
HAL Id: tel-03773108
https://theses.hal.science/tel-03773108v2

Submitted on 8 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety of transformations of data trees : tree transducer
theory applied to a verification problem on shell scripts

Paul D. Gallot

To cite this version:
Paul D. Gallot. Safety of transformations of data trees : tree transducer theory applied to a verification
problem on shell scripts. Programming Languages [cs.PL]. Université de Lille, 2021. English. �NNT :
2021LILUB030�. �tel-03773108v2�

https://theses.hal.science/tel-03773108v2
https://hal.archives-ouvertes.fr

Université de Lille,
École doctorale Mathematics and Digital Sciences

Vérification de transformations de données
arborescentes

Les transducteurs d’arbres appliqués à un problème de vérification sur des
scripts shell

Thèse de doctorat en informatique

présentée et soutenue par

Paul D. Gallot

le 16 décembre 2021 devant le jury composé de:

Présidente du jury Sophie TISON Professeure Unversité de Lille

Directeur de thèse Sylvain SALVATI Professeur Université de Lille

Directeur de thèse Aurélien LEMAY Mâıtre de conférences Université de Lille

Rapporteur Pierre-Alain REYNIER Professeur Université Aix-Marseille

Rapporteur Sylvain SCHMITZ Professeur Université Paris Diderot

Examinateur Patrick BAILLOT Directeur de recherche Université de Lille

Examinateur Sebastian MANETH Professor University of Bremen

Cette thèse est financée par la région Hauts-de-France
et l’Agence Nationale de la Recherche.

Université de Lille,
École doctorale Mathematics and Digital Sciences

Safety of transformations of data trees

Tree transducer theory applied to a verification problem on shell scripts

PhD thesis of computer science

by

Paul D. Gallot

Defended on December 16th 2021 before a jury composed of:

Sophie TISON Professor Unversité de Lille Jury President

Patrick BAILLOT Directeur de recherche Université de Lille Examiner

Aurélien LEMAY Mâıtre de conférences Université de Lille Supervisor

Sebastian MANETH Professor Universität Bremen Examiner

Pierre-Alain REYNIER Professor Univesité Aix-Marseille Reviewer

Sylvain SALVATI Professor Université de Lille Supervisor

Sylvain SCHMITZ Professor Université Paris Diderot Reviewer

This thesis is funded by the Hauts-de-France Region
and the Agence Nationale de la Recherche

Abstract

This thesis aims at studying formal modelisations of tree transformations, with a focus on
tree transducers.

In particular, we want to use tree transformations to represent operations on file sys-
tems, which are represented as tree structures. More precisely, we modelise operations
performed by Shell scripts used to install and remove packages on Debian GNU/Linux
distributions. The Shell scripting language provides access to Unix commands performing
changes on file systems in addition to other tools. We model Unix file systems as feature
trees and we represent the actions of Unix commands on a file system using a model we
call tree pattern transducers. This model uses tree patterns to represent modifications on
feature trees, and a system of constraints to represent the domains of tree transforma-
tions. We translate Unix commands into this model. We then provide an algorithm for
computing the composition of tree pattern transducers.

We implement a tool for finding the configurations of the file system which can make a
given Shell script fail. Instead of computing the transducers representing scripts recursively
on the structure of scripts, we only compute their domains. This allows us to reduce the
complexity of our algorithm. The domains of transformations performed by scripts are
computed recursively, starting with the last command in the script. This amounts to
computing successive inverse images of the commands in a script. We examine the pros
and cons of this algorithm and we implement it. The implementation is then tested on a
corpus of Debian package scripts. To better inform the discussion around this algorithm’s
complexity, we give proof that the problem we are solving is NP-hard, even on very
restricted sets of scripts.

In a more theoretical direction, we use techniques from the field of functional program-
ming to shed new light on known models of transducers. We contribute a new class of
transducers named High-Order Deterministic tree Transducers (HODT) which generalizes
some known models of tree transducers. HODT are defined similarly to deterministic
Top-down tree transducers (DTOP), but the output of rules are simply-typed λ-terms.
We show how putting constraints on these terms yields different known classes of trans-
ducers: restriction to terms of order 0 yields the class of DTOP, while restriction to terms
of order ≤ 1 yields the class of Macro Tree Transducers (MTT). We give a procedure for
computing the composition of two HODT based on models of the λ-caclculus. We show
that the order of the composition is the sum of the orders of the composed transducers,
which gives an interesting explanation as to why DTOP are closed under composition (as
HODT of order 0) but not MTT (HODT of order ≤ 1).

In particular we study the restriction of HODT to linear terms, to which we add
an inspection by a bottom-up tree automaton. We show that this model represents the
same tree-to-tree functions as other known classes of transducers, most notably finite-
copying MTT and Transductions defined by Monadic Second-Order logic (MSOT). We
then prove a similar result for the restriction to almost linear terms and both attribute
tree transducers (ATT) and an extension of MSOT called Monadic Second-Order logic tree

Transductions with Sharing of subtrees (MSOTS). We then give a specialized procedure for
the composition of HODT which preserves linearity. This procedure relies on linear logic
and coherence spaces. Because the time complexity of this procedure largely depends on
the order of transducers, we give a procedure to reduce the order of linear and almost linear
transducers. We argue that composition algorithms for equivalent classes of transducers
can also be decomposed into two steps: firstly, computing composition in a meta-class of
transducers ressembling HODT and secondly, reducing the order to fall back to the initial
model of transducers.

In the last part, we prove that the word language MIX2 = {w ∈ {a, b}∗ | |w|a = |w|b},
also known as the double-sided Dyck language D∗2, is not an EDT0L. This implies that it
cannot be the output language of an MSOT from a regular language.

2

Résumé

Cette thèse présente une étude des modélisations formelles de transformations de structures
arborescentes centrée sur les transducteurs d’arbres.

En particulier nous voulons utiliser les transformations d’arbres pour représenter des
opérations sur des systèmes de fichiers vus comme des structures arborescentes. Plus pré-
cisément nous modélisons les modifications opérées par les scripts Shell d’installation et
de désinstallation de paquets sur les distributions GNU/Linux Debian.

Le langage de script Shell permet entre autres d’utiliser des commandes Unix pour
modifier le système de fichiers. Nous représentons les arborescences de fichiers par des
feature trees, et l’action des commandes Unix par un modèle que l’on appelle tree pattern
transducers. Ce modèle utilise des templates d’arbre ou tree patterns pour représenter les
modifications de feature trees, et un système de contraintes pour représenter les domaines
de ces transformations. Nous traduisons les commandes Unix dans ce modèle, puis nous
donnons un algorithme pour calculer les compositions de tree pattern transducers.

Nous présentons l’implémentation d’un outil qui trouve les configurations du système
de fichiers qui ferais échouer un script Shell donné. Plutôt que de calculer récursivement les
transducteurs représentants l’action des scripts, nous calculons seulement leurs domaines.
Ceci réduit la complexité de l’algorithme. Les domaines des transformations sont calculés
récursivement en commençant par la dernière commande du script. Cela revien à calculer
successivement les images inverses des commandes d’un script.

Nous analysons les avantages et les inconvénients de cette approche. Nous en testons
l’implémentation sur un corpus de scripts Shell de maintenance de paquets Debian. Pour
éclairer l’analyse de la complexité de l’algorithme, nous présentons une preuve que le
problème est NP-dur, même sur des ensembles très restreints de scripts.

Une seconde partie plus théorique de cette thèse utilise une approche programma-
tion fonctionnelle des transformations d’arbres pour mieux comprendre les modèles de
transducterus d’arbres existants. Nous présentons une nouvelle classe de transducteurs
baptisée High-Order Deterministic tree Transducers (HODT) qui généralise plusieurs mo-
dèles connus de transducteurs d’arbres. Les HODT sont définis comme des transducteurs
d’arbres déterministes top-down (DTOP), sauf que les règles peuvent produire des λ-
termes simplement typés. Mettre différentes contraintes sur ces λ-termes permet d’obtenir
différentes classes connues de transducteurs : la restriction au termes d’ordre 0 (arbres)
donne la classe DTOP, et la restriction aux termes d’ordre 1 donne la classe des transduc-
teurs d’arbres à macros (MTT). Nous présentons une procédure pour calculer la compo-
sition de deux HODT basée sur les modèles du λ-calcul. Nous montrons que l’ordre de la
composition de deux HODT est la somme des ordres des transducteurs composés, ce qui
donne nouvelle explication à ce que la classe DTOP est fermée par composition (HODT
d’ordre 0), mais pas la classe MTT (HODT d’ordre ≤ 1).

Nous étudions plus en détail la restriction de HODT aux termes linéaires, à laquelle
on ajoute une inspection par un automate d’abre bottom-up. Ce modèle est équivalent à

plusieurs modèles de transducteurs connus, notamment finite-copying MTT et les trans-
ductions définies par les formules de la logique monadique du second ordre (MSOT). Nous
prouvons aussi que la restriction aux λ-termes quasi-linéaires est équivalente aux modèle
des transducteurs d’arbres à attributs (ATT), et aux transductions définies par les for-
mules de la logique monadique du second ordre avec partage de sous-arbres (MSOTS).
Nous donnons une nouvelle procédure de composition qui conserve la linéarité. Cette pro-
cédure repose sur la logique linéaire et les espaces cohérents. Comme la complexité de
cette procédure dépend fortement de l’ordre des transducteurs, nous donnons également
une procédure pour réduire l’ordre des HODT linéaires et quasi-linéaires. Nous soutenons
que les algorithmes de composition de modèles de transducteurs équivalents peuvent aussi
être décomposés en deux étapes : une première étape de composition dans une meta-classe
de transducteurs similaire à HODT, puis une deuxième étape de réduction d’ordre qui
permet de retomber sur le modèle de transducteurs initial.

Dans une dernière partie nous démontrons que le langage MIX2 = {w ∈ {a, b}∗ |
|w|a = |w|b}, ou double-sided Dyck language D∗2, n’est pas un EDT0L. Par conséquent il
ne peut pas être le langage de sortie d’une transduction MSO depuis un langage régulier.

2

Acknowledgements & Remerciements

I would like to start these acknowledgements by warmly thanking my reviewers, Pierre-
Alain Reynier and Sylvain Schmitz, for accepting to read this manuscript in such a short
delay, and my examiners, Patrick Baillot, Sebastian Maneth and Sophie Tison, for ac-
cepting to be part of my jury. I am honoured by the attention you have given to my
work.

Thank you Sylvain and Aurélien, my supervisors, thank you for helping me when I
needed it and trusting me when I needed it. Thank you for all the help you provided.
Thank you for all our talks, academic and otherwise, which fostered both my scientific
and personal development.

Thank you to all members of the Links research team, you have all shown me goodwill
and understanding, and made me feel welcome in the team. I would not have made it
through without all of you. I especially want to thank fellow PhD students Momar, Nicolas,
Lily and Corentin, and engineers Nicolas and Jeremy for all the quirky and interesting
conversations which made life in the team so wonderfull.

Thank you Magnet team members, with whom we shared laughs and thursday cakes,
thank you Onkar, Cesar, Carlos, Nathalie, Arijus, Brij, Mariana and Marc. Thank you
Michal. Thank you Yiding. Merci à Julia, Émilie et tous mes amis du M3, ce fut toujours
un plaisir de venir vous voir pour échanger des anecdotes.

Merci à tous les non-chercheurs d’inria, merci à Nathalie sans qui je me serais perdu
cent fois dans les méandres administratifs de l’administration française, merci à Ingrid et
Marie pour vos conseils toujours avisés, merci à Charlotte pour les bons moments passés à
l’AGOS. Merci à Aurélien et Florent pour les conseils en sport et en informatique. Merci
à Carine, Julien, Géraldine, Manon, Marie-B, Cyril, Anne, Adrien.

Merci à tous mes amis Lillois, merci à vous Athénäıs, Adrien et Lucie pour les meilleurs
moments de ma vie d’étudiant, pour nos discussions, les sérieuses et les autres, merci pour
votre soutien irremplacable, je n’y serais jamais arrivé sans vous. Merci à Laurie pour
les Tuche party, merci à Julie pour les fou-rires, merci à Alice et Hooper pour les super
balades, merci à Cédric, Wilhelm et Lucas pour les apéros qui n’en finissent pas, merci
à Dimitri et Alyx pour les soirées et d̂ıner-spectacle, merci à Quentin et Omar pour les
après-midi jeux.

Merci à tous ceux qui, malgré la distance, sont resté des amis précieux, merci à François,
merci à Léo, Damien, Antoine pour les soirées JDR, merci à Alexandre, Théotime, Pierre
et Gabriel pour nos soirées d’entrainement, merci à Élodie, Rémi, Thomas, Chloé, Kevin
et Cindy pour tous les bons moments passés ensemble. Merci à Servane, Ninon, Jim et

1

Léo.
Merci à ma famille, merci à vous maman et papa pour votre soutien indéfectible. Merci

à Marceau, Chloé, Gaspar, Robin, Basile, Elisa, Adèle, Lucas, Solène, Louis, Léonard,
Louise, Lazare, Bastien, Adrien, Anna, Mamie Renée, Papi Frantz, Papi Daniel, Marie-
Claire et Jean-Marc, Jean-Jacques et Sabine, Agnès et Julien, Annick et Vincent, Nicole,
Chantal et Max, je vous aime tous sans exception.

Merci à mes colocataires qui m’ont supportés malgré les aléas de la thèse. Merci en
particulier à Gilles, Céline, Julien et Olivier avec qui j’ai été confiné, personne d’autre
n’aurais pu faire du confinement une expérience aussi fun et agréable. Merci à Alexia
pour toute ta bienveillance. Merci à Nolwenn, Pierre, Florine, Louanne, Mélanie, Sohane,
Antoine, Maurine, Mathilde, Amar, Corentin, Valentin. Merci à Damien sans qui j’aurais
oublié d’écrire ces pages de remerciements.

2

Contents

I Part 1 : Introduction and state of the art 6

1 Introduction 7
1.1 Motivations . 7
1.2 Our approach . 8
1.3 The CoLiS project . 9

1.3.1 The CoLiS toolchain . 9
1.3.2 Modelisation of filesystems . 14
1.3.3 Modeling tree transformations for CoLiS 14

1.4 Theoretical models of tree transformations 15
1.4.1 Models of tree transformations . 15
1.4.2 Expressivity of tree transformation models 18
1.4.3 Composition of tree transformations 19
1.4.4 The functional programming approach 19

1.5 Contribution and Plan of the thesis . 21
1.5.1 High-Order Deterministic tree Transducers 21
1.5.2 Tree transducers in the CoLiS project 21
1.5.3 The MIX language . 23
1.5.4 Plan of the thesis . 23

II Part 2 : Contribution to the CoLiS project 25

2 Abstraction of filesystems and scripts in the CoLiS project 26
2.1 Abstraction of the problem . 26
2.2 Control flow structure of Shell scripts . 28
2.3 Abstraction of file systems . 30
2.4 NP-hardness of verification on scripts . 32

3 A model of transducers for the CoLiS project 40
3.1 Tree pattern transducers . 40
3.2 Formalisation of Unix commands . 46

3.2.1 mkdir . 47
3.2.2 rmdir . 48
3.2.3 rm . 49

3

3.2.4 touch . 50
3.2.5 test and [] . 51
3.2.6 which . 53
3.2.7 mv . 54
3.2.8 cp . 56

3.3 Composition of tree pattern transducers 62
3.3.1 Example of composition . 62
3.3.2 Unification of tree patterns . 67
3.3.3 Tree constraints in composition . 75
3.3.4 Conclusion on composition . 81

4 Implementation 84
4.1 The algorithm . 84

4.1.1 Naive version of the algorithm . 85
4.1.2 The improved algorithm . 86
4.1.3 Specificity of the backward approach 93

4.2 Practical results . 95
4.3 Equivalence . 97
4.4 Conclusion on CoLiS . 97

III Part 3 : Transduction through functional programming 99

5 Definition of high-order tree transducers 100
5.1 Definitions . 101

5.1.1 Simply-typed lambda calculus . 101
5.1.2 High-Order Deterministic top-down tree Transducers 104
5.1.3 Regular look-ahead . 105
5.1.4 Linear and Almost-Linear variants 106
5.1.5 Tree transformations associated with transducers 107

5.2 Example of high-order tree transducers . 108
5.3 Properties of High-Order Transducers . 110

5.3.1 Domains . 110
5.3.2 Look-ahead . 113
5.3.3 The expressivity of the order of transducers 115

6 Composition of transducers 117
6.1 Composition of HODT based on Scott models 117
6.2 Composition of HODTRlin based on coherent spaces 121

6.2.1 Semantic analysis . 122
6.2.2 Unicity of derivation for semantic token judgements 124
6.2.3 Collapsing of token derivations . 128
6.2.4 Construction of the transducer which realizes the composition . . . 133

4

7 Equivalence with existing models 140
7.1 Template decomposition . 140

7.1.1 Finiteness of linear templates . 141
7.1.2 Finiteness of almost linear templates 144

7.2 Order reduction . 145
7.2.1 Linear case of the order reduction 145
7.2.2 Almost linear case of the order reduction 147

7.3 Expressiveness of HODTRlin and HODTRal 147
7.3.1 Definition of ATT . 148
7.3.2 REL ◦ ATT ⊆ HODTRal and REL ◦ ATTsur ⊆ HODTRlin 152
7.3.3 HODTRal ⊆ REL ◦ ATT and HODTRlin ⊆ REL ◦ ATTsur 172

IV Part 4 : Expressivity of MSO transductions, case of the MIX
languages 174

8 The MIX languages and MSO transductions 175
8.1 Preliminaries . 175
8.2 MIX2 is not an EDT0L language . 178

8.2.1 The counter example word sk . 180

V Conclusion 194

9 Conclusion 195
9.1 Contributions . 195
9.2 Perspectives . 196

9.2.1 Our implementation in CoLiS . 196
9.2.2 Implementing HODTRlin in CoLiS 196
9.2.3 Testing equivalence of HODTR . 196

5

Part I

Part 1 : Introduction and state of the art

6

Chapter 1

Introduction

1.1 Motivations

There is a long history of devices used to aid computation, but none had more profound
consequences on society than modern computers. Before computers, such devices were
designed to perform only one task. Computers were different because they could be used
for a variety of different tasks, provided you gave them the appropriate programs.

The design of such programs was simple in the early years of programming, but as
computers’ speed and memory improved, the sizes and complexities of programs increased.
Naturally, with larger and more complex programs came more problems and more bugs.
Testing programs has become harder because multiple programs are stored and run at the
same time. Each combination potentially creates unforeseen interactions. The internet
has fostered sharing of programs up to the point that no two systems are likely to use the
same combinations of software.

Operating systems have been developed in order to manage ressources between pro-
grams and improve processing speed. A particular distribution of interest to us is the
Debian GNU/Linux operating system. It is free and open-source, meaning it allows users
to freely study, copy and modify the code, in an attempt to encourage people to improve it
and build upon it. This system grants access through the internet to a large compendium
of programs written by lots of different people. Such programs are organized into packages;
their installation, update and removal are handled by each package’s maintainer scripts,
which perform the necessary operations on the file system. Such scripts are a critical part
in the maintenance of Debian systems.

However, because maintainer scripts are used on a great variety of system configura-
tions, they can produce bugs that remain undetected by standard testing procedures. This
problem is especially hard on Unix systems because packages have many interdependencies
and can be written by a wide range of different people. As a consequence, there is a need
for methods to help to reduce the number of bugs in maintainer scripts.

The Debian community has been working on such methods to avoid bugs in maintainer
scripts. These methods are mainly based on the enforcement of practices in writting code

7

for maintainer scripts. A Debian team is dedicated to the quality assurance of packages1.
The Debian Policy2 is a document aiming to normalise the writing of packages. It

preconizes a flow structure for the installation of packages which organizes the calls to
maintainer scripts. This document also provides guidelines on the behaviour and syntax
of those scripts.

The Debian community has also implemented tools, like Lintian3 and piuparts4, that
automatically check the adherence of maintainer scripts to the Debian Policy guidelines
and that test the installation of packages. Some initiatives also use formal methods,
for example the EDOS and Mancoosi projects [25, 1], which check the dependencies of
packages, ensure the consistency of installed software and aim to improve the overall
quality of Debian software installation.

1.2 Our approach

As part of the CoLiS project, our approach to this problem is to apply formal verifica-
tion methods to maintainer scripts. In particular, we aim at representing the action of
scripts on file systems as operations on formal tree structures. The final goal being the
implementation of a tool looking for bugs in maintainer scripts, and especially those bugs
happening on specific file systems.

The CoLiS approach differs from previous attempts at improving the quality of scripts
in its use of formal verification techniques, and its objective to contend with the diversity
of possible configurations of file systems. This could allow us, for example, to uncover
bugs which depend on a specific set of packages being already installed on your computer.

To formally represent tree transformations we use tree transducers. There exists many
models of tree transducers. Their defining characteristic is that they compute output
trees recursively on the structure of their input. Other models of tree transformations
exist. For example logical models like Monadic Second-Order logic (MSO) only describe
transformations without showing how to effectively compute them.

To better understand the subtleties of tree transformations we will explore the theo-
retical foundations of tree transducers. In particular we study theoretical models of tree
transducer under the lens of functional programming. In particular we design a model of
transducers named High-Order Deterministic tree Transducers (HODT) based on simply-
typed λ-calculus. This model provides a generalization of known models of transducers.
In addition, we use methods from functional programming to design efficient algorithms
for our model. We study restrictions of HODT representing classes of transformations
pertinent for the CoLiS project. This grants us a deeper understanding of the problem of
CoLiS, especially on notions of domains of transformations.

Using this theoretical understanding, we opt to build a tailor-made model for our
implementation in CoLiS. The main reason why we do not use the HODT model for

1The Debian Quality Assurance Team, see https://qa.debian.rog/
2see https://www.debian.org/doc/debian-policy/
3See https://lintian.debian.org/
4See https://piuparts.debian.org/

8

https://qa.debian.rog/
https://www.debian.org/doc/debian-policy/
https://lintian.debian.org/
https://piuparts.debian.org/

CoLiS is the particular structure of file systems. The model we use is named tree pattern
transducers. It relies on tree patterns to describe modifications of trees, and on a system
of constraints on trees to represent the domains of transformations.

1.3 The CoLiS project

Part of this thesis presents work done in the scope of the CoLiS project. The project
is financed by the french institution Association Nationale de la Recherche (ANR). This
chapter presents the topic of CoLiS and the difficulties that come with it. It exposes the
parts of the project which are pertinent to our work. It also briefly explains our approach
for the project.

The CoLiS acronym stands for Correctness of Linux Scripts. The project’s stated goal
is to apply techniques from deductive program verification and analysis of tree transfor-
mations to the problem of analyzing Shell scripts used in software installation. We view
installation scripts as tree transformations because they transform file systems, which can
be seen as tree structures.

The main part of the CoLiS project is the implementation of a toolchain able to analyse
software packages of the Debian distribution. The implementation of this toolchain can
be divided into two parts: a front-end which parses and treats the parts of scripts that
do not interact with file system, and a back-end which checks interactions with the file
system. Two versions of the back-end were implemented. The first implementation uses a
modelisation of tree transformations based on a logical paradigm named feature tree logic
[19]. This first implementation was developed by our collaborators on the CoLiS project
and is therefore not part of our contribution. The second implementation, developed by
us, is the topic of part II of this thesis.

This section is divided into three subsections. In subsection 1.3.1 we present the first
implementation of the CoLiS toolchain, which is not part of our contribution, and its
results. In subsection 1.3.2 we dwell on the difficulties of representing file systems as trees.
In subsection 1.3.3 we discuss the properties of transducers which would be most useful
for representing tree transformations in the CoLiS project.

1.3.1 The CoLiS toolchain

We present here part of the work of Nicolas Jeannerod, Benedikt Becker, Yann Régis
Gianas, Claude Marché, Mihaela Sighireanu, and Ralf Treinen in the scope of the CoLiS
project. In particular we present a toolchain used to analyse individual Shell scripts used
in the installation and removal of Debian packages. We present it as it was in late 2020
because this version was the basis for our work. It has been updated several times since
and may be updated again in the future.

Another tool, which we do not present in this thesis, was developed by the same authors
in order to recreate the different installation scenarios of Debian packages. This is because
the installation of a Debian package usually relies on running several scripts in a specific

9

order, as dictated by the Debian Policy Manual5.

The toolchain is composed of several parts which are described in detail in [19]. In our
case it can be broadly simplified into two:

• a front-end part (we will call it the concrete interpreter) which parses scripts and
tests the parts which do not interact with the file system,

• a back-end part (we will call it the symbolic interpreter) which checks the interactions
with the file system.

As running example in this section we use the maintainer script preinst from package
arpalert_2.0.12-3+b1 represented in Figure 1.1. This script is run before the installation
of the package. This particular version comes from the Debian sid distribution released
on 2019-10-06.

The tool distinguishes between calls to Unix commands which interact with the file
system and those who do not. From now on we call file system commands those calls
that interact with the file system. For example, the file system commands of the script
in Figure 1.1 are [-d $DBDIR -a -d $BACKUPDIR], [-d $BACKUPDIR/$NAME], rm -r

$BACKUPDIR/$NAME and cp -rp $DBDIR $BACKUPDIR/$NAME. Note that it includes calls
which modify the file system, but also calls which only test the existence of files or di-
rectories. Also, whether a call is considered a file system command can depend on the
command’s arguments, for example the call [’0’=’1’] is not a file system command.

The concrete interpreter

Simply put, the concrete interpreter takes as input a Shell script and starts to run the
script normally, until it meets a call to a file system command. When it encounters such
a call, it creates two branches for the execution of the script: one where the command
succeeds and one where it fails. When such a command fails it may induce the script to
fail, but if the command is the condition of an if statement then the execution can keep
going. Then it resumes both executions, branching again at each file system command. In
order to avoid infinite branching in loops, it assumes a bound on the number of iterations
of loops.

The execution scenarios of the example script of Figure 1.1 are showed in Figure 1.2.
For this script we can see that the concrete interpreter substitutes the variables and
branches only on the file system commands. It produces 7 distinct executions: the
script succeeds on executions S1,S2,S3 and S4; it fails on executions E1,E2,E3. Note
that the concrete interpreter sees the logical operator -a (logical and) in the call [-d

/var/lib/arpalert -a -d /var/backups] and splits it into [-d /var/lib/arpalert

] and [-d /var/backups]. The call [-d /var/lib/arpalert] goes first and if it
fails the second call [-d /var/backups] is skipped, as dictated by the specification.
Note also that the failure of calls in the condition of if statements do not induce the
script to fail, it simply signals that the condition is not fulfilled.

5https://www.debian.org/doc/debian-policy/

10

1 #!/bin/sh

2 # based on arpwatch.preinst: v4 2004/08/14 KELEMEN Peter <fuji@debian.

org >

3 # arpalert.preinst: v1 2006/10/12 Jan Wagner <waja@cyconet.org >

4

5 set -e

6

7 NAME=arpalert

8 DBDIR=/var/lib/$NAME

9 DBFILE=arp.dat

10 BACKUPDIR =/var/backups

11

12 # Back up collected ARP databases.

13 if [-d $DBDIR -a -d $BACKUPDIR]; then

14 if [-d $BACKUPDIR/$NAME]; then

15 rm -r $BACKUPDIR/$NAME

16 fi

17 cp -rp $DBDIR $BACKUPDIR/$NAME

18 fi

Figure 1.1 – script preinst of package arpalert_2.0.12-3+b1

Success Failure

Success Failure Success Failure

Success Failure

Success Failure

Success Failure

[-d /var/lib/arpalert]

[-d /var/backups]

[-d /var/backups/arpalert]

rm -r /var/lib/arpalert

cp -rf / . . .

S1 E1

E2

cp -rf / . . .

S2 E3

S3

S4

Figure 1.2 – execution scenarios for the script of Figure 1.1

11

When the branched out executions of the script end, with the script either failing or
succeeding, the concrete interpreter gives a summary of each execution scenario. These
summaries are called script traces, they only record a list of the file system commands
and, for each, whether they failed or succeeded in the corresponding scenario. They are
defined as follows:

Definition 1 A trace atom is either success(command) or failure(command) where com-

mand is a file system command, i.e. a call to a Unix command, including the command’s
arguments, which interacts with the file system. success(command) is called a success atom
and failure(command) is called a failure atom.

A script trace is a finite ordered list of trace atoms.

For example, the script traces of the execution scenarios S3 and E2 shown in Figure 1.2
are:

S3→ (success([-d /var/lib/arpalert]), failure([-d /var/backups]))
E2→ (success([-d /var/lib/arpalert]), success([-d /var/backups]),

success([-d /var/backups/arpalert]), failure(rm -r /var/lib/arpalert))

Then each execution scenario is associated with a script trace representing the list of
file system commands used in this scenario, in the order in which they are run, and, for
each file system command, whether the call succeeded or not.

In each execution scenario the script either succeeds of fails, so the concrete interpreter
computes two sets of script traces: one set of execution scenarios where the script succeeds,
and one set of execution scenarios where the script produces an error.

There may exist some scenarios where the tool is not sure how the script executes, either
because the concrete interpreter uses approximations or because the POSIX specification
is non-deterministic. This can produce a third set of script traces, we call it the set of
undefined script traces.

The symbolic interpreter

The symbolic interpreter takes as input the three sets of success, failure and undefined
script traces produced by the concrete interpreter. For each script trace, it computes the
modifications performed by the script trace on the file system, and checks if the conditions
on the success and failure of file system commands are met.

This way the symbolic interpreter computes the sets of initial configurations of the file
system which are compatible with each script trace. If no initial configuration is compatible
with a given script trace then the corresponding execution scenario is impossible. All
the script traces which have at least one possible initial configuration represent possible
execution scenarios of the studied script. The three sets of script traces are then updated
by removing the impossible ones, what remains are all the possible execution cases of the
script.

On the example script of Figure 1.1, the script trace of execution case S3 is possi-
ble when the file system has a directory at path /var/lib/arpalert but not at path

12

/var/backups. However the script trace of execution case E2 has no compatible config-
uration of the file system: the success of command [-d /var/lib/arpalert] implies
that there is a directory at path /var/lib/arpalert which is incompatible with the fail-
ure of command rm -r /var/lib/arpalert. In fact all the executions which make the
script fail (executions E1, E2 and E3) have no compatible configurations of the file system.

The symbolic interpreter uses a representation of tree transformations based on a
logic formalism named feature tree logics which we do not explain here. As part of our
contribution we design another version of the symbolic interpreter, this second version is
detailed in part II.

Interfacing concrete and symbolic interpreter

The two parts of the tool could be made to work sequentially, by first running the concrete
interpreter and then giving the resulting script traces to the symbolic interpreter. But, in
order to improve time complexity, they actually go back and forth.

We have seen that the concrete interpreter computes a tree structure of execution
scenarios, branching on each file system command, as in Figure 1.2. In this tree structure,
paths to leaves represent full executions of the script, and paths to inner nodes represent
partial executions of the script. In actuality the concrete interpreter sends to the symbolic
interpreter partial script traces. When the symbolic interpreter identifies a script trace
without compatible file system configurations, it allows the concrete interpreter to cut a
branch of executions of the script.

Using dynamic programming, the symbolic interpreter can use previous computations
of partial script traces of length n to compute partial script traces and check if they
have compatible file system configurations. So, even in the worst case where no script
trace are removed, the back-and-forth has the same complexity as using the interpreters
sequentially.

The output of the toolchain is a list of execution cases of the input script with, for
each case, a report stating:

• whether the execution case is a success, failure or undefined case,

• a description of the execution provided by the concrete interpreter including the
script’s flow, the success and failures of command calls and the standard output,

• a description of the configurations of the file system which can lead to this execution,
produced by the symbolic interpreter.

Practical results

Here we summarize the results obtained from the CoLiS toolchain which are not part of
our contribution.

The toolchain has been used to detect errors and bugs on large corpuses of maintainer
scripts of Debian packages. Specifically on snapshots of the Debian sid distribution (”un-
stable”distribution where packages are made public before they are considered safe enough

13

for the stable version of Debian). Between 2016 and 2019 a total of 151 bugs were reported
to the Debian Bug Tracking System, of which 92 had been resolved as of march 30th of
2021 (date of publication of [19]).

1.3.2 Modelisation of filesystems

Because our goal is to check which file systems are compatible with which executions
of scripts, our choice for the modelisation of file systems is a crucial decision point in
designing our algorithm. We should strive for a compromise between the tractability of
our algorithm and the accuracy of the model with respect to actual file systems.

In the version of the toolchain described in this chapter, file systems are modeled as
rooted tree structures. Nodes are labeled with filetypes. There are 7 different filetypes
(as mentioned in the POSIX standard6): directories, regular files, symbolic links, FIFO
special files, block devices, character devices and sockets. Only directory nodes can have
child nodes.

Filenames are modeled as labels of edges, a node’s filename is the label of the edge
connecting it to its parent node. Two edges leaving the same parent node have distinct
labels. The set of filenames is infinite, although in actual file systems, filenames cannot
be longer than 255 characters.

Symbolic links are only considered as any other type of non-directory file. Modeling
symbolic links as they are used in file systems would require to model file systems as graph
structures instead of tree structures. This would make the verification process much more
complicated. Also, the symbolic interpreter is supposed to anticipate all possible config-
urations of the file system, and doing so with symbolic links would yield more intricate
and unrealistic configurations. Those could make the output of the tool (the reports on
possible execution cases) bigger and harder to understand. Furthermore it could prevent
the concrete interpreter from cutting branches of executions which would poorly impact
the complexity of the algorithm.

The contents of files are not modeled, it would require to understand all file formats
which is unrealistic. Timestamps would offer little in terms of verification so they are not
represented. Permissions are not represented either since the tool treats installation and
uninstallation scripts, which should be run with superuser privileges. To be fair there are
configurations where other scripts are called inside installation scripts, and in such cases
it is pertinent to check their execution permissions, but in most of these cases the tool
has no access to the scripts’ code, so finding bugs in these calls usually requires human
intervention.

1.3.3 Modeling tree transformations for CoLiS

To build our version of the symbolic interpreter, we want to represent the action of script
commands on file systems using a model of tree transducers. The tree transformation

6provided by the IEEE and The Open Group. http://pubs.opengroup.org/onlinepubs/

9699919799/

14

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

performed by a script trace is the composition of the transformations of the trace atoms in
the trace. So our criteria for choosing a model of transducer for CoLiS are the following:

1. Expressiveness: the model needs to be able to represent the action of trace atoms
(and therefore of Unix commands) on file systems,

2. Composition: we need to be able to compute efficiently the composition of two tree
transformations in the model.

For the project we also need to be able to compute the domain of a tree transformation
i.e. the set of trees on which it is defined, but this is often implied by the criterion of
composition.

1.4 Theoretical models of tree transformations

In this section we present several known theoretical models representing transformations
of tree structures, with the prior goal of finding a model suited to represent tree transfor-
mations performed by scripts on file systems. Most of these models come from the tree
transducers literature, but we also present models based on logical formulas, notably tree
transformations defined by Monadic Second-Order Logic formulas.

We studied some of these models as potential candidates for the representation of
scripts in the CoLiS project. The Macro Tree Transducer (MTT) model was of particular
interest to us, and especially its Single-Use Restricted variant (MTTR

sur) [14]. Indeed the
MTTR

sur model is expressive enough to represent simple operations on trees like copying
a subtree from one path to another, but its single-use restricted condition keeps it from
creating an arbitrary number of copies. MTTR

sur also has the benefit of defining a class of
transformations closed under composition, as opposed to MTT.

The problem with the MTTR
sur model is that the only available algorithms able to

compute its composition consist in translating our MTTR
sur in another model, Streaming

Tree Transducers (STT) [2] or MSO definable Transductions (MSOT) [10, 11], and com-
puting the composition in those models. We could have used one of those two models
where composition algoritms exist, but the algorithm for STT has non-elementary time
complexity, and we preferred to avoid logical formalisms like MSOT.

Instead we used tools from functional programming to better understand the mecha-
nisms at play in the composition of transducers, as a result we defined a model of trans-
ducers based on functional programming which also generalizes MTT, MTTR

sur and other
models of transducers pertinent for CoLiS. We call this model High-Order Deterministic
tree transducers and we explore its most interesting properties in part III.

1.4.1 Models of tree transformations

In this section we explore different models for representing classes of tree transformations,
and especially models of tree transducers.

These models are all defined on ranked ordered trees. A tree can be inductively defined
as being composed of a root node and a finite set of other trees called its child trees. Each

15

node is labeled with a symbol from a finite alphabet of symbols. An alphabet is ranked if
with each symbol a in it is associated with an integer n, called its arity, such that all node
labeled a has exactly n child trees. Trees are ordered if sets of child trees are ordered,
when they are ordered we usually note sets of child trees as a tuple. When we talk about
trees in this section we mean ranked ordered trees.

A tree t composed of a root node labeled a and a tuple of child trees (t1, . . . , tn) is
noted t = a(t1, . . . , tn). For each ranked alphabet Σ we note T (Σ) the set of ordered trees
on alphabet Σ. Given two ranked alphabets Σι and Σo, a tree transformation from Σι to
Σo is a total or partial function from T (Σι) to T (Σo).

Tree transducers are abstract models used to represent classes (sets) of tree transforma-
tions. Their main characteristic is that they describe how their output tree is computed,
and this computation is done by traversing their input tree.

Deterministic TOP-down tree transducers (DTOP) [28] It is one of the simplest models
of tree transducers. Most other models of transducers will be described as variations of
this one, so we give a formal definition of it:

Definition 2 ADeterministic TOP-down tree transducer (DTOP) is a tuple (Q,Σι,Σo, q0, R)
where :

• Q is the finite set of states

• Σι is the ranked input alphabet

• Σo is the ranked output alphabet

• q0 is the initial state

• R a set of rules of the form

q(a(x1, . . . , xn))→ t

where q ∈ Q, a ∈ Σι, x1, . . . xn are variables representing child trees of the node
labeled a, and t is a tree on alphabet Σo except that some of its subtrees are be
replaced with the application q′(xi) of a state q′ ∈ Q to a variable xi with i ≤ n.

It is deterministic when it has at most one rule for each possible left hand side of rule, i.e.
for each state q ∈ Q and for each symbol a ∈ Σι, there is at most one rule in R with q and
a on its left side.

Applying a state q to a tree a(t1, . . . , tn) on Σι consists in using applying a rule from
R of the form q(a(x1, . . . , xn))→ t (if it exists), the result is obtained from t by replacing
in it all subtree of the form q′(xi) with the result of applying q′ to the child tree ti.

Such a transducer associates with each input tree t on alphabet Σι the result of applying
the initial state q0 to t.

This transducer is called top-down because it starts by applying a rule to the top of
the tree (the root node), and then recursively applies rules to its child trees.

16

Deterministic TOP-down tree transducers with Regular look-ahead (DTOPR) Each
such transducer is equipped with a bottom-up tree automaton called its look-ahead au-
tomaton, this automaton is used on the input of a transducer before applying rules of the
transducer.

Definition 3 A Bottom-up Tree automaton (BOT) is a tuple (P,Σι, R
′) where:

• P is the finite set of states

• Σι is the ranked input alphabet

• R′ is a finite set of rules of the form

a(p1, . . . , pn)→ p

where p, p1, . . . , pn ∈ P and a ∈ Σι.

It is deterministic when there is at most one rule in R′ for each possible left hand
side. It is non-deterministic otherwise.

This definition differs from the classical one in that there are no final states, this is because
it is used as a look-ahead automaton.

This automaton associates one of its states with each node of the input tree, these
states provide information about the bottom of part of the tree and help guide the rules
of the transducer. The rules of this transducer are of the form:

q(a(x1, . . . , xn)〈p1, . . . , pn〉)→ t

where p1, . . . , pn are the states associated, by the look-ahead automaton, with the trees
represented by variables x1, . . . , xn respectively. Such a rule can only be applied to a tree
a(t1, . . . , tn) if the look-ahead automaton associates with each tree ti state pi (for i ≤ n).

Such a transducer is called deterministic when there is at most one rule for each possible
left hand side.

The DTOPR model is strictly more expressive than the DTOP model, meaning DTOPR

can describe strictly more tree transformations than DTOP.
We define DTOP and DTOPR here because they are a good starting point into the

literature of tree transducers. It is also useful for us to illustrate some intuitions about
computations of tree transducers in general, for example to clarify why we used functional
programming to represent transducers (more detail on this in subsection 1.4.4).

The DTOP and DTOPR models were not considered for representing scripts in CoLiS
because they are not expressive enough to represent some operations of scripts, for example
the operation of copying a directory from one path to another in a tree.

17

Macro Tree Transducers (MTT) [14] This model is similar to DTOP, with the addition
that states of the transducer can use variables representing trees on the output alphabet.
Each state is associated with a fixed number m called its arity, which is the number of
variables it uses. The rules of those transducers are of the form:

q(a(x1, . . . , xn), y1, . . . , ym)→ t

where y1, . . . , ym are variables representing trees on the output alphabet Σo and, in tree
t, variables yi for i ≤ m can be used as subtrees, and nodes labeled with the application
q′(xi) are nodes with the arity of q′.

The result of applying a rule q(a(x1, . . . , xn), y1, . . . , ym)→ t to a tree a(t1, . . . , tn) on
Σι and trees to,1, . . . , to,m on Σo is obtained from t by replacing each variable yj with to,j
(for j ≤ m), and by replacing each subtree q′(xi)(t

′
1, . . . t

′
m′) with the application of q′ to

tree ti on Σι and trees t′1, . . . t
′
m′ on Σo.

In a sense, a DTOP can be seen as a MTT whose states all have arity 0.
We can also add a regular look-ahead to the MTT model, this model is noted MTTR

and is defined similarly to DTOPR.

Monadic Second-Order logic defined Transductions (MSOT) [10, 11] In this model, a
tree transformation is described by means of logical formulas. The logical language is
that of Monadic Second Order logic on finite trees. A key feature of this logic is its
capacity to quantify over sets of individuals. It has become a prominent object of study
because of its tight connection with finite state machines. Representing transformations
of structures such as graphs, trees or strings by means of this logic originates in the work
of Courcelle [10, 11]. These transformations have been, since then, widely explored and
characterized by other means. Of particular interest to us is the characterization of the
tree transformations they define with MTTR

sur [14].

Monadic Second-Order logic defined Transductions with Sharing of subtrees (MSOTS)
[10, 11] This model is similar to the previous MSOT model but differs in that, instead of
outputting trees, it outputs trees with sharing, or said differently, directed acyclic graphs
(DAGs). MSOT has a restricted capacity of copying as there is a uniform bound on the
number of copies of a given subtree of the input. This restriction disappears for MSOTS
as the mechanism of sharing allows for unbounded copying.

We also consider models of transducers which we do not define here. There are
Attribute Tree Transducers (ATT) [7] and Streaming Tree Transducers (STT) [2]. We
also consider the restrictions of ATT and MTTR with the Single-Use Restricted property
[12, 13], those are noted ATTsur and MTTR

sur respectively. The models ATT and ATTsur

are defined in subsection 7.3.1.

1.4.2 Expressivity of tree transformation models

In this section we discuss the relative expressiveness of the presented models of tree trans-
formations.

18

MTTR
sur ⇔ ATTsur ⇔ MSOT ⇔ STT

ATT ⇔ MSOTS

Figure 1.3 – Equivalences between classes of tree transformations

DTOP
⇒

MTT

⇒

⇒ MTTR

⇒
DTOPR ⇒

MTTR
sur

ATTsur

MSOT
STT

⇒ ATT
MSOTS

Figure 1.4 – Relations of inclusion between classes of tree transformations

Some models have been proven to be equivalent, meaning that they represent the same
classes of tree transformations. It has been shown that MSOT is equivalent to ATTsur[7],
to MTTR

sur[12, 13] and to STT[2]. It has also been shown in [7] that MSOTS is equivalent
to ATT.

Equivalences between classes are shown in Figure 1.3, and relations of inclusion between
classes are shown in Figure 1.4

1.4.3 Composition of tree transformations

Transducers describe functions on trees, the operation of composition on functions then
induces an operation of composition on tree transducers. The composition of two functions
described by transducers cannot always be represented as a transducer. For the CoLiS
project we need a model in which we can always compute the composition of transducers.
So as to select an adequate class of tree transformations the closure under composition of
the class is key for us. A class is closed under composition when the composition of two
of its transformations is one of its transformations.

It has been shown that the classes of DTOP, DTOPR, STT and MSOT are closed under
composition[2, 11]. Because MTTsur and ATTsur are equivalent to MSOT and STT, those
are also classes closed under composition.

The classes of MTT, MTTR, ATT and MSOTS are not closed under composition.

1.4.4 The functional programming approach

Tree transducers are distinguished from other types of representations of tree transfor-
mations mainly by their recursive way of computing on trees. Trees form a structure
particularly suited for such computations because of their recursively defined structure.
When computing the output of a DTOP for example, applying a state to a node launches
recursive calls of other states on the subtrees of that node. Such recursive calls can be seen

19

T = (Q,Σι,Σo, q0, R) with:

• Q = {q0, q1} with q0 of arity 0 and q1 of arity 1,

• Σι = {f, a} with f of arity 2 and a of arity 0,

• Σo = {g, b} with g of arity 1 and b of arity 0,

• The rules of R are:

q0(f(x1, x2)) → g(q1(x1)(q1(x2)(b)))
q0(a) → b
q1(f(x1, x2), y1) → g(q1(x1)(q1(x2)(y1)))
q1(a, y1) → y1

Figure 1.5 – Definition of the MTT T

1 type input = f of input * input | a

2 type output = g of output | b

3

4 let rec state_q0 t = match t with

5 | f(x1,x2) -> g (state_q1 (x1) (state_q1 (x2) (b)))

6 | a -> b

7 and state_q1 t y1 = match t with

8 | f(x1,x2) -> g (state_q1 (x1) (state_q1 (x2) (y1)))

9 | a -> y1

10

11 val state_q0 : input -> output = <fun >

12 val state_q1 : input -> output -> output = <fun >

Figure 1.6 – Functional program in OCaml representing MTT T

as pure functions, meaning the computation of one such call is determined only by the
subtree given as argument, and can be seen as isolated from the rest of the transducer’s
computation. This is also true for computations of other models of transducers like MTT
or STT.

For example the MTT T shown in Figure 1.5 can be represented by the program shown
in Figure 1.6 in the functional programming language OCaml.

This means that we can see tree transducers as a particular type of functional programs.
This is why we choose to apply functional programming techniques to tree transformations
and especially tree transducers.

This leads us to design a new model of tree transducers called High-Order Determin-
istic tree Transducers (HODT) based on simply-typed λ-calculus. This model generalizes
several known models of tree transformations and, by using techniques from functional
programming, we are able to design two algorithms for computing the composition of
HODT.

20

1.5 Contribution and Plan of the thesis

1.5.1 High-Order Deterministic tree Transducers

One of the main contributions of this thesis is the model of High-Order Deterministic tree
Transducers (HODT). They are defined similarly to DTOP, except that rules produce
simply-typed λ-terms instead of trees. They are similar to the model of high-level tree
transducers defined in [16], except that they only consider safe λ-calculus.

In general the HODT model is more expressive than the other models described in this
chapter, but by putting simple restrictions on the λ-terms produced by rules, we reach
the same classes of tree transformations as known models of transducers. For example the
restriction to terms of order 0, noted HODT≤0, is equivalent to DTOP, and the restriction
to terms of order 1, noted HODT≤1, is equivalent to MTT. More interestingly, when we
add a regular look-ahead to our HODT, we find that the restriction to linear terms, noted
HODTRlin, is equivalent to MSOT and MTTR

sur, and the restriction to almost-linear terms,
noted HODTRal, is equivalent to MSOTS and ATT. So HODT gives a generalisation of
all these different models.

The use of λ-calculus allows us to use powerful tools from the field of functional pro-
gramming, which grants better insight into the deeper mechanisms of the tree transducers
generalized by our model. Most notably we give two algorithms, based on models of the
λ-calculus, for computing the composition of two transducers. We observe that when we
compose two HODT, the order of the resulting transducer is the sum of the transducers of
which it performs the composition. This is coherent with the fact that DTOP (HODT≤0)
are closed under composition but not MTT (HODT≤1).

In the special cases of HODTRlin and HODTRal, we give a procedure for reducing the
order of transducers. This allows to represent HODTRlin and HODTRal as transducers
whose rules produce tuples of tree contexts.

1.5.2 Tree transducers in the CoLiS project

Our goal in the CoLiS project is to design and implement an algorithm for the task of
the symbolic interpreter: computing the set of configurations of the file system which are
compatible with a given script trace (definition 1), and checking if this set is empty. As
opposed to the symbolic interpreter based on a logical framework, we want to make use
of the scientific literature on tree transducers for our algorithm.

The model of HODTRlin could have been a good fit for the CoLiS project. It is
expressive enough to represent Unix commands like mv and cp, and we have an algorithm
for composition with reasonable complexity. The problem is that they only work on ranked
ordered trees. We can use an encoding of unranked trees as binary trees to overcome the
ranked limitation. We have looked for ways to go from ordered to unordered trees, for
example in [8], operations on ordered trees are considered as operations on unordered trees
when they obey a condition of commutativity on child trees. But Unix commands do not
fulfill this commutativity condition because they use filenames to navigate file systems, so
this particular approach does not work. For these reasons we decided not to use HODTRlin,

21

or any restriction of HODT, for our implementation in CoLiS.

We were not able to use HODTRlin directly, but our work on HODTRlin, especially the
sharp management of the look-ahead to describe domains of composition of transducers,
instructed our approach to the modelisation of Unix commands. We designed a model
tailor-made for the representation of Unix commands in CoLiS. This model is named tree
pattern transducers. It uses tree patterns to represent modifications on trees, and a system
of constraints to represent domains of transformations.

We then designed an algorithm for computing the composition of such transducers.
We especially tried to optimize the complexity of computing the domain of the composed
transducer. Our work on domains of compositions of tree transformations with HODTRlin

was useful to us in that regard. We focused on the computation of domains because of
the particular approach we took for the implementation in the CoLiS project.

The backward approach Our initial ambition for CoLiS was to use tree transducers to
represent the action of Unix commands on file systems. But an alternative to this first
approach is to only compute sets of trees representing configurations of the file system
compatible with executions of scripts. Given a script trace there are two ways of doing
this: one is to compute the images of the set of all trees, through each successive command
in the trace (seeing commands as tree-to-tree functions), starting with the first command.
The other is to compute the successive inverse images through the commands, starting
with the last command. These correspond to two ways of checking the compatibility
of commands with the file system: either going forward in the execution of the script,
starting with the first command, or going backward in the execution, starting with the
last command.

Our chosen approach is to go backward, it mainly has two benefits. First it allows to
directly compute the set of initial configurations of the file system that are compatible with
the input script trace. The forward approach would yield the set of final configurations
instead, which is less helpful when our goal is to detect bugs and explain to a human how
it arises.

The second benefit of the backward approach is its algorihmic complexity. Simply put,
the sets of trees which are direct images of commands are harder to represent than inverse
images. This is because of the operation of copying subtrees. When a directory is copied,
the direct image of the set of all trees has two directories which must be identical, whereas
the inverse image has no such type of constraint. Through successive direct images, con-
straints of equality between directories can compound, meaning that a new constraint on
one directory can propagate to other directories which makes verification more complex.
On the other hand computing successive inverse images through copying transformations
only requires the unification of two directories, without chains of implications. It is for
the same reason that DTOP do not preserve the regularity of tree languages, but their
inverse images do. In fact, the very idea of basing our verification algorithm on inverse
images takes its root in this very general property of transducers: regularity of languages
is preserved by inverse images of transducers.

22

Our contribution in the CoLiS toolchain We used the backward approach and the model
of tree pattern transducers to implement our version of the symbolic interpreter. This part
of our contribution includes the design of tree pattern transducers, the modelisation of Unix
commands in this model, an algorithm for computing the composition of these transducers
and another for computing inverse images, and finally the implementation of the symbolic
interpreter and its integration with the concrete interpreter.

1.5.3 The MIX language

We have included a result we obtained in the beginning of the thesis. At the time we
were studying the expressivity of MSOT on strings. In particular, we have obtained an
impossibility result about a particular language called MIX2. This language is defined as
MIX2 = {w ∈ {a, b}∗ | |w|a = |w|b}, also known as the double-sided Dyck language D∗2.
We show that this language cannot be the output language of an MSOT from a regular
language. Actually our result is slightly stronger and shows that this language is not an
EDT0L.

By the end of the 70s and in the early 80s, the difference between EDT0L and context-
free languages were widely studied and considered difficult. This result is part of this
tradition and shows that one of the simplest context-free language is not an EDT0L.

1.5.4 Plan of the thesis

The contributions of this thesis are broadly divided into three parts.

1. Our first contributions, presented in part II, are the implementation of a tool check-
ing Debian installation scripts for bugs in their interaction with the file system,
and the design of its algorithm. The modelisation of Unix file systems and of the
flow structure of scripts is described in chapter 2. Our design of a model of tree
transformations, of formal algorithms on this model, and the modelisation of Unix
commands are presented in chapter 3. Our implementation of the tool checking
scripts is presented in chapter 4.

2. Our main theoretical contribution, presented in part III, is the design of the model of
High-Order Deterministic tree transducers (HODT) which generalizes several known
classes of transducers. We define the model and its variants, and we compare their
domains and expressiveness in chapter 5. Two different algorithms computing the
composition of our transducers based on semantics of the λ-calculus are described
and their relative complexities are discussed in chapter 6. Finally we prove that the
linear and almost-linear variants of our model are respectively equivalent to MSOT
and MSOTS in chapter 7.

3. Our last contribution, presented in chapter 8 in part IV, is a proof that the language
MIX, which is the commutative closure of the Dyck language, is not in the class of
languages EDT0L, which implies that it is not an output language of a word-to-word
transduction defined by Monadic Second-Order logic.

23

Finally we conclude and examine research paths left open after this work.

24

Part II

Part 2 : Contribution to the CoLiS
project

25

Chapter 2

Abstraction of filesystems and scripts in
the CoLiS project

In this part of the thesis we present our practical contribution to the CoLiS project cul-
minating with the implementation of a tool able to check for errors in Shell scripts, in
particular those arising from the scripts’ interactions with the file system. Chapter 3
presents the model of tree pattern transducers used to represent the action of scripts on
the file system. Chapter 4 presents the implementation based on tree pattern transducers.

Here, in chapter 2, we expose the problem we are trying to solve as part of the CoLiS
project, and we discuss the abstractions used to formalise it. This discussion reiterates
and builds on arguments given in subsection 1.5.2 of the introduction.

This chapter is organized as follows. In section 2.1 we formalize the problem. In
section 2.2 we detail the control flow tools used in scripts and we deal with them. In
section 2.3 we give our modelisation of file systems. Finally in section 2.4 we use a
reduction from the SAT problem to prove that the problem we are trying to solve is
NP-hard.

