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Abstract

During the last decade, Generative Adversarial Networks (GANs) have caused a tremen-
dous leap forward in image generation as a whole. Their ability to learn very complex,
high-dimension distributions not only had a huge impact on the field of generative mod-
eling, their influence extended to the general public at large. By being the first models
able generate high-dimension photo-realistic images, GANs very quickly gained popular-
ity as an image generation and photo manipulation technique. For example, their use as
"filters" became common practice on social media, but they also allowed for the rise of
Deepfakes, images that have been manipulated in order to fake the identity of a person.

In this thesis, we explore the conditioning of Generative Adversarial Networks, that is
influencing the generation process in order to control the content of a generated image.
We focus on conditioning through auxiliary tasks, that is we explicitly implement addi-
tional objective to the generative model to complement the initial goal of learning the
data distribution.

First, we introduce generative modeling through several examples, and present the
Generative Adversarial Networks framework. We discuss theoretical interpretations of
GANs as well as its most prominent issues, notably the lack of stability during training
of the model and the difficulty to generate diverse samples. We review classical tech-
niques for conditioning GANs and propose an overview of recent approaches aiming to
both solve the aforementioned issues and enhance the visual quality of the generated im-
ages.

Afterwards, we focus on a specific generation task that requires conditioning: image
reconstruction. In a nutshell, the problem consists in recovering an image from which
we only have a handful of pixels available, usually around 0.5%. It stems from an appli-
cation in geostatistics, namely the reconstruction of underground terrain from a reduced
amount of expensive and difficult to obtain measurements. To do so, we propose to intro-
duce an explicit auxiliary reconstruction task to the GAN framework which, in addition to
a diversity-restoring technique, allows for the generation of high-quality images that re-
spect the given measurements.

Finally, we investigate a task of domain-transfer with generative models, specifically
transferring images from the RGB color domain to the polarimetric domain. Polarimetric
images bear hard constraints that directly stem from the physics of polarimetry. Leverag-
ing on the cyclic-consistency paradigm, we extend the training of generative models with
auxiliary tasks that push the generator towards enforcing the polarimetric constraints. We
highlight that the approach manages to generate physically realistic polarimetric images.
Empirical evidence illustrates that using the generated images as data augmentation im-
proves the performance on object detection models for road scene analysis.
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Résumé

Au cours de la dernière décennie, les réseaux génératifs antagonistes (Generative Adver-
satial Networks, ou GANs) ont révolutionné la génération d’images dans son ensemble.
Leur capacité à apprendre des distributions très complexes en grande dimension ils ont
eu eu un impact important sur le domaine des modèles génératifs et leur influence s’est
largement étendue au grand public. En effet, en étant les premiers modèles capables de
générer des images photo-réalistes en haute dimension, ils ont très vite gagné en popu-
larité en tant que technique de génération d’images et de manipulation de photos. Par
exemple, leur utilisation en tant que "filtres" est devenue une pratique courante sur les
médias sociaux : ils ont également permis l’essor des Deepfakes, des images manipulées
afin de falsifier l’identité d’une personne.

Dans cette thèse, nous étudions le conditionnement des réseaux génératifs antago-
nistes, c’est-à-dire influencer le processus de génération afin de contrôler le contenu d’une
image générée. Nous nous concentrons sur le conditionnement par le biais de tâches
auxiliaires, c’est-à-dire l’utilisation d’un ou plusieurs objectifs supplémentaires au mo-
dèle génératif en plus de l’objectif initial d’apprentissage de la distribution des données.

Nous introduisons les principes de la modélisation générative à travers plusieurs ex-
emples, et nous présentons le cadre des réseaux génératifs antagonistes. Nous analy-
sons les interprétations théoriques de ce modèle ainsi que ses problèmes les plus im-
portants, notamment l’instabilité de l’apprentissage du modèle et la difficulté de générer
des échantillons diversifiés. Nous passons en revue les techniques classiques de condi-
tionnement des GAN et proposons un aperçu des approches récentes visant à résoudre
ses problèmes et à améliorer la qualité visuelle des images générées.

Dans la suite de la thèse, nous nous concentrons sur une tâche de génération spéci-
fique qui nécessite un conditionnement : la reconstruction d’images. Ce problème consiste
à générer une image dont nous ne connaissons qu’un nombre très réduit de pixels à priori,
généralement autour de 0,5 %. Ceci est motivé par une application directe en géostatis-
tique : la reconstruction de données géologiques de sous-sols à partir d’une très petite
quantité de mesures coûteuses et difficiles à obtenir. Pour ce faire, nous proposons d’in-
troduire une tâche de reconstruction auxiliaire explicite dans le cadre du GAN qui, com-
binée à une technique de restauration de la diversité, a permis de générer des images de
haute qualité qui respectent les mesures données.

Dans la deuxième contribution nous étudions une tâche de transfert de domaine avec
des modèles génératifs, en particulier le transfert d’images du domaine couleur au do-
maine polarimétrique. Les images polarimétriques sont soumises à des contraintes strictes
qui découlent directement des proprétés physiques de la polarimétrie. En s’appuyant sur
l’approche de cohérence cyclique, nous étendons la formulation des modèles génératifs
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avec des tâches auxiliaires qui poussent le générateur à faire respecter les contraintes po-
larimétriques. Nous montrons que cette approche permet non seulement de générer des
images polarimétriques physiquement réalistes, mais que l’utilisation des images géné-
rées comme données augmentées augmente la performance des modèles de détection
d’objets sur des applications d’analyse de scène routière.
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Introduction en français

Contexte

Au cours de la dernière décennie, l’apprentissage profond (ou deep learning) est apparu
comme l’un des domaines les plus prometteur de l’intelligence artificielle, égalant ou sur-
passant progressivement toutes les approches traditionnelles dans nombre de domaines
d’application. Grâce à la capacité de généralisation des réseaux de neurones profonds,
l’apprentissage profond est capable d’utiliser des masses de données afin d’en extraire
des motifs et des comportements pertinents. L’apprentissage profond s’est donc naturel-
lement appliqué à des domaines aussi différents que la traduction automatique, le jeu
de Go et le trading à haute-fréquence. Parmi eux, la vision par ordinateur est très cer-
tainement le domaine sur lequel l’apprentissage profond aura eu le plus grand impact.
Consistant à analyser et traiter des images automatiquement, la vision par ordinateur est
un domaine complexe comprenant de nombreux problèmes tels que la détection d’objets
ou la reconnaissance de formes. L’apprentissage profond est désormais l’approche de ré-
férence pour toutes les approches de vision par ordinateur et s’applique à des domaines
tels que l’imagerie médicale, la reconnaissance faciale ou la conduite autonome.

Un des sous-domaines de la vision par ordinateur ayant a connu un essor fulgurant
grâce à l’apprentissage profond est la génération automatique d’images. Les réseaux gé-
nératifs antagonistes (Generative Adversarial Networks, ou GANs) (Goodfellow et al., 2014),
mis en avant lors de ces dernières années pour leur capacité à générer des images photo-
réalistes1, sont désormais le fer de lance de l’apprentissage profond pour la génération
d’images. En permettant la génération d’images de haute qualité et de grande dimension,
ils ont rapidement trouvé des applications dans de nombreux domaines techniques tels
que l’augmentation de résolution d’image (Wang et al., 2020), la cartographie automa-
tique (Kang et al., 2019), la génération de vidéos (Vondrick et al., 2016) ou la génération
automatique d’objets 3D (Wu et al., 2017). L’usage des GANs s’est également étendu à des
applications destinées au grand public : certaines inoffensives telles que les très nom-
breux "filtres" disponibles sur des réseaux sociaux permettant de par exemple de générer
une photo d’une personne vieillie (Antipov et al., 2017); d’autres plus néfastes, comme
les fameux "deepfakes" (Vaccari and Chadwick, 2020) des images et vidéos automatique-
ment générées dont le but est de tromper en falsifiant l’identité d’une personne, le plus
souvent une célébrité ou une personnalité politique.

Dans cette thèse, nous proposons d’étudier les tâches auxiliaires pour le conditionne-
ment des réseaux génératifs antagonistes. Si les GANs excellent dans la génération d’images

1Un exemple particulièrement frappant : https://www.whichfaceisreal.com/
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et permettent d’obtenir des images de très haute qualité, ils ne présentent leur plein po-
tentiel que lorsqu’ils sont conditionnés, c’est à dire qu’il est possible d’exercer un contrôle
sur la sortie du modèle. En effet, c’est ce conditionnement qui permet de s’assurer que
l’image obtenue est bien celle attendue et est donc indispensable pour, par exemple, l’en-
semble des applications d’édition dynamique d’images telles que les "filtres" ou l’aug-
mentation de résolution.En particulier nous nous concentrons sur une famille de tech-
niques pour ce conditionnement : les tâches auxiliaires. En entraînant un GAN à résoudre
une tâche secondaire en parallèle de son apprentissage de la distribution des données
réelles, il est possible de le pousser à respecter certaines propriétés désirées. Ces tâches
auxiliaiaires nécessitent d’être conçues spécialement pour chaque type de conditionne-
ment. Au cours de cette thèse, nous examinons donc des problèmes pouvant être résolus
par des modèles génératifs conditionnées et proposons des tâches annexes appropriées
pour résoudre ces problèmes.

Motivations

Nos travaux sont motivés par deux applications directes nécessitant des modèles géné-
ratifs conditionnés : la reconstruction d’images, et plus précisément de cartographies de
formations de canaux d’eau souterrains ; et la conversion de bases de données d’images
couleur de scènes routières dans le domaine polarimétrique.

Reconstruction d’images hydro-géologiques

Nous étudions le problème de la reconstruction d’images, consistant à (ré-)générer une
image à partir d’un ensemble très réduit de pixels connus a priori, qui est ici un cadre
générique s’appliquant au problème de reconstruction de cartographies de formations
de canaux d’eau souterrains. Dans le cadre de cette applicationn menée en collaboration
avec le SCK·CEN (Belgique), plusieurs critères sont recherchés :

Précision au pixel près. La tâche de reconstruction d’images consistant à générer une
image dont des pixels précis sont pré-tirés, leurs positions et valeurs doivent être pré-
servées dans l’image obtenue. Dans le cadre de l’application en géologie, cela implique
de préserver précisément la position et les valeurs des mesures réelles effectuées sur le
terrain.

Préservation de la diversité. L’une des limitations des GAN est leur tendance à perdre
la capacité à générer des échantillons diversifiés et ainsi ne produire que des images très
proches les unes des autres. Dans le cadre de l’application en géologie, il est important
de pouvoir produire un grand nombre d’images candidates diversifiées qui respectent les
pixels pré-tirés.

Génération rapide. Afin de pouvoir générer un grand nombre d’images candidates, il
est également important que le processus de génération soit rapide. Ainsi, les approches
existantes nécessitant de résoudre un problème d’optimisation pour chaque image géné-
rée seront le plus souvent bien trop lentes pour être applicables ici.

2



LIST OF TABLES INTRODUCTION

Conversion d’images couleur en images polarimétriques

Dans cette application, nous nous penchons sur le problème de génération d’images
polarimétriques comme moyen d’augmentation de données. En effet, le manque de don-
nées polarimétriques étiquetées est un frein important pour la recherche dans le domaine
de la vision par ordinateur sur les images polarimétriques. Ces images, captant des pro-
priétés de la lumière qui ne sont pas présentes dans des images couleur, permettent par
exemple d’obtenir de meilleurs résultats dans des tâches de détection d’objets dans des
conditions météorologiques adverses, telles qu’une pluie importante ou de la brume.
En transférant des bases de données étiquetées du domaine de l’image couleur au do-
maine polarimétrique, cette pénurie de données polarimétriques étiquetées pourrait être
contournée. Cependant, plusieurs exigences sont à respecter :

Respect des contraintes polarimétriques. L’imagerie polarimétrique est soumise à
des contraintes fortes émanant de la physique ondulatoire de la lumière. Ces contraintes
doivent être prises en compte afin de générer des images non seulement réalistes, mais
surtout ayant les propriétés physiques permettant d’obtenir de bons résultats dans des
conditions météorologiques adverses.

Respect de la calibration de la caméra polarimétrique. Pour pouvoir capturer des
images polarimétriques, une caméra spécialisée utilise un certain nombres de filtres lais-
sant passer la lumière polarisée à des angles prédéfinis. La configuration de ces filtres
peut différer selon la caméra utilisée. Cette calibration affecte directement la nature des
images acquises. Ainsi, lors de la génération de données polarimétriques, il est nécessaire
de pouvoir assurer que les images produites correspondent à la calibration de la caméra.

Préservation du contenu de l’image. L’objectif de cette application est de produire
des bases de données étiquetées artificielles en transférant dans le domaine polarimé-
trique des bases de données existantes d’images couleur. Afin de pouvoir conserver les
étiquettes entre ces deux domaines, il est donc nécessaire que le contenu des images reste
similaire en nature et en position.

Processus de génération rapide. Il est également nécessaire que le temps de géné-
ration d’une image ne soit pas trop élevé, puisque les bases de données visées peuvent
contenir plusieurs centaines de milliers d’images de résolution élevée. Un temps de gé-
nération trop important rendrait ainsi cette approche prohibitive.

Structure de la thèse

Puisque le conditionnement des modèles génératifs est une étape cruciale pour leur ap-
plication à des problèmes du monde réel, nous proposons dans cette thèse d’étudier le
conditionnement des réseaux adversaires générateurs, notamment en utilisant des tâches
auxiliaires. La thèse est structurée en trois chapites, dont les contenus sont résumés ci-
dessous, et une conclusion.

Chapitre 1 : Introduction aux réseaux génératifs antagonistes

Nous commençons cette thèse par un chapitre introductif sur les réseaux génératifs anta-
gonistes (GANs), une méthode pour entraîner des réseaux de neurones profonds comme
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modèles génératifs particulièrement appropriée pour la génération d’images. Nous met-
tons également en exergue leurs limitations, notamment l’instabilité du processus d’en-
traînement et le manque de diversité statistique dans les données générées. Nous nous
penchons également sur les variantes conditionnelles des GAN, permettant d’exercer un
certain contrôle sur le processus de génération en appliquant des contraintes sur la don-
née générée, ainsi que les approches de transfert de domaines, tâche consistant à projeter
une donnée d’un domaine vers un autre (par exemple, convertir un tableau de maître en
photo). Nous présentons un aperçu des différentes techniques employées pour contre-
carrer les limitations intrinsèques des GANs par l’amélioration de l’architecture des ré-
seaux de neurones ainsi que le changement de la fonction de coût du GAN. Enfin, nous
terminons ce chapitre par une réflexion sur les difficultés que représentent l’évaluation
des modèles génératifs et examinons les métriques les plus couramment utilisées pour
évaluer les GANs.

Chapitre 2 : La reconstruction d’images comme tâche auxiliaire à la mo-
délisation générative

Dans ce chapitre, nous proposons un aperçu de la tâche de reconstruction d’images à
l’aide de modèles génératifs. Comme contribution, nous proposons une approche de condi-
tionnement des GANs utilisant une tâche de reconstruction auxiliaire explicite. En opti-
misant cette tâche auxiliaire pendant le processus de génération, combinée à une tech-
nique permettant de limiter les problèmes de perte de diversité, les modèles obtenus sont
capables de reconstruire rapidement les images, en comparaison avec des méthodes si-
milaires, telles que les approches basées sur l’acquisition comprimée, devant résoudre un
problème d’optimisation pour chaque image reconstruite. Un sous-produit de notre ap-
proche est un hyper-paramètre qui contrôle l’impact de la fonction de coût liée à la tâche
de reconstruction sur le modèle génératif. Nous montrons que cet hyper-paramètre in-
fluence directement un compromis entre la fidélité de la reconstruction et la qualité vi-
suelle des images générées.

Nous évaluons notre approche sur plusieurs tâches de reconstruction d’images en uti-
lisant des ensembles de données d’images classiques comme MNIST ou CIFAR10, ainsi
qu’un ensemble de données d’images de texture. Enfin, nous appliquons cette méthode à
un problème de géologie, à savoir la reconstruction des formations de canaux d’eau sou-
terrains en utilisant très peu de points. Les résultats expérimentaux montrent que notre
approche obtient des résultats égalux ou supérieurs aux approches existantes tout en of-
frant la possibilité de contrôler le compromis entre la qualité visuelle et le respect des
contraintes.

Chapitre 3 : Transfert de domaines avec tâches auxiliaires pour la modé-
lisation générative

Dans ce chapitre, nous étudions le conditionnement des modèles de transfert de do-
maines qui utilisent les réseaux génératifs antagonistes. Ces modèles, généralement ba-
sés sur l’idée de cohérence cyclique (ou cyclic-consistency), permettent de transférer des
images d’un "domaine" à l’autre sans utiliser de données appariées, qui sont générale-
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ment très difficiles à obtenir. Nous nous concentrons sur la tâche de transfert d’une image
couleur vers le domaine polarimétrique. De telles images sont soumises à des contraintes
strictes qui découlent directement de la physique ondulatoire de la lumière, de sorte que
les approches de transfert de domaine sans contraintes ne peuvent pas résoudre ce pro-
blème à elles seules.

Nous introduisons de nouvelles tâches auxiliaires basées sur une reformulation de
ces contraintes et proposons un algorithme pour les intégrer lors de l’entraînement d’un
modèle de transfert de domaine. Nous montrons que cette méthode est performante dans
une tâche de génération d’images polarimétriques, à la fois en termes de qualité visuelle
et de respect des contraintes.

Enfin, nous appliquons cette approche à une tâche d’augmentation de données. En
effet, aucune base de données d’images polarimétriques étiquetées n’est publiquement
disponible au moment de la rédaction de cette thèse, ce qui rend difficile l’apprentissage
de modèles profonds pour résoudre des problèmes sur des images polarimétriques. En
transférant des bases de données d’images en couleur étiquetées dans le domaine des
images polarimétriques, nous pouvons produire de grandes quantités d’images polari-
métriques étiquetées. Nous montrons que de telles données augmentent la performance
d’un réseau de détection d’objets dans les images polarimétriques pour l’analyse de scène
routière.
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Introduction

Context

Over the last decade, deep learning has emerged as one of the most promising areas of ar-
tificial intelligence, progressively equaling or surpassing all traditional approaches in sev-
eral fields of application. Thanks to the generalization capacity of deep neural networks,
it is able to leverage large amounts of data to learn complex patterns and behaviors. Deep
learning has been applied successfully to diverse domains such as machine translation,
the game of go and high-frequency trading. Among all these application domains, com-
puter vision is surely the one in which deep learning has had the greatest impact. Consist-
ing in analyzing and processing images automatically, computer vision is a complex field
that contains many problems such as object detection or pattern recognition. Nowadays,
deep learning is the reference approach for all computer vision tasks and is used in areas
such as medical imaging, facial recognition and autonomous driving.

One of the sub-domains of computer vision that emerged thanks to deep learning is
automatic image generation. Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) are now the spearhead of deep learning for image generation. They were made fa-
mous during recent years for their ability to generate photo-realistic images1. Indeed,
by allowing for the generation of high quality and high dimensional images, they have
quickly found applications in many domains such as increasing image resolution (Wang
et al., 2020), cartography (Kang et al., 2019), video completion (Vondrick et al., 2016) or au-
tomatic 3D objects generation (Wu et al., 2017). The use of GANs has also been extended
to application targeting the public at large, such as the numerous "filters" available on so-
cial networks, allowing for example to edit pictures of a person to make them look older
(Antipov et al., 2017). GANs also lead to some more harmful applications, such as the
famous "deepfakes" (Vaccari and Chadwick, 2020) that automatically generates images
and videos whose purpose is to deceive by falsifying the identity of a person, most often a
celebrity or a politician.

In this thesis, we propose to study auxiliary tasks for the conditioning of generative ad-
versarial networks. While GANs excel in image generation and allow for generating very
high quality images, they only reach their full potential when they are conditioned, i.e.
when it is possible to control the model output. Indeed, the conditioning makes it pos-
sible to ensure that the obtained images have desired properties, which is essential for,
for example, all dynamic image editing applications such as "filters" or the increase in
resolution. Indeed, the content of the image, for example the person on which the filter

1A striking example : https://www.whichfaceisreal.com/
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is applied, must remain the same. We therefore propose to focus on a family of tech-
niques conditioning GANs: auxiliary tasks. By training a GAN to solve a secondary task,
simultaneously to learning the distribution of real data, it is possible to push the model
towards respecting some targeted properties. These auxiliary tasks need to be designed
specifically for each type of conditioning. Over the course of this thesis, we will exam-
ine examples of problems that can be solved by conditioned generative models and will
propose appropriate auxiliary tasks to solve these problems.

Motivations

Our work is motivated by two applications requiring conditioned generative models: the
reconstruction of images, and more precisely maps of underground water channel for-
mations; and the conversion of road scene RGB image databases into the polarimetric
domain.

Reconstruction of hydro-geological images

First, we study the problem of image reconstruction, consisting in (re-)generating an
image from a very reduced set of a priori known pixels. This is a generic task which in-
cludes the problem of reconstructing maps of underground water channel formations.
Within this application, we seek several properties:

Pixel precise. Since the task of image reconstruction consists in generating an image
from which precisely-positioned pixels are pre-drawn, their positions and values must be
preserved in the resulting image. In the context of the geology application, this implies
preserving precisely the position and value of the real measurements made on the field.

Preserves diversity. One of the limitations of GANs is their tendency to loose the abil-
ity to generate diverse samples, and thus they produce images that are very close to each
other. In geological applications, it is important to be able to produce a large number of
diverse candidate images that fulfill the pre-drawn pixels.

Fast generation process. In order to be able to generate a large number of candidate
images, it is also important that the generation process is fast. Thus, existing approaches
that require solving an optimization problem for each generated image will most often be
far too slow to be applicable here.

Polarimetric Image Conversion

In a second step, we address the problem of polarimetric image generation as a data
augmentation technique. Indeed, the lack of labeled polarimetric data is a major imped-
iment to research in the field of computer vision in polarimetric images. These images,
capturing properties of light that are not present in color images, allow, for example, for
better results in detection tasks in adverse weather conditions such as heavy rain or fog.
By transferring labeled databases from the color image domain to the polarimetric do-
main, this shortage of labeled polarimetric data could be circumvented. However, there
are several requirements that must be met:
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Respect of polarimetric constraints. Polarimetric imaging is subject to strong con-
straints emanating from the wave physics of light. These constraints must be taken into
account in order to generate images that are not only realistic, but above also the physical
properties that may allow improved detection results in adverse weather conditions.

Respect of the polarimetric camera calibration. In order to capture polarimetric im-
ages, a dedicated camera uses a number of filters that let polarized light pass through at
predefined angles. The configuration of these filters may differ depending on the used
camera. The calibration directly affects the nature of the acquired images. Thus, when
generating polarimetric data, it is necessary to ensure that the produced images corre-
spond to the calibration of the used camera.

Preserves the image content. The objective of this application is to produce synthetic
labeled datasets by transferring existing labeled datasets into the polarimetric domain. In
order to be able to preserve the labels between these two domains, it is therefore neces-
sary that the image content remains similar in nature and position.

Quick generation process. In order to be able to transfer entire databases into the
polarimetric domain, it is also necessary that the image generation time is not too high,
since these databases may contain several hundreds of thousands of high-resolution im-
ages. High generation times would thus make the approach prohibitively expensive.

Outline and contributions

Since conditioning generative models is a crucial step for applying them to real-world
problems, in this thesis we study the conditioning of Generative Adversarial Networks,
most notably using auxiliary tasks. The thesis is composed of three chapters, whose con-
tents are detailed below, as well as a conclusion.

