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Aperçu des travaux

Cette thèse porte sur deux sujets principaux en systèmes dynamiques. D'une part, l'étude détaillée des orbites périodiques est une partie importante de la théorie qualitative des systèmes dynamiques et des difféomorphismes. Beaucoup de travaux sont consacrés à démontrer, dans des cas spécifiques tels que le problème des trois corps, qu'il existe une infinité d'orbites périodiques [1]. Puisque les données périodiques et l'entropie topologique sont les deux invariants les plus importants des systèmes dynamiques et le taux de croissance du nombre d'orbites périodiques peut reflecter la complexité de ce système dynamique [2][3][4], nous nous intéresserons à la relation entre le taux de croissance du nombre d'orbites périodiques et l'entropie topologique d'un système dynamique à temps continu. D'autre part, nous nous intéressons à la dimension de Hausdorff d'un ensemble de mesure de Lebesgue zéro. Considérons les β-transformations T β sur l'intervalle [0, 1). Étant donnée deux fonctions positives ψ 1 , ψ 2 : N → R + , définissons L(ψ 1 ) := x ∈ [0, 1) : T n β x < ψ 1 (n), pour une infinité d'entiers n ∈ N , U(ψ 2 ) := x ∈ [0, 1) : ∀ N 1, ∃ n ∈ [0, N ], t. q. T n β x < ψ 2 (N ) , où signifie assez grand. Nous estimons la dimension de Hausdorff de L(ψ 1 ) ∩ U(ψ 2 ), et de U(ψ 2 ).

Taux de croissance du nombre d'orbites périodiques

Dans l'étude des systèmes dynamiques, il est très attrayant d'identifier les phénomènes spécifiques importants associés au comportement asymptotique de systèmes dynamiques lisses. Les invariants topologiques asymptotiques et invariants topologiques ont été étudiés par de nombreux mathématiciens célèbres tels que Kolmogorov, Sinai. Il existe trois grandes classes d'invariants asymptotiques :

• types de récurrence,

• croissance du nombre d'orbites de divers types et de la complexité des familles d'orbites,

• distribution asymptotique et comportement statistique d'orbites.

Les deux premières classes sont de nature purement topologique et la dernière est naturellement liée à la théorie ergodique. Soit M une variété riemannienne lisse, compacte et sans bord. Soit f : M → M une transformation préservant une mesure sur (M, A). L'ensemble de toutes les mesures invariantes et l'ensemble de toutes les mesures ergodiques sont respectivement notés par M(f ) et E(f ). Étant donné deux partitions finies mesurables de M ,

ξ = {A 1 , A 2 , • • • , A k }, η = {B 1 , B 2 , • • • , B l }.
On note ξ ∨ η le joint de ξ et de η, c'est-à-dire la partition mesurable formée des intersections ξ ∨ η := {A i ∩ B j : 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Pour un entier n ≥ 1, définissons le join

n-1 i=0 f -i (ξ) par n-1 i=0 f -i (ξ) := ξ ∨ f -1 (ξ) ∨ • • • ∨ f -n+1 (ξ).
Soit µ ∈ M(f ) une mesure invariante et ξ = {A 1 , A 2 , • • • , A k } une partition mesurable finie. L'entropie métrique de la partition mesurable ξ est définie par

H µ (ξ) := - k i=1 µ(A i ) log µ(A i ). La limite lim n→∞ 1 n H µ n-1 i=0 f -i (ξ)
existe. On l'appelle l'entropie de la transformation f pour la partition ξ, et on la note h µ (f, ξ). Le nombre h µ (f ) := sup {h µ (f, ξ) : ξ est une partition finie mesurable de M } est appelé l'entropie de la transformation f par rapport à mesure µ.

Soit ξ un recouvrement ouvert de M . Soit N n-1 i=0 f -i (ξ) le cardinal minimal d'un sous-recouvrement de n-1 i=0 f -i (ξ). L'entropie de la transformation f par rapport à ξ est définie comme suit:

h(f, ξ) := lim n→∞ 1 n log N n-1 i=0 f -i (ξ) .
L'entropie topologique de la transformation f est h top (f ) := sup{h(f, ξ) : ξ est un recouvrement ouvert de M }.

Les orbites périodiques représentent la classe d'orbites la plus distinctive. Nous définissons l'ensemble P n (f ) := {x ∈ M : x = f n (x)}, alors P n (f ) donne le nombre total de points pour lesquels l'entier positif n est une période, pas nécessairement la plus petite période possible. Ces nombres sont des invariants topologiques. Si n est un nombre premier, alors

P n (f ) -P 1 (f )
donne exactement le nombre de points périodiques avec la plus petite période n. Ainsi, P n (f ) -P 1 (f ) n est le nombre d'orbites périodiques de période n. En général, la relation entre le nombre de points périodiques de période n et le nombre d'orbites périodiques de période n est compliquée. Si on note Pn (f ) le nombre de points périodiques de plus petite période n, alors Pn (f ) n est le nombre de orbites périodiques de période n. Les nombres Pn (f ) sont également des invariants topologiques et peuvent être exprimés par P n (f ) et inversement via une fonction de la théorie des nombres. Cependant, il est plus pratique de travailler avec P n (f ) qu'avec Pn (f ).

Pour décrire la croissance asymptotique du nombre de points périodiques on définit le taux de croissance exponentiel p(f ) de la suite P n (f ) :

p(f ) := lim n→∞ 1 n log max{ P n (f ), 1}.
Remarquons que nous écrivons max{ P n (f ), 1} au lieu de P n (f ) afin d'éviter d'écrire log 0. Si p(f ) = 0, il est parfois utile de considérer le taux de croissance polynomial des points périodiques donné par lim n→∞ 1 log n log max{ P n (f ), 1}.

Si p(f ) < ∞, le taux de croissance du nombre de points périodiques est au plus exponentiel. En 1965, Artin et Mazur [START_REF] Artin | On periodic points[END_REF]Théorème] ont prouvé qu'il existe un ensemble dense D ⊂ C r (M ), dans l'espace des difféomorphismes de classe C r d'une variété compacte M vers elle-même avec la topologie C r uniforme, telle que pour toute fonction f ∈ D, le nombre P n (f ) croît de façon exponentielle avec n. Ils ont également introduit la fonction zeta ζ f dynamique de f définie sur le plan C par

ζ f (z) := exp ∞ n=1 P n (f ) z n n .
La fonction ζ f encode toutes les informations sur le nombre de points périodiques de f . Pour beaucoup de cas, par exemple, si f : [0, 1] → [0, 1] est la fonction f (x) = 2x mod 1, on a lim n→∞ 1 n log P n (f ) = h top (f ).

En 1978, Bowen [START_REF] Bowen | Entropy and the fundamental group[END_REF] posait la question suivante : la propriété

lim n→∞ 1 n log P n (f ) = h top (f )
est-elle générique en C r -topologie? Bowen [START_REF] Bowen | Topological entropy and axiom A[END_REF] a prouvé que pour un système f satisfaisant l'axiome A de toute dimension, la limite supérieure du taux de croissance du nombre de points périodiques est égale à son entropie topologique, à savoir:

lim n→∞ 1 n log P n (f ) = h top (f ).
Mais il s'agit d'une situation quelque peu particulière. Il est bien connu que les difféomorphismes satisfaisant l'axiome A ne sont pas denses dans C 1 (M ). Katok En 1999, Kaloshin [9, Théorème 6] a montré qu'en général P n (f ) peut croître beaucoup plus rapidement que l'entropie topologique de f . En comparant le systèmes dynamiques en temps discret avec les systèmes dynamiques en temps continu, nous souhaitons traiter les systèmes dynamiques générées par les champs de vecteurs comme un système dynamique à temps continu. Soit X 1 (M ) l'espace de tous les champs des vecteurs C 1 sur M avec la norme C 1 . Un champ de vecteurs X ∈ X 1 (M ) génère un flot

ϕ t = ϕ X t .
Pour le flot, il faut compter les orbites périodiques au lieu des points périodiques. On peut le faire de deux manières différentes. Il serait plus proche du cas à temps discret de compter les orbites périodiques pondérées par leur longueurs, ce qui revient à compter les points périodiques dans le cas du temps discret. D'autre part, on peut compter le nombre d'orbites périodiques sans pondération par leur longueurs. Si le nombre d'orbites périodiques augmente de manière exponentielle, les deux manières sont équivalentes. Étant donné que la plupart des orbites d'une longueur donnée par T auront une longueur proche de T , les taux de croissance du nombre d'orbites périodique obtenu par ces deux méthodes sont identiques. L'une des difficultés principales est la présence de singularités. Les flots avec des singularités ont une dynamique riche et compliquée comme les attracteur de Lorenz dans [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF], [11, pp.368-381]. Aux singularités, on ne peut pas définir le flot de Poincaré linéaire (voir Définition 3.1). Par conséquent, nous perdons certaines propriétés de compacité. Même s'il n'y a pas de singularités, nous ne pouvons pas utiliser la théorie habituelle de Pesin comme dans Lian et Young [START_REF] Lian | Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces[END_REF] puisque le champ de vecteurs est seulement C 1 . De plus, on peut avoir un "cisaillement"des flot. Ceci est crucial dans ce travail car nous auront essentiellement besoin de contrôler les périodes. Soit 

Nous obtenons le résultat suivant.

Théorème A Il y a un ensemble G δ dense R ⊂ X 1 (M ) tel que pour tout X ∈ R, on a lim

T →∞ 1 T log P T (X) ≥ h top (X).

Approximation diophantienne

L'histoire de l'approximation diophantienne est assez ancienne: elle inclut les premières estimations de π, les calculs relatifs aux études astronomiques et la théorie du developpement en fraction continue. L'un des objectifs principaux de l'approximation diophantienne est l'étude de l'approximation des nombres réels par des nombres rationnels. Le problème de savoir à quelle vitesse un nombre irrationnel donné peut-il être approché par des nombres rationnels p/q de dénominateur q inférieur à un entier positif fixé q 0 a été largement traité par les mathématiciens. En 1842, Dirichlet [START_REF] Dirichlet | Verallgemeinerung eines satzes aus der lehre von den kettenbrüchen nebst einigen anwendungen auf die theorie der zahlen[END_REF] prouva un théorème cèlèbre en approximation diophantienne. Théorème de Dirichlet Soit θ, Q deux nombres réels avec Q ≥ 1, il existe un entier

n avec 1 ≤ n ≤ Q tel que nθ < Q -1 ,
où ξ est la distance entre ξ et le nombre entier le plus proche.

Le théorème de Dirichlet est appelé un théorème d'approximation uniforme dans [14, p.p.2]. Une forme faible du théorème de Dirichlet, appelée théorème d'approximation asymptotique dans [14, p.p.2], souvent citée comme un corollaire du théorème de Dirichlet dans la littérature, existe dans le livre de Legendre [15, 1808, p.p.18-19] (en utilisant les propriétés des fractaions continues): pour tout nombre réel θ, il existe une infinité d'entiers n tels que nθ < n -1 .

Le premier exige que les occurrences de telles approximations ne soient pas trop lacunaire, alors que ce dernier ne demande qu'une infinité de solutions à une certiane inégalité. Pour le cas général, Khintchine en 1924 [START_REF] Khintchine | Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen[END_REF] montra que, pour une fonction positive, ψ : N → R + , si x → xψ(x) est décroissante, alors

L ψ := {θ ∈ R : nθ < ψ(n) pour une infinité d'entiers n ∈ N}
est de mesure de Lebesgue égale à zéro si la série ψ(n) converge et est de mesure de Lebesgue pleine sinon. En enlevant la condition de décroissance sur ψ, des résultats similaires sont attendus (ceci constitue la conjecture de Duffin-Shaeffer [START_REF] Duffin | Khintchine's problem in metric Diophantine approximation[END_REF][START_REF] Dimitris | On the duffin-schaeffer conjecture[END_REF]). On renvoie [START_REF] Beresnevich | The Duffin-Schaeffer conjecture with extra divergence II[END_REF][START_REF] Haynes | The Duffin-Schaeffer conjecture with extra divergence[END_REF] pour les derniers progrès. Dans le cas où L ψ est de mesure de Lebesgue nulle, il est tout de même naturel de tenter de calculer sa dimension de Hausdorff. Le premier résultat sur la dimension de Hausdorff de L ψ remonte à Jarník Bosicovitch [START_REF] Jarník | Diophantische approximationen und hausdorffsches mass[END_REF][START_REF] Besicovitch | Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers[END_REF]. Il a été montré que l'ensemble

θ ∈ R : nθ < 1 n τ pour une infinité d'entiers n ∈ N a pour dimension de Hausdorff 2 1 + τ pour tout τ > 1.
Par analogie avec la théorie de l'approximation diophantienne classique, Hill et Velani [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] ont étudié les propriétés d'approximation des orbites de systèmes dynamiques et présenté le problème des cibles rétrécissantes. Plus précisément, pour un système dynamique (X, B, µ, T ) muni d'une métrique d, pour un x 0 ∈ X et une fonction positive ψ : N → R + , considérons la propriété métrique de l'ensemble des points bien ψ-approximable par le point x 0 , c'est-à-dire, l'ensemble

L(T, ψ, x 0 ) := {x ∈ X : d(T n x, x 0 ) < ψ(n) pour une infinité d'entiers n ∈ N}.
Si ψ est une fonction constante égale à c et x 0 ∈ supp(µ), le théorème de récurrence de Poincaré implique que L(T, ψ, x 0 ) a la même µ-mesure que la boule B(x 0 , c). Hill et Velani [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] ont posé la question sur la taille de L(T, ψ, x 0 ) si ψ diminue avec le temps. Ils ont étudié le cas où T est une fonction rationnelle sur la sphère de Riemann C = C ∪ {∞}. Après, de nombreux études apparaissent par exemple, le lemme de Borel-Cantelli dynamique [START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF], le problème des cibles rétrécissantes [START_REF] Fayad | Mixing in the absence of the shrinking target property[END_REF][START_REF] Tseng | On circle rotations and the shrinking target properties[END_REF], le temps d'entrée [START_REF] Fernández | Expanding maps, shrinking targets and hitting times[END_REF], le temps de retour [START_REF] Barreira | Hausdorff dimension of measures via Poincaré recurrence[END_REF][START_REF] Fernández | Quantitative recurrence properties of expanding maps[END_REF][START_REF] Tan | Quantitative recurrence properties for beta-dynamical system[END_REF][START_REF] Peng | Quantitative Poincaré recurrence in continued fraction dynamical system[END_REF], le temps d'attente [START_REF] Galatolo | Dimension via waiting time and recurrence[END_REF] etc.

Pour une rotation d'angle irrationnel 

([0, 1], R α ), Kim a montré [33, Proposition 2.6] que pour Lebesgue presque tout point x ∈ [0, 1] et α ∈ [0, 1], |R n α x -x 0 | < ψ(n) pour une infinité d'entiers n ∈ N, si et seulement si ψ(n) = ∞. Bugeaud [
(T β , ψ, x 0 ). Théorème SW Pour tout β > 1 et tout x 0 ∈ [0, 1], on a dim H L(T β , ψ, x 0 ) = 1 1 + v , où v := lim n→∞ -log β ψ(n) n .
Parallèlement au théorème d'approximation asymptotique, il convient également d'étudier les propriétés d'approximation uniforme comme dans le théorème de Dirichlet. L'approximation diophantienne uniforme a été étudiée par Bugeaud et Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] ont prouvé le théorème suivant.

pour les β-transformations. Étant donné x ∈ [0, 1) et β > 1, soit ν β (x) := sup v ≥ 0 : T n β x < (β n ) -v pour une infinité d'entiers n ∈ N , νβ (x) := sup v ≥ 0 : ∀ N 1, T n β x < (β N ) -v a une solution n ∈ [0, N ] . Bugeaud et Liao
Théorème BL ( [40, Théorème 1.4]) Pour tout v ∈ (0, ∞) et tout v ∈ (0, 1), si v < v/(1 -v), alors l'ensemble {x ∈ [0, 1] : ν β (x) = v} ∩ {x ∈ [0, 1] : νβ (x) ≥ v} est vide. Sinon on a dim H ({x ∈ [0, 1] : ν β (x) = v} ∩ {x ∈ [0, 1] : νβ (x) = v}) = v -v -vv (1 + v)(v -v)
.

Les exposants ν β et νβ ont été introduits dans [START_REF] Amou | Exponents of Diophantine approximation and expansions in integer bases[END_REF] (voir aussi [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]Ch.7]) et sont également fortement liés à la fonction run-length (voir [START_REF] Erdős | On a new law of large numbers[END_REF][START_REF] Liu | Hausdorff dimension of some sets arising by the run-length function of β-expansions[END_REF][START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF][START_REF] Zheng | Diophantine approximation and run-length function on β-expansions[END_REF]). Le but de cette thèse est d'étudier les ensembles introduits dans [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] quand la fonction d'approximation n → β -nv est remplacée par une fonction positive générale. Plus précisément, étant donné deux fonctions positives ψ 1 , ψ 2 : N → R + , on pose :

L(ψ 1 ) := x ∈ [0, 1] : T n β x < ψ 1 (n) pour une infinité d'entiers n ∈ N , U(ψ 2 ) := x ∈ [0, 1] : ∀ N 1, T n β x < ψ 2 (N ) a une solution n ∈ [0, N ] .
On souhaite déterminer les dimensions de Hausdorff de L(ψ 1 ) ∩ U(ψ 2 ), et de U(ψ 2 ). Soit

v 1 = lim n→∞ -log β ψ 1 (n) n , v 1 = lim n→∞ -log β ψ 1 (n) n ; v 2 = lim n→∞ -log β ψ 2 (n) n , v 2 = lim n→∞ -log β ψ 2 (n) n .
Si v 1 < 0, par la définition de v 1 , il existe une suite {n j } de sorte que lim j→∞ log β ψ 1 (n j )

n j = v 1 .
Ensuite, pour ε > 0 assez petit, il existe un entier j 0 ∈ N tel que

1 < β -n j (v 1 +ε) ≤ ψ 1 (n j ), pour tout j ≥ j 0 .
Remarquons

T n β x < 1 < ψ 1 (n j ), pour tout x ∈ [0, 1) et tout n ∈ N, pour tout x ∈ [0, 1), nous avons T n j β x ≤ 1 < ψ 1 (n j ).
Alors [0, 1) ⊆ L(ψ 1 ).

D'autre part, notons {n i } la suite telle que

ψ 2 (n i ) > 1, pour i = 1, 2, 3 • • • . Alors pour tout x ∈ [0, 1) et tout entier n ∈ [1, n i ], nous avons T n β x < 1 < ψ 2 (n i ).
Ainsi, nous pouvons remplacer ψ 2 (n) par la fonction

ψ 2 (n) = ψ 2 (n), if n = n j 1, if n = n j , j = 1, 2, • • •
La taille (mesure de Lebesgue ou dimension de Hausdorff) de l'ensemble de L(ψ 1 ) ∩ U(ψ 2 ) (respectivement, U(ψ 2 )) est identique à celle de l'ensemble de L(ψ 1 ) ∩ U( ψ 2 ) (respectivement, U( ψ 2 )). Par conséquent, dans cette thèse, nous supposons toujours que v 1 ≥ 0 et v 2 ≥ 0. Nous établissons les théorèmes suivants sur la dimension de Hausdorff des ensembles L(ψ 1 ) ∩ U(ψ 2 ) et U(ψ 2 ). Théorème B donne la dimension de Hausdorff de L(ψ 1 ) ∩ U(ψ 2 ) pour le cas particulier que v 1 , v 1 , v 2 et v 2 est 0 ou ∞.

Théorème B:

(

1) Si v 1 = v 1 = v 2 = v 2 = 0, alors dim H (L(ψ 1 ) ∩ U(ψ 2 )) = 1; (2) Si v 2 = ∞ et 0 ≤ v 1 ≤ v 1 ≤ ∞, alors L(ψ 1 ) ∩ U(ψ 2 ) est dénombrable; (3) Si v 1 = ∞ et 0 ≤ v 2 ≤ v 2 ≤ ∞, alors dim H (L(ψ 1 ) ∩ U(ψ 2 )) = 0.
Remrques: Pour l'énoncé (1), l'ensemble L(ψ 1 ) ∩ U(ψ 2 ) n'est pas nécessaire pour mesure de Lebesgue pleine. En fait, si la série

ψ 1 (n) converge, par [38, Théorème 2A, B, C], m (L(ψ 1 ) ∩ U(ψ 2 )) = 0,
où m(A) désigne la mesure de Lebesgue de A. L'ensemble L(ψ 1 )∩U(ψ 2 ) peut également avoir mesure de Lebesgue pleine. Par exemple, si

ψ 1 (n) = ψ 2 (n) = log 2 n √ n , selon Dmitry, Konstantoulas et Florian [47, Théorème 1.1], m (L(ψ 1 ) ∩ U(ψ 2 )) = 1. Pour l'énoncé (3), si v 2 = ∞, L(ψ 1 ) ∩ U(ψ 2 ) est dénombrable. Si 1 < v 2 < ∞, alors L(ψ 1 ) ∩ U(ψ 2 )
est vide (c.f. Lemma 6.4). Si 0 < v 2 ≤ 1, alors L(ψ 1 ) ∩ U(ψ 2 ) n'est pas dénombrable (c.f. Proposition 6.5).

Théorème C Si v 2 > 1, alors L(ψ 1 ) ∩ U(ψ 2 ) est dénombrable. Si v 1 /(2 + v 1 ) ≤ v 2 ≤ 1 < v 2 , alors on a 0 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . Si v 1 /(2 + v 1 ) < v 2 ≤ v 2 ≤ 1 et v 1 /(2 + v 1 ) < v 2 , alors 1 -v 2 1 + v 2 2 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . Si v 2 ≤ v 1 /(2 + v 1 ) et v 1 /(2 + v 1 ) < v 2 ≤ 1, alors 1 -v 2 1 + v 2 2 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) . Si v 1 /(2 + v 1 ) < v 2 ≤ v 2 ≤ v 1 /(2 + v 1 ), alors v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . Si v 2 ≤ v 1 /(2 + v 1 ) et v 2 ≤ v 1 /(2 + v 1 ), alors v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) .
Nous remarquons que les Théorèmes B et C incluent tous les cas possibles. Pour l'ensemble U(ψ 2 ), nous estimerons sa dimension de Hausdorff.

Théorème D Si v 2 > 1, alors U(ψ 2 ) est dénombrable. Si v 2 ≤ 1 < v 2 , alors 0 ≤ dim H (U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . Si v 2 ≤ 1, alors 1 -v 2 1 + v 2 2

Introduction

In this section, we introduce the origin of the problems, the background of the research and the latest research results. The result on the growth rate of periodic orbits for vector fields is Theorem A, which is the main result of my cooperation with Dawei Yang and Yong Zhang published in Advances in Mathematics. While Theorems B, C, D, and E study the Diophantine approximation of the orbit of a point x under the transformation T β . This is a joint work with Lixuan Zheng.