2.1 Abstraction of the problem

The goal of this part of the thesis is to check whether scripts can execute on file systems
without errors. A simple way to check if a script can run without errors is to run it, but a
caveat of this approach is that the execution of a script depends on the file system. What
we want to do is account for these interactions between scripts and file systems.

To that aim we reuse code from a tool developed by Nicolas Jeannerod, Benedikt
Becker, Ralf Treinen, Mihaela Sighireanu, Claude Marché and Yann Régis Gianas as part
of the CoLiS project. The full toolchain is described in depth in [19], in this work we only
reuse the part of the tool which we described as the concrete interpreter in subsection 1.3.1.
We use this concrete interpreter as a front-end for our tool, part II of this thesis is dedicated
to building the corresponding back-end part of our tool and describing its underlying
properties. We start with a precise recall of what the concrete interpreter does.

26

1 if test -f /usr/share/bash; then

2 touch /usr/share/bash

3 else

4 cp /bin/bash /usr/share/bash

5 fi

6

Figure 2.1 – Example of Shell script

Concrete interpreter

The concrete interpreter ’s function is to handle the parts of scripts which do not interact
with the file system, in practice it takes a script as input and computes a list of execution
scenarios of this script, which are summarized as script traces. We first recall the definition
of script traces.

Definition 1 A trace atom is either success(command) or failure(command) where command
is a call to a Unix command, including the command’s arguments, which interacts with
the file system. success(command) is called a success atom and failure(command) is called
a failure atom.

A script trace is a finite ordered list of trace atoms.

We show what the concrete interpreter computes on an example script (different from
the example of subsection 1.3.1). The script in Figure 2.1 has 2 success script traces:

S1 = (success(test -f /usr/share/bash), success(touch /usr/share/bash))
S2 = (failure(test -f /usr/share/bash), success(cp /bin/bash /usr/share/bash)

and 2 error script traces:

E1 = (success(test -f /usr/share/bash), failure(touch /usr/share/bash))
E2 = (failure(test -f /usr/share/bash), failure(cp /bin/bash /usr/share/bash)

For handling loops, in particular potentially infinite loops like while, the concrete
interpreter assumes there is a bound on their number of iterations. The alternative,
computing possibly infinite iterations of functions on tree structures, would make the
problem undecidable. In fact the halting problem on Turing machine can be reduced to
this problem by representing the tape as in tree structure.

This approximation of the problem may seem substantial but, in practice, maintainer
scripts rarely use loops with an arbitrary number of iterations.

The concrete interpreter produces these script traces which are the input of the sym-
bolic interpreter.

Symbolic interpreter

One of our main contributions to the CoLiS project is the design of an algorithm for the
symbolic interpreter, its implementation and underlying formal properties. The symbolic

27

interpreter takes as input a script trace and outputs the set of file systems which are
compatible with it.

As stated in subsection 1.5.2, our approach consists in computing successive inverse
images throught each command in a script trace. But we still need to formalize the action
of Unix commands on file systems as tree-to-tree functions. For this we want a model of
transducers with which we are able to:

• represent the action on file systems of Shell commands like mkdir and cp, both when
they succeed and when they fail,

• represent the composition of any two transducers as one transducer,

• compute on which input trees a transducer is defined (i.e. computing its domain).

It would be possible to represent arguments of script commands as input of our trans-
ducers, but we choose not to because it would greatly increase the complexity of the model.
Instead we choose to use transducers parametrized by arguments of commands. In others
words the transducer associated with a script command will also depend on the command’s
context (including option, arguments and current working directory).

Our chosen model of tree transducers, tree pattern transducers, is exposed in chapter 3.

2.2 Control flow structure of Shell scripts

This section is not part of our contribution, in it we briefly present how the control flow
structure of scripts impacts their executions and their corresponding script traces. In
particular we see how script traces of if statements and loops are computed. We also
introduce the notion of uninterrupted composition of commands which is useful to model
Unix commands used on lists of arguments.

We recall the definition of script traces :

Definition 1 A trace atom is either success(command) or failure(command) where command
is a file system command, i.e. a call to a Unix command, including the command’s argu-
ments, which interacts with the file system. success(command) is called a success atom
and failure(command) is called a failure atom.

A script trace is a finite ordered list of trace atoms.

The definition of script traces can be given by induction on the structure of scripts.
Scripts can contain a variety of different constructs, but we only show how script traces
of sequential composition, if statements and while loops are computed. The behaviour
of other structures of scripts like case and for can be deduced from the behaviours of
sequential composition, if and while.

For all script s, we note [[s]]↑ the set of script traces representing succeeding executions of
s (executions with exit code 0), and [[s]]↓ the sets of script traces representing its executions
with errors (i.e. executions where the exit code is not 0). For all two sets S1 and S2 of script
traces, we note S1∪S2 their union, and we note S1 ◦S2 the set of script traces obtained by
concatenating a script trace in S1 with a script trace from S2. The operation ◦ is called

28

composition, it is associative and we write Sn
1 the composition defined by S1

1 = S1 and
Sn+1
1 = S1 ◦ Sn

1 for all n ≥ 1.
Then we have the following equations:

• For all scripts s1, s2, the sequential composition of s1 and s2 is noted s1;s2, and its
associated sets of script traces are:
[[s1;s2]]

↑ = [[s2]]
↑ ◦ [[s1]]↑

[[s1;s2]]↓ = [[s1]]↓ ∪ ([[s2]]↓ ◦ [[s1]]↑)
This amounts at saying that s1;s2 fails either because s1 fails (and s2 is not run) or
because s2 fails after s1 is run successfully.

• For all script s1, s2, s3, noting s the following conditionnal statement:

if s1; then

s2
else

s3
fi

The success and failure script traces of s are:
[[s]]↑ = ([[s2]]

↑ ◦ [[s1]]↑) ∪ ([[s3]]
↑ ◦ [[s1]]↓)

[[s]]↓ = ([[s2]]↓ ◦ [[s1]]↑) ∪ ([[s3]]↓ ◦ [[s1]]↓)

• For all scripts s1, s2, noting s the following while loop:

while s1
do

s2
done

we associate with s the following transducers:

[[s]]↑= [[s1]]↓ ∪ ([[s1]]↓ ◦ [[s2]]↑ ◦ [[s1]]↑) . . . ([[s1]]↓ ◦ ([[s2]]↑ ◦ [[s1]]↑)n)
[[s]]↓= ([[s2]]↓ ◦ [[s1]]↓) ∪ ([[s2]]↓ ◦ [[s1]]↓ ◦ [[s2]]↑ ◦ [[s1]]↑) . . . ([[s2]]↓ ◦ [[s1]]↓ ◦ ([[s2]]↑ ◦ [[s1]]↑)n)

The number n here is the bound on the number of iterations of the loop, it can be
set when launching the concrete interpreter.

Uninterrupted composition

Some Unix commands like mkdir or rm are usually run on one argument, but they can
be used on a list of arguments in order to repeat the command on each argument, but
this repetition is not exactly equivalent to the sequential composition of commands. For
example the command mkdir /bin /boot is not equivalent to the sequential composition
mkdir /bin; mkdir /boot, rather it is equivalent to mkdir /bin > mkdir /boot where
> represents the operation of uninterrupted composition on scripts.

The difference with sequential composition is that an error in the first component of
the composition does not keep the second component from being run. In terms of script

29

traces this is defined by;

[[s1 > s2]]
↑ = [[s2]]

↑ ◦ [[s1]]↑

[[s1 > s2]]↓ = ([[s2]]↓ ◦ [[s1]]↑) ∪ (([[s2]]↓ ∪ [[s2]]
↑) ◦ [[s1]]↓)

Notice that uninterrupted composition is associative (like sequential composition), so we
can talk about the uninterrupted composition of a sequence of more than two commands
or scripts without any ambiguity.

Uninterrupted composition will be useful when defining the behaviour of Unix com-
mands in chapter 3.

2.3 Abstraction of file systems

File systems under Linux operating systems are very elaborate. In this section we present
a model of file systems that focuses on their hierarchical properties. This model is the
same as the one described in subsection 1.3.2. Our simplifications make a compromise
between tractability and accuracy with respect to actual file systems.

We model file systems as rooted tree structures. Edges and nodes are labeled. Labels
of edges correspond to filenames. Labels of nodes correspond to types of files. Edges from
mother to daughter are labeled by the daughter’s name. Two distinct edges leaving a
same node have distinct labels. In actual file systems, filenames cannot be longer than
255 characters, but we will work under the approximation that the set of filenames is
infinite. Each node has a type amongst the 7 different types of files mentioned in the
POSIX standard: directories, regular files, symbolic links, FIFO special files, block devices,
character devices and sockets. Only directory nodes can have child nodes.

Although we differenciate between symbolic links and other types of files, we only
consider them as leaf nodes. The reason why we do not want to model symbolic links
is because it would require us to model file systems as graph structures instead of tree
structures. This would make the verification process much more complicated. Also, the
goal of our tool is to detect bugs which happen in specific configurations of file systems,
and handling symbolic links could yield overly intricate and unrealistic configurations.

We do not model file contents. It would require to understand all file formats which
is unrealistic. Timestamps would offer us little in terms of verification. Since we focus on
installation and uninstallation scripts, which should be run with superuser privileges, we
choose to forget about permissions.

Formal representation: we use the same formal representation of file systems in the whole
CoLiS project. It is the same as the one used by other members of the project, including
the implementation discussed in subsection 1.3.1. This representation is also described
in [20]. Mentions of trees, file hierarchies and file systems in this part of the manuscript
(part II) refer to this definition.

Definition 4 The set of UNIX features is the set of words over the alphabet of unicode
characters which are neither . , .. , nor contain any occurrence of the character /. We

30

note it F .

As stated in the UNIX standard1, there exists seven file types :

• regular files, which we’ll note here reg

• directories, noted here dir

• symbolic links, noted here symlink

• FIFO special files, noted here fifo

• block devices, noted here block

• character devices, noted here char

• sockets, noted here sock

We note types = {dir, reg, symlink, fifo, block, char, sock} the set of UNIX file types. In
our modelisation of file systems as trees, nodes are labeled with their file type and edges
are labeled with filenames. So labels of nodes are in types and labels of edges are in F .

In OCaml, feature trees could be implemented as in Figure 2.2.

1 module SMap = Map.Make(String)

2

3 type featureTree = node SMap.t

4 and node = Dir of featureTree | Reg | SymLink | Fifo | BlockDev |

CharDev | Socket

5 (* here "node SMap.t" denotes the type of mappings from strings to nodes

, it is similar to type "String -> node" for example *)

Figure 2.2 – Representation of feature trees as an OCaml type

Definition 5 Feature trees are inductively defined as :

T = F ((types \ {dir}) ∪ ({dir} × T))

where F X denotes the set of mappings (partial functions with finite domain) from F
to X.

The mapping map with domain {x1, . . . , xn} is noted [x1/map(x1), . . . , xn/map(xn)].

For example, the feature tree containing a regular file named cat inside a directory
/bin is: [bin/(dir, [cat/reg])]. In general we use a simplified inline notation where slashes
and dir are ommited and other file types are noted as exponents of their file names. So
[bin/(dir, [cat/reg])] is simplified to:

[bin[catreg]]

1http://pubs.opengroup.org/onlinepubs/9699919799/

31

http://pubs.opengroup.org/onlinepubs/9699919799/

opt

misc

cache

lock lib log opt run
tmp

spool

share
man

misc

include

local
sbin

share
bin

bin
etc boot dev

lib
media

var
mnt opt

proc
run sbin srv usr

sys
tmp

root

dir
dir

dir

dir dir dir dir dir

dir
dir dir

dir

dir dir dir dir
dir

dir dir dir dir dir dir dir

dir
dir

dir

dir dir

dir dir

dir

dir
dir

Figure 2.3 – Feature tree representing the directories of the Filesystem Hierarchy
Standard

We will often write paths in such trees using the traditional UNIX notation: features
in a path are listed in order and separated by the symbol /.

We can also represent feature trees graphically: in Figure 2.3 we represent the set of
directories prescribed by the Filesystem Hierarchy Standard2 (or FHS) for linux systems.

Some directories present in the FHS are not represented because they are optional or
dependent on the distribution or hardware, or because they have been recently introduced
or deprecated in the standard. We also do not represent standard files like /bin/cat.

This amounts to saying that a feature tree is a finite unordered tree where nodes are
labeled with file types in types and edges are labeled with features in F . Each node in a
feature tree has a finite number of outgoing edges, and all outgoing edges of a node carry
different names. Leaves may be either one of the non-directory file types or an empty
directory. Inner nodes must be directories.

With this abstraction of file systems, we want to use formal tools on scripts in order
to check when specific file systems can produce errors in scripts. For this we turn to tree
transducers as a way to model scripts and their action on file systems.

2.4 NP-hardness of verification on scripts

In this section we prove that the problem of checking if a script can succeed is NP-hard,
even with constraints on the set of commands allowed in the scripts. Most notably we
show this is true for scripts containing only cp -r, rm -r, rmdir and mkdir type of
commands, without any control flow constructs like if or while. We note this problem

2https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

32

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

SCT{cp -r, rm -r, rmdir, mkdir}.
This implies that the problem solved by the symbolic interpreter, deciding if a script

trace has a compatible configuration, is also NP-hard. This is because scripts without
control flow tools have only one script trace on which they succeed.

We do this through reduction from the SAT problem. Let φ be a SAT formula in
conjunctive form:

φ = C1 ∧ · · · ∧ Cm

We note n = |φ| the size of φ. We note V the set of boolean variables in φ and
h = |V | its cardinal. We note y1, . . . , yh the variables in V . For all yi ∈ V we note yi the
corresponding negative literal. We note W = V ∪ V the set of literals on V . We consider
the function x 7→ x to be an involution on W , i.e. we have x = x for all x ∈ W .

In the reduction, we use the file system to represent valuations of the boolean variables
in V . Then we will build a script which succeeds on a file system only if it represents a
valuation of variables that satisfies formula φ.

To this end we injectively associate a feature with each literal x ∈ W , we will sim-
ply note x the feature associated with the literal x and assume context can clear any
misunderstanding.

To represent trees we use the simplified inline notation. For example the expression
[bin[catreg, cpreg], usr[local[], share[]]] denotes the tree shown in Figure 2.4.

cat cp local share

bin usr

root

dir

reg reg

dir

dir dir

Figure 2.4 – Representation of feature tree [bin[catreg, cpreg], usr[local[], share[]]]

To each valuation θ of the variables in V we associate a directory named val containing,
for each variable a ∈ V :

• if θ(a) = true, a directory a[a[]] and a directory a[],

• if θ(a) = false, a directory a[] and a directory a[a[]].

We note it val(θ). For example if V = {a, b} and θ is such that θ(a) = true and
θ(b) = false, then val(θ) denotes the directory val[a[a[]], a[], b[b[]], b[]] represented in
Figure 2.5.

To each clause Ci we associate a feature noted C̃i. To each valuation θ of the variables
in V and each clause Ci of φ we associate the directory eval(θ, Ci) = C̃i[>[>[. . .>[] . . .]]]
where the number of > is n + 1 and n is the number of literals in Ci which are true in
valuation θ.

33

a b

a a b b

val

dir

dir

dir

dir dir dir

dir

Figure 2.5 – Feature tree val(θ) when θ(a) = true and θ(b) = false

We are going to build a script s(φ) which succeeds on a file system fs if and only if fs is
of the form : [val(θ), eval(θ, C1), . . . , eval(θ, Cm)] where θ is a valuation of variables which
satisfies φ.

This script is composed of 3 main ”subscripts”, each making sure one of the following
constraints are verified:

1. the script checkVal(φ) ensures that the directory at path /val is indeed of the form
val(θ) where θ is a valuation of the variables in V ,

2. the script evalClauses(φ) checks that, for each clause Ci, the directory at path /C̃i

is indeed of the form eval(θ, Ci) where θ is the same valuation as the one described
by val(θ),

3. the script checkClauses(φ) verifies that, for each clause Ci, at least one literal in
the clause is true (assuming that the directory at path /C̃i is of the form eval(θ, Ci)).

Precisely the script s(φ) is of the form:

init(φ); checkVal(φ); evalClauses(φ); checkClauses(φ)

where the script init(φ) initiates the computation by creating subdirectories so that
following subscripts can work independently.

The script init(φ)

Each of the three main subscripts alters parts of the file system which they are checking
(val(θ) or eval(θ, Ci) for i ≤ m), we copy these parts first so that each subscript can work
on a copy of what it needs to check without interacting with other subscripts.

The job of init(φ) is to create a subdirectory eval, in which the script evalClauses(φ)
will work, and to copy in this directory the content of val(θ) and eval(θ, Ci) for all i ≤ m:

init(φ) = mkdir /eval; setup(C1); . . . setup(Cm−1); setup(Cm)

34

with, for all i ≤ m:

setup(Ci) = mkdir /eval/C̃i;

cp -r /C̃i/ /eval/C̃i/

cp -r /val/ /eval/C̃i/;

The script checkVal(φ) will work exclusively in directory /val, while evalClauses(φ)
will work in directory /eval and checkClauses(φ) will work in directories /C̃i/ for i ≤ m.

The script checkVal(φ)

The script checkVal(φ) needs to check that the directory at path /val is of the form
val(θ) for some valuation θ. This means that, for each variable a ∈ V , it contains either:

• a directory a[a[]] and a directory a[] (if θ(a) = true),

• a directory a[] and a directory a[a[]] (if θ(a) = false).

In order to check this we use a special property of the command cp -r: if the desti-
nation path of the cp -r exists, then the command copies the directory from the source
path inside the directory at the destination path; however if the destination path of the
cp -r does not exist, then the command creates the directory at the destination path and
copies the content of the directory from the source path directly at the destination path.

For example, it means that if you run the command cp -r a/ a/a/ in a directory
where you have a subdirectory a[] and a subdirectory a[a[]], you end up with a subdirectory
a[a[a[]]].

But if you run that same command cp -r a/ a/a/ in a directory where you have a
subdirectory a[a[]] and a subdirectory a[], you end up with the same result: a subdirectory
a[a[a[]]].

After the command cp -r a/ a/a/, we can check that we have a directory a[a[a[]]]
with a succession of rmdir commands (since rmdir only succeeds if its target directory is
empty):

rmdir a/a/a; rmdir a/a; rmdir a

So the following script succeeds if and only if it is run in a directory which contains either
two directories a[a[]] and a[] or two directories a[] and a[a[]]:

cp -r a/ a/a/; rmdir a/a/a; rmdir a/a; rmdir a

This property of the command cp -r is important because it allows to check a disjunc-
tion of two configurations of the input tree which are not comparable through the relation
of prefix on trees. The command mv also has this property. We will see later in chapter
3 how the representation of sets of trees using tree prefixes leads to an algorithm for our
verification problem, and how this specific property of cp and mv increases the complexity
of this algorithm from linear time to NP time. We will also use this property in the script
evalClauses(φ).

So, for each variable a ∈ V we define the script checkVar(a) by:

35

checkVar(a) = cp -r /val/a/ /val/a/a/
rmdir /val/a/a/a;
rmdir /val/a/a;
rmdir /val/a;
rm -r /val/a

Now we can define checkVal(φ) as:

checkVal(φ) = checkVar(y1); . . . checkVar(yh); rmdir /val/

where y1, . . . , yh are the boolean variables in V . We purge the directory /val/ with
rmdir /val/ in order to make sure that there were no other files in it. This script succeeds
if and only if the directory at path /val of the form val(θ) for some valuation θ of the
variables in V . We can also say that if the script succeeds then the valuation θ is unique
(since it is determined by the file system).

The script evalClauses(φ)

The script evalClauses(φ) checks each clause one at a time:

evalClauses(φ) = evalClause(C1); . . . evalClause(Cm)

For each clause Ci, the script evalClause(Ci) checks that the directory at path /eval/C̃i/C̃i/

is of the form eval(θ, Ci) where θ is the valuation described by the directory val(θ) at path
/eval/C̃i/val/. Note that evalClause(Ci) will only work inside the directory at path
/eval/C̃i/ created by the script init(φ) (described above), with the directory at path
/eval/C̃i/C̃i/ a copy of the directory at path /C̃i/, and the one at path /eval/C̃i/val/

a copy of the one at path /val/.
Noting x1, . . . , xk the literals in the clause Ci and x1, . . . , xk their negation, we define

the script evalClause(Ci) as:

evalClause(Ci) = cp -r /eval/C̃i/C̃i/>/ /eval/C̃i/x1/x1/;

cp -r /eval/C̃i/x1/x1/>/ /eval/C̃i/x2/x2/
...

cp -r /eval/C̃i/xk−1/xk−1/>/ /eval/C̃i/xk/xk/

rmdir /eval/C̃i/xk/xk/>/

Here we use the same property of cp -r as for checkVal(φ): if the destination path
exists then the command copies the directory from the source path with its feature >, but
if the destination path does not exists then the command copies only the content of the
directory at the source and puts it in the directory at the destination path.

We see how it works on the following example. Since we only work inside the directory
at path /eval/C̃i/, we represent only the content of this directory. We start with the first
command:

cp -r /eval/C̃i/C̃i/>/ /eval/C̃i/x1/x1/

36

It can behave in two ways depending on whether the directory at path /eval/C̃i/x1/x1/

exists or not. In order to better understand the difference between these two cases we add
red arrows linking directories to their copy:

case 1 :

>

> x1

C̃i x1

dir

dir

dir

dir

. . . dir

dir

. . .

>

>

>

>

x1

C̃i x1

dir

dir

dir

dir

. . . dir

dir

dir

dir

. . .

command

case 2 :

>

>

C̃i x1

dir

dir

dir

dir

. . . dir . . .

>

>

>

x1

C̃i x1

dir

dir

dir

dir

. . . dir

dir

dir

. . .

command

Here we see more clearly the differences between the behaviours of cp -r. In the first
case the source directory is copied inside the destination directory, while in the second case
the source directory is copied in place of the destination directory, changing the directory’s
name > to the name x1 specified in the destination path.

On this file system we can see that the number of occurrences of > transmitted to
the target directory (path /eval/C̃i/x1/x1/) depends on whether or not the path x1/x1/

already existed before the command.
We know that, by definition of val(θ), case 1 corresponds to θ(x1) = true and θ(x1) =

false. In this case the length of the chain of > directories at path /eval/C̃i/x1/x1/ is
equal to the length of the chain of > directories at path /eval/C̃i/C̃i/.

On the other hand, if θ(x1) = true then θ(x1) = false and the length of the chain of
> directories is decremented.

In summary, the length of the chain of > directories copied by each cp -r command
is decremented for each literal xj in the clause Ci such that θ(xj) = true, for j ≤ k.

At the end of evalClause(Ci) we use rmdir /eval/C̃i/xk/xk/>/ to make sure that
the directory at path /eval/C̃i/> is empty. So the length of the chain of > directories is
1 at the end of evalClause(Ci). Since the length of the chain of > directories has been

37

decremented for each literal in Ci that is true according to valuation θ, the length of the
chain of > directories was n+ 1 at the start of evalClause(Ci) where n is the number of
literals of Ci which are true according to θ.

Note that, with this definition of evalClause(Ci), the directory at path /eval/C̃i/C̃i/

could contain other files or directories than >, so we have not strictly proven that this
directory is of the form eval(θ, Ci). It is possible to purge any unwanted files or di-
rectories by adding rm -r /eval/C̃i/xj/xj/>/; rmdir /eval/C̃i/xj/xj/ at the end of
evalClause(Ci) for each xj in clause Ci. This purging makes the proof clearer, but is not
necessary for the reduction to work because the number of piled up > directories is still
n+ 1 where n is the number of true literals in the clause.

We have proven that, by applying evalClause(Ci) for each clause, we check that the
directories at paths /eval/C̃i/C̃i/ initially were of the form eval(θ, Ci), and therefore its
copy (directory at path /C̃i/) is also of the form eval(θ, Ci).

checkClauses(φ)

The last thing to check is that each clause Ci has at least one literal which is true according
to the valuation θ. Since the length of the chain of > directories is n+1 with n the number
of true literals in clause Ci, we need to check that 2 ≤ n + 1. This is done by checking
that there are at least two piled up > directories in the directory at path /C̃i/, we use the
script: rm -r /C̃i/>/>/ which fails only if there is nothing at path /C̃i/>/>/. So:

checkClauses(φ) = rm -r /C̃1/>/>/;
...

rm -r /C̃m/>/>/

With this we have checked that each clause contains at least one literal which is true
according to a valuation θ described by the file system.

This proves that there is a file system on which the script s(φ) succeeds if and only if
there exists a valuation θ which satisfies formula φ. Hence we have a linear reduction from
the SAT problem to SCT{cp -r, rm -r, rmdir, mkdir} and, since the SAT problem is NP-hard,
the SCT{cp -r, rm -r, rmdir, mkdir} problem is NP-hard.

In the reduction we use mkdir only in the init(φ) part of the script. We use it
only to make sure that directories /eval/C̃i for i ≤ m, are empty before the rest of the
computation of the script. For each such directory we could, instead of using mkdir,
assume that the directory already exists and use rm -r on each of the filenames which
could interfere with the proper computation of the script. Those are, for each directory
/eval/C̃i, the filenames: C̃i, x1, x1, . . . , xn, xn. The mkdir /eval can also be removed
since we only work in its subdirectories /eval/C̃i for i ≤ m. Which means that the
reduction works even without the mkdir command. We chose to present the reduction
with mkdir first because it makes the proof simpler. So the problem SCT{cp -r, rm -r, rmdir}
is also NP-hard.

38

Part of the problem we are trying to solve in the CoLiS project is, given a script trace,
decide whether it has at least one compatible configuration. The reduction from SAT also
works for this problem, so it is also NP-hard.

This complexity result is important to have in mind when we later present our model for
representing the action of scripts on file systems as tree transducers. Indeed we will see that
our algorithm for checking script traces in general runs in exponential time (exponential in
the length of the trace), but that exponential blow-ups only appear at places where cp and
mv are used. In particular we will see that when commands cp and mv, and options -a and
-o of commands test and [.], are forbidden, we can check script traces in polynomial
time. We define and explain properly the property which makes mv and cp special at the
end of section 4.1.2, with definition 19.

Note that options -a and -o of commands test and [.] are forbidden because
they perform the logical operations and and or respectively. In the implementation, the
concrete interpreter splits each such call into several trace atoms, creating more execution
cases and therefore more script traces. So the NP-hardness from logical operations is
born by the concrete interpreter. This is why we can still afford to be polynomial on the
problem of checking one script trace.

39

Chapter 3

A model of transducers for the CoLiS
project

In this chapter, we propose a very simple notion of transducer for file systems that captures
the actions of scripts. The closest notion of tree transformation in the literature is that of
tree patterns or guarded rewriting rules. It is however much simpler than term rewritting
systems in that the action of a transducer is limited to the application of at most one rule.

This chapter is organized as follows. Section 3.1 defines the model of tree pattern
transducers. Section 3.2 presents the tree pattern transducers representing the behaviour
of the usual script commands which interact with the file system. Section 3.3 presents an
algorithm for computing the composition of tree pattern transducers.

3.1 Tree pattern transducers

Before formally defining tree pattern transducers, we show how it works on a few examples.
Since Unix commands can apply different transformations on the file system depending
on whether they succeed or fail, we use the trace atom1 success(comm) to talk about the
command comm when it succeed, and failure(comm) for when it fails.

For example the tree transformation associated with success(mkdir /bin/foo) adds
a dir node at path /bin/foo, and its domain is the set of trees where there is a dir node
at path /bin but there is no node at path /bin/foo. This tree transformation can be
represented with the rewriting rule in Figure 3.1 and with the constraint dir(/bin) ∧
¬node(/bin/foo).

Rewriting rules allow us to move or copy directories by using variables. A command
may also apply different rules depending on the state of the file system. We can see this
on the rewriting rules R1 and R2 of the command mv /tmp /bin in Figure 3.2. There is a
different constraint for each rule. The constraint for rule R1 is C1 = dir(/tmp)∧dir(/bin)∧
¬node(/bin/tmp), the constraint for rule R2 is C2 = dir(/tmp) ∧ ¬node(/bin). Note that
those are not the only rules of mv /tmp /bin since it can also move other types of files
than just directories.

1For trace atoms see definition 1

40

root

dir

bin ⇒

root

dir

dir

foo

bin

Figure 3.1 – Rewriting rule for success(mkdir /bin/foo)

root

dir

X

tmp

dir

bin ⇒R1

root

dir

dir

X

tmp

bin

root

dir

X

tmp ⇒R2

root

dir

X

bin

Figure 3.2 – Rules R1 and R2 for success(mv /tmp /bin)

Next we formally define tree constraints and tree pattern rewriting rules.

Tree constraints

Recall that types is the finite set of file types, and F is the infinite set of features (which
represent filenames).

Definition 6 Let p ∈ F∗ be a path and E ⊆ F be a finite or cofinite subset of F , we define
several types of atomic tree constraints :

• filetype(p), where filetype ∈ types is a file type and p ∈ F∗ is a path. The semantics
of this constraint is the set [[filetype(p)]] containing the trees which have a node at
path p of file type filetype.

• ∃(p, E), the existential feature constraint at path p on set the E ⊆ F of features. Its
semantics is the set of trees in which p is a directory and there exists f in E such
that there is a node at path p/f .

A tree constraint is a boolean combination of atomic tree constraints. Semantics of
tree constraints are given by, for all atomic constraints C1, C2:

• [[C1 ∧ C2]] = [[C1]] ∪ [[C2]]

41

• [[C1 ∨ C2]] = [[C1]] ∩ [[C2]]

• [[⊥]] = ∅

• [[>]] = T

• [[¬C1]] = T \ [[C1]]

A tree constraint literal is either an atomic tree constraint or the negation of an atomic
tree constraint.

For example the command [-f /bin/foo] only succeeds when there is a regular file
at path /bin/foo. So we associate with the trace atom success([-f /bin/foo]) the
tree constraint C = reg(/bin/foo).

The command rmdir /boot fails either when the directory /boot exists and is not
empty, or when there is no directory /boot. So we associate with the trace atom
failure(rmdir /boot) the tree constraint C = ∃(/boot,F) ∨ ¬dir(/boot).

In order to simplify notations, we will use the following notations for all path p:

• NonEmptyDir(p) = ∃(p,F)

• EmptyDir(p) = dir(p) \ ∃(p,F)

• node(p) =
⋃

t∈types t(p)

• file(p) = node(p) \ dir(p)

Tree patterns

Definition 7 Given a set V of variables, tree patterns with variables in V are inductively
defined (similarly to feature trees) as:

T P = (V ∪ {⊥})× (F ((types \ {dir}) ∪ ({dir} × T P)))

where F X denotes the set of finite mappings (i.e. partial functions with finite domain)
from F to X, and ⊥ /∈ V represents a default variable with which we associate the empty
mapping.

We say that a valuation θ : V → T of the variables in V is compatible with a tree
pattern p if and only if:

• the variables in p are in V ,

• for each directory in p of the form (dir, (x,map)), with map ∈ F ((types\{dir})∪
({dir} × T P)) and x ∈ V , the domains of the finite mappings map and θ(x) (i.e.
the filenames of child nodes) are disjoint subsets of F . This condition prevents the
valuation from adding a file when there is already a file with the same name in the
pattern.

42

If they are compatible then θ associates with p the tree obtained from p by substituting
variables using θ, and substituting ⊥ with the empty mapping, the resulting tree is noted
θ(p).

root

X dir

Y

bin

(a) Tree pattern p

root

dir

dir

opt

etc

dir

lib

dir

reg

apt

reg

bash

reg

cat

bin

(b) Feature tree t

root

dir

dir

opt

etc

dir

lib

(c) Feature tree θ(X)

root

reg

apt

reg

bash

reg

cat

(d) Feature tree θ(Y)

Figure 3.3 – Example of tree pattern p, feature tree t and valuation θ such that t = θ(p)

We can see how a valuation θ associates a pattern p with a tree t in Figure 3.3. In this
example θ is compatible with p because θ(X) has no node at path bin.

The specificity of this model is that each variable represents a mapping associating
features (i.e. filenames) with trees, but a node with a variable can still have child nodes
given by the pattern. After a substitution is applied to a pattern, the set of child nodes
of any given node becomes the union of the children given by the substitution and those
given by the pattern. Because two child nodes must have distinct filenames, the child
nodes given by the substitution and by the pattern must have distinct filenames. To
forbid such collisions of filenames, a notion of compatibility between substitutions and
patterns is introduced.

A benefit of this definition of patterns is that the matching between a tree and a
pattern is deterministic, meaning if a tree t matches a pattern p then there is a unique
substitution θ such that t = θ(p).

Definition 8 A tree pattern rewriting rule is given by a pair of tree patterns (p1, p2) on a
set V of variables such that each variable X ∈ V occurs at most once in p1. The pattern
p1 is called the input tree pattern and p2 is the output tree pattern.

43

root

X

⇒R

root

X dir

tmp

(a) Full version

root

⇒R

root

dir

tmp

(b) Simplified version

Figure 3.4 – Rewriting rule for trace atom success(mkdir /tmp)

Each tree pattern rewriting rule R = (p1, p2) induces a relation gR from trees to trees
we call a tree pattern relation defined by:

gR = {(θ(p1), θ(p2)) | θ ∈ V → T }

For all pair of trees (t1, t2) ∈ gR we can also write: t1 →R t2.
The domain of the tree pattern relation gR is

dom(gR) = {θ(p1) | θ is a valuation compatible with p1 and p2}

For example the trace atom success(mkdir /tmp) is associated with the tree constraint
¬node(/tmp) and the rewriting rule shown in Figure 3.4. In order to simplify graphical
representation of rules, we will omit variables when they appear exactly once on either
side of a rule and at the same path. We show the full and simplified version of the rule of
success(mkdir /tmp) respectively in Figure 3.4a and Figure 3.4b.

We use input tree constraints to put restrictions on the domain of tree pattern rewriting
rules. Tree constraints allow more control over the domains of transducers than simple
tree pattern rewriting rule. For example, the command rmdir /bin fails if and only if the
directory at path /bin is not empty. We can express this domain with the tree constraint
NonEmptyDir(/bin), but not with just a rewriting rule.

Tree constraints also allow simpler representation of error cases of commands, indeed
these often consist in checking the existence or absence of a file or directory without
changing the file system. In these cases the rewriting rule R = ((X, []), (X, [])), where []
is the empty mapping and X is a variable, can perform the identity function, and the
condition is expressed with a tree constraint.

Most importantly, input tree constraints characterize (by definition) the domains of tree
pattern transducers. So the input tree constraints will be important in the implementation
where we only compute the domains of compositions of transducers.

The action of most commands on the file system is deterministic, this means that
any constraint expressed on the output of such a command can equivalently be expressed
as a constraint on its input. This is useful when trying to compute the rewriting rule
and input constraint of the composition of two commands. Indeed in a composition, the
input constraint of the second command, which is a constraint on the output of the first
command, has to be expressed as a constraint on the input of the first command.

However the command cp with option -r does not have a deterministic specification,
or rather the specification leaves some choices to the implementer, so different implemen-
tations of the command may behave differently. When a directory is copied using cp -r,

44

the files it contains are copied one by one in the destination directory either until all files
are copied or until it tries to copy a file where there is already a file of the same name. In
the second case the command stops and sends an error without reverting the files it has
copied thus far. The specification does not say in which order the files should be copied,
this means that, depending on the implementation of cp on your computer, when a cp

-r fails in this way, some files may have been copied to the destination directory, but we
cannot say which. This is one of the reasons why cp -r requires our transducer model to
have tree constraints for both the input and output of rewriting rules (we will see this in
detail when we present the exhaustive list of rules for cp -r in section 3.2).

Tree pattern Transducers

Definition 9 A tree pattern transformation is a tuple (Ci, R, Co) composed of an input tree
constraint Ci, a tree pattern rewriting rule R and an output tree constraint Co such that
[[Ci]] ⊆ g−1R (Co).

Each tree pattern transformation T = (Ci, R, Co) induces a relation gT : T × T from
feature trees to feature trees defined by:

gT = gR ∩ ([[Ci]]× [[Co]])

The domain dom(T) of T is the domain of gT , and, since [[Ci]] ⊆ g−1R (Co):

dom(T) = dom(gT) = [[Ci]]

A tree pattern transducer is a list (T1, . . . , Tn) of tree pattern transformations whose
domains dom(T1), . . . , dom(Tn) are disjoint. Each tree pattern transducer τ induces the
relation gτ : T × T defined by:

gτ =
⋃

1≤i≤n

gRi

If the domains of two tree pattern transducers τ1 = (T1, . . . , Tn) and τ2 = (Tn+1, . . . , Tm)
are disjoint, then the disjunction of τ1 and τ2, noted τ1 ∨ τ2, is the tree pattern transducer
τ = (T1, . . . , Tm).

In summary, our model represents commands by giving a rewriting rule, a tree con-
straint on the input tree and a tree constraint on the output tree. But since our goal is
to compute domains and inverse images of tree transformations (c.f. subsection 1.5.2), we
will always express constraints on the input rather than on the output when possible. We
will see later in section 3.2 that only the cp -r command introduces a constraint on its
output, for other commands the output tree constraint will always be >.

Next, for each trace atom, we will give a tree pattern transducer which represents its
action on the file system. Then we will present a procedure to compute the composition
of two tree pattern transducers.

Definition 10 We call identity tree pattern transformation the transformation (C,R,C ′)
with C = C ′ = >, its domain is the set of all feature trees [[C]] = T , and the rewriting

45

rule R is the identity rule. We can represent this transformation as follows:

C = >
root ⇒R root

C ′ = >

We call identity tree pattern transducer the transducer composed only of the identity
tree pattern transformation.

We call empty tree pattern transducer the transducer described by the empty list, its
domain is the empty set ∅.

3.2 Formalisation of Unix commands

We make a list of the usual script commands interacting with the file system, including
commands which modify the file system like mv and cp, and commands which test things on
the file system like test and which. For each corresponding trace atom (a command either
succeeding or failing, c.f. definition 1), we give a tree pattern transducer representing its
action of the file system. The precise specifications of those commands is informed by [20]
and the base specification2 provided by the IEEE (Institute of Electrical and Electronics
Engineers) and The Open Group.

For all commands other than cp with option -r there is no output tree constraint
(their output tree constraint is >), so we do not represent it. Usually, in path arguments
of commands, we distinguish the last feature of the path (the deepest component of the
path) from the rest of the path, we do this by noting path arguments p/f where f denotes
the last feature and p denotes the rest of the path (path p can be the empty path). In the
graphical representation of rewriting rules, a solid edge between two nodes represents their
link by a single feature (the bottom node is a daughter of the top node and its filename is
the label of the edge), while a dotted edge between two nodes represents their link by a
possibly longer path (the top node is an ancestor of the bottom node and the path from
the one to the other is the label of the edge).

In most cases the input tree constraint of the failure case is the negation of the in-
put constraint of the success case. In other cases the model of tree constraints is not
expressive enough to represent the exact set of file systems on which the command fails
or succeeds. In such cases the constraints we use are overapproximations of the sets of
trees which they should represents. This means that, in the success case of the command
cp -r ps/fs pd/fd for example, we give a constraint that allows file systems which would,
according to the specification, induce the command to fail. We prefer overapproximation
to underapproximation because we prefer to have false positives, i.e. seeing an error when
there is none, rather than false negatives, i.e. not seeing an error when there is one.

2Specification of Unix commands: https://pubs.opengroup.org/onlinepubs/9699919799.

2018edition/

46

https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/
https://pubs.opengroup.org/onlinepubs/9699919799.2018edition/

3.2.1 mkdir

The mkdir command is used to create an empty directory at a given path. First we define
its behaviour when used on one argument path.

mkdir p/f

If f is . or .. then the command always fails. We therefore associate, with the success
case of this command, the empty tree pattern transducer (its domain of definition is the
empty set ∅). The failure case of this command corresponds to the identity tree pattern
transformation.

Otherwise the success and failure cases of mkdir p/f perform the transformations
shown in Figure 3.5a and Figure 3.5b respectively. The input constraint of success(mkdir p/f)
is dir(p) ∧ ¬node(p/f), it means that, before running the command mkdir p/f , the file
system should have a directory at path p but should have no node at path p/f . Note that
the input constraint of the failure case is the negation of that.

dir(p) ∧ ¬node(p/f)
root

dir

p ⇒

root

dir

dir

p

f

(a) success(mkdir p/f)

¬dir(p) ∨ node(p/f)

root ⇒ root

(b) failure(mkdir p/f)

Figure 3.5 – Transformations representing the behaviour of mkdir p/f

The option -p changes the action of mkdir on the file system. The command
mkdir -p f1/ . . . /fn acts like the following composition of commands:

mkdir f1/ . . . /fi
mkdir f1/ . . . /fi/fi+1
...
mkdir f1/ /fn−1
mkdir f1/ /fn−1/fn

where f1/ . . . /fi is the smallest prefix of f1/ . . . /fn that is not a directory in the file
system. Every such composition of mkdir commands can be expressed as a tree pat-
tern transducer (we show in section 3.3 how to compute the composition of tree pattern
transducers). We note τi the transducer obtained from this composition of commands by
replacing the input tree constraint by its conjunction with the constraint dir(f1/ . . . /fi−1)∧
¬dir(f1/ . . . /fi), this enforces the condition that f1/ . . . /fi is the smallest prefix of f1/ . . . /fn.
In the particular case of τn+1, the input tree constraint is replaced by its conjunction

47

with dir(f1/ . . . /fn) instead. Then the behaviour of the success of command mkdir -p

f1/ . . . /fn is the disjunction of tree pattern transducers:⋃
1≤i≤n+1

τi

The failure of command mkdir -p f1/ . . . /fn is associated with the empty tree pattern
transducer because the command never fails.

When mkdir is run with several target paths, the command behaves as the composition
of mkdir commands on each individual target path, with the exception that if a mkdir

fails then the following mkdir commands are still run (normally the script would stop at
the first failing command). It returns an error if at least one of the individual commands
fails. So the success case would simply be the composition of success cases. The failure
case would be a list of transformations, each transducer being the composition of mkdir
commands, each command either succeeding or failing, but such that at least one command
fails.
We call this special kind of composition uninterrupted composition, in our implementation
it is handled at the level of the concrete interpreter (c.f. section 2.2). This means that the
mkdir trace atoms treated by our symbolic interpreter have only one path argument.

3.2.2 rmdir

The rmdir command is used to remove a directory at a given path, assuming that this di-
recory is empty. To remove a directory along with its content one should use the command
rm with option -r. First we define its behaviour when used on one argument path.

rmdir p/f

Like mkdir p/f , rmdir p/f always fails if f is . or .. , the success case is the empty
tree pattern transducer and the failure case is the identity tree pattern transformation:

Otherwise the success and failure cases of rmdir p/f perform the transformations
shown in Figure 3.6a and Figure 3.6b respectively.

EmptyDir(p/f)

root

dir

dir

p

f

⇒

root

dir

p

(a) success(rmdir p/f)

¬EmptyDir(p/f)

root ⇒ root

(b) failure(rmdir p/f)

Figure 3.6 – Transformations representing the behaviour of rmdir p/f

48

ft(p/f)

root

dir

ft

p

f

⇒

root

dir

p

(a) Transformations for success(rm p/f), one
for each ft ∈ {reg, symlink, fifo, block, char, sock}

¬file(p/f)
root ⇒ root

(b) failure(rm p/f)

Figure 3.7 – Transformations for command rm p/f

The option -p makes rmdir run one-by-one on each prefix of its target path, except
the empty path, starting with the longest prefix.

Similarly to mkdir, when rmdir is run with several target paths, the command behaves
as the uninterrrupted composition of rmdir run one-by-one on each target path.

3.2.3 rm

The rm command is used to remove a file at a given path, or, when the option -r is
used, a directory (along with its content). First we define its behaviour when used on one
argument path.

rm p/f

If f is . or .. then rm p/f always fails, rm / also always fails, either way the success
case is the empty transducer and the failure case is the identity transducer.

Otherwise the success case has several transformations, one for each type the file at
path p/f can have. For each non-directory file type ft ∈ {reg, symlink, fifo, block, char, sock}
we note Tft the corresponding transformation of success(rm p/f). Instead of representing
the 6 transformations, we represent only one, but with a symbol ft which can represent
any of the six non-directory file type (we only do this to use less paper). The failure case
has only one transformation. The transformations for the success and failure cases of rm
p/f are shown in Figure 3.7a and Figure 3.7b respectively. We recall that file denotes the
disjunction of all the non-directory file types:
file(p/f) = reg(p/f) ∨ symlink(p/f) ∨ fifo(p/f) ∨ block(p/f) ∨ char(p/f) ∨ sock(p/f)

The -r option allows the removal of a directory. So, in the success case, we add a 7th

transformation to the first 6 used for rm p/f . The failure case of rm -r p/f has only
one transformation. Those are shown in Figure 3.8a and Figure 3.8b respectively. In the
graphical representation of rules we omit variables only when they appear at the same
path in the input as in the output, this is why for success(rm -r p/f) we make variable
X explicit.

The -f option prevents the command to return an error. In our setting this means that

49

dir(p/f)

root

dir

dir

p

f

X

⇒

root

dir

p

(a) 7th transformation of success(rm -r p/f)

¬node(p/f)
root ⇒ root

(b) failure(rm -r p/f)

Figure 3.8 – Transformations for rm p/f with option -r

the success case becomes the disjunction of the success and failure cases of the correspond-
ing command without the -f option, and the failure case becomes the empty transducer.

When rm is run with several target paths, the command behaves as the uninterrrupted
composition of rm run one-by-one on each target path.

3.2.4 touch

The touch command is used to make sure that a file exists at a given path, creating an
empty file if there is not already one at the given path. First we define its behaviour when
used on one argument path.

touch p/f

If f is . or .. then the success and failure cases both have one transformation with
the identity rule. They are respectively shown in Figure 3.9a and Figure 3.9b.

node(p)

root ⇒ root

(a) success(touch p/f)

¬node(p)
root ⇒ root

(b) failure(touch p/f)

Figure 3.9 – Case of touch p/f where f = . or f = ..

Otherwise the success case has two transformations: either the target path already
exists or the file has to be created. The transformations for touch p/f are shown in
Figures 3.10 and Figure 3.11. Here reg is the type of regular files, it is the type created by
default by command touch.

When touch is run with several target paths, the command behaves as the uninter-
rrupted composition of touch run one-by-one on each target path.

50

node(p/f)

root ⇒ root

(a) Transformation T1 of success(touch p/f)

dir(p) ∧ ¬node(p/f)
root

dir

p ⇒

root

dir

reg

p

f

(b) Transformation T2 of success(touch p/f)

Figure 3.10 – success(touch p/f)

¬dir(p)
root ⇒ root

Figure 3.11 – failure(touch p/f)

3.2.5 test and []

Commands touch and [are very similar, the only difference between the two is that [

requires to add] after the arguments of the command. Everything we say about test is
also true of [.

These two commands are mostly used as conditions in conditionnal statements. They
can check a variety of things, but here we only care about their interactions with the file
system, so we only list their behaviour with the options which check properties of the file
system. Because they only check properties of the file system without modifying it, the
rewriting rule for each case will be the identity rule. So for each option we only specify
the corresponding tree constraints (one in case of success and one in case of failure):

• test -b p
Success: block(p)
Failure: ¬block(p)

• test -c p
Success: char(p)
Failure: ¬char(p)

• test -d p
Success: dir(p)
Failure: ¬dir(p)

• test -e p
Success: node(p)
Failure: ¬node(p)

51

• test -f p
Success: reg(p)
Failure: ¬reg(p)

• test -h p
Success: symlink(p)
Failure: ¬symlink(p)

• test -p p
Success: fifo(p)
Failure: ¬fifo(p)

• test -S p
Success: sock(p)
Failure: ¬sock(p)

• test -[GOgkrsuwx] p
Each option among -G, -O, -g, -k, -r, -s, -u, -w and -x succeeds if the file at target
path verifies some condition not represented in our model. In such case we represent
an overapproximation of the behaviour of the commands. If the test succeeds then
the target path must exist, but in the failure case we cannot deduce anything with
our abstraction of file systems. So the constraints are:
Success: node(p)
Failure: >

• test p1 -nt p2, test p1 -ot p2
These options are used to compare the dates of two files, again the input constraints
are overapproximations:
Success: node(p1) ∧ node(p2)
Failure: >

• test ! arg

Option ! is used to invert the result of the command, so that test ! arg succeeds
if test arg fails and test ! arg fails if test arg succeeds. In our framework it
means that we take the transducers for the success and failure cases of the command
test arg and swap them.

• test arg1 -a arg2
The -a option is used to compute the conjunction of two test commands (-a stands
for and). Noting Cs1, Cf1, Cs2, Cf2 the input tree constraints respectively for the
success and failure of test arg1 and the success and failure of test arg2, the
constraints for test arg1 -a arg2 are:
Success: Cs1 ∧ Cs2

Failure: Cf1 ∨ Cf2

• test arg1 -o arg2
The -o option is used to compute the disjunction of two test commands (-o stands

52

∨
p∈PATH

reg(p/f)

root ⇒ root

(a) success(which f)

>
root ⇒ root

(b) failure(which f)

Figure 3.12 – Transformations of which f

for or). Noting Cs1, Cf1, Cs2, Cf2 the input tree constraints respectively for the
success and failure of test arg1 and the success and failure of test arg2, the
constraints for test arg1 -o arg2 are:
Success: Cs1 ∨ Cs2

Failure: Cf1 ∧ Cf2

3.2.6 which

We start by defining the behaviour of which on one argument.

which p/f

A which command you might think of is somehow an extension of the test -x com-
mand, which checks if the name given as argument appears as an executable file in the
directories listed in the PATH variable. In the implementation, the concrete interpreter
transforms such calls into the corresponding composition of test -x commands. Here
we specify the which utility installed by the debianutils package of Debian, which can
take a longer path as argument. If the argument of which contains at least one / then
the command does not look in the PATH: it just checks that the given path leads to an
executable regular file.

If the argument of which is a single filename f , we get the transformations shown in
Figure 3.12a and Figure 3.12b.

Since we do not represent executability of regular files in our model of file systems,
we must approximate the constraints. In the success case that means we only check that
there is a regular file, not that it is executable. In the failure case this means that we
cannot check anything on the file system, since which can fail because the file is either
absent, a non-regular file or a regular non-executable file.

When which’s argument is not a single filename, but contains some /, then which

does not look in the PATH variable but instead checks if the path given as argument is
an executable file. In this case, command which p/f acts on the file system like test -

f p/f -a -x p/f .
Again we overapproximate its behaviour because we do not model executability of files.
The transformations of the success and failure cases are shown in Figure 3.12a and Fig-
ure 3.12b respectively.

When which is applied to several arguments, it behaves as the uninterrupted composi-
tion (c.f. section 2.2) of which commands run on each argument.

53

reg(p/f)

root ⇒ root

(a) success(which p/f)

>
root ⇒ root

(b) failure(which p/f)

Figure 3.13 – Transformations of which p/f

3.2.7 mv

The mv command is used to move a file or directory from a given source path, noted here
ps/fs, to a given target path, noted here pd/fd.

mv ps/fs pd/fd

The behaviour of mv first depends on whether the target path pd/fd is a directory in
the file system: if it is not a directory then mv takes the content of path ps/fs and puts it
at path pd/fd, otherwise it puts it at path pd/fd/fs instead. We call ps/fs the source path
and, pd/fd or pd/fd/fs (depending on if pd/fd is a directory), we call the destination path.
The transformations for mv will often have two variants depending on the destination path.

If the source path is an ancestor of the destination path then mv always fails. Otherwise
the success case is composed of the transformations in Figures 3.14, 3.15 and 3.16.

ft(ps/fs) ∧ dir(pd) ∧ ¬node(pd/fd)
root

dir

ft

dir

ps pd

fs

⇒

root

dir dir

ft

ps pd

fd

(a) Transformation T1,ft, one for each
ft ∈ types \ {dir}

ft(ps/fs) ∧ dir(pd/fd) ∧ ¬node(pd/fd/fs)
root

dir

ft

dir

ps pd/fd

fs

⇒

root

dir dir

ft

ps pd/fd

fs

(b) Transformation T2,ft, one for each
ft ∈ types \ {dir}

Figure 3.14 – Transformations of success(mv ps/fs pd/fd)

First, each non-directory file type ft ∈ types\{dir} can be moved. This leads to twelve
transformations, or two if we consider them up to the filetype ft ∈ types \ {dir}. We note
them T1,ft and T2,ft, they respectively have destination path pd/fd and pd/fd/fs. They are
shown in Figure 3.14a and Figure 3.14b.

Next, for each non-directory file types ft, ft′ ∈ types\{dir}, if a file of type ft′ is already
at path pd/fd then it is overwritten. We get the transformations T3,ft,ft′ and T4,ft,ft′ shown
in Figure 3.15a and Figure 3.15b.

Finally, if we have a directory at path ps/fs then we have transformations T5, T6 and
T7 shown in Figure 3.16.

54

ft(ps/fs) ∧ ft′(pd/fd)

root

dir

ft

dir

ft′

ps pd

fs fd

⇒

root

dir dir

ft

ps pd

fd

(a) Transformation T3,ft,ft′ , one for each
ft, ft′ ∈ types \ {dir}

ft(ps/fs) ∧ ft′(pd/fd/fs)

root

dir

ft

dir

ft′

ps pd/fd

fs fs

⇒

root

dir dir

ft

ps pd/fd

fs

(b) Transformation T4,ft,ft′ , one for each
ft, ft′ ∈ types \ {dir}

Figure 3.15 – Transformations of success(mv ps/fs pd/fd)

dir(ps/fs) ∧ dir(pd) ∧ ¬node(pd/fd)
root

dir

dir

dir

ps pd

fs

X

⇒

root

dir dir

dir

ps pd

fd

X

(a) Transformation T5

dir(ps/fs) ∧ dir(pd/fd) ∧ ¬node(pd/fd/fs)
root

dir

dir

dir

ps pd/fd

fs

X

⇒

root

dir dir

dir

ps pd/fd

fs

X

(b) Transformation T6

dir(ps/fs) ∧ EmptyDir(pd/fd/fs)

root

dir

dir

dir

dir

ps pd/fd

fs

X

fs ⇒

root

dir dir

dir

ps pd/fd

fs

X

(c) Transformation T7

Figure 3.16 – Transformations of success(mv ps/fs pd/fd)

Transformation T7 has no equivalent for when the destination path is pd/fd, this is
because this case requires the destination path to be an empty directory, whereas the

55

destination path can only be pd/fd if there is no directory at this path.
If the destination path is a non-empty directory then mv fails (we will later see that it is
not the case for cp -r). The failure case is in Figure 3.17.

¬node(ps/fs) ∨ ¬dir(pd) ∨ (file(ps/fs) ∧ dir(pd/fd))
∨(dir(ps/fs) ∧ (file(pd/fd) ∨ NonEmptyDir(pd/fd)))

root ⇒ root

Figure 3.17 – Transformation for failure(mv ps/fs pd/fd)

In the special case where the destination path of the mv command ends with a ’/’

but is not just ’/’, the command can move a directory only if the target path pd/fd is
already a directory. In this special case transformation T5 is removed from the success case,
and the constraint for the failure case is replaced with its disjunction with the constraint
dir(ps/fs)∧(dir(pd)∨¬node(pd/fd)) (i.e. the constraint of the transformation removed from
the success case).

