we give a list of definitions and introduce all
the notions used in the following sections.

In first approximation, our expanding Universe is homogeneous and isotropic and can
be described by the standard 4d Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a2(t)
(

dr2

1− kr2 + dΩ2
)

, (4.1.1)

parametrized by the scale factor a(t) and curvature parameter k = −1, 0, 1. As usual, r is
a radial coordinate and here dΩ2 is the metric on a sphere.

Inflation is characterized by an accelerated expansion of the Universe and occurs when
ä > 0. The dots denote derivatives with respect to the FLRW time t. We first give the
definition of the Hubble parameter

H(t) =
ȧ
a

. (4.1.2)

We then recall the Friedmann equations, which are the Einstein equations associated to
the FLRW metric, for an expanding Universe filled with a single scalar field φ in scalar
potential V(φ). They read

3H2 =
1
2

φ̇2 + κ2V(φ), (4.1.3)

2Ḣ = −φ̇2. (4.1.4)

The Klein-Gordon equation for the scalar field in FLRW background is

φ̈ + 3Hφ̇ + κ2V ′(φ) = 0 . (4.1.5)

We recall that our φ is dimensionless. Following the Hamilton-Jacobi method [118], we
make a change of variable to take the inflaton φ as the time variable. This change of
variable is given by rewriting Ḣ = dH

dφ φ̇ in equation (4.1.4), leading to

dH
dφ

= H′(φ) = −1
2

φ̇ . (4.1.6)

Using (4.1.3) and expressing φ̇ as a function of H and V, we obtain

H′(φ) = ∓ 1√
2

√
3H2(φ)− κ2V(φ) . (4.1.7)
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We also use the exact slow-roll parameters defined as [119]

η(φ) = 2
H′′(φ)
H(φ)

, ε(φ) = − Ḣ
H2 = 2

(
H′(φ)
H(φ)

)2

. (4.1.8)

From the first expression of ε in (4.1.8), we obtain

ä
aH2 = 1− ε, (4.1.9)

so that ε < 1 is the natural criterion characterising inflation. The parameters defined in
(4.1.8) are different from their slow-roll approximations expressed in terms of the potential
only

ηV(φ) =
V ′′(φ)
V(φ)

, εV(φ) =
1
2

(
V ′(φ)
V(φ)

)2

, (4.1.10)

with slow-roll limit ε →
ε�1

εV , η →
η�1

ηV − εV .

When these two slow-roll parameters are small, φ̇ can be neglected in (4.1.3) (and φ̈ in
(4.1.5)) and we get the following Hubble constant slow-roll solution

Hsr(φ) = κ

√
V(φ)

3
. (4.1.11)

In general (slow-roll or not), the number of e-folds N before the end of inflation is
defined by

N = ln
( aend

a

)
=
∫ tend

t
Hdt =

∫ φend

φ
H

dφ

φ̇
= −1

2

∫ φend

φ

H
H′

dφ =
1√
2

∫ φ

φend

dφ√
ε

. (4.1.12)

From equation (4.1.12) we observe that in order to obtain the correct amount of e-folds
near the minimum, i.e. when V ′ = 0, we would rather use definition (4.1.8) of ε rather
than εV of (4.1.10). Nevertheless, in our study, the definition (4.1.10) of ηV is sufficient
and is the one we will use (dropping the subscript V). Indeed, we only use this slow-
roll parameter to determine when the modes exit the horizon. As we will see in the next
sections, at this point ε∗ � η∗ � 1 and thus, according to (4.1.10), the slow-roll expression
ηV gives the correct estimate.

We recall now that any model of inflation is constrained by the observed inhomo-
geneities in the energy density power spectrum, related to the temperature anisotropies
of the cosmological microwave background (CMB) radiation, or to the number density of
galaxy clusters. The three observational constraints are the following:

• In order to solve the horizon problem, inflation must last for at least 60 e-folds after
horizon exit of the interesting modes.This is at least true for high inflation scale.
Instead for lower energies, e.g. for TeV scale inflation, the required numbered of e-
folds decreases up to about 50. Considering high inflation scale we must thus obtain

N∗ =
∫ φ∗

φend

dφ√
ε
& 60. (4.1.13)

The star in N∗ or φ∗ denotes the values of variables taken at horizon exit.
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• The observed spectral index nS measuring the deviation from a scale-invariant power
spectrum, is related to the slow-roll parameters at horizon exit by

nS − 1 = 2η∗ − 6ε∗ ' −0.04 . (4.1.14)

• The spectral amplitude AS induced by observations is

AS =
κ4V∗

24π2ε∗
' 2.2× 10−9. (4.1.15)

4.1.2 String inflation scenarios

As we mentioned in the introduction of this section, scalar fields similar to the one
needed for slow-roll inflation appear naturally in string theory compactifications, they
are moduli of the theory. These massless scalar fields must be given a mass through
moduli stabilization mechanisms. If inflation is to be supported by a string modulus,
the latter must present an almost flat potential in order to satisfy slow-roll conditions. In
the meantime, other moduli must have great masses to ensure that the effective theory
describing a single inflaton scalar field is correct. The question of generating a potential
with a single flat valley, for the inflaton, with steep slopes in other moduli direction is
a prioiri not so simple because we expect that a generic stabilization mechanism would
treat the moduli in approximatively the same way. Moreover, when quantum corrections
are used to create huge masses for almost all the moduli, it is not obvious how to keep the
flatness of the inflaton potential.

Approximations Even when string theory is used to implement inflation models, one is
forced to consider it low energy limit because full non-perturbative control is impossible.
The scalar potential is usually derived in the supergravity limit obtained after a long list
of approximations, some of which we expose now. First of all, one often consider only
the lowest KK modes, which is a correct approximation as long as the different levels do
not mix. Another approximation, necessary in order to keep only the first terms in string
loop expansion, is that the string coupling gs is small. As we explained in section 3.2.3,
loop corrections are nevertheless often used to generate a potential for the moduli and
it is important to evaluate if the neglected corrections are indeed small compared to the
considered one. A similar approximation takes place with the α′ expansion of the back-
ground fields formulations of the worldsheet theory. The background field variations
must remain small compared to the string scale. Finally, when non-perturbative objects
are employed in the string setup, such as Dp branes in Type IIB compactifications, one
often consider them static and neglect their back reaction on the internal manifold geom-
etry.

Hence one major issue in string phenomenology, and string cosmology, is to deal with
these approximations and inspect how much they influence the low energy predictions,
in particular, the inflationary phase. In order all these approximations to be valid and
for inflation to be described by a low energy supergravity approximation of string theory,
one need at least the following hierarchy of scales

MSUSY < Hinflation < MKK <
1√
α′

< MPl. (4.1.16)
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The last inequality is obtained by writing the 4d Planck mass with respect to the internal
volume and the string length, as in (4.4.5), once the small gs regime is imposed. A discus-
sion on the pros and cons as well as the approximations of type IIB superstring theory to
construct dS spaces can be found in the recent review of [120].

de Sitter spaces Another issue important in string cosmology is the value of the cosmo-
logical constant, which can be negative, vanishing or positive, leading to an Anti-de Sitter
(AdS), Minkowski (M) or de Sitter (dS) space. Cosmological observations today tend to-
wards a tiny positive value of the cosmological constant, or dark energy, hence suggesting
that we live in a dS Universe. In generic supergravity setups dS vacua are not obvious
to obtain because of the form of the scalar potential (3.2.23) and its negative contribution
quadratic in the superpotential magnitude. If one imposes supersymmetry, only this sec-
ond contribution is non-vanishing at the minimum, and as the D-part of the potential also
vanishes, we get a AdS space related to the constant superpotentialW0. Thus, dS spaces
can only be obtained through supersymmetry breaking, as it was already clear from the
global SUSY discussion of Chapter 2. SUSY breaking must be realized in a controlled way,
in the string theory sense. We already evoked methods to obtain dS vacua in section 3.2.
These methods are nevertheless subject to controverse, questioning in particular the va-
lidity of the approximations used to uplift the AdS vacuum. The use of D3 branes and
their backreaction on the space-time geometry is one of the strongest criticism [121, 122].
The fact that dS space is difficult to obtain in effective theories describing the low energy
regime of string theory even led recently to a set of conjectures [123, 124, 125] stating that
effective theories with stable dS minimum belong to the string theory “swampland”, i.e.
they are not compatible with a string theory UV completion. The only way to obtain
a positive dark energy would then be through quintessence models. Again, the review
[120] tackles these aspects in details.

String cosmology models We conclude this section by listing shortly models and ingre-
dients that have been developed to address cosmology through string theory. Reviews
on string cosmology can be found for instance in [126, 127, 128, 129]. The string gas cos-
mology, explaining our number of spatial dimensioins through winding modes annihila-
tions, was developed in [130]. Braneworld cosmology scenarios [131, 132, 133, 134] were
rapidly related to string theory setups with branes and antibranes configurations generat-
ing a scalar potential for the position moduli [135, 136, 137]. Alternatives to inflation were
studied through the ekpyrotic and cyclic Universe scenarios [138, 139, 140]. Application
of the KKLT moduli stabilization scenario to cosmology was initiated in [141] and study
of the specificities of Kähler moduli inflation in [142].

4.2 Inflation from D7-branes moduli stabilization

This section is devoted to the study of cosmological inflation, in a class of effective
models emerging in the framework of type IIB moduli stabilization with the logarithmic
corrections introduced in section 3.2.3. Our first goal is to investigate the possibility of
realistic inflation without imposing the present tiny value of the vacuum energy at the
minimum of the scalar potential. We will then address this issue in sections 4.3 to 4.5, to-
gether with the question of the end of the inflationary phase, by introducing a “waterfall”
field in the context of hybrid inflation.

In section 4.2.1 we introduce the ingredients used to ensure moduli stabilization with
the aforementioned logarithmic quantum corrections, and derive the expression of the
effective scalar potential. In the simplest case, the scalar potential of the effective four
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dimensional theory can be expressed in terms of the volume modulus, which we will
identify to the inflaton, and two other orthogonal combinations of Kähler moduli fields.
As we show in section 4.2.2, essentially only one free parameter, denoted x, controls the
shape of the potential and in particular delimits its two extrema. More precisely, the
requirement of a dS minimum confines x in a very small region where the potential stays
almost flat, and the two extrema of the potential are very close to each other.

In this restrictive context, we investigate in section 4.2.3 the possible implementations
of inflationary scenarios. We start by examining various existing inflationary scenarios
including in particular hilltop inflation. Varying x, we adjust the value of the slow-roll
parameter η so that inflation starts near the maximum with the correct value of the spec-
tral index. However in this case the slow-roll parameters remain small all the way to the
minimum and inflation doesn’t stop, producing much more than the required 60 e-folds.
Alternatively, imposing the correct number of e-folds, the resulting spectral index does
not reproduce the observable value. Hilltop inflation is thus ruled out. We then proceed
with a novel proposal where the horizon exit occurs near the inflection point of the po-
tential and inflation takes place essentially near its minimum, with the required number
of e-folds being produced. This is a reasonable and completely justifiable assumption, in
analogy with the concept of hilltop inflation. Both are characterised with the property that
the slow-roll parameter ε is negligible at both extrema and consequently, a short interval
of the inflaton trajectory is enough to accumulate the required number of e-folds. We find
that an inflationary phase is feasible near the minimum and the desired number of e-folds
can readily be achieved. This model also predicts a ratio of tensor-to-scalar primordial
fluctuations r ' 4× 10−4. Moreover, because of the proximity of the two extrema of the
potential, the inflaton is restricted to a short range of values ensuring small field inflation,
compatible with the validity of the effective field theory.

On the other hand, since the minimum is generated from quantum corrections, it is
metastable and is expected to decay to the true minimum in the runaway direction of large
volume. We perform in section 4.2.5 an estimate of its lifetime due to either tunnelling by
the Coleman-de Lucia instanton [143, 144], or passing over the barrier by the Hawking-
Moss instanton [145]. Our analysis shows that, in the x-region where inflation is viable,
the false vacuum decay is due to the latter, leading to an extremely long lifetime.

4.2.1 Type IIB model of intersecting D7-branes and moduli stabilization

We come back on a moduli stabilization model developed in [107] within the type
IIB string framework in presence of logarithmic quantum corrections. Complex structure
moduli and the dilaton are supposed to be stabilised in the standard supersymmetric
way by turning on 3-form fluxes, as described in section 3.2.2. The model takes into
account the quantum corrections in a three intersecting D7 branes configuration [106]. As
explained in section 3.2.3 these corrections break the no-scale structure of the effective
theory and give a non-zero contribution to the F-part of the supergravity scalar potential.
If one also considers the U(1) anomalous symmetries of the D7 branes, Fayet-Iliopoulos
D-terms must be introduced in the scalar potential [94] and can be used to uplift the scalar
potential to a de Sitter minimum, with all Kähler moduli stabilised.

We denote by τi for i = 1, 2, 3 the real parts of the D7-branes worldvolume Kähler
moduli, and for simplicity we drop their imaginary parts which are absorbed by the
anomalous U(1)’s to become massive, and play no role in the minimization procedure.
The Kähler potential of the model [107] was given in (3.2.34) and we recall it here

K = − 2
κ2 ln

(
(τ1τ2τ3)

1
2 + ξ +

3

∑
k=1

γk ln(τk)

)
= − 2

κ2 ln (V + ξ + γ lnV) . (4.2.1)
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The compactification volume V is expressed from the τi simply as

V = (τ1τ2τ3)
1
2 . (4.2.2)

In fact, some dilaton dependence is hidden in the τi moduli, but do not play any role after
moduli stabilization from fluxes. We recall that ξ is an α′3 correction and that γi are model
dependant parameters for the logarithmic quantum corrections associated with the D7
branes [106]. Both these corrections were introduced in section 3.2.3. As in eq. (3.2.34), in
the last equality of eq. (4.2.1), we took identical γk for simplicity, given by

γ1 = γ2 = γ3 ≡
γ

2
= −1

2
gsT0 ξ, (4.2.3)

where T0/gs is the effective D7-brane tension. Note the minus sign in the last equality of
(4.2.3).

One can extract the F-part of the scalar potential using the supergravity formula (3.2.23)
with Kähler potential (4.2.1) and a constant superpotential contributionW0 left over from
the 3-form fluxes upon the complex structure moduli stabilization, described in section 3.2.2.
The F-part depends only on the volume V and after defining µ = exp(ξ/2γ), its exact ex-
pression is

VF =
3γW2

0
κ4

2(γ + 2V) + (4γ− V) ln(µV)
(V + 2γ ln(µV))2 (6γ2 + V2 + 8γV + γ(4γ− V) ln(µV))

, (4.2.4)

In the large volume limit, VF takes the much simpler form

VF =
3W2

0
2κ4V3 (2γ(lnV − 4) + ξ) + · · · (4.2.5)

The D-part of the scalar potential coming from the D7 branes can also be expressed
very simply in the large worldvolume limit

VD =
d1

κ4τ3
1
+

d2

κ4τ3
2
+

d3

κ4τ3
3
+ · · · (4.2.6)

where the di for i = 1, 2, 3 are model dependent constants related to the U(1) anomalies.
Contrary to the F-part, this D-part depends on the three τi fields. Instead of these Kähler
moduli we will rather work with the canonically normalized fields

ti =
1√
2

ln(τi), (4.2.7)

from which we obtain the following base, after isolating the volume from the two other
perpendicular directions

φ =
1√
3
(t1 + t2 + t3) =

√
6

3
ln(V), (4.2.8)

u =
1√
2
(t1 − t2), (4.2.9)

v =
1√
6
(t1 + t2 − 2t3). (4.2.10)
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In terms of these fields, the D-part of the potential (4.2.6) reads

VD =
e−
√

6φ

κ4

(
d1e−

√
3v−3u + d2e−

√
3v+3u + d3e2

√
3v
)
+ · · · (4.2.11)

so that the total scalar potential is

VF + VD =
3W2

0
2κ4 e−3

√
3
2 φ
(

γ
(√

6φ− 4
)
+ ξ
)

+
e−
√

6φ

κ4

(
d1e−

√
3v−3u + d2e−

√
3v+3u + d3e2

√
3v
)
+ · · · (4.2.12)

4.2.2 Local de Sitter minimum

We study now the minimum of the scalar potential (4.2.12). The field φ will be asso-
ciated with the inflaton and its evolution will determine the inflation era. We must then
stabilise the two other canonically normalized fields u, v at their values u0 and v0 dictated
by the minimization of VD in (4.2.6). Their values at the minimum read

u0 =
1
6

ln
(

d1

d2

)
, v0 =

1
6
√

3
ln
(

d1d2

d2
3

)
, (4.2.13)

for which the potential VD becomes

VD(φ, u0, v0) =
3(d1d2d3)

1
3

κ4V2 =
d

κ4V2 =
d
κ4 e−

√
6φ, (4.2.14)

with d ≡ 3(d1d2d3)
1
3 . Hence after stabilization of the two transverse moduli, the total

scalar potential reduces in the large volume limit to

V(V) = VF + VD '
3W2

0
2κ4V3 (2γ(lnV − 4) + ξ) +

d
κ4V2 ≡

C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
,

(4.2.15)

where we defined
q ≡ ξ

2γ
, σ ≡ 2d

9W0
2γ

, C ≡ −3W0
2γ > 0. (4.2.16)

The last inequality is obtained for γ < 0, which is a condition for a dS vacuum to exist at
large volume, as we explain below. The parameter q essentially shifts the local extrema
towards large volumes. It is essential in the string context but does not play a role for
inflation. Thus, for simplicity, we will take it zero in the numerical study of section 4.2.3,
before coming back to its significance in section 4.2.4. C is an overall constant which plays
no role in the minimization but will be related to the observed spectral amplitude, when
the model is considered as a candidate for an inflationary scenario. Thus, σ is the only
effective parameter of the model.

In section 4.2.3 we will study the inflationary possibilities from the above model. The
inflaton will be identified with the canonically normalized φ/κ, thus we express here the
potential (4.2.15) in terms of the (dimensionless) inflaton φ

V(φ) ' − C
κ4 e−3

√
3
2 φ

(√
3
2

φ− 4 + q +
3
2

σe
√

3
2 φ

)
. (4.2.17)
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We emphasize again that φ is dimensionless. In order to minimize and study the slow-roll
parameters we compute the first two derivatives of V. From (4.2.17) we get

V ′(φ) = 3

√
3
2

C
κ4 e−3

√
3
2 φ

(√
3
2

φ + q− 13
3

+ σe
√

3
2 φ

)
, (4.2.18)

V ′′(φ) = −27
2

C
κ4 e−3

√
3
2 φ

(√
3
2

φ + q− 14
3

+
2
3

σe
√

3
2 φ

)
. (4.2.19)

Solving V ′(φ) = 0 leads to the two solutions

φ− = −
√

2
3

(
q− 13

3
+ W0

(
−e−x−1

))
, (4.2.20)

φ+ = −
√

2
3

(
q− 13

3
+ W−1

(
−e−x−1

))
, (4.2.21)

with φ− the local minimum and φ+ the local maximum, with φ− < φ+. W0/−1 are the
two branches of the Lambert function (or product logarithm) and x is defined through the
relation

x ≡ q− 16
3
− ln(−σ) ↔ σ = −eq− 16

3 −x. (4.2.22)

As mentioned above, it is clear from (4.2.20) and (4.2.21) that when x is kept constant,
varying q shifts the local extrema. The critical value xc ' 0.072132 gives a Minkowski
minimum, i.e. with V(φ−) = 0. The region 0 < x < xc gives a dS minimum and x > xc
gives an AdS one. The region x < 0 corresponds to the case where the two branches of the
Lambert function join and the potential loses its local extrema. The shape of the potential
in the three regimes is shown in Figure 4.1.

