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The Internet of Things (IoT) evolved from its theoretical possibility to connect anything and
everything to an ever-increasing market of goods and services. Its underlying technologies
diversified and IoT now encompasses various communication technologies ranging from
short-range technologies as Bluetooth, medium-range technologies such as Zigbee and long-
range technologies such as Long Range Wide Area Network.

IoT systems are usually built around closed, siloed infrastructures. Developing interoper-
ability between these closed silos is crucial for IoT use-cases such as Smart Cities. Working
on this subject at the application level is a first step that directly evolved from current prac-
tice regarding data collection and analysis in the context of the development of Big Data.
However, building bridges at the network level would enable easier interconnection be-
tween infrastructures and facilitate seamless transitions between IoT technologies to im-
prove coverage at low cost.

The Domain Name System (DNS) basically developed to translate human-friendly computer
host-names on a network into their corresponding IP addresses is a known interoperability
facilitator on the Internet. It is one of the oldest systems deployed on the Internet and was
developed to support the Internet infrastructure’s growth at the end of the 80s. Despite its
old age, it remains a core service on the Internet and many changes from its initial specifica-
tions are still in progress, as proven by the increasing number of new suggestions to modify
its standard.

DNS relies on simple principles, but its evolution since its first developments allowed to
build complex systems using its many configuration possibilities. This thesis investigates
possible improvements to IoT services and infrastructures. Our key problem can be formu-
lated as follow: Can the DNS and its infrastructure serve as a good baseline to support IoT
evolution as it accompanied the evolution of the Internet?

We address this question with three approaches. We begin by experimenting with a feder-
ated roaming model IoT networks exploiting the strengths of the DNS infrastructure and
its security extensions to improve interoperability, end-to-end security and optimize back-
end communications. Its goal is to propose seamless transitions between networks based
on information stored on the DNS infrastructure. We explore the issues behind DNS and
application response times, and how to limit its impact on constrained exchanges between
end devices and radio gateways studying DNS prefetching scenarios in a city mobility con-
text. Our second subject of interest consists of studying how DNS can be used to develop
availability, interoperability and scalability in compression protocols for IoT. Furthermore,
we experimented around compression paradigms and traffic minimization by implement-
ing machine learning algorithms onto sensors and monitoring important system parameters,
particularly transmission performance and energy efficiency.

.
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L’Internet des Objets (IdO) a évolué depuis cette possibilité théorique de connecter tous les appareils
à un réel marché de biens et de services en constante expansion. Les technologies sous-jacentes ont
évolué et l’IdO repose aujourd’hui sur de nombreuses technologies de communication différentes:
Des technologies à courte portée comme Bluetooth, moyenne portée comme Zigbee ou longue portée
comme la technologie LoRa (Long-Range).

Les systèmes de l’IdO sont habituellement construits autour d’infrastructures fermées basées sur
des systèmes en silo. Créer de l’interopérabilité entre ces silos fermés est un enjeu pour certains
cas d’usages cruciaux dans le déploiement des technologies de l’IdO comme les villes intelligentes.
Développer la problématique au niveau applicatif est une première étape directement inspirée des
pratiques courantes en matière de collecte et d’analyse de données dans le cadre du développement
des technologies de traitement de données massives. Cependant, construire des ponts au niveau
réseau permettrait de faciliter l’interconnexion entre infrastructures et faciliterait la transition fluide
entre technologies de l’IdO afin d’améliorer à bas coût la couverture réseau.

Le Système de Nom de Domaine (Domain Name System, DNS), initialement développé pour traduire
les noms, lisibles et compréhensibles par les utilisateurs en adresses IP, utilisées par les appareils con-
nectés, est reconnu comme un facilitateur sur les question d’interopérabilité sur Internet. C’est l’un
des systèmes les plus anciens déployés sur Internet, développé à la fin des années 1980 pour supporter
la croissance de l’infrastructures Internet. Bien qu’ayant beaucoup évolué ces dernières années, en té-
moignent les nombreuses propositions de modifications au standard publié à son sujet, le DNS reste
aujourd’hui l’une des infrastructures les plus centrales du réseau Internet.

Le DNS repose sur des principes simples, mais son évolution depuis ses premiers développements
ont permis de construire des systèmes complexes grâce à ses nombreuses possibilités de configuration.
Dans le cadre cette thèse, qui étudie les possibles améliorations aux services et infrastructures de l’IdO,
nous étudions la problématique suivante : Le DNS et son infrastructure peuvent-ils servir de support
efficace à l’évolution de l’IdO de la même manière qu’il a accompagné l’évolution d’Internet ?

Dans cette optique, nous étudions de possibles améliorations de systèmes de l’IdO sous trois angles.
Nous testons tout d’abord un modèle d’itinérance pour réseaux de l’Internet des Objets au travers de la
construction d’une fédération reposant sur l’infrastructure du DNS et ses extensions pour en assurer
l’interopérabilité, la sécurité de bout-en-bout et optimiser les communications entre infrastructures.
Son objectif est de proposer des transitions fluides entre réseaux sur base d’informations stockées à
l’aide de l’infrastructure DNS. Nous explorons également les problématiques introduites par le DNS,
notamment en termes de latence et d’influence sur les temps de réponse des applications, et comment
en limiter l’impact sur les échanges, déjà grandement contraints, entre objet connecté et passerelle
radio. Pour cela nous étudions les conséquences de l’utilisation de requêtes DNS anticipées dans un
contexte de mobilité en milieu urbain. Nous étudions ensuite la façon dont le Système de Nom de
Domaine peut renforcer l’interopérabilité, la disponibilité de ressources et le passage à l’échelle de
systèmes de compression de paquets de l’IdO. Enfin, nous explorons la question de la minimisation de
trafic en implantant des algorithmes d’apprentissage sur des capteurs et en mesurant les paramètres
du système final, en particulier en terme de performances de transmissions et d’efficacité énergétique.

.
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Chapter 1

Introduction

From the early development of the Internet, identifying machines inside the net-
work has been a necessity. One of the first systems to identify and design machines
on the network was a single file (called the host.txt file) shared across the network,
which contained all the identifier/name tuples. As the number of machines grew,
the identification system moved away from this single shared file to the newly de-
veloped Domain Name System (DNS).

The DNS is a hierarchical system that allows users to generate names for their de-
vices on the network. DNS is often presented as the phone book for the Internet,
allowing users to remember domains, URLs and email addresses instead of the cor-
responding IP addresses. With its roots spread in various locations, the DNS tree
proved to be a resilient distributed system, easy to access from anywhere on the
planet and support interoperability and services discovery on the network.

The DNS is a massively deployed and scalable system supporting worldwide com-
munications on the Internet. Its deployment was a valuable tool to accompany the
increase in the number of machines on the network. Additionally, the ease of use
and registration of domain names helped create new markets on the Internet, one of
which was the popularization of Web technologies. The system has many uses and
is regularly improved by continuous development and standardization efforts.

The DNS is sometimes exploited to develop new uses such as Apple’s Hello, pro-
posed for standardization as DNS Service Discovery (DNS-SD). This sort of hacking
to the DNS principal goal, exploiting its main characteristics (interoperability, global
repartition) to create new uses of the DNS paradigms and architecture, is precisely
the kind of possible uses we aim to develop in this thesis.

This thesis aims to study and develop such transverse uses of DNS regarding the
Internet of Things (IoT) and its infrastructure. We hypothesize that the DNS might
prove a useful tool as it would permit developing new IoT uses without specific
overcost; that the DNS might improve solutions linked to IoT and help build a Web
of Things through registries containing devices information. Building such a system
should help IoT evolve the same way as the Internet, building interoperable systems
and networks backed by cloud servers sharing actions and data. Moreover, reusing
existing technology such as the DNS should prove an efficient way to accompany
IoT integration toward the rest of the Internet.

This thesis focuses on wireless communication in Wide Area Networks.

Most IoT, among those Low Power Wide Area Networks (LPWANs), systems are
now built as incompatible isolated data silos with each technology transmitting over
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its waves, using its infrastructure and centralizing data in data warehouses for ex-
ploitation. Nowadays, around 99% of these Things are not connected to the Internet
[1]. Using the DNS to break data and communication silos would allow infrastruc-
tures and devices to communicate freely and build interoperable networks between
IoT technologies.

Another key similarity between the Internet and the Internet of Things comes from
the similarity in their problems. IoT is riddled with scalability, interoperability, mo-
bility and roaming, transmission efficiency, availability, reliability and other security
issues such as privacy. The DNS contributes to solving many of these issues on the
Internet, hence our interrogation on possible improvements to IoT systems backed
by the DNS infrastructure.

This thesis studies IoT systems regarding the following key aspects: Naming, Roam-
ing, Header Compression and Payload Compression. Though security aspects will
be detailed in various part of the thesis, security weaknesses of IoT End Devices
(EDs) is outside the scope of this thesis.

We focused our studies on LPWANs; LPWANs are constrained networks built, in
general, as star typologies supporting a massive quantity of EDs around a single
antenna. Among these LPWAN, our work focuses on Long-Range Wide Area Net-
work (LoRaWAN) as the network is open and easy to access, provides interesting
constraints but necessitate no additional cost. It is easy to build LoRaWAN networks
and participate in the evolution of the specifications.

1.1 Research issues

IoT systems are usually built around closed, siloed infrastructures. Interconnect-
ing such silos at the network level is not an easy task, and, as LPWANs are usually
used to gather data from sensors, it is usually more straightforward for a user to
build Application Programming Interface (API) for each application based on its
needs than to break the network silos.

Breaking the silos is a key subject to opening the IoT Infrastructures and bringing the
IoT work to the global Internet. Breaking them at the applicative level is a first step
that directly evolves from current practice regarding data collection and analysis
in the context of the development of Big Data. However, breaking the silos on a
network level would permit easier interconnection between infrastructures and help
to build seamless transitions between IoT technologies to improve coverage at low
cost.

DNS is a known candidate to break such a silo. DNS relies on simple principles but
its evolutions since its first development allows us to build complex systems using
its many configuration possibilities. Possible uses of DNS to develop IoT systems
are not extensively studied for the following reasons:

• Most IoT research studies perceive IoT as a separate network from the Inter-
net. Hence existing Internet protocols are not a research focus for IoT develop-
ments.

• DNS is usually developed in Standards Developing Organization (SDO) and
DNS extensions are seen as operational issues (academic work on DNS is often
performances or security issues/solutions);
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• DNS which has been conceived for the Internet is considered not to be appro-
priate for constrained IoT requirements.

DNS is a naming service wherein the basic use of DNS is to map the identifier to its
specific service over heterogeneous applications/services in the decentralized Inter-
net. Since the IoT systems are mostly siloed and centralized, the usage of DNS as a
naming service is still not well studied. Based on these observations, studying DNS
through academic work as a possible tool to break IoT silos and support IoT infras-
tructures seems an interesting subject. Considering our third requirement described
above, our goal is not to embark DNS protocols onto sensors but instead use DNS on
the infrastructure side to support IoT improvements. Proposing such improvements
is our first goal.

The IoT research community would also benefit from additional experimental work
with IoT systems to verify the experimental feasibility of its solutions. Thus our sec-
ond goal is to run experiments to test hypothesis for IoT based on DNS. This exper-
imental approach introduces additional constraints such as working with reference
implementations of the solutions, generating actual IoT traffic for measurements and
analysis, respecting airtime constraints or device lifecycle.

1.2 Motivation

1.2.1 IoT Roaming

Roaming requires an interconnection agreement between network operators. In-
terconnection in IoT becomes possible by establishing a direct ’One-to-One’ inter-
connection or building an interconnection ’Hub’ for operators. Establishing an in-
terconnection agreement with a single hub makes it possible to exchange traffic with
the other operators connected to that hub. Both the hub and the One-to-One inter-
connection models evolve as independent Silos wherein the device in the coverage
area of a Visited Network (VN) can connect to its service only if there is a prior in-
terconnection agreement between its Home Network (HN) and the VN or between
the HN and the interconnection hub.

The interconnection agreement serves as a basis for mutual authentication and au-
thorization between the operators. In the ’One-to-One’ interconnection model, boot-
strapping trust is a key security concern. The ED needs to be cryptographically
authenticated by the VN based on credentials such as its identifier and a Pre-Shared
Key (PSK). Cryptography-based authentication usually relies on one or more trust
anchors [2]. In the proprietary silo scenarios, the trust anchor information may be
preset on the ED or established out of band.

Also, interconnection agreements define how operators should communicate be-
tween themselves, including setting up mutual authentication between backend el-
ements to secure backend exchanges on the network. In the ’Hub’ scenario, the
operators are asked to ultimately trust the centralized hub, whereas, in a ’One-to-
One’ model, the agreement usually defines the specific backend authentication and
authorization method to be used between the operators.

The goal of the first part of this thesis is to address these issues by proposing an
architecture, IoTRoam, federating different organizations to allow flexible, mutual
authentication and authorization between any backend element in a roaming situa-
tion, without a direct and explicit roaming agreement (e.g. for the LoRaWAN case,
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interconnection of Network, Application and Join Servers between operators). The
agreement is implicitly given when the organization joins the IoTRoam federation.

Moreover, any architecture proposing solutions to the technological barriers men-
tioned earlier should consider the constrained characteristics of IoT environments.
LoRaWAN is one of the most constrained IoT networks, having heavy constraints
on payload size and latency. Any roaming approach for LoRaWAN is expected to
obtain satisfying results with other IoT networks. LoRaWAN mainly consists of var-
ious siloed infrastructures deployed by small operators with no prior agreements
and common configuration between them. Furtherly, LoRaWAN, as a single con-
nectivity solution among the LPWANs, is a communication silo as communicating
between a LoRaWAN ED and a SigFox ED needs specific backend development and
usually consists of exchanging data through a broker. We can even say that Lo-
RaWAN is a single connectivity solution among all IoT instead of LPWANs and that
communicating between a LoRaWAN ED and a WiFi ED requires specific interfaces
or connectivity between backend through a data broker. Thus we designed and ex-
perimented with our proposed method as a LoRaWAN interconnection architecture
as a benchmark.

Our approach to building our roaming architecture was to use the combination of
the DNS infrastructure and a PKI to build a secure open roaming infrastructure ac-
cessible to public and private LoRaWAN operators. The possibility to set up private
networks for free is a competitive advantage of LoRaWAN. We designed, built and
deployed a proof of concept architecture to test the Roaming capabilities offered by
the ChirpStack solution and test roaming between private and public LoRaWAN.
We also validated our infrastructure by testing LoRaWAN connectivity for EDs in a
roaming context by studying various onboarding scenarios, measuring onboarding
time and communication delays.

Complementary, we study roaming data prefetching in a multi-tenant scenario
through simulation based on device mobility at the scale of a megapolis, Rome.
This permits us to experiment on predicting movements to increase prefetching effi-
ciency. We simulate an antenna placement and design DNS caching and prefetching
scenarios based on vehicle movement traces. Antennas activation and DNS queries
handling is studied to understand differences between handling data from querying
the DNS when needed or prefetching information in a localized cache to reduce
on-the-fly latency when the information is actually necessary.

Combining an ML predictor and a prefetching mechanism would reduce eventual
latency introduced by the DNS while soliciting a limited amoun of antennas within
the movement perimeter. Exploiting this solution, usually used by web browsers to
reduce latency, is an interesting topic to address in a different scenario with such a
different use case.

1.2.2 Header Compression

Compression is a well-studied subject, be it when compressing images or files.
However, compressing communications is still an evolving aspect of the compres-
sion research. Let us first consider header compression, the case of payload com-
pression being addressed later. One such compression technology is Robust Header
Compression (ROHC), which compress data based on redundancy between packets
in a given flow. Another is SCHC: Generic Framework for Static Context Header
Compression and Fragmentation [3]. SCHC is a recent standard developed by the
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Internet Engineering Task Force (IETF) to compress, decompress, fragment and re-
assemble packets transmitted over LPWANs.

Compressing data using SCHC relies on realizing a pattern matching on the packet
header before transmitting it over a constrained network, from the ED to its backend
or from the Radio Gateway (RG) to the ED. In order to compress the data sent and
received between the ED and the backend, SCHC uses a predefined group of rules
called Context, which is deployed on both the ED and on the backend.

For every Context, there could be a single or multiple rules. When sending data from
the ED to its RG, the SCHC Context rule enables compression by suppressing redun-
dant, superficial, predictable or most used data inside an IPv6 header and replacing
them with a Rule Identifier chosen in a given set of predefined rules. For instance,
the ED’s IP address may be added to the Context allowing it to avoid transmitting
128 bits IP address data if all the packets sent by a sensor have the same IP address.

When using SCHC, one element from the backend should realize SCHC operation
(compression, decompression, fragmentation, reassembly) for all associated EDs.
That is why we propose that the RG, the Network Server (NS) or the Application
Server (AS) retrieve the Context dynamically from a remote server. Thus, the owner
of the rules could easily modify them. Only the Rule IDs and versions are stored in
either the RG, the NS or the AS.

Also, storing all SCHC rules, considering they might be unique for each ED, might
introduce scalability issues to the system. We can consider around 20 rules per ED
when working with such rules (as the rule ID + rule length is encoded on 1 byte),
with thousands of EDs around a single antenna and multiple antennas for a given
server (as LoRaWAN is built as a star of stars topology). When considering hundreds
of thousands of EDs around a single server with up to 10kb per Context rule, we end
up storing gigabytes of data to enable SCHC on a given LoRaWAN infrastructure.

At last, the current way to store the SCHC Context rules statically does not allow to
roam easily. It lacks the necessary flexibility which would enable to development of
roaming capabilities when using SCHC. The use of an Administration Management
System (AMS) as proposed by [4] could be a solution. It is a proposition to super-
vise roaming agreements and manage the use, generation and exchange of SCHC
Contexts. However, such roaming accords would prove experimentally tricky when
working with multiple operators, thus building accords between each LoRaWAN
AMS, considering that operating a LoRaWAN network is possible at low cost with-
out paying licenses for emitting data over the air.

There are multiple options for storing these Context rules. For example, it could be
done in a private server, stored in the cloud or directly embedded within the oper-
ator’s server. However, we think that it could be wise to use an open, distributed
mechanism to find the location of the server where the Context rules are stored.
We propose to experiment possible use of DNS as a way to support SCHC com-
pression/decompression mechanism. As an optimized, hierarchical and distributed
database, DNS could enable identifying the server’s location where the Context rules
are stored feasibly on the Internet. Hopefully, using such a mechanism would allow
for a seamless transition, from preconfiguring the information needed on the back-
end to building it dynamically, on the fly, based on actual needs when operating the
network.
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DNS would prove an efficient solution to introduce more flexibility and improve
scalability when using SCHC. Our solution would provide open access to SCHC pa-
rameters as a way to support roaming capabilities. Considering these three aspects
of the SCHC framework, namely improving its flexibility, scalability, and assisting
SCHC when an ED is roaming, and how DNS might help, we ask ourselves if it
is possible to host rules outside the scope of the ED’s NS without hindering the
transmissions. To solve this problem, we deployed a dynamic Context resolution
architecture based on DNS for SCHC compression/decompression and studied the
consequences of such mechanism on the system latency and other possible conse-
quences on LoRaWAN communications.

1.2.3 Data compression

After our work on compressing headers in LPWAN, we decide to further our ap-
proach regarding transmission efficiency by studying payload compressing. The
easiest way to reduce data transmission is to delete redundancies or to round them
to near values. When working with sensors, data is often time-correlated. For exam-
ple, the temperature may vary slowly. Recently, Neural network-based techniques
entered the landscape of IoT data compression techniques. Data can be compressed
by their regression curve inferred from a neural network. More complex prediction
methods can also be used. Neural networks are known as universal function approx-
imators with the capability to learn arbitrarily complex mappings, and in practice,
show excellent performance in prediction tasks. Other approaches include the use
of Long Short-Term Memory networks (LSTMs) to perform predictions.

Many compression techniques appeared over the years. Nevertheless, if the "clas-
sical" methods present efficient compression ratios, they do not avoid transmitting
data. Periodically a sensor senses data, may compress it and then send the com-
pressed payload, but compressed data payload (plus header) are still sent. New neu-
ral network-based techniques appeared, and they avoid sending data in situations
where the prediction is good. A neural network-based predictor is implemented in
the ED and also at the back end. If the sensed data is well predicted, no data is sent,
and the backend uses the prediction. Otherwise, the measurement is sent.

These approaches raise several questions. First of all, they have not been tested in
real experiments yet. We like to push theoretical subjects further by implementing
solutions directly on EDs. Thus we aim to experiment with an actual LSTM imple-
mentation on sensors to back or disprove the results obtained through simulations
by the scientific community.

An important issue has not been addressed in the literature: questions on the com-
plexity of a given Machine Learning (ML) model considering its integration to con-
strained devices lead us to study the efficiency of a given neural network regarding
its size and the possible consequences of embarking such an algorithm directly on
devices. It is commonly admitted that ML algorithms are too heavy for the con-
strained devices which are the sensors: their memories and processing capabilities
are too small and their battery requirements too strong. Even if machine-learning
algorithms may be embedded on a device, would its energy consumption be com-
patible with the small battery and the requirement to be alive for years? At last,
there are coding issues related to the precision of the numbers processed by the ED:
the number of digits is often limited in such a device, leading to weights quantiza-
tion. Also, the number of weights of a neural network may be huge, and it makes
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sense to try minimizing the memory size by shortening the number of digits the
weights are coded with. In this case, what is the impact of weights quantization on
the algorithm’s accuracy, and in fine the compression efficiency?

Lastly, we aim to study possible uses of the DNS infrastructure to back such com-
pression mechanism by embarking the weights directly on the DNS. With DNS being
an efficient open distributed database, using DNS would permit to open the access
to ML models and weights, for example, when an ED is roaming. Three scenarios
are studied about publishing ML weights in the DNS, each with its own strengths
and weaknesses:

• one of them relies on asking the backend to publish the ML weights in the
DNS.

• a second consists is to rely on the DNS to store the address of a given API
which would allow to retrieve and modify ML algorithm

• a last possibility consists of learning the lessons from the DNS-SD paradigm
[5] in a dual connectivity infrastructure to support discovery and advertising
of ML model within a given local coverage, for example, as a way to support
compressed LoRa Mesh communication.

1.3 Contributions

Our work mainly consists in breaking the silo between multiple LoRaWAN de-
ployments, but as mentioned above, we expect similar results when working with
less constrained networks.

Our work with LoRaWAN led us to collaborate with various parties from the com-
munity and contribute to the LoRaWAN Specifications, and collaborate with the lead
developer of the ChirpStack open-source software, which is the most massively used
and reference LoRaWAN infrastructure backend solution. Our focus when working
with ChirpStack mostly consisted of providing insight on the interconnection be-
tween the ChirpStack Solution and the DNS infrastructure regarding the actual use
of DNS in the LoRaWAN specifications.

This work also leads us to reflect on a possible use of DNS prefetching to reduce
the impact from usual DNS querying in a mobility use case. When querying infor-
mation necessary for device’s functionalities, prefetching the necessary information
beforehand allows interesting improvements in terms of DNS cache hit. We provide
simulation results based on a comparison between three querying scenarios based
on mobility traces in an urban area.

After extending roaming capabilities in a LoRaWAN network, we worked on com-
pressing headers to develop IP connectivity in LPWANs. Our contribution relies on
extending the existing SCHC standard by leveraging the DNS infrastructure in its
capability to increase connectivity and accompany application scalability.

Thus we proposed an experiment to measure the time delay induced by using the
SCHC compression/decompression framework, then extended the time delay study
by adding new interfaces to SCHC, enabling remote context querying. We also pro-
vide experimental measurements on DNS querying time to improve the quality of
our time measurements by studying actual resolution time outside our lab scope.



8 Chapter 1. Introduction

Finally, we extend our work on compression by working on compressing payload
using ML techniques and studied possible strengths and weaknesses of such system.

1.4 Structure of the thesis

This thesis is structured as follow.

Chapter 2 presents a state of the Art regarding naming, and more specifically and
IoT. It first presents the scope for identification in the IoT ecosystem, then presents
a few aspects on querying and its underlying mechanisms (architecture, perfor-
mances, methodology). After that, scalability and security are presented with a focus
on the specific aspects that are of interest for the thesis. Coverage and roaming as
solutions to support mobility are described as well as the DNS, its functioning and
evolutions. Finally, we provide references on various approaches to combine ML
paradigms and IoT.

Chapter 3 presents our work on roaming and how DNS improves roaming capabil-
ities and break IoT silos. The work is first introduced in 3.1 and compared to other
approaches (3.2). Then we provide insight on LoRaWAN with regards to intercon-
necting networks (3.3) and our focus and design choices with regard to identifica-
tion (3.4) and security integration (3.5). After that, we dig into our experiment and
present our setup (3.6) and measured performances (3.7). We propose to extend this
solution by provisionning the DNS queried information beforehand using a combi-
nation of prefetching techniques and mobility prediction algorithms (3.8). Finally,
we sum up our contributions (3.9), provide our conclusions (3.10) that summarize
the work and propose future steps for the experiments.

Chapter 4 describes our work on SCHC and its extension using the DNS infrastruc-
ture to support rules management. It starts with a short presentation on SCHC (4.1)
before digging into the experiment (4.2) in which our propositions, scenarios and
testbed are described. Then our results are described (4.3) and discussed (4.4).

Chapter 5 presents our implementation of LSTM on constrained devices using our
own development working with pre-calculated weights from TFLite. An introduc-
tion centers the subject around our usual scope (5.1) and put it into perspective with
usual compression techniques (5.2). Then we describe our experimental approach
(5.3) and discuss our results regarding our various measurements points (5.4) and
weight storage modalities (5.5). The chapter ends with a short conclusion (5.6) that
summarize our contributions and describe possible further approaches to the subject

Finally, the last chapter (Chapter 6) concludes the thesis by providing an overview
of our contributions and presents possible extensions to the work we realized.
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Chapter 2

State of the Art

2.1 IoT Scope

The term "Internet of Things" (IoT) encompasses several meanings depending
on the communities/technologies involved. The basic purpose is to connect the
"Things" in the physical world to the Internet infrastructure. The things could be
anything from computers to people to medicines to books.

The things could be connected to the Internet infrastructure directly or indirectly. A
Computer or a mobile phone could be connected to the Internet directly using an
IP stack and some type of layer-2 connectivity, such as Wi-Fi or Ethernet. People or
books will have indirect connections to the Internet, which may be enabled via some
intermediate equipment, typically a non-IP carrier device, such as sensors, Radio
Frequency Identification (RFID) or Near Field Communication (NFC), tagged with
the things.

These carrier devices do not use the Internet protocol suite (TCP/IP) for communica-
tion. Instead, they use their proper communication technologies such as Bluetooth,
Zigbee or Long-Range (LoRa). To link the non-IP-capable devices to the IP network
(i.e. the Internet), there is a need for a gateway device, which can handle commu-
nication at two levels: on the one hand with the non-IP-capable devices, and on the
other hand, with the IP network; thus bridging between non-IP and IP worlds.

2.1.1 Making "things" "smart"

The basic idea for IoT is to make the "things" "smart", which are otherwise con-
sidered dumb by default, from a technical perspective. Let us take the example of
a cow in a herd, which is an entity of interest (Figure 2.1) for the farmer. Every 21
days, the cow has a 12 to 18 hours window, which is considered as the optimum pe-
riod for mating [6]. The cow is highly active during this window, and hence the IoT
application is attaching pedometers to the cow. The pedometer tagged to the cow
periodically sends information, and a message is triggered to be sent to the farmer
when the cow is walking more than its usual average. There are such a plethora of
applications where things in the physical world can be tagged to make it smarter.

The progress in hardware development, decline of size, cost and energy consump-
tion has enabled the feasibility of tagging non-IP devices to the physical things. This
is why there is much talk about IoT currently, even though the idea is not new.
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FIGURE 2.1: Making the things smart by tagging carrier devices such
as sensors, RF-ID, barcode

2.1.2 Identifying "things"

Taking the cow example described previously, the farmer needs to identify a cow
individually in his herd. For this purpose, the pedometer tagged to each cow in the
herd should have a unique identifier. The scope for the uniqueness of the identifiers
is limited within the herd.

However, IoT envisions billions of devices connected to the Internet. Hence, the
identifier for each thing should be unique in the IoT. In the current Internet infras-
tructure, identifying a thing (a computer or a router is also a thing from an IoT per-
spective) uniquely on the Internet is based on IP addresses (either IPv4 or IPv6). The
IP addresses follow a specific naming convention [7]. There is a hierarchical struc-
ture [8] which provisions the IP address and makes sure that there is no duplicity
(i.e. no two devices on the Internet has the same IP address). Some other things
may not use global IP addressing, using private addressing instead. Things having
a private address are still connected to the Internet, with the help of a gateway de-
vice, which uses a global IP address to transport data from a private network to the
Internet and vice versa.

As mentioned earlier, IoT involves non-IP capable devices; hence they do not use
IP addresses for identification. The way these devices are identified could be classi-
fied into legacy and emerging identification. The legacy identifiers have their exist-
ing naming conventions, their proper structure to provision their identifiers to end-
users, well before the emergence of the IoT theme. These legacy identifiers range
from EUI-48, EUI-64 for MAC addresses (Extended Unique Identifier), Digital Ob-
ject Identifiers (DOI) for electronic content, and Electronic Product Code (EPC) for
RFID or barcodes. The emerging ones are new naming conventions with their proper
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provisioning structure, developed to satisfy specific needs of a particular section of
the IoT industry.

Identification plays a vital role in interconnecting heterogeneous IoT networks.
When an IoT ED is roaming, the VN should retrieve its identifier and bootstrap the
interconnection process to access the service related to the identifier on the Internet.
If the obtained identifier is not unique, then there is a possibility of collision. Hence
the identifier for an IoT ED should be unique.

Identifiers used in IoT includes heterogeneous identifiers encoded in different
standardized naming formats such as IPv6, EUI-48, EUI-64, EPC, DOI, RF-ID,
non-standardized identifiers for a specific industry such as Apple Unique Device
Identifier (UDID) and user-generated identifiers.

One possible way to solve the issue of heterogeneity in identifiers is for all IoT stake-
holders to move to a globally unique identification or addressing scheme, identify-
ing using IPv6 addresses might prove to be a good solution (since it has a large
addressing space and is capable of allocating a unique identifier for every IoT ED
on the planet). In reality, migrating to one globally unique identifier for the whole
IoT industry is impossible. The reason being cost and the technical complexities in
migrating the IoT infrastructure with their existing identifiers to IPv6. A feasible
alternative would be to let the different sectors in the IoT use their existing identi-
fiers but to use a mapping service, which can map the identifier of an IoT ED to its
network.

The well-known mapping service on the Internet is the DNS [9] [10], basically con-
ceived to translate human-friendly computer host-names on a TCP/IP network into
their corresponding "machine-friendly" IP addresses. Afnic’s previous work [11]
provided arguments based on existing standards and deployments to illustrate why
DNS should be the naming (i.e. mapping) service for IoT.

Examples of leveraging DNS for mapping identifiers other than domain names in-
clude E.164 Number to URI Mapping (ENUM [12]) for telephone numbers. For IoT,
there exists already standards such as Object Naming Service (ONS) [13] for the con-
sumer industry, Object Resolution System (ORS) standardized jointly by the ITU-T
and ISO/IEC and the Handle system standardized by the ISO, which uses the DNS
infrastructure to resolve the IoT identifiers to its related service on the Internet.

IoT identifiers are structured into two different categories: Hierarchical and Flat.
The hierarchical identifiers are allocated hierarchically, control is decentralized, and
the nature of allocation ensures no duplicity exists. These features are similar to the
domain name allocation and management, and thus these types of identifiers could
naturally leverage the DNS infrastructure for allocation and resolution.

An example of a hierarchical identifier used in the supply chain industry is the EPC.
The barcodes attached to consumer products follow the EPC naming convention,
which can be hierarchically partitioned into Country, Organisation and product lev-
els.

An example of a flat identifier is UDID, a unique serial number assigned to each Ap-
ple manufactured device. Apple uses UDID to track and record Apple manufactured
devices, and it does not have a hierarchical allocation as that of EPC. The UDID is
unique within the Apple UDID namespace. It is a 40-character alphanumeric string
of code as follows:
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2b6f0cc904d137be2e1730235f5664094b831186

Provisioning both identifiers types; EPC and UDID could be included into the In-
ternet via the DNS namespace. Then it is up to the client libraries to make the con-
version and add the specific sub-domain suffix ("udid.apple" for UDID and "gs1" for
EPC) to the identifiers. Once the identifier is converted to a fully qualified domain
name as follows:

2b6f0cc904d137be2e1730235f5664094b831186.udid.apple.
3.1.3.1.6.2.3.3.9.3.4.0.3.gs1. (supposing that there is a TLD called ’gs1’)

They will follow the standard DNS resolution to resolve their associated resource,
ED or metadata.

We hypothesize is that DNS is the only infrastructure that could scale to billions
of EDs in the context of IoT interconnection, similar to how it has withstood the
meteoric rise from hundreds of domains at the beginning of the Internet to billions
currently [14]. Thus, we propose using DNS infrastructure as a scalable solution to
satisfy the requirements outlined by Wireless Broadband Alliance (WBA)[15].

2.1.3 Overcoming interoperability challenges

Interoperability is the ability of a system to work with or use the components of
another system. As mentioned in the article [16], there are four levels of interoper-
ability; we will narrow our focus on an Organizational Interoperability approach to
overcome interoperability challenges. Organizational Interoperability is the ability
of organizations to communicate and transfer information across different informa-
tion systems effectively, infrastructures spanned over different geographic regions,
and cultures [17]. The European project - symbIoTe [18], proposes a finer granularity
of Organizational Interoperability, enabling IoT platforms to collaborate by forming
federations, thus supporting roaming where the EDs could find their core services
while in the coverage area of the VN with the help of their unique identity.

[19] points our the necessity of adopting a standardization approach to improve IoT
technologies. Without such approach, the IoT ecosystem would end up fragmented
between specific technologies and use cases. Another key aspect pointed out is the
importance of improving interoperability between IoT solutions and the necessity of
a clear legislative framework to ensure the right to privacy and improve security for
all users.

2.2 Querying

Querying in IoT raises many research issues: data storage and database compar-
ison, temporal and spatial retrieval, the architecture of IoT, data and query distri-
bution (and, subsequently, caching mechanisms), interoperability, data contextual-
ization (and what is related that is discovery), and query performance. Concerning
the used methods, they are numerous, for example, probabilistic ones, machine-
learning-based ones or, of course, graph-based ones and blockchains.
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2.2.1 Data storage

[20] compares relational and graph databases. [21] compares SQL and NoSQL
databases for a small scale IoT application of water sprinkler system and investi-
gates whether NoSQL performs better than SQL in different scenarios. NoSQL is the
database technology that allows the rapid organization of different non-relational
data types. NoSQL databases are divided into four categories, which are key-value
based, column-oriented, document-oriented and graph databases. In [22], it is aimed
to evaluate the storage and query performance of MongoDB on IoT data. The au-
thors of [23] address the issue of data storing with a big data approach using Mon-
goDB to spread data over servers and maximize query speed uniformly. Resource
Description Framework (RDF) is a graph-based data model employed for represent-
ing the Uniform Resource Identifiers (URIs), and SPARQL is the standard query
language used for processing the query of RDF data. The growth of data throws a
big challenge to data storing and processing. In [24] a new data storing and query
processing approach is proposed using a weighted predicate tree. The predicate tree
is used to effectively store data and extract the weights indicating the relation of the
data. [25] devises a SPARQL query engine able to factorize on-demand and seman-
tically enrich stream data in a knowledge graph. The problem with ontologies to
describe concepts, relationships between entities in various application domains is
that semantic technics increase the complexity. Based on RDF as data format and
SPARQL as a query language, [26] propose an in-network query processor to face
the challenge of handling verbose RDF data and SPARQL queries execution in em-
bedded devices. Most XML (eXtensible Markup Language) data are indexed by par-
titioning them into several data streams, which results in processing multiple data
streams simultaneously when querying, and it is heavy. [27] uses a novel index stor-
ing only a subset of the data nodes, the rest of the nodes being generated efficiently
and its authors propose an algorithm to process one data stream at a time.