Chapter 1: Introduction to Generative Adversarial Networks

We begin the thesis with an introduction chapter on Generative Adversarial Networks
(GANs), a framework for training deep neural networks as generative models that is par-
ticularly well suited for image generation. We highlight their limitations, most notably
the instability of the training process and the lack of diversity in the generated data. We
investigate its conditional variants. These allow for exerting some control over the gen-
eration process by applying constraints on the generated data, as well as domain transfer
approaches, the task of projecting data from one domain to another (e.g., converting a
painting into a photo). We present an overview of the different techniques used to coun-
teract the limitations of GANs by improving the neural network architecture and changing
the cost function of the GAN. Finally, we conclude this chapter by discussing the diffi-
culties involved in evaluating generative models and examine the most commonly used
metrics for evaluating GANs.
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Chapter 2: Image reconstruction as an auxiliary task to generative mod-
eling

In this chapter, we propose an overview of the task of reconstructing altered images with
generative models. As a contribution to this problem, we propose an approach for con-
ditioning GANs using an explicit auxiliary reconstruction task. Combined with a tech-
nique for limiting the diversity-loss issues, optimizing this auxiliary task during the train-
ing process, the obtained models are able to quickly reconstruct images, in comparison
to similar methods, such as compressed sensing-based approaches, that need to solve
an optimization problem for each reconstructed image. A byproduct of our approach is
a hyper-parameter that controls the impact of the reconstruction loss on the generative
model. We show that this hyper-parameter directly influences a trade-off between the
fidelity of the reconstruction and visual quality of the generated images.

We evaluate our approach on several image reconstruction tasks using classical image
datasets such as MNIST or CIFAR10, as well as a texture image dataset. Finally, we apply
this method to a geology problem, namely reconstructing underground water channels
formations using very few points. Empirical results show that our approach equals or out-
performs existing approaches while providing the ability to control the trade-off between
the visual quality and the fulfillment of the constraints.

Chapter 3: Domain-transfer with auxiliary tasks for generative model-
ing

In this chapter, we study the conditioning of domain-transfer models that makes use
of Generative Adversarial Networks. Such models, usually revolving around the idea of
cycle-consistency, allow for transferring images from one "domain" to the other without
the used of paired data, which is usually very hard to obtain. We focus on the task of trans-
ferring a color image to the polarimetric domain. Such images bear hard constraints that
directly stem from the physics of light, thus unconstrained domain-transfer approaches
cannot solve this problem by themselves.

We introduce new auxiliary tasks based on a reformulation of these constraints and
propose an algorithm to integrate them to the training of a domain-transfer model. We
show that this method performs well on a polarimetric image generation task, both in
term of visual quality and respect of the constraints.

Finally, we apply this approach to a data-augmentation task. Indeed, no large polari-
metric images datasets are publicly available at the time of writing this thesis, so training
deep models to solve problems on polarimetric images is difficult. By transferring color-
images labeled datasets to the polarimetric images domain, we can produce large datasets
of labeled polarimetric images. We show that such a dataset increases the performance of
a detection network in polarimetric images.
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Chapter 1

Introduction to Generative Adversarial
Networks

Chapter abstract
In this chapter, we propose an introduction to generative modeling and some solutions

to tackle this problem. Specifically, we present the Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014), a framework for training deep neural networks as generative mod-
els that is particularly suited to the task of image generation. We introduce the theoreti-
cal insight behind Generative Adversarial Networks and review different GAN variants for
learning conditional models. We discuss their limitations, namely: the instability of the
GAN training process; the lack of statistical diversity among the generated samples; and the
difficulty to generate high-dimension, high-quality images. We discuss the recent advances
to overcome some of these limitations, through the neural networks’ architecture or varia-
iations of the objective functions. Finally, we consider the problem of evaluating generative
models, notably the intrinsic quality of generated samples, and review the most commonly
used metrics and their limitations.
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1.1 Introduction to generative modeling

In this section, we first propose an introduction to generative modeling with a focus on
latent variable models. Generative modeling with deep neural networks has been a chal-
lenging task due to the stochastic nature of sampling, which prevents the computation of
gradient, thus preventing the classical training of a deep model with stochastic gradient
descent.

We introduce recent approaches such as variational auto-encoders (VAEs) (Kingma
and Welling, 2014), flow methods (Dinh et al., 2017; Kingma and Dhariwal, 2018) and the
techniques they used to overcome this restriction and train models through maximum
likelihood estimation.

1.1.1 Generative modeling with maximum likelihood estimation

Generative modeling is the task of learning a statistical model of the underlying probabil-
ity distribution of some observable variable in order to generate samples from that dis-
tribution. In other words, it describes how data are generated in terms of a probabilistic
model. Indeed, whereas a classification model tries to find decision boundaries by fit-
ting a parametric model pθY|X (with parameter θ) to a conditional probability distribution
pY|X of data x ∈ X and label y ∈ Y , a generative model aims to fit pθX to pX the intrinsic
marginal distribution of the data and to provide a sampling mechanism based on pθX (see
Figure 1.1).
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Figure 1.1: Discriminative modeling vs Generative modeling. Left: Discriminative modeling, the
model aims to assign a target label to each sample. Right: Generative modeling, the model aims
to learn the underlying probability distribution of the data.

Learning a discriminative model (Equation (1.1)) and a generative one ( Equation
(1.2)) can be formulated as a maximum log-likelihood estimation

θ∗ = argmax
θ

E
x,y∼pY|X

log pθY|X , (1.1)

θ∗ = argmax
θ

E
x∼pX

log pθX . (1.2)

A simple example of generative model are Gaussian Mixture Models (GMM) . Given x ∈Rd ,
they consist in a sum of k Gaussian distributions N (µi ,Σi ),1 ≤ i ≤ k,µi ∈ Rd ,Σi ∈ Rd×d

which are all attributed a selection probability pZ(z = i ) = πi , with z ∈Z , so that pX|Z=i =
N (µi ,Σi ) . The GMM is then formulated as

pθX (x) =∑
z

pZ(z)pθX|Z (x|z) , (1.3)

with the log-likelihood

log
∑

x∼pX

pθX (x) = ∑
x∼pX

log
k∑

i=1
πi N (x|µi ,Σi ) . (1.4)

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977) can be used to find
the parameters θ∗ maximizing the log-likelihood for such a model. Once the model is
trained, sampling a new data is done by picking a component k from the distribution pZ

and then drawing a sample from the Gaussian distribution pX|Z=i =N (µ∗
i ,Σ∗

i ).

1.1.2 Latent variable models

For GMMs, sampling a new point consists in, once the components have been selected,
sampling a point according to a normal distribution. This sampling can be done by using
reparametrization: instead of directly sampling x ∼ N (µ∗

k ,Σ∗
k ), one can sample a latent

variable z ∼ N (0,I) and compute x = G(z;µ,Σ) = µ+Σz. Such a model, that consists in
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Figure 1.2: A mapping between a latent space Z and the high-dimensional space of an image set
X .

a deterministic function G : Z→ X between Z the latent variable space and X the space
of the data, with parameters θ (θ= (µ,Σ) in this case) applied to a random latent variable
drawn from a fixed distribution pZ is a latent variable model (see Figure 1.2).

Since more complex distributions do not necessarily provide a simple sampling mech-
anism, using a latent variable model allows to outsource the stochastic part of the sam-
pling process from the learning process and to only learn the deterministic function G(z;θ).
More formally, instead of directly modeling pX, a latent variable model learns a deter-
ministic mapping pGX|Z . From this mapping, the full generative model can be obtained
through marginalization

pGX (x) =
∫
Z

pZ(z)pGX|Z (G(z;θ))dz . (1.5)

The marginalization allows for the use of an arbitrary flexible G. However, the actual eval-
uation of pGX is very likely to be intractable due to the integral over Z , which prevents the
training of such a model as is. While the marginal distribution pGX cannot be explicitly
computed for any function G, several solutions exist to overcome this problem. Hereafter,
we describe some latent-variable methods to train deep generative models.

Variational Auto-Encoders

Variational Auto-Encoders (VAE) (Kingma and Welling, 2014) are deep latent variable mod-
els that learn the distribution of the latent model pGX|Z using an auto-encoder1 approach
to train the generative model. In classical auto-encoders, two functions F : X → Z and
G : Z →X are learned jointly by minimizing

LAE = E
x∼pX

||x−G(F(x))|| , (1.6)

1see Glossary, Appendix B
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Figure 1.3: Variational auto-encoder framework

where ||.|| is usually a `1, `2 or Frobenius norm, F is an encoding function that maps x to
a latent representation ẑ = F(x) and G is a decoding function that maps a latent variable z
to a sample x̂ = G(z). However, in the case of generative modeling, z needs to be sampled
from a random distribution so that generating a new sample x̂ can be done by sampling
z ∼ pZ and computing x̂ = G(z), with pZ usually chosen to be N (0,I), with I the iden-
tity matrix. To do so, the VAE approach uses the so-called reparametrization trick, that
consists in having F(x) output the mean and the covariance matrix (µx,Σx) of a normal
distribution for each sample x. By first sampling a random vector ε ∈ Rp as ε ∼ N (0,I),
and using it as a parameter to the model, the random latent code z ∼ pZ|X can be com-
puted as z =µx+Σxε. This is equivalent to sampling z ∼N (µx,Σx) and is differentiable by
considering ε as a parameter. To train the model F, VAEs minimize the Kullback-Leibler
(KL) divergence between the distribution N (µx,Σx) learned by the encoder and the real
distribution pZ|X, and since pZ is chosen Gaussian, this KL terms can be explicitly com-
puted as

DKL

(
N (µx,Σx)

∣∣∣∣∣∣N (0, I)
)
= 1

2

(
Tr (Σx)+µ>

x µx −d − log(detΣx)
)

, (1.7)

with d being the dimension of the distribution N (0, I). By combining the auto-encoder
and KL terms, we get the objective function of the VAE (summed up in Figure 1.3) defined
as

LVAE(F,G) = E
x∼N (µx,Σx)

[||x−G(z)||22
]−DKL

(
N (µx,Σx)

∣∣∣∣∣∣pZ

)
. (1.8)

Once the model is trained, generating a new sample x̂ then consists in sampling a random
vector z ∼N (0,1) and computing x̂ = G(z).

Normalizing flows

Normalizing flow based techniques are latent variable models that aim to tackle the marginal-
ization problem by using the change of variable formula

pGX = pZ

∣∣∣det
(∂G(z)

∂zT

)∣∣∣−1 = pG−1
X

∣∣∣det
(∂G−1(x)

∂xT

)∣∣∣ , (1.9)

with z ∼ pZ a latent variable. This formulation has notable advantages such as explicitly
allowing the computation of the exact inference, that is to compute z such that x = G(z)
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Figure 1.4: The affine transformation used in RealNVP. Left: Forward pass, Right: backward pass. A
variable x is split in two variables x1 and x2. The non-linear functions s(x1) and t (x1) are then used
to compute the output variables y1 = x1 and y2 = s(x1)x2 + t (x1). Inverting this transformation can
then be done by computing x1 = y1 and x2 = (y2 − t (y1))/s(y1). Figure by Dinh et al. (2017)

for any given sample x. However, the model has to enforce some tough constraints: the
input and output dimensions must be the same; G must be invertible; and the compu-
tation of the determinant of the Jacobian needs to be efficient and differentiable. These
constraints can be enforced through strong restrictions on the architecture of the model.
By limiting the transformations to a set of invertible transformations with a tractable Jaco-
bian determinant, the model remains invertible and the determinant of its Jacobian can
be computed efficiently.

Real-valued non-volume preserving (RealNVP) normalizing flows (Dinh et al., 2017)
uses affine coupling transforms, which converts a set of variable by adding and scaling it
by a non-linear transformation, usually computed with deep neural networks (see Figure
1.4). These transformations can be inverted by substracting and downscaling by the same
transformed variables. Their Jacobians are triangular, therefore computing the determi-
nants can be done efficiently by computing the product of their diagonal terms. Glow
(Kingma and Dhariwal, 2018) extended this set of transformations to 1×1 invertible con-
volutions as well as a variant of Batch Normalization1 (Ioffe et al., 2015) that allows for
more expressiveness in the model.

1.2 Generative Adversarial Networks

As for the latent-variable generative models, Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) aim to learn a mapping between samples from the latent distribution
(usually normal or uniform) and samples from the data distribution. However, instead of
directly relying on the likelihood and trying to estimate the distribution through marginal-
ization, it aims to minimize the distance between the modeled distribution and the real
data distribution. Therefore, GANs are sometimes qualified as likelihood-free generative
models.

1see Glossary, Appendix B
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αθ

Div(αθ‖ β)

αθ∗,β

Figure 1.5: A divergence Div(αθ||β) can capture the distance between a parametric density model
αθ and the distribution β from which a set of samples are observed. Density fitting can then be
formulated as finding θ∗ = argminθDiv(αθ||β), such that αθ∗ is the best fit model.

We denote the generative model as a deterministic function G :Z→X, that maps sam-
ples z ∼ pZ from the latent distribution pZ and samples x ∼ pX from the the real data dis-
tribution. We seek the modeled distribution as pGX = G]pZ

1.
In this section, we introduce the formulation of adversarial learning as an approxima-

tion of a divergence. Leveraging this formulation, we present the Generative Adversarial
Networks framework as a pair of models, the generator model and a discriminator model,
which is a binary classifier that aim to distinguish real and generated samples. Training
these two models as a min-max problem, using alternate gradient descent, approximates
the minimization of the Kullback-Leibler divergence between the real data distribution
and the distribution of generated samples. We discuss some limitations of this model,
most notably stability issues implied by alternate gradient descent, and the lack of statis-
tical diversity.

1.2.1 Generative modeling through divergence approximation

A divergence Div(pX||qX) between two distributions pX and qX is a weak form of distance
between these distributions (see Figure 1.5), thus minimizing such a divergence allows for
a parametric distribution pθX that fits a target distribution pX. Whenever the divergence
is both tractable and differentiable w.r.t the parameters θ, stochastic gradient descent can
be used to estimate θ, thus allowing for the training of a generative model.

However in practice, such divergences are usually intractable for most distributions.
Hence GANs aim to estimate the divergence by relying on another learnable function that
will act as a surrogate to the divergence, the discriminator model D. This discriminator is
trained as a binary classifier that predicts the probability of a sample x to be issued from
the real distribution pX or generated from pGx using binary cross-entropy (see Figure 1.6)
as

LD(D,G) = E
x∼pX

[logD(x)]+ E
x̂∼pGx

[logD(1− x̂)] . (1.10)

1] is the push-forward operator (Bogachev, 2007) that transfers a probability distribution from one space
to another using a function. Here, G]pZ represents the distribution obtained by "pushing" pZ through the
function G.
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Figure 1.6: Generative Adversarial Network framework

The intuition behind this model is that once the discriminator is trained, maximizing its
error on generated samples x̂ ∼ pGX w.r.t G will push pGX towards pX.

As the optimum of f (x) = a log(x)+b log(1−x) is a
a+b , the discriminator that maximizes

LD(D,G) for a fixed G is given by

D∗
G(x) = pX(x)

pX(x)+pGX (x)
. (1.11)

By plugging back Equation 1.11 into LD(D,G) (Equation 1.10), we get

max
D

LD(D,G) = E
x∼pX

[
log

pX(x)

pX(x)+pGX (x)

]
+ E

x∼pGX

[
log1− px(x)

pX(x)+pGX (x)

]
.

As said previously, the objective of the generator model G will be to maximize the error
of the discriminator D. Thus, we can formulate the objective function LG(G) related to
G as LG(G) = maxD LD(D,G). Up to additive and multiplicative constants, LG(G) can be
reformulated (Goodfellow et al., 2014) as

LG(G) = DKL

(
pX

∣∣∣∣∣∣pX +pGX

2

)
+DKL

(
pGX

∣∣∣∣∣∣pX +pGX

2

)
= 2 ·DJS

(
pX

∣∣∣∣∣∣pGX

)
. (1.12)

Algorithm 1 The GAN training algorithm

Require: DX the real dataset, G the generator and D the discriminator models
repeat

sample a mini-batch {xi }m
i=1 from DX

sample a mini-batch {zi }m
i=1 from distribution pZ

update D by stochastic gradient ascent of∑m
i=1 log(D(xi ))+ log(1−D(G(zi )))

sample a mini-batch {z j }n
j=1 from distribution pZ

update G by stochastic gradient descent of∑n
j=1 log(1−D(G(z j )))

until a stopping condition is met
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Figure 1.7: Conditional Generative Adversarial Networks

Assume the discriminator is trained to convergence. Minimizing LG(G) is therefore
equivalent to minimizing the Jensen-Shannon (JS) divergence between pX and pGX . This
training process is summarized as the mini-max problem

argmin
G

min
G

LGAN = argmin
G

max
D

E
x∼pX

[logD(x)]+ E
z∼pZ

[log1−D(G(z))] . (1.13)

From Equation 1.12, we find that the mini-max game has, assuming infinite capacity for
both G and D, a global optimum for pX = pGX . The GAN training algorithm then consists
in alternatively updating the discriminator and the generator via gradient ascent/descent
respectively. A summary of this process is presented in Algorithm 1.

1.2.2 Conditional modeling with generative adversarial networks

While classical generative models such as GANs try to unconditionally approximate the
real-data distribution pX, a conditional generative model aims to match the conditional
distribution pX|Y related to pX,Y the joint distribution that constitutes the data, where y ∈
Y is a label of any kind.

Several extensions to the GAN framework allow for conditional modeling: Condi-
tional GANs (CGANs) (Goodfellow et al., 2014; Mirza and Osindero, 2014), simply adds
the label y as an input for both the discriminator and the generator (see Figure 1.7). It
results the optimization problem

argmin
G

max
D

LCGAN = argmin
G

max
D

E
x,y∼pX,Y

[logD(x,y)]+ E
y∼pY
z∼pZ

[1− logD(G(y,z), y)] . (1.14)

Other approaches such as Auxillary Classifier GAN (ACGAN) (Odena et al., 2016) try to
learn the conditional distribution by adding an explicit loss term to the optimization
problem. ACGAN aims to learn a conditional generative model with discrete labels by
adding another output, with dimension n equal to the number of labels, to the discrimi-
nator that acts as a classifier C sharing its weights with the discriminator (see Figure 1.8).
The model is then trained by having both the generator and the discriminator minimize
the categorical cross-entropy between the real and predicted labels.
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Figure 1.8: Auxiliary Classifier Generative Adversarial Networks approach.
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Figure 1.9: Triple Generative Adversarial Network approach.

LACGAND (D,G) = LGAN(D,G)+ E
(x,y)∼pX,Y

[
−

n∑
i=1

yi C(x)i

]
, (1.15)

LACGANG (D,G) = LGAN(D,G)− E
y∼pY
z∼pZ

[
−

n∑
i=1

yi C(G(z))i

]
. (1.16)

TripleGAN (Li et al., 2017a) considers a classifier C, disjoint from D, which can be pre-
trained or learned jointly to the GAN models. This classifier is then used to train the gen-
erator to generate images whose label ŷ = C(G(y,z)),y ∼ pY,z ∼ pZ actually corresponds to
the original label y (see Figure 1.9). This is done by adding a classification loss to the GAN
objective function, as

LTr i pl eGAN(D,G,C) = LGAN(D,G)+ E
y∼pY
z∼pZ

[
−

n∑
i=1

yi logC(G(y,z))
]

. (1.17)
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Figure 1.10: Pix2Pix domain-transfer approach

1.2.3 Domain-transfer approaches using generative adversarial networks

Domain-transfer is the task of learning a mapping GYX : X→ Y such that the generated
samples x̂ are issued from the distribution pX while maintaining some semantic informa-
tion. This can be, for example, changing the color palette of an image, or transforming a
photo of an object into a painting of the same object (see Figure 1.11).

Several approaches exist for domain-transfer (Isola et al., 2016; Taigman et al., 2017)
that require paired samples {(x1,y1), ..., (xs ,ys)},xi ∈ X,yi ∈ Y from both domains. CGANs
already learn to model the conditional distribution pX|Y, and adding a way to enforce the
consistency of the semantic information enables domain-transfer.

Pix2Pix (Isola et al., 2016) implemented this approach explicitly by using paired sam-
ples (x,y) ∼ pX,Y and by forcing the generator to minimize a reconstruction term (in this
case, the authors choose the `1 norm) between x and G(y,z) (see Figure 1.10) as

argmin
GYX

max
D

Lp2p = argmin
GYX

max
D

LCGAN(D,G)+λ E
(x,y)∼pX,Y

z∼pZ

||x−GYX(y,z)||1 . (1.18)

However, these approaches rely on paired data which can be very hard to obtain, espe-
cially in the case of natural images. Zhu et al. (2017a) present an example of this issue
with a domain-adaptation task, in which a model turns images of horses into zebras. In
such a case, it is very hard to get paired images of identical zebras and horses (see Fig-
ure 1.11). A solution to this problem of paired data was proposed in the form of cyclic
consistency (Kim et al., 2017; Liu et al., 2018; Yi et al., 2017; Zhu et al., 2017c). Instead
of training a single model GXY with a reconstruction loss between x and G(y), the cycle-
consistent approaches train two domain-transfer models simultaneously: GYX and GXY

Figure 1.11: Examples of domain-transfer with CycleGAN (Zhu et al., 2017a). For this kind of im-
ages, paired data can be hard to acquire.
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Figure 1.12: The CycleGAN approach. Half of the training setup is illustrated, the other half con-
sisting in the same setup but with inverted x and y

that push-forward pY onto pX and pY onto pX, respectively (see Figure 1.12). This allows
to compute the reconstruction errors ||x−GYX(GXY(x))||1 and ||y−GXY(GYX(y))||1, which
ensure that the content of the image is preserved through the mappings. Note that these
reconstruction errors do not require paired data (x,y).

The training of the two models in done an adversarial setup, with two discriminators
DX and DY, and is wrapped up in the CycleGAN approach (Zhu et al., 2017a) as

min
GXY ,GYX

max
DX ,DY

LCycGAN(GXY,GYX,DX,DY) =
min

GXY ,GYX
max
DX ,DY

LGAN(GYX,DX)+LGAN(GXY,DY)

+λ
[
E

x∼pX
||x−GYX(GXY(x))||1 + E

y∼pY
||y−GXY(GYX(y))||1

]
. (1.19)

Algorithm 2 CycleGAN training algorithm
Require: DX and DY two unpaired datasets, GXY and GYX the mapping networks, DX and

DY the discrimination models, m the mini-batch size, λ a hyperparameter
repeat

sample a mini-batch {xi }m
i=1 from DX

sample a mini-batch {yi }m
i=1 from DY

update DX by stochastic gradient ascent of
∑m

i=1

(
LGAN(GYX,DX)

)
update DY by stochastic gradient ascent of

∑m
i=1

(
LGAN(GXY,DY)

)
update GXY by stochastic gradient descent of∑m

i=1

(
LGAN(GYX,DX)

)+λ(||xi −GYX(GXY(xi ))||1 +||yi −GXY(GYX(yi ))||1
)

update GYX by stochastic gradient descent of∑m
i=1

(
LGAN(GXY,DY)

)+λ(||xi −GYX(GXY(xi ))||1 +||yi −GXY(GYX(yi ))||1
)

until a stopping condition is met

The CycleGAN training process then consists in alternatively updating the two dis-
criminators and the two generators via gradient ascent/descent (Algorithm 2). Note that,
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Figure 1.13: An example of real losses obtained during the training of a GAN.

as opposed to the previous approaches, CycleGAN does not use random vectors z ∈ pZ to
generate images. The stochastic part of the generation process is instead contained in the
initial image y ∼ pY.

CycleGAN, as well as similar methods relying on cycle-consistency such as DualGAN
(Yi et al., 2017) or DiscoGAN (Kim et al., 2017), have been used in several domains. Among
them are medical imaging (Chen et al., 2019), training models with synthetic images ob-
tained with a simulator, for example for robot grasping (Bousmalis et al., 2018)), for image
segmentation (Perone et al., 2019) or for converting near-infrared images to color images
Sun et al. (2019). These approaches shows that even conversion between different image
modalities can be done with cycle-consistent generative models.

1.2.4 Limitations

GANs have shown strong advantages over the classical generative modeling methods,
such as generating sharper samples than VAEs and normalizing flows (Danihelka et al.,
2017). They however bear limitations, namely the instability of the training procedure
and the lack of diversity in the generated samples (mode-collapse).

Instability

Training GANs consist in solving a minimax problem. While the alternate gradient de-
scent algorithm is a common method for solving such a problem, the alternating updates
can cause significant instabilities during the training process. This can result in oscillating
values of the GAN objective function which prevents the optimization from converging
(Mescheder et al., 2018) and makes it difficult to set a stopping criterion (see Figure 1.13
for an illustration).