The values of the potential and its derivatives at the extrema can be derived from
(4.2.20) and (4.2.21):

V(φ−/+) = −
C

6κ4 e−13+3q+3W0/−1(−e−x−1)
(

2 + 3W0/−1(−e−x−1)
)

, (4.2.23)

V ′(φ−/+) = 0, (4.2.24)

V ′′(φ−/+) =
9C
2κ4 e−13+3q+3W0/−1(−e−x−1)

(
1 + W0/−1(−e−x−1)

)
. (4.2.25)

Firstly, from (4.2.23) we see that only the parameter x determines the ratio between the
values of the potential at the extrema. Indeed we get

V(φ+)

V(φ−)
=

(
W0(−e−x−1)

)3 (2 + 3W−1(−e−x−1)
)

(W−1(−e−x−1))
3
(2 + 3W0(−e−x−1))

. (4.2.26)

This ratio is plotted in the left panel of Figure 4.2. Secondly, we see that at the two extrema,
the slow-roll parameter ηV = V′′

V also depends on x only. It reads

η(φ−/+) =
V ′′(φ−/+)

V(φ−/+)
= −9

1 + W0/−1(−e−x−1)
2
3 + W0/−1(−e−x−1)

. (4.2.27)

Again, from (4.2.27) and (4.2.26) we see that x is the only important parameter of the
model for the shape of the potential. From Figure 4.2 we see that as soon as x . 0.05
there is no scale separation anymore between the values of the potential at the two local
extrema.
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))

+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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. (19)

Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
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for which the VD potential becomes
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1
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d
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d
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with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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with
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, r ⌘ 2d
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2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f)⇡� C
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3
2 f
 r
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2
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2 f
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)
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gk ln(tk)
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. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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3
(t1 + t2 + t3) =
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u =
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2
(t1� t2), (15)

v =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
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Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-
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parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +
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Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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2(g+2V )+(4g�V ) ln(µV )
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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In the large volume limit we obtain the simpler expres-
sion
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with
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
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ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base
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v =
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Taking
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for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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k2 ln
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gk ln(tk)
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. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =
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u =
1p
2
(t1� t2), (15)

v =
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(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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gk ln(tk)

!
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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(t1 + t2 + t3) =
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u =
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(t1� t2), (15)

v =
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(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)
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Â
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +
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Â
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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2(g+2V )+(4g�V ) ln(µV )
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�
p

6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘

. (19)

Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
6

ln
✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes

VD(t,u0,v0) =
3(d1d2d3)

1
3

k4V 2 =
d

k4V 2 =
d

k4 e�
p

6t , (21)

with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))

+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion

V (V )⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
� logV �4+q

V 3 � 3r
2V 2

◆
, (23)

with

q⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f)⇡� C
k4 e�3

q
3
2 f
 r

3
2

f �4+q+
3
2

re
q

3
2 f
!

. (25)

In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3

r
3
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 13
3

+ re
q

3
2 f
!

,

(26)

V 00(f) =�27
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 14
3

+
2
3

re
q

3
2 f
!

.

(27)

Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)2 3

Sc
al

ar
po

te
nt

ia
lf

ro
m

D
7-

br
an

es
m

od
ul

is
ta

bi
lis

at
io

n

T
he

K
äh

le
rp

ot
en

tia
lo

ft
he

m
od

el
is

[3
]

K
=
�

2 k2
ln

 
(t

1t
2t

3)
1 2
+

x
+

3 Â k=
1
g k

ln
(t

k)

!
.

(1
2)

St
ar

tin
g

fr
om

th
e

re
al

pa
rt

s
t i

of
th

e
K

äh
le

r
m

od
ul

if
or

th
e

th
re

e
m

ag
ne

tis
ed

D
7

br
an

es
,w

e
ca

n
de

fin
e

th
e

no
rm

al
is

ed
fie

ld
s

t i
=

1 p
2

ln
(t

i)
.

(1
3)

Is
ol

at
in

g
th

e
vo

lu
m

e
fr

om
th

e
tw

o
ot

he
rp

er
pe

nd
ic

ul
ar

di
re

c-
tio

ns
w

e
ob

ta
in

th
e

fo
llo

w
in

g
ba

se

t=
1 p
3
(t

1
+

t 2
+

t 3
)
=

p
6 3

ln
(V

),
(1

4)

u
=

1 p
2
(t

1
�

t 2
),

(1
5)

v
=

1 p
6
(t

1
+

t 2
�

2t
3)

.
(1

6)

Ta
ki

ng

g 1
=

g 2
=

g 3
⌘

g
(1

7)

fo
r

si
m

pl
ic

ity
an

d
de

fin
in

g
µ

=
e

x 2g
,o

ne
ca

n
ex

tr
ac

tt
he

F-
pa

rt
of

th
e

sc
al

ar
po

te
nt

ia
lf

ro
m

(1
2)

.I
td

ep
en

ds
on

ly
of

th
e

vo
lu

m
e

V
(o

re
qu

iv
al

en
tly

th
e

m
od

ul
us

t)
an

d
re

ad
s

V F
=
�

3g
W

2 0
k4

2(
g+

2V
)+

(4
g�

V
)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2 (

6g
2 +

V
2 +

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )
.

(1
8)

T
he

D
-p

ar
t

of
th

e
sc

al
ar

po
te

nt
ia

l
co

m
in

g
fr

om
th

e
D

7
flu

xe
d

br
an

es
re

ad
s

in
th

e
la

rg
e

vo
lu

m
e

lim
it

V D
⇡

d 1 k4
t3 1

+
d 2 k4

t3 2
+

d 3 k4
t3 3

=
e�
p

6t

k4
⇣ d 1

e�
p

3v
�

3u
+

d 2
e�
p

3v
+

3u
+

d 3
e2p

3v
⌘ .

(1
9)

C
on

tr
ar

y
to

th
e

F-
pa

rt
V F

,t
he

D
-p

ar
tV

D
de

pe
nd

so
n

th
e

th
re

e
m

od
ul

it
,u

an
d

v.
W

he
n

co
ns

id
er

in
g

th
e

vo
lu

m
e

as
th

e
po

ss
i-

bl
e

in
fla

to
n,

w
e

pl
ac

e
th

e
tw

o
ot

he
r

m
od

ul
ia

tt
he

ir
m

in
im

al
va

lu
es

u 0
an

d
v 0

di
ct

at
ed

by
th

e
m

in
im

is
at

io
n

of
V D

in
(1

9)
.

T
he

ir
m

in
im

al
va

lu
es

re
ad

u 0
=

1 6
ln
✓

d 1 d 2

◆
,

v 0
=

1
6p

3
ln
✓

d 1
d 2 d2 3

◆
,

(2
0)

fo
rw

hi
ch

th
e

V D
po

te
nt

ia
lb

ec
om

es

V D
(t

,u
0,

v 0
)
=

3(
d 1

d 2
d 3

)
1 3

k4
V

2
=

d
k4

V
2

=
d k4

e�
p

6t
,

(2
1)

w
ith

d
⌘

3(
d 1

d 2
d 3

)
1 3
.

H
en

ce
af

te
r

st
ab

ili
sa

tio
n

of
th

e
tw

o
tr

an
sv

er
se

m
od

ul
i,

th
e

to
ta

ls
ca

la
rp

ot
en

tia
lr

ed
uc

es
to

V
=

V F
+

V D

⇡
�

3g
W

2 0
k4

2(
g+

2V
)+

(4
g�

V
)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2 (

6g
2 +

V
2 +

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )

+
d

k4
V

2
.

(2
2)

In
th

e
la

rg
e

vo
lu

m
e

lim
it

w
e

ob
ta

in
th

e
si

m
pl

er
ex

pr
es

-
si

on

V
(V

)
⇡

3W
2 0

2k
4 V

3
(2

g(
lo

g
V
�

4)
+

x)
+

d
k4

V
2

⌘
C k4

✓ �
lo

g
V
�

4
+

q
V

3
�

3r 2V
2

◆
,

(2
3)

w
ith

q
⌘

x 2g
,

r
⌘

2d
9W

02 g
<

0,
C
⌘
�

3W
02 g

>
0.

(2
4)

T
he

q
pa

ra
m

et
er

es
se

nt
ia

lly
sh

if
ts

th
e

lo
ca

le
xt

re
m

a
to

w
ar

s
la

rg
e

vo
lu

m
es

.C
is

an
ov

er
al

lc
on

st
an

tw
hi

ch
pl

ay
s

no
ro

le
in

th
e

m
od

el
bu

ti
s

gi
ve

n
by

th
e

am
pl

itu
de

sp
ec

tr
um

ob
er

va
-

tio
n.

4
Po

te
nt

ia
lm

in
im

um
,m

ax
im

um
an

d
sl

ow
-r

ol
l

pa
ra

m
et

er
s

In
th

e
fo

llo
w

in
g

se
ct

io
ns

w
e

w
ill

st
ud

y
th

e
in

fla
tio

na
ry

po
s-

si
bi

lit
ie

s
fr

om
th

e
ab

ov
e

m
od

el
.

T
he

in
fla

to
n

w
ill

be
id

en
-

tifi
ed

to
th

e
ca

no
ni

ca
lly

no
rm

al
is

ed
m

od
ul

us
t,

w
hi

ch
w

e
de

no
te

f
fr

om
no

w
on

.H
en

ce
w

e
ca

n
ex

pr
es

s
(2

3)
in

te
rm

s
of

th
e

in
fla

to
n

f
(w

hi
ch

ag
ai

n,
is

th
e

to
ta

lv
ol

um
e

m
od

ul
us

t)
.I

tr
ea

ds

V
(f

)
⇡
�

C k4
e�

3q
3 2

f
 
r

3 2
f
�

4
+

q
+

3 2
re
q

3 2
f
!

.
(2

5)

In
or

de
r

to
m

in
im

iz
e

an
d

st
ud

y
th

e
sl

ow
-r

ol
lp

ar
am

et
er

s
w

e
co

m
pu

te
th

e
fir

st
tw

o
de

riv
at

iv
es

of
V

.F
ro

m
(2

5)
w

e
ge

t

V
0 (

f)
=

3r
3 2

C k4
e�

3q
3 2

f
 
r

3 2
f

+
q
�

13 3
+

re
q

3 2
f
!

, (2
6)

V
00 (

f)
=
�

27 2
C k4

e�
3q

3 2
f
 
r

3 2
f

+
q
�

14 3
+

2 3
re
q

3 2
f
!

. (2
7)

So
lv

in
g

V
0 (

f)
=

0
le

ad
s

to
th

e
tw

o
so

lu
tio

ns

f +
=
�
r

2 3

✓ q
�

13 3
+

W
0
� �

e�
x�

1�
◆

,
(2

8)

f �
=
�
r

2 3

✓ q
�

13 3
+

W
�

1
� �

e�
x�

1�
◆

,
(2

9)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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(t1 + t2 + t3) =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
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2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
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in the model but is given by the amplitude spectrum oberva-
tion.
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In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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2(g+2V )+(4g�V ) ln(µV )
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.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
6

ln
✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))

+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion

V (V )⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
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V 3 � 3r
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, (23)

with

q⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f)⇡� C
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q
3
2 f
 r
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f �4+q+
3
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3
2 f
!

. (25)

In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3

r
3
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C
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q
3
2 f
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f +q� 13
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+ re
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3
2 f
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(26)
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k4 e�3

q
3
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2

f +q� 14
3

+
2
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re
q

3
2 f
!

.

(27)

Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
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k4t3
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3
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⇣
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p
3v
⌘
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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1
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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In the large volume limit we obtain the simpler expres-
sion
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2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)
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gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
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✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes
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with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
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In the large volume limit we obtain the simpler expres-
sion
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with
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, r ⌘ 2d
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< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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2 f
 r
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�
p

6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘

. (19)

Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
6

ln
✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes

VD(t,u0,v0) =
3(d1d2d3)

1
3

k4V 2 =
d

k4V 2 =
d

k4 e�
p

6t , (21)

with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))

+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion

V (V )⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
� logV �4+q

V 3 � 3r
2V 2

◆
, (23)

with

q⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f)⇡� C
k4 e�3

q
3
2 f
 r

3
2

f �4+q+
3
2

re
q

3
2 f
!

. (25)

In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3

r
3
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 13
3

+ re
q

3
2 f
!

,

(26)

V 00(f) =�27
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 14
3

+
2
3

re
q

3
2 f
!

.

(27)

Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2 3
Sc

al
ar

po
te

nt
ia

lf
ro

m
D

7-
br

an
es

m
od

ul
is

ta
bi

lis
at

io
n

T
he

K
äh

le
rp

ot
en

tia
lo

ft
he

m
od

el
is

[3
]

K
=
�

2 k2
ln

 
(t

1t
2t

3)
1 2
+

x
+

3 Â k=
1
g k

ln
(t

k)

!
.

(1
2)

St
ar

tin
g

fr
om

th
e

re
al

pa
rt

s
t i

of
th

e
K

äh
le

r
m

od
ul

if
or

th
e

th
re

e
m

ag
ne

tis
ed

D
7

br
an

es
,w

e
ca

n
de

fin
e

th
e

no
rm

al
is

ed
fie

ld
s

t i
=

1 p
2

ln
(t

i)
.

(1
3)

Is
ol

at
in

g
th

e
vo

lu
m

e
fr

om
th

e
tw

o
ot

he
rp

er
pe

nd
ic

ul
ar

di
re

c-
tio

ns
w

e
ob

ta
in

th
e

fo
llo

w
in

g
ba

se

t=
1 p
3
(t

1
+

t 2
+

t 3
)
=

p
6 3

ln
(V

),
(1

4)

u
=

1 p
2
(t

1
�

t 2
),

(1
5)

v
=

1 p
6
(t

1
+

t 2
�

2t
3)

.
(1

6)

Ta
ki

ng

g 1
=

g 2
=

g 3
⌘

g
(1

7)

fo
r

si
m

pl
ic

ity
an

d
de

fin
in

g
µ

=
e

x 2g
,o

ne
ca

n
ex

tr
ac

tt
he

F-
pa

rt
of

th
e

sc
al

ar
po

te
nt

ia
lf

ro
m

(1
2)

.I
td

ep
en

ds
on

ly
of

th
e

vo
lu

m
e

V
(o

re
qu

iv
al

en
tly

th
e

m
od

ul
us

t)
an

d
re

ad
s

V F
=
�

3g
W

2 0
k4

2(
g+

2V
)+

(4
g�

V
)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2 (

6g
2 +

V
2 +

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )
.

(1
8)

T
he

D
-p

ar
t

of
th

e
sc

al
ar

po
te

nt
ia

l
co

m
in

g
fr

om
th

e
D

7
flu

xe
d

br
an

es
re

ad
s

in
th

e
la

rg
e

vo
lu

m
e

lim
it

V D
⇡

d 1 k4
t3 1

+
d 2 k4

t3 2
+

d 3 k4
t3 3

=
e�
p

6t

k4
⇣ d 1

e�
p

3v
�

3u
+

d 2
e�
p

3v
+

3u
+

d 3
e2p

3v
⌘ .

(1
9)

C
on

tr
ar

y
to

th
e

F-
pa

rt
V F

,t
he

D
-p

ar
tV

D
de

pe
nd

so
n

th
e

th
re

e
m

od
ul

it
,u

an
d

v.
W

he
n

co
ns

id
er

in
g

th
e

vo
lu

m
e

as
th

e
po

ss
i-

bl
e

in
fla

to
n,

w
e

pl
ac

e
th

e
tw

o
ot

he
rm

od
ul

ia
tt

he
ir

m
in

im
al

va
lu

es
u 0

an
d

v 0
di

ct
at

ed
by

th
e

m
in

im
is

at
io

n
of

V D
in

(1
9)

.
T

he
ir

m
in

im
al

va
lu

es
re

ad

u 0
=

1 6
ln
✓

d 1 d 2

◆
,

v 0
=

1
6p

3
ln
✓

d 1
d 2 d2 3

◆
,

(2
0)

fo
rw

hi
ch

th
e

V D
po

te
nt

ia
lb

ec
om

es

V D
(t

,u
0,

v 0
)
=

3(
d 1

d 2
d 3

)
1 3

k4
V

2
=

d
k4

V
2

=
d k4

e�
p

6t
,

(2
1)

w
ith

d
⌘

3(
d 1

d 2
d 3

)
1 3
.

H
en

ce
af

te
r

st
ab

ili
sa

tio
n

of
th

e
tw

o
tr

an
sv

er
se

m
od

ul
i,

th
e

to
ta

ls
ca

la
rp

ot
en

tia
lr

ed
uc

es
to

V
=

V F
+

V D

⇡
�

3g
W

2 0
k4

2(
g+

2V
)+

(4
g�

V
)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2 (

6g
2 +

V
2 +

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )

+
d

k4
V

2
.

(2
2)

In
th

e
la

rg
e

vo
lu

m
e

lim
it

w
e

ob
ta

in
th

e
si

m
pl

er
ex

pr
es

-
si

on

V
(V

)
⇡

3W
2 0

2k
4 V

3
(2

g(
lo

g
V
�

4)
+

x)
+

d
k4

V
2

⌘
C k4

✓ �
lo

g
V
�

4
+

q
V

3
�

3r 2V
2

◆
,

(2
3)

w
ith

q
⌘

x 2g
,

r
⌘

2d
9W

02 g
<

0,
C
⌘
�

3W
02 g

>
0.

(2
4)

T
he

q
pa

ra
m

et
er

es
se

nt
ia

lly
sh

if
ts

th
e

lo
ca

le
xt

re
m

a
to

w
ar

s
la

rg
e

vo
lu

m
es

.C
is

an
ov

er
al

lc
on

st
an

tw
hi

ch
pl

ay
s

no
ro

le
in

th
e

m
od

el
bu

ti
s

gi
ve

n
by

th
e

am
pl

itu
de

sp
ec

tr
um

ob
er

va
-

tio
n.

4
Po

te
nt

ia
lm

in
im

um
,m

ax
im

um
an

d
sl

ow
-r

ol
l

pa
ra

m
et

er
s

In
th

e
fo

llo
w

in
g

se
ct

io
ns

w
e

w
ill

st
ud

y
th

e
in

fla
tio

na
ry

po
s-

si
bi

lit
ie

s
fr

om
th

e
ab

ov
e

m
od

el
.T

he
in

fla
to

n
w

ill
be

id
en

-
tifi

ed
to

th
e

ca
no

ni
ca

lly
no

rm
al

is
ed

m
od

ul
us

t,
w

hi
ch

w
e

de
no

te
f

fr
om

no
w

on
.H

en
ce

w
e

ca
n

ex
pr

es
s

(2
3)

in
te

rm
s

of
th

e
in

fla
to

n
f

(w
hi

ch
ag

ai
n,

is
th

e
to

ta
lv

ol
um

e
m

od
ul

us
t)

.I
tr

ea
ds

V
(f

)
⇡
�

C k4
e�

3q
3 2

f
 
r

3 2
f
�

4
+

q
+

3 2
re
q

3 2
f
!

.
(2

5)

In
or

de
rt

o
m

in
im

iz
e

an
d

st
ud

y
th

e
sl

ow
-r

ol
lp

ar
am

et
er

s
w

e
co

m
pu

te
th

e
fir

st
tw

o
de

riv
at

iv
es

of
V

.F
ro

m
(2

5)
w

e
ge

t

V
0 (

f)
=

3r
3 2

C k4
e�

3q
3 2

f
 
r

3 2
f

+
q
�

13 3
+

re
q

3 2
f
!

, (2
6)

V
00 (

f)
=
�

27 2
C k4

e�
3q

3 2
f
 
r

3 2
f

+
q
�

14 3
+

2 3
re
q

3 2
f
!

. (2
7)

So
lv

in
g

V
0 (

f)
=

0
le

ad
s

to
th

e
tw

o
so

lu
tio

ns

f +
=
�
r

2 3

✓ q
�

13 3
+

W
0
� �

e�
x�

1�
◆

,
(2

8)

f �
=
�
r

2 3

✓ q
�

13 3
+

W
�

1
� �

e�
x�

1�
◆

,
(2

9)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)
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gk ln(tk)
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Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
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3
(t1 + t2 + t3) =
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u =
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2
(t1� t2), (15)

v =
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Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
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t). It reads

V (f)⇡� C
k4 e�3

q
3
2 f
 r

3
2

f �4+q+
3
2

re
q

3
2 f
!

