
HAL Id: tel-03517127
https://theses.hal.science/tel-03517127v2

Submitted on 7 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning with Partially Labeled Data for Multi-class
Classification and Feature Selection

Vasilii Feofanov

To cite this version:
Vasilii Feofanov. Learning with Partially Labeled Data for Multi-class Classification and Feature
Selection. Machine Learning [cs.LG]. Université Grenoble Alpes [2020-..], 2021. English. �NNT :
2021GRALM030�. �tel-03517127v2�

https://theses.hal.science/tel-03517127v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES
Spécialité : Mathématiques Appliquées

Arrêté ministériel : 25 mai 2016

Présentée par

Vasilii FEOFANOV

Thèse dirigée par Massih-Reza AMINI, Professeur, Université
Grenoble Alpes
et co-encadrée par Emilie DEVIJVER, CR, Université Grenoble
Alpes

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Classification Multi-classe et Sélection de
Variables avec des Données Partiellement
Étiquetées

Learning with Partially Labeled Data for
Multi-class Classification and Feature
Selection

Thèse soutenue publiquement le 29 septembre 2021,
devant le jury composé de :

Madame Florence d'Alché-Buc
Professeure, Télécom Paris, Rapporteure
Monsieur Massih-Reza Amini
Professeur, Université Grenoble Alpes, Directeur de thèse
Monsieur Laurent Besacier
Chercheur HDR, NAVER LABS Europe, Examinateur
Madame Emilie Devijver
Chercheure, CNRS, Co-encadrante de thèse
Madame Mélina Gallopin
Maître de conférence, Université Paris Sud, Examinatrice
Monsieur Pascal Germain
Professeur adjoint, Université Laval à Québec, Rapporteur
Monsieur Anatoli Iouditski
Professeur, Université Grenoble Alpes, Président

Abstract

Learning with partially labeled data, known as semi-supervised learning, deals with
problems where few training examples are labeled while available unlabeled data
are abundant and valuable for training. In this thesis, we study this framework in
the multi-class classification case with a focus on self-learning and feature selection.
Self-learning is a classical approach that iteratively assigns pseudo-labels to unla-
beled training examples with a confidence score above a predetermined threshold.
This pseudo-labeling technique is prone to error and runs the risk of adding noisy
labels into unlabeled training data. Our first contribution is to propose a theoretical
framework for analyzing self-learning in the multi-class case. We derive a transduc-
tive bound over the risk of the multi-class majority vote classifier and propose to
use this bound for automatically choosing the pseudo-labeling threshold. Then, we
introduce a mislabeling error model to analyze the error of the majority vote clas-
sifier in the case of the pseudo-labeled data. We derive a probabilistic second-order
bound over the majority vote error given an imperfect label. Our second contribu-
tion is an extension of the self-learning strategy to the case where some unlabeled
examples come from classes not previously seen. The new approach is applied for
classification of real biological data, and it is based on assuming the existence of
clusters in unlabeled data. Finally, we propose an approach for semi-supervised fea-
ture selection that utilizes self-learning to increase the variety of training data and
a new modification of the genetic algorithm to perform a feature subset search. The
proposed genetic algorithm produces both a sparse and accurate solution by con-
sidering feature weights during its evolutionary process and iteratively removing
irrelevant features.

i

ii

Résumé

L’apprentissage avec des données partiellement étiquetées, connu sous le nom d’app-
rentissage semi-supervisé, traite des problèmes où peu d’exemples d’entraînement
sont étiquetés alors que les données disponibles non étiquetées sont abondantes et
précieuses pour l’apprentissage. Dans cette thèse, nous étudions ce cadre dans le
cas de la classification multi-classes en mettant l’accent sur l’auto-apprentissage et
la sélection de variables. L’auto-apprentissage est une approche classique qui attri-
bue de manière itérative des pseudo-étiquettes à des exemples d’entraînement non
étiquetés avec un score de confiance supérieur à un seuil prédéterminé. Cette tech-
nique de pseudo-étiquetage est sujette aux erreurs et risque d’ajouter des étiquettes
bruitées dans des données d’apprentissage non étiquetées. Notre première contri-
bution est de proposer un cadre théorique d’analyse de l’auto-apprentissage dans le
cas multi-classes. Nous dérivons une borne transductive sur le risque du classifica-
teur de vote majoritaire multi-classes et proposons d’utiliser cette borne pour choisir
automatiquement le seuil de pseudo-étiquetage. Ensuite, nous introduisons un mo-
dèle d’erreur d’étiquetage pour analyser l’erreur du classificateur de vote majoritaire
dans le cas des données pseudo-étiquetées. Nous dérivons une borne probabiliste de
second ordre sur l’erreur de vote majoritaire étant donné une étiquette imparfaite.
Notre deuxième contribution est une extension de la stratégie d’auto-apprentissage
au cas où certains exemples non étiquetés proviennent de classes jamais vues au-
paravant. La nouvelle approche est appliquée pour la classification de données bio-
logiques réelles, et elle est basée sur l’hypothèse de l’existence de clusters dans des
données non étiquetées. Enfin, nous proposons une approche de sélection de va-
riables semi-supervisée qui utilise l’auto-apprentissage pour augmenter la variété
des données d’entraînement et une nouvelle modification de l’algorithme génétique
pour effectuer une recherche de sous-ensembles de variables. L’algorithme géné-
tique proposé produit à la fois une solution clairsemée et précise en tenant compte
des pondérations des variables au cours de son processus évolutif et en supprimant
de manière itérative les variables non pertinentes.

iii

iv

Contents

Introduction 1

1 Background 5
1.1 Supervised Learning . 5

1.1.1 Single Hypothesis Learning 7
1.1.2 Ensemble Learning . 8
1.1.3 Analysis of Majority Vote Classifiers 11

1.2 Semi-supervised Learning . 14
1.2.1 Existing Approaches . 15
1.2.2 Transductive Bounds for the Majority Vote 19

2 Probabilistic Bounds for the Multi-class Majority Vote Classifier 23
2.1 Introduction . 23
2.2 Framework and Definitions . 24
2.3 Probabilistic Transductive Bounds . 26

2.3.1 Transductive conditional risk 26
2.3.2 Transductive confusion matrix and transductive error rate . . 29
2.3.3 Tightness Guarantees . 31

2.4 Probabilistic C-Bound with Imperfect Labels 33
2.4.1 Ordinary C-Bound . 34
2.4.2 Mislabeling Error Model . 35
2.4.3 C-Bounds with Imperfect Labels 38
2.4.4 PAC-Bayesian Theorem for C-Bound Estimation 40
2.4.5 Empirical Illustration of (CBIL) 42

2.5 Conclusion and Perspectives . 44
2.6 Appendix . 45

2.6.1 Mathematical Tools for Section 2.3 45
2.6.2 Mathematical Tools for Section 2.4 49

3 Self-learning and Application 55
3.1 Multi-class Self-learning Algorithm 55

3.1.1 The Proposed Approach . 55
3.1.2 Experimental Setup . 57

v

3.1.3 Experimental Results . 60
3.1.4 Complexity Analysis . 62
3.1.5 Approximation of Posterior Probabilities for Self-learning . . . 64
3.1.6 Discussion on Confirmation Bias 65

3.2 Self-learning for a Biological Application 66
3.2.1 Introduction . 66
3.2.2 Framework . 67
3.2.3 Open-World Self-learning Algorithm 68
3.2.4 CRISPR-Cas Subtype Prediction 71

3.3 Conclusion and Perspectives . 76

4 Semi-supervised Feature Selection 79
4.1 Introduction . 79
4.2 Related Work . 81
4.3 New Semi-supervised Wrapper: MSLA-FSGA 82

4.3.1 FSGA: Feature Selection Genetic Algorithm 83
4.3.2 Time Complexity . 85

4.4 Experimental Results . 86
4.4.1 Validation of the Feature Selection Genetic Algorithm 87
4.4.2 Improvement from Pseudo-labeling Unlabeled Data 89
4.4.3 Comparison with the State-of-the-Art 92
4.4.4 Additional Ablative Study . 95

4.5 Conclusion and Perspectives . 96

Conclusion and Perspectives 97

vi

Introduction

Artificial Intelligence (AI) is increasingly present in people’s lives, capturing the
attention of more and more scientists from various fields of study. One of the tradi-
tional problems of AI is Machine Learning, which is concerned with building algo-
rithms that can learn and take actions from experience. Traditionally, experience is
represented by training data that is a collection of inputs (usually called examples
or observations) described by some characteristics (called features). Machine learn-
ing can be broadly divided into multiple categories that represent fundamentally
different tasks (Bishop, 2006; Hastie et al., 2009). We focus on the three follow-
ing ones that differ from each other based on the availability of a target variable:
unsupervised, supervised and semi-supervised learning.

Unsupervised learning considers training data that are not supplied with any tar-
get values. Unsupervised approaches aim for analyzing intrinsic regularities in data
in order to find clusters of similar examples, project data into a low dimension or
estimate density. Supervised learning considers applications where every available
training example comes with a label, i.e. with a target value. In this case, the goal is
to learn (approximate) the target variable based on the available training data in or-
der to be able to predict the target value for a potentially new example. Supervised
problems can also categorized depending on the type of the target variable. For
example, regression problems deal with a continuous target variable, while classifi-
cation problems divide data into categories, i.e. the target is a categorical variable.
Further, we focus on classification problems.

Finally, semi-supervised learning (Chapelle et al., 2010) considers problems
where data are partially-labeled, i.e., labels are available only for some of the avail-
able training examples. This is inherent for many real-life applications, where the
labeling of all training examples is costly and sometimes even not realistic. For ex-
ample, in medical diagnosis or biological data analysis, labeling data may require
very expensive tests so that only small labeled data sets are generally available.
In many other cases, like web-oriented applications, a huge number of unlabeled
observations arrive sequentially, and there is not enough time to manually label
them all. The semi-supervised learning lies inherently between the supervised and
unsupervised learning, and from the algorithmic perspective it combines the best
of the two worlds. Typically, it is assumed that the number of labeled examples is
small leading to inefficiency of supervised methods, while unlabeled examples con-

1

tain valuable information about the problem, thus their exploitation improves the
learning quality.

In this thesis, we study semi-supervised learning in the multi-class classification
case, tackling this problem from a theoretical, algorithmic, and applied point of
view, with a particular focus on the self-learning algorithm (Tür et al., 2005; Amini
and Usunier, 2015). Self-learning is a classical approach to classify partially-labeled
data in a supervised fashion, where the training set is augmented by iteratively
assigning pseudo-labels to unlabeled examples with the confidence score above a
certain threshold. While the algorithm is widely used in practice, a little attention
is given to its theoretical analysis. Moreover, its application raises several practi-
cal questions. At every iteration, the self-learning algorithm injects some noise in
labeling, so the first question is how to optimally choose the confidence threshold
to minimize the mislabeling probability. The second question is how the measure
of confidence used in self-learning is adequate on real-life data, where the unla-
beled set may contain out-of-distribution examples. The third question is to what
extent pseudo-labels generated by self-learning can be used for post-analysis, e.g.,
for some model selection applications.

Outline and Contributions

Below we present an outline and overview the proposed contributions of this thesis.
Chapter 1 is dedicated to introduce the problem, define basic concepts and discuss
relevant background work.

In Chapter 2, we present theoretical analysis of self-learning in the context of
the majority vote classifier, which represents a broad class of learning methods in-
cluding Random Forest (Breiman, 2001), AdaBoost (Freund and Schapire, 1997),
SVM (Vapnik, 1982) and neural networks (Rumelhart et al., 1986). The essence of
the approach is to linearly combine predictions of different voters and output the
class that received the largest vote. Generalization guarantees of majority vote clas-
sifiers are well studied but primarily in the binary supervised case. Following the
transductive setting (Vapnik, 1998, p. 339), where the aim is to correctly classify
unlabeled training examples, we extend the work of Amini et al. (2008) and derive
a bound for the multi-class majority vote classifier by analyzing distribution of the
class vote and focusing on the class confusion matrix as an error indicator (Morvant
et al., 2012). This bound is obtained by analytically solving a linear program and
it comes out that in the case when the majority vote classifier makes most of its
errors on examples with a low class vote, the obtained bound is tight. Then, we
derive another bound that takes explicitly into account possible mislabeling pro-
duced by self-learning. Considering a mislabeling model of Chittineni (1980), we
show the relationship between the true and the imperfect label in the misclassifi-
cation of a particular example. Then, we derive a new probabilistic C-bound over
the error of the multi-class majority vote classifier in the presence of imperfect la-

2

bels. This bound is based on the mean and the variance of the prediction margin
(Lacasse et al., 2007), so it reflects both the individual strength of voters and their
correlation in prediction.

In Chapter 3, we propose a new policy for multi-class self-learning, where the
confidence threshold is automatically found based on minimization of the trans-
ductive bound proposed in Chapter 2. The proposed approach outperforms several
semi-supervised state-of-the-art methods. Then, we apply self-learning for a real-
life DNA sequence classification task, where unlabeled data may contain classes not
previously seen. In the context of decision trees, we propose a modification of the
self-learning algorithm that is able to discover regions of potentially new classes by
clustering examples with low prediction confidence.

In Chapter 4, we study semi-supervised problems in a high-dimensional regime
with the goal to select important characteristics from the original set of features
(Guyon and Elisseeff, 2003). We propose a feature selection approach that is based
on a new modification of the genetic algorithm that creates and evaluates candidate
feature subsets during an evolutionary process, taking into account feature weights
and eliminating irrelevant features. In order to increase diversity of data used for
feature subset strength evaluation, the proposed self-learning algorithm is used.
Empirical results on different data sets show the effectiveness of our framework
compared to several state-of-the-art semi-supervised feature selection approaches.
As self-learning may mislabel unlabeled data, we also demonstrate the prospects of
using the proposed C-bound with imperfect labels as a feature selection criterion.

Corresponding Articles

The contribution of this thesis includes the following articles, prepared during the
postgraduate studies.

• The contribution from (Feofanov et al., 2019) is presented in Chapter 2 and
Chapter 3.

• The contribution from (Feofanov et al., 2021a) is presented in Chapter 2 and
Chapter 3.

• The contribution from (Feofanov et al., 2021b) is presented in Chapter 4.

• In addition, Chapter 3 (Section 3.2) contains work in preparation for publica-
tion (Feofanov et al., 2021c).

3

4

Chapter 1

Background

In this chapter, we introduce the basic concepts of the supervised as well as semi-
supervised learning, and present the background needed for the rest of this thesis.
The chapter is organized as follows. In Section 1.1, we overview supervised learning
of a single classifier as well as an ensemble of classifiers and present a framework for
theoretical analysis of majority vote classifiers. In Section 1.2, we introduce semi-
supervised learning, typical assumptions made by algorithms in this framework, and
existing theoretical studies of majority vote classifiers in the transductive setting.

1.1 Supervised Learning

Consider a classification problem with an input space X ⊂ Rd and an output space
Y , and we write Y = {1, . . . , K} when the general multi-class K ≥ 2 is considered,
while Y = {−1,+1} is used in the binary case. We denote by X = (X1, . . . , Xd) ∈ X
(respectively Y ∈ Y) an input (respectively output) random variable. In the super-
vised framework, we assume there is access to a set of labeled training examples
ZL = {(xi, yi)}l

i=1 ∈ (X × Y)l, identically and independently distributed (i.i.d.)
with respect to a fixed yet unknown probability distribution P(X, Y) over X × Y .
Let H be a fixed set of classifiers H = {h | h : X → Y} , called the hypothesis
space, is considered and defined without reference to the training set. In turn, every
classifier h ∈ H is called hypothesis to the true labeling mechanism. To measure the
cost of errors made by a hypothesis h ∈ H, a loss function ` is defined as:

` : Y × Y → R

(h(x), y) 7→ `(h(x), y).

In this work, we focus on the 0/1 loss function `0/1(h(x), y) := I(h(x) 6= y), where
I(π) is the indicator function, which is equal to 1 if the predicate π is true and to 0
otherwise.

We evaluate the quality of a learning hypothesis h by defining the generalization

5

risk or error rate as the expected loss:

R(h) := EX,YI(h(x) 6= y) =
∫

X×Y
I(h(x) 6= y)dP(x, y).

Depending on how the true label is generated, two cases can be distinguished. In the
deterministic setting, class labels are generated according to a deterministic function
y : X → Y , i.e., for every x ∈ X , there exists only one possible label, so the risk
can be written as:

R(h) = EXI(h(x) 6= y(x)).

In contrast, the more general probabilistic setting assumes a possibility of multiple
outcomes for each example:

R(h) :=
∫

X ∑
c∈{1,...,K}

c 6=h(x)

P(Y = c|X = x)dP(X = x) (1.1)

:= EX ∑
c∈{1,...,K}

c 6=h(x)

P(Y = c|X = x) = EX[1− P(Y = h(x)|X = x)]. (1.2)

Further, we will consider the probabilistic setting by default until the opposite is
said.

The goal of learning a single classifier is formulated as to choose a hypothesis h∗

that minimizes the risk:

h∗ = argmin
h∈H

R(h).

It is straightforward to show that the best possible classifier we can design is to
select the class according to maximum a posteri:

O(x) := argmax
c∈Y

P(Y = c|X = x). (1.3)

We further call this rule as the oracle classifier1 whose risk R(O) is the minimal
possible error, i.e., irreducible error. However, in practice, we have access only to the
training data ZL, and the joint probability P(x, y) is unknown. The same applies for
evaluation of R(h), so learning a classifier is based on minimization of the empirical
risk defined as follows:

RL(h) =
1
l

l

∑
i=1

I(h(xi) 6= yi).

1The classifier is often called the Bayes classifier, but we do not use this name to avoid confusion
with another Bayesian approach defined below.

6

Below, we briefly overview some existing approaches for supervised classification,
when one hypothesis is learned (Section 1.1.1) and when multiple hypotheses are
combined (Section 1.1.2). Finally, we give more details about theoretical analysis
of a class of majority vote classifiers.

1.1.1 Single Hypothesis Learning

There exists plenty of supervised classification algorithms based on different learn-
ing paradigms, we refer to Bishop (2006); Hastie et al. (2009) for a complete review
of the most known results. Some approaches like the discriminant analysis and the
naive Bayes classifier estimate the oracle classifier by making explicit assumptions
on the data distribution. The k-nearest neighbors finds for a new example k closest
training examples (neighbors) and outputs a class label that is the most represented
among neighbors. Many approaches are based on optimization of some objective
function including the likelihood, the hinge loss or the cross-entropy loss. Classi-
fiers can be linear (e.g., in the binary case, it is written as h(x) = sgn(wᵀx + b)
with a weight vector w of size d) like the logistic regression or the support vector
machine, where the latter is extended to a non-linear case by a kernel trick. Other
well known non-linear algorithms are neural networks and decision trees. In this
paper, we focus on a decision tree algorithm, so we give more details about it below.
Our choice is motivated by its versatility, since it can be applied for both numerical
and categorical features being a scale-invariant learning algorithm. Also, it is well
known that trees is a good choice for ensemble learning (Hastie et al., 2009).

Decision Tree Learning

Decision tree learning (Breiman et al., 1984; Quinlan, 1986) is a widely known ap-
proach for classification. There are various architectures to design it, we give details
of the CART tree. The main principle of the approach consists in top-down recursive
binary partitioning of the feature space into disjoint regions. Starting from the root
with the whole training set, at every node, a feature and a split value are chosen to
construct left and right child nodes. After the split, the left/right child node includes
training examples with the feature value smaller/greater than the split value. As a
rule, the feature and the split value are searched exhaustively over all feature val-
ues appeared in the training set with the goal to maximize the impurity decrease
criterion based on the Gini index. Let a node contains the training examples from
classes 1, . . . , K in proportions p1, . . . , pK. The Gini index for this node is defined
as G(node) := ∑K

k=1 pk(1 − pk). Then, the impurity decrease criterion Ssup with
respect to a feature f and a split value s is defined as

Ssup(f , s) :=
nparent

n

(
G(parent)− nl-child

nparent
G(l-child)− nr-child

nparent
G(r-child)

)
, (1.4)

7

where nparent, nl-child, nr-child are respectively the number of examples in the parent,
left child and right child nodes. The tree is constructed recursively while a stopping
condition is satisfied. In order to predict a class label for a new example, the latter is
passed through the tree until it falls to a leaf, i.e., to a certain region. The predicted
label is the majority vote class considering all training examples that belong to this
region.

1.1.2 Ensemble Learning

Before explaining the principle of ensemble learning, we would like to give insights
on limitations of a single hypothesis learning. Let h ∈ H be our trained classifier.
One can notice that the difference between the risk of the hypothesis h and the
irreducible error R(O) can be decomposed into two parts (Mohri et al., 2018):

R(h)− R(O) = R(h)− inf
h′∈H

R(h′)
︸ ︷︷ ︸

estimation error

+ inf
h′∈H

R(h′)− R(O)
︸ ︷︷ ︸

approximation error

.

It can be seen that efficiency of learning h depends on how well the hypothesis
space was chosen to approximate the oracle classifier (approximation error) and
how much the error of h differs from the best hypothesis in the hypothesis space
(estimation error). Since there is no access to the data distribution, a direct estimate
of the approximation error requires strong assumptions. If the hypothesis space is of
large capacity, the approximation error may be small, but the estimation error may
increase due to the increase in the complexity of the search space. On the other
hand, the approximation error may be large when the hypothesis space H has a
lack of richness.

To overcome this, an ensemble of classifiers can be considered instead of learn-
ing a single hypothesis. As pointed out by Dietterich (2000), the ensemble primarily
has three significant advantages. First of all, different hypotheses may have similar
empirical errors on a given training set, which, however, does not mean that they
all generalize well. By combining predictions of different hypotheses, we minimize
our chances of overfitting the training data and having a large generalization er-
ror. Secondly, many learning algorithms have a large estimation error even with a
plenty of training examples, since they may get into local optima. Hence, an aggre-
gation of various hypotheses suggests to decrease the estimation error being less
prone to output a suboptimal solution. Thirdly, with ensemble approaches we are
not limited by the initial hypothesis space, since linear combinations of the hypothe-
ses’ predictions may output new hypotheses out of H2. Thus, more hypotheses can
be explored without increasing the complexity of H. This is especially interesting
because the approximation error can be reduced not only by choosing the hypothe-

2Note that a learning algorithm with a finite training set explores only a finite set of hypotheses,
so the hypothesis space is practically finite.

8

sis space properly, but also by studying how hypotheses can be optimally combined
(Kuncheva, 2014). Below, we give a overview of some important studies of ensem-
ble learning.

Bayesian Reasoning

One of the earliest approaches to combine hypotheses is based on Bayesian rea-
soning. Let us define a random variable H that a priori distributed over H as
P(H = h), which can be chosen based on domain knowledge. Observing a train-
ing data ZL ∼ P(X, Y)l, we can apply the Bayes rule and express the posterior as
follows:

P(H = h|ZL) ∝ P(H = h)P(ZL|H = h), (1.5)

where P(ZL|H = h) denotes the data likelihood given that h is a true labeling
mechanism. Thus, we can identify the most probable hypothesis given a training
set based on the prior knowledge about the hypotheses and their fitness to the
data. Then, for every new observation x ∈ X , we output the majority vote class by
combining the hypotheses’ predictions weighted by the posterior probabilities. This
approach is called the Bayes optimal classifier and defined in the following way:

Bopt(x) := argmax
c∈Y

Eh|ZLI(h(x) = c)

= argmax
c∈Y

∑
h∈H

I(h(x) = c)P(H = h)P(ZL|H = h).

When the prior and the hypothesis space are fixed, this classifier is optimal in a sense
that any other linear combination of the hypotheses would be worse on average
(Mitchell, 1997). However, one can notice that estimation of P(ZL|H = h) for
every hypothesis could be practically infeasible when the cardinality of H is high.
Moreover, the approach depends on the choice of the prior, which is often not clear
how to set.

In this connection, a research focus has been switched to a general Bayes classi-
fier that weights the hypotheses according to a posterior distribution Q over H that
is not necessarily a posterior distribution in the Bayesian sense3. The approach is
commonly found in the literature under two names, the (Q-weighted) majority vote
classifier and the Bayes classifier, and for all x ∈ X , it is defined as follows:

BQ(x) := argmax
c∈Y

Eh∼QI(h(x) = c) = argmax
c∈Y

∑
h:h(x)=c

Q(h).

In this case, the goal of learning can be formulated as to choose a posterior distribu-
tion Q overH such that the classifier BQ will have the smallest possible error value.

3In this case, by posterior distribution we call any distribution over H that has been obtained
after observing data.

9

It is worth to notice that a theoretical study of the Bayes classifier provides a tool for
analyzing a wide class of ensemble methods, where the predictions of hypotheses
are aggregated using the majority vote rule scheme. Moreover, as pointed out by
Germain et al. (2015), the Support Vector Machine as well as the neural networks
can also be regarded as the majority vote classifiers.

Bagging and Random Forests

A single decision tree is an unstable algorithm that tends to overfit the training
data, resulting in poor generalization performance. To overcome this, a bagging
procedure was proposed by Breiman (1996) that consists in parallel learning of
multiple classifiers, where each classifier ht, t ∈ {1, . . . , T} is trained on a bootstrap
sample Bt (Efron, 1992) of size l drawn with replacement from the training set
ZL. Since the classifiers are learned on slightly different data sets (each bootstrap
sample contains approximately 63.2% of the original training samples), their aggre-
gation results in a stable algorithm. While the bagging ensemble can be constructed
based on any learning algorithm, a common choice is the decision tree. A random
forest (Breiman, 2001, denoted by RF) is a majority vote bagging ensemble of trees
that for an example x, predicts a label by combining predictions of trees ht with
equal weights:

BRF(x) := argmax
c∈Y

T

∑
t=1

I(ht(x) = c).

Since the trees {ht}T
t=1 are trained on different bootstrap samples, its generalization

ability can be advantageously estimated by the out-of-bag error, which takes less
time than the cross-validation (Stone, 1974). For every training example x ∈ ZL
and a class c ∈ Y , the out-of-bag vote is evaluated as the proportion of trees that
did not contain the example x in their respective bootstrap sample:

vOOB(x, c) =
1

|{t : x 6∈ Bt}| ∑
t: x 6∈Bt

I(ht(x) = c). (1.6)

Then, the out-of-bag error is defined as follows:

1
l

l

∑
i=1

I(yi 6= argmax
c∈Y

vOOB(xi, c)). (1.7)

The out-of-bag error has been shown to be an unbiased estimator of the generaliza-
tion error (Breiman, 2001).

Boosting

In contrast to a bagging ensemble that learns classifiers in parallel, a boosting al-
gorithm trains "weak" classifiers successively so that every next classifier improves

10

performance by focusing on weak points of its predecessors. For example, the Ad-
aBoost (Freund and Schapire, 1997) at step t = 2, . . . ,, learns a classifier on the
training examples that are weighted depending on where the (t − 1)-th classifier
made mistakes. The weights of correctly classified examples are decreased, while
the weights are increased for the misclassified examples thereby drawing atten-
tion of the t-th classifier on these difficult examples. The output of the AdaBoost
is the majority vote of the weak classifiers weighted based on their individual per-
formance. There exists many other variants of boosting, particularly, Mason et al.
(1999); Friedman (2001) proposed a gradient boosting, which allows to optimize
any differentiable loss function.

Diversity

In ensemble learning, there exists another branch of study that has a particular fo-
cus on generating and/or combining classifiers based on some diversity criterion
(Kuncheva, 2014). Indeed, it is widely known that classifiers should be not only
reasonably accurate but also diverse in order to gain a strong ensemble (Hansen
and Salamon, 1990). This fact is clearly illustrated in several bias/variance decom-
position (Kohavi et al., 1996; Krogh and Vedelsby, 1995). Particularly, Krogh and
Vedelsby (1995) decomposes the error4 into two terms: the average error of hy-
potheses and the ambiguity term that expresses correlation between hypotheses.
As pointed out by Brown and Wyatt (2003), optimization of the ambiguity term is
practically employed in the negative correlation framework (Liu and Yao, 1999),
where multiple neural networks are trained simultaneously and are forced to have
negatively correlated errors with respect to each other. This allows to specialize
all networks on different regions or subtasks, so their aggregation yields high per-
formance. The benefit of negatively correlated errors was theoretically shown by
Tumer and Ghosh (1996) in the multi-class case, but under very strong assump-
tions.

1.1.3 Analysis of Majority Vote Classifiers

In this section, we survey some theoretical results obtained for the majority vote
classifier (Section 1.1.2) in the supervised case.

In the binary case, the output space can be described as Y = {−1,+1}, so the
Bayes classifier can be represented without the argmax operator as follows:

BQ(x) := sgn(Eh∼Qh(x)), ∀x ∈ X , (1.8)

where sgn(π) denotes the sign function, which is equal to 1 if the predicate π is
positive and to −1 otherwise.

4It was shown for the regression task, but it also holds for the binary classification with the
squared loss.

11

Following Germain et al. (2015), we define the prediction margin as

MQ(x, y) := Eh∼Q[y · h(x)] = Eh∼QI(h(x) = y)−Eh∼QI(h(x) = −y).

The margin measures a gap between the vote of the true class y and the vote of the
opposite class. If the value is strictly positive for an example x, then y will be the
output of the majority vote, so the example will be correctly classified.

Together with the Bayes classifier, we consider the related Gibbs classifier, which
is a stochastic learning algorithm that for every x ∈ X , randomly chooses a hy-
pothesis h ∈ H according to the distribution Q and then predicts a label as h(x).
Although the classifier is stochastic, we define its risk and empirical risk in expecta-
tion over all hypotheses in H:

R(GQ) := EX,YEh∼QI(h(x) 6= y), (1.9)

RL(GQ) :=
1
l

l

∑
i=1

Eh∼QI(h(xi) 6= yi).

It can be noticed that the Gibbs risk represents the weighted average error rate of
individual hypotheses.

Bounds on the Gibbs Risk

A common approach is to upper-bound the Bayes risk by twice the Gibbs risk (Lang-
ford and Shawe-Taylor, 2002, Lemma 4.1):

R(BQ) ≤ 2R(GQ). (1.10)

Since the data distribution is unknown, Eq. (1.10) can not be exactly evaluated,
so the question is how to upper-bound the generalization error based on the avail-
able training set. A common choice is the PAC-Bayesian framework initiated by
McAllester (1999, 2003) that provides Probably Approximately Correct (PAC) guar-
antees (a PAC bound depends on ε and holds with probability at least 1− ε) over the
Gibbs risk. This approach considers a prior Q0 and a posterior distribution Q over
H, and upper-bounds the Gibbs risk by the empirical Gibbs risk on the training data
and the Kullback-Leibler divergence between Q and Q0. The classical PAC-Bayesian
theorem is formulated below.

Theorem 1.1.1 (Langford, 2005, Theorem 5.1). For all P(X, Y), for any choice of
Q0 over H, for any ε ∈ (0, 1], with a probability at least 1− ε over the choice of the
sample ZL ∼ P(X, Y)l for every posterior distribution Q over H we have:

kl
(

RL(GQ)||R(GQ)
)
≤ 1

l

[
KL(Q ‖ Q0) + ln

l + 1
ε

]
,

12

where KL(Q ‖ Q0) is the Kullback-Leibler divergence between Q and Q0:

KL(Q ‖ Q0) := Eh∼Q

[
ln

dQ(h)
dQ0(h)

]
,

and kl(q||p) is the Kullback-Leibler divergence between the two Bernoulli distributions
with probability of success q and p respectively:

kl(q||p) := q log
q
p
+ (1− q) log

1− q
1− p

.

