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Abstract

In this manuscript, I present the work done during my PhD on confined Brownian motion.

Brownian motion is the erratic movement of microscopic particles when immersed into a

fluid. Thanks to Einstein and his successors, it is generally possible to describe Brownian

motion using simple equations. However, in the last two decades a scientific revolution has

taken place with the advent of miniaturization and in particular microfluidics, enabling

the creation of complex networks of pipes at the micrometer scale. Microfluidics makes it

possible to sort out particles, such as drops, cells or bubbles, but also to distribute drugs

in cells and observe their effect on thousands of them. Regarding Brownian motion, it has

been observed that once confined near a wall, a particle moves much slower due to non-slip

boundary conditions at the wall. The mobility is thus modified by confinement-induced

effects.

My thesis work consists in experimentally measuring, analyzing and modeling the move-

ment of micrometric colloids diffusing near a wall. To track the motion of confined Brow-

nian microparticles, I use Lorenz-Mie holography. The Lorenz-Mie framework allows me

to record the thermally-induced three-dimensional trajectories of individual microparti-

cles, within salty aqueous solutions, in the vicinity of a rigid wall, and in the presence of

surface charge with a nanometric resolution. From the recorded trajectory, I construct

the time-dependent position and displacement probability density functions, and ana-

lyze the non-Gaussian character of the latter which is a direct signature of the hindered

mobility near the wall. Based on these distributions, I implement a novel, robust and

self-calibrated multifitting method, allowing thermal-noise-limited inference of diffusion

coefficients spatially-resolved at the nanoscale, equilibrium potentials, and forces at the

femtonewton resolution. Moreover, I use this novel tool to deduce non-conservative forces

and study long-time higher-order statistical properties. Our objective for the future is to

use this novel tool to have a new approach in various problems relevant to nanophysics

and microbiology.
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Résumé

Dans ce manuscrit, je présente le travail effectué pendant mon doctorat sur le mouve-

ment brownien confiné. Le mouvement brownien est le mouvement erratique de par-

ticules microscopiques lorsqu’elles sont immergées dans un fluide. Grâce à Einstein et

ses successeurs, il est généralement possible de décrire le mouvement brownien à l’aide

d’équations simples. Cependant, au cours des deux dernières décennies, une révolution

scientifique a eu lieu avec l’avènement de la miniaturisation et en particulier de la microflu-

idique, permettant la création de réseaux complexes de tuyaux à l’échelle micrométrique.

La microfluidique permet de trier des particules, comme des gouttes, des cellules ou des

bulles, mais aussi de distribuer des médicaments dans des cellules et d’observer leur effet

sur des milliers d’entre elles. En ce qui concerne le mouvement brownien, il a été observé

qu’une fois confinée près d’une paroi, une particule se déplace beaucoup plus lentement

en raison des conditions de non-glissement à la paroi. La mobilité est donc modifiée par

les effets induits par le confinement.

Mon travail de thèse consiste à mesurer, analyser et modéliser expérimentalement le

mouvement de collöıdes micrométriques diffusant près d’une paroi. Pour suivre le mou-

vement de microparticules browniennes confinées, j’utilise l’holographie de Lorenz-Mie.

Le cadre de Lorenz-Mie me permet d’enregistrer les trajectoires tridimensionnelles ther-

miquement induites de microparticules individuelles, dans des solutions aqueuses salées,

à proximité d’une paroi rigide, et en présence d’une charge de surface avec une résolution

nanométrique. A partir de la trajectoire enregistrée, je construis les fonctions de densité

de probabilité de position et de déplacement en fonction du temps, et j’analyse le car-

actère non-gaussien de ces dernières qui est une signature directe de la mobilité modifiée

près de la paroi. Sur la base de ces distributions, je mets en œuvre une nouvelle méthode

d’ajustement multiple, robuste et auto-calibrée, permettant l’inférence limitée par le bruit

thermique des coefficients de diffusion résolus spatialement à l’échelle nanométrique, des

potentiels d’équilibre et des forces résolus au femtonewton. De plus, j’utilise ce nouvel

outil pour déduire les forces non-conservatives et étudier les propriétés statistiques d’ordre

supérieur à long terme. Notre objectif pour l’avenir est d’utiliser ce nouvel outil pour avoir

une nouvelle approche dans divers problèmes liés à la nanophysique et à la microbiologie.
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Figure 0.0.1: Artist’s view of the Lorenz-Mie method. A polystyrene ball (in white) is
illuminated from above. The interference pattern is indicated by the concentric rings
(Credit: Pierre Savary).
Vue d’artiste de la méthode de Lorenz-Mie. Une bille de polystyrène (en blanc) est éclairée
par le haut. La figure d’interférences est indiquée par les anneaux concentriques (Crédit
: Pierre Savary).

https://www.behance.net/pierresavary357
https://www.behance.net/pierresavary357
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son groupe et partager ses connaissances, son optimisme et son envie de découvrir de
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d’avoir partagé avec moi toute sa connaissance de la physique expérimentale. Je me

souviendrai toujours des longues discussions que nous avons eues devant les données afin

de les déchiffrer.

Ensuite, je souhaiterais remercier les différents membres de l’équipe, Louis Bellando De

Castro, Julien Brugin, Yann Louyer, Nicolas Farès, Caroline Kopecz-Muller , Vincent
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1 Introduction

Brownian motion is a central paradigm in modern science. It has implications in fun-

damental physics, biology, and even finance, to name a few. By understanding that the

apparent erratic motion of colloids is a direct consequence of the thermal motion of sur-

rounding fluid molecules, pioneers like Einstein and Perrin provided decisive evidence for

the existence of atoms [1, 2].

During the past 30 years [3, 4] microfluidics and the development of lab-on-a-chip tech-

nologies [5, 6] became standard in chemistry, biology and medicine. Thus, at a time of

miniaturization and interfacial science, and moving beyond the idealized bulk picture,

it is relevant to consider the added roles of boundaries to the above context. Indeed,

Brownian motion at interfaces and in confinement is a widespread practical situation in

microbiology and nanofluidics. In such a case, surface effects become dominant and alter

drastically the Brownian statistics, with key implications towards: i) the understanding

and smart control of the interfacial dynamics of microscale entities; and ii) high-resolution

measurements of surface forces at equilibrium. Interestingly, a confined colloid will exhibit

non-Gaussian statistics in displacements, due to the presence of multiplicative noises in-

duced by the hindered mobility near the wall [7–9]. Besides, the particle can be subjected

to electrostatic or Van der Waals forces [10] exerted by the interface, and might experience

slippage too [11, 12]. Previous studies have designed novel methods to measure the dif-

fusion coefficient of confined colloids [13–19], or to infer surface forces [20–25]. However,

such a statistical inference is still an experimental challenge, and a precise calibration-free

method taking simultaneously into account the whole ensemble of relevant properties,

over broad spatial and time ranges, is currently lacking.

In my thesis, I aimed at filling the gap identified above by implementing a novel method

of statistical inference on a set of trajectories of individual microparticles recorded by

holographic microscopy. In the chapter 3, I introduce Brownian motion from its discovery

to its mathematical description and numerical simulation. In the chapter 4, I present our

state-of-the-art particle-tracking method. In the chapter 5, I further use it experimentally

to study buoyant particles that are free to evolve within salty aqueous solutions, near a

rigid substrate, and in the presence of surface charges. Besides, I present an optimization

scheme to determine precisely all the physical parameters and the actual distance to the

wall, at once. All together, this procedure leads to the robust calibration-free inference

of the two central quantities of the problem: i) the space-dependent short-term diffusion

coefficients, with a nanoscale spatial resolution; and ii) the total force experienced by the

particle, at the thermal-noise limited femtonewton resolution. Finally, in the chapter 6,

I use this novel tool in order to infer non-conservative forces and study long-time higher-
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order statistical properties.

Open access

A great part of my work depends on resources that are in open-access (OA). OA resources

range from articles that can provide experimental data or the source code used for simu-

lation, to entire frameworks to analyze data or build state-of-the-art simulations. I, want

to promote open access research as it enables the fastest spread of the latest techniques

around the globe by removing the cost barriers. Thus, my manuscript and source codes

are uploaded on a free accessible Github repository. Along this manuscript, Github logos

(¥) can be found. These are hyperlinks to aforementioned information. The links can

be found especially in the figure captions and lead to their source code, or along the text

to redirect to any OA resource I am referring to. All the figures, are done using Python

and Jupyter notebooks, thus providing an easy way to reproduce or reuse them. The

interested reader can follow along the manuscript and change the different variables to

see how physics changes. An explanation on how to setup a Python environment and

employ the notebooks using Conda can be found in my repository ¥.

Figure 1.0.1: French physicist and Nobel laureate Jean Perrin (1870-1942) with his “mega-
spectroscope” at the Institut Curie in 1927.

https://github.com/eXpensia/Ma-these/
https://github.com/eXpensia/Ma-these/
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2 Introduction française

Le mouvement brownien est un paradigme central de la science moderne. Il a des impli-

cations en physique fondamentale, en biologie et même en finance, pour n’en citer que

quelques-unes. En comprenant que le mouvement erratique apparent des collöıdes est

une conséquence directe du mouvement thermique des molécules du fluide environnant,

des pionniers comme Einstein et Perrin ont fourni des preuves décisives de l’existence des

atomes [1, 2].

Au cours des 30 dernières années [3, 4] la microfluidique et le développement des tech-

nologies lab-on-a-chip [5, 6] sont devenus des standards en chimie, biologie et médecine.

Ainsi, à l’heure de la miniaturisation et de la science interfaciale, et au-delà de l’image

idéalisée du volume, il est pertinent de considérer le rôle supplémentaire des bords dans le

contexte ci-dessus. En effet, le mouvement Brownien aux interfaces et en confinement est

une situation pratique répandue en microbiologie et en nanofluidique. Dans un tel cas, les

effets de surface deviennent dominants et modifient radicalement les statistiques brown-

iennes, avec des implications clés pour : i) la compréhension et le contrôle intelligent de

la dynamique interfaciale des entités à l’échelle microscopique ; et ii) les mesures à haute

résolution des forces de surface à l’équilibre. Il est intéressant de noter qu’un collöıde

confiné présentera des statistiques non gaussiennes dans les déplacements, en raison de

la présence de bruits multiplicatifs induits par une mobilité modifiée près de la paroi [7–

9]. En outre, la particule peut être soumise à des forces électrostatiques ou de Van der

Waals [10] exercées par l’interface, et peut également subir un glissement [11, 12]. Des

études antérieures ont conçu de nouvelles méthodes pour mesurer le coefficient de diffusion

des collöıdes confinés [13–19], ou pour déduire les forces de surface [20–25]. Cependant,

une telle inférence statistique reste un défi expérimental, et une méthode précise sans

calibration prenant en compte simultanément l’ensemble des propriétés pertinentes, sur

de larges plages spatiales et temporelles, fait actuellement défaut.

Dans ma thèse, j’ai cherché à combler le vide identifié ci-dessus en mettant en œuvre une

nouvelle méthode d’inférence statistique sur un ensemble de trajectoires de microparticules

individuelles enregistrées par microscopie holographique. Dans le chapitre 3, je présente

le mouvement brownien depuis sa découverte jusqu’à sa description mathématique et sa

simulation numérique. Dans le chapitre 4, je présente notre méthode de pointe pour le

suivi des particules. Dans le chapitre 5, je l’utilise expérimentalement pour étudier les

particules flottantes qui sont libres d’évoluer dans des solutions aqueuses salées, près d’un

substrat rigide, et en présence de charges de surface. En outre, je présente un schéma

d’optimisation pour déterminer précisément tous les paramètres physiques et la distance

réelle à la paroi, en une seule fois. Dans l’ensemble, cette procédure conduit à l’inférence
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robuste et sans calibration des deux quantités centrales du problème : i) les coefficients

de diffusion à court terme dépendant de l’espace, avec une résolution spatiale à l’échelle

nanométrique ; et ii) la force totale subie par la particule, résolu au femtonewton limitée

par le bruit thermique. Enfin, dans le chapitre 6, j’utilise ce nouvel outil pour déduire

les forces non-conservatives et étudier les propriétés statistiques d’ordre supérieur à long

terme.

Libre Accès

Une grande partie de mon travail dépend de ressources en libre accès (OA). Les ressources

en libre accès vont des articles qui peuvent fournir des données expérimentales ou le code

source utilisé pour des simulations, à des framework entiers pour analyser les données ou

construire des simulations de pointe. Je souhaite promouvoir la recherche en libre accès,

car elle permet une diffusion plus rapide des dernières techniques dans le monde entier

en supprimant les obstacles financiers. Ainsi, mon manuscrit et mes codes sources sont

téléversée sur un dépôt Github en libre accès. Le long de ce manuscrit, on peut trouver

des logos Github (¥). Il s’agit d’hyperliens vers les informations susmentionnées. Les

liens se trouvent notamment dans les légendes des figures et mènent à leur code source, ou

le long du texte pour rediriger vers toute ressource OA à laquelle je fais référence. Toutes

les figures sont réalisées à l’aide de Python et de Jupyter notebooks, ce qui permet de les

reproduire ou de les réutiliser facilement. Le lecteur intéressé peut suivre le manuscrit et

changer les différentes variables pour voir comment la physique change. Une explication

sur la façon de configurer un environnement Python et d’utiliser les notebooks en utilisant

Conda peut être trouvée dans mon dépôt de données ¥.

https://github.com/eXpensia/Ma-these/
https://github.com/eXpensia/Ma-these/
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Figure 2.0.1: Le physicien français et lauréat du prix Nobel Jean Perrin (1870-1942) avec
son “méga-spectroscope” à l’Institut Curie, en 1927
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3 Brownian Motion

3.1 The Brownian motion discovery

In 1827 the Scottish botanist Robert Brown published an article [26] on his observation

on the pollen of Clarkia pulchella with a lot of details on his reflection processes. His

experiments were made to understand the flower reproduction, but, as he was looking

through the microscope he observed some minute particles ejected from the pollen grains.

At first, he thought the goal of this agitation was to test the presence of a male organ. To

test this theory, he extended his observations to Mosses and Equiseta, which were drying

for a hundred years. However, the fact that this peculiar motion was still observable made

him invalidate his theory. Interestingly, each time that he encountered a material that

he could reduce to a fine enough powder to be suspended in water, he observed the same

type of motion, although, he never understood its particle’s movement.

The difficulty at this time to observe and capture such a movement made the study of

what we call contemporarily Brownian motion difficult and the first theoretical work was

done by Louis Bachelier in his PhD thesis “The theory of speculation,” where he described

a stochastic analysis of the stock and option market. Nowadays, the mathematical de-

scription of random movement is still used in the modern financial industry.

It is finally in 1905 that Albert Einstein theoretically state that “bodies of microscopically

visible size suspended in a liquid will perform movements of such a magnitude that they

can be easily observed in a microscope” [1]. A remark to make here is that in 1948

Einstein wrote a letter to one of his friends where he stated having deduced the Brownian

motion “from mechanics, without knowing that anyone had already observed anything of

the kind” [27].

It is in 1908 that Jean Perrin published his experimental work on Brownian motion. That

way he could measure the Avogadro number and prove the kinetic theory that Einstein

developed. I would also cite Chaudesaigues and Dabrowski, who helped Perrin to track

the particles manually, half-minutes by half-minutes, for more than 3000 displacements

(25 hours) and several particles. This impressive and daunting work is highly detailed in

“Mouvement brownien et molécules” [28]. This is partly due to the results of this work

that Perrin received the Nobel award in 1926.
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Figure 3.1.1: Brownian motion of 1 µm particles in water tracked manually by Jean Perrin
and his colleagues. The points are spaced in time by 30 seconds, and 16 divisions represent
50 µm.

3.2 Einstein’s Brownian theory

In this section we derive the main characteristics of bulk Brownian motion in the manner

of Einstein in 1905 by summarizing the section 4 of [1]. We then examine the random

motion of particles suspended in a liquid and its relation to diffusion, caused by thermal

molecular motion. We assume that each particle motion is independent of other particles;

also the motions of one particle at different times are assumed to be independent of one

another provided that the time interval is not too small. Furthermore, we introduce a

time interval τ which is small compared to the observation time but large enough so that

the displacements in two consecutive time intervals τ may be taken as independent events.

For simplicity, we will here look only at the Brownian motion of n particles in 1D along

the x axis. In a time interval τ the position of each particle will increase by a displacement

∆, positive or negative. The number of particles dn experiencing a displacement lying

between ∆ and ∆ + d∆ in a time interval τ is written as:

dn = nϕ(∆)d∆ , (3.2.1)

where:
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∫ ∞

−∞
ϕ(∆)d∆ = 1 , (3.2.2)

and ϕ is the probability distribution of displacement. We assume for now, that ϕ is a

Gaussian distribution, with a variance scaling linearly with τ . Additionally, since such a

distribution is even, it satisfies: ϕ(∆) = ϕ(−∆).

Let f(x, t) be the number of particles per unit volume. From the definition of the function

ϕ(∆) we can obtain the distribution of particles found at time t+τ from their distribution

at a time t, through:

f(x, t+ τ) =

∫ +∞

−∞
f(x−∆, t)ϕ(∆)d∆ . (3.2.3)

Since we suppose that τ is very small with respect to t, we have at first order in time:

f(x, t+ τ) ' f(x, t) + τ
∂f

∂t
. (3.2.4)

Besides, we can Taylor expand f(x + ∆, t) in powers of ∆ since only small values of ∆

contribute. We obtain:

f(x−∆, t) = f(x, t)−∆
∂f(x, t)

∂x
+

∆2

2!

∂2f(x, t)

∂x2
. (3.2.5)

Combining Eqs.3.2.4, 3.2.5 and 3.2.3 we obtain:

f +
∂f

∂t
τ = f

∫ +∞

−∞
ϕ(∆)d∆ +

∂f

∂x

∫ +∞

−∞
∆ϕ(∆)d∆ +

∂2f

∂x2

∫ +∞

−∞

∆2

2
ϕ(∆)d∆ . (3.2.6)

On the right-hand side, since ϕ(x) is an even function, the second term vanishes. Con-

sidering Eq. (3.2.2) and invoking the following definition:

1

τ

∫ +∞

−∞

∆2

2
ϕ(∆)d∆ = D , (3.2.7)



3 Brownian Motion 9

Eq. (3.2.6) finally becomes:

∂f

∂t
= D

∂2f

∂x2
. (3.2.8)

We can here recognize a partial equation of diffusion with D the diffusion coefficient. We

will now initiate the same position x = 0 for all the particles at t = 0 as in Fig.3.2.1.

f(x, t)dx denotes the number of particles whose positions have increased between the

times 0 and t by a quantity lying between x and x+ dx such that we must have:

f(x 6= 0, t = 0) = 0 and

∫ +∞

−∞
f(x, t)dx = n . (3.2.9)

The solution Eq. (3.2.8) is then the Green’s function of the heat equation in the bulk:

f(x, t) =
1√

4πD

exp
(
−x2

4Dt

)

√
t

. (3.2.10)

From this solution we can see that the mean value of the displacement along the x axis

is equal to 0 and the square root of the arithmetic mean of the squares of displacements

(that we commonly call the Root Mean Square Displacement (RMSD)) is given by:

λx =
√
〈∆2〉 =

√
2Dt. (3.2.11)

The mean displacement is thus proportional to the square root of time. This result is

generally the first behavior that we check when we study Brownian motion. In 3D, the

square root of the MSD is given by λx
√

3.

Previously in his article [1], Einstein had found by writing the thermodynamic equilibrium

of a suspension of particles that the diffusion coefficient of a particle should read:

D =
RT

NA

1

6πηa
=

kBT

6πηa
, (3.2.12)

with R the gas constant, T the temperature, NA the Avogadro number, η the fluid

viscosity and kB the Boltzmann constant. Thus, an experimental measurement of D lead

to a measurement of the Avogadro number since:
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NA =
t

λ2
x

RT

3πηa
. (3.2.13)

Furthermore, measuring NA also gives us the mass of atoms and molecules since the mass

of a mole is known; as an example the mass of an oxygen atom will be given by
(

16
NA

)
and

the mass of a water molecule by 18
NA

. Finally, Einstein ends up is article [1] by writing,

“Let us hope that a researcher will soon succeed in solving the problem posed here, which is

of such importance in the theory of heat!” I would like here to emphasize the importance

of solving this problem at the very beginning of the 20th century. At this time two

hypotheses about the fundamental matter components existed, one involving energy and

a continuum description in terms of field, and the other one, discrete atoms, especially

supported by Boltzmann and his kinetic theory of gases, used by Einstein. Due to a

lot of conceptual misunderstandings and experimental error scientist such as Svedberg or

Henri thought that Einstein’s theory was false [29] by even suggesting that the statistical

properties of Brownian motion were changing with the pH of the solution. It is finally in

1908 that Chaudesaigues and Perrin published all the evidence to prove Einstein’s theory

mainly by their ability to create particle emulsions of well-controlled radii.
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Figure 3.2.1: Simulation of over-damped Brownian motion in the bulk (see Eq. (3.4.9))
of 1 µm particles in water. On the top each line represents the trajectory of a Brownian
particle over 100 seconds. A total of 100 trajectories are shown. On the bottom, bullets
represent the Mean Square Displacement (MSD) computed from the simulated trajecto-
ries. The plain black line represents Einstein’s theory, which is computed from the square
of Eq. (3.2.11).¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter1/image/simple_Brownian.ipynb
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3.3 The Langevin Equation

in physics we generally describe Brownian motion through a particular Stochastic Differ-

ential Equations (SDE). This model was introduced in 1908 by Langevin [30], this model

is now used by the major part of physicists working on random processes. The Langevin

equation for a free colloid reads:

mdVt = −γVtdt+ gdW , (3.3.1)

with m the mass and Vt the velocity of the particle. This SDE is the Newton’s second law,

relating the particle momentum change on the left-hand side of the equation to forces on

the right-hand side. We see that the total force applied on the particle is given by two

terms: a friction term, with a Stokes-like fluid friction coefficient γ, a random force with

g that we will detail for a spherical particle, dBt a random noise which has a Gaussian

distribution of zero mean thus:

〈dW 〉 = 0 , (3.3.2)

and variance equal to:

〈dW 2〉 = dt . (3.3.3)

For a spherical particle, the friction term is given by the Stoke’s formula: γ = 6πηa with

η the fluid viscosity and g the particle radius. Thus, we can derive the mean value of the

particle velocity as:

〈dVt〉 = − γ
m
〈Vt〉dt+

g

m
〈dW 〉 , (3.3.4)

with the properties of dBt given by Eq. (3.3.2), it becomes:

〈dVt〉 = − γ
m
〈Vt〉dt . (3.3.5)

Moreover, without a loss of generality, the average of a variable x, 〈x〉, is done over a set
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of N observations {xi} such as:

〈x〉 =
1

N

N∑

i=1

xi , (3.3.6)

one can then show that:

d

dt
〈x〉 =

d

dt

[
1

N

N∑

i=1

xi

]
=

1

N

N∑

i=1

d

dt
xi = 〈 d

dt
x〉 . (3.3.7)

The latter thus shows that it is possible to invert average value 〈·〉 and a derivative.

Therefore, Eq. (3.3.5) becomes:

d

dt
〈Vt〉 = − γ

m
〈Vt〉 , (3.3.8)

which has a familiar solution:

〈Vt(t)〉 = V0e−
γ
m
t , (3.3.9)

with V0 an initial velocity. This result shows that the average of the velocity should decay

to zero with a characteristic time τB = m
γ

. For instance, the polystyrene particles used

during my experiments which are micrometric we have τB ≈ 10−7 s. This signifies that if

we measure the displacements of a particle with a time interval τ >> τB the displacement

can be taken as independent events as it was stated by Einstein. In physical terms, this

means that we are in the over-damped regime, in this case the Langevin equation reads:

−γVtdt+ gdW = 0 . (3.3.10)

The experiments done during my thesis used a video camera that can reach a maximum of

hundreds frames per second (fps) reaching time steps of ≈ 10−2 s. Therefore, all my work

falls into the over-damped regime. Before focusing definitely on Eq. (3.3.10), we can use

Eq. (3.3.4) to characterize further the unknown coefficient g. To do so we compute the

mean square value of Eq. (3.3.4), starting by taking the second order Taylor expansion:
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d
(
V 2
t

)
' ∂V 2

t

∂Vt
dVt +

1

2

∂2V 2
t

∂V 2
t

(dVt)
2

= 2VtdVt + (dVt)
2

(3.3.11)

combining Eqs. (3.3.1) and (3.3.11), we obtain by only keeping the terms of order dt:

d
(
V 2
t

)
= 2Vt

(
− γ
m
Vtdt+

g

m
dW

)
+
g2

m2
dW 2 . (3.3.12)

Thus, the average value of d(V 2
t ) reads:

〈d(V 2
t )〉 = −2

γ

m
〈V 2

t 〉dt+ 2
g

m
〈VtdW 〉+

g2

m2
〈dW 2〉 . (3.3.13)

Moreover, since dW is chosen independently of the velocity Vt, one can write 〈VtdW 〉 =

〈Vt〉〈dW 〉 = 0. Taking the latter remark into account and the fact that 〈dW 2〉 = dt,

Eq. (3.3.13) becomes:

〈d(V 2
t )〉 =

[
−2

γ

m
〈V 2

t 〉+
g2

m2

]
dt . (3.3.14)

Since equilibrium averages in thermodynamics must become time independent, we have

〈d(V 2
t )〉 = 0, thus:

〈V 2
t 〉 =

g2

2γm
. (3.3.15)

Besides, from the equipartition of energy we also know that:

〈1
2
mV 2

t 〉 =
1

2
kBT . (3.3.16)

The latter equation permits a direct determination of the amplitude of the noise g:

g =
√

2kBTγ . (3.3.17)
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The latter result permits computing the amplitude of the random force in the Langevin

equation. Taking the over-damped Langevin equation, it reads:

Vtdt =

√
2
kBT

γ
dW (3.3.18)

Furthermore, one can write the position of the particle Xt at a time t, such as:

Xt =

∫ t

0

Vt′dt
′ , (3.3.19)

where we can suppose at the initial time t = 0 that X0 = 0. Computing 〈X2
t 〉 using

Eqs. (3.3.18), (3.3.19) and (3.3.3) thus gives:

〈X2
t 〉 = 2

kBT

γ
t = 2Dt (3.3.20)

By relating 〈X2
t 〉 to the Mean Square Displacement (MSD) to the initial position such as:

MSD = 〈(X0 −Xt)
2〉 = 〈X2

t 〉 , (3.3.21)

we obtain that the MSD should be linear with the time. This result confirms that using

the over-damped Langevin equation, leads to the Einstein’s result Eq. (3.2.11). Where

one can identify the diffusion coefficient of the particle to be D = kBT/γ. Additionally,

the latter identity is called the Stokes-Einstein relation.

Additionally, the Langevin equation can be used to compute correlator such as the velocity

correlator 〈Vt′Vt′′〉 that we will detail below. Indeed, if we use the full-Langevin equation,

〈X2
t 〉 cannot be easily computed since mdVt does not vanish. We would thus need to

rewrite Eq. (3.3.20) using the velocity correletor such as:

〈X2
t 〉 =

∫ t

0

∫ t

0

〈Vt′Vt′′〉dt′dt′′ . (3.3.22)

Let us now study how the two-point correlator function 〈Vt′Vt′′〉, using the full-Langevin

equation multiplied by V0 and following the same steps as for Eq. (3.3.9), one has:



3 Brownian Motion 15

〈VtV0〉 = 〈V 2
0 〉e−t/τB . (3.3.23)

As the equilibrium state is invariant under temporal translation and assuming that V0

has an equilibrium steady-state distribution with 〈V 2
0 〉 = kBT/m we have:

〈VtV ′t 〉 =
kBT

m
e−|t−t

′|/τB . (3.3.24)

One can solve Eq. (3.3.22) by splitting the integral in two parts, where t′ > t′′ and t′ < t′′:

〈X2
t 〉 =

kBT

m

∫ t

0

dt′
∫ t′

0

dt′′e−|t
′−t′′|/τB = 2

kBT

γ

(∫ t

0

dt′
[
1− e−t

′/τB
])

= 2
kBT

γ

(
t− τB

[
1− e−t/τB

])
.

(3.3.25)

We can extract two results from that equation. At a short time t << τB, one has:

〈X2
t 〉 ' 2

kBT

γ

(
t− τB

[
1− 1 +

t

τB

− t2

2τ 2
B

])

=
kBT

m
t2 .

(3.3.26)

This is the ballistic regime. If one can experimentally explore times shorter than τB one

will then measure the instantaneous velocity of the particle. At longer times, t >> tB,

the MSD is given by:

〈X2
t 〉 ' 2

kBT

γ
t = 2Dt . (3.3.27)

This is the diffusive regime where the MSD, as found earlier, Eq. (3.3.20) with the over-

damped Langevin equation. To study this different result, it can be interesting to simulate

the Brownian motion.
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3.4 Numerical simulation of bulk Brownian motion

3.4.1 The numerical Langevin Equation
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Figure 3.4.1: Bullets represents the probability density function of wi, a Gaussian-
distributed number with a mean value 〈wi〉 and a variance 〈w2

i 〉 = τ . The plain black line
is a Gaussian distribution of zero mean and a variance τ (see Eq. (3.4.3)). In the first
row, the simulation is done with τ = 10−3 s and τ = 1 s on the second one. Each column
corresponds to a number N of draws. From the left to the right: N = 102, 103 and 104.¥

The Langevin equation is an ordinary differential equation that can easily be numerically

simulated in the bulk case. We approximate the continuous position Xt of a particle at

a time t by a discrete-time sequence xi which is the solution of the equation at a time

ti = iτ , τ being the time step of the simulation. One can then use the Euler method to

numerically write Vt as:

Vt '
xi − xi−1

τ
, (3.4.1)

and dVt/dt as

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter1/image/noise_simulation/noise_simulation.ipynb
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dVt
dt
'

xi−xi−1

τ
− xi−1−xi−2

τ

τ

=
xi − 2xi−1 + xi−2

τ 2
.

(3.4.2)

The only term remaining to be computed numerically is the random term dW . One can

thus replace dW/dt by wi/τ
1 a Gaussian distributed random number generated with a

mean 〈wi〉 = 0 and a variance 〈w2
i 〉 = τ . The Probability Density function (PDF) of the

Gaussian distribution is thus given by:

P (wi) =
1√
2πτ

e−
w2
i

2τ . (3.4.3)

The random number wi can be generated with the following Python snippet.

1 import numpy as np

2

3 tau = 0.5 # time step in seconds

4 wi = np.random.normal(0, np.sqrt(tau))

In the latter, random.normal() is a built-in Numpy module that permits the generation

of Gaussian-distributed random numbers. Finally, by combining Eqs. (3.4.1) and (3.4.2),

the full-Langevin equation becomes:

m
xi − 2xi−1 + xi−2

τ 2
= −γxi − xi−1

τ
+
√

2kBTγ
wi
τ
. (3.4.4)

From the latter, one can write xi as:

xi =
2 + τ/τB

1 + τ/τB

xi−1 −
1

1 + τ/τB

xi−2 +

√
2kBTγ

m(1 + τ/τB)
τwi , (3.4.5)

where we can observe that two initial conditions are needed, i.e the first two positions

of the particle. Numerically, these positions could be randomly generated or set to 0. If

enough statics are generated, it will not affect the results.

1 The notation w was choosen since in mathematical terms, a real-valued continuous-time stochastic
process such as dW is called a Wiener process in honor of Norbert Wiener [31].
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3.4.2 Simulating Brownian Motion Using Python
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Figure 3.4.2: Mean Relative Squared Error (MRSE) of the Probability Density Function
PDF measured from a generation of N Gaussian random numbers wi and the actual
Gaussian (see Eq. (3.4.3)) from which the generation is done. The generation is done
over a Gaussian which has a mean value 〈wi〉 = 0 and variance 〈w2

i 〉 = τ . We explore
parameter ranges from N = 10 to 107 and τ = 10−2 to 10 s. ¥

Before, diving into the simulation, it could be interesting to wonder how long the sim-

ulation should be. Indeed, at equilibrium, for the different observables’ mean values to

remain constant, we should wait a sufficient amount of time. It is possible to follow a

qualitative approach by generating N numbers wi, measuring the resulting PDF Pc(wi)

and looking for how much we need to increase N to have Pc(wi) ≈ P (wi), under some

given small-error criterion. As we can see in Fig.3.4.1, for simulations made with τ = 10−3

s and τ = 1 s, we observe that as we increase N , the measured PDF, gets closer to the

real one given by Eq. (3.4.3).