This thesis focuses on two main subjects. On the one hand, the detailed study of periodic orbits is an important part of the qualitative theory of dynamical systems and of diffeomorphisms. Much work is devoted to demonstrating in specific cases such as the three-body problem that infinitely many periodic orbits exist [1]. Since the periodic data and topological entropy are the most important two invariants of dynamical systems and for diffeomorphisms, the growth rate of the number of periodic points can reflect the complexity of this dynamical system [2][3][4], we focus on the relationship between the growth rate of periodic data and topological entropy of a continuous-time dynamical system. On the other hand, we are interested in the Hausdorff dimension of a set with zero-Lebesgue measure. Roughly speaking, for the β-dynamical system ([0, 1), T β ), where β > 1, given two positive functions

ψ 1 , ψ 2 : N → R + , define L(ψ 1 ) := x ∈ [0, 1) : T n β x < ψ 1 (n), for infinitely many n ∈ N , U(ψ 2 ) := x ∈ [0, 1) : ∀ N 1, ∃ n ∈ [0, N ], s.t. T n β x < ψ 2 (N )
, where means large enough. We estimate the Hausdorff dimension of the two sets L(ψ 1 ) ∩ U(ψ 2 ) and U(ψ 2 ) completely for any β > 1 and any two positive functions ψ 1 , ψ 2 .

Growth rate of the number of periodic orbits

In the study of dynamical systems, to identify important specific phenomena associated with the asymptotic behavior of smooth dynamical systems is a very attracting task. Asymptotic topological invariants and topological invariants attract the attention of many famous mathematicians such as Kolmogorov, Sinai. There are three broad classes of asymptotic invariants :

• types of recurrence,

• growth of the numbers of orbits of various kinds and of the complexity of orbit families,

• asymptotic distribution and statistical behavior of orbits.

The first two classes are of a purely topological nature and the last class is naturally related to ergodic theory.

Let M be a boundary-less compact smooth Riemannian manifold, f : M → M a measure-preserving transformation on (M, A). The set of all invariant measures and the set of all ergodic measures are denoted by M(f ) and E(f ), respectively. Given two finite measurable partitions of M ,

ξ = {A 1 , A 2 , • • • , A k }, η = {B 1 , B 2 , • • • , B l },
the union ξ ∨ η is defined as

ξ η := {A i ∩ B j : 1 ≤ i ≤ k, 1 ≤ j ≤ l}.
For an integer n ≥ 1, the union

n-1 i=0 f -i (ξ) is defined as n-1 i=0 f -i (ξ) := ξ ∨ f -1 (ξ) ∨ • • • ∨ f -n+1 (ξ).
Given an invariant measure µ ∈ M(f ) and a finite measurable partition

ξ = {A 1 , A 2 , • • • , A k },
the metric entropy of the measurable partition ξ is defined as

H µ (ξ) := - k i=1 µ(A i ) log µ(A i ).
The metric entropy of the transformation f with respect to ξ is defined as

h µ (f, ξ) := lim n→∞ 1 n H µ n-1 i=0 f -i (ξ) .
The metric entropy of the transformation f with respect to µ is defined as

h µ (f ) := sup {h µ (f, ξ) : ξ is a finite measurable partition of M } . Let ξ be an open cover of M , N n-1 i=0 f -i (ξ) be the minimal cardinality of a subcover of n-1 i=0 f -i (ξ).
The topological entropy of the transformation f with respect to ξ is defined as

h(f, ξ) := lim n→∞ 1 n log N n-1 i=0 f -i (ξ) .
The topological entropy of the transformation f is defined as

h top (f ) := sup{h(f, ξ) : ξ is an open cover of M }.
Metric entropy gives a quantitative measure of the complexity of a dynamical system as seen via an invariant measure. Topological entropy was found by extracting from the same concept an invariant of topological dynamics only. The metric entropy of the union of two invariant sets is the sum of the entropies of the invariant sets, weighted by their measures, whereas for topological entropy the entropy of a union is the maximum of the entropies of the two components. Thus, the topological entropy measures the maximal dynamical complexity versus an average complexity reflected by metric entropy. Therefore, metric entropy is not greater than topological entropy and measures assigning most weight to regions of high complexity should have metric entropy close to the topological entropy. It means that the topological entropy is the supremum of the metric entropies. This is the famous variational principle. Variational Principle ( [48, p.p. 187]) If f is a continuous map on a compact metric space M , then

h top (f ) = sup {h µ (f ) : µ ∈ M(f )} .
Periodic orbits represent the most distinctive class of orbits. We define the set

P n (f ) := {x ∈ M : x = f n (x)},
let P n (f ) be the cardinal number of the set P n (f ). Then P n (f ) gives the total number of points for which the positive integer n is a period, not necessarily the smallest possible period. Those numbers are topological invariants. If n is a prime number, then

P n (f ) -P 1 (f )
gives exactly the number of periodic points with smallest period n. Thus,

P n (f ) -P 1 (f ) n
is the number of periodic orbits with period n. In general, the connection between the number of periodic points with period n and the number of periodic orbits with period n is complicated. If denote by Pn (f ) the number of periodic points with smallest period n, then Pn (f ) n is the number of periodic orbits with period n. The numbers Pn (f ) are also topological invariants and can be expressed through P n (f ) and vice versa via some numbertheoretic function. However, it is more convenient to work with P n (f ) than with Pn (f ).

The most natural measure of asymptotic growth of the number of periodic points is the exponential growth rate p(f ) for the sequence P n (f ) :

p(f ) := lim n→∞ 1 n log max{ P n (f ), 1}.
We remark that we write max{ P n (f ), 1} instead of P n (f ) in order to avoid taking log 0. If p(f ) = 0, it is sometimes useful to consider the polynomial growth rate of the number of periodic points given by lim n→∞ 1 log n log max{ P n (f ), 1}.

If p(f ) < ∞,
then the growth rate of the number of periodic points is at most exponential. In 1965, Artin and Mazur [START_REF] Artin | On periodic points[END_REF]Theorem] proved that there is a dense set D ⊂ C r (M ), the space of all C r diffeomorphisms of a compact manifold M into itself with the uniform C rtopology, such that for any diffeomorphism f ∈ D, the number P n (f ) grows at most exponentially with n. They also introduced the dynamical ζ f -function of f defined on domaine complexe C by

ζ f (z) := exp ∞ n=1 P n (f ) z n n .
One can incorporate all the information about the numbers of periodic points into the

ζ f -function of f . Especially, for example, if f : [0, 1] → [0, 1] is the map f (x) = 2x mod 1, one has lim n→∞ 1 n log P n (f ) = h top (f ).
In 1978, Bowen [START_REF] Bowen | Entropy and the fundamental group[END_REF] asked the following question: is the property that lim n→∞

1 n log P n (f ) = h top (f )
generic with respect to the C r -topology? For an Axiom A system f in any dimension, Bowen [START_REF] Bowen | Topological entropy and axiom A[END_REF] proved that the upper limit of the growth rate of the number of periodic points is equal to its topological entropy, namely,

lim n→∞ 1 n log P n (f ) = h top (f ).
But this is a somewhat special situation. It is well known that Axiom A diffeomorphisms are not dense in C 1 (M ). Katok [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF]Theorem 4.3] showed that for a C 1+α (α > 0) diffeomorphism f on a compact manifold and any f -invariant Borel probability measure with non-zero Lyapunov exponents, the upper limit of the growth rate of the number of periodic points for f is larger than or equal to its metric entropy, i.e., lim

n→∞ 1 n log P n (f ) ≥ h µ (f )
, where µ is a hyperbolic measure.

In particular, if f is a C 1+α surface diffeomorphism, then one has

lim n→∞ 1 n log P n (f ) ≥ h top (f ).
For the C 1 setting, Chen [49, Main Theorem] proved that there is a dense G δ set G ⊂ C 1 (M ) such that for any f ∈ G, one has

lim n→∞ 1 n log P n (f ) ≥ h top (f ).
In 1999, Kaloshin [9, Theorem 6] showed that in general P n (f ) can grow much faster than the topological entropy of f . Comparing with discrete-time dynamical systems, we want to know how to measure the growth rate for continuous-time dynamical systems. The continuous-time dynamical systems usually can be generated by vector fields. For any point x ∈ M , give a vector X(x) in the tangent space T x M . Thus, the map

x → X(x)
forms a section of the tangent bundle

T M := x∈M T x M
which is called a vector field on M . Let X 1 (M ) be the space of all C 1 vector fields on M with the C 1 norm. A vector field X ∈ X 1 (M ) generates a flow

ϕ t = ϕ X t .
For flow, since the periodic points are uncountable, one should count periodic orbits instead of periodic points. One can do in two different ways. It would be closest to the discrete-time case to count periodic orbits weighted by their length, which is what counting of periodic points amount to in the discrete-time case. On the other hand, one can count just the number of periodic orbits without weighting by their lengths. If the number of periodic orbits grows exponentially, then the distinction is immaterial. Because most orbits of length up to T will have length close to T , the growth rate of the number of the periodic orbit obtained by these two methods is the same. In my thesis, we count periodic orbits weighted by their length. This is because when consider the probability measure which is supported on the periodic orbit, we should count the periodic orbit's length.

For vector fields, one of the main difficulties is the presence of singularities. Flows with singularities have rich and complicated dynamics such as the Lorenz attractor in [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF], [11, p.p. 368-381]. At singularities, one can not define the linear Poincaré flow (see Definition 3.1). Hence we lose some compact properties. Even there is no singularities, we are not able to use the usual Pesin theory as in Lian and Young [START_REF] Lian | Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces[END_REF] since the vector field is only C 1 . Additionally, one may have "shear" for flows. For flows, the shadowing time of periodic orbit in shadowing lemma is the reparameterization of the time of quasi-hyperbolic orbits. We must estimate the difference between those times since we have to control the periods by the nature of this work. Define Then, add those periods of the periodic orbits whose periods is not larger than T . Denoted by P T (X) :=

[x]∈P T (X) π(x).
We get the following result.

Theorem A. (WU, D. Yang and Y. Zhang) There is a dense G δ set R ⊂ X 1 (M ) such that for any X ∈ R, one has lim

T →∞ 1 T log P T (X) ≥ h top (X).

Diophantine approximation

The history of Diophantine approximation is quite old: it includes early estimates for π, computations related to astronomical studies and the theory of continued fraction expansion. One main goal of Diophantine approximation is the study of the approximation of real numbers by rational numbers. The problem, how closely can a given irrational number be approximated by the rational numbers p/q with denominator q no larger than a fixed positive integer q 0 , has been widely concerned by mathematicians. In 1842, Dirichlet [START_REF] Dirichlet | Verallgemeinerung eines satzes aus der lehre von den kettenbrüchen nebst einigen anwendungen auf die theorie der zahlen[END_REF] proved an illustrious theorem in Diophantine approximation. Dirichlet Theorem Given two real numbers θ, Q with Q ≥ 1, there is an integer n with 1

≤ n ≤ Q such that nθ < Q -1 ,
where ξ denotes the distance from ξ to the nearest integer. Dirichlet Theorem is called a uniform approximation theorem in [14, p.p.2]. A weak form of Dirichlet Theorem, called an asymptotic approximation theorem in [14, p.p. 2], which was often refered to as a corollary of Dirichlet Theorem in the litterature, has already existed in the book of Legendre [15, 1808, p.p. 18-19] (using a continued fraction fact): for any real number θ, there are infinitely many n ∈ N such that nθ < n -1 .

The former requires that occurrences of such approximations be not too lacunary, while the latter asks to only for infinitely many solutions to some inequality. For the general case, Khintchine in 1924 [START_REF] Khintchine | Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen[END_REF] showed that for a positive function ψ : N → R + , if x → xψ(x) is non-increasing, then L ψ := {θ ∈ R : nθ < ψ(n), for infinitely many n ∈ N} has Lebesgue measure zero if the series ψ(n) converges and has full Lebesgue measure otherwise. Deleting the non-increasing condition on ψ, the famous conjecture of Duffin-Schaeffer [START_REF] Duffin | Khintchine's problem in metric Diophantine approximation[END_REF][START_REF] Dimitris | On the duffin-schaeffer conjecture[END_REF] is the expected similar result. For the latest progresses on this conjecture, one can see [START_REF] Beresnevich | The Duffin-Schaeffer conjecture with extra divergence II[END_REF][START_REF] Haynes | The Duffin-Schaeffer conjecture with extra divergence[END_REF]. In the case where the set has Lebesgue measure zero, it is natural to calculate the Hausdorff dimension of L ψ . The first result on the Hausdorff dimension of L ψ dates back to Jarník-Bosicovitch Theorem [START_REF] Jarník | Diophantische approximationen und hausdorffsches mass[END_REF][START_REF] Besicovitch | Sets of Fractional Dimensions (IV): On Rational Approximation to Real Numbers[END_REF]. It was shown that for any τ > 1, one has

dim H θ ∈ R : nθ < 1 n τ , for infinitely many n ∈ N = 2 1 + τ ,
where dim H (•) denotes the Hausdorff dimension of a set.

In analogy with the classical Diophantine approximation, Hill and Velani [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] studied the approximation properties of the orbits of a dynamical system and introduced the so called shrinking target problems: for a measurable preserving dynamical system (X, B, µ, T ) with a metric d, fix x 0 ∈ X and a positive function ψ : N → R + , define the set of the ψ-well asymptotically approximable points by x 0 as

L(T, ψ, x 0 ) := {x ∈ X : d(T n x, x 0 ) < ψ(n), for infinitely many n ∈ N},
what is the size (Lebesgue measure, Hausdorff dimension) of the set L(T, ψ, x 0 )? If ψ is a constant function and x 0 ∈ supp(µ), Poincaré Recurrence Theorem implies that the set L(T, ψ, x 0 ) has the same µ-measure as that of the ball B(x 0 , ψ). Hill and Velani [START_REF] Hill | The ergodic theory of shrinking targets[END_REF] asked the question what will happen if ψ decreases with the time. It is that if the radius r(n) of B(n) = B(x 0 ; r(n)) tends to 0 as n tending to ∞, what is the size (Lebesgue measure, Hausdorff dimension) of the subset L(T, ψ, x 0 )? They studied the case where T is an expanding rational map of the Riemann sphere C = C ∪ {∞}. This arises a rich subsequent work on the so called quantitative recurrent properties [START_REF] Boshernitzan | Quantitative recurrence results[END_REF] such as dynamical Borel-Cantelli lemma [START_REF] Chernov | Dynamical Borel-Cantelli lemmas for Gibbs measures[END_REF], shrinking target problems [START_REF] Fayad | Mixing in the absence of the shrinking target property[END_REF][START_REF] Tseng | On circle rotations and the shrinking target properties[END_REF], hitting time [START_REF] Fernández | Expanding maps, shrinking targets and hitting times[END_REF], recurrence time [START_REF] Barreira | Hausdorff dimension of measures via Poincaré recurrence[END_REF][START_REF] Fernández | Quantitative recurrence properties of expanding maps[END_REF][START_REF] Tan | Quantitative recurrence properties for beta-dynamical system[END_REF][START_REF] Peng | Quantitative Poincaré recurrence in continued fraction dynamical system[END_REF] and waiting time [START_REF] Galatolo | Dimension via waiting time and recurrence[END_REF], etc.

For the irrational rotation ([0, 1], R α ), Kim showed [33, Proposition 2.6] that for Lebesgue almost all x ∈ [0, 1] and α ∈ [0, 1], one has

|R n α x -x 0 | < ψ(n), for infinitely many n ∈ N, if and only if the series ψ(n) = ∞. Bugeaud [34, Theorem 1], Troubetzkoy and Schmeling [35, Theorem 3.2] proved that the size of L(R α , ψ, x 0 ) is related to the polynomial degree lim n→∞ -log ψ(n) log n of ψ and that for any τ > 1, dim H x ∈ [0, 1] : |R n α x -x 0 | < 1 n τ , for infinitely many n ∈ N = 1 τ .
If (X, T ) is the dynamical system with T an expanding rational map with degree larger than 2 and X the corresponding Julia set ( [23, Theorem 1, Theorem 4], [START_REF] Hill | Metric Diophantine approximation in Julia sets of expanding rational maps[END_REF]Theorem 1]) as well as the case where T is a linear map given by a matrix with integer coefficients and X is an n-dimensional torus, Hill and Velani [37, Theorem 1, Theorem 2] proved that the size of L(T, ψ, x 0 ) is related to the exponent index lim

n→∞ -log β ψ(n) n of ψ.
If T is the β-transformation T β (β > 1) on [0, 1) defined by

T β (x) := βx -βx ,
where ξ denotes the largest integer less than or equal to ξ. For the β-dynamical system ([0, 1), T β ), Philipp [ 

0 ∈ [0, 1], one has dim H L(T β , ψ, x 0 ) = 1 1 + v , where v := lim n→∞ -log β ψ(n) n .
Parallel to the asymptotic approximation theorem, it is also worth of studying the uniform approximation properties as in Dirichlet Theorem. The uniform Diophantine approximation was studied by Bugeaud and Liao [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] proved the following theorem. Theorem BL( [40, Theorem 1.4]) For any v ∈ (0, ∞) and any v ∈ (0, 1), if the real number

related to β-transformations T β . Given x ∈ [0, 1) and β > 1, let ν β (x) := sup v ≥ 0 : T n β x < (β n ) -v , for infinitely many n ∈ N , νβ (x) := sup v ≥ 0 : ∀ N 1, T n β x < (β N ) -v has a solution n ∈ [0, N ] .

Bugeaud and Liao

v < v/(1 -v), then the set {x ∈ [0, 1] : ν β (x) = v} ∩ {x ∈ [0, 1] : νβ (x) ≥ v} is empty. Otherwise, one has dim H ({x ∈ [0, 1] : ν β (x) = v} ∩ {x ∈ [0, 1] : νβ (x) = v}) = v -v -vv (1 + v)(v -v)
.

The exponents ν β and νβ were introduced in [START_REF] Amou | Exponents of Diophantine approximation and expansions in integer bases[END_REF](see also [START_REF] Bugeaud | Distribution modulo one and Diophantine approximation[END_REF]Ch.7]). The exponent ν β (x) measures the speed with which x can be approximated in a nonuniform way by points with finite orbit, while the exponent νβ (x) measures the speed of the corresponding uniform approximation. The exponents ν β and νβ are also strongly related to the run-length function of β-expansions (see [START_REF] Erdős | On a new law of large numbers[END_REF][START_REF] Liu | Hausdorff dimension of some sets arising by the run-length function of β-expansions[END_REF][START_REF] Cao | The run-length function of the β-expansion of the unit[END_REF][START_REF] Zheng | Diophantine approximation and run-length function on β-expansions[END_REF]). The aim of this thesis is to study the Diophantine approximation sets in [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF] when the approximation speed function n → β -nv is replaced by a general positive function. More precisely, fix two positive functions ψ 1 , ψ 2 : N → R + , define

L(ψ 1 ) := x ∈ [0, 1] : T n β x < ψ 1 (n), for infinitely many n ∈ N , U(ψ 2 ) := x ∈ [0, 1] : ∀ N 1, T n β x < ψ 2 (N ) has a solution n ∈ [0, N ] .
We would like to calculate the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ) and the set U(ψ 2 ). Let

v 1 := lim n→∞ -log β ψ 1 (n) n , v 1 := lim n→∞ -log β ψ 1 (n) n ; v 2 := lim n→∞ -log β ψ 2 (n) n , v 2 := lim n→∞ -log β ψ 2 (n) n .
If v 1 < 0, by the definition of v 1 , then there is a sequence of {n j } such that lim j→∞ log β ψ 1 (n j )

n j = v 1 .
Then, for ε > 0 small enough, there exists an integer j 0 such that

1 < β -n j (v 1 +ε) ≤ ψ 1 (n j ), for any j ≥ j 0 .
By the fact T n β x < 1, for any x ∈ [0, 1) and any n ∈ N, we have T

n j β x < 1 ≤ ψ 1 (n j ), for any x ∈ [0, 1). This implies [0, 1) ⊆ L(ψ 1 ).
On the other hand, if we take all the integer n i with

ψ 2 (n i ) > 1, for i = 1, 2, 3 • • • ,
then for any x ∈ [0, 1) and any integer n ∈ [1, n i ], we have

T n β x < 1 < ψ 2 (n i ).
Thus, we can replace ψ 2 (n) by the function

ψ 2 (n) = ψ 2 (n), if n = n j 1, if n = n j , j = 1, 2, • • • .
The size (Lebesgue measure or Hausdorff dimension) of the set L(ψ 1 ) ∩ U(ψ 2 ) (respectively, U(ψ 2 )) is the same as that of the set L(ψ 1 ) ∩ U( ψ 2 ) (respectively, U( ψ 2 )). Therefore, in this thesis, we always assume v 1 ≥ 0 and v 2 ≥ 0. We establish the following theorems to estimate the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ) and the set U(ψ 2 ). Theorem B gives the Hausdorff dimension of L(ψ 1 ) ∩ U(ψ 2 ) for the special case where one or more of v 1 , v 1 , v 2 and v 2 are 0 or ∞.

Theorem B. (WU, L. Zheng) (1) If v 1 = v 1 = v 2 = v 2 = 0, then dim H (L(ψ 1 ) ∩ U(ψ 2 )) = 1.
(

) If v 2 = ∞ and 0 ≤ v 1 ≤ v 1 ≤ ∞, then L(ψ 1 ) ∩ U(ψ 2 ) is countable. (3) If v 1 = ∞ and 0 ≤ v 2 ≤ v 2 ≤ ∞, then dim H (L(ψ 1 ) ∩ U(ψ 2 )) = 0. 2 
Remark. For Item (1), the set L(ψ 1 ) ∩ U(ψ 2 ) is not necessary of full Lebesgue measure. In fact, if the series

ψ 1 (n) converges, by [38, Theorem 2A, B, C], m (L(ψ 1 ) ∩ U(ψ 2 )) = 0,
where m(A) denotes the Lebesgue measure of A. The set L(ψ 1 ) ∩ U(ψ 2 ) can also be of full Lebesgue measure. For example, if

ψ 1 (n) = ψ 2 (n) = log 2 n √ n ,
according to Dmitry, Konstantoulas, and Florian [47, Theorem 1.1],

m (L(ψ 1 ) ∩ U(ψ 2 )) = 1. For Item (3), if v 2 = ∞, then L(ψ 1 ) ∩ U(ψ 2 ) is countable. If 1 < v 2 < ∞, then the set L(ψ 1 ) ∩ U(ψ 2 ) is empty (see Lemma 6.4). If 0 < v 2 ≤ 1, then the set L(ψ 1 ) ∩ U(ψ 2 ) is uncountable (see Proposition 6.5). Theorem C. (WU, L. Zheng) If v 2 > 1, then L(ψ 1 ) ∩ U(ψ 2 ) is countable. If v 1 /(2 + v 1 ) ≤ v 2 ≤ 1 < v 2 , then 0 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . If v 1 /(2 + v 1 ) < v 2 ≤ v 2 ≤ 1 and v 1 /(2 + v 1 ) < v 2 , then 1 -v 2 1 + v 2 2 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . If v 2 ≤ v 1 /(2 + v 1 ) and v 1 /(2 + v 1 ) < v 2 ≤ 1, then 1 -v 2 1 + v 2 2 ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) . If v 1 /(2 + v 1 ) < v 2 ≤ v 2 ≤ v 1 /(2 + v 1 ), then v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . If v 2 ≤ v 1 /(2 + v 1 ) and v 2 ≤ v 1 /(2 + v 1 ), then v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) .
We remark that Theorems B and C include all possible cases. We also estimate the Hausdorff dimension of U(ψ 2 ).