Thus, Theorem 1.1.1 establishes the connection between the generalization risk
and its empirical estimate in an implicit way. If we apply the Pinsker’s inequality
2(RL(GQ)− R(GQ))

2 ≤ kl
(

RL(GQ)||R(GQ)
)
, we obtain an explicit bound on the

generalization risk (McAllester, 2003):

R(GQ) ≤ RL(GQ) +

√
1
2l

[
KL(Q ‖ Q0) + ln

l + 1
ε

]
(1.11)

One can see that the bound given by Eq. (1.11) consists of two terms: the empirical
risk and the penalty term that with the growth of the sample size l is decreasing to
0. An advantage of the PAC-Bayes theorem is that this bound holds for any choice of
Q0 and Q, which means that the PAC-Bayesian bound can be used for optimizing Q.
Roughly speaking, minimization of the bound implies minimization of the empirical
Gibbs risk regularized by the Kullback-Leibler divergence. Thiemann et al. (2017)
proposed a relaxation of the bound such that it is convex in Q and convex in a pa-
rameter that balances the Kullback-Leibler divergence in order to prevent excessive
regularization by the divergence. However, the bound involves only the individual
errors of hypotheses ignoring the fact that the hypotheses in combination may be
much stronger than individually.

C-Bound

To overcome the issue discussed above, it was proposed to upper-bound the Bayes
risk directly (Lacasse et al., 2007). The C-bound is based on the mean and vari-
ance of the prediction margin and is derived by applying the Cantelli-Chebyshev
inequality. A similar result was obtained in a different context by Breiman (2001).
We define the first and the second statistical margin moments respectively as:

µ1 := EX,Y MQ(x, y), µ2 := EX,Y
[
MQ(x, y)

]2 .

The C-bound is formulated in the following theorem.

Theorem 1.1.2 (Germain et al. (2015, Theorem 11)). For any posterior Q over H,

13

any data distribution P(X, Y), if µ1 > 0, then

R(BQ) ≤ 1− (µ1)
2

µ2
= 1−

(
1− 2R(GQ)

)2

1− 2DQ
,

where DQ := EXEh1∼QEh2∼QI(h1(x) 6= h2(x)) is the expected disagreement of hy-
potheses.

From Theorem 1.1.2 we can see that the C-bound involves the Gibbs risk, i.e.,
the individual errors of hypotheses, and the disagreement of hypotheses’ predic-
tions. This result is consistent with other studies on ensemble learning, showing
that the effectiveness of the majority vote depends on the individual performance
of hypotheses and their diversity (Krogh and Vedelsby, 1995; Tumer and Ghosh,
1996). The minimization of the C-bound underlies several learning algorithms (Roy
et al., 2016; Bauvin et al., 2020; Viallard et al., 2021). Note that the associated PAC-
Bayesian C-bound can also be derived to bound the generalization error based on
the available sample data (see Germain et al. (2015) for more details).

Multi-class Classification

Theoretical studies of the majority vote classifier have a focus mostly on the binary
setting, while only few results exist in the multi-class setting. Morvant et al. (2012)
considered a confusion matrix as an error indicator and derived generalization guar-
antees on the confusion matrix’ norm of the Gibbs classifier. Laviolette et al. (2017)
extended the C-bound to the multi-class case by considering the multi-class mar-
gin. Masegosa et al. (2020) derived a bound that is based on the second-order
Markov’s inequality, which can be regarded as a relaxation of the C-bound based
on the Cantelli-Chebyshev inequality. In this work, we also consider the multi-class
majority vote classifier, but with a focus on semi-supervised learning.

1.2 Semi-supervised Learning

Considering the semi-supervised framework (Chapelle et al., 2010), we assume that
two sets are available: a set of labeled training examples ZL = {(xi, yi)}l

i=1 ∈
(X ×Y)l i.i.d. with respect to a fixed yet unknown probability distribution P(X, Y)
over X ×Y , and a set of unlabeled training examples XU = {xi}l+u

i=l+1 ∈ X u that are
supposed to be drawn i.i.d. from the marginal distribution P(X) over the domain X .
It is additionally assumed that l � u, so that the supervised learning is inefficient.

Semi-supervised learning can be formulated following one of two settings: in-
ductive or transductive. In Section 1.1 we formulated the learning objective as min-
imization of the generalization risk. This approach follows the inductive inference,
i.e., we aim for a classifier that is learned on a finite number of training examples

14

and has the lowest error averaged over all possible examples with respect to the dis-
tribution P(X, Y). This approach is also relevant for semi-supervised learning and
can be used to label the unlabeled data.

However, since the labeled data is assumed scarce, estimation of the data distri-
bution from few training examples is a difficult problem. Moreover, in many applica-
tions it is required to accurately label the available unlabeled examples rather than
to infer a general rule. As Vapnik (1982, 1998) pointed out, with a lack of avail-
able information, it would be better to focus on solving the task directly and avoid
solving a general problem as an intermediate step. Thus, Vapnik (1998) proposed to
consider the transductive inference that consists in reasoning from the given labeled
set directly to the unlabeled one. Instead of searching a general rule, we focus on
the unlabeled examples in order to label them as accurately as possible. Thus, the
goal of learning can be formulated as to design a classifier h based on ZL and XU
that minimizes the transductive risk defined in the deterministic and probabilistic
cases respectively by:

RU (h) :=
1
u

l+u

∑
i=l+1

I(h(xi) 6= yi) (1.12)

RU (h) := 1− 1
u

l+u

∑
i=l+1

P(Y = h(xi)|X = xi). (1.13)

While minimization of the transductive objective is supposed to be an easier
problem, in practice, both inductive and transductive learning face the same issue
of integrating unlabeled data into the learning process. In Section 1.2.1, we give
a brief introduction to some of the existing semi-supervised approaches and the
assumptions they rely on. Then, Section 1.2.2 overviews existing studies of the
majority vote classifier in the transductive setting.

1.2.1 Existing Approaches

In semi-supervised learning, it is generally expected that unlabeled examples con-
tain valuable information about the prediction problem, thus their exploitation may
lead to an increase of performance. However, to a certain degree, it is not clear
when the unlabeled data may be useful, since it depends on the nature of data,
the number of the labeled and unlabeled examples, and many other factors. Almost
all semi-supervised approaches rely on specific assumptions about how data is dis-
tributed. While meeting these assumptions we benefit from the unlabeled examples,
the violation may lead to degradation with respect to supervised baselines (Cozman
et al., 2002).

There are several common assumptions used to develop a semi-supervised al-
gorithm. Most of them embody an idea of smoothness: if examples are "close" to
each other, they belong to the same class. For example, some approaches assume

15

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Feature 1

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
Fe

at
ur

e
2

Class 1
Unlabeled Class 1

Class 2
Unlabeled Class 2

(a) Cluster Assumption

3 2 1 0 1 2 3
Feature 1

4

3

2

1

0

1

2

3

4

Fe
at

ur
e

2

Class 1
Unlabeled Class 1

Class 2
Unlabeled Class 2

(b) Low Density Separation

Feature 1

4
2

0
2

4

Feature 2

4
2

0
2

4

Feature 3

100
75
50
25
0

25
50
75

100

Class 1
Unlabeled Class 1

Class 2
Unlabeled Class 2

(c) Manifold Assumption

Figure 1-1: Illustration of three assumptions typically made in semi-supervised
learning: (a) Cluster Assumption, (b) Low Density Separation, (c) Manifold As-
sumption.

that the labeled and unlabeled examples can be divided into informative clusters
(Figure 1-1a). This assumption is usually implemented by asserting that examples
from the same cluster share the same class label (Rigollet, 2007), so the labeled ex-
amples propagate their labels to the unlabeled ones from the same cluster. Alterna-
tively, Maximov et al. (2018) defines a cluster as a dense region with κ predominant
classes, and use such clusters to regularize a supervised classifier. In practice, these
approaches rely heavily on the underlying clustering algorithm, which may output
completely different clusters depending on the values of its hyperparameters and
the training data.

Another similar yet different assumption is the low density separation (Figure
1-1b). In this case, a semi-supervised classifier focuses on constructing a decision
boundary that avoids passing through dense regions of unlabeled data (Chapelle
and Zien, 2005). The idea is usually implemented by relying on prediction per-

16

formance of a base classifier and margin maximization for both the labeled and
unlabeled examples (Joachims, 1999; d’Alché-Buc et al., 2001). Since margins for
unlabeled data can be only approximated, it implies that a low density separation
algorithm depends on the initial performance of its base classifier, which can be low
due to the lack of labeled examples.

Algorithms based on the manifold assumption (Figure 1-1c) suggest that the
training data lie on a low-dimensional manifold. If to additionally assume that two
examples are likely share the same label when they are close to each other on a
manifold, then the manifold assumption becomes similar to the cluster assumption.
A common approach for capturing intrinsic geometry of data is to represent both
the labeled and unlabeled observations as vertices of a graph and edge weights
representing similarity between two vertices. The graph is then analyzed via the
Laplacian matrix (Zhu et al., 2003; Zhou et al., 2004; Belkin and Niyogi, 2004). Al-
though the graph-based approaches are widely spread for semi-supervised learning,
their performance is highly sensitive to data topology.

Self-learning Algorithm

The self-learning algorithm5 (SLA) is a widely known approach to learn on la-
beled and unlabeled data. The main idea is to iteratively re-learn a supervised base
classifier by expanding the labeled set. At each iteration, it assigns pseudo-labels
(i.e., predicted labels) to those unlabeled examples that have prediction confidence
above a threshold. The pseudo-labeled examples are then included in the training
set, and the classifier is retrained. The process is repeated until no examples for
pseudo-labeling are left. The algorithm is illustrated in Figure 1-2.

ZL
Supervised

Classifier

XU

Confidence Prediction

Policy

0

1
θ

(XP , ŶP)
XP ⊂ XU

XU ← XU \ XP
ZL ← ZL ∪ (XP , ŶP)

Figure 1-2: Self-Learning Algorithm SLA.

Generally speaking, the algorithm implicitly assumes that the confidence mea-
sure is well-calibrated, i.e., the supervised classifier makes its mistakes mostly on

5It is also known as self-training or self-labeling.

17

examples with low confidence (at least, at the initial step). Depending on which
base classifier is chosen, this assumption can be interpreted in different ways. For
example, in the case of margin maximization algorithms (e.g., SVM or decision
trees that also fit this principle (Leistner et al., 2009)), the assumption corresponds
to the low density separation, since by including pseudo-labeled unlabeled exam-
ples in the training set we push away the decision boundary from these examples,
and the final classifier will pass through regions of low density.

A classical policy for pseudo-labeling is to fix the confidence threshold to a fixed
value (Tür et al., 2005). In this case, it is not clear which threshold value should
be taken, since it depends on the base classifier, the data set and the number of
classes. In reality, when the threshold was not selected properly, the classification
performance may degrade with respect to the base classifier learned on the labeled
examples only. In the context of majority vote classifiers, we will show how this
threshold can be selected dynamically based on transductive guarantees in the bi-
nary case (Section 1.2.2) and in the multi-class case (Section 3.1).

There exists many algorithms closely related to self-learning. The most known
one is co-training (Blum and Mitchell, 1998), where two classifiers are trained on
different data views, and instead of learning themselves, they co-learn each other,
so that examples pseudo-labeled by one classifier are included in the training set
of another classifier. The approach assumes that diversity of two classifiers is sup-
plied by the existence of two data views (e.g., it can be two independent feature
sets), which is not always possible to have. Note that the co-training algorithm also
pseudo-labels based on a confidence threshold, hence it has similar limitations to
self-learning.
Leistner et al. (2009) proposed a pseudo-labeling approach for the random forest.
In contrast to self-learning, at each iteration it is trained on all labeled and un-
labeled examples, where pseudo-labels for unlabeled data are generated indepen-
dently for each tree according to posteriors {P̂(Y|X = xi)}l+u

i=l+1. These posteriors
are optimized via deterministic annealing, so pseudo-labels are re-computed at each
iteration. The proposed approach is supposed to have less chances to degrade per-
formance since it employs soft pseudo-labeling, which also can be regarded as a
limitation compared to the classical pseudo-labeling. We will see this more clearly
in Section 3.1.

Low Density Separation Split for Decision Trees

In the classical supervised setting, the training set is assumed to be sufficient for
generalization. However, in the case of semi-supervised learning, some regions are
sparse in training data, so splits in a decision tree are not performed accurately.
This may lead to a paradox situation when some examples are misclassified with
a very large prediction confidence. To overcome this problem, Kim (2016) have
proposed to take into account the unlabeled data for searching feature splits such
that will improve both the impurity decrease (labeled part) and split data in a place

18

of low density (unlabeled part). Let x̄(f)
parent, x̄(f)

l-child and x̄(f)
r-child be the mean value

of a feature f respectively in the parent, left child and right child nodes. Then, the
low density split criterion Sunsup can be defined as a ratio of the between-group
variance and the total variance:

Sunsup(f , s) :=
nl-child(x̄(f)

l-child − x̄(f)
parent)

2 + nr-child(x̄(f)
r-child − x̄(f)

parent)
2

∑x(f)∈parent(x(f) − x̄(f)
parent)

2
.

The higher the value of Sunsup(f , s), the lower density around the split value s.
Thus, the semi-supervised split is defined as:

Sssl(f , s) := (1− λ)Ssup(f , s) + λSunsup(f , s), (1.14)

where Ssup(f , s) is defined by Eq. (1.4), and λ is a parameter that balances between
the supervised and the unsupervised splits criteria. This semi-supervised criterion
is a promising tool to improve estimation of prediction probabilities for unlabeled
data, and it can be used in combination with self-learning. However, the optimal
value of λ may deviate from application to application, which is seen from the
empirical experiments performed by Kim (2016).

1.2.2 Transductive Bounds for the Majority Vote

It is common to analyze theoretically semi-supervised algorithms in the transductive
setting. Initiated by Vapnik (1982), there has been proposed various transductive
bounds in terms of the Rademacher complexity (El-Yaniv and Pechyony, 2009), the
algorithmic stability (El-Yaniv and Pechyony, 2006) or the PAC-Bayesian theorem
(Derbeko et al., 2004; Bégin et al., 2014), where the latter is an extension of the
supervised results presented in Section 1.1.3. Similarly to (1.12), we define the
transductive Bayes and Gibbs risk as:

RU (BQ) :=
1
u

l+u

∑
i=l+1

I(BQ(xi) 6= yi),

RU (GQ) :=
1
u

l+u

∑
i=l+1

Eh∼QI(h(xi) 6= yi).

One can notice that in the transductive setting, the Bayes risk is also bounded
by twice the Gibbs risk: RU (BQ) ≤ 2RU (GQ). A transductive PAC-Bayesian theo-
rem was first derived by Derbeko et al. (2004) based on the work of Vapnik (1982).
Then, this result was refined by Bégin et al. (2014). They assume that the train-
ing data are generated in the following way: first, l + u unlabeled examples xi are
drawn i.i.d. from the marginal distribution P(X); then, l of l + u examples are
randomly chosen, i.e., sampled without replacement, and are labeled according to

19

P(Y|X). Thus, this data generation implies that the training examples are depen-
dent. Below, we provide an explicit PAC-Bayesian bound of Bégin et al. (2014)
(re-arranging some terms to get exactly the bound on RU (GQ)).

Theorem 1.2.1 (Corollary 7 in Bégin et al. (2014)). For any set XL ∪ XU of l + u ≥
40 examples, for any hypothesis space H, for any δ ∈ (0, 1], with probability at least
1− δ over the choices ZL (l ∈ [20, n− 20]), we have:

RU (GQ) ≤ RL(GQ) +
l + u

u

√
u

2l(l + u)

[
KL(Q ‖ P) + ln

t(l, u)
δ

]
,

where t(l, u) := 3 ln(l)
√

lu/(l + u).

The main disadvantage of this bound is similar to the inductive case: the Bayes
risk is bounded indirectly. In this connection, Amini et al. (2008) have derived a
direct transductive bound on the Bayes risk in the binary case based on the margin
distribution of unlabeled data. As the margin can not be evaluated for an unlabeled
example, they consider the unsigned margin originally introduced by d’Alché-Buc
et al. (2001) and defined in the following way:

mQ(x) :=
∣∣Eh∼Qh(x)

∣∣ =
∣∣Eh∼QI(h(x) = 1)−Eh∼QI(h(x) = −1)

∣∣ . (1.15)

Thus, the unsigned margin represents the absolute value of the prediction margin
and can be treated as an indicator of confidence. This is relevant if we additionally
assume that the Bayes classifier makes its mistakes on low margin.

Amini et al. (2008) derives a bound for extended risk called the transductive
joint Bayes risk defined for θ ∈ [0, 1) as follows:

RU∧θ(BQ) :=
1
u

l+u

∑
i=l+1

I(BQ(xi) 6= yi ∧ mQ(x) > θ), (1.16)

which evaluates the transductive risk on those unlabeled examples that have margin
above a threshold θ.

Theorem 1.2.2 (Theorem 1 in Amini et al. (2008)). Suppose that an upper bound
of the transductive Gibbs risk Rδ

u(GQ) is given. Then for any Q and for all δ ∈
(0, 1], ∀θ ≥ 0, with probability at least 1− δ, the following bound holds:

RU∧θ(BQ) ≤ inf
γ∈(θ,1]

{
1
u

l+u

∑
i=l+1

I(θ<mQ(xi)<γ) +
1
γ

⌊
Kδ

u(Q)+M≤Q(θ)−M<
Q(γ)

⌋
+

}
,

where

• Kδ
u(Q) = Rδ

u(GQ) +
1

2u ∑l+u
i=l+1 mQ(xi)− 1

2 ,

20

• M/
Q(t) =

1
u ∑l+u

i=l+1 mQ(xi)I(mQ(xi) / t), (/ ∈ {<,≤}),

• bxc+ = x · I(x > 0).

The bound is found from the solution of a linear program, where the connection
with the Gibbs risk is used as a linear constraint. One can notice that Rδ

u(GQ) can
be evaluated using Theorem 1.2.1. The bound for RU (BQ) is derived from Theorem
1.2.2 by noticing that RU (BQ) ≤ RU∧0(BQ) +

1
u ∑l+u

i=l+1 I(mQ(xi) = 0).
Amini et al. (2008) proposed to apply the derived bound for semi-supervised

learning. As it was previously discussed, the choice of a confidence threshold is
a bottleneck of the self-learning algorithm. To overcome this, a criterion to select
this threshold automatically is considered. More specifically, the unsigned margin
is treated as an indicator of confidence, and we are looking for a threshold that
minimizes the conditional Bayes error rate defined for a given θ > 0 as:

RU|θ(BQ) :=
RU∧θ(BQ)

1
u ∑l+u

i=l+1 I(mQ(xi) > θ)
, (1.17)

where RU∧θ(BQ) is evaluated using Theorem 1.2.2. Thus, the threshold is selected
by balancing between the number of pseudo-labeled examples (i.e., those with
mQ(xi) > θ) and the bounded error evaluated on them.

21

22

Chapter 2

Probabilistic Bounds for the
Multi-class Majority Vote Classifier

In this chapter, we present a probabilistic framework for analyzing the majority vote
classifier in the multi-class classification scenario with partially labeled data. First,
we derive a transductive bound on the multi-class majority vote classifier’s error
evaluated on the unlabeled examples with a prediction vote higher than a given
threshold. The bound is obtained by considering the class confusion matrix as an
error indicator and involving the distribution of the classifier’s votes over each class.
We prove that this bound is tight when it is assumed that the errors of the majority
vote classifier are concentrated in a region of a low prediction vote. Then, we ana-
lyze the majority vote classifier in the case of imperfectly-labeled data. For this, we
introduce a mislabeling error model and derive a connection between the true and
imperfect labels. Based on this, we derive a new C-bound on the majority vote error
when an imperfect label is given. Finally, the chapter also discusses possible appli-
cations of the two proposed bounds for semi-supervised learning and, in particular,
for self-learning.

2.1 Introduction

Generalization guarantees of majority vote classifiers are well studied in the bi-
nary supervised setting. A common approach is to bound the majority vote risk
by twice the Gibbs risk (Langford and Shawe-Taylor, 2002). Many works are fo-
cused on deriving tight PAC guarantees for the Gibbs classifier in the inductive
case (McAllester, 2003; Maurer, 2004; Catoni, 2007) as well as in the transductive
one (Derbeko et al., 2004; Bégin et al., 2014), and applying these results for opti-
mization (Thiemann et al., 2017), linear classifiers (Germain et al., 2009), random
forests (Lorenzen et al., 2019), neural networks (Letarte et al., 2019). While this
bound can be tight, it reflects only the individual strength of voters, so using it as a
minimization criterion often leads to an increase in the test error (Masegosa et al.,

23

2020). This motivates to opt for bounds that directly upper bound the majority
vote error. Amini et al. (2008) derives a transductive bound based on how voters
agree on every unlabeled example (reminded in Section 1.2.2), while Lacasse et al.
(2007) upper bounds the generalization error by taking additionally into account
the error correlation between voters (reminded in Section 1.1.3).

Only few results exist for the multi-class majority vote classifier. In the super-
vised setting, Morvant et al. (2012) derives generalization guarantees on the confu-
sion matrix’ norm based on the matrix concentration inequality proposed by Tropp
(2012). Laviolette et al. (2017) extends the C-bound of Lacasse et al. (2007) to
the multi-class case. Masegosa et al. (2020) studies tight estimations from data by
deriving a relaxed version of Laviolette et al. (2017).

In this chapter, we derive two bounds on the error of the multi-class majority
vote classifier in the semi-supervised setting. First, we extend the work of Amini
et al. (2008) to the multi-class case by focusing on the class confusion matrix as
an error indicator as proposed by Morvant et al. (2012). This bound is obtained by
analytically solving a linear program and it comes out that in the case when the
majority vote classifier makes most of its errors on examples with low class vote,
the obtained bound is tight.

However, the proposed transductive bound can not be used to evaluate the error
after learning a semi-supervised classifier. For example, self-learning results in learn-
ing a classifier on the labeled examples and the unlabeled examples with pseudo-
labels that are potentially erroneous. In order to take explicitly into account possible
mislabeling, we consider a mislabeling error model (Chittineni, 1980) and derive
our second bound for the majority vote by extending the multi-class C-bound (Lavi-
olette et al., 2017) to the case of imperfectly labeled data. This result is based on
analysis of how the true and the imperfect label are connected. Chittineni (1980)
derived this connection but only for the oracle classifier. We extend the latter result
by deriving another bound that holds for an arbitrary classifier.

The rest of this chapter is organized as follows. In Section 2.2 we introduce the
problem statement and the proposed framework. In Section 2.3 we present proba-
bilistic bounds over the transductive risk of the multi-class majority vote classifier.
Section 2.4 shows how to derive the C-bound in the probabilistic framework taking
into account mislabeling errors. In Section 2.5 we summarize the outcome of this
study and discuss the perspectives. Section 2.6 is the appendix of this chapter.

2.2 Framework and Definitions

In this chapter, we focus on the multi-class classification, i.e., Y = {1, . . . , K},
K ≥ 2. We consider the semi-supervised setting, i.e., we assume an available set
of labeled training examples ZL = {(xi, yi)}l

i=1 ∈ (X × Y)l and an available set of
unlabeled training examples XU = {xi}l+u

i=l+1 ∈ X u. Further, we denote by 0K the
zero vector of size K, 0K,K is the zero matrix of size K× K and n := l + u.

24

As before, we consider a fixed set of classifiers H = {h|h : X → Y}, called the
hypothesis space. Over H, the prior Q0 and the posterior Q are defined respectively
before and after observing the training set. We focus on two classifiers: the majority
vote classifier (the Bayes classifier) defined for all x ∈ X as:

BQ(x) := argmax
c∈{1,...,K}

[
Eh∼QI(h(x) = c)

]
, (2.1)

and, the stochastic Gibbs classifier GQ that for every x ∈ X predicts the label using
a randomly chosen classifier h ∈ H according to Q.

The goal of learning is formulated as to choose a posterior distribution Q overH
based on the training set ZL ∪ XU such that the classifier BQ will have the smallest
possible error value. In Section 2.3 our objective is transductive, while the inductive
setting is considered in Section 2.4. As opposed to works of Derbeko et al. (2004);
Bégin et al. (2014); Amini et al. (2008) who considered the deterministic case,
we consider the more general probabilistic case assuming possibility of multiple
outcomes for each example.

To measure confidence of the majority vote classifier in its prediction, the notions
of class votes and margin are further considered. Given an observation x, we define
a vector of class votes vx = (vQ(x, c))K

c=1 where the c-th component corresponds to
the total vote given to the class c:

vQ(x, c) := Eh∼QI(h(x) = c) = ∑
h:h(x)=c

Q(h).

In practice, the vote vQ(x, c) can be regarded as an estimation of the posterior
probability P(Y = c|X= x); a large value indicates high confidence of the classifier
that the true label of x is c.
Given an observation x, we consider the multi-class margin that is defined in the
following way:

MQ(x, y) := Eh∼QI(h(x) = y)−max
c∈Y
c 6=y

Eh∼QI(h(x) = c) = vQ(x, y)−max
c∈Y
c 6=y

vQ(x, c).

(2.2)

The margin measures a gap between the vote of the true class and the maximal vote
among all other classes. Similarly to the binary case, a strictly positive margin for
an example x implies its correct classification.

One can see that analysis of the majority vote becomes more challenging in
the multi-class case. The definition of the Bayes classifier and its margin contain
respectively argmax and max operators. Moreover, the class votes can be described
just by one number in the binary case, since vQ(x,−1) = 1− vQ(x, 1), whereas in
the multi-class case it becomes essential to consider the whole class vote vector. Also
some properties of the binary majority vote do not hold in the multi-class case. For

25

example, in the binary case, vQ(x, c) > 1/2 is a necessary and sufficient condition
that c is the majority vote class, whereas in the multi-class case is just a sufficient
condition.

2.3 Probabilistic Transductive Bounds

In this section, we derive guarantees for the multi-class majority vote classifier in
the transductive setting (Vapnik, 1982, 1998), i.e., when the error is evaluated on
the unlabeled set XU only. The proposed bounds assumes that the majority vote
classifier makes mistake on low class votes and thereby use votes as indicators of
confidence.

2.3.1 Transductive conditional risk

At first, we show how to upper bound the risk evaluated conditionally to the values
of the true and the predicted class. Given a classifier h, for each class pair (i, j) ∈
{1, . . . , K}2 such that i 6= j, the transductive conditional risk is defined as follows:

RU (h, i, j) :=
1
ui

∑
x∈XU

P(Y = i|X = x)I(h(x) = j),

where ui = ∑x∈XU P(Y = i|X = x) is the expected number of unlabeled obser-
vations from the class i ∈ {1, . . . , K}. The value of RU (h, i, j) indicates the ex-
pected proportion of unlabeled examples that are classified to the class j being
from the class i. We call RU (BQ, i, j) as the transductive Bayes conditional risk.
The transductive Gibbs conditional risk is defined in expectation over Q for all
(i, j) ∈ {1, . . . , K}2, i 6= j by:

RU (GQ, i, j) := Eh∼QRU (h, i, j).

In addition, we define the transductive joint Bayes conditional risk for a thresh-
old vector 𝜃 ∈ [0, 1]K, for (i, j) ∈ {1, . . . , K}2, i 6= j, as follows:

RU∧𝜃(BQ, i, j) :=
1
ui

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj). (2.3)

If the Bayes classifier makes mistakes, i.e., outputs the class j when the true class
is i, on the examples with low values of vQ(x, j), then the joint risk computes the
probability to make the conditional error on confident observations when a large
enough θj is set with respect to the distribution of vQ(x, j).

The following Lemma 2.3.1 connects the conditional Gibbs risk and the joint
Bayes conditional risk by considering a conditional Bayes error regarding a certain
class vote.

26

Lemma 2.3.1. For c ∈ {1, . . . , K}, let Γc = {γc ∈ [0, 1]| ∃ x ∈ XU : γc = vQ(x, c)}
be the set of unique votes for the unlabeled examples to the class c. Let enumerate its
elements such that they form an ascending order:

γ
(1)
c ≤ γ

(2)
c ≤ · · · ≤ γ

(Nc)
c ,

where Nc := |Γc|. Denote b(t)i,j := 1
ui

∑x∈XU P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) =

γ
(t)
j).

Then, for all (i, j) ∈ {1, . . . , K}2:

RU (GQ, i, j) ≥ Ki,j :=
Nj

∑
t=1

b(t)i,j γ
(t)
j , (2.4)

RU∧𝜃(BQ, i, j) =
Nj

∑
t=kj+1

b(t)i,j , (2.5)

where k j = max{t|γ(t)
j < θj} with max(∅) = 0 by convention.

The proof is provided in Appendix 2.6.1. Following Lemma 2.3.1, we derive a
bound on the Bayes conditional risk using the class vote distribution.

Theorem 2.3.2. Let BQ be the Q-weighted majority vote classifier defined by Eq. (2.1).
Then for any Q, for all θ ∈ [0, 1]K, for all (i, j) ∈ {1, . . . , K}2 we have:

RU∧𝜃(BQ, i, j) ≤ inf
γ∈[θj,1]

{
I(≤,<)
i,j (θj, γ) +

1
γ

⌊
Ki,j −M<

i,j(γ) + M<
i,j(θj)

⌋
+

}
, (TBi,j)

where

• Ki,j =
1
ui

∑x∈XU P(Y = i|X = x)vQ(x, j)I(BQ(x) = j) is the transductive Gibbs
conditional risk evaluated on the examples for which the majority vote class is j,

• I(≤,<)
i,j (θj, γ) = 1

ui
∑x∈XU P(Y = i|X = x)I(θj ≤ vQ(x, j) < γ) is the expected

proportion of unlabeled examples from the class i with vQ(x, j) in interval [θj, γ),

• M<
i,j(s) = 1

ui
∑x∈XU P(Y = i|X = x)vQ(x, j)I(vQ(x, j) < s), is the average of

j-votes in the class i that less than s.

Proof. We would like to find an upper bound for the joint Bayes conditional risk.
Hence, for all (i, j) ∈ {1, . . . , K}2, for all 𝜃 ∈ [0, 1]K, we consider the case when the
mistake is maximized. Then, using Lemma 2.3.1:

RU∧𝜃(BQ, i, j) =
Nj

∑
t=kj+1

b(t)i,j ≤ max
b(1)i,j ,...,b

(Nj)

i,j

Nj

∑
t=kj+1

b(t)i,j , (2.6)

27

with k j = max{t|γ(t)
j < θj}I({t|γ(t)

j < θj} 6= ∅).

Let B(t)
i,j = ∑x∈XU P(Y = i|X = x)I(vQ(x, j) = γ

(t)
j)/ui. Then, it can be noticed

that 0 ≤ b(t)i,j ≤ B(t)
i,j . Remember that Ki,j can also be written as ∑

Nj
t=1 b(t)i,j γ

(t)
j . Hence

the bound defined by Eq. (2.6) should satisfy the following linear program :

max
b(1)i,j ,...,b

(Nj)

i,j

Nj

∑
t=kj+1

b(t)i,j (2.7)

s.t. ∀t, 0 ≤ b(t)i,j ≤ B(t)
i,j and

Nj

∑
t=1

b(t)i,j γ
(t)
j = Ki,j.