To have a more quantitative approach, one can compute the Mean Relative Squared Error

(MRSE)) between the measured PDF Pc(wi) and the nominal function P (wi) as a function

of the number N of generated numbers, as:

MRSE =

〈
(Pc(wi)− P (wi))

2

P (wi)2

〉∣∣∣∣∣
N

(3.4.6)

where the notation |N denotes the average over N realizations. Additionally, since we

measure Pc(wi) by doing a histogram, the question of how many bins are used should

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter1/image/noise_simulation/noise_simulation.ipynb
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be answered. It is possible to use the optimal Freedan-Diaconis rule [32] to compute the

width of the bins to be used in a histogram. This rule reads:

Bin width = 2
IQR({wi})

3
√
N

, (3.4.7)

where IQR is the interquartile range, and {wi} a sample of N random numbers wi.

Moreover, one should at least take 2 bins as a minimum. The optimal number of bins can

be computed using the following Python snippet.

1

2 import numpy as np

3

4 def _iqr(wi):

5 """Function to compute interquartile range."""

6 return np.subtract(*np.percentile(wi, [75, 25]))

7

8 def optimal_bins(wi):

9 """

10 Function to compute the optinal number of bins using Freedan-Diaconis rule.

11 Input: list of random numbers | Output: optimal bins number

12 """

13

14 n = int(diff(wi) / (2 * _iqr(wi) * np.power(len(wi), -1 / 3)))

15

16 if n <= 2:

17 return 2

18 else:

19 return n

As we can see in Fig.3.4.2, for τ varying between 10−2 and 10 seconds, and N between 10

and 106, the MRSE decreases as N increases. Moreover, it is interesting to observe that

the MRSE is greater as τ increases for a fixed N value. As an example, we would need

to only generate N = 10−3 numbers to obtain an MRSE of 10−4 for τ = 0.1 s, while we

would need N = 106 for τ = 1 s.

Now that the Langevin equation has been numerically implemented, one could use it

to simulate Brownian trajectories. A simple way to do the simulation using Python is

provided in appendix.A.1. A set of trajectories simulated for a fictive particle of radius

a = 1 µm and mass m = 10 µg in water is shown in Fig.3.4.3-a). For such a particle, the

diffusive characteristic time is τB = 0.53 s. Moreover, as one can see in Fig.3.4.3-b), the



3 Brownian Motion 20

MSD is correctly modeled by Eq. (3.3.26) for τ << τB, and by Eq. (3.3.27) for τ >> τB.

Note that for non-continuous data such as the simulation data presented here or sampled

experimental trajectories, and for a given time increment ∆t, the MSD is generally defined

by:

〈
∆x2

〉
t

=
〈
(xi(t+ ∆t)− xi(t))2

〉
t
, (3.4.8)

where the average 〈〉|t is performed over time t.The following Python function can be

used to numerically compute the MSD Eq. (3.4.8).

1 def msd(x, Dt):

2 """Function that returns the MSD for a list of time indices Dt for a trajectory x"""

3 _msd = lambda x, Dt: np.mean((x[:-Dt] - x[Dt:]) ** 2)

4 return [_msd(x, i) for i in t]

Additionally, as we have seen earlier, the Langevin Equation can be simplified to it is

over-damped version of Eq. (3.3.10). In this case, the time step τ of the simulation

should be greater than the characteristic time τB. Thus, if one is interested in the long-

time statistical properties of Brownian motion one can use the over-damped Langevin

equation. In this case, by putting m = 0 into Eq. (3.4.5), one can write xi as:

xi = xi−1 +
√

2Dwi . (3.4.9)

The statistical properties at a long time could be retrieved by simulating Brownian motion

using the full-Langevin equation. But, since the integration scheme used for Eq. (3.4.5)

requires τ � τB, long simulation runs are necessary to retrieve the over-damped proper-

ties. A simulation of the over-damped Brownian motion trajectories using Eq. (3.4.9) is

shown in Fig.3.2.1 and is realized using the following Python Snippet.

1 import numpy as np

2

3 N = 1000 # trajectory length

4 D = 1 # diffusion coefficient

5 tau = 0.5 # time step

6 trajectory = np.cumsum(np.sqrt(2 * D) * np.random.normal(0, np.sqrt(tau), N))
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Figure 3.4.3: a) Set of 100 trajectories simulated using the full-Langevin equation (see
Eq. (3.4.5)) for particles of a radius a = 1 µm and mass m = 10 µg in water, with viscosity
η = 0.001 Pa.s. The simulations are done with a time step τ = 0.01 s. b) Bullets represent
the measured Mean Squared Displacements (MSD) of the simulated trajectories. The
plain black line represents the characteristic inertial timescale, τB = m/γ = 0.53 s. The
dotted line represents the MSD in the ballistic regime (see Eq. (3.3.26)), when ∆t� τB.
The dashed line represents the MSD in the diffusive regime (see Eq. (3.3.27)), when
∆t � τB, MSD = 2D∆t. A detailed explanation of the simulation process can be found
in appendix A.1.¥

3.4.3 Speedup using Cython

I would like to point out that the optimization of a simple simulation of a Brownian

trajectory can be interesting. Indeed, using a pure Python code as presented in the first

part of appendix. A.1, the simulation of one trajectory of 106 steps, needs 6 s to be

computed. Thus, more than 10 minutes are required to compute the 100 trajectories

shown in Fig. 3.4.3. This is long and due to how Python systematically verifies what is

allowed. Indeed, it verifies at each step of the for loop the object type of each variable

and if the mathematical operation are possible. This is generally the main drawback [33]

of interpreted language, and the only solution is to use a compiled language (e.g C or

Fortran).

The difference between an interpreted (e.g. Python) and compiled language (e.g. C)

lies in the result of the process of interpreting or compiling. A compiler (e.g. gcc for

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter1/image/simulation_full_langevin/inertial_Brownian_motion.ipynb
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the C language ¥) translate the source code into the computer native language, and

create an executable file. The execution of compiled language does not require any more

translations, and hence run significantly faster. Contrariwise, an interpreted language is

not translated in advance, but is done at the execution, line by line, and each time the

program is executed. This process is done by the interpreter, such as Python, Matlab or

Perl for their eponymous language. At each execution, the time taken by the interpreter

to read and execute each line slows the process, causing execution to take more time.

To overcome this problem with Python, the cython package has been developed to trans-

late in C and compile the part of the code that is long to execute, especially the for loops.

Thus, one can transform Python source code into a hybrid Python-C code. As presented

in appendix.A.1, compiling the for loop using cython in the full-Langevin simulations

reduces the time to generate a 106-step trajectory from 6 s to 30 ms thus achieving a

speedup factor of 200. Moreover, in the hybrid version, the execution time is limited by

the random number generation. Indeed, it takes ≈ 24 ms using numpy to generate 106 wi

numbers and ≈ 6 ms for the trajectory computation. Additionally, as shown at the end

of appendix.A.1, even a pure C implementation of the random generation can be slower

than the numpy one, thanks to numpy’s memory optimization. Thus, by using the above

mixed-language strategy, the simulation is optimal with the current tools and language

at hand.

3.5 Conclusion

In this chapter, we have covered the history of Brownian motion, from the first observation

by Robert Brown in the middle of the 19th century to its mathematical and experimen-

tal proofs in the early 20th century. We have then described mathematically the bulk

Brownian motion and its important statistical properties. Finally, we have used the latter

description to simulate Brownian motion using both the full-Langevin equation, and its

over-damped version.

https://github.com/gcc-mirror/gcc
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4 Particle Characterization and Tracking Using Op-

tical Interferences

4.1 Introduction

Properties of coherent light to produce interference has been widely deployed in metrology

for a long time as illustrated by, for example, the famous Fabry-Pérot [34, 35] and Michel-

son interferometers [36]. The latter was initially employed to evaluate the rotation of the

Earth and is still deployed today for the recent measurement of gravitational waves [37].

Since the beginning of the century, interest on tracking and characterizing colloidal parti-

cles risen thanks to the democratization of micro fluidics and lab-on-a-chip technologies.

In the following, I will provide some insights on the three most used tracking methods:

• Reflection Interference Contrast Microscopy (RICM)

• Lorenz-Mie theory

• Rayleigh-Sommerfeld back propagation

The first one, RICM, uses the principle of optical-path difference in a Michelson interfer-

ometer. The other two, use the interferences between the light scattered by the colloid

and the incident light. Generally, both sources are collinear, so that we speak of in-line

holography.

4.2 Reflection Interference Contrast Microscopy

RICM was first introduced in cell biology by Curtis to study embryonic chick heart fibrob-

lasts [38] in 1964. RICM gained in popularity 40 years after both in biology and physics

[39–44]. It was also used recently in soft matter physics to study the elastohydrodynamic

lift at a soft wall [45].

When we illuminate a colloid with a plane wave from the bottom, a part of the light is

reflected at the surface of the glass substrate and another part, at the colloid surface.

The difference of optical paths between two reflections creates an interference pattern.

Let us focus on the mathematical description of this phenomenon. In the far field, we can

describe two one-dimensional electric field vectors with same angular frequency ω [46] as

propagative waves, through:
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~E1(~r, t) = ~E01 cos(~k1 · ~r − ωt+ ε1) , (4.2.1)

and:
~E2(~r, t) = ~E02 cos(~k2 · ~r − ωt+ ε2) , (4.2.2)

where the ki are the wave vector satisfying |~ki| = k = 2πnm/λ, the angular wavenumber,

λ being the illumination wavelength, nm the optical index of the medium, ε1,2 the initial

phases of each wave and ~r the position. Here, the origin (~r = ~0) is taken at the position of

the first reflection (i.e. the glass slide). Thus, on the particle, ~r is given by the particle’s

height such that |r| = z.

Figure 4.2.1: Figure from [45] representing RICM with two wavelengths. (a) Left: inter-
ference patterns created with a wavelength λ1 = 532 nm (scale bar 5 µm). Right: radial
intensity profile (black dots) extracted from the image, azimuthally averaged (magenta
line) and fitted with Eq. (4.2.8) to measure the height of the particle (here noted h). (b)
Same as (a) with a wavelength λ2 = 635 nm. (c) Time series of the height h of a particle
(green: λ1, purple: λ2) and the particle velocity measured along the flow (in blue).

Experimentally, one measures the intensity of the interference patterns. They can be

computed from the time-averaged squared total electric field ~E = ~E1 + ~E2. The measured

intensity is thus given by:
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I =
〈
~E2
〉

=
〈
~E2

1 + ~E2
2 + 2 ~E1 · ~E2

〉
=
〈
~E2

1

〉
+
〈
~E2

2

〉
+ 2

〈
~E1 · ~E2

〉
, (4.2.3)

where 〈 ~E2
1〉 and 〈 ~E2

2〉 are respectively given by I1 and I2, the incident intensities. Using

trigonometry, we have:

〈
~E1 · ~E2

〉
=

〈
1

2
~E01

~E02

[
cos
(
~k1 · ~r − ~k1 · ~r + φ

)
+ cos (2ωt+ φ′)

]〉

t

. (4.2.4)

As we average over time, the second cosine vanishes. Thus one has:

〈
~E1 · ~E2

〉
=

1

2

〈
~E01

~E02

〉
cos
(
~k1 · ~r − ~k2 · ~r + φ

)
, (4.2.5)

with φ the phase difference between the two fields, which is usually equal to π due to the

reflection properties on a higher optical index. Indeed, a colloid has generally a greater

optical index than the dilution medium. Finally, the total intensity can be read as:

I = I1 + I2 + 2
√
I1I2 cos

(
~k1 · ~r − ~k2 · ~r + φ

)
. (4.2.6)

By taking k1 = −k2 due to the reflection properties, we have:

I = I1 + I2 + 2
√
I1I2 cos

(
4πnm

λ
z + φ

)
. (4.2.7)

So far we supposed that the reflection occurs at a unique point; however, we would likely be

using spherical colloids. Therefore, illuminating from the bottom, the reflection happens

on half of the sphere surface. Moreover, thanks to the spherical geometry the holograms

exhibit a radial symmetry, one can write the radial interference intensity I(x), with x the

distance from the pattern center, through [44]:

I(x) = A0 + A1e−b1x
2

+ A2e−b2x
2

cos

[
4πnm
λ

(g(x) + z) + φ

]
, (4.2.8)

Where A1 and b1 are parameters [44] that fit the slightly bent background that arises

from diffuse reflection on the upper part of the sphere, A2 and b2 the decaying contrast
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of the higher order maxima, A0 background intensity, and

g(x) = a−
√
a2 − x2 , (4.2.9)

is the sphere profile, to consider the increase sphere-wall as x increases. Finally, this

method benefits from equations that are computationally light and enable a quick tracking

of particles. However, as we can see in Eq. (4.2.8), because of the periodicity of the cosine,

the interference pattern is the same for all heights z separated by a distance λ/(2nm) ≈ 200

nm for λ = 532 nm and nm = 1.33.

It is possible to extend this separation to ' 1.2 µm as used in [45] length by using two

different wavelengths. Despite the spatial resolution of this method which can attain 10

nm, the measurement ambiguity is not compatible with the study of Brownian motion

due to the periodicity above. Hence RICM it is not usable in our context. As a matter

of fact, we experimentally reach height spans of a few microns.

4.3 Lorenz-Mie theory

When a colloid is illuminated with a plane wave, a part of the light is scattered. In con-

sequence, the incident field ~E0 and scattered field ~Es interferes. The interference patterns

thus obtained are called holograms. If the particle is not smaller than the illumination

wavelength, it is not possible to use Rayleigh’s approximations [47] to describe the scat-

tering. Instead, one needs to use the Lorenz-Mie theory for dielectric spheres. This theory

was developed by Lorenz and independently by Mie in 1880 and 1908, respectively [48,

49].

It is in the early 2000s that the Lorenz-Mie theory was first used in order to track and

characterize particles [50, 51]. Since then, a lot of studies have been realized with this

technique [52]. In the following, I will describe the Lorenz-Mie method. In this part, the

height z of the particle is the distance between the particle’s center and the focal plane

of the objective lens.

Let the incident field be a plane wave uniformly polarized along an axis ê, with an am-

plitude E0 and propagating along the ẑ direction :

~E0(~r, z) = E0(~r)eikz ê (4.3.1)
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Let us consider a particle of radius a at a position ~rp. In such case, the scattered field

can be written using the Lorenz-Mie theory [46], as:

~Es(~r, z) = ~fs(k(~r − ~rp))E0(~r) exp (−ikz) , (4.3.2)

with ~fs, the Lorenz-Mie scattering function. The intensity I that we measure at ~r is given

by the intensity of superimposition of the incident and scattered amplitudes. Since the

measurements are done at the focal plane, i.e. z = 0, I is given by:

I(~r) = | ~Es(~r, 0) + ~E0(~r, 0)|2

= E2
0(~r) + 2E2

0<
(
~fs(k(~r − ~rp))ê

)
+ E2

0

∣∣∣~fs(k(~r − ~rp))
∣∣∣
2

.
(4.3.3)

Most of the experimental defects on the images are due to spacial illumination varia-

tions caused by dust particles. They can be corrected by normalizing the image by the

background. In another word, we normalize I(~r) by the intensity of the incident field

I0 = E0(~r)2 which corresponds to the experimental background.

Experimentally, the background can be measured by different methods. One is to have

an empty field of view and the other one, which is more convenient, is to compute the

median of a stack of images. Additionally, for the latter to work, the video should be long

enough for the particle to diffuse sufficiently. If this condition is not satisfied, a ghost of

the particle will appear on the background. Moreover, this process permits getting rid of

any immobile particles that could generate any additional noise. Examples of hologram

before and after the normalization are shown in Figs.4.3.1 a-c).

Finally, we write the normalized intensity as:

I(~r)

I0(~r)
= 1 + 2<

(
~fs(k(~r − ~rp))ê

)
+ |~fs(k(~r − ~rp))|2 (4.3.4)

Now that we have the analytical form of the holograms’ intensity, it is possible to fit an

experimental one to Eq. (4.3.4) as shown in Figs.4.3.1 d-e). For the sake of completeness,

I will detail the Lorenz-Mie scattering function ~fs(k~r), which is given by the series:

~fs(k~r) =
nc∑

n=1

in(2n+ 1)

n(n+ 1)

(
ian ~N

(3)
eln (k~r)− bn ~M (3)

oln(k~r)
)

(4.3.5)
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where ~N
(3)
eln(k~r) and ~M

(3)
oln(k~r) are the vectorial spherical harmonics [lock˙generalized˙2009,

gouesbet˙t-matrix˙2010], and an and bn are coefficients depending on the particle and

illumination properties. For a spherical and isotropic particle of radius a and refractive

index np, which is illuminated by a linearly polarized plane wave, the an and bn coefficients

are expressed in terms of spherical Bessel functions jn and Hankel functions hn, as [46]:

an =
ζ2jn(ζka)kaj′n(ka)− jn(ka)[ζkajn(ζka)]′

ζ2jn(ζka)kah
(1)′
n (ka)− h(1)

n (ka)ζkaj′n(ζka)
, (4.3.6)

and:

bn =
jn(ζka)kaj′n(ka)− jn(ka)ζkaj′n(mka)

jn(ζka)kah
(1)′
n (ka)− h(1)

n (ka)ζkaj′n(mka)
, (4.3.7)

where ζ = np/nm, and where the prime notation denotes differentiation with respect to

the argument.

Finally, a hologram is mainly given by the Lorenz-Mie scattering function of Eq. (4.3.5).

Moreover, as we can observe in Eqs. (4.3.6) and (4.3.7), a hologram depends on a lot

of parameters and variables (λ, nm, np, a and ~rp) . The parameters can be fitted by

comparison to experimental data. In general, the illumination wavelength λ and medium

index nm are known and do not need to be fitted. From only one hologram, one can

measure the position ~rp precisely of the particle and simultaneously characterize the radius

and optical index of the colloid. As a side note, it is even possible to characterize a particle

without aprioristic knowledge of its characteristics (i.e. radius and refractive index) using

a Bayesian approach [53, 54].

Computing Eq. (4.3.5) numerically brings another interesting question, as it is analytically

written as a sum over n. One could ask after which number nc of terms the series

converges. It has actually been found that the series converges after a number of terms

given by Wiscombe [55]:

nc = ka+ 4.05(ka)1/3 + 2 . (4.3.8)

Consequently, the holograms of bigger particles require more terms to converge and, hence,

are longer to fit. As an example, the largest particles used during my thesis have a radius

a = 2.5 µm leading to nc = 55 in water and for an illumination wavelength λ = 532 nm.

For the smallest ones, where a = 0.5 µm we find nc = 18 which makes a huge difference

in practice. Indeed, if each of the terms of the sum takes the same time to be computed;



4 Particle Characterization and Tracking Using Optical Interferences 29

a 2.5 µm particle’s hologram is 55/18 ' 3 times longer to be fitted compared to the

hologram of a 0.5 µm particle.

If a reader wants to evaluate a hologram given by the Lorenz-Mie theory for a peculiar

particle and position, it can be done in a few lines with the holopy module utilizing the

following Python snippet which was employed to make Fig.4.3.7 and 4.3.8:

1 import holopy as hp

2 from holopy.scattering import calc_holo, Sphere

3

4 sphere = Sphere(n=1.59, r=1.5, center=(4/0.1, 4/0.1, 10))

5 # n is the optical index of the particle, r its radius in microns

6 # center is its center position in microns.

7

8 medium_index = 1.33

9 illum_wavelen = 0.532

10 illum_polarization = (1, 0)

11 detector = hp.detector_grid(shape=100, spacing=0.1)

12 # shape is the size in pixels of the camera and the spacing is the pixel's size in microns.

13

14 holo = calc_holo(

15 detector, sphere, medium_index, illum_wavelen, illum_polarization, theory="auto"

16 )

17 #the hologram can directly be plotted using:

18 hp.show(holo)
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a) b) c)

d)e)

Figure 4.3.1: a) Raw hologram of a 2.5 µm polystyrene particle measured experimentally
with the setup detailed in the section 4.5. b) Background obtained by taking the median
value of an image time series. c) Normalized hologram given by dividing a) by b). d)
Result of the fit of c) using Eq. (4.3.4), from which the particle is found to be at a height
z = 14.77 µm. e) Comparison of the normalized radial intensities, obtained experimentally
from c) and theoretically from d). ¥

4.3.1 Hologram dependence on the particle’s characteristics

As we can see with the Eq. (4.3.5), the in-line holograms vary with the position, radius

and optical index of the particle. For in-line holograms, as both incident and scattered

field are collinear, the x and y positions of the particle are given by the center of the

hologram. Thus, it is possible to track the motion of a colloid only in two dimensions by

using algorithms such as the Hough transforms to find the center. As a side note, in that

case, it would be optimal to place the particle just above the focal plane to have an Airy

disk-like hologram, as shown in Fig. 4.3.8 for a = 2.5 µm and z = 5 µm.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/lorenz_mie_fit_demo/demo_fit.ipynb
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Figure 4.3.2: Hologram intensity map in the (r, z)-plan, calculated (see. Eq. (4.3.4)) with
a wavelength λ = 532 nm for a particle of radius a = 1.5 µm and optical index n = 1.59. ¥

In order to gain some insights on how the holograms vary with the various parameters,

one can compute theoretical (see. Eq. (4.3.4)) holograms for particles of different sizes

and heights. We start by considering a particle of radius a = 1.5 µm, and optical index

np = 1.59 as shown in Fig. 4.3.2. In this case, one can observe that as the distance z

between the particle and the focal plane increases, the hologram’s rings get wider.

Additionally, this thickening of the rings can also be observed in the Fig. 4.3.6, where

hologram intensity profiles are plotted as a function of the height z both theoretically and

experimentally for a polystyrene colloidal particle of radius a = 1.5 µm, and for different

couples of parameters in Fig. 4.3.8.

Also, we note that if z is not large enough compared to the radius of the particle, the

center of a hologram can be so bright that the rings could not be seen if the camera does

not have a large enough dynamic range. Thus, for having an optimal condition for the

fits, one should take care of defocusing enough the objective lens to have z � a.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb
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Figure 4.3.3: Hologram intensity map in the (r, a)-plan, calculated (see. Eq. (4.3.4))
with a wavelength λ = 532 nm for a particle of optical index n = 1.59, and a distance
z = 15 µm between the particle center and the focal plane of the objective lens. ¥

0 2 4 6 8 10 12 14

radial distance (µm)

100

9.992× 10−1

9.994× 10−1

9.996× 10−1

9.998× 10−1

1.0002× 100

1.0004× 100

1.0006× 100

1.0008× 100

I
/I

0 a = 0.02 µm

a = 0.05 µm

a = 0.06 µm

a = 0.07 µm

Figure 4.3.4: Radial intensity profile for particle radius a << λ, and an optical index
np = 1.59 with a distance z = 15 µm between the particle center and the focal plane of
the objective lens, and for a wavelength λ = 532 nm. ¥

We can now look at the holograms variation with respect to the radius of the particle as

shown in Fig.4.3.3 for a particle of optical index n = 1.59 and at a distance z = 15 µm

for a wavelength λ = 532 nm. One can observe that for small particles compared to the

wavelength, i.e. a� λ, we do not observe the rings. This is due to the fact that for the

small particles, the scattering can be approximated using the Rayleigh theory in which

the scattering is isotropic. Thus, the variation of intensity around I0 will be smaller for

smaller particles.

Also, in this small-particle regime, the particle size does not affect the general shape of

the hologram but just its intensity as shown in Fig.4.3.4, for particles of radii between

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb
https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb
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a = 0.02 µm and a = 0.07 µm, and for a wavelength λ = 532 nm.

Additionally, since the signal-to-noise ratio is lower than for larger particles, it is less

precise to characterize small colloids compared to the wavelength.

As the particle gets bigger, the scattering becomes anisotropic and is mostly oriented

towards the incident plane-wave direction. This effect leads to an increase of the amplitude

I/I0 of the rings, as one can see in Fig. 4.3.3. Thus, the signal-to-noise ratio is high enough

to easily discern the hologram on top of the noise as one can see on the experimental

picture of Fig. 4.3.1-a). One who wants to employ this method should thus use large

enough particles for the hologram intensity to be greater than the camera noise level.
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Figure 4.3.5: Hologram intensity map in the (r, a)-plan, calculated (see. Eq. (4.3.4))
with a wavelength λ = 532 nm, for a particle of optical index n = 1.59, and a distance
z = 15 µm between the particle center and the focal plane of the objective lens. ¥

Finally, one can check how the holograms are varying with the optical index of a particle.

In this case, it is not the particle’s optical index np which matters the most but the ratio

ζ = np/nm which can be found in the an and bn formulas, in Eqs. 4.3.6 and 4.3.7. Indeed,

for the scattering to happen, the optical index np of the colloid needs to be different from

the optical index nm of the surrounding medium. Additionally, the numerical solution of

the Lorenz-Mie framework needs precaution for np ' nm [55, 56]. In Fig.4.3.5, we can

observe holograms of a particle of radius a = 1.5 µm at fixed distance z = 15 µm between

the particle and the focal plane of the objective lens with a varying colloid’s optical index,

in water where nm = 1.33. In Fig.4.3.5, one can thus observe that for np ' nm we do not

see any holograms. Additionally, one can observe that the signal-to-noise ratio gradually

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb


4 Particle Characterization and Tracking Using Optical Interferences 34

increases as np becomes different from nm. One who wants to use this technique should

thus have nm different enough from np for the hologram intensity to be greater than the

camera noise level.

4.3.2 Summary on the Lorenz-Mie method

A given set of height, optical index and radius of a colloid thus gives unique holograms.

Conversely, this uniqueness of the holograms permits precise extraction of the position,

optical index and radius of a colloid. Holograms for different sets of parameters are shown

in Figs. 4.3.7 and 4.3.8. Additionally, the interested reader can use the Jupyter Notebook

on my Github repository in order to plot any hologram ¥.

Finally, the Lorenz-Mie framework provides the most versatile in-line holographic method.

Indeed, it permits tracking and characterizing unique particles even without a priori

knowledge on its characteristics. Besides, it is possible to write the Lorenz-Mie function
~fs for particular cases such as anisotropic particles [57, 58] or particle clusters [57, 59] to

name a few. Such possibilities pave the way to a lot of experimental studies. Additionally,

the method allows reaching a really high precision as the tenth of nanometers on the

position and radius as well as 10−3 on the optical index [51].

Unfortunately, the Lorenz-Mie framework suffers from a major drawback which is the time

needed to fit one image. For example, a 200 by 200 pixels image, of a 2.5 µm particle’s

hologram, can take up to two minutes to be fitted using a pure and straightforward Python

algorithm. A lot of work has been done to permit faster tracking, such as random-subset

fitting [60], GPU (graphical processing units) acceleration, machine learning [61, 62] and

deep neural networks [63].

https://github.com/eXpensia/Ma-these/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb
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Figure 4.3.6: Hologram intensity map in the (r, z)-plan, calculated (see. Eq. (4.3.4)) with
a wavelength λ = 532 nm, for a particle of optical index n = 1.59, and radius a = 1.51 µm
using the experimental setup presented in the section 4.5. On the right, the corresponding
theoretical intensity using the result of each individual hologram’s fit to Eq. (4.3.5).
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Figure 4.3.7: Holograms calculated (see. Eq. (4.3.4)) with a wavelength λ = 532 nm, for
different set of parameters (a, np), and for a distance z = 15 µm between the particle
center and the focal plane of the objective lens. ¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb
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Figure 4.3.8: Holograms calculated (see. Eq. (4.3.4)) with a wavelength λ = 532 nm, for
different set of parameters (a, z), and for an optical index np = 1.59. ¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/holo_size_exemple/holosize_variation.ipynb


4 Particle Characterization and Tracking Using Optical Interferences 38

4.4 Rayleigh-Sommerfeld back propagation

Rayleigh-Sommerfeld back propagation [64] works on the same principle as the Lorenz-

Mie scattering but assumes small scatterers, and, a low difference of optical indices, such

that:

|ζ − 1| << 1 and ka|ζ − 1| << 1 . (4.4.1)

In this case, at the focal plane, the intensity of the scattered field is smaller than the

intensity of the incident field, hence, the term | ~Es|2 can be ignored. Thus, the Eq. (4.3.4)

can be rewritten as:

I(~r)

I0(~r)
= 1 + 2<

(
Es(~r, 0)

E0(~r)

)
. (4.4.2)

If one can retrieve the scattered field completely from an image, it is possible to reconstruct

it above the focal plane by convolution using the Rayleigh-Sommerfeld propagator [65]:

h−z(~r) =
1

2π

∂

∂z

eikR

R
, (4.4.3)

where R2 = r2 + z2 and the sign convention on the propagator indicates that the particle

is above the focal plane. Using this propagator we have:

Es(~r, z) = Ez(~r, 0)⊗ h−z(~r) . (4.4.4)

By using the convolution theorem [65–68] and supposing a uniform illumination, one can

approximately reconstruct the scattered field at height z as:

Es(~r, z) ≈ eikz

4π2

∫ ∞

−∞
B(~q)H(~q,−z)ei~q·~rd2q , (4.4.5)

where B(~q) is the Fourier transform of I/I0 and where:

H(~q,−z) = eiz
√
k2−q2

. (4.4.6)
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Finally, using Eq. (4.4.5) one can reconstruct the scattered field and intensity since I(~r) =

|Es(~r)|2, as shown in Fig.4.4.1. Moreover, by finding the position where we have an

inversion of the center from bright to dark in Fig.4.4.1, we measure the position of the

particle. These equations are way less computationally expensive than Eq. (4.3.5). Thus

tracking can be faster.

Additionally, as Eq. (4.4.5) takes only into account the intensity of the image, this method

does not require any information on the particle and number of particles. As a matter of

fact, to write Eq. (4.4.5), one just needs to assume that we have spherical colloids. Thus,

this method is powerful to reconstruct the 3D position of a lot of particles or clusters.

However, the Rayleigh-Sommerfeld back propagation suffers from being less precise of

the presented methods and we cannot use it to characterize the particles generating the

holograms.

4.4.1 Numerical Rayleigh-Sommerfeld back propagation

The holopy Python module provides a set of methods that permit implementing the

Rayleigh-Sommerfeld back propagation. Given the hologram variable containing all the

needed metadata about the hologram such as the pixel size, medium index nn, illumination

wavelength λ. Then, one can use the propagate method to back propagate a hologram

over a set zstack of height using the following Python snippet.

1 import holopy as hp

2 import numpy as np

3

4 zstack = np.linspace(0, 20, 11)

5 rec_vol = hp.propagate(holo, zstack)

Note that using the propagate function, each propagation is done by performing a con-

volution of the reference hologram over the distance to be propagated. However, better

reconstruction can be obtained iteratively by propagating holograms over several short

distances. The latter method is called Cascaded Free Space Propagation, and is partic-

ularly useful when the reconstructions have fine features or when propagating over large

distances [69]. It can be done by specifying the argument cfsp to the propagate method.

For example, to change the source of the propagation every three steps, one can use

hp.propagate(holo, zstack, cfsp=3).
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Figure 4.4.1: On the left: the original hologram on the top and propagated along 15 µm
on the bottom. On the right: reconstruction using Eq. (4.4.5) of the scattered intensity
by a single colloidal sphere of radius a = 0.1 µm, with optical index np = 1.59 in water
whose index is nm = 1.59, and for a height of 15 µm. ¥

4.5 The experimental setup

The experimental setup I developed during my PhD can be employed to implement both

the Lorenz-Mie and Rayleigh-Sommerfeld back propagation methods. In order to ob-

serve the holograms, we use a homemade inverted microscope as shown in Fig.4.5.1 and

schematized in Fig.4.5.2. This microscope is built using a ThorLabs cage system. Using

the microscope, we observe the holograms resulting from the interactions between a laser

source and the beads present in a sample.

A sample consists of a parallelepipedic chamber (1.5 cm × 1.5 cm × 150 µm), made from

two glass covers, a parafilm spacer, and sealed with vacuum grease, containing a dilute

suspension of spherical polystyrene beads. Sealing the sample with vacuum grease permits

to drastically decrease evaporation, which reduces the possible evaporation driven-flow in

the sample.

We used 3 different colloidal sizes, of nominal radii 0.56 µm, 1.5 µm and 2.5 µm, at

room temperature T , in distilled water (type 1, MilliQ device) of dynamic shear viscosity

η = 1 mPa.s. The particles are made of polystyrene of density ρ = 1050 kg.m−3 and

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/Back-propagation/Back-propagation.ipynb
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optical index np = 1.598 at a wavelength λ = 532 nm. The particle we mostly used are

the Polybead® 17134-15 1.5 µm microsphere that are packaged in aqueous suspension

with minimal surfactant. These particles contain a slight anionic charge from sulfate ester.

Thus, the surface charge density of the colloids remain constant as a function of the pH,

this would not be the case if the particle surface charge were due to carboxyl head groups

[70].

The sample is illuminated by a collimated laser beam with a 532 nm wavelength (Laser

diode CPS532, spectral width smaller than the nanometer). The laser used delivers a

power of 4 mW and has a waist of 3.5 mm. Since the laser is collimated, it has a near-

zero exentricity so that it can be seen as a plane wave. As presented in the section 4.3,

the light scattered, by one colloidal particle at a given time t, interferes with the incident

beam.