The instability of the GAN training has first been conjectured to be caused by the bad
quality of the gradients obtained when G generates bad samples, which makes D strongly
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Figure 1.14: Reverse KL (left) and KL (right) divergence between the true orange distribution and
the mode-collapsed purple distribution. When computing these distances, the reverse KL is lower,
even if a missing mode is clearly visible.

reject these samples and therefore saturating the loss. A proposed solution (Goodfellow
et al., 2014) was to slightly change the generator’s loss function from log(1−D(G(z))) to

ŁG(D,G) =− E
z∼pZ

log(D(G(z))) , (1.20)

which helps considerably in avoiding failures of the training process (Radford et al., 2015).
While this new loss function converges to the same minimum as the original loss term,
minimizing it no longer correspond to minimizing a JS divergence but the non-symmetric
reverse KL divergence, minus a JS term (Arjovsky and Bottou, 2017). More formally,

E
z∼pZ

[
∇G logD∗(G(z))

]
=∇G

[
DKL

(
pGX

∣∣∣∣∣∣pX

)
−2DJS

(
pGX

∣∣∣∣∣∣pX

)]
. (1.21)

However, albeit an empirical reduction of the instability, this new loss has been proved
to not solve the instability problem (Arjovsky and Bottou, 2017). One hypothesis for this
issue is the degenerate behavior of the JS and KL divergences when the real distribution
and the learned one does not share the same support. Several tricks can be applied to
the training process in order to avoid this pitfall (Heusel et al., 2017; Salimans et al., 2016;
Sønderby et al., 2017), such as adding noise on the discriminator input or using separate
optimizers for the generator and the discriminator. Although more recent approaches
(more thoroughly detailed in section 1.3), seem to help alleviate this issue, instability can
still be observed in approaches that make full use of them (Brock et al., 2018). Even though
several techniques aimed to solve this issue (Arjovsky et al., 2017; Li et al., 2017b; Nowozin
et al., 2016), to our knowledge at the time of writing this thesis, there are neither clear
consensus on the theoretical causes of this instability nor robust efficient solutions.

Mode collapse

Although the aforementioned change of loss from log(1−D(G(z))) to − log(D(G(z))) can
help solving the instability issues, using the reverse KL divergence is conjectured to be
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one reason of the loss of statistical diversity. Reasons of the lack of diversity are twofold:
the mode collapse problem that causes different z1,z2 to be mapped to samples G(z1) and
G(z2) that are very close; and mode dropping which leads to missing modes in the gener-
ated samples, as only a localized support of the target distribution can actually be mapped
to. Indeed, the reverse KL divergence does not penalize "missing" parts of the learned dis-
tribution pGx , which correspond top some points in the support of pX that have zero (or
near-zero) probability on pGX (see Figure 1.14).

Another conjectured cause is raised by the alternate gradient descent. Indeed, this al-
gorithm does not behave in the same way when formulating the problem as a minimax
problem G∗ = minG maxD LGAN or maximin problem G∗ = maxD minG LGAN. Most notably,
using alternate gradient descent to solve the maximin problem can push the generator to-
wards mapping every z to the single most probable x, evaluated by the generator (Good-
fellow, 2016).

As for the instability problem, there is, to our knowledge, no clear consensus on the
origin mode collapse. However, a trade-off seems to emerge: using the original GAN cre-
ates instability which leads to a drop of visual quality, and using the non-saturating vari-
ant that stabilizes the training creates a lack of diversity. This extends to more recent
approaches in which higher visual quality induces a loss of diversity (Brock et al., 2018).

In the most extreme cases, this loss of diversity can result in a complete collapsing of
the sampling mechanism, making it impossible to draw diverse samples. In that case, the
generated images x̂ = G(z) can be considered independent from z. This loss of diversity,
however, is not a severe issue for conditional tasks that consists in mapping an input to
one of many feasible outputs, the most notable of these tasks being domain-transfer (see
Section 1.2.3).

1.3 Improvements to Generative Adversarial Networks

Recently, Generative Adversarial Networks have made progress towards generating real-
istic high definition images (Brock et al., 2018; Karras et al., 2020; Wang et al., 2018a) (see
Figure 1.15). These notable successes leverage an overwhelming amount of incremen-
tal enhancements and variations of the original GAN (Hindupur, 2017). In this section, a
summary of some GAN variants is proposed. We consider two objectives: enhancing the
visual quality of the generated samples and ensuring some diversity among the gener-
ated samples. We discuss three categories of approaches for this: changing the optimized
divergences through alternative loss functions; regularization, normalization and auxil-
iary tasks and improvements to the training process; and the architecture of the neural
networks.

1.3.1 Changing the divergence

As mentioned in Subsection 1.2.4, the original GAN loss (see Equation 1.13) as well as
its non-saturating variation (Equation 1.20) show strong limitations, the former causes
instability and the latter causes a loss in diversity. As potential solutions, several new loss
terms are envisioned.
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Figure 1.15: Samples generated with the BigGAN approach (Brock et al., 2018). By combining sev-
eral recent techniques for improving GANs with very large models and datasets, GANs can gener-
ate nearly photo-realistic images.

An alternative to the objective function to the Jensen-Shannon and the reverse Kullback-
Leibler divergences is the least-squares loss, which leads to the following discriminator
error

LLSGAN(D,G) = E
x∼pX

[
(1−D(x))2

]
+ E

z∼pZ

[
(D(G(z)))2

]
. (1.22)

Such a loss term was considered by Mao et al. (2017) for their Least-Squares GAN(LSGAN).
While this loss function follow the same idea as in the original GAN method, LSGAN ac-
tually optimizes Pearson’s χ2 divergence. Empirically, LSGANs show more stability as well
as a higher visual quality of the generated samples than the original GAN approach. The
reason potentially resides in a better quality of the gradients.

Although showing notable differences in their behavior when optimized, both the
Jensen-Shannon, reverse Kullback-Leibler and Pearson χ2 divergences are part of the f -
divergence family (Liese and Vajda, 2006) defined as

D f (pX||qX) = E
x∼qX

f
(pX(x)

qX(x)

)
, (1.23)

where f : R+ → R is a convex, lower-semi-continuous function satisfying f (1) = 0. By
carefully choosing f , we can recover the KL ( f (u) = u logu), reverse KL ( f (u) =− logu), JS
( f (u) =−(u+1)log( u+1

2 +u logu)) and Pearson’s χ2 ( f (u) = (u−1)2) divergences. Nowozin
et al. (2016) proposed a generalized approach for these divergences as well as several new
GAN formulations based on divergences such as the Squared Hellinger distance ( f (u) =
(
p

u −1)2) or the Total Variation ( f (u) = 1
2 |u −1|). The hinge loss variant for GANs (Lim

and Ye, 2017), which redefines the loss of the discriminator as

Lhi ng eD (D,G) =− E
x∼pX

[
min(0,D(x)−1)

]
− E

z∼pZ

[
min(0,−D(G(z))−1)

]
, (1.24)

can also be expressed as the Reverse Kullback-Leibler divergence (Miyato et al., 2018).
While the f -divergences have been the seminal approach to GANs, they can exhibit

strong issues. Arjovsky et al. (2017) have shown that these divergences can have degen-
erate behaviors, most notably when the distributions pX and pGX have no shared sup-
port, causing the divergence to be non-continuous and non-differentiable. As a solution
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Approach Divergence

f -divergences
GAN (Goodfellow et al., 2014) Jensen-Shannon

NS-GAN (Goodfellow et al., 2014) Reverse KL - 2·Jensen-Shannon
LSGAN (Mao et al., 2017) Pearson χ2

EBGAN* (Zhao et al., 2017) Total variation
Geometric GAN (Lim and Ye, 2017) Reverse Kullback-Leibler

f -GAN (Nowozin et al., 2016) Various f -divergences

Integral Probability Metrics (IPMs)
EBGAN* (Zhao et al., 2017) Total variation

WGAN (Arjovsky et al., 2017) Wasserstein distance
Cramér GAN (Bellemare et al., 2017) Energy Distance (Unbiased WGAN)

MMDGAN (Li et al., 2017b) Maximum Mean Discrepancy
Fisher GAN(Mroueh and Sercu, 2017) Fisher IPM

Table 1.1: A summary of common f -divergences and IPM used to train GANs. Note than the Total
Variation can be formulated as both.

to this issue Arjovsky et al. (2017) proposed the Wasserstein GAN (WGAN) by replacing
the Jensen-Shannon divergence by the Wasserstein-1 (or Earth-Mover) distance which
stems from optimal transport theory (Peyré and Cuturi, 2020). The Wasserstein distance,
albeit having many different formulations, can be expressed in its dual form using the
Kantorovich-Rubinstein duality (Kantorovich and Akilov, 1982) as

W(p||q) = sup
f ∈F

[
E

x∼pX
f (x)− E

x∼qX
f (x)

]
, (1.25)

where F = { f : || f ||L ≤ 1} is the set of 1-Lipschitz functions, ‖.‖L being the Lipschitz norm.
By using a parameterized family of functions D (in our case, a neural network), we can
formulate the Wasserstein GAN problem as

LWGAN(D,G) = min
G

max
D∈F

[
E

x∼pX
D(x)− E

z∼pZ
D(G(z))

]
. (1.26)

This formulation, however, requires the discriminator to be 1-Lipschitz. This prop-
erty is enforced done by clipping the weights W of the discriminator so that each weight
wi , j is in a fixed interval wi , j ∈ [−c,c], with c being a hyper-parameter. Overall the solu-
tion proved to be quite harmful in terms of visual quality by Gulrajani et al. (2017), who
proposed the Wasserstein GAN with Gradient Penalty (WGAN-GP). WGAN-GP replaces
the clipping by a penalty on the gradient, leading to an additional loss term that pushes
the discriminator towards having a gradient with a norm close to 1. Hence, the resulting
objective function is formulated as

WGP(D,G) = E
x∼pX

D(x)− E
z∼qz

D(G(z))+λ E
x̂∼pX̂

[
(||∇x̂D(x̂)||2 −1)2

]
, (1.27)

where pX̂ is implicitly defined as an uniform distribution on straight lines between pairs
of points sampled on pX and pGX . The forged artificial distribution is used to overcome
the intractability of enforcing the gradient norm constraint.
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In the same way as the f -divergence family, the Wasserstein distance is a particular
case of the Integral Probability Metrics (IPM) (Müller, 1997), defined as

DF (pX||pGX ) = sup
f ∈F

[
E

x∼pX
f (x)− E

x∼pGX

f (x)
]

, (1.28)

where F is a family of real-valued bounded measurable functions. By setting restrictions
on F , several classical metrics can be recovered (Sriperumbudur et al., 2009), among
them the Wasserstein distance (F = { f : || f ||L ≤ 1}), as well as the Total Variation (F =
{ f : || f ||∞ ≤ 1}).

Also part of the IPM family of metrics is the Maximum Mean Discrepancy (MMD)
(Gretton et al., 2012), with the set F = { f : || f ||H ≤ 1}, where H is a Reproducing Kernel
Hilbert Space (RKHS) of kernel k : X ×X → R, thus relying on the choice of the kernel k.
MMD was used to formulate different MMDGAN (Bińkowski et al., 2018; Dziugaite et al.,
2015; Li et al., 2017b) approaches, which train GANs by estimating the MMD with gaus-
sian or quadratic kernels. More recent approaches leverage gradient penalty similarly to
WGAN-GP in order to learn the kernel k, which translates into special cases of MMD such
as Energy Distance GAN (Bellemare et al., 2017; Szekely and Rizzo, 2004) or the so-called
Fisher GAN (Mroueh and Sercu, 2017).

1.3.2 Improving the GAN framework and architectures

The original GAN approach (Goodfellow et al., 2014) used multi-layer perceptrons as dis-
criminator and generator. While showing good performance on small image datasets
such as MNIST (LeCun et al., 1998) or CIFAR10 (Krizhevsky, 2009), it struggled to scale up
to higher-dimension images. These relatively simple models were however quickly en-
hanced with specific architectures and training techniques designed for GANs. They were
later combined with more recent neural network architectures such as residual blocks1

(He et al., 2015) or U-Net1 encoder-decoder1 architectures (Ronneberger et al., 2015).
On one hand, the Laplacian Pyramid GAN (LAPGAN) (Denton et al., 2015) approach

first generates a low-resolution sample x0 = G0(z), with z ∼ pZ, using a GAN model G0 and
then iteratively upscales it K times using Laplacian Pyramids (Burt and Adelson, 1983).
In multi-resolution pyramids, an upscaling operator u(x,y) combines its input x with a
difference map y to produce a higher resolution image x′. In the LAPGAN approach, these
difference maps y are generated by several conditional generative models {G1, ...,GK} as
yn = Gn(z,xn−1),z ∼ pZ, then used to create an upscaled image xn = u(xn−1,yn) which
can in turn be used to generate a difference map yn+1 = Gn+1(z,xn). Each generator Gn

is trained as a GAN, in pair with its own discriminator Dn , which makes the approach
computationally expensive.

On the other hand, the Deep Convolutional GAN (DCGAN) (Radford et al., 2015) ap-
proach replaced the discriminator by a fully convolutional network (Springenberg et al.,
2015) with strided convolutions and introduced deconvolutional1 (or transposed convo-
lutional) layers in the generator. It also introduced dropout (Srivastava et al., 2014) and
Batch Normalization1 (Ioffe et al., 2015), and used both ReLU (Nair and Hinton, 2010)
and Leaky ReLU (Maas et al., 2013) as activation functions. DCGAN showed much better

1see Glossary, Appendix B
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Figure 1.16: Progressive growing of Generative Adversarial Networks. Convolutional layers are
added throughout the learning process, each time doubling the dimension of the generated im-
ages.

results than the original GAN and LAPGAN, while being more computationally efficient
than the latter, and thus became a standard baseline for image generation.

This approach was extended with tricks for mitigating its instability (Salimans et al.,
2016), such as adding Batch Normalization1 (Ioffe et al., 2015), smoothing the 0/1 label
used for training the discriminator or adding noise to the discriminator’s input (Sønderby
et al., 2017). They effectively helped stabilizing the training process. However, the DCGAN
approach remains limited in both the visual quality of the generated samples and in its
ability to generate high-dimension images.

Progressive GAN (Karras et al., 2017) first enabled high-dimensional image genera-
tion with GANs by progressively adding convolutional layers in the generator and the dis-
criminator during training. Thus, the training starts with low-dimension images and pro-
gressively increase the dimension of the images throughout the learning process, which
is illustrated in Figure 1.16. This approach yielded the first high-quality, high-definition
images generated with GANs.

Self-Attention GAN (SAGAN) (Zhang et al., 2018a) implements attention-driven1 mech-
anisms in GANs to model long-range dependencies. In most of the previous approaches,
such as LAPGAN, DCGAN or Progressive GAN, the images are successively upscaled using
convolutional layers. This causes issues in high-dimension, as some parts of the gen-
erated image could be inconsistent with each other due to the spatially local nature of
convolutions. Self-attention propose to use non-local modeling as a solution to this is-
sue. In the SAGAN approach, this is done by computing self-attention feature maps (see
Figure 1.17) that are then added to the convolution feature maps.

1see Glossary, Appendix B
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Figure 1.17: Self-attention module for the SAGAN approach. The
⊗

denotes matrix multiplication.
Figure by Zhang et al. (2018a)

1.3.3 Augmenting the objective

Another common design approach for both stabilizing the training process and increas-
ing diversity among the generated samples is to extend the GAN objective with additional
conditioning costs.

Training a GAN in a supervised way with conditioning approaches such as Conditional
GAN (Mirza and Osindero, 2014), Auxiliary Classifier GAN (Odena et al., 2016) or Triple-
GAN (Li et al., 2017a) (see Section 1.2.2) can enhance both the visual quality as well as the
diversity among the generated samples. Indeed, GANs seem to take profit from the su-
pervision added by the use of labels during the training process, even though it requires
labeled data.

Another category of approaches aim to include an inference process into the GAN
framework to retrieve the input noise from a generated sample, that is obtaining a func-
tion I such that I(G(z)) = z,z ∈ pZ. Adversarially Learned Inference (ALI) (Dumoulin et al.,
2016) and Bidirectional GAN (BiGAN) (Donahue et al., 2017) are two similar approaches
that aim to train a neural network I : X→ Z as an inference mechanism. By providing
the discriminator with either the input noise z or the input noise I(x) inferred from the
real sample x (see Figure 1.18), the networks G,D and the inference model I are trained
simultaneously by solving the problem

min
G,I

max
D

E
x∼pX

[
log(D(x, I(x)))

]
+ E

z∼pZ

[
log(1−D(G(z),z))

]
. (1.29)

The main interest of these approaches is that they increase the diversity among the gen-
erated samples, but the trained inference model serve several purposes. For example,
since the optimal generator and inference models G∗ and I∗ are inverse of each others,
as I∗(G∗(z)) = z,z ∼ pZ and G∗(I∗(x)) = x,x ∼ pX, this allow for approximating the likeli-
hood of a sample using the change of variable formula (see Equation 1.9) by considering
I∗ = G∗−1

.
Structured GAN (Deng et al., 2017) combines the supervised label-based conditioning

with the inference-based approaches by adding both an inference model I as well as a
classifier C that are trained jointly with the GAN. To do so, Deng et al. (2017) introduce
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1

Figure 1.18: Adversarially Learned Inference / Bidirectional GAN

two separate discriminators Dy and Dz that take respectively an image and its label, or an
image and its corresponding noise in the latent space. The Structured GAN framework
then consists in solving

min
G,I,C

max
D

Lx,y(G,D,C)+Lx,z(G,D,I)+Ly(G,D,C)+Lz(G,D,I) , (1.30)

where Lx,y and Lx,z are adversarial losses, Ly is a classification loss and Lz is a disentangle-
ment loss, that is a loss that aims to ensure that an inferred noise I(G(y,z)),y ∼ pY,z ∼ pZ

is independent from the class label y. These losses take the forms

Lx,y(G,D,C) = E
x∼pX

[
logDy(x,C(x))

]
+ E

y∼pY
z∼pZ

[
log(Dy(G(y,z),y))

]
(1.31)

Lx,z(G,D,I) = E
x∼pX

[
logDz(x, I(x))

]
+ E

y∼pY
z∼pZ

[
log(Dz(G(y,z),z))

]
Ly(G,D,C) =− E

(x,y)∼pX,Y

[ n∑
i=1

yi ,C(x)i

]
− E

y∼pY
z∼pZ

[ n∑
i=1

yi C(G(z))i

]
Lz(G,D,I) =− E

y1,y2∼pY
z∼pZ

[
||I(G(y1,z))− I(G(y2,z))||22

]
. (1.32)

Another method for conditioning GANs is Packing GAN (PacGAN) (Lin et al., 2018).
This technique, designed to help with the diversity issues of GANs, consists in using sets
of samples as input to the discriminator (see Figure 1.19) instead of single ones

LPacGAN = E
(x1,...,xl )∼pX

[
log(D((x1, ...,xl )))

]
+ E

(z1,...,zl )

[
log(1−D((G(z1), ...,G(zl ))))

]
. (1.33)

Since the real images x1, ...,xl should always be different from each other, the task of the
discriminator becomes very easy if the generator collapsed, that is if the generated sam-
ples G(z1), ...,G(zl ) are similar. This approach, albeit computationally more expensive
than the classical GAN framework because of the l generated samples needed to train
the discriminator, is very effective in preventing mode collapse. In practice, using two
samples is usually enough to prevent the model from mode collapsing.
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Figure 1.19: The PacGAN approach with two samples

Conversely to these conditioning approaches, several works showed that constraining
the discriminator to be Lipschitz continuous (Arjovsky and Bottou, 2017; Arjovsky et al.,
2017; Qi, 2018) improved the stability of the training process. Spectral Normalization
(Miyato et al., 2018) show that normalizing the weights of the discriminator using the
spectral norm of its weight matrix W ∈Rn×m , as

W′ = W

σ(W)
, (1.34)

with σ(W) being the spectral norm1 of W, is sufficient to ensure that the discriminator is
1-Lipschitz. Since computing the spectral norm for each training step is computationally
expensive, the authors propose to use the power method (Golub and van der Vorst, 2000)
to compute a fast approximation of the spectral norm. This is done by sampling a random
vector u ∈Rn and by iteratively computing

u ← W>Wu

||W>Wu||2
, (1.35)

from which the spectral norm is estimated as

σ(W) =
√

u>(W>W)u . (1.36)

This technique showed excellent results in stabilizing the GAN training process, notably
allowing for learning a conditional generative model that was able to generate samples
from the 1000 classes of the ImageNet dataset (Deng et al., 2009).

1.4 A note on the evaluation of GANs

Unlike discriminative models, evaluating and comparing generative models is a non-
trivial task. Two approaches can be envisioned: evaluating the intrinsic quality of gen-
erated samples with ad-hoc criteria or directly evaluating the likelihood of the generated
samples. However, unlike VAEs and flow-based models, GANs offer no explicit way to

1The spectral norm σ(W) of a matrix W is its maximum singular value
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evaluate or approximate the likelihood of the generated samples. Thus, a significant part
of the GAN literature resorts to a subjective visual evaluation of the generated samples.

In order to provide a more precise evaluation of the visual quality of generated sam-
ples, two ad-hoc methods; the Inception Score (IS) (Salimans et al., 2016) and Fréchet
Inception Distance (FID) (Heusel et al., 2017) were proposed, which both make use of
a pre-trained Inception v3 model (Szegedy et al., 2016), a deep classifier trained on the
ImageNet dataset (Deng et al., 2009).

Inception Score (IS)) (Salimans et al., 2016) is based on the evaluation of the entropy
of the labels y predicted by the Inception classifier of generated data. High-fidelity sam-
ples should be easier to classify and therefore have a conditional label distribution pGY|X
with low entropy. In addition to the high quality, the samples should be diverse, therefore
the marginal distribution

pGY =
∫
Z

pGY|X=G(z) dz (1.37)

should have a high entropy. By combining these two requirements, the IS is formulated
as

IS(y) = exp
[

E
x∼pGX

DKL

(
pGY|X

∣∣∣∣∣∣pGY

)]
. (1.38)

Although it has been widely used, IS has shown major issues (Barratt and Sharma, 2018)
that raise from the use of the conditional label distribution. Most notably, examples that
are correctly classified are not necessarily of the highest quality and the pre-determined
label classes can skew the estimation of the marginal distribution pG(y).

The Fréchet Inception Distance (FID) (Heusel et al., 2017) differs from IS since it eval-
uates a distance between the distributions of visual features computed on real and gener-
ated data, instead of relying on the labels. These features are extracted at the penultimate
layer of the Inception classifier. The distributions of these features are assumed Gaussian,
so that the Fréchet distance (or Wasserstein-2 distance) can be computed as

FID = ||µ–µG||2 +Tr (Σ+ΣG–2
√
Σ×ΣG) , (1.39)

where N (µ,Σ) and N (µG,ΣG) are the distributions of the extracted features of the real
and generated data, respectively. FID is considered more robust than IS (Barratt and
Sharma, 2018) and has been either completing or replacing the use of IS in recent works.

However, while these two metrics are considered to be the gold standard for evaluating
GANs, their reliance on the pre-trained Inception model may be an issue. Indeed, they
behave well when used to compare models learned on natural images datasets such as
ImageNet, but they cannot directly extend to other datasets such as medical images or
3D images. A solution to consider is the training of another classifier network on a more
adapted dataset, provided labeled data is available.

For the sake of completeness, we can also refer to some other notable (albeit less com-
monly used) metrics for evaluating visual quality (Borji, 2018): the Parzen window (or
kernel density) estimation (Parzen, 1962) aim to estimate the likelihood of the generated
samples; the Sliced Wasserstein Distance (Julien et al., 2011) is an efficient approximation
of the Earth-Mover (or Wasserstein) distance; the Kernel Inception Distance (Bińkowski
et al., 2018) is a recent metric that evaluates the maximum mean discrepancy between
Inception features with a polynomial kernel.
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Figure 1.20: Evolution of the visual quality of generated images from 2014 to 2020, using the
CelebA(-HQ) (Liu et al., 2015) datasets. Left: DCGAN (Radford et al., 2015), Center: ProgGAN
(Karras et al., 2017), Right: StyleGAN2 (Karras et al., 2020)

Finally it is to note that for conditioned models, computing the aforementioned met-
rics does not inform on the quality of the conditioning. However, since the conditioning
usually requires either labels or prior information, they can usually be used to evaluate
conditioned models, for example predicting the labels of generated samples with a pre-
trained classifier and computing the error between the predicted label and the original
one.