When mv is used on more than two arguments, it behaves similarly to other commands
when they are used on several arguments. The command:
mv p1/f1 . . . pn/fn pd/fd behaves like the uninterrupted composition of the commands:
mv p1/f1 pd/fd; . . . mv pn/fn pd/fd .

3.2.8 cp

The cp command is used to copy a file or a directory from a given source path, noted here
ps/fs, to a given target path, noted here pd/fd.

cp ps/fs pd/fd

The behaviour of cp, similarly to mv, depends on whether the target path pd/fd is
a directory in the file system: if it is not a directory then the destination path is pd/fd,
otherwise it is pd/fd/fs. The transformations for cp will often have two variants depending
on the destination path.

If the source path is an ancestor of the destination path then cp always fails. Otherwise
the success case is composed of the tree pattern transformations of Figures 3.18 and 3.19.

First, each non-directory file type ft ∈ types \ {dir} can be copied. This leads to two
transformations per possible file type: Figure 3.18a and Figure 3.18b.

Next, for each non-directory file types ft, ft′ ∈ types\{dir}, if a file of type ft′ is already
at path pd/fd then it is overwritten. We get the transformations of Figure 3.19. The
failure case has the transformation shown in Figure 3.20

cp with option -r

With the option -r, cp can copy directories. In this setting, for the success case, we keep
the four tree pattern transformations defined above but we add some more for the cases
where we copy a directory.

56

ft(ps/fs) ∧ dir(pd) ∧ ¬node(pd/fd)
root

dir

ft

dir

ps pd

fs

⇒

root

dir

ft

dir

ft

ps pd

fs fd

(a) Transformation T1,ft, one for each
ft ∈ types \ {dir}

ft(ps/fs) ∧ dir(pd/fd) ∧ ¬node(pd/fd/fs)
root

dir

ft

dir

ps pd/fd

fs

⇒

root

dir

ft

dir

ft

ps pd/fd

fs fs

(b) Transformation T2,ft, one for each
ft ∈ types \ {dir}

Figure 3.18 – Transformations of success(cp ps/fs pd/fd)

ft(ps/fs) ∧ ft′(pd/fd)

root

dir

ft

dir

ft′

ps pd

fs fd

⇒

root

dir

ft

dir

ft

ps pd

fs fd

(a) Transformation T3,ft,ft′ , one for each
ft, ft′ ∈ types \ {dir}

ft(ps/fs) ∧ ft′(pd/fd/fs)

root

dir

ft

dir

ft′

ps pd/fd

fs fs

⇒

root

dir

ft

dir

ft

ps pd/fd

fs fs

(b) Transformation T4,ft,ft′ , one for each
ft, ft′ ∈ types \ {dir}

Figure 3.19 – Transformations of success(cp ps/fs pd/fd)

For the case where we have a directory at path ps/fs we add the transformations shown
in Figure 3.21 and Figure 3.22.

The transformation shown in Figure 3.22 has no equivalent for when the destination
path is pd/fd, this is because this case requires the destination path to be an empty
directory, whereas the destination path can only be pd/fd if there is no directory at this
path.

Contrary to mv, the cp command with option -r can succeed when the destination
directory is not empty. It will succeed if and only if there are no collisions between
filenames present in the copied directory and filenames present in the destination directory.
This case could not have been exactly represented in our model. At this point we have to

¬file(ps/fs) ∨ ¬dir(pd) ∨ dir(pd/fd)

root ⇒ root

Figure 3.20 – Transformation of failure(cp ps/fs pd/fd)

57

dir(ps/fs) ∧ dir(pd) ∧ ¬node(pd/fd)
root

dir

dir

dir

ps pd

fs

X

⇒

root

dir

dir

dir

dir

ps pd

fs fd

X X

(a) Transformation T5

dir(ps/fs) ∧ dir(pd/fd) ∧ ¬node(pd/fd/fs)
root

dir

dir

dir

ps pd/fd

fs

X

⇒R6

root

dir

dir

dir

dir

ps pd/fd

fs fs

X X

(b) Transformation T6

Figure 3.21 – Transformations of success(cp -r ps/fs pd/fd)

dir(ps/fs) ∧ EmptyDir(pd/fd/fs)

root

dir

dir

dir

dir

ps pd/fd

fs

X

fs ⇒R7

root

dir

dir

dir

dir

ps pd/fd

fs fs

X X

Figure 3.22 – Transformation T7 of success(cp -r ps/fs pd/fd)

sacrifice something, either by altering the model or by approximating the behaviour of the
command. We choose to do a bit of both: we use an approximation of the behaviour of
the command and we allow tree transformations to have tree constraints on their output.

The transformation is shown in Figure 3.23. Note that we chose not to omit variable
X although it appears at the same path in the input pattern as in the output pattern
(we could have omitted it to simplify the graphical representation). The rule of this
transformation forgets all about the relation between variables X, Y and Z. This is an
overapproximation of the behaviour of the cp -r command, according to its specification
the variables X and Y should be mappings of disjoint domains, and their union should be
Z. We discuss this approximation later.

The failure case of cp -r has two rules. This is because cp -r can fail while still
modifying the file system. Indeed, when a directory is copied, the files and subdirectories
inside it are copied one by one and, when a collision of filenames happens in the destination

58

dir(ps/fs) ∧ NonEmptyDir(pd/fd/fs)

root

dir

dir

dir

dir

ps pd/fd

fs fs

X Y

⇒R8

root

dir

dir

dir

dir

ps pd/fd

fs fs

X Z

Figure 3.23 – Last transformation T8 of success(cp -r ps/fs pd/fd)

directory, the cp -r command stops without reverting the changes made thus far. This
means that the command can fail and still copy part of a directory. For this case we
also use an overapproximation, similar to that of transformation T8 from the success case
(the difference is that the copied directory cannot be empty). Both transformations of
failure(cp -r ps/fs pd/fd) are represented in Figure 3.24.

NonEmptyDir(ps/fs) ∧ NonEmptyDir(pd/fd/fs)

root

dir

dir

dir

dir

ps pd/fd

fs fs

X Y

⇒

root

dir

dir

dir

dir

ps pd/fd

fs fs

X Z

(a) Transformation T1

¬node(ps/fs) ∨ ¬dir(pd) ∨ (file(ps/fs) ∧ dir(pd/fd))
∨(dir(ps/fs) ∧ (file(pd/fd) ∨ NonEmptyDir(pd/fd)))

root ⇒R root

(b) Transformation T2

Figure 3.24 – The 2 transformations of failure(cp -r ps/fs pd/fd)

In transformation T1 we could have made variable X implicit but again we chose not
to. Removing the approximation amounts to stating that X and Y are mappings with

59

non-disjoint domains, and that Z is the union of Y with any part ofX disjoint from Y . The
part of X which is added to Y represent the files and subdirectories that were copied before
the cp -r command met a collision of filenames between the source and the destination
directories. Since there is no standard for the order in which files and subdirectories should
be copied, the part of X which is copied into the destination directory can be any part
of X as long as its domain (in the set of filenames) is disjoint from that of Y . This also
means that the specification of cp -r is not deterministic. Several command specifications
are in fact not deterministic, but cp -r stays so even with our simplified representation
of file systems (as feature trees) and of execution of scripts (no required permissions, no
concurrence). This behaviour is even more complex to model than that of the success case
of cp -r. It is another reason why we use an approximation here.
The other transformation of failure(cp ps/fs pd/fd) (T2 in Figure 3.24b), represents the
case where cp -r fails without modifying the file system.

When cp is used on more than two arguments it behaves similarly to mv, with the
exception that if there is no directory at path pd/fd then the command fails without
changing the file system. Otherwise the command: cp p1/f1 . . . pn/fn pd/fd behaves like
the uninterrupted composition of the commands: cp p1/f1 pd/fd; . . . cp pn/fn pd/fd .

About the approximations in cp -r

We discuss here the approximation used in the representation of the command
cp -r ps/fs pd/fd, specifically transformation T8 of success(cp -r ps/fs pd/fd) in Fig-
ure 3.23 and transformation T1 of failure(cp -r ps/fs pd/fd) in Figure 3.24a. We explain
what our choice entails and then we list our alternatives and explain why we decided against
them. The argument presented in this discussion are linked to the composition algorithm
of section 3.3 and the algorithm to compute inverse images presented in section 4.1, so we
advise that you be familiar with these algorithms before reading this discussion.

First we show how the choice we have made, forgetting the link between variables X, Y
and Z, forces us to have output contraints in our model of tree pattern transducers. This
is because we want to be able to compute compositions of tree pattern transducers. The
problem arises when you want to represent the tree pattern transducer representing, for ex-
ample, the composition of commands: cp -r /bin /etc; rm /etc/bin/cat, when there
is a non-empty directory at path /etc/bin/. In this case command cp -r /bin /etc suc-
ceeds only with transformation T8 of success(cp -r ps/fs pd/fd) (Figure 3.23). In order to
characterize the tree transformation performed by cp -r /bin /etc; rm /etc/bin/cat,
we still have to express the fact that the output cannot have a file at path /etc/bin/cat,
which we cannot do with a constraint on the input of the composition cp -r /bin /etc;

rm /etc/bin/cat. And this is because with our approximation forgets the link between
the content of directory /etc/bin before and after command cp -r /bin /etc.

Without this approximation, all the variables appearing on the right side of rules had
to appear on the left side too. This is linked to the fact that commands are somewhat
deterministic and their output is always build from the input. This property implied that
we could express constraints on the output of rules as constraints on the input. So, because

60

of our choice of approxiamtion, we had to add, in our model of tree pattern transducers,
constraints on outputs.

The approximation we should to make may induce our tool to flag as errors some script
behaviours which are formally correct. But it is important to remember that this only
happens when a scripts attempts to copy a directory into a non-empty directory: not all
such occurrences are bugs, but they should not be considered as good practices.

Now we explore the alternatives of this choice and discuss their respective benefits and
caveats:

root

dir

dir

dir

dir

ps pd/fd

fs fs

X Y

⇒R8

root

dir

dir

dir

dir

ps pd/fd

fs fs

X X Y

Figure 3.25 – Alternative rule for transformation T8

1. The first solution is to allow two variables in the same directory. We would get the
rule shown in Figure 3.25. This would mean allowing several variables in the same
directory, making the model more complex. In particular it induces an exponential
blow-up of the time complexity of computing the composition of tree pattern trans-
ducers, and of computing the inverse image of a constraint through a rewriting rule
(we need to compute inverse images for our implementation, see section 4.1).

We can see this when on the example of cp -r /bin /etc; rm /etc/bin/cat.
Since we do not know whether the file at path /etc/bin/cat was copied by the cp -r

/bin /etc command, we have to consider both possibilities. This means that, with
each new composition, the number of transformations can increase exponentially.

This may not seem like a big problem since we already have 88 rules for the success
case of cp -r /bin /etc. But in section 4.1 we show how to reduce the number
of rules. In fact all commands except for mv and cp can be reduced to one rule for
their success case and one rule for their failure case.

So we reject this alternative because it would incur a big cost to the time complexity
of our algorithm.

2. A second alternative would be to keep the rule as it is in Figure 3.23, and add
constraints linking the variables X, Y and Z. This approach would yield about the
same complexity problem as the previous one. A modification on variable Z would
imply a disjunction of cases on X and Y which would worsen the time complexity
of computing the composition of tree pattern transducers.

61

3. A third alternative consists in underapproximating the behaviour of cp by assuming
that copying into a non-empty directory always fails. This is better in terms of
complexity than what we have chosen to do. But the complexity gain is fairly
minor. It does not avoid an exponential blow-up because the success case of cp -r

still has 4 other transformations. It does not avoid an exponential blow-up when
composing with other mv or cp commands.

On the other hand, this underapproximation can make some errors invisible. Com-
pared to this underapproximation, the overapproximation we have chosen does not
exactly solve this issue, but at least it leaves them visible. It is important to under-
stand that, although we are trying to use formal verification, deciding if a formal
error in a script constitutes an actual bug still requires human intervention. For this
reason we prefer that our tool flags some type of script behaviour as a potential bug,
rather than assuming it is not a bug.

In this section we have defined the transducers associated with most of the usual shell
script commands which interact with the file system. We have notably ommited the find
command. Indeed this command is hard to represent in our model of transducers. But its
use in maintainer scripts is rare.

3.3 Composition of tree pattern transducers

Before detailing the procedure used to compute the composition of tree pattern transduc-
ers, we illustrate it on a simple example.

3.3.1 Example of composition

We first show how the composition of tree pattern transducers is computed on the example
script s shown in Figure 3.26. This script succeeds on the script trace
(success(cp -r /bin /tmp), success(rmdir /tmp/bin/foo), success(rm /bin/foo)).

1 cp -r /bin /tmp

2 rmdir /tmp/bin/foo

3 rm /bin/foo

4

Figure 3.26 – Example script s

We start by giving a tree pattern transducer for the trace atom success(rm /bin/foo).
There are 6 transformations, one for each non-directory file type
ft ∈ {reg, symlink, fifo, block, char, sock}. For each value of ft the transformation is noted
T3,ft and is shown in Figure 3.27 (the patterns are the same except for the node of type ft.
The input constraint ft(/bin/foo) indicates that transformation T3,ft is applied only if the
file system has a node of type ft at path /bin/foo.

62

ft(/bin/foo)

root

dir

ft

bin

foo

⇒

root

dir

bin

Figure 3.27 – Tree pattern transformation T3,ft of success(rm /bin/foo)

EmptyDir(/tmp/bin/foo)

root

dir

dir

dir

foo

bin

tmp

⇒

root

dir

dir

bin

tmp

Figure 3.28 – Tree pattern transformation T2 of success(rmdir /tmp/bin/foo)

63

EmptyDir(/tmp/bin/foo) ∧ ft(/bin/foo)

root

dir

ft

foo

bin

dir

dir

dir

foo

bin

tmp

⇒

root

dir

bin

dir

dir

bin

tmp

Figure 3.29 – Transformation T2T3,ft for
(success(rmdir /tmp/bin/foo), success(rm /bin/foo))

root

ft′

bin ⇒

root

ft′

bin

ft′

tmp

Figure 3.30 – Rule R1 of success(cp -r /bin /tmp)

Trace atom success(rmdir /tmp/bin/foo) yields the transformation T2 shown in Fig-
ure 3.28.

We start by computing the composition of success(rmdir /tmp/bin/foo) and
success(rm /bin/foo). Since there are 6 transformations for success(rm /bin/foo), there
are 6 compositions to compute (they only differ on filetype ft). Because the composed
transformations act on independent parts of the file system, their compositions are straigh-
forward. For each non-directory file type ft ∈ {reg, symlink, fifo, block, char, sock}, the com-
position of T2 with T3,ft is noted T2T3,ft and shown in Figure 3.29.

For success(cp -r /bin /tmp) we have 88 possible transformations, or eight if we
consider transformations up to modifications of filetypes. Those are numbered R1 to R8

in subsection 3.2.8.
Six of those transformations (considering them up to modifications of filetypes) can be
eliminated because their output patterns are incompatible with the tree constraint of
T2T3,ft.

For example, for all non-directory file types ft, ft′ ∈ {reg, symlink, fifo, block, char, sock},
the tree constraint ft(/bin/foo) is incompatible with the output pattern of the rule R1 of
success(cp -r /bin /tmp) represented in Figure 3.30.

Rules R2, R3 and R4 (in subsection 3.2.8) of success(cp -r /bin /tmp) are also in-
compatible with tree constraint ft(/bin/foo).
Rule R6 and R7 are also incompatible with the tree constraint of T2T3,ft. For example the

64

root

dir

bin

dir

tmp

X

⇒R6

root

dir

bin

dir

dir

bin

tmp

X

X

Figure 3.31 – Rule R6 of success(cp -r /bin /tmp)

dir(/bin) ∧ ¬node(/tmp) dir(/bin) ∧ NonEmptyDir(/tmp/bin)

root

dir

bin

X

⇒T1,5

root

dir

bin

dir

tmp

X X

root

dir

bin

dir

dir

bin

tmp

Y

⇒T1,8

root

dir

bin

dir

dir

bin

tmp

Z

Figure 3.32 – Transformations T1,5 (left) and T1,8 (right) of success(cp -r /bin /tmp)

output pattern of rule R6 represented in Figure 3.31, combined with the tree constraint
EmptyDir(/tmp/bin/foo) ∧ ft(/bin/foo) of T2T3,ft, implies that the subtree represented
by variable X satisfies the tree constraint EmptyDir(foo) ∧ ft(foo) which is unsatisfiable
because ft 6= dir. Rule R7 has the same output pattern as R6, so it entails the same
contradiction.

The remaining rules for success(cp -r /bin /tmp) are rules R5 and R8 (from subsec-
tion 3.2.8). In the scope of this example we note the corresponding transformations T1,5

and T1,8, they are represented in Figure 3.32.
We start by composing T1,5 with T2T3,ft, for a fixed parameter ft ∈ {reg, symlink, fifo,

block, char, sock}.
First we translate the input constraint EmptyDir(/tmp/bin/foo)∧ ft(/bin/foo) of T2T3,ft,
this means:

• applying the input constraint of T2T3,ft to the output pattern of T1,5 and deducing
the constraints satisfied by the variables in the pattern. Here it implies that variable
X satisfies the constraint EmptyDir(bin/foo) ∧ ft(foo),

65

p1 : root

dir

bin

dir

tmp

X X

p2 : root

dir

ft

foo

bin

dir

dir

dir

foo

bin

tmp

Figure 3.33 – Patterns p1 (left) and p2 (right)

root

dir

ft

foo

dir

dir

foo

bin

Y

bin

dir

ft

foo

dir

dir

foo

bin

Y

tmp

Figure 3.34 – Unification of patterns p1 and p2

• infering, from the constraint on the variables, the tree constraint satisfied by the
input pattern of T1,5. Here this means that the input satisfies the constraint
EmptyDir(/bin/bin/foo) ∧ ft(/bin/foo).

Then the tree constraint of the composition T1,5T2T3,ft is the conjunction of the constraint
of T1,5 and the translation of the constraint of T2T3,ft through the rule of T1,5. We get
the constraint: dir(/bin)∧¬node(/tmp)∧EmptyDir(/bin/bin/foo)∧ ft(/bin/foo). Since
dir(/bin) is implied by ft(/bin/foo) we can simplify the constraint, we obtain:

C1 = ¬node(/tmp) ∧ EmptyDir(/bin/bin/foo) ∧ ft(/bin/foo)

The rewriting rule for T1,5T2T3,ft is obtained by first unifying the output pattern of T1,5,
noted p1, with the input pattern of T2T3,ft, noted p2. Patterns p1 and p2 are represented
in Figure 3.33 and their unification is in Figure 3.34.

There the subtree Y is obtained from subtree X by removing file(foo) and dir(bin).
We then propagate this substitution of variables to the input pattern of T1,5 and the output
pattern of T2T3,ft. We get the patterns p0 and p3 shown in Figure 3.35. Since we allow
ourselves to leave variables implicit only when they are at the same path in the input as
in the output pattern, the variable at path /bin/bin was moved so we have to make it

66

root

dir

ft

foo

dir

dir

foo

bin

Y

bin

root

dir

dir

dir

foo

bin

Y

bin

dir

ft

foo

dir

bin

Y

tmp

Figure 3.35 – Patterns p0 (left) and p3 (right)

¬node(/tmp) ∧ EmptyDir(/bin/bin/foo) ∧ ft(/bin/foo)

root

dir

ft

foo

dir

dir

foo

Z

bin

Y

bin

⇒T1,5T2T3,ft

root

dir

dir

dir

foo

Z

bin

Y

bin

dir

ft

foo

dir

Z

bin

Y

tmp

Figure 3.36 – Transformation T1,5T2T3,ft

explicit. We get the transformation T1,5T2T3,ft represented in Figure 3.36. Actually, we
have one transformation for each value of ft in {reg, symlink, fifo, block, char, sock}.

That makes 6 transformations which represent 6 successful executions of the script s
shown in Figure 3.26.

In order to get the remaining 6 transformations of the success case of the script we now
compose transformation T1,8 with T2T3,ft for each ft ∈ {reg, symlink, fifo, block, char, sock}.
We get the transformation T1,8T2T3,ft shown in Figure 3.37 for each ft in
{reg, symlink, fifo, block, char, sock}. We have seen how the composition of tree pattern
transducers can work on an example. Next we describe the general procedure for comput-
ing the composition of two tree pattern transducers.

3.3.2 Unification of tree patterns

The composition of two tree pattern transducers τ and τ ′ is the list of tree pattern trans-
formations obtained by computing the composition of a tree pattern transformation of τ
and a tree pattern tranformation of τ ′. From now on we describe how to compute the

67

NonEmptyDir(/tmp/bin) ∧ ft(/bin/foo)

root

dir

ft

foo

bin

dir

dir

Y

bin

tmp

Y

⇒T1,8T2T3,ft

root

dir

bin

dir

dir

bin

tmp

Z ′

¬node(/tmp/bin/foo)

Figure 3.37 – Transformation T1,8T2T3,ft

composition of two tree pattern transformations T2 and T1 noted T2 ◦ T1. Those transfor-
mations are of the form: T1 = (C1, (p1, p2), C2) and T2 = (C ′2, (p

′
2, p3), C3) where C1, C2, C

′
2

and C3 are tree constraints and p1, p2, p
′
2 and p3 are tree patterns.

The first step in computing the composition T2◦T1 consists in unifying the tree patterns
p2 and p′2. In this section we are going to show that any pair of unifyable tree patterns
admits a most general unification pattern, we show how to compute the unification and the
relation between the variables in tree patterns and their unification. We start by defining
those terms:

Definition 11 Two tree patterns p, p′ ∈ T P are unifyable if there exists a valuation of
variables θ such that θ(p) = θ(p′).

A set of pairs of tree patterns S = {(pi, p′i)}i≤n is unifyable if there exists a valuation
of variables θ such that for all i ≤ n: θ(pi) = θ(p′i)

In order to describe the relationship between variables in patterns and their unification
we need a notion of substitution of variables in tree patterns, we call these substitutions
meta-valuations :

Definition 12 For any two finite sets of variables V1 and V2, a meta-valuation υ from V1

to V2 is a mapping associating with each variable in V1 a tree pattern with variables in V2.
Such a meta-valuation υ is compatible with a tree pattern p if we can replace variables

in p with their image through υ without collision of filenames, i.e. for each directory in p
of the form (X,map) with υ(X) = (Y,map′), X ∈ V1 and Y ∈ V2 ∪ {⊥}, the domains of
the finite mappings map and map′ are disjoint.

If they are compatible then υ associates with p the tree pattern obtained from p by
substituting variables using υ, and substituting ⊥ with the empty mapping. The resulting
tree pattern is noted υ(p).

68

A meta-valuation υ from V1 to V2 is compatible with a meta-valuation υ′ from V ′1 to V ′2
if it is compatible with tree patterns υ′(X) for each X ∈ V ′1 . In this case we can compose
them, the composition is noted υ ◦ υ′ and is defined by: ∀X ∈ V ′1 , υ ◦ υ′(X) = υ(υ′(X)).

Now we can express the notion of minimal unification of tree patterns:

Definition 13 For all meta-valuation υ and set S = {(pi, p′i)}1≤i≤n of pairs of tree patterns,
we say that υ unifies S if for all i ≤ n:

υ(pi) = υ(p′i)

We say that υ minimally unifies S if it unifies S and if, for all meta-valuation υ′

unifying S, there is a meta-valuation ω such that ω ◦ υ = υ′. We then call υ a minimal
unifier of S.

For all meta-valuation υ and all set S = {(pi, p′i)}1≤i≤n of pairs of tree patterns, we
note υ(S) the set {(υ(pi), υ(p′i))}1≤i≤n. Then we have the following lemma:

Lemma 1 For all meta-valuations υ and υ′ and all sets S and S ′ of pairs of tree patterns,
if υ minimally unifies S and υ′ minimally unifies υ(S ′) then υ′ ◦υ minimally unifies S∪S ′.

Proof
Since υ unifies S and υ′ unifies υ(S ′), υ′ ◦ υ must unify S ∪ S ′.

Let ω be a meta-valuation unifying S ∪ S ′. Because ω unifies S there exists a meta-
valuation ω0 such that ω = ω0 ◦ υ. Since ω0 ◦ υ unifies S ′, ω0 must unify υ(S ′), which
implies that there is a meta-valuation ω′0 such that ω0 = ω′0◦υ′. Therefore ω = ω′0◦(υ′◦υ).
So υ′ ◦ υ minimally unifies the set S ∪ S ′. �

Lemma 2 The minimal unifier of a set S of pairs of tree patterns is unique up to renaming
of variables.

Proof
We assume that there are two meta-valuations υ and υ′ minimally unifying set S of pairs
of tree patterns. By definition there must be two meta-valuations ω and ω′ such that:
υ = ω′ ◦ υ′ and υ′ = ω ◦ υ. So υ = ω′ ◦ω ◦ υ. We assume that the domain of ω is the set of
variables appearing in the image of υ (if it is not then we can take the restriction of ω to that
set of variables instead of ω). For all variable X ∈ dom(ω): ω′◦ω(X) = (X, ∅). Since ω(X)
is of the form (Z,map), we can deduce here that map = ∅ (otherwise ω′ ◦ ω(X) 6= (X, ∅)).
So for all X ∈ dom(ω), ω(X) is of the form (Z, ∅) where Z is a variable, i.e. ω is a renaming
of variables. Therefore υ and υ′ are equivalent up to renaming of variables. �

Definition 14 Amulti-set S of tree patterns is linear if each variable appearing in a pattern
in S occurs exactly once in S.

A meta-valuation υ is linear on a set V of variables if the multi-set {υ(X)}X∈V is
linear.

69

In order to prove that the procedure of unification terminates, we define a notion of
size on tree patterns and meta-valuations.

Definition 15 The size of a tree pattern p = (X,map) is inductively defined as s((X,map)) =
1 +

∑
f∈dom(map)

s(map(f)) and the size of a node N is s(ft) = 1 if N = ft ∈ types \ {dir} or

s((dir, p)) = s(p) if N ∈ {dir} × T P .
The size of a meta-valuation υ on a set of variables V is s(υ) =

∑
X∈V

s(υ(X)).

We can now describe the procedure to unify unifyable pairs of tree patterns:

Lemma 3 For all unifyable set S of pairs of tree patterns we can compute a minimal unifier
υ of S.

Noting V1 the set of variables appearing in patterns on the left side of pairs of S, if the
multi-set of patterns on the right side of pairs in S is linear then υ is linear on V1.

Proof
We recall that the size of a tree pattern p = (X,map) is inductively defined as s((X,map)) =
1 +

∑
f∈dom(map)

s(map(f)) and the size of a node N is s(ft) = 1 if N = ft ∈ types \ {dir}

or s((dir, p)) = s(p) if N ∈ {dir} × T P . With each unifyable set S of pairs of patterns
we associate its complexity, noted C(S), defined by C(S) = (nvar(S), s(S)) where nvar(S)
is the number of distinct variables appearing in patterns in S and s(S) is the sum of the
sizes of the patterns in S. We prove the lemma by induction on the complexity C(S) of
S, using the lexicographic order on pairs of integers.

If S is the empty set then the empty meta-valuation minimally unifies S.
Let S a unifyable non-empty set of pairs of tree patterns, with n ≥ 1. Let (p, p′) ∈ S

a pair of tree patterns of the form: p = (X1,map1) and p′ = (X2,map2) where map1 and
map2 are finite mappings and X1 and X2 are either variables or the constant ⊥. Since S
is unifyable (p, p′) is also unifyable. Now we have different cases depending on X1 and X2:

Case 1: X1 = X2 = ⊥

In this case the domains of map1 and map2 are identical. Indeed, if there were a feature
f ∈ dom(map1)\dom(map2), then, for all valuation θ compatible with p and p′, θ(p) would
have a node at path f but not θ(p′), and so (p, p′) would not be unifyable.

We define the set of pairs of patterns: S ′ = {(map1(f),map2(f))}f∈dom(map1) ∪ S \
{(p, p′)}. So S ′ and S have the same unifiers, and therefore they have the same minimal
unifiers. Furthermore S ′ and S have the same variables and s(S) = 1 + s(S ′), so C(S ′) <
C(S). Therefore we can use the induction hypothesis on S ′ to compute a minimal unifier
of S.

Case 2: X1 = X2 6= ⊥

The domains of map1 and map2 are identical (otherwise (p, p′) would not be unifyable).

70

We define the set of pairs of patterns:
S ′ = {(map1(f),map2(f))}f∈dom(map1) ∪ S \ {(p, p′)}. So S ′ and S have the same unifiers,
and therefore they have the same minimal unifiers. Furthermore S ′ has at most as many
distinct variables as S and s(S) = 1 + s(S ′), so C(S ′) < C(S). Therefore we can use the
induction hypothesis on S ′ to compute a minimal unifier of S.

Case 3: X1 = ⊥ and X2 6= ⊥

The domain of map2 is included in the domain of map1 (otherwise (p, p′) would not be
unifyable).

We note map′1 the restriction of the mapping map1 to the set dom(map1) \ dom(map2).
So the sets {(p, p′)} and {((⊥,map′1), (X2, ∅))}∪{(map1(f),map2(f))}f∈dom(map2) have the
same unifiers. We define the sets SX2 = {((⊥,map′1), (X2, ∅))} and
S ′ = {(map1(f),map2(f))}f∈dom(map2) ∪ S \ {(p, p′)}. Then S and SX2 ∪ S ′ have the same
unifiers, and therefore they have the same minimal unifiers.

Noting V2 the set of variables appearing in SX2 , we define the meta-valuation υ
so that υ(X2) = (⊥,map′1) and υ is the identity on V2 \ {X2}. So υ unifies SX2 =
{((⊥,map′1), (X2, ∅))}. We now show that υ minimally unifies SX2 . Let ω be a unifier of
SX2 . The variable X2 can not appear in map′1 because SX2 is unifyable. So we define the
the meta-valuation ω′ for all variable X ∈ V2 \ {X2} by: ω′(X) = ω(X). We get:

ω(X2) = ω((⊥,map′1)) = ω′((⊥,map′1)) = ω′(υ(X2))

Furthermore, for all variable X ∈ V2 \ {X2}: ω(X) = ω′(X) = ω′(υ(X)). Thus ω = ω′ ◦ υ.
Therefore υ minimally unifies SX2 .

Since SX2 ∪ S ′ is unifyable, there exists a valuation of variables θ unifying SX2 ∪ S ′.
Because θ unifies SX2 there is a valuation θ0 such that θ = θ0 ◦ υ. Since θ unifies S ′, θ0
unifies υ(S ′), and so υ(S ′) is unifyable. All variables appearing in υ(S ′) also appear in S,
furthermore X2 appears in S but not in υ(S ′). Therefore υ(S ′) has strictly less variables
than S and so we can use the induction hypothesis on υ(S ′) to compute a minimal unifier
υ′ of υ(S ′).

Lemma 1 allows us to conclude that υ′◦υ minimally unifies SX2∪S ′, so it also minimally
unifies S.

If the multi-set of patterns appearing on the right side of pairs in S is linear, then it is
also true of υ(S ′), thus υ′ is linear on the set V1 of the variables appearing on the left side
of pairs of υ(S ′). In this case variable X2 appears once in p′ and therefore does not appear
in S ′. Since υ is linear on V2 \ {X2} and SX2 ∪ S ′ have the same variables except for X2:
υ′ ◦ υ is linear on the set V1 of variables appearing on the left side of pairs of SX2 ∪ S ′.

Case 4: X1 and X2 are different variables

In this case we note map′1 the restriction of map1 to the set dom(map1) \ dom(map2) and
we note map′2 the restriction of map2 to the set dom(map2) \ dom(map1).

We now show that X1 does not appear in map′2. In order to do this we assume that
X1 appears in map′2 and prove a contradiction. Let θ a valuation unifying S. Then

71

θ((X1,map1)) = θ((X2,map2)). Since X1 appears in map′2 there exists a feature f ∈
dom(map2) \ dom(map1) such that X1 appears in map′2(f). We note t1 = θ(X1). Since
f /∈ dom(map1): t1(f) = θ(map′2(f)). Yet map′2(f) contains an occurrence of X1, so
t1(f) = θ(map′2(f)) contains an occurrence of t1, which is a contradiction because t1 is a
finite tree.

Similarly we can show that X2 does not appear in map′1, and that either X1 does not
appear in map′1 or X2 does not appear in map′2. From now on we assume that X2 does not
appear in map′2, the other case (where X1 does not appear in map′1) is similar.

Noting Z /∈ V a fresh variable, we define the meta-valuation υ2 so that υ2(X2) =
(Z,map′1) and υ2 is the identity on V \{X2}. We also define υ1 so that υ1(X1) = (Z,map′2)
and υ1 is the identity on {Z}∪V \{X1}. Now we show that any meta-valuation ω unifying
S is of the form ω = ω0 ◦ υ1 ◦ υ2 where ω0 is a meta-valuation.

Since ω unifies S, there must be a variable Z ′ such that ω(X1) = (Z ′,mapX1
) and

ω(X2) = (Z ′,mapX2
) with:

mapX1
∪ ω(map1) = mapX2

∪ ω(map2)

We introduce the sets of features: F1,2 = dom(map1) ∩ dom(map2), F1 = dom(map1) \
dom(map2), F2 = dom(map2) \ dom(map1) and F0 = F \ (F1 ∪ F2 ∪ F1,2). Then we can
transform the equation above by taking the image of a feature f . Depending on f we get:

• if f ∈ F1,2 then ω(map1(f)) = ω(map2(f))

• if f ∈ F1 then mapX2
(f) = ω(map1(f)) = ω(map′1(f))

• if f ∈ F2 then mapX1
(f) = ω(map2(f)) = ω(map′2(f))

• if f ∈ F0 then either mapX1
(f) = mapX2

(f) or f is in the domain of neither mapX1

nor mapX2
.

So, noting map0 the restriction of mapX1
to set F0, we have mapX1

= map0 ∪ ω(map′2) and
mapX2

= map0 ∪ ω(map′1). Then we define the meta-valuation ω0 on the set of variables
{Z} ∪ V \ {X1, X2} by ω0(Z) = (Z ′,map0) and, for all X ∈ V \ {X1, X2}: ω0(X) = ω(X).
Therefore:

ω0 ◦ υ1 ◦ υ2(X1) = ω0((Z,map′2))

= (Z ′,map0 ∪ ω0(map′2))

= (Z ′,map0 ∪ ω(map′2))

= ω(X1)

This works because we assumed that neither X1 nor X2 appeared in map′2. For all X ∈
V \ {X1, X2} we also have ω0 ◦ υ1 ◦ υ2(X) = ω0(X) = ω(X). Then for all X ∈ V \ {X2}:
ω0◦υ1(X) = ω0◦υ1◦υ2(X) = ω(X). In particular it implies that ω0◦υ1(map′1) = ω(map′1).
With this we can finally show that:

ω0 ◦ υ1 ◦ υ2(X2) = ω0(υ1((Z,map′1)))

= (Z ′,map0 ∪ ω(map′1))

= ω(X2)

72

So ω0 ◦ υ1 ◦ υ2 = ω. With this we have shown that any meta-valuation ω unifying S is of
the form ω = ω0 ◦ υ1 ◦ υ2 where ω0 is a meta-valuation.

We define S ′ = {(map1(f),map2(f))}f∈F1,2 ∪ S \ {(p, p′)}. Now we use the induction
hypothesis on the set υ1 ◦ υ2(S ′). We can do so because the set of variables in υ1 ◦ υ2(S ′)
is included in the set {Z} ∪ V \ {X1, X2}, and therefore the number of variables is less
than that of S (set V of variables). We get a minimal unifier υ of υ1 ◦ υ2(S ′). Therefore
υ ◦ υ1 ◦ υ2 unifies S ′. Let ω a unifier of S. Then there is a meta-valuation ω0 such that
ω = ω0 ◦ υ1 ◦ υ2. Thus ω0 unifies υ1 ◦ υ2(S) and υ1 ◦ υ2(S ′). Then, by minimality of υ,
there must be ω′0 such that ω0 = ω′0. Therefore ω = ω′0 ◦υ ◦υ1 ◦υ2. So υ ◦υ1 ◦υ2 minimally
unifies S.

If the multi-set of patterns appearing on the right side of pairs in S is linear, then
S ′ contains no occurrence of X2 and υ2 changes nothing in S ′. Also X1 appears only
in patterns on the left side of pairs in υ2(S

′), so the multi-set of patterns appearing on
the right side of pairs in υ1 ◦ υ2(S ′) is linear. Then υ is linear on the set V1 of the
variables appearing on the left side of pairs of υ1 ◦ υ2(S ′). Therefore υ ◦ υ1 ◦ υ2 is linear
on {X1} ∪ V1 \ {Z}, which is the set of variables appearing on the left side of pairs of S.

We have proven by induction that for all unifyable set S of pairs of tree patterns we
can compute a minimal unifier υ of S such that, noting V1 the set of variables appearing
in patterns on the left side of pairs of S, if the multi-set of patterns on the right side of
pairs in S is linear then υ is linear on V1. �

Corollary 1 For all unifyable pair of tree patterns (p, p′) we can compute a minimal unifier
υ and a minimal unification unify(p, p′) such that:

unify(p, p′) = υ(p) = υ(p′)

In the composition of T1 = (C1, (p1, p2), C2) and T2 = (C ′2, (p
′
2, p3), C3) we can use this

corollary to compute the unification of p2 and p′2. We get a meta-valuation υ and a tree
pattern q2 = unify(p2, p

′
2) such that:

q2 = υ(p2) = υ(p′2)

Then the rewriting rule R = (q1, q3) with q1 = υ(p1) and q3 = υ(p3) is the composition of
the rules (p1, p2) and (p′2, p3). Indeed, using corollary 1 we can prove that for all feature
trees t1, t3 ∈ T :

t1 →R t3 ⇔ ∃t2 ∈ T , t1 →R1 t2 →R2 t3

We do not prove this now, but we prove a stronger claim later in lemma 7.

Complexity analysis

We now discuss the complexity of the procedure computing the composition of rewriting
rules. It mainly comes from the complexity of computing the unification of patterns as
described in the proof of lemma 3. The recursion’s termination is ensured by the fact
that at each step either the number n of variables in p and p′ decreases, or n stays the

73

same while the size s of p and p′ decreases. So in order to get the complexity we need a
bound on how much s can increase on the steps where n decreases: it happens when some
variables are replaced with a subtree. We can bound the growth of s by noticing that the
sizes of the subtrees with which are replaced variables are inferior to s. Since a variable
occurs at most s times, we can say that, on the steps where n decreases, s increases at
most to s2. So the size of the unification pattern during the algorithm grows at most to
s2

n
where s is the sum of the sizes of the patterns to unify and n is their total number

of variables. Each step of the recursion has a time complexity linear in the current size
of the patterns to unify. So, in all generality, the worst-case time complexity is s2

n+1
(i.e.

double exponential), and the worst-case space complexity is also double-exponential.

But this worst-case scenario is reached only when variables appear in multiple different
places in patterns, otherwise the size of patterns to unify does not grow much. Furthermore
we can observe that, among the patterns appearing in rewriting rules which correspond to
actual script commands (c.f. section 3.2), most variables appear once in each pattern, the
only exceptions are rules R5, R6 and R7 of command cp with option -r where a variable
appears once in the input pattern but twice in the output pattern. In fact we can prove that
the composition of two rewriting rules whose input patterns are linear (c.f. definition 14)
has a linear input pattern, it is a direct consequence of the linearity condition in lemma 3.
Hence, assuming that we only compute compositions of rewriting rules which correspond
to script commands, the input patterns will always be linear, and so we always use the
unification procedure on a pair of patterns (p, p′) where p′ is linear. In this particular case,
the size of the patterns on the right side of pairs always decreases during the recursion.
Conversely, in patterns on the left side of pairs, we can only substitute variables with
subtrees smaller than the patterns on the right side. So the complexity of unifying a
pattern of size s1 with a linear pattern of size s2 is in space O(s1 ∗ ss1+s2

2) (because the
number of variables is bound by s1 + s2) and in time O((s1 ∗ ss1+s2

2)2) (so space and time
complexity are both exponential).

We can improve this again by computing composition of commands in the right order.
Given a sequence of script commands, we can start computing their composition starting
with the composition of the last two commands, then the composition of the last three
commands and so on until we get the composition of the full sequence. This way the
pattern which we have to unify with a linear pattern necessarily is the output pattern
of a rule from a script command, so it has at most one variable X1 occurring several
times, and it only appears twice in the pattern. This greatly improves the complexity
of the unification algorithm because after variable X1 is substituted in the recursion, the
patterns to unify become linear. Furthermore, at the step of unification where variable X1

is substituted, the size increase on the pattern on the left comes from a subtree removed
from the pattern on the right, and since the X1 occurs at only one other place in the
patterns to unify the total size does not increase. So the size of the patterns to unify
only decreases during the recursion. In this case the space complexity of computing one
unification of patterns is therefore linear in the size of the patterns to unify, and time
complexity is quadratic. The size of the computed minimal unifier is then at most the
sum of the sizes of the patterns to unify.

74

We have computed the composition of the rewriting rules, next we compute the input
and output tree constraints of the composition.

3.3.3 Tree constraints in composition

We have computed the input and output tree patterns of the composition of two tree
pattern transformations and we get:

t1 →R t3 ⇔ ∃t2 ∈ T , t1 →R1 t2 →R2 t3

The last step in computing the composition consists in translating tree constraints C2 and
C ′2, which are on the midway tree t2, into constraints on either the input tree t1 or the
output tree t3. For this we introduce a notion of constraints on sets of variables:

Definition 16 For all finite set V of variables, a valuation constraint on V is a function
associating with each variable in V a tree constraint.

The semantics of a valuation constraint C on V , noted [[C]] is:

[[C]] = {θ | θ is a valuation over V and: ∀X ∈ V, θ(X) ∈ [[C(X)]]}

Lemma 4 For all pattern p with set of variables V , there exists a valuation constraint Cp
on V whose semantics is the set of valuations over V which are compatible (c.f. definition
7) with p.

Proof
By definition, a valuation θ over V is incompatible with the tree pattern p if and only if a
path in θ collides with an existing path in p, i.e. there is a variable X ∈ V and a feature
f ∈ F such that the directory θ(X) has a node at path f and there exists a path p such
that:

• X appears at path p in the pattern p,

• there is a node at path p/f in pattern p.

We note Fp,X the set of all the features f for which there is a path p such that, in pattern
p, there is a node at path p/f and variable X is at path p. Then the formula Cp,X defined
by: Cp,X =

∧
f∈Fp,X

¬node(f) characterizes the values of X which avoid collisions with paths

in p. So the valuation constraint Cp : X → Cp,X characterizes the valuations which are
compatible with pattern p. �

Lemma 5 For all pattern p with set of variables V and for all finite conjunction C of
constraint literals (c.f. definition 6), there is a valuation constraint noted p−1(C) such
that, for all valuation θ over V :

θ ∈ [[p−1(C)]] ⇔ θ(p) ∈ [[C]]

75

Proof
We prove this by induction on the number of literals in C.

According to lemma 4, for all valuation θ over V : θ ∈ [[Cp]] ⇔ θ(p) ∈ [[>]]. Therefore
p−1(>) = Cp validates the initiation of the induction.

We assume that some conjunction C of constraint literals satisfies the property, and
try to show that, for some literal `, the conjunction C ∧ ` also satisfies that property. So,
for all valuation θ over V : θ ∈ [[p−1(C)]]⇔ θ(p) ∈ [[C]]
We have different cases depending on ` and p:

1. if ` = ft(p) and pattern p has a node of type ft at path p, then for all valuation θ
over V : θ(p) ∈ [[`]]. So we define p−1(C ∧ `) = p−1(C) and, for all valuation θ over
V :

θ(p) ∈ [[C ∧ `]] ⇔ θ(p) ∈ [[C]] ⇔ θ ∈ [[p−1(C ∧ `)]]

2. if ` = ft(p) and pattern p has a node of type ft′ 6= ft at path p, then for all valuation
θ over V : θ(p) /∈ [[`]]. So we define p−1(C ∧ `) = ⊥ and, for all valuation θ over V :

θ(p) ∈ [[C ∧ `]] ⇔ θ ∈ [[p−1(C ∧ `)]]

3. if ` = ft(p) and the longest prefix of p leading to a node in pattern p is not p. In this
case we note p′ this prefix and we have two subcases depending on the node at path
p′ in pattern p:

• if the node is not of the form (dir, (X,map)) for some variable X then θ(p) /∈ [[`]]
for all valuation θ. This case is the same as case 2.

• if the node at path p′ is of the form (dir, (X,map)) for some variable X ∈ V
then, noting pX the path such that p = p′/pX , for all valuation θ over V :

θ(p) ∈ [[ft(p)]]⇔ θ(X) ∈ [[ft(pX)]]

Therefore we define p−1(C ∧ ft(p)) by: p−1(C ∧ ft(p))(X) = p−1(C)(X)∧ ft(pX)
and, on V \ {X}: p−1(C ∧ ft(p)) = p−1(C). So, for all valuation θ over V :

θ(p) ∈ [[C ∧ ft(p)]] ⇔ θ ∈ [[p−1(C ∧ ft(p))]]

4. if ` = ∃(p, E) and there is a feature f ∈ F such that pattern p has a node at path
p/f , then for all valuation θ over V : θ(p) ∈ [[∃(p, E)]]. This case is the same as case
1.

5. if ` = ∃(p, E) and there is no feature f ∈ F such that pattern p has a node at path
p/f , then we note p′ the longest prefix of p such that pattern p has a node at path
p′. We have two subcases depending on the node at path p′ in pattern p:

• if the node is not of the form (dir, (X,map)) for some variable X ∈ V , then
θ(p) /∈ [[`]] for all valuation θ and this case is the same as case 2.

76

• if the node is of the form (dir, (X,map)) for some variable X ∈ V , then, noting
pX the path such that p = p′/pX , for all valuation θ over V we have:

θ(p) ∈ [[∃(p, E)]]⇔ θ(X) ∈ [[∃(pX , E)]]

Therefore we define p−1(C ∧ ∃(p, E)) by: p−1(C ∧ ∃(p, E))(X) = p−1(C)(X) ∧
∃(pX , E) and, on V \ {X}: p−1(C ∧ ∃(p, E)) = p−1(C). So, for all valuation θ
over V :

θ(p) ∈ [[C ∧ ∃(p, E)]] ⇔ θ ∈ [[p−1(C ∧ ∃(p, E))]]

This ends the proof that for all finite conjunction C of constraint literals there is a
valuation constraint noted p−1(C) such that, for all valuation θ over V :

θ ∈ [[p−1(C)]] ⇔ θ(p) ∈ [[C]]

�

The time complexity of computing p−1(C) is quasiquadratic in the sizes of C and p,
assuming access time to a node in pattern p is linear in the length of the path to the node.
In most cases the algorithm is in linear time, but testing case 4. requires to compute the
intersection of a possibly cofinite set E with the set of outgoing features of the node at
path p in the pattern, which can be done in quasilinear time in the sizes of C and p. The
size of p−1(C) is linear in the sizes of C and p.

Lemma 6 For all tree pattern p and for all valuation constraint C over the set V of variables
in p, there is a tree constraint p(C) such that, for all valuation θ compatible with p:

θ ∈ [[C]] ⇔ θ(p) ∈ [[p(C)]]

Proof
For each variable X ∈ V we build a tree constraint CX such that, for all valuation θ ∈ [[Cp]]:

θ(X) ∈ [[C(X)]] ⇔ θ(p) ∈ [[CX]]

For each X ∈ V we build CX and prove this property by induction over the structure of
C(X). By hypothesis X occurs at least once in pattern p, we note pX one path in p where
X appears.

If C(X) = ft(p) then we define CX = ft(pX/p) which leads to, for all θ ∈ [[Cp]]:
θ(X) ∈ [[ft(p)]] ⇔ θ(p) ∈ [[CX]]

If C(X) = ∃(p, E) then we define CX = ∃(pX/p, E) which leads to, for all θ ∈ [[Cp]]:
θ(X) ∈ [[∃(p, E)]] ⇔ θ(p) ∈ [[CX]]

Assuming that we have two valuation constraints C1 and C2 and two tree constraints
C1,X and C2,X such that, for all valuation θ ∈ [[Cp]]:

θ(X) ∈ [[C1(X)]] ⇔ θ(p) ∈ [[C1,X]] and θ(X) ∈ [[C2(X)]] ⇔ θ(p) ∈ [[C2,X]]

we give the following definitions of CX :

77

• if C(X) = C1(X) ∧ C2(X) then CX = C1,X ∧ C2,X

• if C(X) = C1(X) ∨ C2(X) then CX = C1,X ∨ C2,X

• if C(X) = ¬C1(X) then CX = ¬C1,X

• if C(X) = > then CX = >

This ends the proof that for all variable X ∈ V and for all valuation θ ∈ [[Cp]]:

θ(X) ∈ [[C(X)]] ⇔ θ(p) ∈ [[CX]]

Finally we define p(C) =
∧

X∈V
CX which entails that, for all valuation θ ∈ [[Cp]]:

θ ∈ [[C]] ⇔ θ(p) ∈ [[p(C)]]

�

With these lemmas we can now translate tree constraints C2 and C ′2 from tree pattern
q2 to tree pattern q1 or tree pattern q3. Some variables of q2 may not appear in q1, this is
why we may need to translate some constraints to the output pattern q3.

Among the rules we use to represent the behaviour of commands, only the last rule for
the success case of the cp -r command has a variable which appears only in its output
pattern. If this rule did not exist we could have altered our model of rewriting rules to force
that all variables must appear in the input pattern; this would have allowed us to remove
tree constraints on the output of rules only to have tree contraints on the input, making
the model slightly simpler. This restriction of the model would make sense since a variable
appearing only in the output pattern of a rule would imply, in scripts, that a command
fills a directory with a number of different files or directories in a non-deterministic way.
Although the specification of the cp -r command is in fact non-deterministic, we have
used a non-deterministic approximation of its behaviour. We discuss this in more detail
in subsection 3.2.8.

In order to translate the tree constraints C2 and C ′2 into tree constraints on the input
and the output, we start by translating them to a valuation constraint on the variables
appearing in pattern q2.

Before we use lemma 5, we check that the formula C0 = C2 ∧ C ′2 is satisfiable. To do
this we put C0 under disjunctive normal form. The normalisation process is the same as
in boolean logic but with constraint literals (c.f. definition 6) in place of boolean literals.
So there are conjunctions of constraint literals C2,1, . . . , C2,k such that C0 is equivalent to
C2,1 ∨ · · · ∨ C2,k.

We can decide the satisfiability of each conjunction C2,i by trying to build a tree that
satisfies it: all positive literals impose the existence and the file type of a node in the tree,
the existence of a node at a path implies that the nodes along the path are all directories.
Contradictions can arise in three cases:

Contradiction between two positive literals: when two positive literals entail two differ-
ent file types for a same node, e.g. reg(/bin/touch) and sock(/bin) imply that the node
at path /bin is both a directory and a socket,

78

Contradiction between a positive and a negative literal: when a positive literal entails a
file type for a node which is precisely forbidden by a negative literal, e.g. reg(/bin/touch)
and ¬dir(/bin),

Contradiction with existential constraints: when several literals with constraints of the
form ∃(p, E) (c.f. definition 6) for a same path p lead to a contradiction. Checking if
such literals produce a contradiction is reducible to the Dual-Horn satisfiability problem
on boolean formulas. We recall that an instance of the Dual-Horn satisfiability problem is
a conjunction of clauses such that each clause contains at most of negative literal.

The reduction maps each feature f ∈ F to a boolean variable noted f̂ . Each feature
tree is associated with the valuation of variables where f̂ is true if there is a node at path
p/f in the tree. A positive literal ∃(p, E) is associated with the formula ϕ(p, E) =

∨
f∈E

f̂ .

A negative literal ¬∃(p, E) is associated with the formula
∧
f∈E
¬f̂ . For each feature f such

that there are negative literals ¬ft(p/f) for each file type f ∈ types, we add a formula
¬f̂ . The conjunction of the formulas cited above is a conjunction of Dual-Horn clauses;
we define it as the instance S of the Dual-Horn satisfiability problem in the reduction.

It follows that, if a tree t satisfies these tree constraints, then the corresponding valu-
ation of the boolean variables (f̂ is true if there is a node at path p/f in the tree) satisfies
formula S. The converse does not work because the set of boolean variables is infinite,
and, by definition, a node in a feature tree cannot have an infinite number of child nodes.
But we can simplify it by replacing some boolean variables.

In order to do this we note Ej for j ≤ l the finite sets appearing in existential constraints
at path p and E ′j for j ≤ l′ the cofinite sets appearing in existential constraint at path p.
Then the set E0 =

⋃
j≤l

Ej ∪
⋃
j≤l′
F \E ′j is finite. So we can put together the variables from

the cofinite set E∞ = F \ E0. Then for all j ≤ l′ we have: E ′j = E∞ ∪ E ′′j where E ′′j ⊆ E0

is finite. Finally we define a new boolean variable f̂∞ such that f̂∞ =
∨

f∈E∞

f̂ , and we can

rewrite, for all j ≤ l′:

ϕ(p, E ′j) = f̂∞ ∨
∨

f∈E′′
j

f̂

Then the set of boolean variables in formula S is {f̂∞} ∪ {f̂}f∈E0 which is finite. If
a valuation of variables satisfies S then we can deduce a tree which satisfies the tree
constraints mentioned above, where there is a node at a path p/f for some f ∈ E∞ if and
only if the boolean variable f̂∞ is true.

The complexity of the reduction is quasilinear (because of the computation of a finite
union of finite sets for E0) in the size of the disjunctive normal form of tree constraint C2,i.

Complexity of checking satisfiability

We now analyze the complexity of computing tree constraints C2,i for all i ≤ k and checking
their satisfiability. Assuming that tree constraints C2 and C ′2 are given in disjunctive

79

normal form, we have:

C2 = ϕ1 ∨ · · · ∨ ϕn and C ′2 = ϕ′1 ∨ · · · ∨ ϕ′m

where ϕ1, . . . , ϕ
′
m are conjunctions of literals. In this case:

C2 ∨ C ′2 =
∨

i≤n,j≤m

ϕi ∧ ϕ′j

So we can define, for all i ≤ n and j ≤ m: C2,i+n(j−1) = ϕi ∧ ϕ′j. The sum of the sizes of
C2,i is: ∑

i≤n∗m

‖C2,i‖ =
∑

i≤n,j≤m

‖ϕi‖+
∥∥ϕ′j∥∥ = m ∗ ‖C2‖+ n ∗ ‖C ′2‖

The time complexity of checking the satisfiability of C2,i is quasilinear in the size of C2,i,
so the time complexity of checking the satifiability of C2,i for all i ≤ n ∗m is polynomial
in ‖C2‖+ ‖C ′2‖, with a polynomial of order 4.