An oil-immersion objective lens (Olympus, plan apochromat, x60 magnification, 1.30

numerical aperture) collects the resulting instantaneous interference pattern, and relays

it to a camera (Basler acA1920-155um) with a 51.6 nm/pixel resolution (see Fig.4.3.1-a)).

The exposure timeτexpo of the camera is set to be smaller than 3 ms to avoid motion-

induced blurring of the image. As a general rule, the particle should not diffuse more

than the pixel size during that time, such that
√

2Dτexpo < 51.6 nm.

4.6 Optical forces

As we illuminate particles with the laser light, it is important to know if the optical forces

that arise from the interactions between the light and the particle needs to be taken into

account. When a plane wave is incident on a sphere, it scatters and absorbs light. This

process depends both on the light wavelength λ and on the sphere properties, its radius

a and refractive index np = nr − jni. For polystyrene ni � 1, as shown in Fig.4.6.1

such that we neglect it in the Lorenz-Mie framework. However, computing the optical

forces, and hence, the light quantity which is absorbed requires ni, so we consider it in

this section. Additionally, in the Mie theory, the particle is characterized by the size

parameter x̃ = 2πa/λ. The optical force Fopt is given by [46]

Fopt =
Irnmπa

2

c
(Qext − gQsca) , (4.6.1)

where Ir is the irradiance in W.m−2 on the sphere, c is the speed of light in vacuum,

g = πa2 the sphere cross section and Qext and Qsca being respectively the extinction and
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Sample

Laser
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Figure 4.5.1: Photo of the custom-built microscope developed in my thesis. It is composed
of a Thorlabs cage system. The camera used is a Basler acA1920-155um. We use a x60
magnification and 1.30 numerical aperture oil-immersion objective lens. The light source
is a collimated λ = 521 nm wavelength laser.

scattering efficiency given by:

Qext =
2

k2a2
=
∞∑

n=1

(2n+ 1)(|an|2 + |bn|2) , (4.6.2)

and,

Qext =
2

k2a2
=
∞∑

n=1

(2n+ 1)<(an + bn) , (4.6.3)

where the an and bn coefficient are given by the Eqs.4.3.6 and 4.3.7 respectively.
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Figure 4.5.2: Schematic of the experimental setup. A laser plane wave of intensity I0

illuminates the chamber containing a dilute suspension of microspheres in water. The
light scattered by a particle interferes with the incident beam onto the focal plane of an
objective lens, which magnifies the interference patten and relays it to a camera.
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Figure 4.6.1: Real (left axis) and imaginary (right axis) part of the refractive index of
polystyrene as a function of the incident wavelength. Data obtained from [71]. ¥

To compute the optical force I personally employ the miepython python’s module ¥ and

retrieving the optical index data from the refractiveindex.info website, using the following

Python snippet.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/Calcul_force_optique/Calcul%20optical%20force.ipynb
https://github.com/scottprahl/miepython/
https://refractiveindex.info/?shelf=organic&book=polystyren&page=Zhang
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1 import miepython as mp

2 import numpy as np

3

4 # Download the data on the refractiveindex.info website

5 poly = np.genfromtxt(

6 r"https://refractiveindex.info/tmp/data/organic/(C8H8)n%20-%20polystyren/Zhang.txt",

7 delimiter="\t",

8 )

9 N = len(poly) // 2

10 poly_lam = poly[1:N, 0] # wavelength

11 poly_nre = poly[1:N, 1] # real part

12 poly_nim = poly[N + 1 :, 1] # imaginary part

13

14 x = 2 * np.pi * a / poly_lam

15 n = poly_nre - 1.0j * poly_nim

16 qext, qsca, qback, g = mp.mie(n, x) # compute the efficiencies

17 E0 = 4.5e-3 / (np.pi * 1.75e-3 ** 2) # compute the irradience

18 c = 299792458 / 1.33 # light velocity in the medium

19

20 F = E0 * np.pi * r0 ** 2 * (qext - g * qsca) / c # compute the optical force
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Figure 4.6.2: Optical force Fopt (see Eq. (4.6.1)) exerted on a spherical particle of radius
a by a plane wave of wavelength λ = 532 nm, and of irradiance Ir = 467.7 W.m−2. The
optical force is calculated employing the miepython python’s module ¥ and the refractive
index of polystyrene [71]. ¥

Using Python, one can thus compute the optical force Fopt as a function of the particle

radius. As shown in Fig. 4.6.2 Fopt is of the order of 10−2 fN. By comparing this result

with the gravitational force:

https://github.com/scottprahl/miepython/
https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/Calcul_force_optique/Calcul%20optical%20force.ipynb
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Fg =
4

3
π(ρm − ρp)g , (4.6.4)

we found that for a particle of radius a = 0.5 µm, Fg = −0.3 fN, while for a = 1.5 µm,

Fg = −7 fN. Thus, we can conclude that Fopt � Fg for the range of radii we used. Hence,

in the following we neglect the optical forces as they are lower than the other external

forces acting on the colloids. However, experiments with a controlled irradiance (up to

106 W.cm−2 ) were conducted in [20] and the authors were able to measure the optical

forces from the motion statistics. Additionally, in Fig. 4.6.2 we observe resonances, these

happen when the denominator of the coefficients an or bn (see Eqs. (4.3.6) and (4.3.7))

goes to zero, this happens when 2a ≈ λ/inp, with i and integer. Moreover, as the same

happen while varying the wavelength, it is possible to use a broad band light to measure

the position of the resonances. This kind of measurement enable a precise measurement

of the particle radius and optical index [72, 73] and will be implemented by the team in

the near future.

4.7 The experimental procedure

We implement here the Lorenz-Mie fitting method, since it permits the characterization

of single particles. Indeed, since we are interested in fine effects near surfaces, we require

to know perfectly the radius of the tracked particle. This feature also makes our whole

procedure calibration-free, as we do not need to assume any physical properties. An

example of the procedure that permits tracking a single-particle trajectory is provided in

appendix A.2. In the following, the different steps of the procedure are described.

4.7.1 Recording the holograms

Since we use a Basler camera, we use the provided computer program (Pylon) by the

manufacturer in order to record the holograms. The software permits adjusting the pa-

rameters of the camera, such as the region of interest (ROI),number of frames per second

(fps) or the opturation time to name a few. Also, video can be recorded as a time series

of images, in AVI or MP4 formats. AVI files or times series are a great way to save the

video since it is lossless. However, in general, we use a ROI of 1000×1000 pixels to record

the particle during a long-enough time.

Additionally, since the recording is done using 8 bits per pixel (or 256 gray levels), an
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image of 1000×1000 pixels needs a disk space of 1 MB 2. One can see that image sequences

and AVI files are not suitable for our case because i) at 100 fps one would need 108 GB

to store a 30-minute film, which would lead to several TB of data per experiment which

is not manageable; ii) it would require a sequential writing speed of 60 MB/s, which is

just below the limit of the better Hard Drive Disks. iii) AVI files are bound to 2 GB

maximum thus dramatically reducing the length of the experiments.

To conclude, for all of these reasons, we chose to use the MP4 file format (MPEG-4

encoding) for the video recording. Using the lowest compression, we did not observe any

impact on the fitting process due to quality loss. Finally, a video of 30 minutes has an

approximate size of 3 GB.

4.7.2 Fitting the holograms

Once the holograms are recorded, we fit all of the images to retrieve the trajectory of the

particle. To do so, we chose to use the pylorenzmie module developed by the Grier’s

lab at New York University. Although this module presents a lot of capabilities, it is not

adapted to MP4 input. Thus, I developed a wrapper3 around pylorenzmie that I called

Wraplorenzmie which can be found on my Github repository ¥.

This wrapper permits to directly load the MP4 files, compute the background and choose

if what parameters should be fitted. Also, it manages the process fitting a time series of

images by using results of previous image as initial fit parameters.

However, as presented in the section 4.3, the main drawback is the time to fit an image.

Indeed, using a Python algorithm, one needs 30 seconds to fit images of 100× 100 pixels

and a few minutes for a 500 × 500 pixels hologram. We can directly see a bottleneck, if

one wants to track one trajectory made of 100 000 images. In such case, one would need

to typically 70 days for a series of images that needs only a few minutes to be recorded

experimentally.

When I started my PhD, two groups, the Grier’s lab and the Manoharan’s lab, had

2 An uppercase B denotes Byte which is equivalent to 8 bits denoted by b, i.e. 1 B = 8 b. For storage
indications, Bytes are generally used, since historically a set of 8 bits encodes a single text character,
and are for this reason the smallest addressable memory units in most computer architectures. As an
example, in binary “LOMA” would be encoded by “01001100 01001111 01001101 01000001.”

3 A wrapper is a code that encapsulates or “wraps” another code to make it easier to use. For example,
it is particularly useful to adapt a program to a particular type of input data. Creating wrapping
function is commonly done by developers. In the end, wrapping adds some abstraction and readability
to the source codes.

https://github.com/eXpensia/wraplorenzmie
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already created Python packages, respectively Pylorenzmie and Holopy, in order to inverse

holograms. They had introduced ways to only fit a set of randomly chosen pixels, and

demonstrated that taking only 1 % of the image pixels, could lead to similar precision

thus improving considerably the fit’s execution time [60].

Unfortunately, even if fitting a random subset of pixels is faster, it leads to a few images

per second, and is still too long for the amount of data we want to have. This part of my

thesis is certainly the one where I spent the longest time, and I learned a lot about code

optimization and computer cluster usage.

In the middle of my thesis, pylorenzmie got a new commit4 on the authors’ Github

repository which was saying that the authors succeeded in using GPU acceleration with

CUDA5. This was not an easy task since they needed to reconstruct the Bessel functions

in an understandable way for the GPU. Fortunately, it is possible to do so by using

continued fractions [56]. This appreciable update permits fitting whole images with a

speed improvement of 20 fps. At this speed, we precisely extract the three dimensional

position of the particle, as well as the radius and optical index.

As a remark, the fits are done by solving a least-squares problem using the Levenberg-

Marquardt algorithm [74]. This algorithm is largely used in curve-fitting applications due

to its capabilities to find a minimum even by starting far from it. As mentioned, it is

also possible to use various models of Machine Learning or Deep Learning to do the fits

[63]. However, since we can write analytically the holograms, the Deep Learning’s models

cannot be more accurate than a standard least-square-fitting process. Deep Learning,

however, could be a great option is one wanted to prioritize the computation time over

the fit’s precision.

Finally, to have a more reliable and fast-tracking, we begin by fitting the first 10 000 images

with ~rp, a and np as free parameters. Using the results of this fit, we can characterize the

physical properties of the tracked colloid with high precision. Then, using these results

we can then fit image with only the position ~rp as a free parameter.

4 A commit is an update of the files on a Git repository.
5 CUDA is the acronym of Compute Unified Device Architecture. It is a parallel computing platform,

and programming model made to permit an easier use of the GPU for general purposes. CUDA is
developed by NVIDIA since 2012, thus all recent NVIDIA’s GPUs are CUDA-enable. It is possible to
use CUDA with every language as long as a library has been developed, such as cupy for Python ¥.

https://github.com/cupy/cupy
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4.7.3 Radius and optical index characterization

Using 10 000 measurements of a and np one can do a 2D histogram, as presented in

Fig.4.7.1 here smoothed using a Gaussian Kernel Density Estimator6. Doing so, we de-

termine that the radius of the observed particle is a = 1.514 ± 0.003 µm and its optical

index is np = 1.585± 0.002.

Finally, as explain above, using this measurement of the radius and optical index, we then

fit the whole video by removing them from the free parameters. Doing so, we measure the

3D trajectory of the particle as shown in Fig. 4.7.2 in three dimensions for the particle

previously characterized.
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Figure 4.7.1: 2D Probability density function of the measurements of the optical index
np and radius a. Black lines indicate iso-probability. Taking the 10% top probability, we
measure np = 1.585± 0.002 and a = 1.514± 0.003 µm. ¥

6 Kernel Density Estimator is a non-parametric method permitting the estimation of probability density
function of random variable. This method is a generalization of histograms. The histogram’s rectangle
are replaced by Gaussian that are added up to have a smooth estimation of the PDF.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/r_n_measurements/mesure%20n%20r.ipynb
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Figure 4.7.2: 3D plot of an experimental trajectory measured in water for a particle of
optical index np = 1.585 and radius a = 1.514 µm. ¥

4.7.4 Test case scenario: a sedimenting particle

In order to test the Lorenz-Mie framework, we consider a well-known problem: a sed-

imenting particle. We study a polystyrene particle of commercial radius a = 1.5 µm

sedimenting in water. The particle tracking is done over a minute using a frame rate of

100 fps. The time over which we can track the colloid is bound by the terminal sedimen-

tation velocity vsed. Indeed, the particle, should not be too far from the imaging plane,

otherwise we do not capture enough light intensity, and not too close as discussed in sec-

tion 4.3. To ensure that we can correctly record and fit the holograms, we experimentally

find that with our experimental setup the particle height z should be in a working range

of 10 to 30 µm. This working range could be greatly increased by using high-sensitivity

cameras. The trajectory of the sedimenting colloid is shown Fig. 4.7.3, moreover, we

measure its radius ased = 1.45 ± 0.03 µm and optical index nsed = 1.59± 0.01 .

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter2/images/trajectory/graph_ploting.ipynb
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Figure 4.7.3: Experimental trajectory of a polystyrene particle of radius a = 1.5µm
sedimenting in water, along the z-axis — i.e. the axis where the gravity acts.

The terminal sedimentation velocity can be found by equaling the drag force (i.e. the

Stokes’s drag) to the gravitational force. Doing so, the terminal velocity of a sedimenting

colloid writes:

vsed =
2

9

∆ρa2g

η
, (4.7.1)

where ∆ρ is the density difference between the fluid and colloid density, and g the grav-

itational acceleration. For the tracked particle, we calculate vsed = 229 nm.s−1 using the

radius measured from the holograms and tabulated ∆ρ = 50 for polystyrene in water. To

measure the latter velocity from the trajectory, we use the MSD which writes by taking

into account the sedimentation:

〈∆z2〉 = 2D0∆t+ v2
sed∆t2 + 2ξ2 , (4.7.2)

where D0 is the bulk diffusion coefficient (see Eq. (3.2.12)) and ξ being the noise-level due

to the statistical uncertainty on the position measurement. Using the radius measured

from the Lorenz-Mie method, we find for the observed colloid D0 = 146 µm2.ms−1. The
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experimental MSD of the sedimenting colloid is shown in Fig. 4.7.4. Once the MSD is

computed, we measure both the diffusion coefficient D0 and the terminal sedimentation

velocity vsed by fitting the experimental MSD to Eq. 4.7.2. Doing so, we experimentally

measure D0 = 144±1 µm2.ms−1 and vsed = 222±1 nm.s−1, corresponding to errors of 1%

and 3%, respectively. From the MSD we also evaluate the statistical error on the particle

position measurement along the z-axis to ξ = 25 nm. This uncertainty can be reduced

by using a larger images and more sensitive cameras. However, for the study of confined

particle where the range of motion is smaller, we optimized the position of the focal

plane to reduce the uncertainty on the position measurement. Finally, using Eq. 4.7.1

we can calculate the density difference ∆ρ = 48.4 ± 0.2 kg.m−3. The discrepancy from

the tabulated ∆ρ = 50 kg.m−3 for polystyrene in water might be attributed to rugosities

and/or porosity. Nonetheless, with the small measured deviations from the theory, we

correctly showed the viability of the Lorenz-Mie framework to study Brownian dynamics.
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Figure 4.7.4: Measured mean-squared displacement as a function of the time increment
∆t, along the z-axis. The solid line is the best fit to Eq. (4.7.2), with D0 = 144 ±
1 µm2.ms−1, vsed = 222± 1 nm.s−1 and ξ = 25 nm.

4.7.5 Conclusion

In this chapter, we have covered different techniques that enable the tracking of individual

microparticles. Each method has pros and cons. We decided to employ the Lorenz-Mie
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framework since it requires no calibration. Then, we have shown how we implement it

in practice, from the experimental setup to the numerical treatment. An example of the

Jupyter notebooks employed for the tracking can be found in appendix A.2. We have

discussed how to have fast and accurate fits to retrieve the particle trajectory. To do so,

we first characterize the particle fully, namely, its radius and optical index, before tracking

a whole video.

Now that we have an understanding on the tracking of single colloids, we can use the

measured trajectories in order to understand how the Brownian motion is affected in

various configurations.
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5 Stochastic Inference of Surface-Induced Effects Us-

ing Brownian Motion

5.1 Confined Brownian motion theory

By observing the experimental trajectory along the z-axis of a particle of 1.5 µm radius

as shown in Fig. 5.1.1, one can notice that the particle’s height does not get higher

than approximately 4 µm. Indeed, due to gravity, a colloid is confined near the surface.

This confinement induces near-wall effects, such as hindered mobility and electrostatic

interactions.

In the first part of this chapter, I will detail the theory of confined Brownian motion

and how to numerically simulate it. In a second part, I will present how to analyze

experimental data. In particular, I will detail a multi-fitting procedure that enables

thermal-noise-limited inference of diffusion coefficients spatially resolved at the nanoscale,

equilibrium potentials, and forces at the femtonewton resolution.
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Figure 5.1.1: Experimental trajectory of a polystyrene particle of radius a = 1.5 µm in
water near a glass wall (z = 0) along the z-axis — i.e perpendicular to the wall. ¥

5.1.1 Gravitational potential

The density ρp of an observed colloid is different from the medium density ρm. In our

experiment, we used water whose density is ρm = 1000 kg.m−3. Thus, the particles are

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/traj_z/graph_ploting.ipynb
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subject to gravitational potential given by:

Ug(z) = ∆mgz =
4

3
πa3g∆ρz , (5.1.1)

where ∆m is the difference between the mass of the particle and that of a fluid sphere

of the same size, ∆ρ = ρm − ρp is the corresponding density difference, and g is the

gravitational acceleration. By invoking the definition of the Boltzmann length:

`B =
kBT

(4/3)πa3∆ρg
, (5.1.2)

one can rewrite Eq. (5.1.1) as:

Ug(z) =
kBT

`B

z . (5.1.3)

The Boltzmann length `B corresponds to the spatial extent over which the change of

gravitational energy equals thermal energy. This distance was first measured by Perrin

[2]. To do so, using a microscope he counted the number of colloidal particles as a

function of the height in the sample. Then, he reconstructed the concentration profile

of the colloidal suspension that exponentially decays as e−z/`B . As an example, for a

polystyrene particle of radius a = 1.5 µm in water, one has `B = 580 nm.

For systems with `B � h, where h is the vertical thickness of the sample, one can consider

that the particle does not feel gravity. This is particularly the case when the densities

of the colloids and the fluid are equal. In this particular case, one has `B = ∞. Thus,

density matching can be a way to do gravity-free experiments. In our experiment, we

want to measure confinement-induced effects. Therefore, we need gravity for particles

to be driven towards the substrate. As particles get larger or denser, `B decreases and

particles are, on average, closer to the substrate.

5.1.2 Sphere-wall interactions

As we have seen, external forces such as gravity act on the particles. As Brownian particles

are close to a wall, we can also expect some interactions between the particles and the

wall. In our case, we suppose that the Brownian particles do not interact with each other,
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as we consider dilute solutions only. Indeed, the studied particles are at least 50 µm apart

from each other, which corresponds to 10 times their size for the largest beads.

To describe the interaction between a Brownian particle and the wall, we use the DLVO

theory, named after Derjaguin, Landau, Verwey, and Overbeek [75]. This theory was

first developed to describe the interactions between colloids, and explains the stability of

colloidal suspensions. It involves two force components; the Hamaker force which arises

from van der Waals interactions between the molecules of the two surfaces and a screened

electrostatic force due to a double layer of charges formed near each surface, and involving

the ions present in the solution.

5.1.2.1 Double layer interactions

When a surface is immersed in water, it usually acquire charges [75] due to a high water

dielectric constant ε = ε0εr, where ε0 is the vacuum permittivity and εr the medium

relative permittivity; for water εr = 80. Commonly, surface charging is done through the

ionization of surface groups7, or from the binding of ions from the solution — for example,

adsorption of −OH− onto the water-air interface that charges it negatively. In the bulk,

a fluid is electrically neutral; thus the fluid contains as equal number of ions of opposite

charges (including the proper stoichiometry due to ionic valencies). However, when a

surface is negatively charged, the negative ions are repelled from it, while positive ions

are attracted towards it. Therefore, a double-layer charge distribution is formed near the

surface, as shown in Fig. 5.1.2. Experimentally, we use glass slides and polystyrene beads

that are both negatively charged in water leading to a repulsive interaction between them.

This repulsive force prevents the colloids from sticking together, or to the substrate’s

surface.

The DLVO theory states that the electrostatic potential Ψ(~r) generated by an ion of one

given species i at a distance ~r satisfies the Poisson equation [75]:

∇2Ψ(~r) = − 1

εrε0
ρe(~r) , (5.1.4)

with:

7 For example, the dissociation of protons from surface carboxylic groups [75] (−COOH → -COO− +
H+) which charges negatively the surface.
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Figure 5.1.2: A colloid diffusing near a wall. Both the wall and colloid surfaces charge
negatively. As a consequence, a layer of positively-charged ions is attracted towards each
surface, forming a double layer.

ρe(~r) = e
∑

i

zici(~r) , (5.1.5)

the local charge density, where e is the elementary charge, and where the index i denotes

an ionic species of valence zi and local ionic concentration ci (number density). If the

solution is at thermodynamic equilibrium, the local ionic density is given by a Gibbs-

Boltzmann distribution, as:

ci(~r) = c0
i exp

(−zieΨ(~r)

kBT

)
, (5.1.6)

where c0
i is the bulk concentration (number density) of the ionic species i. By combining

Eqs. (5.1.4), (5.1.5) and (5.1.6), one obtains the Poisson-Boltzmann equation:

∇2Ψ(~r) +
∑

i

ziec
0
i

ε0εr
exp

(
−zieΨ(~r)

kBT

)
= 0 . (5.1.7)
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Since Eq. (5.1.7) is nonlinear, it is typically solved numerically. However, for some simple

configurations such as uniformly-charged plane or sphere it can be solved analytically.

To simplify, let us consider that we have a monovalent electrolyte, meaning that the

electrolyte is composed of two ions of valencies both equal to 1 — Na+ Cl− for example

— and c0
i is equal to the bulk electrolytic concentration c0

s. In such a case, Eq. (5.1.7)

simplifies and becomes:

∇2Ψ(~r) +
ec0
s

ε0εr

[
exp

(−eΨ(~r)

kBT

)
− exp

(
+eΨ(~r)

kBT

)]
= 0

∇2Ψ(~r) + 2
ec0
s

ε0εr
sinh

(
eΨ(~r)

kBT

)
= 0 .

(5.1.8)

Another situation leading to analytical results, is when Ψ is small enough such that

eΨ� kBT , which is generally the case when using dilute enough solutions, it is possible,

through a Taylor expansion at first order to write:

exp

(
−zieΨ(~r)

kBT

)
' 1− zieΨ(~r)

kBT
. (5.1.9)

In such case, Eq. (5.1.7) becomes:

∇2Ψ(~r) +
∑

i

ziec
0
i

ε0εr

(
1− zieΨ(~r)

kBT

)
= 0 . (5.1.10)

In addition, a fluid is electrically neutral. Therefore,
∑

i zic
0
i = 0. Thus, one can simplify

Eq. (5.1.10) to get the Debye-Hückel equation:

∇2Ψ(~r) =

[∑

i

z2
i e

2c0
i

ε0εrkBT

]
Ψ(~r) . (5.1.11)

One can identify the term between brackets as the inverse of a length squared. We thus

define the Debye length as:

`D =

√∑

i

ε0εrkBT

z2
i e

2c0
i

, (5.1.12)
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which is the characteristic ion-induced screening length of the electrostatic interactions,

as we will see below. For a monovalent electrolyte, at 25 °C, the Debye length of an

aqueous solution is:

`D =

√
2ε0εrkBT

c0
se

2
=

0.304√
C

nm , (5.1.13)

with C the value of the molar concentration in mol.L−1:

C =
c0

s

NA

10−3 . (5.1.14)

For example, for NaCl salt in water, `D ≈ 100 nm for a concentration C = [NaCl] =

9.2 µmol.L−1 and `D ≈ 10 nm for a concentration [NaCl] = 9.2 mmol.L−1.

Finally, combining Eqs. (5.1.11) and (5.1.12), the Debye-Hückel equation reads:

∇2Ψ(~r) = κ2Ψ(~r) , (5.1.15)

with κ = 1/`D. Using the latter, one can compute the electrostatic potential around a

sphere immersed in an ionic solution. Let us consider a sphere of radius a and charge

Qe, i.e. a charge density σ = Qe/(4πa2) , Q being the number of charges on the surface.

Since the system has a spherical symmetry, one has Ψ(~r) = Ψ(r) with r = |~r|. Using the

Laplacian operator ∇2 in spherical coordinates, Eq. (5.1.15) becomes:

1

r2

[
∂

∂r

(
r2∂Ψ(r)

∂r

)]
= κ2Ψ(r) , (5.1.16)

which has a general solution:

Ψ(r) = C1
exp(κr)

r
+ C2

exp(−κr)
r

. (5.1.17)

The electrostatic potential vanishes at infinity such that C1 = 0. Therefore, the electro-

static potential (and thus the electrostatic energy potential) takes the form of a Yukawa

potential:
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Ψ(r) = C2
exp(−κr)

r
. (5.1.18)

Additionally, invoking the Gauss theorem, at the surface of the charged sphere, the elec-

trostatic potential satisfies:

∂Ψ(r)

∂r

∣∣∣∣
r=a

=
−Qe

4πε0εra2
=
−σ
ε0εr

, (5.1.19)

where we introduced the surface density of charges σ. By applying the latter boundary

condition to Eq. (5.1.18), we find:

Ψ(r) =
σa2

ε0εr

exp(κa)

1 + κa

exp(−κr)
r

. (5.1.20)

This solution can be used to determine the electrostatic potential between two spheres of

radii a1 and a2, and surface charge densities σ1 and σ2, respectively. Supposing that the

presence of a second sphere does not modify the distribution of ions in the double layer

of the other sphere, one can use the superposition approximation to obtain the potential

U ss
elec(z) between the two spheres [76]:

U ss
elec(z) =

4π

ε0εr

(
σ1a

2
1

1 + κa1

)(
σ2a

2
2

1 + κa2

)
exp(−κz)

a1 + a2 + z
, (5.1.21)

with z the gap between the two colloids. From the latter equation, it is possible to write

the electrostatic interaction energy Uelec between a planar wall of charge density σw and a

spherical colloid of radius a and surface charge density σ, by setting one of the two radii

to infinity. Doing so, one gets:

Uelec(z)

kBT
= Be

− z
`D , (5.1.22)

where:

B =
4π

kBTε0εr

(
σa2

1 + κa

)
σw

κ
. (5.1.23)

Let us note that, B is often written as [70]:
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B = 16εrε0a
kBT

e2
tanh

(
eφ

4kBT

)
tanh

(
eφw

4kBT

)
, (5.1.24)

where φ and φw are the Stern potentials of the sphere and wall surface, respectively.

Typical values for B range from 1 to 50. In our study, we will use B to characterize

the dimensionless magnitude of the electrostatic interaction. Indeed, it is complicated to

decouple σ and σw when the colloid and wall materials are different [70].

5.1.2.2 van der Waals interactions

Sphere

Wall

Liquid

Figure 5.1.3: A colloid of radius a is located at a distance z from the wall. The dielectric
constants of the sphere, wall and liquid are respectively ε1, ε2, and ε3.

In the DLVO theory, van der Waals interactions, after integration over all surfaces con-

tribute through a global Hamaker potential energy. This potential is short-ranged and

attractive, in our case.The interaction potential reads: [75]:

UvdW = −Aa
6z

(5.1.25)

where A is the nonretarded Hamaker constant. For our system, where the particle,

medium and wall are different media as schematize in Fig. 5.1.3, the Hamaker constant

is given by [75]:
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A =
3

4
kBT

(
ε1 − ε3
ε1 + ε3

)(
ε2 − ε3
ε2 + ε3

)
+

3h

4π

∫ ∞

ν1

(
ε1(jν)− ε3(jν)

ε1(jν) + ε3(jν)

)(
ε2(jν)− ε3(jν)

ε2(jν) + ε3(jν)

)
dν ,

(5.1.26)

where ε1, ε2 and ε3 are the static dielectric constants of the three media, ε1,2,3(jν) are the

dielectric constant at a imaginary frequency jν. The first term gives the zero-frequency

energy of the Van der Waals interaction and the second term the dispersion energy. In

the literature, we found for polystyrene colloids in water near a glass substrate A ≈ kBT .

Since A is positive, the interaction is attractive, moreover, we estimate that the van der

Waals forces play a role only within a few nanometers from the surface (z < 10 nm), as

commonly observed [20]. In our experiments, the Debye length `D (> 20 nm) is large

enough for the particles to avoid this region. Therefore, in the following, the van der

Waals interactions are neglected. It is possible to study the van der Waals interactions

with Brownian motion, provided that one adds enough salt to have `D ' 1 nm. However,

with such a short Debye length, all the colloids would stick to the surface and with each

other, as a result of van der Waals forces. Interestingly, we have experimentally observed

stuck particles. Further work on these events may lead to interesting insights about the

near-wall interactions. Nonetheless, in the case where A needs to be computed a special

attention [77].

5.1.2.3 Total potential and equilibrium distribution

If we combine the gravitational and electrostatic energy potentials the particles lie into a

total energy potential U(z), given by:

U(z) = Ug + Uelec . (5.1.27)

By combining Eqs. (5.1.3), (5.1.22) and (5.1.27), and adding the condition that a particle

cannot go inside the wall, one finally gets:

U(z)

kBT
=





B e
− z
`D +

z

`B

, for z > 0

+∞ , for z < 0
. (5.1.28)

From this total potential energy, one can then construct the Gibbs-Boltzmann distribution
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to write the equilibrium PDF of position Peq(z):

Peq(z) = A exp

(
−U(z)

kBT

)
, (5.1.29)

where A is a normalization constant such that
∫∞

0
Peq(z)dz = 1. Given an ensemble of

heights zi, one can compute Peq using the following Python function Peq, where the A

is computed using the np.trapz function. Examples of a theoretical energy potential

and associated PDF of position can be seen in Fig. 5.1.4 for `B = 500 nm, B = 4 and

`D = 50 nm.

1 import numpy as np

2

3 def _Peq(z):

4 if z <= 0:

5 return 0

6 else:

7 return np.exp(-(B * np.exp(-z / ld) + z / lb))

8

9

10 def Peq(z):

11 P = np.array([_Peq(zi) for zi in z])

12 return P / np.trapz(P,z)
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Figure 5.1.4: a) In orange potential energy Ug (see Eq. (5.1.3)) of a colloid with a
Boltzmann length `B = 500 nm. In blue, the electrostatic potential energy Uelec (see
Eq. (5.1.22)) is characterized by a dimensionless magnitude B = 4 and a Debye length
`D = 50 nm. The dashed line corresponds to the total potential U , see Eq. (5.1.27). b)
Corresponding Gibbs-Boltzmann equilibrium distribution of position calculated using the
energy potential of panel a). ¥

5.1.3 Local diffusion coefficient

As we have seen in Chapter 3, for a freely diffusing colloid in the bulk, the diffusion co-

efficient is given by Eq. (3.2.12) and is a constant. However, when a particle is confined

by a rigid wall, the diffusion is hindered. This means that the diffusion coefficient varies

with the particle-wall distance and becomes anisotropic. A seminal measurement of this

effect was done by Faucheux and Libchaber [13]. As we can see in Fig. 5.1.5, using a

microscope, they tracked colloids within a parallelepipedic chamber, and measured the

thickness-averaged diffusion coefficients for different values of the confinement parameter

γ = 〈z〉t/a, with 〈z〉t time-averaged particle-wall distance. As experiments reach equi-

librium, 〈z〉t is given by the Gibbs-Boltzmann distribution as 〈z〉t =
∫

dzPeq(z))z. We

observe that the diffusion coefficient parallel to the surface decreases as the particle gets

closer to the wall, and seems to saturate around 0.3D0 at low γ, with D0 the diffusion

coefficient in the bulk (see Eq. 5.1.33).

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/potential/potential_exemple.ipynb
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Figure 5.1.5: Figure extracted from [13]. On the left is the experimental setup. It is an
inverted microscope used in order to track micrometric particles of diameter 2R inside
a liquid cell of thickness t. On the right is the final result, where the authors measure
the diffusion parallel (i.e. along x or y) coefficient D‖ (see Eqs. (5.1.47) and (5.1.45)),
normalized by the bulk diffusion coefficient D0, as a function the confinement parameter
γ = 〈z〉t/a, with 〈z〉t time-averaged particle-wall distance.