. (25)

In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�
p

6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘

. (19)
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.
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In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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1
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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with
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, r ⌘ 2d
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2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions
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large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
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parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
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k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
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3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads
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k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
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The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�
p

6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘
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Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
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for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD
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In the large volume limit we obtain the simpler expres-
sion
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with

q⌘ x
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, r ⌘ 2d
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2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads
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In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get
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Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K =� 2
k2 ln

 
(t1t2t3)

1
2 +x +

3

Â
k=1

gk ln(tk)

!
. (12)

Starting from the real parts ti of the Kähler moduli for the
three magnetised D7 branes, we can define the normalised
fields

ti =
1p
2

ln(ti). (13)

Isolating the volume from the two other perpendicular direc-
tions we obtain the following base

t =
1p
3
(t1 + t2 + t3) =

p
6

3
ln(V ), (14)

u =
1p
2
(t1� t2), (15)

v =
1p
6
(t1 + t2�2t3). (16)

Taking

g1 = g2 = g3 ⌘ g (17)

for simplicity and defining µ = e
x
2g , one can extract the F-

part of the scalar potential from (12). It depends only of the
volume V (or equivalently the modulus t) and reads

VF =� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))
.

(18)

The D-part of the scalar potential coming from the D7
fluxed branes reads in the large volume limit

VD ⇡
d1

k4t3
1

+
d2

k4t3
2

+
d3

k4t3
3

=
e�
p

6t

k4

⇣
d1e�

p
3v�3u +d2e�

p
3v+3u +d3e2

p
3v
⌘

. (19)

Contrary to the F-part VF , the D-part VD depends on the three
moduli t,u and v. When considering the volume as the possi-
ble inflaton, we place the two other moduli at their minimal
values u0 and v0 dictated by the minimisation of VD in (19).
Their minimal values read

u0 =
1
6

ln
✓

d1

d2

◆
, v0 =

1
6
p

3
ln
✓

d1d2

d2
3

◆
, (20)

for which the VD potential becomes

VD(t,u0,v0) =
3(d1d2d3)

1
3

k4V 2 =
d

k4V 2 =
d

k4 e�
p

6t , (21)

with d ⌘ 3(d1d2d3)
1
3 .

Hence after stabilisation of the two transverse moduli,
the total scalar potential reduces to

V = VF +VD

⇡� 3gW 2
0

k4
2(g+2V )+(4g�V ) ln(µV )

(V +2g ln(µV ))2(6g2+V 2+8gV +g(4g�V ) ln(µV ))

+
d

k4V 2 . (22)

In the large volume limit we obtain the simpler expres-
sion

V (V )⇡ 3W 2
0

2k4V 3 (2g(logV �4)+x )+
d

k4V 2

⌘ C
k4

✓
� logV �4+q

V 3 � 3r
2V 2

◆
, (23)

with

q⌘ x
2g

, r ⌘ 2d
9W0

2g
< 0, C ⌘�3W0

2g > 0. (24)

The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
tified to the canonically normalised modulus t, which we
denote f from now on. Hence we can express (23) in terms
of the inflaton f (which again, is the total volume modulus
t). It reads

V (f)⇡� C
k4 e�3

q
3
2 f
 r

3
2

f �4+q+
3
2

re
q

3
2 f
!

. (25)

In order to minimize and study the slow-roll parameters
we compute the first two derivatives of V . From (25) we get

V 0(f) = 3

r
3
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 13
3

+ re
q

3
2 f
!

,

(26)

V 00(f) =�27
2

C
k4 e�3

q
3
2 f
 r

3
2

f +q� 14
3

+
2
3

re
q

3
2 f
!

.

(27)

Solving V 0(f) = 0 leads to the two solutions

f+ =�
r

2
3

✓
q� 13

3
+W0

�
�e�x�1�

◆
, (28)

f� =�
r

2
3

✓
q� 13

3
+W�1

�
�e�x�1�

◆
, (29)

2 3
Sc

al
ar

po
te

nt
ia

lf
ro

m
D

7-
br

an
es

m
od

ul
is

ta
bi

lis
at

io
n

T
he

K
äh

le
r

po
te

nt
ia

lo
f

th
e

m
od

el
is

[3
]

K
=
�

2 k
2

ln

 
(t

1t
2t

3)
1 2
+

x
+

3 Â k=
1
g k

ln
(t

k)

!
.

(1
2)

St
ar

tin
g

fr
om

th
e

re
al

pa
rt

s
t i

of
th

e
K

äh
le

r
m

od
ul

i
fo

r
th

e
th

re
e

m
ag

ne
tis

ed
D

7
br

an
es

,w
e

ca
n

de
fin

e
th

e
no

rm
al

is
ed

fie
ld

s

t i
=

1 p
2

ln
(t

i)
.

(1
3)

Is
ol

at
in

g
th

e
vo

lu
m

e
fr

om
th

e
tw

o
ot

he
rp

er
pe

nd
ic

ul
ar

di
re

c-
tio

ns
w

e
ob

ta
in

th
e

fo
llo

w
in

g
ba

se

t=
1 p
3
(t

1
+

t 2
+

t 3
)
=

p
6 3

ln
(V

),
(1

4)

u
=

1 p
2
(t

1
�

t 2
),

(1
5)

v
=

1 p
6
(t

1
+

t 2
�

2t
3)

.
(1

6)

Ta
ki

ng

g 1
=

g 2
=

g 3
⌘

g
(1

7)

fo
r

si
m

pl
ic

ity
an

d
de

fin
in

g
µ

=
e

x 2g
,o

ne
ca

n
ex

tr
ac

t
th

e
F-

pa
rt

of
th

e
sc

al
ar

po
te

nt
ia

lf
ro

m
(1

2)
.I

td
ep

en
ds

on
ly

of
th

e
vo

lu
m

e
V

(o
r

eq
ui

va
le

nt
ly

th
e

m
od

ul
us

t)
an

d
re

ad
s

V F
=
�

3g
W

2 0
k

4
2(

g+
2V

)+
(4

g�
V

)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2
(6

g2
+

V
2
+

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )
.

(1
8)

T
he

D
-p

ar
t

of
th

e
sc

al
ar

po
te

nt
ia

l
co

m
in

g
fr

om
th

e
D

7
flu

xe
d

br
an

es
re

ad
s

in
th

e
la

rg
e

vo
lu

m
e

lim
it

V D
⇡

d 1 k
4 t

3 1
+

d 2 k
4 t

3 2
+

d 3 k
4 t

3 3

=
e�
p

6t

k
4

⇣ d 1
e�
p

3v
�

3u
+

d 2
e�
p

3v
+

3u
+

d 3
e2p

3v
⌘ .

(1
9)

C
on

tr
ar

y
to

th
e

F-
pa

rt
V F

,t
he

D
-p

ar
tV

D
de

pe
nd

s
on

th
e

th
re

e
m

od
ul

it
,u

an
d

v.
W

he
n

co
ns

id
er

in
g

th
e

vo
lu

m
e

as
th

e
po

ss
i-

bl
e

in
fla

to
n,

w
e

pl
ac

e
th

e
tw

o
ot

he
r

m
od

ul
ia

tt
he

ir
m

in
im

al
va

lu
es

u 0
an

d
v 0

di
ct

at
ed

by
th

e
m

in
im

is
at

io
n

of
V D

in
(1

9)
.

T
he

ir
m

in
im

al
va

lu
es

re
ad

u 0
=

1 6
ln
✓

d 1 d 2

◆
,

v 0
=

1
6p

3
ln
✓

d 1
d 2 d2 3

◆
,

(2
0)

fo
r

w
hi

ch
th

e
V D

po
te

nt
ia

lb
ec

om
es

V D
(t

,u
0,

v 0
)
=

3(
d 1

d 2
d 3

)
1 3

k
4 V

2
=

d
k

4 V
2

=
d k

4
e�
p

6t
,

(2
1)

w
ith

d
⌘

3(
d 1

d 2
d 3

)
1 3
.

H
en

ce
af

te
r

st
ab

ili
sa

tio
n

of
th

e
tw

o
tr

an
sv

er
se

m
od

ul
i,

th
e

to
ta

ls
ca

la
r

po
te

nt
ia

lr
ed

uc
es

to

V
=

V F
+

V D

⇡
�

3g
W

2 0
k

4
2(

g+
2V

)+
(4

g�
V

)
ln

(µ
V

)

(V
+

2g
ln

(µ
V

))
2
(6

g2
+

V
2
+

8g
V

+
g(

4g
�

V
)
ln

(µ
V

) )

+
d

k
4 V

2
.

(2
2)

In
th

e
la

rg
e

vo
lu

m
e

lim
it

w
e

ob
ta

in
th

e
si

m
pl

er
ex

pr
es

-
si

on

V
(V

)
⇡

3W
2 0

2k
4 V

3
(2

g(
lo

g
V
�

4)
+

x)
+

d
k

4 V
2

⌘
C k

4

✓ �
lo

g
V
�

4
+

q
V

3
�

3r 2V
2

◆
,

(2
3)

w
ith

q
⌘

x 2g
,

r
⌘

2d
9W

02 g
<

0,
C
⌘
�

3W
02 g

>
0.

(2
4)

T
he

q
pa

ra
m

et
er

es
se

nt
ia

lly
sh

if
ts

th
e

lo
ca

l
ex

tr
em

a
to

w
ar

s
la

rg
e

vo
lu

m
es

.C
is

an
ov

er
al

lc
on

st
an

tw
hi

ch
pl

ay
s

no
ro

le
in

th
e

m
od

el
bu

ti
s

gi
ve

n
by

th
e

am
pl

itu
de

sp
ec

tr
um

ob
er

va
-

tio
n.

4
Po

te
nt

ia
lm

in
im

um
,m

ax
im

um
an

d
sl

ow
-r

ol
l

pa
ra

m
et

er
s

In
th

e
fo

llo
w

in
g

se
ct

io
ns

w
e

w
ill

st
ud

y
th

e
in

fla
tio

na
ry

po
s-

si
bi

lit
ie

s
fr

om
th

e
ab

ov
e

m
od

el
.

T
he

in
fla

to
n

w
ill

be
id

en
-

tifi
ed

to
th

e
ca

no
ni

ca
lly

no
rm

al
is

ed
m

od
ul

us
t,

w
hi

ch
w

e
de

no
te

f
fr

om
no

w
on

.H
en

ce
w

e
ca

n
ex

pr
es

s
(2

3)
in

te
rm

s
of

th
e

in
fla

to
n

f
(w

hi
ch

ag
ai

n,
is

th
e

to
ta

lv
ol

um
e

m
od

ul
us

t)
.I

tr
ea

ds

V
(f

)
⇡
�

C k
4

e�
3q

3 2
f
 
r

3 2
f
�

4
+

q
+

3 2
re
q

3 2
f
!

.
(2

5)

In
or

de
r

to
m

in
im

iz
e

an
d

st
ud

y
th

e
sl

ow
-r

ol
lp

ar
am

et
er

s
w

e
co

m
pu

te
th

e
fir

st
tw

o
de

ri
va

tiv
es

of
V

.F
ro

m
(2

5)
w

e
ge

t

V
0 (

f
)
=

3r
3 2

C k
4

e�
3q

3 2
f
 
r

3 2
f

+
q
�

13 3
+

re
q

3 2
f
!

, (2
6)

V
00 (

f
)
=
�

27 2
C k

4
e�

3q
3 2

f
 
r

3 2
f

+
q
�

14 3
+

2 3
re
q

3 2
f
!

. (2
7)

So
lv

in
g

V
0 (

f
)
=

0
le

ad
s

to
th

e
tw

o
so

lu
tio

ns

f +
=
�
r

2 3

✓ q
�

13 3
+

W
0
� �

e�
x�

1�
◆

,
(2

8)

f �
=
�
r

2 3

✓ q
�

13 3
+

W
�

1
� �

e�
x�

1�
◆

,
(2

9)

2

3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]
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Contrary to the F-part VF , the D-part VD depends on the three
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The q parameter essentially shifts the local extrema towars
large volumes. C is an overall constant which plays no role
in the model but is given by the amplitude spectrum oberva-
tion.

4 Potential minimum, maximum and slow-roll
parameters

In the following sections we will study the inflationary pos-
sibilities from the above model. The inflaton will be iden-
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FIGURE 4.1: Scalar potential V(φ) for different values of x giving an AdS,
Minkowski or dS vacuum.

4.2.3 Inflation possibilities from the model

Hilltop inflation The hilltop inflation scenario [116, 146] emerged more than thirty years
ago. The idea is the following: the inflaton starts rolling from a local maximum down to
the minimum of the potential. In the vicinity of the local maximum, the slow-roll param-
eter ε is negligible while η is determined by the observed spectral index. The horizon exit
occurs near the maximum, and the 60 remaining e-folds are obtained from there to a point
before the minimum, where ε = 1 and inflation stops. As ε→ 0 at the maximum, one can
generate an infinite number of e-folds. In reality, the number of e-folds is dictated by the
initial condition. The closest to the maximum the inflaton starts rolling down, the largest
the number of e-folds is.

The fact that the inflaton starts rolling from the maximum of the potential may be mo-
tivated if one considers that this maximum was related to a symmetry restoration point.
At higher temperatures this point could have been a symmetric minimum of the poten-
tial, which became a maximum after spontaneous symmetry breaking occurring when
temperature cooled down. Hence if the inflaton sits at a symmetric point at higher tem-
peratures, it is natural to take initial conditions near the maximum.

In our model, according to (4.2.27) the values of the η slow-roll parameter at the max-
imum only depends on x. Solving (4.2.27) in order to have η(φ+) ' −0.02 we find
x ' 2.753 × 10−7. This value can also be obtained graphically from the right panel of
Figure 4.2.

In order to study the possibility of hilltop inflation we then take x ' 2.753 × 10−7,
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FIGURE 4.2: Ratio of the values of the scalar potential V at the two extrema
(left panel) and value of the slow-roll parameter ηV at the two extrema (right

panel), as functions of the parameter x.

q = 0 and C = 1.0× 108 and solve (4.1.7) numerically.1 This allows to find the Hubble
parameter solution all along the inflation trajectory. Due to the shape of the potential
(containing exponentials and linear terms), we had to use very high precision data types.
This was achieved through a C++ code using cpp_dec_float data types provided by the
multiprecision package of the boost library.

Plots of all the interesting parameters are shown in Figure 4.3. The horizontal axes
show the values of the inflaton φ. As the field starts from the maximum and goes towards
the minimum, the arrow of time is from right to left (i.e. for decreasing φ.)

We see from the bottom panel of Figure 4.3 that the slow-roll parameters ε and η stay
small, hence the slow-roll regime holds all the way from the maximum down the mini-
mum. Since ε� 1, inflation continues until the minimum and there is no natural criterion
marking the end of inflation. Of course, the value of the potential at the minimum being of
order of the inflation scale, some new physics should be added to lower the potential near
the actual cosmological constant. Nevertheless we see from Figure 4.3 that there is a huge
number of e-folds all along the inflationary trajectory, i.e. between the would be horizon
exit at η∗ = −0.02 (near the maximum) and the minimum. Hence, this model cannot
accommodate hilltop-inflation scenario because the constraints N∗ >∼ 60 and η∗ = −0.02
cannot be satisfied together by adjusting x, the only relevant parameter here.

Inflation around the minimum from the inflection point General idea We now consider
the case where the e-folds are obtained only near the minimum. This allows to alleviate
the constraint η(φ+) ' −0.02. We start with initial conditions near the maximum with no
initial speed. We come back to this point at the end of the section. The inflationary phase
corresponds to the inflaton rolling down its potential. As it goes from the maximum to
the minimum, the second derivative V ′′(φ) changes sign and if η(φ+) < −0.02, it will
pass through the value η(φ∗) = −0.02 before the inflection point. The x parameter of the
model can then be chosen so that at least 60 e-folds are obtained from this point to the
end of inflation. From the above argument we see that in order this scenario to correctly

1The C coefficient being an overall scaling, its value is not important in the numerical studies. Hence we
choose it, such that the potential is of order 1. The true value of C is determined by the amplitude (4.1.15) in
the end.
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FIGURE 4.3: Hubble parameter H(φ) (top left), number of e-folds N(φ) (top
right) and slow-roll parameters ε, η (bottom) for q = 0, C = 1 × 108 and

x = 2.753× 10−7.

match the observational data, the initial position of the inflaton has to be higher than the
inflection point, where η is negative, so that η = −0.02 is taken at the horizon exit.

As in the hilltop case of section 4.2.3, we solved the evolution equation (4.1.7) numer-
ically starting near the maximum with vanishing inflaton initial speed. We got N∗ ' 60
for x ' 3.3 10−4. In that case, φ− = 4.334 and φ+ = 4.376. The e-folds are computed from
the horizon exit φ∗ ' 4.354 at which η(φ∗) = −0.02, to the minimum φ−. Is should be
observed that the corresponding inflaton field displacement

∆φ ' 0.02 , (4.2.28)

is much less than one in Planck units, corresponding to small field inflation, compatible
with the validity of the effective field theory. We show the numerical solution in Figure
4.4. Again, the horizontal axes correspond to the inflaton φ. As the field starts from the
maximum and goes towards the minimum, the arrow of time is from right to left (i.e. for
decreasing φ.)

In Figure 4.4 we see that at the minimum neither ε nor η is bigger than one (η is
however close to 1). It is easy to understand from the plot of the ε parameter and formula
(4.1.12) that almost all e-folds are obtained near the minimum because ε is very tiny there.
The vertical line shows the value of φ∗ for which η(φ∗) = −0.02. It is very close to the
inflection point, hence the modes exit the horizon near (a bit before) the inflection point.



4.2. Inflation from D7-branes moduli stabilization 119

FIGURE 4.4: Hubble parameter H(φ) (top left), number of e-folds N(φ) (top
right) and slow-roll parameters ε, η (bottom), for q = 0, C = 1× 108 and

x = 3.3× 10−4. The dashed horizontal line shows the value η = −0.02.

Study near the minimum We wish to describe carefully what happens close to the min-
imum. Indeed, one has to check that the field goes on the other side of the minimum
(φ < φ−). We then expect that the field stops at a value φstop and goes back towards the
minimum, starting its oscillation phase, usually related to the reheating period and the
inflaton decay [147, 148, 149]. Nevertheless, one usually assumes tha the inflaton poten-
tial (almost) vanishes at the minimum. The inflaton decays into other particles and the
cosmological constant stays then neglible in front of the radiation and matter densities
for a sufficiently long period of time (assuming a solution to the cosmological constant
problem).

In our model, for the parameter x ' 3.3× 10−4 chosen here, there is no scale sepa-
ration between the inflation scale H∗ (at horizon exit) and the scale at the minimum, see
Figure 4.2. Therefore the standard reheating scenario cannot occur, because the poten-
tial energy of the inflaton (or equivalently the cosmological constant) remains important
at the minimum. Hence, if nothing is modified in the model the energy density of the
created particles stays small compared to the cosmological constant.