Finally, for each satisfiable tree constraint C2,i we compute the valuation constraint
Ci = q2

−1(C2,i), which gives one tree constraint for each variable X in the set V2 of the
variables in tree pattern q2. Noting V1 and V3 the sets of variables in patterns q1 and q3
respectively, we can split the set V2 into three disjoint sets as follows:

V2 = (V2 ∩ V1)] (V2 ∩ (V3 \ V1))] (V2 \ (V1 ∪ V3))

We note C1,i, C3,i and C2,i the restrictions of Ci to the sets (V2 ∩ V1), (V2 ∩ (V3 \ V1)) and
(V2 \ (V1 ∪ V3)) respectively. Since C2,i is satisfiable, so are C1,i, C3,i and C2,i.

The constraints on variables in V2 ∩ V1 we can translate on the input pattern q1, and
those on variables in V2 ∩ (V3 \ V1) we can translate on the output pattern q3. For each
i ≤ k we define the input tree constraint C1,i = C1 ∧ q1(C1,i), the output tree constraint
C3,i = C3 ∧ q3(C3,i) and the tree pattern transformation T ′i = (C1,i, R, C3,i) with the
rewriting rule R = (q1, q3). We now prove the final lemma of the procedure of composition.

Lemma 7 We have the following equality of relations:

gT2 ◦ gT1 =
⋃
i≤k

gT ′
i

Proof
We start by showing that, for all feature trees t1, t3 ∈ T :

t1 →R t3 ⇔ ∃t2 ∈ T , t1 →R1 t2 →R2 t3

If t1 →R t3 then there exists a valuation θR such that t1 = θR(q1) and t3 = θR(q3). By
definition of q1 and q3 we have a valuation of variables υ such that t1 = θR(υ(p1)) and
t3 = θR(υ(p3)). Therefore, by definition of q2, we have θR(q2) = θR(υ(p2)) = θR(υ(p

′
2)).

Noting t2 = θR(q2) we have t1 →R1 t2 and t2 →R2 t3.

80

If there exists a feature tree t2 such that t1 →R1 t2 →R2 t3 then there are two valuations
θ and θ′ of the variables in p2 and p′2 respectively such that t2 = θ(p2) = θ′(p′2). Because
υ minimally unifies p2 and p′2, there exists a valuation θ0 of the variables in q2 such that
θ = θ0 ◦ υ. Therefore t1 = θ0(υ(p1)) = θ0(q1) and t3 = θ0(υ(p3)) = θ0(q3). So t1 →R t3.

Now, given two feature trees t1 and t3 such that t1 →R t3, we aim to prove that:

(t1, t3) ∈ gT2 ◦ gT1 ⇔ ∃i ≤ k, (t1, t3) ∈ gT ′
i

If (t1, t3) ∈ gT ′
i
for some i ≤ k, then t1 ∈ [[C1 ∧ q1(C1,i)]] and t3 ∈ [[C3 ∧ q3(C3,i)]].

So there exists a valuation θ such that t1 = θ(q1), t3 = θ(q3) and the restrictions of
θ to the sets V2 ∩ V1 and V2 ∩ (V3 \ V1) respectively satisfy valuation constraints C1,i
and C3,i. Since valuation constraint C2,i is satisfiable there must be a valuation θ′ of the
variables in V2 \ (V1 ∪ V3) which satisfies it. Then we define the valuation θ0 as equal
to θ on V1 ∪ V3 and equal to θ′ on V2 \ (V1 ∪ V3). Then t1 = θ0(q1), t3 = θ0(q3) and θ0
satisfies the valuation constraint Ci. Because Ci = q−12 (C2,i), the feature tree t2 = θ0(q2)
satisfies the tree constraint C2,i, and so it also satisfies the tree constraint C0 = C2 ∧ C ′2.
The construction of q1, q2 and q3 imply that (t1, t2) ∈ gR1 and (t2, t3) ∈ gR2 . We have
also shown that t1, t2 and t3 respectively satisfy tree constraints C1, C2 ∧ C ′2 and C3, so:
(t1, t3) ∈ gT2 ◦ gT1 .

If (t1, t3) ∈ gT2 ◦ gT1 then there is a feature tree t2 such that (t1, t2) ∈ gT1 and (t2, t3) ∈
gT2 . So t1, t2 and t3 respectively satisfy tree constraints C1, C2∧C ′2 and C3. Since C2∧C ′2 is
equivalent to C2,1∨ · · ·∨C2,k, there must exist an i ≤ k such that t2 satisfies C2,i. Because
υ minimally unifies p2 and p′2 there must be a valuation θ0 such that t1 = θ0(υ(p1)), t2 =
θ0(υ(p2)) = θ0(υ(p

′
2)) and t3 = θ0(υ(p3)). Considering t2 = θ0(q2), valuation θ0 has to

satisfy valuation constraint Ci. So t1 and t3 respectively satisfy tree constraints q1(C1,i) and
q3(C3,i). It then follows from t1 = θ0(q1) ∈ [[C1]] and t3 = θ0(q3) ∈ [[C3]] that (t1, t3) ∈ gT ′

i
.

�

This lemma proves that the composition of tree pattern transformations T1 and T2 can
be expressed as the tree pattern transducer (T ′1, . . . , T

′
k). This procedure works for any

two tree pattern transformations T1 and T2, so we can use it to compute the composition
of tree pattern transducers.

3.3.4 Conclusion on composition

We have shown the following theorem:

Theorem 2 For all two tree pattern transducers τ1 and τ2, we can compute a tree pattern
transducer τ3 such that gτ3 = gτ2 ◦ gτ1.

Proof
Tree pattern transducer τ3 is obtained by applying the composition procedure to each pair
composed of a transformation from τ1 and a transformation from τ2, and concatenating
the resulting lists of transformations. �

81

Corollary 3 The set of tree-to-tree functions described by tree pattern transducers is closed
under composition.

The closure under composition of the model of tree pattern transducers is an important
argument in favor of using it to verify properties of scripts and their interaction with file
systems.

Complexity of the composition procedure

We now analyse the complexity of the procedure computing the composition of tree pattern
transducers. Tree pattern transducers are composed of several tree pattern transforma-
tions, so we start with the complexity of computing the composition of two tree pattern
transformations T1 = (C1, (p1, p2), C2) and T2 = (C ′2, (p

′
2, p3), C3). We compute this com-

plexity under the assumptions that patterns p1 and p′2 are linear, that pattern p2 has at
most one duplication of variable, and that tree constraints C1, C2, C

′
2 and C3 are under

disjunctive form.
The first step is computing the composition of rewriting rules, this is done in time

quadratic in ‖T1‖+‖T2‖. The sizes of the minimal unifier υ and of the unification pattern
q2 are linear in the size of p2 and p′2.

The next step is computing constraints C2,i for i ≤ k and checking their satisfiability.
The sum of the sizes of the C2,i for i ≤ k is quadratic in the size of constraints C2 and C ′2,
and the C2,i for i ≤ k are computed in quadratic time in the size of constraints C2 and
C ′2. The satisfiabilities of C2,i for all i ≤ k are checked in time polynomial in the sizes of
C2 and C ′2, with a polynomial of order 4.

Finally we compute q1(q2
−1(C2,i)) and q3(q2

−1(C2,i)) for each i ≤ k. For each i ≤
n ∗m, computing q2

−1(C2,i) is in time quasiquadratic in the sizes of q2
−1 and C2,i, so it is

quasiquadratic in ‖T1‖ + ‖T2‖. The size of q2
−1(C2,i) is linear in ‖T1‖ + ‖T2‖. Therefore

q1(q2
−1(C2,i)) and q3(q2

−1(C2,i)) are of size linear in ‖T1‖+ ‖T2‖, and computing them is
in time quasiquadratic in ‖T1‖+ ‖T2‖. Computing those for each i ≤ n ∗m is polynomial
in ‖T1‖+ ‖T2‖, with a polynomial of order 5.

Summing up, the time complexity of computing the composition of two tree pattern
transformations T1 and T2 is polynomial in ‖T1‖+ ‖T2‖, with a polynomial of order 5. It
is important to note that the most costly part of the algorithm is the translation of tree
constraints.

Finally the computation of the composition of two tree pattern transducers τ1 and τ2
has time complexity O((‖τ1‖ + ‖τ2‖)7) because we compute the composition of all pairs
composed of a transformation from τ1 and a transformation from τ2.

Although we’ve made efforts to give a lower bound for the composition of our model
of transducers, the important result is that the model is closed under composition and
represents the behaviour of Unix commands with reasonable accuracy. This is because we
do not use this algorithm to verify properties of scripts, instead we only compute inverse
images of sets of trees by successive Unix commands.

Computing successive inverse images of the set of all trees through several tree transfor-
mations is equivalent to computing the domain of the composition of those transformations.

82

The domain of tree pattern transformations is characterized by their input constraint, so
the procedure of composition already gives an algorithm for computing the domains of
compositions of transformations. Furthermore we can cut from the algorithm the compu-
tations of the output constraints and the tree patterns. This gives us a first algorithm for
computing domains of compositions of transformations.

In chapter 4 we show how we improved this algorithm and present the results of its
implementation.

83

Chapter 4

Implementation

In this chapter we present the algorithm we have implemented in the CoLiS project. Our
implementation builds on a tool designed by Nicolas Jeannerod, Benedikt Becker, Yann
Régis Gianas, Claude Marché, Mihaela Sighireanu, and Ralf Treinen as part of the CoLiS
project. This tool solves the problem of, given a Shell script, determining the file systems
on which the script can succeed and the ones on which it can fail. It works in two steps:
in a first step it lists the scenarios of execution of the script which are compatible with
the structure of the script, each scenario is represented by a sequence of succeeding or
failing commands. These sequences are called script traces. In a second step it checks, for
each script trace, whether there is a file system compatible with that script trace. The
parts of the tool computing the first and second steps are called respectively the concrete
interpreter and the symbolic interpreter. Our implementation reuses the existing concrete
interpreter, so our contribution consists only in a new version of the symbolic interpreter.

In section 4.1 we discuss the algorithm we use, which is inspired by the one presented
in chapter 3 where we recursively compute constraints put by scripts on the file system.
In a second section we present the practical results and compare them with those of the
first CoLiS tool. In a last section we discuss the benefits of our approach, for this problem
and for verification problems on scripts in general.

4.1 The algorithm

In this section we define the algorithm which computes the sets of file systems on which
a given script trace1 works. We can see each script trace as a function transforming
one file system into another. What our algorithm computes is then the domain of the
function of a script trace, or the inverse image of the set of all file systems through the
function. This function is the composition of the functions associated with the succeeding
or failing commands that compose the script trace. Our approach to this algorithm to
computing this inverse image is to compute the inverse images successively through each
succeeding or failing command in the script trace. In this sense we call our approach
backward, as opposed to the forward approach used in the algorithm used by Nicolas

1c.f. definition 1.

84

Jeannerod, Benedikt Becker, Yann Régis Gianas, Claude Marché, Mihaela Sighireanu,
and Ralf Treinen in their implementation solving the same problem.

We have shown in section 2.4 that computing the domain of a script trace is NP-hard.
This means that our algorithm for this problem cannot be better than NP in the general
case. But we can still improve the complexity in some specific cases. In particular, we
have argued in section 2.4 that the NP-hardness of the problem came from commands mv,
cp (provided the logical operators used with command test are split into distinct trace
atoms), and so we give an algorithm with polynomial time complexity in the special case
where commands mv and cp are forbidden, and command test is forbidden from using
logical operators.

4.1.1 Naive version of the algorithm

In this subsection we describe an early version of our algorithm based on computing
compositions of tree pattern transductions, this version is not used in our implementation.

In chapter 3 we have presented how to compute the tree pattern transduction rep-
resenting the action of a script trace on the file system. The domain of a tree pattern
transduction is the union of the domains of the tree pattern transformations composing
it. By definition the domain of a tree pattern transformation is characterized by its input
tree constraint. So we can compute the tree pattern transduction representing a script
trace and get a characterization of its domain.

The fact that we only compute the input tree consraint of a composition of trans-
formations greatly simplifies the algorithm, let us analyze its complexity. Computing
the input tree constraint of two tree pattern transformations T1 = (C1, (p1, p2), C2) and
T2 = (C ′2, (p

′
2, p3), C3) is then done in three steps:

1. We check that the tree constraint C2 ∧ C ′2 is satisfiable. Assuming that tree con-
straints are kept under disjunctive normal form, checking this is done in time poly-
nomial in the size of C2 ∧ C ′2, with a polynomial of order 4.

2. We translate the constraint C2 ∧ C ′2 onto the input tree of T1. Writing C2 ∧ C ′2 =∨
i≤k

C2,i where formulas C2,i are conjunctions of literals, we compute:

C ′1 =
∨
i≤k

p1(p
−1
2 (C2,i))

Then the input constraint of the composition of T1 and T2 is C1 ∧ C ′1. The time
complexity of this step is quasiquadratic in the sum the sizes of p1, p2 and the C2,i

for each i ≤ k, so it is polynomial in the sizes of T1 and T2, with a polynomial of
order 5.

3. We put C1 ∧C ′1 under disjunctive normal form and check its satisfiability. The time
complexity is quasiquadratic in the sum of the sizes of C1 and C ′1, so polynomial
in the sizes of T1 and T2 with a polynomial of order 5. The size of the resulting
constraint depends linearly on the product of the sizes of C1, C2 and C ′2, which is
polynomial in the sum of the sizes of T1 and T2 with a polynomial of order 3.

85

In total, the time complexity of computing the input constraint of the composition of
two tree pattern transformations is polynomial in the sizes of the transformations, with
a polynomial of order 5. But this complexity is only for the composition of two trans-
formations. When computing the inverse image of a script trace we have two complexity
hurdles: each script command may have multiple transformations, and when we com-
pose more than two commands the constraints grow with each composition. These two
problems: the multiplicity of transformations and the growth of the input tree constraint
with each composition, make the time complexity of computing the domain of a script
trace doubly-exponential. We make adjustments to this algorithm in order to improve the
complexity.

4.1.2 The improved algorithm

Our first goal is to reduce the growth of the representation of the inverse images we suc-
cessively compute for each command in a script trace. So far we have only used tree
constraints to represent sets of feature trees. We could stop putting rules under disjunc-
tive normal form, but then the time complexity of checking their satisfiability would be
exponential. Instead we design a new model in order to represent sets of feature trees.

Our second goal is to reduce the number of transformations representing the action of
script commands. We do this by altering the model of rewriting rules.

These models for representing sets of trees and transformations of trees are specifically
designed for the problem we are trying to solve. In particular they make use of the fact
that we only compute inverse images. Computing only inverse images entails that we
never have constraints stating that two subtrees must be equal or similar in some way.
This means that any constraint put on a subtree at a given path in the file system does
not propagate outside of the subtree at that path, and so we can check if this constraint
leads to a contradiction only by looking at the other constraints on the subtree. In a way
constraints become local. A constraint on a subtree can have non-local consequences only
when a subtree (i.e. a directory) is moved or copied using commands mv or cp -r. The
inverse of the mv command only moves a local constraint from one subtree to another. The
inverse of the cp -r command asserts that two subtrees are the same and removes one of
them; this requires to compute the conjunction of the constraints on the two subtrees, but
we already compute conjunctions of tree constraints

This leads us to represent constraints in a tree-like structure. This model is mainly
inspired by prefix sets of trees, so we name it prefix feature trees. We recall that the set of
types of files is types = {dir, reg, symlink, fifo, block, char, sock}.

Definition 17 A local existential constraint is an existential tree constraint ∃(ε, E) on the
empty path ε.

A local existential literal is either a local existential constraint ∃(ε, E) or the negation
of a local existential constraint ¬∃(ε, E).

We note CC the set of conjunctions of local existential literals.

86

root

{dir,⊥}

types

bin

tmp

Figure 4.1 – Prefix tree representing the constraint
¬node(/tmp) ∨ (dir(/tmp) ∧ node(/tmp/bin))

The sets of prefix feature trees and prefix nodes are inductively defined by, respectively:

ptrees = CC × (F pnodes)

pnodes = P(types ∪ {⊥})× ptrees

where P(types ∪ {⊥}) denotes the set of parts of types ∪ {⊥} and F pnodes denotes
the set of finite mappings from F to pnodes.

The sets of feature trees associated with prefix feature trees and prefix nodes are defined
by, for all prefix feature tree of the form (C,map) ∈ CC × (F pnodes) and prefix node
of the form (S, t) ∈ P(types ∪ {⊥})× ptrees:

[[(C,map)]] = [[C]] ∩ {map′ | ∀f ∈ dom(map) ∩ dom(map′),map′(f) ∈ [[map(f)]],

∀f ∈ dom(map′) \ dom(map), ⊥ ∈ [[map′(f)]] }

[[(S, t)]] = (S \ {dir}) ∪ ((S ∩ {dir})× [[t]])

We call full prefix feature tree the prefix feature tree (>, ∅). We note it p> and its
associated set of feature trees is the set of all feature trees: [[p>]] = T .

The symbol ⊥ is used as a file type, it represents nodes which are absent from a tree.
For example, the command mkdir /tmp/bin fails either if directory /tmp is absent or
if there is already a node at path /tmp/bin. The set of feature trees which satisfy this
condition is the domain of the failure case of the command. This set is characterized
by the prefix feature tree shown in Figure 4.1. In this representation we do not show
the local existential constraints because they are all >. The exact prefix feature tree is
t = (>, [tmp/({dir,⊥}, (>, [bin/(types, ∅)]))]). This prefix feature tree can be read from
top to bottom starting with the root: the edge tmp leading to the node {dir,⊥} means
that a feature tree in the set [[t]] has either a directory or no node at path /tmp; the edge
bin leading to the node types means that, if there is a directory node at path /tmp, then
there is a node at path /tmp/bin (its filetype is in types which is the set of all filetypes).

The two main differences between this model and prefix sets of feature trees are the
use of local existential constraints and the fact that each node allows a set of filetypes
instead of just one file type.

87

Local existential constraints are necessary in order to express existential tree constraints
which are used in the input constraints of some commands such as rmdir, move and cp.

Each node allowing a set of file types instead of just one file type is useful because it
can replace a tree constraint which is a disjunction of literals. For example in section 3.2
we describe the constraints of several transformations using the constraint node(p) where
p is a path, which is defined as node(p) =

⋃
ft∈types ft(p); this constraint can be expressed in

this new model with the prefix feature tree containing the node (types, p>) at path p, and
such that the sets of file types of the nodes along path p all are the singleton {dir}. The
growth of the tree constraints during the computation of inverse images is driven by the
disjunctions inside them. By removing disjunctions we improve the informal complexity
of our algorithm.

With this representation of sets of trees, we can represent the input and output con-
straints of the succeeding and failing version of the script commands presented in sec-
tion 3.2, except for mv and cp. We give more detail on this later.

The process of computing inverse images of prefix feature trees is similar to that of
computing inverse images of tree constraints.

Alterations to rewriting rules

In order to reduce the number of transformations for each command, we modify the model
of tree pattern rewriting rules. The new version of the model must allow us to still compute
inverse images of prefix feature trees through it. Similarly to prefix feature trees, we allow
nodes of tree patterns to represent a disjunction of file types instead of just one file type.

For example, we had 6 different rules for the success of the rm command depending on
the file type of the file to remove. Instead we can replace these 6 rules with just one. The
success of command rm p/f then gives the rule:

root

dir

x

p

f

⇒R

root

dir

p

where x is a file type variable, with the constraint x ∈ types \ {dir}. We formally define
this new type of tree patterns, we call them prefix patterns :

Definition 18 Given a set V of variables and a set U of file type variables, prefix patterns
with variables in V and file type variables in U are inductively defined (similarly to tree
patterns) as:

PP = (V ∪ {⊥})× (F ((U ∪ types)× PP))

For all file type variable x, a file type constraint on x is a subset of types ∪ {⊥}.

88

root

dir

ft

dir

ps pd

fs

⇒R1,ft

root

dir dir

ft

ps pd

fd

root

dir

ft

dir

ft′

ps pd

fs fd

⇒R3,ft,ft′

root

dir dir

ft

ps pd

fd

Figure 4.2 – Rules R1,ft (left) and R3,ft,ft′ (right) of success(mv ps/fs pd/fd)

root

dir

x

dir

y

ps pd

fs fd

⇒R1,3

root

dir dir

x

ps pd

fd

x ∈ types \ {dir}
y ∈ {⊥} ∪ types \ {dir}

Figure 4.3 – Unique rule R1,3 merging all versions of rules R1,ft,ft′ and R3,ft,ft′

File type constraints allow us to put restrictions on the file types of nodes. It is useful in
the case of the rm command where we know that the file to remove is not a directory.

Similarly to prefix feature trees, we allow the value ⊥ for file types of nodes; a node with
file type ⊥ represents an absent node. This helps us fuse together some transformations
of mv and cp. For example, the rules R1,ft and R3,ft,ft′ for the success of command mv

ps/fs pd/fd shown in Figure 4.2. R1,ft and R3,ft,ft′ actually represent 42 rules (6 versions of
R1 and 36 versions of R3), each with different values for the file types ft, ft′ ∈ types\{dir}.
They can all be replaced with the one rule R1,3 shown in Figure 4.3.

With the new prefix feature tree model and the alterations we made to the model
of rewriting rules we can simplify the representation of script commands as transducers.
Using simplifications similar to the one shown in Figures 4.2 and 4.3, we get one transfor-
mation for each success and error case of each command presented in section 3.2, except
for commands mv, cp and touch. The number of rules for these last 3 commands is still
greatly reduced.

The command touch is particular because, even if we cannot express its success case
with only one rewriting rule, we can still express the inverse image of a prefix feature
tree through it as only one prefix feature tree. If we tried to represent the success case of
touch p/f in one rewriting rule we would have the rule shown in Figure 4.4, but with two
possible combinations of constraints for x and y. If x ∈ types \ {dir,⊥} then touch p/f

89

root

dir

x

p

f

⇒

root

dir

y

p

f

Figure 4.4 – Rule of success(touch p/f)

does not modify the file system and therefore y = x, but if x = ⊥ then touch p/f creates
a regular file and so y = reg. We can express the inverse image of a prefix feature tree t
(representing a set of trees) through command touch p/f : noting (Sy,map) the node at
path p/f in t, the corresponding node in the inverse image would be (Sx, ∅) where the set
Sx of possible file types for x is Sx = (Sy \ {dir}) ∪ {⊥} if reg ∈ Sy, and Sx = Sy \ {dir}
otherwise. We use this in the implementation in order to compute the inverse image of a
prefix feature tree through the success case of command touch. This allows us to compute
the inverse image of a prefix feature tree through success(touch p/f) as one prefix feature
tree (instead of a list of prefix feature trees).

Finally, we make a last modification to our model in order to remove approximations
we had made on the behaviours of the which command and of the test command with
option -x. These commands’ success and failure cases depend on whether or not a regular
file is executable. Since we already deal with 7 different types of files, we can also split the
file type reg of regular files into two new file types exec and non-exec which respectively
represent regular executable files and regular non-executable files.

The problem with mv and cp

With the modifications we have brought to our algorithm for computing inverse images of
commands efficiently, we still have several rules for commands mv and cp.

Compared to the initial number of rules in subsection 3.2.7 and subsection 3.2.8, we
have merged the following rules:

• In the success case of mv, we merge rules T1,ft and T3,ft,ft′ together into one rule, we
merge rules T2,ft and T4,ft,ft′ together similarly, and we merge rules T6 and T7 together.
With this we get only 4 rules for the success case of mv, down from 87.

• In the success case of cp, we merge rules T1,ft and T3,ft,ft′ for all values of ft, ft′ ∈
types \ {dir} into one rule, and we merge rules T2,ft and T4,ft,ft′ together into one rule
similarly. This leaves only 2 rules for the success case of cp, down from 84.

• In the success case of cp -r, the same simplifications make the success case of cp
-r go from 88 rules down to 5.

90

t1 =

a b

a
b

dir

dir

dir

. . . dir

dir

. . .

t3 =

a

a

b

a
b

dir

dir

dir

. . . dir

dir

dir

. . .

command

t2 =

a

a

a
b

dir

dir

dir

dir

. . . dir . . .

t4 =

a

a

a

b

a
b

dir

dir

dir

dir

. . . dir

dir

dir

. . .

command

Figure 4.5 – Two trees mapped to the same output by command cp -r /a/a /b/b

The inverse image of a prefix feature tree by a trace atom of command mv or cp cannot
always be represented as a prefix feature tree. This is for the same reason that the problem
of computing the domains of script traces is NP-hard, as we have shown in section 2.4.
That property, which inverse images of prefix feature trees by trace atoms of command mv

or cp have, we call it prefix-splittability.

Definition 19 We say that a set S of feature trees is prefix-splittable if there exists a feature
tree t containing two variables x and y, and 4 feature trees tx,1, tx,2, ty,1 and ty,2 such that:

t[x/tx,1, y/ty,1] ∈ S and t[x/tx,2, y/ty,2] ∈ S

t[x/tx,1, y/ty,2] /∈ S and t[x/tx,2, y/ty,1] /∈ S

This property is the one we use in the proof of NP-hardness in section 2.4. We can
see this on the example in Figure 4.5 where we show two input trees t1 and t2 that are
mapped by command cp -r /a/a /b/b onto trees t3 and t4 respectively. We can see that
cp -r copies things differently depending of whether its target path /b/b exists or not,
we highlight in a red circle how the directory is copied in each case. This behaviour is
responsible for the inverse image of cp -r not being prefix-splittable. Indeed we can check
that the set {t3, t4} can be expressed as a prefix feature tree, and that trees t1 and t2 can be
written as t1 = t[x/tx,1, y/ty,1] and t2 = t[x/tx,2, y/ty,2] such that the trees t[x/tx,1, y/ty,2]

91

and t[x/tx,2, y/ty,1] are not in the inverse image of {t3, t4} by command cp -r /a/a /b/b.

This means that we need to use disjunctions of prefix feature trees to represent the
inverse images of commands cp and mv. We use lists of prefix feature trees to represent
disjunctions of prefix feature trees. The sets they represent are therefore unions of sets
described by prefix feature trees.

Complexity analysis

We now analyze the time complexity of this new algorithm computing the set of file systems
compatible with a given script trace. We start with the complexity of computing the inverse
image of a prefix feature tree through one prefix pattern transformation. Let t ∈ ptrees
be a prefix feature tree and T = (t1, (p1, ϕ, p2), t2) a prefix pattern transformation. The
inverse image of t through T is computed in three steps as in subsection 4.1.1:

1. We check that the conjunction t′ of t and t2 does not represent the empty set of
feature trees. The conjunction of t and t2 is of size inferior to the sum of the sizes
of t and t2. It is computed in time linear in the sum of the sizes of t and t2.

We check that t′ does not represent the empty set of feature trees node-by-node
starting with leaves. For each node, we check that its local existential constraints
and the file names of its child nodes are not in contradiction. For this we use the
same algorithm as the one for checking the satisfiability of tree constraints presented
in subsection 3.3.3. Its time complexity is quasilinear in the sizes of the existential
constraints and the number of file names of child nodes.

In total the time complexity of computing t′ and checking if its set of feature trees
is empty is quasilinear in the size of t′, so it is quasilinear in the sum of the sizes of
t and t2.

2. We compute the inverse image t′′ of t′ through the rewriting rule (p1, ϕ, p2).

Except for the rules of cp -r which copy a subtree, this step consists mainly in
putting constraints on subtrees or moving subtrees, in such cases the time complexity
is linear in the sum of the sizes of t′ and (p1, ϕ, p2), and the size of t′′ is inferior to
the sum of the sizes of t′ and T .

In the case where the rule copies a subtree, computing the inverse image also requires
to compute the conjunction of the copied subtree and its copy. Then time complexity
is still linear, and the size of t′′ is still inferior to the sum of the sizes of t′ and T .

3. We check that the conjunction of t′′ and t1 does not represent the empty set of feature
trees. Again the time complexity is quasilinear in the sum of the sizes of t′′ and t1,
which means quasilinear in the sum of the sizes of t and T .

The time complexity of computing the inverse image of t through T is therefore quasilinear
in the sum the the sizes of t and T . The size of the computed inverse image is inferior to
the sum of the sizes of t and T . The growth of prefix feature trees with each inverse image

92

is crucial because, for each script trace, we compute inverse images successively through
each command of the script trace.

Hence, the time complexity of computing the set of feature trees compatible with a
script trace is quasiquadratic in the size of the script trace.

4.1.3 Specificity of the backward approach

A simple argument from the tree transducer literature in favor of the backward approach
is the fact that top-down tree transducers do not preserve the regularity of tree languages,
but their inverse images do. Indeed the inverse image through a top-down tree transducer
of a regular tree language is a regular language. This is not true of the direct image of
top-down tree transducers because those machines can make copies of a subtree, and it is
impossible for bottom-up tree automata (the automata recognizing regular languages) to
check the equality between two subtrees of a tree. Although top-down tree transducers
work on ranked ordered trees and file systems are more akin to unranked unordered trees,
the ability of scripts to copy a directory in a file system is an important hurdle in solving
our problem. We have seen this several times in chapter 3, in particular when discussing
the complexity of the algorithm of composition of pattern rewriting rules at the end of
subsection 3.3.2. There we noticed an apparent disymetry when composing rewriting rules:
when we compose more than two rules which copy subtrees, we create mutiple copies of
a same variable in the output pattern of the rewriting rule, which greatly increases the
complexity of computing the composition on the right of this rule but not its composition
on the left.

One could argue that the complexity of computing the composition of rules in a for-
ward, right-to-left way could be reduced by changing the data-structure of these rules and
dynamically aggregating the constraints put on different occurrences of a same variable,
but since each occurrence of a variable can be altered, by removing a subtree from it for
example, we would still need to distinguish the original and altered versions of a same
variable. A purely logical framework would better suit this approach. In fact the orig-
inal version of the symbolic interpreter of the CoLiS tool relies on a logical framework
named feature tree logics (presented in [19]). The complexity of this version is tied to
the mutiplicity of variables, and the operation of copying subtrees is the generator of this
mutiplicity of variables.

By computing inverse images instead, we exempt ourselves of variables. The absence of
variable propagation allows us to represent sets of trees using an easy-to-update tree-like
structure. It is easy to update in the sense that updating the representation of a set of trees
by adding a constraint on the subtree at path p consists in modifying the representation
only at path p. Updates to the representation of sets of trees have only local consequences.
This representation is the model of prefix feature trees.

Problem with the backward approach: as stated in our description of the CoLiS toolchain
in subsection 1.3.1, the concrete interpreter does not simply compute all script traces of
executions of the input script to send them to the symbolic interpreter. It actually com-

93

putes intermediairy traces representing partial executions of the script, these are sent to
the symbolic interpreter which tells the concrete when a partial execution is already makes
incoherent use of the file system. This allows the concrete interpreter to cut branches of
executions earlier. This is especially useful in loops where, without information from the
symbolic interpreter, the concrete interpreter would anticipate more iterations of loops,
even if their use of the file system should prevent more iterations. This is efficient when
the symbolic interpreter checks script traces incrementally from left to right (from first
command to last command), because computations of partial script traces are used to
compute the script traces of which they are a prefix. This is exactly how the forward
approach works.

In our case however, if the symbolic interpreter is called on script traces of partial
executions of scripts, the result cannot easily be used to compute script traces of which it
is a prefix. If we check each partial script trace sent by the concrete interpreter we have
to compute a lot of different script traces, but if we only check complete script traces we
might let the concrete interpreter go down possibly big branches of execution which also
means more traces for the symbolic interpreter to check. There are several ways to remedy
this problem.

Solution 1 In our implementation we opted for a simple compromise. We only check a
portion of partial script traces, specifically only partial traces whose length is a multiple
of a fixed integer n. In the case scenario where no branches of executions are cut, this
divides the computation time by about n (assuming n is small compared to the length
of complete script traces). In the case scenario where a branch can be cut, we do not
cut the branch as soon as the execution of the script is impossible, but we cut it at most
n− 1 steps after that point. We have experimented with different values for n, we found
the best balance, between checking too many traces and not cutting dead branches early
enough, at n = 5. This value corresponds to the number of commands we add to a script
trace before checking whether it represents a valid execution of the script.

A finer version of this first solution consists in analyzing the script to predict the
shape of the tree of executions, which allows us to find the points in the tree where cutting
branches would be most efficient.

Solution 2 We could also modify the symbolic interpreter so as to be able to use compu-
tations of partial script traces to check longer script traces. A naive way to do this would
be to use the model of tree pattern transducers from chapter 3 to model script traces. We
would then use the composition procedure to compute script traces recursively from left
to right (as in the forward approach). It might be possible to represent script traces in a
more concise way, allowing us to compute domains more easily.

Solution 3 We could code a new concreter interpreter which computes execution scenarios
starting from the end. The behaviour of control structures like if and while can be
expressed in a backward way. This would lead to represent executions scenarios as paths
in a tree, but where the root of the tree is the last command of a script and leaves are the

94

first command. Although this approach would allow us to easily cut branches of iterations
of loops while keeping the symbolic interpreter efficient, it would not work on some scripts
because of the use of variables. Some scripts define or update variables in if statements
for example (some even define different versions of a function in an if statement), which
creates two very different branches of execution, but the choice between the two can be
dependent on the state of the file system at the start of the script.

Another problem with the backward approach for finding errors is that when detecting
errors in a script, it is important to detect which precise command produces the error.
In terms of script traces this is equivalent to finding the smallest prefix of a trace which
makes it incompatible with configurations of file systems. Because our approach computes
recursively backwards in script traces, it can more easily find the smallest suffix, which
corresponds finding to the last command which makes a script fail.

However, this problem can be considered minor because the concrete interpreter gives
reports on errors which are precise enough that points of failure are easy to spot.

4.2 Practical results

We have implemented the improved algorithm computing the domain of script traces as
part of the CoLiS project. The code of the pre-existing CoLiS tool (presented in subsec-
tion 1.3.1) was divided into a concrete interpreter computing script traces and a symbolic
interpreter computing the domains of these traces. We programmed an alternative ver-
sion of this symbolic interpreter. We refer to our version as the transducers version, and
the other version as the constraints version. We used the same programming language,
OCaml, as that of the existing CoLiS tool in order to make interfacing easier.

The full version of our tool is available on a git repository at https://gitlab.inria.
fr/ssalvati/transducers-for-colis.git, because we reuse the concrete interpreter
programmed by our collaborators, you will need an invitation in order to access it (rap-
porteurs already have an invitation, people that are intersted can contact me by email).
It contains the concrete interpreter and both versions of the symbolic interpreter. Our
contribution, the symbolic interpreter based on computing inverse images of sets of trees,
represents about 1200 lines of code.

It is important to note that our implementation is based on the version of the CoLiS
toolchain dating back from March 2020. The toolchain has been updated since, most no-
tably the concrete interpreter can now parse and execute more constructions of maintainer
scripts.

Experimentation: We have tested our implementation on Debian maintainer scripts and
compared our results with those of the constraints version. We used 4 Intel Core i3-8130U
CPU @ 2.20GHz with 16GB of RAM.

Running on a corpus of 28,815 Debian maintainer scripts, from 12,592 packages, ex-
tracted from a sid Debian distribution, each version of the tool (transducers and con-
straints version) runs in about 4 minutes.

95

https://gitlab.inria.fr/ssalvati/transducers-for-colis.git
https://gitlab.inria.fr/ssalvati/transducers-for-colis.git

1 #!/bin/sh -eu

2 # Disable the OLD amd package (reinstated in postrm)

3 if test -f /etc/amd/config

4 then

5 echo "Disabling old amd package ..."

6 mv -f /etc/amd/config /etc/amd/config.disabled -by-am-utils

7 fi

Figure 4.6 – Script preinst from package am-utils_6.2+rc20110530-3.2+b1

The concrete interpreter runs only partially or fails on 20,739 scripts (72%) and com-
pletely runs on 8076 (28%). Both versions of the symbolic interpreter were run on those
8076 scripts and we analyzed some of their reports.

Over those 8076 scripts the constaints version finds at least one failing execution sce-
nario in 1672 scripts (21%), while the transducer version (ours) finds 1711 scripts (21%).
The 1711 scripts found by our version include the 1672 scripts found by the constraints
version, and 39 other scripts. It is hard to automatically search for the types of errors
because the commands making a script fail are not always informative of the type of errors.
Instead we had to analyse scripts by hand to find where errors came from. We have done
this on a sample of them.

Of the 1672 scripts found by both versions, a big proportion seem to come from the
concrete interpreter. For example some scripts do different things depending on their
argument using case "$1" in, and produce an error when the argument is the empty
string.

The remaining 39 scripts detected only by our tool seem to all contain a genuine bug.
Some errors come from the use of cp or mv, which indicates a difference of modelisation of
these commands between the two versions.

One such example is the script preinst from package am-utils_6.2+rc20110530-

3.2+b1 shown in Figure 4.6, which fails when /etc/amd/config is a regular file (so the
test line 3 succeeds) and /etc/amd/config.disabled-by-am-utils/config is a direc-
tory (so the mv fails). This bug is interesting because it is not too obvious. The con-
dition on the test is supposed to make sure that the mv is possible, it does check that
/etc/amd/config is a regular file and /etc/amd is a directory, but it forgets to check that
the new filename config.disabled-by-am-utils is not already used.

Overall this shows that our implementation has similar complexity as that of another
implementation solving the same problem, despite the fact that we reuse a part of their
code (the concrete interpreter) which was better suited to their approach of the problem.
Our implementation provides similar results, but our analysis gives slightly finer results
and detects a few more bugs.

In the future we hope to update our implementation to the latest version of the concrete
interpreter published in [19], that version supports a greater variety of script commands
and constructs.

96

4.3 Equivalence

On our model of tree pattern transformations we have shown how to compute composition
and how to decide whether a transducer represents the empty transformation (i.e. testing
if its domain is empty). Testing the equivalence of two transducers is another important
verification tool. We have not implemented it, but we can use tools from section 3.3 to
give an algorithm for it.

For two tree pattern transducers to be equivalent we need to check three things: first
that the input constraints are equivalent (required because the domain of transducers is
characterized by them). Second checking that the rewriting rules are equivalent on the
domain given by the input constraints, this can be done by computing the most general
unifier of the patterns of the rule and checking that the input patterns, through unification,
stay compatible with the input constraints. Thirdly we need to check that the output
constraints are equivalent. This is enough to test equivalence.

For testing the equivalence of two tree constraints C1 and C2, we can test that both
C1∧¬C2 and ¬C1∧C2 are unsatisfiable, using the test of satifiability from subsection 3.3.3.
Although we suspect that there is an algorithm with better formal complexity. We could
also use prefix feature trees (c.f. subsection 4.1.2) to represent sets of feature trees instead
of tree constraints, this could improve the average time complexity by removing some
disjunctions.

4.4 Conclusion on CoLiS

In this part of the thesis we have presented our work in the scope of the CoLiS ANR project.
We have built a formalism of tree transformations able to represent the actions of some
script commands on file systems with carefully chosen approximations. We have developed
algorithms to efficiently verify their properties, including computing the composition of
transformations, testing if a transformation is empty and testing if two transformations
are equivalent.

Inspired by the literature of tree transducers, we have designed an algorithm to auto-
matically check for errors in scripts. We have tailored our model and algorithms to the
specific problem of checking script traces, and implemented our solution. We have tested
this solution and compared it to an existing tool, showing that our approach allowed a
slightly more accurate analysis while keeping a similar time complexity.

Finally we have studied the complexities of our algorithms. We have proven the NP-
hardness of the problem of checking script traces, and precisely identified the mechanisms
inducing this complexity. We have then shown how, in the specific case where those
mechanisms are absent, our algorithm has polynomial time complexity.

After this, our most immediate prospect is to adapt our implementation to the latest
version of the concrete interpreter which supports a lot more functionalities of scripts than
the one we based our work on. This new version is able to not only run maintainer scripts,
but it also simulates the combinations of maintainer scripts run by package managers when
performing tasks of installation and removal of packages.

97

Since our implementation is fast enough to run on large corpuses of scripts, we could
also try to model file systems and commands more accurately. In particular removing the
big approximation of the cp -r command on the case where its destination directory is
not empty.

A third possibility would be to use a similar tool in order to detect if an uninstallation
script puts the file system back as it was before installation. To check this we only need to
test if the composition the installation script with the uninstallation script performs the
identity function. This would require to implement our algorithms for composition and
for checking the equivalence.

98

Part III

Part 3 : Transduction through functional
programming

99

Chapter 5

Definition of high-order tree transducers

In this part of the thesis we present the model of High-Order Deterministic tree Transduc-
ers (HODT) which gives a uniform generalisation of the models of tree transformations
presented in section 1.4 of the introduction. They are defined similarly to top-down tree
transducers, except that rules can produce λ-terms of arbitrary types.

This class of transducers naturally contains top-down tree transducers, as they are
HODT of order 0 (the output of rules are trees), but also MTT, which are HODT of order
1 (outputs are tree contexts).

The linear and almost linear restrictions of HODT are of special interest to us. In
terms of expressiveness, linear HODTR (HODTRlin) corresponds to the class of MSOT.
This links our formalism to other equivalent classes of transducers, such as finite-copying
macro-tree transducers [12, 13], with an important difference: the linearity restriction is a
simple syntactic restriction, whereas finite-copying, or the equivalent single-use-restricted
condition are both global conditions that are harder to enforce. For STT, the linearity
condition corresponds to the copyless condition described in [2] and where the authors
prove that any STT can be made copyless.

The relationship of HODTRlin to MSOT is made via a transformation that reduces the
order of transducers. We indeed prove that for any HODTRlin, there exists an equivalent
HODTRlin whose order is at most 3. This transformation allows us to prove then that
HODTRlin are equivalent to Attribute Tree Transducers with the single use restriction
(ATTsur). In turn, this shows that HODTRlin are equivalent to MSOT [7].

One of the main interests of HODTRlin is that λ-calculus also offers a simple composi-
tion algorithm. This approach gives an efficient procedure for composing two HODTRlin.
In general, this procedure raises the order of the produced transducer. In comparison,
composition in other equivalent classes are either complex or indirect (through MSOT).

The last two results allow us to obtain a composition algorithm for other equivalent
classes of tree transducer, such as MTT or STT: compile into HODTRlin, compose, reduce
the order, and compile back into the original model. The advantage of this approach
over the existing ones is that the complex composition procedure is decomposed into two
simpler steps (the back and forth translations between the formalisms are unsurprising
technical procedures). We believe in fact that existing approaches [16, 2] combine in one
step the two elements, which is what makes them more complex.

100

The property of order reduction also applies to a wider class of HODT, almost linear
HODT (HODTRal). Again here, this transformation allows us to prove that this class of
tree transformations is equivalent to that of Attribute Tree Transducers which is known
to be equivalent to MSO tree transformations with unfolding [7], i.e. MSO tree trans-
duction that produce Directed Acyclic Graphs (i.e. trees with shared sub-trees) that are
unfolded to produce a resulting tree. We call these transductions Monadic Second Order
Transductions with Sharing (MSOTS). Note however that HODTRal are not closed under
composition.

Structure of part III

In chapter 5 we present the model of High-Order Deterministic tree Transducers (HODT)
and discuss some of its important properties.
In chapter 6 we give two algorithms for computing the composition of HODT, one of which
preserves linearity. We also discuss the complexities of these algorithms.
In chapter 7 we present the procedure used to reduce the order of HODTRlin and HODTRal,
and we show that these models are respectively equivalent to MSOT and MSOTS.

Structure of chapter 5

In section 5.1 we recall some notions of λ-calculus and we define the model HODT and its
variants.
In section 5.2 we give an example of HODT and how to compute its output.
In section 5.3 we prove that domains of HODTRlin and HODTRal are regular sets of trees,
we give a decision process for the regular type-checking in those models. We also show
that the look-ahead does not increase the expressivity of the model HODT, and we discuss
the how the order of λ-terms in HODT increase its expressivity.

5.1 Definitions

In this section we present notions of λ-calculus, then we define the transducer model of
High-Order Deterministic top-down tree Transducers, its variant with regular look-ahead,
and the linear and almost-linear variants.

5.1.1 Simply-typed lambda calculus

We explain here how to represent trees and functions on trees using simply-typed λ-
calculus, and we present the definitions of linear and almost linear λ-terms.

Fix a finite set of atomic types A, we then define the set of types over A, types(A),
as the types that are either an atomic type, i.e. an element of A, or a functional type
(A → B), with A and B being in types(A). The operator → is right-associative and
A1 → · · · → An → B denotes the type (A1 → (· · · → (An → B) · · ·)). The order of
a type A is inductively defined by order(A) = 0 when A ∈ A, and order(A → B) =
max(order(A) + 1, order(B)).

101

Signatures A signature Σ is a triple (C,A, τ) with C being a finite set of constants, A a
finite set of atomic types, and τ a mapping from C to types(A), the typing function. We
allow ourselves to write types(Σ) to refer to the set types(A).

The order of a signature is the maximal order of a type assigned to a constant (i.e.
max{order(τ(c)) | c ∈ C}). A tree signature is a signature of order 1 with a unique atomic
type. In this work, we mostly deal with tree signatures. In a tree signature with atomic
type o, the types of constants are of the form o → · · · → o → o. We write on → o for an
order-1 type which uses n + 1 occurrences of o, for example, o2 → o denotes o → o → o.
When c is a constant of type A, we may write cA to make explicit that c has type A. Two
signatures Σ1 = (C1,A1, τ1) and Σ2 = (C2,A2, τ2) can be summed if for every c in C1∩C2

we have τ1(c) = τ2(c); in such a case we write Σ1+Σ2 for the signature (C1∪C2,A1∪A2, τ)
so that if c is in C1, τ(c) = τ1(c) and if c is in C2, τ(c) = τ2(c). The sum operation over
signatures being associative and commutative, we write Σ1 + · · ·+ Σn to denote the sum
of several signatures.

We assume that for every type A, there is an infinite countable set of variables of type
A. When two types are different the set of variables of those types are of course disjoint.
As with constants, we may write xA to make it clear that variable x is of type A.

λ-Terms When Σ is a signature, we define the family of simply typed λ-terms over Σ,
denoted Λ(Σ) = (ΛA(Σ))A∈types(Σ), as the smallest family indexed by types(Σ) so that:

• if cA is a constant in Σ, then cA is in ΛA(Σ),

• any variable xA is in ΛA(Σ),

• if A = B → C and M is in ΛC(Σ), then (λxB.M) is in ΛA(Σ),

• if M is in ΛB→A(Σ) and N is in ΛB(Σ), then (MN) is in ΛA(Σ).

The term M is a pure λ-term if it does not contain any constant cA from Σ. When the
type is irrelevant we write M ∈ Λ(Σ) instead of M ∈ ΛA(Σ). We drop parentheses when it
does not bring ambiguity. In particular, we write λx1 . . . xn.M for (λx1(. . . (λxn.M) . . .)),
and M0M1 . . .Mn for ((. . . (M0M1) . . .)Mn).

The set fv(M) of free variables of a term M is inductively defined on the structure of
M :

• fv(c) = ∅,

• fv(x) = {x},

• fv(MN) = fv(M) ∪ fv(N),

• fv(λx.M) = fv(M) \ {x}.

Terms which have no free variables are called closed. We write M [x1, . . . , xk] to emphasize
that fv(M) is included in {x1, . . . , xk}. When doing so, we write M [N1, . . . , Nk] for the
capture avoiding substitution of variables x1, . . . , xk by the terms N1, . . . , Nk. In other

102

contexts, we simply use the usual notation M [x1/N1, . . . , xk/Nk]. Moreover given a substi-
tution θ, we write M.θ for the result of applying this (capture avoiding) substitution and
we write θ[x1/N1, . . . , xk/Nk] for the substitution that maps the variables xi to the terms
Ni but is otherwise equal to θ. Of course, we authorize such substitutions only when the
λ-term Ni has the same type as the variable xi.

Reduction A β-redex is a term of the form ((λx.M)N) and its β-contractum is M [x/N].
A term M β-contracts to M ′ when one of its subterm is a β-redex and is replaced by
its β-contractum in M ′. We write M →β M ′ when M β-contracts to M ′. The reflexive

transitive closure of β-contraction is β-reduction and is written
∗→β and its symmetric

reflexive and transitive closure, β-conversion, is written =β. A term that does not contain
a β-redex is said in β-normal form.

An η-redex is a term of the form (λx.(M x)) when x /∈ fv(M) and its η-contractum is

the term M . The relations of η-contraction, →η, η-reduction,
∗→η, and η-conversion, =η,

are defined similarly to β-contraction. So as to compare λ-terms, we use the union of β-
contraction and η-contration, →βη. But this can be done by putting terms in a particular
form: the η-long form. A term M is said to be in η-long form whenever if N is a subterm
of M that has type A→ B then either N is of the form λx.N ′, or its occurrence in M is
applied to some argument. For every term M there is a term M ′ in η-long form such that
M =η M

′ and moreover M =βη N iff given M ′ and N ′ that are η-long forms of M and N ,
M ′ =β N ′. From now on, we are always going to work with terms in η-long form.

Consider closed terms of type o that are in β-normal form and that are built on a tree
signature, they can only be of the form a t1 . . . tn where a is a constant of type on → o
and t1, . . . , tn are closed terms of type o in β-normal form. This is just another notation
for ranked trees. So when the type o is meant to represent trees, types of order 1 which
have the form o→ · · · → o→ o represent functions from trees to trees, or more precisely
tree contexts. Types of order 2 are types of trees parametrized by contexts. The notion
of order captures the complexity of the operations that terms of a certain type describe.

Linearity and almost linearity A term M is said linear if each variable (either bound or
free) in M occurs exactly once in M . A term M is said syntactically almost linear when
each variable in M of non-atomic type occurs exactly once in M . Note that, through
β-reduction, linearity is preserved but not syntactic almost linearity.

For example, given a tree signature Σ1 with one atomic type o and two constants f of
type o2 → o and a of type o, the termM = (λy1y2.f y1 (f a y2)) a (f x a) with free variable x
of type o is linear because each variable (y1, y2 and x) occurs exactly once in M . The term
M contains a β-redex so: (λy1y2.f y1 (f a y2)) a (f x a) →β (λy2.f a (f a y2)) (f x a) →β

f a (f a (f x a)). The term f a (f a (f x a)) has no β-redex so it is the β-normal form of M .
Another example: the term M2 = (λy.f y y) (x a) with free variable x of type o → o

is syntactically almost linear because the variable y which occurs twice in the term is of
the atomic type o. It β-reduces to the term M ′

2 = f (x a) (x a) which is not syntactically
almost linear, so β-reduction does not preserve syntactical almost linearity.

We call a term almost linear when it is β-convertible to a syntactically almost linear

103

term. Almost linear terms are characterized also by typing properties (see [22]).
For any signature Σ = (C, {o}, τ) with a single atomic type o and for any type A on this

signature, we define a new symbol ΩA which will serve as an undetermined object. We note
ΣΩ the signature obtained this way. Intuitively, it represent the result of a computation
which does not produce an output. For example, if there is no transition rule with a state
q and a tree a x1 . . . xn, then we can add a rule q(a x1 . . . xn)→ ΩA; this allows us to have
a complete set of transition rules, while still being a generalisation of other transduction
models (such as DTOP and MTT) that do not necessarily produce an output for every
input.

5.1.2 High-Order Deterministic top-down tree Transducers

From now on we assume that Σi is a tree signature for every number i and that its atomic
type is oi.

A High-Order Deterministic top-down tree Transducer (HODT) T is a tuple
(ΣQ,Σ1,Σ2, q0, R) where:

• Σ1 = (C1, {o1}, τ1) is a first-order tree signature, the input signature,

• Σ2 = (C2, {o2}, τ2) is a first-order tree signature, the output signature,

• ΣQ = (Q, {o1, o2}, τs) is the state signature, and is so that for every q ∈ Q, τs(q) is
of the form o1 → Aq where Aq is in types(Σ2). Constants of Q are called states,

• q0 is the initial state,

• R is a finite set of rules of the form

q(a−→x)→M [x1, . . . , xn]

where:

– q is a state of Q,

– a is a constant of Σ1 with type on1 → o1,

– −→x = x1, . . . , xn are variables of type o1 representing the child trees of the root
labeled a,

– M is a term of type Aq that is built on the signature ΣΩ
2 + ΣQ,

– there is exactly one rule in R for each possible left-hand side (determinism).

Notice that we have given states a type of the form o1 → A where A ∈ types(o2). The
reason why we do this is to have a uniform notation. Indeed, a state q is meant to
transform, thanks to the rules in R, a tree built in Σ1 into a λ-term built on ΣΩ

2 with type
Aq. So we simply write qM N1 . . . Nn when we want to transform M with the state q and
pass N1,. . . , Nn as arguments to the result of the transformation. We write ΣT for the
signature Σ1 +Σ2 +ΣQ (assuming that the constants in ΣQ, Σ1 and Σ2 are distinct from

104

each other). Notice also that the right-hand part of a rule is a term that is built only with
constants of ΣΩ

2 , states from ΣQ and variables of type o1. Thus, in order for this term to
have a type in types(Σ2), it is necessary that the variables of type o1 only occur as the
first argument of a state in ΣQ.

Remark that we did not put any requirement on the type of the initial state. So as to
restrict our attention to transducers as they are usually understood, it suffices to add the
requirement that the initial state is of type o1 → o2. However, we consider as well that
transducers may produce programs instead of first order terms.

The constant Ω

We use the constant Ωo2 of ΣΩ
2 so as to denote undefined outputs. Because of this, we

impose that for every pair q, a, there is a rule of the form q(a x1 . . . xn)→T M , as if there
were no such a rule, we would simply add the rule q(a x1 . . . xn)→T ΩAq without changing
the behavior of the transducer. Note that this technical choice is not standard in the
definitions of transducers where failure is more often represented by blocked computations.
This technical choice makes several properties like removal of look-ahead and composition
work while they would not if we were sticking to the more traditional definitions.

It is worth noting that if we were implementing a transducer in a programming language
we would need to specify what to do when a computation is blocked and that this would
amount to signal failure by some mechanism (abort computation, throw an exception,. . .),
thus marking failure with some constant seems to be closer to actual implementations of
transducers.

We will later show in subsection 5.3.2 that the addition of a look-ahead to this model
allows us to represent partial tree-to-tree functions without resorting to the constant Ω,
but while still keeping our result on composition of transducers.

5.1.3 Regular look-ahead

Similarly to known models of transducers (like DTOP in section 1.4) we equip HODT with
what we call a regular look-ahead. It is a deterministic bottom-up tree automaton which
is run on the input tree of a High-Order Deterministic top-down tree Transducer (HODT)
in order to guide its rules. We first restate the definition of bottom-up tree automata, but
with the λ-calculus representation of trees.