To understand the reason for this hindered diffusion coefficient, let us start by writing the

diffusion coefficient D using the fluctuation dissipation theorem:

D =
1

γ
kBT , (5.1.30)

with the mobility defined as:

1

γ
=

∣∣∣∣
vsphere

Fdrag

∣∣∣∣ , (5.1.31)

where vsphere is the terminal velocity to an applied force Fdrag. For a spherical colloid of

radius a moving at a velocity vsphere, the drag force FB
drag is given by the Stokes’ law:

FB
drag = −cπηavsphere , (5.1.32)

where c is a constant that depends on the boundary conditions imposed at the surface
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of the colloid. Typically, one has c = 6 for a no-slip boundary conditions and c = 4

for a full-slip boundary conditions, such as for air bubbles, for example. Combining

Eqs. (5.1.30), (5.1.31) and (5.1.32) for a freely diffusing no-slip hard sphere in the bulk

we retrieve Eq. (3.2.12):

D = D0 =
kBT

6πηa
. (5.1.33)

The Stokes’ drag force can be computed by solving the Navier-Stokes equation:

ρ

[
∂~v

∂t
+ (~v · ∇~v)

]
+∇p = η∇2~v , (5.1.34)

and the continuity equation for incompressible fluids:

∇ · ~v = 0 , (5.1.35)

where ~v and p are respectively the velocity and pressure fields, and where ρ is the liquid

density. When the Reynolds number Re = ρavsphere/η � 1, the second inertial term is

negligibly small compared to the viscous term η∇2~v. In that case, and at long-enough

time for the first inertial term to be negligible, the Eq. (5.1.34) is simplified to the steady

Stokes equation:

∇p = η∇2~v . (5.1.36)

By solving Eqs. (5.1.35) and (5.1.36) with a no-slip boundary condition on the particle

surface and the field vanishing at infinity, one can calculate the velocity and the pressure

fields in the fluid. By integration of the pressure and viscous stress on the particle surface,

one eventually gets the Stokes mobility. However, in the case of a confined particle near a

wall there is an additional no-slip condition at the wall surface. At the macro scale, this

effect can be seen with a frisbee, indeed, as it gets closer to the ground, hydrodynamic

pressure increases due to the increasing air velocity gradient in the gap and one can

observe a slowing down of the free fall.

To get some physical insight on this effect, one can use the lubrication theory to make a

scaling of the drag force experience by a particle confined near a wall. As schematized in
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Fig. 5.1.6, we consider a particle of radius a moving at a velocity V .

Figure 5.1.6: Schematic representation of a spherical object of radius a moving towards
a wall at velocity Vsphere and inducing a fluid velocity Vfluid

As we are using the lubrication theory, we suppose that the particle is close to the wall such

that h � a. In that condition, we suppose that a particle moving towards a wall (along

the z-axis) at a velocity Vsphere induce a fluid velocity Vfluid along the x-axis, we further

suppose that the induced velocity along the z-axis is negligible. Moreover, the typical

length scale along the z-axis is the particle-wall distance z; and the distance L =
√
az

(i.e. Hertz contact), along the x-axis. In this approximation, velocity terms along the

z-axis will be negligible in Eq. (5.1.36), a projection along the z-axis thus gives:

∂p

∂z
= 0 . (5.1.37)

On the right-hand side of Eq. 5.1.36, the viscous term simplifies to η∂2
zVfluid as:

∂2Vfluid

∂x2
≈ Vfluid

L2
� Vfluid

h2
≈ ∂2Vfluid

∂z2
. (5.1.38)

In the lubrication theory, Eq. (5.1.36) is finally simplified to:

∂p

∂x
= η

∂2Vfluid

∂z2
, (5.1.39)
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which scales as:

p ∼ ηVfluid
L

h2
. (5.1.40)

To compute the Stokes mobility, one needs to evaluate the viscous stress σ, in the lubri-

cation theory, it reads:

σ = η
∂Vfluid

∂z
∼ η

Vfluid

h
. (5.1.41)

When the particle is moving towards the wall we thus have p� σ, we thus only consider

the pressure. To evaluate the mobility, we need to write Eq. (5.1.40) as a function of

Vsphere. Using Eq. (5.1.35) one has Vfluid/L ∼ Vsphere/h, Eq. (5.1.40) thus become:

p ∼ ηVsphere
L4

h3
(5.1.42)

Integrating this pressure over the particle surface (i.e over the typical surface L2 = ah)

leads a scaling of the drag force:

F z�a
drag ∼ ηVsphere

L4

h3
= ηVsphere

a2

z
(5.1.43)

The mobility (see Eq. (5.1.31)) of the displacement perpendicular to the wall thus scale

as γ−1
0 h/a, with γ−1

0 the bulk mobility. Therefore, the diffusion coefficient of a confined

colloid near a wall in the lubrication approximation is hindered and inversely proportional

to the particle-wall distance. It is possible to do the same scaling for the parallel mobility

by supposing that the particle is moving along the x-axis. In that case, one can find that

the viscous stress is greater than the pressure and finally find that along the x-axis, the

parallel mobility follows the same scaling as in bulk and remain constant.

To recap, a colloid diffusing near a wall experience a local drag force that depends on

both its distance z to the wall and direction of motion. Thanks to the linearity of the

Stokes equation, one can decompose this local drag force in two contributions, for motions

parallel and perpendicular to the wall. As the presence of the wall modifies the drag force

with a space-dependent multiplicative factor, the confinement effect is often expressed in

terms of effective viscosities:
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η⊥(z) = ηλ⊥(z) , and η‖(z) = ηλ‖(z) , (5.1.44)

where λ⊥ and λ‖ are respectively the perpendicular and parallel correction factors. Taking

into account these corrections, the diffusion coefficients for perpendicular and parallel

motions relative to the wall read:

D⊥(z) =
D0

λ⊥(z)
, and D‖(z) =

D0

λ‖(z)
. (5.1.45)

For no-slip boundary conditions imposed at both the wall and the surface of the colloid,

Brenner [78] has obtained for the perpendicular motion:

λ⊥(z) =
4

3
sinhβ

∞∑

n=1

n(n+ 1)

(2n− 1)(2n+ 3)

[
2sinh(2n+ 1)β + (2n+ 1)sinh2β

4sinh2(n+ 1/2)β − (2n+ 1)2sinh2β
− 1

]
,

(5.1.46)

where β = cosh−1((z + a)/a). For the motion of a sphere parallel to a wall, Faxén found

[79]:

λ‖(z) =

[
1− 9

16
ξ +

1

8
ξ3 − 45

256
ξ4 − 1

16
ξ5

]−1

, (5.1.47)

where ξ = a/(z+a). Eqs. (5.1.46) and (5.1.47) are exact for all z and shown in Fig. 5.1.7-

a). However, the solution for the perpendicular motion can be complex to compute as it

is an infinite series. It requires a software that enables arbitrary-precision floating-point

arithmetic8 — such as Mathematica or the mpmath Python’s module, for example. D⊥

can be evaluated using the following Python snippet, where the nsum function is used to

compute the summation:

8 Arbitrary-precision floating-point arithmetic enables to evaluate mathematical expressions with any
precision, i.e. any number of digits.
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1 from mpmath import nsum

2

3 def Dz(eta, z, a):

4 a = (z + a) / a

5 beta = float(acosh(a))

6 summ = nsum(

7 lambda n: (n * (n + 1) / ((2 * n - 1) * (2 * n + 3)))

8 * (

9 (

10 (2 * sinh((2 * n + 1) * xi) + (2 * n + 1) * sinh(2 * beta))

11 / (

12 4 * (sinh((n + 1 / 2) * beta) ** 2)

13 - ((2 * n + 1) ** 2) * (sinh(beta) ** 2)

14 )

15 )

16 - 1

17 ),

18 [0, inf],

19 )

20 summ = float(summ)

21 return kT / (6 * pi * eta * 4 / 3 * float(sinh(beta)) * summ * a)

To simplify the computation of λ⊥, Honig [80], and Bevan and Prieve [81] showed that

Eq. (5.1.46) can be Padé approximated9, giving:

λ⊥ =
6z2 + 9az + 2a2

6z2 + 2az
. (5.1.48)

In the near-wall regime, such that z � a, it is possible to further approximate λ⊥ by its

asymptotic expression:

λ⊥(z) ' a

z
. (5.1.49)

For the particle parallel motion, [83, 84] found an asymptotic expression as:

λ‖ '
(

8

15
log
(z
a

)
− 0.95429

)
. (5.1.50)

9 A Padé aproximant is the approximation of a power series by a rational fraction [82].
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Figure 5.1.7: a) Parallel and perpendicular normalized diffusion coefficients for a colloidal
particle of radius a = 1.5 µm. b) Perpendicular normalized diffusion coefficient at a
distance z from a wall. The solid black line is the exact solution given by the infinite sum
of Eq. (5.1.46). The green dashed line is the Padé approximation of Eq. (5.1.48). The
blue dahed line is the near-wall asymptotic expression of Eq. (5.1.49). c) Relative errors
between the two approximations (dashed lines of panel b), same color code) and the exact
result (solid line of panel b)).¥

The exact result, together with the Padé approximation and the near-wall asymptotic

expression for the hindered vertical diffusion are plotted in Fig. 5.1.7-b). The Padé ap-

proximation fits well the exact solution, the near-wall asymptotic expression fits well when

z < a/10 typically. To check how precise both approximations are, we plot the relative

error in Fig. 5.1.7-c). The Padé approximation shows precision up to 1%. Thus, in the

following, when evaluating perpendicular diffusion coefficients, or equivalently vertical

effective viscosities, the Padé approximation will be used.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/theory_lambda/Hindered_diffusion.ipynb
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5.1.4 Fokker-Plank equation

The Fokker-Plank equation is an alternative way to describe Brownian motion. Instead

of explicitly calculating a Brownian trajectory by solving the Langevin equation, Fokker-

Plank equation describes the Probability Density Function P (Xt, X0; t) in position. Where

for simplicity we place ourselve in 1D, with Xt denoting the particle position at a time t

and X0 its initial (t = 0) position. To derive the Fokker-Plank equation, let us start by

taking a generic Langevin equation in 1D:

dXt = u(Xt)dt+ gdW , (5.1.51)

where u(Xt) is the drift velocity due to external forces and g is the magnitude of the ran-

dom force. Let consider the average value of an arbitrary function f(Xt) for a stochastic

process obeying Eq. (5.1.51), which started at position x0 at time t = 0. By definition,

this ensemble average reads [85]:

〈f(Xt)〉 =

∫
dXt P (Xt, X0; t)f(Xt) , (5.1.52)

with the initial condition that can be written as:

P (Xt, X0; 0) = δ(Xt −X0) . (5.1.53)

We now expand f at the first order in the time increment dt as:

〈
df(Xt)

dt

〉

t

'
〈

1

dt

(
∂f(Xt)

∂Xt

u(Xt)dt+
∂f(Xt)

∂Xt

gdW +
1

2

∂2f(Xt)

∂X2
t

g2dW 2

)〉

t

=
1

dt

(
∂f(Xt)

∂Xt

u(Xt)dt+
1

2

∂2f(Xt)

∂X2
t

g2dt

)

=
∂f(Xt)

∂Xt

u(Xt) +
1

2
g2∂

2f(Xt)

∂X2
t

.

(5.1.54)

By combining Eqs. (5.1.52) and (5.1.54), we get:
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∫
dXt

∂P (Xt, X0; t)

∂t
f(Xt) =

∂f(Xt)

∂Xt

u(Xt) +
1

2

∂2f(Xt)

∂X2
t

g2

=

∫
dXt P (Xt, X0; t)Gf(Xt) ,

(5.1.55)

where G is a differential operator called the generator and is defined by its action on a

function f as:

Gf =
1

2
g2∂

2f(Xt)

∂X2
t

+ u(Xt)
∂f(Xt)

∂Xt

. (5.1.56)

Using the definition of the adjoint of G, denoted G†, one has:

∫
dXt

∂P (Xt, X0; t)

∂t
f(Xt) =

∫
dXt P (Xt, X0; t)Gf(Xt)

=

∫
dXt G

†P (Xt, X0; t)f(Xt) .

(5.1.57)

From the latter, we thus have:

∂P (Xt, X0; t)

∂t
= G†P (Xt, X0; t) , (5.1.58)

which leads to the Forward Fokker-Planck equation [86]:

∂P (Xt, X0; t)

∂t
=

∂2

∂X2
t

[
g2

2
P (Xt, X0; t)

]
− ∂

∂Xt

[u(Xt)P (Xt, X0; t)] . (5.1.59)

The latter is called Forward because the partial differential equation is written in terms

of the variable Xt, i.e. the position of the particle, at time t. For a free Brownian motion

in bulk, the Fokker-Plank equation reads:

∂P (Xt, X0; t)

∂t
= D0

∂2

∂X2
t

P (Xt, X0; t) . (5.1.60)
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5.1.5 Fokker-Planck and multiplicative noise

Due to the hindered diffusion coefficient the magnitude of the random force g now depends

on the particle position Xt. Therefore, for a displacement between a time t and t + τ ,

the integration of the noise term
∫ t+τ
t

g(Xt)dBt is not trivial and the time at which the

random force magnitude g(Xt) is evaluated needs to be answered. In this part we derive

the Fokker-Plank equation when the system is subjected to multiplicative noise. Let us

write a generic Langevin equation with multiplicative noise:

dXt = u(Xt)dt+ g(Xt)dBt . (5.1.61)

We start by deriving Eq. (5.1.61) for a time step τ such that:

Xt+τ = Xt +

∫ t+τ

t

u(Xt′)dt
′ +

∫ t+τ

t

g(Xt′)dWt′ (5.1.62)

The expansion of the first term gives u(Xt)τ at the first order in τ . However, for the

second term, the position at which g(Xt) is evaluated needs to be addressed. The second

integral of Eq. (5.1.62) is not unequivocally defined as [87]:

∫ t+τ

t

g(Xt′)dWt′dt
′ ≡ B([1− α]Xt + αXt+τ )∆W (t), (5.1.63)

where ∆W (t) the the Wiener increment:

∆W (t) =

∫ t+τ

t

dWt′ , (5.1.64)

which is a Gaussian process with zero mean and variance 〈∆W (t)2〉 = τ . The parameter

α in Eq. (5.1.63) corresponds to stochastic interpretation of the Langevin equation, and

at which point in the interval [t, t + τ ] the Langevin force magnitude g is evaluated.

Theoretically, α can take any value between 0 and 1. However, two canonical values are

usually employed : α = 0, in the Itô convention [88], corresponding to the use of the

initial value of g(Xt); α = 1/2, in the Stratonovich convention [89], corresponding to the

mid-point value g(Xt+(1/2)τ ).
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To derive the Fokker-Plank equation we now need to expand Eq. (5.1.62) to first order in τ .

Combining Eqs. (5.1.62) and (5.1.63), at the order τ 1/2, Eq .(5.1.63) can be approximated

by [87]:

Xt+τ = Xt + g(Xt)∆W (t) . (5.1.65)

By combining Eqs. (5.1.62) and (5.1.65) one has:

∫ t+τ

t

g(Xt′)dWt′ = g(Xt + α[Xt+τ −Xt])∆W (t)

' g(Xt + αg(Xt)∆W (t))∆W (t)

' g(Xt)∆W (t) + αg(Xt)g
′(Xt)[∆W (t)]2,

(5.1.66)

where g′(Xt) = d
dXt

g(Xt). By finally combining Eqs. (5.1.62) and (5.1.66), one can expand

Eq. (5.1.62) to the first order in τ :

Xt+τ ' Xt + u(Xt)τ + g(Xt)∆W (t) + αg(Xt)g
′(Xt)[∆W (t)]2 . (5.1.67)

Finally, by writing the Fokker-Plank equation in its standard form:

∂P (Xt, t)

∂t
= − ∂

∂Xt

K1(Xt)P (Xt, t) +
1

2

∂2

∂X2
t

K2P (Xt, t), (5.1.68)

where K1 and K2 are the first two different moments, and invoking the Kramers-Moyal

expansion [87, 89], K1 and K2 are obtained by:

K1(Xt) = lim
τ→0

〈∆Xt〉
τ

= u(Xt) + αg(Xt)g
′(Xt) , (5.1.69)

and:

K2(Xt) = lim
τ→0

〈[∆z]2〉
τ

= g2(Xt) . (5.1.70)

The Fokker-Plank equation with multiplicative noise finally writes:
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∂P (Xt, t)

∂t
= − ∂

∂Xt

{u(Xt) + αg(Xt)g
′(Xt)}P (Xt, t) +

1

2

∂2

∂X2
t

{g2(Xt)}P (Xt, t) . (5.1.71)

due to the presence of multiplicative noise, we now have a new drift velocity term that

depends on the stochastic interpretation of the Langevin equation. The latter equation

rarely has an exact solution, and numerical methods are often used in order to solve it.

Considering a toy model of a particle with linear diffusion coefficient D⊥(z) = z/a, and

under a constant force −F (e.g. gravity). Along the z-axis, taking the Ito convention

(α = 0), Eq. (5.1.71) can be rewritten as:

∂P (z, t)

∂t
=

∂

∂z

{
F

γ⊥(z)

}
P (z, t) +

1

2

∂2

∂z2

{z
a

}
P (z, t) . (5.1.72)

Lau and Lubensky [90] derived an exact solution to Eq. (5.1.72) using the Ito convention

(α = 0) as:

P (z, t) =

√
z0zeFt/(akBT )

(kBT )2

F 2

(
1− e

− Ft
akBT

)2 e
−
F

z+z0e
− Ft
akBT


1−e

Ft
akBT . (5.1.73)

Where the latter has been obtained by requiring the equilibrium distribution as lim
t→+∞

=

e−Fz/(kBT ). From the analytical solution Eq. (5.1.73), one can extract the first two mo-

ments of z(t) as:

〈z(t)〉 = z0e
− Ft
akBT +

kBT

F

(
1− e

− Ft
akBT

)
, (5.1.74)

and:

〈z2(t)〉 = z2
0e
−2 Ft

akBT +
4kBTz0e

− Ft
akBT

F

(
1− e

− Ft
akBT

)
+2

(
kBT

F

)2 (
1− e

− Ft
akBT

)2

. (5.1.75)

In particular, at long time, where the distribution is dictated by the equilibrium distribu-

tion, we have
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lim
t←+∞

〈z2(t)〉 =

(
kBT

F

)2

. (5.1.76)

In the case where F = mpg is the gravitational force, we have lim
t←+∞

〈z2(t)〉 = `2
B the

typical length of the system (see Eq. (5.1.2)).

5.1.6 Spurious drift

Now that we derived the Fokker-Planck equation for multiplicative s noise, we can inspect

how the new drift velocity term αg(Xt)g
′(Xt) plays a role, in the case where one wants to

simulate near-wall confined Brownian motion, or, infer forces from a measured trajectory.

Let first rewrite Eq. (5.1.61) along the z-axis for a particle confined near a wall:

dz =
F (z)

γ⊥(z)
dt+

√
2D⊥(z)dBt , (5.1.77)

where F (x) = −kBT ln(U(z)) is the force (due to the DLVO interaction and gravity)

exerted on the particle if the system was deterministic. Using Eq. (5.1.71), the average

velocity writes:

〈
∆z

τ

〉
≡ v̄d =

〈
dz

dt

〉
=

F (z)

γ⊥(z)
+ α

dD⊥(z)

dz
. (5.1.78)

However, one needs to take into account that at long time, the steady-state solution of the

Fokker-Plank equation should be given by the Gibbs-Boltzmann equilibrium distribution

Peq(z). Different choice of α gives different drift velocity v̄d of Eq. (5.1.78), nevertheless

that would mean that only one value of α permits recovering the equilibrium distribution.

Yet, to my knowledge, the Itô and Stratonovich conventions permit retrieving the correct

distribution.

Due to this ambiguity, it is often observed in the literature that α is numerically inferred

to retrieve the correct distribution and forces. Doing so, we find in the literature some

α = 1, corresponding to an anti-Itô convention, meaning an anticipation of the Langevin

equation. However, this is due to a misuse of Eq. (5.1.78) since the calculus are done

using the Itô or Stratonovich convention.

To solve this situation, one needs to take into account that it is not the deterministic
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force F (z) that should be used in Eq. (5.1.78) but the force:

Feq = −dUss(z)

dz
(5.1.79)

which is computed through the steady-state solution of the Fokker-Planck equation for

multiplicative noise, such that:

Uss(z) = −kBT ln(Pss(z)), (5.1.80)

with Pss(z) the steady-state solution of Eq. (5.1.71), that can be obtain as follows. Let

us start by setting the time derivative ∂Pss/∂t to zero in Eq. (5.1.71), which now writes

along the z-axis:

d

dz

{
−u(z)− αg(z)g′(z) +

1

2

d

dz
g2(z)

}
Pss(z) =

dJ

dz
= 0 , (5.1.81)

where J is a probability flux, u(z) = F/γ⊥, and g(z)g′(z) = dD⊥/dz. As ∂zJ = 0, J needs

to be a constant. Moreover, we need Pss and the moments of Pss to be finite, therefore

we require Pss to decay to zero at infinity10, and in particular Pss and ∂zPss are zero at

infinity, and therefore J = 0 and Eq. (5.1.81) becomes:

(−u(z)− αg(z)g′(z))Pss(z) +
1

2

∂

∂z

{
g2(z)Pss(z)

}
= 0 . (5.1.82)

By invoking Y = g2(z)Pss, Eq. (5.1.82) becomes:

−u(z) + αg(z)g′(z)

g2(z)/2
Y (z) +

d

dz
Y (z) = 0 , (5.1.83)

which leads to:

Pss(z) =
1

g2(z)
exp

[∫ z u(z′) + αg(z′)g′(z′)

g2(z′)/2
dz

]
. (5.1.84)

10 Using the Riemann integrals, Pss should decay faster than |z|−n−1 to have the n-th first moment to
be finite.
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Using the fact that − ln(g2(z)) can be written as −
∫ z

2g(z′)g′(z′)/g2(z′)dz, Eq. (5.1.80)

becomes:

Uss = −kBT

∫ z u(z′) + (α− 1)g(z′)g′(z′)

g2(z′)/2
dz . (5.1.85)

By combining Eqs. (5.1.79) and (5.1.80), one has:

Feq(z)

γ⊥(z)
=

F (z)

γ⊥(z)
+ (α− 1)g(z)g′(z) . (5.1.86)

The difference between Eqs. (5.1.78) and (5.1.86) gives g(z)g′(z) = dD⊥/dz, and does not

depend on the interpretation of the Langevin equation. Finally, we write the overall drift

as:

v̄d = − 1

γ⊥(z)

dU(z)

dz
+

dD⊥(z)

dz
= vd + vspurious , (5.1.87)

where, to recap, the first term vd is the drift velocity due to deterministic forces (elec-

trostatic and gravitational interactions in our case). The spurious drift velocity vspurious

disappears when the diffusion coefficient is homogeneous, and would also disappear along

the x- and y-axes since the diffusion coefficients only depend on the colloid-wall distance z

(a derivative with respect to x would replace the one in z in the equivalent of Eq. (5.1.87)

for the x-direction). To conclude on that subject, and as pointed out by Mennella et

al. [91], this derivation is not formal as it requires several approximations. However, the

result is still correct. A formal derivation has already been done [92] and is done by taking

the Fokker-Planck of the underdamped Langevin equation. Then they formally compute

the limit of the underdamped Fokker-Planck equation when the mass of the particle tends

to zero, using a mathematical method called adiabatic reduction.

Finally, Using Eqs. (5.1.45) (5.1.48) and (5.1.87), the deterministic drift velocity reads:

vd = − kBT

γ⊥(z)

[
− 1

`D

B exp

(
− z

`D

)
+

1

`B

]
, (5.1.88)

and the spurious drift velocity reads:
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vspurious(z) = 2D0a
2a2 + 12az + 21z2

(2a2 + 9az + z2)2
, (5.1.89)

A typical example of drift velocity v̄ for a colloidal particle of radius a = 1.5 µm in water,

moving near a wall, and interacting with the latter through an electrostatic potential with

a Debye length `D = 50 nm and a dimensionless magnitude of the interaction B = 4, and

evolving in a gravity field characterized by a Boltzmann length `B = 500 nm, is plotted

in Fig. 5.1.8. As one can observe, the spurious drift is not negligible.
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Figure 5.1.8: Theoretical drift velocity for a colloidal particle of radius a = 1.5 µm in
water and at a distance z from the wall. The physical parameters `D = 50 nm, B = 4
and `B = 500 nm. ¥

5.1.7 Numerical simulations of confined Brownian motion

We previously determined that the simulation of a bulk Brownian motion without external

forces can be simulated using Eq. (3.4.9). However, in the case of confined Brownian mo-

tion, and without density matching, one needs to take into account the hindered mobility,

external forces due to gravity and the double-layer interaction, as well as the confinement-

induced spurious drift. Putting all that together leads to a new equation for xi which

reads for the motion parallel to wall (i.e. along the x- and y-axes):

xi = xi−1 +
√

2D‖wi , (5.1.90)

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/spurious_drift/spurious_drift.ipynb
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where we recall that we approximate the continuous position Xt of a particle at a time t

by a discrete-time sequence xi, which is the solution of the equation at a time ti = iτ . τ

being the numerical integration time increment, and wi is a Gaussian-distributed number

of mean value 〈wi〉 = 0 and variance 〈w2
i 〉 = τ . For the perpendicular motion of the

particle (along the z-axis), one needs to add the total drift v̄d of Eq. (5.1.87), such that:

zi = zi−1 + v̄d(zi−1)τ +
√

2D⊥wi , (5.1.91)

where zi is the discrete-time position sequence of a particle along the z-axis. Compared to

bulk Brownian motion where the time step τ can be chosen only according to the desired

precision as shown previously on Fig. 3.4.2, confinement adds another constraint. Indeed,

the time step should be short enough for the drift v̄d and local diffusion coefficients to

be relatively constant (as detailed later) in the time period ti+1 − ti = τ and in the

displacement range ∆z = zi+1 − zi, such that:

v̄d(z ∈ [zi, zi+1]) ' v̄d(zi) , (5.1.92)

and:

D⊥,‖(z ∈ [zi, zi+1]) ' D⊥,‖(zi) . (5.1.93)

Since the diffusion coefficient does not vary for the parallel motion, one can consider only

the perpendicular motion to determine the optimal simulation time step. Also, as it can

be seen in Fig. 5.1.10 the relative variation of the drift velocity 1/v̄d∂zv̄d reaches higher

values than the relative variation of the diffusion coefficient 1/D⊥∂zD⊥. Thus, finding τ

that satisfies Eq. (5.1.92) is sufficient. Moreover, the vertical drift velocity varies more

when the colloid is near the surface, i.e. in the region where one can approximate the

diffusion coefficient D⊥ using Eqs. (5.1.45) and (5.1.49):

D⊥(z)|z�a = D0
z

a
. (5.1.94)

In that case, Eq. (5.1.87) near the surface simplifies to:
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v̄d '
kBT

γ0

z

a

[
B

`D

exp

(
− z

`D

)
− 1

`B

]
+

∂

∂z
D0

z

a

=
D0

a

[
1 +

Bz

`D

exp

(
− z

`D

)
− 1

`B

] (5.1.95)

By expanding the exponential term at the first order in z/`D, we get:

v̄d =
D0

a

(
1 +

Bz

`D

− 1

`B

)
(5.1.96)

To satisfy Eq. (5.1.92), we need to have a small relative change of the vertical drift velocity

in an interval [z, z + ∆z] [93], i.e.:

|v̄d(z + ∆z)− v̄d(z)|
|v̄d(z)| � 1 . (5.1.97)

Combining Eqs. (5.1.96) and (5.1.97), we get:

|∆z| �
[
B

`D

]−1

+ z . (5.1.98)

Besides, invoking the vertical MSD over the time step, as well as Eq. (5.1.94), one gets:

〈∆z2〉(z) = 2D⊥(z)τ = 2D0
z

a
τ . (5.1.99)

Combining Eqs. (5.1.98) and (5.1.99) thus leads to:

τ =
a〈∆z2〉
2D0z

� a

2D0

[(
B
`D
− 1

`B

)−1

+ z

]2

z
= τmax(z) . (5.1.100)

At this point, there are two different options for the time step in the simulation: the first

one is to do an adaptive time step using a local τ(z) that satisfies τ(z)� τmax(z) for each

step of the simulation; the second one is to find the smallest τmax(z) and use for all the

simulation a time step τ satisfying τ � min(τmax). The latter can be evaluated by finding

the height zmin, at which the derivative of τmax nullifies, i.e.:
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∂τmax

∂z

∣∣∣∣
zmin

= 0 . (5.1.101)

Solving the latter gives,

zmin =

∣∣∣∣∣

(
B

`D

− 1

`B

)−1
∣∣∣∣∣ . (5.1.102)

which finally gives:

min(τmax) =
2a

D0

∣∣∣∣∣

(
B

`D

− 1

`B

)−1
∣∣∣∣∣ . (5.1.103)

In Fig. 5.1.10-b) τmax is plotted as a function of z, for a = 1.5 µm, B = 4 and `D varying

between 20 and 100 nm. We observe that for this range of values that represents well the

experiments that I have performed during my thesis, taking a constant simulation time

step τ ≈ 0.01 s is satisfactory.
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Figure 5.1.9: Simulated trajectory along the direction normal to the wall, using
Eq. (5.1.91) with α = 1 (isothermal convention), of radius a = 1.5 µm, density
ρp = 1050 kg.m−3, placed in water near a wall. The particle-wall interaction is char-
acterized by `D = 50 nm and B = 4. ¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/simulation_confined_Brownian_motion/Overdamped_confined_simulation.ipynb
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Figure 5.1.10: a) Theoretical computation of the relative variation of the drift velocity
v̄d and perpendicular diffusion coefficient D⊥ as a function particle-wall distance z. The
parameters are `D = 50, B = 4 and `B = 500 nm b) Optimal numerical integration time
step τmax as a function of the particle-wall distance z for a particle of radius a = 1.5 µm,
with `B = 500 nm, B = 4, and for different Debye lengths as indicated. The black line
connects the minima.¥

We have developed the numerical simulation of Eqs. (5.1.90) and (5.1.91) using Python,

as part of the Master’s internship of Élodie Millan. The interested reader will find more

information on the simulation of confined Brownian motion in complex systems in her

forthcoming thesis. A typical trajectory of a water-immersed colloidal particle of radius

a = 1.5 µm and density ρp = 1050 kg.m−3, near a wall with which the electrostatic

interaction is characterized by `D = 50 nm and B = 4, is plotted in Fig. 5.1.9. It

qualitatively resembles the experimental trajectory that was shown in Fig. 5.1.1 as an

introduction to the chapter. To check if the spurious drift is correctly implemented, the

constraint we have is that the long-time statistics should satisfy Eq. (5.1.29). To compute

an experimental probability density function from a set of points, one can use the following

Python snippet.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/simulation_confined_Brownian_motion/maximal_tau.ipynb
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1 def pdf(data, bins=10, density=True):

2

3 pdf, bins_edge = np.histogram(data, bins=bins, density=density)

4 bins_center = (bins_edge[0:-1] + bins_edge[1:]) / 2

5

6 return pdf, bins_center

The long-time PDF in position, for with and without the spurious drift vspurious are shown

in Fig. 5.1.11. We see that the spurious drift velocity vspurious permits retrieving the

correct distribution. In the case (vspurious = 0), we observe that the particle is more likely

to be found closer to the surface, as a result of the missing compensating spurious drift

of Eq. (5.1.89).
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Figure 5.1.11: Simulated, Long-term Probability Density Function of the height of the
particle with or without the spurious drift, as indicated. The solid black line represents
the expected Gibbs-Boltzmann distribution. The physical parameters are: a = 1.5 µm,
ρp = 1050 kg.m−3, `D = 21 nm, B = 4.8 and `B = 577 nm. ¥

5.2 Experimental study

Let us now analyze the experimental data acquired through the Mie tracking (see section

4.3). In the near-wall Brownian dynamic theory presented section 5.1, we considered

distance z between the wall and the colloidal particle surface. However, it is not the

height measured by the Mie tracking, since the latter measures the distance between the

objective-lens focal plane and the particle center. Therefore, we measure the trajectory

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/simulation_confined_Brownian_motion/Overdamped_confined_simulation.ipynb
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up to an offset, i.e. the objective-lens focal plane to wall distance. To have the correct

measured height, we suppose that the particle does approach very closely to the wall,

such that the minimal measured distance is the focal plane to the wall distance. From

that assumption, we set the minimal value of z in the trajectory to zero. This is repeated

periodically and thus termed the moving-minimum method, and can be calculated using

the following Python function.