To eliminate the adverse effects on massive data processing in IoT, a novel skyline
preference query strategy based on massive and incomplete data set is proposed in
[28]. [29] presents a single-node datastore able to ingest multidimensional sensor
data at very high rates. Its design centers around a two-level indexing structure,
wherein the global index is an in-memory R*-tree and the local indices are serial-
ized k-d trees. [30] designs a memory-efficient high-performance key-value sys-
tem called RadixKV, which offers efficient improvements on the Radix Tree. [31]
proposes a lightweight and secure IoT remote monitoring mechanism using DNS
with privacy preservation. The communication between IoT devices and gateways
uses conventional protocols such as Constrained Application Protocol (CoAP) and
Message Queuing Telemetry Transport (MQTT), while only remote monitoring uses
DNS protocol. That is encrypted IoT data, after being encoded with base64, is stored
as a DNS TXT record of the domain name of the IoT device and only the designated
users are allowed to query and decrypt the data based on TSIG (Transaction SIGna-
ture) authentication of DNS protocol and asymmetric cryptography.

2.2.2 Temporal and spatial retrieval

Time-series

In order to exploit and analyze the time-series data efficiently, [32] develop an
index and the matching approach for the continuous time-series data, contrary to
most of the static indexing approaches. Its authors propose a lightweight index
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structure, L-index, and a matching approach, L-match, for the constraint normal-
ized subsequence matching problem ([33]), which is a two-layer structure and built
on the simple series synopsis, the mean values of the disjoint windows. Using dis-
joint windows is faster to update than sliding ones. The constraint normalized sub-
set matching problem provides a knob to control the offset shifting and amplitude
scaling flexibly. When storing event data in existing Time-Series Databases (TSDBs),
the retrieval may have performance problems. Also, existing TSDBs do not have a
specific query language defined for event analysis. [34] develops a model for event
specifications and use it to specify abnormal system states to be captured to allow
timely mitigation. The event model is integrated into the TSDB by translating them
to continuous queries defined in some TSDBs. The authors of [34] develop a model
of event specification since TSDBs do not have specific query language. In [35], the
authors study the approximate range emptiness problem, which answers an empti-
ness query of the form "S ∩ [a; b] = 0?" for an interval [a;b] of length L (a, b ∈ U),
over sliding windows in the IoT data streams. [36] designs a real-time and historical
multi-view IoT trend system. Using an information graph, it displays the relation-
ship between different sensor data and, using the method combining real-time and
history, it proposes a buffered batch data loading algorithm to form a dual-display
mode system. About data quality validation, the contribution of [37] is to enhance
the stream processing system such as C-SPARQL with production rules, instead of
statistical approaches, to achieve a Continuous Time-Aware reasoning. It is used to
provide stream validation for the quality problem relating to inconsistencies in sen-
sor streams. Errors in measurements may cause bad procedure (and even sometimes
dangerous) triggers.

Spatio(-temporal) retrieval

[38] aims at designing a distributed framework of massive trajectory data analysis
based on Hbase to realize spatio-temporal query more efficiently for urban comput-
ing scenarios. They design a temporal-based pre-partitioning strategy to improve
the performance of data written. Then they develop a Multi-Level Index to speed up
the process of spatio-temporal query. [39] consider the case of IoT databases along
roads to organize the storage according to road segment, instead of the cell, as the
unit of space mapping and data storage so that data requested in a road query can
be stored together to enable efficient I/O. Then, one can efficiently found the units
covered in a road query, which is usually concerned only about data on a few seg-
ments of roads. [40] offers location-aware services based on data messaging and ag-
gregation techniques. Its authors design a taxonomy for the classification of the IoT
devices based on their mobility frequency and leverage it to design a priority scheme
to address the co-located devices that offer similar services. In [41], considering that
stream processing must not be limited to the temporal dimension but also consider
the spatial one, a query language is developed to process temporal and geographi-
cal data, based on an index taking into account both dimensions. With in-network
processing, generated queries are routed to the nodes belonging to the specific re-
gion of interest, mainly using standard WSN (Wireless Sensor Network) geographic
routing algorithms. The IoT IETF standard routing algorithm RPL (Routing Protocol
for Low-Power and Lossy Networks) builds a tree-like routing topology that is in-
efficient for a spatial type of query because it floods the message to all nodes either
inside or outside the target region. The authors of [42] improve RPL in particular
by considering spatial partitioning. IoT applications use more or less two kinds of
data: either time-series or contextual information (or graph), mainly stored through
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massive data (times-series) or graphs and ontologies (contextual information). [43],
[44] and [45] address the issue of designing search engines including both spatial
and temporal dimensions, for example, using dual temporal and spatial stores.

2.2.3 IoT architectures, data and query distribution and caching

It is critical to perform communication-efficient data aggregation to answer com-
plex queries (e.g., skyline queries and equality joins) from IoT applications. [46] in-
vestigates the problem of constructing an aggregation tree for complex queries with
the minimum communication cost. [47] addresses the issue of data replication and
keeping only necessary data to process them and respond in a limited time. Nodes
can act as a team and cooperate to store the data close to processing tasks defined as
queries. Every node decides, in real-time, if the observed data are correlated with the
available datasets or if they are outliers. When data are accepted to be locally stored,
nodes select their peers where data will be replicated. [48] proposes a multi-attribute
aggregation query mechanism in the context of edge computing. [49] considers the
problem of query placement on edge and cloud resources for dynamically arriv-
ing and departing analytic dataflows. This is an optimization problem to minimize
the total makespan for all event analytics while meeting energy and compute con-
straints of the resources. [50] proposes a framework aiming at reducing the energy at
the sensor level and the billing cost at the cloud level. [51] designs a centrally man-
aged distributed infrastructure based on the state of the art big data technologies
for processing many real-time queries. [52] and [53] design multitenancy cloud for
IP traffic flow. [54] addresses the issue of time-series database in the edge between
the sensors and the cloud, taking into account the low space and processing capa-
bilities of the edge. [55] employs the parallelism in edge computing environments
to facilitate the top-k dominating query process over multiple uncertain IoT data
streams. The challenges of this problem include how to quickly update the result for
processing uncertainty, reduce the computation cost, and provide highly accurate
results. In [56], an edge-centric architecture is considered, and a routing method is
proposed to find the information efficiently. [57] proposes a multicast algorithm that
is data-centric (based on feature information) and intended for low power networks.
[58] and [59] propose semantic-based algorithms for routing and IoT service discov-
ery (with appropriate information compression). In order to save bandwidth, [60]
uses a gossip-based protocol for nodes to organize into groups based on attributes
and current value. [61] addresses the issue of resource allocation in heterogeneous
edge/fog devices. [62] takes advantage of data aggregation and both spatial and
temporal reuse by exploiting long-term static scheduling for periodic data to en-
sure the latency and data rate and by employing short-term dynamic scheduling for
event-driven, query-based data to improve transmission efficiency.

[63] implements caching in cloud for frequent n-hop neighbor activity regions.[64]
uses proactive caching in placeholders to decrease query delays. According to [65],
the data queries often are similar or overlapped to the previous queries, especially
when the user adjusts the query parameters on the same time-series data for dis-
playing on a visualization tool. The article proposes a cache mechanism to help
reduce the query response time if the current query range overlaps with the previ-
ous query ranges. [66] observes that memory object caching are inefficient in case
of unrepeated queries, and it proposes pro-active caching. The prefetching is done
according to rules customized according to the workload.
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2.2.4 Interoperability

The authors of [67] describe a semantic data model, rules, and a reasoning
platform taking SPARQL queries as rules to enable high-level data abstraction
and knowledge extraction. [68] integrates existing ontologies to provide semantic
interoperability among heterogeneous devices and users in the healthcare domain.
[69] focuses on facilitating the understanding of messages exchanges between
artefacts founded in different ontologies by semantic translation based on ontology
alignment. In [70], the authors leverage semantic technologies like Linked Data
to disseminate data to relevant data consumers. Time-series databases are used to
store IoT data, but they lack a good semantic model to support data sharing. That
is why [34] proposes a monitoring data annotation model to guide the systematic
specification of monitoring data streams. In [71], the authors propose IoT-Directory,
which makes it possible to manage packet brokers using different communication
technologies and formats in an ontology-based way, and in particular, to ingest data
from them in the IoT-Directory. Another issue is the necessity for processing IoT
data from multiple heterogeneous data stores: in [72], a multi-store query system
for IoT data is proposed. The IoT is characterized by a wide variety of data sources,
large scale and heterogeneous structures. However, those characteristics bring great
difficulties to the storage and rapid retrieval of IoT data. By considering the com-
mon attributes of IoT data, based on plug-in ideas, combined with Redis and HBase,
the paper [73] proposes a framework named HSFRH-IoT, which solves the problem
of efficient storage and retrieval of massive heterogeneous IoT. [74] presents an
ontological model which improves semantic searching and querying capabilities
by hiding the heterogeneity of entities and their produced data. [75] addresses the
issue of semantic relationships between the data over data/event streams using
Complex Event Processing to derive time-annotated RDF data from the basic events
streams and C-SPARQL for processing online queries over a domain ontology for
property inference. In [76] an agent-based server system approach, which improves
the resource sharing between heterogeneous WSNs in IoT/CPS (Cyber Physical
Systems) providers, is proposed. [77] presents a versatile architecture of a broker
named X2CBBR and based on XML-base publication data and Xpath-based sub-
scription data that can operate in IoT with different publish/subscribe systems. The
EPC network is a collection of industrial standards designed to build an Internet
of physical objects. ONS, a directory based on the DNS, is one of the important
components of the EPC network. ONS provides a connection between the product
code and Information Services in IoT systems. [78] proposes an extension of ONS
architecture to support heterogeneous object code identification dynamically.

2.2.5 Data contextualisation and discovery

Contextualisation

A classical approach is to use the data context to facilitate the query: [79]. Con-
textualization of IoT data is the technique that excludes irrelevant IoT data from
processing and dissemination [80]. It involves query rewriting, semantic web and
rule-based context management or ML and data science-based solutions. [81] pro-
poses a generic approach to represent and query situations in IoT environments.
[82] performs the reasoning process to change existing data on the ontology accord-
ing to the rule created and produce more representative and contextual data. [83]



2.2. Querying 17

present an application that allows users to look back on their memories by priori-
tizing photographs that were taken in contexts that are similar to the current con-
text. It is built on a contextual database middleware that provides context storage
and context-sensitive queries that determine the similarity between pairs of contexts.
Reminisce uses the contextual database to store the contexts of a user’s photos, in-
cluding location, time, neighboring devices, and weather conditions. Later, the app
identifies the photos whose stored contexts are most similar to the user’s current
context by querying the contextual database.

Context sharing and discovery

Applying semantic techniques to IoT can support interoperability, collection, an-
notation, validation, effective data access, integration, resource discovery, but also
processing and storing as well as reasoning and querying for data knowledge ex-
traction ([84],[85]). The IoT requires a semantically rich, dynamically extensible,
low complexity service discovery mechanism. It differs from classic discovery ap-
proaches such as UPnP or DNS-based approaches which are well suitable for con-
necting resource constraint devices but do not match the required semantic richness
of the IoT. [86] present a solution that is extensible at runtime, contrary to mecha-
nisms such as UDDI (Universal Description Discovery and Integration). It is based
on a distributed modular directory of service properties. [87] proposes a platform
enabling smart things and IoT silos to discover, validate and share relevant and de-
pendable context. [88] proposes a distributed service discovery algorithm intended
for a highly dynamic network environment. In [89], a distributed model for resource
discovery in IoT is based on a structured peer-to-peer scheme, which supports multi-
attribute queries and uses a distributed hash table as an overlay to organize the dis-
covery process. In [90], ontologies like W3C’s (World Wide Web Consortium) and
OGC’s (Open Geospatial Consortium) Semantic Sensor Network (SSN) and Sensor,
Observation, Sampler, and Actuator (SOSA) are extended to annotate IoT streams for
search and discovery. To share and publish the domain knowledge of IoT objects,
developing a semantic IoT model-based directory system that manages meta-data
and relationships of IoT objects is required. [91] proposes a directory that supports
semantic description, discovery and integration of IoT objects. [92] proposes se-
mantic accessors, including a local semantic repository for maintaining the context,
accessors for querying and dynamically updating the repository and servicing. [93]
presents an approach covering both service discovery and invocation for IoT-aware
processes. It proposes a novel concept for integrating semantic queries into pro-
cess activities to support runtime discovery and dynamic invocation of IoT services.
It extends a generic process meta-model by a set of process step types supporting
SPARQL queries. This approach provides runtime flexibility in terms of resource al-
location and therefore increases the reusability of process models. With this solution,
it becomes possible to specify commands like "switch on all lights in the kitchen" di-
rectly in a process step without knowing which Things are capable of executing this
command. In [94], the authors speed up the discovery process by centralizing the
RDF semantic information instead of keeping it distributed in the resource tree.

2.2.6 Query performance

In [95], the authors propose an index to compare query languages from both per-
formance and expressive points of view, taking into account the « richness » of a
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query. In [96], IoT-Lite proposes a minimal lightweight semantic. In [97], a se-
mantic query engine for Industrial IoT, SqenIoT, is designed together with multi-
level ontologies and mechanisms and a things query language targeted for resource-
constrained gateways and non-technical personnel. In [98], IoTm, a framework for
measuring IoT performance metrics, is presented, which include both IoT network’s
Quality of Service (QoS) metrics and IoT node’s resource utilization metrics. IoTm
has two key properties: 1) it is lightweight and thus amenable for implementation on
resource-constrained IoT nodes; 2) it can perform measurements at fine-grained lev-
els and not just at aggregate levels. [99] an advanced high-level formalization - Per-
formance Evaluation Process Algebra (PEPA), a kind of stochastic process algebra
(SPA), is adopted to model the process of real-time traffic status query in Intelligent
Traffic System (ITS).

Meanwhile, using the fluid approximation approach to analyze the performance of
the model, and then the performance parameters of the system in practical applica-
tions can be achieved accurately. A dedicated testing procedure has been configured
in [100] for evaluating InfluxDB, one of the most effective and widespread TSDBs.
The performance analysis, carried out on a specific use case, demonstrated that the
database write and read performance can be significantly affected by the used data
model, with queries executed on the same data requiring times from hundreds of
ms to seconds in the worst cases.

2.2.7 Methods

Probabilistic approaches

[101] address the issue of aggregation query (e.g. give the maximum pollution
level in an area) via probabilistic sampling. Reverse Nearest Neighbors query finds
the objects that have the query as the nearest object and plays an important in many
applications. [102] thus studies probabilistic Reverse Nearest Neighbors query over
the uncertain data streams. IoT is used to monitor natural phenomena, but spatial
queries are costly. Efficient sampling-based approaches are proposed in [103]. To
balance the retrieval efficiency and the maintenance cost, [104] adapts the probabil-
ity that a thing property is indexed to its change frequency and also to its query fre-
quency. [105] uses a probabilistic flood search algorithm to find devices distributed
in heterogeneous and dynamic environments. Sampling-based approximate data
analytics are the most widely used, which trade the output quality for efficiency.
[106] proposes a real-time data flow system for edge computing and analysis.

Fuzzy approaches

[107] uses fuzzy ontology query and reasoning to generate complex event
query plans, and context-aware queries are rewritten into context-independent
sub-queries. Data windows are partitioned according to different event patterns
and contexts. The sub-queries are optimized and executed in parallel based on data
partitioning.

Machine-learning methods

[108] consider a neuronal approach to minimize storing and processing of image
data in IoT using neural networks to extract relevant information. To achieve effi-
cient storage management, [109] classifies and reduces data using a Support Vector
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Machine (SVM) classification algorithm.

Graph methods

In recent years, the Social IoT paradigm, where objects establish social-like rela-
tionships, has become popular as it presents several interesting features to improve
network navigability and implement efficient discovery methods ([110], [111]). Us-
ing social relationships can help to accumulate experience knowledge and also opti-
mize the network traffic load ([112]). In [113] various graph algorithms are used to
respond to the user’s queries smartly. In [114], graph databases in clouds are used to
represent data. [115] addresses the problem of community search in social IoT, which
is beneficial to resource/service discovery, from the viewpoint of a dense subgraph
query. In [116], the issue of faster query processing of data is addressed. It presents
a Log Based Method (LBM) to store and query IoT data in Resource Description
Framework RDF format. LBM exploits skewness in access patterns of records by
analyzing query workload and partitions the basic triple table into hot and cold sec-
tions. To facilitate data retrieval and analytic, [117] ranks the web pages where the
information is stored in function of the quality of the content and the interconnection
between the web pages.

Blockchain

[118] designs a distributed IoT blockchain ledger for managing the metadata
needed to describe IoT devices and the data they produce. It is not controlled by any
individual or organization. The paper also proposes a marketplace that provides
the functionality needed for IoT device registration, query, integration, payment
and security via the proposed blockchain. [119] proposes a solution called Semantic
Smart Contracts (SSC), which integrates RESTful semantic web technologies in
smart contracts, deployed on the Ethereum Blockchain platform, for indexing,
browsing and annotating smart contracts. The solution also exposes the relevant
distributed ledgers as Linked Data for enhancing the discovery capability.

2.3 Scalability

IoT faces well-known scalability issues. EDs hardware have small power resource,
limited memories and processing capabilities, bandwidth is either sparse or it may
be overloaded due to the huge quantity of transmitted data. Legal regulations im-
pose limitations on the spectrum usage (e.g. respect of duty cycle constraints). Most
of the problems arise at the network front-end but also in the back end since all the
data are finally routed to servers or clouds on which they are stored and processed
([120], [121]). Thus, economising bandwidth, batteries, memory, storage and pro-
cessing are ways to increase IoT scalability. Compression techniques are solution but
also subtle tradeoff between information loss, energy, storage, time and bandwidth
minimisation ([122]). Most of the time these efforts lead to design new compres-
sion methods ([123], [124], ([125], [126], [127], [128], [129], [130], [131], [132], [133],
[134],[135], [136], [137], [138], [139], [140], [141], [142], [143], [144], [145], [146], [147],
[148]). Some are lossy while others are lossless. Deleting redundancy, data aggre-
gation, quantization, approximation by simpler functions, use of dictionary-based
methods, entropy coding, transform methods, compressed sensing and neural net-
work approaches have been applied for IoT.
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The easiest way to reduce data transmission is to delete redundancy or to round
them to near values. Sensors often generate time-correlated data. For example, the
temperature may vary slowly. Run-Length Encoding (RLE) takes advantage of the
adjacent clustering of symbols that occur in succession. It replaces a "run" of sym-
bols with a tuple that contains the symbol and the number of times it is repeated.
The authors of [142] apply Delta Encoding followed by RLE at the end node. At the
gateway tier towards the back end, they apply the hierarchical clustering for group-
ing datasets received from sensor nodes dependent on the Minimum Description
Length (MDL) principle. If any pairs of received datasets can be compressed by the
MDL principle, they will be combined into one cluster. For every cluster, it is pre-
ferred to look for a model or representation of the dataset to compress the others
based on it. They call this model or representation a hypothesis. For studied each
cluster, they send the hypothesis followed by the difference vector between the hy-
pothesis and the other datasets belonging to this cluster. In [135] delta compression
allows sending only the difference between two consecutive temperature measure-
ments. In [146], only significant differences between surveillance video frames are
sent. In [126], GPS locations are shortened by substracting the common latitude and
longitude parts of the measured positions. Data are also usually quantized to round
the measures to significant approximations requiring fewer bits for coding. They are
often aggregated ([126] or [129]). Also, fields of measured IoT data may change at
different speeds depending on the nature of the measured quantities. Observing the
change in frequency allows adapting the way they are sent or pruned ([132]). The
paper [136] uses aggregate approximation based on Symbolic Aggregate approXi-
mation (SAX) ([149]) and symbol encoding. The idea is to replace fixed sized data
windows by their average, and successive averages are differentially encoded and
replaced by codewords. Also, in [130], the authors suggest that applying repeated
pattern-based graph compression techniques may be used to compress IoT data rep-
resented by graphs.

Approximating the measurements reduces their size also ([127]). One can com-
press signals by approximating them with auxiliary, more straightforward functions.
Lightweight Temporal Compression (LTC) ([150]) is an energy-efficient lossy com-
pression algorithm that maintains memory usage and per-sample computational
cost in O(1). LTC estimates data points using a piece-wise linear function that guar-
antees an upper bound on the maximum absolute error between the reconstructed
signal and the original one while maintaining memory usage and per-sample latency
in O(1). Such an LTC method is proposed in [143] which increases the compres-
sion efficiency by exploiting the latitude offered by the error bound to find a better
approximation in terms of compression ratio. Fan algorithm ([151]) is an adaptive
sub-sampling approach that operates by drawing the longest possible straight line
between the starting sample and the ending sample in such a way that the error in
reconstruction of the intermediate samples are less than the maximum specified er-
ror value. In [137], the authors take profit of the high compression ratios of lossy
compression with lossless entropy coding compression for the resulting error com-
pressions. For the lossy compression, any lossy algorithm could work, but it must
be implementation efficient (in terms of energy, memory...). The authors choose the
Fan algorithm. They use Huffman coding for the lossless compression algorithm.

Classical compression approaches based on dictionaries or entropy coding have
been adapted to IoT. In [145], a specific dictionary is created for different kinds of
data depending on their change frequency. In [124], a dictionary is created online at
run time for biomedical signals. In [138], the LZW compression algorithm is applied
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to the differences between sample measures. In [131], an offline frequency distri-
bution is used to create a symbol-code lookup table. They use an extensive set of
data from a previous study, and they present an analysis of the entropy of activities
of daily living accelerometer data. Lossless Entropy Compressor, a Huffman based
compression method, has been made dynamic to handle possible heterogeneity and
changes of the signal ([139]). Obviously, depending on the operating conditions,
the best among uncompressed, lossy or lossless modes can be chosen dynamically
([123]).

Transform methods are classical tools for compressing data but might be CPU re-
source consuming. [120] evaluates several lossy compression algorithms for effi-
ciently storing weather sensor data based on the encoding of temporal changes and
three signal transformation algorithms on spatial data. Specifically, they evaluate
the fidelity of reconstructed weather sensor data using Discrete Cosine Transform,
Fast Walsh-Hadamard Transform and Discrete Wavelet Transform (and also Lossy
Delta Encoding). The objective is to provide useful information for minimizing data
reconstruction errors, and more importantly, make sure they are within a tolerable
range. Chebyshev compression is considered in [121] and [141].

Compressed sensing is a new technique. As stated in [152], in a series of pioneering
works by Candes ([153], [154],[155]), and their co-authors, it was shown that when a
signal has a sparse representation in a known basis, one can vastly reduce the num-
ber of samples that are required—below the Nyquist rate and still be able to recover
the signal perfectly (under appropriate conditions). This framework suggests com-
pressing the data while sensing it; hence the name compressed sensing. Neverthe-
less, on the one hand, compressed sensing reduces the number of measurements and
the sampling rate, but on the other hand, it increases the computational complexity
of the signal recovery ([156]). Actually, the signal is approximately recovered by
solving a convex relaxation of a non-convex optimization problem. [134] proposes a
unified approach for compression and authentication of smart meter reading in ad-
vanced metering infrastructure. In [133] an algorithm is designed which combines
the accuracy of standard lossless compression with the efficiency of a compressive
sensing framework. It balances the tradeoff of each technique and optimally selects
the best compression mode by minimizing reconstruction errors, given the sensor
node battery state.

Recently, Neural network-based techniques entered the landscape of IoT data com-
pression techniques. In [144], data are compressed by their regression curve ob-
tained from a neural network. In [157], biomedical signals are compressed using
autoencoders. These neural networks are three-stage networks whose input and
output dimensions are the same, while the hidden stage has a smaller dimension.
The output of the first stage has thus a reduced dimension compared to the input
and constitutes the compressed data. Prediction methods are also used. Actually,
neural networks are known as universal function approximators with the capability
to learn arbitrarily complex mappings, and in practice, show excellent performance
in prediction tasks. Thus, the authors of [147] train a Recurrent Neural Network
(RNN) predictor followed by encoding with a traditional arithmetic coder block us-
ing the probabilities generated by the trained neural network. The decompression
is performed symmetrically and requires the trained model for arithmetic decoding.
In [158] a prediction scheme is implemented on cluster nodes and cluster heads to
reduce data transmission. If the measured data corresponds to the predicted one, it
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has not to be transmitted. Neural networks (NNs) and, more specifically, LSTMs are
proposed to perform predictions.

ML can simplify signal detection by training a general data-driven signal detection
model. However, fully connected neural networks would introduce processing la-
tency and extra power consumption, making them unsuitable for deployment on
IoT devices. That is why neural networks themselves must be compressed. There-
fore, the motivation of [159] is to investigate different neural network compression
schemes for system simplification. Three compression strategies are studied, in-
cluding topology compression, weight compression and quantization compression.
These methods show efficient neural network compression with tradeoffs between
computational complexity and bit error rate (BER) performance. Also, compression
technology through pruning research has gained momentum and is an important
tool for improving performance during inference. [140] focuses on pruning un-
wanted filters and nodes in all layers of a network. The network is pruned itera-
tively during training, and a significant number of filters/nodes are removed while
ensuring any loss in accuracy is within a predetermined range. Other methods exist
like efficient convnets, ThiNet and Cross-Entropy Pruning.

Most of the time, IoT solutions are scenario-specific and application-specific and rely
on standard layer-2 solutions like LoRaWAN or IEEE 802.15.4. One example of such
application-specific solution is [148] that proposes improvements to LoRaWAN com-
munications by fine-tuning the communications parameters to the device’s situation
(location, number of RGs, scheduling...). However, for interoperability purposes,
IPv6 is an obliged interconnection solution, and it raises the issue of header over-
load. Header compression algorithms like Robust Header Compression version 2
(ROHCv2) from Request For Comments (RFC) 5225 may solve this problem. It sends
context information packets like "initialization and refresh" to transmit persistent in-
formation to the receiver and consecutive compressed "sequential" packets, which
can be decoded from the previously transmitted context. Nevertheless, if context
packets are lost due to transmission errors or overflows, sequential packets cannot be
decoded. Also, most classical compression algorithms (e.g. delta compression, LSB
compression, table-based compression...) assume that an up-to-date reference value
exists on the decompressor side; thus, they face the same problem in case of possible
packets losses. The solution the authors of [160] is to prepend context information
onto sequential packets using Random Linear Network Coding. Another solution is
SCHC [3] which is a framework that provides both compression and fragmentation
functionalities. It is being standardized by the lpwan [161] working group at the
IETF. RFC 8724 and its related works [161] at the IETF are also closely followed by
other SDOs such as IEEE 802.15, LoRa Alliance. It is considered an efficient solution
to connecting the LPWANs using IPv6, thus enabling end-to-end IP connectivity.
With the help of the SCHC framework, it is possible to compress an IPv6 header
from its original size of sixty bytes down to two bytes, thus reducing bandwidth us-
age and increasing communication efficiency. In [162], SCHC is used as a unifying
transport layer for multimodal LPWAN solutions. The main drawback of SCHC is
that it works under the assumption that LPWANs are preprogrammed with known
data flows, thus uses a static context. However, this assumption is not always valid
in an IoT context, where devices should be accessible from any IPv6 address. In
[163] a dummy mapping technique that can effectively compress/decompress some
header fields of unknown flows is proposed. The dummy mapping creates a fixed-
size list of dummy values mapped dynamically at the gateway compressor to the
values of headers fields.
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Also, reducing traffic by compression contributes to scalability and optimizing sig-
nalling and header information transmission. Over dissemination of packets during
Neighbor Discovery (ND) and headers with larger sizes lead to prodigal power con-
sumption leading to short network life in 6LoWPAN (cf. [164]).

2.4 Security

2.4.1 Generic Approach

Security of IoT devices and infrastructures is an extensively studied subject; there
are articles and surveys regarding many aspects of security in IoT, taking into ac-
count the strengths, weaknesses and specificities of IoT devices to point out new
research opportunities and concerns to improve security.

[165] highlights various needs regarding security for IoT and points out the need to
build tailor-made security measures adapted to devices resources, embedded proto-
cols and system specifications. An embedded security framework is also provided to
propose a co-design methodology that helps design security features by considering
their hardware and software constraints. [166] responds to a need for standardiza-
tion and documentation regarding general points of vigilance when building IoT
solutions. It provides a state of the art regarding security threats and risks for IoT as
well as security guidelines.

[167] studies the vulnerability introduced by bridges between the Internet and non-
IP devices connected to a HN. By introducing new hardware or protocols into the
network, the system creates attack and defense scenarios that need to be extensively
studied as devices need to handle attacks from more powerful attackers. [168] uses
a similar approach, compares security threats in the IoT, discuss IoT scenarios, anal-
yses possible attacks, and provides insight on security threats and vulnerabilities in
the IoT environments. One of the most documented in such IoT environment are
sinkhole attacks[169]; these attacks rely on the trust built among devices in a wire-
less network to build their routing strategy. [167] already evokes them, but an exten-
sive study of sinkhole attacks and how to defend against them is provided by [170].
[170] documents how to detect and mitigate these attacks, how to balance security
and usability for devices and which tradeoffs are necessary for these scenarios.

[171] and [172] document LoRa and LoRaWAN security vulnerabilities and various
attack scenarios. [171] focuses on the LoRa technology, studies the LoRa network
stack and provides attack scenarios built on existing hardware and technology. [172]
tackles LoRaWAN and points out its vulnerability to replay, man-in-the-middle and
battery exhaustion attacks by analyzing the packet exchange between LoRaWAN
devices and backend. The attacks scenarios mentioned are put into test through
various proof-of-concept.

Rather than focusing on attack scenarios or building security countermeasures spe-
cific to given hardware, other papers focus on generic security approaches built re-
gardless of the underlying technology. [173] proposes an All-IP IoT architecture to
support a complete IP adaptation method for IoT applications around four key top-
ics: mobility, web enablement, time synchronization, and security. [174] indicates
that IPv6 will become the de-facto standard for interoperability in IoT and point out
security challenges related to processing power in the context of lightweight cryp-
tographic algorithms and standardization. The paper studies the complete IP stack
at large regarding IoT constraints and provides an overview of possible solutions to
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improve IoT systems at each layer. [174] also evokes issues regarding authorization
and privacy concerns which will be detailed furtherly.

2.4.2 Authentication

[175] proposes a key management solution to handle the IPsec key exchange as
well as support 802.15.4 channel securitization.

[176] details specific needs for medical IoT regarding authorization, privacy require-
ments or data confidentiality, taking into account specific constraints from resource-
constrained devices. The paper proposes a context-aware security architecture han-
dling access control and privacy-preserving data silos and provides an access control
engine running on resource-constrained sensor nodes.

[177] details key exchange scenarios in WSN to establish a secure channel to protect
the data transmitted over the air. Various scenarios are described, such as public-key
cryptography and PSK. Backend considerations are also considered. [178] studies
identity management systems to support data integrity protection and proposes a
framework for authentication suited for IoT environments.

[179] propose an authentication mechanism based that uses multicast communi-
cations to save transmission during the authentication handshake for resource-
constrained devices, evaluating its performances and analyzing the security
paradigms in place to support IoT development despite its constraints. [180] is a
reflection on authentication, authorization and accounting on constrained devices
by leveraging the PANA (Protocol for carrying Authentication for Network Access)
paradigm, which was ongoing work at IETF back in 2013. The paper provides a
study of the EAP/PANA paradigm in constraint devices and an implementation
that serves as a proof of concept to both the IETF standardization community
and the scientific community. The paper is based on a Contiki implementa-
tion of EAP/PANA called PANATIKI based on simulations and results from an
experimental testbed.

[181] presents a two-way authentication scheme based on the Datagram Transport
Layer Security (DTLS) protocol. The authors provide a solution based on existing
standards and protocol to embark the algorithm on 6LoWPAN EDs and evaluate the
solution through experiments. [182] targets V2X communications building a delay-
aware, reliable, scalable and secure network. The paper aims to provide insight on
the handshake mechanism to build for such systems considering their constraints
(mobile devices, protocol overhead, transmission delays) while keeping the system
reliable. The proposed mechanism reduces delays in the handshake mechanism by
leveraging the capabilities of edge infrastructure to reduce delays and improve the
efficiency and reliability of vehicular communications.

[183] uses the CoAP protocol to propose an authorization framework that can build
authorization based on an external OAuth authorization service (OAS). The pro-
posed scenario benefits from the OAS’s strength while keeping the solution with
IoT’s usual constraints: low processing load, customizable and easily scalable. The
solution is not energy efficient due to the multiple transmission necessary to frag-
ment the messages but is efficient regarding other primordial aspects such as mem-
ory footprint. The solution is also efficient for developers as OAuth is a well known,
well-documented technology and the solution benefits from the existing implemen-
tation of the OAS paradigm.



2.4. Security 25

Scalable Authentication and Authorization framework compatible with different
IoT technologies :

Authentication, Authorization and Accounting (AAA) architectures are usually
consolidated in a single centralized database [184]. The centralized AAA framework
has its advantages but also has significant disadvantages, such as creating a single
point of failure, and the issue of consolidating all user information into one database
would probably go against European’s General Data Protection Regulation.
Blockchain using distributed ledger has been experimented and deployed[185][186]
to accomplish a scalable de-centralized Authentication and Authorization AAA
framework. However, the blockchain model has several drawbacks as a feasible
operational model [187] in an open/global scenario.

eduroam uses the distributed Public Key Infrastructure (PKI) based on X.509 digital
certificates for AA. The PKI model has been tested both on the Internet and in IoT
for dynamicity and scalability. The primary issue with the X.509 digital certificates
is their size and compatibility with resource-constrained IoT networks. Since our
focus is on Organizational Interoperability between the networks in the federation
operating in the IP space, we plan to employ PKI for AA.

eduroam uses a combination of IEEE 802.1X, the Extensible Authentication Protocol
(EAP) and RADIUS to provide [188] AA of the Wi-Fi ED to the network. The trust
fabric in eduroam is a PSK between the RADIUS servers (organizational, national,
global) based on the DNS hierarchy. The organizational RADIUS servers agree on a
shared secret with a national server, which agrees on a shared secret with the root
(i.e. global) server. The RADIUS hierarchy forwards user credentials securely to the
users’ home institutions for verification and validation.

Such a trust fabric, wherein there is a PSK to be shared hierarchically, hinders the
federated model that we envision for IoTRoam. Different IoT networks use different
mechanisms to share the PSK between the ED and the AA servers on the Internet
to securely onboard the ED in the HN. Forcing them to transition to a newly pro-
posed PSK mechanism is not operationally possible since multiple stakeholders are
involved. For secure onboarding of the ED, we will use the existing mechanisms
used by the respective IoT technologies and propose a global mechanism tested on
the Internet to mutually authenticate different servers (in IP space) in the federation
involved in ED onboarding.

Using a combination of an existing PSK mechanism and a global PKI mechanism
proposes a design that satisfies the requirements outlined by WBA for a scalable
(even when there are millions of networks interconnected in the federation) AA
framework applicable for all IoT technologies/applications.