Tree automata

A BOT A is a tuple (ΣL,Σ, R) where:

• Σ = (C, {o}, τ) is a first-order tree signature, the input signature,

• ΣL = (L, {o}, τL) is the state signature, and is such that for every ` ∈ L, τL(`) = o.
Constants of L are called states,

• R is a finite set of rules of the form a `1 . . . `n → ` where:

105

– `,`1, . . . , `n are states of L,

– a is a constant of Σ with type on → o.

An automaton is said deterministic when there is at most one rule in R for each
possible left hand side. It is non-deterministic otherwise.

Apart from the notation, our definition differs from the classical one by the fact there are
no final states, and hence, the automaton does not describe a language. This is due to the
fact that BOT will be used here purely for look-ahead purposes.

A High-Order Deterministic top-down tree Transducer with Regular look-ahead (HODTR)
T is a tuple (ΣQ,Σ1,Σ2, q0, R, A) where Σ1, Σ2, ΣQ and q0 are as before and:

• A is a deterministic bottom-up tree automaton, we call it the look-ahead automaton
of T ,

• R is a finite set of rules of the form

q(a−→x)〈
−→
` 〉 →M [x1, . . . , xn]

where:

– q is a state of ΣQ,

– a is a constant of Σ1 with type on1 → o1,

– −→x = x1, . . . , xn are variables of type o1 representing the child trees of the root
labeled a,

–
−→
` = `1, . . . , `n are in L (the set of states of the look-ahead A),

– M is a term of type Aq that is built on ΣΩ
2 + ΣQ.

– there is exactly one rule in R for each possible left-hand side (determinism).

5.1.4 Linear and Almost-Linear variants

A linear High-Order Deterministic top-down tree Transducer with Regular look-ahead
(HODTRlin) is a HODTR where the terms on the right side of rules are linear.

An almost-linear High-Order Deterministic top-down tree Transducer with Regular
look-ahead (HODTRal) is a HODTR where the terms on the right side of rules are almost-
linear.

The rules of such transducers are of the form

q(a−→x)〈
−→
` 〉 →M [x1, . . . , xn]

where −→x = x1, . . . , xn are variables of type o1 and
−→
` = `1, . . . , `n are states of the look-

ahead automaton. The linearity or almost linearity constraint on M affects both bound
variables and free variables x1, . . . , xn, meaning that all of the subtrees x1, . . . , xn are used
in computing the output.

106

That will be important for the composition of two transducers because if the first
transducer fails in a branch of its input tree then the second transducer, applied to that
tree, must fail too.

This restriction forcing the use of input subtrees does not reduce the model’s expres-
sivity because we can always add a state q which visits the subtree but only produces the
identity function on type o2 (this state then has type o1 → Aq = o1 → o2 → o2).

Weakly Deterministic variant

A linear High-Order Weakly Deterministic top-down tree Transducer with Regular look-
ahead (HOWDTRlin) is a HODTRlin whose look-ahead automaton is not necessarily de-
terministic, but the transducer is deterministic in the weaker sense that, when two rules
of the transducer are of the form:

q(a x1 . . . xn)〈`1, . . . , `n〉 →T M [x1, . . . , xn]
and

q(a x1 . . . xn)〈`′1, . . . , `′n〉 →T M ′[x1, . . . , xn]

there must be some i such that no tree is recognized by both states `i and `′i of the
look-ahead automaton.

This alteration of the model of HODTRlin is useful for the composition of transducers.
Indeed, when composing HODTRlin, we will have to determinize the look-ahead automaton
so as to obtain a HODTRlin, which may cause an exponential blow-up of the look-ahead
automaton. However if we keep the look-ahead non-deterministic, the transducer stays
deterministic because only one rule of the transducer can apply when it is actually run.

Notice that it suffices to determinize the look-ahead so as to obtain a HODTRlin from
a HOWDTRlin, and therefore the two models are equally expressive.

5.1.5 Tree transformations associated with transducers

Given a HODT, HODTR or HOWDTRlin T , we write T :: Σ1 −→ Σ2 to mean that the
input signature of T is Σ1 and its output signature is Σ2.

A transducer T induces a notion of reduction on terms. A T -redex is a term of the
form q(a M1 . . .Mn) and if

q(a x1 . . . xn)→T M [x1, . . . , xn]

is a rule of T , then its T -contractum is M [M1, . . . ,Mn]. In the case we deal with a
transducer with look-ahead, q(aM1 . . .Mn) is a contractum for the rule

q(a x1 . . . xn)〈`1, . . . , `n〉 →T M [x1, . . . , xn]

only if (the β-normal forms of) M1, . . . , Mn are respectively accepted by A from the states
`1, . . . , `n. In that case, a T -contractum of q(a M1 . . .Mn) is M [M1, . . . ,Mn]. Notice
that T -contracta are typed terms and that they have the same type as their corresponding
T -redices. For technical reasons, we also assume that qΩ →T ΩAq . The relation of T -
contraction relates a term M and a term M ′ when M ′ is obtained from M by replacing
one of its T -redex with a corresponding T -contractum.

107

We write M →T M ′ when M T -contracts to M ′, and we write →β,T the union of the
relations →T and →β. The relation of β-reduction is confluent, and so is the relation of
T -reduction as transducers are deterministic, therefore the union of the two relations is
terminating. It is not hard to prove that →β,T is also locally confluent. It follows that it
is confluent and strongly normalizing. The symmetric reflexive and transitive closure of
→β,T is written =β,T . Given a term M built on ΣT , we write |M |T to denote its normal
form modulo =β,T .

Then we write rel(T) for the relation

{(M, |q0M |T) | M is a closed term of type o1 and |q0M |T ∈ Λ(Σ2)}.

Given a finite set of trees S1 on Σ1 and S2 included in ΛAq0 , we respectively write T (S1)
and T−1(S2) for the image of S1 by T and the inverse image of S2 by T . As we explained
earlier, we consider that the output of T is valid if its normal form modulo =β,T does
not contain occurrences of Ω. Note however that the computation of T may succeed
even though during the reduction some Ω occurs. Indeed this occurrence of Ω may be
deleted afterwards during the computation. When using a head-reduction strategy, i.e.
only reducing redices that are top-most in terms, once an Ω occurs, it will never be
deleted. This reduction strategy thus detects error only when they occur and also allows
for computing normal forms of transducers. Such a strategy can be implemented with a
lazy evaluation. Thus this notion of transducer could be directly implemented as Haskell
programs.

5.2 Example of high-order tree transducers

We give an example of a HODTRlin T that computes the result of additions of numeric
expressions (numbers being represented in unary notation). For this we use an input tree
signature with type o1, and constants Zo1 , So1→o1 and addo1→o1→o1 which respectively
denote zero, the successor function and addition. The output signature is similar but dif-
ferent to avoid confusion: it uses the type o2 and constants Oo2 , N o2→o2 which respectively
denote zero and successor.

For example T associates with the input tree t1 the output tree t2 as follows:

t1 = add

S

S

Z

S

S

S

Z

⇒T

t2 = N

N

N

N

N

O

We do not really need the look-ahead automaton for this computation, so we omit it
for this example. We could have a blank look-ahead automaton A with one state ` and

108

rules: A(Z) = `, A(S `) = ` and A(add ` `) = `; which would not change the result of the
transducer.

The transducer T has two states: q0 of type o1 → o2 (the initial state), and qi of type
o1 → o2 → o2. The rules of the transducer are the following:

• q0(Z)→ O,

• q0(S x)→ N(qi xO),

• q0(addx y)→ qi x (qi y O),

• qi(Z)→ λx.x,

• qi(S x)→ λy.N(qi x y),

• qi(addx y)→ λz.qi x (qi y z).

The order of T is max{order(Aq) | q ∈ Q} = 1.
We show how the rules works on an example. We use a graphical representation of

terms as trees where constants of atomic type o1 or o2 are leaves, constants of order 1
(i.e. S,N, q0 and qi) are inner nodes, and subterms of order ≥ 1 in η-long form are inner
nodes whose internal structure is represented in a rectangle. As an example, we perform
the transduction of the tree t1 shown before. The computation, shown in Figure 5.1 and
Figure 5.2, starts by applying the initial state q0 to t1.

q0

add

S

S

Z

S

S

S

Z

→T

qi

S

S

Z

qi

S

S

S

Z

O

→T

λy.N

qi

S

Z

y

qi

S

S

S

Z

O

→β

N

qi

S

Z

qi

S

S

S

Z

O

→T
λy.

N

N

qi

Z y

qi

S

S

S

Z

O

→β

N

N

qi

Z qi

S

S

S

Z

O

Figure 5.1 – Computation of tree t1 (part 1)

The state qi transforms a sequence of n symbols S into a λ-term of the form λx.Nn(x),
and the add maps both its children into such terms and composes them. The state q0
simply applies O to the resulting term.

Note that our reduction strategy here has consisted in reducing β-redices as soon as
they appear, and computing T -redices only when there are no β-redices. This makes the

109

N

N

qi

Z qi

S

S

S

Z

O

→T

N

N

λx. x

qi

S

S

S

Z

O

→β

N

N

qi

S

S

S

Z

O

→β,T . . . →β,T

N

N

N

N

N

qi

Z O

→T

N

N

N

N

N

λx. x

O

→β

N

N

N

N

N

O

Figure 5.2 – Computation of tree t1 (part 2)

computation simpler to present. As we mentioned earlier, any reduction strategy would
lead to the same result.

5.3 Properties of High-Order Transducers

In this section we present useful properties of the different variants of High-Order Trans-
ducers.

In the first section we prove that the inverse image of a regular set of trees by a HODT
is a regular set of trees, which implies that the domains of HODT are also regular sets of
trees. In the second section we prove that the addition of the look-ahead does not change
the expressivity of HODT. In the third section we show how HODT offer a generalisation
of known classes of transducers like DTOP and MTT.

5.3.1 Domains

In this part we will show that the domain of a HODTRlin, a HODTRal or a HOWDTRlin

is a regular set of trees, i.e. is a set of trees recognizable by a deterministic bottom-up tree
automaton. Actually, we will prove a more general claim: that the reverse image of any
regular set of trees by a HODTRlin, HODTRal or HOWDTRlin is a regular set of trees.
This result will also give a decision process for the regular type-checking of transducers.

Inverse image preserves regularity

In order to show that the inverse image of a regular tree language by a HODT is a regular
language we prove a more general result: that the inverse image of a recognizable set of
λ-terms (in the sense of [26]) is a regular set of trees.

The definition of a recognizable set of λ-terms is tied to the notion of model of λ-
calculus. Here we are going to use monotone models of λ-calculus. Fixing a signature Σ,

110

these models are defined by means of monotone applicative structures, i.e. a family of
finite meet semilattices indexed by types(Σ), (MA)types(Σ) and so thatMA→B is the set of
monotone functions fromMA toMB i.e. those functions f fromMA toMB so that for
a, a′ ∈ MA, a ≤ a′ implies that f(a) ≤ f(a′). MA→B is ordered pointwise which means
that for every f, g ∈MA→B, f ≤ g iff for every a ∈MA, f(a) ≤ g(a). We note ⊥A for the
minimal element ofMA, or ⊥ when the type is not relevant. Notice that for a signature
Σ, a monotone applicative structure is completely determined by the meet semilattices to
which atomic types are associated and also that for every A, MA is a finite set. Finally
a monotone model of Σ is a pair M = (M, ρ) whereM = (MA)A∈types(Σ) is a monotone
applicative structure on Σ and ρ is a mapping that associates to every cA of Σ a value
in MA. We naturally extend ρ to ΣΩ by defining ρ(ΩA) to ⊥A for every atomic type A
of Σ. We thus make no difference between models of Σ and models of ΣΩ. Monotone
models of Σ give an interpretation to λ-terms built in Σ (and ΣΩ). So as to deal with
free variables given a term M and valuation µ that maps every variable xA to a value in
MA (only finitely many variables have a value different from ⊥ and we write ∅ for the
valuation that maps every variable to ⊥), the interpretation of M with the valuation µ is
written [[M,µ]]M and is inductively defined as follows:

• [[c, µ]]M = ρ(c),

• [[x, µ]]M = µ(x),

• [[MN,µ]]M = [[M, u]]([[N,µ]]),

• [[λx.M, µ]]M(a) = [[M,µ′]]M where µ′ is the valuation that is identical to µ but that
maps x to a.

We may write [[M,µ]] when M is obvious from the context and [[M]] when µ is a valuation
that maps every variable to ⊥.

Theorem 4 (see [5]) Whenever M =βη N , we have that for every µ: [[M,µ]]M = [[N,µ]]M.

A particular kind of monotone models are models induced by finite state automata. Given
a tree signature Σ (with atomic type o) and a deterministic bottom-up tree automaton
A = (L,Σ, E, F). We may define the monotone applicative structureM = (MA)A∈types(Σ)

such thatMo is the flat semilattice L⊥, the element of which are L ∪ {⊥}, so that ⊥ ≤ `
for every state ` in L and two different states ` and `′ of L are incomparable. We now
define the function ρ : for each symbol a of Σ of type or → o, and all `, `1, `2, . . . , `r inMo :

ρ(a) `1 . . . `r = ` when A has a rule a(`1, . . . , `r)→ `

Proposition 1 (see [27]) For every closed term M of type o, A accepts the normal form of
M with state ` iff [[M]] = `.

Thus, monotone models can be seen as a nice generalization to λ-calculus of the algebraic
interpretation of recognizability. In particular, fixing a monotone model (M, ρ), a rec-
ognizable set of λ-terms is defined by fixing a type A and a finite subset F of MA, the

111

recognizing set. The elements of the recognizable set is then just the set of closed terms M
of ΛA(ΣΩ) so that [[M]] ∈ F . The previous proposition shows the notion of recognizability
for λ-terms is a conservative extension of that of recognizability for trees.

Let’s now turn to the construction of an automaton that recognizes precisely the inverse
image of a recognizable set of λ-terms by a HODT. We fix a HODT T = (ΣQ,Σ1,Σ2, q0, R),
and a recognizable set of λ-terms defined by the monotone model (M, ρ) of Σ and the
recognizing set F included in MAq0

. We now define a monotone model T = (T , θ) on
the signature ΣT . We define T so that To2 = Mo2 , To1 = MAq1

× · · · × MAqn
when

the states of T are {q1, . . . , qn} and the tuples in To1 are ordered component-wise, i.e,
(a1, . . . , an) ≤ (b1, . . . , bn) when a1 ≤ b1, . . . , an ≤ bn. We now define θ as follows:

• θ(a) = ρ(a) when a is a constant of Σo,

• θ(a)t1 . . . tr = (f1, . . . , fn) when a is a constant of type o1
r → o1 and where fi =

[[Mi, µ]] with µ(xi) = ti and there is a rule qi(ax1 . . . xr)→Mi in R,

• θ(qi)(f1, . . . , fn) = fi for every tuple (f1, . . . , fn) ofMAq1
× · · · ×MAqn

.

This model defines an automaton on the input signature: its states are the elements of
To1 , its transition function is just defined by the interpretation of the constant of Σ1 by θ.
Its final states are precisely those tuples (f1, . . . , fn) of To1 so that f1 is an element of F ,
the recognizing set.

Theorem 5 Given a transducer T from Σ1 to Σ2 and a recognizable language of λ-term
R, T−1(R) is an effectively computable regular set of trees.

The proof of theorem 5 is based on the idea that given a term M of ΣT , and a valuation
µ, then [[M,µ]]T is invariant modulo =β,T . Thanks to Theorem 4, to prove this it suffices
to prove the following lemma:

Lemma 8 Given M and N in Λ(ΣT), when M →T N , for every µ, [[M,µ]]T = [[N,µ]]T.

Proof
The proof is an induction on the structure of M . All the cases are straightforward except
the one where M = qi(aM1 . . .Mr), there is a rule of T of the form q(a x1 . . . xn) →
P [x1, . . . , xr] and N = P [M1, . . . ,Mr]. By definition if

[[aM1 . . .Mr, µ]] = (f1, . . . , fn) ,

then [[M,µ]] = fi. Again by definition, we have that fi = [[P, ν]] with ν(xj) = [[Mj, µ]]
for every j in [1, r]. But [[N,µ]] = [[(λx1 . . . xr.P)M1 . . .Mr, µ]] by Theorem 4. So by
definition [[N,µ]] = [[P, µ′]] where µ′(xj) = [[Mj, µ]] for every j in [1, r]. But then, as
fv(P) = {x1, . . . , xr} we have that [[N,µ]] = [[P, ν]] = [[M,µ]]. �

Corollary 6 Given M and N in Λ(ΣT), when M =β,T N , for every µ, [[M,µ]]T = [[N,µ]]T.

A direct consequence of the previous corollary is:

112

Proposition 2 Given a tree t built on Σ1, we have

[[t]]T = ([[M1]], . . . , [[Mn]])

where Mi = |qi t|T for every i in [1, n].

Proof
By definition [[t]]T = ([[q1 t]], . . . , [[qn t]]), and, by Corollary 6, [[Mi]] = [[qi t]] for every i in
[1, n]. �

Theorem 5 follows immediately:
Proof
Given a tree t built on Σ1, the automaton that we have constructed simply computes [[t]].
From Proposition 2, when [[t]] = (f1, . . . , fn), we know that fi = [[|qi t|T]]. Thus, |q1 t|T is
in R iff f1 is in the recognizing set defining R, which is precisely how we have defined the
finite states of the automaton. �

Type-checking A consequence of theorem 5 is the decidability of the so-called regular
type-checking of transducers. The question is the following, given a transducer T :: Σ1 7−→
Σ2, a regular language of trees R1 on Σ1 and a recognizable set of λ-terms R2 on Σ2, is
T (R1) included intoR2. As T

−1(R2) is a regular tree language, it suffices to check whether
R1 is included in T−1(R2).

Proposition 3 Regular type checking is decidable for HODT.

The same construction can be easily adapted to HODTR. But the result for HODTR
can also be obtained by combining Theorem 5 and Theorem 7.

Domains Theorem 5 implies that the domains of HODT are regular sets of trees. It also
shows a way to compute, for each HODT T , a bottom-up tree automaton which accepts
exactly the domain of T , this automaton can be used as look-ahead in order to detect
failing computations early. Therefore the constant Ω, which we use to represent failing
computations, does not change the expressivity of HODTR. This is also true of HODT
considering theorem 7.

5.3.2 Look-ahead

In this section, we show that the addition of a look-ahead does not enhance the expressive
power of HODT. The construction we use is just a transposition of the one proposed
in [14] for MTTs. For this we prove that HODT are able to compute the result of finite
state tree automata.

The HODT that computes the result of finite state tree automata will have the tree
signature Υ = (∅, {o}, ∅) (i.e. the tree signature with no constant) as output signature.
The idea is that it is possible to represent finite sets and functions from finite sets to finite
sets in Υ and this is enough to represent the transition rules of finite state tree automata.

113

So given a finite set Q = {q1, . . . , qr} of states, we let Fr = or → o. Now the only closed
λ-terms in ΛFr(Υ) are of the form λx1 . . . xr.xi with i in [1, r]. There are exactly r such
terms. We use a bijection indQ between Q and ΛFr(Υ), so that indQ(qi) = λx1 . . . xr.xi.

The next lemma generalizes the intuition that we can represent every function from
finite sets to finite sets within Υ, by showing that it is true when considering functions
from Qk to sets of λ-terms.

Lemma 9 Let f be a function from Qk to the set of closed λ-terms in ΛA(Υ). Then there
exists a term Mf of type Fk

r → A such that, for all x1, . . . , xk ∈ Q:

f(x1, . . . , xk) =βη Mf ind(x1) . . . ind(xk)

Proof
We prove this lemma by induction on the number k.

• The initiation is when k = 0, then f() is a λ-term N of type A, so we define Mf = N .
In that case f() = Mf .

• For the induction we assume that for all function g : Qk → ΛA there exists Mg with
the right property, then we prove the same for a function f : Qk+1 → ΛA.

For all 1 ≤ i ≤ r, we define the function gi by, for all x1, . . . , xk ∈ Q : gi(x1, . . . , xk) =
f(qi, x1, . . . , xk). Then since type A is built only on atomic type o, it is necessary of
the form A = A1 → · · · → Am → o.

Finally we define :

Mf = λq x1 . . . xk y1 . . . ym.

q (Mg1 x1 . . . xk y1 . . . ym) . . . (Mgr x1 . . . xk y1 . . . ym)

Then we have, for all qi ∈ Q, Mf (ind qi) =βη Mgi . So, for all qi, x2, . . . , xk+1 ∈ Q :

Mf (ind qi) (ind x2) . . . (ind xn+1) y1 . . . ym =βη f(qi, x2, . . . , xm) y1 . . . ym

�

Using lemma 9, we can now show that HODT can represent the finite state automata.
Given A a complete deterministic bottom-up finite state tree automaton with states Q =
{q1, . . . , qr}, over the tree signature Σ, it is a function from the trees built on Σ to Q.
Representing A with a HODT T then means that A maps a tree t to qi iff T maps t to
λx1 . . . xr.xi.

Lemma 10 Given a finite state automaton A = (L,Σ, F, R) where L = {`1, . . . , `r}, there
is a HODT TA of order 1 so that for every tree t built on Σ, TA(t) = λx1 . . . xr.xi iff
A(t) = `i.

114

Proof
Given a constant a of arity n in Σ, we define fa to be the function so that fa(`j1 , . . . , `jn) = `
whenever a `j1 . . . `jn → ` is a rule in R.

Since we work with complete deterministic automata, fa is well-defined. Moreover,
when A(t1) = `j1 , . . . , A(tn) = `jn : A(a t1 . . . tr) = fa(`j1 , . . . , `jn). From Lemma 9, there is
a term Ma so that, for every `j1 , . . . , `jn in L with fa(`j1 , . . . , `jn) = `i:

Ma(λx1 . . . xs.xj1) . . . (λx1 . . . xs.xjn) =β λx1 . . . xs.xi .

We define the transducer TA as (Σq̃,Σ,Υ, q̃, RT) where Σq̃ is the signature with the one
state q̃ and where for every a, q̃(a x1 . . . xn) → Ma(q̃ x1) . . . (q̃ xn) is a rule of RT . State q̃
is of type o→ Fr of order 1 (where o is the atomic type of Σ) and so TA is of order 1.

Now a simple induction on the structure of a tree t proves the conclusion of the lemma.
�

With lemmas 10 and 9 we can finally prove that HODTR has the same expressivity as
HODT.

Theorem 7 For all HODTR T there exists a HODT T ′ that defines the same relation.
Moreover order(T ′) = max(1, order(T)).

Proof
Let T = (ΣQ,Σ1,Σ2, q0, RT , A) be a HODTR where the set of states of A is L = {`1, . . . , `r}.
We are going to construct a HODT T ′ = {ΣQ′ ,Σ1,Σ2, q0, R

′} that is equivalent to T .
Lemma 10, implies that there is a transducer TA of order 2 with initial state q̃ so that

for every tree t built on Σ1, A(t) = `i iff TA = λx1 . . . xs.xi. We let ΣQ′ be the union of
the signatures of T and TA. Since TA has order 1, the order of the state signature of T ′ is
indeed max(1, order(T)).

Given a state q of T , and a constant a of Σ1 of type on1 → o1, we let fa be the
function from Qn to ΛAq(ΣΩ

2) defined by fa(`i1 , . . . , `in) = M whenever there is a rule
q(a x1 . . . xn)〈`i1 , . . . , `in〉 → M is a rule in RT . Note that when there is no such rule we
then consider that M = ΩAq so that fa is a well-defined function. Now Lemma 9 tells us
that there is a term Ma such that:

Ma(λx1 . . . xr.xi1) . . . (λx1 . . . xr.xin) = M ⇔ fa(`i1 , . . . , `in) = M .

We then let q(a x1 . . . xn)→Ma(q̃ x1) . . . (q̃ xn) be a rule of T ′.
Now given t a tree built on Σ1, we want to show that for every state q ∈ Q, |q t|T =

|q t|T ′ . This is obtained by a simple induction on t. �

Note that, when we remove the look-ahead from a HODT, the order of the new trans-
ducer is neither linear nor almost-linear, and its order is ≥ 1.

5.3.3 The expressivity of the order of transducers

An important feature of HODT is that it generalizes several types of known transducers
defined in section 1.4. In doing so it provides greater insight into their differences.

115

Deterministic TOP-down tree transducers (DTOP) are one of the most natural classes
of tree transducers, they can be seen as HODT of order 0 i.e. transducers where the right
side of rules are trees. Macro Tree Transducers (MTT) are similar to DTOP but can use
trees given as parameters on the right side of their rules. This added layer of abstraction
can be seen in the framework of typed λ-calculus as going from terms of type o of order 0
(trees) to terms of types on → o of order 1 (tree contexts).

Noting HODT≤n the restriction of HODT to order n, the models HODT≤n for n ∈ N
form a strict hierarchy of classes of tree transformations. This can shown in a similar way
as in [16] for high-level tree transducers.

The approach of functional programming for tree transducers is also interesting when
we study partial transductions. When we look at MTTs representing partial tree-to-tree
functions, a blocked computation can arise when a state of the transducer has no rule
for a particular node. However, a rule of the transducer applied to a node does not have
to use the results of computations on its child nodes. When a rule ignores a branch in
which the computation is blocked, the transducer could still produce an output. We could
choose to consider such a computation as valid or invalid, in functional programming
this respectively corresponds to the call-by-name and call-by-value methods of evaluating
programs. In λ-calculus these methods correspond to different strategies for reducing
terms. Again functional programming brings better understanding of the workings of
transducers.

Besides order, there are other constraints we can put on computations of transducers.
One way to do this is to restrict the ability of transducers to make copies of a subtree. This
has already been done on MTTs and Attribute Tree Transducers (ATTs) in the form of
the Single-Use Restricted property, it consists in putting a bound on the number of times
a subtree can be copied. The resulting classes of transducers have been respectively named
MTTSUR and ATTSUR. We prove in chapter 7 that those models represent the same tree-
to-tree functions as HODTRlin, so the linearity constraint on terms corresponds to that
Single-Use Restricted property. This class of functions is especially important because it
has been shown to also be the class of functions defined by Monadic Second-Order Logic
(MSOT).

The almost-linearity constraint is similar to linearity, but is more permissive since
it allows the copying of subtrees. We also prove in chapter 7 that the almost-linear
variant is equivalent to the ATT model, and to the model of Monadic Second-Order Logic
Transductions with Sharing of subtrees (MSOTS). This result is interesting because it
removes the bound on copying without reaching the great complexity of MTTs.

These equivalences of models, along with the algorithms translating transducers from
one model to the other, are interesting by themselves. But they are also useful because we
give in chapter 6 two distinct algorithms for computing the composition of two transducers.
These two algorithms rely on models of the λ-calculus, and in doing so they provide a
deeper understanding of the algorithms of composition of equivalent classes of transducers.

116

Chapter 6

Composition of transducers

In this chapter we present two procedures for computing a transducer which computes
the composition of the transductions of two transducers. The first one computes the
composition of transducers in HODTR using a semantic analysis of λ-terms based on Scott
models. The second one computes the composition of transducers in HODTRlin using a
finer grained analysis based on coherent spaces, as introduced by Girard in [18]. This
second procedure can also be used for computing the composition of HODT in general.

6.1 Composition of HODT based on Scott models

Our goal here is to prove that HODT are closed under composition. For this we start
by showing how to extend the transformations they define on trees to λ-terms. Given a
transducer T = (ΣQ,Σ1,Σ2, q0, R), what does it mean for example for T to transform a
λ-term of type o1 → o1 into a λ-term of Σ2? A λ-term of that type denotes a function from
trees to trees, and the question is what should we do of its argument. A simple answer is
to consider that it has been transformed by T , then we need to know with which state.
As we cannot answer a priori we replace that argument with several arguments each of
which represent the putative result of the transformation of that argument by one of the
states of T . Generalizing this idea to higher orders, we define a transformation 〈·, ·〉T that
maps a type A ∈ types(Σ1) and a state q of ΣQ, to the type 〈q, A〉T ∈ types(Σ2) which
will be the type of the result of applying T with state q to a λ-term of type A (we assume
that the states of ΣQ are {q1, . . . , qr}):

• 〈q, o1〉T = Aq,

• 〈q, A→ B〉T = 〈q1, A〉T → · · · → 〈qr, A〉T → 〈q, B〉T .

When T is clear from the context, we simply write 〈q, A〉.
We now explain how T transforms any λ-term starting with a state q. For this we define

an operation 〈q,M, µ〉T where µ is an injective mapping that maps pairs of variables and
states (xA, q′) to variables yAq′ . The function µ is a way of renaming variables x in a
λ-abstraction into variables that represent the result of the transformation of x by a given

117

state of T (we thus call such functions renamings). The definition of 〈q,M, µ〉T is given
by an induction on M :

• 〈q, xA, µ〉T = µ(xA, q),

• 〈q,MN, µ〉T = 〈q,M, µ〉T 〈q1, N, µ〉T . . . 〈qr, N, µ〉T ,

• 〈q, λxA.M, µ〉T = λx
〈q1,A〉T
1 . . . x

〈qr,A〉T
r .〈q,M, µ′〉T where µ′ is equal to µ but for the

pairs (xA, qi) which are mapped to the fresh variables x
〈qi,A〉T
i ,

• 〈q, a, µ〉T = λx1,1 . . . x1,r . . . xs,1 . . . xs,r.M
′ when there is a rule q (ax1 . . . xs)→M ′[xi,j :=

qj xi]i∈[s],j∈[r] in T2 (here we implicitly assume that M ′ is in β-normal form and that
it is in Λ(ΣΩ

2)),

• 〈q,Ωo1 , µ〉T = ΩAq .

Similarly to what we did for type transformation, we allow ourselves to write 〈q,M, µ〉
and, when µ is irrelevant (e.g. when it is the empty function) or obvious from the context,
we simply write 〈q,M〉. A first thing to remark is that the result of 〈q,MA, µ〉 is a term
of Λ〈q,A〉(ΣΩ

2), the result of applying T to M with state q.
For the moment we just have given an intuitive meaning to that transformation, we

are now going to formalize that meaning so as to be able to use it in the construction that
computes the composition of two HODT. For this we use a logical relation.

Logical relation

We define the logical relation R = (RA)A∈types(Σ1) where RA is a subset of ΛA(Σ1) ×
(Λ〈A,q1〉(ΣΩ

2)× · · · × Λ〈A,qr〉(ΣΩ
2)). We use the notation M RA (M1, . . . ,Mr) to mean that

M and (M1, . . . ,Mr) are related in the relation RA, i.e. (M, (M1, . . . ,Mr)) ∈ RA. The
relations RA are inductively defined on A as follows:

• M Ro1 (M1, . . . ,Mr) when M is a closed term of type o1 and for every i: Mi =β

|qi M |T ,

• M RA→B (M1, . . . ,Mr) if and only if for every terms N,N1, . . . Nr such that
N RA (N1, . . . , Nr): MN RB (M1N1, . . . ,MrNr).

When the type is clear or irrelevant we write M R (M1, . . . ,Mr). The logical relation is
defined so that it is closed under =β in all its components.

Lemma 11 For every A, if M =β N , M1 =β N1, . . . , Mr =β Nr and M RA (M1, . . . ,Mr),
then N RA (N1, . . . , Nr).

Proof
Straightforward induction on A. �

We are now in position to prove the main property about our transformation: the
adequacy Lemma.

118

Lemma 12 Given a term M ∈ Λ(Σ1), a substitution σ, a renaming µ, a substitution θ so
that for every x,

σ(x) R (θ(µ(x, q1)), . . . , θ(µ(x, qr))) ,

then we have:
M.σ R (〈q1,M, µ〉.θ, . . . , 〈qr,M, µ〉.θ) .

Proof
We prove the lemma by induction on M .

In case M = x, the conclusion follows from the hypothesis that
σ(x) R (θ(µ(x, q1)), . . . , θ(µ(x, qr))), since 〈qi, x, µ〉.θ = θ(µ(x, qi)).

In case M = M1M2, then by induction, we have

Mi.σ R (〈q1,Mi, µ〉.θ, . . . , 〈qr,Mi, µ〉.θ)

for i ∈ [1, 2]. Now by definition of the logical relation we obtain that

M1M2.σ R (〈q1,M1, µ〉.θ〈Q,M2, µ〉.θ, . . . , 〈qr,M1, µ〉.θ〈Q,M2, µ〉.θ)

and as 〈qi,M1, µ〉.θ〈Q,M2, µ〉.θ = (〈q1,M1, µ〉〈Q,M2, µ〉).θ = 〈qi,M1M2, µ〉.θ, we obtain
that

M1M2.σ R (〈q1,M1M2, µ〉.θ, . . . , 〈qr,M1M2, µ〉.θ) .

In case M = λxA.N , we let µ′ be a renaming that extends µ to the pairs (x, qi),
then by induction hypothesis for every PRA(P1, . . . , Pr), letting σ′ = σ[P/x] and θ′ =
θ[P1/µ

′(x, q1), . . . , Pr/µ
′(x, qr), we have that:

N.σ′ R (〈q1, N, µ′〉.θ′, . . . , 〈qr, N, µ′〉.θ′) .

But N.σ′ =β (λx.N).σP similarly,

〈qi, N, µ′〉.θ′ =β ((λy1 . . . yr.〈qi, N, µ′〉).θ)P1 . . . Pr

= (〈qi, λx.N, µ〉.θ)P1 . . . Pr

if µ′(x, qi) = yi. From Lemma 11, we then obtain that

(λx.N).σP R (〈q1, λx.N, µ〉.θP1 . . . Pr, . . . ,
〈qr, λx.N, µ〉.θP1 . . . Pr)

The conclusion follows from the definition of the logical relation.
The case where M = a is a simple consequence of the definition of 〈qi, a, µ〉. �

Corollary 8 For every closed M ∈ Λ(Σ1)

M R (〈q1,M〉, . . . , 〈qr,M〉) .

119

This corollary with Lemma 11 proves that for every tree t of Σ1: 〈qi, t〉 =β |qi t|T , which
entails that 〈·, ·, ·〉T is a conservative extension of the action of T on trees.

We now turn to the construction of the HODT that computes the composition of
two HODT T1 = (ΣQ,Σ1,Σ2, q1, R1) and T2 = (ΣP ,Σ2,Σ3, p1, R2). In a strict view, this
composition makes sense only when the output of the first transducer has atomic type,
i.e. q1 has type o1 → o2. However, using the logical relation we have just defined we can
prove a more general result (see Proposition 4 below).

We let T be the transducer defined by (ΣS,Σ1,Σ3, 〈p1, q1〉, R) where ΣS is a state
signature where the states are of the form 〈p, q〉 with p a state of ΣP , q a state of ΣQ

and the type of 〈p, q〉 is o1 → 〈p,Aq〉T2 . The intuitive meaning of the state 〈p, q〉 in T is
that it computes the output of T2 with state p from the output of T1 with state q. Here
the notion of output of T2 is taken in the broader sense we have defined above and that
applies to every λ-term.

Before we give the definition of the rules of T , we suppose that the states of T1 are
{q1, . . . , qr}, while the states of T2 are {p1, . . . , pm}. Now, given a rule q(a x1 . . . xs)→M
of T1 and a state p of T2, we suppose that M = M ′[qi xj/yi,j]i∈[r],j∈[s], and then T has rule
〈p, q〉(a x1 . . . xs) → 〈p,M ′, µ〉.θ where µ is the renaming that maps (pk, yi,j) to zk,i,j for
k ∈ [m], i ∈ [r], j ∈ [s] and θ is the substitution that maps zk,i,j to 〈pk, qi〉xj.

Proposition 4 For every state p of T2 and q of T1 we have, for every tree t of Σ1:

|〈p, q〉 t|T =β 〈p, |q t|T1〉T2 .

So in particular, when T1 outputs trees, we have that:

Theorem 9 When q1 has type o1 → o2, for every tree t of Σ1 we have:

|〈p1, q1〉 t|T = |p1 |q1 t|T1 |T2
.

We need to be careful with the interpretation of Theorem 9. Indeed, it is not specified
in the theorem hypotheses that |q1 t|T1 is in Λ(Σ2), there could well be occurrences of Ω in
|q1 t|T1 . As a result, when looking at rel(T), it may strictly contain rel(T1) ◦ rel(T2). They
are equal when T1 defines a total function. We may also make them coincide by adding an
inspection (i.e. a look-ahead that is only used at the beginning of the computation) to T
that checks that the input tree t is so that |q1 t|T1 (λ-terms that do not contain occurrences
of Ω are recognizable and thus using Theorem 5 we can construct such an inspection). We
can also modify T with a construct similar to the one we used to remove look-aheads so
as to simulate this inspection.

Note also that with these rules for T we have that order(T) = order(T1) + order(T2).
So when T1 and T2 represent DTOPs, their order is 0, and the order of T is then also 0 so
that T is also a DTOP. Our construction thus also shows that DTOPs are closed under
composition (when considering total DTOPs, or when using inspections). If T1 and T2

represent MTTs, then their order is 1 and the order of T is then 2 and is therefore not an
MTT in general.

120

Theorem 10 Given two HODT, T1 and T2 with respective initial state q1 and p1 so that
T1 outputs trees, there is an HODT T so that order(T) = order(T1) + order(T2) and
rel(T) = {(M, |p1 |q1M |T1 |T2

) | M is a closed input tree}. Futhermore when T1 is total
rel(T) = rel(T1) ◦ rel(T2).

6.2 Composition of HODTRlin based on coherent spaces

As we are interested in limiting the size of the transducer that is computed, and even
though our primary goal is to compose HODTRlin, this section is devoted to the composi-
tion of HOWDTRlin. Recall that HOWDTRlin are HODTRlin whose look-ahead automaton
is not necessarily deterministic, but the rules of the transducer are still deterministic be-
cause, despite having several possible look-ahead states for each input tree, only one rule
of the transducer is applicable at each step. Working with non-deterministic look-aheads
allows us to save the possibly exponential cost of determinizing an automaton.

Example of composition In order to illustrate this algorithm, we will show how it works
on an example. We present here two HODTRlin T1 and T2 of which we will compute the
composition. For the sake of clarity we have chosen simple and deterministic transduc-
ers, but keep in mind that the general procedure works also on more complex, weakly
deterministic transducers.

We use a simple tree signature Σ to represent words over an alphabet {a, b} of two
letters. We define Σ with an atomic type o, and constants ao→o of type o→ o, bo→o of type
o → o, and #o of type o. The symbol # is used as an end-of-word symbol. For example
the word baba is represented by the tree b(a(b(a#))).

Transducer T1 computes the reversal of words over {a, b}. For example the output of
T1 on input tree b(a(b(a#))) will be a(b(a(b#))). It has Σ as both input and output tree
signature. It contains an initial state q0 of type o→ o, and a state q1 of type o→ o→ o,
with rules:

• q0(a x)→ (q1 x) (a #)

• q0(b x)→ (q1 x) (b #)

• q0(#)→ #

• q1(a x)→ λy.(q1 x) (a y)

• q1(b x)→ λy.(q1 x) (b y)

• q1(#)→ λy.y

This transducer does not use any look-ahead information in its rules, so we can simply
define a look-ahead automaton A1 with a single state `1 recognizing all trees over signature
Σ.

121

Transducer T2 takes a word and removes all its initial as and trailing bs. For example
the output of T2 on input tree a(b(a(b#))) will be b(a#). It has Σ as both input and
output signature.

Its look-ahead automaton A2 is used to mark the input word’s trailing bs. It has two
states `a and `b with rules:

• #→ `b

• b(`b)→ `b

• a(`b)→ `a

• b(`a)→ `a

• a(`a)→ `a

The states of T2 are the initial state p0 of type o→ o and state p1 of type o→ o, and
the rules are:

• p0(#)→ #

• p0(a x)〈 〉 → p0 x

• p0(b x)〈`a〉 → b (p1 x)

• p0(b x)〈`b〉 → p1 x

• p1(#)→ #

• p1(a x)〈 〉 → a (p1 x)

• p1(b x)〈`a〉 → b (p1 x)

• p1(b x)〈`b〉 → p1 x

Here we use to mean that the rule is the same for `a and `b.

In the rest of the section we will work to build a transducer which computes the
composition of T1 and T2, noted T = T1 ◦ T2.

6.2.1 Semantic analysis

Let T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) be two Linear High-Order
Weakly Deterministic tree Transducers with Regular look-ahead. The rules of T1 can be
written:

q(a−→x)〈
−→
` 〉 →M (q1 x1) . . . (qn xn)

where q, q1, . . . , qn ∈ Q are states of T1,
−→
` = `1, . . . , `n are states of A1 and the λ-term M

is of type Aq1 → · · · → Aqn → Aq. Our goal is to build a HOWDTRlin T :: Σ1 → Σ3 that

122

does the composition of T1 and T2, so we want to replace a rule such as that one with a
new rule which corresponds to applying T2 to the term M .

In order to do so, we need, for each tree of type o2 in M , to know the associated state
` ∈ L2 of T2’s look-ahead, and the state p ∈ P of T2 which is going to process that node.
So with any such tree we associate the pair (p, `). In this case we call (p, `) the token
which represents the behavior of the tree. In general, we want to associate tokens not only
with trees, but also with λ-terms of higher order. For example, we map an occurrence of a
symbol a ∈ Σ2 of type o2 → o2 → o2, whose arguments x1 and x2 (of type o2) respectively
have look-ahead states `1 and `2 and are processed by states p1 and p2 ∈ P of T2, to the
token (p1, `1)((p2, `2)((p, `) where (p, `) is the token of the tree a x1x2 (of type o2).
We formally define tokens as follows:

Definition 20 The set of semantic tokens JAK over a type A built on atomic type o2 is
defined by induction:

Jo2K = {(p, `) | p ∈ P, ` ∈ L2}
JA→ BK = {f (g | f ∈ JAK, g ∈ JBK}

Naturally, the semantic token associated with a λ-term M of type A built on atomic
type o2 will depend on the context where the term M appears. For example a tree of
atomic type o2 can be processed by any state p ∈ P of T2, and a term of type A → B
can be applied to any argument of type A. But for any such M taken out of context,
there exists a finite set of possible tokens for it. For example, a given tree of type o2 can
be processed by any state p ∈ P depending on the context, but not with any look-ahead
state ` ∈ L2.

123

Example

We can apply this to the example transducer T2 defined at the beginning of section
6.2. Noting JMK the set of possible tokens for a term M , we get:

• J#K = {(p0, `b), (p1, `b)}

• Jb #K = {(p0, `b), (p1, `b)}

• Ja (b #)K = {(p0, `a), (p1, `a)}

Note that, since the look-ahead is deterministic, each term of type o has only one
possible look-ahead state (either `a or `b).

Because there is the rule p0(b x)〈`a〉 → b (p1 x) in T2 and the rule b(`a) → `a in
A2, the term b of type o → o can be associated with token (p1, `a)((p0, `a). This
means that, if the argument x of b has behavior (p1, `a), then the result of b applied
to x (i.e. b x) may have behavior (p0, `a).
This way we can deduce the sets of possible tokens for constants a and b:

JaK = {(p0, `a)((p0, `a), (p0, `b)((p0, `a), (p1, `a)((p1, `a), (p1, `b)((p1, `a)}

JbK = {(p1, `a)((p0, `a), (p1, `b)((p0, `b), (p1, `a)((p1, `a), (p1, `b)((p1, `b)}

We will later see examples of tokens for more complex terms.

In order to define the set of possible semantic tokens for any term, we use a system
of derivation rules. The following derivation rules are used to derive judgments which
associate a term with a semantic token. So a judgment Γ `M : f associates term M with
token f , where Γ is a substitution which maps free variables in M to tokens. The rules
are the following:

p(a−→x)〈`1, . . . , `n〉
T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)(· · ·((pn, `n)((p, `)

Γ1 `M : f (g Γ2 ` N : f

Γ1,Γ2 `M N : g

Γ, xA : f `M : g

Γ ` λxA.M : f (g

f ∈ JAK
xA : f ` xA : f

Using this system we can derive, for any term MA, all the semantic tokens that corre-
spond to possible behaviors of MA when it is processed by T2.

6.2.2 Unicity of derivation for semantic token judgements

We will later show that we can compute the image of M through T2 from the derivation
of the judgement ` M : f , assuming that f is the token which represents the behavior

124

of T2 on M . But before that we need to prove that for a given term M and token f the
derivation of the judgement `M : f is unique.

Theorem 11 For every type A, for every term M of type A and every token f ∈ JAK, there
is at most one derivation D ::`M : f .

This theorem relies in part on the fact that tokens form a coherent space, as first
introduced by Girard in [18]. Before proving this we introduce known definitions and
properties of coherent spaces under the framework of linear logic.

Coherent spaces

Our main goal now is to indicate that for all term M of type A and all token f ∈ JAK which
corresponds to a behavior of M , there is only one possible derivation for the judgement
`M : f , which will be the key trick to preserve linearity in composition. In order to prove
that, we will see that tokens form a coherent space.

First, we define a coherence relation ¨A⊆ JAK× JAK for all type A by induction on A:

Definition 21 For all p, p′ ∈ P and `, `′ ∈ L2,

(p, `) ¨o2 (p
′, `′) ⇔ there exists a tree recognized by both ` and `′

For all type A,B ∈ types(o2), for all f, f
′ ∈ JAK and g, g′ ∈ JBK:

f (g ¨A→B f ′(g′ ⇔ (f ¨A f ′ ⇒ (g ¨B g′ ∧ (f 6= f ′ ⇒ g 6= g′)))

Intuitively, two tokens are coherent if they can both be derived from the same term.
For tokens of type o2 for instance, it means that there must be a tree recognized by both
look-ahead states. In the special case where the transducer is deterministic, the look-ahead
states must be the same: (p, `) ¨o2 (p

′, `′) ⇔ ` = `′.
We also define the corresponding incoherence relation �A∈ JAK× JAK: intuitively, two

tokens are incoherent if they can not both be possible distinct tokens for the same term,
so if they are either equal or not coherent with each other.

Definition 22 For all type A built on o2:

f �A f ′ ⇔ ¬(f ¨A f ′) ∨ f = f ′

The incoherence relation allows us to give a simpler alternative definition of the coher-
ence relation ¨A←B between tokens in JA→ BK: for all f, f ′ ∈ JAK and g, g′ ∈ JBK,

f (g ¨A→B f ′(g′ ⇔ (f ¨A f ′ ⇒ g ¨B g′) ∧ (g �B g′ ⇒ f �A f ′)

Theorem 12 For all type A and term MA of type A, if there exists two semantic tokens
f, f ′ ∈ JAK associated with MA, i.e. the judgments ` M : f and ` M : f ′ are derivable,
then f and f ′ are coherent: f ¨A f ′.

125

In order to prove this theorem, we need to prove a stronger theorem, by induction on
term M :

Theorem 13 If there exists two derivations D :: Γ ` M : f and D′ :: Γ′ ` M : f ′ then
Γ(f ¨ Γ′(f ′.

Here, when writing Γ (f with Γ = x1 : f1, . . . , xn : fn, we mean by Γ the tensor
product (f1, . . . , fn).
Proof
We prove this by induction on term M :

• If M = a is a constant from Σ2 then the last rules of D and D′ are:

D ::
p(a−→x)〈`1, . . . , `n〉

T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)(· · ·((pn, `n)((p, `)

D′ :: p
′(a−→x)〈`′1, . . . , `′n〉

T2−→ M(p′1 x1) . . . (p
′
n xn) A2(a (`

′
1, . . . , `

′
n)) = `′

` a : (p′1, `
′
1)(· · ·((p′n, `

′
n)((p′, `′)

We need to prove that:

(p1, `1)(· · ·((pn, `n)((p, `) ¨ (p′1, `
′
1)(· · ·((p′n, `

′
n)((p′, `′)

which is equivalent to:

((p1, `1), . . . , (pn, `n))((p, `) ¨ ((p′1, `
′
1), . . . , (p

′
n, `
′
n))((p′, `′)

To prove this we assume that ((p1, `1), . . . , (pn, `n)) ¨ ((p′1, `
′
1), . . . , (p

′
n, `
′
n)) and we

show that:

(p, `) ¨ (p′, `′) ∧
(
(p, `) = (p′, `′)⇒ ((p1, `1), . . . , (pn, `n)) = ((p′1, `

′
1), . . . , (p

′
n, `
′
n))

)
((p1, `1), . . . , (pn, `n)) ¨ ((p′1, `

′
1), . . . , (p

′
n, `
′
n)) means that, for all i ≤ n,

(pi, `i) ¨ (p′i, `
′
i) and so there exists a tree ti recognized by both look-ahead states `i

and `′i. Then the tree a t1 . . . tn is recognized by both look-ahead states ` and `′, so
(p, `) ¨ (p′, `′).

Note that we assumed transducer T2 to be weakly deterministic, but in the deter-
ministic case we would have `i = `′i for each i and therefore ` = `′.

Furthermore, if (p, `) = (p′, `′) then, because T2 is weakly deterministic and because
there exists, for each i ≤ n, a tree recognized by both `i and `′i, the rules of T2 ap-
pearing in D and D′ are the same. So ((p1, `1), . . . , (pn, `n)) = ((p′1, `

′
1), . . . , (p

′
n, `
′
n)).

• If M = N1N2 then the last rules of D and D′ respectively are of the form:

Γ1 ` N1 : g(f Γ2 ` N2 : g

Γ1,Γ2 ` N1N2 : f

Γ′1 ` N1 : g
′(f ′ Γ′2 ` N2 : g

′

Γ′1,Γ
′
2 ` N1N2 : f ′

126

Through the induction hypothesis, we get that Γ1 ((g (f) ¨ Γ′1 ((g′ (f ′)
and Γ2 (g ¨ Γ′2 (g′. Then Γ1,Γ2 ¨ Γ′1,Γ

′
2 implies that Γ1 ¨ Γ′1 and Γ2 ¨ Γ′2,

which means that g (f ¨ g′ (f ′ and g ¨ g′, which in turn implies that f ¨ f ′.
Reciprocally, assuming that f � f ′, we have two cases depending on whether or not
g � g′. On the one hand we have that g � g′ implies that Γ2 � Γ′2 and therefore
Γ1,Γ2 � Γ′1,Γ

′
2, on the other hand we have that f � f ′ and g ¨ g′ imply that

g(f � g′(f ′ and so Γ1 � Γ′1 and Γ1,Γ2 � Γ′1,Γ
′
2. In either case f � f ′ implies

that Γ1,Γ2 � Γ′1,Γ
′
2. Finally we can conclude that Γ1,Γ2(f ¨ Γ′1,Γ

′
2(f ′

• If M = λxB.N then f = g (h, f ′ = g′ (h′ and the last rules of D and D′
respectively are:

Γ, xB : g ` N : h

Γ ` λxB.N : g(h

Γ′, xB : g′ ` N : h′

Γ′ ` λxB.N : g′(h′

The induction hypothesis gives (Γ, xB : g)(h ¨ (Γ′, xB : g′)(h′, which we can
write: (Γ, g) (h ¨ (Γ′, g′) (h′ using the tensor product, and that is equivalent
to Γ((g(h) ¨ Γ′((g′(h′).

• If M = xA then f, f ′ ∈ JAK. So Γ = xA : f and Γ′ = xA : f ′ and derivations D and
D′ are:

f ∈ JAK
xA : f ` xA : f

f ′ ∈ JAK
xA : f ′ ` xA : f ′

Trivially f ¨ f ′ ⇒ f ¨ f ′ and f � f ′ ⇒ f � f ′, therefore f (f ¨ f ′(f ′. So
Γ(f ¨ Γ′(f ′.

We have shown theorem 13, of which theorem 12 is a particular case, by induction on
M . Indeed if M is a closed term and Γ and Γ′ are empty substitutions then Γ(f is f
and Γ′(f ′ is f ′, therefore f ¨ f ′. �

We have shown that any two tokens derivable for a same term are coherent. So the set
of tokens derivable for a given term MA form a clique in the coherence graph of JAK, we
call it the coherent state of term MA in JAK.

Now, using the previous theorem, we will be able to prove that there is only one way
of deriving any given derivable judgement `M : f .

Proof of unicity

We can now prove theorem 11:
Proof
Because subterms of M may have free variables, we add a substitution Γ to the induction
hypothesis:

“If there exists two derivations D :: Γ ` M : f and D′ :: Γ ` M : f then D and D′ are
the same.”

We prove this by induction on term M , there are several cases:

127

• If M = a is a constant from Σ2 or if M = x is a free variable in Γ then derivations
D and D′ are axioms so they must be equal.

• If M = N1N2 then the last rules of D and D′ respectively are of the form:

Γ1 ` N1 : g(f Γ2 ` N2 : g

Γ1,Γ2 ` N1N2 : f

Γ′1 ` N1 : g
′(f Γ′2 ` N2 : g

′

Γ′1,Γ
′
2 ` N1N2 : f

where Γ1,Γ2 = Γ = Γ′1,Γ
′
2 . Since the variables substituted by substitutions Γ1 and

Γ′1 must be the free variables in term N1, Γ1 = Γ′1 (because dom(Γ1) = FV(N1) =
dom(Γ′1)). Similarly, we deduce that Γ2 = Γ′2. Then we can apply theorem 13
to the derivations of Γ2 ` N2 : g and Γ′2 ` N2 : g′, and to the derivations of
Γ1 ` N1 : g (f and Γ′1 ` N1 : g′ (f . The first application yields g ¨ g′ (since
Γ2 = Γ′2), the second yields g (f ¨ g′ (f (because Γ1 = Γ′1), together they
imply that g = g′. Finally we can apply the induction hypothesis to get unicity of a
derivation of Γ1 ` N1 : g(f and unicity of a derivation of Γ2 ` N2 : g, this implies
that derivations D and D′ are the same.

• If M = λxB.N then f = g(h and the last rule of D and D′ is the same:

Γ, xB : g ` N : h

Γ ` λxB.N : g(h

The induction hypothesis implies the unicity of a derivation of Γ, xB : g ` N : h,
which entails the unicity of a derivation of Γ ` λxB.N : g(h.

�

Now that we have shown that there is only one derivation per judgement `M : f , we
are going to see how to use that derivation in order to compute the term N that is the
image of M by transducer T2.

6.2.3 Collapsing of token derivations

We define a function (we call it collapsing function) which maps every derivation D :: `
M : f to a term D which corresponds to the output of transducer T2 on term M assuming
that M has behavior f .

Definition 23 Let D be a derivation. We define D by induction on D, there are different
cases depending on the first rule of D:

If D is of the form:

p(a−→x)〈`1, . . . , `n〉
T2−→ N(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)(· · ·((pn, `n)((p, `)

then D = N ,

128

if D is of the form:

D1 :: Γ1 ` N1 : f (g D2 :: Γ2 ` N2 : f

Γ1,Γ2 ` N1N2 : g

then D = D1D2,
if D is of the form:

D1 :: Γ, x
A : f ` N : g

Γ ` λxA.N : f (g

then D = λxf .D1,
if D is of the form:

f ∈ JAK
xA : f ` xA : f

then D = xf .

We can check that, for all derivation D ::` M : f , the term D is of type f given by:
(p, `) = Ap and f (g = f → g.