1.5 Conclusion

In this chapter, we introduce the Generative Adversarial Network (GANs) framework, which
consists in a pair of neural networks, namely the generator and discriminator, that con-
jointly learn to model a complex data distribution by minimizing a divergence between
the real data distribution and this modeled one. We present some of the techniques for
conditioning modeling with GANs, from simply providing the GAN models with labels to
adding a supervised auxiliary task to the training process. We present domain-transfer ap-
proaches with GANs, that is transferring an image from a data domain to another (for ex-
ample images of infra-red to color images), most notably the cycle-consistent approaches
that do not rely on hard-to-obtain paired data.

We expose some of the limitations of the GAN framework, most notably the stabil-
ity issues of the training process, the lack of diversity among the generated samples and
the difficulty to produce high-quality, high-dimension images. We review recent research
works that aim to solve these issues, among them variants of the loss functions, changes to
the architectures and advanced conditioning techniques. We also expose the difficulties
of evaluating generative models and present common solutions for assessing the visual
quality of generated samples.

Although we restrict ourselves to image generation, it is worth noting that the applica-
tion range of GANs covers text (Guo et al., 2018), video (Clark et al., 2020) or sound (Engel
et al., 2018) generation. These application domains are beyond the scope of the thesis.
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Chapter 2

Image reconstruction as an auxiliary task
to generative modeling

Chapter abstract
While the Conditional GAN approach (Mirza and Osindero, 2014) is generic enough to

model any kind of conditioning, it lacks some form of control or guarantee on the condi-
tioning procedure. In this chapter, we propose to explore an approach for conditioning a
GAN model through an image reconstruction task, which consists in (re-) generating images
from a very small subset of randomly-located pixels known beforehand. Such a problem is
directly motivated by applications in geosciences, most notably the generation of subsurface
rock structure (Laloy et al., 2019; Ruffino et al., 2017). We reformulate this conditional gen-
eration task as a Maximum A Posteriori estimation and propose a solution in the form of an
explicit auxiliary reconstruction task, which adds to the original unconditional GAN objec-
tive as an additional loss term. Complemented with the PacGAN (Lin et al., 2018) variant
for training GANs, this approach enables the generation of diverse samples from a scarce
pixel map. As opposed to the more classical Conditional GAN approach, this auxiliary task
is interpretable and a hyperparameter allows to balance visual quality and importance
of the conditioning in the learning procedure. We evaluate our approach on the classical
MNIST, FashionMNIST and CIFAR10 datasets, as well as a custom-made texture dataset.
Finally, we apply this approach to a standard dataset from geosciences of subsurface rock
formations.

The work in this chapter has led to the publication of the following papers:

• Cyprien Ruffino, Romain Hérault, Eric Laloy, and Gilles Gasso (Nov. 2019). “Pixel-
Wise Conditioning of Generative Adversarial Networks”. In: ESANN 2019 - Proceed-
ings, 27th European Symposium on Artificial Neural Networks, Computational In-
telligence and Machine Learning, pp. 25–30

• Cyprien Ruffino, Romain Hérault, Eric Laloy, and Gilles Gasso (Nov. 27, 2020). “Pixel-
Wise Conditioned Generative Adversarial Networks for Image Synthesis and Com-
pletion”. In: Neurocomputing 416, pp. 218–230
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CHAPTER 2. IMAGE RECONSTRUCTION AS AN AUXILIARY TASK TO GENERATIVE
MODELING

2.1 Introduction

Conditional GANs (Mirza and Osindero, 2014) are powerful methods for learning condi-
tional generative models. By simply providing a label to both the generation and discrim-
ination networks, CGAN is able to solve problems such as class-conditioned image gen-
eration (Mirza and Osindero, 2014), image-to-image translation (Isola et al., 2016; Wang
et al., 2018b), image super-resolution (Wang et al., 2020) or image inpainting (Pathak et
al., 2016). Although this approach combined with enough data and the appropriate neu-
ral network architectures has led to impressive results (Karras et al., 2020), it lacks some
mechanism to strongly enforce conditioning. Indeed, it only relies on the adversarial
learning procedure with no explicit method for including the constraints into the gen-
eration task.

In this chapter, we propose to address the problem of reconstructing images from very
few pixels (usually less than a percent). We refer to these conditioning pixels as a con-
straint map y. This kind of task has several applications, in which recovering the entirety
of a signal with very sparse measurements is necessary, for example in domains where
measuring the signal is expensive. Our motivation stems from the task of generating a
subsurface rock formation from very few measurements, which has direct applications in
geology, and following previous works on subsurface data generation (Laloy et al., 2018,
2019).

To reconstruct the missing information, a generative model must be able to generate
high quality images coherent with the given pixel values by leveraging on a training set of
similar images. Hence the model we seek aims to match the distribution of the real images
conditioned on a highly scarce constraint map. To explicitly enforce the generated images
to honor the prescribed pixel values, we use a reconstruction loss measuring how close
real constrained pixels are to their generated counterparts. By re-framing this problem
as a Maximum A Posteriori estimation, we show that minimizing this loss is equivalent to
maximizing the log-likelihood of the constraints given the generated image. Thereon we
derive an objective function comprising a reconstruction loss and the classical adversarial
loss of GAN. Both losses are balanced through a regularization parameter.

We analyze the influence of this hyperparameter in terms of quality of generated im-
ages and the respect of the constraints. Specifically, empirical evaluation on MNIST (Le-
Cun et al., 1998) and FashionMNIST (Xiao et al., 2017) evidences that the regularization
parameter allows for controlling the trade-off between the visual quality of the gener-
ated images and constraints fulfillment. Additionally, to show the effectiveness of our
approach, we conduct experiments on CIFAR10 (Krizhevsky, 2009), CelebA (Liu et al.,
2015) or texture (Jetchev et al., 2017) datasets using various deep architectures includ-
ing fully convolutional network, especially suited for texture generation. We also evaluate
our method on a classical geological problem which consists of generating 2D geological
images of which the spatial patterns are consistent with those found in a conceptual im-
age of a binary fluvial aquifer (Laloy et al., 2018; Strebelle, 2002). Our empirical findings
reveal that the used architectures may lack stochasticity in the generated samples, that is
the conditional GAN input is often mapped to the same output image irrespective of the
variations in latent code (Yang et al., 2019). We address this issue by resorting to the Pac-
GAN (Lin et al., 2018) strategy, which consists in providing pairs of images as input to the
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(a) Original
image

(b) Inpainting
input

(c) Denoising
input

(d) Reconstruction
input

Figure 2.1: Difference between regular image inpainting (2.1b), image denoising (2.1c) and the
problem undertaken in this work (2.1d) on the real sample depicted in sub-figure (2.1a).

discriminator during the training process instead of single images, for both the generated
images and the images from the dataset (see Section 1.3.3). Endowed with the PacGAN
learning procedure, our resulting GAN performs well both in terms of visual quality and
respect of the pixel constraints while keeping diversity among generated samples. Eval-
uations on CIFAR-10 and CelebA show that the proposed generative model always out-
performs the CGAN approach on the respect of the constraints and either matches up or
outperforms CGAN on the visual quality of the generated samples.

The remainder of the chapter is organized as follows. Section 2.2 introduces the prob-
lem of image reconstruction. In Section 2.3, we review the relevant related work focusing
first on two main groups of methods for dealing with image reconstruction from highly
altered training samples, namely compressed sensing (Candes and Tao, 2005) approaches
and conditional generation methods. Section 2.4 introduces our approach for image re-
construction, and proposes some theoretical insight. In Section 2.4.2, we present the
experimental protocol and evaluation measures along with quantitative and qualitative
effectiveness of our approach. The last section concludes the chapter.

To sum up, the contributions are as follows:
• We propose a method for learning to generate images with a few pixel-wise con-

straints, which deals with the trade-off between the image quality and the fulfill-
ment of the constraints.

• We showcase a lack of diversity in generating high-dimensional images which we
solve by using PacGAN (Lin et al., 2018) technique. Several experiments allow to
conclude that the proposed formulation can effectively generate diverse and high
visual quality images while satisfying the pixel-wise constraints.

2.2 The problem of image reconstruction

Image reconstruction is the task of retrieving an image from a very altered source, which
can take several forms from additive noise to missing parts of the image. In this chapter,
we study a rather extreme case of alteration, which is the removal of over 99% of the orig-
inal image, leaving only a handful of pixels scattered at random positions (Figure 2.1d).

Image reconstruction belongs to the family of problems consisting in retrieving an
image from an altered one. This includes problems such as inpainting (Bertalmio et al.,
2000) (Figure 2.1b) or image denoising (Goyal et al., 2020) (Figure 2.1c) which consists
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in retrieving missing or altered parts of an image. Image inpainting (Figure 2.1b) is the
task of recreating missing or damaged regions of an image. This kind of alterations have
numerous applications, from the restoration of damaged pictures (Oliveira et al., 2001) to
semantic image editing Bau et al., 2019 including for example object removal (Criminisi
et al., 2004). In the same fashion, image denoising (Figure 2.1c) aims to remove alterations
induced by some noise, which can be due to imperfections in the acquisition procedure
or natural degradation, which finds applications such as raw image denoising in cameras
(Kim, 2014) or medical image denoising (Gondara, 2016).

Image reconstruction (Figure 2.1d) however differs from these problems as most part
of the original image is unavailable. Thus, in comparison to inpainting or denoising in
which the altered parts of the input can be retrieved from a semantically rich altered im-
age, image reconstruction instead requires to generate a full image from very few and
unstructured observations. This can be done by leveraging on prior knowledge to train
a generative model, while ensuring that the resulting image is coherent with the pixels
given as input.

Before delving into the details, we introduce the notations related to the problem.
Note that we use the matrix and vector formulations interchangeably, as most of the com-
putation remains similar regardless of the number of dimensions. We denote by X a ran-
dom variable and x ∈ Rn×p×c its realization. Let pX be the distribution measure of X over
X. Similarly pX|Y represents the distribution of X conditioned on the random variable Y,
while pX,Y represents the joint distribution.

Whether it is for image inpainting, denoising or reconstruction, we aim to recover a
signal from which we only have altered measurements. This problem can be formulated
as

y = Ax+ε , (2.1)

where A ∈ Ra×b is a wide (a ¿ b), matrix (so called “measurement matrix”) and ε is the
noise. By varying the nature of the matrix A, we can formulate the three aforementioned
problems.

In the case of image reconstruction, assume y is the given set of constrained pixel
values. To ease the presentation, let consider y as a n ×p image with only a few available
pixels (less than 1% of n ×p). We will encode the spatial location of these pixels using a
corresponding binary mask My ∈ {0,1}n×p .

Having access to a set of ground-truth images X = {x1, ...xs},xi ∈ Rn×p×c (see Figure
2.1a) drawn from an unknown distribution pX and a set of sparse matrices
Y = {y1, ...,yt },yi ∈ Rn×p×c (Figure 2.1d) as the given constrained pixels, the image recon-
struction problem consists in finding an approximated image x̂ that maximizes pX(x̂) for
a given constraint map y. In other words, the problem consists in retrieving x such that
y = My¯x and x is issued from to the data distribution pX. More formally, we aim at finding

x∗ = argmax
x

pX(x) subject to ‖y−My ¯x‖2
2 ≤ δ (2.2)

where ¯ stands for the Hadamard (or point-wise) product1, ‖N‖2
2 represents the squared

1Note that this expression can be formulated with the Hadamard product instead of a matrix product
in Equation (2.1), since vect(My ¯ x) = Tr(Diag(vect(My))vect(x)). vect(·) is the vectorisation operator that
consists in stacking the pixels, with vect(y) ∈ Rn.m.c for y ∈ Rn×m×c , Tr(·) is the trace of a matrix and Diag(·)
is an operator which transforms a vector x into a diagonal matrix with x as its diagonal entries.
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Frobenius norm of matrix N that is the sum of its squared entries, δ is a small constant
and My the mask, a sparse matrix with entries equal to one at constrained pixels location.

2.3 Approaches for image reconstruction

We propose here an overview of some of the seminal approaches for solving similar tasks.
We present two main types of approaches: compressed sensing-based approaches and
conditional modeling. We detail some strengths and weaknesses of these approaches,
summarized in Table 2.1.

2.3.1 Sparsity-based approaches for image reconstruction

A first approach to tackle the image reconstruction problem is to recover the image through
per-sample optimization. Although the original problem (Equation (2.1)) is linear, it is
highly under determined, thus it induces an infinite number of solutions as the problem
is ill-posed. However, by including prior knowledge on the signal x and by ensuring some
constraints on the matrix A, solving this system can be done using techniques such as
linear programming.

Image reconstruction using compressed sensing

Candes and Tao (2005) introduced Compressed Sensing, which consists in solving prob-
lem (2.1) by assuming that the signal x to be recovered is sparse. In order to guarantee
that the obtained image is indeed a reconstruction, they introduced the Restricted Isom-
etry Property (RIP) (Candès, 2008) on the family of matrices A, which states that for two
samples x1,x2 ∼ pX,

(1−α)‖x1 −x2‖2
2 ≤ ‖A(x1 −x2)‖2

2 ≤ (1+α)‖x1 −x2‖2
2 , (2.3)

where α is a small constant. This states that distance between two samples is preserved
when altered by A. Candes and Tao (2005) used this property to show that if the matrix
A enforces the RIP, samples x̂ retrieved by compressed sensing will follow with a high
probability the real data distribution pX. Examples of matrices that enforce the RIP are
random Gaussian or Fourier matrices (Candes et al., 2006; Candes and Tao, 2006). Under
the RIP setting, the sparse signal x can be retrieved by solving for

x̂ = argmin
x

‖x‖0 subject to Ax = y , (2.4)

when the measurement process is assumed to be noiseless. In practice, the measure-
ments processes are nearly always noisy, thus this problem must be reformulated as

x̂ = argmin
x

‖x‖0 subject to ‖Ax−y‖2
2 ≤ δ , (2.5)

with δ a small constant. This assumes that the reconstruction is the best possible while
taking noise into account. In either cases, solving this problem is NP-hard due to the `0
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norm, however a convex relaxation seeks the minimal `1-norm solution is also the spars-
est solution (Donoho, 2006b). Thus we can instead recover the sparse signal x as

x̂ = argmin
x

‖x‖1 subject to ‖Ax−y‖2
2 ≤ δ . (2.6)

This method raises three important issues, the first one being that, in practice, the
assumption of sparsity on x is usually not enforced, especially for natural images. The
second problem of this approach is that it requires to solve an optimization problem for
each sample. Even if the compressed sensing approach allows for the problem to be for-
mulated as linear or quadratic programming, which can be solved in polynomial time, it
is still computationally expensive. Finally, the third issue is that the measurement ma-
trix A does not necessarily respect the RIP. This is detrimental since the RIP guarantees
the coherency of the reconstructed sample. However, verifying that the matrix A respects
the RIP is NP-hard in general. While several approaches for image compression use tech-
niques for generating random matrices that have a high probability of respecting the RIP
(Rauhut, 2010; Rudelson and Vershynin, 2008), there are no guarantees in the case when
A is fixed, such as image reconstruction.

Compressed sensing with sparse coding

When aiming to recover high-dimensional signals such as natural images, the assumption
of sparsity on x is unrealistic. This requirement can however be replaced by the more
generic approach of considering sparsity in another basis. Let B be a basis such that x = Bs
and s a sparse vector. Thus, the problem becomes

ŝ = argmin
s

‖Bs‖1 subject to ‖ABs−y‖2
2 ≤ δ . (2.7)

Signal is then recovered as x̂ = Bŝ. By either carefully selecting B, such as Fourier
or wavelet basis (Mallat, 2008), compressed sensing with sparse basis (Shaobing and
Donoho, 1994) is much more robust and provides good results in real-world situations,
for example in medical imaging (Lustig et al., 2008), image acquisition (Duarte et al., 2008;
Kolev, 2011).

Another category of approaches is dictionary learning for compressed sensing (Tošić
and Frossard, 2011), learns the basis B̂ as a dictionary using a dataset of samples X =
{x1, ...,xK},xi ∈ Rn×m×c such that xi = B̂si , where si is sparse. This can be formulated as
solving for

B̂, {ŝi } = arg min
B,{si }

K∑
i=1

‖Bsi −xi‖2
2 +λ‖si‖0 , (2.8)

where λ is a parameter that controls the trade-off between the quality of the reconstruc-
tion and the sparsity of the representation. Again, solving this problem is NP-hard thus,
in practice, we relax the `1-norm solution and solve

B̂ = arg min
B,{si }

K∑
i=1

‖Bsi −xi‖2
2 +λ‖si‖1 . (2.9)

This learned basis B̂ can then be used as a basis for compressed sensing. Several al-
gorithms exist for solving this problem, usually by iteratively updating the basis B̂ and
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the representations si alternatively. Examples of such algorithms are LASSO (Tibshirani,
1996), basis pursuit (Donoho, 2006a) the method of optimal directions (Engan et al., 1999),
K-SVD (Aharon et al., 2006), stochastic gradient descent or the Lagrange dual method.

Generative modeling as a prior to compressed sensing

Compressed sensing-based methods for image reconstruction have the advantage of ex-
plicitly modeling the constraints, which ensures that they will be enforced in the recon-
structed image. However, there are no guarantees on the quality of the reconstruction
procedure if the measurement matrix A does not satisfy the RIP Equation (2.3). In the
case of the image reconstruction process, this means that while the reconstructed image
x̂ is guaranteed to enforce the constraints, it may not be necessarily close to the real data
distribution pX.

To overcome these problems, Compressed Sensing with Meta-Learning (Wu et al.,
2019) extends compressed sensing by replacing the sparsity assumptions on the signal x
with a learned prior on the data distribution pX, which is done using a generative model
G. By first generating an image G(z) in an unconstrained way and optimizing in the latent
spaceZ of the generative model G by minimizing ‖AG(z)−y‖2

2, this method finds an image
that, when altered as ŷ = AG(z) where ŷ, is as close as possible to y. Then, Compressed
sensing with meta-learning trains the generative model G to enforce the RIP (Equation
(2.3)) so that it does not try to map all G(z) into the null space of A. The overall problem
induced by this approach is formulated as

min
G

L(G) = E
x∼pX
y∼pY
z∼pZ

((‖A(x−G(z))‖2
2 −‖x−G(z)‖2

F

)2 + (‖A(x−G(ẑ))‖2
2 −‖x−G(ẑ)‖2

2

)2

+ (‖A(G(z)−G(ẑ))‖2
2 −‖G(z)−G(ẑ)‖2

F

)2
)
/3+‖y−AG(ẑ)‖2

2

where ẑ = min
z

‖y−AG(z)‖2
2 . (2.10)

The method tries to minimize the difference between the distances among samples
(generated or real) and the distances among samples altered by A. Solving this prob-
lem pushes the generator towards producing samples on which the RIP of A is respected.
This implies that the generated samples will have a high likelihood on the real data dis-
tribution. Note that, in practice, ẑ is computed with gradient descent on z by minimizing
‖y−AG(z)‖2

2, starting from a random z ∼ pZ.

Deep Compressed Sensing (Wu et al., 2019) extends even further compressed sens-
ing by replacing the (usually random) measurement matrix A in the Compressed sensing
with Meta-Learning approach by a learned measurement function fθ, so that the altered
sample becomes ỹ = fθ(x). Then, Deep Compressed sensing consists in training, in the
same fashion as the GAN algorithm, G and fθ by alternate gradient descent. The induced
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(a) Original
Image

(b) Constraints (c) Generated
Image

(d) Satisfied
Consts.

Figure 2.2: Generation of a sample during training. We first sample an image from a training set
(2.2a) and we compute the constraints (2.2b) from it. Our GAN uses it to generate a sample (2.2c).
The constraints with squared error smaller than ε= 0.1 are deemed satisfied and shown by green
pixels in (2.2d) while the red pixels are unsatisfied (Best viewed in colors).

optimization problem is therefore

min
G

LG = E
y∼pY

‖y− fθ(G(ẑ))‖2
2 , (2.11)

min
θ

L fθ = E
x∼pX
z∼pZ

( ∑
x1,x2∈X∪{G(z)}

x1 6=x2

((‖ fθ(x1 −x2)‖2
2 −‖x1 −x2‖2

2)2
)

. (2.12)

In the same fashion as the objective in Equation (2.10), solving problem (2.12) pushes
fθ towards respecting the RIP. Wu et al. (2019) showed that optimizing these two criteria
trains both the generator G and the measurement function fθ, thus replacing the discrim-
inator of the more classical GAN framework. As a benefit, the approach may generate an
image x̂ = G(ẑ) from a noisy information y but at a high computation burden since it re-
quires to solve an optimization problem (computing ẑ) at inference stage for generating
an image.

2.3.2 Conditional generation for image reconstruction

As opposed to the aforementioned methods, approaches based on conditional generation
try to learn the conditional distribution pX|Y with a set of samples X = {x1, ...xs} and ei-
ther aims to generate the most probable solution or provide a sampling mechanism over
potential solutions.

In the case of image reconstruction, a generative model G which input is constraint
map y ∈Rn×p×c learns to generate an image satisfying the constraints while likely follow-
ing the distribution pX (see Figure 2.2). For a generative model to provide a sampling
mechanism, the common solution consists in relying on a random vector z sampled from
a known distribution pZ (usually uniform or Gaussian) over a space Z that will be used as
a latent variable for the model.

Conditional generative adversarial networks for image reconstruction

Although CGAN was initially designed for class-conditioned image generation by setting
y as the class label of the image, it can naturally be applied to several types of conditioning
information, including constraint maps. Thus obtaining an image reconstruction with a
high likelihood on the conditional distribution pX|Y is equivalent to taking a sample or
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image x̂ = G(y,z), with z ∼ pZ, using the generative model G solution to the problem

min
G

max
D

E
x,y∼pX,Y

[logD(x,y)]+ E
y∼pY
z∼pZ

[1− logD(G(y,z),y)] , (2.13)

where y is the constraint map and D is the discriminator network.
While using the CGAN approach alone could theoretically be enough to solve the tasks

of image reconstruction and inpainting, as it directly learns the conditional distribution
of the samples, the most efficient approaches rely on extending the CGAN with a recon-
struction loss, such as a `1 or `2 norm, between the pixels known beforehand and the
corresponding pixels in the generated sample. This has been carried out for the inpaint-
ing task (Pathak et al., 2016; Xiang et al., 2017), and can be formulated (in the case of the
`2 norm) as finding a generator G and related discriminator D that optimize

min
G

max
D

E
x,y∼pX,Y

[logD(x,y)]+ E
y∼pY
z∼pZ

[1− logD(G(y,z),y)]+‖My ¯G(y,z)−y‖2
F . (2.14)

These approaches are often extended with techniques such as using multiple discrimina-
tors (Armanious et al., 2019; Yu et al., 2018), extending the training with extra information
and features (Armanious et al., 2019) as for medical imaging modalities, or using style
losses (Guo et al., 2019) (See Section 1.3.3). However, several of these CGAN-based in-
painting methods (Demir and Unal, 2018) rely on generating a patch that will fill up a
structured missing part of the image and achieve impressive results. As such, they are not
well suited to reconstruct from very sparse and unstructured observations y.

Unsupervised image reconstruction with generative adversarial networks

Another trend of approaches aims to reconstruct images without any knowledge of the
real data distribution pX, in other words they only hinge on datasets of altered samples y ∼
pY. This problem is different from the one we tackle, since ours supposes that a dataset
of unaltered samples X = {x1, ...,xs},xi ∈ Rn×m×c is available. Among these approaches is
Ambient GAN (Bora et al., 2018) (Figure 2.3), which aims at training an unconditional gen-
erative model using a dataset of noisy or incomplete samples Y = {y1, ...yt },yi ∈ Rn×m×c .
Ambient GAN attempts to produce unaltered images x̃ which distribution matches the
true one without having access to any of the original images x. For this purpose, Ambi-
ent GAN considers lossy measurements such as a blurred image, an image with removed
patch or removed pixels at random (up to 95%), leading to sparse pixel map y. This lossy
measurement is simulated with a parameterized alteration function fθ instead of the mea-
surement matrix A

y = fθ(x) . (2.15)

The underlying optimization problem solved by Ambient GAN is therefore stated as

min
G

max
D

L(D,G) = E
y∼pY

[
log(D(y))

]
+ E

z∼pZ
θ∼pθ

[
log(1−D( fθ(G(z))))

]
. (2.16)

Here, the discriminator has no knowledge of the distribution of the full images pX, as its
input is either real altered samples y or generated samples G(z) on which the alteration
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Figure 2.3: Overview of the Ambient GAN framework for learning generative models using altered
samples only.

function fθ is applied. Thus, the Ambient GAN generator network G actually learns to
generate samples x̂ = G(z) that, once fθ is applied on them, are close to the real y. This is
equivalent to learning to invert the function fθ. The Ambient GAN process is described in
Figure 2.3.