Authentication at IETF :

IETF worked on designing authentication frameworks, one of them was the Protocol
for Carrying Authentication for Network Access (PANA) [189] designed by the pana
working group. According to its charter[190], the pana working group aims to build
generic frameworks to support authentication in various scenarios around mobile IP
networks. The working group proposed 6 Standard RFCs detailing each component
necessary to build such a security framework as part of its work.

Authentication frameworks were also proposed for adoption to other working
groups, [191] proposed to the Constrained RESTful Environments (core) working
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group, then to the Authentication and Authorization for Constrained Environments
(ace) working group to work on Delegated CoAP Authentication and Authorization
Framework (DCAF). The objective of DCAF was to delegate authorization and
authentication information to a trusted third party with less processing limitation
than the constrained device that requires it.

2.4.3 Trust

Trusting a third party or a communication peer is an important issue when dis-
cussing security in general and IoT security in particular. IoT’s constraints regarding
processing power and needs for energy efficiency usually come with a necessity to
rely on others to delegate certain operations. Building and evaluating trust frame-
works when working with constrained devices has been a subject of interest since
the beginning of IoT research.

[192] summarizes the issues and requirements for building trust within heteroge-
neous networks. The main topic studied is building trust regarding routing proto-
cols and trusting peers when bridging the connection. Another studied aspect of
building trust to decide where to route the traffic consists in creating a network trust
model to decide which level of trust a device gives to another peer. In trust delega-
tion models, another critical aspect is deciding on a key exchange and management
policy; the paper evokes possible protocols to exchange keys and negotiate trusted
channels.

[193] proposes a trust management model based on building a fuzzy reputation
system within the IoT network. The article extensively studies trust in networks,
then uses the NS-3 simulator to generate traffic and build trust within the IoT
network. The proposed mechanism, TRM-IoT, performs better regarding routing
performances, packet loss and other network metrics while keeping the system
lightweight and within IoT specific constraints but seems less reliable when attacked
by malicious third parties. [194] proposes to establish trust models by building
social reputations between devices the same way reputation is built within human
social networks. Contrary to [193], the simulations from [194] show many benefits
regarding excluding malicious nodes within the network based on a feedback
system that evaluates trust level based on nodes centrality.

[195] studies WSNs in a countryside environment, builds a trust framework and
experiments upon it. The model shows interesting results regarding data reliability
and isolation of malicious nodes.

[196] identifies trust issues within heterogeneous network environments and builds
a trust consensus based on social IoT paradigms in a similar way to [194] but fo-
cusing on other key aspects on building trust within a network such as handling
large scale infrastructure and taking into account devices capabilities in terms of
storage and processing power. The approach is studied furtherly in [197] with addi-
tional analysis regarding trust assessment and trust convergence time. The tradeoff
between these two is studied and show significant results compared to non-trust-
optimized systems.

[198] concerns itself with building reliable IoT infrastructure while keeping the sys-
tem privacy-preserving and building trust into the network. Their system relies
on a trust policy handler that defines operations between devices, a key manage-
ment component that assists in securing communications, an identity manager and
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a reputation manager that assists in trust management within the network. Their
system provides a generic approach to IoT security but, as they point out, lacks an
actual proof-of-concept. [199] described extensively the issues and solutions regard-
ing trust management in IoT and [200] surveys trust establishment in IoT.

2.4.4 Privacy

[201] proposes a framework to measure possible invasion of privacy in protocols
using a mathematical method. However, this method does not apply to all protocol
as the protocol need to fit certain algebraic properties but should apply to IoT specific
solutions. [202] proposes a technical solution to enforce privacy protection using a
middleware system as a privacy broker. [203] sums up many challenges within IoT
systems regarding privacy protection and security. [204] aims to improve privacy
protection in IoT using a solution that gives control to the user and then designing
complex privacy policies and filters. Such a solution aims to identify finely all the
elements that need access to personal data and which specific access they need.

The question of privacy is not only a technical issue to monitor but a transverse is-
sue to address from various experts, not only from the computer science field. [205]
is a multi-disciplinary approach study that reflects on privacy and security of IoT
hardware, software and protocols from a regulation point of view. It extensively
studies sensors networks and the possibility of break privacy protections, creating
discrimination, or making more secure devices with a combined juridic and techni-
cal approach.

[206] proposes a novel approach around Quantum Lifecycle Management (QLM)
that allows devices to keep communicating, bypassing firewalls. Such a solution,
should it work, would prove interesting regarding access to information from iso-
lated devices but also pose real threats regarding security from a generic point of
view, especially with regards to the issues discussed by [205].

To support all threats identified in the previous papers, [207] proposes a conditional
privacy-preserving authentication with access linkability (CPAL) for roaming ser-
vice. The idea behind CPAL is to offer a secure roaming service that respects user’s
privacy using a multi-layer approach to information access within the system. The
system and its performances are also studied to prevent the solution from being too
heavy for IoT solutions. [208] also defines a roaming protocol for IoT solutions ex-
ploiting the strength of edge computing to authenticate the devices. The solution
seems to protect against various known attacks, and simulations underline interest-
ing authentication delays and energy consumption results.

2.5 Coverage and Roaming

Device mobility management is one of the most important points when designing
an IoT system. When working with things as fridges or doors, mobility would not
be significant. However, mobile devices such as sensors, watches, phones, luggage
or cars should be provided coverage as often as possible.

Many parameters are considered when handling mobility, such as covered devices’
output power, antenna direction, data payload, speed, size, environment, and duty
cycle. Much of these parameters are also encountered on the RG side.
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Coverage evolution is a well documented subject (cf. [209] [210] [211] [212] [213]
[214] [215], [216]). As IoT developed outside of its small scale industrial use, the
need for coverage became prominent and new technologies were introduced [217]
to increase the scale from which to connect things [218]. Consumer IR, Bluetooth,
Wi-Fi, which are still developed as of today. But also long coverage communication
([211] [213]) ranging up to tens of kilometers such as LoRaWAN (cf. [219] [220]), Sig-
fox, Narrow-Band IoT (NB-IoT). Network topology may also change the way mobil-
ity is handled. [209] gives a unique perspective on the way to improve coverage and
mobility, though Machine-to-Machine Technologies, listing the then-emerging Un-
licensed LPWAN and evolutions to the 3GPP Standard (also known as LTE-M and
NB-IoT). Vehicular networks are an excellent example of the evolution of M2M net-
works and how mobile M2M networks can use their environment’s infrastructure as
good support to mobility [221]. [210] after an overview on various IoT technologies,
from short-range technologies such as ZigBee, Bluetooth and Wi-Fi to long-range
such as GSM, LTE and Satellite, provides a complete overview of LPWANs offers in
the context of Industrial IoT and listing their strength and limitations. LPWANs are
presented as a good opportunity regarding coverage, with an evolving community
developing interesting standards and with increasing deployment. LPWANs also
enable new channels to communicate as a substitute or a complement to the existing
GSM networks [211]. Coverage was also studied through simulations, [222] pro-
vides an extensive study on LoRaWAN performances through a study on packet de-
livery in a realistic context and aim to provide reference assumptions and numbers
for people willing to modelize a LoRaWAN infrastructure. [216] expands this work
by providing numerous measurements on link quality based on actual LoRaWAN
payloads, studying Packet Reception Ratio based on Packet Length, Spreading Frac-
tor (SF) or Signal to Noise Ratio. Their experiments show that the most significant
impact on LoRaWAN communication comes with the scalability of the solution as
the recommendation is to group data transmit long payload instead of short chirps
to prevent packet losses from interferences from other devices. [212] studies theoret-
ical LoRaWAN and NB-IoT coverage for connecting smart meters. The solution aims
to cover a whole population with various population densities (urban, suburban, ru-
ral) and device positioning (deep indoor, indoor and outdoor). This document also
points out the importance of network deployment to enable an efficient service.

On the other hand, development on roaming was less significant compared to cov-
erage. Roaming is an essential factor if one wants to improve its mobility. While
coverage is important when considering small scale mobility (neighborhood, ware-
houses... ), roaming is the technology to develop to improve coverage for things
moving far from their HN. Roaming allows building a network of interconnected
antennas from various partners to provide universal access to the network.

This lack of development regarding roaming in IoT-enabling technologies is pointed
out by [209] as roaming seems to be an excellent way to improve coverage in Smart
Cities. This is especially important in a dense area where antennas might interfere
a lot.[210] while providing many details regarding coverage, data rates and energy
consumption, does not provide much input regarding roaming. Only pointing out
that each technology handles roaming. [223] draws a comprehensive view on con-
necting WSN to the IP world and provides a lot of insight on mobility manage-
ment for devices. The authors point out that key improvements to develop new
efficient IoT systems are energy efficiency, security and operational autonomy of
mobile nodes.
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Roaming improvement might also come from enabling dual connectivity for a de-
vice. Thus [214] provides insight on various projects worldwide improve LPWA
communications by plugging it into a satellite network as a backup link. [215] pro-
vides a complete comparative study of various LPWAN technologies, providing
numbered information on mobility support, deployment cost comparison, packet
loss, energy management, mobility latency. The study also put the solutions stud-
ied into perspective with other operated mobile networks (GSM, LTE) and provides
insight on various possible use cases from asset tracking to healthcare. Vangelista et
al. in [220] sums up recent LoRaWAN Standards evolution regarding roaming and
other improvements. LoRaWAN is presented as the most promising candidate for
worldwide interoperability and connectivity.

In this context, researchers have proposed various solution to mobility issues allow-
ing for a user to access its data wherever his device is located. Most of them focus on
gathering the user data using various solution, from data aggregation [224] [225] to
publish/subscribe mechanisms [226] [227]. Researchers also looked for ways to trace
devices in order to fit the network to their movements [228] [229] [230]. Finally im-
provements to the infrastructure were also studied from implementing a blockchain-
based mechanism [231] [232], devices improvements were proposed [233] and inter-
operability solution were evoked [212] [4].

[224] uses aggregation and clustering to search services in a pool of IoT devices. It
uses a semantic-based approach to explore heterogeneous networks using a decen-
tralized approach to aggregate information fast and precisely. Their method the-
oretically ensures an accurate search system and shows good experimental results
regarding time efficiency. In [225], Almajali et al. study mobile edge computing
under the scope of mobility. They focus on highly mobile devices and solutions to
improve device connectivity in unusual mobility cases.

[227] proposes a solution that consists in improving the MQTT to fit better to mobile
scenarios. By managing data using an MQTT internal buffer, devices can re-deliver
all their messages in the correct order even when some packets are lost or the con-
nection is interrupted.

[226] explores how Software-Defined Networking paradigms might work in accord
with a Data Distribution Service to create an efficient publish/subscribe mechanism
as network backend to IoT infrastructures while addressing some key challenges to
IoT infrastructures such as interconnectivity with an existing and standard network,
mobility, service discovery and scalability.

[228] also builds an infrastructure based on Software-Defined Networking, which
is used to divide the territory spatially in order to follow the devices and adapt the
backend infrastructure based on its movements. Their solution also presents a global
view on the network, which is acceptable for home networks but might present is-
sues in a fully interoperable infrastructure with multiple actors and solutions. [229]
uses Software Defined Networking to manage flows in order to efficiently forward
data to a given location thanks to an efficient path estimator and flow manager. The
solution tries to predict the path taken by a flow based on prior observations, thus
reducing message overhead and energy consumption for flow tables. [230], with
AFIRM (Adaptive Forwarding based Link Recovery for Mobility support) tries to
use Named Data networks as a middle layer to support IoT mobility. Through an ex-
tensive study on routing, Meddeb et al. compare their solution to other approaches
by studying data availability in a sensor mobility context.
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[231] explores a different solution. Exploiting the capabilities of blockchain, the
authors propose a fully decentralized LPWAN backend. Using blockchain allows
building trust between networks, roaming agreements as smart contracts and resolv-
ing identities using a blockchain application. The paper builds a decentralized Lo-
RaWAN architecture that would support roaming without building complex roam-
ing agreements between partners. [232] also presents a blockchain-based infrastruc-
ture, building a federation using blockchain to enable truthful exchanges at the cost
of around 0.5 to 2 ms loss in latency and which makes it hard for users outside of the
federation to take control of the exchanges.

[233] creates a protocol called CoMP (CoAP-based Mobility Management Protocol)
which keeps track of devices address and enable reliable data delivery when com-
municating. This solution can mitigate packet loss while keeping a short retransmis-
sion delay and handover latency.

In their work ([4]), Ayoub et al. exploit the newly-developed SCHC framework as
a workaround to support roaming between LoRaWAN operators. They introduce
an Application Mobility Service (AMS) in the LoRaWAN architecture which is con-
tacted by the device using IPv6 after SCHC compression and is used to prevent
uplink message repetition and improve session continuity.

2.6 DNS

2.6.1 How it works

DNS is a distributed lookup service used to translate between domain names and
IP addresses. It already exists and is global. It is the most efficient, open and scalable
system for name resolution. There can be no massive communication on the Web like
email or web page resolution without DNS. At the beginning of the Internet, a simple
host.txt file located on a single computer was responsible for the translation between
IP addresses (such as 192.134.5.37) and domain names (Such as "www.afnic.fr"). As
Internet grew Paul Mockapetris designed a more suitable distributed database (RFC
1034 [9] and RFC 1035 [10]) which is the DNS.

A host who wishes to access the web page of "www.afnic.fr" uses a client application
such as web browsers or mail clients on the host computer. Such applications send
a request to the local DNS resolver in the local Operating System (OS). The DNS
resolver will invariably have a cache containing recent DNS lookups. If the cache can
answer the request, the resolver will return the value in the cache to the application
that made the request. If the cache does not contain the answer, the resolver will
send the request to one or more designated DNS servers.

Assuming that the answer is not found in the local cache of the hosts computer,
the resolver (client) sends a UDP recursive query to one of its configured local
nameservers. In the case of home users, it will mostly be their Internet Service
Provider(ISP). The local nameserver, in turn, looks for the answer in its local cache
and, if an appropriate record is found, returns the cached address to the client.

On the contrary, if the answer is not found in the cache of the local nameserver, then
the burden of finding the response for the resolver’s query becomes the responsi-
bility of the local name servers. The local nameserver queries the root nameserver
for the address of www.afnic.fr. There are 13 root servers (from a.root servers.net to
m.root servers.net). The root server process the query, and even though it does not
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know the address of www.afnic.fr, it knows that the information should be under
the control of the "Top Level Domain (TLD)" fr servers. In this case, one of the root
servers will refer the query to the .fr nameservers. The local nameserver asks the
.fr nameserver the same question and is referred to the "afnic.fr" nameservers. Fi-
nally, the local nameserver asks "afnic.fr" nameserver for the queried domain name
address and gets the answer.

DNS has been studied since its first RFCs were published. [234], the reference paper
within the ecosystem, first documented DNS effectiveness compared to its concur-
rent solutions, as well as DNS latency and DNS cache hit rate within a university
campus. [235] provides additional insight regarding caching efficiency within a net-
work, [235] also documents the quantity of DNS queries and responses observed
compared to the overall traffic within their campus. [236] is a greater study that
evaluates the responses from the .net and .com TLDs. The article also drafts a defini-
tion of a "normal" DNS resolver, leading them to study DNS "top-talkers", the 40000
resolvers that account for 90% of the traffic DNS in 2012. [237] studies DNS wrong
configuration and its consequences (packet loss, NX domain, increase in latency ...)
by studying various configurations (random sampling, zone transferred, 500 most
popular web servers...) based on a custom DNS resolver.

2.6.2 Standards

The IETF is responsible for DNS-related standardization in RFCs. Initial discus-
sion about having a structure such as the DNS started with [238] based on the do-
main concept. [239] discusses how the domain concept could be used for mail rout-
ing. [9] defines the concepts and [10] describes how the concepts could be imple-
mented. There have been several RFCs focus on the type of Resource Records (RRs)
used in the DNS starting with [240] which specifies the five new DNS types for ex-
perimental purposes, [241] for specifying the location services, [242] to specify the
type on how the URIs could use the DNS and so on.

Another category of DNS standardization is on clarification of existing standards,
such as [243] clarifying the initial DNS specifications in [9] and [10]. There are num-
ber of standards on DNS Operational issues such as [244] on common DNS data file
configuration errors, [245] on common DNS operational and configuration errors,
[246] on operational criteria for Root Name servers and [247] on use of DNS aliases
for Network Services.

As per Bert Hubert [248] there are about 297 RFCs related to DNS. Hence it is im-
possible to provide an exhaustive list of all DNS related standardization documents.
There have been even efforts from the DNS community to limit the number of Stan-
dards in the DNS [249]. The reason being with the growth in the DNS standards
over the past three decades, it has become nearly impossible for DNS developers
and users to read thousands of pages of standards work before any DNS related
implementation could be done.

2.6.3 DNS Evolutions

As mentioned in the previous section [248], DNS is a vast domain in constant
evolution from the first DNS standard published [238]. It should be noted that this
section will not mention every modification related to the evolution of DNS; instead,
we will focus on four specific aspects of DNS evolutions:
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• the evolution to the transport of data over the network: DNS over DTLS, DNS
over TLS, DNS over HTTPS and DNS over QUIC; that secures the link between
the server and the user.

• the signature of DNS authoritative zone, with DNSSEC, which authenticates
the integrity of the data sent from the server.

• the integrity check enabled by the use of DANE to countersign data and cer-
tificates

• the new paradigms introduced by the development of DNS-SD to improve
local network self-configuration

All these aspects will be studied in the following part of the chapter.

Transporting DNS information securely

From the beginning of its use, DNS was mostly based on UDP connections, which
allowed quick exchange between client and server without maintaining sessions or
keeping track of packet losses . But DNS supported different possibility to transport
its content from the first RFCs ([9][10]), as "queries are carried in UDP datagrams or
over TCP connections" [9].

Thus DNS evolved to support additional transport layers, including more secure
transport to encrypt its payload and prevent malicious third parties to listen to, in-
tercept or modify DNS payloads. Its first notable development is the support for TLS
encrypted channel usually called DNS over Transport Layer Security (DNS over TLS
or DoT, RFC 7858 [250]) and its equivalent over Datagram Transport Layer Security
(DNS over DTLS, RFC 8094 [251]). The work from RFC 7858 [250] aims to prevent
eavesdropping from attackers as described in [252] by transporting both the DNS
query and response over a TLS channel. The TLS connection was kept standard to
support interoperability and stick to well-known implementations of the protocol.
RFC 8094 [251], written around the same time, proposes to use DTLS implementa-
tions instead of TLS to prevent head-of-line blocking as well as to reduce the neces-
sary handshake from TCP.

The issues behind DNS queries over TLS, which lead to the development of RFC
8484 [253], were twofold. On the one hand, it was noticed while developing DNS
over TLS that the channel might be censored for technical or political reasons; thus,
finding another way to transmit the information was deemed necessary to prevent
"on-path devices from interfering with DNS operations". On another, as the most
common use for the general public of the Internet is through a web browser, exploit-
ing web technologies to share its channel consistently with Cross-Origin Resource
Sharing (CORS) best practice and exploiting the capabilities of recent web browsers.
Thus came DNS Queries over HTTPS (DoH), labeled RFC 8484 [253] to support these
evolutions.

Another evolution today up for discussions is embedding DNS queries over QUIC.
QUIC is a protocol developed by Google’s team to improve the performance of their
browser Google Chrome. QUIC relies on recent development and best practices
from transports protocols to provide secure, fast and reliable encrypted communica-
tions over UDP. QUIC combines the low connection set up time and head of queue
blocking from UDP with the retransmission efficiency and support from long mes-
sages from TCP while supporting the encryption and authentication introduced by
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TLS or DTLS. The current version of the DNS over QUIC draft is accessible through
([254]).

These standards were also backed by performance measurements, tests and con-
siderations by the research community. [255] studies the tradeoff from the loss in
response time and packets that comes from securing and improving reliability when
navigating the Web by comparing the response times from classic DNS (DNS over
UDP or Do53), DoT and DoH. [256] provides additional information regarding DoT
resolution with RTTs around 15ms for traditional DNS resolution and RTTs over
100ms for DoT use. They observe that securing DNS resolution with DoT comes
with a 100ms tradeoff and multiplies the DNS response time by a 7-factor.

DNSSEC, signing a DNS authoritative zone

An important set of standards concerning DNS involves extending the DNS in-
frastructure for security purposes. DNS security extensions provide origin authen-
tication and integrity assurance services for DNS data, including mechanisms for
authenticated denial of existence of DNS data. [257] provides an introduction to
DNS security and requirements, [258] defines the RRs for the Domain Name Sys-
tem Security Extensions (DNSSEC), [259] on the modifications required in the initial
DNS protocols following the introduction of DNSSEC. [260] on storing certificates
in the DNS, [261] on DNSSEC hashed authenticated denial of existence and [262]
algorithm identifier allocation of DNSSEC.

DNS as an external integrity checker with DANE

Another important security extension envisioned with the DNS infrastructure is to
allow X.509 digital certificates, commonly used for Transport Layer Security (TLS),
to be bound to domain names using DNSSEC [263]. The DNS-Based Authentica-
tion of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA [264]
standardizes a way to authenticate TLS client and server entities with and without
a certificate authority. [265] precises acronyms to replace numerical values and sim-
plify conversations about DANE, [266] Updates the DANE protocol and also pro-
vides Operational Guidance. [267] adds SMTP Security via Opportunistic DANE
TLS, [268] adds the usage of SRV RRs with DANE and RFC 7929 [269] adds DANE
Bindings for OpenPGP.

Discovering services using DNS

Standardizing Services discovery using DNS is the work of a specific group within
the IETF called Extensions for Scalable DNS Service Discovery (dnssd) [270]. Born
from the work from IETF Zero Configuration Networking (zeroconf) [271] working
group, from Stuart Cheshire and Marc Krochmal’s independent RFC DNS-Based
Service Discovery (RFC 6763) [5] and upon the work from Apple Computer Inc.’s
trademark, Bonjour algorithm. DNS-SD and hostname resolution aim to provide a
framework for users and devices to automatize configurations, advertize services
and connect to them.

The working group proposed two standards: DNS Push Notifications [272], and
Discovery Proxy for Multicast DNS-Based Service Discovery [273], and three infor-
mational RFC: Requirements for Scalable DNS-Based Service Discovery (DNS-SD)
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/ Multicast DNS (mDNS) Extensions [274], Selecting Labels for Use with Conven-
tional DNS and Other Resolution Systems in DNS-Based Service Discovery [275] and
DNS-Based Service Discovery (DNS-SD) Privacy and Security Requirements [276] to
pave the way for possible implementations of DNS-SD applications from anyone on
the market.

zeroconf working group published a single RFC [277] that paved the way for de-
vices’ self-configuration on the network. Their Dynamic Configuration of IPv4 Link-
Local Addresses provides a method for hosts to automatically configure their IP in-
terface with an IPv4 address for Link-Local communications. This solution uses the
169.254/16 IPv4 prefix registered for this specific purpose and is not routed on the
Internet.

Then RFC 6763 [5] provides the first insight on using DNS for services discovery; it
provides insight on structuring DNS resource records to facilitate service discovery.
The document describes the necessary tools to deploy a self-configuration mecha-
nism and support it within a local network, then describes a standardized syntax
for devices to provide their identity and describe their services within the network.
Finally, the document describes service discovery and how devices may access the
data advertised by their network peers.

Evolutions to RFC 6763 were necessary to improve the solution’s scalability, solve se-
curity concerns and extend the work from the RFC’s author. Thus the dnssd working
group came to provide these extensions.

RFC7558 [274] paved the way by providing the requirement to improve the scala-
bility of DNS-SD extensions, and RFC 8222 [275] provided standardized labels to
use when designing, advertising and researching a service using DNS-SD. RFC 8765
[272] is a first step to improve scalability by standardizing updates to a DNS-SD
database, by updating a local DNS zone of authority and by reversing the standard
use of DNS from its polling principle where users request information to a notifica-
tion, publish/subscribe approach. RFC8766 [273] specifies a proxy mechanism that
uses Multicast DNS to discover records and push them into a DNS namespace, thus
providing a localized and centralized point within the local network that contains
advertised services from other devices instead of asking them to listen to every ad-
vertisement and save them in their memory. This proves especially interesting in the
IoT scope, where devices are not always listening to all communications.

DNS-Based Service Discovery (DNS-SD) Privacy and Security Requirements[276]
provides advice and insight on implementing secure DNS-SD services. The RFC
analyzes different scenarios, the RFC proposes various requirements to implement
secure and privacy-preserving mechanisms to support DNS-SD-enabled communi-
cation. The document does not provide many solutions to its scenarios but asks all
the questions necessary in a DNS-SD context regarding client and server security
requirements to support new contributions in the DNS-SD community.

DNS-SD was also studied by the scientific community ([278], [279], [280], [281], [282],
[283], [284], [285])

[278] listed the first requirements for DNS-SD in IoT applications. Requirements that
were expanded and studied in a thesis [285] that proposed to connect the Smart Ob-
jects to the IP world using a combination of XMPP for messages and mDNS/DNS-
SD for service discovery. [285], in his PhD defense, proposed various adaptation
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layers for IoT, including a lightweight Bonjour implementation called uBonjour and
a lightweight XMPP Stack called uXMPP2.

[279] developed a discovery protocol based on DNS-SD in Contiki OS and identified
issues to solve in order to propose an efficient and interoperable service discovery
for IoT. [280] also proposed such a solution for constrained devices based on Ap-
ple’s mDNS/DNS-SD implementation and extended their work in [281] to propose
scalability improvements to their solution to support large scale IoT deployments.

In [282], an extension to DNS-SD paradigms for Industrial IoT is proposed, and its
reliability, efficiency and latency is tested extensively and show promising results.
[283] proposed enhancements to the DNS-SD standard by exploiting the capabilities
of DNS caches using techniques from the stateless DNS (sDNS) community. [284]
continues the work on Service Discovery for IoT by leveraging the capabilities from
DNS Name Autoconfiguration (DNSNA) implemented with a CoAP stack to sup-
port user configuration, monitoring and remote control.

2.7 Machine Learning and IoT

Artificial Intelligent approaches are efficient solutions to many issues, [144] is such
an example where neural networks are exploited to support IoT specific issues such
as improving compression capabilities by compressing data. Autoencoders are an-
other interesting neural network approach to compression in IoT applications ([157])

Our work regarding Artificial Intelligent approaches for IoT applications mainly re-
lies on improvements to compression techniques. A state-of-the-art on compression
techniques, backed by such approaches, is provided at the beginning of 5 in section
5.2. This section will mostly summarize other Artificial Intelligent approaches re-
lated to IoT solutions to provide insight on possible applications of the techniques
developed by researchers from this field to IoT solutions.

Leveraging Artificial Intelligent approaches in IoT contexts usually consist of two
possible solutions: leveraging AI to exploit IoT data or empowering IoT devices
using AI technologies.

An excellent example of leveraging AI to exploit IoT data is encountered in Indus-
trial IoT use cases, for which sensor deployment can be massive and controlled and
in which data can be centralized and easily exploited. [286], for example, exploits
a framework build on cloud technologies to propose edge AI in an IIoT context, in
which IoT data is pushed to the edge where data is processed. [287] reduces process-
ing time in edge computing required in IoT applications by exploiting the resources
from cloud infrastructures. [288] evaluates deep learning approaches in a combined
IoT/Edge environment. [289] also exploits the edge infrastructure to improve IoT
applications using a complex storage/processing system between edge and cloud to
optimize all the tenants in processing IoT devices efficiently and with low latency.

Two other scenarios are usually studied: healthcare and agriculture. In [290], IoT
devices are used to monitor a patient’s heartbeat rate, and ML detects stress based
on heartbeat data and enhances patient care based on its physiological condition.
[291] proposes a combination of sensors, actuators and edge computing for smart
farming with improvements in terms of resources scheduling compared to classic
approaches. [292] and [293] build systems for water grid management that combines
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sensors and actuators to manage the water infrastructure according to the needs de-
tected by the combination of real-time measurements and predictions. [293] also
exploits edge computing infrastructures to process videos, manager fertilizers sup-
ply and treat plant diseases and pests.

[294] exploits data collected in a museum from IoT devices to classify users be-
haviour to provide insight regarding customers to the museum stakeholders. [295]
summarizes a lot of these approaches and provides a framework to exploit federated
learning between IoT applications and exploit sensor data and behavior from other
applications to kickstart IoT applications based on ML data analysis.

Many approaches for empowering IoT devices exploiting the strengths of AI consist
of security enhancements, in [296] proposes to embark a ML component within an
IoT gateway to detect traffic anomalies. [297] investigates attack models in IoT sys-
tems and present various machine-learning (ML) techniques for authentication or
access control to protect users and data privacy. [298] analyses network traffic from
IoT devices in a smart city environment to propose an Anomaly Detection system for
IoT devices to detect compromised devices and mitigate attacks. [299] exploits ML
capabilities to improve LoRa communications security and avoid security threats at
the cost of scalability.

The LIMITS (LIghtweight Machine Learning for IoT Systems) [300] open-source
framework is an interesting tool that proposes to validate and assist in integrating
ML models in IoT applications. Such a solution helps developers and researchers to
design embedded trained ML models onto sensors by estimating the feasibility of
their project. Unfortunately, it cannot take into account framework-specific depen-
dencies and keeps a generic approach.

Our approach differs from the approaches from this section as our work consists in
embedding ML algorithms directly onto devices and realize ML-based calculations
despite their constrained storage and processing power.

2.8 Discussion

Our readings regarding IoT, naming and its related applications lead us to work
on various subjects. The general state of the IoT and its expected growth within the
next years justify our approach to focus on interoperability and other performances
challenges within IoT ecosystems, such as scalability or mobility support. These
challenges lead us to study the possibility offered by querying mechanisms for IoT
solutions, and their associated systems such as ONS [13], ORS or the Handle system.

The issue of querying mechanism is vast; thus, we focus on data storage, data re-
trieval, caching and discovery. Query performances and query approaches are also
studied. Data storage usually rely on databases, from SQL to NoSQL, but also
linked to other technologies, blockchain being one of them, the DNS another. Spatio-
temporal data retrieval raise concerns regarding the location of databases and the
cache expiration. Caching is a concern when working with mobile devices or chang-
ing information, for which cache duration, renewal or expiration are an operational
focus. Various architectures can be discussed for querying; some are built within
cloud approaches, while others rely on edge storage for lower response time. The
DNS provides an efficient middle ground between cloud-centric solutions and edge
approaches. A key necessity with querying is also discovery, various approaches
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were studied, and DNS provides its own solution to the problem. Finally, we pro-
vide insight on query performances and approaches; recent work focused on new,
innovative technologies, but DNS, as old as it is, remains the most used on the Inter-
net.

Improving the scalability of IoT solutions might come with different approaches, we
chose to focus on compression techniques to reduce payload size or network conges-
tion. However, other approaches were mentioned, such as improving transmission
scheduling or fine-tuning transmission parameters.

One of the major concerns within IoT is security. IoT solutions notoriously offer
poor security qualities and rely on outdated authentication paradigms and crypto-
graphic algorithms. Our focus regarding security relied on working with authen-
tication, trust and privacy. We studied various authentication approaches for IoT,
their strengths and weaknesses, from the research community and the SDOs such as
IETF’s work on authentication as part of the pana working group. Key concerns with
trust are also addressed on building secure and efficient handshakes to bootstrap
trust in IoT scenarios, which is a key concern for our work on IoTRoam. Finally, pri-
vacy preservation techniques are studied. In an all-connected world, privacy threats
are a key concern to the security research community and evaluating the invasion of
privacy and surfaces of attacks are essential to users’ acceptance of IoT solutions.

Mobility management is one of the most important points when designing an IoT
system. The devices studied within this thesis, such as sensors, watches, phones,
luggage or cars, are highly mobile and supporting mobility is a key factor to improve
IoT solutions. Mobility is, for example, a major concern in smart city environments.
We studied mobility support through two aspects, coverage and roaming. Cover-
age is well documented; building solutions to improve coverage include developing
new modulation techniques, developing new hardware or improving its knowledge
of existing techniques to fine-tune the transmissions parameters. Roaming is a more
organizational approach that rely on globally accessible RGs; within IoT ecosystems
and its various network operators, roaming needs to rely on easy-to-deploy solu-
tions, with collaboration inside an open ecosystem and communication in-between
parties. Our focus on the LoRaWAN technology, and its open backend solution and
specifications, is directly linked to this observation.

DNS, and its 297 RFCs, is a reference solution for information querying and discov-
ery within the Internet. We detailed its functioning as well various DNS-linked stan-
dards that participate in the improvement of the global DNS ecosystem, including
building trust through signed resources, securing transport channels and discover-
ing resources.

Finally, we provided relevant information with regards to ML implementations for
IoT ecosystems. ML is a popular subject that encompasses various approach section
5.2 will detail more specific information regarding compression techniques for IoT
traffic. Thus, we provided insight into the way IoT solutions usually interact with
the ML world. We observed that ML is often used to improve users’ knowledge
of their studied datasets or to support and complement existing solutions such as
placement solutions or tracking solutions.
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Chapter 3

IoTRoam, an IoT roaming
federation

As presented in the previous chapter, mobility management is one of the most
important points when designing an IoT system. We presented two possibility to
support mobility of IoT devices:

• improving antennas coverage, by studying interferences, developing direc-
tional antennas or developing new modulations to support more device

• developing roaming between infrastructure, a more organizational approach
that rely on collaborative work between operators that mutualize their infras-
tructure to reduce their costs.

Within IoT ecosystems and its various network operators, roaming needs to rely on
easy-to-deploy solutions, with collaboration inside an open ecosystem and commu-
nication in-between parties. This chapter presents our work on improving Roam-
ing capabilities in various IoT scenarios, with a focus on the LoRaWAN technology,
and its open backend solution and specifications, using the DNS infrastructure as a
facilitator. We describe our experimental platform and tests. Then present the con-
sequences of introducing a distributed structure that satisfies the requirements of
constrained IoT environments.

3.1 Introduction

Roaming is an ED’s capability to transmit and receive data on a VN. A classic ex-
ample is cellular roaming, wherein a subscriber can use the VN infrastructure (such
as the radio spectrum, base station) - when the subscriber’s HN does not provide
coverage. Roaming between the HN and the VN needs to consider three broad cri-
teria: technical, economic and regulatory. Technically, roaming requires an intercon-
nection between the HN and the VN directly or via a third party. Economically, the
interconnections between different network operators are governed by agreements,
which define the terms of interconnection. There should be an external body (such
as governments) which regulates these agreements so that the terms and conditions
are beneficial both to subscribers and network operators. Our work focuses only on
interconnection from the technical perspective.

Interconnection in IoT becomes possible either by establishing a direct ’One-to-One’
interconnection or using a ’Hub’ model. The ’One-to-One’ interconnection is similar
to the Internet peering model wherein two IoT networks interconnect. ’Hub’ is sim-
ilar to an Internet transit model, wherein by establishing an interconnection with a



40 Chapter 3. IoTRoam, an IoT roaming federation

single hub, it is possible to exchange traffic with the networks connected to that hub
as well as with the networks connected to its peers. Both the ’Hub’ and the ’One-
to-One’ interconnection models evolve as independent Silos wherein the ED in the
coverage area of a VN can connect to its service only if there is a prior interconnec-
tion agreement between its HN and the VN or between the HN and the ’Hub’. The
’One-to-One’ or ’Hub’ interconnection deployments have been done following out-
of-band mechanisms, and to our knowledge, there are no standardized interconnec-
tion procedures for interconnecting different IoT networks for roaming. In the inde-
pendent silo scenario, when an IoT ED onboards to a VN, bootstrapping trust [301]
is a crucial security concern. The ED needs to be cryptographically authenticated
by the VN based on credentials such as its identifier and a PSK. Cryptography-based
authentication usually relies on one or more trust anchors [2]. In the proprietary silo
scenarios, the trust anchor information may be preset with the ED or established out
of band.