In the C++ program used to solve numerically (4.1.7), the field values are stored in
cpp_dec_float types of variable, available in the multiprecision package of the boost

library. These variables allow to store numbers of the form a× 10n with a 100 digits preci-
sion on the coefficient a. When we reach the minimum, the field evolves very slowly and
if φstop − φ− is small, so is H(φstop)− H(φ−) and the 100 digits precision is not enough to
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determine when the inflaton stops (i.e. when ∂H/∂φ = 0). In order to bypass this diffi-
culty, we expand the Hubble parameter H around the slow-roll solution Hsr by defining
a new variable δH through

H = Hsr + δH =

√
V
3
+ δH . (4.2.29)

Replacing the first derivative of δH,

δH′ = H′ − H′sr = H′ − 1
2
√

3
V ′√

V
, (4.2.30)

in (4.1.7), one finds the new form of equation (4.1.7)

δH′ = ± 1√
2

√
6HsrδH − 1

2
√

3
V ′√

V
, (4.2.31)

where we neglected the δH2 term. The advantage of this new formulation is that now,
even if δH is small compared to Hsr, their values are not stored using the same coeffiicient
and we do not have to store precisely H = Hsr + δH. The numerical solution of the
evolution equation (4.2.31) confirms that the inflaton indeed reaches φstop < φ−, but stays
very close. Due to the small values of the slow-roll parameters (see Figure 4.4) the inflaton
is still in a slow-roll regime near the minimum and the oscillations are very slow. In
fact we checked numerically that the number of e-folds during the first oscillations is
greater than the one from φ∗ to φ−. As mentioned earlier, this is easily understandable
considering the fact that due to the large value of V− = V(φ−) (same scale as the inflation
scale) the kinetic energy of the inflaton is not big enough to produce particles which would
change significantly the equation of state of the Universe.

FIGURE 4.5: Hubble parameter solution for x = 3.3× 10−4, q = 0, C =
1× 108 with initial speed φ̇ = −2H′(φ) = −2× 10−5κ−1 (red dashed line),

and with vanishing initial speed (plain orange line).

Initial conditions In the above study we started with the inflaton near the maximum
with vanishing speed. In fact, one can change these initial conditions without altering
the conclusions of the study as long as the inflaton starts between the maximum and the
inflection point with a relatively small speed. Indeed, the constraint that the inflaton starts
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higher that the inflection point comes from the fact that it has to cross the η = −0.02 point
when rolling towards the minimum. Nevertheless, an argument of symmetry restoration
similar to the one explained in section 4.2.3 for the hilltop scenario motivates that the
field starts near the maximum. In that case, if the initial speed stays relatively small, the
inflaton is damped sufficiently near the maximum, such that the study does not change
with respect with the case with vanishing initial speed. A solution for a non-zero initial
speed is shown in Figure 4.5. If the initial speed is too large, equation (4.1.3) shows that
the major contribution to the Hubble parameter comes from the inflaton kinetic energy.
As V does not vary much from the maximum to the minimum, the inflaton only sees a
flat potential until it reaches the wall at small φ. In that case the previous study does not
hold, and slow-roll inflation is not obtained.

4.2.4 Physical observables and theoretical parameters

In this section we study the implications of the inflationary scenario described in sec-
tion 4.2.3 to physical observables and we discuss the relation of the parameters of the
model to those of the fundamental string theory.

Inflation scale We see from Figure 4.4 that when the modes exit the horizon, the value
of the slow-roll parameter related to the amplitude of primordial fluctuations is ε∗ '
2.5× 10−5, implying a value for the ratio r of tensor to scalar perturbations

r = 16ε∗ ' 4× 10−4 . (4.2.32)

From (4.1.15) we deduce that

κ4V∗ = 24π2ε∗AS ' 1.48× 10−11. (4.2.33)

This constraint fixes the overall amplitude of the scalar potential. Indeed for the x value
of interest V∗ ' V(φ−) and we see from (4.2.23) that the value of the potential at the
minimum reads

κ4V(φ−) = −
C
6

e−13+3q+3W0(−e−x−1)
(

2 + 3W0(−e−x−1)
)
≡ Ce3q × w(x), (4.2.34)

with
w(x) = −1

6
e−13+3W0(−e−x−1)

(
2 + 3W0(−e−x−1)

)
. (4.2.35)

For the value of x ' 3.3 × 10−4 realising the inflationary scenario described in section
4.2.3, we obtain w(x) ' 1.87 × 10−8. Together with the constraint (4.2.33), equation
(4.2.34) fixes the overall constant to

Ce3q =
κ4V(φ−)

w(x)
' κ4V∗

w(x)
' 1.46× 10−11

1.87× 10−8 ' 7.81× 10−4. (4.2.36)

Note that for q = 0 the value of C is different from the one used in the plots of Figure
4.4, but as we explained in section 4.2.2, the overall constant just scales the potential and
has no implication in the study of the inflation phase dynamics (in particular, it does not
appear in the slow-roll parameters computation).

From (4.2.33) we deduce that the inflation scale is

H∗ ' κ

√
V∗
3
' 2.2× 10−6κ−1 ' 5.28× 109 TeV . (4.2.37)
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In the last equality we used the value of the Planck scale that we recall here: κ−1 '
2.4× 1018 GeV. As mentioned earlier, we observe from Figure 4.4 that the value of the
potential at the horizon exit and at the minimum are almost identical. Hence the positive
value of the potential at the de Sitter minimum is given by κ4VdS ' κ4V∗ and is way above
the observed cosmological constant today.

String parameters We now relate the parameters of the model to those of the underlying
string theory and examine the constraints implied by the inflationary scenario described
above. The string parameters are: ξ, γ, related to the quantum corrections, d associated
with the anomalous U(1) charges of the D7 branes, and W0 the constant superpotential
remaining after complex structure moduli and axion-dilaton stabilization. For the sake of
clarity, we write again the expressions of the quantum corrections parameters

ξ = − ζ(3)
4

χCY, γ = −1
2

gsT0ξ , (4.2.38)

and of the parameters entering the scalar potential, already introduced in (4.2.16)

q ≡ ξ

2γ
= − 1

gsT0
, σ ≡ 2d

9W0
2γ

< 0, C ≡ −3W0
2γ > 0, (4.2.39)

As already mentioned, note that in order to have C > 0 we need γ < 0 and hence a
negative Euler number χCY. We have also defined the x parameter by

x ≡ q− 16
3
− ln(−σ) . (4.2.40)

From (4.2.20) we deduce that the volume at the minimum is a function of q and x only:

V− = exp
(

3√
6

φ−

)
= e−q × exp

(
13
3
−W0

(
−e−x−1

))
. (4.2.41)

Thus, for a given value of x, one obtains large volume for large (negative) q. In fact from
(4.2.39), q is indeed negative for positive T0, implying a surplus (locally) of D7-branes
relative to orientifold O7-planes [106]. Then large values of q are reached as long as gs is
small. Hence the weak coupling and large volume limits are related in a simple way.

We now turn back to the string parametersW0 and d, which are partially fixed by the
observational constraint through (4.2.36). From the expressions (4.2.39), the superpoten-
tial reads

W2
0 = − C

3γ
' −2.64× 10−4

γ
e−3q, (4.2.42)

whereas the d parameter from the U(1) D-terms of D7 branes is

d =
9W2

0 γ

2
σ =

3C
2

eq− 16
3 −x ' 3

2
× 7.81× 10−4e−3q × eq− 16

3 −x ' 5.65× 10−6e−2q . (4.2.43)

We see from (4.2.42) that for values of −γ around 10−2, the value W0 ∼ 1 is reached as
soon as −q >∼ 5. On the other hand, from (4.2.43) we see that d ∼ 1 is reached for −q >∼ 7.

We conclude that for −q = 1/(gsT0) not much greater than a few units, our inflation-
ary model can be accommodated in the weak string coupling and large volume limits.
This justifies that the large volume limit could safely be taken in the expressions (4.2.5) –
(4.2.6) of the the scalar potential contributions VF and VD. Moreover, the superpotential
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W0 and D-term coefficient d take values of order one. In fact, W0 around unity can be
naturally obtained from combinations of integer fluxes.

4.2.5 Stability of the minimum

For the value of x considered in section 4.2.3 in order to get an inflationary period,
the values of the potential at the minimum and maximum are very close. Hence it is
important to know if the inflaton can escape from the local minimum, or the false vacuum,
and tunnel through the barrier of the potential before evolving classically towards the true
minimum in the runaway direction at large field values. We recall that the shape of the
potential for the value of the parameter x giving an inflationary epoch is similar to the
one shown in the right panel of Figure 4.1.

To evaluate the false vacuum stability we use the methods developed by Coleman et
al. [143, 144]. In order to keep their conventions, we will use the dimension-full inflaton

ϕ =
φ

κ
. (4.2.44)

This definition of the inflaton field ϕ will be considered only in the current section. We
are interested in the probability that the inflaton tunnels from the false vacuum at ϕ− =
κ−1φ− to the true vacuum located at the runaway direction ϕ = +∞. Following the
Coleman-de Luccia (CdL) argument [144], this probability is expressed as a decay rate
per unit volume and time by

Γ = Ae−B, with B = SE(ϕ)− SE(ϕ−), (4.2.45)

where SE is the Euclidean tunnelling action to minimize. Here ϕ denotes the instanton
solution of the scalar field action. (For a recent review on vacuum stability, see [150]). For
a scalar field coupled to gravity the Euclidean action reads

SE =
∫

d4x
√

g
(
− 1

2κ2 R +
1
2

∂µ ϕ∂µ ϕ + V(ϕ)

)
. (4.2.46)

Following the strategy of CdL, one looks for a solution with an O(4) symmetry. Such
a Euclidean space-time can be described by the following metric

ds2 = dρ2 + χ(ρ)2(dΩ3)
2, (4.2.47)

were (dΩ3)2 is the metric of the unit 3-sphere. The Euclidean scale factor χ(ρ) gives the
curvature of the 3-sphere at given ρ. The Euclidean field equations for the scalar field ϕ
and the scale factor χ are

ϕ′′ + 3
χ′

χ
ϕ′ =

∂V
∂ϕ

, (4.2.48)

χ′′ = −κ2

3
χ
(

ϕ′2 + V(ϕ)
) (

or χ′2 = 1 +
κ2

3
χ2
(

1
2

ϕ′2 −V(ϕ)

) )
(4.2.49)

The prime denotes, in this section, derivative with respect to ρ which plays the role of the
time variable. Using the O(4) symmetry of (4.2.47) and the field equations (4.2.49), one
can rewrite the Euclidean action (4.2.46) as

SE = 2π2
∫

dρ

(
χ3
(

1
2

ϕ′2 + V
)
+

3
κ2

(
χ2χ′′ + χχ′2 − χ

))
= −2π2

∫
dρχ3(ρ)V (ϕ(ρ)) .

(4.2.50)
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The two simplest solutions to (4.2.48) – (4.2.49) are the ones where the field ϕ sits at an
extremum of the potential V. These solutions read

ϕ(ρ) = ϕ±, χ(ρ) =
1

H±
sin(H±ρ), with H± = κ

√
V(ϕ±)

3
, (4.2.51)

and are defined for ρ ∈ [0, H−1
± π]. Once plugged back in (4.2.47), the solution for χ(ρ)

in (4.2.51) gives simply the four sphere metric, which is the Euclidean extension of de
Sitter space-time with H = H±, obtained by analytic continuation of the real time to the
Euclidean time ρ [151]. The solution with the inflaton sitting at the top of the barrier,
ϕ(ρ) = ϕ+ is related to the Hawking-Moss (HM) instanton [145]. We come back to this
solution later. We compute the action of solution (4.2.51) through equation (4.2.50). It
reads

SE(ϕ±) = −2π2
∫

dρ
1

H3
±

sin3(H±ρ)V(ϕ±) = −
24π2

κ4V(ϕ±)
. (4.2.52)

More complex solutions to (4.2.48) – (4.2.49), referred as CdL instantons, can be found
by imposing the following boundary conditions

ϕ′(0) = 0, χ(0) = 0, χ′(0) = 1, ϕ(ρ f ) = ϕ− , (4.2.53)

where the final time ρ f is determined through χ(ρ = ρ f ) = 0. At that time one should get
ϕ′(ρ f ) = 0. As one can see, the value ϕ0 = ϕ(0) is not specified for the CdL instanton.
Similarly to what was described originally in the case without gravity [143], the boundary
conditions (4.2.53) associated with the field equations (4.2.48) – (4.2.49) correspond to the
classical problem of a field evolving in the reverse potential −V and subject to a friction
force proportional to 3χ′/χ. Starting from an a priori unknown position ϕ0, it rolls down
to the local minimum −V(ϕ+), passes it, climbs the hill and stops exactly at the local
maximum−V(ϕ−). One has to find the value of ϕ0 for which the field stops exactly at ϕ−
with no speed. Figure 4.6 sketches the situation of a point-like particle rolling down the
inverted potential −V(ϕ). Going back to the real time picture, ϕ0 can be interpreted as
the position reached by the scalar field after it tunneled the barrier from the valse vacuum
ϕ−. Then, from this point, the field evolves classically until the true (runaway) minimum
at infinity.

Exact analytical solutions for the CdL instantons are difficult to find in general. They
have been studied in the case without gravity for simple triangular or squared potentials
[152][153]. Analytical solutions were also presented in the original papers [143][144] in
the famous “thin-wall” approximation. This limit nevertheless demands that the false
and true vacua, V(ϕ−) and V(∞) = 0, are very close with respect to the height of the
barrier ∆V = V(ϕ+)− V(ϕ−). However, this approximation does not hold for the case
we are studying, as can be seen for instance from the right panel of Figure 4.1.

CdL instantons can also be searched numerically following the undershooting, over-
shooting method proposed initially in the original paper without gravity [143]. The idea
is very simple: we start with any value ϕ0 and solve numerically (4.2.48) – (4.2.49) with
initial conditions (4.2.53). If the solution overshoots, i.e. if the field continues rolling after
having reached the local maximum−V(ϕ−) of the reversed potential, we start again with
a new initial position ϕ0 closer to the minimum −V(ϕ+). If the solution undershoots, i.e.
if the field does not reach the local maximum−V(ϕ−), we start with a new ϕ0 a bit further
from the minimum −V(ϕ+). We repeat this operation until we find the initial value ϕ0
for which the field stops exactly at the maximum of the reversed potential, which is the
false vacuum. We sketch the overshooting situation on the left panel of Figure 4.6 and the
CdL instanton solution on the right panel.
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FIGURE 4.6: Point-like particle rolling down the inverted potential −V(ϕ)
from an initial position ϕ0. An overshooting case is shown (left panel) as
well as the CdL instanton solution (right panel) for which the field stops

exactly at the maximum −V(ϕ−).

In Figure 4.7, we show the CdL instanton solution obtained with this method for the
value of the parameter x = 1.0× 10−2. In this case, the field values at the two extrema
are ϕ− = φ−κ−1 = 4.2446κ−1 and ϕ+ = φ+κ−1 = 4.4756κ−1, while the initial value is
ϕ0 = κ−1φ0 = 4.9224κ−1.

We tried to obtain a solution similar to the one of Figure 4.7 for x = 3.3× 10−4, which
satisfies the observational constraints of the inflationary epoch, as explained in section
4.2.3 . Nevertheless we were not able to find a numerical solution satisfying the boundary
conditions. In fact, if the potential barrier is too flat, the existence of CdL instanton is not
guaranteed anymore. A criterion for the existence of CdL instanton has been established
in the past following various arguments [153] [154]. It demands that the scale factor at the
minimum H− stays below a critical value Hc defined by

H2
c = −Vϕϕ(ϕ+)

4
− κ2∆V

3
, (4.2.54)

where Vϕϕ = ∂2V/∂ϕ2 and as above, ∆V = V(ϕ+)− V(ϕ−) is the height of the barrier.
When H− approches Hc, the potential is flat near the maximum hence the ∆V contribution
can be neglected in front of that of Vϕϕ(ϕ+) in (4.2.54). In this case, we can use relations
(4.2.23) and (4.2.25) to express the ratio

H2
c

H2
−
' −3

4
Vϕϕ(ϕ+)

κ2V(ϕ−)
=

81W0(−e−x−1)3 (1 + W−1(−e−x−1)
)

4W−1(−e−x−1)3 (2 + 3W0(−e−x−1))
. (4.2.55)

For H− > Hc the existence of the CdL instantons is not guaranteed anymore. Figure 4.8
shows the ratio of the Hubble scales in (4.2.55). In fact, the Hubble scale critical value Hc
also marks the dominance of the Hawking-Moss instanton [145] solution. As explained
before, this solution is the one for which the inflaton stays at the top of the barrier ϕ(ρ) =
ϕ+. This solution can be seen as describing the inflaton going above the potential barrier
instead of properly tunnelling. As mentioned after (4.2.51) such solutions always exist,
but when H− < Hc their action is higher than the CdL solutions and give thus negligible
contribution to the tunnelling rate (4.2.45).

In Figure 4.8, we see that H− > Hc holds for x = 3.3× 10−4, which explains that we
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FIGURE 4.7: Scalar potential V(φ) for x = 1.0× 10−2 (top left) and the CdL
bounce solution functions φ(ρ) (top right) and χ(ρ) (bottom). The initial field

value is ϕ0 = 4.9224κ−1 and the final Euclidean time is ρ f = 4.1222.

are not able to find the standard CdL instanton. Hence in this case only the HM instanton
contribute to the tunnelling rate. The tunnelling coefficient B introduced in (4.2.45) is then
computed from (4.2.52) and reads

B = SE(ϕ+)− SE(ϕ−) = −
24π2

κ4V(ϕ+)
+

24π2

κ4V(ϕ−)
' 8π2∆V

3H4∗
. (4.2.56)

In the last equality, ∆V is the height of the barrier and H∗ is the inflation scale, i.e. the
Hubble parameter when the modes exit the horizon. We recall that since in our model
the potential is almost flat along the inflationary trajectory, we have H− ' H+ ' H∗. For
x = 3.3× 10−4 we find ∆V ' 2.0× 10−4V∗ and from (4.2.33) – (4.2.37) we deduce

B ' 3.3× 109, i.e. Γ = Ae−3.3×109
. (4.2.57)

It follows that the decay rate of the local minimum is extremely small and the vacuum is
practically stable.
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FIGURE 4.8: Ratio of the critical Hubble parameter H2
c and the Hubble pa-

rameter at the minimum H2
− = κ2V(ϕ−)/3. The value H− = Hc ( hor-

izontal dashed line) determines the existence and domination of the CdL
instanton over the HM instanton.

4.3 New physics near the minimum: waterfall fields and hybrid
inflation

We now summarize the specificities of the above moduli stabilization model and its
inflationary possibility, explained in section 4.2.3, some of the possible theoretical issues,
and suggest new ingredients to solve them.

Slow roll inflation compatible with observations can be realized for x ' 3.3 10−4,
where the x parameter was defined in eq. (4.2.22). Then, the field separation between the
two extrema of the effective potential is given by φ+ − φ− = 0.042. The inflaton starts
rolling near the maximum with no initial speed, these initial conditions being motivated
if one considers that this maximum is related to a symmetry restoration point. The infla-
tionary phase corresponds to the inflaton rolling down its potential. An analysis of the
slow roll parameters ε, η, defined in (4.1.10) have shown that ε � |η| holds in the whole
region of the field space [φ−, φ+]. Hence the spectral index of primordial density fluctua-
tion ns ' 1 + 2η is fixed by η which has to be around −0.02 at the horizon exit φ ≡ φ∗ to
agree with the data.

As the inflaton φ goes down from the maximum to the minimum, the second deriva-
tive V ′′(φ) changes sign and as the slow roll parameter η(φ+) < −0.02, it passes through
the value η(φ∗) = −0.02 before the inflection point. The x parameter of the model is
chosen so that at least 60 e-folds are obtained from this point to the end of inflation. The
required number of N∗ ' 60 e-folds is computed from the horizon exit φ∗ ' φ− + 0.02
at which η(φ∗) = −0.02, to the minimum φ−. The modes exit the horizon just before
the inflection point is reached and most of the e-folds are obtained around the minimum.
Furthermore, it should be emphasised that the corresponding inflaton field displacement
is ∆φ ' 0.02, which is much less than one in Planck units, corresponding to small field
inflation compatible with the validity of the effective field theory.