Now that we have associated, with any pair (M, f) such that f is a semantic token of
term M , a term N = D which represents the image of M by T2, we need to show that
replacing M with N in the computation of transducers leads to the same results. In order
to do so we use a logical relation.

129

Example of derivation collapsing

Transducer T1 has a rule: q0(b x) → (q1 x) (b #) which can also be written
q0(b x) → M (q1 x) with M = λy.y (b #). We show how to associate the token
f = ((p1, `b) ((p0, `a)) ((p0, `a) to this term M of type (o → o) → o, and
how to obtain the image of M through transducer T2 (assuming f describes
how M is processed by T2). We derive the judgment ` M : f as follows:

p1(b x)〈`b〉
T2−→ p1 x A2(b (`b))=`b p1(#)

T2−→# A2(#)=`b
(p1,`b)((p0,`a)∈Jo→oK `b:(p1,`b)((p1,`b) `#:(p1,`b)

yo→o:(p1,`b)((p0,`a)`yo→o:(p1,`b)((p0,`a) `b#:(p1,`b)

yo→o:(p1,`b)((p0,`a)`y (b#):(p0,`a)
`λy.y (b#):((p1,`b)((p0,`a))((p0,`a)

With this derivation D we associate the term D:

D = λx.x((λz.z)(#)) =βη λx.x#

Intuitively, D represents the image of M = λy.y (b #) through T2. We can see that
it removes the trailing b, as T2 would. Note that the structure of term D is the same
as that of the derivation, which is the same as that of the initial term M .
The token information is important because it allows us to transform constants like
b and # into their image through T2. For example, b is transformed into λz.z here,
but if tokens were different then we might use the rule p1(b x)〈`a〉 → b (p1 x), in that
case we would transform b into λz.b z.
The fact that b is applied to # in M implies that the token associated with # has
look-ahead `b, which is why look-ahead state `b appears in the rule of T2 used to
process b. So applying b to # indirectly implies that the b should be removed by T2.
Note that variable x has type Ap1 → Ap0 , which happens to be the same type as
variable y, but it will not always be the case. With more complex types of states
p0, p1 of T2, variables in D would have more complex types.

Logical relation

Our logical relation is indexed on a type A and a semantic token f ∈ JAK, it is defined as
follows:

Definition 24 We define the logical relation RA
f , for all type A built on atomic type o2 and

for all semantic token f ∈ JAK, by induction on type A:

Ro2
(p,`) = {(M,N) | p(M�β)

T2= N�β, A2(M�β) = `}

RA→B
f(g = {(M,N) | ∀(M ′, N ′) ∈ RA

f , (M M ′, N N ′) ∈ RB
g }

This logical relation is, by definition, the one we want to have between the terms M
which appear on the right side of rules of T1 and the corresponding N that will appear on
the right side of the rules of our new transducer T which computes the composition of T1

and T2.

130

What we want to show now is that it is the same relation as the (M,N) such that
N is the collapsing of the unique (unique according to theorem 11) derivation of the
judgment `M : f , this property is called adequation. Formally it means that, for all type
A ∈ types(o2), token f ∈ JAK and for any closed terms M and N of respective types A
and f :

∃D ::`M : f and D =βη N ⇒ (M,N) ∈ RA
f

We prove a more general claim by induction on term M :

Theorem 14 For all type A ∈ types(o2), token f ∈ JAK, terms M of type A and N of
type f . For all substitutions of variables Γ and σ such that Γ(x)= g ⇒ σ(x)∈RB

g and
dom(Γ) = FV(M):

∃D :: Γ`M :f ∧ D =βηN ⇒ (M.(π1 ◦ σ) , N.(π2 ◦ σ)) ∈ RA
f

where π1 and π2 are projections so that π1((M,N)) = M and π2((M,N)) = N .

In order to prove this theorem, we first need to show that the logical relation is com-
patible with β-reduction (and η-expansion):

Lemma 13 For all type A and token f ∈ JAK, for all terms M,N,M ′, N ′ such that M =βη

M ′ and N =βη N
′: (M,N) ∈ RA

f ⇒ (M ′, N ′) ∈ RA
f .

Proof
We prove this lemma by induction on type A. Let M,N,M ′, N ′ be terms such that
M =βη M

′, N =βη N
′ and (M,N) ∈ RA

f .

If A = o2 and f = (p, `) then p(M�β)
T2= N�β and A2(M�β) = `. So

p(M ′�β) = p(M�β)
T2= N�β = N ′�β and A2(M

′�β) = A2(M�β) = `. In that case (M ′, N ′) ∈
RA

f .
If A = B → C and f = g(h then, for all (M1, N1) ∈ RB

g , (M M1, N N1) ∈ Rc
h. Since

M =βη M ′ and N =βη N ′, we have (M M1, N N1) =βη (M ′M1, N
′N1) and, by induction

hypothesis on type C, (M ′M1, N
′N1) ∈ RC

h . So (M ′, N ′) ∈ RB→C
g(h . �

We can now prove theorem 14.
Proof
We use an induction on term M .

Let A ∈ types(o2), token f ∈ JAK, terms M of type A and N of type f . Let Γ and σ
substitutions of variables such that Γ(x)=g ⇒ σ(x)∈RB

g and dom(Γ) = FV(M). Let D
a derivation of the judgement Γ `M : f (unique according to theorem 11). Assume that
D =βηN . We want to prove (M.(π1 ◦ σ) , N.(π2 ◦ σ)) ∈ RA

f .

In most cases, we will show that (M.(π1 ◦ σ),D.(π2 ◦ σ)) ∈ RA
f and conclude using

lemma 13. We distinguish four cases depending on M , one for each derivation rule as head
of derivation D:

• If M = xA then the head rule of D is:

f ∈ JAK
xA : f ` xA : f

131

Since Γ(xA) = f , we have σ(xA) ∈ RA
f . So:

(M.(π1 ◦ σ), N.(π2 ◦ σ)) = (π1(σ(x
A)), π2(σ(x

A))) ∈ RA
f

• If M = M1M2 then the head rule of D is:

D1 :: Γ1 `M1 : f
′(f D2 :: Γ2 `M2 : f

′

Γ1,Γ2 `M1M2 : f

where Γ = Γ1,Γ2 such that the domains of Γ1 and Γ2 are the sets of free variables
of M1 and M2 respectively. Similarly, we can split substitution σ into σ1 and σ2 in
order to apply the induction hypothesis on D1 with σ1 and on D2 with σ2. Noting
B the type of M2 we get:

(M1.(π1 ◦ σ1),D1.(π2 ◦ σ1)) ∈ RB→A
f ′(f (M2.(π1 ◦ σ2),D2.(π2 ◦ σ2)) ∈ RB

f ′

By definition of RB→A
f ′(f we get (M1.(π1◦σ1)M2.(π1◦σ2),D1.(π2◦σ1)D2.(π2◦σ2)) ∈ RA

f .

So ((M1M2).(π1 ◦ σ), (D1D2).(π2 ◦ σ)) ∈ RA
f . Since D = D1D2, we conclude using

lemma 13.

• If M = λxB.M ′ then the head rule of D is:

D′ :: Γ, xB : g `M ′ : f ′

Γ ` λxB.M ′ : g(f ′

where A = B → C and f = g(f ′. First we show that (λx.M ′.(π1 ◦ σ), λx.D′.(π2 ◦
σ)) ∈ RB→C

g(f ′ . Let (M0, N0) ∈ RB
g . In order to use the induction hypothesis

we define Γ′ = Γ, xB : g and the substitution σ′ = σ ◦ [x ← (M0, N0)], then:
(M ′.(π1◦σ′),D′.(π2◦σ′)) ∈ RC

f ′ . Because of the definition of σ′ we have: (λx.M ′.(π1◦
σ))M0 =βη M

′.(π1 ◦ σ′) and
(λx.D′.(π2 ◦ σ)) =βη D′.(π2 ◦ σ′). Using lemma 13 we deduce that
((λx.M ′.(π1 ◦ σ))M0, (λx.D′.(π2 ◦ σ))N0) ∈ RC

f ′ . This proves that

(λx.M ′.(π1 ◦ σ), λx.D′.(π2 ◦ σ)) ∈ RB→C
g(f ′ . We conclude using lemma 13.

• If M = a then the head rule of D is:

p(a−→x)〈`1, . . . , `n〉
T2−→ N ′ (p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1)(· · ·((pn, `n)((p, `)

Since Γ is the empty substitution, we only need to prove (M,N) ∈ Ro2→ ... o2
(p1,`1)(...((p,`).

In order to do this we define the property P(i) for 0 ≤ i ≤ n by:

P(i) = ”For all (M1, N1) ∈ Ro2
(p1,`1)

, . . . , (Mi, Ni) ∈ Ro2
(pi,`i)

,

we have (M M1 . . .Mi, N
′N1 . . . Ni) ∈ Ro2→ ...→ o2

(pi+1,`i+1)(... (pn,`n)((p,`)”

We prove P(i) by downward induction for 0 ≤ i ≤ n.

132

We start by proving P(n):
let (M1, N1) ∈ Ro2

(p1,`1)
, . . . , (Mn, Nn) ∈ Ro2

(pn,`n)
. So for all i ≤ n, we have pi(Mi�β)

T2=

Ni�β and A2(Mi�β) = `i. Now we look at p(M M1 . . .Mn�β):

p((M M1 . . .Mn)�β) = p(a (M1�β) . . . (Mn�β))
T2= N ′ (p1(M1�β)) . . . (pn(Mn�β))
T2= N ′ (N1�β) . . . (Nn�β)
T2= (N ′N1 . . . Nn)�β

Note that we can apply the rule of T2 because we know that A2(Mi�β) = `i for all
i ≤ n. Then we check A2((M M1 . . .Mn)�β):

A2((M M1 . . .Mn)�β) = A2(a (M1�β) . . . (Mn�β))

= A2(a `1 . . . `n)

= `

We have shown P(n) = ”(M M1 . . .Mn, N
′N1 . . . Nn) ∈ Ro2

(p,`)”.

Next we prove the induction step, for 1 ≤ j ≤ n, P(j)⇒ P(j − 1): we assume P(j)
and need to prove P(j − 1).
Let (M1, N1) ∈ Ro2

(p1,`1)
, . . . , (Mj−1, Nj−1) ∈ Ro2

(pj−1,`j−1)
. According to P(j), for all

(Mj, Nj) ∈ Ro2
(pj ,`j)

: (M M1 . . .Mj, N
′N1 . . . Nj) ∈ Ro2→ ...→o2

(pj+1,`j+1)(...((p,`). So

(M M1 . . .Mj−1, N
′N1 . . . Nj−1) ∈ Ro2→ ...→o2

(pj ,`j)((pj+1,`j+1)(...((p,`) and P(j − 1) is true.

Therefore, by induction, P(0) = ”(M,N ′) ∈ Ro2→ ... o2
(p1,`1)(···((p,`)” is true. Since

N ′ = D =βη N we can conclude that (M,N) ∈ Ro2→ ... o2
(p1,`1)(···((p,`) using lemma 13.

This ends the proof of theorem 14. �

As a corollary of theorem 14 we get that if there exists a derivation D of a judgement
`M : f then (M,D�βη) ∈ RA

f .
With this corollary we can build the transducer which performs the composition of two

transductions.

6.2.4 Construction of the transducer which realizes the composition

We recall the following notations T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2)
are two HOWDTRlin, Q = {q1, . . . , qm} is the set of states of T1 and, for every state qi ∈ Q,
we note Aqi the type of qi(t) when t is a tree of type o1. For all type A built on o2, the set
of tokens of terms of type A is noted JAK and is finite.

Previously, we saw how to apply transducer T2 to terms M of type A built on the
atomic type o2, so we can apply T2 to terms which appear on the left side of rules of T1:

q(a−→x)〈
−→
` 〉 →M (qi1 x1) . . . (qin xn)

133

In a rule such as this one, in order to replace term M with term N = D where D is the
unique derivation of the judgement ` M : f , we need to know which token f properly
describes the behavior of T2 on M . The computation of that token is done in the look-
ahead automaton A of T .

We define the set of states of A as:

L = L1 × JAq1K× · · · × JAqmK

With any tree t (of type o1) we want to associate the look-ahead of T1 on t and, for each
state qi ∈ Q of T1, a token of qi(t). The transition function of the look-ahead automaton
A is defined by, for all (`1, f1,1, . . . , f1,n), . . . , (`n, fm,1, . . . , fm,n) ∈ L:

a (`1, f1,1, . . . , f1,m) . . . (`n, fn,1, . . . , fn,m)
A→ (`, f1, . . . , fm)

where a `1 . . . `n
A1→ ` and, for all state qi ∈ Q, fi is such that in T1 there exists a rule

qi(a
−→x)〈`1, . . . , `n〉

T1→ M (qi1 x1) . . . (qin xn) and a derivation of the judgement ` M :
f1,i1 (· · · (fn,in (fi. Note that this look-ahead automaton is non-deterministic
in general, but the transducer is weakly deterministic in the sense that, at each step, even
if several look-ahead states are possible, only one rule of the transducer can be applied.

We define the set of states Q′ of transducer T by:

Q′ = {(q, f) | q ∈ Q, f ∈ JAqK} ∪ {q′0}

Then we define the set R of rules of transducer T as the set of rules of the form:

(q, f)(a−→x)〈(`1, f1,1, . . . , f1,m), . . .〉
T→ D ((qi1 , f1,i1)x1) . . . ((qin , fn,in)xn)

such that there exists in T1 a rule:

q(a−→x)〈`1, . . .〉
T1→M (qi1 x1) . . . (qin xn)

and D is a derivation of the judgement `M : f1,i1 (· · ·(fn,in (f .
Because of Theorem 11, that set of rules is weakly deterministic.
To that set R we then add rules for the initial state q′0, which simply replicate the rules

of states of the form (q0, (p0, `)): for all a ∈ Σ1, all (`1, f1,1, . . . , f1,m), . . . , (`n, fn,1, . . . , fn,m) ∈
L and all rule in R of the form:

(q0, (p0, l))(a
−→x)〈(`1, f1,1, . . . , f1,m), . . .〉

T→M ((q1, f1)x1) . . . ((qn, fn)xn)

where p0 is the initial state of T2 and l ∈ L2 is a state of the look-ahead automaton of T2,
we add the rule :

q′0(a
−→x)〈(`1, f1,1, . . . , f1,m), . . .〉

T→M ((q1, f1)x1) . . . ((qn, fn)xn)

This set R of rules is still weakly deterministic according to Theorem 11.
We have thus defined the HOWDTRlin T = (ΣQ′ ,Σ1,Σ3, q

′
0, R, A).

134

Example: Construction of the composed transducer

We show how to compute the transducer T = T2 ◦ T1. We start with its look-ahead
automaton A. Since transducer T1’s look-ahead has only one state, we can ignore it,
so we define our set of look-ahead states as: L = JAq0K × JAq1K with Aq0 = o and
Aq1 = o→ o. The set of tokens of type o is JoK = {p0, p1} × {`a, `b}, and the set of
tokens of type o → o is Jo → oK = {f (g | f, g ∈ JoK}. So we have 64 different
look-ahead states.

We will not detail all the transition rules of the look-ahead automaton, but we give
one example. Earlier we gave the derivation of the judgment:
` M : ((p1, `b) ((p0, `a)) ((p0, `a) with M = λy.y (b#) appearing in the rule
q0(b x) → M (q1 x) of T1. We can also derive, for the term M ′ = (λzy.z (b y))
appearing in the rule q1(b x)→M ′ (q1 x) of T1, the judgment:
`M ′ : ((p1, `b)((p0, `a))((p1, `b)((p0, `a). So we get, for all token f ∈ JAq0K,
the following rule of the look-ahead automaton A of T :

b(f, (p1, `b)((p0, `a))
A→ ((p0, `a) , (p1, `b)((p0, `a))

This rule works for any value of f because, noting t the tree below b, f represents
the behavior of q0(t) when processed by T2 but, since q0(b t) and q1(b t) only depend
on q1(t), the overall behavior of the tree b t only depends on the behavior of q1(t),
not on that of q0(t).
Some states are not accessible, for example the token f = (p0, `a)((p0, `b) of type
o→ o. Indeed a linear term of type o→ omust use its argument, meaning its output
must be a tree of type o containing the argument as a subtree. With an argument of
token (p0, `a) and therefore look-ahead `a, it is impossible that the output has token
(p0, `b) and look-ahead `b (due to the rules of A2). Token (p0, `a)((p1, `a) ∈ Jo→ oK
is impossible for similar reasons of accessibility between p0 and p1. Furthermore,
because look-ahead states are q0-token/q1-token pairs, some pairs are not accessible.
This way we get 24 accessible look-ahead states. This look-ahead automaton is
non-deterministic, its determinized version has only 5 accessible states.

Then we have the set of states of T :

Q′ = ({q0} × JoK) ∪ ({q1} × Jo→ oK) ∪ {q′0}

for a total of 4 + 16 + 1 = 21 states.
Again we do not explicitly show each rule of T here, but we give one example. We
have previously given the derivation D :: `M : ((p1, `b)((p0, `a))((p0, `a) with
its collapsing D = λy.y#, and where M appears in the rule q0(b x) → M (q1 x) of
T1. Therefore we have, for all token f ∈ JoK, the following rule in T :

(q0, (p0, `a)) (b x)〈(f, (p1, `b)((p0, `a))〉
T→ (λy.y#) ((q1, (p1, `b)((p0, `a))x)

Again the token f associated with q0(b x) does not matter to the result of the rule,
so the rule works for any value of f ∈ JoK.

135

Example: Construction of the composed transducer

Because q0 and p0 are the initial states of T1 and T2, we also have the following rule
for each token f ∈ JoK:

q′0 (b x)〈(f, (p1, `b)((p0, `a))〉
T→ (λy.y#) ((q1, (p1, `b)((p0, `a))x)

Within this set of rules, we can remove unaccessible states of the form (q0, f) because
they do not appear on the right side of rules of T1 and are not initial states of T .
If we use the determinized version of the look-ahead automaton, we can also merge
some states of the form (q1, f). In the end we only have 8 states in the set Q′ of
states of T .

Note that the reductions to the number of states of look-ahead and states of T come
from the coherence relations between the tokens. For example, look-ahead states
((p1, `b), (p1, `b)((p1, `b)), ((p1, `b), (p1, `a)((p1, `a)) and
((p0, `b), (p1, `a) ((p1, `a)) can be merged partly because (p1, `b) ¨ (p0, `b) and
(p1, `b)((p1, `b) ¨ (p1, `a)((p1, `a).
In fact, the known procedure for determinizing an automaton which consists in
grouping states when they recognize the same tree, can only group together accessi-
ble states of the form (`, f1, . . . , fn) and (`′, f ′1, . . . , f

′
n) when, for each i ≤ n, fi ¨ f ′i .

That is because fi and f ′i describe the behavior of qi(t) where t is recognized by
(`, f1, . . . , fn) and (`′, f ′1, . . . , f

′
n).

Now we prove the main theorem:

Theorem 15 T = T2 ◦ T1

Proof
We first prove the following statement by induction on a tree t of type o1:

For all state q ∈ Q of transducer T1 and for all token f ∈ JAqK such that q(t)
T1→ M and

`M : f , there exists a term N such that (q, f)(t)
T→ N and (M,N) ∈ R

Aq

f .
Let t = a t1 . . . tn a tree of type o1, q ∈ Q a state of T1 and f ∈ JAqK a token such that

q(t)
T1→M and `M : f . Then there is a rule:

q(a t1 . . . tn)
T1→M0 (q1 t1) . . . (qn tn)

If term M0 forgets one or several of its arguments, then there exists a term M ′
0 which uses

all its arguments such that M0 (q1 t1) . . . (qn tn) =βη M
′
0 (qi1 ti1) . . . (qim tim) where i1, . . . , im

are the indices of the arguments used byM0. For the sake of clarity we forget this renaming
of variables and proceed assuming M0 uses all of its arguments.

Since the computation of q(t)
T1→ M terminates and M0 uses all its arguments: for

all i ≤ n, the computation of qi(ti) by T1 terminates, we note its result Mi (a term of
type Aqi). Therefore M0M1 . . .Mn →∗βη M . So ` M0M1 . . .Mn : f and there exists
f1 ∈ JAq1K, . . . , fn ∈ JAqnK such that ` M0 : f1 (· · · (fn (f and, for all i ≤ n,

136

` Mi : fi. Then we can apply the induction hypothesis to each tree ti with state qi and

token fi: for all i ≤ n, there is a term Ni such that (qi, fi)(ti)
T→ Ni and (Mi, Ni) ∈ R

Aqi
fi

.

Because of the rule q(a t1 . . . tn)
T1→M0 (q1t1) . . . (qntn) in T1, there must be in T a rule:

(q, f)(a t1 . . . tn)
T→ D0 ((q1, f1)(t1)) . . . ((qn, fn)(tn))

Where D0 is the derivation of the judgement `M0 : f1(· · ·(fn(f . So

(q, f)(a t1 . . . tn)
T→ D0N1 . . . Nn.

By using theorem 14 (adequation) on D0 we get (M0,D0) ∈ R
Aq1→...Aqn→Aq

f1(...fn(f . By def-

inition of the logical relation, we obtain (M0M1 . . .Mn,D0N1 . . . Nn) ∈ R
Aq

f . Finally we

apply lemma 13. So, with N = D0N1 . . . Nn, we have (q, f)(t)
T→ N and (M,N) ∈ R

Aq

f .
Let t1 be a tree of type o1. Assume that T2◦T1(t1) = t3. Then there is a term t2 of type

o2 such that q0(t1)
T1→ t2 and p0(t2)

T2→ t3. Then we can derive the judgement ` t2 : (p0, `)
where t2 is recognized by look-ahead state ` of T2 and p0 is the initial state of T2. So there

exists a term N such that (q0, (p0, `))(t1)
T→ N and (t2, N) ∈ Ro2

(p0,`)
. By definition of the

logical relation we have: p0(t2)
T2= N�β, so t3 = N�β and (q0, (p0, `))(t1)

T→ t3. Thanks to

the definition of R, we can conclude that q′0(t1)
T→ t3. So T2 ◦ T1(t1) = t3 implies that

T (t1) = t3.
For the reverse implication, we first show by induction on tree t that, for all state q ∈ Q

and token f ∈ JAqK, if (q, f)(t)
T→ N then there exists a term M such that q(t)

T1→ M ,

`M : f and (M,N) ∈ R
Aq

f .

Let t = a t1 . . . tn a tree of type o1 with (q, f)(t)
T→ N . So there is a rule of T such

that (q, f)(t)
T→ N0 ((q1, f1)(t1)) . . . ((qn, fn)(tn)). Then there are N1, . . . , Nn such that

(q, f)(t)
T→ N0N1 . . . Nn, N =βη N0N1 . . . Nn and, for all i ≤ n, (qi, fi)(ti)

T→ Ni. Then we

apply the induction hypothesis and get Mi such that qi(ti)
T1→Mi and `Mi : fi. There is in

T1 a rule q(t)
T1→ M0 (q1t1) . . . (qntn), so q(t)

T1→ M0M1 . . .Mn, with ` M0 : f1 (. . . fn (
f . So for M = M0M1 . . .Mn we have ` M : f . Finally we deduce that (M,N) ∈ R

Aq

f

using the property we proved earlier in this proof and the lemma 13.
Now we try to show that T (t1) = t3 ⇒ T2 ◦ T1(t1) = t3. Assume that T (t1) = t3.

Then q′0(t1)
T→ t3, so there exists a token (p0, `) ∈ Jo2K such that (q0, (p0, `))(t1)

T→ t3. So

there exists a term M such that q(t1)
T1→ M , ` M : f and (M, t3) ∈ Ro2

(p0,`)
. Then, by

definition of the logical relation: p0(M�β)
T2→ t3. So T2 ◦ T1(t1) = t3.

So the transduction of T is the composition of the transductions of T2 and T1. �

Complexity analysis

We analyze the complexity of this algorithm and show that using the algorithm on
HOWDTRlin instead of HODTRlin avoids, in the general case, an exponential blow-up
of the size of the produced transducer.

137

First the set of states Q′ of T is of size |Q′| = 1+Σq∈Q|JAqK| where |JAqK| is the number
of tokens of type Aq. |JAqK| = (|P | |L2|)|Aq | where |P | is the number of states of transducer
T2, |L2| is the number of states of the look-ahead automaton of transducer T2 and |Aq| is
the size of the type Aq. So the size of Q′ is O(Σq∈Q(|P | |L2|)|Aq |), that is a polynomial in
the size of T2 to the power of the size of types of states of T1.

It is important to note that the set JAqK of tokens of type Aq is where HOWDTRlin

and HODTRlin differ in their complexity: the deterministic alternative to the weakly
deterministic T would require to store with the state not a single token, but a set of two-
by-two coherent tokens, that would bring the size of Q′ to 1 + Σq∈Q2

|JAqK| which would be
exponential in the size of T2 and doubly exponential in the size of types of T1.

Then there is the look-ahead automaton: its set of states is L = L1×JAq1K×· · ·×JAqmK.
So the number of states is in O(|L1| (|P | |L2|)Σq∈Q|Aq |). The size of the set of rules of the
look-ahead automaton is in O(Σa(n)∈Σ1

|L|n+1) where n is the arity of the constant a(n).
Finally there is the set R of rules of T . For every judgement ` M : f1,i1 (· · · (

fn,in (f , finding a derivation D of that judgement and computing the corresponding
D is in O(|M |2) time where |M | is the size of M . The number of possible rules is in
O(Σa(n)∈Σ1

(|Q′|)n+1). So computing R is done in time O(|R|2Σa(n)∈Σ1
(|Q′|)n+1) where R

is the set of rules of T1. With a fixed input signature Σ1, the time complexity of the
algorithm computing T is a polynomial in the sizes of T1 and T2, with only the sizes of
types of states of T1 as exponents.

In total, the composition procedure for HOWDTRlin is exponential in the sizes of types
of T1 and the arities of input trees of T1. The corresponding procedure on HODTRlin differs
because it is doubly exponential in the sizes of types of T1.

This complexity analysis has focused on the general case, but it is important to note
that, as in the example we have presented, the number of states of both the look-ahead
and the transducer can be greatly reduced in practice. Furthermore we have done so by
using standard automata procedures like determinizing the look-ahead, removing unacces-
sible states, and minimizing by merging equivalent states. The minimization by merging
equivalent states is particularly useful here because we tend to create a lot of rules whose
right-hand side only differ in the tokens stored in the states. Although we have not quan-
tified this reduction in the general case, we can see why our construction based on the
coherence spaces of tokens can often lead to reductions. These reductions can reveal un-
derlying properties of transducers, and they are only permitted by our approach which
uses coherence spaces.

Composition for equivalent models of transducers

As the HODTRlin model generalizes other classes of transducers, namely MTTR
sur, ATTsur,

STT and MSOT, it is possible to perform their composition in our setting. Thanks to re-
sults of Theorem 17, it is then possible to reduce the order of the result of the composition,
and obtain a HODTRlin that can be converted back in those other models. This methods
gives an important insight on the composition procedure for those other formalisms.

In comparison, the composition algorithms for equivalent classes of transductions are

138

either not direct or very complex as they essentially perform composition and order reduc-
tion at once. For instance, composition of single used restricted MTT is obtained through
MSO ([14]). The composition algorithm for Streaming Tree Transducers described in [2]
is direct, but made complex by the fact that the algorithm hides this reduction of order.

Comparison of composition procedures for HODT

We have seen that the composition procedure for HOWDTRlin also works on HODTRlin by
putting sets of two-by-two coherent tokens, instead of tokens, as states of the look-ahead
automaton. This look-ahead automaton computes a flow analysis and predicts by which
state an input tree will be processed. This can also be used in the composition of HODT
in general. In this composition algorithm, the composition of two HODT would use the
flow analysis in order to only compute the terms that are used to build the output. In
a way a HODT built with this procedure would compute its output in a call by name
fashion, while a HODT built using the procedure of subsection 6.1 computes in a call by
value fashion. With the exception that this call by name transducer would still not have
the complexity drawback of a classic call by name algorithm: the flow analysis of this
transducer would allow it to know which values are needed and compute those only once.

This new composition procedure for HODT would have worse time complexity than
the procedure of subsection 6.1, but the computed transducer could itself compute its
output faster, i.e. by using less rules, than the transducer computed using the procedure of
subsection 6.1. This gain would come at the cost of having a bigger look-ahead automaton.

Either of the composition procedures for HODT can also be compared to that of the
similar (but not equivalent) model of High-level tree transducers [16], which is less direct
as it goes through a reduction to iterated pushdown tree transducers and back.

139

Chapter 7

Equivalence with existing models

In this chapter we prove that HODTRlin and HODTRal are respectively equivalent to
Monadic Second Order Transductions from trees to trees (MSOT) and to Monadic Second
Order Transductions from trees to terms (i.e. trees with sharing) (MSOTS). In order to
do so we prove several properties of HODTRlin and HODTRal.

In section 7.1 we give a decomposition of simply-typed linear and almost linear terms
which allows us to represent terms of high order with terms of order ≤ 3. In section 7.2
we outline a construction that transforms a transducer of HODTRlin or HODTRal into an
equivalent linear or almost linear transducer of order ≤ 3. In section 7.3 we show that
there are translations between HODTRlin of order 3 and attribute tree transducers with
the single use restriction and between HODTRal of order 3 and attribute tree transducers.
These two models are known to be respectively equivalent to MSOT and MSOTS [7],
which allows us to conclude that HODTRlin and HODTRal are respectively equivalent to
MSOT and to MSOTS.

7.1 Template decomposition

The central idea in the construction consists in decomposing λ-terms M into pairs 〈M ′, σ〉
whereM ′ is a pure λ-term and σ is a substitution of variables with the following properties:

• M =β M ′.σ,

• the free variables of M ′ have at most order 1,

• for every variable x, σ(x) is a closed λ-term,

• the number of free variables in M ′ is minimal.

In such a decomposition, we call the term M ′ a template.
In case M is of type A, linear or almost linear, it can be proven that M ′ can be

taken from a finite set [21]. The linear case is rather simple, but the almost linear case
requires some precaution as one needs first to put M in syntactically almost linear form
and then make the decomposition. Though the almost linear case is more technical the

140

finiteness argument is the same in both cases and is based on proof theoretical arguments
in multiplicative linear logic which involves polarities in a straightforward way.

The linear case conveys the intuition of decompositions in a clear manner. One takes
the normal form of M and then delineates the largest contexts of M , i.e. first order terms
that are made only with constants and that are as large as possible. These contexts are
then replaced by variables and the substitution σ is built accordingly. The fact that the
contexts are chosen as large as possible makes it so that no introduced variable can have
as argument a term of the form xM1 . . .Mn where x is another variable introduced in the
process. Therefore, the new variables introduced in the process bring one negative atom
and several (possibly 0) positive ones and all of them need to be matched with positive
and negative atoms in the type of M as, under these conditions, they cannot be matched
together. This explains why there are only finitely many possible templates for a fixed
type.

Theorem 16 For all type A built on tree signature Σ, the set of templates of closed linear
(or almost linear) terms of type A is finite.

We prove this theorem first on linear terms, then we extend the proof to almost linear
terms.

7.1.1 Finiteness of linear templates

In order to show that the set of linear templates of a given type A is finite, we use notions
and properties defined in [22]: the definitions of positive and negative subtype occurrences
and subpremises in A and what it entails in the structure of terms of type A.

For any type A, we can label occurrences of subtypes in A as positive or negative using
the following rules:

• A is positive, we note it A+,

• if B → C is a positive subtype of A then B is negative and C is positive, we note it
(B− → C+)+,

• if B → C is a negative subtype of A then B is positive and C is negative, we note
it (B+ → C−)−.

For example, if A = ((o → o) → (o → o)) → ((o → o) → (o → o)) is a type built on the
atomic tree type o, then we can label occurrences of subtypes of A as follows:

A = ((o− → o+)+ → (o+ → o−)−)− → ((o+ → o−)− → (o− → o+)+)+

So, for all subtype occurrence A′ = A1 → . . . An → o, if A′ is positive then A−1 → . . . A−n →
o+, if A′ is negative then A+

1 → . . . A+
n → o−.

With any closed linear termM in β-normal form of type A we associate a bijection from
the set of positive occurrences of the atomic type o in A to the set of negative occurrences
of the atomic type o in A, we call it the trace of M and note it Θ(M).

We show how to compute Θ(M) on an example. To a termM = λy1y2y3.y1 (λy4.y2 y4) y3
of type A = ((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+ we have:

141

M = λy1y2y3. y1

λy4. y2

y4

y3 ⇒ ((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

The trace is computed by induction on M :
First M introduces y1,y2 and y3:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y1 y2 y3

Then, because y1 is the head variable of M , the output type of M corresponds to the
output type of y1: ((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y1 y2 y3

Then in the arguments of y1 we introduce y4 and we have two terms of type o+ to
match with output types o− of variables:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y2 y3y4

Those are mapped to y2 and y3:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y2 y3y4

Finally the argument of y2 is y4:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y4

This is how we compute the trace of a linear term in linear normal form. The function
which associates a trace with any linear term in linear normal form is injective, and it is
possible, given a trace Θ(M), to compute the term M . For example:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y1
y2

y3y4
⇒

λy1y2y3. y1

λy4. y4 y2

y3

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+
y1

y2

y3

y4
⇒

λy1y2y3. y2

y1

λy4. y4 y3

142

However injective, the Θ function is not surjective in general, meaning there are bijections
from positive to negative atomic subtype occurrences that do not correspond to any term.
For example, for type A = ((o→ o)→ o→ o)→ (o→ o)→ o→ o, there are only 3 terms
in linear normal form of type A, and only 3 corresponding traces (the three examples we
have shown so far). Any other bijection between positive and negative atomic subtype
occurrences is not a trace either because it binds variable y4 outside of its scope:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y2y4

or because some variable would not appear in the term:

((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

y3

The consequence of this is that the number of closed linear terms in linear normal form
of a given type A is bounded by the number of bijections between A’s sets of positive and
negative atomic subtype occurrences. In order to have a bound on the number of linear
templates of a type, we extend the trace function from closed linear terms to linear terms
with free variables which represent tree contexts, i.e. with type of the form on → o. Again
we show how it works on an example: the template M = λy1y2y3.C1 (y1 (λy4.y2 y4)C2) y3
with tree contexts C1 and C2 of respective types o→ o→ o and o,

M = λy1y2y3. C1

y1 y3

λy4. y2 C2

y4

⇒ ((o− → o+)→ o+ → o−)→ (o+ → o−)→ o− → o+

C1 : o+ → o+ → o−C2 : o−

C1
y1 y3

y2

C2

y4

Naturally, the free variables provide new atomic subtype occurrences and the positivity
and negativity of those are computed as if C1 and C2 were variables like y2 and y3. If a
tree context is of the form on → o then it has 1 negative and n positive atomic subtype
occurrences.

In order to show that the set of linear templates of a type is finite, we use the fact that
templates are minimal decompositions: it means that there can not be a tree context that
is directly applied to another tree context. This implies that, in the trace of a template,
a positive atomic subtype occurrence of a tree context can not be mapped to a negative
atomic subtype occurrence in a tree context. Since there is exactly one negative atomic
subtype occurrence per tree context, the number of tree contexts in a template of type
A is bounded by the number of positive atomic subtype occurrences in A. On the other
hand, the number of positive atomic subtype occurrences in the tree contexts is bounded
by the number of negative atomic subtype occurrences in A. So, for any given type A, the
number of tree contexts of a linear template is bounded, the arity n of these tree contexts
is bounded and, for each tree contexts setting, the number of traces (and therefore the

143

number of templates) is bounded. Consequently, for all type A the number of linear
templates of type A is bounded (by nn where n is the size of type A).

7.1.2 Finiteness of almost linear templates

In the case of almost linear templates, we first define an almost linear normal form for
terms that are equivalent to almost linear terms. For this we use results by M. Kanazawa
[22] (2012) on almost affine lambda terms. Note that these results are applicable to both
almost affine and almost linear terms. This report characterizes almost linear terms as
terms that have the negatively non-duplicated property, consequently almost linear terms
are terms that are both non-erasing (each bound variable is used at least once) and have
the negatively non-duplicated property.

The other result of that paper we are using is a lemma (Lemma 8 page 13), which,
for every negatively non-duplicated term M in η-long β-normal form, builds, through a
deterministic procedure, an almost affine term M ′ that β-reduces to M . The way M ′

is computed from M is by successively factorizing variables y that are not of atomic
type but occur at several places in M . For any such variable y, the negatively non-
duplicated property implies that there are terms N1, . . . , Nm such that y always occurs in
a term y N1 . . . Nm of atomic type in M ; then there is a subterm My of M containing all
occurrences of y N1 . . . Nm, that termMy is β-equivalent to the term (λy′.M ′

y) (y N1 . . . Nm)
where M ′

y = My[y N1 . . . Nm/y
′]. By replacing My with (λy′.M ′

y) (y N1 . . . Nm) in M we
remove the copying of the non atomic variable y and instead have the copying of variable
y′ which is of atomic type. By applying this process to every copied variable of non-atomic
type in M we get the almost linear term M ′ β-equivalent to M .

With any term M equivalent to an almost linear term, we associate the almost linear
term M ′ obtained by applying that process to the η-long β-normal form of M . Since two
equivalent terms M1 and M2 have the same η-long β-normal form, they are associated
with the same almost linear term M ′. Therefore we have a normal form for all term that
is equivalent to an almost linear term, we call it the almost linear normal form.

Once we have the almost linear normal form, we can apply the same reasoning as
the one for linear templates. Because of the process of factorizing copied non-atomic
variables, almost linear templates can be more complex than linear ones. But since the
number of distinct non-atomic variables in a term M is bounded by the size of the type of
M , the number of almost linear templates of a type A is bounded by ntemplates ∗ (nfact)

nvar

where ntemplates is the number of linear templates of type A, nfact is a bound on the
number of templatewise distinct possible factorizations of a non-atomic variable (i.e. two
factorizations are templatewise distinct only if the templates of the factorized terms are
distinct) and nvar is a bound on the number of non-atomic variables. We saw before that
ntemplates ≤ nn where n is the size of the type A. The number of non-atomic variables is
bounded by the size n of the type A. The template of a factorized term only depends on
at which subterm My of M the factorization happens, and the number of templatewise
distinct such My is bounded by the size of the template, so nfact ≤ 2n. Therefore the
number of almost linear templates of a given type A of size n is bounded by n3n.

144

We have proven that, for all type A, the sets of templates of linear and almost linear
terms of type A are finite. Using this we can show how to compute, for each transducer
of HODTRlin or HODTRal, an equivalent transducer of order ≤ 3.

7.2 Order reduction

The template associated with a λ-term can be computed compositionally (i.e. from the
templates of its parts). Since the sets of linear and almost linear templates are finite,
templates can be computed by the look-ahead of a HODTRlin or of a HODTRal. When
reducing the order, we enrich the look-ahead with template information while the substitu-
tion that is needed to reconstruct the produced term is computed by the new transducer.
The substitution is then performed by the initial state used at the root of the input tree
which then outputs the same result as the former transducer. The substitution can be
seen as a tuple of order 1 terms. It is represented as a tuple using Church encoding, i.e. a
continuation. This makes the transducer we construct be of order 3.

Theorem 17 Any HODTRlin (resp. HODTRal) has an equivalent HODTRlin (resp. HODTRal)
of order 3.

For this proof we will use the following notations: if a λ-term M is associated to the
decomposition 〈M ′, σ〉 where M ′ is a template and σ a substitution of the free variables in
M ′, then we note T(M) = (M ′, (σ(y1), . . . , σ(yn))) where y1, . . . , yn are the free variables
in M . In this case we allow = to mean equal up to renaming of free variables. For all type
A we note Tlin〈A〉 and Tal〈A〉 the sets of linear and almost linear templates of terms of
type A.

We prove this first for HODTRlin and then for HODTRal.

7.2.1 Linear case of the order reduction

First we prove a lemma showing how to compute the template of a term from the templates
of its components:

Lemma 14 Let M [x1, . . . , xn] be a linear term built on signature Σ1 with typed free vari-
ables xA1

1 , . . . , xAn
n , let t1, . . . , tn be linear templates (for variables x1, . . . , xn). Then there

is a linear template t and tree contexts C1, . . . , C` with free variables
y1,1, . . . , y1,`1 , . . . , yn,1, . . . , yn,`n such that, for all linear terms N1, . . . , Nn with T(Ni) =
(ti, (Ci,1, . . . , Ci,`i)) for all i :

T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j]i≤n,j≤`i)

Proof
For all i ≤ n: Ni =βη ti[yi,1/Ci,1, . . . , yi,`i/Ci,`i], where yi,1, . . . , yi,`i are the free variables of
ti, because T(Ni) = (ti, (Ci,1, . . . , Ci,`i)). Then we define t and (C1, . . . , C`) as the template
and tree-contexts of the λ-term M [x1/t1, . . . , xn/tn] on the signature Σ1 ∪ {yi,j}i≤n,j≤`i (it

145

is a tree signature because variables yi,j are tree-contexts and therefore of order at most
1). Consequently :

M [x1/N1, . . . , xn/Nn] = M [x1/t1, . . . , xn/tn][yi,1/Ci,1, . . . , yi,`i/Ci,`i]

= t[z1/C1, . . . , z`/C`][y1,1/C1,1, . . . , yn,`n/Cn,`n]

and so :
T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j]i≤n,j≤`i)

�

Now we can prove theorem 17 in the linear case:
Proof
Let T = (ΣQ,Σ1,Σ2, q0, R, A) be a HODTRlin. We note L the set of states of A. We want
to define a HODTRlin T ′ = (ΣQ′ ,Σ1,Σ2, q

′
0, R

′, A′) of order 3 equivalent to T .
We start by defining the look-ahead automaton A′ and its set of states L′ = L ×

Tlin〈Aq0〉 . . .Tlin〈Aqm〉 where Aq0 , . . . , Aqm are the output type of the states in Q and
Tlin〈A〉 is the set of linear templates of type A. So this look-ahead associates, with every
input tree N , the look-ahead A on tree N and, for each state qi, the template of qi(N).
Lemma 14 shows how to compute the template of a termM [x1, . . . , xn] using the templates
of x1, . . . , xn, then we define the rules of A′ accordingly so that, for all input tree N , the
state of the look-ahead A′ on tree N is (l, t0, t1, . . . , tm) where l is the look-ahead of A on
N and, for all i ≤ m, ti is the template of qi(N). We prove this by induction on the input
tree, the induction step is a direct application of lemma 14.

Then we define the set of states Q′ of T ′ : Q′ = {(qi, t) | qi ∈ Q, t ∈ Tlin〈Aqi〉} ∪ {q′0}.
We will now define the rules in R′ so that, for all qi ∈ Q, t ∈ Tlin〈Aqi〉 and for all input
tree N : (qi, t)(N) = (C1, . . . , C`) (using continuations to represent the tuple) such that
T(qi(N)) = (t, (C1, . . . , C`)). For all state (qi, t) ∈ Q′, input tree constant f of arity n,
input tree variables x1, . . . , xn and their look-ahead states l1, . . . , ln in L and l′1, . . . , l

′
n in

L′, and for all rule in R of the form : qi(f x1 . . . xn)〈l1, . . . , ln〉 → M [x1, . . . , xn] where
variable x1 is processed by state qi1 , x2 by qi2 and so on, we add the following rule in R′ :

(qi, t) (f x1 . . . xn)〈l′1, . . . , l′n〉 →
λk.(qi1 , t1)x1 (λy1,1, . . . y1,`1 (qin , tn)xn (λyn,1 . . . yn,`n .k C1 . . . C`) . . .)

This is a way of setting variables y1,1, . . . , y1,`1 to the tree contexts (C1,1, . . . , C1,`1) =
(qi1 , t1) (x1), it is necessary because the alternative, i.e. using a projection on the tuple
every time a tree context C1,i is used, would break linearity.

The output type of such a state (qi, t) is (A1 → . . . A` → o)→ o where o is the atomic
output tree type and Ai is the type of the i-th free variable of t, then, since the order of
one of the Ai is at most 1, the order of the output type of (qi, t) is at most 3. So the order
of T ′ is at most 3.

Note that if state q0 has output type o, the only template for that type is the term x
where x is a free variable of type o. Then for the initial state q′0 of output type o, we add

special rules in R′. For all rule already in R′ of the form : (q0, t)(f x1 . . . xn)〈
−→
` 〉 → (C1)

146

where (C1) is the unary tuple of type (o → o) → o containing the tree C1 of type o, we

add the rule : q′0(f x1 . . . xn)〈
−→
` 〉 → C1.

For all qi ∈ Q, t ∈ Tlin〈Aqi〉 and for all input treeN such that T(qi(N)) = (t, (C1, . . . , C`)):
(qi, t)(N) →∗R′ (C1, . . . , C`); we prove this by induction on the input tree N . Again the
induction is a direct application of Lemma 14.

Finally we conclude by applying this property to state q0 ∈ Q and template x ∈ Tlin〈o〉,
and replacing the first rule applied to (q0, x) by the corresponding rule on q′0. �

7.2.2 Almost linear case of the order reduction

We first prove the analog of lemma 14 for the almost linear case :

Lemma 15 Let M [x1, . . . , xn] be an almost linear term on signature Σ1 with typed free
variables xA1

1 , . . . , xAn
n , let t1, . . . , tn be almost linear templates of x1, . . . , xn. Then there is

an almost linear template t and tree contexts C1, . . . , C` with free variables y1,1, . . . , yn,`n
such that, for all almost linear terms N1, . . . , Nn with T(Ni) = (ti, (Ci,1, . . . , Ci,`i)) for all
i :

T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j]i≤n,j≤`i)

Proof
The key to this proof is to notice that the property of being an almost linear λ-term is
preserved by substitution of variables with almost linear λ-terms and by βη-equivalence.
It ensures that the term M [x1/N1, . . . , xn/Nn] is βη-equivalent to an almost linear λ-term.

For all i ≤ n, Ni =βη ti[yi,1/Ci,1, . . . , yi,`i/Ci,`i], where yi,1, . . . , yi,`i are the free variables
of ti, because T(Ni) = (ti, (Ci,1, . . . , Ci,`i)). Then we define t and (C1, . . . , C`) as the tem-
plate and tree-contexts of the λ-termM [x1/t1, . . . , xn/tn] on the signature Σ1∪{yi,j}i≤n,j≤`i
(it is a tree signature because variables yi,j are tree-contexts and therefore of order at most
1). Consequently :

M [x1/N1, . . . , xn/Nn] = M [x1/t1, . . . , xn/tn][yi,1/Ci,1, dots, yi,`i/Ci,`i]

= t[z1/C1, . . . , z`/C`][y1,1/C1,1, . . . , yn,`n/Cn,`n]

and so :
T(M [x1/N1, . . . , xn/Nn]) = (t, (C1, . . . , C`)[yi,j/Ci,j]i≤n,j≤`i)

�

Then the order reduction theorem for almost linear transducers (theorem 17) is proven
similarly to the linear case, but using lemma 15 as the almost linear extension of lemma
14.

7.3 Expressiveness of HODTRlin and HODTRal

The proof of the order reduction theorem (theorem 17) shows that every HODTRlin (or
HODTRal) can be seen as mapping trees to tuples of contexts and combining these

147

contexts in a linear (respectively almost linear) way. This understanding of HODTRlin

and HODTRal transducers allows us to translate them into Attribute Tree Transducers
with Single Use Restriction (ATTsur), and Attribute Tree Transducers (ATT) respectively.
Then, using [7], we can conclude with the following expressivity result:

Theorem 18 HODTRlin are equivalent to MSOT and HODTRal are equivalent to MSOTS.

Note that the equivalence between HODTRlin and MSOT could be obtained more easily
through MTTR

sur than ATTsur, but this way we would not get the equivalence between
HODTRal and MSOTS.

In subsection 7.3.1 we give a definition of ATT and ATTsur, and we give the result from
[7] of equivalence with MSOT and MSOTS. In subsection 7.3.2 we show how to translate
Attribute Tree Transducers into HODTRal, and we show that the Single-Use Restricted
property on ATT leads to the linearity on HODTRal. In subsection 7.3.3 we prove the
converse translation, conclude and discuss the implications of this characterization of the
expressiveness of HODTRlin and HODTRal.

7.3.1 Definition of ATT

Attribute grammars [17] are ways to formalize a class of syntax directed translations based
on context-free grammar. They amount to equip a context-free grammar with semantics
attributes that propagate along the abstract syntax tree. These semantics attributes
are synthesized when their value is propagated bottom-up and inherited when they are
propagated top-down.

Attribute tree transducers, as defined by [7, 17], correspond to the combination of a
relabeling attribute grammar (REL) and an attribute grammar (ATT) whose attributes are
trees. The relabeling simulates both the finite state control and the look-ahead automaton
of usual transducers. In our setting, they can be seen as HODT with look-ahead whose
rules are of the form q(a x1 . . . xn) → b q1(x1) . . . qn(xn), where a ∈ Σ, b ∈ ∆ and a and b
have the same arity. We call REL the class of transductions defined this way.

Although ATT were defined as attribute grammar by [7, 17], in this piece we will call
them transducers and we give them a slightly different but equivalent definition. Formally,
an ATT from the input alphabet Σ to the output alphabet ∆ is a tuple (Σ,∆, S, I, out, R, root)
where:

• Σ is a ranked alphabet,

• ∆ is a ranked alphabet,

• S and I are the finite sets of respectively synthesized and inherited attributes,

• out ∈ S is the meaning attribute,

• R, the rules, is a function that maps elements a of Σ of arity n to equations of the
form (α, i) = M(α1, i1) . . . (αk, ik) for every (α, i) in (S × {0} ∪ I × [1, n]) where M
is a linear λ-term of type ok → o built on the signature ∆ and where (αj, ij) are

148

pairwise distinct constants that have atomic type so that αj is in S ∪ I and ij is in
[0, n].

• root, the initialization of inherited attributes which maps elements a of Σ to equa-
tions of the form (α, 0) = M(α1, 0) . . . (αk, 0) for every α in I, where M is a linear
λ-term of type ok → o built on the signature ∆ and, for all j ≤ k, (αj, 0) is a
constant of atomic type and αj is in S ∪ I.

Example of ATT

We use the ranked alphabet Σ = {f (2), a(0), b(0)} with constant f of arity 2, and
constants a and b of arity 0. We define the ATT T = (Σ,Σ, S, I,m,R, root), with:

• Σ as both input and output alphabet,

• Sets S = {s,m} and I = {i} of synthesized attributes and inherited attributes,
with m as meaning attribute,

• The rules function R defined for each symbol in Σ.
The equations of R(a) are:

– s0 = a

– m0 = i0

For R(b) we have:

– s0 = b

– m0 = i0

And for R(f) we have:

– s0 = s1

– m0 = f m1m2

– i1 = s2

– i2 = i0

• root, the initiation of the inherited attribute i is:

– i = s

Intuitively, this transducer does a permutation of the leaves of its input tree without
modifying the rest of the tree. We will later see how it works on an example.

Now given an input tree N built on signature Σ, we let VN be the set of paths of N
that is inductively defined by, for N = aN1 . . . Nn: VN = {ε} ∪

⋃n
i=1{i.u | u ∈ VNi

}. For
u in VN , we write N �u for the subterm of N that is at path u and which is defined as

149

N �ε= N , (aN1 . . . Nn) �iu= Ni �u. For u in VN , we let labN(u) be the constant a in Σ such
that N �u= aN1 . . . Nn. Consider v in VN�u , we have that (N �u) �v= N �uv. Therefore
the operation that appends u in front of an element of VN�u defines an injection from VN�u

into VN that preserves the designated term.

The ATT associates a set of attributes with each element of VN . Formally, it builds a set
of equations whose left-hand side belong to A(N) = (S ∪ I)×VN . We call the elements of
A(N) attribute instances or simply attributes of N when the context is clear. For u ∈ VN ,
the subset Au(N) = {(α, u) | α ∈ S ∪ I} is the set of attributes associated with N at
path u. We use 0 to mean the empty path component ε, so attributes of the root are
noted (α, 0) instead of (α, ε). For each attribute (α, v) ∈ A(N �u) we define u.(α, v) as the
attribute (α, uv) ∈ A(N). Given a set of attribute instances S, we write u.S for the set
{(α, uv) | (α, v) ∈ S}. Then the following identity holds u.Av(N �u) = Auv(N).

The ATT associates an equation with every attribute (α, u) of A(N) as follows. If an
equation E(α,i) ∈ R(a) is of the form (α, i) = M(α1, i1) . . . (αn, in) then, for all path u ∈ VN

such that labN(u) = a, the equation (α, u.i) = M(α1, u.i1) . . . (αn, u.in) is the equation for
the attribute (α, u.i) and is noted u.E(α,i). The operation u. on equations naturally extends
to sets of equations. We note Equ(N) the set of equations u.R(labN(u)), and Equ↓(N) the
set of equations

⋃
v∈VN�u

Equv(N). Then the set of equations associated with N (noted

Eq(N)) is Eq(N) = Eqε↓(N) =
⋃

u∈VN
Equ(N). The complete set of equations of N (noted

CEq(N)) is CEq(N) = root(labN(ε)) ∪ Eq(N). We will also use the notation CEqu↑(N)
for the set CEq(N) \ Equ↓(N) for all u ∈ VN .

We represent the way attributes depend on each other using graph as follows. With an
equation E(α,i) ∈ R(a) of the form (α, i) = M(α1, i1) . . . (αn, in) we associate the directed
graph G(E(α,i)) whose set of vertices is V = {(α, i), (α1, i1), . . . , (αn, in)} and set of edges
is E = {((α, i), (αj, ij)) | j ∈ [1, n]}. Define the operation of non-disjoint union of graphs
whose sets of vertices are not necessarity disjoint as follows: for all graphs G1 = (V1, E1)
and G2 = (V2, E2), G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For all set Eq of equations we define
the graph G(Eq) associated with the set of equations Eq as

⋃
E∈Eq G(E). We extend the

operation u. on such graphs by: u.G(Eq) = G(u.Eq). The dependency graph D(N) of N
and complete dependency graph CD(N) of N are G(Eq(N)) and G(CEq(N)) respectively.
Similarly, we will use the notations Du↓(N) for the graph G(Equ↓(N)) and CDu↑(N) for
the graph G(Equ↑(N)).

Note that in D(N), there are no edges pointing to inherited attributes of the root node
of N (attributes in I × {ε}).

150

Example: Running an ATT on an input

We run transducer T on the following input tree N :

f

f

a b

a

The paths of nodes in N are ε (the root) with label f , 1 with label f , 11 with label
a, 12 with label b and 2 with label a.
In order to compute the output of T on the input N , we display the attributes of
each node in N , and we represent each dependency between two attributes as an
arrow (this is the graph noted CD(N)):

mε

m1

m11 m12

m2

sε iε

s1 i1 s2 i2

s11 i11 s12 i12

The meaning attribute is m so the output of the transducer is the value of mε. The
value of mε is computed using the rules function R: since the label of the node at
path ε in N is f , we apply R(f). So mε = f m1m2.