The solution of (2.7) can be solved analytically and it is attained for:

b(t)i,j = min

B(t)

i,j ,

 1

γ
(t)
j

(Ki,j − ∑
k<w<t

γ
(w)
j B(w)

i,j)

+

 I(t ≤ k j). (2.8)

For the sake of a better presentation, the proof of this solution is deferred to Ap-
pendix 2.6, Lemma 2.6.1. Further, we can notice that, for all (i, j) ∈ {1, . . . , K}2,

∑
kj<w<t

γ
(w)
j B(w)

i,j = M<
i,j(γ

(t)
j)−M<

i,j(θj).

Let p = max{t|Ki,j −M<
i,j(γ

(t)
j) + M<

i,j(θj) > 0}. Then, Eq. (2.8) can be re-written
as follows:

b(t)i,j =

0 t ≤ k j

B(t)
i,j k j + 1 ≤ t < p
1

γ
(p)
j

(Ki,j −M<
i,j(γ

(p)
j) + M<

i,j(θj)) t = p

0 t > p.

(2.9)

Notice that ∑
p−1
t=kj+1 B(t)

i,j = I(≤,<)
i,j (θj, γ

(p)
j). Using this fact as well as Eq. (2.9), we

infer:

RU∧𝜃(BQ, i, j) ≤ I(≤,<)
i,j (θj, γ

(p)
j) +

1

γ
(p)
j

(Ki,j −M<
i,j(γ

(p)
j) + M<

i,j(θj)).

Consider the function

γ 7→ Ui,j(γ) := I(≤,<)
i,j (θj, γ) +

1
γ

⌊
Ki,j −M<

i,j(γ) + M<
i,j(θj)

⌋
+

.

28

To prove the theorem, it remains to verify that, for all (i, j) ∈ {1, . . . , K}2, for all
γ ∈ [θj, 1], Ui,j(γ

(p)
j) ≤ Ui,j(γ). For this, consider γ

(w)
j with w ∈ {1, . . . , Nj}.

If w > p, then Ui,j(γ
(p)
j) ≤ I(≤,≤)

i,j (θj, γ) ≤ Ui,j(γ
(w)
j).

If w < p, then

Ui,j(γ
(p)
j)−Ui,j(γ

(w)
j) =

p

∑
t=w

b(t)i,j −
1

γ
(w)
j

(
Ki,j −M<

i,j(γ
(w)
j) + M<

i,j(θj)
)

=
p

∑
t=w

b(t)i,j −
1

γ
(w)
j

(
p

∑
t=k+1

b(t)i,j γ
(t)
j −

w−1

∑
t=k+1

γ
(t)
j b(t)i,j

)

=
1

γ
(w)
j

(
p

∑
t=w

b(t)i,j γ
(w)
j −

p

∑
t=w

b(t)i,j γ
(t)
j

)
≤ 0.

which completes the proof.

Following this result, a transductive bound for the joint Bayes conditional risk
can be found by arranging the class votes in an ascending order and considering
the linear program (2.7), where the connection with the Gibbs classifier is used as a
linear constraint. Furthermore, as the bound is the infimum of the function Ui,j on
the interval [θj, 1] it can be computed in practice without solving the linear program
explicitly.

When θj = 0, a bound over the transductive Bayes conditional risk is directly
obtained from (TBi,j) by noticing that M<

i,j(0) = 0 in this case:

RU (BQ, i, j) ≤ inf
γ∈[0,1]

{
I(≤,<)
i,j (0, γ) +

1
γ

⌊
Ki,j −M<

i,j(γ)
⌋
+

}
. (2.10)

We note that in the binary case (Amini et al., 2008), the transductive Gibbs
risk used inside the linear program can be bounded either by the PAC-Bayesian
bound (Derbeko et al., 2004; Bégin et al., 2014) or by 1/2 (the worst possible error
of the binary classifier), which allows to compute the transductive bound. In the
multi-class case, the bound can be evaluated only by approximating the posterior
probabilities. Once we estimate the posterior probability, Ki,j and the transductive
conditional Gibbs risk are also directly approximated.

2.3.2 Transductive confusion matrix and transductive error rate

In this section, based on Theorem 2.3.2, we derive bounds for two other error mea-
sures: the error rate and the confusion matrix (Morvant et al., 2012). We define the
transductive error rate and the transductive joint error rate of the Bayes classifier

29

BQ over the unlabeled set XU given a vector 𝜃 = (θc)K
c=1 ∈ [0, 1]K, as:

RU (BQ) :=
1
u ∑

x∈XU
∑

c∈{1,...,K}
c 6=BQ(x)

P(Y = c|X = x),

RU∧𝜃(BQ) :=
1
u ∑

x∈XU
∑

c∈{1,...,K}
c 6=BQ(x)

P(Y = c|X = x)I(vQ(x, BQ(x)) ≥ θBQ(x)). (2.11)

Then, we define the transductive joint Bayes confusion matrix for 𝜃 ∈ [0, 1]K, and
(i, j) ∈ {1, . . . , K}2, as follows:

[
CU∧𝜃h

]
i,j
=

{
0 i = j,
RU∧𝜃(h, i, j) i 6= j.

The following proposition links the error rate with the joint confusion matrix:

Proposition 2.3.3. Let BQ be the majority vote classifier. Given a vector 𝜃 ∈ [0, 1]K,
for p := {ui/u}K

i=1, where ui = ∑x∈XU P(Y = i|X = x), we have:

RU∧𝜃(BQ) =
∥∥∥
(

CU∧𝜃BQ

)ᵀ
p
∥∥∥

1
. (2.12)

Proof. To prove Eq. (2.12), combine the definition of transductive joint Bayes con-
ditional risk given in Eq. (2.3) and Eq. (2.11) as follows:

RU∧𝜃(BQ) =
1
u

K

∑
i=1

K

∑
j=1
j 6=i

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj)

=
K

∑
i=1

ui

u

K

∑
j=1
j 6=i

RU∧𝜃(BQ, i, j) =
∥∥∥
(

CU∧⊆BQ

)ᵀ
p
∥∥∥

1
.

From Theorem 2.3.2, we derive corresponding transductive bounds for the con-
fusion matrix norm and the error rate of the Bayes classifier. To simplify notations,
we introduce a matrix U𝜃 of size K × K with zeros on the main diagonal and the
following (i, j)-entries, i 6= j:

[U𝜃]i,j := inf
γ∈[θj,1]

{
I(≤,<)
i,j (θj, γ) +

1
γ

⌊
(Ki,j −M<

i,j(γ) + M<
i,j(θj))

⌋
+

}
,

which corresponds to the transductive bound proposed in Theorem 2.3.2.

30

Corollary 2.3.4. For all θ ∈ [0, 1]K, we have:

‖CU∧𝜃BQ
‖ ≤ ‖U𝜃‖. (2.13)

Moreover, we have the following bound:

RU∧𝜃(BQ) ≤
∥∥Uᵀ

𝜃 p
∥∥

1 . (2.14)

where ‖.‖ is the spectral norm, p = {ui/u}K
i=1 with ui = ∑x∈XU P(Y = i|X = x).

Proof. The confusion matrix CU∧𝜃BQ
is always non-negative, and from Theorem 2.3.2,

each of its entries is smaller than the corresponding entry of U𝜃. Hence, from the
property of spectral norm for two positive matrices A and B :

0K,K � A � B⇒ ‖A‖ ≤ ‖B‖,

where A � B denotes that each element of A is smaller than the corresponding
element of B, we deduce Eq. (2.13).

With the same computations, we observe the following inequality:
(

CU∧𝜃BQ

)ᵀ
p ≤ Uᵀ

𝜃 p.

Elements of the left vector are non-negative. Hence the inequality holds for the
`1-norm, and taking into account Proposition 2.3.3 we infer:

RU∧𝜃(BQ) =
∥∥∥
(

CU∧𝜃BQ

)ᵀ
p
∥∥∥

1
≤
∥∥Uᵀ

𝜃 p
∥∥

1 .

Note that the transductive bound of the Bayes error rate is obtained from Eq.
(2.14) by taking 𝜃 as the zero vector 0K:

RU (BQ) ≤
∥∥∥Uᵀ

0K
p
∥∥∥

1
. (TB)

2.3.3 Tightness Guarantees

In this section, we assume that the Bayes classifier makes most of its error on un-
labeled examples with a low prediction vote, i.e., class votes can be considered
as indicators of confidence. In the following proposition, we show that the bound
becomes tight under certain conditions. We remind that Γj = {γ(t)

j } is the set of

unique votes for the unlabeled examples to the class j, and b(t)i,j corresponds to the

Bayes conditional risk on the examples with the vote γ
(t)
j (see Lemma 2.3.1 for

more details).

31

Proposition 2.3.5. Let Γτ
j := {γ(t)

j ∈ Γj|b(t)i,j > τ}, where τ ∈ [0, 1] is a given
threshold. If there exists a lower bound C ∈ [0, 1] such that for all γ ∈ Γτ

j :

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ)

≥ C ∑
x∈XU

P(Y = i|X = x)I(vQ(x, j) < γ), (2.15)

then, the following inequality holds:

[U0K]i,j − RU (BQ, i, j) ≤ 1− C
C

RU (BQ, i, j) + ri,j

(
1

γ∗j
− 1

)
,

where

• γ∗j := sup{γ(t)
j ∈ Γτ

j } is the highest vote which satisfies b(t)i,j > τ, and

• ri,j := ∑x∈XU P(Y = i|X = x)vQ(x, j)I(BQ(x) = j)I(vQ(x, j) > γ∗j)/ui corre-
sponds to the average of j-votes in the class i that greater than γ∗j and on which
the Bayes classifier makes the conditional mistake.

Proof. First, it can be proved that for all x ∈ XU , for all (i, j) ∈ {1, . . . , K}2, the
following inequality holds:

RU (BQ, i, j) ≥ 1
ui

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗)

+
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
+ ri,j, (2.16)

where γ∗ := sup{γ ∈ Γj|∑x∈XU P(Y= i|X=x)I(BQ(x)= j)I(vQ(x, j)=γ)/ui > τ}.
We prove this result in Lemma 2.6.2 in Section 2.6. We remind that I(≤,<)

i,j (0, γ∗) =
1
ui

∑x∈XU P(Y= i|X=x)I(vQ(x, j)<γ∗). Then, combining Eq. (2.16) and Eq. (2.15)
we deduce the following:

RU (BQ, i, j) ≥C I(≤,<)
i,j (0, γ∗) +

1
γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
+ ri,j. (2.17)

By definition of U0K we have, for all (i, j) ∈ {1, . . . , K}2,

[U0K]i,j ≤ I(≤,<)
i,j (0, γ∗) +

1
γ∗
⌊

Ki,j −M<
i,j(γ

∗)
⌋
+

. (2.18)

32

Subtracting Eq. (2.17) from Eq. (2.18) we obtain:

[U0K]i,j − RU (BQ, i, j) ≤ (1− C)I(≤,<)
i,j (0, γ∗)

+
1

γ∗

(⌊
Ki,j −M<

i,j(γ
∗)
⌋
+
−
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

)
− ri,j.

We can notice that for all a, b ∈ R+ : b− bb− ac+ ≤ a. Then, we have:

[U0K]i,j − RU (BQ, i, j) ≤ (1− C)I(≤,<)
i,j (0, γ∗) + ri,j

(
1

γ∗
− 1
)

. (2.19)

Also, from Eq. (2.17) one can derive:

I(≤,<)
i,j (0, γ∗) ≤ 1

C

(
RU (BQ, i, j)− 1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
− ri,j

)

≤ RU (BQ, i, j)
C

. (2.20)

Taking into account Eq. (2.19) and Eq. (2.20), we infer:

[U0K]i,j − RU (BQ, i, j) ≤ 1− C
C

RU (BQ, i, j) + ri,j

(
1

γ∗
− 1
)

.

This proposition states that if Eq. (2.15) holds, the difference between the trans-
ductive Bayes conditional risk and its upper bound does not exceed an expression
that depends on a constant C and a threshold τ. When the majority vote classi-
fier makes most of its mistake for the class j on observations with a low value of
vQ(x, j), with a reasonable choice of τ, ri,j and γ∗j are decreasing. This also implies
that Eq. (2.15) accepts a high value C (close to 1) and the bound will be tighter.
The closer our framework to the deterministic one, the closer ri,j will be to 0 (in the
deterministic case, τ can be set to 0, so ri,j will be 0), so the bound becomes tight.
Although our bound is tight only under the condition of making mistakes on low
prediction votes, the assumption is reasonable from the theoretical point of view,
since if for some observation the Bayes classifier gives a relatively high vote to the
class j, we expect that the observation is most probably from this class and not from
the class i. From the practical point of view, this assumption requires the learning
model to be well calibrated (Gebel, 2009).

2.4 Probabilistic C-Bound with Imperfect Labels

The transductive bound (TB) can give us insights for self-learning, since the trans-
ductive error can be evaluated on different values of the threshold 𝜃. However, the

33

pseudo-labels obtained by self-learning may be still erroneous, and we do not know
how to evaluate the classification error in this noisy case. In addition, (TB) can
be regarded as a first-order bound, since it is linearly dependent on the classifier’
votes, so it does not take into account the correlation between hypotheses. In this
section, we overcome these two issues by deriving a new probabilistic C-bound on
the generalization error in the presence of imperfect labels.

2.4.1 Ordinary C-Bound

Lacasse et al. (2007) proposed to upper bound the Bayes error by taking into
account the mean and the variance of the prediction margin, which, we recall
Eq. (2.2), is defined as vQ(x, y)−maxc∈Y\{y} vQ(x, c). A similar result was obtained
in a different context by Breiman (2001). Laviolette et al. (2017) extended this
bound to the multi-class case.

We remind that the generalization error is defined in the probabilistic setting as
follows:

R(BQ) := EX ∑
c∈Y\{BQ(x)}

P(Y = c|X = x) = EX[1− P(Y = BQ(x)|X = x)].

Below, we show how the C-bound of Laviolette et al. (2017) is derived in the
probabilistic setting. The probabilistic formulation gives us insights that the bound
can be applied not only in the classical supervised setting, but also in the case when
every training example is supplied with probabilistic (soft) label which may arise in
medical or crowdsourcing applications (Peng et al., 2014).

Theorem 2.4.1. Let M be a random variable such that [M|X = x] is a discrete random
variable that is equal to the margin MQ(x, c) with probability P(Y = c|X = x),
c = {1, . . . , K}. Let µM

1 and µM
2 be the first and the second statistical moments of the

random variable M, respectively. Then, for all choice of Q on a hypothesis space H,
and for all distributions P(X) over X and P(Y|X) over Y , such that µM

1 > 0, we have:

R(BQ) ≤ 1− (µM
1)2

µM
2

. (CB)

Proof. At first, we show that R(BQ) = P(M ≤ 0). For a fixed x, one can notice that

P(M ≤ 0|X = x) =
K

∑
c=1

P(Y= c|X=x)I(MQ(x, c)≤0) = ∑
c∈Y\{BQ(x)}

P(Y= c|X=x).

Applying the total probability law, we obtain:

P(M ≤ 0) =
∫

X
P(M ≤ 0, X = x)dx = EXP(M ≤ 0|X = x) = R(BQ). (2.21)

34

By applying the Cantelli-Chebyshev inequality (Lemma 2.6.3 in Appendix 2.6), we
deduce:

P(M ≤ 0) ≤ µM
2 − (µM

1)2

µM
2 − (µM

1)2 + (µM
1)2

= 1− (µM
1)2

µM
2

. (2.22)

Combining Eq. (2.21) and Eq. (2.22) gives the bound.

The main advantage of the C-bound is the involvement of the second margin
moment, which can be related to correlations between hypotheses’ errors (Lacasse
et al., 2007; Masegosa et al., 2020).

2.4.2 Mislabeling Error Model

When training data contains an unknown portion of imperfect labels, a common
approach is to explicitly model mislabeling errors (Chittineni, 1980). The approach
has been considered in both supervised (Natarajan et al., 2013; Scott, 2015; Xia
et al., 2019) and semi-supervised settings (Amini and Gallinari, 2003). In most
cases, a focus is on the estimation of the mislabeling errors to train a supervised
classifier, and theoretical studies are limited by the binary case (Natarajan et al.,
2013; Scott, 2015). We follow Chittineni (1980) and consider a general multi-class
framework to evaluate the classification error.

We consider an imperfect output Ŷ, which has a different distribution from the
true output Y. The label imperfection is summarized through the mislabeling matrix
P = (pj,c)1≤j,c≤K, defined by:

P(Ŷ = j|Y = c) := pj,c ∀(j, c) ∈ {1, . . . , K}2, (2.23)

where ∑K
j=1 pj,c = 1. Additionally, we assume that Ŷ does not influence the true

class distribution: P(X|Y, Ŷ) = P(X, Y). This implies that

P(Ŷ = j|X = x) =
K

∑
c=1

pj,cP(Y = c|X = x). (2.24)

This class-related model is a common approach to deal with the label imperfection
(Amini and Gallinari, 2003; Natarajan et al., 2013; Scott, 2015).

In this section, we derive a bound that connects the error of the true and the
imperfect label in misclassifying a particular example x ∈ X . For this, we use the
following notations:

r(h, x) = ∑
c∈Y

c 6=h(x)

P(Y = c|X = x), r̂(h, x) = ∑
c∈Y

c 6=h(x)

P(Ŷ = c|X = x).

35

First, we remind the result obtained by Chittineni (1980) for the oracle classifier.

Theorem 2.4.2 (Chittineni (1980, p. 284)). Assume the mislabeling matrix P is
given. Then, for all x ∈ X , we have

r(O, x) ≤ 1− 1− r̂(O, x)
β

, (2.25)

where β = maxj∈{1,...,K}
(

∑K
c=1 pj,c

)
.

Proof. Remind that for all x ∈ X , O(x) = maxc∈Y P(Y = c|X = x). Then, we have

r̂(O, x) = 1− max
j∈{1,...,K}

K

∑
c=1

pj,cP(Y = c|X = x) ≥ 1−O(x) max
j∈{1,...,K}

(
K

∑
c=1

pj,c

)

= 1−O(x)β = (1− β) + βr(O, x).

The rest of the proof is straightforward.

As one can see, the term β ≥ 1 (β = 1 means no mislabeling) penalizes the
bound in the case of mislabeling. However, β is constant with respect to x, so the
penalization of the error r̂(O, x) does not depend on the predicted label, which is
limitation, since some classes can be well predicted, so they should be less penal-
ized. Another limitation is that the bound holds only for the oracle classifier. Thus,
we derive another bound that holds for an arbitrary classifier and is given by the
following theorem.

Theorem 2.4.3. Assume the mislabeling matrix P is given. Then, for any classifier h,
for all x ∈ X , for all λ ≥ 0 such that pj,j > pj,c − λ, ∀j, c ∈ {1, . . . , K}2, we have

r(h, x) ≤ r̂(h, x)
λ + δ(x)

− 1− λ− α(x)
λ + δ(x)

, (2.26)

with

• δ(x) := ph(x),h(x) −maxj∈Y\{h(x)} ph(x),j ,

• α(x) := ph(x),h(x).

Proof. First, from the definition of r̂(x) and applying Eq. (2.24) we obtain that

r̂(h, x) = 1− P(Ŷ = h(x)|X = x) = 1−
K

∑
c=1

ph(x),jP(Y = c|X = x)

= 1− ph(x),h(x)P(Y = h(x)|X = x)−
K

∑
c=1

c 6=h(x)

ph(x),jP(Y = c|X = x)

36

One can notice that

K

∑
c=1

c 6=h(x)

ph(x),cP(Y = c|X = x) ≤ max
c∈Y\{h(x)}

ph(x),c

K

∑
c=1

c 6=h(x)

P(Y = c|X = x)

= max
c∈Y\{h(x)}

ph(x),c(1− P(Y = h(x)|X = x)).

Finally, we infer the following inequality:

r̂(h, x) ≥ (ph(x),h(x) − max
c∈Y\{h(x)}

ph(x),c)(1− P(Y = h(x)|X = x)) + 1− ph(x),h(x)

= δ(x)r(h, x) + 1− α(x)
≥ (δ(x) + λ)r(h, x) + 1− λ− α(x).

Taking into account the assumption that pj,j > pj,c − λ, ∀i, j ∈ {1, . . . , K}2, we
deduce that λ + δ(x) > 0, which concludes the proof.

This theorem gives us insights on how the true error rate can be bounded given
the error rate of the imperfect label and the mislabeling matrix. With the quantities
δ(x) and α(x), we perform a correction of r̂(x). Note that when there is no misla-
beling, the left and right sides of Eq. (2.26) are equal with λ = 0, since α(x) = 1
and δ(x) = 1 in this case.

Note that this theorem holds also for a more general case when correction prob-
abilities depend on the example x. In this case, all probabilities pi,j are replaced by
px

i,j := P(Ŷ = i|Y = j, X = x). Since it is harder to estimate px
i,j compared to pi,j, we

stick to consider the class-related model described by Eq. (2.24).

In the theorem, the mislabeling matrix is assumed given, while in practice it
has to be estimated. Since the number of matrix entries grows quadratically with
the increase of K, a direct estimation of the true posterior probabilities from Eq.
(2.24) may be more affected by the estimation error than the bound itself as the
latter needs to know only 2K entries. We give more details about estimation of the
mislabeling matrix in Section 2.5.

The theorem assumes that the bound holds for any λ such that pj,j > pj,c − λ

is satisfied. One can notice that with λ = 0 we assume that pj,j > pj,c, i.e., the
diagonal entries of the mislabeling matrix are the largest elements in their corre-
sponding columns, which means that the imperfect label is reasonably correlated
with the true label. In practice, this condition may not hold, so we can pass the as-
sumption by increasing λ. An interesting fact is that we can make the bound tighter
by properly choosing λ. For example, when δ(x) is close to 0, λ can help to avoid
an arbitrarily large bound. We illustrate the impact of λ in Section 2.4.5.

37

2.4.3 C-Bounds with Imperfect Labels

Based on Theorem 2.4.3, we bound the generalization error R(BQ), which is the
expectation of r(X). By taking expectation in Eq. (2.26), we obtain that

R(BQ) = EX r(BQ, x) ≤ EX
r̂(BQ, x)
δ(x) + λ

−Ex
1− λ− α(x)

δ(x) + λ
. (2.27)

One can see that for every x, r̂(BQ, x) is multiplied by a positive weight 1/δ(X) > 0,
so the first term of the right-hand side is a weighted generalization error of the
imperfect label. To cope with this, we derive a weighted C-bound by proposing the
next theorem.

Theorem 2.4.4. Let M̂ be a random variable such that [M̂|X = x] is a discrete random
variable that is equal to the margin M̂Q(x, i) with probability P(Ŷ = i|X = x),
i = {1, . . . , K}. Assume that the mislabeling matrix P is given. Then, for all choice of
Q on a hypothesis space H, and for all distributions P(X) over X and P(Y|X) over Y ,
for all λ ≥ 0 such that pj,j > pj,c − λ, ∀j, c ∈ {1, . . . , K}2 we have:

R(BQ) ≤ ψP −

(
µM̂,P

1

)2

µM̂,P
2

, (CBIL)

if µM̂P
1 > 0, where

• ψP := EX
α(X)+λ
δ(X)+λ

with δ and α defined as in Theorem 2.4.3,

• µM̂,P
1 :=

∫
X×R

m
δ(x)+λ

P(M̂ = m, X = x)dxdm is the weighted 1st margin mo-
ment,

• µM̂,P
2 :=

∫
X×R

m2

δ(x)+λ
P(M̂ = m, X = x)dxdm is the weighted 2nd margin mo-

ment.

Proof. At first, let us introduce a normalization factor ωP defined as follows:

ωP := EX
1

δ(X) + λ
=
∫

X×R

P(M̂ = m, X = x)
δ(x) + λ

dxdm.

38

Remind that r̂(BQ, x) = P(M̂ ≤ 0|X = x). Then, we can write:

EX
r̂(BQ, x)
δ(x) + λ

=
∫

X
1

δ(x) + λ
P(M̂ ≤ 0|X = x)P(X = x)dx

=
∫ 0

−∞

∫

X
P(M̂ = m, X = x)

δ(x) + λ
dxdm

= ωP

∫ 0

−∞

∫
X P(M̂ = m, X = x)/(δ(x) + λ)dx∫

X×R
P(M̂ = m, X = x)/(δ(x) + λ)dxdm

dm (2.28)

= ωPP(M̂ω < 0), (2.29)

where Eq. (2.29) is given by a random variable M̂ω coming from the density fω

defined as the expression inside the integral in Eq. (2.28).
We further notice that the weighted margin moments can be represented as:

µM̂,P
1 =

∫

X×R

m
δ(x) + λ

P(M̂ = m, X = x)dxdm = ωPµM̂ω
1 ,

µM̂,P
2 =

∫

X×R

m2

δ(x) + λ
P(M̂ = m, X = x)dxdm = ωPµM̂ω

2 .

From this, we also obtain that var(Mω) =
(

µM̂,P
2 /ωP

)
−
(

µM̂,P
1 /ωP

)2
. Then, using

the Cantelli-Chebyshev inequality (Lemma 2.6.3) with a = µ
M̂ f
1 = µM̂,P

1 /ωP we
deduce the following inequality:

P(M̂ω < 0) ≤

(
µM̂,P

2 /ωP

)
−
(

µM̂,P
1 /ωP

)2

(
µM̂,P

2 /ωP

)
−
(

µM̂,P
1 /ωP

)2
+
(

µM̂,P
1 /ωP

)2 = 1−

(
µM̂,P

1

)2

ωPµM̂,P
2

.

Combining this inequality with Eq. (2.27) we infer (CBIL):

R(BQ) ≤ EX
r̂(BQ, x)
δ(x) + λ

−EX
1− λ− α(x)

δ(x) + λ
= ωPP(M̂ω < 0)−ωP + ψP

≤ ψP −

(
µM̂,P

1

)2

µM̂,P
2

.

Given data with imperfect labels, the direct evaluation of the generalization
error rate may be biased, leading to an overly optimistic evaluation. Using the mis-
labeling matrix P we derive a more conservative C-bound, where the error of x is
penalized by the factor 1/δ(x) + λ, where δ(x) depends on the predicted class. If
there is no mislabeling and λ = 0, then ψP = 1, µM̂,P

1 and µM̂,P
2 are equivalent to

39

µM̂
1 and µM̂

2 , so we obtain the regular C-bound (CB).

In particular, this general result can be used to evaluate the error rate in the
semi-supervised setting when mislabeling arises from pseudo-labeling of unlabeled
examples via self-learning. Comparing with the transductive bound (TB) obtained
as a corollary of Theorem 2.3.2, (CBIL) directly upper bounds the error rate, so it
will be tighter in most of cases. Particularly, it can be noticed that the value of (TB)
is growing with the increase of the number of classes. Note that there exists other
attempts to evaluate the C-bound in the semi-supervised setting. In the binary case,
the second margin moment is expressed via the disagreement of hypotheses (see
Theorem 1.1.2), so it can be estimated using available unlabeled data. However,
this holds for the binary case only.

In this theorem, we have combined the mislabeling bound (2.26) with the su-
pervised multi-class C-bound (Laviolette et al., 2017), however, another possibility
could be to combine with the bound based on the second-order Markov’s inequality
(Masegosa et al., 2020). As pointed out by Masegosa et al. (2020), the latter can
be regarded as a relaxation of the C-bound, but it is easier to estimate from data in
practice. As the tightest bound does not always imply the lowest error, the use of
C-bound in model selection tasks may be more advantageous as it involves both the
individual strength of hypotheses and correlation between their errors, while the
bound of Masegosa et al. (2020) is based on the error correlation only.

2.4.4 PAC-Bayesian Theorem for C-Bound Estimation

When the margin mean, the margin variance and the mislabeling matrix are em-
pirically estimated from data, evaluation of (CBIL) may be optimistically biased.
In this section, we analyze the behavior of the empirical estimate by deriving a
PAC-Bayesian bound (McAllester, 1999, 2003), which additionally penalizes the
estimate by the sample size and the Kullback-Leibler divergence between the pos-
terior Q and the prior Q0 over the hypothesis space H. This bound is given by the
following theorem, the proof of which is a combination of Propositions 2.6.7, 2.6.9
and 2.6.11 that are deferred to Section 2.6.

Theorem 2.4.5. Under the notations of Theorem 2.4.4, for any set of classifiers H,
for any prior distribution Q0 on H and any ε ∈ (0, 1], with a probability at least 1− ε

over the choice of the sample of size n = l + u, for every posterior distribution Q over
H, if µM̂

1 > 0 and δ̃(x) > 0, we have:

R(BQ) ≤ ψ̃− µ̃2
1

µ̃2
, (2.30)

40

where

µ̃1 =
1
u ∑

x∈XU

(δ̃(x) + λ)−1
K

∑
c=1

MQ(x, c)P(Y= c|X=x)− B1Ω(Q0, Q, u, ε)

µ̃2 =
1
u ∑

x∈XU

(δ̃(x) + λ)−1
K

∑
c=1

(MQ(x, c))2P(Y= c|X=x) + B2Ω(Q0, Q, u, ε)

Ω(Q0, Q, u, ε) :=

√
2
u

[
KL(Q ‖ Q0) + ln

2
√

u
ε/ρ

]

ψ̃ =
1
u

u

∑
i=1

α̃(xi) + λ

δ̃(xi) + λ
+ B3

√
2
u

ln
2
√

u
ε/ρ

δ̃(x) = δ̂(x)−
√

1
2lcx

ln
2
√

lcx

ε/ρ
−

√√√√ 1
2ljx

ln
2
√

ljx

ε/ρ
, with cx :=BQ(x), jx := argmin

j∈Y\{cx)}
lj,

α̃(x) = α̂(x) +

√
1

2lcx

ln
2
√

lcx

ε/ρ
,

and where δ̂(x) and α̂(x) are empirical estimates respectively of δ(x) and α(x) based
on the available labeled set, KL(Q ‖ Q0) is the Kullback-Leibler divergence between Q
and Q0, lj =∑l

i=1 I(yj = j)/l is the proportion of the labeled training examples from
the true class j, and ρ := 2K + 3 comes from applying a union bound .

As one can see, with the growth of u, the penalization becomes less severe, so µ̃1

and µ̃2 are close to µM̂
1 and µM̂

2 . Similarly, δ̃(x) and α̃(x) are closer to δ̂(x) and α̂(x)
with the increase of the number examples used to estimate the mislabeling matrix,
which we take l for the sake of simplicity. Note that, in contrast to the supervised
case (Laviolette et al., 2017, Theorem 3), B1 and B2 can have a drastic influence on
the bound’s value, when δ̃(x) is close to 0, which motivates to properly choose λ.

The obtained bound may be used to estimate the Bayes error from data, with
the pseudo-labeled unlabeled examples serving as a hold-out set for estimating the
margin moments, and the labeled examples serving as a hold-out set for estimating
the mislabeling matrix. In the case of the random forest, the latter can be performed
in the out-of-bag fashion as in (Thiemann et al., 2017; Lorenzen et al., 2019). How-
ever, the bound does not appear tighter in practice compared to the supervised case
(Laviolette et al., 2017) due to the additional penalization on estimation of the
mislabeling matrix. Making this bound tighter could be a good direction for future
work. Nevertheless, when the focus is set on model selection, a common choice
is to simply use an empirical estimate of the C-bound as an optimization criterion
(Bauvin et al., 2020).

41

2.4.5 Empirical Illustration of (CBIL)

In this section, we illustrate the value of (CBIL) evaluated on the unlabeled exam-
ples pseudo-labeled by a self-learning algorithm. We study how the bound’s value
is penalized by the mislabeling model, so we empirically compare it with the oracle
C-bound (CB) evaluated as if the labels for the considered unlabeled data would be
known.