Unsupervised Image Reconstruction (UNIR) (Pajot et al., 2019) extends the Ambient
GAN approach by adding a conditioning to the model, which allows for the reconstruc-
tion of an image x from an altered image y ∼ pY, without any knowledge of the real data
distribution pX. UNIR is deterministic and does not allow for sampling, as the only input
of the model is the altered image y. For this, an additional reconstruction task is consid-
ered. It consists in first generating a reconstruction x̃ = G(y) and applying the alteration
function fθ to the generated image x̃ to get ỹ = fθ(G(y)), then re-generating an image as
x̂ = G( fθ(G(y))) and finally re-applying fθ to the image x̂ to get ŷ = fθ(G( fθ(G(y)))). This
procedure can be deemed as

min
G

max
D

L(D,G) = E
y∼pY

[
log(D(y))

]
+ E

y∼pY
θ∼pθ

[
log(1−D(ŷ))

]
+‖ŷ− ỹ‖2

F . (2.17)

Here, the `2 norm term ensures that the generator is able to learn to revert fθ i.e. to revert
the alteration procedure on a given sample. This allows the reconstruction of a realistic
image x̂ only from a given constraint map y. The full process is described in Figure 2.4.

In another fashion, Semantic Inpainting by Constrained Image Generation (Yeh et
al., 2017) is an approach for inpainting which considers the generator G of a pre-trained
GAN as a prior on the data distribution pX, and explores its latent space Z through an
optimization procedure to find a latent vector z, which induces an image with missing
regions filled in by conditioning on the surrounding available information. To ensure that
the reconstruction is accurate, this approach uses the discriminator D as a prior instead
of ensuring the RIP. This is done by adding the discriminator loss to the reconstruction
loss, so that it prevents the procedure from providing images that are too far away from
the real data distribution. As such, the problem becomes x̂ = G(z∗) with z∗ minimizing

min
z

‖AG(z)−y‖2
2 +λ log(1−D(G(z))) , (2.18)

where λ is a hyperparameter. To yield on an image satisfying some given constraints y,
the method requires to solve a full optimization problem for each sample to reconstruct.
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Figure 2.4: Overview of the Unsupervised Image Reconstruction framework for learning image
reconstruction models using altered samples only.

A summary of the main features of the presented related work is provided in Table
2.1. These features are the need for a dataset of samples, with only the need for altered
samples for the Ambient GAN and UNIR approaches; the need for solving a reconstruc-
tion problem for each generated image, which is computationally expensive; the ability
to sample multiple images on the conditional distribution pY|X for a given y, and the dif-
ferent ways to control the enforcement of the constraints.
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Approach Dataset One-step Sampling Constraints
free reconstruction mechanism enforcement

Compressed sensing-based

Compressed sensing 3 7 7 Exact
(Candes and Tao, 2005)
Compressed sensing
with dictionary learning 7 7 7 Exact
(Donoho, 2006a)
Compressed sensing Control
with Meta Learning 7 7 7 parameter
(Wu et al., 2019)
Deep compressed sensing 7 7 3 Control
(Wu et al., 2019) parameter

Generative modeling-based

Conditional GAN 7 3 3 Implicit
(Mirza and Osindero, 2014)
Ambient GAN 7 7 7 Explicit
(Bora et al., 2018) (altered*)
UNIR 7 3 7 Explicit
(Pajot et al., 2019) (altered*)
Constrained Control
image generation 7 7 3 parameter
(Yeh et al., 2017)

Our approach 7 3 3 Control
(see Section 2.4) parameter

* Only altered samples are required during training

Table 2.1: Summary of the advantages and limitations of the aforementioned methods for image
reconstruction. We consider the need for a dataset, the necessity of solving an optimization prob-
lem for each generated sample, the ability to sample different solutions and the mechanism for
enforcing the good reconstruction of the constraints.
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2.4 Image reconstruction as an auxiliary task to generative
modeling

As we have seen, two main categories of solutions aim to tackle the problem of image
reconstruction. First, the approaches that try to directly solve the problem by finding a
solution through optimization, among them is compressed sensing. However, the main
drawback of these approaches are that they require to solve an optimization problem per
reconstructed image, which is computationally expensive in the cases where a lot of sam-
ples need to be reconstructed. Then, the approaches that aims to learn the conditional
data distribution pX|Y to reconstruct the image by sampling on this distribution. Among
these approaches are CGAN-based methods, Ambient GAN or UNIR. While they have the
advantage of only requiring to solve a unique optimization problem at training instead of
one for each reconstructed sample, they require a dataset to train on and do not provide
any means of controlling the trade-off between the visual quality and the respect of the
constraints.

As a main contribution in this chapter, we introduce a GAN model whose generation
network takes as input the constraint map y and the sampled latent code z ∈ Z and out-
puts a realistic image that fulfills the prescribed pixel values. Within this setup, such a gen-
erative model can sample in a single step from the unknown distribution pX of the training
images {x1, · · · ,xN} while satisfying unseen pixel-wise constraints at training stage. This
method also provides a control parameter λ that balances the visual quality and the re-
spect of the constraints.

2.4.1 Image reconstruction as a maximum a posteriori estimation

Starting from the image reconstruction problem ((Equation (2.1)), estimating the maxi-
mum a posteriori consists in finding an image x̂ that has the maximum likelihood on the
posterior distribution pX|Y, in other words the image that is the most likely to be the orig-
inal image, from which the constraints y has been measured. We find that replacing the
implicit conditioning of the CGAN with a reconstruction loss is an approach that naturally
emerges from the denoising formulation Equation (2.15). This provides a rationale for the
use of these losses in the similar aforementioned approaches (Section 2.3.2).

Such a generative model does not rely on per-sample optimization and provides a
simple and efficient sampling mechanism through the latent variable z. This allows for
the efficient sampling of several potential images, which can be crucial in some applica-
tions in which a large amount of solutions need to be sampled, such as solving inverse
problems (Laloy et al., 2019) . It also naturally provides a mechanism for controlling the
trade-off between the respect of the constraints and the likelihood of the reconstructed
image.

Conditional generative models for maximum a posteriori estimation

Recall that the image reconstruction problem consists in recovering x, assuming the con-
straint map y is resulting from applying My on the image x, as

y = My ¯x . (2.19)
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Here My is the masking matrix and the constrained pixels are assumed to be randomly and
independently selected. We can formulate the Maximum A Posteriori (MAP) estimation
problem which, given the constraint map y, consists in finding the most probable image
x∗ following the posterior distribution pX|Y, as

x∗ = argmax
x

log pX|Y(x|y)+ log pY(y) , (2.20)

= argmax
x

log pY|X(y|x)+ log pX(x) . (2.21)

pY|X(y|x) is the likelihood that the constrained pixels y are issued from image x while
pX|Y(x|y) is the likelihood of an image knowing the constrained pixels y . pX and pY rep-
resent the marginal distributions of x and y. Thus, we can introduce a conditional gener-
ative model G : (Y,Z) → X to replace the conditional distribution pX|Y. This changes the
original problem (Equation (2.19)) to

y = My ¯G(y,z)+ε , (2.22)

where ε represents the error of the model, which we consider to be an i.i.d noise corrupt-
ing the constrained pixels. Assuming that the generation network G may sample an image
G(y,z) complying with the given pixel values y, we get the following problem

max
G

E
y∼pY
z∼pZ

log pY|X(y|G(y,z))+ log pX(G(y,z)) . (2.23)

The first term in Problem (2.23) measures the likelihood of the constraints given a
generated image. The second term measures the likelihood of the generated images ac-
cording to the data distribution pX. Let rewrite Equation (2.22) as vect(y) = vect(My ¯x)+
vect(ε) where vect(·) is the vectorisation operator that consists in stacking the pixels, with
vect(y) ∈Rn.m.c for y ∈Rn×m×c . Therefore, assuming vect(ε) is i.i.d and follows a Gaussian
distribution N (0,σ2I), the conditional likelihood of y knowing x reads as

log pY|X(y,G(y|z)) ∝−∥∥vect(y)−vect(My ¯G(y,z))
∥∥2

2 . (2.24)

It evaluates the Euclidean distance between the conditioning pixels and their predictions
by G. In other words, using a matrix notation of Equation (2.22), the latter conditional
likelihood given a generated image equivalently writes

log pY|X(y,G(y,z) ∝−∥∥y−My ¯G(y,z)
∥∥2

F . (2.25)

The second term in Problem (2.23) is the likelihood of the generated image under
the true but unknown data distribution pX. Maximizing this term can be equivalently
achieved by minimizing the distance between pX and the marginal distribution of the
generated samples G(y,z). This amounts to minimizing with respect to G, the GAN-like
objective function Ex∼pX log(D(x))+Ez∼pZ

y∼pY
log(1−D(G(y,z))) (Goodfellow et al., 2014).
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Figure 2.5: Overview of our formulation of the maximum a posteriori approach for image recon-
struction using GANs.

Putting altogether these elements, we can propose a relaxation of the hard constraint
optimization problem (2.2) (Figure 2.5) that consists in learning a generative network G
and the related discriminator model D by solving

min
G

max
D

L(D,G) = E
x∼pX

[
log(D(x))

]
(2.26)

+ E
z∼pZ
y∼pY

[
log(1−D(G(y,z)))+λ∥∥y−My ¯G(y,z)

∥∥2
F

]
.

It is worth to note that the assumption of Gaussian noise measurement leads us to
explicitly turn the pixel value constraints into the minimization of the quadratic error be-
tween the real enforced pixel values and their generated counterparts as it corresponds
to maximizing the conditional likelihood of the pixels in the generated image. The addi-
tional term acts as a regularization over prescribed pixels by the mask My. The trade-off
between the distribution matching loss and the constraint enforcement is assessed by the
regularization parameter λ ≥ 0. Figure 2.5 illustrates the overall principle of the model.
It is also worth noting that the noise ε can be of any other distribution, according to the
prior information one may associate to the measurement noise. To formulate the maxi-
mum a posteriori, we however require this distribution to admit a closed-form solution
for the maximum likelihood estimation for optimization purpose. Typical choices are dis-
tributions from the exponential family (Brown, 1986).

Conditional image generation with an image reconstruction auxiliary task

To solve Problem (2.26), we use stochastic gradient descent. The overall training proce-
dure is detailed in Algorithm 3 and ends when a maximal number of training epochs is
attained.

When implementing this training procedure we experienced, at inference stage, a lack
of diversity in the generated samples (see Figure 2.6). This issue manifests itself through
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Algorithm 3 Proposed training algorithm

Require: DX the set of unaltered images, G the generation network, and D the discrimi-
nation function
repeat

sample a mini-batch {xi }m
i=1 of real images from DX

sample a mini-batch of masks {Myi
}m

i=1 and compute the constraints yi = Myi
¯xi

sample a mini-batch {zi }m
i=1 from distribution pZ

update D by stochastic gradient ascent of∑m
i=1 log(D(xi ))+ log(1−D(G(yi ,zi )))

sample a mini-batch {y j }n
j=1 from DY

sample a mini-batch {z j }n
j=1 from distribution pZ ;

update G by stochastic gradient descent of∑n
j=1 log(1−D(G(y j ,z j )))+λ‖y j −My j

¯G(y j ,z j )‖2
F

until a stopping condition is met

the fact that the learned generation network, given a constraint map y, outputs almost
deterministic image regardless the variations in the input z. The issue was also pointed
out by Yang et al. (Yang et al., 2019) as characteristic of CGANs. To avoid the problem, we
exploit the PacGAN (Lin et al., 2018) technique, detailed in Section 1.3.3, Equation 1.33,
which consists in passing a small set of samples to the discrimination function instead of a
single one. PacGAN is intended to tackle the mode collapse problem in GAN training (see
Section 1.2.4) . The underlying principle being that if a set of images are sampled from the
same training set, they are very likely to be completely different, whereas if the generator
experiences mode collapse, generated images are likely to be similar. In practice, we only
give two samples to the discriminator, which is sufficient to overcome the loss of diver-
sity as suggested in (Lin et al., 2018). The resulting training procedure is summarized in
Algorithm 4.

Algorithm 4 Our training algorithm including PacGAN

Require: DX the set of unaltered images, G the generation network, and D the discrimi-
nation function
repeat

sample two mini-batches {xa
i }m

i=1, {xb
i }m

i=1 from DX

sample a mini-batch of masks {Myi
}m

i=1 and compute the constraint maps {yi = Myi
¯

xa
i }

sample two mini-batches {za
i }m

i=1, {zb
i }m

i=1 from distribution pZ

update D by stochastic gradient ascent of∑m
i=1 log(D(xa

i ,xb
i ))+ log(1−D(G(yi ,za

i ),G(yi ,zb
i )))

sample a mini-batch of masks {Myi
}m

i=1 and compute the labels yi = Myi
¯xi

sample a mini-batches {za
i }m

i=1, {zb
i }m

i=1 from distribution pZ

update G by stochastic gradient descent of∑m
j=1 log(1−D(G(y j ,za

j ),G(y j ,zb
j )))+λ‖y j −My j

¯G(y j ,za
j )‖2

F+λ‖y j −My j
¯G(y j ,zb

j )‖2
F

until a stopping condition is met
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Figure 2.6: An example of a loss of diversity when generating brick texture samples (see Section
2.4.2) using two different random noises z and a single constraint map y. The two samples on the
top left are generated using the classical GAN discriminator whereas the samples on the top right
are generated using the PacGAN approach. The loss of diversity is clearly visible on the absolute
differences between the greyscaled images (bottom).

2.4.2 Experimental results and application

Experimental setting

We have conducted a series of empirical evaluation to assess the performances of the
proposed GAN. Used datasets, evaluation protocol and the tested deep architectures are
detailed in this section while Section 2.4.2 is devoted to the results presentation. We com-
pare our approach to the CGAN approach exclusively, as it is the only approach among the
methods reviewed in Section 2.2 to provide a sampling mechanism while not requiring to
solve a computationally expensive optimization problem for each generated sample (see
Table 2.1).

Datasets

We tested our approach on several datasets listed hereafter. Detailed information on these
datasets are provided in the Appendix C.1.

FashionMNIST (Xiao et al., 2017) consists of 60,000 28× 28 small gray-scale images of
fashion items, split in 10 classes and is a harder version of the classical MNIST
dataset (LeCun et al., 1998). The very small size of the images makes them par-
ticularly appropriate for large-scale experiments, such as hyper-parameter tuning.

CIFAR10 (Krizhevsky, 2009) consists of 60,000 32× 32 color images of 10 different and
varied classes. It is deemed less easy than MNIST and FashionMnist.

CelebA (Liu et al., 2015) is a large dataset of celebrity portraits labeled by identity and
a variety of binary features such as eyeglasses, smiling... We use 100,000 images
cropped to a size of 128×128, making this dataset appropriate for a high dimension
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evaluation of our approach in comparison with related work. Samples are shown in
Figure 2.9

Texture is a custom dataset composed of 20,000 160×160 patches sampled from a large
brick wall texture, as recommended in (Jetchev et al., 2017). It is worth noting that
this procedure can be reproduced on any texture image of sufficient size. Texture is
a test-bed of our approach on fully-convolutional networks for constrained texture
generation task (Figure 2.8).

Subsurface is a classical dataset in geological simulation (Strebelle, 2002) which consists,
similarly to the Texture dataset, of 20,000 160×160 patches sampled from a model
of a subsurface binary domain. These models are assumed to have the same prop-
erties as a texture (Figure 2.10).

To avoid learning explicit pairing of real images seen by the discrimination function
with constraint maps provided to the generative network, we split each dataset into train-
ing, validation and test sets, to which we add a set composed of constraint maps that
should remain unrelated to the three others. To do so, a fifth of each set is used to generate
the constrained pixel map y by randomly selecting uniformly 0.5% of the pixels to com-
pose a set of constraints for each of the train, test and validation sets. The images from
which these maps are sampled are then removed from the training, testing and validation
sets. For each carried experiment the best model is selected based on some performance
measures (see Section 2.4.2) computed on the validation set. Finally, reported results are
computed on the test set.

Network architectures

We use a variety of neural network architectures for the GAN generator and discriminator
in order to adapt to the different scales and image sizes of our datasets. The detailed
configuration of these architectures are exposed in Appendix C.2.

For the experiments on the FashionMNIST (Xiao et al., 2017), we use a lightweight
convolutional network for both the discriminator and the generator, similar to DCGAN
(Radford et al., 2015), due to the small resolution of FashionMNIST images.

To experiment on the Texture dataset, we consider a set of fully-convolutional gen-
erator architectures based on either dilated convolutions1 (Yu and Koltun, 2015), which
behave well on texture datasets (Ruffino et al., 2017), or encoder-decoder1 architectures
that are commonly used in domain-transfer applications such as CycleGAN (Zhu et al.,
2017c).

We keep the PatchGAN discriminator (Isola et al., 2016) across all the experiments
with these architectures, which is a five-layer fully-convolutional network with a sigmoid
activation.

The Up-Dil architecture consists in a set of transposed convolutions1 (the up-scaling
part), and a set of dilated convolutional layers (Yu and Koltun, 2015), while the Up-EncDec
has an up-scaling part followed by an encoder-decoder section with skip-connections,

1see Glossary, Appendix B
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where the constraints are down-scaled, concatenated to the noise, and re-up-scaled to
the output size.

The UNet (Ronneberger et al., 2015) architecture is an encoder-decoder1 where skip-
connections1 are added between the encoder and the decoder. The Res architecture is
an encoder-decoder1 where residual blocks1 (He et al., 2015) are added after the noise is
concatenated to the features. The UNet-Res combines the UNet and the Res architectures
by including both residual blocks and skip-connections.

Finally, we will evaluate our approach on the Subsurface dataset using the architecture
that yields to the best performances on the Texture dataset.

Evaluation

We evaluate our approach based on both the satisfaction of the pixel constraints and the
visual quality of sampled images. From the assumption of Gaussian measurement noise
(as discussed in Section 2.4.1), we assess the constraint fulfillment using the following
mean square error (MSE)

MSE = 1

L

L∑
i=1

∥∥yi −Myi
¯G(yi ,zi )

∥∥2
F

. (2.27)

This metric should be understood as the mean squared error of reconstructing the con-
strained pixel values.

Visual quality evaluation of an image is not a trivial task (Theis et al., 2015). How-
ever, Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception Score (Salimans
et al., 2016), have been used to evaluate the performance of generative models. These
approaches both consist in comparing, for both real and generated images, features ex-
tracted with a pre-trained classifier. We explain these approaches in section 1.4 of the
chapter 1. We employ FID since the Inception Score has been shown to be less reliable
(Barratt and Sharma, 2018). Since the FID requires a pre-trained classifier adapted to the
dataset in study, we trained simple convolutional neural networks as classifiers for the
FashionMNIST and the CIFAR-10 datasets. For the Texture dataset, the dataset is not la-
beled, hence we resort to a CNN classifier trained on the Describable Textures Dataset
(DTD) (Cimpoi et al., 2014), which is a related application domain.

For the Subsurface dataset, there are neither labels nor similar labeled dataset. Thus,
we could not train a classifier for this dataset, so we cannot compute the FID. To evaluate
the quality of the generated samples, we use metrics based on a distance between feature
descriptors extracted from real samples and from generated ones. Similarly to (Ruffino et
al., 2017), we rely on a χ2 distance between the Histograms of Oriented Gradients (HOG)
or Local Binary Patterns (LBP) features computed on generated and real images. His-
tograms of Oriented Gradients (HOG) (Dalal and Triggs, 2005) and Local Binary Patterns
(LBP) (Pietikäinen et al., 2011) are computed by splitting an image into cells of a given
radius and computing within each cell the histograms of the oriented gradients for HOGs
and of the light level differences for each pixel to the center of the cell for LBPs. Addition-
ally, we consider the domain-specific metric, the connectivity function (Lemmens et al.,
2017) which is presented in Appendix C.3.

1see Glossary, Appendix B
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Finally, we check by visual inspection if the trained model G is able to generate di-
verse samples, meaning that for a given y and for a set of latent codes (z1, ...,zn) ∼ pZ, the
generated samples G(y,z1), . . . ,G(y,zn) are visually different.

Study of the quality-fidelity trade-off

We first study the influence of the regularization parameter λ on both the quality of the
generated samples and the respect of the constraints. We experiment on the FashionM-
NIST (Xiao et al., 2017) dataset, since such a study requires intensive simulations permit-
ted by the low resolution of FashionMNIST images and the used architectures (see Section
2.4.2).

To overcome classical GANs instability, the networks are trained 10 times and the me-
dian values of the best scores on the test set at the best epoch are recorded. The epoch
that minimizes the cost

C(FID,MSE) =
√(

FID−FIDmi n

FIDmax −FIDmi n

)2

+
(

MSE−MSEmi n

MSEmax −MSEmi n

)2

on the validation set is considered as the best epoch, where FIDmi n , MSEmi n , FIDmax and
MSEmax are respectively the lowest and highest FIDs and MSEs obtained on the validation
set.

Empirical evidences (highlighted in Figure 2.7) show that with a good choice of λ,
the regularization term helps the generator to enforce the constraints, leading to smaller
MSEs than when using the CGAN (λ= 0) without compromising on the quality of gener-
ated images. Also, we can note that using the regularization term even leads to a better
image quality compared to GAN and CGAN. The bottom panel in Figure 2.7 illustrates
that the trade-off between image quality and the satisfaction of the constraints can be
controlled by appropriately setting the value of λ. Nevertheless, for small values of λ (less
or equal to 10−1), our GAN model fails to learn meaningful distribution of the training
images and only generates uniformly black images. This leads to the plateaus on the MSE
and FID plots (top panels in Figure 2.7).

Texture generation with fully-convolutional architectures

Fully-convolutional architectures for GANs are widely used, either for domain-transfer
applications (Isola et al., 2016; Zhu et al., 2017c) or for texture generation (Jetchev et al.,
2017). In order to evaluate the efficiency of our method on relatively high resolution im-
ages, we experiment the fully-convolutional networks described in Section 2.4.2 on a tex-
ture generation task using Texture dataset. We investigate the up-scaling-dilatation net-
work, the encoder-decoder1 one and the ResNet1-like architectures.

Our training algorithm ran for 40 epochs on all reported results. We provide a compar-
ison to CGAN (Mirza and Osindero, 2014) approach by using the selected best architec-
tures. The models are evaluated in terms of best FID (visual quality of sampled images)
at each epoch and MSE (conditioning on fixed pixel values). We also compute the FID
score of the models at the epochs where the MSE is the lowest. In the other way around,

1see Glossary, Appendix B
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Figure 2.7: Our approach compared to the GAN and CGAN baselines. MSE (Top) and FID (center)
w.r.t. the regularization parameter λ; MSE w.r.t the FID (bottom), on the MNIST (left) and Fash-
ion MNIST (right) datasets. Note that the different orders of magnitude for the FID is due to the
different classifiers used to compute this distances.

the MSE is reported at epoch when the FID is the lowest. The obtained performances are
detailed in Table 2.2.
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Model Best FID Best MSE FID at MSE at Diversity
best MSE best FID

Up-Dil 0.0949 0.4137 1.0360 0.7057 3

Up-EncDec 0.1509 0.7570 0.2498 0.9809 3

Res 0.0458 0.0474 0.0590 0.0476 7

UNet 0.0442 0.1789 0.0964 0.4559 7

UNetRes 0.0382 0.0307 0.0499 0.0338 7

ResPAC 0.0350 0.0698 0.0466 0.4896 3

UNetPAC 0.0672 ≤ 0.0001 0.3120 0.2171 3

UNetResPAC 0.0431 0.0277 0.0447 0.0302 3

Table 2.2: Results obtained by the different fully-convolutional architectures on the Texture
dataset. We can remark that the encoder-decoder greatly outperforms the up-scaling ones and
that using the PacGAN technique helps keeping the performance of these models while restoring
the diversity in the samples. The bottom part of the table refers to PacGAN architectures.