To compute m2 we look at the label of the node at path 2 in N , which is a. So we
apply R(a) and we get m2 = i2.

To compute i2, since i is an inherited attribute, we should apply the rule of the
parent node of the node at path 2, which is path ε. So we use R(f) and get i2 = iε.

To compute iε, the inherited attribute of the root, we use the root rule which gives
iε = sε.

151

By following the sequence of equations we finally get to s11 = a. So m2 = a.
Similarly, we get m1 = f m11m12 with m11 = s12 = b and m12 = s2 = a. Finally we
obtain the output tree:

f

f

b a

a

Note that the dependency relation between attributes always goes upward in the
tree for synthesized attributes, but downward for inherited attributes.
The graph is acyclic and we can see why, when it is not acyclic, the output is not
defined.

When CD(N) is acyclic, the ATT is said non-circular on N and we note Ord(CD(N))
the set of its topological sorts (i.e. the total orders which embed into the partial order
on nodes induced by the acyclic graph CD(N)). In that case, we can associate with
every attribute of N a tree built on ∆ by applying the equations in CEq(N). Indeed,
a topological sort of the acyclic graph CD(N) gives an order in which we can evaluate
the attributes of N , i.e. associate them with a term built on ∆. The term associated to
(out, ε) is the output of the ATT. An ATT is said non-circular when for every N , CD(N)
is acyclic. We note ATT the class of transductions that are defined by ATT. When for
every N the dependency graph is a tree, the ATT is said single use restricted. We note
ATTsur the class of transductions that are defined by single use restricted ATT.

Theorem 19 [7] We have the following equivalences:

• REL ◦ ATT = MSOTS,

• REL ◦ ATTsur = MSOT ,

7.3.2 REL ◦ATT ⊆ HODTRal and REL ◦ATTsur ⊆ HODTRlin

In this section we prove that the composition of a relabeling attribute grammar with an
ATT can be modeled by a HODTRal, and that if the ATT is single use restricted then the
translated HODTRal is a HODTRlin.

For this proof we need to translate a set of equations on attributes into a computation of
λ-terms. In a sense this is the step where we transform a logical framework of computation
into a sequential framework of computation. The core of this proof consists in analyzing
the structure of dependency graphs of attributes to deduce an order in which to compute
the attributes. For this we require a few more definitions.

Definitions and notations

For each term N , we note CD>(N) the graph obtained from CD(N) by adding a fresh
vertex noted > and an edge ((out, ε),>). Similarly, given u ∈ VN , CD>u↑(N) denotes the

152

graph obtained from CDu↑(N) by adding a fresh vertex > and an edge ((out, ε),>). We
note A>(N) = {>} ∪ A(N) and, for all path u ∈ VN , A

>
u (N) = {>} ∪ Au(N). Then

the attributes we have to compute in order to compute the output of the ATT are the
attributes connected to the vertex > in CD>(N).

We use the convention that u.> = u−1.> = >.

Definition 25 For all graph G = (V,E) and set V ′, we call trace of G on V ′, noted tr(G)|V ′ ,
the subgraph of the transitive closure of G induced by V ′ ∩ V .

Lemma 16 For all graphs G1 = (V1, E1) and G2 = (V2, E2) and set V , if V1∩V2 ⊆ V , then
tr(G1 ∪G2)|V = tr(tr(G1)|V ∪G2)|V .

Proof
The set of vertices of both tr(G1 ∪G2)|V and tr(tr(G1)|V ∪G2)|V is V ∩ (V1 ∪ V2).

For all vertices x and y, if there is in tr(G1)|V a path from x to y there exists a path
from x to y in G1. Then for all path in tr(G1)|V ∪G2 from x to y there is a path from x
to y in G1 ∪ G2. So, for all edge (x, y) in the graph tr(tr(G1)|V ∪ G2)|V there is an edge
(x, y) in tr(G1 ∪G2)|V .

Let (x, y) ∈ V 2 be an edge of the graph tr(G1 ∪G2)|V , then there is a path w from x
to y in G1 ∪ G2. This path can be written w = w1 . . . wn where w1, . . . , wn are paths in
either G1 or G2 and, for all i ≤ n− 1, if wi is a path in G1 then wi+1 is a path in G2 and
if wi is a path in G2 then wi+1 is a path in G1. Then, for all i ≤ n− 1, the end vertex of
path wi is in V1 ∩V2. Since V1 ∩V2 ⊆ V and x and y are in V , all start and end vertices of
paths w1, . . . , wn are in V . Then for all path wi in tr(G1)|V there is a path w′i with same
start and end vertices in the graph G1. Therefore, noting w′i = wi if wi is a path in G2

but not G1 for all i ≤ n, w′1, . . . , w
′
n is a path from x to y in tr(G1)|V ∪G2. So there is an

edge (x, y) in the graph tr(tr(G1)|V ∪G2)|V . �

With this we can define the important notions of synthesis graph and inheritance graph.

Definition 26 For all tree path u ∈ VN , we define the synthesis graph of path u in N ,
noted GSu(N), as the graph u−1.(tr(Du↓(N))|Au(N)).

For all tree path u ∈ VN , we call the inheritance graph of path u in N , noted GIu(N),
the graph u−1.(tr(CD>u↑(N))|V ′) where V ′ is the subset of A>u (N) of vertices connected to

the vertex > in the graph CD>u↑(N).

153

Example of synthesis graph

Following up on the previous example of transducer T processing tree N , on the
node at path 1 in N , we compute its synthesis and inheritance graphs.
To compute the synthesis graph GS1(N), we start by taking the restriction of the
graph D(N) to the attributes and edges below the node at path 1:

mε

m1

m11 m12

m2

sε iε

s1 i1 s2 i2

s11 i11 s12 i12

Then we simplify it by removing attributes of other nodes, but remembering the
dependencies between attributes of our node at path 1, we obtain the synthesis
graph GS1(N):

ms i

This is our way of remembering that, because of the dependencies through m12 and
i12, attribute m1 indirectly depends on attribute i1.

For any path u, the synthesis graph at path u represents the dependencies between
attributes incurred from the equations below the node at path u. Next we try and show
that synthesis graphs can be computed by a bottom-up tree automaton.

For every tree N and path u ∈ VN , the sets of nodes of GSu(N) and GIu(N) are
Aε(N �u) and A>ε (N �u) respectively, since these sets are not dependent on the tree N or
the path u we simply note them Aε = (S ∪ I)× {ε} and A>ε = {>} ∪ Aε respectively.

Lemma 17 For all u ∈ VN , the edges of the graph GSu(N) are of the form ((α, ε), (γ, ε))
with α ∈ S ∪ I and γ ∈ S.

Lemma 18 For all u ∈ VN , GSu(N) = tr(G(R(a))
⋃

1≤i≤n i.GSui(N))|A>
ε
where n is the

arity of the node at path u in N .

154

Example of inheritance graph

Similarly to the synthesis graph, for the inheritance graph GI1(N) we take the
restriction of CD>(N) to the attributes and edges which are not strictly below the
node at path 1:

mε

m1

m11 m12

m2

sε iε

s1 i1 s2 i2

s11 i11 s12 i12

>

Again we simplify it by removing attributes of other nodes, but remembering the
dependencies between attributes of our node at path 1, we obtain the inheritance
graph GI1(N):

ms i

>

The goal of the inheritance graph is to remember not only how the inherited at-
tributes depend on the synthesized attributes, but also how the output depends on
the synthesized attributes.

Proof
We note G0 the graph tr(G(R(a)) ∪

⋃
1≤i≤n i.GSui(N))|A>

ε
. The graphs G0 and GSu(N)

have the same set of vertices Aε.
Let (x, y) be an edge of the graph G0, then, by definition of G0, there is a path from

u.x to u.y in the graph
⋃

i≤n ui.GSui(N) ∪ u.G(R(a)) (this works because u. is only a

155

renaming of the attributes). By definition, any edge in u.G(R(a)) is in Du↓(N). For all
i ≤ n and for all edge (xi, yi) in ui.GSui(N) there is a path in Dui↓(N) from xi to yi, then
this path also exists in the graph Du↓(N). Then there is in the graph Du↓(N) a path from
u.a to u.b. So the set of edges of G0 is included in the set of edges of GSu(N).

Let (x, y) be an edge of GSu(N), then there is in the graph Du↓(N) a path from
u.x to u.y. This path is of the form w1e1w2 . . . wmemwm+1 where e1, . . . , em are edges
in u.G(R(a)) and w1, . . . , wm+1 are paths with no edges in u.G(R(a)). Since Du↓(N) =
u.G(R(a)) ∪

⋃
1≤i≤nDui↓(N) and the graphs Dui↓(N) have disjoint sets of vertices, for all

j ≤ m+ 1 there is an index ij ≤ n such that the path wj is in the graph Duij↓(N). Then
for all j ≤ m + 1, noting xj and yj the respective start and end of path wj, there is an
edge (xj, yj) in the graph uij.GSuij(N). Then the path (x1, y1)e1 . . . em(xm+1, ym+1) is in
the graph

⋃
i≤n ui.GSui(N) ∪ u.G(R(a)), with u.x = x1 and u.y = ym+1. So there is a

path from x to y in the graph
⋃

i≤n i.GSui(N)∪G(R(a)), therefore there is an edge (x, y)
in the graph tr(

⋃
i≤n i.GSui(N) ∪G(R(a)))|Aε , so this edge is in G0.

So G0 = GSu(N). �

The synthesized and inheritance graph are important because they allow us to un-
derstand how attributes depends on each other, which is important when we want to
sequentialize the computation of attributes. Since the synthesized graph at a given node
only depends of the graph below that node, and because it is a graph with a fixed set Aε of
vertices, we can compute a bottom-up tree automaton which computes synthesis graphs
recursively:

Lemma 19 There exists a bottom-up tree automaton A, whose set of states is the set of
directed acyclic graphs with set of vertices Aε, which associates with any node in a tree
N the graph GSu(N).

Proof
We define the bottom-up tree automaton A = (ΣP ,Σ1, RA) where P is the set of states
of the form pG where G = (V,E) is a directed acyclic graph with V = Aε and E ⊆
{((α, ε), (γ, ε)) | α ∈ S ∪ I, γ ∈ S}, i.e. potential synthesis graphs according to lemma 17;
and RA is the set of rules of the form a(pG1 . . . pGn) → pG0 where a is a tree constant in
Σ1 of arity n, and G0 is the graph tr(

⋃
i≤n i.Gi ∪G(R(a)))|Aε where G(R(a)) is the graph

induced by the equations of the attribute transducer associated with the tree constant a.
Lemma 18 implies by induction that automaton A indeed associates with any node at

path u in N the synthesis graph GSu(N) of N at path u. �

Definition 27 For all tree path u ∈ VN , The interface graph of N at path u (noted Gu(N))
is the directed acyclic graph u−1.(tr(CD>(N))|V ′) where V ′ is the subset of A>u (N) of
vertices connected to the vertex > in the graph CD>(N).

The interface graph at a given path u represents how the attributes of the node at path
u depend on each other. The interface graph gives us the order (or orders) in which we
can compute the attributes of a given node. We show that we can compute the interface
graph from the synthesis graph and the inheritance graph:

156

Lemma 20 For all path u ∈ VN , Gu(N) = tr(GSu(N)∪GIu(N))|V ′ where V ′ is the subset
of A>ε of vertices connected to the vertex > in the graph GSu(N) ∪GIu(N).

Proof
We note G = tr(GSu(N) ∪GIu(N))|V ′ . We first prove the following claim:

Claim 1 For all x, y ∈ A>ε , there is a path from u.x to u.y in the graph CD>(N) if and
only if there is a path from x to y in the graph GSu(N) ∪GIu(N).

Proof
Assume there is a path from u.x to u.y in CD>(N). Since CD>(N) = CD>u↑(N)∪Du↓(N),

this path can be seen as a sequence of paths w1 . . . wm alternating between graphs CD>u↑(N)

and Du↓(N) (if wi is a path in the graph CD>u↑(N) then wi+1 is a path in Du↓(N) and
conversely). We note xi and yi the respective start and end of path wi for all i ≤ m.
For all i ≤ m − 1, since the vertex yi = xi+1 is in both graphs CD>u↑(N) and Du↓(N), it

must be in the set Au(N). Then there is an edge (xi, yi) in either tr(CD>u↑(N))|Au(N) or
tr(Du↓(N))|Au(N) for all i ≤ m. Because x = u−1.x1 and y = u−1.ym, there is in the graph
GSu(N) ∪GIu(N) a path from x to y.

Assume there is a path from x to y in CD>(N). That path is of the form
(x1, x2)(x2, x3) . . . (xm, xm+1) where, for each i ≤ m, (xi, xi+1) is an edge of either GSu(N)
or GIu(N). So, for all i ≤ m, there is either in CD>u↑(N) or in Du↓(N) a path from u.xi to

u.xi+1. Therefore we have in the graph CD>(N) a path from u.x = u.x1 to u.y = u.xm+1.
�

This claim applied with y = > implies that G and Gu(N) have the same sets of vertices.
The claim also implies that (x, y) is an edge of G if and only if (x, y) is an edge of

Gu(N).
So G = Gu(N) for all path u ∈ VN . �

With this, for each node of the input tree, we can compute its interface graph which
expresses the dependencies between its attributes. Now we need to express precisely how
the synthesized attributes are computed from the inherited attributes, and how those
expressions are transmitted from a node to its parent. For this we will need to compute
a larger interface graph which includes the dependencies between a node’s attributes and
its child nodes’ attributes. We call this graph the local dependency graph.

We will use the notations A[1,n] =
⋃

1≤j≤n(S ∪ I)× {j}, A[0,n] =
⋃

0≤j≤n(S ∪ I)× {j}
(with the convention that 0 = ε), A>[1,n] = {>} ∪ A[1,n] and A>[0,n] = {>} ∪ A[0,n].

Definition 28 For all path u ∈ VN , we define the local dependency graph of N at path u,
noted Gu.[0,n](N) where n is the arity of labN(u), as the graph u−1.tr(CD>(N))|V ′ where V ′

is the set of vertices in u.A>[0,n] that are connected to the vertex > in the graph CD>(N).

This local dependency graph can be computed from the synthesis graph at path u and
the inheritance graphs at paths u1, . . . , un.

157

Example of interface graph and local dependency graph

Following up on our previous example, the interface graph G1(N) of N at path 1 is:

mεsε iε

>

We can see that it is the union of the synthesis graph and the inheritance graph, as
proven in lemma 20.
The local dependency graph G1.[0,2](N) of N at path 1 is:

m0

m1 m2

s0 i0

s1 i1 s2 i2

>

Lemma 21 For all tree N and path u ∈ VN , noting a = labN(u) the constant of the node
at path u in N and n its arity, the local dependency graph Gu.[0,n](N) of N at path u is
tr(GIu(N) ∪G(R(a)) ∪

⋃
1≤j≤n j.GSuj(N))|V ′ where V ′ is the set of vertices in A>[0,n] that

are connected to the vertex > in the graph GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N).

Proof
We first prove the following claim:

Claim 2 For all vertices x, y ∈ A>[0,n], there is in the graph CD>(N) a path from u.x to

u.y if and only if there is a path from u.x to u.y in the graph G = tr(CD>u↑(N))|A>
u (N) ∪

u.G(R(a)) ∪
⋃

1≤i≤n tr(Dui↓(N))|Auj(N).

Proof
If there is a path from u.x to u.y in G then, because CD>(N) = CD>u↑(N)∪ u.G(R(a))∪⋃

1≤i≤n Dui↓(N), there must be a path from u.x to u.y in CD>(N).

If there is a path from u.x to u.y in CD>(N), then this path can be seen as a sequence
w1 . . . wm of paths where each wj with j ≤ m is a path in either one of the following n+2

158

graphs: CD>u↑(N), Du1↓(N), . . . Dun↓(N), u.G(R(a)), and, for each j ≤ m − 1, wj+1 is a
path in a different graph than wj. Noting xj the end of path wj or start of path wj+1,
since wj and wj+1 are paths of a different graph among CD>u↑(N), Du1↓(N), . . . Dun↓(N)
and u.G(R(a)), xj is in the intersection of the sets of vertices of these two graphs,
which is necessarily included in the set u.A>[0,n](N). x0 = u.x and xm = u.y are also

in the set u.A>[0,n](N). This implies that if wj is a path in CD>u↑(N) then there is in

tr(CD>u↑(N))|A>
u (N) a path w′j from xj−1 to xj. Also if wj is a path in Dui↓(N) then

there is in tr(Dui↓(N))|Auj(N) a path w′j from xj−1 to xj. So there is in the graph
G = tr(CD>u↑(N))|A>

u (N) ∪ u.G(R(a)) ∪
⋃

1≤i≤n tr(Dui↓(N))|Auj(N) a path from u.x to u.y.
�

Since Gu.[0,n](N) = u−1.tr(CD>(N))|u.A>
[0,n]

and

tr(GIu(N)∪G(R(a))∪
⋃

1≤j≤n j.GSuj(N))|A>
[0,n]

= u−1.tr(G)|V ′ , the claim implies that the

set of vertices of the graph Gu.[0,n](N) is the set V ′ of vertices in A>[0,n] that are connected

to the vertex > in the graph GIu(N) ∪G(R(a)) ∪
⋃

1≤j≤n j.GSuj(N).
It also entails that, for all vertices x, y ∈ V ′, there is in the graph Gu.[0,n](N) an edge

(x, y) if and only if (x, y) is an edge in the graph tr(GIu(N)∪G(R(a))∪
⋃

1≤j≤n j.GSuj(N))|V ′ .
Therefore Gu.[0,n](N) = tr(GIu(N) ∪G(R(a)) ∪

⋃
1≤j≤n j.GSuj(N))|V ′ . �

Corollary 20 The local dependency graph Gu.[0,n](N) can be computed using only the
constant labN(u), the inheritance graph of N at path u and the synthesis graphs of N at
paths u1, . . . , un.

Furthermore, we can show that, when the ATT is single use restricted, the local de-
pendency graphs are trees:

Lemma 22 If CD>(N) is a tree then, for all path u ∈ VN , Gu.[0,n](N) is a tree.

Proof
We use ad absurdum reasoning. We assume that Gu.[0,n](N) is not a tree, so there exists
two nodes x, y and two distinct paths from x to y in Gu.[0,n](N) = u−1.tr(CD>(N))|V ′ .
Then there are two distinct paths from u.x to u.y in CD>(N), then CD>(N) is not a tree.
�

Corollary 21 If the ATT is single use restricted then for all input tree N and path u ∈ VN ,
the graph Gu.[0,n](N) is a tree.

Topological sorts

In order to sequentialize the computation of attributes, we use topological sorts of the
graphs of dependency prevously defined, specifically interface graphs and local dependency
graphs. We will later need to use induction on the sorted attributes, in order to facilitate
that, we define our topological sorts as sequences of attributes:

159

Definition 29 We call a total order < on a finite set V compatible with a directed acyclic
graph G = (V,E) if, for all edge (v, v′) ∈ E, v < v′.

Noting n the size of the set V , for all sequence τ = v1 . . . vn ∈ V ∗ of length n such that
i 6= j ⇒ vi 6= vj for all 1 ≤ i, j ≤ n, we associate with τ the unique total order < on V
such that i < j ⇔ vi < vj for all 1 ≤ i, j ≤ n.

We call a sequence τ ∈ V ∗ a topological sort of a directed acyclic graph G = (V,E) if
it is of length n and the total order < associated with it is compatible with G.

Lemma 23 For all directed acyclic graph G we can build a topological sort τ of G.

Proof
We build τ inductively. We note G = (V,E).

Since G is acyclic there exists a vertex x of G which has no incoming edges. We use
induction and assume we can build a topological sort τ ′ of the subgraph of G induced by
the set V \ {x} of vertices. Then τ = xτ ′ is a topological sort of G. �

Lemma 24 For all path u ∈ VN any topological sort τ ofGu(N) is of the form τ = τ ′(α, ε)>
with α ∈ S.

Proof
By definition of Gu(N), from any vertex of Gu(N) there is a path to >, so a topological
sort of Gu(N) must end with >. The form of the rules of the attribute transducer imply
that if there is a path in Gu(N) from (γ, ε) to > with γ ∈ I then there must exists α ∈ S
and a path in the graph Gu(N) from (α, ε) to (γ, ε). So any topological sort of Gu(N)
ends with (α, ε)> for some α ∈ S. �

Each local dependency graph contains several interface graphs. We now express the
relations between local dependency graphs, interface graphs and their topological sorts.

Definition 30 For all sets V and V ′ such that V ′ ⊂ V , for all graph G = (V,E) and
topological sort τ of G, we call topological subsort induced by the subset V ′, and we note
τ |V ′ , the biggest subsequence of τ included in V ′∗.

Lemma 25 For all directed acyclic graph G = (V,E), topological sort τ of G and subset
V ′ of V , τ |V ′ is a topological sort of tr(G)|V ′ .

Proof
We note G′ = tr(G)|V ′ = (V ′, E ′). Let (a, b) be an edge in E ′, then there is a path in
the graph G from a to b of the form a v1 . . . vm b. So, noting <τ the total order on V
associated with τ , a <τ v1 <τ · · · <τ vm <τ b. Therefore a <τ b, and a appears in the
sequence τ strictly before b. Then a appears in the sequence τ |V ′ strictly before b, and
a <τ ′ b where <τ ′ is the total order on V ′ associated with τ |V ′ .

We have shown that <τ ′ is compatible with G′, so τ |V ′ is a topological sort of tr(G)|V ′ .
�

Lemma 26 For all directed acyclic graph G = (V,E), subset V ′ of V and topological sort
τ ′ of tr(G)|V ′ , there exists a topological sort τ of G such that τ ′ = τ |V ′ .

160

To prove this we need the following lemma:

Lemma 27 For all directed acyclic graph G = (V,E), and subset V ′ ⊆ V of vertices, and
for all two vertices x, y ∈ V ′, noting tr(G)|V ′ = (V ′, E ′) the subgraph of the transitive
closure of G induced by the subset V ′ of vertices, if the graph (V ′, E ′ ∪ {(x, y)}) is acyclic
then the graph (V,E ∪ {(x, y)}) is also acyclic.

Proof
We use ad absurdum reasoning. We assume that the graph (V ′, E ′ ∪ {(x, y)}) is acyclic
and that there is a cycle in the graph (V,E ∪ {(x, y)}). Since (V,E) is acyclic the edge
(x, y) is part of the cycle, so the cycle is of the form (x, y)(y, x1) . . . (xn, x) with vertices
x1, . . . , xn ∈ V . Then there is a path from y to x in G, therefore there is an edge (y, x)
in tr(G)|V ′ , so (y, x) ∈ E ′. Then (V ′, E ′ ∪ {(x, y)}) is not acyclic, which leads to a
contradiction. �

Now we can prove lemma 26:
Proof
We note x1, . . . , xn the vertices in V ′ such that τ ′ = x1 . . . xn, and tr(G)|V ′ = (V ′, E ′).
We note Eτ ′ the set of edges Eτ ′ = {(xi, xj)}1≤i<j≤n, then we show that the graph G′ =
(V ′, E ′ ∪ Eτ ′) is acyclic.

If G′ contained a cycle, it would imply that there was in (V ′, E ′) a path from xj to xi

with i < j, which is contradicts the fact that τ ′ = x1 . . . xn is a topological sort of (V ′, E ′).
Since (V ′, E ′ ∪ Eτ ′) is acyclic, we can use lemma 27 and deduce that (V,E ∪ Eτ ′)

is also acyclic. Then there exists a topological sort τ of (V,E ∪ Eτ ′). Because Eτ ′ =
{(xi, xj)}1≤i<j≤n and by definition of topological sorts: τ |V ′ = τ ′. Also τ is a topological
sort of G. �

Definition 31 For all graphs G and G̃ with the same set of vertices, we say that G̃ is an
over-specification of G, and we note G̃ D G, if all topological sort of G̃ is a topological
sort of G.

Lemma 28 The relation D has the following properties:

1. for all graphs G1, G2 and G3: G1 D G2 D G3 ⇒ G1 D G3 (transitivity),

2. for all graphs G = (V,E) and G̃ = (V, Ẽ): E ⊆ Ẽ ⇒ G̃ D G,

3. for all graph G = (V,E): G D tr(G)|V D G,

4. for all graphs G and G̃ and set V ′: G̃ D G⇒ tr(G̃)|V ′ D tr(G)|V ′

5. for all graphs G1, G2, G̃1 and G̃2, if G̃1 D G1 and G̃2 D G2 then G̃1 ∪ G̃2 D G1 ∪G2

Proof

1. Implied by the definition of D.

161

2. Implied by the definition of topological sorts.

3. The previous point implies that tr(G)|V D G. For all topological sort τ of G,
by transitivity of the order associated with τ , τ is also a topological order of the
transitive closure tr(G)|V of G. So G D tr(G)|V .

4. For all topological sort τ ′ of tr(G̃)|V ′ , according to lemma 26, there is a topological
sort τ of G̃ such that τ |V ′ = τ ′. Then τ is also a topological sort of G and, according
to lemma 25, τ ′ = τ |V ′ is a topological sort of tr(G)|V ′ .

5. Let us assume that G̃1 D G1 and G̃2 D G2 with G1 = (V1, E1) and G2 = (V2, E2). For
all topological sort τ of G̃1∪G̃2, according to lemma 25, τ |V1 and τ |V2 are topological
sorts of G̃1 and G̃2 respectively. So τ |V1 and τ |V2 respectively are topological sorts
of G1 and G2. So τ is a topological sort of G1 ∪G2. Therefore G̃1 ∪ G̃2 D G1 ∪G2.

�

Lemma 29 For all graphs G1 and G2 such that G2 D G1 and G2 is closed by transitivity,
then G2 can be obtained from G1 by adding edges.

Proof
We note G1 = (V,E1) and G2 = (V,E2). Then G2 can be obtained from G1 by adding
edges if and only if E1 ⊆ E2. We use ad absurdum reasoning and assume there is an edge
(x, y) ∈ E1 \ E2. We note Vy↓ = {z | z ∈ V, (z, y) ∈ E2} and Vx = V \ ({y} ∪ Vy↓). So
x ∈ Vx. Let τy↓ and τx be topological sorts of the acyclic graphs tr(G2)|Vy↓ and tr(G2)|Vx

respectively. We now prove that τ = τy↓yτx is a topological sort of G2: for all z1, z2 ∈ E2,

• if (z1, z2) ∈ Vy↓ × {y} then z1 <τ z2 because we put τy↓ before y in τ ,

• if (z1, z2) ∈ Vy↓ × Vx then z1 <τ z2 because we put τy↓ before τx in τ ,

• if (z1, z2) ∈ {y} × Vx then z1 <τ z2 because we put y before τx in τ ,

• if (z1, z2) ∈ V 2
y↓ then z1 <τy↓ z2 entails z1 <τ z2,

• the case (z1, z2) ∈ {y}2 is impossible because G2 is acyclic,

• if (z1, z2) ∈ V 2
x then z1 <τx z2 entails z1 <τ z2.

• the case (z1, z2) ∈ {y}× Vy↓ is impossible because z2 ∈ Vy↓ ⇒ (z2, y) ∈ E2 and G2 is
acyclic,

• the case (z1, z2) ∈ Vx × Vy↓ is impossible because the transitivity of G2 would imply
that (z1, y) ∈ E2, which contradicts the fact that z1 /∈ Vy↓,

• the case (z1, z2) ∈ Vx × {y} also contradicts z1 /∈ Vy↓.

162

So τ is a topological sort of G2. But since (x, y) ∈ E1 and y <τ x, τ is not a topological
sort of G1. That is in contradiction with the fact that G2 D G1. �

We have previously shown that synthesis graphs can be computed, in a bottom-up way,
by a tree automaton. From these synthesis graphs we show how to compute topological
sorts of the corresponding interface graphs in a top-down way.

Lemma 30 We can build a function f such that, for all path u ∈ VN where the tree
constant a = labN(u) is of arity n and for all topological sort τ0 of Gu(N):
τ = f(a, τ0, (GSu1(N), . . . , GSun(N))) is a topological sort of Gu.[0,n](N) and, for each
j ≤ n, j−1.(τ |A>

j
) is a topological sort of Guj(N).

Proof
We note V ′ the set of vertices of the graph Gu(N). For all tree constant a of arity n, for
all topological sort τ0 over a subset of A>ε and for all synthesis graphs G1, . . . , Gn (acyclic
graphs with vertices in A>ε and edges included in ((S ∪ I)×{ε})× (S×{ε}) as per lemma
17), we define f(a, τ0, (G1, . . . , Gn)) as the topological sort τ , obtained using lemma 23,
of the graph G = tr(

⋃
1≤i≤n i.Gi ∪ G(R(a)) ∪ Gτ0)|V ′′ where Gτ0 is the graph with set of

vertices V ′ and set of edges Eτ0 = {(x, y) | x <τ0 y}, and V ′′ is the set of vertices in A>[0,n]
that are connected to the vertex > in the graph

⋃
1≤i≤n i.Gi ∪G(R(a)) ∪Gτ0 .

In order to use lemma 23 we need to prove that G is acyclic. By construction, τ0 is the
only topological sort of Gτ0 . Since τ0 is a topological sort of Gu(N), Gτ0 D Gu(N). Ac-
cording to lemma 20 Gu(N) = tr(GSu(N)∪GIu(N))|A>

ε
, so Gu(N) D GSu(N)∪GIu(N) D

GIu(N). Then, according to lemma 29, Gτ0 can be obtained from GIu(N) by adding edges.
So G can be obtained from

⋃
1≤i≤n i.Gi ∪G(R(a)) ∪GIu(N) by adding edges. By adding

these same edges to Gu(N) = tr(
⋃

1≤i≤n i.Gi ∪ G(R(a)) ∪ GIu(N))|A>
ε
we get Gτ0 , which

is acyclic, so according to lemma 27 G is acyclic too.
Since > is not a vertex in the graph

⋃
1≤i≤n i.Gi ∪G(R(a)) and the vertices of Gτ0 are

the vertices of Gu(N), the set V ′′ of vertices connected to > in
⋃

1≤i≤n i.Gi∪G(R(a))∪Gτ0

is also the set of vertices connected to > in the graph
⋃

1≤i≤n i.Gi ∪ G(R(a)) ∪ GIu(N).
Then, according to lemma 21, Gu.[0,n](N) = tr(

⋃
1≤i≤n i.Gi ∪ G(R(a)) ∪ GIu(N))|V ′′ . So

G can be obtained from Gu.[0,n](N) by adding edges, therefore G D Gu.[0,n](N). So τ is a
topological sort of Gu.[0,n](N). �

Lemma 31 For all path u ∈ VN any topological sort τ of Gu.[0,n](N) is of the form τ =
τ ′(α, ε)> with α ∈ S.

Proof
Similar to proof of lemma 24. �

From now on, when we introduce a topological sort τ over a subset of A>ε or A>[0,n], we
assume it is of the form described in lemmas 24 and 31.

163

Sequentializing the computation of attributes

For all input tree N and path u ∈ VN , a topological sort of the interface graph Gu(N)
gives an order in which the attibutes can be computed. This order determines the type of
the λ-term that will be the image of the subtree N �u. That type is defined as follows:

Definition 32 For all topological sort τ over a subset of A>ε (of the form described in
lemma 24), we associate with τ the type t(τ) inductively defined by:

• if τ is of the form (α, ε) τ ′ with α ∈ S then t(τ) , o× t(τ ′),

• if τ is of the form (α, ε) τ ′ with α ∈ I then t(τ) , o→ t(τ ′),

• if τ = (α, ε)> where α ∈ S, then t(τ) , o.

For all input tree N and path u ∈ VN , we want to associate a λ-term with the subtree
N �u of N which sequentializes the computation of the attributes of the node at path u.
In order to do so we use a topological sort of the interface graph at path u in N , with the
following semantics:

Definition 33 For all topological sort τ over the set A>ε , term N and path u ∈ VN , noting
Att(N, (α, u)) the tree associated with the attribute (α, u) in the ATT, we define Rτ (N, u)
by induction on τ :

• R(α,u)τ ′(N, u) , {(M1,M2) |M1 →∗βη Att(N, (α, u)),M2 ∈ Rτ ′(N, u)} if α ∈ S,

• R(α,u)τ ′(N, u) , {M |M(Att(N, (α, u))) ∈ Rτ ′(N, u)} if α ∈ I.

• R(α,ε)>(N, u) , {M |M →∗βη Att(N, (α, u))} where α ∈ S.

Intuitively, Rτ (N, u) is the set of terms which perform the part of the computation done
inside the subtree of N at path u.

Note that terms in Rτ (N, u) have type t(τ).

In this section we use the tuple notation for λ-terms as syntactic sugar. This notation
can be expressed in the simply-typed λ-calculus using continuation-passing. So the use of
tuples does not makes this result less general.

164

Example of topological sort and associated λ-term

Following up on our previous example, we had the interface graph G1(N):

mεsε iε

>

We use the topological sort τ = iε mε sε> which is compatible with G1(N). It
represents a valid order in which to compute the attributes. The corresponding
type is:

t(τ) = o→ (o× o)

An example of term performing the part of the computation which happens inside
the subtree of N at path 1 is:

M = λi.(f b i , a) ∈ R(α,ε)>(N, u)

TermM represents the computation done by the subtree f a b: it takes as input a tree
i which represents the inherited attribute iε, it produces a tree f b i which represents
the synthesized attribute mε, and a tree a which represents the synthesized attribute
sε.
Note that R(α,ε)>(N, u) is a set of terms because we consider λ-terms up-to βη-
equivalence.

Lemma 32 For all terms M and M ′ that are βη-equivalent,

M ∈ Rτ (N, u)⇔M ′ ∈ Rτ (N, u)

Proof
Straightforward induction on τ . �

For the purpose of clarity, we will use a special notation for the binding of variables:
for binding a variable x to a term M inside a term M ′, in place of (λx.M ′)M we will write
let x = M in M ′.

Now we want to build a λ-term which computes the term associated with a node
depending on the terms associated with its child nodes. This term depends on a topological
sort of the local dependency graph which gives an order to compute the attributes of the
nodes and its child nodes.

165

Example of topological sort of the local dependency graph and corresponding λ-term

We start with the local dependency graph of N at path 1:

m0

m1 m2

s0 i0

s1 i1 s2 i2

>

From this point onwards we consider paths relatively to the node at path 1. So
relative path 0 means absolute path 1, relative path 1 means absolute path 11 and
relative path 2 means absolute path 12.

We choose the topological sort τ = i0 i2m2 s2 i1m1 s1 s0m0> which is compatible
with the local dependency graph. We deduce the induced subsorts for each node:
τ0 = i0 s0m0>, τ1 = i1m1 s1> and τ2 = i2m2 s2>.
From τ1 and τ2 we deduce the types of the terms computed by the child nodes 1 and
2: t(τ1) = t(τ2) = o→ (o× o). From τ0 we get the type of the term M we want to
build. This term M takes the terms computed by child nodes 1 and 2 to compute
the result at path 0. So t(τ0) = o→ (o× o).

Noting X1 and X2 the terms computed by child nodes 1 and 2 respectively, we get:

M = λi0.let(m2, s2) = X2 i0 in let(m1, s1) = X1 s2 in (s1, f m1m2)

We get this by reducing the term obtained from definition 34 with the topological
sort τ and with the continuation function Cont : i→ Xi.

For example, instead of let (m2, s2) = X2 i0 in, definition 34 would produce:

let i2 = i0 andX
′
2 = X2 i2 in let (m2, X

′′
2) = X ′2 in let s2 = X ′′2 in

which can be simplified into let (m2, s2) = X2 i0 in. A similar simplification was
applied with let(m1, s1) = X1 s2 in.

It is important to note that M depends entirely on our chosen topological sort τ of
the local dependency graph.

166

Definition 34 For all tree constant a of arity n in Σ, for all topological sort τ over a subset
of A>[0,n], injective substitution var which associates variables of type o with attributes,
and injective substitution Cont which associates variables with indices between 1 and n
such that for all i ∈ [1, n], Cont(i) is of type t(τ |A>

i
), we define the term Ma(τ, var, Cont)

by induction on τ as follows:

• if τ = (α, 0)> with α ∈ S then : Ma(τ, var, Cont) , var(R(a)((α, 0)))

• if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then :
Ma(τ, var, Cont) , let y(α,0) = var(R(a)((α, 0))) in

(y(α,0),Ma(τ
′, var] [(α, 0)→ y(α,0)], Cont))

• if τ = (γ, 0) τ ′ with γ ∈ I then :
Ma(τ, var, Cont) , λy(γ,0).Ma(τ

′, var] [(γ, 0)→ y(γ,0)], Cont)

• if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τ |A>
i
6= (α, i)> then :

Ma(τ, var, Cont) , let (y(α,i), X
′
i) = Cont(i) in

Ma(τ
′, var] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i])

with X ′i a fresh variable of type t(τ ′|A>
i
).

• if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τ |A>
i
= (α, i)> then :

Ma(τ, var, Cont) , let y(α,i) = Cont(i) in Ma(τ
′, var] [(α, i)→ y(α,i)], Cont′)

where Cont′ is Cont from which we removed the association [i→ Cont(i)].

• if τ = (γ, i) τ ′ with γ ∈ I and i 6= 0 then :
Ma(τ, var, Cont) , let y(γ,i) = var(R(a)((γ, i))) and X ′i = Cont(i) y(γ,i) in

Ma(τ
′, var] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])

where X ′i is a fresh variable of type t(τ ′|A>
i
).

Then we prove that Ma fits the semantics we have chosen:

Lemma 33 For all constant a of arity n in Σ, and for all topological sort τ over a subset
of A>[0,n], noting τi = τ |A>

i
for i ≤ n, noting M = Ma(τ, var, Cont) where var is the empty

substitution and for all i ∈ [1, n], Cont(i) = Xi with Xi a free variable of type t(τi), then
M is of type t(τ0) and, for all tree N and path u ∈ VN such that labN(u) = a and τ is a
topological sort of Gu.[0,n](N), for all terms M1 ∈ Rτ1(N, u1), . . . ,Mn ∈ Rτn(N, un):

M [X1/M1, . . . , Xn/Mn] ∈ Rτ0(N, u)

Proof
We first prove a more general claim by induction on τ :

167

Claim 3 For all topological sort τ over a subset of A>[0,n], for all tree N and path u ∈ VN

such that labN(u) = a and τ is a topological sort of Gu.[0,n](N), for all injective mapping
var from attributes to variables such that, for all (α, i) ∈ τ , all attribute appearing in
R(a)((α, i)) is either in τ or in the domain of var, for all function Cont associating variables
with indices i ∈ [1, n] and for all substitution σ of the variables in Cont such that ∀i ∈
[1, n], σ(Cont(i)) ∈ Rτi(N, ui) with τi = τ |A>

i
:

σ ◦ ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u)

where ν is the variable substitution such that for all attribute (α, i) in dom(var):
ν(var((α, i))) = Att(N, (α, ui)).

Proof
We fix a topological sort τ over a subset of A>[0,n], an input tree N , a path u ∈ VN such that

labN(u) = a and τ is a topological sort of Gu.[0,n](N), an injective mapping var from at-
tributes to variables such that, noting dom(var) its domain, for all (α, i) ∈ τ , all attribute
appearing in R(a)((α, i)) is either in τ or in dom(var). We note ν the variable substitu-
tion such that for all attribute (α, i) ∈ dom(var), ν(var((α, i))) = Att(N, (α, ui)) (exists
because var is injective), we also fix a function Cont associating variables with indices in
[1, n], and a substitution σ of the free variables in Cont such that ∀i ∈ [1, n], σ(Cont(i)) ∈
Rτi(N, ui) where τi = τ |A>

i
.

We assume the induction hypothesis for all topological sort τ ′ shorter (with a smaller
number of elements) than τ .

As in the definition of Ma we have 6 cases:

• if τ = (α, 0)> with α ∈ S then Ma(τ, var, Cont) , var(R(a)((α, 0))). In this case
σ ◦ ν(Ma(τ, var, Cont)) = ν ◦ var(R(a)((α, 0))). Since all attributes appearing in
R(a)((α, 0)) are in dom(var), and ∀(α, i) ∈ dom(var), ν(var((α, i))) = Att(N, (α, ui)).
Then by definition of Att(N, (α, u)) with labN(u) = a :
σ ◦ ν(Ma(τ, var, Cont)) = Att(N, (α, u)) ∈ R(α,0)>(N, u).

• if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then Ma(τ, var, Cont) ,
let y(α,0) = var(R(a)((α, 0))) in (y(α,0),Ma(τ

′, var] [(α, 0) → y(α,0)], Cont)). The
induction hypothesis implies that σ ◦ ν ′(Ma(τ

′, var, Cont)) ∈ Rτ ′0
(N, u) where

ν ′ = ν] [y(α,0) → Att(N, (α, u))]. Similarly to the case
τ = (α, 0)>: ν(var(R(a)((α, 0)))) = Att(N, (α, u)). Therefore
σ ◦ ν(Ma((α, 0)τ

′, var, Cont)) ∈ R(α,0)τ ′0
(N, u).

• if τ = (γ, 0) τ ′ with γ ∈ I then Ma(τ, var, Cont) ,
λy(γ,0).Ma(τ

′, var] [(γ, 0) → y(γ,0)], Cont). The induction hypothesis entails that
σ ◦ ν ′(Ma(τ

′, var] [(γ, 0)→ y(γ,0)], Cont)) ∈ Rτ ′0
(N, u) where

ν ′ = ν] [y(γ,0) → Att(N, (γ, u))]. Then, by definition of R(γ,0)τ ′0
(N, u) for γ ∈ I,

σ ◦ ν(Ma(τ, var, Cont)) ∈ R(γ,0)τ ′0
(N, u).

• if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τi 6= (α, i)> then Ma(τ, var, Cont) ,
let (y(α,i), X

′
i) = Cont(i) in Ma(τ

′, var] [(α, i) → y(α,i)], Cont ◦ [i → X ′i]) where X ′i

168

is a fresh variable of type t(τ ′i). Noting (M1,M2) = σ(Cont(i)) ∈ R(α,i)τ ′i
(N, ui),

we have M1 →∗βη Att(N, (α, ui)) and M2 ∈ Rτ ′i
(N, ui). So we apply the induction

hypothesis on σ′ ◦ ν ′(Ma(τ
′, var] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i])) where

ν ′ = ν] [y(α,i) → Att(N, (α, ui))] and σ′ is obtained from σ by removing the associ-
ation [Cont(i)→ σ(Cont(i))] and adding [X ′i →M2]. So
σ ◦ ν(Ma(τ, var, Cont)) =βη σ

′ ◦ ν ′(Ma(τ
′, var] [(α, i)→ y(α,i)], Cont ◦ [i→ X ′i]))

and therefore σ ◦ ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u).

• if τ = (α, i) τ ′ with α ∈ S, i 6= 0 and τi = (α, i)> then Ma(τ, var, Cont) ,
let y(α,i) = Cont(i) in Ma(τ

′, var] [(α, i) → y(α,i)], Cont′) where Cont′ is Cont
from which we removed the association i → Cont(i). This case is analogous to
the previous one, and with the same arguments we reach the conclusion that σ ◦
ν(Ma(τ, var, Cont)) ∈ Rτ0(N, u).

• if τ = (γ, i) τ ′ with γ ∈ I and i 6= 0 then
Ma(τ, var, Cont) , let y(γ,i) = var(R(a)((γ, i))) and X ′i = Cont(i) y(γ,i) in

Ma(τ
′, var] [(γ, i)→ y(γ,i)], Cont ◦ [i→ X ′i])

where X ′i is a fresh variable of type t(τ ′i). We have σ(Cont(i)) ∈ R(γ,i)τ ′i
(N, ui) and

ν(var(R(a)((γ, i)))) =βη Att(N, (γ, ui)), then
σ(Cont(i)) ν(var(R(a)((γ, i)))) ∈ Rτ ′i

(N, ui). We apply the induction hypothe-
sis on σ′ ◦ ν ′(Ma(τ

′, var] [(γ, i) → y(γ,i)], Cont ◦ [i → X ′i])) where ν ′ = ν]
[y(γ,i) → Att(N, (γ, ui))] and σ′ is obtained from σ by removing the association
[Cont(i)→ σ(Cont(i))] and adding [X ′i → σ(Cont(i)) ν(var(R(a)((γ, i))))]. There-
fore σ◦ν(Ma(τ, var, Cont)) = σ′◦ν ′(Ma(τ

′, var] [(γ, i)→ y(γ,i)], Cont◦ [i→ X ′i])) ∈
Rτ0(N, u).

This ends the inductive proof of the claim. �

Since τ is a topological sort of the graph Gu.[0,n](N), for all (α, i) ∈ τ , all attribute
appearing in R(a)((α, i)) is in τ . Therefore we can apply the claim on τ with Cont(i) the
substitution such that Cont(i) = Xi for i ∈ [1, n], σ the substitution such that σ(Xi) = Mi

for i ∈ [1, n] and var and ν empty substitutions. So :

Ma(τ, var, Cont)[X1/M1, . . . , Xn/Mn] = σ(Ma(τ, var, Cont)) ∈ Rτ0(N, u)

�

Now that we have shown that M computes terms correctly, we need to prove that it is
almost linear in general, and linear if our ATT is single use restricted.

Lemma 34 For all tree constant a of arity n in Σ, for all topological sort τ over a subset
of A>[0,n], injective substitution var which associates variables of type o with attributes
and injective substitution Cont which associates variables with indices between 1 and n
such that, for all i ∈ [1, n], Cont(i) is of type t(τ |A>

i
), the term Ma(τ, var, Cont) is almost

linear.

169

Proof
In the inductive definition of Ma(τ, var, Cont), the variables we use are either in var or
in Cont. Variables in var are of atomic type so copying them does not prevent almost
linearity. Each time a variable of Cont is used, it occurs once and is removed from Cont
in the inductive call to Ma(τ

′, var′, Cont′). So Ma(τ, var, Cont) is almost linear. �

Lemma 35 Assumming the ATT is single use restricted, for all tree constant a of arity
n in Σ, for all topological sort τ over a subset of A>[0,n], injective substitution var which
associates variables of type o with attributes and injective substitution Cont which asso-
ciates variables with indices between 1 and n such that, for all i ∈ [1, n], Cont(i) is of type
t(τ |A>

i
), the term Ma(τ, var, Cont) is linear.

Proof
As we saw in the previous lemma, variables in Cont are never copied, so we only need to
prove that variables in var are not copied.

According to corollary 21, since the ATT is single use restricted, the graph Gu.[0,n](N) is
a tree. For all attribute (α, i) in Gu.[0,n](N) there exists a unique attribute x in Gu.[0,n](N)
such that there is an edge ((α, i), x) in Gu.[0,n](N). So x is the only attribute in Gu.[0,n](N)
such that (α, i) occurs in R(a)(x).

A straightforward induction on τ proves that for all τ, var and Cont such that
var((α, i)) = y(α,i), the number of occurrences of y(α,i) in Ma(τ, var, Cont) is 1 if x is in τ
and 0 otherwise.

Therefore the term Ma(τ, var, Cont) is linear. �

Then we define the term that will compute the inherited attributes of the root node
by applying the root equations:

Definition 35 With G(root) the graph whose set of vertices is A>ε an edges represent
dependencies in the root equations; for all subsort τ of a topological sort of G(root),
injective substitution var which associates variables of type o with attributes, and variable
X0 of type t(τ), we define the term Mroot(τ, var,X0) of type o by induction on τ as follows:

• if τ = (α, 0)> with α ∈ S then : Mroot(τ, var,X0) , X0

• if τ = (α, 0) τ ′ with α ∈ S and τ ′ 6= > then :
Mroot(τ, var,X0) , let (y(α,0), X

′
0) = X0 in Mroot(τ

′, var] [(α, 0)→ y(α,0)], X
′
0)

• if τ = (γ, 0) τ ′ with γ ∈ I then : Mroot(τ, var,X0) ,
let y(γ,0) = var(root((γ, 0))) and X ′0 = X0 y(γ,0) in Mroot(τ

′, var] [(γ, 0)→ y(γ,0)], X
′
0)

where X ′0 is a fresh variable of type t(τ ′).

For all subsort τ of a topological sort of G(root) we define the term Mroot(τ) as the
term λX0.Mroot(τ, var,X0) where var is the empty substitution and X0 is a free variable
of type t(τ).

Then we prove that Mroot computes the right output:

170

Lemma 36 For all subsort τ of a topological sort of G(root), for all tree N such that τ is a
topological sort of Gε(N) and for all term M0 ∈ Rτ (N, ε), the term Mroot(τ)M0 β-reduces
to the output of the ATT on input N .

Proof
Similar to lemma 33. �

Lemma 37 For all subsort τ of a topological sort of G(root), injective substitution var
which associates variables of type o with attributes and variable X0 of type t(τ), the term
Mroot(τ, var,X0) is almost linear in general and linear if the ATT is single use restricted.

Proof
Similar to lemmas 34 and 35. �

Finally we can define a HODTRal which is equivalent to an ATT:

Definition 36 Let T = (Σ1,Σ2, S, I, out, R, root) be an ATT.
We define the HODTRal HO(T) as (ΣQ,Σ1,Σ2, q0, R

′, A) with:

• A, the look-ahead automaton, is the bottom-up tree automaton given by lemma 19,

• ΣQ, the signature of the set of states, is defined as:

Q , {q0} ∪ {qτ(α,ε)> | τ (α, ε)> is a topological sort on a subset of A>ε and α ∈ S}

The number of states is |Q| = |S ∪ I|!. The type of a state qτ is o1 → t(τ), where
t(τ) is defined in definition 32,

• Σ1 and Σ2 are respectively the input and output tree signatures from the ATT T ,

• R′ is the set of rules, it includes the rules the form:

qτ0(a
−→x)〈
−→
` 〉 →M(qτ1x1) . . . (qτnxn)

where
−→
` = `1, . . . , `n are the states of look-ahead associated with the subtrees

−→x = x1, . . . , xn respectively and, noting τ = f(a, τ0, (`1, . . . , `n)) the topological sort
computed in lemma 30, for all 1 ≤ j ≤ n: τj is the topological sort τj = j−1.(τ |A>

j
).

And with M = let X1 = qτ1(x1) and . . . Xn = qτn(xn) in Ma(τ, var, Cont) where var
is the empty substitution, Cont = [i→ Xi]i∈[1,n] and Ma is defined in definition 34.

To that first set of rules we add special rules for the initial state q0 : for all rule

already in R′ of the form qτ0(a
−→x)〈
−→
` 〉 → M where τ0 is a subsort of a topological

sort of G(root), we add to R′ the rule:

q0(a
−→x)〈
−→
` 〉 →Mroot(τ0)M

171

A complexity analysis on the size of HO(T) reveals that, noting m = |S| + |I| the
number of attributes, n the maximum arity of a symbol in Σ1 and p the number of symbols
in Σ1, the number of states in the look-ahead automaton of HO(T) grows in em

2
(graphs

with attributes as vertices), the number of states of HO(T) grows with m! (orderings
on the set of attributes). Then the number of rules of HO(T) grows in m! ∗ p ∗ em2∗n

and the size of these rules grows linearly with the size of the rules of T and the number
m of attributes. Note that the only non-linear factor is m! ∗ em2∗n and comes from the
potentially big numbers of accessible synthesis graphs and topological sorts of synthesis
graphs, which could be smaller in practical cases.

Theorem 22 For all ATT T , the HODTRal T ′ = HO(T) is equivalent to T , and T ′ is
linear if T is single use restricted.

Proof
Let N be an input tree of T ′.

For all path u ∈ VN , according to lemma 19, the look-ahead state associated with the
node at path u in N is the synthesis graph GSu(N) of N at path u.

Then a straighforward downward induction using lemma 30 shows that for all non-ε
path u ∈ VN the node at path u in N is processed by a state of the form qτ where τ is a
topological sort of Gu(N).

A straighforward upward induction using lemma 33 proves that for all non-ε path
u ∈ VN the result of the computation of qτ (N �u) is a term in Rτ (N, u).

Finally, using lemma 36, we conclude that q0(N) computes exactly the output of the
ATT T on the input tree N . Thus we have shown that T ′ computes the same transduction
as T .

Furthermore, lemmas 34, 35 and 37 imply that T ′ is almost linear in general and linear
if T is single use restricted. �

Theorem 23 For all ATT T and relabeling attribute grammar P there exists a HODTRal

T ′ equivalent to P ◦ T and if T is single use restricted then T ′ is linear.

Proof
The relabeling P can be modeled by a simple HODTRlin. Then we can compose it with
HO(T) in order to obtain a HODTRal T ′ equivalent to P ◦ T such that if T is single use
restricted then HO(T) is linear and therefore T ′ is also linear. �

Corollary 24 The class MSOT is included in the class HODTRlin and the class MSOTS
is included in the class HODTRal.

7.3.3 HODTRal ⊆ REL ◦ATT and HODTRlin ⊆ REL ◦ATTsur

Theorem 25 For all HODTRal T = (ΣQ,Σ1,Σ2, q0, R, A) there exists a relabeling attribute
grammar P and an ATT T ′ such that T is equivalent to P ◦ T ′ and, if T is linear, then
T ′ is single use restricted.

172

Proof
First we assume that T is the result of the order reduction procedure described in the
proof of theorem 17, so the result of applying a state q ∈ Q to an input tree N is a tuple
of tree contexts: q(N)→T (C1, . . . , Cn).

The relabeling attribute grammar framework is powerful enough to simulate the bottom-
up look-ahead automaton and the top-down finite state structure of T . Therefore we can
build a relabeling attribute grammar P that computes, for each node of an input tree N ,
which rule of T would be applied to it. Then T ′ will compute the actual results of applying
these rules.

Since each state q of T computes a tuple of contexts, we need attributes to simulate
tree contexts. We can do this by mapping the free variables of a tree context to inherited
attributes, and mapping the tree context to a synthesized attribute. For example a tree
context C1 = f y1 y2, where f is a tree constant of arity 2 and y1 and y2 are free variables,
will be represented by one synthesized attribute α1 linked to two inherited attributes β1

and β2 by the equation: (α1, ε) = f (β1, ε) (β2, ε). This way we can build an ATT T ′ such
that P ◦ T ′ is equivalent to T .

Furthermore, if T is linear, then each tree context is used exactly once, so attributes
are never used twice and T ′ is single use restricted. �

Corollary 26 HODTRal ⊆ REL ◦ ATT and HODTRlin ⊆ REL ◦ ATTsur.

Finally we can conclude, using to theorem 19:

Theorem 18 HODTRlin are equivalent to MSOT and HODTRal are equivalent to MSOTS.

173

Part IV

Part 4 : Expressivity of MSO
transductions, case of the MIX languages

174

Chapter 8

The MIX languages and MSO
transductions

In this chapter we present a contribution in the research field of languages of words.
Specifically we show that the language MIX2 = {w ∈ {a, b}∗ | |w|a = |w|b}, also known as
the two-sided Dyck language D∗2, is not a EDT0L language of finite index. We then deduce
that this language is not an EDT0L language using a theorem from Latteux [23, 24]. This
result, which solves an open problem, has notably been asked because of its implications
in computational group theory, those implications are not discussed here.