Data set # of label. ex., # of unlab. ex., Dimension, # of classes,
|ZL| |XU | d K

Isolet 389 7408 617 26
HAR 102 10197 561 6

Fashion 175 69825 784 10

Table 2.1: Characteristics of data sets used in our experiments.

To do so, we compute the value of the two bounds varying the number of ex-
amples used for evaluation with respect to the prediction confidence: the pseudo-
labeled examples are sorted by the value of the prediction vote in the descending
order, and we keep only the first ρ% of the examples for ρ ∈ {20, 40, 60, 80, 100}.

20 40 60 80 100
Prediction vote cut (in %)

0.16

0.24

0.32

0.40

0.48

Bo
un

d
Va

lu
e

HAR

20 40 60 80 100
Prediction vote cut (in %)

0.1

0.2

0.3

0.4

Isolet

CBIL Oracle C-Bound

20 40 60 80 100
Prediction vote cut (in %)

0.4

0.6

0.8

1.0

Bo
un

d
Va

lu
e

Fashion lam=0
CBIL lam=0
Oracle C-Bound

20 40 60 80 100
Prediction vote cut (in %)

Fashion lam=0.1
CBIL lam=0.1
Oracle C-Bound

Figure 2-1: (CBIL) (λ=0) and Oracle C-Bound when varying the number of pseudo-
labels on 3 data sets. We keep the most confident one (with respect to prediction
vote) from 20% to 100%. For Fashion, we illustrate also the results for λ = 0.1.

42

As ρ grows, we expect mislabeling to occur more often, so the (CBIL) is more
penalized. In (CBIL), we use the true value of the mislabeling matrix (i.e., evaluated
using the labels of unlabeled data) for clear illustration of the C-bound’s penaliza-
tion. In Section 2.5, we discuss the possible estimations of the mislabeling matrix.

The experiment is performed on 3 data sets HAR, Isolet and Fashion described
in Table 2.1. The experimental results are illustrated in Figure 2-1, where λ is taken
as 0 on all data sets, and additionally computing bound with λ = 0.1 for Fashion.
As expected, the classifier makes mistakes mostly on low class votes, so the error
increases when ρ grows. On Isolet and HAR one can see that (CBIL) is close to
the oracle C-bound for small ρ, since most of pseudo-labels are true. When more
noisy pseudo-labels are included, the difference between the two values becomes
more evident, leading (CBIL) to be more pessimistic. This is probably connected
with the choice of the mislabeling error model (2.23) that is class-related and not
instance-related. Although we lose some flexibility, the class-related mislabeling ma-
trix would be easier to estimate in practice. Finally, for Fashion, the penalization
is more severe. It appears that with ρ ∈ {20%, 40%} δ(x) can be close to 0, so the
bound value grows and also leads to poor correlation with the true error. It is clearly
seen that with λ = 0.1 the curve’s shape becomes much more similar to the oracle
C-bound. Eventually, a good correlation with the true error is crucial for practical
applications, e.g., if (CBIL) is used as some optimization or selection criterion.

0.4

0.6

0.8

Bo
un

d
Va

lu
e

HAR

0 2 4 6 8 10 12 14 16 18
Random State

0.4

0.6

0.8

Isolet

0 2 4 6 8 10 12 14 16 18
Random State

0.8

1.0

1.2

Bo
un

d
Va

lu
e

Fashion

Lambda
0.1
0.2
0.3

0.4
0.5
0.6

0.7
0.8

0.9
1.0

Figure 2-2: The value of (CBIL) with different λ over 20 different labeled/unlabeled
splits of HAR, Isolet and Fashion.

In order to show more clearly the impact of λ on the bound’s value, we also per-
formed another experiment, where we evaluate the bound with λ ∈ [0.1, 0.2, . . . , 1].
In Figure 2-2, we display the results of 20 random labeled/unlabeled splits for HAR,
Isolet and Fashion. One can observe that when the bound is not penalized much
(i.e., δ(x) is far from 0), then the increase of λ makes the bound looser, so λ = 0.1
is the tightest choice. Exactly the opposite situation is observed when δ(x) is small
(most of trials for Fashion): higher values of λ diminish the influence of hyperbolic
weights 1/δ(x), so λ = 1 leads to the tightest bound.

43

2.5 Conclusion and Perspectives

In this chapter, we proposed a new probabilistic framework for the multi-class semi-
supervised learning. At first, we derived a bound for the transductive conditional
risk of the majority vote classifier. This probabilistic bound is based on the distri-
bution of the class vote over unlabeled examples for a predicted class. We deduced
corresponding bounds on the confusion matrix norm and the error rate as a corol-
lary and determined a condition when the bounds are tight. The proposed bounds
allows us to evaluate errors on the unlabeled examples, for which the majority vote
outputs a class c with a vote above a threshold θc. This suggests that the bound
can be evaluated at different thresholds in order to choose one that can be used for
self-learning. In Chapter 3, we will show how this can be done.

Then, we proposed a mislabeling error model for analysis of the majority vote
classifier on an imperfectly labeled data. We established the connection between
the true and the imperfect label. Based on this result, we extended the C-bound to
imperfect labels and derived a PAC-Bayesian Theorem for controlling the sample
effect. The proposed bound allowed us to evaluate the performance of a learning
model after pseudo-labeling the unlabeled data. We illustrated the influence of the
mislabeling error model on the bound’s value on several real data sets.

However, (CBIL) requires in practice estimation of the mislabeling matrix, which
is a complex problem. While it is possible to estimate it using the labeled set, we
have experimentally found it unsatisfying as the mislabeling matrix becomes bi-
ased by the labeled examples. This problem, nevertheless, is an active field of study
(Natarajan et al., 2013). For example, in the semi-supervised setting, Krithara et al.
(2008) learn the mislabeling matrix together with the classifier parameters through
the classifier likelihood maximization for document classification. In supervised set-
ting, a common approach is to detect anchor points whose labels are surely true
(Scott, 2015). A potential idea would be to transfer this idea to the semi-supervised
case in order to detect the anchor points in the unlabeled set and use them together
with the labeled set for correct estimation of the noise in pseudo-labels; this may
require additional assumptions such as the existence of clusters (Rigollet, 2007;
Maximov et al., 2018) or manifold structure (Belkin and Niyogi, 2004).

We also point out possible applications of (CBIL). At first, in Chapter 4, we
demonstrate that (CBIL) could be promisingly used as a selection criterion that
guides a feature selection algorithm to choose an optimal feature subset based on
the labeled and the pseudo-labeled sets. Next, (CBIL) can be used as a criterion to
learn the posterior Q in the semi-supervised setting. This issue is actively studied in
the supervised context, e.g., Roy et al. (2016); Bauvin et al. (2020) have developed
the boosting-based C-bound optimization algorithms.
It should be noticed that for these two applications, the main objective is to rank
models, so the best model has the minimal error on the unlabeled set. Hence, the
bound analysis goes beyond the classical question of tightness: the tightest bound

44

does not always imply the minimal error, and we aim for seeking a bound that is
well-correlated with the true error (as we saw in Figure 2-1).

2.6 Appendix

2.6.1 Mathematical Tools for Section 2.3

Tools for Theorem 3.2

Proof of Lemma 2.3.1. First, we obtain Eq. (2.4):

RU (GQ, i, j) =
1
ui

Eh∼Q ∑
x∈XU

P(Y = i|X = x)I(h(x) = j)

=
1
ui

∑
x∈XU

P(Y = i|X = x)vQ(x, j)

≥ 1
ui

∑
x∈XU

P(Y = i|X = x)vQ(x, j)I(BQ(x) = j)

=
1
ui

Nj

∑
t=1

∑
x∈XU

(
P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ

(t)
j)
)

γ
(t)
j

=

Nj

∑
t=1

b(t)i,j γ
(t)
j .

Then, we deduce Eq. (2.5):

RU∧𝜃(BQ, i, j) =
1
ui

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) ≥ θj)

=
1
ui

Nj

∑
t=1

∑
x∈XU

P(Y= i|X=x)I(BQ(x)= j)I(vQ(x, j)=γ
(t)
j)I(γ

(t)
j ≥ θj)

=
1
ui

Nj

∑
t=kj+1

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ
(t)
j)

=

Nj

∑
t=kj+1

b(t)i,j .

45

Lemma 2.6.1 (Lemma 4 in Amini et al. (2008)). Let (gi)i∈{1,...,N} be such that 0 <
g1 < · · · < gN ≤ 1. Consider also pi ≥ 0 for each i ∈ {1, . . . , N}, B ≥ 0, k ∈
{1, . . . , N}. Then, the optimal solution of the linear program:

maxq:=(q1,...,qN) F(q) := maxq1,...,qN ∑N
i=k+1 qi

0 ≤ qi ≤ pi ∀i ∈ {1, . . . , N}
∑N

i=1 qigi ≤ B

will be q∗ defined as, for all i ∈ {1, . . . , N}, q∗i = min
(

pi,
⌊

B−∑j<i q∗j gj

gi

⌋

+

)
I(i > k);

where, the sign b·c+ denotes the positive part of a number, bxc+ = x · I(x > 0).

Proof. It can be seen that the first k target variables should be zero for the optimal
solution. Indeed, they do not influence explicitly the target function F. However,
terms giqi for i ∈ {1, . . . , k} are positive, so their increase leads to smaller values
of qi for i ∈ {k + 1, . . . , N}, which in their turn decrease the value of F. Because of
this, we look for a solution in a space O = {0}k ×∏N

i=k+1[0, pi]. We aim to show
that there is a unique optimal solution q∗ in O.

Existence. It is known that the linear program under consideration is a con-
vex, feasible and bounded task. Hence, there is a feasible optimal solution qopt ∈
∏N

i=1[0, pi]. Then, we define qopt,O ∈ O:

{
qopt,O

i = qopt
i if i > k

qopt,O
i = 0 otherwise.

It can be seen that this solution is feasible: F(qopt,O) = F(qopt). Then, there exists
an optimal solution in O. Further, the optimal solution is again designated as q∗.

Unique representation. We would like to find a representation of q∗ that is, in
fact, unique. Before doing it, one can notice that for q∗ the following equation is
necessarily true:

N

∑
i=1

q∗i gi = B.

Indeed, as gi are fixed, q∗ would not be optimal otherwise, and there would exist q̃
such that ∑N

i=1 q̃igi > ∑N
i=1 q∗i gi, which implies F(q̃) > F(q∗).

Let’s consider the lexicographic order �:

∀(q, q′) ∈ RN ×RN , q � q′

⇔
{
I(q′, q) = ∅

}
∨
{
I(q′, q) 6= ∅ ∧min

(
I(q, q′)

)
< min

(
I(q′, q)

)}
,

where I(q′, q) = {i|q′i > qi}.
We aim for showing that the optimal solution is the greatest feasible solution in

O for �. LetM be the set{i > k|q∗i < pi}. Then, there are two cases:

46

• M = ∅. It means that for all i > k, q∗i = pi and q∗ is then the maximal
element for � in O.

• M 6= ∅. Let’s consider K = min{i > k|q∗i < pi}, M = I(q, q∗). By con-
tradiction, suppose q∗ is not the greatest feasible solution for � and there is
q ∈ RN such that q � q∗.

1. M ≤ k. Then, qM > q∗M = 0. It implies that q 6∈ O.

2. k < M < K. Then, qM > q∗M = pM. The same, q 6∈ O.

3. M ≥ K. Then, F(q) > F(q∗). But then ∑N
i=1 qigi > ∑N

i=1 q∗i gi = B.

Hence, we conclude that if the solution is optimal then it is necessarily the great-
est feasible solution for �. Let’s prove that if a solution is not the greatest feasible
one then it can not be optimal. With this statement, uniqueness would be proven.

Consider q ∈ O such that q∗ � q.

• I(q, q∗) = ∅. Then, F(q∗) > F(q) and q is not optimal.

• I(q, q∗) 6= ∅. Let K = min (I(q∗, q)) and M = min (I(q, q∗)). Then, qM >

q∗M ≥ 0 and K < M. Denote λ = min
(

qM, gM
gK
(pK − qK)

)
and define q′ by:

q′i = qi, i 6∈ {K, M}, q′K = qK +
gM

gK
λ q′M = qM − λ

It can be observed that q′ satisfies the box constraints. Moreover, F(q′) = F(q) +
λ(gM/gK − 1) > F(q) since gK < gM and λ > 0. Thus, q is not optimal. Summing
up, it is proven that there is the only optimal solution in O and it is the greatest
feasible one for �.

Then, let’s obtain an explicit representation of this solution. As it is the greatest
one in lexicographical order, we assign qi for i > k to maximal feasible values, which
are pi. It continues until the moment when ∑i

j=1 qigi is close to B. Denote by I the

index such that ∑I−1
i=1 pigi ≤ B, but ∑I

i=1 pigi ≥ B.

• ∑I−1
i=1 pigi = B. Then, qi = 0 for i ≥ I. It can be also written in the following

way:

qi =

⌊B−∑j<i qjgj

gi

⌋

+

, i ≥ I

.

• ∑I−1
i=1 pigi < B. Then, qI is equal to residual:

qI =
B−∑j<I qjgj

gI
=

⌊B−∑j<I qjgj

gI

⌋

+

.

For the other qi, i > I we assign to 0.

47

Tools for Proposition 2.3.5

Lemma 2.6.2. For all x ∈ XU , for all (i, j) ∈ {1, . . . , K}2, the following inequality
holds:

RU (BQ, i, j) ≥ 1
ui

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗)

+
1

γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+
+ ri,j, (2.31)

where γ∗ := sup{γ ∈ Γj|∑x∈XU P(Y= i|X=x)I(BQ(x)= j)I(vQ(x, j)=γ)/ui > τ}.

Proof. Denote γ∗ = γ
(p)
j . According to Lemma 2.3.1, Ki,j = ∑

Nj
n=1 b(n)i,j γ

(n)
j , where

b(n)i,j := 1
ui

∑x∈XU P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) = γ
(n)
j). We can express

b(p)
i,j in the following way:

b(p)
i,j =

Ki,j −∑
p−1
n=1 b(n)i,j γ

(n)
j −∑

Nj
n=p+1 b(n)i,j γ

(n)
j

γ
(p)
j

=
Ki,j −∑

p−1
n=1 b(n)i,j γ

(n)
j − ri,j

γ
(p)
j

.

Remind B(n)
i,j = 1

ui
∑x∈XU P(Y = i|X = x)I(vQ(x, j) = γ

(n)
j). From this we derive

the following:

−
p−1

∑
n=1

b(n)i,j γ
(n)
j ≥ −

p−1

∑
n=1

B(n)
i,j γ

(n)
j = −M<

i,j(γ
(p)
j) = −M<

i,j(γ
∗).

Taking into account this as well as b(p)
i,j ≥ 0, we deduce a lower bound for b(p)

i,j :

b(p)
i,j ≥

1
γ∗
bKi,j −M<

i,j(γ
∗)− ri,jc+ =

1
γ∗
⌊
bKi,j −M<

i,j(γ
∗)c+ − ri,j

⌋
+

. (2.32)

Then, one can notice that:

RU (BQ, i, j) =
Nj

∑
n=1

b(n)i,j =
p−1

∑
n=1

b(n)i,j + b(p)
i,j +

Nj

∑
n=p+1

b(n)i,j

≥
p−1

∑
n=1

b(n)i,j + b(p)
i,j +

Nj

∑
n=p+1

b(n)i,j γ
(n)
j

=
1
ui

∑
x∈XU

P(Y = i|X = x)I(BQ(x) = j)I(vQ(x, j) < γ∗) + b(p)
i,j + ri,j

By applying Eq. (2.32) to the last inequality we deduce Eq. (2.31).

48

2.6.2 Mathematical Tools for Section 2.4

Tools for Theorem 2.4.1

Lemma 2.6.3 (Cantelli-Chebyshev inequality). [Ex 2.3 in Boucheron et al. (2013)]
Let Z be a random variable with the mean µ and the variance σ2. Then, for every
a > 0, we have:

P(Z ≤ µ− a) ≤ σ2

σ2 + a2 .

Bounds for the Mislabeling Matrix’ Entries

We remind that the imperfection is summarized through the mislabeling matrix
P = (pi,j)1≤i,j≤K with

pi,j := P(Ŷ = i|Y = j) for all (i, j) ∈ {1, . . . , K}2

such that ∑K
i=1 pi,j = 1. Also, recall that δ(x) := pBQ(x),BQ(x)−maxj∈Y\{BQ(x)} pBQ(x),j

and α(x) = pBQ(x),BQ(x).

Proposition 2.6.4. Let P be the mislabeling matrix, and assume that pi,i > pi,j, ∀i, j ∈
{1, . . . , K}2. For any ε ∈ (0, 1], with probability 1− ε over the choice of the l sample,
for all (i, j) ∈ {1, . . . , K}2, for all x ∈ X ,

p̂j,c − r(lc) ≤ pj,c ≤ p̂j,c + r(lc), (2.33)

α(x) ≤ α̂(x) + r(lcx), (2.34)
1

δ(x)
≤ 1

δ̂(x)− r(lcx)− r(ljx)
, if δ̂(x) ≥ r(lcx) + r(ljx), (2.35)

where

• r(lk) =

√
1

2lk
ln 2
√

lk
ε ,

• lk = ∑l
i=1 I(yi = k)/l is the proportion of the labeled training examples from

the true class k,

• cx := BQ(x), jx := argminj∈Y\{cx)} lj,

• p̂j,c, α̂(x) and δ̂(x) are empirical estimates respectively of pj,c, α(x) and δ(x)
based on the available l sample.

Proof. Let Sj denote the subset of the available examples for which the true class
is j. Consider the non-negative random variable exp

{
2lj(p̂i,j − pi,j)

2}. From the

49

Markov inequality we obtain that the following holds with probability at least 1− ε

over Sj ∼ P(X|Y = j)lj:

exp
{

2lj(p̂i,j − pi,j)
2
}
≤ 1

δ
ESj exp

{
2lj(p̂i,j − pi,j)

2
}

. (2.36)

By successively applying Lemma 2.6.5 and Lemma 2.6.6, we deduce that

ESj exp
{

2lj(p̂i,j − pi,j)
2
}
≤ ESj exp

{
lj · kl(p̂i,j||pi,j)

}
≤ 2

√
lj. (2.37)

Combining Eq. (2.36) and Eq. (2.37), we infer 2lj(p̂i,j − pi,j)
2 ≤ ln

(
2
√

lj/δ
)

.

Eq. (2.33) is directly obtained from the last inequality, and hence, we derive also
Eq. (2.34). To prove Eq. (2.35), let us define

kx := argmax
k∈Y\{BQ(x)}

pcx,k, k̂x := argmax
k∈Y\{BQ(x)}

p̂cx,k.

Then, we write:

1
δ(x)

=
1

pcx,cx − pcx,kx

≤ 1
pcx,cx − pcx,kx − r(lcx)− r(lkx)

≤ 1
pcx,cx − pcx,k̂x

− r(lcx)− r(ljx)
=

1
δ̂(x)− r(lcx)− r(ljx)

.

These transitions hold only when the denominator is positive, which is ensured if
δ̂(x) ≥ r(lcx) + r(ljx).

Lemma 2.6.5 (Pinsker’s Inequality for Bernoulli random variables, Theorem 4.19
in Boucheron et al. (2013)). For all p1, p2 ∈ [0, 1]2,

2(p2−p1)
2 ≤ kl(p2||p1)

kl(p2||p1) := p2 ln
p2

p1
+ (1−p2) ln

1−p2

1−p1
= KL(P2 ‖ P1),

where P2 and P1 are Bernoulli distributions with parameters p2 and p1 respectively.

Lemma 2.6.6 (Theorem 1 in Maurer (2004) and Lemma 19 in Germain et al.
(2015)). Let X = (X1, . . . , Xn) be a random vector, whose components Xi are i.i.d.
with values ∈ [0, 1] and expectation µ. Let X′ = (X′1, . . . , X′n) denotes a random vec-
tor, where each X′i is the unique Bernoulli random variable of the corresponding Xi:
P(X′i = 1) = EX′i = EXi = µ, ∀i ∈ {1, . . . , n}. Then,

E
[
enKL(X̄ ‖ µ)

]
≤ E

[
enKL(X̄′ ‖ µ)

]
≤ 2
√

n,

where X̄ = 1
n ∑n

i=1 Xi and X̄′ = 1
n ∑n

i=1 X′i .

50

Lower Bound on the First Margin Moment

Proposition 2.6.7. Let M̂ be a random variable such that [M̂|X = x] is a discrete
random variable that is equal to the margin MQ(x, j) with probability P(Ŷ = j|X =

x), j = {1, . . . , K}. Let µM̂
1 be defined as in Theorem 2.4.4. Given the conditions of

Proposition 2.6.4, for any set of classifiers H, for any prior distribution Q0 on H and
any ε ∈ (0, 1], with a probability at least 1− ε over the choice of the n sample, for
every posterior distribution Q over H

µM̂,P
1 ≥ µ̄S

1 − B1

√
2
n

[
KL(Q ‖ Q0) + ln

2
√

n
δ

]
,

where

• µ̄S
1 = 1

n ∑n
i=1(1/δ̃(x))∑K

c=1 MQ(x, c)P(Y = c|X = x) is the empirical weighted
margin mean based on the available n-sample S,

• δ̃(x) := δ̂(x)− r(lcx)− r(ljx),

• B1 := maxx∈X |(1/δ̃(x))∑K
c=1 MQ(x, c)P(Y= c|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof. Further, we denote the available sample with imperfect labels by S. Let µM̂,P,h
1

and µ̄S,h
1 be the random variables such that µM̂,P

1 = Eh∼QµM̂,P,h
1 and µ̄S

1 = Eh∼Qµ̄S,h
1 .

We apply the Markov inequality to Eh∼Q0 exp
{

n
2B2

1
(µ̄S,h

1 − µM̂,P,h
1)2

}
, which is a

non-negative random variable, and obtain that with probability at least 1− ε over
S ∼ P(X, Ŷ)n:

Eh∼Q0 exp

{
n(µ̄S,h

1 −µM̂,P,h
1)2

2B2
1

}
≤ 1

ε
ESEh∼Q0 exp

{
n(µ̄S,h

1 −µM̂,P,h
1)2

2B2
1

}
. (2.38)

Since the prior distribution Q0 over H is independent on S, we can swap ES and
Eh∼Q0. One can notice that

1
2B2

1
(µ̄S,h

1 − µM̂,P,h
1)2 = 2

[
1
2
(1− µ̄S,h

1
B1

)−1
2
(1−µM̂,P,h

1
B1

)

]2

,

which is the squared of the difference of two random variables that are both be-
tween 0 and 1. Then, we successively apply Lemma 2.6.5 and Lemma 2.6.6 deriving

51

that:

Eh∼Q0ES exp

2n

[
1
2

(
1− µ̄S,h

1
B1

)
−1

2

(
1−µM̂,P,h

1
B1

)]2

≤ Eh∼Q0ES exp

{
n · kl

(
1
2
(1− µ̄S,h

1
B1

)

∣∣∣∣∣

∣∣∣∣∣
1
2
(1−µM̂,P,h

1
B1

)

)}
≤ Eh∼Q02

√
n = 2

√
n.

We apply this result for Eq. (2.38), and by taking the natural logarithm from the
both sides we obtain that:

ln

(
Eh∼Q0 exp

{
n

2B2
1
(µ̄S,h

1 −µM̂,P,h
1)2

})
≤ ln

(
2
√

n
ε

)
. (2.39)

Using the change of measure (Lemma 2.6.8) and the Jensen’s inequalities, we
derive that:

ln

(
Eh∼Q0 exp

{
n

2B2
1
(µ̄S,h

1 −µM̂,P,h
1)2

})
≥ Eh∼Q

n
2B2

1
(µ̄S,h

1 − µM̂,P,h
1)2−KL(Q ‖ Q0)

≥ n
2B2

1

(
µ̄S

1 − µM̂,P
1

)2
− KL(Q ‖ Q0).

Combining with Eq. (2.39), we derive:

n
2B2

1
(µ̄S

1 − µM̂,P
1)2 ≤ ln

(
2
√

n
ε

)
+ KL(Q ‖ Q0). (2.40)

The final inequality is directly inferred from Eq. (2.40).

Lemma 2.6.8 (Change of Measure Inequality Donsker and Varadhan (1975)). For
any measurable function φ defined on the hypothesis space H and all distributions
Q0, Q on H, the following inequality holds:

Eh∼Qφ(h) ≤ KL(Q ‖ Q0) + ln Eh∼Q0eφ(h).

Other Required Bounds

Proposition 2.6.9. Let M̂ be a random variable such that [M̂|X = x] is a discrete
random variable that is equal to the margin MQ(x, j) with probability P(Ŷ= j|X=x),

j = {1, . . . , K}. Let µM̂,P
2 be defined as in Theorem 2.4.4. Given the conditions of

Proposition 2.6.4, for any set of classifiers H, for any prior distribution Q0 on H and
any ε ∈ (0, 1], with a probability at least 1− ε over the choice of the n sample, for

52

every posterior distribution Q over H

µM̂,P
2 ≤ µ̄S

2 + B2

√
2
n

[
2KL(Q ‖ Q0) + ln

2
√

n
ε

]
,

where

• µ̄S
2 = 1

n (1/δ̃(x))∑n
i=1 ∑K

c=1(MQ(xi, c))2P(Y = c|X = xi) is the weighted 2nd
margin moment estimated based on the available n-sample S,

• δ̃(x) := δ̂(x)− r(lcx)− r(ljx),

• B2 := maxx∈X |(1/δ̃(x))∑K
c=1(MQ(x, c))2P(Y= c|X=x)|,

• KL denotes the Kullback–Leibler divergence.

Proof. The proof is similar to the one given for Proposition 2.6.7, but relies on the
extension of the change of measure inequality (Lemma 2.6.10).

Lemma 2.6.10 (Change of Measure Inequality for Pairs of Voters (Lemma 1 in
Laviolette et al. (2017))). For any set of voters H, for any distributions Q0, Q on H,
and for any measurable function φ : H×H → R, the following inequality holds:

E(h,h′)∼Q2φ(h, h′) ≤ 2KL(Q ‖ Q0) + ln E(h,h′)∼Q2
0
eφ(h,h′).

Proposition 2.6.11. Given the conditions of Proposition 2.6.4, for any ε ∈ (0, 1], with
a probability at least 1− ε over the choice of the n sample,

ψP ≤
1
n

n

∑
i=1

α̂(xi) + r(lcx)

δ̂(xi)− r(lcx)− r(ljx)
+ B3

√
2
n

ln
2
√

n
ε

,

where B3 := maxx∈X [α̂(xi) + r(lcx)]/[δ̂(xi)− r(lcx)− r(ljx)].

Proof. First, we take into consideration the result of Proposition 2.6.4 and deduce
that ψP ≤ EX[(α̂(xi) + r(lcx))/(δ̂(xi)− r(lcx)− r(ljx))]. The rest of proof is similar
to those are given for Proposition 2.6.4 and for Proposition 2.6.7.

53

54

Chapter 3

Self-learning and Application

In semi-supervised learning, self-learning is usually performed with the confidence
threshold that is fixed at a certain value or in such a way that it controls the number
of pseudo-labeled examples at each iteration. However, these parameters can not
be tuned in the case of real data, so it is not clear what value the threshold should
be set to. In Section 3.1 of this chapter, we propose a strategy to effectively find this
threshold at every iteration as a trade-off between the number of pseudo-labeled
examples and the bounded transductive error evaluated on them. We present em-
pirical evidence showing that the proposed self-learning policy is effective compared
to several state-of-the-art approaches.

Then, in Section 3.2, we apply a self-learning approach for a biological appli-
cation related to classification of DNA sequences where some classes are naturally
absent in the labeled data. We propose an extension of the self-learning algorithm
to deal with this problem. A new approach can refrain from predicting any observed
class label and find clusters in unlabeled data that are successively included in the
labeled training set as new classes. We empirically validate the approach via an ab-
lative study and show that we are able to detect regions of potentially new classes.

3.1 Multi-class Self-learning Algorithm

3.1.1 The Proposed Approach

In this section, we propose to apply the transductive bound on the error rate derived
in Section 2.3 for self-learning (Tür et al., 2005). We remind that the self-learning
algorithm starts from a supervised base classifier initially trained on available la-
beled examples. Then, it iteratively assigns pseudo-labels at each iteration to those
unlabeled examples that have a confidence score above a certain threshold. The
pseudo-labeled examples are then included in the training set, and the classifier is
retrained. The process is repeated until no examples for pseudo-labeling are left.

The central question of applying the self-learning algorithm in practice is how to
choose the threshold. Intuitively, the threshold can manually be set to a very high

55

value, since only examples with a very high degree of confidence will be pseudo-
labeled in this case. However, the confidence measure is biased by the small labeled
set, so every iteration of the self-learning may still induce an error and shift the
boundary in the wrong direction. In addition, the fact that a large number of it-
erations makes the algorithm computationally expensive drives us to choose the
threshold carefully.

To overcome this problem, we extend the strategy proposed by Amini et al.
(2008) to the multi-class setting. We consider the majority vote as the base classifier
and the prediction vote as an indicator of confidence. Given a threshold vector 𝜃,
we introduce the conditional Bayes error rate RU|θ(BQ), defined in the following
way:

RU|θ(BQ) :=
RU∧θ(BQ)

π(vQ(x, k) ≥ θk)
, (3.1)

where π(vQ(x, k) ≥ θk) := ∑x∈XU 1vQ(x,k)≥θk
/u and k := BQ(x). The numerator

reflects the proportion of mistakes on the unlabeled set when the threshold is equal
to θ, whereas the denominator computes the proportion of unlabeled observations
with the vote larger than the threshold for the predicted class. Thus, we propose
to find the threshold that yields the minimal value of RU|θ(BQ), making a trade-off
between the error we induce by pseudo-labeling and the number of pseudo-labeled
examples. In Algorithm 1 we summarize our algorithm, which is further denoted by
MSLA1.

To evaluate the transductive error, we bound the numerator of Eq. (3.1) using
Corollary 2.3.4. However, the bound can practically be computed only with assump-
tions, since the posterior probabilities P(Y = c|X = x) for unlabeled examples are
not known. In this work, we approximate the posterior P(Y = c|X = x) by vQ(x, c)
of the base classifier trained on labeled examples only (the initial step of MSLA). Al-
though this approximation is optimistic, by formulating the bound as probabilistic
we keep some chances for other classes so the error of the supervised classifier can
be smoothed. However, it must be borne in mind that the hypothesis space should
be diverse enough so that the entropy of (vQ(x, c))K

c=1 would not be always zero,
and the errors are made mostly on low prediction votes. In our experiments, as the
base classifier we use the random forest (Breiman, 2001) that aggregates predic-
tions from trees learned on different bootstrap samples. In Section 3.1.5, we vali-
date the proposed approximation by empirically comparing it with the case when
the posterior probabilities are set to 1/K, i.e., when we treat all classes as equally
probable.

Similarly to the work of Amini et al. (2008), in practice, to find an optimal 𝜃∗

we perform a grid search over the hypercube (0, 1]K. The same algorithm is used
for computing the optimal γ∗ that provides the value of an upper bound for the
conditional risk (see Theorem 2.3.2). In contrast to the binary self-learning, the

1The code source of the algorithm can be found at https://github.com/vfeofanov/
trans-bounds-maj-vote.