We started with the idea of setting up an open roaming federated platform inte-
grating all IoT connectivity technologies. We debated this idea by discussing it with
the IETF IoT onboarding mailing list [302]. This discussion made us realize that
we should focus on a specific IoT connectivity technology and, if possible, extend
the concept to other IoT technologies. IoT connectivity technologies could be clas-
sified broadly into three categories [15]: short-range (Bluetooth, Zigbee, Zwave),
medium-range (Wi-Fi) and long-range (LoRa, NB-IoT, Wi-Sun, Sigfox). We elimi-
nated from our focus technologies that cannot support roaming, such as Short-range
technologies and closed networks such as Sigfox, which do not require the roam-
ing feature, as it is a single network. Narrowing our focus based on requirements,
we short-listed LoRaWAN [303], which falls under the LPWAN Technologies [304]
category. Compared to other IoT connectivity technologies, the LoRaWAN ecosys-
tem provides freedom to its stakeholders to choose the ED manufacturers, network
service providers and application service providers. Since the radio connectivity
uses a license-free spectrum, the freedom of choice in LoRaWAN also extends to
deployment options. There are public LoRaWAN having nationwide coverage; pri-
vate LoRaWAN focusing on specific use-cases and community networks that can be
used for free by end-users.

We intend to test the federated platform with academic institutions as an open and
accessible interconnected IoT network without considering economic factors. We
started roaming testings using this platform with research and academic institu-
tions. This initiative was presented to the LoRa Alliance (the SDO responsible for
LoRaWAN specifications) and will be included as part of their academic outreach
program.

Architectures proposing solutions to the technology barriers mentioned earlier
should consider the constrained characteristics of IoT environments. If the pro-
posed architecture is validated with LoRaWAN having constraints such as the
maximum frame size of 51 bytes (or 222 bytes for lower SFs) and latency require-
ments of two seconds for default uplink/downlink exchange, we hypothesize
that architecture is extendable to other IoT networks. Mobility between the three
different types of LoRaWAN networks (public, private, community) is a significant
issue. A company may use LoRaWAN to monitor the battery level of vehicles in its
fleet, an agricultural cooperative may use LoRaWAN to monitor the stock flows of
its associates, or an emergency service may use LoRaWAN to coordinate its teams
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in the field. Most existing studies on LoRaWAN consider scenarios where the EDs
are mobile, but remain under the umbrella of the same NS [305].

We labeled this platform IoTRoam and its objective is to achieve, with IoT con-
nectivity technologies the same interconnection functionalities that eduroam [306]
proposes with Wi-Fi connection. In eduroam, an end-user who has credentials to
connect to a particular eduroam Wi-Fi network for Internet access can access the In-
ternet from any other eduroam network seamlessly. The first requirement is that an
ED having credentials to connect to a particular IoTRoam network should be able
to access its service seamlessly (with minimum prior configuration requirements) in
the event of finding itself in the coverage area of the VN. The second requirement
is that the proposed federated model should be operationally feasible. The vision is
to start with LoRaWAN and extend the design to apply them to other IoT networks.
The IoTRoam architecture aims to enable interoperability between the silos in the
IoT domain by leveraging the DNS protocol, its security extensions (DNSSEC [307])
and a PKI using self-signed X.509 digital certificates, thus bringing in the following
contributions:

• The proposed architecture enables roaming between different LoRaWAN net-
works without the need of having any prior interconnection agreement

• The architecture includes an AA framework based on PKI enabling secure
onboarding of the IoT ED;

• The architecture satisfies basic IoT operational requirements such as scaling,
viability by not incurring additional costs, ease of deployment, interoper-
ability between different IoT networks involving multiple stakeholders;

• Experiences from the implementation as a Proof of Concept (PoC) has enabled
us to propose three accepted change requests (Change request is the procedure
to provide modifications to the LoRaWAN specifications);

• With this PoC, we tested different LoRaWAN roaming scenarios with two In-
stitutions in France - IMT Atlantique and Telecom SudParis (TSP). We ran
measurements to assess whether the additional overhead introduced by the
proposed architecture meets the constrained requirements of LoRaWAN;

Accounting was kept out of the scope of this project but devising device classes
and monitoring roaming user’s band use could be interesting to study afterwards.
IoTRoam’s added value is the possibility of using core Internet infrastructures such
as DNS and PKI to enable interconnection and security of IoT ED onboarding. The
objective is to extend Internet resolution and security infrastructure services to be
adapted to IoT, thus enabling seamless interoperability.

The remaining parts of this chapter are structured as follows: Based on the litera-
ture, Section 3.2 identifies the requirements for a secure and seamless interconnec-
tion architecture. Section 3.3 summarize LoRaWAN key aspects regarding autho-
rization and authentication, section 3.4 presents our design choices and section 3.5
describes our integration of PKI paradygmes in the network. Then section 3.6 de-
scribes our experimental setup to validate our proposed architecture for LoRaWAN
passive roaming. In Section 3.7, we evaluate whether the proposed mechanisms sat-
isfy LoRaWAN constraints. We propose to extend this solution by provisionning the
DNS queried information beforehand using a combination of prefetching techniques
and mobility prediction algorithms (3.8). Finally, we sum up our contributions in 3.9
and conclusion in 3.10.
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3.2 Motivation for a federated interconnection model

Since the focus of the chapter is on interconnecting IoT networks, our initial ap-
proach was to reuse existing standardized Interconnection models for roaming. The
hurdle is that there is no single SDO that has the sole responsibility of making IoT
Standards. As to our knowledge, there is no standardization work on IoT intercon-
nection for roaming, satisfying the following basic roaming requirements:

• The VN should be able to provide the roaming service even if it does not have
a prior interconnection agreement with the ED’s HN;

• The VN should be able to control the terms under which a roaming ED is
allowed to use its resources securely;

• The infrastructure interconnecting the home and the VN should be able to
scale;

• The interconnecting infrastructure should be open, global and viable opera-
tionally;

A recent research study [308] proposed a mechanism to enable roaming between
LoRaWAN and 5G network. This proposal includes a handover roaming mecha-
nism for LoRaWAN that relies on 5G to authenticate the ED to the network. To our
knowledge, as part of the LoRaWAN community, tests have been done for passive
roaming, but handover roaming scenarios are still in the pipeline. Also, in the article,
the ED is intended to be equipped with both 5G and LoRa interfaces. Adding a 5G
interface to the ED will considerably reduce the battery life, which is a disadvantage
when considering operational feasibility. Keeping our focus on building an opera-
tionally feasible interconnected IoT platform, we turned to the WBA Open Roaming
[309] initiative for guidelines. Concerning the basic requirements for designing an
architecture for an Open, seamless IoT interconnection, a WBA study [310] outlined
a set of requirements to consider.

When an IoT ED is roaming, the VN should retrieve its identifier from the incom-
ing Join Request (JR) packet to identify the ED’s HN. Therefore, identifiers play a
vital role in IoT interconnection [311] [312]. IoT identifiers are structured into two
different categories: Hierarchical and Flat. An example of a hierarchical identifier is
EPC [313]. The barcodes attached to consumer products are based on EPC identifi-
cation. An example of a flat identifier is UDID, a unique serial number assigned to
track and record each Apple manufactured device. Both Apple and the EPC iden-
tity management infrastructures use closed databases to provision the identifiers.
Mapping the ED’s identifier to its appropriate network or service is only possible
for entities who are provided access to these databases. From a global (not just lim-
iting to LoRaWAN) IoT perspective, the first issue to resolve is to let different IoT
sectors use their existing identifiers but to use a global database for IoT allocation
and resolution.

The second issue is to use a global AA model, which controls the terms under
which a roaming ED is allowed to securely use the resources in the environments
operated by the VN. AA functionalities are usually consolidated in a single central-
ized database [184]. The centralized AA framework has its advantages and signifi-
cant disadvantages, such as creating a single point of failure. Blockchain using dis-
tributed ledger has been experimented with and deployed [185][186] to accomplish
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a scalable decentralized AA framework. Nevertheless, the blockchain model has
several drawbacks as a feasible operational model [187] in an open/global scenario.

A third technology barrier that we consider is that any proposed architecture should
satisfy IoT environment constraints requirements detailed further. Narrowing our
focus on requirements, we short-listed LoRaWAN due to its open standard charac-
teristics and its ability to set up a private roaming set up.

The DNS infrastructure serves, among many other uses, to link domain names and
IP addresses and is scalable and operationally viable on the Internet. Standards
such as ONS [13] for the consumer industry, Object Resolution System (ORS) stan-
dardized jointly by the ITU-T and ISO/IEC, and the Handle system standardized
by the ISO uses the DNS infrastructure to resolve the IoT identifiers to its related
service on the Internet. DNS has been used by Mobile Network Operators (MNOs)
on the inter-operator IP backbone network to enable data roaming [314].

eduroam [306], a Wi-Fi-based roaming platform widely adopted in the academic
community, uses a distributed PKI based on X.509 digital certificates for AA. The
trust fabric in eduroam is a PSK between the RADIUS servers (organizational, na-
tional, global) based on the DNS hierarchy. Such a trust fabric, wherein a PSK is
shared hierarchically, hinders the design that we envision for IoTRoam. Different
IoT networks use different mechanisms to share the PSK between the ED and the
AA servers on the Internet to securely onboard the ED to its HN. Forcing them to
transition to a newly proposed PSK mechanism is not operationally possible since
multiple stakeholders are involved. We proposed to use the PKI based on X.509
self-signed digital certificates and DNSSEC trust anchor fabric that allows the IoT
stakeholders to use their existing PSK mechanism.

IoT Roaming is different from cellular roaming and thus posing new challenges.
In cellular roaming, interconnection is usually geographically defined and shared
between different public MNOs (usually three to four MNOs in a country). In the
IoT scenario, there are public, private, community-based network operators, and
there could be thousands of private network operators within a Country. Adding
to this complexity, IoT roaming mostly needs to have multi-layer interconnection
agreements. For example, the authentication and authorization of the ED to the
roaming network may be governed by a security solution provider or by the ED
manufacturer rather than the network operator.

The IoTRoam experience brings the following contributions:

• A model that seamlessly interconnects the multi-stakeholders, IoT connectiv-
ity technologies using standards and infrastructure currently employed on the
Internet

• A model that is operationally feasible and can be deployed with minimum
prior configuration requirements

• A PoC[315] in place, which is open, can be accessed freely and used by the
community. In this process, we have also contributed to software develop-
ments [316]
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3.3 LoRaWAN Interconnection with regards to Authentica-
tion and Authorization

LoRaWAN is an asymmetric protocol, with a star topology as shown in (Figure
3.1). Data transmitted by the ED is received by a RG, which relays it to a NS. The NS
decides on further processing the incoming data based on the ED’s unique identi-
fier (DevEUI). The NS has multiple responsibilities like forwarding the uplink from
the ED to the AS, queuing the downlink from the AS to the ED, forwarding the
ED onboarding request to the appropriate AA servers, named as Join Server (JS) in
LoRaWAN terminology. The AS handles all the application-layer payloads of the
associated EDs and provides application-level service to the end-user. While the ED
is connected to the RG via LoRa modulated messages, the connection between the
RG, the NS and the AS is done through IP packets and can be backhauled via Wi-Fi,
hardwired Ethernet or Cellular connection.

FIGURE 3.1: Basic LoRaWAN set up

The JS acting as the AA server control the terms on how the ED gets activated (i.e.
onboarded) to a selected LoRaWAN. There are two types of ED activation: Over
the Air Activation (OTAA) and Activation by Personalization (ABP). With ABP, the
ED is directly connected to a LoRaWAN by hardcoding the cryptographic keys and
other parameters required for secured communication, Roaming would not be pos-
sible in this first case. With OTAA, the parameters necessary to create a secured
session between the ED and the servers on the Internet are dynamically created for
a session. This is similar to TLS handshake. OTAA is preferred over ABP since it is
dynamic, decouples the ED and the backend infrastructure and does not need con-
figuration parameter hardcoding. This chapter will focus only on the OTAA process.
In the HN scenario, the ED performs a Join procedure with the JS during OTAA by
sending the JR. The JR payload contains the ED’s unique identifier (DevEUI), the
associated application identifier (App EUI) and JoinEUI (unique identifier pointing
to the JS).

The JS associated with the ED also has prior information such as the ED’s DevEUI,
the cryptographic keys: NwkKey and AppKey required for generating session keys
to secure the communication between the ED and the NS and AS. These are the pre-
shared information between the ED and JS (the AA server) on the Internet, which
we proposed not to modify. Once the JS authenticates the ED, it responds with a
JoinAns message to the NS. The JoinAns message contains different session keys
derived from the root keys: one set of cryptographic keys for securing the ED <-–>
NS interface and another for securing the communication between the ED <-–> AS
interface, for a particular session.

In the VN scenario, a non-activated ED should first activate itself and then trans-
mit/receive the payload. Roaming scenarios in LoRaWAN are classified into passive



3.3. LoRaWAN Interconnection with regards to Authentication and Authorization45

and handover roaming. We limit ourselves to passive roaming since handover roam-
ing is still in the testing stage and an open LoRaWAN software stack for handover
roaming is not yet available.

In passive roaming, the MAC layer control of the ED is maintained by the home NS,
which becomes the serving NS (sNS), as shown in Figure 3.2. The roaming ED uses
the NS of the VN named forwarding NS (fNS) to send messages to its sNS. The fNS
forwards messages between the sNS and the ED. If the ED is not yet activated, then
it has to get activated using passive roaming activation process as shown in Figure
3.2. When the fNS does not have prior information about the sNS, the fNS SHALL
use the DNS to find the roaming ED’s JS IP address.

FIGURE 3.2: Passive Roaming Activation message flow

As per the LoRaWAN backend specifications, the LoRa Alliance has allocated a
DNS Zone file (joineuis.lorawan.net) for provisioning the information mapping the
JoinEUI to its corresponding JS operator. Each nibble of the JoinEUI represented in
the hexadecimal format "0x00005E100000002F" is first reversed. Then periods are
inserted between each nibble and the domain name joineuis.lorawan.net is con-
catenated as the suffix (JoinEUIs are theoretically hierarchical values based on IEEE
OUIs tables). The final result is a domain name that can be provisioned in the DNS
zone file joineuis.lorawan.net pointing to their respective JS as follows:

f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.joineuis.lorawan.net. IN A 192.168.1.1

Thus the fNS, by running a standard DNS resolution, can retrieve the IP address
of the JS corresponding to the JoinEUI and kickstart the Join procedure. The fNS
then queries and obtains the NetID (i.e. the 24 bit Unique Network Identifier of
the sNS represented in the hexadecimal format: "0x60050A") from the JS. Similar to
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JoinEUI, the LoRaWAN backend specifications has allocated a specific DNS Zone
file (netids.lorawan.net) for mapping the NetID’s to their corresponding NS. Any
LoRaWAN operator(either private, public or community) needs to obtain from the
LoRa Alliance a unique NetID (which is a flat identifier) and provision it in the DNS
zone file "netids.lorawan.net", a standardized DNS resource record pointing the al-
located NetID to its sNS as follows:

60050a.netids.lorawan.net. IN A 192.168.1.2

Thus for a fNS, it is possible to resolve the sNS of an ED by querying the NetIDs
DNS zone file, even if there is no prior roaming agreement. The sNS and the fNS
exchange data, and finally, the ED is activated once the ED receives the JoinAccept
(JAccept) with the session keys for transmitting uplink or downlink messages. The
DNS provisioning mechanism has ensured that both JoinEUI and NetID could be
provisioned or updated by different entities in their respective DNS Zones (Servers);
they are unique in the global scope and cannot be duplicated. The DNS resolution
mechanism ensures that both the JS and the NS can be accessed from anywhere
on the Internet with a simple DNS resolution. Figure 3.2 demonstrates how multi-
stakeholders interconnection complexities are solved due to DNS provisioning and
resolution since for a single ED onboarding, the JS could be operated by a differ-
ent entity than the NS operator. Thus, the LoRaWAN architecture design by itself
provides a partial solution to the WBA requirements described in section 3.2.

3.4 Design choices regarding IoT identifiers provisionning

Both previously mentioned IoT identifier types, hierarchical (EPC) and flat
(UDID), could be accessed from the global Internet if they are provisioned in the
global DNS database (Figure 3.3). Then it is up to the client libraries to make the
conversion and add the specific sub-domain suffix (udid.apple for UDID and gs1.fr
for EPC) to the identifiers. Once the identifier is converted to a domain name as
follows:

2b6f0cc904d137be2e1730235f5664094b831186.udid.apple.
3.1.3.1.6.2.3.3.9.3.4.0.3.gs1.fr.

It will follow the normal DNS resolution process to resolve the identifier’s associated
resource/service/metadata globally.

Some parameters such as ED’s HN identity, the AA server identity, the authenti-
cation credentials and the port numbers must be configured in proprietary roam-
ing models such as a hub before an ED can roam outside its HN. Except for the
authentication credentials, all other information could be retrieved from the DNS
database. Thus, by provisioning their IoT identifiers and related information in the
DNS database under their own domain namespace, different IoT sectors could inter-
operate by using their existing identifiers, thus satisfying operational viability. The
ED is configured with a PSK that is only shared with an AA server, creating the ses-
sion keys for encrypted communication between the ED and the different associated
servers on the Internet. When the ED is onboarding in a VN, the VN should establish
mutual authentication with the ED’s AA servers and the HN. To establish mutual
authentication dynamically between different servers on the Internet managed by
multiple stakeholders, our hypothesis is to use the DNSSEC infrastructure as trust
anchors and a PKI based on self-signed X.509 digital certificates. The DNSSEC ex-
tensions use asymmetric cryptographic signature mechanisms to authenticate the
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FIGURE 3.3: Provisioning IoT identifiers on the Internet domain
namespace

data provisioned in the DNS database. The Signatures and public keys come in the
form of new DNS records that provide authentication. With DNSSEC, the origin and
integrity of received data can be verified using one or more key pairs associated with
the DNS zone.

DNS is a time-tested infrastructure and had scaled from hundreds of domains
from the Internet’s beginning to billions currently [14]. These factors influenced
our choice to use the DNS infrastructure, its security extensions and a PKI in
the LoRaWAN roaming architecture. A DNS infrastructure, similar to the LoRa
Alliance’s lorawan.net, was set up under the domain iotreg.net for provisioning
the JoinEUIs and NetIDs, as shown in Figure 3.3. Each nibble of the JoinEUI
represented in the hexadecimal format 0x00005E100000002F is first reversed. Then,
periods are inserted between each nibble and the domain name joineuis.iotreg.net
is concatenated as the suffix. The final result is a domain name provisioned in the
DNS database pointing to their respective JS as follows:

f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.joineuis.iotreg.net. IN A 192.168.1.1

Similar to the JoinEUI, the NetID represented in the hexadecimal format are pro-
visioned into the DNS without reversing and adding periods between each digit,
pointing the allocated NetID to its NS is as follows:

c0002f.netids.iotreg.net. IN A 192.168.1.2

The JoinEUI is reversed, and periods are added since it benefits from a hierarchical
model and the NetID is based on the flat model. The DNS provisioning mechanism
has ensured that both JoinEUI and NetID could be provisioned or updated by dif-
ferent entities in their respective DNS Zones; they are unique in the global scope
and cannot be duplicated. Both JS and the NS can be accessed from anywhere on
the Internet, and with a simple DNS resolution, the JoinEUI can be resolved to its
JS and NetID to its NS dynamically without any prior interconnection agreements
shared in advance. The JS and the NS DNS resolution information are secured from
being spoofed on the wire and modified at the DNS database since the DNS infras-
tructure is signed by DNSSEC. We developed and provided a secure, automatized
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DNS provisioning platform that could be used by the community. With a secured
API key, any authorized user can access the User Interface (UI) (via web or API).
The UI enables authorized users to do multiple operations (creation, modification,
deletion) of only their data in the DNS database. To make it easy for the commu-
nity to understand and use the interface, a video tutorial [317] is provided. While
testing the UI with some LoRa Alliance community members, we encountered op-
erational issues such as validating that the data provisioned in the DNS is done
by the rightful owner. The need to validate the JoinEUI (an IEEE EUI-64 identifier
provisioned by the IEEE and has Organizational Unique Identifier (OUI) in the IEEE
EUI-64) with the IEEE OUI database, were identified and implemented, thanks to the
PoC. The implemented solution has been provided as feedback to the LoRa Alliance,
which could be integrated when the DNS service operated by the LoRa Alliance is
deployed.

There was no existing off-shelf or open-source LoRaWAN network stack software
that uses DNS for ED onboarding or roaming. We collaborated with the open-source
Chirpstack network stack [318] author to update the software to integrate both func-
tionalities. The NS, JS and the AS in our PoC are installed with appropriate software
from Chirpstack, thus enabling DNS resolution.

3.5 Security integration to the experimental set up and vali-
dation

For secure ED onboarding, the interface between the servers (NS, JS and the AS,
which could be grouped as backend elements) in the IP space (Figure 3.5) should be
mutually authenticated (i.e., both the client and the server authenticate each other),
as per the LoRaWAN Backend Interface Specification [303]. However, the mecha-
nisms for mutual authentication is left to the implementer’s choice and is not nor-
mative.

The PKI using the X.509 digital certificates signed by a trusted Certificate Authority
(CA) is widely used to secure web traffic. However, the CA trust model for issu-
ing the X.509 digital certificates is not operationally feasible for IoTRoam. On the
web, the browser client (such as Chrome, Firefox) has a certificate store containing
thousands of Root CA certificates. The browser authenticates any server that de-
livers a X.509 certificate digitally signed by anyone of the Root CA in its certificate
store. Such certificate store infrastructure is not available in the LoRaWAN backend
network elements or any IoT backend infrastructures. Even if we assume the infras-
tructure exists, the digital certificates come at a cost, which is not viable for most IoT
services. We tried with Let’s Encrypt, which provides X.509 digital certificates for
free. However, it was not possible to benefit since they do not provide certificates
for domain names with more than ten labels (JoinEUI has more than 16 labels). A vi-
able solution to resolve the operational and cost issue is to generate our Self-Signed
certificates.

Our certificate provisioning model is that any institution willing to test roaming
based on the IoTRoam architecture can request intermediate certificates from a
trusted Root CA. Figure 3.4 shows a scenario wherein Afnic plays the role of
Root CA and generates intermediate certificates for two independent LoRaWAN
networks - TSP & Afnic Labs. The intermediate CAs will, in turn, generate the leaf
certificates for backend elements. Details on obtaining an intermediate certificate
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FIGURE 3.4: IoTRoam Certificate provisioning infrastructure

and generating the leaf certificates are documented [315]. We further simplified the
process, wherein the institutions can generate the leaf certificates by just running a
makefile after customizing their JSON configuration files and adding the provided
leaf certificates information into each of the backend elements configuration files.

3.6 Experimental Setup

To validate the architecture, two independent LoRaWAN networks were set up
separated by a distance of 34 kilometres. The two locations are Afnic (in the Yvelines
department in France) and Télécom SudParis (in the Essonne department in France).
The backend elements are installed with the open-source Chirpstack network stack
and are configured with their respective intermediate and leaf certificates.

FIGURE 3.5: Testing Passive roaming ED onboarding using the pro-
posed architecture

Figure 3.5 shows that the ED configured with TSP as HN uses the RG in Afnic’s
coverage area to onboard (Step 1). The RG forwards (Step 2) the incoming JR to the
Afnic NS, which in turn uses the DNS infrastructure (Step 3) to retrieve the TSP-JS IP
address (based on the JoinEUI in the JR) since the ED is unknown to it. Afnic-NS and
the TSP- JS runs a TLS handshake for mutual authentication (Step 4). During mutual
authentication testing, we identified that combining the intermediate and the server
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leaf certificate (a combined trust chain) during a TLS handshake could bypass the
need for having a certificate store with all intermediate certificates and store only
the Root CA certificate. The certificate validation process is done by sending the
combined trust chain to the server’s IP address. On receiving the combined trust
chain, the server first verifies the leaf certificate in the combined trust chain. When
the leaf certificate is unknown, it checks the following certificate in the chain, the
intermediate certificate. Since the Root CA signs the intermediate certificate, the
combined certificate chain becomes trusted. Thus, the backend network elements
(NS, AS and the JS) could be mutually authenticated even if they are in different
networks since they have a common Root CA at the top of the chain of trust.

On a successful mutual authentication between the Afnic-NS and the TSP-JS, Afnic-
NS retrieves the NetID of the ED from the TSP-JS (Step 4). Using the retrieved NetID,
the IP address of the ED’s NS (i.e., TSP-NS) is obtained (Step 5) via DNS resolution,
and mutual authentication is established between the Afnic-NS and TSP-NS (Step
6). Once the mutual authentication is established between the different servers in
the IP interface, the JR is sent to the TSP-JS to create the cryptographic session keys.
The cryptographic session keys are sent back to the ED via the PKI secured mutual
authentication channel as Join Answer (JAns) and Join Accept (JAccept) (Step 7).
Finally, a secured session between the ED and the associated servers on the Internet
using the generated session keys (Step 8).

3.7 Performance evaluation

The time taken for the ED to onboard (i.e. Steps 1-7 in Figure 3.5) is the metric
that we want to measure to study the latency influenced by DNS and PKI. In the
LoRAWAN terminology, the onboarding process is termed as OTAA.

(A) Uplink/Downlink reception window in Lo-
RaWAN

(B) OTAA Reception window in LoRaWAN

FIGURE 3.6: Reception windows in LoRaWAN

Following an uplink, a Class ’A’ ED in LoRaWAN opens a receive window for one
second (default value), and if no downlink is received during the period, it opens a
second receive window after another second (default value) as shown in the figure
3.6a. If no downlink communications are received from the server between the two-
receiver window, it must wait until the ED triggers the next uplink and opens a
receive window. For the ED onboarding process (i.e. OTAA), in the EU 868 Mhz
channel, the default Join Delay window, as described in [304], and illustrated on
Figure 3.6b, is five seconds meaning the RG will transmit the downlink JAccept
exactly five seconds after the uplink.
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The performance evaluation objective is to check whether the introduction of DNS
and PKI influences the onboarding process time. We defined three scenarios for our
measurements:

• Scenario 1: The ED is in the HN without the latency introduced by DNS or PKI

• Scenario 2: The ED is in the HN, but the NS and JS are resolved using DNS
resolution

• Scenario 3: The ED is in the VN’s coverage area with the latency introduced by
DNS and PKI for mutual authentication

FIGURE 3.7: Cumulative distribution of the ED onboarding delay
measured on the ED in ms

To ensure that the measurement is precise and get rid of any synchronization error
between the ED and the backend network elements, the measurements were realized
directly on the ED. We ran the measurements for around 30 hours of transmissions
and gathered more than 2000 measurements for each scenario.

Figure 3.7 shows the time-to-join for the three scenarios obtained by monitoring
the delay between the JR and the "Join Success" message received at the ED. In the
EU 868 Mhz channel plan for LoRaWAN, the Join Delay window is 5 seconds [304]
meaning the RG will transmit the downlink JAccept exactly 5s after the uplink (Fig-
ure 3.6b). The RG may receive the downlink JAccept well in advance, but it will
stay in the queue until the requested TX time. This means that the ED will receive
the JAccept after 5s. Our measurements show that the device receives its JAccept
around 90% of the time in all scenarios, around 5.2s after sending its JR. The ED
can onboard as soon as possible independently of using DNS or experimenting with
a roaming ED. Therefore, DNS seems to have no significant impact on the activation
delay. A fact that can be explained considering that the ED’s Join Delay is signifi-
cantly lower than the standard times for DNS resolutions (usually around 300ms).

Figure 3.8 shows the first delay for end-to-end communication after activation. Once
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FIGURE 3.8: Cumulative distribution of the first uplink delay mea-
sured on the ED in ms

again, we see that our data is gathered around two values, 1.2s and 2.4s, which cor-
respond to the two receive windows available when class A LoRaWAN ED com-
municate and illustrated on Figure 3.6a. The ED can receive the acknowledgement
within the receive window’s time limit regardless of the scenario studied.

These measurements lead us to believe that introducing DNS and PKI to the Lo-
RaWAN system would not significantly add to the latency in LoRaWAN commu-
nications. It is of note that our measurements show no significant packets losses
as our testbed is quite optimal. Additionnal measurements varying interferences
should be of interest to enhance this work. Also, we configured our infrastructure
to work without DNS caching. A regular infrastructure would further benefit from
DNS caching as a way to reduce the impact of DNS[234]. However, we propose
to expand our reflection on the impact of DNS by studing possible prefetching and
caching scenarios for DNS data in a mobile environment.

3.8 Prefetching of mobile devices information to reduce
DNS impact

The DNS is a key component in IoTRoam, as a focal point to support roaming, it
might incur additional latency and hinder device connectivity. From a user’s point
of view, it is important that access is provided as smoothly as possible, without addi-
tional cost, to develop the technology’s adoption. And in roaming scenarios, serving
all users as soon as possible would decrease the impact from other networks on their
own gateways. Thus, reducing the impact from DNS requests when a device is join-
ing becomes a key connectivity concern. From an operator’s point of view, increase
in latency might incur congestion or gateway overload which would decrease the
QoS for IoT solution.

Beyond our use case, the issue behind storing and sharing DNS data, or where to
locate a DNS cache, how long to keep information cached and when to access it as
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an operator, is crucial to improve network for mechanisms such as those presented
in Chapter 4 and 5.

Prefetching information is a common strategy to reduce latency within networks.
Web browsers make use of such techniques to obtain IP addresses for domains
within a web page, predicting that the user may click on a link, thus sparing the
DNS requests when a user clicks by performing the request beforehand.

DNS prefetching relies on a prediction mechanism; the user could click on the link,
so its browser performs the query beforehand. This simple prediction mechanism
can be applied to any circumstances. [319] analyzed DNS traffic with the increase
of IPv6 technologies in web hosting and put it in perspective with network traffic
increase in Japan; and offered a prefetching-based solution to increase cache hit rate
and reduce response times on web browsers. [320] proposes to study DNS queries
in their context by studying when DNS queries are performed and when the infor-
mation is needed. Their conclusion regarding prefetching is that no supplementary
DNS cost apply thanks to prefetching and that the overcost is minimal when data is
not prefetched.

A good tutorial on prefetching and its consequences is provided by the chromium
project ([321]).

We hypothesize that we can exploit DNS prefetching to query DNS servers based on
devices mobility to resolve for device-specific information between the gateway and
a DNS server. The prefetching can be as simple as requesting that nearby gateways
prefetch the information but could also rely on recent mobility models based on
ML predictions. The presented use case focuses on provisionning connectivity data
based on the join exchange in the IoTRoam use case, but this method is applicable
to other DNS data querying as defined at the beginning of this section.

This section studies the consequences of prefetching DNS information on antennas
with regards to devices mobility but also studies antennas occupation based on mo-
bility scenarios to further understand the possible impact of prefetching on antenna
cache filling. We consider mobile vehicles in the Roma city, and we aim to analyze
how we could reduce the overhead of DNS querying in our IoTRoam solution in a
context of a vehicular application.

3.8.1 Use cases

Our IoTRoam use case 3.7 introduces two DNS queries for channel establishment
between gateway and backend. Fetching data using DNS comes with a short delay.
Our measurements from 4.10 showed that such a delay could be measured around
200ms. [234] studied DNS responses with overall results outlining this 200ms re-
sponse for 70% of their queries, and 90% of queries are realized within 1s. More
recent analysis, such as [255] or [256] outline better results by combining anycast
technologies and Content Delivery Networks for DNS. [255] studies responses from
top resolvers which answer 90% of their requests within 100ms. Moreover, [256] pro-
vides additional information regarding DoT resolution in which they outline failure
rates with responses between 130ms and 230ms from top resolvers. Overall, the time
inflation from additional security can be outlined around these values.
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DoH would add another supplementary cost up to 150ms as outlined by [255] mea-
surements on public resolvers. Adding an integrity check with DNSSEC would in-
crease the requests even further. Overall, sending two complete DNS requests com-
pleted with integrity check and secured with DoH would cumulate up to 1.1s of
queries done within the first exchange between the ED and the RG. Our problem is
as such: "Would it be possible to reduce that delay in a mobility context to reduce
the impact from DNS querying on channel establishment?"

This work provides a few insights on possible solutions based on Machine-Leaning-
based mobility predictions and information prefetching from DNS servers.

We consider mobility traces from devices moving within the city of Roma; Figure 3.9
shows part of the studied traces traced as a function of latitude and longitude.

FIGURE 3.9: Vehicle mobility around Roma

We virtually place antenna within the movement perimeter. These antennas, reg-
ularly placed, provide independent coverage for our vehicles. Figure 3.10 shows
a vehicular trace with the antenna disposition within its sector. Regularly placed
antennas help us realize the closest one at glance, which is helpful when trying to
infer the results and prototype. Our test antenna positioning algorithm places the
antennas regularly in squares; thus, each antenna has 8 immediate neighbor for all
scenarios.
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FIGURE 3.10: Vehicle and antennas around Roma

In our simulated fog LoRaWAN deployment, each antenna would act independently
and provide access to its devices. To cover a city the size of our perimeter (200
km x 170km), a regular deployment will need around 520 independent antennas
deployed.

Figure 3.11 provides insight on vehicle to antennas distances. With a regular antenna
placement and about 8 km between two antennas at most, the vehicle-to-antenna
distance will always be bounded between 0 and 4 km.

Based on our IoTRoam use case 3.6, we infer that each independent antenna will
provide roaming access to devices within its reach. As described in the IoTRoam
section, this means that the antenna will request the device’s key from its HN and
establish its connection to the ED thanks to them.

We separated our study into three scenarios. In the first scenario, no prefetching
is realized, and the device uses the standard DNS query mechanism. In the second
scenario, we improve the mechanism with a basic prefetching mechanism realized
by nearby antennas. Finally, in the third scenario, we run mobility predictions,
using ML, for our devices, plan their possible future location and prefetch the in-
formation based on the predictions.
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(A) vehicle to closest antenna distance reparition (B) Vehicle to closest antenna distance reparition
(cumulative)

FIGURE 3.11: vehicle to closest antenna distance

3.8.2 First Scenario

For this first scenario, we studied the movements of 6992 devices within the Roma
metropolis. Each vehicle is tied to 10 successive locations. We survey the nearest an-
tenna for each location and check if the device’s information is available on the an-
tenna’s cache or should be queried. Actually, depending on the vehicle movements,
DNS configuration (number of entries in cache, TTL...) or antenna placement, it may
come under the coverage of an antenna where it has already been before. The first
location of the device is put on the side as "First DNS Query" for consistency with
the other scenarios as we would not prefetch information for the first point of the
time series.

Figure 3.12 describes our results. For the 10 locations of our 6992 vehicles, the an-
tenna either query the DNS as part of the vehicle’s first localization, query the DNS
as part of an antenna change for the device or query its own cache as the device was
already known.

Our studied traces are not heavily mobile for now as we study an urban scenario,
and additional studies would be necessary to study possible other equilibrium be-
tween DNS caching and DNS querying for mobile devices.

Our first insight into these results would be that devices are moderately mobile,
switching antennas once within the 10 points of their movements, moving around
35km per hour. We observe the 6992 initial DNS requests and around 8 thousand ad-
ditional DNS queries, consistent with a 2.1 mean antenna per vehicle. The remaining
DNS queries are prevented as the request hits the DNS cache within the antenna.

3.8.3 Second Scenario

For the second scenario, we studied the movements of the same 6992 devices; each
vehicle is still tied to 10 successive locations. We survey the nearest antenna for each
location and check if the device’s information is available on the antenna’s cache or
should be queried.