1 def movmin(z, window):

2 result = np.empty_like(z)

3 start_pt = 0

4 end_pt = int(np.ceil(window / 2))

5

6 for i in range(len(z)):

7 if i < int(np.ceil(window / 2)):

8 start_pt = 0

9 if i > len(z) - int(np.ceil(window / 2)):

10 end_pt = len(z)

11

12 result[i] = np.min(z[start_pt:end_pt])

13 start_pt += 1

14 end_pt += 1

15 return result

In the above snippet, window represents the number of points used to compute the min-

imum. As an example, if one chooses window = 100, the first value of result is the

minimum of the first 100 points of z. If there is enough data around the point where

the minimum is calculated, the ensemble is centered, with a new window of size 100 (i.e.

result[100] = np.min(z[50:150]). If there is not enough point around the n-th point,

we then take the average value of the first (or the last) n points. The raw and shifted

trajectories are shown in Fig. 5.2.1. Moreover, subtracting the moving minimum has a

benefit. Indeed, it can remove some experimental drift due to the mechanical movement

of the optical pieces of the microscope. Also, due to the approximation made to use the

moving-minimum method, the exact location of the z = 0 origin is a priori undetermined

we need to add to the physical parameters B, `D and `B a forth parameter: the height

offset zoff that accounts for the correction of the wall position.

5.2.1 Equilibrium distribution

As we have done for the simulated trajectory, one can construct the equilibrium probability

density function Peq(z) of the position of the particle. As seen in Fig. 5.2.2, and explained
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Figure 5.2.1: Raw trajectories measured using the Mie-tracking technique, and its shifted
version (bottom, orange) using the moving-minimum method with a window of 10000
points. ¥

in section 5.1.1, an exponential tail is observed at large distance, which is identified to

the sedimentation contribution in Perrin’s experiment [2], but here with the probability

density function of a single particle instead of the concentration field. In contrast, near

the wall, we observe an abrupt depletion, indicating a repulsive electrostatic contribution.

Additionally, we see that the Gibbs-Boltzmann distribution of Eq. (5.1.29) fits the data

very well.

Moreover, as shown in Fig. 5.2.3, we recover the Debye relation, i.e. `D = 0.304/
√

[NaCl]

(see Eq. (5.1.13)), with `D in nm, and where [NaCl] is the concentration of salt in mol/L,

with a prefactor corresponding to a single monovalent salt in water at room tempera-

ture [75]. Besides, we have verified, as shown in Fig. 5.2.3, that the dimensionless param-

eter B related to surface charges is constant in the studied salt-concentration range, thus

excluding any nonlinear effect [24, 94] in our case.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/graph_ploting.ipynb
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Figure 5.2.2: Measured equilibrium probability density function Peq of the distance z
between the particle and the wall. The solid line represents the best fit to the normal-
ized Gibbs-Boltzmann distribution in position, using the total potential energy U(z) of
Eq. (5.1.28), with B = 4.8, `D = 21 nm, and `B = 530 nm. ¥
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Figure 5.2.3: In blue, left axis, measured Debye length `D as a function of salt concen-
tration [NaCl]. The solid line is the expected Debye relation `D = 0.304/

√
[NaCl], for a

single monovalent salt in water at room temperature. In green, right axis, measured B
as a function of salt concentration [NaCl]. The dashed line represents the mean value of
the measured B values. ¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/graph_ploting.ipynb
https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/resume_ld_measures.ipynb
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5.2.2 Mean Square Displacement

We now turn to dynamical aspects, by considering the mean-squared displacement (MSD).

We recall that, for the three spatial directions, indexed by i = x, y, and z, corresponding

to the coordinates rx = x, ry = y, and rz = z, of the position ~r, and for a given time

increment ∆t, the MSD is defined as:

〈∆ri(t)2〉t = 〈[ri(t+ ∆t)− ri(t)]2〉t , (5.2.1)

where the average 〈〉t is performed over time t. For a free Brownian motion in the

bulk, and in the absence of other forces than the dissipative and random ones, the MSD

is linear in time, i.e. 〈∆ri(t)2〉t = 2D0∆t, where is the bulk diffusion coefficient (see

Eq. (5.1.33)) given by the Stokes-Einstein relation [1]. Further including sedimentation

restricts the validity of the linearity of the MSD along the z-axis to short times only, i.e.

for ∆t � `2
B/D0 such that the vertical diffusion is not yet affected by the gravitational

drift.

As explain in section 5.1.2.1 The presence of a rigid wall at z = 0 adds a repulsive

electrostatic force along z. It also decreases the mobilities nearby through hydrodynamic

interactions (see section 5.1.3), where we recall that it leads to effective viscosities η‖(z) =

ηx(z) = ηy(z), and η⊥(z) = ηz(z) (see Eq.5.1.45). Interestingly, despite the previous

modifications, the temporal linearity of the MSD is not altered by the presence of the

wall [20, 95] for x and y, as well as at short times for z. In such cases, the MSD reads:

〈∆ri(t)2〉t = 2〈Di〉∆t , (5.2.2)

where we introduced the average of the local diffusion coefficient:

〈Di(z)〉 =

∫ ∞

0

dz Di(z)Peq(z) , (5.2.3)

against the Gibbs-Boltzmann distribution in position. As shown in Fig. 5.2.4, the MSD

measured along x or y is indeed linear in time. By fitting the data to Eq. (5.2.2), using

Eqs. (5.1.28) and (5.1.47), we extract an average transverse diffusion coefficient 〈D‖〉 =

〈Dx〉 = 〈Dy〉 = 0.52D0. In contrast, along z, we identify two different regimes: one at

short times, where the MSD is still linear in time, with a similarly-obtained best-fit value of

〈Dz〉 = 0.24D0; and one at long times, where the MSD saturates to a plateau. This latter

behavior indicates that the equilibrium regime has been reached, with the particle having



5 Stochastic Inference of Surface-Induced Effects Using Brownian Motion 89

10−2 10−1 100 101 102 103

∆t (s)

10−15

10−14

10−13

10−12

10−11

10−10

M
S

D
(m

2
)

x

y

z

Figure 5.2.4: Measured mean-squared displacements (MSD, see Eq. (5.2.1)) as functions of
the time increment ∆t, for the three spatial directions, x, y, and z. The solid lines are best
fits to Eq. (5.2.2), using Eqs. (5.1.28), (5.1.46) and (5.1.47), with B = 4.8, `D = 21 nm, and
`B = 530 nm, providing the average diffusion coefficients 〈D‖〉 = 〈Dx〉 = 〈Dy〉 = 0.52D0

and 〈Dz〉 = 0.24D0. The dashed line is the best fit to Eq. (5.2.9), using Eq. (5.1.28), with
B = 4.8, `D = 21 nm, and `B = 530 nm. ¥

essentially explored all the relevant positions given by the Gibbs-Boltzmann distribution.

5.2.3 Non-Gaussian dynamics - displacement distribution

Having focused on the MSD, i.e. on the second moment only, we now turn to the full-

Probability Density Function Pi of the displacement ∆ri. Since the diffusion coefficient

Di(z) varies as a result of the variation of z along the particle trajectory, Pi exhibits a

non-Gaussian behavior, as seen in Figs. 5.2.5-a,b,c,d). We even resolve the onset of a

non-Gaussian behavior in Px, by zooming on the large-|∆x| wings. At short times, the

diffusion coefficient Di and the drift velocity v̄d, can be considered constant. By writing

the initial condition of the particle-wall distance δ(z − z0), the solution of Eq. (5.1.71)

becomes:

Pz(z, z0,∆t) = exp

[
∂2

∂z2
D⊥(z0)∆t− ∂

∂z
v̄d(z0)∆t

]
1

2π

∫ ∞

−∞
du exp(ju(z − z0))

=
1

2π

∫ ∞

−∞
du exp

[
−u2D⊥(z0)∆t+ ju(z − z0)− juv̄d(z0)∆t

]
.

(5.2.4)

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/graph_ploting.ipynb
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The latter can be reduced at short times to[93, 96]:

Pz(∆z, z0,∆t) =
1√

4πDi(z0)∆t
exp

[
−(∆ri − v̄d∆t)2

4Di(z0)∆t

]
, (5.2.5)

which is a Gaussian distribution with a mean value 〈∆z〉 = v̄d∆t. The same calculus

can be done for the x- and y-axes, by setting the drift velocity to zero and using D⊥.

Additionally, it has a standard deviation σi(z0) =
√

2Di(z0)∆t. From Eq. (5.2.5), we

can observe than the total drift v̄d induces an asymmetry on the displacement along the

z-axis. However, in our experiment, as we have access to long-enough trajectories to

reach equilibrium, the statistics are not conditioned by the initial position, but by the

Gibbs-Boltzmann distribution of Eq. (5.1.29). At short times, Pi can thus be modeled by

the averaged diffusion Green’s function [19, 97]:

Pi(∆ri,∆t) =

∫ ∞

0

dzPeq(z)P (∆ri, z,∆t)

=

∫ ∞

0

dz Peq(z)
1√

4πDi(z)∆t
e
− ∆r2i

4Di(z)∆t ,
(5.2.6)

against the Gibbs-Boltzmann distribution. The latter equation can alternatively be writ-

ten as an integral over the diffusion coefficient such that:

Pi(∆ri,∆t) =

∫ ∞

0

dDiP (Di)
1√

4πDi∆t
e
−∆r2i
4Di∆t (5.2.7)

This equation can be evaluated using the following Python snippet.

1 def P_D(B, ld, lb):

2 # Computing the D PDF.

3 z = np.linspace(1e-9, 15e-6, 1000)

4 P_D = Dz(z) * P_eq(z, B, ld, lb)

5 P_D = P_D / np.trapz(P_D, z) # extra step to ensure PDF normalization

6 return Dz(z), P_D

7

8

9 def _P_Dz_short_time(Dz, Dt, B, ld, lb):

10 # Using the D PDF to compute P()

11 D_z, P_D = P_D(B, ld, lb)

12 P = P_D / np.sqrt(4 * np.pi * D_z * Dt) * np.exp(-(Dz ** 2) / (4 * D_z * Dt))

13 P = np.trapz(P, D_z)

14 return P

15

16
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17 # Creating a handy function for easier use with Dz numpy arrays

18 def P_Dz_short_time(Dz, Dt, B, ld, lb):

19 P = np.array([_P_Dz_short_time(i, Dt, B, ld, lb) for i in Dz])

20 P = P / np.trapz(P, Dz) # extra step to ensure PDF normalization

21 return P

In this snippet, the evaluation is done for ∆z. However, when computing Px(∆x) one

should just change the Dz(z) function to D‖. Since P is a PDF, it should be normal-

ized such that
∫
P = 1. We added an extra step to ensure PDF normalization along

the evaluation. At long enough time, since we have reached equilibrium, the averaged

particle’s drift should be equal to zero thus leading to a mean value 〈∆ri〉t = 0. As

shown in Figs. 5.2.5-a,c,b,d) Eq. (5.2.6) captures the early data very well. At long times,

Eq. (5.2.6) remains valid only for Px and Py. Nevertheless, the equilibrium regime being

reached, Pz only depends on the Gibbs-Boltzmann distribution. Indeed, in this regime

Pz can be written as a convolution of two Gibbs-Boltzmann distribution as in a displace-

ment ∆z = z(t + ∆t) − z(t), z(t + ∆t) and z(t) comes from independent draw from the

Gibbs-Boltzmann distribution:

lim
∆t→∞

Pz(∆z,∆t) =

∫ ∞

0

dz Peq(z + ∆z)Peq(z) , (5.2.8)

which contains in particular the second moment:

lim
∆t→∞

〈∆z2〉 =

∫ +∞

−∞
d∆z∆z2

∫ ∞

0

dz Peq(z + ∆z)Peq(z) . (5.2.9)

As shown in Fig. 5.2.5-e), Eq. (5.2.8) captures the long-term data along z very well.

Moreover, it possible to show that lim∆t→∞〈∆z2〉 ∼ `2
B. Using this approximation we can

evaluate the time τc needed to attain the equilibrium regime. If a particle diffuses with a

diffusion coefficient 〈D‖〉 it needs, on average a time:

τc =
`2

B

2〈D‖〉
, (5.2.10)

to diffuse over distance `B. By approximating the average coefficient by 〈D‖〉 ∼ D0`B/a,

one can find that τc scales as:

τc ∼
`Ba

D0

=
η

∆ρag
. (5.2.11)
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Interestingly, that means that taking smaller particles that has higher diffusion coefficient

do not reach equilibrium faster. Additionally, Eq. (5.2.9) permits to fit the long-term

plateau of the MSD shown in Fig. 5.2.4. Eq. (5.2.8) can be evaluated using the following

Python function.

1 def _Pdeltaz_long(DZ, B, ld, lb):

2 z = np.linspace(0, 20e-6, 1000)

3 dP = P_eq(z, B, ld, lb) * P_eq(z + DZ, B, ld, lb)

4 P = trapz(dP,z)

5 return P

6

7 def Pdeltaz_long(DZ, B, ld, lb):

8 pdf = np.array([_Pdeltaz_long(i,B, ld, lb) for i in DZ])

9 pdf = pdf / trapz(pdf,DZ)

10 return pdf

11

where the P_eq function has been described in section 5.1.2.
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Figure 5.2.5: a, b) Probability density functions Pi of the displacements ∆x and
∆z, at short times. The solid lines are the best fits to Eq. (5.2.6), using
Eqs. (5.1.29), (5.1.46), and (5.1.47), with B = 4.8, `D = 21 nm, and `B = 530 nm.
c,d) Normalized probability density functions Pi σ of the normalized displacements ∆x/σ
and ∆z/σ, at short times, with σ2 the corresponding MSD (see Fig. 5.2.4), for different
time increments ∆t ranging from 0.0167 s to 0.083 s, as indicated with different colors.
The solid lines are the best fits to Eq. (5.2.6), using Eqs. (5.1.28), (5.1.46), and (5.1.47),
with B = 4.8, `D = 21 nm, and `B = 530 nm. For comparison, the gray dashed lines are
normalized Gaussian distributions, with zero means and unit variances. e) Probability
density function Pz of the displacement ∆z, at long times, averaged over several values
of ∆t ranging between 25 s and 30 s. The solid line is the best fit to Eq. (5.2.8), using
Eq. (5.1.28), with B = 4.8, `D = 21 nm, and `B = 530 nm.
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5.2.4 Local diffusion coefficient

We now wish to go beyond the previous average 〈Di〉 of Eq. (5.2.2), and resolve the local

diffusion coefficient Di(z). To measure local viscosities from experimental trajectories, a

binning method is generally employed [98]. This method computes the average 〈(∆r2
i )(z)〉t

locally over a z-binning grid such that the local diffusion coefficient writes:

Di(z) =
〈∆r2

i 〉t(z)

∆t
. (5.2.12)

Using this method, Vestergard et al. [99] discovered that the obturation time of the

camera and the localization error σri plays an important role in the determination of the

local diffusion coefficient such that Eq. 5.2.12 should be rewritten as:

Di(z) =
〈∆r2

i 〉t(z)− 2σ2
ri

2(1−R)∆t
. (5.2.13)

where R is a motion blur coefficient that depends on the aperture time of the camera.

Let us write τ the time lapse between the capture of two images, and ζ(t) the state of

the camera shutter during this time-lapse. ζ(t) > 0 indicates that an open shutter while

ζ(t) = 0 indicates a close shutter. The scale ζ(t) is fixed by the normalization condition∫ τ
0
ζ(t)dt = 1. The motion blur coefficient is given by:

R =
1

τ

∫ τ

0

S(t)[1− S(t)]dt, (5.2.14)

where S(t) =
∫ t

0
ζ(t′)dt′. If the shutter is kept open for the whole duration of the time-

lapse, one has R = 1/6. The localization error σri can be determined from a measured

trajectory. Taking into account that Brownian motion should not be correlated, one can

measure σri by calculating the autocorrelation xi(n) as a function of the number of time

steps n of the particle position ri, which we defined as:

x(n) = 〈(ri(t)− 〈ri(t)〉t)(ri(t+ n∆t)− 〈ri(t)〉t)〉t . (5.2.15)

In [99] the localization error (also called Vestergaard error) is written as:
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σri =

√
x(1)− 2〈∆r2

i 〉t
1−R (5.2.16)

Moreover, mechanical drifts (or evaporation driven-flow in the sample) can lead to cor-

relation in the position time-series, such that σri increases in the presence of unwanted

drifts. In our experience we had σrx = σry = 12 nm and σrz = 6 nm.

Figure 5.2.6: Figure from [100]. Quantitative comparison of Surface Force Inference (SFI
with other methods on a simulated system mimicking 2D single-molecule trajectories in
a complex environment with space-dependent isotropic diffusion. a) The diffusion field
(blue gradient) and drift field (white arrows). b) The steady-state distribution function
(PDF) of the process. The traces are representative trajectories of 100 time steps. c-f)
Comparison of the performance of SFI and two widely used inference methods: Infer-
enceMAP, a method for single-molecule inference (blue triangles) [101], and grid-based
binning with maximum-likelihood estimation [98, 102] (orange squares). They evaluated
the performance of these methods on the approximation of the drift field (c),e)) and dif-
fusion field (d)f)) as a function of the number N of single-molecule trajectories (similar
to the ones in panel b)) used. With ideal data (c),d)) and in the presence of measure-
ment noise(e),f)). The performance is evaluated as the average mean-squared error on
the reconstructed field along trajectories. More information about the parameters of their
simulation and analysis can be found in their work [100].

Although the binning method is well suited for drift measurements, it suffers from a

lack of convergence and precision when second moments or local diffusion coefficients

have to be extracted. In particular, the binning method did not allow us to measure

specifically the local diffusion coefficient in the key interfacial region corresponding to

z < 100 nm. Indeed, as we can observe in Fig. 5.2.6-f) the diffusion error on noisy

(such as experimental) data does saturate, and the binning method is outperformed by
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a robust method recently developed by Frishman and Ronceray [100]. This method uses

Stochastic Force Inference (SFI), in order to evaluate spatially varying force fields and

diffusion coefficients, from the information contained within the trajectories.

In practice the SFI method computes a local diffusion estimator:

d̂(ti) =
[∆ri(ti−1) + ∆ri(ti)]

2

4∆t
+

∆ri(ti)∆ri(ti−1)

2∆t
, (5.2.17)

where the second term corresponds to Vestergaard error. Then, by approximating locally

the diffusion coefficient by a polynomial function basis (such as
∑n

0 anz
n). One can

use the latter defined estimator in order to fit locally the polynomial coefficient. Once

the coefficients estimated, one can compute the diffusion coefficient for any height z in

the range of the provided data ri (i.e. in the range [min(ri), max(ri)]. Although, the

mathematical details of the SFI method are beyond the scope of the presented work as it

requires a great knowledge of information theory, we used the SFI method as a tool. We

implemented this method, using a fourth-order polynomial base. To simplify the use of

the method with our data, we developed a simple Python function ¥ which can infer the

local diffusion coefficient by only one function call.

1 Dx, Dy, Dz, z_D = Compute_diffusion(pos)

where pos, is the 3D trajectory of a Brownian colloid. It allowed us to infer the lo-

cal diffusion coefficients Di(z), down to z = 10 nm, as shown in Fig. 5.2.7. The re-

sults are in excellent agreement with the theoretical predictions, D‖(z) and Dz(z), using

Eqs. (5.1.46) and (5.1.46), thus validating the method.

https://github.com/eXpensia/StochasticForceInference/blob/master/fun_SFI.py
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Figure 5.2.7: Measured local short-term diffusion coefficients Di of the microparticle,
normalized by the bulk value D0, as functions of the distance z to the wall, along both
a transverse direction x or y (Di = D‖ = Dx = Dy, blue) and the normal direction z
(Di = Dz, green) to the wall. The solid lines are the theoretical predictions, D‖(z) =
D0η/η‖(z) and Dz(z) = D0η/ηz(z), using the local effective viscosities η⊥(z) and η‖(z) of
Eqs. (5.1.46) and (5.1.47), respectively. ¥

5.2.5 Precise potential inference using multi-fitting technique

So far, through Figs. 5.2.2-5.2.7, we have successively presented the various measured

statistical quantities of interest, as well as their fits to corresponding theoretical models.

Therein, we have essentially three free physical parameters, B, `B, `D, describing the

particle and its environment, as well as the a priori undetermined location of the z =

0 origin. These four parameters are actually redundant among the various theoretical

models. Therefore, in order to measure them accurately, we in fact perform all the fits

simultaneously, using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm that is well

suited for unconstrained nonlinear optimization [103]. To do so, we construct a global

minimizer:

χ2 =
N∑

n=1

χ2
n , (5.2.18)

where we introduce the minimizer χ2
n of each set n among the N sets of data, defined as:

χ2
n =

Mn∑

i=1

[yni − fn(xni,b)]2

fn(xni ,b)2
, (5.2.19)

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/graph_ploting.ipynb
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with {xni, yni} the experimental data of set n, Mn the number of experimental data points

for set n, fn the model for set n, and b = (b1, b2, ..., bp) the p free parameters. In our case,

p = 4, and {xni, yni} represent all the experimental data shown in Figs. 5.2.2-5.2.7.

Due to strong dependence of the normal diffusion coefficient Dz with z, it is possible to find

the wall position with a 10 nm resolution, thus overcoming a drawback of the Lorenz-Mie

technique which only provides the axial distance relative to the focus of the objective lens.

Besides, the three physical parameters globally extracted from the multifitting procedure

are: B = 4.8 ± 0.6, `D = 21 ± 1 nm, and `B = 530 ± 2 nm. Using the particle radius

a = 1.518 ± 0.006 µm calibrated from the preliminary fits of the interference patterns

to the Lorenz-Mie scattering function (see section 4.7.3), and the ρp = 1050 kg.m−3

tabulated bulk density of polystyrene, we would have expected `B = 559 nm instead,

which corresponds to less than 2 % error, and might be attributed to nanometric offsets,

such as e.g. the particle and/or wall rugosity.

5.2.6 Measuring external forces using the local drifts

Finally, we investigate the total conservative force Fz(z) acting on the particle along

z. The first way to measure it is to calculate the gradient of the potential U which is

experimentally measured from the position PDF giving:

F eq
z = −∇U = kBT

d

dz
ln(Peq) , (5.2.20)

where one can use the experimentally measured Peq (see Fig. 5.2.2). The results of this

method are shown in Fig. 5.2.8. However, it can be interesting to measure the forces using

the local drifts as for more complex systems, some non-conservative forces could arise. As

the Eq. (5.2.20) takes only into account to the potential U , only conservative forces can

be extracted from the measurement of Peq. Non-conservative forces could be measured

by the difference between forces obtained through Peq and the local drifts.

Let us now explain the force measurement from drifts. By averaging the overdamped

Langevin of Eq. (5.1.61) over a fine-enough z-binning grid and a short-enough time interval

∆t, one gets in the Itô convention (corresponding to our definition of ∆z):

Fz(z) = 6πηz(z)a
〈∆z〉
∆t
− kBT

D′z(z)

Dz(z)
, (5.2.21)

where the last term corresponds to the additional contribution due to the non-trivial
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integration of the multiplicative noise [23, 87, 91, 104] (see section 5.1.6), with the prime

denoting the derivative with respect to z. From the averaged measured vertical drifts

〈∆z〉, and invoking Eqs. (5.1.45) and (5.1.48), one can reconstruct Fz(z) from Eq. (5.2.21),

as shown in Fig. 5.2.8. We stress that the statistical error on the force measurement is

comparable to the thermal-noise limit [105]:

∆F =
√

24πkBTηz(z)a/τbox(z) , (5.2.22)

where τbox(z) is the total time spent by the particle in the corresponding box of the z-

binning grid. To corroborate these measurements, we invoke Eq. (5.1.28) and express the

total conservative force Fz(z) = −U ′(z) acting on the particle along z:

Fz(z) = kBT

(
B

`D

e
− z
`D − 1

`B

)
. (5.2.23)

Using the physical parameters extracted from the above multifitting procedure, we plot

Eq. (5.2.23) in Fig. 5.2.8. The agreement with the data is excellent, thus showing the

robustness of the force measurement. In particular, we can measure forces down to a

distance of 40 nm from the surface. Besides, far from the wall, we are able to resolve the

actual buoyant weight Fg = −7 ± 4 fN of the particle. This demonstrates that we reach

the femtoNewton resolution, and that this resolution is solely limited by thermal noise.
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Figure 5.2.8: Total normal conservative force Fz exerted on the particle as a function
of the distance z to the wall, reconstructed from Eq. (5.2.21), using Eq. (5.1.48) for the
circles and Eq. (5.2.20) for the squares. The solid line corresponds to Eq. (5.2.23), with
B = 4.8, `D = 21 nm and `B = 530 nm. The black dashed lines and gray area indicate the
amplitude of the thermal noise computed from Eq. (5.2.22). The horizontal red dashed
line indicates the buoyant weight Fg = −7 fN of the particle. ¥

5.2.7 Testing on simulated data

As detailed in section 5.1.7 we can simulate Brownian motion near a surface. To check

if the constructed method works on simulated data where the physical parameters, B,

`B and `D are known. We thus simulated a Brownian trajectory B = 4.8, `D = 21 nm,

`B = 570 nm and a time-step τ = 1/60. The multi-fitting method of all the observable

measures B = 4.2±0.5, `D = 21±1 nm, and `B = 570±1 nm which is in good agreement

with the parameters used for the simulation. A summary of the fitted observables is

shown in Fig. 5.2.9. The Figs. 5.2.9-a-c) shows that the non-Gaussian properties of

the displacement are correctly retrieved. Additionally, we correctly measure the local

mobility as shown in Fig. 5.2.9-d) and the MSD in Fig. 5.2.9-e). Finally, we recover the

forces using the local drifts as explained in section 5.2.6. As the simulated trajectory

is 10 times longer than the experimental one, we can observe in Fig. 5.2.9-f) that the

thermal noise is smaller than for the experiment (see Fig. 5.2.8). Indeed using Eq. 5.2.22

having a trajectory 10 times longer reduces the thermal noise by a factor ≈ 3, as expected.

This demonstrates that the method developed in this section can correctly retrieve the

statistical properties of confined Brownian motion near a wall, and measure surface force

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter3/images/trajctory_analysis/measure_force_experimental.ipynb
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at the thermal resolution.
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Figure 5.2.9: Summary of our inference method on simulated data with B = 4.8,
`D = 21 nm, and `B = 570 nm. The multi-fitting method of all the observable mea-
sures B = 4.2 ± 0.5, `D = 21 ± 1 nm, and `B = 570 ± 1 nm a,b) Normalized probability
density functions Pi σ of the normalized displacements ∆x/σ and ∆z/σ, at short times,
with σ2 the corresponding MSD (see Fig. 5.2.4), for different time increments ∆t ranging
from 0.0167 s to 0.083 s, as indicated with different colors. The solid lines are the best
fits to Eq. (5.2.6), using Eqs. (5.1.28), (5.1.46), and (5.1.47). For comparison, the gray
dashed lines are normalized Gaussian distributions, with zero means and unit variances.
c) Probability density function Pz of the displacement ∆z, at long times, averaged over
several values of ∆t ranging between 25 s and 30 s. The solid line is the best fit to
Eq. (5.2.8), using Eq. (5.1.28).d) Measured local short-term diffusion coefficients Di of
the microparticle, normalized by the bulk value D0, as functions of the distance z to
the wall, along both a transverse direction x or y (Di = D‖ = Dx = Dy, blue) and
the normal direction z (Di = Dz, green) to the wall. The solid lines are the theoret-
ical predictions, D‖(z) = D0η/η‖(z) and Dz(z) = D0η/ηz(z), using the local effective
viscosities η⊥(z) and η‖(z) of Eqs. (5.1.46) and (5.1.46), respectively.e)Measured mean-
squared displacements (MSD, see Eq. (5.2.1)) as functions of the time increment ∆t, for
the three spatial directions, x, y, and z. The solid lines are best fits to Eq. (5.2.2),
using Eqs. (5.1.28), (5.1.46) and (5.1.47) providing the average diffusion coefficients
〈D‖〉 = 〈Dx〉 = 〈Dy〉 = 0.52D0 and 〈Dz〉 = 0.24D0. The dashed line is the best fit
to Eq. (5.2.9), using Eq. (5.1.28), with B = 4.8, `D = 21 nm, and `B = 530 nm.f) Total
normal conservative force Fz exerted on the particle as a function of the distance z to the
wall, reconstructed from Eq. (5.2.21), using Eq. (5.1.48) for the circles and Eq. (5.2.20)
for the squares. The solid line corresponds to Eq. (5.2.23), with B = 4.8, `D = 21 nm and
`B = 530 nm. The black dashed lines and gray area indicate the amplitude of the thermal
noise computed from Eq. (5.2.22). The horizontal red dashed line indicates the buoyant
weight Fg = −7 fN of the particle.
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5.3 Conclusion

In this section we have covered the physics we need to take into account when considering

confined Brownian motion. We first detailed the gravitational and DLVO interactions to

detail the Gibbs-Boltzmann distribution. Then, we detail the space-varying damping due

to the hydrodynamic interactions between the wall and the particle. The damping which is

now space-varying in the Langevin induces a non-trivial integration of the Langevin force,

which induces the appearance of a spurious drift term in the Fokker-Planck equation. We

then present a method that permits to estimate how the simulation time-step should be

selected, then we show that the spurious drift term is needed to be taken into account to

recover the correct equilibrium distribution.

In a second part, we present a multi-scale statistical analysis for the problem of freely

diffusing individual colloids near a rigid wall. Combining the equilibrium distribution in

position, time-dependent non-Gaussian statistics for the spatial displacements, a novel

method to infer local diffusion coefficients, and a multifitting procedure, allowed us to

reduce drastically the measurement uncertainties and reach the nanoscale and thermal-

noise-limited femtoNewton spatial and force resolutions, respectively.
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6 Other applications of the method

In this chapter, I present ongoing work and preliminary observations about other topics,

studied with the method presented previously.

6.1 Elastohydrodynamic lift near a soft wall

Figure 6.1.1: Schematic of a spherical colloid of radius a immersed in a fluid of viscosity η
sliding at a velocity V above an incompressible and linear-elastic substrate of shear elastic
modulus G. From the elastohydrodynamic interaction between the particle and the soft
wall arises a net lift force Flift (see Eq. (6.1.1)).

Elastohydrodynamics (EHD) is the field of mechanics that couples elasticity and hydrody-

namics. We here focus particularly on EHD in the context of lubrication, which describes

the relative motion of immersed objects in a near-contact regime. Lubrication EHD is

present at many length and time scale. Examples of relevant phenomena and systems

include, kilometrics landslides [106], roller bearings [107] and blood-cell motion in mi-

crofluidic devices [108–110]. Recently, the problem of a free particle that can sediment,

slide or roll near a soft surface has been treated [111–116]. As the particle slides near

the surface, the hydrodynamic stresses deform the soft wall surface. This deformation

induces a symmetry breaking of the contact geometry. Hence, a net normal force emerges

and is applied to the objects. Furthermore, if a particle is sliding due to its own weight,

this lift force can be self-sustained. The first experimental quantitative observation of the

lift effect has been done at the macroscopic scale using negatively-buoyant centimetric

cylinders immersed in a viscous fluid, that were sliding down a tilted wall coated with an
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elastic layer. The authors show that the self-sustained EHD lift reduces the coefficient

of dynamic friction by nearly an order of magnitude and suggest that this EHD force

could partially explain phenomena such as reduced wear in animal joints and long-runout

landslides. The EHD lift force has also recently been measured at the microscopic-scale,

using micron-sized colloidal spheres in micro-channels under flow. However, in all these

experiments, the motion is deterministic and induced by an external force or flow. In

the context of my thesis, we further wonder whether spontaneous Brownian motion, and

thus thermal fluctuations could trigger such an effect in some temporal range. In the

lubrication “EHD” theory, considering a sphere of radius a moving at constant velocity

V , in a solvent of viscosity η, and at a distance z from a thick (with respect to the particle

radius), incompressible, linear-elastic substrate of shears elastic modulus G, the lift force

Flift reads [112]:

Flift ∼ 0.41
η2V 2

G

a5/2

z5/2
, (6.1.1)

where the 0.41 factor has been computed by Bertin et al. [116] as well as other force and

torque components. To incorporate fluctuations into this deterministic picture, a simple

idea is to replace the velocity V in Eq. (6.1.1) by the typical horizontal thermal velocity√
kBT/m obtained through the Maxwell-Boltzmann distribution , leading the following

estimate of an hypothetical Brownian EHD lift force:

Flift,Brown ∼ 0.41
η2kBT

Gρpa1/2z5/2
. (6.1.2)

From this equation, we can observe a counterintuitive effect: as the particle radius (and

thus the surface of contact) decreases, the the EHD force Flift,Brown increases. Taking

typical biophysical values such as G ' 10 kPa, ρp = 1350 kg.m−3 (proteins density)

and a = 100 nm, we see that the Brownian EHD force is in the piconewton range. The

latter range is comparable to other surface forces, which means that microscopic entities

in biology and nanoscience may spontaneously trigger Brownian EHD couplings, notably

their dynamics. However, it is important to note that it is only a simple estimate and

which contains a high risk of conceptual failure associated, for example, to the lake of

compensating drift at equilibrium.
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6.1.1 PolyDimethylSiloxane

To do the soft coating experimentally, we use PolyDimethylSiloxane (PDMS) which is

widly use for fabrication in microfluidics and also in shampoo [117] or food11. PDMS is a

silicone-based organic polymer which chemical formula is:

CH3[Si(CH3)2O]nSi(CH3)3 , (6.1.3)

where n is the number of Si(CH3)2O dimethyl groups. By mixing a solution of PDMS

chains with a curring agent containing hydrosilane groups (SiH), bonds or crosslink be-

tween different PDMS chains are appearing, as shown in Fig. 6.1.2.