56

https://github.com/vfeofanov/trans-bounds-maj-vote
https://github.com/vfeofanov/trans-bounds-maj-vote

Algorithm 1 Multi-class self-learning algorithm (MSLA)

Input:
Labeled observations ZL
Unlabeled observations XU
Initialization:
A set of pseudo-labeled instances, ZP ← ∅
A classifier BQ trained on ZL
repeat

1. Compute the threshold 𝜃* that minimizes the conditional Bayes error rate:

𝜃∗ = argmin
𝜃∈(0,1]K

RU|𝜃(BQ). (?)

2. Shigh ← {(x, ŷ)|x ∈ XU ; [vQ(x, ŷ) ≥ θ∗ŷ] ∧ [ŷ = argmaxc∈Y vQ(x, c)]}
3. ZP ← ZP ∪ Shigh, XU ← XU \ Shigh
4. Re-train BQ on ZL ∪ ZP with the following instance weights si:

si =

{
(l + |ZP |)/l for i ∈ {1, . . . , l},
(l + |ZP |)/|ZP | for i ∈ {l + 1, . . . , l + |ZP |.}

until XU or Shigh are ∅
Output: The final classifier BQ

direct grid search in the multi-class setting costs O
(

RK), where R is the sampling
rate of the grid. As

RU|θ(BQ) =
K

∑
j=1

R(j)
U∧θ(BQ)

∑K
c=1

1
u ∑x∈XU 1vQ(x,c)≥θc1BQ(x)=c

≤
K

∑
j=1

R(j)
U∧θ(BQ)

1
u ∑x∈XU 1vQ(x,j)≥θj

1BQ(x)=j

≤
K

∑
j=1

R(j)
U∧θ(BQ)

π{(vQ(x, j) ≥ θj) ∧ (BQ(x) = j)} , (∗)

where R(j)
U∧θ(BQ) = ∑K

i=1 uiRU∧θ(BQ, i, j)/u, the sum might be minimized term by
term, tuning independently each component of θ. This replaces the K-dimensional
minimization task by K tasks of 1-dimensional minimization.

3.1.2 Experimental Setup

In this section, we present our experimental setup for validation of the proposed
approach. All experiments were performed on a cluster with an Intel(R) Xeon(R)
CPU E5-2640 v3 at 2.60GHz, 32 cores, 256GB of RAM, the Debian 4.9.110-3 x86_-
64 OS.

57

Data set # of labeled examples, # of unlabeled examples, Dimension, # of classes,
l u d K

Vowel 99 891 10 11
Protein 129 951 77 8

DNA 31 3155 180 3
PageBlocks 1094 4379 10 5

Isolet 389 7408 617 26
HAR 102 10197 561 6

Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10
SensIT 49 98479 100 3

Table 3.1: Characteristics of data sets used in our experiments ordered by the size
of the training set (n = l + u).

Experiments are conducted on publicly available data sets (Dua and Graff, 2017;
Chang and Lin, 2011; Xiao et al., 2017). Since we are interested in the practical use
of our approach in the semi-supervised context, we would like to see if it has good
performance when l � u. Therefore, we do not use the train/test splits that are
proposed by data sources. Instead, we propose our own splits that makes a situation
closer to the semi-supervised context. Each experiment is conducted 20 times, by
randomly splitting an original data set on a labeled and an unlabeled parts keeping
fixed their respective size at each iteration. The reported performance results are
averaged over the 20 trials. We evaluate the performance as the accuracy score over
the unlabeled training set (ACC-U).

In all our experiments, we consider the Random Forest algorithm (Breiman,
2001) (denoted by RF) with 200 trees and the maximal depth of trees as the major-
ity vote classifier with the uniform posterior distribution. We use the implementa-
tion of Pedregosa et al. (2011) and keep the default values for the other parameters.
For an observation x, we evaluate the vector of class votes {v(x, i)}K

i=1 by averaging
over the trees the vote given to each class by the tree. A tree computes a class vote
as the fraction of training examples in a leaf belonging to a class.

Experiments are conducted on 11 real data sets. The associated applications
are image classification with the Fashion data set, the Pendigits and the MNIST
databases of handwritten digits; a signal processing application with the SensIT
database for vehicle type classification and the human activity recognition HAR data
set; speech recognition using the Vowel, the Isolet and the Letter data sets; docu-
ment recognition using the Page Blocks database; and finally applications to bioin-
formatics with the Protein and DNA data sets. The main characteristics of these data
sets are summarized in Table 3.1.

The proposed MSLA that automatically finds the threshold by minimizing the
conditional Bayes error rate, is compared with the following baselines:

58

• a fully supervised RF trained using only labeled examples. The approach is ob-
tained at the initialization step of MSLA and once learned it is directly applied
to predict the class labels of the whole unlabeled set;

• the scikit-learn’s implementation (Pedregosa et al., 2011) of the graph based,
label spreading algorithm (Zhou et al., 2004) denoted by LS;

• a transductive support vector machine (Joachims, 1999) using the Quasi-
Newton scheme proposed by Gieseke et al. (2014) 2 and denoted further as
QN-S3VM), which we extend to the multi-class case by the one-versus-all rule;

• a semi-supervised extension of the linear discriminant analysis (Semi-LDA)
that is based on the contrastive pessimistic likelihood estimation proposed by
Loog (2015);

• a semi-supervised extension of the random forest (DAS-RF) proposed by Leist-
ner et al. (2009) where the classifier is repeatedly re-trained on the labeled
and all the unlabeled examples with pseudo-labels optimized via deterministic
annealing;

• the multi-class extension of the classical self-learning approach (denoted by
FSLA) described by Tür et al. (2005) with a fixed prediction vote threshold;

• a self-learning approach (denoted by CSLA) where the threshold is defined via
curriculum learning by taking it as the (1− t · ∆)-th percentile of the predic-
tion vote distribution at the step t = 1, 2, . . . (Cascante-Bonilla et al., 2020).

As the size of the labeled training examples |ZL| is small, the hyperparame-
ter tuning can not be performed properly. At the same time, the performance of
baselines may be sensitive to some of their hyperparameters. For this reason, we
compute LS, QN-S3VM, Semi-LDA, DAS-RF on a grid of parameters’ values, and then
choose a hyperparameter for which the performance is the best in average on 20
trials. We tune the RBF kernel parameter σ ∈ {10, 1.5, 0.5, 10−1, 10−2, 10−3} for
LS, the regularization parameters (λ, λ′) ∈ {10−1, 10−2, 10−3}2 for QN-S3VM, the
learning rate α ∈ {10−4, 10−3, 10−2} for Semi-LDA, the initial temperature T0 ∈
{10−3, 5 · 10−3, 10−2} for DAS-RF. Other hyperparameters for these algorithms are
left to their default values. Particularly, in DAS-RF the strength parameter and the
number of iterations are respectively set to 0.1 and 10.

While the aforementioned parameters are rather data-dependent, the choice of
θ for FSLA and ∆ for CSLA depend more on how the prediction vote given by the
base classifier is distributed. After manually testing different values, we have found
that FSLAθ=0.7 and CSLA∆ = 1/3 are good choices for the random forest. For FSLA,
we terminate the learning procedure as soon as the algorithm makes 10 iterations,

2The source code for the binary QN-S3VM is available at http://www.fabiangieseke.de/index.
php/code/qns3vm.

59

http://www.fabiangieseke.de/index.php/code/qns3vm
http://www.fabiangieseke.de/index.php/code/qns3vm

Data set RF LS QN-S3VM Semi-LDA DAS-RF FSLA𝜃=0.7 CSLA∆=1/3 MSLA

Vowel .586± .028 .602± .026 .208↓ ± .029 .432↓ ± .029 .587 ± .028 .531↓ ± .034 .576↓ ± .031 .586 ± .026

Protein .764↓ ± .032 .825± .028 .72↓ ± .034 .842 ± .029 .768↓ ± .036 .687↓ ± .036 .771↓ ± .035 .781↓ ± .034

DNA .693↓ ± .074 .584↓ ± .038 .815± .025 .573↓ ± .037 .693↓ ± .083 .521↓ ± .095 .671↓ ± .112 .702↓ ± .082

PageBlocks .965± .003 .905↓ ± .004 .931↓ ± .003 .935↓ ± .009 .965 ± .003 .964 ± .004 .965 ± .003 .966 ± .002

Isolet .854↓ ± .016 .727↓ ± .01 .652↓ ± .016 .787↓ ± .019 .859↓ ± .018 .7↓ ± .04 .843↓ ± .021 .875 ± .014

HAR .851± .024 .215↓ ± .05 .78↓ ± .02 .743↓ ± .043 .852 ± .024 .81↓ ± .041 .841 ± .029 .854 ± .026

Pendigits .863↓ ± .022 .916± .013 .675↓ ± .022 .824↓ ± .012 .872↓ ± .023 .839↓ ± .036 .871↓ ± .029 .884↓ ± .022

Letter .711± .011 .664↓ ± .01 .064↓ ± .013 .589↓ ± .016 .718 ± .012 .651↓ ± .015 .72 ± .013 .717 ± .013

Fashion .718± .022 NA NA .537↓ ± .027 .722 ± .023 .64↓ ± .04 .713 ± .026 .723 ± .023

MNIST .798↓ ± .015 NA NA .423↓ ± .029 .822↓ ± .017 .705↓ ± .055 .829↓ ± .02 .857 ± .013

SensIT .723± .022 NA NA .647↓ ± .042 .723 ± .022 .692↓ ± .023 .713 ± .024 .722 ± .021

Table 3.2: Classification performance on different data sets described in Table 3.1.
The performance is computed using the accuracy score on the unlabeled training
examples (ACC-U). The sign ↓ shows if the performance is statistically worse than
the best result on the level 0.01 of significance. NA indicates the case when the time
limit was exceeded.

which reduces the computation time and may also improve the performance, since,
in this case, the algorithm is less affected by noise. Cascante-Bonilla et al. (2020)
used for CSLA a slightly other architecture for self-learning, where the set of se-
lected pseudo-labeled examples included just for one iteration (like if in Algorithm
1 Step 3 would be replaced by ZP ← S). In our context, we have found that the
performance of CSLA is identical for both two architectures.

3.1.3 Experimental Results

In our setup, a time deadline is set: we stop computation for an algorithm if one trial
takes more than 4 hours. Table 3.2 summarizes results obtained by RF, LP, QN-S3VM,
Semi-LDA, DAS-RF, FSLA, CSLA and MSLA. We used bold face to indicate the highest
performance rates and the symbol ↓ indicates that the performance is significantly
worse than the best result, according to Mann-Whitney U test (Mann and Whitney,
1947) used at the p-value threshold of 0.01.

From these results it comes out that

• in 5 of 11 cases, the MSLA performs better than its opponents. On data sets
Isolet and MNIST it significantly outperforms all the others, and it signifi-
cantly outperforms the baseline RF on Isolet, Pendigits and MNIST (6% im-
provement);

• the LS and the QN-S3VM did not pass the scale over larger data sets (Fashion,
MNIST and SensIT), while the MSLA did not exceeded 2 minutes per trial on
these data sets (see Table 3.3);

60

• the performance of LS and Semi-LDA performance varies greatly on different
data sets, which may be caused by the topology of data. In contrast, MSLA has
more stable results over all data sets as it is based on the predictive score, and
the RF is used as the base classifier;

• since the QN-S3VM is a binary classifier by nature, its one-versus-all extension
is not robust with respect to the number of classes. This can be observed on
Vowel, Isolet and Letter, where the number of classes is high;

• from our observation, both LS and QN-S3VM are highly sensitive to the choice of
the hyperparameters. However, it is not very clear whether these hyperparam-
eters can be properly tuned given a insufficient number of labeled examples.
The same concern is applied to all the other semi-supervised baselines, while
MSLA does not require any particular tuning since it finds automatically the
threshold 𝜃;

• while the approach proposed by Loog (2015) always guarantees an improve-
ment of the likelihood compared to the supervised case, we have observed
that the classification accuracy is not always improved for Semi-LDA and may
even degrade over the supervised linear discriminant analysis;

• compared to the fully supervised approach, RF, the use of pseudo-labeled unla-
beled training data (in DAS-RF, FSLA, CSLA or MSLA) may generally give no ben-
efit or even degrade performance in some cases (Vowel, PageBlocks, SensIT).
This may be due to the fact that the learning hypotheses are not met regarding
the data sets where this effect is observed;

• although for DAS-RF the performance is usually not degraded when T0 is prop-
erly chosen, it has rather little improvement compared to RF. The performance
of FSLA degrades most of the time, while degradation for CSLA is observed on
6 data sets. The latter suggests that the choice of the threshold for pseudo-
labeling is crucial and challenging in the multi-class framework. Using the
proposed criterion based on Eq. (3.1), we can find the threshold efficiently;

• from the results it can be seen that self-learning is also sensitive to the choice
of the initial classifier. On some data sets, the number of labeled examples
might be too small leading to a bad initialization of the first classifier trained
over the labeled set. This implies that the initial votes are biased, so even with
a well picked threshold we do not expect a great increase in performance (see
Appendix 3.1.5 for more details).

We also analyze the behavior of the various algorithms for growing the initial
number of labeled data in the training set. Figure 3-1 illustrates this by showing the
accuracy on a subsample of 3500 observations from MNIST of RF, QN-S3VM, FSLA𝜃=0.7
and MSLA with respect to the percentage of the labeled training examples. In this

61

Figure 3-1: Classification accuracy with respect to the proportion of unlabeled ex-
amples for the MNIST data set (a subsample of 3500 examples). On the graph,
dots represent the average performance on the unlabeled examples over 20 ran-
dom splits. For simplicity of illustration, the other considered algorithms are not
displayed.

graph, the performance of LS is not depicted, since it is significantly lower compared
to the other methods under consideration. As expected, all performance curves in-
crease monotonically with respect to the additional labeled data. When there are
sufficient labeled training examples, MSLA, FSLA and RF actually converge to the
same accuracy performance, suggesting that the labeled data carries out sufficient
information and no additional information could be extracted from unlabeled ex-
amples.

3.1.4 Complexity Analysis

Further, we present a comparison of the learning algorithms under consideration
by analyzing their complexity. The time complexity of the random forest RF is
O(Tdl̃ log2 l̃) (Louppe, 2014), where T is the number of decision trees in the for-
est and l̃ ≈ 0.632 · l is the number of training examples used for each tree. Since
RF is employed in DAS-RF and self-learning, the time complexity of DAS-RF, FSLA
and CSLA is O(CTdñ log2 ñ), where C is the number of times RF has been learned,
ñ ≈ 0.632 · n, n := l + u3. In our experimental setup, C = 11 for FSLA and DAS-RF,
and C = 1/∆ + 1 = 4 for CSLA.

The time required for finding the optimal threshold at every iteration of the MSLA
is O(K2R2n), where R is the sampling rate of the grid. From this we deduce that the
complexity of MSLA is O(C max(Tdn log2 n, K2R2n)). As n grows, the complexity is

3For sake of simplicity, we write u, but the total number of pseudo-labeled examples can be
generally smaller. However, it is not the case for MSLA and CSLA.

62

written as O(dn log2 n), since C, T, R are constant. This indicates a good scalability
of all considered pseudo-labeling methods for large-scale data as they also have a
memory consumption proportional to nd, so the computation can be performed on
a regular PC even for the large-scale applications.

In the label spreading algorithm, an iterative procedure is performed, where at
every step the affinity matrix is computed. Hence, the time complexity of the LS is
O(Mn2d), where M is the maximal number of iterations. From our observation, the
convergence of LS is highly influenced by the value of σ and the data topology. The
time complexity of the QN-S3VM is O(n2d) (Gieseke et al., 2014). Both algorithms
suffer from high run-time for large-scale applications. Since LS and QN-S3VM evalu-
ate respectively the affinity matrix and the kernel matrix of size n by n, these algo-
rithms have also large space complexity proportional to n2. From our observation,
for the large-scale data (Fashion, MNIST, SensIT) the maximal resident set size4 of
LS and QN-S3VM may reach up to 200GB of RAM, which is practically infeasible with
lack of resources.

Finally, the time complexity of Semi-LDA is O(M max(nd2, d3)), where M is the
maximal number of iterations and O(max(nd2, d3)) is the complexity of the linear
discriminant analysis assuming n > d (Cai et al., 2008), and the space complexity
is O(nd). The approach pass the scale well with respect to the sample size, but may
significantly slow down in the case of very large dimension.

Data set RF LS QN-S3VM Semi-LDA DAS-RF FSLAθ=0.7 CSLA∆=1/3 MSLA

Vowel 1 s 6 s 2 s 3 s 7 s 11 s 2 s 5 s

Protein 1 s 22 s 4 m 5 s 6 s 10 s 2 s 4 s

DNA 1 s 1 m 26 s 1 s 9 s 7 s 3 s 4 s

PageBlocks 1 s 2 m 2 m 14 s 9 s 12 s 3 s 6 s

Isolet 1 s 1 m 1 h 10 s 38 s 16 s 5 s 28 s

HAR 1 s 18 m 32 m 3 s 42 s 23 s 6 s 13 s

Pendigits 1 s 30 m 10 m 37 s 13 s 13 s 3 s 14 s

Letter 1 s 3 h 40 m 1 m 20 s 16 s 5 s 1 m

Fashion 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

MNIST 1 s >4 h >4 h 1 m 2 m 1 m 29 s 1 m

SensIT 1 s >4 h >4 h 2 m 3 m 2 m 30 s 1 m

Table 3.3: The average run-time of the learning algorithms under consideration on
the data sets described in Table 3.1. s stands for seconds, m for minutes and h for
hours.

To empirically verify the complexity analysis, we present the run-time of all
the algorithms empirically compared in Section 3.1.3. The results are depicted in

4Maximal resident set size (maxRSS) is the peak portion of memory that was occupied in RAM
during the run.

63

Table3.3. In general, the obtained run-time is coherent with the complexity analysis.
LS and QN-S3VM have a very large run-time when they converge slowly, and they are
generally slower than the other algorithms. Semi-LDA is fast on the considered data
sets, though it may slow down on data of large dimension not considered in our
experimental setup.

It can be seen that DAS-RF is slower than the self-learning algorithms, which is
due to the fact that the classifier is trained on all labeled and unlabeled examples at
each iteration. CSLA is the fastest approach since it re-trains the base classifier only
3 times compared to 10 times for FSLA. From our observation, MSLA needs usually
around 3-5 iterations to pseudo-label the whole unlabeled set, but it takes more
time than CSLA, since it searches at each iteration the threshold by minimizing the
conditional Bayes error. We have implemented the search in a single core, but it can
be potentially parallelized. Nevertheless, the MSLA still runs fast.

3.1.5 Approximation of Posterior Probabilities for Self-learning

In this section, we analyze the behavior of MSLA depending on how the transduc-
tive bound given by Eq. (TBi,j) is evaluated. Since the posterior probabilities for
unlabeled data are unknown, we have proposed to estimate them as the votes of
the base supervised classifier learned using the labeled data only (Sup. Estimation),
which has been used to run MSLA in Section 3.1.3. We compare this approach with
a strategy that considers the (worst) case of uniform posterior probabilities (Unif.
Estimation), i.e., P(Y= i|X= x) = 1/K, ∀x ∈ XU , ∀i ∈ {1, . . . , K}. Finally, we pro-
vide the performance of MSLA when the labels of unlabeled data are given, which
means that the transductive bound is truly estimated (Oracle).

Data set
MSLA

Unif. Estimation Sup. Estimation Oracle

Vowel .586 ± .029 .586 ± .026 .599 ± .028

Protein .773 ± .034 .781 ± .034 .805 ± .036

DNA .697 ± .079 .702 ± .082 .721 ± .09

Page Blocks .965 ± .002 .966 ± .002 .966 ± .002

Isolet .869 ± .015 .875 ± .014 .885 ± .012

HAR .852 ± .025 .854 ± .026 .856 ± .022

Pendigits .873 ± .024 .884 ± .022 .892 ± .016

Letter .716 ± .013 .717 ± .013 .723 ± .012

Fashion .722 ± .022 .723 ± .023 .728 ± .024

MNIST .834↓ ± .016 .857 ± .013 .87 ± .012

SensIT .722 ± .021 .722 ± .021 .722 ± .021

Table 3.4: The performance comparison of MSLA depending on how the posterior
probabilities are estimated in the evaluation of the transductive bound (TBi,j).

64

Table 3.4 illustrates the performance results. As we can see, the supervised ap-
proximation generally outperforms the uniform one (significantly on MNIST). This
might be explained by the fact that the supervised votes may give some additional
information on the most probable labels for each example. In addition, we have
observed that on the last iterations the votes of MSLA tend to be biased, so such
posteriors can play a role of regularization. The performance results of the oracle
show that better estimation of the posteriors can give an improvement, though not
significantly on most of data sets. Note that the performance of the oracle is not
perfect, because the true labels are used only for the bound estimation, and the
votes are used for pseudo-labeling.

3.1.6 Discussion on Confirmation Bias

We have experimentally showed that the self-learning algorithm can be a very pow-
erful semi-supervised algorithm, if the threshold on the prediction vote is properly
chosen. However, the use of self-learning in practice has some limitations. For ex-
ample, a post-analysis of a self-learning model is perplexing due to the so-called
confirmation bias: at every iteration, the self-learning includes into the training set
unlabeled examples with highly confident predictions, which arise from classifier’s
overconfidence to its initial decisions that could be erroneous. This implies that the
hypotheses will have small disagreement on the unlabeled set after pseudo-labeling,
so the votes are no more adequate for measuring prediction confidence.

0

50

100

150

Co
un

t

Prediction Votes at the Initial Step

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Vote

0

100

200

300

400
Prediction Votes at the Final Step

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Prediction Vote

0

50

100

150

Co
un

t

Out-Of-Bag Prediction Votes at the Final Step

Bar Color
Correct Prediction
Wrong Prediction

Figure 3-2: Illustration of the confirmation bias on Vowel data set. We present the
prediction vote’s distribution on the unlabeled set at the initial and the final steps
of MSLA. In addition, we show for the final step how the out-of-bag prediction votes
are distributed. Every histogram’s column is divided by two in order to show how
many examples were predicted correctly and incorrectly.

In order to illustrate this phenomena, in Figure 3-2 we plotted the distribution
of the prediction vote on all the unlabeled examples of Vowel at the initial step
(RF trained on the labeled examples only) and at the final step (all the unlabeled

65

examples are included with pseudo-labels in the training set). At the initial step,
we mistake roughly on low prediction votes, while the final classifier gives mostly
high prediction vote both for correctly and wrongly predicted examples. One can
argue that the bias in the latter case could be caused by inclusion of the unlabeled
examples in the training set. Then, it could be a better idea to evaluate votes in
the out-of-bag fashion (Eq. (1.6)), i.e., to consider only those trees that did not
contain a training example in their corresponding bootstrap samples. For instance,
we will show in Chapter 4 that the out-of-bag error evaluated on the pseudo-labeled
examples can be a good selection criterion. However, from the bottom left plot of
Figure 3-2, where the distribution of the out-of-bag prediction votes is illustrated,
one can see that the conclusion is the same: although the out-of-bag votes are more
diverse, evaluation of the prediction confidence does not seem reliable.

3.2 Self-learning for a Biological Application

3.2.1 Introduction

In recent years, a great attention in microbiology is focused on the clustered reg-
ularly interspaced short palindromic repeats (CRISPR) that represent specific DNA
sequences found in the genomes of bacteria and archaea. Serving as a memory bank
of previous infections, a CRISPR array together with CRISPR-associated (Cas) pro-
teins forms a CRISPR-Cas system that plays a role in adaptive immunity against
phages and other exogenous mobile genetic elements (Hille et al., 2018). The
CRISPR-Cas system is an active subject of study, and it has found a breakthrough
application in the development of a new generation of genome editing systems
(Pickar-Oliver and Gersbach, 2019).

Due to the fast evolution of the CRISPR–Cas loci, the number of different found
CRISPR-Cas systems is growing every year, which challenges to build a robust clas-
sification scheme. For example, the most recent classification includes 6 types and
33 subtypes, compared with 5 types and 16 subtypes in 2015 (Makarova et al.,
2020). In parallel, there is a growing interest in machine learning tools that are
capable of automatically detecting the CRISPR-Cas system types and subtypes. For
example, Russel et al. (2020) use a gradient boosting tree approach and aim to pre-
dict a CRISPR-Cas subtype based on extracted tetramers of an input CRISPR array.
However, this model has two significant limitations. First, they follow the classical
supervised setting, so their approach will poorly generalize on new data, where new
subtypes may appear. Secondly, all their training sequences are supplied with true
labels, which are possible to acquire only if a full genome is available. This is not
always the case, so some training sequences rest naturally unlabeled.

In this section, we propose a novel view on this problem by considering the
open-world classification (Bendale and Boult, 2015) framework, which represents a
semi-supervised problem, where it is additionally assumed that unlabeled examples

66

contain classes unseen in the labeled data. By studying the CRISPR-Cas subtype
classification in this context, our goal is three-fold: i) we want to automatically
classify subtypes observed in the training set, ii) discover new subtypes by providing
regions of grouped examples with low prediction confidence for their successive
analysis by experts, iii) refrain from predicting any label for non-grouped examples
with low prediction confidence.

In order to deal with this problem, we assume that unlabeled examples from new
classes lie in homogeneous clusters. We propose to use the semi-supervised decision
tree of Kim (2016) and the one-versus-all rule to construct a random forest classifier
that is able to give low confidence to unlabeled examples from isolated regions.
Based on this classifier and a density-based clustering algorithm, we propose an
extension of self-learning that is able to pseudo-label not only unlabeled examples
with high prediction confidence, but also clustered unlabeled examples with low
confidence treating them as new classes. To the best of our knowledge, the use
of decision trees and self-learning in the open-world context is a new result. We
validate our approach on the real data set of CRISPR arrays extracted from genomic
sequences by a CRISPRCasFinder software (Couvin et al., 2018).

The rest of this section is organized as follows. Section 3.2.2 formally defines
our problem and the learning objective. In Section 3.2.3, we introduce the proposed
open-world self-learning algorithm. In Section 3.2.4, we describe the data set and
present the results of the performed experiments.

3.2.2 Framework

In this section, we define a semi-supervised problem in a non-classical manner. As
before, we consider an input space X ⊂ Rd, but define an output space as union
of two disjoint sets Y = YO ∪ Y 6O, where YO = {1, . . . , K}, K ≥ 2, is the set of
observed classes, whereas Y 6O = {K + 1, . . . , K + C}, C ≥ 1, is the set of unseen
classes. Then, we assume an available set of labeled training examples from the
observed classes ZL = {(xi, yi)}l

i=1 ∈ (X × YO)l and an available set of unlabeled
training examples XU = {xi}l+u

i=l+1 ∈ X u for which it is assumed known that some
of these examples belong to unseen classes, i.e., the true (not available) class label
y ∈ Y = YO ∪ Y 6O for every x ∈ XU 5.

Generally speaking, the absence of some classes in the labeled set may arise
in different situations. In the case of i.i.d. data generation, this may happen if the
labeled set is scarce, and the problem is highly imbalanced, hence some classes may
have little chances to appear. Another situation is when data labeling is performed
according to a some criterion (Cortes et al., 2008), i.e., the i.i.d. data assumption
is violated. In this chapter, we consider the problem from an algorithmic point of
view, so we do not assume explicitly the reason of the absence of some classes.

However, it is clear that classical learning objectives would not be appropriate

5For sake of simplicity, we consider the deterministic setting in this section.

67

in this framework. Thus, we propose to slightly modify the goal of learning. First,
we assume that unlabeled data contain some homogeneous regions (clusters) that
are prone to error. These regions may or may not contain new classes, but the main
restriction is that every cluster shares the same label. Then we formulate the goal
as to seek for a classifier h based on ZL ∪ XU that is able to i) predict correctly
unlabeled examples of high confidence from the observed classes, ii) cluster unla-
beled examples of low confidence into homogeneous regions, iii) leave completely
unlabeled those examples that are neither classified nor clustered, minimizing their
number. We use the following notations: for x ∈ XU , h(x) ∈ YO if h predicts one
of the observed classes, h(x) ∈ C if h assigns x to one of the found clusters, where
C = {K + 1, . . .} are cluster indices, h(x) = −1, if h abstain from predicting any
label.

In order to fulfill criteria i), ii) and iii), we define the following evaluation mea-
sures. Let SU→O := {x ∈ XU : h(x) ∈ YO} be the set of unlabeled examples that
are assigned by h to one of the observed classes. Then, to satisfy i), we aim for max-
imizing the balanced accuracy score (BACC) computed on the unlabeled examples
from SU→O:

BACCU→O :=
1
K

K

∑
k=1

∑x∈SU→O I(h(x) = k)I(y(x) = k)
∑x∈SU→O I(y(x) = k)

, (3.2)

where y(x) denotes the true label of the unlabeled example x. For the task ii), we
expect that in each cluster c ∈ C their unlabeled examples share the same class
label. Let SU→c = {x ∈ XU : h(x) = c} denotes the set of unlabeled examples
that belong to the cluster c. Then, we define the label agreement inside c as the
proportion of the most represented class label inside this cluster. Thus, we aim for
maximizing the average label agreement (ALA) over the whole set of clusters C
defined as follows:

ALAU→C :=
1
|C| ∑

c∈C

1
|SU→c|

max
k∈YO∪Y 6O

∑
x∈SU→c

I(y(x) = k). (3.3)

ALAU→C = 1 means that in every cluster there are unlabeled examples only of
one true label, which implies that the cluster is perfect. This measure can also be
interpreted as follows: if we take one example from each cluster, ask to label each
example by a human expert (assuming it possible) and propagate the label of each
example to its cluster members, then ALAU→C corresponds to the balanced accuracy
in expectation over all examples. Finally, to fulfill iii), we prefer a classifier with a
minimal abstention.

3.2.3 Open-World Self-learning Algorithm

In this section, we propose a modification of the self-learning algorithm with the
random forest as the base classifier to satisfy the framework’s requirements. We

68

improve uncertainty estimation of the random forest by considering the low den-
sity separation split criterion of Kim (2016) and using the one-versus-all rule. The
unlabeled examples of high confidence are pseudo-labeled by one of the observed
class labels and included in the training set, while the examples of low confidence
are sent to a clustering algorithm. For each found cluster, all their examples are
pseudo-labeled with a newly created class label and are included in the training
set. We use a simplified density-based approach for clustering. We call the whole al-
gorithm the open self-learning algorithm (OSLA), describe it Algorithm 2, and give
the implementation details below.

Uncertainty Estimation

As we discussed in Section 1.2.1, in the case of a scarce labeled set, decision
trees may poorly estimate the confidence in regions, where there are few or no
training examples. This may lead to a paradox situation when a large prediction
confidence is assigned for some misclassified examples. To overcome this, we use
the approach proposed by Kim (2016) and described in Section 1.2.1, which con-
sists in using a semi-supervised split criterion. At every node, we search a fea-
ture f and its split s such that it decreases the impurity of the labeled examples
(Ssup, Eq. (1.4)) and splits the labeled and unlabeled data in a place of low den-
sity (Sunsup, Eq. (1.14)), which results in maximization of the following criterion:
Sssl(f , s) := (1− λ)Ssup(f , s) + λSunsup(f , s), where λ ∈ [0, 1] is a balance param-
eter. Further, we refer this approach as the semi-supervised decision tree, while a
random forest of such trees is called the semi-supervised random forest (SSRF). By
default, we use further the semi-supervised random forest until the opposite is said.
We implement this approach slightly different from Kim (2016). To split a node
based on Sssl(f , s), we need to have at least two labeled examples. In our imple-
mentation, when the node contains unlabeled examples only, we use replace the
criterion by Sunsup(f , s). Then, for purely unlabeled leafs, the tree outputs uniform
posterior probabilities. Our motivation stems from the desire to find regions isolated
from the labeled data and give to such unlabeled examples a low prediction confi-
dence. To avoid excessive fragmentation, we have fixed the maximum tree depth to
12.