We stressed in section 4.2.4 that in this model, the dS vacuum energy is constrained
by the choice of the value of the parameter x. For the value of interest for inflation, the
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potential at the minimum V(φ−) ' V(φ∗) is practically of the same order that the infla-
tion scale. This amount of vacuum energy is way much greater than the observed value
today, hence it could not be the true vacuum of the theory. Indeed, with such a big value,
the Universe would continue expanding and never reach the standard cosmology with
radiation and matter domination eras.

As suggested in [3], the introduction of new physics near the minimum of the poten-
tial brings in a natural scenario for the end of the inflation epoch. This relates the model
to the hybrid inflation proposal [155], where a second field Y is added to the model. This
“waterfall” field Y adds another direction to the scalar potential. If falling towards this
direction becomes favorable at a certain point of the inflaton trajectory, this immediately
ends the inflation era and the theory reaches another minimum at a different energy scale,
which should coincide with the true vacuum today dominated by the observed dark en-
ergy.

The main features of the hybrid scenario adapted to our model are described by the
following potential

VY(φ, Y) = V(φ) +
1
2

mY(φ)
2Y2 +

λ

4
Y4 , (4.3.1)

where V(φ) is the inflaton potential (4.2.17) and the extra terms contain the dependence
in Y together with its coupling to the inflaton φ. Depending on the sign of its effective
squared mass mY

2(φ), the waterfall field Y stays in two separate phases. When mY
2 > 0,

the minimum in the Y-field direction is at the origin

〈Y〉 = 0, when mY
2(φ) > 0 , (4.3.2)

and the extra contribution to the scalar potential vanishes

VY(φ, 0) = V(φ) . (4.3.3)

When the mass of Y becomes tachyonic, a phase transition occurs and the new vacuum is
obtained for Y at a non-vanishing VEV

〈Y〉 = ±|mY|√
λ
≡ ±v, when mY

2(φ) < 0. (4.3.4)

The value of the potential VY at the minimum of this broken phase is

VY(φ, v) = V(φ)− mY
4(φ)

4λ
. (4.3.5)

For suitable mY(φ) during the inflationary phase, when the field φ rolls down the po-
tential, the system is in the symmetric phase and the Y field is stabilised with a vanishing
VEV and a large mass. The inflationary phase is then equivalent to the one field infla-
tion model. Subsequently, if mY

2 turns negative near the inflaton minimum φ−, a phase
transition occurs and the Y field attains its value given in (4.3.4) at the new minimum.
This amounts to a change of the potential V(φ) near the minimum, by a negative con-
stant Vdown = −m4

Y/(4λ) < 0. The effect of such a downlift is double: it decreases the
value of the cosmological constant and if the waterfall direction is steep enough, it gives
a natural criterion to stop inflation (ε > 1). In the next sections we propose a possible
implementation of hybrid inflation in our string theory framework by showing how the
waterfall field can be identified with an open string state on D7-branes stacks. There, it
will be more convenient to think of the inflaton as the internal volume V , related to the
inflaton φ through (4.2.8). This way we also avoid any confusion with the dilaton.
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4.4 Effective theory with waterfall fields

In order to implement hybrid inflation, motivated in section 4.3, we now explain how
to combine the Kähler moduli stabilization inflationary model described in section 4.2
with the tachyonic waterfall field toy model developed in section 3.3.3. We recall that
the latter is based on a T2 × T2 × T2/Z2 ×Z2 orbifold and that the matter fields live on
magnetized D7 branes.

Before going further, we recall that a large internal space Euler characteristic is re-
quired in our moduli stabilization setup. Indeed, as mentioned in section 3.2.3, this con-
dition is necessary to control the approximations in the computation [103, 106] of the
localisation width of the induced 4d graviton kinetic terms, i.e. of the logarithmic Kähler
quantum corrections γk and γ of eqs. (3.2.34) and (4.2.1). For toroidal orbifolds, the Euler
characteristic is defined as

χorb =
1
|G| ∑

g,h∈G
χ(g, h), (4.4.1)

where G is the symmetry group of the orbifold and χ(g, h) the number of fixed points
under both twists g and h, taken zero when there is a common fixed torus. In the Z2 ×
Z2 example, G = (1, α, β, γ) acts as shown in eq. (3.3.14), and a non-trivial (g, h) pair
is either (α, β), (α, γ) or (β, γ). They have χ(h, g) = χ(g, h) = 43 = 64. Hence the
Euler characteristic is χ = 1/4× 2× 64× 3 = 96, with the factor of 2 coming from the
interchange of g and h in the sum. As 96 � 1, the orbifold model is a valid and simple
candidate for a specific model.

To study the novelty introduced by the waterfall direction, we will first compute the
effective field theory scalar potential for the Kähler moduli and the newly introduced
matter fields, and then describe the new vacuum of the theory. The moduli scalar poten-
tial depends on the total internal volume V = A1A2A3/α′3 =

√
τ1τ2τ3 through the F-part

described in eqs. (4.2.4) and (4.2.5), and on the Kähler moduli τa through the D-part. In
the toroidal orbifold model, the Kähler moduli τa are simply related to the 2-tori areasAa.
Moreover, the scalar potential gets a new F-part depending on the matter fields. As we are
interested in the waterfall direction, we only keep track of possible tachyonic matter field
contributions to the scalar potential, and put the other (massive) matter fields to zero. The
canonically normalized tachyonic field, coming from the D72 − D72 state of section 3.3.3,
is denoted ϕ− (and its charge conjugate ϕ+) in the following. They must not be confused
with the notations introduced in section 4.2.5 when studying the moduli scalar potential
vacuum stability.

For simplicity, we recall the brane configuration of section 3.3.3 in the following table.

(45) (67) (89)
D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ ×A3 ·

(4.4.2)

For simplicity we will consider wrapping numbers m(1)
2 = m(3)

2 = 1 and N′2 = 1 such
that the D72 gauge group is restricted to U(1)2. See eq. (3.3.29) for the definition of N′2.
The number of chiral fermions after orientifold projection is denoted by given by n(Ω)

22′ .
The tachyonic state will hence also have multiplicity n(Ω)

22′ , corresponding to the different
Landau states and related to the intersection numbers. In the following we will often refer
to “the tachyon” while describing all the degenerate tachyonic scalars together, because
once the tachyon gets a non-vanishing VEV, a specific direction is fixed for all the Landau
states, producing a massive field and n(Ω)

22′ − 1 Goldstone modes.
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4.4.1 D-term from magnetic fields

The magnetic fields can be described in the effective theory through a D-term scalar
potential

VD = ∑
a

g2
U(1)a

2

(
ξa + ∑

n
qn

a |ϕn
a |2
)2

+ · · ·

= ∑
a=1,3

g2
U(1)a

2
ξ2

a +
g2

U(1)2

2
(
ξ2 + 2|ϕ+|2 − 2|ϕ−|2 + · · ·

)2
+ · · · . (4.4.3)

In the first line, the sum runs over the n charged scalar fields. As explained above, in
the second line of (4.4.3) we have only kept the tachyonic field (and its charge conjugate)
contributions, with charges qa = ±2.

The Fayet-Iliopoulos parameters ξa and gauge couplings g2
U(1)a

used in the D-term
scalar potential depend on the Kähler moduli. Indeed, from the D-term (4.4.3) and from
the string frame expressions (3.3.23), we can write the magnetic field contribution to the
mass of the matter fields in the configuration of table (4.4.2) as

m2
H2
≡ 2g2

U(1)2
ξ2 =

2|ζ (3)
2 |

α′
≈ 2|k(3)

2 |
πα′

α′

A3
≈ 2|k(3)

2 |
π

g2
s

κ2V
α′

A3
. (4.4.4)

We recall that ζ (3)
2 is given in equation (3.3.19) and hence the third equality holds in the

small magnetic field (large volume) limit. In order to go to the supergravity frame, we
used the four dimensional Planck constant expression

1
κ2 ≡

1
κ2

4
=
Ṽ

κ2
10

=
Ṽ

α′g2
s (4π2α′)3 =

V
α′g2

s
, (4.4.5)

where we restored the string units in the total volume Ṽ = (4π2)3α′3V = (4π2)3A1A2A3.
The gauge couplings are expressed in terms of the magnetized D7-brane worldvol-

umes as

1
g2

U(1)a

=
|m(j)

a m(k)
a |

gsα′2

∣∣∣Aj + iα′k(j)
a

∣∣∣
∣∣Ak + iα′k(k)

a
∣∣ , with a 6= j 6= k 6= a. (4.4.6)

In the small magnetic fields (large areas) limit, the couplings (4.4.6) reduce to

1
g2

U(1)a

≈ |m(j)
a m(k)

a |
AjAk

gsα′2
= |m(j)

a m(k)
a |
V
gs

α′

Aa
, with a 6= j 6= k 6= a. (4.4.7)

Combining equations (4.4.4) to (4.4.6), we deduce the expressions for the moduli depen-
dent Fayet-Iliopoulos term

ξ2 =
m2

H2

2g2
U(1)2

≈ |m(1)
2 m(3)

2 |
gs|k(3)

2 |
πκ2V

A1

α′
. (4.4.8)
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We obtain similar expressions for ξ1 and ξ3 for the configuraition of (4.4.2), so that the
D-term part of the scalar potential (4.4.3) reads

VD ≈
1

κ4V2

(
d1
A3

A2
+ d2
A1

A3
+ d3
A2

A1

)
+ m2

H2

(
|ϕ+|2 − |ϕ−|2

)
+ 2g2

U(1)2

(
|ϕ+|2 − |ϕ−|2

)2
,

(4.4.9)
where we defined the Kähler moduli D-term parameters

da ≡
g2

U(1)a

2
ξ2

a =
1
2

g3
s |m(j)

a m(k)
a |
(

k(j)
a

π

)2

, (a, j, k) = σ(1, 2, 3) with σ a 3-cycle. (4.4.10)

Note again that the above da correspond to the specific flux configuration of (4.4.2).

4.4.2 F-term from brane separation

Appart from the D-term potential, the effective field theory contains a positive mass
contribution for the tachyonic scalars of the model described in section 3.3.3. These scalars
come from strings stretching between the D72 brane stack and its image, and the positive
contribution to their mass is due to the distance separation between the brane and its
orientifold image. It is generated by the VEV of an adjoint scalar coming from strings with
both ends on the D72 stack and preserves supersymmetry, in contrast to the tachyonic
contribution from the magnetic field discussed above.

More precisely, this contribution is described by a trilinear superpotential obtained
by an appropriate N = 1 truncation of an N = 4 supersymmetric theory within the
untwisted orbifold sector:

WC7a
i
3 Tr

(
C7a

1

[
C7a

2 , C7a
3

])
. (4.4.11)

The C7a
j for j = 1, 2, 3 are the three N = 1 chiral multiplets that are part of an N = 4

vector multiplet living on the D7a brane stack. C7a
a parametrise the brane position in the

transverse plane while C7a
j with j 6= a are the internal components of the 8d gauge fields

along the two planes of the worldvolume of the D7a brane [156, 157]. As explained above,
the couplings of interest are given by equation (4.4.11), with a = 2. We can then identify
the relevant superpotential in our case from2:

W
C72

i
= wijkC72

i C72
j C72

k 3 c Φ2Φ+Φ−. (4.4.12)

Here Φi are the un-normalized fields: Φ2 is the modulus associated with the D72 brane
position x2 of section 3.3.3, hence C72

2 , while Φ− (and Φ+) is the tachyonic matter field of
interest (and its charge conjugate) assimilated to C72

1 and C72
3 . When Φ2 acquires a non

vanishing VEV 〈Φ2〉 ∼ x2, the superpotential (4.4.12) generates a (supersymmetric) mass
for the matter fields Φ+ and Φ−.

The physical mass for the canonically normalized fields ϕi can be computed from
the physical Yukawa couplings derived from the supergravity action [158, 159, 50] and
expressed as

Wtach = Yijk ϕi ϕj ϕk, with Yijk = wijk (KiīKjj̄Kkk̄)
− 1

2 e
κ2
2 K. (4.4.13)

Kiī are the Kähler metrics of the matter fields of interest (assuming no kinetic mixing),
and wijk is the trilinear coupling of the holomorphic superpotential, which in our case is

2In our conventions the superpotential and all un-normalized fields are dimensionless.
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simply related to c defined in (4.4.12). In the type IIB string framework, and for the un-
twisted fields appearing in (4.4.11), the Kähler metrics of the matter fields on magnetized
tori read [50, 160, 161, 156, 162]

κ2K
C72

1 C̄72
1
=

πeφ4

(U1 + Ū1)

√
α′A1

A2A3

∣∣∣∣∣
m(3)

2

m(1)
2

∣∣∣∣∣

∣∣∣∣∣
A3 + iα′k(3)

2

A1 + iα′k(1)
2

∣∣∣∣∣ , (4.4.14)

κ2K
C72

3 C̄72
3
=

πeφ4

(U3 + Ū3)

√
α′A3

A1A2

∣∣∣∣∣
m(1)

2

m(3)
2

∣∣∣∣∣

∣∣∣∣∣
A1 + iα′k(1)

2

A3 + iα′k(3)
2

∣∣∣∣∣ , (4.4.15)

κ2K
C72

2 C̄72
2
=

πeφ4

α′2(U2 + Ū2)

√
α′A2

A1A3

∣∣m(1)
2 m(3)

2

∣∣ ∣∣A1 + iα′k(1)
2

∣∣ ∣∣A3 + iα′k(3)
2

∣∣ . (4.4.16)

The m(i)
a , n(i)

a integers are related to the quantised magnetic field H(i)
a with k(i)

a given in equa-
tion (3.3.22). We recall that in the present example we take m(1)

2 = m(3)
2 = 1, as mentioned

under eq. (4.4.2). The four dimensional dilaton φ4 is related to the ten dimensional one
through the total volume

eφ4 = eφV− 1
2 =

eφα′3/2

√A1A2A3
. (4.4.17)

The 10d dilaton is part of the axio-dilaton multiplet defined as

S = e−φ + iC0, with gs = 〈eφ〉. (4.4.18)

In the configuration of (4.4.2), H(3)
2 is turned on and H(1)

2 vanishes. In the large volume
limit, i.e. when α′k(3)

2 � A3, the magnetic flux is diluted and the Kähler metrics approach
the unmagnetized ones. We will check later that the magnetic fields are indeed small for
our purposes. In that case the Kähler metrics read

κ2K
C72

1 C̄72
1
=

πeφ4

(U1 + Ū1)

√
α′A3

A1A2

∣∣∣∣∣
m(3)

2

m(1)
2

∣∣∣∣∣ =
1

(U1 + Ū1)(T3 + T̄3)
, (4.4.19)

κ2K
C72

3 C̄72
3
=

πeφ4

(U3 + Ū3)

√
α′A1

A2A3

∣∣∣∣∣
m(1)

2

m(3)
2

∣∣∣∣∣ =
1

(U3 + Ū3)(T1 + T̄1)
, (4.4.20)

κ2K
C72

2 C̄72
2
=

πeφ4

(U2 + Ū2)

√
A1A2A3

α′3
∣∣m(1)

2 m(3)
2

∣∣ = 1
(S + S̄)(U2 + Ū2)

, (4.4.21)

where we used that in the toroidal case the Ti moduli are expressed in terms of the tori
areas through

Ti =
e−φAjAk

α′2
+ iai , i 6= j 6= k 6= i. (4.4.22)

In the last equalities of eqs. (4.4.19) to (4.4.21) we also explicitly took m(1)
2 = m(3)

2 = 1.
These Kähler metrics follow from a Kähler potential of the usual form

κ2K =− ln
[
(S + S̄)(U2 + Ū2)− |C72

2 |2
]

− ln

[
(T2 + T̄2) ∏

i,j=1,3

(
|εi2j|(Ti + T̄i)(Uj + Ūj)− |εi2j||C72

j |2 + · · ·
)]

. (4.4.23)

In the last line, there is an implicit summation on the j index, and εi2j is the standard fully
antisymmetric symbol. In the above Kähler potential we did not include the quantum
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corrections of equation (3.2.34).
From equations (4.4.19) to (4.4.21) we see that the physical Yukawa couplings (4.4.13)

read

Yijk = κ3wijk

(
1

(S + S̄)(T1 + T̄1)(T3 + T̄3)∏l(Ul + Ūl)

)− 1
2
(
(S + S̄)∏

l
(Tl + T̄l)(Ul + Ūl)

)− 1
2

= κ3wijk
1√
T2 + T̄2

= κ3wijk g1/2
s

√
A2

α′V . (4.4.24)

We have made use of the definitions (4.4.18), (4.4.17) and (4.4.22) to express the various
moduli in terms of the physical quantities. From (4.4.24) we can extract the internal vol-
ume dependence of the canonically normalized tachyonic fields superpotential (4.4.12)

Wtach = g1/2
s κ3

√
A2

α′V ϕ2ϕ+ϕ−, (4.4.25)

which generates a F-term scalar potential.

Mass term When ϕ2 gets a non-vanishing VEV 〈ϕ2〉 6= 0, the F-term gives a mass to the
tachyonic fields

VF 3 κ−4 ∑
i

∣∣∣∣
∂Wtach

κ∂ϕi

∣∣∣∣
2

=
gs∣∣m(1)

2 m(3)
2

∣∣ |〈ϕ2〉|2
A2

α′V
(
|ϕ+|2 + |ϕ−|2

)
≡ m2

x2

(
|ϕ+|2 + |ϕ−|2

)
.

(4.4.26)
In the above equation, we defined mx2 as the physical mass coming from the brane posi-
tion x2.

From equation (4.4.21) we read the Φ2 Kähler metric and deduce the expression for
the canonically normalized field

ϕ2 =
κ−1

√
(U2 + Ū2)(S + S̄)

Φ2 =
κ−1g1/2

s√
U2 + Ū2

Φ2. (4.4.27)

We recall that Φ2 is the dimensionless complexified scalar modulus related to the brane
position on T2

2 , given by
Φ2 = xx

2 − iU2xy
2. (4.4.28)

Hence from equations (4.4.26) to (4.4.28) we deduce that

m2
x2
= |〈ϕ2〉|2 gs

A2

α′V =
g2

s
κ2V

A2

α′|U2 + Ū2|
∣∣xx

2 − iU2xy
2

∣∣2 ≡ y(U2)
g2

s
κ2V
A2

α′
. (4.4.29)

Replacing κ2V/g2
s by α′ through (4.4.5), we find back the string mass formula (3.3.35)

derived in section 3.3.3, except for irrelevant powers of 2 which come from the fact that in
the current part we derived the mass term without explicitly applying the orientifold and
orbifold projections. In the following we use the last form of (4.4.29).

Quartic term In order to analyse the phase transition of the waterfall field, we need
to keep track of the quartic terms in addition to the mass terms. For the D-term scalar
potential the quartic contributions were already included in the expansion (4.4.3). The
full F-term scalar potential can be computed through the supergravity formula using the
total superpotential W = W0 +WC72

i
containing the flux-dependent constant and the
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C72
i dependent part of eqs. (4.4.11) and (4.4.12), together with the total Kähler potential

including the C72
i dependence of (4.4.23) and the quantum corrections of eq. (3.2.34). From

this F-term we can extract the quartic contribution of the waterfall field.
Nevertheless, the leading corrections in gs are easily obtained by expanding the Kähler

potential (4.4.23) with respect to the tachyonic field ϕ− (or rather its non-canonically nor-
malized “parent” C72

1 or C72
3 ), thus neglecting the C72

2 dependence in the logarithm of the
first line together with the one-loop quantum corrections. The leading quartic contribu-
tion for the tachyonic scalar field potential then simply reads

VF 3
g2

s
(U2 + Ū2)

A2

α′V |〈Φ2〉|2|ϕ−|4 = y(U2)
g2

s
V
A2

α′
|ϕ−|4 = κ2m2

x2
|ϕ−|4. (4.4.30)

Thus, it turns out that the leading quartic contribution comes entirely from the expansion
comes entirely from the expansion of the eκ2K factor in the supergravity formula. The
dependence on the moduli of this term is identical to the one of the mass term as it comes
from the Ki j̄DiWD j̄W part of the F-term scalar potential, with the derivative taken with
respect to the ϕ+ field.