For the encoder-decoder1 models, we can notice that the models using ResNet blocks
perform better than just using a UNet1 generator. A trade-off can also be seen between
the FID and MSE for the ResNet models and the UNet1-ResNet, which could mean that
skip-connections help the generator to fulfill the constraints but at the price of lowered
visual quality.

Although the encoder-decoder1 models perform the best, they tend to lose diversity in
the generated samples (see Figure 2.6), whereas the up-scaling-based models have high
FID and MSE but naturally preserve diversity in the generated samples.

Changing the discriminator for a PacGAN discriminator with 2 samples in the encoder-
decoder1 based architectures allows to restore diversity, while keeping the same perfor-
mances as previously or even increasing the performances for the UNetRes (see Table
2.2).

Table 2.3 compares our proposed approach to CGAN using fully convolutional net-
works. It shows that our approach is more able to comply with the pixel constraints while
producing realistic images. Indeed, our approach outperforms CGAN (see Table 2.3) by
a large margin on the respect of conditioning pixels (see the achieved MSE metrics by
our UNetPAC or UNetResPAC) and gets close FID performance on the generated samples.
This finding is in accordance of the obtained results on FashionMNIST experiments. Fig-
ure 2.8 show some samples generated with our approach.

High-dimension image reconstruction

We extend the comparison of our approach to CGAN on the CIFAR10 and CelebA datasets
(Table 2.4). We also compare generation times (Table 2.5) and visual quality on the CelebA
dataset (Table 2.4) with the Semantic Inpainting by Constrained Image Generation ap-
proach (Yeh et al., 2017), in order to show the difference in generation times with the
approaches that use optimization at generation time.

1see Glossary, Appendix B
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Model Best FID Best MSE FID at MSE at
best MSE best FID

CGAN-ResPAC 0.0234 0.1337 0.0340 0.2951
CGAN-UNetPAC 0.0518 0.2010 0.0705 0.4828
CGAN-UNetResPAC 0.0428 0.1060 0.0586 0.2250

Ours-ResPAC 0.0350 0.0698 0.0466 0.4896
Ours-UNetPAC 0.0672 ≤ 0.0001 0.3120 0.2171
Ours-UNetResPAC 0.0431 0.0277 0.0447 0.0302

Table 2.3: Results obtained by the selected best fully-convolutional architectures on the Texture
dataset for both the CGAN approach and our approach.

Dataset Model Best FID Best MSE FID at MSE at
best MSE best FID

CIFAR-10 CGAN 2,68 0.081 2.68 0.081
Ours 3.120 0.010 3.530 0.011

CelebA CGAN 1.34e-4 0.0209 1.81e-4 0.0450
Ours 2.09e-4 0.0053 5.392e-4 0.0249

Yeh et al. (2017) 2.44e-4 ≤ 0.0001 / /

Table 2.4: Results on the CIFAR10 and CelebA datasets. The reported performances compare
CGAN to our proposed GAN conditioned on scarce constraint map.

According to the results obtained in Section 2.4.2 and 2.4.2, we used the UNetResPac
architecture and fixed the regularization parameter to λ= 1. We train the networks for 150
epochs using the same dataset split as stated previously in order to keep independence
between the images and the constraint maps. The evaluation procedure remains also
unchanged. We use the PacGAN approach to avoid the loss of diversity issues.

We compare the computation times (in seconds) for generating a set number of mini-
batches, composed of 16 images each, using respectively our proposed GAN conditioned
on scarce constraint map and the Semantic Inpainting approach (Yeh et al., 2017). The
Semantic Inpainting by Constrained Image Generation model is fully trained with the pa-
rameters used by Yeh et al. (2017) 1.

The experiments on both datasets show that although CGAN provides better results
in terms of visual quality, our approach greatly outperforms it according to the respect
of the pixel constraints. They also show that, even if they greatly increase the respect of
the constraints (which is to be expected, since these approach optimizes the constraints at
generation time), for roughly equivalent visual qualities, solving an optimization problem
at generation times is computationally expensive. These computation times make them
prohibitive for generating a very large number of images.

Samples generated with our approach are shown in Figure 2.9

1Computation times are reported using the author’s code and a NVIDIA GTX 1080Ti.
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Texture: Real samples

Texture: Generated samples

Figure 2.8: Real and generated samples from the Texture dataset.

CelebA: Real samples

CelebA: Generated samples

Figure 2.9: Real and generated samples from the CelebA dataset.
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Minibatches Ours Yeh et al. (2017)

1 0.39s 75.73s
2 0.72s 152.05s
4 0.88s 316.09s
8 1.56s 744.25s
16 2.20s 1056.87s
32 4.48s 2211.45s

Table 2.5: Time comparison (in seconds) on the CelebA datasets with the Semantic Inpainting with
Constrained Generative Models (Yeh et al., 2017) for set numbers of mini-batches, composed of 16
images each.

Dataset Model Best HOG Best MSE HOG at MSE at
best MSE best HOG

Subsurface CGAN 2.92e-4 0.2505 3.06e-4 1.1550
Ours 4.31e-4 0.0325 5.69e-4 0.2853

Table 2.6: Evaluation of the trade-off between the visual quality of the generated samples and the
respect of the constraints for the CGAN approach and ours on the Subsurface dataset.

Application to hydro-geology

Finally, we evaluate our approach on the Subsurface dataset. We use the UNetResPAC
architecture, since it performed the best on Texture data as exposed in Section 2.4.2. As
previously, we simply set the regularization parameter at λ= 1 and, the network is trained
for 40 epochs using the same experimental protocol. To evaluate the trade-off between
the visual quality and the respect of the constraints, instead of FID we rather compute
distances between visual Histograms of Oriented Gradients (see Section 2.4.2), extracted
from real and generated samples. We also evaluate the visual quality of our approach
with a distance between Local Binary Patterns. Indeed, Subsurface application lacks la-
beled data in order to learn a deep network classifier from which the FID score can be
computed.

The obtained results are summarized in Tables 2.6 and 2.7. They are coherent with the
previous experiments since the generated samples are diverse and have a low error re-
garding the constrained pixels. The conditioning have a limited impact on the visual qual-
ity of the generated samples and compares well to unconditional approaches (Ruffino et
al., 2017). Evaluation of the generated images using the domain-connectivity function
highlights this fact on Figure C.2 in the supplementary materials. Also examples of gen-
erated images by our approach pictured in Figure 2.10 show that we preserve the visual
quality and honor the constraints.
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Dataset Model Best HOG MSE Best LBP Best LBP
(radius=1) (radius=2)

Subsurface CGAN 2.92e-4 0.2505 2.157 3.494
Ours 4.31e-4 0.0325 10.142 16.754

Table 2.7: Evaluation of the visual quality between the CGAN approach and ours on the Subsurface
dataset using several metrics.

Subsurface: Real samples

Subsurface: Generated samples

Figure 2.10: Real and generated samples from the Subsurface dataset.

2.5 Conclusion and perspective

In this chapter, we address the task of learning effective generative adversarial networks
when only very few pixel values are known beforehand. To solve this pixel-wise condi-
tioned GAN, we model the conditioning information under a probabilistic framework.
This leads to the maximization of the likelihood of the constraints given a generated im-
age. Under the assumption of a Gaussian prior distribution over the given pixels, we for-
mulate an objective function composed of the conditional GAN loss function regularized
by a `2-norm on pixel reconstruction errors. We describe the related optimization algo-
rithm.

Empirical evidences illustrate that the proposed framework helps obtaining good im-
age quality while best fulfilling the constraints compared to classical GAN approaches.
We show that, even when including the PacGAN technique, this approach allows for the
use of fully-convolutional architectures and scales well to larger images. We apply this
approach to a common geological simulation task and show that it allows the generation
of realistic samples which fulfill the prescribed constraints.

In future work, an interesting direction would be to investigate other prior distribu-
tions for the given pixels. As mentioned in Section 2.4.1, we assume that the reconstruc-
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(a) Gaussian best fit (b) Mixture distribution fit

Figure 2.11: In orange: Histogram of the reconstruction error of the UNetResPAC model on 100
generated subsurface images, with λ = 1. As we can see, the error is either close to 0, -2 or 2.
In blue: Probability density functions of a best fit Gaussian and a mixture model of a Gaussian
distribution with a weight of 0.95 and two exponential distribution, each with weights of 0.025
(0.05 being roughly the error rate of the UNetResPAC model).

tion error of the model is Gaussian. However this may not be true in practice, as we ob-
served that in the case of the Subsurface dataset, since the pixels are always either -1 or 1,
the reconstruction error tends to be close to either 0, -2, or 2 (see Figure 2.11a). For this
application, a mixture distribution could be more appropriate as it could better model
both cases where the error is close to 0 (which can be assumed to be normal) and the
cases where it is close to -2 or 2 (Figure 2.11b).

Applying the developed approach to other applications or signals such as audio in-
painting (Marafioti et al., 2018) could also be an interesting perspective. Domains in
which measuring points in any signal is costly or very noisy could benefit from an ap-
proach that allows fast sampling of potential solutions.
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Chapter 3

Domain-transfer with with auxiliary
tasks for generative modeling

Chapter abstract
In this chapter, we tackle the problem of constrained image domain-transfer with gen-

erative models. We focus on the generation of images using Cycle-Consistent Generative
Adversarial Networks (CycleGAN) with image domain constraints for converting RGB im-
ages to polarimetry-encoded ones with constraints derived from the physics of polarime-
try. Our work is driven by an application in road-scene object detection in polarimetric
images. This is motivated by the application of deep learning frameworks to polarimet-
ric imaging in various domains, including medical imaging and scene analysis. However,
even if polarimetric imaging has shown improved performances on diverse tasks, such as
object detection in road scenes images, their use may be hindered by reduced number of
labeled training images. This issue could be resolved by data augmentation. Moreover,
polarization modality is subject to some physical feasibility constraints that could be im-
peded standard classical data augmentation techniques. Hence we propose a polarimetric
image generation framework based on the CycleGAN approach to transfer RGB images to
polarimetry-encoded ones, in order to convert full labeled datasets to the polarimetric do-
main. We derive constraints from the optics of polarimetry that characterize the physical
admissibility of a polarimetric image. By integrating these constraints as an auxiliary task
at training stage, our GAN learns to generate high-quality polarimetric images that follow
the physics of polarimetry. This allows for transferring existing labeled RGB datasets to the
polarimetric domain without re-labeling of the data. We evaluate the proposed generative
model on road scene images. The obtained results achieved an effective generation of phys-
ical polarization-encoded images of high visual quality. The generated images are indeed
coherent from a physics perspective. Further experiments on road object detection show
that by training a detection model using a polarimetric images dataset that includes gen-
erated polarimetric images, the detection of cars and pedestrian are improved. We end the
chapter with some perspectives on training CycleGANs for generating polarimetric images
using proximal methods. We formulate a projection operator and propose two algorithms
that could potentially allow for generating realistic polarimetric images.
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3.1 Introduction

In the previous chapters, we have seen that Generative adversarial networks (Goodfellow
et al., 2014) are powerful deep generative models, able to learn complex data distribu-
tions and generate realistic samples from them. Arguably most of the impressive achieve-
ments of the GAN were obtained for RGB images but some works attempted to extend
GAN approaches to other less common imaging domains. Among these works, the task of
generating images from the RGB domain to these other imaging domains, using domain-
translation approaches such as CycleGAN (Zhu et al., 2017a). For instance, methods to
generate infrared road scenes from RGB counterpart images (Zhang et al., 2018b), to pro-
duce thermal images for person re-identification (Kniaz et al., 2018) or for infrared image
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colorization (Mehri and Sappa, 2019). In the same vein, Nie et al. (2017) achieved data
augmentation in the field of medical imaging by transforming MRI inputs into pseudo-
CT images and Sallab et al. (2019) used it to produce realistic LiDAR points cloud from
simulated ones.

Following the previous stream of work, this chapter explores domain-transfer gen-
erative models on non-conventional imaging techniques. Specifically we investigate a
generative model framework to produce realistic polarimetric images from RGB images.
The significant interest resides in the fact that polarimetric imaging is a rich modality
that enables to characterize an object by its reflective properties. Those properties are
object specific, hence, they convey strong features to analyze the content of a scene. In
a polarimetric image, each pixel encodes information regarding the object’s roughness,
its orientation and its reflection (Wolff and Andreou, 1995). Applications of polarimet-
ric imaging range from indoor autonomous navigation (Berger et al., 2017), depth map
estimation (Zhu and Smith, 2019), 3D object reconstruction (Morel et al., 2006), or early-
stage cancer detection (Rehbinder et al., 2016). Also, polarization imaging was recently
exploited in autonomous driving applications either to enhance car detection (Fan et al.,
2018), road mapping and perception (Aycock et al., 2017), or to detect road objects in ad-
verse weather conditions (Blin et al., 2019). However, these applications are characterized
by the reduced size of the available training databases which restrains them from using
deep neural networks, thus the need of polarimetric data generation model.

Contrary to RGB, LiDAR, thermal or infrared image generation which mostly responded
to visual qualitative constraints, sampling polarization images is more challenging. In-
deed, this imaging technique comes with physical admissibility constraints on the pixels
of an image. As such, each pixel entry of such an image should satisfy some physical
constraints related to light polarization principle and to the calibration setup of the ac-
quisition devices.

Therefore, we formulate our problem of polarimetric image generation as a Cycle-
GAN learning problem under physical constraints to ensure that the generated images are
valid. We study this problem in a fully unsupervised context, meaning that we do not have
access to datasets of paired or labeled samples. Techniques b based on cycle-consistency
(Zhu et al., 2017a) enabled to achieve unpaired image-to-image translation with a rela-
tively few number of images. They allow to circumvent the expensive labeling issue in
deep learning by transferring a source labeled dataset to one or multiple target domain
(Almahairi et al., 2018) by keeping unchanged the shapes of the source image. Starting
from unpaired sets of RGB and polarimetric images, our proposed framework based on
CycleGAN (Zhu et al., 2017a) is able to handle the physical polarization constraints during
training. We demonstrate the effectiveness of our constrained-output CycleGAN on the
KITTI1(Geiger et al., 2012) and BDD100K datasets2 (Yu et al., 2020), two common datasets
used for object detection in road scenes. Using the generated polarization-encoded im-
ages to train a deep object detector, we witness an improvement of the detection perfor-
mances of cars and pedestrians which are of great interest for autonomous driving appli-
cations.

1Karlsruhe Institute of Technology and Toyota Technological Institute
2the Berkeley Deep Drive dataset
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To summarize, the contributions of this chapter are:
• as far as our knowledge can go, we propose the first framework for generating phys-

ical polarization-encoded images starting from RGB images,

• we propose a CycleGAN-based model which allows to generate polarimetric-encoded
images while handling the physical constraints the pixels of the generated image
should satisfy,

• when plugged into the training procedure of an object detector for pretraining, the
generated images help improving the detection performances.

The remainder of the chapter is organized as follows: the polarization formalism and
the physical constraints it involves are first presented in Section 3.2. Then, in Section
3.3, the formulation of the image-to-image translation from RGB images to the polari-
metric domain is described, and we review different approaches to tackle this problem,
as well as their limitations. In Section 3.4 a way to take into account these physical con-
straints during the training process of the CycleGAN for generating polarimetric images
is investigated. Experimental evaluations are conducted in Section 3.4.2, in which we aim
to translate RGB images of KITTI and BDD100K datasets into polarimetric images. We
evaluate our approach as a data augmentation technique using an object detection net-
work trained on the generated images. Section 3.5 discusses prospective optimization
approaches to handle the polarimetric constraints. Most notably, we formulate a pro-
jector operator on the space of the constraints and propose two algorithm based on this
projector for handling polarimetric constraints. The last section concludes the chapter.

3.2 Polarimetric imaging: formalism and constraints

As most of this chapter revolves around polarimetric image generation, we first introduce
the formalism of polarization that stems from the physics of polarimetry. Polarization is
a property of light that represents the direction of propagation of the electrical field of the
light wave. Polarimetric imaging defines the polarization state of light waves reflected by
each part of the scene. When an un-polarized light wave is being reflected, it becomes
partially linearly polarized and its polarization depends on the normal surface and the
refractive index of the material it impinges on. As such, it is a different modality than
classical color images, since it does not represent the wavelength of light, but contains
rich information about the surfaces that the light reflected on, most notably information
about the materials of these surfaces (Gross et al., 2012). In this section, we first propose
an overview of the mathematical formulation of polarimetric imaging and then review the
different physical constraints that apply to this imaging paradigm.

3.2.1 Polarimetry-encoded images and Stokes vectors as parameters for
polarization

Similarly to color images, several encoding formats exist for polarimetric images. The ac-
quisition principle of a polarimetric camera is based on a set of polarizers located between
the object and the sensors (Bass et al., 1995). In this work, we rely on a polarimetric im-
age encoding format that consists in four channel images respectively obtained with four
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Figure 3.1: Example of a polarimetric image. From left to right, the intensities corresponding to
the polarizer rotation angles 0°, 45°, 90° and 135°.

different linear polarizers oriented at αθ,θ ∈ {1, ...,4} = (0°, 45°, 90°, 135°). The polarimetric
camera captures an image y ∈ Y ⊂ Rn×p×4 consisting in the light intensities yi , jαθ

of the

scene for each angle αθ for each pixel yi , j =
[

yi , j0
yi , j 45

yi , j 90
yi , j 135

]>
, ∀i ≤ n, j ≤ p.

An example of the four different intensities for the same scene is shown in Figure 3.1.
The linearly-polarized reflected light can be described by measurable parameters, specif-

ically by linear Stokes vectors1. These parameters are encoded as an image s ∈S⊂Rn×p×3

such that each pixel si , j is a Stokes vector si , j =
[
si , j 0

si , j 1
si , j 2

]> ∈ R3, 1 ≤ i ≤ n,1 ≤
j ≤ p . Here, s0 > 0 represents the total light intensity, s1 the amount of horizontally and
vertically linearly polarized light and s2 the amount of linearly polarized light at ± 45°.

Associated with each polarimetry encoding format is its so-called calibration matrix A
that allows for computing Stokes vectors. In this work, the calibration matrix is set by the
manufacturer of the polarimetric camera we use (a Polarcam™4D Technology2) as

A = 1

2


1 cos(2α1) sin(2α1)
1 cos(2α2) sin(2α2)
1 cos(2α3) sin(2α3)
1 cos(2α4) sin(2α4)

= 1

2


1 1 0
1 0 1
1 −1 0
1 0 −1

 .

Using A ∈R4×3, we define3 the relationship between Stokes vectors s ∈Rn×p×3 and the
light intensities y ∈Rn×p×4 reaching the camera as

y = As . (3.1)

To compute Stokes parameters from the measured intensities (equation 3.1), we re-
quire A† = (A>A)−1A> ∈R3×4 the pseudo-inverse (or Moore-Penrose inverse) of the matrix
A. The relationship between s and y is defined for each pixel as

si , j = A†yi , j∀i ≤ n, j ≤ p .

1https://en.wikipedia.org/wiki/Stokes_parameters
2https://www.4dtechnology.com
3To ease the notation for the rest of this chapter, we use the matrix product notation Mt between a tensor

t ∈ Rn×p×a and a matrix M ∈ Ra×b as computing a tensor t′ ∈ Rn×p×b such that each of its elements t′i , j =
Mti , j , 1 ≤ i ≤ n,1 ≤ j ≤ p.
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In our work, the pseudo-inverse A† of the calibration matrix A is

A† =
1 0 1 0

1 0 −1 0
0 1 0 −1

 , (3.2)

thus we have the relation

si , j = A†yi , j =
1 0 1 0

1 0 −1 0
0 1 0 −1




yi , j 0

yi , j 45

yi , j 90

yi , j 135

=

 y0i , j
+yi , j 90

y0i , j
−yi , j 90

yi , j 45
−yi , j 135

1 ≤ i ≤ n,1 ≤ j ≤ p .

3.2.2 Physical constraints of polarimetry

A polarimetry-encoded image y is deemed valid if its Stokes vectors satisfy two main con-
ditions: they must be physically admissible and they must be the result of an acquisition
process that uses the right calibration. Since we are interested in generating new polari-
metric images, they will have to comply with these essential constraints.

The three components of Stokes vectors represent respectively the total light inten-
sity, the intensity of the vertically and horizontally polarized light, and the intensity of
the diagonally polarized light. To be physically admissible, the total light intensity s0 of
Stokes vectors s should be at least superior to the sum of the intensities of the diagonally,
vertically and horizontally polarized light. Thus, we have

s0 ≥
√

s2
1 +s2

2 . (3.3)

Additionally, since s0 represents the total light intensity, it cannot be 0. Thus, to be
physically admissible, a Stokes vector has to meet the conditions

s0 > 0 and s2
0 > s2

1 +s2
2 . (3.4)

Then, an additional check has to be done to ensure that a polarimetric image y has
been obtained using a given calibration matrix A. To do so, we evaluate if the image y
can be reconstructed from Stokes vectors computed using the pseudo-inverse A† of the
calibration matrix. By using equations (3.1) and (3.2), we can formulate the condition

y = AA†y . (3.5)

Note that in the case where A is invertible, A† = A−1 so AA† = Id , thus this constraint is
always enforced. In general, this constraint is satisfied if and only if y ∈ ker(AA†−Id) In the
specific case where the calibration matrix A defined in Equation 3.1 is used, the solution
to this constraint is {

y = [
y0 y45 y90 y135

]> ∣∣∣y0 +y90 = y45 +y135

}
. (3.6)

The proof of this result is deferred to Appendix D. We finally obtain a set of three po-
larimetric constraints C1, C2 and C3 formulated as

C1 : y = AA†y, (3.7)

C2 : s2
0 > s2

1 +s2
2 ,

C3 : s0 > 0 .
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In this chapter, we consider images that satisfy this set of constraints to be physically
admissible.

3.3 Unsupervised color to polarimetric image translation

In this section, we propose a formulation of the polarimetric image generation as a con-
strained domain-transfer problem. We examine the limits of the classical domain-transfer
approaches and propose an overview of some recent methods that overcome these limits.

3.3.1 Polarimetric image generation as a constrained conditional im-
age generation problem

The problematic studied in this chapter is learning a model for generating physically re-
alistic polarimetry-encoded images from color images, using neither paired data nor la-
beled data. A polarimetric image generated that way should remain semantically consis-
tent with the input color image, i.e it should represent the same scene and objects but in
a different modality. Thus, there are two important aspects to this problem. First, we aim
to learn a generative model GXY such that, for an RGB image x ∈X issued from the distri-
bution pX, the generated images GXY(x) = ŷ ∈Y are issued from pY the distribution of the
real polarimetric images. Hence, the generated images ŷ and their Stokes vectors ŝ = A†ŷ
must respect the constraints C1, C2 and C3 (see 3.7).

We can formulate this as

max
GXY

L(GXY) = Ex∼pX

[
log(pY(GXY(x))

]
(3.8)

s.c. GXY(xi ) = Asi ; s2
0i
≥ s2

1i
+s2

2i
and s2

0i
> 0

with si = A†(GXY(xi )) ∀i .

These constraints enforce the physical admissibility of the generated polarimetric im-
ages, however they do not guarantee that the objects pictured in the generated images
GXY(xi ) will be the same as in the original images xi . This property is called semantic
consistency between the input x and the generated image ŷ and is essential to the task
of domain-transfer. Indeed, a model that is not semantically consistent could generate
realistic images that are completely different from the provided inputs.

One final requirement is that the model should be trainable in an unpaired and un-
supervised way. This implies that the only available datasets consist in unpaired and un-
labeled samples X = {x1, ...,xs},xi ∈ X and Y = {y1, ...,ys},yi ∈ Y from the two domains X
and Y.

These two requirements can be approached using unsupervised domain-transfer meth-
ods.

3.3.2 Approaches for unsupervised conditional domain-transfer

In Section 1.2.3, we reviewed different approaches for unsupervised domain-transfer. Most
notably, we introduced the cycle-consistency losses used in models such as CycleGAN
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Figure 3.2: Overview of the TD-GAN approach. Figure from Zhang et al. (2018c).

(Zhu et al., 2017a). These approaches consists in training two conditional GAN models,
GXY : X→ Y and GYX : Y→ X, that maps samples between the distributionspX and pY of
the two domains, then training them with both the classical GAN losses and the cycle-
consistency loss, formulated as

E
x∼px

||x−GYX(GXY(x))||1 + E
y∼py

||y−GXY(GYX(y))||1 .