Figure 6.1.2: Figure taken from [118]. Examples of crosslinking reaction between the
PDMS chains and a curing agent containing hydrosilane groups.

Due to the crosslinker, the PDMS turns into an elastomer, modelled as an incompressible

and linear-elastic solid. Some of its characteristics are to be hydrophobic and to exhibit

strong gas permeability [119]. The elastic modulus G of the crosslinked PDMS can be

tuned by changing the mixing ratio of base polymer solutions and curing agent. For

example, for one of the most used PDMS, which is Sylgard 184, a mixing ratio of 10 : 1

leads to an elastic modulus G = 1.5 MPa, and 35 : 1 leads to G ' 100 kPa [120]. To

prepare experimental samples, it possible to spin coat the microscope slides with the

base-agent mixture before it is cured in order to have a thick soft surface coating onto the

slides. Moreover, after curing some uncrosslinked chains (or free chains) usually remains

in samples which can play important role when working near the soft surfaces. Indeed,

11 PDMS is used as an antifoaming agent in food and is identified by the European food additive number
E900.
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Hourlier-Fargette et al. [121] shown that these free chains are drawn by water drops,

altering there sliding dynamics. To avoid any issue, Glover et al. [122] proposed an

inexpensive method to clean PDMS. There method consists in putting a PDMS sheet

at a water - organic solvent interface and wait that free chains migrate into the solvent.

However, for simplicity, we first decided to use already prepared samples sold by Ibidi,

these came as soft coated Petri dishes with a coverslip on the bottom that we can directly

fit into our microscope.

6.1.2 Measuring non-conservative forces

To measure the non-conservative forces felt by a Brownian particle diffusing on top of a

soft surface, we do the exact same experiment and data analysis as the one developed

in section 5.2. As the EHD force does not derive from a potential, we need to extract

the non-conservative forces FNC, to do so, by combining Eqs. (5.2.20) and (5.2.23), the

non-conservative force reads:

FNC = Fz(z)− F eq
z (z) . (6.1.4)

In Fig. 6.1.3 are shown the measured FNC as a function of particle-wall distance, for two

different elastic moduli G = 15 and 28 kPa. These first experiments suggest that Brow-

nian motion might indeed trigger some non-conservative EHD forces. This preliminary

experiment will be completed in near future with additional and systematic experiments.

Specifically, we will vary three parameters, η, G and a to check if we can obtain a universal

plot,i.e. where Flift,Brown varies linearly with η2

Ga1/2 , as shown in Fig. 6.1.4 with the first

experiments.
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Figure 6.1.3: Non-conservative forces measured experimentally as a function of particle-
wall distance, for colloidal particles of radius a = 1.5 µm diffusing in water above an
incompressible and linear-elastic substrate of shear elastic moduli G = 15 and 28 kPa.
Plain lines correspond to the Brownian EHD prediction Flift,Brown (see Eq. (6.1.2)). ¥
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Figure 6.1.4: Non-conservative forces normalized by Ga1/2zη−2 by measured experimen-
tally for colloidal particles of radius a = 1.5 µm diffusing in water above an incompressible
and linear-elastic substrate of shear elastic moduli G = 15 and 28 kPa. The plain line
corresponds to the Brownian EHD lift force Flift,Brown (see Eq. (6.1.2)). ¥

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter4/images/EHD_forces/global_EHD_plot.ipynb
https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter4/images/EHD_forces/global_EHD_plot.ipynb
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6.2 Close wall stuck motion

Figure 6.2.1: Median of the a movie of the hologram of a stuck yet moving particle. The
median is calculated over 120 images taken every 30 s.

When performing the experiments near a rigid wall in order to measure the Debye length

`D (see section 5.2.1) as a function of the concentration of NaCl, we observed that some

particles were stuck on the surface. As we first expected for this stuck particles, we did

not observe any motion of the particle. However, surprisingly, in some cases we observed

that some particles were slightly diffusing. This slight diffusion can be observed directly

from the raw data, by looking at the median of the images of the video capture from an

hologram of a stuck yet moving particle. The latter median is shown in Fig. 6.2.1, where

we observe a blurry hologram due to the particle motion. Moreover, as we cannot properly

have the background in this experiment since the particle does not diffuse enough, the

statistical error is increased. The measured trajectory is shown in Fig.6.2.2, where we

remove a mechanical drift velocity of the order of 2 µm.h−1 along the x- and y-axes and

6 µm.h−1 along the z-axis. In the following, we look at the short-time dynamics (t < 1 s),

since the drift over such a time scale is of the ordert the nm.s−1.
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Figure 6.2.2: Raw trajectories measured using the Mie tracking technique for the x-, y-
and z- axes, for a particle of radius a = 1.5 µm. The time between each frame is τ = 1/200
s. ¥

Let us focus on the MSDs along the x-, y- and z-axes which are shown in Fig. 6.2.3. We

observe that the MSD along the z- axis is a constant, with (〈r2
z〉t)1/2 = 10 nm which is of

the order of the tracking uncertainty (see section 4.3); hence, I will not physically comment

the results obtained along the z-axis. However, on the x-axis, interestingly, we can observe

two regimes, indicating that the particle is diffusing in a potential. In addition, the

collapse with the corresponding data on the y-axis suggests that the potential is isotropic

along the x- and y-axis, as if the particle was adhering to the surface with some rotational

diffusion [123–125]. The regime, at short time is linear with ∆t showing a normal diffusion

with average diffusion coefficients (see Eq. (5.2.2)) 〈D‖〉 = 〈Dx〉 = 〈Dy〉 = 0.14D0. This

latter value is lower than the minimum value of D‖, See Eq. (5.1.47), which demonstrates

that the associated motion is not a simple translational diffusive motion in the xy-plan.

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter4/images/stucked_particle/Full%20analysis%20trajectory_using_Dyacine_adding_x_y_distrib.ipynb
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Figure 6.2.3: Measured mean-squared displacements (MSD, see Eq. (5.2.1)) of a particle
stuck on the surface as functions of the time increment ∆t, for the three spatial directions,
x, y, and z. The solid line is the best fit to Eq. (5.2.2), having 〈Di〉 as a free parameter,
providing the average diffusion coefficient 〈D‖〉 = 〈Dx〉 = 〈Dy〉 = 0.14D0. The dashed
black line is the average value of the plateau of the MSD along the x- and y-axes, i.e.
4.3× 10−15 m2. ¥

The plateau of the MSD along x and y has an average value 4.3×10−15 m2. By supposing

that the particle is in a harmonic potential, we can make an estimate of the spring constant

kH, using the relation:

kH =
2kBT

lim
∆t→∞

〈∆x2〉 =
8× 10−21

4.3× 10−15
' 2 µN.m−1 . (6.2.1)

https://github.com/eXpensia/Confined-Brownian-Motion/blob/main/02_body/chapter4/images/stucked_particle/Full%20analysis%20trajectory_using_Dyacine_adding_x_y_distrib.ipynb
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Figure 6.2.4: Normalized probability density functions Pi σ of the normalized displace-
ments ∆x/σ and ∆z/σ, at short times, with σ2 the corresponding MSD (see Fig. 6.2.3),
for different time increments ∆t ranging from 0.01 s to 0.05 s, as indicated with different
colors. The gray dashed lines are normalized Gaussian distributions, with zero means and
unit variances.

To measure kH from the MSD we supposed that the particle is in an harmonic potential.

Another way to measure it is to use the positional Gibbs-Boltzmann equilibrium PDF,

which writes:

PHeq(x) = A exp

[
− kHx

2

2kBT

]
, (6.2.2)

where A is a normalization constant such that
∫∞

0
PHeqdx = 1. The experimental Gibbs-

Boltzmann equilibrium PDF PHeq is shown in Fig. 6.2.5. We can observe a good agreement

between the fitted distribution from Eq. 6.2.2. From the latter fit, we measure more

precisely kkH
= 1.738 ± 0.004 µN.m−1. This measurement has recently been done by

Jonáš et al. [125] and measure a kH of the same order of magnitude. However, in addition

we show the dynamic statistics with the MSD as in Fig. 6.2.3.

Beyond further understanding the origin of such a stiffness, and possibly relating it to

adhesion or other interesting effects [125], it would be interesting to reproduce the same

study using a soft surface and see if we can observe a change of kH with the elastic

modulus G. If the latter is true, this experiment could lead to a local determination of

elastic moduli using Brownian colloids attached on soft surfaces. Additionally, we can

look at the displacement PDFs Pi as shown in the Fig. 6.2.4. Contrary to the result we
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Figure 6.2.5: Measured equilibrium probability distribution function PHeq of the position
x of the stuck particle. The solid line represents the best fit to the normalized Gibbs-
Boltzmann distribution in position a particle in an harmonic potential (see Eq. (6.2.2))
for kkH

= 1.738± 0.004 µN.m−1.

had for a freely diffusing particle (see Fig. 5.2.5) we do not observe a clear non-Gaussianity

here.

6.3 Long-time 4th cumulent

In this subsection we consider a cumulent of higher order than 2 (MSD). The 4th order

cumulent reads:

C4(∆t) =
1

4!

(〈
[xi(t+ ∆t)− xi(t)]4

〉
t
− 3

〈
[xi(t+ ∆t)− xi(t)]2

〉2

t

)
. (6.3.1)

For a Gaussian-distributed variable x , C4 is given by the second order moment as 〈∆x4〉t =

〈∆x2〉2t . Therefore, the literature often overlooks higher moments as they rarely give

additional information. However, as it has been shown along this manuscript, confined

Brownian motion exhibits non-Gaussian statistical properties, as shown in Fig. 5.2.5.

Thus, it becomes interesting to study higher-order cumulents. We work on this project

with David Dean, Thomas Guérin and Arthur Alexandre who are experts in stochastic

theory. They found an interesting behavior for the 4th cumulent in parallel displacement

to the wall, for which the Langevin equation along the x-axis is given by:
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dx =
√

2D‖(z)dBt (6.3.2)

In this context, Eq. (6.3.1) can be simplified in two regimes [unpublished work by Alexan-

dre et al.], for ∆t tends to 0, one has:

lim
∆t→0

C4(∆t) =
∆t2

2

(
〈D2
‖〉 − 〈D‖〉2

)
, (6.3.3)

where the averages are done over the equilibrium distribution Peq. The fourth-cumulent

thus varies as ∆t2 at short time. In the limit ∆t → ∞, Eq. (6.3.1) can be simplified to

fourth:

lim
∆t→∞

C4(∆t) = C0
4∆t− C1

4 , (6.3.4)

where C0
4 and C1

4 are constants that depend on the equilibrium distribution Peq, and can

be written as functions of B, `D, `B and D‖. Unlike the first and second moments of the

parallel displacement (the average displacement 〈∆x〉t and the MSD 〈∆x2〉t respectively),

the 4th cumulent exhibits a peculiar regime at late times. This result is thus interesting

as it gives a new statistical observable to characterize the long-term trajectory. If this

prediction is verified, it could be added to our inference method (see section 5.2) in order

to gain precision and robustness. We first test the fourth cumulent on a simulated 45

minutes long trajectory (see section 5.1.7) with the physical parameters B = 4.8, `D = 21

nm, `B = 670 nm, and a time-step τ = 0.05 s. The fourth cumulent thus computed is

shown in Fig. 6.3.1. Thanks to this simulation, we observe that with a particle of radius

a = 1.5 µm, we experimentally explore only the short time regime of Eq. 6.3.3.
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Figure 6.3.1: Fourth cumulent of the transverse displacement as a function of time in-
crement calculated on a simulated 45 minutes long trajectory (see section 5.1.7) with the
physical parameters B = 4.8, `D = 21 nm, `B = 570 nm, and a time-step τ = 0.05 s. The
plain line corresponds to the short time approximation of Eq. (6.3.3).

From the trajectory shown in Fig. 5.2.1 we experimentally compute the fourth cumulent

as plotted in Fig. 6.3.2. We find a good agreement with the short time regime of Eq. 6.3.3,

without any free parameter, using the result of the multi-fitting method (see section 5.2.5).

However, this experiment has only been done once so far: it is thus a preliminary result

that needs further confirmation.
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Figure 6.3.2: Experimentally measured 4th cumulent of the transverse displacement as
a function of time increment . The plain line corresponds Eq. (6.3.3) calculated using
Eqs (5.1.47) and (5.1.29) with with B = 4.8, `D = 21 nm, and `B = 530 nm.

6.4 Sample ageing

While doing the experiments on the soft surfaces, we observed that the images were

becoming blurry with time. An example is shown in Fig. 6.4.1 where we can see microscope

images separated by three hours.

Trying to find the origin of this effect, we focused on the interface between the soft PDMS

layer and the glass substrate. Doing so, we observed a structure that looks like bubbles, as

shown in Fig.6.4.2. We observe that this effect happens faster as the PDMS is softer (lower

modulus) and the bubbles seem to be also bigger. One of the ideas we have to explain

this phenomenon comes from the high gas permeability of PDMS that could lead to a gas

accumulation between the PDMS and the glass. The origin of this gas would come from

the naturally present gas molecules inside the colloid suspension. Other possible scenarios

include swelling and osmocapillarity in the PDMS. This observation will be the subject

of future work.
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Figure 6.4.1: Hologram of a particle diffusing above a soft surface (G = 1.5 kPa). The
image on the right has been taken 3 hours after the one on the left. The images are 45 µm
wide and 50 µm tall.

Figure 6.4.2: Images of the glass-PDMS (G = 1.5 kPa) interface, three hours after water
has been introduced atop the sample. The images are 45 µm wide and 50 µm tall.
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7 Conclusion

In this manuscript, we have addressed experimentally, numerically and theoretically sev-

eral aspects related to Brownian motion. In chapter 3, we started with history by pre-

senting the first observation in the XIXth century by Robert Brown and the subsequent

mathematical description, and numerical simulation. We have then, in chapter 4, re-

viewed different techniques that permit tracking of individual microparticles. We mainly

focused on the Lorenz-Mie framework that we used in order to study the free confined

Brownian motion. Indeed, it requires no calibration by offering a direct measure of the

radius and optical index of each tracked particle. We then showed the experimental setup,

which is a custom-made inverted microscope that we optimized over the years to capture

Lorenz-Mie holograms. To retrieve the trajectory from the captured holograms we mainly

used a tool developped at the Grier’s Lab under the name of Pylorenzmie ¥ and a custom

version, Wraplorenzmie, to automate the tracking across whole movies and simplify the

use of MP4 files ¥.

The particles thus tracked and the trajectories retrieved, in chapter 5, we focused on the

analysis of Brownian motion near a rigid and charged wall. We first detailed in section 5.1

how the physics changes due to the wall, from the DLVO interactions between the surface

and the particles to hindered diffusion. Due the latter, a spurious drift appears in the

overdamped Fokker-Planck equation which needs to be taken into account in numerical

simulations, and also for force measurements.

Once the underlying theory has been explained,in section 5.2, we described the trajectory

analysis. We addressed static observables such as equilibrium distribution, and dynamic

observables such as the Mean Squared Displacements (MSDs) and displacement distribu-

tions. In particular, for the motion perpendicular to the wall, the MSD exhibits a normal

distribution at short time, and an equilibrium plateau at long time. Furthermore, the

short-time displacement distribution exhibits non-Gaussian properties which is a direct

signature of the hindered mobility induced by the rigid boundary.

Once the statistical properties of a confined colloid understood and correctly measured,

we then focused on measuring the hindered diffusion coefficient. This measure was done

using a novel method developped by Frishman and Ronceray [100], using information

theory to infere the local mobility onto a basis of fit functions, leading to high accuracy

near the surface (where there is less data).

All the data, from the equilibrium distribution to the hindered mobility can be described

by the three parameters of the system B, `D and `B. We thus built a multi-fitting method,

https://github.com/davidgrier/pylorenzmie
https://github.com/eXpensia/wraplorenzmie
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that permits to infere precisely these parameters by taking into account all the observ-

ables at once. From this method, we extracted precisely the equilibrium potential from

which we computed the conservative forces. This force measuremement was successfully

corroborated by an independent one based on the drifts of the trajectories.

All together, we are able to reach a thermal-noise-limited femtonewton force resolution

as well as a spatial resolution at the nanoscale.

As shown in chapter 6, we are currently using our device and method in order to investigate

an original coupling between soft lubrication theory and Brownian motion. Also, we are

working on pushing the limits of our resolution to measure fine effects on higher-order

cumulents. Finally, we believe that the ability to measure tiny surface forces, locally, and

at equilibrium, as well as the possible application of the method towards non-conservative

forces and out-of-equilibrium settings, open fascinating perspectives for nanophysics and

biophysics.
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8 Conclusion en français

Dans ce manuscrit, nous avons abordé expérimentalement, numériquement et théoriquement

plusieurs aspects liés au mouvement Brownien. Dans le chapitre 3, nous avons commencé

par l’histoire, en présentant la première observation au XIXème siècle par Robert Brown

et la description mathématique ainsi que la simulation numérique qui ont suivi. Nous

avons ensuite, dans le chapitre 4, passé en revue les différentes techniques qui permettent

de suivre des microparticules individuelles. Nous nous sommes principalement concentrés

sur le cadre Lorenz-Mie que nous avons utilisé afin d’étudier le mouvement brownien libre

confiné. En effet, il ne nécessite aucune calibration en offrant une mesure directe du rayon

et de l’indice optique de chaque particule suivie. Nous avons ensuite montré le dispositif

expérimental, qui est un microscope inversé fait sur mesure que nous avons optimisé au

fil des ans pour capturer des hologrammes de Lorenz-Mie. Pour extraire la trajectoire des

hologrammes capturés, nous avons principalement utilisé un outil développé au labora-

toire de Grier sous le nom de Pylorenzmie ¥ et une version personnalisée, Wraplorenzmie,

pour automatiser le suivi sur des films entiers et simplifier l’utilisation des fichiers MP4

¥.

Les particules ainsi suivies et les trajectoires extraites, dans le chapitre 5, nous nous

sommes intéressés à l’analyse du mouvement brownien à proximité d’une paroi rigide et

chargée. Nous avons d’abord détaillé dans la section 5.1 comment la physique change

à cause du mur, des interactions DLVO entre la surface et les particules à la diffusion

entravée. En raison de cette dernière, une dérive parasite apparâıt dans l’équation de

Fokker-Planck suramortie qui doit être prise en compte dans les simulations numériques,

ainsi que pour les mesures de force.

Une fois la théorie sous-jacente expliquée, dans la section 5.2, nous avons décrit les

résultats expérimentaux et la manière dont les trajectoires ont été analysées. Nous avons

abordé les observables statiques comme la distribution d’équilibre, et les observables dy-

namiques comme les déplacements quadratiques moyens (MSDs) et les distributions de

déplacement. En particulier, pour le mouvement perpendiculaire au mur, le MSD présente

une distribution normale à court terme, et une valeur d’équilibre en plateau à long terme.

De plus, la distribution du déplacement à court terme présente des propriétés non gaussi-

ennes, ce qui est une signature directe de la modification de la mobilité induite par la

frontière rigide.

Les propriétés statistiques d’un collöıde confiné étant comprises et correctement mesurées,

nous nous sommes ensuite attachés à mesurer le coefficient de diffusion le coefficient de

diffusion. Cette mesure a été effectuée à l’aide d’une nouvelle méthode développée par

https://github.com/davidgrier/pylorenzmie
https://github.com/eXpensia/wraplorenzmie
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Frishman et Ronceray [100], utilisant la théorie de l’information pour déduire la mobilité

locale sur une base de fonctions d’ajustement, conduisant à une grande précision près de

la surface (où il y a moins de données).

Toutes les données, de la distribution à l’équilibre à la mobilité, peuvent être décrites par

les trois paramètres du système B, `D et `B. Nous avons donc construit une méthode

multi-fitting, qui permet de déduire précisément ces paramètres en prenant en compte

toutes les observables à la fois. De cette méthode, nous avons extrait précisément le

potentiel d’équilibre à partir duquel nous avons calculé les forces conservatives. Cette

mesure de force a été corroborée avec succès par une mesure indépendante basée sur les

dérives des trajectoires.

Au total, nous sommes capables d’atteindre une résolution au femtonewton sur la mesure

de la force, limitée par le bruit thermique ainsi qu’une résolution spatiale à l’échelle

nanométrique.

Comme le montre le chapitre 6, nous utilisons actuellement notre dispositif et notre

méthode afin d’étudier le couplage original entre la théorie de la lubrification douce et

le mouvement brownien. Nous travaillons également à repousser les limites de notre

résolution pour mesurer les effets fins sur les cumulants d’ordre supérieur. Enfin, nous pen-

sons que la capacité à mesurer de minuscules forces de surface, localement et à l’équilibre,

ainsi que l’application possible de la méthode aux forces non-conservatives et aux sit-

uations hors équilibre, ouvrent des perspectives fascinantes pour la nanophysique et la

biophysique.
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inertial_Brownian_motion

September 25, 2021

1 Inertial Brownian motion simulation

The Inertial Langevin equation for a particle of mass m and some damping γ writes:

mẍ = −γẋ +
√

2kBTγdBt (1)

Integrating the latter equation using the Euler method, one can replace ẋ by:

ẋ ' xi − xi−1

τ
, (2)

ẍ by:

ẍ '
xi−xi−1

τ − xi−1−xi−2
τ

τ

=
xi − 2xi−1 + xi−2

τ2 .
(3)

and finally, dBt by a Gaussian random number wi with a zero mean value and a τ variance, on
can write xi as:

xi =
2 + τ/τB

1 + τ/τB
xi−1 −

1
1 + τ/τB

xi−2 +

√
2kBTγ

m(1 + τ/τB)
τwi , (4)

In the following, we use Python to simulate such a movement and check the properties of the
mean squared displacement. Then, I propose a Cython implementation that permits a 200x speed
improvement on the simulation.

[1]: # Import important libraries
import numpy as np
import matplotlib.pyplot as plt

[2]: # Just some matplotlib tweaks
import matplotlib as mpl

mpl.rcParams["xtick.direction"] = "in"
mpl.rcParams["ytick.direction"] = "in"
mpl.rcParams["lines.markeredgecolor"] = "k"
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mpl.rcParams["lines.markeredgewidth"] = 1.5
mpl.rcParams["figure.dpi"] = 200
from matplotlib import rc

rc("font", family="serif")
rc("text", usetex=True)
rc("xtick", labelsize="medium")
rc("ytick", labelsize="medium")
rc("axes", labelsize="large")

def cm2inch(value):
return value / 2.54

[3]: N = 1000000 # number of time steps
tau = 0.01 # simulation time step
m = 1e-8 # particle mass
a = 1e-6 # radius of the particle
eta = 0.001 # viscosity (here water)
gamma = 6 * np.pi * eta * a
kbT = 4e-21
tauB = m / gamma

With such properties we have a characteristic diffusion time τB = 0.53 s.

[4]: def xi(xi1, xi2):
"""
Function that compute the position of a particle using the full Langevin␣

↪→Equation
"""
t = tau / tauB
wi = np.random.normal(0, np.sqrt(tau))
return (

(2 + t) / (1 + t) * xi1
- 1 / (1 + t) * xi2
+ np.sqrt(2 * kbT * gamma) / (m * (1 + t)) * np.power(tau,1) * wi

)

[5]: def trajectory(N):
"""
Function generating a trajectory of length N.
"""
x = np.zeros(N)
for i in range(2, len(x)):

x[i] = xi(x[i - 1], x[i - 2])
return x
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Now that the functions are setup one can simply generate a trajectory of length N by simply calling
the the function trajectory()

[6]: # Generate a trajectory of 10e6 points.
x = trajectory(1000000)

[7]: plt.plot(np.arange(len(x))*tau, x)
plt.title("Intertial Brownian trajectory")
plt.ylabel("$x$ (m)")
plt.xlabel("$t$ (s)")
plt.show()

1.1 Cross checking

We now check that the simulated trajectory gives us the correct MSD properties to ensure the
simulation si done properly. The MSD given by:

MSD(∆t) = 〈(x(t)− x(t + ∆t)2〉
∣∣∣
t

, (5)

with ∆t a lag time. The MSD, can be computed using the function defined in the cell below. For a
lag time ∆t� τB we should have:

MSD(∆t) =
kBT
m

∆t2 , (6)
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and for ∆t� τB:

MSD(τ) = 2D∆t , (7)

with D = kBT/(6πηa).

[8]: t = np.array([*np.arange(3,10,1), *np.arange(10,100,10), *np.
↪→arange(100,1000,100), *np.arange(1000,8000,1000)])

def msd(x,Dt):
"""Function that return the MSD for a list of time index t for a trajectory␣

↪→x"""
_msd = lambda x, t : np.mean((x[:-t] - x[t:])**2)
return [_msd(x,i) for i in t]

MSD = msd(x,t)

[9]: D = kbT/(6*np.pi*eta*a)
t_plot = t*tau
plt.loglog(t*tau,MSD, "o")
plt.plot(t*tau, (2*D*t_plot), "--", color = "k", label="long time theory")
plt.plot(t*tau, kbT/m * t_plot**2, ":", color = "k", label="short time theory")
plt.ylabel("MSD (m$^2$)")
plt.xlabel("$\Delta t$ (s)")
horiz_data = [1e-8, 1e-17]
t_horiz = [tauB, tauB]
plt.plot(t_horiz, horiz_data, "k", label="$\\tau_\mathrm{B}$")
plt.legend()
plt.show()
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The simulations gives expected results. However, with the computer used, 6 seconds are needed
to generate this trajectory. If someone wants to look at fine effects and need to generate millions of
trajectories it is too long. In order to fasten the process, in the following I use Cython to generate
the trajectory using C language.

1.2 Cython acceleration

[10]: # Loading Cython library
%load_ext Cython

We now write the same functions as in the first part of the appendix. However, we now indicate
the type of each variable.

[11]: %%cython

import cython
cimport numpy as np
import numpy as np
from libc.math cimport sqrt
ctypedef np.float64_t dtype_t

cdef int N = 1000000 # length of the simulation

cdef dtype_t tau = 0.01 # simulation time step
cdef dtype_t m = 1e-8 # particle mass
cdef dtype_t a = 1e-6 # radius of the particle
cdef dtype_t eta = 0.001 # viscosity (here water)
cdef dtype_t gamma = 6 * 3.14 * eta * a
cdef dtype_t kbT = 4e-21
cdef dtype_t tauB = m/gamma
cdef dtype_t[:] x = np.zeros(N)

@cython.boundscheck(False)
@cython.wraparound(False)
@cython.nonecheck(False)
@cython.cdivision(True)
cdef dtype_t xi_cython( dtype_t xi1, dtype_t xi2, dtype_t wi):

cdef dtype_t t = tau / tauB
return (

(2 + t) / (1 + t) * xi1
- 1 / (1 + t) * xi2
+ sqrt(2 * kbT * gamma) / (m * (1 + t)) * tau * wi

)

@cython.boundscheck(False)
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@cython.wraparound(False)
@cython.nonecheck(False)
cdef dtype_t[:] _traj(dtype_t[:] x, dtype_t[:] wi):

cdef int i
for i in range(2, N):

x[i] = xi_cython(x[i-1], x[i-2], wi[i])
return x

def trajectory_cython():

cdef dtype_t[:] wi = np.random.normal(0, np.sqrt(tau), N).astype('float64')

return _traj(x, wi)

[12]: %timeit trajectory(1000000)

6.79 s ± 92.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

[13]: %timeit trajectory_cython()

30.6 ms ± 495 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Again, we check that the results given through the use of Cython gives the correct MSD

[14]: x=np.asarray(trajectory_cython())
D = kbT/(6*np.pi*eta*a)
t_plot = t*tau
plt.loglog(t*tau,MSD, "o")
plt.plot(t*tau, (2*D*t_plot), "--", color = "k", label="long time theory")
plt.plot(t*tau, kbT/m * t_plot**2, ":", color = "k", label="short time theory")

horiz_data = [1e-8, 1e-17]
t_horiz = [tauB, tauB]
plt.plot(t_horiz, horiz_data, "k", label="$\\tau_\mathrm{B}$")
plt.xlabel("$\\Delta t$ (s)")
plt.ylabel("MSD (m$^2$)")
plt.legend()
plt.show()
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1.2.1 Conclusion

Finally, one only needs ' 30 ms to generate the trajectory instead of ' 7 s which is a ' 250×
improvement speed. The simulation si here bound to the time needed to generate the array of
random numbers which is still done using numpy function. After further checking, Numpy ran-
dom generation si as optimize as one could do so there is no benefit on cythonizing the random
generation. For the sake of completness one could fine a Cython version to generate random num-
bers. Found thanks to Senderle on Stackoverflow. Tacking into account that, the time improvment
on the actual computation of the trajectory without the random number generation is done with
an ' 1100× improvement speed.

[15]: %%cython
from libc.stdlib cimport rand, RAND_MAX
from libc.math cimport log, sqrt
import numpy as np
import cython

cdef double random_uniform():
cdef double r = rand()
return r / RAND_MAX

cdef double random_gaussian():
cdef double x1, x2, w

w = 2.0

7

A Appendix 129



while (w >= 1.0):
x1 = 2.0 * random_uniform() - 1.0
x2 = 2.0 * random_uniform() - 1.0
w = x1 * x1 + x2 * x2

w = ((-2.0 * log(w)) / w) ** 0.5
return x1 * w

@cython.boundscheck(False)
cdef void assign_random_gaussian_pair(double[:] out, int assign_ix):

cdef double x1, x2, w

w = 2.0
while (w >= 1.0):

x1 = 2.0 * random_uniform() - 1.0
x2 = 2.0 * random_uniform() - 1.0
w = x1 * x1 + x2 * x2

w = sqrt((-2.0 * log(w)) / w)
out[assign_ix] = x1 * w
out[assign_ix + 1] = x2 * w

@cython.boundscheck(False)
def my_uniform(int n):

cdef int i
cdef double[:] result = np.zeros(n, dtype='f8', order='C')
for i in range(n):

result[i] = random_uniform()
return result

@cython.boundscheck(False)
def my_gaussian(int n):

cdef int i
cdef double[:] result = np.zeros(n, dtype='f8', order='C')
for i in range(n):

result[i] = random_gaussian()
return result

@cython.boundscheck(False)
def my_gaussian_fast(int n):

cdef int i
cdef double[:] result = np.zeros(n, dtype='f8', order='C')
for i in range(n // 2): # Int division ensures trailing index if n is odd.

assign_random_gaussian_pair(result, i * 2)
if n % 2 == 1:

result[n - 1] = random_gaussian()
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return result

[16]: %timeit my_gaussian_fast(1000000)

30.9 ms ± 941 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

[17]: %timeit np.random.normal(0,1,1000000)

26.4 ms ± 1.87 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

One can thus see, that even a pure C implementation can be slower than the Numpy one, thanks
to a great optimization.

[18]: fig = plt.figure(figsize = (cm2inch(16), cm2inch(10)))
gs = fig.add_gridspec(2, 1)
f_ax1 = fig.add_subplot(gs[0, 0])
for i in range(100):

x = np.asarray(trajectory_cython())* 1e6
plt.plot(np.arange(N)*tau / 60, x)

plt.ylabel("$x$ ($\mathrm{\mu m}$)")
plt.xlabel("$t$ (min)")
plt.text(5,100, "a)")
plt.xlim([0,160])
f_ax1 = fig.add_subplot(gs[1, 0])

x=np.asarray(trajectory_cython())
D = kbT/(6*np.pi*eta*a)
plt.loglog(t*tau,MSD, "o")
t_plot = np.linspace(0.5e-2,5e3,1000)
plt.plot(t_plot, (2*D*t_plot), "--", color = "k", label="long time theory")
plt.plot(t_plot, kbT/m * t_plot**2, ":", color = "k", label="short time theory")

horiz_data = [1e-7, 1e-18]
t_horiz = [tauB, tauB]
plt.plot(t_horiz, horiz_data, "k", label="$\\tau_\mathrm{B}$")
plt.ylabel("MSD (m$^2$)")
plt.xlabel("$\\Delta t$ (s)")
ax = plt.gca()
locmaj = mpl.ticker.LogLocator(base=10.0, subs=(1.0, ), numticks=100)
ax.yaxis.set_major_locator(locmaj)
locmin = mpl.ticker.LogLocator(base=10.0, subs=np.arange(2, 10) * .1,

numticks=100)
ax.yaxis.set_minor_locator(locmin)
ax.yaxis.set_minor_formatter(mpl.ticker.NullFormatter())
plt.legend(frameon=False)
plt.text(0.7e2,1e-15, "b)")
plt.xlim([0.8e-2,1e2])
plt.ylim([1e-16,1e-10])

9

A Appendix 131



plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

plt.savefig("intertial_langevin.pdf")
plt.show()
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Fitting procedure using Pylorenzmie

1 Fitting procedure using Pylorenzmie

In order to fit an hologram, I used the pylorenzmie model which provides a set of python
classes in order to analyse holographic microscopy data.