Theorem D. (WU, L. Zheng) If v 2 > 1, then U(ψ 2 ) is countable. If v 2 ≤ 1 < v 2 , then 0 ≤ dim H (U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . If v 2 ≤ 1, then 1 -v 2 1 + v 2 2 ≤ dim H (U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 .
We will show in Examples 6.9, 6.10, 6.11, 6.12, 6.13, 6.14 and 6.15, that the upper and lower bounds of Theorems C and D can be all reached. When v 1 = v 1 = 0, we have the result as Theorem E.

Theorem E. (WU, L. Zheng) Assume v 1 = v 1 = 0. If v 2 > 0, then U(ψ 2 ) ⊆ L(ψ 1 ). Therefore, dim H (L(ψ 1 ) ∩ U(ψ 2 )) = dim H (U(ψ 2 )) .

Flows

In this section, we introduce the basic knowledge about flow. On the whole, we review the existence of a global flow on the compact manifolds. First, we will look more closely at the Poincaré flow, the linear Poincaré flow, the extended linear Poincaré flow, the scaled linear Poincaré flow. For study the dynamics of the flow, we will also be concerned with the sectional Poincaré map and the rescaled sectional Poincaré map. Secondly, we introduce the measure and flow for vector fields. What is more, the transgression of a measure is a joint work with D. Yang and Y. Zhang.

A continuous-time dynamical system is usually given infinitesimally (for example, by means of differential equations) and the reconstruction of the dynamics from this infinitesimal description involves some kind of integration process. Given a differentiable manifold M of dimension n, the time evolution is given by a smooth function

F (x, t) = ϕ t (x), x ∈ M, t ∈ R,
which satisfies the group property

ϕ t • ϕ s = ϕ t+s .
But, this smooth function may not be defined for all x and t.

We first consider the local aspect of the situation, fix x ∈ M and vary t, one obtains a parameterized smooth curve on M . Denoted by ξ(x) the tangent vector to the curve at t = 0 (the point x). The vector ξ(x) belongs to the tangent space T x M which is a n-dimensional linear space "attached"to M at the point x. Thus, the map

x → ξ(x)
forms a section of the tangent bundle

T M := x∈M T x M
or a vector field on M . Therefore, a vector field on M is an assignment of a tangent vector to each point in M . Let U ⊂ M be a coordinate neighborhood with coordinates

(s 1 , • • • , s n ), the tangent bundle T U is a direct product U × R n and a vector field is determined by a map from U to R n , n real-valued functions v 1 , • • • , v n . Denote by
∂ ∂s i the basic vector fields which associate to every point the i-th vector of the standard basis in R n , every vector field can be represented locally as

n i=1 v i (s 1 , • • • , s n ) ∂ ∂s i .
When the initial point x is represented by coordinates s 0 1 , • • • , s 0 n , the evolution of this point is obtained by solving the system of first-order ordinary differential equations

ds i dt = v i (s 1 , • • • , s n ) Flows with initial conditions s i (0) = s 0 i , for i = 1, 2, • • • , n.
If the functions v i are continuously differentiable, the solution for sufficiently small time exists, is unique and depends smoothly on the initial condition. Thus, for small values of t, the transformation ϕ t can be recovered from the vector field. For larger t, one should take compositions of maps defined in local coordinates. The vecter field is called complete, if the solutions exist for all real values of t. If the manifold M is compact and has no boundary, then it can be covered by a finite number of coordinate charts. Inside any charts, the solutions exist for a fixed length of time. Since every point x ∈ M belongs to a coordinate neighborhood which is not very small, it implies that any C 1 vector field on a clsoed compact manifold without boundary is complete and defines a smooth flow, a one-parameter group of diffeomorphisms of M .

Poincaré flow

Denoted by X 1 (M ) the space of all C 1 vector fields on differentiable manifold M with the C 1 norm. Given a vector field X ∈ X 1 (M ), let ϕ t := ϕ X t be the flow generated by X ∈ X 1 (M ). A point σ ∈ M is a singularity if the vector X(σ) = 0. Denote by Sing(X) the set of all singularities of the vector field X. A point x is regular if the vector X(x) = 0. A regular point p is periodic, if ϕ X t 0 (p) = p for some t 0 > 0. A critical point is either a singularity or a periodic point. Denote the normal bundle of X by

N X := x∈M \Sing(X) N x ,
where

N x := {v ∈ T x M : v ⊥ X(x)}.
For the flow ϕ X t , its derivative with respect to the space variable is called the tangent flow and is denoted by dϕ

X t . Definition 3.1. Given x ∈ M \ Sing(X), v ∈ N x and t ∈ R, the linear Poincaré flow ψ X t (v) is the orthogonal projection of dϕ X t (v) on N ϕ X t (x) along the flow direction X(ϕ X t (x)), ψ X t (v) := dϕ X t (v) - dϕ X t (v), X(ϕ X t (x)) X(ϕ X t (x)) 2 X(ϕ X t (x)),
where < •, • > is the inner product on T x M given by the Riemannian metric.

This flow could also be defined in a more general way by Liao [START_REF] Liao | On (η, d)-contractible orbits of vector fields[END_REF]. In Liao's work [START_REF] Liao | On (η, d)-contractible orbits of vector fields[END_REF], he introduced one-parameter transformation group. And the flow is a special case. The linear Poincaré flow ψ t loses the compactness due to the existence of singularities. This difficulty can be overcome by extending the linear Poincaré flow (see [START_REF] Li | Robustly transitive singular sets via approach of an extended linear Poincaré flow[END_REF] used the terminology of "extended linear Poincaré flow"). For understanding the accumulation directions on singularity, one can define the transgression of the tangent flow dϕ X t : for the sphere bundle

SM := {v ∈ T M : v = 1}, Flows the map (t, v) → dϕ X t (v) dϕ X t (v) , t ∈ R, v ∈ SM,
defines a flow on SM . At any point x ∈ M , one has

S x M := {v ∈ T x M : v = 1}.
For any point v ∈ S x M , one can define a fiber

N v := {u ∈ T x M : u ⊥ v}
and then define a bundle N SM . Then one can consider another bundle on M :

N SM := {(v 1 , v 2 ) : v 1 ∈ S x M, v 2 ∈ T x M, v 1 ⊥ v 2 },
and define the following flow on N SM after Liao: for any

v 1 ∈ S x M, v 2 ∈ T x M and any t ∈ R, define Θ t (v 1 , v 2 ) = dϕ X t (v 1 ) dϕ X t (v 1 ) , dϕ X t (v 2 ) - dϕ X t (v 1 ), dϕ X t (v 2 ) dϕ X t (v 1 ) 2 dϕ X t (v 1 ) = (Proj S (Θ t ), Proj N (Θ t )) .
Then, the linear Poincaré flow ψ t can be "embedded" in the flow Θ t . In fact, if one considers the subsets X(x) X(x) , v ⊂ N SM, then for any regular point x ∈ M and any v ∈ N x , one has

ψ X t (v) := Proj N Θ t X(x) X(x) , v .
For a compact invariant set Λ, its transgression Λ is defined by

Λ := Closure X(x) X(x) : x ∈ Λ \ Sing(X)
in SM . Therefore, Proj N Θ t is a continuous flow on Λ. The extended linear Poincaré flow ψ on N Λ SM is defined as the compactification of the fibered flow Proj N Θ t on x∈Λ\Sing(X)

X(x) X(x)
over the base flow Proj S Θ t . Thus, we have the compactness. The extended linear Poincaré flow is continuous with respect to the vector fields, the time and the vector.

Lemma 3.2. ( [52, Lemma 3.1]) The extended linear Poincaré flow ψ X t (v) varies continuously with respect to the vector field X, the time t and the vector v.

Flows

In Liao's work [START_REF] Liao | On (η, d)-contractible orbits of vector fields[END_REF][START_REF] Liao | A basic property of a certain class of differential systems[END_REF][START_REF] Liao | Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits[END_REF], one can find the rescaled linear Poincaré flow ψ * t which is defined by

ψ * t (v) := X(x) X(ϕ X t (x)) ψ X t (v) = ψ X t (v) dϕ X t | <X(x)>
, for any x ∈ M \ Sing(X), v ∈ N x and t ∈ R. This rescaled linear Poincaré flow will help us to overcome some difficulties produced by singularities since it gives uniform estimations on some non-compact sets.

Lemma 3.3. ( [55, Lemma 2.1]) For any τ > 0, there is a constant C τ > 0 such that for any t ∈ [-τ, τ ], one has ψ * t ≤ C τ , where ψ * t := sup{|ψ * t (v)| : v ∈ N and |v| = 1}.
Fix α > 0, the normal manifold N x (α) of x is defined as:

N x (α) := exp x (N x (α)),
where

N x (α) := {v ∈ N x : |v| ≤ α}.
Take α > 0 small enough such that for any x ∈ M , exp x is a diffeomorphism from N x (α) to its image N x (α). The sectional return map of a cross section of a periodic point is defined by Poincaré to study the dynamics in a small neighborhood of a periodic orbit of a vector field. By generalizing this idea to every regular point, Gan and Yang [START_REF] Gan | Morse-Smale systems and horseshoes for three dimensional singular flows[END_REF] first use the notations P and P * to define the sectional Poincaré map and the rescaled sectional Poincaré map (also see [START_REF] Crovisier | Homoclinic tangencies and singular hyperbolicity for three-dimensional vector fields[END_REF]) between any two cross sections at any two points in the same regular orbit and to study the local sectional dynamics to understand Liao's powerful tools "canonical equations"in a more geometrical way. Given t > 0 and x ∈ M \Sing(X), the flow ϕ t defines a local holonomy map P x, ϕt(x) from N x (α ) to N ϕt(x) (α ) in a small neighborhood of x. The sectional Poincaré map

P t : N x (α ) → N ϕt(x) (α )
is the lift of the holonomy map P x, ϕt(x) and can be expressed by

P t := exp -1 ϕt(x) •P x,ϕt(x) • exp x .
The rescaled sectional Poincaré map

P * t : N x (α ) → N ϕt(x) (α )
is defined by

P * t (v) := P t (v) |X(ϕ t (x))| , for any v ∈ N x (α ).

Measures, entropy and dominated splitting of flows

A measure µ is called ϕ t -invariant, if µ is ϕ t 0 -invariant for any fixed t 0 ∈ R. An invariant measure µ is said to be ϕ t -ergodic, if µ is ϕ t 0 -ergodic for any fixed t 0 ∈ R. Let M(ϕ) denote the space of all ϕ t -invariant measures and E(ϕ) denote those are ergodic. Assume that µ is a ϕ t -invariant measure which is not concentrated on Sing(X), for the linear Poincaré flow ψ t : N → N , by Oseledec Theorem [3, Theorem S.2.9], for µ-almost every point x, there is a measurable splitting

N x = k(x) i=1 E i (x)
and numbers

λ 1 (x) < λ 2 (x) < • • • < λ k(x) (x), such that lim t→∞ 1 t log ψ t (v) = λ i (x), ∀ v ∈ E i (x) \ {0}, i = 1, 2, . . . , k(x),
where 1 ≤ k(x) ≤ d -1. These quantities are called the Lyapunov exponents at point x of ψ t and the sub-bundle E i (x) is called the Oseledec subspace of λ i (x).

Definition 3.4. An ergodic measure µ of the flow ϕ t is regular, if it is not supported on a singularity. A regular ergodic measure is hyperbolic, if the Lyapunov exponents of the linear Poincaré flow ψ t are all non-zero.

Remark. We can also define the hyperbolicity of an ergodic measure by using the tangent flow dϕ t as usual. However, for ergodic measures that are not supported on singularities, there will be one zero Lyapunov exponent for the tangent flow along the flow direction.

For a regular hyperbolic ergodic measure µ, one has the splitting

N = k i=1 E i , (1 ≤ k ≤ d -1).
We rewrite as

N = E s ⊕ F u ,
where all the Lyapunov exponents along E s are negative and all the Lyapunov exponents along F u are positive. The splitting

N = E s ⊕ F u
is called the hyperbolic Oseledec splitting with respect to the hyperbolic ergodic invariant measure µ.

Lemma 3.5. [Definition of the transgression of a measure] If µ is a ϕ t -invariant ergodic measure on M with µ(Sing(X)) = 0, then there is an ergodic Proj S Θ t -invariant measure µ on Λ, the transgression of Λ = Supp(µ), such that the Lyapunov exponents of flow ψ t with respect to the measure µ are the same as the Lyapunov exponents of the linear Poincaré flow ψ t with respect to the measure µ. The measure µ is called the transgression of µ.

Proof. Let P : T M → M be the projection which is a continuous surjection defined as

P(v) = x, for any vector v ∈ T x M .
Thus, P induces a bijective map from

Λ := x∈Λ\Sing(X) X(x) X(x) to Λ \ Sing(X). The fact µ(Sing(X)) = 0 implies µ(Λ \ Sing(X)) = 1.
Define the measure

µ := (P| Λ ) * µ on Λ. Since µ( Λ) = µ(P( Λ)) = µ(Λ \ Sing(X)) = 1,
µ is a probability measure on Λ, hence on Λ = Closure( Λ). For any Borel set A ⊂ Λ with µ(ψ -t (A)) = µ(A) for every t ∈ R, one has

µ(P(Proj S Θ -t (A))) = µ(PA), for every t ∈ R.
Since µ is an ergodic ϕ t -invariant measure,

µ(A) = µ(PA) = 0 or 1.
It means that µ is an ergodic Proj S Θ t -invariant measure.

Applying Oseledec Theorem to the linear Poincaré flow

ψ t : N Λ → N Λ ,
for µ-almost every point x, there is splitting

N x = E 1 ⊕ E 2 ⊕ • • • ⊕ E m and numbers λ 1 < λ 2 < • • • < λ m Flows such that lim t→∞ 1 t log ψ t (v) = λ i , ∀ v ∈ E i \ {0}, i = 1, 2, . . . , m,
where 1 ≤ m ≤ dim(M ) -1. Since ψ t is defined on Λ = Closure( Λ), for any point X(x)/ X(x) ∈ Λ, any v ∈ E X(x)/ X(x) := E x and any t, one has

ψ t (v) := Proj N Θ t X(x) X(x) , v .
Since µ-almost every point x is contained in Λ \ Sing(X) and µ-almost every point is contained in Λ, by the definition of the extended Poincaré flow, for the splitting

N x = m i=1 E i , ∀ v ∈ E i \ {0}, one has lim t→∞ 1 t log ψ t (v) = lim t→∞ 1 t log Proj N Θ t (X(x)/ X(x) , v) = lim t→∞ 1 t log ψ t (v) = λ i .
Therefore, the Lyapunov exponents of ψ t with respect to the measure µ are the same as the Lyapunov exponents of the linear Poincaré flow ψ t with respect to the measure µ.

Let f : M → M be a continuous map of a compact metric space M with distance function d. The set of all invariant measures and the set of all ergodic measures are denoted by M(f ) and E(f ), respectively. The metric d f n is defined as

d f n (x, y) := max 0≤i≤n-1 d(f i x, f i y). Denote by B f (x, n, ε) the open ball {y ∈ M : d f n (x, y) < ε}. A subset E ⊂ M is said to be (n, ε)-spanning, if M ⊂ x∈E B f (x, n, ε).
Let N f (n, ε) be the minimal cardinality of an (n, ε)-spanning set. Define

h(f, ε) := lim n→∞ 1 n log N f (n, ε).
Since h(f, ε) does not decrease with ε, the topological entropy h top (f ) is defined as

h top (f ) := lim ε→0 h(f, ε).

Flows

A priori, this quantity might depend on the metric d. Actually, it does not. One can see [3, p.p. 113]. A subset K ⊂ M is said to be (n, ε)-separated, if any two different points x, y ∈ K implies d f n (x, y) > ε. Let S f (n, ε) be the largest cardinality of an (n, ε)-separated set. One can also define the topological entropy h top (f ) via the number S f (n, ε) as similar as N f (n, ε) (see [48, p.p. 170]). Katok [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF]Theorem 1.1] gave a new formula for the metric entropy h µ (f ) of f -invariant ergodic measure µ as

h µ (f ) := lim ε→0 lim n→∞ log N f (n, ε, δ) n ,
where N f (n, ε, δ) is the minimal cardinality of an (n, ε)-spanning set of measure larger than or equal to 1δ.

The definition of topological entropy h top (X) and metric entropy h µ (X) for vector field X ∈ X 1 (M ) (or flow ϕ t ) is completely parallel to that for the discrete-time case. The counterpart of

d f n (x, y) := max 0≤i≤n-1 d(f i x, f i y)
is the following nondecreasing family of metrics

d X T (x, y) := max 0≤t≤T d(ϕ t (x), ϕ t (y)).
Then, the only property worth special notice is that

h top (X) := h top (ϕ 1 ).
Usually, we consider the time-one map ϕ 1 . Define,

h top (X) := h top (ϕ 1 ), h µ (X) := h µ (ϕ 1 ).
The topological entropy for a flow is obviously invariant under flow equivalence. It changes under time change and hence under orbit equivalence in a rather complicated way. One can show that for a flow without fixed points any time change preserves vanishing of the topological entropy. If the topological entropy for a map or a flow vanishes, the subexponential asymptotic of any of the quantities involved in its definition may provide a useful insight into the complexity of the orbit structure. Definition 3.6. Let Λ ⊂ M \ Sing(X) be an invariant (not necessarily compact) set. An invariant splitting

N Λ = E ⊕ F
with respect to the linear Poincaré flow ψ t is dominated, if there are C > 0 and η > 0 such that for any x ∈ Λ and any fixed t > 0, one has Proof. By the definition of dominated splitting, there are C > 0 and η > 0 such that for any x ∈ Λ \ Sing(X) and any fixed t > 0, one has

ψ t |E x • ψ -t |F ϕt(x) ≤ Ce -ηt .
ψ t |E x • ψ -t |F ϕt(x) ≤ Ce -ηt . (1) 
Thus, on the set

Γ := X(x) X(x) : x ∈ Λ \ Sing(X) ⊂ SM,
the lifts of E and F in N Γ SM still satisfy the inequality (1). Thus these two bundles can be extended on the closure of Γ, which is Λ, in a unique and continuous way.

Hausdorff dimension and β-expansions

In this section, we introduce the basic knowledge of Hausdorff dimension and βexpansions. In the first part, we describe the origin, definition and basic properties of the Hausdorff dimension. In the second one, we introduce the β-expansion, especially the properties of "full cylinders".

Hausdorff dimension

Last few decades, mathematics has been concerned largely with irregular sets and non-smooth functions which provide a much better representation of many natural phenomena than do the figures of classical geometry. Fractal geometry provides a general framework for the study of such irregular sets. The notion of dimension is central to fractal geometry, because dimension indicates how much space a set occupies near to each of its points. Among the wide variety of fractal dimension, the definition of the Hausdorff dimension, based on a construction of Carathéodory, is the oldest and probably the most important. Hausdorff dimension has the advantage of being defined for any set and is mathematically convenient, as it is based on measures, which are relatively easy to manipulate. Even though it is hard to calculate or to estimate by computational methods in many cases, Hausdorff measure and dimension are essential for understanding of the mathematics of fractals.

For a non-empty subset F ⊂ R n , n-dimensional Euclidean space, the diameter |F | of F is defined as the largest distance apart of any pair of points in F , i.e. ,

|F | := sup{|x -y| : x, y ∈ F }.
Given a number δ > 0, a countable (or finite) collection of sets

{F i } is called a δ-cover of F , if 0 ≤ |F i | ≤ δ, for i = 1, 2, • • • and F ⊂ ∞ i=1 F i .
Fix a non-negative number s, for any δ > 0, we define

H s δ (F ) := inf ∞ i=1 |U i | s : F ⊂ ∞ i=1 U i with |U i | ≤ δ .
Since δ decreases, the class of permissible covers of F is reduced. Thus the infimum H s δ increases. Therefore, we write

H s (F ) := lim δ→0 H s δ (F ).
This limit exists for any subset F ⊂ R n , though the limiting value can be 0 or ∞. H s (F ) is called the s-dimensional Hausdorff measure of F .

For any subset F ⊂ R n and any δ < 1, by the definition of H s δ (F ), H s δ (F ) is nonincreasing with s. Therefore, H s (F ) is also non-increasing. In fact, for t > s, one has

i |U i | t ≤ i |U i | t-s |U i | t ≤ δ t-s i |U i | s .
Therefore,

H t δ (F ) ≤ δ t-s H s δ (F ). Letting δ → 0, if H s (F ) < ∞, then H t (F ) = 0, for any t > s.
Therefore, a graph of H s (F ) with respect to s shows that there is a critical value of s at which H s (F ) jumps from ∞ to 0. The critical value is said to be the Hausdorff dimension of F . Some authors refer to Hausdorff dimension as Hausdorff-Besicovitch dimension (see [START_REF] Albeverio | Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension[END_REF][START_REF] Manstavičius | Hausdorff-Besicovitch dimension of graphs and p-variation of some Lévy processes[END_REF][START_REF] Gouravaraju | Estimating the hausdorff-besicovitch dimension of boundary of basin of attraction in helicopter trim[END_REF]). As the Figure 1 shows, the Hausdorff dimension of a set F For a set F , the s-dimensional Hausdorff measure and Hausdorff dimension of F have the relation:

H s (F ) = ∞ if 0 ≤ s < dim H F 0 if s > dim H F .
If s = dim H F , then H s (F ) may be 0 or ∞ or may satisfy

0 < H s (F ) < ∞.
Since Hausdorff measures generalize the familiar ideas of length, area, volume and so on, Hausdorff dimension also has some good properties as that.

Proposition 4.1. Hausdorff dimension satisfies the following properties:

(1) Monotonicity: For subset E, F , if E ⊂ F , then

dim H E ≤ dim H F.
(2) Countable stability:

If F 1 , F 2 , • • • is a countable sequence of sets, then dim H ∞ i=1 F i = sup i {dim H F i }.
(3) Countable sets: If F is countable, then

dim H F = 0. (4) Open sets: If the subset F ⊂ R n is open, then dim H F = n.
(

) Smooth sets: If F is a smooth m-dimensional submanifold of R n , then dim H F = m. 5 
The Borel-Cantelli Lemma [60, Lemmas 1 and 2] has been found to be extremely useful for the derivations of many theorems of measure. A classical form of Borel-Cantelli Lemma can be stated as follows. 