The full CycleGAN problem can be summed up as

min
GXY ,GYX

max
DX ,DY

LCycGAN(GXY,GYX,DX,DY) =

min
GXY ,GYX

max
DX ,DY

E
x∼px

[
(1−DX(x)2)+ (DY(GXY(x)))2

]
+ E

y∼py

[
(1−DY(y))2 + (DX(GYX(y)))2

]
+λ

[
E

x∼px
||x−GYX(GXY(x))||1 + E

y∼py
||y−GXY(GYX(y))||1

]
.

While these approaches allow for efficient domain-translation (and notably image-to-
image translation), they do not integrate domain-specific knowledge, for example the po-
larimetric constraints mentioned in Section 3.2.

To constrain the domain-transfer process, several approaches rely on adding a task
specific loss to the CycleGAN objective. This can be done in a supervised way, leveraging
on labeled data by training a task model and minimizing its error, or in an unsupervised
way with an explicit task loss.

TD-GAN (Zhang et al., 2018c) integrates a supervised conditioning process in a task of
semantic segmentation from organ X-ray images. To do so, the authors rely on existing
labeled datasets of digitally reconstructed radiographs (DRRs) and use them to train a
Dense Image-to-Image (DI2I) (Huang et al., 2018) semantic segmentation model. They
use this model to condition a CycleGAN-like model that translates images from the X-
ray to the DRR domain by adding the segmentation loss to the CycleGAN objective. In
other words, DRR images are translated to X-ray, then back to DRRs, segmented using
the pre-trained model and then compared to the ground truth segmentation using binary
cross-entropy. The full procedure is described in Figure 3.2.

CyCADA (Hoffman et al., 2018) also implements the idea of using pre-trained classi-
fiers or segmentation models to condition domain-transfer. They achieve this condition-
ing by comparing the classes (or segmentation maps) of the source and generated images,
and then adding the fitting term of these supervision models to the objective loss of a Cy-
cleGAN-like model. While this conditioning process requires a model pre-trained in a
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Figure 3.3: Cycle-consistent adversarial adaptation overview. By directly remapping source train-
ing data into the target domain, they remove the low-level differences between the domains, en-
suring that their task model is well-conditioned on target data. They depict here the image-level
adaptation as composed of the pixel GAN loss (green), the source cycle loss (red), and the source
and target semantic consistency losses (black dashed) – used when needed to prevent label flip-
ping. For clarity the target cycle is omitted. The feature-level adaptation is depicted as the feature
GAN loss (orange) and the source task loss (purple). Figure from Hoffman et al. (2018).

supervised way, training the CyCADA model does not require labeled data. They demon-
strate this approach for domain-transfer with datasets such as MNIST (LeCun et al., 1998)
and Street View House Numbers (SVHN) (Netzer et al., 2011) for a digit classification task,
and the SYNTHIA (Ros et al., 2016), GTA (Richter et al., 2016) and Cityscapes (Cordts et
al., 2015) datasets for road scenes semantic segmentation The full method is illustrated in
Figure 3.3.

Several methods also leverage on this conditioning approach to enhance the perfor-
mance of the domain-transfer task. VIGAN (Shang et al., 2017) includes a denoising auto-
encoder; the aforementioned CyCADA an uses adversarial loss on the features extracted
by a pre-trained classifier and Attention-GAN (Chen2018b) leverages on an attention
mechanism, both to increase the visual quality of the generated samples.

3.4 Generating polarimetric images with auxiliary tasks for
domain-transfer modeling

The problem studied in this chapter is image-to-image translation from RGB images to
the polarimetry domain. In the previous sections, we formalized the constraints of po-
larimetric imaging and reviewed the different approaches for image-to-image translation
based on generative modeling, as well as conditioning mechanism based on task-specific
losses.

As a main contribution in this chapter, we propose a CycleGAN-based approach for
conditioning the domain translation task with the constraints of polarimetry. We formu-
late a relaxation of both the calibration constraint (see Equation 3.5) and the constraint of
physical admissibility (see Equation 3.8) and add the related costs to the CycleGAN losses.

We evaluate this methods on a road-scene RGB to polarimetric image translation. We
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Figure 3.4: Overview of the CycleGAN training process extended with LC1 and LC2 .

compare the visual quality of the samples and the respect of the polarimetric constraints.
We further examine the physical admissibility by studying the impact of using our gener-
ated images as a dataset for a road-scene detection task. We observe that our approach
outperforms CycleGAN on the used criterions and that using generated polarimetric im-
ages contributes to enhancing the performances on the road-scene detection task.

3.4.1 Auxiliary tasks for color to polarimetric images domain-transfer

As discussed above, to generate a realistic polarimetric image from an RGB image, we
propose to use the CycleGAN approach to learn the translation models GYX between Y

the space of the polarimetric images and X the RGB image domain. Let ŷ ∈ Rn×p×4 be a
generated polarimetric image. To be physically admissible, it has to satisfy the admissi-
bility constraints (3.4) and the calibration constraint (3.5).

By design, the first component of Stokes vector is always positive as it represents the
total intensity reflected from an object. Indeed the last layer of the generation models
customary uses the hyperbolic tangent as activation function, each output intensity ŷ is
within the range ]−1,1[ which we scale to ]0,255[. Hence ŝ0i , j = ŷ0i , j

+ ŷ90i , j
,

1 ≤ i ≤ n, 1 ≤ j ≤ p (see equation (3.2)) is ensured to be strictly positive pixel-wise.
Therefore, constraint C3 can be deemed satisfied for the real and the generated polari-
metric images. To handle the remaining constraints C1 and C2, one could resort to the
Lagrangian dual of CycleGAN optimization problem (1.19) subject to these constraints.
However, this may be computationally expensive, as it requires to entirely optimize four
neural networks (respectively the discrimination and the mapping network models) in
an inner loop of a dual ascent algorithm. Moreover the overall optimization procedure
may not be stable because of the min-max game involved in the CycleGAN learning. In
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order to derive an efficient algorithm to learn CycleGAN under output constraints, we in-
troduce a relaxation of the problem. Instead of strictly enforcing the constraints, as in
Equation (3.8), we measure how far the generated image pixels are from the feasibility do-
main through additional cost functions we attempt to minimize. For the constraint C1, a
`2 distance between the generated image GYX and Aŝ is proposed. It reads

LC1 (GXY) = E
x∼pX

||GXY(x)−AA†GXY(x)||2 . (3.9)

Similarly, to enforce the constraint C2, a rectified linear penalty LC2 is considered. It is
defined by

LC2 (GXY) = E
x∼pX

max
(
ŝ2

1 + ŝ2
2 − ŝ2

0,0
)

, (3.10)

with ŝ = [
ŝ0 ŝ1 ŝ2

]> = A†GXY(x).
The loss LC1 translates the respect of the acquisition conditions according to the cal-

ibration matrix A while LC2 is related to the physical admissibility constraint on the de-
duced Stokes vectors from the generated image. Gathering all these elements, we train
our CycleGAN under physical constraints, by optimizing the following objective function

L f i nal (GXY,GYX,DX,DY) = LCycleGAN(GXY,GYX,DX,DY)+µLC1 (GXY)+νLC2 (GXY) . (3.11)

The non-negative hyper-parameters µ and ν ∈ R+ control respectively the balance of
calibration and admissibility constraints according to the CycleGAN loss LCycleGAN (see
equation (1.19)). As the values of LC1 and LC2 are computed pixel-wise, we consider their
averages over the whole images in the objective function. The training principle of the
proposed generative model is illustrated in Figure 3.4 and detailed in Algorithm 5.

Algorithm 5 CycleGAN with relaxed constraints training algorithm
Require: DX and DY two unpaired datasets, GXY and GYX the mapping networks, DX and

DY the discrimination models, b the mini-batch size, A the calibration matrix and A†

its pseudo-inverse, λ,µ,ν hyperparameters
repeat

sample a mini-batch {xi }b
i=1 from the RGB DX

sample a mini-batch {yi }b
i=1 from the polarimetric DY

update DX by stochastic gradient descent of∑m
i=1

(
DX(xi )−1)2 + (DX(GYX(yi ))

)2

update DY by stochastic gradient descent of∑m
i=1

(
DY(yi )−1)2 + (DY(GXY(xi ))

)2

for i = 1 to b, compute ŝi =
[

ˆs0i ˆs1i ˆs2i

]> = A†GXY(xi ).
update GXY by stochastic gradient descent of∑n

i=1

(
DY(GXY(xi ))−1

)2 +λ(||xi −GYX(GXY(xi )
)||1 +||yi −GXY(GYX(yi ))||1

)
+µ(‖GXY(xi )−AA†GXY(xi )‖2

F

)
+ν(

max(s2
1i
+s2

2i
−s2

0i
,0

)
update GYX by stochastic gradient descent of∑n

i=1

(
DX(GYX(yi ))−1

)2 +λ(||xi −GYX(GXY(xi ))||1 +||yi −GXY(GYX(yi ))||1
)

until a stopping condition is met
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Figure 3.5: Examples of images in the polarimetric dataset (Blin et al., 2020). Only the intensities
y0 are shown here.

Figure 3.6: Examples of images in the RGB dataset.

3.4.2 Experimental evaluation

Hereafter, the experimental setup, including the image generation procedure and its eval-
uation, is presented.

Experimental setup

To conduct the experiments, we rely on the polarimetric dataset presented in (Blin et al.,
2020) whose details are summarized in Table 3.1. From this dataset we select 2485 un-
paired images from each domain (RGB and polarimetry). Example instances are shown
in Figures 3.5 and 3.6 for polarimetric and RGB images respectively. The polarimetric im-
ages are of dimension 500× 500× 4. The latter dimension is due to the four intensities
acquired by the camera, namely y0,y45,y90 and y135. The RGB images are of dimension
906×945×3.

Our CycleGANs were trained for 400 epochs on randomly cropped patches of size

Train Val Test

Images 3861 1248 509

car 19587 3793 2793
person 2049 294 161

bike 16 35 3
motorbike 52 4 5

Table 3.1: Polarimetric dataset features. The bottom rows indicate the total number of instances
within each class.
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200×200, as recommended for CycleGAN (Zhu et al., 2017a). As for the constraints, we
found experimentally that setting the hyper-parametersµ= 1 and ν= 1 in equation (3.11)
provides the best performances. As for the original CycleGAN, the hyper-parameter λ,
controlling the reconstruction cost, was set to λ = 10. The learning rate is decreased lin-
early from 2×10−4 to 2×10−6 during the epochs.

To evaluate the effectiveness of the generative model, we consider KITTI (Geiger et al.,
2012) and BDD100K (Yu et al., 2020)(only using daytime images since polarimetry fails
to characterize objects during nighttime) which often serve as test-bed in applications
related to road scene object detection. The constrained-output CycleGANs we train are
used to transfer RGB images from KITTI and BDD100K to the polarimetric domain. The
resulting datasets are denoted respectively as Polar-KITTI and Polar-BDD100K. Since the
CycleGAN architecture is fully convolutional, it has no requirement on the size of the in-
put image. Therefore, even if the model was trained on 200×200 patches, it scales straight-
forwardly to the images of size 1250×375 from KITTI and of size 1280×720 from BDD100K
datasets.

To assess whether or not fulfilling the physical constraints is paramount, we inves-
tigate a variant of Polar-KITTI and Polar-BDD100K: we learn a standard unconstrained
CycleGAN based on the same unpaired RGB/polarimetric images. It is worth mentioning
that the so generated polarization-encoded images do not mandatory satisfy the feasibil-
ity constraints.

Evaluation of the generated images

In order to assert the ability of the generated Polar-KITTI and Polar-BDD100K datasets to
preserve the relevant features for road scene applications, we train a detection network
following the setup in Figure 3.7. For this experiment, a RetinaNet-50 (Lin et al., 2017)
pre-trained on the MS COCO dataset (Lin et al., 2014) is fine-tuned in two different set-
tings. In the first setup the detection model is fine-tuned based on the original RGB KITTI
(or BDD100K) while the second experimental setting considers the fine-tuning on the
generated polarimetric images from KITTI (Polar-KITTI) or BDD100K (Polar-BDD100K)
datasets. Afterwards the final detection models are obtained in both settings by a final
fine-tuning on the real polarimetric dataset (see Table 3.1). The same experiments were
carried out for the unconstrained variant of the generated images.

Overall, the trained CycleGANs and detection networks under these settings are eval-
uated in qualitative and quantitative ways. The end goal is to check the ability of the
generated images to help learning polarimetry-based features for object detection, and
the influence of respecting the polarimetric feasibility constraints on detection perfor-
mances.

We measure the visual quality of the generated images by computing the classical
Fréchet Inception Distance (Heusel et al., 2017) (see Section 1.4). Computing this dis-
tance requires to extract visual features from each set of images (real and generated) using
a pre-trained deep neural network (usually an Inception v3 (Szegedy et al., 2016) network
pre-trained on ImageNet (Deng et al., 2009)) and to evaluate the Fréchet (or Wasserstein)
distance between the distributions of these features, which are assumed Gaussian distri-
butions (thoroughly explained in Section 1.4). We compute this distance using 500 images
from each generated polarimetric dataset and from the test set as described in Table 3.1.
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Figure 3.7: Setup of the detection evaluation experiment. The procedure is illustrated with the
KITTI dataset and straightforwardly extends to the BDD100K dataset. Top: domain-transfer pro-
cedure with our model; Center: baseline setup; Bottom: our setup
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Figure 3.8: Examples of polarimetric image reconstruction. From left to right: y0, y45, y90 and y135
ground truth, RGB image generated with a trained model and y0, y45, y90 and y135 generated from
RGB image using the model trained with relaxed constraints.

As feature extractor, since the classical Inception v3 network is not adapted to polari-
metric images, we use the convolutional part of a polarimetry-adapted RetinaNet detec-
tion network (Blin et al., 2019), which has been trained on the MS-COCO dataset and
fine-tuned on a real polarimetric dataset. In order to evaluate the improvements in the
detection, we compute the error rate evolution ERo . The improvement ERo on the detec-
tion of the object o is given by:

ERo =
(
1−APp

o

)
−

(
1−APRGB

o

)
1−APRGB

o
,

where APRGB
o and APp

o respectively denote the average precision for object o detection in
RGB and in polarimetric images.

Results and discussion

First we evaluate whether the generated images are qualitatively coherent or not. For the
sake, we reconstruct the polarimetric images from their RGB generation, which refers to
GXY ◦GYX. The reconstruction of these RGB images is shown in Figure 3.8.

As for the constraints, Table 3.2 shows how including them to the CycleGAN’s loss
helps to generate images which better fulfill the physical polarimetric properties at the
pixel scale. The errors related to the constraints C1 and C2 on generated images using
our approach are consistent with the observed errors on the real images (which corre-
sponds to acquisition errors), whereas the unconstrained approach yields poor results.
Obviously, constraint C3 is met for all generated images thanks to the tanh activation at
the last layer of the generative models. Additionally, the obtained Fréchet Inception Dis-
tances (see table 3.2) indicates that taking the constraints into account improves visual
quality and physical admissibility of the generated samples on the test set.
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Datasets C Mean Median FID

Real C1 0.06 ± 0.04 0.04
polar C2 2.47 ± 7.11% 0.48% N/A

C3 0% 0%

Generated C1 0.26 ± 0.19 0.23
polar no C C2 27.31 ± 43.5% 2.15% 6022.7

C3 0% 0%

Relaxed C1 0.12 ± 0.04 0.12
constraints C2 1.55 ± 3.36% 0.14% 4485.1

C3 0% 0%

Table 3.2: Evaluation of the constraint fulfillment using the designed losses LC1 and LC2 at the
pixel scale, and the visual quality using the Fréchet Inception Distance (FID). Note that the scale
of the FID scores computed with the pre-trained RetinaNet is larger than when using a pre-trained
Inception v3 network. Here, the column C indicates the evaluated constraint. C1 refers to the
constraints y = AA†y, C2 to s2

0 > s2
1 +s2

2 and C3 to s0 > 0. The mean and the median of the percent-
age of pixels in an image that do not fulfill the constraints C2 and C3 are computed. Regarding the
constraint C1, we compute the mean and the median of ||y−AA†y||/(||y||+ ||AA†y||).

Next, we show the benefit of the generated images in object detection task, enabling
to verify that objects within them are globally physically coherent. The RetinaNet-based
detection model were trained according to the setups previously described (see Figure
3.7) and the obtained detection performances in term of mean average precision (mAP)
are summarized in Table 3.3. We choose not to evaluate the bike and motorbike detection
performances as the polarimetric dataset does not contain enough objects of those two
classes.

As we can see in Table 3.3, using the generated images improves the detection perfor-
mance in real polarimetric images. The improvement is substantial for car and pedestrian
detection. We achieve an improvement of 4% for car detection and of 12% for pedestrian
detection which leads to an overall improvement of 9% in the detection, using Polar-KITTI
with constraints. Similarly for Polar-BDD100K dataset, we notice an improvement of 10%
for pedestrian detection which leads to an increased mAP of 5% (pedestrians and cars).
However, we notice that for BDD100K similar detection performances are obtained either
for RGB or polarimetric images and this is due to the fact that generated images using Cy-
cleGANs do not perform well on small objects. To verify that, we compare the evolution
of the detection scores while setting a minimal area to the bounding boxes to be detected.
The results of this experiment are shown for the training including the Polar-BDD100K
and the RGB BDD100K in Figure 3.9.The results of this experiment illustrate that when
the minimal area of bounding boxes increases the AP of car regarding the training includ-
ing Polar-BDD100K overcomes the one including RGB BDD100K. We can thus conclude
that the limit of this work is the low quality of the small objects in the generated images.
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Figure 3.9: Evolution of the average precision when setting a minimal area of the bounding boxes
to be detected. Here green lines refer to the evolution of cars’ detection, blue lines to the evolution
of the mAP and red lines to the evolution of person’s detection. The dashed lines refer to the
training including the BDD100K RGB and the solid lines to the training including Polar-BDD100K.
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Databases Class Test ERo Databases Class Test ERo

KITTI RGB person 0.663 N/A BDD100K RGB person 0.736 N/A
+ real polar car 0.785 N/A + real polar car 0.821 N/A

mAP 0.724 N/A mAP 0.778 N/A

Polar-KITTI person 0.673 -0.03 Polar-BDD100K person 0.720 0.06
no C + real polar car 0.786 -0.01 no C + real polar car 0.816 0.03

mAP 0.730 -0.02 mAP 0.768 0.05

Polar-KITTI with person 0.704 -0.12 Polar-BDD100K person 0.762 -0.10
relaxed C car 0.794 -0.04 with relaxed C car 0.815 0.03

mAP 0.749 -0.09 mAP 0.789 -0.05

Table 3.3: Comparison of the detection performance after the two successive fine-tunings.
RetinaNet-50 pre-trained on MS COCO is the baseline of all experiments. The first row refers to
the RetinaNet-50 fine-tuned on KITTI or BDD100K RGB. The second row refers to the fine-tuning
on Polar-KITTI or Polar-BDD100K without physical constraints and the bottom row represents the
detection model fine-tuned on Polar-KITTI or Polar-BDD100K with enforced constraints. Every
model is finally fine-tuned on the real polarimetric dataset.

3.5 Perspectives

In this section, we propose to explore some perspectives and new approaches for trans-
ferring color images to the polarimetric domain. We formulate an operator for projecting
generated images onto the space delimited by the constraints and propose two algorithms
based on this projector. Since these approaches are, at the writing this thesis, work-in-
progress, their experimental evaluations are deferred to future work.

3.5.1 Generating polarimetric images with a projector operator

In the same fashion as in Section 3.4, we aim to generate images ŷ = GXY(x), where x ∈X is
a sample from the RGB domain, such that ŝ = A†ŷ ∈S the space of Stokes vectors. Each of
the vectors must respect C1, C2 and C3, which in fact correspond to a second-order cone,
or Lorentz cone (Boyd et al., 2004). Thus, let

C =
{

(s0,s1,2) ∈S
∣∣∣ ‖s1,2‖2 ≤ s0, s1,2 =

[
s1

s2

]}
, (3.12)

a convex set whose vectors satisfy the aforementioned constraints. As such, we can refor-
mulate the Problem (3.8) as

max
G

L(G) = Ex∼pX

[
log(pY(GXY(x))

]
(3.13)

s.c. A†(GXY(xi )) ∈C ,∀i .

With such a membership constraint, the projection operator ΠC on C can be defined as
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Algorithm 6 Training algorithm for CycleGAN with projected images
Require: DX and DY two unpaired datasets, GXY and GYX the mapping networks, DX and

DY the discrimination models, m the mini-batch size, A the calibration matrix and A†

its pseudo-inverse, λ,µ hyperparameters
repeat

sample a mini-batch {xi }m
i=1 from DX

sample a mini-batch {yi }m
i=1 from DY

update DX by stochastic gradient descent of∑m
i=1

(
DX(xi )−1)2 + (DX(GYX(yi ))

)2

update DY by stochastic gradient descent of∑m
i=1

(
DY(yi )−1)2 + (DY(AΠC (A†GXY(xi )))

)2

update GXY by stochastic gradient descent of∑n
i=1

(
DY(GXY(xi ))−1

)2 +µ(
AA†GXY(xi )

)
+λ(||xi −GYX(AΠC (A†GXY(xi ))

)||1 +||yi −AΠC (A†GXY(GYX(yi )))||1
)

+µ(‖xi −AA†GXY(xi )‖2
F

)
update GYX by stochastic gradient descent of∑n

i=1

(
DX(GYX(yi ))−1

)2

+λ(||xi −GYX(AΠC (A†GXY(xi )))||1 +||yi −AΠC (A†GXY(GYX(yi ))||1
)

until a stopping condition is met

the solution to the optimization problem

min
(r,u)∈C

1

2
‖(s0,s1,2)− (r,u)‖2

2 , (3.14)

which has a closed-form (Parikh and Boyd, 2014) as

ΠC (s0,s1,2) =
{

(s0,s1,2) if ‖s1,2‖2 ≤ s0
1+s0/‖s1,2‖2

2 (‖s1,2‖2,s1,2) if ‖s1,2‖2 > s0
(3.15)

We can introduce this projection operator to the training algorithm instead of the loss
term LC2 obtain by the relaxation of C2. To do so, the output of GXY is systematically
projected onto C using ΠC as

ŷΠC
= AΠC (A†GXY(x)) , (3.16)

with x ∈ X an RGB image. This process is summed up in Algorithm 6 and illustrated in
Figure 3.10.