We additionally employ to our framework an option to reject predicting any
class. For this, instead of using a single K-class random forest classifier BRF, we
employ a one-vs-all classifier Bova

RF that aggregates predictions of K binary classifiers

B(1)
RF , . . . , B(K)

RF , where B(k)
RF (x) outputs 1 when the class k is predicted for x, and -1

otherwise. When for all k, B(k)
RF (x) is -1, then label prediction for x is rejected:

Bova
RF =

{
k if B(k)

RF (x) = 1,

−1 if ∀k ∈ YO, B(k)
RF (x) = −1.

There is (rather small) probability that the one-vs-all classifier attributes to more

69

than one class, which can be solved by randomly predicting one of these classes.
In order to define the prediction confidence of the label predicted by Bova

RF for an

example x, we use the class vote v(k)RF (x, 1) of the classifier B(k)
RF , where k = Bova

RF (x).

To simplify notations, we use νova
RF (x) := v(k)RF (x, 1), k = Bova

RF (x).
Consequently, we can determine a set of predictions in which we are confident

(Shigh) by comparing νova
RF (x) with a high value threshold θ (set to 0.8). Similarly,

we can define a set of examples (Slow) that are suspect to come from other classes.
For this, we check if for all k ∈ {1, . . . , K}, v(k)RF (x, 1) is lower than a small value

threshold τ. When τ = 0.5, we reject only those examples for which all B(k)
RF predict

- 1, but τ can be set to a higher value. We have fixed the parameter to τ = 0.55.

Algorithm 2 Open-world Self-learning Algorithm (OSLA)

Input:
Labeled observations ZL and unlabeled observations XU ,
Thresholds θ and τ s.t. 0 < τ < θ < 1 and the maximum of iterations in self-
learning n̄iter,
Number of nearest neighbors nnbr and minimum cluster size ncls,
A one-vs-all random forest Bova

RF and a density-based clustering algorithm Q.
Initialization: A set of pseudo-labeled examples, ZP ← ∅
Train Bova

RF on ZL and XU .
repeat

1. Among the unlabeled examples x ∈ XU find those that have high and low
prediction confidence:

Shigh ← {x ∈ XU : νova
RF (x) ≥ θ}, Slow ← {x ∈ XU : ∧k(v

(k)
RF (x, 1) ≤ τ)}.

2. Pseudo-label the examples from Shigh and move them into the training set:

ZP ← ZP ∪
(

Shigh, {Bova
RF (x)}x∈Shigh

)
, XU ← XU \ Shigh.

3. Find a set of Ct clusters inside Slow:

{SU→c}Ct
c=1 ← Q(Slow, nnbr, ncls).

4. Pseudo-label all examples from the cluster x ∈ SU→c, c ∈ Ct and move
them into the training set:

ZP ← ZP ∪
(
SU→c, {c}x∈SU→c

)
, XU ← XU \ SU→c.

5. Re-train Bova
RF on ZL ∪ ZP and XU .

until XU or Ssusp is ∅, or the number of iterations = n̄iter
Output: ZL ∪ ZP , (XU , {−1}x∈XU).

70

Finding New Clusters

Then, we search homogeneous structures among examples from Slow in order to
find unseen regions or classes. For this, we perform a clustering of these examples
by an algorithm Q that is described further. We construct a graph such that vertices
are examples x ∈ Slow and two examples are connected by an edge if one of them
belongs to a set of nnbr-nearest neighbors of another. We have considered 5-nearest
neighbors. Then, we construct clusters by assigning any two examples to one cluster
c if there is a path between them. Note that this algorithm reminds the DBSCAN
algorithm (Ester et al., 1996) with an unbounded radius. However, the difference
is that we search the nearest neighbors relatively to the whole set of examples
XL ∪ XU . Also, we additionally check the size of found clusters and consider those
that have size more than ncls (fixed to 4).

Self-learning

To sum up, the proposed self-learning is organized as follows. At each iteration, we
pseudo-label the confident examples x ∈ Shigh by Bova

RF (x) and include them into the
training set. Then, using the clustering algorithm Q, we find clusters in Slow. For
each cluster, we create a unique class label c and use it to pseudo-label all the exam-
ples from this cluster. While the inclusion of the confident examples may improve
the prediction of the observed classes, by pseudo-labeling the clustered examples,
the algorithm treats the clusters as new classes so that they can be enlarged in sub-
sequent iterations. We re-train the classifier Bova

RF on the training set augmented by
the pseudo-labeled examples. The described steps are repeated until the maximum
number of iterations n̄iter is reached or there is nothing to pseudo-label.

3.2.4 CRISPR-Cas Subtype Prediction

Data Set

The data set covers 21 subtypes out of 6 types and contains 45216 sequences ex-
tracted by the CRISPRCasFinder (Couvin et al., 2018). In our experiments, we focus
on well represented types I and II and subset to those sequences that are CRISPR
of the large evidence level according to the software and are associated with only
one Cas cluster. We describe a sequence by means of tetramers and RNA-fold de-
scriptors. As the sequence orientation is unknown, we extract canonical tetramers
by summing counts of the direct sequence and its reverse complement and keeping
the mers that are lexicographically smaller than their reverse complements. Using
the ViennaRNA package (Hofacker, 2003), we derive the RNA-fold descriptors at
two degrees: 37° and 75°. For each sequence and its reverse complement, we com-
pute the RNA-fold energy at 37° keeping the sequence with the lowest energy, so
the RNA-fold descriptive variables at 37° and 75° are evaluated only for the chosen
sequence. In total, we have 136 canonical tetramers and 7× 2 RNA-fold descriptors.

71

Experimental Setup

To validate the proposed approach for the open-world classification, we perform
two CRISPR-Cas subtype prediction experiments: in the first case, a training set
composed of the subtypes of Type I, whereas the subtypes of Type II are consid-
ered for the second experiment. To emulate a situation where unlabeled data is
more diverse than labeled one and may contain unseen classes, we split the data
set by labeled and unlabeled observations in proportion 10% : 90% and hide the
true labels for the latter ones. In addition, some classes are placed entirely in the
unlabeled set. More specifically, for Type I we take the set of observed classes as
YO = {IB, IC, IE, IF} and the set of new classes as Y 6O = {IA, ID}. For Type II, the set
of observed classes is YO = {IIA, IIC}, and the set of unseen classes is Y 6O = {IIB}.
The full information about sample sizes can be seen in Table 3.5a for Type I and in
Table 3.5b for Type II. We perform randomly 10 labeled/unlabeled splits preserving
the proportion and report the performance results averaged over these splits.

Subtype IA IB IC ID IE IF

Labeled 0 33 78 0 482 97
Unlabeled 15 298 703 27 4338 874

(a) CRISPR-Cas Type I

Subtype IIA IIB IIC

Labeled 49 0 62
Unlabeled 440 25 559

(b) CRISPR-Cas Type II

Table 3.5: The distribution of subtypes of CRISPR-Cas Type I and Type II across
labeled and unlabeled sets used in experiments.

Learning Model and Baselines

To validate the proposed approach, further referred as SSRF-OSLA, we perform an
ablative study by empirically comparing with the following baselines:

1. instead of considering the semi-supervised one-versus-all random forest as the
base classifier in OSLA, use the supervised one-versus-all random forest, i.e.,
take Ssup as the split criterion. We refer this approach as RF-OSLA;

2. compare with the same algorithm but without iteratively re-training the clas-
sifier. In other words, we threshold the examples using θ and τ, assign pseudo-
labels and include in the training set, and then terminate the algorithm. This
corresponds to a single execution of steps 1-4 of Algorithm 2. We denote this
approach by SSRF-1.

Experimental Results for Type I

At first, we display in Table 3.6 the distribution of all algorithms’ output. One can see
that SSRF-OSLA assigned in average 84.8% of unlabeled examples to one of the ob-

72

served classes, 13% classified to one of new clusters and 2.2% left unlabeled. Com-
paring with SSRF-1, we can observe that at the initial step of self-learning we leave
unlabeled 10.6% of examples, which is reduced to 2.2% by iteratively re-training
the classifier. The use of the supervised base classifier appears to produce a more
confident model in its decisions: RF-OSLA predicts the observed classes more often,
which is reasonable, since the supervised classifier does not take into account the
unlabeled data. We will see further that this actually deteriorates the performance.

Method
RF-OSLA SSRF-1 SSRF-OSLA

Predictions (in %)
Observed Class 91.9± 0.4 84.8± 0.8 84.8± 0.8
New In-Cluster 6.3± 0.2 4.6± 0.5 13± 0.8
New No-Cluster 1.8± 0.2 10.6± 0.8 2.2± 0.2

Table 3.6: Proportions of unlabeled examples categorized to one of the observed
classes, to one of new clusters, or to no cluster (label -1) for the Type I.

Now, we look at performance of the algorithms with respect to the balanced ac-
curacy BACCU→O and the average label agreement ALAU→C defined by Eq. (3.2) and
Eq. (3.3) respectively. The performance results are shown in Table 3.7. One can see
that when the supervised random forest is used inside OSLA, the performance results
are worse in average than for the semi-supervised random forest, which is probably
connected with wrong confidence estimation for some unlabeled examples. SSRF-1
and SSRF-OSLA predict almost perfectly the observed classes. It appears that the it-
erative re-training of the base classifier helps to expand the clusters including more
similar examples, so SSRF-OSLA outperforms SSRF-1 in terms of ALAU→C .

Method RF-OSLA SSRF-1 SSRF-OSLA

BACCU→O .979± .06 .999± .0 .999± .0

ALAU→C .915± .02 .931± .033 .962± .011

Table 3.7: The performance results for the Type I experiment averaged over 10 ran-
dom labeled / unlabeled splits with respect to the accuracy score on examples as-
signed to the observed classes (BACCU→O) and the average label agreement among
the predicted clusters (ALAU→C). The bold face indicated the best in average perfor-
mance.

We have additionally checked the algorithm’s behavior particularly on the exam-
ples from IA and ID, which are the classes unseen in the training set. The results are
promising: none of these observations were classified to one of the observed classes.
Figure 3-3 and Figure 3-4 depict to which cluster every example was assigned with
respect to the other examples from the same class. The results are averaged over

73

10 labeled/unlabeled splits. One can see that 13 of 15 examples from IA are always
placed in one cluster, whereas 2 examples (No. 2 and 13) are systematically placed
into another cluster. We have manually checked and it appears that these two ex-
amples are indeed quite different from the other examples from IA with respect
to RNAfold parameters. In the case of the subtype ID, all the examples tend to be
placed in one cluster with some occasional exceptions.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cluster 1

Cluster 2

Cluster 3

100%

80%

20%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

100%

100% 100%

Observation No.

CRISPR-Cas Subtype IA

Figure 3-3: Distribution of the unlabeled observations from the subtype IA across
different clusters. Cluster 1, 2, 3 denote clusters with members from IA, and the
clusters are sorted by the number of members from IA in the decreasing order.
The graph displays to which clusters every example belongs to in average over 10
labeled/unlabeled splits. A perfect situation is when all the examples of IA belong
to Cluster 1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Cluster 1

Cluster 2

Unlabeled

100% 80%

20%

90%

10%

80%

20%

100% 60%

10%

30%

80%

20%

100%100% 90%

10%

80%

20%

100%100%100% 90%

10%

100% 90%

10%

100% 80%

20%

80%

20%

80%

20%

100%100%100%100%100% 80%

20%

Observation No.

CRISPR-Cas Subtype ID

Figure 3-4: Distribution of the unlabeled observations from the subtype ID across
different clusters. Cluster 1, 2, 3 denote clusters with members from ID, and the
clusters are sorted by the number of members from ID in the decreasing order.
The graph displays to which clusters every example belongs to in average over 10
labeled/unlabeled splits. The grey color means that the example was left unlabeled.
A perfect situation is when all the examples of ID belong to Cluster 1.

Experimental Results for Type II

Now, we discuss the experimental results performed for subtypes of Type II (Table
3.5b). Table 3.8 illustrates the distribution of all algorithms’ output. Compared to

74

the Type I experiment, this time our model hesitates more. SSRF-OSLA predicts one
of the observed class labels just for 52% of the unlabeled examples, while we know
that approximately 98% of the unlabeled examples are from the observed classes.
This is probably due to the fixed θ, so its automatic selection can be a good direction
for future work (see Section 3.3). Comparing our approach with with SSRF-1 and
RF-OSLA, we make the same conclusions that SSRF-1 leaves too many examples
unlabeled, while RF-OSLA tends to be more confident in their predictions, which,
again, can be considered rather as a disadvantage in terms of the performance
results that are displayed in Table 3.9.

Method
RF-OSLA SSRF-1 SSRF-OSLA

Predictions (in %)
Observed Class 69.5± 5 52± 3.7 52± 3.7
New In-Cluster 25.9± 4.5 8.7± 4.4 43.4± 4.4
New No-Cluster 4.6± 1.2 39.3± 3.4 4.6± 0.9

Table 3.8: Proportions of unlabeled examples categorized to one of the observed
classes, to one of new clusters, or to no cluster (label -1) for the Type II.

From the performance results, we again see that SSRF-1 and SSRF-OSLA out-
performs RF-OSLA in terms of the balanced accuracy. RF-OSLA pseudo-label more
unlabeled examples as the observed classes, which comes with the cost of induc-
ing more errors. This particularly indicates that learning an open-world classifier
is about making a trade-off between uncertainty and accuracy. In our experimental
setup, it appears that SSRF-OSLA satisfies this trade-off the most, being the best in
terms of both BACCU→O and ALAU→C .

Method RF-OSLA SSRF-1 SSRF-OSLA

BACCU→O .995± .005 .998± .001 .998± .001

ALAU→C .886± .031 .913± .06 .925± .03

Table 3.9: The performance results for the Type II experiment averaged over 10
random labeled / unlabeled splits with respect to BACCU→O and ALAU→C . The bold
face indicated the best in average performance.

Figure 3-5 demonstrates the prediction results particularly for the examples from
the subtype IIB. Same as for IA and ID, none of the examples were misclassfied to
one of the observed classes. The examples are primarily placed into two clusters
(Cluster 1 and Cluster 2), while all the examples were a part of one cluster on 3
of 10 labeled/unlabeled splits. We found that all observations, attributed in 100%
of cases to Cluster 1, actually belong to the same species (legionella pneumophila),
while the rest are belong to other species. This particularly means that observations
from the same class can naturally split into multiple clusters.

75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Unlabeled

100% 100% 100% 100% 30%

40%

20%

10%

30%

70%

30%

60%

10%

100% 100% 60%

10%

20%

10%

100% 100% 100% 30%

50%

10%

10%

100% 100% 100% 100% 100% 100% 30%

60%

10%

100% 30%

70%

30%

70%

100%

Observation No.

CRISPR-Cas Subtype IIB

Figure 3-5: Distribution of the unlabeled observations from the subtype IIB across
different clusters. Cluster 1, 2, 3 denote clusters with members from IIB, and the
clusters are sorted by the number of members from IIB in the decreasing order.
The graph displays to which clusters every example belongs to in average over 10
labeled/unlabeled splits. The grey color means that the example was left unlabeled.
A perfect situation is when all the examples of IIB belong to Cluster 1.

3.3 Conclusion and Perspectives

In this chapter, we proposed a multi-class self-learning algorithm where the thresh-
old for pseudo-labeling unlabeled data is automatically found from minimization of
the transductive bound on the majority vote error rate. From the numerical results,
it came out that the self-learning algorithm is sensitive to the supervised perfor-
mance of the base classifier, but it pass well the scale and noticeably outperform
other self-learning policies.

The proposed self-learning policy was experimentally validated when it was cou-
pled with the random forest, but combining it with deep learning methods would
also be interesting to test. This, however, is not straightforward. It is well known
that the modern neural networks are not well calibrated, and examples are often
misclassified with a high prediction vote (Guo et al., 2017). This is a significant
limitation in our case, since we make an assumption that the classifier makes its
mistakes on examples with low prediction votes, which is used for the bound’s
approximation. Possible solutions include the use of neural network ensembles or
temperature scaling. Another direction of future work is to propose a way to deal
with the confirmation bias (Section 3.1.6). Zou et al. (2019) studied the impact of
different regularizers for solving this problem in the deep learning context. It is an
open question how this can be implemented in the case of decision trees.

The second contribution of this chapter is a new self-learning approach that is
able to discover potentially new classes in unlabeled data. Assuming that unseen
classes lie in homogeneous clusters, we employed in self-learning a density-based
clustering approach that finds clusters among examples with low prediction con-
fidence and pseudo-label them as new classes. We showed that the estimation of
prediction confidence is improved by considering the semi-supervised one-versus-
all random forest as the base classifier.

76

The approach was empirically studied for the CRISPR-Cas subtype classification
task, and the experimental results demonstrate the prospects of using unlabeled
data for better generalization. Indeed, in this area, one can observe a steadily grow-
ing interest in machine learning tools, which have been applied for automatically
identifying CRISPR patterns (Alkhnbashi et al., 2021; Mitrofanov et al., 2021) and
predicting the CRISPR-Cas system types and subtypes (Russel et al., 2020). How-
ever, all these approaches consider the classical supervised setting. Moreover, Russel
et al. (2020) focused only on well represented subtypes removing those with few la-
beled examples. This implies that their analysis is generally limited by the extracted
data set and can not be further generalized. Thus, the open-world semi-supervised
classification framework unfolds new perspectives to develop systems that utilize
available unlabeled data and detect new regions that have to be analyzed by ex-
perts, since new subtypes may appear there.

As a future work, we would like to conduct our experiments on the complete
database. In particular, we have restricted to consider observations with only one
Cas cluster in their genomes. However, it is known that some subtypes like ID are
known to work with other subtypes, so they rarely appear alone in a genome. This
explains why we observed few examples from ID in our training data. From the
algorithmic point of view, it would be great to test the algorithm on other data sets
and compare with existing approaches (Miller and Browning, 2003; Nie et al., 2010;
Bendale and Boult, 2015). We have considered a rather simple clustering algorithm,
but more sophisticated ones can be tried as well. Finally, another direction would
be to reformulate the problem and introduce the cost of refraining from predicting
one of the observed classes, which aims to penalize models that are too uncertain
in their predictions. Therefore, we can extend to this case the approach proposed in
Section 3.1 to automatically find the two confidence thresholds τ and θ that have
been fixed in our experiments.

77

78

Chapter 4

Semi-supervised Feature Selection

In this chapter, we consider learning on labeled and unlabeled examples for fea-
ture selection. We propose a feature selection approach based on a new modifica-
tion of the genetic algorithm that creates and evaluates candidate feature subsets
through an evolutionary process, taking into account feature weights and eliminat-
ing irrelevant features. To increase data variety, unlabeled observations are pseudo-
labeled by the multi-class self-learning algorithm (described in Chapter 3) and are
employed in the feature selection process. Empirical results on different data sets
show the efficiency of our framework compared to several state-of-the-art semi-
supervised feature selection approaches.

4.1 Introduction

We focus on semi-supervised classification problems where observations are de-
scribed by a large number of characteristics. In this case, the original set of features
may contain irrelevant or redundant characteristics to the output, which with the
lack of labeled information leads to inefficient learning models. In practice, the
removal of such features has been shown to provide important keys for the inter-
pretability of results and yield better prediction performance (Guyon and Elisseeff,
2003; Chandrashekar and Sahin, 2014).

Feature selection techniques have been widely developed and, depending on
the availability of class labels, can be supervised, unsupervised or semi-supervised.
Being agnostic to the target variable, unsupervised approaches generally ignore
the discriminative power of features, so their use may lead to poor performance.
In contrast, supervised feature selection algorithms benefit from abundant labeled
examples, so they effectively select the subset of relevant characteristics. When
there is no access to a large number of observations, performance of supervised
approaches degrades, so selection of relevant features becomes an intricate issue.
In semi-supervised learning (Sheikhpour et al., 2017), in addition to the scarce la-
beled set, a large collection of unlabeled data is assumed available, so the aim is

79

to perform feature selection by exploiting both available labeled and unlabeled ex-
amples in order to provide a solution that preserves important structures of data,
reducing significantly the original dimension and leading to high performance in
accuracy.

As searching of the optimal feature subset by exhaustive search would be com-
putationally infeasible, many classical methods are based on sequential search al-
gorithms, such as forward or backward selection. However, such methods are also
computationally heavy for large-scale applications. Heuristic search algorithms, like
the genetic algorithm (Goldberg and Holland, 1988), significantly reduce the com-
putational time (Siedlecki and Sklansky, 1993; Xue et al., 2015). The genetic al-
gorithm is an evolutionary optimization algorithm inspired by the natural selection
process, where a fitness function is optimized by evolving iteratively a population of
candidates (possible feature subsets). Starting from a randomly drawn population,
at every generation a new population is produced by preserving parents from the
last generation and creating offspring from the parents using operation of crossover
and mutation (Figure 4-1). After a predefined number of generations the algorithm
is stopped, and a candidate with the best fitness score in the last population is re-
turned. The approach can be very effective when the number of features is very
large. However, it has two main drawbacks: it may have a high variability on large-
dimensional data sets; the solution that the algorithm outputs is generally not as
sparse as it could be, because any information like feature importance is ignoring
during the crossover.

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Semi-supervised Wrapper Feature Selection with Imperfect Labels

(0, 0, 1, 0, 1, 1, 0, 1)

(1, 0, 1, 0, 1, 1, 0, 1)

(1, 1, 1, 0, 0, 1, 0, 0)

Parent 1:

Child:

Parent 2:

1

Figure 2. A simple scheme of how a new child is generated from
two parents. The crossover procedure (red and blue colors) is
followed by mutation (green color).

solution the algorithm outputs is generally not sparse as it
could be. To produce a sparse solution, it is usually spread
to limit the search space by fixing the number of selected
features (Persello & Bruzzone, 2016). However, it is not
very clear which number of features should be taken.

3.3. Feature Selection Genetic Algorithm

In this section, we describe a new genetic algorithm for
feature selection in semi-supervised learning. The main
idea of the algorithm is to take into account the importance
of features during the generation of a new population. It
allows to output a sparse solution preserving discriminative
power and not fixing the number of features.

First, we initialize the population P0 by randomly generat-
ing feature subsets of a fixed length. In our experiments, this
length is equal to b

√
dc. Each candidate S ∈ P0 is a feature

subset (initialization). Then, for the generation g ≥ 0 and
for each candidate S ∈ Pg , we train a supervised model and
compute a score reflecting the strength of the subset. We
derive weights wS1 , . . . , w

S
d for each feature, using ensem-

ble methods based on decision trees (fitness and features
weights computation).

To accelerate the convergence and reduce the variance of
the algorithm, we embed a test to eliminate irrelevant to
response variables (feature relevant test). This idea bears
similarity with the work of Tuv et al. (2009) where variables
are compared with their copies using randomly permuted
values. For each feature, we compute the average weights:

w̄t =

∑
S:[S∈Pg]∧[t∈S] w

S
t∑d

τ=1

∑
S:[S∈Pg]∧[τ∈S] w

S
τ

, t ∈ {1, . . . , d}.

We detect suspicious irrelevant features that have average
weights less than a fixed threshold θout: Sout = {t : w̄t ≤
θout, t ∈ {1, . . . , d}}. A new supervised model is learnt on
a new data set, composed by: the relevant features detected
so far by the best parent, suspicious irrelevant features and
a randomly permuted copy of those suspicious irrelevant
variables. If the difference between the weight of a sus-
picious feature that belongs to Sout and the weight of its
noisy counterpart is not significant, the suspicious irrelevant
feature is called irrelevant, removed and will not be further
considered by the algorithm.

Among the population Pg , p candidates with best fitness are
selected, preserved for the next population Pg+1 and used
to produce new offspring (parent selection).

A new child is generated by mating two parents (crossover).
In contrast to CGA, we inherit variables according to their
weights: for each parent, its features are sorted by their
weights in the decreasing order. The crossover point that
characterizes the proportion of features inherited from the
first parent is taken randomly, and we fill the child by its
sorted features until we reach the quota. The rest of the
features are taken from the second parent under a condition
that there are no repetitions.

To increase the diversity of candidates, we perform mutation
of children in the same way as in CGA. In addition, we
define a possibility to mutate the number of features in the
subset. For each child, its length can be randomly increased,
decreased or remain the same (mutation).

We repeat these steps for several generations until we obtain
the final population. Since we enforce our algorithm to start
with

√
d features, this number might be too small in some

cases. To overcome this, we output a final candidate by com-
bining outputs of all candidates from the final population.
The features are taken by voting and we threshold the ones
that were present in few candidate subsets.

4. Experimental Results
To illustrate the benefit of our approach, we conducted a
number of experiments on 10 publicly available data sets
(Chang & Lin, 2011; Guyon, 2003; Li et al., 2018). The as-
sociated applications are image recognition, with Fashion,
MNIST, Coil20 and Gisette data sets; text classifi-
cation databases PCMAC, RELATHE, BASEHOCK; bioin-
formatics with Protein data set; feature selection with
Madelon; and a speech recognition task with Isolet.

The main characteristics of all data sets are summarized
in Table 1. Since we are interested in practical use of the
algorithm, we test the algorithms under the condition that
l � u. For MNIST and Fashion data sets, we consider
its subset of 10000 observations.

In all the experiments, we consider the Random Forest algo-
rithm (Breiman, 2001), denoted as RF, with 200 trees and
the maximal depth of trees, as the Bayes classifier with the
uniform posterior distribution. For an observation x, we
evaluate the vector of class votes {v(x, i)}Ki=1 by averaging
over the trees the vote given to each class by the tree. A tree
computes a class vote as the fraction of training examples
in a leaf belonging to a class.

In all experiments, we use the SLA to evaluate the quality
of selection. In other words, at first, we find a feature subset
using a feature selection method, then we train SLA on the

Figure 4-1: Illustration of how a new child is generated from two parents. The
crossover procedure (red and blue colors) is followed by mutation (green color).

In this chapter, we propose a new semi-supervised feature selection method,
denoted by MSLA-FSGA, that first pseudo-labels unlabeled data by the multi-class
self-learning algorithm, which increases the variety of training data minimizing the
number of label errors. This data is used to perform a feature subset search by a
new modification of the genetic algorithm, called Feature Selection Genetic Algorithm
(FSGA) that reduces the variance in selection and ensures a high level of sparsity.
This is achieved by considering feature weights during the optimization phase and
iteratively removing features found to be irrelevant. We guide FSGA by the out-of-
bag score of the Random Forest classifier (Breiman, 2001), and we empirically show
that the proposed approach is fast, accurate on benchmarks of large dimension, and
it outperforms the supervised baseline. In addition, we show the prospects of using
the C-bound with imperfect labels (CBIL) as a selection criterion.

80

The remainder of this chapter is organized as follows: Section 4.2 describes re-
lated work. Section 4.3 introduces the semi-supervised wrapper we propose, which
is based on a modification of the genetic algorithm. Section 4.4 presents the experi-
ments conducted on several data sets. Lastly, Section 4.5 concludes the chapter and
discusses the future work.

4.2 Related Work

Feature selection methods can be classified into three main families. Filter methods
score features following a criterion and perform selection before the construction
of a learning model (Yang et al., 2010; Zhao et al., 2008). Embedded techniques
perform model-based feature selection in order to infer the importance of features
during the training process (Chen et al., 2017). Finally, wrapper approaches use a
learner to effectively find a subset of features that are discriminatively powerful
together (Kohavi and John, 1997; Ren et al., 2008). In the specific case of semi-
supervised learning, some works have been initiated recently according to these
three directions.

Most of the semi-supervised feature selection algorithms are extensions of pop-
ular supervised or unsupervised filters. The Semi-Fisher Score (SFS, Yang et al.
(2010)) extends the supervised Fisher score by embedding the graph Laplacian
computed on labeled and unlabeled data. The Semi-Supervised Laplacian Score
(SSLS, Zhao et al. (2008)) is a graph-based approach that uses unlabeled exam-
ples to identify which features are able to preserve the local structure of the data,
and labeled examples to maximize distance between observations from different
classes. The main disadvantage of the filter approaches is that feature importance
is evaluated individually, so there is a risk to discard features that are strong only in
combination with others (Guyon and Elisseeff, 2003).

The Rescaled Linear Square Regression (RLSR, Chen et al. (2017)) is an em-
bedded method that performs the least square regression for feature selection. It
scales the regression coefficients with a set of scale factors and ranks the features
using the projection matrix. As an embedded method, feature selection takes part
of the training process, but, compared to wrappers, it is inflexible to the objective.
In supervised feature selection, a popular embedded approach is the recurrent fea-
ture elimination (RFE, Guyon et al. (2002)) that recursively re-learns a learning
algorithm removing a portion of features with the lowest feature weights at each it-
eration. Although this approach effectively removes irrelevant features, it may also
remove some informative variables that are weak individually (Darst et al., 2018).
In Section 4.4, we illustrate the empirical performance of an extension to semi-
supervised learning.

Ren et al. (2008) proposed a semi-supervised wrapper algorithm (CoT-FSS),
which incorporates unlabeled data to the training set by means of co-training, and
find the best feature subset using forward sequential search. The approach performs

81

co-training inside the wrapper, which makes it computationally expensive. In Han
et al. (2011), it was shown that the complexity may be reduced by pseudo-labeling
the unlabeled examples just once and then performing the wrapper feature selec-
tion on the augmented the data set. As the structure of wrapper methods is more
flexible, the choice of the criterion is not necessarily limited to the accuracy score,
and other learning-based metrics can be used (Song et al., 2007). This is particu-
larly attractive for semi-supervised learning where the criterion may be evaluated
using both labeled and unlabeled data.

4.3 New Semi-supervised Wrapper: MSLA-FSGA

We consider the multi-class classification framework with the output space Y =
{1, . . . , K}, K ≥ 2, and the input space X ⊂ Rd, where d is the total number of
features. We suppose given a set of labeled examples ZL = {xi, yi}l

i=1 ∈ (X × Y)l

and a set of unlabeled examples XU = {xi}l+u
i=l+1 ∈ X u. Given a level of sparsity

d′ � d, the goal is to find a feature subset S∗ ⊆ {1, . . . , d}, |S∗| = d′ based on
ZL ∪ XU that leads to the highest classification performance among all possible
feature subsets of size d′.

Below, we present our semi-supervised framework for wrapper feature selection
using both labeled and unlabeled data. The approach consists of two phases: first,
we increase variety of the training data by pseudo-labeling the unlabeled exam-
ples using the multi-class self-learning algorithm described in Section 3.1. On this
augmented data set, we perform the feature selection in a wrapper fashion by a
proposed genetic algorithm named Feature Selection Genetic Algorithm, described
in Section 4.3.1, that uses a random forest of decision trees as a learning algorithm,
which is described in Section 1.1.2.

One of the main advantages of a decision tree is that it infers feature weights
during its learning process. A tree ht outputs a weight ωt

j for a feature j by com-
puting the total impurity decrease the feature yields. Then, the random forest RF
outputs feature weights by averaging them over the trees: for a feature j, wj =
1
T ∑T

t=1 ωt
j . As a criterion to measure the feature subset strength, we use the out-of-

bag error of the random forest, which is defined for a training set ZL and feature
subset S as:

FL(S) :=
1
l

l

∑
i=1

I(yi 6= argmax
c∈Y

vL(x
[S]
i , c)), (4.1)

where x[S]i denotes the projection of xi on the set of features S, and the out-of-bag
vote is evaluated as the proportion of trees that did not contain the example x in

82

their respective bootstrap sample:

vLOOB(x, c) =
1

|{t : x 6∈ Bt}| ∑
t: x 6∈Bt

I(ht(x) = c).