β-expansions

The notion of β-expansion was introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] in 1957. For any β > 1, the β-transformation T β on [0, 1) is defined by

T β x = βx -βx ,
where ξ denotes the largest integer less than or equal to ξ. Let

β = β -1, if β is a positive integer, β , otherwise.
Definition 4.4. The expansion of a number x ∈ [0, 1) with respect to the base β, also called the β-expansion of x, is the sequence of integers

{ε n } n≥1 := {ε n (x, β)} n≥1 from {0, 1, • • • , β } such that x = ε 1 β + ε 2 β 2 + • • • + ε n β n + • • • , (2) 
defined by the following equivalent properties:

i>n ε i β i < 1 β n , for all n ≥ 0; ε 1 = βx , ε n = βT n-1 β
x , for all n ≥ 2.

We also write

d β (x) = (ε 1 , • • • , ε n , • • • ) .
We can extend the definition of the β-transformation to the point 1 as

T β 1 = β -β , one can obtain 1 = ε 1 (1, β) β + ε 2 (1, β) β 2 + • • • + ε n (1, β) β n + • • • , where ε 1 (1, β) = β , ε n = βT n-1 β 1 , for all n ≥ 2.
We also write

d β (1) = (ε 1 (1, β), • • • , ε n (1, β), • • • ) . If d β (1) is finite, i.e.
, there is an integer m > 0 such that ε m (1, β) = 0 and

ε i (1, β) = 0, for all i > m,
then β is called a simple Parry number. In this case, the infinite β-expansion of 1 is defined as:

(ε * 1 (β), ε *
where (ω) ∞ denotes the periodic sequences (ω, ω, • • • ). If d β (1) is infinite, then define the infinite β-expansion of 1 as

(ε * 1 (β), ε * 2 (β), • • • , ε * n (β), • • • ) := (ε 1 (1, β), ε 2 (1, β), • • • , ε n (1, β), • • • ).
Endow the set {0, 1, • • • , β } N with the product topology and define the one-sided shift operator σ as:

σ ((ω n ) n≥1 ) := (ω n+1 ) n≥1 , for any infinite sequence (ω n ) n≥1 in {0, 1, • • • , β } N . The lexicographical order < lex on {0, 1, • • • , β } N is defined as: ω = (ω 1 , ω 2 , • • • ) < lex ω = (ω 1 , ω 2 , • • • ),
if ω 1 < ω 1 or there is an integer k ≥ 2 such that

ω i = ω i , for all 1 ≤ i < k but ω k < ω k . Denote by ω ≤ lex ω if ω < lex ω or ω = ω . Definition 4.5. A finite word (ω 1 , ω 2 , • • • , ω n ) is called β-admissible, if there is x ∈ [0, 1] such that the β-expansion of x begins with (ω 1 , ω 2 , • • • , ω n ). An infinite sequence (ω 1 , ω 2 , • • • , ω n , • • • ) is called β-admissible, if there is x ∈ [0, 1] such that the β-expansion of x is (ω 1 , ω 2 , • • • , ω n , • • • ).
Denote by Σ β the set of all infinite β-admissible sequences and Σ n β the set of all infinite β-admissible sequences with length n. The β-admissible sequences are characterized by Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF] and Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF].

Theorem 4.6. Given a real number β > 1,

(1) ( [63, Lemma 1]) A word ω = (ω n ) n≥1 ∈ Σ β if and only if σ k (ω) ≤ lex (ε * 1 (β), ε * 2 (β), • • • , ε * n (β), • • • ), for all k ≥ 0.
(

) ( [63, Lemma 3]) For any x 1 , x 2 ∈ [0, 1], x 1 < x 2 if and only if d β (x 1 ) < lex d β (x 2 ). 2 
(3) ( [63, Lemma 4]) For any β 1 < β 2 , one has

Σ n β 1 ⊆ Σ n β 2 , Σ β 1 ⊆ Σ β 2 .
Theorem 4.7. ( [62, Theorem 2]) For any β > 1, one has

β n ≤ Σ n β ≤ β n+1 β -1 ,
where denotes the cardinality of a finite set.

For every (ω

1 , • • • , ω n ) ∈ Σ n β , we call I n (ω 1 , • • • , ω n ) := {x ∈ [0, 1] : d β (x) starts with (ω 1 , • • • , ω n )}
an n-th order basic interval with respect to β. Denote by I n (x) the n-th order basic interval containing x. The basic intervals are also called cylinders by some authors. It is crucial to estimate the lengths of the basic intervals. We will use the key notion of "full basic interval"as follows (see [START_REF] Li | Beta-expansion and continued fraction expansion over formal Laurent series[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF]). Definition 4.8. For any

(ω 1 , • • • , ω n ) ∈ Σ n β , a basic interval I n (ω 1 , • • • , ω n ) is said to be full if its length is β -n .
Proposition 4.9. ( [65, Lemma 3.1] and [39, Lemma 2.5]) For any

(ω 1 , • • • , ω n ) ∈ Σ n
β , the following statements are equivalent:

(1)

I n (ω 1 , • • • , ω n ) is a full basic interval. (2) T n β I n (ω 1 , • • • , ω n ) = [0, 1). (3) For any ω = (ω 1 , • • • , ω m ) ∈ Σ m β , the concatenation (ω 1 , • • • , ω n , ω 1 , • • • , ω m ) ∈ Σ n+m β , i.e. , is β-admissible. Proposition 4.10. ( [39, Corollary 2.6]) (1) If (ω 1 , • • • , ω n+1 ) is a β-admissible sequence with ω n+1 = 0, then I n+1 (ω 1 , • • • , ω n+1 )
is full for any 0 ≤ ω n+1 < ω n+1 .

(2) For every ω ∈ Σ n β , if I n (ω) is full, then for any ω ∈ Σ m β , one has

|I n+m (ω, ω )| = |I n (ω)| • |I m (ω )| = |I m (ω )| β n .
(3) For any ω ∈ Σ n β , if I n+m (ω, ω ) is a full basic interval contained in I n (ω) with the smallest order, then

|I n+m (ω, ω )| ≥ |I n (ω)| β .
Next, we define a sequence of numbers β N approximating β. Let {ε * k (β) : k ≥ 1} be the infinite β-expansion of 1. For any ε * N (β) > 0, let β N be the unique real solution of the equation

1 = ε * 1 (β) z + • • • + ε * N (β) z N . (3) 
Therefore, β N < β and the sequence {β N : N ≥ 1} increases and converges to β when N tends to infinity. 

β n+N ≤ |I n (ω 1 , • • • , ω n )| ≤ 1 β n .

Growth rate of periodic orbits for vector fields

In this section, we complete the proof of Theorem A in three subsections. Depending on whether the vector field is star or not, we mainly solve two problems: for the nonstar vector field, the growth rate of the number of periodic orbits is infinite; for the star vector field, the growth rate of the number of periodic orbits is equal or larger than its topological entropy.

In the study of differentiable dynamical systems, one of the main subjects is to describe the dynamics of most dynamical systems. These theories were established in the last century. See [START_REF] Anosov | Dynamical Systems in the 1960s: The Hyperbolic Revolution[END_REF] for instance. An important progress is due to Peixoto [START_REF] Peixoto | Structural stability on two-dimensional manifolds[END_REF]: Theorem (Peixoto) For any closed surface M , A C 1 vector field on M is C 1 structurally stable vector field if and only if it is Morse-Smale and every vector field could be accumulated by a structurally stable one in the C 1 topology.

Smale was interested in the generalization of Peixotos result and he asked whether Morse-Smale vector fields are dense in the space of vector fields. Soon, Levinson and Thom pointed out that Morse-Smale vector fields would not be dense (without a rigorous proof). See [START_REF] Anosov | Dynamical Systems in the 1960s: The Hyperbolic Revolution[END_REF]. Smale noticed the point and he constructed his famous horseshoe (for two dimensional diffeomorphisms or three-dimensional vector fields) [1] which shows that the dynamics may be very complicated and Morse-Smale systems would not be dense in the space of diffeomorphisms or vector fields. There are two kinds of typical dynamical systems: Morse-Smale system or a system with a horseshoe. Their dynamical behavior is quite different:

1. The dynamics of Morse-Smale system is very simple: the chain recurrent set of a Morse-Smale system is a set containing finitely many hyperbolic periodic orbits or singularities. The topological entropy is robustly zero.

2. The dynamics of a system with a horseshoe is very complicated: its chain recurrent set contains a non-trivial basic set with dense periodic orbits. The topological entropy is robustly positive.

Is there other typical dynamics beyond the above two ones? Palis formulated the idea for diffeomorphisms, and he conjectured that Conjecture (Palis [START_REF] Walters | An introduction to ergodic theory[END_REF][START_REF] Palis | A global view of dynamics and a conjecture on the denseness of finitude of attractors[END_REF][START_REF] Palis | Open questions leading to a global perspective in dynamics[END_REF]) Every system can be approximated either by Morse-Smale systems or by systems exhibiting a horseshoe (non-trivial hyperbolic basic set).

Important progress has been made for the conjecture of Palis for diffeomorphisms: in C 1 topology, Pujals-Sambarino [START_REF] Pujals | Homoclinic tangencies and hyperbolicity for surface diffeomorphisms[END_REF] proved it for two-dimensional diffeomorphisms (as a corollary of a stronger result); Bonatti-Gan-Wen [START_REF] Bonatti | On the existence of non-trivial homoclinic classes. Ergodic Theory Dynam[END_REF] gave a prove for threedimensional diffeomorphisms; and finally Crovisier [START_REF] Crovisier | Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems[END_REF] proved the conjecture for anydimensional diffeomorphisms. In this study, star systems was catched up. Definition 5.1. A vector field X ∈ X 1 (M ) is star, if there is a C 1 neighborhood U of X such that every critical element of any vector field Y ∈ U is hyperbolic.

The Reduction of Theorem A

Proof of Theorem A

For a generic non-star vector field, the growth rate of the number of periodic orbits for this vector field is infinite. We postpone the proof of Theorem 5.2 in Section 5.1.2.

Theorem 5.2. There is a dense

G δ set R ⊂ X 1 (M ) such that if vector field X ∈ R is not star, then lim T →∞ 1 T log P T (X) = ∞.
For star vector fields, we have two steps. First, based on that any regular ergodic measure of star vector field is hyperbolic, we show that the hyperbolic Oseledec splitting is a dominated splitting (Theorem 5.3). Secondly, we prove that if the hyperbolic Oseledec splitting with respect to a regular hyperbolic measure is a dominated splitting, then the growth rate of the number of periodic orbits is larger than or equal to the metric entropy (Theorem 5.4).

Theorem 5.3. If µ is a regular ergodic invariant measure of a C 1 star vector field X with h µ (X) > 0, then µ is a hyperbolic measure and its hyperbolic Oseledec splitting

N = E s ⊕ F u is a dominated splitting.
The proof of Theorem 5.3 is in Section 5.1.3. Theorem 5.4. Let µ be a regular ergodic invariant hyperbolic measure of a vector field X ∈ X 1 (M ). If the hyperbolic Oseledec splitting

N = E s ⊕ F u is a dominated splitting, then lim T →∞ 1 T log P T (X) ≥ h µ (X) := h µ (ϕ 1 ).
For Theorem 5.4, we have to deal with the re-parametrization problem. In Liao's shadowing lemma, the period of periodic point which shadows the recurrent point is reparametrization of the recurrent time. For our goal, we have to estimate the difference between the recurrent time of the recurrent orbit and its re-parametrization (the time of the periodic orbit). In Section 5.2, we give the shadowing lemma with time control. Theorem 5.4 is proved in Section 5.3.

Proof of Theorem A. Take a dense G δ set R ⊂ X 1 (M ) as Theorem 5.2. For any X ∈ R, if X is not a star vector field, by Theorem 5.2, one has lim

T →∞ 1 T log P T (X) = ∞ > h top (X).
If X is a star vector field, then any ergodic invariant measure µ of the star vector field X is a hyperbolic measure by [START_REF] Shi | On the singular-hyperbolicity of star flows[END_REF]Theorem E]. If h µ (X) = 0, then lim

T →∞ 1 T log P T (X) ≥ h µ (X).
By the variational principle, h top (ϕ 1 ) = sup{h µ (ϕ 1 ) : µ is an ergodic measure of X}, one has lim

T →∞ 1 T log P T (X) ≥ h top (X).
Now, we can suppose h µ (X) > 0.

According to Theorem 5.3, the hyperbolic Oseledec splitting

N = E s ⊕ F u
with respect to the ergodic invariant measure µ is a dominated splitting. By Theorem 5.4, one has lim

T →∞ 1 T log P T (X) ≥ h µ (X).
By the variational principle, h top (ϕ 1 ) = sup{h µ (ϕ 1 ) : µ is an ergodic measure of X}, one has lim

T →∞ 1 T log P T (X) ≥ h top (X).
The proof of Theorem A is complete.

Non-star vector fields

Lemma 5.5. There is a dense G δ set R ⊂ X 1 (M ) such that for given T, k ∈ N, if for every C 1 neighborhood U of a vector field X ∈ R, there is a vector field Y ∈ U having k periodic orbits whose periods belong to (T, 3T 2 ), then the vector field X has k periodic orbits whose periods belong to (T, 3T 2 ). Proof. Fix a countable topological base {O 1 , . . . , O i , . . . } of M . Let {U 1 , U 2 , . . . , U n , . . . } be the family of finite unions of {O i }. We define

H k n,T := X ∈ X 1 (M ) :
X has k hyperbolic periodic orbits with period belonging to (T, 3T /2) in U n , 

N k n,T :=        X : ∃ C 1 neighborhood U of X,
H k n,T ∪ N k n,T = X 1 (M ).
Proof of Claim: For any vector field X ∈ X 1 (M ), if X / ∈ N k n,T , then for any C 1 neighborhood U of the vector field X, there is a vector field Y ∈ U which has k periodic orbits whose periods belong to (T, 3T /2) belonging to U n . Thus, there is a sequence

{X m } m∈N ⊂ H k n,T such that X m → X. Therefore, X ∈ H k n,T . Consequently, the set H k n,T N k n,T
is open and dense.

Let

R := ∞ k=1 ∞ n=1 ∞ T =1 H k n,T ∪ N k n,T .
By the definition, R is a residual subset of X 1 (M ). For given T > 0 and any vector field X ∈ R, if there exists a C 1 neighborhood U of X ∈ R such that any Y ∈ U has k periodic points with period belonging to (T, 3T /2), then X / ∈ N k n 0 ,T , for some n 0 .

Therefore, X ∈ H k n 0 ,T .

We prove Theorem 5.2 based on the generic property of vector fields.

Proof of Theorem 5.2. Take a dense G δ set R ⊂ X 1 (M ) as Lemma 5.5. For any vector field X ∈ R, if the vector field is not a star vector field, then for any C 1 neighborhood U of the vector field X, there is a vector field Y ∈ U which has a non-hyperbolic periodic point x. Let T be the period of x with respect to the vector field Y , then ψ Y T has a eigenvalue λ whose module is 1. For any positive N ∈ N, we consider the following two cases. λ is real. In this case, λ = ±1. We may assume that λ = 1 ( The case λ = -1 can be proved similarly). After a C 1 perturbation, one can assume that Y is locally linear in a small neighborhood of the periodic orbit. Therefore, there is an infinite subset B ⊆ M such that ϕ Y T |B = Id. We can find at least e N fixed points of ϕ Y T in a small cross section at x. By Lemma 5.5, X has e N periodic orbits whose periods belong to (

[T ]-1, 3([T -1])/2). Consequently, one has 1 2T log P 2T (X) ≥ N 2 .
λ is not real. In this case, Dϕ Y T is a rotation map on the sub-eigenspace V with respect to the eigenvalue λ. One can also assume that Y is locally linear in a small neighborhood of the periodic orbit after a C 1 perturbation, one can also assume that ϕ Y T |V is a rational rotation by perturbation. Thus there is a positive k ∈ N such that

ϕ Y kT |V = Id.
Therefore, one can find at least e N T fixed points of ϕ Y T , where T = kT . Consequently, 1

T log P T (Y ) ≥ N.
In any case, for any C 1 neighborhood U of the vector field X and every positive n ∈ N, there are vector field Y ∈ U and time T 0 = T 0 (n) such that the vector field Y has at least e nT 0 periodic orbits whose periods is T 0 . By Lemma 5.5, the vector field X has at least e nT 0 periodic orbits whose periods belong to (T 0 , 3T 0 /2). By the arbitrariness of n, one has lim

T →∞ 1 T log P T (X) = ∞.

Star vector fields

Liao has proved the following estimates for star flows in [53, Proposition 4.4].

Lemma 5.6. For every star vector field X ∈ X 1 (M ), there are a C 1 neighborhood U of the vector field X and constants η > 0, T 0 > 0, such that for any periodic orbit O of every vector field Y ∈ U with π(O) ≥ T 0 and the natural hyperbolic splitting

N O = E ⊕ F
with respect to ψ Y t , we have

(1) For any x ∈ O and every t ≥ T 0 , one has

ψ Y t |E x m(ψ Y t |F x ) ≤ e -2ηt .
(2) For any x ∈ O,

[π(O)/T 0 ]-1 i=0 ψ Y T 0 |E ϕ Y iT 0 (x) ≤ e -ηπ(O) , [π(O)/T 0 ]-1 i=0 m ϕ Y T 0 |F ϕ Y iT 0 (x) ≥ e ηπ(O) .
Next, we introduce the ergodic closing lemma for flows and give the statement about the relationship between periodic orbits and metric entropy. Definition 5.7. A point x ∈ M \ Sing(X) is strongly closable, if for any C 1 neighborhood U of the vector field X, L > 0 and any δ > 0, there are vector field Y ∈ U, y ∈ M and τ 0 > 0 such that (1) ϕ Y τ 0 (y) = y.

(

) d(ϕ Y t (y), ϕ X t (x)) < δ, ∀ 0 ≤ t ≤ τ 0 . 2 
(

) X = Y on M \B, where B = t∈[-L,0] B(ϕ X t (x), δ). 3 
Denote by Σ(X) the set of all strongly closable points of the vector field X, Wen [74, Theorem 3.9] gave the following flow version of the ergodic closing lemma.

Theorem 5.8. ( [74, Theorem 3.9]) For any C 1 vector field X and any ϕ X t -invariant Borel probability measure µ, one has µ(Sing(X) ∪ Σ(X)) = 1.

Proof of Theorem 5.3. According to [73, Theorem E], µ is a hyperbolic measure. Let N = E s ⊕ F u be the hyperbolic Oseledec splitting with respect to the hyperbolic measure µ. By Lemma 5.6, there are η > 0, T 0 > 0 and a C 1 neighborhood U of the vector field X, such that for every periodic orbit O of any vector field Y ∈ U with π(O) ≥ T 0 and the natural hyperbolic splitting

N O = E ⊕ F with respect to ψ Y t , one has ψ Y t |E x m(ψ Y t |F x ) ≤ e -2ηt , ∀ t ≥ T 0 , ∀ x ∈ O; [π(O)/T 0 ]-1 i=0 ψ Y T 0 |E ϕ Y iT 0 (x) ≤ e -ηπ(O) , [π(O)/T 0 ]-1 i=0 m ψ Y T 0 |F ϕ Y iT 0 (x) ≥ e ηπ(O) , ∀ x ∈ O.
Since h µ (X) > 0 and the metric entropy on any critical element is zero, we will assume that µ does not support on any critical element for the rest of proof. Define

B(µ) = x : lim T →∞ 1 T T 0 f (ϕ t (x))dt = f dµ, ∀ continuous function f : M → R . Since µ is ergodic, one has µ(B(µ)) = 1.
Thus, by Theorem 5.8, one has

µ(B(µ) ∩ Supp(µ) ∩ Σ(X)) = 1.
For µ almost every point x, there are vector fields {X n } n∈N ⊂ U, points {x n } n∈N ⊂ M and {τ n : τ n > 0} n∈N with ϕ Xn τn (x n ) = x n satisfying:

• d(ϕ Xn t (x n ), ϕ X t (x)) < 1 n , for ∀ t ∈ [0, τ n ]. • X n -X C 1 < 1 n .
Consider the ergodic measure µ n which is supported on the orbit of x n . Since the point x is strongly closable point, for any continuous function f , one has

lim n→∞ f dµ n = lim n→∞ 1 τ n τn 0 f (ϕ t (x n ))dt = lim n→∞ 1 τ n τn 0 f (ϕ t (x))dt = f dµ.

Thus,

µ n → µ, in the sense of weak * topology.

As µ is not supported on any critical element, one has

τ n → ∞ as n → ∞.
Claim. There are only finitely many sinks or sources among {Orb(x n )}.

Proof of Claim.

If not, for fixed x ∈ B(µ) ∩ Supp(µ) ∩ Σ(X), we may assume that Orb(x n ) are sinks, then one only has

[τn/T 0 ]-1 i=0 ψ Xn T 0 (ϕ Xn iT 0 (x n )) ≤ e -ητn .
By the definition of the extended linear Poincaré flow, one has

[τn/T 0 ]-1 i=0 ψ Xn T 0 (ϕ Xn iT 0 (x)) ≤ e -ητn . Since X n -X C 1 < 1 n and d(ϕ Xn t (x n ), ϕ X t (x)) < 1 n , for any t ∈ [0, τ n ],
one has

[τn/T 0 ]-1 i=0 ψ X T 0 (ϕ X iT 0 (x)) ≤ e -ητn .
By Lemma 3.5, the definition of the transgression of a measure, one has

log ψ X T 0 d µ(x) ≤ -η. It means that log ψ X T 0 dµ(x) ≤ -η.
Therefore, the Lyapunov exponents of the linear Poincaré flow ψ t are negative. By the Ruelle inequality [75, Theorem 2], one can get

h µ (ϕ T 0 ) = 0.
Since µ is an ergodic measure,

h µ (ϕ T 0 ) = |T 0 |h µ (ϕ 1 ) = |T 0 |h µ (X) > 0.
This is a contradiction. The claim is thus proved.