Our test antenna positioning algorithm places the antennas regularly in squares;
thus, each antenna has 8 immediate neighbors. In this scenario, we prefetch the
information on these 8 closest antennas to anticipate possible device movements.
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FIGURE 3.12: Cache Hit Rate distribution between queries - No
Prefetching

As signalled above, the first DNS query for each vehicle is put on the side as "First
DNS Query" as these DNS queries cannot be anticipated.

Figure 3.13 describes our results. As above, for the 10 locations of our 6992 vehicles,
the antenna either query the DNS as part of the vehicle’s first localization, query the
DNS as part of an antenna change for the device or query its own cache as the device
was already known through low mobility or prefetching.

The simulations show that prefetching permits us to prevent on-the-fly DNS query-
ing. The DNS is still queried but at a time where the information is not yet necessary.
The DNS cache handles all queries necessary for device communication, preventing
additional DNS query time during handshakes. Nearby prefetching permits us to
attain an important hit rate on our cache, whether filled by our first classic DNS
query, DNS refreshes or prefetched DNS queries. A similar situation would be as
described in the introduction of section 3.8, where prefetching every DNS zone en-
countered within web page URLs allow to quicken load time by pre-filling the DNS
cache with prefetched DNS queries.
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FIGURE 3.13: Cache Hit Rate distribution between queries - Nearby
prefetching case

3.8.4 Third Scenario

In this third scenario, we predict car mobility using deep learning algorithms and
identify antennas candidate for device coverage. Based on these predictions, the
DNS (or its cache) is queried once by the antenna corresponding to the device’s po-
sition for each given point within the device’s movement. Then for the four follow-
ing predicted positions, the corresponding antenna will perform DNS prefetching to
heat its cache for a possible change of coverage from the device.

Figure 3.14 provides a rundown on interactions between antennas and DNS Servers
in the third use case.

For a given position A, we consider the 25 possible antennas (B to Z) from the previ-
ous prediction and positions of the vehicle:

• Antennas B to E are antennas corresponding to the prediction of position A in
previous moments in time

{
fT−i(T + i), i ∈ [[1, 4]]

}
). If antenna A corresponds

to one of these antennas, we consider that our prediction is successful, and we
hit the cache of our gateway as the information was prefetched in previous
moments in time.

• Antennas F to O correspond to the predictions for previous positions of the de-
vice (

{
fT−i(T + j), i ∈ [[1, 5]], j ∈ [[1, 4]], i− j > 0

}
). If antenna A corresponds
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to one of these antennas, but not antennas B to E, our prediction was a failure,
but the actual corresponding prediction was correct with a time shift. Further-
more, the prefetching for these antennas was realized; thus, the information
is still present in the gateway’s cache, and despite the prediction failure for
this exact timestamp, we hit our gateway’s cache as the information was not
purged yet.

• Antennas P to S are a similar case (
{

fT−i(T + j), i ∈ [[1, 5]], j ∈ [[1, 4]], i− j <
0
}

), our prediction was a failure, but the predicted antennas was correct con-
sidering a time shift (and would probably be correct for future device posi-
tions). Furthermore, the prefetching for these antennas was realized; thus, the
information is present in the gateway’s cache, and despite the prediction fail-
ure for this exact timestamp, we hit our gateway’s cache as the information
was not purged yet.

• Finally, antennas V to Z are the actual antennas solicited for the device in pre-
vious moments in time (

{
fT−i(T), i ∈ [[1, 5]]

}
). Should all other prediction fail

but antenna A correspond any antennas from V to Z, the prediction is a failure
and so is the prefetching as the other prefetched information expired, but the
information corresponding to these antennas are still present in the DNS cache
from previous requests, we labelled this result "DNS Cache - No Prefetch"

• In the case where antenna A (
{

fT(T)
}

) does not correspond to any antenna
between B and Z, prefetching was a failure, and a new antenna was solicited;
thus, it must realize a DNS request (labelled "DNS Query")

• Additionally, we separated from these DNS queries the DNS query for the first
device’s location as antenna B to Z constitute an empty ensemble for this given
location.

FIGURE 3.14: Possible solicited antennas in Scenario 3

Figure 3.15 combines the results from the 69920 vehicle location based on the sce-
nario breakdown from figure 3.14.
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FIGURE 3.15: Cache Hit Rate distribution between queries - Predictor
prefetching case

Results are, satisfying compared to the first scenario. Successful prediction lead to
hitting an antenna linked to a correctly predicted position in 63.4% of cases. Cache
hit rate linked to predictions, whether correct predictions or incorrect prediction by
lateness or earliness, would add up to 77.4% of requests. The remaining 22.6% are
divided between the first query (10%), DNS cache after prediction error (10.3%) and
actual DNS queries (2.3%).

3.8.5 Antenna occupation

Another important subject to study is antenna occupation. As part of our study,
antennas prefetch information based on the possibility that the associated device
will pass under its coverage. What is the consequences of such additional operation
on our antennas:

• We placed 520 virtual antennas around the city

• Out of them, the first scenario activates 301 antennas. That means that our 6992
vehicles pass near these 301 antennas and that 301 is our minimum number of
active antennas as a whole.
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• The second scenario activates as whole 393 antennas, a bit over twice more
antennas than in the first scenario. The ’nearby case’ shows excellent results
but would probably create congestion within the network should these results
confirm at a larger scale.

• Finally, the third scenario activates 380 antennas, globally around the same
amount as the antennas solicited as part of the second scenario, figure 3.16
gives us more insight on the distribution of these antennas.

Figure 3.16 shows the comparison of the number of activated antennas between sce-
nario 2 and scenario 3.

FIGURE 3.16: Sample from activated antennas in all scenarios

The mean amount of antennas, described on 3.17 activated is as follows:

• Scenario 1 leads to activating 2.1 antennas per moving vehicle on average.

• Scenario 2 leads to activating 12.3 antennas per moving vehicle on average.

• Scenario 3 leads to activating 9.7 antennas per moving vehicle on average.

Figure 3.17 provides additional insight on these values, Scenario 1 has at least 50%
of its values between 1 and 3, Scenario 2 between 9 and 14 and Scenario 3 between
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FIGURE 3.17: Activated antennas repartition for each scenario

7 and 12. This result fits with the moderate mobility from our values as devices
that move within 3 antennas would activate within to 15 through their movement in
Scenario 2. The predictor performs better than the simple nearby prefetching, with
more than 75% of its values under the median for Scenario 2. Also, Scenario 2 has
many outliers with over 21 antennas solicited per device on highly mobile roads, in
which the predictor performs better.

3.8.6 On prefetching efficiency

DNS prefetching is an efficient tool to reduce on-the-fly DNS queries necessary
for devices communication. Prefetching the information on nearby antennas can
completely prevent DNS queries by performing them in advance around the clos-
est antennas, but at a cost as devices request more antennas, especially in a highly
mobile environment.

By exploiting recent ML capabilities for traffic prediction, we could provide a solu-
tion that heats the cache for 78% of requests and that lead to a cache hit for 88% of
them, the remaining 12% consist of the first DNS query (10%), and on-the-fly DNS
queries following prediction failures (2%).
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Overall, the ML system would outperform its nearby-activation counterpart in terms
of antennas solicitation. However, additional simulations with different antenna
positioning would be interesting to study. Another interesting point would be the
study of possible antennas overload. Also, considering that our traces amount for
taxis which represent around 1% of actual cars circulating around a country, study-
ing actual overload within the network by increasing the number of vehicles by a
100-factor then decreasing it considering the number of cars that would actually
transit within the system would be feasible.

3.9 Contributions

The IoTRoam experience enabled us to set up a federated platform that has been
documented and the software provided as open-source to the community. It also
helped us to identify operational issues that have not been encountered earlier since
there is no LoRaWAN operational infrastructure using DNS for OTAA and Roaming.
The PoC tests proposed solutions to some of the operational issues and also led
to three change requests adopted by the LoRaWAN backend specifications. This
section will detail the contributions.

3.9.1 Contribution 1

The networks based on ’One-to-One’ interconnection or hub drop the incoming
packet from an ED if it is not part of its network or its partners. With the IoTRoam
federated model, these networks could make a DNS resolution to identify the HN of
the ED. Thus, the IoTRoam federated model caters to the whole ecosystem wherein
networks based on the ’Hub’ or ’One-to-One’ interconnection could co-exist.

3.9.2 Contribution 2

In the cellular model, portability between operators becomes possible since there
is a human subscriber involved, which is not the case in LoRaWAN. In LoRaWAN,
the EDs with a battery life spanning for a decade are supposed to be set up in
remote places and not readily accessible in the necessity of a network operator
change. IoTRoam enables portability between different operators; thanks to the
DNS database, the JS pointing to a JoinEUI can be modified without making any
modification at the ED level.

To understand the importance of operator portability, a brief background of how the
ED is provisioned with the JoinEUI and DevEUI are needed. The JoinEUI 64 bit ad-
dress could be divided into three broad ranges: OUI of the manufacturer, the Batch
ID of the manufacturer and the JoinEUI value assigned to the batch. The DevEUI
is also a unique IEEE EUI-64 bit address divided in the same categorization as the
JoinEUI. The difference is - for every ED there is a unique DevEUI, but thousands of
EDs could be assigned a single JoinEUI as shown in the table 3.1:

During the JoinEUI assigning process, the ED manufacturer is not yet aware of who
will be the buyer. If a client is buying only 500 EDs from a batch of 1000, the remain-
ing 500 EDs’ JoinEUI need to be re-provisioned with a new JoinEUI if a new buyer
wants the remaining 500 EDs to point to a different JS. Similarly, if the buyer who has
bought 500 EDs from a batch needs to assign a different JS for a set of 100 EDs, the
JoinEUI needs to be modified in each ED. This modification is done by re-flashing
the EDs with the new JoinEUI and thus is operationally time-consuming and costly.
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TABLE 3.1: Fictional representation of how DevEUI and JoinEUI 64
bits are partitioned, wherein certain bit blocks are allocated for OUI,
certain bits for the batch (e.g. ABBB) & the remaining bits at the serial

level

DevEUI JoinEUI
OUI-ABBB-0001 OUI-ABBB-FFF1
OUI-ABBB-0002 OUI-ABBB-FFF1
OUI-ABBB-0003 OUI-ABBB-FFF1

.... ...
OUI-BBBB-0001 OUI-BBBB-FFF2
OUI-BBBB-0002 OUI-BBBB-FFF2
OUI-BBBB-0003 OUI-BBBB-FFF2

.... ...

The PoC experience enabled us to suggest a change request to provide an opera-
tionally feasible solution, which has been accepted and included in the LoRaWAN
backend specifications. The solution proposed by the change request is to create
a combination of the DevEUI (which is unique for each device) and JoinEUI and
provision them in the DNS. In order to adapt to this requirement, the NS should
first make a DNS query using the concatenation of DevEUI and JoinEUI, and if the
resolution fails, it falls back in making a DNS query only using the JoinEUI.

Taking an example where two EDs (0xACDE480001020234, 0xACDE480001020ABC)
should point to two different JSs, but has a single JoinEUI represented in the hex-
adecimal format as 0x00005E100000002F. The DevEUI JoinEUI combination could
be provisioned in the DNS pointing to two different JSs as follows:

4.3.2.0.2.0.1.0.0.0.8.4.e.d.c.a.f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.
joineuis.lorawan.net IN 192.168.2.4

a.b.c.0.2.0.1.0.0.0.8.4.e.d.c.a.f.2.0.0.0.0.0.0.0.1.e.5.0.0.0.0.
joineuis.lorawan.net IN 192.168.2.5

Based on the longest match algorithm, the DNS resolution will resolve to two differ-
ent JS’s for the two ED’s even though the JoinEUI are the same for both the EDs.

3.9.3 Contribution 3

The second change request that was adopted into the LoRaWAN backend
specification includes modifying the subdomains for join and roaming from
lora-alliance.org to lorawan.net, thus separating the LoRa Web and DNS service.

3.9.4 Contribution 4

A third change request that was adopted into the LoRaWAN backend specifica-
tion consists of updating the DNS provisioning and resolution section to enable the
usage of any DNS resource record for OTAA and roaming functionalities. Before
the change request, the LoRaWAN backend specifications were normalized using a
NAPTR DNS resource record, which is considered quite complex (Explained in RFC
3401, 3402 & 3403) for operational purposes.
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3.9.5 Contribution 5

We developed and provided a secure, automatized DNS provisioning platform
that could be used by the community. With a secured API key, any authorized user
can access the User Interface (UI) (via web or API). The UI enables authorized users
to do multiple operations (creation, modification, deletion) of only their data in the
DNS database.

While testing the UI with some LoRa Alliance community members, we encountered
operational issues such as validating that the data provisioned in the DNS is done by
the rightful owner. The need to validate the JoinEUI (an IEEE EUI-64 identifier pro-
visioned by the IEEE and has OUI in the IEEE EUI-64) with the IEEE OUI database,
were identified and implemented, thanks to the PoC. The implemented solution has
been provided as feedback to the LoRa Alliance, which could be integrated when
the DNS service operated by the LoRa Alliance is deployed.

3.10 Conclusion

Our objective with IoTRoam is to achieve the same service as cellular or Wi-Fi
roaming built on a global resolution and security infrastructure, namely the DNS
and PKI. We added a hard requirement that the infrastructure or technologies used
to achieve this vision should be viable, operationally feasible and could be integrated
into existing IoT infrastructures with minimum changes. To achieve our vision, we
followed the WBA guidelines for open roaming and satisfied the requirements out-
lined by employing open standards used on the Internet, such as DNS and PKI.

We chose LoRaWAN, an evolving standard, and demonstrated that seamless IoT
roaming with minimum prior configuration is possible using the IoTRoam architec-
ture. In this process, we have deployed a PoC and provided all necessary building
blocks (documentation, software, UI, video tutorial) so that each one in the commu-
nity could make use of them to implement his own network.

This experience has also helped us to propose three Change Requests that have been
adopted into the LoRaWAN Backend Interface Specification. The first one includes
the possibility of using any DNS resource record ED activation and roaming func-
tionalities. The second is creating a combination of the DevEUI (which is unique
for each ED) and JoinEUI and provision them in the DNS. This solution was pro-
posed to resolve the device manufacturer’s issue of providing the ED’s configured
in the same batch with same the JoinEUI and different DevEUI to be sold to different
buyers. The third includes modifying the domain names for join and roaming from
lora-alliance.org to lorawan.net, thus segregating the LoRa Alliance Web and DNS ser-
vice.

The IoTRoam initiative was advertized through various press releases and with aca-
demic partners. We discussed running interoperable testing using the federated
platform with several institutions in France, Denmark, and Italy. We also discussed
with network operators to run experiments with massive public network infrastruc-
tures. Running additional tests with these institutions would help us study the im-
pact of heterogeneous backend infrastructures and their effect on the quality of the
communication channel. It would also allow us to gather additional data on the
impact of DNS complete resolution on the LoRaWAN/IoT traffic.
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As the objective is to interconnect networks using different IoT technologies, the
next steps consist of testing roaming interoperability with NB-IoT, 5G or Wi-Fi. For
ED onboarding, we are also working on integrating DANE with DNSSEC since the
certificate data itself can be stored in the DNS, possibly replacing or completing the
PKI.

On the subject of reducing the impact from DNS, we studied through simulations
the consequences of caching and prefetching DNS information with mobile devices
in a city. Our combination of an ML predictor and prefetching allow for an inter-
esting reduction of DNS requests realized compared to a caching-only solution and
a reduction in the number of gateways realizing prefetching operation compared to
soliciting the closest nearby antennas. This mechanism, already crucial for cloud
providers in the context of the development of the web, proves efficient and use-
ful for operators and asks interesting question on locating caches and optimizing
caching delays.

The application of DNS prefetching in a mobility context is applicable when query-
ing other connectivity information from the DNS infrastructure such as the querying
presented in Chapter 4 or the one presented in Chapter 5, Section 5.5.
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Chapter 4

DNS-based dynamic context
resolution for SCHC

4.1 SCHC, connecting LPWANs to the IP stack

Complementary to developing LPWANs infrastructure, a key aspect in develop-
ing LPWANs relies on connecting them to the Internet. Indeed, LPWANs are funda-
mentally non-IP networks. We already detailed a few constraints of LPWAN com-
munications in the previous chapters. The maximal frame size for LPWAN pay-
loads, a constraint that limits the connection of LPWANs to the Internet drastically.
Table 4.1 explicit this limitation. When working with small frame sizes such as Lo-
RaWAN’s or SigFox’s, signalization size, and in the case that interests us, headers
size, become a significant issue. Table 4.2 sums up the main header size for layer
2, layer 3 and layer 4 when working with various technologies usually embedded
onto wireless devices, as well as the percentage of frame size it corresponds to in the
context of LPWANs.

Based on this observation, the lpwan working group designed a framework to re-
duce the IPv6 header size to embark the IP stack onto LPWAN devices. SCHC [3]
is a framework that provides both compression and fragmentation functionalities.
It was standardized by the lpwan [161] working group at the IETF. It is considered
an efficient solution to connect the LPWANs to the Internet using IPv6, thus en-
abling end-to-end IP connectivity. Figure 4.1 illustrates SCHC compressing capabil-
ities and effect onto layers with regards to each layer size in different connectivity
setups. With the help of the SCHC framework, it is possible to compress an IPv6
header from its original size of sixty bytes down to two bytes, thus reducing band-
width usage and increasing communication efficiency. Enabling IPv6 connectivity
for LPWANs is a key issue to connect the LPWANs to the Internet via the IP stack.

The SCHC solution was also designed to break the IoT siloes. Using SCHC allows
applications embedded onto devices to communicate using a common, standard
system, the IP stack, with SCHC handling the adaptation between the applicative
and lower layers, specific to each IoT technology.

LoRaWAN (bytes) NB-IoT/LTE-M (bytes) SigFox (bytes)
Frame size 250 1600 29

TABLE 4.1: Max Frame size from the main LPWANs technologies
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Headers LoRaWAN NB-IoT/LTE-M SigFox
L2 header 8 octets 14 octets 10 octets

3.2 % 0.875 % 34,4 %
L3 / IPv6 header (40 bytes) 16 % 2.5 % 138 %
L4 / UDP header (8 bytes) 3.2 % .5 % 27.6 %
L5 / CoAP header (4 bytes) 1.6 % .25 % 13.8 %
L3+L4+L5 / SCHC (2 bytes) 0.8 % .125 % 6.9 %

Cumulative (no SCHC) 24 % 4.125 % 213.8%
Cumulative (SCHC) 4 % 1 % 41.3 %

TABLE 4.2: Frame Header Occupationas percentage of frame size for
the main LPWANs technologies

FIGURE 4.1: SCHC compression capabilities (Source [322])

Finally, SCHC enables technologies to be embedded with a common, global, under-
lying adaptative technology, assisting developers when working on IoT solutions
allowing them to work regardless of the actual underlying layers.

SCHC is designed keeping in mind that the LPWANs are star-oriented technologies,
with EDs usually communicating to a single network gateway or linked to a single
backend element. Thus its operating principle is based on the assumption that the
device will compress data, and the center of the star topology, usually the network
gateway or another centralized backend element, will take care of the decompres-
sion. The framework also considers that the IP header expected for LPWANs EDs
can be predefined as the ED is less likely to change its internal software and usually
evolve in a known network environment. To compress the data sent and received
between the ED, its backend element, SCHC uses a predefined group of rules called
context which is deployed on the ED and one of the backend element (RG or back-
end servers). This context may be specific for each ED or common for a group of
EDs. Fig. 4.2 presents such an example of such a context rule.

Based on this context rule, a pattern matching operation is realized on the packet
header emitted by the LPWAN ED. These operations usually match each IP header
field with their expected values and remove them if the values correspond to the
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FIGURE 4.2: Context rule example as presented in the RFC 8724
(Source [3])

rule defined in the context. When an ED receives a SCHC compressed packet, the
reverse operation is realized to build the IP header back, allowing the applications
to communicate on the network without considering the underlying IoT specificities.

To prove the operational feasibility of SCHC, members of the lpwan working group
at the IETF designed a PoC implementation called OpenSCHC ([323]). OpenSCHC
is a reference Python codebase for the SCHC protocol, which we used in our ex-
periments. SCHC works as follow: when sending data from the ED to its RG,
the SCHC context rules enable compression by suppressing redundant, superficial,
predictable or most used data inside an IPv6 header and replacing them with a Rule
Identifier (Rule ID) chosen in a given set of predefined rules. Among multiple rules
hosted on the devices, a single rule is selected to fit as precisely as possible to the
corresponding application that needs to transmit its data. All the rules associated
with a given ED are hosted on its corresponding backend to realize the opposite
operation and decompress the data received over the air.

Our interrogation regarding SCHC can be summarized as follow: SCHC is a protocol
built on static information. It relies on identical information stored on both the ED
and the network backend. This identical information, the context, usually consists of
multiple rules corresponding to the associated ED. When using SCHC, one element
from the backend is supposed to realize SCHC operation (compression, decompres-
sion, fragmentation, reassembly) for all associated EDs. Allowing the owner to host
his rules and to modify them quickly at a later date, storing only a piece of informa-
tion on either the RG, the NS or the AS such as the Rule Identifier or Version might
help to introduce more flexibility to the SCHC protocol and simplify the user’s main-
tenance. Also, storing all SCHC rules, considering they might be unique for each ED,
might introduce scalability issues to the system. We can consider around 20 rules per
ED when working with such rules, with thousands of EDs around a single antenna
and multiple antennae for a given server. LoRaWAN, built as a star of star topology,
is a good example where multiple RGs, each handling multiple EDs, can be con-
nected to a single NS. When considering hundreds of thousands of EDs around a
single server with up to 5 kb per context rule, we end up storing gigabytes of data
to enable SCHC on a given LoRaWAN infrastructure. Finally, considering SCHC’s
static design, building a system supporting both SCHC and roaming might prove
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complicated. SCHC’s static design might harm communication when working in a
mobility scope, typically when an ED is roaming.

To assist SCHC’s development in these three scopes: hosting rules, supporting scal-
ability and developing mobility scenarios, we propose that the RG, NS or AS re-
trieve the context dynamically from a remote server. Hosting such information on
a remote server separates traffic from its underlying protocol, separating the inter-
faces, each dedicated to its use. Storing outside the main servers’ scope lightens
the weight associated with local storage by introducing a tradeoff between storing
SCHC’s most used rules and querying rules used less often. Retrieving the context
from an accessible remote server strengthens mobility and roaming capabilities for
EDs, which can work anywhere once their context is retrieved.

This section provided information regarding SCHC, such as the motivation that
leads to its development and the questions that we aim to address in this chapter. We
presented the SCHC framework and explained how, by enabling IPv6 for LPWAN
communication, SCHC creates a bridge between the siloed LPWAN and the Inter-
net. In section 4.2 we present the experiment we realized as part of our work with
SCHC, the key research issue we identified, the mechanism we designed to address
it and the experimental setup we deployed to test our hypothesis. Lastly, we present
our experimental results in 4.3, regarding the SCHC framework and how our mech-
anism introduces more flexibility in the system. Results that we discuss further in
section 4.4 by opening the discussion on possible evolutions to the framework.

4.2 Experimenting with SCHC and DNS

There are multiple options for storing these context rules. It could be done in a pri-
vate server, using, for example, an Administration Management System as proposed
by [4], stored in the cloud or even shared on a blockchain. However, we hypothesize
it could be wise to use an open, distributed mechanism to find the location of the
server where the context rules are stored. We propose to experiment possible use of
DNS as a way to support SCHC compression. As an optimized, hierarchical and
distributed database, DNS could support the determination of the location of the
server where the context rules are stored feasibly on the Internet. Hopefully, using
such a mechanism would allow for a seamless transition, from preconfiguring the
information needed on the backend to building it dynamically, on the fly, based on
actual needs when operating the network.

DNS would prove an efficient solution to introduce more flexibility and improve
scalability when using SCHC. Our solution aims to provide open access to SCHC
parameters to support roaming capabilities, improving flexibility and scalability.
We study the possibility of introducing a context registry outside the scope of the
ED’s NS. To study this problem, we deployed a dynamic context resolution archi-
tecture based on DNS for SCHC compression and decompression and studied its
consequences on system latency and LoRaWAN communications.

Our experiment proposal for this section aims to study and improve SCHC’s com-
pression and decompression mechanisms. It relies on multiple scenarios, defined in
the following parts of this section, that aim to study SCHC compression and decom-
pression mechanism and the delays added by the system concerning transmission
delays. Then we added two possible remote rule management systems to introduce
more flexibility to the SCHC standard to solve the scalability issue identified in the
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previous subsection and permit SCHC rules to be easily shared across the network,
for example, in a roaming context.

Fig. 4.2 presents such a context rule whereas the experimental testbed and its com-
ponents is described in 4.2.3.

In order to prevent synchronization issues, a frequent issue when working with con-
strained devices such as LPWAN-enabled devices, the delays are always measured
on either the ED (e.g. full round trip time) or the backend (e.g. DNS resolution)

For our experiments, we chose not to focus on transmitting the rules to the devices
over the air and considered that the rules would already be on the devices as the
current standard proposes it.

FIGURE 4.3: Measurement Platform’s Network and system architec-
ture (rework this scheme)

4.2.1 Proposing querying mechanisms for context resolution

Querying information can rely on various technologies: Edge technologies ([48],
[49]) can be leveraged to place information in the most efficient location possible wih
regards to the ED’s location. [56] propose a routing method to query information
more efficiently and [57] proposes a data-centric approach intended for low power
networks. Another key evolution in edge technologies is the Information Centric
Network ([324], [325]) approach that rely on a decentralized naming convention to
distribute the information efficiently within the network. Our method differs as we
leverage known techniques from the DNS world to improve Context rules distribu-
tion.

The proposed mechanism delocalizes the SCHC rules on a remote server and uses
DNS to retrieve them. When the ED sends data, they are received by the RG, then
transferred to the NS and retrieved by the AS. To decompress the data, the AS needs
access to the rule. We use the DNS to retrieve a hash of the rule (since it is not
possible to store the entire rule in the DNS) and possibly an address of an HTTP
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server on which the corresponding rule might be stored. An HTTP server is used to
store the rules themselves. The rules can be uniquely linked to the tuple (DevEUI,
RuleID). This tuple is constructed by extracting the DevEUI from the LoRa frame
and the RuleID using the first bits from the LoRa payload compressed by SCHC.
The AS stores the rules corresponding to the device under its coverage in a rules
cache for a set duration. The rules in the AS are indexed in a hash table. When the
AS receives data, it constructs the tuple (DevEUI, RuleID) as indicated above, then
uses the DNS to retrieve the hash of the corresponding rule and search for this rule
in its rules cache. If it is not found because it is a new tuple (DevEUI, RuleID), a
new rule must be stored in the cache, and the HTTP server where the rule is stored
is interrogated to get it. Then, the rule is inserted into the cache. Note that even
when a rule is present in the cache, the DNS is systematically queried because the
freshness of the information must be checked to ensure that the rule has not been
modified since its last cache insertion.

Finally, the data can be decompressed. Once the data are decompressed, the server
may send a response back depending on the application’s needs. Fig. 4.3 presents
the interactions between the AS, the DNS and the HTTP server in the case where a
new rule is needed.

4.2.2 Measurement scenarios

Our study focuses on AS Response Time and ED Uplink Round Trip Time (U-
RTT) through different scenarios. Scenarios 1 and 2 serve as references to compare
with other scenarios. They provide the minimum communication time with and
without SCHC decompression. Scenario 3 aims to study the mechanism presented
in 4.2. Scenario 4 studies the case where most of the information is always present
in the cache. These four scenarios are described more precisely below:

FIGURE 4.4: Message Exchange Diagram (Scenario 1)

• Scenario 1: The first measurement is designed to be used as an experimental
reference for our platform. Data are sent without compression from the ED
over LoRa and a response is sent back from the ChirpStack AS in order to
measure the RTT t1− t0 (cf. Fig. 4.4). We also measure the AS Response Time
t1′ − t0′. No decompression operation is performed on the data.
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FIGURE 4.5: Message Exchange Diagram (Scenario 2)

• Scenario 2: The second measurement adds the SCHC mechanism for the com-
munication over LoRaWAN. The ED sends the data compressed using the
SCHC context, and the received data are decompressed using the same con-
text rule stored in a file locally on the AS. We measure t1 − t0 (cf. Fig. 4.5)
We also measure the AS Response Time t1′ − t0′. The comparison with results
from Scenario 1 allows us to estimate the decompression time.

FIGURE 4.6: Message Exchange Diagram (Scenario 3)

• Scenario 3: The third measurement is the key scenario of our study. It aims to
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add the mechanism presented at the beginning of 4.2 and illustrated by Fig.
4.3 to provide the AS with the SCHC context that is stored in a remote server.
In this measurement, instead of using a locally stored context rule for decom-
pression, the AS is asked to download the context file from a remote HTTP
server with a request such as "HTTP GET myschcrules.net/DevEUI/RuleID".
We measure the total RTT t1− t0, the AS Response Time t1′ − t0′, the RTT of
the DNS query t1′′ − t0′′ and the RTT of the HTTP Request t1′′′ − t0′′′ (cf. Fig.
4.6)

FIGURE 4.7: Message Exchange Diagram (Scenario 4)

• Scenario 4: In most cases, EDs will be static (e.g. water meters) and well known
by the AS, so their context rules will always be present in the AS cache of rules.
In this case, the DNS is still queried to check that there has been no change to
the rule, but there is no need to interrogate the HTTP server as the rule is still
present in the cache. The third measurement corresponds to this scenario. We
measure the total RTT t1− t0, the AS Response Time t1′ − t0′ and the RTT of
the DNS Query t1′′ − t0′′ (cf. Fig. 4.7)

4.2.3 Experiment Testbed

As mentioned earlier, our study is done using LoRaWAN. ChirpStack[318] is an
open-source solution to build a ready-to-use LoRaWAN easily. It provides the soft-
ware components of our infrastructure for the RG, NS and AS.

ChirpStack works with the RG to ensure that the data received from the devices can
be relayed to the AS. For our experiment, we chose to connect directly to an MQTT
broker and subscribe to the message queue associated with our devices, but MQTT
can also be used to monitor the RG or contact all the devices linked to a specific LoRa
Application using various topics. ChirpStack AS also offers a REST API, a gRPC API
and a web interface to offer multiple ways to operate a LoRaWAN network.

We used PyCom FiPy development cards as LoRa-enabled devices, and we made
them send SCHC compressed data based on a context over LoRa to a Multitech
Conduit RG which forwards the data to the ChirpStack NS. Then we can retrieve
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the data using the ChirpStack AS or subscribe to the MQTT broker hosted on the
NS to retrieve the data sent and decompress it based on the same context used for
decompression. The SCHC implementation used to decompress data is OpenSCHC
[323]. OpenSCHC is developed by the authors of the SCHC draft as a PoC. It serves
as the base reference for other SCHC implementations.

FiPy cards are Class A compliant devices as defined by the LoRa Standard [326];
hence they respect a strict emission/reception schedule. Our experimentation is
realized respecting the EU regulations on duty cycle, communicating in the EU 868
MHz frequency, and all communications are done using SF7 considering that, for our
experiment, it is the one we expect to include most constraints regarding latency. If
our system works without hindering RTT for SF7, it has no reason to hinder the RTT
for higher latency SF.

4.3 Experimental results

Fig. 4.8 illustrates the cumulative distribution functions of the AS-side Response
Time t1′ − t0′ with or without SCHC (cf. Fig. 4.4 and 4.5) to show the order of
magnitude of the sole decompression mechanism. For this case, we consider that a
locally stored context file is used for the decompression. The curves show that in-
tegrating SCHC adds a few milliseconds to the operations necessary to work on the
data independently to the possible delays added by the rule-querying mechanism.
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FIGURE 4.8: Cumulative distribution function of the AS Response
Time t1′ − t0′ (in %) against time in ms for Scenarios 1 and 2
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Fig. 4.9 shows the cumulative distribution functions of the Server-side Response
Time t1′− t0′ for all the studied scenarios, thus including also context remote query-
ing for the non-local solutions (HTTP, DNS).
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FIGURE 4.9: Cumulative distribution function of the AS Response
Time t1′ − t0′ (in %) against time in ms for all scenarios

We observe that the order of magnitude of the AS Response Time is for the worst-
case (HTTP-base mechanism) around 0.6s.

Note that the DNS response time in our case (between 5 ms and 15 ms) is faster
than the usual DNS response time due to DNS caching [234] from our local net-
work’s DNS resolver. We keep interrogating our resolver with data already in its
DNS cache, so the DNS Response Time is cut down. This caching will remain in a
wide LoRa deployment, but considering the frequency with which the LoRa devices
are expected to communicate on the network, the cache will probably be emptied
from the necessary data.

In order to provide a more realistic model to study the influence of adding DNS
queries in an IoT system, we decided to gather additional data on DNS response
time. We used RIPE Atlas [327] which is a system that assists in performing Inter-
net measurements through a set of probes available all over the world. RIPE Atlas
is a global network of probes deployed under the scope of RIPE NCC. Its 12000
probes enable Internet connectivity testing throughout the globe, resources avail-
ability testing, and real-time measurements of the state of the Internet. RIPE Atlas
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is a valuable and powerful tool for troubleshooting, monitoring, testing, and ex-
perimenting over the network. While most of the probes are in Europe, we realized
measurements asking for interrogations from all other continents (Oceania, Ameri-
cas, Asia and Africa) to test the responses for a single DNS query from multiple
locations worldwide. The measurements performed using RIPE Atlas allow us to
determine the DNS Response Time in a more realistic case, as it allows us to query
when the DNS cache is expired.
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FIGURE 4.10: Cumulative distribution function of the DNS Response
Time t1′′ − t0′′ (in %) against time in ms for Scenario 3 compared and

from RIPE Atlas [327] Measurements

Fig. 4.10 provides a comparison between DNS response time for our DNS Queries
and DNS response time obtained through measurements from RIPE Atlas interro-
gations. According to this figure, DNS Response will be slower in a real case than
with our platform, but a time within 200ms is still in the margins with regards to
the response times we measured for our platform.

This observation is consistent with data from the literature, [234] provides additional
information regarding latency distribution through a study of the Massachusetts In-
stitute of Technology’s DNS resolver. In their study, DNS lookups range from a few
milliseconds (when accessing from the cache) up to 120 seconds, with most domains
resolved within a 1s timeframe (and 70% within 200ms). The study also provides ad-
ditional information linking latency to the number of referrals, with more referrals
linked to more lookups and thus more latency observed.
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Our case can be correlated with their 1-referral resolution. In 2001, when the study
was realized, 60% of the resolutions were made within a 200 ms timeframe. Consid-
ering the evolution of DNS deployments, such as the deployment for massive DNS
resolvers such as Google’s or Cloudflare’s, and the improvements linked to the host-
ing of DNS zones, such as the massive use of anycast and the development of cloud
technologies, a 200ms latency seems coherent.