Pylorenzmie can be download on the David Grier’s github repository:
https://github.com/davidgrier/pylorenzmie.

What I actually get from the experiments are mp4 movies, in order to analyze them easily,
I constructed a wrapper around the pylorenzmie module which can be found on my
repository: https://github.com/eXpensia/wraplorenzmie.

This wrapper permits to do the following pipeline:

• Directly load the movies
• Compute the back ground.
• Use the first image in order to get the pre guesses
• Fit the 10 000 first images to determine precisely the radius and index of a particle.
• Use the later information in order to fit the whole movie (and save the data in the

same time)

One that done, the trajectory be analyzed separately.

[1]: # We first start by import the important modules

import wraplorenzmie.utilities.utilities as utilities
import wraplorenzmie.fits.fit as fit
import imageio
# For Plotting.
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
#sns.set(style='white', font_scale=2)
%matplotlib inline
import matplotlib as mpl
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mpl.rcParams["figure.dpi"] = 200
from matplotlib import rc
rc('font', family='serif')
rc('text', usetex=True)
rc('xtick', labelsize='x-small')
rc('ytick', labelsize='x-small')

def cm2inch(value):
return value/2.54

No module named 'pylorenzmie.fitting.cython.cminimizers'

[2]: #We load the movie
vid = utilities.

↪→video_reader("Basler_acA1920-155um__22392621__20200527_162231224.mp4")

[3]: # A function that permits to compute de radial profile of an image this␣
↪→will later be used in order to see if the fits are done correctly

def radial_profile(data, center=None):
if center==None:

center = np.array(np.shape(data)) / 2

y, x = np.indices((data.shape))
r = np.sqrt((x - center[0])**2 + (y - center[1])**2)
r = r.astype(int)

tbin = np.bincount(r.ravel(), data.ravel())
nr = np.bincount(r.ravel())
radialprofile = tbin / nr

T = data.ravel()
V = r.ravel()

err = [np.std(T[V == u]) for u in np.unique(V)]

return radialprofile, err

[4]: # We take a look at the first image of the movie
image = vid.get_image(1)
plt.imshow(image,cmap="gray")

[4]: <matplotlib.image.AxesImage at 0x1a70b337be0>
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[5]: # set the background image (it can also be computed using vid.
↪→get_background method)

vid.number = 125000
vid.background = np.array(imageio.imread("background.tiff"))
#vid.background = vid.get_background(n=50) # n is the number of image to␣

↪→use to compute the background
plt.imshow(vid.background,cmap="gray")

[5]: <matplotlib.image.AxesImage at 0x1a70bc56490>
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[6]: imageio.imwrite("background.tiff",vid.background)# We save the background␣
↪→for possible later use.

[7]: # the normalized image, we can see that their is some movement in the␣
↪→background.

# This could be avoided by computed the background as a function of the␣
↪→time, if the particle diffuses enough.

normed_image = utilities.normalize(image,vid.background)
plt.imshow(normed_image,cmap="gray")
normed_image = normed_image
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[8]: # We found the possition of the particle
feature = utilities.center_find(image)[0]
utilities.plot_bounding(normed_image,feature)
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1.1 Fitting the first image

We fit the first image in order to get the preguess. We first start by croping the hologram.

[9]: xc, yc, w, h = feature[0]
x_center = xc
y_center = yc
h=200
im_c = fit.crop(image, int(xc), int(yc), int(h))
bk_c = fit.crop(vid.background, int(xc), int(yc), int(h))
cropped = utilities.normalize(im_c,bk_c, dark_count = np.min(im_c))
cropped = cropped / np.mean(cropped)
plt.imshow(cropped,cmap = "gray")

[9]: <matplotlib.image.AxesImage at 0x1a71d7e6d00>

[10]: # We setup the fitting method.
fitter = fit.fitting(cropped,0.532,0.0513)
fitter.make_guess(1.50,1.59,12,alpha = 1,fit_r=True,␣

↪→fit_n=True,fit_alpha=True)

[11]: # We do the actual fit.
result = fitter.fit_single(cropped, method = "lm")
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[12]: zo = result.result["x"][2]*0.0513
print(result.result["x"][2]*0.0513)
print(result.redchi)
print(result.result["x"])

11.427616273713154
7.2459765196825305
[101.23514587 103.00299474 222.76055114 1.5310255 1.58239091

1.00198476]

We can plot the result to see if the fit worked properly, and, for a more quantitative com-
parison we can compute the radial intensity profile of both hologram and compare them.

[13]: center = np.array(np.shape(fitter.image))

[14]: radial_exp, err = radial_profile(fitter.image)
theo_exp, err = radial_profile(fitter.fitter.model.hologram().

↪→reshape(fitter.shape))
# computing first the holgram using the fit resutlt

[15]: fit_data = {}
radius_radial = np.arange(len(radial_exp)) * 0.0513
plt.figure(figsize = (15,15))
fig = plt.figure(figsize=(cm2inch(8.6),1.65*cm2inch(8.6)))
fig.subplots_adjust(left=0.14, bottom=.12, right=.99, top=.98)

plt.subplot(2,2,1)
plt.imshow(fitter.image, cmap = "gray")
#plt.title('subplot(2,2,1)')

fit_data["exp_image"] = fitter.image

plt.subplot(2,2,2)
plt.imshow(fitter.fitter.model.hologram().reshape(fitter.shape), cmap =␣

↪→"gray")
frame1 = plt.gca()
frame1.axes.yaxis.set_ticklabels([])

fit_data["th_image"] = fitter.fitter.model.hologram().reshape(fitter.
↪→shape)

#plt.title('subplot(2,2,2)')

plt.subplot(2,2,(3,4))
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plt.plot(radius_radial, radial_exp, label="Experimental")
plt.fill_between(radius_radial, radial_exp - err, radial_exp + err, alpha␣

↪→= 0.3)
plt.plot(radius_radial, theo_exp, label="Theory")
plt.legend()
plt.xlabel("radius [pixel]")
plt.ylabel("Intensity [a.u.]")

fit_data["I_r_exp"] = radial_exp
fit_data["I_errr_exp"] = err

fit_data["theo_exp"] = theo_exp
fit_data["I_radius"] = radius_radial

fig.set_size_inches(cm2inch(8.6), cm2inch(1.6 * 8.6/1.618))
plt.savefig("fit_fig.pdf")

<Figure size 3000x3000 with 0 Axes>

[16]: fitter.fit_video(vid =␣
↪→vid,savefile="find_nrfit_result_dur_27052020_n_r_fix_0p0513_wav532.
↪→dat",xc = x ,yc= y, h = 200, n_end=10000,method = "lm")

100% 9999/9999 [12:39<00:00, 13.17it/s]
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[17]: # Since the measurement or not saved into the ram we need to load it
n_r = np.fromfile('find_nr_exame.dat', dtype=np.float64)
n_r = n_r.reshape(len(n_r)//10,10)
r = n_r[:,3]
n = n_r[:,4]

1.2 Fitting the n, r distributiton using a KDE estimator

To find the most probable couple of r/n we use a kde estimator using seaborn

[18]: import numpy as np
import scipy.stats as st
import matplotlib.ticker as ticker

data = np.random.multivariate_normal((0, 0), [[0.8, 0.05], [0.05, 0.7]],␣
↪→100)

x = r[(r>1.5) & (r<1.555)]
y = n[(r>1.5) & (r<1.555)]
xmin, xmax = np.min(x), np.max(x)
ymin, ymax = np.min(y), np.max(y)

# Peform the kernel density estimate
xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j]
positions = np.vstack([xx.ravel(), yy.ravel()])
values = np.vstack([x, y])
kernel = st.gaussian_kde(values)
f = np.reshape(kernel(positions).T, xx.shape)
f = f/np.max(f)

[19]: np.round(np.max(f))

[19]: 1.0

[20]: fig = plt.figure()
fig.subplots_adjust(left=0.16, bottom=.20, right=.99, top=.99)
ax = fig.gca()
#ax.set_xlim(1.505, 1.53)
#ax.set_ylim(1.575, 1.6)
# Contourf plot
cfset = ax.contourf(xx, yy, f, cmap='Blues')
## Or kernel density estimate plot instead of the contourf plot
#ax.imshow(np.rot90(f), cmap='Blues', extent=[xmin, xmax, ymin, ymax])
# Contour plot
cset = ax.contour(xx, yy, f, colors='k', levels=6)
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# Label plot
ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%1.3f'))
ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%1.3f'))
ax.clabel(cset, inline=1, fontsize=10, fmt="%1.1f")
plt.scatter(xx[np.where(f == 1)],yy[np.where(f == 1)], color = "red",␣

↪→marker="+")
ax.set_xlabel("radius ($\mathrm{\mu m}$)")
ax.set_ylabel("$n_p$")
#plt.title("KDE r n")
fig.set_size_inches(cm2inch(16), cm2inch(9.9))

plt.tight_layout()
fig.savefig('KDErn.pdf')
#pl.show()

[21]: print(" n determined with : mu={0}, sigma={1}".format(np.mean(yy[np.
↪→where(f > 0.1)]), np.std(yy[np.where(f > 0.1)])))

print(" r determined with : mu={0}, sigma={1}".format(np.mean(xx[np.
↪→where(f > 0.1)]), np.std(xx[np.where(f > 0.1)])))

n determined with : mu=1.5851200393768743, sigma=0.003267685282504072
r determined with : mu=1.5181266656310368, sigma=0.00682411690457934
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[22]: (mu_n, mu_r) = np.mean(yy[np.where(f > 0.1)]) , np.mean(xx[np.where(f >␣
↪→0.1)])

1.3 Fitting the whole movie

Now that the measurement of n and r is one we can move on the measurement of the
whole trajectory by simply using fitter.fit_video. For demonstration purposes, I only
fit here at ≃ 22 image per seconds, if can goes up to at least 60 with recent GPU.

[23]: del fitter
fitter = fit.fitting(cropped,0.532,0.0513)
fitter.make_guess(mu_r,mu_n,zo,alpha = 1,fit_r=False,␣

↪→fit_n=False,fit_alpha=False)
#result = fitter.fit_single(cropped, method = "lm")
fitter.fit_video(vid =␣

↪→vid,savefile="fit_result_1p5kPa_18122019_n_r_fix_0p0883_wav_532_ex1.
↪→dat",xc = xc ,yc= yc, h = 200, n_end=10000,method = "lm")

100% 9999/9999 [07:24<00:00, 22.47it/s]

[24]: import numpy as np
data = np.fromfile('fit_result_1p5kPa_18122019_n_r_fix_0p0883_wav_532_ex1.

↪→dat', dtype=np.float64)
data = data.reshape(len(data)//10,10)
x = data[:,0]*0.0513
y = data[:,1]*0.0513
z = data[:,2]*0.0513
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1.4 Plot the trajectory

[25]: plt.plot(np.arange(len(z))/60, x)
plt.plot(np.arange(len(z))/60, y)
plt.ylabel("position $\mathrm{\mu m}$")
plt.xlabel("time (s)")

[25]: Text(0.5, 0, 'time (s)')

[26]: plt.plot(np.arange(len(z))/60, z)
plt.ylabel("height $\mathrm{\mu m}$")
plt.xlabel("time (s)")
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[26]: Text(0.5, 0, 'time (s)')
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Stochastic inference of surface-induced effects using Brownian motion
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Brownian motion in confinement and at interfaces is a canonical situation, encountered from fundamental
biophysics to nanoscale engineering. Using the Lorenz-Mie framework, we optically record the thermally
induced tridimensional trajectories of individual microparticles, within salty aqueous solutions, in the vicinity of
a rigid wall, and in the presence of surface charges. We construct the time-dependent position and displacement
probability density functions, and study the non-Gaussian character of the latter which is a direct signature of
the hindered mobility near the wall. Based on these distributions, we implement a robust and self-calibrated
multifitting method, allowing for the thermal-noise-limited inference of diffusion coefficients spatially resolved
at the nanoscale, equilibrium potentials, and forces at the femtonewton resolution.

DOI: 10.1103/PhysRevResearch.3.L032011

Brownian motion is a central paradigm in modern science.
It has implications in fundamental physics, biology, and even
finance, to name a few. By understanding that the apparent er-
ratic motion of colloids is a direct consequence of the thermal
motion of surrounding fluid molecules, pioneers like Einstein
and Perrin provided decisive evidence for the existence of
atoms [1,2]. Specifically, free Brownian motion in the bulk is
characterized by a typical spatial extent evolving as the square
root of time, as well as Gaussian displacements.

At a time of miniaturization and interfacial science, and
moving beyond the idealized bulk picture, it is relevant to
consider the added roles of boundaries to the above context.
Indeed, Brownian motion at interfaces and in confinement is
a widespread practical situation in microbiology and nanoflu-
idics. In such a case, surface effects become dominant and
alter drastically the Brownian statistics, with key implications
towards (i) the understanding and smart control of the inter-
facial dynamics of microscale entities and (ii) high-resolution
measurements of surface forces at equilibrium. Interestingly,
a confined colloid will exhibit non-Gaussian statistics in
displacements, due to the presence of multiplicative noises
induced by the hindered mobility near the wall [3–5]. Addi-
tionally, the particle can be subjected to electrostatic or van
der Waals forces [6] exerted by the interface, and might expe-
rience slippage too [7,8]. Considering the two-body problem,
the nearby boundary can also induce some effective inter-
action [9]. Previous studies have designed novel methods to
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†yacine.amarouchene@u-bordeaux.fr
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measure the diffusion coefficient of confined colloids [10–16],
or to infer surface forces [17–22]. However, such a statistical
inference is still an experimental challenge, and a precise
calibration-free method taking simultaneously into account
the whole ensemble of relevant properties, over broad spatial
and time ranges, is currently lacking.

In this Rapid Communication, we aim at filling the previ-
ously identified gap by implementing a method of statistical
inference on a set of trajectories of individual microparticles
recorded by holographic microscopy. The buoyant particles
are free to evolve within salty aqueous solutions, near a rigid
substrate, and in the presence of surface charges. We primarily
reconstruct the equilibrium probability distribution function
of the position, as well as the time-resolved probability distri-
bution functions of the displacements in directions transverse
and normal to the wall, including in particular the mean-
squared displacements (MSDs). Special attention is dedicated
to the non-Gaussian statistics, for time scales broadly ranging
from tens of milliseconds to several tens of minutes. Further-
more, we implement the advanced inference method recently
proposed [23]. Additionally, an optimization scheme is used
in order to determine precisely all the free physical parameters
and the actual distance to the wall, at once. All together, this
procedure leads to the robust calibration-free inference of the
two central quantities of the problem: (i) the space-dependent
short-term diffusion coefficients, with a nanoscale spatial res-
olution; and (ii) the total force experienced by the particle,
at the thermal-noise limited femtonewton resolution. These
main results are summarized in Fig. 1, the goal of this Rapid
Communication being the detailed obtention of which.

The experimental setup is schematized in Fig. 2(a). A
sample consists of a parallelepipedic chamber (1.5 cm ×
1.5 cm × 150 μm), made from two glass covers and a
parafilm spacer and sealed with vacuum grease, containing
a dilute suspension of spherical polystyrene beads (Sigma
Aldrich) with nominal radii a = 1.5 ± 0.035 μm, at room

2643-1564/2021/3(3)/L032011(6) L032011-1 Published by the American Physical Society
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(a) (b)

FIG. 1. (a) Measured local short-term diffusion coefficients Di

of the microparticle, normalized by the bulk value D0, as functions
of the distance z to the wall [see Fig. 2(c)], along both a transverse
direction x or y (Di = D‖ = Dx = Dy, blue) and the normal direction
z (Di = Dz, green) to the wall. The solid lines are the theoretical pre-
dictions, D‖(z) = D0η/η‖(z) and Dz(z) = D0η/ηz(z), using the local
effective viscosities η‖(z) and ηz(z) of Eqs. (3) and (4), respectively.
(b) Total normal conservative force Fz exerted on the particle as a
function of the distance z to the wall, reconstructed from Eq. (11),
using Eq. (4). The solid line corresponds to Eq. (13), with B = 4.8,
�D = 21 nm, and �B = 530 nm. The black dashed lines and gray area
indicate the amplitude of the thermal noise computed from Eq. (12).
The horizontal red dashed line indicates the buoyant weight Fg = −7
fN of the particle.

temperature T , in distilled water (type 1, MilliQ device)
of viscosity η = 1 mPa s. The sample is illuminated by a
collimated laser beam with a 532-μm wavelength. The light
scattered by one colloidal particle at a given time t interferes
with the incident beam. An oil-immersion objective lens (x60
magnification, 1.30 numerical aperture) collects the resulting
instantaneous interference pattern, and relays it to a camera

(a) (b)

(c)(d)

FIG. 2. (a) Schematic of the experimental setup. A laser plane
wave of intensity I0 illuminates the chamber containing a dilute
suspension of microspheres in water. The light scattered by a par-
ticle interferes with the incident beam onto the focal plane of an
objective lens, that magnifies the interference pattern and relays it
to a camera. (b) Typical experimental interference pattern produced
by one particle. (c) Corresponding best-fit Lorenz-Mie interference
pattern [24–28], providing a distance z = 11.24 ± 0.2 μm to the
wall, as well as the radius a = 1.518 ± 0.006 μm and refractive
index n = 1.584 ± 0.006 of the particle. (d) Angular averages of the
intensities I (normalized by I0) from the experimental and theoretical
interference patterns, as functions of the radial distance to the z axis.

(a)

(b)

FIG. 3. (a) Typical measured tridimensional trajectory r(t) =
[x(t), y(t), z(t)] of the microparticle near the wall (z = 0). (b) Mea-
sured equilibrium probability density function Peq of the distance z
between the particle and the wall. The solid line represents the best
fit to the normalized Gibbs-Boltzmann distribution in position, using
the total potential energy U (z) of Eq. (1), with B = 4.8, �D = 21 nm,
and �B = 530 nm. The inset shows the measured Debye length �D as
a function of salt concentration [NaCl]. The solid line is the expected
Debye relation �D = 0.304/

√
[NaCl], for a single monovalent salt in

water at room temperature.

with a 51.6-nm/pixel resolution [see Fig. 2(b)]. The exposure
time for each frame is fixed to 3 ms to avoid motion-induced
blurring of the image. The angular average of the intensity
profile from each time frame is then fitted [see Figs. 2(c) and
2(d)] to the Lorenz-Mie scattering function [24–28], which
provides the particle radius a, its refractive index n, and
its instantaneous tridimensional position r = (x, y, z). To re-
duce the uncertainty on the position measurement, we first
calibrate a = 1.518 ± 0.006 μm and n = 1.584 ± 0.006 sep-
arately from the first 105 time frames. The obtained refractive
index is consistent with the one reported in [16]. Then, for
each subsequent time frame, the only remaining fitted quantity
is r, which allows us to reconstruct the trajectory r(t ) with a
nanometric spatial resolution, as shown in Fig. 3(a).

Using the trajectory of the particle, one can then construct
the equilibrium probability density function Peq(r) of the po-
sition of the particle. We find that it does not depend on x and
y, but only on the distance z between the particle and the wall.
As seen in Fig. 3(b), an exponential tail is observed at large
distance, which is identified to the sedimentation contribution
in Perrin’s experiment [2], but here with the probability den-
sity function of a single particle instead of the concentration
field. In contrast, near the wall, we observe an abrupt deple-
tion, indicating a repulsive electrostatic contribution. Indeed,
when immersed in water, both the glass substrate and the
polystyrene bead are negatively charged. All together, the total
potential energy U (z) thus reads

U (z)

kBT
=

{
B e− z

�D + z

�B
, for z > 0

+∞ , for z � 0
, (1)

where kB is the Boltzmann constant, B is a dimension-
less number related to the surface electrostatic potentials
of the particle and the wall [17], �D is the Debye length,
�B = kBT/(g�m) is the Boltzmann length, g is the gravita-
tional acceleration, and �m is the (positive) buoyant mass
of the particle. From this total potential energy, one can
then construct the Gibbs-Boltzmann distribution Peq(z) =
A exp[−U (z)/(kBT )] in position, where A is a normalization
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constant, that fits the data very well, as shown in Fig. 3(b).
Moreover, as shown in the inset of Fig. 3(b), we verified that
we recover the Debye relation �D = 0.304/

√
[NaCl], with �D

in nm, and where [NaCl] is the concentration of salt in mol/L,
with a prefactor corresponding to a single monovalent salt in
water at room temperature [29]. Besides, we have verified (not
shown) that the dimensionless parameter B = 4.8 related to
surface charges is constant in the studied salt-concentration
range, thus excluding any nonlinear effect [21,30] in our case.

We now turn to dynamical aspects, by considering the
MSD. For the three spatial directions, indexed by i = x, y, and
z, corresponding to the coordinates rx = x, ry = y, and rz = z,
of the position r, and for a given time increment �t , the MSD
is defined as

〈�ri(t )2〉t = 〈[ri(t + �t ) − ri(t )]2〉t , (2)

where the average 〈〉t is performed over time t . For a free
Brownian motion in the bulk, and in the absence of other
forces than the dissipative and random ones, the MSD is linear
in time, i.e., 〈�ri(t )2〉t = 2D0�t , where D0 = kBT/(6πηa)
is the bulk diffusion coefficient given by the Stokes-Einstein
relation [1], and η is the liquid viscosity. Further including
sedimentation restricts the validity of the previous result along
z to short times only, i.e., for �t � �2

B/D0 such that the
vertical diffusion is not yet affected by the gravitational drift.

The presence of a rigid wall at z = 0 adds a repulsive
electrostatic force along z. It also decreases the mobilities
nearby through hydrodynamic interactions, leading to effec-
tive viscosities η‖(z) = ηx(z) = ηy(z), and ηz(z). The latter are
[31]

η‖ = η

1 − 9
16ξ + 1

8ξ 3 − 45
256ξ 4 − 1

16ξ 5
, (3)

where ξ = a/(z + a), and

ηz = η
6z2 + 9az + 2a2

6z2 + 2az
, (4)

which is Padé approximated within 1% accuracy [32].
Interestingly, despite the previous modifications, the tem-

poral linearity of the MSD is not altered by the presence of
the wall [17,33] for x and y, as well as at short times for z. In
such cases, the MSD reads

〈�ri(t )2〉t = 2〈Di〉�t, (5)

where for each spatial direction we introduced the local diffu-
sion coefficient Di(z) = D0η/ηi(z), and its average 〈Di(z)〉 =∫ ∞

0 dz Di(z)Peq(z) against the Gibbs-Boltzmann distribution
in position. As shown in Fig. 4(a), the MSD measured along
x or y is indeed linear in time. By fitting to Eq. (5), using
Eqs. (1) and (3), we extract an average transverse diffusion
coefficient 〈D‖〉 = 〈Dx〉 = 〈Dy〉 = 0.52 D0. In contrast, along
z, we identify two different regimes: one at short times, where
the MSD is still linear in time, with a similarly obtained
best-fit value of 〈Dz〉 = 0.24 D0; and one at long times, where
the MSD saturates to a plateau. This latter behavior indicates
that the equilibrium regime has been reached, with the particle
having essentially explored all the relevant positions given by
the Gibbs-Boltzmann distribution.

Having focused on the MSD, i.e., on the second moment
only, we now turn to the full probability density function

(a)

(d)(c)(b)

FIG. 4. (a) Measured mean-squared displacements [MSD, see
Eq. (2)] as functions of the time increment �t , for the three spatial
directions, x, y, and z. The solid lines are best fits to Eq. (5), using
Eqs. (1), (3), and (4), with B = 4.8, �D = 21 nm, and �B = 530 nm,
providing the average diffusion coefficients 〈D‖〉 = 〈Dx〉 = 〈Dy〉 =
0.52 D0 and 〈Dz〉 = 0.24 D0. The dashed line is the best fit to Eq. (8),
using Eq. (1), with B = 4.8, �D = 21 nm, and �B = 530 nm. (b, c)
Normalized probability density functions Pi σ of the normalized
displacements �x/σ and �z/σ , at short times, with σ 2 the cor-
responding MSD [see panel (a)], for different time increments �t
ranging from 0.0167 to 0.083 s, as indicated with different colors.
The solid lines are the best fits to Eq. (6), using Eqs. (1), (3), and (4),
with B = 4.8, �D = 21 nm, and �B = 530 nm. For comparison, the
gray dashed lines are normalized Gaussian distributions, with zero
means and unit variances. (d) Probability density function Pz of the
displacement �z, at long times, averaged over several values of �t
ranging between 25 and 30 s. The solid line is the best fit to Eq. (7),
using Eq. (1), with B = 4.8, �D = 21 nm, and �B = 530 nm.

Pi of the displacement �ri. Since, the diffusion coefficient
Di(z) varies as a result of the variation of z along the particle
trajectory, Pi exhibits a non-Gaussian behavior, as seen in
Figs. 4(b)–4(d). We stress that we even resolve the onset of
a non-Gaussian behavior in Px, by zooming on the large-|�x|
wings (not shown). At short times, Pi can be modeled by the
averaged diffusion Green’s function [16,34]:

Pi(�ri) =
∫ ∞

0
dz Peq(z)

1√
4πDi(z)�t

e− �r2
i

4Di (z)�t , (6)

against the Gibbs-Boltzmann distribution. As shown in
Figs. 4(b) and 4(c), Eq. (6) captures the early data very well.
At long times, Eq. (6) remains valid only for Px and Py.
Nevertheless, the equilibrium regime being reached, Pz can
eventually be written as

lim
�t→∞

Pz(�z) =
∫ ∞

0
dz Peq(z + �z)Peq(z), (7)

which contains in particular the second moment:

lim
�t→∞

〈�z2〉 =
∫ +∞

−∞
d�z �z2

∫ ∞

0
dz Peq(z + �z)Peq(z).

(8)
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As shown in Fig. 4(d), Eq. (8) captures the long-term data
along z very well.

We now wish to go beyond the previous average 〈Di〉
of Eq. (5), and resolve the local diffusion coefficient Di(z).
To measure local viscosities from experimental trajectories,
a binning method is generally employed [35]. Although this
technique is well suited for drift measurements, it suffers from
a lack of convergence and precision when second moments
or local diffusion coefficients have to be extracted [23]. In
particular, the binning method did not allow us to measure
specifically the local diffusion coefficient in the key interfacial
region corresponding to z < 100 nm. Additionally, Frishman
and Ronceray have recently developed a robust numerical
method using stochastic force inference, in order to evalu-
ate spatially varying force fields and diffusion coefficients,
from the information contained within the trajectories [23].
In practice, this is done by projecting the diffusion tensor onto
a finite set of basis functions. We implemented this method,
using fourth-order polynomials in our case. It allowed us to
infer the local diffusion coefficients Di(z), down to z = 10
nm, as shown in Fig. 1(a). The results are in excellent agree-
ment with the theoretical predictions, D‖(z) = D0η/η‖(z) and
Dz(z) = D0η/ηz(z), using the effective viscosities of Eqs. (3)
and (4), thus validating the method.

So far, through Figs. 1(a), 3(b), and 4, we have successively
presented the various measured statistical quantities of inter-
est, as well as their fits to corresponding theoretical models.
Therein, we have essentially three free physical parameters,
B, �B, and �D, describing the particle and its environment,
as well as the a priori undetermined location of the z = 0
origin. These four parameters are actually redundant among
the various theoretical models. Therefore, in order to measure
them accurately, we in fact perform all the fits simultaneously,
using a Broyden-Fletcher-Goldfarb-Shanno algorithm that is
well suited for unconstrained nonlinear optimization [36]. To
do so, we construct a global minimizer:

χ2 =
N∑

n=1

χ2
n , (9)

where we introduce the minimizer χ2
n of each set n among the

N sets of data, defined as

χ2
n =

Mn∑
i=1

[yni − fn(xni, b)]2

fn(xni, b)2
, (10)

with {xni, yni} the experimental data of set n, Mn the number
of experimental data points for set n, fn the model for set n,
and b = (b1, b2, ..., bp) the p free parameters. In our case, p =
4, and {xni, yni} represent all the experimental data shown in
Figs. 1(a), 3(b), and 4.

Due to strong dependence of the normal diffusion co-
efficient Dz with z, it is possible to find the wall position
with a 10-nm resolution, thus overcoming a drawback of the
Lorenz-Mie technique which only provides the axial distance
relative to the focus of the objective lens. Additionally, the
three physical parameters globally extracted from the multifit-
ting procedure are B = 4.8 ± 0.6, �D = 21 ± 1 nm, and �B =
530 ± 2 nm. Using the particle radius a = 1.518 ± 0.006 μm
calibrated from the preliminary fits of the interference patterns

to the Lorenz-Mie scattering function [see Figs. 2(c) and 2(d)],
and the 1050 kg m−3 tabulated bulk density of polystyrene,
we would have expected �B = 559 nm instead, which cor-
responds to less than 2% error, and might be attributed to
nanometric offsets, such as, e.g., the particle and/or wall
rugosities.

Finally, we investigate the total conservative force Fz(z)
acting on the particle along z. By averaging the overdamped
Langevin equation over a fine-enough z-binning grid and short
enough time interval �t , one gets the Itō convention (corre-
sponding to our definition of �z):

Fz(z) = 6πηz(z)a
〈�z〉
�t

− kBT
D′

z(z)

Dz(z)
, (11)

where the last term corresponds to the additional contribution
due to the nontrivial integration of the multiplicative noise
[20,37–39], with the prime denoting the derivative with re-
spect to z. From the averaged measured vertical drifts 〈�z〉,
and invoking Eq. (4), one can reconstruct Fz(z) from Eq. (11),
as shown in Fig. 1(b). We stress that the statistical error on
the force measurement is comparable to the thermal-noise
limit [40]:

�F =
√

24πkBT ηz(z)a/τbox(z), (12)

where τbox(z) is the total time spent by the particle in the
corresponding box of the z-binning grid. To corroborate these
measurements, we invoke Eq. (1) and express the total conser-
vative force Fz(z) = −U ′(z) acting on the particle along z:

Fz(z) = kBT

(
B

�D
e− z

�D − 1

�B

)
. (13)

Using the physical parameters extracted from the above
multifitting procedure, we plot Eq. (13) in Fig. 1(b). The
agreement with the data is excellent, thus showing the
robustness of the force measurement. In particular, we can
measure forces down to a distance of 40 nm from the surface.
Additionally, far from the wall, we are able to resolve the
actual buoyant weight Fg = −7 ± 4 fN of the particle. This
demonstrates that we reach the femtonewton resolution, and
that this resolution is solely limited by thermal noise.