By Lemma 5.6, for the non-trivial hyperbolic splitting

N Orb(xn) = E ⊕ F
with respect to ψ Xn t , we have

[τn/T 0 ]-1 i=0 ψ Xn T 0 |E ϕ Xn iT 0 (y) ≤ e -ητn , [τn/T 0 ]-1 i=0 m(ψ Xn T 0 |F ϕ Xn iT 0 (y) ) ≥ e ητn , ∀ y ∈ Orb(x n ). ( 4 
)
We may assume that the indices of Orb(x n ) are the same, then there is a dominated splitting on the limit point x as

N x = G x ⊕ H x ,
where G x = lim n→∞ E xn and H x = lim n→∞ F xn . We only need to prove

G x = E s x , H x = F u x .
By Lemma 3.5, the inequalities (4) means

log ψ Xn T 0 |E x d µ n (x) ≤ -η, log m( ψ Xn T 0 |F x )d µ n (x) ≥ η.
By Lemma 3.2, since

X n -X C 1 < 1 n , for every positive n ∈ N, one has log ψ X T 0 |E x d µ n (x) ≤ -η, log m( ψ X T 0 |F x )d µ n (x) ≥ η.
By Lemma 3.2 again, one has

log ψ X T 0 |G x d µ(x) ≤ -η, log m( ψ X T 0 |H x )d µ(x) ≥ η.
According to the Birkhoff ergodic theorem and Lemma 3.5, one has

lim m→∞ 1 m m-1 i=0 log ψ X T 0 |G ϕ iT 0 (x) = lim m→∞ 1 m m-1 i=0 log ψ X T 0 |G ϕ iT 0 (x) = log ψ X T 0 |G x d µ(x) ≤ -η, lim m→∞ 1 m m i=1 log m(ψ X T 0 |H ϕ iT 0 (x) ) = lim m→∞ 1 m m i=1 log m( ψ X T 0 |H ϕ iT 0 (x) ) = log m( ψ X T 0 |H x )d µ(x) ≥ η. It means that lim m→∞ 1 m m-1 i=0 log ψ X T 0 |G ϕ iT 0 (x) ≤ -η < 0. That implies that G x ⊂ E s x . If E s x G x ,
then there is a non-zero vector v belong to E s x but not belong to G x . One has the dominated splitting

v = v 1 + v 2 ,
where

v 1 ∈ G x , 0 = v 2 ∈ H x . Therefore, lim t→∞ 1 t log ψ X t (v) = lim t→+∞ 1 t log ψ X t (v 2 ) ≥ lim m→∞ 1 m m i=1 log m( ψ X T 0 |H ϕ iT 0 (x) ) > 0.
This contradicts to the fact that the Lyapunov exponents along E s x are negative. Consequently, one has

E s x ⊂ G x . Therefore, one has E s x = G x . Similarly, one obtains F u x = H x .

A shadowing lemma with time control

For the linear Poincaré flow, one has the shadowing lemma of Liao for some quasihyperbolic orbit segments. Definition 5.9. Assume that Λ ⊂ M \ Sing(X) is an invariant (not necessarily compact) set having a dominated splitting

N Λ = E ⊕ F
with respect to the linear Poincaré flow. Given η > 0 and T 0 > 0, an orbit arc

ϕ X [0,T ] (x) ⊂ Λ with T > T 0 is (η, T 0 )-quasi hyperbolic (associated to Λ) if there is a time partition 0 = t 0 < t 1 < t 2 < • • • < t l = T with t i+1 -t i ≤ T 0 , i = 0, • • • , l -1 such that for k = 0, 1, • • • , l -1, one has k-1 i=0 ψ * t i+1 -t i |E ϕ X t i (x) ≤ e -ηt k , l-1 i=k m ψ * t i+1 -t i |F ϕ X t i (x) ≥ e η(T -t k ) .
For obtaining a periodic orbit, we have the Liao's shadowing Lemma (see [START_REF] Liao | Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits[END_REF]Theorem 5.5] and [START_REF] Liao | An existence theorem for periodic orbits[END_REF]Theorem I]) which means the recurrent quasi-hyperbolic orbits whose initial point and terminal point are far away from Sing(X) can be shadowed by periodic orbits.

Theorem 5.10. (Liao's shadowing Lemma) Suppose Λ ⊂ M \Sing(X) is an invariant set with a dominated splitting

N Λ = E ⊕ F.
Given ε 0 > 0 and two constants η > 0, T 0 ≥ 1, for every ε > 0, there is δ > 0 such that for any orbit segment ϕ X [0,T ] (x) ⊂ Λ with the following properties:

• d(x, Sing(X)) ≥ ε 0 and d(ϕ X T (x), Sing(X)) ≥ ε 0 . • ϕ X [0,T ] (x) is (η, T 0 )-quasi hyperbolic. • d(x, ϕ X T (x)) < δ.
Then there exist a C 1 increasing homeomorphism

θ : [0, T ] → R
and a periodic point p ∈ M whose period is θ(T ) such that:

(1)

1 -ε < θ (t) < 1 + ε, ∀ t ∈ [0, T ]. (2) d(ϕ X t (x), ϕ X θ(t) (p)) ≤ ε|X(ϕ X t (x))|, ∀ t ∈ [0, T ].
In Theorem 5.10, for any t ∈ [0, T ], one can have

ϕ X θ(t) (p) ∈ exp ϕt(x) N ϕt(x) (2ε|X(ϕ t (x))|)
, where for any regular point y and any χ > 0, N y (χ) is defined as

N y (χ) := {v ∈ N y : v ≤ χ}.
In fact, one can get more information on the periodic orbit.

Proposition 5.11. Under the setting of Theorem 5.10, if the time T = mT 0 for some m ∈ R + , then there is

N = N (η, T 0 ) such that |θ(τ ) -τ | ≤ N • d(x, ϕ X T (x)), ∀ τ ∈ N ∩ [0, T ].
For a normed vector space A and r > 0, define

A(r) = {v ∈ A : v < r}. Recall that N x (χ) = exp x N x (χ).
Lemma 5.12. For the flow ϕ X t generated by the vector field X ∈ X 1 (M n ), there are two constants C > 0, δ > 0 such that for any y ∈ N x (δ|X(x)|), there is a unique

t = t(y) ∈ [0, 2] such that ϕ t (y) ∈ N ϕ 1 (x) (δ) and |t(y) -1| < C • d(x, y).
Proof. We take ε 0 > 0 such that the exponential map exp x is a diffeomorphism on the ball T x M (ε 0 ). For any point x ∈ M and any point y which is close to the point x, one can lift the local orbit of the point y to the tangent space T x M in the following way: for any v ∈ T x M , if v < ε 0 , then one can define a local flow

ϕ t (v) = exp -1 x •ϕ t • exp x (v).
Then, the flow ϕ t is a local flow generated by a C 1 vector field X x on T x M , where

X x (v) = D(exp -1 x ) • X(exp x (v)
). Thus, one has

K := sup x∈M, v∈TxM (ε 0 ) {| X x (v)|, D X x (v) } < ∞.
Now for any regular point x ∈ M , one can identify T x M to the Euclidean space R n by some isometrical transformation satisfying

e 1 = X(x) |X(x)|
for an orthonormal basis e = {e 1 , • • • , e n } of the Euclidean space R n . In this way, the flow ϕ t can be regard as the solution of the differential equation:

dz dt = X x (z).
Given ε > 0, by reducing ε 0 if necessary, one can assume that the map D exp x (v) is ε-close to the identity map for any x and v ∈ T x M (ε 0 ).

Claim. There is δ > 0 such that for any regular point x, one has

N x (δ|X(x)|) ∩ Sing(X) = ∅.
Proof of the Claim. It suffices to consider the flow ϕ t and the vector field X x . Given δ < ε/K, for any v ∈ N x (δ|X(x)|), one has

| X x (v)| ≥ | X x (0)| -max ξ∈TxM (ε 0 ) D X x (ξ) .|v| ≥ |X(x)| -Kδ|X(x)| ≥ (1 -ε)|X(x)| > 0.
Since the map D exp x is ε-close to identity, one can conclude.

Claim. By reducing δ if necessary, for any regular point x, any y ∈ N x (δ|X(x)|/2) and any t ∈ [δ/3, 2δ/3], there is a unique s = s(t, y) ∈ [0, δ] such that

ϕ s (y) ∈ N ϕt(x) (δ).
Proof of the Claim. One can work in the local chart introduced above. By reducing δ if necessary such that for any |v| ≤ δ|X(x)|, one has

sup t∈(-δ,δ) | X x (v)| | X x ( ϕ t (v))| < 1 + ε K , sup t∈(-δ,δ) ∠( X x (v), X x ( ϕ t (v))) < ε K .
For any v ∈ N x (δ|X(x)|/3) and the time t 0 satisfying

| ϕ t 0 (v)| = δ X x ( ϕ t 0 (0)) , | ϕ s (v)| ≤ δ X x ( ϕ s (0)) , ∀ s ∈ [0, t 0 ), one has | ϕ t 0 (v)| = v + t 0 0 X x ( ϕ t (v))dt ≤ |v| + (1 + ε)t 0 | X x (0)|. Thus, δ X x (0) ≤ δ(1 + ε/K) X x (0) ≤ δ/3 X x (0) + (1 + ε)t 0 X x (0) .
Consequently, one has

t 0 ≥ 2δ 3(1 + ε) ≥ δ 2 .
Similar estimate gives the fact that t 0 ≤ 2δ by reversing the inequalities.

Recall the definitions of the sectional Poincaré map and the rescaled sectional Poincaré map, the above claim allows one to consider the non-linear dynamics along the flows: for any regular point x and t, the sectional Poincaré map

P t : N x (δ|X(x)|) → N ϕt(x) (δ)
is the lift of the holonomy map induced by the local flow from exp x (N x (δ|X(x)|)) to exp ϕt(x) (N ϕt(x) (δ)). The rescaled sectional Poincaré map

P * t : N x (δ) → N ϕt(x) (δ)
is defined by

P * t (v) = P t (|X(x)|v) |X(ϕ t (x))| , ∀ v ∈ N x (δ).
In the local coordinate, by the choice of e 1 , one can denote the space N x (r) by

N x (r) = n i=2 y i e i , where r = n i=2 y 2 i and (y 2 , • • • , y n ) ∈ R n-1
. By abuse of the notions, denote y i e i by y. In this local coordinate, one can present P * t . Define the map τ :

N x (δ/2) → R 1 such that ϕ τ (y) • ϕ t (| X x (x)|y) | X x ( ϕ t (x))| ∈ N ϕt(x) (δ),
for any y ∈ N x (δ/2). From the above facts, the map τ is an injective. In the local chart, the rescaled sectional Poincaré map P * t can be written by

P * t (y) := ϕ τ (y) • ϕ t (| X x (x)|y) | X x ( ϕ t (x))| .
We are going to estimate τ (y). For t ∈ [δ/3, 2δ/3], consider the function

H(x, t, y, τ ) = ϕ τ (y) • ϕ t (| X x (x)|y) | X x ( ϕ t (x))| , X x ( ϕ t (x)) | X x ( ϕ t (x))| ,
where •, • denotes the inner product in the local Euclidean coordinate. From the definition of map τ , one has 1. H(x, t, y 0 , τ (y 0 )) = 0 from the definition of map τ .

2. ∂H/∂y and ∂H/∂τ are equi-continuous with respect to x and t.

3. ∂H/∂τ | y=0,τ =0 = X x ( ϕ t (x)) | X x ( ϕ t (x))| , X x ( ϕ t (x)) | X x ( ϕ t (x))| = 1.
By the Implicit Function Theorem, one has Fix η > 0, T 0 ≥ 1, the following Lemma 5.13 will show that the distance between (η, T 0 )-quasi hyperbolic orbit and its shadowing periodic orbit can be controlled by the distance between the starting point and terminal point of this quasi hyperbolic orbit. The idea about proof of Lemma 5.13 can refer to [3, Page 269, Corollary 6.4.17].

∂τ ∂y = - ∂H/∂y ∂H/∂τ . Since ϕ t is C 1 and ϕ t (y) ∈ T x M (ε 0 ), ∂H/
Lemma 5.13. Under the assumption of Proposition 5.11, taking α = e -η/2 , there is a constant C > 0 such that for the (η, T 0 )-quasi hyperbolic orbit ϕ [0,mT 0 ] (x) and the shadowing orbit ϕ [0,θ(mT 0 )] (p) in Theorem 5.10, one has

d(ϕ iT 0 (x), ϕ θ(iT 0 ) (p)) ≤ C • α min{i, m-i} • d(x, ϕ mT 0 (x)), ∀ i ∈ [0, n].
Proof. By Theorem 5.10, one can assume that

ϕ X θ(t) (p) ∈ exp ϕt(x) N ϕt(x) (2ε|X(ϕ t (x))|) , for any t ∈ [0, T ].
Thus, one can lift the dynamics in the normal fibers and consider a sequence of rescaled sectional Poincaré maps

P * T 0 ,ϕ iT 0 (x) : N ϕ iT 0 (x) → N ϕ (i+1)T 0 (x) .
Since ϕ [0,mT 0 ] (x) is a (η, T 0 )-quasi hyperbolic orbit, by Definition 5.9, for the dominated splitting

N Λ = E ⊕ F
with respect to the linear Poincaré flow, one has

k-1 i=0 ψ * T 0 |E ϕ (i-1)T 0 (x) ≤ e -kη , m-1 i=k m ψ * T 0 |F ϕ iT 0 (x) ≥ e (m-k)η , for k = 0, • • • , m.
By Liao's shadowing Lemma 5.10, one has

d(ϕ t (x), ϕ θ(t) (p)) ≤ ε|X(ϕ t (x))|, ∀ t ∈ [0, T ].
For the maps P * T 0 ,ϕ iT 0 (x) , the periodic orbit of p also admits a dominated splitting

N x = E p ⊕ F p
with respect to DP * T 0 ,ϕ iT 0 (x) . Thus, they have plaques in the normal fibers. The distance in the E-plaques are denoted by d E and the the distance in the F-plaques are denoted by d F . One can split the distance into E-distance and F-distance. There is a constant C ≥ 1 such that

d F (p, x) ≤ Cd(p, x), d E (p, x) ≤ Cd(p, x), d(p, x) ≤ d E (p, x) + d F (p, x). Therefore, d(ϕ iT 0 (x), ϕ θ(iT 0 ) (p)) ≤ d E (ϕ iT 0 (x), ϕ θ(iT 0 ) (p)) + d F (ϕ iT 0 (x), ϕ θ(iT 0 ) (p)) ≤ α i d E (x, p) + α m-i d F (ϕ mT 0 (x), ϕ θ(mT 0 ) (p)) ≤ α i d(x, p) + α m-i d(ϕ mT 0 (x), ϕ θ(mT 0 ) (p)) ≤ α min{i,m-i} (d(x, p) + d(ϕ mT 0 (x), ϕ θ(mT 0 ) (p)))
By adapting a generalized shadowing lemma of Gan [START_REF] Gan | A generalized shadowing lemma[END_REF]Theorem 1.1], by enlarging C if necessary, one has

d(x, p) ≤ Cd(x, ϕ T (x)), d(ϕ T (x), ϕ θ(T ) (p)) ≤ Cd(x, ϕ T (x)).
Therefore,

d(ϕ iT 0 (x), ϕ θ(iT 0 ) (p)) ≤ C 2 • α min{i, m-i} • d(x, ϕ mT 0 (x)), ∀ i ∈ [0, m].
Proof of Proposition 5.11. By Theorem 5.10, given ε 0 > 0, η > 0 and T 0 ≥ 1, for every ε > 0, there is δ > 0 such that for any (η, T 0 )-quasi hyperbolic orbit segment

ϕ X [0,T ] (x) ⊂ Λ satisfying d(x, Sing(X)) ≥ ε 0 , d(ϕ T (x), Sing(X)) ≥ ε 0 , d(x, ϕ T (x)) < δ,
there is a periodic point p ∈ M and a C 1 strictly increasing function θ such that ϕ θ(T ) (p) = p and

d(ϕ t (x), ϕ θ (t)(p)) ≤ ε|X(ϕ t (x))|, for any t ∈ [0, T ].
Consider a time partition

0 = t 0 < t 1 < t 2 < t 3 < • • • < t m = T
with t i+1t i = T 0 , taking α = e -η/2 ∈ (0, 1), by Lemma 5.13, there is a constant

C 1 > 0 such that d(ϕ θ (t i )(p), ϕ t i (x)) ≤ C 1 • α min{i,m-i} • d(x, ϕ T (x)), i = 0, 1, . . . , m.
On the fact that

d(ϕ t (x), ϕ θ(t) (p)) ≤, ε|X(ϕ t (x))|, for every t ∈ [0, T ],
by Lemma 5.12, there is a constant C 2 = C 2 (T 0 ) > 0 such that for any

ϕ θ (t i )(p) ∈ N ϕt i (x) (δ), i = 0, 1, . . . , m, one has |θ(t i+1 ) -θ(t i ) -(t i+1 -t i )| ≤ C 2 • d(ϕ t i (x), ϕ θ(t i ) (p)), ∀ i = 0, 1, . . . , m. Let N := N (η, T 0 ) = 2C 2 • C 1 1 -α , one has |θ(T ) -T | ≤ m-1 i=0 |θ(t i+1 ) -θ(t i ) -(t i+1 -t i )| ≤ C 2 • m-1 i=0 d(ϕ t i (x), ϕ θ(t i ) (p)) ≤ C 2 • C 1 • d(ϕ T (x), x) m-1 i=0 α min{i, m-i} ≤ N • d(ϕ T (x), x).
From the above discussion, for any τ ∈ N ∩ [0, T ], we have

|θ(τ ) -τ | ≤ m-1 i=0 |θ(t i+1 ) -θ(t i ) -(t i+1 -t i )| ≤ N • d(x, ϕ X T (x)).
5.3 Periodic orbits of vector fields by shadowing

Pesin block of vector fields

For a regular hyperbolic ergodic measure µ and its hyperbolic Oseledec splitting

N = E s ⊕ F u ,
by definition of ψ * t , for µ-almost every point x, one has

λ -(µ) = lim t→∞ 1 t log ψ * t |E s x < 0, λ + (µ) = lim t→∞ 1 t log m(ψ * t |F u x ) > 0 ( 5 
)
Lemma 5.14. If the hyperbolic Oseledec splitting of a regular hyperbolic ergodic measure µ is a dominated splitting, then for any ε > 0, there exists T (ε) ∈ R such that for µ-almost every point x ∈ M and every T ≥ T (ε), one has

lim k→∞ 1 k • T k-1 i=0 log ψ * T |E s ϕ iT (x) exists and is contained in [λ -(µ), λ -(µ) + ε), lim k→∞ 1 k • T k-1 i=0 log ψ * -T |F u ϕ -iT (x)
exists and is contained in

(-λ + (µ) -ε, -λ + (µ)].
Proof. Let R be the support of the regular hyperbolic ergodic measure µ and R be the transgression of R:

Λ := Closure X(x) X(x) : x ∈ R \ Sing(X) .
By Lemma 3.7, R admits a dominated splitting

N R SM = E s ⊕ F u
with respect to the extended linear Poincaré flow. By Lemma 3.5, one has

λ -(µ) = λ -( µ) = lim t→+∞ 1 t log ψ t |E s d µ,
where µ is the transgression of µ. Therefore, for any ε > 0, there is T (ε) > 0 large enough such that for every T ≥ T (ε), one has

1 T log ψ T |E s x d µ -λ -(µ) < ε.
Since every vector

X(x) X(x) ∈ R
is a unit vector, by Lemma 3.2, for the fixed T ≥ T (ε), ψ T (•) is continuous on

N SM := {(v 1 , v 2 ) : v 1 ∈ S x M, v 2 ∈ T x M, v 1 ⊥ v 2 }.
Thus, by the Birkhoff Ergodic Theorem, one has

lim k→∞ 1 k • T k-1 i=0 log ψ * T |E s ϕ iT (x) = 1 T log ψ T |E s x d µ < λ -(µ) + ε.
Since the norms are sub-multiplicative, one has

lim k→∞ 1 k • T k-1 i=0 log ψ * T |E s ϕ iT (x) ≥ lim t→∞ 1 t log ψ * t |E s x = λ -(µ).
The conclusion for sub-bundle F u can be obtained similarly.

Definition 5.15. Let µ be a regular hyperbolic ergodic measure of X ∈ X 1 (M ),

N Λ = E s ⊕ F u
be the hyperbolic Oseledec splitting, where Λ is a Borel set with µ-total measure. Given λ ∈ (0, 1), L > 0 and k ∈ R + , the Pesin block Λ L λ (k) is defined as:

Λ L λ (k) :=        x ∈ Λ : n-1 i=0 ψ * L |E s ϕ iL (x) ≤ kλ n , ∀ n ≥ 1, n-1 i=0 ψ * -L |F u ϕ -iL (x) ≤ kλ n , ∀ n ≥ 1, d(x, Sing(X) ∩ Λ) ≥ 1 k        .
Proposition 5.16. If the hyperbolic Oseledec splitting of a regular hyperbolic ergodic measure µ is a dominated splitting, then the Pesin block Λ L λ (k) is a compact set with the property that

µ(Λ L λ (k)) → 1 as k → +∞. where λ := e -η , 0 < η < min{-λ -(µ), λ + (µ)}, L ≥ T (min{-λ -(µ), λ + (µ)} -η) as in Lemma 5.14.
Proof. By Definition 5.15, Λ L λ (k) is a compact set. According to the hyperbolicity of the regular measure and the choice of λ, for µ-almost every point x ∈ M , by Lemma 5.14, there is a constant C(x) satisfying

n-1 i=0 ψ * L |E s ϕ iL (x) ≤ C(x) • λ n , n-1 i=0 ψ * -L |F u ϕ -iL (x) ≤ C(x) • λ n , ∀ n ≥ 1. Let Γ L λ (k) := x ∈ Λ : n-1 i=0 ψ * L |E s ϕ iL (x) ≤ kλ n , n-1 i=0 ψ * -L |F u ϕ -iL (x) ≤ kλ n , ∀ n ≥ 1 .
Therefore,

µ k>0 Γ L λ (k) = 1.
For two real numbers 0 < k 1 < k 2 , one has

Γ L λ (k 1 ) ⊂ Γ L λ (k 2 ). Consequently, µ(Γ L λ (k)) → 1 as k → ∞. According to the facts that Λ L λ (k) ⊂ Γ L λ (k) and µ(Sing(X)) = 0,
for any ε > 0, there is

K = K(ε) ∈ N such that µ(Γ L λ (k)) -µ(Λ L λ (k)) < ε, ∀ k ≥ K. Then µ(Λ L λ (k)) → 1 as k → ∞.

Constructing many periodic orbits: proof of Theorem 5.4

We have the following version of Poincaré Recurrence Theorem for flows. It can be deduced by the case of diffeomorphisms. Hence, the proof is omitted. Proposition 5.17. Let µ be an ϕ t -invariant measure. For any fixed time t 0 and any set B with positive µ-measure, there is a set R ⊂ B with µ(R) = µ(B) and a sequence of integers 0

< n 1 < n 2 < n 3 < • • • < n i < • • • such that for every x ∈ R, we have 1. ϕ n i •t 0 (x) ∈ R, for all i ∈ N. 2. d(x, ϕ n i •t 0 (x)) → 0, as i → ∞.
In fact, one can have the following stronger recurrent property. Proposition 5.18. Assume that f is a homeomorphism on a compact metric space M . Let µ be an ergodic invariant measure of f . If Λ is a set with positive measure of µ, then given δ > 0 and ε > 0, one has

lim n→∞ µ(Λ n ) = µ(Λ),
where

Λ n := {x ∈ Λ : ∃ m ∈ [n, (1 + ε)n], s.t. f m (x) ∈ Λ, d(f m (x), x) < δ}.
Proof. Given δ > 0 and ε > 0, take a finite measurable partition

P := {P i } i=1 of M such that diam(P i ) ≤ δ and P i ⊂ Λ or P i ∩ Λ = ∅, for i = 1, 2, • • • , .
Consider the set

Λ n (P) = {x ∈ Λ : ∃i ∈ [1, ], m ∈ [n, (1 + ε)n], s.t. f m (x) ∈ Λ and x, f m (x) ∈ P i ∈ P}.
Fix P i ⊂ Λ, define

P i n,ε =    x ∈ P i : n-1 j=0 χ P i (f j (x)) ≤ nµ(P i )(1 + ε 3 ), n(1+ε) j=0 χ 
P i (f j (x)) ≥ nµ(P i )(1 + 2ε 3 )    ,
where χ P i is the characteristic function of set P i . Therefore,

P i n,ε ⊂ P i ∩ Λ n (P).
By The Birkhoff Ergodic Theorem,

µ(P i \ P i n,ε ) → 0 as n → ∞.
This implies the proposition. Now we are ready to prove Theorem 5.4.