4.4.3 New vacuum

Summing the D-term and F-term contributions (4.4.3), (4.4.26) and (4.4.30) for the mat-
ter fields with the F-term scalar potential for the volume modulus, we obtain the effective
scalar potential to minimize in order to obtain the physical vacuum. It reads

V(Ai, ϕ±) = VF(V) + VF(Ai, ϕ±) + VD(Ai, ϕ±) + · · ·
= VF(V) + m2

x2

(
|ϕ+|2 + |ϕ−|2

)
+ κ2m2

x2
|ϕ−|4 + · · ·

+ ∑
b=1,3

g2
U(1)b

2
ξ2

b +
g2

U(1)2

2
(
ξ2 + 2|ϕ+|2 − 2|ϕ−|2

)2
+ · · · (4.4.31)

Kähler moduli minimization We first minimize the scalar potential with respect to the
internal areas moduli Ai, letting free the total volume V , neglecting for the moment the
matter fields. This is similar to what was done in [3] and shown in sections 4.2.1 and 4.2.2,
with nevertheless a slightly different expression for the D-term before the minimization.
This is why we perform again the minimization in our precise model. Defining the ratios

u ≡ A3

A2
, v ≡ A1

A3
,

1
uv

=
A2

A1
, (4.4.32)

the D-term part of the scalar potential (4.4.9) reads

VD(Ai) = VD(V , u, v) =
1

κ4V2

(
d1u + d2v +

d3

uv

)
, (4.4.33)

where the di parameters are defined in equation (4.4.10). VD is minimized by

u0 =

(
d2d3

d2
1

) 1
3

, v0 =

(
d1d3

d2
2

) 1
3

, (4.4.34)
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which gives the following tori moduli

A1 = α′
(

d3

d2

) 1
3

V 1
3 , A2 = α′

(
d1

d3

) 1
3

V 1
3 , A3 = α′

(
d2

d1

) 1
3

V 1
3 , (4.4.35)

while its expression at the minimum becomes:

VD(V) = VD(V , u0, v0) =
3(d1d2d3)

1
3

κ4V2 ≡ d
κ4V2 . (4.4.36)

In the last equality we defined

d ≡ 3(d1d2d3)
1
3 =

3
2

g3
s

∣∣∣∣∣
m(3)

1 m(1)
2 m(2)

3

m(2)
1 m(3)

2 m(1)
3

∣∣∣∣∣

1
3
(

n(2)
1 n(3)

2 n(1)
3

π3

) 2
3

, (4.4.37)

giving back the D-term contribution shown in equation (4.2.15), but with a specific value
of d related to the parameters of our model.

From (4.4.4), (4.4.6), (4.4.10) and (4.4.29), one finds that the masses and couplings for
the matter fields take the form

m2
H2

= 2
√

2
∣∣m(1)

2 m(3)
2

∣∣− 1
2

√
gs

κ2

(
d2

1d2
) 1

6

V 4
3

, g2
U(1)2

=
gs

V 2
3

(
d1

d3

) 1
3 ∣∣m(1)

2 m(3)
2

∣∣−1
,

m2
x2
=

g2
s

κ2 y(U2)

(
d1

d3

) 1
3 1

V 2
3
· (4.4.38)

For the configuration of section 3.3.3, the condition |ζ (2)
1 | = |ζ

(3)
2 | = |ζ (1)

3 | in (3.3.44) is
necessary to eliminate the tachyons from different brane intersections. Together with the
moduli stabilization condition (4.4.35), this gives the following relations that the fluxes
must satisfy

n(3)
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∣∣∣∣∣
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3
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1
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1
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2

∣∣∣∣∣ n(2)
1 , (4.4.39)

leading to the following expression for the D-term parameter introduced in eq. (4.4.37):
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We recall that the wrapping numbers m(j)
a are also subject, together with the brane mul-

tiplicities Na (or N′a introduced in eq. (3.3.29)), to tadpole cancellation conditions. For
instance, in the absence of 3-form fluxes the tadpole cancellation conditions for the m(j)

a
simply read N′am(j)

a m(k)
a − 16 = 0, a 6= j 6= k 6= a, for each D7a brane stack. We also recall

that we have chosen m(1)
2 = m(3)

2 = 1, even if we kept generality in eqs. (4.4.37) to (4.4.40).
Note that the model of section 3.3.3 with more general flux configurations leads to less
constrained flux parameters n(j)

a than those of eq. (4.4.39).

Global minimum and waterfall direction After stabilization of the transverse moduli
ratios (u and v), the left-over parameters of the total scalar potential (4.4.31) can be re-
placed using equations (4.4.38). In the simple case under consideration, with fluxes as in
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(4.4.39), the mass and coupling of eq. (4.4.38) read
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Neglecting the massive ϕ+ field and expressing the volume modulus dependent contri-
bution VF(V) + VD(V) through (4.2.15), the scalar potential (4.4.31) is written as

V(V , ϕ−) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
+

1
2

m2
Y(V)|ϕ−|2 +

λ(V)
4
|ϕ−|4, (4.4.42)

taking the same form as eq. (4.3.1), with ϕ− playing the role of the waterfall field Y. Its
mass and coupling read

1
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In eq. (4.4.43) we explicitly took m(1)
2 = m(3)

2 = 1 and defined the critical volume Vc2 at
which ϕ− becomes tachyonic, i.e. for V < Vc2,

Vc2 ≡
(

2k
πy(U2)

) 3
2 ∣∣m(2)

1 m(3)
1 m(1)

3 m(2)
3

∣∣ 1
4 . (4.4.45)

As expected, Vc2 depends on the fluxes through k defined in eq. (4.4.40) and on the D72
brane position through y(U2) defined through (4.4.29). We also remark from eq. (4.4.44)
that the main contribution to the quartic coupling λ comes from the D-term part of the
potential, since the F-term contribution is suppressed by a power of gs.

When the mass term m2
Y of eq. (4.4.43) becomes negative, the waterfall field Y (our

tachyonic field ϕ−) rolls down its potential to the new vacuum at 〈ϕ−〉 = 〈Y〉 = ±v2.
From eqs. (4.3.5) and (4.4.42) we see that the value of the potential at this new vacuum is

V(V , v2) = VF(V) + VD(V)−
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Y
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. (4.4.46)

We recall here the expressions of various parameters introduced before

q =
ξ

2γ
, σ =
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2γ
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,

(4.4.47)
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and define C2, the coefficient of the tachyonic contribution to the vacuum energy through

C2 ≡ −
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s y2(U2)
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We observe that C2 and Vc2 are not independent, their are related by

C2 = β2
d

3V
4
3

c2

, β2 ≡
2

2 + gsy(U2)
∈ [0, 1], (4.4.49)

where the parameter β2 expresses the relative contributions to the quartic coupling from
the F-term versus the D-term. From (4.4.29) we see that as y(U2) > 0, β2 lies between 0
and 1. For β2 = 1 the D-term dominates whereas for β2 = 0 the F-term dominates. It is
clear from (4.4.49) that the tachyonic contribution becomes maximal (in absolute value)
for β2 = 1, when the quartic coupling is dominated by the D-term one.

Let us discuss now the physics of the waterfall direction. As explained in section 4.3,
the waterfall field can generate the desired scenario for the end of inflation. It has to
become tachyonic when the volume modulus V (identified to the inflaton φ through
eq. (4.2.8)) reaches the bottom of its potential VF(V) + VD(V). This situation corresponds
to Vc2 ≈ V−, where V− is the value of the volume at its minimum, expressed by (4.2.41).
From eq. (4.4.45) we see that the value Vc2 depends on y(U2), k and a ratio of flux and
wrapping numbers, hence it is easy to choose Vc2 near V−.

We see from the scalar potential expression (4.4.46) that once C and d are determined
by the inflationary phase, and Vc2 fixed to V−, the coefficient C2 is the only parameter to
tune the minimum. From the relation of eq. (4.4.49) we see that in fact, only β2 can be used
for fixed C and d. As β2 depends only on the product gsy(U2), we express Vc2 in terms of
d, gs and gsy(U2) using eqs. (4.4.40) and (4.4.45). It reads:
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(4.4.50)

Hence, in principle we can first fix the product gsy(U2) to have the desired β2 and tune
the minimum, then choose the values of gs and of the ratio of the flux/wrapping numbers
on the second torus to tune the critical volume.

Example of numerical values We give now an explicit example of parameters support-
ing the above discussion. As explained in section 4.2.4, in the inflationary scenario dis-
cussed above the values of x and C are fixed by observational constraints to

x ≈ 3.3× 10−4, C = e−3q × 7.81× 10−4 ≡ e−3qC0. (4.4.51)

From eqs. (4.2.16), (4.2.22) and (4.2.41) we extract for q = 0 the values of V−, the minimum
of the modulus part of the potential, and the d magnetic flux parameter

V− ≈ 201.9, d ≈ 5.65× 10−6. (4.4.52)

We compute numerically the global minimum of the potential given in (4.4.46) and see
that in order to have an almost vanishing value at the minimum, we need to tune the
tachyonic coefficient to C2 ≈ 5.136× 10−9, which through equation (4.4.49) would impose
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the value

βΛ=0 = 5.136× 10−9 3V−
4
3

d
≈ 3.228. (4.4.53)

Nevertheless, as β2 ∈ [0, 1], we see that we cannot tune the vacuum energy to zero in
the simple model of the current section. We come back to this point in detail in the next
section. From eq. (4.4.49) we see that the largest value β2 ≈ 1 is obtained for small gsy(U2)
and taking for instance gsy(U2) ≈ 10−2 in equation (4.4.50) we obtain

Vc2 ≈ V− ≈ 201.9 = 1.89× 10−2g−
3
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which has to be satisfied together with the relations on d and β2 given by eqs. (4.4.40)
and (4.4.49)
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≈ 5.65× 10−6. (4.4.55)

We recall that we consider the case m(1)
2 = m(3)

2 = 1. The following parameters

gs = 2.596× 10−3, n(2)
1 = 1, m(2)

1 = 2,

m(3)
1 = 10, m(1)

3 = 17, m(2)
3 = 25, y(U2) = 3.85, (4.4.56)

give the desired values for d, Vc2 and β2 ≈ 1. Of course, there is an infinite set of other
choices of parameters giving the same values. We show in the left panel of Figure 4.9 the
value of the potential at the global minimum (including the waterfall), located at V0 ≈ 160.
However, as explained above, this value is not vanishing. The next section tackles this
point in details.

FIGURE 4.9: Value V(V , v2) of the global minimum of the scalar potential
as a function of the internal volume, for the parameters of (4.4.56).

As one can see from the right panel of Figure 4.9, the tachyonic field gives indeed a
“warterfall” direction. Falling in this direction leads to an increase of the slow-roll pa-
rameters, which marks the end of the inflationary phase. A precise computation of the
slow-roll parameters along the inflaton trajectory is necessary to extract the extra number
of e-folds until the end of inflation and compare it to the case without waterfall field [3].
This number depends on V− − Vc2 and is model dependent.
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Validity of our approximations Before the end of this section, we stress the fact that
with the parameters (4.4.56), the volume modulus is large and the flux numbers k(i)

a small,
so that the large volume approximations of e.g. eqs. (4.4.4) and (4.4.7) hold. We also want
to check that the vacuum expectation value v2 of the waterfall field stays small (in κ units),
so that the quartic expansion of (4.4.3) holds. From eqs. (4.3.4) and (4.4.43) this VEV is
expressed as

〈ϕ−〉 = 〈Y〉 = ±v2 = ±|mY|√
λ

= ± 1√
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√
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) 2
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1
2

. (4.4.57)

It follows that 〈ϕ−〉 is entirely determined by gsy(U2) and Vc2. With the parameters of
(4.4.56) and the volume modulus Vc2 > V0 & 160, which is the range of Figure 4.9, one
finds a VEV v2 satisfying 0 ≤ κ|v2| <∼ 0.4

√
g ≈ 0.02. The quartic expansion (4.4.3) is thus

indeed sufficient.

4.5 Lowering the global minimum

We have seen in section 4.4.3 that in our type IIB framework with three orthogonal D7
branes, a waterfall field can be implemented through a doubly charged state stretching
between e.g. the D72 brane and its orientifold image. The mass of such a state depends
on the internal volume (our inflaton) and we showed that under a certain critical volume
this state becomes tachyonic, generating a waterfall direction typical of hybrid inflation
models described in section 4.3.

The first motivation for the introduction of such a waterfall direction was that it is
responsible for the end of inflation. The second motivation was that the waterfall field,
through its negative contribution to the scalar potential, lowers the value of the global
minimum and can in principle tune the cosmological constant to the almost vanishing
value observed today. Nevertheless, as we explained near the end of section 4.4.3, due to
the relation (4.4.49) we are not able to choose independently the position Vc2 and the depth
of the waterfall related to C2. The remaining freedom in the choice of the waterfall depth
lies in the β2 coefficient, whose value βΛ=0 ≈ 3.228, needed to tune the vacuum energy to
zero, cannot be reached in our example where β2 ≤ 1. In this section we investigate how
to modify the model in order to bypass the constraint imposed by eq. (4.4.49) and lower
the global minimum.

We first verify in section 4.5.1 that in the field theoretical description, where we can
choose freely the mass and coupling parameters while keeping their volume dependence,
the tuning of the global minimum is indeed possible. In section 4.5.2 we come back to the
simple case studied in the previous section. We show that the natural tentative to tune
the vacuum through the use of the parameter q, not constrained by the inflationary phase,
does not work. We also study if the contributions of the γ, ξ quantum corrections to the
tachyonic mass and coupling, gives extra freedom and helps to evade relation (4.4.49). We
show that, as these quantum corrections stay small, they do not play an important role.
We hence examine in section 4.5.3 if adding more tachyons, coming from the two other
D7-brane stacks, allows to tune the vacuum energy to zero. We find that even if these
additional tachyons lower indeed the global minimum, their contribution still determined
by d, constrained by the inflationary phase, is not sufficient to tune the vacuum energy to
zero. Nevertheless in section 4.5.4, we show that adding a forth magnetised stack, parallel
to an already present one, adds additional tachyonic contributions to the scalar potential,
allowing to tune the vacuum energy.
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4.5.1 Field theoretical description

We first look at the possibility to tune the vacuum energy of the model with arbi-
trary parameters, i.e. in the field theoretical description. We thus take arbitrary values
for the mass and quartic parameters of the F-terms and D-terms, but keep the volume
dependences as in the string theory setup of the previous sections. The scalar potential is
written as

V(V , ϕ−) =
C
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− lnV − 4 + q
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As described in the previous sections on a particular example, for V < Vc2 the matter
field becomes tachyonic and gets a non-vanishing VEV v 6= 0. The scalar potential gets
a contribution −m4/4λ(V) when ϕ− sits at its VEV and the dependence of the global
minimum in the volume then reads

V(V , v) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
− µ0

F
2

4(λ0
F + λ0

D)

1

V 2
3

(
1−

(Vc2

V

) 2
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, (4.5.2)

with V2/3
c2 = µ0

D/µ0
F. The D-term parameter µ0

D is related to the flux parameter d and
thus to x, relevant during the inflationary phase. We see from eq. (4.5.2) that in the
field theoretical description, one can tune µ0

D, Vc = (µ0
D/µ0

F)
3/2 and the coefficient C2 =

µ0
F

2/4(λ0
F + λ0

D) independently. This was not the case in the simple configuration de-
scribed in section 4.4.3 due to relation (4.4.49) between C2, d and Vc2, which translates the
fact that in our string theory setup, the µ0

D, µ0
F, λ0

D and λ0
F parameters cannot be chosen

independently.
In the next subsections we will investigate if more complex configurations can allow

the tuning of the scalar potential at the global minimum within our string theory setup.

4.5.2 Simple case studied previously

Dependence on the q parameter We now come back on the discussion on the tuning of
the global minimum in the configuration discussed since the beginning of section 4.4, i.e.
with the flux configuration (4.4.2). The value of the scalar potential at the global minimum
was expressed in (4.4.46). We first examine if the use of the parameter q could liberate
the constraint on the waterfall depth C2 (which is related to Vc2 ≈ V−), by shifting V−
arbitrarily. From eqs. (4.2.16), (4.2.22) and (4.2.41) we express the following parameters
dependence in q and x:

V− = e−q exp
(

13
3
−W0

(
−e−x−1

))
, σ = −eq− 16

3 −x, d = −3
2

Cσ, C ≡ −3W0
2γ.

(4.5.3)

We recall again that the parameters x and C determine the inflationary phase [3] and are
fixed from the observations to the values of eq. (4.4.51). From the definition (4.5.3) and
constraints (4.4.51), it seems that the q parameter could indeed help to tune the vacuum
energy, by shifting the value of V−, and thus the tachyonic contribution’s coefficient C2
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defined in eq. (4.4.49). Applying the constraint on the waterfall position Vc2 ≈ V−, the C2
dependence on q reads

C2 = β2
d
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≈ β2
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4
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4
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3

. (4.5.4)

Replacing C2 through (4.5.4), we see the scalar potential of (4.4.46) is nevertheless scale
invariant with respect to q. It can indeed be expressed as

V(V, v) =
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κ4
4− ln V
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κ4V2
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in terms of the q-dependent variables

V = eq V , V− = eq V− = exp
(

13
3
−W0

(
−e−x−1

))
, d0 ≡

3
2

C0e−
16
3 −x = e2qd ,

(4.5.6)
which absorb the explicit q-dependence of V. Hence, V(V, v) only depends on x, C0, both
fixed by the inflationary phase, and β2. As mentioned already, it is clear that the greater β2
is, the lower the global minimum is. Hence the value β2 = 1 gives the lowest minimum,
which is then totally fixed by x and C0.

We conclude that in the simple case studied in the previous section, the value of the
vacuum at the global minimum is totally fixed by the constraints on the inflationary phase
and the waterfall scenario implementation, and that neither the q nor β2 parameters can
help to lower it.

Influence of γ corrections to the squared mass and quartic term In the previous sec-
tions we neglected the contributions to the F-term squared mass and quartic terms for ϕ−
coming from γ and ξ factors. We now examine if these corrections could add supplemen-
tary freedom allowing us to choose independently the mass and quartic coupling of the
tachyonic field. As explained in the field theory description of section 4.5.1, in this way
one could tune the vacuum energy.

The aforementioned corrections can be read from the F-term supergravity formula
through the expansion in the ϕ− (or C72

2 ) variable of the Kähler potential. The first correc-
tions (in the gs and γ expansion) to the mass and quartic contributions read
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(4.5.7)
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(4.5.8)

with f (Ui) = (U1 + Ū1)
2(U2 + Ū2)(U3 + Ū3)2 and V introduced in eq. (4.5.6). Recall that

−C > 0, so that these parameters are indeed positive. The mass and quartic terms of
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eqs. (4.4.43) and (4.4.44) associated with these additional contributions now read:
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The new critical volume cannot be computed analytically now. Nevertheless the γ cor-
rection is suppressed by a factor V 7/3 and stays small for the values considered previously
at large volume. Indeed, from eqs. (4.5.9) and (4.5.10) we see that the coefficients in front
of the previous contributions and γ corrections scale as g2

s y(U2) against gsC for the mass,
and gs against Cgs for the quartic coupling λ, so that it is not possible to balance the huge
volume suppression V 7/3 of the γ corrections.

We also remark that the corrections of eqs. (4.5.7) and (4.5.8) are effectively indepen-
dent of the q parameter since they only depend on V, as the other contributions.