This timeframe would be further increased with the use of newly developed DoT
or DoH, [255] and [256] provide insight by comparing the technologies through the
same tool as ours, RIPE Atlas probes. [255] concludes that DoT and DoH indeed
increase response time, an observation that can be linked to the use of TCP instead
of UDP and the additional cost from encryption. The tradeoff from this loss in re-
sponse time comes from securing and improving reliability when navigating the
Web. Our use case is fairly different from web navigation and does not necessar-
ily require additional encryption, thus relying on traditional DNS seems acceptable.
[256] provides additional information regarding DoT resolution with RTTs around
15ms for traditional DNS resolution and RTTs over 100ms for DoT use. Securing
DNS resolution with DoT seems to come with a 100ms tradeoff.
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FIGURE 4.11: Cumulative distribution function of the RTT t1− t0 (in
%) against time in ms for all scenarios (all the curves are the super-

posed)

Fig. 4.11 presents the measured U-RTT (From ED to AS, then back to ED) t1− t0. We
measure at least about 4s for 99% of the packets transmitted through our platform
for all the studied scenarios. Considering the case of LoRa Class A devices [326], a
downlink frame from the RG can only be sent during a given time interval called "re-
ceive window" (cf. [328] & Fig. 4.12). The RG implementation we are working with
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does not allow a frame to be transmitted to the device unless it has been en-queued
before the RG receives an uplink frame from the device (cf. Fig. 4.6). The last receive
window is opened two seconds after the last uplink frame has been transmitted. It
lasts twice the transmission time, which depends on the SF. In our case, we use SF7
and our transmission time is around 100ms. For the majority of our measurements,
our total measured RTT is around 4.2s, as illustrated in Fig. 4.13. Note that we use
the OpenSource ChirpStack implementation, the reference solution for LoRaWAN
OpenSource deployments. We would expect the same behaviour for class B devices,
whereas Class C would allow an immediate response and a shorter RTT.

FIGURE 4.12: LoRa Transmission/Reception Windows

FIGURE 4.13: LoRa Communication Timing
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4.4 Conclusion

SCHC can efficiently compress headers from the 44-octets IPv6+CoAP header
down to a few octets, which leads to reduce header size up to a 22-factor and en-
able the use of IPv6 over networks that would be unable to support it, such as Sig-
Fox and its 29 octets frame or LoRaWAN which ranges from 59 octets to 250 octets.
Using SCHC to send IPv6 packets over LPWAN is proven to be an efficient way
to account for the scarcity of radio resources. SCHC is also able to work within
a reliable timeframe. Querying time within a large database was not studied and
would need additional data regarding actual SCHC usage on LPWAN to provide
interesting insight, but when working with a few devices, SCHC can decompress
data consistently with a few microseconds; an operation that is almost transparent
with regards to other mechanisms specific to LPWAN, such as LoRaWAN’s recep-
tion delays.

In our experiment, we deployed all the components of a LoRaWAN infrastructure in
order to build a SCHC-enabled LoRa network. Because of the expected large number
of devices and the variety of possible things profiles, it seems necessary to envisage
a mechanism to retrieve SCHC context rules dynamically. DNS is a globally and
well-known system that is a fundamental stepping stone when designing a dynamic
system.

Thus our method proposes to accompany the SCHC mechanism with a context
querying system to support device mobility and network scalability. Using DNS,
one can query the context signature within a satisfying timeframe (between 30 and
100 milliseconds) and fall back onto the associated context storage API within 650
ms. In a best-case scenario, the 650 ms delay would be reduced furtherly by caching
the information; our Atlas probes measurements lead us to believe that using a DNS-
only mechanism and building a context cache would reduce the 650ms delay down
to tens of milliseconds. These results concerning the DNS-only system and its per-
formances are consistent with results measured in other studies. Such a mechanism
does not hinder the communication as it is kept under the delay of the first recep-
tion windows and benefits from the information caching should the answer need a
different SCHC rule. Should we need to respond to the device within the first recep-
tion window, we are left with around 350ms of data handling in the worst-case to
enqueue our response onto the RG.

Regarding LoRaWAN RTT, working with SF7 measurements, we only observe a 4.1s
mean RTT when considering the listening window used by the device to receive
communication from the RG. This observation is consistent for all scenarios and is
easily explained by the prevalence of the delay linked to data reception. We found
out that ChirpStack’s NS does not handle responding to the device after information
treatment unless we consider the Join procedure, which leads us to propose RTT
measurements based on sending two information within two successive transmis-
sion windows to acknowledge and respond to the data sent from the device.

Problems may arise considering upper-layer protocols such as CoAP. This question
was asked at the IETF by C. Gomez and J. Crowcroft in their draft RTO consider-
ations in LPWAN [328] for which the authors signal that "LoRaWAN policies may
lead to U-RTT up to 282 seconds in the worst-case" (SF12). SCHC should not hin-
der CoAP, as packet handling is done within a few microseconds. However, as our
mechanism may induce additional treatment up to 650 ms, additional measurements
linked to CoAP compression/decompression considering CoAP handling on top of
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SCHC remote context querying might be an interesting subject to study in further
work. However, considering that "LoRaWAN policies may lead to U-RTT up to 282
seconds in the worst-case", a 650 ms additional delay is negligible by several orders
of magnitude.

Actually, according to [329], CoAP message transmission has a default ACK_TIMEOUT
parameter which is set to 2 seconds. In this case, the ACK_TIMEOUT has to be
adjusted carefully to respect end-to-end delays. In this case, adjusting the delay
to handle RTO consideration in LPWAN should prove a sufficient adjustment to
handle SCHC remote context querying.

Should one decide to add security to the channel between the NS and the con-
text storage servers, exploiting TLS by using either DoT (DNS over TLS) or HTTPS
(HTTP with SSL/TLS) would add another 100 ms to the mechanism, which keeps
us within a sufficient timeframe. Unfortunately, it is to note that DNS, or any remote
querying mechanism, would be hindered in locations that benefit from a slow or dis-
tant connection to the backbone. One such example is Oceania, in which the Atlas
probes signal either a significant amount of packet loss or high latency in DNS reso-
lution. Using SCHC without DNS or building a proximity context registry would be
the solution in such a rare context. Additional insight regarding storing and sharing
data within the DNS will be provided in section 5.5, with a focus on the size of DNS
RRs.

Further work regarding the SCHC protocol would require additional data from the
actual use of the SCHC protocol. Studying SCHC uses would help define the re-
search direction by contrasting them with the production issues introduced by the
protocol. Studying SCHC context rules outside their theoretical construction, but
based on actual rules used in production, would help further identify eventual new
constraints introduced by the protocol and define useful research direction.

As a matter of fact, improving the compression capabilities of LPWANs is a key
concern for the technology. Reducing packet size reduces airtime, which is an ef-
ficient way to improve the scalability of LPWAN solutions. Another solution to
reduce airtime of LPWANs transmissions is transmission minimization. Our ap-
proach with transmission minimization is complementary to compressing header
using SCHC. SCHC relies on suppressing and optimizing predictable data within
the transmission’s header. However, what if the actual relevant data from the pay-
load is predictable. In this case, would it be possible to study transmission minimiza-
tion paradigms in which compressing communications rely on predicting a device’s
transmission payload and preventing its transmission if it is unnecessary? That is
the subject of the next chapter.
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Chapter 5

Network traffic minimization
based on Machine Learning
predictors

5.1 Introduction

In the previous chapter, we’ve seen how SCHC improves LPWANs by offering
them interconnection with the rest of the Internet, circumventing the high con-
straints and notably the limited payload size. In LPWANs, traffic compressing is
of the utmost importance, our previous approach revolved around header com-
pression mechanisms, this chapter will dive into minimizing traffic by compressing
LoRaWAN traffic, more precisely by reducing its data payload, using a ML-based
compression scheme.

Many IoT applications consist of monitoring: power grid or water distribution net-
work metering, electric vehicle battery level monitoring, meteorological, tempera-
ture, or humidity monitoring. In most cases, the observed time series are highly
correlated and can be forecast easily unless unexpected events occur. Thus, it is
not necessary to transmit the data in most cases, but only of unexpected events.
With a good time-series predictor both on the sensor and on the network backend,
the data can be deduced at the backend without sensors transmissions. However,
if the sensor, using the same predictor, observes that the measured data is differ-
ent from the predictor’s forecast, if it notes an unexpected event, then the sensor
must send the data. With such a mechanism, we can avoid many transmissions and
produce highly compressed traffic. Our compression approach differs from usual
compression methods, based on pattern frequency analysis, as our studied compres-
sion proposal suppresses transmission entirely instead of compressing the payload.
However, those two approaches can be complementary, suppressing unnecessary
transmission and compressing the remaining transmission payload.

Our goal is precisely to test to what extent such an approach is well suited for IoT,
particularly in LoRaWAN. We want to observe the efficiency in network perfor-
mance (e.g. compression ratio) and power consumption since it is essential to save
the batteries of sensors that are expected to have a long life. We also want to test
whether our solution is feasible practically by setting up an experiment with actual
sensors.

Different predictors may be envisioned, but ML, particularly neural networks, is
well suited to model any repeated pattern. Here, we use an LSTM neural network
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(as described in [330] and Figure 5.2) for two scenarios: power production and con-
sumption metering and cellular base station load monitoring. We trained the neural
network model on a powerful computer, and then we injected the trained model
into the sensors. We measured the compression ratio and the sensor’s electric con-
sumption, considering the transmission and the computation cost. We run our ex-
periments with real measured data and LoRaWAN equipment.

This work also presents insights on LSTMs’ accuracy and how the device’s compres-
sion capabilities are impacted by LSTM accuracy.

In part 5.2, the related works are reviewed. Then, in part 5.3 we present our exper-
iment setup, tools and software, implementation choices and the walls we encoun-
tered. Lastly, in part 5.4, we present our results and discuss possible improvements
to the system. 5.6 sums up our experiments and conclusions.

5.2 Compression and Machine Learning

The easiest way to reduce data transmission is to delete redundancies or to round
them to near values. Sensors often generate time-correlated data. For example, the
temperature may vary slowly. Run-Length Encoding (RLE) takes advantage of the
adjacent clustering of symbols that occur in succession. It replaces multiple symbols
with a tuple that contains the symbol and the number of times it is repeated. The
authors of [142] apply Delta Encoding followed by RLE at the end node. In [135]
delta compression allows sending only the difference between two consecutive tem-
perature measurements. Data are also usually quantized to round the measures to
significant approximations requiring fewer bits for coding. They are often aggre-
gated ([126] or [129]).

Approximating the measurements reduces their size also [127]. One can compress
signals by approximating them with auxiliary, more simple functions. Lightweight
Temporal Compression (LTC) [150] is an energy-efficient lossy compression algo-
rithm that maintains memory usage and per-sample computational cost in O(1).
LTC estimates data points using a piece-wise linear function that guarantees an up-
per bound on the maximum absolute error between the reconstructed signal and the
original one while maintaining a memory usage and per-sample latency in O(1).

Classical compression approaches based on dictionaries or entropy coding have
been adapted to IoT, like [145] where a specific dictionary is created for different
kinds of data depending on their change frequency.

Transform methods are classical tools for compressing data but may be CPU re-
source consuming. [120] evaluates several lossy compression algorithms for effi-
ciently storing weather sensor data based on the encoding of temporal changes and
three signal transformation algorithms on spatial data. Specifically, they evaluate
reconstructed weather sensor data fidelity using Discrete Cosine Transform, Fast
Walsh-Hadamard Transform and Discrete Wavelet Transform (and Lossy Delta En-
coding). The objective is to provide useful information for minimizing data recon-
struction errors, and more importantly, make sure they are within a tolerable range.
Chebyshev compression is considered in [121] and [141].

Compressed sensing is a new technique. As stated in [152], in a series of pioneering
works by Candes ([153], [154],[155]) and their co-authors, it was shown that when
a signal has a sparse representation in a known basis, one can vastly reduce the



5.2. Compression and Machine Learning 85

number of samples that are required—below the Nyquist rate and still be able to re-
cover the signal (under appropriate conditions) perfectly. This framework suggests
compressing the data while sensing it; hence the name compressed sensing. Never-
theless, on the one hand, compressed sensing reduces the number of measurements
and the sampling rate. However, on the other hand, it increases the computational
complexity of the signal recovery ([156]). The signal is recovered approximately by
solving a convex relaxation of a non-convex optimization problem. [134] proposes a
unified approach for compression and authentication of smart-meter reading in ad-
vanced metering infrastructure. In [133] an algorithm is designed which combines
the accuracy of standard lossless compression with the efficiency of a compressive
sensing framework. Given the sensor node battery state, the algorithm balances each
technique’s tradeoff and optimally selects the best compression mode by minimizing
reconstruction errors.

Recently, Neural network-based techniques entered the landscape of IoT data com-
pression techniques. In [144], data are compressed by their regression curve ob-
tained from a neural network. In [157], biomedical signals are compressed using
autoencoders. These neural networks are three-stage networks with the same input
and output dimensions, while the hidden stage has a smaller dimension. Thus, the
first stage’s output has a reduced dimension compared to the input and constitutes
the compressed data.

Another part of transmission compression is header compression, recent work from
IETF develops possible ways to improve payload efficiency by compressing packet
headers such as ROHC [331], or SCHC [3].

Prediction methods are also used. Neural networks are known as universal function
approximators with the capability to learn arbitrarily complex mappings, and
in practice, show excellent performance in prediction tasks. In such context, a
sufficiently well trained neural network shows better results than more classic
approaches[332]. Thus, the authors of [147] train a RNN predictor followed by
encoding with a traditional arithmetic coder block using the probabilities generated
by the trained neural network. The decompression is performed symmetrically and
requires the trained model for arithmetic decoding. In [158] a prediction scheme
is implemented on cluster nodes and cluster heads to reduce data transmission. If
the measured data corresponds to the predicted one, it has not to be transmitted.
LSTMs are proposed to perform predictions. We decided to push the subject
further by implementing the algorithm directly on the sensors instead of relying on
simulation. Our PoC experiment aims to back these simulations or disprove them
should the system prove unreliable.

On the subject of traffic data prediction, some articles propose to use a similar ap-
proach using large LSTMs such as [333]. Their multi-feature approach allows them
to correlate data and obtain interesting results regarding traffic prediction. We hope
to obtain similar results with our curves as we work with network traffic. How-
ever, our approach differs in our decision to focus on the effect of predictions on
transmission: improvements to LSTM capabilities are out of our scope.

This approach was also tested with energy production forecasting. LSTMs are pre-
sented as a possible candidate for energy production forecasting in [334]; the solu-
tion seems adaptative enough for our approach to be reliable enough when using
LSTM as a forecasting tool, [335] validates this approach by comparing it to other
neural networks.
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Thus, many compression techniques appeared for many years. Nevertheless, if the
"classical" methods present efficient compression ratios, they do not avoid transmit-
ting data. Actually, periodically a sensor senses data, may compress it and then send
the compressed payload. Nevertheless, compressed data payloads (plus header) are
still sent. New neural network-based techniques appeared, and they avoid sending
data at all in some situations where the prediction is good, but to our knowledge,
they have not been tested with actual data and on real equipment. The goal of our
test is precisely to propose a validation in real conditions.

For this approach, the prediction algorithms used rely on the approach from[335].
We aim to have a reliable data prediction based on an LTSM neural network and
run the predictor on both the sensor and the network infrastructure. As we can ex-
pect prediction performance reliable within a 10% Mean Absolute Percentage Error
(MAPE) (equation 5.1), we might expect a complementary compression coefficient
up to 90% for our experiment. Such a compression ratio would allow us to build sen-
sor networks where each device consumes less bandwidth, thus further improving
the scalability of LPWANs solutions.

MAPE in this experiment was calculated as follow:

MAPE =
1
n

n

∑
i=1

∣∣∣∣Ci −Mi

Ci

∣∣∣∣ (5.1)

With Mi as Measured value, Ci as consolidated value and n as sample size

With our experiment, we test various neural network sizes and transmission
thresholds to measure how these parameters might influence the compression ratio
of our device’s transmissions.

5.3 Experiment

We embarked an LSTM algorithm similar to the ones studied in [158] and [335]
onto an electronic device as a way to test the experimental feasibility of these solu-
tions. These articles propose to use LSTMs that are sufficiently simple to be imple-
mented and embarked onto devices.

The devices used for this experiment are STM32L476 [336] as measurement and cal-
culation device which generates prediction data and compares it to measurements,
Semtech’s SX1276MB1MAS [337] as LoRa transmission board, and STM32 Nucleo
Expansion Board [338] to measure the energy consumption of LoRaWAN transmis-
sions.

The datasets we used are occupancy data of cellular base stations for the 1st dataset
and power consumption of a smart building for the 2nd one, in function of the time.
We used the 1st dataset for all experiments except for those presented Figure 5.5.

For these experiments, all experiment are realised with 16-bits operations except for
5.7 where 32-bit operations are realised through simulation in Python using the Ten-
sorFlow library and 8-bit operations are realised onto the device. All experiments
with fixed threshold are run on sensors with transmission minimisation and all vari-
able thresold are simulated.
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FIGURE 5.1: Experimental testbed

5.3.1 Hand coding the neural network

Initially, we thought of basing our experiment on EdgeImpulse [339]. EdgeIm-
pulse is an easy-to-use and well-documented framework to generate ML models
from actual sensor data and automatically embed them onto the device. EdgeIm-
pulse was a strong candidate to support our experiments on sensors. Unfortunately,
the framework offered from EdgeImpulse did not support LSTM functionalities,
thus was not adapted to our use case.

LSTM are a special kind of RNN capable of handling short-term memory while keep-
ing tabs on long-term information. LSTM consists of a repeating module that con-
sists of five gates detailed on 5.2, and keeps part of its long term memory with its
cell value (ct).

The first sigmoïd gate (a sigmoïd is a σ(x) = 1
1+e−x function) serves to amend the cell

state by forgetting a part of it based on the inputs and the weights. The associated
operation is as follow:

ft = σ(W f · [ht−1, xt] + b f ) (5.2)

where W f and b f are the weights for the forget gate, determined during training, and
h is the cell’s previous output (which can be a vector considering multiple hidden
cells in parallel).

Then we input new information into the memory by combining the sigmoïd input
gate with a cell candidate determination function input gate is

it = σ(Wi · [ht−1, xt] + bi) (5.3)
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FIGURE 5.2: LSTM Network extracted and reworked from [340]

and cell candidate is

c̃t = tanh(Wc · [ht−1, xt] + bc) (5.4)

These operations flush part of the input information and select which part of the
data is to be kept as long term information by adding it to the amended previous
cell value.

The new cell state ct is determined by combining the previous cell state ct−1, forget
gate output ft, input gate output it and cell candidate c̃t, and will pass onto the
following iteration of the LSTM. The associated operation based on the previous
variables is as follow:

ct = ft × ct−1 + it × c̃t (5.5)

Finally, the cell outputs its results by combining an output gate and the new cell
state:

ot = σ(Wo · [ht−1, xt] + bo) (5.6)

ht = ot × tanh(ct) (5.7)

ht serves as output to the system, and input to the next iteration for our calculation.

As mentioned above, EdgeImpulse did not support this kind of LSTM. By studying
the source code of the program generated by EdgeImpulse, we constated that the
basic library used to execute the ML algorithm was the TensorFlow Lite (TFLite)
[341] library. So, we built an mbed OS firmware that embarks the TFLite exported
neural network and transmits data based on the predictions but could not exploit
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the strength of the TFLite for microcontrollers library as the LSTM operations are
not supported yet.1

We trained our LSTM network with TensorFlow [342] and exported the LSTM
weights and parameters necessary to our implementations (weights, bias and
hidden layers’ state). We ported the LSTM code successfully onto basic STM32
boards. We injected the parameters into our own implementation of the LSTM
network, developed in C, and embarked the LSTM network directly on the sensor.

Our implementation is available following [343]. This implementation was built
thanks to the explanations from Christopher Olah [340], and the following tutorial
on weights and parameters extraction [344].

5.3.2 Dual prediction with LSTM

The usual approach with LSTM is to use measured values as input to the system
and obtain a predicted value based on these measurements, as proposed in [345].
A modified LSTM architecture is proposed hereafter as this approach does not fit
with dual prediction since the backend (i.e. the network side receiving the traffic)
does not have access to the sensor’s measurements. Our experiment relies on a dual
prediction of data to reduce transmission. It relies on two types of data: On the one
hand, we have measured values from sensors, and on the other, we have calculated
(i.e. predicted) values. Our LSTM needs to keep calculating based on values on both
the backend and the sensor as long as transmissions are unnecessary. Actually, as
long as no data is transmitted, the backend has only the calculated values, as the
backend realizes the same ML-based calculations as the sensor, not the measured
ones. Thus, the backend must run the LSTM by re-injecting these calculated data
into the LSTM, and, consequently, the device must do the same to check to which
extent the data predicted by the backend is far or near the data just measured. When
transmissions occur, we can recalibrate the LSTM and use the new transmitted value
as a new baseline for calculations.

The firmware we developed is then flashed onto an STM32L476 card to exploit the
capability of LSTM combined with LoRaWAN transmissions. This algorithm, built
on mbed OS, uses an LSTM Neural Network to predict a theoretical value at a given
time. It compares these theoretical values to experimental measurements at the cor-
responding time. We define a threshold that determines a transmission policy: if the
experimental measurements differ from the predicted value within a given margin,
the transmission is not realized. However, if the experimental measurements are too
far from the predictions, the data is sent over the air from our LoRaWAN device to
our LoRaWAN backend. This threshold might be fixed as in Figure 5.6, or we might
study the effect of changing the value of the threshold through simulations such as
with Figure 5.4 which studies the compression ratio one can expect with this system
when picking various threshold values. Such a data transmission policy may allow
us to reduce the band usage for our device.

We plug our transmission card (SX1276MB1MAS) into an STM 32 Nucleo Expansion
Board to monitor its energy consumption using STM32CubeMonitor [346]. We do
the same with our STM32L476 card in order to study the overcost of running the
LSTM.

1We discussed this issue with contributors from both EdgeImpulse and TFLite for microcontrollers
and will do our best to carry on with this work and use it to contribute to the support of LSTM capa-
bilities on TFLite.
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TABLE 5.1: Comparison of the mean energy consumption of the cal-
culation card and its variance, with and without LSTM-based com-

pression (in Watts)

With Machine Learning Without Machine Learning
Mean value (W) Variance Mean value (W) Variance

6.31 ∗ 10−4 7.57 ∗ 10−5 7.76 ∗ 10−4 7.61 ∗ 10−5

On the backend side, we monitor data reception and aggregate the data predicted
from the neural network on the infrastructure side with the data received from the
sensors, allowing us to plot on a graph the combination of the actual measured data,
for which we consider that the information is 100% reliable, and the predicted data
which was inferred by the neural network and not disproved by sensor transmis-
sion (which is reliable up to a certain threshold). The effect of this threshold will
also be studied. In this experiment, our LoRaWAN RG is accessible through SF7
communications and is a part of TheThingsNetwork [347] community LoRaWAN
Network. Figure 5.1 sums up our experimental setup and illustrates the various
hardware components we use.

Alongside this real experimental setup, we studied the effect of changing the sys-
tem’s variables through extensive simulations allowing us to shorten the experi-
mental exploration, find interesting parameters for our embedded experiment and
confront simulation results to experiments.

We also studied the system’s reliability. We defined the system’s reliability as the
MAPE of the data perceived by the backend compared to the real values. This re-
liability study investigates the consequences of a bounded lossy compression on
the values obtained at the system’s output. Our compression is lossy because the
data recorded by the backend is not the measured one but the predicted one as long
as the predicted one is within the tolerated threshold interval, and thus defining a
threshold means we study the tradeoff between accepting a given error on our data
and improving the compression ratio. Our compression is bounded because we set
it back to the actual data if the loss exceeds the given threshold.

With this experiment, we aim to evaluate:

• the energy cost added by the ML-based compression scheme at the device side;

• the energy saved on the transmission card thanks to data prediction;

• the compression ratio expected with regards to a given neural network size
and data prediction threshold;

• the bounded loss introduced by the solution compared to transmitting all val-
ues;

• the impact of quantizing the weights of the neural network predictor by run-
ning these experiments with quantized parameters instead of floating-point
numbers to improve neural network complexity, memory size and finally en-
ergy efficiency.
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TABLE 5.2: Comparison of the mean energy consumption of the
transmission card and its variance, with and without LSTM-based

compression (in Watts)

With Machine Learning Without Machine Learning
Mean value (W) Variance Mean value (W) Variance

5.48 ∗ 10−4 4.10 ∗ 10−5 9.87 ∗ 10−4 7.12 ∗ 10−5

FIGURE 5.3: Energy (in W) passing through the calculation card and
the transmission card (Sample)

5.4 Discussion

5.4.1 Energy

The comparison of the consumption of our cards (Table 5.1 & 5.2) shows a save of
around 40% on transmission cards. Considering IoT systems similar to our own with
measurements stating that calculation and transmission consume about the same,
this would represent savings of around 20% on both transmission and battery life.
Considering the card we are using, an LR6 battery with a 1200mAh charge would
power our device for around ten months without embedded ML calculations and
about a year with ML calculations.

Figure 5.3 presents the energy passing through both our network card and calcula-
tion card, measured using STM32CubeMonitor, which permits us to measure and
log instantaneous consumption for our device, in function of the time. The device
lifecycle follows a two-step routine. Most of the device’s life is spent in a sleeping
state with low energy consumption. Here in our illustration, the device’s sleeping
state is around 9s long to respect LoRaWAN’s duty cycle. The device will, exception-
ally or regularly, transmit data based on its measurements. Transmitting is the other
step in the routine. Transmissions translate in power consumption as three trans-
mission spikes corresponding to data emission and the opening of two LoRaWAN
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listening windows. A residual energy consumption of about 4.10−4W can be no-
ticed for the calculation card, while it is about 5.10−5W for the transmission card.
The calculation card embarks a dedicated OS which requires more permanent con-
sumption. Irregular energy spikes can be observed for the calculation card, which is
due to OS eventing. Our ML algorithm directly results in transmission spikes. Ex-
cept for the operations realized by the OS on the calculation card, no transmission
means no power spike, which leads to less power consumption as a whole, a result
that can be observed on the transmission card’s power consumption. We would ob-
serve regular power spikes with regular transmissions, but with our method, these
spikes are completely cut off.

5.4.2 Compression and Mean Absolute Percentage Error

FIGURE 5.4: Compression ratio and mean absolute percentage error
with regards to neural network size and precision threshold

Figure 5.4 presents the MAPE and the Compression Ratio we can expect with re-
gards to the size of the neural network and the decision threshold. We observe that,
as expected, the compression ratio improves with the threshold but that the MAPE
worsens. The consequences of the number of hidden layers is not significant.

Experimenting with different datasets (Figure 5.5) show how the performances of
the neural network in its prediction greatly influence the quality of the compression
scheme. With a better overall MAPE, one might achieve around 60% compression
accepting as little as 1% error in its transmissions.
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FIGURE 5.5: Compression ratio and mean absolute percentage error
with regards to precision threshold for different datasets

The questions that come with these curves need to be addressed directly by the user.
A user with concern with precision will prefer a lower MAPE, thus obtaining a lower
compression ratio. If a user accepts a 1% error on its global data, setting its trans-
mission threshold around 8%, He would end up with a 30% compression ratio for
our first dataset and 85% compression ratio for the second one. Accepting more er-
rors would permit compression ratios up to 90%. We note that the compression ratio
is low with a strict threshold, but remember that contrary to classical compression
methods where at least a header is sent, no packet is sent with our method when we
compress. Thus, for a strict threshold of 10%, we decrease the overall traffic by one
packet over five (20%) while keeping a global error on our overall data around 2%.

5.4.3 Backend considerations

Figure 5.6 presents a comparison between the measured time-series as transmitted
without ML and the calculated time-series improved with transmissions. The Calcu-
lated Data curve consists solely of data calculated by the LSTM neural network. The
Measurements Data curve corresponds to our LSTM target data, and its value end
up transmitted should the calculated data end up being too far from the measure-
ments. Finally, the Combined Data is the data curve as seen on our backend-side:
the calculated data improved by the measured transmission should the two curves
differ above a given threshold.
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FIGURE 5.6: Comparison sample between calculated data, reference
data and data perceived by the backend

FIGURE 5.7: Float32, Float16 and Int-8 Quantized LSTM forecasting

5.4.4 Quantization

Figure 5.7 presents our backend-side time-series as a function of the time index,
combining calculated data and received measurements. The three curves on this
figure differ by the number of bits necessary to code the LSTM weights, hidden
layer parameters, cell state and input data. The dotted blue curve is obtained by
running the dual prediction algorithm in a Python simulated environment and op-
erating with 32-bits-encoded floats. The plain orange curve is obtained by directly
running the dual prediction algorithm on the device with an LSTM operating with



5.5. Storing and sharing ML weights 95

16-bits-encoded floats. The dash-dot green curve is obtained by directly running the
dual prediction algorithm on the device with an LSTM operating with quantized
parameters encoded on 8-bits integers.

Measurements of the compression ratio for the three above curves show no signifi-
cant degradation between the three systems (the compression ratio almost does not
change and remains around 70% for the three curves). 8-bit quantization is a well-
documented solution to reduce the operations’ complexity while working with neu-
ral networks on constrained devices. This also proves to be confirmed with our im-
plementation of LSTM. Efficient quantization is essential when working with Neu-
ral Networks; it reduces the complexity of the operations, which might, in turn,
allow for savings in processing power and battery life. Further works would be
necessary on quantization efficiency once the LSTM operation is ported to the TFLite
for microcontrollers library.

5.5 Storing and sharing ML weights

When working with dual prediction, synchronizing data between backend and
device is crucial should one want to exchange information regarding its own neural
network. In a similar way that we did in 4.2, we aim to exchange Machine Learn-
ing information on the backend side using the DNS infrastructure. Such a solution
would allow to benefit from the DNS’s deployment, security and trust network to
address issues such as keeping the information available, easy-to-use and exchanged
using standard protocol.

This section provides insight on possible solution for storing and exchanging the
ML weights using the DNS, its infrastructure and extensions, based on different use
cases depending on the size of the neural network, but also on possible different IoT
network topologies.

5.5.1 Classic DNS use

A first possible scenario for storing and sharing weights would be to host the
weights directly on the DNS infrastructure. This first scenario is the same as the
Context rule DNS storage from the previous chapter. Thus the only question for
storing rules within the DNS would be the size of the neural network.

A DNS TXT RR consists of records with a total size of up to 65535 bytes. However,
as mentioned in [5]:

"the total size of a typical DNS-SD TXT record is intended to be small –
200 bytes or less. In cases where more data is justified (e.g., LPR printing
[BJP]), keeping the total size under 400 bytes should allow it to fit in a
single 512-byte DNS message"

thus a DNS TXT RR with this paradigm ought to be of reasonable size.

Each ML weight can be encoded on 24 bits (3 digits, 8 bits per digit) thanks to 8-bit
quantification, as a DNS TXT RR stores bytes of text, thus would store the ML values
as text instead of using more optimized space, but conversion to another base could
be considered to reduce storage size.

An LSTM network number of weights can be calculated based on its number of cells.
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The calculation for a simple, single-input, network is as follow:

Let H be the number of hidden cells within the LSTM.

Number of weights = 4 ∗ H2 + 11 ∗ H + 1

The details for such calculation is as follow:

• 4 ∗ H values for the weights associated with the input value

• 4 ∗ H ∗ H values for the weights associated with the hidden layers

• 4 ∗ H values for the LSTM bias

• 2 ∗ H values for the initial state of the hidden layers and the initial state of the
cell

• H values for the dense layer’s weights

• 1 value for the dense network’s bias

Using this 24 bit "standard" for ML values, a simple LSTM network with 1 hidden
cell within the LSTM should fit within 48 bytes, thus would fit within the 200-bytes
classic DNS message.

The 200 bits limit is attained by using 3 hidden cells within the LSTM (210 bits), and
the 400 bits is reached with 4 (327 bits).

Thus heavier neural networks would hardly fit within a 512-bytes message, thus
needing additional messages for which the DNS would hardly fit. Using a different
encoding for the values, changing the base up to base 36, for example, would allow
for LSTMs of size up to 6 hidden layers (7 would be within reach as it fits within 548
bytes).

For even heavier networks, the DNS would prove non-competitive and requesting
data from an API would prove better and allow for more functionalities.

5.5.2 Using DNS and APIs for heavier networks

We can design a fallback mechanism for the backend for heavier networks based
on a common API for ML models.

Designing such an API model would allow additional functionality to the user, such
as generating the neural network via a web interface based on its own time-series.

This solution would help popularise ML transmission minimization by providing to
its user a pre-coded compression source code, directly embeddable onto its sensors,
and would take care of provisioning both the ML parameters’ API and provision the
DNS to reference the API location.

Additionally, the time-series provided by the user could help to gather data to im-
prove the neural network training, thus exploiting each individual time-series to
improve the overall system performances and provide better solutions to its user
over time.

5.5.3 Exploiting DNS-SD paradigms in mesh communications

Considering IoT networks, designing the system to allow communication directly
between devices would help improve the overall performance.
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The LoRa modulation allows for such a communication solution as it can work with
mesh topologies. Using ML compressed communication would allow to upscale
LoRa mesh networks by limiting interferences between communicating devices.

However, how would a device transmit the details for its ML model to its peers?

We propose to learn the lessons from the DNS-SD paradigm in a dual connectivity
infrastructure to support the discovery and advertising of ML model within a given
local coverage.

In this case, a LoRa device would transmit its ML data to its peers as a service ad-
vertisement which would be saved by its peers to process its time series and follow
the variations from its parameters, increasing the knowledge of its peer within the
network.

In the case of a newly arrived device, the overall ML parameters could be forwarded
from the RG, which could serve as a DNS proxy as described in [273].

The ML parameters would need to be encoded as base-64 values, allowing for easier
transmission of the 8-bit quantified values instead of fitting to the 3-byte-per-value,
text-readable constraint from the DNS TXT record.

Additional information can also be advertized through DNS-SD, such as the nature
of the sensor, its version, its functionality, or listening cycle, making DNS-SD an
interesting candidate for weight advertising in mesh communications.

5.6 Conclusion

We built an experimental testbed to check the capabilities of on-boarding LSTM
algorithm on-sensor to forecast data, achieve dual prediction, and eventually com-
press data traffic and save energy. An LSTM algorithm was developed and inte-
grated into small, constrained hardware to obtain these results; its source code is
accessible following [343]. Our findings show that it can efficiently minimize traffic
while preventing non-relevant transmissions to occur with a significant impact on
energy consumption. We observed the impact of the neural network size and the
decision threshold on the compression ratio and the MAPE. Our system allows ef-
ficient compression while keeping the user within a reasonable error margin. It can
be customized depending on precision and compression tradeoff requirements. We
also check the impact of the quantization of the LSTM parameters because of device
constraints and decrease the algorithm’s complexity. We observed no significant
degradation in the system when using 8-bit quantization.

Compressing data with this kind of Bounded Lossy Compression allows to expend
battery lifetime depending on the accepted margin of error. Our results show an
excellent compression ratio compared to the state-of-the-art. Note that our scheme
avoids sending any data while classical compression mechanisms at least send a
frame header every time some compressed data is sent. Moreover, an extensive
energy consumption study proves that our algorithm saves an important energy
ratio that can be used in further communication.

Storing the ML weights in the DNS seems feasible once we run the number seem
possible. We presented three approach for storing and sharing the ML weights
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within a network with a straightforward approach based on the DNS, an accom-
panying approach combining APIsand DNS and an autonomous approach based on
DNS-SD paradygms.

Further approach would consist of selecting multiple features on multiple values to
attain more precision in the calculation with a more complex recalibration. Works
are carried by contributing to the actual TFLite community to propose a complete
port of the LSTM libraries from the global TensorFlow project to the TFLite for mi-
crocontrollers community.
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Chapter 6

Conclusion

This thesis presented various approaches to improve interoperability and perfor-
mances of LoRaWAN-based IoT solutions by leveraging the existing DNS infrastruc-
ture as a common ground for application developers and researchers. The DNS is
a known protocol for the Internet community, with various open-source implemen-
tations for clients, servers or within frameworks. Tools were deployed to measure
its performances and modulate its use. Its community is open and proposes new
use-cases and improvements that keep the DNS community up to date with new
developments, protocols and network paradigms developed by the industrial world
or the research community.