Proof of Theorem 5.4. The proof will follow some steps.

Choose a Pesin block. Since the hyperbolic Oseledec splitting

N = E s ⊕ F u
with respect to the ergodic hyperbolic measure µ is a dominated splitting, one can take λ ∈ (0, 1) which is larger than and close to e -min{-λ -(µ), λ + (µ)} and L as Lemma 5.14 to define Pesin block (Definition 5.15) Λ L λ (k) :

Λ L λ (k) :=        x ∈ Λ : n-1 i=0 ψ * L |E s ϕ iL (x) ≤ kλ n , ∀ n ≥ 1, n-1 i=0 ψ * -L |F u ϕ -iL (x) ≤ kλ n , ∀ n ≥ 1, d(x, Sing(X) ∩ Λ) ≥ 1 k        .
By Proposition 5.16, taking k > 0 large enough such that µ(Λ L λ (k)) > 0. One can fix λ 0 ∈ (λ, 1), then there is a positive integer j = j(k) ∈ N such that for any

x ∈ Λ L λ (k), one has n-1 i=0 ψ * j(k)L |E s ϕ ij(k)L (x) ≤ λ n 0 , n-1 i=0 ψ * -j(k)L |F u ϕ -ij(k)L (x) ≤ λ n 0 , ∀ n ≥ 1.
Then, for the set Λ L 0 λ 0 (k) defined by

Λ L 0 λ 0 (k) =        x ∈ Λ : n-1 i=0 ψ * j(k)L |E s ϕ ij(k)L (x) ≤ λ n 0 , ∀ n ≥ 1, n-1 i=0 ψ * -j(k)L |F u ϕ -ij(k)L (x) ≤ λ n 0 , ∀ n ≥ 1, d(x, Sing(X) ∩ Λ) ≥ 1 k        , where L 0 = jL. One has µ(Λ L 0 λ 0 (k)) ≥ µ(Λ L λ (k)) > 0.
Hereafter, fix this k. By Proposition 5.17, taking B = Λ L 0 λ 0 (k), for µ-almost every point x ∈ Λ L 0 λ 0 (k), the forward orbit of x will return to Λ L 0 λ 0 (k) and will be arbitrarily close to x. Let η 0 =log λ 0 . If

ϕ nL 0 (x) ∈ Λ L 0 λ 0 (k) for some n ∈ N, then ϕ [0,nL 0 ] (x) is (η 0 , L 0 )-quasi hyperbolic orbit arc.
The shadowing constants. Let

C := max 1, max x∈M |X(x)| .
Given ε 0 = 1/k, η = η 0 , T 0 = L 0 and ε > 0, for ε 1 = ε/3C, by Theorem 5.10, there is a constant δ = δ(ε) much smaller than ε such that for any x, ϕ nL 0

(x) ∈ Λ L 0 λ 0 (k), if d(x, ϕ nL 0 (x)) < δ,
then there is a point p ∈ M and C 1 strictly increasing function

θ : [0, nL 0 ] → R such that p = ϕ θ(nL 0 ) (p) and d(ϕ t (x), ϕ θ(t) (p)) ≤ ε 1 |X(ϕ t (x))| < ε/3, for all t ∈ [0, nL 0 ].
Moreover, by Proposition 5.11, one has

|θ(t) -t| ≤ N δ, for any integer t ∈ [0, nL 0 ],
where N is a constant which is independent of x and n. One can also assume that N δ is much smaller than ε.

A seperation set K n . For ε > 0 and n ∈ N, we claim that there is a finite set

K n = K n (k, ε) ⊂ Λ L 0
λ 0 (k) with the following properties: 1. For points x, y ∈ K n , there is an integer t ∈ [0, nL 0 ] such that d(ϕ t (x), ϕ t (y)) > ε.

For any

x ∈ K n , there is an integer m = m(n) with n < m ≤ (1 + ε)n such that ϕ mL 0 (x) ∈ Λ L 0 λ 0 (k) and d(x, ϕ mL 0 (x)) < δ(ε). 3. lim ε→0 lim n→∞ 1 nL 0 log K n ≥ h µ (ϕ 1 ).
The construction of K n . Now, we give the precise construction of K n . We consider the following sets:

Λ L 0 λ 0 (k, n) = x ∈ Λ L 0 λ 0 (k) : ∃ m ∈ [n, (1 + ε)n], s.t. ϕ mL 0 (x) ∈ Λ, d(x, ϕ mL 0 (x)) < δ(ε) .
By the construction, one has µ(Λ L 0 λ 0 (k)) > 0. Applying Proposition 5.18, by taking f = ϕ L 0 , one has

lim n→∞ µ(Λ L 0 λ 0 (k, n)) = µ(Λ L 0 λ 0 (k)).
Take a maximal choice of

K n = K n (k, ε) ⊂ Λ L 0 λ 0 (k, n) such that Item 1 is satisfied. By the definition of Λ L 0 λ 0 (k, n),
Item 2 is satisfied. For Item 3, let us recall the new formula of the metric entropy by Katok [8, Theorem 1.1], see also section 5.1. By the maximality of K n , one has

K n ≥ N ϕ 1 (nL 0 , ε, 1 -µ(Λ L 0 λ 0 (k, n))).
Thus,

lim ε→0 lim n→∞ 1 nL 0 log K n ≥ lim ε→0 lim n→∞ 1 nL 0 log N ϕ 1 (nL 0 , ε, 1 -µ(Λ L 0 λ 0 (k, n))) ≥ h µ (ϕ 1 ).
The construction of K n is hence complete.

Estimate the growth rate of the periodic orbits. Now we can complete the poof of Theorem 5.4. For every x ∈ K n , there is an integer m x with n ≤ m x ≤ n(1 + ε) such that ϕ mxL 0 (x) ∈ Λ L 0 λ 0 (k). By Theorem 5.10, there is a strictly increasing map

θ x : [0, m x L 0 ] → R and a periodic point p = p x of period θ(m x L 0 ) such that d(ϕ t (x), ϕ θx(t) (p)) < ε 1 |X(ϕ t (x))| < ε/3, ∀ t ∈ [0, m x L 0 ].
By Proposition 5.11, one has

|θ x (τ ) -τ | ≤ N • d(x, ϕ mL 0 (x)) ≤ N δ, ∀ τ ∈ N ∩ [0, mL 0 ].
For two different points x, y ∈ K n , by the construction of K n , there is an integer

j ∈ N ∩ [0, nL 0 ] such that d(ϕ j (x), ϕ j (y)) > ε.
Thus,

d(ϕ θx(j) (p x ), ϕ θy(j) (p y )) ≥ d(ϕ j (x), ϕ j (y)) -d(ϕ j (x), ϕ θx(j) (p x )) -d(ϕ j (y), ϕ θy(j) (p y )) > ε -ε/3 -ε/3 = ε/3.
In fact, we have the following disjoint property:

Claim. For C := sup z∈M { X(z) } < ∞, one has ϕ (-ε/32C, ε/32C) (p x ) ∩ ϕ (-ε/32C, ε/32C) (p y ) = ∅.
Proof of the Claim. By Proposition 5.11, taking δ ∈ 0, ε 64CN , one has

|θ x (j) -j| ≤ N δ, |θ y (j) -j| ≤ N δ.
Therefore,

|θ x (j) -θ y (j)| ≤ |θ x (j) -j| + |θ y (j) -j| ≤ 2N δ < ε/32C.
Thus, for any t ∈ (-t 0 , t 0 ), one has

d(ϕ θx(j)+t (p x ), ϕ θx(j) (p x )) < ε/16, d(ϕ θy(j)+t (p y ), ϕ θy(j) (p y )) < ε/16.
Consequently, for any t, s ∈ (-t 0 , t 0 ),

d(ϕ θx(j)+t (p x ), ϕ θy(j)+s (p y )) ≥ d(ϕ θx(j) (p x ), ϕ θy(j) (p y )) -d(ϕ θx(j)+t (p x ), ϕ θ(j) (p x )) -d(ϕ θy(j)+s (p y ), ϕ θy(j) (p y )) > ε/3 -ε/8 > 0.
This implies the claim.

From the claim, in the periodic orbit Orb(p x ), any orbit segment ϕ [0,1] (z) contains at most 32C/ε points in the set {p x } x∈Kn . Consequently, one has

[x]∈P T (X), nL 0 (1-ε)-N δ≤π(x)≤nL 0 (1+ε)+N δ π(x) ≥ ε/32C • K n .
Thus,

P nL 0 (1+ε)+N δ (X) ≥ ε/32C • K n .
Therefore, lim

T →∞ 1 T log P T (X) ≥ lim n→∞ 1 nL 0 (1 + ε) + N δ log P nL 0 (1+ε)+N δ (X) = lim n→∞ nL 0 nL 0 (1 + ε) + N δ lim n→∞ 1 nL 0 log #P nL 0 (1+ε)+N δ (X) ≥ 1 1 + ε lim n→∞ 1 nL 0 log(ε/32C • K n ) ≥ 1 1 + ε lim n→∞ 1 nL 0 log K n
Thus, by letting ε → 0, one has lim

T →∞ 1 T log P T (X) ≥ h µ (X).
Theorem 5.4 is now proved, hence the proof of Theorem A is complete.

6 Uniform Diophantine approximate

Proofs of Theorems B and C

First, we prove that if the upper limit v 2 = ∞, then the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ) and the set U(ψ 2 ) are zero.

Proposition 6.1. If v 2 = ∞, then U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) = ∞}. Thus, dim H (L(ψ 1 ) ∩ U(ψ 2 )) = dim H (U(ψ 2 )) = 0.
Proof. For every point x ∈ U(ψ 2 ), we distinguish two cases: Case 1: There is an integer n 0 such that

T n 0 β x = 0.
Therefore, the β-expansion of x is finite. Thus,

T n β x = 0, for any n ≥ n 0 .
By the definition of the exponent ν β (x), we have

ν β (x) = ∞.
Case 2: For any n ∈ N, we always have

T n β x > 0.
Since the point x ∈ U(ψ 2 ), there is N 0 ≥ 1 such that for any N ≥ N 0 , there is an

integer n ∈ [0, N ] such that 0 < T n β x < ψ 2 (N ). Since lim sup n→∞ -log β ψ 2 (n) n = v 2 = ∞,
for any L > 0 large enough, there is a sequence {n i } such that

ψ 2 (n i ) ≤ β -n i L .
Let m 1 := min{n i :

n i ≥ N 0 }, there is an integer j 1 ∈ [0, m 1 ] such that 0 < T j 1 β x < ψ 2 (m 1 ) ≤ β -m 1 L ≤ β -j 1 L . Take m 2 := min n i > m 1 : T j 1 β x > β -n i L , there is an integer j 2 ∈ [0, m 2 ] such that 0 < T j 2 β x < ψ 2 (m 2 ) ≤ β -m 2 L ≤ β -j 2 L . Since T j 2 β x < ψ 2 (m 2 ) ≤ β -m 2 L < T j 1 β x, j 2 = j 1 .
Repeat this process, one can get a sequence of pairwise disjoint integers

{j i : i ≥ 1} such that 0 < T j i β x < ψ 2 (m i ) ≤ β -m i L ≤ β -j i L . Therefore, x ∈ x ∈ [0, 1] : T n β x < β -nL , for infinitely many integers n ∈ N .
By the arbitrariness of L, we have

ν β (x) = ∞.
Hence, in all cases, we have

U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) = ∞}. By Theorem SW, dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ dim H (U(ψ 2 )) ≤ dim H ({x ∈ [0, 1] : ν β (x) = ∞}) = 0.
We discuss the relation between ν β (x), νβ (x) and v 1 , v 1 , v 2 , v 2 , which are important to the proof of Theorem C. Lemma 6.2. For 0

≤ v 1 ≤ v 1 < ∞ and 0 ≤ v 2 ≤ v 2 < ∞, one has (1) {x ∈ [0, 1] : ν β (x) > v 1 } ∩ {x ∈ [0, 1] : νβ (x) > v 2 } ⊆ L(ψ 1 ) ∩ U(ψ 2 ); (2) L(ψ 1 ) ∩ U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) ≥ v 1 } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
Proof. (1) For any point x ∈ {x ∈ [0, 1] : ν β (x) > v 1 } and any ε > 0 small enough, there is a sequence {n i } such that

T n i β x < β -n i (v 1 +ε) .
By the definition of v 1 , for the above ε, there is an integer i 0 such that

ψ 1 (n i ) > β -n i (v 1 +ε) , for any i ≥ i 0 .
Then,

T n i β x < β -n i (v 1 +ε) < ψ 1 (n i ), for any i ≥ i 0 . Thus, x ∈ L(ψ 1 ). Therefore, {x ∈ [0, 1] : ν β (x) > v 1 } ⊆ L(ψ 1 ). By similar discussion, {x ∈ [0, 1] : νβ (x) > v 2 } ⊆ U(ψ 2 ).
Thus,

{x ∈ [0, 1] : ν β (x) > v 1 } ∩ {x ∈ [0, 1] : νβ (x) > v 2 } ⊆ L(ψ 1 ) ∩ U(ψ 2 ).
(2) For any point x ∈ L(ψ 1 ), there is a sequence {n i } such that

T n i β x < ψ 1 (n i ).
By the definition of the exponent v 1 , for any ε > 0, there is an integer i 0 such that for any i ≥ i 0 , one has

T n i β x < ψ 1 (n i ) < β -n i (v 1 -ε) . Thus, x ∈ {x ∈ [0, 1] : ν β (x) ≥ v 1 -ε}. Therefore, L(ψ 1 ) ⊆ {x ∈ [0, 1] : ν β (x) ≥ v 1 -ε}.
By the arbitrariness of ε, one can obtain

L(ψ 1 ) ⊆ ε>0 {x ∈ [0, 1] : ν β (x) ≥ v 1 -ε} = {x ∈ [0, 1] : ν β (x) ≥ v 1 }. By similar discussion, U(ψ 2 ) ⊆ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
Thus,

L(ψ 1 ) ∩ U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) ≥ v 1 } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
To prove Theorem B, we deal with the special case that ν β (x) = ∞ and νβ (x) = ∞. Lemma 6.3. If the exponents ν β (x) = ∞ and νβ (x) = ∞, then one has

(1) ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )} ⊆ {x ∈ [0, 1] : ν β (x) = ∞}.
(

) {x ∈ [0, 1] : νβ (x) = ∞} = ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}. Proof. (1) For any point x ∈ ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}, 2 
there is an integer n 0 such that d β (x) = (ω, 0 ∞ ), for some ω ∈ Σ n 0 β . Thus , for any n ≥ n 0 , one has

T n β x = 0.
By the definition of the exponent ν β (x), we have

ν β (x) = ∞.
Therefore,

∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )} ⊆ {x ∈ [0, 1] : ν β (x) = ∞}.
(2) By the similar discussion of Item (1) and the definition of the exponent νβ (x), one has

∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )} ⊆ {x ∈ [0, 1] : νβ (x) = ∞}. What is left is to show {x ∈ [0, 1] : νβ (x) = ∞} ⊆ ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}.
By contrary, for any point x ∈ {x ∈ [0, 1] : νβ (x) = ∞}, we suppose

x / ∈ ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}.
Then T n β x > 0, for every n ∈ N. Denote the β-expansion of x by

x = a 1 β + a 2 β 2 + • • • + a n β n + • • • ,
where a i ∈ {0, • • • , β }, for all i ≥ 1. We can take two increasing sequences {n i : i ≥ 1} and {m i : i ≥ 1} with the properties:

(1) For every i ≥ 1, one has

a n i > 0, a n i +1 = • • • = a m i -1 = 0, a m i > 0.
(2) For every a n = 0, there is an integer i such that

n i < n < m i .
By the choice of the sequence {n i : i ≥ 1} and {m i : i ≥ 1}, for every i ≥ 1, one has

n i < m i < n i+1 .
Since the exponent νβ (x) > 0, one has lim sup

i→∞ (m i -n i ) = ∞.
Take n 1 = n 1 and m 1 = m 1 , suppose m k , n k have been defined. Let i 1 = 1 and

i k+1 := min{i > i k : m i -n i > m k -n k }, for k ≥ 1.
Then, define

n k+1 := n i k+1 , m k+1 := m i k+1 .
Therefore, the sequence {i k : k ≥ 1} is well defined. By this way, we take the maximal subsequences {n k : k ≥ 1} and {m k : k ≥ 1} of {n i : i ≥ 1} and {m i : i ≥ 1}, respectively, in such a way that the sequence

{m k -n k : k ≥ 1} is non-decreasing. Notice β n k -m k < T n k β x < β n k -m k +1
. As the similar discussion in [START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions[END_REF], one has

νβ (x) = lim inf k→∞ m k -n k n k+1 ≤ 1.
This contradicts our assumption νβ (x) = ∞. Thus, we proved

{x ∈ [0, 1] : νβ (x) = ∞} ⊆ ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}. Therefore, {x ∈ [0, 1] : νβ (x) = ∞} = ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}.
This means that the set {x ∈ [0, 1] : νβ (x) = ∞} is countable.

Lemma 6.4. The set {x ∈ [0, 1] : 1 < νβ (x) < ∞} is empty.

Proof. This follows from the proof of Item (2) of Lemma 6.3. For different a 1 > 1 and a 2 > 1, there is an positive integer k 0 ∈ N such that

2 a k 2 1 -2 a k 2 2 > 1, for any k ≥ k 0 .
Thus, Ψ(a 1 ) = Ψ(a 2 ).

Then, Φ(a 1 ) = Φ(a 2 ).

Hence, the cardinality of the set {a : a > 1} is less than or equal to that of {x a : a > 1}.

Similarly, the cardinality of the set {x a : a > 1} is less than or equal to that of

{x ∈ [0, 1] : ν β (x) = ∞} ({x ∈ [0, 1] : νβ (x) = 1}) .
Since the set {a : a > 1} is uncountable,

{x ∈ [0, 1] : ν β (x) = ∞} ({x ∈ [0, 1] : νβ (x) = 1}) is uncountable. Proof of Theorem B. (1) If the numbers v 1 = v 1 = v 2 = v 2 = 0, then lim n→∞ -log β ψ 1 (n) n = 0, lim n→∞ -log β ψ 2 (n) n = 0.
Thus, for any positive integer m large enough, there is an integer n 0 > 0 such that

β -n/m ≤ ψ 1 (n), β -n/m ≤ ψ 2 (n), for any n ≥ n 0 .
Therefore, for any positive integer m, one has

{x ∈ [0, 1] : ν β (x) ≥ 1/m} ⊆ L(ψ 1 ), {x ∈ [0, 1] : νβ (x) = 1/m} ⊆ U(ψ 2 ).
By the fact

{x ∈ [0, 1] : νβ (x) = 1/m} ⊆ {x ∈ [0, 1] : ν β (x) ≥ 1/m}, one has {x ∈ [0, 1] : νβ (x) = 1/m} ⊆ L(ψ 1 ) ∩ U(ψ 2 ).
According to [40, Theorem 1.5], we have

1 = sup m∈N + dim H ({x ∈ [0, 1] : νβ (x) = 1/m}) ≤ dim H (L(ψ 1 ) ∩ U(ψ 2 )) .
Thus, dim H (L(ψ 1 ) ∩ U(ψ 2 )) = 1.

(

) If v 2 = ∞, then lim n→∞ -log β ψ 2 (n) n = ∞. 2 
For any L > 0 large enough, there is an integer n 0 such that

ψ 2 (n) ≤ β -nL , for any n ≥ n 0 .
Therefore, for any point x ∈ U(ψ 2 ), one has νβ (x) > L.

By the arbitrariness of L,

νβ (x) = ∞. Thus, U(ψ 2 ) ⊆ {x ∈ [0, 1] : νβ (x) = ∞}.
On the other hand, if the point x ∈ {x ∈ [0, 1] : νβ (x) = ∞}, then, by Lemma 6.3,

x ∈ ∞ n=1 ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}.
Then, there is an integer n 0 such that T n β x = 0, for any n ≥ n 0 .

Therefore, x ∈ U(ψ 2 ). Thus,

{x ∈ [0, 1] : νβ (x) = ∞} ⊆ U(ψ 2 ). Consequently, {x ∈ [0, 1] : νβ (x) = ∞} = U(ψ 2 ).
By the fact that {x ∈ [0, 1] :

νβ (x) = ∞} is countable, L(ψ 1 ) ∩ U(ψ 2 ) is countable. (3) If v 1 = ∞, then, by Theorem SW, dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ dim H (L(ψ 1 )) = 0.
Now, we prove Theorem C. We divide the proof into three propositions as Propositions 6.6, 6.7, 6.8. Proposition 6.6. For any

0 ≤ v 2 ≤ v 2 < ∞, one has dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ 1 1 + v 2 .
Proof. By definition of the exponent v 2 , we can take a subsequence {n k : k ≥ 1} such that lim k→∞ log β ψ 2 (n k )

n k = v 2 .
Then, for any ε > 0, there is an integer k 0 such that

β -n k (v 2 +ε) ≤ ψ 2 (n k ) ≤ β -n k (v 2 -ε) , for any k ≥ k 0 .
For every point x ∈ U(ψ 2 ), we distinguish two cases: Case 1: If there is an integer n 0 such that

T n 0 β x = 0,
then the β-expansion of x is finite. Thus,

T n β x = 0, for any n ≥ n 0 .
Hence, ε) , for infinitely many integers n .

x ∈ x ∈ [0, 1] : T n β x < β -n(v 2 -
Case 2: For any n ∈ N, we always have

T n β x > 0.
Since x ∈ U(ψ 2 ), there is an integer N 0 ≥ 1 such that for any N ≥ N 0 , there is an integer n ∈ [0, N ] such that 0 < T n β x < ψ 2 (N ). For the above ε > 0, let K := max{N 0 , n k 0 }.