4.5.3 Additional tachyons from other D7-brane stacks

We now study the possibility of having several tachyons similar to the one described
previously. We start with the addition of a second tachyon, generating a second waterfall
direction. As the position of the second waterfall is only constrained to be at volumes
V < Vc2 ≈ V−, we expect to have more freedom on the height of this second waterfall
scalar potential contribution. We consider the following configuration:

(45) (67) (89)
D71 · ⊗ ×A1

D72 × · ±x2 ⊗
D73 ⊗ × ·±x3

(4.5.11)

The D73 brane tachyon is not eliminated by a Wilson line anymore. We introduce a po-
sition x3 for the brane on the third torus T2

3 , eliminating the tachyon at large volumes,
exactly as the one from the D72 brane. The mass of the string state is indeed of the form

α′m33 = −2|k(1)
3 |α′

πA1
+

z(U3)A3

α′
, (4.5.12)

where the function z(U3) plays a role similar to y(U2) in the previous sections and is di-
rectly related to the brane position x3. As for the tachyon studied previously, we describe
the new effective theory of the second tachyon ψ− through its masses mx3 and mH3 , gen-
erated respectively an F-term and a D-term, and the corresponding quartic couplings.
Their expressions are similar to those of eqs. (4.4.43) and (4.4.44) for the D72–D72 tachyon
ϕ−, replacing the fluxes and tori areas by the respective ones for the D73–D73 state. The
corresponding parameters for this D73–D73 state are denoted with a 3 subscript. For in-
stance, Vc3 is the critical volume of this second tachyon, corresponding to the position of
the second waterfall.
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For Vc3 < Vc2, the study of the first phase transition does not change with respect to
the single tachyon configuration. Indeed for Vc3 < V ≤ Vc2, the second tachyon sits at its
vanishing VEV 〈ψ−〉 = 0 and does not contribute to the potential. Then, when V ≤ Vc3
the second tachyonic field gets a non-vanishing VEV v3 6= 0 and its contribution to the
scalar potential reads

V(V , v3) = −
m4

Z
λZ

(V) = − C3

κ4V 2
3

(
1−

(Vc3

V

) 2
3
)2

, (4.5.13)

with

Vc3 ≡
(

2k
πz(U3)

) 3
2
∣∣∣∣∣
m(2)

1 m(3)
1 m(1)

2 m(3)
2

m(1)
3

5
m(2)

3
5

∣∣∣∣∣

1
4

, C3 = β3
d

3V
4
3

c3

, β3 =
2

2 + gsz(U3)|m(1)
3 m(2)

3 |
∈ [0, 1].

(4.5.14)
For V < Vc3 ≤ Vc2, the dependence of the global minimum of the scalar potential hence
reads

V(V , v2, v3) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
− ∑

a=2,3

Ca

κ4V 2
3

(
1−

(Vca

V

) 2
3
)2

. (4.5.15)

A short comment is in order on the way the global minimum is determined when sev-
eral tachyons appear. The mass and coupling of ϕ− expressed in eqs. (4.4.43) and (4.4.44)
and the similar ones for ψ− are the “bare” ones. As the “first” tachyon gets a VEV before
the second one, contributions should appear due to interaction terms. These interaction
terms come from the supergravity formula for the scalar potential through the expansion
of the Kähler potential. Namely, corrections to the F-term mass and quartic coupling of
ψ− due to the VEV of the ϕ− field are of the form:

m2
x3,corrections ∼ κ2(m2

x3
+ m2

x2
)〈ϕ−〉2 + κ4m2

x3
〈ϕ−〉4 + · · · (4.5.16)

λcorrections ∼ κ2m2
x3,corrections = κ4(m2

x3
+ m2

x2
)〈ϕ−〉2 + κ4m2

x3
〈ϕ−〉4 + · · · (4.5.17)

As long as 〈ϕ−〉 stays small (compared to κ) these corrections are negligible in front of the
“bare” parameters and only shift the values of C3 or Vc3 by a small amount. Conversely,
once ψ− gets a non-vanishing VEV, corrections to the first tachyon parameters also appear
but are negligible and only shift lightly the values of C2 or Vc2.

We now turn back to the study of the global minimum. We see through (4.5.14) that the
amplitude C3 of the tachyonic contribution and its critical volume Vc3 are directly related.
To get a large tachyonic contribution, we need to increase C3, implying a smaller critical
volume Vc3. Nevertheless, at small volumes the moduli part (the first contribution) of
the scalar potential (4.5.15) dominates because it increases as 1/V3, against 1/V2 for the
tachyonic contributions. Hence if Vc3 is small, the tachyonic contribution only appears at
small volumes and cannot compensate the moduli part. In fact, it turns out that the largest
contribution to the scalar potential from the second tachyon is for Vc3 ≈ Vc2 and hence
C3 ≈ C2. We see from Figure 4.10 that the second tachyon (green curves) contribution
indeed lowers the value of the global minimum but is not sufficient to tune the vacuum
energy to zero.

We are thus naturally led to consider adding a third tachyon on the last brane D71.
The treatment is identical to the one for the first two and its contribution is described by
a critical volume Vc1 related to the corresponding coefficient C1. When V < Vc1 ≤ Vc3 ≤
Vc2, all three tachyons sit at their respective non-vanishing VEV. The value of the global
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minimum of the scalar potential is then as in eq. (4.5.15) but with a sum over the three
tachyons:

V(V , v1, v2, v3) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
− ∑

a=1,2,3

Ca

κ4V 2
3

(
1−

(Vca

V

) 2
3
)2

. (4.5.18)

FIGURE 4.10: Value of the global minimum of the effective scalar potential
as a function of V , without (blue), with one (orange), two (green) or three
(red) tachyons. The parameters are such that Vc2 = V−, Vc3 = 0.99V− and

Vc1 = 0.98V−.

From Figure 4.10 we see that the third tachyon is not sufficient yet to lower the global
minimum to zero. In fact, this is understandable by the fact that when Vc1 ≈ Vc2 ≈
Vc3, the value of the global minimum expressed as in (4.5.15) (but with the sum on a =
1, 2, 3 tachyons) is almost similar to the one with only one tachyon, but with an effective
tachyonic contribution coefficient equal to C1 + C2 + C3 instead of C2. As the Ci are also
related to the Vci the only parameter to tune is β1 + β2 + β3 ≤ 3, which is always smaller
than the desired value βΛ=0

2 ≈ 3.228 introduced in (4.4.53). One can also wonder if having
magnetic fluxes on the entire worldvolumes would allow to relax the relation between
the Vci and the Ci in order to go above this bound, but we show in Appendix C that a
configuration as in section 3.3.3 does not help.

It is now clear, as can be understood from the above discussion, that the addition of a
fourth tachyon would allow for an effective β = ∑i tachyons βi that could be higher that the
value βΛ=0 ≈ 3.228, allowing to tune the vacuum energy to zero. In the next subsection
we implement this idea in an example with a fourth D7-brane stack, parallel to one of the
stacks previously studied.

4.5.4 Adding a fourth magnetized stack

As explained in the previous subsection, a fourth tachyon seems necessary to tune the
vacuum energy of the minimum. One way to achieve this is by adding a fourth D7 brane
stack, parallel to one of the one already present, say D72. We thus consider the following
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configuration
(45) (67) (89)

D71 ·±x1 ⊗ ×
D72a × · ±x2a ⊗
D72b × · ±x2b ⊗
D73 ⊗ × ·±x3

(4.5.19)

The two D72i branes can be studied exactly as before. The D72i–D71, D72i–D73, D72i–D72i
states are hence identical to the ones studied in section 3.3.3. The necessary condition to
eliminate the mixed-state tachyons is similar to (3.3.44):

|ζ (2)
1 | = |ζ

(3)
2a | = ζ (3)

2b | = |ζ
(1)
3 |. (4.5.20)

The new ingredient comes from the D72a–D72b states. The magnetic fields produce the
following mass for the lowest lying states

α′m2 = −|ζ (3)
2a | − |ζ (3)

2a | = −2|ζ (3)
2a |, (4.5.21)

where in the last equality we used equation (4.5.20). The D72a–D72b states also receive
contributions from their relative distance, i.e. from the separation in the second torus T2

2
due to the different brane localisations x2a and x2b. We recall that

x2i ≡ xx
2i R2x + xy

2i R2y with xx
2i, xy

2i ∈ Q, i = a, b. (4.5.22)

The mass contribution is then similar to the one of (3.3.35), with x2 replaced by x2ab =
x2a − x2b. It reads

α′m2 =
x2ab · x2ab

α′
=

xk
2abxl

2abg(2)
kl

α′
=

4A2

α′Re(U2)

∣∣xx
2ab − iU2xy

2ab

∣∣2 ≡ yab(U2)A2

α′
. (4.5.23)

The total D72a–D72b lowest lying state mass then reads

α′m2
22 = −2|ζ (3)

2a |+
yabA2

α′
≈ −2α′|k(3)

2a|
πA3

+
yabA2

α′
. (4.5.24)

In the effective theory, the new mass contributions come from a D-term and F-term as in
the previous cases. The second brane orthogonal to the T2

2 torus give additional contribu-
tions to the D-term scalar potential obtained from the previous formula (4.4.3), where we
recall that the sum runs over the different U(1) factors:

VD = ∑
a

g2
U(1)a

2

(
ξa + ∑

n
qn

a |ϕn
a |2
)2

+ · · ·

=
g2

U(1)2a

2
(
ξ2a − 2|ϕ2a−|2 − |ϕ2ab−|2 + · · ·

)2
+

g2
U(1)2b

2
(
ξ2b − 2|ϕ2b−|2− |ϕ2ab−|2+ · · ·

)2

+ ∑
a=1,3

g2
U(1)a

2
(
ξa − 2|ϕa−|2 + · · ·

)2
+ · · · , (4.5.25)

with the FI terms ξi expressed from the fluxes as in eq. (4.4.8). The additional D72b brane
adds a contribution to the d2 term, defined in (4.4.10), which now reads

d2 =
g2

U(1)2a

2
ξ2

2a +
g2

U(1)2b

2
ξ2

2b = g2
U(1)2a

ξ2
2a. (4.5.26)
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In the last equality we used the flux condition (4.5.20) and the fact that for unit wrapping
numbers g2

U(1)2a
= g2

U(1)2b
since the two stacks are parallel, as can be seen from equation

(4.4.7). The D-term contributions to the masses and quartic couplings of the ϕ2a,−, ϕ2b,−
and ϕ2ab,− fields can be expressed by expanding the scalar potential (4.5.25). The masses
have the same expressions while there is a factor of 2 difference between the quartic cou-
plings of the doubly charged states and the bi-charged D72a–D72b state.

The F-term contributions to the mass and quartic couplings can be derived as in the
previous subsections, see eq. (4.4.29) and around, and read

m2
x2i

= yi(U2)
g2

s
κ2V
A2

α′
, i = a, b, m2

x2ab
= yab(U2)

g2
s

κ2V
A2

α′
,

λx2i = 4κ2m2
x2i

, λx2ab ∼ 4κ2m2
x2ab

, (4.5.27)

where we recall that yab was defined in eq. (4.5.23) using x2ab = x2a − x2b and the yi(U2)
are of course defined with respect to the respective brane positions x2i. There are some
subtleties for the low-energy derivation of the mass and quartic couplings for the D72a
– D72b tachyon, because it does not appear in the same way as the D72i – D72i tachyons
in the Kähler potential and has a different superpotential expression. Nevertheless, as
expected from the string mass formula, we obtain the dependences as in (4.5.27).

The minimization procedure follows as in the case with the three tachyons of sec-
tion 4.5.3. In the present case, there are four tachyons coming from the doubly charged
states between each stack and its image, and a fifth one from the D72a–D72b sector. The
value of the scalar potential at the minimum hence reads

V(V , vi) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
−

5

∑
i=1

Ci

κ4V 2
3

(
1−

(Vci

V

) 2
3
)2

, (4.5.28)

where the sum runs over the five tachyons mentioned above, hence i = 1, 2a, 2b, 2ab, 3.
The critical volumes and tachyonic contribution coefficients can be computed as before
and read

Vc1
2
3 ≡ 2|k(2)

1 |
w(U1)π

(
d2

d1

) 1
3

, Vc2i
2
3 ≡ 2|k(3)

2a|
yi(U2)π

(
d3

d2

) 1
3

, i = a, b, ab, Vc3
2
3 ≡ 2|k(1)

3 |
z(U3)π

(
d1

d3

) 1
3

,

Ci = βi
d

3V
4
3

ci

, i = 1, 2ab, 3, Ci =
1
2

βi
d

3V
4
3

ci

, i = 2a, 2b, (4.5.29)

βi =
2

2 + gs fi
, i = 1, 2a, 2b, 3 with ( f1, f2a, f2b, f3) = (w, ya, yb, z), β2ab =

1
1 + gsyab

.

There is a small subtlety coming from the addition of a second parallel brane D72b, which
modifies the d2 parameter as in eq. (4.5.26), and is responsible for the factor 1

2 in C2a, C2b.
This factor is not present in C2ab, because of the factor 2 between the D-term quartic cou-
plings mentioned under eq. (4.5.26). As in the case with three tachyons discussed under
(4.5.18), we look at the maximum value of the tachyonic amplitude, reached for almost
equal Vc,i ≈ V− and saturated values βi = 1:

C1 + C2a + C2b + C2ab + C3 ≈ 4
d

3V
4
3
−

> βΛ=0 d

3V
4
3
−

. (4.5.30)
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Hence the value βΛ=0 introduced in eq. (4.4.53) can be reached with the current configu-
ration, i.e. through the addition of the fourth brane D72b, and the value of the global min-
imum of the potential can be tuned to almost zero. With the saturated bound of equation
(4.5.30), the sum of the tachyonic contributions to the global minimum is greater than the
moduli contribution and an AdS vacuum is obtained. There are several options to tune
the global minimum: one can either lower the βi parameters or choose smaller tachyonic
critical volumes (except for the first waterfall field responsible for the end of inflation).

FIGURE 4.11: Value V(V , vi) of the global minimum of the scalar potential
as a function of the internal volume, for the parameters (4.5.31). We show
(left panel) the almost vanishing value of the global minimum, and focus

(right panel) on the waterfall zone near V− ≈ 201.9.

Taking for simplicity only unit wrapping numbers, the choice of parameters

gs = 8.025× 10−3 n(2)
1 = 12, m(j)

i = 1, x(U1) = 0.185,
z(U3) = 0.189, ya(U2) = 0.0881, yb(U2) = 0.098, yab(U2) = 0.09, (4.5.31)

gives the following values for d, the critical volumes and the βi coefficients:

d = 5.65× 10−6, βi ≈ 1, i = 1, 2a, 2b, 2ab, 3, Vc2a = 201.9 ≈ V−, (4.5.32)
Vc1 = 187.6, Vc2b = 172.1, Vc2ab = 195.5, Vc3 = 181.7.

Figure 4.11 shows the value of the global minimum of the scalar potential as a function
of the internal volume for the parameters of (4.5.31). We see that with this choice the
cosmological constant can indeed be tuned to an almost vanishing positive value.

4.6 Summary

Reconciling moduli stabilization and de Sitter vacua is essential in order to obtain
an effective potential appropriate for cosmological inflation. In a type IIB string theory
framework with intersecting D7 branes, we have shown that a non-vanishing potential is
generated with the internal volume modulus playing the role of the inflaton φ, triggering
exponential growth of the Universe. The essential ingredients in the stabilization mecha-
nism are space-filling D7 branes. They generate logarithmic radiative corrections induced
when effectively massless closed strings traverse their codimension-two bulk towards lo-
calized gravity sources. Moreover, the dS vacuum is obtained due to the positive D-term
contributions coming from their U(1) gauge factors.
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We have shown that in the large volume limit, the induced effective potential for
Kähler moduli receives a minimalist structure with a shape, and in particular, the vol-
ume separation of its two local extrema, that can be parametrized in terms of a single
non-negative parameter, x. The largest separation, albeit rather small, occurs at a critical
value xc > 0. Beyond this point only AdS solutions are admissible. As x attains smaller
values, the distance between the two extrema diminishes and at the final admissible point
x = 0, it collapses to zero. The upshot of the above picture is that there exists a non-zero
value x < xc at which a new inflationary small-field scenario is successfully implemented.

This scenario is distinct from other well-known solutions and its benchmarks are:

• Most of the required number of e-folds (∼ 60) are collected in the vicinity of the min-
imum of the potential, while the horizon exit arises near (from above) the inflection
point.

• The variation of the inflaton field is small compared to the Planck scale as in small
field inflation models, consistently with the validity of the effective field theory and
swampland distance conjecture [163].

• The prediction for the tensor-to-scalar ratio of primordial density fluctuations in the
early universe is r ≈ 4× 10−4.

• The potential, induced by radiative corrections, presents a false vacuum that is ex-
pected to decay to the true one towards the direction of large φ values. We imple-
mented well-established methods evaluating the possibility of tunneling [144] or
passing over the potential barrier [145] and computed the vacuum decay rate. We
found that the false vacuum has an extremely long lifetime.

While inflation is successfully described close to a sufficiently long-lived minimum of
the potential, the cosmological constant in this scenario acquires a rather large value com-
pared to the one observed today. We have thus described how this problem can be evaded
within the context of hybrid inflation, realized when a second field creates a “waterfall”
direction in the potential that stops inflation quickly, as soon as the slow-roll parameter ε
exceeds unity.

We naturally implemented this idea within the same framework by considering the
case where the waterfall field is realized by appropriate open string excitations located on
three D7-brane stacks. For concreteness we used a toroidal orbifold example and studied
the charged states on the branes and their intersections. Generically, they receive tachy-
onic contributions due to the coupling of the magnetic field with the internal spin and a
positive supersymmetric contribution when Wilson lines along the branes worldvolumes
are turned on, or branes separation in the transverse directions. We have shown that for
appropriate magnetic fluxes and brane separations, most of the would-be tachyons can
be eliminated. The remaining ones appear for an internal volume close to the minimum
of the Kähler moduli potential, so that they play the role of waterfall fields. Hence, the
magnetic fluxes generate the appropriate coupling with the waterfall fields, necessary to
realize the transition to the true vacuum after inflation. At first, we implemented the hy-
brid inflation scenario considering only one tachyonic state. We observed that the value of
the scalar potential at the global minimum was still too important to account for today’s
dark energy density. Adding more tachyons in the same compactification framework
helped to lower the global minimum and we showed that with four tachyons we could
successfully tune the vacuum energy to its almost vanishing, albeit positive, value.