It is known that the out-of-bag error is an unbiased estimator of the generalization
error (Breiman, 2001) being robust to perturbations in output (Dietterich, 2000).

4.3.1 FSGA: Feature Selection Genetic Algorithm

After obtaining an augmented data set via MSLA, we perform a heuristic search using
a genetic algorithm (Goldberg and Holland, 1988). The classical genetic algorithm,
CGA, ignores during the crossover any information like feature importance, since
a child inherits features from its parents at random. Moreover, the larger is the
number of features, the larger is the search space, so the algorithm becomes highly
variable which affects the performance (Xue et al., 2015).

In this connection, we propose a new genetic algorithm for feature selection that
tackles these two problems: 1) the algorithm takes into account the importance of
features during the generation of a new population by using a weighted crossover,
2) it iteratively removes variables that are found to be irrelevant, which accelerates
the convergence and reduces the search space. The main steps of this algorithm are
summarized in Fig. 4-2 and are described as follows.

Initialize
population

Compute
fitness

Compute
feature
weights

last
generation? done

Select
parents

Test
feature

relevance

Perform
crossover

Perform
mutation

yes

nonew population

Figure 4-2: Feature Selection Genetic Algorithm (FSGA) in a nutshell.

Initialization: the population P0 is initialized by randomly generating feature
subsets of a fixed length d′. Each candidate S ∈ P0 corresponds to a feature subset.

Evaluation of Fitness and Feature Weights: for the generation g ≥ 0 and for
each candidate S ∈ Pg, a random forest model is learned on the labeled and the
pseudo-labeled examples. Feature weights {wS

j }j∈S are derived from the Random
Forest classifier restricted to the feature subset S. To evaluate the strength of the

83

subset S, the out-of-bag score OOB is considered as a fitness score. It evaluates
the generalization error without subsampling (compared to the cross-validation for
example), reducing the computational cost. The introduced fitness criterion is com-
puted on labeled and pseudo-labeled data with projection on a feature subset S as
follows:

FL∪P (S) :=
1

l + up

l+up

∑
i=1

I(ŷi 6= argmax
c∈Y

vL∪POOB (x[S]i , c)), (4.2)

where up ≤ u corresponds to the number of examples that have been pseudo-
labeled, ŷi = yi for i = {1, . . . , l}, ŷi corresponds to the pseudo-labels for i =
{l + 1, . . . , l + up}.

Parent Selection: among the population Pg, p candidates with the best fitness
scores are selected, used for the next population Pg+1 and for producing a new off-
spring. There exists various policies in the literature of genetic algorithms to select
parents (Goldberg and Deb, 1991) such as tournament selection or proportionate
reproduction. However, we have experimentally observed no benefit from such ad-
ditional randomness, so we stick to the simplest policy of choosing candidates with
the best fitness score (which corresponds to the tournament of maximal size).

Relevance Test: a test is performed to eliminate irrelevant to response variables.
We embed an approach of Tuv et al. (2009) to compare variables with their copies
using randomly permuted values. At first, we consider the features that appear at
least in one of the candidates: Sg = {j ∈ {1, . . . , d} : ∃S ∈ Pg s.t. j ∈ S}. We
compute their average weights as:

w̄j =
∑S :[S∈Pg]∧[j∈S] wS

j

∑S∈Pg I(j ∈ S)
, j ∈ Sg.

We define the set Sout of suspicious features Sout as a percentage1 of features that
have the smallest average weight. The principle of the test is to learn a classifier on
a new data set, composed by: the features detected by the best parent, suspicious
irrelevant features and their randomly permuted copies. We construct R times the
data set with permuted copies and learn the classifier. For each r ∈ {1, . . . , R}, we
look at the feature weights of the noisy counterparts and evaluate a high percentile
from their distribution, denoted by τr, which serves as a threshold to distinguish
informative variables from noisy ones. Thus, for each feature j ∈ Sout we have a
sample of R feature weights retrieved from the R classifiers. This sample is com-
pared with the sample of thresholds (τr)R

r=1 using the one-sided Mann-Whitney U
test with a suitably small p-value. The hypothesis rejection for a feature j implies
that its feature weight is statistically close to feature weights of the noisy counter-
parts, so this feature is called irrelevant, removed and will not be further considered

1In our experiments, we fix it to 30%.

84

by the algorithm. Since the size of selected parents may be less than the initial d′

after this test, we perform backfilling by randomly including features into the subset
to reach the size d′. We set the weights of these features to be 10−10 so they have
little chance to participate in the next crossover.
The test requires to set such parameters as the percentile and the p-value. The
higher percentile is taken, the higher thresholds (τr)R

r=1 are set, while high p-values
suggest a more drastic assessment of irrelevance. We have noticed that the rele-
vance test becomes more qualitative with the increase of classes2 as in this case the
difference between informative and irrelevant variables become more evident, so
the test is not very sensitive to the choice of the percentile and the p-value, and the
number of experiments R can be even reduced. Originally, this test has been pro-
posed for supervised feature selection, and it was performed just once on the whole
feature set (Tuv et al., 2009). In semi-supervised learning, the number of labeled
examples is often much smaller than the number of features, so the features weights
may be biased leading to not correct relevance estimation. Although incorporation
of the pseudo-labeled unlabeled examples may help to reduce the bias, we have
observed that using the relevance test iteratively at each generation improves the
performance results (see more details in Section 4.4.4).

Crossover and Mutation: A new child is generated by mating two parents. In
contrast to CGA, we inherit variables according to their weights: for each parent,
its features are sorted by their weights in the decreasing order. The crossover point
that characterizes the proportion of features inherited from the first parent is taken
randomly, and we fill the child by its sorted features until we reach the quota. The
rest of the features are taken from the second parent, ensuring no repetitions. This
type of crossover suggests to increase exploitation of informative features with large
feature weights.
To increase the diversity of candidates and prevent "deadlocks", mutation is used:
for each child, a random number of features (not greater than a parameter mutmax)
from the subset S are replaced by the same number of features out of S. Since the
proposed weighted crossover operator is highly exploitative, an aggressive mutation
(i.e. large values of mutmax) is a reasonable choice to balance exploration.

Those steps are repeated to generate new populations for several generations,
and a candidate with the best fitness in the final population is output3.

4.3.2 Time Complexity

In this section, we discuss the time complexity of our method and compare it with
the other semi-supervised feature selection approaches discussed in Section 4.2.
The conclusion of this section is empirically illustrated in Section 4.4.3.

Selecting d′ =
√

d variables, for each candidate feature subset, FSGA evalu-

2Assuming we are not dealing with a high class-imbalance.
3The code for our approach is available at https://github.com/vfeofanov/TSLA-FSGA.

85

https://github.com/vfeofanov/TSLA-FSGA

ates the fitness based on the random forest classifier that has the average time
complexity O(

√
dTñ log2 ñ), where ñ ≈ 0.632 · (l + up) corresponds to the num-

ber of labeled and pseudo-labeled examples that are used in a bootstrap sam-
ple, T is the number of trees (Louppe, 2014). Then, the complexity of FSGA is
O(
√

dTNg(Nc + 2R)ñ log2 ñ), where Ng is the number of generations, Nc is the
population size, R is the number of experiments in the relevance test. In our exper-
imental setup, we have set fixed T, Ng, Nc, R, so the complexity can be written as
O(
√

dñ log2 ñ), which indicates a good scalability of the algorithm. Note also that
the trees of RF as well as the learning models for fitness evaluation are naturally
parallelized, which can significantly speed up the algorithm.

Compared to FSGA, the wrapper algorithms like Ren et al. (2008); Han et al.
(2011) are time consuming for high-dimensional data, because they are based on
sequential feature subset searching, which yields a complexity cubic in the dimen-
sion and quasilinear in the sample size 4. The complexity of semi-supervised filter
approaches like SFS (Yang et al., 2010) and SSLS (Zhao et al., 2008) are linear with
respect to the dimension, but quadratic with respect to the sample size because of
the Laplacian matrix’s evaluation. In a large-scale setting, the complexity of RLSR
(Chen et al., 2017) is high, being cubic in the dimension (or linear in the dimension
and quadratic in the sample size when the sample size is large).

4.4 Experimental Results

The benefit of our approach is illustrated on a simulated data set as well as 10
publicly available data sets.

The synthetic data is generated based on the algorithm5 that was used to cre-
ate the Madelon data set (Guyon, 2003). The size of training labeled and training
unlabeled sets are set respectively to 100 and 900. We fixed the number of classes
to 3; the number of features to 20 wherein 8 features (No. 1-8) are informative, 6
redundant features (No. 9-14) are exact copies of the first informative variable, and
6 features (No. 15-20) are irrelevant to the target. We have observed that the first
informative variable is individually strong, whereas the second one is weak, so the
redundant features may be more attractive for selection algorithms rather than the
second variable.

Benchmark data sets are coming from Chang and Lin (2011); Guyon (2003);
Xiao et al. (2017); LeCun et al. (1998); Li et al. (2018); Dua and Graff (2017).
Their characteristics are summarized in Table 4.1. The associated applications are
image recognition, with Fashion, MNIST, Coil20 and Gisette databases; text clas-
sification data sets PCMAC, Relathe, Basehock; bioinformatics with Protein data
set; feature selection with Madelon; and speech recognition with Isolet (we use

4In the case of using a decision-tree based classifier inside the wrapper.
5We use the implementation of Pedregosa et al. (2011).

86

Isolet-5). MNIST and Fashion data sets have been restricted to a subset of 10000
observations. To imitate the semi-supervised setting, we do not use the train / test
splits that are proposed by data sources, but we use our own splits such that l � u.

Data set # of lab. examples, # of unlab. examples, Dimension, # of classes,
l u d K

Protein 108 972 77 8
Madelon 260 2340 500 2
Isolet 156 1404 617 26
Fashion 100 9900 784 10
MNIST 100 9900 784 10
Coil20 144 1296 1024 20
PCMAC 195 1748 3289 2

Relathe 143 1284 4322 2
Basehock 200 1793 4862 2
Gisette 70 6930 5000 2

Table 4.1: Characteristics of data sets used in our experiments and ordered by di-
mension d.

We use the scikit-learn implementation of the random forest with 100 trees of
maximal depth (Pedregosa et al., 2011). The latter is used as the majority vote
classifier for MSLA.

To perform comparison with state-of-the-art approaches, for all feature selection
algorithms, we first find a feature subset using a feature selection method, where
the number of selected features d′ is fixed to b

√
dc. Then, we train MSLA on the

selected features and compute its performance, the classification accuracy on the
unlabeled set (ACC-U).

For all experimental results, we perform 20 random labeled / unlabeled splits
of the initial collection and report the average classification accuracy over the 20
trials on the unlabeled training set. We set a time limit to 1 hour per split and
terminate an algorithm if the limit is exceeded. These cases are indicated as NA. All
experiments were performed on a cluster with an Intel(R) Xeon(R) CPU E5-2640 v3
at 2.60GHz, 32 cores, 256GB of RAM, the Debian 4.9.110-3 x86_64 OS.

The experiments are organized as follows. First, we validate the Feature Selec-
tion Genetic Algorithm (FSGA) through an ablation study showing benefit of each
step of the algorithm for finding an optimal feature subset. Then, we study how
the choice of a learning model and the use of pseudo-labels have an impact on the
selection criterion’s strength. Finally, a comparison of the full method MSLA-FSGA
with state-of-the-art methods is performed.

4.4.1 Validation of the Feature Selection Genetic Algorithm

In this section, we want to demonstrate the benefit of the proposed FSGA by show-
ing that the weighted crossover and the relevance test provides clear improvement

87

over the classical genetic algorithm (CGA). All versions of the genetic algorithm
considered in this section use MSLA for pseudo-labeling and the pseudo-supervised
out-of-bag score given in Eq. (4.2) as the fitness criterion.

In the implementation of the genetic algorithms, the number of generations is
fixed to 25, the population size to 40 and the number of parents to 8. The maximum
number of mutations is set to b

√
d/2c. In the relevance test, we consider the 30%

worst variables as suspicious, learn 10 classifiers with randomly permuted values,
use the 95-th percentile to find the threshold, and set the p-value for the hypothesis
test to 0.05. To highlight the benefit of the weighted crossover, we first run the
genetic algorithm without mutation. Then, we refine the algorithm by successively
adding mutation and relevance test, which finally leads to FSGA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Number

standard
 no mutation

 no relevance test

weighted
 no mutation

 no relevance test

weighted
 with mutation

 no relevance test

weighted
 with mutation

 with relevance test

M
et

ho
d

0.25 0.2 0.65 1 1 1 0.65 0.8 0.2 0.3 0.25 0.4 0.3 0.1 0.3 0.1 0.15 0.2 0.15 0

0.1 0.15 0.7 1 1 1 0.75 0.8 0.4 0.45 0.25 0.4 0.4 0.35 0.15 0.05 0 0.05 0 0

0.3 0.35 0.65 1 1 1 0.8 0.7 0.15 0.4 0.25 0.1 0.35 0.35 0.25 0.05 0.1 0.1 0.1 0

0.5 0.5 0.95 1 1 1 0.8 0.8 0.1 0.4 0.25 0.2 0.2 0.3 0 0 0 0 0 0

Informative Variables Duplicates of Variable 1 Irrelevant Variables

0.0

0.2

0.4

0.6

0.8

1.0

(a) Results on the synthetic data set. The features are sorted in the following order: 8 infor-
mative features, 6 redundant features, 6 irrelevant ones. On the graph, each cell represents
the number of times when a feature was chosen by a feature selection method divided by
the number of experiments (20).

Protein
Madelon Isolet

Fashion MNIST Coil20 PCMAC
Relathe

BasehockGisette

0.6

0.8

1

0.
71

0.
6

0.
76

0.
63

0.
69

0.
92

0.
7

0.
65

0.
78

0.
86

0.
72

0.
62

0.
77

0.
63

0.
71

0.
93

0.
72

0.
67

0.
81

0.
87

0.
72

0.
63

0.
79

0.
64

0.
71

0.
93

0.
8

0.
7

0.
87

0.
88

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

standard crossover
no mutation
no relevance test

weighted crossover
no mutation
no relevance test

weighted crossover
with mutation
no relevance test

weighted crossover
with mutation
with relevance test

(b) Comparison on the benchmark data sets described in Table 4.1. The accuracy on the
unlabeled set (ACC-U) of a classifier trained on the final feature subset is illustrated.

Figure 4-3: Comparison of 4 different versions of the genetic algorithm: the stan-
dard crossover comparing with the weighted crossover, adding to the latter suc-
cessively mutation operator and then the relevance test. Note that the proposed
approach, FSGA, corresponds to the last version.

88

First, the algorithms are compared on the synthetic data set, and the results
are illustrated in Fig. 4-3a. By looking at the irrelevant variables (15-20), we can
observe that the weighted crossover is less prone to select these variables compared
to the standard one. At the same time, when the weighted crossover is used alone,
the subset search has little exploration concentrating on the individually strong
features, as illustrated on variables 2 (weak feature) or 9 to 14 (strong features).
This is solved by activating the mutation step, which helps to generate more diverse
subsets. However, with mutation the output variance increases, so the irrelevant
variables are again become selected more often. Then, this variance is reduced by
activating the relevance test, which removes from consideration features found to
be irrelevant to the target. Thus, we also reduce the search space, so the selection
quality is generally improved (variables 2, 3 and 8 are selected more often, whereas
variables 9-14 less often).

Then, the algorithms are compared on the benchmark data sets, and the exper-
imental results are depicted in Fig. 4-3b. For most of data sets, more refinements
yield better performance, which particularly leads to a high difference between
the first and the last columns on PCMAC, Relathe and Basehock with an improve-
ment of around 10%. According to the Mann and Whitney U test on level 0.01, the
weighted crossover significantly outperforms the standard one on Madelon, MNIST
and Basehock data sets. Adding the mutation step leads to a significant improve-
ment on PCMAC and Basehock. Finally, the relevance test is a useful procedure to
reduce the search space, and a significant improvement is observed on 3 data sets
(PCMAC, Relathe, Basehock).

4.4.2 Improvement from Pseudo-labeling Unlabeled Data

In this section, we set the search scheme to FSGA and investigate how the choice of
the learning algorithm and the fitness criterion impact the feature selection quality
and what contribution unlabeled data can make.

At first, we evaluate two supervised baselines: when a single decision tree is
used as a learning algorithm with the 5-fold cross-validation score as the fitness
criterion (Sup-Tree); and when the random forest is learned with the out-of-bag
score as the criterion (Sup-RF). In both cases, only the labeled examples are used
for learning and fitness evaluation, and by comparing these two criteria we study
whether the choice of a more sophisticated learning approach improves the results.

Then, we analyze the utility of unlabeled data for feature selection by consider-
ing three semi-supervised approaches. At the beginning, we use a self-learning al-
gorithm to pseudo-label the unlabeled examples. Then, the labeled and the pseudo-
labeled examples are used for training the genetic algorithm, where the random
forest is set as a learning algorithm. To study how the quality of pseudo-labels in-
fluence the performance of the feature subset search, we compare two self-learning
policies: 1) when at each step randomly picked 10% of the unlabeled examples

89

are added with their corresponding predictions (RSLA), 2) when we add at each
step unlabeled examples with prediction vote higher than a threshold empirically
learned from minimization of the transductive bound (MSLA). Note that the former
policy is similar to a mechanism used for co-training in the wrapper approach of
Ren et al. (2008). In the both cases, the strength of a feature subset S is evaluated
by the pseudo-supervised out-of-bag score FL∪L̂(S) defined in (4.2). Finally, to see
the impact of pseudo-labels on the fitness criterion alone, we introduce a third ap-
proach, where the pseudo-labels are acquired by MSLA and used inside the genetic
algorithm, but the fitness score is evaluated on validation sets consisting only of the
purely labeled examples. In other words, for each subset S, the learning algorithm
is trained on both the labeled and the pseudo-labeled examples, but the out-of-bag
score is computed on the labeled examples, i.e. we use FL as the fitness criterion.

Data set
Sup-Tree Sup-RF RSLA: FL∪L̂ MSLA: FL∪L̂ MSLA: FL
ACC-U ACC-U ACC-U % N ACC-U % N ACC-U

Protein .707 ± .043 .719 ± .037 .725 ± .045 25.5% .719 ± .04 21.4% .702 ± .04

Madelon .606↓ ± .04 .617↓ ± .023 .632 ± .02 39.6% .643 ± .031 42% .651 ± .034

Isolet .744↓ ± .026 .751↓ ± .027 .77 ± .025 18.3% .787 ± .02 14.1% .766↓ ± .022

Fashion .604↓ ± .027 .627 ± .021 .631 ± .021 32.5% .636 ± .023 30.6% .631 ± .014

MNIST .639↓ ± .029 .676↓ ± .024 .714 ± .02 19.5% .717 ± .021 17.4% .694↓ ± .021

Coil20 .903↓ ± .022 .922 ± .018 .922 ± .017 6.8% .931 ± .016 5.7% .917 ± .022

PCMAC .783↓ ± .022 .822 ± .014 .824 ± .021 17.4% .826 ± .019 15.9% .826 ± .018

Relathe .684↓ ± .033 .735 ± .024 .708↓ ± .042 28.6% .739 ± .027 23.1% .738 ± .028

Basehock .84↓ ± .032 .902↓ ± .008 .9↓ ± .009 8.5% .911 ± .01 7.8% .902 ± .018

Gisette .849↓ ± .024 .88 ± .01 .88 ± .012 11.7% .877 ± .01 12% .874 ± .015

Table 4.2: The classification performance (accuracy) of different approaches to eval-
uate the fitness score in FSGA: two supervised baselines Sup-Tree and Sup-RF, three
semi-supervised approaches, where MSLA and RSLA denote which self-learning pol-
icy is used for pseudo-labeling, while FL∪L̂ and FL denote which fitness criterion
is taken. In addition, a % of wrong pseudo-labeled unlabeled examples (% N) is
provided for the approaches that use FL∪L̂ as the criterion. ↓ indicates statistically
significantly worse performance than the best result (shown in bold), according to
the Mann-Whitney U test (p < 0.01).

The performance results are summarized in Table 4.2. At first, we can see that
the random forest provides always more qualitative selection compared to the single
tree (higher accuracy and smaller variance). Hence, the use of ensemble methods
improves the selection quality, which would be connected with their robustness
to overfitting. Then, we can observe that the selection becomes more qualitative
when the pseudo-labeled examples are used in the algorithm, so all the three semi-
supervised approaches generally outperform its supervised baseline Sup-RF. MSLA
with FL∪L̂ as the criterion benefits the most from unlabeled data, and it significantly

90

outperforms Sup-RF on 4 data sets, RSLA on Relathe and Basehock, MSLA with FL
on Isolet and MNIST.

By comparing RSLA and MSLA, we can see that more careful pseudo-labeling
based on the transductive guarantees leads to the highest performance, and the
larger portions of noisy pseudo-labels generally lead to worse results. However, both
for RSLA and MSLA, the performance is not degraded with respect to the baseline
Sup-RF on most of data sets, which validates our choice of the out-of-bag score
inside the criterion. Thus, we conclude that the selection becomes more qualitative
when unlabeled data are explored with the self-learning.

When we compare the two criteria based on MSLA, FL∪L̂ and FL, we infer that the
use of pseudo-labeled data for evaluation of feature strength is actually helpful. This
may be connected with the fact that the few labeled examples bias the fitness score,
and trusting pseudo-labels would give more benefit than harm. This is coherent
with a general observation that the traditional supervised model selection based
on validation is not effective in the semi-supervised setting (Madani et al., 2005).
Note that MSLA with FL nevertheless outperforms the baseline Sup-RF, since the
pseudo-labels are still used to compute the feature weights.

Using (CBIL) as a Fitness Criterion

In Section 2.4, we proposed the C-bound with imperfect labels, which can be a
convenient model selection criterion, since its minimization implies simultaneously
maximization of the margin mean and minimization of the margin variance. In ad-
dition, (CBIL) penalizes the margin of every example depending on the predicted
class and the corresponding mislabeling probabilities. Hence, (CBIL) can be used
as an alternative fitness criterion, which is aware of possible label errors. To illus-
trate the prospects of using (CBIL), we employ it to MSLA-FSGA as a fitness criterion
and compare with the pseudo-supervised out-of-bag score (FL∪L̂). For (CBIL), we
compute the true mislabeling matrix, i.e., it is evaluated as if the labels for the
pseudo-labeled examples would be known.

Protein
Madelon Isolet

Fashion MNIST Coil20 PCMAC
Relathe

BasehockGisette

0.6

0.8

1

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

0.
76

0.
68

0.
79

0.
65

0.
71

0.
93

0.
83

0.
74

0.
9

0.
87

A
cc

ur
ac

y

OOB CBIL

Figure 4-4: Comparison between the out-of-bag score and (CBIL) used as selection
criteria on the benchmark data sets.

91

Figure 4-4 illustrates the experimental results. As it can be seen, on Protein
and Madelon (CBIL) significantly outperforms the out-of-bag score (around 4% in
both cases), which indicates that estimation of the class-conditional mislabeling
matrix is a promising research direction. On the other data sets, (CBIL) is either
insignificantly better or insignificantly worse, which means that the assumption of
instance-independent mislabeling does not hold on some data sets.

4.4.3 Comparison with the State-of-the-Art

Finally, we validate the proposed approach referred as MSLA-FSGA, by comparing
its performance with the state-of-the-art. It is compared with RLSR, SFS, SSLS and
CoT-FSS (with decision tree as the learning algorithm inside the wrapper, the co-
training for pseudo-labeling and the 5-fold cross-validation score as the selection
criterion), all introduced in Section 4.2. In order to additionally validate FSGA, we
also compare with two more selection algorithms, for which the unlabeled examples
are pseudo-labeled before the feature selection step using MSLA for a fair compari-
son. Then, the first approach (denoted by MSLA-FSS), similarly to Han et al. (2011),
performs the forward sequential search by minimizing the pseudo-supervised out-
of-bag score (Eq. (4.2)), whereas the second approach (denoted by MSLA-RFE) ap-
plies the recursive feature elimination based on the random forest.

Due to the lack of labeled training examples, the hyperparameters of all methods
are set to their default values. Namely, for RLSR, the regularization parameter γ is
set to 0.1; for SSLS and SFS, the number of nearest neighbors is set to 20, and the
bandwidth for constructing the graph Laplacian is determined using the median
distance heuristic (Schölkopf, 1997). For MSLA-FSS, at each step we add 10% best
features into the model, and for MSLA-RFE, at each step we remove 10% worst ones.

First, we compare the considered approaches on the synthetic data set. In Fig.
4-5a the feature selection results averaged over 20 trials are reported. One can
observe that the filter approaches, SFS and SSLS, perfectly detect and discard the
irrelevant features. However, since the importance of features is evaluated inde-
pendently, only individually strong informative variables are selected. Thus, some
informative features are rarely or never selected (2-3, 5-8), and redundant features
(9-14), which bring no new information, are preferred. In contrast, RLSR is able to
find redundancies but does not succeed to eliminate the irrelevant variables (15-
20). From the results, CoT-FSS has the most difficulties to select relevant variables
without a clear selection pattern. All MSLA-RFE, MSLA-FSS and MSLA-FSGA perform
quite well. FSS is less effective in eliminating the irrelevant variables than RFE and
FSGA that discard them as perfect as the filter methods. Although RFE is slightly bet-
ter in selecting variables 7 and 8, FSGA outperforms it in selecting variable 2. As it
was mentioned before, variable 2 is an individually weak variable, so RFE often dis-
cards it preferring to keep one of the duplicates of variable 1. In turn, FSGA evaluates
features jointly focusing explicitly on how the selected features are combined.

92

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Feature Number

SFS

SSLS

RLSR

TSLA-RFE

CoT-FSS

TSLA-FSS

TSLA-FSGA

M
et

ho
d

1 0 0 0.85 0.15 0.25 0 0 1 1 1 1 0.9 0.85 0 0 0 0 0 0

1 0 0 0.65 0.05 0.3 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0.15 0.9 1 1 1 0.5 0.8 0 0 0 0 0 0 0.4 0.5 0.4 0.4 0.4 0.55

0.1 0.15 1 1 1 1 1 1 0.2 0.25 0.3 0.4 0.25 0.35 0 0 0 0 0 0

0 1 0.05 0.1 0.05 0 0.15 0.1 1 0.85 1 0 0.15 0.9 0.05 0 0.15 0.45 1 1

0.6 0.2 0.7 1 1 1 0.9 0.8 0 0 0.15 0.05 0.4 0.7 0.05 0 0.2 0.1 0.1 0.05

0.5 0.5 0.95 1 1 1 0.8 0.8 0.1 0.4 0.25 0.2 0.2 0.3 0 0 0 0 0 0

Informative Variables Duplicates of Variable 1 Irrelevant Variables

0.0

0.2

0.4

0.6

0.8

1.0

(a) Results on the synthetic data set. The features are sorted in the following order: 8 infor-
mative features, 6 redundant features, 6 irrelevant ones. On the graph, each cell represents
the number of times when a feature was chosen by a feature selection method divided by
the number of experiments (20).
(b) Performance results on benchmark data sets. The classification accuracy is computed
on the unlabeled set. ↓ indicates statistically significantly worse performance than the best
result (shown in bold), according to the Mann-Whitney U test (p < 0.01).

Data set
Filters Embedded Wrappers

SFS SSLS RLSR MSLA-RFE CoT-FSS MSLA-FSS MSLA-FSGA

Protein .676↓ ± .035 .634↓ ± .037 .695 ± .034 .719 ± .039 .583↓ ± .09 .719 ± .033 .719 ± .04

Madelon .589↓ ± .035 .526↓ ± .038 .516↓ ± .015 .658 ± .027 .514↓ ± .032 .649 ± .032 .643 ± .031

Isolet .56↓ ± .037 .549↓ ± .03 .638↓ ± .05 .755↓ ± .03 .438↓ ± .058 .656↓ ± .053 .787 ± .02

Fashion .348↓ ± .03 .35↓ ± .033 .419↓ ± .048 .615↓ ± .025 .462↓ ± .043 .444↓ ± .041 .636 ± .023

MNIST .112↓ ± .0 .176↓ ± .029 .129↓ ± .013 .671↓ ± .029 .394↓ ± .068 .514↓ ± .027 .717 ± .021

Coil20 .748↓ ± .046 .743↓ ± .045 .858↓ ± .029 .902↓ ± .02 .817↓ ± .038 .817↓ ± .025 .931 ± .016

PCMAC .613↓ ± .056 .545↓ ± .027 .773↓ ± .033 .832 ± .019 NA .813 ± .042 .826 ± .019

Relathe .613↓ ± .025 .584↓ ± .017 .719 ± .034 .746 ± .028 NA .694 ± .032 .739 ± .027

Basehock .733↓ ± .051 .582↓ ± .081 .875↓ ± .02 .913 ± .008 NA NA .911 ± .01

Gisette .851↓ ± .019 .521↓ ± .01 .51↓ ± .01 .871 ± .017 NA NA .877 ± .01

Figure 4-5: Comparison of the state-of-the-art methods with our method to select
relevant features in semi-supervised learning.

Figure 4-5b summarizes the performance results on the 10 benchmark data sets.
On 4 data sets, Isolet, Fashion, MNIST and Coil20, our approach significantly
outperforms all the other methods, while it is never significantly worse in cases
when MSLA-FSGA is not the best. Compared to our approach, performances of other
wrapper-based methods (CoT-FSS and MSLA-FSS) are significantly worst in most of
the cases, which indicates the superiority of a genetic algorithm over a sequential
search as the search scheme. We can also see that the performance of RLSR fluctuates
from one data set to another. This could be connected with its sensitivity to the
value of its regularization parameter γ, which is difficult to tune with few labeled
examples. The filter methods, SFS and SSLS, are significantly worst in all situations.
One can conclude that the filters are more suitable as a pre-processing step rather

93

Data set SFS SSLS RLSR MSLA-RFE CoT-FSS MSLA-FSS MSLA-FSGA

Protein 1 s 1 s 10 s 9 s 22 s 26 s 2 m

Madelon 15 s 14 s 1 m 9 s 5 m 4 m 4 m

Isolet 5 s 1 s 2 m 13 s 9 m 6 m 4 m

Fashion 4 m 4 m 3 m 24 s 16 m 13 m 7 m

MNIST 5 m 4 m 3 m 24 s 18 m 14 m 7 m

Coil20 8 s 1 s 3 m 13 s 16 m 7 m 3 m

PCMAC 45 s 31 s 23 m 13 s >1 h 26 m 3 m

Relathe 29 s 22 s 38 m 13 s >1 h 29 m 4 m

Basehock 1 m 51 s 44 m 16 s >1 h >1 h 4 m

Gisette 17 m 17 m 21 m 40 s >1 h >1 h 6 m

Table 4.3: The average run-time of the feature selection algorithms under consid-
eration on the benchmark data sets. s stands for seconds, m for minutes and h for
hours.

than as a complete feature selection process.
Finally, the recurrent feature elimination, MSLA-RFE, has the best performance on

the data sets with many irrelevant features (Madelon, PCMAC, Relathe, Basehock).
However, when there are plenty of different informative features (Isolet, Fashion,
MNIST, Coil20), RFE tends to underselect some weak but important for classifica-
tion variables, so it becomes significantly worse than MSLA-FSGA. In addition, all
these data sets are multi-class, which may arise additional difficulties for the fea-
ture selection task. In contrast, MSLA-FSGA successfully outputs feature subsets that
are sparse and highly discriminative at the same time. Also, with the help of the
relevance test, our approach detects and explicitly eliminates irrelevant variables,
so the algorithm performs very well on Madelon, PCMAC, Relathe and Basehock as
well.