For any n k ≥ K, there is an integer

j k ∈ [0, n k ] such that 0 < T j k β x < ψ 2 (n k ) ≤ β -n k (v 2 -ε) .
In fact, let k 1 := min{k : n k ≥ K}, there is an integer ε) . There is an integer

j k 1 ∈ [0, n k 1 ] such that 0 < T j k 1 β x < ψ 2 (n k 1 ) ≤ β -n k 1 (v 2 -ε) ≤ β -j k 1 (v 2 -ε) . Take k 2 := min k > k 1 : T j k 1 β x > β -n k (v 2 -
j k 2 ∈ [0, n k 2 ] such that 0 < T j k 2 β x < ψ 2 (n k 2 ) ≤ β -n k 2 (v 2 -ε) ≤ β -j k 2 (v 2 -ε) . Since T j k 2 β x < ψ 2 (n k 2 ) ≤ β -m 2 L < T j k 1 β x, j k 2 = j k 1 .
Repeat this process, one can get a sequence of pairwise disjoint integers {k i : i ≥ 1} such that 0 < T ε) , for infinitely many integers n ∈ N . Hence, in all cases, we have

j k i β x < ψ 2 (n k i ) ≤ β -n k i (v 2 -ε) ≤ β -j k i (v 2 -ε) . Therefore, x ∈ x ∈ [0, 1] : T n β x < β -n(v 2 -
U(ψ 2 ) ⊆ x ∈ [0, 1] : T n β x < β -n(v 2 -ε) , for infinitely many integers n ∈ N . By Theorem SW [39, Theorem 1.1], dim H U(ψ 2 ) ≤ 1 1 + v 2 .
Then,

dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ dim H (U(ψ 2 )) ≤ 1 1 + v 2 . Proposition 6.7. If v 2 > 1, then L(ψ 1 ) ∩ U(ψ 2 ) is countable. If v 1 /(2 + v 1 ) < v 2 ≤ 1, then dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ 1 -v 2 1 + v 2 2 . If v 2 ≤ v 1 /(2 + v 1 ), then dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) .
Proof. By the Item (2) of Lemma 6.2, one has

L(ψ 1 ) ∩ U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) ≥ v 1 } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
The argument on the upper bound of the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ) can be obtained by a natural covering of the set

{x ∈ [0, 1] : ν β (x) ≥ v 1 } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
According to the Item (2) and (3) of Theorem B, we only need to consider the case

ν β (x) ∈ [v 1 , ∞) and νβ (x) ∈ [v 2 , ∞). For any point x ∈ L(ψ 1 ) ∩ U(ψ 2 ), there is a number v β ∈ [v 1 , ∞) such that x ∈ B := {x ∈ [0, 1] : ν β (x) = v β } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
Denote its β-expansion by

x = a 1 β + a 2 β 2 + • • • + a n β n + • • • ,
where a i ∈ {0, • • • , β }, for all i ≥ 1. By the same way as Lemma 6.3, we take the maximal subsequences {n k : k ≥ 1} and {m k : k ≥ 1} of {n i : i ≥ 1} and {m i : i ≥ 1}, respectively. Notice

β n k -m k < T n k β x < β n k -m k +1
. We have the following claim.

Claim. v β = lim sup k→∞ m k -n k n k , v 2 ≤ lim inf k→∞ m k -n k n k+1 .
Proof of Claim. Without loss of generality, we assume lim sup

k→∞ m k -n k n k = c 1 , lim inf k→∞ m k -n k n k+1 = c 2 .
First, we show v β = v β (x) = c 1 . For any ε > 0, there is an integer k 0 > 0 such that

m k -n k ≤ n k (c 1 + ε), for any k ≥ k 0 . Since T n k β x > β n k -m k , we have T n k β x > β n k -m k ≥ β -n k (c 1 +ε) .
In general, for any n ≥ n k 0 , there is an integer k ≥ k 0 such that n k ≤ n < n k+1 . By the choice of the sequence {n k }, we have

T n β x > T n k β x > β -n k (c 1 +ε) > β -n(c 1 +ε) .
It means

v β = v β (x) < c 1 + ε.
On the other hand, by the definition of c 1 , taking a subsequence {n k i } and

{m k i } such that m k i -n k i n k i ≥ c 1 -ε, one has T n k i β x < β n k i -m k i +1 ≤ β -n k i (c 1 -ε)+1 . Thus, v β = ν β (x) ≥ c 1 -ε.
By the arbitrariness of ε, we have

v β = c 1 .
Next, we will prove v 2 ≤ c 2 . By the definition of the exponent v 2 , for any ε > 0, there is an integer n 0 = n 0 (ε) > 0 such that

ψ 2 (n) ≤ β -n(v 2 -ε) , for any n ≥ n 0 .
By the definition of c 2 , one can take a subsequence {k

i : i ≥ 1} such that lim i→∞ m k i -n k i n k i+1 = c 2 .
For the above ε > 0, there is an integer i 0 = i 0 (ε) > 0 such that

m k i -n k i ≤ n k i+1 (c 2 + ε), for any i ≥ i 0 .
By contrary,, we suppose c 2 < v 2 . Then, for any ε ∈ 0, v 2c 2 4 and any integer J ≥ K, where K := max{n 0 (ε), n i 0 (ε) }, there is an integer n k i+1 > J such that for any integer n ∈ [1, n k i+1 ], one has

T n β x > T n k i β x > β n k i -m k i ≥ β -n k i+1 (c 2 +ε) > β -n k i+1 (v 2 -ε) ≥ ψ 2 (n k i+1 ).
This contracts the fact x ∈ U(ψ 2 ). Therefore,

v 2 ≤ c 2 = lim inf k→∞ m k -n k n k+1 . Now, we consider v β = lim sup n→∞ m k -n k n k = lim sup n→∞ m k n k -1, (6) 
v 2 ≤ lim inf n→∞ m k -n k n k+1 ≤ lim inf n→∞ m k -n k m k = 1 -lim sup n→∞ n k m k . (7) 
Since

lim sup n k m k • lim sup m k n k ≥ 1,
we derive from ( 6) and ( 7) that

v β ≥ v 2 1 -v 2 , v 2 ≤ v β 1 + v β . ( 8 
) If v 2 > 1, then v 2 > v β /(1 + v β ), for any v β ≥ v 1 .
This contradicts [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF]. It means that B is empty. By Lemma 6.3,

L(ψ 1 ) ∩ U(ψ 2 ) = ω∈Σ n β {x ∈ [0, 1] : d β (x) = (ω, 0 ∞ )}. Hence, L(ψ 1 ) ∩ U(ψ 2 ) is countable. If v 2 ≤ 1, by the inequality (8), for any v β < v 2 /(1 -v 2 )
, the set B is empty. Therefore, we only consider the condition v β ≥ v 2 /(1v 2 ). According to the way as Lemma 6.3, take the sequences {n k : k ≥ 1} and {m k : k ≥ 1} such that

v β = lim n→∞ m k -n k n k , and v 2 ≤ lim inf n→∞ m k -n k n k+1 . Given 0 < ε < v 2 /2, for k large enough, one has (v β -ε)n k ≤ m k -n k ≤ (v β + ε)n k , (9) 
m k -n k ≥ (v 2 -ε)n k+1 . (10) 
By inequality ( 9), one has

(1 + v β -ε)m k-1 ≤ (1 + v β -ε)n k ≤ m k .
Therefore, the sequence {m k : k ≥ 1} increases at least exponentially. Since

n k ≥ m k-1 , for every k ≥ 2,
the sequence {n k : k ≥ 1} also increases at least exponentially. Thus, there is a positive constant C such that k ≤ C log β n k .

Combining ( 9) and ( 10), one obtains

(v 2 -ε)n k+1 ≤ (v β + ε)n k .
Thus, for k large enough, there is an integer n 0 and a postive real number ε 1 small enough such that the sum of all lengths of the blocks of 0 in the prefix of length n k of the infinite sequence

a 1 a 2 • • • is at least equal to k i=1 (v 2 -ε)n i -n 0 = n k (v 2 -ε)              1 - v 2 -ε v β + ε k 1 - v 2 -ε v β + ε              -n 0 ≥ n k v β • v 2 v β -v 2 -ε 1 .
Among the digits a 1 • • • a m k , there are k blocks of digits which are 'free'. Denote their

lengths by l 1 , • • • , l k . Let ε 2 = (v β -v 2 -v β • v 2 )ε 1 v β -v 2 . One has k i=1 l i ≤ n k -n k v β • v 2 v β -v 2 -ε 1 = n k (1 + ε 2 ) v β -v 2 -v β • v 2 v β -v 2 .
By Theorem 4.7, there are at most β • β l i β -1 ways to choose the block with length l i .

Thus, one has in total at most

β β -1 k • β k i=1 l i ≤ β β -1 k • β n k (1+ε 2 )(v β -v 2 -v β •v 2 )/(v β -v 2 )
possible choices of the digits a 1 • • • a m k . On the other hand, there are at most k, where k ≤ C log β n k , blocks of 0 in the prefix of length n k of the infinite sequence a 1 a 2 • • • . Since there are at most n k possible choices for their first index, one has in total at most (n k ) C log β n k possible choices. Consequently, the set of those x ∈ B is covered by

βn k β -1 C log β n k • β n k (1+ε 2 )(v β -v 2 -v β •v 2 )/(v β -v 2 )
basic intervals of length at most β -m k . Moreover, by [START_REF] Kaloshin | An extension of the Artin-Mazur theorem[END_REF] and by letting ε

3 = ε 1 + v β , we have β -m k ≤ β -(1+v β )(1-ε 3 )n k .
Take ε = max{ε 2 , ε 3 }. The set of those x ∈ B is covered by

βn k β -1 C log β n k • β n k (1+ε )(v β -v 2 -v β •v 2 )/(v β -v 2 )
basic intervals of length at most β -(1+v β )(1-ε )n k . We consider the series

N ≥1 (N ) C log β N β N (1+ε )(v β -v 2 -v β •v 2 )/(v β -v 2 ) β -(1+v β )(1-ε )N s .
The critical exponent s 0 such that the series converges if s > s 0 and diverges if s < s 0 is given by

s 0 = 1 + ε 1 -ε • v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 )
.

By a standard covering argument and the arbitrariness of ε , the Hausdorff dimension of the set

B := {x ∈ [0, 1] : ν β (x) = ν β } ∩ U(ψ 2 ) is at most equal to dim H (B ) ≤ v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) . (11) 
For v β ≥ v 2 /(1v 2 ), fix a positive integer L large enough. We consider the set

D := {x ∈ [0, 1] : v β ≤ ν β (x) < v β + 1/L} ∩ U(ψ 2 ). Repeat the above discussion, if v 2 < 1, then dim H (D) ≤ v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) + v 2 2 /L 1 -v 2 . If v 2 = 1, then v β = ∞. By Theorem SW, dim H (D) = 0. If v 2 < 1, since the set L(ψ 1 ) ∩ U(ψ 2 ) is a subset of +∞ N =0 L i=1 {x ∈ [0, 1] : v 1 + N + (i -1)/L ≤ ν β (x) < v 1 + N + i/L} ∩ U(ψ 2 ), let L tend to infinite, one has dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ sup v β ≥v 2 /(1-v 2 ) v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) .
For any δ ∈ (0, δ 0 ], we will construct a Cantor subset E δ of F. Let

n k = v β + δ v 2 + δ k , m k = (1 + v β + δ)n k , k = 1, 2, • • • . If v 2 = 0, let n k = k k , m k = (1 + v β + δ)n k , k = 1, 2, • • • .
Making an adjustment, we can choose two subsequences {n k } and {m k } with

n k < m k < n k+1 , for every k ≥ 1 such that {m k -n k } is a non-decreasing sequence and lim k→∞ m k -n k n k = v β + δ, lim k→∞ m k -n k n k+1 = v 2 + δ. (12) 
Consider the set of real numbers x ∈ [0, 1) whose β-expansion

x = a 1 β + a 2 β 2 + • • • + a n β n + • • • ,
satisfies that for all k ≥ 1,

a n k = 1, a n k +1 = • • • = a m k -1 = 0, a m k = 1, a m k +(m k -n k ) = a m k +2(m k -n k ) = • • • = a m k +t k (m k -n k ) = 1,
where t k is the largest integer such that m k + t k (m kn k ) < n k+1 . Then,

t k ≤ n k+1 -m k m k -n k ≤ 2 v 2 + δ ,
for k large enough. Therefore, the sequence {t k : k ≥ 1} is bounded. Fix N , let β N be the real number defined by the infinite β-expansion of 1 as equality (3). We replace the digit 1 for a n k , a m k and a m k +i(m k -n k ) for any 1 ≤ i ≤ t k by the block 0 N 10 N . Fill other places by blocks belonging to Σ β N . Thus, we have constructed the Cantor type subset

E δ . Since {t k } is bound, one has lim k→∞ m k -n k -1 + 2N n k + (4k -2)N + k-1 i=1 2N t i = lim k→∞ m k -n k n k = v β + δ, lim k→∞ m k -n k -1 + 2N n k+1 + (4k + 2)N + k i=1 2N t i = lim k→∞ m k -n k n k+1 = v 2 + δ.
According to the construction, the sequence d β (x) is in Σ β N .

Claim.

E δ ⊆ L(ψ 1 ) ∩ U(ψ 2 ).
Proof of Claim. Given ε > 0, by [START_REF] Lian | Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces[END_REF], there exists an integer k 0 such that

m k -n k ≤ (v β + δ + ε)n k , m k -n k ≤ (v 2 + δ + ε)n k+1 , for any k ≥ k 0 .
By the definitions of v 1 and v 2 , there is an integer n 0 such that

β -n(v 1 +δ+ε) ≤ ψ 1 (n), β -n(v 2 +δ+ε) ≤ ψ 2 (n), for any n ≥ n 0 .
Let N 0 = max{n k 0 , n 0 }, for any point x ∈ E δ and any n k ≥ N 0 , one has

T n k β x < β n k -m k +1 ≤ β -n k (v β +δ+ε-1/n k ) ≤ β -n k (v 1 +δ+ε-1/n k ) ≤ ψ 1 (n k ).
It means x ∈ L(ψ 1 ). On the other hand, for N ≥ N 0 , there is an integer i such that

n k+i ≤ N < n k+i+1 . Therefore, T n k+i β x < β n k+i -m k+i +1 ≤ β -N (v 2 +δ+ε-1/n k+i+1 ) ≤ ψ 2 (N ). It means x ∈ U(ψ 2 ). Then, x ∈ L(ψ 1 ) ∩ U(ψ 2 ). Therefore, E δ ⊆ L(ψ 1 ) ∩ U(ψ 2 ).
For a positive integer n, denote by I n (a 1 , • • • , a n ) the basic interval composed of x ∈ [0, 1) whose β-expansion starts with a 1 , • • • , a n . For abbreviation, we denote I n (a 1 , • • • , a n ) briefly by I n . We distribute the mass uniformly when meet a block in Σ β N and keep the mass when go through the positions where the digits are determined by construction of E δ . The Bernoulli measure µ on E δ is defined as follows.

If n < n 1 , then define

µ(I n ) = 1 Σ n β N . If n 1 ≤ n ≤ m 1 + 4N , then define µ(I n ) = 1 Σ n 1 -1 β N . If there is an integer t with 0 ≤ t ≤ t 1 -1 such that m 1 + 4N + (t + 1)(m 1 -n 1 ) + 2N t < n ≤ m 1 + 4N + (t + 1)(m 1 -n 1 ) + 2N (t + 1), then define µ(I n ) = 1 Σ n 1 -1 β N • 1 Σ m 1 -n 1 -1 β N t+1 .
If there is an integer t with 0 ≤ t ≤ t 1 such that

m 1 + 4N + t(m 1 -n 1 ) + 2N t < n ≤ c, where c := min{n 2 + 4N + 2N t 1 , m 1 + 4N + (t + 1)(m 1 -n 1 ) + 2N t}, then define µ(I n ) = 1 Σ n 1 -1 β N • 1 Σ m 1 -n 1 -1 β N t • 1 Σ n-(m 1 +4N +t(m 1 -n 1 )+2N t) β N . For k ≥ 2, let l k := n k + 4(k -1)N + k-1 i=1 2N t i , h k := m k + 4kN + k-1 i=1 2N t i , p k := m k -n k -1, q k := h k + t k (m k -n k ) + 2N t k . If l k ≤ n ≤ h k , then define µ(I n ) = 1 Σ n 1 -1 β N • 1 k-1 i=1 Σ p i β N t i • Σ l i+1 -q i -1 β N = µ(I l k ) = µ(I h k ).
If there is an integer t with 0 ≤ t ≤ t k -1 such that

h k + (t + 1)(m k -n k ) + 2N t < n ≤ h k + (t + 1)(m k -n k ) + 2N (t + 1), then define µ(I n ) = µ(I h k ) • 1 Σ p k β N t+1 .
If there is an integer t with 0 ≤ t ≤ t k such that

h k + t(m k -n k ) + 2N t < n ≤ min{l k+1 , h k + (t + 1)(m k -n k ) + 2N t}, then define µ(I n ) = µ(I h k ) • 1 Σ p k β N t • 1 Σ n-(h k +t(m k -n k )+2N t) β N
.

By the construction and Proposition 4.9, I h k is full. For calculating the local dimension of the measure µ, we discuss different cases as follows.

Case A: If n = h k , then lim inf k→∞ log β µ(I h k ) log β |I h k | = lim inf k→∞ n 1 -1 + k-1 i=1 (t i p i + l i+1 -q i -1) h k • log β β N = lim inf k→∞ n 1 -1 + k-1 i=1 (l i+1 -h i -2N t i -1) h k • log β β N .
Recall that {t k : k ≥ 1} is bounded and {m k : k ≥ 1} grows exponentially fast in terms of k, therefore, lim inf

k→∞ log β µ(I h k ) log β |I h k | = lim inf k→∞ k-1 i=1 (n i+1 -m i ) m k log β β N .
By equalities [START_REF] Lian | Lyapunov exponents, periodic orbits, and horseshoes for semiflows on Hilbert spaces[END_REF], one has

lim k→∞ m k n k = 1 + v β + δ, lim k→∞ m k+1 m k = v β + δ v 2 + δ , lim k→∞ n k+1 m k = v β + δ (v 2 + δ)(1 + v β + δ) . According to Stolz-Cesàro Theorem, lim inf k→∞ k-1 i=1 (n i+1 -m i ) m k = lim inf k→∞ n k+1 -m k m k+1 -m k = lim inf k→∞ n k+1 m k -1 m k+1 m k -1 = v β -v 2 -(v β + δ)(v 2 + δ) (1 + v β + δ)(v β -v 2 ) . Thus, lim inf k→∞ log β µ(I h k ) log β |I h k | = v β -v 2 -(v β + δ)(v 2 + δ) (1 + v β + δ)(v β -v 2 ) • log β β N .
Case B: For an integer n large enough, if there is

k ≥ 2 such that l k ≤ n ≤ h k , then lim inf k→∞ log β µ(I n ) log β |I n | ≥ lim inf k→∞ log β µ(I n ) log β |I h k | = lim inf k→∞ log β µ(I h k ) log β |I h k | .
Case C: For an integer n, if there is an integer t with 0 ≤ t ≤ t k -1 such that

h k + (t + 1)(m k -n k ) + 2N t < n ≤ h k + (t + 1)(m k -n k ) + 2N (t + 1), then one has µ(I n ) ≤ µ(I h k ) • β -(t+1)p k N .
Since I h k is full, by Proposition 4.10,

|I n | = |I h k | • |I n-h k (ω )|,
where ω is an admissible block in Σ n-h k β N . By Lemma 4.11,

|I n | ≥ |I h k | • β -(n-h k +N ) .
Hence,

-log β µ(I n ) -log β |I n | ≥ -log β µ(I h k ) + (t + 1)p k log β β N -log β |I h k | + ((t + 1)p k + N (2t + 1)) ≥ -log β µ(I h k ) -log β |I h k | • ϕ(N ),
where ϕ(N ) < 1 and ϕ(N ) tends to 1 as N tends to infinity. If there is an integer t with 0 ≤ t ≤ t k such that

h k + t(m k -n k ) + 2N t < n ≤ min{l k+1 , h k + (t + 1)(m k -n k ) + 2N t}, then letting l := n -(h k + t(m k -n k ) + 2N t), one has µ(I n ) ≤ µ(I h k ) • β -tp k -l N .
Since I h k is full, by Proposition 4.10,

|I n | = |I h k | • |I n-h k (ω )|,
where ω is an admissible block in Σ n-h k β N . By Lemma 4.11,

|I n-h k (ω )| ≥ β -(n-h k +N ) . Therefore, |I n | ≥ |I h k | • β -(n-h k +N ) .
Hence,

-log β µ(I n ) -log β |I n | ≥ -log β µ(I h k ) + (tp k + l) log β β N -log β |I h k | + (tp k + l + t + N (2t + 1)) ≥ -log β µ(I h k ) -log β |I h k | • ϕ(N ).
Therefore, in all cases, lim inf

k→∞ log β µ(I n ) log β |I n | ≥ v β -v 2 -(v β + δ)(v 2 + δ) (1 + v β + δ)(v β -v 2 ) • log β β N • ϕ(N ).
Given a point x ∈ E δ , let r be a number with |I n+1 (x)| ≤ r < |I n (x)|. We consider the ball B(x, r). By Lemma 4.11, every n-th order basic interval I n satisfies

|I n | ≥ β -(n+N ) .
Hence, the ball B(x, r) interests at most 2β N + 2 basic intervals of order n. On the other hand,

r ≥ |I n+1 (x)| ≥ β -(n+1+N ) = β -(1+N ) • β -n ≥ β -(1+N ) • |I n (x)|. Therefore, lim inf r→0 log β µ(B(x, r)) log β r = lim inf n→∞ log β µ(I n (x)) log β |I n (x)| .
By the arbitrariness of the number δ ∈ (0, δ 0 ], one has lim inf

k→∞ log β µ(I n ) log β |I n | ≥ v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) • log β β N • ϕ(N ).
Let N tend to infinity, by Mass Distribution Principle [61, p.p. 60], one has

dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≥ v β -v 2 -v 1 v 2 (1 + v β )(v β -v 2 ) . ( 13 
)
Regard the right side as a function of

v β with v β ≥ v 2 /(1 -v 2 ), if v 1 /(2 + v 1 ) < v 2 ,
then the maximum is attained for

v β = 2v 2 /(1 -v 2 ). Therefore, dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≥ 1 -v 2 1 + v 2 2 .
If v 2 ≤ v 1 /(2 + v 1 ), then the maximum is attained for v β = v 1 . Thus,

dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≥ v 1 -v 2 -v 1 • v 2 (1 + v 1 )(v 1 -v 2 ) .

Proofs of Theorems D and E

We will give the proofs of Theorems D and E. First, we prove Theorem D.

Proof of Theorem D. By Lemma 6.2, one has

L(ψ 1 ) ∩ U(ψ 2 ) ⊆ {x ∈ [0, 1] : ν β (x) ≥ v 1 } ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
Replace the role of v 1 by v β , for every sufficiently large positive integer L, we consider the set

D := {x ∈ [0, 1] : v β ≤ ν β (x) < v β + 1/L} ∩ {x ∈ [0, 1] : νβ (x) ≥ v 2 }.
In fact, by the similar discussions in Proposition 6.7, if v 2 > 1, then v 2 ≥ (v β + 1/L)/(1 + v β + 1/L), for any v β .