In conclusion, it is worth emphasizing that the successful implementation of cosmo-
logical inflation in the above analysis is based only on a few simple characteristics oc-
curring in generic type IIB string vacua. The few coefficients involved depend on well
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defined topological properties such as the Euler characteristic of the compactification
manifold, and the coefficients of the D-terms determined by the D7 brane configuration.
Consequently, this analysis can in principle apply to an ample class of vacua in the string
landscape. Moreover, the main features of the proposed framework describing waterfall
fields tally with the general principles of hybrid inflation, establishing a firm ground for
the implementation of this scenario in string theory.
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Appendix A

Various conventions

A.1 Spinor conventions and useful identities

We work with Weyl spinors and use conventions of [10]. We recall conventions and
useful identities below:

ψχ = ψαχα = −χαψα = χαψα = χψ, ψα = εαβψβ, (A.1.1)

χσµψ̄ = −ψ̄σ̄µχ, (χσµψ̄)∗ = ψσµχ̄, χσµνψ = −ψσµνχ, (χσµνψ)∗ = χ̄σ̄µνψ̄, (A.1.2)

θαθβ =
1
2

εαβθθ, θαθβ = −1
2

εαβθθ, θ̄α̇ θ̄β̇ = −1
2

εα̇β̇ θ̄θ̄, θ̄α̇ θ̄ β̇ =
1
2

εα̇β̇ θ̄θ̄ , (A.1.3)

χα ≡ (σµνλ)α =⇒ χα = −(λσµν)α, χ̄α̇ = (σ̄µνλ̄)α̇, χ̄α̇ = −(λ̄σ̄µν)α̇ , (A.1.4)

θψ θφ = −1
2

θθ ψφ, ψχ ϕ̄η̄ = −1
2

ψσµ ϕ̄ χσµη̄ (Fierz identity) . (A.1.5)

We also list some properties of Pauli σ-matrices:

σµν ≡ 1
4
(σµσ̄ν − σνσ̄µ), σµσ̄ν + σνσ̄µ = −2ηµν → σµσ̄ν = −ηµν + 2σµν, (A.1.6)

Tr(σµνσργ) = −1
2
(ηµρηνγ − ηµγηνρ)− i

2
εµνργ, (A.1.7)

σµνσρ =
1
2
(ηµρσν − ηνρσµ + iεµνργσγ) , σ̄µσνρ = −1

2
(ηµνσ̄ρ − ηµρσ̄ν + iεµνργσ̄γ) . (A.1.8)

Our slash notation conventions are as follows

λ/∂χ̄ ≡ λσµ∂µχ̄, λ̄σ̄µ∂µχ ≡ λ̄/̄∂χ, (λ/∂χ̄)∗ = −λ̄/̄∂χ = ∂µχσµλ̄ . (A.1.9)

A.2 Field strength identities

We define the dual F̃γρ of the antisymmetric field-strength tensor Fµν and the associ-
ated self-dual or anti-self dual tensors as follows

F̃γρ =
i
2

εγρµνFµν, F+
µν =

Fµν + F̃µν

2
, F−µν =

Fµν − F̃µν

2
. (A.2.1)
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The above tensors satisfy the following properties

F̃µ
ρ F̃ρν = −1

2
ηµνF2 − Fµ

ρFρν , F2 ≡ FµνFµν = F̃2 , (A.2.2)

FµρFραFαν =
1
4

F̃µνFF̃− 1
2

FµνF2, Fµα F̃α
ν =

1
4

ηµνFF̃ , (A.2.3)

F+µ
ρ F−ρν = F+ν

ρF−ρµ =
1
4
(

Fµ
ρFρν − F̃µ

ρ F̃ρν
)
=

1
8

ηµνF2 +
1
2

Fµ
ρFρν. (A.2.4)

From (A.1.8) and (A.2.1) we derive the useful identities

σµσ̄νρFνρ = −2F−µ
νσν, Fνρσνρσµ = 2F+µ

νσν. (A.2.5)

A.3 Theta functions and so(2) characters

The Jacobi theta functions are introduced as

ϑ
[

α
β

]
(z|τ) = ∑

n
q

1
2 (n+α)2

e2πi(n+α)(z+β)

= e2πiα(z+β)q
α2
2

∞

∏
n=1

(1− qn)(1 + qn+α− 1
2 e2πi(z+β))(1 + qn−α− 1

2 e−2πi(z+β)).

(A.3.1)

From them we define the four theta functions

ϑ1(z|τ) ≡ ϑ
[

1/2
1/2

]
(z|τ), ϑ2(z|τ) ≡ ϑ

[
1/2
0

]
(z|τ),

ϑ3(z|τ) ≡ ϑ
[0

0
]
(z|τ), ϑ4(z|τ) ≡ ϑ

[ 0
1/2
]
(z|τ), (A.3.2)

used in the superstring amplitudes we consider in this document. When the ϑi functions
are written without z dependence, as in ϑ1(τ) it means that we took z = 0.

The four level-one so(2p) characters read

O2p(z) =
ϑ

p
3 (z|τ) + ϑ

p
4 (z|τ)

2ηp , V2p(z) =
ϑ

p
3 (z|τ)− ϑ

p
4 (z|τ)

2ηp ,

S2p(z) =
ϑ

p
2 (z|τ) + i−pϑ

p
1 (z|τ)

2ηp , C2p(z) =
ϑ

p
2 (z|τ)− i−pϑ

p
1 (z|τ)

2ηp , (A.3.3)

with the Dedekind function defined by

η(τ) = q
1

24

∞

∏
n=1

(1− qn) . (A.3.4)
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The space-time characters used in Z2 × Z2 toroidal orbifolds are constructed from the
so(2) characters (A.3.3) and read :

τoo = V2O2O2O2 + O2V2V2V2 − S2S2S2S2 − C2C2C2C2

τog = O2V2O2O2 + V2O2V2V2 − C2C2S2S2 − S2S2C2C2

τoh = O2O2O2V2 + V2V2V2O2 − C2S2S2C2 − S2C2C2S2

τo f = O2O2V2O2 + V2V2O2V2 − C2S2C2S2 − S2C2S2C2

τgo = V2O2S2C2 + O2V2C2S2 − S2S2V2O2 − C2C2O2V2

τgg = O2V2S2C2 + V2O2C2S2 − S2S2O2V2 − C2C2V2O2

τgh = O2O2S2S2 + V2V2C2C2 − C2S2V2V2 − S2C2O2O2

τg f = O2O2C2C2 + V2V2S2S2 − S2C2V2V2 − C2S2O2O2

(A.3.5)
τho = V2S2C2O2 + O2C2S2V2 − C2O2V2C2 − S2V2O2S2

τhg = O2C2C2O2 + V2S2S2V2 − C2O2O2S2 − S2V2V2C2

τhh = O2S2C2V2 + V2C2S2O2 − S2O2V2S2 − C2V2O2C2

τh f = O2S2S2O2 + V2C2C2V2 − C2V2V2S2 − S2O2O2C2

τf o = V2S2O2C2 + O2C2V2S2 − S2V2S2O2 − C2O2C2V2

τf g = O2C2O2C2 + V2S2V2S2 − C2O2S2O2 − S2V2C2V2

τf h = O2S2O2S2 + V2C2V2C2 − C2V2S2V2 − S2O2C2O2

τf f = O2S2V2C2 + V2C2O2S2 − C2V2C2O2 − S2O2S2V2

The Tkj characters used in the T6/Z2 ×Z2 model of section 3.3.3 are [48, 108]

Tko = τko + τkg + τkh + τk f , Tkg = τko + τkg − τkh − τk f ,

Tkh = τko − τkg + τkh − τk f , Tk f = τko − τkg − τkh + τk f , (A.3.6)

for k = o, f , h, g.

A.4 Momenta and windings sums

In absence of B-field background, the T2
i torus momenta, lying on the dual lattice Λ∗i

defined under equation (3.3.10), read

pi = mkR∗ki , mk ∈ Z. (A.4.1)

Defining the T2
i torus windings, lying on the lattice Λi, through

Li = nlRil nl ∈ Z, (A.4.2)

we introduce left and right momenta

piL,R =
(

mk ± g(i)kl nl
)

R∗ki . (A.4.3)
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The T2
i torus partition function is then defined by

Λi = ∑
m,n

q
α′
4 piL·piL q̄

α′
4 piR·piR

|η(τ)|4 . (A.4.4)

The Klein-bottle windings and momenta sums read

Wi = ∑
n

q
1

2α′ Li ·Li

η(2iImτ)2 , Pi = ∑
n

e−2π`α′pi ·pi

η(i`)2 , (A.4.5)

and the annulus ones are

Wi = ∑
n

e−2π` 1
4α′ Li ·Li

η(i`)2 , Pi = ∑
m

q
α′
2 pi ·pi

η(iImτ/2)2 , (A.4.6)

with ` being the modulus of the double cover of either the Klein bottle or the annulus [48].
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Appendix B

Computational details

B.1 Derivation of (2.4.63)

The extra term in the second line of (2.4.61), containing the gauge potential uµ, arises
from the FI term. To make gauge invariance manifest, we rewrite it in terms of the field-
strength Fµν as we describe below. Using the property (2.2.13) of determinant for A−1 the
second line of (2.4.61) can be written as

i det Aεabcd[(A−1) ν
a ∂νλ]σb[(A−1)

ρ
c ∂ρλ̄](A−1)

µ
d uµ = i det A ενγρµ det A−1Ae

γ ∂νλσe∂ρλ̄uµ

= iενγρµ Ae
γ ∂νλσe∂ρλ̄uµ . (B.1.1)

This can be further simplified by using several integrations by parts and Fierz identi-
ties (A.1.5)

iενγρµ Ae
γ ∂νλσe∂ρλ̄uµ = iενγρµ(δe

γ + iκ2λσe∂γλ̄− iκ2∂γλσeλ̄) ∂νλσe∂ρλ̄uµ

= −iενγρµδe
γ λσe∂ρλ̄ ∂νuµ − iκ2ενγρµ(iλσe∂γλ̄− i∂γλσeλ̄) λσe∂ρλ̄ ∂νuµ

− iκ2ενγρµ∂ν(iλσe∂ρλ̄− i∂ρλσeλ̄) λσe∂ρλ̄ uµ + total derivative

= − i
2

εγρνµ λσγ∂ρλ̄ Fνµ −
i
2

κ2ενγρµ(−2)(iλ2 ∂γλ̄∂ρλ̄− iλ∂γλ λ̄∂ρλ̄)Fνµ

− iκ2ενγρµ(−2)(iλ∂νλ∂γλ̄∂ρλ̄− iλ∂γλ∂νλ̄∂ρλ̄) uµ + total derivative

= −λσγ∂ρλ̄ F̃γρ + 0 +
i
4

κ2ενγρµ∂γ(λ
2)∂ρ(λ̄

2)Fνµ + 0 + total derivative

= −λσγ∂ρλ̄ F̃γρ − i
4

κ2ενγρµλ2∂ρ(λ̄
2)∂γFνµ + total derivative

= −λσγ∂ρλ̄ F̃γρ + total derivative. (B.1.2)

We also repeatedly used relations ενγρµ∂µ∂ν = 0 and ενγρµ∂µλ∂νλ = 0. Once rewritten as
(B.1.2) it is obvious that the second line of (2.4.61) is gauge invariant.

B.2 Superfield expansions

We first recall the component expansions of the superfields Wα and W2

Wα = −iλα + θαD− i(σµνθ)αFµν + θθ(σµ∂µλ̄)α , (B.2.1)

W2 = C + 2ψθ + θθE , (B.2.2)

C = −λ2, ψβ = Fµν(σ
µνλ)β − iDλβ ≡ Ψβ − iDλβ, E = D2 − 1

2
(F2 + FF̃)− 2iλ/∂λ̄ .

(B.2.3)
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We also use the following chiral and anti-chiral superfield expansions

−1
4

D2W2
(y) = Ē + 2iθ/∂ψ̄ + θ22C̄ , (B.2.4)

−1
4

D2W2(ȳ) = E + 2iθ̄/̄∂ψ + θ22C . (B.2.5)

Then, the chiral superfield Φ defined in (2.4.111) has the following filed component ex-
pansion, depending of the chiral coordinates yµ = xµ + iθσµ θ̄,

Φ(y) =
W2

D2W2 (y) = φ(y) + χ(y)θ + θ2G(y), (B.2.6)

φ = − C
4Ē

, χα = −ψα

2Ē
+ i

C(/∂ψ̄)α

2Ē2 , G = − E
4Ē
− iψ/∂ψ̄

2Ē2 +
C2C̄
4Ē2 −

C(/∂ψ̄)2

2Ē3 . (B.2.7)

We can now compute the component expansion of the real superfield ΦΦ̄

ΦΦ̄(x) = φφ̄ + (χ̄θ̄φ + c.c.) + (θ̄2φḠ + c.c.) + χθχ̄θ̄ + iθσµ θ̄
(
φ̄∂µφ− φ∂µφ̄

)

+

(
θ̄2θ

[
Ḡχ− i

2
σµ
(
χ̄∂µφ− ∂µχ̄φ

)]
+ c.c.

)
(B.2.8)

+ θ2θ̄2
[
GḠ − ∂µφ∂µφ̄− i

4
χ/∂χ̄ +

i
4

∂µχσµχ̄ +
1
4
2(φφ̄)

]
.

Finally, for the real superfieldsA and B defined in (2.4.5), we have the following com-
ponent expansions

A(x) =
κ2

2
(D2W2 + D2W2

)

= −2κ2
[ (

D2 + D̄
2
)
+ E+ + 2i

(
θ̄σ̄µ∂µ(Ψ− iDλ) + θσµ∂µ(Ψ̄ + iD̄λ̄)

)

+ θ̄θ̄2C + θθ2C̄− iθσµ θ̄∂µ(E− +D2 − D̄
2
)

+ θ̄θ̄θ2(Ψ− iDλ) + θθθ̄2(Ψ̄ + iD̄λ̄) + θ2θ̄2 1
4
2

(
E+ +D2 + D̄

2
)]

, (B.2.9)

B(x) = i
κ2

2
(D2W2 − D2W2

)

= −2iκ2
[ (

D2 − D̄
2
)
+ E− + 2i

(
θ̄σ̄µ∂µ(Ψ− iDλ)− θσµ∂µ(Ψ̄ + iD̄λ̄)

)

+ θ̄θ̄2C− θθ2C̄− iθσµ θ̄∂µ(E+ +D2 + D̄
2
)

+ θ̄θ̄θ2(Ψ− iDλ)− θθθ̄2(Ψ̄ + iD̄λ̄) + θ2θ̄2 1
4
2

(
E− +D2 − D̄

2
)]

, (B.2.10)

where
E± ≡ E± Ē−

(
D2 ± D̄

2
)

. (B.2.11)

Since the auxiliary fields D and D̄ are not dynamical and should be eliminated at the end,
we can isolate their contribution in the above two real superfields

A ≡ Ascalar +A′ = −2κ2
(
D2 + D̄

2
)
+A′ = −4κ2 (d2 − γ2)+A′, (B.2.12)

B ≡ Bscalar + B′ = −2iκ2
(
D2 − D̄

2
)
+ B′ = 8κ2dγ + B′, (B.2.13)
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Then, the superfield M defined in (2.4.111) can be expanded up to mass dimension 10
(included)

M = 1 +A−
√

1 + 2A−B2

= 1− 4κ2 (d2 − γ2)+A′ −
√

1− 8κ2 (d2 − γ2)− 64κ4d2γ2 + 2A′ − 16κ2dγB′ −B′2

= 1− 4κ2 (d2 − γ2)+A′ −
√

Z

[
1 +
A′
Z
− 8κ2dγB′

Z
− B

′2

2Z

− 1
8Z2

(
2A′ −B′2 − 16κ2dγB′

)2
+

1
16Z3

(
2A′ − 16κ2dγB′

)3
]
+ O(κ6). (B.2.14)

where we introduced

Z = (1 + 8κ2γ2)(1− 8κ2d2) = 1− 8κ2 (d2 − γ2)− (8κ2dγ)2 . (B.2.15)

From (B.2.3) we can compute explicitly the useful expansion

iψ/∂ψ̄ = iΨ/∂Ψ̄− D̄Ψ/∂λ̄− ∂µ(D̄)Ψσµλ̄ +Dλ/∂Ψ̄ + iDD̄λ/∂λ̄

= 2iλσµ∂νλ̄F ρ
µ F ν

ρ +
i
2

λ/∂λ̄F2 + D̄λσµ∂νλ̄(Fν
µ + F∗νµ) + ∂ν(D̄)λσµλ̄(Fνµ + F̃ νµ)

−Dλσµ∂νλ̄(Fνµ − F̃ νµ)−Dλσµλ̄∂νFνµ + iDD̄λ/∂λ̄ + iD∂µD̄λσµλ̄ . (B.2.16)
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Appendix C

Tachyons from magnetic fields on the
entire D7-branes worldvolumes

In this appendix we study the tachyons generated by a configuration with three D7-
brane stacks with magnetic fields on the entire worldvolumes. This is motivated because
we saw in section 4.5.3 that eqs. (4.4.49) and (4.5.14) fix the relation between the critical
volumes and the amplitudes through the flux parameter d. This parameter plays a crucial
role in the inflationary phase and is fixed by observations. In the simple flux configura-
tion of section 4.5.3, all fluxes were taken equal, hence d1 = d2 = d3. One may wonder
if allowing for different da would relax relations between the tachyonic contribution scal-
ings and the critical volumes, by introducing da in the relations similar to eqs. (4.4.49)
and (4.5.14).

According to the study of section 3.3.3, it is possible to have different doubly charged
states masses (and hence different da) by putting magnetic fields on the entire brane
worldvolumes, as shown in the following table.

(45) (67) (89)
D71 ·±x1 ⊗ ⊗
D72 ⊗ · ±x2 ⊗
D73 ⊗ ⊗ ·±x3

We recall that the magnetic fields are subject to conditions (A− i) or (B− i) of equation
(3.3.49) to eliminate the mixed states tachyons. In order to have the possibility for different
(non-vanishing) da, we choose the configuration of fluxes in condition (B− 1) of equation
(3.3.49) that we recall here for simplicity

(B− 1) ζ (2)
1 = ζ (3)

1 , ζ (1)
2 = ζ (3)

2 , ζ (1)
3 = ζ (2)

3 . (C.0.1)

An important point is that when magnetic fields are plugged on the entire worldvol-
umes, one cannot use Wilson lines Ai any more to eliminate the tachyons from the dou-
bly charges states. The only way is to use brane separations xi, which indeed eliminate
tachyons at large volumes but lead to tachyons under a certain critical volume. This was
phenomenon was described in details in the previous subsections. In the present case, we
thus have to consider one tachyon for each doubly charged D7i–D7i state. As before, the
tachyonic masses contributions generated by the magnetic fluxes and brane separation at
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the string level read

α′m2
11 = −2

∣∣ζ (2)
1 + ζ (3)

1

∣∣+ wA1

α′
=

(B−1)
−4
∣∣ζ (2)

1

∣∣+ wA1

α′
≈ −4|k(2)

1 |α′
πA2

+
wA1

α′
,

α′m2
22 = −2

∣∣ζ (1)
2 + ζ (3)

2

∣∣+ yA2

α′
=

(B−1)
−4
∣∣ζ (1)

2

∣∣+ yA2

α′
≈ −4|k(1)

2 |α′
πA1

+
yA2

α′
, (C.0.2)

α′m2
33 = −2

∣∣ζ (1)
3 + ζ (2)

3

∣∣+ zA3

α′
=

(B−1)
−4
∣∣ζ (1)

3

∣∣+ zA3

α′
≈ −4|k(1)

3 |α′
πA1

+
zA3

α′
.

In the low energy effective theory this corresponds to da parameters of the form

da =
1
2

g3
s |m(j)

a m(k)
a |
(

2k(j)
a

π

)2

, a 6= j 6= k 6= a. (C.0.3)

Remember that the moduli stabilisation conditions depend on these da and are given by
(4.4.35). Together with (C.0.1) these conditions allow to express e.g. n(3)

1 , n(1)
2 and n(2)

3 with
respect to n(2)

1 , n(3)
2 , n(1)

3 and the m(j)
a , hence leaving only three independent flux numbers

together with the wrapping numbers.
After some straightforward manipulations we check that when the volume is inferior

to all the critical volumes, i.e. when for any value of a, V < Vc,a, the scalar potential reads

V(V , v1, v2, v3) =
C
κ4

(
− lnV − 4 + q

V3 − 3σ

2V2

)
−

3

∑
a=1

Ca

κ4V 2
3

(
1−

(Vca

V

) 2
3
)2

(C.0.4)

with again

Vc1
2
3 ≡ 4|k(2)

1 |
w(U1)π

(
d2

d1

) 1
3

, Vc2
2
3 ≡ 4|k(1)

2 |
y(U2)π

(
d2

d1

) 1
3

, Vc3
2
3 ≡ 4|k(1)

3 |
z(U3)π

(
d1

d3

) 1
3

,

Ca = βa
d

3Vca
, βa =

2
2 + gs fa(Ua)|m(j)

a m(k)
a |
∈ [0, 1], ( f1, f2, f3) = (w, y, z). (C.0.5)

Hence we see that even with different da as in the current configuration, the relations
(C.0.5) between the critical volumes and the amplitudes of the tachyonic contributions
only imply d = 3(d1d2d3)

1
3 , as in the simpler case with only one magnetic field per brane.

The potential is thus identical to the one with three tachyons (red curve) of Figure 4.10.
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