3.5.2 Proximal method for generating polarimetric images

Another solution is to formulate an alternative version to the loss induced by relaxation
(3.10) that measures the distance between the Stokes vectors of the generated image and
their projection on the constraint space, as

Lpr ox(GXY) = E
x∼pX

[
‖A†GXY(x)−ΠC (A†GXY(x))‖2

]
, (3.17)
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GY X x̂

`2

Figure 3.10: Overview of the CycleGAN training process with extended the projection operator.
The LC1 term is omitted.

with λ a regularization parameter. This loss can be substituted to LC2 in Equation 3.11,
thus the problem becomes

L f i nal (GXY,GYX,DX,DY) = LCycleGAN(GXY,GYX,DX,DY)+µLC1 (GXY)+νLpr ox(GXY) . (3.18)

This process is summed up in Algorithm 7 and illustrated in Figure 3.11. Note that the
gradient of the distance ΩC = ‖A†GXY(y)−ΠC (A†GXY(y))‖2 can be expressed (Parikh and
Boyd, 2014) as

∇GXYΩC (s) = (s−ΠC (s))×
{

0 if ‖s1,2‖2 ≤ s0

∇GXY s−∇GXY
1
2

[
(1+ s0

‖s1,2‖2
)(‖s1,2‖2,s1,2)

]
if ‖s1,2‖2 > s0

(3.19)
Such an approach for learning models with constraints has been used, for example, by
Kervadec et al. (2019) as an alternative to the Lagrangian version of an image segmenta-
tion problem under volume constraints determined by a convolutional neural network
(Pathak et al., 2015).
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x GXY ŷ

y DY

LC1
ΩC

0

1

GY X x̂

`2

Figure 3.11: Overview of the CycleGAN training process extended with the LC1 and proximal losses

Algorithm 7 CycleGAN with proximal training algorithm
Require: DX and DY two unpaired datasets, GXY and GYX the mapping networks, DX and

DY the discrimination models, m the mini-batch size, A the calibration matrix and A†

its pseudo-inverse, λ,µ,ν hyperparameters
repeat

sample a mini-batch {xi }m
i=1 from DX

sample a mini-batch {yi }m
i=1 from DY

update DX by stochastic gradient descent of∑m
i=1

(
DX(xi )−1)2 + (DX(GYX(yi ))

)2

update DY by stochastic gradient descent of∑m
i=1

(
DY(yi )−1)2 + (DY(GXY(xi ))

)2

for i = 1 to n, compute ŝi =
[

ˆs0i ˆs1i ˆs2i

]> = A†GXY(xi ).
update GXY by stochastic gradient descent of∑n

i=1

(
DY(GXY(xi ))−1

)2 +λ(||xi −GYX(GXY(xi )
)||1 +||yi −GXY(GYX(yi ))||1

)
+µ(‖xi −AA†GXY(xi )‖2

F

)
+ν‖A†GXY(xi )−ΠC (A†GXY(xi ))‖2

update GYX by stochastic gradient descent of∑n
i=1

(
DX(GYX(yi ))−1

)2 +λ(||xi −GYX(GXY(xi ))||1 +||yi −GXY(GYX(yi ))||1
)

until a stopping condition is met
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3.6 Conclusion

In this work, we proposed an efficient way to generate realistic polarimetric images sub-
ject to physical admissibility constraints. An adapted CycleGAN is used to achieve the
generation of pixel-wise physical images. To train the proposed output-constrained Cy-
cleGAN, we combined the standard CycleGAN’s objective function with two designed
cost functions in order to handle the feasibility constraints related to each polarization-
encoded pixel in the image. With the proposed generative model, we successfully trans-
lated RGB images from road scenes to polarimetric images showing an enhancement of
the detection performances.

As a perspective, we characterize the set of the constraints and formulate a projection
operator on this set. Using this operator, we propose two additional algorithms for trans-
ferring color images into the polarimetric domain: the first one consists in projecting the
output of the generator to the space of the constraints and giving these projected images
to the discriminator. The second algorithm consists in formulating a proximal distance
between the projected samples and the generated ones, and adding this distance as an
auxiliary cost function to the CycleGAN’s objective.

Another future work direction would be to improve the quality of the small objects
in generated images, in order to enhance the performances of the road-scene analysis
models on, for example, pedestrian detection. Using better architectures and introducing
more recent techniques (see Section 1.3) could lead to a notable increase in the visual
quality of the generated samples. Extension of the generation procedure to road scene
images under adverse weather conditions may help improving object detection in these
situations.

It would also be interesting to extend the generation of polarimetric images to other
domains such as medical and Synthetic-Aperture Radar (van Zyl and Kim, 2011) imaging.
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Chapter 4

Conclusion and Perspectives

In this chapter, we sum up the contributions proposed in this thesis and discuss interest-
ing directions for future work.

Contributions

In this thesis, we study the conditioning of Generative Adversarial Networks (GANs) us-
ing of auxiliary tasks. We focus on two real-world applications, the task of reconstructing
images of underground water channels from a limited set of points and the task of trans-
ferring images from the color domain to a polarimetry-encoded image modality. Through
these applications, we propose dedicated auxiliary tasks for conditioning both image-
reconstruction and domain-transfer models.

Image reconstruction as an auxiliary task to generative modeling

The task of image reconstruction consists in recovering an image from very noisy or sparse
measurements. In Chapter 2 of this thesis, we study the case in which only a few pixels
of the image are available, usually less than a percent. We propose to use a GAN com-
bined with a reconstruction task to learn to recover images from the very low amount of
pixels. The first benefit of this method is that, similarly to the Conditional GAN approach
(see Section 1.2.2), a model trained with our method is able to generate new samples in
a single neural network forward pass. This allows for quickly sampling a high number of
potential image reconstructions from a single set of pixels. For this, the approach intro-
duces a hyperparameter λ that weights the impact of the reconstruction task. Through
a large-scale study on the MNIST and FashionMNIST datasets, we empirically show that
this hyperparameter allows for controlling a trade-off between the visual quality of the
generated samples and the fidelity of the generation process with respect to the initial
image. We evaluate our method on several datasets of natural images, namely CIFAR10,
CelebA and a texture dataset and show that our method provides equal or better results
than a conditional GAN without auxiliary task, while endowed with the added benefit
of the control hyperparameter. Finally, we show that our method performs well on the
real-world application of reconstructing underground terrain from few measurements by
evaluating it on a dataset of image-like 2D slices of underground terrain.
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Polarimetric image generation with auxiliary tasks for generative mod-
eling

As a second main contribution, we investigate the conditioning of GAN-based domain-
transfer approaches using auxiliary tasks. We focus on the task of image modality transfer,
from the color domain to polarimetric images. Such images bear strong constraints that
directly stem from both the physics of polarimetry and the configuration of the acquisi-
tion device. We design a set of auxiliary tasks that directly aim to push the transferred
images towards enforcing the aforementioned constraints. We propose to integrate these
new auxiliary tasks to a CycleGAN, a domain-transfer approach based on cyclic consis-
tency. We show that our method produces high-quality polarimetric images that enforce
both the physical and configuration constraints and generally performs better than un-
conditioned methods. As a further test of our method, we propose to transfer existing two
road-scene color images datasets , BDD100K and KITTI, to the polarimetric domain and
train a polarimetric variant of the RetinaNet detection network on the generated data. We
show that this approach performs better than the existing approaches.

Perspectives

We now discuss some interesting perspectives of our contributions that could be ad-
dressed in future work.

On image reconstruction as an auxiliary task

In Chapter 2, we have studied the problem of image reconstruction and have proposed an
approach based on an auxiliary reconstruction task for conditioning generative adversar-
ial networks. Even though this approach provides good results, several directions could
be explored in order to enhance it.

Better modeling of the prior distribution of the model error

To formulate the problem as a maximum a-posteriori estimation, the error of the model
is assumed to be of a Gaussian distribution. This, however, is not necessarily true and we
provide a real-word example of the mismatch between the assumed and actual errors of
the generator (see Subsection 2.4.2). A solution to this problem could be to use adapted
distributions to model these errors, typically a distribution (or mixture of distributions)
from the exponential family (Brown, 1986), as we proposed in Chapter 2 with a mixture of
Gaussian and exponential distributions. This would allow to reformulate the maximum
a-posteriori estimation and provide with specialized auxiliary tasks for a given image re-
construction problem.

Better architectures and techniques

Although the different architectures employed in our experiments were common for their
time, they are nowadays outdated. This is not necessarily compromising, since the main
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result of this work is to show that the introduced auxiliary task allows both for high-fidelity
image reconstruction and introduces a controllable trade-off between the visual quality
and the respect of the constraints. Indeed, these results are independent from the archi-
tecture choices but, for real-world applications, the highest possible quality is desired.
In Chapter 1, we reviewed several recent techniques and architectures that are far more
efficient and could give way to better results, both for visual quality and respect of the
constraints. These techniques could be directly implemented in our approach without
any major changes in order to increase the overall performance of the trained models.

Application to other domains

In this thesis, we have applied image reconstruction to a task of underground terrain re-
construction. Thus, we focus our work on texture images, but our approach could be
applied to a number of applications. Similarly to compressed sensing-based approaches,
we could envision applications in medical imaging, image compression, or tasks on dif-
ferent types of signals such as audio inpainting (Marafioti et al., 2018). These tasks that
require to efficiently sample potential reconstructions.

On color-to-polarimetric domain transfer for data augmentation

In Chapter 3, we studied the problem of transferring color images to the polarimetric
domain using a CycleGAN-based approach with domain-specific auxiliary tasks. Moti-
vated by the lack of labeled polarimetric images datasets, we aim to train such a domain-
transfer model in order to convert large labeled color images datasets to the polarimetric
domain. This method yielded good results, most notably increasing the performances of
an object detection model for road-scene analysis. While these results are already satisfy-
ing, several extensions can be envisioned.

Projection-based methods

In Section 3.5, we proposed to study this problem as generating images that belong to a
well-defined set. We formulated a projector operator for this set and proposed two al-
gorithms based on projection for generating polarimetric images with CycleGAN-based
approaches. Thus, we plan to evaluate these approaches with the same experimental
setup as the main contribution of this chapter and propose a comparison of all these ap-
proaches.

Increasing quality of the small objects in the generated images

As mentioned in Section 3.4.2, the visual quality of the images generated with our ap-
proach is not sufficient keeping smaller details. This harms the performances of the road-
scene analysis models used to evaluate our approach, especially for detecting smaller ob-
jects such as pedestrians. Thus, working on enhancing the architectures and objectives,
using for example some techniques mentioned in Chapter 1 could yield better perfor-
mance.
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Stochastic modeling

As opposed to the methods studied in Chapter 2, our CycleGAN-based approach is not
stochastic, which implies that it is not possible to generate different polarimetric images
for a given RGB image. However, due to the ill-posed nature of the problem, to a unique
color image corresponds an non-finite set of polarimetric images that belong to the con-
strained set. Thus, providing a sampling mechanism with stochastic variants of the Cy-
cleGAN such as BiCycleGAN (Zhu et al., 2017b) could further extend the potential of our
approach as a data-augmentation technique.

Better metrics for compared acquisition

In order to evaluate the physical realism of our approach, we evaluate the generated im-
ages by measuring the error relative to the constraints and by evaluating the impact on
the performance of a road-scene analysis model. Since polarimetric images contains rich
information about the nature of the captured objects, most notably on the materials of
the objects, this could be used to provide better metrics for evaluating our approach. By
comparing the statistics of a given type of objects in the generated images, for example
cars, to actual cars in the real data, we could assess the physical realism of the generated
images.

Other domains of application for polarimetric images

Finally, another interesting perspective would be to apply this domain-transfer approaches
to different domains. Indeed, polarimetric data are widely used in, for example, medi-
cal imaging (Kupinski et al., 2018; Rehbinder et al., 2016) and Synthetic-Aperture Radar
(van Zyl and Kim, 2011) imaging for topological data. Since these domains also lack large
labeled datasets, applying our approach as a data-augmentation technique could help
increase the performances of models in these domains. (Paetzold2019)
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Appendix B

Deep learning glossary

Attention

Attention (Vaswani et al., 2017) is, informally, a technique that allows a neural network to
"focus" on a subset on the inputs by masking parts of the input vector. The most common
type of attention is computed using a dot product: let x ∈ Rn be the input of a neural
network layer l (.). Dot product attention consists in weighting the output and l (x) ∈ Rm

of the layer l with a feature vector fθ(x) ∈ [0,1]m , where fθ is typically a neural network, as

l ′(x) = l (x)¯ fθ(x) . (B.1)

Auto-encoder

Auto-encoders AE(.) are a family of neural network architectures that are trained to copy
its input to its output, as AE(x) = x. Since this is normally a trivial task, auto-encoders are
constrained by their architecture (usually an encoder-decoder2 architecture with a low-
dimension latent representation) or through regularization. The aim of auto-encoders is
usually to learn a good representation model of the data.

Batch Normalization

Batch Normalization (Ioffe et al., 2015) is a normalization technique that consists in re-
centering and re-scaling the input x of a neural network layer. To approximate the mean
and covariance of the full dataset, Batch Normalization computes µmb the mean and σmb

the variance of the data in present in the mini-batch. It also keeps two parameters, β and
γ, updated during the training of the neural network, and uses them to shift and scale the
input as

BN(x|β,γ) = γx−µmbp
σmb

+β . (B.2)

2see Glossary, Appendix B
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Figure B.1: Dilated filters with dilation rate of 1, 2, 3

Deconvolutional layer / Transposed convolution

Deconvolutions (Long et al., 2015), or transposed convolutions, are the inverse operation
of convolutions. As opposed to convolutions in which striding decreases the dimension
of the feature maps, deconvolutions allows for filters to upscale the feature maps using
striding.

Dilated convolution

Dilated convolutions (Yu and Koltun, 2015) (or “A trous” convolutions) are convolutions
in which the size of the filters receptive fields is artificially increased, without increasing
the number of parameters, by using sparse filters (see Figure B.1).

Encoder-decoder architecture

An encoder-decoder architecture is a neural network that consists in two parts: the en-
coder which downscales the input to a small dimension representation; and a decoder
which upscales this small dimension representation to obtain a high-dimension output.

Instance Normalization

Instance Normalization (Ulyanov et al., 2016) is a variant of Batch Normalization which
does not compute the means and variances on the full mini-batch, but instead standard-
izes the input using the means and variances for a single input, across all dimensions.

Residual block

A residual block is a set of several layers with a skip-connection that links the first layer
of the block to the last one (see Figure B.2). Residual blocks allow for having very deep
neural network architectures while mitigating vanishing gradient issues.

Skip connection

Used in auto-encoder architectures and residual blocks, a skip-connection allow for con-
necting the input of a layer Ln to the input of another layer Lm further up the network (see
Figure B.2). This bypassed information can be aggregated to the input of Lm using addi-
tion or concatenation. Skip-connections are used to allow for information to flow more
easily up the network and is a way to mitigate vanishing gradient problems.
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Figure B.2: 3 layer residual block

UNet

A UNet (Ronneberger et al., 2015) is an Encoder-Decoder architecture with skip-connections
between layers of the encoder and the decoder.
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Appendix C

Experiment details for the Pixel-Wise
Conditionned GAN

C.1 Details of the datasets

Dataset Size (in pixels) Training set Validation set Test set
FashionMNIST 28x28 55,000 5,000 10,000
Cifar-10 32x32 55,000 5,000 10,000
CelebA 128x128 80,000 5,000 15,000
Texture 160x160 20,000 2,000 4,000
Subsurface 160x160 20,000 2,000 4,000

Additional information:

• For FashionMNIST and Cifar-10, we keep the original train/test split and then sam-
ple 5000 images from the training set that act as validation samples.

• For the Texture dataset, we sample patches randomly from a 3840x2400 image of a
brick wall.
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C.2 Detailed deep architectures

Layer type Units Scaling Activation Output shape
Input z - - - 7x7
Input y - - - 28x28
Dense 343 - ReLU 7x7
Conv2DTranspose 128 3x3 x2 ReLU 14x14
Conv2DTranspose 64 3x3 x2 ReLU 28x28
Conv2DTranspose 1 3x3 x1 tanh 28x28
Input x - - - 28x28
Input y - - - 28x28
Conv2D 64 3x3 x1/2 LeakyReLU 14x14
Conv2D 128 3x3 x1/2 LeakyReLU 7x7
Conv2D 1 3x3 x1 tanh 28x28
Dense 1 - Sigmoid 1

Table C.1: DCGAN for FashionMNIST

Additional information:

• A Gaussian noise is applied to the input of the discriminator

• Instance normalization1 (Ulyanov et al., 2016) is applied across all the layers. This
is involved by the use of the PacGAN technique.

• The layers noted with an asterisk are linked with a skip-connection1

"

1see Glossary, Appendix B
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APPENDIX C. EXPERIMENT DETAILS FOR THE PIXEL-WISE CONDITIONNED GAN

Layer type Units Scaling Activation Output shape
Input y - - - 32x32
Conv2D* 64 5x5 x1 ReLU 32x32
Conv2D* 128 3x3 x1/2 ReLU 16x16
Conv2D* 256 3x3 x1/2 ReLU 8x8
Input z - - - 8x8
Dense 256 - ReLU 8x8
Residual block 3x256 3x3 x1 ReLU 8x8
Residual block 3x256 3x3 x1 ReLU 8x8
Residual block 3x256 3x3 x1 ReLU 8x8
Residual block 3x256 3x3 x1 ReLU 8x8
Conv2DTranspose* 256 3x3 x2 ReLU 16x16
Conv2DTranspose* 128 3x3 x2 ReLU 32x32
Conv2DTranspose* 64 3x3 x1 ReLU 32x32
Conv2D 3 3x3 x1 tanh 32x32
Input x - - - 32x32
Input y - - - 32x32
Conv2D 64 3x3 x1/2 LeakyReLU 16x16
Conv2D 128 3x3 x1/2 LeakyReLU 8x8
Conv2D 256 3x3 x1/2 LeakyReLU 4x4
Dense 1 - Sigmoid 1

Table C.2: UNet-Res for CIFAR10
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Layer type Units Scaling Activation Output shape
Input y - - - 128x128
Conv2D 64 5x5 x1 ReLU 128x128
Conv2D* 128 3x3 x1/2 ReLU 64x64
Conv2D* 256 3x3 x1/2 ReLU 32x32
Conv2D* 512 3x3 x1/2 ReLU 16x16
Input z - - - 16x16
Dense 256 - ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Residual block 3x256 3x3 x1 ReLU 16x16
Conv2DTranspose* 256 3x3 x2 ReLU 32x32
Conv2DTranspose* 128 3x3 x2 ReLU 64x64
Conv2DTranspose* 64 5x5 x2 ReLU 128x128
Conv2D 3 3x3 x1 tanh 128x128
Input x - - - 128x128
Input y - - - 128x128
Conv2D 64 3x3 x1/2 LeakyReLU 64x64
Conv2D 128 3x3 x1/2 LeakyReLU 32x32
Conv2D 256 3x3 x1/2 LeakyReLU 16x16
Conv2D 512 3x3 x1/2 LeakyReLU 32x32
Dense 1 - Sigmoid 1

Table C.3: UNet-Res for CelebA

Layer type Units Scaling Activation Output shape
Input x - - - 160x160
Input y - - - 160x160
Conv2D 64 3x3 x1/2 LeakyReLU 80x80
Conv2D 128 3x3 x1/2 LeakyReLU 40x40
Conv2D 256 3x3 x1/2 LeakyReLU 20x20
Conv2D 512 3x3 x1/2 LeakyReLU 10x10

Table C.4: PatchGAN discriminator
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APPENDIX C. EXPERIMENT DETAILS FOR THE PIXEL-WISE CONDITIONNED GAN

Layer type Units Scaling Activation Output shape
Input z - - - 20x20
Conv2DTranspose 256 3x3 x2 ReLU 40x40
Conv2DTranspose 128 3x3 x2 ReLU 80x80
Conv2DTranspose 64 3x3 x2 ReLU 160x160
Input y - - - 160x160
Conv2D 64 3x3 dil. 1 x1 ReLU 160x160
Conv2D 128 3x3 dil. 2 x1 ReLU 160x160
Conv2D 256 3x3 dil. 3 x1 ReLU 160x160
Conv2D 512 3x3 dil. 4 x1 ReLU 160x160
Conv2D 3 3x3 x1 tanh 160x160

Table C.5: UpDil Texture

Layer type Units Scaling Activation Output shape
Input z - - - 20x20
Conv2DTranspose 256 3x3 x2 ReLU 40x40
Conv2DTranspose 128 3x3 x2 ReLU 80x80
Conv2DTranspose 64 5x5 x2 ReLU 160x160
Input* y - - - 160x160
Conv2D* 64 3x3 x1/2 ReLU 80x80
Conv2D* 128 3x3 x1/2 ReLU 40x40
Conv2D 256 3x3 x1/2 ReLU 20x20
Conv2DTranspose* 256 3x3 x2 ReLU 40x40
Conv2DTranspose* 128 3x3 x2 ReLU 80x80
Conv2DTranspose* 64 3x3 x2 ReLU 160x160
Conv2D 3 3x3 x1 tanh 160x160

Table C.6: UpEncDec Texture

Layer type Units Scaling Activation Output shape
Input y - - - 160x160
Conv2D 64 5x5 x1 ReLU 160x160
Conv2D* 128 3x3 x1/2 ReLU 80x80
Conv2D* 256 3x3 x1/2 ReLU 40x40
Conv2D* 512 3x3 x1/2 ReLU 20x20
Input z - - - 20x20
Conv2DTranspose* 256 3x3 x2 ReLU 40x40
Conv2DTranspose* 128 3x3 x2 ReLU 80x80
Conv2DTranspose* 64 5x5 x2 ReLU 160x160
Conv2D 3 3x3 x1 tanh 160x160

Table C.7: UNet Texture
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Layer type Units Scaling Activation Output shape
Input y - - - 160x160
Conv2D 64 5x5 x1 ReLU 160x160
Conv2D 128 3x3 x1/2 ReLU 80x80
Conv2D 256 3x3 x1/2 ReLU 40x40
Conv2D 512 3x3 x1/2 ReLU 20x20
Input z - - - 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Conv2DTranspose 256 3x3 x2 ReLU 40x40
Conv2DTranspose 128 3x3 x2 ReLU 80x80
Conv2DTranspose 64 5x5 x2 ReLU 160x160
Conv2D 3 3x3 x1 tanh 160x160

Table C.8: Res Texture

Layer type Units Scaling Activation Output shape
Input y - - - 160x160
Conv2D 64 5x5 x1 ReLU 160x160
Conv2D* 128 3x3 x1/2 ReLU 80x80
Conv2D* 256 3x3 x1/2 ReLU 40x40
Conv2D* 512 3x3 x1/2 ReLU 20x20
Input z - - - 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Residual block 3x256 3x3 x1 ReLU 20x20
Conv2DTranspose* 256 3x3 x2 ReLU 40x40
Conv2DTranspose* 128 3x3 x2 ReLU 80x80
Conv2DTranspose* 64 5x5 x2 ReLU 160x160
Conv2D 3 3x3 x1 tanh 160x160

Table C.9: UNet-Res Texture
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APPENDIX C. EXPERIMENT DETAILS FOR THE PIXEL-WISE CONDITIONNED GAN

C.3 Domain-specific metrics for underground soil genera-
tion

In this section, we compute the connectivity function Lemmens et al., 2017 of generated
soil image, a domain-specific metric, which is the probability that a continuous pixel path
exists between two pixels of the same value (called Facies) in a given direction and a given
distance (called Lag). This connectivity function should be similar to the one obtained on
real-world samples. In this application, the connectivity function models the probability
that two given pixels are from the same sand brick or clay matrix zone.

We sampled 100 real and 100 generated images using the UNetResPAC architecture
(see Section 2.4.2) on which the connectivity function was evaluated for both the CGAN
and our approach. The obtained graphs are shown respectively in Figures C.1 and C.2.

The blue curves are the mean value for the real samples, and the blue dashed curves
are the minimum and maximum values on these samples. The green curves are the con-
nectivity functions for each of the 100 synthetic samples and the red curves are their mean
connectivity functions. From these curves we observe that that our approach has similar
connectivity functions as the CGAN approach while being significantly better at respect-
ing the given constraints (see Section Table 2.6).
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Figure C.1: Connectivity curves obtained on 100 samples generated with the CGAN approach.

Figure C.2: Connectivity curves obtained on 100 samples generated with our approach.
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Appendix D

Proof for the space of polarimetric
constraints

Proof. We call ŷ and ỹ respectively an image that we want to evaluate and the intensities
computed by equation (3.5). From this equation, the calibration matrix A and its pseudo-
inverse A†, we have the following equality:

ỹ0
ỹ45
ỹ90
ỹ135

= 1

2


1 1 0
1 0 1
1 −1 0
1 0 −1

×
1 0 1 0

1 0 −1 0
0 1 0 −1

×


ŷ0
ŷ45
ŷ90
ŷ135

 . (D.1)

Let M = AA†, then we have:

ỹ = Mŷ = 1

2


2 0 0 0
1 1 1 −1
0 0 2 0
1 −1 1 1

×


ŷ0
ŷ45
ŷ90
ŷ135

 .

The set X such that its elements are solutions to Problem D.1 is

X = {y|y = My} = {y|(M− I)y = 0} = Ker (M− I) .

Lets first compute the matrix M− I:

M− I = 1

2




2 0 0 0
1 1 1 −1
0 0 2 0
1 −1 1 1

−


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2


= 1

2


0 0 0 0
1 −1 1 −1
0 0 0 0
1 −1 1 −1

 ,

with I the identity matrix. Lets now find y such that (M− I)y = 0:

1

2


0 0 0 0
1 −1 1 −1
0 0 0 0
1 −1 1 −1

×


y1
y2
y3
y4

=


0
0
0
0


Thus we have y1 −y2 +y3 −y4 = 0. Hence X comprises vectors y ∈ R4 with the constraint

y1 +y3 = y2 +y4, leading to X =
{[

y0 y1 y2 y3

]> ∣∣∣ y1 +y3 = y2 +y4

}
.
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