Therefore, the set D is empty. Thus, U(ψ 2 ) = {x ∈ [0, 1] : νβ (x) = ∞}.

According to the discussion in Proposition 6. 

v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) + v 2 2 /L 1 -v 2 .
Since the set L(ψ 1 ) ∩ U(ψ 2 ) is a subset of

∞ N =0 L i=1
{x ∈ [0, 1] : v 1 + N + (i -1)/L ≤ ν β (x) < v 1 + N + i/L} U(ψ 2 ), let L tend to infinite, one has dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤ sup

v β ≥v 2 /(1-v 2 ) v β -v 2 -v β • v 2 (1 + v β )(v β -v 2 ) .
Regard the right side as a function of v β with v β ≥ v 2 /(1v 2 ), the maximum is attained for v β = 2v 2 /(1v 2 ). Therefore,

dim H (U(ψ 2 )) ≤ 1 -v 2 1 + v 2 2 .
Combining with Proposition 6.6, one has

0 ≤ dim H (U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 . If v 2 ≤ 1, then v 2 ≤ v 2 ≤ 1, one also has dim H (U(ψ 2 )) ≤ min 1 1 + v 2 , 1 -v 2 1 + v 2 2 .
To obtain the lower bound of the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ), we need to construct a Cantor type subset E of L(ψ 1 ) ∩ U(ψ 2 ). By Lemma 6. If v 2 = 0, then let

n k = k k , m k = (1 + v β + δ)n k , for k = 1, 2, • • • .
If v 2 > 0, then, let

n k = v β + δ v 2 + δ k , m k = (1 + v β + δ)n k , k = 1, 2, • • • .
Arguing as in the proof of Proposition 6.8, one has dim H (L(ψ

1 ) ∩ U(ψ 2 )) ≥ v β -v 2 -v β v 2 (1 + v β )(v β -v 2 )
.

Regarding the right hand side of the inequality as a function of v β and taking v β ≥ v 2 /(1v 2 ) into account, the maximum is attained at v β = 2v 2 /(1v 2 ). Then,

dim H (U(ψ 2 )) ≥ 1 -v 2 1 + v 2 2 .
Proof of Theorem E.

If v 1 = v 1 = 0, then lim n→∞ -log β ψ 1 (n) n = 0.
If v 2 > 0, by the definition of v 2 and v 1 = v 1 = 0, then for any ε ∈ (0, v 2 /2), there is an integer n 0 such that for any n ≥ n 0 , one has

ψ 2 (n) ≤ β -n(v 2 -ε) < β -nε ≤ ψ 1 (n).
For any point x ∈ U(ψ 2 ), we distinguish two cases: Case 1: There is an integer n 0 such that

T n 0 β x = 0.
Therefore, the β-expansion of x is finite. Thus,

T n β x = 0, for any n ≥ n 0 . Hence,

x ∈ L(ψ 1 ).

Case 2: For any n ∈ N, we always have T n β x > 0. Thus, there is an integer N 0 ≥ 1 such that for any N ≥ N 0 , there is an integer n ∈ [0, N ] such that 0 < T n β x < ψ 2 (N ). For the above ε > 0, let K := max{N 0 , n 0 }.

For any n ≥ K, there is an integer j ∈ [0, n] such that 0 < T j β x < ψ 2 (n) ≤ β -n(v 2 -ε) ≤ β -nε ≤ ψ 1 (n). In fact, let n 1 := min{n : n ≥ K}, there is an integer j 1 ∈ [0, n 1 ] such that

0 < T j 1 β x < ψ 2 (n 1 ) ≤ β -n 1 (v 2 -ε) ≤ β -n 1 ε ≤ β -j 1 ε .
Take n 2 := min n > n 1 : T j 1 β x > β -n k (v 2 -ε) . There is an integer j 2 ∈ [0, n 2 ] such that 0 < T j 2 β x < ψ 2 (n 2 ) ≤ β -n 2 (v 2 -ε) ≤ β -n 2 ε ≤ β -j 2 ε . Since T j 2 β x < ψ 2 (n 2 ) ≤ β -n 2 (v 2 -ε) < T j 1 β x, j 2 = j 1 .

Repeat this process, one can get a sequence of pairwise disjoint integers {j i : i ≥ 1} such that 0 < T j i β x < ψ 2 (n i ) ≤ β -n i (v 2 -ε) ≤ β -n i ε ≤ β -j i ε . Since the cardinality of {j i : i ≥ 1} is infinite, there is an integer i 0 such that for any i ≥ i 0 , one has 0 < T j i β x < ψ 2 (n i ) ≤ β -n i (v 2 -ε) ≤ β -n i ε ≤ β -j i ε ≤ ψ 1 (j i ). Therefore,

x ∈ L(ψ 1 ).

Hence, in all cases, we have U(ψ 2 ) ⊆ L(ψ 1 ).

Therefore, dim H (L(ψ 1 ) ∩ U(ψ 2 )) = dim H (U(ψ 2 )) .

Proof. Since v 2 ≤ v 1 /(2 + v 1 ), by Proposition 6.8, what is left is to show dim H (L(ψ 1 ) ∩ U(ψ 2 )) ≤

1 3 = v 1 -v 2 -v 1 v 2 (1 + v 1 )(v 1 -v 2 )
.

For any point x ∈ [0, 1], denote its β-expansion by

x = a 1 β + a 2 β 2 + • • • + a n β n + • • • ,
where a i ∈ {0, • • • , β }, for all i ≥ 1. Let

a n i > 0, a n i +1 = • • • = a m i -1 = 0, a m i > 0.
If x ∈ L(ψ 1 ) ∩ U(ψ 2 ), since v 1 > 0, then one has lim sup i→∞

(m i -n i ) = ∞.
Arguing as in the proof of Proposotion 6.7, we take the maximal subsequences {n k : k ≥ 1} and {m k : k ≥ 1} of {n i : i ≥ 1} and {m i : i ≥ 1}, respectively, such that the sequence {m kn k : k ≥ 1} is non-decreasing. Notice

β n k -m k < T n k β x < β n k -m k +1 , one has lim sup k→∞ m k -n k n k = 1.
Since x ∈ U(ψ 2 ), there is an integer k 0 such that for any k ≥ k 0 , one has

m k -n k ≥ n k+1 /4 .
If not, for any j ≥ 1, there is an integer k j such that m k jn k j < n k j+1 /4.

Since one of n k j+1 and n k j+1 + 1 is even, denote it by l k j+1 , for any integer n ∈ [1, l k j+1 ], one has T n β x > β n k j -m k j > β -l k j+1 /4 = ψ 2 (l k j+1 ). It contradicts the fact that x ∈ U(ψ 2 ).

Choose the subsequence {n k i : i ≥ 1} and {m k i : i ≥ 1} of {n k : k ≥ 1} and {m k : k ≥ 1}, respectively, such that

lim i→∞ m k i -n k i n k i = 1.
For simplicity, let {n k : k ≥ 1} and {m k : k ≥ 1} stand for {n k i : i ≥ 1} and {m k i : i ≥ 1}, respectively. For any ε > 0, there is an integer k such that for any k ≥ k , one has

(1 -ε)n k ≤ m k -n k ≤ (1 + ε)n k , m k -n k ≥ n k+1 4 -2.
7 Future Studies

Lyapunov exponents approximation

Given a ϕ t -invariant measure µ which is not concentrated on Sing(X), from the Oseledec Theorem [3, Theorem S.2.9], for the linear Poincaré flow ψ t : N → N and µ-almost every point x, there is a measurable splitting

N x = k(x) i=1 E i (x)
and a sequence of numbers

λ 1 (x) < λ 2 (x) < • • • < λ k(x) (x), such that lim t→∞ 1 t log ψ t (v) = λ i (x), ∀ v ∈ E i (x) \ {0}, i = 1, 2, . . . , k(x),
where 1 ≤ k(x) ≤ d -1. Therefore, we get Lyapunov exponents λ i (x) at point x with respect to ψ t and the corresponding Oseledec subspace E i (x). Lyapunov exponents for a differential equation are a natural generalization of the eigenvalues of the matrix in the linear part of the equation. Lyapunov exponents describe the asymptotic evolution of a tangent map: positive or negative exponents correspond to exponential growth or decay of the norm, respectively, whereas vanishing exponents mean lack of exponential behavior. When the measure µ is an ergodic invariant measure of ϕ t , Lyapunov exponents λ i (x) is a constant, denoted by λ i . An ergodic invariant measure is called hyperbolic if its Lyapunov exponents are different from zero. For a periodic orbit of flow, we have an atomic measure (invariant measure) on periodic orbit. Then, there also are Lyapunov exponents and Oseledec subspace on periodic orbit. What is the relationship between Lyapunov exponents of hyperbolic ergodic invariant measure and that of an atomic measure (invariant measure) on periodic orbit? For the discrete-time dynamics (diffeomorphism), the closing lemma of Katok [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF] in Pesin Theory affirms that the closure of hyperbolic periodic points contains the support of a given hyperbolic measure. Katok and Mendoza showed [3, Theorem S.5.5] (see also [START_REF] Barreira | of Encyclopedia of Mathematics and its Applications[END_REF]Theorem 15.4.7]) that the smallest absolute value in all of the Lyapunov exponents of a hyperbolic measure can be approximated from the upper side by the smallest absolute value in all of the Lyapunov exponents of a hyperbolic periodic orbit. In uniform hyperbolic systems, a classical result of Sigmund [START_REF] Sigmund | Generic properties of invariant measures for Axiom A diffeomorphisms[END_REF] illustrates that periodic measures are dense in the set of invariant measures. From the nonuniform hyperbolic case, Hirayama [START_REF] Hirayama | Periodic probability measures are dense in the set of invariant measures[END_REF] showed that periodic measures are dense in the set of invariant measures supported by a total measure set with respect to a hyperbolic mixing measure. Wang and Sun [4, Theorem 1.1] proved that Lyapunov exponents of a hyperbolic ergodic measure of a C 1+α (α > 0) diffeomorphism are approximated by Lyapunov exponents of hyperbolic atomic measures on periodic orbits.

For the continuous-time dynamics (flow), we can consider the following questions:

(1) Does the closure of hyperbolic periodic points contains the support of a given hyperbolic measure of flow?

(2) Can Lyapunov exponents of a hyperbolic ergodic measure of a flow be approximated by Lyapunov exponents of hyperbolic atomic measures on periodic orbits?

Uniform Diophantine approximation of dynamical systems

Given a measurable dynamical system (M, B, µ, T ) with a metric d, fixed x 0 ∈ M and a positive function ψ : N → R + , we have the set of the ψ-well asymptotically approximable points by x 0 as L(M, ψ, x 0 ) := {x ∈ M : d(T n x, x 0 ) < ψ(n), for infinitely many n ∈ N}. 

T (x) =      x 2 + 3x 2 , if x ∈ [0, 1/2) x 2 + x 2 - 1 2 , if x ∈ [1/2, 1].

  [x] := {y ∈ M : y ∈ Orb(x)}, où Orb(x) := {ϕ t (x) : t ∈ R}. Définissons l'ensemble P T (X) := {[x] ⊂ M : 0 < π(x) ≤ T }, où π(x) est la période minimale de x. Soit P T (X) := [x]∈P T (X) π(x).

  [x] := {y ∈ M : y ∈ Orb(x)}, where Orb(x) := {ϕ t (x) : t ∈ R}.Let P T (X) := {[x] ⊂ M : 0 < π(x) ≤ T },where π(x) = min{t > 0 : ϕ t (x) = x}.

Flows Lemma 3 . 7 .

 37 (WU, D. Yang and Y. Zhang) If the invariant splitting N Λ\Sing(X) = E ⊕ F is a dominated splitting with respect to the linear Poincaré flow ψ t on an invariant set Λ, then the extended linear Poincaré flow ψ t has dominated splitting N Λ SM = E ⊕ F and the bundles E, F are continuous on Λ.
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 1 Figure 1 -Graph of H s (F ) with respect to s for a set F . can be expressed as dim H F := inf{s ≥ 0 : H s (F ) = 0} := sup{s ≥ 0 : H s (F ) = ∞}.

Lemma 4 . 2 .

 42 (Borel-Cantelli Lemma [60, Lemmas 1 and 2]) Let µ be a measure on a set X with σ-algebra F and {A n } be a sequence inF . If ∞ n=1 µ(A n ) < ∞, then µ lim sup n→∞ A n = 0.The Mass distribution principle [61, p.p. 60] is a classical tool to estimate the lower bound of the Hausdorff dimension of a set.

Lemma 4 . 3 .

 43 ( [61, Mass distribution principle, p.p. 60]) Assume that E is a Borel measurable set and µ is a Borel measure with µ(E) > 0. If there exist numbers c > 0 and δ > 0 such that µ(U ) ≤ c|U | s , for any U with |U | ≤ δ, then dim H E ≥ s.

Lemma 4 .

 4 11. ( [39, Lemma 2.7]) For every ω ∈ Σ n β N viewed as an element of Σ n β , one has 1

Proposition 6 . 5 . 10 2 a 2 2 10 2 a 3 2 1 • • • 10 2 a k 2 1

 6510102102 The sets {x ∈ [0, 1] : ν β (x) = ∞}, {x ∈ [0, 1] : νβ (x) = 1} are uncountable. Proof. For any real number a > 1, we give a correspondence: Ψ(a) → 10 2 a • • • . The infinite string is a β-expansion of some x ∈ [0, 1). Denote this x by x a . Then, we can obtain a correspondence: Φ(a) → x a from {a : a > 1} to {x a : a > 1}. One can check ν β (x a ) = ∞ and νβ (x a ) = 1. Therefore, {x a : a > 1} ⊆ {x ∈ [0, 1] : ν β (x) = ∞} and {x a : a > 1} ⊆ {x ∈ [0, 1] : νβ (x) = 1}.

  7 and Lemma 6.3, U(ψ 2 ) is countable. If v 2 = 1, then v β = ∞. By Theorem SW, dim H (D) = 0.If v 2 < 1, by the similar discussions in Proposition 6.7, then for v β ≥ v 2 /(1v 2 ), one has dim H (D) ≤

  2, one has {x ∈ [0, 1] : ν β (x) > v 1 } ∩ {x ∈ [0, 1] : νβ (x) > v 2 } ⊆ L(ψ 1 ) ∩ U(ψ 2 ).We replace the role ofv 1 by v β with v β ≥ v 2 /(1v 2 ). Fix δ > 0, consider {x ∈ [0, 1] : ν β (x) = v β + δ} ∩ {x ∈ [0, 1] : νβ (x) = v 2 + δ}.

ForExample 7 . 1 . 1

 711 any real number β > 1 and x 0 ∈ [0, 1], Theorem SW shows dim H L(T β , ψ, x 0 ) = 1 1 + v , where v := lim inf n→∞ log β ψ(n) n .In fact, in my thesis, we only consider the case x 0 = 0 and define the setsL(ψ 1 ) := x ∈ [0, 1] : T n β x < ψ 1 (n), for infinitely many integers n ∈ N , U(ψ 2 ) := x ∈ [0, 1] : ∀ N 1, T n β x < ψ 2 (N ) has a solution n ∈ [0, N ] . Naturally, if x 0 = 0, then define the sets L(ψ 1 , x 0 ) := x ∈ [0, 1] : d(T n β x, x 0 ) < ψ 1 (n), for infinitely many integers n ∈ N , U(ψ 2 , x 0 ) := x ∈ [0, 1] : ∀ N 1, d(T n β x, x 0 ) < ψ 2 (N ) has a solution n ∈ [0, N ], what is the size (Lebesgue measure, Hausdorff dimension) of the set U(ψ 2 , x 0 ) and the set L(ψ 1 , x 0 ) ∩ U(ψ 2 , x 0 ) ?On the other hand, in dynamical systems, people often consider diffeomorphisms on compact Riemannian manifolds such as uniform hyperbolic maps, nonuniform hyperbolic maps and average conformal maps. Define the setsL(T, ψ 1 , x 0 ) := {x ∈ [0, 1] : d(T n x, x 0 ) < ψ 1 (n), for infinitely many integers n ∈ N} , U(T, ψ 2 , x 0 ) := {x ∈ [0, 1] : ∀ N 1, d(T n x, x 0 ) < ψ 2 (N ) has a solution n ∈ [0, N ]} ,what is the size (Lebesgue measure, Hausdorff dimension) of the set U(T, ψ 2 , x 0 ) and the set L(T, ψ 1 , x 0 ) ∩ U(T, ψ 2 , x 0 )? For example, we can consider the size (Lebesgue measure, Hausdorff dimension) of the set U(T, ψ 2 , x 0 ) and the set L(T, ψ 1 , x 0 )∩U(T, ψ 2 , x 0 ) for different maps T as followings. For real number a ∈ (1/2, 1), let T : [0, 1] → [0, 1] be the map defined byT (x) = if x ∈ [0, a) xa 1a mod 1 if x ∈ [a, 1]. size (Lebesgue measure, Hausdorff dimension) of the set U(T, ψ 2 , x 0 ) and the set L(T, ψ 1 , x 0 ) ∩ U(T, ψ 2 , x 0 )?If the image of T has two non-linear branches as the following 7.2, what is the size (Lebesgue measure, Hausdorff dimension) of the set U(T, ψ 2 , x 0 ) and the set L(T, ψ 1 , x 0 ) ∩ U(T, ψ 2 , x 0 )? Example 7.2. Let T : [0, 1] → [0, 1] be the map defined by:

  [START_REF] Katok | Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[END_REF] Théorème 4.3] a montré que pour un C 1+α (α > 0) difféomorphisme f sur une variété compacte et pour toute mesure de probabilité borélienne f -invariante et d'exposant de Lyapunov non nul, la limite supérieure du taux de croissance du nombre de points périodiques de f est supérieure ou égale à son entropie métrique, c'est-à-dire lim

n→∞ 1 n log P n (f ) ≥ h µ (f ), où µ est une mesure hyperbolique. En particulier, si f est un C 1+α difféomorphisme d'une surface, on a lim n→∞ 1 n log P n (f ) ≥ h top (f ).

  Pour le cas où T est une fonction rationnelle expansive de degré plus grand que 2 et X est l'ensemble de Julia correspondant ( [23, Théorème 1, Théorème 4], [36, Théorème 1]) ainsi que le cas où T est linéaire donnée par une matrice à coéfficients entiers et X est le tore de dimension n, Hill et Velani [37, Théorème 1, Théorème 2] ont démontré que la taille de L(T, ψ, x 0 ) est relié à l'exposant lim Pour le système ([0, 1), T β ), Philipp [38, Théorème 2A, B, C] a démontré que l'ensemble L(T β , ψ, x 0 ) a mesure de Lebesgue nulle si et seulement si ψ(n) < ∞. Shen et Wang [39, Théorème 1.1] ont établi le résultat suivant sur la dimension de Hausdorff de L

	34, Théorème 1], Troubetzkoy et Schmeling [35, Théorème 3.2] ont prouvé que la taille de L(R α , ψ, x 0 ) est liée au degré polynomial lim n→∞ -log ψ(n) log n de ψ. Plus précisément pour tout τ > 1, -log β ψ(n) de ψ. n Etant donné β > 1, la β-transformation T β sur [0, 1) est définie par dim n→∞ T

H x ∈ [0, 1] : |R n α xx 0 | < 1 n τ pour une infinité d'entiers n ∈ N = 1 τ ,

où dim H désigne la dimension de Hausdorff d'un ensemble. β (x) := βxβx , où ξ est le plus grand entier inférieur ou égal à ξ.

  38, Theorem 2A, B, C] proved that the set L(T β , ψ, x 0 ) has Lebesgue measure zero if and only if the series ψ(n) < ∞ and has full Lebesgue measure if and only if the series ψ(n) = ∞. Shen and Wang [39, Theorem 1.1] established the following result on the Hausdorff dimension of L(T β , ψ, x 0 ). Theorem SW For any real number β > 1 and x

  s.t. for any Y ∈ U, either Y

	has less than k periodic orbits with periods belonging to (T, 3T /2) or all k periodic orbits with period belonging to (T, 3T /2) of Y are not in U n	      	.
	By the definition, the set N k n,T is open. By the stability of hyperbolicity, H k n,T is open.
	Claim.		

  ∂τ is uniformly bounded away from zero and ∂H/∂y is uniformly bounded. Therefore, ∂τ /∂y is uniformly bounded with respect to y.

	This means		
	|s(t, y) -t| = |τ (y)| ≤ C 0 • d(x, y), where C 0 is a constant decided by ∂τ /∂y. If we split 1 into different time t, where
	t ∈ [δ/3, 2δ/3], then we can get at most	3 δ	+ 1

different t. By adding the time consecutively, one can get the constant C.

(β), • • • , ε * n (β), • • • ) := (ε 1 (1, β), ε 2 (1, β), • • • , ε m (1, β) -1) ∞ ,
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then the maximum is attained for

If v 2 ≤ v 1 /(2 + v 1 ), then the maximum is attained for

To get the lower bound of the Hausdorff dimension of the set L(ψ 1 ) ∩ U(ψ 2 ), we consider the set {x ∈ [0, 1] :

Proof. By Item (1) of Lemma 6.2,

1, then we fix δ > 0 with v 2 + δ < 1, we consider the lower bound of the Hausdorff dimension of

then F is empty. Therefore, we consider the case

. In fact, if v 2 > 0, then there is a δ 0 > 0 such that for any δ ∈ (0, δ 0 ], one has

Proof of Theorem C. If v 2 > 1, according to Proposition 6.7, the set L(ψ 1 ) ∩ U(ψ 2 ) is countable. By the definition of the Hausdorff dimension, one has

Combining with Proposition 6.7, we have

, by Propositions 6.6 and 6.7, we also have

Then,

, by Propositions 6.6, 6.7 and 6.8, then

, combining Proposition 6.6 with Proposition 6.7, then one has

According to Proposition 6.8, we have

Therefore,

, by Propositions 6.6, 6.7 and 6.8, then

Examples

In this section, we will show that the upper and lower bounds of the Hausdorff dimension in Theorems C and D can be all reached. Examples 6.9, 6.10 and 6.11 explain that the upper bound estimation

are reachable, respectively.

Example 6.9.

Proof. By Proposition 6.6, we only need to show that

we construct a Cantor subset E by the same way as Proposition 6.8, then

The proof is completed by showing

we construct a Cantor subset E by the same way as Proposition 6.8, then

.

, by Proposition 6.7, one has

we construct a Cantor subset E by the same way as Proposition 6.8, then

.

Examples 6.12 and 6.13 explain that the lower bound estimation 0 and

are reachable, respectively.

Example 6.12.

In fact, by Proposition 6.7, one has

Then,

The proof is completed by showing

In fact, since v 2 ≤ v 1 /(2 + v 1 ), by Proposition 6.7, we have

In the following two examples, we consider the cases that v

respectively, which explain that the lower bound estimation

.

Arguing as in the proof of Proposition 6.7, one has

. 

.

Proof. Since v 2 ≤ v 1 /(2 + v 1 ), by Proposition 6.8, what is left is to show

.

In fact, since v Then,

.