Within the IoT ecosystem, LoRaWAN is flexible; backed by an ever-increasing com-
munity of industrial stakeholders and a newly-created official academic community,
the LoRa Alliance and its LoRaWAN protocol poses as a major actor of the IoT
ecosystem. The evolutions from the discussions of the Alliance are closely followed
by LoRaWAN applications developers as the reference LoRaWAN open-source
Stack, ChirpStack, encountered 17 minor releases and 1 major release within the last
3 years.

Current IoT applications encounter, with their latest development, the same issues as
the Internet. IoT technologies are riddled with scalability, interoperability, mobility
and roaming, transmission efficiency, availability, reliability and other security is-
sues such as trust and privacy. The DNS contributes to solving many of these issues
on the Internet, hence our interrogation on possible improvements to IoT systems
backed by the DNS infrastructure.

This thesis studied IoT systems regarding the following key aspects: Naming, Roam-
ing, Header Compression and Payload Compression. This study did not aim to em-
bark DNS protocols onto sensors but instead to use DNS on the infrastructure side to
support IoT improvements. This thesis presented experimental work on LoRaWAN
regarding various scenarios to test IoT solutions, applications and use-cases. This
experimental approach introduced additional constraints such as working with ref-
erence implementations of the solutions, generating actual IoT traffic for measure-
ments and analysis, respecting airtime constraints or device lifecycle.

Experimenting with roaming requires an interconnection agreement between net-
work operators, usually based on a ’One-to-One’ interconnection or by building an
interconnection ’Hub’. We exploited a federated approach to the IoT interconnection
by proposing the IoTRoam architecture, federating different organizations to allow
flexible mutual authentication and authorization between any backend element in
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roaming situations, without a direct and explicit roaming agreement (by intercon-
necting Network, Application and Join Servers between operators). The intercon-
nection agreement is implicitly given when the organization joins the IoTRoam fed-
eration.

By experimenting with LoRaWAN, our architecture proposes a solution that consid-
ers the constrained characteristics of IoT environments. Our approach to building
our roaming architecture was to use the combination of the DNS infrastructure and
a PKI to build a secure open roaming infrastructure accessible to public and private
LoRaWAN operators. We leverage the possibility to freely set up private LoRaWAN
networks. We designed, built and deployed a proof of concept architecture to test
the Roaming capabilities offered by the ChirpStack solution and test roaming be-
tween private and public LoRaWAN. The infrastructure was validated by testing
LoRaWAN connectivity for devices in a roaming context by studying various on-
boarding scenarios, measuring onboarding time and communication delays.

We studied the consequences of caching and prefetching DNS information with mo-
bile devices in a city through simulations of communications between mobile de-
vice and IoT infrastructure. DNS prefetching is an efficient tool to reduce on-the-fly
DNS queries necessary for devices communication. Prefetching the information on
nearby antennas can completely prevent DNS queries by performing them in ad-
vance around the closest antennas, but at a cost, as devices request more antennas,
especially in a highly mobile environment.

Our combination of an ML predictor and prefetching allow for an interesting reduc-
tion of DNS requests realized compared to a standard caching-only solution and a
reduction in the number of gateways realizing prefetching operation compared to
soliciting the closest nearby antennas. Using DNS allow us to exploit its strength as
a known distributed database solution to fill localized caches to provide information
as soon as needed as well as purge it through time when mobile devices leave the
antennas’ coverage.

Our simulations were realized within the frame of providing roaming connectivity
information to devices, but could be applicable when querying other information
necessary for device communication such as certificates stored with DANE, com-
pression parameters or any device specific information stored in the DNS such as
pointers to additional servers.

We built a viable and operationally feasible infrastructure that could be integrated
into existing IoT infrastructures with minimum changes. We followed the WBA
guidelines for open roaming and satisfied the requirements outlined by employing
open standards used on the Internet to achieve our vision. We deployed a PoC in-
frastructure and provided all the necessary building blocks so that the community
could make use of them. These experiments lead to three adopted Change Requests
after submission to the LoRa Alliance.

We discussed the IoTRoam initiative with several institutions to run interoperable
testing using the federated platform; running additional tests with these institutions
would help us study the impact of heterogeneous backend infrastructures and their
effect on the quality of the communication channel and would also allow us to gather
additional data on the impact of DNS complete resolution on the LoRaWAN/IoT
traffic. As the objective is to interconnect networks using different IoT technologies,
the next steps consist of testing roaming interoperability with NB-IoT, 5G or Wi-Fi.
For ED onboarding, we are also working on integrating DANE with DNSSEC since
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the certificate data itself can be stored in the DNS, possibly replacing or completing
the PKI.

Complementary to our work with interconnecting IoT infrastructure, we experi-
mented with SCHC remote rules management and sharing as a solution to improve
the scalability of LPWANs solutions. Providing a way to exchange rules informa-
tion between backend would offer new possibilities to provide more flexibility to the
network, thus improving the flexibility of IoT solutions in contexts such as roaming
devices. The proposed mechanism exploits the DNS infrastructure as a solution to
leverage DNS performances and improve rules querying capabilities within the net-
work. Unfortunately, rules are too heavy to be embedded directly as DNS Resource
Records; thus, a fallback mechanism was designed based on APIs and exploit DNS
caching mechanism to store rules identifiers and version numbers. DNS, as an opti-
mized, hierarchical and distributed database, could assist in identifying the location
of the server where the context rules are stored feasibly on the Internet. Hopefully,
using such a mechanism would allow for a seamless transition, from pre-configuring
the information needed on the backend to building it dynamically, on the fly, based
on actual needs when operating the network.

DNS would prove an efficient solution to introduce more flexibility and improve
scalability when using SCHC. Our solution would provide open access to SCHC
parameters as a way to support roaming capabilities. Improving SCHC flexibility,
scalability and assisting SCHC when a device is roaming are key considerations to
increase the technology’s adoption, and DNS might help by hosting rules outside the
scope of the ED’s associated backend without hindering the transmissions. To assist
with this problem, we deployed a dynamic context resolution architecture based on
DNS for SCHC compression/decompression and studied the consequences of such
mechanism on the system latency and other possible consequences on LoRaWAN
communications.

For this experiment, we built a SCHC-enabled LoRaWAN infrastructure. SCHC was
able to efficiently compress headers from the 44-octets IPv6+CoAP header down to
a few octets, which leads to reduce header size up to a 22-factor and enable the use
of IPv6 over networks that would be unable to support it, such as SigFox and its 29
octets frame or LoRaWAN which ranges from 59 octets to 250 octets. Using SCHC
to send IPv6 packets over LPWAN is proven to be an efficient way to consider the
scarcity of radio resources. SCHC is also able to work within a reliable timeframe.
Querying time within a huge database was not studied and would need additional
data regarding actual SCHC usage on LPWAN to provide interesting insight, but
when working with a few devices, SCHC can decompress data consistently with
a few microseconds; an operation that is almost transparent with regards to other
mechanisms specific to LPWAN, such as LoRaWAN’s reception delays.

By exploiting the DNS infrastructure, one can query the context signature within a
satisfying timeframe (between 30 and 100 milliseconds) and fall back onto the asso-
ciated context storage API within 650 ms. In a best-case scenario, the 650 ms delay
would be furtherly reduced by caching; our Atlas probes measurements lead us to
believe that using a DNS-only mechanism and building a context cache would lead
to reducing the 650ms delay down to tens of milliseconds. These results concerning
the DNS-only system and its performances are consistent with results measured in
other studies. Such a mechanism does not hinder the communication as it is kept
under the delay of the first reception windows and benefits from the information
caching should the answer need a different SCHC rule. Should we need to respond
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to the device within the first reception window, 350ms of data handling are left in
the worst-case to enqueue the response onto the RG.

Further work regarding the SCHC protocol would require additional data from the
actual use of the SCHC protocol. Studying SCHC uses would help to define the re-
search direction by putting them into contrast with the production issues introduced
by the protocol. Studying SCHC context rules outside their theoretical construction,
but rather based on actual rules used in production, would help further identify
eventual new constraints introduced by the protocol and define useful research di-
rection. Improving the compression capabilities of LPWANs is a crucial concern
for the technology. Reducing packet size reduces airtime, which is an efficient way
to improve the scalability of LPWAN solutions. Another solution to reduce air-
time of LPWANs transmissions is transmission minimization. Our approach with
transmission minimization is complementary to compressing header using SCHC.
SCHC relies on suppressing and optimizing predictable data within the transmis-
sion’s header. But what if the actual relevant data from the payload is predictable.
In this case, would it be possible to study transmission minimization paradigms in
which compressing communications would rely on predicting a device’s transmis-
sion payload and preventing its transmission if it is unnecessary?

We decide to further our approach regarding transmission efficiency by compress-
ing data. The easiest way to reduce data transmission is to delete redundancies
or to round them to near values. When working with sensors, data is often
time-correlated. For example, the temperature may vary slowly. Recently, Neural
network-based techniques entered the landscape of IoT data compression tech-
niques. Data can be compressed by their regression curve inferred from a neural
network. More complex prediction methods can also be used. Neural networks are
known as universal function approximators with the capability to learn arbitrarily
complex mappings, and in practice, show excellent performance in prediction tasks.
Nevertheless, if the "classical" methods present efficient compression ratios, they
do not avoid transmitting data. Actually, periodically a sensor senses data, may
compress it and then send the compressed payload, but compressed data payload
and its associated header are still sent.

New neural network-based techniques appeared, and they avoid sending data in
situations where the prediction is good. A neural network-based predictor is im-
plemented in the ED and also in the backend. If the sensed data is well predicted,
no data is sent, and the backend uses the prediction. Otherwise, it is sent. We ex-
perimented around these approaches by testing them in real experiments. Thus an
actual LSTM implementation was developed and embedded on sensors to back or
disprove the results obtained through simulations by the scientific community.

Our experiment studied the parameters to deploy such a neural network-based ap-
proach by experimenting with various use-cases such as varying the transmission
decision threshold, the size of the neural network and the number of digits neces-
sary to encode the weights and the variables. These parameters lead us to study the
subsequent compression ratio and error rate, the energy consumption of the algo-
rithm, the effect of quantization.

We built an experimental testbed to check the capabilities of onboarding LSTM algo-
rithm on-sensor to forecast data, achieve dual prediction, and eventually compress
data traffic and save energy. A deep LSTM algorithm was developed and integrated
into small, constrained hardware to obtain these results; its source code is accessible
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following [343]. Our findings show that it can efficiently minimize traffic while pre-
venting non-relevant transmissions to occur with a significant impact on energy con-
sumption. The overall system shows no significant impact from varying the neural
network size and studied the impact from the decision threshold on the compres-
sion ratio and the MAPE. Our system allows efficient compression while keeping
the user within a reasonable error margin. It can be customized depending on pre-
cision and compression trade-off requirements. The impact of the quantization of
the LSTM parameters is checked because of device constraints and also to decrease
the algorithm’s complexity. No significant degradations in the system are observed
when using 8-bit quantization. Our experiment shows that these machine learning
algorithms can be easily embarked onto EDs, their performances are not lacking,
and their storage size and energy consumption does not hinder the device’s usual
functioning.

Compressing data with this kind of Bounded Lossy Compression allows expand-
ing battery lifetime depending on the accepted margin of error. Our results show
an excellent compression ratio compared to the state-of-the-art. It is to note that
our scheme avoids sending any data, while classical compression mechanisms at
least send a frame header every time compressed data is sent. Moreover, these two
approaches are complementary, and data can be compressed using classical com-
pression mechanisms once the irrelevant information was suppressed. An exten-
sive energy consumption study proved that our algorithm saves a portion of the
device’s energy that can be used in further communication. We developed argu-
ments regarding ML weights storage capabilities for IoT infrastructure backed by
DNS approaches. Such a solution seem feasible with regards to the binary size of
the parameter file, but would require experimental work to back our assumptions
with numbers.

Further approach would consist of selecting multiple features on multiple values to
attain more precision in the calculation with a more complex recalibration. Works
are carried by contributing to the actual TensorFlow Lite community to propose a
complete port of the LSTM libraries from the global TensorFlow project to the Ten-
sorFlow Lite for microcontrollers community. Other works include studying the
maximum supported size for neural networks to further our knowledge of small
size neural networks and their performances.

In a nutshell, backing the DNS as a core service for interconnecting networks, host-
ing communication protocol rules to enhance IoT solution architecture in our dif-
ferent experimentation showed relevant results. We worked on building a roaming,
easy to use, federated infrastructure to interconnect LoRaWAN networks as a solu-
tion to improve interoperability between IoT infrastructure backed by the DNS. We
developed improvements to the SCHC protocol by hosting rules on the DNS infras-
tructure and allowing backend elements to query a global DNS zone that hosts the
rules IDs and version number. Finally, we developed a transmission minimization
algorithm by embedding a machine learning algorithm based on the LSTM algo-
rithm onto LPWANs sensors and studied its impact on the underlying data and
infrastructure. The results presented in this thesis show that the DNS, despite being
one of the oldest protocols used on the Internet, can propose relevant improvements
to infrastructure deployments and accompany new IoT use cases. The latest and on-
going work from the DNS community might assist in securing the aforementioned
applications, such as switching from classical DNS to its more secure, latest imple-
mentations, as well as confirm information authenticity or assist in service discovery
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to support IoT applications.
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Appendix B

Résumé en français de la thèse

This section presents a short summary of the thesis, translated in French.

B.1 Introduction

L’Internet des Objets (IdO ou Internet of Things, IoT) a évolué depuis cette pos-
sibilité théorique de connecter tous les appareils à un réel marché de biens et de
services en constante expansion. Les technologies sous-jacentes ont évolué et l’IoT
repose aujourd’hui sur de nombreuses technologies de communication différentes:
Des technologies à courte portée comme Bluetooth, moyenne portée comme Zigbee
ou longue portée comme la technologie LoRa (Long-Range).

Les systèmes de l’IoT sont habituellement construits autour d’infrastructures
fermées basées sur des systèmes en silo. Créer de l’interopérabilité entre ces
silos fermés est un enjeu pour certains cas d’usages cruciaux dans le déploiement
des technologies de l’IoT comme les villes intelligentes. Développer la problé-
matique au niveau applicatif est une première étape directement inspirée des
pratiques courantes en matière de collecte et d’analyse de données dans le cadre du
développement des technologies de traitement de données massives. Cependant,
construire des ponts au niveau réseau permettrait de faciliter l’interconnexion entre
infrastructures et faciliterait la transition fluide entre technologies de l’IoT afin
d’améliorer à bas coût la couverture réseau.

Le Système de Nom de Domaine (Domain Name System, DNS), initialement
développé pour traduire les noms, lisibles et compréhensibles par les utilisateurs en
adresses IP, utilisées par les appareils connectés, est reconnu comme un facilitateur
sur les question d’interopérabilité sur Internet. C’est l’un des systèmes les plus
anciens déployés sur Internet, développé à la fin des années 1980 pour supporter
la croissance des infrastructures d’Internet. Bien qu’ayant beaucoup évolué ces
dernières années, en témoignent les nombreuses propositions de modifications au
standard publié à son sujet, le DNS reste aujourd’hui l’une des infrastructures les
plus centrales du réseau Internet.

Le DNS repose sur des principes simples, mais son évolution depuis ses premiers
développements ont permis de construire des systèmes complexes grâce à ses nom-
breuses possibilités de configuration. Dans le cadre cette thèse, qui étudie les possi-
bles améliorations aux services et infrastructures de l’IoT, nous étudions la prob-
lématique suivante : Le DNS et son infrastructure peuvent-ils servir de support
efficace à l’évolution de l’IoT de la même manière qu’il a accompagné l’évolution
d’Internet ?
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Ce manuscrit présente les travaux réalisés dans le cadre de la thèse de doctorat Con-
tributions à la résolution de problèmes de performances et d’interopérabilité des
réseaux IoT hétérogènes par l’utilisation du standard ouvert DNS et de services
d’infrastructure. Cette thèse est réalisée en collaboration entre Télécom SudParis et
l’Association Française pour le Nommage Internet en Coopération (AFNIC) dans le
cadre d’une convention CIFRE. La thèse vise à proposer de nouvelles utilisations de
l’infrastructures DNS permettant à celle-ci de servir de support aux diverses évo-
lutions de l’Internet des Objets et ses systèmes. L’infrastructure DNS étant une in-
frastructure répartie déployée partout dans le monde, résiliente, supportée par la
totalité des systèmes connectés à Internet et permettant aux utilisateurs d’Internet
un accès facilité à un ensemble de services, exploiter une telle infrastructure plutôt
que de redéployer des systèmes dédiés à l’Internet des Objets semble être une solu-
tion intéressante à considérer pour des usages étendus.

Dans cette optique, nous étudions de possibles améliorations de systèmes de l’IoT
sous trois angles. Nous testons tout d’abord un modèle d’itinérance pour réseaux
de l’Internet des Objets au travers de la construction d’une fédération reposant sur
l’infrastructure du DNS et ses extensions pour en assurer l’interopérabilité, la sécu-
rité de bout-en-bout et optimiser les communications entre infrastructures. Son ob-
jectif est de proposer des transitions fluides entre réseaux sur base d’informations
stockées à l’aide de l’infrastructure DNS. Nous explorons également les probléma-
tiques introduites par le DNS, notamment en termes de latence et d’influence sur les
temps de réponse des applications, et comment en limiter l’impact sur les échanges,
déjà grandement contraints, entre objet connecté et passerelle radio. Pour cela nous
étudions les conséquences de l’utilisation de requêtes DNS anticipées dans un con-
texte de mobilité en milieu urbain. Nous étudions ensuite la façon dont le Système
de Nom de Domaine peut renforcer l’interopérabilité, la disponibilité de ressources
et le passage à l’échelle de systèmes de compression de paquets de l’IoT. Enfin, nous
explorons la question de la minimisation de trafic en implantant des algorithmes
d’apprentissage sur des capteurs et en mesurant les paramètres du système final, en
particulier en terme de performances de transmissions et d’efficacité énergétique.
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B.2 IoTRoam, une fédération supportant l’itinérance pour
l’IoT

Contrairement aux autres technologies IoT, LoRaWAN permet une diversité dans
les stratégies de déploiement de réseau. On y retrouve des réseaux public, privés ou
communautaire. Une infrastructure LoRaWAN publique se comporte de la même
manière qu’un réseau cellulaire d’opérateur. En France certains opérateurs comme
Orange ou Bouygues Télécom déploient d’ailleurs de tels réseaux. Un déploiement
LoRaWAN privé est en général réalisé pour un cas d’usage précis par une insti-
tution - entreprise, hôpital ou université - qui ne déploie pas autant d’antennes
qu’un opérateur de télécommunications et n’a besoin que d’une couverture limitée.
Une solution communautaire, comme TheThingsNetwork, construit un gigantesque
réseau autour d’une unique plateforme LoRaWAN qui peut être utilisée de manière
indiscriminée et souvent gratuite par tous les membres de la communauté. Dans
ce dernier cas la couverture géographique est limitée aux besoins spécifiques de la
communauté.

L’itinérance dans les réseaux LoRaWAN peut être permise lorsqu’une interconnex-
ion entre deux réseaux (public, privés ou communautaires) opérés par des insti-
tutions différentes est réalisée, l’itinérance permet alors à un appareil de contin-
uer à transmettre et à recevoir des données même lorsque sa couverture réseau
change et qu’il s’éloigne de son réseau d’origine. Pour l’instant, les déploiements
d’infrastructures supportant l’itinérance dans le cadre des réseaux LoRaWAN ont
été réalisés à l’aide de mécanismes tiers hors du canal de transmission, soit par
l’établissement de connexions point-à-point soit à l’aide d’un mécanisme de Roam-
ing Hub comme le propose Packet Broker [348]. Le Roaming Hub simule un sys-
tème pair-à-pair en autorisant les partenaires à échanger des messages les uns avec
les autres en passant par un point d’échange central commun.

Un problème persiste avec l’itinérance hors du canal de transmission : La solution
hors-canal est-elle capable de passer à l’échelle considérant l’évolution croissante des
déploiement de réseaux LoRaWAN ? La réponse serait affirmative si LoRaWAN ne
disposait que de réseaux publics suffisamment peu nombreux pour définir ensemble
des règles de coopérations au même titre que les opérateurs de téléphonie mobile
au sein d’un pays. Cependant, une récente analyse du trafic actuel lié aux infras-
tructures LoRaWAN estime que 84% des communications en 2019 ont été réalisées
dans un contexte de réseau privé ou communautaire contre 16% sur des réseaux ad-
ministrés par un opérateur LoRaWAN public. N’utiliser que des mécanismes hors-
canal pour établir des connexions entre une majorité (qui peut se chiffrer en milliers)
de réseaux privés ou communautaires et une minorité de réseaux publics serait un
cauchemar à administrer.

Dans le cadre des spécifications des infrastructures LoRaWAN, l’Alliance LoRa a
alloué une zone DNS spécifique pour rassembler les adresses IP des réseaux Lo-
RaWAN et les faire correspondre à leur adresse de réseau LoRaWAN, appelée NetID.
Tout opérateur de réseau LoRaWAN (public, privé ou communautaire) peut deman-
der à l’Alliance LoRa de se voir allouer un tel identifiant et renseigner dans la zone
"netids.lorawan.net" les informations permettant de contacter son serveur réseau.
Les spécifications proposent de faire correspondre le NetID et l’adresse d’un réseau
se présente comme suit :

60050a.netids.lorawan.net. IN A 192.168.1.2
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(60050a est le NetID et 192.0.2.45 l’adresse du Home Network Server)

Ainsi, tout serveur réseau LoRaWAN est en mesure d’identifier et de contacter
le réseau d’origine de tout appareil transitant sur son réseau en interrogeant la
base DNS, même sans accord d’itinérance préalable. Pour les appareils disposant
d’accord d’itinérance entre LoRaWAN et d’autres réseaux (LTE-M, NB-IoT...), une
fois que l’objet est hors de sa zone de couverture, il est également possible de
retrouver l’adresse du réseau d’origine à l’aide d’une requête DNS.

Le DNS permet aussi de s’assurer qu’un NetID alloué à un opérateur réseau dans
le cadre de l’Alliance LoRa, n’est pas dupliqué et utilisé par les autres et autorise
les opérateurs de réseaux LoRaWAN à faire correspondre de manière dynamique le
réseau de rattachement d’un objet connecté. Bien que l’utilisation du DNS soit à ce
jour la seule solution proposée par l’Alliance LoRa dans le cadre des spécifications
des infrastructures LoRaWAN pour supporter l’itinérance, l’Alliance ne met pas à
disposition une telle infrastructure DNS à l’heure actuelle.

Notre travail vise à mettre en œuvre les spécifications LoRaWAN qui supporte
l’itinérance, et à proposer la construction d’un réseau fédéré supportant le mé-
canisme d’itinérance entre infrastructures. Nous nous appuyons pour cela sur le
système DNS. Notre cas d’usage propose d’étudier la faisabilité d’un déploiement
d’infrastructures LoRaWAN entre universités partenaires, qui fonctionnerait de
manière similaire à eduroam [306]. Le but d’une telle démarche est d’utiliser les
fonctionnalités de roaming entre les partenaires du projet tout en leur permettant de
rester maître de leur réseau, nous avons nommé ce projet IoTRoam. Nous mettons
également en place une infrastructure à clefs publiques capable de générer et
partager les certificats nécessaires à la communication, chiffrée à l’aide du protocole
TLS, entre les partenaires du projet

Nous avons méticuleusement étudié les spécifications LoRaWAN et le code source
disponible sur GitHub afin d’inclure la résolution DNS dans ChirpStack

FIGURE B.1: Exemple d’utilisation du DNS comme support à l’OTAA
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Nous avons ensuite testé le mécanisme d’activation "Over-the-Air" (OTAA - Figure
B.1) dans un contexte Passive Roaming entre Télécom SudParis et l’AFNIC et docu-
menté [349] le scénario , l’architecture et les cas étudiés afin de les partager avec les
institutions partenaires.

Dans le scénario ci-dessus, nous avons utilisé une infrastructure PKI basée sur des
certificats générés par une unique Autorité de Certification (CA). Nous avons mis
en place une infrastructure pour laquelle chaque institution dispose de son propre
certificat racine (que l’on appelle Intermediate CA) B.2 et que chacune délivre les
certificats nécessaires aux communications avec ses machines à l’aide de ce certificat
racine intermédiaire.

FIGURE B.2: Chaîne de confiance dans l’approvisionnement des cer-
tificats

Dans la suite des tests de notre infrastructure, nous avons évalué les performances
du système d’itinérance en étudiant les conséquences de l’utilisation du DNS sur le
système de communication LoRaWAN.

Nous avons pour cela étudié trois scénarios pour nos mesures :

• Scénario 1: L’appareil est au sein de son réseau mais sans latence introduite
par le DNS ou l’infrastructure à clef publique.

• Scénario 2: L’appareil est au sein de son réseau mais les adresses du serveur
réseau et du serveur d’activation sont résolus par le DNS.

• Scénario 3: L’appareil est au sein d’un réseau visité, les adresses du serveur
réseau et du serveur d’activation d’origine sont résolus par le DNS et
l’infrastructure à clef publique est utilisée pour sécuriser le trafic.

Les courbes ci dessous (Figures B.3 et B.4) présentent la répartition cumulées des
temps d’activation et des délais aller-retour de communication pour nos appareils,
réalisés directement sur ces derniers

Nos mesures nous laissent à penser qu’introduire le système DNS et une infrastruc-
ture à clef publique dans le fonctionnement de LoRaWAN n’ajoute pas de délais
signifiants pouvant dégrader les communications. Notre système est configuré pour
vider le cache DNS entre chaque requête, aussi un infrastructure réelle profiterait
des bénéfices de celui-ci. Pour compléter cette étude nous avons également étudié
les conséquence du pré-chargement d’informations à l’aide du DNS pour les ap-
pareils mobiles.
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FIGURE B.3: Répartition (cumulée) des temps d’activation des ap-
pareils suivant nos trois scénarios

FIGURE B.4: Répartition (cumulée) des délai de communication entre
appareil et infrastructure suivant nos trois scénarios

Pré-chargement d’informations de connexion des appareils mobiles pour
réduire l’impact du DNS

Pour compléter notre étude sur les possibilité de monter une fédération d’itinérance
sur un réseau LoRaWAN, nous avons étudié une possible méthode pour réduire
l’impact réseau du mécanisme que nous introduisons dans les procédure de connex-
ion. Dans un contexte de roaming, il est important pour les opérateurs de prioriser
leurs connexions entrantes et de servir leurs utilisateurs le plus rapidement possible
afin de ne pas surcharger leur propre réseau.

Le pré-chargement d’information est une stratégie classique pour réduire les délais
de connexion, elle est utilisée principalement dans le contexte de la navigation web
pour résoudre les domaines présents sur une page.

Le mécanisme de prédiction est assez simple, le lien étant présent sur la page,
l’utilisateur peut être amené à cliquer dessus et donc l’information est correspon-
dante est pré-chargée en prévision d’une éventuelle demande de la ressource
par l’utilisateur. Un bon tutoriel sur le fonctionnement du pré-chargement est
disponible sur le site du projet Chromium ([321]).
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Nous émettons l’hypothèse dans ce travail qu’il serait possible d’exploiter les mé-
canismes de base du pré-chargement d’information DNS pour récupérer les infor-
mations de connexion au niveau de serveurs embarqués dans des antennes.

La méthode de prévision associée peut être basée sur du provisionnement de prox-
imité, ou alors sur de la prédiction de trajectoire. Nous étudions ces deux approches
afin de comparer leurs forces et leurs faiblesses.

Nos scénarios IoTRoam introduisent deux requêtes DNS dans le processus de négo-
ciation de canal entre appareil mobile et serveur. Notre questionnement pour cette
partie est le suivant : "Est-il possible de réduire le délai introduit par nos requêtes
DNS dans un contexte de mobilité ?"

Nous basons nos travaux sur des traces de mobilité de véhicules dans la ville
de Rome. La figure B.5 illustre les traces étudiées en fonction de la position des
véhicules (latitude et longitude).

FIGURE B.5: Déplacements de véhicules dans la ville de Rome

À l’aide de simulations, nous quadrillons la ville de Rome à l’aide d’antennes. Nous
simulons un déploiment LoRaWAN en mode "fog", chaque antenne est liée à un
mini serveur, agit indépendamment et fournit aux appareils mobile une connexion
itinérante.

Nous divisons notre étude en trois scénarios. Le premier fonctionne sans pré-
chargement d’information, sur la base de requêtes DNS standards réalisées au cours
de la tentative de connexion. Le second scénario améliore ce mécanisme en réalisant
un pré-chargement sur les antennes les plus proches. Enfin, le troisième scénario
introduit un mécanisme de prédiction de trajectoires, basé sur des algorithmes
d’apprentissage, qui vient supporter le pré-chargement des données.

Pour les deux premiers scénarios, nous étudions la différence entre requêtes DNS et
sollicitation du cache DNS. Pour le troisième, nous étudions plus en détail la manière
dont le cache a été provisionné sur base des prédictions.
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FIGURE B.6: répartition des sollicitations des caches entre les requêtes
transférées aux antennes pour les différents scénarios étudiés

Les résultats, présentés sur la figure B.6 sont satisfaisant. Une prédiction est réalisée
avec succès dans 70.4% des cas. Les requêtes au cache sur base d’échec de prédiction
(décalage temporel dans la position prédite) liées à notre mécanisme permettrait
également de supporter jusqu’à 86% des requêtes. Les 14% restants sont répartis
entre les requêtes au cache classique (11.4%) et des requêtes DNS complètes sans
pré-chargement (2.5%)

Nous avons également étudié la répartition de la sollicitation des antennes (Figure
B.7). Nous constatons que le prédicteur entraine une sollicitation d’antennes moins
importante que la distribution de proximité, mais plus que de ne pas réaliser de
pré-chargement.

Nous en concluons que le pré-chargement d’information à l’aide du DNS con-
stituerait une solution efficace capable de réduire les temps d’activation dans 86%
des situations rencontrées, il se trouve moins efficace que le système basé sur les
antennes de proximité mais plus qu’un système sans pré-chargement. Au niveau
du nombre d’antennes sollicité, le système basé sur le prédicteur de trajectoires
est cependant capable de réduire la charge en sollicitant moins d’antennes que le
prédicteur de proximité.

Des études additionnelles sur base d’autres positionnement d’antennes, étudiant
leur montée en charge ou étudiant d’autres traces de mobilité seraient intéressantes
pour compléter ce travail. Une telle application du pré-chargement d’informations
DNS est intéressante également dans le contexte de la récupération d’autres infor-
mations comme celles présentées en B.3 ou B.4.



B.3. Système de résolution de Contexte pour le protocole SCHC à l’aide du
protocole DNS

115

FIGURE B.7: Répartition des activations d’antennes pour nos trois
scénarios

B.3 Système de résolution de Contexte pour le protocole
SCHC à l’aide du protocole DNS

Le pré-chargement d’informations issues du DNS serait complémentaire à la propo-
sition d’amélioration de SCHC [3] (RFC 8724 : Generic Framework for Static Context
Header Compression and Fragmentation) que nous avons proposé dans le cadre de
nos travaux. Il s’agit de profiter de la disponibilité et du passage à l’échelle du DNS
pour délocaliser les règles de compression et de fragmentation. En effet, cela per-
met de réduire la charge côté réseau en évitant le stockage de toutes les règles de
compression existantes, introduit de la souplesse dans l’utilisation de SCHC et fa-
cilite la mobilité des capteurs/actionneurs. Nous avons modifié la mise en œuvre
OpenSource du protocole, développée par les personnes écrivant le standard, pour
l’intégrer à une base DNS et avons mesuré le surcoût en termes de performances
qu’une telle solution engendrerait.

SCHC permet de réduire la taille des paquets MAC en compressant les en-têtes des
couches supérieures. SCHC est présenté par ses auteurs comme une solution, un
framework, permettant de réduire efficacement la taille des en-tête IPv6 et UDP, bien
que le standard prévoit d’évoluer pour traiter également des couches supérieures
(notamment pour compresser les en-têtes CoAP). L’objectif de la solution SCHC
tel qu’explicité par [350] est de fournir une surcouche protocolaire permettant de
s’affranchir des spécificités de la technologie LPWAN sous-jacente. Cette surcouche
adaptative peut également être fournie par un organisme tiers, ainsi [351] fournit-il
aux développeurs souhaitant utiliser des messages DLMS sur des réseaux LPWAN
un cadre de développement leur permettant d’utiliser SCHC et d’économiser du
temps de développement dans leurs applications tout en maintenant le niveau de
sécurité nécessaire dans le cadre de leurs communications. SCHC fournit une méth-
ode efficace de réduction de la taille de l’en-tête des paquets IPv6, d’une taille fixe
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de 40 octets, en la faisant correspondre à une en-tête plus adaptée à la technologie
LPWAN d’environ 2 octets. À titre indicatif, les paquets LoRaWAN font entre 51 et
222 octets selon le facteur d’étalement (et donc, la distance de transmission) choisi,
les paquets SigFox 12 octets. Quant aux technologies LTE-M et NB-IoT, bien que
supportant des tailles de paquets plus élevées, les performances sont supérieures
sur des paquets de taille réduite, par exemple [352] relève des débits deux fois plus
importantes chez LTE-M pour des paquets de 30 octets) que pour des paquets de 200
octets ou plus. SCHC fournit également un framework permettant de fragmenter les
paquets et de les réassembler aisément à la destination. Une telle solution permet
d’envoyer des paquets IPv6 complets sur les réseaux LPWANs, ce qui, au vu des
tailles de paquets sur de tels réseaux, n’est pas possible.

Notre travail fut de proposer de faire évoluer SCHC afin de permettre aux utilisa-
teurs de mettre les règles qu’ils veulent pour la compression dans une base de don-
nées DNS. En effet, le standard et les mises en œuvre OpenSource actuelles de SCHC
proposent uniquement un stockage statique des règles de transmission. Or il faut
stocker l’ensemble des règles sur l’infrastructure réseaux puisque, SCHC étant util-
isé sur la voie radio entre le capteur/actionneur et l’antenne, il faut stocker sur le
réseau (antenne ou serveurs) l’ensemble des règles de tous les capteurs susceptibles
d’arriver sous sa couverture. Stocker en l’état les données nécessaires à la trans-
mission utilisant la technologie SCHC au niveau de l’infrastructure réseau semble
facile, les règles de transmission ne prenant que quelques Mo. Cependant dans un
contexte d’usage massif des technologies IoT (environ 5000 capteurs autour d’une
antenne), constituer une base de donnée de l’ensemble des règles pour les capteurs
autour d’une seule antenne demanderait, pour les seules opérations liées à SCHC, de
stocker quelques gigaoctets de données. Le stockage externe des règles SCHC nous
semble, dans un tel contexte, devenir une nécessité. Cela permettrait un accès facil-
ité aux règles et réduirait la pression qu’exerce SCHC au niveau des infrastructures
réseau. Cette solution permettrait également aux utilisateurs de garder un œil sur
les changement de profil d’appareil, de fournir des statistiques sur la mobilité des
appareil tout en gardant une qualité de service acceptable vis à vis de l’ensemble des
appareils contraints. Enfin, à partir du moment où les règles peuvent être trouvées
facilement, en théorie n’importe quel capteur mobile peut être servi par n’importe
quelle antenne.