8.1 Preliminaries

In this section we present the MIX languages, and introduce some classes of word lan-
guages, most importantly EDT0L languages. We also give some of its properties which
are known from the literature and therefore are not part of our contribution.

The MIX languages

We are especially interested in the MIX languages, those are defined by, for all integer
k ≤ 2: MIXk = {w ∈ {a1, . . . , ak}∗ | ∀i, j ∈ [1, k], |w|ai = |w|aj}. These languages have
attracted the attention of at least two communities: mathematical linguistics and compu-
tational group theory. The first one is interested in these languages as being completely
unstructured and should not be in the class of languages that are used to define natural
languages. The second community is interested in classifying groups in terms of the formal
properties of their word languages. The languages MIXk are the word languages of par-
ticular presentations of the groups Zk−1. A long standing open problem in computational
linguistics was whether MIX3 is a Tree Adjoining Language. This question was solved in
the negative proving that MIX3 is not a Tree Adjoining Language. Another long standing
problem in computational group theory is whether MIX3 is an indexed language. This
problem is still open. On the other hand it has been showed that for every k, MIXk is
a Multiple Context Free Language (MCFL). And even more precisely that MIXk is a k-
Multiple Context-Free Language (k-MCFL), i.e. an MCFL that is only allowed to handle

175

tuples of at most k strings.

EDT0L systems

The EDT0L acronym stands for Extended Deterministic Table 0 Lindenmayer systems.
They are defined as follows.

Definition 37 An EDT0L system is a 4-tuple G = (V,Σ, w0, H) where V (called the work-
ing alphabet of G) and Σ ⊆ V (called the terminal alphabet) are finite alphabets, w0 ∈ V
is the initial word of G. H is a finite set of finite substitutions from V to (V ∪ Σ)∗.

A finite sequence τ1, . . . , τn of substitutions in H generates the word u = τ1 ◦ τ2 ◦ · · · ◦
τn(w0).

The language L(G) generated by G is the set of words in Σ∗ that are generated by
sequences of substitutions in H.

An EDT0L system G is of finite index if there is an integer n such that all word
generated by sequences of substitutions in H contains at most n occurrences of letters
from the working alphabet V .

The set of languages generated by EDT0L systems is noted EDT0L.

EDT0L are closed under sequential transductions (i.e. deterministic rational transduc-
tions).

Theorem 27 ([6, 15]) The class of EDT0L languages is closed under sequential transduc-
tions.

Non-branching Multiple Context-Free Grammars

Definition 38 A non-branching Multiple Context-Free Grammar (MCFG(1)) is a 4-tuple
G = (V,Σ, S, R) where V is a finite ranked alphabet (called the working alphabet), Σ is a
finite alphabet (called the terminal alphabet) and S ∈ V is a symbol of arity 1 (called the
initial symbol). R is a finite set of rules, a rule in R is either a trivial rule of the form:

J(u1, . . . , un)←

where J ∈ V is of arity n and u1, . . . , un are words over the alphabet Σ, or it an internal
rule of the form:

J(u1, . . . , un)← K(x1, . . . , xm)

where J,K ∈ V are symbols of arity n and m respectively, x1, . . . , xm are variables and
u1, . . . , un are words over the alphabet Σ∪{x1, . . . , xm} such that each variable xi appears
at most once in the word u1u2 . . . un.

The grammar G is non-permuting if, in each internal rule, variables x1, . . . , xm appear
in the word u1u2 . . . un in order.

The grammar G is non-erasing if, in each internal rule, each variable xi appears exactly
once in the word u1u2 . . . un.

Rules of G recursively define a set of derivable tuples of words on each symbol J ∈ V .
A symbol J ∈ V of arity n derives a n-tuple (u1, . . . , un) of words over Σ either if

176

• there is a trivial rule J(u1, . . . , un)←, or

• there is an internal rule J(w1, . . . , wn)← K(x1, . . . , xm) and a substitution σ of the
variables x1, . . . , xm such that ui = σ(wi) for all i ≤ n and the symbol K derives the
m-tuple (σ(x1, . . . , σ(xm)).

The language generated by grammar G, noted L(G), is the set of words derivable on the
initial symbol S of arity 1.

The set of non-branching Multiple Context-Free Languages (noted MCFL(1)) is the
set of languages generated by non-branching Multiple Context-Free Grammar.

Theorem 28 Non-permuting non-erasing MCFG(1) generate the same languages as gen-
eral MCFG(1).

We now state an equivalence between classes of languages of the literature. The main
result of chapter 8 shows that MIX2 is not a language of this class.

Theorem 29 The following classes of languages are equivalent:

• non-branching Multiple Context-Free Languages (MCFL(1)),

• output languages of Streaming String Transducers (out(SST)) [3],

• output languages of word-to-word Monadic Second Order Transductions (out(MSOT)),

• output languages of deterministic two-way transducers (out(2WST)),

• EDT0L of finite index.

Proof
The equivalence of MCFL(1) and out(SST) is clear from the definitions of the two for-
malisms. The equivalence of out(SST), out(MSOT) and out(2WST) is stated in [4]. Fi-
nally the equivalence of out(2WST) and EDT0L of finite index is proved in [23]. �

The following theorem is due to Latteux [23, 24], its statement requires that we define
the shuffle operation between two languages L1 and L2. We write L1 ↑ L2, the shuffle of
L1 and L2, for the language {u1v1 . . . vnun | u1 . . . un ∈ L1 ∧ v1 . . . vn ∈ L2} (note that the
ui and the vi can be the empty string in the definition of L1 ↑ L2).

Theorem 30 ([23, 24]) Given L ⊆ Σ∗ and c so that c /∈ Σ, if L ↑ c∗ is an EDT0L, then L
is an EDT0L of finite index.

This Theorem allows us to prove that MIX2 is not an EDT0L language as a corollary
of the fact that MIX2 is not generated by an EDT0L of finite index.

177

8.2 MIX2 is not an EDT0L language

In this section we present our contribution for this chapter: the proof that MIX2 is not
an EDT0L (Theorem 31). Recall that MIX2 is the language {w ∈ {a, b}∗ | |w|a = |w|b}.

Theorem 31 MIX2 is not an EDT0L of finite index.

Corollary 32 MIX2 is not an EDT0L.

Proof
Theorem 31 and Theorem 29 prove that MIX2 is not an EDT0L of finite index. Now the
sequential transduction of Figure 8.1 that maps MIX2 to MIX2 ↑ c∗. This transducer
just maps every factor ab in a word to c. Theorem 27 implies then that if MIX2 is an
EDT0L then so is MIX2 ↑ c∗. Then Theorem 30 would imply that MIX2 is an EDT0L
of finite index, a contradiction.

q qaqb

a | ε

a | a, b | cb | ε

b | b, a | c

Figure 8.1 – Transducer that maps MIX2 to MIX2 ↑ c∗

�

Definition 39 Given a word w in {a, b}∗ we write ∆(w) for |w|a − |w|b. Given a tuple
w = (w1, . . . , wn) of words in {a, b}∗, we let ∆(w) be ∆(w1 . . . wn). We note |∆(w)| the
absolute value of ∆(w).

To prove that MIX2 is not an EDT0L of finite index, we prove that it is not a non-
branching Multiple Context-Free Language (MCFL(1)) and conclude using theorem 29
stating that those classes of languages are the same. Instead of directly working on the
derivations of non-branching Multiple Context-Free Grammars (MCFG(1)) we introduce a
notion of k-derivation which captures the main mechanisms of the MCFG(1) we consider
when they deal with MIX2.

Definition 40 A k-derivation is a sequence of k-tuples u = (u1, . . . , uk) so that:

• for every i in [1, k], ui is in {a, b}∗, and

• |∆(u)| ≤ k.

In a k-derivation u1 . . .un, for every p in [1, n− 1], we have that up+1 = (u′1, . . . , u
′
k) is the

result of applying one of the following atomic operations to up = (u1, . . . , uk):

• for an index i in [1, k]:

178

letter erasure ui = xu′i or ui = u′ix for x ∈ {a, b}, and for every j in [1, k]− {i}, u′j = uj

left word splitting ui−1 = ε and ui = u′i−1u
′
i, and for every j in [1, k]− {i− 1, i}, u′j = uj

right word splitting ui+1 = ε and ui = u′iu
′
i+1 and for every j in [1, k]− {i, i+ 1}, u′j = uj.

When u1 . . .un is a k-derivation, we say that there is a k-derivation from (or starting at)
u1 to (or ending at) un. A tuple u admits a k-derivation if there is a k-derivation from
u to (ε, . . . , ε). By extension a word w admits a k-derivation when (w, ε, . . . , ε) admits a
k-derivation.

We are now going to relate k-derivations to MCFG(1).

Proposition 5 If there is a MCFG(1) G so that L(G) = MIX2, then there is k so that
every word w in MIX2 admits a k-derivation.

Proof
Let G = (V,Σ, S, R) be a MCFG(1) such that L(G) = MIX2. According to theorem 29
we can assume that G is non-erasing and non-permuting. We also assume that each non-
terminal J ∈ V is used in at least one derivation of a word w ∈MIX2 (otherwise it could
be removed from G without changing L(G)).

First we prove the following claim for each non-terminal J ∈ V :

Claim 4 There is an integer ∆J such that, for all tuple (u1, . . . , un) derivable on J :

∆J = ∆(u1, . . . , un)

Proof
Assume that two tuples (u1, . . . , un) and (u′1, . . . , u

′
n) are derivable on J (if not then the

claim is trivial). Since J is used in at least one derivation of a word w ∈MIX2, there must
be a sequence of rules such that S(w)←∗ J(u1, . . . , un). In such a case there exists some
words w1, . . . , wn+1 so that w = w1u1w2u2 . . . unwn+1. By applying the same sequence of
rules to J(u′1, . . . , u

′
n) we get that the word w′ = w1u

′
1w2u

′
2 . . . u

′
nwn+1 is derivable on S.

So w′ ∈MIX2.
Therefore we have ∆(w) = 0 = ∆(w′). By subtracting

∑
1≤i≤n+1 ∆(wi) we get:∑

1≤i≤n

∆(ui) =
∑

1≤i≤n

∆(u′i) .

�

We note r the maximum arity of a non-terminal in V .
Each rule of G can be expressed as a sequence of atomic operations as defined for

r-derivations: letter erasure, left word splitting and right word splitting (for non-terminals
of arity i < r we add empty words at the end, so ui+1 = ε, . . . , ur = ε). We note d the
maximum number of atomic operations into which rules of G can be expressed, and ∆V

the maximum of ∆J for J ∈ V
Then we define the integer k = max(r,∆V +d). Now we prove that any word u ∈MIX2

admits a k-derivation.

179

By definition of L(G) and because L(G) = MIX2, there exists a derivation of u starting
with S(u). Then there is sequence of derivable tuples of the form:

S(u)← J1(u1,1, . . . , u1,r1) . . . Jn(un,1, . . . , un,rn)←

where J1, . . . , Jn are non-terminals of respective arities r1, . . . , rn. By definition of ∆V we
have that, for each i ≤ n:

|∆(ui,1, . . . , ui,ri)| ≤ ∆V

Finally, for each i ≤ n− 1, we can find a k-derivation from (ui,1, . . . , ui,ri) to
(ui+1,1, . . . , ui+1,ri+1

). Since the rules of G can be expressed as sequences of less than d
atomic operations and because an atomic operation removes at most one letter, any tuple
u in the k-derivation respects the condition:

|∆(u)| ≤ ∆V + d ≤ k .

The same reasoning applies to the rules S(u)← J1(u1,1, . . . , u1,r1) and
Jn(un,1, . . . , un,rn)←. Then we get a k-derivation of u ∈MIX2. �

Now proving Theorem 31 boils down to show that for every k there is some word sk
of MIX2 which does not admit any k-derivation.

8.2.1 The counter example word sk

In this section, we fix k > 0 and we then let m = 16k + 4. We now define the following
words:

Definition 41 For every n we inductively define the words vn and un as follows:

• vn = am
n
, i.e. vn+1 = vmn and v0 = a,

• u0 = b2 and un+1 = vn+1u
2m
n vn+1.

We then let:
sk = v2ku2kv2k .

Our main goal is to show that sk does not admit any k-derivation. We start by giving
some qualitative properties about the words un.

Lemma 38 For every n, ∆(un) = −2mn.

Proof
We start by proving this for n = 0, we have that u0 = b2 and thus |u0|a − |u0|b = −2m0

which is as expected.
Now suppose that n = p + 1, by induction we have that |up|a − |up|b = −2mp. Now

un = vnu
2m
p vn so |un|a−|un|b = −2mp×2m+2mn = −4mp+1+2mn = −4mn+2mn = −2mn

since n = p+ 1. �

180

Lemma 39 For every n, |un|b = 2(2m)n.

Proof
Induction on n. When n = 0 we have that |u0|b = 2. Now |un+1|b = 2m|un|b = 2m ×
2(2m)n = 2(2m)n+1. �

Lemma 40 For every n, |un|a = 2(2m)n − 2mn and ∆(sk) = 0.

Proof
Consequence of the previous lemmas. �

Definition 42 For each word u ∈ {a, b}∗, we let left(u) and right(u) be the longest prefix
and longest suffix of u in a∗. The function strip(u) returns the string u where its longest
prefix and suffix made with a’s have been removed.

Lemma 41 For every n, the longest factor of un in a∗ is left(un) and has length mn+1−m
m−1 .

Proof
We proceed by induction on n. In case n = 0, the conclusion is trivial. In case n = p+ 1,
then the induction hypothesis tells us that the largest sequence of a’s in up is left(up) and

its length is mp+1−m
m−1 = mn−m

m−1 . As un = vnu
2m
p vn, the longest sequence of a’s in un can only

be:

• either left(un) which is vnleft(up),

• or the sequence a’s on each side of two consecutive up, i.e., left(up)left(up).

The word vnleft(up) contains m
n + mn−m

m−1 a’s that is mn+1−m
m−1 a’s while left(up)left(up) has

as length 2mn−m
m−1 . We have that

|vnleft(up)| − |left(up)left(up)| =
mn+1 −m

m− 1
− 2

mn −m

m− 1

=
mn(m− 2) +m

m− 1

As k > 0 and m = 16k + 4, we have that m − 2 is positive. Therefore |vnleft(up)| −
|left(up)left(up)| ≥ 0 and left(un) is indeed the longest sequence of a’s in un. �

Lemma 42 For every n, we have :

• ∆(strip(un)) = −2mn − 2mn+1−m
m−1 and,

• for every factor u of un, we have that |∆(u)| ≤ |∆(strip(un)|.

181

Proof
From Lemma 38, ∆(un) = −2mn. The definition of strip(un) entails that ∆(strip(un)) =
∆(un)− 2|left(un)| = −2mn − 2mn+1−m

m−1 as expected.
We prove the second statement of the lemma by induction on n.
When n = 0, we have that un = abba and strip(un) = bb and the conclusion is clear.
When n = p+ 1, we have that un = vnu

2m
p vn. There are several possible cases: either

u contains some b or u contains only a’s.
In case u contains only a’s, Lemma 41 tells us that |u| ≤ |left(un)| = mn+1−m

m−1 ≤
2mn + 2mn+1−m

m−1 = |∆(strip(un))|.
In case u contains some b’s, and u is a factor of some up, the induction hypothesis

tells use that |∆(u)| ≤ |∆(strip(up)| < |∆(strip(un))|. We now consider that u contains
one or more occurrences of up and is of the form v1u

l
pv2 where v1 is a suffix of up and v2

is a prefix of up. So as to make |∆(u)| maximal, the induction hypothesis tells us that
it must be the case that v1 = strip(up)right(up) and v2 = left(up)strip(up). In that case,
|∆(u)| = 2|∆(u′p)| + l|∆(up)| − 2|left(up)|. Then |∆(u)| is maximal when l is, i.e. when
l = 2m− 2 and in that case u = strip(un). Hence the conclusion. �

Definition 43 We let:

• Λn = m2k−n+1,

• Bn = |left(un)| = m2k−n+1−m
m−1 ,

• σn = |∆(strip(u2k−n))| = 2m2k−n + 2m2k−n+1−m
m−1 = 2Λn+1 + 2Bn.

Lemma 43 For every 0 < n < 2k, we have the following identities:

• σn > 2Λn+1,

• σn > 2Bn,

• Bn > Λn+1,

• 2Bn > σn+1.

Proof
The two first identities come from the fact that σn = 2Λn+1 + 2Bn.

We prove that Bn > Λn+1:

m2k−n+1 −m

m− 1
−m2k−n =

m2k−n+1 −m−m2k−n+1 +m2k−n

m− 1

=
m2k−n−1(m− 1)

m− 1

= m2k−n−1

> 0

182

Let’s now prove that 2Bn > σn+1:

2
m2k−n+1 −m

m− 1
− 2m2k−n−1 − 2

m2k−n −m

m− 1
=

2

m− 1
(m2k−n+1 −m− 2m2k−n +m+m2k−n−1)

=
2m2k−n−1

m− 1
(m2 − 2m+ 1)

=
2m2k−n−1

m− 1
(m− 1)2

> 0

The last line comes from the fact that m > 0 as m = 16k + 4 and k > 0. �

Lemma 44 For all n ∈ [0, 2k], if u is a factor of w = left(u2k−n)u2k−nright(u2k−n), then
|∆(u)| ≤ σn.

Proof
If u is a factor of u2k−n then Lemma 42 tells us that indeed |∆(u)| ≤ σn. So as to
conclude, we only need to show that |left(w)| = |left(u2k−n)left(u2k−n)| ≤ σn. This is clear
since σn − |left(u2k−n)left(u2k−n)| = 2m2k−n. �

Lemma 45 Given 0 < n < 2k, if u is a factor of sk so that u does not have a factor in al

with l ≥ 2Λn+1, then we have that |∆(u)| ≤ σn.

Proof
A first case is when u does not contain any occurrence of b. Then, by hypothesis, |∆(u)| =
|u| < 2Λn+1 < σn (Lemma 43).

In the rest of the proof, we let wp = left(u2k−p)u2k−pright(u2k−p).
For the case where u contains occurrences of b, we show that u is a factor of wn. For

this we prove that if u is a factor of wp+1 with p ≥ n, then u is a factor of wp. Indeed, by
definition,

wp+1 = left(u2k−p+1)v2k−p+1u
2m
2k−pv2k−p+1right(u2k−p+1) .

If all the b’s in u come from a unique u2k−p then u is a factor of some word of the
form aiu2k−pa

j. Now as, left(wp) = left(u2k−p)left(u2k−p) which contains 2Bp a’s and
2Bp > 2Λn+1 whenever p ≥ n (Lemma 43), wp contains longer factors of a∗ than what is
authorized for u by the hypothesis and thus, in this case, u is a factor of aiu2k−pa

j when
i = j = 2Bp, i.e. u is a factor of wp.

Now, in case u contains b’s coming from different occurrences of u2k−p, it must be the
case that u has left(u2k−p)left(u2k−p) as a factor, i.e. a sequence of a’s larger than 2Λn+1

as we have just seen in the previous case. So this case is impossible.
Now as u is a factor of sk = v2ku2kv2k and v2k is a prefix of left(u2k), we have that

sk is a factor of w0. Therefore, from what precedes, we know that u is a factor of wn.
Lemma 44 implies |∆(u)| ≤ σn. �

183

Our goal is to define an invariant that is satisfied at each step of a k-derivation starting
with (sk, ε, . . . , ε) and that every tuples in which such a k-derivation ends must be different
form (ε, . . . , ε). In other words, that sk admits no k-derivation. Informally, this invariant
is related to the fact that when there is a derivation from (sk, ε, . . . , ε) to w, then, for
0 < n ≤ 2k, there are n borders (prefixes or suffixes) of the components of w that contain
a large number of a’s. Here “large” depends on n and means “more than 3Λn+1”. The
intuition is that during a k-derivation, the number of borders of the k words that are
handled become occupied by a large number of a’s is increasing. More precisely, when n
borders have a number of a’s that is larger than 3Λn+1, when the derivation goes on, the
number of a’s on these borders may decrease below 3Λn+1. But then, it must be the case
that a border which did not have a large number of a’s so far is now occupied with 3Λn+2

a’s. And now there are n + 1 borders with a large number of a’s; “large” now meaning
with “more than 3Λn+2”.

We need now a number of concepts so as to formalize this idea. We callB = [1, k]×{l, r}
the set of borders of a k-tuple, where (i, l) means the left border of the i-th component,
and (i, r) means the right border of the i-th component.

Definition 44 Given a tuple w = (w1, . . . , wk) and a border b ∈ B, we define the edge-affix
of b in w, noted affix(w, b), by:

1. if b = (i, l), then affix(w, b) = left(wi),

2. if b = (i, r), then affix(w, b) = right(wi).

and the edge-length of b in w as: lg(w, b) = |affix(w, b)|.

From now on, when the context is clear, we use the expression edge of w to refer to either
an element of the set B of borders, or to the corresponding edge-affix of w. Notice that
when wi is in a∗ we have that edge-affixes of (i, l) and of (i, r) overlap and are equal to wi.

Definition 45 Given an integer n so that 1 ≤ n ≤ 2k, we say that w in Σ∗ is n-heavy when
a2Λn+1 is one of its factors. Otherwise u is n-light. For all tuple w = (u1, . . . , uk) and all
border b = (i, l) or b = (i, r), we say that b is n-heavy (respectively n-light) for w if ui is
n-heavy (respectively n-light).

For all n-heavy border b of w, we define the n-heavy segment of w at border b, noted
segh(n,w, b) as:

• the shortest word w such that w a2Λn+1 is a prefix of ui when o = (i, l),

• the shortest word w such that a2Λn+1 w is a suffix of ui when o = (i, r).

When b = (i, l) or b = (i, r) is an n-light border of w, we define the n-light segment of
w at border b to simply be ui.

Contrary to the case of n-heavy borders which are associated to segments that are
always non-overlapping factors of a component, n-light borders are associated to the very
same segment which is the component itself.

184

Definition 46 Given a w in (Σ∗)k, we define an n-pre-decomposition of w as a tuple
(E,H,L) where:

• E ⊆ B (the set of edges) is a set of n borders.

• H ⊆ B \E (the set of heavy borders) is the set of all n-heavy borders of w that are
not in E.

• L ⊆ {1, . . . , k} (the set of light components) is the set of all n-light components of
w.

An n-pre-decomposition is an n-decomposition when, for every border e ∈ E:

lg(w, e) ≥ Λn − k +∆(w)− (|H|+ |L|)σn −∆h(H)−∆l(L) (ξn)

with ∆h(H) = Σb∈H∆(segh(n,w, b)) and ∆l(L) = Σi∈L∆(wi).
An n-decomposition of w is maximal if there exists no n′-decomposition of w with

n < n′.

Equation (ξn) helps us to prove that edges remain large during k-derivations starting
at sk. In particular, as shown by the lemma below, an edge e verifies equation (ξn) only if
it is longer than 3Λn+1. In particular, it entails that in an n-decomposition, every border
is either in E, H or is the border of a component in L.

Lemma 46 Given a n-decomposition (E,H,L) of a tuple w with |∆(w)| ≤ k, we have
that for every e in E, lg(w, e) > 3Λn+1.

Proof
As (E,H,L) is an n-decomposition, we have that every e in E satisfies equation (ξn). In
the term Λn − k +∆(w)− (|H| + |L|)σn −∆h(H)−∆l(L) we have that |H| + |L| ≤ 2k.
Moreover as for every b in H, we have that segh(n,w, o) does not contain a2Λn+1 as a
factor and thus, from Lemma 45, we know that |∆(segh(n,w, b))| ≤ σn. Similarly, for
every i in L, ∆(wi) ≤ σn. Therefore, |∆h(H) + ∆l(L)| + (|H| + |L|)σn ≤ 4kσn. Finally
since |∆(w)| ≤ k we have:

Λn − k +∆(w)− (|H|+ |L|)σn −∆h(H)−∆l(L) ≥ Λn − 2k − 4kσn

We now prove that Λn − 2k − 4kσn − 3Λn+1 > 0:

Λn − 2k − 4kσn − 3Λn+1 = m2k−n+1 − 2k − 4k

(
2m2k−n + 2

m2k−n+1 −m

m− 1

)
− 3m2k−n

= m2k−n
(
m− 8k − 3− 8km

m− 1

)
+

8km

m− 1
− 2k

= m2k−nm
2 −m− 8km+ 8k − 3m+ 3− 8km

m− 1
+

8km− 2km+ 2k

m− 1

= m2k−nm(m− 4− 16k) + 3 + 8k

m− 1
+

6km+ 2k

m− 1

185

As m = 16k + 4, we obtain that

Λn − 2k − 4kσn − 3Λn+1 = m2k−n3 + 8k

m− 1
+

6km+ 2k

m− 1

so that, since k > 0, Λn − 2k − 4kσn − 3Λn+1 > 0. Hence the conclusion. �

Lemma 47 Given (E,H,L) an n-pre-decomposition of w, if for e in E we have that
lg(w, e) ≥ Λn then e verifies (ξn).

Proof
In the term

Λn − k +∆(w)− (|H|+ |L|)σn −∆h(H)−∆l(L)

we have |∆(w)| ≤ k, and |∆h(H) + ∆l(L)| ≤ (|H|+ |L|)σn and thus we have that:

Λn ≥ Λn − k +∆(w)− (|H|+ |L|)σn −∆h(H)−∆l(L)

�

Lemma 48 Let (E,H,L) an n-decomposition of w. If that decomposition is maximal
then, for all b ∈ H, segh(n,w, b) 6= ε.

Proof
Ad absurdum, assume that there exists b in H with segh(n,w, b) = ε and show that there
is an n+ 1-decomposition of w.

Because segh(n,w, b) = ε, lg(w, b) ≥ 2Λn+1. So we define a new set E ′ = E ∪ {b} of
edges. Now we show that (E ′, H ′, L′) is an (n + 1)-decomposition of w, where H ′ is the
set of borders in B \ E ′ that are (n + 1)-heavy in w, and L′ is the set of (n + 1)-light
components of w.

In order to check equation (ξn+1), it is enough to show that borders in E ′ have edge-
length at least Λn+1. So (ξn+1) holds for o. Since (E,H,L) is an n-decomposition, for all
e ∈ E, lg(w, e) ≥ 3Λn+1. Thus equation (ξn+1) holds for all borders in E ′, so (E ′, H ′, L′)
is an (n+ 1)-decomposition of w.

�

Now, for 0 < n ≤ 2k, when a tuple admits an n-decomposition, not all its components
can be the empty string as it has n borders with a number of a’s larger than 3Λn+1 > 0
. Thus, if every tuple that occurs in a k-derivation starting at sk has an n-decomposition
for some n > 0, then it proves that the word sk admits no k-derivation. We are thus going
to prove the following lemma.

Lemma 49 If there is a k-derivation from (sk, ε, . . . , ε) tow, then there is an n-decomposition
of w for some n in [1, 2k].

The rest of the section is devoted to the proof of that lemma. We first prove that
(sk, ε, . . . , ε) has a 2-decomposition and that if ww′ is a k-derivation so that w has an
n-decomposition, then w′ has an m-decomposition for some m.

186

Base case: (sk, ε, . . . , ε) has a 2-decomposition.

We have that sk = v2kv2ku
2m
2k−1v2kv2k. So v2k v2k = a2m

2k
is both a prefix and a suffix of sk,

and that we represent pictorially by:

s

v2k v2k

2m2k

(u2k−1)
2m v2k v2k

2m2k

As a convention for representing words, we use a light gray for factors that are in a∗, for
those we usually add an indication about their length (the number of occurrences of a in
them). That way we see edges and their length more clearly. It also makes clearer the
difference between n-heavy and n-light words: n-heavy words have a factor in a∗ of length
2Λn+1 but n-light words don’t. We use a darker gray to represent any other kind of factor.
We will use this convention in all subsequent representations of words as illustrations in
the proof.

Here we have two edges (1, l) and (1, r) of length greater than 2m2k in w. So we define
E = {(1, l), (1, r)}, H = ∅ and L = {2, 3, . . . , k}. In order to prove that (E,H,L) is a
2-decomposition of w we need to show that equation (ξ2) holds for all edge e ∈ E. This
is simply because we have that 2m2k is greater than Λ2 = m2k−1 and thus by Lemma 47
the edges in E satisfy (ξ2).

So there is a 2-decomposition of (sk, ε, . . . , ε).

Inductive step: ww′ is a k-derivation with w = (w1, . . . , wk) and w = (w′1, . . . , w
′
k).

We assume is that w has an n-decomposition for some n in [1, 2k]. We also assume that
this n-decomposition (E,H,L) is maximal (for n) which implies, according to Lemma 48,
that heavy segments of w in H are not the empty string ε.

There are two basic cases based on which derivation step transformsw intow′: whether
it is a letter erasure or a (left or right) word splitting. Then each case is split into several
cases depending on where the derivation step occurs in w.

Case 1 : erasure of a letter
First we consider the case where the derivation step erases a letter on one side of a wi.

The cases where the letter is erased on the right or on the left of wi are symetric. Without
loss of generality, we thus assume that it is erased on the left. There are three different
subcases depending on whether (i, l) is in E, H or i is in L. In each of these subcases we
show that (E,H,L) is still an n-decomposition of w′.

Case 1.1 : (i, l) is in E
The letter erased must be an a:

187

wi

w′i

a affix(w′, (i, l))

lg(w′, (i, l))

w

In order to prove that (E,H,L) is an n-decomposition of w′, we first need to check that
H and L are sets of n-heavy borders and n-light components of w2. The only component
that is changing from w to w′ is ui which loses one a, we need to prove that if (i, r) is
n-heavy in w then it is also n-heavy in w′. It is the case because equation (ξn) holds for
edge (i, l) in w which implies, according to Lemma 46, that lg(w, (i, l)) ≥ 3Λn+1 and so
w′i has a

3Λn+1 − 1 as a factor.
Now we check (ξn), for all edge e ∈ E:

lg(w′, e) ≥ Λn − k +∆(w′)− (|H|+ |L|)∆n −∆h(H)−∆l(L) (ξn)

Compared to the identities concerning w, only two terms in these inequalities have
changed: lg(w′, (i, l)) (and lg(w′, (i, r)) if (i, r) is in E and wi ∈ a∗), and ∆(w′). The term
lg(w′, (i, l)) is decremented (same for lg(w′, (i, r)) if (i, r) is in E and wi ∈ a∗) and ∆(w)
is incremented. So (ξn) must hold for (i, l) and all other edges in E on tuple w′.

So (E,H,L) is indeed an n-decomposition of w′.

Case 1.2 : (i, l) is in H
If (i, l) ∈ H then, according to Lemma 48, the corresponding n-heavy segment of w′

is not the empty string ε. So, after erasing one letter, it is still a n-heavy segment of
w′. In order to prove that (E,H,L) is an n-decomposition of w′ we only need to check
equation (ξn). The only terms that change in (ξn) are ∆(w) and ∆h(H); they change so
that ∆h(H)−∆(w′) remains constant, consequently (ξn) still holds. Therefore (E,H,L)
is an n-decomposition of w′.

Case 1.3 : i is in L
Here again, it is enough to show (ξn) still hold for w′ to prove that (E,H,L) is an

n-decomposition. The only terms that change in (ξn) are ∆(w′) and ∆l(L), and they
change so that ∆l(L) − ∆(w′) remains constant, so equation (ξn) still holds. Therefore
(E,H,L) is an n-decomposition of w′.

We have shown that if there exists an n-decomposition (E,H,L) of w and if ww′ is a
k-derivation erases a letter, then there exists an n-decomposition of w′.

Case 2 : split of a component wi of w
The cases where wi is split between w′i and w′i+1 and between w′i−1 and w′i are symetric

and we will thus only treat the case where wi is split between w′i and w′i+1. In that case
wi = w′i w

′
i+1 and wi+1 = ε. We already know that every e in E has length at least 3Λn+1,

so no border of wi+1 can be in E and, since they cannot be in H either: i+ 1 ∈ L. Then

188

there are different subcases depending on how wi is split and on whether (i, l) and (i, r)
are in L, E, H or if one is in E and the other is in H. For each of these subcases, in order
to find a decomposition of w′, we use one of the two following methods :

• we use the fact that (E,H,L) is an n-decomposition of w, make a few changes to
it in order to obtain an n-decomposition of w′. In order to prove that equation
(ξn) still holds for the new n-decomposition we rely on the fact that (ξn) holds for
(E,H,L) and analyze the changes in (ξn) introduced by the derivation step.

• We find an edge e of w′ and add it to E in order to get an (n+ 1)-decomposition of
w′. Note that with this method, the sets of (n+1)-heavy and (n+1)-light segments
can be very different from the n-heavy and n-light segments of w. So we have a
different way of proving equation (ξn+1) for this new decomposition. The fact that
for every edge that a in E for the n-decomposition of w have length at least 3Λn+1

implies that (ξn+1) holds for these edges for any sets H ′ and L′ of (n + 1)-heavy
and (n + 1)-light segments. It therefore only remains to prove that e also verifies
equation (ξn+1). For this we use the fact that lg(w, e) ≥ Λn+1 implies (ξn+1) for any
H ′ and L′. Therefore, in order to get an (n + 1)-decomposition using this method,
we only need to find a new edge e of length at least Λn+1.

In every case, we allow ourselves to assume that the n-decomposition (E,H,L) of w is
maximal (for n). Let us now go into the details of the different cases.

A first easy case is when ui is n-light.

Case 2.1 : i ∈ L

ui

split

u′i u′i+1

Since ui does not have a
2Λn+1 as a factor, neither do u′i and u′i+1. Then u′i and u′i+1 are

n-light segments of w′, so L is the set of n-light components of w′. We show that (E,H,L)
is an n-decomposition of w′. In equation (ξn) we have |L′| = |L| and since ui = u′i u

′
i+1,

we also have ∆l(L
′) = ∆l(L), so (ξn) still holds for all the edges in E. Therefore (E,H,L)

is an n-decomposition of w′.

In all the remaining cases, because ui contains a
2Λn+1 as a factor, each border of ui is

either in E or in H. A first case is when a border of ui is in H and the split of ui splits
the corresponding n-heavy segment:

Case 2.2 : (i, l) ∈ H and u′i is a prefix of segh(n,w, (i, l))

189

ui

2Λn+1

. . .

split

u′i

2Λn+1

. . .

u′i+1

In this case u′i is n-light and u′i+1 has a
2Λn+1 as a factor. The set of n-light components

of w′ is L′ = L \ {i + 1} ∪ {i}. If (i, r) is an edge in E, then we define E ′ and H ′ by
E ′ = E\{(i, r)}∪{(i+1, r)} and H ′ = H \{(i, l)}∪{(i+1, l)}. Otherwise, when (i, r) ∈ H,
we let E ′ = E and H ′ = H \ {(i, l), (i, r)} ∪ {(i + 1, l), (i + 1, r)}. Now, in order to prove
that (E ′, H ′, L′) is an n-decomposition of w′, we only need to show that equation (ξn)
holds for all edges in E ′.

The only terms that are changing in (ξn) are: ∆h(H
′) = ∆h(H)−∆(u′i) and ∆l(L

′) =
∆l(L) + ∆(u′i). Therefore, ∆h(H

′) + ∆l(L
′) = ∆h(H) + ∆l(L) and (ξn) still holds for all

edges in E ′ and (E ′, H ′, L′) is a n-decomposition of w′.
Here we assumed that the split n-heavy segment is on the left of ui, but the case where

it is on the right of ui is symmetric.

Another similar case is when a border of ui is an edge and a small piece of it is split
from the rest of ui. Here a small piece means shorter than 2Λn+1, so that the small piece
is n-light. Again we have two symetric cases for the side of ui on which the split happens,
we will only deal with the case where the split happens on the left side of ui:

Case 2.3 : (i, l) ∈ E and u′i is shorter than 2Λn+1

ui

lg(w, (i, l))

. . .

split

u′i

d1 lg(w′, (i+ 1, l))

. . .

u′i+1

In this case the length lg(w, (i, l)) of the edge (i, l) of w is the sum of the length
d1 ≤ 2Λn+1 of u′i and the length lg(w′, (i+ 1, l)) of the edge (i+ 1, l) of w′. The new sets
E ′, H ′ and L′ are simply obtained from E, H, L as follows:

• L′ = L− {i+ 1} ∪ {i},

190

• E ′ =

{
E − {(i, l), (i, r)} ∪ {(i+ 1, l), (i+ 1, r)} when (i, r) ∈ E
E − {(i, l)} ∪ {(i+ 1, l)} otherwise ,

• H ′ =

{
H − {(i, r)} ∪ {(i+ 1, r)} when (i, r) ∈ H
H ∪ otherwise

Notice that, by hypothesis, (i, r) is either in H or in E.
Now, in order to prove that (E ′, H ′, L′) is a n-decomposition we first need to check

equation (ξn). The only terms that can change in (ξn) are: ∆l(L
′) = ∆l(L)+d1, lg(w

′, (i+
1, l)) = lg(w, (i, l))−d1 and, if (i, r) ∈ E and ui ∈ a∗, then lg(w′, (i+1, r)) = lg(w, (i, l))−
d1. From this we deduce that equation (ξn) holds for edge (i+ 1, l) and also for the other
edges in E ′. So (E ′, H ′, L′) is an n-decomposition of w′.

The next case is when a longer part (longer than 2Λn+1) of an edge is split. Again we
consider only the case where the edge being split is (i, l) because the case where it is (i, r)
is symetric.

Case 2.4 : (i, l) ∈ E and u′i ∈ a∗ is longer than 2Λn+1

ui

lg(w, (i, l))

. . .

split

u′i

d1 d2

. . .

u′i+1

In this case we have two new edges (i, l) and (i, r) of w′ coming from the split of one
edge (i, l) of w, so we have an (n+ 1)-decomposition of w′. Remember that, in order for
(ξn+1) to hold, we only need to check that we have n + 1 edges of length at least Λn+1.
It is the case for edges (i, l) and (i, r) because the length d1 of u′i is greater than 2Λn+1.
Since (ξn) implies that edges are longer than 3Λn+1, it is also the case for the other edges
in E untouched by the split.

In the event that (i, r) was an edge of w and that its length changed after the split,
we still need to check that the corresponding edge (i + 1, r) of w′ is longer than Λn+1.
This event occurs only if ui was in a∗ and so u′i+1 = ad2 . We have already dealt with the
case where a small piece (shorter than 2Λn+1) is split from the edge (i, r) of w: it is the
symetric of case 2.4. We can then consider w.l.o.g. the piece split from (i, r), i.e. u′i+1, is
longer than 2Λn+1. Therefore (ξn+1) holds for (i+ 1, r) in w′.

So we have a (n+ 1)-decomposition of w′.

Now we have seen all the cases where the split cuts an edge-affix or a heavy segment
into two. The cases we have left are when the split happens further away from the borders

191

of ui. The next case is when the split cuts a factor a2Λn+1 of ui which is not in an edge-affix
in two:

Case 2.5 : u′i = w1 b a
d1, u′i+1 = ad2 bw2 with d1 + d2 ≥ 2Λn+1

ui

. . .

d0

. . .

split

. . .

d1 d2

. . .

u′i u′i+1

Here 2Λn+1 ≤ d0 and d0 = d1 + d2. Then either d1 ≥ Λn+1 or d2 ≥ Λn+1, and in either
of these cases, we have a new edge ((i, r) or (i + 1, l)) of w′ of length greater than Λn+1.
So, using the same method as in the previous case, we get an (n+1)-decomposition of w′.

The last case is when the split happens in neither a heavy segment, an edge-affix nor
a factor a2Λn+1 of ui.

Case 2.6 : ui is n-heavy is split neither in one of its affix nor in a factor a2Λn+1

As ui is not split in a factor a2Λn+1 , if there is no occurrence of a2Λn+1 to the right, then
it must be the case that the split is in the right-affix of ui. Thus by hypothesis, there must
be an occurrence of a2Λn+1 in u′i+1. Similarly there must be an occurrence of a2Λn+1 in u′i.

ui

. . .

2Λn+1

w1 w2

2Λn+1

. . .

split

. . .

2Λn+1

w1 w2

2Λn+1

. . .

u′i u′i+1

In this case u′i and u′i+1 are n-heavy, so we define the words w1 = segh(n,w
′, (i, r)) and

w2 = segh(n,w
′, (i+1, l)). We construct an n-decomposition (E ′, H ′, L′) ofw′. If (i, r) ∈ E

then the edge (i, r) of w becomes the edge (i+ 1, r) of w′: E ′ = E \ {(i, r)} ∪ {(i+ 1, r)}
and H ′ = H ∪ {(i, r), (i+1, l)}, or else E ′ = E and H ′ = H ∪ {(i+1, l), (i+1, r)}. In any
case ui+1 is n-light but u′i and u′i+1 are n-heavy so L′ = L \ {i+ 1}. Now we only need to
check equation (ξn).

192

In every cases, we have:

|L′| = |L| − 1 (8.1)

|H ′| = |H|+ 2 (8.2)

∆(H ′) = ∆(H) + ∆(w1) + ∆(w2) (8.3)

Now, for all edge e′ ∈ E ′, there is an element of e so that lg(w′, e′) = lg(w, e), we have:

lg(w′, e) ≥ Λn − k +∆(w)− (|H|+ |L|)σn −∆h(H)−∆l(L) .

Furthermore, using equations (8.1), we obtain:

lg(w′, e) ≥ Λn − k +∆(w′)− (|H ′|+ |L′| − 1)σn −∆h(H
′)−∆(w1)−∆(w2)−∆l(L

′)
≥ Λn − k +∆(w′)− (|H ′|+ |L′|)σn +∆h(H

′) + ∆l(L
′)− (σn +∆(w1) + ∆(w2))

Since w1w2 does not contain an occurrence of a2Λn+1 , Lemma 45 tells us that

|∆(w1w2)| = |∆(w1) + ∆(w2)| ≤ σn .

So σn +∆(w1) + ∆(w2) ≥ 0 and thus:

lg(w′, e) ≥ Λn − k +∆(w′)− (|H ′|+ |L′|)σn +∆h(H
′) + ∆l(L

′)

which finally proves that (E ′, H ′, L′) is a n-decomposition of w′.

We have shown that, in any case, if there exists an n-decomposition (E,H,L) of w
and ww′ is a k-derivation then there is an m-decomposition of w′.

From this we can conclude that if there is a k-derivation from (sk, ε, . . . , ε) to w, then w
has an n-decomposition for n in [1, 2k]. A consequence is that this n-decomposition must
contain n edges whose length is greater than 3Λn+1 = 3m2k−n which is strictly positive
and w cannot be equal to (ε, . . . , ε). This implies the following proposition.

Proposition 6 For every k > 0, sk admits no k-derivation.

Now Theorem 31 is a consequence of this proposition and Proposition 5.

193

Part V

Conclusion

194

Chapter 9

Conclusion

9.1 Contributions

In this thesis, we presented our work on the formal modelisation of tree transformations,
first on a practical level as part of the CoLiS project, then on a more theoretical level with
the study of tree transducers and their properties using tools of functional programming.
Finally we have proven an interesting result on classes of word languages.

Our first contribution is the implementation of a tool checking Debian installation
scripts for bugs in their interaction with the file system, and the design of its algorithm.
This contribution includes the design of a model of tree transformations and its optimiza-
tion for the specific use of checking executions of Shell scripts, the design of algorithms on
both the general and optimized version of this model and a complexity analysis showing
the sources of NP-hardness in the problem.

Our main theoretical contribution is the design of the model of High-Order Deter-
ministic tree transducers (HODT) which generalizes several known classes of transducers.
Our work includes the design of algorithms for computing the composition of HODT and
translating HODT into other models of transducers. We also shown interesting properties
of HODT, notably that linear and almost-linear HODT are as expressive as transductions
defined by Monadic Second-Order logic. With this work we have shown that a functional
programming approach to tree transducers provides an insightful view on those models.

Our last contribution consists in a proof that the language MIX, which is the commuta-
tive closure of the Dyck language, is not included in several classes of languages on words,
including the class of EDT0L languages and the class of output languages of word-to-word
transductions defined by Monadic Second-Order logic, which was an open problem.

195

9.2 Perspectives

9.2.1 Our implementation in CoLiS

One of our short term goals would to adapt our implementation to the latest version of the
concrete interpreter. This supports a lot more functionalities of scripts than the one we
based our work on. In addition to improving the coverage of corpuses of maintainer scripts,
it also tests full installation scenarios instead of testing maintainer scripts in isolation.
Once this is done we could again compare our results with those of our collaborators in
the project, and maybe detect pertinent bugs to report.

Since our implementation is fast enough to run on large corpuses of scripts, we could
also model file systems and commands more accurately. In particular removing the big
approximation of the cp -r command on the case where its destination directory is not
empty. This would require to enlarge our model for representing tree transformations.

A third possibility would be to use a similar tool in order to detect if an uninstallation
script puts the file system back as it was before installation. To check this we only need to
test if the composition the installation script with the uninstallation script performs the
identity function. This would require to implement our algorithms for composition and
for checking if a tree transformation is the identity.

9.2.2 Implementing HODTRlin in CoLiS

Our HODTRlin model could be used to represent the behaviour of Unix commands more
accurately for the CoLiS project. The first hurdle in this endeavour would be to adapt the
HODTRlin model to the formalism of feature trees i.e. unranked unordered trees. Unranked
trees can be represented as ranked binary trees. Unordered trees can be modelized using
ordered trees with a commmutativity property of the children as in [8], but our case is
not that simple because children are distinguished by labels on edges (filenames). In this
way file systems are more akin to ordered trees than unordered trees. We would need
a model where child nodes are either accessed directly using their filenames, or accessed
commutatively compared to other child nodes as in [8].

9.2.3 Testing equivalence of HODTR

Testing the equivalence between two transducers would be a very useful verification tool.
Since the equivalence of MSOT transducers is decidable [11], the equivalent model of
HODTRlin also has an algorithm for checking the equivalence of two transducers. If the
equivalence is too hard to check, we could start by checking origin equivalence as defined
in [9]. Origin equivalence is a downgraded version of equivalence where transducers, in
addition to associating an output tree with an input tree, specify which nodes of the
output tree come from which node of the input. Two transducers are origin-equivalent
when they compute the same output nodes from the same input nodes. This notion of
equivalence is easier to check because two origin-equivalent transducers must have similar
ways of computing their output.

196

Bibliography

[1] Pietro Abate, Roberto Di Cosmo, Ralf Treinen, and Stefano Zacchiroli. Dependency
solving: a separate concern in component evolution management. Journal of Systems
and Software, 85(10):2228–2240, 2012.

[2] R. Alur and L. D’Antoni. Streaming tree transducers. J. ACM, 64(5):31:1–31:55,
2017.

[3] Rajeev Alur. Streaming string transducers. In Lev D. Beklemishev and Ruy J.
G. B. de Queiroz, editors, Logic, Language, Information and Computation - 18th
International Workshop, WoLLIC 2011, Philadelphia, PA, USA, May 18-20, 2011.
Proceedings, volume 6642 of Lecture Notes in Computer Science, page 1. Springer,
2011. URL: http://dx.doi.org/10.1007/978-3-642-20920-8_1, doi:10.1007/

978-3-642-20920-8_1.

[4] Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In
FSTTCS, pages 1–12, 2010.

[5] R. M. Amadio and P-L. Curien. Domains and Lambda-Calculi. Cambridge Tracts in
Theoretical Computer Science. Cambridge Univ. Press, 1998.

[6] Peter R.J. Asveld. Controlled iteration grammars and full hyper-afl’s. Infor-
mation and Control, 34(3):248 – 269, 1977. URL: http://www.sciencedirect.

com/science/article/pii/S0019995877903084, doi:https://doi.org/10.1016/
S0019-9958(77)90308-4.

[7] Roderick Bloem and Joost Engelfriet. A comparison of tree transductions defined
by monadic second order logic and by attribute grammars. J. Comput. Syst. Sci.,
61(1):1–50, 2000. doi:10.1006/jcss.1999.1684.

[8] Adrien Boiret, Vincent Hugot, Joachim Niehren, and Ralf Treinen. Deterministic
automata for unordered trees. arXiv preprint arXiv:1408.5966, 2014.

[9] Mikoλaj Bojańczyk. Transducers with origin information. In International Collo-
quium on Automata, Languages, and Programming, pages 26–37. Springer, 2014.

[10] B. Courcelle. Monadic second-order definable graph transductions: a survey. Theo-
retical Computer Science, 126(1):53–75, 1994.

197

http://dx.doi.org/10.1007/978-3-642-20920-8_1
https://doi.org/10.1007/978-3-642-20920-8_1
https://doi.org/10.1007/978-3-642-20920-8_1
http://www.sciencedirect.com/science/article/pii/S0019995877903084
http://www.sciencedirect.com/science/article/pii/S0019995877903084
https://doi.org/https://doi.org/10.1016/S0019-9958(77)90308-4
https://doi.org/https://doi.org/10.1016/S0019-9958(77)90308-4
https://doi.org/10.1006/jcss.1999.1684

[11] B. Courcelle. Handbook of Graph Grammars and Computing by Graph Transforma-
tions, Volume 1: Foundations. In Rozenberg, editor, Handbook of Graph Grammars,
1997.

[12] J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and mso
definable tree translations. Information and Computation, 154(1):34 – 91, 1999.

[13] J. Engelfriet and S. Maneth. The equivalence problem for deterministic MSO tree
transducers is decidable. Inf. Process. Lett., 100(5):206–212, 2006.

[14] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci.,
31(1):71–146, 1985.

[15] Joost Engelfriet. Top-down tree transducers with regular look-ahead. Mathematical
systems theory, 10(1):289–303, Dec 1976. doi:10.1007/BF01683280.

[16] Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated push-
down tree transducers. Acta Informatica, 26(1):131–192, Oct 1988. doi:10.1007/

BF02915449.

[17] Z. Fulop. On attributed tree transducers. Acta Cybernet., 5:261–279, 1981.

[18] J. Y. Girard. Linear logic. TCS, 50:1–102, 1987.

[19] Nicolas Jeannerod. Verification of Shell Scripts Performing File Hierarchy Trans-
formations. Theses, Université de Paris, March 2021. URL: https://hal.

archives-ouvertes.fr/tel-03369452.

[20] Nicolas Jeannerod, Claude Marché, Yann Régis-Gianas, Mihaela Sighireanu, and Ralf
Treinen. Specification of UNIX Utilities. Technical report, ANR, October 2019. URL:
https://hal.inria.fr/hal-02321691.

[21] M Kanazawa and R Yoshinaka. Distributional learning and context/substructure enu-
merability in nonlinear tree grammars. In Formal Grammar, pages 94–111. Springer,
2016.

[22] Makoto Kanazawa. Almost affine lambda terms. National Institute of Informatics,
2012.

[23] Michel Latteux. Edt0l, systèmes ultralinéaires et opérations associées. Technical
report, Université de Lille, 1977.

[24] Michel Latteux. Sur les générateurs algébriques et linéaires. Acta Informatica,
13(4):347–363, May 1980. doi:10.1007/BF00288769.

[25] Fabio Mancinelli, Jaap Boender, Roberto Di Cosmo, Jerome Vouillon, Berke Durak,
Xavier Leroy, and Ralf Treinen. Managing the complexity of large free and open source
package-based software distributions. In 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE’06), pages 199–208. IEEE, 2006.

198

https://doi.org/10.1007/BF01683280
https://doi.org/10.1007/BF02915449
https://doi.org/10.1007/BF02915449
https://hal.archives-ouvertes.fr/tel-03369452
https://hal.archives-ouvertes.fr/tel-03369452
https://hal.inria.fr/hal-02321691
https://doi.org/10.1007/BF00288769

[26] S. Salvati. Recognizability in the simply typed lambda-calculus. In WoLLIC, volume
5514 of LNCS, pages 48–60, 2009.

[27] S. Salvati and I. Walukiewicz. Using models to model-check recursive schemes. Logical
Methods In Computer Science, 2015.

[28] J. Thatcher and J. Wright. Generalized Finite Automata Theory With an Applica-
tion to a Decision Problem of Second-Order Logic. Mathematical Systems Theory,
2(1):57–81, 1968.

199

	I Part 1 : Introduction and state of the art
	Introduction
	Motivations
	Our approach
	The CoLiS project
	The CoLiS toolchain
	Modelisation of filesystems
	Modeling tree transformations for CoLiS

	Theoretical models of tree transformations
	Models of tree transformations
	Expressivity of tree transformation models
	Composition of tree transformations
	The functional programming approach

	Contribution and Plan of the thesis
	High-Order Deterministic tree Transducers
	Tree transducers in the CoLiS project
	The MIX language
	Plan of the thesis

	II Part 2 : Contribution to the CoLiS project
	Abstraction of filesystems and scripts in the CoLiS project
	Abstraction of the problem
	Control flow structure of Shell scripts
	Abstraction of file systems
	NP-hardness of verification on scripts

	A model of transducers for the CoLiS project
	Tree pattern transducers
	Formalisation of Unix commands
	mkdir
	rmdir
	rm
	touch
	test and []
	which
	mv
	cp

	Composition of tree pattern transducers
	Example of composition
	Unification of tree patterns
	Tree constraints in composition
	Conclusion on composition

	Implementation
	The algorithm
	Naive version of the algorithm
	The improved algorithm
	Specificity of the backward approach

	Practical results
	Equivalence
	Conclusion on CoLiS

	III Part 3 : Transduction through functional programming
	Definition of high-order tree transducers
	Definitions
	Simply-typed lambda calculus
	High-Order Deterministic top-down tree Transducers
	Regular look-ahead
	Linear and Almost-Linear variants
	Tree transformations associated with transducers

	Example of high-order tree transducers
	Properties of High-Order Transducers
	Domains
	Look-ahead
	The expressivity of the order of transducers

	Composition of transducers
	Composition of HODT based on Scott models
	Composition of HODTRlin based on coherent spaces
	Semantic analysis
	Unicity of derivation for semantic token judgements
	Collapsing of token derivations
	Construction of the transducer which realizes the composition

	Equivalence with existing models
	Template decomposition
	Finiteness of linear templates
	Finiteness of almost linear templates

	Order reduction
	Linear case of the order reduction
	Almost linear case of the order reduction

	Expressiveness of HODTRlin and HODTRal
	Definition of ATT
	 REL ATT HODTRal and REL ATTsur HODTRlin
	 HODTRal REL ATT and HODTRlin REL ATTsur

	IV Part 4 : Expressivity of MSO transductions, case of the MIX languages
	The MIX languages and MSO transductions
	Preliminaries
	MIX2 is not an EDT0L language
	The counter example word sk

	V Conclusion
	Conclusion
	Contributions
	Perspectives
	Our implementation in CoLiS
	Implementing HODTRlin in CoLiS
	Testing equivalence of HODTR