To conclude, we have successfully built a multiscale statis-
tical analysis for the problem of freely diffusing individual
colloids near a rigid wall. Combining the equilibrium dis-
tribution in position, time-dependent non-Gaussian statistics
for the spatial displacements, a method to infer local diffu-
sion coefficients, and a multifitting procedure allowed us to
reduce drastically the measurement uncertainties and reach
the nanoscale and thermal-noise-limited femtonewton spatial
and force resolutions, respectively. The ability to measure
tiny surface forces, locally, and at equilibrium, as well as the
possible extension of the method to nonconservative forces
and out-of-equilibrium settings [41,42], opens fascinating per-
spectives for nanophysics and biophysics.
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Data Analysis procedure

[1]: %load_ext lab_black
# Import important tools
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from scipy.io import loadmat, savemat
from mpl_toolkits.mplot3d import Axes3D
from scipy.optimize import curve_fit, minimize, least_squares
from scipy.integrate import trapz
from scipy.stats import norm, kurtosis
from matplotlib.ticker import ScalarFormatter
from matplotlib import rc

[ ]:

[2]: mpl.rcParams["xtick.direction"] = "in"
mpl.rcParams["ytick.direction"] = "in"
mpl.rcParams["lines.markeredgecolor"] = "k"
mpl.rcParams["lines.markeredgewidth"] = 1
mpl.rcParams["figure.dpi"] = 130
rc("font", family="serif")
rc("text", usetex=True)
rc("xtick", labelsize="x-small")
rc("ytick", labelsize="x-small")

def cm2inch(value):
return value / 2.54

We load the data

[3]: raw_data = loadmat(
"fit_result_dur_27052020_n_r_fix_0p0513_wav_532_r_1p516_n_1.597.mat"

)["data"][:, 0:3]
r = 1.516 * 1e-6
n_part = 1.597
fps = 60
time = np.arange(0, np.shape(raw_data)[0]) / fps
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dataset = {}
dataset["r"] = r
dataset["n"] = n_part
dataset["fps"] = fps
dataset["time"] = time

1 Data exploration

[4]: # We put everything in microns
raw_data_m = raw_data
raw_data_m[:, 0:3] = raw_data_m[:, 0:3] * 0.0513
plt.plot(time / fps, raw_data_m[:, 2])
x = raw_data_m[:, 0]
y = raw_data_m[:, 1]
z = raw_data_m[:, 2]

plt.xlabel("$t$ (minutes)")
plt.ylabel("$z$ ($\mathrm{\mu m}$)")
plt.show()

[5]: plt.plot(time / fps, raw_data_m[:, 0], label="x")
plt.plot(time / fps, raw_data_m[:, 1], label="y")
plt.xlabel("$t$ (minutes)")
plt.ylabel("$x$ ($\mathrm{\mu m}$)")
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plt.show()

2 MSD

We compute the MSD using the formula:

⟨∆ri(t)2⟩t = ⟨[ri(t + ∆t)− ri(t)]2⟩t . (1)

[6]: def MSD(x, t):
MSD = np.zeros(len(t))
for n, i in enumerate(t):

MSD[n] = np.nanmean((x[0:-i] - x[i:]) ** 2)
return MSD

[7]: t = np.array(
[

*np.arange(1, 10, 1),
*np.arange(10, 100, 10),
*np.arange(100, 1000, 100),
*np.arange(1000, 40000, 1000),

]
)
MSD_x = MSD(x * 1e-6, t) # m² conversion
MSD_y = MSD(y * 1e-6, t)

3

A Appendix 154



MSD_z = MSD(z * 1e-6, t)

plt.loglog(time[t], MSD_x, "o", label="$x$")
plt.plot(time[t], MSD_y, "o", label="$y$")
plt.plot(time[t], MSD_z, "o", label="$z$")
plt.ylabel("MSD ($\mathrm{m^2}$)")
plt.xlabel("$\Delta t$ (s)")

plt.legend()

dataset["MSD_x_tot"] = MSD_x
dataset["MSD_y_tot"] = MSD_y
dataset["MSD_z_tot"] = MSD_z
dataset["MSD_time_tot"] = time[t]

We fit the short time MSD with and average diffusion coefficient such as:

⟨∆ri(t)2⟩t = 2⟨Di⟩∆t , (2)

[8]: Do = 4e-21 / (6 * np.pi * 0.001 * r)
f = lambda x, a, noiselevel: 2 * Do * a * x + (noiselevel * 1e-9) ** 2
popt_1, pcov_1 = curve_fit(f, time[t[0:5]], MSD_x[0:5], p0=[1, 30])
popt_2, pcov_1 = curve_fit(f, time[t[0:5]], MSD_y[0:5], p0=[1, 30])
popt_3, pcov_1 = curve_fit(f, time[t[0:5]], MSD_z[0:5], p0=[1, 30])
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dataset["x_MSD_fit"] = time[t[0:5]]

dataset["MSD_x"] = MSD_x[0:5]
dataset["MSD_y"] = MSD_y[0:5]
dataset["MSD_z"] = MSD_z[0:5]

C:\Users\m.lavaud\.conda\envs\analyse\lib\site-
packages\scipy\optimize\minpack.py:828: OptimizeWarning: Covariance of the
parameters could not be estimated

warnings.warn('Covariance of the parameters could not be estimated',

[9]: print(
"We measure a reduced mean diffusion coefficient of {:.3f} for the␣

↪→perpendicular motion and of {:.3f} for the parallel motion".format(
(popt_1[0] + popt_2[0]) / 2, popt_3[0]

)
)

We measure a reduced mean diffusion coefficient of 0.522 for the perpendicular
motion and of 0.243 for the parallel motion

[10]: plt.loglog(time[t], MSD_x, "o", label="$x$")
plt.plot(time[t], MSD_y, "o", label="$y$")
plt.plot(time[t], MSD_z, "o", label="$z$")
plt.ylabel("MSD ($\mathrm{m^2}$)")
plt.xlabel("$\Delta t$ (s)")
tt = np.linspace(1e-2, 1e3)
plt.plot(tt, f(tt, *popt_1), color="k")
plt.plot(tt, f(tt, *popt_3), color="k")

plt.xlim((1e-2, 1e3))
plt.legend()

[10]: <matplotlib.legend.Legend at 0x27a80c0b700>
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3 Displacement distributions

3.1 ∆x distributions

[11]: def pdf(data, bins=10, density=True):
"""
function to automatize the computations of experimental probability density␣

↪→functions.
"""

pdf, bins_edge = np.histogram(data, bins=bins, density=density)
bins_center = (bins_edge[0:-1] + bins_edge[1:]) / 2

return pdf, bins_center

[12]: I = [2, 5, 10, 50, 100, 500, 1000, 2000]

for i in I:

Dezs = x[0:-i] - x[i:]
hist, bins_center = pdf(Dezs, bins=50)

plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))
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plt.legend()
plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")

[12]: Text(0.5, 0, '$\\Delta x$ [$\\mathrm{\\mu m}$]')

If we now normalize by the standard deviation

[13]: def gauss_function(x, a, x0, sigma):
return a * np.exp(-((x - x0) ** 2) / (2 * sigma ** 2))

[14]: for n, i in enumerate(I):

Dezs = x[0:-i] - x[i:]
Dezs = Dezs / np.sqrt(2 * Do * time[i])
hist, bins_center = pdf(Dezs, bins=30)

# if i == I[0]:
# popt, pcov = curve_fit(gauss_function, bins_center/np.max(bins_center),␣

↪→hist, p0 = [1, np.mean(hist), np.std(hist)])
# plt.plot(bins_center/np.max(bins_center), gauss_function(bins_center,␣

↪→*popt), label = "fit at t = {:.2f} s".format(time[i]))
# plt.plot(bins_center/np.max(bins_center), hist, "x",label = " t = {:.

↪→2f} s".format(time[i]),color = "tab:blue")
# continue
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plt.plot(
bins_center / np.max(bins_center),
hist,
".",
label=" $Delta$t = {:.2f} s".format(time[i]),

)

plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("normalized $\Delta x$ [a.u.]")

[14]: Text(0.5, 0, 'normalized $\\Delta x$ [a.u.]')

[15]: (3.5e-22) ** (1 / 3)

[15]: 7.047298732064899e-08

We can see a clear change but we would need to average on different trajectectories to have consi-
tant results.
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3.2 ∆z distributions

[16]: I = [2, 5, 10, 50, 100, 500, 1000, 2000, 5000, 10000]

for i in I:

Dezs = z[0:-i] - z[i:]
hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=50)

plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))

plt.legend()
plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")

[16]: Text(0.5, 0, '$\\Delta x$ [$\\mathrm{\\mu m}$]')

[17]: for i in I:

Dezs = z[0:-i] - z[i:]
Dezs = Dezs / np.nanstd(Dezs)
hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=30)

plt.plot(bins_center, hist, label=" t = {:.2f} s".format(time[i]))
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plt.legend()
plt.ylabel("$P(\Delta x)$ [a.u.]")
plt.xlabel("$\Delta x$ [$\mathrm{\mu m}$]")

[17]: Text(0.5, 0, '$\\Delta x$ [$\\mathrm{\\mu m}$]')

3.2.1 Short time distributions

[18]: I = [1, 2, 5, 6, 9, 10]

for i in I:

Dezs = z[0:-i] - z[i:]
Dezs = Dezs / np.std(Dezs)
hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=100)

if i == I[0]:
popt, pcov = curve_fit(

gauss_function, bins_center, hist, p0=[1, np.mean(hist), np.
↪→std(hist)]

)
plt.plot(bins_center, gauss_function(bins_center, *popt))
plt.plot(

bins_center,
hist,
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".",
label=" t = {:.2f} s".format(time[i]),
color="tab:blue",

)
continue

plt.semilogy(bins_center, hist, ".", label=" t = {:.2f} s".format(time[i]))

plt.legend()
plt.ylabel("$P(\Delta r_z)$ [a.u.]")
plt.xlabel("$\Delta r_z$ [$\mathrm{\mu m}$]")
axes = plt.gca()
axes.set_ylim([1e-5, 1])

[18]: (1e-05, 1)

The non-Gaussianity is due to the hindered mobility. Taking into account the hindered mobility
the PDF of displacement writes:

P(∆ri, ∆t) =
∫ ∞

0
dDP(Di)

1√
4πDi∆t

exp
[−∆ir2

i
4Di∆t

]
. (3)

This non-Gaussianity can be fitted as done at the end of this appendix and shown in the
manuscript.
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3.3 Long time distributions

[19]: I = [2000, 5000, 10000]

color_long_time = ["tab:gray", "tab:olive", "tab:cyan"]
for n, i in enumerate(I):

Dezs = z[0:-i] - z[i:]
hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=10)

plt.semilogy(
bins_center,
hist,
"o",
label=" $t = {:.2f}$ s".format(time[i]),
color=color_long_time[n],

)

plt.legend()

plt.ylabel("$P(\Delta r_z)$ [a.u.]")
plt.xlabel("$\Delta r_z$ [$\mathrm{\mu m}$]")

[19]: Text(0.5, 0, '$\\Delta r_z$ [$\\mathrm{\\mu m}$]')

Indeed at long time it becomes exponential and it’s no longer dependent on ∆t At very long time

12

A Appendix 163



intervals ∆t each position measurement can be seen as random measurement on the Boltzmann
distribution. Thus, one can write the probability distribution as a convolution of two PDF:

P(∆z) =
∫ ∞

−∞
dzPB(z)PB(z + ∆z), (4)

with :
PB(z) = Ae

(
Bexp

(
− z

ld

)
− z

lb

)
(5)

Also, PB(z < 0) giving at long time step :

P(∆z) = A′exp
[

Bexp
[
− z

ld

]
(1 + exp[−∆z

ld
])− 2z + ∆z

lb

]
(6)

3.4 Analysis of pdf of the ∆z at large time step

To have a better measurement we average the PDF of displacement ∆rz over different time-step
∆t . But, first of all, we need to get rid of the drifts at long time. We do that by taking a moving
minimum.

3.5 Dedrifting the z trajectory

[20]: def movmin(datas, k):
result = np.empty_like(datas)
start_pt = 0
end_pt = int(np.ceil(k / 2))

for i in range(len(datas)):
if i < int(np.ceil(k / 2)):

start_pt = 0
if i > len(datas) - int(np.ceil(k / 2)):

end_pt = len(datas)
result[i] = np.min(datas[start_pt:end_pt])
start_pt += 1
end_pt += 1

return result

[21]: z_dedrift = z - movmin(z, 10000)

[22]: # Fig for comparing the two

plt.plot(time, z - np.min(z), label="raw")
plt.plot(time, z_dedrift, label="dedrifted")
plt.legend()

plt.xlabel("t [s]")
plt.ylabel("z [$\mathrm{\mu m}$]")

[22]: Text(0, 0.5, 'z [$\\mathrm{\\mu m}$]')
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3.5.1 Measuring pdf at large ∆t with the dedrifted trajectory and analysing it

[23]: t_start = 25
t_end = 30
I = np.arange(t_start * fps, t_end * fps)
bins = 50

hists = np.zeros((bins, len(I)))
bins_centers = np.zeros((bins, len(I)))

for n, i in enumerate(I):

Dezs = z_dedrift[0:-i] - z_dedrift[i:]
hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=bins)

hists[:, n] = hist
bins_centers[:, n] = bins_center

pdf_long_t = np.mean(hists, axis=1)
bins_centers_long_t = np.mean(bins_centers, axis=1)
err_long_t = np.std(hists, axis=1)
err_bins_centers = np.std(bins_centers, axis=1)
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[24]: plt.plot(bins_centers_long_t, pdf_long_t)
plt.fill_between(

bins_centers_long_t, pdf_long_t - err_long_t, pdf_long_t + err_long_t,␣
↪→alpha=0.3

)
plt.ylabel("$P(\Delta x)$ ($m^{-1}$)")
plt.xlabel("$\Delta x$ ($\mathrm{\mu m}$)")

[24]: Text(0.5, 0, '$\\Delta x$ ($\\mathrm{\\mu m}$)')

We are now going to code the function

P(∆z) =
∫ ∞

−∞
A′exp

[
Bexp

[
− z

ld

]
(1 + exp[−∆z

ld
])− 2z + ∆z

lb

]
(7)

Noting that coding the form :

P(∆z) =
∫ ∞

−∞
dzPB(z)PB(z + ∆z), (8)

Will be easier and PB will be reused later on. Also since PB(z < 0) = 0 :

P(∆z) =
∫ ∞

0
dzPB(z)PB(z + ∆z), (9)

with :
PB(z) = Ae

(
Bexp

(
− z

ld

)
− z

lb

)
(10)
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[25]: def P_b(z, A, B, ld, lb):
P_b = A * np.exp(-B * np.exp(-z / (ld)) - z / lb)
P_b[z < 0] = 0
return P_b

def dPdeltaz_long(z, DZ, A, B, ld, lb):
return P_b(z, A, B, ld, lb) * P_b(z + DZ, A, B, ld, lb)

def P_computation(DZ, A, B, ld, lb):
z = np.linspace(0, 20e-6, 1000)
dP = dPdeltaz_long(z, DZ, A, B, ld, lb)
P = trapz(dP, z)
return P

def Pdeltaz_long(DZ, B, ld, lb):
if type(DZ) == float:

return P_computation(i, 1, B, ld, lb)

pdf = np.array([P_computation(i, 1, B, ld * 1e-9, lb * 1e-9) for i in DZ])

# normalisation of the PDF to not use A

A = trapz(pdf, DZ * 1e6)

return np.array([P_computation(i, 1, B, ld * 1e-9, lb * 1e-9) for i in DZ]) /
↪→ A

[26]: A = 0.14e8
B = 4
ld = 70
lb = 500
p1 = [B, ld, lb]

# Normalisation fo the pdf

pdf_long_t = pdf_long_t / trapz(pdf_long_t, bins_centers_long_t)

popt, pcov = curve_fit(Pdeltaz_long, bins_centers_long_t * 1e-6, pdf_long_t,␣
↪→p0=p1)

dataset["pdf_longtime"] = pdf_long_t
dataset["x_pdf_longtime"] = bins_centers_long_t * 1e-6

<ipython-input-25-d08630fe76fc>:2: RuntimeWarning: overflow encountered in exp
P_b = A * np.exp(-B * np.exp(-z / (ld)) - z / lb)
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[27]: A = 0.14e8
B = 400
ld = 70
lb = 500
p0 = [B, ld, lb]

plt.semilogy(bins_centers_long_t, pdf_long_t, label="$P_z(\Delta r_z)$")
plt.fill_between(

bins_centers_long_t, pdf_long_t - err_long_t, pdf_long_t + err_long_t,␣
↪→alpha=0.3

)

zz = np.linspace(-4, 4, 1000)
plt.plot(zz, Pdeltaz_long(zz * 1e-6, *popt), label="fit", color="k")
plt.xlim(-4, 4)
plt.legend()
plt.ylabel("$P(\Delta z)$")
plt.xlabel("$\Delta z$ [$\mathrm{\mu m}$]")

[27]: Text(0.5, 0, '$\\Delta z$ [$\\mathrm{\\mu m}$]')

[28]: print("We measure, B = {:.2f}, ld = {:.2f} nm, lb = {:.2f} nm".format(*popt))
B, ld, lb = popt

We measure, B = 20.71, ld = 71.84 nm, lb = 504.78 nm
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3.6 Analyse of the MSD z plateau

[29]: t = np.concatenate(
(

np.arange(1, 10, 1),
np.arange(10, 100, 10),
np.arange(100, 1000, 100),
np.arange(1000, 10000, 1000),
np.arange(10000, 50000, 5000),

)
)

MSD_z_dedrift = MSD(z_dedrift * 1e-6, t)

plt.loglog(time[t], MSD_z_dedrift, "o", label="MSDz undrifted", color="tab:
↪→green")

plt.legend()
plt.ylabel("MSD (m$^2$)")
plt.xlabel("$\Delta$t (s)")

[29]: Text(0.5, 0, '$\\Delta$t (s)')

[30]: plateau = np.mean(MSD_z_dedrift[time[t] > 1e2])
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[31]: plt.loglog(time[t], MSD_z_dedrift, "o", label="$z$", color="tab:green")
plt.plot(tt, [plateau] * len(tt), "k")
plt.plot(tt, f(tt, *popt_3), color="k")
plt.xlim((1e-2, 1e3))
plt.ylim((None, 1e-12))
plt.legend()
plt.ylabel("MSD (m$^2$)")
plt.xlabel("$\Delta$t (s)")

[31]: Text(0.5, 0, '$\\Delta$t (s)')

[32]: np.mean(MSD_z_dedrift[time[t] > 1e2])

[32]: 5.348018604759325e-13

[33]: # dataset["plateau_MSD"] = popt[0]
dataset["plateau_MSD"] = np.mean(MSD_z_dedrift[time[t] > 1e2])
print("Measured plateau : {:e}".format(popt[0]))

Measured plateau : 2.070536e+01

The MSD plateau is theoritically given by:

Plateau =
∫ +∞

−∞
∆z2P∆z,t→+∞(∆z, B, ld, lb)d∆z (11)
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[34]: x_Th_Plateau = bins_centers_long_t * 1e-6

def Theoritical_Plateau(B, ld, lb):
x = dataset["x_pdf_longtime"]
P = Pdeltaz_long(x, B, ld, lb) / trapz(Pdeltaz_long(x, B, ld, lb), x)

res = trapz((x ** 2) * P, x)
return res

[35]: def minimize_plateau(x):
B = x[0]
ld = x[1]
lb = x[2]
return (

np.log(Theoritical_Plateau(B, ld, lb)) - np.log(dataset["plateau_MSD"])
) ** 2 / np.log(Theoritical_Plateau(B, ld, lb)) ** 2

[36]: res_plateau = minimize(minimize_plateau, x0=[B, ld, lb])
print("We measure, B = {:.2f}, ld = {:.2f} nm, lb = {:.2f} nm".

↪→format(*res_plateau.x))

We measure, B = 20.71, ld = 71.84 nm, lb = 504.78 nm

3.7 PDF of heights

[37]: def logarithmic_hist(data, begin, stop, num=50, base=2):

if begin == 0:
beg = stop / num
bins = np.logspace(

np.log(beg) / np.log(base), np.log(stop) / np.log(base), num - 1,␣
↪→base=base

)
widths = bins[1:] - bins[:-1]
bins = np.cumsum(widths[::-1])
bins = np.concatenate(([0], bins))
widths = bins[1:] - bins[:-1]

else:
bins = np.logspace(

np.log(begin) / np.log(base), np.log(stop) / np.log(base), num,␣
↪→base=base

)
widths = bins[1:] - bins[:-1]

hist, bins = np.histogram(data, bins=bins, density=True)
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# normalize by bin width
bins_center = (bins[1:] + bins[:-1]) / 2

return bins_center, widths, hist

[38]: pdf_z, bins_center_pdf_z = pdf(z_dedrift[z_dedrift < 1.5], bins=150)
plt.plot(bins_center_pdf_z, pdf_z, "o")
plt.xlabel("z ($\mathrm{\mu m}$)")
plt.ylabel("$P_z(z)$")

[38]: Text(0, 0.5, '$P_z(z)$')

The idea now is to find where the substrate is, to do this we will use a first method which consist
to adjust the PDF with an offset to make it fit with the measured mean Diffusion coefficient. With
:

< Di >=
∫ ∞

−∞
dzDi(z)P(z) (12)

For z we are going to use the Padé approx :

Dz(z) ≈ D0

(
6z2 + 2rz

6z2 + 9rz + 2r2

)
(13)

For x we are going to use the Faxen formula :

Dx(z) ≈ D0

[
1 − 9

16

( r
z

)
+

1
8

( r
z

)3
− 45

236

( r
z

)4
− 1

16

( r
z

)5
]

(14)
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To do this we will fit the PDF with an offset, adjust it with the mean value of z. Let’s first do it
over z

[39]: def P_b_off(z, z_off, B, ld, lb):
z_off = z_off * 1e-6
lb = lb * 1e-9
ld = ld * 1e-9
z = z - z_off
P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)
P_b[z < 0] = 0

# Normalization of P_b

A = trapz(P_b, z * 1e6)
P_b = P_b / A

return P_b

[40]: # Normalization of the PDF

pdf_z = pdf_z / trapz(pdf_z, bins_center_pdf_z)

p2 = [0, B, ld, lb]

popt, pcov = curve_fit(P_b_off, bins_center_pdf_z * 1e-6, pdf_z, p0=p2)

<ipython-input-39-f5e0b340e678>:6: RuntimeWarning: overflow encountered in exp
P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)

<ipython-input-39-f5e0b340e678>:12: RuntimeWarning: invalid value encountered in
true_divide

P_b = P_b / A

[41]: plt.semilogy(bins_center_pdf_z, pdf_z, "o")
plt.plot(bins_center_pdf_z, P_b_off(bins_center_pdf_z * 1e-6, *popt), "k")

plt.xlabel("z $\mathrm{(\mu m)}$")
plt.ylabel("P(z)")
plt.grid()
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[42]: mean_Dx = (popt_1[0] + popt_2[0]) / 2
mean_Dz = popt_3[0]
print(

"We measure a mean diffusion coefficient of {:.3f}D0 for the perpendicular␣
↪→motion and of {:.3f}D0 for the parallel motion".format(

(popt_1[0] + popt_2[0]) / 2, popt_3[0]
)

)

dataset["D_para"] = mean_Dx
dataset["D_perp"] = mean_Dz

We measure a mean diffusion coefficient of 0.522D0 for the perpendicular motion
and of 0.243D0 for the parallel motion

[43]: Do = 4e-21 / (6 * np.pi * 0.001 * r)

def Dz_z(z):
result = (6 * z * z + 2 * r * z) / (6 * z * z + 9 * r * z + 2 * r * r)
return result

def Dx_z(z):
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result = (
1
- 9 / 16 * (r / (z + r))
+ 1 / 8 * (r / (z + r)) ** 3
- 45 / 256 * (r / (z + r)) ** 4
- 1 / 16 * (r / (z + r)) ** 5

)
return result

[44]: def minimizer(z_off):
Dx_pdf = trapz(

Dx_z(bins_center_pdf_z * 1e-6)
* P_b_off(bins_center_pdf_z * 1e-6, z_off, *popt[1:]),
bins_center_pdf_z,

)
Dz_pdf = trapz(

Dz_z(bins_center_pdf_z * 1e-6)
* P_b_off(bins_center_pdf_z * 1e-6, z_off, *popt[1:]),
bins_center_pdf_z,

)

return np.abs((1 - mean_Dx / Dx_pdf) + (1 - mean_Dx / Dx_pdf))

res = minimize(minimizer, 0, method="nelder-mead")

[45]: offset = res

[46]: offset = np.mean(res["final_simplex"][0])
print(

"From the measurement of the mean diffusion coefficient, we measure an␣
↪→offset of {:.3f} um".format(

offset
)

)

From the measurement of the mean diffusion coefficient, we measure an offset of
0.005 um

[47]: def logarithmic_hist(data, begin, stop, num=50, base=2):
"""
Function to make logarithmic histograms to have more points
near the surface and where the particle spend the most of its time.
"""
if begin == 0:

beg = stop / num
bins = np.logspace(
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np.log(beg) / np.log(base), np.log(stop) / np.log(base), num - 1,␣
↪→base=base

)
widths = bins[1:] - bins[:-1]
bins = np.cumsum(widths[::-1])
bins = np.concatenate(([0], bins))
widths = bins[1:] - bins[:-1]

else:
bins = np.logspace(

np.log(begin) / np.log(base), np.log(stop) / np.log(base), num,␣
↪→base=base

)
widths = bins[1:] - bins[:-1]

hist, a = np.histogram(data, bins=bins, density=True)
# normalize by bin width
bins_center = (bins[1:] + bins[:-1]) / 2

return bins_center, widths, hist

bins_center_pdf_z, widths, pdf_z = logarithmic_hist(z_dedrift, 0.01, 2, num=50,␣
↪→base=12)

p2 = [0, B, ld, lb]
popt_pdf, pcov_pdf = curve_fit(P_b_off, bins_center_pdf_z * 1e-6, pdf_z, p0=p2)
dataset["pdf_z"] = pdf_z
dataset["x_pdf_z"] = bins_center_pdf_z * 1e-6

plt.semilogy(bins_center_pdf_z, pdf_z, "o")
plt.plot(bins_center_pdf_z, P_b_off(bins_center_pdf_z * 1e-6, *popt_pdf),␣

↪→color="black")

plt.xlabel("z ($\mathrm{\mu m}$)")
plt.ylabel("P(z) ($m^{-1}$)")

<ipython-input-39-f5e0b340e678>:6: RuntimeWarning: overflow encountered in exp
P_b = np.exp(-B * np.exp(-z / (ld)) - z / lb)

<ipython-input-39-f5e0b340e678>:12: RuntimeWarning: invalid value encountered in
true_divide

P_b = P_b / A

[47]: Text(0, 0.5, 'P(z) ($mˆ{-1}$)')
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[48]: offset_pdf, B_pdf, ld_offset, lb_offset = popt_pdf

We write the diffusion function.

[49]: def Dz_z(z, off):
off = off * 1e-6
z = z - off
result = (6 * z * z + 2 * r * z) / (6 * z * z + 9 * r * z + 2 * r * r)
return result

def Dx_z_off(z, offset):
offset = offset * 1e-6
z = z + offset
result = (

1
- 9 / 16 * (r / (z + r))
+ 1 / 8 * (r / (z + r)) ** 3
- 45 / 256 * (r / (z + r)) ** 4
- 1 / 16 * (r / (z + r)) ** 5

)
return result
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3.8 Measuring the diffusion coefficient using the Frishman and Ronceray’s method

[50]: from scipy.io import loadmat

dataset["D_0"] = 4e-21 / (6 * np.pi * 0.001 * dataset["r"])
D = loadmat("diffusionAnalysis.mat")["diffusion"]
dataset["z_D"] = D[:, 0]
dataset["z_D_x"] = (D[:, 1] + D[:, 2]) / 2
dataset["z_D_z"] = D[:, 3]

[51]: plt.plot(dataset["z_D"], dataset["z_D_x"] / dataset["D_0"], "o")
plt.loglog(dataset["z_D"], dataset["z_D_z"] / dataset["D_0"], "o")

zz = np.linspace(1e-8, 1e-5)
plt.plot(zz, Dz_z(zz, 0), "k")

plt.plot(zz, Dx_z_off(zz, 0), "k")

[51]: [<matplotlib.lines.Line2D at 0x27a85cc7850>]

[52]: def c_P_D(B, ld, lb, offset=None):
if offset == None:

offset = 0

z = np.linspace(1e-9, 15e-6, 1000)
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P_D = Dz_z(z, offset) * Do * P_b_off(z, offset, B, ld, lb)

return Dz_z(z, offset) * Do, P_D / np.trapz(P_D, z)

def _P_Dz_short_time(Dz, Dt, B, ld, lb, offset=None):
if offset == None:

offset = 0

D_z, P_D = c_P_D(B, ld, lb, offset)

P = np.trapz(
P_D / np.sqrt(4 * np.pi * D_z * Dt) * np.exp(-(Dz ** 2) / (4 * D_z *␣

↪→Dt)), D_z
)

return P

def P_Dz_short_time(Dz, Dt, B, ld, lb, offset=None):
if offset == None:

offset = 0

P = [_P_Dz_short_time(i, Dt, B, ld, lb, offset=offset) for i in Dz]
P = np.array(P)
P = P / np.trapz(P, Dz)

return P

4 Fit everything in the same time !

Finaly we can fit everything in the same time to recap we have :

• MSD x and MSD y => < D >
• MSD z => < D >
• mean < D > with the pdf
• Long time pdf ∆z => ld, lb, B
• Pdf z => o f f set, ld, lb, B
• D parallel, perp => offset

The minimizer χ2 we are going to optimize can be written as :

χ2 =
N

∑
n=1

χ2
n (15)

χ2
n =

A

∑(n)i = 1
1

σni
(yni − yn(xni, a))2 (16)
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with σni the uncertainty (can be set to 1), A the number of point in the dataset for each function,
yn, nth equation, a the fit parameters

We have nonlinear functions so we can use the Marquardt to optimize or Nelder-Mead methods
to optimize the minimizer.

[53]: def minimizer_diffusion_coeff(mean_D_para, mean_D_perp, z_off, B, ld, lb):
# minimization of the mean diffusion coefficient measurement with the PDF␣

↪→and MSD
a = trapz(

Dx_z_off(bins_center_pdf_z * 1e-6, z_off)
* P_b_off(bins_center_pdf_z * 1e-6, z_off, B, ld, lb),
bins_center_pdf_z,

)
b = trapz(

Dz_z(bins_center_pdf_z * 1e-6, z_off)
* P_b_off(bins_center_pdf_z * 1e-6, z_off, B, ld, lb),
bins_center_pdf_z,

)
at = mean_Dx
bt = mean_Dz
return (a - at) ** 2 / at ** 2 + (b - bt) ** 2 / bt ** 2

dataset["z"] = z_dedrift
dataset["x"] = x
dataset["y"] = y

def minimizer_Dz_small_t(B, ld, lb):
xi = 0

for n, i in enumerate([1, 2, 3]):
Dezs = (dataset["z"][0:-i] - dataset["z"][i:]) * 1e-6
Dezs = Dezs # - np.mean(Dezs)

hist, bins_center = pdf(Dezs[~np.isnan(Dezs)], bins=30)
hist = hist / np.trapz(hist, bins_center)

Dz_th = bins_center
PPP = P_Dz_short_time(Dz_th, time[i], B, ld, lb)

# xi = xi + np.nanmean((((np.abs(hist) - (PPP) ) ) ** 2) / ((np.
↪→abs(hist)**2)))

xi = xi + np.nanmean(
((hist[hist > 0] - PPP[hist > 0]) ** 2) / hist[hist > 0] ** 2

)
return xi
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[54]: dataset["D_para"] = mean_Dx
dataset["D_perp"] = mean_Dz

def minimizer(x, *args):
data = dataset
ld = x[0]
lb = x[1]
B = x[2]
offset_dif = x[3]

chi_mean_D_pdf = minimizer_diffusion_coeff(
dataset["D_para"], dataset["D_perp"], 0, B, ld, lb

)
chi_MSD_plateau = minimize_plateau([B, ld, lb])

E_longtime_pdf = (Pdeltaz_long(data["x_pdf_longtime"], B, ld, lb)) - (
data["pdf_longtime"]

)
chi_longtime_pdf = np.mean(

(E_longtime_pdf[E_longtime_pdf > -np.inf] ** 2)
/ (((Pdeltaz_long(data["x_pdf_longtime"], B, ld, lb))) ** 2)

)

E_chi_pdf_z = P_b_off(data["x_pdf_z"], 0, B, ld, lb) - data["pdf_z"]
chi_pdf_z = np.nanmean(

(E_chi_pdf_z[E_chi_pdf_z > -np.inf] ** 2)
/ ((P_b_off(data["x_pdf_z"], 0, B, ld, lb)) ** 2)

)

E_D_z = (Dz_z(data["z_D"], offset_dif)) - (data["z_D_z"] / Do)
chi_D_z = np.mean(

(E_D_z[E_D_z > -np.inf] ** 2) / ((Dz_z(data["z_D"], offset_dif)) ** 2)
)

E_D_x = (Dx_z_off(data["z_D"], offset_dif)) - (data["z_D_x"] / Do)
chi_D_x = np.mean(

(E_D_x[E_D_x > -np.inf] ** 2) / ((Dx_z_off(data["z_D"], offset_dif)) **␣
↪→2)

)

chi_Dz_small_t = minimizer_Dz_small_t(B, ld, lb)

summ = (
chi_mean_D_pdf
+ chi_MSD_plateau
+ chi_longtime_pdf
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+ chi_pdf_z
+ chi_D_z
+ chi_D_x
+ chi_Dz_small_t

)

return summ

[55]: B = 5
ld = ld_offset
x0 = [ld, 550, B, 0, offset_pdf]

[56]: from scipy.optimize import leastsq

options = {
"maxc1or": 30,
"ftol": 2.2e-10,
"gtol": 1e-5,
"eps": 1e-08,
"maxfun": 15000,
"maxiter": 15000,
"maxls": 20,
"finite_diff_rel_step": None,

}

res = minimize(
minimizer,
x0,
method="BFGS",
tol=1e-1,

)

[57]: res.x
results = {

"ld": res.x[0],
"lb": res.x[1],
"B": res.x[2],
"offset_diffusion": res.x[3],

}

results

[57]: {'ld': 25.53322987706852,
'lb': 549.9956782843908,
'B': 4.856896668800334,
'offset_diffusion': 0.0019089236000464675}

This final result has been used to plot theories along the manuscript.

31

A Appendix 182



References 183

References
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