À notre connaissance, la question de la récupération sur un serveur distant des rè-
gles SCHC n’a été examinée que dans [4] qui propose d’utiliser un Administration
Management Server (AMS) comme support à l’itinérance sur un réseau LoRaWAN
et où seraient donc stockées les règles SCHC. Cependant la résolution permettant de
récupérer l’adresse de l’AMS demanderait, dans un tel contexte, de nombreux ac-
cords d’itinérance entre les opérateurs déployant des réseaux LoRaWAN. Le réseau
LoRaWAN étant basé sur une communauté ouverte et facile d’accès, une telle solu-
tion à base d’accords d’itinérance serait coûteuse à mettre en œuvre ou restreindrait
drastiquement les réseaux en mesure de faire de l’itinérance. La solution basée sur
DNS que nous proposons dans notre article nous permet de nous affranchir d’une
telle complexité.

Au cours de nos expériences, nous avons transmis à l’aide des capteurs/actionneurs
des données compressées. Au niveau de notre infrastructure LoRaWAN, nous avons
extrait les données transmises et testé différents scénarios de décompression. Le
premier scénario est avec compression statique, le second avec compression et rè-
gles délocalisées et le troisième avec compression et règles délocalisées et utilisation
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FIGURE B.8: Fonction de répartition des temps de réponse du sys-
tème support à la compression en fonction des scénarios étudiés dans

notre article

d’un cache pour le stockage des règles. Nous avons comparé les variations au niveau
de la latence du système due à l’ajout dans le processus de décompression SCHC
d’une requête DNS et d’une requête HTTP réalisée sur une API (Figure B.8). Cette
comparaison montre que les délais ajoutés sont acceptables au regard des délais du
protocole (par exemple les durées d’ouvertures des fenêtres illustrées figure B.9). En
utilisant le système DNS, un système déjà utilisé par de nombreux développeurs et
accessible mondialement, nous avons proposé un système de récupération distant
de règles SCHC permettant aux infrastructures LoRaWAN de récupérer de manière
dynamique les règles de compression et fragmentation SCHC. Ce mécanisme ajoute,
certes, un délai dans la communication dû au mécanisme de résolution DNS mais ce
délai est parfaitement acceptable si l’on prend en considération les règles de trans-
mission propres aux contraintes des appareils de classe A (Figure B.9) que toutes les
solutions à base de LoRaWAN sont obligées de supporter.

Cette étude a également permis d’étudier la latence induite par la compression
SCHC sur un système, en réalisant des mesures comparatives entre notre premier
scénario à compression statique et un scénario de test sans compression, ce qui
n’avait jamais été réalisé auparavant.
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FIGURE B.9: Contraintes de transmission LoRa pour les appareils de
classe A

B.4 Réduction de trafic réseau assisté par Apprentissage Ma-
chine

Après avoir exploré la question de la compression d’en-tête, nous avons décidé de
regarder celle de la compression de la charge utile de nos paquets. De nouveaux al-
gorithmes de compression basés sur l’apprentissage machine voient le jour. Des so-
lutions reposent sur des techniques de classification comme [353] ou ce que propose
EdgeImpulse[339], qui fournit un framework permettant d’embarquer un classifica-
teur capable de traiter, par exemple, un signal audio, ou de deviner un mouvement
et d’envoyer l’information du changement de mouvement sur voie radio. D’autres
reposent sur des prédicteurs de séries temporelles (cf. [158] et [335]). Le principe
est d’avoir un prédicteur de la donnée, sous forme de réseau de neurones du type
Long Short-Term Memory (LSTM) B.10, d’exécuter ce prédicteur sur le capteur et
côté infrastructure et, lorsqu’une donnée captée doit être émise, de vérifier si elle
coïncide, à un seuil de décision près, avec la donnée prédite à ce moment. Si c’est
le cas, la donnée n’est pas émise. Elle l’est sinon. Comme on peut attendre des taux
de prédiction corrects de l’ordre de 90%, cela permet d’espérer des ratios de com-
pression du même ordre. Ceci revient à isoler les données exceptionnelles (pics de
consommation, changements d’amplitude de mouvement...) et à prendre la déci-
sion de ne transmettre que dans ces cas précis. Plus précisément, nous nous sommes
basés sur [335]. Si cette méthode fonctionne en théorie, il reste de nombreuses ques-
tions en pratique. D’une part elle n’a jamais été testée dans un environnement réel.
D’autre part, elle peut causer des difficultés de mise en œuvre dues à la capacité
restreinte des équipements en termes de capacité CPU et mémoire, ou en termes
de consommation énergétique mais aussi poser des problèmes réseaux. En effet, si
la compression est parfaite, la liaison n’est plus maintenue et il faut donc envoyer
artificiellement des paquets keep-alive pour maintenir la connexion: d’un côté on
diminue la charge de trafic mais de l’autre on en rajoute. Une validation s’impose
donc en environnement réel.

L’utilisation de tels modèles nous empêche de faire usage de la solution EdgeIm-
pulse, qui nous aurait été bien utile dans notre travail. En effet, EdgeImpulse, de part
son architecture, ne permet de faire que de la classification de données et ne nous
permet pas de personnaliser suffisamment nos outils afin de réaliser nos expéri-
ence. Nous avons donc embarqué TensorFlow Lite sur des cartes de développement
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FIGURE B.10: Réseau de Neurone LSTM (extrait de [340])

STM32 en le compilant depuis ses sources et en y ajoutant une solution pour trans-
mettre sur un réseau LoRaWAN à l’aide de notre carte de développement. La solu-
tion TensorFlow Lite nous permet de construire un réseau de neurones pré-entrainé
à l’aide de TensorFlow, puis d’extraire les poids nécessaires à son fonctionnement et
d’embarquer ces derniers dans un appareils contraint. Cependant, le réseau de neu-
rone, LSTM B.10, mis en œuvre dans le cadre de la génération de séries temporelles
n’est à ce jour pas supporté par TensorFlow Lite.

Une fois que nous avons mis en œuvre le réseau LSTM, nous avons embarqué notre
algorithme sur des cartes électroniques et mesuré leur consommation énergétique
ainsi que divers paramètres au niveau logiciel (nombre de neurones dans le réseau,
performances de compression, taux d’erreur, seuil de transmission et quantification
des poids).

Les courbes ci-dessous représentent les différentes mesures effectuées pour ce tra-
vail/ La figure B.11 présente la consommation énergétique de notre carte électron-
ique. On y observe des différences de consommation marquées entre repos et activ-
ité. On constate que lorsque nos opérations sont réalisées, on peut observer les pics
d’activités classiques pour la carte de transmission, ou aucun pic, correspondant à
une transmission évitée par notre algorithme. Dans le cas usuel, nous observerions
des pics de consommations réguliers pour nos deux cartes mais avec notre méth-
odes, ces pics sont complètement supprimés.

Les figures B.12a et B.12b présentent le MAPE (Mean Absolute Percentage Error,
Équation B.1) et le taux de compression observé pour nos algorithme selon différents
scénarios (variation dans le nombre de neurones ou dans le jeu de données étudié).
Nous n’observons pas de différence significative en fonction de la taille des réseaux
de neurones. Par contre, la figure B.12b nous montre l’importance du choix du jeu
de données dans la performance de l’algorithme de prédiction, et donc dans les con-
séquences de la compression et du taux d’erreur observé.
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FIGURE B.11: Énergie (in W) alimentant la carte de transmission et la
carte de calcul (échantillon en fonction du temps)
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(A) Taux de compression et pourcentage
d’erreur moyen en fonction de la taille du
réseau de neurone et du seuil de précision

choisi

(B) Taux de compression et pourcentage
d’erreur moyen en fonction du seuil de pré-
cision choisi pour différents jeux de données

FIGURE B.12: Taux de compression et pourcentage d’erreur moyen
selon différents seuils de prédiction

Les figures suivantes (B.13a et B.13b) présentent un échantillon des données afin
d’illustrer un comparatif entre données ainsi que les conséquences de la quantifica-
tion.

La figure B.13a est illustrative, elle présente la courbe finale consolidée vue au niveau
du serveur déterminée en combinant les données calculées par le serveur et les don-
nées transmises par le capteur.
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La figure B.13b quant à elle présente les conséquences de la quantification. La quan-
tification sur 8-bits est un système connu et bien documenté permettant de réduire
efficacement la taille des réseaux de neurones et des opérations effectuées par le
capteur. Nous observons une faible dégradation des performances du système mais
celle-ci reste dans des marges raisonables. Réduire la complexité des opérations per-
met de réduire les besoins en énergie et en puissance de calcul au niveau du capteur.
Aussi, continuer les travaux sur la quantification nous semble intéressant une fois
que l’algorithme est officiellement porté dans la librairie TensorFlow Lite.

(A) Échantillon comparatif entre données
calculées, données de référence et données

perçues par le serveur de réception

(B) Prédiction de données à l’aide de poids
quantifiés sur 32 bits (Float32), 16 bits

(Float16) et 8 bits (Int-8)

FIGURE B.13: Échantillon de données étudiées analysées (comparatif
illustratif et quantification)

Dans le cadre de cette expérience, nous nous demandons également si les poids
permettant la compression à l’aide d’un réseau de neurones peuvent être ajoutés au
DNS afin qu’ils soient résolus par les infrastructures et qu’ils puissent être facilement
partagés dans un contexte, par exemple, de mobilité des capteurs. La solution Ten-
sorFlow Lite, permettant d’extraire toutes les informations nécessaires au fonction-
nement d’un réseau de neurones en respectant les spécificités des objets contraints
(notamment la taille des structures de données), semble fournir les outils adaptés à
la réalisation d’une telle démarche.

Utiliser ainsi DNS serait aussi possible dans le cadre de modèles de réseaux de neu-
rones basés sur la classification, comme ceux utilisés par EdgeImpulse, ceux-ci ayant
un poids de quelques Ko. Cependant les modèles utilisés pour la prédiction étant
plus complexes, les poids en résultant le sont également, l’extraction de ceux-ci nous
laissant avec un fichier d’une centaine de Ko.

Stocker les poids de notre algorithme sur mesure serait cependant faisable. Le car-
actère statique de celui-ci enlevant une grande quantité d’information, assez lourde,
des données exportées par TensorFlow Lite. Nous détaillons dans ce manuscrit dif-
férents scénario de stockage de poids de réseaux de neurones dans le DNS suiv-
ant 3 paradigmes : Usage classique du DNS, utilisation combinée avec un système
de stockage plus conséquent ou exploitation des fonctionnalités DNS-SD en réseau
"mesh".

Nous avons, par ce travail, été en mesure de construire un banc de test expérimental
nous permettant de mesurer les performance de notre système de minimisation de
trafic IoT pour les réseaux de capteurs. Nos mesures montrent que le système est
capable de réduire de manière efficace le trafic observé, mais que cette efficacité est
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relative au cas d’usage des utilisateurs. Nous avons étudié le sujet sous divers angles
comme le nombre de neurones dans le réseau, les performances de compression, le
taux d’erreur, le seuil de transmission et la quantification des poids du réseau.

Utiliser un tel system permettrait d’augmenter la durée de vie des batteries des cap-
teurs. Il faut également noter que notre mécanisme supprime complètement le trafic
réseau associé et peut donc être utilisé de manière complémentaire à d’autres mé-
canismes de compression basé sur l’analyse des données binaires transmises ou des
en-têtes.
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B.5 Conclusions

Cette thèse a présenté diverses approches pour améliorer l’interopérabilité et les
performances des solutions IoT basées sur LoRaWAN en exploitant l’infrastructure
DNS existante comme terrain d’entente pour les développeurs d’applications et les
chercheurs. Le DNS est un protocole connu de la communauté Internet, avec di-
verses implémentations open-source pour les clients, les serveurs ou au sein de
frameworks. Des outils ont été déployés pour mesurer ses performances et moduler
son utilisation. Sa communauté est ouverte et propose de nouveaux cas d’usage et
des améliorations qui permettent de maintenir la communauté DNS à jour des nou-
veaux développements, protocoles et paradigmes réseau développés par le monde
industriel ou la communauté de recherche.

Au sein de l’écosystème IoT, LoRaWAN est flexible ; soutenu par une communauté
toujours plus importante d’acteurs industriels et une communauté académique
officielle nouvellement créée, l’Alliance LoRa et son protocole LoRaWAN se pose
comme un acteur majeur de l’écosystème IoT. Les évolutions issues des discussions
de l’Alliance LoRa sont suivies de près par les développeurs d’applications Lo-
RaWAN, puisque la pile LoRaWAN open-source de référence, ChirpStack, a connu
17 versions mineures et 1 version majeure au cours des 3 dernières années.

Les applications IoT rencontrent, avec leur dernier développement, les mêmes prob-
lèmes que les applications Internet. Les technologies IoT sont confrontées à des
problèmes d’évolutivité, d’interopérabilité, de mobilité et d’itinérance, d’efficacité
de transmission, de disponibilité, de fiabilité et d’autres problèmes de sécurité tels
que la confiance et la confidentialité. Le DNS contribue à résoudre nombre de ces
problèmes sur Internet, d’où notre interrogation sur les améliorations possibles des
systèmes IoT soutenus par l’infrastructure DNS.

Cette thèse a étudié les systèmes IoT en ce qui concerne les aspects clés suivants :
Le nommage, l’itinérance, la compression des en-têtes et la compression des don-
nées utiles. Cette étude ne visait pas à mettre en œuvre le protocole DNS sur les
capteurs mais plutôt à utiliser le DNS du côté de l’infrastructure pour soutenir les
améliorations de l’IoT. Cette thèse a présenté un travail expérimental sur LoRaWAN
concernant divers scénarios pour tester des solutions, des applications et des cas
d’utilisation IoT. Cette approche expérimentale a introduit des contraintes supplé-
mentaires telles que travailler avec des implémentations de référence des solutions,
générer un trafic IoT réel pour les mesures et l’analyse, respecter les contraintes de
temps d’antenne ou le cycle de vie des appareils.

L’expérimentation de l’itinérance nécessite un accord d’interconnexion entre les
opérateurs de réseau, généralement basé sur une interconnexion "One-to-One"
ou par la construction d’un "Hub" d’interconnexion. Nous avons exploité une
approche fédérée de l’interconnexion IoT en proposant l’architecture IoTRoam,
fédérant différentes organisations pour permettre une authentification et une
autorisation mutuelles flexibles entre n’importe quel élément de l’infrastructure
dans des situations d’itinérance, sans accord d’itinérance direct et explicite (en inter-
connectant les serveurs de réseau, d’application et de jointure entre les opérateurs).
L’accord d’interconnexion est implicitement donné lorsque l’organisation rejoint la
fédération IoTRoam.
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Notre architecture propose une solution qui prend en compte les contraintes car-
actéristique des environnements IoT. Notre approche pour construire notre archi-
tecture d’itinérance a été d’utiliser la combinaison de l’infrastructure DNS et d’une
PKI pour construire une infrastructure d’itinérance ouverte sécurisée accessible aux
opérateurs LoRaWAN publics et privés. Nous tirons parti de la possibilité de créer
librement des réseaux LoRaWAN privés. Nous avons conçu, construit et déployé
une architecture de preuve de concept pour tester les capacités d’itinérance offertes
par la solution ChirpStack et tester l’itinérance entre les réseaux LoRaWAN privés
et publics. L’infrastructure a été validée en testant la connectivité LoRaWAN pour
les appareils dans un contexte d’itinérance en étudiant différents scénarios de con-
nexion, en mesurant le temps d’établissement de connexion et les délais de commu-
nication.

Nous avons étudié les conséquences de la mise en cache et du pré-chargement
d’informations DNS avec des appareils mobiles dans une ville par des simulations
de communications entre l’appareil mobile et l’infrastructure IoT. Le pré-chargement
DNS est un outil efficace pour réduire les requêtes DNS à la volée nécessaires à
la communication entre les appareils. Le pré-chargement des informations sur les
antennes proches peut complètement éviter les requêtes DNS en les exécutant à
l’avance autour des antennes les plus proches, mais cela a un coût, car les appareils
demandent plus d’antennes, surtout dans un environnement très mobile.

Notre combinaison d’un prédicteur ML et du pré-chargement permet une réduc-
tion intéressante des requêtes DNS réalisées par rapport à une solution standard
de mise en cache uniquement et une réduction du nombre de passerelles réalisant
l’opération de pré-chargement par rapport à la sollicitation des antennes les plus
proches. L’utilisation du DNS nous permet d’exploiter son positionnement en tant
que solution de base de données distribuée connue pour remplir des caches localisés
afin de fournir des informations dès que nécessaire et de les purger au fil du temps
lorsque les appareils mobiles quittent la couverture des antennes.

Nos simulations ont été réalisées dans le cadre de la fourniture d’informations
de connectivité itinérante aux dispositifs, mais pourraient être applicables lors de
l’interrogation d’autres informations nécessaires à la communication des dispositifs,
comme les certificats stockés avec DANE, les paramètres de compression ou toute
information spécifique au dispositif stockée dans le DNS.

Nous avons construit une infrastructure viable qui pourrait être intégrée dans les in-
frastructures IoT existantes avec un minimum de changements. Nous avons suivi les
directives de la WBA pour l’itinérance ouverte et satisfait aux exigences décrites en
employant des normes ouvertes utilisées sur Internet pour réaliser notre vision. Ces
expériences ont conduit à trois "Change Requests" adoptées après avoir été soumises
à l’Alliance LoRa.

Nous avons discuté de l’initiative IoTRoam avec plusieurs institutions afin
d’effectuer des tests d’interopérabilité à l’aide de la plateforme fédérée ; l’exécution
de tests supplémentaires avec ces institutions nous aiderait à étudier l’impact des
infrastructures hétérogènes et leur effet sur la qualité du canal de communication
et nous permettrait également de recueillir des données supplémentaires sur
l’impact de la résolution complète du DNS sur le trafic LoRaWAN. L’objectif étant
d’interconnecter des réseaux utilisant différentes technologies IoT, les prochaines
étapes consistent à tester l’interopérabilité de l’itinérance avec NB-IoT, 5G ou
Wi-Fi. Pour la connexion des appareils connectés, nous travaillons également à
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l’intégration de DANE avec DNSSEC puisque les données du certificat lui-même
peuvent être stockées dans le DNS, remplaçant ou complétant éventuellement la
PKI.

En complément de notre travail d’interconnexion des infrastructures IoT, nous avons
expérimenté la gestion et le partage des règles SCHC comme solution pour améliorer
l’évolutivité des solutions LPWANs. Fournir un moyen d’échanger des informa-
tions sur les règles entre les infrastructures offrirait de nouvelles possibilités pour
fournir plus de flexibilité au réseau, améliorant ainsi la flexibilité des solutions IoT
dans des contextes tels que les dispositifs itinérants. Le mécanisme proposé exploite
l’infrastructure DNS comme solution pour améliorer les capacités d’interrogation
des règles au sein du réseau. Malheureusement, les règles sont trop lourdes pour
être intégrées directement dans les enregistrements de ressources DNS ; un mécan-
isme de secours a donc été conçu sur la base des API et exploite le mécanisme de
mise en cache du DNS pour stocker les identifiants et les numéros de version des
règles. Le DNS, en tant que base de données optimisée, hiérarchique et distribuée,
pourrait aider à identifier l’emplacement du serveur où les règles contextuelles sont
stockées, et ce, de manière réaliste sur Internet. Il est à espérer que l’utilisation d’un
tel mécanisme permettrait une transition transparente, de la préconfiguration des
informations nécessaires en arrière-plan à leur construction dynamique, à la volée,
sur la base des besoins réels lors de l’exploitation du réseau.

Le DNS s’avérerait une solution efficace pour introduire plus de flexibilité et
améliorer l’évolutivité lors de l’utilisation du SCHC. Notre solution fournirait un
accès ouvert aux paramètres de SCHC afin de soutenir les capacités d’itinérance.
L’amélioration de la flexibilité et de l’évolutivité de SCHC lorsqu’un dispositif
est itinérant sont des considérations essentielles pour accroître l’adoption de la
technologie, et le DNS pourrait aider en hébergeant des règles en dehors du
champ d’application de l’infrastructure associé à l’appareil connecté sans entraver
les transmissions. Pour aider à résoudre ce problème, nous avons déployé une
architecture de résolution de contexte dynamique basée sur le DNS pour la
compression/décompression SCHC et avons étudié les conséquences d’un tel
mécanisme sur la latence du système et d’autres conséquences possibles sur les
communications LoRaWAN.

Pour cette expérience, nous avons construit une infrastructure LoRaWAN compati-
ble avec SCHC. L’utilisation de SCHC pour envoyer des paquets IPv6 sur LPWAN
s’avère être un moyen efficace de prendre en compte la rareté des ressources ra-
dio. SCHC est également capable de travailler dans un délai fiable. Les délais
d’interrogation en base de données n’ont pas été étudiée et nécessiterait des don-
nées supplémentaires concernant l’utilisation réelle de SCHC sur les réseaux LP-
WAN pour fournir un aperçu intéressant, mais lorsqu’il travaille avec quelques ap-
pareils, SCHC peut décompresser les données de manière constante en quelques
microsecondes ; une opération qui est presque transparente par rapport à d’autres
mécanismes spécifiques aux LPWANs, tels que les délais de réception de LoRaWAN.

En exploitant l’infrastructure DNS, on peut interroger la signature du Contexte dans
un délai satisfaisant (entre 30 et 100 millisecondes) et se rabattre sur l’API de stock-
age de Contexte associée dans un délai de 650 ms. Dans le meilleur des cas, le délai
de 650 ms serait encore réduit par la mise en cache ; les mesures de nos sondes Atlas
nous amènent à penser que l’utilisation d’un mécanisme exclusivement DNS et la
construction d’un cache de contexte permettraient de réduire le délai de 650 ms à
quelques dizaines de millisecondes. Ces résultats concernant le système DNS seul et
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ses performances sont cohérents avec les résultats mesurés dans d’autres études. Un
tel mécanisme n’entrave pas la communication car il est maintenu sous le délai des
premières fenêtres de réception et bénéficie de la mise en cache des informations si la
réponse nécessite une règle SCHC différente. Si nous devons répondre au dispositif
dans la première fenêtre de réception, il reste 350 ms de traitement des données dans
le pire des cas pour mettre la réponse en file d’attente sur la passerelle radio.

Des travaux supplémentaires concernant le protocole SCHC nécessiteraient des
données additionnelles provenant de l’utilisation réelle du protocole SCHC. L’étude
des utilisations de SCHC aiderait à définir l’orientation de la recherche en les
mettant en contraste avec les problèmes de production introduits par le protocole.
L’amélioration des capacités de compression des LPWANs est une préoccupation
cruciale pour cette technologie. La réduction de la taille des paquets permet de
réduire le temps d’occupation des antennes. Une autre solution pour réduire ces
délais d’occupation est la minimisation des transmissions. Notre approche de
la minimisation des transmissions est complémentaire aux autres méthodes de
compression.

Nous décidons d’approfondir notre travail sur l’amélioration dans l’efficacité de
transmission en compressant les données. La façon la plus simple de réduire la
transmission des données est de supprimer les redondances ou de les arrondir à des
valeurs proches. Or, lorsque l’on travaille avec des capteurs, les données sont sou-
vent corrélées dans le temps ; par exemple, la température peut varier lentement.
Récemment, les techniques basées sur les réseaux neuronaux ont été proposées pour
compresser les données de l’IoT. Les données peuvent par exemple être compressées
par leur courbe de régression déduite d’un réseau de neurone. Des méthodes de
prédiction plus complexes peuvent également être utilisées. Les réseaux de neurone
sont reconnus comme des approximateurs de fonctions universelles efficaces capa-
bles d’apprendre des motifs complexes et, en pratique, ils affichent d’excellentes
performances dans les tâches de prédiction. Néanmoins, si les méthodes "classiques"
présentent des taux de compression efficaces, elles n’évitent pas la transmission des
données. En effet, un capteur capte périodiquement des données, peut les com-
presser puis envoyer la charge utile compressée, mais la charge utile compressée et
son en-tête associée sont toujours envoyées.

De nouvelles techniques basées sur les réseaux neuronaux sont apparues, et elles
évitent d’envoyer des données dans les situations où la prédiction est bonne. Un
prédicteur basé sur un réseau de neurone est mis en œuvre dans l’appareil connecté
et également dans l’infrastructure applicative. Si les données détectées sont bien
prédites, aucune donnée n’est envoyée et l’application utilise la prédiction. Dans le
cas contraire, les données sont envoyées. Nous avons expérimenté ces approches en
les testant à l’aide d’expérimentations en situations réelles. Ainsi, une implémenta-
tion réelle de LSTM a été développée et embarquée sur des capteurs pour confirmer
ou infirmer les résultats obtenus par les simulations de la communauté scientifique.

Notre expérience a étudié les paramètres de déploiement d’une telle approche basée
sur un réseau de neurones en expérimentant divers cas d’utilisation tels que la vari-
ation du seuil de décision de transmission, la taille du réseau de neurones et le nom-
bre de bits nécessaires pour encoder les poids et les variables. Ces paramètres nous
amènent à étudier le taux de compression et le taux d’erreur, la consommation én-
ergétique de l’algorithme, l’effet de la quantification.
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Nous avons construit un banc d’essai expérimental pour vérifier les capacités de
l’algorithme LSTM embarqué sur le capteur à prédire les données, réaliser une
double prédiction, et finalement compresser le trafic de données et économiser
de l’énergie. Un algorithme LSTM a été développé et intégré dans un appareil
contraint pour obtenir ces résultats ; son code source est accessible à l’adresse
suivante : [343]. Nos résultats montrent qu’il peut minimiser efficacement le trafic
tout en empêchant les transmissions non pertinentes de se produire avec un impact
significatif sur la consommation d’énergie. Le système global ne montre aucun
impact significatif de la variation de la taille du réseau de neurone et nous avons
pu étudier l’influence du seuil de décision sur le taux de compression et le MAPE.
Notre système permet une compression efficace tout en maintenant une marge
d’erreur raisonnable pour l’utilisateur. Il peut être personnalisé en fonction des
exigences de précision et de compression. L’impact de la quantification sur les
paramètres du LSTM a été étudié en raison des contraintes du dispositif et aussi
pour diminuer la complexité de l’algorithme. Aucune dégradation significative
du système n’est observée en utilisant une quantification 8-bits. Notre expérience
montre que ces algorithmes d’apprentissage automatique peuvent être facilement
embarqués sur des appareils connectés, que leurs performances ne font pas défaut
et que leur taille et leur consommation d’énergie n’entravent pas le fonctionnement
habituel de l’appareil.

La compression des données avec ce type de méthodes de compression avec pertes
bornées permet d’étendre la durée de vie de la batterie en fonction de la marge
d’erreur acceptée. Nos résultats montrent un excellent taux de compression par rap-
port à l’état de l’art. Il est à noter que notre schéma évite d’envoyer toute donnée,
alors que les mécanismes de compression classiques envoient au moins un en-tête de
trame à chaque fois que des données compressées sont envoyées. De plus, ces deux
approches sont complémentaires, et les données peuvent être compressées à l’aide
des mécanismes de compression classiques une fois que les informations non per-
tinentes ont été supprimées. Une étude approfondie de la consommation d’énergie
a prouvé que notre algorithme économise une partie de l’énergie du dispositif qui
peut être utilisée pour d’autres communications. Nous avons développé des argu-
ments concernant les capacités de stockage de poids ML pour les infrastructures
IoT soutenues par des approches DNS. Une telle solution semble réalisable en ce qui
concerne la taille du fichier de paramètres, mais nécessiterait un travail expérimental
pour étayer nos hypothèses par des mesures chiffrées.

Une autre approche consisterait à sélectionner plusieurs caractéristiques sur
plusieurs valeurs pour atteindre une plus grande précision dans le calcul avec un
recalibrage plus complexe. Des travaux sont menés en contribuant à la commu-
nauté TensorFlow Lite actuelle pour proposer un portage complet des bibliothèques
LSTM du projet global TensorFlow vers la communauté TensorFlow Lite pour
microcontrôleurs. D’autres travaux incluent l’étude de la taille maximale supportée
pour les réseaux de neurones afin d’approfondir notre connaissance des réseaux de
neurones de petite taille et leurs performances.

En bref, l’utilisation du DNS comme service de base pour l’interconnexion des
réseaux, l’hébergement de règles de protocole de communication pour améliorer
l’architecture de la solution IoT dans nos différentes expérimentations ont montré
des résultats pertinents. Nous avons travaillé à la construction d’une infrastructure
d’itinérance, facile à utiliser et fédérée pour interconnecter les réseaux LoRaWAN
comme solution pour améliorer l’interopérabilité entre les infrastructures IoT
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soutenue par le DNS. Nous avons développé des améliorations au protocole
SCHC en hébergeant des règles sur l’infrastructure DNS et en permettant aux
éléments réseaux d’interroger une zone DNS globale qui héberge les identifiant
des règles et leur numéro de version. Enfin, nous avons développé un algorithme
de minimisation de la transmission en intégrant un algorithme d’apprentissage
basé sur l’algorithme LSTM sur les capteurs LPWANs et avons étudié son impact
sur les données et l’infrastructure sous-jacentes. Les résultats présentés dans
cette thèse montrent que le DNS, bien qu’étant l’un des plus anciens protocoles
utilisés sur Internet, peut proposer des améliorations pertinentes aux déploiements
d’infrastructures et accompagner les nouveaux cas d’usage IoT. Les travaux les
plus récents et en cours de la communauté DNS pourraient aider à sécuriser les
applications susmentionnées, comme le passage du DNS classique à ses dernières
implémentations plus sécurisées, ainsi que confirmer l’authenticité des informations
ou aider à la découverte de services pour soutenir les applications IoT.
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Title : Solving Interoperability and Performance Challenges over heterogeneous IoT Networks – DNS-based solutions

Keywords : Internet of Things, DNS, Interoperability, Compression, Roaming, Machine Learning

Abstract : The Internet of Things (IoT) evolved from its theoretical
possibility to connect anything and everything to an ever-increasing
market of goods and services. Its underlying technologies diversi-
fied and IoT now encompasses various communication technolo-
gies ranging from short-range technologies as Bluetooth, medium-
range technologies such as Zigbee and long-range technologies
such as Long Range Wide Area Network.
IoT systems are usually built around closed, siloed infrastructures.
Developing interoperability between these closed silos is crucial for
IoT use-cases such as Smart Cities. Working on this subject at
the application level is a first step that directly evolved from current
practice regarding data collection and analysis in the context of the
development of Big Data. However, building bridges at the network
level would enable easier interconnection between infrastructures
and facilitate seamless transitions between IoT technologies to im-
prove coverage at low cost.
The Domain Name System (DNS) basically developed to translate
human-friendly computer host-names on a network into their cor-
responding IP addresses is a known interoperability facilitator on
the Internet. It is one of the oldest systems deployed on the In-
ternet and was developed to support the Internet infrastructure’s
growth at the end of the 80s. Despite its old age, it remains a core
service on the Internet and many changes from its initial specifica-
tions are still in progress, as proven by the increasing number of

new suggestions to modify its standard.
DNS relies on simple principles, but its evolution since its first deve-
lopments allowed to build complex systems using its many configu-
ration possibilities. This thesis investigates possible improvements
to IoT services and infrastructures. Our key problem can be formu-
lated as follow: Can the DNS and its infrastructure serve as a good
baseline to support IoT evolution as it accompanied the evolution of
the Internet?
We address this question with three approaches. We begin by ex-
perimenting with a federated roaming model IoT networks exploiting
the strengths of the DNS infrastructure and its security extensions
to improve interoperability, end-to-end security and optimize back-
end communications. Its goal is to propose seamless transitions
between networks based on information stored on the DNS infra-
structure. We explore the issues behind DNS and application res-
ponse times, and how to limit its impact on constrained exchanges
between end devices and radio gateways studying DNS prefetching
scenarios in a city mobility context. Our second subject of interest
consists of studying how DNS can be used to develop availability,
interoperability and scalability in compression protocols for IoT. Fur-
thermore, we experimented around compression paradigms and
traffic minimization by implementing machine learning algorithms
onto sensors and monitoring important system parameters, parti-
cularly transmission performance and energy efficiency.

Titre : Contributions à la résolution de problèmes de performances et d’interopérabilité des réseaux IoT hétérogènes par
l’utilisation du standard ouvert DNS et de services d’infrastructure

Mots clés : Internet des Objets, DNS, Interoperability, Compression, Itinérance, Apprentissage Machine

Résumé : L’Internet des Objets (IdO) a évolué depuis cette possi-
bilité théorique de connecter tous les appareils à un réel marché
de biens et de services en constante expansion. Les techno-
logies sous-jacentes ont évolué et l’IdO repose aujourd’hui sur
de nombreuses technologies de communication différentes: Des
technologies à courte portée comme Bluetooth, moyenne portée
comme Zigbee ou longue portée comme la technologie LoRa
(Long-Range).
Les systèmes de l’IdO sont habituellement construits autour d’in-
frastructures fermées basées sur des systèmes en silo. Créer de
l’interopérabilité entre ces silos fermés est un enjeu pour certains
cas d’usages cruciaux dans le déploiement des technologies de
l’IdO comme les villes intelligentes. Développer la problématique
au niveau applicatif est une première étape directement inspirée
des pratiques courantes en matière de collecte et d’analyse de
données dans le cadre du développement des technologies de
traitement de données massives. Cependant, construire des ponts
au niveau réseau permettrait de faciliter l’interconnexion entre in-
frastructures et faciliterait la transition fluide entre technologies de
l’IdO afin d’améliorer à bas coût la couverture réseau.
Le Système de Nom de Domaine (Domain Name System,
DNS), initialement développé pour traduire les noms, lisibles et
compréhensibles par les utilisateurs en adresses IP, utilisées par
les appareils connectés, est reconnu comme un facilitateur sur les
question d’interopérabilité sur Internet. C’est l’un des systèmes les
plus anciens déployés sur Internet, développé à la fin des années
1980 pour supporter la croissance de l’infrastructures Internet. Bien
qu’ayant beaucoup évolué ces dernières années, en témoignent
les nombreuses propositions de modifications au standard publié
à son sujet, le DNS reste aujourd’hui l’une des infrastructures les
plus centrales du réseau Internet.

Le DNS repose sur des principes simples, mais son évolution
depuis ses premiers développements ont permis de construire
des systèmes complexes grâce à ses nombreuses possibilités
de configuration. Dans le cadre cette thèse, qui étudie les pos-
sibles améliorations aux services et infrastructures de l’IdO, nous
étudions la problématique suivante : Le DNS et son infrastructure
peuvent-ils servir de support efficace à l’évolution de l’IdO de la
même manière qu’il a accompagné l’évolution d’Internet ?
Dans cette optique, nous étudions de possibles améliorations de
systèmes de l’IdO sous trois angles. Nous testons tout d’abord un
modèle d’itinérance pour réseaux de l’Internet des Objets au travers
de la construction d’une fédération reposant sur l’infrastructure du
DNS et ses extensions pour en assurer l’interopérabilité, la sécurité
de bout-en-bout et optimiser les communications entre infrastruc-
tures. Son objectif est de proposer des transitions fluides entre
réseaux sur base d’informations stockées à l’aide de l’infrastructure
DNS. Nous explorons également les problématiques introduites par
le DNS, notamment en termes de latence et d’influence sur les
temps de réponse des applications, et comment en limiter l’impact
sur les échanges, déjà grandement contraints, entre objet connecté
et passerelle radio. Pour cela nous étudions les conséquences de
l’utilisation de requêtes DNS anticipées dans un contexte de mo-
bilité en milieu urbain. Nous étudions ensuite comment le Système
de Nom de Domaine peut renforcer l’interopérabilité, la disponibilité
de ressources et le passage à l’échelle de systèmes de compres-
sion de paquets de l’IdO. Enfin, nous explorons la question de la
minimisation de trafic en implantant des algorithmes d’apprentis-
sage sur des capteurs et en mesurant les paramètres du système
final, en particulier en terme de performances de transmissions et
d’efficacité énergétique.
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