Run-time

We present in Table 4.3 the run-time of all the algorithms, to illustrate theoretical
complexities introduced in Section 4.3.2. A particular attention should be taken
on MNIST, Fashion, Gisette with respect to the large sample size as well as on
Relathe, Basehock, Gisette with respect to the large dimension. Although the
genetic algorithm FSGA is slower than RFE, it still passes the scale well both with
respect to the sample size and the dimension. Being very fast on small data sets, the
filter methods SFS and SSLS significantly slow down with the increase of sample
size. In turn, when the dimension is large, RLSR becomes expensive too. On large
data sets, CoT-FSS and MSLA-FSS are computationally infeasible. In general, the
results clearly illustrate the complexity discussion standing in Section 4.2.

94

4.4.4 Additional Ablative Study

In Section 4.3.1, we proposed to use the relevance test at every generation by testing
just a portion of features, whereas originally the test was proposed to be performed
once on the whole feature set (Tuv et al., 2009). To validate our choice, we compare
two versions of the genetic algorithm: 1) at first, the relevance test is performed on
the whole feature set, features found to be irrelevant are removed, and then FSGA
is run without the relevance test step; 2) relevance test is used at every generation
of FSGA as described in Section 4.3.1.

The performance results on the benchmarks are illustrated in Figure 4-6. As one
can see, when the relevance test is iteratively used, the classification accuracy is
noticeably higher on most of data sets, particularly on those with a high number
of irrelevant features (Madelon, PCMAC, Relathe, Basehock). This suggests that the
model learned on the whole feature set suffers from the curse of dimensionality, so
some irrelevant variables are not detected based on derived feature weights.

Protein
Madelon Isolet

Fashion MNIST Coil20 PCMAC
Relathe

BasehockGisette

0.6

0.8

1

0.
72

0.
63

0.
79

0.
63 0.

67

0.
93

0.
81

0.
71

0.
89

0.
87

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

Relevance test
before FSGA

Relevance test
inside FSGA

Figure 4-6: Comparison of 2 different versions of FSGA on the benchmark data sets:
the relevance test performed just once before the genetic algorithm compared with
performing the relevance test at every generation as it is described in Section 4.3.1.
The accuracy on the unlabeled set (ACC-U) of a classifier trained on the final feature
subset is illustrated.

In addition, we show that the relevance test also significantly improves the
standard crossover, which is illustrated in Figure 4-7. Nevertheless, the proposed
weighted crossover generally outperforms the standard one, which additionally val-
idates our contribution.

95

Protein
Madelon Isolet

Fashion MNIST Coil20 PCMAC
Relathe

BasehockGisette

0.6

0.8

1

0.
71

0.
6

0.
76

0.
63

0.
69

0.
92

0.
7

0.
65

0.
78

0.
86

0.
7

0.
6

0.
76

0.
63

0.
68

0.
91

0.
78

0.
66

0.
85 0.
86

0.
7

0.
63

0.
75

0.
63

0.
7

0.
91

0.
83

0.
74

0.
91

0.
88

0.
72

0.
64

0.
79

0.
64

0.
72

0.
93

0.
83

0.
74

0.
91

0.
88

A
cc

ur
ac

y

standard crossover
no mutation
no relevance test

standard crossover
with mutation
no relevance test

standard crossover
with mutation
with relevance test

weighted crossover
with mutation
with relevance test

Figure 4-7: Comparison of 4 different versions of the genetic algorithm on the
benchmark data sets: the standard crossover, to which the mutation operator and
the relevance test are successively added, and the FSGA. Note that the second col-
umn corresponds to the classical genetic algorithm (CGA). The accuracy on the un-
labeled set (ACC-U) of a classifier trained on the final feature subset is illustrated.

4.5 Conclusion and Perspectives

In this chapter, we proposed a new framework for semi-supervised wrapper feature
selection. To increase the diversity of labeled data, unlabeled examples are pseudo-
labeled using a self-learning algorithm. To produce a sparse solution, we proposed
a modification of the genetic algorithm by taking into account feature weights dur-
ing its evolutionary process and eliminating variables irrelevant to the target. The
proposed model has been empirically validated through an ablative study and a
comparison with several feature selection approaches.

As a future work, it would be interesting to detect automatically the level of
sparsity, set to b

√
dc in our paper. In this case, simple criteria like the out-of-bag

score trivially lead to the situation when a large number of selected features is
chosen. One solution would be to add the regularization term to impose the sparsity
level, for example, as proposed by Frohlich et al. (2003); Da Silva et al. (2011).

Another direction would be to improve evaluation of the feature strength by
developing a fitness criterion aware of possible errors in pseudo-labels. In Section
4.4.2, we showed that consideration of a mislabeling error model can be a good ap-
proach. Alternatively, this can be achieved by introducing an additional assumption
to determine data regions of low confidence, where the pseudo-labels are prone to
error.

96

Conclusion and Perspectives

This dissertation has studied the problem of semi-supervised classification, a sit-
uation where a large amount of data is naturally unlabeled, while labeled data
are scarce. Our theoretical studies have focused on majority vote classifiers, while
algorithmic designs have been proposed based on the self-learning paradigm. We
have also made algorithmic contributions to semi-supervised feature selection and
have conducted applied research on the CRISPR-Cas subtype prediction with the
proposed new subtype discovery tool.

Summary of Contributions

In Chapter 2, we derived guarantees on the error of the majority vote classifier in
the multi-class case. First, we proposed a transductive bound for the majority vote
classifier by taking into account the class vote distribution and considering the class
confusion matrix as an error measure. We proved that the bound is tight when the
majority vote classifier makes its errors primarily on examples with a low prediction
vote. Then, we derived a generalization bound for the majority vote classifier in
the presence of imperfect labels. We explicitly modeled possible mislabeling and
established the link between the true label and the imperfect label in misclassifying
a particular example. Based on this, we extended the supervised C-bound to the
case of imperfect labels and analyzed its estimation from data via the PAC-Bayesian
theorem. The two proposed bounds give us insights for theoretical analysis of the
error of the self-learning algorithm.

In Chapter 3, we proposed a new multi-class self-learning algorithm, where the
confidence threshold is automatically found based on minimization of the trans-
ductive bound proposed in Chapter 2. The experimental results demonstrated the
prospects of the proposed approach compared with other self-learning policies and
semi-supervised approaches. Then, we applied self-learning to the CRISPR-Cas clas-
sification task, where the particular challenge is that new classes may be present in
unlabeled data. Assuming that unseen classes are located in homogeneous regions,
we employed a density-based clustering approach that finds clusters among exam-
ples with low prediction confidence in order to pseudo-label them as new classes.
We empirically showed on a data set of CRISPR-Cas subtypes that we are able to
detect subtypes that were completely unlabeled during the training phase.

97

In Chapter 4, we studied feature selection in the case of partially-labeled data.
We proposed a new modification of the genetic algorithm that takes into account
feature weights and eliminates irrelevant features during its evolutionary process.
We applied the multi-class self-learning algorithm proposed in Chapter 3 in order to
increase diversity of data used for the strength evaluation of candidate feature sub-
sets. We performed an extensive ablative study and showed that the effectiveness
of our approach compared to several semi-supervised feature selection approaches.

Future Work

The transductive bound proposed in Section 2.3 is based on how the hypotheses
predictions agree on each unlabeled example, but it does not take into account
how the hypotheses predictions correlate with each other on average over all the
unlabeled examples. Incorporation of information about correlations could allow
us to use this bound not only for selecting the threshold, but also for the posterior
optimization over the hypothesis space. Another way for optimizing the posterior
in the semi-supervised setting is to minimize the proposed C-bound with imperfect
labels. This, however, requires correct estimation of the mislabeling matrix in the
semi-supervised case, which can be another direction for future work. As we pointed
out in Section 2.5, this can be achieved by introducing additional assumptions on a
link between the labeled and unlabeled data to identify regions of unlabeled data
prone to mislabeling. As estimation of mislabeling for each example would be a
very challenging task, considering the class-related mislabeling model appears more
reasonable. In Section 4.4.2, we showed that incorporating class-related mislabeling
errors into the selection criterion can be a perspective approach to improve the
feature selection quality.

In Section 3.1.6, we noted that the confirmation bias is a significant limitation,
which naturally underlies the self-learning algorithm. Nevertheless, we concluded
that a reliable estimation of the C-bound with imperfect labels (CBIL) can be used
to evaluate the error of the self-learning algorithm, which can be important for
model selection tasks. Another consequence of the confirmation bias is that the fi-
nal model is poorly calibrated, i.e., it may output high prediction confidence for
misclassified examples. Although some methods have already been proposed to im-
prove the confidence assessment (Zou et al., 2019), to the best of our knowledge,
there is no comprehensive review and analysis of this problem in the general case.

Another area of future work could be the continuation of work on the prob-
lem of open-world semi-supervised classification, where some classes may be com-
pletely unlabeled. Our motivation stems from the fact that this problem is inherent
in biological applications like the one presented in Section 3.2, while there is lit-
tle research in machine learning related to the open-world framework (Miller and
Browning, 2003; Nie et al., 2010; Bendale and Boult, 2015).

Finally, as it was pointed out in Section 4.5, a great direction for future work

98

is to extend the proposed feature selection genetic algorithm to the case when the
number of selected features is determined automatically, since for many practical
tasks it is not clear what level of sparsity should be set. For classical wrappers ap-
proaches, this problem is difficult as the search space grows exponentially with the
dimension. Nevertheless, this is made possible by the iterative elimination of irrel-
evant features proposed in Section 4.3, which allows us to significantly reduce the
search space.

99

100

List of Figures

1-1 Illustration of three assumptions typically made in semi-supervised
learning . 16

1-2 Self-Learning Algorithm SLA. 17

2-1 (CBIL) and Oracle C-Bound when varying the number of pseudo-labels. 42
2-2 The value of (CBIL) with different λ. 43

3-1 Classification accuracy of MSLA with respect to the proportion of un-
labeled examples. 62

3-2 Illustration of the confirmation bias on Vowel data set. 65
3-3 Distribution of the unlabeled observations from the subtype IA across

different clusters. 74
3-4 Distribution of the unlabeled observations from the subtype ID across

different clusters. 74
3-5 Distribution of the unlabeled observations from the subtype IIB across

different clusters. 76

4-1 Illustration of how a new child is generated from two parents. 80
4-2 Feature Selection Genetic Algorithm (FSGA) in a nutshell. 83
4-3 Comparison of 4 different versions of the genetic algorithm. 88
4-4 Comparison between the out-of-bag score and (CBIL) used as selec-

tion criteria . 91
4-5 Comparison of the state-of-the-art methods with our method to select

relevant features in semi-supervised learning. 93
4-6 Comparison of 2 different versions of FSGA with the relevance test. . 95
4-7 Comparison of FSGA with an improved CGA. 96

101

102

List of Tables

2.1 Characteristics of data sets used in our experiments to illustrate (CBIL). 42

3.1 Characteristics of data sets used in our experiments to validate MSLA. 58
3.2 Classification performance of MSLA on different data sets. 60
3.3 The average run-time of MSLA. 63
3.4 The performance of MSLA depending on how the posterior probabili-

ties are estimated. 64
3.5 The distribution of subtypes of CRISPR-Cas Type I and Type II across

labeled and unlabeled sets used in experiments. 72
3.6 Proportions of unlabeled examples categorized to one of the ob-

served classes, to one of new clusters, to no cluster for the Type I. . . 73
3.7 The performance results for the Type I experiment. 73
3.8 Proportions of unlabeled examples categorized to one of the ob-

served classes, to one of new clusters, to no cluster for the Type II. . . 75
3.9 The performance results for the Type II experiment. 75

4.1 Characteristics of data sets used for feature selection experiments. . . 87
4.2 The classification performance of different approaches to evaluate

the fitness score in FSGA. 90
4.3 The average run-time of the feature selection algorithms under con-

sideration. 94

103

104

Bibliography

Alkhnbashi, O. S., Mitrofanov, A., Bonidia, R., Raden, M., Tran, V. D., Eggenhofer,
F., Shah, S. A., Öztürk, E., Padilha, V. A., Sanches, D. S., et al. (2021). Crispr-
loci: comprehensive and accurate annotation of crispr–cas systems. Nucleic Acids
Research.

Amini, M., Laviolette, F., and Usunier, N. (2008). A transductive bound for the
voted classifier with an application to semi-supervised learning. In Advances in
Neural Information Processing Systems, pages 65–72.

Amini, M. and Usunier, N. (2015). Learning with Partially Labeled and Interdepen-
dent Data. Springer.

Amini, M.-R. and Gallinari, P. (2003). Semi-supervised learning with explicit mis-
classification modeling. In Gottlob, G. and Walsh, T., editors, IJCAI-03, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence, Aca-
pulco, Mexico, August 9-15, 2003, pages 555–560. Morgan Kaufmann.

Bauvin, B., Capponi, C., Roy, J.-F., and Laviolette, F. (2020). Fast greedy c-bound
minimization with guarantees. Machine Learning, 109(9):1945–1986.

Bégin, L., Germain, P., Laviolette, F., and Roy, J.-F. (2014). PAC-Bayesian Theory for
Transductive Learning. In Kaski, S. and Corander, J., editors, Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, vol-
ume 33 of Proceedings of Machine Learning Research, pages 105–113, Reykjavik,
Iceland. PMLR.

Belkin, M. and Niyogi, P. (2004). Semi-supervised learning on riemannian mani-
folds. Machine Learning, 56(1-3):209–239.

Bendale, A. and Boult, T. (2015). Towards open world recognition. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1893–1902.

Bishop, C. M. (2006). Pattern recognition. Machine learning, 128(9).

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computational
learning theory (COLT), pages 92–100.

105

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration Inequalities - A
Nonasymptotic Theory of Independence. Oxford University Press.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). Classification and
regression trees. CRC press.

Brown, G. and Wyatt, J. L. (2003). The use of the ambiguity decomposition in neu-
ral network ensemble learning methods. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 67–74.

Cai, D., He, X., and Han, J. (2008). Training linear discriminant analysis in linear
time. In 2008 IEEE 24th International Conference on Data Engineering, pages 209–
217. IEEE.

Cascante-Bonilla, P., Tan, F., Qi, Y., and Ordonez, V. (2020). Curriculum labeling:
Revisiting pseudo-labeling for semi-supervised learning.

Catoni, O. (2007). Pac-bayesian supervised classification: the thermodynamics of
statistical learning. arXiv preprint arXiv:0712.0248.

Chandrashekar, G. and Sahin, F. (2014). A survey on feature selection methods.
Computers & Electrical Engineering, 40(1):16–28.

Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):27:1–27:27.

Chapelle, O., Schölkopf, B., and Zien, A. (2010). Semi-Supervised Learning. The
MIT Press, 1st edition.

Chapelle, O. and Zien, A. (2005). Semi-supervised classification by low density
separation. In AISTATS, volume 2005, pages 57–64. Citeseer.

Chen, X., Yuan, G., Nie, F., and Huang, J. Z. (2017). Semi-supervised feature selec-
tion via rescaled linear regression. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, volume 2017, pages 1525–1531.

Chittineni, C. (1980). Learning with imperfectly labeled patterns. Pattern Recogni-
tion, 12(5):281–291.

Cortes, C., Mohri, M., Riley, M., and Rostamizadeh, A. (2008). Sample selection
bias correction theory. In International conference on algorithmic learning theory,
pages 38–53. Springer.

Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B.,
Rocha, E. P., Vergnaud, G., Gautheret, D., and Pourcel, C. (2018). Crisprcasfinder,
an update of crisrfinder, includes a portable version, enhanced performance and
integrates search for cas proteins. Nucleic acids research, 46(W1):W246–W251.

106

Cozman, F. G., Cohen, I., and Cirelo, M. (2002). Unlabeled data can degrade classi-
fication performance of generative classifiers. In Flairs conference, pages 327–331.

Da Silva, S. F., Ribeiro, M. X., Neto, J. d. E. B., Traina-Jr, C., and Traina, A. J. (2011).
Improving the ranking quality of medical image retrieval using a genetic feature
selection method. Decision support systems, 51(4):810–820.

d’Alché-Buc, F., Grandvalet, Y., and Ambroise, C. (2001). Semi-supervised margin-
boost. Advances in Neural Information Processing Systems, 14:553–560.

Darst, B. F., Malecki, K. C., and Engelman, C. D. (2018). Using recursive feature
elimination in random forest to account for correlated variables in high dimen-
sional data. BMC genetics, 19(1):1–6.

Derbeko, P., El-Yaniv, R., and Meir, R. (2004). Explicit learning curves for trans-
duction and application to clustering and compression algorithms. Journal of
Artificial Intelligence Research, 22(1):117–142.

Dietterich, T. G. (2000). An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization. Ma-
chine learning, 40(2):139–157.

Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation of certain
markov process expectations for large time, i. Communications on Pure and Ap-
plied Mathematics, 28(1):1–47.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Break-
throughs in statistics, pages 569–593. Springer.

El-Yaniv, R. and Pechyony, D. (2006). Stable transductive learning. In International
Conference on Computational Learning Theory, pages 35–49. Springer.

El-Yaniv, R. and Pechyony, D. (2009). Transductive rademacher complexity and its
applications. Journal of Artificial Intelligence Research, 35:193–234.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. In Kdd, volume 96,
pages 226–231.

Feofanov, V., Devijver, E., and Amini, M.-R. (2019). Transductive bounds for the
multi-class majority vote classifier. Proceedings of the AAAI Conference on Artificial
Intelligence, 33(01):3566–3573.

Feofanov, V., Devijver, E., and Amini, M.-R. (2021a). Multi-class probabilistic
bounds for self-learning. Journal submission (under review), arXiv preprint
arXiv:2109.14422.

107

Feofanov, V., Devijver, E., and Amini, M.-R. (2021b). Wrapper feature selection
with partially labeled data. Journal submission (under review), arXiv preprint
arXiv:1911.04841.

Feofanov, V., Gallopin, M., Devijver, E., Amini, M.-R., Charbit, P.-A., and Pourcel,
C. (2021c). Crispr subtype prediction using open-world semi-supervised learning
(in preparation for publication).

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting ma-
chine. Annals of statistics, pages 1189–1232.

Frohlich, H., Chapelle, O., and Scholkopf, B. (2003). Feature selection for support
vector machines by means of genetic algorithm. In Proceedings. 15th IEEE Inter-
national Conference on Tools with Artificial Intelligence, pages 142–148. IEEE.

Gebel, M. (2009). Multivariate calibration of classifier scores into the probability
space. PhD thesis, The University of Dortmund.

Germain, P., Lacasse, A., Laviolette, F., March, M., and Roy, J.-F. (2015). Risk
bounds for the majority vote: From a pac-bayesian analysis to a learning algo-
rithm. Journal of Machine Learning Research, 16(26):787–860.

Germain, P., Lacasse, A., Laviolette, F., and Marchand, M. (2009). Pac-bayesian
learning of linear classifiers. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, pages 353–360.

Gieseke, F., Airola, A., Pahikkala, T., and Kramer, O. (2014). Fast and simple
gradient-based optimization for semi-supervised support vector machines. Neu-
rocomputing, 123:23–32.

Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes
used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages
69–93. Elsevier.

Goldberg, D. E. and Holland, J. H. (1988). Genetic algorithms and machine learn-
ing. Machine learning, 3(2):95–99.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern
neural networks. In International Conference on Machine Learning, pages 1321–
1330. PMLR.

Guyon, I. (2003). Design of experiments of the nips 2003 variable selection bench-
mark. In NIPS 2003 workshop on feature extraction and feature selection.

108

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Machine learning, 46(1):389–422.

Han, Y., Park, K., and Lee, Y.-K. (2011). Confident wrapper-type semi-supervised
feature selection using an ensemble classifier. In 2011 2nd International Confer-
ence on Artificial Intelligence, Management Science and Electronic Commerce (AIM-
SEC), pages 4581–4586. IEEE.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE transactions
on pattern analysis and machine intelligence, 12(10):993–1001.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learn-
ing: data mining, inference, and prediction. Springer Science & Business Media.

Hille, F., Richter, H., Wong, S. P., Bratovič, M., Ressel, S., and Charpentier, E. (2018).
The biology of crispr-cas: backward and forward. Cell, 172(6):1239–1259.

Hofacker, I. L. (2003). Vienna rna secondary structure server. Nucleic acids research,
31(13):3429–3431.

Joachims, T. (1999). Transductive inference for text classification using support vec-
tor machines. In Proceedings of the Sixteenth International Conference on Machine
Learning, ICML ’99, pages 200–209, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Kim, K. (2016). A hybrid classification algorithm by subspace partitioning through
semi-supervised decision tree. Pattern Recognition, 60:157–163.

Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273–324.

Kohavi, R., Wolpert, D. H., et al. (1996). Bias plus variance decomposition for zero-
one loss functions. In ICML, volume 96, pages 275–83.

Krithara, A., Amini, M., Renders, J., and Goutte, C. (2008). Semi-supervised doc-
ument classification with a mislabeling error model. In Advances in Information
Retrieval , 30th European Conference on IR Research, ECIR 2008, Glasgow, UK,
March 30-April 3, 2008. Proceedings, pages 370–381.

Krogh, A. and Vedelsby, J. (1995). Neural network ensembles, cross validation,
and active learning. In Advances in neural information processing systems, pages
231–238.

Kuncheva, L. I. (2014). Combining pattern classifiers: methods and algorithms. John
Wiley & Sons.

109

Lacasse, A., Laviolette, F., Marchand, M., Germain, P., and Usunier, N. (2007). Pac-
bayes bounds for the risk of the majority vote and the variance of the gibbs clas-
sifier. In Advances in Neural information processing systems, pages 769–776.

Langford, J. (2005). Tutorial on practical prediction theory for classification. J.
Mach. Learn. Res., 6:273–306.

Langford, J. and Shawe-Taylor, J. (2002). PAC-Bayes & margins. In Proceedings
of the 15th International Conference on Neural Information Processing Systems,
NIPS’02, pages 439–446, Cambridge, MA, USA. MIT Press.

Laviolette, F., Morvant, E., Ralaivola, L., and Roy, J.-F. (2017). Risk upper bounds
for general ensemble methods with an application to multiclass classification.
Neurocomputing, 219:15–25.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Leistner, C., Saffari, A., Santner, J., and Bischof, H. (2009). Semi-supervised random
forests. In 2009 IEEE 12th international conference on computer vision, pages 506–
513. IEEE.

Letarte, G., Germain, P., Guedj, B., and Laviolette, F. (2019). Dichotomize and
generalize: Pac-bayesian binary activated deep neural networks. In Advances in
Neural Information Processing Systems, pages 6872–6882.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2018).
Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6):94.

Liu, Y. and Yao, X. (1999). Ensemble learning via negative correlation. Neural
networks, 12(10):1399–1404.

Loog, M. (2015). Contrastive pessimistic likelihood estimation for semi-supervised
classification. IEEE transactions on pattern analysis and machine intelligence,
38(3):462–475.

Lorenzen, S. S., Igel, C., and Seldin, Y. (2019). On pac-bayesian bounds for random
forests. Machine Learning, 108(8-9):1503–1522.

Louppe, G. (2014). Understanding random forests: From theory to practice.

Madani, O., Pennock, D. M., and Flake, G. W. (2005). Co-validation: Using model
disagreement on unlabeled data to validate classification algorithms. In Advances
in neural information processing systems, pages 873–880.

Makarova, K. S., Wolf, Y. I., Iranzo, J., Shmakov, S. A., Alkhnbashi, O. S., Brouns,
S. J., Charpentier, E., Cheng, D., Haft, D. H., Horvath, P., et al. (2020). Evolution-
ary classification of crispr–cas systems: a burst of class 2 and derived variants.
Nature Reviews Microbiology, 18(2):67–83.

110

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two ran-
dom variables is stochastically larger than the other. The Annals of Mathematical
Statistics, 18(1):50–60.

Masegosa, A., Lorenzen, S., Igel, C., and Seldin, Y. (2020). Second order pac-
bayesian bounds for the weighted majority vote. Advances in Neural Information
Processing Systems, 33.

Mason, L., Baxter, J., Bartlett, P., and Frean, M. (1999). Boosting algorithms as
gradient descent. In Proceedings of the 12th International Conference on Neural
Information Processing Systems, pages 512–518.

Maurer, A. (2004). A note on the pac bayesian theorem.

Maximov, Y., Amini, M.-R., and Harchaoui, Z. (2018). Rademacher complexity
bounds for a penalized multi-class semi-supervised algorithm. Journal of Arti-
ficial Intelligence Research, 61(1):761–786.

McAllester, D. (2003). Simplified PAC-Bayesian margin bounds. In Schölkopf, B.
and Warmuth, M. K., editors, Learning Theory and Kernel Machines, pages 203–
215, Berlin, Heidelberg. Springer Berlin Heidelberg.

McAllester, D. A. (1999). Some pac-bayesian theorems. Machine Learning,
37(3):355–363.

Miller, D. J. and Browning, J. (2003). A mixture model and em-based algo-
rithm for class discovery, robust classification, and outlier rejection in mixed la-
beled/unlabeled data sets. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(11):1468–1483.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA,
1 edition.

Mitrofanov, A., Alkhnbashi, O. S., Shmakov, S. A., Makarova, K. S., Koonin, E. V., and
Backofen, R. (2021). Crispridentify: identification of crispr arrays using machine
learning approach. Nucleic acids research, 49(4):e20–e20.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine
learning. MIT press.

Morvant, E., Koço, S., and Ralaivola, L. (2012). Pac-bayesian generalization bound
on confusion matrix for multi-class classification. In Proceedings of the 29th In-
ternational Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK,
June 26 - July 1, 2012.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari, A. (2013). Learning
with noisy labels. In Advances in Neural Information Processing Systems, pages
1196–1204.

111

Nie, F., Xiang, S., Liu, Y., and Zhang, C. (2010). A general graph-based semi-
supervised learning with novel class discovery. Neural Computing and Applica-
tions, 19(4):549–555.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

Peng, P., Wong, R. C.-W., and Yu, P. S. (2014). Learning on probabilistic labels.
In Proceedings of the 2014 SIAM International Conference on Data Mining, pages
307–315. SIAM.

Pickar-Oliver, A. and Gersbach, C. A. (2019). The next generation of crispr–cas
technologies and applications. Nature reviews Molecular cell biology, 20(8):490–
507.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1):81–106.

Ren, J., Qiu, Z., Fan, W., Cheng, H., and Yu, P. S. (2008). Forward semi-supervised
feature selection. In Washio, T., Suzuki, E., Ting, K. M., and Inokuchi, A., edi-
tors, Advances in Knowledge Discovery and Data Mining, pages 970–976, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Rigollet, P. (2007). Generalization error bounds in semi-supervised classification
under the cluster assumption. Journal of Machine Learning Research, 8(Jul):1369–
1392.

Roy, J.-F., Marchand, M., and Laviolette, F. (2016). A column generation bound
minimization approach with pac-bayesian generalization guarantees. In Artificial
Intelligence and Statistics, pages 1241–1249.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal rep-
resentations by error propagation. In Rumelhart, D. E. and Mcclelland, J. L.,
editors, Parallel Distributed Processing: Explorations in the Microstructure of Cog-
nition, Volume 1: Foundations, pages 318–362. MIT Press, Cambridge, MA.

Russel, J., Pinilla-Redondo, R., Mayo-Muñoz, D., Shah, S. A., and Sørensen, S. J.
(2020). CRISPRCasTyper: An automated tool for the identification, annotation
and classification of CRISPR-Cas loci. bioRxiv, page 2020.05.15.097824.

Schölkopf, B. (1997). Support vector learning. PhD thesis, Oldenbourg München,
Germany.

Scott, C. (2015). A rate of convergence for mixture proportion estimation, with
application to learning from noisy labels. In Artificial Intelligence and Statistics,
pages 838–846.

112

Sheikhpour, R., Sarram, M. A., Gharaghani, S., and Chahooki, M. A. Z. (2017).
A survey on semi-supervised feature selection methods. Pattern Recognition,
64(C):141–158.

Siedlecki, W. and Sklansky, J. (1993). A note on genetic algorithms for large-scale
feature selection. In Handbook of pattern recognition and computer vision, pages
88–107. World Scientific.

Song, L., Smola, A., Gretton, A., Borgwardt, K. M., and Bedo, J. (2007). Supervised
feature selection via dependence estimation. In Proceedings of the 24th interna-
tional conference on Machine learning, pages 823–830.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions.
Journal of the Royal Statistical Society: Series B (Methodological), 36(2):111–133.

Thiemann, N., Igel, C., Wintenberger, O., and Seldin, Y. (2017). A strongly quasi-
convex pac-bayesian bound. In International Conference on Algorithmic Learning
Theory, pages 466–492. PMLR.

Tropp, J. A. (2012). User-Friendly Tail Bounds for Sums of Random Matrices. Foun-
dations of Computational Mathematics, 12(4):389–434.

Tumer, K. and Ghosh, J. (1996). Analysis of decision boundaries in linearly com-
bined neural classifiers. Pattern Recognition, 29(2):341–348.

Tür, G., Hakkani-Tür, D. Z., and Schapire, R. E. (2005). Combining active and semi-
supervised learning for spoken language understanding. Speech Communication,
45:171–186.

Tuv, E., Borisov, A., Runger, G., and Torkkola, K. (2009). Feature selection with
ensembles, artificial variables, and redundancy elimination. Journal of Machine
Learning Research, 10:1341–1366.

Vapnik, V. (1982). Estimation of Dependences Based on Empirical Data: Springer
Series in Statistics (Springer Series in Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Viallard, P., Germain, P., Habrard, A., and Morvant, E. (2021). Self-bounding ma-
jority vote learning algorithms by the direct minimization of a tight pac-bayesian
c-bound. arXiv preprint arXiv:2104.13626.

Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., and Sugiyama, M. (2019). Are
anchor points really indispensable in label-noise learning? In Advances in Neural
Information Processing Systems, pages 6838–6849.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.

113

Xue, B., Zhang, M., Browne, W. N., and Yao, X. (2015). A survey on evolutionary
computation approaches to feature selection. IEEE Transactions on Evolutionary
Computation, 20(4):606–626.

Yang, M., Chen, Y.-J., and Ji, G.-L. (2010). Semi_fisher score: A semi-supervised
method for feature selection. In 2010 International Conference on Machine Learn-
ing and Cybernetics, volume 1, pages 527–532. IEEE.

Zhao, J., Lu, K., and He, X. (2008). Locality sensitive semi-supervised feature selec-
tion. Neurocomputing, 71(10-12):1842–1849.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2004). Learning
with local and global consistency. In Advances in Neural Information Processing
Systems, pages 321–328.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. (2003). Semi-supervised learning using
gaussian fields and harmonic functions. In Proceedings of the 20th International
Conference on Machine Learning (ICML-03), pages 912–919.

Zou, Y., Yu, Z., Liu, X., Kumar, B., and Wang, J. (2019). Confidence regularized self-
training. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5982–5991.

114

